ML17018A153
| ML17018A153 | |
| Person / Time | |
|---|---|
| Site: | Cooper |
| Issue date: | 12/31/2014 |
| From: | Electric Power Research Institute |
| To: | Office of Nuclear Reactor Regulation |
| Shared Package | |
| ML17018A177 | List: |
| References | |
| ER 2016-042, Rev 1 | |
| Download: ML17018A153 (45) | |
Text
Attachment 9.2 EC 16-046, Rev 1 Page 32 of76 r=~~11 ELECTRIC POWER
~I-le:;.
RESEARCH INSTITUTE Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary)
Page 1of45 2014 TECHNICAL REPORT BWRVIP-135, Revision 3: BWR Vessel and Internals Project Integrated Surveillance Program (ISP) Data Source Book and Plant Evaluations WARNING:
Please read lhe Export Control Agreement on the back cover.
NOTICE: This report contains proprietary informalion rhat is the intellectual property of EPRI. Accordingly, ii is available only under license from EPRI and may not be reproduced or disclosed, wholly or in part, by any licensee lo any other person or organization.
.2 EC 16-046, Rev 1 Page 33 of76 BWRVIP-135, Revision 3: BWR Vessel and Internals Project Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary)
Page 2 of45 Integrated Surveillance Program {ISP) Data Source Book and Plant Evaluations 3002003144 Technical Report, December 2014 EPRI Project Manager R. Carter All or a portion of the requirements of the EPRI Nuclear Quality Assurance Program apply to this product.
'NO ELECTRIC POWER RESEARCH INSTITUTE 3420 Hillview Avenue, Palo Alto, California 94304-1338 *PO Box 10412, Palo Alto, California 94303-0813 *USA 800.313.3774
- 650.855.2121
- askepri@epri.com
- www.epri.com
.2 EC 16-046, Rev 1 Page 34 of76 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary)
Page 3 of45 DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THEM:
(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I)
WITH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTY'S INTELLECTUAL PROPERTY, OR (Ill) THAT THIS DOCUMENT IS SUITABLE TO ANY PARTICULAR USER'S CIRCUMSTANCE; OR (B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES) RES UL TING FROM YOUR SELECTION OR USE OF THIS DOCUMENT OR ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT.
REFERENCE HEREIN TO ANY SPECIFIC COMMERCIAL PRODUCT, PROCESS, OR SERVICE BY ITS TRADE NAME, TRADEMARK, MANUFACTURER, OR OTHERWISE, DOES NOT NECESSARILY CONSTITUTE OR IMPLY ITS ENDORSEMENT, RECOMMENDATION, OR FAVORING BY EPRI.
THE ELECTRIC POWER RESEARCH INSTITUTE (EPRI) PREPARED THIS REPORT.
THE TECHNICAL CONTENTS OF THIS PRODUCT WERE PREPARED IN ACCORDANCE WITH THE EPRI QUALITY PROGRAM MANUAL THAT FULFILLS THE REQUIREMENTS OF 10 CFR 50 APPENDIX B. THIS PRODUCT IS SUBJECT TO THE REQUIREMENTS OF 10 CFR PART 21.
CERTIFICATION OF CONFORMANCE CAN BE OBTAINED FROM EPRI.
NOTE For further information about EPRI, call the EPRI Customer Assistance Center at 800.313.3774 or e-mail askepri@epri.com.
Electric Power Research Institute, EPRI, and TOGETHER... SHAPING THE FUTURE OF ELECTRICITY are registered service marks of the Electric Power Research Institute, Inc.
Copyright© 2014 Electric Power Research Institute, Inc. All rights reserved.
.2 EC 16-046, Rev 1 Page 35 of76 Cooper Representative Surveillance Materials Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary)
Page 4 of45 The ISP Representative Surveillance Materials for the Cooper vessel target weld and plates are shown in the following table.
Table 2-22 Target Vessel Materials and ISP Representative Materials for Cooper Target Vessel Materials ISP Representative Materials Weld 27204/12008 20291 Plate C2307-2 C2307-2 Summary of Available Surveillance Data: Plate The represent~tive plate material C2307-2 is contained in the following ISP capsules:
Cooper Capsules Specific surveillance data related to plate heat C2307-2 are summarized in Appendix A-2.
Two capsules containing this plate heat have been tested. The Charpy V-notch surveillance results are as follows:
Table 2-23 T30 Shift Results for Plate Heat C2307-2 Capsule Cu Ni Fluence AT30(0F)
(wt%)
(wt%)
( 10 11 n/cm 2
, E > 1 MeV)
Cooper30° 2.4 52.2 0.21 0.76 Cooper 300° 2.8 52.2 The results given in Appendix A-2 show a fitted chemistry factor (CF) of { {
} }, as compared to a value of 164.6°F from the chemistry tables in Reg. Guide 1.99, Rev. 2. The maximum scatter in the fitted data is { {
} } which is well within the 1-sigma value of l 7°F for plates as given in Reg. Guide 1.99, Rev. 2.
Conclusions and Recommendations Because the representative plate material is the same heat number as the target plate in the Cooper vessel, and because there are two irradiated data sets for this plate that fall within the 1-sigma scatter band, the ISP surveillance data in Appendix A-2 should be used to determine the projected ART value for the target vessel plate. Recommended guidelines for use of ISP surveillance data are provided in Section 3 of this Data Source Book.
.2 EC 16-046, Rev 1 Page 36 of76 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary)
Page 5 of45 An archival plate heat from the Cooper vessel, Plate Heat C2331-2, was included in the Supplemental Surveillance Program (SSP), and irradiated data from SSP Capsules D, G, E, I, A, and Bare provided in Appendix A-19. The credible surveillance data should be considered when a revised ART is calculated for vessel heat C233 l-2.
Summary of Available Surveillance Data: Weld The representative weld material 20291 is contained in the following ISP capsules:
Cooper Capsules SSP Capsule C Specific surveillance data related to weld heat 20291 are presented in Appendix B-2 and the results are summarized below. Three capsules containing weld heat 20291 have been tested.
The Charpy V-notch surveillance results are as follows:
Table2-24 T30Shift Results for Weld Heat 20291 Capsule Cu Ni Fluence AT30 (°F)
(wt%)
(wt%)
(10 11 n/cm 2
, E > 1 MeV)
Cooper30° 2.4 60.9 Cooper 300° 0.23 0.75 2.8 63.8 SSPC 3.29 73.0 The results given in Appendix B-2 show a fitted chemistry factor (CF) of { {
} }, as compared to a value of 194.5°F from the chemistry tables in Reg. Guide 1.99, Rev. 2. The maximum scatter in the fitted data is well within the 1-sigma value of 28°F for welds as given in Reg. Guide 1.99, Rev. 2.
Conclusions and Recommendations I
Because the representative weld material is not the same heat number as the target weld in the Cooper vessel, the utility should use the chemistry factor from the Regulatory Guide 1.99, Rev. 2 tables to determine the projected ART value for the target vessel weld. Cooper surveillance weld heat 20291 is not in the Cooper vessel beltline. Recommended guidelines for evaluation of ISP surveillance data are provided in Section 3 of this Data Source Book.
.2 EC 16-046, Rev 1 Page 37 of76 A-2 Plate Heat: C2307-2 Summary of Available Charpy V-Notch Test Data Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary)
Page 6 of45 The available Charpy V-notch test data sets for plate heat C2307-2 are listed in Table A-2-1. The source documents for the data are provided, and the capsule designations and fluence values are also provided for irradiated data sets.
Table A-2-1 ISP Capsules Containing Plate Heat C2307-2 Capsule Fluence (E> 1 MeV, 10 17 n/cm 2
)
Reference Unirradiated Baseline Data Reference A-2-1 Cooper 300° 2.8 Cooper 30° 2.4 1
Reference A-2-2
'From Reference [A-2-1 ], which updated and superseded the fluence provided by Reference [A-2-2] for this capsule.
The CVN test data for each set taken from the references noted above are presented in Tables A-2-7 through A-2-9. The BWRVIP ISP uses the hyperbolic tangent (tanh) function as a statistical curve-fit tool to model the transition temperature toughness data. Tanh curve plots for each data set have been generated using CVGRAPH, Version 5 [A-2-3] and the plots are provided in Figures A-2-1 through A-2-3.
Best Estimate Chemistry Table A-2-2 details the best estimate average chemistry values for plate heat C2307-2 surveillance material. Chemical compositions are presented in weight percent. If there are multiple measurements on a single specimen, those are first averaged to yield a single value for that specimen, and then the different specimens are averaged to determine the heat best estimate.
Table A-2-2 Best Estimate Chemistry of Available Data Sets for Plate Heat C2307-2 Cu (wt%)
Ni (wt%)
p (wt%)
s (wt%)
Si (wt%)
Specimen ID Source 0.21 0.73 0.010 0.014 0.20 Plate CMTR Reference A-2-2 and A-2-4 0.22 0.77 0.007 J64 Reference A-2-2 and A-2-4 0.22 0.78 0.006 J6L 0.21 0.76 0.011 J63 Reference A-2-1 0.21 0.75 0.011 J6M 0.21 0.76 0.009 0.014 0.20
+Best Estimate Average Calculation of Chemistry Factor (CF):
The Chemistry Factor (CF) associated with the best estimate chemistry, as determined from U.S. NRC Regulatory Guide 1.99, Revision 2 [A-2-5], Table 2 (base metal), is:
CF(C2307-2) = 164.6°F
.2 EC 16-046, Rev 1 Page 38 of76 Effects of Irradiation Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary)
Page 7 of45 The radiation induced transition temperature shifts for heat C2307-2 are shown in Table A-2-3.
The T30 [30 ft-lb Transition Temperature], T50 (50 ft-lb Transition Temperature], and T35mu
[35 mil Lateral Expansion Temperature] have been determined for each Charpy data set, and each irradiated set is compared to the baseline (unirradiated) index temperatures. The change in Upper Shelf Energy (USE) is also shown. The unirradiated and irradiated values are taken from the CVGRAPH fits presented at the back of this sub-appendix (only CVN energy fits are presented).
Comparison of Actual vs. Predicted Embrittlement A predicted shift in the 30 ft-lb transition temperature (~T30) is calculated for each irradiated data set using the Reg. Guide 1.99, Rev. 2, Regulatory Position 1.1 method. Table A-2-4 compares the predicted shift with the measured ~T30 (°F) taken from Table A-2-3.
Comparison of Actual vs. Predicted Decrease in USE Table A-2-5 compares the actual percent decrease in upper shelf energy (USE) to the predicted decrease. The predicted decrease is estimated from USNRC Regulatory Guide 1.99, Rev. 2, Figure 2; the measured percent decrease is calculated from the values presented in Table A-2-3.
Credibility of Surveillance Data The credibility of the surveillance data is determined according to the guidance of Regulatory Guide 1.99, Rev. 2 and 10 CFR 50.61, as supplemented by the NRC staff [A-2-6]. The following evaluation is based on the available surveillance data for irradiated plate heat C2307-2. The applicability of this evaluation to a particular BWR plant must be confirmed on a plant-by-plant basis to verify there are no plant-specific exceptions to the following evaluation.
.2 EC 16-046, Rev 1 Page 39 of 76 Table A-2-3 Effect of Irradiation (E>1.0 MeV) on the Notch Toughness Properties of Plate Heat C2307-2 T3D, 30 ft-lb T50, 50 ft-lb T3sm;i* 35 mil Lateral Transition Transition Expansion Material Identity Capsule Temperature Temperature Temperature ID Unirrad lrrad AT3D Unirrad lrrad ATSD Unirrad lrrad AT35mu (oF)
(oF)
(oF)
(oF)
(oF)
(oF)
(oF)
(oF)
(oF) 30°
-43.0 9.2 52.2
-12.8 47.7 60.5
-27.5 7.0 34.5 CPR C2307-2 300°
-43.0 9.2 52.2
-12.8 43.9 56.7
-27.5 33.0 60.5 Table A-2-4 Comparison of Actual Versus Predicted Embrittlement for Plate Heat C2307-2 RG 1.99 Rev. 2 Capsule Material Fluence Measured Shift 1
Predicted Shift 2
Identity (x10 1
- n/cm 2
)
OF OF CPR 30° Plate Heat C2307-2 in Cooper 0.24 52.2 31.7 CPR300° Plate Heat C2307-2 in Cooper 0.28 52.2 34.7 Notes:
- 1.
See Table A-2-3, Li T,,.
Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary)
Page 8 of 45 CVN Upper Shelf Energy (USE)
Unirrad lrrad Change (ft-lb)
(ft-lb)
(ft-lb) 132.6 124.9
-7.7 132.6 125.8
-6.8 RG 1.99 Rev. 2 Predicted Shift+Margin 2
3 OF 63.3 68.7
- 2.
Predicted shift = CF x FF, where CF is a Chemistry Factor taken from tables from USN RC Reg. Guide 1.99, Rev. 2, based on each material's Cu/Ni content, and FF is Fluence Factor, 1" 2..
0*'""
1
, where f = fluence (10 1
- n/cm', E > 1"o MeV).
- 3.
Margin= 2v(cr,' + cr,,'), where cr, =the standard deviation on initial RT"0T (which is taken to be 0°F), and cr" is the standard deviation on ~RTNoT (28°F for welds and 17°F for base materials, except that cr" need not exceed 0.50 times the mean value of ti.RT"0T). Thus, margin is defined as 34°F for plate materials and 56°F for weld materials, or margin equals shift (whichever is less), per Reg. Guide 1.99, Rev. 2.
.2 EC 16-046, Rev 1 Page 40 of 76 Table A-2-5 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary)
Page 9 of 45 Comparison of Actual Versus Predicted Percent Decrease in Upper Shelf Energy (USE) for Plate Heat C2307-2 Measured RG 1.99 Rev. 2 Capsule Material Fluence Cu Content Decrease in Predicted Identity (x10 18 n/cm 2
)
(wt%)
USE 1 (%)
Decrease in USE 2
(%)
CPR 30° Plate Heat C2307-2 in Cooper 0.24 0.21 5.8 12.4 CPR 300° Plate Heat C2307-2 in Cooper 0.28 0.21 5.1 12.9 Notes:
- 1. See Table A-2-3, (Change in USE)/(Unirradiated USE).
- 2. Calculated using equations in Regulatory Guide 1.162 [A-2-7] that accurately model the Charpy upper shelf energy decrease curves in Regulatory Guide 1.99, Revision 2.
.2 EC 16-046, Rev 1 Page 41 of 76 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary)
Page 10 of 45 Per Regulatory Guide 1.99, Revision 2 and 10 CFR 50.61, there are 5 criteria for the credibility assessment.
Criterion 1: Materials in the capsules should be those judged most likely to be controlling with regard to radiation embrittlement.
In order to satisfy this criterion, the representative surveillance material heat number must match the material in the vessel.
Criterion 2: Scatter in the plots of Charpy energy versus temperature for the irradiated and unirradiated conditions should be small enough to permit the determination of the 30 ft-lb temperature and upper shelf energy unambiguously.
Plots of Charpy energy versus temperature for the unirradiated and irradiated condition are presented in this sub-appendix. Based on engineering judgment, the scatter in these plots is small enough to permit the determination of the 30 ft-lb temperature and the upper shelf energy. Hence, this criterion is met.
Criterion 3: When there are two or more sets of surveillance data from one reactor, the scatter of ~RTNoT values about a best-fit line drawn as described in Regulatory Position 2.1 normally should be less than l 7°F for plates. Even if the fluence range is large (two or more orders of magnitude), the scatter should not exceed twice that value. Even if the data fail this criterion for use in shift calculations, they may be credible for determining decrease in upper shelf energy if the upper shelf can be clearly determined, following the definition given in ASTM E185-82
[A-2-8]
For plate material C2307-2, there are 2 surveillance capsule data sets currently available.
The functional form of the least squares fit method as described in Regulatory Position 2.1 is utilized to determine a best-fit line for this data and to determine if the scatter of these ~TNoT values about this line is less than l7°F for plates. Figure A-2-4presents the best-fit line as described in Regulatory Position 2.1 utilizing the shift prediction routine from CVGRAPH, Version 5.0.2.
The scatter of ~T NDT values about the functional form of the best-fit line drawn as described in Regulatory Position 2.1 is presented in Table A-2-6.
Table A-2-6 Best Fit Evaluation for Surveillance Plate Heat C2307-2 Measured Best Fit Scatter
<i7°F Material Fitted Capsule FF ARTNDT ARTNDT of ART Nor (Base Metal)
CF (°F)
<28°F (30 ft-lb) (°F)
(oF)
(oF)
(Weld metal)
{
}
30° 0.192 52.20
(( (( }} Yes C2307-2 { } 300° 0.211 52.20 (( }} (( }} Yes Table A-2-6 indicates that the scatter is within acceptable range for credible surveillance data. Therefore, plate heat C2307-2 meets this criterion. Criterion 4: The irradiation temperature of the Charpy specimens in the capsule should match the vessel wall temperature at the cladding/base metal interface within+ I - 25°F. .2 EC 16-046, Rev 1 Page 42 of76 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Page 11 of 45 BWRVIP-78 [A-2-9] established the similarity of BWR plant environments in the BWR fleet. The annulus between the wall and the core shroud in the region of the surveillance capsules contains a mix of water returning from the core and feedwater. Depending on feedwater temperature, this annulus region is between 525°F and 535°F. This location of specimens with respect to the reactor vessel beltline is designed so that the reactor vessel wall and the specimens experience equivalent operating conditions such that the temperature will not differ by more than 25°F. Any plant-specific exceptions to this generic.analysis should be evaluated. Criterion 5: The surveillance data for the correlation monitor material in the capsule should fall within the scatter band of the database for that material. Few ISP capsules contain correlation monitor material. Generally, this criterion is not applicable. For plate heat C2307-2, these criteria are satisfied (or not applicable). The surveillance data are nominally credible because the scatter criterion is met. Prior to application of the data, a plant should verify that no plant-specific exceptions to these criteria exist. Table A-2-7 Unirradiated Charpy V-Notch Results for Surveillance Plate C2307-2 (LT) Spec ID Temp (°F) CVN (ft-lb) LE (mils) %Shear EP4 -100 8 6 9 EPE -60 10 11 14 EPP -50 21 20 16 ET4 -40 41 35 28 EPL -40 33 29 25 EPK -30 44.5 37 30 EPJ -20 45.5 40 30 EUK 20 72.5 60 42 ETE 60 108 79 75 EU5 100 114 83 87 EUA 150 132 92 100 EUB 200 133 88 100 .2 EC 16-046, Rev 1 Page 43 of76 Table A-2-8 Charpy V-Notch Results for C2307-2 (LT) in CPR 30° Capsule Spec ID Temp (°F) CVN (ft-lb) LE (mils) %Shear EUD -20 13.5 22.0 10 ETK 0 27.5 31.0 10 EPM 10 32.5 39.0 10 EPC 20 38.5 42.0 15 EPA 40 45.0 49.0 30 ETT 60 55.0 49.0 40 EUC 80 73.0 64.0 50 EU1 120 86.5 64.0 85 EP7 160 112.0 88.0 80 EP3 200 117.7 78.0 90 EU6 300 121.7 93.0 90 ETB 400 125.3 95.0 100 Table A-2-9 Charpy V-Notch Results for C2307-2 (LT) in CPR 300° Capsule Spec ID Temp (°F) CVN (ft-lb) LE (mils) %Shear EP1 -20 18 12 11 EU? 0 24 18 27 EP6 20 42.5 33 25 EPD 60 53.5 46 30 EUJ 100 91 68 63 ETD 150 111 83 83 EU3 200 119 88 100 EU4 300 125 76 100 Appendix 8, ER 2016-042 Cooper PTLR (Non-Proprietary) Page 12 of 45 .2 EC 16-046, Rev 1 Page 44 of76 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Pa e 13 of 45 Tanh Curve Fits of CVN Test Data for Plate Heat C2307-2 PLATE HEAT C2307-2 (CPR) CVGRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 12/19/2002 08:55 AM Page I Coefficients of Curve 1 A= 67.57 B = 65.07 C = 79.1 TO= 9.01 D = O.OOE+OO Equation is A+ B * [Tanh({T-To)/{C+DT))] Upper ShelfEnergrl32.6 Lower ShelfEnergy=2.5(Fixed) Temp@30 ft-lbs=-43.0 Deg F Temp@50 ft-lbs=-12.8 Deg F Plant: Cooper Material: SA533BI Heat: C2307-2 Orientation: LT Capsule: UNIRRA Fluence: 0.0 n/cm"2 300,---, --i
r --- -'. -: ---T - _f _____ I___.
250 r~ll--r- --1 '._ - -- -- - -i - ~ -1 ~ 200 -- ____ L ___ --r- -- ---- - -------l------~---~ --- -: g I I I ~ + I Ii I i i -i 150 r---r --T - ,-* --i--*_J__ __ I ~ I I ~ I ~ I I > 100 i.-- -1* --- - --- __ _j__ __ --J--. -----, t I l 1 50 ~- - _j ___ ~--- --- !- ____ ; __ ~!---+---'- i- --- 1 I I I I i i I o -l====::!==::o.. :--:_:"._:::-r, __ o ~ - f----+----1-~--' -~--~-l -* --- ~ -300 -200 -100 0 100 200 300 400 500 600 Temperature in Deg F Charpy V-Notch Data Temperature InputCVN Computed CVN Differential -100.00
- 8. 00 I 0. 2 8
- 2. 2 8 - 60. 00 l 0. 00 2 l. 85 - I I, 8 5 -50.00
- 21. 00
- 26. 40
- 5. 4 0 - 40. 00 4 I. 00
- 31. 73 9.27
- 40. 00 3 3. 00 3 I. 73 I. 2 7 - 3 0. 00
- 44. 50 3 7. 8 6
- 6. 64
- 2 0. 00 4 5. 5 0
- 44. 73
. 77
- 20. 0 0
- 72. 50
- 76. 56
- 4. 06
- 60. 00 I 08. 00 I 04. 5 4
- 3. 46 I 0 0. 00 I 14. 00 12 0. 79
- 6. 79 150' 00 132' 00 12 9. 0 6
- 2. 94 Figure A-2-1 Charpy Energy Data for Plate C2307-2 (LT) Unirradiated
.2 EC 16-046, Rev 1 Page 45 of76 Temperature 200. 00 Figure A-2-1 PLATE HEAT C2307-2 (CPR) Page 2 Plant: Cooper Material: SA533Bl Heat: C2307-2 Orientation: LT Capsule: UNIRRA Fluence: 0.0 n/cm"2 Charpy V-Notch Data lnputCVN I 3 3. 00 Correlation Coefficient =.992 Computed CVN I 3 !. 6 1 Charpy Energy Data for Plate C2307-2 (LT) Unirradiated (Continued) Appendix 8, ER 2016-042 Cooper PTLR (Non-Proprietary) Pa e 14 of45 Differential !. 3 9 .2 EC 16-046, Rev 1 Page 46 of 76 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Pa e 15 of45 IRRADIATED PLATE HEAT C2307-2 (CPR-30) CVGRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 04/22/2003 08:24 PM Page 1 Coefficients ofCurve 1 A= 63.68 B = 61.18 C = 98.32 TO= 70.05 D = O.OOE+-00 Equation is A+ B * [Tanh((T-To)/(C+Dl))] Upper ShelfEnergy=124.9 Lower ShelfEnergy=2.5(Fixed) Temp@30 ft-lbs=9.2 Deg F Temp@50 ft-lbs=47.7 Deg F Plant: COOPER Material: SA533Bl Heat C2307-2 Orientation: LT Capsule: 30 DEG Fluence: 2.4E+ 17 n/cm"2 300 r-*1*-- i I -r -,,--*--11 ----1 j / I I I I 250 C T l i I --r *r- ------+----:-:-1 I 2 00 r--1 -t--r- -1 -rr -1 r* 1 I t-1 l----i ---: r; 1001-** I I ---+--/-----+-----+---[--+--~ I I I t I I I I 50 +-t ---+---~--+~-1--+-----+--t---:- -1 o.f=.==i====+=---1-----L----t----~- ----L---1---- __ J -300 -200 -100 0 100 200 300 400 500 600 Temperature in Deg F Charpy V-Notch Data Temperature lnputCVN Computed CVN Differential -20. 00 . 00 I 0. 00
- 20. 00
- 40. 00
- 60. 00 80.00 12 0. 00 I 60. 00 Figure A-2-2
- 13. 50
- 27. 50
- 32. 50 3 8. 50
- 45. 00 55.00
- 73. 00
- 86. 50 1 12. 00 19.39 26.22 3 0. 3 6
- 34. 97
- 45. 54 57.45
- 69. 8 5 92.34 I 07. 94 Charpy Energy Data for Plate C2307-2 (LT) in CPR 30° Capsule
- 5. 89 I. 28
- 2. 14
- 3. 5 3
- . 5 4
- 2. 45
- 3. 15
- 5. 84
- 4. 06
.2 EC 16-046, Rev 1 Page 47 of76 Temperature 200.00 300. 00 400.00 Figure A-2-2 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Pa e 16 of 45 IRRADIATED PLATE HEAT C2307-2 (CPR-30) Page 2 Plant: COOPER Material: SA533BI Heat: C2307-2 Orientation: LT Capsule: 30 DEG Fluence: 2.4E+ 17 n/cm"2 Cbarpy V-Notch Data InputCVN 11 7. 70 121. 70 125. 3 0 Correlation Coefficient =. 997 Computed CVN 116. 7 3 123. 7 3 124. 7 I Differential . 97 - 2. 03 .59 Charpy Energy Data for Plate C2307-2 (LT) in CPR 30° Capsule (Continued) .2 EC 16-046, Rev 1 Page 48 of 76 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Pa e 17 of 45 IRRADIATED PLATE HEAT C2307-2 (CPR-300) CV GRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 04/22/2003 08:26 PM Page 1 Coefficients of Curve 1 A = 64.13 B = 61.63 C = 88.9 TO = 64.63 D = O.OOE+oO Equation is A+ B * [Tanh((T-To)/(C+DT))} Upper ShelfEnergy=125.8 Lower ShelfEnergy=2.5(Fixed) Temp@30 ft-lbs=9.2 Deg F Temp@50 ft-lbs=43.9 Deg F Plant: COOPER Material: SA533Bl Heat: C2307-2 Orientation: LT Capsule: 300 DE Fluence: 2.8E+l7 n/cm"2 300 ~ i I ' --r-1-r--T---1-1 250 -: ----.. 1---+-~----i-- -++~--j ~ 200 I ! I 1 1 L_ ~--f---1 ~ t I I i I e; 150 l l --i---~---- ' f --+--i ~ t I I i i I j ~ 100 I l I I ~1-~ I I i I I
- j i
I ----- --11---I o i J~ l._ I -300 -200 -100 0 100 200 300 400 500 600 Temperature in Deg F Charpy V-Notcb Data Temperature InputCVN Computed CVN Differential -20.00 . 00 20.00 60.00 I 00. 00 150. 00 200. 00 300. 00 Figure A-2-3 I 8. 00 24.00 42.50
- 53. 50 91.00 111. 00 119. 00 125. 00 Correlation Coefficient =.995 I 8. 4 8
- 25. 84 3 5. 5 5 60.92 87.43 l I 0. 0 1 120. 16 125. IS Charpy Energy Data for Plate C2307-2 (LT) in CPR 300° Capsule
-. 48 - I. 8 4
- 6. 9 5
- 7. 42
- 3. 5 7
. 99 - I. 16 -. I 5 .2 EC 16-046, Rev 1 Page49 of76 (( Figure A-2-4 Fitted Surveillance Results for Plate Heat C2307-2 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Page 18 of45 (E)}} .2 EC 16-046, Rev 1 Page 50 of76 References Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Page 19 of45 A-2-1. GE Nuclear Energy, "Cooper Nuclear Station Vessel Surveillance Materials Testing and Fracture Toughness Analysis," GE-NE-523-159-1292, February 1993. A-2-2. "Cooper Nuclear Station Reactor Pressure Vessel Surveillance Materials Testing and Fracture Toughness Analysis," T.A. Caine, BJ. Branlund, and S. Ranganath, General Electric, MDE-103-0986, DRF B13-01389, May 1987. A-2-3. CVGRAPH, Hyperbolic Tangent Curve Fitting Program, Developed by ATI Consulting, Version 5.0.2, Revision 1, 3/26/02. A-2-4. Letter from G.R. Hom (NPPD) to USNRC, "Response to Generic Letter 92-01, Revision 1, Cooper Nuclear Station, NRC Docket No. 50-298, DPR-44," Nebraska Public Power District, NSD920629, dated July 1, 1992. A-2-5. "Radiation Embrittlement of Reactor Vessel Materials," USNRC Regulatory Guide 1.99, Revision 2, May 1988. A-2-6. K. Wichman, M. Mitchell, and A. Hiser, USNRC, Generic Letter 92-01 and RPV. Integrity Workshop Handouts, NRC/Industry Workshop on RPV Integrity Issues, February 12, 1998. A-2-7. "Format and Content of Report for Thermal Annealing of Reactor Pressure Vessels," USNRC Regulatory Guide 1.162, February 1996. A-2-8. ASTM E-185, "Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels," American Society for Testing and Materials, July 1982. A-2-9. BWR Vessel and Internals Project: BWR Integrated Surveillance Program Plan (BWRVIP-78). EPRI, Palo Alto, CA and BWRVIP: 1999. TR-114228. .2 EC 16-046, Rev 1 Page 51 of76 A-19 Plate Heat: C2331-2 Summary of Available Charpy V-Notch Test Data Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Page 20 of45 The available Charpy V-notch test data sets for plate heat C2331-2 are listed in Table A-19-1. The source documents for the data are provided, and the capsule designation and fluence values are also provided for irradiated data sets. Table A-19-1 ISP Capsules Containing Plate Heat C2331-2 Capsule Fluence (E> 1 MeV, 10 17 n/cm 2 ) Reference Unirradiated Baseline Data Reference A-19-1 SSPD 10.118 Reference A-19-2 SSPG 18.487 SSP E 17.192 Reference A-19-3 SSPI 27.085 SSPA 3.82 Reference A-19-12 SSP B 4.79 Reference A-19-12 The CVN test data for each set taken from the references noted above are presented in Tables A-19-7 through A-19-13. The BWRVIP ISP uses the hyperbolic tangent (tanh) function as a statistical curve-fit tool to model the transition temperature toughness data. Tanh curve plots for each data set have been generated using CVGRAPH, Version 5 [A-19-4] and the plots are provided in Figures A-19-1 through A-19-7. Best Estimate Chemistry Table A-19-2 details the best estimate average chemistry values for plate heat C2331-2 surveillance material. Chemical compositions are presented in weight percent. If there are multiple measurements on a single specimen, those are first averaged to yield a single value for that specimen, and then the different specimens are averaged to determine the heat best estimate.
!.2 EC 16-046, Rev 1 Page 52 of 76 Table A-19-2 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Page 21 of 45 Best Estimate Chemistry of Available Data Sets for Plate Heat C2331-2 Cu(wt%) Ni (wt%) p (wt%) s (wt%) Si (wt%) Specimen ID Source 0.17 0.58 0.01 0.017 0.22 CMTR Reference A-19-5 0.15 0.69 0.022 0.023 0.25 SSP 0.15 0.64 0.012 SSP Reference A-19-1 0.15 0.665 0.017 0.023 0.25 SSPAverage 0.16 0.62 0.014 0.020 0.24 +Best Estimate Average Calculation of Chemistry Factor (CF): The Chemistry Factor (CF) associated with the best estimate chemistry, as determined from U.S. NRC Regulatory Guide 1.99, Revision 2 [A-19-6], Table 2 (base metal), is: CF(C2331-2) = 118.5°F Effects of Irradiation The radiation induced transition temperature shifts for heat C2331-2 are shown in Table A-19-3. The T30 [30 ft-lb Transition Temperature], T50[50 ft-lb Transition Temperature], and T35mil [35 mil Lateral Expansion Temperature] have been determined for each Charpy data set, and each irradiated set is compared to the baseline (unirradiated) index temperatures. The change in Upper Shelf Energy (USE) is also shown. The unirradiated and irradiated values are taken from the CV GRAPH fits presented at the end of this sub-appendix (only CVN energy fits are presented). Comparison of Actual vs. Predicted Embrittlement A predicted shift in the 30 ft-lb transition temperature (~T30) is calculated for each irradiated data set using the Reg. Guide 1.99, Rev. 2, Regulatory Position 1.1 method. Table A-19-4 compares the predicted shift with the measured ~T30 (°F) taken from Table A-19-3. Decrease in USE Table A-19-5 shows the percent decrease in upper shelf energy (USE). The measured percent decrease is calculated from the values presented in Table A-19-3. .2 EC 16-046, Rev 1 Page 53 of 76 Table A-19-3 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Page 22 of 45 Effect of Irradiation (E> 1.0 MeV) on the Notch Toughness Properties of Plate Heat C2331-2 T30, 30 ft-lb TSO' 50 ft-lb T 35m11, 35 m ii Lateral CVN Upper Shelf Energy Transition Transition Material Capsule Temperature Temperature Expansion Temperature (USE) Identity ID Unirrad lrrad AT30 Unirrad lrrad A Tso Unirrad lrrad AT3sm;1 Unirrad lrrad Change (oF) (oF) (oF) (oF) (oF) (oF) (oF) (oF) (oF) (ft-lb) (ft-lb) (ft-lb) SSP D -13.3 48.7 62.0 30.1 92.8 62.7 34.1 86.3 52.2 100.0 89.3 -10.7 SSPG -13.3 78.7 92.0 30.1 127.2 97.1 34.1 118.2 84.1 100.0 81.6 -18.4 CPR C2331-2 SSP E -13.3 62.8 76.1 30.1 105.8 75.7 34.1 124.2 90.1 100.0 82.3 -17.7 SSPI -13.3 80.4 93.7 30.1 128.8 98.7 34.1 128.3 94.2 100.0 80.3 -19.7 SSPA -13.3 28.2 41.5 30.1 77.9 47.8 34.1 44.4 10.3 100.0 91.0 -9.0 SSP B -13.3 21.4 34.7 30.1 62.5 32.4 34.1 39.2 5.1 100.0 97.7 -2.3 Table A-19-4 Comparison of Actual Versus Predicted Embrittlement for Plate Heat C2331-2 RG 1.99 Rev. 2 RG 1.99 Rev. 2 Capsule Material Fluence Fluence Factor Measured Shift' Predicted Shift 2 Predicted Identity (x10 18 n/cm 2 ) OF OF Shift+Margin 2 3 OF SSP D 1.0118 0.419 62.0 49.7 83.7 SSPG 1.8487 0.551 92.0 65.3 99.3 SSP E Plate Heat C2331-2 1.7192 0.534 76.1 63.3 97.3 SSPI from Cooper 2.7085 0.644 93.7 76.3 110.3 SSPA 0.382 0.252 41.5 29.9 59.8 SSP B 0.479 0.286 34.7 33.9 67.8 Notes:
- 1. See Table A-19-3, ti.T 30*
- 2. Predicted shift= CF x FF, where CF is a Chemistry Factor taken from tables from USN RC Reg. Guide 1.99, Rev. 2, based on each material's Cu/Ni content, and FF is Fluence Factor, 1° 2'-0 101"'
1 , where f = fluence (10" n/cm', E > 1.0 MeV).
- 3. Margin= 2v(cr,' + CJt.'), where cr, =the standard deviation on initial RT Nor (which is taken to be 0°F), and crA is the standard deviation on ti.RTNor (28°F for welds and 17°F for base materials, except that crA need not exceed 0.50 times the mean value of Ll.RT"0,). Thus, margin is defined as 34°F for plate materials and 56°F for weld materials, or margin equals shift (whichever is less), per Reg. Guide 1.99, Rev. 2.
.2 EC 16-046, Rev 1 Page 54 of 76 Table A-19-5 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Page 23 of 45 Comparison of Actual Versus Predicted Percent Decrease in Upper Shelf Energy (USE) for Plate Heat C2331-2 Measured RG 1.99 Rev. 2 Fluence Cu Content Predicted Capsule Identity Material (x10 16 n/cm') (wt%) Decrease in Decrease in USE'(%) USE 2 (%) SSP D 1.0118 0.16 10.7 14.5 SSPG 1.8487 0.16 18.4 16.8 SSP E 1.7192 0.16 17.7 16.5 SSPI Plate Heat C2331-2 in Cooper 2.7085 0.16 19.7 18.3 SSPA 0.382 0.16 9.0 11.5 SSP B 0.479 0.16 2.3 12.2 Notes:
- 1. See Table A-19-3, (Change in USE)/(Unirradiated USE).
- 2. Calculated using equations in Regulatory Guide 1.162 [A-19-7] that accurately model the Charpy upper shelf energy decrease curves in Regulatory Guide 1.99, Revision 2.
.2 EC 16-046, Rev 1 Page 55 of 76 Credibility of Surveillance Data Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Page 24 of45 The credibility of the surveillance data is determined according to the guidance of Regulatory Guide 1.99, Rev. 2 and 10 CFR 50.61, as supplemented by the NRC staff [A-19-8]. The following evaluation is based on the available surveillance data for irradiated plate heat C233 l-2. The applicability of this evaluation to a particular BWR plant must be confirmed on a plant-by-plant basis to verify there are no plant-specific exceptions to the following evaluation. Per Regulatory Guide 1.99, Revision 2 and 10 CFR 50.61, there are 5 criteria for the credibility assessment. Criterion 1: Materials in the capsules should be those judged most likely to be controlling with regard to radiation embrittlement. In order to satisfy this criterion, the representative surveillance material heat number must match the material in the vessel. Criterion 2: Scatter in the plots of Charpy energy versus temperature for the irradiated and unirradiated conditions should be small enough to permit the determination of the 30 ft-lb temperature and upper shelf energy unambiguously. Plots of Charpy energy versus temperature for the unirradiated and irradiated condition are presented in Figures A-19-1 through A-19-7. Based on engineering judgment, the scatter in these plots is small enough to permit the determination of the 30 ft-lb temperature and the upper shelf energy. Hence, this criterion is met. Criterion 3: When there are two or more sets of surveillance data from one reactor, the scatter of L1RTNDT values about a best-fit line drawn as described in Regulatory Position 2.1 normally should be less than l 7°F for plates. Even if the fluence range is large (two or more orders of magnitude), the scatter should not exceed twice that value. Even if the data fail this criterion for use in shift calculations, they may be credible for determining decrease in upper shelf energy if the upper shelf can be clearly determined, following the definition given in ASTM E185-82 [A-19-9]. For plate material C2331-2, there are 6 surveillance capsule data sets currently available. The functional form of the least squares fit method as described in Regulatory Position 2.1 is utilized to determine a best-fit line for this data and to determine if the scatter of these L1RTNDT values about this line is less than l 7°F for plates. Figure A-19-8 presents the best-fit line as described in Regulatory Position 2.1 utilizing the shift prediction routine from CVGRAPH, Version 5.0.2. The scatter of L1RTNDT values about the functional form of the best-fit line drawn as described in Regulatory Position 2.1 is presented in Table A-19-6. .2 EC 16-046, Rev 1 Page, 56 of 76 Table A-19-6 Best Fit Evaluation for Surveillance Plate Heat C2331-2 Measured Material Fitted Capsule FF ARTNDT CF (°F) (30 ft-lb) (°F) SSP D 0.419 62.0 SSPG 0.551 92.0 SSP E 0.534 76.1 C2331-2 { }} SSPI 0.644 93.7 SSPA 0.252 41.5 SSP B 0.286 34.7 Best Fit ARTNDT (oF) (( }} (( }} (( }} (( }} (( }} (( }} Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Page 25 of45 Scatter of <17°F (Base Metal) ARTNDT <28°F (oF) (Weld metal) (( }} Yes (( }} Yes (( }} Yes (( }} Yes (( }} Yes (( }} Yes Table A-19-6 indicates that the scatter is within acceptable range for credible surveillance data. Therefore, plate heat C2331-2 meets this criterion. Criterion 4: The irradiation temperature of the Charpy specimens in the capsule should match the vessel wall temperature at the cladding/base metal interface within+ I - 25°F. BWRVIP-78 [A-19-11] established the similarity of BWR plant environments in the BWR fleet. The annulus between the wall and the core shroud in the region of the surveillance capsules contains a mix of water returning from the core and feedwater. Depending on feedwater temperature, this annulus region is between 525°F and 535°F. This location of specimens with respect to the reactor vessel beltline is designed so that the reactor vessel wall and the specimens experience equivalent operating conditions such that the temperature will not differ by more than 25°F. Any plant-specific exceptions to this generic analysis should be evaluated. Criterion 5: The surveillance data for the correlation monitor material in the capsule should fall within the scatter band of the database for that material. Few ISP capsules contain correlation monitor material. Generally, this criterion is not applicable. For plate heat C2331-2, these criteria are satisfied (or not applicable). The surveillance data are nominally credible because the scatter criterion is met. Prior to application of the data, a plant should verify that no plant-specific exceptions to these criteria exist. .2 EC 16-046, Rev 1 Page 57 of76 Table A-19-7 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Page 26 of45 Unirradiated Charpy V-Notch Results for Surveillance Plate C2331-2 (TL) Spec ID Temp (°F) CVN (ft-lb) LE (mils) %Shear SSP 1 -80 12.0 5.0 3 SSP2 -60 15.5 5.0 0 SSP3 -40 24.5 12.5 19 SSP4 -20 20.0 13.0 16 SSP5 -20 31.5 20.0 20 SSP6 0 43.5 28.5 23 SSP7 20 46.0 29.5 30 SSP8 40 52.5 32.5 49 SSP9 60 53.5 37.0 47 SSP 10 60 49.5 37.0 44 SSP 11 80 91.5 67.5 87 SSP12 100 86.0 63.0 89 SSP13 180 97.0 70.0 100 SSP14 300 97.0 73.0 100 SSP15 400 106.0 73.5 100 Table A-19-8 Charpy V-Notch Results for C2331-2 (TL) in SSP Capsule D Spec ID Temp (°F) CVN (ft-lb) LE (mils) %Shear 1 0 9 8 5 2 25 24.5 21 10 3 50 28 19 15 4 75 50.5 39 20 5 100 49 37 40 6 150 68 51 90 7 200 83.75 57 100 8 250 92.5 65 100 9 300 94 71 100 10 400 87 71 100 .2 EC 16-046, Rev 1 Page 58 of 76 Table A-19-9 Charpy V-Notch Results for C2331-2 (TL) in SSP Capsule G Spec ID Temp (°F) CVN (ft-lb) LE (mils) %Shear 1 25 18.5 15 5 2 75 33.5 24 20 3 100 35.5 27 10 4 125 41.5 35 35 5 140 51.5 37 40 6 150 63.5 47 70 7 200 76 57 100 8 250 84.5 58 100 9 300 83 70 100 10 400 83 65 100 Table A-19-10 Charpy V-Notch Results for C2331-2 (TL) in SSP Capsule E Spec ID Temp (°F) CVN (ft-lb) LE (mils) %Shear EP130C 0 10.5 1 0 EP130E 40 28.0 12 15 EP130A 70 27.5 17 30 EP130H 100 49.0 27 55 EP130D 125 54.5 32 50 EP130F 150 68.5 43 90 EP130B 200 80.0 55 100 EP130G 225 82.0 54 100 EP130I 250 81.5 61 100 EP130J 300 85.5 59 100 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Page 27 of45 .2 EC 16-046, Rev 1 Page 59 of76 Table A-19-11 Charpy V-Notch Results for C2331-2 (TL) in SSP Capsule I Spec ID Temp ( 0 f) CVN (ft-lb) LE (mils) %Shear IP130B 0 8.5 2.0 0 IP130J 30 20.0 8.0 5 IP130A 70 27.5 14.0 20 IP130H 100 30.0 18.0 30 IP130G 125 50.5 37.0 55 IP130C 150 60.0 46.0 65 IP130D 200 71.5 54.0 85 IP1301 250 77.5 59.0 100 IP130E 300 83.0 69.0 100 IP130F 400 80.5 64.0 100 Table A-19*12 Charpy V-Notch Results for C2331-2 (TL) in SSP Capsule A Spec ID Temp ( 0 f) CVN (ft-lb) LE (mils) %Shear AP1-30-10 . -40.36 10.07 10.5 8.3 AP1-30-8 -20.56 15.78 16.0 11.9 AP1-30-7 19.94 30.17 28.5 21 AP1-30-9 19.94 33.14 30.5 20.7 AP1-30-1 67.64 39.22 39.0 26.9 AP1-30-2 110.84 57.99 52.0 47.4 AP1-30-3 160.70 85.95 73.0 99 AP1-30-4 250.88 88.94 77.0 100 AP1-30-5 300.74 90.17 73.0 100 AP1-30-6 399.56 99.00 76.5 100 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Page 28 of45 .2 EC 16-046, Rev 1 Page 60 of76 Table A-19-13 Charpy V-Notch Results for C2331-2 (TL) in SSP Capsule B Spec ID Temp (°F) CVN (ft-lb) LE (mils) %Shear BP1-30-8 -20.20 10.03 10.0 9.3 BP1-30-10 0.32 27.15 26.0 16.6 BP1-30-7 20.48 35.30 31.0 19 BP1-30-1 68.00 46.36 39.5 36.2 BP1-30-9 89.60 60.70 55.5 37.7 BP1-30-2 120.74 82.25 66.0 73.8 BP1-30-3 180.32 90.96 72.0 100 BP1-30-4 249.44 100.08 81.0 100 BP1-30-5 299.66 99.12 77.0 100 BP1-30-6 400.28 100.70 74.5 100 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Page 29 of45 .2 EC 16-046, Rev 1 Page 61 of 76 Tanh Curve Fits of CVN Test Data for Plate Heat C2331-2 UNIRRADIATED PLATE HEAT C2331-2 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Page 30 of45 CV GRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 06/23/2003 03:05 PM Page I 300 250 ~ 200
- if El 150 GI c w z t; 100 50 0
Coefficients of Curve 1 A = 51.25 B = 48. 75 C = 98.29 TO = 32.52 D = O.OOE+oO Equation is A+ B * [Tanh((T-To}/(C+DT))] Upper ShelfEnergy=IOO.O(Fixed) Lower ShelfEnergy=2.5(Fixed) Temp@30 ft-lbs'"-13.3 Deg F Temp@SO ft-lbs=30.I Deg F Plant: Cooper Material: SA533B 1 Heat: C2331-2 Orientation: TL Capsule: UNIRRA Fluence: 0 n/crn"2 I T I I I ~ I I ' + I I I i I I I I I I I I I i Ci> I I
- v-I l
I I I i l ~ - I + Vo l I I ~300 -200 -100 0 100 200 300 400 Temperature in Deg F Charpy V-Notch Data Temperature lnputCVN Computed CVN Figure A-19-1 - 80. 00 - 60. 00 - 40. 00 -20.00 - 20. 00 .00 20.00
- 40. 00
- 60. 00
- 12. 00
- 11. 47
- 15. 5 0
- 15. 3 8
- 24. 50
- 20. 64
- 20. 00 27.43 3 1. 5 0 27.43 43.50 3 5. 68
- 46. 00
- 45. 07 5 2. 50
- 54. 95 5 3. 50
- 64. 5 3 Cooper Unirradiated Plate Heat C2331-2 Charpy Energy Plot I
I i I I I i I i 500 600 Differential . 53 . 12
- 3. 8 6
- 7. 4 3
- 4. 07
- 7. 82
. 93 - 2. 45 - 11. 03 .2 EC 16-046, Rev 1 Page 62 of76 Temperature 60.00
- 80. 00 I 0 0. 00 180. 00 300. 00 4 0 0. 00 Figure A-19-1 UNIRRADIATED PLATE HEAT C2331-2 Page 2 Plant: Cooper Material: SA533Bl Heat: C2331-2 Orientation: TL Capsule: UNIRRA Fluence: 0 n/cmA2 Charpy V-Notch Data InputCVN 49.50
- 91. 50
- 86. 00
- 97. 00
- 97. 00 I 06. 00 Correlation Coefficient=.969 Computed CVN
- 64. 53
- 73. 12
- 80. 29
- 95. 38 9 9. 58
- 99. 94 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary)
Page 31 of 45 Differential - I 5. 0 3 1 8. 3 8
- 5. 71 I. 62
- 2. 5 8 6.06 Cooper Unirradiated Plate Heat C2331-2 Charpy Energy Plot (Continued) .2 EC 16-046, Rev 1 Page 63 of 76 Plate Heat C2331-2 in SSP-D Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Page 32 of 45 CVGRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 04/0li2006 05:51 PM Page I Coefficients of Curve I A= 45.9 B = 43.4 C = 92.06 TO= 84.06 D = O.OOE+OO Equation is A+ B * [Tanh((T-To)/(C+DT))] Upper Shelf Energy=89.3(Fixed) Lower Shelf Energy=2.5(Fixed) Temp@30 ft-lbs=48.7 Deg F Temp@50 ft-lbs=92.8 Deg F Plant: Oyster Creek Material: SA533B I Heat: C233 l-2 Orientation: TL Capsule: SSP-D Fluence: 1.0 l 18E+ 18 n/cm"2 I 300 :--- --~-:-- i - -i *--*--------* :--*-- 250 {-----!-- --~---!-*
1 ---*** 1----r---- -j-.
<n t I i i i i I =u..g 200 L. ---.: *- 1 -*-* ___ LI ----, 1 1 ___ --i:--- --+ --,-- 1 ~ 150 t---* 1------: --- -+-* --. ---;---* ; ___ ~ c I I i 100 I 1-f-r- -t- ---.-4 -) __ ' I i I I i 50 L---f---. ' --~-- 1-----j i I 0 b=--,-,,,*--=-= .. ~=--==.:::: .. _:::-=:.:::= __ -- .... 1 *-*----i~-_J -300 -200 -100 0 100 200 300 400 500 600 Temperature in Deg F Charpy V-Notch Data Temperature lnputCVN Computed CVN Differential . 0 0 9.00 I 4. 5 4 - 5. 54 25.00 '.!4. 5 0 2 I. 34
- 3. 16
- 50. 00 2 8. 0 0 3 0. 54
- 2. 5 4
- 75. 00 50.50 4 l. 64
- 8. 8 6 I 0 0. 0 0 49.00 5 3. 3 4
- 4. 34 150. 00 6 8. 0 0
- 72. 5 8
- 4. 5 8 200.00 8 3. 7 5 8 2. 8 3 . 92 250. 00 9 2. 5 0 8 7. 0 0
- 5. 5 0 300. 00 94.00 8 8. 5 I 5.49 Figure A-19-2 Cooper Irradiated Plate Heat C2331-2 (SSP-D) Charpy Energy Plot
.2 EC 16-046, Rev 1 Page 64 of76 Temperature 400. 00 Figure A-19-2 Plate Heat C2331-2 in SSP-D Page 2 Plant: Oyster Creek Material: SA533B 1 Heat: C233 l-2 Orientation: TL Capsule: SSP-D Fluence: 1.01J8E+ 18 n/cmA2 Charpy V-Notch Data InputCVN Computed CVN 8 7. 0 0
- 89. 21 Correlation Coefficient=.987 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary)
Page 33 of45 Differential - 2. 2 I Cooper Irradiated Plate Heat C2331-2 (SSP-D) Charpy Energy Plot (Continued) .2 EC 16-046, Rev 1 Page 65 of76 Plate Heat C2331-2 in SSP-G Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Pa e 34 of45 CVGRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 04/01/2006 05:54 PM Page 1 Coefficients of Curve 1 A= 42.05 B = 39.55 C = 93.59 TO= 108.08 D = O.OOE+OO Equation is A+ B * [Tanh((T-To)/(C+DT))] Upper Shelf Energy=8 l.6(Fixed) Lower ShelfEnergy=2.5(Fixed) Temp@30 ft-lbs=78.7 Deg F Temp@50 ft-lbs=l27.2 Deg F Plant: Oyster Creek Material: SA533B 1 Heat: C2331-2 Orientation: TL Capsule: SSP-G Fluence: l.8487E+ 18 n/cm"2 300 -! -* *-:- --r----1 **-- I t I f 250 - ---1 --l *--~' - ----- -----*
- ~-l--
I t I 200 ~: ------** + I ~ I 0 & e 150 2! w z f I 1 i I -+-----1------~----- i I 1-----! I I t; 100 ____ _L __
- -----****--**. *--r-*- *--
--i'-------1-** i --- ---1*
r*---1 6
~O:__Jl.---9---'----j i
- r- * -r.,
0 ' .. -----+-*-*--- Q ------i----i t I I I
- -.-*~1----*- *---**.,
__ J___, __... ~----~---**--t-* -300 -200 -100 0 100 200 300 400 500 600 Temperature in Deg F Charpy V-Notch Data Temperature InputCVN Computed CVN Differential
- 25. 0 0
- 18. 5 0
- 13. 9 6
- 4. 54 7 5. 00 3 3. 5 0 2 8. 63
- 4. 8 7 I 0 0. 00 3 5. 5.0 3 8. 64
- 3. 1 4 125.00
- 41. 5 0
- 49. 12
- 7. 62 . I 40. 0 0
- 51. 50 5 5. 04
- 3. 54 I 50. 00 6 3. 5 0 5 8. 6 7
- 4. 8 3 200. 00
- 76. 00
- 71. 87
- 4. 1 3 250. 00
- 84. 5 0
- 77. 96
- 6. 54 300. 00 8 3. 0 0 8 0. 3 1
- 2. 69 Figure A-19-3 Cooper Irradiated Plate Heat C2331-2 (SSP-G) Charpy Energy Plot
.2 EC 16-046, Rev 1 Page 66 of76 Temperature 400. 00 Figure A-19-3 Plate Heat C2331-2 in SSP-G Page 2 Plant: Oyster Creek Material: SA533B I Heat: C233 l-2 Orientation: TL Capsule: SSP-G Fluence: 1.8487E+l8 n/cm"2 Charpy V-Notch Data lnputCVN Computed CVN s 3. a o 8 I. 4 5 Correlation Coefficient=.982 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Page 35 of45 Differential I. 5 5 Cooper Irradiated Plate Heat C2331-2 (SSP-G) Charpy Energy Plot (Continued) .2 EC 16-046, Rev 1 Page 67 of 76 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Pa e 36 of 45 IRRADIATED PLATE HEAT C2331-2 (SSP-E) CVGRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 06/23/2003 03:05 PM Page 1 Coefficients of Curve 1 A= 42.4 B = 39.9 C = 83.62 TO = 89.63 D = O.OOE+oO Equation is A+ B * [Tanh((T-To)/(C+Dl))] Upper ShelfEnerg)=82.3(Fixed) Lower ShelfEnergy=2.5(Fixed) Temp@30 ft-lbs=62.8 Deg F Temp@SO ft-lbs=lOS.8 Deg F Plant: Cooper Material: SA533Bl Heat: C2331-2 Orientation: TL Capsule: SSP-E Fluence: l.7192E+18 nlcm"2 250 -t-----1----;-- --1----+---.J-----+----+----+----l ~ 200 --t-I I i 150 ~--+-!----+-t+----+- 1 -~~~------< ~ 100 --+ **~- -------~---- ------+-------+-----+--------1 I I 50+-~~1-~---1-~~-'---~~'----l-~~-+-!~~~1~~-+-~----l I I -*-L~-l--*------;-------; o-1===-=-=l=-=-=*==r-:=::::=--l-~--+ -300 -200 -100 0 100 200 300 400 500 600 Temperature in Deg F Charpy V-Notch Data Temperature InputCVN Computed CVN Differential . 00
- 40. 00 7 0. 00 I 00. 00 125. 00 15 0. 00 200.00 225. 00 250. 00 Figure A-19-4 I 0. 5 0
- 28. 00 2 7. 50 49.00
- 54. 50
- 68. 5 0
- 80. 00 82.00
- 81. 5 0 1 0. 87 2 I. 16 33.20 4 7. 32 5 8. 3 4 67.06
- 76. 98 79.29
- 80. 61 Cooper Irradiated Plate Heat C2331-2 (SSP-E) Charpy Energy Plot
-.37
- 6. 84
- 5. 70 !. 68 - 3. 84
- 1. 44
- 3. 02
- 2. 71
.89 .2 EC 16-046, Rev 1 Page 68 of76 Temperature 300.00 Figure A-19-4 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Page 37 of45 IRRADIATED PLATE HEAT C2331-2 (SSP-E) Page 2 Plant: Cooper Material: SA533Bl Heat: C2331-2 Orientation: TL Capsule: SSP-E Fluence: l.7192E+l8 n/cm"2 Charpy V-Notch Data lnputCVN Computed CVN Differential
- 85. so 8 I. 7 8 3.72 Correlation Coefficient=.991 Cooper Irradiated Plate Heat C2331-2 (SSP-E) Charpy Energy Plot (Continued)
.2 EC 16-046, Rev 1 Page 69 of 76 300 250 ~ 200 I 0 if e; 150 ! w z (; 100 50 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Pa e 38 of45 IRRADIATED PLATE HEAT C2331-2 (SSP-I) CVGRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 06/23/2003 03:05 PM Page 1 i l Coefficients of Curve I A= 41.4 B = 38.9 C = 91.86 TO= 108.11 D = O.OOE+oO Equation is A+ B.. [Tanh((T-To)/(C+Dn)J Upper ShelfEnergy=80.3(Fixed) Lower ShelfEnergy=2.5(Fixed) Temp@30 ft-Ibs=80.4 Deg F Temp@50 ft-lbs=l28.8 Deg F Plant: Cooper Material: SA533Bl Heat: C2331-2 Orientation: 1L Capsule: SSP-I Fluence: 2.7085E+l8 n/cm"2 I I I I I I i I I I I I I I i I ~+ i i I I I I I i I I I ~r-I i I I / ) I I I I I I I I I 0 -300 I -200 -100 /' 0 100 200 I I 300 400 500 600 Temperature in Deg F Charpy V-Notch Data Temperature InputCVN Computed CVN Differential . o*o 3 0. 00
- 70. 00 l 0 0. 00 l 2 5. 00 l 5 0. 00 200. 00 250. 00 300. 00 Figure A-19-5
- 8. 50 20.00 2 7. 50 3 0. 00 50.50 60.00 7 I. 5 0
- 77. 50
- 83. 00 9.25
- 14. 5 I
- 26. 13 3 7. 97 48.47 5 8. 0 0
- 71. 03
- 76. 91 7 9. 13 Cooper Irradiated Plate Heat C2331-2 (SSP-1) Charpy Energy Plot
-.75 5:49 I. 3 7 - 7. 9 7
- 2. 03
- 2. 00
. 47 . 59
- 3. 8 7
.2 EC 16-046, Rev 1 Page 70 of 76 Temperature 400. 00 Figure A-19-5 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Pa e 39 of45 IRRADIATED PLATE HEAT C2331-2 (SSP-I) Page 2 Plant: Cooper Material: SA533Bl Heat: C2331-2 Orientation: TL Capsule: SSP-I Fluence: 2.7085E+l8 nlcm"2 Charpy V-Notch Data InputCVN Computed CVN Differential
- 80. 50
- 80. 17
. 3 3 Correlation Coefficient=.992 Cooper Irradiated Plate Heat C2331-2 (SSP-1) Charpy Energy Plot (Continued) .2 EC 16-046, Rev 1 Page 71of76 Plate Heat C2331-2 in SSP Capsule A Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Page40 of 45 CVGRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 06/07/2006 12:13 PM Page 1 300 250 ~ 200 0 0 u. ~ 150 w z i:; 100 50 0 -300 Temperature - 4 0. 3 6 - 20. 5 6
- 19. 94 I 9. 94 6 7. 64 I I 0. 84 I 60. 7 0 250. 88 300. 74 Figure A-19-6 Coefficients of Curve 1 A= 46.75 B = 44.25 C = 105.31 TO= 70.12 D = O.OOE+OO Equation is A+ B * [Tanh((T-To)/(C+DT))]
Upper Shelf Energy=91.0(Fixed) Lower Shelf Energy=2.5(Fixed) Temp@30 fl-lbs=28.2 Deg F Temp@50 ft-lbF77.9 Deg F Plant: COOPER Material: SA533Bl Heat: C2331-2 Orientation: TL Capsule: SSP-A Fluence: NIA n/cm"2 -200 -100 0 100 200 300 400 Temperature in Deg F Charpy V-Notch Data lnputCVN Computed CVN 1 0. 0 7
- 12. I 7 l 5. 7 8 I 5. 92 3 0. I 7 2 7. I 3 3 3. I 4 2 7. I 3 3 9. 2 2 4 5. 7 I 5 7. 99 6 3. 06
- 85. 95 7 7. 5 6 8 8. 94 8 8. 2 3 9 0. l 7 8 9. 9 I Cooper Irradiated Plate Heat C2331-2 (SSP-A) Charpy Energy Plot 500 600 Differential
- 2. JO -. 14
- 3. 04
- 6. 0 l
- 6. 4 9 - 5. 0 7
- 8. 3 9
. 71 . 26 .2 EC 16-046, Rev 1 Page 72 of76 Temperature 399. 56 Figure A-19-6 Plate Heat C2331-2 in SSP Capsule A Page 2 Plant: COOPER Material: SA533B I Heat: C233 l-2 Orientation: TL Capsule: SSP-A Fluence: NIA n/cm"2 Charpy V-Notch Data lnputCVN Computed CVN
- 99. 00 9 0. 8 3 Correlation Coellicient ~.989 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary)
Page 41 of 45 Differential
- s. 17 Cooper Irradiated Plate Heat C2331-2 (SSP-A) Charpy Energy Plot (Continued)
.2 EC 16-046, Rev 1 Page 73 of76 Plate Heat C2331-2 in SSP Capsule B Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Page42 of45 CV GRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 06/07/2006 12: l 7 PM Page l 300 250 Ul ~ 200 **-. 0 0 u. ~ 150 Q) c w z (5 100 50 i-0 -300 Temperature - 20. 10 .32 2 0. 4 8 6 8. 00 8 9. 60 120. 7 4 180. J 2 249. 44 299. 66 Figure A-19-7 Coefficients of Curve I A= 50.1 B = 47.6 C = 91.63 TO= 62.66 D = O.OOE+OO Equation is A+ B * [Tanh((T-To)/(C+DD)J Upper Shelf Encrgy=97.7(Fixed) Lower Shelf Encrgy=2.5(Fixcd) Temp@30 fl-lbs=2!.4 Deg F Temp@50 fl-lhs=62.5 Deg F Plant: COOPER Material: SA533Bl Heat: C2331-2 Orientation: TL Capsule: SSP-B Fluence: N/ A -200 .l. 0 0 i ! 0 100 0 200 300 Temperature in Deg F Charpy V-Notch Data lnputCVN Computed CVN I 0. 0 3 15.90 '.l 7. I 5 11 - 9 3 J 5 - 3 0 2 9. 6 I 4 6. 3 6 5 2. 8 7 6 0. 70 6 3. 7 0 8 2. 2 5 7 6. 7 9
- 90. 9 6 9 0. 9 2 I 00. 0 8 9 6. 1 1
- 99. 12 9 7. 1 6 n/cm'"'2 400 Cooper Irradiated Plate Heat C2331-2 (SSP-B) Charpy Energy Plot 500 600 Differential
- 5. 8 7
- 5. 2::!
- 5. 69
- 6. 51 - 3. 0 0 5.46 . 04
- 3. 9 7
- 1. 96
.2 EC 16-046, Rev 1 Page 74 of76 Temperature 400. 28 Figure A-19-7 Plate Heat C2331-2 in SSP Capsule B Page 2 Plant: COOPER Material: SA533B I Heat: C2331-2 Orientation: TL Capsule: SSP-B Fluence: N/A n/cml\\2 Charpy V-Notch Data lnputCVN Computed CVN I 00. 7 0 9 7. 6 4 Correlation Coefficient=.99 I Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Page43 of45 Difforential
- 3. 06 Cooper Irradiated Plate Heat C2331-2 (SSP-B) Charpy Energy Plot (Continued)
.2 EC 16-046, Rev 1 Page 75 of 76 (( Figure A-19-8 Fitted Surveillance Results for Plate Heat C2331-2 Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Page 44 of45 .2 EC 16-046, Rev 1 Page 76 of76 References Appendix B, ER 2016-042 Cooper PTLR (Non-Proprietary) Page 45 of 45 A-19-1. "Progress Report on Phase 2 of the BWR Owners' Group Supplemental Surveillance Program," T.A. Caine, S. Ranganath, and S.J. Stark, GE Nuclear Energy, GE-NE-523-99-0792, January 1992. A-19-2. BWRVIP-87NP, Revision 1: BWR Vessel and Internals Project Testing and Evaluation of BWR Supplemental Surveillance Program Capsules D, G, and H. EPRI, Palo Alto and BWRVIP: 2010. 1021553. A-19-3. BWRVIP-11 lNP, Revision 1: BWR Vessel and Internals Project, Testing and Evaluation of BWR Supplemental Surveillance Program Capsules E, F and I. EPRI, Paio Alto, CA: 2010. 1021554. A-19-4. CVGRAPH, Hyperbolic Tangent Curve Fitting Program, Developed by A TI Consulting, Version 5.0.2, Revision 1, 3/26/02. A-19-5. General Electric, "Cooper Nuclear Station Reactor Pressure Vessel Surveillance Materials Testing and Fracture Toughness Analysis," T.A. Caine, B.J. Branlund, and S. Ranganath, MDE-103-0986, May 1987. A-19-6. "Radiation Embrittlement of Reactor Vessel Materials," USNRC Regulatory Guide 1.99, Revision 2, May 1988. A-19-7. "Format and Content of Report for Thermal Annealing of Reactor Pressure Vessels," USNRC Regulatory Guide 1.162, February 1996. A-19-8. K. Wichman, M. Mitchell, and A. Hiser, USNRC, Generic Letter 92-01 and RPV Integrity Workshop Handouts, NRC/Industry Workshop on RPV Integrity Issues, February 12, 1998. A-19-9. ASTM E-185, "Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels," American Society for Testing and Materials, July 1982. A-19-10. BWR Vessel and Internals Project: BWR Integrated Surveillance Program Plan (BWRVIP-78). EPRI, Palo Alto, CA and BWRVIP: 1999. TR-114228. A-19-11. Not used. A-19-12. BWRVIP-169NP: BWR Vessel and Internals Project, Testing and Evaluation of BWR Supplemental Surveillance Program (SSP) Capsules A, B, and C. EPRI, Palo Alto, CA: 2010: 1021556.}}