ML17276A976

From kanterella
Jump to navigation Jump to search
Forwards Responses to Open Items 44-48 from Containment Sys Branch 810914-17 Meeting.Encl Includes Info Re Safety/Relief Valve & LOCA Submerged Structure Drag Loads
ML17276A976
Person / Time
Site: Columbia Energy Northwest icon.png
Issue date: 01/13/1982
From: Bouchey G
WASHINGTON PUBLIC POWER SUPPLY SYSTEM
To: Schwencer A
Office of Nuclear Reactor Regulation
References
GO2-82-35, NUDOCS 8201260517
Download: ML17276A976 (145)


Text

REGULATORY'NFORMATION DISTRISUTI

>>li SYSTEMl (SIDS)

ACCESS IOIVi >>VBR: 829 1 2605 1,7>>

DDCI DA'TEi': 82/0 1 /1 3=,40ITIARI ZEO':

NO-'AC>>ILi:50 397 4PPSS'Uc>>1'ea'r",P'roijecti

'Uni t. 2>

'14a'sh:ingtop PUb'l.ic Pose AUTH ~ iVA,RKI AUTHOR, AFF1ILIIATilON BOUCHEiYEG'.0;,

rl'ashington>>

PUbll>>ic>> Po'~er Supply System RKC>>IP>>,>VA>>TIKI RKCKPiIENiTI AFF>>ILIIATIQN>>

SCH'i4EIVCER P A ~

Llicensing Branch 2.

~I DgCKEITI 0'5000397>>

sUB~JEGIT';

For weirds resoonses toi oben Items,44 48' roI11I contalnmenti sys'ra'ncaa 8'fD914'7 ~eating.Enclr includes'nfoi r

e'a'fete/r alii ef>> vail we 5

LOCA submerged-str uccure drag, loads;.

DISTRISUTION,CODED 000 IS COPIES RECEIVED:LITR, J i "-NCLl SIZEi; C

C L TITLE. PS'AR/FS>>AR.

ANOITG and>> Rel ated Correspondence NOTES:2. copi es> ailili maltlli: Pi>>li.,

05000397>>

R KCIIPilEN1T I I 0 CDOKI/ 4 Ri>>IEI A'CITION:

A*/0, LIICENS3GI I.IICI BRI t12. L@

CDPiIKS LIT1TR KTVCL+i~

1 0

f, Q

i RKCilPllKNTI

, ID>> COOK>>/>>4 AMEI LIIC I 8 R 4 2 'C I AULUCKP R' '1,'OPIES L1TTR EiVCI.I 1-Oi 1

I>>4>>TER iVALI; EI.Di IK>>/0KPNP KPOB1 35i MPA" NRR/DKI/EQB1 1 3>>

NRR/DK'/HGKBi 30 lVRR/DE>>/M,TKB1 1,7>>

NRR/D =I/S ABI 2.4 VRR/DHF6/HFEB40 VRR/DHFS/OLBi 34'VR R /DSil/AE81 26 VRR/08il/CPOi f D NRR/DBil/ElTSBi 12.

VRR/DSII/P881 f9 NRR/DS>>i/RSB 23.

i,r I

04'.

1.l.

3>>

2:

1>>

1>>

1

-1>>

1>>

1.l.

1>>

1>>fi 0

1' 3

2 1

1 1

1 1

i.

1.

I KI 06 I E>>/DEP /EPL81 36 iVRR/DE'/CK9'i f.f>>

>>VRR/OE'/GB>>

28'RR/DE/~IK9118" NRR/DE'/QAB 21 NRR/DE/SK91 NRR/DHFS/LQB1 32 VRR/DHF8/PiTR82'0 NRR/OSI/AS31 27 NRR/DS I/C381 09

>>VRR'/DSI/I C881 16

>>VRR/DS I /RA81 22, NRR/DST/LGB1 33 3-3i 3

3>>

1, 1

2 2

1 1

1

~

1 1

1 1

1 1:

1 1'

1 1

1 1

1>>l.

1 EXTKRNALI: ACRS 4'1>>

FKi4lA;~REP1 01IV'9 NRC'OR 02.

>>VTilS ib fb 1

1 1.

1 1>>

1 BNLI(A4lDTSi 01VLIY)"

LPOR.'3

~

NSICI Q5>>

1 1

1.

1 TOTALI >>VU'ABER OFE CDP!IKS RKQ'JIRED:

LITTR ENCLI

1 f;

t

Washington Public Power Supply System P.O. Box 968 3000George Washington Way Richland, Washington 99352 (509) 372-5000 January 13, 1982 G02"82-35 SS-L-02-CDT-82-015 Docket No. 50-397 Nr. A. Schwencer, Chief Licensing Branch No.

2 Division of Licensing U.S. Nuclear Regulatory Commission Washington, D.C.

20555 CD RECQd igpg 9

I

~ 1S8Pz 0Jgrgy~~CN{gg

Dear Nr. Schwencer:

Subject:

NUCLEAR PROJECT NO. 2 RESPONSES TO CSB OPEN ITEMS 44-48 Enclosed are sixty (60) copies of the responses to open i tems 44

-, 48 from the Containment Systems Branch meeting held September 14-17, 1981.

These items should be closed by receipt of this submittal.

F Very 'truly yours, G.

D. Bouchey Deputy Director, Safety and Security CDT/jca,

'Enclosures cc:

R Auluck -

NRC WS Chin

- BPA R

Feil NRC Site 820126084/

PDR ADOCR PD OSOOO39W PDR

tL I

/

/

/

/

/

/

/

/

/

/

p. -.

~

~ '.,'i'"

8

/ ~'g) p'ig

THF ATTACHED INFORMATION ON SRV AND LOCA SUBMERGED STRUCTURE DRAG LOADS HAS PRESENTED AT THE SEPTEMBER 14-18, 1981 MEETINGiBETWEEN THE CONTAINMENT SYSTEMS BRANCH AND NASHINGTON PUBLIC PONER SUPPLY SYSTEM.

820126051

4 LOCA/SRV LOADS ON SUBMERGED STRUCTURES THE LOCA/SRV DISCHARGE DEVICES AND OTHER SUBMERGED STRUCTURES ARE IDENTIFIED IN TABLE 1 'ON PAGE 2

AND SHOWN IN FXGURES ON PAGES 3.g 4.

THE MOST SIGNIFICANT"HYDRODYNAMICLOAD(S)

FOR EACH STRUCTURE IS IDENTIFIED IN TABLE 1.

THE LOCA WATER CLEARING (JET)i AXR CHARGZNG, POOL SWELLS FALLBACK LOADS COMPLY WITH ACCEPTANCE CRITERIA IN NUREG-808 WITH THE FOLLOWING CLARIFICATION AGREED UPON WXTH NRC DURXNG THE MEETING OF SEPTEMBER 16, 1981.

BOTH THE RING VORTEX MODEL AND THE LOCA BUBBLE CHARGING MODEL WXLL BE USED AND THE LARGEST (MAXIMUM) INDUCED FLOW FIELDS

,(VELOCXTY AND ACCELERATION) ANYWHERE IN THE POOL WILL BE USED TO DEFINE LOCA JET/BUBBLE LOADS.

THE METHODOLOGY USED FOR DEFINING LOCA STEAM CONDEN-SATION LOADS IS SUMMARIZED ON PAGE 5.

THE METHODOLOGY USED FOR -DEFINING SRV LOADS IS SUMMAR-IZED ON PAGES 6, 7, 8.

1

TABLE l LOCA/SRV Loads on'ubmer ed Structures Ident'fication of Structures Ident-'fxcation of Most Si nificant Hydrodynamic Load l.(a)

SRV Line (b) Quencher*

(c) Quencher Support*

2.

Downcomer Vents*

3.

Concrete Columns SRV (Due to actuation of adjacent SRV)

LOCA jet on arms i<one significant SRV SRV 5.

Bracing Truss*

8 Vent Exit.

Platform with Grating (9

Elev. 472'-4",

7SS open area)

Pool Swell Drag Pool Swell Drag 6.

Miscellaneous

Piping, penetrations and supports along containment boundar (a)

Below vent exit (Elev.

454'-4 3/4")

(b) Above vent exit, below initial pool surface (Elev. 466'-4 3/4").

(c) Above initial pool sur-

face, below maximum pool swell elevation (484'<<4 3/4")

LOCA jet and SRV Pool Swell Drag Pool Swell Impact Loads on discharge devices and their supports during discharge through the devices are addressed elsewhere.

PLAN OF WNP-2 W T.WE LL SHOWING LOCATION. OF Dl S.

IARG E DE VI C ES

~

~

'COMTAlNMEhlT

. 8 Q

/

C PEDESTAL BASF MAT

~'8oe

~

~

0 0

,6 a yO/

~O

~ ->'

~ ~ ~

~ ~ ~

II

.':: 8

~ ~<'80 0

SLANT BOTTOM

,80 0

/ 6 0

I eG 8

COLUMN (l7)

QUENCHGR (l8) pow w co qE.a (i0 z)

0 WNl - P SUPP=55IGN FOUI GEOMEt P Y' KEY Ei EVA!IOI45 ECEVAViaa5 4'35.G

'TOP aF DRYS&I lrlAQ lO IN5 tR STUB'l 0

Qo

>3.PhB-.A<.<Y

~

SUBlVIB.~E D 8'tSTBMS 5%4~<

44'7.. 3 44GA%,.

LATF0Rg MV

.LIWE.

Q.

0 lA i~

Q 7 t4%CB MS7=ivlS'Q4. LP~

4GZ'-O+l B~We i RQQQ QUE.l4Vrz=

J

>r,/

~mal UMN

<<3+

~r

~

~r 4

~

~

e

~&

~ ~. rr

LOC S EAt CONDEN I

N 0

S CU SU 'GE GENERIC "DRAG LOAD" l1ETHODOLOGY AND PLANT UNIQUE

.FLOH FIELDS ARE BEING 'USED'OR LOCA CHUGGING AND C,O, LOADS ON SUBf EMERGED STRUCTURES IN COMPLIANCE HITH ACCEPTANCE CRITERIA.

l GENERIC METHODOLOGY IDENTIFIES THREE COMPONENTS OF FLOW INDUCED LOADS ON SUBMERGED STRUCTURES:

ACCELERATION DEPENDENT AND VELOCITY SQUARE DEPEi')DENT IN-LIllE LOADS, VELOCITY SQUARE DEPENDENT LIFT LOAD (NORMAL TO THE DIRECTION QF FLOW),

PLANT UNIQUE FLOM FIELDS ARE BEING DEFINED CONSISTENTLY NITH CHUGGING AND C,O, BOUNDARY LOADS, REPRESENTATIVE PLANT UNIQUE CHUGGING FLOW FIELDS SHOW THAT THE CHUGGING LOADS ON SUBMERGED STRUCTURES ARE DUE TO ACCELERATION OR PRESSURE GRADIENTS ESTAB-LISHED IN THE POOL DURING THE IMPULSIVE CHUGGING PHENOMENOi9, i,zVELOCITY DEPENDENT LOADS ARE SMALL,

RV LO DS ON SU E

GED TRUCTU S

CAORSO SRV TEST DATA ON SUBMERGED STRUCTURES ARE EXAMINED TO SUPPLEMENT, THEORETICAL APPROACHES OF ACCEPTANCE CRITERIA, THE DATA AiND THEIR CORRELATION WITH THEORETICAL APPROACHES OF THE ACCEPTANCE CRITERIA CONFIRM THAT SRV LOADS ARE PRIMARILY DUE TO PRESSURE GRADIENTS ESTABLISHED IN THE POOL DURING THE SRV DISCHARGE, i,eVELOCITY DEPENDENT LOADS ARE SMALL THE DYNAMIC PRESSURE GRADIEiNTS MEASURED ACROSS CAORSO COLUMN, VENT AND SRV LINE. ARE USED TO DEFINE THE PEAK LOAD VALUES AT QUENCHER ELEVATION, TO DEFINE THE SPATIAL DISTRIBUTIONS AND TO DEFINE TIME HISTORY, THE PRESSURE TIME HISTORIES RECORDED ON SUBMERGED STRUCTURES SHOLEM HAVEFORM CHARACTERISTICS SIMILAR TO'HOSE RECORDED AT POOL BOUNDARY, THE 'SRV LOADS OiN SUBMERGED STRUCTURES ARE DEFINED CONSISTEiNTLY HITH THE PLANT UNIQUE BOUiNDARY LOADS, (SEE PAGE 7,)

SRV LOAD ON WNP-2 STRUCTUPXS WNP-2

(

)

= (-D

) x

(

)

xagPb x Load Structure Unit 4

d Margin

= Length where D

diameter of the structure a load gradient factor established using Caorso SRV test data on submerged struc-tures (see Page 8)

Caorso horizontal distance of the structure from the nearest actuating quencner in Caorso plant.(see Page 8)

WNP-2 horizontal distance of the WNP-2 structure from the nearest actuating quencher (see Page 3)

Pb boundary pressure load def'nition from Reference 1 including any modifications agreed upon with NRC Load Margin a minimum value of 1.4 is used for all piping which are adequately braced and a

value of 2.0 is used for the column whicn is the only unbraced structure and is closest in distance from the nearest quencher NOTE:

For miscellaneous piping which run along the suppression pool boundary, the load gradient factor~ equal to that for the column is specified.

Reference 1:

"SRV Loads Improved Definition and Application Methodology for Mark XZ.Containments,"

Technical Report {Proprietary), prepared by Burns and Roe, Inc. for application to Washington Public Power Supply System Nucleax'roject No. 2, submitted to the Nuclear Regulatoxy Commission on 7/29/80.

1

LOCATXON OF PRESSURE TRANDUCERS ON CAORSO SUBMERGED STRUCTURES J

Radial View PC 2w gpss L~4E si p

~ EL 449 Pqq SS 6 l5S 2 Pool Bottom SRV LOAD GRADXENT FROM CAORSO DATA Measured gradient across the cylindrical structure front-back P

P Diameter l9 2.

Pl9, Pf, Pb waveform characteristics are similar.

The value ofoC for each set of P (P

P P

)

and P

(P I

f 42'l'3'4

(

4 0 P 3 9 P34 P53 ) is obtained from Caorso SRV test data (single and multiple valve actuations)

Questions on the MPPSS Revised Chugging Load Definition and Application Methodology The finite element model of the

'Hl'JP-2 reactor building used to obtain re-sponses to the chugging loads is of the 'refined'ype stated to give more realistic results.

For the same input source the refined model shows a

smaller response, in general',

than a conventional model.

However, when the sources are inferred from the 4TCO response, a conventional struc.ural model is apparently used for the 4T tank.

The conventional model would infer a smaller source from a particular response than the refined model.

Comment on thi-apparent discrepancy of using a conventional model for inferring the

~ source but a refined model for applying it.

THE FINITE ELEMENT MODELS OF THE QT SYSTEM, FIG, 5-17, AilD THE Hi<P-2 BUILDING, FIG, 5-5, ARE BOTH BASE ON COJ<VEi<TIOi~AI FIHITE ELEMENT FORMULATIOH,

HOMEVER, BOTH ARE REFIfRED ENOUGH TO MODEL THE DYNAMIC BEHAVIOR OF EACH SYSTEM, THE DEGREE OF REFIiXENEiHT IS SIMILAR Iid BOTH NODELS,

908.0 8700 grywe11 Diapn=a~

7(8.0 7Ci.a 6ol.O 659.0 634.0 6Z7.0 588.0

~49 Q 543.0 505.0 4660 424.0

. 382.0

~w O~

~II 0'OQ" 0.0" HOR120NTAL SCALE 0.0" I2.0"'2 8.0 Hetwe11 262.0 ZI6.0 I95.0 I 80.0 4<.G (CH.NQ.ZO)

I Z7.0 IO8.0

. 72.0 (CH.~0,24) 24.0 (CH.NO 26) 0.0

( CH.N0.2S )

0.0 I? 0I8.0 2GO ~O ~2P 72.0

~HDi~iN PUBLIC PO4KR SUPPLY SY~

NUCLEAR PROJECT N3 2

STRUCTURAL FINITE ELEMENT.

MODEL OP 4TCO 'TAiQK FT.GORE

.3-17b

t

im III Ijll ml IIII Ill II mw%PMMWP

2.

The finite elements used to model the MNP-2 suppression pool are on the average an order of magnitude bigger than the elements used to model the 4T suppression pool.

Since element size affects stiffness, and so response, comment on the ei'feet this difference in element size may have on the load methodology.

e

~ ~

SIZE OF. FINITE ELENENTS THE BRR CHUGGING LOAD CONSISTS OF SEVEN

CASES,

'ACH CASE IS DESIGNED TO ENVELOPE PART OF THE REQUIRED FREQUENCY SPECTRUN, SUCH THAT CASES 5, 0, 6

ENVELOPE VENT flODES CASES 1, 2, 5,.6, 7

ENVELOPE POOL NODES

lM 'PAAFMvt4s<0 lc Cw C

..Cwm sooty m~r vl ~c<~

iw mRvEA'Q~/&c )

Govt b Mhv~

Vs>omey

<4 &~T (~/g~)

~

~w

~S CAsE. Q (boo tooob CAsE 3 90o>>+2.

CWC. 6 5ooo I659)

UTCO TEST DATA CHANNEL 28 LHV QF. RLL CHUGS en>,~ 5(i~'oils~+

'c a Z~iSoo S~ga AS< I RSoo W+Q CAcK 7 CSrooo/oooo)

RSG 6 GOoC i5Seg

20. 0

~0. 00,

60. DO
80. 00

'REQVENC"') (HZ) 100. 00 120. OO

'.t*'0. OO

~60. OQ

TMO FACTS CAN BE ESTABLISHED:

CASES WITH LOWER CM MILL RESULT IN LOWER POOL FREQUENCIES AND CASES WITH HIGHER CM MILL RESULT IN HIGHER POOL FREQUENCIES, FIG. 5-29, BaR

REPORT, THE RELATION F

C (j.)

MAX CAN BE USED TO ESTABLISH THE REQUIRED ELEMENT

SIZES, WHERE

.F

= MAXIMUM FREQUENCY THAT CAN BE

'AX

'TRANSMITTED BY A FLUID ELEMENT WITH LENGTH "L" AND ACOUSTIC SPEED "C",

'SINCE Fp(F()qx IN ALL CASES, IT IS CONCLUDED THAT THE ELEMENT SIZES ARE SUFFICIENT,

CASE NAX, FREQUENCY D

REQUIRE 32,0 28,0 22,0 80,0 02,0 TO ENVELOPE SPECTRA (Hz)

(SEE ATTACHED FIGURE)

NAX, FREQUEiPCY TRANSNITTED BY FINITE ELENEiHTS USED (F(q~)()

37,50 22,92 104, j.7 75,00 6;0 0,0

3.

WHP-2 has l8 vents with a 28" diameter.

All data on which the chugging sources are based came from 24" vents.

For lateral loads data, extrapo-lation showed that loads are increased by 345 in going from 24" to 28" vents.

Where are the 28" vents located in WNP-2 and how is the effect of the larger vents on boundary pressures accounted for?

e

TREATNENT OF 28'IAf'IETER VENTS BASIC ASSUNPTION:

V Ag 4 ~

90 S28 = S2q x

~

2Q A20 S28 = STRENGTH OF 28" VENT CHUGS S2q = STRENGTH OF 2Q" VEiNT CHUGS A28 = CROSS-SECTIOiNAL AREA OF 28" DIAf'IETER VENTS A2q = CROSS-SECTIONAL AREA OF 24" DIANETER VENTS S28 = S2q x 1.361 BASED ON THIS ASSUNPTION, IT IS POSSIBL'E TO ACCOUNT ANALYTICALLYFOR THE 28" DIANETER VEiNTS BY INCREASIiNG THE GTCO BASED CHUGGING SOURCES BY 36,1%,

9O,Ci i'Q X OQWNCONERS EQVALLY SPACED D 4~~~%~~

0 %8".p.immy;we ~

95'.Z9 9-;1 i 74.l2'27, mP&l

-2!.lo'0.59.

i60.0 I"~y~

Z'r.

n rr I

I I

I I

/

~

I',O 270 WETWELL PLAN VI cd@

AT F LEVANT I OH OF DOWNCQHKR EXITS

~

DEFIt<E A FACTOR ~ FIHERE R

R

= SUPPRESSION POOL RESPONSE IN NNP-2 IF THE 28 28" DIANETER VENTS ARE ACCOUNTED FOR, R

= SUPPRESSION POOL RESPONSE IN MNP-2 IF THE 20 28" DIN'lETER VENTS ARE NOT ACCOUNTED FOR,

TWO APPROACHES WERE INVESTIGATED 1,

ASSUME THAT SUPPRESSION POOL IS INCOMPRESSIBLE, 2,

ASSUME THAT SUPPRESSION POOL IS COMPRESSIBLE.

1, SUPPRESSION POOL IS INCONPRESSIBLE BOUNDARY PRESSURES DUE TO THE r~" VENT' 102 R =~

A) x+

28.

r R

1=1 I

Ai

= 1,0 FOR 20" OIANETER VENTS

= 1,361 FOR 28" DIANETER VENTS 10K Rgc( =~

1 R

?

R

= DISTANCE BETHEEN THE I " VENT AND THE

=j.

. REFERENCE POINT ON THE BOUNDARY (CONTAINf"lENT BOUNDARY WAS CHOSEN FOR ADDITIONAL CONSERVATISN),

2, SUPPRESSION POOL IS CONPRESSIBLE R28 AND R2q MILL BE CALCULATED FOR AN ACTUAL CHUGGING LOAQ DEFIflITIObJ.

THE GENERIC SOURCE NUNBER ~00MAS USED. +r

kA~. CALCULATED AS I~Ry(( (rll 24

~ MAx I = lg2

~39 THE SUPERSCRIPT "i" INDICATES THE PRESSURE

RESPONSE

AT THE CONTAINi'lENT BOUi'JDARY, YENT EXiT ELEYATION, AND I "

ROM OF YENTS,

METHOD INCOMPRESSIBLE FLUID.

/. 0 g COMPRESSIBLE FLUID I.lo BASED Oid THE ABOVE THE STRUCTURAL RESPOilSES OF N'IP-2 ARE CALCULATED FOR 2Q" DIAMETER VENTS CASE, THEil IT HILL BE INCREASED BY A FACTOR OF t.l TO ACCOUNT FOR THE 28" DIAMETER VENTS.

4.

The asymmetric load for WNP-2 is obtained by increasing loads by, 14" on one side; of the pool and decreasing them by 14";. on the other with a linear tran-sition from one side to the other.

The 14 differential is roughly compar-able to the asymmetric factors approved for the generic method.

However, in the generic method one entire half of the pool is 15K higher and the entire other half is 15K lower.

Calculations show that the linear transition of the MiVP-2 method results in an overturning moment which is only 60% of the moment obtained using the step transition of the generic method.

Justify this smaller asymmetric load.

Y

ASYfli1ETRIC lOADIilG CASE THE GENERIC LOAD APPROACH DEFINED THE FOLLOWING EQUATIONS:

E(N) + 3 gg (V(N))1~2 3i E(N) = E(P) ~

L(

I=1.

i%I V(N) = V(P)~

L

)=1 V(P) = 0,108 (E(P))

FROM JAERI RESULTS THEN N" = E(P) ~

L, + 3.'45 (0,108~

L,)-

N I=1 I=1 HHERE E(P),

E(N) = EXPECTED VALUES OF PRESSURES AND NOi'lEiCTS V(P), V(N) = VARIAi'ACES OF PRESSURES AND MOMENTS HUT L)

= MOMENT ARN OF THE rT" VENT

= DESIGN MOMENT, CORRESPONDING TO M EXCEEDANCE OF i%0 NORE THAN ONCE PER

HOUR, LI = 0,

DUE TO SYNNETRY N

I=1 N" = E(P) x A x (~ L,)

I=1 A = 3.45

.108

SYfli'1ETRIC LO DING CASE (coNT D)

AN ASYHNETRY PARANETER KNAS DEFINED AS N/2,,

2,0 P"~ L(

I=1 (2)

P' BOTTOf'1'CENTER PRESSURES CALCULATED FOR DESIGN

SOURCES, I

ASYKlETRIC LOADING CASE (coHT D)

FROij (1)

AND (2)

=BxGxF B = CONSTANT

= A/2,0 = 0.567 G = GEONETRIC FACTOR, DEPENDENT ON THE ASSUNED SOURCE STRENGTHS AT DIFFERENT VENT EXITS L 2)l/2

~=T N/2

(~ L,)

I=1 F = LOAD FACTOR, DEPENDENT ON THE DEGREE OF COWSERVATISP'1 IN THE DESIGN LOAD E(P)

=Q 1.0 p+

ASYNNETRIC LOAOING CASE (cowo)

FOR THE GENERIC LOAD, IT klAS FOUND THAT (TABLE 2-2)

F>Ax 2 02 3.,QQ G (NNP-2)

GEOI'RETRY) = 0.224

GENERAL EL'ECTRIC "COMPANY PROPRIETARY INFORMATION Class III Table 2-2 SURVEY OF EXPECTED VALUE, VARIANCE, AND DESIGN SOURCE RNS VALUES USED IN THE ASYMMETRIC LOAD CASE Design Scarce E [P

]

ZllS R.Pa

( si VEP 2

.2 RPa

( si pa ZIPS H'a s i 801 803 805 PROP R I ETARY 808 809 810 2-12

ASYl"1NETRIC LOADING CASE (coNTD)

THE ASYtI)"IETRIC PARAMETER Y OF BRR APPROACH CAN BE DEFIi<EO AS 6 = B x GB x FB GB = BRR GEONETRIC FACTOR, BASED ON LiixfEAR LOAD DISTRIBUTION

= 0.350 FB = BGR LOW FACTOR

= O,W3 8

= 0,089

ASYNNETRIC LOADING CASE (cowv'o)

THE FACT THAi 6(w IS BECAUSE THE DESIBi'I LOAD

{PB) IS NUCH GREATER.THAN THE AVERAGE (EXPECTEQ)

LOAD (E(P)),

FIG. 4.5 OF BKR REPORT.

THE GENERIC (PG 1'lEAidHHILE, IS VERY CLOSE TO (E(P)),

TABLE 2-2 OF THE GEHt=RIt.

LOAO Rt.'OPT

0

BURNS AND ROE g TNC.

PROPRIETARY See:

'"Chugging Loads - Revised Definition and Application Methodology for Mark II Containments (Based on 4TCO Test Results)."

Transmitted by:

Letter G02-81-189, dated July 22, 1981, Supply System to NRC

~HzNGToN paatzc PawER sappzy gys~

DESIGN SPECTRUM AND REQUIRED AVERAGE SPECTRUM CHAiPilEL 2 8 NUcLzAR PRoz~ Ho 2

~

-113-PZGURE 4-3

ASYN>lETRIC LOADIN6 CASE (cowo)

HOHEVER, THE FINAL DESIGN OVERTVRNIfj6 f'10NENTS ARE

'PPROXIf'1ATELY EQUAL FOR BOTH APPROACHES FOR

< = 0.;129-,

AND

~ = 0.089,

SIilCE N/2 N6 2'0(P6)

(~ Lr) (~)

I=1 N/2 NB = 2.0(PB) (~ 8 L,) R)

I=1 GENERIC APPROACH HRR

.V

~ )

1 C)

Q ~s l.:

U.

CJ C)

Cf'.

L!

Q lI

!I t

hk nn CJ t

0. 00
0. 30
0. UO
0. GO T JsE-
0. 00 (SI..C)

COmPPrJ i Q~

CH gC -'+<

~

~

n

~I tV an a

ga 0 o V g l~

~

I

'9n 4'u M

C)

Q 1 >a 03

~,

~ 'I an O. 00

20. 00 VO. 00,
60. 00 BQ. 00 FREQUENCY (HZ)

! 00. 00

.'20. 00

! ~0. 00

60. 00

oA o

Kl o

o~l Q

Hn Ro

~ 4 QR+O Q~o M

G-o oo o

(

0. ZO
0. "0
0. GO T T I'IF
0. 00 (SEC)

>. 00

C)n C)

Ci C3 Yln (Q 0

~ LQ

'o T ~Q 0 i Q QJ ns V)

C) 0M Q 1+

~r 03 I

I

~

~

an Ql C)n I0. 00

20. 00

'VO. 00

60. 00
00. 00 F.REQUENCY (IPZ) 100. 00 160. 00 h

~

~

I lgij t*

I

on C)

I (U

~

~

0. 00 O. 20
0. 00 (SEC) 1 20 1..0
1. GO

no CV

~ ~

COlhP+W<Od Q.Hgg Q,.W oO o

6-o

~ n t~

4 oo E)

Q U)

L gn C}

on Pd on I0. 00

20. 00 VO. 00
60. 00
00. 00 FREQUFNCY (HZ) 100. 00 120. 00 190. 00 '60. 00

2.

CONPANIOil CHUG NB;. 19,3 (8"R) vs, 19,5 (GE) r, CHUG i)0, 0,3 IS NORE CRITICAL Iil THE HIGH FREQUENCY ZONE THAN 4,5,

~

~

Co&PAA<GA CHQQ On CU C

~

Oo 03

~ I 1

QO q

O I ~

pl'

~0 nn C)

~

I

0. 00
0. 20
0. 60 TINE
0. 00 (SFC)

}. 60

C)

Cl WQ p o 0

Q

)

C.'

Q x~

Pl C

Q 1~

~ C)

Z~

Q gs CV (A

QJEon o

C)n o

CO on

0. 00
20. 00
00. 00 Go. 00
00. 00 FREQUENCY (HZ)

>00.00 izo.oo rub.oo

}so. 00

C7n C3 C3 C)n O

CQ HQ QO LU~O

~O C3n

~ CU M

Lj.j a

C)

C3 C3n a

CU I

I0. 00

0. 20 I

P lip

0. 60 TINE
0. 00 (SFC)

>. 00

1. 20 up
1. GO

C)

Cl C)

PJ S

r KSW O

wl l~

~

I LQ ~

~ 0 QJm

~

~

C3 Q

(AillP) oO OD

0. 00
20. 00
90. 00
60. 00
00. 00

.-: FREQUENCY (HZ) 120.00

'QO.OO 1GO.OO

OO C4

~ I OO I

C)

O N

0-hJ (A~O Q

a

~O (A

hJ O

I

/~ "Q On CQ I

OD (U

0. 00
0. 20 0 00 i

0 60 TINE

0. 00 (SEC)
l. 00
l. 20 UP
l. 60

an a

an l~

+

n QJ a

~ tQ a

Q (AKln aa Al an n

~

0. 00 20 00 90 00 60 00 00 00 FREQUENCY (HZ) 120. 00 '40. 00 160. 00

3, KEY CHUG NO, 20,2 (BRR) vs, 20,6 (GE),

AND COMPANION CHUG NO, 20,1 (BER) vs, 20,5 (GE).

I, MAXIMUM PRESSURE AMPLITUDE OF CHUG NO, 20,2 (24.7 PSI)

IS HIGHER THAN THAT OF CHUG NO, 20,6 (3.0,9 PSI),

MAXIMUM PRESSURE AMPLITUDE OF CHUG NO, 20,1 (23 1. PS I )

IS HIGHER THAN'HAT OF CHUG NO, 20,5 (12,1 PSI),

II, CHUGS 20,1 ANo 20,2 ARE MORE CRITICAL IN THE HIGHER FREQUENCY ZONES,

r

)

CQlhPAPierJ C.l<dS -

E+R.

Cln

~I

~ 0 C)n

~

~

UJR+n

~O M

Q I (Y

Cln I

C)n L9

~ I I

an 0~l PJ I0. 00

0. 20
0. UO
0. GO TINE
0. 00
l. 00 (SECi
l. 20 up
l. 60

~ ~

CDn COWP~ i0 U C" H Q ~ R~~-

4 C)

CD (U

g CD CD Vcr l~

Q CDn QJ nr (f)

C3 0

(f)~C CL.

C3 C)n

~l CDn

'l

20. 00 VO. 00
60. 00
80. 00

'FREQUENCY (I<Z) 160. 00

l(Kp C.<+d 4

~~ca

~i n

Cl Cl CV f-f n No O

e s

LLI R

o C7 V)

Ql~oO C) wl

\\

C3D O

CV 1

C, oD C)

P)

0. 00
0. 20
0. QO
0. 60 T.I HE
0. 00 (SEC)
1. 00
i. Zo,- i. ~0
l. 60

y/} O gO M tQ

+

. C)

QJ cv R

C7 CL (A

Q I O (Y

(Q C3O

+I 0 '. 00

00. 00
60. 00
80. 00 FREQUENCY fHZ) 100. 00 120. 00 1UO. 00 160. 00

3 Con P~)QQ aa n

P) nn LA PJ

'g a0

'i3 gl, a.n Q l~

(f)

C3 0

Lip n 0

an I0. 00

20. 00
00. 00
60. 00 BO. 00

-. FREQUENCY (HZ)

on CU on 0)

+o Qn QJ

'(F)~O Q

~

~o (f)

Q I

Qw on

~l l

oo C)

I on

!V

0. 00
0. 20
0. 40
0. Gp TIME
0. 00
1. 00 (SEC) l,20 UP
l. Gp

lC<y cHuc l, E.

0. 00
0. 20
0. UO
0. GO rrriE
0. 00
1. 00 (SEC)
l. 20 1,00

o CQ Pl on n

P) go L n l~

+~n QJ a)

MZ C) 0Ron CLn oo CQ on

0. 00
20. 00 VO. 00
60. 00
80. GO FREQUENCY (HZ) 100.00 120.00 160.00 160

7.

The statement is made that the single vent design source load developed

~

~

for WNP-2 envelopes the 4T data.

Provide additional clarification, e.g.,

bound all 4T data in amplitude, and frequency.

DESIGN ENVELOPE vs.

REQUIRED ENVELOPE FIGURES 4-7 THROUGH 4-j.0 IN THE BRR CHUGGING REPORT SHOH THAT THE DESIGiN SPECTRA DEVELOPED FOR HiHP-2 ENVELOPES ALL 4TCO DATA IN ANPLITUDE AND FREQUENCY,

BUR.'iS MVD ROE, HIC.

PROP RXETARY See:

"Chugging Loads - Revised Definition and Application f1ethodology for t1ark II, Containments (Based on 4TCO Test Results)."

Transmitted by:

Letter G02-81-189, dated July 22, 1981, Supply System to NRC.

WASHZN~~

PC3LZC PCrKR SUPPLY SYPV24 NU~ ?HG~~

HO 2

~

DESTGiV SPECTRUM DYAD REQUIRED EhV-LOPE SPECTRUi4i CHAVNEL 28 PZGURE 4-7

BURNS AND ROE, XNC. PROPRIETARY See:

"Chugging Loads Revised Definition and Application Methodology for Mark II Containments (Based on 4TCO Test Results)."

Transmitted by:

Letter 602-81-189, dated July 22,

1981, Supply System to NRC.

WASHINGTON PUBLIC POWER SUPPLY SYSTEMS NUCLEAR PROJECT NO 2

~

DESIGN SPECTRUM AND REQUZRED ENVELOPE SPECTRUM - CHANNEL 26

-118-

BURNS AViD ROE, INC.

PROPRIETARY See:

"Chugging Loads - Revised Definition and Application Methodology for Mark II'Containments (Based on 4TCO Test Results)."

Transmitted by Letter G02-81-189, dated July 22,

1981, Supply System to NRC.

WASHINGTON PUBL C PGWER SUPPLY SYS~

NUCLEAR PROJECT NQ 2.

DESIGVi SPECTRUM AND REQUIRED ENVELOPE SPECTRUM CHANNEL 24 PXGURZ 4-9

-119-

BURNS AND ROE g INC ~

PROPRIETARY

,See:

"ChUgging Loads - Revised Definition and Application Methodology for Mark II Containments (Based on 4TCO Test Results)."

,Transmitted by:

Letter G02-81-189, dated July 22, 1981, Supply System to NRC.

WASEKBGTQN PUBLIC~ SUPPLY SY~

NCCLK& PBGZECT NO 2

~

DESIGN SPECTRUm~i END REQUIRED ENVELOPE SPECTRUM 'HANNEL 20

-120-

8.

Oiscuss if the three vents in one radial direction where the source s rength is increased by 24~ are chosen at random or specifically chosen to compen-d sate for any asymmetric load that might occur due-to variation in times at which chugs occur.

. NEARLY SYMMETRIC LOAD DEFINITION THE THREE RADIAL VENTS WHERE THE SOURCE STRENGTH IS INCREASED BY 24%

ARE CHOSEN TO ACCOUNT FOR ANY IMBALANCE THAT MIGHT OCCUR, THIS RESULTED IN BUIL0IblG RESPONSES ABOUT 10%

HIGHER THAN THOSE OF THE AXISYMMETRIC

CASE,

a tl)

CV o

o

~a l-~a CY Ul (3o

~r o V)n o

oa

20. 00 QF~~<

7'~Q.

< x)4

0. 00 40.00 60.00 80.00 '00.00 120.00 100.00

'.60.00 FREQUENCY (HZ) lJPPSS-2 CHUGGING - F'~~~y hwi~y o wE.i itic f1RSS NQ.

21 EL.0.6~t85 F T..

HOR I Z.

TRRNSLRT I CIN CQNTR I NHENT VESSEL (DRYWELL }

~.~

-'7 ~>il laFJ-" ~-led=5

n Y) a l 'I. aianPlr44 I

~a U.l

()P4

~a CGa a

aa

20. 00 tl. 00
40. 00
60. 00
80. OD 100. 00 1.20. 00 190. 00 160; OD FREQUENCY (ISZ)

IJPPSS

=-2 NERRLY SYHNETR I C CIIUCGI NG

(BASED QN VTCQ DRTR) flASS f<Q: 21 EL. ~A 85 FT.

IIQR i Z.

THANSLATI QN CONTR I NMENT VESSEL (DR YlJELL )

~~WPP l-td-K.P gR

C)

0. 00 VO. 00
20. 00 60.00 80.00 100.00 120.00

'QO.OO 160.00 FREQUENC'(

(l3Z) tJPPSS-2 CHUGGING - FuwLy s>x.isynn zTa, >c.

NRSS NO. 76 EL.'F00.)',P I=T.

I<I3RI Z.

TRRNSLRTI QN CQNTRINNENT VESSEL (ORYWELL)

+ Al-L-VP~S F'ia<+C.

EQd~

~.r r>>@PHRASE>H i-t 9 p<

90. 00
b. 00
20. 00
60. 00
80. 00 100. 00 120. 00 1 tl0. 00 160'. 00 FREQUENCY (HZ) lJPPSS

=-2 NEARLY SYHHETRIC CHUGGING

(BASED QN OTCI3 ORTH)

~IISS.

Nn. le EL.~OO.C9 Fl.

HORIZ.

TRANSLATION CQNTR I NHENT VESSEL (DR YllELL)

AT lOJAPH f'P C>]q pyre g.f'

Qa

~l Q

lU 1 %

QixHP44c>>

~a l

~ CU QA UJ UJc) ~

~

Q Q

CQ Q

a 0

00 A~~

V<A i 5 F~A >4 G, CRAP.vc

) ~

2D.DQ

'VD.DO 60.DD 8D.OO '00.00 120.00 100.00 160.00 FREQUENC'(

(HZ) lJPPSS-2 CHUGG1 NG - Fuu y

@Play>wE i1RSS NQ. 123 EL.~ig 9.3E FT.

HOR I Z.

I RRNSLRT I CLN CONTRINMENT VESSEL (METMELLi

~~- VkA~

~ADJT Ggu+

0n V)

C)

C)

I %

DaH>wE

~o

~o

~ P)

Q QJ U.l

~~n

~M C)a

20. 00
0. CO
40. 00
60. 00
80. 00 100. 00 120. 00 lQO. 00 1GO. 00 FREQUENC(

(l-lZ)

LJPPSS

=2 NEARLY SYHHETR I C CllUGG I NG

(BASED l38 QTCQ DATA) l"1ASS. i)0. 123 EL. i'J.> 9.3~ FT.

IIOR I Z.

TRRNSLRT I QN CQflTAI ANENT VESSEL (tJETLJELL)

~.r Vga'-- DXIg-

r'L

~

~

9.

The assumption that chugs at 3 vent pipes in one radial direction are synchronized for the asymnetric load is not conservative specially at higher. frequency.

Provide the rationale for not assigning different chuggging start time'o each vent.

SYNCHRONIZED RADIALLY LOCATED VENTS THE BRR APPROACH IS CONSERVATIVE IN THE HIGHER AS NELL AS THE LOWER FREQUENCY RANGE SINCE THE JAERI TEST RESULTS WERE EiNVELOPED CONPLETELY BY THE PRESSURES THAT HERE USED FOR THE DESIGN OF HNP-2, FIGURE 5,6 OF BRR REPORT OVER AL'REQUENCY RANGE OF

INTEREST, THE CONSERVATISN CRITERIA HERE IS BASED ON CO/"/PARISON WITH ACTUAL FULL SCALE TEST DATA (JAERI).

~UK.tS AND ROE, ZNC.

PROPRIETARY GE'.:ER.'-J EL=CTRZC CO;K~A vY PROP.~Z"'CHARY See:

"Chugging Loads - Revised Definition and Application Methodology for Mark II Containments (Based on 4TCO Test Results)."

Transmitted by:

Letter G02-81-189, dated July 22,

1981, Supply System to NRC.

~HINGTON PUBLIC PCHER SUPPLY SY~

NUCXma PaOZ C: Na.

2 ENVELOPES OF CALCULATED RESPONSES FOR tvNP-2 AND NZASURED RESPONSES AT JA"RZ CONTAZNiMNT AT VENT EXIT ELEVATZOH P IGURE 5-6

10. Provide detailed description of the analytical model used to deduce the sources and containment boundary pressures.

0-T NOBEL

0-T t'tODEL CONSISTS OF 3 TYPES OF ELEHEiPTS:

1.

FLUID ELENE')TS (HATER, C!i()

2, FlUID ELEi'lEihTS (STEAN, CS)

SHELL ELEHEi)TS (STEEt )

NODEL IS AXISYi"lYiETRIC.

PROPERTIES OF NOBEL ARE DESCRIBED Iii! TWO BRR CHUGGING REPORTS, NASTRAN FIf/ITE ELENEi<T PROGRAN MAS USED IN THE

ANALYSIS,

I I

I

Cb

~

I i

i j

I

~

I I

9

~ ~...a

~aio I

+? 3

~ I f,

~,

5 i

I I

~

~

I(y l

~

I I

I I

I

~

I 5

+2 I 2

~

s5,57 gg +

~c

//s~//'f

g. (r2.

I I

5 7

(Qo

~ox.

i j

I.

5

~ I f CD --

8'8 ~V

/O I

)

i g

I 33/y

+I l I

a I

4r O2

'LO lg.

I L3 I

~no,

'o~

cW/ I

~c~

/taZ~ at 3 L4.

t

-H5'8O 5

5

+

+'?

5 IL' I

oS

+554

~I IIat'J I4 4 4

~ 441 a yCtl Ieatt Jt I

~

~

'I 110~~t~~a 1'I ~o~

2+

t l9 I

~

I Qrs) a.lo

?-1 I

574 5'I'I

~l.-e f + / X -/Z7

~o

/ &,C,'7 /08 78

+o+c Wos~5,I pl,.

I

~

/oS.e". -72, I

S l.,OS O.0OO l I

5 EEOC' 5

g Ia gQo

%7 7ggQ a 11 7a~rf Zy"

. 5'5

~)o 45' zz, vb JKI/

4:cc LL 5

O.O I

oo Jz o

~ 4

~

I I

)

I dt

~ I t ~

I I

~

t

~

~

~

~

I j

)

I

~ll~

s I

~

l l

i I

I I

~

I i

I ~

II i

l I

I

~

~

I y

I I

I

~

I I

+z4

'I ZD-I I

I I

I

~

~

l

~

I I

I I

I I

~

I l

I I

+2L I

I I

I I

~

I I

~

~

~

\\

~

~m masnm~

i I

I I

+cop I

I

~

I

~

~

9oo1 420 1tO C

I I

I I

I I

~

t I

-I I

~

~

~

l l

~

~

V ~

t

~

]

I

~

I'I

~

4

~

~

If I

i I

~

~ I t

~

~

i f

I

~

f

.t I

I

~ ~

t I

~

I~

e

~

I i'

I

~

~

~

P f

f I

I t

. ~

~

~

t I

I I

I

~.

~

~

~

I

~

I i

I I

t

~

I

~

I

~

~

P

~

I SlO,O I

f

~

I

~

~

I I

~

f I

I Tfd.O

'70f. O I

I'

'I

}

~

~ ~

~

~

~

~

~

~

~

~

~

~,: -c si.o SSV.O Ce 3+.O

~

tr S. TPO

~j

~ V

\\

~

v

~

I I ~

~ '

~

~

~ t I

r.

I

'b tt

~ ~

~ I

~

~

~

~

P I

I I

P

~

t..

~

I

~

~

~

WSOBPCl '

~

~

~

~ ~<<

~

I I

.. 444.O I

~

'P 4

I I

I, ~

t,

~

,l

. '+4ZO I

V

  • 'I

~

~

~

~

~ '

t ~

Z gttIPO

~ '. -,'

-'~ '...,- 195'.0 I

t ~~ ZO f++.O IP.7.o

<<fOO,O

~ I

-7Z.D P

0.0 CH. CCe 8>PO C.t.O S~G.

t I

O,O IZ.D lAPPI tahar'tt I I

OO tCPO IC.0 hatt.0 0+0 VZ.0 I

~ e,ti'.O

~

~

O.a

~

~

aO'

~

I

~

~

~

~

I C

~ ~ ':

I I

l..

Il.

~

I a

~

I

~

I

~

~

~

~

~

~

I I

i

~

h

~4

~

. II')

I

--I ~-

I I

I ~

a I

I

~

t a

I

~

f

~--

~ i"

'I I

I

~

~

I.. J.

~

~

r r~

~

~

~

I

~

h

~

h

~

I I

~

~

~

~

~

~

a I

f

! I,t;'

I dlJ;etta 87.0

~

~

~ ~ ~ ~ I

~

~

S~ 8Jd 7/D, W

~hah&liItoCr'0th 0 6(s 544

~

~ ~

h

~

r

't' II ~

~

~

I 74

.~ ~ lima

~

~

~ '

i

~ '

~

a I

~,

ht

<<p a.

~

i I I, I

~

I, h

'I.

a a

.'. ~

1' h'

I I

', ~

~ <<C

~

I

'I

~

~ V h

h I

~

~

I

"~

i

~

~

I

\\

h

~ ~

I h

1 '

~

h

~

I

~

~

~

~

~

f;.Pt.,

I I

I

~

a I

~~

I

~

~

~

~

I h

~

I

~ i I

~

~

I a'

~,

~

I

{.""I

~I a

~

~

h ah h

h.

I t II~I S QCAf. gP)

-7t.o a

~

~

~

'h

( O.(S'

~ ~S4 O

~ (+0 I

~DhCI

~

LCI

<<(e D Vr.il (I"C C~)

Iah

~e

~l=

~Lac aa II

~ ag aga

~~ahha

~

L O.O hLAa

<<haa chill

.h<<ar r u aa al ~

h ltCilJ hsaaahaaaqa I

a<<a araa Waar IZ.o t

l l(,4

/N,D (b,o l

ygp SZ 0 t

'f 7(o hO

~drtr/ra waahwa ~~

~

I

~ 4 3+

aalglak Cr'L 7aa

~

~

~

~

h lL'L

~

~

I

~

~

AXS~BS4ah ': ':

~

~SCIS.O (DDS>16hthL'.

~+7, O dJJ~552.',.; ~,

~.

a I;. SOSia

~ ', ~,

~'i

~

~

~

SZtdSta.

.~da L5 8T WW

~

~."

~

h 'fH'hO Cb..

f

." t; SZJZazJ,'

~.

r

~

~ I

~

I~

~,

I I

Iat,aa 242 0

~

~

~

aJ<<

'h '

~

~

~

~

~

tart

'. I>>,...'I:IC aa h

~ZO(,

-. 'I

'=,

~

~ST (~ll. ZO)

. t.-t+i..

~et II Il;C5 Isa O

~a 4;47

'~ (Caid,a h

h

=

~

h

~

~

I hrh

~ ~ <<

~'

a ~l '

~

Ch

NNP-2 HYQRODYl<Ai'llC NOBEL

taP-2 NODEL CONSISTS OF TNO TYPES OF 3-DINENSIONAL HYORODYNAt'iIC ELENENTS:

1.

FLUID ELEi'lENTS (HATER, C<,()

2, FLUID ELEi'lENTS (STEAN'S)

PROPERTIES OF ELEi'iEklTS ARE DESCRIBED IN B"R CHUGGING REPORT.

IN-HOUSE FINITE ELE"'lENT PROGBN~i "HYD-1" HAS USED Ii) THE ANALYSIS, ANALYSIS i'iETHODOLOGY IS DESCRIBED IN ORIGiNAL BRR CHUGGING REPORT,

(

iF>>

~ 0 l

~ J,l

~ '51 l'90

~

~

2'Zl) 5$,7.o

~y

~ 1 t *

~-

I ~

~.

~M zo4 form l sl 8002 2 l5/78l

~ \\

wl M) p)

('1

ASYMMETRIC LOAD CASE (coNT D)

I DESIGN SOURCE p+

801 802 803 804 805 806 807 808 809 810 3,22 3.,46 5,14 4,39 3.34 3.56 5,06 6,90 5,36

,114

,120

,121

.112

.124

.119

,129

,111

,095

,123 14,778 9,041 9,796 13,470 12.738 9,300 10,746 13,142 15,338 15,427 ASYMMETRIC DESIGiN MOMENTS OF THE GENERIC LOAD

ASYtlNETRIC LOAD CASE GEHERJ C 15, 027

~

l

\\

~

  • I N",

NAX (PSI, Iil)

BRR, REQtJIRED (cY =,089) 16,022 25,203 COHPARISOH BETH'EEH BRR Af<D GEihiERIC DESI Gil ASYt tjlETRIC MOj'"iENTS

5.

The comparisons of the NNP-2 method with the JAERI data are not made direct-ly since the JAERI facility was not modeled and so the comparisons are not

. very convincing.

What can be done to -model the JAERI facility ot at least compare the results with the data in a more meaningful way?

(

JAERI COMPARISON BD HYDRODYNAMIC FLUID ELEMENTS MODEL, APPLY THE BRR METHODOLOGY, WITH DESYNCHRONIZED VENT FIRING TIMES, COMiPUTE PRESSURE TIME HISTORIES AT DIFFERENT LOCATIONS, COi1PARE MITH TEST RESULTS.

I

~

e l

~ 4

~>ERz-Q. H g'oF t

/

VER> c.HQC~

~ACHE.

KEC.Q c,cc i& l&

C. nn6gBop o.pop gg~4

'.oo~gsc 4-O. O~ ~>S Q

. ~.~o~72(

o aoo 694Q7

'i26Ac>c g

~wW CHup TER Ee DAQP1 l

CaaC QO.

MgWlgvg g(gip VN,4C p +Q~~VQQ (5 SX)

~'2.&c

>'Z.>l,

'5D;C J 4.a a~~

'5o, tO 7,.% Q 10.4 l P

Wiwic Vdd,CL PPEm% u7 E~

~ccu~k~~w FoP DeeQ:C nm~

Mc ~L i7Y E wEYAVlnN R

3.0 HAsgI 7E5,75 t.6 clAE.RX-wast YgF g bl IA L(

0. o.s rl l~

I I

I l

I l

pl LJ V

r v'D.

fO.

gO.

rug. (H<.)

I'. gv p.g.q.

S,p~c.v-z+

V~N~WXIT'KlF V'A>iSV

6.

Compare the 7 key chugs chosen by MNP-2 with those chosen by GE in NEOE-24302-P (Table 4-3).

Also compare the companion chugs that are used in the averaging process to obtain the RAS for MHP-2.with the adjacent chugs used by GE to develop the generic design sources listed in Table 4-4 of NEDE-24302-P.

if a key chug and/or companion chug-is different from those chosen in NEDE-24302-P, provide comparison based on pressure time history and PSD to show'hat sources developed.for MNP-2 are conservative.

COf'1PARISON BETWEEN KEY AND COMPANION CHUGS CHOSEN BY BRR Af'lD GE THE KEY ANO CO>"'IPANION CHUGS CHOSEN BY BRR AND GE ARE IDENTICAL IN HOST CASES.

H01/EYER, THEY ARE DIFFERENT IN THREE TESTS, THE TABLE SHO>1S THE DIFFERENCES,

RUN NO, REGION/ ilO, KEY CHUG NO CO["1P, CHUG i%0, 15B 19 20 25 26.

15A,2 15A,2 15B,3 15B.3 19.4 19.4 20,2 20,5 25,2 25,2 26,4 26,4 l,l 1,3 15A,3 15A,3 15B.4 15B,4 19,3 19,5 20,1 20.5 25,3 25,3 26,5 26,5

I EFFECTS OF DIFFERENCES BETWEEN BRR AND GE THE DIFFERENCES BETLiEEil GE AiAD BRR HERE SHOHN TO RESULT IN A NORE CONSERVATIVE CHOICE FOR KEY AND CONPANIOii CHUGS FOR THE HNP-2 APPLICATION,

HOHEVER, THE DESIGN LOAD OF BRR IS BASED ON ENVELOPING ALL QTCO DATA BASE AT ALL FREQUENCIES AT THE BOTTON CEiNTER OF THE QT SYSTEl"l.

THIS f'IEANS THAT THESE DIFFEREiNCES DO NOT AFFECT THE B8R LOAD DEFINITION,

BURNS AND ROE I iHC.

PROPRIETARY See:

"Chugging Loads - Revised Definition and Application Methodology for tlark II Containments (Based on 4TCO Test Results)."

Transmitted by:

Letter 602-81-189, dated July 22,

1981, Supply System to NRC.

WASHZNGTON PU3LZC PGWER SUPPLC SYSTEM%

NUCXZAR PBQJE~

HO 2

~

DESIGN SPECTRUM AND REQUiRED ENVELOPE SPECTRUM - CK4VNEL 28 PZGUBE 4-7

REASONS FOR THE DIFFERENCES IN EACH CASE 1.

COMPANION CHUG NO, 1.1 (BRR) vs, 1,5 (GE)

MAXIMUM PRESSURE ANPl ITUDE OF CHU6 NO, 1.1 IS (11,7 t st)

WHICH IS 6REATER THAN THAT OF CHUG NO. 1.5 (9,2 )sr}.

CHUG NO, 1.1 IS NORE CONSERVATIVE IN THE HIGHER FREQUENCY ZONE, THE REACTOR BUILDING OF NNP-2 IS NORE SUSCEPTIBLE TO HYDRODYNAMIC LOADS WITH-HIGHER. FREQUEiiCY CONTENT THAN THOSE OF LONER FREQUENCY CONTE!JT (FIRST NATURAL FREQUENCY OF. THE CONTAINrdENT SHELL IS ABOUT 25 Hz).

THUS, CHUG NO. 1,1 IS NORE CRITICAL TQ MNP-2 THAN CHUG NO, 1,5, sir.

THE BEHAVIOR OF THE 4T SYSTEM, AS NELL AS THE TEMPORAL AND FREQUENCY BEHAVIOR OF CHUG NO, 1,1 IS MORE SIMILAR TO KEY CHUG NO, 1,2 THAN THAT OF CHUG NO, 1,3, THIS MAKES ANY AVERAGING BET)'fE N 1 1 AND 1,2 MiORE REASONABLE THAN THAT BETWEEN 1,2 wvz) 1.5,