ML17256A473
| ML17256A473 | |
| Person / Time | |
|---|---|
| Site: | Ginna |
| Issue date: | 01/24/1983 |
| From: | Maier J ROCHESTER GAS & ELECTRIC CORP. |
| To: | Crutchfield D Office of Nuclear Reactor Regulation |
| References | |
| NUDOCS 8301310142 | |
| Download: ML17256A473 (86) | |
Text
REGULATORY ORMATION DISTRIBUTION SY
< (RIDS)
ACCESSION NBR;8301310142 DOC ~ DATE+ 83/01/24 NOTARIZED:
NO DOCKET FAC'IL:Sf'-244 Robert Emmet Ginna Nuclear Planti Unit 1p Rochester G
05000244 AUTH BYNAME AUTHOR AFFILIATION MAIERtJ ~ Ee Rochester Gas L Electric Corp>
R EiCI P ~ NAME RECIPIENT AFFILIATION CRUTCHFIELDg D, Operating Reactors Branch 5
SUBJECT:
Forwards reyiew of acoustic monitoring of steam generators during plant startup,Westinghouse metal impact monitoring s>'s recorded impacts from steam generator B.Signal characteristics did not indicate impacts in tubing.
DISTRIBUTION CODE:
A001S COPIES RECEIYED:LTR ENCL SIZE; TITLE:
OR Submittal:
General Distribution NOTES;NRR/DL/SEP
- 1cy, 05000244 RECIPIENT
- COPIES IO CODE/NAME LTTR ENCI NRR ORBS BC 01 7
7 RECIPIENT ID CODE/NAME COPIES LTTR ENCL INTERNALS ELD/HDS4 NR AB RE~ILE EXTERNAL; ACRS NRC, Pt)R NTIS NOTES:
04 09 02 0
1 0
1 1
6 6
1 1
1 1
1 1
NRR/DL D IR NRR/DS I/RAB RGN1 LPDR NSIC
-03 05 TOTAL NUMBER OF COPIES REQUIRE,D:
LTTR 24 ENCL 22
iF a ~
l l )".), 4) rniI n 'nnr,rl S
1 "'it'n n
1'$') snn)ff QQnin 4 AI)n f J
lin
~ F$ 1 f) n) ntf 4} ilf cl ns J
) I) aaJJ J fr>J Ii'> 'J ')
< "II ~
Jli>>
II
~L'
- 4) J s" 4 <>>c"~.'IIlyI1 I,qnfg'rn'"'
),JA fnf1)Sf W 4')
nn 1
Jt 1 ysf nS i')n5 WJC s J J J I > J, Jg J 14'<<lIrrnI J
)rs JAniI~)n I )finn nnslnn)
'l'rn J s'.')ll')4)
. J.)n>m <L<nI J J 1 4) f 'Jl'll,) Jr)
'"<<'<I',".'J J. ).Jn<
rt n
. 1, 1 r )I 3)<37~PR3 I 1) ') gn q '
iFS ';) [y efS 4 ) P
'l g s) J Oe ) f,af)..i Tean') )Ir J <sf J fnll n
1 s' "iI
'1 n) ) '
1 n f) f ~104:) r f '10 ) f fsn)'n>
4') Fli)y Fli r)
!)
"-l f ) n,lsnrn')sn t ~)
.'i~8 f n')')
rn)> lfn~r')'J 1 ).)f r4I )el ilf S~n 14~nJiiSQ ))rgb' "I,l J
I fl f 1)iI'0 r
f I')<) f
'I f4)f)
I ni f i
n
- 4) f gfs f lng J @Fn'1('nnI"i,)
<<~~~~~~
' >Xil~
rlT g;
)I Jq I 1
> )'J
' l'1') )
<<'gf)nn'>>:
"i') II'J 4 rl Jkn fir)ls,'lIJ 1 Jg<$ r ) J" f 1
Jt '1!Sf) rn)
~ fins 1 rI )l)n Sfs);
J,JJ J.l Q,) <) g) ps
'< j~'X J>>'nnZ< nvf;,)ri j J'J.I Pgf 4 )J J J".'
)s T J J
2 ll 1)-a
.1 il,.i J I
1
'J l 's J,J 4
Fl n Inn
)iI)t ni I i
J
) 1 l >> II J'l Q rnI inn I,
'I I.~n In
~ > l ni>
n I <<,'< )~,.Jg:
J~X~,I1 JT'AJ 4)
J f
n.
fin
- ci J J'JV'I i,,
44( $
1 s:
g 3s, sos g, Jg Ills)
)l)
J 4 ')'rn J')"
)/P
~,)
/l///I//
//C//
)ee 0 I)*
gÃgfP
/////////
8Z.'OCHESTER GAS AND ELECTRIC CORPORATION
~ 89 EAST AVENUE, ROCHESTER, N.Y. 14649 MATC JOHN E, MAIER Vice P/cadent 7CLCPHONC ARCA COC)C 7ld 546-2700 January 24, 1983 Director of Nuclear Reactor Regulation Attention:
Mr. Dennis M. Crutchfield, Chief Operating Reactors Branch No.
5 U.S. Nuclear Regulatory Commission Washington,'.C.
20555
Subject:
MIMS Performance During May 198? Startup R. E.
Gin'na Nuclear Power Plant Docket No. 50-244
Dear Mr. Crutchfield:
As identified in Section 7.3 of our Steam Generator Evaluation Report dated April 26;
- 1982, a loose parts monitoring system was installed on both Ginna steam generators during the Spring 1982 outage.
The system, a Westinghouse Metal Impact Monitoring System (MIMS); is described in our letter dated November 22; 1982.
During startup from our Spring 1982 outage, impacts were recorded on the MIMS from the B-Steam Generator.
As described to you and your staff by telephone conversations during that startup and in a meeting with the NRC Staff on June 3;
1982,'hese signals were evaluated in detail and were determined to be originating at or very near the shell of the steam generator in the vicinity of the 5th support plate.
Based on signal character-istic, it was determined to be very unlikely that the impacts were originating on steam generator tubing.
We have now received that evaluation from Westinghouse which confirms and documents the findings that were presented to the NRC Staff on June 3.
A final report is enclosed as attachment l.
Further confirmation that, the impacts were not affecting steam generator tubing was obtained during our interim outage, which began September 25; 1982.
Multifrequency eddy current examination in the area of interest disclosed no tube wall degrada-'ion, thus demonstrating that there have been no impacts on these tubes.
The examination included tubing on the cold leg of the B-Steam Generator from the tube sheet to the 6th support plate, from RlC1 to R44C38 and extending from all peripheral tubes inward by 2 to 3 rows.
oal-830i3iOi42 830i24 I
PDR ADOCK 05000244 P
t I
f
C I
'ROCHESTER GAS AND EL RIC CORP.
DATE January 24; 1983 TO Mr. Dennis M. Crutchfield HEET NO 2
Based on the our evaluation and the eddy current inspection, we conclude that impacts recorded on the MIMS during the startup from our Spring outage 1982 are not the result of any mechanism which is affecting the integrity of the steam generator tubing.
Uery truly yours, Jo E. Maier
C I
~
ff If L
l
REVIEW OF ACOUSTIC MONITORING OF STEAM GENERATORS DURING GINNA STARTUP, MAY 21 TO JUNE 2, 1982
SUMMARY
OF RESULTS As a result of RGE concern that no additional loose parts should remain in the Ginna Station steam generators, the latest model Westinghouse Digital Metal Impact Monitoring System was installed there in May, 1982.
The design of this metal impact monitoring system has been demonstrated to yield much greater sensitivity to loose parts than required by regulatory guide 1.133, together with providing good false alarm and electrical noise rejection capabilities.
The unit includes a tape recorder that, automatically starts to record raw signal data on receipt of an alarm.
The recorder uses a sufficiently high tape speed to allow complete impact signal waveform analysis and to maxi.mize signal'rrival time resolution for source triangulation.
As originally installed, the system was configured with four sensors (accelerometers) mounted in a particular pattern near the tube sheets of each of the two generators.
The design goal was to have high sensitivity to any impacts occurring on or near the tubesheet, and to have quick and easy primary-side versus secondary-side source discrimination.
As part of the process of system checkout and calibration E
measurements, various sizes of stainless-steel rods were used to impact each of the two steam generators.
The data generated by these impacts provided reference sensitivity, frequency spectra, and arrival-time-difference information.
I C
E
~
h
Monitoring by the MIM system began at plant heatup.
During the heatup and pressurization some miscellaneous primary/secondary impact signals were detected, but work on various primary and secondary piping systems was still in progress - for example, insulation was being reinstalled -- and the signals did not continue.
However, at a very low power level (1 4%)
a number of impact signals which could not be ascribed to any known operation were detected on steam generator B and recorded on magnetic tape.
The signals were of significant amplitude, and recurred from time to time.
A detailed analysis of the impacts recorded on the first tape was therefore conducted that same evening.
On that. tape were four large amplitude
(>10g) impact signals occurring over a
total period of about two minutes, but randomly spaced in time.
All four signals had the same essential characteristics, namely the same relative waveform envelopes and the same relative arrival-time differences.,
From these data it was concluded that, the source was not on the tubesheet or in the primary channel head region of the steam generator, but rather was fairly high in elevation.
In particular, the received waveforms had clear first arrivals but long envelope rise times, indicative of a more
(
r.(distant source.
The arrival-time differences between vertically-separated sensors was very large, while the arrival-time,differences between horizontally-separated sensors was very small, also indicating the source to be some distance above the tube sheet.
I I
'r
- 3 As a result of that analysis, additional accelerometers were brought to the site and one was installed on a lifting lug at the top of the B steam generator.
When impacts recurred following the installation of that sensor, the approximate elevation of the impact source was determined to be roughly 20 feet. above the tube sheet.
That it was the same general source area that had generated the previous activity was verified by review of waveforms and arrival times at the original four sensors.
To get better source location information, especially some circumferential resolution, two more sensors were mounted on lifting lugs at. the feedwater line elevation just above the transition cone.'he plant had increased power level by then and no further impacts were occurring, but one additional set of impacts was obtained by returning to a very low power level.
Triangulation calculations were then performed through analysis of arrival-time differences at the various sensors for each of the impact signals, after first, creating an accurate map of the steam generator dimensions and sensor locations.
The first arrivals of the acoustic waves turned out to be consistent at, all of the sensors, so the source locations were determined to be nominally 21 to 24 feet in elevation above the top of the tubesheet and circumferentially within an arc bounded by the feedwater line angle and the closest tube lane (about a 60'rc).
At this approximate elevation are, internally, the fifth support,
- plate, and externally, a seismic support consisting of a ring girder attached to both the steam generator and~-to a series of snubbers.
I I
I V,
From the analyses of the impact signals completed to date it can be concluded that the impact signals are probably thermal-mechanical in origin, on or near the steam generator shell, for the following reasons:
1)
There are only a very few impacts, widely spaced in
- time, and having large amplitudes.
A classical loose object would yield many more impacts and much wider amplitude variation.
2)
The clean arrival times and excellent triangulations imply a source on or near the shell with no interfering or waveform-degrading acoustic paths.
3)
The impact signals only occur at a very low power level.
4)
The impacts occur in an area of the steam generator which is not normally considered a collection point for loose objects, and which contains a rather large and unigue mechanical apparatus.
Additional data analysis has been performed to refine the on-site results.
Triangulation calculations established error bounds by first replaying signal data through optimized filters,
,,to obtain accurate timing information, and then by performing the triangulation on the computer, to accurately handle the steam generator geometry.
Also, frequency spectra and other signal characteristics have been reviewed.
0 I
y I
I.
P
~
l I
il
ANALYSIS OF DATA l.
Introduction At the time of the original analysis neither the effect of steam generator (SG) transition cone geometry on wave propagation nor the error bounds to be put on the triangulated locations could be analyzed exactly.
In the error bounds'case an extra problem was the need to determine more closely the impact signal arrival times and review carefully the acoustic wave propagation velocity experiment results.
A computer program has therefore been prepared which accurately calculates triangulation data and plots on a map of the steam generator the various curves corresponding to the distance differences between any two sensors.
After some study it has also been possible, first, to determine upper and lower bounds on the effective wave propagation velocity, and second, to establish minimum and maximum arrival time differences between sensors for the actual impacts.
The results are firm enough that bounding of the triangulation calculation can be stated to at least 90%
confidence.
The only ways that the confidence level could be increased further are through better positioning of sensors or by impact simulation directly in the zones calculated as sources.
Freguency spectrum analysis has also been performed on the impact signals to further characterize the source, based on the baseline data that had been obtained at temperature for several of the sensors.
Since the source was concluded earlier to be on or near the shell, spectral analysis may indicate its characteristic length.
In the case of a truly loose part the characteristic
I I
I P
Y J"
length would then be proportional to mass, but no definite statement can be made from these impacts.
Figures 1 and 2 are maps of the steam generator surface.
The maps accurately show sensor locations and other features except within the transition cone, which is shown distorted.
Particular features to be noted in Figure 1 include the elevation
- scale, which is referred to zero at, the elevation of the lowest sensor (P), illustration of the tubesheet position; and indication of fourth support plate, fifth support plate, and snubber and ring girder positions.
One note on sensor locations:
For good circumferential triangulation, there should be at least three sensors per elevation on a cylindrical structure to provide unique rather than dual solutions to triangulation calculations.
.The array shown is the closest approximation possible given the severe limitations on sensor placement after plant heatup.
Time traces of the four impacts that were analyzed following completed installation of the sensor array are shown in figures 3, 4, 5,
and 6, which are copies of oscillograph traces.
A total of six traces are included, although only four sensors were employed in the calculations.
Sensors FL3, FL4, TH and S were used in the calculations while sensors P and T: were only used as supporting data.
Typically the figures consist of a long period of background noise followed by the initial parts of the required
I I
l
<<y f 1i I
impact signals; a most important consideration was to characterize the noise so that the first signal arrivals could be discerned.
The minimum and maximum distance differences are than presented in Table 1, which lists the best sensor pairs to use, the time-difference bounds, and the resulting distance-difference
- bounds, with maximum or minimum propagation velocities assumed as appropriate.
Once distance-difference bounds have been determined, the values can be used in the calculation and plotting of bounding curves on the steam generator map, illustrated in Figures 7 to 10 for the four cases.
In each figure the SG map is shown with an elevation axis which coincides with the elevation axes of Figures 1 and 2.
However, the rotational orientation is different from that of either Figure 1 or Figure 2; in Figures 7 to 10 the zero-degree line at the left edge is referred to the position of sensor
.FL3 and the tube lane.
The feedwater line (off the top) is then at 120',
and sensor FI4 and the other side of the tube lane are at 180'.
The grids on the plots are marked off in squares which are exactly two feet on a side, so the circumferential axis is not labeled in even degree values.
Circumferential data is also taken to be at the half-thickness point of the wall for wave propagation use and is therefore slightly smaller than the surface dimension.
Of major interest in each plot are the shaded
- regions, which represent the intersections of t:he bounding curve limits or possible source regions.
I I
I II r
t'h
+
H
~f
't
2.2 Fre uenc S ectrum Anal sis Part of the baseline data that were obtained during plant heatup.was the simulation of loose part impacts at temperature.
On this steam generator four different size steel rods were used to impact at a point approximately 110 inches from sensor TH and 215 inches from sensor S.
Figures ll to 14 illustrate the time signals and corresponding frequency characteristics of the detected impacts.
15.
The type of steel rods used is illustrated in Figure In a similar way the time signals and corresponding frequency spectra for the four impacts of RGE Tape 008 are shown in Figures 16 to 19. If these spectra are compared to the baseline
- data, the closest match of shape characteristics is with the 0.25
- pound, 1 inch long rod.
The implication is that, if the impacts are against the steam generator shell, a key characteristic length of the source is in the neighborhood of 1 inch. If the impacts are against an attached structure some combination of the source and structure provides a one inch characteristic.
1
TABLE 1 ARRIVAL-TIME-DIFFERENCE ERROR BOUNDS RGE TAPE 008 METAL IMPACTS Footacae Sensor 1
Sensor 2
hT divisions bD feet 274 FL4 TH FL3 3.0 to 4.9
-0.9 to 1.9 7.5 to 8.7 2.87 to 6.03
-1.11 to 23.4 7.17 to 10.71 400 FL3 TH
-1.3 to 1.0 4.0 to 6.5
-l.'6 to 1.23 3.82 to 8.0 680 TH FL4 FL3 FL3 TH 1.1 to 2.9 0.7 to 7.0 2.6 to 4.6 1.05 to 3.57 0.67 to 8.62 2.49 to 5.66 780 TH FL3 FL4 TH FL3 1.5 to 2.8 0.3 to 1.9 4.0 to 6.3 1.43 to 3.45 0.29 to 2.34 3.82 to 7.76
~
~
10 3.0 Conclusion Computerized source location analysi's has been completed for the set of ROE steam generator B impacts, but the triangulation plots show error bound areas which do not rule out either a
single impact location or multiple impact locations.
Because of both the signal-to-noise ratio and the difference in signal quality among the several
- impacts, the error bounds very in size and region of coverage.
If a single impact location is assumed, the intersection of all the error bound limits can be taken, but the initial result is a null set.
- However, upon expanding the bounds slightly, the region of maximum probability is centered at 154', elevation 24 feet.
If multiple impact points are assumed
- instead, the union of the error bound plots should be examined instead of the intersection.
Taking only the three impacts that yielded a complete set of bounding curves -- that is, all impacts except the one at 400 feet. on the tape -- there are five possible areas of consideration centered at the following coordinates:
(140',
24 ft.), (160',
23 ft), (160',
25 ft), (190',
25 ft), and (230',
25 ft). If further analyses with greater accuracy are needed for any additional impacts, it is recommended that the following be performed:
(1) Optimize the sensor locations and mountings for better circumferential resolution as noted earlier; (2) Conduct impact simulation in the area of interest.
In frequency spectrum analysis, the results indicate a
characteristic dimension of one inch or less.
"Characteristic dimension" is quoted rather than mass because it is not certain at this time whether or not the impacts are from an internal or
- external, loose or restrained source.
~
I X
Cv v
I v
I I
v I
- 'I
~
~
I I
I.I I
I I
~ II Figure l.
of Steam Generato I'"i 'i'
'I I'.'
~
~
~
v
~
v
~
Map I
I
)
i' 1
I 1
v
'I 3
1
1 'i I
I v
i
~
I
~
(
~
~
I ~
I I~:," ~
~ '
v i i"I I
"I
'I L'.t
.'ll I::
".I I
- .I
'I r r.l ttvlY.
I'I I':"
I..',il.'11 I:
1 ~I'.
i'l/
I',
I
~
I ~
-"I-ill j... ill
':ll:
- .':.:-"-:::::I::
- I {",""I:t' l I.
I:I:~ :
i:.:I.:. :.: :Ii
':::I::::::
i:;I'i:I
- I j:liliili
- !I::.'::
':Ii',
'p.t I.:
Ii".'I',
t."p~i..-!:
i!:j.l:;.:.':
I'I.;I:~
I
- PPI'll
. ~ v
~
I I
i Ii:3 I:3
.:I:j:
i',:
i):11'i II i'i!!Iii
':I"'.:
I ~
I I
.I.:I':
i::
- I"!t'.l I
. ~'v:~
I, I
~
~ I:.': i I':,I-I,
- "'I
'I");:II l'.::i:
~.
I!!jilti I I;Ii tlv "I
a
"',: I 1 I
':I::
I
'll rl: 11
~'I':. '
~
I I
').
I v
I
.:I!.:.-I "I'I
!,'I",r I
1
'I
~-'II-':
(
~'.I:
" trl I;I;
~
I
...I..
! II:
~
~ I I
.,:.'I ii
' I
- "lt
~':ll
'tlil:
~ I
'".I'1si
.:.I
~ I I "'-:-
j
,". I'.:,:
i I i:-'.I I:I,'il:!"
.:t
~i:~
- I;~
"'".rl
- 11
~ I
~ I
~ '. I
~ I i'. I! j i "Iti:
': 'I
~ I.
~
I'lI
): ~.'i: i
- I.I.Iii
- itj!I'i,
- .,.'ll: i
'v tij,"It
":I il I'
~,. Itt.
I I v
tr-v ~
~v ~
'", it",'
~
1 ~'.,:
- "Ir" 1 W I
lv
'I
!I
'.I
""I
~ ~ ~
i:,j:..:.I,, i,
'ill':).:'Ilt):,!!I:I:I!I:
- !: ",: IIi:!Ii 4
I I:I S~" '.:
.,I I:;
~ )'ll
~ ~
v 1 ~
i!:.I)
I::li I I I I I!)3.
- 1~ 1
~ '
I I
~
'I
.III:
- I:::"
It I"I
~
- v i:
".I I'.:;
'. II I li,'!
I I) ". I il: '; i:
1 i t!
Ii':::
- I
11:
. I:.!:,
1.:I:..':,.
.:Ii.:! :
~ v I ~
I t
I v
.I Iv '.I
,. It i:I
- I 1-::i
- i I
!I I
~ I I 1
1 v
ll I i.';I
~:I j 'i!i:
':3'll.:
'I' vt
~::I:1:
~
,!I "il
- tl
- I I
I
- Ii I,'I !'lI I"I
~ ~
"'::: I i "I v
1"II
.I:11
,"11
~
~
~
'I..
~ v I
I-:.'!3-'I
- i.'t:
'I)""""'tti' Iv tel V' ': ~:
t v
I It
".I":':.
y 7
pj's g'i' l.
'ECTLY.!
Q(
I I
~
v I
I I
~
v v
~
0...I ii: I I ~;':I I
I I
v
~ v
0 e
l 4.'
'I
~ ~
ll
~
I) ~
Figure. 2.
~}'i!c
!I':i:'l':
j).'ijjl:
I jet!
}0
~ ~
~
~
<<:i:
i
~
- i!i ill.'
~
0 I:!
I!:
~ ~
i!I:i!
~.!!I I:;:.'I s)
I'!
ii Il:!
t.
II I I It)li:
llI I lli:.
I jii!Jil:I
!i.
~
~. ~ ~ ~ ~ ~
~ ~ )I
- t I>>"'I:I'il
~ ~ ~ ~
lj:;
!11}; i!il
':jj'.:,",::;
I)
I
~
- I:I:
~I!) I!i!
jl'"
\\
I
~
~
~ ~
i!!i
'i"
~ ~ ~
~ ~
- ):
)
~
ill i:
- m! !i Iiii}l jiiii!1::.;
!i::j.'i::::
jj:I!Ij:;'!
!'jl!ii'::i I}!i!!i:
!)0!}It.l I ~ la Ii.'.
~ I ~ 0 I) ~ t II'!
I}l!
II!})I~
'L'i li )
0) li',
~ ~ ~ ~ ~ ~ ~ ~ ~
~ : I !:..
~ )!ill)..
ll:}i}i'::.
~ I
~
~ ~
~ ~ 4 I.': I I
~ I:
I':S il':i ili I!( I
~:I) j:I:
i}1,'
0 ~
~ ~
I::
I'
~ ) ~:
i'!I i ~:I
- lii j i}i}
liii I
i
~
~0 le
}I:
I
- li
- I iil I]l ill III gl:
~ I
- I".I::.
~
~ ~
"I
~'
".I" I
- .'I:
i,'..:.'".0}l I)
~
i
% I
~ ~
~
~ ~ ~
as!>ll
~
'.:.!ll!ii
')ie ii' il il I;!Il:i!:
'.j:I}:!'I}:
)Ie
- I:i
}:I"'"
i!',}!ii,.
! ilia::I
- ..');)!".
- ~t::;:
.ea.."!.!
~
I
~
- i:I'. ll
~ ~
II: I:I i) 0 I
- i:
'.I,'i I'".I
~ ~
,. ~....al
. i"'I il!. i!!I
':I: I:i
~
'!!: ill.l
,:li!j;:iji
~ I ~
I!Ii Li i:::il IIJ)
I ~
1
~
~ I
~ I
!!.,I iil i
}I!Nj::
- i
- i}!
jiill::
a)t'll I):
I:.
j:t
$}
'i t
Ij
~ I I)!}
ilej) t',::I
- I:
I i':I;:
Iki I'.'ii!
i)I)
)0):
~ !I:
\\ ~ I
~ ~ll::
!!Iij
- !'i
- I
- si:
- Ii;
- el:
il::.
- ti:
~ ~
!}00
.'jl; llI)
I ~
~ ~
! 0}I
~ ~
I IS ~
I ljIl
~ ~
iiiil IJ!i
~ I i)'I ilsi
~
~
!lj):;I'. I j!Ii,!i al
~ ~
~
~
~ ~ ~
i ~ ~
il
(:I
~ "I
- -.:::3j
- !Ii:i
.:}im
!i!
- ati
~ f
. ~ I
~ ~
~
~ ~
jii!i
')
0 ~ ~
Iet) i}i',
i;jl
!) I i)!
'I';)'.
I
) }1!
I:I.
- ~ )!
)
~
- IE!
i:!I ii I-I I'
~ ~
':ll Il.'
~
~ '
I I
>0) ~'I ~
I)
IL}i)i}L}i:ii S~~
~
~~.'!
~
~
.I"
~ ~'i
- I)!
~
~
~
~
'I!j j:I'I)i ij:'
~ ~
S),'.;
I
~
~
- ))>
I) ~ ~
I ~
I!i!
IL!i
)Ia)
~ 0
)lie
!ii I!.'
I ill'0
~ I
- It j I }I ii)i i!}l
- I".
Ij:;:;
il,'I ii'i Ii!
!'li}
Ili::
ji'i
)
~
i'
- !Ii
}II
- >le i!.:>l I
0!II i:jl
- ji
~
I ~
.:):I
- I
- I I
~ 00 aal
~ ~ >
~ II I ~
I jj'
~
~
i:I:.
'::I'
>I!
~ ~
I ~
~ ~ ~
IJl:
I:Ill!
);
~ ~
~ )
)
I ~
I
~ ~ 0 I:
~ ~I ll Ij
~ }'
~
!!Ii
~ ~ ~
ijl:
- Ij.
i!!i
!i
.tj I.):IL i!!I:i "Ii!!
'I I
I S
I);till I is};I ~ li ili:: iil:. I 0 I ~ <<)ice ttl:I gt tt 'i ~ ) ~ ! I) ~I" S I !Ill i.'! I I! I. jj I'
- i:
ij I:j I': il Li'e Ii ) ~ }Iji Ill!i ll I}': I'il I ~ I: I: I ~ Is I:st'll ilia
- j
- ::l
'.i.".I st:! I Il:- I I I I ~ ) I I I Ii ~ ~ I ij! I
- I:,
I).'S ~ ~ ~ )lt t I ~ ls, 0!0 S I ~. I ~ ~ ~ ~ ~ !10'; 0)al il'!i li ' jI! I ~ I ):I )I: ~ 0 ~ I!0 )S': I:i i.: :ii
- ilIj!
ljil"lj! i.l: :)lli ~ I ~ ~ ~ ~ JI I! I;i~ i )I! i ~ I) I I ~ ~ ) ~ ~ I,i~j:1 j:-:i:-:i:. j:'.-':::::I:: li:i.:i:: ~ ~ ~ ~ ~ ~ ~ I' 01':::0 i:il !:.".I i:!i::l Ii Ij ) ~ ~ !I I~ ) IS tell}II !}iiill ~ ~ ii.:I ! IIs( !A ~ ~ '!: ~
- I!
i!'iii ~ ~ ~ 0
- li
~ S Ii:.: ):0) i)
- i) Il i:il (al!
i!ii,'j: !Sl) )I."
- !i!! i:::
~ 0> ~I\\ 0 I!s. II:I
- .:.I...
..'Iii' ':"'I ~ ~ ~ ~ ~ ~ ~ I 1}': )0 el I ~ ~ ~ ~ ~ I.i'.il; ~ ~ ~ ~ ~ 0 ~ ~ ~ ~:Il! 10
- !Il: ):I
~ I ~ ~ ~ I i::I))!i I I ~ 0)l }: St P~ ~ ~ ~ 0 ~ il ~ ~ ~ I ~ I 0 ill: I IL! ~ ij tii: ~ ~ ~ Ail!I ':j!', J!Tji 0 ~ I 001 I ~ I I 0 I I .:Ii ~ ~ I!tl .'Iii ~ ~ ~
- }10 ii!
011 ~ ~ ~ ~ ~ ~ ~ ~ ~ i!}i gI'".. ~ ~ ai!I ~ ~ ~ 0 ~ ~ 0 ~ ~
- I ) '.
~ ~
- I:)
".II
- i!i atl I!ii
- ~ tl
~ ~ I ~ i'I 1111 0!i:I ~ ~ I'I'.!! ) "i".!} ii'll:ii .Ij,.l'. ii
- I tijI::II
.).}I:.I: ~ ~ ~ I ~ ~ ~. ~
- .j
- ;
- .:::.
i;.i!:i:.I I',):ii:;. ~ ~ ~ ~ I ~ ~
- I,ilji!i
- i}l:::i, Ii'"'ii II',
"0 ~')ll ,'::i.!:: l)i:II:} .; ~ !.I'! ~ ~ ~ ~ ~ ~ ~ ~ ~ i.::!:I,'!:
- I!:I
- >t:.I:
~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ i' 0 I ) ~, I ~ ~ I 'a i
- I:..
~ ~ I ~ ~ ~ ~ I
- i. '
I.i "'i '!.: i 0'0. ll .'.6:. ~ e ~ ~ ~ ~ > ~ > ~
~ ~ ~ ~ ~ 'I -'L~E .l ~ ~ 7 t ~ ~ ~ ~ ~ ~ ~ ~ ~ fa I L ~ ~ I. I ~,4 7 77 ~ ~ ~II'll'rll h ~ 1,1 ~ W ~ 17 17 ~ ~ r ~ ~ ~ 7 '7 ~ \\ W 777 W ~ h ~ ~ h ~ I ~ I ~ 7- ~ ~ 1.17 I I'C ,pn tyne~ . f 1 ~ ~ L tW ~ I ~. 't 7 r t' ~ I O' h I ~ ~ Q~ J I ~ ~ 7 h7H C ~l....,L...,.. ~ r the' ~ 7 ~ ~ ~ ~ ~ ~ ~ r 7 ~ ~ ~ ~ ~ t I ~ ~ 8 7 ~ h 7 t ~ ~ ~ r. t I I ~ ~" 7 ~I-I ~ ~ ~ ~ ~ ~ ~ ~ I I, ~ 7th ~ Ii. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Lk ~ 1 r r P ~ t ~ ~ C ~If ~ ~ 7 ' ~ rh 77 f7 ~.. I. ~ k ~ I r ~w ~7re ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4 ~ ~ ~ ~ ~ ~ ~ ~ ALE ItI 77 ~ 7 ~ ~ . ~ ~
- 7. ~
~ . I ~ ~ I ~ I'I I I ~ 1 -~t I r 7 . r i ~ 7 ~ I I ~ ~ ~ ~ ~ ~ 7 ~ ~ I ~, ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ 7 I ~. I ~ ~ ~ h 111 I I ~ 1 ~ ~ ~ ~ I ~Ji 7 ~7 ~ ~ ~ ~ ~ ~ ~, ~ ~ ~ ~ ~ ~ ~ ~ 7 ~ ~ ~I ~ ~ ~ ~ L~ . I' ~ - ~ -- ~ 4 ~.-- ~ It C I ~, 1 I Figure 3. Ylslcorder Time. Trace of RGE Tape 008 274 Ft. One Time Dlvlslon Equals 6275 Microseconds
~ ~- ~ I ~ ~ ~ ~ ~ e I I S I ~ ~ I I ~ ~mt P. ~ ~-l-I I I l 1 I ~ I I ~ a I I s l ' '! '! ~ ~ I I I ~ ~ I I e I ~ I "'I 'L' 'a ~ ~ ~ \\ ~ I l ~ I I I I ' I I ~ r<< ~ >> ~ t ~ ~ ~ e ~ ." a.r- ~ a ~ I ~ se r l't ~ ~ << t'.l I r a>a'!a i.:"ha -l I--lr ~ c-. ~ ~ ~ twevt J I f I ~ p 1 ay+~! ~ I I ~ ~ ~ ~ ~ L ~ - L'=<<~i-r ~I.I-I ~ ~ ~ I e 't I I ~ r L !-~ . I!~ ~ I a I I ~ s-I I ~ ~ I I t ~, ~ ~ >> ~ ~ ~ ~ I m- ~ ~ ~ "V h ~ ~ >>i l>>el r ~ ~ rr t>>rt r r e ~ I at t-,.h.4 s= ! ~ ~ l I I'I ~ ~ ~ l I' S ' I =:= =.-" t. t-er I l' ~ ~, a e ~ I I ~ 't.;i i . J i il ~ g~~+.. ~ !.!l sl l '.i '.i;!i'. I ~ 1 ~ f t T ~I>>\\ Is ~ II;; a ~ ~ >> l a. I,! I.I ~ t p ~ p I r ~ ~ ~ ~ ~ t I I I ~ I I l~ ! e>> <<t-s.e-!- ~ t I-as;sr! I L-<<e>> .Is! <<f=t f I t-sl'.I'i i !.i l !-I I l l l I-i a ~1!e l ~ l' ~ ~ >> 'ea ~ ~ e. ~ ~l~~=Ct. I.i s.l s s '..rt. l ~ I I I I I I ~.1 I I I;.cl s ~ ~ ~ a ~ ~ e ~ ~ ~ t ~ I. -. ~C.- S. ~ ~ ~ ~ 'e ~ 1 ~ ~ 'I I' ~ I 4 ~' t.s ~ r ~ ~ p ~ ~ 1 C'<< ~ ~ pp e>>t tws C ~ ~ ~ ~e" ~ ~ ~ ~ s ~ ~ ~ ~ I I.I... ~ ~ ~ ~ t ~ t ~ ~ ~ Lr ~ r ~ ~ I l t ~ ~ ~ ~ ~ I I e ~.Il l ~ ~ ~ he>> 1 ~ ~>>t Q ~ f ~ ~ ~ ~ ~ ~~ i ~ r<<wt <<r<<e Lv s 1 ~ ~ ~ ~ ~ ~ ~ ~ t M ~ ~ ~ t ~ ~ ~ ~ ' e ~ ~ a ~ ~ <<a a ~ ~ ~ e ~ ~ t ~ t-ta ~ ~ t ~ ~ I -"': 'i'S~. ILI >> ~ te I ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ >>ha ~ ~ II.a. ~ ~ ~ ~ ~ ~ ~ ~ ~e t-elhi l - t- ~ a a ~ ~ e ~ ~ ~ ~ C ~ e t ~ I I ~ ' I L I I I l I I I I, ~ e I I ~ ~ ~ ~ ~ ~ I ~' ~ ~ t"t i.! I I lcs. l ~! ! e ~ I I -l-I vr ta i"I.I I-I ~~ ~ I ~ t I I ~ I~L a I ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ I" I LC=" I ~ I' I. ~ ~ I I ~ ~ I I ~ ~ t" ~ ~ ~ ~ ~ i I I'I.i I 'I.S I I ~ t I I ~ I e l l I I e ~ a I e ~ ~ I I ~ I a sssl ~ ~ a I I ~ I ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ I~S<< ~ "o..I/t. L>> ~ ~ ~ ~ ~ ~ ~ ' t ': I I ~ ~ ~ e ~ ~ I I ~ l ala ~ ~ ~ ssl <<t~ ~ ~ ~ ~ ~ ~ >>>> e ~ ~ ~ ~ ~ I a ~ ts eP I I e I ~ ~ ~ e ~ ~ ~ >> ~ ll >> ~ ~>>j ~ ~ Figure 4. Ylslcorder Time Trace of RGE Tape 008 400 Ft. One T lme D I v I s I on Equa I s 62. 5 M I croseconds
J r I
e ~ ~ ~, e ~ ~ ~ e ~ ~ I I ~ ~ ~ ~ ~ ~ I ~ ~ ~ JiF!! l. i ~ I ~ I ~ I ~ ~ ~ ~ e i. Is a f 1 i ~ 1. ~ i I ~ I ~ ~ ~ e ~ eef I ~ ~ I ~ ~ ~ I ~ ~ ~ ~ I I ~ ss \\ ~ f ~ 1! ~ n ~ I ~ V ~ ~ ~ ~ 1 I.f. Le 1 ~ L ~ ~ M~ i ~ e i ii ! 1!L!ii ~ ~ ~, f ~ ~ ~ ~ ~ ~ ~ t~ ie i ~ i ~ I ei I ' ~ ~ ~ ~ ~ ~ ~ e ~ ~ ed% IA ~ ~ ~ s ~ ~ r f I f <<rv<< 'e <<t' ~ 4 t ~ I ~ g ~ i ~S ~ I ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 I ~ s I I i ~ 1 ~ a ~ ~ ~ I S 4 ~ ~ ~ ' I ~ I I ~ ~ ~ e ~ ~ led I I I ~ ~ ~ ~ ~ ~ i t-l.i I.i a I I 1 I' ~ : ':.i I i s sees i 1 s I' t i ~ s I<< ~ e v- ' rva ~ ~ Igp ~ tyeair ~ ~ ~ v ~ r ee e~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I I ~ a ~ I ~ ~ ~ ~ ~e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I 1'I i'I 1 I I S. w ~ ~ ~ ~' ~ e ~' ~ h w ~ ~ ~ ~ ~ ~ ~ ae ~ I 1.1 1 I~ ~ ~ ~ ~ I g ~ ~ ~ ~ ra ~ ~ ' ~ ~ f I~ I 1 I I.af' ~ I ~ ~ I ~' I e ~ ~ ~ e ~ ~ ~ ~ e ~ t ~ I I ~ I ~ ~ St l;~-~ ~ ~ ~ ~ ~ ~ ~ ~ .I 1 ~ s ~ ~ I I ~ I ~ ~ ~ e ~ ~" ~ ~ ~ ~ ~ ~ ~ ~ ~ 11 ". It" I .7+ s ~ ~ ~ ~ ~ s e ~ ~ ~ ~ ~ ~ ~ ~ 'r I ~ a <A I ~ ~=I ukt*~> ~ ~ 'I ~ ~ ~ ~ e e ~ i ~ 'r ~"('s. ~ e ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ r r e ~ I ~ I e v "e v 'e ~ ~ ~ ~ e e ~ I I I".. I ~ I ~ I I ~ ~ ~ V ~ ~ ~ ' ~ ~, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I I ~ ~ ~ e ~ I 1 r, I I 1 I '1 1 I I ~ ~ ~ ~ Vv 1 ~~l ~ ~o ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ V I I ' e 1 !Pe'1- 'greggt ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ZM ~ ~ ~ ~ ~ ~ e ~ ~ ~ ~ ~ e I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t* ~ I ~ ~ '. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ r ~ ~ ~ e ~ ~ ~ ' ~ ~ ee ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ' ~ ~ ~ ~ e..'.1 ~ ~ v ~ ! ~ Ie 1 I as ~ ! I a ~ ~ LL;.':).'.a -.= ~ ~ I ~ ~ r f r I o'w 1~ tH t I t t I ~ ~ i"! 1 e l I "i=s s 1. V ~ ~ ~ ~ I: ~ '.I ~.Lt ' 1 ~ 1 1 t-! I i I s~s e I ri S ~ Sea I t i! I! Se ~ ~ I I I I I I ~ ~ ~ ~ ~ ~ ~,I ~ ~ ~ ~ ~ I a ~ I ~ I ~. ~ W ~t ~'s ~ ~ ~ e'I e t I e w4 ~ ~ ~ ~ I s I ~ I ~ e ~<< ~ s I ~ ~ ~ I ~ ~ ~ I ~ ~ ~ ~ ~e'~. 1 e +l~r~~I-"-' 1 1 a.t 1 1! t t!.t.t I 'I I tJ.f !: t. ~-i-j,.r-i-t-I--I-.:t:-.-.t~.>>,~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ e "l. 1 i 1 e i 1 1~<<tffr <<<< I I ~ 1 ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ n ~ I ~ ~.- ~ sr ~ ~ ~ ~ ~ . ~ ~ i I e! I!.! i!s I ~ I ~ ~ ~ I I t I I I I ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ! I-I!!n s-1 1 t ~ I I I 'I 1 ,~,v ~ I e ~ ~ ~ e ) V ~ i ~ ~ ~ ~ ~ ~ ~ .I>> s 4 ~ ~ Cl I ~ m]r ~ I I I I I ~ ~ I I I I I ~ ~ I; I '. I I I ~ I I I ~ ~ ~ ~ A ~ ~ ~ I ~ I I ~ ~ ~ ~ ~ ~ ~ s ~ ~ ~ ~ e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ s ~ e" ~ ~ ~ I ~ ~ ~ l e I I I ~ 1'! I I ! ~:1!111 I 'I1'll 1 1 ' I ~ 1 I ~ I I I I..: I I! lM QJ I I I I I I 1 l! 1: ~ 1 lel 1 e'l l I 1 1 1 e 1 I I l I I I-I I I I ~ I I I -. I I 1 I I I I I I l 1 ~ I I.I I 1 ~ I I f>>s I -f ~ f I ~ ~ = e ~ I I je ~ ~ rs ~ ~ ~ ~ I ~ ~ Figure 5. Vlslcorder Time Trace of RGE Tape 008 680 Ft. One Time Dlvlslon Equals 62.5 Microseconds
4
JJ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ t ~ ~ * ~ ~ ~ ~ o ~ ~ ~ I ~ ~ I I ~ P'r W Pf.g.:.<o= + ~ ~ t ~ ~ ~ ~ ~ ~ ~ ~ ~ I I ~ Lo ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ J ~ I ~ l IA ~)4~ e ~ ~ ~ ~ \\ ~ ~ ~ ~ ~ ~ ~ I ~ I..w , ~ ~ ~ ~ 'I I I T':.~ ~ ~.' .Tfe 1 9'ooM I ~ g I t ~ i ~ ~ t ~ i:. ~ ~ ~ ~ o ~ ~ ~ k I I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ g'J \\ CV ~ ~ ~ ~ ~ t ~ ~ r ~ I I ~ I ~ ~ I ~ ~ ~ I I I I I 'll~ I ~ I ~ tel I I I I ~ ~ ~ ~ ~ ~ ~ too ~ ~ ~ I t ~ ~ I.I I' I t ~ I ~ ~ I I I ' I I I ~ ~ ~ g ~ I I I~ I. ' ~ ~ ~ ~ t 't ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t ~ t ~ ~ ~ t ~ ~ ~ ~ ~ ~ ~ I ~ ~
- . R~E.r~
~ ~ ~ t~g~l o~ ~ ~ ~ ~ ~ ~ ~ ~ ~ IJor ~ ~ I I ~ g ~ ~ ~ I ~ jJ~I' h ~ I I I I. I. ~:. I e ~ ~ .'~!~ I ~ ~ I v 'I o I ~ ~ ~ g ~ g 4 q ~ ) ~ l ~ M i ~ ~ ~ ~ ~ ~ ~ I, o ~ ~ ~ I ~ ~ ~ 'I ~ t a ~ ~ ~ e ~ I ~ ~ ~ ~ t ~ ~ ~ ~ A ~ ~ ~ ~ ~ ~ I.t I ~ I ~ ~, o ~ ~ ~ ~ I ~ I ~ ~. ~ ~ ~ ~ r ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I o ~ ~ o ~ ~ ~ ~ ~ ~ I'g ~ el I ' ~ ~ ~ ~ I ~ I ~ i ~ l ~. ~ ~ g ~ ~ e ~ I i.o i ~ ~ ~ ~ ~ ' I ~ 1 o i,LI ~ ~ I ~ ~ Ip ii i ' ~ 1 o.i I I I ~ ~ ~ ~ ~ ~ ~ I I ~ ~ ~ ~ ~ ~ ~ ~ ~ i m ~ ~ %.~. o ~ ~ ~" ~ I ~ ~ ~ ~ ~ ~ I i' I ~,i ~ ' I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ 4 i I ~ ~ ~ ' t I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~e ~ ~ , ~ 1 ~ ~ ' I t. ~ l~~...g ~ 'I I .e-m~ ~ ~. ~-I r-I-I, e, l I . -:-.:I i ~)I i i,i,;.: ~II; 'Pt ' 'g ~ ~ ~ f, 1 I r ~ ~ I ~ ~ ~ I' III t' ~ I ~ J I l oe ~ Figure 6. Vlslcorder Time Trace of RGE Tape 008 780 Ft. One Time Dlvlsion Equals 62.5 Microseconds
I lp I d
00 4 0 4 gO0 ~ 'V 0 IV 0 40 i.0 0 '44 4 0 0 XCx 000 0 4 0 i 0. ~a.i C ~ 0' 4 4 0 0 44 +44 ~ 4 44 ~4 4 0 x'0 0 00 4 000 00 0 ~ C e 44 i xf I I I X 4 4J ~ 4 22 6<<i QF ii,ll 48 5 IIQ ~ I8 132.42 24 IF6 29 96 3h '0 Ji 2 '2 l 26 ~ 2 6. ~ 6 266,52 ~Aif4 iH DEGREES I9 FI.i cl] ~ 2 64 y Cl.i - FI.S ~ 6 0) X FI.i 5 ~ F. IF 0 FI I 5 ~ IOFI 5 ! 0E IH ~ ~ ~ I I 5 ~2 ) ~ Figure 7. Triangulation Plot of Tape RGE 008 274 Ft. Maximum Error Bounds
'I V ~ ~
0 ~0 ~V ~ ~ ~ + o~ 4 Wgi J~ I I ~ ~ ~ sII' ~e 00 0 0 C 0 00+ 0 0% 01 0 Q~ 0 C0 ~1' 0000 r~Cs 0 0 4 J~ J ~ 000 l ~ 4 S.a 0 j 00 0 J ~ g 0 4g ~ 4g 4 4~ 4 ~ 4 0 + y Z2 0< cs s I I@ I T 0 13).gp I'1.~~
- l11, 5
199.53:J 42 ~ I 2Q ~ ~ ~ 4 PS i9 J"> ~ 5$ 3'C ~ c$ .'>c St ~ I ~ ~ <HI'<II lR OEGREES CI 5 - III ~ 150 C <II 5 ~ I. g) Cq~ tg ~ ~ f I + fL) - 's ~ 1,"0 Ffgure 8. Trlangulatlon Plot of Tape RGE 008 400 Fj.. Maximum Error Bounds
I I J I
A I ~ A II cc' C I C, k t I7 C C A yw IAJ XJA AJAX X XAAM C C 0 C C C I )Xf C C C J J ~ J J G C C ks J 4 w J Q J ~ ~ ~ II C G0 Ca C % ~ AJ yw CI 0Cl I C C I AI I A y A X X I 'A X ~ A II JJ ~ Ol 66 ~ II ff ~ J Ilo yf,QJ,JJ lv+J ~ + '. ( A2 1&2 ) AJv 2JJ J) 26J ~ JJ 226 J& 33K 5c v ) 2 IHc.1A i!t DEgrl CS ~ al C C FA ~ ~ I ~ JS ~ A fa.J lw ~ f.tC C CA ~. <A2 ~ f.C2 J F:3 - I'I J2-Jf Figure 9, Trlangulatlon Plot of Tape RGE 008 680 FiJ Maximum Error Bounds
l I
f<< 4 4 4 ll X ao> = n C f 0 o <<f o Lp r' ~ k<< 4 4x 4 4 44 4 4 cO 44 O I JI 4 4 444 r 4 F44 ,r o+ k k II { ~-{:oo, ooo 4 'a C. TI 44 ~ 44 4 ~c~. 44 4 44 44 4 <<I 0 bo ~ 4 4 4 '1 coP~~ oo 0 4 ~ 4 44 4 I 4 ~ f 24'4 ~ 4.0!
- 5 <<I
{<<!.15 flO <<2 I)2 ~ 24 I)4 a0 lr: ai l%f )) 22 ~ )~ a ~ 2 {4{j { 4 i <<{ I'<<Cl:QC<Q ~ f 26 ' ~ ~ 28.5 ~ 2 )::.52 ) "; 55 0 I'<<5 <<) ~4) r4) <<I<< + r4 ~ - t.) ~ ~ 4a ~ ) ~ 2,) ~ ~ ) 2) )a F4 ~ ~ <4 ~ 1 'E Figure 10. Triangulation Plot of Tape RGE 008 780 Ft Maximum Error Bounds
V
.2SLB GIN 141.-83 UrEA 141.-83 VrEB RQE TAPE 519 8.88+88 E 8.88+88 E P978FT CH A TH 'CM 5 Q-ii-82 VLH T R SLt 16 B R -Ar8 ~ SEC ,888 Figure 11A. Time Trace of Simulated Impact .25 LB. 6 In. Drop
P I
NEX94., f28 .25LB GXH i4i.-83 VrEA idi.-83 V/EB RQE TAPE Si9 388.-83 E 888,-83 E 29i8-385 CHA H CH S 9-ii-82 ULN T TSU 8 RS 2'A -Ai8 HZ FIgure 11B. Frequency Spectrum of Simulated Impact .25 lb. 6 In. Drop
r 1
HEI94.,.f28 .SLB GIN ~-03 urEA i~i.-e3 uiEB RQE TAPE 5i9 ~~ee E 8.88+88 E 2828FT CH A TH CH 5 9-ii-82 ULN T 2+GA ~ SEC .888 Figure 12A. Time Trace of Simulated Impact .5 LB. 6 In. Orop
I l
HEI94.,f28 ~ SLB 6IN 97o -83 VrEA <4>.-83 ViEB RGE TAPE 519 ~~ a.S Shout PCf~-83 E 588.-83 E 2888-Bi47 CHA H CH 5 TSU. 8 RS 2.8A -Ar'8 HZ Figure '128. Frequency Spectrum of Sfmulated Impact .5 Lb. 6 In. Drop
NEI94.,128 - 1LB GIN 141.-83 ViEA 'iai,-83 VrEB RGE TAPE 519 5.88+88 E 5.88+88 E 1388FT CH A TH CH S S-11-82 VLH T SU - 16 2.8A SEC .888 Figure 13A. Time Trace of Simulated Impact 1.0 LB. 6 In. Orop
NEl9d.ri28 KALB GIN id'.-83 Vt'EA idi+-83 V/EB RGE TAPE Si9 288.-83 E 588.-83 E 1245-i'ft CHA H GH S 9-ii-82 ULH .'T TSU 8
- 2. 8A
-Ar'8 HZ Figure 13B. Frequency Spectrum of Simulated Impact 1.0 Lb. 6 In. Orop
I>> 1 I ~
NEI94., 1.28 i4i.-83 UrEA 14i.-83 VrEB RGE TAPE 5ig A R 4.88+88 E 88+88 E 558 FT CH A TH CH 5 9-ii-82 VLN T egg/h Yb~&VlkwpP 4'.8A 2 8A .888 F'Igure 14A. Time Trace of Si'mulated Impact 2.0 LB. 6 In. Drop
I I l ~ 4 I
HEIST. 128 BLB -GIN 111.-83 VrEA 141.-83 VrEB RGE TAPE 519 288.-83 E 588+-83 E WS8-698FT CHA H CH 5 9-11-8P. VLN T TSLl 8 RS 2.0A i 2.8A -Ara Figure 14B. Frequency Spectrum of Simulated 1mpact 2.0 lb. 6 ln. Drop
I I I
~ ~, TINGIIOUSL" I'l<OI'ftILTARYCL 2 I ~ I I.00" 0.5"R LEIIGTH (L) ( I H. ) I 3. 65
- .I I.tIO 9.I6
- 6. 9.I 9.66 2.0 I l.29 TOTAL ICE I GIIT (LB) 3.0 2.5 2.0 l.5 I.O 0.5 0.25
~ ~ HATER IAL: 3N STAIHLESS STEEL Figure 15. Steel Rods Used in Metal Impact Simulation Experiments 2-2'
~. J e I ~ ~
r t ~ NEI94,, 128 ili,-83 VrEA ldi,-83 VrEB RGE TAPE 888 A R 8+88+88 E 8+88+88 E 274 FT CH A TH CH 5 ULN T SU i6 I ~ct>>>(~~ ~,'i5)~hfdf< B R 1.8A i.CA -A~S'EC .888 FIgUre 16h. TIme Trace of Real Impact Tape RGE 008.274 Ft.
I I t I I
f I HEIBd.,f28 id'.-83 VrEA l4l.-83 V/EB RGE TAFE 888 258.-83 E 888.-83 E 274 FT CH A TH CH 5 SU 16 IS i.8A ~ HZ Figure 16B. Frequency Spectrum of Real Impact Tape RGE 006 274 Ft.
f I l 1 ~ I J
NEI94,,128 -8.1699 DLTA 141.-83 VrEB RGE TAPE 888 A R 15,8+88 E 15.8+88 E 488 FT CH A TH CH 5 SU 16 B.CA -Ar8 SEC Ftgure ]7A. 'Time Trace of Real impact Tape RGE 000 400 Ft.
I 1 I
HEI94. i28 ihi,-83 VrEA id',-83 VrEB ROE TAPE 888 588.-83 E i.25+88 E 088 FT CH A 7 CH S SQ i6 B 2.8A.I - HZ. Figure 17B. Frequency Spectrum of Real Impact Tape RGE 008 400 Ft.
I 1
HEIST., 128 141.,,83 VrEA i<i.-83 VrEB RGE TAPE 888 A R 6.88+88 E 6 88+88 E 688 FT CH A TH CH 5 S-ii.-82 VLH T ~ ~ Y B R 2.8A'A/8 SEC Figure 18A. Time Trace of Real Impact Tape RGE 008 680 Ft.
~ ~ ~I I ~ ~ ~
1<1,-03 ViEA 141,-83 V/EB RGE TAPE 888 38ei-83 E 588 -83 E 688 FT CH A TH CH 5 SU 16 IS HZ Figure 1813. Frequency Spectrum of Real Impact Tape'GE 008 680 Ft.
IE 1 E ~ ~
I NEI94.,i28 ~ ~ I ~ e i41.-83 VrEA -i4i+-83 V/EB ROE TAPE 888 A R .6;88+88 E 6.88+88 E 788 F CH A Tld CH S 9-ii-82 VLH T SU '16 j( )))()j( I/ B R (l, 2.8A 2.8A FlgUre l9A. Time Trace of, Real Impact Tape RGE 008 780 Ft.
p ~ V ~ I ~ I
i-03 V/EA 1<1,-83 VrEB RQE TAPE 088 388.-03 E 898,-83 E 788 FT CH A T .CH S 9-11-82 ULN T SU 16 IS' ~ 2.8A l -B/8 Figure 19B. Frequency Spectrum of Real impact Tape RGE 008 780 Ft.
~ ~ ~ { ( .1 f
APPENDIX Figures Al to A4 provide families of constant distance-difference curves for the four sensors used in this analysis.
t 1 ~
o C ~ A ~ "I a 0 1 I I I ~ ~ V y = ~. r, g ~ I I l I~ I r ~ ~ v' ~ I~ I ro o ~ I ~ o ~ ~ ~ t ~ ~ / ~ II I o f ro ~ CI I o I ~ L ~ ~v 4o ~ ~ ~ ]> o> ~ ~ ~ CCI ~ C ~ c a ~ o lc ) IC ~ .IC ~ I-t I I Io I 1 Ic ~ ~ 4 fo t ~ I I ~ v c I G~I C I C Ch fo o ~~ C C ~ ~ ' ~ r J ~ ,4C ~Ir o ~ CC ~r' ~f ' ~ ~C ). o' ~ C ~ ~ I.cc o~ ho I r ~ ~ ~ ~
- .o Lo I
l' 4' o 4 ~ ~ Et ~ I Ff ~'I"If I a', ~ cZ CCv) i ~i ~ ~ )G ~. ~ o i 6G ~f ))f. )o ))v s )5 )ri 5& I" 'I ~ C IC ~I CI ~ ~ ~ r~ I ~ rvr 'a J o fco 5 rto r,o r ~ ~ GG ~ ~ rV ~ G ~ v of Gv r, ~- 5 ~ I ~ 5 ~ o rtc ~ c o ~ I,v CLO c ~ f.v,a 7 rc ~ 5 ~ C Qo I ~ o 5 r ~ ~ vv I ft ~ f ~ I) Qo 0 r ~ ~ c ~ ~ C ~ c ~ ~ 5 ~ I5 ov FL4-S Distance-Difference Curves Figure Al. Family of F
~ t ~ i r I I, ~ JI II f
~4 A 4 ~ ~ l I I I I 1 I 4r f g I ~ ~ t ~ C ~ I 1 AI ~ I '1 ~ I 4 0 sP ~ 8 v 44 l 1 o l. ~ r v p ~ I'A 1 p 4 4 ~ t 4 4 4 ~ ~ 4X P" r 44 t'A, 2 Qcl Pc ~ t1 CC ~ ~ 4 ~ t O ~ ~ ~ ~ ~ ~ X I Oi ~ Xv OO III~ ~g ~ ~ ~ O 4 ~ ~ 44 ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ fccc 'tv15 C erg g C ~41 ~ ~ ~ I t 1 ~ ~ A~ ~ !OA I 4 ~ 44 O O! 4 ~ 4 .I ~ O ~ 4 4 ~ 4 ~ ~ ~ O ~ ~ O ~ v gc Z ~ ~ I g 41 ~ f ' 1st ~ ~ 4 ~ O ICZ7 g 144 ~ 1 4P .. ~t r + ' 4o ~ r V1 4 ~ O ~ 1I1 P I av !s o". 4 t ~ s ~ ~ "O O g1 ~ i' O . I 8 ~ ~ ~ ~ ~ O4 )CI 4 4 ~ 4 ~ A O ~ 1 I ~ 1 '< ~ 4 4 1g ~ 4 A ~ ~ ~ 4 i 0 ~ ~ ~ 4 v 1 ~ ~ A4 ~ ~ Xv A ~ O ~ 4 V 1 A ~ ~ 4 11I ~I 4 ~ + 4 ~ ea 1 I I I e ~ )2 I5 ~ 5 ~ '-. 2: Iq4 tg 11 c cc 4,5 )- 214. ~ I 25 ~ ac 2/4 40 ))e 52 ')0 55 5" c4) ~ ( ~ ~ ~ ~1 ~ ~ CA) 1N 44 0) C OL) 1 4 ~ <i ) O Oi)- O Fc.) Fi) ~ ~.QQ ~ 5 0v IN ~ e ~ )) ~II ~ 1 Ot 1 O '1 ~ lit )i ~I vi) 4 ~ P !1). ~ 1I ~ C CA)- !w - oi' 2 55 ~ ~ i) 0 I4 <4) ' Figure A2. Family of FL3-iM Dlstence-Difference Curves
t ~ ~ ~
I I I Ir r. I I j C IIt 1t I 7 ~ r C C C C " I' i C C C i C C C Cr S 4. I I t I C C C C C C 4 1 4 4 r IrI C ~ ~ rr ltI;l .1 1, 1* ~ t 4 ~ ~ 1 ~ '1 ~ 'r 1 ~ .t
- I 1
~ 1 t ~ r 't ~ 1 t ~ 1 'C i ~ CI' C C l 0 4 ~ CI Q 1 C C C 4 4 A C C ~ C 0', ~ 4 1 C 44it CY C I C C 4 ~
- l i
~ C CI ~~ r C t t t Fl I4 I):. i ~ I: ~ 2I lI2 l'i'i~I f!~ 4 iv 2 ctr ~ ~ (C ~ ~ ~ ~ cL ~l r ~ ~ i 'I ~ ~ t ~ ~ ii ~ I 4P ~ ~ ~ da CN ~ I. ~ 2 ~ CC C ~ v ~ ~ i'iI ~ I ~ ~ Ii I I ~i Figure II3. Family of S-ilk Distance'-Dl fferonce Curves
J ~ ~ J ~ I 'l 4 ~ ' j
C1 1 ~ 4 1 7 7 7 7 ~ C 4 ( 4 -' 4 'I 4 4 7 ~ ~ I f ~ t 4 ~ C ~ 7 1 ~ 4 C 7 4 7 'I + ~ 7 ~ 4 1 ~ ~ ~ ~ I ~ ~ 4 ~ ~ ~ I 1 ~ 1 ~ g ~ 1 ~ ~ I 4 7 7 0 C 4 ~ 7 ~ ~ a 0 ~ 1 4 C C 4!a 7 7 7 i 1 7 a 0 ~ 4 1 7 C 0 4 C' ~ ~ 4 4 1 1st I4 1 4 C 4 4 C C000 4 C 7 7 7 C 7 7 \\ ~ '4 4 4 ~ ~ 4 ~ 1 ~ ~ ~ 4 ~ I 1 ~ ~ II 4 I 1 ~ 1 4 5 ~ 5 ~ 1 g 4 1 7 4 '1 7 7 ~ y ~ 1 7 1 Y 7 1 C C 0 0 0 C C a 0 0 0 ~ >I 4 4 4 4 4 C C IsI1 4 ls 4 4 4 C C C l 77 ~ 4 4 ~ ~ 5 I I 1 ~ 1 ~ 1 7 7 s 4 ~ s 7 1 ~ 8 ~ 4 ~ 4 7 7 7 '1 7 7 7 a 0 0 0 0 0 a c 7 4 4 4 4 4 4 4 4 4 4 e. C f ~ C cs 4 t 44 4 4 4 C0 C00 C C 7 7 7 C 7 7 C 7 C 7 4 4 5 1 ~ 1 4 C I 1 I 1 s 5 1 I 1 ~ 4 4 4 ~ II ~ ~ ~ ~ ~ 4 7 7 7 a 0 C 0 C 0 C C a. 0 4 4 4 4 4 4 V 4 4 -00 22 F 0' ~ ~ '1 25., 1 S 110. 1 Ot 6( e 1)2 F 22 1)4.2!. llf.sS 1 Gl )0 220 ~)I 242 ~ ~ 1 2S ~ ~ ~ ~ 2i6. ~ ( . )04 ~ Sc >RETA )H Clc&ls-cS 1)) CC 14 Ce 444
- 1) FLS - rL ~
~ 0 00 0 fi1-rL ~ ~ I ~ 00 f1) r< ~ 4 FLS - rs ~ ).0 Fs,) FC ~ ~ 4.00 0 FL) - FL ~ ~' 0 fs.) ris ~ K ~ CO fL) - f1 ~ 47.00 x fL ~ fl~ rL) ~ ) ~ 00 fl) 14 00 2 FL4 - FL 41 ~ 00 F< ~. rL1 42 '5 fL~ - rl) S ~ 00 Fl.s FL)'t 00 CI fl.e - FL) ~ 7.00 Fl. ~ - FLS 45.00 Ftgure A4. Famtfy of FL3-FL4 Dtstahce-0)fference Curves
h, ) qO}}