ML17318A507

From kanterella
Jump to navigation Jump to search
Requests Deletion of License Conditions 3.A & 3.B of OL Amend 6.Requirements for Agastat 7000 Series Relays & Pressure Switches Fulfilled Per Encl Test Results
ML17318A507
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 12/18/1979
From: Dolan J
INDIANA MICHIGAN POWER CO. (FORMERLY INDIANA & MICHIG
To: Harold Denton
Office of Nuclear Reactor Regulation
Shared Package
ML17318A508 List:
References
AEP:NRC:00001A, AEP:NRC:1A, NUDOCS 7912200509
Download: ML17318A507 (120)


Text

DYNAMIC EVALUATION TEST PROGRAM ON A SAFETY INJECTION SYSTEM PANEL, AN AUXILIARYRELAY PANELS AND A HOT SHUTDOWN PANEL

~k8f 880 -3/g v"(jp Zi. 7$ fg2 0P~yg DJ p~~,

-~~~cc@lrl

+ay l [tv.tg~ y e vii' 4 FOR AMERICAN ELECTRIC POWER SERVICE CORPORATION TWO BROADWAY NEW YORK, NEW YORK 10004

f N

I

SEISMIC SIMULATION Test Report REPORT NO.

44560 1

WYLE JOB NO.

0 CUSTOMER p2p64 25p 9N Ref p6 P. 0. NO.

r l,o

,'jl PAGE 1 OF November 19, 1979 SPECIFICATION (S) in Section 7.0 PAGE REPORT y p CUSTOMER American Electric Power Service Co oration ADDRESS Two Broadway, New York, New York 10004 2 p TEST SPECIMEN A Safety injection System Panel, an Auxiliary Relay Panel, and a Hot Shutdown Panel 3.0 MANUFACTURER 4.0

SUMMARY

Harlo Corporation A Safety Xnjection System Panel, an Auxiliary Relay Panel, and a Hot Shutdown

Panel, described in Paragraph 5.1r hereinafter called the specimens, were subjected to a dynamic evaluation test as required by the American Electric Power Service Corporatior (AEPSC) Purchase Order Number 02064-250-9N, Ref. 06, and Wyle Laboratories'est Plan 541/1735-1/DK, dated April 21, 1979, Revision C.

The dynamic characteristics were determined by providing a force input to the specimens with a small exciter specifically designed for modal-type testing.

The testing was performed at the Donald C. Cook Nuclear Power Plant, Unit No. 2, located in Bridgman, IyIichigan.

The specimens were tested in their actual in-service configurations over the period of October 31, 1979, through November 4, 1979.

STATE OF ALABAMA COUNTY OF MADISON Ala. Professional Eng.

Reg.

No. 6363 wyte shall htho no aataaty fordamages ot any kind to person or property. <nettxang spacistor oonseqoential damages. restrt rfom wyte s prodding triosenieos coreredby this repork PREPARED BY James W. Foreman

~ being duly sworn, deposes and says: The information contained in this report is the result ol complete and carefull c

n ucte tests andisto the best o hisknowledgetrueandcorrectin all resp AP VED BY WYLEQ.A.

ell SUBSC BED sworn to before me this day of

,19 Notary P blic ln and for the State of Alabam at large.

My Commission expires SCIENTIFIC SERVICES AND SYSTEMS GROUP HUNTSVILLE,ALABAMA

PAGE NO.

REPORT NO.

WYLE LAIBGRAlQRIKS SCIENTlRC SERVICES ANO SYSTEMS GROUP 4.0

SUMMARY

(Continued)

Figures 1,

2 and 3 show the node points, excitation points, and accelerometer locations.

r Photograph 1 shows the typical test setup.

Photographs 2 through 4 show the accelerometer; locations for a typical test.

Appendix I contains the Inertance Plots fromithe resonance searches.

Appendix II contains the mode shape data, mode shapes, and damping decay plots.

Appendix III contains the Instrumentation Log Sheets and the Instru-mentation Equipment. List,.

Appendix IV contains Nyle Laboratories'est>'Plan 541/1735-1/DK, dated April 21, 1979, Revision C.

Vl/YlE LAJBCRNQ$5ES SMHTIRC SEAVICES ANO SYSTEMS GROUP PAGE NO.

REPORT NO.

44560-1 5.0 5.1 TEST REQUIREMENTS Specimen Descri tion and Mounting The following specimens shall be subjected to a dynamic evaluation test:

Specimen No.

Description Approximate Size L

x W

x H

Safety Injection System Panel Auxiliary Relay Panel Hot Shutdown Panel 138" x 96" x 96" 122" x 24" x 96" 144" x 72" x 96" 5.2 The specimens shall be mounted in their actual in-service configurations.

Excitation A force input shall be provided by a small, lightweight, armature exciter specifically designed for modal-type testing.

A force trans-ducer shall be used at the attachment point to measure force input.

The force input shall be applied to the specimens in each of the two (2) horizontal axes.

The force input shall be applied at two (2) locations as follows:

Floor-mounted cabinets The force input shall be applied near the top of the cabinet and also approximately 24" from the floor.

Floor-and ceiling-mounted cabinets - The force input shall be applied approximately 60" from the floor and also approxi-mately 24" from the floor.

5.3 Resonance Search A sine sweep from approximately 1 Hz to 35 Hz using approximately 5

pounds force input shall be performed to identify major resonances for each test configuration.

The sweep rate shall be no greater than one octave per minute.

Inertance (g/lb input) plots from the resonance search tests shall be provided.

In addition to the sweeps, resonant frequencies shall be verified by observing force and accelerometer output Lissajous figures on an oscilloscope.

The frequencies where force and acceleration are 90 degrees out-of-phase, indicating a resonant condition, shall be recorded in the test log.

PAGE NQ.

REPQRT NQ.

44560 1

SAQX UNOHAlZRIES SCIEIITIRC SERVICES ANO SYSTEMS GROUP 5.0 5.4 TEST REQU1REMENTS (Continued Mode Sha es and Dam in For each test configuration, mode shapes and damping values shall be determined at the primary resonant frequencies.

Mode shapes shall be determined by tuning in the resonant frequency and using accelerometer probing methods at predetermined locations to describe the relative motion.

The mapping shall be performed using two (2) accelerometers (one biaxial).

Phase shall be determined from an oscilloscope Lissajous display.

Damping values shall be calculated from oscillograph decay recordings of accelerometer signals taken by quickly turning off the exciter while exciting the unit at the resonant frequency.

A decay curve shall be developed from the oscillograph recordings and the damping shall be determined by the following formula:

X C/C

= log c

2nn e Xn where C/C

=

Damping c

X0 Number of Cycles Amplitude of Cycle "o" Xn Amplitude of Cycle "n" Additionally, the bandwidth method shall be used to determine the specimen damping.

5.5 Instrumentation 5.5.1 Excitation Control Exciter force input shall be measured and controlled by a force trans-ducer at the exciter attachment to the specimens.

IVY'ABQRAlZ%5ES-SCIENTIFIC SERVICES AND SYSTEMS GROUP PAGE NO REPORT NO 44560-1 5.0 5.5.2 TEST REQUIREMENTS (Continued)

S ecimen Res onse Six (6) response accelerometers (three biaxial locations) shall be located on each specimen under test.

The biaxial locations shall be (1) the driving point, (2) the center of the cabinet face, and (3) approximately 18" from the floor.

Frequency response test accelerometer and force data shall be recorded on FM tape.

Inertance plots from the resonance search tests shall be presented in the test report.

PAGE NO.

REPORT NO.

WVLE lAlBCRA'1KNRIEB SCIENlPIC SERVICES AND SYSTEMS GROUP 6.0 6.1 TEST PROCEDURES AND RESULTS S ecimen Mountin 6.2 The specimens were mounted in their actual in-service configurations.

Excitation 6.2.1 A force input was provided by a small, lightweight, armature exciter specifically designed for modal-type testing.

A force transducer was used at the attachment point to measure force input.

The force input was applied to the specimens in each of the two (2) horizontal axes.

The force input was applied at two (2) locations as follows:

Floor-mounted cabinets (Specimens 2 and 3)

The force input was applied near the top of the cabinet and also approximately 24" from the floor.

Floor-and ceiling-mounted cabinets (Specimen 1)

The force input was applied approximately 60" from the floor and also approximately 24" from the floor.

The excitation points are shown in Figures 1,

2 and 3.

6.3 Resonance Search Procedures A sine sweep from approximately 1 Hz to 35 Hz using approximately 5

pounds force input was performed to identify major resonances for each test configuration.

The sweep rate was one octave per minute.

Zn addition to the sweeps, resonant frequencies were verified by observing force and accelerometer output Lissajous figures on an oscilloscope.

The frequencies where force and acceleration were 90 degrees out-of-phase, indicating a resonant condition, were recorded in the test log.

6.3.1 Resonance Search Results Xnertance (acceleration divided by force versus frequency) plots are contained in Appendix Z.

No resonant frequencies were found below 35 Hz during the testing of the Safety Enjection System Panel (Specimen

1).

NY)LE LABOI&lZSIES SCIEHTIPIC SERVICES AND SYSTEMS GROUP PAGE NO.

REPORT NO.

6.0 6.3.1 TEST PROCEDURES AND RESULTS (Continued)

Resonance Search Results (Continued)

Resonant frequencies found during the testing of the Auxiliary Relay Panel (Specimen

2) and the Hot Shutdown Panel (Specimen
3) were:

~secimen Axa.s Fre uenc (Hz)

Front-to-Back 11.2, 18.2, 33.3 Side-to-Side None below 33 Hz Front-to-Backs 16.1, 22.9, 24.4 Side-to-Side 22.3 6.4 Mode Sha e and Dam in Procedures For each test configuration, mode shapes and damping values were determined at the primary resonant frequencies.

Mode shapes were determined by tuning in the resonant frequency and using accelerometer probing methods at predetermined locations to describe the relative motion.

The mapping was performed using two (2) accelerometers (one biaxial).

Phase was determined from an oscilloscope Lissajous display.

Damping values were calculated from oscillograph decay recordings of accelerometer signals taken by quickly turning off the exciter while exciting the unit at the resonant frequency.

A decay curve was developed from the oscillograph recordings and the damping was determined by the following formula:

PAGE NO.

REPORT NO.

VAflLE ULBQRA1ZNIES SCIEHTIRC SERVICES AND SYSTEMS GROUP 6.0 6.4 TEST PROCEDURES AND RESULTS (Continued)

Mode Sha e and Dam in Procedures (Continued)

X C/C

=

log c

2mn e Xn where C/C

=

Damping c

n

=

Number of Cycles X

=

Amplitude of Cycle "o" 0

X

=

Amplitude of Cycle "n" n

Additionally, the bandwidth method was used to determine the specimen damping using the following formula:

f - f Damping Factor

=

2 1

2 fn where:

f and f are frequencies at. which Q=Qo and Q

=

Resonant Magnification Factor at f 0

n f

=

Resonant Frequency.

n

1M'ABQRAKNIES SCIENTIRC SERVICES AND SYSTEMS GROUP PAGE NQ.

REPQRT NQ.

44560"1 6.0 6.4.1 TEST PROCEDURES AND RESULTS (Continued)

Mode Sha e and Dam in Results Appendix II contains the mode shape data, mode shapes and damping decay curves for Specimens 2 and 3.

The damping values for Specimens 2 and 3, as determined from the damping decay curves and bandwidth method, are:

Specimen No.

Frequency (Hz)

~Za Deca Bandwidth Dam in (0 critical)

F-B F-B F-B F-B F-B S-S 11.2 18.2 33.3 16.1 22.9 24.4 22.3 1.9 4.7 3.2 3.2 3.0 3.3 3.3 2.6 6.5 4 '

3.8 3.8 3.2 5.6 6.5 Instrumentation Procedures 6.5.1 Excitation Control Procedures Exciter force input was measured and controlled by a force transducer at the exciter attachment to the specimens.

6.5.2 S ecimen Res onse Procedures Six (6) response accelerometers (three biaxial locations) were located on each specimen under test.

The baxial locations were (1) the driving

point, (2) the center of the cabinet face, and

('3) approximately 18" from the floor.

Accelerometer locations are shown in Figures 1,

2 and 3.

Frequency response test acceleroemter.

and force data were recorded on FM tape.

6.5.2.1 S ecimen Res nse Results Appendix I contains the Inertance Plots obtained from the. specimen response accelerometers.

PAGE NO.

REPORT NO.

%IRK. LABORAllQRIEB SClEHTlRC SERVICES ANO SYSTEMS GROUP 7.0 7.1 American Electric Power Service: Corporation Purchase Order Number 02064-250-9N, Ref. 06.

7.2 ale Laboratories'est Plan 541/1735-1/DK, dated April 21,

1979, Revision C.

Page No.

11 Report No. 44560-1 2 lo 28 28~ 3'3" 3o I

I I

I I

AccEM 1V.'S,l55 Acc Eas, 2<8 > 3.'$$

2'8" Z)RlVE PT?

- PccpL5 3Fsi 355 P Igll FIGURE 1.

SAFETY INJECTION SYSTEM PANEL-NODE POINTS, EXCITATION POINTS AND ACCELEROMETER LOCATIONS

Page No.

12 Report No. 44S60-1 2Z" 23

$0 ~DHAVB PT l FhccEL5

!VSSE I SS 93" 70 ACeELS Zvs,ZS>

D'Rwve Qec,E4S 9FBp 355 8f 2S FIGURE 2.

AUXILIARYRELAY PANEL - NODE POINTS, EXCITATION POINTS AND ACCELEROMETER LOCATIONS

Page No.

Report No 44560 1

@give PTl AQQ,p~

( FEt l~

S3 lol 3o P~Kl S ppg ASS OfV~<+ ~

Pcc 6 L.S 9F%3~

~owl-r v<<~

SS

+8 lg&

ZS zyP I /9R I

I I

I I

<u(

---I-I I

I I

l Ico I /V2 I

I I

I I

I I

I I

I I /9d 9wAQ v l'EM l5'Z qg lg FIGURE 3.

HOT SHUTDOWN PANEL NODE POINTS'XCITATION POINTS AND ACCELEROMETER LOCATIONS

Page No.

14 Report No. 44560-1

,'I r

\\l I

t I

0 jj',

PHOTOGRAPH 1 TYPICAL TEST SETUP (AUXILIARYRELAY PANEL SHOWN)

Page No.

15 Report No. 44560-1 fc

)

PHOTOGRAPH 2

AUXILIARYRELAY PANEL ACCELEROMETER LOCATIONS 1 FRONT-TO-BACK 2 SIDE-TO-SIDE

Page No.

16 Report No. 44560-1

'Lr'yw+

A~a V,%we Vm Aeeza.

Z VS f)+

o ff I

PHOTOGRAPH 3

AUXILIARYRELAY PANEL ACCELEROMETER LOCATIONS 2 FRONT-TO-BACK 2 SIDE-TO-SIDE

~

I Page No.

17 Report No. 44560-1 ttMC t'rgb,'r'

~ III

~ I ~ I

)>>IIi h

\\ ~

I h ~ I ~ I

~ ~ll h

h h

Pius 9,~MY

&f4'cc%L Q 78 QSS YVSCc t>>t IJ"I.

fi"ll

~tat Il 1

~Qo

) h'((.

Qr PHOTOGRAPH 4

AUXILIARYRELAY PANEL ACCELEROMETER LOCATIONS 3 FRONT-TO-BACK 3 SIDE-TO-SIDE

Page No.

18 Report No. 44560-1 This page intentionally left blank.

lhlYLE UKORAlMtES SQEHTI8C SEAVICES AND SYSTEhlS OAOUP PAGE NO.

19 REPORT NO.

APPENDIX I INERTANCE PLOTS RUN NO.

SPECIMEN AXIS DRIVE POINT 10 15 17 Safety Injection System Panel Safety Injection System Panel Safety Injection System Panel Auxiliary Relay Panel Auxiliary Relay Panel Auxiliary Relay Panel Hot Shutdown Panel Hot Shutdown Panel Hot Shutdown Panel Front-to-Back Front-to-Back Side-to-Side Front-to-Back Front-to-Back Side-to-Side Front-to-Back Front-to-Back Side-to-Side

Page No.

20 Report No. 44560-1

~

~

FULl SCALE INEATANCE

'5 0.001 CI 0.01+

O. I CI'.0 0 50 9

8 7

10 9

8 7

O) 2 0)o

<0 05 10 9

8 V

7 g n g 1I 1-vi" 6

0 I9 n A.n 2

3 4

6 6

7 8 910 10 2

3 4

6 6

7 8 910 100 Frequency (Hz) 4 6

6 7

8 910 1000 AXIS ACCEL NO. i~>

+ FORCE INPUT TEST RUN NO.

Page No.

21 Report No. 44560-I.

FULL SCALE IMEATANCE 0.001 0 0.01,

.01 Cl 1.0 0 10 9

8 7

'10 9

8 7

gn

~ al I v C II I7ox Jn CD 3 OI OC IO OI 10 9

8 8 910 10 8

3 6

6 6

7 8 910 100 Frequency (Hz) 3 6

6 6

7 8 910 1000 AXIS ACCEL NO. +M~ FORCE INPUT TEST RUN NO.

Page No.

22

Report, No., 44560-1 FULL SCALE INERTANCE 0.001 0 0.01 gl

.01 0 1.0 Q 10 9

8 7

10 9

8 7

OI 2 01O (0

I0) 10 9

8 0

7 gn gQ I-V i~

8 0

I7 n p )C An I

I I

I I

I 2

3 4

6 6

7 S 910 10 2

3 4

6 6

7 8 910 100 I

I I

3 4

6 6

7 8 910 1000 Frequency (Hz)

AXIS ACCEL NO. M2' FORCE INPUT TEST RUN NO.

Page No.

23 Report No.. 44560-1 FULL SCALE NlERTANCE 0.001 0 0.01 IKI

.01 Q 1.0 0 10 9

8 7

10 9

8 7

JD Ol 2 0)o (0

C0) 10 9

8 0

Q II 3 II I II

+ II Ox 4 Il 4

6 7

9 0

2 3

4 6

6 7

Frequency (Hz) 8 910 100 3

4 8

8 7

8 910 1000 AXIS ACCEL NO. ~M~ FORCE INPUT

page No.

24 Report No. 44560-1 FULL SCALE INERTANCE 0.001 0 0.01@

1.0 0 10 9

8 7

~

I

~

I

~ I 10 9

8 7

I

~

CD 2 ID JJ DIC 10 9

8 V

7 gn 6

I V

IEuU8 xn ISpX 4n

~

i I

I I I I

I I

I I

I I

II 2

3 4

6 6

7 6 910 2

3 6

6 6

7 8 910 I

I I

I 3

4 6

6 7

8 910 10 Frequency (Hz) 100 1000 AXIS

'CCEL NO..~8+

'ORCE INPUT

Page No. 25 RePort. No.

445t3O-1 FULL S CALE INEATANC E

).

0.001 0 0.01 g

.01 C3 1.0 0 10 9

8 7

10 9

8 7

6 6

$7

~

g O1

01O, 1

0) 1 ~

10 9

8 0

7 XjJ I 0 0i" 6

17 A 13 X JA 3

3 4

6 6

7 8

9'10 10 3

4 6

6 7

8 910 100 F

quency (Hz) 3 4

6 6

7 8 910 1000 ACCEL NO. MZ~ FORCE INPUT TEST RUN NO.

Page No.

26 Report No. 44560-1 FULL SCALE INEATAlUCE 0.001 0 0.01 g

.01 C}

1.0 0 10 9

8 7

10 9

8 7

n JD O1 2

07O, C

10 CQ).4 10 9

8 0

x IE0 5

I9~n pN Jn 4

~

6 5

6 7

8 910 10 2

3 6

5 6

7 8 910 100 Frequency (Hz) 3 6

5 6

7 8 910 1000 AXIS ACCEL NQ. ~~

~ FORCE INPUT TEST RUN NO.

~

~

page No.

27 Report" No. 44560-1 FULL SCALE INEATAMCE 0.001 0 0.01 0

.01 0 1.0 D 10 10 9

8 7

OI 2 0)OCI0 I

Q) 10 9

8 0

7 g VI 6

I-IA ccrc 6

V

+ FI pN J FI 3

3 6

6 6

7 8 910 2

Frequency (Hz) 6 6

7 8 910 100 3

6 6

6 7

8 910 1000 AXIS ACCEL NO. ~<>

~ FCRCE INPUT TEST RUN NO.

Page No.

28 Report No. 44560-1

~ I

~

~

FUlL SCALE INERTAMCE 0.001 Cl 0.01 g

.01 0 1.0 0 10 9

8

~ t I ~

~

I 10

~ I I

O1 2 0)O C7<.c QC 10 9

8 0

z" 0:0 6

0<<n Ox i

~

1 I

2 3

4 6

6 7

8 910 2

3 4

6 6

7 8 910

~ I 4

6 6

I I

I 1

I 7

8 910 10 100 Frequency (Hz) 1000-AXIS ACCEL NO. MM+ FORCE INPUT TEST RUN NO.

~

~

Page No.

29 Report No. 44560-1 FULL SCALE IMERTANCE 0.001 0 0.01 Q

.01 0 1.0 Q 10 9

8 7

g'h 10 9

8 7

J3 O1 2

01O, (0

C 10 9

8 g al 2.'

g 0~n pK J0 8

91 2

3 6

6 6

7 8 910 3

6 6

6 7

8 910 100 Frequency (Hz),

1000

AXIS, ACCEL NO. ~5

~ FORCE INPUT TEST RUN NO.

page No-30 Report No. 44560-1

~

~

FULL SCALE IMEATANCE 0.001 Q.

0.01 8

.01 0 1.0 0 10 9

8 7

~

~

I I

~

~

I I ~

10 9

8 I

~ I 6

I

~

I

~

C7

0) 2 0)O C'0 4J 1

, tD, 10 9

8 0

7 En 6

u L'u 6

0~n Ox An 2

3 6

5 6

7 8 910 10 6

5 6

7 8 910 100 Frequency (Hz) 2 3

~ I I

I I

I 5

6 78910 1000 AXIS ACCEL NO.

~ ~~~ FORCE INPUT TEST RUN NO.

Page No.

31 Report: No. 44560-1 FULL SCALE INERTANCE 0.001 C3 0.01 IA

.01 Cj 1.0 0 10 9

8 7

~ I

~ I I

I I

~

I I

~

~

I I

~

I I ~

~

I

~

I 10 9

8 7

Ol 2 I'0 XN 6

0i" 6

19 FI o>c AN

~

I I ~

~ I I

~

2 3

6 6

6 7

8 910 10 2

3 6

6 6

7 8 910 100 Frequency (Hz) 3 6

6 6

7 8 910 1000 tIl,~q qk, ACCEL NQ. ~<<

'ORCE INPUT TEST RUN NO.

Page No.

32 Report No. 44560-1

~

~

FULI. SCALE INERTANCE 0.001 El 0.01 5

.01 0 1.0 0 10 9

8 7

10 9

8 7

I ~

OI 2 0)O

,C

'D CIC 10 9

8 0gn x"

I V ccv 5

<n p K An

~

~

6 5

6 7

8 910 10 2

3 6

5 6

7 8 910 100 Frequency (Hz)

~

t I

I I

I I

2 3

6 5

6 7

8 910 1000 "5

ACCEL NO. lE~

'ORCE INPUT TEST RUN NO.

~

~

Page No.

33 Report. No. 44560-1 FULL SCALE INERTANCE 0.001 0 0.01 I'01 0 1.0 0 10 9

6 7

I

~

~

I

~ I

~ I

~

I I

~ I 10

~

I n

~ I I

Ol 2 0)O I0 0I 10 9

6 3: J C II I9~n 0 )I An 4

6 6

7 8 910 2

3 6

6 6

7 8 910 10 100 Frequency (Hz) 3 6

6 6

7 8 910 1000 AXIS ACCEL NO, /~~ FORCE INPUT TEST RUN NO.

~

~

Page No.

34 Report No. 44560-1

~

~

FULL SCALE INERTAMCE 0.001 C3 0.01 Q

.01 0 1.0 0 10 9

8 7

~ ~

2

~ II 10 9

8 7

O) 2 01OC 10 I~

QI 10 9

8 0

g 4/i 6

I-u 6

<<u

<n 3"

I I

I I

I 9 10 2

3 6

6 6

7 8

9 10 100 Frequency (Hz) 2 3

6 6

6 7

8 910 1000 AXIS ACCEL NO.M~<<- FORCE INPUT

Page No.

35 Report No. 44560-1 FULL SCALE INERTANCE 0.001 Q 0.01

.01 E3 1.0 0 10 9

8 7

6 6

6 3

I

~

t

~ '

I I

~ t

~ ~

1

'3

0) 9 0)O (0

0) 10 9

8 6

g III I~ Vi" 6

II Id tl px J tt

~

~

\\

~

~

\\

91 4

d d

7 8 910 100 Frequency (Hz) 6 6

6 7

8 910 1000 l

AXIS ACCEL NO.

'ORCE INPUT ZH TEST RUN NO.

Page No.

36 Report No. 44560-1, FULL SCALE IMERTANCE 0.001 C3 0.01 Q

.01 0 1.0 0 10

~ I I I

~

~ ~

I ~

I Ilail

~

~

I

~

~

~

~

3 I ~

I ~

I

~ I

'!0 I

~

I ~

I

~

I ~

~

I I I

~

~

~

~ ~

I ~

I

~

~

4 Cl

~

2 o) 0)OC 10 C

.c,01

'C 10 9

8 0

7 X II 6

Jc" 6

0 17 ll ox J 11

~ I 6

6 8 910 10 3

4 6

6 7

8 910 100 3

4 6

6 7

8 910 1000 Frequency (Hz)

AXIS ACCEL NO. ~~+ FORCE INPUT TEST RUN NO.

Page No.

37'eport No. 44S6Q-1 FVLL SCALE IMERTANCE 0.001 CI 0.01 @

.01 0 1.0 C3 10 9

8 7

I

~

I

~

~ I 10

~ I C7 OI 2 0)o IQ 10 9

8 0

7

~

~

i I~I 6

I7<<FI 0 II J II 3

6 6

6 7

8 910 3

6 6

6 7

8 910 100 Frequency (Hz) 2 3

4 8

6 7

8 910 1000 AXIS 5

ILCCEL NO. ~1~

~ FORCE INPUT TEST RUN NO.

Page No.

38 Report No. 44560-1

~

I fULL SCALE INERTANC E 0.001 CI 0.01 Pl

~

1.0 Cl 10 I

I

~

I I

I I

I I

~

~ ~

I

~

~ I

~

~

6 I

I I

I I

~

I I ~

10 6

I

~ I IIll

~

I I I I

I I I I

~ I I I I

~ I

~ l l ~ I I

~

ill

~

I I I

J3

'C1 2 0)O

,. (0

,." aQ 10 9

8 0

7 zM 6

gn 0~

Jn I ~

I

~

I ~

I

~

~

I

~

I ~

I I

I I I I I 1

11 1

~

~

I II I

I I

2, 3

6 6

6 7

8 910 2

3 6

6 6

7 8 910

+

8 6

7 8 910 10 100 1000 Frequency (Hz)

AXIS ACCEL NO. ~g

'ORCE INPUT TEST RUN NO.

I

~

FULL SCALE INERTANCE 0.001 0 0.01

.01 CI 1.0 0 Page No.

3g Report No.. 4456p-y 10 6

10 9

8 7

I

~

gn Xg I u 0:0

+n C

p X An d5 OI 2 0IO

'tQ 10 9

8 7

6

~

\\

~

I

~

~

~

8 4

6 6

7 S 910 10 2

8 4

6 6

7 8 910 100 Frequency (Hz) 8 4

6 6

7 S 910 1000 AXIS ACCEL NO. 'w FORCE INPUT TEST RUN NO.

Page No. 40 Report No. 44560-1 FULL SCALE IMERTANCE 0.001 0 0.01 g 1.0 0 10

~

I I I

~

~

I I

~

~

~ I

~

~

I ~

10 9

8 6

6

~

I

~

I O7 2 01OC 10 j.

1 C

10 9

8 0

7 Q Vli sl I V i~0 8

17<<n 0 IC Jn

~

~

I

~ II

\\

~

~ I

~ I I

~ I

~

~

~ \\

~ I 6

7 8 910 10 2

3 6

8 6

7 8 910 100 Frequency (Hz)

I I

I 6

8 6

7 8 910 1000 AXIS ACCEL NO. ~M 'ORCE INPUT TEST RUN NO.

I l

~

Page No.

41 Report No. 44S60-1 FULL S CA LE I NEA TANCE 0.001 0 '.01 5,

.01 0 1.0 0 10 9

8 7

I

~

~

I I

~

I

~

~

I

~

~

I ~

10 9

8 7

~ I I ~ I I I

~ I I

~ ~ I 0)V I0 C0) 10 9

8 0

7 X

alI 8

I3~>>

0 lI J>>

I

~

'2 3

4 2

3 6

8 6

7 8 910 100 Frequency (Hz) 3 4

6 6

7 8 910 1000 AXIS ACCEL NO. ~~

~ FORCE INPUT TEST RUN NO.

4 page No.

42 Report No. 44560-1 FULL SCALE INERTAMCE 0.001 Q 0.01 g 1.0 0 10 7

I

~

~

~

I ~

t

~

~

~

I

~ I

~ ~

10 7

t

~

~

~

t ~

O1 2 07O tQ 01' 10 9

8 0

Q n 6

I II 6

<n Q II an I

~

~

~

I \\

I

~ I I

~

I I

I t

I I

~

~

2 3

I 6

6 7

8 910 10 I

6 6

7 8 910 100 Frequency (Hz)

I I I I t

3 I

8 6

7 8 910 1000 AXIS ACCEL NO.

5 ('3 ~ FORCE INPUT TEST RUN NO.

~

~

Page No.

43 Report, No. 4456p-1 FUI.L SCAI.E INEATAIIICE 0.001 C3 0.01 4

.01 0 1.0 0 10

~

~

~

~

10 9

8 7

~ ~

I

\\

I I:

O) 2 0)OC

~

cD c0)C 10 9

8 z+

6 cc" 8

0

<n 0~

dn 3

9 10 2

6 6

6 7

8 910 100 Frequency (Hz) 2 3

6 8

6 7

8 910 1000 AXIS ACCEL NO. M1M~ FORCE INPUT

Page No.

44 Report No. 44560-l

~

~

FULL SCALE IMERTAMCE 0.001 0 0.01 g

.01 0 1.0 0 10 I

I ~

~ ~

I

~

~

~ ~

10 9

8

~

~

II

~

~

I ~

~

\\

C1 2 0)O.

C (0

C yak+

10 9

8 0

gn 3:

Z~

d

<n p X Jn

~ I

~

~

~ I I

2 3

4 d

8 7

8 910 10 2

3 4

d 8

7 8 910 100 Frequency (Hz)

I I I I

I I

I I I I

I I

I 3

8 8

8 7

8 910 1000 AXIS ACCEL NO. +~2

~ FORCE INPUT TEST RUN NO.

Page No.

45 Report No. 44560-1 FULL SCALE INEATANCE 0.001 CI 0.01 I

.01 C3 1.0 El 10 9

8

~

I

~ I

~

10 9

8 7

~

I 3

+

6 6

7 8

0 2

3 6

6 6

7 8 910 100 Frequency (Hz) 2 3

6 6

6 7

8 910 1000 AXIS ACCEL NQ. I++ ~ PQRCE INPUT TEST RUN NO.

Page No.

46 Repgm No. 44560 FULL SCALE INEATANCE 0.001 E3 0.01 gl

.01 0 1.0 C3 10 I ~

3 10 9

8 7

a

~ 6 e

6 I I I ~ I I

I

~

~

~'2 D).

t

07V,

.4 S, Yr 1

~ Ikyr(g 4 10 9

8 0

~?

6 i~

6 0

pA pc J tt I

I I 1

2 3

6 6

6 7

8 910 10 2

3 6

6 6

7 8 910 100 Frequency (Hz)

~

~

I I

I 6

6 7

8 910 1000 AXIS ACCEL NO. ~~K~ FORCE INPUT TEST RUN NO.

~

~

~

Page No.

47 Report: No. 44560-1 FULL SCALE INEATANCE 0.001 Cl 0.01 0

.01 C3 1.0 Q 10 9

8 7

10 9

8 7

~

I U

Q ol Zg I- 0 II I9() )c Je O) 2 0)OC ID C

01 10 9

8

~

I 3

4 I

2 4

5 4

7 8 910 100 Frequency (Hz) 2 3

4 0

8 7

8 910 1000 AXIS ACCEL NO. ~M~ FORCE INPUT TEST RUN NO.

Page No.

48 Report No. 44560-1 FULL SCALE INEATANCE 0.001 D 0.01 gf

.01 D, 1.0 D 10

~

~

10 9

I

~

0) 2 0)OC 10 Ql 10 9

8 II 7

Q ol 6

I Vi"8

+n ox Js

~

I

~

~

I

~

\\

~

2 3

6 6

6 7

8 910 10 2

3 6

6 6

7 8 910 100 Frequency (Mz) 6 8

6 7

8 910 1000 AXIS ACCEL NO. &~8 ~ FORCE INPUT TEST RUN NO.

F

~

Page No.

49 Report No. 44560-1 FULL SCALE INERTANCE 0.001 0 0.01 gl

.01 C3 1.0 0 10 9

8 7

10 9

8 7

'2 n 3:g I v IX 0 19<<n p )C Jn OT 2 0)O G) 0)C 10 9

8 7

8 91 F

3 h

8 d

7 8 910 100

~

quency (Hz) 2 3

4 8

8 7

8 910 1000 AXIS ACCEL NO. ~+~

~ FORCE INPUT TEST RUN NO.

Page No.

50 Report No. 44560-1

~

I FULL SCALE IhlERTANCE 0.001 Cl 0.01 IP,

.01 C3 1.0 0 10 I

~

~

~

~ i 3

10 9

8 7

~ I V

3 v 1 v L0 Ox Js J5 O1 2 01O (0

C 0) 10 9

8 6

I

~

I 3

4 6

6 7

8 910 10 2

3 4

6 6

7 8 910 100 Frequency (Hz) 3 4

8 6

7 8 910 1000 AXIS ACCEL NO. 229 4

FORCE INPUT TEST RUN NO.

0

I

~

~

Page No., 51 ReL3ort No,

.44560-1 FULL SCALE INEATAMCE 0.001 c3 0.01 3I 1.0 C3 10 9

8 7

I

~

10 J3 CD 2 01OC 10 0)C 10 9

8 2 n g iJ 1 u L0 19~n Q )C Sn 2

3 7

8 910 10 2

3 6

6 6

7 8 910 100 Frequency (Hz) 3 4

6 6

7 8 910 1000 AXIS ACCEL NO.

w FORCE INPUT I

55'EST RUN NO.

/0

Page No.

52

,...Reoozt..No. 44560-1

~

~

FULL SCALE INERTANCE 0.001 0 0.01 8

.01 0 1.0 0 10 9

8 7

~

~

10

~

~

~

I I

~

I

~

D) 2 0)O (0

C0)C 10 9

8 p

~Zn 6

180 8

0~n p )C J>>

~ I I ~ I

~

~

~

I 2

3 4

6 6

7 8 910 2

3 6

6 6

7 8 910 3

6 0

6 7

8 910 10 100 Frequency (Hz) 1000 AXIS ACCEL NO.

~ FORCE INPUT TEST RUN NO.

Page No.

53 Report No. 44560<<1 FULL SCALE IlUEATAMCE 0.001 0 0.01 8

.01 0 1.0 0 10 9

8 7

I

~

10 9

8 7

it i

1D i

~

6 7

8 910 10 2

3 8

6 6

7 8 910 100 Frequency (Hz) 3 4

6 6

7 8 910 1000 AXIS ACCEL NQ. aMi

~ FORCE INPUT TEST RUN NQ.

Page No.

54 Report No. 44560-1 FULL SCALE INEATANCE 0.001 0 0.01 @

.01 Q 1.0 0 10 9

8 7

~

I 10 9

I

~ ~

~

~

I

~

~

~

I ~

~

~

OI 2 0)

CJ O'F IQ ID I

10 9

8 0

7 6

I v L II I9p

>C

~ I 2

3 4

4 6

7 8 910 10 2

3 4

4 6

7 8 910 100 I

I I

I I

3 4

4 6

7 8 910 1000 Frequency (Hz)

AXIS ACCEL NQ. ~4

'ORCE INPUT TEST RUN NO.

~

~

Page No.

55 Report No. 44560-1 FULL SCALE INERTANCE 0.001 0 0.01 J8,

.01 0 1.0 0 10 I

I

~

~

I

~

10 9

8 7

gn 3I-u cu I9<<n 0+

Jn O1 2 0)OC (0

~~ r1 g) 10 9

8 7

6

~

i

~

I 3

0 10 2

4 8

6 7

8 910 100 Frequency (Hz) 3 6

8 6

7 8 910 1000 AXIS ACCEL NO. > ~~

~ FORCE INPUT

Page No.

56 Report No. 44560-1 FULL SCALE INEATANCE 0.001 0 0.01 gf,

.01 0 1.0 0 10 I

~

~

~

I I

~

~ I I I ~

10 9

8 6

~

I

~

~

I

~

I I ~

C1 2 0)o C0 C'U tg e 10 9

8 CD X tt g U I Iti" s

V

+n px J II

~

~

I I

'1 3

6 S

6 78910 10 2

3 6

6 6

7 8 910 100 Frequency (Hz) 3 6

6 7

I I

I 8 910 1000 AXIS ACCEL NO. ~+9 t FORCE INPUT

~/

Page No. 57 Report No. 4456p-y FULL SCALE INERTANCE 0.001 0 0.01+

.01 0 1.0 CI 10 9

8 10

\\

~

O) 2 CI OC IQ I(0C 10 9

8 3

I P

IO 2

3 8

8 8

7 8 910 100 Frequency (Hz) 2 3

4 0

8 7

8 910 1000 AXIS ACCEL NO. ~E~

+'ORCE INPUT

Page No.

58 Report No. 44560-1 FULL SCALE IMEATAIMCE 0.001 0

= 0.01 6

.01 0 1.0 0 10 9

8 7

~

~

~ \\

I

~

~

~

~ ~

10 9

8 I

~

I

~

3 2

0)O

,,e.l C

~

4J eqxk 1

10 9

8 0

8 X

00 d

17 tl Ox

~

I I

~

2 3

8 8

8 7

8 910 3

S 8

8 7

8 910 3

4

\\

I I

I 8

8 7

8 910 10 100 Frequency (Hz) 1000 AXIS i (>

f ACCEL NO.~ '~ ~ FORCE INPUT TEST RUN NO.

Page No.

59.

Report No. 44560-1, FULL SCALE INERTANCE 0.001 C3 0.01 g

.01 C3 1.0 0 10 9

8 6

10 C) 9 07O (0

C ClC 10 9

8 0

7 g ul 6

I v 0i" 8

<n pX JA

~ I I

I I

I I

'J 9

0 8

6 8

6 7

8 910 100 Frequency IHz) 8 6

8 6

r 8 910 1000 AXIS 8

ACCEL NO.

~~~

'ORCE INPUT

~i

Page No. 60 Resort No. 44560-1

~

~

FULL SCAI.E INEATANCE 0.001 P 0.01 0

.01 C3 1.0 P 10 9

8 7

10 9

8 7

"O) 3

~.

oIc

""(0

>vs.Q)

- ia'AC 10 9

8 0

7 QO 6

0.'II 6

I9 A p

>C

~

~

I I I

3 6

6 6

7 8 910 10 3

6 6

6 7

8 910 100 Frequency (Hz)

I I

I I

3 3

6 6

6 7

8 910 1000 AXIS ACCEL NO. ~@ ~ FORCE INPUT TEST RUN NO.

Page No.. 61 Report: No. 44560-1.

FULL SCALE IMEATAMCE 0.001 Cl 0.01 g

.01 Cl 1.0 C3 10 I

~

~ I 10 I I ~

93

~

I I

~

I

~

~

0) 2 o

4J

'h'7 C

10 9

8

~

I

~v d

L0 19~n 0<

J 91 2

100 Frequency (Hz) 1 I

9

~9II I

1 I I

~

I I I 9 9th 2

3 4

d d

7 d 910 1000 AXIS ACCEL NO. ~<~

+ FORCE INPUT TEST RUN NO.

Page No.

62 RepoM No. 44560-1

~

I FULL SCALE IhlEAYANCE 0.001 0 0.01 g

.01 0 1.0 CJ 10

~

I I 10 9

8 7

6 5

~

I

~

~

~

I S3 O) 2

\\ 0)

  • C 10 9

8 7

Vgnz" 19 n 0<

An

~

I 2

3 6

5 6

7 8 910 10 2

4 5

IS 7

8 910 100 Frequency (Hz) 2 3

4 5

5 7

8 910 1000 AXIS ACCEL NO.l4 w FORCE INPUT

Page No.

63 Report, No. 44560-g FULL SCALE INEAYAMCE 0.001 0 0.01 5(

.01 C3 1.0 0 10 9

8 10 9

8 7

- '-a O) 2 O

10 C

Ql 10 9

8 0

7 Q al 3:g 6

I-v L'U 8

0~n p ac An 3

aa Ld 6

7 9 'lP 2

=

3 6

8 6

7 8 910 100 Frequency (Hz) 4 6

6 7

8 910 1000 AXIS ACCEL NO. l >~

a FORCE INPUT

Page No.

64 Report No. 44560-1

~

I FVLL SCALE IMEATAMCE 0.001 C3 0.01 8

.01 0 1.0 Cl 10 9

8 7

~ '

~

10

~ I J3 O) 2 0)OC, I,'-

mIi w p.,

10 9

8 0

7

~i M I

I1 L"

5 4 V I9 R 0 )c JN I

~

~

\\ II 2

3 6

5 6

7 8 910 10 6

5 6

7 8 910 100 Frequency (Hz)

I I

I I

6 5

5 7

8 910 1000 AXIS ACCEL NO. ca i~~ ~ FORCE INPUT TEST RUN NO.

I

~

~

Page No. 65 Report. No. 44560-1 FULL SCALE INEATANC E 0.001 C3 0.01+

.01 C3 1.0 Cl 10 9

8 9

10

~

I JD Ol 2 07O IU 0)C 10 9

8 Q n 2 Q I v 0

<n CI )c An 4

3 2

3 4

~

8 910 ilj g

3 4

8 6

7 8 910 100 requency (Hz 3

4 8

8 3

8 910 1000 AXIS IICCEL NO. ~+

'ORCE INPLIT TEST RUN NO.

Page No.

66 Report No. 44S60-1

~

~

FULL SCALE INEATANCE 0.001 0 0.01 tS,

.01 0 1.0 0 10 9

8 7

~

~

~

I

~

~ \\

~

I I ~

10 9

8 7

~f2 QI'I ID "<<,

I 10 9

8 0

7 gn 6

Lg 8

I9~n Jn

~

~

I ~

6 6

6 7

8 910 10 8

6 6

6 7

8 910 100 Frequency (Hz) 3 6

6 6

7 8 910 1000 AXIS ACCEL NO. REM~ FORCE INPUT TEST RUN NO.

~

~

Page No.

67'eport No. 4456p<<l FULL SCALE INERTANCE 0.001 CJ 0.0

.01 Cj 1.0 0

'10 I

~

I

~

i

~

~

10 6

~ 4 O) 2 0)OC(0 C

Of C

10 9

8 0

7 6

L'0 d

19<<n p )C Jn

~

I

~

~ I I 4

de 7

8 910 1

2 3

h 6

d 7

8 910 0

100 Frequency (Hz) 2 3

6 6

6 7

8 910 1000 AXIS ACCEL NO. ~M~ FORCE INPUT TEST RUN NO.

Page No.

68 Re os No. 44560-1

.P

~

FULL SCALE INERTANC E 0.001 0 0.01 Q

.01 Cl 1.0 0 10 9

8 7

~

~

10 9

8 7

~

I

~

~

O1 2 01OC (0

be ID 1-IE 10 9

8 V

7 g n z

O'U 6

0<<n Ox Jn

~

I

~

I I

~

~ I 6

6 6

7 8 910 100 Frequency (Hz) 2 3

6 6

6 7

8 910 1000 AXIS ACCEL NO. ~+>

~ FORCE INPUT TEST RUN NO.

d Page No. 69 Report, No. 44560-1 FULL SCALE IIMERTANCE 0.001 Cj 0.01,

.01 Cj 1.0 Cj 10 9

8 7

10 9

8 7

6 6

dd 0

g dd X

I V

C dd 170 dc J dd Zl

0) 9 0)OC 10 C0)C 10 9

8 6

6 6

7 8 910 10 6

6 6

7 8 910 100 Frequency (Hz) 3 6

6 6

7 8 910 1000 AXIS ACCEL NO. I ~~

'ORCE INPUT TEST RUN NO.

Page No.

70 Report No. 44560-1 FULL SCALE INERTANCE 0.001 0 0.01 gl..01 0 1.0 C3

~

~

10

~

I I

~

10 9

8 7

i6 "d

~

I Ol 2 IDVC IF (0.

C II

~ QJ";

C.

10 9

8 0

7 Q n x~

CC0 6

+n 0<

Jn

~

I 2

6 6

6 7

8 910 100 Frequency (Hz) 3 6

j 6 ~

6 7

8 910 1000 AXIS ACCEL NQ. ~>I

~ FORCE INPUT TEST RUN NO.

Page No.

73.

Mport No. 445l70-g FULL SCALE INERTANCE 0.001 0 0.01 j2f,

.01 El 1.0 0 10 9

8 7

10 9

8 7

Q vl gN I-V CU IE n pX Jn SD O) 2 0)O (0

C 0)C 10 9

8 9 10 10 2

3 6

6 6

7 8 910 100 Frequency (Hz) 3 6

6 6

7 8 910 1000 AXIS ACCEL NO. ~~~ ~ FORCE INPUT TEST RUN NQ.

page No.

72 Re ort No. 44560-1 P

FULL SCALE INERTANCE 0.001 C}

0.01 g

.01 E3 1.0 Cl 10

~ I

~

I

~ ~

r ~

I 10 9

8 7

6 r

'O1 2

,0)O rC T'LQ C

10 9

8 0

X~

CU 6

+n p X Jn

~

I I

~

I I

Q](

r f

p

~

4(5QJ 2

8 6

6 1

8 910 100 Frequency (Hz)

I r

I 6

6 7

8 910 1000 AXIS ACCEL NO ~Pi w FORCE INPUT

~r

Page No.

73 Report No. 44560-1 FVLL SCALE INERTANCE 0.001 0 0.01 'g

.01 0 1.0 CI 10

\\

~

10 I

I 1

II t

~

I ~

I i

tt 8

0 7

ZN 0i" 8

IS II Q )C J tI 3

~ t t

t t

~

~ t tII'jtt'I 3

4 8

8 7

8 910 100 Frequency (Hz) 3 4

0 d

7 8 910 1000 AXIS ACCEL NO. "

t FORCE INPUT TEST RUN NO.

Page No.

74 Report No. 44560-1 This page intentionally left blank.

WYLE LABGRATQRES SCIEIITIPIC SERVICES ANO SYSTEMS GROUP PAGE NO.

75 REPORT NO.

44560-APPENDXX ZI MODE SHAPE DATA, MODE SHAPES AND DAMPlNG DECAY CURVES

Page No.

76 Report No. 44560-1 DATA SHEET SPECDKN Avx a. l AR

++LAY AXIS F'RoN'To -~Ace.

FREQUENCY '1'1' l'H'8 '

DRXVE PT NooK

@lath BER, lN L 'LI4 B READ (sl Q

+

22.

+ 2c)o c g,o $ $ Asks g Haec )~(

gooR Nu&BEL ao

+ Zo 2o 21

+

72o

+ 3' 2l+

+

1l 23 37 gOO

+ 2'to

+ P 3

~

+ 81o

+ l9o 7l

+ ago 3o

+ lS-S.

q 3lo

+ 7o llo e Ross 'D gis gzAu iuc Moss BE Wu L.rt'Pu S>

Eb9

DATA SHEET Page No.

77 Report No. 44560-1 SPECZJKN AUwl )-l'A&9 RE,l A'f VAasE,K DATE l1) R/79 AXZS F ~@AT - Yo - 9 Ac.t PRZqUENCy

~ 18; ~

~ 14 +

DRIVE PT NooK

<use ER la )-i)4 E RE>o ru g CAY $$

8%Ass )ups t4OOE NuMBER lk ).>F6 QK)) e)ec CRnSC AX)s W RPAQ)t4C-

+ 3C) 20

+LO

'39

+

1 l)=)

t 7p

+ 200 70

+ JZ5

+/C C' ROSS AXls SEA 'b)as)s-N)u)-Y'lP) l9n

Page No.

78 Report No. 44560-1 DATA SHEET SPECIMEN 4 U <l4 lAR< Rgl Ag P~P'l DATE lh 1~l79 AXIS From -~-SAc.x.

rREOUENn

>3 8 H+

DRIVE PT l

NooK hlvth MA, lN Lll4 Q RED+ ivy, Cf<$$ Mr ag 8'BAg )el~

f4008

hluMBKR, la@ L>86 P KA'oiaac CRo5$ Axes +

9 EAOst4C gz) l 7O 20 23 q ~o

+ 'PK

+ t9o

+ 7b

&9o

+ 2o

+ 110

-4 5 So

+3o (HER

-2.9o

- 42.0

+7c

DATA SHEET Page No.

79 Report No. 44560-1 SPECXm HoT SHOrea~d Y-p ~Ki DATE hh

$ 7'f AXXS PAo~r -Vo PREOUENCV -t4';> Ha. 'RZVE PT

NObE, nlvMR EA.

1N LL< Q.

H,RAb ru ~

C ko SS AaiS W a%Ay )N+

gooK hLu&BKL 1H L-at4E P,KAbsHQ cRass Axts RPAb tt46.

+ 2o L7 lho I "t2.

I So

+ ~S

+ go I52 CRoS~

Ax)s R~'biuG- &usT'E' vt.7l PL l~b BY o.

I

Page No.

80 Report, No. 44560-1 DATA SHEET SPECIMEN Ho'T ZHU7~4

"+hA4V i '

DATE 11 1'3179 mIS F R~ ->o haec.

FREQUENCY

' 2 2.'94 t' DRIVE PT t

Ho+K hl~MSKR, l3o l 32.

lN l S4+

RFee )up 27 32.0

+ 13o 5

3 oQ cross 8%A~ ~A+

/5

- 7M f4Oe R

%UMBRA 1 s4 l.lHQ P"EAase~

Cross Axe 9 PAO inlC

. u.z

+ 95

+ /We

+ ZoO f C7

+10

<~os'Xmas RV.A0yLc Hv c m P t.-l EO

&9

DATA SHEET Page No.

81 Repoxt No. 44S60-1 SPECIMEN HOT 8A~~M'MS' ATE Ll(3'/a g AXIS %Anat - Tb - BAc<

FREQUENCY'2k

' 'RIVE PT 1

NouG,

<VMSEA, l7 1N I lH+

g9AD tel Q

+ lo

~ + 125 8 135

+ Z,to%

g.

1 0 C go fs Aswg R%AD ~45.

+70 QouK NURSER loo lo[

12o l2l 12m

lZZ, lk Lat46 P.QAbs H6

+ I 2,5

+ 2oo t 250

+1QS

+ 1 ec

+aM CRoSC Axles SEA'0 lhl4 3g

-2Q

-5$

+3O

+ l Oo V$

SZ

, +i<5

+ l 7 o

+ Z.LO

+ 11C)

+ 17m

+ ZZ~

~ 1-gS-

+ g05

+28c

+

to

+ Wo

~ 9'W w MS'

/47O C, g~g +yg g~Q fiO(i

~'MENT M Mua.Vi P~> Fb 8Y 0 "t

Page No.

82 Report No. 44560-1 DATA SHEET SPECIMEN 8~7 +H>W~el +'A~K'l DATE ll/Q 7 I AXIS + aber -~ S ihB rRZOUENCV 2 l;3. HZ DRIVE PT 3

NooK

hlVKSEA, lj' l'7o

'l N L ll4 Q, BRAD lsl Q l l5

+ 2<5 o

+ 75 CROSS Rr wg RV.Ap ~A~

a io LSo goo 6 Nu trtBE%

1l4 LIH9 P Kepler C Ro5$ AxL$

9 PA&ic44 21 l<o l 4o

Page No.

83 Report No. 44560-1 MODE SHAPE AUXILIARYRELAY PANEL FRONT-TO-BACK AXIS 11.1 Hz

Page No.

84 Report No. 44560-1 MODE SHAPE AUXlLlARYRELAY PANEL FRONT-TO-BACK AXIS 18.2 Hz 3

1 1

1

page No.

85 Report Noo 44>6O MODE SHAPE AUXELEARY RELAY PANEL FRONT-TO-BACK AXIS 33.3 Hz I

7l I

I I

I

'I 83

)

I I

/

t 7o I

I I

I I

I I

/

I I

/

/

/

I

//

8I

/

I I

I

/

I I

I I

I I

I I

I I

I go

Page No.

86 Report No. 44560-1 NODE SHAPE HOT SHUTDOWN PANEL FRONT-TO-BACK AXXS 16.1 Hz ISZ le

Page No. 87 Report No. 44S60-1 MODE SHAPE HOT SHUTDOWN PANEL FRONT-TO-BACK AXlS 22.9 Hz 5+

~5'0

Page No.

88 Report, No. 44560-1 HODE SHAPE HOT SHUTDOWN PANEL FRONT-TO-BACK AggS 24.4 Hz PANEL FRONT

Page No.

89 Report, No. 44560-1 MODE SHAPE HOT SHUTDOWN PANEL SIDE-TO-SIDE AXIS 2l.3 Hz

/ \\

g,/

/

PANEL FRONT

Page No. 90 Report, No. 44560-1 DECAY CURVE AUXILIARYRELAY PANEL RUN 6 FRONT-TO-BACK AXIS 11>>2 Hz

~

~

~

~

I ~

III 0 Z II O" Z I>>

ElII 1I I=O II IZr 0

Y II 0 II gl4 IIY IY II 5 II I

~ I 0

2 3

n Number of Cycles 6

7

~

~

Page No.

91 Report No. 44560-1 DECAY CURVE AUXILIARYRELAY PANEL RUN 7 FRONT-TO-BACK AXIS 18.2 Hz

~ ~

I ~

I ~

I I

I t

I II

~ I Z0 tt w Za I=0 04x g tt gV V

IV V Ct tt 6

0V tt 4

6 tt 4

tt

~

4 tt I ~

0 n - Number of Cycles 5

6

Page No.

92 Report No. 44560-1 1

~

~

DECAY CURVE AUXILIARYRELAY PANEL RUN 8 FRONT-TO-BACK AXXS 33.3 Hz l ~ I I ~ ~

~

~ ~ ~

f ~ ~ ~

Fl 4

0) 4

~ Il lA;n nX0 0 n Xo l o O,'n 04 II 0 fl g II II E

I'4II Cl II e

I f4 qe

~

I

f. W'I g I

0II S

4

~Inn 4

0 3

4 n - Number of Cycles

Page No.

93 Report No. 44560-1 DECAY CURVE HOT SHUTDOWN PANEL RUN 13 FRONT-TO-BACK AXXS 16.1 Hz I ~

~ '

(9))

)" 3)

"o gr 0p tt g I)t IV V Cl tt N

5 4J dJ e

6 0V 6

4 II

~

~

I

~

I

~

I I ~

~

~

~

~

~ I

~ ~ \\

I )

~

~ ~

) ~

~ ~

I ~

I I

I ~

I I II

~ ~

I ~

I ~

~ I

~ II

~ ) I)

~ ~

I

~ )

~

)

I I

~

I ~

~

~

~ I I

~

~ I

~

I I

I II I

I

~ I I ~

0 1

2 5

6 7

3 4

n Number of Cycles

Page No.

94 Report No. 44560-1 DECAY CURVE HOT SHUTDOWN PANEL FRONT-TO-BACK AXIS 22.9 Hz RUN 14

<<l 4 I0 a IA'a V

Q( 1 aX0 ue E>

Xa bo L 't 0 )C Q a V

XI Ia V 4I 4

~ II 0

2 3

n - Number of Cycles 5

6 7

Page No.

95 Report, No. 44560-1 DECAY CURVE HOT SHUTDOWN PANEL FRONT-TO-.BACK'XIS 24.4 Hz RUN 12

~ I l ~ I

~ I I ~

I ~

I ~

l

(

0 0 ll Xa I=O g IC Q II g Isl II XI w"

4I II 0II 5

~I 4

w a

IC I I ~

~ l

~ ~

~ I

\\ \\

I I

~ I I

~

2 3

4 n - Number of Cycles

Page No.

96 Report No. 44560-1 DECAY CURVE HOT SHUTDOWN PANEL RUN 18 SIDE-TO-SIDE AXIS 22.3 Hz

~

I I I ~

I ~

I ~

~ I Cl 4

~ y lO a Q V 6

+ 0 Z Q o-~

0 Vl U Ol gg l4 Lo 4 L+ J 0+)c a 9 0 y 4

J Q gV

~V Q !4 NX OI 2

3 4

n Number of Cycles

QIYLE LABORA1URES SCIENTIPIC SERVICES AHO SYSTEMS GROUP PAGE NO.

REPORT NO.

97 APPENDIX III INSTRUMENTATION LOG SHEETS AND INSTRUMENTATION EQUIPMENT SHEETS

W 322 JOB NO.

CUSTOMER DATE TIME

~ <RPf/Ar/)

REMARKS WYLE LABORATORIES

. INSTRUMENTATION LOG SHEET LOG PAGE NO.

OF~

TEST ENGINEE (Include Run Number, Part Changes, Shift Changes and all other pertinent data)

GF gl 0

Eb 0

0 M

ED I

-7

W 322 JOB NO.

0 CUSTOMER PCS<

zn k'c/c lo

~ P/~ ~)

WYI.E lABORATORIES INSTRUMENTATION I.OG SHEET I.OG PAGE NO.

+

OF TEST ENGINEER DATE TIME REMARKS (Include Run Number, Part Changes, Shift Changes and all other pertinent data) cA dC1' Q, 0 lD W ul 0 0 0

0 Ql C)

I

W 322 JOB NO.

CUSTOMER DATE TIME WYLE LABORATORIES

'.,INSTRUMENTATION LOG SHEET ib Q.

0 lD 0

OF~

C)

> 0 oI LOG PAGE NO.

0Mb+ H/A~8)

TEST ENGINEER~~ Sf'~

REMARKS (Include Run Number, Part Changes, Shift Changes and all other pertinent data)

W 322 JOB NO.

CUSTOMER e>Pr<~)

WYLE LABORATORIES INSTRUMENTATION I.OG SHEET LOG PAGE NO.~ OF~

TEST ENGINEER DATE TIME REMARKS (Include Run Number, Part Changes, Shift Changes and all other pertinent data)

JK/o 0

0 V O

I

W 322 JOB NO.

CUSTOMER DATE TIME ccrpW ~A~F)

REMARKS NYLE lABORATORIES

INSTRUMENTATION lOG SHEET LOG PAGE NO.

~

OP~

TEST ENGINEER (Include Run Number, Part Changes, Shift Changes and 'all other pertinent data)

LLL lQ LO LQ 0

LLL 0

0 0

OL C)

I ol

W 322 JOB NO.

WYLE lABORATORIES INSTRUMENTATION LOG SHEET lOG PAGE NO.

OF CUSTOMER DATE TIME REMARKS TEST ENGINEER CPu llnclude Run Number, Part Changes, Shift Changes and all other pertinent data)

/8

&7 ol "A

Jo~

i$3d uw /I 0

0 0 0

OR'r0 o

W 322 JOB NO.

CUSTOMER DATE TIME

+4/i/~)

REMARKS WYLE LABORATORIES INSTRUMENTATION LOG SHEET LOG PAGE NO.~ OF~

TEST ENGINEER (Include Run Number, Part Changes, Shift Changes and all other pertinent data)

Ql 0

GF ff' g0 C)

Ch C)

I

W 322 JOB NO.

CUSTOMER DATE TIME 4'R Pi@~)

REMARKS WYLE LABORATORIES INSTRUMENTATION LOG SHEET LOG PA'GE NO.~ OF~

TEST ENGINEER /~cQ)~~

(Include Run Number, Part Changes, Shift Changes and all other pertinent data) m c&

r s'

0 lD rt 0 0

o W Vl (hD I

W 322 JOB NO.

CUSTOMER DATE TIME REMARKS

. i.-

., WYLE LABORATORIES INSTRUMENTATION LOG SHEET LOG PAGE NO.~ OF~

TEST ENGINEER (Include Run Number, Part Changes, Shift Changes and all other pertinent data)

S Fu Cl o 8 Et R0 g

~

0 O

Cl CF I

F Se

INSTRUMENTATION-EQUIPMENT SHEET Date Technician

-2 "7 Lan Job Isio.

Customer Test Area +~~ A~r+

Type Test Instrument Manufacturer Model No.

Serial No.

o 874 Wyle or Gov't No.

Range Accuracy P ger 7

On Calibration Due J

-l/-7

/2-ro-7

- /-7 0

0 HEEo

//rK ada a8dZ 77d-77

"$0 880/

7&Dz 730 Q 79dZ

Jog, dZ 7>o z 7+0 p

/~G roan<

2-" 9'PO g5'c' goy C9'9o

+g Oy'go/

+50

+go

+gc/r gg C7

++O C/7

-Z -79'

-/z-7 a-F-7

/0 f-7g (O

"7$

o <<% 7 7-ll-7 7-/0 "79'/-7$

'2 7

ra-rl-7 z-/z-7

.gO d

-fO 8'0

<<7 I- /-Eo I-o- 0

-2Z-8'o

- o-Eo

-/HPo

/z-g-rg I-/'/"

3-zg-7f 0

nt 0

0 C)

Instrument Test Engineer wu lAQA r

Checked & Recewed By o

I

Date "Z

Technician 43

'I

~

'"-gPlS~

Job No.

~ l QQ Customer SC.

Test Area C o Type Test ro p

~40 fa Ra0 0

o w co No Instrument Manufacturer Model No.

Serial No.

Accuracy Range On Wyle or Gov't No.

Calibratfon ZO S'oslo

- SF'-ZS-7f Due 7$6Z

/OZ o

7 co93 Box 0st o~p

+S%

fgc/7

+g Cl 1-ZB'-lF Z3 7 oZ.

730Z 450 os 8

+S Jo

'F-Z$'-77 Iso5 a@4

~s d

V-zs'-B 3-28'-8'0 e.eas~tb

))8 I

/o"/D 7V e n.

7 2.

gas]

em~

~ 5%

o op-o3-8'0 sooo~

~S/

-7

)-4g-gO QO 5b lOS

)/zd7

" u

>,2%

/0- 0"7 3SV )ocn$

/-ld-8o

~-y-go ke0ouvm.

T l

G OS 5b lb Z

5b/I2".I Io)K 6 OIOlo

'zz fz eZ yg~g 'ir~pf 8-H9'-V-79 d-~

-7$'

g-g gd I

Instrument Test Engineer WH-102 9 Checked it Received By

PAGE NO.

109 lhNlE LAIBGRATUREB SCIEHTIEIC SERVICES AHD SYSTEMS GROUP REPORT NO.

44560 1

APPENDIX ZV TEST PLAN

Page No.

110 Report, No. 44560-1 SCIENTIFIC SERVICES ANO SYSTEMS GROUP P. O. BOX 1008 ~ HUNTSVILLE,ALABAMA35807 TWX (810) 725.2225 ~ TELEPHONE 12051 807~11 TEST PROCEDURE 541/1735-1/DK TEST PROCEDURE NO.

DATEJ April 21, 1979 Revision C

BASIC TEST PLAN FOR IN-SITU VIBRATION TESTING OF VARIOUS CONTROL PANELS FOR THE DETERMINATION OF SYSTEM NATURAL FREQUENCIES FOR INDIANA AND MICHIGAN POWER COMPANY FOR THE DONALD C.

COOK NUCLEAR POWER PLANT, UNIT NO.

2 APPROVED BY:

FOR:

'PPROVED BY:

FOR:

APPROVED BY:

FOR:

APPROVED BY PROJECT MANAGER:

APPROVED BY QUALITYENGINEER:

PREPARED BY PROJECT ENGINEER:

REVISIONS FORM 1054-1 Rev. 4/74 REV. NO.

DATE B-B-79 All PAGES AFFECTED BY GF APP'L.

DESCRIPTION OF CHAJJGES Revised entire test lan er B-30-79 3

C 10-12-79 All BGF Customer request.

Para.

3.3 Added ".

. in the three coordinate directions."

Revised entire test plan per Customer request.

COPYRIGHT BY WYLE I.ABORATORIES. THE RIGHT TO REPRODUCE, COPY, EXHIBIT, OR OTHERWISE UTILIZE ANY OF THE MATERIAL COJJTAINEO HEREIN WITHOUT THE EXPRESS PRIOR PERMISSION OF WYLE LABORATORIES IS PROHIBITED. THE ACCEPTANCE OF A PURCHASE ORDER IN COIJNECTION WITH THE MATERIAL CONTAINED HEREIN SHALL BE EQUIVALENT TO EXPRESS PRIOR PERMISSION.

Page No.

111 Report No. 44560-1 S

541/1735-1/DK TEST PROCEDURE NO.

WYLE LASCRATQRES SCIENTIFIC SERVICES ANO SYSTEMS GROUP PAGE NO.

Revision C

1.0 SCOPE In-situ vibration testing of control panels containing electromechanical equipment for the purpose of determining the natural frequencies within the frequency range of 1 to 35 Hz shall be the scope of this test.

A total of three (3) Panels shall be tested.

The Panels are located at the Donald C. Cook Nuclear Power Plant, Unit No. 2, Bridgman, Michigan.

2.0 SPECIMEN MOUNTING The specimens, consisting of a Safety Injection System, a Hot Shutdown Panel and an Auxiliary Relay Panel, shall be mounted in their actual in-use configurations.

3.0 3.1 EXCITATION Force In ut A force input shall be provided by a small, lightweight, armature exciter specifically designed for modal-type testing.

A force trans-ducer shall be used at the attachment point to measure force input.

The force input shall be applied to the specimens in each of the two (2) horizontal axes to excite the specimens.

A typical test setup is shown in Figure l.

The force input shall be applied at two (2) locations as follows:

Floor-mounted cabinets - The force input shall be applied near the top of the cabinet and also approximately 24" from the floor.

Floor-and ceiling-mounted cabinets - The force input shall be applied approximately 60" from the floor and also approxi-mately 24" from the floor.

3.2 Resonance Search A sine sweI 5 from approximately 1 Hz to 35 Hz using approximately 5

pounds force input shall be performed to identify major resonances for each test configuration.

The sweep rate shall be no greater than one octave per minute.

Inertance (g/lb input) plots from the resonance search tests shall be provided.

A typical inertance plot is shown in Figure 2.

In addition to the sweeps, resonant frequencies shall be verified by observing force and accelerometer output Lissajous figures on an oscilloscope.

The frequencies where force, and acceleration are 90 degrees out-of-phase, indicating a resonant condition, shall be recorded in the test log.

Form I054.2 Rev. 4/74

Page No.

112 Report No. 44560-1 QNLK LAKKNNMfES.

SCIENTIFIC SERVICES ANO SYSTEMS GROUP l

541/1755-1/DK TEST PROCEDURE NO.

PAGE NO.

Revision C

3.3 Mode Sha es and Dam in For each test configuration, mode shapes and damping values shall be

determined at the primary resonant frequencies.

Mode shapes shall be determined by tuning in the resonant frequency and using accelerometer probing methods at predetermined locations to describe the relative motion.

The mapping shall be performed using two (2) accelerometers (one biaxial).

Phase shall be determined from an oscilloscope Lissajous display.

A typical mode shape: is shown in Figure 3.

Damping values shall be calculated from oscillograph decay recordings of accelerometer signals taken by quickly turning off the exciter while exciting the unit. at the resonant fzequency.

A decay curve shall be developed from the oscillograph recordings and the damping shall be determined by the following formula:

1 X

C/C log c

2mn e

Xn where C/C Damping c

n

,Number of Cycles X

m Amplitude of Cycle "o" 0

X m

Amplitude of Cycle "n" n

A typical decay curve is shown in Figure 4.

Additionally, the bandwidth method shall be used to determine the specimen damping.

4.0 INSTRUMENTATZON 4.1 Excitation Control Exciter force input shall be measured and controlled by a force trans-ducer at the exciter attachment to the specimens.

Form IC64.2 Rev. 4/74

Page No.

113 Report No. 44560"1 541/1735-1/DK TEST PROCEDURE NO.

M(LE lABORAlUREB SCIENTIFIC SERVICES AND SYSTEMS GROUP PAGE NO.

Revision C

4.2 S ecimen Res onse Six (6) response accelerometers (three biaxial'.locations) shall be located on each specimen under test.

The biaxial locations shall be 1) the driving point,

2) the center of the cabinet face, and
3) approximately 18" from the floor.

Frequency response test accelerometer and force data shall be recorded on FM tape.

Znertance plots from the resonance search tests shall be presented in the test report.

5.0 BEPQRT Six (6) copies of a certification-type report shall be issued subse-quent to completion of testing.

This report shall be signed by a Registered Professional Engineer and shall include inertance plots, natural frequencies, mode shapes,

damping, and accelerometer locations.

The report shall also include a list of the test equipment and its calibration.

Form 1054.2 Rev. 4/74

Page No.

114 Report No. 44560-1 Test Procedure No.

541/1735-1/DK Page No.

5 Revision C

~'

vcim~ non FXGURE 1.

TYPlCAL TEST SETUP

FULL SCALE INERTANCE 0.001 0 0.01 9 01 0 1.0 0 Page No. ll5 Report No. 44560-1 Test Procedure No.

54l/l735-l/DK Pace No-6 Revision.C to I

~

t

~

~ t

~

t ~

~

t

~

~

~

I

~

~

I ~

~

~

I I I I

I I ~ I I

~ I I

I I

I I I

~ I I ~

~

I

~

~

~

10 I

~

~

I I

~ t I

I

~

I I I I lttl

~ I t ~

~

I I

t I

I

~

I I I II I II III I

lt ill Il<

~

~

t

~ I

~ ~

I I

I

~

~

~

I

~

~ t I I It

~

\\ ~

I I

tlt I \\

~ I II I I I

~

~

I I ~

t

~

Il

~

I I

~ t I

I I

~ I I

11

~

~

I I

I

~

~

~

~

~

~ ~

~

~

~ I ~ I I I I

~

C) 2 O

f0 g:g to 9

4 O

2 1'

J I It Ctt 6

t3 tl Q X 4 tl

~

~

I I

I

~

I lit I

I I III I I I I

~ III

~

~

I

~

~

~

\\ ~ I I at

~

~

I I I

I IIII

~

~

~

I

~

I I I Ill l

I

~

~

I

~

t ~

~

~

I I I

~

~

~ ~

t ~

~

~

~

~ I I ~ \\

I I

~

I I

\\

I I

I I

~

~

~

~ ~ t

~

I ~ ~ ~

~ I

~

t

~

t ttt I

I I I

~

I I tl I

~

l I I

I l

t

~ I

~ I

~ ~ I ~

~ I ~

I III It I

I I

I I

~

~

I

~ I 11 I

I I

IIII I

~ I

~

~

I

~ I I I ~

~

t ~

~

I

~

I ~

Il t I I I tl I

11 I I I II'I I

I I I I l l I III I

I I

I I I f I

~ tll 2

3 6

~

6 7

4 9t0 2

3 6

4 4

2 4 9to 2

3 6

4 4

7 /+0 10 100 Frequency (Hzl FIGURE 2.

TYPICAL INERTANCE PLOT

Page No.

116 Report No. 44560-1 Test Procedure No.

541/1735-1/DK Page No.

7 Revision C

UNDEFo~KK Svaucvu e.a D% Ve Wtrt~

STRvc~ a'6 A,FLA'nW AMPLITUAE Il4pv'T X pouNDs

(.os err FIGURE 3 ~

TYPICAL MODE SHAPE PLOT

I II III) 10.0 tsj DECAY CURVE (X

versus n) n Page No. 117 Report No. 44560-1 Test Procedure No.

541/1735-1/GK Page No.

8 Revision C

FOPMJLA USED:

~ log C

1 1

C 2n'n eX c

n

~

~

r

~

~ r C/C

~

2 32'h c

zd u0 o

~s I

Z 0uo u1 0

~

s

~

I

~

I I

I

~

~

I

~

I I

~

c

~

I I

I I

I I

j I j

~

I I

s I j: j I

~

c c

~

I I

I I

I 57.5 HK I

~

I I

c

~

I

~

~

~

I I

~

I I

~

I I

I j

I j '

c

~

~

t I

c

~

I I

I I I j I

I I!

~

~

t

~

I t

~

I,

~

I

~

I I

I I

~

I I

I

~

I I

t t

'I

~

~

I

~

t I

I

~

~

c c

t j

j c

~

I I

~

c

~

I I

~

I

~

~

I

~

I S

I I

I I

I W j I

I I

I I

~

t I

I C/C t

~

I j

j j I

I I

~

,'I I

I I

~

I I

s I

I

~

I I

I I

I t~

~

I I

I I! I I

I i

t j

I I

I I

~

I I

~

j I

t cc Il L

C 0

',tz 0

243.8 Hs l~II 0 X 2

00%

j"- 0 0 0 '0 0 'E

-u+

N Ijj 0 00 N

d C/C

~ 1.04%

c t

c lT 1

2 I

~

~

~

I I

I I

j I

I I

~

~

I I

~

~

I

\\

~

I I

I '

t j t

~

~

I I

~

~

I I

I I

I I

~

I I

~

c

~

t I

t

~

~

I I

I I

~

I

~

I I

I I j; I t

s I

j I

I I j I

I I

c I

~

~

I

~

I c

~

t I

I

~

I

~

I I

I s

I

~

~

~

I

~

I t

I I

I

~

I I '

I I

I j

I t

I I

~

I xl I

c

~

~

I I

~

~

~

c c

~

I

~

I

~ '

~

I t

~

I t

~

I

~

I

~

I

~

I I

~

~

~

I

~

I I

I

~

I LLLLLL n - Nmnbe of Cycles 4

6 8

10 FIGURE 4.

TYPICAL DECAY CURVE

~

c

~

c I

t

~

I

~

I I

I c

~

I I

I

~

I I j

~

t s

I I

I s

12

~

I 14

I I

I

'li I

.1 l