ML16203A369

From kanterella
Jump to navigation Jump to search

{{Adams | number = ML16203A369 | issue date = 05/31/2016 | title = Wolf Creek Generating Station, Redacted Version of Revision 29 to Updated Safety Analysis Report, Chapter 2.0 - Site Characteristics | author name = | author affiliation = Wolf Creek Nuclear Operating Corp | addressee name = | addressee affiliation = NRC/NRR | docket = 05000482 | license number = | contact person = | case reference number = WM 16-0008 | package number = ML16203A351 | document type = Updated Final Safety Analysis Report (UFSAR) | page count = 1739 }}

Text

{{#Wiki_filter:WOLF CREEK TABLE OF CONTENTS CHAPTER 2.0 SITE CHARACTERISTICS Section Page 2.1 GEOGRAPHY AND DEMOGRAPHY 2.1-1 2.1.1 SITE LOCATION AND DESCRIPTION 2.1-1 2.1.2 EXCLUSION AREA AUTHORITY AND CONTROL 2.1-3 2.1.3 POPULATION DISTRIBUTION 2.1-4 2.

1.4 REFERENCES

2.1-12

2.2 NEARBY INDUSTRIAL, TRANSPORTATION AND 2.2-1 MILITARY FACILITIES 2.2.1 LOCATIONS AND ROUTES 2.2-1 2.2.2 DESCRIPTIONS 2.2-12 2.2.3 EVALUATION OF POTENTIAL ACCIDENTS 2.2-12 2.

2.4 REFERENCES

2.2-20

2.3 METEOROLOGY 2.3-1 2.3.1 REGIONAL CLIMATOLOGY 2.3-1 2.3.1.1 General Climate 2.3-1 2.3.1.2 Regional Climatology for Design and 2.3-3 Operating Bases 2.3.1.3 Local Meteorological Conditions for Design 2.3-17 and Operating Bases

2.3.2 LOCAL METEOROLOGY 2.3-18

2.3.2.1 Normal and Extreme Values and 2.3-18 Meteorological Parameters 2.3.2.2 Potential Influence of the Plant and 2.3-24 Its Facilities on the Environment 2.3.2.3 Local Meteorological Conditions 2.3-37 for Design and Operating Bases

2.3.3 ONSITE METEOROLOGICAL MEASUREMENT PROGRAMS 2.3-40

2.3.3.1 Preoperational and Operational Programs 2.3-40 2.3.3.2 Types of Measurements Made 2.3-41 2.3.3.3 Locations and Elevation of Instruments 2.3-41 2.3.3.4 Descriptions of Instruments 2.3-42 2.3.3.5 Maintenance and Calibrations of Instruments 2.3-43

2.0-i Rev. 29 WOLF CREEK TABLE OF CONTENTS (Continued) Section Page 2.3.3.6 Data Recording Systems 2.3-45 2.3.3.7 Data Analysis 2.3-46 2.3.3.8 Regional Climatological Data 2.3-56

2.3.4 SHORT-TERM (ACCIDENT) DIFFUSION ESTIMATES 2.3-56

2.3.4.1 Diffusion Model for 0-2 Hours 2.3-57 2.3.4.2 Results of Short-Term Diffusion Estimates 2.3-60 2.3.4.3 Control Room Intake 2.3-60

2.3.5 LONG-TERM DIFFUSION ESTIMATES 2.3-62

2.3.5.1 Calculations 2.3-62

2.

3.6 REFERENCES

2.3-71

2.4 HYDROLOGIC ENGINEERING 2.4-1 2.4.1 HYDROLOGIC DESCRIPTION 2.4-1

2.4.1.1 Site and Facilities 2.4-1 2.4.1.2 Hydrosphere 2.4-2

2.4.2 FLOODS 2.4-5

2.4.2.1 Flood History 2.4-5 2.4.2.2 Flood Design Considerations 2.4-9 2.4.2.3 Effects of Local Intense Precipitation 2.4-10

2.4.3 PROBABLE MAXIMUM FLOOD (PMF) 2.4-14 ON WOLF CREEK

2.4.3.1 Probable Maximum Precipitation (PMP) 2.4-14 2.4.3.2 Precipitation Losses 2.4-15 2.4.3.3 Runoff Model 2.4-15 2.4.3.4 Probable Maximum Flood Flow 2.4-16 2.4.3.5 Lake Water Level Determination 2.4-17 2.4.3.6 Coincident Wind Wave Activity 2.4-19

2.4.4 POTENTIAL DAM FAILURES 2.4-20

2.4.4.1 Dam Failure Permutations 2.4-21 2.4.4.2 Unsteady Flow Analysis of Potential Dam 2.4-23 Failures 2.4.4.3 Water Level at Plant Site 2.4-27

2.0-ii Rev. 29 WOLF CREEK TABLE OF CONTENTS (Continued) Section Page 2.4.5 PROBABLE MAXIMUM SURGE AND SEICHE FLOODING 2.4-29

2.4.5.1 Probable Maximum Winds and Associated 2.4-29 Meteorological Parameters 2.4.5.2 Surge and Seiche Water Levels 2.4-30 2.4.5.3 Wave Action 2.4-30 2.4.5.4 Resonance 2.4-30 2.4.5.5 Protective Structure 2.4-31

2.4.6 PROBABLE MAXIMUM TSUNAMI FLOODING 2.4-31 2.4.7 ICE EFFECTS 2.4-31 2.4.7.1 ICE FLOODING 2.4-31 2.4.7.2 FRAZIL ICE 2.4-31 2.4.8 COOLING WATER CHANNELS AND RESERVOIRS 2.4-31

2.4.8.1 Channels 2.4-31 2.4.8.2 Reservoirs 2.4-32

2.4.9 CHANNEL DIVERSIONS 2.4-37 2.4.10 FLOODING PROTECTION REQUIREMENTS 2.4-37 2.4.11 LOW-WATER CONSIDERATIONS 2.4-38

2.4.11.1 Low Flow in Rivers and Streams 2.4-38 2.4.11.2 Low Water Resulting from Surges, 2.4-38 Seiches and Tsunamis 2.4.11.3 Historical Low Water 2.4-39 2.4.11.4 Future Control 2.4-40 2.4.11.5 Plant Requirements 2.4-41 2.4.11.6 Heat Sink Dependability Requirements 2.4-42

2.4.12 DISPERSION, DILUTION AND TRAVEL TIMES OF 2.4-43 ACCIDENTAL RELEASE OF LIQUID EFFLUENTS IN SURFACE WATER

2.4.12.1 Dilution Factors 2.4-43 2.4.12.2 Radiological Dose Assessment 2.4-45

2.4.13 GROUND WATER 2.4-45

2.4.13.1 Description and Onsite Use 2.4-45 2.4.13.2 Sources 2.4-50 2.4.13.3 Accident Effects 2.4-56 2.4.13.4 Monitoring or Safeguard Requirements 2.4-68 2.4.13.5 Design Bases for Subsurface Hydrostatic 2.4-69 Loadings

2.0-iii Rev. 29 WOLF CREEK TABLE OF CONTENTS (Continued) Section Page 2.4.14 REFERENCES 2.4-75

2.5 GEOLOGY AND SEISMOLOGY 2.5-1 2.5.1 BASIC GEOLOGIC AND SEISMIC INFORMATION 2.5-6

2.5.1.1 Regional Geology 2.5-6 2.5.1.2 Site Geology 2.5-58

2.5.2 VIBRATORY GROUND MOTION 2.5-141

2.5.2.1 Seismicity 2.5-141 2.5.2.2 Geologic Structures and Tectonic Activity 2.5-150 2.5.2.3 Correlation of Earthquake Activity which 2.5-158 Geologic Structures or Tectonic Provinces 2.5.2.4 Maximum Earthquake Potential 2.5-162 2.5.2.5 Seismic Wave Transmission 2.5-171 Characteristics of the Site 2.5.2.6 Safe Shutdown Earthquake 2.5-174 2.5.2.7 Operating Basis Earthquake 2.5-181 2.5.2.8 Response Spectra 2.5-181

2.5.3 SURFACE FAULTING 2.5-182

2.5.3.1 Geologic Conditions of the Site 2.5-182 2.5.3.2 Evidence of Fault Offsite 2.5-182 2.5.3.3 Earthquakes Associated with Capable Faults 2.5-182 2.5.3.4 Investigation of Capable Faults 2.5-182 2.5.3.5 Correlation of Epicenters with Capable 2.5-182 Faults 2.5.3.6 Descriptions of Capable Faults 2.5-182 2.5.3.7 Zone Requiring Detailed Faulting 2.5-183 Investigation 2.5.3.8 Results of Faulting Investigation 2.5-183

2.5.4 STABILITY OF SUBSURFACE MATERIALS 2.5-183

2.5.4.1 Geologic Features 2.5-183 2.5.4.2 Properties of Underlying Materials 2.5-185 2.5.4.3 Exploration 2.5-202 2.5.4.4 Geophysical Surveys 2.5-210 2.5.4.5 Excavations and Backfill 2.5-216 2.5.4.6 Ground Water Conditions 2.5-222

2.0-iv Rev. 29 WOLF CREEK TABLE OF CONTENTS (Continued) Section Page 2.5.4.7 Dynamic Soil and Rock Properties 2.5-225 2.5.4.8 Liquefaction Potential 2.5-227 2.5.4.9 Earthquake Design Basis 2.5-228 2.5.4.10 Static Stability 2.5-228 2.5.4.11 Criteria and Design Methods 2.5-235 2.5.4.12 Techniques to Improve Subsurface 2.5-236 Conditions 2.5.4.13 Subsurface Instrumentation 2.5-237 2.5.4.14 Construction Notes 2.5-237

2.5.5 STABILITY OF SLOPES 2.5-238

2.5.5.1 Slope Characteristics 2.5-238 2.5.5.2 Design Criteria and Analyses 2.5-240 2.5.5.3 Log of Borings 2.5-245 2.5.5.4 Compacted Fill 2.5-245

2.5.6 EMBANKMENTS AND DAMS 2.5-246

2.5.6.1 General 2.5-246 2.5.6.2 Exploration 2.5-249 2.5.6.3 Foundation and Abutment Treatment 2.5-266 2.5.6.4 Embankment 2.5-269 2.5.6.5 Slope Stability 2.5-294 2.5.6.6 Seepage Control 2.5-306 2.5.6.7 Diversion and Closure 2.5-312 2.5.6.8 Performance Monitoring 2.5-313 2.5.6.9 Construction Notes 2.5-317

2.

5.7 REFERENCES

2.5-321

2.0-v Rev. 29 WOLF CREEK LIST OF TABLES

2.1-1 Population of Incorporated Places Within 50 Miles of the Site

2.1-2 Resident Population Distribution by Sector and Radial Distance up to 10 Miles

2.1-3 Resident Population Distribution by Sector and Radial Distance Between 10 and 50 miles

2.1-4 Schools Within 10 Miles of the Site

2.1-5 Hospitals and Nursing Homes Within 10 Miles of the Site

2.1-6 Correctional Facilities Within 10 Miles of the Site

2.1-7 Recreation Facilities within 10 Miles of the Site

2.1-8 Population Distribution Within the Low Population Zone, 1970 and 1980

2.1-9 Comparison of Population Density Distributions for 1980 For Various Fertility and Migration Patterns

2.1-10 Comparison of Population Density Distributions for 2020 for Various Fertility and Migration Patterns

2.2-1 Nearby Industrial, Transportation, and Military Facilities

2.2-2 Description of Hazardous Materials

2.2-3 Deleted

2.2-4 Parameters for the Control Building and Control Room Chlorine Calculation

2.2-5 The Effects of Chlorine Gas on Humans

2.0-vi Rev. 29 WOLF CREEK LIST OF TABLES (Continued) Table No. Title 2.3-1 Maximum Short Period Rainfall for Topeka and Wichita, Kansas

2.3-2 Yearly (1949-1979) Maximum Snow Depth at Wichita and Topeka, Kansas

2.3-3 Total Number of Days with Freezing Precipitation in Wichita, Kansas

2.3-4 Average Monthly and Annual Number of Days with Thunderstorms at Topeka and Wichita, Kansas

2.3-5 Number, Probability, and Recurrence Interval of Tornado Occurrences Per One Degree Longitude-Latitude Square in Kansas

2.3-6 Tornado Summary for Kansas

2.3-7 Fastest Mile of Wind for Eastern Kansas Using Fisher-Tippet Type I Distribution

2.3-8 Fastest Mile of Wind for Topeka and Wichita, Kansas

2.3-9 Worst Temperature Period and Worst Evaporation Period

2.3-10 Monthly and Annual Average and Extreme Temperatures for Burlington, Kansas

2.3-11 Statistics and Diurnal Variation of Meteorological Parameters (Annual)

2.3-12 Statistics and Diurnal Variation of Meteorological Parameters (Monthly)

2.3-13 Monthly and Annual Average Dewpoint Temperatures for Topeka and Wichita, Kansas

2.3-14 Mean Relative Humidity and Mean Number of Days with Heavy Fog at Topeka, Kansas

2.3-15 Mean Relative Humidity and Mean Number of Days with Heavy Fog at Wichita, Kansas

2.0-vii Rev. 0 WOLF CREEK LIST OF TABLES (Continued) Table No. Title 2.3-16 Monthly and Annual Average and Maximum Precipitation and Snowfall

2.3-17 Annual Precipitation Wind Rose (10m)

2.3-18 Annual Precipitation Wind Rose (60m)

2.3-19 Monthly Precipitation Wind Rose (10m)

2.3-20 Monthly Precipitation Wind Rose (60m)

2.3-21 Frequency Distribution of Precipitation

2.3-22 Monthly and Annual Joint Wind Speed and Wind Direction Frequency Distribution by Stability Class for Chanute F.S.S. Kansas

2.3-23 Persistence of Wind Direction Frequency Distribution at Chanute F.S.S., Kansas

2.3-24 Joint Wind Speed, Wind Direction Frequency Distribution by Stability Class for Chanute F.S.S. Kansas

2.3-25 Joint Wind Frequency Distribution (Annual - 10m)

2.3-26 Joint Wind Frequency Distribution (Annual - 60m)

2.3-27 Joint Wind Frequency Distribution (Monthly - 10m)

2.3-28 Joint Wind Frequency Distribution (Monthly - 60m)

2.3-29 Joint Wind Frequency Distribution by Stability Class (Annual - 10m)

2.3-29a Invalid Data Periods 24-Hours or Greater, March 5, 1979 - March 4, 1980

2.3-29b Data Recovery Statistics

2.3-29c Cases to be Investigated to Assess Effects of Cooling Lake on Atmospheric Transport and Diffusion

2.0-viii Rev. 29 WOLF CREEK LIST OF TABLES (Continued) Table No. Title 2.3-30 Joint Wind Frequency Distribution by Stability Class (Annual - 60m)

2.3-31 Joint Wind Frequency Distribution by Stability Class (Monthly - 10m)

2.3-32 Joint Wind Frequency Distribution by Stability Class (Monthly - 60m)

2.3-33 Wind Direction Persistence

2.3-34 Average Monthly and Annual Daylight Cloud Cover and Sunshine for Topeka, Kansas

2.3-35 Average Monthly and Annual Daylight Cloud Cover and Sunshine for Wichita, Kansas

2.3-36 Persistence of Stability Frequency Distribution at Chanute F.S.S., Kansas

2.3-37 Stability Persistence Summary

2.3-37a Occurrences of A, F, and G Stabilities Persisting Greater than 12 Hours

2.3-38 Hours of Fogging and Icing Due to the Cooling Lake at Selected Receptors for Data Period 6/1/73

 - 5/31/74 

2.3-39 Hours of Fogging and Icing Due to the Cooling Lake at Selected Receptors for Data Period 6/1/74

 - 5/31/75 

2.3-40 Hours of Fogging and Icing Due to the Cooling Lake at Selected Receptors for Data Period 3/5/79

 - 3/4/80 

2.3-41 Hours of Fog Per Month Due to the Cooling Lake at Selected Receptors for Data Period 6/1/74 - 5/31/75 2.3-42 Frequency of Temperature Change 2 C 2.3-43 Frequency of Change in Vapor Density Distribution Due to Cooling Lake at Selected Receptors for Data Period 6/1/73 - 5/31/74

2.0-ix Rev. 0 WOLF CREEK LIST OF TABLES (Continued) Table No. Title 2.3-44 Frequency of Change in Vapor Density Distribution Due to Cooling Lake at Selected Receptors for Data Period 6/1/74 - 5/31/75

2.3-45 Frequency of Change in Vapor Density Distribution Due to Cooling Lake at Selected Receptors for Data Period 3/5/79 - 3/4/80

2.3-46 Phase 1 Meteorological Instrumentation on Tower

2.3-47 Phase 2 Meteorological Instrumentation on Tower

2.3-48 Operational Meteorological Instrumentation on Tower

2.3-49 Location of Meteorological Sensors at the Permanent Meteorological Site

2.3-50 Wind Speed Transmitter True Vs. Indicated Air Speed

2.3-51 Data Recovery Phase 1 (6/73 - 6/75)

2.3-52 Data Recovery Phase 2 (3/5/79 - 3/4/80)

2.3-53 Elevations of Instrumentation Used for Regional Meteorological Measurements

2.3-54 Plant and Meteorological Parameters

2.3-55 Accident Atmospheric Relative Concentrations (x/Q) for 3-Year Data Period

2.3-56 Accident Atmospheric Relative Concentrations (x/Q) for 6/1/73 to 5/31/74 Data Period

2.3-57 Accident Atmospheric Relative Concentrations (x/Q) for 6/1/74 - 5/31/75 Data Period

2.3-58 Accident Atmospheric Relative Concentrations (x/Q) for 3/5/79 - 3/4/80 Data Period

2.3-59 Terrain/Recirculation Factors - Standard Distances - Ground Release

2.3-59d Limiting Atmospheric Dispersion Factor, x/Q (sec/m3)

2.0-x Rev. 29 WOLF CREEK LIST OF TABLES (Continued) Table No. Title 2.3-60 Table Deleted

2.3-60a Terrain/Recirculation Correction Factors at Ten Standard Distances (Ground Release) Based on June 1, 1973 to May 31, 1974 Onsite Data

2.3-61 Terrain/Recirculation Factors - Special Distances

2.3-62 Annual Average Relative Concentration Analysis - Standard Distances - Ground Release 6/1/73 - 5/31/74

2.3-63 Table Deleted

2.3-64 Annual Average Relative Concentration Analysis - Special Distances - Ground Release 6/1/73 - 5/31/74

2.3-65 Table Deleted

2.3-66 Annual Average Relative Concentration Analysis - Standard Distances - Ground Release 6/1/74 - 5/31/75

2.3-67 Annual Average Relative Concentration Analysis - Special Distances - Ground Release 6/1/74 - 5/31/75

2.3-68 Table Deleted 2.3-69 Table Deleted 2.3-70 Annual Average Relative Concentration Analysis - Standard Distances - Ground Release 3/5/79 - 3/4/80 2.3-71 Annual Average Relative Concentration Analysis - Special Distances - Ground Release 3/5/79 - 3/4/80

2.3-72 Table Deleted

2.3-73 Table Deleted

2.3-74 Annual Average Relative Concentration Analysis - Standard Distances - Ground Release 6/1/73 - 3/4/80

2.0-xi Rev. 0 WOLF CREEK LIST OF TABLES (Continued) Table No. Title 2.3-75 Annual Average Relative Concentration Analysis - Special Distances - Ground Release 6/1/73 - 3/4/80

2.3-76 Table Deleted

2.3-77 Table Deleted

2.3-78 Variation of Intake Kc with Wind Direction Unit Vent Release

2.3-79 Relative Concentration (x/Q) at Control Building Air Intake

2.4-1 Existing Gaging Stations in the Upper Neosho River Basin

2.4-2 Geomorphological Characteristics of the Wolf Creek Watershed

2.4-3 Generalized Section of Upper Geologic Formations in the Region Surrounding the Site

2.4-4 Water Rights in Coffey County

2.4-5 Municipalities and Rural Water Districts in Kansas Utilizing the Neosho River Downstream of the Site

2.4-6 Peak Annual Stages and Discharges for Neosho River at Burlington, Kansas (USGS Gage No. 01782510)

2.4-7 Peak Annual Stages and Discharges for the Neosho River at Strawn, Kansas (USGS Gage No. 017824)

2.4-8 Estimated Annual Flood Peak Discharges for the Neosho River Near Burlington at River Mile 343.7

2.4-9 Rainfall Intensity at the Plant Site for 100-Year Storm and Probable Maximum Storm

2.4-10 Probable Maximum Precipitation at Plant Site

2.4-11 Probable Maximum Precipitation, Monthly and All-Season High-Depth Duration Data

2.4-12 Probable Maximum Precipitation Storm Distribution

2.0-xii Rev. 29 WOLF CREEK LIST OF TABLES (Continued) Table No. Title 2.4-13 Comparison of Unit Hydrograph Parameters for Wolf Creek, John Redmond, and Cedar Point Projects

2.4-14 Unit Hydrograph Parameters for Pre- and Post-Project Conditions

2.4-15 Input to SPF and PMF Hydrograph Computations

2.4-16 Summary of Information on Wave Runup Estimates

2.4-17 Dam and Reservoir Characteristics

2.4-18 Initial Conditions and Peak Discharges of Complete Dam Failures

2.4-19 Rating Curve at 8 Miles Downstream of John Redmond Dam

2.4-20 Maximum Water Level and Discharge Determinations

2.4-21 Backwater Computation on Wolf Creek for Combined Flood-Causing Events on the Neosho River

2.4-22 Synthesized Runoff for Wolf Creek in Acre-Feet

2.4-23 Estimated Monthly and Annual Flows in Acre-Feet at John Redmond Damsite

2.4-24 Rainfall in cfs at Chanute, Kansas, 1949-1964

2.4-25 Monthly Average Natural Evaporation in cfs, 1949-1964

2.4-26 Monthly Average Forced Evaporation Due to Plant Heat Rejection in CFS, 1949-1964

2.4-27 Summary of Elevations of PMF and Safety-Related Structures

2.4-28 Hydrogeologic Characteristics of Bedrock Within a 5-Mile Radius of Site

2.4-29 Well Inventory Within 5 Miles of the Site

2.0-xiii Rev. 29 WOLF CREEK LIST OF TABLES (Continued) Table No. Title 2.4-29a Plugging of Existing Piezometers and Existing Wells

2.4-29b Wells in Cooling Lake Area that Require Sealing

2.4-29c Additional Wells in Cooling Lake Area Found and Sealed During Construction

2.4-30 Public Supply Wells Within a 20-Mile Radius of Site

2.4-31 Projected Future Use of Water in Coffey County, Kansas

2.4-31a Projected Future Use of Water in Coffey County, Kansas

2.4-32 Piezometer Water Level Readings - B Borings

2.4-33 Piezometer Water Level Readings - P-HS-ESW-LK-Borings

2.4-34 Permeabilities of Rock Units by Depth

2.4-35 Details of Tanks Postulated to Rupture in Accident Analysis for Wolf Creek Generating Station

2.4-36 Parameters Values Used in Modeling Ground-water Transport of Radionuclides Following Postulated Rupture of Liquid Radwaste Tanks at Wolf Creek Generating Station

2.4-37 Results of Computer Simulation

2.4-38 Test Boring Piezometers in Cooling Lake Area which Require Sealing

2.4-39 Deleted

2.4-40 Summary of Field, Water Pressure Test Results, Ultimate Heat Sink

2.4-41 Design Ground Snow Load

2.5-1 Summary of Folds in Arkansas Within the Regional Area

2.0-xiv Rev. 0 WOLF CREEK LIST OF TABLES (Continued) Table No. Title 2.5-2 Summary of Folds in Iowa Within the Regional Area

2.5-3 Summary of Folds in Kansas Within the Regional Area

2.5-4 Summary of Folds in Missouri Within the Regional Area

2.5-5 Summary of Folds in Nebraska Within the Regional Area

2.5-6 Summary of Folds in Oklahoma Within the Regional Area

2.5-7 Major Periods of Folding Within the Regional Area

2.5-8 Summary of Faults in Arkansas Within the Regional Area

2.5-9 Summary of Faults in Iowa Within the Regional Area

2.5-10 Summary of Faults in Kansas Within the Regional Area

2.5-lOa Comparison of Calculated Peak Ground Acceleration (PGA) Values

2.5-11 Summary of Faults in Missouri Within the Regional Area

2.5-12 Summary of Faults in Nebraska Within the Regional Area

2.5-13 Summary of Faults in Oklahoma Within the Regional Area

2.5-14 Letter from the Director of the Kansas Geological Survey (August 6, 1973)

2.5-14a Letter from the Kansas Geological Survey (December 28, 1981)

2.5-15 Age of Youngest Faulting Within the Regional Area

2.5-15a Summary of Deformation Zones, Heumader Shale Member

2.0-xv Rev. 29 WOLF CREEK LIST OF TABLES (Continued) Table No. Title 2.5-15b Summary of Deformation Zones, Geological Units Other Than the Heumader Shale Member

2.5-16 Oil Wells Drilled in the Vicinity of the Site

2.5-17 Letter from the Director of the Kansas Geological Survey (August 3, 1973)

2.5-18 Modified Mercalli Intensity (Damage) Scale of 1931 (Abridged)

2.5-19 Seismic Events Significant to the Site

2.5-20 Earthquakes Perceptible at the Site

2.5-21 1867 Manhattan (Wamego), Kansas, Earthquake Felt Reports, Intensities Assigned by Dames & Moore

2.5-22 1877 Eastern Nebraska Earthquake Felt Reports, Intensities Assigned by Dames & Moore

2.5-23 1906 Manhattan, Kansas, Earthquake Felt Reports, Intensities Assigned by Dames & Moore

2.5-24 1935 Tecumseh, Nebraska, Earthquake Felt Reports, Intensities Assigned by USCGS

2.5-25 Results of Unconfined Compression Tests on Undis-turbed Soil Samples

2.5-26 Results of Unconfined Compression Tests on Recom-pacted Soil Samples

2.5-27 Results of Direct Shear Test on Soil

2.5-28 Results of Unconsolidated-Undrained Triaxial Compression Tests on Undistributed Soil Samples

2.5-29 Results of Unconsolidated-Undrained Triaxial Compression Tests on Recompacted Soil Samples

2.5-30 Results of Consolidated-Undrained Triaxial Com-pression Tests on Undisturbed Soil Samples

2.0-xvi Rev. 0 WOLF CREEK LIST OF TABLES (Continued) Table No. Title 2.5-31 Results of Consolidated-Undrained Triaxial Com-pression Tests on Recompacted Soil Samples

2.5-32 Results of Unconfined Compression Tests on Rock Core Samples

2.5-33 Results of Compaction Tests on Soil

2.5-34 Field Permeability Test Results - Ultimate Heat Sink

2.5-35 Results of Laboratory Falling Head Permeability Tests on Undisturbed and Recompacted Soil Samples

2.5-36 Results of Atterberg Limits Tests

2.5-37 Results of Moisture and Density Determinations on Soil

2.5-37a Miscellaneous Site Work, Wolf Creek Generating Station, Unit 1

2.5-38 Results of Resonant Column Tests on Rock Core Samples

2.5-39 Bulk Densities of Selected Rock Samples

2.5-40 Results of Resonant Column Tests on Undisturbed Soil Samples

2.5-41 Results of Shockscope Tests

2.5-42 Results of Dynamic Triaxial Compression Tests on Soil

2.5-43 Results of Clay Mineralogy and Slaking Tests on Shale Samples

2.5-44 Results of Swelling Pressure Tests on Shale

2.5-45 Design Static and Dynamic Properties of Subsurface Materials at the Plant Site

2.5-46 Summary of Geophysical Properties of Subsurface Materials at the Plant Site

2.0-xvii Rev. 29 WOLF CREEK LIST OF TABLES (Continued) Table No. Title 2.5-47 Horizontal Coefficients of Friction Against Mass Concrete for Structural Components

2.5-48 Design Static and Dynamic Properties of Subsurface Materials at the ESWS Pumphouse

2.5-48a Results of Density Test

2.5-49 Surface Wave Data in the Category I Area

2.5-50 Ambient Ground Motion Measurements

2.5-51 Summary of Geophysical Properties of Subsurface Materials at the Ultimate Heat Sink

2.5-52 Plant Foundation Dimensions, Elevations, and Loads

2.5-53 Design Static and Dynamic Bearing Capacities of Subsurface Materials at the Plant Site

2.5-54 Settlements of Power Block Foundations

2.5-54a Specification A-3852

2.5-54b Computed, Measured and Allowable Settlements

2.5-55 Soil Parameters for Stability Analysis of ESWS Pumphouse Channel and UHS Slopes

2.5-55a Summary of Consolidated Undrained Triaxial Test Data on UHS Embankment Material

2.5-56 Results of Slope Stability Analysis for UHS Excavated Slopes Using Wedge Analysis

2.5-57 Results of Slope Stability Analysis for ESWS Intake Channel Excavated Slopes

2.5-58 Compressional and Shear Wave Velocities, Ultimate Heat Sink

2.5-59 Surface Wave Data for the Ultimate Heat Sink

2.5-60 Ambient Ground Motion Measurements in the Ultimate Heat Sink

2.0-xviii Rev. 0 WOLF CREEK LIST OF TABLES (Continued) Table No. Title 2.5-60a Vertical Movement Monument Data, UHS Dam

2.5-60b Vertical Movement Monument Data, UHS Dam

2.5-60c Horizontal Movement Monument Data, UHS Dam

2.5-60d Horizontal Movement, UHS Dam

2.5-61 Well and Piezometer Plugging

2.5-62 In-Place Density Test Summary for Main Dam and Saddle Dams Cohesive Embankment Fill

2.5-63 Results from Moisture and Density Tests

2.5-64 Results of Classification Tests (Atterberg Limits and Grain-Size Analysis)

2.5-65 Effective Stress Parameters - Modified Mohr Diagram

2.5-66 Stress Controlled Dynamic Triaxial Test Results

2.5-67 Tests for Dispersive Soils

2.5-67a Filling of Ultimate Heat Sink Reservoir

2.5-67b Observation Period

2.5-67c Ultimate Heat Sink Fill, Special Procedure

2.5-67d Test for Dispersive Soils, UHS Dam

2.5-67e Test for Dispersive Soils, Main Dam and Saddle Dam IV

2.5-67f Letter from James L. Sherard Concerning Dispersive Clays in the UHS Dam

2.5-68 Characteristics of On-Site Aggregate Sources

2.5-68a Qualification Test Data - Rip Rap UHS Dam

2.5-69 Results of Consolidation Tests on Undisturbed and Recompacted Soil Samples

2.0-xix Rev. 29 WOLF CREEK LIST OF TABLES (Continued) Table No. Title 2.5-70 Granular Drainage Blanket Test Fill Results

2.5-71 Grain-Size Distribution for Main Dam Granular Drainage Blanket and Granular Toe Drain

2.5-72 Lakework Monitored Blasts Performed from December 20, 1977 to February 2, 1979

2.5-73 Lift Thickness Summary for Main Dam and Saddle Dams - Cohesive Embankment Fill

2.5-74 Summary of Compaction Data for Main Dam and Saddle Dams

2.5-75 Soil Properties for Main Dam and Saddle Dams

2.5-76 In-Place Density Test Summary for Main Dam and Saddle Dams - Granular Drainage Blanket

2.5-77 Soil Properties for Baffle Dikes A and B

2.5-78 In-Place Density Test Summary for Baffle Dikes A and B - Cohesive Embankment Fill

2.5-79 Lift Thickness Summary for Baffle Dikes A and B - Embankment Fill

2.5-80 Summary of Compaction Data for Baffle Dikes A and B

2.5-81 Remolded Strength Tests

2.5-82 Soil Parameters Used in Stability Analysis of Main Dam

2.5-83 Results of Slope Stability Analysis for Main Dam

2.5-84 Results of Slope Stability Analysis for UHS Dam Slopes

2.5-85 Soil Parameters for Static Stress Analysis of Submerged UHS Dam

2.0-xx Rev. 0 WOLF CREEK LIST OF TABLES (Continued) Table No. Title 2.5-86 Initial Stress and Failure Conditions 2.5-87 Cyclic Shear Strength, f, and Normal Stress, fc, from Stress - Controlled Dynamic Triaxial Test 2.5-88 Computed Factor of Safety f/d for the Finite Element Model of Submerged UHS Dam 2.5-89 Undrained Static Strength After Dynamically Loading the Sample

2.5-90 Furnishing and Installation of Instrumentation 2.5-91 Deleted 2.5-92 Vertical Movement Monument Data, Main Dam

2.5-93 Vertical Movement, Main Dam

2.5-94 Horizontal Movement Monument Data, Main Dam

2.5-95 Horizontal Movement, Main Dam

2.5-96 Piezometer Water Level Elevations, Main Dam

2.5-97 Observed Seepage Rates, Main Dam Station 58+50

2.5-98 1,700 lbs. Riprap Gradations

2.5-99 755 lbs. Riprap Gradations

2.5-100 Measured Flow Rates from Weir at Main Dam Station 56+96

2.0-xxi Rev. 29 WOLF CREEK CHAPTER 2 - LIST OF FIGURES *Refer to Section 1.6 and Table 1.6-3. Controlled drawings were removed from the USAR at Revision 17 and are considered incorporated by reference. Figure # Sheet(s) Title Drawing #* 2.1-1 0 Location of Site Within the State of Kansas 2.1-2 0 Location of Site within Coffey County 2.1-3 0 Property Owned by Applicant 2.1-4 0 Deleted 2.1-5 0 Layout of Dams, Dikes, Spillways, and Outlet Work 2.1-6 0 Site Features 2.1-7 0 Transportation Network Near the Site 2.1-8 0 Cities and Towns Within 50 Miles of the Site 2.1-9 0 1970 Resident Population 0 to 10 Miles 2.1-10 0 1980 Resident Population 0 to 10 Miles 2.1-11 0 1990 Resident Population 0 to 10 Miles 2.1-12 0 2000 Resident Population 0 to 10 Miles 2.1-13 0 2010 Resident Population 0 to 10 Miles 2.1-14 0 2020 Resident Population 0 to 10 Miles 2.1-15 0 1970 Resident Population 10 to 50 Miles 2.1-16 0 1980 Resident Population 10 to 50 Miles 2.1-17 0 1990 Resident Population 10 to 50 Miles 2.1-18 0 2000 Resident Population 10 to 50 Miles 2.1-19 0 2010 Resident Population 10 to 50 Miles 2.1-20 0 2020 Resident Population 10 to 50 Miles 2.1-21 0 Public Facilities and Institutions Within 5 Miles of the Site 2.1-22 0 Cumulative Population Density, 1970 to 2020. Within 50 Miles of the Site 2.2-1 0 Industrial, Transportation, and Military Facilities, 0 to 5 Miles 2.2-2 0 Low Altitude Air Routes and Airports Within 20 Miles 2.2-3 0 High Altitude Jet Routes Within 20 Miles 2.2-4 0 Military Air Routes Within 20 Miles 2.2-5 0 Deleted 2.2-6 1 Mathematical Model for the Control Room Chlorine Analysis Pre-Isolation mode 2.2-6 2 Mathematical Model for the Control Room Chlorine Analysis Post-Isolation mode 2.2-7 0 Deleted 2.2-8 0 Deleted

2.0-xxii Rev. 29 WOLF CREEK CHAPTER 2 - LIST OF FIGURES *Refer to Section 1.6 and Table 1.6-3. Controlled drawings were removed from the USAR at Revision 17 and are considered incorporated by reference. Figure # Sheet(s) Title Drawing #* 2.3-1 0 Regional Climatological Stations 2.3-2 0 Hail Reports, 1955-1967 2.3-3 0 Hail Reports by One-Degree Squares, 1955-1967 2.3-4 0 Hail Reports by Two-Degree Squares, 1955-1967 2.3-5 0 Tornado Reports by One-Degree Squares, 1955-1967 2.3-6 0 Wind Gusts, 1955-1967 2.3-7 0 Wind Storms by One-Degree Squares, 1955-1967 2.3-8 0 Wind Storms by Two-Degree Squares, 1955-1967 2.3-9 0 Average Tracks by Cyclones 2.3-10 0 Seasonal Inversions and Isothermal Maps 2.3-11 0 Isopleths of Seasonal Mean Afternoon Mixing Depths 2.3-12 0 Isopleths of Annual Mean Mixing Depths 2.3-13 0 Mixing Depth Episode Days 2.3-14 0 Forecast Days of High Air Pollution Potential 2.3-15 0 Wind Frequency Distribution in Percent - 3 Years Combined 2.3-16 0 Wind Frequency Distribution in Percent - 6/1/73 - 5/31/74 2.3-17 0 Wind Frequency Distribution in Percent - 6/1/74 - 5/31/75 2.3-18 0 Wind Frequency Distribution in Percent - 3/5/79 - 3/4/80 2.3-19 0 Fogging and Icing Analysis Grid 2.3-20 0 Contiguous Building Arrangement One - Unit Plant 2.3-21 0 Topographic Features within 5 Miles of the Plant Site 2.3-22 1-4 Topographic Cross Sections Within 5 Mile Radius of the Site 2.3-23 0 Topographic Features Within 50 Miles of the Plant Site 2.3-24 1-8 Topographic Cross Sections Within a 50-Mile Radius of the Site 2.3-25 0 Meteorological Tower Plot Plan 2.3-26 0 Variation of Intake KC with Wind Direction 2.4-1 0 General Arrangement 2.4-2 0 Main Dam and Appurtenant Structures 2.0-xxiii Rev. 17 WOLF CREEK CHAPTER 2 - LIST OF FIGURES *Refer to Section 1.6 and Table 1.6-3. Controlled drawings were removed from the USAR at Revision 17 and are considered incorporated by reference. Figure # Sheet(s) Title Drawing #* 2.4-3 1 Subdivision of Plant Site Area for Local PMP 2.4-3 2 Grading Plan Switchyard Area S-0172 2.4-3 3 Drainage Plan Plant Area S-0186 2.4-3 4 Grading and Drainage Plan 2.4-3 4A Manhole, Pipe & Culvert Schedule S-0189 Sheet 1 2.4-3 4B Manhole, Pipe & Culvert Schedule S-0189 Sheet 2 2.4-3 4C Manhole, Pipe & Culvert Schedule S-0189 Sheet 3 2.4-3 4D Manhole, Pipe & Culvert Schedule S-0189 Sheet 4 2.4-3 5 Manhole & Pipe Details S-0191 2.4-3 6 Manhole & Pipe Details S-0296 2.4-3 6A Manhole & Pipe Details S-0296 Sheet 1 2.4-3 6B Manhole & Pipe Details S-0296 Sheet 2 2.4-3 7 Plant Area Roadway Grading & Drainage S-0297 2.4-4 1-3 Grading and Drainage Sections 2.4-5 0 Neosho River Basin in Kansas 2.4-6 0 Wolf Creek Watershed 2.4-7 0 Generalized Geologic Cross Section, Neosho River Basin in Kansas 2.4-8 0 Water Users in Coffey County and Municipal Users Downstream of Site 2.4-9 0 Flood Areas and Profiles, Neosho River Mile 332 to Mile 341 2.4-10 0 Flood Areas and Profiles, Neosho River Mile 326 to Mile 332 2.4-11 0 July 1951 Flood Hydrograph, John Redmond Dam 2.4-12 0 Discharge Frequency Curve for John Redmond Dam 2.4-13 0 PMP Storm Distribution 2.4-14 0 Subdivision of Wolf Creek Watershed for Unit Hydrograph Derivation 2.4-15 0 1-Hour Unit Hydrograph Under Natural Conditions 2.4-16 0 1-Hour Unit Hydrograph For Sub-Basin Drainage Areas 2.4-17 0 100-Year and PMF Hydrograph Under Natural Conditions 2.4-18 0 PMF Hydrographs (Modified Conditions) 2.4-19 0 100-Year and Standard Flood Hydrographs (Modified Conditions) 2.4-20 0 Cooling Lake Area - Capacity Curves 2.4-21 1-3 Service Spillway Plans 2.4-22 0 Spillway Rating Curve Spillway Rating Curve 2.0-xxiv Rev. 29 WOLF CREEK CHAPTER 2 - LIST OF FIGURES *Refer to Section 1.6 and Table 1.6-3. Controlled drawings were removed from the USAR at Revision 17 and are considered incorporated by reference. Figure # Sheet(s) Title Drawing #* 2.4-23 0 Lake Water Level Variation with Time from Flood Routing Analysis 2.4-24 0 Effective Fetch at Plant Location 2.4-25 0 Effective Fetch at Dam Location 2.4-26 0 Reservoir Capacity Curves in Upper Neosho River Basin 2.4-27 0 Spillway Rating Curves in Upper Neosho River Basin 2.4-28 0 Tailwater Rating Curves in Upper Neosho River Basin 2.4-29 0 Standard Project Flood Hydrographs 2.4-30 0 Computed Dambreak Water Release Rates 2.4-31 0 Discharge Rate at the Damsite 2.4-32 0 Control Stations Along the Neosho and Cottonwood Rivers 2.4-33 0 John Redmond Dam Failure Flood Translation 2.4-34 0 Council Grove Dam Failure Flood Translation 2.4-35 0 Marion Dam Failure Flood Translation 2.4-36 0 Cedar Point Dam Failure Flood Translation 2.4-37 0 Flood at Junction of Cedar Creek and Cottonwood River 2.4-38 0 Combination of Marion and Cedar Point Dams Failures Flood Translation 2.4-39 0 Flood at Junction of Neosho and Cottonwood Rivers 2.4-40 0 Multiple Dam Failures Flood Translation 2.4-41 0 Multiple Dam Failures with Standard Project Flood Translation 2.4-42 0 Maximum Flood Stages of Neosho River Near the Wolf Creek Dam 2.4-43 0 Service and Auxiliary Spillways Location 2.4-44 1-2 Auxiliary Spillway Plans 2.4-45 0 Tailwater Rating Curve, Wolf Creek Dam 2.4-46 0 Low Flow Frequency Duration Curves for Neosho River at John Redmond Damsite 2.4-47 0 Simulated Cooling Lake Drawdown Analysis - 1951- 1959 2.4-48 0 Ultimate Heat Sink, Intake Channel Sections 2.4-49 0 Location of Sounding Stations in Ultimate Heat Sink

2.0-xxv Rev. 29 WOLF CREEK CHAPTER 2 - LIST OF FIGURES *Refer to Section 1.6 and Table 1.6-3. Controlled drawings were removed from the USAR at Revision 17 and are considered incorporated by reference. Figure # Sheet(s) Title Drawing #* 2.4-50 0 Water Table Contour Map Within 5 Miles of the Site 2.4-51 0 Generalized East-West Cross-Section through Plant Site Showing Potentiometric Water Levels 2.4-52 0 Well Inventory Within 5 Miles Relative to Cooling Lake and Property Boundary 2.4-53 0 Municipal Ground-Water Supplies Within 20 Miles of the Site 2.4-54 0 Location of Piezometers, B-Series Borings 2.4-55 0 Location of Piezometers, ESW-, HS-, and P-Series Borings 2.4-56 1-18 Variations of Water Levels in Piezometers 2.4-57 0 Generalized Potentiometric Surface Contours of Plattsmouth Member 2.4-58 0 Generalized Potentiometric Surface Contours of Toronto Member 2.4-59 0 Generalized Potentiometric Surface Contours of Ireland Member 2.4-60 0 Water Level Recorder Chart and Precipitation Record at Site 2.4-61 0 Location of Piezometers Requiring Sealing, LK and CW Borings 2.4-62 0 Snow Load Distributions and Coefficients 2.5-1 0 Site Location Map 2.5-2 0 Site Plot Plan 2.5-3 0 Regional Physiographic Map 2.5-4 0 Regional Tectonic Map 2.5-5 0 Regional Geologic Map 2.5-6 0 Regional Geologic Cross Section 2.5-7 1-3 Structure Contour and Lithologic Map of Precambrian Surface in Kansas 2.5-8 0 Regional Bouguer Gravity Anomaly Map 2.5-8a 0 Bouguer Gravity Map of Eastern Kansas 2.5-9 0 Regional Aeromagnetic Anomaly Map 2.5-10 0 Extent of Midcontinent Gravity High 2.5-11 0 Structural Evolution of Regional Tectonic Features 2.5-12 0 Generalized Site - Stratigraphic Column 2.5-13 0 Model of Iowa-Nebraska Segment of Midcontinent Gravity High

2.0-xxvi Rev. 29 WOLF CREEK CHAPTER 2 - LIST OF FIGURES *Refer to Section 1.6 and Table 1.6-3. Controlled drawings were removed from the USAR at Revision 17 and are considered incorporated by reference. Figure # Sheet(s) Title Drawing #* 2.5-14 0 Model of Kansas Segment of Midcontinent Gravity High 2.5-14a 0 Composite Map - Aeromagnetic Intensity and LANDSAT Lineaments 2.5-14b 0 Composite Map - Precambrian Surface and LANDSAT Lineaments 2.5-14c 0 Composite Map - Aeromagnetic Intensity and LANDSAT Lineaments 2.5-14d 0 Composite Map - Precambrian Surface and LANDSAT Lineaments 2.5-15 0 Regional Fold Map 2.5-16 0 Regional Fault Map 2.5-17 0 Oklahoma Fault Map 2.5-18 0 Location of Control Points for Chesapeake Fault Zone for Missouri 2.5-19 0 Location of Oil and Gas Fields 2.5-20 0 Location of Oil Wells 2.5-21 0 Surficial Geologic Map - Site 2.5-22 0 Bedrock Geologic Map - Site 2.5-23 0 Bedrock Geologic Map - Category I Area 2.5-24 0 Bedrock Topography - Site 2.5-25 0 Bedrock Topography - Category I Area 2.5-26 0 Bedrock Topography - Plant Site 2.5-27 0 Physiographic Map - Site 2.5-28 0 Plot Plan - Site 2.5-29 0 Plot Plan - Main Dam 2.5-30 0 Plot Plan - Category I Area 2.5-31 0 Plot Plan - Plant Site 2.5-32 1-2 Explanation and General Notes for Boring and Test Pit Logs 2.5-33 0 Unified Soil Classification System 2.5-34a 1-4 Log of Boring B-1 2.5-34b 1-5 Log of Boring B-2 2.5-34c 1-5 Log of Boring B-3 2.5-34d 1-6 Log of Boring B-4 2.5-34e 1-6 Log of Boring B-5 2.5-34f 1-6 Log of Boring B-6 2.5-34g 1-6 Log of Boring B-7 2.5-34h 1-6 Log of Boring B-8 2.5-34i 1-6 Log of Boring B-9 2.5-34j 1-5 Log of Boring B-10

2.0-xxvii Rev. 29 WOLF CREEK CHAPTER 2 - LIST OF FIGURES *Refer to Section 1.6 and Table 1.6-3. Controlled drawings were removed from the USAR at Revision 17 and are considered incorporated by reference. Figure # Sheet(s) Title Drawing #* 2.5-34k 1-5 Log of Boring B-11 2.5-34l 1-5 Log of Boring B-12 2.5-34m 1-5 Log of Boring B-13 2.5-34n 1-6 Log of Boring B-14 2.5-34o 1-5 Log of Boring B-15 2.5-34p 1-6 Log of Boring B-16 2.5-34q 1-5 Log of Boring B-17 2.5-34r 1-5 Log of Boring B-18 2.5-34s 1-5 Log of Boring B-19 2.5-34t 1-2 Log of Boring B-20 2.5-34u 1-2 Log of Boring B-21 2.5-35a 1-2 Log of Boring P-1 2.5-35b 1-2 Log of Boring P-2 2.5-35c 1-2 Log of Boring P-3 2.5-35d 1-2 Log of Boring P-4 2.5-35e 1-2 Log of Boring P-5 2.5-35f 1-2 Log of Boring P-6 2.5-35g 1-2 Log of Boring P-7 2.5-35h 1-2 Log of Boring P-8 2.5-35i 1-6 Log of Boring P-9 2.5-35j 1-6 Log of Boring P-10 2.5-35k 1-2 Log of Boring P-11 2.5-35l 1-2 Log of Boring P-12 2.5-35m 1-2 Log of Boring P-13 2.5-35n 1-2 Log of Boring P-14 2.5-35o 0 Log of Boring P-15 2.5-35p 0 Log of Boring P-16 2.5-35q 0 Log of Boring P-17 2.5-35r 0 Log of Boring P-18 2.5-35s 0 Log of Boring P-19 2.5-35t 1-2 Log of Boring P-20 2.5-35u 0 Log of Boring P-21 2.5-35v 0 Log of Boring P-22 2.5-35w 0 Log of Boring P-23 2.5-35x 0 Log of Boring P-24 2.5-35y 0 Log of Boring P-25 2.5-35z 0 Log of Boring P-26 2.5-35aa 0 Log of Boring P-27 2.5-35bb 0 Log of Boring P-28 2.5-35cc 0 Log of Boring P-29 2.5-35dd 0 Log of Boring P-30 2.5-35ee 0 Log of Boring P-31

2.0-xxviii Rev. 29 WOLF CREEK CHAPTER 2 - LIST OF FIGURES *Refer to Section 1.6 and Table 1.6-3. Controlled drawings were removed from the USAR at Revision 17 and are considered incorporated by reference. Figure # Sheet(s) Title Drawing #* 2.5-35ff 0 Log of Boring P-32 2.5-35gg 0 Log of Boring P-33 2.5-35hh 0 Log of Boring P-34 2.5-35ii 0 Log of Boring P-35 2.5-35jj 0 Log of Boring P-36 2.5-35kk 0 Log of Boring P-37 2.5-36a 1-2 Log of Boring HS-1 2.5-36b 0 Log of Boring HS-2 2.5-36c 0 Log of Boring HS-3 2.5-36d 0 Log of Boring HS-4 2.5-36e 0 Log of Boring HS-5 2.5-36f 0 Log of Boring HS-6 2.5-36g 0 Log of Boring HS-7 2.5-36h 0 Log of Boring HS-8 2.5-36i 1-2 Log of Boring HS-9 2.5-36j 0 Log of Boring HS-10 2.5-36k 0 Log of Boring HS-11 2.5-36l 0 Log of Boring HS-12 2.5-36m 0 Log of Boring HS-13 2.5-36n 1-2 Log of Boring HS-14 2.5-36o 1-2 Log of Boring HS-15 2.5-36p 0 Log of Boring HS-16 2.5-36q 0 Log of Boring HS-17 2.5-36r 0 Log of Boring HS-18 2.5-36s 0 Log of Boring HS-19 2.5-36t 0 Log of Boring HS-20 2.5-36u 0 Log of Boring HS-21 2.5-36v 0 Log of Boring HS-22 2.5-36w 0 Log of Boring HS-23 2.5-36x 0 Log of Boring HS-24 2.5-36y 0 Log of Boring HS-25 2.5-36z 0 Log of Boring HS-26 2.5-36aa 0 Log of Boring HS-27 2.5-36bb 0 Log of Boring HS-28 2.5-36cc 0 Log of Boring HS-29 2.5-36dd 0 Log of Boring HSA-1 2.5-36ee 0 Log of Boring HSA-2 2.5-36ff 0 Log of Boring HS-30 2.5-36gg 0 Log of Boring HS-31 2.5-36hh 0 Log of Boring ESW-1 2.5-36ii 0 Log of Boring ESW-2

2.0-xxix Rev. 29 WOLF CREEK CHAPTER 2 - LIST OF FIGURES *Refer to Section 1.6 and Table 1.6-3. Controlled drawings were removed from the USAR at Revision 17 and are considered incorporated by reference. Figure # Sheet(s) Title Drawing #* 2.5-36jj 0 Log of Boring ESW-3 2.5-36kk 0 Log of Boring ESW-4 2.5-36ll 0 Log of Boring ESW-5 2.5-36mm 0 Log of Boring ESW-6 2.5-36nn 0 Log of Boring ESW-7 2.5-36oo 0 Log of Boring ESW-8 2.5-36pp 0 Log of Boring ESW-9 2.5-36qq 0 Log of Boring ESW-10 2.5-36rr 0 Log of Boring ESW-11 2.5-36ss 0 Log of Boring ESW-12 2.5-36tt 0 Log of Boring ESW-13 2.5-36uu 0 Log of Boring ESW-14 2.5-36vv 0 Log of Boring ESW-15 2.5-36ww 0 Log of Boring ESW-16 2.5-36xx 0 Log of Boring ESW-17 2.5-36yy 0 Log of Boring ESW-18 2.5-36zz 0 Log of Boring ESW-19 2.5-36aaa 0 Log of Boring ESW-20 2.5-36bbb 0 Log of Boring ESW-21 2.5-36ccc 0 Log of Boring ESW-22 2.5-36ddd 0 Log of Boring ESW-23 2.5-36eee 0 Log of Boring ESW-24 2.5-36fff 1-2 Log of Boring ESW-25 2.5-36ggg 0 Log of Boring ESW-26 2.5-36hhh 0 Log of Boring ESW-27 2.5-36iii 0 Log of Boring ESW-28 2.5-36jjj 0 Log of Boring ESW-29 2.5-36kkk 0 Log of Boring ESW-30 2.5-36lll 0 Log of Boring ESW-31 2.5-36mmm 1-2 Log of Boring B-101 2.5-36nnn 1-2 Log of Boring B-102 2.5-36ooo 1-2 Log of Boring B-103 2.5-36ppp 1-3 Log of Boring B-104 2.5-36qqq 1-3 Log of Boring B-105 2.5-36rrr 1-3 Log of Boring B-106 2.5-36sss 1-3 Log of Boring B-107 2.5-36ttt 1-3 Log of Boring B-108 2.5-36uuu 1-3 Log of Boring B-109 2.5-36vvv 1-3 Log of Boring B-110 2.5-36www 1-3 Log of Boring B-111 2.5-36xxx 0 Log of Boring B-112 2.5-36yyy 1-3 Log of Boring B-112L 2.5-36zzz 0 Log of Boring B-113 2.5-36aaaa 1-3 Log of Boring B-113L 2.0-xxx Rev. 28 WOLF CREEK CHAPTER 2 - LIST OF FIGURES *Refer to Section 1.6 and Table 1.6-3. Controlled drawings were removed from the USAR at Revision 17 and are considered incorporated by reference. Figure # Sheet(s) Title Drawing #* 2.5-36bbbb 1-3 Log of Boring B-114L 2.5-36cccc 0 Log of Boring B-115 2.5-36dddd 1-3 Log of Boring B-115L 2.5-36eeee 1-3 Log of Boring B-118 2.5-36ffff 1-3 Log of Boring B-119 2.5-36gggg 1-3 Log of Boring B-120 2.5-36hhhh 1-3 Log of Boring B-121 2-5-36iiii 1-3 Log of Boring B-122 2-5-36jjjj 1-3 Log of Boring B-123 2-5-36kkkk 1-3 Log of Boring B-124 2-5-36llll 1-3 Log of Boring B-125 2-5-36mmmm 1-4 Log of Boring B-126 2-5-36nnnn 1-3 Log of Boring B-127 2-5-36oooo 0 Log of Boring B-130 2-5-36pppp 1-2 Log of Boring B-131 2-5-36qqqq 1-2 Log of Boring B-140 2-5-36rrrr 0 Log of Boring B-140a 2-5-36ssss 1-2 Log of Boring B-141 2-5-36tttt 1-3 Log of Boring B-142 2-5-36uuuu 1-2 Log of Boring B-143 2-5-36vvvv 1-2 Log of Boring B-144 2-5-36wwww 1-3 Log of Boring B-145 2-5-36xxxx 1-2 Log of Boring B-146 2-5-36yyyy 1-2 Log of Boring B-147 2-5-36zzzz 1-3 Log of Boring B-148 2.5-37a 0 Log of Test Pits TP-1, TP-2 & TP-3 2.5-37b 0 Log of Test Pits TP-4, TP-5 & TP-6 2.5-37c 0 Log of Test Pits TP-7 & TP-8 2.5-37d 0 Log of Test Pits TP-9 & TP-10 2.5-37e 0 Log of Test Pits TP-11 & TP-12 2.5-37f 0 Log of Test Pits HSDC-1 & HSDC-2 2.5-37g 0 Log of Test Pit HSDC-3 2.5-38 0 Soil Thickness Map - Category I Area 2.5-39 0 Soil Thickness Map - Plant Site 2.5-40 0 Soil Conservation Service Soils Map - Site 2.5-41 0 Detailed Site Stratigraphic Column 2.5-42a 0 Photographs of Rock Core 5.5-45.4 feet 2.5-42b 0 Photographs of Rock Core 45.4-83.8 feet 2.5-42c 0 Photographs of Rock Core 83.8-123.1 feet 2.5-42d 0 Photographs of Rock Core 123.1-163.8 feet 2.5-42e 0 Photographs of Rock Core 163.8-204.4 feet 2.5-42f 0 Photographs of Rock Core 204.4-243.5 feet 2.5-42g 0 Photographs of Rock Core 243.5-283.0 feet 2.5-42h 0 Photographs of Rock Core 283.0-323.6 feet 2.0-xxxi Rev. 28 WOLF CREEK CHAPTER 2 - LIST OF FIGURES *Refer to Section 1.6 and Table 1.6-3. Controlled drawings were removed from the USAR at Revision 17 and are considered incorporated by reference. Figure # Sheet(s) Title Drawing #* 2.5-42i 0 Photographs of Rock Core 323.6-362.7 feet 2.5-42j 0 Photographs of Rock Core 362.7-410.4 feet 2.5-42k 0 Photographs of Rock Core 410.4-416.9 feet 2.5-43 0 Isopachous Map of Vinland Member - Site 2.5-44 0 Geologic Cross Sections A-A' and B-B' - Site 2.5-45 0 Geologic Cross Sections C-C' and D-D' - Plant Site 2.5-46 0 Geological Cross Sections E-E' and F-F' - Plant Site 2.5-47 0 Geologic Cross Section - Powerblock to Pumphouse 2.5-48 0 Geologic Cross Section H-H' - Ultimate Heat Sink 2.5-49 0 Geologic Cross Section I-I' - Ultimate Heat Sink 2.5-50 0 Geologic Cross Section J-J' - ESWS Pumphouse 2.5-51 1-2 Geologic Cross Section - ESWS Discharge Pipeline 2.5-52 0 Jointing Map - Site 2.5-53 0 Structure Contours of Plattsmouth Member - Site 2.5-54 0 Structure Contours of Leavenworth Member - Site 2.5-55 0 Structure Contours of Toronto Member - Site 2.5-56 0 Structure Contours of Haskell Member - Site 2.5-57 0 Structure Contours of Stanton Formation - Site 2.5-58 0 Structure Contours of Plattsmouth Member - Category I Area 2.5-59 0 Structure Contours of Plattsmouth Member - Plant Site 2.5-60 0 Structure Contours of Leavenworth Member - Category I Area 2.5-61 0 Structure Contours of Toronto Member - Category I Area 2.5-62 0 Isopachous Map of Douglas Group - Site 2.5-62a 0 Location of Deformation Zones Beyond Plant Areas 2.5-62b 0 Location of Deformation Zones - Power Block - Heumader Shale Member 2.5-62c 0 Location of Deformation Zones - Circulating Water System and Northwest Part of Essential Service Water System - Heumader Shale 2.5-62d 0 Location of Deformation Zones - Southeast Part of Essential Service Water System - Heumader Shale Member 2.5-62e 0 Northeast Part of Essential Service Water System 2.5-63 0 Calcium Solubility Curves 2.5-64 0 Earthquake Intensity and Epicenter Map 2.5-65 0 Docekal Isoseismal Map for 1867 Manhattan, Kansas Earthquake 2.5-66 0 Dubois & Wilson Isoseismal Map for 1867 Manhattan (Wamego), Kansas Earthquake 2.0-xxxii Rev. 28 WOLF CREEK CHAPTER 2 - LIST OF FIGURES *Refer to Section 1.6 and Table 1.6-3. Controlled drawings were removed from the USAR at Revision 17 and are considered incorporated by reference. Figure # Sheet(s) Title Drawing #* 2.5-67 0 Dames & Moore Isoseismal Map for 1867 Manhattan, Kansas Earthquake 2.5-68 0 Isoseismal Map for 1877 Eastern Nebraska Earthquake 2.5-69 0 Docekal Isoseismal Map for 1906 Manhattan, Kansas Earthquake 2.5-70 0 Dubois & Wilson Isoseismal Map for 1906 Manhattan, Kansas Earthquake 2.5-71 0 Dames & Moore Isoseismal Map for 1906 Manhattan, Kansas Earthquake 2.5-72 0 Docekal Isoseismal Map for 1935 Tecumseh, Nebraska Earthquake 2.5-73 0 Neumann Isoseismal Map for 1935 Tecumseh, Nebraska Earthquake 2.5-74 0 Dames & Moore Isoseismal Map for 1935 Tecumseh, Nebraska Earthquake 2.5-75 0 Regional Tectonic Structures, Earthquake Epicenters, and Limits of Glaciation 2.5-76 0 Idealized Block Diagram of Basement and Principal Faults in Central Kansas 2.5-77 0 Attenuation Curves for 1867 Manhattan, Kansas Earthquake 2.5-78 0 Attenuation Curves for 1877 Eastern Nebraska Earthquake 2.5-79 0 Attenuation Curves for 1906 Manhattan, Kansas Earthquake 2.5-80 0 Attenuation Curves for 1935 Tecumseh, Nebraska Earthquake 2.5-81 0 Epicentral Earthquake Intensity vs Horizontal Acceleration 2.5-82 0 Horizontal Response Spectra Safe Shutdown Earthquake 2.5-83 0 Horizontal Response Spectra Operating Basis Earthquake 2.5-84 0 Vertical Response Spectra, Safe Shutdown Earthquake 2.5-85 0 Vertical Response Spectra, Operating Basis Earthquake 2.5-85a 0 Horizontal Response Spectra, Safe Shutdown Earthquake, Compared With the Western Washington Earthquake Response Spectra 2.5-85b 0 Horizontal Response Spectra, Safe Shutdown Earthquake, Compared With the Tokachi-Oki Earthquake Response Spectra

2.0-xxxiii Rev. 28 WOLF CREEK CHAPTER 2 - LIST OF FIGURES *Refer to Section 1.6 and Table 1.6-3. Controlled drawings were removed from the USAR at Revision 17 and are considered incorporated by reference. Figure # Sheet(s) Title Drawing #* 2.5-85c 0 Horizontal Response Spectra, Safe Shutdown Earthquake, Compared With Nuttli's (1973b) Proposed Spectra 2.5-85d 0 Maximum Random Event Spectra Scaled to 0.10g, Spectra Compared With Wolf Creek 5% Damped SSE Spectra 2.5-85e 0 Maximum Nemaha Event Spectra, Scaled to 0.05g, Spectra Compared With Wolf Creek 5% Damped SSE 2.5-86 0 Results of Compaction Tests for Borings 2.5-87 1-3 Results of Compaction Tests for Test Pits 2.5-88a 0 Results of Consolidation Tests - Boring B-1 2.5-88b 0 Results of Consolidation Tests - Boring B-4 2.5-88c 0 Results of Consolidation Tests - Borings B-5 and B-9 2.5-88d 0 Results of Consolidation Tests - Borings P-2 and P-5 2.5-88e 0 Results of Consolidation Tests - Borings P-8 and P-11 2.5-88f 0 Results of Consolidation Tests - Boring HS-16 2.5-88g 0 Results of Consolidation Tests - Boring HS-17 2.5-88h 0 Results of Consolidation Tests - Boring HSA-1 2.5-88i 0 Results of Consolidation Tests - Test Pit-11 2.5-88j 0 Results of Consolidation Tests - Test Pit-12 2.5-89 1-4 Consolidation Test Data 2.5-90 1-7 Results of Particle-Size Analysis 2.5-91 0 Method of Performing Resonant Column Tests 2.5-92 0 Results of Dynamic Triaxial Testing 2.5-93 1-2 Results of Stress-Controlled Cyclic Triaxial Tests for Five Percent Strain 2.5-94 0 Laboratory Data - Shear Moduli for Clay 2.5-95 0 Laboratory Data - Damping Ratios for Clay 2.5-96a 0 Results of Swell Load Testing - Test Pits 1 and 3 2.5-96b 0 Results of Swell Load Testing - Test Pit 5 2.5-96c 0 Results of Swell Load Testing - Test Pit 6 2.5-96d 0 Results of Swell Load Testing - Test Pit 2 and Combination Test Pits 4 and 6 2.5-97a 0 Recommended Design Shear Modulus Versus Shear Strain Curves for the Heumader Shale Member at the ESWS Pumphouse 2.5-97b 0 Recommended Design Shear Modulus Versus Shear Strain Curves for the Heumader Shale Member at the Plant Site 2.5-97c 0 Recommended Shear Modulus Versus Shear Strain Curve for Crushed Rock Pipeline Bedding Material 2.5-97d 0 Recommended Shear Modulus Versus Strain Curve for Crushed Rock Structural Fill 2.0-xxxiv Rev. 28 WOLF CREEK CHAPTER 2 - LIST OF FIGURES *Refer to Section 1.6 and Table 1.6-3. Controlled drawings were removed from the USAR at Revision 17 and are considered incorporated by reference. Figure # Sheet(s) Title Drawing #* 2.5-97e 0 Recommended Damping Ratio Versus Shear Strain Curve for Crushed Rock Backfill 2.5-97f 0 Recommended Design Shear Modulus Versus Shear Strain Curves for In Situ Cohesive Soils at the ESWS Pumphouse 2.5-97g 0 Recommended Design Shear Modulus Versus Shear Strain Curves for Cohesive Backfill at the ESWS Pumphouse 2.5-97h 0 Recommended Damping Ratio Versus Shear Strain Curve for Cohesive Backfill and In Situ Soils at the ESWS Pumphouse 2.5-97i 0 Strain Degradation Curves for Heumader Shale and Maquoketa Shale 2.5-98 1-2 Geophysical Plot Plan - Category I Area 2.5-99 0 Plot Plan of Borehole Geophysical Logging - Site 2.5-100a 0 Birdwell Geophysical Logging - Boring B-4 2.5-100b 0 Birdwell Geophysical Logging - Boring B-5 2.5-100c 0 Birdwell Geophysical Logging - Boring B-6 2.5-100d 0 Birdwell Geophysical Logging - Boring B-7 2.5-100e 0 Birdwell Geophysical Logging - Boring B-11 2.5-100f 0 Birdwell Geophysical Logging - Boring B-16 2.5-101a 0 Seismic Refraction Profile 1 2.5-101b 0 Seismic Refraction Profile 2 2.5-101c 0 Seismic Refraction Profile 3 2.5-101d 0 Seismic Refraction Profile 4 2.5-101e 0 Seismic Refraction Profile 5 2.5-101f 0 Seismic Refraction Profile 4 - Stations 4+95 to 12+05 2.5-101g 0 Seismic Refraction Profile 4 - Stations 14+95 to 18+55 2.5-102a 0 Uphole Compressional Wave Velocity Survey - Boring B-4 2.5-102b 0 Uphole Compressional Wave Velocity Survey - Boring HS-1 2.5-102c 0 Uphole Compressional Wave Velocity Survey - Boring HS-14 2.5-103 0 Excavation Plan 2.5-104 0 Plant Excavation Profiles 2.5-105 0 ESWS Discharge Pipe Encasement and discharge Point Sections 2.5-105a 0 Lean Concrete Status 2.5-105b 1-2 Granular Fill Status 2.5-105c 1-3 Cohesive Backfill Status 2.5-105d 0 Power Block - Structural Fill Statistical Distribution Plot 2.0-xxxv Rev. 29 WOLF CREEK CHAPTER 2 - LIST OF FIGURES *Refer to Section 1.6 and Table 1.6-3. Controlled drawings were removed from the USAR at Revision 17 and are considered incorporated by reference. Figure # Sheet(s) Title Drawing #* 2.5-105e 0 Power Block - Cohesive Fill Statistical Distribution Plot 2.5-105f 0 Power Block - Pipe Bedding Material Statistical Distribution Plot 2.5-105g 0 Power Block - Pipe Bedding Material Statistical Distribution Plot 2.5-105h 0 ESWS Structures - Statistical Distribution Plot 2.5-105i 0 ESWS - Statistical Distribution Plot 2.5-105j 0 ESWS Pipeline and Duct Bank - Statistical Distribution Plot 2.5-105k 0 ESWS Pipeline and Duct Bank - Statistical Distribution Plot 2.5-105l 0 ESWS Pipeline and Duct Bank - Statistical Distribution Plot 2.5-105m 0 ESWS Pipeline and Duct Bank - Statistical Distribution Plot 2.5-105n 0 ESWS Pipeline - Bedding Material Statistical Distribution Plot 2.5-105o 0 ESWS Pipeline and Duct Bank - Bedding Material Statistical Distribution Plot 2.5-105p 0 ESWS Pipeline and Duct Bank - Bedding Material Statistical Distribution Plot 2.5-105q 0 ESWS Pipeline and Duct Bank - Bedding Material Statistical Distribution Plot 2.5-105r 1-2 ESWS Pipeline and Duct Bank - Bedding Material Statistical Distribution Plot 2.5-105s 0 Power Block - Cohesive Fill Statistical Distribution Plot 2.5-105t 0 ESWS Structures - Cohesive Fill Statistical Distribution Plot 2.5-105u 0 ESWS Unit 2 Plug - Cohesive Fill Statistical Distribution Plot 2.5-105v 0 ESWS Pipeline - Cohesive Backfill Statistical Distribution Plot 2.5-105w 0 Typical ESWS Transverse Cross Section 2.5-105x 0 Cross Sections Near the Interface Between the ESWS Pipes and the Control Building 2.5-105y 0 Cross Sections Near the Interface Between the ESWS Pipes and the Pumphouse 2.5-105z 0 Cross Sections Near the Interface Between the ESWS Warming Lines and the Pumphouse 2.5-106 0 Computed Settlement 2.5-106a 1-2 Measured Settlement, Auxiliary Building 2.5-106b 1-2 Measured Settlement, Control Building 2.5-106c 1-2 Measured Settlement, Diesel Generator Building 2.0-xxxvi Rev. 28 WOLF CREEK CHAPTER 2 - LIST OF FIGURES *Refer to Section 1.6 and Table 1.6-3. Controlled drawings were removed from the USAR at Revision 17 and are considered incorporated by reference. Figure # Sheet(s) Title Drawing #* 2.5-106d 1-2 Measured Settlement, Fuel Building 2.5-106e 1-2 Measured Settlement, Radwaste Building 2.5-106f 1-2 Measured Settlement, Reactor Building 2.5-106g 1-4 Measured Settlement, Turbine Building 2.5-106h 0 Measured Settlement, ESWS Pumphouse 2.5-106i 0 Computed and Measured Settlement, Power Block 2.5-106j 0 Measured Settlement, ECCS Pumphouse 2.5-107a 0 Design Criteria for Lateral Earth Pressures - Wolf Creek Site (Granular Backfill) 2.5-107b 0 Design Criteria for Lateral Earth Pressures - Wolf Creek Site (Cohesive Fill) 2.5-107c 0 Auxiliary Building Exterior Wall Design 2.5-107d 0 Control Building Exterior Wall Design 2.5-107e 0 Control Building Exterior Wall Design 2.5-107f 0 Control Building Exterior Wall Design 2.5-107g 0 ESWS Pumphouse Exterior Wall Design 2.5-107h 0 Deleted 2.5-108 0 Ultimate Heat Sink 2.5-109 0 Ultimate Heat Sink - Typical Man-Made Slopes 2.5-110 0 Ultimate Heat Sink - Intake Channel Section 2.5-111 0 Ultimate Heat Sink - Slope Protection Details for Intake Channel Slopes Near Pumphouse 2.5-112 0 Ultimate Heat Sink - Wedge Analysis of Excavated Sites 2.5-113 0 Ultimate Heat Sink - Intake Channel Slope Stability Analysis (Modified Bishop Method) 2.5-113a 0 ESWS Intake Channel Slope Stability Analysis, 3:1 Slope Submerged Condition 2.5-113b 0 ESWS Intake Channel Slope Stability Analysis, 3:1 Slope Submerged with SSE - Effective Stress Parameters 2.5-113c 0 ESWS Intake Channel Slope Stability Analysis, 3:1 Slope Submerged with SSE - Total Stress Parameters 2.5-113d 0 ESWS Intake Channel Slope Stability Analysis, 3:1 Slope End of Construction - Short Term 2.5-113e 0 ESWS Intake Channel Slope Stability Analysis, 3:1 Slope End of Construction - Effective Stress Parameters 2.5-113f 0 ESWS Intake Channel Slope Stability Analysis, 3:1 Slope End of Construction - Total Stress Parameters 2.5-113g 0 ESWS Intake Channel Slope Stability Analysis, 5:1 Slope Submerged Conditions 2.0-xxxvii Rev. 28 WOLF CREEK CHAPTER 2 - LIST OF FIGURES *Refer to Section 1.6 and Table 1.6-3. Controlled drawings were removed from the USAR at Revision 17 and are considered incorporated by reference. Figure # Sheet(s) Title Drawing #* 2.5-113h 0 ESWS Intake Channel Slope Stability Analysis, 5:1 Slope Submerged with SSE 2.5-113i 0 ESWS Intake Channel Slope Stability Analysis, 5:1 Slope Rapid Drawdown 2.5-113j 0 ESWS Intake Channel Slope Stability Analysis, 5:1 Slope End of Construction - Short Term 2.5-113k 0 ESWS Intake Channel Slope Stability Analysis, 5:1 Slope End of Construction - Effective Stress Parameters 2.5-113l 0 ESWS Intake Channel Slope Stability Analysis, 5:1 Slope End of Construction with SSE - Effective Stress Parameters 2.5-113m 0 ESWS Intake Channel Slope Stability Analysis, 5:1 Slope End of Construction - Total Stress Parameters 2.5-113n 0 ESWS Intake Channel Slope Stability Analysis, 5:1 Slope End of Construction with SSE - Total Stress Parameters 2.5-114 0 Plot Plan - Site 2.5-114a 0 UHS Dam - Earth Fill Embankment Statistical Distribution Plot 2.5-114b 0 UHS Dam - Fine Riprap Bedding Statistical Distribution Plot 2.5-114c 0 Consolidated - Undrained Triaxial Test Results, Ultimate Heat Sink Dam 2.5-114d 0 UHS Dam - Statistical Distribution Plot 2.5-115a 0 Typical Section - Main Dam 2.5-115b 0 Main Dam - Slope Stability Analysis - End of Construction 2.5-115c 0 Main Dam - Slope Stability Analysis - Steady State Conditions 2.5-115d 0 Main Dam - Slope Stability Analysis - Rapid Drawdown 2.5-116 0 Ultimate Heat Sink Dam - Plan and Profile 2.5-117 0 Typical Section - UHS Dam 2.5-117a 0 Movement Monument Location - UHS Dam 2.5-118 0 Location of Piezometers 2.5-119 1-3 Plot Plan With Geologic Strip Map and Main Dam Subsurface Sections A-A', A'A", and A'-A 2.5-120 0 Plot Plan With Geologic Strip Map and Subsurface Section - Saddle Dam I 2.5-121 0 Plot Plan With Geologic Strip Map and Subsurface Section - Saddle Dam II 2.5-122 0 Plot Plan With Geologic Strip Map and Subsurface Section - Saddle Dam III 2.0-xxxviii Rev. 29 WOLF CREEK CHAPTER 2 - LIST OF FIGURES *Refer to Section 1.6 and Table 1.6-3. Controlled drawings were removed from the USAR at Revision 17 and are considered incorporated by reference. Figure # Sheet(s) Title Drawing #* 2.5-123 0 Plot Plan With Geologic Strip Map and Subsurface Section - Saddle Dams IV and V 2.5-124 0 Plot Plan With Geologic Strip Map and Subsurface Section - Saddle Dams VI 2.5-125 0 Plot Plan With Geologic Strip Map and Subsurface Section A-A' - Baffle Dike A 2.5-126 0 Plot Plan With Geologic Strip Map and Sub-surface Section - A'-A" - Baffle Dike A 2.5-127 0 Subsurface Sections B-B', C-C', and D-D' - Baffle Dike A 2.5-128 0 Plot Plan With Geologic Strip Map and Sub-surface Section E-E' - Baffle Dike B 2.5-129 0 Subsurface Sections F-F', G-G', and H-H' - Baffle Dike B 2.5-130 0 Plot Plan - Borrow Areas 2.5-131 0 Mohr Diagram for Consolidated Undrained Test 2.5-132 0 Centerline Profiles for Main Dam & Keytrenches 2.5-133 0 Centerline Profiles for Baffle Dikes 2.5-134 0 Location of Compacted Rock and Shale Embankments in Baffle Dike A 2.5-135 0 Stability Analysis Results - UHSD 2.5-136 0 Artificial Accelerogram for Horizontal Ground Motion 2.5-137 0 Artificial Accelerogram for Vertical Ground Motion 2.5-138 0 Submerged UHS Dam - Finite Element Representation for Dynamic Analysis 2.5-139 0 Cyclic Shear Strength for Five Percent Strain and Five Cycles Versus Normal Effective Stress 2.5-140 0 Dynamic Analysis of Soil Stability Along the Base of UHSD (Elevation 1052') 2.5-141 0 Results of Static Triaxial Tests After Cyclic Stressing 2.5-142 0 Movement Monument and Piezometer Locations - Main Dam 2.5-143 0 Location of Seepage Observations at Main Dam 2.5-144 1-3 Observed Seepage and Precipitation Data 2.5-145 1-2 Measured Seepage and Precipitation Data 2.5-146 0 SSE Horizontal Design Spectra 2.5-147 0 SSE Vertical Design Spectra 2.5-148 0 Envelope of Site SSE Horizontal Design Spectra for 2% Damping 2.5-149 0 Envelope of Site SSE Vertical Design Spectra for 2% Damping 2.5-150 0 OBE Horizontal Design Spectra 2.5-151 0 OBE Vertical Design Spectra 2.5-152 0 Lateral Earth Pressure Schematic 2.0-xxxix Rev. 28 WOLFCREEKCHAPTER2.0SITECHARACTERISTICSDuringthePSARstage,whenthepowerblockenvelopeswerebeingdeveloped,WolfCreekwasoneoffoursites(Callaway,WolfCreek,SterlingandTyrone) uponwhichfiveplantsweretobebuiltusingtheSNUPPSstandarddesign.Now, therearetwositesuponwhichtwoplantswerebuilt.TheSNUPPSdesignenvelopesweredevelopedbyuseofthemostrestrictivesiteconditionsimposedbyanyoneofthefouroriginalsitesorbygenericdesigncriteriawhichwereconservativeforeachofthesites.Withthecancellation oftheTyroneplant,however,thefoursiteenvelopingapproachwasmodifiedintheseismicdesignarea(developmentofspectraet.al)forworknotyetcompletedtoincludeonlythethreeremainingsites.RefertoSections2.5and3.7(B)fordetails.Thedesignenvelopeswerenotrevisedtoreflectthe cancellationofSterling.Theelevationsgivenarebasedonthe1929meansealevel(msl)datum. 2.1GEOGRAPHYANDDEMOGRAPHY2.1.1SITELOCATIONANDDESCRIPTION2.1.1.1SpecificationofLocationTheWolfCreekGeneratingStation,UnitNo.1(WCGS)islocatedineasternKansasapproximately75milessouthwestofKansasCity,53milessouthof Topeka,and100mileseast-northeastofWichita,Kansas.Theplantsiteis nearthecenterofCoffeyCountyinHampdenTownship,3.5milesnortheastof thecityofBurlingtonand3.5mileseastoftheNeoshoRiverandthemaindam atJohnRedmondReservoir.Figure2.1-1showsthelocationofthesitein Kansas,andFigure2.1-2locatesitinCoffeyCounty.TheplantsiteislocatedinTownship21South,Range16EastoftheSixthPrincipalMeridian,andTownships20and21South,Range15EastoftheSixth PrincipalMeridian.Thereactorislocated4,235,500metersnorthand264,600meterseastwithinzone15atUniversalTransverseMercatorCoordinatesLatitude38°14'20"NorthandLongitude95°41'20"West.TheWCGSisaStandardizedNuclearUnitPowerPlantSystem(SNUPPS)plant,whichlocatesthereactorcenterlineathypotheticalSNUPPScoordinatesLatitude100,000NorthandLongitude100,000East.TheKansasstateplanecoordinatescorresponding tothesehypotheticalcoordinatesareLatitude584,670NorthandLongitude2,807,250East.2.1-1Rev.1 WOLFCREEK2.1.1.2SiteAreaOfthe11,882acresownedbytheapplicantonandneartotheWCGSsite,9,818acresareoccupiedbythesite,and1,976acreslieoutsideofthesite boundary.Theacreagebeyondthesiteboundaryisleasedasfarmlandandpastureland.Therailroadright-of-waytothesiteboundaryoccupiesabout148acres,88acresofwhichareownedbytheapplicant.Figure2.1-3showsthe landsownedbytheapplicant.Thestationpropertylinesincludeboththeland insidethesiteboundaryandtheleasedlandoutsidetheboundary.Areas modifiedbyconstructionoftheplantinclude135acresforthestation,60acresforthecoolinglakedamsanddikes,and5,090acresforthecoolinglakeatanormalelevationof1,087feet(msl).Figure1.2-44showsthelocation andorientationofprincipalplantstructures,andFigure2.1-5showsthe layoutofthecoolinglake,dams,dikes,andspillways.Theplantexclusion-restrictedarea,shownonFigure2.1-6,lieswithinthesiteboundaryandencompassesapproximately1,118acres,whichareownedbytheapplicant.Thisareaistraversedonlybytheaccessroadtotheplant.Therearenoresidential,commercial,orindustrialstructureswithineithertheexclusion-restrictedareaoftheplantsitearea.TheeffectsoftheWolf CreeklakearediscussedinSection2.1.2.5.ThetransportationnetworkinthesitevicinityisshownonFigure2.1-7.ThemainhighwayarteryintheplantsiteareaisU.S.Highway75,whichrunsinanorth-southdirectionabout0.25milewestofthesiteboundaryand2.8miles westofthereactorlocationatitsclosestpoint.Thefourothermajorroads withina5-mileradiusoftheplantarethefederal-aidsecondaryroutes10,149,153,and1472.ThenearestexistingrailroadtothesiteistheMissouri PacificRailroadlocated9.5milessoutheastofthesiteboundary.Aspurconnectingthesitewiththistrackwasconstructedtoproviderailaccesstothesite.Anotherrailroad(SantaFeRailroad)runninginanorth-southdirectionthroughthesitepropertywasabandonedin1972.ThereisnocommercialwatertrafficontheNeoshoRiverortheJohnRedmondReservoir.2.1.1.3BoundariesforEstablishingEffluentReleaseLimitsTherestrictedarea,whichisusedforestablishingeffluentreleaselimits,enablestheapplicanttofulfilltheirobligationswithrespecttotherequirementsof10CFR20.ThisareaandthedistancefromthestationventstacktotheboundarylineoftherestrictedareaisshownonFigure2.1-6.Therestrictedareaboundarylocationcoincideswiththeexclusionareaboundary.Informationregardingradioactivegaseousandliquideffluents,whichwillallowidentificationofstructuresandreleasepointsaswellasdefinitionsofunrestrictedareaswithinthesiteboundarythatareaccessibletomembersofthepublicisshowninFigure1.2-6.ThedefinitionofunrestrictedareausedinimplementingtheODCMrequirementsforradiologicaleffluentshasbeenexpandedoverthatin10CFR20.1003.TheunrestrictedareaboundarymaycoincidewiththeExclusionAreaboundary,asdefinedin10CFR100.3(a),buttheunrestrictedareadoesnotincludeareasoverwaterbodies.Theconceptofunrestrictedareas,establishedatorbeyondthesiteboundary,isutilizedtokeeplevelsofradioactivematerialsinliquidandgaseouseffluentsaslowasisreasonablyachievable,pursuantto10CFR50.36a.2.1-2Rev.14 WOLFCREEK2.1.2EXCLUSIONAREAAUTHORITYANDCONTROL2.1.2.1AuthorityTheexclusionareaisa1,200-meterradiuscirclecenteredontheWCGS,UnitNo.1reactorandconsistsofapproximately1,100acres.Theexclusionarea boundarylocationcoincideswiththerestrictedareaboundary.Figure2.1-6depictstheexclusion-restrictedareaboundary.TheLicenseesownandcontrol(includingmineralrights)alllandwithintheexclusionarea.Consequently,theyhavefullauthoritytodetermineallactivitieswithintheexclusionarea, includingexclusionorremovalofpersonnelandpropertyfromthearea.Easementsthroughtheexclusionareahavebeengrantedto:1.UnitedTelephoneSystem-MidwestGroup-fortelephoneservicetotheplant.Theeasementextendsnorthandtheneastoutoftheplantsiteintheexclusionarea.2.RuralElectricCooperative-fora69-kVlineoutoftheswitchyardforlocalelectricalservice.Theeasement extendsnorthoutoftheplantsiteintheexclusionarea.Theexclusionareaisnottraversedbyanypublichighwayorrailroad.The Licenseesownandoperatetheplantrailroadfromtheplanttoitsjunction withtheMissouriPacificRailroadapproximately11milesfromtheplant.As Figure2.1-6showsaportionoftheWolfCreeklakecomprisesthemajorityoftheareawithintheexclusionareaandissubjecttothewaterwayexclusionprovidedin10CFRPart100.3(a).RefertoSection2.1.2.5foradiscussionof controlsonthelake.2.1.2.2ControlofActivitiesUnrelatedtoPlantOperationActivitiesunrelatedtoplantoperationwhichmaybepermittedwithintheexclusionareaincludethemaintenanceofthetelephoneandtransmissionlines describedinSection2.1.2.1,refusecollection,equipmentservicing,special maintenance,andtours,visitsorfishingbythepublic.TheLicenseecontrolstheseactivities.RefertoSection2.1.2.5foradiscussionofthecontrolsplaceduponthe activitiesallowedontheWolfCreeklake.2.1-3Rev.10 WOLFCREEKViathecontrolsdescribedabove,theplantstaffwillhaveknowledgeoftheapproximatenumberandlocationofpersonswithintheexclusionarea. Emergencyprocedureobjectivesstatethatnormalevacuationofpersonnelwithin theexclusionareawillbeaccomplishedwithin2hours.2.1.2.3ArrangementsforTrafficControlIntheeventofanemergency,evacuationofspecificsub-zonesandtrafficcontrolaredescribedintheEmergencyPlan.2.1.2.4AbandonmentorRelocationofRoadsNumerousunpavedcountyroadswereabandonedbytheactionoftheCoffeyCountyCommissionerstoeffecttheconstructionoftheWolfCreeklakeandtheWCGS plantsite.Theroadsinsidetheexclusionareathatwereabandonedarethe onesthatmeetatthejunctionofSections5,6,7and8,Township21South, Range16East(seeFigure2.1-6).Theplantaccessroadheadingnorthoutof theplantsitebetweenSections5and6andinsidetheexclusionareawaspaved andupgradedandismaintainedandcontrolledbytheLicensees.2.1.2.5CoolingLakeExclusionAreaEffectsTheLicenseeshaveevaluatedthefeasibilityofpublicuseofthecoolinglake.Publicuseofthelakeisallowed.Areasofthelakerestrictedfrompublic usearetheUltimateHeatSinkandCirculatingWaterintakeareas,the CirculatingWaterdischargearea,andareasaroundtheactivebaldeaglenestsandthoseareasnorthoftheplantaccessroad.Thepublicisinformedof theserestrictionsbyinstructionalmaterial,buoysorotherappropriatemarkers.AfeasibilitystudyoftheusesoftheWolfCreeklakewasprovidedinAppendix2AoftheWolfCreekGeneratingStationEnvironmentalReport-Operating LicenseStage.2.1.3POPULATIONDISTRIBUTION Ingeneral,east-centralKansasispredominantlyalow-populationdensity,rural,agriculturalarea.Table2.1-1presentsthe1960,1970and1980 populationsofincorporatedplaces(Figure2.1-8)within50milesofthesite.Thepopulationsofboththeruralareasandthecommunitieswhichservetheruraleconomydeclinedduringthe1960to1970decades;thisdeclinehasstabilizedinthe1980s.2.1-4Rev.14 WOLFCREEKPopulationstudiesinsupportofthisapplicationweredirectedtowardestimatingthedistributionof1970populationfiguresandestimatingthe projectedpopulationfrom1980to2020(by10-yearincrements)withina50-mile radiusoftheplantsite.Datasourcesandmethodologyusedforthestudiesaresummarizedinthefollowingparagraphs.The1980projectionshavebeenupdatedtoincludedatafromthe1980censusandtheWolfCreekEmergencyPlan, Revision15.Thedistributionsofthecurrentandprojectedpopulationsweredeterminedbyfirstestablishinganetworkofgeographicsectorsandthenapportioningthe availablecensusdata.Toestablishthegeographicsectors,the50-mile-radiusarea(usingtheplantsiteasthecenter)wasdividedbysuperimposingconcentriccirclesandradiallinesoverabasemap.Within5milesoftheplantsite,theconcentric circleswerelocatedat1-mileradialincrements;fortheareafrom10to50 milesofthesite,thecircleswerelocatedatincrementsof10miles.Theseconcentriccircleswerethendividedin16,22.5degreesegments,eachcenteredononeofthe16cardinalcompasspoints.ThisroseformatisillustratedonFigures2.1-9through2.1-20.Thepopulationdistributionwithin50milesofthesitewasbasedon1970censusdata(Reference67).Thepopulationdatafortheareawithin5milesoftheplantsiteweresupplementedbyafieldsurveyinwhicheachoccupiedhouse waslocatedonacountymapandthenumberofresidentstallied.Thisdetailedsurvey,whichdidnotincludetheincorporatedareasofBurlingtonandNewStrawn(sinceactualpopulationsofthesetownswereknown),wasconductedtoprovideanaccuratedistributionofpopulationamongthesmallsectors,rangingfrom0.1to4.5squaremiles,within5milesoftheplantsite.Beyond5miles,thesectorsformedbytheconcentriccirclesandradiallinesarelarge enoughtoincludebothinhabitedandvacantareas,andthusanarea-distributionmethodwasused.WiththismethodthepopulationsofallMinorCivilDivisions(MCD)wereallocatedtosectorsbyarea(Reference67).Where 10percentofanMCDwaswithinagivensector,10percentofthecensus populationwasallocatedtothatsector.ThesumofMCDpopulationportions withinasectorwaspresentedasthesectortotal.Thepopulationprojectionswerebasedlargelyonfederalcensusprojectionsto2020forthenation,andstateprojectionsto1990.Theseprojectionsweresteppeddownfromthenationalandstatelevelstothecountylevel(References 68and69).Inaddition,1975countyprojectionsformulatedbyDr.CorneliaFlorain1975wereused(Reference21).2.1-5Rev.0 WOLFCREEKThestep-downtechnique(Reference26)wasappliedinextendingstateprojectionspast1990toobtainprojectionsatthelocallevel.Thismethod involvesreproportioningofstateprojectionsbasedonchangeinshareofthe state'soverallpopulationrelativetothenation.Also,astheseprojectionsofferaselectionoffertilityandmigrationrates,aconservativenationalfertilityrate,of2.1childrenperwomanthroughtheyear2020,wasassumedfortheseprojections.(In1978theaveragemonthly generalfertilityratewas66.4birthsper1,000women15-44yearsofage. Thisfertilityrateisequivalenttoabout2.0childrenperwomancompleted fertility(Reference54).Interstatemigrationsimilartothatobservedbythestatebetween1965and1975waschosen.SinceprojectionsforspecificMinorCivilDivisions(MCD)werelacking,historictrendswereinvestigated,andtheaveragepercentchangebydecade from1940to1970wascontinuedto2020foreachMCD.Countysumsderivedfrom thesedivisionswerethenreproportionedtocountytotalsderivedfromthestep-downprocedure(Reference26).Thus,ifanareahadgrowninthepast,itwasassumeditwouldcontinuetogrow.TheMCDprojectionswereallocatedtovarioussegmentsinthe0-to50-mileareawiththearea-distributionmethod previouslydescribed.Incaseswherenewresidentialdevelopmentsoccurredwithinthe0-to5-mileareaandhistoricpopulationtrendswerenotreliable,projectionswerebased onthenumberofplannedhomesiteswithineachdevelopment.Anoccupancyfactorof2.9peopleperdwelling(determinedfromafieldsurveyandverifiedbythe1970censusdata)wasusedtoderiveatotalpopulationforeachnewresidentialarea.Thisapproachprovidesaconservativeorhighpopulationprojectionfortheseareas.Nopermanentresidentslivewithin1-mileoftheplantsiteorwithintheareaoccupiedbythecoolinglake.2.1.3.1PopulationWithin10MilesThetotal1980populationwithinthe10-mileareawas6,652,whichresultsinadensityof21peoplepersquaremileandclearlydepictsthearea'srural nature(Table2.1-2).Within5milesoftheplantsite,the3,924residents provideadensityof50peoplepersquaremile.However,whenBurlingtonwithitspopulationof2,901isexcluded,theareawithin5milesoftheplantsitethenhasadensityof13peoplepersquaremile.2.1-6Rev.0 WOLFCREEKThe2020populationprojectionfortheareawithin10milesoftheplantsiteindicatesadeclineinnearlyallsegmentsexceptinthosewhichencompass BurlingtonandNewStrawn.Thesecommunitiesarelocatedprincipallyinthe3-to4-and4-to5-milesegmentsdescribedinTable2.1-2andonFigure2.1-8.However,the2020projectionisnotthemaximum.AsshowninTables2.1-1and2.1-2,the10-milepopulationincreasesveryslowlyfrom6,652in1980andis expectedtodropto6,120in2000.(The1980populationfiguresreflecta largenumberoftransientworkersemployedontheconstructionofWolfCreek GeneratingStation.)Aftertheyear2000the10-milepopulationdeclinesto5,370in2020.Theincreaseanddeclineisrelatedtotheage-structureofthepopulationandtheout-migrationhistoryofthearea.Figures2.1-9through2.1-14presenttheoriginallyprojectedpopulationsinthe0-to10-mileareafrom1970to2020.Theonlyincorporatedcommunitieswithin10milesoftheplantsiteareatBurlington,3.5milestothesouthwest,andNewStrawn,3milestothewest-northwestoftheplantsite(Table2.1-1).Burlingtonhada1980populationof2,901andisexpectedtoundergoonlymoderategrowthby2020.NewStrawnwascreatedwhentheU.S.ArmyCorpsofEngineersrelocatedStrawn(anunincorporatedsettlement)fromtheareatobeinundatedbytheJohnRedmondReservoir,andwasincorporatedin1971(Reference8).Thetowndid notappearinthe1970U.S.Census.Therefore,intheabsenceofhistoricpopulationtrends,estimatesforthefuturehavebeenbasedonthenumberofplannedlotsites.NewStrawniscurrentlygrowing,andhasthecapabilitytoaccommodatesignificantnewresidentialdevelopment.WithinNewStrawn668homeand trailerlotshavebeensubdivided,withapproximately150singlefamilyhomesand63trailerspresentlyoccupiedwithinthetown(References39and6). GrowthinNewStrawnisestimatedat12to15singlefamilyhomesperyear (Reference39).Fromthe1980Census,the1980populationofNewStrawnwas457residents.AsNewStrawnoccupiespartsoftwoofthegeographicsectors,approximately305 ofthesepeopleliveinthewest-northwestsegmentfrom3to4milesfromthesite,and152residentsliveinthenorthwestsegmentfrom3to4milesfrom thesite.2.1-7Rev.0 WOLFCREEKInadditiontoincorporatedNewStrawn,therearetwoadjacentdevelopments,Remer'sPointandHillview,inanunincorporatedareawestofNewStrawn. Presently,thereareatotalof11homesand2mobilehomesinthetwo developments-7homesand2trailersinHillview,and4homesinRemer'sPoint.Itisestimatedthatthereexistsspaceforapproximately40additional dwellingunitswithinthetwodevelopments(References60and30).Full developmentofthesetwoareaswouldresultinatotalpopulationof approximately150residents(assuming2.9personsperdwellingunit).However, thisdevelopmentisunlikelytooccuruntilwellafter1980(References60and30).Ofthispotentialtotalof150residentsinRemer'sPointandHillview,10wouldlocateinthewest-northwestsegment,5to10milesfromtheplant,andtheremainderwouldlocateinwest-northwestsegment,4to5miles,fromthesite.Itshouldbenotedthat,asthehistoricgrowthtrendsfortheregionsuggestdecreasedpopulationgrowthformostcommunities,theaboveincreasedprojectionsarethereforelikelytobeconservativeorhighestimatesoffuturepopulationsforthesecommunities.2.1.3.2PopulationBetween10and50MilesCitiesandtownswithin10to50milesoftheplantsiteareshownonFigure2.1-8andtheir1960,1970and1980censuspopulationsarelistedinTable2.1-1.Manyoftheseincorporatedplacesexperiencedadeclineinpopulationfrom 1960to1970andreturnedtotheirpreviouslevelin1980.Emporia,Kansas,with25,287residentsin1980isthelargestcityinthe10to50-mileregion,whilethenextlargestisOttawawith11,016peoplein1980(Reference47).Themajorityoftheincorporatedplacescontainlessthan1,000people.Thepopulationfortheareafrom10-to-50milesisdividedinto64segmentsranginginsizefrom59to177squaremiles.Theprojectedpopulation distributionfrom10to50milesislistedinTable2.1-3.Theprojected1970 through2020populationdistributionsarecomparedonFigures2.1-15through 2.1-20.Thetotalcumulative1980populationwithintheentire50-milearea surroundingthesitewasapproximately178,596orabout22.7personspersquare mile.2.1-8Rev.0 WOLFCREEKIntheregionwithin10to50milesoftheplantsite,theprojectionsdepictadeclineintheruralareaswithmoderategrowthoccurringonlyinthe vicinitiesofmajorcitiesandtowns(Figure2.1-8andTable2.1-1).Anet populationdeclineof4percentovertheentire0to50-mileareaisprojectedforthe50-yearperiodfrom1970to2020.2.1.3.3TransientPopulationTransientpopulationwithin10milesofthesiteislow.MostseasonalordailyshiftsinpopulationareassociatedwithpublicfacilitiessuchastheJohnRedmondReservoir,schools,etc.Figure2.1-21,PublicFacilitiesandInstitutions,illustratesthegeographiclocationofthetransientpopulationcenterswithin5miles.Tables2.1-4 through2.1-7providedescriptionsofthefacilitiesshownonFigure2.1-21. TheFlintHillsNationalWildlifeRefuge(Table2.1-7)isprimarilyoutsidethe 10-milestudyarea.Bycomparingthepopulationstatistics(enrollmentandusage)onTables2.1-4through2.1-7withthegeographiclocations(Figure2.1-21),currenttransientconcentrationscanbeidentifiedinrelationtotheplantlocation.OneFederal-AidPrimaryhighway(FAP75)andfourFederal-AidSecondary highways(FAS10,FAS149,FAS153,andFAS1472)occurwithin5milesofthe site(Figure2.1-21).Basedonthe1978annualaveragedailytraffic(ADT) countforFAP75andthe1975ADTcountsforthesecondaryhighways,thefollowingrangesoftrafficvolumeswererecordedwithin5milesofthesite (Reference36):RangeofADTRouteOrientation(Vehiclesperday)FAP75N-S2,810-3,800FAS10E-W485-875 FAS149N-S95-110 FAS153E-W75-225 FAS1472E-W90-1252.1-9Rev.10 WOLFCREEKThemajorityofthistrafficvolumeisassociatedwithtraveltoandfromthecityofBurlington.Theotherroadsintheimmediateareaareunpavedrural farmroadsorlowcapacity(weightandvolume)blacktoproads.ThemostimportantsourceoftransientseasonalpopulationinthegeneralareaistherecreationalusageofJohnRedmondReservoirandWolfCreekLake.TheconservationpoolofJohnRedmondReservoirextends3.5to7.2mileswestof thesite.Thefacilitiesthatattractatransientpopulationareboat launchingramps,fishing,picnicfacilities,andcampgrounds.Thepeakmonthly usageatJohnRedmondReservoirwas79,400duringJuly1978(Reference17).TheyearlyvisitationatJohnRedmondDamandReservoiraveragesabout380,000 (yearlychangeinvisitationislargelydependentonweatherconditions [Reference9]).Actual1972visitationwasreportedtobe692,300(Reference 40).WolfCreekLakeaccessislimitedtoapproximately250peopleperday.Therecreationalseasonisyearround,butthepeakmonthsareduringthe summer.Majorsourcesoftransientorseasonalpopulations,suchasthat experiencedduringrecreationaluseofJohnRedmondReservoirandWolfCreekLake,haveestablishedvisitortrendswhichcanbeutilizedasaguideforfutureusageoftheseareas.WiththeexceptionofvisitationatKansasreservoirsandstateparks,transientpopulationsatdistancesof5to50milesareminimalduetotheabsenceofmajorindustrialfacilitiesorrecreationalattractions.ThePomona,Melvern,Toronto,andFallRiverreservoirsandstateparksarelocated within50milesofthesite.Therecreationalfacilitiesavailableateachofthesereservoirsconsistofboatlaunchingramps,picnicshelters,sanitaryfacilities,campgroundsandswimmingbeaches.Locationandactual1978visitationforeachofthesereservoirsaregivenbelow(Reference33):ReservoirandStateParkLocation1978VisitationPomona29milesnorth885,380Melvern19milesnorth896,054 Toronto34milessouth-southwest419,900FallRiver45milessouth-southwest433,500Thetwolargestcitieswithin50milesareEmporia(28mileswest-northwestandOttawa32.5milesnortheast).The1980populationsofthesecities,25,287and11,016respectively,reflecttheabsenceofalargepopulation-industrialsourceinthe16-countyareasurroundingthesite.Transientpopulationinthe areaisnotexpectedtoincreaseduetotheprojectedpopulationdecline(4 percent,Section2.1.3.2)inthenext50years.2.1-10Rev.10 WOLFCREEK2.1.3.4LowPopulationZoneThelowpopulationzone(LPZ)isdefinedastheareawithin2.5miles(4,023meters)fromthereactorcenterasshownonFigures2.1-6and2.1-21.TheLPZ meetstherequirementsasstatedin10CFRPart100.TheLPZdoesnotincludeBurlington,NewStrawn,orHighway75,nordoesitcontainanyareasofheavyresidentialuse.The1970populationofthe20-squaremileareaoftheLPZwas96people.By1980,thepermanentresidentpopulationwasabout114people.Table2.1-8 presentstheestimateddistributionofpopulationin1970and1980withinthe LPZ.MostexitrouteswithintheLPZareunsurfacedtwo-lanecountyroads.Someoftheseroadsmaybeimpassableduringperiodsofrainyweatherexceptfor trackedvehicles,four-wheeldrivevehicles,andfarmtractors.Detailed evacuationprovisionsareaddressedinthedetailedemergencyprocedures.Two improvedaccessroads(oneall-weather)havebeenconstructedandprovideexit routeswithinthesitepropertyboundaryandfromtheLPZarea.TherearenosourcesoftransientpopulationwithintheLPZ.(ThereispresentlynocommitmentbytheLicenseestopublicuseofthecoolinglakeor surroundingland.)Withtheexceptionofresidentialtraffic,thereisno transientpopulationintheLPZ,neitherduringtheworkingdaynorseasonally. NodataareavailableonthefrequencyofresidentialtrafficwithintheLPZ.Theroadsarenotmajorhighwaysbutareunsurfacedcountryroadswhichserve scatteredresidences.Therailroadpassingthroughthesiteareawasabandoned,andtherailshavebeenremoved.Therearenocommercialfacilities within2.5milesofthesite.2.1.3.5PopulationCenterThepopulationcenterorcityclosesttothesitewithapopulationgreaterthan25,000personsisEmporia,Kansas,28mileswest-northwestofthesite. In1980itspopulationwas25,287persons.Thenextcityeligiblefor designationasapopulationcenterisTopeka,Kansas,53milesnorthofthe site.Topeka'sreportedpopulationfor1980is115,266.2.1-11Rev.0 WOLFCREEK2.1.3.6PopulationDensityThesiteislocatedinaverylowpopulationdensityarea.Therangeofdensityvariation,from13personspersquaremileto62personspersquaremile,is verysmall.Thislowdensityindicatesarelativelyhomogeneousruralpopulationcharacteristicofanagriculturalorranchingeconomy.AsshownonFigure2.1-22theprojectedpopulationfrom1980to2020neverexceeds70personspersquaremile.Indeedthecumulativemaximumdensity(62 personspersquaremile)occursintheyear2000forthe0-to5-miledistance. Thereafterthedensitiesdecline.Varyingthefertilityandmigrationassumptionsdoesnotinfluencethelevelsofpopulationdensitysignificantly. Tables2.1-9and2.1-10showcomparisonsofpopulationdistributionsforvariousfertilityandmigrationpatternsfor1980and2020,respectively.Themostconservativeprojection(i.e.high)isthenomigration,2.7childrenperwomanfertilitywhichresultsinamaximumdensity(66personspersquaremile)whichisstillconsiderablylessthan500or1,000personspersquaremile.2.

1.4REFERENCES

1.Anderson,E.,1973,Owner,AndersonAirStrip,writtencommun-ication(June23).2.Bahr,J.,1973,VicePresident,FairAssociation,Burlington,Kansas,writtencommunication.3.Barton,A.M.,1973,Owner,A.M.BartonHatchery,writtencommunication.4.Beeghly,B.E.,1973,Director,PipelineProtectionandMechanicalMaintenance,PhillipsPetroleumCompany,writtencommunication(December11).5.BoardofCommissionersofCoffeyCounty,1968,CoffeyCountyzoningresolution(January29).6.Boyce,E.M.,1979,Owner,ArrowheadHillsGolfCourse,Burlington,Kansas,oralcommunication(May23).7.Brinkman,D.1979,ICONBoatworks,Inc.,Burlington,Kansas,oralcommunication.8.Brown,S.,1979,CoffeyCountyTaxAssessor,CoffeyCountyCourthouse,Burlington,Kansas,oralcommunication.2.1-12Rev.0 WOLFCREEK9.Chester,M.,1979,ProjectManager,U.S.ArmyCorpsofEngineers,JohnRedmondReservoir,Kansas,oralcommunication.10.CoffeyCountyTaxAssessor,1973,Kansasstatisticalschedule,Agriculture:CoffeyCountyTaxAssessor's Office,CoffeyCounty,Kansas.11.Cordell,L.,1973,ResidentEngineer,U.S.ArmyCorpsofEngineers,writtencommunication.12.Cummins,E.J.,1973,127thTacticalFighterTrainingSquadron,KansasAirNationalGuard,written communication:(May8).13.Danner,M.,1973,Owner,DannerFarm,writtencommunication.14.DefenseMappingAgency,1973,Militarytrainingroutes,SectionIIA:DefenseMappingAgency,St.Louis,mapIIA-60(March29).15.DeMott,S.,1979,CountyAppraiser'sOffice,LyonCounty,Kansas,oralcommunication.16.DepartmentofEconomicDevelopment,1969,Kansasaviationneedsstudy:DepartmentofEconomicDevelopment,Salina,Kansas.17.Duncan,D.,1979,ProjectHeadquarters,JohnRedmondReservoir,U.S.ArmyCorpsofEngineers,Tulsa,Oklahoma,oralcommunication.18.Emerson,M.J.,1973,InterindustryprojectionsoftheKansaseconomy,Industryandregionalforecastsfor1980,1990, 2000,2010,and2020-PreparedfortheU.S.BureauofReclamation:DepartmentofEconomicDevelopment,Topeka,Kansas.19.FederalAviationAdministration,1971,FAAairportmasterrecord,FederalAviationAdministration(May20).20.Ferman,B.B.,1973,BatteryC,1stBattalion,127thFieldArtillery,KansasArmyNationalGuard,writtencommuni-cation(April19).21.Flora,C.,1975,DepartmentofAdministration,DivisionofStatePlanning,Topeka,Kansas.2.1-13Rev.0 WOLFCREEK22.Fortenberry,H.Y.,1972,JohnRedmondReservoirarea,CoffeyCounty,Kansas,TheCoffeyCountyzoningresolution,BoardofCountyCommissioners,CoffeyCounty,Kansas(January 14).23.,1973,CountyEngineer,CoffeyCounty,writtencommuni-cation.24.Freeman,E.,1979,Sheriff,CoffeyCounty,Burlington,Kansas,oralcommunications.25.Garrett,Mrs.,1979,Administrator,GoldenAgeLodgeofBurlington,Burlington,Kansas,oralcommunication.26.Greenberg,M.R.,Krueckeberg,D.A.,andMautner,R.,1973,Long-rangepopulationprojectionsforminorcivil divisions,Computerprogramsanduser'smanual:CenterforUrbanPolicyResearch,RutgersUniversity,NewBrunswick,NewJersey(programrevisedbyDames&Moorestaff, Cranford,NewJersey).27.Griffith,W.,1979,Administrator,CoffeyCountyHospital,Burlington,Kansas,oralcommunication(May22).28.Hall,L.,Jr.,1973,Part-owneroftheHBHRockCompany,Inc.,writtencommunication(November20).29.Hagen,R.E.,1973,ActingStateAdministrativeOfficer,SoilConservationService,Salina,Kansas,writtencommunication.30.Harris,J.H.,1979,HillviewDevelopment,NewStrawn,Kansas,oralcommunication.31.Hayen,B.,1973,Co-ownerofGlassco,NewStrawn,Kansas,writtencommunication(April23).32.Helbert,J.R.,1973,Manager,RockCreekCountryClub,Inc.,writtencommunication.33.Herndon,Wayne,1979,StateRecreationPlanner,KansasParkandResourcesAuthority,Topeka,oralcommunication(October30).34.Hoag,R.,1973,Manager,BurlingtonElevator,writtencommun-ication(April30).35.Huff,R.,1973,Owner,Huff'sGardens,writtencommunication(April30).2.1-14Rev.0 WOLFCREEK36.Ijans,C.,1978,KansasDepartmentofTransportation,Plann-ingandDevelopmentDepartment,Topeka,Kansas,oralcommunication(December28).37.InterstateCommerceCommission,Division3,1973,TheAtchison,TopekaandSantaFeRailwayCompany-- Abandonment--FranklinandCoffeyCounties,Kansas, FinanceDocketNo.26591,Washington,D.C.(March7).38.Jackson,D.,1979,CountyAppraiser'sOffice,CoffeyCounty,Kansas,oralcommunication.39.Jones,0.,1979,Mayor,NewStrawn,Kansas,oralcommunication.40.KansasParkandResourcesAuthority,andOblinger-SmithCorporation,1975,OutdoorRecreationPlanforKansas.41.KansasStateBoardofAgriculture,1978,PopulationofKansas,January1,1970throughJanuary1,1978.42.KansasStateDepartmentofAgriculture,1973,WaterResourcesBoard,Openfiles.43.KansasStateDepartmentofHealth,1973,DivisionofEnvironmentalHealth,Openfiles.44.KansasWaterResourcesBoard,1967,Kansaswateratlas,701'ProjectNo.Kansas,ReportNumber16(A).45.______,1971,KansasStateWaterPlanStudies,StatewideLandClassification,IncooperationwithU.S.DepartmentofInterior,BureauofReclamation.46.______,1972,StateWaterPlanStudies,PartB,KansasLong-RangeWaterRequirements.47.Knight,Mrs.,1979,CountyAppraiser'sOffice,FranklinCounty,Kansas,oralcommunication.48.Likes,G.,1973,Owner,PleasantValleyTouristFarm,CoffeyCounty,Kansas,writtencommunication.49.Livergood,J.,1979,KansasDepartmentofTransportation,PlanningandDevelopmentSection,Topeka,Kansas,oralcommunication.50.Logan,M.,1973,CityClerk,Burlington,Kansas,writtencommunication.2.1-15Rev.0 WOLFCREEK51.Long,M.,1979,RefugeManager,FlintHillsNationalWildlifeRefuge,U.S.FishandWildlifeService,Hartford,Kansas,oralcommunication.52.Mackey,H.L.,1974,KansasStateBoardofAgriculture,DivisionofWaterResources,oralcommunication.53.Murphy,G.,1973,ManagerofKatyElevator,writtencommunication.54.NationalCenterforHealthStatistics,1979,VitalStatisticsReport,Births,Marriages,Divorces,andDeathsfor January1979,DHEWPublicationNumber(PHS)79-1120,Vol. 28,No.1.55.NationalOceanSurvey,1973,KansasCitysectionalaeronauti-calchart,NationalOceanSurvey,Washington,D.C.,9thedition.56.Nusz,A.,1973,Owner,NuszElevator,writtencommunication(May3).57.Oros,M.0.,1963,OilandgaspipelinesandindustriesinKansas,OilandGasJournal.58.Rainbolt,R.H.,1973,Owner,RainboltandSonWholesaleBaitandTackle,writtencommunication(April30).59.Reilly,R.C.,1973,EmployeeofPhillipsPipelineCompany,writtencommunication(May3).60.Remer,M.,1979,Remer'sPointDevelopment,NewStrawn,Kansas,oralcommunication.61.Schlicher,V.,1979,CountyAppraiser'sOffice,ShawneeCounty,Kansas,oralcommunication.62.Shotliff,H.E.,1973,Chief,KansasCityARTCCenter,writtencommunication(June6).63.StateGeologicalSurveyofKansas,1973,Welllogs,Openfiles.64.StateHighwayCommissionofKansas,1978,Trafficflowmap,StatehighwaysystemofKansas,Topeka,Kansas.65.SuperintendentofUnifiedSchoolDistrict244,1979,Burlington,Kansas,oralcommunication.2.1-16Rev.0 WOLFCREEK66.Sutton,G.A.,1973,Engineerofplanninganddevelopment,StateHighwayCommissionofKansas,writtencommunication(August1).67.U.S.BureauoftheCensus,1971,Numberofinhabitants,U.S.censusofpopulation--1970,U.S.Bureauofthe Census,FinalReportP.C.(1)-A18,Kansas.68._______,1977,ProjectionsofthepopulationoftheUnitedStates:1977to2050,CurrentPopulationReports,U.S. BureauoftheCensus,SeriesP-25,No.704.69._______,1978,IllustrativeProjectionsofStatePopulations:1975to2000.CurrentPopulationReports,U.S.Bureauof theCensus,DepartmentofCommerce,SeriesP-25,No.735.70.U.S.DepartmentofTransportation,1971,Motorcarriersafetyregulations--rulesandregulations,Federalregister,U.S.DepartmentofTransportation,Vol.36,No. 241.71.Vajne,Mrs.J.,1979,HoneyTreePreschool,NewStrawn,Kansas,oralcommunication.72.Yokum,T.,1979,BiologyInstructor,BurlingtonHighSchool,Burlington,Kansas,oralcommunication.73.WolfCreekRadiologicalEmergencyResponsePlan,Revision15.74.BureauoftheCensus,1981,Numberofinhabitants,U.S.Censusofpopulation--1980,U.S.BureauoftheCensus,FinalReport.2.1-17Rev.0 WOLF CREEK TABLE 2.1-1 Sheet 1 of 4 POPULATION OF INCORPORATED PLACES WITHIN 50 MILES OF THE SITE 1960/1970 1970/1980 Percent Percent Location 1960 1970 Change 1980 Change (miles from site)Allen CountyBasset 67 62 - 7.5 31 -50 27.7 SEElsmore 128 116 - 9.4 104 -10.3 42.0 SEGas 342 438 28.1 543 24 28.3 SEHumboldt 2,285 2,249 - 1.6 2,230 - 0.8 32.1 SSEIola 6,885 6,493 - 5.7 6,938 6.9 25.9 SELa Harpe 529 509 - 3.8 686 34.8 29.6 SEMildred 60 42 -30.0 64 52.4 31.1 ESEMoran 549 550 0.2 643 16.9 35.4 SESavonburg 131 109 -16.8 113 3.7 44.2 SEAnderson CountyColony 419 382 - 8.8 474 24.1 20.8 ESEGarnett 3,034 3,169 4.4 3,310 4.4 23.3 EGreeley 415 368 -11.3 405 10.1 31.8 ENEHarris 36 41 13.9 80 95.0 13.7 NEKincaid 220 189 -14.1 192 1.6 30.5 ESELone Elm 69 66 - 4.3 55 16.7 26.2 ESEWestphalia 249 185 -25.7 204 10.3 10.6 ESEBourbon CountyBronson 354 397 12.1 414 4.3 41.1 SEMapleton 127 112 -11.8 121 8.0 46.0 ESEUniontown 211 286 35.5 371 30.7 46.6 SEButler County(none)Chase CountyCottonwood Falls 971 987 1.6 954 - 3.3 46.4 WNWMatfield Green 95 77 -18.9 71 - 7.8 47.3 WStrong City 659 545 -17.3 675 23.9 46.9 WNW Source: References 67 and 74Rev. 0 WOLF CREEK TABLE 2.1-1 (continued) Sheet 2 of 4 1960/1970 1970/1980 Percent Percent Location 1960 1970 Change 1980 Change (miles from site)Coffey CountyBurlington 2,113 2,099 - 0.7 2,901 38.2 3.5 SWGridley 321 328 2.2 404 23.2 14.2 SWLebo 498 589 18.3 966 64.0 14.5 NWLe Roy 601 551 - 8.3 701 27.2 10.8 SSENew Strawn* - - - 457 - 3.0 NWWaverly 381 510 33.9 671 31.6 11.1 NNEDouglas CountyBaldwin City 1,877 2,520 34.3 2,829 12.3 45.8 NEElk County(none)Franklin CountyLane 282 254 - 9.9 249 - 2.0 35.0 ENEOttawa 10,673 11,036 3.4 11,016 - 0.2 32.5 NEPomona 489 541 10.6 868 60.4 29.9 NNEPrinceton 174 159 - 8.6 244 53.5 27.4 NERantoul 157 163 3.8 212 30.1 35.2 NERichmond 352 464 31.8 510 9.9 25.4 ENEWellsville 984 1,183 20.2 1,612 36.3 46.0 NEWilliamsburg 255 286 12.2 362 -26.6 19.2 NEGreenwood CountyClimax 81 64 -21.0 81 26.6 45.9 SWEureka 4,055 3,576 -11.8 3,425 - 4.2 42.9 SWFall River 226 191 -15.5 173 - 9.4 46.1 SSWHamilton 400 349 -12.8 363 4.0 31.3 SWMadison 1,105 1,061 - 4.0 1,099 3.6 23.6 SWVirgil 229 179 -21.8 169 - 5.6 24.2 SWJohnson County(none)* New Strawn was incorporated in 1971.Rev. 0 WOLF CREEK TABLE 2.1-1 (continued) Sheet 3 of 4 1960/1970 1970/1980 Percent Percent Location 1960 1970 Change 1980 Change (miles from site)Linn CountyBlue Mound 319 308 - 3.4 319 3.6 37.7 ESELa Cygne 810 989 22.1 1,025 3.6 48.0 EMound City 601 714 8.0 755 5.7 47.6 EParker 181 255 40.9 270 5.9 37.5 ELyon CountyAdmire 149 144 - 3.4 158 9.7 34.9 NWAllen 205 175 -14.6 205 17.1 38.4 NWAmericus 300 441 47.0 915 107.5 35.7 WNWBushong 51 39 -23.5 62 59.0 41.5 NWEmporia 18,190 23,327 28.2 25,287 8.4 28.0 WNWHartford 337 478 41.8 551 15.3 14.8 WNWNeosho Rapids 178 234 31.5 289 23.5 17.2 WNWOlpe 722 453 -37.3 477 5.3 25.5 WReading 249 247 - 0.8 244 - 1.2 23.6 NWMiami CountyFontana 138 160 15.9 173 8.1 47.0 ENEOsawatomie 4,622 4,294 -71.1 4,459 3.8 42.8 ENEPaola 4,784 4,622 - 3.4 4,557 - 1.4 48.2 ENEMorris CountyDunlap 134 102 -23.9 82 -19.6 43.2 WNWNeosho CountyChanute 10,849 10,341 - 4.7 10,506 1.6 40.0 SSEEarlton 104 102 - 1.9 79 -22.5 45.6 SSEStark 96 124 29.2 143 15.3 47.5 SEOsage CountyBurlingame 1,151 999 -13.2 1,239 24.0 35.7 NNWCarbondale 664 1,041 56.8 1,518 45.8 39.0 NLyndon 953 958 0.5 1,132 18.2 24.6 NMelvern 376 455 21.0 481 5.7 17.7 NOlivet 116 64 -44.8 65 1.6 16.3 NOsage City 2,213 2,600 17.5 2,667 2.6 27.0 NOverbrook 509 748 47.0 930 24.3 37.4 NQuenemo 434 429 - 1.2 413 -3.7 24.8 NNEScranton 576 575 - 0.2 664 15.5 37.4 NRev. 0 WOLF CREEKTABLE 2.1-1 (continued) Sheet 4 of 4 1960/1970 1970/1980 Percent PercentLocation1960 1970 Change 1980 Change (miles from site)Shawnee CountyAuburn - 261 - 890 241.0 46.2 N Wabaunsee CountyEskridge 519 589 13.5 603 2.4 48.3 NNWHarveyville 204 279 36.8 280 0.4 32.4 NNW Wilson CountyAltoona 490 475 -3.1 564 18.7 48.8 SBenedict 128 91 -28.9 111 22.0 41.5 SBuffalo 422 321 -23.9 386 20.2 35.7 SCoyville 133 93 -30.1 98 5.4 40.1 SSWFredonia 3,233 3,080 -4.7 3,047 -1.1 48.2 S New Albany 104 59 -43.3 78 32.2 47.4 SSW Woodson CountyNeosho Falls 222 184 -17.1 157 -14.7 16.8 SSE Toronto 524 431 -17.7 466 8.1 32.8 SSWYates Center 2,080 1,967 - 5.4 1,998 1.6 23.9 S Rev. 0 WOLF CREEK TABLE 2.1-2 Sheet 1 of 4 RESIDENT POPULATION DISTRIBUTION BY SECTOR AND RADIAL DISTANCE UP TO 10 Miles(1) (2) Radial Distance from Reactor (Miles) 10-MileSector Year 0-1 1-2 2-3 3-4 4-5 5-10 TotalN 1970 0 3 2 9 1 75 90 1980 0 3 8 0 9 108 153 1990 0 10 10 10 10 60 100 2000 0 10 10 10 10 60 100 2010 0 10 10 10 0 40 70 2020 0 10 10 10 0 30 60NNE 1970 0 1 1 5 18 147 172 1980 0 0 7 10 18 260 295 1990 0 10 10 10 20 140 190 2000 0 10 10 10 20 140 190 2010 0 10 10 10 10 110 150 2020 0 0 0 10 10 90 110NE 1970 0 1 4 11 6 74 96 1980 0 1 8 15 7 131 162 1990 0 10 10 10 10 70 110 2000 0 10 10 10 10 60 100 2010 0 0 10 10 10 50 80 2020 0 0 10 10 10 40 70ENE 1970 0 0 7 3 4 77 91 1980 0 0 8 4 8 136 156 1990 0 0 10 10 10 70 100 2000 0 0 10 10 10 60 90 2010 0 0 10 10 10 50 80 2020 0 0 10 10 10 40 70(1) If the projected population is less than 10, the projections have been rounded upward. Thus, if there are 2 persons projected, the number has been rounded to 10.(2) 1980 data has been updated to reflect the results of the 1980 census and information from the Wolf Creek Emergency Plan. Sector populations were determined by distributing population figures minus known incorporated township populations in the same proportions as those present in 1970. Incorporated township populations were added back into the appropriate sector populations. Projections for 1990 thru 2020 have not been modified.Rev. 0 WOLF CREEK TABLE 2.1-2 (continued) Sheet 2 of 4 Radial Distance from Reactor (Miles) 10-MileSector Year 0-1 1-2 2-3 3-4 4-5 5-10 TotalE 1970 0 3 1 1 1 61 67 1980 0 3 1 1 2 108 115 1990 0 10 10 10 10 50 90 2000 0 10 10 10 10 40 80 2010 0 10 0 0 0 30 40 2020 0 10 0 0 0 20 30ESE 1970 0 9 7 3 18 90 127 1980 0 9 11 14 15 159 208 1990 0 10 10 10 10 80 120 2000 0 10 10 10 10 70 110 2010 0 10 10 10 10 50 90 2020 0 10 10 10 10 40 80SE 1970 0 4 7 7 8 107 133 1980 0 4 6 17 8 190 225 1990 0 10 10 10 10 90 130 2000 0 10 10 10 10 90 130 2010 0 10 10 10 10 70 110 2020 0 10 10 10 10 50 90SSE 1970 2 7 7 1 9 260 286 1980 0 7 1 8 15 460 491 1990 0 0 0 10 10 250 270 2000 0 0 0 0 10 240 250 2010 0 0 0 0 10 200 210 2020 0 0 0 0 10 150 160S 1970 0 4 7 14 8 84 117 1980 0 4 0 27 14 149 194 1990 0 0 0 10 10 70 90 2000 0 0 0 10 10 60 80 2010 0 0 0 10 10 50 70 2020 0 0 0 10 10 30 50SSW 1970 0 0 0 0 7 89 96 1980 0 0 0 0 10 158 168 1990 0 0 0 0 10 80 90 2000 0 0 0 0 10 80 90 2010 0 0 0 0 10 60 70 2020 0 0 0 0 10 50 60Rev. 0 WOLF CREEK TABLE 2.1-2 (continued) Sheet 3 of 4 Radial Distance from Reactor (Miles) 10-MileSector Year 0-1 1-2 2-3 3-4 4-5 5-10 TotalSW 1970 2 0 6 652 1,431 211 2,302 1980 0 0 13 910 1,978 374 3,275 1990 0 0 10 790 1,730 230 2,760 2000 0 0 10 860 1,880 230 2,980 2010 0 0 10 780 1,700 200 2,690 2020 0 0 10 690 1,500 170 2,370WSW 1970 0 0 11 29 13 66 119 1980 0 0 18 16 41 117 112 1990 0 0 10 30 10 50 100 2000 0 0 10 30 10 50 100 2010 0 0 10 20 10 40 80 2020 0 0 10 20 10 30 70W 1970 1 0 13 1 0 43 58 1980 0 0 17 3 0 76 96 1990 0 0 10 10 0 30 50 2000 0 0 10 10 0 30 50 2010 0 0 10 10 0 20 40 2020 0 0 10 10 0 10 30WNW 1970 0 0 3 49 14 24 90 1980 0 0 13 507 15 43 578 1990 0 0 10 760 90 20 880 2000 0 0 10 990 100 20 1,120 2010 0 0 10 1,220 110 10 1,350 2020 0 0 10 1,240 120 10 1,380NW 1970 1 0 22 46 9 54 132 1980 0 0 11 22 76 96 205 1990 0 0 20 390 10 40 460 2000 0 0 20 510 10 40 580 2010 0 0 10 630 10 30 680 2020 0 0 10 650 10 20 690NNW 1970 0 0 13 5 5 60 83 1980 0 0 19 14 0 106 139 1990 0 0 10 10 10 50 80 2000 0 0 10 10 10 40 70 2010 0 0 10 10 10 30 60 2020 0 0 10 10 10 20 50Rev. 0 WOLF CREEK TABLE 2.1-2 (continued) Sheet 4 of 4 Radial Distance from Reactor (Miles) 10-MileSector Year 0-1 1-2 2-3 3-4 4-5 5-10 TotalTotal 1970 6 32 111 836 1,552 1,522 4,059 1980 0 32 141 1,709 2,215 2,696 6,652 1990 0 60 140 2,080 1,960 1,380 5,620 2000 0 60 140 2,490 2,120 1,310 6,120 2010 0 50 120 2,740 1,920 1,040 5,870 2020 0 40 110 2,690 1,730 800 5,370Rev. 0 WOLF CREEK TABLE 2.1-3 Sheet 1 of 3 RESIDENT POPULATION DISTRIBUTION BY SECTOR AND RADIAL DISTANCE BETWEEN 10 AND 50 MILES(1) Radial Distance from Reactor (Miles) 10-Mile 50-MileSector Year Total 10-20 20-30 30-40 40-50 TotalN 1970 90 612 2,006 2,280 11,298 16,286 1980 153 643 2,370 3,001 12,097 18,264 1990 100 510 2,030 2,550 16,900 22,090 2000 100 460 2,000 2,680 20,100 25,340 2010 70 360 1,720 2,480 23,100 27,730 2020 60 270 1,440 2,260 26,10O 30,130NNE 1970 172 650 1,593 1,453 3,627 7,495 1980 295 855 2,061 1,556 3,884 8,651 1990 190 570 1,360 1,330 2,950 6,400 2000 190 530 1,240 1,260 2,710 5,930 2010 150 420 990 1,050 2,410 5,020 2020 110 330 780 860 2,100 4,180NE 1970 96 716 1,101 12,846 4,297 19,056 1980 162 906 1,689 12,879 5,153 20,789 1990 110 650 940 15,000 4,430 21,130 2000 100 620 850 15,100 4,520 21,190 2010 80 500 690 14,000 4,160 19,430 2020 70 400 540 12,800 3,750 17,560ENE 1970 91 477 1,449 2,248 9,120 13,385 1980 156 930 1,592 2,364 9,230 14,272 1990 100 330 1,210 2,000 11,400 15,040 2000 90 270 1,100 1,880 12,700 16,040 2010 80 190 890 1,540 12,000 14,700 2020 70 140 710 1,230 11,100 13,250E 1970 67 563 4,266 1,030 1,553 7,479 1980 115 603 4,456 1,090 1,328 7,592 1990 90 380 3,940 810 1,410 6,630 2000 80 310 3,760 730 1,350 6,230 2010 40 220 3,240 560 1,110 5,170 2020 30 160 2,730 420 890 4,230 (1) 1980 data has been updated to reflect the results of the 1980 census.Each zone was assumed to have a total population percentage change equal tothe change in populations of cities in that zone between 1970 and 1980. Zoneswhich contain no cities or cities whose populations are a small fraction ofthe total zone population were assumed to have a total population percentagechange equal to the change in population of all cities within a 50 mile radiusof Wolf Creek between 1970 and 1980.Rev. 0 WOLF CREEK TABLE 2.1-3 Sheet 2 of 3 RESIDENT POPULATION DISTRIBUTION BY SECTOR AND RADIAL DISTANCE BETWEEN 10 AND 50 MILES(1) Radial Distance from Reactor (Miles) 10-Mile 50-MileSector Year Total 10-20 20-30 30-40 40-50 TotalESE 1970 127 466 562 1,212 1,532 3,899 1980 208 514 544 1,326 1,655 4,247 1990 120 310 370 870 1,290 2,960 2000 110 250 300 740 1,190 2,590 2010 90 180 210 550 960 1,990 2020 80 130 150 400 750 1,510SE 1970 133 305 7,525 2,433 1,779 12,175 1980 225 327 8,277 2,856 1,974 13,659 1990 130 210 7,450 2,180 1,370 11,340 2000 130 170 7,370 2,060 1,190 10,920 2010 110 120 6,450 1,720 930 9,330 2020 90 80 5,510 1,410 700 7,790SSE 1970 286 754 1 176 3,810 13,388 19,414 1980 491 880 1,259 3,778 13,570 19,978 1990 270 630 850 3,550 12,300 17,600 2000 250 580 720 3,410 11,600 16,560 2010 210 450 540 2,920 10,100 14,220 2020 160 350 400 2,450 8,710 12,070S 1970 117 152 2,798 986 4,367 8,420 1980 194 163 2,842 1,189 4,436 8,824 1990 90 100 2,430 720 4,730 8,070 2000 80 80 2,240 620 4,930 7,950 2010 70 60 1,860 460 4,360 6,810 2020 50 40 1,500 340 3,770 5,700SSW 1970 96 336 660 290 947 2,329 1980 168 360 707 314 964 2,513 1990 90 220 450 210 680 1,650 2000 90 180 370 170 580 1,390 2010 70 130 270 130 430 1,030 2020 60 90 200 90 310 750SW 1970 2,302 495 452 524 4,332 8,105 1980 3,275 606 427 545 4,173 9,026 1990 2,760 430 210 280 3,570 7,250 2000 2,980 410 140 200 3,200 6,930 2010 2,690 320 90 130 2,590 5,820 2020 2,370 240 50 80 2,040 4,780Rev. 0 WOLF CREEK TABLE 2.1-3 Sheet 3 of 3 RESIDENT POPULATION DISTRIBUTION BY SECTOR AND RADIAL DISTANCE BETWEEN 10 AND 50 MILES(1) Radial Distance from Reactor (Miles) 10-Mile 50-MileSector Year Total 10-20 20-30 30-40 40-50 TotalWSW 1970 119 418 986 868 260 2,651 1980 192 448 1,021 930 278 2,869 1990 100 320 560 480 130 1,590 2000 100 280 410 350 90 1,230 2010 80 210 280 230 60 860 2020 70 150 180 150 40 590W 1970 58 460 1,908 1,415 993 4,834 1980 96 492 2,009 1,515 915 5,027 1990 50 380 1,730 1,280 920 4,360 2000 50 340 1,620 1,220 910 4,140 2010 40 260 1,290 1,000 760 3,350 2020 30 190 1,000 800 620 2,640WNW 1970 90 415 19,119 6,382 1,491 27,497 1980 578 490 20,725 6,842 1,561 30,196 1990 880 370 28,200 8,800 1,320 39,570 2000 1,120 350 33,800 10,300 1,260 46,830 2010 1,350 280 34,300 10,200 1,030 47,160 2020 1,380 220 33,900 9,870 810 46,180NW 1970 132 851 783 1,056 828 3,650 1980 205 1,396 773 1,202 1,316 4,892 1990 460 910 670 900 650 3,590 2000 580 930 620 820 580 3,530 2010 680 800 480 640 440 3,040 2020 690 670 360 480 330 2,530NNW 1970 83 252 3,168 1,314 2,342 7,159 1980 139 270 3,250 1,630 2,508 7,797 1990 80 190 3,350 1,150 2,720 7,490 2000 70 160 3,380 1,070 2,930 7,610 2010 60 120 2,960 850 2,600 6,590 2020 50 90 2,520 650 2,260 5,570Total 1970 4,059 7,922 49,552 40,147 62,154 163,834 1980 6,652 9,883 54,002 43,017 65,042 178,596 1990 5,620 6,510 55,750 42,110 66,770 176,760 2000 6,120 5,920 59,920 42,610 69,840 184,410 2010 5,870 4,620 56,260 38,460 67,040 172,250 2020 5,370 3,550 51,970 34,290 64,280 159,460Rev. 0 WOLF CREEK TABLE 2.1-4 SCHOOLS WITHIN 10 MILES OF THE SITE Location School (miles fromDistrict School Enrollment site) 244 Elementary School 305 4.3 SW Middle School 236 4.3 SW High School 231 4.3 SW Outdoor Laboratory Transient 4.3-5.7 for Environmental from enroll- WNW Education ment listed abovePrivate Honey Tree 30 3.0 NW Preschool (New Strawn) 10 3-year olds Alleluia Academy 9 4.3 SW Immanuel Baptist Academy 17 4.3 SW Life Christian School 14 9.5 SW_______________________Sources: References 65, 71, 72 and 73Note: For locations of some of these facilities, see Figure 2.1-21. Rev. 0 WOLF CREEK TABLE 2.1-5 HOSPITALS AND NURSING HOMES WITHIN 10 MILES OF THE SITE Capacity Planned Location (beds) Staff Expansion (miles from site)CoffeyCounty Hospital 26 80 None 3.7 SWGolden Age Lodge 102 70 None 3.7 SWSources: - References 25, 27 and 73Note: For location of these facilities, see Figure 2.1-21. Rev. 0 WOLF CREEK TABLE 2.1-6 CORRECTIONAL FACILITIES WITHIN 10 MILES OF THE SITE Maximum Capacity LocationFacility (prisoners) Employees (miles from site)CoffeyCounty Jail 19 7 4.2 SW______________________Source: Reference 24Note: For location of this facility, see Figure 2.1-21. Rev. 0 WOLF CREEK TABLE 2.1-7 Sheet 1 of 2 RECREATION FACILITIES WITHIN 10 MILES OF THE SITE Location Location Activities Visitor Statistics (miles from site) Coffey County Baseball 100-150/game 4.2 SW Fairgrounds Football 500-600/game Tractor Pulling 1,700-2,000/contest Drake Park Fishing 25-35 3.3 SW Camping Picnicking Floral Park Band Concerts 75 4.2 SW General Use Picnicking Flint Hills Warmwater Fishing 4,098/month 6.8 - 20.8 NW National Other 3,868/month Wildlife Sightseeing 8,827/month Refuge 16,791/top peak month (June 1978) John Redmond Boating 380,000/year 3.5 W Reservoir Fishing Picnicking Katy Park Tennis 4.6 SW Baseball 50-75 /game Swimming 300 daily Pleasant Campsites 8 permanent 3.2 WSW Valley 5 maximum transient Tourist Farm Rev. 0 WOLF CREEK TABLE 2.1-7 Sheet 2 of 2 RECREATION FACILITIES WITHIN 10 MILES OF THE SITE Location Location Activities Visitor Statistics (miles from site) Wolf Creek Lake Warmwater Fishing Approximately 250 people Wolf Creek Lake per day is adjacent to the site Rock Creek Golf 90-120 at one time 4.8 SW Country Club Dancing Billiards Dining Arrowhead Golf 85-90 day on 3.5 NW Hills summer weekendSources: References 1, 6, 9, 17, 31, 32, 48, 50, and 51Note: For locations of these facilities, see Figure 2.1-21. Rev. 10 WOLF CREEK TABLE 2.1-8 Sheet 1 of 2 POPULATION DISTRIBUTION WITHIN THE LOW POPULATION ZONE, 1970 and 1980* Sector Year 0-1 1-2 2-2.5 Total N 1970 0 3 1 4 1980 0 3 4 7 NNE 1970 0 1 1 2 1980 0 7 5 12 NE 1970 0 1 2 3 1980 0 1 4 5 ENE 1970 0 0 4 4 1980 0 0 4 4 E 1970 0 3 1 4 1980 0 3 1 4 ESE 1970 0 9 4 13 1980 0 9 6 15 SE 1970 0 4 4 8 1980 0 4 3 7 SSE 1970 2 7 4 13 1980 0 7 1 10 S 1970 0 4 4 8 1980 0 4 0 4 SSW 1970 0 0 0 0 1980 0 0 0 0 SW 1970 2 0 3 5 1980 0 0 7 7 WSW 1970 0 0 6 6 1980 0 0 9 9___________________________*For the 2- to 2.5-mile area outside the cooling lake, thepopulation was apportioned 1/2 in the LPZ and 1/2 out of the LPZ(Table 2.1-2). Rev. 0 WOLF CREEK TABLE 2.1-8 (Continued) Sheet 2 of 2 Sector Year 0-1 1-2 2-2.5 Total W 1970 1 0 4 5 1980 0 0 9 9 WNW 1970 0 0 2 2 1980 0 0 7 7 NW 1970 1 0 11 12 1980 0 0 6 6 NNW 1970 0 0 7 7 1980 0 0 10 10 Grand 1970 6 32 58 96 Total 1980 0 38 76 114 Rev. 0 WOLF CREEK TABLE 2.1-9 COMPARISON OF PROJECTED POPULATION DENSITY DISTRIBUTIONS FOR 1980 FOR VARIOUS FERTILITY AND MIGRATION PATTERNS Cumulative Population Density (Persons per Square Mile)Distance 2.1 Fertility(a) 2.7 Fertility(b) from 1965 to 1975 2.1 Fertility(a) 1965 to 1975 2.7 Fertility(b) Site Migration No Migration(c) Migration No Migration(c)0 - 1 0 0 0 00 - 2 10 10 10 100 - 3 10 10 10 100 - 4 38 38 38 390 - 5 47 48 48 490 - 10 16 16 16 160 - 20 10 10 10 100 - 30 23 23 23 23 0 - 40 21 21 21 210 - 50 21 22 22 22aReplacement fertility.bGrowth fertility.cThe no-migration assumption means that continuing out-migration trends would cease. Rev. 0 WOLF CREEK TABLE 2.1-10 COMPARISON OF POPULATION DENSITY DISTRIBUTIONS FOR 2020 FOR VARIOUS FERTILITY AND MIGRATION PATTERNS Cumulative Population Density (Persons per Square Mile) Distance 2.1 Fertility(a) 2.7 Fertility(b) from 1965 to 1975 2.1 Fertility(a) 1965 to 1975 2.7 Fertility(b) Site Migration No Migration(c) Migration No Migration(c)0 - 1 0 0 0 00 - 2 5 5 5 60 - 3 7 7 7 80 - 4 21 21 24 260 - 5 57 59 63 660 - 10 15 16 17 180 - 20 7 7 8 80 - 30 22 22 25 270 - 40 19 20 23 240 - 50 20 21 24 26aReplacement fertility.bGrowth fertility.cThe no-migration assumption means that continuing out-migration trends would cease. Rev. 0 WOLF CREEK 2.2 NEARBY INDUSTRIAL, TRANSPORTATION, AND MILITARY FACILITIES 2.2.1 LOCATIONS AND ROUTES Information in this section is historical and reflects conditions at the time of plant licensing. This material will not be updated as a whole as it establishes the conditions relevant to plant siting. Changes to facilities or conditions will be reviewed and updated only when potential hazards not previously analyzed are identified. 2.2.1.1 Military Facilities The Kansas Army National Guard Armory, located 3.9 miles southwest of the plant site in Burlington, is the only military facility within a 5-mile radius of the plant site. It is currently used by Battery "C", 1st Battalion, 127th Field Artillery, Kansas Army National Guard 35th division. Battery "C" is composed of three officers and 40 enlisted men. Two self-propelled 155-millimeter howitzers are located at the armory. No explosive ordnance or ammunition for the howitzers is stored at the armory. Only a classified amount of small arms ammunition is stored on the premises (Reference 1). Pertinent data regarding the armory are presented in Tables 2.2-1 and 2.2-2 and its location is shown on Figure 2.2-1. No projections concerning the future status of the facility or the future storage of ordinance or ammunition are currently available. A deactivated Nike missile base is located near the town of Melvern, approximately 10 miles north of the plant site. There are no military firing or bombing ranges within 10 miles of the plant site. 2.2.1.2 Manufacturing Plants, Storage Facilities, and Mining 2.2.1.2.1 Manufacturing Plants

The Clarkson Construction Company field office is located 3.1 miles south-southeast of the plant site (Figure 2.2-1). At this facility, Clarkson Construction employs nine persons and stores six twin engine scrapers, two water wagons, a double ganged disc and a shop crane. There is one 2,000-gallon gasoline storage tank located underground. The Company stores up to 20 barrels (55-gallons each) of lube oil and hydraulic fluid. 2.2.1.2.2 Offsite Storage Facilities

There are a number of offsite storage facilities for petroleum and agricultural products within a 5-mile radius of the plant site (Figure 2.2-1). The number of personnel employed at the facilities is shown on Table 2.2-1. Petroleum bulk storage facilities are usually unattended except during loading and unloading operations. There are no current plans for expansion at any of the offsite storage facilities.

2.2-1 Rev. 3 WOLF CREEK The Bolton Oil Company has a bulk storage facility located 4.7 miles southwest of the plant site in Burlington. This facility consists of three 12,000-gallon gasoline storage tanks (Reference 3). The Burlington Municipal Light Plant, located 4.6 miles southwest of the plant site in Burlington, has four 10,000-gallon storage tanks. The tanks store diesel fuel used for electricity generation during peak demand periods (Reference 2). United Oil Company has a plant facility located in Burlington, 4.4 miles southwest of the plant site. There are five storage tanks at this site. Three tanks, two 10,000-gallon, and one 5,000-gallon, are used for gasoline; and two 10,000-gallon tanks are used for diesel fuel (Reference 27). United Oil Company has a bulk storage facility located 4.6 miles southwest of the plant site. There are six tanks at this site; four of these tanks are for gasoline storage, one 10,000 gallon, one 15,000 gallon, and two 3,000 gallon. One 15,000 gallon tank is used for diesel fuel and one 10,000 gallon tank sits empty (Reference 27).

Conoco Oil has a bulk storage facility located in Burlington, 4.7 miles southwest of the plant site. There are four bulk tanks at this facility. Two are 15,000-gallon tanks, one for diesel fuel and one for gasoline. One 4,000-gallon tank stores heating oil, and another 3,000-gallon tank is used for gasoline (Reference 12).

The Standard Oil Company has three bulk storage tanks located 4.7 miles southwest of the plant site in Burlington. There is one 17,600-gallon split tank (8,800 gallons on each side). This stores diesel fuel in half and heating oil in the other half. There is also a 17,600-gallon gasoline storage tank and a 10,000-gallon premium diesel fuel tank (Reference 17). The Union Gas Company has a bulk storage facility located 4.4 miles southwest of the plant site. It consists of one 30,000-gallon propane storage tank (Reference 31).

There are three bulk grain and fertilizer storage facilities within 5 miles of the plant site. The fertilizer stored is usually ammonium nitrate. The KEPCo Generating Facility, located 2.5 miles north of the plant site, has ten 4,200 gallon diesel fuel storage tanks.

2.2-2 Rev. 16 WOLF CREEK The Katy Elevator & Co. is located 4.5 miles southwest of the plant site in Burlington. The elevator has a 120,000-bushel capacity that stores bulk grains such as wheat, milo, and soybeans. The grain is used primarily for livestock feed (Reference 21). The McCurry Feed and Supply Company is located 2.9 miles north of the site at Sharpe. There is one 20,000-bushel bin, one 13,000-bushel bin, and two 7,500-bushel bins, one wood frame storage 8,500 bushel, all used for grain storage. A dry fertilizer building has a storage capacity of 150 tons. There are also two liquid storage tanks: a 24,000-gallon tank for liquid fertilizer and a 6,000-gallon tank for liquid feed (Reference 18).

2.2.1.2.3 Mining Quarrying of limestone is the only mining activity near the plant site. Quarrying in the area is a small-scale operation. The amount of limestone extracted from an individual quarry usually ranges from 30,000 to 50,000 tons. The operating life of quarries in Coffey County is usually from several months to 2 years (Reference 10). The only operating quarry within 5 miles of the site is owned by Nelson Quarry, Inc. It is located 3 miles south-southeast of the plant site (Figure 2.2-1). The quarry has a potential reserve of approximately 150,000 tons of rock. The maximum quantity of explosives stored at the quarry is approximately 15 tons of ammonium nitrate-fuel oil mixture (Reference 25). This quarry is in operation approximately 1/4 of the year; the rest of the time it is unoccupied.

Coal resources are negligible in Coffey County (Reference 5). In the area of the site, only one coal seam of extent is present, the Williamsburg Coal. Throughout the site, this coal ranges in thickness from 0.1 to 0.8 foot and is present in the subsurface at the plant site at a depth of about 104 feet (elevation 1,002) (Section 2.5.1.2). From approximately 1890 to 1916, five small mines were operated near the site with the coal used for home use and threshing operations. These mines were located in Section 21, Township 20 South, Range 17 East (approximately 9 miles northwest of the plant site); Section 29, Township 20 South, Range 17 East (approximately 7.5 miles northwest of the plant site); Section 14, Township 21 South, Range 16 East (approximately 4 miles south-southeast of the plant site); Section 28, Township 21 South, Range 16 East (approximately

2.2-3 Rev. 0 WOLF CREEK 3.5 miles south-southeast of the plant site); and Section 33, Township 21 South, Range 16 East (approximately 4.5 miles southeast of the site) (Reference 4). No mines in the immediate area have been in operation since approximately 1916 and none are proposed. It is presently not economically feasible to remove the thin Williamsburg Coal; therefore, instability due to removal of coal is not a factor to be considered in plant design. The locations of oil fields in and near Coffey County are discussed and illustrated in Section 2.5. The closest producing oil field is the Avon Field, located 5.5 miles south-southwest of the plant site. The production quantities are also discussed in Section 2.5. 2.2.1.2.4 Onsite Storage Facilities Storage vessels, which are not part of the standard plant, will be provided in the plant site area for the following chemicals: Stored under pressure: Oxygen Hydrogen Carbon Dioxide Nitrogen Ethanolamine (cover gas may be slightly pressurized) Not stored under pressure: Heating Fuel Oil Sulfuric Acid Sodium Hydroxide Ammonium Hydroxide or Ethanolamine Sodium Hypochlorite Soldium Bromide Anti-Scale Refer to Section 9.5.8 on the effects of stored gasses on the operability of the Emergency Diesel Engines. A description of the storage vessels for each of these substances is given below. 2.2.1.2.4.1 Hydrogen Hydrogen is used as a coolant for the generator and for maintaining water chemistry in the plant. Hydrogen is stored as a gas in high pressure storage vessels located near the 345-kilovolt switchyard and adjacent to the carbon dioxide storage area as shown on Figure 1.2-44. The vessels have been designed to accommodate a maximum pressure of 2,450 psig and have a combined capacity of approximately 120,000 standard cubic feet of hydrogen. Safety relief valves are provided to prevent a rupture of the vessels.

2.2-4 Rev. 22 WOLF CREEK The bulk hydrogen storage facility is located 975 feet from the nearest safety-related structure which is the Auxiliary Building. Due to the distance this structure is from any safety-related structure, a postulated fire within this facility does not pose a hazard to systems required for safe shutdown. The bulk storage area is rocked and kept brush free to prevent any brush fire from impinging on the storage tanks. There is a fire hydrant within 100 feet of the facility and portable fire extinguishers. Within the facility, the truck unloading piping is provided with one check valve, one shutoff valve and one purge valve. The purge pipe is piped away from the operator and vented upwards to the atmosphere. The purge pipe is also protected from entrance of rain, snow, dust, and other debris.

The truck unloading stanchion has equipment to electrically ground the trucks, control cabinet piping, steel framing, and the storage tubes. The main generator is maintained at a minimum of 90% H2 purity. During normal operation hydrogen is supplied to the main generator from the bulk storage through the regulator and into the upper sparging line. If maintenance is required, the main generator is first purged with CO2, from the bulk storage through the repositioned 2-port selector valve and into the lower sparging line. The hydrogen is forced through the upper sparging lines and out the vent on the Turbine Building roof. There is a portable gas monitor connected to the test plug on the exhaust line to measure the purity of hydrogen or carbon dioxide going out the vent. When the hydrogen concentration in the generator is about 5% (95% CO2) the generator is then opened to atmosphere. After maintenance is complete, the generator is purged with CO2 again. The CO2 concentration leaving the vent line is measured and when the CO2 concentration is above 75% then the generator can be purged with hydrogen. The generator seal oil system is designed to provide the hydrogen seal. There is a normal pump and an emergency D.C pump for backup protection and the main turbine lube oil system can be used if needed. The seal oil that returns first enters a hydrogen detraining tank to allow any hydrogen to be vented back to the generator. The seal oil system is protected from fire by an automatic water spray system actuated by thermal detectors which alarm in the main control room. Any hydrogen leakage from the generator that enters the upper floor of the Turbine Building is exhausted by the Turbine Building roof fans. The Volume Control Tank is the only other piece of equipment that uses bulk hydrogen. There is only a hydrogen and a nitrogen supply to this tank. There is no interface with the atmosphere.

During normal plant operations the operating agent's Administrative procedures specify the use of proper tools and safety precautions while working in areas or on equipment that contains hydrogen.

2.2.1.2.4.2 Carbon Dioxide Carbon dioxide is used for purging the turbine generator. Carbon dioxide is stored as a liquid in a refrigerated, 3-ton capacity storage vessel located near the 345-kilovolt switchyard and adjacent to the hydrogen storage area as shown on Figure 1.2-44. The storage vessel was designed to accommodate a normal pressure of 300 psig and maximum pressure of 350 psig. Safety relief valves are provided to prevent a rupture in the vessel.

2.2-5 Rev. 22 WOLF CREEK Carbon dioxide is a hazardous chemical that can act as an asphyxiant. Concentrations of 10 percent (100,000 ppm) can produce unconsciousness and death from oxygen deficiency. The federal standard for permissible exposure limits to carbon dioxide is a time-weighted average of 5,000 ppm (9,000 mg/m3) for a normal 8-hour day or 40 hour work week (Reference 29).

2.2.1.2.4.3 Nitrogen Nitrogen is used as an inert blanket gas for piping and for the accumulator tanks in the high pressure injection system. Nitrogen is stored as a liquid in a 3,200-gallon (gross), 3,082-gallon (net), (287,000 standard cubic feet of nitrogen) capacity cryogenic vessel located southwest of the plant and adjacent to the oxygen storage area as shown on Figure 1.2-44. The cryogenic vessel was designed to accommodate a maximum pressure of 245 psig; the tank is provided with safety relief valves and rupture discs to prevent a rupture of the cryogenic vessel. This low-pressure nitrogen system may be used for an emergent purge of the Main Generator. At the same location, nitrogen gas is also stored in high pressure storage vessels. These vessels have been designed to accommodate a maximum pressure of 2,450 psig and have a combined maximum capacity of approximately 35,520 standard cubic feet of nitrogen. A safety relief is provided to prevent a rupture of the high pressure vessels. 2.2.1.2.4.4 Oxygen

Oxygen gas is utilized in the chemical volume and control system hydrogen recombiner. Oxygen gas is stored in high pressure storage vessels located southwest of the plant and adjacent to the nitrogen storage area as shown on Figure 1.2-44.

The storage vessels were designed to accommodate a maximum pressure of 2,450 psig and have a combined capacity of approximately 60,900 standard cubic feet of oxygen. Safety relief valves are provided to prevent a rupture of the vessels.

2.2.1.2.4.5 Heating Fuel Oil A maximum of 470,000 gallons of No. 2 grade fuel oil is stored at the site. The storage tank is located southwest of the power block (Figure 1.2-44) and is confined by a berm which prevents the release of fuel oil if failure of the tank should occur. The spillage from the tank would be handled according to a spill prevention control and countermeasure plan and would have no adverse environmental impact. No. 2 grade fuel oil has a low volatility since its vapor pressure is usually less than 0.1 pound per square inch. 2.2.1.2.4.6 Sulfuric Acid A maximum of 11,000 gallons of a 66 Baume solution of sulfuric acid is stored indoors at the shop building. The acid is stored in a carbon steel tank lined with a protective coating which is confined by a berm. This prevents the accidental release of sulfuric acid to the immediate area.

2.2-6 Rev. 26 WOLF CREEK A maximum of 6400 gallons of a 66 Baume' solution of sufuric acid is stored indoors at the wastewater treatment facility. The acid is stored in a carbon steel tank lined with a protective coating which is confined by a curbed area which drains to a sump that discharges into the wastewater treatment system retention basins. This prevents the accidental release of sulfuric acid to the immediate area. Sulfuric acid is a hazardous chemical that is irritating to the skin, eyes and mucous membranes. The federal standard for permissible exposure limits is a time-weighted average of 2 mg/m3 for a normal 8-hour day or 40-hour work week (Reference 29). 2.2.1.2.4.7 Sodium Hydroxide A maximum of 16,000 gallons of a 50-percent solution of sodium hydroxide is stored in a carbon steel tank lined with a protective coating indoors at the shop building (Figure 1.2-44). This tank is confined by the same berm used to confine the sulfuric acid tank to prevent any accidental releases to the immediate area.

A maximum of 17,900 gallons of 50-percent solution of sodium hydroxide is stored indoors at the wastewater treatment facility in a carbon steel tank lined with a protective coating. This tank is confined by a curbed area which drains to a sump that discharges into the wastewater treatment system retention basins in order to prevent accidental releases to the immediate area or mixing with the contents of the adjacent acid storage tank. Sodium hydroxide is a hazardous chemical that is very corrosive to body tissue. The federal standard for permissible exposure limits is 2 mg/m3 for an 8-hour time-weighted average concentration (Reference 29). 2.2.1.2.4.8 Ammonia Hydroxide (28-30%) A maximum of (22) 55 gallon barrels of ammonium hydroxide is stored in a separate storage room in the Turbine Building. Ammonium hydroxide is a hazardous chemical that is irritating and corrosive to the eyes, skin and mucous membranes. The current federal standard (NIOSH) recommends a ceiling of 50 ppm for ammonia gas. 2.2.1.2.4.9 Hydrazine (35% solution) Hydrazine is purchased in a 35% contained hydrazine solution and transferred into various permanent site storage tanks. After hydrazine is added to a permanent site storage tank, the hydrazine solution is further diluted to less than 17.0% solution before being injected into the process fluid systems. A maximum of 1200 gallons of 35% hydrazine solution may be stored in the turbine building in any combination of 55 gallon drums or totes in room 4326 or in the bermed area for tanks TAQ01A/B and TAQ02A/B (totes are a returnable stainless steel small bulk tanks). An alternate less toxic chemical known as Carbohydrazide is also used for oxygen control in place of hydrazine. Hydrazine is a hazardous chemical that is a suspect human carcinogen and is irritating to the skin, eyes and membranes. The federal standard for permissible exposure limits is a time-weighted average of 1 ppm (1.3 mf/m3) for a normal 8-hour workday of a 40 hour workweek. 2.2-7 Rev. 24 WOLF CREEK 2.2.1.2.4.10 Sodium Hypochlorite, 7-15% solution Sodium hypochlorite, in conjunction with sodium bromide, is used to control biological growth in the service water and circulating water systems. Sodium hypochlorite is a liquid, and it is stored in a single, nominal 10,000 gallon, fiber glass tank. The tank is located inside the Chemical Addition Building (CAB) and is vented to the outside. The CAB berm is designed to contain accidental leakage. Sodium hypochlorite is corrosive, and it is an irritant when inhaled, ingested or contacts the skin and eyes. It is not volatile, flammable or explosive.

2.2.1.2.4.11 Sodium Bromide, 40% solution Sodium bromide, in conjunction with sodium hypochlorite, is used to control biological growth in the service water and circulating water systems. Sodium bromide is a liquid, and it is stored in a single, nominal 6,000 gallon, polyolefin tank. The tank is located inside the CAB and is vented to the outside. The CAB berm is designed to contain accidental leakage. Sodium bromide is moderately irritating to the eyes. It is not volatile, flammable or explosive. 2.2.1.2.4.12 Dispersant/Antiscalant (Anti-Scale) Anti-scale chemical is used to prevent precipitation of scale-forming salts in the service water and circulating water systems. The anti-scale chemical is a liquid and it is stored in a single nominal 6,000 gallon polyethylene tank. The tank is located inside the CAB and is vented to the outside. The CAB berm is designed to contain accidental leakage.

The anti-scale chemical is a dispersant/anti-scalant. 2.2.1.3 Airports and Air Routes 2.2.1.3.1 Airports The Burlington Municipal Airport evaluated below has been replaced by the Coffey County Airport which opened in 1989 and is within five miles of the plant. Hazards associated with this airport are evaluated in USAR Section 3.5.1.6. There is one small airport within 10 miles of the plant site (Figure 2.2-2) (Reference 22). The Burlington Municipal Airport, located 6.6 miles west-southwest of the plant site, is a public airport serving Burlington. It has a turf runway 3,500 feet long and 98 feet wide with an orientation of 19 north-northeast and 199 south-southwest. The airport has no facilities and is unattended. Communications are through the Emporia Flight Service Station (Reference 23). No figures are currently available for frequency of aircraft operations. It is currently classified as a small aircraft airport and has no based aircraft. The Kansas Airport System Plan projected the Burlington Airport to have 10 based aircraft in 1980 with 4,000 total operations. By 1995, there are expected to be 22 based aircraft with a total of 12,500 operations (Reference 32).

2.2-8 Rev. 24 WOLF CREEK 2.2.1.3.2 Air Routes The centerlines of ten federal airways pass within 20 miles of the plant site. Five of these are Low Altitude (below 18,000 feet) Air Routes, three are High Altitude (18,000 feet and above) Jet Routes, one is a High Altitude (18,000 to 24,000 feet) Military Refueling Route, and one is a Military Low Level Training Route. There are no established holding or landing patterns within 10 miles of the plant site. Low Altitude Federal Air Routes, sometimes known as Victor air routes, are flown primarily by general aviation aircraft. These routes have a width of 8 nautical miles and occupy the airspace between 18,000 feet and the floor of controlled airspace, 700 to 1,200 feet above the surface. Traffic counts for these air routes were taken in September 1978 and updated in October 1982. These counts include only those aircraft operating under Instrument Flight Rules (IFR). No data are available on aircraft operating under Visual Flight Rules (VFR) which may also use these federal airways. Low Altitude Federal Airways within 20 miles of the site are shown on Figure 2.2-2 (Reference 22). High Altitude Jet Routes are primarily used by commercial air carriers, the military, and high performance general aviation aircraft. These routes have a width of 8 or 16 nautical miles and are flown from 18,000 feet to the top of controlled airspace, 60,000 feet. All flights above 18,000 feet are required to be IFR flights; hence, all altitudes and routes are assigned by air traffic controllers. High Altitude Jet Routes within 20 miles of the plant site are shown on Figure 2.2-3 (Reference 24). J-110 is a major east-west jet route passing within 1.5 miles of the plant site. This route travels between Oakland and New York (Kennedy Airport) passing through Denver, Kansas City, Indianapolis, and Cleveland. Daily traffic in the vicinity of the plant site was 132 flights (Reference 15). J-19 and J-134 are two major east-west routes sharing the same centerline and passing within 12.5 miles of the plant site. J-19 connects Phoenix and St. Louis; J-134 travels between Los Angeles and Washington, D.C., passing through Albuquerque, Kansas City, and Indianapolis. Peak daily traffic reported for both routes in the vicinity of the plant site was 90 (Reference 30). Chanute One is a Standard Terminal Arrival Route that is flown between the Chanute and Kansas City VOR. The centerline's closest approach to the plant site is 13 miles east. No traffic data were available on this arrival route (Reference 19). AR-330 is a High Altitude Military Refueling Route that passes within 10.5 miles of the plant site. This route is an east-west route flown between 18,000 and 24,000 feet by U.S. Air Force jet tankers. This airspace is under the control of the FAA Kansas City Air Traffic Control Center (Reference 30). The location of this route is shown on Figure 2.2-4. The nearest Military Low Level Training Route is IR-502. Effective December 20, 1984, the centerline of this route is 17 miles east of the WCGS site with annual traffic of 1,560 flights (Reference 26) and the route width is 4 nautical miles (4.6 statute miles) on either side of the centerline. No bombs or ammunition are carried on these flights. The training route is flown at altitudes between 550 feet above ground level and below 3,000 feet mean sea level (Reference 28).

2.2-9 Rev. 22 WOLF CREEK Previously, Wichita Low Level Training Route 694 was within 7.8 miles of the plant site but is no longer in operation. Other military aircraft that have flown low level within a 10-mile radius of the site area were C-130s of the 313th Tactical Airlift Wing, based at Forbes Air Force Base. The flights of the C-130s at Forbes Air Force Base have been discontinued. 2.2.1.4 Land Transportation Routes The main highway artery within a 5-mile radius of the plant site is U.S. Highway 75. Its alignment is north-south, and its closest approach is 2.8 miles west of the WCGS site. The annual average daily traffic (ADT) counts in 1978 within 5 miles of the plant site ranged from 2,810 to 3,800 vehicles (Reference 13). There are four other roads within a 5-mile radius of the plant site that have Federal-Aid Secondary Highway System (FAS) designation. They are FAS 10, FAS 149, FAS 153, and FAS 1472. The most recent ADT counts for these roads were taken in 1975 (Reference 13) and are given below. FAS 10 is aligned east-west. Presently, its closest approach to the plant site is 2.8 miles south-southeast. The ADT count in 1975 ranged from 485 to 875 vehicles. The traffic volume is greatest near Burlington and decreases eastward from Burlington. FAS 149 is aligned north-south. The road's closest approach to the plant site is 3.6 miles east-southeast. ADT count in this vicinity, north of FAS 10, ranged from 95 to 110 vehicles in 1975. FAS 153 is aligned east-west and its nearest approach to the plant site is 2.6 miles north. The 1975 ADT count of vehicles ranged from 75 to 225 vehicles.

The remaining road within a 5-mile radius of the plant site is FAS 1472 with east-west alignment. The road is located 4.7 miles south of the site. The ADT count in 1975 ranged from 90 to 125 vehicles. The other roads in the immediate area are unpaved rural farm roads or are of a low quality blacktop. The most hazardous materials that may be shipped by highway are labeled Class A explosives and include such materials as dynamite, blasting caps, bombs, and other high explosives. The maximum amount of explosives that may be shipped by truck is 42,000 pounds. These shipments are routed through less populated areas to their destination. The closest route to the plant site that would be used by firms hauling such materials through the area would be U.S. Highway 75. U.S. Highway 75 is located approximately 2.8 miles from the plant site at its closest point. The amount of explosives shipped along U.S. Highway 75 is unknown. There are no federal, state, or local agencies that are required by law to keep records on transportation of hazardous materials; no data are available (Reference 8).

The nearest existing railroad is the Missouri Pacific Railroad, located 9.5 miles southeast of the plant site. A spur has been constructed to this line in order to provide rail access to the plant site. Presently, the Applicants have no plans to make the spur available for private and/or public development.

2.2-10 Rev. 22 WOLF CREEK The Santa Fe Railroad and right-of-way located 0.3 miles west of the plant site is abandoned. By Interstate Commerce Commission Order in Finance Docket No. 26591, dated February 4, 1972, captioned Atchinson, Topeka and Santa Fe Railroad Company Abandonment, B.H. Junction and Gridley, Franklin and Coffey Counties, it was ordered that the branch line of the railroad extending between milepost 0.0 at B.H. Junction, Kansas, and milepost 52 plus 1,518 feet at Gridley, Kansas, be abandoned. With this abandonment, title of the right-of-way property reverted to the fee simple title owners. 2.2.1.5 Water Transportation Routes There is no commercial water traffic on the John Redmond Reservoir or on the Neosho River. However, Commercial fishing on the Neosho River and John Redmond and other reservoirs in Kansas began in 1978. This Kansas Fish and Game Commission controlled program only allows the harvesting of large rough fish. All other vessels are used for recreational purposes (Reference 7). Refer to Section 2.1.2.5 for a discussion of recreational water traffic on the cooling lake and potential collision hazard with the plant cooling water intake structure.

2.2.1.6 Oil and Gas Pipelines There are two product lines within 5 miles of the plant site. The two product lines are operated by the Phillips Pipe Line Company. The five natural gas pipelines are operated by the Union Gas Company and Phenix Transmission Company (Figure 2.2-1). All of the Phillips pipelines are buried at a depth of approximately 30 inches. Gate valves on two of the lines are located 3.0 miles NW of the plant site (Figure 2.2-1). Two of the Phillips petroleum pipelines carry refined products. The refined products pipelines are 12 and 16 inches in diameter and pass within 3.0 miles of the plant site. The 12-inch product pipeline was built in 1952, carries a maximum of 92,000 barrels per day, and operates at 1,180 psig. The 16-inch product pipeline was built in 1980, carries a maximum of 100,000 barrels per day, and operates at 960 psig. The hydrocarbons transported through these lines are propane, butane, iso-butane, iso-pentane, No. 8 Natural Aviation gasoline, furnace oil, stove oil, diesel fuel, and kerosene. All of these hydrocarbons are flammable.

2.2-11 Rev. 22 WOLF CREEK The Phenix Transmission Company, operated by Bam Energy of Wichita, KS, has four Natural Gas Lines. They are located 2.6 miles NW of the plant site and consist of three-eight inch in diameter and one 12 inch pipe. Two of the 8 inch lines operate at 30-40 psig, one 8 inch line operates at 400 psig and the 12 inch line is not in use at the present time (See Table 2.2-1 for distances) (Reference 20). None of the lines are used for gas storage and there are no plans to use the pipelines to carry other products (References 11, 14 and 20).

The natural gas pipeline operated by the Union Gas Company is 8 inches in diameter. It terminates 4.7 miles southwest of the plant site. From there, the gas is distributed throughout the city of Burlington. It was constructed in 1966 and is buried at a depth of approximately 24 inches. The maximum operating pressure is 70 to 72 psig. Nordstrom plug valves are located at the termination point in Burlington. The pipeline carries only natural gas and there are no plans to use the pipeline for other products. The pipeline is not used for gas storage at higher than normal pressure (Reference 6). There are no natural gas storage facilities within 5 miles of the plant site (Reference 31). Pipe-line routes are shown on Figure 2.2-1.

2.2.1.7 Projections of Industrial Growth Projected growth for the various nearby industries listed in this section is expected to be minimal and thus will pose no future conflicts with the plant. This projection is based on the historic growth patterns population in the area (Section 2.1.3.1). Those industries or facilities that do plan some minor short-term expansion are discussed in Section 2.2.1.2. The local economy is expected to retain its agricultural orientation. In view of the absence of specific local resources to attract new industry, future industrial development is likely to be concentrated in the major industrial cities of Topeka, Wichita, and Kansas City. 2.2.2 DESCRIPTIONS The descriptions of products manufactured, stored, or transported offsite, as well as the maximum quantities of hazardous material likely to be processed, stored, or transported, are fully described in Section 2.2.1, Locations and Routes. Offsite hazardous materials are listed in Table 2.2-2. Onsite hazards are also discussed in Sections 2.2.1 and 2.2.3. 2.2.3 EVALUATION OF POTENTIAL ACCIDENTS For this section, the term "significant hazard" is defined as any hazard against which design provisions must be considered to protect the plant or which must be assessed in detail for consequences serious enough to affect the safety of the plant.

2.2-12 Rev. 22 WOLF CREEK There are no onsite or offsite hazards which are expected to have an adverse effect on the plant structures. Safety evaluations of the accidents described below are based on the information provided in Subsections 2.2.1 and 2.2.2.

2.2.3.1 Determination of Design-Basis Events The accident categories discussed below have been evaluated as required by Regulatory Guide 1.70. 2.2.3.1.1 Explosions No potential hazard has been found involving the detonation of high explosives, munitions, chemicals or fuels in the vicinity of the plant where such materials are manufactured, processed, stored, used or transported in substantial quantities. The Kansas Army National Guard Armory is the only active military facility within 5 miles of the plant site. No explosive ordinance or ammunition is stored at the armory. The closest route to the plant site on which explosives are shipped is U.S. Highway 75, which is located 2.8 miles from the plant. At this distance, any accidental explosion will not pose a hazard to the plant. The nearest existing railroad is the Missouri Pacific Railroad, which is located 9.5 miles from the plant. At this distance, any accidental explosion will not endanger the safe operation of the plant. There is no commercial water traffic on the John Redmond Reservoir or on the Neosho River. All vessels are used for recreational purposes.

An accidental explosion of onsite storage of hydrogen (120,000 scf) has been evaluated, and a safe stand-off distance of 658 feet has been determined in accordance with Regulatory Guide 1.91. Since all safety-related structures are located farther than 900 feet from the hydrogen storage, an explosion of hydrogen does not pose a hazard to the safe operations of the plant. 2.2.3.1.2 Flammable Vapor Clouds (Delayed Ignition) There is no industry in the vicinity of the plant which can produce a flammable vapor cloud in significant amounts.

2.2-13 Rev. 22 WOLF CREEK The nearest pipelines carrying flammable liquid are the Phillips pipelines, which pass within 2.6 miles of the plant site. The potential hazards associated with the ignition of vapor clouds which would form as a result of an accidental rupture in the 12 or 16-inch refined products (propane was considered for this analysis) and the 8-inch gas pipelines have been evaluated. For each pipeline, maximum rates of discharge were calculated assuming double ended (guillotine) pipeline break and frictionless and infinitely long pipelines. The horizontal motion and the configuration of the gas cloud were determined for each pipeline rupture from a gas dispersion analysis using a Gaussian plume model. The model determines the extent of the flammable region of the cloud for a given meteorological condition, by calculating the gas concentration as a function of time and space coordinates relative to the point of release. The elevation of the centerline of the flammable region as a function of downwind distance from the source and time was determined for the natural gas line using a plume rise model. All seven atmospheric stability classes and six wind speed conditions selected as the averages of the intervals given in Section 2.3 were considered in the analysis. The concentration limits of 2.8 percent to 7 percent gas by volume were used to define the flammable region of the cloud for propane. The corresponding limits for natural gas were assumed to be 5 percent and 15 percent. Through this analysis the volume and centroidal location of the flammable cloud relative to the plant were calculated.

The equivalent TNT mass yield recommended in Regulatory Guide 1.91 of 240 percent was used to calculate the weight of the flammable volume of the cloud. The detonation hazards were determined by calculating the yearly probability of exceeding one psi overpressure at the plant. Combinations of various rupture locations, meteorological conditions and detonation times were evaluated in estimation of this probability. The probability of exceeding the one psi overpressure at the plant from each pipeline was calculated by dividing the line in question into a number of segments and by performing a similar analysis which was described as acceptable in NUREG-0014, "Safety Evaluation Report for Hartsville Nuclear Plants". For each segment the point closest to the plant on the segment is chosen as the assumed point of rupture. On this basis the probability of overpressure hazard, P, at the plant per year from a pipeline is calculated by:

2.2-14 Rev. 22 WOLF CREEK dividing the line in question into a number of segments and by performing a similar analysis which was described as acceptable in NUREG-0014, "Safety Evaluation Report for Hartsville Nuclear Plants". For each segment the point closest to the plant on the segment is chosen as the assumed point of rupture. On this basis the probability of overpressure hazard, P, at the plant per year from a pipeline is calculated by P=Pd N=1NP S=17 V=16 T=18 D=116Pw (S,V,D)xPt(T)xL(N)xd(S,V,D,T,N) where: Pd = probability of detonation per year per mile of pipeline; Pw (S,V,D) = probability that wind of Stability Class S, Speed V and Direction D is blowing when detonation occurs; Pt(T) = probability that detonation occurs between times T= T T21 and T= T + T22 L(N) = length of pipe segment N, in feet; NP = number pipeline segments considered in the analysis; 1 if overpressure exceeds the one psi criterion for S,V,D,T,N d(S,V,D,T,N) = 0 if overpressure does not exceed the one psi criterion The values of Pd and Pt used in the above expression are based on gas pipeline rupture and explosion rates and mean time to detonation reported in the Preliminary Safety Analysis Report for Hartsville Nuclear Plants. They are: P =7.7x10-6 detonations per year per mile of pipeline and Pt(T)=exp(-T1/BI)-exp-T2/BI), where the mean time to detonation BI=6.6 minutes. The probabilities of pipeline accident in which a detonation occurs resulting in an overpressure at the plant in excess of one psi, are: 1.3x10-10 per year for the 16-inch propane line, 4.8x10-11 per year for the 12-inch propane line and 5.1x10-10 per year for the closest 8-inch natural gas line.

2.2-15 Rev. 22 WOLF CREEK These probabilities are less than the value of 10-7 per year listed in Section 2.2.3 of Regulatory Guide 1.70, for these three pipelines. The remaining four pipelines within 5 miles of the plant do not constitute a greater source of hazard. Based on these facts, it is concluded that accidental rupture of nearby pipelines need not be considered as design basis events.

The Phillips Pipeline Company has an 80,000-gallon propane tank and an unused butane tank of 24,486-gallon capacity, 3.2 miles north of the plant site at Sharpe. Any accidental rupture of the propane tank may lead to a vapor cloud formation. A continuous release rate of 300 lb/sec is conservatively assumed which corresponds to a rupture of 6 inches in diameter in the wall at the bottom of the tank. Using a wind speed of 5.25 ft/sec, the ratio of mass flow release rate and wind speed is calculated as 57 lb/ft. The l psi overpressure safe standoff distance under the most stable weather condition is obtained from Reference 9 as 2.5 miles. Since this distance is smaller than the actual distance between the propane tank and the plant structures, an accidental leakage of the tank contents does not pose any hazard to the plant structures. 2.2.3.1.3 Toxic Chemicals

There are no industries in the plant vicinity using or producing toxic chemicals. Chlorine is stored in 150-pound vessels approximately 475 feet from the control room air intake. These vessels are provided with fusible metal type safety relief devices to prevent rupture. Even if there is any accidental release of chlorine, it will not affect the control room habitability. See Section 2.2.3.1.7 for a further discussion for onsite chlorine storage. Similarly, the onsite storage of carbon dioxide and ammonium hydroxide or ethanolamine does not pose any hazard to the plant operation.

2.2.3.1.4 Fires Since there are no other industrial or military installations near the plant and the transportation routes carrying flammable material are at a sufficient distance from the station as described in Section 2.2.1.4, the plant is not exposed to any fire hazard. The plant fire protection system is able to handle brush fires in the vicinity of the plant. 2.2.3.1.5 Collisions with Intake Structures

There is no commercial water traffic on the John Redmond Reservoir or on the cooling lake. Thus, there is no potential for collision of vessels with the intake structure.

2.2-16 Rev. 22 WOLF CREEK 2.2.3.1.6 Liquid Spills There is no commercial water traffic on the cooling lake. Recreational boats and service stations are not capable of producing liquid spills in significant amounts. The maximum loss for the pipelines located about 3 miles from the site is estimated to be approximately 2,000 barrels of hydrocarbons. The loss due to seepage cannot exceed 24 barrels because the pipelines pass under a small floating spill in the northern area of the cooling lake. The screen house of the plant is separated from this area by baffle dike "A" and by the central portion of the cooling lake, so that the traveling distance for the spill to reach the screen house is over 6 miles. Furthermore, a very special meteorological condition involving wind changes timed to the spill movement would be required in order for the intact spill to approach channels leading to the screen house. Therefore, liquid spills do not pose a hazard to the safe operation of the plant. 2.2.3.1.7 Chlorine Gas Quantities of chlorine (i.e., less than 20 pounds) are allowed for routine laboratory applications at distances within 328 feet (Regulatory Guide 1.95) without the need for a hazard analysis. The maximum amount of chlorine stored at the Wolf Creek site conforms to the recommendations of Regulatory Guide 1.95 for Type I control room characteristics. 2.2.3.1.8 Ammonimum Hydroxide

Ammonium hydroxide will be stored in a separate, cooled storage room at the north end of the Turbine Building. Liquid ammonium hydroxide shall be stored in 55 gallon drums at a solution concentration not to exceed 30%. Since the ammonium hydroxide is within the 5-mile limit of Regulatory Guide 1.78, an ammonium hydroxide accident must be postulated and analyzed as a potential hazard to control room habitability. The accident scenario postulated below requires the following unlikely sequence of events:

a. 22 barrels of ammonium hydroxide are assumed to spill instantaneously.
b. The spill instantaneously fills the curbed area around the storage area.
c. The ammonium hydroxide diffuses into the air as described in NUREG 570.
d. The ammonia cloud travels directly to the Control Building supply air intake and is distributed to the control room.

2.2.17 Rev. 22 WOLF CREEK The assumptions used for this analysis are as follows:

a. The spill instantaneously occurs and fills the entire curbed area, assumed to be 1000 square feet.
b. The ammonium hydroxide is stored in 28-30% solution.
c. Ambient temperature is 100oF, atmospheric pressure is 14.7 psi.
d. The ammonia conservatively travels directly from the spill to the supply air intake. e. Meteorology is conservatively assumed as neutral, with a wind speed of 1.0 meter per second.
f. The equations used in the analysis assume that both the Control Room and Control Building concentrations result from perfect mixing in the ducts and in their respective volumes.
g. Transient time in ductwork is neglected. h. Full-faced self-contained breathing apparatus are available for Control Room operators.

The maximum 2 minute rise in ammonia concentration in the Control Room is based on diffusion in still air. The rate of a vapor diffusing into still air (source strength) is taken from NUREG 570, equation (2.1-13) for the worst case scenario: QdmdtAtpPDtvv()104 g/sec where: A(t) = area of spill taken as a constant (m2) p = vapor pressure of the liquid (mmHg)

P = ambient atmospheric pressure (mmHg) v = vapor density of the liquid (g/cm3) t = time (sec) D = Diffusing Coefficient of liquid into air (cm2/sec)

2.2-18 Rev. 22 WOLF CREEK The ammonia is conservatively assumed to travel directly to the control room supply air intake by the diffusion equation for a plume release from NUREG 570 equation (2.2-9): y2y (z-h)2z (z+h)2z222222 X = Q2uyz e e + e where:

X = concentration of ammonia at coordinates x, y, z from a fixed origin on the ground plane (g/m3) Q = continuous source strength (g/sec) y = standard deviation of the plume strength in the y-direction (m) z = standard deviation of the plume strength in the z-direction (m) x = distance from the source in x-direction, horizontal along wind (m) y = distance from the source in y-direction, horizontal cross-wind (m)

z = distance from the source in z-direction, vertical cross-wind (m) h = effective above ground height of the ammonia source (m)

u = wind speed (m/sec), conservatively taken as 1 m/sec The standard deviations of the plume concentration are evaluated using the following power function from NUREG 570, section 2.2.3 for a neutral weather condition: y = 0.06(x)0.92 z= 0.15(x)0.70

2.2-19 Rev. 22 WOLF CREEK The normal control building intake is a penthouse on the Auxiliary Building room 23(z) meters above ground level and taken as 88(x) meters from the ammonia source. The height (h) of the ammonia source above the ground level is zero. Since the wind direction is taken directly from the source to the intake, the value of the crosswind direction y would be zero.

After the plume reaches the control room supply air intake, the ammonia is drawn directly in the Control Room at a flow rate of 1950 cfm. It is then assumed to be ideally mixed with the air volume of the control room. Very conservative analysis show that the concentration of ammonia does not exceed the toxic limit within two minutes after detection as prescribed in Regulatory Guide 1.78. Thus, the operators would have sufficient time to don full-faced SCBA's. Furthermore, an ammonia accident as described in this section would not prevent safe shutdown of the Plant. In reality, only one or two barrels are likely to spill at one time. Also, the ammonia gas would slowly mix with the large volume of free air in the Turbine Building, and be exhausted thru the roof before it is a potential hazard to the Control Room. These more realistic conditions would result in considerably lower ammonia concentrations in the Control Room compared to the above scenario. Ethanolamine (ETA) may be stored in place of ammonium hydroxide as its chemical substitute for condensate pH control. ETA has an extremely low vapor pressure as compared to ammonium hydroxide, resulting in very small amounts becoming airborne after a spill. Since very small amounts become airborne, ETA does not pose any airborne hazard to control room habitability. This conclusion is further supported in that Sax's Dangerous Properties of Industrial Materials, which is referenced for toxicity limits in Regulatory Guide 1.78, does not list any inhalation toxicity limits for ETA.

2.2.3.2 Effects of Design-Basis Events Since the external accidents discussed in Section 2.2.3.1 do not pose any hazard to the plant, no design-basis event is postulated. 2.

2.4 REFERENCES

1. Brungardt, LeRoy, Robertson, James, 1986, Sergeant, Battery "C", Kansas Army National Guard, Burlington, Kansas, personal communication (February 27). 2. Bartlett, Curtis, 1986, Plant Foreman, Burlington Municipal Light Plant, Burlington, Kansas, personal communication (February 25).

2.2-20 Rev. 22 WOLF CREEK 3. Bolton, Phillip, 1986, Bolton Oil Company, Burlington, Kansas, personal communication (February 27) 4. Bowsher, A.L., and Jewett, J.M., 1943, Coal resources in the Douglas Group in east-central Kansas: Kansas Geological Survey, Bulletin 46.

5. Brady, L.L., and others, 1971, Kansas mineral industry report 1971: Kansas Geological Survey, Special Distribution Publication 61, p. 35.
6. Caudell, M.K., 1986, District Supervisor, Union Gas Systems, Inc. Yates Center, Kansas, personal communication (February 27).
7. Chester, Mark, 1978, Project Manager, John Redmond Reservoir, U.S. Army Corps of Engineers, Burlington, Kansas, personal communication (December 28).
8. Doyle, Dick, 1978, American Trucking Association, Safety and Security Department, Washington, D.C., personal communication (December 28). 9. Eichler, T., Napadensky, H., and Mavec, J., 1979, Evaluation of the risks to the Marble Hill Generating Station from traffic on the Ohio River: Public Service Company of Indiana, IITR/Final Report J8309, February 21, in Marble Hill FSAR, Appendix F. 10. Fortenberry, H.Y., 1973, County Engineer, Coffey County, written communication (April 16).
11. Kimber, Ed, 1986, Phillips Pipe Line Company, Bartlesville, Oklahoma, written communication (February 26).
12. Newkirk, Richard, 1986, Conoco Oil Company, Burlington, Kansas, personal communication (February 26). 13. Ijans, Clayton, 1978, Kansas Department of Transportation, Planning and Development Department, Topeka, Kansas, personal communication (December 28).
14. Jonas, N., 1979, Superintendent of Products Movements, Phillips Pipe Line Company, Bartlesville, Oklahoma, personal communication (February 21, March 14 and June 8).

2.2-21 Rev. 22 WOLF CREEK 15. Kaps, R.J., 1982, Kansas City Air Route Traffic Control Center, Federal Aviation Administration, Olathe, Kansas, written communication (November 2). 16. Kovack, J.L., 1973, Chlorine adsorption on activated carbon: U.S. Atomic Energy Commission, Division of Reactor Licensing (February). 17. Lewis, Larry, 1986, Lewis Standard Station, Burlington, Kansas, personal communication (February 26).

18. McCurry, Mrs. Steve, 1986, McCurry Feed and Seed, Sharpe, Kansas, personal communication (February 24).
19. McQueen, R.W., 1979, Chief, Kansas City Air Route Traffic Control Center, Federal Aviation Administration, Olathe, Kansas, written communication (September 18). 20. King, Wade, 1986, Phenix Transmission Co., Bam Energy, Wichita, KS, personal communications.
21. Murphy, George, 1986, Manager, Katy Elevator & Company, Burlington, Kansas, personal communication (February 26).
22. National Oceanic and Atmospheric Administration (NOAA),

1978, Kansas City sectional aeronautical chart: U.S. Dept. of Commerce, Washington, D.C., 21st edition, (December 28, 1978). 23. _______, 1978, Airport/Facility Directory, North Central U.S.: U.S. Dept. of Commerce, Washington, D.C. (effective date, November 1, 1978). 24. _______, 1978, H-3 Northeast, H-4 Southeast enroute high altitude - U.S. chart: U.S. Dept. of Commerce, Washington, D.C. (effective date, November 2, 1978).

25. Nelson, Ken, 1986, Nelson Quarry, Inc., La Harpe, Kansas, personal communication (February 25).
26. Oldroyd, D.; Col., 1984, Deputy Director of Training, Offutt Air Force Base, Nebraska (August 1984). 27. Rickabough, Larry, 1986, United Oil Company, Burlington, Kansas, personal communication (February 25).

2.2-22 Rev. 22 WOLF CREEK 28. Scherer, J., Col., 1979, Chief of Route Development Branch, 1st Combat Evaluation Group, Barksdale Air Force Base, Louisiana, personal communication (August 31). 29. Sittig, M., 1979, Hazardous and toxic effects of industrial chemicals: Noyes Data Corporation, Park Ridge, New Jersey, 460 pp. 30. Stevens, Dwayne, 1978, Federal Aviation Administration, Kansas City Center, Central Area Office, Olathe, Kansas, personal communication (December 27).

31. Veteto, Bill, 1986, Union Gas Company, Burlington, Kansas, personal communication (February 26).
32. Williams, Joyce, 1978, Kansas Department of Transportation, Aviation Division, Topeka, Kansas, personal communication (December 28).
33. "Calculating the Area Affected by Chlorine Releases",

Chlorine Institute Pamphlet 74, Edition 1, January, 1981.

2.2-23 Rev. 22 WOLF CREEK TABLE 2.2-1 NEARBY INDUSTRIAL, TRANSPORTATION, AND MILITARY FACILITIES Location from (a) Name Plant Site EmploymentBolton Oil Company - Bulk Storage 4.7 miles SW 0 Burlington Municipal Airport 6.6 miles WSW 0 Burlington Municipal Light Plant 4.6 miles SW 3 Clarkson Construction Company 3.1 miles SSE 9 Conoco Oil Company - Bulk Storage 4.7 miles SW 0 Kansas Army National Guard 3.9 miles SW 43 Katy Elevator & Company 4.5 miles SW 3 McCurry Feed & Supply 2.9 miles N 5 Nelson Quarry, Inc. 3.0 miles SSE 20 Phenix Transmission Company (4 Natural Gas Line) 2.6 miles NW (b) 0 Phillips Pipeline Company 2-Product Lines 3.0 miles NW (b) 0 Santa Fe Railroad and Right-of-Way (Abandoned) 0.3 mile W 0 Standard Oil Company - Bulk 4.7 miles SW 0 Storage Union Gas - Propane Storage 4.4 miles SW 0 Union Gas - Natural Gas Pipeline 4.7 miles SW 0 United Oil Company - Bulk Storage 4.4 miles SW 0 KEPCo Generating Facility 2.5 miles N 0 _______________________________aCenter point of Unit No. 1. bClosest approach to site. Rev. 16 WOLF CREEK TABLE 2.2-2 (Sheet 1 of 2) DESCRIPTION OF HAZARDOUS MATERIALS Name Products Hazardous Materials Bolton Oil Company - Bulk Storage Fuel Storage 36,000 gallons gasoline Burlington Municipal Light Plant Fuel Storage 40,000 gallons diesel fuel Clarkson Construction Company Construction Equip- 2,000 gallons gasoline, ment Storage 1,100 gallons lube oil and hydraulic fluid United Oil Company - Bulk Storage Fuel Storage 56,000 gallons gasoline, 35,000 gallons diesel fuel Kansas Army National Guard Ammunition Storage Classified amounts of small arms ammunition Katy Elevator & Company Grain Storage None McCurry Feed & Supply Grain and Fertilizer 24,000 gallons liquid Storage fertilizer, 150 tons solid fertilizer Conoco Oil Company - Bulk Storage Fuel Storage 18,000 gallons gasoline, 15,000 gallons diesel fuel, 4,000 gallons heating oil Nelson Quarry, Inc. Rock Products 15 tons explosives Rev. 16 WOLF CREEK TABLE 2.2-2 (continued) (Sheet 2 of 2) Name Products Hazardous Materials Phillips Pipeline Company Fuel Transport Refined petroleum products Products Line (transported through a 12-inch and a 16-inch line) KEPCo Generating Facility Fuel Storage 42,000 gallons diesel fuel Phenix Transmission Company Fuel Transport Natural gas (transported Natural Gas Lines through 3-8 inch and 1-12 inch line) Standard Oil Company - Bulk Fuel Storage 17,600 gallons gasoline, Storage 18,800 gallons diesel fuel, 8,800 gallons heating oil Union Gas - Propane Storage Fuel Storage 30,000 gallons propane Union Gas - Natural Gas Pipeline Fuel Transport Natural gas (transported through an 8-inch pipeline) Rev. 16 WOLFCREEKTable2.2-3hasbeendeleted.Rev.8 WOLF CREEK TABLE 2.2-4 PARAMETERS FOR THE CONTROL BUILDING AND CONTROL ROOM CHLORINE CALCULATION Parameter Before Isolation Occurs After Isolation OccursGa 15,000 cfm 0 Gb 12,250 cfm 0 Gb1 1,000 cfm 1,000 cfm Gb2 200 cfm 0 Gc 1,950 cfm 0 Gci 800 cfm 0 Gd 13,450 cfm 0 Ge 1,960 cfm 0 Gei 800 cfm 45 cfm** Gf 10 cfm 10 cfm Gg 0 1,600 cfm** Gh 0 3,600 cfm** Gi 0 2,565 cfm** Gj 0 4,580 cfm** Gk 0 980 cfm** Gl 0 4,180 cfm** Gm 0 24,070 cfm** Gn 0 27,270 cfm** Go 0 945 cfm** Gp 0 3,200 cfm** R 0 0 VB 422,813 ft3 239,528 ft3*Rev. 2 WOLF CREEK TABLE 2.2-4 (continued) PARAMETERS FOR THE CONTROL BUILDING AND CONTROL ROOM CHLORINE CALCULATION Parameter Before Isolation Occurs After Isolation Occurs V 91,493 ft3 182,086 ft3*** Vi(1501) 46,796 ft3 --- Vi(1512) 46,390 ft3 --- Vii --- 19.4 ft3__________________* Following control building isolation, the control room pressurization system supplies filtered air to the control building with the exception of the lower two elevations. ** Both trains of the pressurization system in operation, flows are total design flows (analysis included +10% tolerance). *** Based on volume of both control room AC equipment rooms included. Rev. 2 WOLF CREEK TABLE 2.2-5 THE EFFECTS OF CHLORINE GAS ON HUMANS Parts of Chlorine per Million Parts of Air Effect by Volume_________Least amount required to produce slight symptoms after several hours exposure, NIOSH/OSHA permissible exposure limit 1 Least detectable odor 3.5 Maximum amount that can beinhaled for 1 hour without 4 serious disturbances Noxiousness, difficulty in 5 breathing, several minutes Toxicity limit - maximum concentration that can be tolerated for 2 minutes without severe irritation of the throat and skin, severe coughing and eye burning 15 Amount dangerous for even short exposures 50 Most animals killed in a very short 1,000 timeRev. 2 WOLF CREEK 2.3 METEOROLOGY2.3.1 REGIONAL CLIMATOLOGY The data used in this section is derived from climatological summaries, meteorological data, and technical studies and reports. The climatological summaries include those of the National Weather Service Station and of others describing the State of Kansas and/or the region that includes the site of the Wolf Creek Generating Station. Figure 2.3-1 illustrates the location of the data sources relative to the station site. All data sources used are listed in the references. 2.3.1.1 General Climate Due to its mid-continental location in east-central Kansas, the site region experiences a distinctly continental climate characterized by warm humid summers with considerable convective rainfall (including occasional violent thunderstorms) and highly variable winter weather with moderate amounts of rain and snow. Maritime tropical air originating over the Gulf of Mexico is the dominant air mass from June through August. During this period drier air from the west and north infrequently affect the region. The maritime tropical air is quite humid, resulting in warm nights, occasional daytime cloudiness, and considerable thunderstorm activity. From November through February continental polar air dominates the regional climate. However, during this period there are infrequent intrusions of mild dry maritime tropical and maritime polar air masses. The transition months (March, April, May, September, and October) may be controlled by either maritime tropical or continental polar air masses. High and low pressure systems generally pass over the region from west to east every few days, except during late summer and autumn when high pressure systems occasionally stagnate over the region for a week or more. These stagnating highs are characterized by light winds and low turbulence levels. These conditions greatly limit the dispersion of pollutants emitted into the atmosphere. Locally, dispersion conditions are poorest during very strong inversion situations accompanied by calm winds. Such conditions, which commonly persist only a few hours, occur most frequently during pre-dawn hours of autumn and winter. Low pressure systems, on the other hand, promote atmospheric mixing and provide favorable diffusion conditions. The track of low pressure systems is generally to the north of the region during summer and near or just to the south of the region during winter. Lows reach maximum intensity during winter and spring, but are quite weak during summer. 2.3-1 Rev. 0 WOLF CREEK Frontal systems cross the region quite frequently and are frequently strong during all seasons except summer, when they are usually weak and only occasionally extend as far south as the site region. This is directly related to the intensity and trajectory of the low pressure systems which form along these fronts. Meso-scale squall lines occasionally move through the region during spring and summer. Air flow is primarily from the south during most of the year. However, during winter and spring, winds from the west through north are frequent and may constitute the prevailing wind direction during some winter and early spring months. Average wind speeds are among the highest of any inland non-mountainous region in the United States. The highest wind speeds generally occur during spring and the lowest during summer. Summers are warm to hot due to the dominance of maritime tropical air. Mid-summer temperatures average in the upper 70s F and temperatures exceed 90 F on approximately 40 percent of the days in July and August. From mid-December through early February, temperatures average below freezing with an average of five subzero (F) nights each winter. The difference in average temperature between mid-summer and mid-winter is approximately 50 F. Precipitation is moderate to heavy during late spring and summer when moisture advected from the Gulf of Mexico is prevalent, and light in winter when polar continental air is generally dominant. Summer and some spring precipitation is generally convective, and occasionally intense. Autumn, winter, and some spring precipitation due to synoptic-scale cyclones is lighter and of greater duration than the convective precipitation. Snowfall is generally light to moderate; however, snowstorms are occasionally heavy and on rare occasions approach blizzard intensity. Freezing rain and sleet may occur from November through March; on infrequent occasions heavy accumulations of freezing rain cause substantial damage. The terrain in the region is quite flat. The plant site is on a minor plateau between two minor north-south oriented creeks. The nearest river is the Neosho, which is oriented northwest-southeast and at an elevation approximately 140 feet below that of the plant site, and extends to within 3 miles to the southwest of the plant site. As a result of the inconsequential terrain, gravity-induced drainage of air in the region is insignificant. The John Redmond Reservoir, approximately 4 miles in diameter, is at its closest point 4 miles west of the plant site. This body of water probably affects winds on a very local scale, but it is too small to cause significant effects. 2.3-2 Rev. 0 WOLF CREEK Prominent climatic features of the region are severe thunderstorms and tornadoes. These storms are most frequent during spring and early summer and are rare during late autumn and winter. Severe thunderstorm winds may gust in excess of 100 mph, and tornadic winds, though they rarely occur, may be substantially higher (References 8 and 12). 2.3.1.2 Regional Climatology for Design and Operating Bases2.3.1.2.1 Heavy Precipitation Heaviest short-period rainfall is associated with thunderstorms and can total 5 to 11 inches in 24 hours. The maximum amounts for short-period rainfalls are given in Table 2.3-1. Longer-period rainfall is associated with migratory frontal systems and cyclonic storms. Almost one-half of the total precipitation falls in daily amounts of 0.75 inches or less. Monthly precipitation totals of 20 inches or more have been recorded at stations in the general area. On the other hand, the region has experienced from 50 to 75 successive days with no more than 0.25 inches of rain on any day during the period from April to September (Reference 46). 2.3.1.2.2 Snow Snowfall averages between 10 and 20 inches a year in the region around the site (Reference 12). The extreme 24-hour snowfall was 26 inches at Fort Scott; the extreme monthly snowfall was 55.9 inches at Olathe; and the extreme seasonal snowfall was 82.7 inches at Olathe, Kansas (Reference 2). In winter, the snow ordinarily remains on the ground for a few weeks following most snowfalls. The longest period with snow cover on the ground was 51 days in 1939 (Reference 10). Data in the publications Climatological Data-Kansas and Local Climatological Data-Wichita and Topeka, Kansas, for snow-on-ground and hence snowpack, are available since 1949 and were examined for Topeka, Wichita, and Burlington, Kansas up to 1979. These statistics list the amount of snow, ice pellets, and sleet on the ground (References 42 and 43). Snowpack statistics at Burlington, Kansas were intermittent and were not used. The maximum observed snow depth on the ground was 19 inches, which was observed on March 16, 1960 at Topeka. A statistical analysis was performed using the maximum snowpack for each year for the 31-year period to determine the snowpack 2.3-3 Rev. 0 WOLF CREEK with 100-year recurrence interval for Topeka and Wichita, Kansas (Table 2.3-2).The statistical analysis assumed that extreme value distribution best fits the annual maximum snowpack data (Reference 16). The Gumbel distribution is also sometimes known as the Fisher-Tippett Type I distribution. Using the Fisher-Tippett Type I distribution, the snowpack with a recurrence interval of 100 years is 19.4 inches for Wichita and 20.0 inches for Topeka. Data on snowpack recurrence were utilized in the snow and ice accumulation design consideration section (Section 2.4.2.3.3, titled "Ice and Snow"). To determine the weight of the snowpack, the density of the snowpack must be calculated. The density of the 100-year snowpack was estimated from the actual recorded water-equivalent measurements of some of the greatest snow depths on record at both Topeka and Wichita. A conservative estimate of the density of these large snowpacks was 14.4 pounds per cubic foot (0.23 grams per cubic centimeter). Therefore, the weight of the 100-year snowpack using 20.0 and 19.4 inches of snowpack is 23.9 and 23.2 pounds per square foot for Topeka and Wichita, respectively. To provide a yet more conservative design, it was assumed that the 100-year snowpack weight is the antecedent condition to the superimposed maximum winter probable maximum precipitation (PMP) for a duration of 48 hours falling on an area of 10 square miles or less (Reference 45). The stress of the 48-hour winter PMP is 103.0, 98.8, 111.3, and 127.9 pounds per square foot for the months of December, January, February, and March, respectively. Data on the PMP were utilized in Section 2.4.3.1, titled "Probable Maximum Precipitation PMP" in the PSAR. Due to hydrological considerations, the PMP values in that section were adjusted to the watershed drainage area (27.4 square miles). However, in this section, a PMP value for a 10-square-mile area (point rainfall for design purposes) was used and more conservative values of rainfall resulted. It is highly unlikely that these weights would ever be experienced. Each safety-related structure was evaluated separately for the correct snowload coefficient to be applied by virtue of its geometry and exposure in accordance with ANSI A58.1-1972, "Building Code Requirements for Minimum Design Loads in Buildings and Other Structures", Section 7.2.1. Roof slope and winds would in most cases preclude snow accumulation to the theoretically possible depth. 2.3-4 Rev. 0 WOLF CREEK Furthermore, if the PMP occurred as rain instead of snow, the existing, as well as additional precipitation would run off instead of accumulating. 2.3.1.2.3 Hail The most commonly reported hailstones are less than three-quarter inch in diameter and cause little or no property damage. Hailstones equal to or larger than 3/4 inch in diameter are associated with severe thunderstorms. According to Pautz (Reference 31), there were 832 hailstorms reported in 400 days with hail equal to or larger than 3/4 inch in diameter in the State of Kansas during 1955-1967 (Figure 2.3-2). The diurnal distribution of these hailstorms indicates a maximum during the 3-hour period from 1500 to 1800 Central Standard Time (CST). In addition, Pautz shows that the number of hailstorm reports by 1-degree longitude-latitude squares is about 31 in the vicinity of the site over the 13-year study period (Figure 2.3-3). He also provides the total number of hailstorm reports averaged by 2-degree longitude-latitude squares (Figure 2.3-4). For the site vicinity there were about 200 reports between 1955 and 1967 or an average of 15 occurrences per year. The greater frequency of reports in the latter figure was due to the averaging of the 1-degree longitude-latitude square containing the site area with that surrounding Kansas City. This larger number of reports of storms in the Kansas City square is attributable to the presence of a highly organized severe-storm network and the large number of Severe Local Storms Unit personnel residing in the area (Reference 31). If this network were present over the entire State of Kansas, the number of hail reports would undoubtedly be greater. The frequency of hail is directly related to the probability of thunderstorm occurrence. Using the U.S. Department of Commerce monthly publication, Storm Data(Reference 44), a 15-year literature survey of hail was conducted for an area within a 100-mile radius of the site. In this area, hail, especially that greater than 2 inches in diameter, is most frequent in the spring, with a maximum frequency in May. A secondary frequency peak exists in August and September. Hail of diameter less than 2 inches was not summarized. Hail of 3-inch diameter appears frequently in the records: Bourbon County (September 24, 1973), south of Emporia (June 3, 1973), around Wichita (June 2, 1971), around Butler County (May 21 and June 26, 1969), Crawford County (April 12, 1964), around Lyon County (May 24, 1962 and June 18, 1959), Sumner and Cowley Counties (May 30, 1962), Anderson and Linn Counties (April 21, 1961), and in southeast Kansas (August 20, 1960). Larger hailstones, although not as frequent, have been observed. For example, hail 4-1/2 inches in diameter and 14 2.3-5 Rev. 0 WOLF CREEK inches in circumference fell in Coffey and Franklin Counties (May 4, 1963); hail 5 inches in diameter fell in Butler County (May 25, 1963). Hailstones of 7-9 inch diameter fell east of Wichita (May 10, 1970). Extremely large hail fell at Coffeyville, 80 miles south of the site area (September 3, 1970)--one hailstone measured 17-1/2 inches in circumference at its widest diameter; another measured 8 inches in diameter, and many hailstones measured 4-5 inches in diameter. The maximum observed hailstone in the United States also fell in Coffeyville, Kansas. This hailstone weighed 766 grams (1.67 pound) and measured 44 centimeters (17-1/2 inches) around its largest circumference, although it had an irregular shape (National Center for Atmospheric Research, 1971). Hail in this area occasionally covers the ground to some depth and may drift in strong winds, e.g., 6 to 8 inch depths with some spots having 2-foot drifts in Franklin County (May 14, 1963); 5 to 12 inch depths in Sumner and Cowley Counties (May 30, 1962); and 4-inch depths at Burlington (April 7, 1961).In summary, the site area appears to be subject to frequent hail. Hailstones up to baseball size are not infrequent. Occasionally, larger sizes may fall. In a study of freezing rain occurrence in the Central Plains region over the period 1919-69, It was concluded in Reference 38 that the relationship between maximum hail size and the annual probability of hail occurrence at a point in the site region is as follows: Maximum Hail Radius Annual Probability (cm) of Occurrence 0.3 0.9 1.4 0.5 2.1 0.2 2.4 0.1 5.0 0.04 7.2 0.02 >7.5 0.01 2.3.1.2.4 Ice Storms Freezing rain can occur in the late fall, winter, and early spring. A 10-year study (Reference 4) indicated that there were 83 days with freezing rain observed at Wichita (Table 2.3-3). An accumulation of ice of 0.25 inch once every year and at least 0.50 inch every 2 years can be expected. The mean duration of glaze ice on utility wires if an ice storm occurs is 53 hours for the State of Kansas as a whole (Reference 4). 2.3-6 Rev. 0 WOLF CREEK Ice or glaze results when water droplets associated with freezing rain fall from an above-freezing layer of air aloft through a shallow layer of below-freezing air at the surface of the earth. Ice accumulation results when water droplets fall on cold objects in the shallow cold layer and freeze. The nature of the shallow air layer at the surface is dependent on the local terrain and the micro-meteorological conditions of the area; hence, an extensive network of stations is needed to properly record this phenomenon. The National Weather Service does not publish any summarized data on ice accumulations. Observations of ice incidence in the United States have recently begun, but no tabulated data on ice accumulations have yet been published.Some observational ice data are found in the U.S. Department of Commerce monthly publication, Storm Data. A 15-year literature survey (Reference 44) of an area within a 100-mile radius of the site showed the area to be susceptible to glaze. On January 2-3, 1973, 1/2 to 1-1/2 inches of ice accumulated on exposed surfaces in the northeastern part of Johnson County. At Pittsburgh on January 24, 1969, 3/4 to 1 inch of ice was reported on telephone and power lines. On December 10, 1960, 1 inch of glaze accumulated in the Hutchinson and McPherson area. Between 1/8 and 1/2 inch of glaze was reported on February 9, 1959 over most of Kansas. On January 20, 1959, between 1/2 and 1-1/2 inches of ice was found on the ground and on wires in counties south of Burlington. High wind speeds during or immediately following ice storms exacerbate damage by increasing stress on affected facilities. The annual probability of maximum wind gusts of 20 m/sec (44.7 mph) or greater associated with maximum ice thickness of 3.5 cm (1.4 in) is 0.02. Maximum wind gusts of 20 m/sec (44.7 mph) or greater associated with maximum ice thickness of 5.6 cm (2.2 in) occur with an annual probability of 0.01. 2.3.1.2.5 Thunderstorms and Lightning Thunderstorms may occur during every month of the year. The most damaging thunderstorms are those associated with the passage of a cold front or a squall line. The average monthly and annual number of days with thunderstorms for both Topeka and Wichita are presented in Table 2.3-4. The maximum frequency of thunderstorms occurs in late spring and during the summer months with the wintertime minimum in December and January. A thunderstorm day is defined as a day on which thunder is heard at least once at that location (Reference 1). Thunder cannot usually be heard if the lightning causing it is more than about 15 2.3-7 Rev. 0 WOLF CREEK miles away. While thunderstorm incidence data are based upon the observation of thunder generated by lightning occurring within a region close to the observation station, these data do not contain a great deal of information which can be used to characterize lightning. For example, these data do not provide information regarding the type (e.g., cloud-to-ground versus cloud-to-cloud lightning) and severity of the disturbance or frequency of lightning occurrences.Observations indicate that the magnitude and incidence of lightning strikes to ground are substantially greater in frontal storms than experienced in air mass convective storms (Reference 5). Storms of the air mass convection type account for the majority of annual thunderstorm days. Therefore, the mean annual number of days with thunderstorms probably over-estimates the actual number of lightning-producing thunderstorms with strikes to the ground. Nevertheless, the number of thunderstorm days is used as a measure of lightning occurrences. The mean annual number of such days for Topeka and Wichita is 58 days and 55 days, respectively (Reference 12). Since the seasonal frequencies of lightning occurrences directly correlate with the seasonal frequencies of thunderstorm days, lightning is least frequent in fall and winter, with 0-4 thunderstorm days per month for Topeka and Wichita, and most prevalent in late spring, with 9-10 thunderstorm days per month in May and June (Reference 12). A more pertinent statistic than the number of thunderstorm days per year is the number of lightning strikes per square mile per year (Reference 41). The strikes per area have been determined from the combined results of several studies, and they indicate that the number of flashes to ground per square mile per year is between 0.05 and 0.8 times the number of thunderstorm days per year. Therefore, if the largest number of thunderstorm days (Topeka with 58 days) is used, the expected number of strikes per year in a square mile area surrounding the site is between 3 and 46. A 15-year survey of Storm Data (Reference 44) for the site area showed frequent lightning incidents and associated damage. Qualitatively, lightning frequency directly correlates with that of hail and tornadoes, with a maximum in the spring.The frequency of lightning strikes to an area is related to the number of thunderstorm days in that area. In order to characterize the expected frequency of lightning strikes in the area of the Wolf Creek plant, data from Topeka, Kansas regarding the average 2.3-8 Rev. 0 WOLF CREEK number of thunderstorm days over a 31-year period were used. These data were presented in Table 2.3-4 and are summarized below. SEASON THUNDERSTORM DAYS Winter (January through March) 3 Spring (April through June) 26 Summer (July through September) 23 Fall (October through December) 5 ANNUAL TOTAL 57 The following discussion, which estimates the number of lightning strikes to safety-related structures at the site, was developed following the methodology presented in Reference 26. The "attractive area" of the structures was determined for a lightning strike with an electrical current magnitude of 20,000 amperes, which corresponds to the current magnitude of 50 percent of lighting flashes. The attractive area (A) of a structure is: A = Lw + 4H (w+L + H), where L = structure length, meters w = structure width, meters H = structure height, meters The grouping of safety-related structures which maximizes the attractive area is composed of six structures: reactor building, control building, auxiliary building, diesel generator building, fuel building, and refueling water storage tank.For simplicity, this grouping has been assumed to have the following dimensions: L = 96.4 m w = 86.5 m H = 62.5 m These dimensions yield an attractive area of 0.103 km2. The number of lightning strikes to earth per thunderstorm day per square kilometer (Ne ) is given by: Ne = (0.1 + 0.35 sin z) x (0.40 + 0.20) where z = the geographical latitude 2.3-9 Rev. 1 WOLF CREEK Using the approximate plant latitude of 38 14', the value of Ne calculated from the above equation is Ne = 0.190. Thus, the number of lightning strikes per square kilometer per year equals: Ne x 57 thunderstorm days = 10.83 strikes Year km2 year Since the safety-related structures of interest have an attractive area of 0.103 km2, the number of lightning strikes per year to safety-related structures at the site is estimated to be: 10.83 strikes x 0.103 km2 = 1.12 strikes km2 yr year or one lightning strike every 0.89 years (324 days). From data in Section 2.3.1.2.5 it was seen that the number of strikes to ground per square mile per year is between 0.05 and 0.8 times the number of thunderstorm days per year. This results in between 3 and 46 lightning strikes per square kilometer per year, which includes the number previously calculated of 10.83 lightning strikes per square kilometer per year. The seasonal estimate of lightning strikes to safety-related structures is presented below: SEASON STRIKES PER SEASON Winter 0.06 Spring 0.51 Summer 0.45 Fall 0.10 ANNUAL 1.12 2.3.1.2.6 Tornadoes Tornado activity is significant in the site area. Table 2.3-5 shows that tornadoes have been observed in the area around the site during almost every month, with about 70 percent occurring during April, May, and June. Over 30 percent of the total number were reported during May, the month of greatest frequency. January is the month of least activity with no tornadoes reported during the period (Reference 32). About 90 percent of the Kansas tornadoes occurred between noon and midnight, with the greatest activity between 1600 and 1800 CST. Figure 2.3-5 shows the total number of tornadoes by 1-degree longitude-latitude squares for 2.3-10 Rev. 0 WOLF CREEK the 13-year period ending 1967 (Reference 31). It is noted that there are several conflicting published values of tornado occurrences per 1-degree square (References 31, 32 and 39). The differences might be attributed to the years sampled, or to the method of report classifications used by the investigators. The number of tornadoes per 1-degree longitude-latitude square for the period 1956 to 1971 is summarized in Table 2.3-5. During this period Kansas had a total of 92 tornadoes per 10,000 square miles, the largest in the United States (Reference 32). The most severe storm to occur in the general area, from the standpoint of casualties and damage, was on June 8, 1966, when an early evening tornado passed through Topeka causing 16 fatalities, 406 injuries, and property losses in excess of $100 million. In 1972, there were 45 tornadoes reported in Kansas as a whole, with no deaths reported. Table 2.3-6 summarizes the total amount of damage caused by tornadoes between 1916 and 1950 (Reference 47). The probability of tornado occurrence must be examined statistically, since the possibility of a tornado striking a point is so low that it is difficult to predict its occurrence. For this reason, an annual frequency of tornadoes in an area (1-degree longitude-latitude square) is determined from climatological data, after which the point probability and return period are computed. According to Reference 39, the probability (P) of a tornado hitting a single point within a 1-degree longitude-latitude square is: P = (2.8209 x t-)A [2.3-1] where: A = the area in square miles of a 1-degree longitude- latitude square centered on the point; t- = the mean annual frequency of tornadoes in the area. For the 1-degree longitude-latitude square enclosing the site, and using Thom's data for the years 1953-1962, t = 3.2. Thus: P = (2.8209 x 3.2)3788 = 2.38 X 10-3and the return period, R, for all tornadoes (recurrence interval) is: R = 1P = 12.38 x 10-3 = 420 years [2.3-2] 2.3-11 Rev. 0 WOLF CREEK However, using more recent data from 1956-1971, the monthly and annual probabilities and recurrence intervals of a tornado occurrence per any 1-degree longitude-latitude square in Kansas are given in Table 2.3-5. These data (Reference 32) indicate a much longer recurrence interval than given by Thom. The design basis tornado is the Class I tornado, as specified by Regulatory Guide 1.76. The Characteristics of the Class I tornado are as follows: Maximum Wind Speed 360 miles/hr. Maximum Rotational Speed 290 miles/hr. Maximum Translational Speed 70 miles/hr. Minimum Translational Speed 5 miles/hr. Radius of Maximum Rotational Speed 150 feet Pressure Drop 3.0 lb/in2 Rate of Pressure Drop 2.0 lb/in2 sec. The publication Storm Data, (Reference 44) was consulted to obtain information concerning tornado strikes in the vicinity of the site in the years 1972 through 1980. The area comprising Coffey County and the seven county area surrounding Coffey County were evaluated. The counties investigated are Allen, Anderson, Coffey, Franklin, Greenwood, Lyon, Osage, and Woodson Counties. The tornadoes recorded in these counties are shown below along with an estimate of the path area of each. No estimate of the maximum wind speed that occurred was available from this source. In order to provide some indications as to the intensity of the tornado, an estimate of property and crop damage is included which has also been obtained from Reference 44. 2.3-12 Rev. 0 WOLF CREEK ESTIMATEDESTIMATEDLOCATION PATH LENGTH PATH WIDTH DAMAGE DAMAGE (COUNTY) DATE (MILES) (YARDS) PROPERTY(1) CROPS(1)Greenwood, Wilson 4/19/72 20 100 4 0 Osage 7/2/72 Brief Touchdown 0 0 Lyon 3/13/73 8.5 220 4 0 Lyon 4/13/7 9 to 10 440 3 0 Greenwood 6/4/73 5 300 5 5 Allen 6/4/73 2 200 4 0 Coffey 11/20/73 1 176 5 0 Greenwood, Chase & Butler 5/30/74 28 500 6 4 Lyon, Osage & Shawnee 6/8/74 38 2640 7 4 Allen 3/11/77 0.5 75 5 0 Allen 5/4/77 0.25 50 3 0 Greenwood 5/11/78 7 yds. 3 4 0 Osage 5/23/78 4 30 5 0 Franklin 6/17/78 Brief Touchdown 0 0 Osage 6/17/78 8 150 5 0 Greenwood 9/17/78 2 7 4 0 Note 1 - Storm damages are placed in categories varying, from 0 to 9 as follows: 0) No damage 1) Less than $50

2) $50 to $500
3) $500 to $5,000 4) $5,000 to $50,000 5) $50,000 to $500,000
6) $500,000 to $5 million 7) $5 million to $50 million 8) $50 million to $500 million 9) $500 million to $5 billion 2.3.1.2.7 Hurricanes The eastern Kansas location of the site is about 1,400 miles west of the Atlantic Ocean and about 800 miles north of the Gulf of Mexico. Because the strength of a hurricane is dissipated rapidly once the storm commences an overland trajectory, this distance minimizes the influence that a hurricane would have upon the site. For a 93-year period, 1871-1963, the tracks of four dissipating hurricanes have been shown to pass through Kansas (Reference 7). 2.3-13 Rev. 0 WOLF CREEK 2.3.1.2.8 Strong Winds Strong winds occur in Kansas as a result of extratropical cyclones, thunderstorms, and tornadoes. Tornadoes are discussed in Section 2.3.1.2.6.Extratropical cyclones usually produce their highest wind speeds in winter or spring because they are energized mainly by temperature contrasts between air masses.Thunderstorms are convectively driven and therefore produce their strongest winds during the spring and summer months. The maximum 1-minute wind speed for Topeka was 81 miles per hour from the north, while the maximum for Wichita was 68 miles per hour from the northwest. Gusts of lesser speeds are recorded from almost all directions (References 9 and 12). According to Pautz (Reference 31), there were 877 reports of wind gusts (50 knots and greater) occurring in 453 days in the State of Kansas from 1955 to 1967 (Figure 2.3-6). The diurnal distribution of these wind gusts shows a maximum between 1800 CST and 2400 CST. Pautz also shows this data by 1-degree longitude-latitude squares. About 30 windstorms were reported in the square encompassing the site (Figure 2.3-7). Figure 2.3-8 shows these windstorm reports averaged by 2-degree longitude-latitude squares. About 200 reports occurred in the site vicinity. This is a much higher rate of occurrence than shown in the 1-degree square averages; the disparity between these frequencies is explained in Section 2.3.1.2.3. The fastest-mile wind speed is defined as the fastest observed 1-minute value when the direction is in tens of degrees (Reference 12). Thom (Reference 39) chose the annual fastest mile wind speed as the best available measure of wind for design purposes. He calculated fastest mile wind speed values and mean recurrence intervals using Frechet probability distributions. Some typical recurrence intervals and their related wind speeds for eastern Kansas are shown in Table 2.3-7. The 100-year return period fastest-mile wind speed in the site region was calculated at 86 mph. In comparison, the fastest-mile wind speeds observed in Topeka and Wichita are presented in Table 2.3-8. 2.3.1.2.9 Air Pollution Potential Meteorological conditions which are conducive to high air pollution potential are light winds, surface inversions, and stable layers aloft. The site area is characterized by frequent storm passages, cloudiness, high winds, and thermal instability, all of which favor rapid dispersion of atmospheric pollutants and, 2.3-14 Rev. 0 WOLF CREEK therefore, low air pollution potential. The geographical distribution of these periods of relatively good ventilation conditions is indicated by the tracks of the centers of well-defined low pressure systems (Figure 2.3-9). Periods of limited dispersion or stagnation are often associated with slow moving, warm anticyclones with resulting thermal stability and numerous temperature inversions. Hosler (Reference 21) has presented a climatological study on the frequency of temperature inversions in the United States. According to his study, the site is in an area where periods of high air pollution potential may be expected to occur approximately 30-40 percent of the time (Figure 2.3-10). The mixing height or mixing depth of the atmosphere, defined as that height through which relatively vigorous vertical mixing occurs, plays a significant role in the diffusion potential of a given area. Holzworth (Reference 20) has indicated that maximum mixing heights for eastern Kansas vary from a mean of about 850 meters (2788.9 ft) in the winter to about 1,600 meters (5249.6 ft) in the summer (Figure 2.3-11). Such values indicate that this region has mixing heights which are higher than those over about one-half of the United States (Figure 2.3-12). Periodically, however, a high pressure system in the lower atmosphere will stagnate over a region and result in a lower mixing height and limited vertical diffusion. The occurrence of limited dispersion episodes, also called stagnation periods, throughout the contiguous United States has been objectively determined by Holzworth (Reference 20). The critical limiting conditions used to define an episode are: a. All mixing heights 1,500 meters (4921.5 ft) or less; b. All mixing layers average wind speeds 6.0 meters per second (8.9 mph) or less; c. Above conditions satisfied continuously for at least two days. Figure 2.3-13 shows the total number of episode-days, the number of days for which the above conditions are met, in 5 years to be about 62 in the vicinity of the site. There is a qualitative agreement between the objectively derived patterns and the actual forecast-days of high air pollution potential (Figure 2.3-14) for the region (Reference 20). 2.3-15 Rev. 0 WOLF CREEK 2.3.1.2.10 Meteorological Data Used for Ultimate Heat Sink Analysis The meteorological data used as input to the Ultimate Heat Sink (UHS) analysis in Section 9.2.5 were based on a computer processing of 16 years of meteorological data (1949 through 1964) from Chanute Flight Service Station (F.S.S).The long-term meteorological data collected at Chanute, Kansas are considered to be the most representative data for the WCGS as discussed in Section 2.3.2.However, only 16 years of data were recorded (1949-1964) by the U.S. National Climatic Center at Chanute, Kansas. These 16 years of data represent regional climatological conditions for analysis for the UHS because included in this 16-year period of record is the worst recorded drought which occurred during 1952 through 1957 and has an estimated recurrence interval of 50 years. This drought also occurred in many states in the midwest including Illinois and Texas. For example, the 1952-1955 drought in Illinois was considered to have a recurrence interval of 83 years by Illinois State Water Survey (Reference 1). Also, in Texas this drought was considered to be the worst on record since 1890 (Reference 2). To date these droughts for Illinois and Texas are considered to be the worst on record.Therefore, the 16 years of Chanute meteorological data for the Ultimate Heat Sink (UHS) Analysis for WCGS includes the most severe regional climatological period on record to date. The worst 30-day evaporation and temperature periods were selected from this 16-year meteorological data for use in the UHS analysis. These two 30-day periods occurred close to or within the one-in-fifty year drought (maximum 30-day evaporation period occurred from June 24, 1954 to July 23, 1954; maximum temperature period occurred from July 16, 1951 to August 15, 1951). Note that this worst evaporation period for the WCGS UHS analysis occurred within the one-in-fifty year drought and the worst temperature period occurred close to the one-in-fifty year drought. Analysis of Illinois weather data for 28 years (1948 to 1976) for an UHS located in Illinois developed similar trends, i.e., the worst 30-day evaporation and temperature periods also occurred close to or within the one-in-fifty year drought. By this analogy, the 16 years of Chanute meteorological data used for WCGS UHS analysis are representative of the regional climatological conditions and contain the worst case drought, evaporation, and temperature periods. 2.3-16 Rev. 0 WOLF CREEK As suggested in Revison 2 to Regulatory Guide 1.27, the worst temperature period was obtained by saving the conditions for the 5 consecutive days, 1 day, and 30 consecutive days resulting in the highest average water temperatture, after which these three periods were combined to produce a synthetic 36-day worst weather period. The temperature periods were determined to have the following actual dates: Worst 5 days: June 30, 1949 (6:00 p.m.) to July 5, 1949 (noon) Worst 1 day: July 2, 1949 (noon) to July 3, 1949 (noon) Worst 30 days: July 16, 1951 (6:00 a.m.) to August 15, 1951 (6:00 a.m.) Table 2.3-9 shows A) "The Worst Temperature Period: (synthetic 36-day period as explained above, and B) "The Worst Evaporation Period." The latter was obtained by selecting the weather conditions corresponding to the 30 consecutive days (midnight June 24, 1954 to midnight July 23, 1954) for which evaporation loss was maximum. 2.3.1.3 Local Meteorological Condtions for Design and Operating BasesThe following meteorological conditions developed in Seciton 2.3.1 were used for design and/or operation of the plant: Section In Which Section In Which Meteorological Condition Was Condition Was Condition_____ Developed________ Used__________Condtions used as input to ultimate heat sink analysis 2.3.1.2.10 9.2.5 Class I Design Basis Tornado Parameters 2.3.1.2.6 3.3.2 Maximum Probable Winter PMP and 100-year Return Period Snowpack 2.3.1.2.2 2.4.2.3.3 Probable Maximum Winds 2.3.1.2.8 2.4.5.1 2.3-17 Rev. 0 WOLF CREEK 2.3.2 LOCAL METEOROLOGY Data from onsite measurements and from nearby stations of the National Weather Service are used in preparing this report. The only first order National Weather Service stations in the area are at Topeka and Wichita, both having extensive data. Burlington, 4 miles southwest of the site, has some limited data available that have been used when applicable. Because it has a good length of continuous record, is close to the site, and has approximately the same elevation and exposure, the Chanute, Kansas, Flight Service Station (F.S.S.) (Reference 28) provided data which are used to characterize the wind and atmospheric stability of the site area. In comparison, Topeka is 56 miles north of the site and its wind data are influenced by its location in the Missouri River Valley, while Wichita has a similar exposure to the site area but is 96 miles southwest of the site (Figure 2.3-1). Although these data are considered to be generally representative of meteorological conditions at the site, local variations, especially in the distribution of wind direction and speed, probably exist. These local variations can only be identified by the onsite meteorological monitoring program. Accordingly, the local climatology of wind and atmospheric stability is evaluated in detail using 36 months of data gathered from the onsite meteorological tower during the period June 1, 1973 to May 31, 1975 and March 5, 1979 to March 4, 1980. The data and methods used are explained in Section 2.3.3.9.2.3.2.1 Normal and Extreme Values and Meteorological Parameters2.3.2.1.1 Temperature Table 2.3-10 presents the monthly and annual average and extreme temperatures for Burlington, Wichita, and Topeka. The average monthly temperatures range from 80F in July and August to 29F in January; however, Kansas has occasional severe outbreaks of hot spells in the summer and cold periods in the winter.Burlington has recorded both a high of 117F and a low of -27F, Topeka a high of 109F and a low of -20F, and Wichita a high of 113F and a low of -12F.The annual average number of days with temperatures in excess of 90F is approximately 60 to 70 for the region, while the average number of freezing days per year is about 120. The annual mean temperatures based on these data are 57.0F for Burlington, 54.3F for Topeka, and 56.6F for Wichita. Table 2.3-11 gives the hourly average temperature for the WCGS using the 3-year period of on-site data at the 10-meter level. 2.3-18 Rev. 1 WOLF CREEK This table also presents the annual average and extreme temperatures for the site. The annual mean temperature is 54.7F (12.6C), which compares favorably to the annual means for Burlington, Topeka, and Wichita. Hourly average, daily average, and extreme temperature data for the site are presented on a monthly basis in Table 2.3-12. It should be noted that the "mean" values in the referenced tables are the arithmetic averages of all hourly values. The "climatic mean" is determined by adding the maximum and minimum values each day and dividing by 2. Although Kansas is distant from major bodies of water, significant moist air incursions from the Gulf of Mexico occur during the summer months. This moist air inflow results in marked increases in wet bulb temperatures for the region from June to September. Monthly and annual average dewpoint temperatures for both Topeka and Wichita are presented in Table 2.3-13. Hourly average dewpoint temperature and annual average and extreme dewpoint temperatures for the 3-year period of onsite data are listed in Table 2.3-11.The mean annual dewpoint temperature is 42.6 F (5.9 C), which compares favorably to the mean annual dewpoint at both Wichita and Topeka (Table 2.3-13). Onsite dewpoint statistics on a monthly basis are given in Table 2.3-12. 2.3.2.1.2 Water Vapor This portion of Kansas shows a marked diurnal change in relative humidity. As temperatures increase during the day, relative humidities decrease accordingly.

Likewise, when temperatures fall during the evening hours, there is an appreciable rise in the relative humidity values. Therefore, the lowest relative humidity values are found during the afternoon hours, while the highest values occur in the early morning just before sunrise. Mean relative humidity values for Topeka and Wichita are shown in Tables 2.3-14 and 2.3-15. Table 2.3-11 lists the hourly average relative humidity for this 3-year data base from the site. Annual averages and extremes of relative humidity can also be found in this table. Monthly relative humidity statistics are presented in Table 2.3-12 for the 3 year period. The annual averages show that the onsite data period was slightly drier than the long-term period. No data on absolute humidity are available. 2.3-19 Rev. 0 WOLF CREEK 2.3.2.1.3 Fog Heavy fog occurs relatively infrequently in the region around the site. Topeka averages about 14 days per year with heavy fog while Wichita has 17 such days.The months of December, January, and February show the greatest incidence of fog, averaging two to three such days per month (Tables 2.3-14 and 2.3-15). No onsite fog data are available. No data on reduction of visibility because of smog are available. 2.3.2.1.4 Precipitation Long-term average precipitation is moderate, ranging from 30 to 38 inches annually, and is distributed throughout the year, although 70 percent of the annual total precipitation occurs between April and September (Table 2.3-16).This is a direct result of the increased thunderstorm activity occurring in the region during the summer months. January is generally the driest month of the year, while either May, June, or July is the wettest. The annual average number of days with precipitation ranges from about 85 to 95. Snowfall, occurring in every season but summer, averages between 15 and 20 inches a year in the region. The greatest average monthly snowfall for Burlington, Kansas, occurs in February (Table 2.3-16). Snowfalls of 17 inches or more in 24 hours have been recorded at Topeka, Kansas (Reference 12). On-site precipitation data were not taken during the first 2 years of data gathering. However, the data are available for the March 5, 1979 - March 4, 1980 period. Annual precipitation wind roses for the 10- and 60-m levels are presented in tabular form in Tables 2.3-17 and 2.3-18. Monthly precipitation wind roses based on the 1 year of data are presented in Tables 2.3-19 and 2.3-20. Table 2.3-21 presents the number of hours with precipitation and precipitation rate distributions, by month, for the year of data. The total precipitation for the year was 28.16 inches with the maximum of 8.35 inches occurring in June 1979. Additional data on short-term rainfall intensity can be found in Section 2.3.1.2.1. Additional information on snowfall and weight of snowpack can be found in Section 2.3.1.2.2. 2.3.2.1.5 Wind Speed and Direction Joint wind speed and direction frequency distributions for Chanute F.S.S. from 1955 to 1964 are shown on a monthly and annual basis in Table 2.3-22. On the average, the prevailing wind at Chanute 2.3-20 Rev. 0 WOLF CREEK is southerly from April through December, while north-northwesterly flow prevails during January and February. March has the highest monthly wind speed, averaging 12.8 knots. July and August have the minimum monthly average wind speed of 9.5 knots. Calms were present 3.6 percent of the time, while strong winds above 20 knots were observed 3.5 percent of the time. Calms occurred primarily during the summer months with a maximum frequency of 5.1 percent in June. Strong winds occurred primarily in the spring, with a maximum frequency of 9.0 percent in April. 2.3-21 Rev. 0 WOLF CREEK Table 2.3-23 gives the frequency distributions for the persistence of wind direction at Chanute F.S.S. in each season. Southerly and north-northwesterly winds are most persistent, with the former dominating in spring, summer, and fall, and the latter in winter. The maximum persistence during the spring, summer, fall, and winter is 60 hours, 33 hours, 45 hours, and 36 hours, respectively. No calms last longer than 21 hours. The joint wind-stability characteristics of the site area are defined by Table 2.3-24. The table is based on 10 years of standard National Weather Service (previously the U.S. Weather Bureau) 3-hourly observation at Chanute F.S.S., covering the period January, 1955 to December, 1964. For each observation the stability existing at that time was calculated by the Turner-Pasquill method in program "STAR", supplied by the National Climatic Center, Asheville, North Carolina. In the version of the program used for this study, Pasquill stability class G is not distinguished from class F; rather, the two are treated as a single class which is designated as F. The mean wind speeds for each stability class are as follows: Stability Class Mean Wind Speed (knots) A 1.7 B 4.7 C 9.2 D 13.1 E 8.2 F 3.9 Tables 2.3-25 and 2.3-26 give the wind roses for the lower level (10-m) and upper level (60-m) winds, respectively, for this 3-year period of on-site data.These wind rose are also displayed graphically on Figures 2.3-15 through 2.3-

18. Wind roses on a monthly basis are provided in Tables 2.3-27 (10-m) and 2.3-28 (60-m). For the 10-meter level, the mean annual wind speed is 9.2 knots (4.6 m/sec) and the prevailing direction is south. Comparison of onsite data with long-term Chanute F.S.S. indicate that similar wind patterns occur at both sites. The prevailing direction is southerly, except for the winter months when it shifts to a north-northwesterly direction. Wind speeds at Chanute F.S.S. are slightly higher than those onsite; however, at both sites they are strongest during March and April. Joint frequencies of wind speed, direction, and stability for the total period are presented in Tables 2.3-29 (10-m) and 2.3-30 (60-m). These joint frequencies are given on a monthly basis in Tables 2.3-31 (10-m) and 2.3-32 (60-m). The stability frequency (in percent of total time) over the total period is distributed as follows: A=11.29, B=5.13, C=6.10, D=30.99, E=23.92, F=13.42, G=9.15 (Table 2.3-29). The 2.3-22 Rev. 0 WOLF CREEK most frequent occurrence of Stability Class A is during the early summer months. Stability Class G occurs most frequently during the fall. Diurnal variation of wind speed and direction, average, and extreme winds for the total period are presented in Table 2.3-11, and on a monthly basis in Table 2.3-12. Table 2.3-33 provides the total period lower level wind persistence for each stability class; for all classes combined (Pasquill All) and all stable classes (Pasquill #S#), respectively. Southerly, northerly and north-northwesterly winds are most persistent onsite; the same pattern has also been noted at Chanute F.S.S. 2.3.2.1.6 Cloud Cover and Sunshine Average monthly and annual daylight cloud cover and sunshine for Topeka and Wichita are given in Tables 2.3-34 and 2.3-35. 2.3.2.1.7 Stability The seasonal persistence of stability frequency distribution at Chanute Flight Service Station is depicted in Table 2.3-36. For all seasons, only Class D stability conditions have a persistence exceeding 15 hours. In spring, fall, and winter more than 10 percent of Class D stability conditions persist for longer than 102 hours, while the upper limit for summer persistence is 96 hours.Onsite diurnal variation of stability statistics can be found for the total period in Table 2.3-11 and monthly in Table 2.3-12. Table 2.3-37 presents a stability persistence summary for the 3-year onsite data set. The only stability classes to persist more than 24 hours are classes D and E. The 85-1Om differential temperature was used as the primary parameter to determine stability at Wolf Creek. If the 85-10m data value was not available, then the 60-10m differential temperature value determined stability.Difficulties were encountered in getting valid data for these parameters for the Phase 2 program (Section 2.3.3.7.2). This caused all valid data to come under intense scrutiny. Before data was allowed into the data base, all calibrations, site logs, and weather maps that were obtained from the U.S. Department of Commerce were checked against the analog strip chart. If the data could not be proved invalid, then the data was allowed into the data base. For these data, stabilities A, F, and G occurring for greater than a 12-hour consecutive period were identified. These 16 time periods and stabilities are listed in Table 2.3-37a. 2.3-23 Rev. 0 WOLF CREEK All strip chart data and instrument calibration records for the 10 stable condition periods showed consistent and valid data. All 10 periods occurred during the night time hours under clear skies and high pressure conditions.Daytime temperatures varied from 10 to 30 F. Radiational cooling near the surface occurs under these conditions creating stable meteorological conditions. As the sun rises and adds heat to the surface layer, stable conditions weaken. The first three unstable periods (3/7-8/79, 3/8/79, 3/8-9/79) can be attributed to low pressure systems and frontal movements across the area which were being maintained by a polar jetstream maximum located over the midsection of the U.S.The upper air flow was strong out of the north bringing an influx of polar air. The polar air continued to flow over the region at upper levels during the last three unstable periods (3/10/79, 3/11/79, 3/12/79). However, low humidity, high pressure and a southerly surface flow helped to keep skies clear and create surface heating for unstable conditions near the surface. 2.3.2.2 Potential Influence of the Plant and Its Facilities on the EnvironmentSite characteristics and general arrangements of the facilities for the plant and cooling lake are shown in Figure 2.4-1, while the plant layout is shown in Figures 1.2-2 and 2.1-3. To create the cooling lake, an earth dam was constructed across Wolf Creek at a point about 3.1 miles south of the plant site. In addition, saddle dams were constructed at low points on the western topographic ridge (Figure 2.4-1). The nearest of these dams is approximately 1.2 miles west of the plant site. The cooling lake has a normal operating elevation of 1087 feet mean sea level and a surface area of 5,090 acres. Station grade is 1099.5 feet and floor grade is 1100.0 feet. A maximum of about 12 feet of soil and near-surface bedrock was cut from the plant site area to establish station grade (Figure 2.1-3).Buildings and other structures do not have sufficient dimensions to affect the general diffusion climatology of the site beyond a wake region of several hundred meters. Neither the saddle dams nor the main cooling lake dam significantly affected local meteorology at the plant site. 2.3-24 Rev. 0 WOLF CREEK The filled cooling lake modified the diffusion climatology of the site to the extent that its surface temperature differs from the air temperature at the site. This results in a modification of the diffusion properties of the air either before or after it passes the plant. The amount of modification depends on the initial temperature difference between the air and the lake water and the length of time that the air remains over the lake. The maximum fetch of the lake in relation to the plant site is about 3.1 miles in the south-southwest to south-southeast sector. Thus, for winds less than about 6 miles per hour blowing from or into this sector (and less than about 2 miles per hour in any sector over the lake) modifications in the atmospheric stability of the diffusion properties of the air may be expected. In addition to introducing modifications in the diffusion climatology, the cooling lake may produce an increase in the atmospheric humidity and hence an increase in fog incidence in the area. This potential increase in fog incidence was investigated by computer simulation. The computer program FOGALL (certified and documented by Dames & Moore) employed in the analysis of fogging and icing potential of the Wolf Creek Lake evaluates the impact of the lake at specified receptor points. This evaluation contains the following information: 1) the number of fog occurrences in 20 visibility range categories for each receptor and the total occurrences at each receptor for all ranges; 2) the count of fog hours which would occur without the heated lake (baseline conditions); 3) the water vapor density distribution for the receptors; 4) the frequency of occurrence of the temperature change at each receptor due to the lake; 5) the total amount of the number of hours ice would occur at each receptor; and 6) the frequency of ice occurrences without the lake (baseline conditions). In addition, for each occurrence (hour) of fog, the date, vapor pressure, receptor air temperature, water vapor density, visibility range, source air temperature, temperature difference between source and receptor, and receptor number are listed. The receptor points used in the evaluation are presented in Figure 2.3-19. The FOGALL model was developed as an alternative to POND model in 1980 by Dames & Moore. The objective was to develop a model which was more flexible than POND and to update both the physics and algorithms used. The basic differences between FOGALL and POND are listed below: 2.3-25 Rev. 10 WOLF CREEK 1. FOGALL uses a more recent formulation (Reference 34) for the calculation of the heat and moisture fluxes from the heated pond. 2. FOGALL utilizes a formal area source dispersion algorithm, while POND utilizes a more intuitive trajectory approach. The trajectory approach limits POND to 8 discrete wind directions. In FOGALL the wind varies continuously. 3. POND uses ambient 3-hour meteorological observations while FOGALL uses hourly data. 4. FOGALL stimulates the vertical dispersion of vapor and heat from each area source making up the lake by using a Gaussian distribution using Pasquill-Gifford parameters. POND uses a uniform distribution to simulate the vertical dispersion. Both water vapor and heat are uniformly distributed between the water surface and a height calculated from upwind fetch and stability class. 5. POND uses an 18 x 10 fixed cartesian grid as the basis for its calculations. This grid is used to define both area sources and receptor points. In FOGALL each receptor and each area source can be independently positioned. That is, neither receptor or sources are keyed to a cartesian grid. The receptor in FOGALL can also be positioned with a vertical coordinate. This permits receptors in a visibility analysis to be placed at eye level position along critical highways. 6. FOGALL utilizes an optimized subroutine to calculate y and z while POND does not. 7. Input water temperature can be a constant or it can be varied hourly, daily or monthly in FOGALL. In POND the input water temperature can not be varied as a function of time. 8. FOGALL produces frequency distribution of fog, icing, water vapor density, and induced temperature changes for baseline as well as plant induced conditions. The frequency distributions generated have more resolution than those generated in POND. 2.3-26 Rev. 0 WOLF CREEK A complete copy of the FOGALL certification/users manual was provided in response to ER(OLS) Questions 450.3 and 450.4. The procedure used to validate the FOGALL model is described in the certification/users manual provided in response to ER Question 450.3. The verification of FOGALL was performed by executing two test cases and manually calculating the expected results. One test case utilized source water temperature constant with time and area. The second case varied the source water temperature over the source area each hour. In addition, hand calculations were performed to verify that the results of each subroutine conformed with the respective applied theoretical model or mathematical equation.The model design is based upon accepted principals of atmospheric physics; computed values were hand verified; and the test cases were designed to detect fog, no fog, ice, and no ice conditions at defined receptors. The validation procedure, therefore, provides a high degree of confidence that the FOGALL results are representative of actual conditions. In calculating the potential of the cooling lake to cause fogging and icing, FOGALL uses a numerical approximation to a Gaussian area source model, which essentially breaks the water surface up into a number of small incremental source area elements. The water temperature of each source element is a model input (vary spatially and temporarily) as well as hourly input of wind speed, wind direction, atmospheric stability, ambient temperature, and relative humidity.FOGALL makes an emission, dispersion, and impact calculation each hour. The emission calculations constitute an evaporative mass flux calculation at each increment, and a sensible heat flux calculation via the evaporative mass flux and the Bowen ratio which is evaluated in terms of ambient temperature, relative humidity, and surface water temperature. The dispersion calculation for each element is made using the Gaussian area source model and it produces estimates of water vapor density impact and thermal impact for source strengths of evaporative mass flux and sensible heat fluxes, respectively. The visual impact calculation takes the total water vapor density impact and total thermal impact at a given receptor and determines whether or not fog is present. The liquid water content of air at the receptor is calculated as the difference between the water vapor density (ambient plus total impact) and water vapor density 2.3-27 Rev. 0 WOLF CREEK at saturation (assumes water vapor starts to condense at a relative humidity of 100 percent). The visibility at the receptor is calculated from the liquid water content using an equation given in the Compendium of Meteorology (Reference 14). Fog exists at the receptor when, according to international definition (Reference 1). The meteorological data used in these calculations were on-site hourly observations of wind speed (meters per second), wind direction (degrees), 10-meter dew point and ambient temperature ( C), and stability class (A-G), for the periods June 1973 to May 1975 and March 1979 to March 1980. The lake surface temperature distribution was calculated from a model which simulated the effects of local meteorological conditions (period January 1949 to December 1965), and plant heated-water discharge, on the surface temperature and evaporation rates of the lake. These calculated surface lake temperatures assumed a one-unit generating plant operating at 100 percent average annual load factor. The data used were in the form of a cumulative profile of surface temperature distribution (seasonal upper 1 percentile) for six locations on the cooling lake [plant discharge, A to D, and plant inlet; see Figure 3.4-13 ER].The cooling lake was divided up into 36 source squares (750 meters by 750 meters) with each square assigned a constant surface water temperature. The source square temperatures in the upper regions of the lake are not affected by the plant heated discharge; hence, the calculated natural background temperatures where used as given in the ER Figure 3.4-14. Source squares located near the four isotherm locations and plant inlet and discharge [Figure 3.4-13 in ER] were assigned the 1 percentile seasonal temperatures as given in Table 3.4-2 of the ER(OLS). Source squares located between two isotherm locations were assigned one-half the temperature gradient between the two (assuming a linear gradient existed between adjacent source squares). For this investigation, the program was run using 3 individual years of meteorological data, 1 year (by month) of source water temperatures (36 sources) covering an array of 90 receptors located in the immediate vicinity of the lake (Figure 2.3-19).The evaluation of the lake's impact is made by using an area source model which is derived from the Gaussian point source model. The water body is broken up into a number of incremental area elements. The impact at a particular point (Xp, Yp, Zp) is taken to be the sum of the individual impacts of each area element. 2.3-28 Rev. 0 WOLF CREEK The basic area source diffusion equation for ground level releases is given by: I(x'p,y'p,z) =-infinx'p

-infininfinY (x',y') G(x'p-x',y' p-y',z) dy' dx') [2.3-3] where I(x'p,y'p,z) is the total impact at the point (x'p,y'p,z), (x',y') is the flux (thermal or water vapor) at the point (x'y'), and G is the Gaussian kernel given by: G(x,y,z) = 1psy (x)sz (x)u exp {-1/2y2ys(x) + z2s z (x)} [2.3-4] where u is the ambient wind speed. Note that a factor of 2 isincluded to represent ground reflection. Equation [2.3-3] is applied to each incremental area element in impact.Assuming that the surface water temperature variation with each element is small (i.e., can be moved outside the integral) and assuming Dx'2(x'p -x') <<1 Equation [2.3-3] can be written for a single element located at point (x's,y's)as:I(X'p,Y'p,Z) = Y(x's,y's) x'u z 1/2p exp -12( z)2sz()erf(y1) - erf(y2) [2.3-5]where: y1 = y'p-y's + Dy/22sy [2.3-6] y1 = y'p-y's - Dy/22sy [2.3-7] and sz and sy are evaluated at the downwind distance x'p - x's. Equation [2.3-5] is the basis of the diffusion calculation in the FOGALL model. 2.3-29 Rev. 1 WOLF CREEK The flux, Y, is evaluated aerodynamically as the evaporative mass flux, E, for the water vapor impact and as the thermal emission flux, f, when the thermal impact is calculated. The calculation of E and f is based upon the work of Ryan and Harleman (Reference 34). There are several variables which are determined sequentially in the model in order to calculate E and f. These are: 1) Ambient dry air density, r ad (using the gas law); 2) Ambient virtual temperature, TV, according to: TV= T(1+0.6083 rvrad + rv) [2.3-8] 3) Saturation vapor pressure at the water surface, ews (thermodynamically); 4) Water vapor density at the water surface, rwv (using the gas law); 5) The change in the water vapor density, Drv, between the surface and a height of 2 meters; 6) Dry air density at the water surface, Twd (using the gas law); 7) Virtual temperature at the water surface, Twv, using Equation [2.3-8] with the corresponding variables for the water surface (assuming T at the surface equal to water temperature); 8) The change in the virtual potential temperature, D qv , according to: Dqv = DTv + GDz where G is the dry adiabatic lapse rate. The evaporation mass flux, E, is then calculated as E = HcDrvCprad [2.3-9] where: Hc = 1.754 (Dqv)1/3 + 2.06554u [2.3-10] 2.3-30 Rev. 0 WOLF CREEK The water vapor impact is then calculated by substituting E for in Equation [2.3-5].The thermal impact is calculated by substituting T for in Equation [2.3-5], where fT = HcDqvradCp [2.3-11] The results of these analyses showed that the greatest occurrences of fogging and icing occurred directly over the lake and along the immediate shoreline.These occurrences diminished rapidly with increasing distance from the lake.Twenty receptors were selected as being representative of conditions that would be encountered along U.S. Route 75 (Receptors 1, 2, 11, 12, 21, 22, 28, 29, 35, 36, 44, 45, 53, 54, 62, 63, 71, 72, and 82), the nearby towns of Burlington and New Strawn (Receptors 21, 22, and 53), and at the plant site (Receptor 48). The results of the analyses (Tables 2.3-42 through 2.3-44) showed that the frequency of fog occurrences resulting from the cooling lake at the receptors bordering U.S. Route 75 and the towns of Burlington and New Strawn was less than 1.5 percent on an annual basis. Most of these fog occurrences were of short duration (1 or 2 hours) and had visibilities of less than 200 m (1/8 mile). The frequency of icing occurrences for the same receptors was less than 0.25 percent on an annual basis. Fog occurrence frequency increased proceeding from the southern to northern receptors. This is due to the prevailing southerly wind direction, which provides the mechanism for the advection of heat and moisture to the northern receptors, and the closer proximity to the lake of the northern receptors. Of the 20 receptors, Receptor 48 showed the highest fog (approximately 5 percent on an annual basis) and icing frequency, as well as the greatest occurrence of visibility ranges less than 100 and 200 meters. This result is a direct consequence of (1) proximity to the plant discharge, which has the highest source temperatures (moisture source) per season [Table 3.4-2 of ER]; and (2) the prevailing southerly winds causing latent and sensible heat advection.In addition to the annual results, the data of March 5, 1979 to March 4, 1980 (Receptors 21 and 22 at Burlington and 53 at New Strawn) were further studied for number of fog occurrences per month (Table 2.3-45), and the number of monthly fog occurrences per 6 hour interval. The results at these receptors showed the greatest frequency of fog during November (13, 17, and 13 hours 2.3-31 Rev. 0 WOLF CREEK for Receptors 21, 22, and 53, respectively) and March (15, 16, and 14 hours for Receptors 21, 22, and 53, respectively). A secondary maximum occurred during August for Receptors 21 and 22 (16 and 19 hours, respectively) and also during February (10 hours for each of the three receptors). Examination of the number of fog occurrences per 6-hour interval showed the fog occurring during the early and mid-morning and late evening periods. A further check of the meteorological input data for these cases showed very stable atmospheric conditions (stability classes E to G) and low wind speed conditions persisting. In addition to the above results, the change in water vapor density distribution and the frequency of temperature changes greater than 2 C were determined at each receptor. Again, the greatest impact was found in the immediate vicinity of the lake. The towns of Burlington (Receptors 11, 12, 21, 22) and New Strawn (Receptor 53) and the plant site (Receptor 48) were of particular interest with respect to temperature and water vapor changes. A summary of the frequency of temperature changes greater than 2 C at the above receptors is presented in Table 2.3-42. The greatest number of occurrences is at the plant site because of its close proximity to the lake. At New Strawn, a temperature increase of 2 C or greater can be expected on the order of 1.5 percent of the year because of the cooling lake. The frequency of the temperature increase of 2 C or greater will be even less at Burlington. The changes in water vapor density distribution, due to the cooling lake, for the above receptors is presented in Tables 2.3-43 through 2.3-45. The primary effect of the cooling lake was to modify atmospheric stability in the local area of the lake due to different roughness parameters and surface temperatures between land and lake. To evaluate the cooling lake's impact on the WCGS x/Q calculations of the USAR Section 2.3.4 and 2.3.5, eight combinations of ambient atmospheric stability, air-water temperature differences, and type of release were studied. These cases are listed in 2.3-29c.Case 1 For the case of a stable ambient atmosphere, water temperature warmer than ambient air, and ground level release, the effect of the cooling lake is to heat the two level atmosphere causing increased turbulence. Ground level releases would, therefore, be more dispersed. For this case, the USAR analyses of Sections 2.3.4 and 2.3.5 are conservative. 2.3-32 Rev. 0 WOLF CREEK Case 2 For an elevated release into a stable atmosphere traversing over warmer water, there will be a modification of ground level x/Q only if the lake-induced mixing reaches plume height within the distance that air flow is over the lake.G. S. Raynor (Reference 33) presents a method for estimating the vertical extent of mixing due to the warmer lake surface: H = u*Tu- (F(TA - Tw)-DT/DZ) (1) where H = height of modified layer (m) u* = friction velocity over the water (m sec-1) u- = mean wind speed ( m sec-1) F = fetch over water (m) TA = low-level air temperature in source region (oC) Tw = water temperature (oC) DT/ DZ = lapse rate ovet the source region and above the inversion ( Cm-1)To estimate the maximum impact of a warmer cooling lake on a stable atmosphere, the inversion height (H) was calculated for: u* = .21 m/s (appropriate for smooth water surface; D.H. Slade, 1968) u- = 2 m/s F = 5.5 km (wind from south or north) TA - Tw = -50oC D T/D Z = .015oC/m (E stability) Under the extreme assumptions, the mixing height will reach approximately 450 meters, sufficient height to cause plume fumigations. Since the fumigation will occur over water or within a 2.3-33 Rev. 0 WOLF CREEK short distance of the lake, this situation will cause a greater impact (with respect to present analyses) only within a short distance of the lake itself X/Q concentrations farther downwind may be lower due to the lake-induced mixing.Case 3 and 4For an elevated or ground release with a stable atmosphere traversing a cooler body of water, the effect of the cooling lake will be to increase the stability of the atmosphere, potentially creating a very shallow intensification of the existing temperature inversion. Since this shallow temperature structure would likely be destroyed by mechanically-induced turbulence over the land surfaces, the lake does not have a significant effect in this case. Case 5 and 6For the case of an elevated or surface release into an unstable atmosphere traversing a warmer body of water, the effect of the cooling lake would be to increase the instability of the atmosphere producing greater dispersion of a ground level release. Greater dispersion of an elevated release would occur if the lake-induced turbulence extended to plume height. For these cases, the existing analyses are conservative for a ground release, and are likely somewhat conservative for an elevated release. Case 7For a ground level release into an unstable atmosphere traversing cooler water, the effect of the cooling lake will be to create a low-level temperature inversion which would restrict the dispersion of the low-level plume, tending to increase ground-level concentrations, until the inversion was destroyed by a rougher (or warmer) land surface. Case 8As with Case 7, a low-level inversion will be created over the lake surface.From Equation 1 with the following variables: u* = .21 m/s u- = 2 m/s F = 5.5 Km 2.3-34 Rev. 0 WOLF CREEK TA - TW = 10oCT/Z = -.015oC/m (C stability) The mixing depth (H) for this conservative case will not exceed approximately 20 meters. Since an elevated release from the 60-meter vent would not easily penetrate to groundlevel through this inversion layer, X/Q values would generally be lower than the present analyses. ConclusionOnly for Cases 2 and 7 would an analysis which considers the presence of the cooling lake tend to be more conservative than the existing analysis of Sections 2.3.4 and 2.3.5. For Cases 1, 5, 8, and perhaps 6 the existing analysis should be more conservative. Cases 2 and 7 will differ from the present analyses only in the immediate vicinity of the cooling lake and then only for wind directions which would produce the largest over-water fetch (i.e., N, S, NW, and SSE). From three years of onsite data at 10- and 60-meter wind levels (Tables 2.3-29 and 2.3-30) stable stability classes (E, F, and G) occur approximately 20 percent of the time and unstable classes (A, B, and C) occur approximately 9 percent of the time.It is expected that over long averaging periods the effect of Cases 1 and 8 will tend to balance the effect of Cases 2 and 7. The short-term accident analyses presented in Tables 2.3-55 through 2.3-57 show strong stable cases resulting from Case 7. With respect to Case 2, it is expected that the resulting fumigation will not result in a X/Q value which exceeds the X/Q values of a ground-level release in a stable atmosphere. A preoperational fog monitoring program was used to evaluate the meteorological impacts of the cooling lake. The purpose of the study was to document the frequency of occurrence of natural fog (as opposed to fogs induced by the operation of the cooling lake) along Highway 75 which is located from 0.5 miles to 2.0 miles west of the cooling lake. Table 2.3-29 shows that the predominant frequency of light wind (less than 3 meters per second) is from the sectors southeast through south. This corresponds with the Dames & Moore Program FOGALL analyses which shows the maximum increase in cooling lake induced fogging frequency along Highway 75 to occur approximately 3 miles south through 2 miles north of New Strawn, Kansas. 2.3-35 Rev. 0 WOLF CREEK The Wolf Creek fog study began during late 1983 and continued through the first refueling. The instrument used during this study was a Fog Visiometer produced by Meteorology Research, Inc. This instrument was equipped with a strip-chart recorder so that 24-hour surveillance of fog conditions was possible. The area selected for study was about 300 feet east of U.S. 75, along and one half mile south of the Wolf Creek access road in Section 34, Range 15 East, Township 20 South in Coffey County. This location was selected because computer modeling indicates this area may have a higher incidence of fog occurrence than other locations along U.S. 75. The instrument was set for a minimum visibility of 255 feet and a maximum visibility of 12,000 feet (2.27 miles). The Fog Visiometer is a back-scatter type of visibility monitor. The instrument has a light source and sensor in the same housing unit. The source emits a type of ultraviolet light to which the sensor is responsive. However, the sensor will not detect any ambient white light. The theory behind the instrument is that the more light which is scattered (and detected by the sensor) indicates a decrease in visibility. This instrument does not differentiate between decreased visibility caused by fog or by other sources such as dust or insects; but, by comparison of the strip chart with onsite meteorological data, one can make that differentiation. Routine maintenance on this piece of equipment once a week involve performing an electronic zero/span check on the sensor, and cleaning the recorder printing head with solvent. The strip chart provide a record of changes of visibility which facilitated data analysis. 2.3-36 Rev. 0 WOLF CREEK 2.3.2.2.1 Topographical Description The topography of the site area is level to gently undulating. The topography within a 5-mile radius of the site is shown on Figure 2.3-21. Cross sections along 5-mile radial lines are shown on Figure 2.3-22. The greatest maximum and minimum variation in elevation along any radial is 130 feet, along the north-northeast line. The average maximum displacement along all the radial cross section is 90 feet. General topographic features within a 50-mile radius of the plant are shown on Figure 2.3-23; topographic cross sections along 50-mile radial lines are shown on Figure 2.3-24. Maximum elevations occur to the west and northwest where the terrain rises to between 350 and 400 feet above plant grade at distances of 35 to 40 miles from the site. Section 2.3.2.3 discusses modifications to dispersion characteristics which are expected to result from plant facilities, including the cooling lake. 2.3.2.3 Local Meteorological Conditions for Design and Operating BasesTemperature extremes data, along with other extreme meteorological variables of rainfall, icing, sleet, snow, rain, wind, and dust were used in design of safety-related equipment exposed to ambient environment conditions and are presented in Section 3.11(B).2.5. The temperature extremes considered varied from -60oF to +120oF.The minimum extreme temperature has been re-evaluated for Wolf Creek. This evaluation indicates that the acceptable minimum extreme temperature for Wolf Creek is -30°F. The one in one hundred year calculation for the minimum extreme temperature listed below is no longer valid for Wolf Creek and is only listed for documentation of the original design conditions. One in 100-year recurrence maximum and minimum temperatures for the site were calculated using National Weather Service observations taken at Topeka and Wichita, and temperature data from Chanute Flight Service Station. Since the most severe conditions were found to occur at Topeka, the Topeka data were used to obtain conservative results. The data used were the yearly extreme temperatures recorded at Topeka during the period 1888 through 1940. To obtain the 1 in 100-year recurrence maximum and minimum temperatures, the maximum and minimum temperatures for each year were listed and ranked relative to all other years. The 1:100-year maximum and minimum temperatures were then determined from an extremal probability distribution (P) using the plotting position formula (Reference 15): P = 1 - n - 0.44N + 0.12 [2.3-12] 2.3-37 Rev. 6 WOLF CREEK where: n = the descending rank of temperature; N = number of years of observations. The reduced variate, Y, was calculated by: Y = -ln(-1nP), [2.3-13] which, when related linearly to the maximum and minimum temperatures, yielded the following extremal distributions: Maximum temperature = 101.8 + 2.94Y 9 in °F Minimum temperature = -6.6 - 5.733Y 18 in °F Therefore, the 1 in 100-year maximum and minimum temperatures are 111.5 9°Fand -33 +18°F, respectively, where the range represents the 95.5 percent confidence limits. A freezing index (FI), number of degree-days below 32°F during the freezing season, was obtained using the same methods of statistical analysis described above for extreme temperatures. Analysis of mean monthly temperature data at Topeka for the years 1930-1971 was made to determine the 1 in 100-year recurrence freezing index. The FI was computed to be 850.5 degree-days for that 42-year period. This index is used in Section 2.5 to determine the 1 in 100-year recurrence frost depth. Rainfall data, in conjunction with other meteorological parameters, were used in several hydrological design considerations. For example, in Section 2.4.2.2, "Flood Design Considerations", rainfall data (Reference 27) were utilized in deriving the probable maximum precipitation (PMP). The dam and spillway of the cooling lake are designed to withstand the effects of the PMP occurring over the entire drainage basin above the damsite. Rainfall data were converted to a 27.4-square-mile basin using methods developed in the U.S. Weather Bureau Technical Publication No. 33 (Reference 45). Rainfall data was used in Section 2.4.11.3.2, "Water Level Determination". Lake drawdown analysis was performed for the 1952-1957 historic drought using rainfall data and evaporation data. 2.3-38 Rev. 0 WOLF CREEK Rainfall data was also used in the USAR Section 2.4.2.3.2. The design basis for the roof drainage system is a rainfall intensity of 7.4 inches per hour with a recurrence interval of 100 years. Rainfall data, in conjunction with other meteorological data such as dry bulb temperature, dew point temperature, wind speed, atmospheric pressure, and short and long wave radiation were used in the design of the UHS. Wind speed data were used in Section 2.4.5.1, titled "Probable Maximum Winds and Associated Meteorological Parameters". For computing the wave generation within the cooling lake, a regional historical study of maximum wind speeds was made in order to arrive at an estimated maximum wind speed of 25-minute duration. A 25-minute duration is the minimum time required for wave generation in the cooling lake, Section 2.4.3.6. The fastest observed 1-minute, 1-hour, and 1-month wind speed values were found in published National Weather Service data (Reference 8). A number of other occurrences of extreme winds with time durations accurately recorded are also used in the analysis. The observed wind speed values were plotted and a best-fit curve was drawn through the representative points. The probable maximum wind speed of 90 miles per hour for a 25-minute duration was then estimated from the plotted data points. Wind speed was used in Section 3.3.1, titled "Designed Wind Velocity". A wind velocity of 100 miles per hour at 30 feet above ground for a 100-year recurrence interval was based on BC-TOP-3. Wind speed was used to determine the effective velocity pressure values through the vertical velocity distribution and gust factors. The vertical velocity distribution (Vz) used was: Vz = (z30)1/7 V30 [2.3-14] where: Vz = wind speed in miles per hour at level z foot; V30 = the 30-foot level wind speed in miles per hour. The gust factor employed was 1.1 for total structural response, and 1.25 for parts and portions of the structure. 2.3-39 Rev. 0 WOLF CREEK 2.3.3 ONSITE METEOROLOGICAL MEASUREMENT PROGRAMS 2.3.3.1 Preoperational and Operational Programs A permanent site for meteorological measurements was selected on March 5, 1973 and a 295-foot tower, with instrumentation, was placed into operation on May 24, 1973. The meteorological tower and its location with respect to the plant are shown on Figures 2.3-25 and 2.1-6. The preoperational and operational monitoring system was designed to provide a reliable system in compliance with the requirements specified in Regulatory Guide 1.23 as to the scope of monitoring activities and overall quality of the monitored data.2.3.3.1.1 Preoperational Progams The preoperational program is divided into two phases. Phase 1 consisted of the 2 years of monitoring from June 1, 1973 to May 31, 1975. Phase 2 consisted of 1 year of continuous monitoring from March 5, 1979 to March 4, 1980. The Phase 1 preoperational monitoring program utilized a sophisticated digital data acquisition system to facilitate data analysis and system performance testing. Based on system performance during Phase 1 monitoring, a final monitoring system was designed for use in Phase 2 and during operational monitoring at the site. The final monitoring system selected for Phase 2 and the operational monitoring provides similar data accuracy and quality using simplified data recording techniques. The Phase 2 preoperational monitoring system did not use a digital data collection system because technicians inspected and maintained the site on a daily basis, which provided a high degree of instrumental surveillancce of the analog data collection system. 2.3.3.1.2 Operational Program The operational monitoring program did commence immediately following fuel load (March 1985) and will continue through the lifetime of the plant. The operational meteorological system makes available within the power plant control room a summary of past weather conditions, including wind direction, wind speed, temperature, and atmospheric dispersion, so that sufficient information is normally available for emergency planning. The plant computer provides the capability to display virtually real time meteorological data in the Control Room and other areas of the plant. The plant computer also provides for long term storage of the data. 2.3-40 Rev. 21 WOLF CREEK 2.3.3.2 Types of Measurements Made2.3.3.2.1 Phase 1 Preoperational Program The types of meteorological parameters measured and sensor performance data for the Phase 1 program are given in Table 2.3- 46. They are horizontal wind speed, horizontal wind direction, standard deviation of the horizontal wind direction, temperature at the reference level, temperature difference between the three heights and the reference level, dewpoint temperatures, and solar radiation.2.3.3.2.2 Phase 2 Preoperational Program The meteorological parameters measured during the Phase 2 preoperational program and associated sensor specification are identified in Table 2.3-47. The parameters monitored are identical to the Phase 1 parameters with the exception that solar radiation was eliminated and precipitation was added for the Phase 2 programs. 2.3.3.2.3 Operational Program The operational monitoring program records the parameters identified in Table 2.3-48. The simplified monitoring system, which includes measurement of windspeed, wind direction, and temperature difference at the 32-foot and 196-footlevels, and standard deviation of the horizontal wind direction at the 196-footlevel, was designed to reduce system failure and associated maintenancerequirements, while ensuring that sufficient information is available to document local meteorological conditions during plant operation. Procedures for use of the data collected from the instrumentation under post-accident conditions (i.e. those conditions covered by the Emergency Plan) are controlled by the pertinent portions of the Appendix B Quality Assurance program.2.3.3.3 Locations and Elevations of InstrumentsThe meteorological tower (Latitude 38 14' 43" N., Longitude 95o 41' 06" W) is located in an open field about 0.5 miles northeast of the plant site (Figure 2.1-6). The terrain is flat to undulating, and the tower is located on a flat ridge. There are no variations in topography which exceed 55 feet for at least 1 mile from the tower. 2.3-41 Rev. 5 WOLF CREEK The instruments are mounted on the tower at heights of 32 feet, 116 feet, 196 feet, and 277 feet. The types of instruments at each level are given in Tables 2.3-46, 2.3-47, and 2.3-48 for Phase 1, Phase 2 and operational monitoring systems, respectively. An instrument shed housing the recording equipment is located near the tower. A plot of the tower area is shown on Figure 2.3-25 and some relevant distances are given in Table 2.3-49. The nearest plant structure to the meteorological tower is the conference center located 2,000 feet south- southwest of the tower. The tower, a series 90 manufactured by the Rohn Company, is 295 feet high and has a base grade elevation of 1,110 feet. It is constructed to conform with Occupational Safety and Health Act (OSHA) regulations and is painted and illuminated according to Federal Aviation Administration (FAA) specifications.The meteorological recording instruments are located in an instrument shed located east of the tower base. A communication shed, which houses fiber optic equipment is located south of the tower base. Air conditioning and heating are provided as necessary for the sheds. Wiring from the tower to the instrument shed is housed in an overhead conduit within the waveguide support rack. The 100-foot by 93-foot area is enclosed by a 7-foot fence which surrounds the instrument shed, fiber optic shed and meteorological tower base. Both the gate in the fence and the instrumentation shed door are locked when the area is not manned.A rain gauge is located 90 feet to the south of the instrument shed. It is mounted on a metal pole at a height of 6 feet above ground level (Table 2.3-47). The precipitation monitor was operated during Phase 2. The solar radiation monitor, which was also mounted on the pole with the rain gauge, was operated during Phase 1, but not operated during Phase 2. 2.3.3.4 Description of Instruments2.3.3.4.1 Phase 1 InstrumentsTable 2.3-46 gives a description of the instruments and their levels on the tower used during Phase 1. The Climet wind speed transmitter has a threshold of 0.6 mile per hour, a calibrated range up to 90 miles per hour, and performs over a temperature range -50 F to +155 F. Calibration instructions are given by the manufacturer, and rigorous tests are performed to ensure continued accuracy. A test traceable to the standards of the National Bureau of Standards (NBS) was run on a set of cups identical to the Climet 011-1 sensor.The test indicated the following relation: F=31.87V-16.57 [2.3-15] where: F = frequency (hertz) V = wind speed (mph) 2.3-42 Rev. 13 WOLF CREEK The wind speeds measured by the sensors installed at the WCGS were within 0.5 mph of the wind speed as determined using the formula above over the entire range of the instrument. Table 2.3-50 presents a test run of the Climet 011-1 anemometer using the formula above. Wind directions were measured to an accuracy of +3. During Phase 1 of the program, temperature variations were measured over three different height ranges with respect to a reference temperature at 32 feet. In each case, this measurement was made with a probe accuracy of +0.15 C. Solar radiation, monitored solely during Phase 1, was measured to an accuracy of +1 percent. 2.3.3.4.2 Phase 2 InstrumentsTable 2.3-47 gives a description of the instruments and their levels on thetower used during Phase 2. The system was modified for Phase 2 operation bythe installation of platinum-resistance temperature probes which are accurateto within +0.05°C. Recording accuracy is 0.08°C, and aspiration accuracy is0.1°C so that system accuracy was within +0.14°C.Precipitation was measured by a tipping bucket gauge to an accuracy of 1percent.2.3.3.4.3 Operational Program Instruments Table 2.3-48 gives a description of the instruments and their levels on the tower used during the Operational Montioring Program. In accordance with Regulatory Guide 1.23 specifications, measurements during operational monitoring will be taken only between 196 feet and 32 feet, with a system accuracy of 0.15°C.2.3.3.5 Maintenance and Calibration of Instruments2.3.3.5.1 Calibration During the Phase 1 monitoring program each instrument was calibrated in the laboratory prior to installation and a check made to verify that it performed according to manufacturer specifications. A second calibration was made at the site 10 days after the system was installed. For the phase 2 monitoring program, an initial field calibration was performed and subsequent calibrations were performed during mid-March and mid-June of 1979. During the entire operation of the program, calibration is performed on each of the instruments and their recorders at 3- month intervals. During the operational monitoring program, calibration is performed according to the schedule specified in the Technical Specifications and operational phase calibration program. The instruments are checked and cleaned, parts replaced as necessary, and then recalibrated according to the following schedule: 2.3-43 Rev. 5 WOLF CREEK a. The temperature reference and dewpoint transducers were field calibrated against NBS calibrated thermometers and an Assman Psychrometer during Phase 1 and 2. In addition, an ice bath is used to calibrate the reference temperature during Phase 2. b. Each separate temperature difference was calibrated by comparison with a calibrated thermistor pair during Phase 1; during Phase 2 the system is calibrated using an ice bath. c. The wind direction indicators are calibrated and the reference direction (west) checked; d. The pyranometer output and its amplifier card were checked during Phase 1; during Phase 2 the pyranometer was not used. e. Zero and span tests are made on the recorders. 2.3.3.5.2 Operational Program Calibration During the operational monitoring program, calibration is performed according to the schedule specified in the Technical Requirements Manual and operational phase calibration program. Accident related meteorological instrumentation is calibrated periodically to assure the validity of the meteorological data as required by Technical Requirements Manual. Calibration of this instrumentation is subject to the pertinent requirements of the Appendix B Quality program. 2.3.3.5.3 Maintenance The meteorological tower site was visited on Monday, Wednesday, and Friday of every week during periods of normal operation during Phase 1; during Phase 2 the instruments were checked each work day. During the operational phase, maintenance is performed in accordance with operational phase maintenance procedures. If any instrument or parameter is found to be out of tolerances specified in the checklists, the cognizant engineer is notified and corrective action is taken. This ensures detection of instrument failure before extended periods of data are lost. An inventory of spare parts is kept on hand to back up critical instruments and equipment if they should fail completely. 2.3-44 Rev. 13 WOLF CREEK 2.3.3.5.4 Phase 1 and 2 Data RecoveryData recovery for Phase 1 is presented in Table 2.3-51.During Phase 1 the concurrent data recovery for the parameters critical for diffusion analyses ( wind direction, wind speed, and temperature difference) was 96.7 percent for winds measureed at 32 feet and 93.2 percent for winds measured at 196 feet. During the Phase 2 monitoring program the dewpoint sensor was not rendered operational until March 22, 1979. Data recovery for the period March 5, 1979 to March 4, 1980 is provided in Table 2.3- 52. Concurrent data recovery for the parameters critical for diffusion analyses was 85.4 percent for winds measured at 32 feet and 83.6 percent for winds measured at 196 feet. For the entire 3-year period, concurrent data recovery measured at both wind levels of 32 and 196 feet exceeds 90.0 percent. Concurrent data recovery for wind measured at 32 feet was 92.9 percent and for wind measured at 196 feet is 90.0 percent. 2.3.3.5.5 Operational Program Data Recovery During the Operational Monitoring Program the concurrent data recovery will meet the requirements as delineated in Regulatory Guide 1.23. 2.3.3.6 Data Recording Systems2.3.3.6.1 Phase 1 Preoperational Monitoring Program Analog output from the sensors was transmitted to strip chart recorders via a Climet translator (Model 060-020). Each level of wind data was recorded on a two-channel Esterline- Angus recorder (Model E1102R). The temperature data were recorded on a six-channel multi-point Esterline-Angus recorder (Model E1124E). The solar radiation data were recorded on a two-channel Esterline-Angus recorder (Model E1102R). These recorders were housed in the instruments shed. The digital system consisted of a Hewlett-Packard (HP) 3485A scanning digital voltmeter with an HP 9600A computer system for sampling and storing all meteorological parameters once every minute. Using an HP 2100A mini-computer and a Data Acquisition and Control Executive (DACE) operating system together with a supplied program, hourly values for each parameter were computed and stored in memory. These values were printed and punched on paper tape every 24 hours at the site on an ASR33 teletype unit. 2.3-45 Rev. 5 WOLF CREEK 2.3.3.6.2 Phase 2 and Operational Monitoring Programs During Phase 2, analog output signals from the wind speed, wind direction, and precipitation monitors were recorded on Esterline-Angus recorders (Model E1102R) as in Phase 1. Wind sigma values for each monitored level were recorded on Esterline-Angus mini-servo recorders (Model MS601C). Temperature difference across three height ranges were recorded, along with the 32-foot reference temperature, using a Leeds & Northrup multipoint chart recorder (Model 251). During the Operational Phase data is recorded via the Nuclear Plant Information System (NPIS) which digitally records meteorological data from the the tower. All analog recorders are only used as a backup. Analog output signals from the wind speed and wind direction and Wind sigma values for each monitored level are recorded on chart type recorders. Temperature difference across one height range, along with the 32-foot reference temperature are recorded using a multipoint chart recorder. All recorders are located in the instrument shed. 2.3.3.7 Data Analysis2.3.3.7.1 Phase 1 Preoperational Data Recording The analog chart records were removed every 28 days for inspection and analysis. Each chart was removed separately, stamped and identified by job number, date, instrument, and level. The charts were inspected for breaks in record, time errors, and power failures and then stored. The information gained from their inspection was used to update and verify the digital data on which the analysis was made. The analog recording system provided a back-up in case of digital system failure, so that a high percentage data recovery rate could be maintained. As an additional check on the system's reliability, the results from the analog recordings were compared with those obtained from the digital recordings. For each 28-day period, a total of 48 hours of digital and analog data were selected for comparison: one 24-hour continuous sample, and four 6-hour continuous samples. At least one 6-hour sample was taken from each week of data, and one week of data was sampled for both the 6-hour and the 24-hour period. The 24-hour sample provided a check on the diurnal trend of the meteorological parameters, whereas each 6-hour sample provided a check on the values of the parameters for 6 consecutive hours. The frequency of sampling of the 6-hour period was to examine data representativeness. 2.3-46 Rev. 11 WOLF CREEK The rationale for this comparison procedure was to provide adequate assurance that the digital and analog recording systems indicate the same values for the meteorological parameters. The procedure also permitted the detection of any small systematic differences between the two sets of data which would not be detected by comparing isolated values. Hence, the reliability of the digital master file data used in safety analysis was established. Each analog record was also scanned in its entirety to detect data inconsistencies and/or malfunctioning of the data acquisition system. Three site visits each week and quarterly calibrations further ensured the accuracy and reliability of the data acquisition system. During quarterly calibrations, the correspondence between analog and digital values was established. More than 7.1 percent of the total digital master file data were compared against the analog data every 4 weeks, and a minimum of 3.5 percent of the data were compared every week. This amount of data comparison, with the selected frequency and continuity of samples, was considered to provide a statistically significant sampling, ensuring the reliability of the digital master file data between quarterly calibrations.Digital data were processed by the minicomputer so that average hourly values of all the prime parameters were calculated onsite from the minute-by-minute scan values. Alarm limits on data validity and the number of single values contributing to each hourly average were watched and flagged by the computer to assist in later assessment of data reliability. At the end of each month, the data on punched paper tape was read into a permanent data file on a time-sharing computer system. Any missing data were then retrieved from the back-up analog recording system. With the exception of wind direction, hourly averages of the minute-by-minute observations were calculated from the following scalar equation: B-j = rjni=1nBji [2.3-16] 2.3-47 Rev. 5 WOLF CREEK where: B-j = the average hourly value for the jth variable (in engineering units); n = the total number of minute observation during the hour, (normally 60), but if n is less than 20 for that hour, data are considered to be missing; Bji = the ith minute observation on the jth variable (millivolts); rj = the conversion factor to change the jth variable from millivolts into physical units. Whereas most of the averages were scalar in form, the average wind directions were determined by the following averaging techniques: a. Each minute observation of wind vector (speed and direction) is broken into its components, U and V according to: Ui = Si sin (qi - p) [2.3-17] Vi = Si cos (qi - p) [2.3-18] where: Ui = the east-west component of wind for the minute; Vi = the north-south component of wind for the minute; Si = the scalar wind speed for the minute; qi = the wind direction for the minute. b. The Ui and Vi components were added separately and the sums were divided by the total number of minute observations for the hour, to establish the average components U- and V-, i.e.: U-=1ni=1nUi [2.3-19] 2.3-48 Rev. 5 WOLF CREEK V-=1ni=1nVi [2.3-20] where: _ U = the average east-west component of wind for the hour; _ V = the average north-south component of wind for the hour; n = the number of valid minute observations for the hour. c. The average wind direction was found by converting the average components into a vector direction, i.e.: U- > 0 and V- > 0: q- = Tan-1 U/V- + 180 [2.3-21] U- > 0 and V- < 0: q- = Tan-1 U-/V- + 360 [2.3-22] U- < 0 and V- > 0: q- = Tan-1 U-/V- + 180 [2.3-23] U- < 0 and V- < 0: q- = Tan-1 U-/V- [2.3-24] where: q- = the average vector wind direction during the hour. _ _ (Note that Tan-1 U/V is always in the range -90° to +90°) Regulatory Guide 1.23 suggests that data be averaged over a period of at least 15 minutes once each hour. In the averaging techniques described above, a minimum of 20 digital observations for each hour was therefore chosen to constitute a representative observation set for determining hourly averages. In general these 20 values were consecutive. 2.3-49 Rev. 5 WOLF CREEK To verify the effect of using significantly less than 60 observations per hour, a test comparison was performed by taking a week's digital data (162 hourly observations) and obtaining averages using 60, 40, and 20 minutes of data within each hour. The hourly mean values obtained from the digital data were compared with the values read from the analog record to check the correspondence of the two sets of data. The difference between the averaging using 60- and 20-minute digital values is within the tolerance limits specified in Regulatory Guide 1.23 for more than 90 percent of the comparisons of temperature, dewpoint, delta T (T), and wind speed. The difference between the averages using 60 and 40 observations are insignificant except for the wind variability at 10 meters, for which the difference is within the tolerance limit for 85 percent of the observations. This is not considered crucial in as much as wind variability is not being used to determine atmospheric stability. The diffusion climatology of the site was defined by three variables. These, together with the primary and secondary (back- up) measurements for each, were as follows: 1. Horizontal wind speed primary 32- and 196-foot wind speed secondary 116-foot wind speed 2. Horizontal wind primary 32- and 196-foot direction wind direction secondary 116-foot wind direction 3. Temperature difference primary T from 32 feet (T) to 196 feet secondary T from 32 feet to 277 feet The secondary measurement was necessary only during periods of outage of the primary system, and was reduced to the appropriate level as follows: a. Wind speed at 116 feet was converted to wind speed at 32 feet using the power law: V32 = V116 32116s [2.3-25] 2.3-50 Rev. 5 WOLF CREEK where: V32 = the wind speed at 32 feet; V116 = the wind speed at 116 feet; S = 0.25 for Pasquill Classes A, B, C, and D and 0.50 for Classes E, F, and G. b. Wind direction at 116 feet was directly substituted for wind direction at 32 feet; c. DT between 32 and 277 feet was converted to T between 32 and 196 feet by proportional extrapolation: DT196-32 = DT277-32164245 [2.3-26] where: T277-32 = Temperature difference between 277 and 32 feet. T196-32 = Temperature difference between 196 and 32 feet. It was not necessary to substitute the 116-foot level wind direction for the 32-foot level wind direction. Ninety-five percent joint data recovery of 10-meter (32 feet) wind speed, wind direction, and DT at the permanent tower site has been obtained after including substitutions for the period between June 1, 1973 and May 31, 1974. Ninety-one percent joint data recovery of 60-meter (196 feet) winds and DT has been obtained for the same period. 2.3.3.7.2 Phase 2 Data Recording The analog chart records were removed during Phase 2 for processing twice per month. The frequency of chart removal was increased over that used for Phase 1 to minimize the loss of valid data due to system failure. Upon removal, each chart was stamped and identified by date, instrument and measurement level.Each chart was inspected for record interruptions, time errors, power failures, and symptomatic instrument malfunctions. Following inspection of the charts, the data was reduced to hourly averages for each parameter and recorded on keypunch forms. Approximately 10 percent of each data record was reduced independently and compared to previously reduced data to ensure the accuracy of the reduction procedure. Following a review of the reduced data, the data was keypunched, verified, and loaded onto the computer system for subsequent analysis. 2.3-51 Rev. 5 WOLF CREEK Since low data recovery during the period 3/5/79 to 3/4/80 of Phase 2 was primarily the result of meteorological instrumentation problems, the Operating Agent and Dames & Moore did not change any procedures for meteorological data collection because of the loss of data in the Phase 2 year. During the time between Phase 2 and the Operational Meteorological Program the tower was checked each work day by an Operating Agent technician. Analog strip charts were taken from the recorders every two weeks. The Operating Agent then reviewed the analog charts before sending them to Dames & Moore. At Dames & Moore the charts are again reviewed and, if problems were found, the Operating Agent is immediately notified. By checking the tower frequently and by reviewing the analog strip charts twice, all problems are readily identified and the problems corrected in a timely manner. KG&E and Dames & Moore did everything practical to prevent data loss in Phase 2. Unfortunately, due to the instrumentation problems which occurred, a large amount of data loss did occur during the period 3/5/79 to 3/4/80. Data collection during the period 3/5/80 to 3/4/81 was more successful with all parameters reporting a data recovery of greater than 95 percent (refer to Table 2.3-29b). A Dames & Moore certified program was used to facilitate evaluation of onsite meteorological data representativeness. The program, whose capabilities have increased since its origination, flaged inconsistencies in the hourly values of all meteorological parameters measured at the site. The meteorologist initially responsible for reviewing the data determined limiting values that were program inputs for each parameter. Hourly values outside these limits were program outputs which were subsequently rechecked for representativeness (by the meteorologist) in the analog data base. Additional onsite records were rechecked as deemed necessary. Final visual inspections of the digital and analog data bases were performed by at least two meteorologists. 2.3.3.7.2.1 Phase 2 Loss of Data The problems encountered in the Phase 2 meteorology data collection program at Wolf Creek were caused primarily by meteorological instrumentation. Thus, the low data recovery would have occurred even if a redundant data recording system were used. As Table 2.3-29a shows, most of the lost data for Phase 2 occurred at the 10-meter dewpoint, 85-10 meter delta temperature, and 60-10 meter delta temperature sensors. Instrumentation at the tower during Phase 2 is given in Table 2.3-47.The cooled mirror dewpoint system installed at the start of Phase 2 exhibited design and reliability problems to the extent that considerably less than 90 percent valid data were recovered for this instrument. Technicians at the site performed numerous calibrations and maintenance on the system in an attempt to make the system more reliable. On December 18, 1979 the cooled mirror 2.3-52 Rev. 5 WOLF CREEK dewpoint system was replaced with a backup LiCl dewpoint system. The Operating Agent realized at that time even though the LiCl system was not as sensitive as the cooled mirror dewpoint system, the LiCl system needed be installed in order to obtain a data recovery of greater than 50 percent. On April 24, 1981 an EG&G cooled mirror dewpoint system was installed at the tower. This system then collected valid data. Another problem occurred with the 85-10m and 60-10m differential temperature (new RTD temperature systems installed in Phase 2 to obtain better long-term differential temperature accuracy). Occasionally the upper level sensors would cause the Delta-T pair to give meteorologically impossible differential temperature values such as highly negative and positive values. This problem persisted until the Operating Agent discovered corroded cable connectors and installed new electrical cabling to the upper levels on September 26, 1979. Both aspiration systems on the 85-meter and 60-meter tower level failed in December 1979 causing the temperature sensors to experience solar heating during daylight hours. The Operating Agent immediately replaced the faulty aspiration system with replacements obtained from a vendor. The replacement aspirators, however, had too low an air flow, and consequently did not produce representative differential temperature measurements. Problems in obtaining acceptable replacement delayed acquisition of valid data from both systems until the end of January 1980. 2.3.3.7.2.2 Phase 2 Auto-Convective Lapse Rates A sizeable fraction of the auto-convective lapse rates found in the three annual cycles of onsite data occurred during the period March 5, 1979 through March 13, 1979. During this period, the 10-meter sensor used in delta temperature measurement did not experience adequate aspiration. As a result, nonrepresentative extremely unstable delta temperature data were recorded, particularly during daylight hours. A total of 121 hourly average values of both 10-60 meter and 10-85 meter delta temperature data are now considered unrepresentative and have been deleted from the data base. The remaining, infrequent auto-convective lapse rates in the data base occurred during the months of June through October during the midday hours of 1000 to 1500 hours. These sporadic values occurred primarily in the 10-60 meter delta temperature data set and did not greatly exceed the 10-60 meter autoconvective lapse rate of -1.7oC. The largest negative delta temperature was -1.94oC and occurred in 1974. The majority of the exceedances were less than -1.8oC.These data are considered valid. 2.3-53 Rev. 5 WOLF CREEK 2.3.3.7.2.3 Phase 2 Stability Conditions Different stability conditions between the 10-60 meter level and those measured between the 10-85 meter level have been rechecked for validity. The previously mentioned program was used to flag occurrences where stability conditions simultaneously measured for these two intervals varied by two or more stability classes. These occurrences have been reexamined. One such occurrence which was reexamined was Julian day 160, 1979. At 0200 hour on this particular day, the delta temperature was moderately unstable at 10-60 meters and slightly stable at 10-85 meters. Upon examination of the processed hourly data and associated analog strip chart, it was discovered that the subsequent hours of 0300 to 1300 hours were invalidated due to an onsite equipment problem. During the period of March through September 1979, moisture seepage into the aspirator cables connected to the 10-meter junction box caused abnormal delta temperature values to be recorded during periods of precipitation events. On September 26, 1979, new cables were installed and the problem was rectified. During initial data review in 1979, this data problem was identified and hours 0300 through 1300 of delta temperature data were invalidated. At that time, the hour in question was inadvertently not invalidated. This hour has now been invalidated.Based on the reexamination of concurrently measured 10-60 meter and 10-85 meter delta temperature data, the occurrence of stability measurements differing more than two stability classes is usually associated with unstable 10-60 meter delta temperature measurements. Differences in stability classes determined from delta temperature measurements made between 10-60 meters and 10-85 meters can, in part, be attributed to the fact that the numerical range of stability classes B and C for both measurement intervals are narrow and less than the +0.15oC/50 meter delta temperature measurement accuracy. It should also be noted that both sets of representative delta temperature data predominantly exhibit the same tendencies in stability change over time. For example, as measurements for the 10-60 meter interval become increasingly unstable or stable, so do corresponding measurements for the 10-85 meter interval. However, when changes in stability are expressed in terms of classes, rather than numerical averages, similar trends evident in the hourly averaged data sets are obscured. 2.3-54 Rev. 5 WOLF CREEK Meteorological conditions of stability A, F, or G occurring with 10-meter wind speeds above 3 meters per second (m/sec) were also reevaluated for representativeness and found to be correct. Representative Class A values occurred during daylight hours and were associated with wind speeds generally ranging from calm to 10m/sec, with a few cases ranging from 10 to 16m/sec.Classes F and G usually occurred during early morning hours and were associated with wind speeds less than 4 m/sec. The simultaneous occurrence of the above stability/wind speed combinations is considered representative of onsite meteorological conditions. The meteorological tower is located on a flat, lightly vegetated plateau. Surrounding terrain is generally flat to gently rolling, as shown in Figures 2.1-6, 2.3-21, and 2.3-22. Thus, terrain features should not contribute greatly to mechanical turbulence and, therefore, increased vertical mixing of air in the vicinity of the meteorological tower. There are also no structures or clusters of trees in the immediate vicinity of the tower that could greatly disrupt air flow past the tower and cause increased vertical mixing. The above factors permit heating and cooling of the lower atmosphere in regions surrounding the meteorological tower to proceed with less influence of mechanical turbulence than would be expected in regions having more complex terrain features. Thus, extremes of measured instability and stability may more often be associated with higher wind speeds at this meteorological monitoring station. 2.3.3.7.2.4 Operational Program Data Recovery The Operational Monitoring Program records the parameters identified in Table 2.3-48. A description of data available of data availability during plant operation is provided in Section 2.3.3.1 above. The Operational Program (including operating procedures) meets the recommendations of Regulatory Guide 1.23 and NUREG-0654. 2.3.3.7.3 Data Analysis and Summaries 2.3.3.7.3.1 Preoperational Program During the Preoperational Meteorological Program the hourly values of meteorological parameters were processed through a number of certified and documented computer programs (METEOR 3 (for a and b below); ACNTXXX and ANDIFF (for c and d below)), which yield the following: a. Joint frequency distribution of wind speed and wind direction by each of 7 Pasquill Stability Classes; b. Frequency distribution of temperature and dewpoint temperature; 2.3-55 Rev. 5 WOLF CREEK c. Frequency distribution of the relative concentration; d. Annual average values of relative concentration with direction and distance. 2.3.3.7.3.2 Operational Program The Operational Meteorlogical Program records and parameters identified in Table 2.3-48. A description of data availability during plant operation is provided in Section 2.3.3.1 above. The Operational Program meets the requirements of Regulatory Guide 1.23 2.3.3.8 Regional Climatological DataRegional climatological data concerning wind direction and wind speed were based on measurements taken at Chanute Flight Service Station, Kansas, over the period 1955-1964. Regional data concerning temperature, atmospheric water vapor, and precipitation were based on measurements taken by the National Weather Service over the period 1941-1978 at Topeka and Wichita, Kansas. The elevations of the regional measurements are provided in Table 2.3-53. 2.3.4 Short-Term (Accident) Diffusion Estimates The objective of this section is to provide conservative estimates of atmospheric diffusion at both the site boundary and at the outer limits of the low population zone (LPZ) for appropriate time periods up to 30 days and to provide the short-term atmospheric dispersion factors (X/Qs) for the postulated accident analyses presented in Chapter 15. The diffusion evaluations for the short-term accident are based on the assumption of a ground-level release (i.e., no reduction in ground concentrations due to elevation of the plume). The plant parameters used in the calculations are presented in Table 2.3-54. Meteorological data used are described in the joint frequency distributions of wind speed, wind direction, and of the WCSA atmospheric stability presented in Section 2.3.2. Table 2.3-59d lists the limiting X/Qs for the Wolf Creek site. The detailed procedures used in the calculations are given in Section 2.3.4.2. 2.3-56 Rev. 5 WOLF CREEK 2.3.4.1 Diffusion Model for 0-2 HoursThe analytical procedure for evaluating the 0-2 hour accident period is based on a revision of the model described in Regulatory Guide 1.3. The changes reflect variations in atmospheric diffusion factors that occur as a function of wind direction and variable site boundary distance. Allowances are made for meandering plumes during light winds and stable atmospheric conditions. The new approach is described in Regulatory Guide 1.145. The model is distance and direction dependent. Variability of wind direction frequency was considered in determining the relative concentration (X/Q) values. The hourly X/Q values were determined as described below. During neutral (D) or stable (E, F, or G) atmospheric stability conditions when the windspeed at the 10-meter level is less than 6 meters per second, horizontal plume meander can be considered. X/Q values were determined through selective use of the following set of equations for ground-level relative concentrations at the plume centerline: X/Q = 1u-10 (psysz + A/2) [2.3-27] X/Q = 1u-10 (3psysz) [2.3-28] X/Q = 1u-10pysz [2.3-29] where: X/Q = relative concentration, in sec/m3, = 3.14159, u-10 = windspeed at 10 meters above plant grade,* in m/sec, sy = lateral plume spread, in m, at a given distance and stability based on logarithmic curves in Reg. Guide 1.145, *The 10-meter level is representative of the depth through which the plume is mixed with building wake effects. 2.3-57 Rev. 1 WOLF CREEK z = vertical plume spread, in m, at a given distance and stability based on logarithmic fit of NRC curves in Reg. Guide 1.145, Sy = lateral plume spread with meander and building wake effects, in m, a function of atmospheric stability, windspeed u-10, and distance. For distances of 800 meters of less, y = Msy. For distances greater than 800 meters, S y = (M - 1) sy800m + sy [2.3-30] A = the smallest vertical-plane cross-sectional area of the reactor building, in m2 X/Q values were calculated using equations 2.3-27, 2.3-28, and 2.3-29. The values from equations 2.3-27 and 2.3-28 were compared and the higher value selected. This value was compared with the value from Equation 2.3-29 and the lower value of these two was selected as the appropriate X/Q value. During all other meteorological conditions (unstable (A, B, or C) atmospheric stability and/or 10-meter level wind-speeds of 6 meters per second or more), plume meander was not considered. The appropriate X/Q value was the higher value calculated from Equation 2.3-27 or 2.3-28. Plume meander was accounted for by modifying the lateral diffusion coefficient sy in accordance with equation 2.3-30. The meander function (M) is calculated as explained below: 1. For Pasquill Stabilities A-C at all wind speeds or all stabilities when wind speed >6 mps, M = 1; 2. For wind speed <2 mps, M is independent of wind speed and varies in the following manner: Stability D, M = 2; Stability E, M = 3; Stability F, M = 4; Stability G, M = 6; 3. For wind speeds greater than 2 mps but less than 6 mps, M is determined from Figure 3 of Regulatory Guide 1.145. 2.3-58 Rev. 1 WOLF CREEK An hourly observation is considered to be calm if the wind speed is less than the starting speed (threshold) of the wind instruments. For calm conditions a wind speed is assigned equal to the vane or anemometer starting speed, whichever is higher. A wind direction is assigned in proportion to the directional distribution of the lowest non-calm wind speed group for each atmospheric stability class. 2.3.4.1.1 Exclusion Area Boundary The sector X/Q values at the exclusion boundary are determined for each sector.These are defined as the X/Q values that are exceeded 0.5 percent of the total time. To extract this value, the hourly /Q values are sorted according to sector and magnitude. A cumulative probability distribution or X/Q values can easily be constructed. ____rank of X/Q____ [2.3-31] P(X/Q) = X/Q population size P(X/Q) is the probability of being exceeded. For example, the 1Oth largest value of a 100-value population has a probability of being exceeded 10/100 or 10 percent. The highest of the 16 sector X/Q values is defined as the maximum sector X/Q value. 2.3.4.1.2 Outer LPZ Boundary Sector X/Q values are determined for the outer LPZ for 8 and 16 hours and 3 and 26 days. The average /Q values for the various time periods are approximated for each sector by a logarithmic interpolation between the 2-hourly sector1 X/Q values (same general methods as in Section 2.3.4.1.1) and the annual average X/Q (see Section 2.3.5) at the same point. The highest of the 16 sector X/Q values are identified for each time period. 2.3.4.1.3 Five and Fifty Percent Overall Site X/Q Value The X/Q values that are exceeded no more than 5 and 50 percent of the total time around the exclusion area boundary and the outer LPZ boundary are determined in a manner similar to the 0.5 percent sector X/Q values. All of the hourly X/Q values were sorted according to magnitude (independent of the direction) and the 5 and 50 percent values chosen from the list. For the same time periods used in Section 2.3.4.1.2, the 5 and 50 percent X/Q values 1The X/Q's are based on 1-hour averaged data, but are assumed to apply for 2 hours. 2.3-59 Rev. 1 WOLF CREEK are determined by logarithmic interpolation between the maximum annual averageX/Q values at the LPZ distance and the LPZ 2-hour 5 and 50 percent X/Q value. 2.3.4.2 Results of Short-Term Diffusion EstimatesTwo-hour X/Q values were computed at the exclusion zone boundary (1200 m) andX/Q values for 2-, 8-, 16-, 72-, and 624-hour postulated accident periods were computed at the LPZ (4023 m). The computations were based on onsite meteorological data for three one-year data sets; June 1, 1973 through May 31, 1975, and March 5, 1979 through March 4, 1980. An analysis was also performed for the 3 years of data combined. Results of the analysis for each data set and the combined three-year period are presented in Tables 2.3-55 through 58. Each table presents the greatest 0.5 percent 0-2 hour X/Q values for each of the 16 sectors at the exclusion zone boundary (1200 m) and the greatest 0.5 percent 2-, 8-, 16-, 72-, and 624-hour X/Q values for each of the 16 sectors at the LPZ (4023 m). The highest sector value for each accident period is asterisked to clarify the maximum sector X/Q value at the exclusion zone boundary and the LPZ for each accident period. Also presented in each table are the greatest 0-2 hour 5 and 50 percent X/Q values at the exclusion zone boundary and the greatest 5 and 50 percent X/Q values for each accident period at the LPZ. The highest 0.5 percent 2-hour X/Q values at the exclusion zone boundary was 1.5 x 10-4 for all 3 individual years and for the 3 years combined. The highest values occurred in the northwest through north sectors. The maximum sector X/Q at the LPZ from this data set was 5.0 x 10-5 sec/m3 in the northwest sector for the data period March 5, 1979 through March 4, 1980. The highest 5 and 50 percent 2-hour X/Q values resulted from the analysis of the March 5, 1979 through March 4, 1980 data set. The greatest 5 and 50 percent X/Q values were 4.5 x 10-5 sec/m3 and 5.0 x 10-6 sec/m3 for the LPZ and 1.5 x 10-4 sec/m3 and 2.8 x 10-5 sec/m3 for the exclusion zone boundary, respectively. 2.3.4.3 Control Room Intake The basic model employed for the distribution of relative concentrations (X/Qs) within a building wake at WCGS control room intakes following an accident is given by Reference 17 to be: X/Q = KcAV (1) 2.3-60 Rev. 1 WOLF CREEK Where A = reference cross-sectional building area, m2 V = reference wind speed, m/sec Kc = nondimensional concentration coefficient Kc is a function of nondimensional space coordinates x/L, y/L, and z/L, building configuration, wind direction, and source configuration. The Kc field for a given building configuration, source configuration, and wind direction is considered to be invariant. Accordingly, Kc values determined by wind tunnel tests with a model structure are expected to be the same as those that would be obtained with a geometrically similar building in the full-scale atmosphere in the same wind direction, with a similar leak. The contiguous building arrangement is shown in Figure 2.3-20. The Kc data used in the analysis for low level release are presented in Figure 2.3-25 and were derived from two sets of tests. One used rectangular prisms (Ref. 18), the other used a model of the EBR-II complex (Ref. 17). Both tests were described and portions of the data presented in Reference 35. The Kc data for the unit vent release from the top of the containment were extracted from Figure 10 of Reference 17 and are presented in Table 2.3-78. The value of A used in conjunction with Kc in Figure 2.3-2 and Table 2.3-78 is the WCGS equivalent of the EBR-II area, A = 1.12 D2 = 2280 m2 with the diameter of the reactor D = 45.1m. The value of V used in conjunction with Figure 2.3-25 is the mean velocity of the approach flow at an elevation corresponding to the anemometer elevation of the EBR-II model tests. Reference 3 reports this elevation to be 62 feet or 0.77D above the top of the dome. The WCGS equivalent height becomes 63.4 + 0.77 x 45.1 = 98.1m above ground. The V values were obtained by extrapolating wind speeds at anemometer elevations equivalent to 98.1 meters by the power law. V = u1 (98.1/z1)n (2) Where u1 = mean speed at elevation z1, m/sec z1 = anemometer elevation at a given site, m n = atmospheric stability exponent Values of n were arbitrarily assumed for the various stability classes as follows: 2.3-61 Rev. 1 WOLF CREEK Pasquill Stability Class A B C D E F G n 0.20 0.25 0.29 0.33 0.40 0.50 0.60 A cumulative frequency distribution was constructed for the X/Q values calculated by equations 1 and 2 above, using 3 years combined onsite meteorological data. The corresponding highest 5 percent, 10 percent, 20 percent, and 40 percent X/Q values are given in Table 2.3-79. 2.3.5 LONG-TERM DIFFUSION ESTIMATES The objective of Section 2.3.5 is to provide realistic estimates of annual average release atmospheric transport and diffusion characteristics to a distance of 80 km (50 miles) from the plant for annual average release limit calculations and man-rem estimates. The terrain within 50 km (31 miles) of the site is essentially flat becoming gently rolling to 80 km (50 miles). No important ranges of hills or mountains are within the region. No substantial water bodies are present, which are large enough to affect ambient dispersion parameters. The analyses were based on on-site meteorological data over the periods June 1, 1973 through May 31, 1975 and March 5, 1979 to March 4, 1980.

2.3.5.1 Calculations Both the PUFF and straight-line Gaussian dispersion models, described in Regulatory Guide 1.111, were used for determination of annual average diffusion estimates. 2.3.5.1.1 PUFF Model The Equation for the PUFF model, as specified by Regulatory Guide 1.111 is: 222212/321exp])2[(2/zeHZHhrpQX [2.3-32] where: r2 = (x - u-t)2 + y2; and H = y = x

2.3-62 Rev. 22 WOLF CREEK where: he = Effective release height; Q = Effluent emission over the time interval; t = Travel time; u- = Mean windspeed at the height of the effective release point; x = Distance from center of PUFF along the direction of flow; y = Distance from center of PUFF in the crossflow direction; sx = Plume spread along the direction of flow; sy = Lateral plume spread; sz = Vertical plume spread; and X = Atmospheric concentration of effluent in a PUFF at ground level and at a distance x from the PUFF center. Concentration averages for long time intervals are calculated by summing the concentrations of individual elements for the grid of points over which they pass.The number of elements and the plume spread parameters (sz, sz, and sz ) are selected such that the resulting concentration estimate is representative of the concentration from a continuous point source release. Elements are followed in the computational scheme until they are beyond the region of interest or until their peak concentration falls below a specified value. The data base used for both the ground- and mixed-mode PUFF calculation consisted of l year of data: June 1, 1973 through May 31, 1974. The three 1-year sets of data were used to predict annual average relative concentrations using a straight-line Gaussian dispersion model. Of the 3 years, the June 1, 1973 to May 31, 1974 period was selected for use in the PUFF model because it produced the most conservative annual average relative concentrations with the greatest data recovery. In both PUFF calculations, 10-meter level wind data were used. Analysis of climatological statistics has shown that the 1-year period selected is representative of the entire 3-year data base. This conclusion is based upon consideration of the following factors: 2.3-63 Rev. 1 WOLF CREEK a. The percentage of occurrence of each stability and mean wind speed for each class; and b. The frequency distribution of wind speed and wind direction characteristics (the distribution of wind in each compass sector and associated mean wind speed). The PUFF calculation requires that the data base not contain any invalid or missing data. Furthermore, the data base must besequential and not have time gaps (the data base should not be collapsed to eliminate missing data). To meet these requirements, all missing or invalid data were approximated. The replacement of missing or invalidated data was accomplished by the following: a. Estimation of missing parameters from data taken at another tower level (direct substitution for wind direction, proportional estimation for vertical temperature difference, and use of the power law for wind speeds). b. Linear temporal interpolation (missing data period generally short and/or limited variation of parameters) as indicated by interfacing valid data points. c. Substitution of similar data periods as indicated by time of day, variation in and magnitude of valid parameters, and by continuity with interfacing valid data points. A total of 4.2 percent of the data in the selected period was replaced by these means.The generation of terrain/recirculation correction factors (TCF) required that the data base used in the calculation be identical to that used for the calculation of relative concentration values (X/Q), using the straight-line Gaussian model. Calm wind directions in the selected data period were replaced using the distribution of the lowest wind speed class. 2.3.5.1.1.1 Model Input The calculations using the PUFF model were performed for ground-level releases at the following set of distances: 0.25, 0.75, 1.50, 2.5, 3.5, 5.0, 10.0, 20.0, 35.0, and 50.0 miles. 2.3-64 Rev. 0 WOLF CREEK The terrain/recirculation correction factors for special points and standard distances not represented by the above distances were determined by a log-log interpolation of approximate concentrations. These approximations were validated by selectively comparing them to actual calculations. Mixing heights for Topeka, Kansas (Reference 20) were used for the ground-level calculations. In these calculations, the mixing height was interpolated between the morning (7 a.m.) and afternoon (4 p.m.) mixing heights. The morning and afternoon mixing heights on a monthly basis were interpolated between seasonal values 2.3.5.1.1.2 Terrain/Recirculation Correction Factors The terrain/recirculation correction factors (TCF) for the ground-level and mixed-mode release cases were determined as the ratio between the PUFF-advection X/Q estimates and the straight-line X/Q estimates in the following form: TCF (r,q) = XQ(r,q)pX Q(r,q)s [2.3-33] where: TCF (r,q) = Terrain/recirculation correction factor at distance, r, in sector, q; Annual average relative concentration at a X/Q (r,q) P = point (r,q) using a PUFF-advection modeling scheme (sec/m3); and Annual average relative concentration at a X/Q (r,q) S = point (r,q) using a straight-line modeling scheme (sec/m3).Terrain/recirculation correction factors at the 22 standard distances, based on the data period June 1, 1973 through May 31, 1974, for ground-level releases are provided in Table 2.3-59. TCFs for the restricted area, the low population zone (LPZ) boundary, and the organic receptor distances are presented in Table 2.3-61 for ground-level releases. 2.3-65 Rev. 1 WOLF CREEK PUFF calculations were performed at the 10 distances given in Section 2.3.5.1.1.1 to obtain the required diffusion estimates. Diffusion estimates at the restricted area, LPZ boundary, organic receptor (humans, animals, vegetation) distances, and those standard distances not listed in Section 2.3.5.1.1.1 were estimated by logarithmic interpolation based on the diffusion estimates at the 22 standard distances. The logarithmic interpolation procedure is defined by the following equation: X = s1 dd1B [2.3-34] where: B = ln (X2/X1) ln (d2/d1); X = Concentration (sec/m3) at a special point located a distance, d, away from the source; and X1/X2 = Concentrations (sec/m3) at standard distances d1 and d2, respectively. The distances d1 and d2 are selected such that they agree with the following relationship: d1 < d < d2 [2.3-35] The diffusion estimates based on the above interpolation procedure were compared with estimates obtained by direct calculation using the actual distances to the restricted area, LPZ boundary, and organic receptors. The two sets of calculations were in agreement. 2.3.5.1.2 Straight-Line Gaussian Dispersion Model The use of the straight-line Gaussian dispersion model in calculating X/Q, X/Q depleted, and relative desposition was determined by the Wolf Creek site parameters and the meteorological data as specified in NRC Regulatory Guide 1.111. Depletion factors and relative deposition rates are computed from curves in Regulatory Guide 1.111. For long-term transport, the plume is assumed to meander over a 22.5-degree sector. 2.3-66 Rev. 1 WOLF CREEK 2.3.5.1.2.1 Elevated Release Model The unit vent at the Wolf Creek Station is located on top of the containment building. The vent is a square duct with a solid metal roof. The roof keeps rain water out of the vent structure. Released gases are ejected horizontally, through screens in the sides of the structure, just below the roof. Since the ejected gases have no initial vertical component and since the unit vent is less than twice as high as other structures at the plant, no elevated or mixed mode releases are possible. All releases from the plant are considered as ground releases. 2.3.5.1.2.2 Ground-Level Release Model Using the ground-level release model, the hourly relative concentration values are calculated at the sector defined by the wind direction using the equation: X/Q = 2.032szuD [2.3-40] where: X/Q = Relative ground-level concentration (sec/m3); sz = Vertical standard deviation of the plume (meters); u = Average wind speed (m/sec); and D = Distance from the source (meters). However, with the wake turbulent effect considered, the equation is revised to the following: X/Q = 2.032sz2 + cV2p uD [2.3-41] where: c = Building shape factor; and V = Vertical height of the highest adjacent building (meters). 2.3-67 Rev. 1 WOLF CREEK The wake factor (cV2p ) is limited, close to the source, to a factor of twice zý. So if 3 sz < sz2 + cV2pthe resulting equation is: X/Q = 2.0323szu- D [2.3-42] (X/Q is calculated to be the larger of Equations 2.3-41 and 2.3-42). The total integrated relative concentration at each sector and distance is then divided by the total number of hours in the data base. 2.3.5.1.3 Methods of Depletion, Deposition, and Decay Calculation Depleted X/Q values were computed by applying the depletion factors provided in the curves of Figure 2 of Regulatory Guide 1.111 to the calculated X/Q values. Ground depositions per unit area were calculated using the equation: D/Q = RDep / [2 sin (11.25) x] [2.3-43] where: D/Q = Ground deposition per unit area (1/m2); RDep = Relative ground deposition rate (1/m); and x = Calculation distance (meters). Radioactive decay, based on half lives of 2.26 and 8.0 days, was applied to the X/Q and the X/Q depleted concentrations. 2.3.5.1.4 Results The PUFF advection modeling scheme (described in Section 2.3.5.1.1) and the straight-line model (Section 2.3.5.1.2) were used with the same data base to calculate annual average relative concentrations (X/Q). The results from both models were then used to calculate terrain/recirculation correction factors (TCF) (see Section 2.3.5.1.1.2). The TCF are calculated for ground level releases. Diffusion estimates, modified by the TCF, were then made using the straight-line model with four meteorological data 2.3-68 Rev. 1 WOLF CREEK sets: (1) June 1, 1973 through May 31, 1974; (2) June 1, 1974 through May 31, 1975; (3) March 5, 1979 through March 4, 1980; and (4) the 3 years combined.In addition to X/Q, the straight-line model calculates X/Q depleted, relative deposition (D/Q), decayed relative concentration, and decayed and depleted relative concentration (based on half lives of 2.26 and 8.0 days). PUFF tracks the advection and dispersion of up to 500 Gaussian puffs across the study area. New puffs are emitted continuously at 20-minute intervals throughout the year. Puffs are discarded when they leave the study area, or when they have become so attenuated that they no longer have a significant impact at any receptor location. The criterion for discarding an attenuated puff is comparison of the puff center X/Q to a user-specified cutoff X/Q value. In the original analysis, this cutoff was inadvertently set to an inappropriately high value. The result was that puffs were discarded too quickly, before they could reach the more distant receptor locations. The PUFF model analysis has been repeated for ground-level release using a more appropriate X/Q cutoff value. Revised TCFs are presented in Table 2.3-60a for the 10 receptor ring distances used in the Puff analysis. As this table indicates, the strong systematic under-prediction of PUFF model results in relation to straight-line model results for large source-receptor distances is no longer present. The mild overall decrease in TCF values at large downwind distances may be attributed to plume meander, accounted for in PUFF but not in the hourly, plume elements in PUFF actually cover a greater distance before arriving at a given receptor than is assumed in the straight-line model. They are, therefore, more attenuated on arrival at the receptor than the straight-line model algorithm would indicate. Revised TCFs were computed for the ground-level case. The revised TCFs were logarithmically interpolated to provide TCFs for all downwind distances of interest. This complete set of TCFs was applied to all straight-line model results presented in the USAR. Use of a single meteorological station as the data source for the PUFF analysis is justified by the absence of severe terrain within the region of interest and by the fact that only long-term average relative concentrations are evaluated.Absence of severe terrain implies that deviations from straight-line flow that do occur are not strongly systematic. Effects of random plume meander and 2.3-69 Rev. 1 WOLF CREEK mesoscale recirculation on annual average X/Q values are adequately represented via PUFF simulations with single-station onsite meteorological input. Annual average concentrations at the standard distances for ground-level releases for the period June 1, 1973 through May 31, 1974 are provided in Table 2.3-62. Ground-level releases are provided in Table 2.3-64 for the same data period at the exclusion area zone (1200 meters); the LPZ (4023 meters); the nearest organic receptor distances; and the plant boundary. For each sector and distance, seven concentrations are provided: a. Relative concentration (X/Q) (sec/m3); b. Depleted relative concentration (X/Q) (sec/m3); c. Relative deposition (D/Q) (1/m2); d. Decayed relative concentration, half life 2.26 days (X/Q) (sec/m3); e. Decayed relative concentration, half life 8 days (X/Q)

 (sec/m3); f. Decayed and depleted relative concentration, half life   2.26 days (X/Q) (sec/m3); and  g. Decayed and depleted relative concentration, half life 8   days (X/Q) (sec/m3).Concentrations based on the remaining 2 years of data and on all 3 years combined are provided as follows:  RELEASE TABLE _________DATA BASE_________ MODE DISTANCES NUMBER06/01/74-05/31/75 ground standard 2.3-66 06/01/74-05/31/75 ground organic 2.3-67   receptors 03/05/79-03/04/80 ground standard 2.3-70 03/05/79-03/04/80 ground organic 2.3-71   receptors 06/01/73-05/31/75 and ground standard 2.3-74 03/05/79-03/04/80 combined 06/01/73-05/31/75 and ground organic 2.3-75 03/05/79-03/04/80 combined receptors  2.3-70 Rev. 1 WOLF CREEK 2.

3.6 REFERENCES

1. American Meteorological Society, 1959, Glossary of Meteor- ology. 2. American Meteorological Society, 1970, Extremes of Snowfall- United States and Canada: Weatherwise, American Meteorological Soc., No. 23, P. 286 - 294. 3. American National Standard Institute (ANSI), 1972, Building Code Requirements for Minimum Design Loads in Buildings and Other Structures: ANSI, A58.1. 4. Bennett, Iven, 1959, Glaze - Its Meteorology and Climatology, Geographical Distribution and Economic Effects: U. S.

Army, Headquarters, Quartermaster Research and Engineering Command, Tech. Rept. EP-105, 217 p. 5. Bodle, D., 1971, Electrical Protection Guide for Land-Based Radio Facilities, Joslyn Electronic Systems, Santa Barbara, Calif. JES-159-3-3M 1/74. 6. Climet Instrument Co., 1970, Instruction Manual, Model 011-1 Wind Speed Transmitter: Climet Instrument Co., Redland, California. 7. Cry, G. W., 1965, Tropical Cyclones of the North Atlantic Ocean: U.S. Weather Bureau, U.S. Dept. of Commerce, Tech. Paper 55, 148 p. 8. Environmental Data Service, 1968, Climatic Atlas of the United States: Environmental Sciences Services Administration, U.S. Dept. of Commerce, p. 58. 9. ________, 1969, Climatological Data, National Summary - ESSA, 1950 - 1968: Environmental Sciences Services Adminis-tration, U.S. Dept. of Commerce. 10. ________, 1972, Local Climatological Data, Annual Summary with Comparative Data, Topeka, Kansas: National Oceanic and Atmospheric Administration, U.S. Dept. of Commerce. 11. ________, 1972, Local Climatological Data, Annual Summary with Comparative Data, Wichita, Kansas: National Oceanic and Atmospheric Administration, U.S. Dept. of Commerce. 12. ________, 1978, Local Climatological Data, Annual Summary with Comparative Data, Topeka, Kansas: National Oceanic and Atmospheric Administration, U.S. Dept. of Commerce. 2.3-71 Rev. 1 WOLF CREEK 13. ________,1978, Local Climatological Data, Annual Summary with Comparative Data, Wichita, Kansas: National Oceanic and Atmospheric Administration, U.S. Dept. of Commerce. 14. George, Joseph J., Fog, Compendium of Meteorology, Thomas F. Malone, ed., American Meteorological Society, Boston, Massachusetts, 1951, pp. 1179 - 1189. 15. Gringorten, 1963, Fitting Meteorological Extremes by Various Distributions, Quarterly Journal of the Royal Meteorological Society. 16. Gumbel, E., 1954, Statistical Theory of Extreme Value and Some Practical Applications: National Bureau of Standards, Applied Mathematic Series No. 33. 17. Halitsky, J., Golden, J., Halpern, P., 1963: "Wind Tunnel Tests of Gas Diffusion From a Leak in the Shell of a Nuclear Power Reactor and from a Nearby Stack," N.Y. University Department of Met. & Ocean, GSL Rep. 63-2 under USWB Contract Cwb-10321 18. Halitsky, J. 1963: "Gas Diffusion Near Buildings," ASHRAE Trans. 69: pp. 464-484 19. Hess, Seymour, 1959, Introduction to Theoretical Meteorology: Holt, Rinehart and Winston, New York, p. 155-160. 20. Holzworth, G.C., 1972, Mixing Heights, Wind Speeds, and Po- tentional for Urban Air Pollution Throughout the Contiguous United States: U.S. Environmental Protection Agency, No. AP-101, 118 p. 21. Hosler, C.R., 1961, Low-Level Inversion Frequency in the Contiguous United States: Monthly Weather Review, U.S. Weather Bureau, U.S. Dept. of Commerce, No. 89, p. 319-339. 22. Hudson, H. E. Jr., and W. J. Roberts, 1955, 1952-1955 Illinois Drought with Special Reference to Impounding Reservoir Design - Bulletin No. 43, State Water Survey Division, State of Illinois. 23. Klein, W.H., 1957, Principal Tracks and Mean Frequencies of Cyclones and Anticyclones in the Northern Hemisphere: U.S. Weather Bureau, U.S. Dept. of Commerce, Research Paper 40. 2.3-72 Rev. 1 WOLF CREEK 24. Littleton Research and Engineering Corporation, 1970, An Eng- ineering - Economic Study of Cooling Pond Performance: Littleton Research and Engineering Corporation, Massachusetts, for Environmental Protection Agency, 1613DFX05/70 (May). 25. Lowry, R. L., Jr., 1959, A Study of Droughts in Texas, Bulletin 5914, Texas Board of Water Engineers. 26. Marshall, J.L., 1973, Lightning Protection. 27. National Climatic Center, 1948-1959, Hourly Surface Obser- vations (TDF14 and CD488): National Climatic Center, Computer Tape No. 1240 for Station No. 143984. 28. ________, 1955-1964, Hourly Surface Observations (TDF14): National Climatic Center, Computer Tape No. 1241 and 1242 for Station No. 13981. 29. National Center for Atmospheric Research, 1971, Cover Photo- graph: Bulletin of the American Meteorological Society, V. 52, No. 2. 30. Neuberger, Hans, 1965, Introduction of Physical Meteorology: The Pennsylvania State University, University Park, Pennsylvania, p. 98-108. 31. Pautz, M.E., 1969, Severe Local Storm Occurrences, 1955-1967: Office of Meteorological Operations, Environmental Sciences Service Administration, U.S. Dept. of Commerce, ESSA Tech. Memo WBTM FCST 12. 32. Poultney, N.E., 1973, The Tornado Season of 1972, Weather- wise, American Meteorological Soc., No. 26, p. 22-27. 33. Rayner, G.S., P. Michael, R.M. Brown, and S. Sethu Raman, 1974, Preprint of Symposium on Atmospheric Diffusion and Air Pollution, Sept. 9-13, 1974, Santa Barbara, California, Sponsored by American Meteorological Society. 34. Ryan, P.J. and Harleman, D.R.F., 1973, Analytical and Experi- mental Study of Transient Cooling Pond Behavior, Report No. 161, Dept. of Civil Engineering, Massachusetts Institute of Technology. 35. Slade, David H., ed., 1968, Meteorology and Atomic Energy: U.S. Atomic Energy Commission, Div. of Tech. Information,

p. 102-103. 2.3-73 Rev. 1 WOLF CREEK 36. Slade, D.H. (ed.), 1968, Meteorology and Atomic Energy - 1968, TID-24190, National Technical Information Service, Springfield, VA. 37. Sloss, Peter W., 1967, An Empirical Examination of Cumulus Entrainment: Journ. of Applied Meteorology, V. 6, p. 878-881. 38. Tattleman, P. and Gringorten, I., 1973, Estimated Glaze Ice and Wind Loads at the Earth's Surface for the Contiguous United States, Air Force Cambridge Research Laboratories, Bedford, Mass., October. 39. Thom, H.C.S., 1963, Tornado Probability: Monthly Weather Review, U.S. Weather Bureau, U.S. Dept. of Commerce, No.

91, p. 730-736. 40. ________, 1968, New Distribution of Extreme Winds in the United States: Proceedings of the American Society of Civil Engineers, p. 1787-1801. 41. Uman, M., 1971, Understanding Lightning: Beck Technical Publications, Carnegie, Pennsylvania. 42. U. S. Dept. of Commerce, 1949-1973, Climatological Data - Kansas, Vol. 63, No. l through Vol. 87, No. 12. 43. ________, 1974-1979, Local Climatological Data for Wichita and Topeka, Kansas. 44. ________, 1959-1973, Storm Data: National Climatic Center, National Oceanic and Atmospheric Administration, Environmental Data Service, V. 1, No. l through V. 15, No. 12. 45. U.S. Weather Bureau, 1956, Seasonal Variations of the Prob- able Maximum Precipitation East of the 105th Meridian for Areas from 10 to 1,000 Square Miles and Durations of 6, 12, 24, and 48 Hours, U.S. Government Printing Office, Washington, D.C., Hydrometeorological Report No. 33. 46. _______, 1959, Climates of the States - Kansas' U.S. Weather Bureau, U.S. Dept. of Commerce, p. 60. 47. _______, 1960, Tornado Occurrences in the United States' U.S. Dept. of Commerce, Washington, D.C., Technical Paper No.

20. 2.3-74 Rev. 1 WOLF CREEK 48. ________, 1963, Maximum Recorded United States Point Rainfall for 5 Minutes to 24 Hours for 196 First Orfer Stations: U.S. Weather Bureau, U.S. Dept. of Commerce, Technical Paper No. 2. 49. ________, 1965, Climatic Summary of the United States, Supple- ment for 1951 through 1960: U.S. Weather Bureau, U.S. Dept. of Commerce, p. 86-112. 2.3-75 Rev. 1 WOLF CREEK 'T.'ABLE 2.3-1 MAXIMUM SHOR'T' PERIOD RAINFALL FOR 'l'OPEKA AND WICIII'T'A, 'T'OPEKA Time Rainfall
  • Interval (inches) 5 Minutes 0.67(a) 10 Minutes 1.19(a) 15 Minutes 1.52(a) 30 Minutes 2.92(a) 60 Minutes 4.16(a) 2 Hours 4.77(a) 3 Hours 4.79(a) 6 Hours 4.85(a) 12 Hours 7.71(a) 24 Hours 8.08(b) a Data Period 1900-1961. b Data Period 1889-1961. c Data Period 1903-1961. Sources: Date 9/14/30 8/13/49 8/13/49 8/13/49 8/13/49 8/13/49 8/13/49 8/13/49 9/06/09 9/06/09 KANSAS WICHI'rl\. Rainfall (inches) Date *---0.66(c) 9/06/11 l.lO(c) 6/14/31 1.52(c) 6/14/31 2.31(c) 7/31/50 3.28(c) 7/31/50 3.54(c) 9/06/11 4.93(c) 9/07/11 6.68(c) 9/06/11 7.89(c) 9/06/11 7.99(b) 9/06/11 U.S. Weather Bureau, 1963, Maximum recorded United States point rainfall for 5 minutes to 24 hours for 296 first order stations: U.S. Weather Bureau, Department of Commerce, 'T'echnical No. 2. u.s. Department of Commerce, 197!3, Local Climatological Data, Topeka, Wichita, Kansas: National Oceanic and Atmospheric Administration, National Climatic Center, Asheville, N.C. Rev. 0 WOLF CREEK TABLE 2. 3-2 YEARLY SNOW DEPTH A'l' \HCHITA AND TOPEKA, KJ1.N5AS* YEAR WICHITA TOPEKA 1979 8 12 1978 6 10 1977 2 7 1976 1 4 1975 9 8 1974 6 10 1973 6 6 1972 3 3 1971 l3 12 1970 13 5 1969 7 4 1968 3 4 1967 4 4 1966 4 7 1965 2 5 1964 5 4 1963 4 3 1962 17 9 1961 7 5 1960 10 19 1959 7 7 1958 5 8 1957 2 1956 4 6 1955 3 8 1954 1 1 1953 2 9 1952 7 6 1951 4 3 1950 1 1 1949 4 3
  • Sources: U.S. Department of CommPrce, 1949 -1979, ci.:lt:_!l_:. Kansas: U.S. Bureau, vol. 63, no. 1 through vol. 87, no. 12. Rev. 0

'I' ABLE 2. 3-3 TOTAL NUMBER OF DAYS WITH FREEZING PRECIPI'rATION IN WICHITA, KANSAS* Month Number November 6 December 34 January 9 February 23 March 11 Total 83

  • Data Period 1939-1948. source: Bennett, Iven, 1959, Glaze--its meteorology and geographical distribution and economic effects: u.s. Army, Headquarters Quartermaster Research and Engineering Command, Natick, Massachusetts, Technical Report EP-105, 217 pp. Rev. 0 WOLF CREEK TABLE 2.3-4 AVERAGE MONTHLY AND ANNUAL NUMBER OF DAYS WITH THUNDERSTORMS AT TOPEKA AND WICHITA, KANSAS Month Number of at Topeka a January
  • February 1 March 2 April 6 May 10 June 10 July 9 August: 8 September 6 October 4 November 1 December
  • Annual 58 a Data Period 1947-1978. b Data Period 1954-1978. Number of Dabs at Wichita ( J
  • 1 2 6 9 10 8 7 6 3 1
  • 55 U.S. Weather Bureau, 1959, Climates of the States--Kansas: U.S. Bureau, Department of Commerce, pp. 60-14. Environmental Data Service, 1978, Local Climatological data, annua.l. summary wii:h comparative data, Topeka, Kansas: National Oceanic and Atmospheric Administration, U.S. Department of Comrne:r-ce. Environmental Data Service, 1978, Local climatological data, annual summary th comparative data, Wichita, Kansas: National Oceanic and Atmosnheric Administration, U.S. Department of Commerce. Rev. 0 WOLF CREEK TABLE 2.3-5 NUMBER, PROBABILITY, AND HECURRENCE INTERVAL OF TORNADO OCCURHENCES PER ONE DEGREE LONGITUDE-LATITUDE SQUARE IN KANSAS* Recurrence Number Probability Interval Month (xl0-1) (x10-4) (years) January 0 0 (X) February .14 .10 95,238 March .51 .39 25,839 April 2.55 l. 96 5,109 May 7.54 5.78 1,729 June 5.47 4.20 2,383 July 2.05 l. 57 6,373 August .81 .62 16,207 September .69 .53 18,939 October .76 .58 17,211 November .64 .49 20,284 December .09 .07 142,857 Annual 21.21 16.26 615
  • Data Period 1956-1971. Source: Poultney, N. E., 1973, The Tornado Season of 1972: Weatherwise, American Meteorological society, no. 26, pp. 22-27. Rev. 0 WOLF CREEK TABLE 2.3-6 TORNADO SUMMARY FOR KANSAS* TO'I'ALS Number Days Deaths Damage 618 374 157 $:21,256,515 ANNUAL AVERAGE Number Days Deaths Damage 17.66 10.69 4.49 $ 607,329
  • Data Period 1916-1950. source: u.s. Weather Bureau, 1960, Tornado occurrences in the United States: U.S. Department of Commerce, Washington, D.C., Technical Paper no. 20. Rev. 0 WOLF CREEK TABLE 2.3-7 FASTEST MILE OF WIND FOR EASTERN KANSAS USING TYPE I (FRECHET) DISTRIBUTION Recurrence Extreme Mile Interval Wind Speed Maximum Gust (years) (mph) (mph) 2 53 69 10 57 87 25 71 92 50 78 101 100 86 112 Source: Thorn, H.C.S., 1968, New distributions of extreme winds in the United states. Proceedings of the American Society of Civil Engineers: American Socif::ty of Civil Engineers, New York, pp. 1787-1801. Rev. 0 TABLE 2.3-8 (Sheet 1 of 2) FASTEST MILE OF WIND FOR TOPEKA AND WICHITA, KANSAS TOPEKA(a) WICHITA(b) Fastest Mile Fastest Hi1e Wind Speed Wind Speed Month (mJ2h) Direction Year ,(mf2h) Direction Year January 52 s 1962 57 N 1965 February 47 NW 1967 54 N 1965 March 66 sw 1950 60 N 1965 April 63 SE 1957 63 w 1964 May 72 N 1963 58 s ,r"\rl"\. 0 C"' June ...,,.., 1966 68 J..lf ... l 10'70 t'1j I ,c. .JV'I .J....JIU July 81 N 1958 66 NW 1956 n ::0 t":! August 57 N 1959 47 NW 1964 ...... .. -.. September 57 N 1952 56 N 1956 October 63 NE 1954 52 s 1961 November 56 sw 1963 51 N 1964 December 61 NW 1963 54 NW 1963 July June Year 81 N 1958 68 NW 1978 a Data Period 1949-1978. b Data Period 1953-1978. Rev. 0 c The fastest mile wind speed before 1953 was 100 miles/hr from the north in July 1948, by an anemometer located 61 feci above ground at the Wichita Hunicipal TABLE 2.3-8 (continued) (Sheet 2 of 2) Sources: Environmental Data Service 1978, Local climatological data, annual summary with comparative data, Topeka, Kansas: National Oceanic and Atmospheric Administration, U.S. ment of Commerce, Silver Spring, Maryland. Environmental Data Service, 1978, Local climatological data, annual summary with comparative data, Wichita, Kansas: National Oceanic and Atmospheric Administration, U.S. ment of Commerce, Silver Spring, Maryland. Rev. 0 WOLE' CREEK 'I'ABLE 2.3-9 Sheet. l of 6 7 WORST TEMPERA'rURE PERIOD AND WORST EVAPORliTION PERIOD This table has been divided into two parts: A. WORST TEMPERA'J'URE PERIOD ( 3 6 sheets) B. WORST EVAPORATION PERIOD (30 sheets) The key to the columns is as follows: A Ceiling (feet) B Wind Direction c Wind Speed (knots) D Dry Bulb (°F) E Wet Bulb (°F) F Dew Point (°F) G Relative Humidity H Barometric Pressure (" HG) I Cloud Cover (0-10) J Atmospheric Phenomena K Rainfall (1/100 inch) L Short Wave Radiation M Long Wave Radiation (btu/hr/ft ) N Vapor Pressure of Air ("HG) The synthetic date appears on the short line following the column heads; for example 1. 8. 1. means August 8, Year 1. Rev. 0 A. vlORSE TEMPERATURE PERIOD (a,b) " 1;. 1. 1440. o. 20000. 1. 20000. 3. 2VVJO. 4. 20000. 20000. 6. 20000. 7. 20000. 8. 20000. 9. 20000. 10. 20000. 11. 20000. 12. 20000. 13. 20000. 14. 20000. 1:1. 20000. 16. 20000. 17. 20000. 18. 20000. 19. 20000. *Jf\ 'J'"'I ,."
  • LVVVV
  • 21. 20000. 22. 20000. 23. 20000. B 13981
  • 9. 9. 9. 9. 9. 8. 8. -, I' 10. 9. 8. 8. 7. 9. 1 0. 12. I 0. 11. 9. 9. .... 7
  • 10. 9. 9. c 10. 9. 7. 7. " ..,, " .J, " .J
  • 7. 6. C" ..;, 6. 3. r .J, 6. C" .lo 8. 7. 9. 9. 9. 9. a. 4. 1
  • D 8. 8 9. 85. 82. 79. 78. 77. 77. 75. 75. 74. 73. 72. 74. 79. Q&: U-.1' 88. 91. 93. 93. 94. 95. 95. 94. 95. 78. ""17 I I o 76. -,..-1 ..;, 75. 75. 74. 73. 73. 72. 71. ..,, l I , 73. 75. 75. 76. 76. 75. 75. 75. 76. 77. 77. 78. *a For key to table, see sheet l 1
  • TABLE 2.3-9 (continued) F 74. 74. 74. 73. 74. 74. 73. 72. 72. 7'1 ! L. = 71. '" / v. ?2. 73. .,,., f.:. ?1. 70. 68. 68. 67. 6CJ. 70. 70. 72. G 61
  • 69. 76, 81. 87. 90. 87. 90. 90. 93. 93. 93. 9 3. 81. '" O.J. 50. 45. 45. 41. 41. 4 4. 46. 48. H 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. ')Q o 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. I o. 0. 0. 0. o. o. o. o. o. 0. o. o. 0. o. 0. o. 0. 0. 0. 0. o. 0. o. o. J o. 0. o. o. o. 0. o. o. 0. {\ v. " v. 0. 0. o. o. 0. o. o. o. o. o. o. o. 0. K o. o. 0. 0. o
  • o. 0. 0. 0. (\ v. 0. 0. o. 0. 0. 0. o. o. 0. 0. (), o. 0. 0. Sheet 2 of 67 L 0. 0. 0. 0. o. o
  • o
  • o. 0. " v. 0. 0. 11 7. 0 . o. 258. o. o. 281. 0. 0. 1 61
  • 0. o. M 133. 0. 0. 1 2 3. o. o. t 21
  • o. 0. .. " I I 0, 0. 0. 11 8. 0. o. 1 3 0
  • o. 0. 1 -, . .J .. l. 0. o. 136. 0. o. N 1. 0. 0. 1. o. v. 1. o. 0. i. o. 0. I . o. 0. 1. 0. 0. 1. 0. 0. 1. o. 0. Rev. 0 b The worst temperature period was obtained by saving the conditions for the 5 consecutive days, l day, and 30 consecutive days resulting in highest average water temperature, after which these three periods were combined to produce a synthetic 36-day worst weather period. The temperature periods were determined to have tl1e following actual dates: WORST 5 DAYS: June 30, 1949 (6 p.m.)-July 5, 1949 (6 p.m.) WORST 1 DAY: July 2. 1949 (noon) -July 3. 1949 (noon)

TABLE 2.3-9 (continued) A. WORST TEMPERATURE PERIOD (a,b) A 2. 1440. o. 20000. 1. 20000. 2. 3. 4. C" .J. 6. 7 I' 8. 9. 1 0. 11. 12. 13. 14. 1 5. 1 6. 17. 1 8. 1 9. 20. 21

  • 22. 23. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 3600. 5000. 5000. 5000. 5000. 20000. 20000. 20000. B 13 981
  • 1 o. 1 0. 7. 4. 6. 7. 1. 7. 0. 8. o. 0. 3. 7. 9. C" .Jo 9. 0. r .J. r .Jo 7 I' 15. 7. 9. c 1. 4. 3. 3. 2. 3. 3. 3. 3. 0. 4. 0' 0. 3. 3. 7. 3. 1. o. 3. 4. 3. 2. 4. 3. D 94. 91. 86. 82. 80. 79. 76. 75. 75. 76. 74. 73. 76. 82. 86. 90. 90. 93. 94. 95. 96. 97. 98. 96. a. E 79. 78. 77. 77. 76. 75. 74. 73. 73. 73. 7 2. 72. 73. 76. 77. 79. 78. 77. 76. 76. 77. 79. 78. 77. '1 Lo F 74. 73. 74. 7"" I-.], 7" J -.). 73. 73. 7'1 I 7'1 I 4-* 72. 71. 71' 7'1 I Lo 74. 74. 74. 74. 71. 70. 68. 70. 72. 70. 70. G "'1 -.!Lo 56. 67. 79. 84. 81
  • 90. 90. 90. 87. 90. 93. 87. 76. 67. 60. 60. 49. 46. 41. 42. 45. 41. 42. H 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29.
29. 29. 29.
29. I 0. o. 0. o. 0. o. 0. o. 0. o. 0. o. 0. o. o. o. "I I' 7. 7 J
  • 7 I' 6. 4. 4. '1 Lo J o. o. o. 0. o. 0. o. 0. o. o. o. o. o. 0. 0. o. o. 0. o. o. 0. o. o. 0. K o. 0. 0. 0. o. 0. 0. 0. o. o. 0. 0. o. 0. o. o. o. o. 0. 0. 0. o. 0. 0. Sheet .1 of 67 L 0. 0. o. 0. o. 0. o. o. 0. 0. 0. 0. 11 7. 0. o. '1 r L..JJ. o. o. 191
  • o. o. i44. 0. 0. M 137. 0. o. 12?. 0. 0. 120. 0. 0. 11 9
  • 0. o. 1 j 9. 0. o. 1 3 *l. 0. 0. 14 3. !), o. j 44. 0. 0. N 1. o. 0. 1
  • 0. o. 1. 0. 0. 1. 0. 0. 1. 0. o. 1. 0. o. 1
  • o. o. 1. o. 0. Rev. 0 0 t"" '":i 0 :::0 tlJ tlJ :::>'i TABLE 2.3-9 (continued) A. HORST TEMPERATURE PERIOD (a,b) A 3. 1440. o. 2000(). 1. 20000. 2. 20000. 3. 20000. 4. 20000. 5. 20000. 6. 20000. 7. 20000. 8. 20000. 9. 20000. iO. 20000. il. 20000. 12. 20000. 13. :00000. I -1. :.' ou tJ U. 15. 20000. 16. 20000. 17. 20000. 18. 4000. 1?. 5000. 20. 5000. 21. 5000. 22. 20000. 23. 20000. B 13 981
  • n o. 7. " ..;, 5. .. .), 7. 7. 7. -, I
  • 6. 7. 7. 7. 0. '/ . 1 0. 9. 8. 8. 7' r ..Jo 6. 4. 6. c 4. 3. 3.
3. 4. " ..J. 6. 6. " ..;, 7. 4. 6. 4. .. !l. 7. 4. 9. 4. 10. 6. 9. 6. 9. 1. D 95. 91. 86. "" Q..J, 83
  • 81. 80. 78. 78. 77. 76. 74. 76. 8 0 *
  • 86. 89. 90. 93. 93. 92. 93. 92. 92. 8. E I I
  • 78. "?"? I I o 76. , .. I ..Jo 76. 75. /5. 74. 73. 73. 72. 73. -,r { ,1,. I' I J, 76. 76. 75. 78. 76. 76. 76. 75. 75. 3. F 70. 74. 74. 73. 7 ') 74. 74. -,-, J' .,J I 72. '? 72. 71. 72. 7.1. I'J I *-* 7 2. 71. 69. 72. 70. 71. 69. 68. 6 8. G 44. 1:""') J/
  • 67. 67. 69. 79. ,...,.., o.:.. 84. 8i. 84. 87. 90. 87. ;r* I I, 61. 63. JJ. 50. 51. 47. 51. 46. 45. 45. H 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. :l'"J, '}.fJ. 29. 29. 29. 29. ')0 "" 29. 2 9. 29. 29. I ') .:.. .., "-* 1. 0. 0. o. o. 0. o. 0. 0. 0. 0. (). ..1. 4. 3. " ,;, 6. 6. 7. 6. 3. ') "-* J o. 0. 0. o. o. o. 0. 0. 0. o. o. o. o. 0. (). o. 0. 0. o. " v. f\ v. 0. o. o. K 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. o. 0. 0. 0 . 0. 0. 0. 0. 0. I) v
  • o. 0. 0. Sheet 4 of 67 L 0. 0. 0. o. 0. 0. 0. o. 0. o. o. o. 11 7. (). 0. 232. o. o. 213. o. 0. 125. o. 0. H 138. 1), 0. 1 "" 0. o. 12 4. 0. 0. I 2 0. 0. 0. 11 9. 0. ,') 1 3 J. 0. 0. 14 2. 0. ,., 'J. 1 4 1
  • 0. 0. N 1. 0. 0. 1. 0. 0. 1. 0. 0. 1. 0. 0. 1. n. 0. 1. 0. 0. 1. 0. " v. 1. o. o. Rev. 0 ::E; 0 C"' l""l:J 0 :A) tt:i tt:i ;:>;:

TABLE 2.3-9 (continued) Sheet 5 of 67 A. 'i'lORST TEMPERATURE PERIOD (a, b) A B c D E F G H I J K L M N 4. 1440. t 3 981

  • 1. 8. 4. o. 20000. 7. r: 90. 7r' 69. 50. 29. '1 o. o. 0. 13 3. 1. J. I-.), <-* 1. 20000. 7. 4. 85. 76. 72. 65. 29. I. 0. 0. 0. 0. 0. 2. 20000. 6. 4. 82. 74. 71. 69. 29. o. 0. 0. o. o. 0. 3. 20000. 6. .:-80. 73. 70. 71. 29. o. o. 0. o. 122. 1. Jo 4. 20000. ., 4 0 78. 73. 71. 79. 29. 0. 0. o. o. 0. 0. f. r: 20000. 7. 3
  • 76. 72. 70. 81. 29. o. 0. o. 0. 0. 0. .J. 6. 20000. Q ., ..., ' IL. 70. 81. 29. o. o. o. o. 118. 1. u. .Jo I 0, 0 7. 20000. o. 0. 74. 71. 7n 87. 29. o. 0. o. o. 0. 0. ...... ; v. ' . 8. '"JI'\1'11\f'l. 7. 4
  • 74. 71. 70. 87. 29. o. 0. o. o. 0. 0. n:j .:vvvv. 9. 20000. 7. r: 73. 71. 70. 90. 29. o. 0. !'I II 1 1 I 1. n .J, Vo v. I I 0
  • 10. 20000. 7. 3. 72. 70. 69. 90. 29. 1. 0. o. o. 0. o. ;;o tx:l 11. 20000. 2. 3. 72. 70. 69. 90. 2?. 3. 0. 0. 0. 0. 0. tt:l :::>';: 12. 20000. 7. 3. 74. 72. 71. 90. 29. r: (\ o. 98. i * .J
  • v. 1.;.,;., 1 3. 20000. 7. 4. 79. 74. 72. 79. 29. 4. o. o. 0. 0. o. 14. 20000. 8. 3. 81. 74. 71. 71 29. '1 o. 0. 0. o. o. .... 15. 20000. 7. 3. 83. 74. 71. 67. 29. <* 0. o. 218. 1 31
  • 1 * .J. 16. 15000. 8. 4. 85. 75. 71. 63. 29. 8. 0. o. 0. 0. 0. 17. 1 .1()(\1\ 8. ., 85. 75. 72. 65. 29. 9. 0. o. 0. 0
  • o. I I 'II \1 VI .J. 18. !4000. 7. L !)I\ ., ' 70. 52. 2'i. o, 0. 9. 164. 140. 1. u. 1 v. { 0. 19. 20000. 2. 4. 86. 76. 7'1 63. 29. 7 0. 1. o. o. 0. I "-' I
  • 20. 4500. 8. 3. 90. 76. 71. 54. 29. 8. 0. o. 0. 0. 0. 21. 4500. 3. 7. 87. 76. 71
  • 59. 29. 8. 0. 6. 94. 138. 1. 22. 4500. 1 4. 9. 76. 74. 73. 90. 29. 10. 0: 1. o. 1\ (\ Vo Vo 23. 5000. 15. a. 76. 74. 73. 90. 29. 9. 0. 3. o. o. 0. Rev. 0 A. TABLE 2.3-9 (continued) WORST TEMPERATURE PERIOD (a,b) l\ 5. 1440. o. 12000. ,
  • 12000. 2. 10000. 3. 20000. 4. 20000. 5. 20000. 6. 20000. 7. 20000. 8. 20000. 9. 20000. 10. 20000. 11. 20000. 12. 15000. 13. 18000. 14. 18000. 15. 20000. 16. 15000. 17. 3500. 18;; 3500. 19, 4000. 20. 20000. 21. 20000. 22. 20000. 23. 16000. B 13981. 4. 3. 3. 8. 9. 9. 8. " 0. 7. 8. 9. 9. 9. 9. 10. 11. 10. 1 0. . " IV, 1" ,..,, 13. r .J. 4. r .J. c r .J. 3. 4. 3. 3. 4. 3. 3. " ,), r .J, 6. 5. 4. r .;. 4. 9. 0 I o 9. 9. . . I I, 2. 2. 4. 4. 1. D 78. 77 I I o 7 4. 74. 7') J 72. 72.
72. 71. 71. 71. 71. 72. 73. 78. 83. 86. 87. 86. 78. 75. 82. 83. 81
  • 8. E ...,.,. J ..;, 74. 73. 72. 71. 72. 71. 71. 70. 70. 70. 70. 71. 72. 74. 76. 76. 75. 75
  • 73. 73. 76. 76. 76. "" ,), F 74. 7 3. 7'1 J '-* 7'i I L* 71. 71. ?0. 70. 70. 70. 70. 70. 71. ""?') { L o 73. 73. 72. 71
  • 71. 71. 7') .... 74. 74. 74. G 87. 87. 93. 93. 97. 97. 93. 93. 97. 97. 97. 97.
97. 97. 84. 71. 63. 59. 61. 79. 90. 76. 74. 79. H 29. "H) ;_,. 29. 29. 29. 29. 29. 29. 29. 29. ')'"' <-i. 29. '2.9. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. I 1 o. 8. 7 I o '"") .... o. o. 0. 0. 0. " v
  • 3. 4. 7 I o 6. 6' 4. 7 I o 8. 9. 9. 9. 8. 8. . (\ IVo J o. o. 0. o. 0. o. 0. 0. " v. o. 0. 0. o. o. 0. 0. 0. o. 0. 0. o. 0. 0. 0. K o. 0. 0. 0. o. 0. 0. o. 1\..Jl 0. 0. o. o. 0. 0. J. o. 4. 0. 4. o. 1. 0. 0. Sheet 6 of 67 L 0. 0. o. 0. 0. 0. (\ v. o. o. 0. 0. o. 81. 0. o. 231. 0. v. 132. 0. o. 93. 0. 0. H 1-/') ,_;(..., 0. o. 1 2 0. 0. 0. *
  • r I I J, 0. 0. 11 '1. 0. 0. 122. 0. 0. 1 31. 0. 0. i Q I ..J U
  • 0. 0. 13*1. o. 0. N 1. 0. 0. 1. 0. 0. i. 0. 0. 1. 0. 0. 1. 0. 0. 1. o. o. 1. 0. o. 1. 0. 0
  • Rev. 0 ::E:; 0 L' i""Ij r-. \ J :::c tJ:j tJ:j ?':

A. \1110RST PERIOD A 6. 1440. o. 5000. 1. 5000. 2. 5000. 3. 20000. 4. 20000. 5. 20000. 6. 20000. 7. 20000. a. 2oooo. 9. 20000. iO. 20000. 11. 20000. 12. 20000. 13. 20000. 14. 20000. 15. 200*)0. 16. 20000. 17. 20000. 18. 20000. 19. 20000. 20. 20000. 21. 20000. 22. 20000. 23. 20000. B 13 981. . ..;. r ,J, 7. 15. 7. 9. 8. 7. r ,J, r ,J, 5. 7. 7. 7. 7. 6. 7. 7. 7. 8. 9. 1 0. 9. 8. c 1. 3. 4. 3. 2. 4. 3. 4. 3. 3. 3. 4. r ,J, 6. 6. r: ,J. 7. 4. 6. 4. r ,J, 8. 7. 4. 9. D 94. 95. 96. 97. 00 I U

  • 96. 95. 91. 86. 85. 83. 81. 80. 78. 78. 77. 76. 74. 76. 80. 84. 86. 89. 90. 8. TABLE 2.3-9 (continued) (a, b) E F G H I 76. 76. 77. 79. 78. 77. 77. 78. 77. 76. 75. 76. 75. 75. 74. 73. 73. 72. 73. 75. 7 5. 76. 76. 75. 6. 70. 68. 70. 7'1 J "'-* ..,,., { \.1. 7 0. 70. 74. 74. 73. 72. 74. 74. 73. 72. 7'1 J "-* 72. 71. 72. 73. 7') '-* 72. 71. 69. 46. 41. 42. 4 5. . ' "II
  • 42. 44. 57. 67. 67. 69. 79. 82. 84. 81. 84. 87. 90. 87. 79. 67. 63. 1:-10" ,J,J. 50. 29. 29. 29. 29. '>n ..:.: 7
  • 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 2?. 29. 29. 29. 29. 29. 29. 7 J
  • 7 J. 6. 4. 4. 2. ') .... ..., L o 1. 0. o. 0. 0. 0. o. 0. 0. 0. o. o. 3. 4. 3. 5. J 0. 0. 0. 0. 0. 0. 0. 0
  • 0. 0. 0. 0. 0. o. 0. 0. o. 0. 0. 0. 0. o. o. 0. K o. 0. o. o. o. 0; 0. o. o. o. 0. o. o. 0. 0. o. o. 0. 0. 0. o. o. o. o. Sheet 7 of 67 L 191. 0. 0. 1 4 4. 0. 0. 0. 0. o. 0. (). 0. 0. 0. 0. 0. 0. 0. ! 17. 0. 0. 232. o. o. H 14 3. o. o. 1 4 *1. 0. 0. 1 3 8. 0. 0. 128' (). {). 12 4. 0. 0. 120. n v. 11 "' 1\9' 0. 0. 13 3. 0. 0. N 1. o. 0. 1
  • 0. 0. 1
  • 0. 0' 1. 0. 0' 1. 0. 0. 1. 0. 11 Vo L 0. 0. 1. o. o. Rev. 0 :8 0 t"' h:J 0 tt:l tt:l TABLE 2.3-9 (continued) Sheet 8 of 67 A. TEMPERATURE PERIOD (a,b) A B c D E F G H I J K L M N 7. 144 0. 13981. 1. 8. 7. 0. 20000. 9. 9. 73. 72. 71. 93. 29. 4. o. o. 100. 120. 1. 1. 20000. 9. 9. 77. 73. 72. 84. 29. 3. o. o. 0. o. o. ') 20000. 1 0
  • 1 5. 81. 75. 72. 74. 29. 1. o. 0. o. o. o. .. . 3. 20000. 10. 13. 83. -.c 7') 69. 2 9. 1. o. o. 2"'1 127. 1. I ..J
  • I <..' .Jt..o 4. 20000. 1 o. 1 0. 86. 76. 7') I ,;...
  • 63. 29. o. 0. o. o. 0. 0. " 20000. i o
  • 1 3. 88. 78. 74. ..;. 63. 29. o. o. o. o. 0' o. 6. 20000. 10. 14. 90. 79. 75. 61. 29. o. o. o. 271. 13 4. 1. :8 7. 20000. 10. i6. 91
  • 78. 73. 56. 29. o. 1\ " " 0. o. 0 Vo Vo v. 8. 20000. t 0. t 6. 92. 79. 74. 56. 'lQ o. 0. ,, o. 0. 0. 1:"' "-'. ;J. rr. " 9. 20000. 11. 16. 93. 70 ' ' . 74. 54. '"' o. o. o. 1"" 137. 1. .;.7. .JJ* n 10. 20000. 10. 14. 93. 79. 74. 54. 29. o. o. o. o. o. o. ::0 11. 20000. 11. 8. 92. 79. 75. 1:"""1 29. o. 0. o. o. 0. o. tr:l '-'l
  • tr:l 12. 20000. 10. 1 0. 90. 79. 76. 63. 29. o. 0. o. o. 1. 13. 20000. 1 0. c 86. 79. 77. 7" 29. o. o. o. 0. o. o. ,J, I ,J
  • 14. 20000. 8. 6. 83. 79. 77. 82. 29. 0. o. 0. o. o. o. 15. 20000. 8. r: 81. 77. 76. 85. 29. o. 0. o. o. 127. 1. ,J, 16. 20000. 9. 7. 79. 77. 76. 90. 29. o. 0. o. o. o. 0. . -, I l
  • 20000. 7. 4
  • 79. 77. 76. 90. 29. 10. o. 16J. 0. 0. Q, 10 r: '"' 6. 3. 70. 70. 7 0. 100. 29. 1 o. 0. 17. o. 123. 1. I U *
  • 19. 10000. 8. 7. 71. 71. 71. 100. 29. 1 0. o. o. o. o. 0. 20. 10000. I 1
  • 9. 70. 70. 69. 97. 29. 1 0. o. o. o. o. o. 21. 20000. I 0. 4. 71
  • 69. 68. 90. 29. 8. 0. 0. o. 121
  • 1. 22. 20000. 15. 7. 69. 68. 68. ,., .. 29. 3. {\ (\ " 0. o. "! t vo v. V* 23. 20000. 16. 3. 69. 68. 68. 97. 29. C" 0. 0. o. o. o. .J, Rev. 0 TABLE 2.3-9 (continued) Sheet 9 of 67 A. WORST TEMPERATURE PERIOD (a,b) A B c D E F G H I J K L M N 8. I 44 0. 13981
  • 1
  • 8. 8. 0. 200 00. 6. 7. 71. 70. 69. 93. 29. 1 0. o. o. 40. 124. 1. 1. 20000. 7. 8. 76. 72. 71. 84. 29. 1 0. 0. 0. 0. 0. 0. 2. 20000. 8. 8. 81. 73. 70. 69. 29. 1 0. o. 0. o. 0. 0. 3. 20000. 8. 6. 83. 74. 70. 65. 29. 7 I
  • 0. o. 175. 132. 1
  • 4. 20000. 11. 7. 85. 75. 71. 63. 29. 7. o. o. o. 0. 0. r 20000. 1',.., ., 88 * ...,_, 73. J.1 ')0 10. o. 0. o
  • 0. 0. .;. IV, r * ,. /. ..., '. ""'. 6. 20000. 11. 6. 89. 77. 73. """ ..J 7
  • 29. 10. o. 0. 95. 1
  • 1
  • 7. 20000. 11. 4. 89. 78. 74. 61. 29. 'i. o. o. (). 0. 0. :8 8. 20000. 9. 4. 91. 78. 73. 56. 29. 6. o. o. 0. 0. 0. 0 t:'"'i 9. 20000. 1 3. 4. 93. 78. 73. c-., ..;.c.. 29. 3. o. 0. 147. 139. 1. i":j 1 0. 20000. 0. 0. 94. 79. 73. 51. 29. 1 0. o. 0. o. o. o. 0 II. 20000. 13. 1. 92. 79. 7r=' r::*7 29. 1 0. o. o. o. o. 0. I .J a ...11
  • t<:i 12. 20000. 11. 3. 91. 81. 78. 66. 29. 1 0. o. o. 0. 147. I
  • t<:i I 3. 20000. 8. 3. 87. 80. 78. 7"" 29. 1 o. o. 0. 0. 0. 0. I .J a 1 4. 20000. 8. 3. 83. 79. 78. 85. 29. 9. 0. 0. 0. 0. o. 15 20000. 8. 3. 81. 78. 77 I I o 87. 29. 7. 0. 0. 0. 134. 1. I 6. 20000. 8. 3. 80. 77. 76. 87. 29. 9. o. o. 0. Q. 0. . -. ...,,.,!'\!\!\ 9
  • r 79. 7t. 75. 87. 29. 9. o. 0. 0. 0. o. I I a .:_vvvv. ..; . 'u. 10 '1/H\f\(\ 0 3. 78. 75 .. 74. 87. 29. 8. o. 0. o. 130. 1. IVa tf...V\/\/'1/1 ' . 1 9. 25000. 9. 2. 78. 74. 73. 84. 29. 8. o. 0. 0. o. 0. 20. 20000. o. o. 77. 74. 73. 87. 29. 7. o. o. o. 0. 0. 21
  • 20000. 1 0. 3. 76. 73. 72. 87. 29. 7 o. o. 0. 126. 1. I a 22. 25000. 1 0. 7. 77. 75. 74. 90. 29. 1 0. o. 0. o. 0. 0. 23. 15000. 1 0. 6. 76. 74. 73. 90. 29. i o. 0. 0. 0. " v. Rev. 0 TABLE 2.3-9 (continued) Sheet lOof 67 A. WORST TEMPERATURE PERIOD (a,b) A B c D E F G H I J K L M N 9. 1 4 4 0. 13 981
  • 1. 8. 9. 0. 20000. 1 4. .. 77. '"" 74. 90
  • 29. 1 0. 0. 0. 39. 131
  • 1. ..1
  • I J' 1. 20000. , " 80. 76. -,c 8A' 29. 1 o. 0. 0. 0. 0. 0. ... I J, 2. 1 00 0. 2. 9. 80. 76. /4. 29. 10. 0. 0. 0. o. 0. 3. 20000. " 10. 81. -,r: 7'1 I .J o J ..:... 74. 29. 3. o. o. 240. 127. !. 4. 20000. . 9. 82. 76. 74. 76. 29. r: 0. 0. o. 0. o. .,, ,J * .. 12000. 4. " 83
  • 77. 75. ,, 29. 10. o. 0. o. 0. 0. ,J, Jo I 0
  • 6. 8000. 2. 5. 84. 77. 7r: I -.}
  • 74. 29. 1 o. o. 0. 94. 1 3 9. 1. 7. 12000. " 9. 86. 77. 74. 67. 29. 1 o. o. o. o. o. o. ... 8. 15000. 2. 9. 85. 75. 71, 63. 29. 8. 0. 1\ " " "' v. Vo v. v. 0 9. 20000. 3. 12. 85. 73. 67. o::-r: 29. 8. o. 0. 94. 1 34. 1. L' ...J-..1. '"'l 10. 12000. 2. 9. 81. 72. 68. 65. 29. 9. o. 0. 0. o. 0. 11. 12000. 2. .. 80. 72. 68 . 67. 29. 1 0. 0. o. 0. o. 0. () ,J. ;;o 12. 12000. 3. 3. 79. 72. 69. 71. 29. 1 0. o. o. 0. 132. 1. t:rJ t:rJ I 3. 12000. 3. 3. 78. 72. 69. 7 4. 29. 10. 0. 0
  • 0. 0. o. 14. 20000. 2. 3. 75. 72. 70. 84. 29. 6. o. 0. o. o. o. 1 5. 12000. 2. 3. 75. 72. 71. 87. 29. 7 0. o. 0. 1 ") L-1. I
  • J....Jo 16. 10000. 4. 3. 76. 72. 71. 84. 29. 7. o. 0. o. o. o. 17. 9000. 4. 3. 76. 72. 70. 81. 29. 6. o. 0. 0. 0. 0. 18. 20000. 6. 2. 7 4. 72. 71
  • 90. 29. o. o. 0. o. 11?. 1. i 9. 20000. 3. 2. 72. 70. 70. 93. 29. 0. 0. o. 0. o. 0. 20. 20000. 3. 2. 71. 70. 70. 97. 29. 0. o. 0. 0. 0. 0. 21. 20000. 11. 1. 70. 70. 69. 97. 29. 0. o. 0. 0. 113. 1. '1') L-* 20000. 0. 0. 69. 6 9. 68. 97. 29. o. o. 0. 0. o. o. 23. 20000. 1. 2. 68. 67. 67. 97. 29. o. 0. " o. " 0. v. v. Rev. 0 TABLE 2.3-9 (continued) A. WORST TEMPERATURE PERIOD (a,b) A B 10. 1440. 13981. 0. 20000. 16. 1. 20000. 16. 2. o. 3. 20000. 0. A ,.,f\!\f'\1'\ .,. .:.vvvv. 5. 20000. 6. 20000. 7. 20000. 8. 20000. 9. 20000. 10. 20000. 11. 20000. 12. 20000. 13. 20000. 14. 20000. 15. 20000. 16. 20000. 17. 20000. 18. 20000. 19. 20000. 20. 20000. 21. 20000. 22. 20000. 23. 20000. "' .:.. . 4. 7. 8. 6. I 0. 8. 9. 7. 8. 8. 8. 9. 9. 9. 9. 8. 8. 8. 9. C D E F 1. 8. 10. 3. 71. 70. 69. 2. 76. 72. 71. 0. 81. 74. 71. o. 85. 74. 69. ., ,), 1. 4. 4. 6. 3. r ..;, 3. 4. r ..;. 3. 6. ,. .Jo 6. 6. r: ..;, 4. 4. 6. .. ..;, "" O.J. 88. 89. 89. 90. 90. 93. 92. 90. 86. '""') o ** 79. 76. 75. 74. 74. 74. 72. 71. 70 * .., . I 't
  • 75. ..,., I .Jo 75. 76. 7 5. 76. 76.
76. 77. 75. 74. 72. 72. 71. 71
  • 70. 70. 70. 69. 69 . 70. 69. 69. 70. 6 9. 69. 70. 71. 73. 72. 7') '-* 71. 70. 70. 69. 69. 69. 69. 68. G 93. 84. 71. 59. """ ,j 1. rr: J.J. ...... ...Ji.a .. ') .Ji..o <=') ..;.,_, 50. 46. 49. 54. 65. 71. 79. 84. 84. 87. 84. 84. 90. 'i3. 93. H 29. 29. 29. 29. 29. 29. 29
  • 29. 29. 29. 29. 29. 29. 29. 29.
29. 29. 29. 29. 29. 29. 29. 29. 29. I 0. o. o. 0. o. o. o. o . ') .Lo ') .Lo o. o. 0. 0. 0. o. 0. o. 1. '1 '-* 1. 1. o. o. J 0. o. 0. 0. o. o. 0. 0. o. o. 0. o. 0. 0. 0. 0. 0. o. o. 0. 0. 0. 0. 0. K o. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. o. 0. 0. o. 0. o. 0. 0. 0. 0. 0. 0. o. Sheet ll of 67 L 111
  • 0. o. r) C t: .;..JJ. 0. 0. 276. o. o. 154. o. o. o. 0. o. o. o. 0. o. o. o. 0. o. o. M 11 3. 0. o. 1 2 6. 0. 0. 13 0. 0. 0. 133. 0. o. 13 2. 0. 0. 1 ")') L...:.., 0. 0. 1 , ?
  • 0. 0. 11 5. 0. o. N 1. 0. o. 1. 0. 0. 1
  • 0. 0. 1. o. 0. 1. o. 0. 1
  • 0. 0. 1. 0. o. 1. 0. 0. Rev. 0 ::2! 0 t"l t-Ij n trl trl TABLE 2.3-9 (continued) Sheet 12 of 67 A. WORST TEMPERATURE PERIOD (a,b) A B c D E F G II I J K L M N 11. 1440. 13981. 1. 8. 11. 0. 20000. 9. r .J. 73. 71. 69. 87. 29. o. 0. o. 111. 11 5. 1. 1. 20000. 9. 6. 78. 74. 72. 81. 29. 0. 0. 0. 0. o. 0. .., 20000. 1 0. 13
  • 83. 76. 73. '-* 71
  • 29. o. 0. 0. (). (). o. 3. 20000. t 0. 9. 86. "77 I I o 74. 67. 29. o. 0. o. 250. 1 3 0. 1. 4. 20000. " .... "" 79. 75. 6:;. 29. 0. o. o. 0. 0. o. 7
  • J.:;' 0 1. " 20000. 9. 12. 90. 79. 75. 61. 29. A " 0. 0. o. o. .J. v
  • v. 6. 20000. 8. 10. 92. 80. 76. 60. 29. 0. 0. 0. 269. 13/. 1
  • 7. 20000. 8. 14. 93. 79. 74. 54. 29. 1. 0. o. o. o. 0. ::8 8. 20000. 8. \3. 92. 79. ?<= "' 29. 3. o. o. o. 0. o. 0 I .J * ..JI
  • t"' 9. 20000. 1 0. 12. 93. 80. 75. 56. 29. ') o. 0. 150. 1 4 0. 1. "-* 1 0. 20000. 9. 14. 92. 79. 74. 56. 29. '"} o. o. o. o. o. () "-* 1 1
  • 20000. 9. 12. 91. 78. 73. 56. 29. o. 0. 0. 0. o. 0. t::r.l 12. 20000. 9. 12. 89. 78. 74. 61. 29. 0. o. 0. 0. 133. 1. t::r.l 13. 20000. 9. 9. 85. 77. 74. 69. 29. 0. o. 0. 0. 0. 0. 1 4. 20000. 8. 11. 82. 76. 74. 76. 29. 0. o. 0. o. o. 0. 15. 20000. 9. 15. 81
  • 75. 73. 76. 29. o. 0. 0. o. 1 2 4. 1. 16. 20000. 9. 11. 80. 75. 73. 79. 'J.9. o. o. 0. o. o. o. 17. 20000. 8. 10. 80. 75. 73. 79. 29. o. o. 0. 0. 0. o. 18. 20000. 0 11 -,n ., A ., " 79 . 29. o. o. 0. o. 122. 1. I 0 I I o f 7 * ,..,, I.::. * \9. 20000. 9. 9. 78. 74. ,.., I 1.. ' 81. 29. 0. o. 0. o. o. 0. 20. 20000. 9. 13. 78. 74. "7'} I 6.* 81. 29. 0. 0. o. 0. 0. o. 21. 20000. 9. 12. 77. 73. 72. 84. 29. 0. o. 0. 0. 120. 1. 22. 20000. 9. 9. 76. 73. 72. 87. 29. o. o. 0. o. 0. o. 23. 20000. 9. t 0. 76. 73. 72. 87. 29. 3. o. 0. o. o. o. Rev. 0 TABLE 2.3-9 (continued) Sheet 13 of 67 A. WORST TEMPERATURE PERIOD (a,b) A B c D E F G H I J K L ['.1 N 1 2. 1440. 13981. 1. 8. I '1 *"-* o. 20000. 9. 11. 77. 73. 72. 84. 29. o::* o. o. 91
  • 126. 1. "'* 1. 20000. 9. 17. 80. 75. 73. 79. 29. t. o. 0. 0. (). 0. 2. 20000. 9. 17'. 82. 76. 74. 29. 1. 0. (\ f) 0. o. v. 'J. 3. 20000. 9. 20. 85. 77 74. 69. 29. 3. 0. 0, 23?. 132. 1
  • II o 4. 20000. 10. 21. 88. 78. 74. 63. 29. 7 o. o. o. 0. o. I ' .,. 20000. 10. 18. 90. 78. 74. 60. 29. 1 0. o . 0. 0. 0. o. .J, 6. 20000. 9. 23. 92. 70 7" "'7 ,.,,., 8. o. 0. i59. i 4::;. 1 * :g . , "' . .,;r * ..:.. 7
  • 7. 20000. 1 0. 2 4. 93. 79. 74. 54. ")n 7 0. 0. o. o. o. 0 L 7
  • I
  • t"1 8. 20000. 9. 17. 95. 80. 7"" 53. 29. '1 o. o. o. 0. o. t"Ij I .,J, "-* 9. 20000. 10. 23. 95. 80. 75. 53. 29. 1. o. 0. 151
  • 140. 1. 0 I 0. 20000. 9. 17. 95. 81. 76. 54. 29. 1
  • 0. 0. o. o. o. :::0 tr:i 11. 20000. 9. 17. 93. 79. 74. 54. 29. 6. 0. 0. 0. o. 0. tr:i 12. 20000. 9. 11. 91. 7?. 74. '"7 29. 10. o. o. 0. 145. 1. ::;>::: .J/. 13. 20000. 8. 9. 87. 78. 75. 68. 29. 1 0. o. o. 0. 0. 0. 14. 20000. 8. 1 3. 86. 77. 74. 67. 29. 7 0. 0. o. 0. o. I
  • 15. 20000. 9. 1 4. 84. 78. 75. 7 4. 29. 7 0. o. o. 1 3 6. 1. I o I 6. 20000. 9. 15. 84. 76. 73. 69. 29. 6. 0. 0. 0. 0. o. 17. 20000. 9. 13. 83. 75. 72. 69. 29. 3. 0. 0. 0. 0. o. I 8. 20000. 9. I 0. 82. 75. 72. 71. 29. '1 0. 0. 0. 127. I. "-* 1 9. 20000. I 0. 11. 80. 74. 71. 74. 29. o. 0. 0. 0. o. 0. 20. 20000. 9. 12. 81. 73. 70. 69. 29. o. o. 0. o. 0. o. 2!. 15000. l 0. 6. 79. 73. 70. ._,. n ' o. 0
  • o. i 27. 1
  • F,
  • 7. o. 22. 20000. 15. 3. 77. 73. 71. 81. 29. 4. o. 0. 0. o. o. 23. 20000. 13. 1. 76. 72. 70. 81. 2 9. 1. 0. 0. o. o. 0. Rev. 0 TABLE 2. 3-9 (cont..,.inued) Sheet 14 of 67 A. iiORST TEMPERATURE PERIOD (a,b) A B c D E F G H I J K L N N I 3. 1398!. I. 8. 13. o. 20000. I 6. 2. 76. 71. 69. 79. 29. 8. (], o. &s. 120. 1. 1. 20000. 2. " ..,, 76. 7l. 69. 79. 29. 1 o. o. () . 0
  • o . Q, 2. 2vOOO. 4. 3. 79. -, *) } N 0 69. 71. 29. 1 0. 0. c. o. o. 0. 3. 20000. s. 2. 82. 74. ? l. 6 9. n. 1 (). 0. o. "" i35. l
  • oo. 4. 20000. 9. 9. 86. 7 6. ?2. 63. 29. 1 o. o. o. o. 0. o. " 20"0\)0. 1 0. ;;, 90. 79. ?4. 60. 29. 1 o. o. 0
  • 0. o. o. .;, 6. 20000. 1 0. " 9i. 7 8. 73. 56. 29. 8. 0. {I * !60. 143. L :r. .;, 7. zoooo. I 2. 2. 93. ?B. -,..., 5L ')Q 6. "' (), o. o. o. 0 ! t.... l' '-' . v
  • r-' 8. 20000. 1 6. 3. 94. IHJ. 75. 54. 29. 4. 0. o. o. 0. 0. M:j 9. 20000. 1 5. 2. 95. 81. 76. 54. 29. 4. o. 0. 137. !45. 1. () 10. 4000. 2. " ?L ao. 76. 61. 29. 6. o * () . (). 0. o. ;::o ..J. t:'l ll. 20000. I ' 7. 8?. 79. 76. 65. 27. 4. 0. o. o. 0. o. t1.l I 2. 20000. 2. 6. 87. 79. 76. 70. 29. '") o . o. o. l J 4. 1. ... l 3. 18000. ., 4. 84. 77. 75. '-. 7L 29. 9. o. () . o. o. () . 14. 18000. 3. .. 82. 77. 75. ?9
  • 29. '-t. 0
  • o. o. 0. o. ..Jo 1 5. 18000. 3. 3. 82. 77. 7C' I ..J' n. 29. 9. 0. o. o. 136. 1. 1 6. 20000. 1
  • 4. 79. 7 6. '7<"" I ,J' 87. 29. 4. o. \). o. 0. o. 1 7. 20000. 4. 3. 77. 72. 70. 79. 29. 7. 0. o. 0. {\ " v
  • v. '" ... 4. 6. 76. 73. 72. 87. 2?. i 0' o. 1), o. 130. 1
  • J "
  • 4.\I'JVV, 1 9. 5500. 4. .. 76. 74 . 73. 9 o. 29. 10. 0. o. o. 0. 0. .;, 20. 2. 7. 76. 74. 73. 90. 29. to. 0. 36. (). 0. Q, 2L L ?. 68. 68. 68. 100. 29. t 0. o. 34. 0. t 21. L 22. 5500. 2. 3. 69. 69. 68. 97. 29. 1 0. 0. ' . o. o. {). 23. 5500. l . 6. 6?. 6 3. 68. 97. 2 9. 10. 0. o. o. 0. 0. Rev. 0 TABLE 2.3-9 (continued) Sheet 15 of 67 A. NORST TEMPERATURE PERIOD (a,b) A B c D E F G H I J K L l1 N 14. 1440. 1 3 981
  • 1. 8. 1 4. o. 15000. 1. ., 69. 69. 69. '-* 1 0 0. 29. 1 0. o. o. 39. 122. 1. 1. 15000. r 2. 72. 70. 6 9. 90. 29. 1 0. o. 0. 0. o. 0. J. 2. 15000. 6
  • 2. 74. 70. 69. 84. ")rl ... 7. 1 0. 0. 0. o. o
  • 0. 3. 15000. 1 6. 4. 76. 72. 71. 84. 2?. I 0. 0. o. 88. 1 2?. 1
  • 4. 15000. 2. 9. 77. 73. 7 t. 81. 29. I 0. o. o. o. 0. 0. 5. 12000. 2. 9. 011 -.? li. 74. 29. 1 0. 0. 0. o. o. 0. u v. f .J. 6. 12000. 2. 9. 80. ?4. 71. 74. 29. 1 0. o. 0. 9"' 133. 1. .J, 7. 15000. 2. 9. 82. ?4. 71. 69. 29. 1 o. 0. o. 0. 0. 0
  • 8. 30000. ") 7. 82. 74. 71. 6 9. 29. 1 0. o. o. 0. o. 0. .:.. . c 9. 20000. ") ' 2
  • o..::. 74. 71. 69. 29. 8. o. o. 91. 1 J3. 1. t"" '-* 1 0. 20000. 3. 7. 82. 73. 6 9. 65. 29. 8. o. 0. o. o. o. 1 1
  • 20000. 3. 3. 82. 72. 68. 63. 29. 9. o. 0. 0. 0. 0. (') ;;o 12. 20000. ") 3. 80. 72. 69. 6 9. 29. 9. o. 0. o. 131 * . 1
  • t<:i -. 1 3
  • 20000. 2. 2. 78. 73. 71. ??. 29. t 0. o. o. 0. 0. 0. i::tj 1 4
  • 20000. 3. 3. 76. 72. 70. 81. 29. to. 0. 0. 0. o. 0. 1 5. 20000. 4. 3. 76. 72. 70. 81. 29. 1 0. 0. o. o. 129. 1. 16. 20000. 2. 3. 74. 71
  • 70. 87. 29. 1 0. 0. o. 0. 0. 0. 17. 20000. 2. 4. 72. 70. 69. 90. 29. 6. 0. o. o. 0. o. 18. 20000. 3. 3. 71. 69. 68. 90. 29. 1 o. 0. 0. 0. l 24. 1
  • 1 9. 20000. 16. 3. 70. 69. 68. 93. ")') ') 0. o. o. (). o. ,;_J. .... 20. 20000. 2. 2. 69. 68. 68. 97. 29. o. 0. o. o. 0. o. 21. 20000. 2. 3. 63. . 67. 67
  • 97. 29. o. o. o. 0. l 1 0. 1. 22. 200()0. 3. 3. 68. 67. 67. 97. 29. o. 0. 0. 0. 0. o. 23. 20000. 2. 3. 67. 67. 66. 97. 29. o. 0. o. 0. o. 0. Rev. 0 TABLE 2.3-9 (continued) Sheet 16 of 67 A. WORST TEMPERATURE PERIOD (a,b) A B c D E F G H I J K L M N 1 5. 1 440. 13 981
  • 1. 8. 1 5. 0. 20000. 3. 3. 68. 67. 67. 97. 9. 0. 0. o. 109. 11 0
  • 1. 1. 20000. 2. 3. 71. 69. 6 8. 70. 9. o. 0. 0. 0. o. 0. 2. 20000. 2. 7. 75. 71. 6 9. 81. 9. 0. 0. 0. 0. o. 0. 3. 2500. 2. 4. 76. 71. 68. 76. 29. 6. 0. 0. 196. 1 2 4. 1.
  • 2500 . 4. 4. /7. 70 . 61. 71. 29. 7. o. 0. 0. 0. 0 * ., . . .. 3000. 1 6. 3. 80. 7! L I 62. 21'. " o_ o_ 0. 0. fj * ,!
  • I I o .., 0. 1
  • 6. 3000. ,., 4. 81. 71. 6 6. 60. 29. 8. o. 0
  • 163. 1 3 0. 1. ... -, 3000. 4. 3. 82. 72. 68. 63. 29. 8. 0. 0. 0. 0. 0. ' . 8. 3000. 4. 3. 83. 7 3. 69. 6 3. 29. B. 0. 0. 0. 0. 0. 0 t"' 9. 4000. 2. 8. 86. 71
  • 6 4. 48. 29. 7 J
  • o. o. 107. 1 3 3. 1. I"IJ I 0
  • 4000. 1. 4. 84. 72. 6 7. 56. 29. 6. o. 0
  • o. (). 0. 0 11. 20000. 2. 3. 83. ?2. 68. 61. 29. '1. 0. o. o. o. 0. :::0 !::tj 1 2. 20000. 4. 3. 82. 71. 66. 58. 29. 7. 0. o. o. 129. 1. t<:l :AI 1 3
  • 20000. 3. 2. 79. 72. 69. 71. 29. 7 0. o. 0. D. o. I o 1 4. 20000. 3. 2. 77. 71. 6 9. 76. 29. 6. o. 0. o. o. o. 1 5. 20000. " 2. 75. 71. 69. 81. 29. 4. o. 0. o. 121. 1. -lo I 6. 20000. 6. 3. 74. 70. 69. 84. 29. 1
  • 0. 0. o. o. 0. 1 7. 20000. 0. 0. 72. 70. 6 9. 90. 29. o. o. o. 0. 0
  • o.
  • 0 ")1"\,.,1\1'! 7 2. 7 i . 69. 6 9. 93. 29. u. o. 0. o. 11 3. 1. I 0 o LVVVV* ,), 1 9. 20000. o. o. 69. 68. 68. 97. 29-0. 0. 0. o. o. 0. 20. 20000. 2. 2. 63. 68. 68. 100. 29. 0. 0. 0. o. 0. 0. 21. 20000. 2. t. 67. 67. 67. 100. 29. o. 0. o. 0. 1 09. 1. 22. 20000. 2. 2. 66. 66. 6 6. 100. 29. o. o. 0. o. (), o. 23. 20000. 2. l. 66. 6S. 65. 97. 29. o. 0. o. 0. o. o. Rev. 0 TABLE 2.3-9 (continued) Sheet 17 of 67 A. WORST TEf.1PERATURE PERIOD (a,b) A B c D E F G H I J K L !1 N 1 6. 1440. 1 3 981
  • I. 8. 1 6. 0. 20000. 1. 2. 69. 68. 67. 93. 29. 0. o. o. 109. 111. !. 1. 20000. 1. 1. 74. 71. 70. 87. 29. 0. o. 0. 0. 0. 0. 2. 20000. 2. 3. 77. 72. 70. 79. 29. 0. (). 0. o. 0. 0. 3. 20000. 4. 3. 78. 70. 67. 69. 29. ') 0. 0. 250. 121. 1. ... 4. 20000. 9. 3. Q") 7') 68. 63. 29. 3. o. o. 0. 0. 0. I * .. 20000. 10. 3
  • 85. 72. 66. "' '10 ') o. o. 0. 0. o. ,;, -..;...;. Ll * ... 6. 20000. 13. 1. 85. 71
  • 64. 50. 29. 1. 0. o. 276. 1 2 4. 1. 7. 20000. 10. 3. 89. 71. 63. 42. 29. 1
  • o. o. 0. 0. o. 8. 20000. 12. .., 88. 70. 6 *) 42. 29. 3. o. o. 0. 0. o. ::8 ... 0 9. 20000. 4. 3. 88. 70. 61
  • 40. 29. 3. o. 0. 150. 128. 1
  • t"i I"Ij 1 o. ....,r'\l\1\" 3. 2. 87. 71. 62. 42. 29. ") 0
  • o. o. o. o. .c.vvvv. "-* 11. 20000. 15. 2. 89. 73. 65. 45. 29. 2. o. o. 0. 0. o. () ;;o 12. 20000. 15. 2. 86. 73. 68. """ 29. 6. o. 0. 0. 1 33. 1. t7j ,;..;, t7j 13. 20000. 0. 0. 83. 72. 67. 58. 29. 6. o. 0. o. o. o. :;::.;: 14. 20000. o. o. 80. 71. 67. 65. 29. -, 0. 0. o. o. 0. ,:), 15. 20000. 15. 2. 77. 71
  • 69. 76. 29. 1. 0. 0. o. 12 0. 1. 16. 20000. 15. 2. 75. 71. 69. 81. 29. 1. 0. o. o. (). 0. 17. 20000. o. 0. 73. 71. 69. 87. 29. 0. 0. 0. o. 0. 0. 18. 20000. 2. 2. 75. 70. 67. 76. 29. 8. () 1\ i 2 4. i. v. v. v. 19. 20000. 2. 1
  • 73. 70. 69. 87. 29. 2. o. o. o. (). 0. 20. 20000. 2. 1. ?2. 69. 68. 87. 29. 1. 0. o. o. o. o. 21. 20000. 6. 1
  • 72. 70. 69. 90. 29. 3. 0. o. o. 11 7. 1. 22. 20000. 3. 2. 71
  • 69. 68. 90. 29. 4. 0. o. 0. 0. o. 23. 10000. ., 3. 72. 69. 6 8. 87. 29. 9. o. o. 0. o. o. r
  • Rev. 0 TABLE 2.3-9 (continued) A. HORST TEHPERATURE PERIOD (a,b) A 17. 1440. o. 10000. 1
  • 50 0 0. 2. lOJOJ. 3. 4. 20000. 5. 20000. 6. 4000. 7. 4000. 8. 10000. 7. i5000. 10. 15000. 11. 15000. 12. 15000. 13. 20000. 14. 20000. 15. 20000. 16. 20000. 17. 20000. 18. 20000. 19. 20000. 20. 20000. 21. 20000. 22. 20000. 23. 20000. B 13981. c J, 9. 8. 10. 9. 7. 9. 6. 4. i 0. 1 0. 9. 9. 8. 7. 8. 13. 7. 7. 7. 7. 0. 2. 9. c L 3. 9. 2. 3. 6. 4. 9. 7. 4. i 3. 9. 1 0. 7. 4. 2. r J. 2. 4. 3. 3. 2. 0. 2. 2. D 72. 79. 75. so. 86. 89. 91. 80. 79. 8i. 78. 79. 78. 74. 73. 72. 70.
70. 69. 69. 68. 67. 66. 66. 8. E 1 7. 70. 73. 73. 75. 78. 78. 78. 70. 71. 74. 71. 72. 72. 71. 70. 70. 70. 69. 69. 68. 67. 66. 66. 65. F 69. 71 * "l'l
  • 73. 7"' I Jo 7< '...,, 73. 65. 67. 7 j. 68. 69. 69. 70. 6 9. 69. 69. 68. 68. 68. 67. 66. 6 6. 65. G 90. 76. 90. 79. 69. r.o "'. 56. 60. 67. ? l. 71. 71. 74. 87. 87. 90. 97. 93. 97. 97. 97. 97. 1 00. 97. H 29. 29. 29. 29. 29. 'lO "-'. 29. 29. 29. .29. :.n. 29. 29. 29. 29. 29. 29. 29. 29. 2?. 29. 29. 29. 29. I 1 0. I 0. 9. '7 I ' c: J. 11 .. 6. 10. I 0. j 0. 8. 8. 7 I ' 8. 7 I ' 4. I. I. 0. 0. o. o. 0. 1. J 0. 0. 0. 0. 0. () '" 0. 0. 0. o. 0. o. 0. 0. 0. o. 0. o. 0. 0. o. o. 0. 0. K o. o. 0. 0. o. 1\ vo 0. 0. 0. 0. 0. o. o. o. 0. 0. o. o. 0. 0. o. o. 0. 0. Sheet 18 of 67 L 38. 0. 0. 170. o. () v. 208. o. o. 54. 0. 0. o. o. 0. o. 0. o. 0. o. o. o. 0. 0. M 125. 0. 0. 1 3 1
  • o. (\ v. 141. o. 0. i 3 4. 0. o. 1 ')'! 1.. I
  • 0. o. 119. o. o. 111. 0. o. 109. o. o. N 1. o. o. 1
  • 0. (\ Vo 1. 0. 0. L o. o. 1
  • o. o. 1
  • o. o. 1
  • 0. 0. 1. o. o. Rev. 0 0 t"' hj 0 :::c t:r::1 tr.l "'

TABLE 2.3-9 (continued) Sheet 19 of 67 A. WORST TEMPERATURE PERIOD (a,b) A B c D E F G H I J K L M N 18. 1440. 13 981

  • 1. 8. 1 8. 0. 20000. o. 0. 67. 66. 66. 97. 29. 1. o. o. 107. 11 0. 1. 1. 20000. 0. 0. 73. 6 9. 67. 81. 29. o. 0. 0. 0. 0. o. 2. 20000. 8. 4. 78. 71. 68. 71. 29. o. 0. 0. o. o. o. 3. 20000. t \)
  • 3. 8(). 72. oo. 6 7 I
  • 29. 7. o. o. 173. I 2 'I. 1. 4. 20000. 1 0. 3. 84. 74. 70. 63. 29. 1 0. o. o. o. 0. 0. c 20000. 1 6. 3' 84. 74. 7 0. J.7. '10 , (\ " " 0. 0. o . .J. U-.10 <.. I o IV* v. v. 6. 20000. I 0. 3. 89. 76. 71. "" 29. 1 0. 0. 0. 94. 142. 1. J.J. :8 7. 20000. 4 * ') 90. 74. 67. 47. 29. i 0. 0. 0. o. o. 0. ... 0 8. 20000. 15. ') 90. 75. 69 . 50. 29. 1 0
  • o. o. 0. 0. 0. t"" .:. . '"!J 9. 20000. 12. 3. 92. 76. 70. 49. 29. 1 0. o. o. 54. 145. 1. 1 0
  • 20000. 16. 3. 92. 76. 70. 49. 29. 8. o. o. 0. 0. o. n ';:0 11. 20000. 1 5. 2. 92. 76. 70. 49. 29. C" 0. o. o. o. o. t:".l Jo t:".l 1 2 . 20000. 0. 0. 91. 76. 70. 50. 29. r 0. o. o. 138. 1. ,J. 1 3. 20000. o. 0. 87. 77. 73. 63. 29. 7 o. o. 0. 0. o. I ' 14. 20000. o. 0. 83. 76. 73. 71. 29. 8. o. o. o. 0. o. I 5. 20000. 0. 0. 82. 75. 7'1 71. 29. 8. o. o. o. 133. 1. I "-* i 6
  • 20000. 8. 4. 79. 76. 74. 84. 29. " ,J, 0. o. o. 0. 0. 1 7. 20000. 11. 3. 78. 73. 71
  • 79. 29. .,. J, o. o. 0
  • 0. o. 1 8. 20000. 11. 3. 78. 73. 71. 79. 29. .,. Jo o. o. 0. I 26. 1
  • 1 9. 20000. 1 4. 3. 76. 73. 71. 84. 29. 7 0. 0. o. o. 0. I
  • 20. 20000. 1 5
  • 2. 7:1. 72. 71. 87. '10 r: 1\ 1\ " " " .{...I 0 .J
  • v
  • v. v. v. v. 21. 20000. 1 3. 2. 74. 72. 71
  • 90. 29. 3. o. o. 0
  • 120. 1. 22. 20000. 15. 2. 73. 71. 7 0. 90. 29. . , o. 0. o . o. o. <-* 23. 20000. 16. 3. 72. 71. 71. 97. 29. ..., o. o . o. 0. 0. .... Rev. 0 TABLE 2.3-9 (continued) Sheet 20 of 67 A. WORST TEMPERATURE PERIOD (a, b) A B c D E F G H I J K L M N 1 9. 144 0. 13981. 1. 8. 19. 0. 20000. 'l 3. 73. 72. 71. 93. 29. 8. o. o. 6 2. 124. 1
  • I. 20000. !. 5. 77. 74. 73. 87. 29. L" " " o. 0. o. ,J, v. v. 'l 20000. 4. " 81
  • 76. 74. 79. 29. 3. o. o. o. o . o. ... .Jo 3. 20000. 3. " 83. 76. 74. 74. 29. 1. 0. o. 245. 123. ' ,J, I
  • 4. 20000. 2. 6. 86. 75. 71. 61. 29. 3. o. o. o. 0. 0. r 20000. 4. ' 00 7"-..," "" "'" " o. o. o. o. o. " u u. ..,, f v * ,J,J, .i-7. v. 6. 20000. 2. 4. 89. 74. 68. 50. 29. I o. 0. 188. 137. 1
  • I o 7. 20000. 3. 9. 90. 73. 66. 45. 2 9. 9. 0. o. o. o. o. 0 8. 20000. 2. 7. 89. 74. 68. 50. 29. 9. o. o. o. 0. 0. L' 9. 20000. 2. 9. 88. 75. 70. rr: 29. 9. o. o. ?3. 14 0. 1. l':tj ,J,J, 10. 20000. 2. 6. 90. 75. 68. 49. 29. 8. o. 0. o. o. o. 0 ::tl 1 1
  • 20000. 2. 4. 88. 75. 69. 53. 29. 1 0. o. o. o. o. o. tr:1 12. 20000. 2. 4. 85. 74. 69. 59. 29. 1 0. o. o. o. 138. 1. tr:1 13. 20000. 3. 2. 83. 74. 71. 67. 29. 8. o. o. 0. o. 0. 14. 20000. 2. 4. 79. 73. 70. 74. 29. 8. 0. 0. o. 0. o. 15. 20000. 2. 2. 78. 73. 71. 79. 29. "7 o. o. o. 128. 1. I ' 1 6. 20000. 3. 4. 77. 73. 72. 84. 29. 4. o. o. o. o. o. 17. 20000. 3. r 77. 74. 73. 87. 29. 3. 0. o. o. 0. 0. ,J, 1 8. 20000. 3. r 76. 74. 73. 90. 29. 3. o. 0. o. 123. 1 * ,J, '9. 20000. 4. 6. 76. 74. 73. 90. 29. 2. o. o. o. o. o. 20. 20000. 3. .. 74. 73. .,, 97. 29. o. o. o. o. o. 0. .Jo /.:J
  • 21. 20000. 4. 3. 74. 73. 72. 93. 29. 0. o. o. o. 11 8. 1. 22. 20000. 3. 3. 72. 72. 72. 100. 29. o. o. o. o. o. 0. 23. 300. 4. r 73. 72. 72. 97. 29. 1 0. o. o. o. 0. 0. ,J, Rev. 0 TABLE 2.3-9 (continued) Sheet 21 of 67 A. WORST TEMPERATURE PERIOD (a,b) A B c D E F G H I J K L M N 20. 144 o. 13 981
  • 1
  • a. 20. 0. 300. 4. 3. 73. 73. "7') I .<.' 97. 29. 10. 0. o. 37. 127. 1
  • 1
  • 200. 4. 8. 73. 73. 73. 100. 29. 1 0. o. o. 0. o. 0. ') 500. 4. r 76. 73. 72. 87. 29. I 0. 0. 0. o. 0. o. '. ..,, 3. 1200. 4. r 76. 74. 73. 90. 29. 1 o. 0. o. 86. 1 3 0. I * ..,, . i 1 0 0 * . 4. "'" "lr ..,. n-. 29. 1" {'\ {'\ ,, " " 'I * '!. ( 0. I .J
  • or. IV* v. v. v
  • v. v. r 1700. 4. 3. 81. 76. 74. 79. 29. 10. 0. 0. 0. o. o. ..,, 6. 2000. . 6
  • 85. 77. 74. 69. 29. 8. o. o. 157. 137. 1 * .,, 7. 3000. 3. 3. 86. 76. "7'1 63. 2 9. 6. o. o. o. 0. o. I <-o ::::8 a. 20000. 6. r 88. 76. 71. 57. 29. r o. o. 0. 0. 0. 0 "'* " 9. 20000. 6. 2. 88. 77. 72. 59. 29. 1. o. 0. 149. 131. 1. L' n:j 1 0. 20000. 3. 3. 89. 77. "7'1 57. 29. 1. 0. o. o. 0. 0. I <-' n 11. 20000. 3. 3. 88. 76. "7'1 59. 29. t. 0. 0. o. 0. o. :::0 I <-' 12. 20000. 3. 2. 87. 76. 72. 61. 29. 1
  • 0. 0. o. 1 3 0. 1
  • l:J:j l:J:j 1 3. 20000. 3. 2. 84. 7 6. 73. 69. 29. 3. 0. o. o. 0. o. ::"l 14. 20000. 3. 3. 81. 76. 74. 79. 29. 8. o. o. o. 0. o. 15. 20000. 4. 3. 80. 75. 74. 82. 29. 4. o. 0. 0. 129. 1. 1 6. 20000. 3. 3. 79. 75. 74. 84. 29. I. o. 0. o. o. o. 1 7. 20000. r 4. 77. 75. 74. 90. 29. 1. o. o. o. o. o. "'* 1 a. 20000. 6. r 77. 75. 74. 90. 29. 0. o. 0. o. 121
  • 1. "'* l 9. 20000. 6. 3. 76. 74. 7 4. 94. 29. o. o. 0. o. (} . o. 20. 20000. 6. 3. 75. 74. 73. 93. 29. o. 0. o. o. o. o. 21
  • 20000. 6. 3. 74. 73. 73. 97. 29. 0. o. 0. o. 11 8. 1. 22. 20000. 6. 4. 74. 73. 7 3. 97. 29. o. 0. o. o. 0. o. 23. 20000. 7. 2. 73. 72. 7 97. 29. o. o. 0. o. o. 0. "-* Rev. 0 TABLE 2.3-9 (continued) Sheet 22 of 67 A. WORST TEMPERATURE PERIOD (a,b) A B c D E F G H I J K L M N 21. 1440. 13981
  • 1. 8. 21. o. 20000. o. 4. 7L 73. 72. 93. 29. o. 0. o. 103. 11 B. 1. I. 20000. 9. 4. 78. 74. 73. 84. 29. 1. o. o. o. o. 0. 2. 20000. 1 0. a. 83. 76. 73. 71. 29. 0. 0. o. o. o. o. 3. 20000. 9. 9. 86. 76. 73. 65. 29. 8. o. o. 1 4 5. 138. 1
  • 4. 20000. 1 0. 1 0. 89. 77. 73. 59. 29. 8. 0. o. 0. o. 0. .. 20000
  • 1 0. 7. 90. n. ,,.., 56. 29. 5. o. o. o. o. o. ,J
  • I 4 o 6. 20000. 1 0. 7. 93. 77. 71. 49. 29. C" J. o. o. 228. 141
  • 1
  • 7. 20000. 1 0. a. 94. 76. 69. 44. 29. ") o. 0. o. o. o * ..... 8. 20000. 1 2. 3. 95. 77. 69. 4'! 29. '") o. o. o. o. o * ::z .L.o ... 0 9. 20000. 1 2. 6. 97. 75. 67. 37. 29. 2. o. o. 150. 138. 1 * !:"" 10. 20000. 1 5. 2. 95. 77. 71
  • 46. 29. "l o. o
  • o. o. o. l"1j ... 11. 20000. 1 6. 92. 78. /'l 52. 29. 3. o. 0
  • o. o. 0. () .J. I <-' ::0 1 2. 20000. 1 0
  • 2. 91
  • 78. 73. 56. 29. 4. (). (). o. n't. I
  • t::lj 13. 20000. 1 0. 3. 87. 78. 74. 65. 29. 7. o. o. o. o. 0. t::lj 14. 20000. t 0. " .J
  • 85. 78. 75. 72. 29. 7. o. o. 0. o. o
  • 15. 20000. 1 2. 3. 84. 76. 73. 69. 29. 6. o. o. o. 134. 1
  • 1 6. 20000. 1 0. 3. 81. 75. 73. 76. 29. 2. o. o. o. o. o. 1 7. 20000. 9. 4. 80. 75. 73. 79. 29. 2. o. o. 0. 0. 0. 18. 20000. 11. 3. 79. 75. 73. 81. 29. t
  • o. 0. 0. 123. l. 19. 20000. 13. 3. 7 9. 74. 72. 79. 29. I
  • o. o. o. o. 0. 20. 5000. 12. 3. 79. 74. 73. 81
  • 29. '7 I
  • o. o. o. o. o. 21. 5000. 14. 3. 7 9. 75. 73. 81. 29. 7. o. 4. o. 130. 1
  • 22. 1 3. 3. 78. 75. 74. 87. 29. 10. o. 1
  • o. o. 0. 23. 20000. 1 3. 1
  • 76. 75. 74. 94. 29. I 0. o. o. o. o. o. Rev. 0 TABLE 2.3-9 (continued) Sheet 23 of 67 A. WORST TEMPERATURE PERIOD (a,b) A B c D E F G H I J K L M N 22. 1440. t 3 981
  • 1
  • a. 2 2. o. 5000. 1 4. 2. 77. -,r I ,.J' 74. 90. 29. 10. o. o. "36. 131. 1
  • t. 7500. 1 5. 3, 79. 74. 7 ... 79. 29. 1 0. o. o. Q, 0. o
  • 2. 7500. 1 5
  • 5. 80. 73. 70. 71. 29. 10. o. o. o. o. o. '3. 7500. 2. 2. l'i. 75. 74. 8 4. 29. 1 0. o. o. 85. 1 :n. 1
  • 4. 7500. 2. 3. 81. 74. 7'1 I L o 7 4. 29. 1 0. o. 0. o. 0. <J. s. ...,,1\rll\1\ 6. 2. 88. 7 6. 7 I 00:7 29. 7
  • 1\ (). o. 0. o. 4vvvv. ' I o "' . v. 6. 20000. l 0. 2. 90. 7 4. 67. 47. 29. a. o. o. 160. 139. l. 7. 25000. 1 6. I . 89. 75. 69. "'l 29. a. o. (). o. o. 0. J ... 8. 20000. 1 6. 2. 9\. 7 4. 67. 45. 29. 4. o. (). 0. o. o. 0 1:"' '?. 20000. 16. 8. 92. 7:5. 67. 44. 29. ..., o. o. 149. 134. 1. n:l ... 1 0. 20000. 1
  • 6. 89. 73. 67. 48. 29. ') (). o. o. o. o. () ... 11. 20000. 1
  • 5. as. n. 66. 48. 29. 3. o. o. o. o. o. :;o trJ 1 2. 20000. 2. 6. 86. 72. 66. 51
  • 29. 3. o. o. o. 129. 1
  • trJ 1 3. 20000. 2. .. 81. 7 t
  • 67. 63. 29. 6. o. (). o. o. o. "' J, H. 20000. 3. 4. 78. 70. 66. 66. 2?. 6. o. 0. o. o. o. \ 5. 20000. 4. 3. 76. 67. 62. 62. 29. 3. o. o. o. 11 8. t * \6. 20000. 3. 4. 74. 68. 66. 76. 29. o. o. o. o. o. o. '7. 20000. 3. 3. 72. 68. 66. 81. 29. o. o. Q. o. o. o. I B. 20000. 2. 2. 70. 67. 66. 87. 29. o. o. o. o. 1 l 1
  • 1
  • 1 9. 20000. 3. 2. 69. 66. 65. 87. 29. o. o. o. o. o. o. 2 o. 20000. o. o. 68. 66. 65. 90. 29. o. o. o. o. 0. o. 21. 20000. 4. 2. 67. 65. 64. 90. 29. o. o. o. o. 1 oa. 1. 22. 20000. 4. 2. 66. 64. 64. 93. 29. o. o. o. o. o. o. 23. 20000. 4. 3. 66. 65. 64. 93. 29. o. o. o. o. 0. 0. Rev. 0 TABLE 2.3-9 (continued) Sheet 2 4 of 67 A. WORST TEMPERATURE PERIOD (a,b) A B c D E F G H I J K L M N 23. I 440. 13981
  • 1
  • 8. 23. 0. 20000. 0. 0. 68. 66. 64. 87. 29. o. o. 0. 105. 109. 1. 1. 20000. 2. 3. 73. 69. 67. 81. 29. 1
  • o. 0. 0. 0. o. 2. 20000. 4. 3. 79. 71. 67. 67. 29. 7 I
  • 0. 0. o. o. o. 3. 20000. " 1
  • 83. 71. 65. ""' 29. 8. 0. 0. 148. 1 31. 1. .Jo .J.!
  • 4. 20000. 0. 0. 85. 71
  • 64. 50. 29. 9. 0. o. 0. o. o. r 20000. 0
  • 0. 86. 70. 62. 45. 29. 9. o. 0. o. 0. o. .J. 6. 20000. o. o. 86. 71. 63. 46. 29, 8. 0. {\ t 62. . .... i. v. l.:l.:lo ::E: 7. 20000. 4. 3. 87. 71. 63. 4 5. 29. 8. 0. 0. 0. 0. o. 0 8. 20000. 15. 3. 90. 72. 64. 4 2. 29. 9. o. o. o. o. o. t"' 9. 20000. 8. 3. 89. 72. 64. 43. 29. 9. o. 0. 73. 138. 1. (') 1 0. 20000. 5. 3. 8 7. 71. 64. 46. 29. 8. o. 0. 0. 0. o. :;o 1 I
  • 20000. r 3. 85. 71
  • 64. 50. 29. 8. o. 0. 0. o. 0. tEl ,J. tEl I 2. 20000. 3. 3. 84. 73. 68. 58. 29. 7 I o o. 0. 0. 132. 1
  • I 3. 20000. o:-3. 82. 72. 68. 63. 29. 7. o. o. o. 0. o. ,J, 1 4. 20000. 1:" 3. 79. 70. 66. 64. 29. 3. o. o. 0. o. o. ..lo I 5. 20000. " 3. 77. 70. 67. 71. 29. '1 o. o. 0. 120. 1 * .J. <..* 1 6. 20000. 7. 2. 74. 6 9. 67. 79. 29. o. 0. 0. 0. o. o. 1 7. 20000. 7. 3. 74. 69. 67. 79. 29. o. 0. 0. 0. 0. o. 1 8. 20000. 7. 4. 71. 6 8. 66. 84. 29. o. o. o. o. 11 2. 1
  • 1 9. 20000. 7. 2. 70. 68. 66. 87. 29. o. 0. o. o. o. o. 20. 20000. 7. 3. 68. 65. 64. 87. 29. o. o. o. o. o. o. 21. 20000. 0. 0. 66. 65. 64. 93, 29. o. 1'1 (\ n i 07. 1
  • v. v. v. 22. 20000. 0. o. 66. 65. 64. 93. 29. o. o. 0. o. o. o. 23. 20000. o. o. 66. 65. 65. 97. 29. .., Lo 0. o. o. o
  • o. Rev. 0 TABLE 2.3-9 (continued) Sheet 25 of 67 A. WORST TEMPERATURE PERIOD (a,b) A B c D E F G H I J K L M N 2 4. !440. 13 9o1
  • 1
  • 8. 24. 0. 20000. 7. 2. 69. 66. 64. 84. 29. 7 I o o. o. "1"1 I <.. o 11 7. 1
  • 1. e. "3. 72. 69. 68. 87. 29. 8. 0. 0. (}. o. o. 2. 20000. 9. .. 77 . 73. 71. 81. 29. 2. o. 0. o. 0. o. .J. 3. 20000. 9. 8. 85. 75. 71. 63. 29. 7. o. o. 169. 135. 1
  • 4. 20000. 9. 6. 88. 77. 72. 59. 29. a. o. o. 0. o. o. r 20000. 9. 3. 91. 77. 72. 54. 29. 6. o. 0. o. 0. o. .J. 6. 20000. 9. 1 0. 94. 79. 74. o:"'") 29. 4. 0. o. 240. 142. 1. 7. 20000. 9. 7. 95. 77. 70. 4 4. 29. 3. 0. o. o. o. 0. 0 8. 20000. 1 0. 6. 97. 76. 68. 39. 29. 4. o. o. 0. o. o. t""t h:j 9. 20000. 9. .. 96
  • 76. 67. 39. 29. 4. o. o. 136. 140. 1. .J. 1 0. 20000. 9. 6. 96. 78. 71. 45. 29. 4. o. 0. 0. o. o. n ::0 11. 20000. 9. 7. 94. 78. 71. 47. 29. 4. 0. o. o. 0. o. t'.l t'.l l 2. 20000. 9. 7. 90. 78. 73. r:; 29. 3. o. o. 0. 136. 1 * :;:>;:: .J I
  • 1 3. 20000. 9. r 87. 76. 72. 61. 29. 3. 0. o. 0. o. o. .Jo 14. 20000. 9. 3. 85. 76. 73. 67. 29. 2. 0. o. o. o. 0. 1 5. 20000. 9. r 82. 76. 73. 74. 29. ') 0. o. 0. 128. 1 * .J. "-* 16. 20000. 9. r 81. 73. 76. 29. '3. o. 0. o. o. 0. .J. 1 7. 20000. 9. r 80. 74. 72. 76. 29. "' o. o. 0. o. o. .J. L.* 1 8. 20000. 9. 4. 78. 73. 71. 79. 29. 2. o. o. 0. 123. 1
  • 1 9. 20000. 9. 7. 78. 73. 71. 79. 29. "' o. 0. o. o. o. L.o 20. 20000. 9. 7. 78. 73. 72. 81. 29. 1. o. 0. o. 0. 0. 21. 20000. 9. r 77. 73. 72. 84. 29. 3. o. o. 0. 123. 1 * .J. 22. 20000. 9. 2. 76. 73. "7"1 I L o 87. 29. "' L* o. o. o. o. o. 23. 20000. tO. 2. 74. 72. 7 t. 90. 29. .. " . 0. o. o
  • 0. 0. Rev. 0 TABLE 2.3-9 (continued) Sheet 2 6 of 67 A. WORST TEMPERATURE PERIOD (a,b) A B c D E F G H I J K L M N 25. 1440. 13 981
  • 1. 8. 25. 0. 25000. ') Lo 8. 75. 73. '7'l I L.
  • 90. 29. 8. o. o. 6 0. 126. 1. 1
  • 20000. 3. 7. 79. .., .. I .J
  • 73. 81. 29. 8. o. 0. 0. 0. 0. 2. 20000. r= .J. 6. 84. 76. 73. 69. 29. 8. o. 0. o. o. 0
  • 3. 20000. 4. 9. 84. 77. 74. 72. 29. 8. o. o. 143. 136. I. 4. 20000. 4. 13. 84. 76. 73. 69. 29. 8. o. o. o. o. 0 . .. 20000. 3. 13. 84. 74. 71. 65. 29. 1 0. o. o. 0. 0. 0 * .Jo 6. 20000. 4. 12. 88. 76. 72. 59. 29. 9. o. o. 127. 140. 1. 7. 20000. 2. 9. 89. 77. 73. 59. 29. r 0. 0. o. o. o . :E; .;. 0 a. 20000. 4. 1 0. 90. 77. 73. 57. 2'1. 3. o. o. o. 0. o. t"' 9. 15000. 3. 9. 90. 78. 74. J..n ..,, " o. o. 86. 142. 1. vvo Ll o o. 10. 12000. 3. 7. 89. 78. 7 4. J.! 29. n o. o. o. o. o. (J VI o o. :::0 11
  • 8000. 3. 1 1
  • 84. 77. 74. 72. 29. 8. 0. o. o. o. 0. t<:l 12. 20000. 2. 13. 82. 75. 73. 74. 29. 4. 0. o. 0. 130. 1
  • t<:l :::"l 13. 20000. 2. 9. 80. 73. 70. 71. 29. 4. o. o. 0. 0. o. 14. 20000. 3. 6. 77. 72. 6 9. 76. 29. .., o. 0. 0. 0. 0. "-* 15. 20000. 3. 8. 77, 70. 67. 71 F I o .,, "-I
  • 2. o. o. 0. 120. 1. 16. 20000. 3. 9. 7 6. 68. 64. 66. 29. 2. o. o. 0. o. 17. 20000. 4. 7. 75. 67. 63. 66. 29. '1 o. o. 0. o. o. "-* 18. 20000. 3. 9. 74. 66. 6 'I 66. 29. .., o. o. o. 115. 1. "-* '-* 19. 20000. 3. 4. 73. 65. 61. 66. 29. .., o. o. 0. o. 0. "-* 20. 20000. 3. 3. 72. 65. 61. 68. 29. ") o. o. o. o. 0. "-* 21. 20000. 3. 4. 72. 65. 61
  • 68. 29. 4. o. o. o. 115. 1
  • 22. 25000. 3. 3. 72. 64. 60. 66. 29. 8. o. o. o. o. o. 23. 5000. 3. 4. 72. 64. 60. 66. 29. 1 0. o. o. o. o. 0. Rev. 0 TABLE 2.3-9 (continued) Sheet 27 of 67 A. WORST TEMPERATURE PERIOD (a,b) A B c D E F G H I J K L M N 26. 1440. 13 981
  • 1. 8. 26. o. 12000. 3. .. 72. S5
  • 61
  • 68. 29. B. o. o. 62. 120. 1. .J. 1. 12000. r 6. 74. 65. 61. .J. 64. 29. 7 I
  • o. o. 0. 0. 0. 2. 25000. 4. 7. 77. 67. 61. "'7 ...11
  • 2?. 7 I
  • o. o. 0. 0. 0. 3. 20000. r 9. 80. 69. 63. .J. 56. 29. 4. o. o. 228. 1 2 3. 1
  • 4. 20000. 4. 9. 83. 70. 64. 53. 29. 3. o. o. 0. 0. o. .. 20000
  • 4. 11
  • 84. 71. 64. 51. 29. o. o. 0. 0. 0. o. .J, 6. 20000. 6. ... 86. 71
  • 65. 50. 29. o. o. 0. '273. 125!! L ::8 ..;. 7 *. 20000. .. 9. 87. 70. 63. 45. 29. o. o. o. o. o. o. 0 .Jo t"' a. 20000. 4. 6. 89. 71
  • 63. 42. 29. 0. o. o. 0. o. 0. l"tj 9. 20000. 4. 9. 89. 72. 64. 43. 29. 3. o. o. 143. 131. 1 * () 1 0. 20000. " 6. sa. 73. 66. 48. 29. I o. o. 0. o. o. :::0 .J. I o t:3j 1 1
  • 20000. 6. .. 87
  • 73. 67. 52. 29. 7. o. o. o. o. o. t:3j .Jo ,;: 1 2. 20000. 4. 4. 86. 72. 66. 51. 29. 3. o. o. o. 129. 1. 13. 20000. " 6. 82. 71. 67. 60. 29. 3. o. 0. o. o. 0. .J. 1 4. 20000. " 5. 80. 71. 67. 65. 29. o. o. o. 0. o. o. .J. 1 5. 20000. 4. 8. 78. 70. 66. 66. 29. o. 0. 0. o. 118. 1. 1 6. 20000. " 4. 75. 68. 65. 71
  • 29. 0. o. 0. 0. 0. o. ..;. 1 7. 20000. " .Jo 6. 74. 67. 64. 71
  • 29. o. 0. 0. o. o. o. 1 8. 20000. 5. 7. 73. 67. 64. 73. 29. o. o. o. 0. 113. 1. \ 9. 20000. .. 6. 72. 68
  • 66. 81. 29. o. o. 0 *' 0. o. o. .J. 2 0. 20000. .. " 71. 68. 67. 8 7. 29. o. 0. 0 o. o. 0. .Jo .Jo 21. 20000. 6. 6. 71
  • 68. 67. 87. 29. o. o. 0. o. 112. 1
  • 22. 20000. 6. 9. 71. 68. 67. 87. 29. 0. o. 0. 0. 0. o. 23. 20000. 7. 6. 70. 68. 68. 93. 29. 0. o. 0. o. o. 0. Rev. 0 TABLE 2.3-9 (continued) Sheet 2 8 of 67 A. WORST TEMPERATURE PERIOD (a,b) A B c D E F G H I J K L M N 27. 1440. 13981. 1
  • a. 27. 0. 20000. 8. 9. 71. 69. 63. 90. 29. o. o. 0. I 0 I
  • 11 3. 1
  • 1. 20000. B. 1 2. 76. 72. 70. 81. 29. 0. o. o. o. o. o. 2. 20000. 9. I 4. 79. 73. 71. 76. 29. 0. 0. 0. o. o. 0. 3. 20000. 9. 11
  • 83. 75. 72. 69. 29. 0. 0. o. 244. 126. I. 4. 20000. 9. 1 2. 86. 77. 74. 67. 29. o. o. o. o. o. 0. " 20000. 9. 9. 89
  • 78. 7 4. 61. 29. o. 0. 0. o. o. 0. .J
  • 6. 20000. 9. l 2. 90. 79. 75. 61. 29. o. 0. o. 263. 134. 1
  • 7. 20000. 1 0. 15. 93. 80. 76. 58. 29. 0. o. o. o. o. 0. a. 20000. 9. 1 3. 94. 80. 75. 54. 29. o. o. o. o. o. o. 0 t"' *Ž*046426* OUE PASA? -JKL h:j 9. 20000. 9. 1 4
  • 95. 81. 76. 54. 29. 0. o. o. 143. 140. 1
  • 0 1 0. 20000. 1 0. 1 4
  • 95. 81. 76. 54. 29. o. o. 0. o. o. 0. t".l 11. 20000. 8. 15. 93. 81
  • 76. 58. 29. o. o. o. o. o. 0. tr:l 12. 20000. 9. 7. 91. 80. 76. 61. 29. o. o. o. o. 13 6. I. :A: 1 3. 20000. 8. 11. 87. 79. 76. 70. 29. o. o. o. o. o. 0. H. 20000. a. 1 0. 86. 77. 74. 67. 29. o. o. o. o. 0. 0. 1 5. 20000. 9. 1 2. 84. 77. 75. 74. 29. o. o. o. o. 12l. 1. \ 6. 20000. 9. 13. 83. 77. 75. 76. 29. 0. o. o. o. o. o. 17. 20000. 9. 13. 82. 76. 74. 76. 29. o. o. o. o. o. 0. 18. 20000. 9. 12. 82. 76. 73. 74. 29. 0. o. o. o. 125. I
  • 1 9. 20000. 9. 1 0. 80. 75. 73. 79. 29. o. o. o. o. o. o. 20. 20000. 9. 9. 80. 75. 73. 79. 29. 2. o. o. o. o. o. 21. 20000. 9. 13. 80. 75. 73. 79. 29. 1. o. o. o. 125. 1. 22. 20000. 1 0. 1 5. 79. 75. 73. 8 I. 29. 4. o. o. o. 0. 0. 23. 10000. 9. 9. 7 9. 75. 73. 81
  • 29. 6. o. o. o. o. o. Rev. 0 TABLE 2.3-9 (continued) Sheet 29 of 67 A. WORST TEMPERATURE PERIOD (a,b) A B c D E F G H I J K L M N 28. 1 3 981
  • t. 8. 28. 0. 20000. 1 o. 1 0. 79. 75. 74. 84. 29. 3. o. 0. 9 ') .:.. 126. 1
  • 1. 20000. 9. 13. 80. 75. 73. 79. 29. ..... o . 0. 0. 0. o. .... 2. 20000. 1 o. 15. 83. 76. 74. 74. 29. 4. 0. 0. o. o. o. 3. 20000. 1 0. 17. 83. 77. 73. 61
  • 29. \. 0. o. 241. 1 3 2. 1. 4. 20000. 12. 11
  • 92. 78. 73. 54. 29. o. o. o. o. o. o. t:" 20000. 12. 13. 95. 79. 73. 49. 29. o. o. 0. o. 0. o. .;, 6. 20000. 12. 6. 98. 80. 73. 45. 29. 0. 0. o. 264. 141. 1. ., t 3 . a. i 0 i. 80. 73. 4i. 29. o. 0. 0. 0. o. 0. ( . ::E "' 20000. . " 4. i 0 i . 79. 7'1 40. 29. 0. o. o. o. 0. 0. 0 0. I..Jo I .l...o 9. 20000. 13. 3. 103. 81. 73. 39. 29. o. o. 0. 144. 146. 1. C" l"%j 10. 20000. 16. 3. I 01. 80. 73. 41. 29. o. o. o. o. o. o. 0 \1. 20000. 2. 2. 101. 80. 72. 40. 29. o. o. o. o. o. 0. 1 2. 20000. 2. 3. 98. 8 0. 74. 46. 29. o. o. o. o. 1 41
  • 1
  • t'j t'j ' .. 20000. r ... 94
  • 80. 75. 54. 29. o. o. o. o. o. o. I .Jo ..Jo J
  • 1 4. 20000. 3. 1:" 88. 79. 76. 68. 29. ..... 0
  • o. o. o. o. ,J, .:.. 1 5. 20000. 3. 6. 87. 79. 76. 70. 29. ..... o
  • 0. o. 134. l . .l...o 1 6. 20000. 4. 1:" 87. 78. 75. 68. 29. o. o. o. o. 0. 0. ..Jo 1 7. 20000. 4. 3. 86. 78. 7<" I ..}
  • 69. 29. 0. o. 0. o. o. o. 1 a. 20000. 1:" 3. 86. 7 8. 75. 69. 29. o. o. o. o. 1 3 0. 1. ..}. t 9. 20000. r .J
  • 3. 84. 78. 76. 77. 29. o. 0. 14. o. 0. o. 20. 20000. 2. 3. 84. 79. 77. 79. 29. 1
  • o. o. 0. o. 0. 21
  • 15000. 1 6. 17. 82. 78. 77. 85. 29. 8. 0. 36. o. 136. 1. ')') !0::1\f\(\ 2. ! (\ 7<: ...,, 69. ,.,, ..,,., . ,... " o . o. o. o. ... IVo I "' F I o 0 I , .£.7. IV
  • v. 23. 10000. 2. 3. 74. 70. 69. 84. 29. 10. o. o. o. 0. o. Rev. 0 TABLE 2.3-9 (continued) Sheet 30 of 67 A. WORST TEMPERATURE PERIOD (a,b) A B c D E F G H I J K L M N 29. 1440. 13981. 1. 8. 29. o. 8000. 1:" 2. 74. 71. 70. 87. 29. 1 o. o. o. 35. 127. 1. .Jo 1
  • 9000. 7. 8. 75. 71. 69. 81. 29. to. 0. o. o. o. 0. 2. 7500. 6. 13. 75. 71. 69. 81. 29. 1 0. o. 0. 0. 0. o. 3. 8000. 8. 9. 77. 70. 67. 71. 29. 1 0. 0. fl OL 129. I v. UUo I o 4. 10000. 6. 1 0. 84. 74. 70. 63. 29. 9. 0. 0. 0. 0. 0. .. ,J, 12000. 6. 9
  • 87. 74. 6 9. .,. .. .J.Jo 29. 8. 0. o. 0. 0. o. 6. 12000. a. 12. 90. 77. ,, 1-<-* 56. 29. 6. 0. o. 204. 1 3 9. 1
  • 7. 10000. 9. 1 0. 92. 77. 71. 51
  • 29. 10. 0. o. 0. 0. o. a. 10000. 9. 1 0. 91. 77. 72. 54. 29. 8. o. o. 0. 0. o. 9. 30000. 1 0. 7. 93. 77. 71
  • 49. 29. , 0. 0. 100. 143. 1
  • I
  • 0 1 0. 20000. 9. 1:' 9'5. 77. 71. 46. 29. 8. o. o. o. 0. 0. t:"' ,J, 11. 20000. 9. 4. 96. 7a. 71. 45. 29. 7. 0. 0. o. 0. 0. l"Tj I 2. 20000. 7. 3. 93. 80. 7" 56. 29. 4. o. o. o. 142. 1
  • 0 "'* ::0 13. 20000. .. 3
  • a9. 77. 73. 59. 29. 2. 0. o. 0. o. o. t'l " 14. 20000. r 3. 84. 77. 75. 74. 29. o. o. o. o. 0. o. t<1 "'* I 5. 20000. " 4. a4. 77. 74. 72. 29. o. 0. 0. 0. 128. 1. "'* 1 b. 20000.' 7. 4. 82. 77. 75. 79. 29. , o. 0. 0. 0. o. , . 17. 10000. a. 4. 82. 77. "7" , .J. 79. 29. 1 0. o. 0. o. o. 0. 1 8. 15000. 1
  • 3. a2. 76. 74. 76. 29. I 0. 0. 0. o. 1 3 6. 1. I 9. 12000. 12. 3. 79. 72. 69. 71
  • 29. 10. o. , 0. 0. 0. -<-* 20. 12000. 1 4. 4. 78. 72. 69. 74. 29. 10. o. 7. 0. o. o. 21. 12000. 16. 1 0. 75. 72. 71. 87. 29. 1 0. 0. 6. 0. 128. 1
  • 22. 12000. I 0. 9. 75. 70. 68. 79. 29. 1 0. 0. 1. o. 0. o. 23. 12000. 16. 2. 73. 72. 71
  • 93. 29. I 0. o. 4. 0. o. o. Rev. 0 TABLE 2.3-9 (continued) Sheet 31 of 67 A. WORST TEMPERATURE PERIOD (a,b) A B c D E F G H I J K L M N 3 0. 1 4 4 o. 1 3 981
  • t. a. 30. 0. 12000. 14. 7. ..,., ...,,., 69
  • 29. i 0. o. r 3 5. 126. 1. r" * ,. v. 0/. .Jo 1. 8000. 8. I 0. 72. 70. 6 9. 90. 29. I 0. o. o. 0
  • 0. o. 2. 8000. I. 3. 73. 70. 69. 87. 29. 1 0. 0. o. 0. o. 0. 3. 16000. I. 1 0. 77. 73. 71. 81. 29. 1 0. o. o. 85. 130. 1. 4. 20000. 1 4. 8. 82. 75. 71. 69. 29. 7. o. o. o. 0. o. .. 20000
  • 1 2
  • 6. 86. 75. 70. .J
  • 59. 29. 3. o. o. 0. 0. o. 6. 20000. 1 3
  • 3. 88. 76. 7!. 57. 29. 2. o. 0. 261. 132. 1. 7. 20000. 13. 4' 91, 78. 73. 56. '10 " (\ " " 0. 0. ::: "-I o Vo v. Vo Vo 0 8. 20000. 14. 6. 91. 76. 70. 50. 29. 0. o. o. o. 0. o. t"' 9. 20000. 13. 3. 94. 77. 70. 46. 29. o. o. 0. 145. 135. 1. h:j '0. 20000. 12. 2. 93. 77. 71. 49. 29. 1
  • o. 0. o. o. o. 0 ::0 11. 20000. 3. 1. 91. 76. 70. 50. 29. 1. 0. IJ. o. (). 0. t::r::3 12. 20000. ?. 2. 93. 78. ...,.., 51. 29. o. 0. o. o. I 35. I
  • t::r::3 I ..:..
  • I 3. 20000. .. 3' 85. 77 . 74. 69. '10 (\ 1\ " 0. 0. o. ,.) . L. I o v. v. v. 14. 20000. 7. 4. 81. 77. 75. 82. 29. 0. 0. 0. o. o. 0. I 5. 20000. 1:-3. 80. 76. 74. .J. 82. 29. 0. 0. o. o. 12 4. 1. I 6. 20000. .. 3. 79. 76. 75. .;, 87. 29. o. o. o. o. 0. o. 1 7. 20000. .. 3. 79. 76. 75. .;. 87. 29. 1. o. 0. o. o. o. 1 8. 4500. 2. 6. 78. 76. 75. 90. 29. 6. o. 0
  • o. 1 2 9. 1. 1 9. 3000. 1 5. 1 6
  • 79. 75. 74. 84. 29. 1 0
  • 0. 99. o. 0. 0. 20. t200. 1 5. 1 2. 66. 66. 68. 100. 29. 10. o. 28. o. 0. o. 21
  • 7000. 2. 4. 67. 67. 67. 100. 29. I 0. o. 1 3. o. 120. 1. 22. 1700. 2. 4. 66. 66. 66. 100. 29. 1 0. 0. 1 5. f1 " (\ v. Vo v. 2 3. 6000. 9. 3. 68. 67. 67. 97. 29. 1 0. 0. 4. o. 0. 0. Rev. 0 TABLE 2.3-9 (continued) Sheet 32 of 67 A. WORST TEMPERATURE PERIOD (a,b) A B c D E F G H I J K L M N 31. 1440. 13981. 1
  • a. 3 I
  • o. 6000. 9. 4. 68. 67. 67. 97. 29. 1 o. o. 3. 35. 121. 1. 1
  • 4500. 6. B. 68. 67. 67. 97. 29. 1 0. o. 1 0. o. o. 0. 2. 3000. 7. 7. 68. 68. 67. 97. 29. 1 0. 0. 0. 0. o. 0. 3. 7000. 3. 3. 73. 70. 68. 84. 29. 8. o. o. 14 4. 123. I . 4. 1200. 8. 5. 75. 70. 68. 79. 29. 1 o. o. o. o. 0. o. " 11 0 0. 11
  • 6. 77. 71. 68. 74. '1G "" .. 9. o. o. 0. o. o. 6. 1500. I 3, 9. 80. 72. 69. 69. 29. 6. (). o. 205. 128. 1. 7. 7000. 1 6. 6. 80. 72. 69. 6 9. 29. 1 0. o. o. o. o. 0. 8. 1500. 14. 1 0 . 83. 72. 68. 6 1
  • 29. a. o. o. o. 0. o. 9. 20000. 15. 7. 83. 72. 67. 58. 29. a. o. 0. 86. 132. 1. 0 t"' 1 1\ 20000. 1. 9. 8? 72. 6B. 63. 29. 1. 0. 0. 0. o. 0. i"l:j 11/o kO II. 20000. 2. 3. 81
  • 73. 69. 67. 29. 3. 0. o. 0. 0. 0. ('") I 2. 20000. 2. 3. 81
  • 73. 7 0. 69. 29. 6. o. o. o. 129. 1. :;<::1 ttl 1 3. 20000. 2. 2. 77. 72. 70. 79. 29. .,. o. o. o . o. 0. ttl .;. H. 20000. 4. 3. 74. 71. 69. 84. 29. ') o. o. 0. o. 0. ... 1 s. 20000. 4. 2. 73. 71. 70. 90. 29. 1. 0. o. 0. II 7. l
  • 16. 20000. "' 3. 72. 71. 70. 93. 29. 7 o. o. o. 0. o. ,;, I ' 17. *20000. 4. 2. 72. 71. 70. 93. 29. '> o. 0. o. o. o. '"' 18. 20000. 4. 4. 71. 70. 70. 97. 29. 1
  • 0. 0. o. 1 1 5. 1. 19. 20000. 6. 3. 7!. 70. 70. 97. 29. o. o. o. o. 0. 0. 20. 20000. 2. 3. 70. 69. 69. 97. 29. o. o. 0. o. 0. 0. 21
  • 20000. 2. 3. 70. 69. 69. 97. 29. '1 .... o. 0. 0. I 1 S. 1. 22. 20000. 2. 2. 70. 69. 69. 97. 29. '> 0. 0. 0. 0. 0. "-* 23. 200. 2. 3. 69. 6 9. 69. 100. 2 9. 1 0. 0. o. o. o. o. Rev. 0 TABLE 2.3-9 (continued) Shec::t 33 of 67 A. \'ilORST TEMPERATURE :PERIOD (a' b) A B c D E F G H I J K L !*1 N 32. 1440. I 3 98 l
  • 1
  • 9. t. o. 200. 3. 2. 69. 69. 69. 100. 29. 1 o. o. o. 35. 122. t. 1
  • 600. 2. 3. 70. 70. 70. t 00. 29. 1 0. o. 0. 0. Q. o. 2. 200. 7. 2. 72. 7L 70. 93. 29. I 0. 0. o. Q. IJ. o. 3. 500. 6. \. 7.1\. 72. 70. 87. 29. l o. o. fJ. 85. 1 ., ., L I
  • I * . 20000. 3. 2. 79. 74. 72. 79. 29. "" !J. o. o. 0. 0. 4* " 20000. 16. 3. B2. 74. 70. 6?. n. .q, 0. 0. 0. 0
  • 0. ,J
  • 6. 20000. 16. 3. 86. 7:J. 71. 61. n. .q, o. o. '>"?(J ,(,.. .. J (
  • 133. I
  • 7. 20000. 2. 6. 85. "'/<" 70. 61. 29. "" o. o. o. o. 0. I ..J' ..J* " 2\JOOO. 4
  • 6. 85. 74. 70. 61. 29. 8. 0. (). o. 0. o. 0. 0 9. 15000. 4. 6. 84. 74. 70. 63. "tQ 1 0. " o. 51. l 3?. I. 1:"1 '-'. v. "'".! I 0. 3800. B. L 83. 74. 70. 65. 29. l 0. o. o. o. o. () . (J I I
  • 9. 4. 81. 74. 71. 71. 29. 1 0. o. o. o. Q. 0. ::0 I 2. 4000. 1 0. t 0. 72. 69. b?. 84. 29. 10. o. o. \l. l2L 1. !:';! t>l l 3. 4000. 7. 3. 70. 68. 67. 90. 29. 1 0. o. o. o. o. 0. ::>;: 14. 15000. 14. I. 7!. 68. 6 ., ' . 8?. 29. 10. 0. o. o. Q. o. 1SOOO. 1 b. 2. 70. 69. 68, 91. 29. 1 iL 1). i), 0. 123. I . H. 14. 5. 70. 68. 67. 90. 29. 10. o. o. o. o. 0. l?. 15000. 1 6. 3. 70. 6S. 63. 7B. 29. 1 0. 0. o. o. (). (). t a. 15000. 16. 6. 70. 66. 63. 73. 29. 1 0. o. o. o. 1 ') j t L t
  • t
  • t9. 15000. 4. 2. 69. 66. 64. 84. 29. l 0. 0. o. o. o. 0. 20. 15000. 7. 2. 69. 66. 6 4. 84. 29. "? ' . o. o. o. o. 0. 21. 15000. I 6
  • 2. 68. 66. 65. 90. 29. 8. o. o. o. t 17. 1. 22. 150 00. I 0
  • 2. 67. 66. 65. 93. 29. 7. o. o. o. G. o. 23. 1200{). t5. 2. 67. 65. 64. 90. 29. 7. o. o. o. \). Q. Rev. 0 TABLE 2.3-9 (continued) Sheet 34 of 67 A. WORST TEMPERATURE PERIOD (a,b) A B c D E F G H I J K L M M .. 33. \440. 13981. t. 9. 2. A v. 5000. 13. 3. 67. 65. 64. 90. 29. 8. o. o. 58. 11 6. I
  • 1. 5000. 15. 3. 68. 66. 65. 90. 29. 8. o. o. 0. 0. 0. 'l 5000. 1. 3. 70. 68. 6 6. 87. 29. 10. o. o. o. 0. o. ... 3. 15000. 1. 4. 75. 70. 68. 79. 29. 8. o. 34. 143. 1 25. 1. 4. 20000. '") 7. 77. 71. 69. 76. 29. ?
  • o. "" o. 0. 0. '-* ,;, <" 20000. 16. 3. 81. 73. 70. 69. 29. 8. 0. o. 0. 0' o. :z:: ,;, 6. 15000. 2. 6. 82. 73. 6 9. 65. .-,n 8. o. 0. 156. 132 . 1. 0 £... 1
  • t"' 7. 15000. 3. 3. 84. 73. 69. 61
  • 29. 7 I ' o. o. o. 0. 0. l":tj 8. 15000. 3. 2. 86. 74. 69. r{ ,;, . 29. 7 I
  • 0. 0. o. 0. o. () 9. 15000. 1. 2. 85. 73. 68. 57. 29. 6. o. o. 111
  • 132. 1. ;:u t<:l 1 \). 20000. 4. 1. 85. 72. 67. rc-29. 3. o. o. o. o. 0. t<:l ,;,;. 11. 20000. 2. 3. 85. 73. 68. 57. 29. '1 o. o. o. o. 0. .... 12. 20000. 6. 6. 82. 72. 68. 63. 29. 4. 0. 0. o. 127. 1. 13. 20000. 4. 6. 73. 66. 63. 70. 29. 3. o. o. o. 0. o. 14. 20000. 0. 0. 72. 66. 64. 76. 29. 0. o. o. 0. o. o. 15. 20000. 0. o. 71. 67. 66. 84. 29. 0. o. o. o. II 2. 1
  • 16. 20000. <" 2. 70. 66. 64. 81. 29. o. o. o. o. o. o. ,J, 17. 20000. 2. 2. 68. 66. 64. 87. 29. 0. o. 0. o. o. 0. 1 8. 20000. 2. 2. 67. 66. 65. 93. 29. o. o. o. o. 108. 1. 19. 20000. 7. 2. 67. 66. 65. 93. 29. o. 0. 0. o. o. o. 20. 20000. 0. 0. 66. 65. 65. 97, 29. o. o. 0. o. 0. 0. 21. 20000. 1. 2. 65. 65. 65, 100. 29. o. 0. o. o. 107. 1. 2 2. 20000. 16. 2. 65. 6 4. 64. 97. 29. o. o. o. o. 0. o. 2 3. 20000. 1. 2. 64. 64. 64. 100. 29. o. 0. o. o. o. 0. Rev. 0 TABLE 2.3-9 (continued) Sheet 35 of 67 A. i\TORST TEMPERATURE PERIOD (a,b) A B c D E F G H I J K L H N 34. 1440. 13 981
  • I. 9. 3. 0. 20000. 3. 2. 65. 65. 64. 97. 29. o. o. 0. 97. 1 0 6. 1. I. 20000. r .. 70
  • 67. 66. 87. 29. o. 0. 0. 0. 0. o. .Jo 2. 20000. 7. 3. 73. 68. 66. 78. 29. 0. 0. 0. o. 0. 0. 3. 20000. 7. 3. 79. 70. 67. 67. 29. 0. 0. 0. 244. 120. 1
  • 4. 20000. 8. 4. 80. 70. 66. 62. 29. o. o. o. o. 0
  • o. .. 20000. 7 . 2. 83. 70. 64. 53. 29. o. o. 0. 0. 0. 0. .), 6. 20000. 8. 4. 86. 73. 67. 53. 29. o. 0. 0. 266. 1 2 6. I
  • 7. '") (\(\ (\ B. 6. ,.., ..,., 66 . 50. 29. 0. 0. o. o. 0. 0. :e 4.. '>I v lJ \1. Qf. ( (._. 0 8. 20000. 8. 9. 88. ,, '7 50. 29. o. o. o. o. 0. o. t"' /j, 0 I o 9. 20000. 7. 8. 88. 74. 68. ""'1 29. ') o. 0. I 39. 131. 1. r:rj J..:... .:... 1 0. 20000. 8. .. 89
  • 73. 66. 47. 29. 6. 0. o. o. o. 0. 0 .J, :;cl 11. 20000. 9. 6. 87. 73. 67. <"'") 29. o. 0. o. 0. o. 0. .J.:... t:>l 12. 20000. 8. 4. 86. 74. 69. 57. 29. o. o. 0. o. 127. 1. t:>l :,;: 11 20000. n r 79. 73. ' .... 7
  • 70. 74. 2'1. o. o. 0. 0. o. o. I 4. 20000. 7. 4. 76. 71. 69. 79. 29. o. 0. 0. 0. o. 0. 15. 20000. 8. 3. 75. 10. 67. 76. 29. o. o. o. o. 11 6. 1
  • 16. 20000. 8. 3. 74. 69. 67. 79. 29. o. o. 0. o. o. 17. 20000. 8. 8. 73. 69. 67. 81. 29. o. o. 0. 0. o. 0. 18. 20000. 7. 6. 72. 70. 69. 90. 29. o. 0. o. o. 11 4. 1
  • 19. 20000. 8. r 71. 69. 68. 90. 29. o. 0. 0. o. 0. o. .J, 20. 20000. 7. 3. 71
  • 69. 68. 90. 29. o. o. o. o. 0. o. 21. 20000. 8. 6. 70. 69. 68. 93. 29. 0. o. o. 0. 112. 1
  • 22. 6000. 16. 22. 68. t r /"7 ""' 29. 8. 0. 0. o. 0. 0. O.Jo O.Jo Q,), 23. 3500. 2. 1 2. 65. 64. 63. 93. 29. 1 o. 0. ') o. o. 0. Lo Rev. 0 TABLE 2.3-9 (continued) Sheet 36 of 67 A. WORST TEMPERATURE PERIOD (a, b) A B c D E F G H I J K L M N 35. 1 440. 13 981
  • 1
  • 9. 4. o. 4000. 1 0. 3. 66. 64. 63. 89. 29. 1 0. o. 3. 34. 1 1 8
  • 1. 1. 4000. 9. I 8. 67. 64. 63. 87. 29. 1 o. o. ') 0. 0. o. '-. 2. 20000. o. 0. 72. 68. 66. 81. 29. 9. 0. 0
  • o. o. 0
  • 3. 20000. 1 0. 1 0
  • 80. 70. 66. 62. 29. 2. 0. o. 240. 122. 1
  • 4. 20000. 1 2. 1 2. 81. 71. 6 6. 60. 29. o. o. o. o. 0. 0. t: 20000. 1 0. 1 0. 83. 71 6 5. """ 29. o. 0. 0. o. 0. 0. ,), I I o ..JJ, 6. 20000. 1 0. 9. 85. 73. 68. 57. 29. o. 0. 0. 264. 125. 1. 7. 20000. 1 0. 9. 88. 75. 69. 53. 29. " " o. o. n 1\ $ v. \.' . v. v. 0 8. 20000. 1 0. r 90. 76. 70. "'I 29. o. o. 0. 0. () . o. t"l J. J<..o 9, 20000. 1 0. L S'l. -,I 70. 50. 29. o. o. o. 140. 1 32. 1. ..,, i Q
  • 1 0. 20000. 1 !) 4. 90. 76. /I
  • 54. 29. o. 0. 0. o. o. 0. 0 '". !:tl 1\. 20000. 7. r 89. 77. 72. .,..., 29. 0. 0. o. o. o. 0. t':l J. J I
  • 12. 20000. B. " 87. 77. 73. 63. 29. 0. o. o. (). 130. 1. t':l J. 13. 20000. 6. 3. 82. 76. 74. 76. 29. o. 0. 0. 0. o. o. 14. 20000. 7. 3. 79. 7 6. 74. 84. 29. o. 0. 0
  • o. 0. 0
  • 1 5. 20000. B. 4. ..,n ( Q. ..,,. /Jo I o 84. 29. o. 0. o. o. 1 2 2. 1. 1 6. 20000. 7. 3. 77. 74. 73. 87. 29. o. o. 0
  • 0. 0
  • o. 1 7. 20000. 7. 4. 7 5. 73. 72. 90. 29. o. o. 0
  • o. 0. o. 1 8. 20000. B. 4. 75. 73. 72. 90. 29. 0. 0. o. o. 1 I ?
  • 1. 1 9. 20000. 8. 6. 7 4. 73. 72. 93. 29. 0. o. o. o. 0
  • 0. 20. 20000. B. 7. 73. 72. 7!
  • 93. 29. o. o. 0. 0. 0. o. 21. 20000. B. 8. 73. 72. 71. 93. 29. o. o. 0. o. 11 6. 1
  • 22. 20000. 8. 7. 73. 71
  • 71. 93. 2 9. o. o. o. o. o. o. 23. 20000. 7. 4. 72. 71. 70. 93. 29. 2. o. o. o. 0. 0. Rev. 0 TABLE 2.3-9 (continued) Sheet 37 of 67 A. WORST TEMPERATURE PERIOD (a, b) A B c D E F G H I J K L H N 36. 144 o. 13 981
  • I. 9. " vo o. 20000. 8. 4
  • 72. 71. 70. 93. 29. 7. o. o. 64. 122. 1. 1. 20000. 1 0
  • 3. 76. 73. 72. 87. 29. 7 0. 0. 0
  • 0. c. I ' 2. 20000. 1 0. 9. 81. 75. 72. 74. 29. 9. o. 0. o. o. o. 3. 9000. 1 6
  • 1 7
  • 81. 76. 74. 79. 29. 1 0. 0. 0. 62. i 3::;. 1
  • 4
  • 20000. 1
  • 9. 80. 76. 74. 82. 2.9. 3. c. o. o. 0. 0. .. 20000. 3. 4. 85. 77 . 74. 67. 2?. .,. 0. 0
  • 0
  • 0. o. ,J * ..J. 6. 20000. " 9. 87. 7 6. n. 61. 29. r o. o. 220, 1 3 5. !. .;, J, 7. 20000. " 3. 89. 78. 74. 61. 2 9. .,. 0. o . 0. 0. 0. ,J
  • J. 8. 20000. " 9. 83. 80. 77. 70. 29. 4. 0. o. 0. 0. 0. ,J * " "'"""'"' 5. 1 0
  • 88. 80. 77. 70. 29. 4. 0. 0. 122. 138. 1. :8 1 * ,/.,1JVVV
  • 0 I 0. 20.'J.'JO. 4
  • 9. 83. 81. 78. 72. 29. 3. 0. (\ II 0. 0. C"' v. v. 11. 20000. 6. l 0. 88. Bl. 78. 72. 29. 3. 0. 0. 0. 0. 0. !"!j 1 2. 18000. 7. 4. 87. BO. 78. 75. 29. 6. 0. o. 0. 14 0. 1. () ',:lj 13. 20000. 8. 4
  • 85. 78. 7 5. 72. 29. 4. 0. 0. o. 0. 0. t'1 14. 20000. 8. 9. 8 2. 77. 7 .. 79. 29. o. o. 0. o. 0. 0. ttl , ,J. 15. 20000. 8. 1 2. 81. 76. 75. 82. 29. 0. 0. o. o. 1 2 6. l. 1 6. 20000. 9. I 6. 8 1 * ??. 75. 82. 29. 0. o. o. o. 0
  • 0. 17. 20000. 9. 1 3
  • 81. 76. 74. 79. 29. o. o. 0. 0. 0. 0. 1 a. 20000. 9. 1 0. 81. 76. 74. 79. 29. 0. o. o. 0. 1i5. 1. 1 9. 20000. 9. 12. 81
  • 74. 71. 71. 29. o. o. 0. 0. 0. 0. 20. 20000. 9. 1 0. 79. 73. 71. 76. 29. 2. 0. 0. 0. 0. 0. 21
  • 20000. 1 0. 13. 78. 72. 70. 76. 29. 3. 0. 0. 0. !23. 1. 22. 9000. 13. 8. 77. 73. 71. 81. 29. 8. 0. 0. o. o. 0. 23. 1:5000. 9. 1 0. 75. 72. 7!. 87. 29. 9. 0. o. 0. o. 0. Rev. 0 TABLE 2. 9 (continued) Sheet 38 of 67 B. WORST EVAPORATION PERIOD (a,c,d) A B c D E F G H I J K L M N 1
  • 1440. 13981. 1
  • 8. \ . o. 20000. 6. 7. 71. 63. 58. 63. 28.96 o. 000000000000 o. .00 108.71 .49 1. 20000. 7. 9. 72. 59. 63. o. 000000000000 o. .00 .oo .oo 2. 20000. a. 7. 72. 64. 60. 66. 28.94 o. 000000000000 0. .00 .oo .oo 3. 20000. ,., 9. 71. 65. "J 73. 28.94 o. 000000000000 o. .oo 110.28 o. o..:.. 4. 20\JOO. 7 . 7. 70. 65. 62. 75. 28.95 0. 00000()000000 o. .00 .00 .00 "" 20000. ?. ?. 70. 6 s. 63. 78. 28.96 o. 000000000000 0. .oo .00 .oo .J. 6. 20000. 7. 7. 7 3. 68. 66. 78. 28.98 2. 000000000000 o. 118.83 115.73 .64 7
  • 20000. 9. 1 0. /9. 72. 69. ?1. 28.98 1
  • 000000000000 o. .oo .oo .00 :E: 8. 20000. 1 0. 9. 85. 74. 70. 61. 28.98 3. 000000000000 0. .00 .oo .00 0 I:"" 9. 20000. 1 0. l 0. 89. 75. 69. 52. 28.97 2. 000000000000 o. 256.63 132.01 .n l'%j 1 0. 20000. 1 0
  • 1 0. 93. 75. 68. 45. 28.96 4. 000000000000 o.
  • 00 .oo .00 n 11. 20000. 1 0. 1 0. 94. 74. 66. 40. 28.96 4. 000000000000 o. .oo .oo .00 !:0 ttl 1 2. 20000. 9. 1 3. 97. 75. 66. 36. 28.94 4. 000000000000 o. 255.70 140.66 .64 ttl 1 3. 20000. 9. t 5. 97. 74. 64. 33. 28.92 2. 000000000000 o. .oo .00 .oo H. 200*)0. 1 0. 13. 98. 74. 64. 32. 28.90 4. 000000000000 o. .oo .oo .oo I 5. 20000. 1 0' 13. 98. 74. 63. 31. 28.88 4. 000000000000 o. 148. ;70 140.03 .,.,, 1 6
  • 20000. 1 0. 1 3. 97. 75. 66. 36. 28.87 4. 000000000000 o. .oo .00 .oo 1 7. 20000. I 0. !4' 96. 75. 66. 37. 28.86 0. 000000000000 o. .oo .00 .00 1 8. 20000. 9, 17. 95. 75. 67. 40. 28.86 0. 01)0000000000 o. .oo 134.18 .67 1 9. 20000. l 0. 9. 92. 74. 67. 44. 28.86 o. 000000000000 o. .oo .00 .00 2 0. 20000. 9. 7. 8 8. 74. 68. "'I .; .... 26.87 0. 000000000000 o. .oo .oo .oo 21. 20000. 9. 6. 85. 73. 68. 57. 28.89 o. 000000000000 o. .oo 125.43 .70 22. 20000. 9. 5. 80. 71. 67. 65. 29.89 o. 000000000000 o. .oo .oo .oo 23. 20000. 11. 5. 79. 7t. 67. 67. 29.90 o. 00()000000000 o. .oo .oo .oo c The worst evaporation period was obtained by selecting the weather conditions corresponding to the 30 consecutive days for which evaporation was maximum. d June 24, 1954 (midnight) to July 23, 1954 {midnight) Rev. 0 TABLE 2.3-9 (continued) Sheet 39 of 67 B. WORST EVAPORATION PERIOD (a,c,d) A B c D E F G H I J K L .H N 2. 1440. 13981. 1. 8. 2. o. 20000. 9. 8. 79. 70. 66. 64. 28.90 o. 000000000000 0. *
  • 00 118.86 .64 1. 20000. 9. 9. 77. 70. 66. 68. 28.90 o. 000000000000 0. .00 .00 .00 2. 20000. 9. 8. 77. 70. 67. 7L 28.90 o. 000000000000 0. .00 .00 .00 3. 20000. 9. 8. 77. 70. 67. 71. 28.91 o. 000000000000 o. .00 117.64 .67 4. 20000. 9. 8. 75. 70. 67. 76. 28.92 o. 000000000000 o. .00 .00 .00 5. 20000. 8. 9. 74. 69. 67. 79. 28.93 o. 000000000000 0. .00 .00 .00 6. 20000. 9. 9. 77. 71. 68. 74. 28.93 o. 000000000000 o. 120.4? 118.24 .70 7. 20000. 1 0. 12. 83. 72' 68. 61. 28.93 (I fiAI\AIH\11/'II'If'IIHI .. , "/' .00 .00 :8 V* V:.JVVVVi.IVVVVV \.'.
  • V\J 0 8. 20000. 10. 16. 87. 73. 67. .,.., 28.93 o. 000000001)000 0. .oo .00 .00 t'"' .I<.* 9. 20000. 10. 17. 90. 73. 66. 4"" 28.92 o. 000000000000 0. 263.30 128.85 .64 n:j .Jo 10. 20000. 10. 17. 93. 74. 66. 41. 28.92 o. 000000000000 0. .00 .00 .00 0 1 1
  • 20000. 10. t 7. 95. 73. 63. 35. 28.90 o. 000000000000 0. .00 .00 .00 ::0 tr:l 1 2. 20000. 10. 17. 96. 74. 64. 35. 28.89 o. 000000000000 0. 284.22 133.54 .60 tr:l 1 3. 20000. 1 0. 17. 98. 74. 64. 32. 28.88 o. 000000000000 o. .OIJ .oo .00 t 4. 20000. 1 0. 17. 98. 74. 63. 31. 28.87 o. 000000000000 o. .00 .00 .00 15. 20000. 10. 23. 98. 74. 62. 30. 28.86 o. 000000000000 0. 165.29 134. 1 3 .55 1 6. 20000. 1 0. 1 9. 97. 73. 62. 31. 28.86 . o. 000000000000 0. .00 .00 .00 17. 20000. 10. 17. 96. 74. 64. 35. 28.85 o. 000000000000 0. .00 .00 .00 18. 20000. 10. i 7. 95. 7 4. 65. 37. 28.86 o. 000000000000 0. .00 132.96 .62 I 9. 20000. 1 0. 14. 91. 73. 65. 42. 28.87 0. 000000000000 0. .oo .00 .00 20. 20000. 1 0. 7. 87. 72. 65. 48. 28.88 o. 000000000000 0. .00 .00 .00 21
  • 20000. 9. 7. 83. 71. 66. 56. 28.90 o. 000000000000 0. .00 122.37 .64 22. 20000. 9. 6. 81. 71. 66. 60. 28.92 0. 000000000000 0. .00 .00 .00 23. 20000. 9. 7. 80. 70. 66. 62. 28.97 o. 000000000000 o. .00 .00 .oo Rev. 0 TABLE 2.3-9 (continued) Sheet 40 of 67 B. WORST EVAPORATION PERIOD (a,c,d) A B c D E F G H I J K L M N 3. 1440. 13981. 1
  • a. 3. o. 20000. 10. v. 77. 70. 66. 68. 28.93 o. 000000000000 o. .oo 117.03 .64 1
  • 20000. 1 0. 9. 76. 70. 67. 74. 28.92 o. 000000000000 o. .oo .oo .00 2. 20000. 11. 9. 76. 70. 67. 74. 28.93 o. 000000000000 o. .00 .00 .00 3. 20000. 11. 9. 75. 70. 67. 76. 18.94 o. 000000000000 o. .oo 115.92 .67 4. 20000. 11
  • B. 75. 69. 67. 76. 28.95 o. 000000000000 0. .oo .00 .00 5. 20000. 11. 7. ?4. 69. 67. 79. 28.97 o. 000000000000 o. .00 .00 .00 6. 20000. 10. 8. 77. 71. 68. 74. 28.97 o. 000000000000 o. 120.30 118.24 .70 7. 20000. 11. l 0. 82. 72. 68. 63. 28.98 o. 000000000000 o. .oo .00 .oo :E; a. 20000. il. 1 0. 86. 73. 67. 53. 28.99 O. OQOOOOOOOOOO 0. .00 .00 .00 0 9. 20000. 1 0. 1 6. 91. 74. 66. 44. 28.99 o. 000000000000 o. 263. 17 129.92 .65 t"' hl 1 0. 20000. 1 0. 1 6. 94. 73. 64. 37. 28.99 o. 000000000000 o. .00 .00 .00 11
  • 20000. IT. 95. 74. 64. 36. 28.98 o. 000000000000 o. .00 .00 .00 n 1 2. ::0 1 2. 20000. 1 0. 17. 96. 73. 63. 33. 28.98 o. 000000000000 0. 284.92 132.70 .57 t:r:l ttl I 3. 20000. 1 0. 16. 97. 74. 63. 32. 28.96 o. 000000000000 0. .oo .00 .oo :::>:: H. 20000. 11. 1 4. 98. 75. 65. 33. 28.95 o. 000000000000 o. .oo .00 .00 1 5. 20000. 1 0. 21. 97. 74. 63. 32. 28.94 o. 000000000000 0. 164.80 133.65 .57 1 6. 20000. 1 0
  • 1 7. 96. 73. 63. 33. 28.93 1. 000000000000 0. .00 .oo .00 1 7
  • 20000. 1 0. , 5. 96. 74. 64. 35. 28.92 t. 000000000000 o. .00 .QO .00 1 8. 20000. 1 0. 9. 94. 73. 63. 36. 28.92 1. 000000000000 0. .00 132.24 .58 1 9
  • 20000. 9. 7. 91. 73. 65. 42. 28.93 o. 000000000000 0. .00 .00 .oo 20. 20000. 9. s. 87. 72. 66. 50. 28.93 1. 000000000000 o. .00 .00 .00 21. 20000. 9. 6. 85. 71. 65. 5L 28.95 o. 000000000000 o. .oo 123.76 .62 22. 20000. 9. 7. 81. 70. 65. 58. 28.96 o. 000000000000 o. .00 .00 .00 2 3. 20000. t 0
  • 7. ao. 70. 66. 62. 28.96 o. 000000000000 o. .00 .00 .oo Rev. 0 TABLE 2.3-9 (continued) Sheet 41 of 67 B. WORST EVAPORATION PERIOD (a,c,d) A B c D E F G H I J K L H N 4. 1440. 13981. 1
  • 8. 4. o. 2i)000. 10. 8. 78. 70. 66. 66. 28.97 0. 000000000000 0. .00 117.95 .64 1. 20000. 11. 8. 76. 69. 66. 71. 28.97 0. 000000000000 0. .00 .00 .00 2. 2JOOO. 11. 8. 76. 69. 66. 71
  • 28.98 0. 000000000000 0. .00 .00 .00 3. 20000. 11. 7. 76. 68. 65. 68. 28.98 0. 000000000000 o. .00 115.72 .62 4. 20000. 11. 7. 75. 68. 65. 71
  • 28.99 8. 000000000000 o. .00 .00 .00 5. 20000. 10. 6. 72. 67. 64. 76. 29.00 8. 000000000000 0. .00 .00 .oo L ")(\1\f'lt\ 9. 6. .,, 1 n I A 66. 29.01 8. 0000000000(10 0. 72. i 8 124.21 .6C u. L.vvvv. f 0. oo. 0"1. 0 7. "',," f\" . " n n.., .... 66. 56
  • 29.0i 5. 000000000000 0. .00 .00 .00 t"' 'vvvv. IV, 7. O.J, f I
  • n:j 8. 20000. 11. 9. 85. 72. 66. 53. 29.02 3. 000000000000 0. .00 .00 .00 0 9. 20000. 11. 1 4. 89. 73. 66. 47. 29.01 4. (H\0000000000 0. 237.90 133.03 .65 :::0 I 0. 20000, t 0. 12. 92. 73. 64. 29.0L 4. 000000000000 o. .00 .00 .00 I:"Jj I:"Jj 11. 20000. 11. 11. 95. '"'" I Jo 66. 39. 29.01 6. 000000000000 o. .00 .00 .00 ?:: . "' "f\1\1'\1\ 9. i 3. 94. 73. 63. 36. 29.00 6. 000000000000 o. 219.48 138.83 .58 I L.
  • L.VVVV. 13. 20000. 9. 14. 95. 74. 65. 37. 28.98 5. 000000000000 0. .00 .00 .00 1 4. 20000. 11. 13. 96. 74. 64. 35. 28.96 4. 000000000000 o. .00 .00 .00 15. 20000. 1 0. 15. 96. 73. 62. 3'1 -'-* 28.95 4. 000000000000 0. 149.16 137.6? .55 16. 20000. 11. 14. 96. 73. 6'1 "-* 32. 28.94 3. 000000000000 0. .00 .00 .oo 1 7. 20000. 1 0. 10. 94. 73. 63. 36. 28.92 3. 000000000000 o. .00
  • 00 .00 18. 20000. 1 0. 7. 94. 72. 62. 35. 28.91 3. 000000000000 0. .00 134.66 t:"/ oJI 19. 20000. 1 0. 9. 90. 74. 67. 47. 28.92 3. 000000000000 0. .00 .O!J .00 20. 20000. t 0. 7. 85. 71. 65. 51. 28.92 3. 000000000000 o. .00 .00 .oo ')I 20000. 0 0 0"1 ..," l A t::"> n.t 2. 000000000000 " .00 .. r\1\ .60 4 I ' I ' 7
  • o.:. r v. 0"1. J,. L0.7'1 v. I.:;..;,
  • IJ'J 22. 20000. 9. 5. 79. 69. 64. 60. 28.95 0. 000000000000 0. .00 .00 .00 23. 20000. 10. 7. 79. iJ 9. 64. 60. 28.95 o. 000000000000 o. .00 .00 .oo Rev. 0 TABLE 2.3-9 (continued) Sheet 42 of 67 B. WORST EVAPORATION PERIOD (a,c,d) A B c D E F G H I J K I, H N 5. 1440. 13981
  • 1
  • 8. 5. o. 20000. 1 0. 9. 78. 68. 63. 60. 28.96 0. 000000000000 0. .00 116.67 .58 1
  • 20000. 1 0. 7. 77. 68. 64. 64. 28-95 o. 000000000000 o. .00 * !)0 .00 ') 20000. 1 0. 7. 77. 69. 65. 66. 28.95 0. 000000000000 o. .00 .00 .00 ... 3. 20000. 1 0. 4. 75. 68. 65. 71. 28.95 o. 000000000000 o. .oo 114.99 .63 4. 20000. 6. s. 72. 67. 65. 78. 28.95 o. 0*)0000000000 0.
  • 0 () .00 .00 5. 20000. 7. 6. 70. 67. 65. 84. 28.97 o. 000000000000 o. .O<J .00 ,()!) 6. 20000. 7. 7. 74. 6 9. 66. 76. 28.98 o. 0000001)00000 o. 120.?? 114.59 .65 7. 20000. B. 8. 80. 71
  • 67. 65. 29.00 o. 000000000000 o. .00 .00 .oo :E: 8. 20000. 9. 9. 86. 72. 66. 51
  • 29.00 (1, <WJOO<JO\YJOOO 0. .oo .oo .00 9 9. 20000. 1 0. 9. 89. t.::. 64. 43. 29.00 o. 000000000000 o. 126.80 .60 r.tj 1 0. 20000. 1 0. 12. 92. ?2. 63. 37. 29.00 o. ()00000000000 0. .oo .oo .oo n 1 l
  • 20000. 8. 1 2. 93. 72. 62. 36. 2B.99 o. 000000000000 o. .00 .00 .oo ;:o ttj 12. 20000. 9. 9. 93. n. 62. 36. 28.97 0. 000000000000 0. 285.53 129. ?9 .56 ttj 13. 20000. 9. 12. 97. 73. 63. 32. 28.94 o. 000000000000 o. .00 .00 .00 :;>;: 1 4. 20000. 1 0. 19. 97. 72. 60. 29. 28.94 0 *. 000000000000 0. .00 .00 .00 1 s . 20000. 9. 1 7. 96. 72. 61
  • 31
  • 28.91 2. 00000(1000000 0. 162.60 134.'13 .53 1 6
  • 20000. 9. 9. 96. 72. 61. 31. 28.91 2. 0000000(\0000 0. .IJO .00 .00 17. 20000. 1 0. 15. 95. 71
  • 60. 31. 28.89 2. 000000000000 0. .oo .oo
  • QIJ 18
  • 20000. 9. 13. 94. 71. 60. 3'1 "-* 28.88 2. 000000000000 0. .00 132.15 .52 19. 20000. 11. 9. 91. 72, 63. 39. 28.90 1. 000000000000 0. .00 .00
  • QIJ 20. 20000. 9. 9. 86. 70. 63. 46. 28.91 1. 000000000000 0. .00 .oo .00 21. 20000. 9. 5. 82. 70. 64. 54. 28.92 1. 000000000000 0. .00 121 .51
  • 60 22. 20000. 1 0. 7. 80. 6 9. 63. 56. 28.93 0. 000000000000 o.
  • 00 .oo .oo 23. 20000. 1(). 4. 81. 69. 63. 54. 28.93 o. 000000000000 o. .oo .oo .00 Rev. 0 TABLE 2.3-9 (continued) Sheet 43 of 67 B. WORST EVAPORATION PERIOD (a,c,d) A B c D E F G H I J K L H N 6. 1440. 13981
  • 1
  • B. 6. o. 200DO. to. 6. 79. 68. 63. sa. 28.94 0. 0000000<)0000 o. .oo .58 f
  • 20000. 9. 3. 7 6. 6B. 64, 66. 28.93 0. OOOOOOIJOOOOO 0. .00 .00 .00 2. 20000. 7. 4. 77. 68. 64. 64. 28.93 o. 000000000000 o. .00 .oo .00 3. 20000. 7. 4. ?5. 67. 64. 68. 28.94 o. 000000000000 o. .00 114.43 .60 20000. 7. 4. 73. 6 7. 64. 73. 28.94 o. 000000000000 (). .00 .00 .()0 .,. 20000
  • 6. 6. 71. b7. 64. 78. 28.96 o. 000000000000 o. .00 .oo .oo Jo 6. 20000. 7. 7. 75. 69. 66. 74. 28.98 0. 001Jf)l})000000 o. 120.53 115.54 .65 7. 20000. , 0. 5. !:$1
  • 70. 65. 53. 27' * 'J 0 \). 000000000000 o. .oo
  • OIJ .00 s. 20000. ft. 9. 87. 72. 63. 29.0' 0. OOOOOOOOO(JOO o. .OD .oo .00 0 9. 20000. 1 2. 1 0. 91
  • 73. 64. 41. 29.01 o. 000000000000 o. 264.20 128.87 .60 I:"' 1 0. 20000. 13. 7. 95. 72. 33. 29.00 o. 000000000000 0. .oo .00 .00 1"lJ 11. 20000, 1 4. 6. 98. ..,., 30. 29.00 o. 000000000000 o. .00 .oo .00 0 / ,J. Ok. iiJ 12. 20000. 9. 9. 98. 72. 59. 27. 28.98 (). 000000000000 o. 287.52 132.76 .49 t::t:1 13. 20000. 11. 7. 9B. 72. 59. 27. 28.97 0. OOOODOOOOOOO o. .00 .00 .00 J::j H. 20000. 12. 11. too. 73. 61. 28. 28.94 4. 000000000000 o. .00
  • f)Q .oo 15. 20000. 1 3. 9. 100. 74. 62. 29. 28.92 4. 000000000000 o. 149.10 141.96 .56 t 6' 20000. 0 12. 99. 72. 26. 28.90 4. 000000000000 (), .00 .00 .00 F o J'i. 17. 20000. 11. 1 0. 98. 72. 59. 27. 28.90 7. 000000000000 o. .00 .oo .(}0 18. 20000. 1 0. 9. 96. 72. 60. 30. 28.92 7. OOO<HlOOOOOOO o. .0() 140.70 .52 I 9. 20000. 9. b. 92. 71. 61. 36. 28.94 4. 000000000000 o. .00 .00 .oo 20. 20000. 9. ?. S7. ?0. 62. 42. 28.95 s. 000000000000 o. .00 .00 .00 21. 20000. 8. 16. 82. 70. 65. 29.00 4. 000000000000 o. .00 125.76 .62 22. 20000. 8. 13. 77. 69. 65. 66. 29.00 3. OOOQOOOOOOOO 0. .00 .00 .00 23. 20000. a. t 3. 75. btl. 65. 71. 29.00 3. 000000000000 o. .00 .00 .00 Rev. 0 TABLE 2.3-9 (continued) Sheet 44 of 67 B. WORST EVAPORATION PERIOD (a,c,d) A B c D E F G H I J K L l\1 N 7. 1440. 13981
  • 1. 8. 7. o. 20000. 14. b. 75. 68. 65. 71. 29.02 3. 000000000000 0. .oo 118.30 .63 1
  • 20000. 10. 9. 74. 67. 64. 71. 29.01 3. 000000000000 o. .00 .00 .00 2. 20000. 9. 7. 73. 67. 64. 73. 29.01 4. 00()000000000 0. .00 .00 .00 3. 20000. 1 (\ 3. .,..., 67
  • 64. 76. 29.01 4. 0000000000()!J 0. .oo 1 H.44 .61 'v. f L, 4. 20000. 12. 3. 72. 67. 64. 76. 29.02 5. 000000000000 o. .oo .00 .00 ,. 20000. 9. 3. 72. 66. 64. 76. 29.03 5. 000000000000 o. .oo .00 .oo :E: .J, 0 6. 12000. 16. s. 75. 6 8. 65. 71. 29.06 8. 000000000000 o. 71
  • 51 123.69 .63 t"' ., 20000. j 6
  • 9. 80. 70. 66. 62. 29.06 4. 000000000000 o. .00 .00 .00 r:tj f
  • 8. 20000. 14. 9. 84. 72. 67. 56. 29.05 2. 000000000000 0. .00 .00 .00 n ;::o 9. 20000. 12. 11. 89. 74. 67. 48. 29.04 3. 000000000000 o. 248.7? 132.05 .66 t:'l:j 10. 20000. 14. 9. 92. 75. 68. 45. 29.04 5. 000000000000 o. .00 .00 .oo t:'l:j 1 1
  • 20000. 11
  • 5. 97. 77. 69. 41
  • 29.04 6. 000000000000 0. .00 .00 .oo 1 2. 6000. 2. 1 0. 95. 74. 66. 39. 29.03 6. 000000000000 o. 217.52 141 . 30 .65 13. 5000. 9. 1 5. 71. 68. 66. 84. 29.02 10. 000000000000 o. .00 .00 .00 14. 10000. 10. 1 0. 71. 66. 63. 76. 29.03 10. 000000000000 o. .00 .00 .00 t 5. 5000. 11. 12. 72. 67. 65. 78. 29.04 10. 000000000000 o. 57.58 123.76 .62 I 6. 5000. 11. 1 0. 73. 67. 64. 73. 29.04 9. 000000000000 o. .oo .00 .00 17. 6000. 8. 12. 74. 67. 64. 71. 99 10. 000000000000 o. .00 .00 .00 1 8. 7000. 1 s. 4. 76. 67. 62. 62. 29.03 10. 000000000000 o. .00 126.8:: .56 19. 10000. 6. 7. 74. 68. 65. 73. 27.01 10. 000000000000 0. .00 .00 .00 20. 10000. 2. 6. 73. 67. 65. 76. 29.04 10. 000000000000 o. .00 .00 .00 21. 25000. 4. 5. 73. 67. 64. 73. 29.05 10. 000000000000 o. .00 124.45 .60 'I"\ ""'* ,f\1\.1'1.1\. £VVVVo 9. 4. 71. 68. 67. 87. '1_9.0'5 10. 01)000001)0000 I) * .00 .00 .IJIJ 23. 20000. 2. 5. 70. 66. 64. B 1
  • 29.07 3. 000000000000 o. .00 .00 .oo Rev. 0 TABLE 2.3-9 {continued) Sheet 45 of 67 B. WORST EVAPORATION PERIOD (a,c,d) A B c D E F G H I J K L M N B. 1440. 13981. 1
  • 8. 8. o. 20000. 4. 4. 69. 66. 64, 84. 29.06 4. 000000000000 o. .00 11 3. 81 .60 1
  • 20000. 7. 3. 70. 66. 65. 84. 29.06 8. OOOOOOOIJOQ00 o. .00 .00 .C:IJ 2. 20000. 9, 4. 71. 67. 65. 81
  • 29.06 8. 000000000000 o. .00 .oa .00 3. 20000. 9. 3. 70. 67. 66. 87. 29.06 7. 00000(l000000 o. .00 118.43 .65 4' 20000. I 1
  • 4. 69. 67. 66. 90. 29.07 b. 00001.lOQrJOOQO o.
  • t11J
  • 01) * (J 1) s. 20000. 6. 3. 6 9. 6 7. 66. 90. 29.08 8. 000000000000 o. .00 .oo .00 6. 20000. 7. 3. 72. 68. 66. 81. 29.09 8, 00000(l0QOOQO o. 71
  • 1 0 121 .25 '" .bJ 7. 25000. 7. 3. 713. 71. 68. 71. 29.09 8. 000000000000 o. .00 .00 .00 a. 20000. 9. 6. 83. 72. 67. 58. 29. 11 ?. 000000000000 o. .00 .00 .00 0 9. 20000. 8. 5. 86. 73. 67. 53. 29. 11 6. OOOOOOOOIJOOO 0. 201 .66 132.71 .67 1:"'1 1 1\ 20000. i 1
  • i 0
  • 90. 73. 65. 44. 29.11 8. 000000000000 o. .oo .00 .00 l"Xj . " ' ll. 20000. 9. a. 92. 74. 66. 42. 29. t 0 7. 000000000000 o. .oo .00 .oo 0 ;;t) 1 2. 20000. 11. 9. 93. 75, 68. 45. 29.08 8. 000000000000 o. 164.81 142.70 .71 ttl 1 3. 20000. 1 0. 1 0. 94. 75. 67. 41. 29.07 10. 00000000000() o. .00 .no * (1 () ttl ::><:: 14. 20000. 9. 7. 94. 74. 66. 40. 29.05 10. 00000000(}000 0. .00 !l:l
  • c * ,()() 1 5. 20000. 1 0. 9. 95. 75. 67. 40. 29.03 10. 000000000000 0. 57.16 14?.25 .67 t 6. 20000 .. 11. 9. 9?. 76. 67. 37. 29.00 TO. 000000000000 (), .00 .oo .00 l 7. 20000. 1 0
  • 9. 93. 74. 65. 40. 28.99 10. 000000000000 o. .00 .00 .00 1 8. 20000. 9. s. 91. 7 6. 70. 50. 29.00 7. OOO*JOOOOQOOO 0. .00 1*10.15 .?4 1 9. 20000. 9. s. 89. 74. 68. 50. 29.00 10. 000000000000 o. .00 .00 .00 20. 20000. 9. 6. 87. 72. 66. 50. 29.01 10. 000000000000 o. .00 .00 .oo 21. 20000. a. a. 85. 71
  • 65. 51. 29.02 3. 000000000000 Q. .00 127.33 .62 22. 20000. 9. 8. 83. 72. 67. 58. 29.04 3. 000000000000 0. .00 .oo .oo 23. 20000. 9. 6. 82. 71. 67. 60. 29.04 3. 000000000000 0. .00 .oo .00 Rev. 0 TABLE 2.3-9 (continued) Sheet 46 of 67 B. WORST EVAPORATION PERIOD (a,c,d) A B c D E9. F G H I J K L M N 9. 1440. 13981. 1. 8. o. 20000. 9. b. 79. 71. 68. 69. 29.02 3. 000000000000 o. .00 123.28 .69 1. 20000. 1 0. 4. 78. 70. 6 "1 I o 69. 29.00 3. 000000000000 o. .00 .oo .00 2. 20000. 9. 5. 79. 71. 67. 67. 29.01 2. 000000000000 o. .00 .00 .00 3. 20000. 9. 7. 78. 70. 67. 69. 29.02 o. 000000000000 (). .oo 118.58 '-, .at 4. 20000. 9. 9. 76. 70. 67. 74. 29.02 1. OOOIJ00001J00{) 0. .00 .oo .oo 5. 20000. 8. 7. 76. 70. 67. 74. 29.04 1. OOOOOOOOOOQO o. .00 .00 .00 6. 20000. B. 8. 77. 70. 67. 71. 29.05 1. 000000000000 o. 118,50 ! 18,56 .., , C1 7. 20000. 9. 4. 81. ?2. 68. 65. 29.0S 2. 00000000\)000 o. .00 .00 .00 0 t"" 8. 20000. 11. 1 7. 86. 73. 68. c*t:-J.J. 29.05 2. 0000001)00000 0. .00 .00 .00 t":l:j 9. 20000. 1 0. 1 6. 8 9. 74. 68. 50. 29.04 2. 000000000000 0. 256. 19 131.39 .69 n l 0
  • 20000. 1 0. 1 7. 94. 75. 67. 41. 29.04 o. 000000000000 o. .oo .00 .00 ;;o t:tJ 11. 20000. 1 0. 19. 94. 75. 67. 41. 29.03 o. 000000000000 o. .oo .00 .00 t:x:i I 2. 20000. 1 0. 17. 96. 75. 6*5. 37. 29.03 o. 0000(.\0000000 o. ;!82. 13 134.39 .64 .": 1 3. 20000. 11. 1 3. 98. 74. 63. 31. 29.01 0. OOOIJOOOQO!JOO o. . 00 .00 .oo 1 4. 20000. 11. 1 7
  • 100. ?4. 62. 29. 28.99 o. 000000000000 0. .00 .00 .00 1 5
  • 20000. 1 0
  • 15. 98. ?3. 6l. 29. 28.96 2. 000000001.)01.)0 0. 1 02.33 136.30 .53 1 6. 20000. 1 0. 1 6
  • 99. 74. 63. -zn 28.94 2. 000000000000 IJ. .oo .IJO .00 vv. 1 7. 20000. 1 0. 1 7. 98. 74. 63. 31. 28.94 0. 000000000000 0. .oo .00 .00 1 B. 20000. l 0. D. 9b. 74. 65. 36. 28.94 0. 000000000000 0. .00 133.97 .62 1 9. 20000. 9. 9. 92. 71. 6 'l "-* 30. 28.95 o. 000000000000 0. .00 .00 .00 20. 20000. 9. 9. 97. 71
  • 63. 45. 28.95 o. 000000000000 o. .00 .00 .oo 21. 20000. 9. 12. 87. 71. 63. 45. 28.97 o. 000000000000 o. .00 124.?3 t;n oJ7 22. 20000. 1 0. 1 0. 85. 70. 63. 48. 28.98 o. 000000000000 0. .00 .00 .00 23. 20000. 9. 9. 81. 69. 63. 54. 28.99 o. 000000000000 0. .oo .00 .00 Rev. 0 TABLE 2.3-9 (continued) Sheet 47 of 67 B. EVAPORATION PERIOD (a,c,d) A B c D E F G H I J K L M N 1 0
  • 1 4 40
  • 139 81
  • 1. 8. 1 0. 0. 20000. 9. 9. 80. 69. 63. 56. 28.'i9 o. 000000000000 0. .00 118.39 L' 1'\ oJO l. 20000. 1 0. 7. 77. 68. 64. 64. 28.98 0. 00000()000000 (}.
  • 0 0 * ()0 .00 2. 20000. 9. 7. 76. 68. 64. 66. 23.98 0. ()Q()IJQOOOOOOO o.
  • Ql.)
  • 0 () .oo 3. 20000. n 8. ., .. 68. 64
  • 68. 28.98 o. 0000000000(10 0. .00 114.43 .6rJ l
  • I .J ' 4
  • 20000. 9. 9. 74. 68. M. ., ' I 0 o 28.98 o. 000000000000 o. .oo .00 * (I 0 < 20000. 9. 8. 74. 69. 66. 7' 28.98 1. IJOOOOOOOOIJOO IJ. .0() .oo .00 Jo j Q. =E: 6 * "")J\f\"'11'\ t 0. 1 (i
  • 77. 70. 66. 68. 29.01 l. OOOUO*)OOOOOIJ o. 118.6J 11?.'16 .64 0 .. '.,J \J '..} \J
  • I:"' 7. 20000. 1 0. i 5. 81. 70. {;{,. 60. 29. OJ 2. 000000000000 (J, .()() .00 .oo h:j 8. 20000. 11. 1 6. 85. 72. 67. n: o. 000000000000 o. .oo .oo .00 J.J. 0 9. 20000. 11. 17. 90. 72. 64. 4 2. 29.01 0. 000000000000 0. 263.44 127.84 .60 )':1 1 0. 20000. J 0. 17. 94. 14. 66. 40. 29.01 0. 000000000000 (). ,()() .00 .00 t'i t?-:1 1 l
  • 20000. i 0. 21. 96. 73. 63. 33. 29.00 1. 000000000000 0. .oo .oo .oo l 2. 20000. I 0. 17. 97. 72. 60. 29. 28. ';/9 3. 000000000000 o. '17 '1 '1 '? 4-. I ,: ...
  • O:...J 136.38 .51 1 3. 20000. 11. 17. 98. 73. 60. 29. 28.97 3. 000000000000 o. .oo .00
  • 00 l 4. 20000. I 1
  • 17. 99. 73. 61. 29. 28.96 3. 000000000000 o. .00 .00 .00 15. 20000. 1 0. 1 9. 98. 73. 61. 29. 28.95 2. 000000000000 o. J62.n 136.30 .53 1 6. 20000. 1 0. 1 6. 99. 71. 57. 24. 28.93 o. 000000000000 o. .oo .00 .00 I ?
  • 20000. 1 0
  • 14. 98. 71. 58. 2 6. 28.92 o. 000000000000 o. .00
  • 00 .co 1 a. 20000. 1 0. 9. 97. 72. 61. 30. 28.93 o. 000000000000 o. .oo 132.77 ..... , * ..J .J 1 9. 20000. 9. 9. 92. 71. 61. 3 6. 28.93 o. 000000000000 {). .0(} .00 .00 2 0. 20000. n 9. 86. 70. 6') 4"' 28.94 0. 000000000000 o. .oo
  • 0 0 .00 7. '-' '-'* 21. 20000. i 0. 13. 86. n. 67. 53. 28.96 o. 000000000000 o. . 00 125./1 6"'
  • I 22. 20000. 9. 1 3. 84. 72. 67. 56. 28.97 0. 000000000000 o. .oo .00 .oo '1 .. J. 20000. 9. 12. 82. 71. 66. 58. 28.97 o. 000000000000 o. .00 .00 .00 Rev. 0 TABLE 2.3-9 (continued) B. WORST EVAPORATION PERIOD (a,c,d) A B 11. 1440. 13981. o. 20000. 1. 20000. 2. 20000. 3. 20000. 4. 20000. 5. 20000. 6, 20000. 7. 20000. B. 20000. 9. 20000. 1 o. 20000. 11. 20000. 12. 20000. 13. 20000. 14. 20000. 15. 20000. 16. 20000. 17. 20000. 18. 20000. \9. 20000. :,:o. 20000. 21. 20000. 22. 20000. 23. 20000. 1 0. 9. 1 0
  • 1 0
  • 9. 1 0. 1 0. 1 0. 1 2. 12. 12. 11. 11. 12. 1 0. 1 0. 11. 1 0. 11. 9. 1 0. 1 (\ IV o 1 0. 1 0. c 1. 1 0. 7. 7. 9. 7. 6. 7 I
  • 8. 1 3
  • 7. 9. 9. 1 0
  • 1 0. 1 5. 1 2. 1 0. 9. 6. 9. 7. -, f
  • 9. 8. D 8. 81
  • 78. 77 I I
  • 7"' I J' 73. 7'1 I <. * ..,., f .J. ..,,.. ( 0. 84. 88. 93. 94. "" 7 0. 99. 1 00. 100. 1 00. 1 00. 98. 9 3. CJ). 84. 83. 81. E 11. 7!. 69. 69. 68. 67. 67. 6 0. 70. "1') I -' 74. 75. 75. 74. 74. 74. 73. 73. 72. 74. 73. 7'1 .. . 70. 69. 68. F 67. 6<-..J, 65. 6t' J. 64. 64. 65. 66. 6-J I ' 68. 68. 6 7. 63. 63. 62. 61. 60. 58. 63. 64. 6:.J. 6], 62. 62. G 63. 64. M. 71. ")'7 J .;). 76. 71. 66. "" ') .J.:... 4"" J, 41. 31. 30. 2 9. ') '::l 26. ""' L.J. 31
  • 38. 4o. 49. 49. <""1 ..J '-. H 28.97 28.97 28.98 28.97 28.97 28.98 29.00 29.00 29.01 29.01 29.00 29.00 29.00 28.98 28.97 28.96 28.94 28.94 28. 94 28.94 ;.;CJ. '74 28.96 28.97 28.97 I J o. 000000000000 o. 000000000000 o. 000000000000 0. 000000000000 1. 000000000000 2. 000000000000 2. 000000000000 2. 000000000000 5. 000000000000 3. 000000000000 2. 000000000000 3. 000000000000 1. 000000000000 o. 000000000000 0. 000000000000 0. 000000000000 0. OOOOO(.)!JOOOOO 0. 000000000000 8. 000000000000 5. 000000000000 ..l. ()IJ!J()IJIJIJ*J(}>JV() o. 000000000000 0. 000000000000 0. OOOOOOO(JOOOO Sheet 48 of 67 K L M 0. .00 1:!1.::55 0. .00 .00 0. .00 .00 0. .00 114.Q9 0. .00 .00 o. .00 .00 o. 116.79 117.13 o. .00 .00 o. .00 .00 0. 247.24 131.82 0. .00 .00 0. .oo .00 0. 282.37 0. .oo .oo 0. .00 .00 0. 165.24 0. .00 .00 o. .00 .00 0. ,00 145.22 0. .oo .00 u. .vv .uu 0. .00 121.88 o. .00 .oo o. .00 .00 N ' " .ou .00 .00 .63 .00 .00 .63 .00 .00 .70
  • 0 0 .00 r.:-,
  • J' .00 .00 .54 .oo .00 "7
  • J I
  • 0 *:) * \)I) ron * ._IQ .00 .00 Rev. 0 :;s 0 t"l t"l:j () :::0 t"l t"l TABLE 2.3-9 (continued) B. WORST EVAPORATION PERIOD (a,c,d) A B 12. 1440. 13981. 0. 1. ') '-* 3. 4. c ..J, 6. 7. 8. 9. 10. 11. 1 2. 1 3. 14. 15. 1 6. 1 7. 1 8. 1 9. 20. :n. 2 2. L j
  • 20000. 2 0 0 ')0. 20000. :>JOOO. 20000. 2000*}, 20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 30000. 30000. 20000. 20000. 20000. 20D00. '0. j 10. 1i. 10. 12. 11. 11. 14. 1 1
  • 11. 9. 8. 10. 11. <' ,J, 11. " 7
  • 4. 10. 4. 6. 8. 1'. c 1 * .., ( . 9. 7 I' 5. . '1* 4. 4. c .;, 6. 9. 8. c ,J, 7. 4. 8. 5. 9. 7. 13. 9. C' .;. 9. n 7
  • 9. D B. 81. 80. 78. 76. 74. 74. 77. 84. 89. 9 2. 95. 98. 97. 100. 102. 1 0 0. 101. 1 00. 88. 91. 88. 84. 82. 78. E 12. 68. 68. 68. 68. 68. '7 0'
  • 70. 7'1 I..:.... 73. 74. 74. 76. 74. 75. '77 I I
  • 74. 74. 73. 67. 69. 6 8. 67. 68. 66. F 62. 62. 64. 64. 64. 64. 67. 67. 66. 66. 66. 66. 64. .S4. 65. 63. 62. 60. <O'C J..J, 58. C'7 Jl
  • 58. 61. 60. G CO') J.:.. 54. I') L\i....
  • 66. 71. 71. 71. C'/ ...;.,::., 47. 42. 39. 35. 33. 30. 31. 29. 28. 26. 32. .J.:.. 35. 41. 49. 54. H 28.98 2U.97 28. 5'6 28.96 28.97 28.98 29.00 29.00 29.00 29.00 29.00 28.99 28. '*l9 28.97 28.95 2a. 93 28.90 28.90 28.93 28.90 28.'12 28.96 28.96 28.9? I J 0. 000000000000 0. 000000000000 0. 000000000000 o. 000000000000 o. 000000000000 0. 000000000000 o. 000000000000 0. 000000000000 0. 000000000000 o. 000000000000 o. 000000000000 0. 000000000000 0. 000000000000 2. 000000000000 5. 000000000000 000000000000 2. 000000000000 8. 000000000000 9. 000000000000 ?. 000000000000 4. 000000000000 2. 000000000000 o. 000000000000 o. 000000000000 K 0. (). (J. 0. 0. 0. o. 1). 0. 0. o. 0. o. 0. o. o. 0. 1 5. 0. 0. 0. 0. 0. ()_ Sheet 49 of 67 L .00 .()() .00
  • 0 0 .oo .00 11 B. 31 .00 .00 261.50 .00 .oo 28J.]J {\I'\
  • vv .00 138.43 .oo .oo .00
  • 00 .oo
  • O!J (\(\
  • v'" .oo M 118./4 .00 . 00 11 5. J 3 .00 .00 11 /. b *I t1n * \.J\1 .00 130.63 .IJ() .00 134.0'1 .00 .00 143.27 .oo .oo 134.73 .oo .00 122.15 111\ .vv .00 N t:"! * .;Q /'()
  • J * .00 * *SO .00 .()0 .67 1\1\
  • v*.J .00 .64 .00 .oo c*n oJO * *JIJ .00 .56 .00 .00
  • 4 3 .00 .00 '" * '1 0 .00 .00 Rev. 0 0 t'1 Cij n :;o tr:1 tr:1 :;o;::

TABLE 2.3-9 (continued) B. WORST EVAPORATION PERIOD (a,c,d) A B 13. \440. 13981. 0. 20000. 1. 20000. 2. 20000. 3. 200\JO. 4. 20000. 5. 20000. 6. 20000. 7. 20000. 8. 20000. ?. 20000. 10. 20000. 11. 2*J000. 12. 20000. 13. 20000. 14. 20000. 15. 20000. 16. 20000. ,-, 11, 18. 20000. 19. 20000. 20. 20000. 21. 20000. 22. 20000. 23. 20000. 10. 9. 9. 9. 9. 6. , i. 1 0. 11. 11. 11. 11. I 0. 11. 11. 10. ,.. 7

  • 9. 9. 9. ?. 9. 9. 9. c I. 6. 4. 4. 3. 3. 3. 4. 7. 1 0. 13. 12. 13. 9. 9. 7. 13. 17. 1 7. 16. 1 4. 12. 15. 1 4. 1 4. D 8. 76. -,r I J
  • 73. 70. 73. 71. 74. Rr* -J. 85. 90. 95. 97. 99. 100. 1 00. 1 01
  • 101. 100. 97. 93. 89. 87. 86. 84. E 13. 66. 65. 65. 6:J. 6 5. 6c* *-'* 6 7. 67. 6 '7. 7'1 I.:... 74. 74. 75. 7C I ,J' 74. 75. 73. 74. 7 3. 72. 70. 70. 70. 6 9. F 6 0. 60. 61. 61. 1 o .... M. 61. 62. 63. 65. 64. 65. 6 4. 62. 63. 59. 61. 62. 62. 61. 62. 63. 6') .... G C7 JJ. 60. 66. 7<0 J J. 66. 73. 71. <0') ..;._, 46. 41. ->7 ..JJ. 33. 3') .... 30. 29. 29. 'JC .:..J. 28. 31. 36. 39. 42. 46. 4 8. H 8 r.r:
  • 7 J 8.95 C\ QC 0. 'J 28.95 28.97 28.97 28.97 28.97 28.96 28.95 28.94 28.93 28.92 28.88 28.86 28.84 28.83 28.80 "}n 7n ,o *I 7 28.78 28.78 28.79 28.79 28.78 I J 0. 000000000000 0. 000000000000 o. 000000000000 o. 000000000000 o. 00000()000000 o. 000000000000 0. 000000000000 0. 000000000000 o. 000000000000 0. 000000000000 o. 000000000000 o. 000000000000 2. 000000000000 :.5. 000000000000 5. 000000000000 3. 000000000000 2. 000000000000 2. 000000000000 o. 000000000000 o. 000000000000 o. 000000000000 o. 000000000000 o. 000000000000 o. 000000000000 Sheet 50 of 67 K L M 0. .00 o. .00 .00 o. .00 .00 0. .00 109.38 0. .00 .00 0. .00 .00 0. 119.23 113.70 0. .00 .ou 0. .oo .uo o. 263.41 121.50 0. .00 .00 0. .00 .00 0. 277.69 139.04 0. .00 .00 0. .00 .00 o. 155.4? 141.92 0. .00 .00 0. .00 .00 0. .00 133.:!1 0. .00 .00 0. .00 .00 0. .00 123.83 0. .00 .00 o. .00 .00 N <" '1 .J.:.. .00 .1)0 .56 .00 .oo .60 .ou ,()() .59 .00 .00
  • 60 .00 .00 .58 .vo .00 cc ,JJ .00 .00 t:C
  • J . .J .00 .oo Rev. 0 ':E 0 t"1 () :;a t:tj t:tj TABLE 2.3-9 (continued) B. WORST EVAPORATION PERIOD (a,c,d) A B 14. 1440. 13981. o. :?0000. I. 2. 3. 4. c .J. 6. .., /. a. 9. 10. 11. 12. 1 3. 14. 15. 16. 1 7. 1 8. 19. 20. 21. 22. £.). :>J *J () 0. 12000. 120 00. 8000. 12 00 0. 'f')(\f\1"\ 1.:...vvv. i2000. 12000. 12000. 12000. 12000. 25000. 20000. 20000. 6500. 6500. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 1 0. 1 0. 12. 11. 10. 9. i 0. i i. 12. 12. 12. 11. 12. 16. 11. 10. 11. 12. 14. 15. 15. 1. 2. 2 . c I . 15. 1 4. 6. 6. 8. 1 0. 9. 7. 6. 11. 1 0. 9. 9. 6. 14. 7. 7. 1 4. 10. 5. r .J, 8. 9. 9. D n o. 84. n-, 0 .... 84. 83. 8 4. 80. 3 i. H4. 88. 92. 8?. 89. 91. 96. 98. 97. 96. 95. 93. 91. 85. 83. 82. a i. E 14. 69. 69. 70. 70. 69. 68. 68. 70. n. 7') I ..;..
  • 7') I .L..* 73. 74. 75. 74. 74. 76. 74. 74. -,c I .J
  • 72. 71. 71. 7i. F 62. I ** \J.J. 63. 64. 62. 61. 62. 63. 65. 63. 64. 66. 66. 67. 63. 64. 67. 65. 65. 68. 65. 65. 65. ' -. 0/. G H 48. 28.78 1:') 49. 53. 4" o. C') J..:.. 52. 4'" ) . 47. 37. 43. 47. 44. 39. 31.
33. 39. 37. 40. 47. 51. JJ, 56. 6 3. 28.82 28.80 28.79 28.73 28.78 28.80 28.82 28.82 28.82 28.82 28.82 28.80 28.79 28.78 28.78 28.78 28.78 28.81 28.83 28.85 28.86 28.87 I J K o. 000000000000 o. 1
  • 0 000 OIJO 00 ?. 000000000000 6. 000000000000 8. 000000000000 B. 000000000000 10. 000000000000 9. 000000000000 9. 000000000000 9. 000000000000 1 o. 000000000000 9. OOOOOOOO!JOOO 6. 000000000000 3. 000000000000 4. 000000000000 8. 000000000000 8. 000000000000 3. 000000000000 1. 000000000000 o. 000000000000 IJ. OOIJO!.)IJ001JQ(10 o. 000000000000 0. 000000000000 o. 000000000000 1-, J. 0. 0. 0. 0. 0. o. o. o. o. 0. 1). o. o. 0. 0. o. o. o. o. o. o. Sheet 51 of 67 L M * () 0 1 :! 1
  • 61
  • 0 () .00 0"
  • v .00 .oo 42.56 .00 .00 4 6 .00 .00 216.86 .()0
  • 0 0 96. *10 .00 .00 .00 * ()!J .00 .oo .00 .00 * () 0
  • 0 () 1 :!8. 62 .00 .00 131 .53 .00 .0() 140.87 .00 .00 1 3?. 2 *l .00 .00 14<1.54 .00 .oo 132.36 .00 .()'.) 1 2 2. 11 .00 .oo N t:-7 * ,J I .o 0
  • 0 0
  • 01 .00 .00 "' oJO .00 .00 .56
  • 0 0 .00 .65
  • 00 .00
  • 58 .00 .oo .63 .00 .00 .03 .00 .00 Rev. 0 ::E: 0 t" n ;;o t::t.l t::t.l :;;:

1.1-1 0 N Ul .j...J Q) Q) ..c:: U) 0'1 I ("') z WOLF CREEK oorooo ao oo _. . ....._ ... .::::. 0 C.s c;.. C::) o C.s "'-0 C.s 0 M Ct o "-0 1.-:'.:l ,..., C* 0 0 0 ..... 0 oooooooooooooooooooooooo oooooooooooooooooooooooo oooooooooooooooooooooooo oooooooooooooooooooooooo oooooooooooooooooooooooo oooooooooooooooooooooooo oooooooooooooooooooooooo oooooooooooooooooooooooo ooooooooooooooooooooooo OOOOOOONOOOOOOOOOOOOOOOO . H ro Q u 0:1 ro co co co ... u ro ro co ro :a co OJ *:O co co co -:o co ro co co co r*.. !".... r*..., , ..... r-... r-... ...a * ....., CO co CO r-rl "'0 ::-;. ...a 17"-..J .... a -..a U""l .o::::r Qo .. N oooooooooooooooooooooooo oooooooooooooo?ooooooooo 0000000 oooooooooooooooo C> 0 C...."""); c..-.. c:;. 0 0 0 0 <::> C::>> :::;:, C:J 0 0 0 0 c._-, 0 C) 0 C-ol C"J C"..J C"*J l-*4 C'J N C".J C"*J C"'*J C'*J C'*J ('.1 --.J N C"J C-J C'*J N N N C'J N N l""""l '"1"' LJ"') '-0 r-... CO (')-.. C> C"... 1'""'1 c-*J c--J 0 TABLE 2.3-9 (continued) B. WORST EVAPORATION PERIOD (a,c,d) A B 16. 1440. 13981. o. 1. 2. 3. 4. C" J. 6. 7 I

  • 8. 9. 10. 11. 1 2. 1 J. 1 4. 1 1 6. 17. 18. I 9. 20. 21. '"'? i. 23. 20000. ::o 0 ') 0. 20000. 20000. 20000. 20000. 2GOGO. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000.

20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 6. r .; . C" J. " J. 6. 6. 6. 6. 7 !

  • 7. 5. 8. 7 I o 6. J. 6. 6. 6. 6. 6. 6. 6. 7 I' 7. c 1
  • 6. L u. 6. 6. 6. 6. 9. 9. 9. 9. 7. 14. 10. I 0. 10. 9. 9. 11. 9. 10. 9. 12. 12. 1!. D 8. 73. 7? r _,
  • 71. 6 69. 6 8. 7'1 J ..;.. ..,, ,. 0. 83. 85. 89. 91. 93. 96. 97. 98. 99. 98. 97. 92. 88. 86. 85. 83. E 16. 59. <"n JO, 59. 59. 61. 61. 64. 67
  • 70. 71 I 71. 70. 70. 71. 71. 70. 70. 70. 70. 67. 66. 66. 67. 67. F 4B. .. ' '10. 51
  • rc ') ... J.:_
  • 56. "7 Jl
  • 60. 6 64. /C" O...i. 63. 60. 59. 59. 58. 55. 56. <"L" J J. cc ..JJ. :::!3. 53. 54. 57. 58. G 41
  • 4 i. 49. 54. 63. 68. 66. 6'\ 53. r 1 ,J I a 42. -, L" .JJ. 31. 29. '17 '-'. 24. 24. 24. 24. '1' .:.0. 30. 33. 38. 42. H 28.94 23.93 :!8.93 28.93 28.93 28.93 28.94 28. '75 28.75 28.95 28.95 28.93 28.92 28.90 28.88 28.87 .28.36 28.84 28.83 28.84 28.85 28.86 28.86 28.88 I J o. 000000000000 o. 000000000000 o. 000000000000 o. 000000000000 o. 000000000000 o. 000000000000 o. 000000000000 o. 000000000000 0. 000000000000 0. OOOOOOOO;JOOO 0. 000000000000 0. ouoooooooooo o. 000000000000 o. 000000000000 o. 000000000000 o. ooooooonoooo 0. 000000000000 2. 000000000000 3. 000000000000 2. 000000000000 3. 000000000000 0. 000000000000 o. 000000000000 0. ooooorJoooooo K 0. () . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
  • o. 0. 0. 0. 0. o. o. 0. ,') v. Sheet 53 of 67 L M .()0 107.29 * ()!)
  • 0 () o 00 o (}lj
  • 00 1 0:.!.12 .00 .00 . 00 . 00 119.60 110.37 . 00 "00 .00 26 i. 25 .00 .00 286.22 .()0
  • 0 0 167.00
  • O*J
  • 0 I) .00 .00
  • 0 0 .00 .00 AI\ .vv .00 123.76 .00 .00 127.90 .oo .00 1 31
  • 3 '! .00
  • 1)0 1 3 4. 31 .uo .00 11 '7. 9 J .00 .00 N .34 .00 .00 .J9 .00 .00 .53 .00 .00 .62 .00 .00 .49 .00 .00 .44
  • 0 0 .oo * *13 .oo .00 II .oo .GO Rev. 0 ::E! 0 t"' n:j (J :;o t'j t'j 4-1 0 N H u WOLF CREEK .... o 0 Cl o :2.1 CCI o 0 .q-0 0 -r 0 0 , ... 0 *0 *-Cl o cr-. o 0 .._ .. 0 .J"'l (..J 0 L.;J. C) 0 0 *.Q 0 0 <-r 0 (:_:) LI'"J 0 0 l() 0 C> ...a D o ':'0 o . _. ....a 0 (.."":! o ........ c:::-o 0'-* eo o r-... o ._. (:') o o o o co r-*J o o .... .._ .. o c) o 0 <;::) C1 0 o :;::'J '-> C1 C.l 1.1-::J .. OC)88000 0 0 0 0 0 o .. 0 c::::-C'-' c. 0 0 0 0 oooooooooooooooooooooooo oooooooooooooooooooooooo oooooooooooooooooooooooo oooooooooooooooooooooooo oooooooooooooooooooooooo oooooooooooooooooooooooo oooo=ooooooooooooooooooo oooooooooooooooooooooooo oooooooooooooooooooooooo oooooooooooooooooooooooo oooooooooooooooooooooooo oooooooooooooooooooooooo oooooooooooooooooooooooo c-.J C""-.1 C""-.J c *-1 l-*4 C"*J (""*J r--J C""*J N C'..J C"".J ('.J r'*J C"".J C'*J ("., C""-.1 C"*J C"*-1 c-.., ;:"" . MN C"*J o c,... co r-.... co o ,......, -..a o--*r ... a ct-. o N <:> a-.. ... a C"'"*.l o o-. co oooooooooooooooooooooooo oooooooooooooooooooooooo oooooooooooooooooooooooo N ('.1 C"*J (""*J l'-J r'"J r-l r...-, M ("'" J C*.t C... C"-.1 C"_, f"*.l 0 "" ,..., c-r t.l""l ...a r*-.... c:o o--o C""'-..1 f"-"1 C"l N t'.J 0 TABLE 2.3-9 (continued) B. WORST EVAPORATION PERIOD (a,c,d) A B 18. 1440. 13'781. 0. 20000. 1. 20000. 2. 2*)000. 3. 20000. 4. 20000. 5. 20000. 6. 20000. 7. 20000. a. 2oooo. 9. 20000. 10. 20000. 11. 20000. 12. 20000. 13. 20000. 14. 20000. 15. 20000. 16. 20000. 17. 20000. 18. 20000. \9. 20000. 20. 20000. 21. 20000. 22. 20000. 23. 20000. 8. r. 0. 8. 9. 9. 9. 9. 9. 1 0. 9. 9. 1 0. 10. 1 0. 10. 10. 1 0. 1 0. 9. 9. ?. 9. 9. 9. c 1. 12. 12. 12. 1 0. 9. 13. 13. 15. 17. 1 6. 1 6. 13. 10. 13. . .., I/
  • 14. 15. 1 0. 11. 8. 9. 9. 9. i 0. D n 0. 85. 8 4. 83. n' 0 I , 79. I 7 , 81. 84. 88. 91. 95. 97. 102. 1 03. 1 06. 107. 106. 1 06. 1 04. 98. 94. 90. 87. 87. E i 8. 70. 70. 70. 6 9. 69. 69. 71. 72. 73. 73. 7 4. 74. 73. 74. 73. 74. 73. 72. 73. 7') I "-* 70. 69. 68. 68. F 63. 64. 6*1. 64. 64. 65. 66. 67. 66. 64. 64. 60. 61. .... !/. 58. 56. 54. "7 Jl
  • 59. C"7 Jl. 58. 58. cn JO. G 48. 51. :5 J. 56. 60. 60. s.s. 48. 4 '.l 33. 25. 2.5. 20. 20. 19. 28. 21. ')7 1.. I o 29. 33. 3-, I' 37. H 28.85 :.:B.8:i 8. 28.86 28.88 28.88 28.89 28.90 28.90 28.90 28.89 28.89 28.89 28.87 28.86 28.84 28.84 28.84 28.83 28.83 28.84 28.86 28.86 28.87 I J 0. 000000000000 0. 000000000000 0. 0. 000000000000 o. 000000000000 o. 000000000000 0. 000000000000 o. 000000000000 1. 000000000000 2. 000000000000 2. 000000000000 1. 000000000000 1
  • 000000000000 1. 000000000000 2. 000000000000 2. 000000000000 o. 000000000000 0. 000000000000 2. 000000000000 2. 000000000000 000000000000 ') 2. 0 0 0 1) 0 0 0 0 0 0 0 0 0. 000000000000 0. 000000000000 K 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. Sheet 55 of 67 L .00
  • IJO * ()0 .00 * ()I) .00 116.41 .()0
  • 00 256.31 .00
  • 0 IJ 233.31 .00
  • 0 0 162.11 .00 .00 .00 * (J 0 .00 .00
  • 0 0 .oo M 1*_1') ,._,., J
  • G 0 * ()i) 119 .6'7 .00 .00 120 .. 64 .00 .oo 1 3 1
  • 6 3
  • 00 .00 138.34 .00 .00 .00 .00 140.4..7 .00
  • 0 0 1 )") ., * ...,
  • J ,j
  • 0 0 .00 N .)? .00
  • Or) .60 .00 .00 ! * .o., .00 .00 ,.., .o.:. .00 .00 .51 .00 .oo .48
  • 00 .00 .46 .00 .00 .47 .00 .00 Rev. 0 0 t"' 1-tj () :;.:l trj trj 4---1 0 0'1 I M N :z; ----------------------------------------WOLF CREEK c.... .::.. .;--, r J o ..::.._-:. -o -::-::. ::::;, o--. <:co ,-... o o o C> , .... :=:. r*.... o o .* :::::1 :::_; *-:-.. :) o .::, .... :-c) o :::._-, .. :-o o <.:-> o ""r o <::> c:::. C; --:: C' :::-.. c** 0 C) 0 * .. ':') -.n 0 (::'> C> 0 --* co c-:--. 0 C"*J ...____. :::::> , .... .::*.,:::. ..___. C* ::-_:":1 -..Q ,_ ,:::) .. .(l c;:;. **. * ,::::;. (_) r ... c::'J c.::. CJ ..,_. C* .:::) ::::'.*_;::).:::;._ C"1C): .. t"JO :"::)00(::-.. C:'ll ...__.. C* ..:::; .._.. CO 0 C) ... a 0 0 ::::-; o o .::..> C) c_;. 0 C; :..__; r-'"l .::::-.:. (__) (h .... _... ... <::.:> ..::::; ..:::::.. 0 0 H u rl'\ (() ..._. n oooooooooooooooooooooooo ..;::::... 0 .::::::' C;:s .:::._-:. C_:) .:-;-... ":> CJ CJ C> CJ 0 C:> c::> C-' c;. CJ e;. 0 0 oooooooooooooooooooooooo oooooooooooooooooooooooo OO--oooooooooooooooooooo OOo OOOOOOOOOOOOOQOOOOOO ;:J 0 *-:) .:::.... ..::.._--:, -0 o :) -:::::> 0 ,:-.* c-_;., 0 C* 0 0 0 C' *:::::> C.t ..::.._...._, o 0 oooooooo=ooooooooooooooo oooooooooooooooooooooooo 0:1) CO co co CO (;) .:0 .:0 CD CO co CD co (D ... v CD CO CO CO CO CO C'G CO C"'*J c-*J :-*.J C*J r--.J r* c-J c-J C"*.J c-.J :-*.J C"*J cJ c.. r-... . ... C:* --a .-:-co -..o *q--...a r*..... ...n "..;J -...o --..o cr.... L:-:J ...... ') o-.. co o -q--t'.t' <r u'"J LJ ..:;r f-0 r J .. -*.J C"'*-J ::--J :---.1 r*J r-0 co co o o o c--J r*r"J :'"" o--. co co -c:r--..o i"'l u"":J r-, c.. co ro 1 ... r--.. u) '.0 ..... 0 ....V '0 --J) I.() u'") L!-:1 uJ u-:: u") WJ \.() \JJ lJ") '-0 UJ u"') UJ l.J"") ro r*.... co r--... r--.... 1"... co o C'J -r-J f") !"0 -<tr r-rJ --::r --r r---J o o o--. ...a --.a -..o -.a --a -..o -..a r.... ........ r-... r-... r-... r-... r--... r*... r--.... r--.... r-... r--... r--... r-... r--... I""' ... -..o LJ r*J' CO CJ \.r.-J ro ro co co co r-... co co <"'-"' c) <".:::> <::--. o o c:-:o o (-;;, (.:'.1 0 (____'"") .::>OC,.C>(:J ("\J co C*J co ..-r lJJ r*J OOQ--.CJ"-.et--D--o C., 0 C* c_:, 0 0 0 .... --:-> 0 <.....") c" o c) .._-:-.. c._"",) C* c) c-... o <::-:> ':--. C> o <:* ..-:;. 0 0 0 0 "'-' <;. c) c> .::) C""*J c.J r-1 C'"J 0 o c_::-. (::'>> c-C"J r J r-J C*J C..'"")(:)('_:") ('*J C"*J 0 *::....--:. C) c) C> o o o o c_-., c::-> C'-.1 C*J C"J C..J C*J N C"J C J C"-.J 0 l'-.1 ,..., orr --a ,...,... co 0'--o l'*J M l*J C*J ('*J f'*J 0 0 LO .jJ Q) Q) ..G (/) 0'\ I M H co u WOLF CREEK .... .;-::l CJ ""T c) ....... 'J"') o ....-r c_; :::._-, .:::: o ... .,-c::: c..-::-**T o c-.. c .. ..._. o -...o 0 o "":-:l 8 o o o \.:.J c:> ,::::-; 0 C'-J co ...... C:::. 0 C) c:;.. ..._. 0 ........... ..__,. (h. 0 .._,. 0 I'-.. ..__, C.::> (t .. ,:::") Ct** <:> 0 . co 0 0 :::::; ........ .._,. :) ... c;:. *.::-.J 0 C.* 0 ::-:J 0 0 (0 C>> 0 (""*.) C> .,::) :--J ..._-*:*_:') c. 0 c C-C) :::::) 0 c;. c:. 0 C> c;:. c:. 0 oooooooooooooooooooooooo oooooooooooo=ooooooooooo oooooooooooooooooooo oooooooooooooooooooooooo ooo=o=ooaooooooo=ooooooo oooooooooooooooooooooooo oooooooooooo=ooooooooooo oooooo ooooooooooooooooo oooooooooooooooooooooooo c .. ooc ... ooooooc .. N ororomroooo CO CD CO CO CO CO .... _, co CO CD co CO co i.."':l CO co ::t'1 co co CO .:o CO CO co c*-.1 c*-..1 c--.1 r--..1 r--1 r---1 , .. J ;.-. c-.., c---J c---.1 r-J r--.t r--J ,.,. c-J r-r1 !"'? -q--..q-'"'T q-q-r-IJ C"*J ::-..1 C*J N <:">I r-'1 T1 N oroo N 0 -..o ....-:--C'*.l 0 co "'T" c:. IJJ ('?"-. 0 C"'*J (l-.. CO CO CO CO CO CO W 0'--C* c..-:. C::. 0 UJ C1'-CO -...Q OC? ... o-o-..o-.. oooooooooooooooooooooooo oooooooooooooooooooooooo oooooooooooooooooooooooo C"'*J C""*.l C*J C"'"*.l C'""*J l-J C'-.1 C*J C'*J ,-.... C'"*J t-..J C".l c-.1 c--J t"*J C*J ('J ('J C'*J (".J r'"*J \-J (" .... 0 .-:r 1,1 -...o r-..... co a-.. o r J r"l c-J rJ l'-J 0 co l.r) ..\J ,;::: 0 0 N -a ;-, WOLF CREEK 0 """' ... ;,;-) 0 0 "1"" C' *O r-rJ C'..1 0 U") ;:"'l 0 "'::"' C> C-' ' '"'-* -,--:_-1 I.J"") ,_ --0 !...-, 0 C* (_"") <:'* 0 0 -o ..,._ .. "D C':'> C':J 0 0::0 C:s r-0 ::-; o .:;:; --C> <:::::"> +-r 0 C'> .:._-; 0 C-t ...a <::'> 0 C> .... t C'".J (:..I *.:.::: C) -<:;:-0 ::_:-.. c:. ,::::-,0 C* <=> c .. c) oooooooooooooooooo oooooooooooooooooooooooo C1 0 Q 0 0 -_:::, c .. -:2:1 C;. o 0 C> 0 ....... -0 c ... C> 0 c._";> 0 c:-_::. 0 ooooooooooocoooooooooooo oo==oooooooooooooooooooo ocoooooooooooooooooooooo co ::t:1 co co M._. ::.o tt* co oo co co -co ;:o co r-... r-.... t--.... r-.... r-.... r-.... r-..... !"'.... ('"" ... C'-..1 t'*J .('"\,1 C...! ,"'-.! <.--.1 ;:---1 r'*l C.J \*.J C",..l (.""'...f \-4 C..J: C'*J ('._, C"'-.1 l' .. *,f ('*J . o.... -..c ...o -o :.;") o--. CD t"'.J r-r; ,....., .t::r 'Q"" ,.:r --::-r*0 \*J c--.1 "-0 q-...0 co 0"-!"") co 0 li'") C'.J , ... J M r-0 tl-* ::-4 c--J 1..1") ocr t.:J *T .. :r r*.... (I'.. ;:r.. co , ... ...v i'"*J co c,... ...a *..r1 ...-r *r f"'-.._ ..-:--.. r o---::0 co co c.o co 1::0: co (1"-. (,..., 0 0 0 c:> 0 <""> .::::-.-c:. c 0 (:.> 0 o c-. c;> ("'...j CJ o .::-.::> o ("'*J c--.1 " ...... 0 0 Ct-CO oooooooooooooooooo 00000000000000000 oooooooooooooooooo ('.1 C'-.1' C .f 0-1 ':"' C' ..t 0.1 C -J f"'-t t' J 0.t C"--.l C'.l C'*t N . 0 t'i *r I.J.I ---D r'..._ CO 0-C"'l. ("' J M "r LIJ I"'-ro 0... 0 N r--'1 r-J l'J r-J 0 TABLE 2.3-9 (continued) B. i*JORST EVAPORATION PERIOD (a 1 c 1 d) A B ..,.., 1440. 1J7'0i. o. 20000. 1. 20000. 2. 3. . ;. c J. 6. 7 I' 8. I o J 0. 11. 1 13. 1 4. i 5. i ,). 17. -,J :) *..) *j. 2 *) 0 0 c:. :.J0)0 * 'I(' I I'\ I\ -',} '.1 'J '.j
  • 2*:*000. 200J0, 2 J *'J *=I 0 1 2*J:OG. 20J0*J. :: G *J 0 .')I :o,Joa. ::oVGD. 2:) .J 0 0. :OJJV. :oovo. 20000: l?. 200JO. ::c I 2C*JO *J. 21. :>JOGD. 22. 20*)0*), 23. 13. 9. 1 0. 1 ') c "'. '1 .., ._. 'I . , . .; . 7 I o 0. . 3. i. '1 ._. '1 ,., '-. ., . .,, .; . c i. 9. 10. 9. 1 0. r: J. 3. . ' I >j
  • 1 2 10. ',., I..::,, 9. 7. r: J. 4. 6. 9. 9. 7. 9. 1 0. 1 0. 9. 11. 9
  • D 8. 94. 89. 85. 83. 83. 80. 81. 81. 83. ""' 0 i
  • 89. 92. ""' 7 i
  • 98 . 1 00. 100. 1 00. '7'9. (i,-, 7 0. 9 3. ] \,) . r. r, 00 * ,-, 0 /
  • 8.6. E '"")") .;_L
  • 7"7 I Jo 70. 70. 70. 70. 6 9. 71. I Q 0 I 0 6 '7. -,. l I I 7') I
  • o 74. 7 I I 0 o 76. 77. 77. 78. 78. 77. 75. 73. 72. 7* I I
  • 70. F 63. I") *:J ** 63. 64. 64. 67. 63. 63. 64. 65. 67. 67. 67. 67. .:,a. 69. 70. 69. 67. 6:i. 65. 64. 63. G 36. 41. 45. 51. 53. e-n .JCJ. 6.1. 54. 51. 46. '" 'i .J. 44. '77 *.JJ. 36. 34. 36. 39. H 28.82 23.82 28.81 28.81 28.82 28.84 '1'"' nn ..:..o.oo 28.91 28.91 28.93 28.93 28.93 28.92 28.1'3 28.1'2 28.91 2i::i.8'7 28.89 39. ::a.ot 42. 28.89 44. 28.91 47. 28.1'3 46. 28.94 46. 28.95 I J K 3. 000000000000 o. 2. 000000000000 o. 2. 000000000000 2. 000000000000 3. 000000000000 1. 000000000000 3. 000000000000 3. 000000000000 2. 000000000000 1. 000000000000 1. 000000000000 1. 000000000000 1. 000000000000 o. 000000000000 1. 000000000000 1. 000000000000 1. 000000000000 0. 000000000000 0. o. 0. o. 0. o. o. o. IJ. o. 0. o. 0. o. 0. 0. o. 000000000000 0. o. 000000000000 0. 3. 000000000000 0. 2. 000000000000 0. o. 000000000000 0. o. 000000000000 0. Sheet 59 of 67 L M .00 135.03 . 00
  • DD .oo .00 .00 .00 107.75 .00 .00 2:J8.47
  • 0 0 .00 '2?7 .19 .00 . 00 158.04 .oo .00 .oo 123. 3? .00 .00 1 2*1. /5 .00 .00 .00 01' * :J 136.'12 .00 .00 1 *10. ?5 .01) .00
  • 00 i 3l1 .. 2 4 .00 .00
  • 0 I) * () 0 .IJ() 127.0;) . 00 . 00 . 00
  • 00 N .58 .00 .00 e-n * .J 0 ,()() .00 .oa .oo .00 .60 .00
  • 00 I I .oo .00 .00 .70 .00 .00 .?1 .oo .00 .63 .()0 .00 Rev. 0 0 t"' r1j 0 tr:l tr:l :;>;;:

'-+-1 0 0 \..0 N z H co u -------------r-., C* l() -*::;. .::::-. C*J '*' ',*' -<:< WOLF CRE:EK 0 0 LJ ... c* c1 (:'"'> co (:":> 0 -::_---'! ;:'_') .. C) -:;:::':! 0 *r c_-, _. 'J "'--.' '"'-*' <:-::-. C.: C> o c, C';t ... r CJo c* c:, -::-:-J .:_-, .:::.:* , .., <:::0 CO C* . :.::;; -::.:-; -:.:,"1 ..::--_-. o c*. o o o o :::::.. CJ o 0 o C".J ..,._, C* 0 (:;. ....._., o o ..:':'.t o C:-' 0 0 :__::.; ::;; o 0 0 *::> :::J C* --....J 0 C',o 0 C..o Q 0 0 0 0 C-* 0 _::) C;J C-> c_-. 0 0 oooooooo ooooooooooooooo o .. -::> :;:,., c. o c:: c: a o o o ...,_A o C.; 1.':::. o C".l -:-.-c:.;.. CJ .-., :::::.. .* ,:--:-.; ::::l c:> -.;:-:, <:c> ::--.. ::; ,:-.. o 0 <::.:> oooooooooooooooooboooooo c) o ::::) -c..-.. <...ii< .:::-J r:_"";* c..-:. . .-_:-:,. C':l o .::..."":1 o c .. -c..":l o .._J o o .:::> o o oooooooooooooooooooooooo C"*J t'-4 >..J C"*J f'*.j C"*.t C'*J C'-.J ._-*J \*J L*J ("'*J l,>.,i C"'-.1 C*J \."""J (" J C-4 C"-..1 C'l <:"" <<r:r ,....r "-t" f'IJ ..-.r-q--._:r !J"') c:-' M f"'f') M !"'? C'-.1 (' J t-.i C">J """") M <:t" -q-q" . \""*J .._-;... ./"'! rrJ t-o"'"J w") !"*, C"*J lJ") <T' N") NJ (".,J ("-J ,"f") N) l.J") "-0 <t"t-<f' <<:f" '"<') o -..o ... a -..o .... a "-0 r-... r-..., r*... !"' .... ,-..... f"-,-....... r-.... ..... ... r*, !""-... r--.... !'..., r-... r...... <T C"*J 0 C,.., CO C"" (".f CO C'*J !"'""") i.J"') U'J r-..._ N M f",J 0 L"l C'J 0 CO '() oooooooooooooooooooooooo 0 oooooooooooooooooooooo 0 oooooooooooooooooooooo C'*l C*i 4"'-J C.l C"*J f'-J ('*J ( N i J 0-.1 f'*.t c**t f"'*J C" J C*.J !"'-4 C"'.l !"'.I C' 4 C'*J C'J M <tr U"") f".., .:0 0"-* 0 \' J f'#") c'4 N 0 0::: u J:r-i ....:l 0 8: 0

  • L\.8'd oo* oo* 9 . oo* t* b. i\r * ",; oo* 6 b. oo* oo* cr* "_, On' ,) 00' rr* * *:J:"' 0()" 00' r.r" './."1 (';{)' 0 (*. 9 (; i). (',i'." \j\j N oo* 0()' c-.;: '9Z l oo* Q!*. r I
  • L C' I t LJ L. .. (*0. oo* ()()' 00' C' r .* 'v oo* 00. 00. oo* oo* ;:L'FH r:;['2:9l cc. (; 0. 00. 00. l't"fH oo* oo* ((). 00. r!*hr-1 tr.*J*n-r z..* l.tJ U/L c:o* oo--(;('; . (:(; . l. 6;_: l ,i. 8 'll9 00. 00. () (:. (;(). q .. l(: l ()0. (;(). (:(). (', l\ * /'. (\ * \I *} \i v 9t_,"6C:l uo* H '1 L 9 JO 19 =tG<=H-IS *o *o '() '()
  • 0 . 0 'I)
  • 0 '() '() *o *o *o '() *o
  • 0 'Ci
  • 0 '() 000000000000 '0 000000000000 '0 oooooooooooo *o 000000000000 '0 000000000000 '0 0 0 () 0 0 () () 0 () *:J 0 . 0 000000000000 000000000000 '[ 000000000000 'l 000000000000
  • l 000000000000 '0 ooonoooooooo *o 000000000000 '() 000000000000 '0 oooooooooooo *o 000000000000 '() 000000000000 "£ 000000000000 '8 000000000000 *o oo0ooooooooo "() 0 (! 0 0 0 0 I) 0:] 0 G () ' 0 0 0 I)()() 1.") 0 C*:) 0 (I '/ *o oooooooooooo 'L *o oooooooooooo *9 )I .[' I t8*oz l8'U l8'f1(:
  • GZ: 6L. 8.: 8/.81: U'8Z 08 "8i: BZ £8.8Z 88'8(: 68"8Z 06'83 06'8<: 06'8Z
  • s;: 06'fJZ 06'8(: 06'Cl () 6. !l z fi? (\1.1 8;: l6"8Z H '£[ *u* '0[ *a 077 LL . rJ t *oz
  • 8l *oz
  • 6 l *o;:
  • tz '('-, ' {. '82: '0[ . 'M' . ('
  • r . " . r :9 * \' r 8
  • 1r* '--" * 'r l_ _,
  • Jr Lco * 'r . 'r '--" *or U.:> * 'r I _, '(';;
  • 09 . l9 * £'i '!::9 '09 '09 * 'r* _, *sr; '09 '<::9 '£9 ;; ;9 d
  • 6 9 '89
  • 6 9 'Oi 'GL *u_ 'I. I '/_ '('I cL *u *u *u
  • r I "'-* r J "'-'<;( '('I L/-' t i '69 * '0 L' '<;9 * (_ 9
  • 8 9
  • 6 9 '().:' . li * '8 '68
  • 68 'Z6 . z 0 t
  • 9G 'iO l
  • 80 l '80t '60l
  • t.' 0 l
  • 80 l . 9 0! . zo t '86
  • l6
  • OQ wu '£8 '0 I uL
  • 08 . 08 . t c
  • 0 L '" 'I.D vu
  • 8 a . z l
  • 0\
  • 6
  • l '-'
  • 0 l e t
  • 0 l
  • r t . z l
  • v l 'tl * £: t '(
  • 0 l . 0 l
  • 6 . ll
  • 0 l
  • 8
  • 6
  • 6 . 9
  • I L 'I L 'l J
  • 0 t
  • 0\
  • 6
  • 6
  • 0 l . ll . 0 l . 0!
  • t l 'll . ! l * =! * ! l
  • 11 * £ l
  • ll
  • I I .. '111 u.
  • 0 t . 6
  • 6
  • I L . 9 *oooo<: *r;: '0000<: *;:z.
  • 0 0 c 0;:
  • l;: 'OC*OOZ: *c;:: 'C*OOOZ '6l * (\r.r.r,-;
  • o 1 v v .... ., ,__ v. *tt *oooo: *q*t *ooooz *cor;o;:: *r-t *oooo: *rt *ooooz *zt 'OOJOZ '!! '00002: 'Ol *oc*ooc: *6 *ooccz *s
  • r r. r ... (\.. * , Vv .... L '0 C* C.<:: I '9 *r; *coooz .DC;C*OL '(' *...... "';11-.1 lvvL* L 'CD o: l . l 'OOCC:! '0 *crrl 8 v OOI'd3d NOI.L\f'dOd'l/\.3 .LSBOM '8 (pGnU}=tUO:)) 6-['c 3'18VJ,
  • rl .j..J c 0 l) N z ...::!* u WOLF CREEK '::J 0 _ _... r*t ,-:, c-.. ro C> 0 c ... 0 c:> C; *-:-:> ... 0 o e;.. o :J c .. :..."J ("'":' ::.:') 0 <It:"' ..:::.:' 0 :..-; c:. ,-:::, *r ... _, 0 C* :'",:'J Cl C C> CJ , , '-' 0 C""::. C* :;:;::, ..... -';:'> *::_J r*;, . . 0 ..:::.* *.::::-.\ "--' 0 0 0 0 0 0 0 C* *O 0 C"' 0 C.> C) <::"' c .. 0 0 0 0 0 0 :;::-.. (:') c::. C'; C:'.* ... _ .. .::::. 0 C::> oooooooooooooooooo ooooo=ooooooooaooc 0 ..__:* .::::. 0 C* 0 c*s C:* CJ. C> 0 0 0 Cl ::_:.1 oooooooooooooooooooo 0 0 oooooaoooooooooooooooo oo=oo oooooooooaoooooooo oooooooooooooooooooooooo oooooooocooooooooooooooo oooooooooooooocooooooooo rororororororororororooorororomrorororororomoo C"*J c--.t l4 f"*..l , .. _. C-J .. -.... C"*J C'*.l C"-*J ;:-'.J C"*J ;:'-J C"'".J ._ .... C"*-l N C*.J . NNNNNN 0 0 ooooooooooooooooocooo ooooooooooooooooooooo ooooooooooooooooooooo ooooooooooooooooooororo C'*l , ... C .. J ("-l I(""'*" C*J \*J C'*J c--J !'.t C"J C*" C'l N N C'-.l (" .. ,......., N 0 C> 0 0 0 0 0 0 0 0 0 N ,........, N L--l ,....., Lil -..a r, ro o-. o r--.1 M C"'J N N 0 4-j 0 0'\ I (V") H co Cl u WOLF CREEK c:> ... C> ,;:::) t,: ' ' ,.., n r**; 0 c*, ;'") ....... = .;::*, :::.:_--_1 ('"' ----;::u o :,;"1 ..._-cJ 0 8 c:T 0 ._,. G ::::. C> --o o ,__ c::, 0 *o C> C":: 0 ,;-_:_:, "-' (.:;, C':> ,_, (_") ",..,. ... 0 0 0 0 C> -....-' 0 0 C-> 0 0 0 e;. ::._;; C* 0 C.* C.> o o oC::;1 -, ..._... o ::::" o :::;:; c) o o 0 C;: c ... o ..._p Ct c 0 o C* C* o o o o <.::.. ::_:. :.:...:. <:> oo c.. ::,":J (:;t o ......... C"'* c) o c) o c-' 0 0 0 0 .:-:,.-, c::. 0 0 (.":. c:;,. c.-o 0 r_:-:, o ."';'; C:::>C.>C..o<.""->OO::...":lc .. oo 0 0 0 0 ---0 0 0 0 8 C> C1 C, 0 :;::) C; 0 o 0 CJ o .._-.::::;. :;::::, 0 C..1 C .. (:'.; 0 0 0 0 '"--0 C.: C* 0 .. QC".-OC:J 0 o C.< o C.) 0 0 *-" 0 <.? 0 o 0 C.; 0 0 o CJ "--" o 0 0 o o <:::. o ::::: -C"J o ...__. ..._, o o .::-.lo::::'.loc .. .. .:-> oo:::;:,:::-.. oc ... oooc;Jooo o o <=:> o o o o o *o o o o .. o ::> !"'*.t r.-, -o tl'---c....., :0 :::o -:o -..o C'"-1 o ;:o r-.... r-.... 0 :-...t .n . . roromrnrnwrnoro C*..l C"--..1 .;" -.-1 t: *.l \ .J ('"-.{ ('"...j \4 C.Y ;:" C*J \*J c*..J \*J (".J t'"*J ('..,J. C.J .""'..( tr; ..o r-... o 'i) '*'J :::1 o co :o "":1"' l:J ....::) -....'J co 0 :--..... (r. :0 . *n 10 -o -o cO -o -o -o -o -.o -.o ...o ...0 -o '"' ll"? '-0 lJ-. N 0 ....a f"'.._ t'""') f"'-.1 ....0 K M " oooooooooooooooooooooooo oooooooooooooooooooooooo 0 C"".J M "f' 1.1:1 ....0 f".... CO ('*-.. 0 C",f M tJ C"J N TABLE 2.3-9 (continued) B. WORST EVAPORATION PERIOD (a,c,d) A B 27. 1440. 13781. o. 20000. 1. 20000. 2. 20000. 3. 25;:100. 4. 5. 6. 7 I' 8. 9. 10. 11. . ')
  • 13. !4. 15. 16. 17. j 8. 19. 20. 21. 22. 2 3. ...., c /', r\ '\ .:. ..;',) vv. 20000. 20(100. 20000. 20000. 200QO. 20000. 200)0. ::oooo. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 9. 9. ,.., 7
  • 9. 9. ,.., 7
  • 9. 1,, v. 10. r. 1
  • 9. 9. 9. 10. 9. 10. 1 0. 1. ;, v. 9. 9. 9. 9. 1 4. c 1
  • 9. 8. 8. 7 I' 9
  • 7 I
  • 11. 13. 14. 12. 15. 10. 11. 13. 10. 14. 9. 17. 17. 14. 12. 9. 13. 12. D 8. 8') 80. 78. 77 I I
  • 7' I 0 * { .J
  • 7" D
  • 80. 8 4. 88. ,..,., 1 9 6. j 00. 102. 102. 1 0 3. 1 02. 101. 1 0 0. ,.,, 1 i
  • 93. 92. ,.,., 1 90. E ,.,-:>> .._,. 7'1 '...:.... 71. 70. 70. 69. ',.., 0 7. 70. 71. 73. 74. . , 1 J. 'D
  • 76. 76. 7<" I .J
  • 7<" I J' 75. 75. 74. 74. 73. 73. 73. 74. F 6-, I' 6., I' 67. M. 66. 66. M. 67. 68. 63 . (..8. 66. 65. 64. 63. 63. 63. 63. 63. 63. 6 4. 65. 67. G H 60. 2Cl.86 6':J. :.>c!. 84 69. 28.84 68. 28.83 ?l. 7 4. 6 6. 65. 58. C*) J.:.... 45. 40. l':l 2'1. 29. ,...., .;,..; . 28. 27'. 29. 3') '-* "7 .:;, . 40. 41. 47. 28.83 28.84 2Cl.CJ4 28.84 28.84 2U.83 28.83 C\'"l L.O.O..:... 28.80 28.79 ')rl 77 L0
  • I I 28.75 28.73 28.71 28.70 28.70 23.72 28.72 28.73 -7' .£..0
  • I Q I J K 0. 000000000000 0. 2. 000000000000 0. 4. 000000000000 o. 9. 000000000000 0. 9. 0000U0000000 10. 000000000000 9. 000000000000 7. 000000000000 J. 000000000000 3. 000000000000 0. 000000000000 0. 000000000000 o. 000000000000 o. 000000000000 1
  • 000000000000 1. 000000000000 1. 000000000000 2. 000000000000 3. 000000000000 4. 000000000000 4. 000000000000 4. 000000000000 4. 000000000000 8. 000000000000 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Sheet 64 of 67 L H .00 122.'11 * 'I()
  • 0 (!
  • Ut) *
  • 0 r; 127. i "!) o) ..00 J J. 8:? * (j!)
  • 0 IJ 2 *1::.! * .J .. rJ a on 2/8. 3 .00 .00 138.8? ..00 * *YJ
  • u ') "0 () .00 .OIJ .00 .00
  • f_)() . (_)() 1 2 ci. = 'i' * '.)0 ,!)!) 131.32
  • 00 .00 1 37.91
  • f)fJ * (i () 1 4 () .. 8 () .00
  • 0 () 11;a .. 1 * () 0
  • f) i) 1 -, r 7 J . .J J .. 'J.) .00
  • IJ() N .67 .uo
  • 0 * ::*""1 .00
  • f)>) . * !Ji) .uo .70 .00 .OJ .62 .00 .O.J t'7 ..._lj .(!0
  • 0 0 c I '-11) .00
  • 0 0 I 61 I' !'I
  • J.
  • D 0 Rev. 0 :E: 0 L' I"'j n t<:l t<:l ::,.;;

TABLE 2.3-9 (continued) B. WORST EVAPORATION PERIOD (a,c,d) A B 28. 1440. 13981. o. 1. 2. 3. 4. " ,J

  • 6. 7. 8. 9. 10. 1 1
  • 1 2. 1 3. 20000. 20000. 20000. 12000. i200G. 1 0001). 10000. 1000-J. 8000. 8000. 8000. 1:;ooo. 12000. 14. 12,)00. 15. 12000. 16. 12000. 17. 20000. 18. 20000. 19. 20000. 21J. 201J()fJ. 21. 20000. 22. 20000. 23. 20000. 1. 9. 9. 9. 9. n 7
  • 9. 9. 9. 8. 8. 7. 9. 10. 1 0. 1 0. 11. 11. 11. 10. 9. 9. 1 {\ I "J
  • 10. c 1. .., ..J, " J. n 7 I
  • 7. 1 7. 1 4
  • 13. 7 I
  • 8. 10. 1 0. 10. 1 2. 15. 1 6. 1 5
  • 1 0. 7. 7. 7. 9. . .... \ 1 6. D n 0
  • 86 . "" OJ
  • nc: 0 J. """ OJ. 8 4. 80. 81. 81. 82. 85. 86. 90. 9 5 Q"" I J o 1 0 0. 1 00. 1 0 0. 99. 9 9. 96. 92. 90. 9 0
  • 90. E 28. -,c I J' 73. 7"
  • 71. 71. , . i I
  • 70. 71. 7' I I , 72. 7-. I ..J' 76. 74. ; i.,. 75. 7" I J o '" I J' 75. -, .. I J
  • 7<" I ..J
  • n. 73. 73. n. F 70. 68. 66. I (_I.J I 65. 67. 65. 66. 67. 6 6. 67. 70. 64. 65. 65. 64. 64. 64. 6" J, 66. . 66. 65. G Crl .J;
  • c*--, J/. 53. 51. 55. 6'3. "" Jo. 60. .so. r:*-, J.;_, 36. 3/. 31. 30. 30. 31
  • 3 ') L
  • 37. 4 1
  • 44. 45. 44. H 28.77 ')n 7' ,_.:J.' a 23.75 20.76 :28.76 '")n if 4-Q
  • I I 28.77 28.?7 28.30 28.80 f 79 28.78 28.77 28.?5 28.73 ':" 7'1 LO.J 4-23.71 20.70 28.69 23.68 i! 'd
  • 6 'i 28.70 28.70 28.71 I J 10. 000000000000 10. 000000000000 10. ouuuoooouooo 10. 000000000000 10. OOG0000UOOOO 10. 000000000000 10. 000000000000 10. 000000000000 10. 000000000000 10. 000000000000 9 .. 0000000000(10 8. 000000000000 9. 000000000000 8. 000000000000 8. 000000000000 7. ooouoooooooo B. 000000000000 5. 000000000000 5. 000000000000 000000000000 ouuouuuoooou 4 .. 0000000000()0 3. 000000000000 1. 000000000000 K (' .,_1,. 0. f)
  • 0. 0. 0. 0. o. !). 0. 0. o. 0. 0. o. 0. (}, 0. o. o. (). 0. 0. o. Sheet 65 of 67 L
  • 00 ,()()
  • 00 .00 I {j .00 ',.., n ..., 1. 0 J
  • 0 (.) f'(\ . . .) ) 8?. 2? .00 .00 133.18 .O'J * () 0 1 09. :!? .iJO
  • 0 () .00 0 ')
  • uo nn
  • 1.1 *.J .00
  • 0 0 H 'I*-,!"", ,-,I I ,J .J
  • 7 0 .vU .'Y! 1 J 6 .. J 3 "" * !j '..!
  • 0 0 132.37 .oo
  • 00 1:56.,)5 .OD .00 1 .; 4. 9 (1(' *
  • J . '**' ')
  • 00 .00 H 3 .1 5 .00 * (/ 0 l:..i3 .. .oo .00 N -, .
  • I *t
  • iJ ll
  • IJ (J . .., 'a.:: . 00
  • 0 . .-, .c..:. .00
  • 0 0 .6::J (* (\
  • J ..' !1'\ * *v J ! A .ov
  • lj 0 * 'Y} .53 * (J 0 I fjf) * ,) 0 .00 .00 * ,.) 3 .IJO .00 Rev. 0 0 t"' t'Ij n tr::l tr::l 4--1 0 .w Q) Q) ..c::: (j) m I M u m z H . co u co co ,.,., WOLF CREEK 1___,-J CJ 0 _....., 0 0 ""T 0 0 0 C* C> -::'* 0 C"l 0 0 ..::':l *c .-::) CJ ::J ...... .:_""'"l ::-) c) r.., o ,:::-; .._. :::::* t*..._ (:J. .... o o 0 4<1'"" c*. "'" o c) C'J .r .... .._J C* :__) *' 'o :::::-1 .... CJ .::...._; ..... -.. ::::_-., .... _.. CJ ,_. co 0 ..._. *0 (:J c..::-. /""<J (.-1 c ... "T CJ .:.:...-;..-; ___ , c.. ... c-> 0 ( J :'"') C ..___' 0 ::::::--' l' o 8 c;-... 0 8 C'*J 0 0 ..,.rJ CJ 0 (.-:::. .;:::-. 8 .;::, 0 c .. 0 C'> --c.::. c--. GJ ,::-; C* L--:1 0 .::::_) <---. 0 "J c_-, ... C... ::::;... -::.:1 C> C.,:; ooooo oooooooooooooooooo oooooooooooooooooooooaoo oooooooooooooooooooooooo oooooooooooooooooooooooo ooooaooooooooooooooooooo oooooooooooo=ooooooooooo oooooooooooooooooooooooo oooooooooooooooooooooooo ...z1 <l:-:t' <:t" .q-UJ Ui UJ ....0 CO f*..,. CO CO Ct-0 CO C"*J c-.J ...a -...") ---o '-0 ...a ...._o ,..o -.o -..o ....o -..o ...a -...::J -..a r-.... --a -...a r-.... -..o r-.... r-..... ,-..... 1 .... ,.._ MN 000 0 co co co co co co co co cr-.:>.. o o o o co co cr---o--.. o--co co c.o co ,..,, 0 oooooooooooooooooooooooo oooooooooooooooooooooooo C.::> .. -:;:> .::::> o <::> o o o C:> o o o o 0 -.o l.l"""J 1.1'J Li'"l uJ !.I.J \.&.J \1.-, C"'-.t C'-.1 (',1 C'*J C"*J f'-.1 C'*J C*J t'*J C'"*J C'".J 0.1 C"' C""-J C'-.1 \..a tt') --r uJ ...a r.... co ("1--. o C""*.J ""'l "' C'-J 0 TABLE 2.3-9 (continued) B. WORST EVAPORATION PERIOD (a,c,d) A B 30. 1440. \3981. 0. 1. 2. 3. 4. 5. 12000. 1 2 0 0 0. 12000. 12 0 0 0. 12000. 12000. 6. 10000. 7. 12000. 8. 8000. 9. 10000. 10. 10000. , , .. , 5000. 12. 20000. 13. 20000. 14. 20000. 15. I 6. 17. 18. 19. 20. 21. '")'") ..:.."-.. 23. 20000. 20000. 12000. 12000. 20000. 20000-12000. 12000. 12000. '1 "-* 3. '") 2. 2. 2. :. . 2. '") 2. .; . ' ,_,. . "!. 4. r .;, 6. 4. 4. '") '") .... 2. 3. 4. 2. c L ') J. 4. 7. 6. 9. 9. 7. 7. 9. 13. 1 0. '1\ I \)* 10. 11. 5. 9. I 0. 6. 9. 8. 9. 9. 9. 4. D 8. ..,,., ,. 7
  • 78. 77. 76. 76. 76. 7' I 0 o 79. n') o.:.. 8 4. 86. 90. 92. r.. 7 '1
  • 9 5. 96. 97. '15. 92. 89. 87. "" o.;. 8 4' 83. E 30. ..., ' t"i. 73. 73. 73. 73. 7') I,;_, 73. 74. 74. 7 4. 73. -,,, / I
  • J '1. I' I '1, 73. 74. 7 4. /4. 74. 73. 73. 72. 72, F 71. 71. 71. 71. 71. 71. '7'1 J ..:... 7') I i..
  • I' 1 I * /0. 68. ,--, 0/. 66. 65. 63. 64. 64. 64. 66. 67. 67. 67. 66. 67. G 76. 7?. 81. 84. 8 ct. 84. 8?. 79. 67. 63. "" .J.J, 4? .. A2. 39. 35. 3t: c), 33. j 6. 42. 48. "" ..;..;.., "" .J.J. ..J...J. 58. H 28.86 2:J. 84 "")n n' ,_o.oo 28.86 28.87 28.87 2Cl.70 28.93 2Cl.74 2Cl.93 28.92 2 cl. 10 'In fin ..:....0.07 28.88 28.8/ 28.85 28.84 .:!:l.o.5 28.82 28.83 28.84 28.84 ..-.> q .. 4-U*'I..J\.J 28.88 I J 8. 200000000000 7. 200000000000 8. 200000000000 8. 200000000000 8. 000000000000 8. 200000000000 8. 200000000000 10. 200000000000 10. 000000000000 10. 000000000000 10. 000000000000 9. 000000000000 1. 000000000000 4. 000000000000 3. 000000000000 s. 000000000000 3. 000000000000 6. 00UUOOUOOOOU 6. 000000000000 5. 000000000000 7. 000000000000 10. 000000000000 10. 000000000000 10. 000000000000 Sheet 67 of 67 K 0. 0. 0. 0. 0. 0. L .00 ,IJ!)
  • IJ!)
  • 0 (l .00 . 0 0 1>1
  • Q *J r'/' * '_I') 126.':'3 .00 .. ,, 0. 6].82 127,38 o. .00 .oo 0. .00 ,00 o. 8/.8'1 136 .. '7'j o. .uo .00 0. .OU .DO 0. 275.::H 131.6/ 0.
  • 0 0 * () 0 o. .00 .00 0. 0. 0. 0. 0. 0. o. n ...... 0. 1l'r*) r,-l 't 7. (.\ .J
  • 0 () .00 .00 * (>() .O'J .00 /i(1 1 '.)',) .00 1 J?. .00 * *"II) 1 JS. 0 J
  • 0 J .00 136.98 .OG .oo N -,, ,, 0 .IJ 'J 'I)') 77 o I I "i\ . \.: \) * '";0 '" .; "'! .00 I>(\ * ',j \../ .. 7 *i .C'O .00 .. 0 *t nn
  • J .00 .60 .00 .vo .. 54
  • G 0 (\('
  • v J '7
  • Ol .00 .00 Rev. 0 ::8 0 t"' l"rj 0 t<j t':i WOLF CREEK TABLE Y AND AND TENPf::RATURES Average Month Da i 1 y b Maximum( ) January 42.2 February March 57.8 April 69.1 May 77.3 June 86.4 Julv Q? .. 2 August 91.9 September 83.9 October 72.6 November 57.5 December 4 5.1 Annua 1 68.6 ain degrees Fahrenheit. bData Period 1897-1960 cData Period 1931-1960 Source: Average Da i 1 y b Minimum( ) 20.5 23.4 32.5 43.9 53.6 62.9 66.8 65.9 57.7 46.0 33.0 24.1 44.2 2.3-10 1\NNUAL AVERAGE FOR BURLINGTON, Average (c) 32.0 36.6 44.6 56.7 65.8 75.4 80. 3 79.7 71.3 60.3 45.2 35.8 57.0 Sheet 1 of 3 KANSAS(a) Extreme Extreme Maximum 75 -22 86 -27 94 -6 94 13 102 24 110 40 117 47 117 43 110 30 97 15 85 0 75 -9 117 -27 U.S. Weather Bureau, 1965, Climatic sunmary of the United States, supclement for 1951 through 1960: U.S. Weather Bureau, Department of Commerce, pp. 86-112. Rev. 0 WOLF CREEK T,'\BLS 2.3-10 (continued) Sheet MONTHLY AND 1\NNU!\L AVERAGE AND EXTREME TEMPERATUHES FOR TOPEKA, KANSAS a Average Average Month Daily b Daily b Maximum( )Average(b) January 38.3 17.7 February 44. 1 22.7 March 52. 6 29.7 April 66.3 4 2. 6 May 7 5. 8 53.2 June 84.0 63.0 July 89.2 67.2 August 88. 5 65.9 September 80.4 56.0 October 70.3 44.8 November 54. 3 31.5 December 41.8 21.8 Annual 6'3. 5 43. 0 a In degrees Fahrenheit. b Data Period L941-l970. c Data Period 1947-1978. 28.0 33.4 41.2 54. 5 64.5 73.5 78.2 77.2 68.2 57.5 42.9 31.8 54.3 Extrem'{ d Maximum c, ) 73 (1967) 84 (1972) 88 (1966) 94 (1953) 97 (1975) 107 (1953) 109 (1954) 106 (1956) 109 (1947) 96 (1963) 82 (1978) 70 (1963) 109 (1954) d Most recent in cases of multiple occurrence. Source: 2 of 3 Extrem'{ d Minimum c, ) -20 ( 1974) -20 11971 ) -7 (1978) 10 (1975) 26 (1963) 44 (1950) 43 (1972) 45 (1956) 30 (1972) 19 (1976) 2 (1976) -12 (1961) -20 (1974) Environmental Data Service, 1978, Local climatological data, annual summary with data, Topeka, Kansas: Environmnntal Science Services Administration, u.s. Department oE Commerce, Silver Spring, Rev. 0 WOLF CREEK TABLE 2
  • 3-10 (continuee) Sheet MONTHLY AND ANNUAL AVERAGE AND EXTREME TEMPERATURES FOR WICHITA, KANSAS a Average .Average Daily Daily Month Maximum(b)Minimum(b)Average(b) January 41.4 21.2 February 47.1 25.4 March 55.0 32.1 April 68.1 45.1 May 77.1 55.0 June 86.5 65.0 July 91.7 69.6 August 91.0 68.3 September 81.9 59.2 October 71.3 47.9 November 55.8 33.8 December 44.3 24.6 Annual 67.6 45.6 a In degrees Fahrenheit. b Data Period 1941-1970. c Data Period 1953-1978. 31.3 36.3 43.6 !S6. 6 66.1 75.8 80.7 79.7 70.6 !:)9. 6 44.8 34.5 S6.6 Extremt Maximum c,d) 75 (1967) 84 (1976) 89 (1956) 96 (1972) 100 (1967) 106 (1956) 113 (1954) 110 (1964) 105 (1978) 95 (1954) 81 (1978) 83 (1955) 113 (1954) d Most recent in cases of multiple occurrence. Source: 3 of 3 ExtremT Minimum c,d) -12 (1962) -6 (1971) -2 (1960) 15 (1975) 31 (1976) 43 (1969) 51 (1975) 48 (1967) 35 {1967) 21 (1976) 1 (1975) -5 (1968) -12 (1962) Environmental Data Service, 1978, Local climatological data, annual summary with comparative data, Wichita, Kansas: Environmental science Services Administration, U.S. Depar*tment of Commerce, Silver Spring, Maryland. Rev. 0 WOLF CREEK TABLE 2. 3*-11 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL (ANNUl\L') STATISTICS AND DIURtJAL VARIATION OF METEOROLOGICAL PARAMETERS DAlA PERIOD: THREE YEARS COMBINED Page 1 of 4 DATA SOURCE: ON-SITE TABLE GENERATED: 11/05/81. 13.14.50. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND I'IOORE JOB NO: 7699-064 HOUR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ABSOLUTE MAX AVG DAILY MAX MEAN CLit1ATIC MEAN AVG DAILY MIN ABSOLUTE MIN STANDARD DEV VALID OBS INVALID OBS TOTAL OBS DATA RECOVERY !METEOROLOGICAL PARAMETERS <HEIGHTS IN METERS> DRY BULB 10. 00 DEW POINT 10. 00 DELTA TEMP 10. 00 .60. 00 DEO C DEG C DEG C 10. 6 10.2 9.9 9. 5 9.3 9. 1 9. 4 10.2 11. 4 12. 6 13. 8 14. 8 15. 5 16. 1 16. 4 16.6 16. 3 15.6 14. 6 13. 6 12. 7 12. 1 11. 6 11. 0 39. 6 17. 5 12. 6 12. 7 5. 7 5. 6 5. 5 5. 4 5. 3 5. 3 5. 5 5. 8 6. 1 6.2 6.3 6.3 6. 3 6.2 6. 2 6. 1 6.0 6. 1 6.2 6.2 6. 1 6. 0 5. 9 5. 8 28. 5 8. 7 5. 9 5. 9 7.9 3.0 -22. 7 -27. 0 10.9 9.9 25898 406 26304 98. 5 24750 1554 26304 94. 1 .9 .9 .9 .8 .8 .7 .3 -. 1 -. 5 -. 8 -. 9 -. 9 -. 9 -. 9 -. 8 -. 7 -. 6 -. 2 .2 .6 .8 .9 .9 .9 . 1 2212 :26304 91. 6 STAB DELTA CLASS TEMP 10.00 10.00 60.00 .85.00 F F F F F E E E D c B B B B c D D E E E F F F F E 24092 2212 26304 91. 6 DEG C 1. 2 1. 1 1. 1 1. 1 1. 1 1.0 .6 -. 0 -. 6 -. 9 -1. 0 -1. 1 -1. 1 -1. 1 -1. 1 -1. 0 -. 13 -. 4 . .9 1.0 1. 1 . :l 24047 2257 26304 91. 4 STAB CLASS 10. 00 85. 00 F F E E E E E E D D D D D D D D D D E E E E E F E 24047 2257 26304 91. 4 WIND SPEED 10. 00 M/SEC 4.0 4. 0 3. 9 4. 0 4.0 4. 0 4.2 4. 5 5. 0 5. 4 5.6 5. 6 5. 7 5.8 5. 7 5.6 5.2 4. 7 4. 2 4. 1 4. 1 4. 1 4. 1 4. 0 16. 5 7.3 4. 6 4. 7 2. 1 0. 0 2. 4 25673 631 26304 '?7.6 WIND DIR 10. 00 SSE SSE SSE SSE SSE SGE SSE s s ssw ssw ssw ssw ssw ssw s s SSE SE SE SE SE SE SSE SSE 25615 689 26304 97. 4 WIND SPEED 60.00 M/SEC 7. 3 7. 2 7. 2 7. 1 7. 1 7. 1 6. 9 6.8 6. 9 7.0 7. 1 7. 1 7. 2 7. 3 7. 3 7. 2 7. 1 7. 0 7. 0 7.2 7.4 7. 4 7. 5 7. 4 20. 7 10.3 7. 2 7. 1 4.0 0. 0 2. 9 24955 1349 26304 94. 9 WIND DIR 60. 00 s s s s s s s s ssw ssw ssw ssw ssw ssw ssw s s SSE SSE SSE SSE SSE SSE SSE s 24817 1487 :;<!6304 94. 3 REL HUMID 10. 00 PCT 70. 2 71.4 72. 4 73. 3 74. 1 74. 7 74. 2 72. 0 68. 5 64. 4 60. 5 57. 2 54. 7 52. 9 51. 8 51. 2 51. 8 54. 2 57. 6 61. 0 63. 7 65. 9 67. 4 68. 8 100. 0 79. 7 63. 9 63. 5 47.2 11. 7 17.7 24686 1618 26304 93. 8 Rev. 0 WOLF TABLE 2. 3-11 (Continued) STATISTICS AND DIURNAL VARIATION Or METEOROLOGICAL PARAMETERS (ANNUAL) Page 2 of 4 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL PARAMETERS DATA PERIOD: JUi\!E 1. 1973 THROUGH MAY 31. 197.111 DATA SOURCE: ON-SITE TABLE GENFRATED: 11 /04/B1. 11. 55. 32. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7699-064 HOUR 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 1B 19 20 21 22 23 24 ABSOLUTE MAX AVG DAILY MAX MEAN CLIMATIC MEAN AVG DAILY MIN ABSOLUTE MIN STANDARD DEV VALID OBS INVALID OBS TOTAL OBS DATA RECOVERY METEOROLOGICAL PARAMETERS <HEIGHTS IN METERS> DRY BULB 10. 00 DEW POINT 10. 00 DELTA TEI1P 10. 00 60. 00 DEO C DEG C DEG C 11. 3 11.0 10. 6 10. 3 10. 1 10.0 10.4 11. 2 12. 4 13.6 14. 7 15.7 16. 4 16. 9 17.3 17.3 16. 9 16. 2 15.2 14. 2 13. 4 12.B 12. 3 11. 7 37. 5 1B. 3 13.4 13. 5 7. 1 7. 1 7.0 6. 9 6. 9 6.B 7. 1 7.4 7. 7 7.9 B.O B. 1 B. 1 7.9 7.9 7.B 7.B 7.B 7.B 7.B 7. 7 7. 5 7.4 7. 2 2B. 5 10.3 7. 5 7.4 B.B 4. 6 -22. 7 -27. 0 11.1 9.9 8695 65 B760 99.3 8305 455 B760 94.8 .9 .9 .9 .9 .8 .7 .3 -. 2 -. 5 -. B -. B -.9 -. 9 -.9 -. 8 -. 7 -. 5 -. 1 .3

.7 .9 .9 1.0 1.0 . 1 7819 941 8760 89. 3 STAB DELTA CLASS TEMP 10. 00 10. 00 60.00 .85. 00 F F F F F E E E D c c B B B c D D E E E F F F F E 7819 941 8760 89.3 DEG C 1. 1 1. 1 1.0 1.0 1.0 .9 .5 -. 1 -. 7 -1. 0 -1. 1 -1. 1 -1. 2 -1. 2 -1. 1 -1. 0 -. '7 -. :3 .2

  • c!J . il 1. 0 1. 1. :l . :l B58:3 177 8760 98.0 STAB CLASS 10. 00 85. 00 E E E E E E E E D D D c c c D D D E E E E E E E E B5B3 177 B760 9B. 0 WIND SPEED 10. 00 M/SEC 4. 1 4. 1 4.0 4. 1 4. 1 4. 2 4.3 4. 7 5.2 5. 5 5. 7 5. 7 5.8 5. 8 5. 7 5. 5 5. 1 4. 5 4. 1 4. 1 4.0 4. 0 4. 1 4. 1 :l6. 5 7. 5 4. 7 4.8 2.0 0.0 2. 5 8430 330 8760 96.2 WIND DIR 10. 00 SSE SSE SSE SSE s SSE s s ssw ssw ssw ssw ssw ssw ssw s s SSE SSE SE SE SSE SSE SSE s 8393 367 8760 95. 8 WIND SPEED 60. 00 M/SEC 7.6 7. 5 7. 5 7. 4 7. 4 7. 4 7. 2 7. 1 7.3 7. 3 7. 5 7. 3 7. 5 7. 5 7.6 7. 5 7. 4 7. 3 7.5 7. 6 7. 7 7.8 7. 9 7. 8 20. 7 10. 8 7. 5 7. 4 4. 0 0.0 2. 9 8095 665 8760 92. 4 WIND DIR oo s s s s SSj,.J ssw s ssw ssw ssw ssw ssw ssw ssw ssw ssw s s SSE SSE SSE SSE SSE s s 7986 774 8760 91. 2 REL HUMID 10.00 PCT 71. 2 72.4 73. 5 74. 5 75. 3 75.6 74. 8 72. 5 68.8 64. 7 61. 0 57. 8 55. 4 53. 9 52. 7 52. 6 53. 5 55. 8 59.3 62. 4 64.9 67.0 68. 5 69. 9 100.0 80. 9 65.0 64. 4 48. 0 16. 4 17.0 8303 457 8760 94. B Rev. 0 WOLF CREEK T.ABLE 2. 3-11 (Continued) STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL PARA.li*IJETERS (ANNUAL) Page 3 of 4 STATISTICS AND DIURNAL VARIATIOIN OF METEOROLOGICAL PARAMETERS DATA PERIOD: JUNE 1. 1974 THROUGH MAY 31. DATA SOURCE: ON-SITE WOLF CREEK GENERATING STATION TABLE GENERATED: 11/04/81. 13. 19.37. BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO; 7699-064 HOUR 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 ABSOLUTE MAX AVG DAILY MAX MEAN CLIMATIC MEAN AVG DAILY MIN ABSOLUTE MIN DEV VALl D OBS INVALID OBS TOTAL OBS RECOVERY METEOROLOGICAL PARAMETERS <HEIGHTS IN METERS> DRY BULB 10. 00 DEW POINT 10. 00 DELTA TEt1P 10. 00 60. 00 DEC C DEG C DEG C 10.3 5. 3 .8 10.0 5. 3 .8 9. 6 5. 1 . 7 9.3 5.0 . 7 9.0 4. 9 . 7 8.9 5. 0 . 6 9.4 5.2 . 1 10.2 5. 5 -. 4 11.4 5.8 -.7 12.5 5.8 -.9 13.6 5. 8 -1.0 14.6 5. 9 -1.0 15.3 5.8 -1.0 15.7 5. 8 -1. 0 16. 1 5. 8 9 16.2 5. 7 -.9 16.0 5. 7 -.7 15.2 5.8 -.3 14.2 5.9 . 1 13.2 5. 9 . 5 12.4 5.8 . 7 11.7 5. 7 . 7 11.2 5. 6 .8 10.8 5.4 .8 39.6 17.0 12.4 12. 4 22.8 8.3 5. 6 5. 5 7. 7 2. 7 -15.9 -22.5 10.7 9.2 8756 4 8760 100.0 8736 24 8760 99. 7 -. 0 8700 60 8760 99. 3 STAB CLASS 10. 00 60. 00 DELTA TEMP 10.00 00 DEG C F 1. 1 F 1. 1 E 1. 1 E 1.0 E 1. 1 E . 9 E . 4 D -. 2 D -. 7 B -**1. 0 A -*1. 1 A --1. 1 A -*1. 1 A -*1. 1 B -*1. 1 B -*1. 0 D -.8 D -.4 E .2 E . 6 E . 9 E 1. 0 F 1.0 F 1. 1 E 8700 60 8760 99. 3 . 1 El506 254 El760 97. 1 STAB CLASS 10. 00 85. 00 WIND SPEED 10. 00 M/SEC E 4. 1 E 4.0 E 4. 0 E 4.0 E 4.0 E 4.0 E 4.2 E 4.6 D 5.2 D 5. 5 D 5. 7 c 5. 8 c 5.9 D 5. 9 D 5. 8 D 5. 8 D 5. 4 D 4.8 E 4.3 E 4. 1 E 4.2 E 4.2 E 4.3 E 4.2 E 8506 254 8760 97. 1 15.9 7. 4 4.8 4.8 2.2 0.0 2. 4 8574 186 8760 97.9 WIND DIR 10. 00 WIND SPEED 60.00 M/SEC SSE 7. 1 SSE i. 0 SSE 6.9 SSE 6.9 SSE 6.8 SSE 6. 7 SSE 6. 6 s 6. 4 s 6. 6 ssw 6.8 ssw 6. 9 7. o ssw 7. 1 ssw 7.2 7. 1 ssw 7. 1 s 7. 0 s 6.8 SSE 6.8 SE 7.0 SE 7.2 SE 7. 2 SSE 7.3 SSE 7.2 s 8560 200 8760 97. 7 19. 7 10.2 6. 9 7. 0 3.8 0. 0 2. 9 8375 385 8760 95. 6 WIND DIR 60. 00 REL HUMID 10. 00 PCT s 71. 2 s 72. 4 s 73.2 s 74. 1 s 75.0 s 75. 4 s 74. 7 s 72. 5 s 68.8 s 64.9 s 61. 1 ssw 58. 0 ssw 55.8 ssw 54. 1 ssw 52. 9 ssw 52. 2 s 53.2 s 55.7 SSE 59.4 SSE 62. 8 SSE 65. 3 SSE 67. 1 SSE 68.6 s 69. 9 s 8359 401 8760 95.4 100. 0 80. 3 64. 9 64. 4 48. 6 18. 0 18. 2 8732 28 8760 99. 7 Rev. 0 WOLF CREEK TABLE 2 o 3-11 (Continued) STATISTICS AND DIURNAL VARIATION OF NETEOROLOGICAL PARAMETERS (ANNUAL) :Page 4 of 4 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL PARAMETERS DATA PERIOD: MARCH 5, 1979 THROUGH MARCH 4, 1980 DATA SOURCE: ON-SITE TABLE GENFRATED: 11/04/81. 14. 42. 25. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND JOB NO: 7699-064 HO\JR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ABSOLUTE MAX A\'G DAILY MAX MEAN CLIMATIC MEAN AVG DAILY MIN ABSOLUTE MIN STANDARD DEV VALID OBS INVALID OBS TOTAL OBS DATA RECOVERY t1ETEOROLOGICAL <HEIGHTS IN METERS> DRY BULB 10.00 DEW POINT 10. 00 DELTA llO. 00 60. 00 DEG C DEG C DEG C 10. 1 9.8 9.4 9.0 8. 7 8. 5 8. 5 9. 1 10.2 11. 7 13.0 14.2 15. 0 15.6 16.0 16. 3 16. 1 15.4 14. 5 13.3 12.3 11. 7 11.2 10. 5 34. 1 17. 1 12. 1 12. 1 4. 5 4. 5 4.4 4. 2 4. 1 4. 0 4. 1 4.3 4. 7 4.9 4. 9 5. 0 4. 9 4.7 4. 8 4. 6 4. 6 4. 7 4.8 4. 9 4.8 4. 8 4. 7 4. 5 22. 5 7. 4 4.6 4.6 7. 1 1. 8 -18. 5 -21. 4 10.9 10.3 8447 337 8784 96. 2 7709 1075 8784 87. 8 1. 1 1.0 1.0 1. 0 .9 .9 .6 .2 -. 3 -. 6 -. 7 -. 8 -. 8 -. 8 -. 7 -. 6 -. 5 -. 2 .2 .6 .8 .9 1.0 1. 0 .2 7573 1211 13784 136. 2 STAB DELTA CLASS TEMP 10.00 10.00 60.00 .85.00 F F F F F F E E D D D c c c D 0 0 E E E F F F F E 7573 1211 8784 86. 2 C :!. :l :L. :l :!. :::l 1. :::l 1. ;;t ll.2 .9 .3 --. 4 -*. 8 -*. 9 -1. 0 -1. 0 -1. 0 -1. 0 -. 9 -. 8 -. 5 . 1 .6 1. 0 1. 1 1. 2 1. 3 .2 69:58 18:::!6 87B4 79. 2 STAB CLASS 10. 00 85. 00 F F F F F F E E D D D D D D D D D D E E E F F F E 6958 1826 8784 79. 2 WIND SPEED 10. 00 M/SEC 3.8 3. 8 3.8 3. 8 3. 8 3.8 3. 9 4.3 4. 7 5. 1 5. 4 5.4 5. 5 5. 5 5.6 5. 5 5.2 4. 7 *4. 2 4.0 4.0 4.0 :3. 9 :3. a 14.8 7. 0 4. 5 4. 6 '1 ., ..... t::. 0. 0 4 8669 115 8784 9B.7 WIND DIR 10.00 SE SSE SSE SSE SSE SSE SSE s s ssw ssw ssw ssw s s SSE SE SE ESE ESE ESE SE SE SSE 8662 122 8784 98. 6 WIND SPEED 60. 00 M/SEC 7. 2 7. 1 7. 1 7. 1 7. 1 7. 0 6. 9 6. 8 6. 7 6. 8 7. 0 7.0 7. 1 7. 1 7. 1 7. 2 7. 0 6. 8 6. 8 7. 0 7. 3 7. 3 7. 2 7.2 18. 8 10. 0 7.0 7. 1 4.2 0. 0 2. 9 8485 299 8784 96. 6 WIND DIR 60. 00 SSE SSE SSE s s s s s s ssw ssw SSW ssw s s s SSE SE SE SE SE SE SE SSE SSE 8472 312 8784 96. 4 REL HUMID 10. 00 PCT 68. 0 69. 2 70.2 71. 1 71. 9 72. 8 73. 0 71. 0 67. 7 63. 5 59. 3 55. 6 52. 7 50. 3 49. 4 48. 4 48. 6 50.8 53. 8 57. 7 60. 8 63. 3 64. 9 66. 5 100.0 77. 9 61. 7 61. 4 44.9 11. 7 17.8 7651 1133 8784 87. 1 Rev o 0 WOLF TABLE 2 .. 3-12 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL PARAMETERS (MONTHLY) Page 1 of 12 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL PARAMETERS DATA PERIOD: ALL JANUARY COMBINED DATA SOURCE: ON-SITE WOLF CREEK GENERATING STATION BURLINGTON, KANSAS TABLE GENf-RATED: 11/10/81. 15. 02. 03. HOUR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ABSOLUTE MAX AVG DAILY MAX MEAN CLir1.:.TIC MEAN A\'G DAILY MW ABSOLUTE MIN STANDARD DEV VALID OBS INVALID OBS TOTAL OBS DATA RECOVERY KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7699-064 METEOROLOGICAL PARAMETERS <HEIGHTS IN METERS> DRY DEW DELTA STAB DELTA STAB WIND WIND WIND WIND REL BULB POINT TEMP CLASS TEMP CLASS SPEED DIR SPEED DIR HUMID 10.00 10.00 10.00 10.00 10. oo 10. oo 60. oo 60. oo .8s.oo 85. oo 10. oo 10. oo 60. oo oo 10. oo DEG C DEG C DEG C DEG C M/SEC M/SEC PCT -2. 2 -2. 3 -2. 4 -2.8 -3. 0 -3.2 -3. 3 -3. 3 -3.0 -2. 0 -. 9 .4 .8 1.5 1.9 1.9 1.6 .8 .2 -.6 -1. 0 -1. 2 -1. 5 -1. 9 16. 6 3. 1 -1. 1 -1. 0 -5. 7 -5. 7 -5. 9 -6.0 -6.2 -6.3 -6.4 -6. 3 -6. 1 -5.3 -4.9 -4. 3 -4. 2 -4.4 -4.3 -4. 5 -4.7 -4.8 -4.9 -5. 1 -5.2 -5.4 -5.6 -5. 7 10.3 -2. 0 -5. 3 -5. 5 -5.1 -8.9 -22. 7 -27. 0 7. 1 6. 3 2201 31 2232 98.6 2060 172 2232 92.3 .6 .6 .5 .5 .4 .4 .4 .3 . 1 -. 5 -. 7 -. 7 -. 8 -. 7 -. 7 -. 6 -.4 -. 0 .3 .4 .5 .5 .6 .5 . 1 2173 59 2232 97. 4 E E E E E E E E E D D D c D D D D E E E E E E E E 2173 59 2232 97.4 .8 .8 .7 .6 .6 .5 .6 .5 . 1 -. 5 -. 7 -. !3 -. !3 *-. 6 -. 1 . :3 . .7 .9 . El . 1 E E E E E E E E E D D D D D D D D E E E E E E E E 1641 591 2232 73. 5 3. 7 3. 9 4. 1 4. 2 4.2 4. 1 4. 1 4.2 4.4 4.9 5. 1 5. 2 5.2 5. 3 5. 3 5.2 4.6 4. 1 4. 0 4. 1 4. 1 3. 9 3.8 3.8 13. 8 7. 0 4. 4 4. 4 1.8 0.0 2. 2 2037 195 2232 91. 3 NW NW NNW Nf..J WNW NW NNW NW N NNt-J N w w WSW w w NW ENE ENE NE ENE NNE NNW w NW 2036 196 2232 91. 2 6. 7 6. 9 7. 1 7. 1 7. 1 7. 1 7. 1 7. 0 7. 1 7. 0 6.8 6. 7 6.8 6. 8 6.8 6. 8 6. 7 6. 6 6. 9 7. 1 7.3 7. 1 7.2 6. 9 18. 1 10. 1 6. 9 6. 7 3. 4 0. 0 2. 9 1974 258 2232 88. 4 WNW 69.3 NW 69. 7 NW 70. 3 WNW 70. 6 WNW 70. 7 NW 70. 9 NW 70.8 WNW 71. 5 NW 71.7 WNW 70. 2 w 68.0 WSW 65. 1 w 63.2 WSW 61. 7 WSW 59.8 WSW 59. 4 sw 59.4 ssw 61. 3 s 63.6 NW 65.2 w 66. 1 w 67. 4 w 67.6 WNW 68. 2 WNW 1968 264 2232 88. 2 94. 3 78. 6 66. 7 65. 9 53. 2 19. 2 15.9 2031 201 2232 91. 0 WOLF CREEK TABLE 2.3-12 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL PARAMETERS (MONTHLY) Page .2 of 12 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL PARAMETERS DATA PERIOD. ALL FEBRUARY COMBINED DATA SOURCE: ON-SITE TABLE GENERATED: 11/10/81. 15.33. 48. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND r100RE JOB NO: 7699-064 HO\.Jr( 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ABSOLUTE MAX AVG DAILY MAX MEAN CLIMATIC MEAN AVG DAILY MIN ABSOLUTE MIN STANDARD DEV VALID OBS INVALID OBS TOTAL OBS DATA RECOVENY t1ETEOROLDGICAL PARAMETERS <HEIGHTS IN METERS> DRY BULB 10. 00 DEW POINT 10. 00 DELTA TEMP llO. 00 60. 00 DEG C DEG C DEG C -1. 2 -5. 8 -1. 4 -6. 0 -1. 7 -6. 1 -2.0 -6.3 -2.2 -6.5 -2.4 -6.6 -2.5 -6.6 -2.6 -6.6 -2.0 -6.1 -1. 0 -5. 4 . 1 -5. 1 1. 1 -4. 7 1. 9 -4. 3 2. 5 -4. 3 3.0 -4.0 3.2 -4.0 3.1 -4.1 2. 5 -4.3 1.6 -4.5 1. 0 -4. 7 . 4 -5.0 -.1 -5.2 -.4 -5.4 -. 7 -5. 5 19.3 4. 4 5. 7 -2. 0 . 0 -5.3 . 1 -5.3 -4.2 -8.6 -18.5 -21.3 6. 4 2040 0 2040 100.0 5. 0 2004 36 2040 98.2 .5 .5 .5 .5 .4 .4 .3 .2 -. 2 -.6 -. 7 -.8 -. 8 -. 8 -. 7 -.7 -. 6 -.3 . 1 .4 .5 .5 .6 .6 -. 0 2033 7 2040 99. 7 STAB DELTA CLASS TEMP 10.00 10.00 60.00 .85.00 E DEG C: . E . 6 E . b E . b E . 6 E . 5 E . 4 E . 3 E --.3 D --. 7 D -I. 0 c -1.. 1 c -l.. 1 c -1.. 1 D -1.. 1 D -l .. 0 D -*. 9 D -*. 5 E . 0 E . 3 E . 5 E . 6 E . 7 E . 7 E 2033 7 2040 99. 7 -*. 1 2040 0 2040 100. 0 STAB CLASS 10. 00 85. 00 E E E E E E E E E D D D D D D D D D E E E E E E E 2040 0 2040 100. 0 WIND SPEED 10. 00 M/SEC 4.2 4. 3 4.2 4.3 4.4 4.4 4. 5 4.4 4.9 5. 3 5. 5 5.6 5. 7 5.8 5. 7 5. 5 5.2 4. 7 4. 1 4. 1 4. 3 4. 3 4.4 4. 3 16. 1 7. 6 4. 8 4.8 2. 1 0. 0 2. 5 1854 186 2040 90. 9 WIND DIR 10. 00 NNW N N NNW NNW NW NW NNW NW NNW WNW w w w WNW WNW NW NNW N N NNW N N Nt.-J NW 1852 188 2040 90. 8 WIND SPEED 60. 00 M/SEC 7.3 7. 2 7.3 7. 5 7. 5 7. 5 7.2 7. 0 7. 0 7. 0 7. 0 6. 8 7.0 7. 1 7. 0 6. 9 6. 9 6. 8 6. 8 6.9 7.3 7.2 7.4 7.4 18. 6 10.6 7. 1 7. 1 3.6 0.0 3. 1 1617 423 2040 79. 3 WIND DIR 60. 00 NNW REL HUMID 10.00 PCT 68. 0 N 68. 0 NNW 68. 1 NW 68. 2 NNW 68. 5 NNW 69.2 NNW 69.4 NNW 70. 1 NNW 69. 8 NNW 68.8 NW 66. 3 WNW 64. 3 WNW 62.2 WNW 60.6 WNW 60. 0 NW 59.2 NW 60. 3 NNW 61. 6 NNW 63. 4 NNW 65.0 NNW 66. 1 NNW 66. 8 NNW 67. 2 N 67. 7 NW 1616 424 :2040 79.2 98. 7 77. 7 65. 8 66. 1 54. 4 16.4 16. 2 2000 40 2040 98. 0 Rev. 0 WOLF CREEK TABLE 2.3-12 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL PARAMETERS (MONTHLY) Page 3 of 12 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL PARAMETERS DATA PERIOD: ALL MARCH COMBINED DATA SOURCE: ON-SITE TABLE GENERATED: 11/10/81. 15.47.44. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO; 7699-064 HOUR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ABSOLUTE MAX AVG DAILY MAX MEAN CLIMATIC MEAN AVG DAILY MIN ABSOLUTE MIN STANOf,RD DEV VALID OBS INVALID OBS TOTAL OBS DATA RECOVERY METEOROLOGICAL PARAMETERS <HEIGHTS IN METERS> DRY BULB 10. 00 DEW POINT 10. 00 DELTA TEt1P 10. 00 60. 00 DEG C DEG C DEG C 4. 5 -.9 . 5 4.2 -. 9 . 6 3.9 -1.0 . 5 3.6 -1.0 . 5 3.4 -. 9 . 5 3.2 -1.0 . 4 3. 1 -1. 1 . 3 3. 5 -.9 -.1 4.5 -. 5 -. 6 5.6 -. 2 -.8 6.8 -.2 -. 9 7.7 -.1 -. 9 8.7 . 1 -.9 9.3 . 3 -.9 9.8 .4 -. 9 10.2 . 6 -. 8 10.2 . 5 -. 7 9. 7 .4 -. 5 8.7 .4 -.1 7.6 . 3 . 2 6.8 . 1 . 3 6.0 -.2 .4 5. 5 -.4 . 5 5.0 -. 7 . 5 28.9 11. 4 6. 3 6. 4 16.0 3. 5 -.3 -.3 1. 4 -4. 0 -16.5 -20.0 8.0 7. 2 2019 213 2232 90. 5 1786 446 2232 80. 0 -. 1 1669 563 2232 74. 8 STAB CLASS 10. 00 60. 00 DELTA TEMP 10. 00 .85. 00 DEG C E . 7 E . 8 E . 8 E . 8 E . 8 E .7 E .5 E . 1 D -. 6 c -. 9 B -1. 0 B -1. 1 B -1. 1 B -1. 1 B -1. 1 B -1. 0 D -. 9 D -.6 E -. 1 E . 2 E . 4 E . 6 E . 6 E . 7 E 1669 563 2232 74.8 -. 1 1669 563 2232 74.8 STAB CLASS 10. 00 85. 00 WIND SPEED 10. 00 M/SEC E 4. 7 E 4.8 E 4.7 E 4. 7 E 4.8 E 5. 0 E 4.9 E 5. 1 D 5.7 D 6.2 D 6.6 D 6.7 D 6.8 D 6.7 D 6.8 D 6. 7 D 6. 5 D 5. 7 E 4.8 E 4.8 E 4.9 E 4.9 E 4.9 E 4.8 E 1669 563 2232 74. 8 15.0 8. 6 5. 5 5. 5 2. 4 0. 0 2.8 14 2232 99. 4 WIND DIR 10. 00 WIND SPEED 60. 00 M/SEC ESE 7. 7 ESE 7. 8 ESE 7.6 ESE 7. 8 ESE 7.8 ESE 7. 8 SE 7. 7 SE 7. 4 s 7.6 WSW 7. 7 WSW 8.0 WSW 8. 2 w 8.3 WSW 8. 1 8. 3 WSW 8.4 WSW 8. 2 WSL-J 7. 8 NE 7. 4 E 7.6 E 7. 8 ENE 8.0 E 8.0 SE 7.9 SSE 2214 18 2232 99. 2 18. 8 11.4 7.9 7.8 4.2 .8 3. 3 2165 67 2232 97. 0 WIND DIR 60. 00 SSE SSE SSE SSE s SE SSE SE SSE w w w w WSW w WSW SW SW ENE ESE ESE E E SE SSE 2163 69 2232 96. 9 REL HUMID 10. 00 PCT 68. 1 69. 2 70.3 71. 6 72. 1 72. 5 73. 1 72.4 70. 2 67. 1 62. 7 59. 9 57. 5 55. 9 54. 7 53. 7 53. 3 54. 7 58. 2 61. 9 64. 0 65. 3 66. 3 67. 1 100. 0 79. 7 64. 2 63. 7 47. 7 17.2 16. 7 1786 446 2232 80. 0 Rev. 0 WOLF CREEK TABLE 2.3-12 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL PARAMETERS (MONTHLY) Page 4 of 12 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL PARAMETERS DATA PERIOD: ALL APRIL COMBINED DATA SOURCE: ON-SITE WOLF CREEK GENERATING STATION BURLINGTON, KANSAS TABLE GENFRATEO: 11/11/81. 10. 37. :57. HOUR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ABSOLUTE MAX A\'G DAILY MAX MEAN CLir1ATIC MEAN AVG DAILY MIN ABSOLUTE MIN STANDARD DEV VALID DBS INVALID DBS TOTAL Ol3S DATA RECOVERY KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7699-064 METEOROLOGICAL PARAMETERS <HEIGHTS IN METERS> DRY DEW DELTA STAB DELTA STAB WIND WIND WIND WIND REL BULB POINT TEMP CLASS TEMP CLASS SPEED DIR SPEED DIR HUMID 10.00 10.00 10.00 10.00 10.00 60.00 60.00 .85.00 85.00 10.00 10.00 60.00 60.00 10.00 DEG C DEG C DEG C 10. 5 10. 1 9. 7 9. 3 9. 0 8. 8 9. 2 10.3 11.6 13.0 14.2 14.9 15.7 16. 1 16. 5 16.6 16. 5 16. 1 15.2 14.0 13. 1 12. 3 11. 7 11. 1 28.0 17.7 12. 7 12.6 7.4 -7.6 6. 6 2129 31 2160 98.6 4. 5 4. 3 4.2 4. 1 3.9 3. 9 4. 2 4. 5 4.8 4. 8 4. 7 4. 7 4. 6 4. 7 4. 5 4. 6 4.6 4.6 4.9 5. 0 5. 0 4. 8 4. 8 4. 7 19.2 7. 6 4. 6 4.6 1.6 -11. 8 6.3 1995 165 2160 92. 4 .8 .7 .7 .7 .7 .6 .2 -. 5 -. 7 -. 9 -. 9 -1. 0 -. 9 -. 9 -. 9 -. 8 -. 7 -. 5 -. 1 .4 .6 .7 .8 .9 -.0 2096 64 2160 97. 0 F E E E E E E 0 D B B A B B B c D D E E E E F F E 2096 64 2160 97. 0 DEG C 1. 1 1.0 1. 0 1. 1 1.0 .9 .4 -. 4 -. 9 -1. 0 -1. 1 -1. 1 -1. 1 -1. 1 -1. 1 -1. 0 -.8 -. 6 *-. 1 .4 .7 .9 1.0 1. 1 .0 2091 69 2160 96. 8 E E E E E E E D D D D D D D D D 0 0 E E E E E F E 2091 69 2160 96. 8 M/SEC 5. 0 4.9 5.0 4.9 5.0 5. 0 5.4 6.2 6. 7 6.8 7. 1 7. 1 7.2 7. 2 7. 3 7. 2 6.9 6.2 5.2 4.8 4.9 5. 1 5. 1 5.0 16. 2 9. 1 5.9 5.9 2. 8 .7 2. 7 2120 40 2160 98. 1 SE SE SE SE SE SSE SE SSE s s ssw sw sw sw ssw ssw ssw s SE SE ESE SE SE SE SSE 2120 40 2160 98. 1 M/SEC 8. 3 8.2 8. 3 8. 2 8.3 8. 2 8. 2 8. 3 8. 2 8. 2 8. 6 8. 6 8. 7 8. 6 8. 9 8. 8 8. 6 8. 1 7. 6 7. 7 8. 1 8. 3 8. 3 8. 2 20. 7 11. 9 8.3 8. 3 4.7 .6 3. 1 2116 44 2160 98. 0 SSE SSE SSE SSE SSE SSE SSE SSE SSE s ssw sw sw ssw SSW ssw ssw s SSE SE SE SE SE SSE SSE 2116 44 2160 98. 0 PCT 66. 7 67. 6 68. 7 69. 8 70. 7 71. 7 71. 4 67. 7 63. 1 58. 7 54. 3 52. 0 50.4 49. 4 48. 1 47. 9 47.8 49. 2 52. 3 56. 3 59. 3 61. 4 63. 8 65.6 97. 9 78. 1 59.8 60. 9 43.6 19. 3 17.8 1995 165 2160 92. 4 Rev. 0 WOLF CREEK TABLE 2. 3-12 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL Page 5 of 12 STATISTICS AND DIURNAL VARIATIDN OF METEOROLOGICAL PARAMETERS DATA PERIOD: ALL MAY COMBINED DATA SOURCE: 0:--.1-SITE TABLE GENERATED: 11/11/81. 10. 41. 53. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7699-064 HCU;< 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ABSOLUTE MAX AVG DAILY MAX MEAN CLIMATIC MEAN AVG DAILY MW ABSOLUTE MIN STANDARD DEV VALID OBS INVALID OBS TOTAL OBS DATA RECOVERY METEOROLOGICAL PARAMETERS <HEIGHTS IN METERS> DRY BULB 10. 00 DEW POINT 10. 00 DELTA TEMP 10. 00 60. 00 DEG C DEG C DEG C 16.2 10.7 .9 15.8 10.6 1.0 15.4 10.5 .9 15.0 10.3 .9 14. 5 10. 3 1. 0 14.4 10.3 . 9 15.0 10.7 . 1 16.3 11.3 -. 6 17.7 11.6 -. 8 18.8 11.5 -. 8 19.8 11.4 -.9 20.7 11.2 -1.0 21.4 11.1 -1.0 21.9 11.0 -. 9 22. 4 11. 1 -. 9 22. 6 11. 1 -. 8 22. 6 11. 1 -. 7 22.2 11.2 -. 5 21.2 11.4 -. 2 20.0 11.4 .3 19.0 11.4 . 6 18.2 11.4 .8 17.6 11.3 .9 16.9 11.1 .9 30.0 23.4 18. 6 18.6 13. 7 3. 4 5. 0 2189 43 2232 98. 1 22.0 13.8 11. 1 11. 0 8.3 -1. 5 5. 1 2184 48 2232 97.8 .0 2161 71 2232 96. 8 STAB DELTA CLASS TEMP 10.00 10.00 60.00 .85.00 DEG C F 1.2 F 1. 2 F 1.2 F 1.2 F 1. 3 F 1. 3 E . 4 D -. 5 c -. 9 c *-1. 0 B -1. 1 A -1. :2 A -1. 2 B -1. 1 B -1. 1 c -1. () D -. 9 D -. 7 E *-. E . :3 E . B F 1. 0 F 1. 1 F .1. 2 E 2161 71 2232 96. 8 .0 2150 82 2232 96. 3 STAB CLASS 10. 00 85. 00 WIND SPEED 10. 00 M/SEC F 4.4 F 4. 3 F 4.2 F 4.2 F 4. 2 F 4.2 E 4.4 D 5. 0 D 5. 8 D 6. 1 D 6.2 c 6.3 c 6. 4 D 6.3 D 6.2 D 6. 1 D 5. 9 D 5. 6 E 4.8 E 4.4 E 4. 1 E 4.3 E 4.3 F 4.3 E 2150 82 2232 96. 3 16. 5 8. 0 5. 1 5. 1 2. 3 .5 2. 6 ;;!186 46 ;;>232 97. 9 WIND DIR 10. 00 WIND SPEED 60. 00 M/SEC BE 7.2 SE 7.0 SE 7.0 SE 7. 0 SE 7.0 SE 7.0 SSE 6. 8 SSE 6.4 s 7. 0 SSE 7. 5 SSE 7. 6 SSE 7.6 SSE 7. 7 s 7. 7 SSE 7. 4 s 7. 5 SSE 7. 4 BE 7. 3 SE 6.9 SE 7.0 SE 6. 9 ESE 7. 2 SE 7.2 SE 7. 4 SE 2186 46 2232 97. 9 20. 1 10. 6 7. 2 7. 3 4.0 .6 3. 0 2171 61 2232 97. 3 WIND DIR 60. 00 SSE SE SE SE SSE SSE SSE SSE SSE SSE SSE SSE SSE s SSE SSE SSE SE SE SE SE SE SE SE SSE 2170 62 2232 97. 2 REL HUMID 10. 00 PCT 70. 4 72.0 73. 2 74.3 75. 9 76.7 75.9 72. 5 68. 4 63. 8 59. 9 56. 1 53. 6 51. 8 50. 4 49. 7 49.9 51. 5 55. 0 59. 0 62. 5 65.3 67.3 68. 9 98. 7 81. 2 63.4 63. 6 45.9 18. 0 16. 6 2183 49 2232 97. 8 Rev. 0 WOLF CREEK TABLE 2.3-12 STATISTICS AND DIURNIAL VARIATION OF METEOROLOGICAL PARAMETERS (MONTHLY) Page 6 of 12 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL PARAMETERS DATA PERIOD: ALL JUNE COMBINED DATA SOURCE: ON-SITE WOLF CREEK GENERATING STATION BURLINGTON, KANSAS TABLE GENFRATED: 11/11/81. 10. 54.26. HOUR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ABSOLUTE MAX AVG DAILY MAX MEAN ClIMATIC t1EAN AVG DAILY MIN ABSOLUTE MIN STANDARD DEV VALID OBS INVALTD OBS TOTAL. OBS DATA RECOVERY KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7699-064 METEOROLOGICAL PARAMETERS <HEIGHTS IN METERS) DRY DEW DELTA STAB DELTA STAB WIND WIND WIND WIND REL BULB POINT TEMP CLASS TEMP CLASS SPEED DIR SPEED DIR HUMID 10.00 10.00 10.00 10.00 10.00 10.00 60.00 60.00 .85.00 85.00 10.00 10.00 60.00 60.00 10.00 DEC C DEG C DEG C 19.3 14.4 1.0 18.9 14.3 1.0 18.4 14.1 1.0 18.0 14.0 1.0 17.7 13.9 1.0 17.9 14.1 .7 18.9 14.5 -.1 20.4 14.8 -. 6 21.8 14.7 -.8 22.8 14.5 -. 9 23.8 14.4 -1.0 24.7 14.3 -1.0 25.4 14.2 -1.0 26.0 14.2 -. 9 26.3 14.1 -.9 26.7 14.3 -. 8 26.7 14.3 -. 7 26. 1 14. 4 -. 5 25.0 14.7 -.2 23.6 14.9 .3 22.4 14.9 . 7 21.4 14.9 .9 20.8 14.8 . 9 20.1 14.7 1.0 37.0 27. 1 22. 2 22. 1 17. 1 10. 6 4.6 2136 24 2160 98.9 24. 7 16. 9 14.4 14. 5 12. 0 3. 0 4. 3 2086 74 2160 96. 6 .0 2062 98 2160 95. 5 DEG C F 1.3 F 1.2 F 1. 3 F 1.3 F 1.3 E 1.0 E . 0 D -. 7 c -1. 0 B -1. 1 A -1. 2 A -1. 2 B -1. 2 B -1. 1 c -l. () D *-. 9 D *-. El E *-. 3 E . 3 E . 8 F 1.0 F 1. 1 F 1. :;! E 2062 98 2160 95. 5 **. 0 1955 205 2160 90. 5 M/SEC F 3.8 F 3.7 F 3. 7 F 3. 7 F 3. 5 E 3.8 E 4. 1 D 4.8 D 5.0 D 5. 1 c 5. 3 c 5. 4 c 5. 6 c 5. 5 D 5. 4 D 5. 5 D 5. 5 D 5.2 E 4.7 E 4.2 E 4.0 E 4. 0 E 4.0 F 3.9 E 1955 205 2160 90. 5 13.5 7. 0 4. 6 4.6 2. 2 0.0 2. 3 2152 8 2160 99. 6 M/SEC s 7. 2 s 7.0 s 7.0 s 6. 8 s 6. 5 s 6. 7 s 6.3 6. 5 ssw 6. 6 ssw 6. 6 ssw 6.7 ssw 6. 8 ssw 7. 0 ssw 7. 0 7. o s 7. 2 s 7.3 s 7.2 s 7.2 SSE 7.0 SSE 7. 4 SSE 7. 4 SSE 7. 5 s 7. 4 s 2118 42 2160 98. 1 17. 1 9. 9 7. 0 7. 0 4. 0 0. 0 2. 7 2135 25 2160 98.8 s s s s s ssw s ssw ssw ssw ssw ssw ssw ssw ssw s s s s s SSE s s s s 2126 34 :?160 98. 4 PCT 73. 9 75. 1 76. 1 77. 8 78.9 78. 9 75. 9 70. 4 64.4 60. 4 56. 8 53. 8 51. 2 49. 6 48. 0 47. 4 47.9 50.3 54. 0 58. 9 63. 5 66. 9 69. 0 71. 2 100. 0 82. 1 63. 4 63. 9 45. 7 17.3 18. 2 2084 76 2160 96. 5 Rev. 0 WOLF CREEK TABLE 2 .. 3-12 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL PARAMETERS (MONTHLY) Page 7 of 12 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL PARAMETERS DATA PERIOD: ALL JULY COMBINED DATA SOURCE: TABLE 11/11/81. 13.42. 02. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND t10DRE JOB NO: 7699-064 HOUR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ABSOLUTE MAX AVG DAILY MAX MEAN CLir'.ATIC MEAN AVG DAILY MW ABSOLUTE MIN STANDARD DEV VALID DBS INVALID OBS TOTAL OBS DATA RECOVERY METEOROLOGICAL PARAMETERS <HEIGHTS IN METERSl DRY BULB 10.00 DEW POINT 10. 00 DELTA TEMP 10.00 60.00 DEC C DEG C DEG C 22.5 16.7 1.3 22.1 16.7 1.2 21. 7 16. 7 1. 2 21.4 16.7 1.2 21.0 16.7 1.2 21.0 16.7 . 8 22.2 17.2 -.1 23.7 17.6 -. 7 25.3 17.7 -. 9 26.7 17.6 -1.0 27.9 17.3 -. 9 28.9 16.9 -1.0 29.6 16.6 -1.0 30.3 16.5 -1.0 30. 5 16. 4 -. 9 30. 5 16. 3 -. 9 30.2 16.2 -. 7 29. 7 16. 5 -. 5 28.5 16.7 -.0 27.0 16.8 .6 25.7 16.8 1. 0 24.7 16.7 1.1 23.9 16.6 1. 2 23.2 16.6 1.2 39. 6 30. 9 25.8 25. 7 20.4 14. 9 4.9 2201 31 2232 98. 6 28. 5 19. 1 16. 8 16. 9 14.6 7. 3 3.3 2180 52 2232 97. 7 . 1 2133 99 2232 95. 6 STAB CLASS 10. 00 60. 00 DELTA TEt1P 10.00 .8:::>. 00 DEG C F 1. 6 F 1. 5 F 1. 5 F 1.5 F 1. 5 F 1. 1 E . 1 D -. 7 B -1. 1 A -1. :2 B -1. :2 A -1. :3 A -1. :3 A -1. :2 B -1. :2 B -1. 1 D *-. 9 D *-. 7 E *-. 2 E . 6 F 1. l F :1.:::1 F 1. 4 F 1. 5 E 2133 99 2232 95.6 . 1 2133 99 ... ,3 .. , 6 STAB CLASS 10.00 85.00 WIND SPEED 10. 00 M/SEC F 3.4 F 3. 2 F 3. 1 F 2.9 F 2.8 E 2.9 E 3.3 D 4.0 D 4. 5 c 4. 6 c 4. 7 B 4. 6 B 4. 7 c 4. 8 c 4. 7 D 4. 7 D 4. 7 D 4.3 E 3.8 E 3.4 E 3. 5 F 3. 5 F 3. 5 F 3. 4 E 2133 99 2232 95. 6 11. 9 6. 1 3. 9 4. 0 1.9 .4 1.9 2225 7 2232 99. 7 WIND DIR 10. 00 WIND SPEED 60. 00 M/SEC SE 7. 1 SSE 6.8 SSE 6. 9 SSE 6. 6 SSE 6.2 SE 6. 0 SSE 5. 6 s 5. 7 s 6.0 s 6. 1 s 6. 1 s 6. 0 s 6.2 SSE 6. 3 SSE 6. 5 SSE 6.4 SSE 6.4 SSE 6. 5 SE 6.6 SE 6. 7 SE 7. 1 SE 7. 2 SE 7. 2 SE 7. 2 SSE 2224 8 2232 99. 6 14.3 9. 0 6. 5 6. 5 4.0 .8 2. 2 2156 76 2232 96. 6 WIND DIR 60. 00 SSE SSE SSE s s s s s s s s s SSE SSE SSE SSE SSE SSE SSE SE SE SE SSE SSE SSE :2128 104 2232 95. 3 REL HUMID 10. 00 PCT 70.2 71. 8 73. 5 75.2 76.8 76. 7 74. 1 69. 4 63. 6 58. 6 54.3 50. 1 47.2 44.9 44. 4 44. 4 44.2 46. 8 50. 5 54. 9 59. 3 62. 4 65.0 67. 1 100.0 79. 4 60. 2 60.9 42. 4 18. 0 19. 1 2158 74 2232 96. 7 Rev. 0

\ WOLF CREEK TABLE 2. 3-12 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL PARP.METERS (MONTHLY) Page 8 of 12 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL PARAMETERS DATA PERIOD: ALL AUGUST COMBINED DATA SOURCE: ON-SITE WOLF CREEK GENERATING STATION BURLINGTON, KANSAS TABLE GENFRATED: 11/11/81. 13.51.50. HOUR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ABSOLUTE MAX AVG DAlLY MAX MEAN CLIMATIC MEAN AVG DAILY MIN ABSOLUTE MIN STANDARD DEV VALID OBS INVALID OIJS TOTAL OBS DATA RECOVERY KANSAS GAS AND ELECTRIC DAMES AND MOORE NO: 7699-064 t1ETEORDLOGICAL PARAMETERS <HEIGHTS IN METERS> DRY DEW DELTA STAB DELTA STAB WIND WIND WIND WIND REL BULB POINT TEMP CLASS TEMP CLASS SPEED DIR SPEED DIR HUMID 10.00 10.00 10.00 10.00 10.00 10.00 60.00 60.00 .85.00 85.00 10.00 10.00 60.00 60.00 10.00 DEG C DEG C DEG C 21. 2 20. 6 20.2 19. 9 19. 5 19. 4 20. 2 21. 6 23. 2 24. 5 25. 6 26. 5 27.2 27. 7 28. 1 28. 1 27.7 26. 9 25. 7 24.3 23. 3 22.6 22.0 21. 6 37. 5 28. 8 23. 6 23. 8 18. 8 11.8 4.6 2217 15 2232 99.3 16. 5 16. 5 16. 3 16. 3 16.2 16.3 16. 5 17. 1 17.2 17. 2 17.0 16.9 16. 8 16.6 16. 5 16.4 16. 5 16. 7 17.0 17. 1 17.0 17. 0 16.8 16.8 22. 8 18. 8 16. 7 16.6 14. 5 1. 8 3. 6 2197 35 2232 98. 4 .9 1.0 .9 1.0 1. 0 .8 . 1 -. 5 -.8 -.8 -. 9 -. 9 -. 9 -. 9 -. 9 -. 8 -. 6 -. 3 .2 .7 1.0 1.0 1.0 .9 . 1 :2163 69 2232 9 F F F F F F E D c c B B B B B c D D E E F F F F E 2163 69 2232 96. 9 C :l. 1 1. 1 1. 1 1.2 1. 1 1. 1 .2 --.6. -l.. 0 -1. 1 -1 .. 2 -1. 2 -1. 2 -1. 2 -1. 2 -1. 1 -. 9 -. 6 .0 .7 1.0 1. 1 1. 1 1. 1 .0 2164 68 2232 97. 0 E F F F E E E D D c c c c c c D D D E E E E E E E 2164 68 2232 97. 0 M/SEC 3.3 3. 2 3.0 3. 1 3.2 3. 3 3. 5 4. 0 4. 4 4.8 4.9 4. 9 5.0 5. 2 5.0 5. 1 4.9 4. 3 3.8 3. 5 3. 5 3. 5 :3. 6 :3. 5 14.2 6. 5 4. 0 4.2 :2. 0 .4 1. 8 8 99. 6 SSE SSE SSE SSE SSE SSE s s ssw ssw ssw s s s s s SSE SSE SE SE SE SE SE SSE SSE 22l4 18 22:32 99. 2 M/SEC 6.9 6. 7 6. 5 6. 3 6. 3 6. 4 5. 9 5.6 5. 9 6. 2 6. 5 6. 4 6. 5 6. 7 6. 6 6.8 6.9 6. 6 6. 8 7. 1 7. 4 7. 5 7.3 7. 1 14. 8 9.6 6. 6 6.7 3. 8 .7 2. 6 2191 41 2232 9Sl. 2 s s s s s s s s SSirJ ssw SS\.-1 s s s s s SSE SSE SSE SSE SSE SSE SSE SSE s ::!137 95 2232 95. 7 PCT 75.0 77. 9 78. 9 80. 1 81. 3 82.0 80.0 75.7 69.8 64.6 '59. 9 56. 9 53. 9 '51. 7 50. 4 50. 4 51. 7 54. 9 59. 8 64. 9 68. 5 71. 1 72.7 74. 3 100. 0 84. 8 67. 0 66. 2 47. 5 20. 5 16. 9 2197 35 2232 98. 4 Rev. 0 WOLF CREEK TABLE 2 .. 3*-12 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL PARAMETERS (MONTHLY) Page 9 of 12 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL PARAMETERS DATA PERIOD: ALL SEPTEMBER COMBINED DATA SOURCE: ON-SITE TABLE GENi::.RATED: 11111/81. 13.56.54. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB ND: 7699-064 HOUR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ABSOLUTE. MAX AVG DAILY MAX MEAN CLIMATIC MEAN AVG DAILY Mm ABSOLUTE MIN STANDARD DEV VALID OBS INVALID OBS TOTAL. OBS DATA RECOVERY 1'1ETEOROLOGICAL PARAMETERS <HEIGHTS IN METERS> DRY BULB 10. 00 DEW POINT 10. 00 DELTA TEMP 10. 00 60. 00 DEG C DEG C DEG C 16.6 16.2 15.8 15. 5 15.2 14.9 14 9 15. 9 17. 5 19.0 20. 3 21. 2 22. 0 22. 4 22. 7 23. 0 22. 8 22. 0 20. 7 19.4 18. 5 17.8 17.3 16. 8 31. 5 23. 7 18. 7 18. 9 14. 0 6. 0 5. 1 2157 3 2160 99.9 12.2 12. 1 12. 1 11. 9 11. 7 11. 6 11. 6 12.0 12. 4 12. 3 12. 3 12. 1 12. 0 11. 9 11. 7 11. 7 11. 8 11. 8 12. 1 12.3 12. 2 12. 2 12.2 11. 9 21. 7 14. 3 12.0 11.9 9. 4 -1. 5 5. 3 2114 46 2160 97. 9 1.5 1.5 1.5 1.4 1.4 1.4 1.0 .0 -. 7 -. 9 -1. 0 -1. 0 -1. 1 -1. 0 -. 9 -.8 -. 7 -. 3 .5 1.3 1.4 1. 5 1.5 1.5 .4 1666 494 2160 77. 1 STAB DELTA CLASS TEMP 10.00 10.00 60.00 .85.00 F F F F F F F E D B A A A A B c D 0 E F F F F F E 1666 494 2160 77. 1 DEG C 1. {, 1. 6 1.6 1. 6 1. l. 1. ::l . :l *-. El -1. 0 -1. 1 -ll. ;::* -l!.. 2 -l. 2 -l. 1 -1.. 0 -*. 9 -*. 4 .4 l. 1 1.4 1.5 1.6 1.6 .4 2139 21 2160 99.0 STAB CLASS 10. 00 85. 00 F F F F F F F E D D D c c c D D D D E F F F F F E 2139 21 2160 99. 0 tHND SPEED 10. 00 M/SEC 3.0 2. 9 2.9 3. 1 3.0 3. 1 3. 1 3.4 3.9 4. 2 4.2 4.4 4.4 4. 5 4. 5 4.3 4. 0 3. 4 2.9 2. 9 2.9 2. 8 2.8 2. 9 15.8 5. 8 3. 5 3.6 1. 5 0. 0 1. 8 2144 16 2160 99. 3 WIND DIR 10. 00 SE SE SE SE SE SE SE SE SSE s SSE SSE SSE SSE SE SE SE ESE ESE ESE ESE ESE SE SE SE 2143 17 2160 99. 2 WIND SPEED 60. 00 M/SEC 6. 4 6.2 6. 2 6. 3 6. 1 6. 1 5. 8 5. 6 5. 6 5. 6 5. 7 5. 9 6. 0 6. 1 6. 0 5. 8 5. 7 5. 5 5. 8 6. 3 6. 5 6. 3 6. 4 6. 4 16. 8 9. 1 6.0 6. 1 3. 0 0. 0 2. 5 2134 26 2160 98.8 WIND OIR 60. 00 SSE SSE SSE SSE SSE SSE SSE SSE SSE SSE SSE SSE SSE SE SE SE SE SE SE SE SE SE SE SE SE ;2103 57 ;H60 97. 4 REL HUMID 10. 00 PCT 75.6 77.2 78. 3 78.9 79.3 80. 0 80. 1 77. 5 72.0 66. 3 62. 3 58. 6 55. 7 54. 6 53. 6 52. 4 53. 1 55. 3 60. 4 65. 3 68. 1 70. 8 72. 3 73. 7 96. 9 83 3 67. 6 65. 9 48. 5 17. 0 18. 9 2113 47 2160 97.8 Rev. 0 WOLF CREEK TABLE 2 *. 3*-12 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL (MONTHLY) 10 of 12 STATtSTICS AND DIURNAL VARIATION OF METEOROLOGICAL PARAMETERS DATA PERIOD: ALL OCTOBER COMBINED DATA SOURCE: WOLF CREEK GENERATING STATION BURLINGTON, KANSAS TABLE GENERATED: 11/11/81. 14.57.07. HC'JR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 ABSOLUTE MAX AVG DAILY MAX MEAN CLIMATIC t1EAN AVG DAILY MIN ABSOLUTE. MIN STANDARD DEV VALID OBS INVALID OBS TOTAL OBS D.".TA R.ECOVEKY KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7699-064 METEOROLOGICAL PARAMETERS (HEIGHTS IN METERS> DRY DEW DELTA STAB DELTA STAB WIND WIND WIND WIND REL BULB POINT TEMP CLASS TEMP CLASS SPEED DIR SPEED DIR HUMID 10.00 10.00 10.00 10.00 10. 00 10. 00 60. 00 60. 00 .85. 00 85. oo 10. 00 10. 00 60. 00 60. 00 10. 00 DEG C DEG C DEG C 13. 1 12. 7 12. 4 12. 0 11. 8 11. 5 11. 6 12.4 14. 0 15. 7 17.0 18. 3 19.0 19. 6 20. 1 20. 2 19. 7 18. 5 17. 1 16. 1 15. 2 14. 5 14.0 13. 4 31. 7 20. 7 15. 4 15. 5 10.3 .5 5. 5 2225 7 2232 99. 7 6. 9 7. 0 7.0 6.9 6.9 6. 9 7.2 7. 7 7. 9 7. 9 7. 9 7. 7 7. 4 7. 1 7. 2 7.0 7.0 7. 1 7. 1 7. 1 7.0 7. 0 7.0 6. 8 20. 7 9. 6 7. 2 6. 7 3. 9 -8.9 6. 6 2045 187 2232 91. 6 1. 6 1.5 1.5 1.5 1.3 1. 3 1. 1 .4 -. 5 -. 7 -.8 -.9 -. 9 -. 8 -. 7 -. 6 -.3 .3 .9 1. 2 1.4 1.5 1. 5 1.5 .5 1847 385 2232 82. 8 F F F F F F F E D D c B B c D D D E F F F F F F E 1847 385 2232 82. 8 DEG C 1.8 1. 7 1.7 1.7 1. 6 1. 5 1. 5 .7 -. 5 -1. 0 -1. 1 -1. 2 -1. 2 -1. 1 -1. 1 -. 9 -. 6 . 1 .9 1. 2 1. 5 1.6 1. 6 1.8 .5 1973 259 22'32 88. 4 F F F F F F F E D D D c c c D D D E E F F F F F E 1973 259 2232 88. 4 M/SEC 3. 8 3. 7 3. 7 3. 7 3.9 4.0 4. 1 4. 4 5. 1 5. 7 5.9 6. 1 6.0 6. 0 5.8 5.6 5.0 3.9 3.6 3. 7 3. 9 3. 8 3.8 3. 9 14.0 7. 3 4. 5 4. 7 2. 0 0.0 .2. 5 2224 8 2232 99.6 s SSE s s SSE SSE SSE SSE s s s ssw ssw ssw ssw ssw s s SSE SSE SSE SSE s s s M/SEC 7. 5 7. 2 7. 2 7. 3 7.4 7. 6 7. 4 7. 3 7.0 7.4 7.6 7. 8 7. 7 7. 7 7.6 7. 5 7.2 6. 8 7. 1 7.2 7. 4 7. 5 7. 5 7.6 17.8 10. 5 7. 4 7. 3 4. 1 0.0 3. 0 2008 224 2232 90.0 s s s s s s s s s s s s ssw ssw ssw ssw s SSE SSE SSE SSE s s s s :2007 225 :2232 139. 9 0 PCT 67. 5 68. 8 70. 1 71. 5 72. 1 73.0 73. 8 71. 9 66. 8 61. 2 56.9 52. 3 49.4 47.0 46. 1 45. 7 47.2 50. 5 54.8 57. 6 60. 1 62. 6 64.3 66. 0 95. 5 75. 9 60. 7 59. 4 43.0 11. 7 20. 4 2045 187 2232 91. 6 WOLF CREEK TABLE 2 .. 3-12 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL PARAMETERS (MONTHLY) Page 11 of 12 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL PARAMETERS DATA PERIOD: ALL NOVEMBER COMBINED DATA SOURCE: TABLE GEN!:.RATED: 11 I 11/81. 1:5. CO. 46. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND I"IOORE JOB NO: 7699-064 HOUR 2 3 4 :5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 ABSOLUTE MAX AVG DAILY MAX MEAN CLIMATIC MEAN AVG DAILY MW ABSOLUTE MIN STANDARD DEV VALID OBS INVALID OBS TOTAL OBS DATA R.ECl1VEkY PI\RAMETERS <HEIGHTS IN METERS> DRY B\JLB 10. 00 DEW DELTA POINT TEt'oP 10. 00 10. 00 60. 00 DEG C DEG C DEG C 5.3 :5.0 4. 7 4. 5 4. 3 4. 2 4. 1 4. 2 5.2 6. 7 7. 9 9. 0 9. 8 10. 3 10. 6 10. 5 9.9 B. 7 7. 9 7. 3 6. 8 6.2 5.8 5. 3 23. 9 11. 4 6. 8 6. 8 .2 . 1 . 1 -.0 -.0 .0 .0 .0 .5 .7 .8 .8 .8 .7 .9 .4 .3 .4 .4 .4 .3 .2 . 1 .0 16.3 3. 1 .3 .2 2.3 -2.8 -7.6 -14.7 5. 7 6. 1 2160 0 2160 100.0 2084 76 2160 96. 5 .8 .8 .7 .6 .6 .:5 .5 .2 -. 4 -. 7 -. 8 -. 8 -. 8 -. 8 -. 7 -. 6 -. 2 .4 .7 .9 .9 .9 .9 .8 .2 2131 29 2160 '98. 7 STAB DELTA CLASS TEMP 10. 00 10. 00 60.00 .85.00 F F E E E E E E D D c c c c D D E E E F F F F F E 2131 29 2160 '18.7 DEO C l.. 0 l..O .9 .8 .8 .7 .7 .4 -*. 4 -*. 8 -1. 0 -1. 0 -1. 0 -1. 0 -1. 0 -. 8 -. 4 .3 .8 1.0 1. 0 1.0 1. 0 1.0 .2 2160 0 2160 100. 0 STAB CLASS 10. 00 85. 00 E E E E E E E E E D D D D D D D E E E E E E E E E 2160 0 2160 100. 0 WIND SPEED 10. 00 M/SEC 4. 2 4.2 4. 2 4.2 4. 4 4. 3 4. 4 4.6 5. 1 5. 6 5.8 5. 9 6.0 6. 0 5. 9 5. 6 4. 8 4. 3 4.2 4.3 4.4 4.4 4. 4 4. 2 1 '5. 9 7. 6 4. 8 5. 0 ;;>, 4 .4 i2. 3 2151 '1 2160 '1'1. 6 WIND DIR 10. 00 ssw sw ssw ssw ssw sw sw sw sw sw WSW WSW WSW WSW WSW sw sw sw ssw ssw ssw ssw ssw ssw sw 2148 12 2160 99. 4 WIND SPEED 60. 00 M/SEC 7. 6 7. 6 7. 5 7. 4 7. 5 7. 4 7. 4 7.4 7.2 7.2 7. 3 7. 5 7. 6 7. 7 7. 7 7. 6 7.3 7. 3 7. 6 7. 8 7. 9 7.9 7. 9 7. 7 19. 7 10. 6 7. 5 7. 6 4. 5 0. 0 2. 7 2146 14 2160 99. 4 WIND DIR 60. 00 sw sw sw sw sw sw sw sw sw sw sw sw sw WSW WSW sw sw sw sw sw SW sw ssw sw sw 17 cr9. 2 Rev. 0 REL HUMID 10. 00 PCT 69. 0 69.8 70. 9 71. 5 72. 2 73. 1 73. 8 73. 2 70. 6 66. 1 61. 4 57. 8 55. 4 53.6 53. 4 52. 3 53. 7 57. 5 59. 8 61. 6 63. 1 64. 6 66. 1 67. 8 100. 0 77. 8 64. 2 62. 3 46. 9 17.9 17.0 2084 76 2160 96. :5 WOLF CREEK TABLE 2 .. 3-12 STATISTICS AND DIURNAL VARIATION OF METEOROLOGICAL PARAMETERS (MONTHLY) Page 12 of 12 STATISTICS AND DIURNAL VARIATION OF 11ETEOROLOGICAL PARAMETERS DATA PERIOD: ALL DECEMBER CDIIBINED DATA SOURCE: WOLF CREEK GENERATING STATION BURLINGTON, KANSAS TABLE GENFRATED:-11/11/81. 15.09.30. HOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ABSOLUTE MAX AVG DAILY MAX MEAN MEAN AVG DAILY MIN ABSOLUTE MIN STANDARD DEV VALID OBS INVALID OBS TOTAL 013S DATA RECOVEHY KANSAS GAS AND ELECTRIC DAMES AND MOORE JOD NO: 7699-064 METEOROLOGICAL PARAMETERS <HEIGHTS IN METERS> DRY DEW DELTA STAB DELTA STAB WIND WIND WIND WIND BULB POINT TEMP CLASS 10. 00 10. 00 10.00 10.00 60.00 60.00 TEMP CLASS SPEED DIR SPEED DIR DEG C DEG C DEG C . 1 -4. 5 . 6 -.2 -4.6 . 6 -.4 -4.8 . 5 -. 6 -4. 9 . 5 -.8 -5.0 .4 -1.0 -5.1 .4 -1. 2 -5. 1 . 4 -1.2 -5.0 . 3 -.8 -4.7 -. 2 . 3 -4. 5 -. 6 1.6 -4.1 -. 7 2. 7 -3. 8 -. 8 3.7 -3.6 -.8 4.3 -3.7 -.8 4. 7 -3. 9 -. 7 4.9 -3.9 -.6 4.2 -4.0 -. 4 3.2 -4.0 . 1 2.4 -4.1 .4 1. 7 -4. 3 . 5 1.2 -4.2 . 6 . 8 -4. 2 . 6 . 4 -4. 3 . 6 . 1 -4. 4 . 6 19.7 5. 9 1.3 1.5 12. 2 -1.4 -4. 4 -4. 4 -2. 8 -7. 4 -18.7 -25.5 6.0 5. 8 2224 8 2232 99. 6 2015 217 2232 90.3 . 1 1958 274 2232 87. 7 10.00 10.00 El5. 00 85. 00 10. 00 10. 00 60. 00 60. 00 DEG C E . 9 E . 9 E . 9 E . 8 E . 7 E . 7 E . 8 E . 6 E . 1 D -. 6 D -. 7 c -.. 8 c -8 c -9 D -. 8 D -. 7 D -. 4 E . 1 E . 4 E . 7 E . 8 E . 8 E . 9 E . 9 E 1958 274 2232 87. 7 .2 :t9:l2 300 B6. 6 M/SEC E 4. 5 Ei: 4.6 E 4. 5 E 4.6 E 4. 5 E 4.4 E 4.3 E 4.4 E 4. 7 D 5.2 D 5. 6 D 5. 6 D 5. 7 D 5. 8 D 5. 7 D 5.4 D 4.8 E 4.4 E 4.3 E 4.4 E 4.4 E 4.4 E 4.4 E 4. 3 E 1932 300 2232 86. 6 13.9 7.4 4. 8 4. 9 2. 5 .4 2. 4 2138 94 2232 95.8 M/SEC WSW 7. 8 SW 7. 7 WSW 7. 6 WSW 7. 6 WSW 7. 4 7. 2 WSW 7. 2 sw 7. 2 sw 7. 1 WSW 7. 1 w 7. 2 w 7. 0 7. 1 WSW 7.2 w 7.2 w 7. 1 w 7. 0 WNW 7. 1 NNE 7. 5 NE 7. 6 NE 7. 7 NW 7. 7 WSW 7. 7 w 7. 7 w 2137 95 22:J2 95. 7 16. 9 10. 4 7. 4 7. 4 4. 4 0. 0 2. 9 2142 90 2232 96. 0 WSW WSW WSW WSW w sw WSW sw w w w w w w w w w NW NW WNW WSW WSW WSW WSW 2140 92 2232 95.9 Rev. 0 REL HUMID 10. 00 PCT 67. 7 68. 4 68. 8 69. 1 69. 5 70. 1 71. 0 71. 7 71. 2 67. 8 64. 4 61. 2 58. 3 55. 1 53. 6 52. 2 53. 9 57. 1 59. 5 61. 9 64. 2 65. 4 66. 4 67. 6 97.9 77. 5 64.0 62. 8 48. 1 17.0 15. 9 2010 222 2232 90. 1 WOLF CRlmK TABLE 2.3-13 MONTHLY AND ANNUAL AVERAGE DEWPOINT TEMPERATURES FOR TOPEKA AND WICHITA, KANSAS(a) Dewpoint Temperature(b) Month Toeeka Wichita January February March April May June July August September October November December Annual aData Period 1946-1965. b In degrees Fahrenheit. Source: 19 21 23 25 29 30 41 41 53 53 63 62 66 65 65 63 56 55 45 45 31 33 23 25 43 43 Environmental Data Service, 1968, Climatic atlas of the United States: Environmental Science Services Administration. u.s. Department of Commerce, Silver Spring, Maryland, p. 58. Rev. 0 WOLF CREEK TABLE 2.3-14 MEAN RELATIVE HUMIDITY AND MEAN NUMBER OF DAYS HEAVY FOG AT Central Standard Time(a) Month 0000 06JO January 76 77 February 74 77 March 72 78 April 73 80 May 77 83 June 80 86 July 78 85 August 78 8S September 82 87 October* 77 83 November 78 82 December 77 8:J Annual 77 82 a Data Period 1965-1978. b Data Period 1947-1978. Source: 1200 1800 65 67 61 59 56 53 55 53 57 55 60 58 59 56 57 56 59 60 54 58 61 64 65 68 59 59 TOPEKA, KANSAS Mean Days wt59 Heavy Fog 2 1 1 1 1 1 1 1 1 1 1 2 14 Environmental Data Service, 1978, Local climatological data, annual summary with comparative data, Topeka, Kansas: Environmental Science Services Administratio;., u.s. Department of Commerce, Silver Spring, Maryland. Rev. 0 WOLF CREEK '!'ABLE 2.3-15 MEAN RELA'T'IVE HUMIDI'l'Y AND MEAN NUMBER OF DAYS WITH HEAVY FOG A'T' Central Standard Time(a) Month 0000 0600 January 76 79 February 74 78 March 69 76 April 70 77 May 76 83 June 74 82 July 67 78 August 67 78 September 74 82 October 73 80 November 74 79 December 75 79 Annual 72 79 a Data Period 1954-1978. b Less than 1/2. Source: 1200 1800 63 65 59 59 53 51 52 50 55 53 53 49 49 45 49 45 :;6 53 53 55 7 62 61 66 '35 54 1iVICHITA, KANSAS Mean Days Heavy Fog 3 3 1 1 1 (b) ( b) (b) l 1 2 3 17 Environmental Data Service, 1978, Local climatological data, annual summary with comparative data, Wichita, Kansas: Environmental science Services Administration, u.s. Department of Commerce, Silver Spring, Maryland. Rev. 0 WOLF CREEK TABLE 2. 3-16 Sheet l of 3 MONTHLY AND ANNUAL AVERAGE AND MAXIMUM PRECIPITATION AND SNOWFALL FOR BURLINGTON, KANSAS Average (a) Month (inches) January 1.19 February l. March 2.59 April 3.7B May 5.34 June 4.87 July 4.23 August 4.04 September 4.3B October 2.99 November l. 94 December l. 41 Annual 38.01 aData Period 1931-1960. bData Period 1896-1960. c Data Period 1951-1960. Source: Maximum Average b Maxirnurn(c) Precipitation(a) Snowfall ( ) Snowfall ___ h ( inches) ___ ___ 4.89 3.6 17.0 2.77 4.0 8.5 7.68 3.3 16.0 10.49 0.3 3.0 15.34 Trace Trace 8.71 0.0 0.0 14.63 0.0 0.0 9.69 0.0 0.() 9.93 0.0 0.0 9.11 0.2 Trace 9.52 0.8 4.0 3.72 3.0 10.0 15.2 U.S. Weather Bureau, 1965, Climatic summary of the United States, supplement for 1951 for 1951 through 1960: u.s. Weather Bureau, Department of Commerce, pp. 86-112. Rev. 0 WOLF CREEK TJ:.3LE 2.3-16 (continued) Sheet 2 of 3 MONTHLY AND ANNUAL AVERAGE AND MAXIMUM AND SNOWFALL Average Maximum b ) Month (inches) January 0.97 February 0.98 March 2.17 April 3.62 May 4.01 June 5.80 July 4.21 August 4.18 September 3.28 October 2.65 November l. 26 December l. 53 Annual 34.66 a Data Period 1941-1970. b Data Period 1947-1978. Source: (inches) 5.24 (1949) 3.49 (1971) 8.44 (1973) 8.12 (1967) 7.83 (1977) 15.20 (1967) 12.02 (1950) 11.18 (1977) 12.71 (1973) 6.01 (1967) 6.27 (1964) 4.30 (1973) 15.20 (1967) FOR 'l'0PEKA, KANSAS Average(b) Snowfall Maximum( b) Snowfall (inches) (inches) 5.7 lB.O (1962) 4.5 2 4 (1971) 4.4 22.1 (1960) 0.6 6.8 (1970) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Trace 0.8 (1970) 1.3 9.4 (1972) 4.9 E>. 2 (1973) 20.9 22.4 (1971) Environmental Data Service, 1978, Local climatological data, annual summary with data, Topeka, Kansas: mental Science servic0s Administration, u.s. Department of Commerce, Silver Spring, Marylond. Rev. 0 WOLE' CREEK TABLE 2.3-16 (continued) Sheet 3 of 3 MONTHLY AND ANNUAL AVERAGE AND MAXIMUM PRECIPITATION AND SNOWFALL FOR WICHITA, Average Maximum b ) Month (inches) January 0.85 February 0.98 March 1. 78 April 2.95 May 3.60 June 4.49 July 4.35 August 3.10 September 3.69 October 2.50 November 1. 17 December l. 12 Annual 30.58 a Data Period 1941-1970. b Data Period 1954-1978. Source: (inches) 2.73 (1973) 2.12 (1975) 9.17 ( 1 97 3) 5.57 (1976) 8.85 (1977) 10.46 (1957) 9.22 (1962) 7.91 (1960) 9.46 (1973) 6.13 (1959) 5.8B (1964) 2.80 (1973) 10.46 (1957) Average(b) Snowfall (inches) 4.3 4.0 2.9 0.2 0.0 0.0 0.0 0.0 0.0 'T'race l.O 3. ] 15.4 KANSAS Maximum(b) Snowfall (inches) 18.5 (1962) 16.7 (1971) 16.5 (1970) 2.3 (1973) 0.0 0.0 0.0 0.0 0.0 0.1 (1960) 7. l (1972) 9.7 (19()7) lB.5 (1962) Environmental Data Service, 1978, Local climatological data, annual summary with comparative data, Wichita, Kansas: mental Science Services Administration, U.S. Department of Commerce, Silver Spring, Maryland. Rev. 0 WOLF CREEK TABLE 2.3-17 ANNl1AL PRECIPITATION WIND ROSE ( 10 f1ETERS) JOINT WIND FREQUENCY OI"iTfliHUTION DATA PERIOD: MARCH 1979 FEBRUARY 1980 PRECIPITATION WIND ROSE DATA SOURCE: ON-SITE WIND SENSOR HEIGHT: 10.00 METERS WOLF CREEK GENERATING STATION BURLINGTON.KANSAS TABLE GENERATED: 10/07/80. 14.19.31. KANSAS GAS ANO ELECTRIC DAMES AND MOORE JOB NO: 7699-062 WINO SECTOR WIND SPEED CATEGORIES!METERS PER o.o-1.5 1.s-3.o J.o-s.o 5.o-7.5 SECOND) 7.5-10.0 NNf NE ENf E Esf SE SSf s ssw sw WSW w WNW NW NNW N CALM TOTAL 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 2 .76 1 .38 1 .38 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 2 .76 0 o.oo 8 3.03 3 1.14 5 lo 89 5 1. 89 2 .76 2 .76 2 .76 3 1.14 4 1.52 3 lo14 2 .76 0 o.oo 4 1.52 2 .76 0 o.oo 3 1.14 5 1.89 45 1 7. 05 7 2.65 7 2.65 1A 6.82 12 4.55 6 2.27 7 2.65 7 2.65 4 1.52 2 .76 1 .38 3 1.14 2 .76 2 .76 5 1.89 6 2.27 104 39.39 4 1.52 4 1.52 5 1.89 5 1.89 7 2.65 12 4.55 5 1.89 9 3.41 6 2.27 4 1.52 1 .38 2 .76 1 .38 1 .38 4 1.52 8 3.03 NUMAER Of VALID OBSERVATIONS WITH PRECIPITATION NUMBER OF VALID WITHOUT PRECIPITATION NUMBER OF INVALID OHSERVAT!ONS TOTAL NUMBER OF ObSERVATIONS TOTAL AMOUNT OF PRECIPITATION FOR DATA PERIOD KEY XXX NUM8EP OF OCCURRENCES XXX PERCENT OCCLJRRENU_S 1 .38 l .38 1 .38 3 1.14 2 .76 3 1. 14 4 1.52 2 .76 1 .38 2 .76 0 o.oo 0 o.oo 2 .76 0 o.oo 2 .76 2 .76 26 9.R':> ?64 R34'1 121 8784 >10.0 0 o.oo 0 o.oo 0 o.oo 0 o.oo 1 .18 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo TOTAL 15 5.68 17 6.44 29 10.98 22 8.33 18 6.82 26 9.85 20 7.58 32 12.12 15 5.68 10 3.79 2 .76 9 3.41 7 2.65 3 1o14 16 6.06 23 B. 71 0 o.oo 3 264 1.!4 100.00 3. 0 1 PCT. qs.62 PCT. 1.38 PCT. 100.00 PCT. 28.15 INCHES SPEED 4o14 4.34 4.36 4.87 So70 5.32 4.65 4.80 5.37 4o65 3.97 4.67 4.23 4.53 4.93 CALM 4.80 Rev. 0 WOLF CREEK TABLE 2.3-18 ANNUAL PRECIPITATION WIND ROSE ( 6 0 JOINT WIND FREQUENCY DISTRIBUTION DATA PERIOD! MARCH THROUGH FEBRUARY 1980 PRECIPITATION WIND ROSE WOLF CREEK GENERATING STATION DATA SOURCE: ON-SITE AURLINGTON,KANSAS WIND SENSOR HEIGHT: 60.00 KANSAS GAS ANI) ELECTRIC TABLE GENERATED: 10/07/80. 14.19.31. DAMES AND MOOQE JOB NO: 7699-062 WIND WIND SPEED CATEGORIES(METERS PER SECONDl MEAN SECTOR o.o-1.5 1.5-3.0 3.o-5.o s.o-7.5 7.5-10.0 >10.0 TOTAL SPEED NNE 0 1 1 7 8 2 19 7.44 o.oo .38 .38 2.65 3.03 .76 7.20 NE 0 0 7 3 3 0 13 5.66 o.oo o.oo 2.65 1.14 1.14 o.oo 4.92 ENE 0 0 2 18 1 1 4 )') 7.57 o.oo o.oo .76 6.82 4.17 1. 52 13.26 E 0 0 2 JJ2 6 4 22 7.34 o.oo o.oo .76 2.27 1.S? 8.33 ESE 0 0 0 6 7 3 16 8.74 o.oo o.oo o.oo 2.27 2.65 1

  • 14 6.06 SE 0 1 2 4 1 0 6 23 8.77 o.oo .)8 .76 1.S2 3.79 2.27 8.71 SSf 0 1 2 7 7 4 21 7.80 o.oo .38 .76 2.65 2.65 1.s2 7.95 s 0 .3A 5 11 9 4 30 7.29 o.oo 1.89 4.17 3.41 1.52 11.36 ssw 0 0 2 6 5 2 15 7.64 o.oo o.oo .76 2.27 1.89 .76 5.68 sw 0 0 2 6 1 2 11 7.23 o.oo o.oo .76 2.27 .38 .76 4.17 WSW 0 1 0 2 0 1 4 6.53 o.oo .38 o.oo .76 o.oo .)8 1.52 w o.o8 3 .3A 4 .)A 2 4.B 6.02 1.14 1. 52
  • 76 WNW 0 1 1 1 0 1 4 6.07 o.oo .38 .38 .38 o.oo .38 1. 52 NW 0 0 2 1 2 0 5 6.22 o.oo o.oo .76 .38 .76 o.oo 1.89 NNW 0 0 3 5 2 2 12 6.86 o,.oo o.oo lol4 1.89 .76 .76 4.55 N 0 0 8 6 6 3 23 6.75 o.oo o.oo 3.03 2.27 2.27 1o14 a. 11 CALM 0 0 CALM o.oo o.oo TOTAL 0 9 40 97 78 40 264 7.37 o.oo 3.41 15.15 36.74 ;29.55 15.15 100.00 NUMBER OF VALID ObJERVATIONS WITH PRECIPITATION 264 3.01 PCT. NUMIER OF rLID WITHOUT PRECIPIT4TION 8216 93.53 PCT. R OF NVAflD RVATIONS )g4 3.46 PCT. l & FOR D4U PERIOD 87 4 PCt* IN HES Kf;Y XXX OF )(JC)C RC NT OC UR S Rev. 0 WOLF CREEK TABLE 2.3-19 MONTHLY PRECIPITATION WIND ROSE mv ** -EN( ** ... ... ** *** -"" -CALM 0 l 0 0 0 o.oo '*"' o.oo o.oo o.oo 0 o.oo o.o8 0 o.oo o.o8 0 o.oo 0 o.oo o.o& J.sl 0 o.oo 0 o.oo o.o8 0 o.oo 0 o.oo 2 7.14 J.sl 0 o.oo 0 o.oo , .* 1 0 o.oo 0 o.oo 0 o.oo 0 o.oo o.o& 0 o.oo 1 ),57 0 o.oo o.o& o.o8 0 o.oo 1 ].'37 0 o.oo 0 o.oo , .* 1 0 o.oo 0 o.oo 0 o.oo 0 o.oo 1 JoS7 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo io. ,/ 0 o.oo 0 o.oo 0 o.oo 0 o.oo
  • Zlo't] 1 J.S1 o.o& 0 o.oo 0 o.oo 0 o.oo *** &
  • o.oo
  • o.oo
  • o.oo *** & 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 1 J.S7 o.o& J.sl 0 o.oo 0 o.oo 0 o.oo 0 o.oo
  • o.oo J.sl 0 o.oo J 10.71 ,. Ill ) , .. JOiNT llf1NO fldYutN(y Ul<tf.,IHUTIUN OATI PfRIOU: 14AY JQ1Q .. EN( ESf .. ... ... sw *** .... NW -CALM Tif£ i t lo WJI'\ID C,Ptf.U C.llf.C.O..,Jt<.,l,..flt.K') Pf.R <;,f.CONUI 0.0-1.5 I .S-1.0 loO*':J.O 5.0-7.5 7."i*lO.O 0 o.oo 0 o.oo 0 o.oo 0 o.oo
  • o.oo 0 o.oo
  • o.oo 0 o.oo 0 o.oo 0 o.oo
  • o.oo o.o& 0 o.oo 0 o.oo 0 o.oo 0 o.oo o.o8 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo
  • o.oo 0 o.oo 0 o.oo o.o8 0 o.oo 0 o.oo *** &
  • o.oo 0 o.oo Q o.oo 0 o.oo 0 o.oo
  • o.oo J.zl 2 bolt'i 1 1.23 .... .. 12.90 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 1 ).l) 1 3.23 1 3.2) l boltS 1 1.21 0 o.oo J ... b8 l 9.bft 0 o.oo 0 o.uo ,_,\ 0 o.oo
  • o.oo 0 o.oo .... 0 n.oo I J.i?) u o.oo l J.tJ 0 o.oo 0 o.oo 0 o.oo 0 o.on 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo I }.t'l J.z\ (10 METERS) lO, U 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 1.sl 0 o.oo 0 OoOO 0 o.oo
  • o.oo 0 o.oo 0 o.oo
  • o.nn 0 o.oo tOfAl l l.llt
  • o.oo J.sl
  • llolt1 l 7.14 J.sl l 7.14 l 7.14
  • o.oo o.o& 0 o.oo 0 o.oo .. .... l9 ll ... 0 o.oo ,. 100.00 ** 1t. PCT o 'l'i.ttJ
  • 100.0 PC
  • PC!" '*'-, .. lolO z.lo o.oo ** 11 a.os to.lo o.oo o.oo o.oo o.oo "'f. AN *IU.O 0 o.oo TOl.ll SP(£0 I 6oJO 1.?1 0 OotJO 2 bo'i'5 ho4, 0 o.no I 1 * .?0 loll 0 o.oo l.o ft.,lO 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo
  • o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.no 0 o.oo ll.YO I 'iobd 1 J.ll ' lholJ 1 u.-,a J.zl 0 o.oo 0 o.oo 0 o.oo 0 o.oo 1 J.ll .. 1.?.'10 0 o.oo 0 11 o.oo 100.00 <+.1 7 PCT. I-OCT. PCr. 100.0 PCr. it.O INCHES c;.oo o.oo o.oo 'io80 o.oa o.oo 8.00 CALM .rl'lll I WI 'loll Hi' 11:1*11111"" ll.lf.l 1-'t PI !Ill! II I d*1 li-'lf"'liHN ... 010.,/ ll,ll .. Ill!'. .. 7f 11/:"' 1: ,,,.,, , .. ,,.,,,,, ..... *** E<E Sf SSE ** *** .... .. *** CALM WINO S£CTOR -... EN( ESE SSf ** *** WNW NW CALM fOUL wiNII n.n-J,<., *,l't I !J I /lo II II *. 1>41 It><. I ** , -I. u \, H *,.,,_I.*. " n.oo " n.on " o.oo
  • o.oo 0 o.oo 0 o.on 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 n.oo 0 n.oo 0 n.oo 0 o.oo n o.on 0 o.oo 0 n.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo
  • o.oo *** 8
  • o.oo 0 o.oo 0 o.oo 0 o.oo o.o8
  • o.oo 0 o.oo
  • o.oo 0 o.oo
  • o.oo *I u.n11 " 1>,*111 I \, /0 " o.oo 0 u.oo l I. 70
  • n.no 0 o.no 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo n o.oo 0 o.oo ).;\ 0 o.oo
  • o.oo
  • o.oo 0 o.oo J.sl o.o8 J.sl J.sl 0 o.oo 0 o.oo J.sl 0 o.oo 0 o.oo 0 o.oo 0 o.oo . ' o.oo J7.8b I \,{II ..... !' 1 l,ffl I lo/0 " u.oo ' II oil " n.oo l \ .. HI 1 ].10 " u.oo l 1.10 " n.oo 0' o.uo I ).70 0 o.oo J.s\ 0 o.oo 0 o.oo ,_,\ l 3.57 0 o.oo J.sl 0 o.oo 0 o.oo *.* 1 1.sl 1.sl , ** 1 ,.,1
  • o.oo " U,IHI " 11,11() " u.uu " n.oo ' r ... l 0 o.oo 0 o.uo 0 o.uo 1 \,IQ 0 o.oo 0 o.no 0 n.oo 0 u.oo
  • u.oo 1 l.tn l l.f()
  • o.uo 1 ).'>7 0 o.oo 0 o.oo 0 o.oo 1 J.57 0 o.oo *. ,1 .. ,\ .. ,\ ..,\
  • o.oo
  • o.oo 0 o.oo l 10.71 *. ,1 Page 1 of 3 y,'l( I < oil I * * .j ot l Ill* H'l l *o*.l .,.,-r "' . 1111" A *, ',.l 111 I I I ' 1" II 1111 ... 1 ..,qq ,, ,,,., *.11111>111 I,',-I**-" I t,f/1 " H ,IH) " n.nn I \,/0 ' t,fO " u.ou ' 1 ... , " o.oo " n.no 0 o.oo 0 o.oo u n.oo 0 o.nu 0 o.no 0 o.uo " {),1)0 " n.*l'l " 11,(1/l " U,IJO I j,/0 *I O,flll 0 o.oo 0 o ** ,o n 0.(}\) 0 o.no " 0.1)0 0 o.no n u.oo
  • n.oo 0 o.no " n,oo I \,I/) '*' ...... *" f()lt,lt 1.'* ' '*'*I ' !.IIJ ' 11.11 ' '-"l I 1.1u ' 111 * .,, " n.oo l l.'o\ I J. 70 " o.oo '*,A 0 n.uo 0 1).00 t '*"' " IJ.UO " I *HI ,!)0 1'1 '* '"* I'( f. 1*11. I ><I , loldl 1.61 }."1(} o.oo o.oo o.oo o.oo CALI<<< MtAN u. 0 0 o.oo fOIAL SPH(J 0 o.oo 0 o.oo l 1.'>7 0 o.oo " n.oo 0 o.oo 0 o.oo 0 1}.00
  • o.oo 0 o.oo 0 o.oo *... 1 0 o.uo 0 o.oo 0 o.oo 0 O,flO 0 o.oo 0 (},1)0 0 o.oo 0 o.oo 0 o.no 0 o.r10 0 Q,f)(l 0 o.oo 0 o.oo 0 o.oo " o.no
  • o.oo 0 o.no 0 O.fJO t 2.'>5 1.1<. I T,tO ),':17 I 7.b0 }.':l1 ' 7.11t ' \0.1\ I j,'-,7 ' 7.14< t 7.14 ; l.l'o I ,_..,, . o.oo 4oo00 lobO "*"0 1,/0 lt.6':J r.to " '" o.oo 100.00 I"' of *JTH PRECIPif*f'"" A tAL 0 OB<ilNyAT ONS -.J lliOUT PREC P TAT IUN Ht llf '"" ou* *t*1oo J,ti'i P< I. <;<,,h9 PC f. *"2 p('. KEY m REV 0 WOLF CREEK TABLE 2.3-19 (Continued) MONTHLY PRECIPITATION WIND ROSE JOINT Wll'4fl f uutNCY OAU P[HIOI)r ltJlY l'iT9 o.uo n TABLE Gt:NfHU[u: "'JNO <;,PU.O lAJt.YOidt.') fMt. TtH'> ..,lW '>t lONDI o.O*l.4!1 l.'>*J.o J.o-s.o .-,.o-7.<, 1.<;-lo.o ... EN( ** sw WSW WNW NW NNW CALM TOTAL 0 o.oo 0 o.oo 0 o.oo o.o8 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo o.o8 o.o& 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo ,.,1 0 o.oo 0 o.oo
  • o.oo 0 o.oo ,.sl 0 o.oo ,.,1 0 OoOO 0 o.oo 0 o.oo , .* 1 0 o.oo 0 o.oo 0 OoOO 4 )4olQ ; 7.14 ? '*" . 28.S7 J.sl 0 o.oo I J.S7 J.sl ) 10.71 0 o.oo
  • o.oo
  • o.oo 0 o.oo 0 o.oo 0 o.oo J.sl 0 o.oo JOINT wiNU fWttJHlNlT IJI<,HIIHtJIIHI\I OATA PfkiOUI <.,£Plf1'4t1t.W I"N 1.>1 0 o.oo 0 o.oo 0 o.oo J.sl I J.S7 0 o.oo
  • o.oo J.sl 0 o.oo 0 o.oo 0 o.oo o.o8 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo . o.oo " o.oo 0 o.uo 0 o.oo
  • o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo
  • o.oo 0 o.oo 0 o.oo u o.oo 0 o.oo " o.oo '" 110 0 144 (10 METERS) *lU.O 0 o.oo . o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo *. ,1 IIIIAl. l 10.11 l 10.11 . tfi.'>1 *. .,! I 1.'>7 l 7.14 ' 1.14 I Jo.Tl l '*" 0 o.oo
  • o.oo o.o8 J.'>l 0 o.oo 3.51 ,.,1 0 o.oo 10 100.00 .... 70 s. 10 ft.JO lo60 o.oo o.oo o.oo 1.80 o.oo ).lbO to. to CALM JOIN I t OA1"A .. fUIOll: AtJ(,uo.,l J'9N wiNil 1-lU'>t fi*ef L::ot 11. NE EN£ sw WSW wNW ** NNW CALM 0 o.oo . o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo *** 1 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo o.o8 0 o.oo 0 o.oo o.o8 0 o.oo " o.oo " o.oo 0 o.oo ' I J.J) 0 o.oo 0 o.oo
  • o.oo 0 o .. oo . o.oo 0 o.oo 0 o.oo *.* 1 *.* 1 0 o.oo *** 1 o.o8 . U ,IJO 0 o.oo " o.oo I) o.oo 0 o.oo " o.oo . o.oo ' to.oo 0 u.oo . o.oo . o.oo *.* 1 *.* 1 *.* 1 0 o.oo
  • o.on Jt!INI wllllll UI",Tf'lt-HJIIUIII IJAU PfQIOil: Ill IOHt H 191<1 0 u.oo 0 o.uo 0 o.oo 0 u.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo I 0.67 0 0,00 u t}. 00 0 o.oo *.* 1 0 o.oo 0 o.oo Pa.gc ' <>f 3 WHI I ( l<t I "
  • ol t-11 *<A t *,! ft I j "' II<Jf't I Nt>l A"40.,A'., II AN<.,AO., lo4<, .II.Nd fl I ( II I!AMt ANti !!hi NO: " o.uu " o.ou 0 o.no " o.oo " o.uo 0 u.oo
  • o.oo 0 o.oo " o.no 0 o.oo " 1).00 0 o.oo 0 o.oo 0 o.oo ,, u.oo 0 o.oo " o.oo )'> " " , ..
  • I . IJ . (),()() " o.oo " o.oo " ll.!IO " 11.00 0 o.no " u.oo " o.oo 0 o.oo 0 o.on " o.oo " u.oo ,, o.ou 0 o.oo 0 0.1)0 " n.no " 0.01) 1<<141 ,, IJ.Hif " <1.00 " U.IIU ll.ll " o.no I t-..1>7 ' ro .no ,, u.no 0 tl.l)fl ; ll.ll ; JJ.Il ll.ll I r, ..... r ,, u.uo " n.lltl " 1 :H_,.oo <'.!);'I*{ fo 7 ,'-111 1--( I. 0.00 Pr I. Ill 0
  • 0 0 I , .,I>,Q 11'141 Ht' o.oo ... or o.oo ,,,ro o.uo z.ro ... 10 ;.To loJ'I JfPI I I fit I" t.t 1'14t t*A 1(1'141, *,!AT ION H!l .. *t INt.H)NoiiAI'olt,AO., wJNII l-ldO.,t ""' I J II( f ,,) *II 1<1\ I I N*, *.I 1\ I 1<>10 -NE ENE ... SE ... ssw sw w<w ... ** -CALM [ .. A\*"1; ll/11 1 1
  • 0 o.oo 0 o.oo . o.oo 0 o.oo 0 o.oo ' I loll 0 o.oo I 5.56 0 o.oo 0 o.oo 0 o.oo o.o8 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo
  • o.oo . o.oo 0 o.oo 0 o.oo I 5o5b 0 o.oo ' I loll ' I loll 0 o.oo I 5.')6 0 o.oo 0 o.oo 0 o.oo 0 o.oo I 5oSb 0 o.oo ' lt-..nt 0 o.oo 0 o.oo
  • o.oo 0 o.oo 0 o.on 0 n.oo 0 o.oo 0 n.oo
  • o.oo 0 o.oo . o.oo
  • o.oo " o.oo I s.sn ;.sl.
  • n.oo 0 o.oo
  • o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo ' 11.11 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo IIAN..,Ao., !>A.., ANil t l t I 1!4141 0., ANII JOH NOI ftl"I ... *Of'JI 0 o.oo () u.oo () o.oo 0 o.oo
  • o.uo
  • o.oo u o.oo 0 o.oo 0 n.oo 0 o.on 0 o.oo
  • o.oo 0 o.uo * (1.00 0 o.no I C:..'lb 18 101 Ill *I o.u
  • o.oo . o.oo 0 o.oo u o.oo 0 o.oo 0 o.oo 0 o.oo
  • o.oo 0 o.oo 0 o.on 0 u.no 0 o.oo " o.oo 0 o.oo 0 o.oo 0 o.oo IOIAl ' 0 o.oo " o.oo " o.oo ; 11 .tl c 11.11 ' tf. "' 0 n.oo I '>.":1& u o.oo 0 o.oo
  • o.oo 0 o.oo l II oil t 11.11 0 o.oo
  • IK n.oo 1on.oo 2.-,o 1-'CI * "'7.21 Pfl. *. oil P T. 10oJo ""* *. H J,.CHfS Ht AN U o.oo o.oo o.oo l.lo lo 70 o.oo 1.00 o.oo o.oo o.oo o.oo J.e.o CALM )oOI lll,tJn f/!1', f\1 If' I ! I'<' ,jiH!, Mj' .II *, \UifJI!tW. IJ'I,It,.jj. 1\rf' A', 1,1\* Mill Ill' I" I< lii<MI '* IINI! ..,ll<ll>f IIIII fHf: wl!r<tO WIIIIIJ ( '.11>1t *,I I 41MII O.O*I.C, j.-,-J.O l.0-'>.0 .,,()-f.*, 7.'>-!U.Il EN( ... sw w*w WNW Nw ... fOUl " o.oo " o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo u.o8
  • o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo
  • o.oo . o.oo . o.oo o.oZ
  • o.oo 0 o.oo . o.oo
  • o.oo
  • o.oo
  • o.oo
  • o.oo
  • o.oo u o.oo " o.oo 0 o.nn " o.oo 0 o.oo 0 0 .oo " o.oo " o.oo " o.no 0 o.on " o.oo o.on " o.oo 0 o.oo " o.ou " n.on " o.oo " o.oo " o.oo " n.rJn ,, IJ,IJfJ " ().f)l) ) f.li'> 0 /},\){) 0 o.oo 0 o.oo 0 u.oo 0 1).00 ' lt.'l<o 0 o.oo l II ..... 4 ; 1 .t-.Q I 0 o.oo " 1}.1)1) " O.llO ,, *,u,I)U " II,!JII " 0.110 " u.ao " o.oo " IJ,IH) ' ,_,,., I I,H'* ) , ..... " 1).()0 l \,M<, " '*.1!11 I ,_,., .. " '!.0/! " U,UIJ .. ,* l, UH """"** or v*tju o"'l*v*!l""' "I'" ""*'"11.11"" " Al D HlA W fHOIIf PAf. P 11;, p* Of II I :¥t!ION'i , .. 4 ti ul * , ** "'" "' "'"'>lO KEY *lll,O " f),!JO " u.oo " [J,I)I) ,, U.lj() " 1),1)11 " U.IHJ " I),OJ/f " I!,IHI " ll.<H, " o.uo ,,,,.1, ,, 1),/JJ} ' II**" " 1),1)1) ,, 1!,1)() " 0 .lj/) ,, lj,!ll) " '1,0/) " IJ,I)/1 ' ,,., .. ., (,,,ol! ' ,, ... , lJ .,, 'f.(Jh J*o*o.IJIJ '*'*'* 1*1 r. "'*.10 1'1!. I** I. 111o.o **lr. ).'\ fllj/ .. 1 1).00 ***Ill REV 0 WOLF CREEK TABLE 2.3-19 (Continued) MONTHLY PRECIPITATION WIND ROSE Nf '"" £Sf ... \SW sw --0 o.oo 0 o.oo 0 o.oo
  • o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo o.o8 0 o.oo 0 OoOO 0 o.oo 0 o.oo 0 o.oo 0 o.oo I loft6 I l.86 0 o.oo I loA6 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo *. ,f 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo I 2.86 . ll,o.J 8 l2.86 0 o.oo 2 5.11 0 o.oo ' 8.".! 1 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo
  • o.oo 0 o.oo I 2.86 wf"l JlitNt * !!['d*d*Hif[, DATA Pti..I[Hll: IANI!Ai-'1 t [1-'j I A 1 JoIN j ,_., J *I HATA \'IJ ... \ I: Hl'\j*'d l! Wf"'fl 't N'>O'-' Ht J \J, 11* .,., ft ,..., . o.oo 0 o.oo 2 ':).11 , .. l ':;.7} I 2'.86 0 o.oo 0 L),t)Q 0 o.oo u u.oo 0 o.oo o.o8 0 OoOO 0 o.oo 0 OoOO ) ti * .,7 f.o\Hlt r,t:NtkAHn: [1LtrJ7/MU. i*o,l4.1\, 0 n.oo 0 o.oo 0 o.on I .?.86 0 o.oo I l'.86 0 o.uo 0 1),0(1 0 o.oo 0 u.oo 0 o.no 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo ' 71 "
  • 7l0 ( 10 MET:ERS) Mt.lllli > 111,0 " o.no TOfAL SPHU 0 o.oo 0 o.oo 0 o.oo 0 0.(10
  • o.oo 0 o.on 0 n.oo 0 o.on
  • o.oo 0 o.oo 0 o.oo
  • o.oo 0 o.oo 0 o.oo
  • o.no
  • o.oo > .,_,, 7 20.00 , *. H I A * .,1 . Jj,4] 0 o.oo *. ,1 0 o.oo 0 o.oo 0 o.uo 0 o.oo 0 o.oo 0 o.oo . llo4) 0 o.oo 0 " o.oo 100.00 o.oo loo]1 SoJl o.oo o.oo o.oo o.oo ZoiO o.oo o.oo o.oo CALM '""I I 1 "' I I *I II *<A f [ II* * '* f" f J 111 "'I I...,,, I il*o, ,\*l'*A '* ,._ A"'<,A*, * .A*. t I I I \ f" ll. <, ilot-+11 "4<\<1.11 ljl\; 1.,_'-1'+-l)bl wJt\jfi W [t\lfl '->')I *I I A it "11 .. It l'-1t It \.f*, *'I !.'
  • II IJ,o-1 *" ,,n l.n-*,.*t '*.11-'*" 1 .">-lu.n > r *t.ll -.. (N[ f<£ " "' <w NNW " n.on 0 u.IHI " o.on 0 f'l,\)1} ,, IJ,()Il " U,IIU " (),110
  • o .on 0 o.oo 0 u.oo " 0,/)Q * (),(10 0 o.oo 0 o.oo 0 o.oo 0 (),(\(\ ' ll,l'q ? \\.1" " !1,!1/) " l)oll!l " u.nu *, ... 1),011 " o.on " n.uo " u.oo 0 o.oo
  • o.on I "),ltR llolf"< " l*,l)ol ' **" " (1,1111 " Hol)fl " U,()H " u.un ,, u,nu " u.oo " \),'\(\ I **.*!,.; " \1,110 II, ,, lo,!IH " 11, oHt " n.nu " 1),1111 " t\,1111 0 U,l)f) 0 u.no 0 0,00 " n.uo
  • 0.110 0 u.oo " u.uu 1),!\1\ " (>,JHI " ol,IIIJ " U,ll(l ' '**"*' " 11,1111 I *,,,JM " (),UCJ " f},(jU " 0,1)(1 " 11,00 " 0,!)1) II '"" ?I , .. " 11,1)0 " II,OH ,, n.nn " !l,f)(l " u.ntl " <1,1111 " 11,110 " 1),1111 " tl,!!/1 " II.Utl ,, U,!HI " (),IHl " 0.110 <) u.no " o.no u o.oo " n,un l">ol*l ' I loll'* II* " u,uo I *** ttJ1 " tlo<ll) I I
  • f I *,,,,,. I o,IIH " n.uo " o.uu " o.uo " ().00 " u.uo " n.uu II 11 n.nn IIJU.OO ,..,,.,"i t** r. ... !i.,. Pf r. t,_.7 1-'CT, lnO.flOP(f, .').) !"f(Hf '> \,fJ ,,..,, o.oo I dO .... uo '*"" o.oo n.oo o.no o.oo (.ALM Paqc J of 3 JOIN I lflll'*ll I * !II', f*>l"*fl l"l llAfA l't JlJilll: Ill ft ><IH).,. I lf'l >'Wt I I*' IIIli 1111* .. I lit I !lA'. <,i)!!UI t : -*,I ft ,_,,..0 '>f I'll<., Ht 11*>11: f tl,ut< '-11 It"' TAHI £ Itt Nt I<'Alt 11: I ol/ I 1/0'\il, Jf*. I "* \1, '"' 0( I < ><) ll.*j',ll', "1\1-.* II', * ,(l '* ANI I I I I I [I '* A "--ll II It! lj(l; f'>'l 1-I'*, WlNfl t 11 I *, I /"'t II 1-/'. **t" t ( 1l11tl1 -Nf EN£ "£ , . .,. *** Nw NNW CAlM TOTAl -[N( ... ... ** **w WNW N. NNW N o.u-r.o., 1 ,..,_ 1,0 J.**-*,,o *,,,,_ I ,*, f .*,-iu.u *IU.tl " (l,(l() lo*l*lL 0 n.oo 0 o.on 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 u.oo
  • o.oo 0 n.on 0 n.on 0 o.oo
  • o.oo 0 o.on 0 o.oo 0 o.oo 0 o.oo 0 n.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo o.o8 o.o8
  • o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo o.o8 o.o8 o.o8 " !JoUil 0 n.n0 0 0,111) ,, o.oo 0 o.no 0 (J,Of} 0 o.oo 0 u.oo 0 o.uo
  • o.oo 0 o.on 0 o.oo 0 o.oo 0 o.oo
  • o.oo 0 o.no 0 0.()1) 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oa 0 o.oo n o.oo o.o8 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo o.o8 " <f,l!!l " o.no 0 u.ou 0 o.uo ,, u.uo " u.uo " o.ou
  • IloilO " o.uo " 11,()0 " o.oo 0 o.oo " n.un " h.OQ " o.oo 0 o.oo ) H.'>O 0 o.oo 0 o.oo I t'>.OO o.o&
  • n.on o.nX 0 o.on 0 o.oo 0 o.oo
  • o.oo
  • o.oo 0 o.oo 0 o.oo I \l,\1 0 n.oo u o.oo
  • O,tlO 0 u.un 0 u.oo 0 0.1)0 0 u.oo " 11,01) 0 u.on 0 u.oo 0 0 0 0.1)0 " {),flO u IJ.OO I I !Ill 0 o.oo 0 o.oo ' Z5,00 0 o.oo 0 o.oo 0 0.110 0 CI,OQ 0 o.oo 0 o.oo
  • o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo o.o8 0 ' I 0.00 6Z.50 11,">0 4!lON' "I'" PREC!Plf*IION AT W THOUT PHfC P l&TION *y UONS 1r1T7A.. fOM O&lA Pf.HIOU ,, (),()!) " o,on " (),0!) " o.oo ') n.un " n.oo 0,110 " (),()() " n.nn
  • n.nu " !),(\\) " o,no " \"1,\H) ,, o.no " Uollt) 0 !l,lll) " (),()(' ,, (),fl(} 0 lloUO " o.no
  • Uo!JI) " IJ,OO " IJoOO " n.no " 0.1\U 0 Ooi)O " Q.tH) " !),(}Q 0 n.oo " o.uo ' I!. ll " 1\,1)() " o.oo ,, o.uo " n.n(J " o.no " \\,\\{) 0 (),()Q ,, o.nn " 0.00 " l},i)IJ 0 o.uo ,, o.no " 1),1)\} ,, IloilO " ' IloilO I Ufl,IJU
  • I
  • 1*1 r * ,"><o >*If, 1 ov.oo r. ,OH [t\levrtt '> u.ou (1.1.)1.) n.oo o.oo o.uo n.uu u.oo o.oo u.uu \),\)(} o.oo WOU l,l\itoJAf[Nt. C.TATION \) o.oo " (1.00 !) o.oo " o.oo " n.oo
  • 11,()(1 " o.oo " (1,(11) " 11,01) " 11.1111 " o.oo 0 o.oo 0 o.oo !) 0.0() 0 o.on o.uX 0 o.oo . h '"' "'tAN *10,0 0 o.oo TOIAL ')Pt.fU " o.oo 0 o.oo 0 HollO
  • u.no 0 o.oo 0 o.oo " u.uu 0 1).1)0 !) o.oo 0 (),()(}
  • o.no 0 o.oo 0 o.oo 0 o.oo o.o8 0 o.oo 0 o.uo ' 6.?.'10 0 o.oo
  • o.uo ? 1'-.,UO 0 o.oo
  • O.fJO o.o8 0 o.oo 0 o.oo 0 o.oo o.o8 u o.oo 0
  • IJ,UO tOO.QQ o.oo o.oo o.oo o.ou ... ou ..,, 10 IJ,I)O o.oh o.oo fJ,Q(J o.oo o.oo o.oo o.oo REV 0 WOLF CREEK TABLE 2.3-20 MONTHLY PRECIPITATION WIND ROSE (60 METERS) ,gurptJruno,. 1f" r.lll{ c={*Ji:AwutHG .,.,.,.. :\:\:?n. ..... m >10,0 lOUt -*** 3 *** & *** & *** £ *** : *** : *** f *.** ... o.o8 o.o3 ,,J *.* 3 *** : *.* 8 ,,,J ,,,. £1C o.ol o.oS o.o3 o.o3 * .1£ s.&e *.* 1 *** : *** : *** : *** 8 *** & *** & **** ur 0.o3 o.o8 o.o8 >.sl o.ol o.o& 1.st '*" " o.o: o.o: o.o: *.* : 21 ** *** g tl ** **** '" 0.o3 o.o8 o.o8 o.o8 o.oX 1.sl 1.s! ***** J 0,o3 o.oX o.o8 o.o& J.sl l.sl 12'30 ssw *** & *** 1 ***g *.* : *.* 8 ,,,; J,sf u-** sw o.o# o.o# 3.51 J .. sJ o.o: o.og 1.1! 5'"01 vw 0.ol o.ol o.o& o.o: o.o3 o.a: o.o: o.oo -"" -N **** ... : 0 **** ;o.o& o.o: o.oS ].5t ... : ... : *** & ... : o.o8 o.o3 0 (hOO
  • o.oo ' 11.8b o.o& 0 o.oo 0 lhOO 0 lo. ,/ o.o3 o.o3
  • o.oe 0 o.oo *** 8 *** a 0 o .. oo 0 **** , .. *** 8 *.* z
  • o .. oo * *** ****' *** &
  • lO 1' .. too .. oo rul': p
  • 1"Y:ta i "rs o.oo **** **"" CALM tS2J:r loN Mi'".!.lAH?" !'ilf 'IP$l X8&{ r!IS <FortON !., ** :\!l:!ll. M=d , ***.* u *10,0 TOTAL -o.o8 ***g o.o8 o.o3 o.o3 >.z\ ,.zl to.lo N! o o o -o z o 2 s.H 151 sn sw -"" -H TOTAl. o.oo o.JJo o.oo o.oo &.*s o.oo &.*s e II II 6 l 0 o.oo o.oo o.oo o.oo 9.61 o.oo o.o3 o.oS 1.z\ 1.2\ 1,2\ 1.z\ o.oS o.o3 o.o8 J.z\ 1.2\ o.o8 o.o3 e.o3 o.o: o.o: J.ll *** x *** 3 *** : J.Zl *.* i *.* 3 *. J *.* s *** : "**= *.* A *** a ... : O*Og
  • ChOO *** J ... : *** 1 0 o.001 ..... *. or ... : ... : *** 3
  • o.oo 0 **** *** 3 o.o& o.o8 1.zi *** 8 0 (J-.00 1.zl *** 3 ... :
  • o.oo ... : *** 8
  • o.oo
  • o.oo o.oB 0 o.oo 0 (h00 *** 8 Mi * *****
  • l2*90 ... \ l.ll 0 o.oo m: a.oo ** lo ** <00 **** .. ., . **** **** * \Ill -"" -.. ... ... II -"" -.. fOUl. *** & * ****
  • o.oo o.o8 *** & *** & ... : *** & *** & * (hOG ... : *.* x o.ol o.o8 *.* 3
  • o.o-o *** 3 *** 8
  • e.oo ... : o.o8 * ** 3 . .. : *** 8 *** 8 *** &
  • o.oo *** a
  • o.oo
  • o.oo 0 o.oo I= sr *:m tlf 01' :t z=.,, *** 8 0 o.oo
  • o.iSo 0 o.oo 0 o.oo 0 o.oo o.oS o.o&
  • o.oo *
  • o .. oo J.s!
  • ihOO
  • o.oo
  • o.oo 0 o.oo o.o8
  • o.oo 0 o.o&
  • o.oo ? f .. l't &TjONS *JfH 1 0NtW 1HihH Pflft.lPllltllHN r*P
  • tl¥1 H FUM OAU PUHOO 0 o .. co
  • e.oo
  • fhOO o.o8 0 (}..00 *** 8 *. ,! *.* s ... ... : *.* t *** 8
  • o.oo *** & *** 8 l t .. OAU PEAtOO *t. m Pag(! l of
  • o.oo l T olio
  • o. .. oo 1 ** £
  • o.oo J.s!
  • o.oo
  • o.oo ... :
  • o.oo ,,,!
  • o.oo
  • o.oo 0 o .. oo *** & 0 -0 .. 60 ... : *** & *** r/ s l f.lf6
  • o.oo " .. *** 8 ,,sl l 1,.t4
  • o .. oo , ** 1 0 o.o:o ,,,!
  • o.oo **. d 0 o. 00 5 ?ft ll.M HHLtl& ' 1.11* ,,,,.i. ' f.l4 *.* 1 **. d i f.l .. REV 0 >t .. JO o.oo &.to Clt.M IO.JO II ,4ft '* ""*'(), I ....

WOLF CREEK TABLE 2.3-20 (Continued) MONTHLY PRECIPITATION WIND ROSE (60 METERS) Page 2 of 3 """"" ! "* *oo ... ,. ..... , llnoa o.o-1 *u.o rouL -*** 3 *** 3 *** 3 ), 7& ,, 7& ). 7& 11.11 ** ., Nr o o t 1 o o l o.oo o.oo ).70 1.70 o.oo o.oo 7.41 I!NI o.ol o.og J. ,A o .. oX o.o8 ** ***l o.o! o.o3 o.ol ltt.at J.rA o.og 11.1Ji 6"06 nr o.o3 o.o3 o.o3 o.o3 o.o& o.o& o.o3 **** K o l o l o o Z **51 IU IIW IW -* -NW -N CILII fOTAl ru sr IU IIW -w -... -N o.oo ). 70 o.oo J.10 o.oo o.oo , *** o.o3 o.o& 0 0.10 o.o3 o.ol o.ol 0 o *** o.e3 0 .... *.* 1 *** a 0 o.oo o.o8 *** 3 o.o8 0 o.oo *** 3 o.o8 *.* a *** 1 *** & *** 8 *** 1 *** a *** a o.ol 0 o.oo *** 3 0 o.oo 0 o.oo 0 o.oo *** a ,,,, o ** a 0 o.oo o.o& l ,.,. *** & 0 o.oo *** 3 0 o.oo 0 o.ao o.ol *** 8 0 o.oo 0 o.oo *.* 1 o.ol *.* 1 *** 3 o.ol ]. 7& 7 ** f 0 o.oo 0 o.oo 0 o.oo n o.oo 0 o.oo l. 7& 0 o.oo o.o3 *** 3 ... : 0 o.oo 0 o.oe o.o: *.* 1 o.ol *.* 1 *** & *** a o.ol ... : llolf *** 1 ], 7' l. 7' ], 7' 0 o.oo 0 o.oo *** 8 0 o.oo *** 3 0 o.oo ... : *** & 0 o.oo *.* t I 'le56 *** 1 *.* 1 *.* a *.* 1 o.o& o.o& o.o8 o.o& *. .1 *** L ... : 0 o.oo 0 o.oo 0 **** *.* 1 *.* a 0 o.oo *** & 0 o.oo 0 o.oo l '*** *** & *.* 1 o.o& *. s1 0 o.ao *.* 1 *.* 1 0 o.oo 0 **** *** & o.o8 *** 3 *** & *** 3 0 o.oo 0 o.oo 0 o.oo 0 o.oo *** 8 *** & 0 o.oo 0 o.oo 0 o.oo 0 o.oo 7 ** f ll.ll ), 7& 0 **** *** & *** 8 ), 7& ,,,& 0 o.oo *** a* *** & I l7 1.ro too.oo o.ol ... , .. ,. **** .... **** l*** **** , ... CILM .. , **** ... : *** & *** 1 0 **** 0 o.oo *** & *** & *** a 0 o.oo 0 o.oo o.oo 5 ** 1 l II oil *.* 1 lo.of *.* 1 *.* 1 *** & *** 8 *** 1 *** & *** 8 o.o& *** 1 *** 8 l *** l *** L u.1f *** 8 *.* 1 .... &: *n* 9 ... p

  • 10 ; ; i Ars ,,,. **" ... , **** **** ,.,. **** **** CILM ..... Ym"'"uTION 1f'E "UION Ylf[ tuu:.'!l&r !., ** *** , ***.* "' 1m.. o .** *lo.o rouL MNr n.oS o.o3 o.o3 o.oX n.o8 o.o8 o.o8 °"00 Nl o 0 o o o o o o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo ru Sf '"' ssw ,. WSW w -... -CILII o.o8 *** 8 o.o& o.o8 o.o& *** & o.o8 *.** o.o3 o.o3 o.o3 o.n8 o.o8 o.o8 o.o8 °"00 o.o& *** 8 *** 8 o.o8 *** 1 o.o8 *** 1 *** & *** 8 *** & *** & *** 8 *** & *** 8 ... : *** a o,.ol .:.a *** a 0 o.oo *** & *** & *** & *** 8 *** 1 *** 1 *** 3 *** 1 *** 3 *** 1 0 o.oo *** 1 *** 1 *** & 0 o.oo *** & *** & 0 o.oo *** 1 0 o.oo *.* 1 0 o.oo *** 3 *** 1 *.* 1 0 o.oo *** 1 * .* 1 0 o.oo *** 8 *.* 1 o.o3 0 o.oo 0 o.oo *.* l
  • o.oo *.* l o.o8 o.o8 0 o.oo *.* 1 0 o.oo o.o&
  • o.oo 0 o.oo *** 8 0 o.oo 0 o.oo 0 o.oo o.o8 o.o8 0 o.oo *** 8 0 o.oo *** 8 o.oo *.* 1 ) 20.00 *.* 1 *** 1 l),]i 1). ,s 0 o.oo IJ.Ji *.* 1 **** o.o8 0 IS o.oo 100.00 .:fi11 .!¥ ,u..,, ].20 SolO ** so o.oo s. 70 ... so CAl fill o oo T rlir£ DA"fs AMD NOOAF Jott NA1 .. o*z fOUL ,.. 0 0 0 0 0 0 0 o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo [N( ru su ssw IW -... -N 0 0 0 0 0 0 0 o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo *** 3 *** 3 o.o8 o.o8 *** 8 *** 8 *** 3 **** * .* 1 *.* 1 0 o.oo *** 3 o.ol *.* a *.* 1 *.* 1 *** & *.* a *** 1 .,.1 .:.a *** & *** 8 0 o.oo *** 8 *** 8 *.* 1 0 o.oe 0 **** *.* a *** 1 *** 3 *.* a *** 8 o.o& *** 8 0 o.oo 0 o.oo o.o& *.* a *** &
  • o.oo *** 8 *** 8 *** a o.o& * **** o.o8 0 o.oo 0 o.oo 0 o.oo ,_ .. 0 o.oo 0 o.oo 0 o.oo o.o8 *** & 0 o.oo 7,6, 0 o.oo o.o8 , .. 0 o.oo , .. ) l).lj4 1-*' 0 o.oo 0 1).00 , ** 4 o.n8 0 o.oo , .. 0 o.oo o.o8 0 o.oo 0 o.oo
  • 2J.oa , .. l Ito 54 *** 8 l 0 o.oo o.oo , ..
  • ZJ.OA 7,., 7 26.92 ) ** 7 **' , ** 4 , ** 4 * ** 8 o.o8 0 1 OoOO llolj4 0 0 o.oo o.oo *** 8 REV 0 lZo60 ... , .... *** 5 ll,IO o.oo 6oll ' ** oo CALM lO.lO WOLF CREEK TABLE 2.3-20 (Continued) MONTHLY PRECIPITATION WIND ROSE ( 60 HETERS) Page 3 of 3 ION 9Pu PiKJtal .. TING STATION !., * ****-ooz lll¥ooo loO*I:l"" >10.0 TOTAL ,... o.ol o.o& o.oS o.o3 o.og o.og o.og o.oo ,. o.ol o.o8 o.o8 o.o8 o.o& **" roc o.ol o.o8 o.o8 11 ** ; 11 ** ; 11 ** ; , ** U **** o.ol o.o8 o.o8 ** ,f o.o8 7'11 111 o.ol o.o8 o.o8 z.al s. ,f z.a1 11 ** ; **** -.. -* -.. -" CII.M fS[ K ssr ** * -* -... -" 0 **** o.ol *** a *** a o.ol *** 8 *** a o.ol *** 8 ,o.ol * *** a o.ol *** 8 o.o8 0 o.oo o.o8 *** 8 0 o.oo *** 8 o.o8 o.ol ... : o.o8 o.o8 *** 8 o.o8 o,.o8 *** 8 0 o.oo o.ol o.ol o.o8 *** 8 *** 8 *** 8 *** 8 *.* t *** 1 *** 8 *** 8 o.o8 *** 8 *** 8 o.ol
  • a.oe *.* a o.o8 o.ol *.* a *** a o.ol o.ol *** 8 *** a *** 8 0 o.oa o.o8 *** 1 o.ol 0 o.oo o.o8 *** 8 *** 8 o.o8 *** 8 o.ol ***' II,J, o.o8 o.o8 0 o.oo I 5.88 o.o8 ***' o.o8 *** 8 *** 8 o.o8 0 o.oo 0 o.oo *** 8 0 o.oa 0 o.oo *.* l s. ,f o.ol 0 o.oo *.* l *.* l o.o8 o.ol o.ol *.* l *.* l ***' 11.71 II. *** 8 0 o.oo *** 8 *** 8 *.* l s.el o.o8 o.o8 o.o8 o.o8 o.ol *** 3 *. ,f o.o8 o.o8 o.ol o.o8 o.o8 o.o8 o.o8 0 o.oo o.o8 ... ***' o.o8 o.o8 ***' o.o8 0 o.oo o.o8 o.o8 o.o8 0 o.oo o.o8 o.ol 0 o.oo *** 8 o.o8 o.o8 0 o.oo o.o8 *** 8 o.o8 *** 8 o.o8 *** 8 o.o8 o.o8 0 o.oo o.o8 ** ,f z.al *. ,f *** 8
  • o.oo z.al *.* 1 o.o8 *** 8 *** 8 * ..... , *** 8 5 l5 14.l9 100.00 .;:r: :u: ul:lf o.o8 *** 8 *** 8 s.el *** 8 0 o.oo o.o8 *** a **** *** 8 *** 8 *** 8 0 o.oo o.ol *** 8 o.o3 I IT.ol II. ., .. o.o8 -*.* 1 o.ol *.* l u. ,, * .* l o.o8 o.o8 *** 8 o.o8 *** 8 o.ol *** 8 IOo,U .. , **** **** .... .... .... 5o 50 **** **** , ... I ell Cat.M **** ... , 5oll **** .. " .... ** Jt u.JI , ... .... .... **** **** **** **** .... uw ... -.. I If
  • Ill ... IW ... * -.. -" CII.M O.O .. o.o8 o.o& o.o8 J),J! **** 0 0 0 0 0 o.oo o.oo o.oo o.oo o.oo o.oS o.o8 o.o& o.o& o.o& o.o8 *** 8 *** & *** 8 o.o8 o.o& 0 o.oo *** & * ** 8 o.o& *** 8 o.,ol *. *** 8 o.o8 o.o8
  • o.oo *** 3 *** & *** 8 0 o.oo o.o3 o.o& o.o8 'o.o& *** 8 *** 8 o.o8 o.o8 0 o.oo o.o8 *** 8 o.o8 0 o.oo 0 o.oo 0 o.oo *** 8 0 o.oo o.o8 *** 8 o.o8 o.o8 0 o.oo 0 o.oo
  • o.oo *** 8 0 o.oo
  • o.oo o.o& o.o8 0 o.oo o.o8 o.o8 0 o.oo o.o8 0 o.oo o.o8 o.o& o.o8 0 o.oo 0 o.oo 0 o.oo o.o8 0 o.oo o.o8 0 o.oo .... nl * , .. :.}0.0 0 o.on 0 o.oo o.o8 o.o8 o.o8 0 o.oo o.o8 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo o.o8 0 o.oo o.o8 0 o.oo rOTAL l I oo.oo 0 o.oo 0 o.oo o.o8 o.o8 0 o.oo o.o8 o.o8 o.o8 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo o.o& o.o& o.o8 0 J o.oo too.oo o.oo o.oo o.oo o.oo o.oo o.oa o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo 'o.oo CALM £1WC.WUY" I8W: PIHI!R' .. 'INO SUTIOfO ¥llfr'VIft,'f'f&T" AND :! *** Ul¥ooo ... ** o *lo.o roTAL ;5,. ,.. o.ol o.o8 o.o8 o.ol o.o8 o.o8 o.ol 0"00 ,. o.ol o.o8 o.o8 o.o8 o.o8 o.o3 o.o3 1'01 EtC o.o8 o.o8 o.ol zs.ol o.o8 *z.sZ 7"64 Ill II .. -.. -* .... .. -" o.ol o.o3 o.o8 o.o8 o.o8 o.o8 o.o8 °"00 **** *** & * ** 8 *** 1 **** *** 1 **** *** 1 **** * ** 1 *.* 1 **** *** 1 * ** 8 *** 8 *** 8 *** 1 **** *** 1 * .* 1 * ** 1 **** **** *** a *** 8 *** 1 *** 8 *** & o.o8 *** 8 *** 8 *.* 1 o.ol *** 8 *** 8 * ** a *** & *** 8 o.o8 *** 8 u.oi *** 8 *** 8 o.ol o.ol o.ol o.o8 o.ol *** 8 o.ol .... 3 *** 8 o.ol *** 8 *** 8 o.ol *** 1 *.* 1 *** 8 o.ol *** 8 *** 8 o.ol 0 o.oo *** 8 *** 8 *.* 1 *** 8 *** x o.o8 o.o8 *.* 1 o.o8 o.o8 *** 8 *** 8 *** 8 .... , u.,A o.o8 *** 8 *** & *.* 8 o.o8 *.* 1 *** 8 o.o8 ** 8 o.o&
  • 101'1.00 .... **** '*'* *** o **** .... .... .... **** **** **** .... REV 0

.... N I M N 0 c ..,. 2 c . . c 71: ... .... e-...... .. ., "" c z zo _,... "\.: ... -"' u;:, ... o ' ,. ='a:-0' O*c..J t( o..J:r .....

  • o--:x. 2= =>--->-*<< r...*-l. .... lt.J ..... ., ..; ... co. :z :JO !:) .... X< ::r .C::l Q z ac XC a t\:::l WOLF CREEK *000000000000000000000C000000000000000000000 0 ... ooooooc:::toooo.ooooocoooooooooocoooooooetocaooooa o u * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
  • c o 0 z aoooocoooooooooooooooooooaooooooooooooOooooo o o u * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
  • o 0 0 .... i c o u * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
  • C "' . "' -.... -0 t .c .... a*--c..,eOC'"I""':eC:etceo:occ:::occeoe"e....,ooccoeccc:-ec.c. '=' ,_"' :::tS" ...... cc:ecc:.*ccoocete-cccoc:c.c-occ: c c. c: u ******* ' *********************************** e 1'\1---c:. << .... c ccecc-cc:c.:c:c: c;:.ce ecce c e u * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
  • c c **l'..OC*'.J".,...ru-cc ... -occc--cooocccooC'=-e=cocoocccccco -z o (,J ** e *** e
  • e e e e ** e
  • e e ** e e
  • e
  • e I
  • e ** e e e e e e e e e 1 1 e e -= c oeoec c ... _ e * * *
  • e e e *
  • e
  • I
  • e I I I e e
  • e *
  • e e e I
  • I ** e
  • e I
  • e e e I *
  • 0" c-1\:1\,; c. e -;r. f .. c ... 0 ., :::. z 0 -... c . "" ... u .. .., o; Cl-c\I,.._.II'..,,._&*IJ'C_I\,,.,4U .. oC,..Cl'O'OI\/4.C&CI\.4oCCLC:II'OUICII'CitiCCC:CI ! a.. ..J i ..J c c . . . . . . . . . . . . . . . . . . . . ** ....... ** ............. . ---------f\11\..11\'I'\.IN"""fl"'f"""f""' ... 4&r11' c-.. )( -e c c .. 2: .. *\l'lt.nc *e ... o \,1 *** c 0' 0 J\ z 1110111 Z-;! Oo-0 _.,_ ... ,. .... Cl.'l'4 "r .!1'J uJ ti . ..J 1110.1' % T.* O::l::l O..J..J _ .... ..J>o->-... *:1""\.C _,cc u *** a r,.,..: 0 ., ... =c../:',.._ ZJJ""'..., a. :r 0 .;. 'l<: _,.. ,_,_ 'J.J:l.IJ .:r-:: '!.UO Z:l.'" > :r'Xo1 ......... __ .,. lOll'% 0 V*V' Z:.t'O --..J ........ <lC:>o >> :lCX..J ... .., ... <r::rc ooo-.: t./.., 'J u.,_.* ......... ::.-:::-:r: ;. r.. ll c: n,:,.,.,. _ ... "".,." ;-. '*' 1\---0 ... Z2'Z2Z 4 cc:c: 1.&..' -----2 .,.., ...... r \...:4Jo-.l'.a.J""' < I.&. o.:.:l.'::::l.:... ' .., ......... II,W ... * * -----\, -'l'Y:":":I: v ..(M'I--...., ... 7: %'%'2' cr :::;=:::.::.::> :r ,. . ., ::n: :r .... .... ll(te* V' cJ41CICIC ::t:l:l::ti[ tl ecc:-: C:* .._ .... u :::::::: v*v 11"1.1 v w ........ ,,,,.. u TABLE 2.3-21 (Continued) FREQUENCY DISTRIBUTION OF PRECIPITATION fAfQUENCJ DISTRIBUTION Of PRECIPITATION DATA PER ODI MARCH 1979 DATA SOURCE! gN-SITE TABLE GENERATE I 10107180. 09.36.11* WOLf CREEK GENERATING STATION BURLINGTONoKANSAS KANSAS GAS AND ELECTRIC DAMES ANO MOORE JOB NOI 7699-062 PR!CIPITATION CLASS INTERVAL CINCHES I FREQUENCY DISTRIBUTION OF PRECIPITATION 1 HOVR .. NO II TO ol 89.2Y TO .2 2 7.14 TO .3 OoOO TO .4 3.57 14 TO .S OoOO 5 TO .6 o.OO 6 TO .7 0 OoOO '7 TO .a OoOO ,a To .9 g.oo t9 TO J*O .00 l:t 8 8:88 J8 :4 8 8:88 4 TO .5 0 0.00 liS TO .6 0 OoOO ;6 To 1*7 8 g.oo a7 TO .8 .00 '8 TO }*9 8 OoOO 8 1:1! f!i 0 ll' j8 3;3 I sta Ts t.o I TO 4o5 8 *go 4l5 TO 5.0
  • 0 sao TO s.5 8 o.oo SiS TO 6.0 OoOO 6aO TO 6.S 0 OoOO 6a5 To 7.o g o.o8 TO 7.5 OoO 7a5 TO 8.0 0.00 eao TO 9.o o o.oo 9ag TO to.o o IOl TO lloO 0 0* 0
  • llO TO 2.0 0 0.00 GT 2.0 0 o.oo TOTAL 28 100.00 MAXIMUM AMTo .31 FREQUENCY DISTRIBUTION OF PRECIPITATION 2 HOUR DURATION NO. f 0 I 0 8 0 8 0 0 0 I i 8 0 0 0 8 0 0 0 0 0 11 PCTo 45.45 o.oo 8:88 o.oo o.oo 8.00 .oo .oo o.oo o.oo 8.00 .oo o.oo o.oo o.oo o.oo o.oo 8.00 .oo o.oo o.oo 0.20 o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo 100.00 .43 FREQIIENCY DISTRIBUTION Of PREC IP IT A liON 3 HOUR DURATION NO. PCT. 2 40o00 2 40.00 0 o.oo Y o.oo 20.00 0 o.oo 0 o.oo o o.8o 0 0. 0 0 o.oo 0 o.oo 0 o.oo o g.oo 0 .oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 8 8:88 0 o.oo 0 o.oo I 8:U 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 5 100.00 o46 TOTAL PRECIPITATION FOR DATA PERIOD 1.45 INCHES OBSERVATIONS WITH NO PREClPIJATION OBSERVAT ONS W TH PRECIPITAT ON GE 0.01 INCH TOTAL VALID OBSERVATIONS ESTIMATED MAXIMUM 60 MINUTE PRECIPJTATIONI ESTIMATED MAXIMUM 30 MINUTE PRECIPJTATIONI ESTIMATED MAXIMUM f5 MINUTE PRECfPfTATfON: EST MATED MAX MUM 0 M NUTE PREC P TAT ONI ESTIMATED MAXIMUM 5 MINUTE PRECIPITATION! NO. 7u 744 .35 .28 .20 .16 .to SOURCE FOR ESTIMATES! U. s. WEATHER BUREAU TECHNICAL PCT. 96.24 3.76 100.00 INCHES INCHES INCHES NCHES INCHES PAPER NOo 40 FREQUENCY DISTRIBUTION OF PRECIPITATION 6 HOUR DURATION NO. 0 0 0 8 0 0 i 8 0 g 0 0 I g 0 0 g 0 8 0 0 0 0 0 0 0 o.oo PCT. o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.go o. 0 o.oo o.oo o.oo &:88 o.oo o.oo o.oo o.oo o.oo o.oo g.oo .oo o.oo tU o.oo 8.00 .oo .oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo FREQUENCY DISTRIIlUTION OF' PRECIPITATION 12 HOUR DURATION 8 0 8 0 8 0 0 8 0 i 8 i 0 8 0 0 .8 0 0 0 o.oo PCT. 1.00 o.oo e.oo 1.08 8.0 .oo e.oo I:U o.oo . a:u l.oo o.oo 1.00 e.oo 1.00 2:88 l.oo o.oo I:U o.oo 1.08 l.o .oo g.oo .oo t.oo o.oo o.oo e.oo o.oo o.oo o.oo !:88 o.oo 1.00 o.oo VALID OBSERVATIONS INVALID OBSERVATIONS TOTAL OBSERVATIONS Page 2 of 13 FREQU1NCY DISTR B¥TIOIII Of' PRECI I UlliN 24 HOUR DURAHON NO. I I 8 0 0 0 I 8 8 0 g 8 8 0 0 0 o.eo Ill I I:U m t;n o.oo 8:U l.oo o.oo NO. 7'-4 0 74'-PCT. aoo.oo o.oo aoo.oo Rev. 0 0 I:"' 1'2::1 n t1l t1l I :.

TABLE 2.3-21 (Continued) FREQUENCY DISTRIBUTION OF PRECIPITATION Page 3 of 13 oF DATA PERIOD: APRIL 1979 DATA SOURCE: ON-SITE STATION TASLE GENERATED: 10/07180. l4ol9o)l. BUALINGTON,KANSAS GAS AND ELECTRIC DAM S AND J08 NO: 7&99-062 PRECIPITATION FREQuENCY FREQUENCY F'"RE'li.IF:NCY FREQUENCY FREQUENCY FREQUENCY CLASS DISTRIHIJTIOIII OF UISTRIHUTION Of OF DISTAII:IUTION OF DISTRidUTION OF DISTRII:IUTION OF' INTERVAL PRECIPITATION PRECIPITATION PRE C I P I T AT I ON PRECIPITATION PRECIPITATION PREC IP I TAllON IINCiiES I I r101JA 2 r10UR 3 HOUR 6 HOUR 12 tiOUR 24 tiOUR OuHATIOf( DURATION OIIRATJON OURATlON DURATION OURAlJOI't NO, PCJ* NO. PCT. NO, PCT, NDo PCT, NO, PCT, NO& ,O TO 24 as. 1 6 6&.67 2 so.oo 0 o.oo 0 o.oo *} TO 2 7.14 2 22.22 0 o.oo 0 o.oo 0 o.oo 0 g.oo o TO ,) 2 7,14 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 .oo p TO ,4 0 o.oo I 1 A .u 1 25.00 0 o.oo 0 o.oo 0 o.oo ,lo TO ,5 0 o.oo 0 .oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo l5 TO .6 0 o.oo 0 o.oo I 25.00 0 o.oo 8 8:88 8 8:88 TO .7 0 o.oo 0 o.oo 0 o.oo 0 o.oo 1 Tg :S 8 8:88 0 8:&S 0 o.oo 8 o.og I 8:81 I *s T 0 0 o.oo o.o : TO ,.o 0 o.oo 0 n.oo 0 o.no 0 o.oo g.o I 10 0 o.oo 0 o.oo n o.no 0 o.oo .o o TO 0 o.oo 0 o.oo n o.oo 0 o.oo I o.oo 0 o.oo

  • TO 0 o.oo 8 o.oo 0 o.oo 8 o.oo g.oo 8 8:88 o TO ... 0 o.oo o.oo 0 o.oo o.oo .oo o4 TO .5 0 o.oo 0 o.nn n o.oo 0 o.oo 0 o.oo 0 o.oo TO 8 o.oo 0 o.no 0 o.oo 8 3.oo 8 8*00 8 8:88 0 6 TO o.oo 0 o.oo 0 o.oo .oo .oo t'1 ll TO .8 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo _ a8 TO 1.9 0 o.oo 0 o.on 0 o.oo 0 o.oo 0 o.oo 0 o.oo l'rj !09 TO 0 o.oo 0 o.oo 0 o.oo 0 g.oo I 1:80 I I:U TO 0 o.oo 0 o.oo 0 o.oo 0 .oo .o8 n o TO 0 o.oo 0 o.oo 0 o.oo 0 o.oo 2o4 TO 2.6 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo f6 TO 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo t<l l& Tg 0 g.oo Q o.oo 0 o.oo 8 8:88 I 8:88 8 8:88 t<l oO T 0 .oo 0 o.oo 0 o.oo ,;;: J,2 TO ),4 0 o.oo 0 o.oo 0 o.oo 0 o.oo e.oo 0 o.oo ll4 TO ),6 0 o.oo 0 o.oo n o.oo 0 o.oo 0 o.oo 0 o.oo TO ),8 0 o.oo 0 o.oo 0 o.oo 0 g.oo 8 3.oo I 8:88 TO 4.0 0 o.oo 0 o.oo 0 o.oo 0 .oo .oo TO 4,5 Q o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo o.oo 4l TO 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 5f2 TO 5, 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 5 TO 6.0 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 6o0 TO 6,5 0 o.oo 0 o.oo n o.oo 0 o.oo 0 S.oo 0 o.oo J:5 l8 0 o.go 0 g.oo 0 o.oo 8 o.oo 8 :88 8 8:88 le TO 8.0 0 o. 0 0 .oo 0 o.oo o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 8t0 TO 9,0 0 o.oo. 0 o.oo 0 o.oo 0 o.oo .I o.og 0 o.oo 9*0 To lo.o 0 0 o.oo 0 o.oo 0 g.oo 8:8o 8 o.og loio TO 0 o.oo 0 o.oo 0 o.oo 0 .oo o.o l 0 TO .0 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo GT 12.0 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo TOTAL 28 100.00 9 100.00 4 100.00 0 o.oo 0 o.oo 0 o.oo MAJIMUH AMT, .28 .38 .60 o.oo o.oo o.eo TOTAL PRECIPITATION F'OR DATA PERIOD le44 INCnES NO. PCT, NO, OBSERvATIONS WITH NO PRECIPITATION 6R9 91'>.09 VALID OBSERVATIONi 717 OBSfRVATlONS PRECIPITATION GE 0.01 INCH 2A ),91 INVALID OBSERVATIONS l ... 2 TOTAL VALlO OBSERVATIONS 717 100.00 TOTAL OBSERVATIONS 720 100.00 ESTIMATED MAXIMUM bO MINUTE PRECIPITATION: ,)2 INCHES ESTIMATED 14UIMUM 30 MINUTE PI'IECIPITATlOIIII .2S INCHES ESTI14ATED MA(,MUH 15 "INUTE .18 rCtiES fST MAlf8 HAX 10 M PR C P TAT ONl
  • A.. Sf 14AT HAX HUH 5 M NUT PR C P TAT ONI , 9 NCH S SOURCE FOR ESTIHATfs; u. S. *EAT"lR I:IUREAU TECHNICAL PAPER NO, 40 Rev. 0 TABLE 2.3-21 (Continued) Page 4 of 13 FREQUENCY DISTRIBUTION OF PRECIPITATION FR(QUENCY DISTRIBUTION or PRECIPITATION DATA PERIOOI HAY 1979 DA'A ON-SITE WOLF CREEK GENERATING STATION TA LE NERATEOI 10107/80, 09.36.11. K 5 AND ELECTRbC DAM S AND MOORE JOB N I 7699-062 PRECIPITATION FREQUENCY FREQUENCY FREQuENCY fREQUENCY FREQUENCl fREOUENCl CLAlS Of Ol£TRIBUTION OF OF OlSTIUBUtiON OF OllTRltlU ION or lNT AVAL PA lPITATION PR CIPITATION PA ClPITATION PRECIPITATION PR CIPITATlON P Cl ITA I N CINCHES I 1 HOUR 2 HOYA J 1101lR 6 HOUR A2 HOYR DURATION . OURAT ON DURt.TION DURATION URAT ON URAl ON NO. PCT NO. PCT, NO. PCT. NO. PCT. NOe PCT. NO. PCT, r 19 lt Jb.3b 2 ltOoOO 0 g.oo 0 ** oo g 8:81 t TO 7 2
  • 8 z 18.18 0 o.oo 0 .oo 0 .oo I !I 3 9.68 2 8.18 0 o.oo 0 o.oo 0 ** oo 0 o.o 8 1 9,09 1 zo.oo ' S.oo 0 J.oo g Ill! 8. 0 9.09 f o.oo .oo 0 .og o.oo zo.oo .oo 0 .o l '8 0 0 o.oo 0 o.oo so.oo 0 o.oo 0 :3 l 8 8:88 0 o.oo 8 g:o8 I j:U I
  • fo 0 o.oo n y 3:83 0 o.oo .8o P" o.oo 0 o.oo 0 o.oo l l8 8 o.og 8 o.oo y o.oo 8 o.o8 8 I 1:n 8:8 g.oo zo.og o.o 0 .oo 0 o.o o.oo 1:"' ii .s 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 .oo o.oo 1=9 8 g:88 8 8:88 s8:88 8 1:88 I I:U hJ .a 0 .oo .oo 0 o.oo o.oo 0 .oo n 1 TO 1.9 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo ::0 Jli j§ I o.oo I 1:88 0 o.og 0 8 1:88 I r;n 8:88 0 o.8 8 .oo t.zJ ,It .oo 0 0. 0 .oo 0 .oo t%J TO .6 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 .oo 0 ,;: 'I TO i'B 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 I:U t l8 8 8:88 8 8:33 8 o.oo 0 8:38 8 2:88 8 o.oo 0 l8 8 8:88 8 1:88 0 o.oo 0 8:88 8 1:88 I tn 0 o.oo 0 a ts 8 8:88 8 .oo 0 o.no 8 8:88 8 :88 ,.:i .oo 0 o.oo **a 10 ,., 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo ih fg g.oo 0 o.oo 0 o.oo 0 o.oo I &:U Z: :88 8 8:88 0 o.oo 0 g.oo 0 o.oo 0 .oo .oo l8 ,.5 8 8:88 8 o.oo 0 o.oo 0 o.oo 8 ,00 I rss :3 o.oo 0 o.oo 0 o.oo .oo \ TO 0 g.oo 8 o.oo 0 o.oo 0 o.oo 8 .oo *go TO 8,o 0 .oo o.oo 0 o.oo 0 o.oo .oo
  • 0 8'1 rg 9.8 i 8:88 8 8:88 8 8:88 8 8:88 8. 1:88 8 I:U ui U:s o.oo 0 o.oo 0 o.oo 0 o.oo 8 o.oo 0 0 o.oo 0 o.oo 0 o.oo 0 o.oo o.oo 0 o.oo GT 1Zo0 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo TOTAL 31 100.00 11 100.00 5 100.00 z 1oo.oo 0 o.oo 0 o.oo MAXIMUM AHT, .81 le06 1e2b 1o61t o.oo o.eo TOTAL PRECIPITATION fOR Dt.TA PERIOD lto03 INCHES NO, PCT, NO, ;>Cf. NO PREC1P1JATlON 7H 95.83 YALID 1toto OBS RVAT ONS tH PRECIPITAT ON GE 0.01 INCH ltel7 NVALIO OSS AVATl NS 0 .o:, TOTAL VALID 0 5 RYATIONS 7ltlt 100.00 TOTAL OBSEAVATIONi
  • 7itlt ESTlMATEO M.UIMU14 60 MINUTE PRECIPITATIOI>41 .92 INCHES ESTIMATED MAXIMUM lO MINUTE PREClPITATl0!>41 ,72 INCHES EST,HA!£8 MAXIMUM jS MINUTE rCHES ST HATE MAX HUH 0 H NUT PA C P TAT ONI ,<t NCH 5 EST HATED MAX HUH S H NUT[ PREC P TAT 01>41 .2 NCHh Rev. 0 SOURCE fOR ESTIMATES: Uo So VEATHER BUREAU TECHNICAL PAPER NO, 40 TABLE 2.3-21 (Continued) FREQUENCY DISTRIBUTION OF PRECIPITATION Page 5 of 13 Of PRECIPITATION DATA JUN 1979 OA'A gN-SITE WOLf CREEK GENERATING STATION TA LE G NERATE I 10/07/80, 09.36*11. KAN(A5 GAS AND ELECTRAC OAH 5 AND MOORE JOB N I 7699-062 PRECIPITATION FREQUENCY FREQUENCY fREiluENCY fREQUENCY FREQUENCY FREQUENCY OF OF DI£TRIBUTION OF DIURIBUTION OF DI£1RIIIUTlON o,. INT RVAL PA IPITATJON PA IPIUTION PR CIPITATION PR IPITATlON PR CIPIUTION PR Cl U QN CINCHES I 1 HOYR 2 l HOUR 6 HOYR HOUR llo OUAU ON .. OURAT ON DURATION OURAT ON URATION OUAAllON NO. PCT, NO, PCT, NO, PCT, NOO PCT. NO. PCT& NO' i1lJ 12 ! y o.3o o.oo l 1'8 4. 9 20. 0 0 o.oo t TO 1 J,S7 0 o,oo 0 OoOO 0 o.oo :oo al TO ,4 2 1.r l !2,'50 l 20.00 0 o.oo 8 o.og t 1:8 r TO .s 0 2,SO loOoOO 0 o.oo g.o 5 TO ,6
  • It 0,00 0 o.oo 0 o.oo 0 .oo .o 6 TO .7 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo I .o 17 TO ,8 8 o.oo 0 0 o.oo 0 g.oo t l:U I:U J! ,9 8 :88 8 8:88 8 :88 J*O ol 1 J, 7 0 o,oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo lo 0 o.oo 0 o.oo 0 o.oo 0 o.8o 8 o.oo 0 8 8:88 8 o.oo 0 o.oo 8 o.og g a T8 ,4 o.oo 0 o.oo 8:o8 o.o H TO .s 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 TO r 0 o.oo y o.go 0 o.oo 0 o.oo 0 o.oo 0 o.of 0 p6 TO ,7 l o.oo 12. 0 0 o.oo 0 o.oo 0 e.oo 0 o.o t" a7 TO .a 3.57 0 0,00 0 o.oo 0 o.oo 0 o.oo 0 o.o l'%j rs JO ,9 0 o.oo 0 o.oo 0 o.oo 0 g.oo 0 IHI .go 8 o.oo 0 o.oo 0 o.oo 8 .oo 8 T8 Oo 8 o.oo 0 o.oo 0 o.oo g.oo () JO .4 0 o.g 0 o.oo 0 o.oo 0 o.oo 0 .oo ::t1 0 .6 0 o. 0 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 P:l 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo g 1:1, P:l 8 8:88 8 8:88 0 g.oo 8 g.oo 8 1:88 0 .oo .oo ll TO ** 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.o i;4 TO I o.oo i o.go 0 o.oo 0 o.oo I ,.oo l t:t i& l8 8:88 0 0 o.oo 8 o.og .go .:3 .oo 0 o.oo o.o
  • 0 TO I o.oo 0 o.oo I zo.oo 0 o.oo o.oo 8 ... 1 4f TO o.oo g o.oo 0 o.oo 0 o.oo 0 o.oo 1:1 TR o.oo g.f)f) R g:gg 8 g.oo 8 a*oo 8 *V o.nn .no .no .oo ug I& 6,., 0 o.ou 0 o.oo 0 o.oo 0 o.no I o.og I 0 o.oo 0 o.oo 0 o.oo 0 o.oo O.Ll TO 7. D o.oo 0 o.oo 0 o.oo 0 o.oo o.oo 7 TO 8,0 0 o.oo 0 o.oo 0 o.oo 0 o.oo e.oo BiD TO 9o0 0 g*go, 0 o.oo 0 o.oo 8 o.oo 0 a*oo 8 TO r*O 0
  • 0. 0 o.oo 0 o.oo o.oo . 8 .oo lou ro 8 o.go 8 o.oo 0 o.oo 8 o.oo g.oo 8 8:8 HO TO ,o o. 0 o.oo 0 o.oo o.oo .oo GT 2o0 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo TOTAL 28 loo.oo 8 100,00 s 100.00 0 o.oo 0 ** oo 0 o.oo MAXIMUM AMT, lo90 3,65 to.JB o.oo o.oo OoiiO TOTAL PRECIPITATION FOR DATA PERIOD 8o3S INCHES NO. PCT, NO, PCf OBSERVATIONS WITH NO 692 YALID 720 aog.oo OBSERVAT l lH PRECIPITAT ON G 0.01 INCH 28 NVALIO OB5 RV&TIQNS 0 .oo TOTAL VAL 0 0 S AVATIONS 720 100.00 TOTAL OBSERVATIONS 720 lOO.OO MlKIMUM 60 MINUTE PRECIPITATIONI 2,15 INCHfS MAXIMUM 30 MINUTE PRECIPITATION: }.70 INCHES EsTIHATfO MAXJHUH Is MINUTE PRECIPITATjON& 1.22 INCHES HAK MUM 0 MINUTE PRECfPJTAT ONI ,97 INCHES ST MATED HAX MUM 5 MINUTE PREC P TATIONI ,63 NCHES SOURCE roR EST1MATESI Uo So WEATHER TECHNICAL PAPEW NO, 40 Rev. 0 TABLE 2.3-21 (Continued) FREQUENCY DISTRIBUTION OF PRECIPITATION F'QEOUENCY DISTRIBUTION OF' PRECIPITATION DATA PERIODI JULY )979 ON-SITE GENERATING STATION TA LE NERATEDI )0/07/80, 09,)6.11* BURLINGTON, KANSAS KAN£AS GAS AND ELECTRIC DAM S AND JOB NOI 7699-062 PRECIPlTATlON FREQUENCY F'REOUENCY FREQuENCY FREQUENCY CLArA DlrlRIBUTION OF OF' OF OF INT VAL PR IPITATION PR IPlTAT ON PR IPITATIOI'I PR IP TAllON CINCHES I I HOYR 2 3 HOoJR 6 HOUR DURAT ON , DURAT ON DURATION DURATION NO. PCT, NO, PCT, NO, PCT. NO. PCT, <0 TO 19 67.86 4 )6,)6 0 o.oo 0 o.oo )1 TO 5 17.86 2 J8,JA I 25.00 0 o,on o TO ,J 0 o.oo 2 18,18 I 2s.on 0 o.oo al T8 ,to l 1 3:83 ? so.oo 0 o.oo )4 T .s 0 o.oo 0 o.oo oS TO ,6 0 o.oo o.oo 0 o.oo 0 o.oo TO ,7 0 o.oo 0 o.oo 0 o.oo 0 o.oo a7 TO ,8 y o.oo 0 o.oo 0 o.oo 0 o.oo TO ,9 ).57 0 o.os 0 o.oo 0 o.oo i19 T8 0 o.go 1 9,0 0 o.oo 8 g.oo 1<0 T 0 o. 0 0 o.oo 0 o.oo .oo l8 .z 1 ],57 0 o.oo 0 o.oo 0 o.oo ,J 0 o.oo 0 o.oo n o.oo 0 o.oo n TO ,4 0 o.oo 0 o.oo 0 o.oo 0 o.oo r4 TO .s 0 o.oo I o.oo 0 o.oo D o.oo .s TO :9 8 o.og 9,09 0 o.oo 0 o.oo *t TO o.o o,oo 0 o.oo D o.oo a TO .8 0 o.oo 0 o.oo 0 o.oo 0 o.oo f8 TO .9 0 o.oo 0 o.oo 0 o.oo 0 o.oo TO 0 o.oo I o.oo 0 o.oo 0 o.oo 8 8:88 8.oo II o.og g g.oo l8 .oo 0 o.o .oo olo TO ,6 0 o.oo 0 o.oo D o.oo 0 o.oo TO 0 o.og 8 o.oo D o.oo 0 o.oo 18 8 8:8 o.oo 0 o.oo 8 g.oo o,no 0 o.oo .on TO 3*4 8 8:88 8 g.on 0 o.oo 8 8.oo TO .6 .oo 0 o.oo ,oo 3'8 l0 8 8:88 8 g.oo 0 o.oo 8 g.oo 0 .o .oo 0 o.oo .oo TO to.S 0 o.oo 0 o.oo 0 o.oo 0 o.oo 4i5 TO 0 o.oo 0 o.oo 0 o.oo 0 o.oo i: g o.o8 0 o.oo 0 o.oo 0 o.oo o.o 0 o.oo 0 o.oo 0 o.oo UO TO 6, 0 o.oo 0 o.oo 0 o.oo 0 o.oo 6<5 TO l.g 0 o.oo 0 o.oo 0 o.oo 0 o.oo TO 7. g o.oo 0 o.oo 0 o.oo 0 o.oo h TO e.o o.oo 0 o.oo 0 o.oo 0 o.oo B<O TO 9,0 0 0o00 I 0 o.oo 0 o.oo 0 o.oo TO r*O 0 8:g8 . 0 o.oo 0 o.oo 0 o.oo TO !*8 0 0 o.oo 0 o.oo 0 o.oo hO TO , 0 0. 0 0 o.oo 0 o.oo 0 o.oo GT 2.0 0 o.oo 0 o.oo 0 o.oo 0 o.oo TOTAL 28 lOOoOO 11 100.00 4 100o00 0 o.oo MAXIMUM AHT, loiS 1.60 .35 o.oo TOTAL PRECIPITATION FOR DATA PERIOD 4ol8 INCHES NO, PCT, NO PRECIPIJATI8N 7u OBS RVAT ON w TH PRECIPITAT ON E 0.01 INCH 3, 6 TOTAL VALlO OBSERVATIONS 744 100.00 ESTIMATED MAXIMUM 60 MINUTE PRECIPITATION: 1.30 ESTIMATED MAXIMUM 30 MINUTE PRlCIPjTATIONI lo03 INCHES EsTIMATED MAx MUM ls MINuTE PRECIP TATIONI , 74* fSTJMATEO MAX HUM 0 H NUTE PRECjPflATIONI ,59 NCHES ST MATED MAX HUM 5 H NUTE PREC P TATIONI ,38 NCHES SOURCE FOR ESTIMATES! Uo So WEATHER BUHEAU TECHNICAL PAPER NOo ioO Page 6 of 13 F'REOUE"'CY fREOUENCl PR Cl TA ION . 12 HOUR Zlo riOUR OURATION DURATION NO. PCJ, NO, PCT, 0 z.oo 8 o.o8 0 .oo o.o 0 o.oo 0 o.oo 0 o.oo I 8:88 0 o.oo 0 o.oo o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 8 8:88 8 8:88 0 o.oo 0 o.oo 0 0 g.oo 8 o.oo ["'1 0 .oo o.oo l"'j 0 o.oo 0 o.oo 0 o.oo 0 o.og (') *0 o.oo 0 o.o 0 o.oo 0 o.go :::0 0 o.oo 0 o. 0 tzl 0 8,00 8 o.oo tzl 0 .oo g:88 0 .oo 0 o.oo 0 .oo 8 o.oo 8 8:U g.oo .oo 8 8:88 8 8:88 8 8:88 8 8:88 0 o.oo Q o.oo 0 1.00 0 o.oo 8 8:88 0 8:88 0 0 o.oo 0 o.oo 0 g.oo 0 o.og 0 .oo 0 o.o 0 o.oo 0 o.oo 0 o.oo 0 o.oo g* g:88 I I:U 0 .oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo o.oo o.oo 100. PCT, VALID 7iolo 100.00 INVAL10 OBSERVATI 0 o.oo TOTAL OBSE"VATIONS 7io4 100,00 Rev. 0

.fllliLl:: ..:

  • J-Ll (Contiuuedl FREQUENCY DISTRIBUTION OF PRECIPITATION Page 7 of 13 FRfQUENCJ DISTRIBUTION OF PRECIPITATION DATA PER ODI AUGUST 1979 DATA ON-SITE wOLF CREEK GE"'ERATING STATION. TABLE G NERATEDI 10/07/80, 09o36olla BURLlNGlONoKANSAS S AS AND ELECTRIC DAH S AND MOORE JOB NOI 7699-062 PRECIPITATION FREQUENCY FREQUENCY FREQUENCY FREQUENCY FREQUENCY fREQUENCY OF DlltRIBUTION Of DIUIIIBUHON Of OF DIStRIIIUTION 01' OF INT VAL. PR lPJTATION PR IPITATION PR IPITATION PRE IPITATION PRE IPITATION P lPl ATION CINCHES I l HOUR 2 HOUR J HOUR 6 HOUR 12 HOUR i!4 HBUA DURATION DURATION DURATION DURATION DURATION DURATION NOo PCTa NO, PCTo NO, PCT, NO. PCT, NOo PCT, NO, PCT, !i l8 so.oo 1 so.oo 0 o.oo 0 1:88 8 g.oo 1 .33 so.oo 0 . o.oo 0 o.oo 0 .oo TO .J 0 o.oo D o.oo l so.oo 0 o.oo 0 .oo 0 o.oo 3 TO .4 0 o.oo 8 o.oo 0 o.oo 0 o.oo 0 e.oo I Tg .s 8
  • o.og 0 o.oo 8 g.oo I 1:88 T =' 8*o 0 o.oo .oo TO o. 0 0 .oo 0 o.oo D .oo .oo TO .a 0 1:88 0 8.00 0 o.oo 0 o.oo D o,oo I ; l8 Iii 8 8 .oo 0 o.oo 8 8:88 8 1=88 .oo 0 o.oo do TO 0 .oo 0 o.oo 0 o.oo 0 o.oo 0 .oo f8 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo I o.oo 8 g.oo 0 8,00 D o.oo 0 o.oo 8 J:88 8:88 0 .oo 8 .oo 0 o.oo 8 o.o8 J:1 4 T8 .s o.oo .oo 0 o.oo o.o ,oo .oo 1-zj liS TO ,.6 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo D o.oo !9 J8 :i 8 8:88 8 8:88 8 8:88 8 8:88 8 8:88 8 8:88 n l 8 TO 1.9 0 o.oo 0 o.oo D o.oo 0 o.oo 0 o.oo 0 DoOD :::0 la9 TO 2.0 0 o.oo 8 o.oo 0 lloOO 0 o.oo 0 o.oo 8 o.oo tel TO 8 8:88 8*oo 0 o.oo 8 o.oo 8 o.og 8:88 TO .oo 0 I),OD o,oo o.o tel l4 TO 2.6 0 o.oo D o.oo 0 o.oo 0 o.oo 0 o.oo 0 DoOO TO 0 o.oo 0 o.oo 0 DoDO 8 o.oo 8 o.og 8 g:88 lB TO 0 o.oo 0 o.oo 0 o.oo Q,O() loD TO 0 o.oo 0 OoOO 0 o.oo 0 o.oo 0 o.oo 0 oOO TO ],4 0 OoOO 0 o.oo 0 o.oo 0 OoOO 0 o.oo 0 OoOO jU 3:ft 8 8:18 8 8:88 8 8:88 8 8:88 8 1:88 I 8:88 l8 T 0 8. 0 g.oo 0 o.oo o.oo 0 oOO DoDO 4i0 T 4o 0 .oo 0 .oo 0 o.oo 0 o.oo 0 OoOO 0 DoDO 4t5 0 o.oo 8 o.oo 8 o.go 8 8.oo 1:88 8 rss 0 &:88 8'00 o. 0 .oo 1'1 T 8 8 :88 8 8:88 8 8:8& :88 8 :88 i J8 8 o.oo 0 D.OO 0 o.oo 0 o.oo g.oo I *go .3 TO a.o o.oo 0 OoOO 0 DoDO D o.oo 8 .go
  • 0 0 o.oo 0 o.oo 0 DoOO 0 o.oo
  • 0 DoDD 8U i0 X:8 I 8 DoDD 0 o.oo 8 gooo .8 8:g8 I 8:81 lU8 lS h:& 8.oo D o.oo .oo gJDO 8 .oo 0 DoDO 0 o.oo 0 o. 0 D.8 0 .oo 0 00 . 0 D.oo D o,oo 0 OoOO o. GT l2e0 0 o.oo 0 OoOO 0 o.oo D OoOO D o.oo D DoDO TOTAL 15 lOOoOD 4 100.00 i! 10Do00 0 o.oo 0 OoDO 0 OoDO MAll HUH AMT, ol4 ol7 o29 o.oo OoOO 0.00 TOTAL PRECIPITATION FOR DATA PERIOD .69 INCHES OBSERVATIONS wiTH NO PRECIPITATION NOo PCT. NOo PCT, 729 97.98 VALID OBSEQVATIONi Hit 100.00 KllH PRECIPITATION GE o.o1 INCH 15 z.oz INVALID OBSERVATIONS 0 O.OD TOTAL V L D 0 S RVATlONS 744 100.00 TOTAL. OBSERVATlONi 7 ... lDOoOO ESTI"'TED HAliHUH MINUTE PRECIPITATION: ol6 INCHES HATED HAl MUM 0 MINUTE PRECIP TATIONI oll NCHES MAx HOM ls "l"uTE TATlONI o09 INCHES HA HAl HUM H NUTE PR p TAl ,07 NCHH MA MAX MUM M NUT PR P TA 0 I ,OS NCH SOURCE fOA ESTIMATES& Uo So WEATHER BUREAU TECHNICAL PAPER NOo 40 Rev. 0 TABLE 2.3-21 (Continued) Page 8 of 13 FREQUENCY DISTRIBUTION OF PRECIPITATION fRfOUENCY DISTRIHUTION or PRECIPITATION DATA PERIODI 1979 DATA SOURCE: sN-SfTE WOLf STATION TABLE GENERATE I 0107180, 09.36.1 1. KANSAS GAS ANO ELECTHIC DAMES AND JOB NOI 7699-062 PRfCIPITATIDN FREQuENCY fREQUENCY fREQUENCY fREQUENCY FHEOUENCY CLASS DISTRIBUTION Of DISTRIBUTION OF DISTHISUTION Of OISTRlHUTION Of OISTRIHUTION DISTRIBUTION OF INTERVAL PRECIPITATION PRECIPITATION PRECIPITATION PRECIPITATION PRECIPITATION PRECIPITATION llNCHES I 1 HOUR 2 HOUR 3 HOuR 6 HOUR 12 HOUH 24 HOUR DuRATION. DURATION DuRATION DuHATION DURATION DURATION NO. PCT. NO, PCT. NO. PCT. NO. PCT, NO. PCT. NO, PCT, ;J T8 .1 17 94.'+4 1 so.og o o.oo 8 g.oo g 1*88 8 8*88 r .z 1 s.s6 o o.n o o.oo .oo . . TO ,3 0 0.00 1 SO.OO 1 100.00 0 0.00 0 0,00 0 OoOO ll TO ., 0 o,OD D 0,00 0 0.00 0 0.00 8 0,00 0 0.00 TO , 0 0.00 0 0.00 0 0.00 0 0.00 O.OD g 0'88 s T1o0
  • 8 o.8o o g.oo o o.oo o 8.oo 8 8*88 8* 6
  • o. 0 0 .oo 0 o.oo 0 .oo .
  • a? T0o .a o o.oo o o.oo o o.oo o o.oo o a.go 8 o.og U T ,9 0 0.00 0 0,00 0 0.00 0 0.00 0 O, 0 0.0 l9 TO 1.0 0 0.00 0 0.00 0 0.00 0 0.00 0 0,00 0 0.00 1ao ro 1.1 o o.oo o o.oo o o.oo o o.oo o o.oo o o.oo ltl l8 8 8:88 8 8:88 8 8:88 8 8:88 8 8:88 8 8:88 J) TO .4 0 o,OO 0 0.00 0 0.00 0 0.00 0 0,00 0 0.00 C) 1l4 TO 1.S 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 t4 II. T1o 1'6 g o.oo o 8*oo o o.oo o o.oo g o o .1 g.oo 8 .oo o o.oo o 8.oo .oo 8 *8 TO .a 0 .00 0.00 0 Q,OO 0 .00 .00
  • 18 TO ,q 0 o.oo 0 0.00 0 o.oo 0 0.00 0 0,00 0 0.00 () 49 TO 2.0 0 Q,OO 0 0.00 0 0.00 0 0.00 0 0,00 0 0.00 * '8 8 o.oo 0 o.oo 0 o.oo 8 o.oo 8 z.og 8 8*88 t lo o &:&& 8 &:88 8 8:8& o 8:88 o 1do o o:oo tz:l JU J8 8 8:88 8 8:88 8 8:88 8 8:88 8 8:88 8 8:88 :.,:: fiJ l8 1:! 8 8:88 g 8:88 g 8:88 8 8:88 8 8:88 8 8:88 T§ o o.oo o o.oo o o.oo o o 8 l ':8 8 8:88 8 8:88 8 8:88 R 8 4 0 T 4 J 0
  • 00 0
  • 0, 00 0 0. 0 0 0 0
  • 00
  • 00 0 0
  • 451S TO s5.o 0 0.00 0 0.00 0 Q,OO 0 0.00 0 0,00 0 0.00 0 TO .S 0 0.00 0 o.oo 0 o.oo 0 0.00 0 1.00 0 0.00 S 5 TO 6.0 0 0.00 0 D.OO 0 0.00 0 0.00 0 0,00 0 0.00 TTOO 6,aS 0 0.00 0 0.00 0 Q,QO D O.DO 0 0,00 8 0.00 as 1. 8 o.oo o 8.oo o o.oo o o.oo 8 o.o8 o.og lO TO 7, 0.00 0 .00 0 0.00 D Q,OO 0.0 D 0.0 1 5 TO a.o o o.oo o o.oo o o.oo o o.oo o o.oo o o.oo 1100 8 o.go o o.oo o o.oo o o.oo o.oo o g.oo ... 0 .o o. 0 ** 0 o.oo 0 o.oo 0 o.oo .oo 0 ,Q1) lo o TO lr .o o o. o o o.oo o o.oo o o,oo * !.oo o o.oo lAO GTO lz2.0 0 Q,OO 0 0.00 0 0.00 0 0.00 0 Q,OO 0 0.00 T .o 0 o.oo 0 o.oo o o.oo 0 o.oo 0 o.oo 0 o.oo TOTAL 18 100.00 2 100.00 1 100.00 0 0.00 0 0.00 0 O,OQ HAI(MUN AMT, .zo .21 .23 0.00 0,00 OciO TOTAL PRECIPITATION DATA PERIOD ,47 INCHES NO. PCT, OBSERvATIONS wfTH NO PRECIPITATION 703 97.50 V4LlD OBSERVATIONS 721 100.00 08SERVAT ONS W TH PRECIPITATION GE 0.01 INCH 18 2.50 INVALID OBSERVATIONS 0 0.00 TOTAL VALID OBSERVATlONS 721 100.00 TOTAL OBSERVATIONi 7Zl lOQ,OO ESTIMATED bO PRECIPITATION: .23 INCHES ESTIMATED 30 MINUTE PRECIPITATION: ESTIMATED 15 PRECIPITATION: ,13 INCHES ESTIMATED HAXIHUH 10 MINuTE .10 INCHES, EST HATED HAX HUH 5 MINUTE PREC PITAT ON: ,07 INCHES SOURCE fOR ESTIMATES: u, 5. ofEATHER BuREAU TECHNICAL PAPER NO. 40 ReV
  • 0 ' .*.* .,, ........... ., . -***-** ,. ==* --....... , ..

TABLE 2.3-21 (Continued) FREQUENCY DISTRIBUTION OF PRECIPITATION Of DATA OCTOHER DATA SOuRCE: ON-SIT( TABLE GENERATED: 10/07/80, l4oJ9,)J, WOLF STATION KANSAS fiAS ANO DAMES AND JOB NO: 7699-062 PREC IPITATlON CLA5S INTERVAL IINCHESI ;;O TO *I TO ,2 TO o3 TO i4 TO TO TO , 7 TO TO e9 TO loll 10 \:\ l8 ol TO o4 TO lo5 TO H> TO a7 TO loB TO l:9 I8 TO 2,4 TO TO oB TO 0 TO 3,2 TO 4 TO f8 4o0 TO 4l5 TO 5,n TO 5*5 TO 6i0 TO 6i5 TO 1o0 TO 7;,5 TO TO 9,0 TO lOoO TO 1&0 TO GT TOTAL :l .3 .4 .s ,6 .7 .s ,9 1.0 1\: .1 .4 .5 1.6 1. 7 1.8 },9 2.6 2.8 3.0 3.2 3.4 3o6 3.8 4.0 4o5 s.o s.s 6.0 6.5 7.0 7,5 8.0 9,0 10.0 2.0 fR[OllE'ICV DlSTRidUTION Of PRfCIPITATlON I HOIJI'l OUHAT lOti .. NO. PCT. 16 1>1.54 4 15.38 4 5.31:1 I 3.85 0 A o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 0,110 o n.oo 0 0 .oo 0 o.oo 0 0 .oo 0 o.oo 0 o.oo 0 o.oo 8 8:88 0 o.oo 0 o. 00 o o.go 8 o. 0 o.oo 0 o.oo 0 o. 00 g 8:88 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 0 o 00 I o o. go . 0 o. 0 0 o.oo 0 o.oo 26 100.00 MAKIHUH AMT, ,54 TOTAL PRECIPITATION FOR DATA PEHIOD OF' PRECIPITATION 2 HOWl DURATION NO, 3 4 0 l 0 0 0 n 0 8 0 0 0 0 0 8 0 0 8 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 12 PCT. o.oo A,)') 16,67 R,ll R,33 o.oo o.oo n.no o,on O,Of) n.no o,oo o.on o.oo o.oo o.oo o.oo o,on o.oo o.oo o.no o.oo o.oo o.oo o.oo o.oo o.no o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.no o.on o.oo o.oo o.oo 100.00 .62 NO, WITH NO OBSERVAT ONS w TH PRECIPITAT ON GE OoOI INCH TOTAL VALID OBSERVATIONS 1M; 738 FHE&JIIF.UCV OISTQ!RUTION OF PRECIPITATION 3 HO*tR NO, I n n l 0 I n ll 0 II 0 II 0 II 0 0 n 0 0 0 n , I} I) 0 0 0 n n 0 n 0 0 0 0 n n n 0 0 7 3,33 INCHES PCT, 9f>,io8 3.'>? 100.00 PCT. 14o2q ... 2'J o.oo o.oo J4,;>q 28.57 o.oo lioo?9 o.oo o.oo o.no o.no o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.no o.oo o.oo o.no o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo 100.00 .RI MAKIMUM bfl MINUTE MAXIMUM ]0 ESfiMATEO MA.IMlJM 15 MltHJTE ESTIMATED 10 MllllllTE EST "ATEO HAA!"'UM 5 M!llltJJE PHECJPITATION PHECIP TAT ON ,t>l HJCHE<; ,ioA INCHES ,15 INCHES ,27 INCHES ,Jil INCHES SOuRCE fOR ESTIMATEs: u. So WlATHER TECHNICAL PAPER FREQUENCY OF PRECIPITATION 6 HOUR OUHATlON NO. 8 0 0 0 y I 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 2 PCT, o.oo o.oo o.oo o.oo o.oo o.oo so.oo so.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo 100.00 .so FREQUENCY DISTRitiUTION Of' PRECIPITATION 12 DURATION NO. 8 0 0 8 0 8 0 0 8 0 0 0 0 0 i I 0 8 0 8 0 0 8 *0 8 0 o.oo PCT. 8:88 o.oo o.oo o.oo o.oo o.oo o.oo 8:88 o.oo o.oo 8:88 o.oo o.oo o.oo o,oo e.oo o.o8 o.o o.oo o.oo o.go 0. 0 8.oo .oo o.3o o. 0 o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo a.oo o.oo o.oo o.oo 11.00 o.oo YALID OtiSERVATION§ NVALID OBSERVATIONS TOTAL OBSERVATIONS Page 9 of 13 F'ilEQUENCY DISTRIBUTION OF PRECIPITATION Zlo ,;QuR OuRAT(ON NO. ! 0 I 0 8 0 0 8 0 8 0 0 ! i i 8 0 0 0 II 0 0 0 0 0 0 0 NO, 73tl b 7 .... PCT, 8:88 o.oo o.oo 8:88 o.oo o.oo o.og o.o o.oo o.oo 8:88 o.oo o.og o.o o.oo o.oo 8:88 o.oo o.oo 8:88 8:88 o.oo o.oo o.oo o.oo o.8o o. 0 o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo 8:88 o.oo o.ao PCT 9'iol4

  • 81 100.00 Rev. 0 0 t""' 1'%.1 n t:r::l t:r::l TABLE 2.3-21 (Continued) FREQUENCY DISTRIBUTION OF PRECIPITATION Page 10 of 13 FRfOUENCY DISTRIBUTION OF PRECIPITATION DATA PEAIOOI NOVEMBER 1979 OAIA ON-SITE WOLF CREEK GENERATING STATION TALE N AATEOI 10107180. 09.36oll* 5 s AND ELECTHOC DAM S AND MOORE N I 7699-062 PRfCIPITATION FREQUENCY FREQUENCY FREQUENCY FREQUENCY FREQUENCY FREQUENCY OF OitfRIBUTION OF OF OF OF oF INT VAL PR IPlTAT ON PR lPITATION PR IP IT ATION PR lPlTATION PR ClPlTAT ON P I ITA ON !INCHES I I HOUR 2 HOYR 3 HOUR 6 HOUR A2 HOUR 24t HOUR DURATION . OURAT ON DURATION DURATION URATION 0URAT101'4 NO, PCT. NO, PCT, NO, PCT. NO, PCT, NO* PCT. NOo PCT, U TO :l u 60*09 7.} .. 0 0 o.oo 8 o.og 8 8:88 TO 2a.5 35, I 3 33.3 0 o.oo o.o l TO .3 4 llo4t3 5 35. 7l 2 22.22 0 o.oo 0 o.oo 0 o.oo az TO ... 8 8:U I I ll*f 0 o.oo 8 o.oo 0 8:U :s J8 ? o. y y 8:88 8 7, 4 II. '6 TO .7 0 o.oo 0 o.oo 2 22.22 0 o.oo 0 o.oo 0 o.oo r TO :8 8 o.oo 0 o.oo 0 o.oo I 8 o:8g 8 8:U TO o.3o 8 o.oo 0 o.oo 33.3 l.o TO p o. 0 o.oo 0 o.oo o.oo ro TO 0 o.oo 0 o.oo 0 o.oo o.oo D o.oo 0 TO 0 o.oo 8 o.oo 0 o.oo I 33.33 0 8:g8 & o.B I TO 0 o.og o.oo n o.og 0 o.oo 8 8: TO ... 0 o.o 0 o.oo 0 o.o 0 o.oo D, 0 r4t TO .5 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 e.oo 0 o.oo 0 o5 Tg 8 o.og 8 o.oo 0 o.oo 8 o.oo 8 o.o8 0 o.og ['"t T o.o o.oo 0 o.oo o.oo o.o 0 o.8 t'Zj l TO .a 0 o.oo 0 o.oo 0 o.oo. o.oo o.oo 0 o. 0 *B TO .9 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo (') .. 0 o.oo g o.oo 0 o.oo 0 o.oo y o.o8 0 o.oo TO 0 o.oo o.oo 0 o.oo 0 o.oo 1oo.o 0 o.oo ::d TO ... 0 o.oo g o.oo 0 o.oo 0 o.oo 8 8:88 8 8:88 tzJ 4t TO 2.6 0 o.oo o.oo 0 o.oo 0 o.oo tzJ J 6 TO 0 o.oo g o.oo 0 o.oo 0 o,oo 8 1,00 8 o.go 8 TO 0 o.oo 0,00 0 o.oo 0 o.oo o.oo o. 0 :,.; tO TO 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo IIi f§ i'4 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo :a I 8:U 8 8.00 8 o.oo I o.oo I I:U I 8:U .. :3 :88 0 8:83 8:88 TO 0 o.oo 0 o.oo 0 0. 00 . 0 o.oo 0 o.oo 0 o.oo C.l5 TO 5.1 0 o.oo 0 o.oo 0 o.oo 0 o.oo 8 1:88 8 8:11 l8 5. 8 8:88 8 8.oo 8 8:88 8 o.oo 6. .oo o.oo 'i3 TO 0 o.oo o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo , TO 0 o.oo o.oo 0 o.oo 0 o.oo 0 o.oo i &:n lg l& 7, 0 o.oo 8 o.oo 0 o.oo 0 o.oo 8 o.oo a.o 0 o.oo o.oo 0 o.oo 0 o.oo o.oo litO TO 9.0 0 g.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo o.oo 9 0 TO r*s 0 0 o.oo 0 o.oo 0 o.oo . *8 o.og 8 8:U Ul8 l8 g &*'00 0 g.oo 0 o.oo 0 o.oo o.o .oo 0 .oo 0 o.oo 0 o.oo 0 o.oo GT 2.0 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo TOTAL 35 IOOoOO lit loo.oo 9 100.00 3 100.00 1 100.00 0 o.oo MA.ICIMUN ANT, .30 ,57 .65 ),19 2.07 0.00 TOTAL PRECIPITATION FOR DATA PERIOD 3.51 INCHES WjTH NO PCT, NO, PCT, 95.14 VALID OBSERVATION' 720 IOOoOO oss RVAT iNS 1 lH PRECIPITAT ON G o.o1 INCH 35 ... 86 INVALID OI:!SERVATIONS 0 o.oo TOTAL VAL 0 0 S RVATIONS 720 100.00 TOTAL OBSERVATION' 720 100.00 **. , *.. , **.* , ..... "!"" *** , .* , .. ,, ... ,34 INCHES MATEO MAX HUM 30 M NUTE PRECIP,TAT ONI ,27 INCHES ST MAX HUH 5 M NUTE PREC P TAT ONI *r rCHES "EB HAXfMUN fg H NUJE PREEIP TATIONI
  • 5 NCHP HAT MAX MUM N NU PR P TAT ONI o 0 NCH S SOURCE FOR ESTIMATES! u, So WEATHER BUREAU TECHNICAL PAPER NO, 4t0 Rev. 0 TABLE 2.3-21 (Continued) Page 11 of 13 FREQUENCY DISTRIBUTION OF PRECIPITATION Of DATA PERlODI I 'H'I SOURCE: ON*SlTE WOLf CHEEK STATION TABLE GENERATED! 10107/bO. GAS AND ELECTRbC DAM S AND MOORE JOS N : 7t>99*06Z PRECIPITATION fREOuE*cCr fREQUENCY fREOIIENCY fREQUENCY fREQUENCY fREQUENCY DI£T*H.;*JTlj .. OF Of OISTIJIBUTION Of' Dl TR I I:! UTI ON Of' DllTRII:!UTION Of: or NT RVAL PR C I PIT AT I ON PR CIPITATION PREC IPITATlON PR ClPIUTION PR ClPITATIQN P CIPJTA ON CINCHES I I ... ,,JR 2 HOUR 3 HOIJR 6 HOUR bz HOUR 24 HOUR DURATION DURATION DURATION URATION DURATION NO. PCT. NOo PCT. NO. PCT. NO, PCT, NO, PCT. NO, PCT, TO 3 J;j(),OO I too.nn I 100.00 0 o.oo 8 g.oo 0 8:88 TO 0 a.oo 0 o.oo 0 o.oo 0 o.oo .oo 0 TO .3 () o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo :z l8 .4 0 o.oo 0 o.no 0 o.oo 8 3.oo 8 8:88 8 8:88 .5 0 o.oo 0 o.oo 0 o.oo .oo ;..:; TO .6 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo ;,6 TO .7 0 o.oo 0 o.no 0 o.oo 0 o.oo 0 o.oo 0 o.oo ;.7 TO .s 0 o.oo 0 o.oo n o.oo 0 o.oo I a.oo I o.r *s TO ,9 0 o.oo 0 o.on 0 o.oo 0 o.oo l:g8 o. 8 o TO 0 o.oo 0 o.no 0 o.oo 8 o.oo o. liO TO 0 o.oo 0 o.oo n n.oo o.oo 0. 0 o. 0 IiI TO 1.2 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 1.00 0 o.oo 1"2 TO 1.3 0 g.oo 0 o.oo 0 o.oo 8 o.oo 0 **8" 8 o.go 0 D rg .4 0 .oo 8 o.on 0 o.oo o.oo 0 .o. 0 o. 0 1:"1 ;.4 T .5 0 o.oo o.oo 0 o.oo 0 o.oo 8 o.oo o.oo llS TO .6 0 o.oo 0 o.no 0 o.oo 0 o.oo o.oo 0 o.oo tzj TO 1"7 0 3.oo 0 o.oo 0 o.oo 0 o.oo 8 8:88 8 8:88 ;, TO .8 0 .oo 0 o.oo 0 o.oo 0 o.oo (") !'"TO 1*9 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 g.oo 0 o.oo ;9 TO 0 o.oo 0 o.oo 0 o.oo 8 o.oo 8 s:U 8 o.oo t<l f8 8 8:88 8 o.go 0 8:88 8:88 8:88 o. 0 0 t<l 2i4 TO 2.6 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo TO 2.8 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 8 o.oo i8 TO 0 o.oo g o.oo 0 o.oo 8 o.oo 8 8:88 8:88 eO TO 0 o.oo o.oo 0 o.oo o.oo 3;,2 TO 3.4 0 o.oo 0 o.oo 0 o.oo 0 o.oo 8 o.oo 8 8:88 TO 3.6 0 o.oo 0 o.oo n o.oo 0 o.oo 1.00 T8 3.8 0 o.oo 0 o,oo 0 o.oo 0 o.oo 0 o.go 8 o.oo oR T 4.0 0 o.oo 0 o.oo n o.oo 0 o.oo 0 0. 0 o.oo 4i0 TO 4.5 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 e.oo D o.oo 4j5 JO s.o 0 o.oo 0 o.oo 0 o.oo 0 o.oo 8 e.oo 8 I:U s.o 0 5.5 0 o.oo 0 o.oo 0 o.oo 0 o.oo o,oo 5<5 TO 6.0 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 6<0 TO 6.5 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 6i5 TO '1'.0 0 o.oo 0 o.oo 0 o.no 0 o.oo 0 o.oo I o.oo TO 7.5 il o.go 8 o.oo 0 o.oo 8 o.oo I a*oo ! 7l TO 8.0 0 o. 0 o.on 0 o.oo o.oo .oo o.o IHO '§ 9.0 0 o.oo i g.nn 0 o.oo o.on o.o 1 O. 0 o.oo: .no n o.no 8:83 lY'O 1 0 o.oo g.oo 0 o.oo o 0 TO
  • 0 0 o.oo .oo 0 o.oo o.oo GT 2.0 0 o.oo 0 o.oo 0 o.oo . 0 o.oo 0 o.oo 0 o.oo TOTAL 3 100.00 1 100.00 l 100.00 0 o.oo 0 o.oo 0 o.oo MAI.lMUM AHT, .:IS .06 .oe o.oo o.oo o.eo TOTAL PRECIPITATION DATA PERIOD , 08 INCHES NO. PCT. NO. OBSERVATIONS WITH NO 739 99.60 VALID OBSERVATION5 7 .. 2 OBSERVATIONS wiTH GE 0.01 INCH 3 ,40 INVALID OBSERVATIONS 2 .z? TOTAL VALID OBSERVAT 7 .. 2 loo.oo TOTAL 08SEAVATION5 7 .... 100.00 ESTIMATED MAXIMUM 60 PRECIPITATION! ,06 INCH£!. ESTIMATED MAXIMUM 30 PRECIPITATION! ,04 INCH£<; MAxiMUM JS ,OJ ST MAT MAX MUM 0 w PR P TAT ONI ,OJ N HES ST MAT D MAX MUM 5
  • PR C P TAT ONI .02 NCHES SOURCE fOR ESTIMATEs: So wEATHER auREAU TECHNICAL PAPER NO ... o Rev. 0 TABLE 2.3-21 (Continued) Page 12 of 13 FREQUENCY DISTRIBUTION OF PRECIPITATION FPEOUENCY OISTPIBUTION OF DATA PERIOD: JANUARY DATA ON-SITE GENERATING STATION TABLE G NERATED: 10/0 7/80
  • 14o19o31o DAMES AND MOOQE NOI 769<,1-062 PRECIPITATION FREOUniCY FREQUENCY Fl'lf(JIJ[NCY FREQUENCY FHEUUENC'I' rHEOUyNC't CLASS Dlc;TR111UTION OF OISTRIHuTION OF OF DISTRIBUTION OF OISTRIHUTION Or BUTION Or INTERVAL PRECIPITATION PRECIPITATION PR£ C II' I TA. T 1 ON PRECIPITATION PREC IP I TAllON PRE IPITATION I INCHES I 1 HQI)R 2 HOUR :\ HOUR 6 HOUR 62 HOUR 64 DURATION . DUHATION DURAl ION DURATION URATION URAT ON NO. PCT. NO. PCT. NO. NO. PCT, NO. PCT. NO. PCf
  • oO TO :l 16 "'4*Az 4 80.00 ? 0 o.oo 0 o.oo 8 8:88 .1 TO I <;, a I 20.00 0 o.oo 0 o.oo 0 o.oo o2 TO .3 0 o.oo 0 o.oo 1 J).]] I too.oo 0 o.oo 0 o.oo n TO .4 0 o.oo 0 o.oo n o.oo 0 o.oo 0 o.oo 0 o.oo o4 TO .s 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 8:18 i.'5 TO .6 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 e6 TO .1 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 a.oo 0 o. 0 i.7 TO .a 0 o.oo 0 o.oo 0 o.oo 0 o.oo 8 o.oo i 8:U ill TO .9 0 o.oo 0 o.no (I o.oo 0 o.oo o.oo i9 TO J..o 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 1*0 TO J,J 0 o.oo 0 o.on n o.oo 0 o.oo 0 o.oo 0 o.oo TO f .2 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo e TO ,J 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo o.oS }" tO .4 0 o.oo 0 n.no (I o.oo 8 o.oo 8 8:88 8:8 ,4 TO .5 0 o.oo 0 o.oo () o.oo o.oo 1,5 TO ,.6 0 ' o.oo 0 o.on 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 1,, TO .7 0 o.oo 0 o.oo n o.oo 0 o.oo 0 o.oo 0 o.oo I:" lo7 TO .a 0 o.oo 0 o.no 0 o.oo 0 o.oo 0 0,00 0 o.oo tsj 1,8 TO 1.9 0 o.oo 0 o.oo n o.oo 0 o.oo 0 o.oo 0 o.oo TO 0 o.oo 0 o.no 0 o.oo 0 o.oo 8 8:88 0 8:88 n ,O TO .2 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 2<2 TO 2.4 0 o.oo 0 o.no 0 o.oo 0 o.oo 0 o.oo 0 o.oo ::0 2.1t TO 2.6 0 o.oo 0 o.no 0 o.oo 0 o.oo 0 .* o.oo 0 o.oo t%J 2,, TO z.a 0 o.oo 0 o.oo 0 c.oo 0 o.oo 0 o.oo 0 o.oo TO 0 o.oo 0 o.oo n c.no 0 o.oo 8 o.og ! &:88 t%J ;o TO J, 0 o.oo 0 o.on 0 o.oo 0 o.oo o.o 3;2 TO ),4 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo o.oo 3,4 TO 3.6 0 o.oo 0 n.on 0 o.no 0 o.oo 0 o.oo 0 TO 3.a 0 o.oo 0 o.oo 0 o.oo 0 o.oo 8 o.og 8 o. 8 <8 TO 4.0 0 o.oo 0 o.oo 0 o.oo 0 o.oo o.o o. 4i0 TO 4.5 0 o.oo 0 o.no 0 o.oo 0 o.oo 0 o.oo 0 o.oo TO s.o 0 o.oo 0 o.no 0 o.no 0 o.oo 0 o.oo 0 o.oo '5og TO s.s 0 o.oo 0 o.oo 0 o.oo 0 o.oo 8 o.oo 0 o.oo '5o TO 6.0 0 o.oo 0 o.oo 0 o.oo 0 o.oo o.oo 0 o.oo l.li.O TO 0 o.oo 0 o.nn 0 o.oo 0 o.oo 0 o.oo 0 o.oo 6,5 TO .o 0 o.oo 0 o.on 0 o.oo 0 o.oo 0 o.oo 0 o.oo 7 io 7.5 0 o.oo 0 o.oo 0 o.oo 0 o,oo 0 o.o3 8 o.go l. 0 e.o 0 o.oo 0 o.no 0 o.oo 0 o.oo 0 o.o o. 0 a.o TO 9.o 0 o.oo 0 o.oo n o.oo 0 o.oo 0 o.oo 0 o.oo 9o0 TO 10.0 0 0 .oo : 0 o.oo 0 o.oo 0 o,oo 0 o.og 0 o.oo lOoO TO 0 o.oo 0 o.oo 0 o.oo 0 o.oo *0 o.o 0 o.oo lloO TO I .o 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo GT 12
  • 0 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo 0 o.oo TOTAL 17 too.oo 5 1oo.oo 1 IOOoOO 1 loo,oo 0 o.oo 0 o.oo HAXIMUH AOoiT, olZ .la *21 .30 o.oo o.ao TOTAL PRECIPITATION FOR DATA PEklOO .52 INCHES Nl). PCT, NO. PCT. OB5ERVATIONS W1TM NO PRf.CIPITAT10N 725 97.71 VALID 742 99,73 OB5ERVATIONS PRECIQJTATION uE OoOl INCH 17 2.29 2 *s1 TOTAL VALID 0 S RVATIONS 7lo2 100.00 OTAL ?lo .. I 00. 0 ESTIOoiATEO 60 Ooi]NUTE PRECIPITATION: ,14 IIIIC11ES 30 P'INIITE PRECl>'ITATIONI .11 INr.HfS E5T .. ,,EJ .. 15 MriiTE ..
  • wc-.rs "'*' HUH 10 M PRECIPPATIONI , Of.! INCHES EST OoiATEO MAXIMUM '5 M NUl PQECIP TAT ON: ,04 lNCHE.S SOURCE EST]HATES: u. So TECHNICAL PAPER NO, 40 Rev. 0 ..

Ill ,.,.....,.,,., ... oo .. :11: .. -0 ... 0 Cl'f.IIIIHI'U/1 011101 0 ,. 0 .t,..WW...,...,I'\INNNN.....,._......,_ ... z,-, ,.lD c .... ........... ....... " ... ,. ... .,__.......,..,., .,.,., w _ .. .,.., .,_ ..,., .,., ** ., *. .,.,.., .,_ .,.., .,.,.,.,., ..,., .,....., z ... ... '"' ... .... lD ---..... ,., ,. ,. n ..., .... *o ('I :r:r:r:.::.: r-:0%1 ,.. :11: ,.. ;z: lOUt ... c ... .. ... << c ........ .... ............ ........................ ............ ................ "' < '0 -oo .,,., ...................... <** ., :11: -ooooooooooooooooooooooooooooooooooooooooooo Ill ,. ... .. ... I"'Z .., .......,.,,.,,., ,_.. .... :II ,.. .... Ill-< :an 0 00000 ,.._ "' ,. --,.. .. ...... :0 ...00 n :1: .. .... ... 0 :J:J::J:J:J: czz ... .... ............................................ ... Ill 00 ... 111111 ., . ... i c:>o Ill )III,)IC)It)C)( 0 -me Ill ... --IIIII: II: ... ZlD ... ... .J:J:J:J:J: .,_ ,. I"> ('I ..,,., J: cc.ccc .......... ... lDI"' ...,_ .. XX%:1::1: :11%% ... *-mm ... < 0 '110.., .... lDC: ,., -wo-,.,z z ::O...lD ... C:-< "' t.I'IOIJ\00 ... lDO z ...,,., co *-...... ... 0 0 n...o -z :00 :J:J:J:%:1: on, 0

  • oooooooooaaooooooooooooooooooooooooooooooom* c:--:oc:: I -<Z c: z-:a :0 lD .,_,., Ill zzzzz .,,,., *:z: ---o c:cccc ....... 0 . -oo ....c:n o ... "'.., Ill .................. ....... ,. 0 -... -c: ......... '"' Q> ...,.,...,., ... ,., ...
  • 0 0 OlD .... ... 0 0"0 ....... ,. 0 z -o ... lO II: ,,,.,, ...... . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
  • n oz ' ... .... :O:tiDlDlO o* '11 0 ooooooooooooooooooooooooooooooooooooooooooo .... z
  • n .. f"rll""',..,,.., z.., "' 0 ooooooooooooooooooooooooooooooooooooooooooo. 0 0 -.... nnnnn -:0 ... . ., :r; C>O --,., .,,,,, I"'Z 0 0 ... :0 0 '!> .. "l t-4-t-t 0 ... Q> popo)lo,_., . '110 ... w -ffl c: ............ -4 .... 0 ,_2) 0' 0 lD z ...,,., . z I() ,., 00000 0 0 n...o -,. zzzzz -w oooooooooooooooooooooooooooooooooooooooooow* C:N -c c: z :0 M n *:r z ... ::t . .... o _,en () ;; "' 0 ... --c: _ ... n Ul 0 .. O::tl ...... >< X 0 z -o ttl z . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
  • n oz 0 t-' C7' O'Z 0 z n "' Q>O 0 0 H M .. 00000 CJ'C>>CJII* ... tfl ,... -r'\,l;,..,t-1.11 ..... co '"'3 1\J li:Z:tlr-, ....,,.. ... ::0 ,. ZZZ'Z7. H w .., nnnnn c "' '110.., IIIZn tD I ,., o-c>>., ... l0-2) .. Cl%1 c 1\J tl ,.,fY'I,..,tTIITI * *
  • n z z .....,,... ZG"\-41"1 V'I/'III1\11V' n 0 0 n-o.:> 0,.0,.., 1-) ...... z 01/1\llO X C:lol -lDC: 1112" H 0 ,., :tl ,_,., J: . g . Ill *::t -a>z o.-';1{" ,-, -oo -oc:n OZ..,_I'91 0 --c ........ lDOZZ 0 0 w 0 0 0:0 .,._ ,., "'"' 0 ::J 0 ooooooooooooooooooooooooooooooooooooooooooo., z -o ...... lO . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
  • n oz l rt 0 z O"" ... ..... 0 ooogooooooooooooooooooooooooocooooooooooooo* 0 a>n "0 ::J ... ... z c:: ZD C> o-ro -n Ill 0. .... H "00 .... ,. ::O...lD ... .... "0 z .......... "' -H 0 0 n-oo "' 0 0 OOQOOOOOOODOOOOOOOOQOOOOOOOOOOOOOOOOOOOOOOO* CO' _,c= z lD .,_,., I 0 ,..% -mz 0 '"'3 . .... o -<C:n "' H 0 -c: .. ...... N 0 0 OlD -0 z -o z . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
  • n oz 0 z 0 ODOOOgOQDOOOOQOOOOOOOOOOOCOQOOOOOOOOOOOOOOO* 0 ... ... -< OZJ> -<<r-'110 ... **-::o-:a r-ro z ,.,.,,., .. 0 o-n-oo 000 0 oococaooooooooooooooooooooooooooooooooooooo* CN -De Ill a> :II .,_,.., 1110111 0 *::t -a:z ..,a;,.., . -<0 ... en :OVIlC 0 -c= ......... em< 0 OlD ....... ,.D .. -a -o -<<-< . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
  • n oz -*-.. z 0-<0 0 oooooooooooooocooooooooooooooOCH:::IIoc:aocaooooooo* 0 z-z .., .. o .. z Ill '110 ... l[)oo.lO z """"" "0 0' IJ'Z 0 01\1 ('1-<0 Ill "' .00 0 OOCKIC)DOQQOOOQOoc:IIOOOOQOC:IDOOOOOc::::llOC)OOOOOQOOOOO* c* ... x;c \() ;c .,_,.., 0 *:r; -a>Z (!) ::0 . ...... -::n 0 -c: ......... 1--' (!) --0 0%1 -< 0 0 0 z -o w OOG'Q . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
  • n iz * *
  • n .. 0 0 OQOQOOOOOOOOOQOOOOOOOOOOOOOOOOOOOOOOoooooOO* 0 HI ooao "" 0 1--' w )Ja:.ni::> a '10M TABLE 2. 3-22 Sheet 1 of 13 Monthly and Annual Joint Speed and Wind Direction Frequency Distribution at the Chanute F li9-:nt. Service Station, Kansas JOINT SPEED, N D DIRECTION FREQUENCY OISTRIBUITON c I N PERCEI\JT > FOR THE MONTH OF JANUARY DATA SOURCE: F.S.S., KANSAS DATA PERIUC: JANUARY 1 ' 1955 TO DECEMBER 3 1 ' 1964 SECTOR UPPER CLASS INTERVALS OF ltJI NO SPEED c KNOTS> MEAN 2.5 5.0 7.5 10.0 12.5 15.0 1 7. 5 20.0 >20.0 TOTAL SPEED NNE
  • 0
  • 7
  • 8 2.3
  • 9 1. 3 . 6
  • 4
  • 2 7.2 1 1
  • 2 NE . 0 . 6 . 4
  • 9
  • 4
  • 6 . 0
  • 1 . 0 3.0 9.5
  • 1 . 7
  • 3
  • 5
  • 2
  • 1 . 0 . 0 . 0 1
  • 9 7.3 E
  • 0 . 7
  • 6
  • 7
  • 2
  • 2
  • 0 . 0 . 0 2. 3 7.5 ESE
  • 0 . 9 1
  • 0 1. 8
  • 2
  • 5
  • 0 . 0 . 0 4.5 8.5 SE . 0 1
  • 1 1
  • 1 1
  • 5
  • 8
  • 4 . 2 . 2
  • 0 5.2 8.8 :8 SSE . 0 1 . 1 1
  • 2 2.5 1
  • 2 1
  • 4 . 4 . 6
  • 2 8.6 10.7 0 t"'1 s
  • 0 . 5
  • 9 3.0 1. 9 2.3 1
  • 3 2. 1 . 9 12. 9 13. 6 I"Zj SSVJ . 0 . 7 . 4 2.5 1 . 7 2.5 . 6 . 6
  • 5 9.6 1 2. 4 (J S'd . 0 . 4 . 4 1
  • 0
  • 7
  • 7 . 2 . 1 . 1 3.6 1 0. 9 ::0 t7j s \*/ . 0 . 8
  • 5 1
  • 1
  • 3
  • 2
  • 0
  • 1 . 0 3.0 8. 4 t7j \'/ . 0 . 4 . 4 . 3
  • 2
  • 2 . 0 . 1
  • 0 1 . 8 9.5 . 1 . 6
  • 7 1 . 3
  • 5
  • 4
  • 2 . 3
  • 1 4.0 9.9 i'Jd . 0 . 6 1. 0 1. 9
  • 8 1 . 0 . 5 . 7
  • 1 6.5 11
  • 2 i"-1 N \*J . 0 1. 0 1
  • 3 2.9 1. 7 3.9 1
  • 4 2.8
  • 5 1 5. 5 13. 2 . 0 . 5 . 8 2. 1
  • 8 1
  • 7 . 4 . 8 . 4 7.6 12. 3 2.8 TOTAL . 2 11 . 2 11 . 9 26.3 12.4 17.4 5. 8 9.0 3. 0 100.0 11 . 0 U i*iB t: R OF INVALID OBSERVATIONS = 3 Rev. 0 TABLE 2.3-22 SHEET 2 OF 1 3 JOH;T WIND EED, vii NO DIRECTION F RE QUE f',JCY DI IBUITON < IN PE FOR THE OF FEBRUARY DATA SOURCE: CHANUTE F.S.S., K.D,NSAS DATA. PERIOD: JANUARY 1 ' 1955 TO 0ECEii.8EP .., . 1964 ....J.:. t SECTOR UPPER CLASS INTERVALS OF WIND SPEED C KNOTS) MEAN 2.5 5.0 7.5 1 0. 0 12.5 15.0 17.5 20.0 >20.0 TOTAL EED
  • 0 . 7 1
  • 1 2.8 1
  • 2 1. 2
  • 2
  • 3
  • 1 7.6 1 0. 5
  • 0 . 8 . 6 2. 1
  • 9
  • 6
  • 2
  • 4
  • 0 5.6 1 0. 2 ENE . 0
  • 4
  • 4 1
  • 0
  • 6
  • 4 . 0
  • 0
  • 0 2.8 9.4 E
  • 0 . 5
  • 5 1
  • 0
  • 2
  • 5
  • 1
  • 1
  • 0 2.9 9.7 ESE
  • 0
  • 8 1
  • 1 2.1 .. 4
  • 8 . 0
  • 0
  • 0 5.3 9
  • 1 SE . 0 . 7
  • 7 1
  • 8
  • 7
  • 9
  • 1
  • 3 .o 5. 1 10. 2 SSE
  • 0
  • 4
  • 5 1
  • 8 1 . 1 1
  • 7 1
  • 0
  • 4
  • 1 7. 1 12. 4' :E: s . 0 12.9 0
  • 6 . 8 2.4 1. 5 2. 5
  • 9 1 . 8
  • 3 10.6 t"" ssw . 0
  • 3 . 6 1. 4 1
  • 1 1
  • 3 1 . 1 .8 . 3 6.8 12. 9 I'"Ij s:,,, . 0
  • 5
  • 4
  • 7
  • 3
  • 4 . 0
  • 0
  • 1 2.4 10.0 0 \v s r1 ::tl . 0
  • 4
  • 5 . 5
  • 1
  • 2
  • 1 . 2
  • 1 2. 1 1 0. 1 tl!j h
  • 0 . 3
  • 1 . 5 .. 2
  • 3 . 0 . 2
  • 1 1
  • 7 11
  • 3 tl!j r,' ,.,* . 0
  • 7
  • 5 1
  • 1
  • 5
  • 6
  • 1
  • 4
  • 0 4.0 10.4 'J d . 0 . 8 . 8 1
  • 7 1
  • 1
  • 9
  • 2 . 4
  • 0 5.9 1 0. 6 ;\ . 0 1
  • 2 1. 2 4. 3 1. 0 4.2 1 . 1 1 . 9 . 6 1 6. 2 12.5 . 0 1 . 1
  • 9 2.0 1
  • 3 2.6
  • 6 1
  • 4
  • 2 1 0. 2 1 2. 2 --' \' 3.5 ....,._
  • 1 lO.J 1 0. 6 27.2 12.7 19
  • 2 6.0 8. 7 2. 1 100.0 11
  • 0 '.'::::: JF ALI J 03SE RVAT I = Rev. 0 ----------------------

TABLE 2.3-22 (CONTINUED) SHEET 3 OF 1 3 J 0 INT SPEED, \vI NO DIRECTION FREQUENCY D I STR I BU < IN PERCENT> FOR THE t*10NTH OF DATA SOURCE: CHANUTE F.S.S., KANSAS o:;TA PERIOD: JANUARY 1 ' 1955 TO DECEMBER 31 ' 1964 SECTOR UPPER CLASS INTERVALS OF WIND SPEED cKNOTS) MEAN 2.5 5.0 7.5 10. 0 1 2. 5 15. 0 17. 5 20.0 >20.0 TOTAL SPEED NfJE . 0 . 6 . 6 2.2 1

  • 1 1
  • 3
  • 6
  • 4
  • 1 6.9 11
  • 5 NE
  • 0
  • 5
  • 4 1 . 8
  • 9 . 9
  • 2
  • 3
  • 0 5.2 11 . 0
  • 0
  • 5
  • 6 1. 7
  • 6 1
  • 0
  • 2
  • 1
  • 0 4.8 10. 3 E . 0
  • 4 . 4 1. 7
  • 3 1
  • 5
  • 2
  • 2
  • 0 4.8 1 1 . 1 ESE
  • 0
  • 5 . 7 2.5 1
  • 0 1
  • 1
  • 3
  • 3
  • 1 6.6 11
  • 0 SE
  • 0
  • 4
  • 4 1
  • 7
  • 8 1
  • 4
  • 4
  • 4
  • 1 5.6 11
  • 9 SSE
  • 0
  • 5
  • 4 2.2 1
  • 2 1
  • 9
  • 7 2.3 1
  • 1 1 0. 4 14.3 :E: s 0
  • 0 . 3
  • 3 1 . 1 . 7 1
  • 9
  • 8 2. 1 2.7 10.0 17. 4 t"1 SSvl . 0 . 2 . 2
  • 7
  • 5
  • 8 . 5 1
  • 0 1
  • 0 4.9 15.9 !"tj S\'/
  • 0 . 4 . 2
  • 5
  • 2
  • 4
  • 2 . 3 . 4 2.7 12. 8 0 . 0 . 3
  • 3 . 7 .4
  • 1 . 2
  • 2
  • 1 2.4 11
  • 1 t.tJ
  • 0
  • 3 . 4
  • 9
  • 2
  • 4
  • 2
  • 2
  • 2 2.8 11
  • 5 t:tj :;;: i J vi . 0
  • 5 . 6 1. 2
  • 5 1. 2 . 4 1
  • 2 . 3 5.9 13. 2 . 0
  • 5 /, 1
  • 9 A 1
  • 6 . 8 1
  • 2
  • 2 7.6 1 3. 0 * '""t * '::! i
  • 0
  • 8 1
  • 0 2.4 1
  • 2 1. 6 1 . 0 1
  • 6
  • 7 1 0. 2 12. 8 . 0 . 3 . 4 1
  • 2
  • 7 1
  • 7
  • 6 1. 6 . 3 6.9 14.0 2.3 TOT.AL . 1 7
  • 1 7. 3 24.6 11. 7 1 8. 9 7.3 13.3 7.5 100.0 12.8 'J >1BE R OF I I 0 OBS RVATIONS = 0 Rev. 0 -----------------------

TABLE 2.3-22 (CONTINUED) SHEET 4 OF 1 3 vi I ND SPEED, NO DIRECTION DISTRIBUITON <IN PERCENT) FOR THE H OF APRIL DATA SOURCE: CHANUTE F.S.S., KANSAS DATP\ PERIOD: JANUARY 1 ' 1955 TO DECEr<iBER 31' 1964 SECTOR UPPER CLASS INTERVALS "r-WINO SPEED c KNOTS) ur 2. 5 5.0 7.5 10.0 1 2. 5 15. 0 17. 5 20.0 > 20. 0 TOTAL SPEED NI\JE

  • 0
  • 5
  • 7 1
  • 4
  • 9 1
  • 1
  • 3
  • 3 . 0 5.3 11
  • 1 NE . 0 . 5
  • 4 1
  • 6
  • 8 1
  • 0
  • 5
  • 4
  • 0 5. 1 1 1
  • 3 ENE
  • 0
  • 1
  • 3 1
  • 3
  • 4
  • 5
  • 3
  • 0
  • 1 3.0 1 1
  • 1 E . 0
  • 5
  • 8 1
  • 5
  • 5
  • 6
  • 2 . 4
  • 0 4. 6 10. 6 ESE . 0 . 5
  • 7 1. 9 1. 2
  • 8
  • 2 . 1
  • 1 5. 5 10. 4 SE
  • 0 . 8
  • 7 2.0
  • 8
  • 6 * ..f
  • 3
  • 2 5.8 10. 6 SSE
  • 0 . 4 . 7 2.4 1
  • 3 2. 9 . 8 2.5 1
  • 5 1 2. 5 1 4. 6 s
  • 0 . 4
  • 4 2.3 1
  • 0 2. 4
  • 8 4. 2 4.0 1 5. 5 17. 3 0 t"'l SS',*J
  • 0
  • 5
  • 2 1
  • 0
  • 3 1
  • 2
  • 4 1. 4 1
  • 1 6. 1 1 5. 8 i"Ij . 0 . 2 . 3
  • 5 . 4 . 5 . 2
  • 2
  • 4 2.6 13.6 0 \*/S1d
  • 0
  • 5
  • 0 . 3 2.0 11. 3 !::0 .. .5
  • 1
  • 4 . 1 t?:l t,l . 0 . . 3
  • 2 .5
  • 2
  • 3
  • 0
  • 4
  • 2 2.2 12. 4 t?:l ll . 0 -, . 5
  • 7
  • 3
  • 6
  • 5
  • 6
  • 2 4.0 1 2. 3 ' I N\'1
  • 1
  • 8
  • 7 1 . 2
  • 5
  • 9
  • 5 1
  • 1
  • 5 6.3 12.6 r*JtJ 18
  • 0 . 9 1 . 2 2.0 1
  • 2 2.0
  • 6 1
  • 6
  • 3 9.8 1 2. 3 ,\J . 0
  • 9 . 5 1. 6
  • 8 1
  • 4
  • 5
  • 7
  • 1 6.6 11
  • 5 3. 1 TOTAL
  • 3 8.4 8.3 22.5 10.7 17. 2 6. 1 14. 4 9.0 100.0 12. 7 U R OF ALI D 2 3 S R \1 AT I 0 S = 2 Rev. 0 -----------------------------------------

TABLE 2.3-22 (CONTINUED) SHEET 5 OF 13 JO II',JT VI I NO SPEED, VI I NO DIRECTION F RE QU DISTRIBUITON ( IN PERCENT> FOR THE iv10NTH OF r,1AY DATA SOURCE: CHANUTE F. S .S., KANSAS DATA PERIOD: JANUARY 1 t 1955 TO DECEMBER 3 1 ' 1964 SECTOR UPPER CLASS INTERVALS OF It/ SPEED <KNOTS) MEAN 2. 5 5. 0 7. 5 10. 0 1 2. 5 1 5. 0 1 7. 5 20.0 >20.0 TOTAL SPEED NI'JE

  • 0
  • 6 . 3 1. 3 . 6
  • 7 . 1 . 2 . 0 3.9 10.3 NE
  • 1
  • 8 . 6 1. 6
  • 8
  • 7
  • 2 . 2
  • 0 5. 1 9. 8 E r\JE . 0 . 6 . 6 1 . 5
  • 2
  • 5 . 1 . 1
  • 0 3.6 9. 1 E . 0
  • 9
  • 7 2. 1
  • 6
  • 6 . 0
  • 2 . 0 5. 1 9. 4 ESE . 0 1 . 1 1
  • 3 2.9 1
  • 0 . 9
  • 2
  • 2 . 1 7.7 9. 7 SE . 0 . 8 1
  • 3 3.0 . 8 1. 0
  • 4
  • 6
  • 0 7.8 10. 3 SSE . 0
  • 7 . 9 2.7 2.3 4.0 1
  • 5 2.2 1
  • 5 15.7 1 4. 2 0 s . 0 3.7 20.5 16
  • 1 r-: . 7 . 5 2.9 2. 3 3.6 1
  • 7 5.3 t"xj SS\'1 . 0
  • 2 . 3 1 . 3
  • 8 1. 5
  • 5 1 . 1 1
  • 2 6. 8 15.3 () s vi
  • 0 . 5
  • 1 . 4 . 4
  • 4
  • 1 . 3
  • 2 2.5 1 2. 1 ?j WSW . 0 1 . 4 9.4 trj . 0 . 3 . 2
  • 6
  • 0
  • 1 . 1 . 2 trj vi . 0
  • 4
  • 2 . 3 . 2 . 2
  • 0 . 0 . 0 1. 2 9. 2 N
  • 0
  • 4 . 2
  • 4
  • 3
  • 2
  • 0 . 2 . 0 1
  • 6 9.6 l'J'd . 0 1 . 0 . 9 1 . 3
  • 4 . 6 . 1 . 2 . 0 4. 5 9.4 NfJW . 0 . 7 . 5 1 . 2 .6 1 . 2 . 3 . 5 . 0 4.9 1 1 . 1 \I . 0 . 6 i"i . 6 1 . 0
  • 6 1
  • 1
  • 2 . 2 . 0 4.3 10. 8 3.3 TOTAL . 1 10.3 9. 1 24.3 1 2. 0 1 7. 1 5.3 11 . 6 6.9 100.0 1 2. 0 0J1.) .**12 [ K .:.. L J85t:RVATIONS = 7 Rev. 0 -----------------------------------------

TABLE '2.3-22 (CONTINUED) SHEET 6 OF 1 3 JOINT WIND SPEED, WIND DIRECTION F R E Q U E I*J C Y OISTRIBUITON erN PERCENT) FOR THE HONTH OF JUNE DATA SOURCE: CHANUTE F.S.S., KANSAS DATA PERIOD: JANUARY 1 ' 1955 TO DECEMBER 3 1 ' 1964 SECTOR UPPER CLASS INTERVALS OF vi I NO 3PEED C KNOTS> MEAN 2.5 5.0 7.5 10.0 12o5 1 50 0 1 7. 5 20.0 >20o0 TOTAL SPEED NNE

  • 0
  • 9 1
  • 0 1
  • 0
  • 7 . 8
  • 1
  • 1
  • 0 4. 5 9. 5
  • 0
  • 9
  • 9 1
  • 4
  • 4
  • 7 . 2
  • 0
  • 0 4. 5 9 0 1
  • 0
  • 7 . 5 1 0 0 0 4 0 4 0 0 0 1
  • 0 3.2 8.9 E . 0 . 9
  • 9 1
  • 6 0 5 0 7
  • 0
  • 0
  • 0 4.7 8.9 ESE 0 0 1 0 0 1 0 6 2.7
  • 7 0 7
  • 2
  • 2
  • 0 7.2 9. 1 SE r. 1 " 1
  • 6 4. 1 1
  • 3 1
  • 3 . 3
  • 2 . 0 9.9 9.6
  • v .J.
  • u SSE . 0 1. 2 1 . 5 4. 9 2.4 3.2 1
  • 2 1. 5 . 4 1 6. 2 11 . 7 0 s L1 0 0
  • 9 1
  • 5 4.9 2. 4 4. 5 1
  • 5 3. 3 1. 0 20. 1 13. 2 t:tj SS\v . 0
  • 3
  • 7 1
  • 8
  • 7 1 t=. . 6 1 . 2 /, 7 "7 1 3. 1 .... v . ....,. I o ...; () SV/ . 0 . 4 . 3
  • 9
  • 5 0 2
  • 2
  • 0 . 0 2.6 9.8 WSW t?j
  • 0 . 2
  • 4
  • 4
  • 1 . 1
  • 0
  • 0
  • 0 1
  • 3 8.2 t?j w
  • 0
  • 2
  • 0
  • 2
  • 1
  • 0
  • 0
  • 0 . 0 -* 6 9.7 WNW
  • 0 . 5 . 4 . 6
  • 3 . 1
  • 1
  • 0 . 0 1
  • 9 8.5 NW . 1 7 . 3 1
  • 3
  • 2 . 3 . 0 . 0 . 0 3.0 8.2
  • I NN'r'/ r.
  • 7 . 8 1
  • 2
  • 4 . 4 . 0
  • 1 . 0 3.7 8.8
  • v N . 0 1 . () * "+ 1 . 5
  • 3 . 5 . 1 0 2 . 0 4. 1 9.4 C.AU,1 5
  • 1 TOTAL . 2 1 1
  • s 1 .:
  • o? 29.7 11
  • 5 l5o6 4. 6 7.0 1
  • 9 100.0 1 0. 2 OF INV.ALI: :3:3:: T IONS = 0 Rev. 0 ------=-=--------------------------------

TABLE 2.3-22 (CONTINUED) SHEET 7 OF 1 3 J 0 I NT WIND SPEED, WIND DIRECTION FREQUENCY DISTRIBUITON < IN PERCENT) FOR THE HONTH OF JULY DATA SOURCE: CHANUTE F.S.S., KANSAS DATA PERIOD: JANUARY 1 ' 1955 TO DECEfv18ER 31 ' 1964 SECTOR UPPER CLASS INTERVALS OF WIND SPEED cKNOTS) MEAN 2.5 5.0 7.5 10.0 1 2. 5 1 5. 0 17. 5 20.0 >20.0 TOTAL SPEED NNE . 0

  • 9
  • 6 1
  • 7 . 4
  • 3 . 0
  • 2
  • 1 4. 2 8.8 NE . (' 0 1
  • 0 1
  • 9 . 4 . 2 . 0
  • 0
  • 0 4.6 8. 1 EN[
  • u . ':) 1
  • 0 1. 8 . 6 . 3 . 0
  • 0 . 0 ,,
  • 6 [l
  • E . 0 1
  • 2
  • 8 1 . 7
  • 3 . 3
  • 0 . 1
  • 0 4.4 8. 2 ESE . 0 1
  • 5 2.5 3.5
  • 5
  • 6 . 1
  • 1
  • 0 8.9 8.3 C.(:"
  • 1 1. 6 1
  • 8 3.8
  • 8 . 4
  • 2 . 2
  • 0 8.9 8.5 .J L... :8 SSE . 0 1
  • 3 1
  • 9 6.2 2.7 2.3 1 . 0
  • 3
  • 1 1 5. 9 1 0. 4 0 s
  • 0 1 . 4 1 . 2 6.3 3.6 4. 4 1. 4 2.0 . 2 20.5 1 1
  • 3 I"J:j SS\'J . 0
  • 3 . 6 2.5 1. 9 2.5 . 7 1
  • 1 . 1 9.9 1 2. 5 (J S\'1 . 0
  • 6 . 4 1. 0 . 5 . 2
  • 1 . 2 . 0 2. 9 9 . 3 \'ISW . 0 . 3 . 2 . 3
  • 2
  • 0 . 0 . 0 . 0 1 . 0 7.8 ttl ttl . 0 . 2 . 0
  • 3
  • 0 . 0 . 0 . 0 . 0
  • 5 6. 5 ?': IV . 0
  • 3 . 3 . 3 . 0 . 0 . 0 . 0 . 0 1.0 7.0 f\1 l)j . ,, . 0 . 5 . 2 . 3 . 1
  • 0 . 0 . 0
  • 0 1
  • 3 8. 0 ;\J -'"' . 8 . 4 1 (\
  • 3
  • 2
  • 2
  • l
  • 0 3. 1 9.4
  • v
  • v N . 0 1
  • 0 . 8 1 . 1 . 4 . 4 . 0
  • 2
  • 0 3.9 8.9 C l\ 4.6 TOT-\L . , --_)
  • 0 13.8 33.5 1 2. 8 12. 5 3.9 4.4
  • 6 100.0 9.5 ,..,J : __ 1 s :=\ nc J3SER'Ji\TI ONS = 1 '-* Rev. 0 TABLE 2.3-22(CONTINUED) SHEET 8 OF 13 JOINT WIND SPEED, WIND DIRECTION FREQUENCY DISTRIBUITON < IN PERCENT) FOR THE i*10 OF AUGUST DATA SOURCE: CHANUTE F. S .S., KANSAS P I 0 D: JANUARY 1 ' 1955 TO DECEt'<'lBER 3 1 ' 1964 SECTOR UPPER CLASS INTERVALS OF WIND SPEED cKNOTS) MEAN 2.5 5.0 7.5 10. 0 1 2. 5 15. 0 17. 5 20.0 >20.0 TOTAL SPEED NNE . 0 . 9 . 9 1. 9 . 6 . 4
  • 2
  • 0 . 0 4.9 8.7 NE . 0 1 . 4 1 . 5 1 . 2 . 3 . 2 . 0 . 0 . 0 4. 7 7.4 ENE . 0 1. 0 1 . 2 1 . 2
  • 4 . 2
  • 1 . 0 . 0 [+
  • 7.9 E . 0 1 . 2 . 8 2.0 . 2
  • 3 . 0
  • 1 . 0 4.6 7.8 ESE . 0 1 . 3 1 . 9 2.8 . 7 . 3
  • 1
  • 1 . 0 7.2 8. 2 SE
  • 0 1
  • 5 2.5 5.4 1
  • 0 . 9 . 0 . 2
  • 0 11
  • 5 8.7 SSE . 0 . 6 1. 9 6.0 2.7 2.3 . 4 . 4
  • 2 1 4. 4 1 0. 5 0 s . 0
  • 6 1 . 6 6. 2 3.2 4.9 1 . 1 1 . 5
  • 3 19.4 11 . 9 t"l t':l:j . 0 . 3 . 9 2. 1 1 . 4 2.5 . 9 1 . 3
  • 1 9. 5 1 2. 5 s
  • 0 . 3
  • 3 . 7 . 2 . 8 . 2
  • 0 . 2 2.7 11 . 4 0 ;;o WSW
  • 0 . 2 . 2 . 1
  • 1
  • 0
  • 0 . 1 . 0 . 9 9. 6 tr.l t:IJ w . 0
  • 4
  • 1
  • 2 . 0 . 1 . 0 . 0 . 0 . 8 7.3 d . 0 . 2 . 3 . 3 . 1 . 1 . 0 . 0 . 0 1 . 1 8.8
  • 0 . 6
  • 2 . 3
  • 1 . 0 . 0
  • 1
  • 0 1. 3 7.4 N '.V . 0
  • 7 . 5 1 . 1 . 5 . 5 . 1
  • 1
  • 0 3.6 9.4 N . 0 1. 2 . 5 1 . 7 . 5
  • 6 . 3 . 2
  • 0 5.0 9.4 CALH 4.0 TOTAL . 2 12. 5 15.4 33. 1 12. 0 1 4 . 3 3.5 4. 2 . 8 100.0 9. 5 R OF INVALID OBSERV;\TIONS = 0 Rev. 0 -----------------------------------------

TABLE 2.3-22 (CONTI SHEET 9 OF 1 3 JOINT 'd IND SPEED, WIND DIRECTION F R E Q U E I*J C Y DISTRIBUITON < IN PERCENT) FOR THE OF SEPTcr'1 BER DATA SOURCE: CHANUTE F.S.S., KANSAS DATA PERIOD: JANUARY 1 ' 1955 TO DECErviBER 3 1 ' 1964 SECTOR UPPER CLASS I RVALS OF WIND SPEED <KNOTS) MEAN 2.5 5.0 7.5 10. 0 1 2. 5 1 5. 0 17. 5 20.0 >20.0 TOTAL SPEED NNE . 0 1

  • 0 1
  • 0 1
  • 8 1 . 3 1. 4 . 5 . 2
  • 0 7.0 10. 3 NE . 0 . 6
  • 9 2.2 1. 0
  • 8 . 1 . 2
  • 0 5.7 9. 8 ENE
  • 0 . 7 . 6 1
  • 4 . 8
  • 3 . 0
  • 0
  • 0 3.8 9 . 0 !:"" . 0 1 . 0 . 6 1. 3 . 3 . 3 . 0 . 0 . 0 3.6 8.0 L ESE
  • 1 1. 5 1
  • 8 3.2 . 8
  • 3 . 0 . 0
  • 0 7.8 7. 9 SE
  • 0 1
  • 4 1 . 6 4.0 1
  • 3 . 5 . 0 . 0
  • 0 9. 1 8.6 SSE
  • 0
  • 9 1
  • 0 5.5 3. 1 3.2 . 8 1 . 0
  • 2 1 5. 7 1 1 . 4 0 s . 0
  • 5 1. 0 4.0 2.9 3.0 1
  • 3 2.4 1
  • 0 1 6. 2 13.2 t-i ssw . 0
  • 7 . 6 1. 7 . 8 1 . 5 . 6 1 . 1 . 7 7.7 1 3 . 1 l"'tj sw . 0
  • 5
  • 3
  • 5
  • 3
  • 3
  • 1 . 1
  • 1 2.3 10.4 () ';:0 vlS'd . 0
  • 3 . 2
  • 4
  • 1
  • 1 . 0 0
  • 0 1 . 2 8.7 tr.1 vi
  • 0 . 3 . 0
  • 0
  • 0
  • 7 6.8 tr.1
  • 2 . 2
  • 1
  • 0 WNW
  • 0 . 6 . 4
  • 3
  • 2
  • 1 . 0 . 1 . 0 1
  • 6 7.9 NW
  • 1 . 5 . 3
  • 7
  • 1
  • 1 . 0 . 0 . 0 1 . 9 7.3 NNW . 0 . 7 . 7 1. 7 . 6 1 . 0 . 2
  • 3 . 0 5.3 1 0. 5 N . 0 1. 0 . 9 1 . 5 1. 0 1
  • 2 . 3
  • 2
  • 1 6. 1 10.2 CAL 4.4 TOTAL . 5 1 2. 2 1 2. 1 30.3 14. 5 1 4. 2 3.9 .:5. 7 2.3 100.0 1 0. 1 U 8 E R OF INVALID = 4 Rev. 0 -----------------------------------------

TABLE 2.3-22 (CONTINUED) SHEET 10 OF 1 3 JOINT vJ I NO SPEED, \'JI NO DIRECTION FREQUENCY OISTRIBUITON < IN PERCENT> FOR THE 0 OF OCTOBER DATA SOURCE: UTE F .S .S., DATA PERIOD: JANUARY 1 t 1955 TO 3 1 ' 1964 SECTOR UPPER CLASS INTERVALS OF WINO SPEED <KNOTS> ME f1.N 2.5 5.0 7.5 1 0. 0 1 2. 5 1 5. 0 1 7. 5 20.0 >2o.o TOTAL SPEED

  • 0 . 8 . 7 1. 4
  • 8
  • 6 . 1
  • 3
  • 0 4.7 9. 8 NE 0 0
  • 8
  • 6
  • 5
  • 3
  • 1 . 1 . 0
  • 0 2. 5 7.7 ENE
  • 0
  • 4 . 5
  • 6 . 3
  • 5
  • 1 . 0 . 0 2.3 9. 5 E . 0 . 5
  • 6 1. 0 . 2 . 0
  • 0 . 0
  • 0 2.3 7.9 ESE . 0
  • 8 1
  • 5 2.9 . 4 . 1
  • 0
  • 0
  • 0 5. 8 8. 2 SE
  • 0
  • 8 1
  • 1 4.3 1
  • 5 1 . 0
  • 4 . 1 . 0 9.2 9.7 :8 c: c: !::"
  • 0 14. 3 11
  • 7 -._.)-.II.... 1
  • 1 1
  • 0 5.2 2. 0 2.5 1
  • 0 1
  • 1
  • 4 0 s
  • 0
  • 3 1
  • 0 5.5 3.2 3. 1 1
  • 2 2.5
  • 6 1 7. 5 12. 8 t"'1 r:tj
  • 0
  • 4
  • 8 2. 2 1
  • 1 2. 1 1 . 0 1
  • 0
  • 4 9
  • 1 1 2. 8 0 sv1
  • 0
  • 2
  • 4
  • 8
  • 3
  • 2
  • 0
  • 1
  • 0 2.0 9 . 7 s \'1
  • 0
  • 3
  • 2
  • 4
  • 0
  • 1 . 0 . 0
  • 0 1
  • 0 8. 0 trj trj w . 0
  • 4 . 2 . 4
  • 1 . 0 . 0
  • 0 . 0 1
  • 2 7.0 !:": . 0 1
  • 1
  • 6
  • 4 . 0 . 2 . 0 . 2
  • 1 2. 7 8.2 NW
  • 0 1 . 1 1
  • 1
  • 8
  • 2
  • 5 . 2
  • 2
  • 1 4. 3 9. 1 NNI*/
  • 0 1
  • 0 1 . 3 2. 7
  • 8 1 . 6 . 5
  • 6
  • 2 8. 7 10. 7 N
  • 0 1
  • 1 1
  • 4 2. 3 . 8 1
  • 5 . 2
  • 5
  • 1 7. 9 10.4 CA.Lrvl 4. 5 TCJTAL
  • 1 1 1
  • 1 1 3. 1 31
  • 4 12
  • 1 1 4. 0 5.0 6. 7 2.0 100.0 10.2 R OF INVALID = Rev. 0 -----------------------------------------

TABLE 2.3-22 (CONTINUC:G) SHEET 1 1 OF 1 3 JOINT \*i I NO SPEED, vJ I NO DIRECTION F REQUEf"JCY DISTRIBUITON c IN PERCENT> FOR THE MONTH OF DATA SOURCE: CHANUTE F. S. S., KANSAS DATA PERIOD: JANUARY 1 t 1955 TO DECEMBER 3 1 t SECTOR UPPER CLASS INTERVALS OF \*II NO SPEED cKNOTS) MEAN 2.5 5.0 7.5 10.0 1 2. 5 1 5. 0 17. 5 20.0 >20.0 TOTAL SPEED NNE

  • 0
  • 5
  • 6 1
  • 1
  • 7
  • 4
  • 2 . 3
  • 0 3. 8 1 0. 1 NE
  • 0
  • 5
  • 3
  • 7
  • 4 . 5
  • 0 . 0
  • 0 2.4 9. 7 ENE
  • 0 . 5 . 3 1. 0 ..,
  • 2
  • 0 . 0
  • 0 2
  • 1 8. 5
  • L. E
  • 0 . 4
  • It
  • 7
  • 1
  • 1 . 0 . 0 . 0 1. 7 7.8 ESE
  • 0 . 5 . 8 1
  • 2
  • 4 . 0
  • 0
  • 0 . 0 2. 8 8. 1 SE
  • 0 . 5 1
  • 1 2.0 1
  • 2 1
  • 0
  • 3
  • 0
  • 0 6
  • 1 9.9 SSE
  • 0 . 5 . 7 2.9 1
  • 8 3.0 1. 0
  • 8 . 4 11
  • 2 12. 4 0 s . 0 . 4 . 8 3.5 2.3 3.9 1
  • 5 3. 1 1
  • 3 1 6. 7 1 4. 1 t'"1 . 0 . 4 . 8 2.3 1
  • 5 2.2
  • 8 1. 7
  • 3 1 0. 0 13.0 i"Ij s
  • 0 . 6 . 4 . 9
  • 4
  • 5
  • 1 . 4
  • 2 3. 4 1 1 . 3 () ::::0 VIS VI . 0 . 8
  • 5 . 7
  • 4
  • 3
  • 1
  • 1
  • 1 3.0 9. 1 tz:l VI
  • 0 1. 0
  • 5 .7
  • 2
  • 2
  • 0 . 0
  • 0 2.6 7.4 tz:l VJNVI
  • 0 . 7
  • 8 1 . 1
  • 4
  • 7
  • 2 . 2
  • 0 4.0 9.9 Nlv
  • 0 1
  • 1 1 . 5 2. 1
  • 8 1
  • 4 . 8 . 3
  • 3 8. 4 1 0. 9 NNW
  • 0
  • 8 1. 3 2.6 1. 6 2.5 1
  • 0 1. 7
  • 5 12.0 12. 6 N . 0 1
  • J . 6 2. 1 1. 0 1. 4
  • 3 .5
  • 2 7.2 1 1 . 1 2.7 TOTAL
  • 1 10.3 .... . '--' 25.6 13.3 1 8. 1 6. 3 9. 2 3. 3 100.0 11
  • 3 OF J 3 :3 :: =\ . , ,;\ T I 0 N S = 1 Rev. 0 ------------------------------------------

TABLE 7.3-22 (CONTINUED) SHEET 12 OF 1 3 JOINT WIND SPEED, vi I NO DIRECTION FREQUENCY DISTRIBUITON c IN PERCENT) FOR THE OF 0 E C E 5 E R DATA SOURCE: F. S. S., KANSAS DATA PERIOD: JANU/:>,RY 1 , 1955 TO DECEMBER 3 1 t 1964 SECTOR UPPER CLASS INTERVALS OF WINO SPEED cKNOTS) MEAN 2.5 5.0 7.5 10.0 1 2. 5 1 5. 0 17.5 20.0 >20.0 TOTAL SPEED ""7 1

  • 0 2.0 1
  • 1 1 . 1 . 5 . 3
  • 1 6.8 1 ()
  • 7 . { .. -. \) . (* . () 1 . 0 . . ... __
  • 0 Ll * () c . 0 . 0
  • 3 . 9
  • 2
  • 1 . 1 . 0
  • 0 2.2 8.4 E
  • 0 . 5 . 8
  • 6
  • 2
  • 2
  • 0
  • 0
  • 0 2.5 8.0 ESE " . 8 . 6 1
  • 3 . 6
  • 4
  • 0 . 0
  • 0 3.7 8.6
  • v SE
  • 0 . 7 1 . 0 1 . 7
  • 6
  • 4
  • 1 . 0
  • 0 4.5 8.8 SSE . 0
  • 7 1 . 0 2. 7 1. 4 1
  • 8
  • 6 . 7
  • 1 9.0 11
  • 3 0 s . 0 . 5 . 8 3.7 2. 2 3. 1 1
  • 5 1. 5 1
  • 0 1 4. 4 13. 2 t-1 SSv/ . 0 .s . 7 3.0 1
  • 3 1. 8
  • 2
  • 6 . 3 8.7 11
  • 4 s vJ .o . 5 . 5 1 . 0
  • 3
  • 4 . 0 . 1 . 1 3. 1 9.8 n s . 0
  • i
  • 2 1 . 2
  • 2
  • 3
  • 0
  • 0
  • 1 2.9 9.0 t:rj :j/ " 2.5 8.8 t:rj rt . 0 . _] . 3 1 . 4
  • 2
  • 1
  • 0
  • v
  • 0 \*;u 1*1 . 0 . :.::-1 . 0 1. 3 . 2
  • 5
  • 3 . 4 . 2 4.7 1 0. 3
  • CJ 7 1 . 1 2. 0 1
  • 0 1
  • 5
  • 5 . 6
  • 1 7.6 11
  • 2 'd . 0 ' ..., 1
  • 2 3.2 1. 5 2. 2 1
  • 0
  • 9
  • 4 1 1
  • 5 11
  • 7 l * ..::. N . 0 . -. 9 2 . 3 1 . 3 2. 5
  • 5 1 . 0
  • 1 9.2 1 2. 0 2.7 . -: --' . ' 29.2 13. 0 1 7. 0 5. 7 6.5 2. 5 100.0 1 0. 7 .. -. -\ l' .'*1 SE R I:J F T ' ' --, _},.TIONS 1 I , --.,-.... -= Rev. 0 -----------------------------------------

TABLE 2.3-22 (CONTINUED) SHEET 13 OF 13 ANNUAL JOINT WIND SPEED, WIND DIRECTION FREQUENCY DISTRIBUTION <IN DATA SOURCE: CHANUTE F.S.S., KANSAS DATA PG:RIOO: JANUARY 1 , 1 9 55 To 0 E C E E 3 1 , 1 9 6 4 SECTOR UPPER CLASS INTERVALS OF WIND SPEED cKNOTS> 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 >20.0 TOTAL NNE NE ENE E ESE SE SSE s SS\'J sw v/SW vi 1d \'1 NN\v

  • 0
  • 0 . 0 . 0
  • 0 . 0
  • 0 . 0
  • 0 . 0 . 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 7
  • 7 . 6 . 7
  • 9
  • 9
  • 8 . 6 . 4 . 4 . 4 . 4 . 6
  • 7
  • 9
  • 8
  • 8 1
  • 7
  • 7 1
  • 4
  • 6 1
  • 2
  • 7 1
  • 3 1.3 2.4 1.2 2.9 1.1 3.8
  • 9 3. 8
  • 6 1. 9
  • 3
  • 7
  • 3
  • 6
  • 2
  • 5
  • 5
  • 7
  • 7 1
  • 3
  • 9 2
  • 2
  • 7 1. 7
  • 8 . 6
  • 4 . 3
  • 7 1 A J.. v 1
  • 9 2.3 1 1 . 4 . 2
  • 1
  • 3
  • 5 1 A J.
  • v
  • 8 . 9 . 6 . 4 . 5 . 5 . 8 2.5 3.3 1 . 8 . 4
  • 2 . 2 . 4 . 7 1
  • 8 1
  • 4 . 3
  • 1
  • 1
  • 0
  • 1 . 2
  • 9 1. 3 . 7
  • 1
  • 1 . 0
  • 1 . 3 ;"
  • 0
  • 3 .2 10.3 11.5 28.2 12.4 16.3 5.3 >n _ _: \1 :3 E R =: F I NV A L I D J 3 S E R VAT I 0 N S = 2 1
  • 3
  • 1
  • 0
  • 1
  • 1 . 2 1
  • 1 2.6 1
  • 1
  • 2
  • 1
  • 1
  • 3 . 4 1
  • 0 . 6 8. 4
  • 1 . 0
  • 0
  • 0
  • 0
  • 0
  • 5 1
  • 4
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 3
  • 1 5.6 4. 4 3.2 3. 6 6. 1 7.4 1 2. 6 1 6. 2 8
  • 1 2.7 1
  • 9 1
  • 5 3.0 4.9 8. 6 6.6 3. 6 3.5 100.0 r-1E-Ai 1 SPEED 1 0. 3 9. 5 9.0 8.9 8. 9 9. 5 1 2. 1 1 3. 8 1 3. 2 10.9 9.4 9.5 1 0. 4 1 0. 8 1 1
  • 9 1 1 . 3 10.9 Rev. 0 TABLE 2.3-23 Sheet 1 of 8 PERSISTENCE OF \'liND DIRECTION FREQUENCY DISTRIBUTION (IN PERCENT) AT CH.fu'WTE F. S. S. , KANSAS* Upper Class Intervals of Hours of Persistence 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 NNE 37.60 15.70 22.31 9.92 4.13 7.44 2.89 .00 .00 .00 .oo .00 .00 .00 .00 .00 .00 .00 .oo .oo
  • Data Period 1955-1964. NE 45.00 28.18 10.91 3.64 6.82 5.45 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 ENE 49.39 30.49 5.49 7.32 . 0 0 7.32 .00 .00 .00 .00 .oo .00 .00 .00 .00

.00 .00 .00 .00 .00 SPRING E 41.92 26.20 13.10 1') ')-:) 6.55 .00 . 0 0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 Wind Direction ESE 40.72 27.36 14.66 .00 l. 95 2.28 .00 .00 .00 .00 .00 .00 .00 .*oo .00 .00 .00 .00 .00 SE 47.24 25.20 11.81 9.45 3.94 2.36 . 00 .00 .00 .00 .00 .00 . 00 .00 .00 .00 .00 .00 .00 .00 SSE 31.01 27.91 10.23 8.06 9.30 4.65 3.26 2.48 .00 3.10 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 s 20.97 20.72 18.73 f\ A f\ 7.'%7 9.99 3.00 3.50 3.00 2.25 1. 25 l. 37 1. 50 (\(I oVV 1. 75 .00 .00 .00 . 0 0 .00 2.50 Rev. 0 TABLE 2.3-:23 (continued) Sheet 2 of 8 SPRING Upper Class Intervals of Wind Direction Hours of Persistence ssw sw WSW w WNW NW N Calm 3 46.83 76.84 83.87 57.69 50.29 38.08 36 .10 41.16 58.20 6 26.19 10.53 16.13 30.77 17.54 21.35 21.46 20.9 4 18.0 3 9 5.95 12.63 .00 11.54 15.79 14.95 17.56 16.25 12. 30 12 6.35 .00 .00 .00 9. 36 7.12 10.73 10.11 6.56 15 3.97 .00 .00 .00 2.92 3.56 4.88 3. 61 .00 18 7.14 .00 .00 .00 .00 14.9 5 l. 46 2.17 4. 9 2 21 .00 .00 .00 .00 4.09 .00 3.41 .00 .00 24 .00 .00 .00 .00 .00 .00 .00 5.78 .00 27 3.57 .00 .00 .00 .00 .00 4.39 . 0 0 . 0 0 ::18 0 30 ()() ()() (\(\ (\(\ (\(\ (\(\ (\(\ ()() ()() oVV *VV .vv .vv .vv .vv .vv .vv .vv 33 .oo .00 .00 .00 .00 . 0 0 .00 .00 .00 t':tj 36 .00 .00 .00 .00 .00 .00 .00 .00 .00 0 ::u 39 .00 .00 .00 .00 .00 .00 .00 .00 .00 tJ:j 42 .oo .00 .00 .00 .00 . 0 0 .00 .00 .00 tJ:j :;.;: 45 .oo .00 .00 .00 .00 .00 .00 .00 .00 48 .oo .00 .00 .00 .00 .00 .00 .00 .00 51 .00 .00 .00 . 0 0 .00 .00 .00 .00 .00 54 .00 .00 .00 .00 .00 .00 .00 . 0 0 .00 57 .oo .00 .00 .00 .00 .00 . 0 0 .00 .00 60 .oo .oo .00 .00 .00 .00 .00 .00 .00 Rev. 0 TABLE 2.3-23 (continued) Sheet 3 of 8 Upper Class Intervals of Wind Direction Hours of Persistence NNE NE ENE E ESE SE SSE s 33 54.85 61.11 5:5.95 50.81 54.19 53.59 43.29 29.06 6 13.59 14.44 30.95 18.38 24.55 28.71 27.13 23.65 9 16.0 2 11.67 3.57 16.22 9.98 12.92 16.0 2 18.94 12 .00 6.67 2.38 6.49 5.99 4.78 8.08 9.62 15 12.14 2.78 2. 9 8 8.11 4.49 .00 3. 61 5.01 1 Q ('\('\ 3.33 ('\(\ ('\('\ 1. 80 ('\('\ .87 4.21 ..LU oVV .vu

  • vv oVV 21 3.40 .00 4.17 .00 .00 .00 1. 01 2 .10 24 .00 .00 .00 .00 .00 .00 .00 2.40 27 .00 .00 .00 .00 .00 .00 .00 1. 80 30 .00 .00 nn .00 .00 .00 .00 .00 0
  • v v t'"" 33 .00 .00 .00 .00 .00 .00 .00 1.10 "=j 36 .00 .00 .00 .00 .00 .00 .00 . 0 0 n 39 .00 .00 .00 .00 .00 .00 .00 .00 ::0 t:r:1 42 .00 .00 .00 .00 .00 .00 .00 .00 t:r:1 45 nn nn (1(\ (\(\ (1(\ (1(\ .00 .00
  • v v oVV
  • v v
  • vv oVV oVV 48 .00 .00 .00 .00 .00 .00 .00 .00 51 .00 .00 .00 .00 .00 .00 .00
  • 0 0 54 .00 .. 00
  • 0 0 .00 ()(\ .00 oVV 57 .00 .00 . 0 0 . 00 .00 .00 .00 .00 60 .00 .00 .00 .00 .00 .00 .00 .00 63 .00 .00 .00 .00 .00 .00 .00 . 0 0 Rev. 0 TABLE 2. 3-2 3 (continued) Sheet 4 of 8 SUMMER Upper Class Intervals of Wind Direction Hours of Persistence ssw S'i*J WSW w WNI\1 NW NNW N Calm 3 53.39 73.83 77.14 70.00 66.00 61.84 48.48 47.18 4 s. 9 8 6 25.47 26.17 22.86 30.00 8.00 23.68 31. 45 21.54 26.79 9 9. 76 .00 .00 .00 18.00 3.95 9.43 10.77 10.71 12 5.42 .oo .00 .00 8.00 10.53 7.55 6. 15 8. 9 3 15 4.07 .00 .00 .00 .00 .00 3.14 7.69 4.46 18 .oo .oo .00 .00 .00 .00 .00 3.08 .00 21 1.90 . 0 0 .00 .00 .00 .00 .00 3.59 3.12 24 .00 .00 .00 .00 .00 .00 .00 .00 .00 27 .oo .00 .00 .00 .00 .00 .00 .00 .00 0 30 .00 .00 .00 .00 ""' ()('> .00 .00 .00 t"' .uu .vu l"1j 33 .00 .00 .00 .00 .00 . 0 0 .00 . 00 .00 0 36 .00 .00 .00 .00 .00 .00 .00 .00 .00 ;;c 39 .00 .00 .00 .00 .00 .00 .00 . 0 0 .00 t:x:l t:x:l 42 .00 .00 .00 .00 .00 .00 . 00 .00 .oo ::,;: 45 .00 .00 .00 .00 .00 .00 . 00 .00 .00 48 .00 .00 .00 .00 .00 .00 .00 .00 .00 51 .00 .00 .00 . 00 .00 .00 .00 .00 .oo 54 .00 .00 .00 .00 .00 .00 .00 .00 .00 57 .00 .00 .00 .00 .00 .00 .00 .00 .00 I i 60 .00 .00 .00 .00 .00 .00 .00 .00 .oo I 63 .00 .oo .00 .00 .00 .00 .00 .00 .00 i I I J I Rev. 0 l I TABLE 2.3-23 (continued) Sheet 5 of 8 FALL Upper Class Intervals of Wind Direction Hours of Persistence NNE NE ENE E ESE SE SSE s .... 38.08 52.90 II "7 1 1 61.70 44.90 44.01 28.32 23.02 .:> * ..L..L.. 6 20.92 36.13 33.06 14.89 21.22 24.31 21.20 20.41 9 18.83 7.74 7.44 19.15 10. 86 19.94 18.71 12 15.06 .00 3.31 4.26 8.16 8. 91 10.76 13.15 15 4.18 3.23 4.13 .00 6.12 2.79 11.08 7.37 18 .oo .00 4.96 .00 .00 6. 69 3.80 5.44 21 2.93 .00 .00 "" (\(\ (\(\ 1 1 1 1.59 .vv .vv .v;.; ...l.. * ...l.. ...l.. 24 .oo .00 .00 .00 .00 2.23 3.80 2.72 27 .oo .00 . 0 0 .00 .00 .00 .00 3.06 <' """ 0 30 (\(\ (\()
  • 0 0 .00 .00 .00 .00 .00 t"' oVV oVV f'fj 33 .oo .00
  • 0 0 (\(\ .00 .00 .00 1.25
  • vv 36 .00 .00 .00 .00 .00 .00 .00 .00 0 39 .oo .00 .00 .00 .00 .00 .00 .00 1:".1 42 .oo .00 .00 .00 .00 .00 .00 1.59 1:".1 :AI 45 .oo .00 .00 .00 .00 .00 .00 1. 70 Rev. 0 TABLE 2. 3-2 3 (continued) Sheet 6 of 8 FALL Upper-Class Intervals of Hours of Persistence ssw S\'l VlS\'l Vl 'i'lNW NNVJ N Calm 3 40.66 60.00 69.23 83.93 61.47 39.02 26.74 30.00 45.03 6 23 ;02 40.00 12.31 10.71 16.51 26.34 18.43 26.87 27.23 9 19.18 .00 4.62 5.36 13.76 11.71 14.16 18.75 10.99 12 6.14 .00 6.15 .00 3.67 7.80 12.58 10.00 8.38 15 2.56 .00 7.69 .00 4.59 2.44 6.74 3.12 5.24 18 4.60 .00 .00 .00 . 0 0 5.85 9.44 3.75 3.14 21 l. 79 .00 .00 .00 .00 6.83 3.15 2.19 .00 :8 24 2.05 .00 . 00 .00 .00 .00 l. 80 2.50 .00 0 !:'"1 27 .00 .00 .00 .00 .00 .00 2.02 2.81 .00 1-:<j 30 .00 .00 .00 r\ r\ r.r. r\(\ (\(\ (\(\ (\(\ 0 .uu .vv .vv .vv .vv .vv 33 .00 .00 .00 .00 .00 .00 4.94 .00 . 0 0 tr:l 36 .00 .00 .00 .00 .00 .00 .00 .00 .00 tr:l 39 .00 .00 .00 .00 .00 .00 .00 .00 .00 42 .00 .00 . 00 .00 .00 .00 .00 .00 .00 45 .00 .00 .00 .00 .00 .00 .00 .00 .00 Rev. 0 TABLE 2. 3-2 3 (continued) Sheet 7 of 8 WINTER Upper Class Intervals of Wind Direction Hours of Persistence NNE NE ENE E ESE SE SSE s 3 26.67 44.94 61.19 60.82 34.34 42.63 43.67 22.52 6 21.33 22.47 14.93 ')C:. Q(\ 'JC: 'JC: 23.16 "'"\/"\ ""'r-23.05 .::..u.uv .G.U*L.U L.U.L.:J 9 22.00 13.48 17.91 .00 18.18 20.53 7.59 19.68 12 9.33 6.74 5.97 4.12 4.04 4.21 13.92 9.93 15 16.67 5.62 .00 .00 7.58 5.26 7. 91 6.21 18 4.00 6.74 . 0 0 .00 6.06 .00 1.90 4.26 21 .00 .oo .00 .00 3.54 .00 2.22 6.21 24
  • 0 0 .00 .00 8.25 "" A 2.53 4.26 .uu q.Ll.. 27 .00 .00 .00 . 0 0 .00 .00 .00 .00 "" .00 .00 .00 . 0 0 .00 .00 .00 l. 77 .)U 0 33 .00 .00 .00 .00 .00 .00 !"\() I"\ I"\ L'
  • v v .vv l'%j 36 .00 .00 .00 .00 ()() I"\ I"\ .00 2.13 .vv .vu (') ;;o J:lj J:lj Rev. 0 TABLE 2.3-23 (continued) Sheet 8 of 8 WINTER Upper Class Intervals of Wind Direction Hours of Persistence ssw sw w '0i'NW mv Nl'.i"i'l N Calm 3 40.29 t:;Q (l(l 7Q ')C:: C::< QQ t:;Q <t:; 37.14 19.17 << << t:;:1 n< ..JJ. v v /UeL..V U...JeVJ ...J -' * ...J ...J ...J ...J * ..J ...J ...J v ..J 6 25.51 28.00 17.39 22.22 20.65 21.43 19.46 24.39 20.97 9 14.78 9.00 4.35 8.33 11.61 16.0 7 11.59 14.63 9.68 12 12.75 4.00 .00 5.56 .00 7.14 11.44 10.84 6.45 15 2.90 .00 .00 .00 .00 3.57 9.30 9.49 4. 0 3 18 1. 74 .00 .00 .00 3.87 2.14 6.87 1. 63 4.84 ')1 2.03 ()() ()() {)() 4.52 ') c::n 9.01 5.69 ()() ""-'-oVV .vv .vv "-*.JV .vv 24 .00 .00 .00 .00 .00 5.71 3.43 .00 .00 27 .00 .oo .00 . 0 0 .00 .00 3.86 .00 .00 30 .00 .00 .00 .00 .00 .00 4.29 .00 .00 0 33 nf1 nn nr. nr. r.n (l(l 1.57 .oo nr. r:tj oVV oVV oVV oVV
  • v v
  • v v oVV 36 .00 .00 .00 .00 .00 4.29 .00 .00 .00 n :::0 trj trj :;:.;: Rev. 0 WOLF CREEK TAr3LE 2
  • 3-24 SHEET 1 !JF 6 JOINT WIND SPEED, WIND DIRECTION FREQUENCY DISTRIBUTION <IN PERCENT> BY STABILITY CLASS DATA PERIOD: JANUARY 1, 1955 TO DECEMBER 31, 1964 STABILITY CLASS: PASQUILL A DATA SOURCE: CHANUTE F.S.S., KANSAS SECTOR UPPER CLASS INTERVALS Of=-' NO SI'EF D < KNCJTS l NNE . 0 3. 9
  • 0
  • 0
  • 0
  • 0
  • 0 NE
  • 0 1. 3
  • 0
  • 0
  • 0 . 0 . 0 ENE
  • 0 1
  • 9
  • 0
  • 0
  • 0
  • 0
  • 0 E
  • 0 2. 6
  • 0
  • 0 . 0
  • 0
  • 0 ESE
  • 0 6. 5 .o
  • 0
  • 0
  • 0
  • 0 SE
  • 6 1. 9
  • 0
  • 0
  • 0 . 0
  • 0 SSE * () 3. 9
  • 0
  • 0
  • 0
  • 0
  • 0 s * () 3. 2 . 0 . () .o
  • 0
  • 0 ssw * () 1 . 9 . 0
  • 0
  • 0
  • 0 . 0 sw .o 1.3 . 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 6
  • 0
  • 0
  • 0
  • 0
  • 0 w
  • 0 1. 3
  • 0
  • 0
  • 0
  • 0
  • 0 WNW
  • 0
  • 6
  • 0
  • 0
  • 0
  • 0
  • 0 NW
  • 6 3. 9
  • 0
  • 0
  • 0
  • 0
  • 0 NNW
  • 0 1. 3
  • 0
  • 0 . 0 .o
  • 0 N
  • 0 1. 3
  • 0 . ()
  • 0
  • 0
  • 0 CALM TOTAL 1.3 37.4
  • 0
  • 0
  • 0
  • 0
  • 0 NUMBER OF INVALID OBSERVATIONS -o . 0
  • 0 3.9
  • 0 . 0 1
  • 3 .o
  • 0 1
  • 9
  • 0
  • 0 2.6 . 0
  • 0 6.5
  • 0
  • 0 2.6
  • 0
  • 0 3.9
  • 0 . 0 3 .
  • 0 . () l . ( i
  • 0
  • 0 1
  • 3
  • 0
  • 0 . 6
  • 0
  • 0 1 . 3
  • 0
  • 0
  • 6
  • 0 . 0 4. 5 . 0 . 0 1
  • 3
  • 0
  • 0 1
  • 3 6 1
  • 3 . 0 .0 100.0 Ml 4.0 4. 0 4. 7 4. 0 4.8 3.8 4.5 4.5 3.0 3.0 4. 0 4. 1 4. 5 4. 5 1 . 7 Rev. 0 WOLE' CREEK TABLE 2.3-24 (CONTINUED) JOINT WIND SPEED, WIND DIRECTION FREQUENCY DISTRIBUTION <IN PERCENT> BY STABILITY CLASS DATA PERIOD: JANUARY 1, TO DECEMBER 31, 1964 STABILITY CLASS: PASQUILL B DATA SOURCE: CHANUTE F.S.S., KANSAS SECTOR UPPER CLASS INTERVALS UF WIND SPEED <KNOTS> NNE .o 1.7 3.2 .5
  • 0
  • 0
  • 0 NE .1 1.9 3.3 .2
  • 0
  • 0
  • 0 ENE .o 1.2 1.9 .7
  • 0
  • 0
  • 0 E .o 2.3 .1
  • 0 . 0
  • 0 ESE .o 3.5 .4
  • 0
  • 0 .o SE .1 2.'+ 4.0 1.5
  • 0
  • 0
  • 0 SSE .1 2.9 2.7 1.0
  • 0
  • 0
  • 0 s .1 2.4 4.1 1.0 . 0 . 0
  • 0 SS\'1
  • 2 1
  • 5 3
  • 2 1
  • 1
  • 0 .o
  • 0 sw .1 1.0 2.1 .4 .0
  • 0 .o .2 :2.1 1.2 .2
  • 0
  • 0
  • 0 w .o 1.1 .4 .1
  • 0 .o .o WN\" .o 1.9 2.3 .4
  • 0
  • 0
  • 0 NW .2 1.1 .7
  • 0 "0
  • 0 NNW .2 2.2 2.2 .5
  • 0
  • 0 . 0 N .4 1.9 2.1 .6
  • 0 . 0
  • 0 TOTAL 1.9 32.3 39.3 9.4 "0
  • 0
  • 0 NUMBER OF INVALID OBSERVATIONS = o
  • 0 . 0 .o
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0 . 0
  • 0
  • 0
  • 0
  • 0 "0
  • 0 SHEET 2 OF 6 MU\f\J . 0
  • 9 . 0 5.6 7 . 0 3.9 6.0
  • 0 5. 1 5.7
  • 0 6 . 8 5.6
  • 0 8.0 6.0 . 0 6.7 5.6
  • 0 7.7 6.0
  • 0 6.0 6.2
  • 0 3.5 6.0
  • 0 3.8 5.2
  • 0 1
  • 6 4. 6
  • 0 4. 6 5.6
  • 0 4. 1 5" 3
  • 0 5. 1 5.4
  • 0 5.0 5.4 1 7. 1 .o 100.0 4. 7 Rev. 0 WOLF CREEK TAf3LE 2.3-24 (CONTINUED) JOINT WIND SPEED, WIND DIRECTION FREQUENCY DISTRIBUTION <IN PERCCNTI BY STABILITY CLASS SHEET 3 OF 6 DATA PERIOD: JANUARY 1, 1955 TD Dl CLM13ER 31, 196tf STARTLITY CLASS: PASQUILL C DATA SOURCE: CHANUTE F.S.S., KANSAS SECTOR NNE NE ENE E ESE SE SSE s SSI"i sw w WNW NW NNW N CALH TOTAL UPPER CLASS INTERVALS OF WIND SPEED <KNOTS! .o .7 1.3 2.9 .2
  • 2
  • 0
  • 1 .o 1.2 .6 2.6 .2
  • 2 . 1
  • 0 .o .3 .6 1.7 .1
  • 1
  • 0
  • 0 .0 .8 .5 2.3 .2
  • 1
  • 0
  • 0 .o 1.2 1.7 3.6 .4 ....,
  • L
  • 1 . 0 .0 1.2 1.4 4.5 .5
  • 3
  • 0 . 0 .o 1.2 1.6 5.9 1.5
  • 7 . 2 . 7 .0 .8 1.3 5.6 1.0 1
  • 5 . 5 1. 8 .o .4 .8 4.7 1.0 1
  • 3
  • 7 1. 5 .0 .7 .4 2.1 .6
  • 6
  • 1
  • 1 .o .7 .6 1.5 .2
  • 0
  • 0
  • 0 .o .2 .2 1.0 .1
  • 0
  • 0
  • 0 .0 .8 ,5 l.Lf .2
  • 1 . 0
  • 1 .0 .9 1.1 2.1 .2
  • 2
  • 2
  • 1 .o 1.1 1.3 3.4 .5 . 2 . 1 .o .8 .6 2.5 .2
  • 4 . 1 . 0 .o 13.0 14.4 47.7 7.1 6.4 2.3 4.8 NUMBER OF INVALID OBSERVATIONS = o MEAf\1 . 0 5. 4 8.3 . 0 4. 9 8.0 .0 2.8 8.4
  • 0 4 . 0 7.9 .o 7.3 8
  • 1 . 0 8. 0 8. 2 .2 12.1 9.9 . 7 1 3. 1 1 1
  • 7 . 6 1 1 . 0 1 2
  • 3 9.7 . 0 3. 1 7.5 . 0 1
  • 6 8.5
  • 0 3" 1 8.0 .0 4.8 8. 4 .0 6.9 8.6 . 0 4. 7 8.7 {2
  • 6 1.7 100.0 9.2 Rev. 0 WOLF CREEK TABLE 2. 3*-24 (CONTINUED) SHEET 4 OF 6 JOINT WIND SPEED, IHND DIRECTION FREQUENCY DISTRIBUTION < IN PERCENTl BY STABILITY CLA::1S DATA PERIOD: JAN 1 ' 1955 TO 0[ CE Ml3E 3 1 ' 1964 STABILITY CLASS: PASQUILL D DATA SOURCE: CHANUTE. F. S. S., KANSAS UPPE:R CLASS INTERV/\LS SECTOR OF D SF'EED <KNOTS) ME: AN ______ :;_._!2_ ___ ._Q __ "[_,_5 ___ 1_9_ ,_Q___l_;;_._5_1_5_._Q___l __ J.JlJ A L __ NNE
  • 0 . 3 . 4 1
  • 6 1
  • 3 1
  • 3
  • l+
  • 4
  • 1 5.9 11
  • 8 NE
  • 0
  • 3
  • 5 1
  • 3
  • 9
  • 9 . 2
  • 2
  • 0 4. 3 1 1
  • 0 ENE
  • 0 ') * <-* 3 1 . 1
  • 6
  • 6
  • 1 .o .o 3. 1 10. 5 E
  • 0
  • 3
  • 4 1
  • 1
  • 5
  • 7
  • 1 . 1 . 0 3. 1 10. 6 ESE .o
  • 3
  • 8 2.0 1
  • 0
  • 8
  • 1
  • 1 . 0 5.2 10. 4 SE
  • 0
  • 4
  • 6 2. 1 1
  • 5 1
  • 2
  • 4 . 3
  • 0 6.5 1 1
  • 2 SSE
  • 0 . 3
  • 6 2 * '+ 2.8 3 . 8 1 . 3 1 . 7 . 8 1 3
  • 8 1]. 7 s
  • 0 r) . .::.
  • 3 2. 3.4 5.0 1
  • 9 3.9 2
  • 1 1 9
  • 1 1 5 * (+ ssw
  • 0 r, . .::.
  • 2 1
  • 1 1
  • 6 2.6 . 9 1
  • 5
  • 8 8.9 14
  • 7 sw .o
  • 2.
  • 1 ,-. ,)
  • 5
  • 6
  • 2
  • 2
  • 2 2. 5 13.2 WSW
  • 0 . 1
  • 1
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1 1
  • 3 1 2. 6 w
  • 0
  • 1
  • 1 . 3
  • 2
  • 2
  • 0
  • 1
  • 1 1
  • 2 12.6 WNW
  • 0
  • 2
  • 2 *
  • 4
  • 6
  • 2
  • 5
  • 1 2.6 1 3. 3 NW
  • 0
  • 2
  • 3
  • 9
  • 8 1
  • 1
  • 5 .6 . 2 4.5 1 3. 4 NNW
  • 0
  • 3 . 5 1
  • 6 1
  • 5 2.7 .9 1
  • 6
  • 4 9. 6 1 3. 8 N
  • 0
  • 3
  • 4 1 . 4 1
  • 2 2. 1
  • 5 1
  • 0 . 2 7.2 1 3 . 1 CALM 1
  • 1 TOTAL
  • 1 3.9 5.9 20.4 1 8. 4 24.6 7. 9 1 2 .* 5 5.2 1 0 0. 0 1 3 . 1 OF INVALID = 21 Rev. 0 CREEK TABLE 2.3-24 (CONTINUED) JOINT WIND SPEED, WIND DIRECTION FREQUENCY DISTRIBUTION <IN PERCENT> BY STABILITY CLASS DATA PERIOD: JANUARY 1, 1955 TD DECEHBU< 31, 1964 STABILITY CLASS: PASQUILL E DATA SOURCE: CHANUTE F.S.S., KANSAS UPPE.R CL.A:;s IIHEI<VALS SHEET 5 OF 6 SECTOR OF WIND SPEED <KNOTS> MLAN _______ __ .Lh9. _r_r2.2Q_,_Q__?_?J2 .. ,_o ___ NNE .o .7 1.2 2.8
  • 0
  • 0
  • 0
  • 0
  • 0 4 . 8 7.8 .o .. 6 1.0 2.2
  • 0
  • 0
  • 0
  • 0 .o 3.8 7.7 ENE .0 .. 7 1.0 2.0
  • 0
  • 0
  • 0 . 0
  • 0 3. 6 7.6 E .0 .. 8 1.2 2.8
  • 0
  • 0 "0 .0 . 0 4. 8 7.7 ESE .o 1..0 2.5 5.4
  • 0
  • 0
  • 0
  • 0 . 0 8. 9 7.9 SE .o 1.0 2.7 7.4 .0
  • 0 " 0
  • 0 .0 11.1 8. 1 SSE
  • 0 .. 8 1.8 10.8 .o .0 .. I)
  • 0 . 0 1 3. {f 8.6
  • 0 .. 6 1.7 12.3
  • 0
  • 0
  • 0 . 0
  • 0 I Lf
  • 6 8.8 ssw
  • 0 .. 3 1.1 4.9
  • 0
  • 0
  • 0 .o
  • 0 6 .,
  • L. 8.5 sw
  • 0 .. 3 .7 1.6
  • 0
  • 0
  • 0
  • 0
  • 0 2.6 8.2 WSW
  • 0 .. 4 .5 1.4
  • 0
  • 0
  • 0 .0
  • 0 2 . 3 7.6 w
  • 0 .. 2 .4 1.3
  • 0 .o
  • 0
  • 0
  • 0 1. 9 7.9 WNW
  • 0 "4 . 9 2. 1 .0 . 0
  • 0 .0 . 0 3.5 8.0
  • 0 .. 4 1.3 3.3
  • 0
  • 0 "0 . 0 .0 5.0 8
  • 1
  • 0 .. 7 1.8 5.3
  • 0 .o
  • 0
  • 0
  • 0 7.8 8
  • 1 N
  • 0 .8 1.3 3.6
  • 0
  • 0
  • 0 .0 . 0 5.7 n.o CALM .0 TOT /\L .o 9.7 21.1 69 .. 2
  • 0
  • 0 .0 .0 .o 100.0 d * ;' NUMBER OF INVALID OBSERVATIONS -o Rev. 0 WOLF CREEK TABLE 2.3-24 (CONTINUED) SHEET 6 OF 6 JOINT WINO SPEED, WIND DIRECTION FREQUENCY DISTRIBUTION < I N PERCENT> BY STABILITY CLASS DATA PERIOD:: JANUARY 1
  • 1955 TO DECEMBER 3 1
  • 1964 STABILITY CLASS: PASQUILL F DATA SOURCE:: CHANUTE F.S.S., KANSAS UPPER CLASS INTERVALS SECTOR OF WIND SPEED <KNOTS> MEAN 2.5 2......Q. 7.5 10.0 15.0 LL...5 0. 0 >20.0 TOTAL SPEED NNE . 1 3.2 1
  • 4
  • 0
  • 0 . 0
  • 0
  • 0 . 0 4. 7 4.9 NE . 1 3.3 1
  • 1
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0 4.5 4.7 ENE
  • 0 3. 1 1 . 0
  • 0
  • 0 . 0 . 0 . 0
  • 0 4. 1 4.8 E . 0 3.4 1
  • 1 . 0 . 0 .o . 0
  • 0
  • 0 4.5 4.8 ESE
  • 1 3.8 2.2 . 0 .o
  • 0
  • 0
  • 0
  • 0 6. 1 5.0 SE
  • 1 4.4 2.4 . 0 . 0 . 0
  • 0 .o
  • 0 6.9 5.0 SSE . 0 3.4 2.4 .o
  • 0
  • 0
  • 0
  • 0
  • 0 5.8 5. 1 s
  • 0 2.2 2.3
  • 0
  • 0
  • 0
  • 0 .o . 0 4.5 5.3 SSW
  • 0 2.0 1
  • 2
  • 0
  • 0
  • 0
  • 0 . 0
  • 0 3.2 5. 1 sw . 2 2.2
  • 4
  • 0 .o
  • 0
  • 0
  • 0 . 0 2.8 4. 5 WSW
  • 0 2.2
  • 8
  • 0
  • 0 . 0
  • 0 . 0
  • 0 3. 1 4.7 w
  • 0 2.7
  • 8
  • 0 . 0
  • 0 . 0 . 0
  • 0 3.5 4.6 WN\v . 1 3.5 1 . 4 .o . 0 . 0
  • 0 .o . 0 4. 9 4.8 NW . 2 4.6 2.5
  • 0 . 0
  • 0
  • 0 . 0
  • 0 7.3 4.8 NNW . 0 4.5 2.2 . 0 . 0 .o . 0
  • 0 . 0 6.7 4.9 N .o 4.5 1 . 8
  • 0 . 0 .o . 0 . 0 .o 6.2 4.9 CALM 2 1
  • 1 TOTAL 1
  • 0 52.9 24.9 . 0 . 0 . 0 . 0 .o
  • 0 100.0 3.9 NUMBER OF HNALID OBSERVATIONS = 0 Rev. 0 WOLF CREEK TABLE 2.3-25 JOINT WIND REEQUENCY DISTRIBUTION (ANNUAL 10 METERS) JOirH DISTRIBUTION DATI\ F'ERIOD YC.6.R:Cl COt10INED /<LL WINDS DAl't.. £-iOURCE CN-SilE \..!!NO SENSOR HEIGHT 10 00 METERS WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC fAULE GLr;ERATEO 11/05/81. 13. 14. 50 DAMES AND MOORE JOB NO: 76rl'7-064 \.JIND Wlr.Jl) SPEED CAlEGORIES<I"IETERS PER SECOND) SECTOR 0 0-1 5 1. 5-3 0 3 0-5 0 5. 0-7. 5 7 5-10. 0 )10. 0 NE ENF E ESE SE SSE s SSlJ sw NW NNW N CALM TOTAL 58 23 73 28 67 26 66 26 51 20 92 36 76 30 99 39 69 34 58 23 81 32 81 . 32 67 26 73 . 2a 65 25 61 24 19 . 07 1175 4. 59 389 1 52 443 1. 73 :J25 1 27 351 1. 37 409 1. 60 637 2. 49 843 3 29 685 2. 67 355 I 39 267 1. 04 221 86 275 1. 07 296 1. 16 367 1. 43 286 1. 12 330 1. 29 6479 25. 29 526 2. 05 438 1. 71 425 1. 66 496 1. 94 466 1. 82 552 2. 15 1087 4 24 1475 5. 76 691 2. 70 297 1.16 178 . 69 278 1. 09 313 1. 22 368 1. 44 445 1. 74 560 2. 19 859'5 33. 55 N1JM3ER [>;:::-VALID OBSERVATIONS 25615 tJ'JMCER OF INVAI_JD OBSERVATIONS 689 TOTAL OF OBSERVATIONS 26304 KEY XX.< NUMBER OF OCCURRENCES I(X:< PERCENr OCCURRENCES JOINT FREQUENCY DISTRIBUTION 336 I 31 162 63 146 57 199 78 206 . 80 246 96 486 1. 90 1327 5. 18 834 3. 26 202 . 79 92 . 36 145 . 57 208 . 81 380 1. 48 556 2. 17 481 1. 88 6006 23. 45 97 38 PCT 2. 62 PCT. 100. 00 PCT. DATA PERIOD: 1. 1973 THROUGH MAY 3!. 1974 139 54 30 12 27 II 26 10 45 18 69 27 118 46 708 2. 76 373 I 46 95 37 46 . 18 43 . 17 59 . 23 201 . 78 307 1. 20 214 . 84 2500 9. 76 30 12 3 . 01 I 00 II 04 24 09 14 05 35 14 229 . 89 186 . 73 48 . 19 12 . 05 14 05 30 12 91 . 36 76 30 56 22 860 3. 36 MEAN TOTAL !;PEED 147B 4 49 5 7? 1149 3. 55 4. 49 991 3. 65 3 87 1149 3. 84 4_ 49 1201 3. 97 4 69 1610 3. 72 6. 2'-1 264!) 4. 06 10.3:3 4523 5. 45 17. 6b 2527 5. 61 9. 8"7 967 4 62 3. 7B 630 3. 76 2. 4b 836 3 85 3. 2b 97:] 4. 26 3 80 1480 5. 10 5. 7El 5 47 6. 77 I 5.00 6. 64 1'7 07 2561 100.00 CALM 4. 64 ALL WINDS DATA SOURCE: C<N-Sl TE WOLF CREEK GENERATING STATION BURLINGTON, KANSAS SENSOR HEIGHT* 10. 00 METERS KANSAS GAS AND ELECTRIC TABLE GENERATED: 11/04/81 11 55. 32. DAMES AND MOORE JOB NO: 7699-064 WH.:D WINO SPEED CATEGORIES<f'IETERS PER SECOND) SECTOR 0.0-1.5 1.5-3.0 3.0-5.0 5.0-7.5 7.5-10.0 >10.0 NE E ESE SE SSE s ss* NtJW N CALM TOTAL 26 31 3::? 38 18 21 21 25 12 .lli* 20 24 18 21 25 30 26 31 19 23 27 32 23 27 16 19 30 36 23 27 26 31 12 14 374 4 46 157 1. 87 137 1. 63 92 I. 10 117 1. 39 123 1. 47 195 2. 32 315 3. 75 234 2. 79 114 1. 36 80 95 70 . 83 80 95 102 1 22 115 1. 37 94 1. 12 to:.::* 1 22 2127 25 34 H1Jt13ER 0.=-VAL I 0 OBSERVATIONS N'Jf1<;ER 0:::-INVAI ID TOTAL t"v:1I3ER OF OBSERVATIONS 167 1. 99 127 1. 51 120 1. 43 93 1.11 140 1. 67 207 2. 47 403 4. 80 526 6. 27 210 2. 50 101 L 20 57 68 70 83 116 1 38 137 L 63 152 I 81 170 2. OJ 2796 33 31 8393 367 8760 KEY XX.( NW10ER OF OCCURRENCES XXX PERCENT OCCURRENCES 68 81 46 . 55 so 60 55 . 66 54 . 64 60 . 71 175 2. 09 542 6. 46 241 2. 87 92 1. 10 29 35 25 30 62 74 135 1. 61 201 2. 39 134 I 60 1969 23 46 95. 81 PCT 4 19 PCT 100.00 PCT 45 54 3 04 12 14 8 . 10 II 13 17 . 20 49 58 254 3. 03 116 1. 38 38 45 16 19 10 12 14 . 17 70 83 80 95 48 57 791 9. 42 12 14 I 01 I 01 5 . 06 4 . 05 3 . 04 23 . 27 99 1. 18 68 81 21 25 4 05 0 0 00 II 13 53 63 21 25 10 12 336 4. 00 MEAN TOTAL SPEED 475 5. 66 :346 4. 1:2 29:3 3_ 4q 299 3. 56 344 4. 10 so:z 5. 98 98:3 11.71 1680 20.0:2 775 9. 2:3 35l 4 113 2013 2. 4!3 321 3. s;;? 540 b. 4:3 571 6. 80 490 5 84 1 14 8393 100. 00 4. 17 3. 35 3. 83 3. 77 3. 84 3. 64 4. 22 5. 64 5 74 5. 02 3. 78 3. 42 4. 16 5. 42 5 31 4 65 CALM .c;_ 70 Page 1 of 2 Rev. 0 WOLF CREEK TABLE 2.3-25 JOINT WIND FUEQUENCY DISTRIBUTION (ANNUAL 10 ,JOirH DI!HRIGUTION DATA PERIOD. JLiM:: L 19/4 THROUGH MAY 3!, 1975 ALL DMTA C:-.1-51 TE t-!IrW SENSOR HEIGHT 10 00 WOLF CREE":.t. GENERATING STATION DURL I NGTON, 1'\ANSNJ KANSAS GAS AND ELECTRIC TAGLE GEN . .::-RATED: 11104/81. 13 1'1. 37. DAMES AND MOORE JOI:I NO 7699-064 WII\D WINO SPEED CA1EGORIES(METERS PER SECOND> SECTOR 0 0-1 5 1 5-3 0 3 0-5 0 5. 0-7 5 7 5-10 0 >10. 0 NE ENE E ESE SE SSE s sw N CAL:-1 TOTAL 22 26 25 29 2:? 26 24 23 13 15 31 3o 25 29 33 3? 31 3o 18 21 26 30 22 . 26 27 32 24 28 21 . 25 19 22 3 04 386 4. 51 115 1 34 133 1. 55 92 1. 07 96 1 12 119 1. 39 211 2. 46 278 3. 25 207 2. 42 135 1. 58 100 1. 17 61 71 91 1. 06 81 95 104 1 21 95 1.11 9o 111 2013 23. 176 2. 06 118 1. 38 137 1. 60 181 2. 11 154 1. 80 196 2. 29 363 4. 24 460 5. 37 250 2. 92 103 1 20 55 64 90 I. 05 112 1. 31 130 1. 52 123 1. 44 193 2. 25 2841 33. 19 0l1J!'1BEH C*F 'VALID OBSERVATIONS 8560 NUM.3ER OF INVAI ID OBSERVATIONS 200 TOTAL OF OBSERVATIONS 8760 KE:Y XXX NU:1BER OF OCCURRENCES XXX PERCENf OCCURRENCES J01NT Wlt>!D FREQUENCY DISTRIBUTION 139 1. 62 42 49 48 56 57 67 101 1. 18 105 1. 23 198 2. 31 413 4. 82 273 3. 19 51 60 35 41 54 63 85 . 99 169 1. 97 186 2. 17 177 2. 07 2133 24. 92 " . 60 2 02 6 07 10 . 12 25 . 29 14 . 16 41 . 48 216 2. 52 144 1. 68 31 36 13 15 12 14 31 36 83 97 137 1 60 81 95 897 10.48 100. 00 PCT. DATA PERIOD: MARCH 5, 1979 THROUGH MARCH 4, 1980 3 04 0 0 00 0 0 00 5 06 17 . 20 8 09 8 09 50 58 76 89 22 26 8 09 14 16 19 . 22 20 . 23 23 27 17 20 290 3. 39 MEAN TOTAL SPEED 506 4 61 5. 91 320 3. 37 3 74 :305 3. 68 3. 56 :J73 3. 92 4 36 429 4. 53 5 01 565 3. 82 6. 60 913 4. 14 10.67 1379 5. 34 16. 11 901? 5. 65 10.6:2 325 4 54 3.80 198 4. 00 2.31 283 4 19 3 31 355 4 83 4. 15 530 5. 27 6. 19 585 5. 72 6.83 582 1 5. 20 6.80 3 . 04 8560 100 00 CALM 4. 76 ALL WINDS DATA SOURCE: 0:--!-SITE WOLF CREEK GENERATit-lG STATION BURLINGTON, !-(.ANSAS bliND SENSOR HEIGHT 10. 00 METERS KANSAS GAS AND ELECTRIC TABLE: GEN!::.RATED: 11/04/81 14. 4"2. 25". DAI"lES AND NOORE .JOB NO: 7 699-064 WIND t.tiNO SPEED CATEGORIES(METEHS PER SECOND> SECTOR 0. 0-1. 5 1. 5-3. 0 3. 0-5. 0 5. 0-7. 5 7. 5-10. 0 >10. 0 NE E ESE SE SSE s sw NW N CALM TOTAL 10 12 16 18 27 31 21 24 26 30 41 47 33 33 41 . 47 31 36 21 . 24 28 32 3o 42 24 28 19 22 21 24 16 . 18 4 05 41 4 79 117 1 35 173 2. 00 141 1. 63 138 1. 59 167 1. 93 231 2. 67 250 2. 89 244 2. 82 106 1.:22 87 1. 00 90 1 04 104 1. 20 113 1. 30 148 1 71 97 1. 12 133 1. 54 2331? 27 00 N'Jt"l:JER (J;=-VALID r!BSERVATIONS f\IUN3ER OF INVALID OBSERVATIONS TOTAL NJM3ER OF OI35ERVAT 18:3 2. 11 193 2. 23 168 1 94 172 1. 99 149 1. 72 321 3. 71 489 5. 65 231 2. 67 93 1. 07 66 76 118 1. 36 85 . 98 101 1. 17 170 1 96 197 2 27 2958 34. 15 8662 122 8784 KEY XXX OF OCCURRENCES .O:< PERCENT OCCURRENCES 129 1. 49 74 . 85 48 55 87 1. 00 51 59 8! . 94 113 1. 30 372 4. 29 320 3. 69 59 68 28 . 32 66 76 61 70 76 88 169 1 95 170 1. 96 1904 98 98.61 PCT. 1. 39 PCT ) 00. 00 PCT 43 50 25 . 29 9 . 10 8 . 09 9 . 10 38 44 28 . 32 238 2. 75 113 1. 30 26 30 17 20 21 . 24 14 16 48 55 90 1. 04 85 98 812 9. 37 15 17 2 . 02 0 0. 00 1 . 01 3 . 03 3 . 03 4 . 05 eo . 92 42 .48 5 06 0 0. 00 0 0 00 0 0. 00 18 21 32 37 29 33 234 2. 70 MEAN TOTAL SPEED 497 5. 74 4EJ3 s. :m 393 4. 54 477 5. 51 428 4. 94 543 6.27 749 8.65 1464 16.90 843 9. 73 291 3. 36 2;;!9 2 64 345 3. 98 297 3. 43 410 4.73 579 6 68 630 7 27 4 05 8662 100.00 4. 69 3. 81 3. 51 3. 82 3. 52 3. 67 3. 75 5. 34 5. 46 4. 25 3 54 3. 83 3 69 4. 47 5 38 5. 09 CALM 4. 47 Page 2 of 2 Rev. 0 WOLF CREEK TABLE 2.3-26 JOINT WIND FREQUENCY DISTRIBUTION (ANNUAL 6 0 JVI..E TE RS )I JOiNT \Hrm DISTRintHlot>J DAr A PER 100 Th-;'EE YEARS COMD INED ..:>.LL t..JIND5 o,; TM 0;\1-S I TE WI0Jfl St:.t60R HEIGHT aO 00 METERS WOLF CREE:.<. GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELEC 1 C lMULE GENERATED* 11/05/81 13 14 50 DAMES AND f100RE JOB NO 7699-064 WIND WINO SPEED PER SECOND) SECTOR 00-1.5 15-30 J0-50 50-75 75-10.0 >100 NC ESE SE SSE tJN:..J N CAL:-! TOTAL 14 06 19 08 12 OS 17 07 15 06 18 07 16 06 17 07 22 09 20 09 10 04 25 10 10 04 15 06 15 06 20 08 11 04 276 1 11 80 32 142 57 104 42 85 34 95 38 96 39 95 38 120 48 88 35 94 38 82 33 93 37 64 26 55 22 52 21 70 28 1415 5 70 273 1. 10 394 1 59 272 1 10 225 91 247 1. 00 289 1. 16 350 I 41 432 l. 74 343 1. 38 273 1. 10 175 71 238 96 158 64 190 77 170 69 228 92 4257 17. 15 tJ'JM3ER o;:.-VALID 24817 t>.:Ul113ER OF IN'JAI ID OBSERVATIONS 1487 TOTAL f-!'JM3ER OF OBSERVATIONS 26304 1-\I::Y .(XX NU."1f3ER OF OCCURRENCES XXX PERCENr OCCURRENCES JOINT tHtJD FREQUENCY DISTRIBUTION <i94 1. 99 :l56 1. 43 :!71 1. 49 1. 79 :!97 1 60 :i57 2 24 :'20 2. 90 1471 5. 93 (_168 3. 90 450 1. 81 95 1. 06 1. 19 :!85 1 55 331 1 33 83 . 33 179 72 255 1. 03 230 93 350 1 41 631 2. 54 1484 5 98 881 3. 55 266 1. 07 108 44 135 54 237 95 363 1. 46 493 1. 99 520 2. 10 34. 35 6546 26 38 35 PCT 65 PCT. 100. 00 PCT. DATA PERIOD JL'I\:E 1. 1973 THROUGH MAY 3L 1974 192 77 IS 06 41 17 42 17 73 29 146 59 311 1 25 1126 4. 54 So2 2. 26 142 57 52 21 51 21 95 38 237 95 334 1. 35 379 I 53 3798 15. 30 MEAN fDTAL SPEED 1::384 5. 58 1009 4 07 979 3 94 1069 4. 31 1057 4 26 1456 5 87 2123 8 55 4650 18. 74 2864 11. 54 1245 02 662 2 67 804 3. 24 859 3. 46 1245 5. 02 1603 6. 46 1797 7 24 11 04 24817 100.00 6 91 4 98 5 81 6. 15 6. 25 6 64 7 29 8 17 7. 77 6 61 5 89 S. 78 6 89 7. 63 7. 88 7 74 CALM 7 16 ALL WINDS DATA SOURCE* 0:--.J-SITE CREEK GENERATING STATION BURLINGTON. KANSAS t.JI;JD SENSOR HEIGHT: 60. 00 METE"RS KANSAS GAS AND ELECTHIC TA3LE GENFRI.TED; 11/04/81 11 5'5. 32. DAf1ES AND MOORE JOB NO: 7699-064 WIND SECTOR WI NO SPEED CATEGDR I ES ( 1"1ETERS PER SECOND) MEAN o. o-1. s 1 s-3. o 3 o-s. o s s 7 ::5-to. o :>to. o NNF NE ESE SE SSE s WSW NN!.J N CAL:-i TOTAL 6 . oa 7 09 2 03 7 09 4 . OS 7 09 7 09 3 04 6 oa 4 05 3 04 7 09 0 0 03 6 03 6 08 8 10 8 10 91 1 14 18 . 23 43 54 32 40 28 . 35 23 29 23 29 20 25 23 29 16 20 15 19 24 30 27 34 17 21 16 20 19 24 26 33 370 4 63 N'.JM::JEh' 0!=" VALID OBSERVATIONS l'l'Jf1[3Ef.( 0::-INVALID OOSERVATIONS TOTAL r:v.13ER OF 0!3SERVAT!ONS 85 1. 06 107 1. 34 78 98 68 85 74 93 60 75 79 99 107 1 34 77 96 80 1 co 61 76 65 81 47 59 71 89 52 65 62 78 1173 14 69 7986 774 8760 KE. )" X X< NU."'UER OF OCCURRENCES XX.< PERCENf OCCURRENCES 1.48 1. 85 1.23 1. 54 !05 1. 31 . 41 1. 77 98 1. 23 :76 2. 20 j 98 2 48 .ill2 5. 16 ;;*79 3. 49 176 2 20 70 88 75 94 108 1 35 !60 2. 00 189 2. 37 177 2 22 ;-'635 33 00 91 16 PCT f-l 84 PCT 100. 00 PCT 90 1. 13 23 29 67 . 84 84 1. 05 51 . 64 97 1. 21 221 2. 77 604 7. 56 374 4. 68 142 1. 78 36 45 25 31 74 93 106 1. 33 154 1. 93 145 1 82 2293 28 71 78 98 27 34 12 15 19 24 42 53 132 1. 65 471 5. 90 250 3. 13 62 78 17 21 7 09 14 18 102 1 28 64 80 125 1. 57 17 133 TOTAL SPEED 425 S. 32 305 J 82 311 3. 89 340 4. 26 269 3. 37 405 5. 07 657 B. 23 1620 20.29 1002 12. 55 479 6. 00 211 2 64 206 2 58 260 3 26 461 577 484 6. 06 543 6 80 8 10 /986 100 00 7 21 4. 95 6. 23 6. 15 6 12 6. 84 7 97 8. 70 8 43 7 23 5 93 5 47 6. 63 7 80 7 47 7 81 CALM 7 49 Page 1 of 2 Rev. 0 WOLF CHEEK TABLE 2 .. 3-26 JOINT WIND FREQUENCY DISTRIBUTION (ANNUAL 60 METERS) *JTIH lHrm FREOVi.rKY DISTRI!3UTIOH OATM PERIOD 1, 1'1/4 THROUGH MAY :H, AL'-WI OM T i. SClVRCE lli\o-SI TE lJl:W SENSOR HEIGHT 60 00 METERS T.-\GLE 11/04/81 13 19 37. 1975 WOLF CREEK STATION BURLI!\!GTON, Y*JiNSAS KANSAS GAS AtJD ELEC TR r C DAJ*IES AND MOOHE .JOB N[]* 7699-064 WIND SEC WINO SPEED CATEGORIES<f'!ETERS PER SECOND) MEAN o 0-1 1 5-3. o :J o--'J o s 0-7 5 7 s-10. o :;to. o ESE SE SSE s ssw t-JSW w NW CALM fOTAi_ .; 05 7 03 6 07 5 06 8 10 7 03 9 II 10 12 13 16 9 II 5 . 06 14 17 8 10 6 07 3 04 8 . 10 1 01 123 1. 47 31 37 55 66 41 49 28 33 45 54 48 57 35 42 45 54 41 49 33 39 35 42 29 35 25 30 26 31 16 19 26 31 559 6 69 !:OF VALID OBSERVATIONS DF IN'JALID OBSERVATIONS TOTAL OF OBSERVATIONS 70 1. 08 t::::3 I 47 98 I 17 67 80 95 1. 14 103 1. 23 1*+5 I 73 167 2. 00 156 I 87 99 1. 18 58 69 71 85 65 78 68 81 55 66 72 86 1532 18. 33 8359 40! 8760 K£*,* XXX NU.'1DER OF OCCURRENCES XXX PERCENf OCCURRENCES ,JOINT t..IIND FREGUaJCY DISTRII3UTIDr4 1b9 2 02 iJ2 98 106 1. 107 1. 1:56 1. B7 161 1. 93 2?0 3. 547 6. :54 353 4. 174 2. 08 100 1. 71 85 '17 1. "l6 1. *44 170 2. 03 209 2. :50 125 I 50 16 19 40 48 55 66 84 I 00 127 1. 52 224 2. 68 474 5 67 265 3 17 53 63 23 28 27 . 32 91 1. 09 138 1. 65 181 2 17 176 2_ 11 2892 34.60 2099 25 11 95. 42 PCT 4 58 PCT. 100. 00 PCT. DATA PERIOD M-"RCH 5, 1979 THROUGH 4, 1980 60 72 4 05 I 01 15 18 36 43 52 62 84 I 00 204 3. 40 !70 2 03 45 54 13 16 18 22 59 71 74 89 112 1. 34 127 1. 52 1154 13 81 TOTAL SPEED 479 73 287 3 43 292 :-l. 49 277 :3. 31 6. 84 4 58 5 26 6. 07 424 6 25 5. 07 498 6. 55 5. 96 767 6 94 1. 18 1527 7 74 lB. 27 998 7. 37 11. 94 413 6 26 4 94 234 5. 57 2. 80 230 5. 53 75 345 7. 24 4. 13 432 7. 37 ::,_ 17 537 7. 93 6. 42 618 t 7. 69 7. 39 I 01 El359 100.00 CALM 6_ 95 ALL WINDS DA7A SOURCE ON-SITE lHtW SENSOR HEIGHT: 60 00 METERS WOLF CREEK GENERATING STATION BURLINGTON. KANSAS TADLE GENERATED: 11/04/81. 14.42 25 KANSAS GAS AND ELECTR 1 C DAf1ES AND MOORE JOB NCl: 7699-064 I., INO SECTOR WIND SPEED CATEGORIES<METERS PER SECOND) MEAN 0 0-1.5 1. 5-3 0 3 0-5.0 5. 0-7.5 7 5-10.0 )10. 0 NNE ESE SE SSE ssw N CAlM TOTAL 4 05 5 06 4 05 5 06 3 04 4 05 0 0 00 4 05 3 04 7 oa 2 02 4 05 2 02 3 04 6 07 4 05 2 02 62 73 31 37 44 52 31 37 29 34 27 32 25 30 40 47 52 61 31 37 46 54 23 27 37 44 22 26 13 15 17 20 18 21 486 5. 74 N'JI10Et-! 0? VALID ODSERVAT IONS N'JMDEH o;:-INVALID ODSERVATIONS TOTAL i*,\J!"1DEH OF OGSERVATIONS 98 L 16 164 I 94 96 1. 13 90 I 06 78 92 126 1. 49 126 I 49 !58 I 86 110 I 30 94 I II 56 c6 102 I 20 46 54 51 60 63 74 94 1.11 1552 18. 32 8472 312 8784 V..E XX,( OF OCCURRENCES xx*< PERCENr OCCURRENCES 177 2. 09 1'5*1 1. 78 ItO 1. E9 "7 2. ::!3 143 1. 69 2;;:*o 2 60 2'5*2 2. '77 512 6. 04 3::::,6 3. 97 100 I 18 65 77 116 I 37 90 I 06 105 1. 24 180 2. 12 194 2. 29 2998 35 39 96. 45 PCT 3 55 PCT 100. 00 PCT 116 1. 37 44 52 72 85 116 1. 37 95 1. 12 126 1. 49 186 2. 20 406 4. 79 242 2 86 71 84 49 58 83 98 72 85 119 I 40 !58 1. 86 199 2 35 2154 25. 42 54 64 9 II 13 I '5 1'5 113 113 21 37! 4. 3B 14:2 1 6B 3:5 4l 26 3l 6l 15B 1 86 12:7 1. so 1220 14 40 TOTAL SPEED 480 5. 67 417 4 92 376 4. 44 452 5. 34 6 72 5. 26 5. 90 6. 19 364 6. 34 4.30 553 6 57 6 53 699 7. 03 8.25 1503 8. 04 17 74 864 7 48 10.20 3'53 6. 17 4. 17 217 6 19 ;:_56 368 6 11 4. 34 254 6 67 3 00 352 7. 71 4. 15 582 8 18 6 87 636 j 7 73 7. 51 2 02 8472 100 00 CALM 7 05 Page 2 of 2 Rev. 0 WOLF CREEK TABLE 2.3-27 JviNT WIND FREQUENCY DISTRIBUTION (MONTHLY 10 METERS) ..... Olt\T iJ[tm PISTRIOUTION DATA PERIOD ,.\l L .. LL w r [)/, T.; SUl.-nCE ("';'>,I-SITE iJO SEi60R HEIGHT 1 *) 00 t1E TERS l.JOLF CREEK GENERAl INC; STAT ION OURL TON, J.<-ANSAS TAnLE GErJc:.R.:.TEO 11/10;81 t:;-02.03 GAS AND DAI'iES ANU MOORE JOB NO 7699-064 WIND WHW SPEED CATEGORIESCMCTERS PER 'E;ECOND) :::EC10R 00-15 1.:)-30 ::::30-SO S0-75 7S"l00 :;10.0 :-.F. EtJE ESE SE SSE ssw WSW NW CAL:-! 8 39 15 74 10 49 3 15 10 49 5 25 8 39 7 34 8 39 9 44 6 29 8 39 4 20 4 20 9 . 44 6 29 129 6. 34 38 1 87 46 2 26 25 1. 23 20 c;s 27 1. 33 34 1 67 38 1 87 26 1 28 31 1 52 30 1 47 37 1 82 41 2. 01 30 1. 47 32 1 57 37 1 82 514 25 25 N'JM3Eii C*:::-VALID OBSERVATIONS N'Jt*13ER OF INVALID TOTAL OF OBSERVATIONS 70 3 4*1-::8 1 :m .;:J 2 11 25 1 23 1 38 71 3 49 87 4. 27 37 1 16 7'1 23 1 13 37 1. 82 39 1 92 :ls 1 87 ss 2. 70 707 34 72 2036 196 KEY <X.( NlJ!'1BER OF OCCURRENCES XX:< PERCENT OCCURRENCES JOINT WIND FREOt.:i;tJCY DISTRIBUTION D?. T A PER I OD ALL FEBRUARY COMB I NED 1 ot! 34 16 79 14 69 9 44 0 0 00 1 OS 10 49 0 0 00 1 7*> 3El 1 87 67 3. 2 Ob 11 5'> 20 9El 4:1 2. 11 41 2. Ol 4:i 2 11 57 2 80 47El 23. 4EI 91 PCT 8. i'S PCT 100. 00 PCT. 0 0 00 3 15 45 2 21 21 1. 03 3 15 1 05 11 54 23 1. 13 24 1 18 24 1 18 181 8. 89 0 0 00 0 0 00 0 0 00 0 0. 00 0 0. 00 0 0. 00 0 0. 00 6 29 10 49 0 Q_ 00 0 0 00 0 0. 00 1 05 5 25 4 20 1 OS 27 1 33 MEAN TOTAL SPEED 158 7 76 ISS 7 61 75 3 68 92 4 52 58 2. ElS 80 3 93 151 7 42 :;:151 12 33 143 7 02 69 3 39 70 3 44 102 5. 01 143 7. 02 155 7. 61 145 7 12 183 8 99 6 29 2036 100. 00 4 26 3 90 3 03 3 68 3 62 3. 43 4 14 5 30 5 36 3. 35 3. 11 3. 64 4 43 5 11 5 15 4. 90 CALM 4. 39 ALL WINDS SOCRCE* ON-SITE WOLF CREE:.\ STATION BURL I f>JGTON, KANSAS l.JINU SENSOR HEIGHT* 10 00 KANSAS GAS AND ELECTRIC T?.BLE GENERATED 11/10/81 15. 33.48 DAMES AND MOORE JOB NO 7 699-064 WIND WINO SPEED CATEGORIES(METERS PER SECOND) SECTOR 0 0-1. 5 1 5-3 0 3. 0-5 0 5. 0-7. 5 7 5-10 0 >tO. 0 NE ENE ESE SE SSE s ssw SW CAL:1 TOT.;L 5 27 3 16 3 16 4 22 1 05 9 49 4 22 6 32 13 70 9 49 6 32 15 81 9 49 7 38 7 38 5 27 1 05 107 5 78 30 1 62 24 1. 30 21 1 13 20 1. 08 19 1 03 25 1 35 14 76 19 1 03 20 1 08 14 76 24 1 30 40 2 16 30 l 62 40 16 35 1 89 28 1. 51 403 21 76 t.J'..JM:J£1-( o=-1.!/*L I 0 OGS£R\JAT IONS l*l'JI1CER 0:-!IJ'.JAllD OOSERVATIOtJS TOTAL f.,.;,13ER OF ODSERVATimJS 50 2 70 36 1 94 25 1 35 47 2 54 1 57 31 1. 67 56 3 02 73 3 94 44 2. 38 19 1. 03 22 1 1'? 27 1. 46 33 1 78 43 2 32 o4 3 46 639 34 lbf3 X X ( 0!-OCCURRENCES XXX PERCENr OCCURRENCES 20 1. 0!3 10 54 49 2. 47 2 54 21 1.1:3 41 2 2l 57 3 DB 6:5' 3 51 42!3 23 ll 90 18 PCT 9 ;=?2 f'CT 100 00 PCT 11 59 11 59 5 27 1 05 4 22 0 D. 00 8 43 18 97 16 86 6 32 4 22 3 16 4 22 32 1. 73 50 2. 70 25 1 35 198 10 69 3 16 2 11 0 0 00 0 0. 00 0 0. 00 2 11 3 16 11 59 1 05 3 16 1 05 0 0. 00 7 38 13 70 21 1 13 10 54 77 4 16 MEAN TOTAL SPEED .119 6 43 86 4 64 77 4 16 83 4 48 65 3. 51 79 4 27 134 7 24 174 9. 40 126 6. 80 60 3 24 63 3. 40 111 5 99 98 5 29 166 8 96 213 ll. 50 197 10 64 I OS 1B52 100 00 4. 32 4. 45 4. 34 3. 78 4. 12 3. 65 4. 88 5. 19 4. 66 4 30 3. 64 3 40 4. 37 5 55 6 05 5 38 CALM 4. 76 1 of 6 0 WOLF CRE:EK TABLE 2.3-27 JOINT WIND FREQUENCY DISTRIBUTION (MONTHLY 10 METERS) *Oiin FREQV;::.NCY DISTRIBUTION ALL r:'\RCH COMGII\!ED ALL WitWS [*,l,Tf.. SOURCE HEIGHT 10 00 '1ETER3 WOLF CREEK GENE-RATING STATION DURLif\.!GTON, KANSAS GAS ArJD EU..:CrR I C l.l.!lLE ll/10/81 15 47 44 DANES AND f100RF JU3 NO 7699-064 W INn SPEED CATEGORIES ( PER SECOND) \ciiND :C>ECTGR oo-15 rs-Jo 3o-so so-75 /5-to.o ;,,:: E:SE SSE LJS:..J tJiJW CALM '"OTAL 5 3 14 9 41 6 27 3 14 5 23 3 1.; 7 32 4 18 12 54 7 32 3 14 5 23 8 36 5 23 1 05 90 4 07 16 72 39 1 76 29 1 31 28 1 26 26 1 17 27 1 22 27 1 22 18 81 24 1 08 21 95 13 59 13 59 18 81 33 1 49 24 1 08 15 68 371 16. 76 N'_IMI3EH G:=-VALID OBSERVATIONS t!UI1GER INVA!_ID 0135ERVATIONS OF OBSERVATIONS 47 z 12 36 1 63 28 1 26 33 1 49 44 1 99 64 2 89 68 3 07 64 2 89 33 1. 49 25 1 13 15 68 12 54 28 1. 26 39 1 76 41 1 85 69 3 12 646 29. 18 2214 18 2232 1-\b X x.< NU!1l3ER OF OCCURRENCES XX.( PERCEtH OCCURRENCES .JOINT WU.JD FREQUC:NCY DISTRIBUTION DATA PERIOD* ALL APRIL COMBINED 51 2 30 16 72 6 27 17 77 20 90 47 2. 12 43 1. 94 109 4. 92 54 2 44 11 50 7 32 19 . 86 9 41 46 2. 08 84 3. 79 57 2. 57 596 26.92 99. 19 PCT 81 PCT 100. 00 PCT 38 1 72 4 18 5 23 4 18 13 59 12 54 13 59 68 3. 07 47 2 12 15 68 9 41 4 18 0 0. 00 30 1 36 58 2 62 17 77 337 15.22 () 0 00 1 05 ,, 27 14 6:l 1 26 1. 17 30 1. 36 7 3 . 14 7 32 16 72 20 90 30 1 36 3 14 174 7. 86 MEAN TOTAL :tPE:ED 162 7 :32 98 4 43 78 3 52 94 4 25 5. 7:J 3 66 3 64 4 31 121 5 25 s 47 154 4 67 6 96 161 4 84 7. 27 288 6. 48 13 01 195 6. 45 8. 81 83 5 20 3.75 59 4 41 66 62 5 19 80 74 5. 77 3. 34 173 6 00 7. 81 245 6 61 11 07 166 I 5. 15 7. 50 1 05 2214 100.00 CALM 5 50 ALL WINDS DATA SOURCE 0:-.!-SI TE WOLF CREEK GENERATING STATION BURLINGTON, KANSAS tH:Jn SENSOR HEIGHT* 10. 00 METERS KANSAS GAS AND ELECTRIC TABLE GErkRATED* 11/11/81. 10.37. 57 DAMES AND MOORE JOB NO: 7699-064 WINO CATEGORJES(METERS f'ER SECOND) AIND 0 0-1. 5 1. 5-3 0 3 0--5 0 5. 0-7. 5 7. 5-10. 0 >tO. 0 E01E ESE SE SSE s ssw O::AU1 '"OTAL 1 05 5 24 1 05 2 09 1 05 0 0 co 2 09 3 . 14 1 05 0 0 00 3 14 6 28 .; 19 1 05 1 05 1 05 0 0 co 32 1 51 15 71 34 1. 60 16 75 6 28 13 61 32 1. 51 30 1 42 11 52 5 24 12 57 12 57 5 24 13 61 19 90 9 42 17 80 249 11 75 I"J'JM3EH C!i=" ','ALID OBSERVAl IONS 0?"" II\!VAI_ID ODSERVATIONS TOTAL I *. J.""13E:R OF OOSERVA T IONS 39 1. £l4 35 1. 65 44 2 08 60 2. 83 50 2. 36 57 2. 69 95 4. 48 52 2 45 32 1 51 18 85 17 80 17 80 24 1. 13 39 1. 84 47 2. 22 40 1 89 l:.obb 31. 42 21 40 I',EV XX.( NUi'18ER OF OCCURRENCES .(X ( PERC EN r OCCURRENCES 14 66 15 ;*I 1. :J2 !)3 2. !iO 74 3 49 71 3 :JS El7 4 10 !i6 2. 64 16 75 15 ;*t 17 ElO 16 75 :l7 1 /'5 618 29. 15 98 15 PCT 1 85 PC T 100. 00 F'CT 6 . 28 0 0. 00 4 . 19 13 . 61 24 1. 13 52 2. 45 96 4 53 46 2. 17 12 57 12 57 19 90 18 85 39 1 84 28 1 32 25 1 18 396 18 68 3 14 0 0. 00 0 0. 00 0 0. 00 6 28 7 33 25 1. 18 53 2 50 20 94 11 52 4 19 0 0. 00 4 . 19 14 66 5 24 7 33 159 7 50 MEAN TOTAL SPEED 86 4 06 88 4. 15 78 3. 68 100 4. 72 136 6. 42 194 '1'. 15 275 12. 97 302 14. 25 160 7 55 69 :3 25 63 2 97 64 :3 02 79 :3. 73 149 7.03 140 6. 60 4 81 3. 45 4 06 4. 58 5. 49 5. 42 6. 01 7 55 7 12 6. 36 5. 41 5 46 5 44 6. 24 5 85 137 I 5 77 b 46 0 0 00 120 100 00 CALM 5 liB Page 2 of 6 Rev. 0 WOLF CREEK TABLE 2 ,, 3-27 JOINT WIND FREQUENCY DISTRIBUTION (MONTHLY 10 METERS) !lJHH :>J(NO FREQl,ENCY DISTRIDUTiml ")AT,.\ PEHIOD AlL !1<;Y COMO I NED ALL WINDS DATA SOURCE ,nf-lil ::.EtlSOR HEIGHT 10 00 WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC u.nu: GI:::Nt-RATED 11/11/81 10. 41. 53. DAt-1ES AND MOORE JOB NO 7 699-064 !-.liND 1-lnm SPEED PER SECOND> j£CTOH 0 0-1 5 1 5-3 0 3 0 5 0-1' 5 7 5-10 0 }10. 0 =::sE 3E ;;sE !35\...1 sw CALM TOTAl... 4 18 8 37 6 27 5 23 6 27 5 23 1 OS 9 41 9 41 3 14 5 23 8 37 5 23 4 . 18 1 OS 5 23 0 0 00 81 3 84 25 1 14 36 1 6> 43 1 97 28 1 28 37 1 69 39 1. 78 53 2 42 45 2. 06 15 69 20 91 13 59 13 59 23 1 OS 1. 5I 23 1. OS 32 1 46 467 21.36 N'JM3Eii GF VALID ODSERVATIONS f-.I'JM'JEj..( o;= HNAI ID OBSERVATIONS TOTAL OF ODSERVAT IONS 61 2 79 2 61 44 2 01 43 1 97 48 2. 20 66 3 02 l1 3. 69 3 16 34 1 56 20 91 6 . 27 17 . 78 16 . 73 36 1. 65 45 2. 06 655 29.96 2186 46 2;,!32 KEY AX.< NUMBER OF OCCURRENCES .(X"( PERCEtH OCCURRENCES ... .IDrtH FREQL;i:JJCY DISTRIBUTION DATA PERIOD ALL JU!'JE COMBINED 15 69 19 B7 :lS 1 60 :ll 1. 42 ::l6 1. 65 44 2 01 172 7. EJ7 6 2. J.O 1.5 69 7 ::J2 6 .. ::32 1. 46 50 2 44 2. 01 604 27.63 8 37 3 14 5 23 5 23 5 23 3 . 14 10 46 103 4. 71 80 3 66 11 50 1 OS 0 0. 00 3 14 6 . 27 7 32 20 91 270 12 35 3 14 0 0 00 0 0 00 3 . 14
  • 18 1 05 1 05 60 2. 74 29 1. 33 4 . 18 0 0. 00 0 0. 00 0 o. 00 0 0. 00 0 0. 00 1 OS 106 4. 85 MEAN TOTAL SPEED 151 6. 91 119 :i .. 44 117 5 ::15 119 44 131 !)_ 99 150 6 .. 86 180 B. 23 458 20. 95 213 9. 74 73 :3 34 32 1. 46 45 06 54 2. 47 80 3. 66 117 :J. 35 147 6_ 72 0 0. 00 :2186 100.00 4 81 3 57 3 71 4 41 4 33 4 12 4. 30 6 70 7 18 4 99 3. 43 2 99 3 34 4. 52 4. 74 4 91 CALM 5. 08 ALL WINDS DATA SOUrtCE* CN--SITE WOLF CREEK GENERATING STATION BURLINGTON, WitJO HEIGHT* 10 00 !'1ETERS KANSAS GAS AND ELECTRIC TABLE GENERATED: 11/11/81 10 54. 26. DAMES AND MOORE JOI3 NO: 7 699-064 I-IlND WINO SPEED CAlEGDRIESCMETERS PER SECOND) SECTOR 0. 0-1. 5 1. 5-3. 0 3 0-5 0 5. 0-7 5 7. 5-10 0 >10 .. 0 t-INE NF ESE SE !:ISE :ssw L--ISW " t.JNW N CAL:'1 10TAL 3 14 6 28 4 19 5 . 24 4 19 7 33 5 24 6 28 4 19 4 19 1 05 2 07 5 24 5 24 3 14 1 05 67 3 16 32 1 51 34 1. 61 20 94 24 1 13 30 1. 42 43 2 03 71 3 35 61 2 88 35 1 65 25 1. 18 26 l 23 29 1 37 30 1 42 26 1 23 24 1 13 39 1 84 549 25 92 rf'JM:3EH o::-VALID 013SERVATIONS N;JI18t:.H oc:-ITNAI_ID TOTA!.... LU."iDER OF OOS!::RVAT IONS 34 1. 61 33 1 56 30 1. 42 30 1 42 30 1. 42 37 1 70 110 5. 19 188 8. 88 78 3 68 36 1. 70 16 76 28 1 32 24 1. 13 23 1 09 37 1 75 25 1 18 759 35 84 2118 42 2160 1-'.EY XX.( NlJf10ER OF OCCURRENCES XXX PERCEtH OCCURRENCES 19 90 5 . 24 5 . 24 7 . 33 5 24 9 42 53 2. 50 149 7. 03 129 6. 09 18 . 85 5 24 14 66 15 71 35 1 65 12 57 482 22 76 98 06 PCT 1 94 PCT 100 00 PCT 0 0. 00 1 . 05 . 4 19 1 05 6 28 100 4 72 63 2. 97 8 38 0 0. 00 1 05 2 09 4 19 7 33 7 33 9 82 () 0. 00 () 0 00 () 0. 00 () 0. 00 0 0 00 0 0 00 () 0. 00 11 29 1. 37 " 2B 3 14 () 0 00 0 0 00 () 0 00 MEAN TOTAL SPEED 90 4.25 78 3. 68 60 2.83 68 3 21 73 3 45 92 4 34 247 11. 66 514 24 27 340 16 05 97 4 58 53 2 50 64 3 02 74 3 49 73 3 45 108 5 10 86 4 06 1 OS 2118 100 00 3 96 3. 18 3. 25 3. 53 3. 52 3 28 3. 94 5 49 6. 09 4 69 3 27 3 72 3 95 3 82 4. 49 3 70 CALM 4. 58 Page 3 of 6 Rev. 0 WOLF CREEK TABLE 2 .. 3-27 JOINT WIND FREQUENCY DISTRIBUTION 10 METERS) IHND FREatJENCY DISTHIOUTION o.;T,; *-*E:_RIOD ALL dvLY CllM[JINED .:.u. wrrms D.:. fA ON-SITE h'OLF CRCE.K GENFRATING STATlON OURL I ON, HEIGHT 10 00 T.;GLE GEf.JER/'.TED 11/11/Ul I.J 'l2 02 GAS AND E:.U:cm I C DAI'lES AND MUURE dOB NU 7 699-064 WIND SEC fLJH WH.W CATEGOfnE:JWETERS PER SECOND) o 0-1 s t o J u-:J o 5 o-7 s 7 :}--to.o *to.o E:'\!E ESE SE SSE SSL.J S..J csw r.w I'<NW CAt M TOTAL J 13 J 13 6 27 7 31 14 63 11 49 3 13 8 36 3 13 0 0. 00 2 09 1 04 1 O< 6 27 5 22 6 27 0 0 co 79 3 55 58 2 61 45 02 "' 2 29 o3 .,. 83 64 2 88 79 3 55 147 6 61 109 4 90 43 1 93 20 90 10 45 25 1 12 12 54 10 45 19 85 777 34 94 N\JMBER VALID OBSERVATIONS N'JM3ER 0::::-HNAI_ID OBSERVATIONS TOTAL. OF 69 3 to 74 3 :33 loG 2 70 40 1 !30 106 4 77 200 8. 99 !34 3 78 1 L2 15 67 18 Ill 17 76 :21 . 94 10 . *15 44 1. 98 B*m 38 . .l3 XX.< NU!'1BER OF OCCURRENCES <X"( PERCENT OCCURRENCES JOINT Wtrm FREQUENCY DISTRIBUTION DArA PERIOD ALL AUGUST COMBINED 1:3 513 8 36 16 7:2 16 1:3 5t3 10 4'5 10 4:5-14;? 6. 3B 120 .5. 40 26 1.17 7 31 14 6:3. 11 . 4'7 7 31 '5 2;2 1'5 . 67 43:3 19.47 99. !S4 PCT. :36 PCT. 100. 00 PCT 1 04 1 04 1 04 3 13 1 04 4 18 1 04 34 1. 53 9 40 I 04 0 0. 00 0 0. 00 0 0. 00 0 0. 00 0 0 00 0 0. 00 56 2. 52 0 0. 00 0 0 00 0 0. 00 o9 0 0 00 0 0 00 0 0 00 6 27 0 0. 00 0 0 00 0 0. 00 0 0. 00 Q 0. 00 0 0. 00 1 04 31 1. 39 MEAN *rOTAL SPEED 107 4 81 90 4 05 143 6 43 165 7 42 152 6.83 144 6 47 267 12 01 499 22 44 281 12 63 72 3 24 34 1. 53 58 2.61 41 1 84 44 1 98 39 1. 75 88 3 96 0 0 00 2224 100.00 3 34 3 33 3 51 3 58 3. 13 3. 01 3 06 4 55 5. 36 4 19 3 62 3 65 3. 95 3. 45 2. 76 3. 72 CALM 3. 88 ALL l.J DATA SOURCE ON-SITE SENSOR HEICHT* 10. 00 f1ETERS WOLF CREEK GENERATING STATION BURLINGTON, KANSAS TAGLE GEnERATED. 11/11/81. l3. 51 50. KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO 7699-064 WH!D SPEED CATEGORIES<METERS PER SECOND> SECTOR 0 0-1 5 1 5-3 0 3 0-:5 0 5 0-7. "5 7 5-10 0 0 MEAN N"JE NE ESE SE SSE SSW NW C<\LM 10 45 10 45 2 09 8 36 5 23 8 36 6 27 8 36 4 18 9 41 4 18 8 3!> 7 32 9 41 5 23 8 36 0 0 0() 111 5 01 42 1 90 33 1 49 25 1 13 36 1 63 36 1. 63 96 4 34 143 6 46 123 56 35 1 58 15 68 15 68 11 50 23 1 04 19 86 18 81 38 1. 72 708 31 98 N JMBER o;:-VML ID DOSERIJ.1TimJS ll H13E:_R. INVA!_ID (JrlSER'JATIONS T Ht,L r->v.18>::R OF OO!O,!::R\IATJGNS :26 1 '7 36 1. 63 36 1. 63 38 1 72 41 1 B5 10.::. 4 79 99 4. 47 1. 08 14 b3 1.5 68 ::13 1 49 774 34 Q6 2214 l[j 22:l;;? I'El' XX< N\J:10ER OF OCCURRENCES I. X< PERCENT OCCURRENCES 24 1. DB 20 90 113 81 3:2 1. 4:3 177 7. 99 12B 7!3 1'1 86 :J ,,, 4 113 () 0 00 9'1 20 90 10 4:i 524 23 67 99 PCT f-Jl F(T 100 00 PCT 3 14 0 0. 00 3 14 2 09 0 0. 00 0 0. 00 5 23 46 2 08 20 90 0 0 00 2 09 0 0 00 1 05 10 45 1 05 95 4 29 1 '05 0 0. 00 0 0. 00 0 0. 00 0 0. 00 0 0. 00 0 0. 00 0 0 00 0 0. 00 0 0 00 0 0 00 0 0 00 0 0. 00 0 0 00 0 0 00 1 05 TOTAL SPEED 106 4 79 91 4 11 84 3 79 103 4 65 91 4 11 159 7 18 292 13. 19 :)94 26 83 286 12 92 67 3 03 38 1 72 32 1 45 45 03 75 3 39 59 2 66 92 4 16 0 0. 00 100 00 3. 73 3 43 4. 00 3. 80 3. 36 3. 03 3. 42 4. 61 5 06 3. 96 3 36 2 89 2 68 4 38 4 07 3 43 CALM 4 02 Page 4 of 6 Rev. 0 WOLF CREEK TABLE 2 .. 3-27 JOINT WIND FREQUENCY DISTRIBUTION (MONTHLY 10 METERS) Hlr./0 t'ERICD ALL S!:::PTE!'13ER t,L L Wlr,os l A I TE SENSOR HEIGHT 10 00 METERS WOLF CREEK GENERATitJG STATION liUHLINGTON, i-<,ANS.'\S Gi1S AND ELECTRIC 1".:-RLE GEfh:.Rf,TED 11/11/01. 13 26 54 iJAI'lES AND 110URE JOB N[l 7699-064 :..!INO SPEE.D PER SECOND) o o--1 1 s-J o 3 o-s o s o--7 s 7 s-1o o *:to o UJE ESE :;sw " r:' . .J CALM TOTAL 10 47 12 56 13 61 11 51 3 14 28 1 31 24 1 12 27 1. 26 9 42 8 37 5 23 6 28 16 75 16 75 7 33 7 33 220 10. 27 36 1 68 65 3. 03 40 1 87 51 38 78 3 64 114 5 32 135 6 30 85 3 97 49 29 39 1 82 11 51 21 98 17 79 25 1 17 33 1 54 23 1. 07 822 38. J6 NL:M3ER G:= VALID OBSERVATIONS f\I'Jf13E" o;=-HNAI_JD TOTAL rlli:1!3E.R OF DUSERVATIONS 56 2 61 ;:9 1 35 39 1 82 42 1 96 48 2 24 57 2 66 113 5 27 111 5 18 54 2. 52 19 89 3 14 8 37 6 28 12 56 42 1. 96 69 3. 22 708 33. 04 2143 17 2160 K.EY i.X< NUMBER OF OCCURRENCES XX'< PERCENT OCCURRENCES ,JOifH WHJD FHEGI.Ji::NCY DISTRIBUTiot.J DATA PERIOD ALL OCTOBER COMBINED :12 1 49 18 84 15 70 l 33 3 14 8 37 31 1 45 77 3. 59 34 1. 59 10 47 3 14 0 0. 00 0 0 00 6 28 28 1. 31 47 2. 19 319 14. 89 99. 21 PCT 79 PCT 100. DO PCT. 14 65 0 0 00 0 0 00 0 0. 00 0 0 00 1 05 3 14 17 79 9 42 0 0. 00 0 0. 00 0 0 00 0 0 00 4 . 19 5 23 9 42 62 2. 89 0 0 00 () 0. 00 () 0 00 0 0. 00 0 0. 00 0 0. 00 0 0. 00 4 19 5 23 0 0. 00 0 0. 00 0 0. 00 0 0. 00 0 0. 00 , 0'5 MEAN TOTAL SPEED 148 6. 91 124 5. 79 107 4. 99 111 5. 18 l:J2 6. 16 208 9. 71 306 14 28 321 14 98 169 7 89 77 3 59 25 1. 17 34 1 59 29 1 35 63 2 94 125 5 83 157 7 33 7 33 2143 100 00 4 24 3 09 3. 21 3. 00 2 92 2. 66 3. 20 4 11 4 00 3 06 2. 54 2. 40 2 40 3. 03 4. 02 4. 61 CALM 3. 48 ALL DATA ON-SITE WOLF CREEK GENERATING STATION !Hr.Jn SENSOR HEIGHT. 10 00 METERS KANSAS GAS AND ELECTRIC T.;BLE GENERATED* 11111/81 14. 57.07 DAMES AND r1DDRE ..JOB NO: 7699-064 WINO SPEED CATEGORIESCMETERS PER SECOND) UIND BECTQR 0 0-1. 5 1 5-3 0 3 0-5. 0 5 0-7. 5 7. 5-10. 0 >10. 0 ErJE E ESE :;sE ssw CAL:-1 4 18 8 36 2 09 2 09 4 18 10 45 6 27 12 04 12 54 8 17 76 9 40 9 40 6 27 1 04 5 22 3 13 118 5 31 42 1 89 27 1 21 20 90 40 1 80 36 1 62 77 3. 46 84 3 78 63 2. 83 48 2 16 34 1 53 26 1 17 30 1 35 37 1 66 61 2 74 19 85 30 1 35 674 30 32 t\'JMr.E'"i o:= VALID ODSERVATIOh!S 0?" If'J\/1'-L I D OrJSERVAT IONS TOTAL t;v.1DER OF ODSERVAT 42 1 89 21 94 17 76 1 71 40 1 80 45 2 02 97 4. 36 143 6 43 45 2 02 30 1 35 14 63 20 90 24 1 08 39 1 75 30 1 35 2223 9 2232 KEY v:.< N\Ji'1t3ER OF OCCURRENCES XX.( PERCENT OCCURRENCES 26 1. 17 5 22 6 27 6 27 21 94 9 40 38 1. 71 !50 6. 75 48 2. 16 24 1 08 3 13 5 22 20 90 9 40 34 1 53 46 2. 07 450 20 24 99 :SO PCT 40 FCT 100 ::)0 PCT 7 31 0 0 00 0 0 00 1 04 5 22 17 . 76 10 40 100 4 50 13 58 13 58 4 18 3 13 7 31 4 18 22 99 24 1 08 230 10 35 7 31 0 0 00 0 0 00 0 0. 00 0 0. 00 2 . 09 1 04 38 1 71 18 . 81 () 0. 00 0 0 00 0 0 00 " 36 0 0 00 8 36 84 3 7E! MEAN TCIT AL SPEED 128 76 61 74 45 :;:*. 02 87 3 91 106 4.77 160 7. 20 236 10 62 506 22_76 184 8. 28 111 4 99 64 2. 88 67 3 01 95 4 27 112 5 04 115 5 17 143 6 43 3 13 ;:>:223 100 00 4. 45 3. 14 3 34 3 41 4. 00 3 77 3 87 5 92 5. 09 4 40 2 77 3 11 3 90 3 76 5 07 5 40 CALM 4 " 5 of 6 Rev. 0 WOLF CREEK TABLE 2 *. 3-27 JOINT WIND FREQUENCY DISTRIBUTION (MONTHLY 10 METERS) FRFQL.:;:r,JCY DISTRIBUTION DfoTN Pt:RIDD ALL f..OVEI'H3ER CDi"H3INED Ml l..:ll\;0!:) DM l;. SOLRCE I TE HEIGHT 10 00 METERS ;-/,OLE ..;E;>JER.4TED* 11111/81 00 46 l-JOLF CREEX. GENERATING STAT I ON IJURLINGTON, GAS AND ELEC rR IC DAt1ES AtJD NDOr.'E ,JOB NO 7699-064 f>JD St:CTL1R rJO SPEED CATEGORIES< METERS PER MEAN 00-IS 1.5-30 30-50 75-100 *;lQO TOTAL SPEED SE SSE s w Wt.:W N TOTAL 3 14 4 19 3 14 6 ;;:a 5 23 4 19 4 19 5 23 6 28 6 28 4 19 5 23 0 0 00 63 2. 93 17 79 28 1 30 13 61 II 51 18 84 35 1 63 60 2 79 77 3 58 32 I 49 19 88 28 I 30 29 I 35 30 1. 40 15 70 20 93 464 21.60 o;:-VALID OI3SERVAT IONS NUM3EH OF IN'..'ALID OBSERVATIONS TOTAL ;.;UMBER OF OBSERVATIONS 49 2 28 42 1 96 33 I 77 24 1 12 14 65 25 I 16 !OJ 4 80 155 7 22 68 3 17 ;;:-9 1. 35 14 65 42 1. 96 63 2 93 50 2. 33 774 36 03 2148 12 2160 KEY XX.( NU."i!3ER OF OCCURRENCES AX:< PERCENT OCCURRENCES J(I!NT WIND DISTRIBUTION D?TA PERIOD .C.LL DECEMBER COMBINED ALL wums DATA SOURCE G4-SITE SEt!SOR HEIGHT 10 00 METERS 26 1 21 12 56 8 37 14 65 11 51 6 28 44 2. 05 79 3. 68 67 3 12 18 . 84 12 56 41 1. 91 38 1 77 66 3. 07 70 3. 26 41 1. 91 553 25. 74 99 44 PCT . PCT 100. 00 PC f T/.GLE GENEFATED* 11/11/81 15 0":/ :m. 24 1 12 I 05 1 OS 3 14 0 0 00 7 33 4 19 53 2. 47 19 88 23 1 07 7 33 6 28 3 14 28 1. 30 36 1. 68 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 I 05 0 D. DO 8 37 15 70 12 56 1 . 05 0 0 00 0 0. 00 14 65 3 14 3 14 118 5 49 135 3 96 63 93 54 2. '51 47 2 19 77 3 58 217 10. 10 377 17 55 205 9. 54 103 4 !30 66 3. 07 1;23 5 73 140 6. :32 196 9. 12 161 7. :so 116 5 40 0 0 00 5 10 3. 59 3 95 4 30 3 60 3 68 4. 00 4 92 5. 26 5 87 4 08 4 44 4 18 5 56 5 93 5. 41 CALM 237 11.03 57 2148 100.00 4. 80 2. 65 WOLF GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7699-064 WIND SECTOR WINO SPEED CATEGORIES<METERS SECOND) MEAN 0 0-1 5 1 5-3.0 3 0-5 0 5. 0-7. 5 7 5-10. 0 :>10. 0 NE ENE SE SSE s Sol CALM TOTAL 5 23 3 14 4 19 2 09 3 14 7 33 5 23 4 19 2 09 7 33 10 47 7 '33 4 19 8 37 2 09 0 0. co ?5 3 51 38 I 78 32 I 50 32 I 50 43 2 01 45 2 11 36 1. 68 23 I 08 17 80 13 61 22 I OJ 22 I OJ 50 2. 34 35 l. 64 29 I 36 481 22 51 CJ!= VALID IONS o-::-I N'-/AI I D 0135EHVAT I Ut.JS TOTAL OF ODSEHVAT IDr6 32 1 50 18 84 27 1 26 26 1 22 40 1 87 61 2 85 91 4. 26 93 4. 35 83 3 813 36 1. 68 19 89 25 I 17 :J2 1 50 44 2 06 64 2 99 61 2 85 752 19 2137 95 2232 1-<E'r' X X"( tlU:1flER OF OCCUfWE"NCES <X.< PERCENT OCCURRENCES 14 . 66 17 80 8 37 21 98 15 70 6 28 33 1 54 71 3 32 78 3. 65 25 1 17 17 80 8 37 30 I 40 58 2 71 80 3 74 40 1 87 521 24. 38 95 7<t P(:T 4 26 PC T 100 00 PCT 11 51 1 05 4 19 0 0 00 0 0 00 0 0 00 3 14 28 1 31 30 1. 40 3 14 6 28 5 23 10 47 21 98 69 3 23 39 I 82 230 10 76 8 37 1 05 0 0. 00 0 0 00 0 0 00 0 0. 00 0 0 00 6 28 7 33 3 14 I 05 4 19 0 0. 00 17 80 12 56 19 89 78 3 65 TOTAL SPEED 10'5 4. i;ill 74 :3.46 64 2. 73 3 42 139 4 16 113 5. ;29 179 8.38 239 11 18 225 10 53 136 4. 02 63 2 95 74 3 46 101 4 73 194 'i 08 268 l:: 54 1'70 !J !39 0 0 00 1:37 100 00 4 58 3 61 3 90 3 96 3 68 3 34 3. 94 5 02 5 27 4 61 4 39 3 87 4 43 5 39 5 94 5 83 CALM 4 79 Page 6 of 6 Rev. 0 WOLF CREEK TABLE 2.3-28 JOINT WIND FREQUENCY DISTRIBUTION (MONTHLY 6 0 JVI..ETERS) iLJUJl FREGU.:::NCY DISTR!IH!TION Di\TA f-'E::RIOD ALL JANU,.':HY C(li'HJINE:.D ALL WI l:*A fA I TE SlNSOR HEIGHT 60 00 MFTERS WOLF CREEK GENERATING STATION OURLINGTQN, KANSAS 1-\AtJSAS GAS ANO ELECTRIC Gl:.N<-.R.l*TED 11/10/81. 1)...! 03 DAt-lES ANO l"tllt1RE -JUB NO 7699-064 WifJO PER 3ECUNDJ *<[N[) I ,-*R 3.0-50 >100 NE ESE SSE ssw 1.-JSW NW CALM TOTAL l OS 5 25 1 OS 0 0 00 0 0 00 2 10 2 10 3 15 0 0. 00 0 0. 00 0 0 00 1 05 1 05 2 10 26 1 32 9 46 13 66 21 1 07 5 25 8 41 7 36 4 20 7 36 6 30 10 51 16 81 12 61 7 36 3 15 3 . 15 8 41 1:39 7. 06 27 l 37 28 1 42 30 1 52 17 86 18 91 13 66 19 97 17 86 30 1 52 14 . 71 16 81 34 1 73 1. 29 L 47 13 . 66 26 1. 32 353 17.94 DF VALID OBSERVATIONS 1968 OF INVAI_ID 264 TOTAL r.JMBER OF OES:O:RVAT IONS 2232 ;<..EY XXX NUMBER OF OCCURRENCES .<X:< PERCENT OCCURRENCES tHND DISTRIBUTION DATA PERIOD ALL FEBRUARY COi1BINED 75 3 81 23 1 1 7 40 2 03 43 2. 18 24 1 22 16 81 18 91 50 2. 54 70 3. 56 45 2. 29 35 1. 78 45 2. 29 42 2. 13 54 2. 74 47 2 39 55 2. 79 37 1 88 8 41 9 46 16 81 15 76 15 76 36 1. 83 49 2 49 75 3. 81 28 1 42 11 56 17 86 31 1. 58 59 3. 00 36 1. 83 54 2. 74 682 34 65 496 25 20 88. 17 f*CT 11 83 F*CT. 100. 00 F'CT 24 1 22 0 0. 00 0 0 00 1 OS 4 20 24 1 22 58 2 95 47 2. 39 4 20 0 0. 00 4 20 24 1. 22 23 1. 17 22 1. 12 35 1. 78 272 13.82 l'iFAN TOTAL SPEED 173 8 79 77 3. 91 101 5 13 B2 4 17 71 3 61 55 2. 79 105 5. 34 181 9 20 230 11 69 103 5 23 81 4. 12 112 5. 69 126 6. 40 168 B. 54 122 6 20 179 9 10 1968 100.00 6. 99 4 69 4 82 6 03 6. 02 5 79 7 62 8. 51 B. 01 6. 33 22 5 65 7. 27 7. 59 7. 77 7. 49 CALM 6 95 ALL WINDS DATA SOURCE DN-S.ITE l--JOLF CREEK GENERATING STATION DURLINGTON, KANSAS SENSOR HEIGH! 60 00 KANSAS GAS AND ELECTRIC TABLE GEW:.R;.-lEO 11/10/81. lS :33 48 DAI1ES AND MOORE JOn NO: 7699-064 WINO SPEED PER *3ECON0) MEAN SECTOR 0. 0-1. 5 1 5-3 0 J O-S 0 5. 0-7. 5 7. 5-10 0 >tO. 0 E ESE 1*1\..J N CAL:-1 T:JTAL 0 0 co 1 06 0 0 00 1 Ob 1 06 2 12 0 0 co 0 0 00 2 12 " 25 0 0. 00 1 06 0 0. co 2 12 20 1 24 8 50 19 1 18 5 31 3 19 2 12 8 50 4 25 4 25 3 19 10 62 5 31 5 31 12 74 5 31 7 43 4 ;25 104 6 44 fUI1!3ER li=" VALID OOSERVA o:= IN'JAI_IO OOSER\/ATIONS TJTAL i.u.""'\rlER OF 28 1. 73 27 t. 67 18 1 11 12 74 11 68 17 1. 05 14 87 20 1. 24 13 80 23 1. 42 11 68 24 1 49 17 1 05 20 1 24 25 1 55 39 2 41 319 19 74 1616 424 2040 !-,!:. Y X X'( NU:"1UER OF OCCURRENCES XX< PERCENf OCCURRENCES 37 2. 29 23 1 42 21 1. 30 29 1. 79 26 1. 61 18 1.11 27 1. 67 47 2. 91 33 2. 04 32 1. 98 29 1 79 30 1. 86 25 1. S5 26 1 61 42 2. 60 77 4 76 522 32. 30 79 22 FCT 20. 78 FCT 100. 00 FCT 14 87 16 99 11 . 68 14 87 8 50 4 25 19 1. 18 71 4. 39 40 2. 48 31 1. 92 11 68 8 50 16 . 99 23 1. 42 44 2. 72 47 2 91 377 23 33 18 1.11 8 50 4 25 0 0. 00 0 0. 00 4 25 7 43 29 1. 79 20 1. 24 10 62 10 62 4 25 19 1 18 61 377 78 4 83 274 16.96 TOTAL SPEED 105 6. 50 94 5. 82 59 3. 65 59 3. 65 48 2. 97 53 3. 28 73 4 52 173 10. 71 109 6. 75 106 6 68 4 21 75 4. 64 72 4 46 94 5 82 179 11 08 247 15 28 2 12 1616 100 00 6 81 5. 53 6 00 6. 05 5. 84 5. 31 6 60 7 75 7 83 6 79 6. 60 5. 60 69 7 51 8 70 8. 42 CALM 7 13 Page l of 6 Rev. 0 WOLF CREEK TA.BLE 2. 3-28 (Continued) JOINT 1i'JIND FREQUENCY DISTRIBUTION (MONTHLY 60 METERS) DrSTRIDUTIQr-i c,;r..; >*EfiiUD ALL COM!3INED r_ 1 r l'*:..rt, 0:'\1-SITE ,,; I HEIGHT bO 00 ME n:R5 CREEK GENf'RATit'G STATION BURLINGTON, 1-<.ANSAS KANSAS GAS AND 1 C f.C,HLL GU.!ERMTEO 11/10/B! 15 4/ 44 DAI'I!:::_S AND I"JOURE .mB NCJ
  • 7 699-064 t.JIND SPf-ED CATEGOR!ES(Mf::TERS PER SECOND> \.OINO SEC 0 0-1.:. 1 5--3 0 3 0 5 0*-7. 5 7 5-10 0 ::10.0 ENE ESE SE SSE 5 ssw SW WSW w NtH.J N CAl :-1 TOTAL o9 " 18 2 09 I 05 o9 I 05 0 0 00 2 o* I 05 1 05 6 28 0 0 co I 05 0 0 co 3 14 0 0 00 28 I 29 7 32 9 42 10 46 11 5I 11 51 42 9 42 4 18 4 18 7 32 8 37 9 42 3 14 3 14 2 09 108 4. 99 NUr18Eh: [*;=-VALID OUSER'VATIONS N'JI13ER [rF OBSERVATIONS TOTAL OF DBSEHVATIONS 16 74 :;.:3 1 06 17 79 14 65 ";;.'0 92 C9 1. 34 15 69 27 1. 25 15 69 14 65 7 32 18 63 14 65 28 1 29 312 14. 42 2163 69 2232 !'EY XX.( NU:""oBEH OF OCCURRENCES .<X:< PERCENT OCCURRENCES JOirH HIND FREGliC::NC'f DISTRIBUTIOf*l DATA PERIOD. ALL APRIL COMBINED <6 3. 05 19 E'B 17 79 ";;.*6 1 :::17 1. /1 49 2 ::6 1 <6 70 3 ::a 1. 76 ;;:9 1. 34 97 !0 46 1. :37 1. 71 53 2 45 73 3. 37 so 2 31 16 74 9 42 25 1 16 15 69 46 2 1:3 46 2 13 114 5 27 52 2. 40 15 69 10 46 10 46 18 83 32 1. 48 77 3 56 63 2. 91 603 27.88 598 27 65 96 91 PCT ::1. 09 PCT. 100. 00 PCT 26 1 20 2 09 5 23 11 51 23 1 06 26 1 20 26 1 20 115 5 32 72 3. 33 15 69 5 23 8 37 18 83 37 1. 71 88 4. 07 37 1. 71 514 23. 76 MEAN TOTAL :::;pE:.t::D 167 I' 72 66 05 92 4 25 7 :37 5 46 6 70 101 7 13 4 67 152 7. 54 7 03 147 7 43 6 80 318 9 11 14 70 195 8 75 9.02 82 6 95 3 79 59 6. 06 73 65 6. 02 3 01 68 9 22 3 14 128 8 45 5. 92 234 9 45 10.82 206 I 7 53 9 52 0 0.00 2163 100 00 CALM 7. 86 ALL WINDS DATA WOLF CREEK GENERATING STATION BURLINGTON. KANSAS I.JINO SENSOR HEIGHT 60 00 METERS KANSAS GAS AND ELECTRIC TADLE 11/11/81. 10.37 57. DAMES AND MOORE JOB NO: 7699-064 WIND SPEED CATEGORIES<METERS FER SECOND) MEAN SECTOR 0 0-1 5 1 5-3 0 3 0-*5. 0 5 0-/.5 7. 5-10.0 >10. 0 NNE NE EI\!E E ESE SE SSE s SSW SW :..JSW TOTAc 0 0 00 0 0 00 2 09 0 0. OQ 0 0. co 0 0. 0() 0 0 co 0 0 00 0 0 00 0 0 00 2 09 0 0 co 0 0 OJ 1 05 0 0 co 7 43 4 19 11 52 3 14 4 19 1 05 5 24 4 19 3 14 3 14 2 09 5 24 55 2 60 NIJMBE h' Vf,L I D T lOt-IS tJ'JM13Eh' c:= IrNAI ID TOTAL.. !Ju:18E:R OF 08S!::rNATIONS 16 76 38 1. 80 15 71 12 57 17 80 11 52 7 33 14 66 15 71 11 52 6 28 18 85 12 57 15 71 16 76 lrJ 47 233 11 01 2116 44 2160 EY X X.< N\;;*1[3EF! OF XX"< PERCENT OCCURRENCES 1 46 2 17 ';;'7 1 ;;'8 48 2 ;,.'? ";;.'5 1. 18 14 66 <9 1 '.::7 !2 57 30 1 42 28 1. 80 47 2 22 554 26 18 97 96 PCT 04 PCT 100 00 PCT 29 1 37 4 . 19 15 71 39 1. 84 41 1. 94 94 4 44 102 4 82 111 5. 25 70 3 31 28 1. 32 9 43 18 85 29 1 37 41 1 94 55 2 60 42 1 98 727 34 36 9 43 0 0 00 2 09 7 33 17 80 44 2. 08 104 4 91 142 6 71 46 2 17 27 1. 28 17 80 7 33 15 71 44 2 08 15 ll 42 I 98 538 43 TOTAL SPEED 94 4. 44 89 4 21 63 98 99 4 68 125 91 178 B. 41 263 t;;?. 43 332 1 69 174 E!. 22 93 4 40 51 "'* 41 76 -* 59 73 45 133 6 29 126 147 " 95 0 c.oo 100 00 7. 04 4 89 6. 24 7 03 7. 51 8. 72 9 74 9. 82 8. 58 8 69 7. 77 6. 59 7 80 8 56 7 64 8 39 CALM Page 2 of 6 Rev. 0 WOLF CREEK TABLE 2. 3-28 (Continued) JOINT WIND FREQUENCY DISTRIBUTION (MONTHLY 60 METERS) SEC TOH E SSE sw CALM TOTA\_ WINO SPFE!.) 0 0-t 5 l 1 05 o9 l 05 0 0. 00 1 05 2 . 09 1 05 1 05 l 05 0 0. 00 2 09 0 0. 00 20 92 15 69 11 51 J 32 6 28 9 41 13 60 6 28 5 23 6 28 10 46 4 . 18 7 32 7 32 :31 1 43 t 29 :28 1 29 36 1 66 38 1 7'> 31 L 43 20 92 15 69 9 . 41 24 1.11 10 46 11 51 20 92 14 . 65 399 18 39 36 1 66 42 1 94 48 2. 21 44 03 78 3 59 53 2 44 96 4 42 47 2. 17 27 1 24 10 . 46 14 . 65 13 . 60 31 1 43 53 2. 44 48 21 b85 31.57 CATEGORIESU1ETERS PER 0 3_ 0-5. 0 5 0-7. 5 ESE SSE SS:.J WStJ CALM 0 0. oo 3 14 2 09 0 0. co l . 05 1 05 0 0 oo 3 14 1 o:; 1 05 4 19 2 09 1 . 05 0 0 OG I 05 10 . 47 9 42 8 . 38 9 42 7 33 9 42 7 . 33 18 . 85 8 38 4 19 8 38 1 05 4 19 28 L 32 46 2 16 35 l 65 17 80 23 1. oa 25 L 18 30 L 41 31 L 46 41 1 93 25 1 18 18 85 21 99 !4 66 13 . 61 13 61 .-:.£Y XXX NlJdBER OF OCCUf.IRE.NCES OCCURHENCES 38 1. 79 14 66 23 1. 08 34 1. 60 38 1. 79 57 2. 68 20 94 ;;,4 ! !3 35 ! 65 24 ! 13 48 2 26 38 1. 79 " 51 29 1 34 29 1 34 32 1 47 39 L 80 53 44 187 8 62 69 3 18 14 65 7 . 1 OS 4 . 18 12 55 34 1 57 50 2. 30 0 0. 00 5 23 5 23 3 . 14 . 15 69 154 7 10 84 3. 87 12 . 55 1 05 0 0. 00 4 . 18 2 . 09 22 1 01 338 1:!. 58 115 5 30 i 1B '3. 44 113 5 21 171 7. 83 169 1_ 79 483 22, 26 227 10 4S 75 3 46 34 l. ::07 51 2 35 34 57 65 00 114 5, 25 0 G. 00 WOLF CREE!<. GENERATING STATION BURLINGTON. KANSAS GAS AND ELECTRIC 4 88 6. 04 6 26. 6. 6 46 6 68 8 97 6. 78 5. 34 4. 32 5 55 6. 16 6 53 7 49 CAl.M 7. 19 DAMES AND MOORE -JOB NO: 7699-064 15 71 2 09 'I . 'I . 42 62 2 92 197 q_ 27 34 1. 60 L 8 38 3 14 !l 52 13 61 21 99 0 >10. 0 4 19 1 .05 0 0. 00 3 . 14 1 . 05 3 . 14 10 47 115 5, 41 89 4 19 22 1. 03 4 19 5 24 4 . !9 4 19 9 . 42 4 !9 MEAN TOTAL SPEE:D 95 4 47 75 3, 53 73 3 43 60 2 82 75 3 53 85 4. 00 400 18. B1 132 6 21 59 2. 78 65 3 06 67 15 58 2. 73 96 4 52 92 4 33 1 . 05 5 80 4. 28 4 83 5 57 5, 57 6 83 8. 12 8 18 7 19 5 69 5. 37 6. 25 6 45 6 84 6. EU CALM 6 98 Page 3 of 6 Rev. 0 WOLF CRgEK TA.BLE 2.3-28 (Continued) JOINT 1i'JIND FREQUENCY DISTRIBUTION (MONTHLY 60 METERS) :OINT \nNO FREQLC::NCY PERIOD ALL COM!31N[D ALL l*dl\!05 DATil CJ-SITE SEN.::iOR HEIGHT 60 00 TMnLE GU*.It:R/,TEO ll/1L'8t 'J 42 02 WOLF CRFEVi GENERATING :HAT ION KANSAS Kt .. GAS AND ELECTRIC AND MUOHE 000 NO 7699-064 [NO SEC TCR PE:R SECOND) 0 0-1.5 1 J*3 0 3 0 7 :'1-10 0 MEAN ErJt:. ESE SE SSE SS:.J sw NW NNW CALM TOTAL 0 0 OJ 0 0 00 1 05 09 1 05 0 0 OQ 0 0 OJ 1 05 0 0. 00 1 05 0 0 OJ . 4 19 1 05 0 0. C:> 17 80 3 14 5 23 8 CG 14 66 21 99 8 38 13 61 17 80 II 52 5 23 6 28 3 . 14 3 14 1 05 3 14 123 5 78 N1JMBE1-< Of" VALID NUMBEI-( Q? !NVAI_ID OB!:3ERVATIONS TOTA!.... ra.,,1BER OF OBSEHVATIONS 10 47 !9 B9 :ll 1 i..b ]9 1 i=i3 '" 2 11 34 1 60 43 2. 02 44 2. C7 ::04 1. 60 25 1. 17 12 56 11 52 10 47 7 33 4 19 8 38 376 17.67 2128 104 2232 KEY XXX Nl.!:1GER OF OCCURRENCES XX.< PERCENl" OCCURRENCES JOINT W!ND DISTRIBUTION DATA PEt-HOD ALL AL'GUST COMBINED ALL WI DATA SOURCE. C:-.1-SITE 4" 2 30 4(> 1 BEl 60 2 3! 1. 4t, 61 2 8/ 3. 9S 26t 12. sc 1 7 " 61 2. 87 1 9> 14 6t 1C . 47 15 70 13 61 28 1. 32 19 89 3 14 17 80 31 1. 46 27 1 27 23 1 08 37 1 74 149 7. 00 113 5. 31 21 99 10 47 13 61 13 61 10 47 3 14 13 61 991 46. 57 502 23. 59 95. 34 PCT. 4 66 PCT 100 00 PCT 0 14 66 0 0 oo 4 19 3 14 4 19 4 19 I 05 49 2. 30 27 l. 27 3 14 0 0 oo 0 0. 00 0 0. 00 1 05 7 33 119 5 59 10--:-AL SPEED ,, 4. 46 67 3 15 121 s 69 174 B. 18 130 6. 11 I 31 6 16 179 8. 41 '::)25 24 67 :Gs 15. 88 117 5. 50 45 2. 11 47 2. 21 36 1. 69 37 1 74 26 1 22 60 2. 82 0 0 00 2128 100. 00 7 25 5 24 5 93 5. 86 5. 36 5 95 5. 94 7 13 7 19 6. 09 6. 04 5. 89 6. 21 5. 91 5. 18 6 86 CALM 6 46 WOLF CREEK GENEHATit>JG STATtON BURLINGTON, j.(,ANSAS SENSOR HEIGHT. 60 00 1'1ETERS TABLE GENeRATED. 11/11/81 13. 51. KANSAS GAS AND ELECTRIC DANES AND MOORE JOB 1-.10: 7699-064 WIND WINO SPEED CATEGORIES(METERS P:::R SECOND) SECTOR 0 0-1. 5 1. 5-3.0 3 0-5 0 5 0-7 5 7. 5-10 0 >10. 0 NNE NE ESE SE SSE NW N CAlM TOTAL 2 09 1 05 1 05 3 14 1 05 I 05 1 05 I 05 1 05 5 23 0 0 00 1 05 I 05 2 09 0 0 00 25 I 17 5 23 11 51 7 33 9 42 8 37 14 66 12 56 11 51 3 14 14 66 7 33 9 42 7 33 4 19 5 23 7 33 !33 6 22 [*:= 'JAl ID OBS!::F!VATIONS IJ'Ji10Ek 0.1:" It!VAI JD OBSEHVATIONS TOTAL OF OUSEHVAT IONS :33 1 '54 t7 BJ bO 2 B1 2 i)6 2 15 10 "*7 12 :>6 8 :7 13 t1 14 t6 20 94 433 20 26 21:37 95 .;.>232 KEY XX< WJ:--IBER OF OCCURRENCES J:X.< PERCENr OCCURRENCES 35 1. 6l 3:3 1. 7:3 47 2. 2*) 4:3 2 Ol 213 1. 3l 5:3 2. 4!3 9: 4 2t} 22'f 10. ?;! 18 8 4:' 3:' 1. 7:! " 4.;;* 11 51 " 5t 2E 1 31 3::: 1 54 B\3"3 41 32 9S 74 PCT 4 ;;:6 PCT 100 00 PCT 13 61 9 42 18 84 11 51 24 1 12 43 2. 01 143 6 69 76 3 56 20 94 6 28 3 14 11 51 11 51 10 47 402 18 81 5 23 1 05 4 19 . 5 23 24 1. 12 147 6 88 48 2. 25 6 28 0 0 oo 1 05 I 05 4 19 4 19 7 33 261 12 21 MEAN TOTAL SPEED 86 4 02 87 4 07 93 4 35 98 4 59 67 3 14 132 6 18 :;?11 9 87 :j91 27 66 :159 16. 80 .128 5 99 31 1 45 35 1 64 31 I 45 46 2 15 63 2 95 79 3 70 0 0 00 2137 100 00 5 95 4. 97 5 61 5. 88 5. 75 5 87 6 75 7 86 7. 20 5 48 5 06 4 68 5. 04 6 22 6 17 5 99 CALM 6 64 Page 4 of 6 Rev. 0 WOLF CHEEK TJI,BLE 2.3-28 (Continued) JOINT WIND FREQUENCY DISTRIBUTION (MONTHLY 60 METERS) FREGt!L::NCY DI3TRIGIJTION DA 1 A FE-_R IUD ALL !::!::PTEMBER CUI'Hl [NED r,Lf_ hi l NOS [)/,T{; C'N-SITE WOLF CREEK GENERATING STATION UURLINt;TON, IA..ANSAS SENSOR HEIGHT 60 00 T G[N!::.RATED l l/ t 1/01 13 54 EU.::C TR I C DA!'iES AND MOURE ..!03 NO "/699-064 I '.3ECTCR \.-JINO SPEED CAJEGOR IES<METERS I'ER SECOND) 0 0 1 5-3 0 3 0*-::> 0 o-*l.S 7 0 >10 0 EUE ESE SE SSE s ssw sw WSW NW N CAL!'1 TOTAL .; 19 1 05 0 0 00 0 0 00 0 0 00 4 19 4 19 2 10 5 24 0 0 co 1 05 4 19 1 05 2 10 2 10 2 10 34 1 62 " 24 19 90 12 >7 11 52 15 71 18 86 20 95 27 1 28 24 1. 14 20 95 11 52 13 62 6 29 11 52 7 33 12 57 231 10 98 NUM3EH VALID OI3SER1JATIONS N'JM3ER OF INVALID OBSERVATIONS TOTAL OF OBS!:£RVAT IONS :n 1 85 21 1 00 1 14 31 1. 47 2 JS 61 2. 90 89 4 18 so 2 38 32 1 :J2 16 76 11 52 16 76 12 57 8 38 509 24 20 2103 57 2160 1-\EY XX-< NU;18Eii: OF OCCURRENCES XX:< PERCEI\If OCCURRENCES JOH.!T DISTRIBUTION DATA PERIOD ALL D:TOBER COMBINE:D :lO 1 43 104 4 05 106 5 04 tt;.5 6 H9 ,,. 3 :14 1 t*2 7 :13 3 14 4 19 19 . ':'0 '*4 2. 09 10 2. E;5 35 1 66 8 38 :J2 1. 52 26 1 ;'4 14 67 29 1 38 49 2 33 69 3. 28 5 24 2 10 1 05 8 . 38 25 1. 19 54 2. 57 BCO 38. 04 381 18. 12 97. 36 PCT. 2. 64 PCT 100. 00 PCT. 22 1 05 1 05 8 38 3 14 0 0 00 9 43 24 1 14 44 2 09 8 38 0 0. 00 0 0 00 0 0. 00 0 0. 00 3 14 24 1 14 148 7. 04 Mr:AN TOTAL SPEED 1:?7 {J 04 102 <t EJS 103 ij. 90 118 61 114 42 214 10. 18 264 1;; 55 375 17.83 178 e 46 91 4.33 37 1 76 44 09 7 04 4 85 6. 57 6 04 5. 45 5 76 6 30 6. 49 5 64 4 81 3 99 3 46 23 3 94 1 09 59 5. 34 81 92 6 28 4. 37 160 ' 7 36 61 2 10 :::'103 100 00 CALM 6. 01 ALL l-J I DATA SOLJRCE: lHfM SEtJSOR HEIGHT. 60 00 METERS WOLF CREEK GENERATING STATION BURLINGTON, KANSAS T AI3LE GENFRATED 11/11/81. 14 57. 07. KANSAS GAS AND ELECTRIC DAMES AND MOORE -JOB NO: 7699-064 WIND SECTGR WIHO SPEED CATEGORJES(MEfERS PER SECOND) 0 0-1.5 1. 5-3 0 3 0-5.0 5. 0*-7. 5 7. 5-10. o :.dO. 0 MEAN NE ErJE E ESE SE SSE s ssw sw WSt-.1 TOTAl.. 0 0 00 0 0 00 1 OS .; 20 0 0 00 1 OS 4 20 4 20 1 OS 1 OS 0 0 00 0 0. O'J 1 OS 0 0 00 3 15 1 05 23 1 15 7 35 8 40 3 15 4 20 0 0 00 7 35 8 40 6 30 12 60 6 30 5 25 9 45 7 35 4 20 2 10 4 20 92 4 58 Q;=-\1,4.L.l D RVr, T l DtJS Dr I/J'./AI_ID Olt5ERVATIOnS TOTA!.... OF OOS!:.HVAT IONS 13 65 23 1 15 1 10 19 95 27 1. 35 17 85 23 1. 15 39 1. 94 Z8 1 40 31 1. 54 27 1. 35 19 95 21 1. 05 19 95 13 65 10 50 351 17 49 ;;:lQ.J7 22.32 XX< NL:1BEM' OF OCCURRENCES XX( PERCEIH OCCURRENCES 1 il4 15 7"5 !;"4 1. ;;'o ;::o 1. c,o '9 1 :::o 2. 49 ,. 3. 19 1 6. C*B 69 3. 44 '29 1 44 1. 15 14 70 25 1. 25 30 1 49 31 1 54 39 1 94 625 31 14 89 *::;2 PCT 10 08 PCT 100 00 PCT 25 1. 25 0 0 00 9 . 45 24 1 20 28 1. 40 28 1. 40 68 3 39 165 8 22 46 2. 29 14 70 9 45 29 1 44 34 1 69 37 1 84 58 2 89 576 28 70 7 35 0 0. 00 0 0. 00 1 05 10 50 29 1. 44 35 1. 74 131 6. 53 19 95 12 60 3 15 8 40 10 50 14 70 17 85 44 2 19 340 16 94 TOTAL SPEED 81 6. 82 -'1. 04 46 4. 47 29 59 5 47 94 70 6. 14 :J 49 98 6. 70 4 88 131 7. 68 6 53 199 7. 83 9. 92 479 8. 70 2:1.87 178 6 89 B. 87 93 6 32 4 63 61 5 10 3. 04 59 6 02 < 94 92 6 88 4 OS 102 7 40 5.08 100 7 59 4 98 1:'.18 I 8. 46 7 87 1 05 2007 100 00 CALM 7 40 Page 5 of 6 Hev. 0 WOLF CREEK TABLE 2. 3-28 (Continued) JOINT WIND FREQUENCY DISTRIBUTION (MONTHLY 60 METERS) :Oir'-IT f-REQt.h-rKY DISfRIDUIIOfJ OAT A f"EfH CD ALL COr1U ALL (JINDS DMTA TE l.JULF CHEEK GHJ!:"RATitJG SIATJON BURLINGfDN, SUJ30R HEIGHT .:.0 00 METERS T.;:JLE GDJLRf,TED 11/11/lll tJ OJ 46 I-IMN:.;AS GAS f\ND ELlc.C:1RlC DAI*IES AND I'!OURF J{JI:l NO 7699-064 \.JIND SECTOR WI r-M SPEED CATEGOR 1 ( TERS PER SECOND) o. o-1, s t :..-3 o 3 o-o s o--.' s 7 o >to. o NOJE NE ESE SE SSE SS:..J SW w N CAl :'1 TOTA!.... 1 05 1 05 1 05 2 09 0 0. 0:) 0 0 OJ 3 14 1 05 0 0 co 1 05 0 0. OQ 2 09 1 05 21 98 6 28 7 33 ,, 23 1 05 6 28 5 23 2 09 8 37 5 23 6 28 3 14 3 14 4 19 3 14 6 28 72 3 36 NLJM3Eii VALID OBSERVATIONS NUMBER INVALID OBSERVATIOt.IS TOTAL j;u;1DER o;:-OI3SERVAT IONS 1 9 42 10 47 3 14 14 . 65 47 2. 19 18 84 17 79 17 79 20 93 14 . 65 8 37 10 47 15 70 281 13_ 11 2143 17 2160 KEY XX.< NL:MBER OF OCCURRENCES XX'( PERCENf OCCURRENCES JOINT l..!IrJO FREQL;ENCY DATA PERIOD ALL DECEMBER COMBINED :J6 1 t.s :J9 1 El2 19 fl9 1 17 65 3 03 1:30 6 07 92 4 29 49 2 29 54 2. 52 52 2. 43 !JO 2 :13 35 1 63 4 19 18 84 18 84 8 37 18 84 56 2 61 120 5. 60 63 2 94 35 1. 63 25 1. 17 44 2. 05 50 2. 33 69 3. 22 64 2 99 47 2 19 7:.17 34 :J9 674 31 45 99 21 PCT . 79 PCT 100. 00 PCT. 21 0 0 00 10 47 4 19 " 2EI 40 1 87 7t. 3 4S' 2 29 20 9:1 4 19 B 37 ,, . 2:1 46 2. 1 50 2 3:1 t:l 61 35B 16. 71 :-"EAtJ TOTAL SPEED 125 ::* 8:J 83 3 87 62 89 54 2. 52 46 ;: 15 68 3 t7 185 B 63 384 17. 92 228 10 64 113 5 27 75 3 50 125 5 83 127 5. 93 179 8. 35 179 8. 35 109 5 09 1 05 ;:'143 100 00 co 6. 61 6. 69 7 91 7 87 7. 89 7 52 6 58 7 04 7 08 8 67 8 49 7 53 CALM 7 54 ALL Dt.l t. SOURCE I TE t.JINIJ HEIGHT 60 00 METEF.S WOLF CREEK GENERATING STATION BURLlNGTON, KANSAS TABLE GENERATED* 11/11/81 15.09 30 lo'.ANSAS G;.S AND ELECTRIC DAf1ES AND t100RE .JOB NO. 7699-064 WINO SPEED CATEGORIES<MC:TERS PER SECOND) WIND SECTOR 0. 0-1. 5 1 5-3 0 3 0-5 0 5. 0-7. 5 7 5-10.0 >10. 0 NE ENE E ESE SE SSE s sw WSl.J N CAl :1 TOTAL 1 05 l 05 3 14 1 05 3 14 2 09 0 0. 00 2 09 3 14 0 0 co 2 09 2 09 2 09 1 05 2 09 29 1 36 11 51 16 75 11 51 9 42 7 33 4 19 5 23 3 14 , 23 5 23 6 28 5 23 7 33 8 37 13 61 10 47 125 5 84 25 1 17 23 1. 07 9 42 9 42 13 . 61 17 . 79 24 1 12 26 1 21 17 79 19 . 89 19 89 11 51 12 56 21 98 16 75 ;;;9 l 36 290 13 55 N'JM:JEI-< Q;=-l/AL I D OBSERVA r I 2140 tUi1:JEH [*;:: IN'JA' JD ODSERVATifJNS 'Y:J fOT A!_ Oi=" ODSERVA r IONS 2232 KEY X X ( OF OCCURRENCES XX:< PfRCErH OCCURRENCES 15 70 41 1. 92 21 98 17 79 23 1. 07 38 1. 78 70 3. 27 78 3 64 76 3. 55 53 2 48 21 98 21 98 42 1. 96 55 2 57 92 4 30 56 2 62 21 98 9 42 15 70 7 33 22 1. 03 2! 98 60 2. 80 109 5. 09 95 4 44 21 98 7 33 7 33 33 1 54 51 2 38 86 4 02 55 2 57 719 J3 60 619 28. 93 9:5. 88 PCT 4 12 PCT 100. 00 PCT. 24 1. 12 1 05 2 0'1 () 0. 00 3 . 14 3 14 1 05 66 3 08 53 2 48 11 51 8 37 4 19 14 65 3'? 1 63 2. 94 66 3 08 358 16 7:J MEAN TOTAL SPEED 98 7 26 4 58 91 5 30 4 25 59 5 85 2. 76 45 4 92 2 10 69 6. 37 3. 22 86 6 25 4 02 162 6. 84 7. 57 282 8 32 13 18 248 8. 11 ll 59 112 6 54 23 61 6 14 2 85 50 6 07 """ 34 110 7 14 =-. 14 176 7 92 8 22 272 7 99 t;;.*. 71 217 I 8 24 10 14 100 00 CALM 7 36 Page 6 of 6 Rev. o WOLF CREEK TABLE 2.3-29 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (ANNUAL) ,JlJINf tnuD FREOlJc',q..:l' DISTR!GUTION I3Y STAGILITY CLASS DAfA f'ERIOO ri*RE.E YCARS COMOINFD Sf.:.rl [l.rTY Cl PASQV!LL A !Jf, T h I TE HEIGHT iO 00 METERS Tt,ULE 13 14 :JO. WINO SECTOR 0 0-1. 5 1 :J-3 CA TEGOR lf:'3 ( Mf';: TERS PER 0 3 0-5 0 5 0 *7 5 N.\JE ENE ESE SE SSE s ssw WSI.J w w:-..:L-.J NW N CALM TOTAL 4 24 47 c,:;: '" 87 1 70 2:J 02 10 19 25 17 :35 1:) 62 1 27 5*l 01 07 14 Q,*J 2 7 l*l 07 25 1 20 5I 01 03 1:3 O,'J l 10 ;:'3 10 oc, 36 83 :JtJ 00 04 09 0*1 2 30 2:) 07 1 09 1 91 01 12 14 1() 6 24 3"/ 22 87 1 38 1 34 02 10 !6 1:) 1 22 78 6:' 00 80 2. 83 2 4:1 00 09 :32 2:' 3 31 106 20/ 11 1. 12 3. El4 7. 50 01 13 43 8:.> 6 22 92 20:; 22 80 3 3:3 7. 02 09 :19 4 23 44 3<.* 14 83 1 59 1. 4; 02 09 IB "' 6 21 17 ll 22 76 62 40 02 09 07 0'1 2 23 27 27 07 83 98 9[) 01 09 11 ll 4 14 18 2::) 14 51 65 . 91 02 06 07 10 4 7 24 56 14 25 87 2 o::.; 02 03 10 2:1 2 8 34 9'5 07 29 1 23 3 44 01 03 14 39 3 14 44 8;;:* 11 51 1 59 2 97 01 06 18 :34 3 II 01 55 297 694 977 1 99 "lO. 76 25 14 35. 39 22 1 21 2. 84 4 oc KEY XX.< NUi'1BER OF OCCURRENCES <X.< PERC EN r OCCURRENCES THIS CLASS XU PERC EN r OCCURRENCES ALL CLASSES WOLF CHEEK STATION Ir..!GTON, KANSAS i\/\M)/'IS GAS /',f'JD ELECTRIC DAMES AND MOur-.IE:: JOB NlJ 7699-064 SECOND> MEAN 7 5-10 0 ">to. 0 'IUTAL SPEED 14 0 t 51 4 99 51 0. 00 5 47 06 0. 00 62 5 0 74 4 33 18 0 00 2 68 02 0. 00 30 0 0 56 4 24 0 00 0 00 2 03 0. 00 0 00 23 3 0 47 4 47 11 0 00 l 70 01 0 00 19 6 3 100 4 57 22 11 3 62 02 0! 41 4 2 Ill 4 45 14 07 4 02 02 01 45 28 6 5 40 1 01 22 7 32 11 02 83 145 49 :*)41 6 75 5. 25 1. 77 19. 59 . 59 20 2 21 107 78 1 0 6. 99 3 88 2 83 18 47 44 32 2.09 34 29 :73 6 41 1. 23 1. 05 6 27 14 12 71 11 5 71 4 89 40 18 2 57 04 02 29 8 1 88 4 75 29 04 3 19 03 00 36 11 8 80 6 02 '40 29 2. 90 04 03 . 33 38 16 145 6 81 1. 38 58 5. 25 16 07 59 77 7 6 77 2 79 25 B. 08 31 03 91 32 11 186 6 01 1. 16 40 6 74 13 04 76 3 CALM 11 01 523 215 2761 6 07 18. 94 7 79 100 00 2 14 88 11.29 JOinT FREOt.;ErKY DISTRIBUTION BY SfABILilY CLASS DATA PERIOD T ... YEARS COMBINED STI.3 II_ IT\" CLASS* PASQUILL B DATA SOURCE 0:'-J-SITE tH:JtJ SEt>ISOR HEIGHT. 10 00 METERS TMDLE 11/05/81. 13 14. 50. WIND WII.JO SPEED CATEGORlESCMETERS PER SECTGt 0 0-1 5 1. 5-3 0 3. 0-5. 0 5. 0-7 5 N:4E 1 10 24 14 08 80 1. 91 1. 12 00 04 10 06 NE 24 29 9 1 91 2 31 72 01 10 12 04 E/\:E 1 10 11 9 08 80 88 72 00 04 04 04 1 10 08 so 01 00 04 01 ESF 0 13 14 11 0 00 1 04 1. 12 88 0 OJ OS 06 04 SE 0 13 22 10 0 00 1. 04 1 75 80 0. C::> 05 09 04 S:JE 0 8 24 2.0 0 00 64 1 91 1 59 0. 00 03 10 08 13 6! 89 I 04 4. 86 7. 10 0! 05 25 36 2 8 44 63 16 64 3 51 5 02 01 03 1!3 26 SW 0 15 16 29 0 00 1. 20 1. 28 2 31 0 00 06 07 12 I 6 5 16 08 48 40 1 28 co 02 02 07 w 3 15 23 10 24 1 20 1 83 80 01 06 09 04 w.--.:.J 0 !3 12 20 0 00 1 04 96 1 59 0 OJ 05 05 08 rJW 1 21 12 35 oa 1 67 96 2 79 co 09 05 14 NtM 1 5 15 48 03 40 1 20 3 83 OJ 02 06 20 N 1 14 2:3 37 03 1 12 1 83 2 95 00 06 09 15 CALM 0 0 00 0 00 TOTAL 17 !89 345 422 1 3!> IS 07 27 51 33 65 07 77 1 41 1 73 KEY XXI.. NU."1UER OF OCCURRENCES .<X.< PERCErH OCCURRENCES THIS CLASS o:.< PERCENf ALL CLASSES WOLF CREEK GENERATING STATION BURLI NGTQN, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7699-064 SECOND) MEAN 7. 5-10. 0 )10. 0 fOlAL SPEED 12 4 65 5 40 96 32 5. 18 05 02 27 1 0 65 3. 64 08 0 00 5 18 00 0. 00 27 2 0 33 4 25 16 0. 00 2. 63 01 0 00 13 1 3 19 5. 28 08 24 1 52 00 01 08 3 5 46 5. 04 24 40 3 67 01 02 19 2 0 47 4 20 16 0 00 3 75 01 0. 00 19 5 2 59 5 29 40 16 4. 70 02 . 01 24 45 19 229 6. 28 3. 59 1. 52 18 26 18 08 . 94 33 14 164 6. 41 2. 63 1. 12 13.08 13 06 67 15 5 80 5. 83 1 20 . 40 6 38 06 02 33 6 1 35 5 55 48 08 2 79 02 00 14 3 1 55 4 00 24 08 4 39 0! 00 :22 7 2 54 5 43 56 16 4 :]1 03 01 :22 26 11 106 6. 37 2. 07 88 8 45 11 04 43 29 4 102 6 63 2. 3! 32 8. 13 12 02 42 16 4 95 5 61 1 28 32 '1 58 07 02 39 0 CALM 0. 00 0 ()0 206 75 5 67 16 4:1 5 98 100 00 84 31 !3 ( 1 0 1\/lE TE RS ) Page 1 of 16 Rev. 0 WOLF CREEK TABLE 2.3-29 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (10 METERS) (ANNUAL) Page 2 of 16 ,IIJINT f-.RE="OU-::1-.JCY PTSTRIGUTTON llY STABILITY C!..ASS C.ATA PE-I<ICID Tl-'rtEE Y[.t;RS COMBINED :iTi\3T! ITY C o,:., T A SOURCE 00J -SITE HEIGHT 10 00 Mf:TERS TMULE l\/05/tll 1:1 14 JO WIND wrrw Sf'Tf.::D CATEGOR METE?RS PER SECTOR o) 0-1. 5 1 5*-3. 0 3 0-5 0 0-7 ,, 1 14 26 07 94 1 w 1. 74 00 06 10 11 19 13 1 1 g{; 87 01 09 05 E:-..:E 1 10 16 9 07 67 1. 07 60 OJ 04 07 04 4 5 14 7 27 34 94 47 02 02 06 03 ESE 0 5 23 11 0 00 34 1 54 74 0. 00 02 09 04 SE 2 7 24 15 13 47 1 61 1 01 01 03 10 06 SSE 1 18 ::D ::.H 07 1 21 2. 21 2 08 OJ 07 1:3 13 19 71 86 1. 27 4 76 5 76 01 08 29 35 SS:.-.1 1 17 48 93 07 1. 14 3. 6. 23 co 07 20 38 sw 2 8 14 31 13 54 94 2 08 01 03 . Ob 13 2 12 19 10 13 80 1. 27 67 01 05 Of! 04 1 13 31 12 07 87 2. OE! 80 00 05 l::l . 05 WNW 3 12 21 25 20 80 1. 41 1. 68 01 05 09 10 7 2::! 47 . 47 1 54 3. 1:5 01 03 09 19 f\!t 2 12 31 57 13 80 2 08 3. 82 01 05 n 23 N 0 7 34 50 0. 00 47 2. 2El 3. 35 0 co 03 14 20 CAU1 0 0 00 0 00 TOTAL 26 188 446 523 1 74 12. 60 29 89 35.05 11 77 1 2. 14 KEY XXX Nt;:"'DER OF OCCURRENCES <XX PERCENr OCCURRENCES lHIS CLASS XXX PERCEiH OCCURRENCES ALL CLASSES JOINT t.Jitm DISTRIBUTION BY STABILITY DATA PERIOD THREE YEARS COMBINED STABILITY CLASS PASGUILL D DATA SOURCE C.\l-SITE t-JI HEIGHT: 10 00 METERS TABLE GENERATED* 11/05/81 13 14 50 WIND WINO SPEED CATEGOR WETERS PER SECTOR 0 0-1 5 1 5-3 0 3 0-5 0 5.0-7.5 18 99 206 168 . 24 1 31 2. 72 2. 22 07 . 40 84 69 NE 16 102 177 91 21 1 35 2. 34 1. 20 07 42 72 37 ENE 18 78 145 75 24 1. 03 1. 91 99 07 32 59 31 E 22 84 161 77 29 1.11 2. 13 1. 02 09 34 . 66 31 ESE 7 71 139 83 09 94 1. 83 1 10 03 29 57 34 SE 12 71 136 77 16 94 1. 80 1 02 05 29 56 . 31 SSE 11 91 199 125 15 1. 20 2. 63 1. 65 01 . 37 81 51 17 118 344 390 22 L 56 4 54 5. 15 07 48 1 41 1. 60 ssw 10 67 169 249 13 88 2. 2:1 3. 29 04 27 69 1. 02 sw 17 57 92 59 22 75 1 21 78 07 23 38 24 WSW 18 45 59 30 24 59 7a 40 07 18 24 12 15 55 87 58 20 73 1 15 77 06 36 . 24 11 79 102 15 61 1 04 1. 35 04 19 3:;! . 42 rJA 9 52 10:1 180 12 69 1. 36 2 38 04 21 4:;! 74 !:ollJ 13 61 160 242 17 81 2 11 3 19 05 25 6':) . 99 " 18 78 23Q 224 ,. 1 03 3 " 2. 96 07 32 9B 92 CALM 5 07 02 TOTAL 237 1175 2230 3 13 15 51 32 9:1 29. 44 97 4 81 10 21 9. 12 !-' t.XX NU:1llER OF OCCURRENCES t.XX PERCENT OCCURRENCES THIS CLASS XX.( PERCENT OCCURRENCES ALL CLASSES WOLF CREE:.I. GENERATING STATION UUf-<Lir-JGTON, KAr.JSM; KANSAS G/\S AND ELECTRIC DAJ*lr-S f-1ND t10UHE NO. 7699-064 SECOND) MEAN 7 5 10 0 :;to 0 TOTAL ED 21 2 H9 65 1 41 13 5 97 09 01 ::J6 2 0 :Jn 3 90 13 0 00 :l. !39 01 0. 00 ;,>4 2 () :*m 4 25 13 0 00 2 01 0 00 16 0 1 :31 4 40 0. 00 07 2 08 0 00 00 13 0 1 40 4. :J1 0 00 07 2 /.,8 0 00 00 16 4 1 :J3 4 73 27 07 ::J. :55 02 00 ::'2 12 2 97 5 04 80 13 6 !JO 05 01 40 49 12 239 5 96 3. 28 80 16 02 20 05 '?8 37 19 215 6. 21 2. 48 1 27 14 41 15 08 E!B 5 5 65 5 71 34 34 4 :J6 02 02 27 1 3 47 4 44 07 . 20 3 15 00 01 19 2 1 60 4 30 13 07 4. 02 01 00 25 7 1 69 5 10 47 07 4 62 . 03 00 ;m 21 15 115 6. 69 1. 41 1. 01 7 71 09 06 . 47 32 5 139 6. 03 2 14 34 9.32 13 02 . :J7 36 10 137 ' 6 53 2. 41 67 9 18 15 04 56 0 CALM 0 00 0 00 231 78 1492 5 63 15. 48 5. 23 100.00 94 32 6. 10 CLASS WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAI1ES AND I'IOORE ... JOI3 NO: 7699-064 SECOND) MEAN 7 5-10. 0 )-10. 0 TOTAL SPEED 79 17 587 5 06 1 04 22 7. 75 32 . 07 2. 40 18 3 407 4 15 24 04 5. :J7 07 . 01 1. 66 19 1 3::16 4. 19 25 01 4 44 08 . 00 1. ::17 14 4 362 4 10 18 . 05 4. 78 . 06 02 1. 48 23 14 3:37 4. 78 30 18 4 45 09 06 1 38 33 9 3:38 4. 70 44 12 4 46 13 04 1 :38 41 21 488 4 92 54 28 6. 44 . 17 09 2. 00 270 86 1225 6. 12 3. 56 1. 14 16. 17 1_ 10 . 35 5. 01 123 53 671 6. 03 1 62 70 8. 86 50 22 2. 74 34 8 267 4 76 45 11 3. 14 03 1 09 24 3 179 4 40 32 . 04 2. :36 10 01 73 27 11 253 4 77 36 15 3 ::14 11 04 1. 03 31 19 2lJ8 , 41 41 25 3 130 13 08 1 18 95 38 477 6 15 1 25 50 6. :JO 39 16 1 95 137 45 6 07 1. 81 59 8 69 56 18 2 69 111 28 6',18 5 48 1. 47 37 9. :21 45 11 2.86 5 CALM 07 . 02 5 32 1079 360 14 24 4 75 100 00 4 41 1 47 30 99 Rev. 0 WOLF CR.EEK TABLE 2. 3-29 JOINT WIND F'REQUENCY DISTRIBUTION BY STABILITY CLASS (10 METERS) (ANNUAL) Page 3 of 16 '0It<T FREGU.'.:rKY DISTRIBUTION UY STABILITY CL.ASS D . .;TA TH*<EE YEARS CClf*lfJINED ST.;[l IL ITY PASOlJll.L E 0/,lh '30lJRCE -SITE HFIGHT !0 00 METERS ;-;[NFR/ITED 11/05/81 13 14.50 1 W CATEGOR lES(I'"t:TERS PER SECTOR 0 0-1 5 1 5-3. 0 3 0-5. 0 " 0-7. '5 ESE SE SSE ssw sw WSt.J w NN:.J N CALM TOTAL 11 59 79 :l9 19 1 01 1 35 67 01 24 32 16 16 104 72 16 27 1 78 1 23 07 43 29 07 17 87 83 29 1 49 1. 42 48 07 36 . 34 11 12 74 106 70 21 1 27 1 81 1 20 05 30 43 29 13 85 125 61 .22 1 45 2 14 1 04 OS 35 . 51 19 126 146 65 32 2 15 2. 50 1.11 03 52 60 _;n 16 184 379 205 27 3 15 6_ 48 3. 07 75 1. 55 . 84 25 199 523 486 43 3 40 8 94 8 :11 10 81 2. 14 1. 99 16 85 190 188 27 1 45 3 25 3 21 07 35 78 77 7 70 80 39 12 1 20 1. 37 67 03 29 33 16 8 33 40 21 14 56 68 . 36 03 13 16 09 13 59 53 27 22 1. 01 91 . 46 05 24 22 11 9 58 94 33 15 99 1. 61 56 04 24 . 38 13 13 68 121 47 22 1 16 2. 07 80 05 28 . 49 19 12 58 102 78 21 99 1. 74 1 33 05 24 42 32 14 66 99 54 24 1. 13 1. 69 . 92 06 27 40 . 22 1 02 03 222 1415 2292 1457 3 8J 20 39. 19 24. 91 91 5 79 9. 37 5. 96 KEY XX.<. NU:-;EER OF OCCURRENCES (X,( PERCENl" OCCURRENCES THIS CLASS XX':< PERCEt>JT" OCCURRENCES .4LL CLASSES I*JOLF CREEK GENERATING STATION OURL I NGTON, t(ANSAS KANSAS GAS AND ELECTRIC rJf\I1ES I';NU MUORE JUI3 NO 7699-064 SECOND) MEAN 7 0 :;lQ 0 TOTAL SPEED 0 7 ;;:ot 4 18 10 12 " 44 02 03 32 1 0 209 3 04 02 0 00 3. 57 00 0 00 85 3 0 :;'18 3 40 05 0 00 3 73 01 0 00 89 8 3 273 4 19 14 05 4. 67 03 01 1. 12 11 1 296 4 02 19 02 " 06 04 00 1 21 20 378 3. 91 34 6 46 08 01 1 55 25 4 813 4 27 43 07 13 90 10 02 3 33 177 63 1473 5 34 3 03 1 08 25. 19 72 26 6 03 65 22 566 '5. 20 1.11 38 9. 68 27 09 2 32 6 1 203 3. 85 10 02 3. <!!-7 02 00 83 2 0 104 3. 54 03 0. 00 1. 78 . 01 0 00 43 3 0 155 3. 49 05 0 00 2. 65 01 0 00 . 63 2 0 196 3 69 03 0. 00 3. 35 . 01 0 00 . 80 7 2 258 3 95 . 12 03 4. 41 . 03 01 1. 06 9 0 259 4 22 15 0 00 4. 43 04 0. 00 1. 06 11 1 245 ' 4. 07 19 02 4 19 04 00 1. 00 1 CALM 02 00 356 106 5848 4 42 6 09 1 81 100 00 1. 46 43 23.92 JOINT FREQGE:NCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD YEARS COMBINED STMHILIT,. PASQUILL F OM T A O:IJ-S I TE 5Et60R HEIGHT. 10 00 METERS TAGLE GEN::CRATED 11/05/81 13 14 50. WIND WINO S!"EED CATEGORIES(I!ETERS PER SECTOR 0 0-1. 5 1 5-3 0 3 0-5 0 5 0-7. 5 WJE 6 67 56 1 18 2. 04 1. 71 03 02 27 . 23 00 16 76 32 0 49 2 32 98 0. 00 07 31 13 0 00 Ef'I.:E 1.; 71 62 0 43 2 16 1 89 0. 00 06 29 25 0 00 13 83 76 9 40 2 53 2 32 27 05 34 31 04 ESE 17 92 71 8 52 2 80 2 16 24 07 38 29 03 SE 19 213 96 12 58 6. 49 2. 93 . 37 08 87 . 39 05 SSE 17 :309 235 20 52 9 42 7. 16 61 07 1. 26 96 . 08 s 19 144 257 23 58 4 39 7 84 . 70 03 59 1. 05 09 SSl.J 21 94 112 21 6< 2. 87 3. 41 64 09 38 46 09 sw 13 57 37 1 40 1 74 1. 13 03 05 23 15 00 WS(.J 19 56 24 2 58 1 71 73 . 06 08 23 10 01 w 18 49 33 3 55 1. 49 1. 01 09 07 20 13 01 14 61 67 1 43 1 86 2 04 03 06 25 27 00 15 101 51 2 46 3. 08 1 55 06 06 41 21 01 15 67 37 4 46 2. 04 1 19 12 06 27 " 02 N 8 65 60 9 24 1 98 I 83 ';'7 03 2"1 25 04 CAL:"'! 4 12 G2 TOTAL 248 1605 1308 116 7. 56 48 93 39.88 3 54 1 01 6 56 5 35 47 ).(EY XX< f>iUi'18ER OF OCCUHRHICES XXX OCCURRENCES THIS CLASS <XX PERCENT OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND EL.EC TR I C DAt1ES AND t1DDRE JOB NO: 7699-064 SECOND) MEAN 7 5-10 0 >to o TOTAL SPEED 0 0 130 2. 84 0. 00 0. 00 3. 96 0 00 0. 00 53 1 0 125 2. 53 03 0. 00 3. 81 . 00 0. 00 51 0 0 147 2. 75 0 00 0 00 4 48 0. 00 0. 00 60 0 0 181 3. 03 0 00 0. 00 5. 52 0. 00 0. 00 74 0 0 188 2. 97 0 00 0. 00 5. 73 0. 00 0. 00 . 77 0 0 340 2. 78 0. 00 0 . 00 10.37 0. 00 0. 00 1. 39 0 0 581 3 OS 0 00 0. 00 17. 71 0 00 0 00 2. 38 0 0 443 3 32 0 00 0 00 13. 51 0 00 0. 00 1. 81 2 0 250 3 22 06 0 00 7. 62 01 0 00 1. 02 0 0 108 2 68 0. 00 0 00 3. 29 0 00 0 00 44 0 0 101 2 45 0 00 0 00 3. 08 0 00 0. 00 41 0 0 103 63 0 00 0 00 3. 14 0. 00 0. 00 42 0 0 143 2 86 0. 00 0. 00 4. :::J6 0 00 0. 00 58 0 0 169 2 66 0 00 0 00 , 15 0 00 0 00 69 0 0 125 2 74 0 00 0 00 3 81 0 00 0 00 51 0 0 142 3 04 0 00 0 00 4 33 0 00 0 00 58 4 CALM 12 02 3 0 "l200 2 93 09 0 00 100 00 01 0 00 1::1 42 Rev. 0 WOLF CREEK TABLE 2.3-29 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (10 (ANNUAL) Page 4 of 16 JOINT tnrm DISTRIBUTION [IY Sft\Il!LITY DATA fERIDD lHREE YEARS COi1IJINEO ';Tr.I3Il ITY CLASS PASGUILL G Dt.TA QN-5ITE WLJLF CREEK GEt-!ERATIN:i STATION BURL l t-!G TON, HEIGI-lT 10 00 METERS I'.ANSAS GAS AND EL.E.-CTR fC fi,GLE GENERATED 11/05/81. 13 14. Dr\11ES AND MOORE JOO NO* 7699-064 WIND CATEGORIES(I"'!::fERS PER SECOND> SECTOR 0 0-1 5 1 S-3. 0 3 0-5. 0 5 0 7 '=* 7 5-10 0 >10. 0 ESE SE SSE SSri WSW nw N CALM TOTAL 14 63 06 17 76 07 11 49 04 12 54 05 7 31 03 27' 1 30 12 23 1 03 09 25 1 12 10 26 l. 16 11 12 sq 05 21 94 09 26 1 16 11 26 1. 16 11 29 1 3D 12 14 63 06 16 72 07 4 18 . 02 312 13 95 1 28 105 4 69 43 64 86 26 38 1 70 16 75 3 35 31 85 3 80 :J5 162 7. 24 66 193 8 63 79 134 5 99 55 45 2 01 18 24 1. 07 10 39 1 74 16 44 1 97 18 70 3. 13 29 87 3. 89 36 56 2. 50 23 66 2 95 27 1287 57. 53 5. 26 57 2 55 23 28 1 25 11 34 1 14 "' 86 26 40 1 79 16 72 3 22 29 112 5 01 46 84 3 76 34 28 1 2'5 11 5 22 02 4 18 02 12 54 05 11 49 04 13 58 05 26 1 16 11 28 1 25 11 618 27 63 2 53 l-\EY XX.< NUM13ER OF OCCURRENCES 1 J4 oo 1 04 00 3 13 01 1 04 00 0 0 00 0 00 1 04 00 4 18 02 4 18 02 3 13 01 0 0 00 0. oo 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0. 00 0. 00 1 04 00 1 04 oo :20 139 . 08 XX,( PERCENT OCCURRENCES THIS Xx.<: PERCENT OCCURRENCES ALL CLASSES 0 0 00 0 00 0 0 00 0 00 0 00 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0 00 JOINT DISTRIBUTIDr-.1 BY STABILITY CLASS DATA PERIOD THrlEE YEARS COMBINED 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 co 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0 00 o. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 a. oo 0 0. 00 0 00 MEAtJ TOTAL SPEED 177 7 91 n 110 4 92 45 86 :3 84 05 152 6 79 62 132 '5 90 54 264 11 GO 1 08 332 14. 84 1. 36 247 11 04 1. 01 102 4 56 42 41 1 83 17 64 2. 86 26 82 3 67 34 107 4.78 . 44 129 5. 77 53 97 4. 34 40 111 4 96 45 4 18 . 02 2237 100.00 '1. 15 ..:. 75 2. :14 2 86 c... 86 2. 58 2 56 2. 74 2 71 2. 43 2 07 1. 89 2 01 2. 06 2. 08 2 53 2. 58 CALM 2. 54 ALL CLASSES DATA SOVRCE 001-SI TE WOLF CREEK GENERATING STATION BURLINGTON, KANSAS 1*-!!NO SENSOR HEIGHT 10 00 METERS KANSAS GAS AND ELECTRIC TABLE GENERATED: 11/05/81. 13 14. 50. DAMES AND MOORE JOB NO* 7699-064 WIND t.JINO SPEED PEFI SECONDl SECTOR 0. 0-1. 5 1. 5-3.0 3 0-5 0 :J. 0*-7. 7 5-10. 0 >10. 0 NE ESE SE SSE s ssw sw WSLJ w NW N CAL:-1 TOTAL 55 22 71 29 64 26 66 27 46 19 87 36 69 2a 93 38 82 34 55 22 75 31 78 32 67 27 73 30 59 24 60 25 17 07 1117 4 S7 378 1. 55 409 1 67 301 1. 23 332 1. 36 381 1 56 616 2. 52 825 3. 37 658 2 69 338 1. 38 254 1 04 212 87 258 1. 06 274 1 12 343 1 40 267 1. 09 310 1 27 6156 25 18 494 2. 02 392 1 60 384 1. 57 454 1 86 446 1. 82 534 2. 18 1060 4 34 1446 5. 91 683 2. 79 288 1. 18 168 69 266 1. 09 302 1 24 347 1 42 407 1. 66 527 2 16 8198 ]3 53 tJ'Jr1DER OE=" VALID OBSERVAT I 01\S 24448 N' H13ER 0? I AI_ I D DOSERVAT IONS 1856 TOTA'... :'u:13ER OF 26304 1-\EY XXX NL'MGER OF OCCURRENCES /..XX PERCENT OCCURRENCES 311 1. 27 145 59 138 56 176 72 199 81 217 89 472 1. 93 1285 5. 26 822 3. 36 198 81 90 37 137 56 206 84 367 1. 50 525 2 15 4S7 1. 87 5745 23. 50 92 91., PCT 7 Ot. PCT 100 00 PCT 132 54 28 11 26 11 26 11 43 18 63 26 111 45 686 2 81 367 1. 50 94 38 44 18 43 18 58 24 187 76 284 1. 16 206 84 2398 81 30 12 3 01 1 00 11 04 24 10 14 06 35 14 229 94 186 76 48 20 12 05 14 06 30 12 82 34 61 25 54 H34 3 41 MEAN TOTAL SPEED 1400 5. 73 1048 4. 29 914 3. 74 1065 4. 36 1139 4. 66 1531 6. 26 2572 10. 52 4397 17.99 2478 10 14 937 3. 83 601 2 46 796 3. 26 937 J. 83 1399 5. 72 1603 b. 56 1614 6. 60 17 07 ;:;'4448 100.00 4. 48 3. 53 3. 65 3 81 4. 01 3 68 4 06 5. 46 5 64 4 67 3 78 3. 87 4 31 5 08 5. 43 5 01 CALM 4 65 Rev. 0 WOLF CREEK TABLE 2 .. 3-29 JOINT WIND FREQUENCY DISTRIBUTION BY STABII.ITY CLASS (10 METERS) (ANNUAL) Page 5 of 16 -..JOirH FREGU..:;KY DISTRIBUTION BY :_,TABIL TTY CLASS PE'RICJD JL:.w=: L 1'1/3 THROUGH t11'1Y JL 1974 '-iTMl!I_ITY CLASS PA;jC1UILL A t*,:-.r,; Tf'" ;:! HEIGHT 10 00 i1ETERS 'i*ULE cu.c:RATED tt/04/tH 11 5:':*. 32. WINO S!"EED CA 1 EGOR I ES ( fERS 0 0-1 5 1 5**3 0 3 0 5 0-7 5 t t::r ESE SE SSE WSW w NW N CALM TOTAL 23 7 B 14 81 1 02 08 10 17 1 5 7 6 12 58 81 69 01 06 03 07 1 0 14 4 12 0 00 1 62 46 01 0 00 17 05 0 2 4 3 0 00 23 -i6 .]5 0 00 02 05 04 0 6 4 8 0 co 69 46 '"12 0 00 07 05 10 0 4 4 15 0 00 46 46 1 73 0 00 05 05 18 0 6 26 0 00 69 3 01 3. 12 0 00 07 31 :32 0 6 36 134 0 co 69 4 16 9 71 0 oo 07 43 1. 00 1 3 21 49 12 35 2 43 5. 66 01 04 25 :sa 1 7 12 .. 12 81 1. 39 1 62 01 08 14 !7 0 7 3 :z5 0. OJ 81 35 0 00 08 04 . 02 0 4 8 3 0 00 46 '72 :35 0 00 05 10 04 0 5 7 6 0 co 58 81 . 69 0 OJ 06 08 07 1 1 16 ;;w 12 12 1 85 2 :Jt 01 01 19 :24 1 1 5 :32 12 12 58 3 70 01 01 . 06 . :38 1 3 6 :Jo 12 35 69 3. 47 01 04 . 07 :36 0 0. 00 0. 00 9 67 181 317 1 04 7 75 20.92 36. 65 11 80 2. 16 3.:78 1-\EV :<X.( NUMBER OF OCCURRENCES XX"( PERCENf OCCURRENCES THIS CLASFi XX.( PERCENf OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAB AND !::.LECTR I C AND MOURE 0013 NIJ SECOND) MEAN 7 5-10 0 >10 0 TOTAL 1 0 3:...? 4 4Y 12 0 00 :3 70 01 0 00 30 0 0 lY :J 91 0 00 0 00 ;z 20 0 00 0 00 23 0 0 19 4 42 0. 00 0 00 ;z 20 0. 00 0. 00 23 1 0 !0 4 99 12 0 00 l. 16 01 0. 00 12 4 3 5 90 46 35 ;2. 89 05 04 30 3 28 5 99 35 3 24 04 02 33 9 2 70 5. 47 1 04 23 " 09 11 02 83 77 31 234 7. 45 8 90 3 58 27.05 92 37 79 40 27 141 7 78 4 62 3 12 16 30 48 32 :l 68 14 15 63 7 19 1 62 1 73 :7.28 . 17 18 75 6 1 19 5 67 69 12 20 07 01 . 23 5 0 20 5 02 58 0. 00 31 06 0. 00 24 3 0 21 5. 08 35 0. 00 43 . 04 0. 00 25 11 14 63 7 23 1. 27 1. 62 7 28 13 17 75 14 1 54 6. 56 1 62 12 6 24 17 01 64 7 0 47 ' 5 91 81 0. 00 :; 43 08 0. 00 56 0 CALM 0. 00 0 00 195 96 865 6. 64 22 54 11 10 100. 00 2. 33 1 15 10 32 JOINT L-;IND FREGU:£NCY DISTR!l3UTION BY !:iTABIL ITY CLASS DATA PERIOD JU,\!E 1, 1973 THROUGH MAY 3L 1974 STABILIT'<' CLASS: PASGUILL B Q,l.,TA SOURCE. C.'J-SITE L..!I:JD SEtJSOR HEIGHT* 10 00 METEs;!S TABLE GENt::RATED: 11/04/81. 11. 32. WIND SPEED CATEGORIES (METERS ,'::JER SECH!R 0 0-1. 5 1 5-3.0 3 0-5. 0 5 0-7. 5 f\1:-..:E 0 3 11 2 0. 00 58 2 13 .. 39 0. 00 04 13 02 NE 1 14 16 4 19 2. 71 3 09 . 77 01 17 19 . OS ENE 0 4 7 3 0 00 77 1 35 58 0 00 05 08 . 04 1 1 3 1 19 19 58 19 01 01 04 01 ESE' 0 6 4 4 0 00 1. 16 77 77 0 00 07 05 . OS SE 0 6 11 4 0. 00 1 16 2 13 77 0. O'J 07 13 05 SSE 0 5 12 13 0 00 97 2 32 2. '51 0 00 06 14 16 0 5 s. 41 0 00 97 7. 93 0 00 06 32 49 SS:..J 0 2 20 :22 0. 00 39 3. 87 4. ;26 0. co 02 24 :26 sw 0 2 8 !5 0 00 39 1. 55 2. 90 0 00 02 10 18 0 3 3 5 0 00 58 58 *n 0 00 04 04 . 06 w 1 8 8 3 19 1 55 1. :55 :JB 01 10 10 . 04 w:J:..J 0 7 7 7 0. co 1 35 1 :35 1. :35 0 00 08 08 08 u:J 0 7 4 ::a 0 00 1. 35 77 3 *\8 0 00 08 05 1 .\1; 0 2 6 0 00 39 1. 16 4 fl4 0 00 02 07 :Jo N 0 5 7 1.3 0 co 97 1. 2 0 oo 06 oa 1.6 CAl;.,.., 0 0 OD 0 00 rOTAL J 80 l :.>4 lt\0 :os 15 47 29 79 34 (::12 O<l 95 1 04 2 l 5 V\EY XX( N\J.""'1BER OF OCCURRENCES "<X< PERCEtJr OCCURRE"NCES THIS X X ( PERC EN r DC CURRENCES ALL CLA5'3E:S WOLF CREEK. GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DA11ES AND MOORE JOB NIJ: 7699-064 SECOND> MEAN 7. 5-10. 0 >10. 0 TIJTAL SPEED 1 1 18 4 47 . 19 19 :3. 48 . 01 . 01 21 0 0 35 3 43 0. 00 0 00 ,; 77 0. 00 0 . 00 42 1 0 15 4. 22 19 0. 00 ;2. 90 01 0. 00 18 0 3 9 6. 28 0 00 58 l. 74 0. 00 . 04 11 2 1 17 4. 79 39 19 3 29 02 01 20 1 0 22 4 10 19 0. 00 4. 26 . 01 0. 00 . 26 1 2 33 5 31 19 39 " 38 01 02 39 17 9 99 6 37 3 29 1. 74 19 15 20 11 .l 18 11 8 63 6 57 2. 13 1. 55 19 13 10 75 3 3 31 6. 23 58 . 58 b. 00 04 04 37 2 0 13 ' 08 39 0 00 51 02 0 00 16 1 0 21 3 63 19 0. 00 4. 06 01 0 00 25 1 0 22 4 50 19 0 00 4 26 01 0. 00 26 9 5 43 6 53 1 74 97 B 32 11 06 51 11 46 6 69 13 39 H 90 13 02 5 () 30 5. 43 97 0. 00 80 06 0 00 36 0 CALM 0 00 0 00 66 :J17 60 12. 77 6 :;I] 100 00 79 41 11 0 WOLF CREEK TABLE 2.3-29 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (10 METERS) (ANNUAL) Page 6 of 16 J1JINT FREQU;;::rKY DISTRIBUTION BY Sf.'\BILITY CLASS D.-HA I'ERrl1D L 1973 THROUGH !*lAY .31. 1'>'74 :lT/.:JILITY PA::>GUILL C ll/.fl:, 'iOURCE HEIGHT 10 00 t-1E"TERS Ti,:lLE:. GLNrR,\TEO: 11/04/81 11 :55. :32 WINO SPEED CATE.GOR Il:!':) WE rERS PER sr::c 0 0 1 , 1 ,_3 0 3 o-o 0 '5 0-7 5 NtlE Er-.:E E E:;E SE SSE sw w L-It f-,!i.-.J NNW N CALM TOTAL 0 4 14 r=_;* 0 00 69 1 :JI:::< 0 OJ 05 17 1C 1 9 6 B6 17 1 55 1 04 01 11 07 Ot 0 4 b 1 0 00 69 1 c. 17 0 co 05 07 o; 0 3; 2 35 0 OJ 0 OJ 02 02 02 0 3 7 t 0 OJ 52 1. 21 1. 04 0 co 04 08 07 2 5 12 4 35 86 2. 07 69 02 06 14 05 0 7 17 12 0 OJ 1 21 2. 94 2. 07 0 00 08 20 14 3§ 12 29 33 2 07 5 01 5. 70 02 14 35 39 1 5 21 32 17 86 3 63 5 53 01 06 25 38 1 3; 9 18 17 1 55 3. 11 01 02 11 21 0 6 13 4 0 OJ 1 04 2. 25 69 0. 00 07 16 05 1 3 9 5 17 52 1. 55 . 86 01 04 11 . 06 0 4 5 12 0 00 69 86 2. 07 0. 00 05 . 06 . 14 1 1 17 16 17 17 2. 94 2. 76 . 01 01 20 . 19 0 2 14 29 0 00 35 2. 42 5. 01 0. co 02 17 . 35 0 3 12 17 0 00 52 2. 07 2. 94 0 OD 04 14 20 0 0 OD 0 00 9 72 193 204 1. 55 12. 44 33. 33 35. 23 11 86 2. 30 2. 43 KEY XX:< NUMBER OF OCCURRENCES XX."< PERCENT OCCURRENCES THIS CLASS XXX PERCENf OCCURRENCES ALL CLASSES WOLF GENCRATlNG STATION TIUHLINGTQN, KANSM:i GAS AND [LEC TR I C: DAI1E3 AND J*lOORE Nll: 7699-064 SECOND) i1l AN 7 :':1-10 0 ::>10. 0 TOTAL SPLED 7 35 5 b4 1 21 J5 6 04 08 02 42 0 0 21 3 74 0 00 0 00 3 6J 0 00 0 00 25 2 0 13 4 45 35 0 00 2 25 02 0 00 16 0 0 6 4 82 0 00 0 00 1 04 0 00 0 00 07 0 0 16 4 46 0 00 0 00 2 76 0 00 0. 00 19 1 0 24 3 96 17 0 00 4 15 01 0 00 29 7 1 44 5 32 1. 21 17 7 60 . 08 01 52 24 5 105 5. 95 4 15 86 18. 13 . 29 06 1 25 11 9 79 6. 19 1 90 1. 55 13 64 13 11 94 3 3 36 5. 97 52 52 6. 22 . 04 04 43 0 2 25 4 32 0 00 35 4. 32 0. 00 02 . 30 0 0 18 4 04 0 . 00 0. 00 3 11 0 . 00 0. 00 21 1 0 22 5. 03 17 0. 00 3. 00 01 0. 00 . 26 4 4 43 6. 04 . 69 69 7 43 05 05 . 51 5 1 51 5 84 86 . 17 8. 81 06 01 61 ' 4 5 41 6 14 69 86 7 08 05 06 49 0 CALM 0. 00 0. 00 69 32 "J79 5. 51 11 92 5 53 100 00 82 38 6 91 ,JDINT FREQUErKY BY ST,O\BILITV CLASS DATA PERIOD JlJNt: 1. 1973 THROUGH MAY .31. 1'i'74 STABILITY CLASS. PASQUILL D DATA SOURCE 0:--.J-SITE SEt-!SOR HEIGHT: 10 00 METERS TABLE GENt.RATED: 11/04/81 11 55 :32. WIND WINO SPEED CATEGDR IES (METERS PER SECTOR 0. 0-1. 1. 5-3 0 3. 0-5. 0 '5 0-7. 5 NtJE 8 42 76 34 32 1. 67 3. 03 1 35* 10 50 91 41 NE 9 34 53 26 . 36 1 35 2. 11 1 04 11 41 63 31 EtJE 2 28 31 27 03 1. 12 L 24 1. OE' 02 33 37 E 6 35 34 21 24 1 39 1 35 84 07 42 41 25 ESE 4 21 46 16 84 1. 83 80 . 05 25 55 24 SE 0 21 53 11 0 00 84 2 11 . 44 0 00 25 63 13 SSE 2 32 69 35 03 1 27 2. 75 1 39 02 38 82 42 s 3 39 95 165 12 1 55 3 78 6. 57 0*1 47 1. 13 1. 97 ssw 2 16 55 71 03 64 2 19 2 83 02 19 66 85 3 16 33 27 12 64 1. 31 1 08 04 19 39 32 :..ssw 4 14 23 15 16 56 92 60 05 17 27 18 2 18 20 11 03 72 80 44 02 21 24 13 18 32 31 72 1 27 1. 24 02 21 . 33 37 N:.J 4 22 42 61 16 88 1 67 2 43 05 26 50 73 6 28 74 93 24 1 12 2. 95 3. 71 07 33 88 1 11 N 6 :-32 88 " 24 1 27 3. 51 2. 27 07 38 1. 05 68 CALM 5 20 06 TOTAL bS *ll6 824 70::1 2 71 16 57 32.83 28 09 81 4 96 9 83 8. 41 KEY XX.< NUi18ER OF OCCURRENCES XX.( PERCEN f OCCURFIENCFS THIS CLASS XX.'< PERCErH OCCUil:RENCES ALL ClASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE NO: 7 699-064 SECONDJ MEAN 7 5-10 0 ) 10. 0 TOTAL SPEED 36 9 205 5. 01 1. 43 36 8. 17 . 43 11 2. 45 3 1 126 3 94 12 04 5. 02 04 01 1. 50 9 1 98 4. 52 36 04 3 90 11 01 1 17 6 1 103 4. 00 24 04 4. 10 07 01 1 23 2 0 93 4. 07 08 0. 00 3. 71 02 0. 00 1. 11 8 1 94 4. 36 32 04 3. 75 . 10 01 1. 12 15 15 168 5 40 60 . 60 6. 69 18 18 2_00 83 44 429 6. 46 3 31 1. 75 17.09 99 52 5. 12 29 16 189 6. 03 1. 16 64 7 53 35 19 2.25 15 0 94 5. 00 60 0 00 75 18 0 00 12 7 1 64 4. 61 28 04 2. 55 08 01 76 4 0 53 4 09 16 0 00 2 19 05 0 00 66 8 11 102 5. 45 32 44 4. 06 10 13 1 22 44 28 ;;:*Ql 6. 61 1 75 1. 12 8. 01 52 33 2 40 48 17 :66 5. 86 1 91 68 10 60 57 22 3 17 30 26 5 03 1 20 3 69 36 06 2 60 5 CALM ::o 06 347 150 5 13 82 5 98 100 JO 4 14 J 79 2'7 94 Rev. 0 WOLE' CREEK TABLE 2 .. 3-29 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS {ANNUAL) )()frH :HN£1 DISTRIBUTillN OY ;;TMJILI TY U MlS ll.<HA JUi\c L 197:.3 1HROUGH MAY :-JL l':f7*+ CLASS E Dl, 11. :;nuaCE lJ'J-S! TE Sf-N30R HEiGHT tO 00 t*tErERS T,:,ou GI::.NI::.Rt.lED 11/04/81 11 ::12. WltJt> Sf'EED CATFGOR I ES TERS PER SFCTOR 0 0-1 , 1 o-:J 0 J 0 0-7 " tJ<;E N> EN<:: SE s smJ sw L-6W w WNW NW N!'*W N CAL:-1 TOTAL 3 =7 21 10 15 1 :33 ! OJ 49 Qij. J2 25 12 5 36 23 5 :-'5 1 77 1 13 25 06 43 27 06 8 23 31 15 C9 1. 13 1 53 74 10 27 37 18 4 30 19 26 20 1 48 94 1 28 05 36 2.3 31 4 36 43 14 20 1 77 2. 12 69 05 43 51 17 8 45 55 22 39 21 2 71 1. 08 10 54 66 26 5 75 144 76 25 3 69 7 0'7 3 74 06 89 1. 72. 91 10 56 204 205 49 2 76 10.04 10 09 12 67 2. 43 2 45 6 31 61 57 30 1 53 3 0*} 2. 81 07 37 73 68 25 31 18 1 23 1 53 89 02 30 . 37 21 5 11 11 1 25 54 54 05 06 13 . 13 01 19 14 3 94 69 15 02 23 17 . 04 4 20 35 5 20 98 1 72 . 25 05 24 42 06 7 26 40 18 34 1. 28 1. 97 . 89 03 31 48 21 6 22 30 20 3*J 1 08 1 48 98 07 26 36 24 10 23 29 15 49 1 13 1. 43 74 12 27 35 . 18 1 05 01 90 505 791 510 4 43 ;;:!4 85 38.93 25. 10 1. 07 6. 02 9 43 6 08 KEY XX:< NUMBER OF OCCURRENCES XX"( PERCENT OCCURRENCES THIS CLASS XX.( PERCENr OCCURRENCES ALL CLASSES t.JOLF CREEK GEHERATING STATION DURL 1 KANSAS t\f\NSAS GAS liND ELECTRIC DAI*If:.S AND t*lllUHE JOO NO SECDND) MF.AN 7. 'J-10 0 2"10 0 TOTAL f;PEED 0 0 bl 3 44 0 00 () 00 3 *)0 0 00 0 00 73 0 0 b9 2 98 0 00 0 00 3 00 0. 00 0. 00 !32 0 0 77 3 57 0 00 () 00 3 79 0 00 0. 00 92 1 1 01 4 09 05 05 3 99 01 01 '?7 3 0 100 3 71 15 0 00 4 92 04 0 00 1 19 4 0 1:34 3 70 20 0 00 6. '59 05 0 00 1 . .so 17 3 3;20 4 40 84 15 15. 75 20 04 3. :32 53 10 538 5 26 2. 61 49 26. 48 63 12 6. 42 23 8 1!36 5. 17 1. 13 . 39 9 15 . 27 10 2 22 3 0 79 4 04 15 0 00 3. 89 04 0 00 94 1 0 :29 2. 81 05 0 00 1. 43 01 0. 00 '35 0 0 38 3 09 0. 00 0. 00 1 87 0 00 0 00 45 1 0 .S5 3 52 05 0 00 3. 20 01 0. 00 78 2 2 '75 3 97 . 10 10 68 02 02 13 2 0 80 3 92 10 0. 00 3. 94 02 0. 00 '75 2 0 79 ' 3_ 53 10 0 00 3. 89 . 02 0. 00 '74 1 CALM 05 01 112 24 20:J2 4. 33 5. 51 18 100 00 1. 34 . 29 24 .24 JOINT l,)!ND FREQL;Er.JCY DISTRIBUTION BY STP,BILITV CLASS D.ATA PERIOD JUN;::: 1, 1973 THROUGH MAY ::::11, 1974 STABILITY CLASS PASGUILL F D.C.TA SOVI'?CE: SENSOR HEIGHT 10 00 METERS ThOLE 11/04/81. 11 55. ::3'2. WIND WINO SPEED CATEGORIES <METERS SEC TOR 0 0-1. s 1. S-3 0 3 0-5 0 0-7 5 NNE 3 18 14 0 28 1 67 1. 30 0. 00 04 21 17 0. 00 NE 7 28 18 0 65 2 60 1. 67 0. 00 oa 33 21 0 00 EtJE 5 21 24 0 47 1. 95 2. 23 0. 00 06 25 . 29 0 00 5 27 17 1 47 2 51 1. 58 09 06 32 20 01 ESE 1 34 19 2 09 3. 16 1 77 . 19 01 41 23 . 02 SE 3 67 47 4 28 6 23 4. 37 . 37 04 80 56 05 SSE 5 105 80 10 47 9 77 7 .. , 93 06 1 25 9:5 12 5 47 100 10 47 4 37 9. 30 93 06 56 1 1 . 12 ssw 10 35 2;2 7 93 3. 26 2 05 65 12 42 26 oa 51< 6 16 8 0 56 1 49 74 0 00 07 19 10 0. 00 :-JSW 10 12 ,, 2 93 1. 12 37 19 12 14 o:) 02 6 7 7 0 56 65 65 0 00 07 08 DB 0 00 5 20 24 1 47 1. 86 2 23 09 06 24 29 01 7 32 14 65 2. 98 1 30 oa 38 17 02 8 22 13 1 74 05 1. 21 09 10 26 16 01 N 3 17 21 28 1. 58 1. 95 04 20 2:') 02 CAi :1 2 19 02 TOTAL 91 508 42 47 47 26 40. 19 3 91 0? 6 06 " 1 50 I-\E1* XX.< rJUMUER OF OCCURRENCES xn PFRCENf OCCURRENCES THIS CLASS XX< PERCENT OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION KANSAS KANSAS GAS AND ELEC TR 1 C DAMES AND MOORE JOB NO: 7699-064 SECOND) MEAN 7 5-10. 0 >10 0 TOTAL SPEED 0 0 :35 2. 66 0. 00 0 00 3 :z6 0. 00 0 00 42 0 0 53 2. 55 0 00 0 00 4. 93 0 00 0. 00 63 0 0 :5o 2. 80 0 00 0 00 4 65 0. 00 0. 00 60 0 0 50 2. 70 0. 00 0. 00 4.65 0. 00 0. 00 60 0 0 !56 3 02 0 00 0 00 5 :21 0 00 0. 00 . 67 0 0 1:21 2 97 0. 00 0. 00 11. ;n 0 00 0. 00 1. 44 0 0 200 3. 11 0 . 00 0. 00 18.60 0. 00 0. 00 2 :39 0 0 11:C.2 3. 44 0. 00 0. 00 15 07 0 . 00 0. 00 1. 'i'3 2 0 76 3. 08 19 0. 00 7 07 02 0 00 91 0 0 :30 2. 56 0. 00 0. 00 2. 79 0 00 0. 00 :36 0 0 2 27 0 00 0. 00 2 60 0 00 0. 00 :J3 0 0 2 23 0 00 0 00 1 86 0 00 0 oo 0 0 :Jo 2 92 0. 00 0 00 4 65 0 00 0 00 60 0 0 :J5 2 67 0 DO 0 00 5. 1.2 0 DO 0 00 0 0 '14 57 0. 00 0. 00 4 09 0. 00 0. 00 !)2 0 0 43 ' 3 04 0 00 0 00 4 00 0 00 0 00 :H 2 CALM J 9 02 2 0 10/5 2 95 19 0 00 100 00 02 0 00 !;,: El2 (10 METERS) Page 7 of 16 Rev. 0 WOLF CREEK TABLE 2 .. 3-29 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (ANNUAL) ,JtJitJT FRE"QUC:iKY DISTRIUUTIOH [3)' ("LASS liATr\ t'DHC!J JU!\C 1. 1'173 THROUGH t11\Y :JL 1'7'74 STMJ Il iTY CLASS PASGUILL G OAT.; 07'>l-*SI1E SENSOR HEIGHT tU. UO ME:TEtiS T M3LE CENc.RATED 11/04/81 11 :5:1 32 i-JOLF CHEEK GENERATUJG STATION f:IURLI NG TON, GAS AND ELECTRIC DAI*lES AND t'lUOHE NO. IHNO SPEE:.D CATEGORIES<t1ETER5 PER SECHJR 0 0-1 5 l 5-3 0 J 0-5 0 S 0*-7 5 7 'J-10 0 >10 0 MFAN 0-:tJE ESE SE SSE s W3W w NtJl.J N CAL:-1 TOTA_ 10 1 12 8 99 10 2; 02 5 62 06 J 37 04 7 87 03 6 74 07 5 62 06 6 74 07 6 74 07 a 99 10 11 1 36 13 5 62 06 10 1 24 12 2 25 02 6 74 07 3 37 04 103 12. 78 l. 23 56 ll 95 67 11 1 36 13 lc 1 49 14 20 48 24 11 1 1 20 47 5 83 56 85 10 55 1 01 68 B. 44 81 c. 26 12 1 49 14 17 2. 11 20 21 2 61 25 28 3 47 33 26 3 23 31 17. 2 11 20 19 2 36 23 478 59. 31 5 70 23 85 27 4 50 05 7 87 OS 14 1 74 17 17 2 11 20 25 3 10 30 54 6 70 64 35 4 34 42 10 1. 24 12 0 0 00 0 00 0 0 00 0 00 3 . 37 04 5 62 06 4 50 05 9 1. 12 .11 6 74 07 216 26 80 2. 58 KEY .OX rH.Ji"'BER OF OCCURRENCES 0 0 00 0 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 2§ 02 4 50 05 3 37 04 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0. 00 9 1. 12 11 XXX PERCENr OCCURRENCES THlS CLASS .OX PERCENf OCCURRENCES ALL CLASSES 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 co 0 00 0 0 00 0 00 0 0. 00 0 oo 0 0 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0. 00 0 00 0 0. 00 0. 00 0 0 00 0 00 0 () 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 () 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 0 0 00 0. 00 TOTAL 09 57 11 04 1 06 2 17 2 B5 21 2 81 2 61 2::.> 39 2 72 4 04 *l7 37 2. 78 4. 59 44 7? 68 9. uo . 94 147 2 85 18 24 1. 75 112 2 85 13.90 1. 34 41 2 68 5 09 49 18 1 89 2. 23 21 25 1 78 3. 10 ::JO 35 2 01 4 34 42 :m 2 24 4 71 45 40 1 94 4.96 48 28 2. 61 3 47 33 31 I 2 39 3 85 37 3 CALM 37 . 04 806 2 56 100.00 9 61 JOINT FREGUEi\ICY DISTRIBUTION BY STABILITY *:LASS DATA PERICD JLII\:2: 1, 1973 THROUGH M1W 31. 1974 ALL CLASSES 0/,TA SOURCE. ON-SITE WltJI) SErJSOR HEIGHT. 10 00 METERS TABLE GENERATED: 11/04/81 11. !53. 32 WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND f'IOORE JOB NO: 7 699-064 I.JIND SECTOR WINO SPEED CATEGORIESO'lETERS PER SECOND) MEAN 0 0-1. 5 1 5-3 0 3. 0-5 0 5. 0-7. 5 7. 5-10. 0 >10. 0 NrJE ESE SE SSE s ssw fOTtiL 26 31 32 28 18 21 21 25 12 14 2Q 24 18 21 25 3Q 26 31 19 23 27 22 23 27 16 19 33 26 23 27 26 31 11 13 373 4 45 157 1 87 137 1. 63 92 1 10 117 1. 40 123 1. 47 195 2. 33 315 3. 76 233 2. 78 114 1 36 80 95 70 83 80 95 102 1 22 115 1 37 94 l 12 102 1 22 2126 2S 36 rlUM:J'-H Gi-"" V.:..L I D ODSERI.'.<; r I Of -.IS N'Jt13Eh: or IrNA1_JD 08Sl;RVATIONS TOTA_ t:v:13EH OF 0!3SERVAT IONS 167 1. 99 127 1. 51 120 1. 43 93 1.11 140 1. 67 207 2. 47 402 4. 79 526 6. 27 210 2 50 101 1 20 57 68 115 1 37 137 1. 63 151 1 80 169 2. 02 2791 33 29 8:184 8760 1-\EY XX ( NL:MBER OF OCCURRENCES XXX PERCEhiT OCCURRENCES 68 . 81 46 . 55 50 60 54 64 54 64 60 72 175 2. 09 542 6. 46 241 2. 87 92 1. 10 29 35 ;,;s 30 62 74 135 1. 61 200 2 39 134 1 60 1967 23 46 95 71 F'CT 4 29 f'CT 100 00 PCT 45 54 3 . 04 12 14 8 . 10 11 . 13 17 20 49 58 254 3. 03 116 1. 38 38 45 16 19 10 12 14 17 70 83 80 95 48 57 791 C?. 43 12 14 1 . 01 1 01 5 . 06 4 05 3 04 23 27 99 1. 18 68 81 21 25 4 05 0 0. 00 11 13 53 63 21 25 10 12 :]36 4 01 TOTAL SPEED 475 5 67 346 4. 13 293 3. 49 298 3. 55 344 4. 10 502 5 99 982 11.71 1679 20.03 775 9 24 351 4. 19 203 2. 42 207 2. 47 3 82 540 6. 44 569 6 79 4f19 S. 83 11 13 BJfl4 100 00 4 17 3 35 3 83 3. 76 3. 84 3 64 4. 23 5. 64 5. 74 5 02 3. 78 3 42 4 16 5 42 5 31 4 65 CALM 4 70 ( l 0 METERS) Page 8 of 16 Rev. 0 WOLF CREEK TABLE 2.3-29 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (10 METERS) (ANNUAL) Page 9 of 16 _'JWl FRE*JUciKY D!S-fRinUTIIJN BY STADIL.!TY CLASS i<.:.T/1 f'EHIO[) .Jl::'-.C: 1. 19"74 MAY 31. 1'175 :iTMJILllY CLASS PA'>GUILL A DATA E I f E HEIGHT 10 00 ME1ERS U.,nu:. GUJE:RATEO 1 1.104/Bl. 13 19 37 i.Jlr-10 SPFED CATEGORIES i l"a:": fERS 1-'E:R SE--: TOR 0 0-1 5 1 J-3 0 3 0-5 0 5 5 t JE" I::i 35 :39 13 94 2 20 2. '16 02 1(3 41 r 1 1< 27 7 06 69 1. 70 44 01 1 32 08 EN!:: 1 19 10 o;, 44 1 20 63 01 on 22 12 1 [J 17 4 o;, 50 1 07 .;;:s 01 0'1 20 05 ESE 2 24 26 J 7 13 1 5!. 1 64 1 07 02 .;:n 30 ::::o SE 6 .20 26 J 8 33 1 .26 1 64 1 J 3 07 2:3 30 ::::t SSE 1 1:1 46 '10 o;, 9'1 2. 90 2 01 "' 54 47 3 57 110 19 1 39 3 59 6. 93 04 26 67 1. ssw 4 "' 62 !07 25 1 1:! 3 90 6. 74 05 21 72 1 sw 1 "' 28 06 1 01 1. 76 1 :w 01 19 33 26 5 10 13 9 31 6:] 82 06 1 15 11 w 2 1' 12 13 BEl 76 1. 1 02 16 14 ;;;:'8 :...r:w 4 EO 10 13 25 50 63 B2 05 09 12 15 3 , 8 19 31 50 2.;;m 04 06 . 09 41 I 18 ':.>4 o;, 1:::1 1. 13 3. 40 01 21 63 N 1 8 32 :::::J o;, 50 2. 02 2 08 01 09 37 :::;:9 CAL:"! 3 19 04 TOTAL 41 203 436 542 2 59 12. 78 27.46 34. 13 48 2 37 5. 09 6 " jo'(£Y .<XX NU;'113ER OF CCCURRENCES Xx.< PERCEtH OCCURRENCES THIS CLASS X X ( PERCEtJT OCCURRENCES ALL CLASSES -wOLF CREEK GENERATING STATION 8URL1NGTON, 11\ANSAS KMJ'>AS GAS AND ELEClRlC AND MOORE JOD NO 7699-064 MEAN 7 J-10 0 >10. 0 TOTAL SPEED l 0 98 4 09 44 0 00 17 on 0 00 14 () 0 46 4 02 0 00 0 00 90 0 00 0 00 54 () 0 37 4 16 0 00 0 00 2. 33 0 00 0 00 43 0 32 4 13 1:3 0 00 2 02 0 00 37 0 71 4 10 13 0 00 4. 47 0 00 83 1 0 71 3 84 o,, 0. 00 4 47 01 0 00 83 19 4 5 44 1 ;;:o 25 7. 87 2;;! 05 1 46 57 18 267 6 28 3. 59 1. 13 16 81 67 21 3 12 57 51 299 6 82 3 59 3. 21 18.83 67 60 3 49 18 14 99 6. 10 1 1:1 88 23 21 16 16 ,, 4 46 4 89 31 . 25 2 90 06 05 54 3 1 56 4. 94 19 06 3 53 04 01 65 6 8 49 6 40 38 50 3 09 07 09 57 25 I 77 6 42 1. 57 06 4 85 29 01 90 46 5 126 7. 01 2. 90 31 7. 93 54 06 1. 47 11 1 86 . 5 40 69 06 42 13 01 00 3 CALM . 19 04 259 107 1588 5 77 16 31 6 74 100.00 3. 03 1. 25 18. 55 JOINT tn:"o DISTRIBUTION BY STABILITY CLASS DATA PEHICD JlJ:->!E L 1974 THROUGH MAY 31, 1975 EiTABILI""':'"Y CLASS. PA'3GUILL B DATA sm,RCE TE i.JINO SEt60R HEIGHT 10 00 METERS TADLE GD>.iERATED 11/04/81 13. 19. 37 WIND NO S;:>EED CATEGORIES (METERS I"ER SECTOH 0 0-1. 5 1 5-3 0 3 0-5. 0 5. 0-*7. 5 I 5 7 6 23 1. 14 1. 59 1. :37 01 Ob 08 07 NE 1 9 4 3 23 2 05 91 <18 01 11 05 04 ENE 1 ' I 4 23 91 23 .'1'1 01 05 01 05 E 1 0 6 0 23 0. 00 1 37 0. 00 01 0 00 07 0. 00 ESE 0 " 6 5 0 00 1 37 1 37 1 14 0 co 07 07 06 SE 0 7 7 3 0. 00 1. 59 1. 59 . 68 0 00 0:3 08 04 SSE 0 ., 6 6 0 00 68 1 37 1. 37 0 00 0\ . 07 . 07 1 5 12 30 23 1 14 2. 73 6. 83 01 Ob 14 35 2 0 12 11 46 0 00 2 73 2 :51 02 0 00 14 13 sw 0 7 3 7 0 co 1 59 68 1. :39 0 co 013 04 08 WSW 1 1 0 9 23 2:3 0 00 2 05 01 01 0 00 11 2 4 4 4 46 91 91 '11 02 o:; 05 05 0 ., 2 8 0 00 1 14 46 1 B2 0 OJ 06 02 09 1 9 7 .14 23 2 o:s 1 59 3. 'l9 01 11 08 .16 tJ;,:.J 1 :J 4 .19 23 68 91 4. :33 01 0*\ 05 " 1 *l 7 17 23 91 1 59 3 !37 01 o:5 08 CAL:1 0 co OJ TOTr,L 1 J ?;? 08 11+6 96 16 40 20 05 33 15 84 1 03 1 ll ;.<El f..'l.,( OF OCCURRENCES f.. PERCENT OCCUfiRENCFS THIS CLASS f.. f..:( PERCEN r GCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO* 7699-064 SECOND 1 MEAN 7 5-10 0 :>10. 0 TOTAL SPEED 7 2 28 5 71 1. 5'7 46 6 38 08 02 33 0 0 17 3 31 0. 00 0. 00 3. 87 0 00 0. 00 20 1 0 11 4. 31 23 0. 00 2. 51 01 0. 00 13 0 0 7 3 73 0. 00 0. 00 1 59 0 00 0. 00 08 1 4 22 5. 44 23 91 5. 01 01 05 26 0 0 17 3 65 0 00 0. 00 3 87 0. 00 0. 00 . 20 3 0 18 5 45 68 0 00 4 10 . 04 0 00 21 12 8 68 6 51 2. 73 1. 82 15 49 14 09 79 12 6 43 6. 92 2 73 1 37 9 79 14 07 50 2 21 5 07 46 4 78 02 02 25 3 1 15 6. 37 68 23 3 42 04 01 18 1 1 16 4 37 23 3 64 01 01 19 6 23 6 65 1 37 5 24 07 02 27 1:3 6 50 6 45 2 96 1 37 11 39 15 07 58 15 1 43 6 68 3 4;2 23 9 79 18 01 50 8 3 40 6 20 1 82 68 9 11 ()9 04 47 0 CALM 0 00 0 00 84 36 ,, 91 19 13 8 20 100 00 9B 42 , 13 Rev. 0 WOLF CREEK TABLE 2.3-29 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (10 METERS) (ANNUAL) Page 10 of 16 ,JtJif\!T l .. Itm FRE"OL'E."I-ICY DISTRIBUTinN BY SfABILITY CU\SS D.;TA PERIOD 1, 1974 THRQU(;H MAY 31. 1975 C DhTM HEIGHT tO 00 1'1[TEP.S r..;uu-11/04/81 1::1 19 37 W[ND SPEED CATEGOf( IES (I";ETERS PFR SECT OR 0 0-1 ' 1 :;-J 0 3 0 5 0-7 5 N::. E::>E SE s ;..JSW w tM N CML M TOTAL 1 ll :J 13 19 1 55 97 2 01 09 OS 15 1 13 'I 4 19 52 1 7:) 78 01 15 11 05 1 4 B 19 78 1 58 01 05 09 04 2 2 ::> 3 09 39 97 58 02 02 06 04 0 2 5 4 0 00 39 97 78 0. OJ 02 06 05 0 0 7 8 0 co 0 DO 1 36 1. 55 0 co 0 DO Ot3 0'1 1 4 B 12 19 78 1 55 2 33 01 05 09 14 D 4 17 2"1 0 DO 78 3 30 5. 63 0 OJ 05 20 34 0 6 12 22 0 00 1 17 2 3:3 4 27 0 OJ 07 14 2b 1 2 2 7 19 39 39 1 36 01 02 OS 2 1 3 2 39 19 58 . 39 02 01 04 . 02 0 6 11 1 0 00 1 17 2 14 19 0 OJ 07 13 . 01 2 5 " 12 39 97 1. 17 2. 33 02 06 07 14 1 4 22 19 78 4. 27 01 05 26 1 3 6 17 19 58 1. 17 3 30 01 04 07 20 0 2 12 23 0 00 39 2 33 4. 47 0. co 02 14 27 0 0 co 0 co 13 66 118 182 2 52 12 82 22 91 35. 34 15 77 1 3B 2. 13 KEY XXX NV11DER OF OCCURRENCES XX.< PERCEfH OCCURRENCES THIS CLASS XX( PERCENf OCCURRENCES ALL CLASSES WOLF CREEK GENERATING !3TATION B\JHL..!NGTON. KANSAS KANSAS GAS t,ND t"".LECTRIC DAt1ES AND MOOHE JOB NO 7 699-064 SECONDJ MEAN 7 ::;-10 0 )-10 0 TO I"AL 8 0 35 5 1 55 0 00 6 00 09 0 00 41 1 0 28 3 57 19 0 00 5 44 01 0 00 OJ 0 0 16 3 56 0. 00 0 00 3 11 0 00 0 00 19 0 1 13 4 62 0. 00 19 2. 52 0 00 01 15 0 1 12 4 82 0. 00 19 33 0 00 01 14 0 1 16 5 ,. 0 00 19 3 11 0 00 01 19 4 0 29 5 14 78 0 00 5 63 05 0 00 34 10 5 65 6 12 1 94 97 12. 62 12 06 76 14 7 61 6. 46 2. 72 1. 36 11. 84 16 08 71 1 2 15 5 63 19 39 2 91 . 01 02 18 0 1 9 4 51 0 DO 19 1 75 0 . 00 . 01 11 0 1 19 4. 01 0. 00 . 19 3 69 0 00 01 22 5 1 31 5. 77 97 . 19 6 02 06 01 36 15 9 53 7 45 2. 91 1. 75 10 29 18 .11 62 21 3 51 6. 79 4. 08 58 9 90 25 04 60 22 3 62 ' 6. 95 4. 27 58 12. 04 26 04 72 0 CALM 0 00 0 00 101 35 !)15 5. 92 19 61 6 80 100 00 1. 18 41 6. 02 J!JHH !-.liND FREQU.ONCY DISTRIBUTION BY STABILITY CLASS DATA PER I OD JVI\!1:::: L 1974 THROUGH MAY 31. 1975 STt.BILITY CLt.SS: PASOUILL D DATt.. TE HEIGHT. 10.00 METERS TABLE GENt.RATED: 11/04/81 13. 19 37. WIND WINO SPEED CATEGOR IEH(METERS PER SECTOR 0 0-1 5 1. :=-3. 0 3. 0-5 0 5. 0-7. 5 NNE NC: ENE E ESE SE SSE ssw s" :.-JSW w w:--.:w r-M T JTAL KEY 8 26 64 72 3<l 1. 10 2 70 3 03 09 30 75 84 4 44 17 1 85 05 26 51 26 7 13 19 29 55 1. 94 80 03 15 54 22 10 21 5:3 24 42 88 2. L 01 12 25 6;..:? 28 1 21 42 35 o* 88 1. Tl 1. 47 01 25 4 41 9 28 3:3 46 33 1 18 1. 39 1 94 11 33 :3'1 54 8 31 51 51 3*t 1 31 2. 15 2 15 09 36 . 60 60 6 36 120 120 25 1 52 5. 06 s 06 07 42 1. 40 1 40 1 20 4:3 67 84 1 81 2 82 05 23 50 78 8 17 1 7 . 34 72 8l3 29 09 20 25 08 8 15 14 6 3*1 63 5'1 25 09 18 16 07 6 14 2*1 10 25 59 1 01 42 07 16 12 6 16 38 25 67 1 01 1 60 07 19 28 44 2 15 :l8 80 08 63 1 60 3. 37 02 18 44 93 4 21 41 75 17 88 1 7:3 3. 16 05 25 48 88 7 19 6<1 76 2? 80 2 70 3 20 03 22 7:;. 8"1 0 0 co 0 00 93 ::J35 748 13 14 12 30 r,:J 31. 14 3 91 8 -44 8 74 XX ( NU:'13E:R OF OCCURRENCES XXI. PERCEr-H OCCURRENCES THIS CLASS <X< PERCENT OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO 7699-064 SECOND) MEAN 7 5-10.0 }10. 0 TOTAL SPEED 29 0 199 5 16 1. 22 0 00 8 39 34 0. 00 2 33 0 0 92 3 96 0 00 0. 00 3 88 0. 00 0. 00 1 07 3 0 88 4. 18 13 0 00 3 71 04 0. 00 1 03 5 3 116 4 28 . 21 13 4 89 . 06 04 1 36 16 12 127 5 63 67 51 5 35 . 19 . 14 1 48 9 6 131 4 90 38 25 5 52 11 07 1 53 10 3 154 4 62 42 13 6 49 12 04 1. 80 98 14 394 5 95 4 13 . 59 16. 60 1 14 16 4 60 45 12 191 6. 08 1. 90 51 8 05 53 14 2 23 8 4 65 4 51 . 34 17 2 74 09 05 76 4 2 49 3 98 17 08 06 05 02 57 6 11 71 s 35 25 46 2 99 07 13 83 14 G 106 5 64 59 34 4 47 16 09 1. 24 29 4 168 5 85 1 22 17 7 CB 34 OS 1 96 54 1*1 ;,:Q9 6 27 2. 28 59 8 81 63 16 2 44 38 9 ;:.:13 s 75 1 60 38 B. 98 44 11 2 49 0 CALM 0 .. 00 0 00 368 10.2 5. 40 15 51 4 30 lUO 00 4 30 1 19 :.:7 73 Rev. 0 WOLF CREEK TABLE 2.3-29 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (10 METERS) (ANNUAL) ,J,-;Irll f-qEGLh.:rKY l.JY CLASS OAr.; fERICD L 1'174 IHROUGH Jl, Sl.:.OIL i !'r (LJ,::::*S p,.;*:nuiLL l: DrlTA SITE JU!SIJR Hf-'"lGilT :.J 00 TAULE:_ 11/04/81 13 19 J7 WOLF CTHTK GE-NHMT HJG STAT IOt.J 1 UN, Kc\NSAS GAS MJD f'"l_i-C fr{IC DA11ES AND MOOHE NO 769'7-064 WIND '->ECTOR lJINll SPU:O CATEGORit:S\Mf::TERS PER SECONDJ !'lEAN ENE ESE SE SSE SS;.J WS:.J NNl.J N CALM TOTAL. t:J-30 :::00-7'5 75-100 20 23 l 1l 06 23 8 31 .;s t. 73 09 36 s 29 23 1 61 06 34 3 l5 17 83 O<l 18 6 17 33 95 07 20 4 36 22 2 00 OS 42 6 66 3. 67 07 77 11 68 61 3 78 13 79 7 33 39 1 84 08 39 3 26 17 1. 45 Q<l 30 1 10 06 56 01 12 7 23 39 1 28 oa 27 2 23 11 1. 28 02 27 4 26 22 1. 45 OS 30 3 19 17 1 06 04 . 22 3 19 17 1 06 04 22 0 0 00 0. 00 78 461 4 34 25 65 91 5 39 21 1 17 25 1 ll 23 24 1 34 23 J9 2 17 46 39 2 17 46 49 2 73 57 114 6 34 1. 33 130 7 23 1 52 48 2 67 56 27 1 50 32 14 78 16 21 1. 17 25 38 2. 11 44 54 3. 01 63 34 1. 89 40 36 2 00 42 708 39. 40 8 27 8 45 09 " 33 07 9 so ll 18 1. 00 21 34 1 89 40 21 1 17 25 81 4. 51 95 115 6. 40 1. 34 61 3 39 71 7 39 08 9 50 11 14 78 16 14 78 16 18 1. 00 21 19 1. 06 22 22 1. 22 26 456 25 38 5 33 0 0 00 0 00 0 0 00 0 00 11 02 3 17 04 6 33 07 4 22 05 5 28 06 39 2. 17 46 16 89 19 tT 02 1 06 01 2 11 02 0 0. 00 0 00 1 06 01 1 06 01 t! . 02 84 4 67 98 V..Et" XXA OF OCCURRENCES '"" PERCE!H OCCURRENCES THIS CLASS ..<X.< PERCENf OCCURRENCES ALL CLASSES JOINT WIND FREQliE:rKY DISTRIBUTION BY STABILITY CLASS DATA PERIOD JU.\.E L 1974 THROUGH MAY 31. 1975 0 1 06 01 0 0 00 0 00 0 0 00 0 00 \ 06 01 0 0 00 0. 00 l 06 01 1 06 01 5 28 06 0 0 00 0 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 1 06 01 10 56 12 TUfAL , 3 o,::, 64 3 6:2 76 (..,,., 3 84 8\ 77 4 40 9:=-! 10;2 5 613 1 1'? 115 6 40 1 3<l 27:3 15 19 3 19 368 20 48 4 30 16!) 9 18 1 93 6!) 3 6;2 76 :J:J 1 9!) 41 67 3 73 78 77 4 2a 9() 10:3 5 73 1. 20 76 4 23 8'? 83 4 6;2 97 0 0 00 0 00 1797 100 OD 21 00 SPFED 3 64 2 89 3 48 4 36 4 56 3 97 4 31 4 91 4 81 3. 47 3. 88 3 58 3. 69 3 87 4. 04 ' 4 34 CALM 4 24 ST,;3ILITt' CLASS. PASQUJLL F WOLF CREEK GENERATING STATION Dt.Tt. O;.J-SITE KANSAS SEtJSOR HEIGHT 10 00 METERS KANSAS GAS AND ELECTRIC TABLE GErkRATED. 11/04/81 13 19. 37 DAMES AND MOORE JOB NO* 7699-064 WIND SPEED CATEGORIES <I'1ETERS PER SECOND) MEAN SECTOR 0 0-1. 5 1. 5-3. 0 3 0-5 0 5. 0-7. 5 7. 5-10.0 )10. 0 TOTAL SPEED 1\:rJE 1 20 25 1 0 0 47 3. 07 09 1 72 2 1S . 09 0. 00 0 00 4 05 01 23 29 . 01 0 00 0. 00 6 26 " 0 1 0 '" 2. 61 52 2 24 69 0 00 09 0. 00 3. 07 30 09 0 00 01 0 00 48 El'!t:. 4 17 20 0 0 0 41 2. 95 34 1 46 1 72 0 00 0 00 0. 00 3. OS 20 2:1 0. 00 0. 00 0. 00 48 E 3 30 3, 7 0 0 75 3 32 26 2. 58 3. 01 60 0 00 0. 00 6. 46 0<1 35 41 08 0. 00 0. 00 [;8 ESE 3 25 25 6 0 0 3. 36 26 2 15 2. 15 52 0 00 0 00 s. 08 04 29 29 07 0 00 0 00 b9 SE 6 63 35 7 0 0 111 3. 07 52 5 43 3 01 60 0 00 0. 00 9 !:i6 07 74 41 . 08 0. 00 0. 00 1 :!O SSE 4 99 97 8 0 0 208 3 21 34 8 53 8 35 69 0. 00 0. 00 17.92 05 1. 16 I. 13 . 09 0 00 0. 00 2. 43 s 7 45 96 9 0 0 1 3 39 60 3. 88 8 27 78 0 00 0. 00 13. 09 53 1 12 11 0 00 0. 00 1 EIO 7 42 64 5 0 0 118 3. 18 60 3 62 5 51 43 0 00 0 00 10 16 03 49 75 . 06 0 00 0 00 1 :!8 sw 3 28 20 1 0 0 !:::*2 2. 79 26 2 41 1 72 09 0 00 0 00 4. 48 O*"l 33 23 01 0 00 0. 00 61 1.-JSL.J 5 12 8 0 0 0 25 2 41 43 l 03 69 0. 00 0 00 0 00 2. 15 06 14 09 0 00 0 00 0 00 29 w 4 21 13 1 0 0 39 2 77 3*-+ 1 81 1. 12 09 0 00 0 00 3 36 05 25 15 01 0 00 0 oo 46 (...;t 5 13 29 0 0 0 47 3 06 43 1. 12 2 50 0 00 0 00 0 00 4 05 06 15 34 0 00 0 00 0 00 55 ;lw 6 24 14 0 0 0 44 2. 65 52 2 07 1. 21 0 00 0 00 0 00 3 79 07 28 16 0 00 0 00 0. 00 51 3 26 11 1 0 0 41 2 78 26 2 24 95 09 0 00 0 00 3 53 04 30 13 01 0 00 0 00 4H " 26 23 5 0 0 56 3 14 2 24 1 98 43 0 00 0 00 4 R2 02 30 27 06 0 00 0 00 65 CAL:-1 0 0 CALM 0 co 0 00 0 00 0 GO 10TAL 69 517 523 51 1 0 lltil 3 10 5 94 44 53 45. OS 4 39 09 0 00 \00 00 81 6. 04 6. 11 60 01 0 00 t:J 56 Y,EY ..<X< NUr1DER DC OCCURRENCES :<X.t, PFRCErH OCCURRENCES THIS CLASS XX< PERCEN r OCCURRENCES ALL CLASSES Page 11 of 16 Rev. ()

WOLF CHEEK TABLE 2,3-29 JOINT WIND DISTRIBUTION BY STABILITY CLASS ( 10 METE:RS) (ANNUAL) :.JIND FREQ\;::-:rJCY DISTRIOUT ION IJY CLASS l'ATA f't:.RillD ,J\J:><F: L 1974 THRLJUGH MIIY 3L 1Y75 STM3Il_ ITY CLASS PASOUILL G O;..T,<; C\;'\j-SilE HI:IGHT 10 00 METt:llS WOLF CREE"K GaJERATING STATION UlJf-H ION, TMllU: 11/04/81 1:3 1'1 37. I' G1\C:i AND !.: L[C fH I C AND 1'1001-<E ..._!UU NO 7699-064 CAIL:GOHIES(I'!!:TER[i PER SECCJNU) I*IIND 0 0-1 1 0 3 0-:::> 0 5 0-7 5 7 ::> 10 0 >10 0 F ENE ESE ::sw r.w CAL:-1 TOTAL .; 58 05 4 58 05 3 44 0*1 .. 58 05 1 15 01 6 87 07 5 73 06 5 73 06 7 1 02 03 02 4 58 05 1 15 01 8 1. 17 09 7 1. 02 03 8 1. 17 0? 5 73 06 0 0 OJ t) 00 74 10 79 86 21 3 06 25 21 06 =s 18 62 21 2 92 23 2*1 3 50 28 57 8. 31 67 60 8 75 70 27 3. 94 32 16 2 33 19 4 58 05 12 1 75 14 9 1. 31 11 11 1. 60 13 21 3 06 25 21 3 06 25 17 2 48 20 359 52 33 4 19 1'1 77 22 c/7 01 19 2 77 2;? ?b 3 79 30 11 1 60 13 39 5 69 46 41 5 98 48 28 4 08 33 9 1. 31 11 2 29 02 3 44 04 5 73 . 06 3 44 04 7 1. 02 08 9 1. 31 11 19 2 77 22 246 35 86 2. 87 XXX NGMBER OF OCCURRENCES 0 0 00 0 00 0 0 00 0 00 3 44 04 1 15 01 0 0. 00 0 00 1 15 01 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 1 15 01 1 15 01 7 1. 02 08 XXX PERCENf OCCURRENCES THIS CLASS .<XX PERCErH OCCURRENCES ALL CLASSES 0 0 00 0 00 0 0 00 0 00 () 0 00 0 00 0 l) 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 JOWT t.Jt;>JD DISTRIBUTION BY STABILITY CLASS DATA PERICD* JIJ,"\*E t. 1974 THROUGH MM' 31, 1915 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 Mt.AN TOTAL 4-l 6 41 :n 55 4 ::l6 *u ts 6 27 50 :-:! 0:3 7. 43 60 :l6 2 65 5 :::'5 42 103 84 15. 01 1. 20 106 2 80 15. 45 1 24 60 76 8 75 70 32 2 44 4 66 37 8 2 25 1 17 09 19 2 13 77 22 2 :J9 2 19 18 22 1 97 3 21 26 35 34 5 10 41 39 53 5 69 46 42 I 2 97 6 12 49 0 CALM 0. 00 0 00 686 2 73 100 00 8 01 ALL CLASSES DATA SOIJRCE [1:-.l-SITE WOLF CREEK GENERATING SlATION BURLINGTON, KANSAS i.JINO SENSOR HEIGHT: 10. 00 METERS TA:JLE 11/04/81. 13 19. 37. KANSAS GAS ELECTRIC DA!1ES AND MOORE JOB NO 7699-064 WIND WINO SPEED CATEGORIESlMEfERS PER SECOND) MEAN SECTOR 0. 0-1. 5 1. 5-3.0 3. 0-5 0 5. 0-7. 7 5-10 0 )10. 0 EN£ ESE SE SSE SS:.-.1 SW WSW NW CAU1 FJTAL 22 26 25 27 22 26 24 23 13 15 31 36 25 29 23 3? 31 36 18 21 26 30 2:2 26 27 32 24 28 21 25 19 3 04 386 4 51 115 1. 34 133 1 55 92 1 07 96 1 12 119 1 39 211 2 47 278 3 25 207 2 42 135 1 58 100 1. 17 61 71 91 1 06 81 95 104 1 22 95 1 11 95 1 11 2013 23. 52 rlUM8ER Q!=" VALID OOSERVAT l ONS r'<!Vf13ER r.Ji=" W'v'AI.ID 013SE>NA! IONS TOTAL nv118ER OF OBSERVATIONS 176 2 06 118 1. 38 137 1. 60 181 2. 11 !54 1. 80 196 2 29 363 4. 24 460 5 37 250 2 92 103 1 20 55 64 90 1 05 112 1. 31 130 1. 52 2841 33. 19 201 8760 KEY XX< NUr1!3ER OF OCCURRENCES XXX PERCENT OCCURRENCES 139 1. 62 42 49 48 56 57 67 101 1. 18 104 1. 22 198 2. 31 413 4. 83 273 3. 19 51 60 35 41 54 63 85 99 169 1. 97 186 2. 17 177 2. 07 2132 24. 91 97 71 PCT .::.. 29 PCl 100. 00 PCT 51 '60 6 07 10 12 25 29 14 16 41 48 216 2 52 144 1 68 31 36 13 15 12 14 31 36 83 97 137 1 60 81 95 897 10 48 3 04 0 0 00 0 0 00 5 06 17 20 8 09 8 09 50 58 76 89 22 26 8 09 14 16 19 22 20 23 23 27 17 20 290 3 39 TOTAL SPEED 506 5. 91 3;:'0 3. 74 913 10.67 1379 16. 11 909 10.62 :J;;:s 3. EO 198 2. 31 203 3. 31 4. 15 6 19 6. 83 6 80 " 04 8559 100 00 4. 61 3 37 3 68 3. 92 4. 53 3 82 4 14 5. 34 5. 65 4 54 4 00 4 19 4 83 s 27 s 72 5 20 CALM 4 76 Page 12 of 16 0 WOLF CREEK TABLE 2. 3-29 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (10 METERS) (ANNUAL) *DirH W!:H) FREm;::=-rKY OJSTHIBUTlfJii IJY STAUILIIY CLt\SS ;;;,JA rERIDD 5, 19/*-1 THIWUGH r11\RCH 4, 19d0 lLITY l:L.;SS P1\':';(IUILL ,,

  • I TE Hf!GHf !0 00 MF.TERS 11!04/Hl l*l 42 25 I ; 0 SPFED CATEGOR ( tlC1 ERS PER St:CTlJR 0 0 1 " 1 :J-3 0 3 0 -5 0 5 0-7 5 N*.;;;: 0 9 0 00 65 1 :10 2. 92 0 00 03 oo ,' 0 1 1 6; 0 OJ 32 0 OJ 01 01 03 0 0 () 0 0 co 00 0 00 0 00 0 CJ 00 0 O:) 0 00 0 0 .:;f 0 co 0 00 0 OJ 0 00 03 04 E:3E 0 0 4 0 OJ 0 00 1 ]0 0 00 00 0 00 0 00 SE 0 0 B 4 0 co 00 2 60 1 30 0 00 00 11 05 SSE 0 1 ,, 0 0 OJ J2 1 95 0 00 0 co 01 on 0 00 0 3 13 1J 0. 00 97 4 4 22 0 OJ 04 1l 17 1 1 9 49 32 J2 2. 92 15 91 01 01 12 65 6; 0 4 3 0 00 1 :::JO 97 03 0. 00 05 . 04 l.03;J 1 4 1 0 32 1 JO :!2 0 00 01 05 . 01 0. 00 w 0 5 7 0 0 00 1 62 2 0 00 0. co 07 09 0. 00 w; .. :J 0 1 1 6 0 00 32 . ::i2 1. 95 0. 00 01 01 08 0 1 0 1 0 00 J2 0 00 32 0 00 01 0 00 . 01 w-:;.; 0 5 11 9 0 00 1. 62 3. 2. 92 0 00 07 15 12 N 1 3 6 19 32 97 1 95 6 17 01 04 08 25 CAlM 0 0 00 0 co TOTAL 5 27 77 118 1 62 8 77 25 00 38.31 07 36 1 03 1. 57 KEY X X'< NUi"il3ER OF OCCURRENCES XX.< PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES t,;OLF CRFEK GLNU<,';TING STATION Guru INGTON, KANSr,:'l Kt\NSAS GAS liND E.LEC I R l C Df\f'lE-5 AND JOB NO "/699-064 SECOND> M[AN 7 5-10 0 :.10. 0 IOTAL Sf-'t:.ED 6 0 21 6 d1 1 95 0. 00 6 l.:32 08 0 00 28 s 0 " 6 80 1. 62 0 DO 2 92 07 0. 00 I;;* 0 0 0 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 0 s 5 66 0 00 0 00 1 62 0 00 0. 00 07 0 0 4 4 52 0 00 0 00 1 30 0 00 0. 00 OS 0 0 12 4 48 0. 00 0. 00 3 90 0 00 0 00 16 0 0 7 4 07 0 00 0 00 2 27 0. 00 0. 00 09 11 0 40 5 85 3. 57 0 00 12 99 15 0 00 53 10 0 70 6 14 3. 25 0 00 22 7J 1J 0 00 93 2 0 11 4 82 65 0. 00 3 57 03 0. 00 15 0 0 6 2 J3 0 00 0. 00 1 95 0 00 0. 00 08 0 0 12 3 41 0. 00 0 00 3 90 0. 00 0. 00 16 2 0 10 6 17 65 0. 00 3 25 03 0 00 13 2 1 5 7 60 65 . 32 1 62 03 01 07 17 1 43 6 J5 5. 52 32 13 96 23 01 57 14 10 53 7 07 4 55 J 25 17 21 19 13 71 0 CALM 0 00 0 00 69 12 :JOB 5 97 22 40 J 90 100 00 . 92 16 4 10 .... '.JINT FREGUErJCY DISTRIBUTION l3Y STABILITY CLASS [ . .;fA PERIOD 5, 1979 THROUGH MARCH 4, 1980 STf..GILIT'I" CLASS: PASGUILL B DATo'. SENSOR HEICHT. 10 00 METERS TA3LE GENrRATED 11/04/81 t4 42. 25. WIND :..JHJO SPEED CATEGORIES <METERS PER SECTOR 0 0-1. 5 1 5-3 0 3 0-5 0 5. 0-7. 5 ;\I :"\IE 0 2 6 6 0. co . 67 2. 01 2. 01 0 OD 03 08 08 NC:. 0 1 9 0. co 34 3 02 0 OJ 01 12 03 E 0 2 J 0 OD 67 1. 01 0 co OJ 04 03 0 0 1 1 0. 00 0 00 34 34 0. O'J 0 00 01 01 ESE 0 1 4 2 0 00 . 34 1. 34 67 0. 00 01 . 05 03 SE 0 0 4 3 0. 00 0 00 1 :34 1. 01 0 co 0 00 05 . 04 SSE 0 0 6 1 0 OJ 0 00 2. 01 J4 0. 00 0 00 08 . 01 1 3 7. 18 34 1 01 6. 04 01 04 24 SSW 0 6 12 30 0 co 2 01 4 03 10 07 0 03 08 16 40 sw 0 6 5 7 0 co 2. 01 l. 68 2 JS 0. 00 08 07 09 0 2 2 0 OJ 67 67 67 0 00 03 OJ 03 0 3 11 3 0 00 1 01 J 69 1 01 0 co 04 , 04 \.J1lW 0 1 3 5 0 OJ J4 1. 01 1. 68 0 03 01 04 07 r,;w 0 5 1 3 0. 03 1 68 :!4 1. 01 0 OJ 07 01 04 0 0 5 4 0 C3 0 00 1 bB 1. 34 0 C3 0 00 0""/ 05 0 5 " 7 0 OJ 1 68 3. 02 2. 35 0 CJ 07 1 09 CAl ;1 0 0 03 0. co T::JTAL 1 J7 lC>J 96 J4 12 42 34 32. 21 01 49 1. :J? 1 28 KEY XX"( NUMBER OF OCCURRENCES XXX PERCEnr OCCURHENCES THiS CLASS Xx.< PERCEfH OCCURRENCES ALL CLASSES WOLF CREEK GENEHATING STATION BURLINGTON, IJ.ANSAS KANSAS GAS AND ELECTH I C DAMES AND MOORE 00B NO 7699-064 SECOND) MEAN 7. 5-10. 0 >10. 0 TOTAL SPEED 4 1 19 5 82 1. 34 34 6.38 . 05 01 . 25 1 () 1J 4 62 34 0. 00 4 36 01 0. 00 17 0 0 7 4. 20 0. 00 0 00 2. 35 0. 00 0. 00 09 1 0 3 5 90 34 0. 00 1 01 01 0. 00 04 0 0 7 4 39 0. 00 0 00 2. 35 0. 00 0 00 09 1 0 8 5 61 34 0. 00 2 68 01 0. 00 11 1 0 8 4 82 34 0 00 2 68 . 01 0. 00 11 16 2 62 5. 89 5 37 67 20. 81 21 03 83 10 0 58 5 85 3 36 0. 00 19 46 13 0. 00 77 10 0 28 5 96 3. 36 0 00 9 40 13 0 00 37 1 0 7 4 64 . 34 0 00 2 35 01 0 00 09 1 0 18 4 09 34 0 00 6 04 01 0 00 24 0 0 9 4 60 0 00 0 00 3. 02 0 00 0 00 12 4 0 13 5 48 1 34 0 00 4 36 05 0 00 17 3 1 13 6 28 1 01 34 4 36 04 01 17 3 1 25 ' 4 88 1. 01 :l4 8 39 04 01 33 0 CALM 0. 00 0. 00 56 5 5 45 18. 79 1 68 100 00 75 07 3 97 Page 17> of 16 Rev. 0 WOLF CREEK TABLE 2 .. 3-29 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (10 METERS) (ANNUAL) \.Jl:m FREQU:':ii.!CY DISTRIDUTTON OY STAIJILITY [LASS :_:.,; T M PER I (1D r1;*RCH 5, 19/9 THROUGH t-:t,RCH 4. l SIBO T I TY CLMS!::l PAS!lU l LL C u;,r;, '::iCJl!RCE C*\J-SITE It .Ill Sl HE: !GHT 10 00 :1,::LL 11/04/81 14 42 25 I,.J!N[) \JINO SPEED CA fEGOR I ES U*iETERS F'ER .3EC T 0 0-1 5 I 5-3 0 3 0-0 5 0 *:' [:'JE ESE SE ;sE ss:.J " N CAt M TOTAL 0 6 5 *) CJ I 51 1. 0 co 03 08 07 0 0 4 *l 0 0) 0 00 1 01 I '" 0 0) 0 00 05 05 0 2 s§ 5 0 0) 50 1. 0 0) 03 03 07 sO 1 7 25 1. 76 03 01 09 03 0 0 11 1 0. 0;:) 0 00 2 76 0. 00 0 00 15 . 01 0 5 3 0 OJ 1 26 75 0 0) 03 07 04 0 7 8 7 0 00 1. 76 2 01 1 0 00 09 11 09 0 3 25 0 00 75 6 ;;:s 6. 03 0 co 04 33 . 0 6 15 :)9 0 co 1. 51 3 77 9. HO 0 0) 08 co . 0 4 3 6 0. OJ 1. 01 75 I 0 co 05 04 08 0 5 3 4 0 C) 1 26 . 75 1.01 0. co 07 04 05 0 4 11 6 0 0) I 01 2. 76 1 . 1 0 C) 05 15 08 1 3 10 1 25 75 2. 51 ;;:s . 01 04 . 13 01 0 2 4 9 0 co 50 1 Dl 2 ;;?6 0 OJ 03 05 12 I 7 11 11 25 I 76 2. 76 2. 76 01 09 15 15 0 2 10 10 0 00 50 2 51 2. 1 0. co 03 13 13 0 0 C) 0 co 4 50 135 1:!7 1 01 12 56 33.92 34 42 . 05 67 1 80 1. B3 XXX NUMBER OF OCCURREf\!C:::S .'<X.( PERCEtH OCCURRENCES THIS CLASS XX.< PERCENf OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION 13lJRLII\!GTPN. GAS AtJD E-LECTRIC DAiiES AND MOORE ,JOI3 Nil I 699-064 SECOND) i1FAN 7 5-10 0 ::.'10 0 TllTAL SPEED 6 0 19 " 89 I 51 0 00 *I 77 08 0 00 I 0 " 5 27 25 0 00 26 01 0 00 12 0 0 9 5 18 0 00 0 00 0 00 0 00 12 0 0 12 3 94 0 00 0 00 :l 02 0 00 0 00 16 0 0 12 4 27 0 00 0. 00 "* 02 0 00 0 00 16 3 0 13 5 18 75 0. 00 :J 27 04 0. 00 17 1 1 24 4 42 25 25 h 03 01 01 32 15 ;.: 69 5. 81 3. 77 50 1 34 20 03 92 12 3 75 6 03 3 02 75 "' 84 16 04 00 1 0 14 5 13 25 0 00 3 52 01 0 00 19 1 0 13 4 63 25 0 00 " 27 01 0 00 17 2 0 23 4 75 50 0 00 ,, 78 03 0 00 31 1 0 16 3 91 . 25 0. 00 ,, 02 01 0 00 21 2 s2 19 6 08 50 ,, 77 03 03 25 6 1 37 5 25 1 51 25 " 30 08 01 49 10 52 34 ' 6. 23 2 51 " 54 13 03 45 0 CALM ,, 00 0 00 61 11 398 5 4c l5 33 76 100 00 81 1 ,, 30 FREI)UC:NCY DISTRIBUTION BY STABILlTY CLASS DATA PEtdDD. MARCH 5, 1979 MARCH 4, 1980 CLASS* PASGUILL D DATA SEN30R HEIGHT 10.00 METERS TADLE GENERATED 11/04/81. 14 42 25. WINO WHJD CATEGORIES <METERS PER SECTOR 0 0-1 5 1. 5-3.0 3. o-s 0 5. 0-7. 5 tJi,JE 2 31 b6 C;,2 07 1. 15 2 45 2. 30 03 41 138 El3 tJE 3 46 80 43 11 1. 71 2. n 1. c.o 04 61 1 07 07 9 37 ;s ::::*9 33 1 37 2 53 1. 08 12 49 91 :w 6 28 74 :!2 22 1. 04 2. 75 1. 19 03 37 ,9 43 ESE 2 29 51 ::::*s 07 1. 08 1. 89 1. 04 03 39 ;s :!7 3 22 50 ::::*o 11 82 I 36 74 04 29 .;? ';.? SSE 1 28 79 39 04 1. 04 2 93 1 45 01 37 1. *)5 . ::.2 8 43 1:29 105 30 1 60 4. 79 3. 90 11 57 1 72 1. 40 SSt./ 4 31 71 111 15 1 15 2. M 4. 12 05 41 '>5 1 48 sw 6 24 :Ja ;;:s 22 89 1 41 93 03 32 1 33 WSW 6 16 " 59 132 33 21 :2"? 12 7 23 -l3 37 26 85 1 ,:,o 1 37 09 31 :57 49 3 12 ;2:3 33 11 45 BS 1 23 O*l 16 31 44 f'.I:...J 3 15 39 11 56 BS 1 45 O*l 20 :31 3 12 45 74 11 45 1.(J7 2 75 04 16 <>0 9'1 ,,, 5 27 Bl 91 19 1 00 3 38 07 36 1 16 21 CA' :-'! 0 0 co 0 co TOTAL 71 424 949 777 2 64 15 74 35 28 85 95 5 65 12 64 10. 35 XX"( OF OCCURRENCES XX ( f OCCURRENCES fHIS CLASS XX ( PERCEtJf OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTR J C DAf1ES AND MOORE JOB NO* 7 699-064 SECOND) MEAN 7. 5-10. 0 >10. 0 HlTAL SPEED 14 8 183 , 02 . 52 30 6 80 . 19 11 ,, 44 15 189 4 38 56 07 02 20 03 ,. 5;..:! 7 0 150 3 97 26 0 00 ,, 57 09 0. 00 00 3 0 143 4 02 11 0 00 ,, 31 04 0. 00 I 91 5 2 117 4 42 . 19 07 4 34 07 03 1 56 16 2 113 4 76 59 07 4 20 21 03 ] . 51 16 3 166 4. 71 59 11 ,, 16 . 21 04 ,. 21 89 28 402 5. 92 3 30 1. 04 14 93 1 19 37 ,, 36 49 25 291 6. 00 1. 82 . 93 10.81 65 33 :l. 88 11 4 lOB 4 70 41 15 4 01 15 05 1 44 13 0 66 4 51 48 0 00 45 17 0 00 88 17 0 127 4 74 63 0 00 4 72 23 0 00 1 69 9 0 00 5 05 33 0 00 97 12 0 00 1 07 22 6 108 5. 75 82 4 01 ::;'9 1 44 35 14 183 6 15 1 30 52 ! 80 47 19 44 43 14 ;267 5 64 1 60 "*. 91 57 19 56 () CALM ( 00 c no 364 108 :::{83 " 10 13 52 4 01 100 00 4 85 1 44 :3S 88 Page 14 of 16 Rev. 0 WOLF CREEK TABLE 2. 3-29 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (ANNUAL) ( 10 METERS) Page 15 of 16 FRE'11JCJKY OY SIA81L.ITY ClASS DN 1 A PER I 00 !"'t/,f.\CH 5, t 979 I HHOX:H f'1f\HCH 4, I '1"80 ClN:S PASOlJil L E. r ,-, f I< Q;\1-S I TE 10 00 METERS T ;,nL[ GENER..:..T£0 II /04/81 14 42 WINO CATE: GOR I ( hElERS PER SECTtlR 0 0-1 5 I :.J-3 0 ] 0-5 0 5 0-7 5 r<rJE: ESE SE SSE SW WSW w !.-;tJ:..J N CAL:-1 TOTAL 3 12 J/ 1 !5 S'l I 23 I 04 o; 16 4Y 28 3 37 29 5 !5 I 83 1 44 25 O*t 49 39 07 4 35 213 4 20 1. 73 1 39 20 OS 47 37 05 5 29 48 26 25 1 44 2 38 1 29 07 39 64 35 3 32 43 .13 15 1 58 13 64 04 43 57 17 7 45 42 1. 35 2. 23 2 08 09 60 56 29 5 43 121 48 25 2. 13 5 99 2 :-38 07 57 1 61 64 4 75 189 166 20 3. 71 9 36 8 22 05 1. 00 2 52 2. 21 3 21 81 70 15 1. 04 01 3 47 Q<t 28 oa '13 19 14 94 1 69 OJ 25 29 19 2 12 15 11 10 59 74 54 03 16 20 15 4 17 18 10 20 84 89 50 05 23 24 13 3 15 21 14 15 74 1 04 69 0'< 20 28 19 16 27 11 79 1 34 54 03 21 36 15 3 17 38 39 15 84 1 88 L 93 04 23 51 . 52 1 24 34 17 05 1. 19 1 68 84 01 32 45 23 0 0 co 0 00 54 449 793 491 2 67 22 24 39 28 24 '32 72 5. 98 10 57 6 54 Y.EY .<X( OF OCCURRENCES XXX PERCENf OCCURRENCES THIS CLASS XXX PERCEfH OCCURRENCES ALL CLASSES W()[ F CfH::EK CENE-RATINC. SfATION Bl!RL I NGTON, KANSAS GAS f\t'Jl) f-_L[:;:C fF I C 0/\f*TES AND f*IOLJr<E I'IU !699-064 Sl:.COI\iO) MEAN 7 0 >10. 0 l []TAL SPEED ;, 6 f!J 5 05 30 :30 21 08 08 t:J 1 0 7'> 3 21 05 0 00 71 01 0 00 00 I 0 72 3 13 05 0 00 3 57 01 0 00 '16 4 I tl:J 4 14 20 05 " 60 05 01 1 51 2 I 94 3 76 10 05 4 66 03 01 1 2:1 12 I 129 4 08 59 05 6 39 16 01 1 72 3 0 220 4 02 15 0 00 10 90 04 0 00 2. 93 85 48 56l 5 71 21 2. 38 ;::a 08 13 64 7. 55 26 14 215 5 52 1. 29 69 10 65 35 19 86 1 I 59 4. 01 05 05 2. 92 01 01 79 0 0 40 3 76 0. 00 0. 00 I 98 0. 00 0 00 53 1 0 50 3 68 05 0 00 2. 48 01 0. 00 M 1 0 54 3 87 05 0 00 2. 67 01 0. 00 72 4 0 60 4 06 . 20 0 00 2 97 . 05 0 00 so 6 0 103 4 60 30 0 00 5. 10 08 0 00 1 37 7 0 83 4. 30 35 0 00 11 . 09 0 . 00 11 0 CALM 0 00 0. 00 160 72 2019 4 66 7 92 3. 57 l(lQ 00 2. 13 96 90 JOINT \-lrtW FREGV;::;JCY DISTRIBUTION 13Y STABILITY CLASS DATA PERIOD Ht.RCH 5, 1979 THROUGH M.<\RCH 4, 1980 SfAEILITY CLASS: PASGUILL F O.;TA C:'\l-SITE HEIGHT 10 00 METERS T.;BLE GEN!::_RATED 11/04/81. 14. 42.25 WIND Wlt-.10 SPEED CATEGORIES (METERS PER SECTOR 0 0-1. 5 1 5-3 0 3 0--5. 0 5. 0-7 5 NNE 2 29 17 0 19 2 78 l 63 0 00 03 39 23 0 00 NE 3 22 6 0 29 11 . 57 0 00 04 29 08 0 00 ENt: 5 33 18 0 48 3. 16 1 72 0 00 07 44 24 0 00 5 26 24 1 48 2 49 30 10 07 35 32 01 ESE 13 33 27 0 1. 25 3 16 59 0 00 17 44 36 0 00 SE 10 83 14 1 96 7 95 1. 34 10 13 1 11 19 01 SSE 8 105 58 2 77 10. 06 19 11 1. 40 77 03 7 52 61 4 67 4 98 ,, 84 38 09 69 81 05 ssw 4 17 26 9 38 1 63 2 49 86 05 23 35 12 4 13 9 0 38 I 25 86 0 00 05 17 12 0 00 4 32 12 0 33 3 07 I 15 0 00 05 43 16 0 00 8 21 13 77 01 1. 25 11 23 17 03 w:Jw 4 28 14 0 2 68 1 34 0 00 05 37 19 0 00 NW 2 45 23 0 19 4 31 20 0 00 03 60 31 0 00 :w 4 19 15 2 33 1 82 1. 44 19 05 25 20 03 N 3 ff 16 29 2 1 53 Ol 29 21 03 CAL:-1 2 19 03 TOTAL 03 580 353 23 EJ 43 so 06 33 81 2 20 1 17 7 73 4 70 31 1"-E.Y XX ( tJU,'"lOER CJF OCCURRENCES XXX PERCENf OCCURRFNCES THIS CLASS '" PERC EN r OCCURRENCES ALL WOLF CREEK GENERATING STATION KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO; 7699-064 SECOND) MEAN 7. 5-10. 0 ).10. 0 TOTAL SPEED 0 0 48 2. 74 0 00 0. 00 4 60 0 00 0. 00 64 0 0 31 2. 37 0. 00 0 00 2. 97 0. 00 0. 00 41 0 0 56 2 55 0. 00 0. 00 5. :36 0. 00 0. 00 75 0 0 56 2 94 0. 00 0 00 5.36 0. 00 0. 00 75 0 0 73 2 61 0. 00 0. 00 6 99 0. 00 0 00 97 0 0 108 2. 28 0 00 0 00 10.34 0. 00 0 00 1 44 0 0 173 2 78 0 00 0. 00 16 57 0. 00 0 00 2 31 0 0 124 3 08 0. 00 0 00 11 88 0. 00 0. 00 1 65 0 0 56 3 49 0 00 0. 00 5 36 0. 00 0 00 75 0 0 26 2. 60 0 00 0. 00 2 49 0 00 0 00 35 0 0 48 2 57 0. 00 0 00 4 60 0 00 0 00 64 0 0 44 2 68 0 00 0 00 4 21 0 00 0. 00 59 0 () 46 2 60 0 00 0 00 4. 41 0 00 0 00 61 0 0 70 2 66 0 00 0 00 6 70 0 00 0 00 93 0 0 40 2. 89 0 00 0 00 3 83 0. 00 0 00 0 0 43 91 0. 00 0 00 4. 12 0 00 0 00 57 2 CALM 19 03 0 0 1044 74 0 00 0 ()() 1*)0 00 0 00 0 00 13 CIJ Rev. 0 WOLF CREEK TABLE 2. 3-29 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (10 METERS) (ANNUAL) Page 16 of 16 'OWT \:lND FRE()I_,.=:qCV DISTHI!JliTIDN ny ST..\GILITY CLASS LA!,-\ f'f;-;lCJD. ::J, 1979 1HR0UC;H Mi'P-CH <o, 19UO PASCiUlLL G [),", T t.. (l;'-.;-5 l TE lJ;r;r: St-_r:StJR HEIGHT 10 00 METERS WOl.F CREEK OENLRATING STATION 1-JURL 1 NGTON, 1L.DLL GErkRATE.D 11/04/81 14 42 25 KANSi\S GAS AND E:.L[C TR I C DAI1ES ANO .JOB NfJ 7699-064 \..:INI! tHNl) CATEGORlE::S(t'lEfT::R5 f'ER SECOND) 0 0-l 5 1 j-3. 0 3 0 0*7 5 7 S-10. 0 -;.10 0 CAL:-1 TOTAL 00 00 s 67 07 6 81 03 3 40 01 3 40 04 16 2. 15 21 12 1 61 16 15 2 01 20 13 L 74 17 4 05 9 l 21 12 14 1 Ea 19 13 1. 74 . 17 12 1. 61 16 4 . 54 05 5 67 07 1 13 01 135 18 12 l. 8'J 28 3 76 37 32 4 :10 4 H 1 07 11 35 4 70 47 44 5 91 59 58 7 79 77 48 6 44 64 39 5 23 52 7 94 09 8 1 07 11 10 1 34 13 14 1 88 19 31 4 16 41 40 5 37 53 18 2. 42 24 30 4. 03 40 450 60 40 b 00 10 2 Ql 20 18 2 42 24 8 1. 07 11 3 22 3:2 12 1 I; 8 1 07 11 17 2a . :.23 :21 B2 28 9 1. "21 12 3 40 ,,. 1 . 13 . 01 4 . 54 05 3 40 04 . . 03 8 1 07 11 3 40 . 04 156 20. 94 2. 08 l"'.EY XX:< NU:'IGER OF OCCURRENCES 1 13 01 1 13 01 n 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 2 ";;.*7 03 0 0 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0 00 4 54 05 XXX PERCENf OCCURRENCES THIS CLASS XX.< PERCENf OCCURRENCES ALL CLASSES 0 0. 00 0 00 0 0 00 0 00 " 0 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0 00 ,JOINT t.Jitm DISTRIBUTION BY STABILITY CLASS DI.TA PEHlOD MARCH 5, 1979 THROUGH M.O.RCH 4. 1980 () 0 00 0 00 () 0. 00 0. 00 () 0. 00 0 00 () 0. 00 0 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0 00 nEAN r1JTAL SPEED 44 q! ,,, 56 52 15 29 62 8 ::!2 B:J :ii' 92 79 t32 t 1 01 1 09 79 10 60 1 05 75 10 07 1 00 29 3 89 39 15 2 01 20 20 68 27 32 4 30 43 47 b 3! 63 54 7 25 . 4 03 40 ? 69 31 2 81 2 42 2 10 2 45 2 44 05 2 18 1 80 1 83 1 96 2 02 2 47 38 I 2. 31 5 10 51 1 13 01 745 100 00 9. 93 CALM 2. 34 ALL OATH SOUKCE WOLF CREEK GENEHATif'lG STATION BURLINGTON, KANE>AS HEIGHT 10 00 METEfiS KANSAS GAS AND ELECTRIC TABLE GENERhTED 11/04/81. 14. 42.25 DAI*JES AND MOORE JOE NO* 7699-064 WIND WINO SPEED CATEGORlES<METERS PER SECOND) SECTOR 0 0-1. 5 1 5-3.0 3 0 5. 0-7. 5 7 5-10.0 >10. 0 No EN£ E ESE SSE 55!..1 3W I.JSW CAL:-1 fOTAL 7 09 14 19 24 32 21 . 23 21 28 36 . 48 26 35 35 47 25 . 33 18 24 22 29 33 44 24 32 19 25 15 . 20 !5 20 3 04 359 477 106 1. 41 139 1 85 117 1 56 119 1 59 139 1. 85 210 2. 80 232 3. 09 218 2 90 89 1 19 74 . 99 81 1. 08 87 1 16 91 1 21 124 1 65 78 1 04 113 1 51 2017 26. 88 !51 2 01 147 1. 96 127 1. 69 180 2. 40 152 2 03 1 :u 1. 75 295 3. 93 460 6. 13 2 97 84 1 12 56 75 107 1 43 75 1 00 80 1 07 l:lJ 1. 77 165 2. 20 :14 19 "< (.;:-VALID IONS 7505 Ir!VAI ID O!lSERVAfi016 th..,l'l:JEt-< OF 8784 X X.< tllJMeER OF OCCURRENCES XXX PE:RCENr OCCURREI\!CES 104 1. 39 57 76 40 53 65 87 44 59 53 71 99 1 32 330 4. 40 308 4. 10 55 73 26 35 58 77 59 79 63 84 139 1. 85 146 l 95 1646 21. 93 B:i 44 PCT. 14 56 PCT 100 00 PCT. 36 . 48 23 31 8 11 8 .11 7 . 09 32 43 21 . 28 216 2. 88 107 1 43 25 33 15 20 21 28 13 17 34 45 67 89 77 1 03 710 9. 46 15 . 20 . o5 0 0 00 1 01 :! 04 3 . 04 4 . 05 80 1 07 42 56 5 07 0 0 00 0 0. 00 0 0 00 ,, 12 27 . 36 208 2 Tl MEAN TOTAL SPEED 419 5. 58 382 5 09 316 4.21 394 5.25 366 4. 88 465 6 20 677 9. 02 1339 17. 84 4 68 3. 83 3. 45 3 74 3 56 3. 55 3 71 5 36 794 5 55 10. 58 261 4 35 3. 48 200 3 57 2.66 306 3 88 4. 08 262 3 78 49 329 4 21 4. 38 449 5 21 5 98 543 I 13 / 24 3 04 7505 100 00 CALM 4 47 Rev. 0 WOLF CREEK TABLE 2. 3-29a INVALID DATA PERIODS 24-HOORS OR GREATER MARCH 5, 1979 -MARCH 4, 1980 10 M DE'dl?OINT t-1arch 5, 1979 0100 to March 22, 1979 1500 April 3, 1979 0900 to April 4, 1979 1200 June 25, 1979 0900 to June 26, 1979 1100 June 30, 1979 0600 to July 2, 1979 1600 September 15, 1979 0300 to September 16, 1979 0700 October 19, 1979 1400 to Octdber 21, 1979 0400 October 22, 1979 0600 to October 24, 1979 1500 85-10 M DELTA TEMPERATURE March 13, 1979 1500 to March 28, 1979 1000 April 3, 1979 1100 to April 4, 1979 1100 27, 1979 0900 to January 24, 1980 1600 60-10 M DELTA TEMPERATURE March 13, 1979 1500 to March 28, 1979 1000 April 3, 1979 1100 to April 4, 1979 1100 July 6, 1979 0700 to July 7, 1979 0600 December 19, 1979 1600 to December 28, 1979 1400 REASONS FOR VALIDATION Sensor not installed Excessive dewpoint oscillation Calibration Excessive dewpoint oscillation Excessive dewpoint oscillation Excessive dewpoint oscillation Excessive dewpoint oscillation Data i..r1consistent with existing conditions Corroded resistance thermal detector connector Aspiration failure Data .i.l'lconsistent with existing conditions Corroded resistance thermal detector connector Data i..rlconsistent with existing conch tions Aspiration failure Rev. 0 WOLF CREEK TABLE 2. 3-29a (continued) 35-10 M DELTA Tfl..PERATURE April 3, 1979 1100 to April 4, 1979 1100 35 M WIND DIRECTION 7, 1979 1700 to September 10, 1979 0800 February 15, 1980 1000 to February 20, 1980 1600 60 M January 1, 1980 0100 to January 2, 1980 1100 60 M WIND SPEED January 19, 1980 2100 to January 21, 1980 1100 January 30, 1980 0900 to January 31, 1980 1300 February 15, 1980 0300 to February 18, 1980 0900 35 M WIND SPEED January 19, 1980 2100 to January 21, 1980 1000 February 15, 1980 0700 to February 18, 1980 0200 35 M SIG"1A February 15, 1980 1000 to February 18, 1980 0600 10 M WIND SPEED February 15, 1980 0400 to February 18, 1980 0600 REASONS FOR VALIDATION Corroded resistance thermal detector connector m'< pen failure Sensor frozen by ice storm Chart jam F-.cozen sensor Frozen sensor Sensor frozen by ice storm Frozen sensor Sensor frozen by ice sto:r:m Sensor frozen by ice storm Sensor frozen by ice storm Rev. 0 WOLF CREEK TABLE 2.3-29b DATA RECOVERY STA'riSTICS Data recovery sta*tistics for the 15 monitored parameters from March 5, 1980 to .March 4, 1981 are as follows: Parameter -----*--60m wind direction 60m wind speed 60m sigma 35m wind direction 35m wind speed 35m sigma lOrn wind direction lOrn wind speed lOrn sigma lOrn tempera tu:re lOrn dewpoint 85-lOm delta temperature 60-lOm delta *tempera*ture 35-lOm delta temperature 1.3 m precipitation 97.9 97.7 97.2 99.6 99.6 98.5 99.0 95.6 99 * .1 99.4 99.6 99.4 99.2 99.4 99.6 Rev. 0 CASE 1 2 3 4 5 6 7 8 WOLF CREEK TABLE 2.3-29c CASES *ro BE INVESTIGATED TO ASSESS EE'FECTS OF COOLING LAKE ON ATMOSPHERIC TRANSPORT AND DH,E'USION STABILI'rY *r water -T Land RELEASE --*-*..---------"*---Stable + Ground StablE:! + Elevated Stable Ground Stable Elevated Unstable + Ground Unstable + Elevated Unstable Ground Unstable Elevated Rev. 0 WOLE' CREEK TABLE 2. 3-30 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS ( 6 0 . 0 0 METERS ) (ANNUAL) J: r l: 1 r :n L -\; ,, f.' ION flY SfABILITY ClASS !tJ!:D -., i'*C i r w r'! t r CM IrS (METERS PER ::_,_;T H v ()-1 0 I :_,-,J 0 3 0-5 0 ,, 0 I. 5 ;.'.[_ :l3 62 ll .*;:, 1. ;;:o 2. ()1 l1,J 14 26 J lc? 42 25 II H 1 53 91 c; 10 11 r: .E 7 :;:t .26 07 :--6 77 95 01 OJ 09 11 1 1 17 16 '..).f 26 62 58 CJ 03 07 07 ESE 3 19 35 23 II 1 23 U4 01 08 15 10 SF 3 19 31 36 11 69 1. 13 1. 31 01 08 13 15 SSE 2 15 52 68 07 55 1 89 2. 48 01 06 22 29 2 14 55 161 07 51 2 00 5 87 01 06 23 68 ssw 3 13 57 152 11 47 2 oa 5 54 01 05 24 64 sw 20 36 41 73 I 31 1. 49 01 08 15 17 WSW 1 15 11 10 04 55 40 36 OJ 06 05 04 w 14 32 21 51 1. 17 77 01 06 14 09 L-OW..! 2 9 16 18 07 33 58 . 66 01 04 07 . 08 t 3 6 19 31 11 22 . 69 1. 13 01 03 08 13 1 8 18 66 O< 29 66 2. 40 00 03 08 28 N 9 20 77 33 73 2 81 01 04 08 33 CAlM 1 04 OJ TOTAL 36 194 495 833 1 31 7 07 18. 03 30 ::15 15 82 2. 09 3. 52 KEY XXX OF '(X,( PERCENf OCCURRENCES THIS CLASS X XX PERCEr,JT OCCURRENCES ALL CLASSES WOLF CRrEK GENERATING STATION JUHLINGTClN. KAN!:':iAS GAS AND EU..:CI n I C DAI'lES AND 1'100HE JOO NO* 7699-0..',4 SCCIJNO) MFAN 7 5-10 0 :;to. o TOTAL SPEED 20 8 141 b 19 1 02 29 5 14 1 03 !.,o 4 1 07 4 60 15 04 3 17 02 00 37 8 1 65 s 35 29 04 37 03 00 27 7 0 48 5 08 26 0 00 1 75 03 0 00 20 10 2 92 4 82 36 07 3. 35 04 01 39 13 11 113 5 61 47 40 4 12 05 05 48 43 34 214 6 83 1. 57 1. 24 7. 80 18 14 90 153 135 8 24 5 57 4. 92 18 94 65 57 2 20 139 157 8 44 5. 06 5 72 18 98 59 66 2 20 32 37 168 7 16 1. 17 1 35 6 12 14 16 71 8 14 59 6 56 29 51 2. 15 03 06 25 21 3 93 5 43 77 11 3. 39 09 01 39 16 14 75 7 44 58 51 2. 73 07 06 32 36 44 139 8 24 1. 31 1. 60 5. 06 15 19 . 59 57 49 199 B. 06 2. 08 1. 79 7.2:J 24 21 84 62 40 210 . 7 62 2. 26 1. 46 7 65 26 17 89 1 CALM 04 . 00 637 2745 7 32 23.21 20 04 100 00 2 69 2. 32 11 59 ,JOHiT iHNO FREOU=:NCY DISTRIBUTION .8Y STAI31LITY CLASS Dt.fA TI--""<EE "E*'IRS COMBINED SH10lL IT CLA:;S PASQUILL D ['t,T,:. :. l HEIGHT 60 00 METERS r:.8LE GErkRATED 11/05/81 13 14 50 WIND WINO CATEGOR lES<ME TERS PER S:O:C TCR D. 0-1 5 1 5-J 0 3 0-5 0 5 0-7. 5 r *.
  • I 6 13 18 oa 4c1 1 06 1. 47 co 03 05 08 r.:: 15 15 3 16 I 23 1 23 25 01 06 06 01 t. . .E 0 12 22 17 0 00 98 1 80 1 39 0 CJ 05 09 07 0 3 5 8 0 co 25 41 66 0 CJ 01 02 03 EJE: 0 4 11 13 0 00 33 90 1. 06 <J 00 02 05 05 S[ 0 10 15 17 0 00 82 1 23 1. 39 0 CJ 04 06 07 s:c.E 1 5 18 20 03 41 1 47 1 64 00 02 08 08 I 5 31 61 03 41 2. 54 5. 00 OJ 02 13 26 ;;:;;.J 2 2 25 44 16 16 05 3. 60 01 01 11 19 0 4 20 25 0 00 33 1. 64 2 05 0 OJ 02 08 11 .-3.-J 0 7 b 10 0 OJ 57 49 . 82 0 OJ 03 0:3 04 3 20 18 16 66 1 6*> 1. 47 01 03 08 08 .... I 6 " 10 03 49 74 82 co 03 04 04 .;..J 0 12 17 21 0 00 98 1 39 1 72 0 00 05 07 09 t: ; I 3 11 23 08 .:;?s 90 1 88 OJ 01 05 10 1 4 12 27 03 33 98 2 21 00 02 05 11 CAl :1 0 0 OJ 0 co TOTAL 12 106 250 335 98 8 68 20 48 27 44 05 45 1 06 1 41 1-(E'r" XX.( NU:13ER Of OCCURRFNCES XXX PCRCEtH occurmENCES THIS CLASS "" PERCENr OCCURRENCES t:\LL CLASSES WOLF CREEK GENERATING STATION BURL! NGTON, KANSAS KANSAS GAS AND E.LECTR I C DAMES AND MOORE JOB NO: 7699-064 SECOND> MEAN 7. 5-10 0 )10. 0 TOTAL SPEED 18 13 69 7 14 1 47 1 06 5. 65 08 05 . 29 3 0 38 3. 69 20 0 00 3. 11 01 0 00 16 8 0 59 4 86 66 0 00 4 83 03 0 00 . 25 3 2 21 6 13 25 16 1. 72 01 01 09 2 7 37 6 39 16 57 3. 03 01 03 16 9 4 55 5 71 74 33 4. '50 04 02 23 12 9 65 6 75 98 74 5 :32 05 04 . ;..27 56 54 208 8 03 4 59 4 42 17 04 24 23 138 52 31 1'56 7. 79 4 26 2. 54 12 78 22 13 66 21 16 86 7 38 1. 72 1. 31 7 04 09 07 :36 5 7 35 6 51 41 57 2. 87 02 03 15 6 2 56 5 23 49 16 4 59 03 01 24 9 4 :39 6 14 74 33 3 19 04 02 16 22 24 96 7 73 1 80 1 97 7. !36 09 10 41 38 24 100 8. 13 3 11 1 97 8 19 16 10 42 34 23 101 . 7 92 78 I 08 IJ 27 14 10 43 0 CALM 0 00 0 00 298 1221 7 10 24 41 18 o:::: 100 00 1. 26 93 16 Page l of 16 Rev. 0 WOLF CREEK TABLE 2.3-30 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY. CLASS (ANNUAL) ( 6 0
  • 0 0 METERS ) Page 2 of 16 JOIIH l.Jirm FREG\..;CIJCY DISTRIOUTIDN UY STAIJILITY CLASS :)A l M PE.-.R lOD THREE y[,',RS COMO fN[D --,TA3IllTY CLASS f'Ac;aUILL C !);, T A U:'\! If:. <Jl:JD HEIGHl SO 00 METERS TAOU".. GENERATED I3 1-l WOLF CREEK GENERATING STATION GUHL I NGTON, KANSAS Kr,t,JSAS GAS AND ELCCTRIC DAI'lt.S AND I'IOOHE .J(JD NO 7699-064 WIND WIND SPEt:D CATEGOR IES<METERS PER SECOND) MEAN SECTOR 0 0-1 ' 1 ' 0 3 0--5 0 5 0*-7 5 7 5-10 0 0 TOTAL SPEED !:-* 1 ' 15 28 26 27 102 7 96 07 34 1 03 1 93 1 79 1 06 l 00 02 06 12 11 11 43 8 19 13 4 0 4h 4 61 14 55 1 31 90 28 0 00 3 17 01 c< 08 05 02 0 00 19 ENE 1 0 1? 11 6 3 42 5 41 07 62 83 76 41 21 2. 89 03 05 05 03 01 1B 1 6 12 6 1 20 5 88 07 14 41 83 41 . 07 1. 9:::3 00 01 03 05 03 00 12 ESE 0 6 13 12 5 1 37 5 21 00 41 90 83 34 07 2 55 00 03 05 05 02 00 16 SE 6 15 17 9 4 53 5 78 41 1. 03 1 17 62 28 3 65 01 03 06 07 04 02 22 SSE 2 4 18 45 21 10 100 6 75 14 28 1 24 3. 10 1 45 69 6 89 01 02 08 19 09 04 42 1 8 38 72 53 54 226 7. 77 07 55 2 62 4. 96 3 65 3 72 15 56 00 OJ 16 30 22 23 . 95 87 SS:....! 2 7 21 62 66 41 199 7 14 48 1 4" 4 27 4 55 2. 82 13.71 01 03 09 26 28 17 84 3 5 18 24 17 12 79 6 78 21 34 1 24 1. 65 1 17 83 5 44 01 02 08 10 07 05 33 1 4 9 12 8 4 38 6. 34 07 28 62 83 55 28 2 62 00 02 . 04 05 03 02 16 w 0 14 17 14 9 1 55 5 12 0 CD 96 1. 17 96 62 07 3. 79 0 co 06 07 06 04 00 23 1 5 10 11 13 6 46 6. 73 07 34 69 76 90 41 3 17 0) 02 04 05 05 03 . 19 N;.J 1 7 15 38 38 22 121 7 84 07 48 1 03 2. 62 2. 62 1 52 8. 33 0) 03 06 16 16 09 51 N!".JW 2 5 12 45 40 29 133 7. 80 14 34 83 3. 10 2. 75 2 00 9. 16 01 02 . 05 19 17 12 . 56 N 2 6 18 35 46 39 146 B. 06 14 41 1 24 2. 41 3 17 2 69 10.06 01 03 08 15 19 16 62 CAL:1 1 1 CALM 07 07 00 00 TOTAL 23 lOt 256 451 367 254 1452 7. 19 1. 58 6. 96 17. 63 31.06 28 17 49 100 00 10 43 1. 08 1 90 1. 55 1 07 6 13 KEY xxx NUMBER OF OCCURRENCES AXX PERCEN r OCCURRENCES THIS CLASS ,.(XX PERCENf OCCURRENCES ALL CLASSES JO[NT witm DISTRIBUTION BY STABILITY CLASS D.:.TA PER I CD ThREE YEARS COMBINED STAB IL lTV CLASS PASQUILL D WOLF CREEK GENERATING STATION DATA SOU:iCE C.'J-SITE BURLINGTON, KANSAS I,JI SENSOR HEIGHT 60.00 METERS KANSAS GAS AND ELECTRIC TAGLE GENERATED 11/05/81 13 14. 50. DAMES AND r100RE JOB NO 7699-064 WHW I.JifW SPEED CATEGORIES (J"iETERS PER SECOND) MEAN SECTOR 0 0-1 5 1 ::.-3 0 3. O-S. 0 5. 0-7_ 5 7. 5-10. 0 >10. 0 TOTAL SPEED Ni.JE 4 33 111 185 138 93 564 7. 11 o; 46 1 55 2. 58 1 92 1. 30 7 86 02 14 . 47 78 58 39 2 38 t<E 3 49 123 137 44 10 366 5 33 04 68 I 71 1. 91 61 14 5. 10 01 21 52 58 19 04 1. 5:5 ENE 0 44 98 124 58 15 33'7' 5 75 0 00 61 1 36 1. 73 81 21 4 7:?. 0 00 19 41 52 24 . 06 1 43 10 38 96 132 51 19 346 5. 69 14 53 1 34 1. 84 71 26 4 82 01 16 41 . 56 22 08 1. 46 ESE 7 31 93 108 51 28 318 6. 04 10 43 1. 30 1. 50 71 39 4. 43 03 13 39 . 46 22 12 1 34 SE 5 28 81 121 70 56 361 6 74 07 39 1. 13 1 69 97 78 5. o:J 02 12 34 51 30 24 1. s;.::! SSE 3 30 85 141 95 82 436 7. 26 01 42 1 18 1. 96 1. 32 1. 14 6 07 01 13 . 36 . 60 . 40 . 35 1. 84 8 34 1:33 328 305 351 1159 8. 37 11 47 1 85 4 57 4 25 4 89 16 14 03 14 56 1. 39 1. 29 1 48 4. 90 ssw 5 35 91 215 195 !55 696 7 76 07 49 1 27 2. 99 2. 72 2. 16 9 69 02 15 ::?8 91 . 82 65 2 94 SW 6 23 56 74 50 47 256 6. 87 03 32 78 1 03 70 65 3 57 03 10 24 31 21 20 1. OS 5 26 38 48 30 21 168 6. 00 07 36 53 67 42 29 2 34 02 11 16 20 13 09 . 71 w 9 23 57 56 50 :J4 6 58 13 J2 79 78 70 47 3 19 04 10 24 24 21 14 97 3 19 37 55 62 62 7 76 o.; 26 52 77 86 86 :J 31 01 08 16 23 26 26 1 01 NW 14 44 97 122 120 J99 8 49 19 61 1 35 1 70 1. 67 5 56 01 06 19 41 52 51 1. b'-1 J:..J 4 19 55 184 192 152 ,:,06 8 27 06 26 77 2. 56 2. 67 2 12 G 44 02 08 23 78 81 64 2 'Sf, ."J 6 22 86 210 170 203 6'77 . 8 03 31 1. ;w 2 92 2 37 2 83 9 71 03 09 3.<> 89 72 06 2 94 CALM 2 ;:; CALM 03 OJ 01 01 TOTAL 52 468 2215 1683 1448 7100 7 J;, 1 14 6. 17 H8 30 85 :23 44 20 17 100 00 35 1 98 5 42 9 36 7 11 6 12 30 33 KEY ;.x.< Nl:o18ER oc OCCURRENCES <XX rr:RCEN 1" n-tiS CLASS :<Xt. f-'lRCEtH :JCCURRENCES ALL CLF\SSES Rev. 0 WOLF CREE:K TABLE 2.3-30 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (ANNUAL) JOINT DISTRIBUTION BY STAB ILl fY CLASS DATA ,PERIOD. T!-oREE YEARS COMBINED STABILITY CLASS PASQUILL E O.;T,t., SOURCE 0:'-.1-SITE t.JINO SENSOR HEIGHT: 60 00 METERS TABLE GENERATED ll/05/81. 13. 14. 50 WIND WINO SPEED CATEGORIES <NETERS PER SECTOR 0 0-1. 5 1. 5-3 0 3 0-5.0 5. 0-7 5 1:3 40 64 2:3 70 1. 13 01 0'5 17 27 NE 3 31 69 57 05 5'5 1. 22 1 00 01 1:3 29 . 24 ENE 2 1 '5 58 80 04 .26 1 02 1. 41 01 06 24 34 E 0 ,,, 47 107 0 OJ 25 83 1. 88 0. oa 06 20 45 ESE 1 113 33 87 02 58 1. 53 00 Oil 14 . 37 SE 4 21 59 133 07 37 1. 04 2. 34 02 0'> 25 56 SSE 2 Ill 79 189 04 3:2 1. 39 3. 33 01 Oil 33 80 4 2:s 72 391 07 44 1. 27 6 89 02 11 30 1. 65 1 1:3 75 233 02 2:3 1. 32 4 10 00 0 98 SW 0 14 62 95 0 00 2:5 1 09 1. 67 0 CJ 06 26 40 WS:..J 0 13 33 56 0 co ,., . 58 99 0 00 o:J 14 24 w 5 9 32 38 09 16 56 67 02 04 14 16 0 1:2 31 89 0 OJ 21 55 1 57 0 GO 0'5 13 38 6 7 40 86 11 t:z 70 1 51 03 0:3 17 36 1\;j.;.J 2 :s 30 103 04 09 53 1 81 01 0:2 13 44 N 6 10 27 91 11 113 49 1. 60 03 O*l 11 38 CAl :1 2 04 01 TOTAL 40 233 787 1899 70 4 10 13 86 33. 44 17 913 3 32 8 02 "E' " ( OF OCCURRENCES <X ( PERCENf OCCURREtJCES THIS "' PERC EN r OCCURRENCES ALL CLASSES :lJHlT DISTRIGUTION GY o,.;r.:. I*" En IUD YEf'1f,'S COo'*H3 INED fY CLt.SS F DMl,; '}CU:i:CE TE l i ill HEIGiif !oO 00 METEID T ;,nL!:. ClNERATED ll/0:5/81 13 ,. 50 WINO :..OINIJ S?EEC CATEGORIES <METERS PER ;EC TUR 0 0-l 5 1 , -o 0 .J O-S 0 , 0*-7 5 0 3 35 48 ,, 00 09 1 09 1 50 0 co 01 15 20 4 10 40 30 12 31 1 25 94 02 04 17 13 ENE 3 10 21 39 0" 31 66 01 04 09 4 7 20 76 12 :.:'2 62 2 37 02 03 08 32 ESE I 9 29 74 03 28 91 2 31 OJ 04 12 31 SE 1 5 08 128 03 16 1 19 4 00 OJ 02 16 . 54 SSE 2 9 37 147 o; 28 1 16 4 59 01 04 16 62 1 19 56 267 03 59 1 75 8 34 OJ C8 24 1 13 SS\J 3 8 36 148 09 25 1 12 4. 62 01 03 15 63 5W 4 13 42 115 12 41 1 31 3 59 02 05 18 49 1 12 40 56 03 37 1. 2:5 1. 75 OJ 05 17 24 0 7 29 74 0 CJ 22 91 2 31 0 oa 03 12 31 WtlW 6 22 53 19 69 1. 6'5 01 03 09 22 :.J 1 7 23 56 03 22 72 1. 75 OJ 03 10 24 m.:..l 3 5 16 54 0" 16 50 1 69 01 02 07 23 0 8 27 61 0 co 25 84 1 90 0 co 03 11 26 CALf1 3 09 01 TOTAL J3 138 511 1426 1 03 4 31 15 95 44 52 14 58 2 16 6 02 1-'EY 'Ot. OF OCCURRENCES " ( PERCENT OCCURRENCE.S THIS CLASS XX ( PERCENT OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAf1ES AND MOORE JOB NO* 7 699-064 SECOND) MEAN 7. 5--10. 0 )10 0 TOTAL SPEED 39 23 181 6 65 69 41 3. 19 . 16 10 76 9 171 4 72 16 3. 01 04 01 , 34 12 6. 03 60 21 3. 54 14 05 85 76 16 260 6. 71 1. 34 28 4. 58 32 07 l. 10 77 25 241 7 02 1. 36 .44 4.24 . 33 11 1. 02 103 46 366 7 00 1 81 . 81 6. 45 44 . 19 1. 5:'.1 !30 658 7 93 4. 23 2 29 11. 59 1. 01 55 2. 78 557 429 1478 8 70 9 81 7. 56 26.0:1 2. 35 1. 81 6. 24 240 114 676 7 85 4 23 2 01 11.91 1 01 48 2.86 64 20 6 55 1. 13 35 4 49 27 08 1. 08 29 3 129 6 03 51 05 2.27 12 01 54 28 8 120 6. OS 49 14 2. 11 12 03 51 64 9 205 6 69 1. 13 . 16 3. 61 27 04 87 66 13 218 6 71 1. 16 23 3. 84 28 05 92 87 22 249 7 21 1 53 39 4 39 37 09 1. 0'5 95 39 268 7 50 1 67 69 4 72 40 16 1. 13 2 CALM 04 . 01 1!308 911 S67El 7 47 31 84 16 04 100 00 7 64 3 85 23 98 CLASS WOLF U(EEK GEllER AT l NG DUHLlNGfON, STATION GAS fiND ELEC:TRIC DAMFS AND MOURE NO 7699-064 SECOND) MF,\N 7. J*-10 0 }10. 0 TOTAL SPEED :ll 14 131 6 73 97 44 4 09 13 06 , 4 0 08 4 54 12 0 00 2 75 02 0 00 37 :l3 " 114 b. 35 1 03 25 3 56 14 03 08 48 3 150 6 46 1 09 4 9:J 20 01 67 43 5 161 6 44 1. 34 16 5 O.J 18 02 68 68 6 246 6 64 2 12 ,,, 7 68 ;;:9 03 1 04 135 26 356 7 20 4 21 81 11.11 57 11 1 50 210 44 597 7 20 6. 1 37 18 64 89 19 2 52 106 34 335 20 3 31 1. 06 10 46 45 14 1 41 54 4 2:32 6 21 1. /;,9 12 7. 24 23 02 98 16 0 125 5 37 50 0 00 3. 90 . 07 0 00 . 53 11 . 123 5 84 34 3 84 05 01 54 0 137 6 61 1 69 0 00 4 28 23 0 00 . 58 39 3 129 6 61 1. 22 09 4. 03 16 . 01 54 J2 1 111 6 27 1 00 o:1 3 47 14 00 47 45 16 !57 6 85 1 40 50 4 90 19 07 66 3 CALM 09 01 929 166 :::3203 6. 66 29 00 5 18 100. 00 3 92 70 13 53 (60.00 METERS) Page 3 of 16 Rev. 0 WOLF CREEK TABLE 2.3-30 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (60.00 METERS) (ANNUAL) Page 4 of 16 ,'CINT t:If'<D FREOL:=:UCY DISTRIBlJTION WI SfAI:IILITY CLASS t'ERIOD HNEE YE,\RS COMBINED SIA13ICI1Y CLASS PA!-iOUILL G 0/;TI. SOURCE:. 0"*-SITE WOLF CRE'"EK GENERATING STATION t, 10<0 Sf-NSrJR HEICHl .:.-0 00 METERS 1-\ANSAS GAS EU.:CTR I C TMDLt-G!:::.Nt:RATEO 13 14 50 DAI'lES AND (100RE JGO NO* 7699-064 i.J I ND CATEGOH I ES ( MF:: TERS PER SECOND> SECTOR 15-30 30-50 75-too >too NE E ESE s N CALM TOTAL 2 09 01 o? 01 0 0 00 0. C;) 01 3 14 01 4 18 02 0 0 00 0 co 6 27 03 01 2 09 01 7 32 03 1 05 00 2 09 01 2 09 01 3 14 01 1 05 00 41 1. 87 17 " :36 03 10 46 04 4 18 02 10 46 04 7 32 03 6 27 03 7 6 27 03 6 27 03 11 50 05 7 32 03 10 46 04 5 23 02 0 0 00 0 00 01 8 . 36 03 107 4 87 45 1 !'37 00 56 2 s:) 24 2:;. 1 14 11 25 t 14 1l 29 1 32 12 2G 1 28 12 36 1. 64 t:) 26 1 18 11 30 1 37 1:3 27 1 23 11 32 1 46 14 31 1 41 13 21 96 09 24 1. 09 10 14 64 06 16 73 07 439 19 99 1. 85 KEY ,<XX NUMBER OF OCCURRENCES "' 2 32 22 40 2 19 20 37 1 68 16 47 2 14 20 59 2 69 25 90 4. 10 38 94 4. 28 . 40 152 6. 92 64 100 4. 55 42 63 2. 87 27 34 1 55 14 32 1 46 14 46 2 09 19 34 1. 55 14 38 1. 73 16 37 1. 68 . 16 962 43. 81 4 06 XXX PERCENT OCCURRENCES THIS CLASS :.<XX PERCENT OCCURRENCES ALL CLASSES 26 1 18 11 01 17 77 07 38 1 73 16 29 1. 32 12 55 2. 50 23 72 3. 28 . 30 114 5 19 48 70 3 19 30 26 1. 18 11 10 46 04 6 . 27 03 16 73 07 28 1 28 12 15 68 06 46 2. 09 . 19 570 25 96 2. 41 JOINT FREQUC:NCV DISTRIBUTION BY STABILITY CLASS DATA PERIOD THREE "EARS COt1BINED 7 32 03 1 05 00 01 0 0 00 0 00 J 14 01 7 32 03 9 41 . 04 21 96 09 20 91 08 4 18 02 0 0. 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 1 05 00 0 0. 00 0 00 01 77 3 51 33 Mt:AN TOTAL SPEED 113 15 48 119 42 £l7 J. 96 37 1 ::)_ 46 51 129 5. El7 54 1B9 8 61 no 10. 11 . 94 319 14. 53 1. 35 2:32 10. 56 . 98 133 6. 06 56 85 3 87 :36 B6 3. 92 36 89 4 05 38 89 4. 05 :m 71 3. 23 . 30 112 5. 10 47 1 05 . 00 2196 100 00 9. 28 6 :J6 4 90 5 90 6 11 6 20 6 59 6. 71 7 31 6 95 6 06 5 20 4. 74 5. 87 6 17 5. 99 6. 66 CALM b 34 ALL CLASSES Dt1T-" SOURCE QN-SITE WOLF CREEK GENERATING STATION BURLINGTON, KANSAS wum SENSOR HEIGHT: 60. 00 METERS TADLE GENFRATED. 11105/81. 13. 14. 50 KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO* 7 699-064 WIND SECTOR WHW SPEED CATEGDRIES(METERS PER SECOND) MEAN 0. 0-1. 5 1. 5-3. 0 J 0 5. 0-7. 5 7 5-10 0 )-10. 0 NE EI\!E E ESE SE SSE 5 ssw w TOTAL. 13 05 19 09 10 o* 16 07 14 06 18 08 16 07 17 07 22 09 17 07 10 04 25 11 10 04 15 06 15 06 20 03 10 O*: 267 1 13 75 32 135 57 101 43 81 34 94 40 95 40 88 37 111 47 84 35 90 38 79 33 85 36 62 26 53 22 47 20 67 28 1:147 5 69 266 1. 12 364 1 54 257 1. 09 216 91 243 1. 03 267 1 13 325 1. 37 411 1 74 335 1. 41 261 1. 10 169 71 218 92 146 62 182 77 156 66 206 87 4022 16 99 N'JM3FH Co?'" VALID OBS=:fiVATIONS 23675 i OF I NVAL I 8 I HHM. t.U!18ER OF OOS=:f-IVAT IONS 26304 1'-[Y XU Nt.J:1DER OF OCCURRENCES Xx.< PERCENr OCCURRENCES 456 1 93 313 1. 32 334 1 41 398 1. 68 376 1 59 542 2 29 704 2. 97 1432 6. 05 954 4. 03 437 1. 85 226 95 253 1. 07 282 1 19 363 1 53 513 2 17 JJB 2 27 8121 34 30 90 01 PCT 9 99 PCT 100.00 PCT 306 1. 29 70 30 164 69 229 . 97 217 92 327 1. 38 618 2. 61 1448 6. 12 868 3. 67 264 1. 12 106 45 131 55 234 99 351 1 48 461 1. 95 49A 2 10 6292 26 185 78 14 06 41 17 41 17 71 . 30 134 . 57 300 1. 27 1088 4. 60 552 2. 33 140 59 49 21 50 21 95 40 227 96 277 1. 17 362 1 3626 15 32 TOTAL SPEED 1301 5. 50 915 3. 86 907 3. 83 981 4. 14 1015 4. 29 1383 J. 84 2051 B. 66 4507 19.04 2815 11.89 1209 5 11 639 2 70 762 3 22 829 3. 50 1191 5. 03 1469 6 20 1691 7 14 10 04 21675 100 00 6 91 4 91 5. 80 6. 13 6. 23 6 60 7. 32 9. 19 7. 78 6 66 5 88 5 82 6 94 7 63 7 75 7 78 CALM 7 17 Rev. 0 WOLF CREEK TABLE 2.3-30 JOINT NIND FREQUENCY DISTRIBU'l'ION BY STABILITY CLASS (ANNUAL) JOINT IJIND DISTRIBUTION BY STABILITY CLASS DrllA f'ERIDD Jlii\:C: 1. 1973 THROUGH MAY ::lL 1974 CLASS PASQUILL A DM T A ":JrlURCE (*;'\!-SITE HEIGHT 60 00 METERS TMIJU: GU-:.-RMTE::D 11/04/81 11 55 32 i>JIND l.JI:.Jo SFEFD CATE:-GOR lt.S <M::: 1 ERS PER SECTOR 0 0-1 5 I :)-J 0 3. 0 5 0-7. 5 EN!:' ESE SE SSE ssw sw w wr.LJ NW N>JW N CALM TOTAL. 1 10 14 12 12 J 17 1. 64 OJ 01 13 18 2 7 7 23 82 [-12 03 03 09 09 0 2 3 14 0 co 23 :35 1. 64 0 00 03 04 18 0 2 2 3 0 00 .::3 .23 35 0 00 03 03 04 0 3 6 5 0. 00 35 70 59 0 00 04 . 08 06 1 4 16 12 47 1 87 01 03 05 20 0 5 6 21 0. 00 59 70 2 46 0 00 06 08 26 0 1 5 57 0 03 12 59 6 67 0 03 01 06 71 0 1 7 34 0 00 12 82 3 98 0 00 01 09 43 0 1 8 11 0. 00 12 94 1. 29 0 co 01 10 14 0 3 2 0 0. 00 35 23 0 00 0 00 04 03 0. 00 1 5 9 2 12 59 1. 05 23 01 06 11 03 0 2 6 7 0 00 23 70 . 82 0 00 03 08 09 0 0 10 19 0 00 () 00 1. 17 2. 22 0 00 0. 00 13 24 0 2 3 17 0 00 23 35 1. 99 0 00 03 04 21 0 2 5 23 0 00 23 59 2. 69 0 co 03 06 29 1 12 01 6 34 93 250 70 3 98 10. 89 29.27 08 43 !. 17 3 13 KEY XXX NUM!3ER OF OCCURRENCES XXX PERCENT OCCURRENCES THIS CLASS X XX PERC EN f OCCURRENCES ALL CLASSES WULF CREEK GENERATING STATION I NG TON, KANSAS GAS E.LEC 1 RIC DAI1ES AND MOORE ,JLJB NO: 7699-064 SECOND) :..-to. 0 ) 10 0 TOTAL 8 1 :J5 , 91 94 12 4 10 10 01 44 2 0 20 4 78 23 0 00 2. 34 03 0 00 :;. 5 1 25 6. 30 59 12 2 93 06 01 3,1 2 0 '5. 31 23 0 00 1 OS 03 0 00 Jl 4 1 19 5 98 47 12 2 .22 05 01 24 5 9 37 7. 26 59 1 05 4 33 06 11 46 16 14 62 7 66 1 87 1 64 7 26 20 18 . 78 62 66 191 9. 27 7. 26 7 73 22 37 78 83 2 39 63 81 186 9 78 7. 38 9 48 21 78 79 !. 02 2 33 19 15 54 8. 72 2. 22 1 76 6 32 24 19 aB 3 10 18 8. 61 35 1. 17 2. 11 04 13 23 4 1 22 4 99 . 47 12 2 58 05 01 28 4 1 20 6 15 47 12 2. 34 05 01 25 9 25 63 8. 87 1. 05 2 93 7 38 11 31 79 16 5 43 7 69 1. 87 59 5 04 20 06 54 15 4 49 . 7 08 1 76 47 5. 74 19 05 61 1 CALM 12 . 01 237 234 854 8 25 27 75 27 40 100 00 2. 97 2. 93 10 71 JOirH FREQ1j£rKY DISTRIBUTION BY STABILITY CLASS DATA PERIOD JUi'<E: L 1973 THROUGH t1AY 31. 1974 STAI3li_ITY CLASS* PASGUILL B DATA SOURCE CN-SI TE 1-!Ir.<ll SENSOR HEIGHT: 60. 00 METERS TABLE GENERATED 11/04/81. 11 55. 32. WIND WifJO SPEED CATEGORIES <METERS PER SECTOR 0 0-1 5 1 5-J 0 3 0-5 () 5 0-7. 5 N:---JE 0 1 6 4 0 00 20 1. 22 . 81 0 00 01 08 05 NE 0 8 5 2 0. 00 1 62 1. 01 41 0 00 10 06 03 ENE 0 4 12 14 0 00 81 2 43 2. 84 0. 00 05 15 18 0 2 1 3 0. 00 41 20 61 0. 00 03 01 . 04 ESE 0 0 4 4 0. co 0 00 81 81 0 00 0 00 05 05 SE 0 4 8 8 0. 00 81 1 62 1. 62 0 00 05 10 10 SSE 1 3 8 8 20 61 1 62 1 62 01 04 10 10 s 0 1 7 24 0. DO 20 1. 42 4 87 0 00 01 09 30 ssw 0 0 8 15 0 00 0 00 1. 62 3. 04 0 co 0 00 10 19 s" 0 1 7 15 0 00 20 1. 42 3 04 0. OJ 01 09 19 wSW 0 .] 2 1 0. OJ 61 41 20 0 00 04 03 01 1 2 10 5 20 41 2. 03 1 01 01 03 13 06 0 3 4 4 0. DO 61 81 81 0 GO 04 05 . 05 0 3 10 12 0 co 61 2 03 2. 43 0 00 04 13 15 0 2 2 6 0. 00 41 41 1 0 00 03 03 N 0 1 2 12 0 00 20 41 2 43 0 co 01 03 15 CAL:1 0 0 00 0 03 fOTAL 4f JB 96 137 7 71 19 47 27 79 03 48 1 20 1 72 "EY xx:< tH.:.'18ER OF OCCURRENCES XXX PERCEt.J f OCCURRENCES THfS CLASS XXX PERCENT CCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, 1--<.ANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO* 7699-064 SECOND> MEAN 7 5-10 0 >to. o TOTAL SPEED 8 3 22 7 34 1 62 61 4.46 10 04 28 1 0 16 3. 74 20 0. 00 3 25 0! 0. 00 20 1 0 31 4 84 . 20 0 00 6. 29 0! 0. 00 . 39 1 2 9 6. 94 . 20 41 1. 83 01 03 1! 1 2 11 6 75 20 41 2. 23 01 03 . 14 2 3 25 5. 87 41 . 61 5 07 03 . 04 31 10 5 35 7. 27 2 OJ 1. 01 7 10 13 06 . 44 30 22 84 8. 50 6 09 4. 46 17 04 38 28 1 05 20 17 60 8. 64 4 06 3 45 12 17 25 21 75 12 5 40 7. 39 2 43 1. 01 8 11 15 06 50 41 2 10 6. 04 41 2. 03 03 03 13 2 1 21 5 03 41 20 4 26 03 01 26 3 0 14 5. 28 61 0 00 2 84 04 0. 00 18 8 10 43 7. 50 1 62 2 03 B. 72 10 13 54 21 6 37 8 10 4 26 1 22 7 51 26 08 46 13 7 35 8 1! 2 64 1 42 7. 10 16 09 44 0 CALM 0 00 0. 00 135 85 49:3 7. 27 27 38 17 ;N 100.00 1. 69 1. 07 6 !U ( 60.00 METERS) Page 5 of 16 Rev. ()

WOLF CREEK TABLE 2.3-30 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (60.00 METERS) (ANNUAL) -J1JlrH \JirJD DISTRIOUTION GY Cf_ASS DATA FERitJD t. 197] THRUUGH 3L 1974 SfH:l!LITY ..._ D.t.f.C.. '-i,.lU.1CE r!:'-1-SIH" Sl-t.::JOR HEIGHT ._,0 00 MET!?RS T M3Ll GEJEHATEO 11 /04/t31 1 t 55 32 l-.!lND l.JINtl S:OFE"D CA TLGnR (t-iE fER5 PER SEC 0 0-1 , 1 0 :J O<l 0 , 0-7 5 ;-1\!E DJt:: ESE SE SSE s 5!3\J sw w r-.;; N CAL:-1 TOTAL 0 14 0 00 36 ql 2. 54 0 OQ 03 ():, 18 0 0 10 7 0 co 00 1 I'll 1 27 0 OJ 00 1 09 0 4 4 3 0 co 72 54 0 00 OS 04 0 0 1 0 CJ 0 00 10 0 00 0 00 01 03 0 2 " 3 0 OJ 36 1. 09 54 0 OJ 03 OCI 04 1 3 5 8 18 54 91 1. 45 01 04 06 10 1 1 21 18 18 36 3. 80 01 01 03 26 1 3 13 25 18 54 2. 36 4 53 01 04 16 31 1 0 4 17 18 0 00 72 3 08 01 0 00 05 21 1 12 10 18 2. 17 1 81 01 03 15 13 0 3 5 5 0. co 54 91 91 0 00 04 06 06 0 6 3 5 0 OJ 1 09 54 91 0 oa 08 04 . 06 0 0 1 6 0 00 0 00 18 1. 09 0 00 0 00 01 08 0 3 5 24 0 00 54 91 4. 35 0 co 04 06 30 1 1 3 17 18 18 54 3 08 01 01 04 21 0 3 4 20 0 00 54 72 3 62 0 co 04 05 25 1 18 01 7 33 83 187 1 27 5. 98 15 04 33.88 09 41 1 04 2. 34 XXX NUi'"IEER OF OCCURRENCES XXX PERCENr OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES WOLF CREE:I.. STATION BUHLINGTON. CAS AND ELECTRIC DAI1[-.S AND MDOHE ,JOB NLJ 76?9-064 5ECDNDl t1EAN 7 J-10 0 :::to_ o lDl"AL SPEED 10 14 45 0 54 1 81 2 54 8 15 13 18 56 1 0 10 4 91 18 0 00 26 01 0 00 :>:.:J 3 2 16 s 83 54 36 90 04 03 20 4 0 7 6 63 72 0. 00 1 27 OS 0 00 09 3 0 ,. s 21 54 0 00 54 04 0 00 18 0 1 18 ::1. 15 0 00 18 3. 26 0 00 01 23 8 6 39 7 45 1 45 1 09 7 07 10 08 49 30 24 96 8 09 S. 43 4 35 17. 39 38 30 1 20 34 20 76 8. 71 6 16 3 62 13 77 43 25 95 10 7 42 6 92 1 81 1. 27 7. 61 13 09 53 2 2 17 6 11 36 36 3. 08 03 03 21 2 0 16 4 88 36 0 00 2. 90 03 0 00 20 4 0 11 7. 00 72 0. 00 1. 99 OS 0 00 14 13 4 49 7. 01 2. 36 72 B. 88 16 05 61 17 5 44 7 54 3. 08 91 7 97 21 06 55 9 7 43 7 22 1 63 1. 27 7 79 11 09 54 1 CALM 18 . 01 ISO 92 552 7. 32 27. 17 16. 67 100 00 1. 88 1. 15 6. 92 ,_/OINT lH:-..10 DISTRIBUTION BY STABILITY CLASS DATA PERIOD. JUNE l. 1973 THROUGH MAl' 31. 1974 STA3II. ITY CLASS PASQUILL D DATA CrJ-SITE WltJO SEN30R HEJGHT 60 00 METERS TABLE GENERATED: 11/04/81 11. 55. 32. WIND 1../ItW ::;PEED CATEGORIES< ME:TERS PER SECTOR 0 0-1. 5 l. 5-3 0 3 0-5. 0 5. 0-7. 5 tJ:',jE 4 9 35 65 . 17 38 1 48 2. 75 05 11 44 82 NE 3 22 43 46 13 93 1 82 1. 94 o.; 28 ,. 58 ErJE 0 13 24 32 0 00 55 1. 01 1. 35 0. co 16 30 40 E 5 10 29 53 21 42 1. 23 2 24 06 13 36 66 E:SE 2 5 31 38 oa 21 1 31 1. 61 03 06 39 48 <;:;E 3 2 13 49 13 08 55 2 07 04 03 . 16 61 SSE 0 1 23 38 0. 00 04 97 1 61 0 00 01 29 48 s 0 1 37 86 0 00 04 1 56 3. 63 0. 00 01 46 1 08 0 7 18 64 0 00 30 76 2. 70 0 00 09 23 80 sw 3 4 11 31 13 17 46 1. 31 0*1 05 14 39 WSI.J 2 5 11 2:2 03 21 46 . 93 03 06 14 . 28 w 0 8 11 14 0 CJ 34 46 59 0 00 10 '4 18 0 7 12 20 0. 00 30 51 85 0 03 09 15 . 25 NiJ 1 4 20 40 01 17 85 1 69 01 OS 25 50 1 10 25 82 04 42 1 06 3 47 01 13 31 1. 03 N 3 11 :33 67 13 46 1 :39 2 83 01 14 41 84 CA! !'1 2 08 03 T*:JTAL 29 119 376 747 1 23 03 15 89 31. 57 1 49 4 71 9 37 f'",EY XXX r-!Ui"1BER OF OCCURRENCES XXX PERCENT OCCURRENCES THIS CLASS XXX PEHCEtJ f OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7699-064 SECOND> MEAN 7 5-10. 0 >10. () fDTAL SPEED 38 40 191 7 32 1. 61 1. 69 8 07 48 50 2 39 16 ' 131 5 02 68 04 5 54 20 01 1 64 17 11 97 6 17 . 72 46 4 10 21 . 14 1 22 19 7 123 5 85 80 30 5 20 24 . 09 1 54 12 3 91 5 77 51 1:1 3 85 15 . 04 1 14 12 ll 90 6. 66 51 .,, 3 80 . 15 14 1 13 27 3EI 127 8 60 1. 14 1 61 5 37 34 4EI 1 59 112 13:! 369 9 05 4. 73 5. 15 60 1. 40 1. 67 4 63 81 s:! 223 8. 26 3. 42 2. 24 9 43 1 02 66 2 80 27 15 91 7 31 1 14 63 85 34 19 14 15 3 58 6 26 63 1::::1 2 45 . 19 04* 73 9 4 46 6 11 38 ,. 1. 94 11 58 25 11 75 7 19 1 06 46 3 17 31 14 94 46 56 167 8 87 1 94 2 37 7 06 58 70 2 09 60 :220 7 82 2 54 1 78 9 30 75 53 2 76 61 90 8 44 2 58 3 80 11 20 76 1. 13 3 32 ()g CALM 03 577 518 2:J66 7 63 24 39 21 89 100 00 7 24 6 29 67 Page 6 of 16 Rev. 0 WOLF CREEK TABLE 2.3-30 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (ANNUAL) !011\T FREQVC:IJLY DISTRIBUTHlN GY SfAOILITY CLASS [)AlA PERIOO JLH.<: L 1973 THROUGH MAY :11, 1'174 !3T/,3ll_!T'I' \.LASS J-'A'iGUlt l E DA T M I TE lJI:<n St:-iJOR HFIGHT *,u 00 MEfERS ,_:[tJt:::rMTED 11/04181 11 :32 WOLF CREEK GEtH:::HATING SrATIDN [l\JRL I NCTDN, CAS AND LL£CTR I C Oi\f*IE:_S AND 1'1DDHE JUU NU 769'>'-064 \..!HH> SEC WINO PER MEAtJ o o-t s 1 o :J o s o-7 s 1 s-to.o :-to.o TrlT tiL NE ESE SE SSE WSW CAL:-1 TOTAL 1 OS 01 1 OS 01 1 05 01 0 0 00 0 CJ 1 OS 01 0 0 00 0 00 2 10 03 1 . 05 01 0 00 00 0 0 00 0 00 0 o. oa 0 00 2 10 03 0 0 00 0 00 3 16 O< 1 05 01 4 . 21 05 1 05 01 18 94 23 3 16 04 9 . 4 11 4 1 cs 4 21 OS 8 42 10 9 47 11 5 . 26 06 6 31 08 t6 03 1§ 03 3 16 . 04 4 21 05 2 10 03 4 21 OS 1 . 05 . 01 5 26 06 71 :3 72 89 I 1:) 25 1 31 31 15 78 19 20 1 2t; 06 17 89 21 27 1 41 34 23 1. 20 29 14 . 73 18 18 94 23 10 52 13 8 . 42 . 10 7 . 37 09 17 89 21 11 58 14 7 37 09 236 12. 35 2 96 XX:< NLi1SER OF OCCURRENCES 16 (l4 ;;;*3 1 20 1 4 73 18 36 1 88 . 45 27 1 41 34 46 2 41 58 60 3 1*l 75 106 5 55 1. 33 60 3 14 75 37 1. 94 46 15 . 78 19 15 . 78 19 36 1 88 45 37 1 94 . 46 34 1. 78 .43 26 1 36 33 588 30. 77 7 37 XX:< PERCEtH OCCURRENCES THlS CLASS XXX PERCENr OCCURRENCES ALL CLASSES 8 42 10 d5 03 17 C7 21 Jo 1 88 45 19 . 99 . 24 37 1 94 46 82 4 29 1 03 228 11 93 2 86 97 5 08 1. 22 32 1. 67 . 40 9 47 11 6 . 31 . 08 16 84 . 20 18 94 23 25 1 31 31 26 1. 36 . 33 658 34 43 8. 25 3 1h 04 1 05 01 b 31 08 03 7 37 09 12 63 15 51 2 67 64 179 9 37 2. 24 45 2 35 56 12 63 15 0 0 00 0 00 0 0 00 0. 00 03 5 26 06 6 31 . 08 9 . 47 11 340 17. 79 4. 26 43 ,1,1 :1 19 76 ?8 71 98 13 lol ;] 51 04 1::'1 6. :n 1 227 11 88 2 CIS 28. 41 6_ 31 218 11_ 41 2. 73 101 5 29 1 ?7 37 1 94 46 35 1 83 . 44 63 3. 30 79 84 40 OS 78 4 08 98 77 4 03 97 1 . 05 01 1911 100 00 23. 96 6 26 4 75 6 73 6 59 6 69 7 10 8 22 8. 94 8 42 7 21 5 84 5 55 6 71 6 43 7 11 7 11 CALM 7 67 JOINT WHW FREOUE.rJCY 0ISTRII3UTJON BY STABILITY CLASS DATA PERIOD JU:\E t. 1971 THROUGH MAY 3L 1974 STAG II_ lTV CLASS: PASQVILL F DATA SOURCE 0:'-l-SI TE l.JINO SEt>JSOR HEIC*H 60. 00 METEP.S T,C.,3LE 11/04/Sl ll 55. 32. WINO Wrt>IO SPEED CATEGORIES ( MET"ERS PER SECTOR 0 0-1. 5 1 5-3. 0 3 o 5 5 0 1 12 13 0. 0*) . 10 1 17 1 27 0. OQ 01 1 16 NE 1 0 15 10 0 00 *t9 1 47 01 0 00 . 06 19 1 4 7 17 10 J9 . 68 1 66 . 01 05 . 09 21 2 4 6 25 20 39 . 59 2. 45 03 05 . 08 31 ESE 0 2 8 15 0. 00 20 78 1 47 0. 00 03 . 10 . 19 SE 0 2 5 29 0. co 20 49 2 84 0. OQ 03 06 36 SSE 0 3 9 30 0 00 . 29 El8 94 0 co 04 .11 38 s 1 9 1*1 64 10 88 1. 37 6 26 01 11 . 18 . 80 SSlJ 1 4 17 49 10 ]9 1 66 4 79 01 05 21 61 SIJ 0 2 "' 40 0 00 ;;::o 1 17 3. 91 0 00 03 15 50 W5:.S 0 4 14 12 0 00 :39 l. 37 1 17 0 co 05 lB 15 0 0 9 22 0 OJ () 00 [18 2 15 0 00 () 11 28 L..;;

  • 0 9 16 0 OJ 20 . 88 1 57 0 OJ OJ 11 . 20 r 0 2 4 17 0. 0-J 20 . 39 1 66 0. 0-J 03 . 05 21 1 2 5 21 10 . 20 49 2 05 01 03 06 26 " 0 3 10 " 0 OJ . .:;;9 c;g 1 47 0 OJ 04 1J 19 CAL:-1 2 2,) 03 TOTAL 9 "" 146 400 . 83 ' ]1 14 29 ]9. 14 11 )5 1 83 5 02 hEl X XX NlJ.""1!3ER UF OCCURRENCES XXX r THIS CLASS ;ox PERCE!'.! I OCCURRENCES ALL CLASSES WOLF CREE;,(. STATION BURLINGTON, KAr>lSAS KANSAS GAS AtJD El.EC TR I C DAMES AND MOORE -.JOB NO* SE:COND) MEAN 7 0 :*to. o TOTAL SPEED 7 12 45 7 38 . 68 1. 17 4 40 09 15 56 1 0 22 5 20 10 Q_ 00 15 . 01 0 00 28 18 6 53 6. 87 L 76 . 59 5. 19 23 08 . 66 14 1 52 6 31 1 37 10 5 09 . 18 01 . 65 7 4 36 6 63 68 39 3. 52 09 05 45 25 1 62 7 19 2. 45 . 10 6 07 31 . 01 78 53 15 110 7. 79 5. 19 1. 47 10. 76 66 19 1' 38 89 27 204 7 76 8 71 2 64 19. 96 1 12 34 2. 56 40 15 126 7 21 3 91 1 47 12. 33 50 . 19 1 58 28 4 86 6. 88 2. 74 39 41 35 05 08 3 0 33 5 05 . 29 0 00 3 23 . 04 0 00 41 0 1 32 6 07 0. 00 10 3 13 0 00 01 40 15 0 42 6. 51 1 47 0 00 4 11 19 0 00 53 6 2 31 6 88 59 20 3 03 . 08 OJ ]9 10 0 J9 6 16 98 0 00 3 82 13 0. 00 49 12 7 47 7 02 1 17 ,,8 4 60 15 <)9 59 CALM 03 3;{8 95 1022 7 03 32 09 9 30 100 00 4 11 1 19 12. 82 ( 60.00 METERS) Page 7 of 16 Rev. 0 WOLF CREEK TABLE 2.3-30 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (ANNUAL) ,'CIIH FREQUE::KY DISTRI!3UTIO/\ BY STAUILITY CLASS DATA PER!C'D JL.'I!t: 1, 197'] TI*HWUGH MAY :1L l'T/4 CLASS PA<';QU1Ll G o;, r;, TE Sl0!SOR HEIGH1 ::.0 00 /"IETEqs E. GFNt:.RATED ! 1/04/81 11 53 32 WOLF CREEK GENERATING STATION DURL I NGTON, KANSAS i-v\N'->1-\S GA'.3 t,NO LLEC fR I c AND I'IOOHE '-JOD NU '/699-064 SEC fOR l.JitJO CATEGORJES<METERS PER SECOND> 0 0-1 ;) 1 0 3 0-5 0 5 0 *7 5 7 5-10 0 :; 10 0 MFAfi t.;E ESE st: ssw SlJ tJW N CAl :-1 TOTAL 0 0 OJ 0 co 0 0 0:) 0 OJ 0 0 OJ 0 00 0 0 00 0 00 1 13 01 2 26 03 3 39 04 0 0 00 0 00 4 51 OS 0 0 OJ 0 00 1 13 01 3 :;9 Qit 0 0 00 0 CJ 2 26 03 2 26 03 1 13 01 0 0 00 0 00 19 2. 45 24 1 1 J 01 03 \ 13 01 6 77 08 3 39 04 1 13 01 2 26 03 03 03 3 39 04 3 39 04 2 26 03 I 13 01 0 0 00 0 00 0 0 00 0 00 1 13 01 30 3 86 38 5 M 06 12 1 54 15 13 1 67 16 9 1. 16 11 ,. 1 so 18 8 1 OJ 10 4 51 OS a 1. 03 10 9 1. 16 11 12 1 54 15 1 7 2. 19 21 13 1 67 16 8 1. 03 10 5 . 64 . 06 2 26 03 1 13 01 140 18.02 1 76 KEY X x:< NU:1GER OF OCCURRENCES 22 2 83 28 23 2 96 29 11 1 42 14 18 2 ::12 23 6 77 08 20 2. 57 25 19 2 45 24 50 6. 44 63 40 5 15 50 32 4 12 40 15 1. 93 19 12 1 54 15 19 2. 45 24 10 1. 29 13 12 1. 54 15 13 1 67 16 322 41. 44 4. 04 XX.( PERCEiH OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES 11 1 42 14 0 0. 00 0 00 6 77 08 8 1. 03 10 5 64 06 16 2. 06 20 25 3. 22 31 53 6 82 66 39 5 02 49 14 1 so 18 03 03 7 90 09 6 77 08 3 39 04 9 1. 16 11 206 26 51 2 :58 5 64 06 0 0 00 0 00 1 13 01 0 0. 00 0 26 03 5 64 . 06 3 39 . 04 20 2 57 25 19 2. 45 24 4 51 05 0 () 00 0 00 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0 00 1 13 01 60 7 72 75 10TAL !>PEED 44 5 66 55 37 4 76 46 32 4 12 40 41 5 28 51 31 3. 99 J9 52 6 69 65 56 7. 21 70 133 17 12 1. 67 113 14 54 1. 42 65 a. 37 82 38 4 89 48 :32 4 12 40 35 4. 50 44 ;23 2. 96 29 19 45 ;24 :26 3 :35 33 0 0 00 0 00 T77 100 00 9 -'4 7 07 5 95 5 66 5 57 6 87 7 07 7 97 7 67 6 49 4 89 4 86 6 12 5 69 6 03 7 02 CALM 6. 69 JOINT LHND FREQUENCY DISTRIBUTION BY STABILITY CLASS DlloTA PERIOD 1. 1973 THROUGH MAY 31. 1974 ALL Df*Th SOURCE. SEh!30R HEIGHT 60 00 METERS TA8LE GENERATED 11/04/81 11 5:5.32. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAt*lES AND MOORE JOB NO: 7699-064 W[ND SEC TOR WHW S!'EED CATEGORIES<METERS PER SECOND) MEAN 0 0-1. 5 1 5-3. 0 3 0-5 0 5 0-7. 5 7. 5-10.0 )-10. 0 NE E ESE SE SSE s SSL.J SLJ CALM TCT<\L 6 03 7 09 2 03 7 09 4 05 7 09 7 09 3 04 6 03 4 05 3 or, 0 0 OJ 6 03 6 OS 8 10 7 09 90 1. 13 18 23 43 54 32 40 28 35 23 29 23 29 20 25 23 29 16 20 15 19 24 30 27 34 17 21 16 20 18 23 26 33 369 4 63 85 I 07 107 1 34 78 98 68 85 74 93 60 75 79 99 107 1 34 77 97 80 1. 00 61 76 63 79 47 59 71 8'> 51 M 1170 14 67 0!=" VALID 0!3SER1JAT IONS 797:) 0:::-HNAI_ID OOSERVATIONS 785 TOTAL 0? ODSERVAT IONS 8760 KEY X X ( NU:v!OER OF OCCURRENCES XXX PERCENT OCCURRENCES 148 1. 86 123 1. 54 !OS 1. 32 140 1. 76 98 1. 23 176 2. 21 197 2 47 412 5. 17 279 3. 50 176 2. 21 70 88 75 94 108 1. 35 !59 1. 99 189 2. 37 176 2. 21 2631 :32.99 91 04 PCT 8 96 PCT 100 00 PCT 90 1. 13 23 29 67 84 84 1. 05 51 64 97 1 22 221 2 77 604 7. 57 374 4. 69 142 1. 78 36 45 25 31 74 . 93 106 1. 33 152 1 91 145 1. 82 2291 28. 73 78 98 27 34 12 15 19 24 42 53 132 1 66 471 5. 91 250 3 13 62 78 17 21 7 09 14 18 102 1 28 64 80 125 I 57 1424 17 86 TOTAL SPEED 425 5. 33 305 3. 82 311 3. 90 339 4.25 269 3. 37 405 5. 08 656 B. 23 1620 20. 31 1002 12. 56 479 6. 01 211 2. 65 204 2 56 260 3 26 460 5. 77 480 6. 02 542 6 GO 7 09 7975 100 00 7. 21 4 95 6 23 6 14 6. 12 6. 84 7. 97 8. 70 8 43 7 23 5 93 5 48 6 63 7 80 7 48 7 82 CALM 7 49 ( 6 0
  • 0 0 METERS ) Page 8 of 16 Rev. 0 WOLF CREEK TABLE 2.3-30 JOINT WIND FREQUENCY DISTRIBUTION BY CLASS (ANNUAL) ( 6 0. 0 0 METERS) Page 9 of 16 .!OUH DISTRTUUfiON BY STABILITY CLASS DATA PERIOD -..'L:,\.E L 1'-174 THROUGH M/-\V 31. 1.;>75 STM3I!_ITY CLt.SS. PAl;liUILL ,; O.;Tr.. :::CLRCE C.'l-SITE '
  • HEIGHT .SV UO METERS TAOLL 1110*1/81 lJ 1'-l 37 (JIND WINO CA IES (MFTER5 PER SECTOR 0 0-1 0 1 0 .J 0-j 0 s 0-7 1 b 22 45 06 38 ' 39 2 84 01 07 2.L, 54 1 10 33 13 06 6:3 ;? 08 82 01 12 39 16 5 18 12 32 1 n 76 02 06 22 14 1 5 ts 11 06 32 95 69 01 06 18 13 ESE 3 16 29 \2 \9 1 0\ 1 83 76 04 19 35 14 SE 17 19 14 1 J7 I 20 88 02 20 23 \7 SSE 10 42 43 63 2 65 2. 71 02 12 50 51 \3 40 89 82 52 61 02 \6 48 07 ssw 3 12 46 80 19 76 90 5 04 0'i 14 55 96 13 27 27 82 1. 70 1 70 02 16 32 32 WS:.J 1 9 9 10 06 57 57 63 01 11 11 12 1 9 14 17 06 57 83 1 07 01 11 17 20 2 5 10 11 13 32 63 69 02 06 12 13 NW 3 4 9 11 19 25 57 69 04 OS 11 13 N:'>::..J 1 4 11 38 06 25 69 2 39 01 OS 13 45 N 1 5 14 44 06 32 88 2. 77 01 06 17 53 CAL!'1 0 0. co 0 00 TOTAl_ 28 143 :358 477 1 76 9 01 22 56 30. 06 34 1 71 4. 28 5. 71 KEY XX.< NLA13ER OF OCCURRENCES XX.< PERCENf OCCURRENCES THIS CLASS XXX PERCEtH ALL CLASSES JOINT t.Jtrm FREIJU:::.rJCY DISTRIBUTION BY STABILITY DATA PER I DD J\.Jc-...E 1, 1974 THROUGH MAY 3L 1975 STABIL[TY CLASS: PASQVILL B DATA SOU!=<CE Cl:-..1-SITE 1-HNU HEIGHT 60 00 METERS TABLE GENERMTED: 11/04/81. 13 19 37 WIND WINO SPEED CATEGOH IES (METERS PER SECTOR 0. 0-1. 5 1. 5-3.0 3 0-5 0 5 0--7 5 1 5 3 8 23 1.14 68 1. 82 01 06 04 10 NE" 6 4 0 1 37 91 0 00 02 07 OS 0. 00 ENE 0 8 5 3 0 00 1 82 ' 14 68 0. co 10 06 04 E 0 1 3 2 0 00 23 68 46 0 00 01 04 02 ESE 0 4 6 3 0 00 91 1 37 68 0 co OS 07 04 SE 0 6 6 4 0 OJ \ 37 1. 37 91 0 03 07 07 OS SSE 0 1 7 7 0 03 23 59 1. 59 0 OJ 01 . 08 08 s 1 3 9 19 23 68 2. 05 4. 33 01 04 11 23 ssw 2 0 11 \0 46 0 00 2. 51 2. 28 02 0 00 13 12 sw 0 I 5 4 0 co 23 14 91 0 00 01 06 05 WS:...I 0 3 \ 8 0 00 68 23 1. 82 0 00 04 01 10 w \ 4 4 4 23 91 9\ 91 01 05 OS OS 1 3 1 4 23 68 23 9\ 01 04 01 05 f.j:.J 0 8 6 8 0 00 1 82 1 37 1. 82 0 00 \0 07 10 rll\:...1 I 0 6 8 23 0 00 1 37 1 82 01 0 00 07 10 " 1 3 .. 10 23 68 2 28 01 04 02 12 CAL:-1 0 0 co 0 00 TO TAt 10 56 79 102 2 28 12 76 lEI 00 23 23 12 67 95 1 22 1-<EY XXX I'-IUMI3E:R OF OCCURRENCES XX ( PE-:RCEt,Jf OCCURRENCES THIS CLASS nx PERCH-If OCCURRENCE!:) All. CLASSES WOLF CREEK STATION UURLI NGTON, J.\ANSAS Cr,s ANLJ ELEC C DAf'iES AND MOORE JDI:I 7699-064 SECOND l !'"lEAN 7 0 '}10. 0 fDT1\l SPEED 12 4 90 6 03 76 25 t_,f 14 OS (1ft 2 1 t.O 4 39 13 06 3 /D 02 01 , ... 3 0 40 4 75 19 0 00 2 04 0 00 48 0 :14 4 69 0. 00 2 14 02 0. 00 41 6 1 !:_,7 4 37 38 06 4 07 01 8 4 77 50 3. 91 \0 o;2 74 27 \8 it;;;: 6 51 L 70 1 13 8 32 22 1. 70 82 64 2'i'O 7. 73 5 17 4 0:3 lB. ';;.'7 . 98 77 3 47 60 7\ 27;; 78 3. 78 4 47 :7 14 72 85 3 .:::*,:, 9 21 <)"'( 6 6\ 57 1. 32 6 ';;.'4 11 25 1 lB 5 4 ::n 5 92 32 . 25 2. 39 06 05 45 13 2 " 5 59 82 13 3. 16 82 6/ 10 10 48 7 84 . 63 . 63 3 O< 12 12 57 22 14 63 7 38 1. 39 38 3 97 26 . 17 7:'J 38 26 118 7 97 2 39 1 ,,, 7. 44 45 31 1. 41 26 18 108 7 26 1. 64 1.13 6 81 31 22 1. 29 0 CALM 0 00 0 00 325 256 1567 6. 80 20.48 16 13 100 00 3. 89 3. -J6 8. 99 CLASS WOLF CREEK GENERATHJ*::> STATION I3VRLINGTON, KANSAS KANSAS GAS AND ELEC I C DANES AND MOORE JOB hiD: 7699-064 SECOND) MEAN 7. 5-10. 0 :>10. 0 fDTAL. SPEED 6 8 :n 7 06 1. 37 1. 82 7. 06 07 10 :!7 0 14 3. 36 0. 00 3 19 02 0. 00 ]/' 5 0 1 4 87 1. 14 0 00 4. 78 06 0 00 :;>5 0 0 6 4 53 0. 00 0. 00 1 ::!7 0. 00 0 00 07 1 5 19 6. 39 23 1. 14 4. :J3 01 06 ;;>:J 4 0 ;;:o 4 91 91 0. 00 4 OS 0 00 ;;!4 2 4 :;>t 6 61 46 91 4 78 02 05 ;;:5 14 19 65 8 15 3. 19 4. 33 14 Ell 17 23 7fl 11 10 44 7 34 2 51 2. 28 10 02 13 12 I 6 17 7 75 23 1 37 3 El7 01 07 ;;*o 2 3 17 6. 79 46 68 3. EJ7 02 04 ;;*o 1 1 1 5 04 23 23 3. 4;? 01 01 ll:J 6 4 19 7 24 1. 37 91 4 ::!:3 07 OS ;;*:J 11 10 7 65 2 51 2 28 9 79 13 t:2 "' \5 14 44 8 54 3 42 3 19 .o \1;: 18 17 J::; 16 11 8 \6 3 64 2 5\ 9 79 19 \3 n CALM 0 {"I() 0 oc 97 93 4::19 7 11 :?2. 10 21. 64 l()() 1 16 \ "' 0 Rev. 0 WOLF CREEK TABLE 2.3-30 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS {60.00 METERS) (ANNUAL) Page 10 of 16 ,JI)UH lHrJD OISTRIOUTIUN OY SfMJILITY CLASS o,:,fA PERIOD JL':\'1:: L 1Y74 THROUGH MAY :31, 1975 Sff,(ll1 IlY CLASS PA:;GUILL C Df,T/-, :.,t:.NSOR 60 ,)0 METEF:S T:,OU:. L:["'ERNTED 11/04/81 13 19. ]7 \J [NO lHND CAr EGOH IES < TE:RS PER Sb::T()i? 0 0-1 5 1 5-3 0 3 0-0 0 7 5 N[ E E:3E SE s:;E s:;w N:J N Ctll,'1 Tell AL 1 c 6 10 2iJ :J9 1 17 1 96 01 02 07 12 8 6 5 1 57 1 17 98 02 10 07 06 1 5 0 3 20 98 1 57 01 06 10 04 0 1 3 3 0 OJ 20 59 59 0 OJ 01 01 04 0 2 3 5 0 00 39 59 98 0 00 02 04 . 06 0 1 5 5 0 OJ 20 98 98 0 00 01 06 06 1 2 6 8 20 39 1. 17 I 57 01 02 07 10 0 2 12 25 0 00 39 2. 35 4. 89 0 OJ 02 14 30 1 4 11 19 20 78 2 15 3. 72 01 05 13 23 1 7 20 1. 37 02 01 02 08 1 1 0 5 20 20 0 00 98 01 01 0 00 06 0 6 6 4 0 OJ 1 17 1. 17 78 0 00 07 07 05 1 3 2 4 20 59 39 78 01 04 02 05 0 3 7 9 0 OJ 59 1. 37 1. 76 0. 00 04 oa 11 0 2 3 16 0 00 39 59 3. 13 0 CJ 02 04 19 1 0 6 11 20 0 00 I 17 2 15 01 0 00 07 13 0 0 00 0. 00 11 43 86 139 2 15 8 41 16 83 27. 20 13 51 1 03 1. 66 KEY X X ( NUMBER OF OCCURRENCES xx*< PERCENT OCCURRENCES THIS CLASS '<XX PERCENf OCCURRENCES ALL CLASSES WCJLF CREEK GEt*IEHATING SfATIIJt-l DUf{L I r.JGTON, Kf,rJ:3AS GAS Arm lC. DAMES AND MUORE JUO NO 7699-064 sc=:cmm> MEAN 7 5-10 0 :*to 0 TOTAL SPEED 9 11 '39 7 66 1 76 2 15 7 .'>3 11 13 47 0 23 4 09 0 00 4 50 02 0 00 28 2 0 19 4 34 39 0 00 3 72 02 0 00 23 1 1 9 6 20 20 20 1 76 01 01 11 1 1 12 5 69 20 20 2. 35 01 01 14 6 1 18 6 48 1 17 20 3 52 07 01 7 4 6 72 1 37 78 5 48 08 05 34 12 13 64 7 58 2 35 2 54 12 52 14 16 77 13 12 60 7 36 2. 54 2 35 11 74 16 14 72 4 4 20 7 06 78 78 3. 91 05 05 24 1 1 9 6. 23 20 20 1 76 01 01 11 0 1 17 4 32 0. 00 20 3.::J3 0 00 01 20 8 6 24 7 65 1. 57 1 17 4 70 10 07 29 18 14 51 8 68 3 52 2 74 9 98 22 17 61 17 18 56 8 45 3. 33 3 52 10. 96 20 22 67 21 23 62 8 98 4 11 4 50 12 13 25 28 74 0 CALM 0 00 0 00 122 110 511 7. 35 23 87 21 53 100 00 1 46 1. 32 6. 12 .JOINT lHND FREGUi::!.JCY DISTRIBUTION 13Y 5Ttll3ILITY CLASS PERIOD* JU:-:E 1. 1974 THROUGH 11AY :ll, 1975 ST,;BILITY CLo'.SS PASGUILL D DATA ON-SITE \-.'1;'\JIJ SENSOR HEIGHT* 60 00 METERS TAOLE 11/04/81. 13. 19 :!7. WIND 5PEED CATEGORIES <METERS PER St:CTOR 0 0-1. 5 1 5-3. 0 3 0-5 0 :> 0-7 5 ErJE E ESE sc: 5 s" N (AI :1 TOTAL 0 6 26 56 0 00 27 1 18 2 55 0. 00 07 31 67 0 11 24 38 0 co 50 1. 09 1. 73 0 co 13 29 45 0 10 32 33 0. co 45 1 45 1. 50 0. 00 12 38 39 4 11 20 27 18 50 91 1. 23 05 13 24 32 3 11 26 47 14 50 1. 18 2. 14 0'1 13 31 56 1 13 29 31 05 59 1 32 1. 41 01 16 35 37 3 10 31 42 14 45 1. 41 1 91 04 12 37 . 50 5 14 54 112 23 64 2. 45 5. 09 06 17 65 1 34 4 11 33 64 18 50 1 73 2 91 05 13 45 77 2 5 15 19 0'1 23 68 86 02 06 18 23 2 15 a 10 09 68 36 45 02 18 10 12 6 1 17 7 27 05 77 32 07 01 20 08 2 4 16 18 09 18 73 82 02 05 19 22 1 4 16 35 05 18 73 1 59 01 05 19 42 0 5 1:3 43 0 co 23 59 1 95 0 00 06 16 51 3 6 §§ 59 14 27 1 2 68 01 07 26 71 0 0 CJ 0 CJ 36 137 387 641 1 6*1 6 23 17 59 29 14 43 1 64 4 63 7 67 "-EY XX.( OF OCCURRENCES XU PERCErH OCCURRENCES THIS CLASS XX.< PERCENT OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS 7 699-064 SECOND) MEAN 7. 5-10. 0 >tO. 0 TOTAL SPEED 59 26 173 7. 45 2. 68 l. 18 7 86 71 31 2 07 8 83 5 38 36 3 77 10 02 99 12 0 87 5 38 55 0 00 3 95 . 14 0. 00 1. 04 16 9 87 6. 16 73 41 3 95 19 .11 1 04 17 18 122 6. 54 77 82 5. 55 20 22 1 46 38 27 139 7. 17 1. 73 l. 23 6. 32 45 32 1 66 36 14 136 6 57 1. 64 . 64 6 18 . 43 17 1 63 106 104 395 7 92 4 82 4 73 17 "5 1 27 1. 24 4 73 59 44 220 7 52 2. 68 2 00 10 JO 71 53 2 63 4 12 57 6. 38 18 55 2 59 05 14 68 2 5 42 4 91 09 23 1 >1 02 06 :so 6 11 *a 6 91 27 50 2 18 07 13 57 19 35 >4 8 45 86 1 59 23 42 13 53 33 112 7 95 2. 41 1 50 6 , 63 39 ! 70 72 52 135 8 63 3 27 2. 36 0 " 86 62 2 :!1 4::-:1 57 "0 8 22 1 95 2 59 f3 51 68 2 "Y.7 0 CALM 0 ,,0 0 ,,0 449 I 36 25 00 20 41 100 'JO 6 50 5 37 26 .)3 Rev. 0 WOLF' CREEK TABLE 2.3-30 JOINT WIND FREQUENCY DISTRIBUTION BY STABILI'::'Y CLASS (ANNUAL) -1\lif\!f f-REOLJC:JCY DISTRIBUTION BY ST,\13IL1TY CLASS fTRIOO JU.'\.* t, 1'774 THROUGH MAY :31. 1975 ST.:-,[3 II_! TY PA;;oUILL E WOLF CREEK GENERI'lol I tJG B 'ATI[IN n,;r,; ':>:-,i._.':tCE SI fE OURL.INGTON, KANSAS r m HEIGHT .so 00 METERS GAS AND ELECTR 1 c T MULE GEfJERMl ED I 1/04/81 L3 19 :F DAf*lES AND MUORE ,JOB NO 7699-064 WIND tJINf) SPE"ED CATEGORIES (ME f[RS PER SE.COND> t1EAN SEC TOR 0 0-1 5 1 0 3 0-5 0 j 0-7. 7 0 ::to 0 SPEED 0 /, 14 22 14 8 1,4 6 46 0 00 :J4 7? 1. 2] 79 45 3 :J9 0 OJ 07 17 26 17 10 "'7 0 8 ;;:3 11 0 1 *13 4 47 0 OJ 1 29 62 0 00 06 2. *11 0 OJ 10 20 13 0 00 01 :il ENE 1 6 20 33 9 0 ,,9 5 59 06 34 1 12 1. 85 50 0 00 3. U7 01 07 24 39 11 0 00 113 E 0 *l 11 34 8 5 :i9 6. 52 0. co 22 45 1 91 45 28 3 :11 0. OJ 05 10 41 10 06 -.'1 ESE 0 6 15 33 33 10 "7 7 17 0 OJ 34 84 1. 85 1. 85 . 56 5 ... 0 OJ 07 18 39 39 12 1 .6 SE 7 17 37 37 16 l: 8 6 99 39 95 2 08 2 08 90 6. t>2 05 08 20 44 44 19 1 '" SSE 0 6 28 62 80 34 0 7 65 0 00 34 1 57 3 48 4 49 1. 91 11. :*s 0 00 07 34 74 96 41 2 :11 8 29 129 147 78 :!03 8 08 45 1 63 7. 23 8 24 4. 37 22 04 02 10 35 1. 54 1. 76 93 4. :*o ssw 0 10 37 78 65 31 1 7. 24 0 00 56 2 08 4 37 3. 65 1 74 12.:19 0 00 12 44 93 78 37 2 ,,5 sw 0 7 29 27 10 2 :'5 5 43 0 OJ 39 1 63 1. 51 56 11 4 1 0 00 08 35 32 12 02 C.'Q WSW 0 2 13 24 8 0 '7 5 87 0 00 11 73 1. 35 45 0. 00 2. M 0 00 02 16 29 . 10 0. 00 . 3 3 15 12 6 3 l.2 5. 28 17 17 84 67 34 17 2 ::t6 O*> 04 18 14 07 04 * .J 0 6 16 35 28 4 E09 6 57 0. 00 34 90 1. 96 1 57 22 4 ';'9 0 co 07 19 42 34 05 1. (>7 NW 1 3 13 34 23 3 07 6. 53 06 17 -73 1. 91 1. 29 17 4 ::2 01 04 16 . 41 28 04 'i'2 0 3 12 38 29 2 E:4 6. 83 0. 00 17 67 2. 13 1. 63 11 " 0 OJ 04 -14 . 45 35 02 C*1 N lt 4 11 39 27 12 r;*s 7. 14 22 . 62 2. 19 1 51 67 5 ::3 02 05 . 13 . 47 32 14 1_ 14 CA!_M 0 0 CALM 0 00 0 (*0 0. 00 0 co TOTAL 13 89 300 648 524 209 17E3 7 02 73 4. 99 16.83 36.34 29.39 11 72 100 co 16 1. 07 3. 59 7. 76 6 27 2. 50 21 :-4 xu NL:f113ER OF OCCURRENCES " ( f OCCURRENCES THIS CLASS XX ( PERCENT OCCURRENCES ALL Cl1:l.SSES JOINT t.Jit-10 FREQLiE:-ICY DISTRIBUTION BY CLASS DATA PERIOD JlJ;-,.E L 1974 THROUGH MAY :u. 1975 CLASS PASGJILL F WOLF CREEK GENERATING !:i "ATION DrlTA SOURCE* C01-SITE BURLINGTON, tJI,\!Il HEIGHT 60 00 METERS KANSAS GAS AND ELECTRIC TArlLE GEN::::Rf'..TED: 11/04/81 1::1. 19. :l? DAMES AND MOORE ,JOI3 NO. 7699-064 WIND tHNO S?EED CATEGOR TES (J"'ETE.:RS PER SECOND> MEAN SECTOR 0 0-1 5 1 5-3 0 3 0*-5 0 ,, 0-7 5 7. 5-10. 0 >10 0 TOTI1L SPEED tJN!:. 0 2 13 16 17 2 6. 49 0. 00 17 1. 13 1. 39 1. 48 17 4 :15 0. CJ 02 16 19 20 . 02 1.0 NE 0 7 18 7 2 0 :J4 4. 30 0. 00 61 1. 57 61 -17 0. 00 2. 06 0 00 08 22 08 02 0. 00 "1 ENE 1 5 10 9 8 1 :14 5 69 0'1 43 87 78 70 09 2. c.'6 01 06 12 .11 10 01 "1 E 0 2 7 18 15 0 '2 6. 68 0 00 17 61 1. 57 1 30 0. 00 3 65 0 co 02 08 22 18 0. 00 ESE 1 4 9 30 20 1 65 6. 56 07 35 78 2 61 L 74 09 5. l.5 01 05 .11 36 24 -01 SE 0 1 15 44 18 4 E12 6. 72 0 OJ 09 1 30 3 83 1. 57 35 7 13 0 co 01 18 53 22 05 ':'8 S:J* 2 4 16 64 42 7 1:15 6 99 17 ::JS 1. 39 5. 57 3. 65 61 11 1'4 02 05 19 . 77 50 08 1 lo2 0 3 14 104 79 6 :::.*C*6 7. 22 0 OJ 26 1 22 9. 04 6 87 52 17. S'l 0 00 04 17 1. 24 95 . 07 2. t.7 SS.J 1 1 9 69 44 2 t;:'6 6. 95 09 09 78 6 00 3 83 17 10. ':'6 01 01 11 83 53 02 1 1 SLJ 4 19 62 19 0 1C*6 6 04 35 1 65 5. 39 1 65 0. 00 9 ;:*2 02 05 23 74 23 0 00 1 ';."7 ws:.J 1 4 16 31 2 0 ,. 5 20 07 35 1. 39 2. 70 17 0 00 4 00 01 05 19 37 02 0. 00 15 0 4 10 19 1 0 C4 5 19 0 OJ 35 87 1 65 09 0 00 2 S6 0 OJ 05 12 23 01 0 00 . 41 1 3 12 17 ?0 0 " 6. 34 07 26 1 04 1 48 1 74 0 00 4 11 01 04 14 20 24 0 00 13 1 4 12 16 5 0 ::3 5 42 07 35 1 04 1. 39 43 0 00 3 co 01 05 14 19 06 0 00 45 1 2 4 16 5 0 :a 5. 77 09 17 35 1. 39 43 0 00 2 43 01 02 05 19 06 0 00 :4 0 3 10 29 16 5 13 6. 67 0 OJ 26 87 2 52 1 39 43 5 49 0 OJ 04 12 35 19 06 75 i1 0 0 CALM 0 OJ 0 co 0 00 0 00 TOTr ... *_ 11 53 194 551 313 28 11:'",0 6 48 96 4 61 16 87 47 91 27 22 2 43 100 00 13 o3 2 32 6 59 3 75 34 13 76 "EY XX< NU:1BER OF OCCURRENCES '" PERC EN r OCCURRENCES THIS CLASS XX< PERCEfH OCCURRErJCES ALL CLI\SSES (60.00 METERS) Page 11 of 16 Rev. 0 WOLF CREEK TABLE 2.3-30 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (ANNUAL) "OINT !!IND FRE.Jl..;::rKY DISTF-II8UTH1N HY SfABlLITY CLASS DATA PE-RIOD JLJ:-.*C.: L 1'-1/4 THPOUGH MAY JL 1975 ST/,[J!LITV CLASS. PASOUILL G D.; T A <:_;,-*Ur<CE C'*'J-S I TE i,JIJ SHl30R HE I CHT 60 00 MFTERS iA::JL[ u-Et1C:RATED 11/04/Sl 13 19 37 WOLF CREEK GErlERATii-JG *:>TA1 ION [lURLINGTflN, KANSi'\5 KANSAS GAS AND E:.U::::CTR"',: AND MOfJHC JOD NU 1 t-99-064 WINO S:.::CTtJR WihlO SPEED CATEGOHIF:S<I'If.:TERS PER SECOND) MFAN 00-15 30--50 >100 ESE ::3E SSE sw WS:.J w r-:rJW N TOTAL 1 15 .;::9 02 1 15 01 0 0 O'J 0 OJ 1 15 01 0 0 OJ o oa 1 15 01 0 0 OJ 0 00 02 1 15 01 0 0. OJ 0. O'J 3 44 04 1 15 01 0 00 OJ 0 0 co 0 OJ 0 0 OJ 0 OJ 1 15 01 14 2 04 17 "' 50 5 73 29 02 4 58 cs 02 3 44 04 02 2 29 02 3 44 04 2 29 02 1 15 01 2 29 02 1 15 01 0 0 00 0 00 0 0. 00 0. 00 5 73 06 38 5 55 45 ,, !3 07 15 19 113 5 73 06 11 1. 61 LJ 1 1 o;2 013 1 14 15 2 19 113 9 1. 31 1\ 4 513 05 ;2 29 . 11 1 61 13 . O!J !3 1 17 10 5 -,3 06 6 E8 07 7 1. 02 oa 128 18.69 1. 53 KEY XXX NUMBER OF OCCURRENCES 12 1. 75 14 8 1 17 \0 13 1. 90 16 12 1 75 14 ;;'6 3 80 31 3. 31 44 6 42 53 69 10 07 83 33 4 82 39 28 4 09 34 12 1. 75 14 8 1 17 10 8 1. 17 10 7 1. 02 08 11 1. 61 13 17 2. 48 20 334 48 76 4. 00 XXX PERCENf OCCURRENCES THIS CLASS XX.( PERC£t.H OCCURRENCES ALL CLASSES n 1 17 10 0 0 00 0 00 1 15 01 13 1 90 16 6 88 07 15 2. 19 18 30 4. 38 36 32 4 67 38 12 1. 75 14 6 88 07 3 44 04 0 0. 00 0. 00 0 0 00 0 00 6 88 07 5 73 06 27 3. 94 32 164 23. 94 1. 96 ... )Q!Uf WIND DISTRIBUTION BY STABILITY CLASS CATA PERIOD L 1974 THROUGH MAY 31. 1975 1 15 01 0 0. 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0 00 0 00 2 29 02 3 44 04 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0 00 1 15 01 7 1 02 08 TOrAL !:JPEEO 32 *I 6/ 30 :JO 4 38 36 22 :J 21 26 40 84 48 42 6 13 50 58 B 47 69 95 l:l 87 l 14 :12 16 35 l 34 54 88 65 39 69 47 27 :J 94 32 18 .;;> 63 63 22 18 63 22 22 :J 21 26 57 El 32 68 1 15 01 {>05 100.00 !:! 20 5 97 4 19 5 16 5 96 5 94 6 35 6 65 6 74 6. 14 6 31 5 34 4 39 4 76 6. 16 6 20 7 05 CALM 6 14 ALL CLASSES DATA Q;\1-Sl TE WOLF CREEK GENERATING 3TAT 1 ON BURLINGTON, KANSAS >.JIND SENSOR HEIGHT 60. 00 METERS TABLE 11/04/81 13 19 37 KANSAS GAS AND ELECTR [: DAMES AND MOORE JOB NO 7699-064 WINO SPEED CATEGORIES<MEfERS PER SECOND) hiND SECTOR 0. 0-1 5 1 5-3 0 3 0-5. 0 5. 0-7. 5 7 5-10. 0 >10. 0 f\.:-._;E ESE sw t.-.Sl.J CAL:1 TOTAL 4 05 7 09 6 07 5 06 8 10 7 09 9 11 10 12 13 16 9 11 5 06 14 17 8 10 6 07 3 04 8 10 1 01 123 1 47 31 37 55 66 41 49 28 34 45 54 48 57 35 42 45 54 41 49 33 39 35 42 29 35 25 30 26 31 16 19 26 31 559 6 69 n*.JM3ER oc VALID 03SERVAT IONS N'J110ER ID 0!3SERVATIDrJS TOTAL ;:Ji1GER OF O::JSER'v'A r ICNS 90 1 08 123 1 47 98 1 17 67 "80 95 1 14 103 1. 23 145 1. "14 167 2 00 156 1 87 99 1 18 58 6'1 71 BS 65 78 613 81 55 66 1 18. ]4 83:'1:5 405 8760 1--'EY XX< Ni.Jf1!1ER OF .<n PERCENT OCCURRENCES 169 2. 02 82 "98 106 1. 27 107 1. 28 156 L 87 161 1. 93 270 3. 23 547 6. 55 353 4. 23 174 2. 08 100 1. 20 71 85 97 1 16 120 1. 44 170 2. 03 209 2. 50 125 1. 50 16 "19 40 48 55 66 84 1. 01 126 1. 51 224 2. 68 472 5. 65 264 3 16 53 63 23 28 27 32 91 1 09 138 1. 65 181 2 17 176 2 11 2892 2095 34 61 25 07 95 38 PCT 4 <'.>2 PCT 100 00 f'CT 60 72 4 05 1 01 15 18 36 43 52 "62 84 1. 01 284 3. 40 170 2 03 45 54 13 16 18 22 59 71 74 89 112 1. 34 127 1 52 1154 13 81 MEAN TO fAL SPEED <79 :5 73 287 :3 44 292 :3 49 277 :3 32 ,24 :3 07 497 5 95 767 9 18 l 525 1!3 25 797 1.! 93 l13 4 94 2:J4 80 75 345 4 13 +32 1 7 )37 6 43 *Jl8 7 40 1 01 D"35:J 100 00 6 84 4 58 5 26 6. 07 6. 25 6. 54 6. 94 7 74 7 37 6 26 5. 57 5 53 7 24 7 :.37 7 93 7 69 CALM ( 6 0
  • 0 0 METERS ) Page 12 of 16 Rev. 0 WOLF' CREEK TABLE 2.3-30 JOINT WIND FREQUENCY DISTRIBUTION BY STABILI'I'Y CLASS (60.00 METERS) {ANNUAL) Page 13 of 16 lliHlT wrrm FREGUo:.tJCY DISTRIBUTION BY STiiO IL 1 TV CLASS A Prqroo t1f*RCH s, 1979 THROUGH MI\RCH 4, 1900 r ;..,r; It r CL MSS ILL ,, WOLF GFNERAT ING STATION o:,r,:, C0l<JITE BURLINGTON, KANSAS r 1) SENSOR HEIGHT ,,, 00 METERS J.\I',NSAS Gi\S 1\NO LLEC1RJC 1 N3l!:: GUI.!cRi, TED I l/04/81 14 42 !Mt-U::S AND MU()f\E JOO NO 76'7'9-064 *: r lD t..; I S!"CED CAH-GOHICS<t-'.EH-RS PER SECOND> f1EAN s:::c TOR 0 0-1 0 1 0-3 0 3 0**5 0 0*-7. 5 7 5--10 0 ::10 0 TD11\L r-.::*H:_ 1 0 1 3 8 3 16 74 33 0 00 JJ 99 2 63 99 5 :26 01 0 00 01 04 11 04 ;::2 r 0 0 2 5 0 0 7 5 00 co 0 00 66 1 64 0 00 0 00 2. :Jo 03 0 00 03 07 0. 00 0 00 to 0 0 0 0 0 0 0 0 00 0 00 0 00 0 00 0. 00 0 00 0. 00 0 :)0 0 00 0 00 0 00 0 00 0. 00 0 00 0 :)Q 0 0 0 3 0 " 7 30 0 co 0 00 0 00 99 0 00 t fo4 0 co () 00 0 00 03 04 0 00 37 0 0 0 6 0 0 6 6 15 0 OJ 0 00 0 00 1 97 0. 00 0 00 1 n 0 OJ 0 00 0 00 08 0. 00 0. 00 :)8 SE 0 0 3 6 0 0 14 4 97 0 co () 00 2 63 1. 97 0. 00 0 00 4 " 0 co 0 00 11 08 0. 00 0 00 19 0 0 4 4 0 2 10 6 09 0 OJ 0 00 1. 32 1 32 0 00 66 3 29 0 co 0. 00 05 05 0 00 03 14 0 0 10 15 9 5 39 7 00 0 00 0 00 3. 29 4. 93 2 96 1 64 12 ]3 0. OJ 0 00 14 20 12 07 33 0 0 4 38 16 5 7. 33 0. 00 0 00 1 32 12 50 5 26 1 64 20 72 0 co 0 00 05 52 22 07 :]6 0 6 1 3 4 1 15 5 20 0 00 1 97 33 99 1 32 33 4 73 0 OJ 08 01 04 05 01 1,-.j:i;..J 0 3 0 0 0 0 3 2 43 0 00 99 0. 00 0. 00 0. 00 0 00 79 0 00 04 0 00 0 00 0. 00 0. 00 04 0 0 9 4 0 15 5 50 0 00 0 00 2. 96 1. 32 0 00 4 '73 0 00 0 00 12 03 05 0. 00 .20 0 2 0 0 2 3 7 8 36 0 OJ 66 0 00 0. 00 66 99 2 30 0 00 03 0 00 0. 00 . 03 04 10 0 2 0 1 5 5 13 9. 38 0 00 66 0. 00 33 1 64 1. 64 4 .28 0 00 03 0 00 01 07 . 07 18 0 2 4 11 3 18 ']8 8 76 0 00 66 1 32 3. 62 99 5 92 12 :)Q 0 00 03 05 15 04 . 25 :J2 N 1 2 1 10 21 18 '53 ' 8 87 33 66 33 3. 29 6 91 5. 92 17 *l3 01 03 01 '14 29 25 72 CAU1 0 0 CALM 0 OJ 0 00 0 00 0 <)0 TCTAL 2 17 44 106 75 60 3\)4 7. 41 66 5 59 14 47 34. 87 24 67 19 74 100 00 03 23 60 1. 44 1. 02 82 4 14 KEY XXX NUi1GER OF OCCURRENCES 'OX PERCENf OCCURRENCES HHS CLASS XXX PERCENT OCCURRENCES ALL CLASSES JOINT !..JIUD DISTRII3UTION EY ST,l..BILITY CLASS 01HA PERICD t'iMRCH 5, 1979 THROUGH MARCH 4, 1980 STABILIT'l' CLASS: PASQUIL.L B WOLF CREEK GENERATING STATION DATt. SOURCE* 001-SI TE BURLINGTON, KANSAS I.Jl!"JO SEt60R HEIGHT 60. 00 METERS KANSAS GAS AND ELECTRIC TARLE GENERATED 11/04/81. 14 42. ;:?5 DAMES AND MOORE NO: 7699-064 WIND WINO SPEED CATEGORIES<METERS PER SECOND) MEAN SECTOR 0. 0-1 5 1 5-3. 0 3. 0-5. 0 0-7 5 7 5-10.0 >10. 0 TDlAL SPEED rJNE 0 0 4 6 4 2 16 7 01 0. 00 0 00 1. ::JB 2. 08 1. 38 69 5. 54 0 00 0 00 05 '08 05 03 22 NE 0 1 6 1 0 0 8 4. 17 0 0() 35 2 08 35 0. 00 0. 00 2, 77 0 00 01 OS 01 0 00 0 00 11 ENE 0 0 0 2 0 7 4. 96 0 00 0, DO 1 0. 00 69 0 00 2. 42 0 00 0 00 07 0 00 03 0 00 10 0 0 1 3 2 0 6 6. 52 0. C3 0 00 . 35 1. 04 69 0. 00 2 08 0 00 0 00 01 04 03 0. 00 . 08 ESE 0 0 1 6 0 0 7 5 84 0 co 0 00 35 2. 08 0. 00 0 00 2 42 Q_ 00 0. 00 . 01 08 0. 00 0 00 10 SE 0 0 1 5 3 1 to 6. 93 0. OJ 0. 00 35 1. 73 1. 04 35 3. 46 0 00 0. 00 01 . 07 04 01 14 S!3E 0 1 3 5 0 0 9 5 07 0 03 35 1. 04 1. 73 0. 00 0. 00 3 11 0. OJ 01 04 . 07 0. 00 0, 00 12 s 0 1 15 18 12 13 59 7. 24 0 co 35 5 19 6 23 4 15 4 50 20. 42 0. 00 01 20 16 18 80 ssw 0 2 6 19 21 4 52 7 17 0 00 69 2 08 6 57 7. 27 1. 38 17 99 0 co 03 08 26 . 29 05 71 s" 0 8 6 8 5 29 7 14 0 00 2 77 2. 08 2 77 1. 73 10 03 0 00 03 11 08 11 07 39 0 1 3 1 1 2 8 6 50 0 03 35 1 04 35 35 69 2 77 0 00 01 04 01 01 03 11 w 0 6 9 3 0 20 5 58 0 00 2. 08 3. 11 1 04 0 00 6 92 0 co 03 OS 12 04 0 00 27 0 0 4 0 0 6 4 65 0. co 0 00 1. 38 0. 00 0. 00 .. 08 0. 00 0 00 05 03 0 00 0 00 08 N;.J 0 1 1 1 3 4 10 9 00 0 03 35 35 35 1 04 1 38 3 46 0 00 01 01 01 04 05 14 0 1 3 q 2 4 19 7 22 0 00 35 1 04 3 11 69 1. 38 6 57 0 OJ 01 04 12 03 05 26 N 0 0 8 5 5 5 23 7 19 0 OJ 0 00 2 77 1 73 1 73 1 73 7 96 0 00 0 00 11 07 07 07 31 ct.* :1 0 0 CALM 0 C3 0 00 0 C3 0 Ot: TOTAL 0 12 75 96 t.6 40 6 80 0 00 4 15 25 95 33 22 22 84 13. 84 100 00 Rev. 0 0 OJ 16 1. 02 1 31 90 54 3 '13 KEY XX.( NU."l!JER OF OCCURRENCES xx< OCCURRENCE3 THIS CLASS '" f OCCURHENCES hLL CLASSES WOLF CREEK TABLE 2.3-30 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS ( 60.00 r-'I..ETERS) (ANNUAL) Page 14 of 16 t-HND FREQUENCY DISTRIOUTION GY STABILITY CLASS DATA PERICJD 5, 1979 THrWUaH r1ARCH 4, 1980 PM.;GUILL C DMTM 00\l-SlTE SE1':SOR HEIGHT t.O 00 METERS fMGLE GEfJFRATED* 11/04/81 14 42.25 SPEED CAT[GOR I ES ( I":ETERS PER SECTGR 0 0-1 5 1 5-3 0 3 0-5 0 5 0-7 5 r ;t:. 0 1 4 4 0 CJ 26 I 03 1. 03 0. 00 01 05 05 NE () 0 3 1 0 00 00 77 26 0 00 00 04 01 ENE: 0 0 0 5 0 00 0 00 0 00 1 2'7' 0. co 0 00 0 00 07 1 1 1. 86 26 ;;:6 01 01 03 10 ESE 0 2 4 4 0 co 51 1. 03 1 03 0 co 03 05 05 SE 1 sf 5 *l 26 1 29 1 03 01 03 07 05 SSE 0 1 10 16 0 OQ 26 2. 57 4 11 0 00 01 14 22 () 3 13 5. 0. 00 77 3 34 0. OQ 04 18 30 0 3 6 26 0. 0*) 77 1 54 6 68 0. OJ 04 08 . 35 0 2 4 7 0 OJ 51 1. 03 1. 80 0 00 03 05 10 0 0 4 2 0 00 0 00 1 03 51 0. OJ 0. 00 05 03 0 2 8 5 0. 00 51 2. 06 1. 29 0. OQ 03 11 07 1-.':--JW 0 2 7 1 0 co 51 1 80 26 0. CQ 03 10 01 N" 1 1 3 5 26 26 77 1. 29 01 01 04 07 NN:...I 1 2 6 12 26 51 1. 54 3. 08 01 03 08 16 N 1 3 8 4 26 77 2 06 1. 03 01 04 11 05 CALM 0 0. 0() 0. co TOTAL 5 25 87 125 1. 29 6. 43 22. 37 :32. 13 07 34 1. 18 1. 70 XXX NUMBER OF OCCURRENCES XXX PERCENT OCCURRENCES THIS CLASS XXX PERC EN f OCCURRENCES ALL CLASSES JOira WIND FREI)UE:I-./CY DISTRIBUTION BY STABILITY L-.JULF GI'::NERATHIG STATION OURL I NGTON, KMNSAS Gt,S AND ELECI RIC AND JU3 NlJ 7699-064 SECOND) Mf.:AN 7 0 :no. o TDI"AL 7 2 18 1 16 1. so 51 4 (,3 10 03 1 0 5 5 94 26 0 00 1 ;;>9 01 0 00 07 1 1 7 7. 36 26 26 1 CIO 01 01 10 1 0 12 5. 21 26 0 00 :J 08 01 0 00 . 16 1 0 11 4 69 26 0 00 2 fl3 01 0 OQ 15 3 51 17 5 71 77 4.:17 04 03 23 6 0 33 5 96 1 54 0 00 8 43 08 0 00 45 11 17 ** 7. 48 2 83 4 37 16 97 15 23 90 19 9 63 7 34 4. 88 2. 31 16. 2-::> 26 12 86 3 1 17 6. 09 77 26 4. ::17 . 04 01 23 5 1 L2 6 75 1 29 26 3. 08 07 . 01 16 7 0 5. 91 1. 80 0. 00 5 10 0. 00 30 1 0 11 4 45 26 0. 00 2. 83 01 0. 00 15 7 4 21 7. 75 1. 80 1. 03 5. 40 10 05 2'7 6 6 33 7. 04 1. 54 1. 54 B. 48 08 08 45 16 9 41 7 56 4 11 2. 31 10 54 22 12 . 56 0 CALM 0 00 0 00 95 52 38'7 6 79 24 42 13. 37 100.00 1 29 71 5. 30 CLASS DATA PERI CD Mt-RCH 5. 1979 THROUGH 11ARCH 4. 1980 STI-.BILITY CLASS PASQUILL D WOLF CREEK GENERAT I \IG STATION DATA SOURCE D:'J-SITE BURL lNGTON, KAt-IS AS WINO SEN50R HEIGHT 60 00 METERS KANSAS GAS AND ELEC fRIC TABLE GENERATED: 11/04/81 14. 42. 25. DAt1ES AND MOORE JOB NO: 7699-064 WIND WINIJ SPEED CATEGORIES (METERS PER SECOND) MEAN SECTOR 0. 0-1. 5 1. 5-3 0 3 0-5 0 5 0-7. 5 7 5-10 0 )10. 0 TOTAL SPEED 0 18 50 64 41 27 ;;!QO 6 63 0 co 69 1 91 2 45 1. 57 1. 03 7. 65 0 CJ 25 68 87 56 37 2 72 NE 0 16 56 53 20 7 1 5. 56 0 OJ 61 2. 14 2 03 77 . 27 5 Ell 0 00 22 76 . 72 27 10 2 07 El\:£ 0 21 42 59 29 4 l 5. 69 0. OJ 80 1. 61 2. 26 1 11 15 5. 93 0. C.J 29 57 80 39 05 2. 11 E 1 17 47 52 16 3 ] 5. 24 O< . 65 1. 80 1. 99 61 11 5. 20 01 23 .. 71 22 04 1 85 ESE 15 36 23 22 7 105 5. 70 57 1. 38 . 88 84 27 4 02 03 20 49 31 30 10 1 43 SE 1 13 39 41 20 18 132 6. 33 01 50 1. 49 1. 57 77 69 5. 05 01 18 53 56 27 25 1 80 SSE 0 19 31 61 32 30 J73 6. 81 0. OJ 73 1. 19 2. 33 1. 22 1 15 6. 62 0 CD 26 42 83 44 . 41 2. 36 3 19 42 130 87 114 395 B 19 11 73 1. 61 4 97 3. 33 4 36 15. l1 04 26 57 1. 77 1. 18 1 55 5 :m ssw 1 17 35 87 55 58 7. 54 0*+ 65 1. 34 3. 3:1 2 10 2 22 9 68 01 23 48 1 18 75 79 3 44 sw 1 14 30 24 19 20 108 6. 75 04 54 1 15 92 73 77 4 13 01 19 41 33 26 27 1. 47 WSW 1 6 19 16 13 13 68 6. 46 04 23 73 61 50 50 2 M 01 08 26 22 18 18 93 w 3 14 29 35 35 19 135 6 62 11 54 1.11 1 34 1. 34 73 5 16 o*t 19 39 48 48 26 1 84 1 8 9 17 18 16 69 7 45 O*t 31 34 65 69 61 2. 64 01 11 12 23 25 22 94 NW 0 6 8 23 31 '10 8 65 0. Q\) 23 31 88 1 19 3 44 0 0) 08 11 30 31 42 1 23 .] 4 17 59 60 58 201 B 44 11 15 65 26 30 2 22 7 t,9 0<< 05 23 80 82 79 2. 74 N 0 5 31 84 66 56 8 08 0 00 19 1 19 3. 21 2. 52 2 14 9 26 0 OJ 07 42 1. 14 90 76 J ';;.9 CA!...M 0 0 CALM 0 co 0 00 0 co 0 00 TOTAL 17 212 521 827 506 481 2614 7 09 65 G 11 19 93 31. 64 21 27 lB. 40 00 00 23 2 89 7 09 11 26 7 57 6 50 35 1--\EY XX< tHJ;1flER 01'" OCCURRI;-NCES Xxt PERC EN r OCCURHENLES THIS CLASS XX< PERGEN r OCCURRENCES ALL CLASSES Rev. 0 WOLF CREEK TABLE 2.3-30 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (ANNUAL) WUiD FREQL.;:_NCY DISTRIOUTrnN llY TV CLASS [',;fA PER I 00 5, 1 Y79 THfWUGH 4, t 9HO ST."HllLITY CLASS p,\SUUll.L E DATA ;:.Lll-RCE TE Hl-:IGHT 60 00 MEn=:r,s T;,m.E: GLN£PATED 11 /04/E:Jl 14 42 ;;:s. [ND 1 CATEGORIES< ME fE:HS PER SEC TOR 0 :'> 1 ::.-3 0 3 0-5 0 ,, 0-7 5 ErW SC s:;E 5<0 w NW :-..1/JLJ N M TOTAL 1 4 14 26 OS 20 71 1 31 01 OS 19 ;]5 14 21 ;;'3 71 1 o;, 1 16 03 19 29 ::ll 0 5 23 33 0. 00 25 1. 16 1 66 0 00 07 31 45 0 6 19 37 0 00 30 96 1. E!6 0 00 08 C6 50 0 4 13 0 03 20 66 1 36 0. OQ 05 18 37 0 5 25 50 0 03 25 1 26 2. 52 0 00 07 34 68 0 7 24 67 0 00 35 1 21 3 38 0. OJ 10 33 . 91 1 11 20 156 05 55 1. 01 7. 86 01 15 27 2. 12 1 1 24 95 OS OS 1. 21 79 01 01 33 0 5 15 31 0 co 25 76 1 56 0 OJ 07 20 42 0 3 10 17 0 00 15 50 86 0 00 04 14 23 0 2 9 11 0 co 10 . 45 55 0 OJ 03 12 15 0 4 8 18 0. co 20 . 40 91 0 03 OS 11 . 25 2 0 10 15 10 0 00 50 76 03 0 00 14 20 1 1 7 31 05 05 35 1. 56 01 01 . 10 42 0 1 9 26 0. OJ OS 45 1. 31 0 OJ 01 12 . 3S 1 OS 01 9 73 251 663 45 3 68 12.65 33. 42 12 99 3. 42 9 03 KEY XXX NUMBER OF OCCURRENCES XXX PERCENT OCCURRENCES THiS CLASS .<XX PERCENT OCCURRENCES ALL CLASSES WOLF cnEEK GDlERATING STATION BURLINGTON, KANSAS GAS MJD t:LECTRIC DAMES ANO 1100RE ..JOB NU S[:CDND> MEAN 7 0 >10. 0 TOTAL :;PEED 17 12 74 7 05 86 60 73 23 16 01 7 0 67 4 8S 35 0 00 3. 30 10 0 00 'll 8 6 75 5 89 40 30 3 78 11 08 1 02 32 9 103 6 93 1 61 45 5. 19 44 12 1. 40 25 8 l7 7 11 L 26 40 3 88 34 11 1 05 27 18 127 6 91 1. 46 91 6. 40 39 25 1 73 78 45 221 7 91 93 2. 27 11 14 06 61 3 01 182 172 542 8. 91 9. 17 8 67 27 :32 2. 48 2 34 7 38 78 38 237 7 87 3 93 1 92 11 '15 1. 06 52 3 ;23 22 6 79 6. 77 1.11 30 3. '?8 30 08 1 08 12 3 45 6 35 60 15 2 27 16 04 61 16 5 43 7 20 81 25 2. 17 22 07 59 20 3 53 6 87 1 01 15 2. 67 27 . 04 72 25 5 57 7 36 1. 26 25 2 87 34 07 78 33 14 87 7 68 1. 66 71 39 45 19 18 42 18 96 8 17 2 12 91 !34 57 25 31 1 CALM OS 01 626 362 19":'34 7. 68 31. 55 18 25 100 00 8 52 4 93 27 01 JOINT DISTRIBUTIDr-1 BY STABILITY CLASS DATA PERIOD MARCH 5, 1979 THROUGH MARCH 4, 1980 STABILITY CLASS. PASGUILL F DATA D:'J-51 TE WIND SENSOR HEIGHT. 60.00 METERS TAOLE GENERATED 11/04/81 14 42. WIND WINO SPEED CATEGORIES <METERS PER SECTOR 0 0-1. 5 1. 5-3. 0 3. 0-5. 0 ::;. 0-7. 5 Nr,:E 0 0 10 19 0 co 0. 00 97 1. 84 0. OD 0. 00 . 14 26 Ne 3 3 17 8 29 29 1. 65 78 04 04 23 11 Et,:E 1 1 4 13 10 10 39 1. 26 01 01 05 18 2 1 7 33 19 10 69 3. 20 03 01 10 45 ESE 0 3 12 29 0 co 29 1. 16 2 81 0 co 04 16 39 SE 1 2 !a 55 10 19 1 75 5 33 01 03 25 75 SSE 0 2 12 53 0 00 19 1. 16 5. 14 0 03 03 16 72 0 7 28 99 0 00 68 2. 72 9. 60 0 00 10 38 1. 35 ssw 1 3 10 30 10 29 97 2 91 01 04 14 41 sw 2 7 11 13 19 68 1. 07 1 26 03 10 15 18 WSW 0 4 10 13 0 03 39 97 1 26 0 co OS 14 18 w 0 3 10 33 0 00 29 97 3 20 0 OJ 04 14 45 1 1 1 20 10 10 10 1 94 01 01 01 27 N;.s 0 1 7 23 0 OJ 10 68 2 23 0 00 01 10 31 NN:..J 1 1 7 17 10 10 68 1 65 01 01 10 23 N 0 2 7 17 0 03 19 68 1 65 0 00 03 10 2:3 CAl :1 1 10 01 TOTAL 13 41 171 475 1 26 3 98 16 59 46 07 18 56 2. 33 6 47 KEY XX< NUMBER OF OCCURRENCES XXX PERCE:Nf OCCVRRE"NCES THIS CLASS X X!.. PERC EN f OCCURRENCES ALL CU\SSES WOLF CREEK GENERATING BURLINGTON, KANSAS KAhiSAS GAS AND ELECTRIC DAMES AND I100RE JOB NO* 7699-064 SECOND) MEAN 7 5-10.0 >tO. 0 SPEED 7 0 6. 26 68 0. 00 3 49 10 0 00 49 1 0 :J2 4. 33 10 0. 00 3. :.o 01 0 00 44 7 1 6. 16 68 10 2 62 10 01 19 2 64 6. 44 1. 84 19 6. 1 26 03 B7 16 0 w 6 19 1. 55 0. 00 5 B2 22 0. 00 ll2 25 1 J.02 6. 25 2 42 . 10 9. fl9 34 01 1. 40 4 l.Jl 6. 87 3. 88 39 10. "/7 54 OS 1. 1 42 11 J.£!7 6. 56 4. 07 1. 07 18. 14 57 15 2 22 17 H3 7 56 2. 13 1. 65 B. OS 30 23 1 13 7 0 40 5 22 . 68 0. 00 3 [18 10 0 00 :14 11 0 :te 5. 89 1 07 0 00 3. h9 15 0. 00 10 1 57 6 09 97 10 5 14 01 /"8 19 0 42 7 06 1 84 0 00 4 (<7 26 0 00 57 28 1 f,Q 7 23 2 72 10 5. (J2 38 01 c;:: 17 1 44 6. 68 1 65 10 4 27 23 01 /.0 17 4 47 6 92 1 65 39 4 23 05 t4 1 CALM 10 01 288 43 1031 6 50 27 4 17 100 00 3 92 57 14 04 ( 60.00 METERS) Page 15 of 16 Rev. 0 WOLF CREEK TABLE 2.3-30 JOINT WIND FREQUENCY DISTRIBUTION DY STABILITY CLASS (ANNUAL) ,JOHn FREGLJt:rKY DISTRIBUTION GY STfiGILifY CLASS DATA PERIOD M/-RCH 5. 1919 1HROUGH f"'ARCH 4, 1980 STi\8ILITY CLASS* PASOUILL G Di\TA SLlURCE lE S!:.tJSOR HEIGHT .:oO 00 1"1E1EHS Tt.llLE GENERATED ll/04/81 14 42 ::?5. WOLF CREE'K GENFRATING STATION BURL l NGTUN. 1-\ANSAS GAS AND EU:CTH I C DA.i"lES AND MOORE .JUB NO. 7 699-064 Wl'\10 SE:::TOR i.J! tJO SPEED CA ff::.GOB IES PER SECOND) MEAN 00-l.S >100 fOl t>L SPEED NE ENE ES:': SE SSE s SSI..J W51,.J NW NiJI,.J N CAlM TOTAL 1 14 01 0 0 00 0 00 1 14 01 0 0 00 0. OJ 0 0 OJ 0 00 1 14 01 0 0 00 0 00 0 0 00 0 00 0 0. 0;) 0 00 1 14 01 1 14 01 1 14 01 0 0. 00 o. ca 0 0. 00 0 OD 0 0 00 0. 00 03 0 0 O*J 0 00 8 1. 09 11 0 41 04 3 41 04 1 14 01 0 0 00 0 00 2 27 03 2 27 03 3 41 04 2 27 03 1 14 01 6 82 08 3 41 . 04 6 82 08 3 41 04 0 0. 00 0 00 2 27 03 2 27 03 39 5 31 53 8 1 09 11 3 95 39 7 95 10 68 07 8 1 09 11 8 1. 09 11 17 2 32 23 9 1 23 12 17 2. 32 23 13 1 77 18 4 54 05 13 1 77 18 5 69 07 14 1 91 . 19 6 82 08 8 1. 09 11 171 23. 30 2. 33 KEY XXX NUf1!3ER OF OCCURRENCES 17 2 32 23 17 2 3:? 23 1:1 1. 77 18 17 2. 27 3. 68 37 44 5 99 60 31 4. 22 42 33 4. 50 45 27 3 68 37 3 41 04 7 95 10 12 1. 63 16 19 2 59 . 26 17 2. 32 23 15 2. 04 20 10 306 41. 69 4. 17 .Cx:< PERCENf OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES 7 95 10 27 03 10 1 36 14 17 32 23 18 .2 45 25 24 "3 27 33 17 2 32 23 29 :3 95 39 19 ;;? 59 26 6 82 08 5 68 07 4 54 . 05 9 1. 23 12 16 2. 18 . 95 . 10 10 t. 36 14 200 27 25 :2. 72 1 14 01 1 14 01 1 14 01 0 0. 00 0. 00 1 14 01 0 0. 00 0 00 3 41 04 1 14 01 1 14 . 01 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0 00 1 . 14 01 0 0 00 0 00 0 0 00 0 00 10 1 36 14 37 5 04 50 7 71 :J:J 4 50 45 39 31 53 56 7. 63 76 79 10 76 1 08 71 9 67 97 74 10 08 1 01 65 B. 86 88 29 3. 95 39 20 2. 72 27 36 4 90 49 36 4 90 49 48 6 54 . 65 30 4 09 41 29 I 3 95 39 0 0 00 0. 00 734 100.00 9. 99 4 85 6 36 6 93 6 74 6 57 6 50 6 97 6. 37 4 77 5 61 4 81 6 17 6 41 5 81 5. 57 CALM 6. 17 .JOHJT WIND FREGUErKY BY STABILITY CLASS DATA PERIOD MARCH 5, 1979 THROUGH MARC:--t 4, 1980 ALL CLASSES Dt.TA SOURCE* ON-SITE l.J I NU SENSOR HE I CHT 60 00 METERS T/.BLE GENERATED 11/04/81 14.42 WOLF CREEK GENERATING !:i1ATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAr"lES AND l'lOORE .JOB NO: 7699-064 WIND W!t>IO SPEED PER SECOND) SECTOR 0 0-1. 5 1. 5-3 0 3 0-5 0 0-7. 5 7. 5-10.0 :>10. 0 MEAN rJE ENE E E3E SE SSE s 55..1 w NW N CAL:-'1 Al 3 04 5 07 2 03 4 05 o§ 4 05 0 0 00 < 05 3 O< 4 05 0; 2 03 3 04 6 03 4 05 2 03 54 74 26 35 37 . 50 28 38 25 34 26 35 24 33 33 45 43 59 27 37 42 57 20 27 29 39 20 27 11 15 13 18 15 20 419 70 91 1. 24 134 1. 82 81 1 10 81 1 10 74 1 01 104 1. 42 101 1. 38 137 1. 87 102 1. 39 82 1 12 50 68 84 1 14 34 46 43 59 50 68 72 98 1320 17. 97 CF VALID IONS 7345 N'Jt*13EI-< OF I rNAL I D OilSE:HVA 1 I Of6 1439 TOTAL OF O!JSERVAT IONS 8784 KE*r XX.< NU:1BER OF OCCURRENCES XXX FEHCENT OCCURRENCES 139 1. 89 108 1. 47 123 1. 67 !51 2. 06 122 1. 66 205 2. 79 237 3. 23 473 6. 44 322 4 38 87 1. 18 56 76 107 1 46 77 1 05 84 1 14 154 2. 10 153 2. 08 2598 :l5 37 83 62 PC T 16. :::-18 PCT J 00. 00 PCT 91 1 24 31 42 57 78 90 1 23 82 1. 12 104 1. 42 173 :2.36 372 5. 06 230 .3 13 69 94 47 64 79 1 08 69 94 107 l. 46 128 l. 74 177 41 l906 25 95 47 64 8 11 13 18 14 19 16 22 40 54 84 1. 14 333 4. 53 132 1. so 33 45 19 26 25 34 22 30 51 69 101 1 38 110 1 :00 1048 14 27 TDT.OL SPEED :::197 5. 41 4 40 :::IC4 4. 14 :::165 4. 97 :::12"2 4. :JS 461 6. 55 628 8. 55 1::362 18. 54 816 11.11 317 4 32 194 2 64 328 4 47 224 3. 05 299 4 07 452 6 15 ::..:11 23 " 03 "1345 100 00 6. 69 5. 15 5. 88 6. 16 6 29 6. 46 7. 09 8 07 7. 49 6 31 6 19 6 24 6 84 7 74 7 82 7 86 CALM 7 06 ( 6 0
  • 0 0 METERS ) Page 16 of 16 Rev. 0 WOLF CREEK TABLE 2.3-31 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) JOirH : . .J[ND FREOL..t::NCY DISTRIBUTION 13Y STABILITY CLASS 01\TA Pt::RIOD All Jf.NUARY COMBINED STh3II_In* CLASS PASGVILL A Q,; Tl., 0:'\1 -SITE I />.)0 HEIGHT 10 00 METE=Rs r,;ou..: GENt-Rf.TED. 11/10/81. 1'5 02 03. WOLF CREEK GENERATING BURLINGTON. J.'.ANSAS CAS AND ELECTRIC DAMES AND MOORE JOB NO 7699-064 WIND I.JINO SPEED CATEGORIES(METERS PER SECONDl SECTOR 0 0-1. 5 1 5-3 0 3 0 5 0-7 5 7 5-10 0 >to_ 0 MEAN N< ESE SE SSE s SSt.J sw WSW WtJ:...I N CALM TOTAL 90 10 0 0 00 0 OQ 0 0 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 0:) 0 0 co 0 OD 0 0 00 0. 00 1 1 45 05 0 0 O*J 0. OJ 0 0. co 0 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0 00 2 2. 90 10 0 0. 00 0. 00 5 7. 25 25 I 1 45 05 I 1 05 0 0 00 0 00 0 0 00 0 00 4 5 80 20 2. 9§ 10 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 1 1. 45 05 1 1. 45 05 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 2 2. 90 10 0 0. 00 0 00 12 17. 39 60 1 1 45 05 I 1 45 05 0 0. 00 0. 00 1 1 45 05 I 1. 45 05 1 1 45 05 1 1 45 05 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 1 1. 45 05 2 2. 90 10 2 2. 90 10 11 15. 94 55 KEY XX:< NUMBER OF OCCURRENCES 3 4 35 15 2. 9§ 10 0 0. 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 3 4. 35 15 1 1. 45 05 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 3 4. 35 . 15 4 5. 80 20 2. 10 2. 96 . 10 20 i28. 99 1. 00 .<XX PERCENT OCCURRENCES THIS CLASS XX.( PERCENT OCCURRENCES ALL 0 0 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 6 8. 70 30 1 1 45 05 1 1. 45 . 05 1 1. 45 05 0 0. 00 0 00 0 0. 00 0. 00 3 4. 35 15 9 13. 04 45 0 0 00 0 00 21 30 43 1. 05 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. DO 0 0. 00 0. 00 TOTAL SPEED 7 10 14 ::rs 4 s no . 20 0 0. 00 0 00 1 1. 45 05 5 7 25 25 6 8. 70 30 2:96 10 6 8. 70 :10 2 2. 90 10 2. 10 2 2. 90 10 0 0 00 0 00 3 4. 35 . 15 8 11. 59 . 40 15 21. 74 75 6 8. 70 30 0 0. 00 0.00 69 100.00 3. 3. 46 4 17 0. 00 4 30 3. 02 4. 48 5. 05 8. 53 5. 35 5. 30 4. 90 0. 00 6. 87 7. 04 6. 96 3 68 CALM 5. 55 JO!Nr IJTNI) D1STR1BUTION BY STABILITY CLASS DATA PERIOD ALL JANUARY COMBINED STAB IL tTY CLASS* PASQUILL B snURCE: ON-SITE t.JJNn SEtJSOR HEIGHT 10.00 METERS T.t.I3LE GENC::RATED 11/10/81. 15. 02. 03. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC: DAMES AND MOORE JOB NO: 7699-064 WIND WINO SPEED CATEGORIES(METERS PER SECOND> SECTOR 0 0-1. 5 1 5-3. 0 3. 0-5 0 5 0-7 5 7. 5-10 0 :>10. 0 MEAN N:-..lt. NE EtE E ESE SE SSE 5 WSt.J w N CALM T01AL KE't' 0 0. 00 0. 00 0 Q_ 0:> 0 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0 00 0 0. 00 0. co 0 0 00 0. 00 0 0 OQ 0 00 1 98 05 0 0. 00 0 00 0 0. OJ 0. 00 0 0 00 0. co 0 0. 00 0. 00 0 0 00 0. 00 0 0. O:> o oa 0 0 00 0. 00 0 0 00 0 00 1 98 05 1 98 05 6 5 88 30 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 1 10 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 1 98 05 0 0. 00 0 00 0 0 00 0 00 1 98 05 0 0 00 0 00 2 1 96 10 4 3 92 20 17 16. 67 85 3 2. 94 15 15 14 71 7o 2 1. 96 . 10 1. 10 4 3. 92 . 20 1 10 0 0. 00 0. 00 1 98 05 1 98 05 0 0. 00 0. 00 0 0. 00 0. 00 1. 9% 10 3 2. 94 . 15 1 . 98 05 1 98 05 3 2. 94 15 40 39. 22 2 00 X X"< NUi"'BER OF OCCURRENCES 3 2. 94 15 4 3 92 20 2 1. 96 10 0 0. 00 0. 00 1 98 . 05 0 0. 00 0 00 0 0. 00 0. 00 1 98 05 2 1 96 . 10 1 . 98 05 1 . 98 oo . 1 98 oo , 4 90 . 25 1 98 05 9 8. 82 45 1 98 05 32 ::::t 37 1. 60 XXX PERCENT OCCURRENCES THIS CLASS XX:< PERCENT OCCURRENCES ALL CLASSES 1 98 05 0 0 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 1 98 05 0 0. 00 0. 00 0 0 00 0 00 1 98 05 0 0 00 0. 00 3 2 94 15 3 2. 94 15 2 1 96 . 10 11 10. 78 55 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 1 98 . 05 0 0. 00 0 00 0 0. 00 0. 00 0 0. DO 0 00 1 98 05 TOTAL SPEED 8 7. 84 40 25 24 51 1 25 4 3. 92 20 2 1. 96 10 5 4. 90 25 4 3. 92 20 0 0. 00 0. 00 1. . 10 5 4. 90 25 1. 10 1 . 98 05 4 3. 92 20 10 9 eo 50 5 4 90 25 15 14 71 75 10 9. 80 oo 0 0 00 0 00 10;2 100.00 5. 10 4. 87 3. 92 4. 77 3 95 4. 12 3. 45 0. 00 5 30 5. 32 3. 75 5. 30 5 22 5. 67 7 20 6 26 4 56 CALM 4. 92 Page l of 48 Rev. 0 JOINT WOLF CREEK '1'ABLE 2.3-31 (Continued) WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 J.llETERS) Page v'OWT L.JirHJ FREQUENCY DISTRIOUTION BY STABILITY DATA PERIOD ALL JANUARY COf1B !NED ST/.,3ILtTY CLASS PASQUILL c c..:.TA SOLJ:-<CE D.'.J-Sl TE I HEIGHT 10 00 MEfERS T..:.GLE GENERATED 11/10/81 15 02 03 WINO SPEED CATEGORIES(MSTERS PER SECTOR 0 0-1 5 1 5-3 0 3 0-5 t) 5 0-7 5 NF ENE E ESE SE SSE s SSW sw WSIJ w NW N CAlM TOTAL 0 0 " 3 0 00 0 00 5 84 2 19 0. 00 0 00 40 15 0 4 1 0 co 2. 92 1 73 0 00 20 10 05 0 0 0 0 co 0 00 0 00 0 00 00 0 00 0 00 0 00 0 0 4 0 0. CD 0 00 2. 92 0. 00 0 00 0 00 20 0. 00 0 1 1 0 0 00 73 . 73 0. 00 0. 00 05 05 0. 00 1 0 0 1 73 0 00 0 00 73 05 0 00 0. 00 . 05 0 1 1 2 0 00 73 . 73 1. 46 0 00 05 05 10 0 0 2 4 0. 00 0. 00 1. 46 2. 92 0 00 0 00 10 20 0 0 2 8 0 00 0. 00 1. 46 5. 84 0. 00 0 00 . 10 . 40 0 0 1 1. 0. 00 0 00 . 73 0. 00 0. 00 05 . 10 1 4 1 0 73 2. 92 73 0. 00 05 20 . 05 0. 00 0 3 5 0 0 00 2. 19 3. 65 0 00 0 co 15 25 0. 00 1 2 3 7 73 1. 46 2. 19 :J.11 . 05 10 . 15 35 0 0 1 7 0. 00 0 00 73 5. 11 0. 00 0. 00 05 35 0 0 6 7 0. co 0. 00 4. 38 5. 11 0 co 0 00 30 35 0 0 1. 12 0. 00 0 00 8. 76 0. 00 0. 00 . 10 60 0 0. 00 0. co 3 15 39 54 2. 19 10 95 28. 47 39. 42 15 75 1. 95 2. 70 KEY XX:< NUMBER OF OCCURRENCES XXX PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES CLASS WOLF CREEK GENERATING BURLINGTON, KANSAS STATION KANSAS GAS AND ELECTRIC DAMES AND* MOORE JOD NO 7699-064 SECOND) MEAN 7 5-10 0 ) 10 0 TOTAL SPEED 3 0 14 5 57 2 19 0 00 10 22 15 0. 00 70 0 0 7 3 37 0 00 0. 00 5 11 0. 00 0 00 35 0 0 0 0. 00 0 00 0 00 0 00 0 00 0. 00 0 00 0 0 4 4 12 0. 00 0. 00 2. 92 0 00 0. 00 20 0 0 2 3. 60 0. 00 0 00 1. 46 0. 00 0. 00 . 10 0 0 2 3. 95 0. 00 0 00 1. 46 0 . 00 0. 00 10 0 0 4 4. 25 0. 00 0. 00 2 92 0. 00 0. 00 . 20 3 0 9 6, 54 2. 19 0. 00 6. 57 15 0. 00 45 1 3 14 6. 99 . 73 2. 19 10. 22 05 . 15 70 0 0 3 5 80 0. 00 0. 00 2. 19 0. 00 0. 00 15 0 0 6 2. 33 0. 00 0. 00 4 38 0. 00 0 00 30 0 0 8 3. 26 0. 00 0 00 5. 84 0. 00 0. 00 40 1 0 14 5. 21 73 0. 00 10. 22 . 05 0 . 00 70 4 3 15 8. 05 2. 92 2. 19 10. 95 . 20 . 15 . 75 3 1 17 5. 92 2. 19 73 12. 41 . 15 . 05 85 4 0 18 6. 53 2. 92 0. 00 13. 14 20 0. 00 . 90 0 CALM 0.00 0. 00 19 7 137 5 67 13. 87 5 11 100 00 95 . 35 6. 85 JOINT WIND FREOL:ENCY DISTRIBUTION llY STABILITY CLASS DATA PER 100 ALL JANUARY COMB I NED STABILITY CLASS: PASGU!LL D OAT A SOURCE: 0:'11-S I TE iHNO SEHSOR HEIGHT: 10 00 METERS TABLE GEN!:::.RATED* 11/10/81 02. 03. WIND WINO SPEED CATEGORIES (METERS PER SECTOR 0 0-1. 5 1. 5-3. 0 3 0-5.0 5 0-7. 5 NNE 5 14 3:\ 29 63 1 76 3. 90 3. 65 25 . 70 1. s:> 1. 45 tJE 3 12 29 14 38 1. 51 3. 6:> 1. 76 15 60 1 . 70 EtJE 10 9 1 4 1. 26 1. 13 1 8'1 50 50 45 7:) 20 E 6 8 II> 8 75 1 01 2 O.l 1. 01 30 40 so 40 ESE 1 2 'I 2 13 25 1. 1 . 25 05 10 4:> . 10 SE 1 3 :; 4 13 38 63 50 05 . 15 . 2:; 20 SSE 1 2 1:' 10 13 25 2 14 1. 26 05 . 10 . 8:> 50 1 7 2:3 26 . 13 88 2 . 8'1 3. 27 05 35 1. t:; 1. 30 ssw 3 6 :; 13 38 75 6:3 1. 64 . 15 30 . 2:) 65 SW 3 11 " 5 . 38 1. 38 BB 63 15 55 3:) 25 3 10 1 4 38 1 26 1. 50 15 50 20 w 3 12 2:t 7 38 1 51 2. 64 88 15 60 1. 05 35 3 9 1:: 19 38 1 13 t.::m 2. 39 15 45 95 1\:W 0 3 1'1 25 0. 00 38 2 3'1 3. 14 0 co 15 1. 25 Ni\IW 2 5 1 18 25 63 1. Sl 2 26 10 25 6() . 90 N *1 16 3'1 38 50 2. 01 4. 2B 4 78 20 80 1. 7() 1. 90 CAt M 4 50 20 TOTAL 53 129 269 226 6 67 16. 23 33.8£1 28. 43 2. 65 6. 45 1:3 4'1 11. 29 KEY XXX NUMBER OF OCCURRENCES XXX PERCEt.Jf OCCURRENCES THIS CLASS XXX PERCENr OCCURRENCES 1\LL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND t100RE JOB NO* 7699-064 SECOND> MEAN 7. 5-10. 0 >tO. 0 TOTAL SPEED 10 0 89 4. 66 1. 26 0. 00 11 19 . 50 0. 00 4 45 9 0 67 4. 67 1. 13 0. 00 8 43 45 0. 00 3 35 0 0 38 3. 04 0. 00 0. 00 4 78 0 00 0. 00 1 90 0 0 38 3 60 0. 00 0 00 4. 78 0. 00 0. 00 1 90 0 0 14 4. 07 0 00 0 00 1 76 0. 00 0. 00 70 0 0 13 4. 18 0. 00 0 00 1 64 0. 00 0. 00 65 2 0 32 4 71 . 25 0. 00 4 03 . 10 0. 00 1 60 28 1 86 6. 22 3. 52 . 13 10 82 1. 40 . 05 4 30 9 3 39 5 88 l. 13 38 91 ., 15 95 2 0 28 3 64 25 0. 00 3 52 10 0. 00 1 40 0 0 32 3. 37 0. 00 0 00 4 03 0 00 0. 00 1 60 0 0 43 3 57 0 00 0 00 5 41 0 00 0. 00 2 15 10 0 52 5 34 1 26 0. 00 6 54 50 0. 00 2 60 12 2 61 5. 97 1. 51 . 25 7 67 60 10 3 05 9 3 49 5 79 1. 13 38 16 45 15 45 17 1 110 5. 24 2 14 13 1:3 84 85 05 5 50 4 CALM 50 20 108 10 195 4 87 13 58 1 26 100 00 5 40 50 39 73 2 of Rev . 48 0 JOINT WOLF CREEK TABLE 2.3-31 (Continued) WIND FREQUENCY BY STABILITY CLASS (MONTHLY 10 METERS) Page 3 of .JOINT IHND FREOVii>JCY DISTRIBUTION BY STABILITY DATA PER 100 ALL J/,!\IUARY COMBINED STMGILITY CLASS PASQUILL E OAf A I TE l..! I J I) SEt--130R HEIGHT 10 00 METER3 T ;..nLE GENt.RATEO. 11/10/81. 15 02 03 ...liND wr:.w SPEED CATEGORIES <METERS PER 3ECTOR 0 0-1. 5 I 0 3 0--5 0 5. 0*-7. 5 NE ErJE E ESE s S:...J .. I.JNI-.1 Ni\IW N CAl !'1 TOTAL 0 8 7 I 0. 00 I 66 I 45 21 0 0) 40 J5 05 .. !3 12 I 2 69 2 48 21 10 65 M 05 0 8 9 I 0 00 I 66 I 86 21 0 00 40 45 05 I 6 9 6 21 1. 24 1 86 I 24 05 30 45 30 I 6 6 3 21 I 24 I 62 05 30 . :Jo . 15 3 5 7 7 62 I 04 1. 45 1. 45 15 25 35 35 I 10 26 24 21 2. 07 5 38 4. 97 05 50 I. 30 I. 20 2 14 27 34 41 2. 90 5. 59 7. 04 10 70 I. 35 I. 70 0 6 9 14 0 00 1. 24 1. 86 2. 90 0. 00 . 30 . 45 . 70 3 7 4 3 62 1. 45 83 . 62 15 35 20 . IS I 6 3 2 21 1. 24 . 62 . 41 05 30 15 10 0 10 2 8 0 00 2 07 41 1. 66 0 00 50 . 10 40 0 14 IS 8 0. 03 2. 90 3 II 1. 66 0. 03 . 70 . 75 . 40 3 4 19 3 . 62 . 83 3. 93 62 . 15 20 95 . 15 0 14 7 6 0 03 90 1. 45 1. 24 0. 03 70 35 30 I 8 8 4 21 1. 66 1. 66 83 05 40 . 40 . 20 0 0. 00 0. 00 18 139 170 125 3 73 28.78 35.20 25. 88 90 6. 95 8. 50 6. 25 KEY XXX NUMBER OF OCCURRENCES XXX PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES CLASS WOLF CREEK GENE"RATING STATION IlURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO 7699-064 SECOND) MEAN 7. 5-10. 0 >10 0 TOTAL SPEED 0 0 16 3 19 0. 00 0 00 3 31 0. 00 0. 00 80 0 0 28 3. 12 0. 00 0. 00 5. 80 0 00 0 00 I. 40 0 0 18 3 34 0. 00 0. 00 3. 7:-1 0 00 0. 00 90 I 0 2:i 4 27 21 0. 00 4. 76 05 0. 00 I. 15 0 0 16 3. 46 0. 00 0 . 00 3. 31 0 . 00 0 . 00 80 0 0 22 3. 93 0. 00 0 00 4. 55 0 00 0. 00 I. 10 I 0 62 4. 67 21 0. 00 12. 84 . 05 0. 00 3. 10 8 5 90 5. 36 1. 66 1. 04 18 63 . 40 25 4. 50 9 4 42 6. 15 1. 86 83 8. 70 . 45 20 2. 10 0 0 17 3. 03 0 . 00 0. 00 3. 52 0 . 00 0. 00 . 85 0 0 12 3. 20 0. 00 0. 00 2 48 0. 00 0. 00 . 60 I 0 21 4. 15 . 21 0. 00 4. 35 OS 0. 00 I 05 0 0 37 3. 6:5 0. 00 0. 00 7. 66 0 . 00 0. 00 I 85 I 0 30 3. 78 . 21 0. 00 6. 21 OS 0. 00 I. so 0 0 27 3 64 0. 00 0. 00 5 59 0. 00 0. 00 1. 35 1 0 22 3 88 21 0. 00 4. 55 . 05 0 . 00 I. 10 0 CALM 0. 00 0 00 22 9 483 4. 30 4. 55 1. 86 100 00 I. 10 45 24 14 JOINT WirJD FREOU£NCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD ALL JANUARY COMBINED ST.'.!3ILITY CLASS: PASGUILL F OAT A SOUrtCE
  • 0:-.1-S I TE W lrJO SENSOR HEIGHT 10 00 METERS TABLE GENERATED 11/10/81. 15. 02. 03. WIND WINO SPEED CATEGORIESO"lETERS PER SECTOR 0 0-1. 5 1 5-3.0 3 0*-5. 0 5. 0-7 5 Nr-:e 0 3 ;;! 0 0. 00 I 11 ]4 0. 00 0. 00 15 10 0. 00 "E 2 7 3 0 74 2. 58 1.11 0. 00 10 35 15 0. 00 ENE 4 7 0 0 I 48 2 58 0. 00 0 00 . 20 35 0 00 0 00 E 0 6 5 7a 0 03 2. 21 I 85 0 DO 30 ;?5 10 ESE I 3 2 4 . 37 1.11 74 1. 48 05 15 10 20 SE 2 5 7 0 74 1. 85 2. 58 0 00 10 25 . 35 0 00 SSE I 9 18 I 37 3 32 6. 64 37 05 45 . 90 05 s 0 8 27 2 0 00 2. 95 9 96 74 0. 00 40 1. 35 . 10 ssw 0 9 18 5 0. 00 3 32 6. 64 1. 85 0. 00 45 90 25 SW 2 10 3 0 74 3 69 1.11 0. 00 10 . 50 IS 0. 00 2 4 4 0 74 1 48 I 48 0. 00 10 20 20 0. 00 2 9 7 3 74 3 32 2 58 I II 10 45 . 35 15 ! II 6 0 37 4 06 2. 21 0 00 05 55 30 0. 00 :\tW 0 17 7 0 0. 0) 6 27 2. 58 0. 00 0. 00 85 :15 0 00 J:.-1 2 4 5 0 74 1 48 1. 85 0. 00 10 20 25 0. 00 N I 5 0 37 1. 85 0 00 05 10 25 0 DO CAL:-1 I . 37 05 TOTAL 21 114 119 17 , 42 07 43 91 6 27 05 5 70 5 95 85 KEY ;(X.( NGMOER OF OCCURRENCES XXX PERCEN r OCCURRENCES THIS CLASS .<X:( PERC EN f OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STAT ION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7699-064 SECOND) MEAN 7 5-10.0 >10. 0 TCITAL SPEED 0 0 5 2. 86 0. 00 0. 00 1. 85 0 00 0. 00 25 0 0 12 2. 30 0. 00 0. 00 4 43 0. 00 0 00 60 0 0 II 1. 86 0 00 0. 00 4. 06 0 00 0 00 55 0 0 13 3. 46 0. 00 0. 00 4 80 0. 00 0. 00 65 0 0 10 3. 68 0. 00 0. 00 3. 69 0. 00 0. 00 50 0 0 14 2. 70 0 00 0. 00 5. 17 0. 00 0. 00 70 0 0 29 3. 39 0. 00 0. 00 10 70 0. 00 0. 00 I 45 0 0 37 3. 68 0. 00 0. 00 13. 65 0. 00 0 . 00 1. 85 0 0 32 3. 80 0. 00 0. 00 11. 81 0 00 0. 00 I. 60 0 0 15 2. 45 0. 00 0. 00 '5. 54 0. 00 0. 00 75 0 0 10 2. 66 0. 00 0. 00 3. 69 0 00 0. 00 50 0 0 21 3. 19 0. 00 0 00 7. 75 0 00 0 00 1. 05 0 0 18 2 64 0. 00 0. 00 6. 64 0 00 0 00 . 90 0 0 24 " 69 0. 00 0. 00 8. 86 0. 00 0. 00 1 20 0 0 11 2 74 0. DO 0. 00 4. 06 0. 00 0 00 55 0 0 8 3 41 0. 00 0 00 95 0 DO 0 00 40 ! CALM 37 05 0 0 271 3 09 0 00 0. 00 100 00 0 00 0. DO 13. 54 RE!V. 48 0 WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) JOII'JT l-IHW FREI)U:::tJCY DISTRIDUTION BY STAB'(LITY CLASS DATA PERIOD. ALL JANUARY COMBINED STABILITY PASOU ILL G DATA E. 0:-.1-S I TE SEkSOR HEIGHT 10 00 f"iETERS WOLF CREEK GENERATING STATION BURLINGTON, KANSAS TAGLE GEN;::RATED 11/10/81. 15 02.03 KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7699-064 WIND SECTOR WINO SPEED PER SECOND) 0 0-1 5 1 5-3 0 3. 0 5. 0-7. 5 7 5-10 0 :>10. 0 N:-.IE NE E ESE SE SSE s ssw SW WSW w NW NN:.I N CAL!'-1 TOTAL 1. 10 1 69 . 05 1 69 05 3 2 08 15 0 0. O'J 0. OJ 3 2. 03 15 1. 10 5 3 47 25 2 1. 39 10 0 0 OD 0. OJ 2 1. 39 10 1 69 05 3 2 03 15 1 69 05 0 0. 00 0 co 1 69 05 1 69 05 .2a 19 44 1 40 11 7 64 55 1 69 05 1 69 05 1 10 4 2. 78 20 10 6. 94 50 12 8 33 60 9 6 25 . 45 5 3 47 . 25 1 69 05 2 1. 39 10 1. 10 2 1. 39 10 4 2. 78 20 4 78 20 5 3 47 25 75 52 08 3 75 3 2. 08 15 4 2 78 20 0 0 0:> 0 00 4 2. 78 20 0 0. 00 0. 00 6 4. 17 30 8 5. 56 . 40 7 4 86 35 2 1. 39 10 1 . 69 05 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0 00 1 69 . 05 5 3. 47 25 0 0 00 0 00 41 28. 47 2. 05 I(EY ":(X"< NU:v!GER OF OCCURRENCES 0 () 00 0. 00 0 0. 00 0. 00 0 0 00 () 00 0 0. 00 0. 00 0 0. 00 () 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 (J 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 c 00 0 0 00 0 00 XX.< PERCEiH OCCURRENCES THIS CLASS XX.( PERCENT OCCURRENCES ALL CLASSES 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0 00 0 0. 00 0 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 JOINT FREOL...::::KY DISTRIBUTIOt-.1 BY STAE*ILITY CLASS DAI"A PERIOD ALL J:'-NUAR"Y COMBINED 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 o_ 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0 00 0 0. DO 0. 00 0 0 00 0 00 MEAN TOTAL SPEED 16 11 11 80 6 4. 17 30 2 1 39 10 9 6 25 45 4 2 78 -20 19 13. 19 95 22 15 28 1 10 21 14. 58 1. 05 9 6. 25 45 2 1. 39 10 4 2. 78 20 3 2 08 15 5 3. 47 25 6 4 17 30 9 6.25 45 6 4 17 JO 1 69 05 144 too oo 7. 20 2 54 3 22 1 55 2 37 2. 45 2. 51 74 2. 60 2 49 2. 55 1. 85 .2. 17 1. 36 .2 93 ;2 03 CALM ;:! 48 ALL CLASSES D.t.TM WOLF CREEK GENERATING STATION 1-'.ANSAS SHJSOR HE:ICHT 10 00 METEF1S KANSAS GAS t.ND El EC TR I C TrlULE 11/10/81 15 0:2 0:1 DAMES Ar.JD MOORE NO SPEED CATEGORIES<METEF!S PER SECONDl WIND SEC TOR 0 0-1 1 5-3 0 3 0-5 0 0-7 5 7 0 >10 0 NE ESE: SE SSE: s N CALM TOTAL 9 45 8 40 15 75 10 '0 3 15 10 50 5 25 8 40 7 " 8 40 9 45 6 30 8 40 4 20 4 20 9 45 6 3:> 129 6 45 38 1 90 44 2 20 25 1. 25 1 20 1. 00 27 1. 35 34 1. 70 38 1 90 26 1. 30 31 1. 55 27 1. 36 1 80 39 1. 95 28 1. 40 31 1 55 35 1 75 501 25 04 55 2 75 66 3. 30 26 1 30 41 2 05 23 1. 15 28 1 40 71 3 55 87 4. 35 37 1 80 16 80 23 1. 15 37 1. 85 38 1. 90 49 2. 45 38 1 90 54 2. 70 689 34. 43 NLJf1DER CJF VALID 2001 NUf18E:_R o;=-INVAl IO 231 TOTAL NJ:"iUER OF OGSERVAT IONS 2232 KE\' XX.< NU!'II3ER OF OCCURRENCES XX"( PERCENT OCCURRENCES 39 1 95 7 35 16 80 10 50 15 . 75 38 1. 90 67 3 35 42 2. 10 11 55 7 " 19 95 42 2 10 40 2. 00 42 2. 10 57 2. 85 474 :23.69 89. 65 PCT. 10 35 PCT .tOO. 00 PCT. 14 70 9 40 0 0 00 1 05 0 0 00 0 0. 00 3 15 45 2. 25 21 1. OS 3 15 1 05 1S 11 55 23 1. 15 24 1. 20 24 1. 20 181 9 05 0 0 00 0 0 00 0 0. 00 0 0. 00 0 0. 00 0 0 00 0 0 00 6 30 10 50 0 0 00 0 0 00 0 0 00 1 05 5 25 4 20 1 05 27 1. 35 MEAN TOTAL <;pEED 155 7 75 149 7 40 73 3 65 90 4 'SO 80 80 4 00 151 7. 12. 143 7 , 69 3 ., 67 3 3:5 too 5 00 1:19 6 95 149 7. 45 143 7. 15 lBO 9. 00 6 30 2001 100 00 4 27 3 93 2. 99 3 67 3 61 3 43 4 14 5 30 5. 36 3 35 3 12 3 61 4 44 5 16 5 16 4 93 CALM 4 40 Page 4 of 48 Rev. 0 JOINT WOLF CREEK TABLE 2.3-31 (Continued) WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) Page 5 of JOINT L.JI ND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD ALL COMA I NED ST1\0ILIT'r' CLASS PASGUILL A WOLF CREEK GENERATING STATION DATA SOURCE. C:--.l-51 TE BURLINGTON, KAf.JSAS t.J I HEIGHT 10. 00 METERS KANSAS GAS AND ELECTRIC ThULE GENt::.R.t.TED* 11/10/81 15 33 48 DAMES AND MOORE JOB NO* 7699-064 1.-l"IND SPEED CAlEGORIES<MEfERS PER SECOND) MEAN :lECTOR 0 0-1. 5 1. 5-3 0 3 0-5. 0 5. 0-7 5 NNE 0 1 2 1 0 DO 1 01 2 02 1 D1 0. 00 05 11 D5 1\IE 1 1 0 D 1. 01 1 D1 0. 00 D OD D5 05 D 00 0 DO ENE D 0 D 0 0 00 0 00 0. 00 0. OD 0 00 0 OD 0. 00 0. 00 0 D D 0 00 2. D 00 D DD 0. 00 11 0. 00 0. 00 ESE D D D D 0. 00 D OD 0. 00 0. 00 D 00 D 00 0. 00 0. 00 BE 1 1 D 2 1. 01 1. 01 0. OD 2. 02 D5 D5 D. OD .11 SSE D 1 2 2 D DO 1 01 2. D2 2. D2 D. DO D5 .11 . 11 D 1 2 D 0 DO 1. 01 2. 02 0 DO 0. 00 05 .11 0. DD ssw 1 1 D 1 1. 01 1. 01 0. 00 1. 01 05 D5 0. 00 05 sw 3 D D D 3. 03 D. DD 0. 00 0. DD 16 D. OD 0. 00 0. DD 1 3 0 D 1. 01 3. 03 0. 00 0. 00 D5 . 16 0. 00 0. 00 " D 1 2 3 0. co 1. 01 2. 02 3. 03 0. 00 D5 11 16 W>IW D D D D 0. 00 D DD D. OD 0. 00 0. 00 0. DD 0. OD 0. 00 "" D D 2 4 0. 00 D. DD 2. 02 4. 04 0. 00 D. DD 11 22 NN:..I D 0 D 5 0. 00 0 DD D. OD 5. 05 0. 00 D DO 0. DD . 27 N D D 2 9 0. 00 D. DD 2. 02 9. 09 0 00 D. DD 11 . 49 CALM 0 D 00 0. 00 TOTAL 7 12 12 27 7 D7 12. 12 12. 12 27.27 33 . 65 65 I. 46 KEV XX"( OF OCCURRENCES XX}( PERCENT OCCURRENCES THIS CLASS xx:< PERCENT OCCURRENCES ALL GLASSES JOINT !-liND FREQUENCY DISTRIBUTION BY STABILITY DATA PERIOD: ALL FEBRUARY COMBINED STAB IL!TY CLASS: PASQUILL B DATA SOURCE. 0:-..1-SITE wrt..ro SENSOR HEIGHT* 10 00 METEHS TAGLE GENERATED: 11/10/81. 15.3:3. 48. WIND WINO SPEED CATEGORIES CMETERS PER SECTOR 0. 0-1. 5 1 5-3 D 3. 0-5. 0 5. 0-7. 5 NNE UE ENt:. E ESE SE SSE s sst..r WSW " WNW tJNW N CAt :1 TOTAL D 2 4 D 0. 00 2 13 4. 26 0. 00 0. 00 11 22 0. 00 D D 2 D 0 0-J D. DO 2. 13 0. 00 D DO 0. DD 11 0. 00 D D 0 D D. 00 D DD D. DO 0. 00 0 DO D 00 D. DO 0. 00 1 D 0 D 1. Ob D OD 0. 00 0. 00 05 D. OD 0. 00 0. 00 D 2 1 1 0. 00 2 13 1. 06 1. 06 0. OJ 11 . D5 05 0 D 0 D D 00 D. DD 0. DD 0. 00 0. 00 D. DD D. DD 0. 00 0 D 1 1 0 DO 0 DD 1. 06 1. 06 0. 00 D OD D5 D5 D D 1 D D 00 0 DD 1. 06 0. 00 D DD 0 DO . 05 0. 00 D 1 6 4 0. DO 1. 06 6. 3!3 4. 26 0. 00 05 32 22 D 0 3 I 0. 00 D. DD 3. 1. 06 D DO D. OD 16 . 05 D 1 :2 1 D. DO 1 06 2 13 1. 06 D 00 D5 11 D5 1 D :2 2 1. Ob D. DD 2 1:3 2. 13 D5 D. DD 11 11 0 1 1 3 0. 00 1 D6 1 06 3. 19 D DO D5 o:5 16 D 1 () 6 0 DO 1 D6 D 00 6. 38 D DO DS 0 00 32 D D () 6 D DD D DD D 00 6. 38 D DO 0 DD D DO 32 D 0 :l 5 0. 00 D OD 3 1'1 5. 32 0. 00 D DD 16 27 0 D DO D 00 2 8 2b 3D 2 13 8. 27 66 31. '11 11 43 1 40 1 62 KEY XX"< NUMOER OF OCCURRENCES XXX PERCENf OCCURRENCES THIS CLASS XXX PERCENf OCCURRENCES ALL CLASSES 7 5-10 0 >10 0 lOTAL SPEED 3 0 7 6. 07 3. 03 0. 00 7. 07 16 0. 00 38 5 0 7 6 46 :}_ 05 0. 00 7. 07 27 0. 00 38 0 D D 0. 00 0 OD 0. 00 0. OD 0. OD 0. 00 0 DD D D 2 2. 65 D DD 0. 00 2. D2 D DD 0. 00 11 D D D 0. 00 D. DD 0. 00 0. DD D DD o. 00 0. DD D 2 6 6 D2 D. OD 2. 02 6. 06 0 DD 11 32 D 2 7 6 81 D. DD 2 02 7. 07 D . DO .11 38 3 3 9 7. 89 3. 03 3. 03 9 D9 16 . 16 . 49 D D 3 3. 53 0. 00 0. DD 3. 03 0. 00 o. DO 16 2 1 6 5 15 2. 02 1. 01 6.06 11 . 05 . 32 D D 4 1. 95 D. OD o. 00 4 D4 D DD 0. 00 . 22 0 0 6 4. 68 D. OD 0. 00 6. 06 D DD 0. 00 32 1 D 1 7. 80 1. 01 o. 00 1. 01 . 05 0. 00 . 05 2 D 8 6. 11 2. 02 0. 00 8. 08 11 0. 00 . 43 11 2 18 B. 66 11 11 2. 02 18 18 . 59 .11 . 97 1 3 15 7. 03 1. 01 3. 03 15 . D5 . 16 81 D CALM 0. DD D. OD 28 13 99 6. 50 28.28 13. 13 100. oo I. 51 . 70 5. 35 CLASS WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO* 7699-064 SECOND> MEAN 7. 5-10. 0 >10. 0 TOTAL SPEED 3 2 11 6. 15 3 19 2. 13 11 70 . 16 11 . 59 1 D 3 5. 00 1. 06 D. DD 3 19 . 05 D . DD . 16 D D D 0. 00 D. DD D. DD D. DD D. OD D. OD D. DD D D 1 1. 40 D DD 0. 00 1. 06 D OD 0. 00 . DO 1 0 5 4. 38 I 06 D. DD 5 32 . 05 D . DD . 27 D D D 0. 00 D. 00 D. 00 0. OD D. DD 0. DD D. 00 D D 2 6. 20 D. DO 0. 00 2 13 D. DD 0. 00 .11 1 D 2 5. 80 1. 06 0. 00 2. 13 . D5 0. 00 .11 4 0 15 6. 04 4. 26 0. 00 15. 96 22 0. 00 81 2 1 7 6. 60 2. 13 1. 06 7 45 11 . 05 38 1 0 5 4. 86 1. 06 0. 00 S. 32 D5 0. 00 27 D D 5 4 D8 D. DD 0. 00 5. 32 D. DD 0. 00 27 D D 5 5. 78 D. 00 0. 00 !5.32 D. DO 0. 00 27 3 D 10 6. 73 3. 19 D. DO 10. 64 16 0. DD 54 5 1 12 7. 47 5 32 1 D6 12. 77 27 05 65 1 2 11 6. 95 I D6 2. 13 11 70 05 11 59 D CALM 0. DO 0 DO 22 6 94 6. 10 23 4D 6. 3!3 100 00 1 19 32 5 0() Rev. 48 0 WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) JOINT i.JIF-JD FREQUENCY DISTRIBUTION llY STABILITY DATA PERIOD. ALL FEBRUARY COMBINED STAI3ILITY CLAES PASQUILL c o;..rA SOURCE 0:'\1-Sl TE \-JINO SEt-JSOR HEIGHT 10. 00 METERS TAGLE GENERATED 11/10/81. 15 :!3. 48. WIND WINO SPEED CATEGORIES O'"lETERS PER SECTOR 0 0-1. 5 1. 5-3. 0 3 0-5 0 5. 0-7. 5 0 1 l 0 0 00 85 85 0 00 0 00 05 05 0 00 NF 0 3 2 0 0 00 2 54 1 69 0 00 0 00 16 11 0 00 0 0 3 3 0 00 0 00 2 54 2. 54 0. 00 0. 00 16 16 0 1 0 0 0. 00 85 0 00 0 00 0 co 05 0 00 0. 00 ESE 0 0 0 0 0. 00 0 00 0 00 0. 00 0. co 0 00 0. 00 0 00 SE 0 0 3 I 0 00 0 00 2 54 85 0. 00 0. 00 16 05 SSE 0 0 I 1. 0. 00 0 00 85 0 00 0. 00 05 11 s 0 I 3 3 0 00 . 85 2. 54 2. 54 0 00 05 16 . 16 SSW 0 2 6 4 0 00 I 69 5. 08 3. 39 0. 00 11 32 . 22 sw 0 0 1 0 0 00 0. 00 . 85 0 00 0. 00 0. 00 05 0. 00 WSW 0 0 4 2 0 00 0. 00 3. 39 1. 69 0. 00 0. 00 . 22 .11 w I 1 5 0 85 85 4. 24 0 00 05 05 27 0. 00 1-:h.W 0 0 1 3 0. 00 0. 00 85 2. 54 0. 00 0. 00 . 05 . 16 N"l 0 0 3 7 0. 00 0 00 2. 54 5. 93 0. 00 0. 00 . 16 38 Nt,W 0 0 2 7 0. 00 0 00 1. 69 :5.93 0 00 0 00 11 38 N 0 2 5 7 0 00 1 69 4. 24 5. 93 0. co II 27 . 38 CALM 0 0. 00 0. 00 TOTAL 1 11 40 39 85 9. 32 33.90 33. 05 05 59 2. 16 2. 11 KEY XX.( NUMBER OF OCCURRENCES XXX PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALl. CLASSES CLASS WOLF CREEK GENERATING I3URLINGTON. KANSAS STATION KANSAS GAS AND ELECTR JC DAI1ES AND MOORE ,JOI3 NO 7699-064 SECOND> MEAN 7. 5-10 0 >10. 0 TOTAL SPEED 2 0 4 , 88 1. 69 0. 00 3.::19 11 0. 00 1 0 6 3 78 85 0. 00 5. 08 05 0. 00 :32 0 0 6 5. 52 0 00 0. 00 5. 08 0 00 0. 00 :12 0 0 1 2. 80 0 00 0. 00 B5 0 00 0 00 . OS 0 0 0 0. 00 0. 00 0. 00 0 00 0. 00 0. 00 0 00 0 0 4 4. 50 0. 00 0. 00 3.:19 0 00 0. 00 2 0 5 6. 24 1. 69 0. 00 4. 11 0. 00 . 1 1 9 6. 17 85 . 85 7.63 05 . 05 49 6 0 !8 5. 76 5. 08 0. 00 15. 32 0. 00 97 0 1 2 b. 9:5 0. 00 85 1. 69 0. 00 . 05 11 0 0 6 4. 55 0. 00 0. 00 5. 08 0. 00 0. 00 32 0 0 7 3. 59 0. 00 0. 00 5 93 0. 00 0. 00 :38 1 0 5 6. 36 . 85 0 . 00 4. ;z4 . 05 0 . 00 4 1 15 6. 79 3. 39 . 85 12. 71 . 22 . 05 Bl 1 I 11 6. 30 85 . 85 9.:32 05 . 05 :59 4 I .19 6. 14 3. 39 . 85 16. .tO 22 . 05 I . 03 0 CALM 0 00 0 00 22 5 t.ta 5. 73 18. 64 4. 24 100 00 I. 19 27 6. :37 JOINT WHJD DISTRIBUTION BY ST1\BILlTY CLASS D1HA PERIOD: ALL FEBRUARY COMBINED STAOILITY CLASS: PASGUILL D DATA SOURCE. m-1-SITE Wirm SENSOR HEIGHT 10. 00 METERS TABLE GENERATED: 11/10/81. 15. 33. 48. WH>ID WitJO SPEED CATEGORIES CME TERS PER SECTOR 0 0-1. 5 I. 5-3.0 3. 0-5 0 :5 0-7 5 NNE: 2 16 34 18 24 1 92 09 2. 16 .11 86 84 97 NE 2 13 25 10 24 1 56 3. co 1. 20 11 70 1 35 54 ENE 1 7 17 18 12 84 2. 04 2. 16 05 38 92 97 E I 5 23 10 12 60 2. 76 1. 20 05 27 I. 24 . 54 ESE 1 9 18 9 . 12 1. 08 2. 16 1. 08 05 49 . 97 . 49 SE 1 10 10 1 12 1. 20 1. 20 12 05 54 54 05 0 6 13 12 0. 00 72 1. 56 1. 44 0 00 32 . 70 65 s 0 I 19 18 0 00 12 2. 28 2. 16 0. 00 05 1. 03 97 SSW 2 4 6 113 24 48 72 2. 16 11 22 . 32 97 Sll 2 2 6 4 . 24 24 72 48 11 11 . 32 . 2:;! WSW 2 3 4 I 24 36 48 . 12 11 16 . 22 05 w 6 5 18 4 72 60 2 16 . 48 32 27 97 . 22 0 9 9 14 0. 00 1. 08 1. 08 1. 68 0. 00 49 49 76 2 14 15 17 24 I 68 1. 80 2 04 11 76 . 81 92 NNW 2 21 27 37 24 f 52 3 25 4 45 11 13 1 46 2 00 N 11 36 33 1 32 4 33 3. 97 11 59 I. 94 1. 78 CtllM 0 0 co 0. 00 TOTAL 26 136 280 224 3. 12 16.35 33. 65 26 92 1. 40 7 34 15 12 12. 10 KEY XX"( NUMBER OF OCCURRENCES XXX PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE J013 NO: 7 699-064 SECOND) MEAN 7. 5-10. 0 >10. 0 TOTAL SPEED 3 I 74 4 24 36 . 12 8. 89 16 . 05 4. 00 4 2 56 4. 58 48 24 6. 73 22 11 3. 02 5 0 48 4 93 . 60 0. 00 5. 77 27 0. 00 2. 59 I 0 40 4 25 12 0. 00 4. 81 05 0 . 00 2. 16 2 0 39 4. 29 . 24 0 . 00 4 . 69 . II 0 . 00 2. 11 0 0 22 3. 32 0. 00 0. 00 2. 64 0. 00 0. 00 1. 19 3 1 35 4. 94 36 12 4 21 16 05 1 . 89 9 6 53 6. 42 1. 08 72 6. 37 49 32 2. 86 6 I 37 5. 70 72 12 4 45 32 . 05 2. 00 2 0 16 4. 75 24 0. 00 1 92 .11 0. 00 86 3 I 14 4. 93 36 12 1. 68 . 16 05 76 3 0 36 4 04 36 0 00 4. 33 16 0 00 1 94 2 7 41 5 88 24 84 4. 93 11 . 38 2 21 22 11 81 6. 57 2. 64 1. 32 9 74 1. 19 59 4 37 32 17 136 6. 34 3. 85 2. 04 16 35 1. 73 92 7 34 18 4 104 5 57 2 16 48 12 50 97 . 22 5 62 0 CALM 0. 00 0 00 115 51 B32 5. 34 13 82 6 13 100 00 6. 21 2. 75 44 92 Page 6 Rev. of 48 0 WOLf!' CRgEK TABLE 2. 3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) Page 7 of 48 WIND FHEGUC:NCY DISTRII3UTION BY STAI3ILITY CLASS C.ATA PERIOD ALL FEllRUARY COMBINED STABILITY CLASS PASGUILL E WOLF CREEK GENERATING STATION DATA SOURCE TE BURLINGTON, ).(.ANSAS \-Jir-!1) SEf\:SOR HEIGHT. 10 00 METERS KANSAS GAS AND ELEC fR I C r,.;oLE GENt:-RATED 11 I 10/81. 1:5.33. 48. DAMES AND MOOHE JOB NIJ ?699-064 hiND t-HNO SPEED CATEGORIES<METERS FER SECOND> MEAN SECTOR 0 0-1. 5 1 5-3 0 3 0-5 0 5 0-7 5 7 :::i-10 0 >10. 0 TOTAL SPEED 'NE 2 4 8 1 0 0 15 3 .. 17 60 1 20 2 40 ::m 0 00 0. 00 4 49 11 22 . 43 05 0. 00 0. 00 81 NE 0 1 1 0 0 0 2. 70 0 00 30 . 30 0 . 00 0 00 0. DO 0 00 05 05 0. 00 0 00 0 00 11 E!'.:E 2 8 1 2 0 0 13 2 88 60 2 40 :30 60 0. 00 0. 00 3. 89 11 43 05 11 0. 00 0 .. 00 . 70 E 1 6 13 0 0 0 20 3 58 30 1 80 3. 8'7 0 co 0. 00 0. 00 5. 99 05 32 70 0 co 0. 00 0 00 1. 08 ESE 0 5 5 2 1 0 13 4 07 0 .. 00 1 50 1. 50 60 30 0. 00 3. 89 0 00 27 .11 05 0. 00 70 SE 2 9 3 5 0 0 19 3. 51 60 2. 69 170 1. :so 0. 00 0. 00 5. 69 11 49 16 .. 27 0 . 00 0. 00 1. 03 SSE 2 0 21 21 3 0 47 5. 07 60 0 00 6. 29 6 .. 29 . 90 0 00 14 07 11 0 00 !. 13 1. 13 . 16 0. 00 2. 54 s 0 8 20 19 4 1 52 4 97 0. 00 2. 40 5. 99 5. 69 1. 20 30 15 57 0. 00 43 1. 08 1. 03 . 22 05 2. 81 2 1 8 4 0 0 15 4 17 60 30 2. 40 1. 20 0. 00 0. 00 4.49 11 05 43 22 0. 00 0. 00 81 sw 1 1 4 3 0 0 9 4 20 30 30 1 20 . 90 0. 00 0. 00 2. 69 05 . 05 22 . 16 0. 00 0. 00 49 0 3 6 2 0 0 11 3. 93 0. 00 . 90 1. BO . 60 0. 00 0. 00 3 29 0. 00 16 32 .11 0. 00 0. 00 59 w 1 7 ., 4 0 0 19 3. 54 30 2. 10 2. JO 1. 20 0. 00 0. 00 5. 69 05 38 . 38 22 0. 00 0. 00 1. 03 1-.:NW 4 4 9 1 0 0 18 2. 95 1 20 1 20 2. 69 . 30 0. 00 0 . 00 5. 39 22 22 . 49 . 05 0. 00 0. 00 97 NW 0 9 10 7 1 1 28 4. 17 0. 00 2. 69 2. 99 2. 10 . 30 . 30 B . 38 0. 00 49 . 54 . 38 . 05 . 05 1. 51 NNW 2 6 7 2 1 0 18 3 49 60 1. 80 2. 10 60 . 30 0. 00 5. 39 11 32 38 .11 . 05 0. 00 . 97 N 2 10 12 10 1 0 35 4. 06 60 2 99 3. 59 2. 99 30 0. 00 10. 49 11 54 65 . 54 05 0. 00 1. 99 CAL:-1 0 0 CALM 0. 00 0. 00 0. 00 0. 00 TOTAL 21 92 135 93 11 2 :l34 4. 08 6. 29 24. 55 40.42 24. 85 3. 29 . 60 100 00 1. 13 4 43 7. 29 4. 48 59 .11 18.03 KEY XXX NUMBER OF OCCURRENCES XXX PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES JOINT wnm FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD: ALL FEBRUARY COMBINED STABILITY PASOUILL F WOLF CREEf.l; GENERATING STATION DATA SOURCE ON-SITE BURLINGTON. KANSAS tHrm SEtJSOR HEIGHT 10. 00 ME"TERS KANSAS GAS AND ELECTR t C TI.BLE GENERATED: 11/10/81. 1:5.33. 48 DAMES AND MOORE JOB ND 7699-064 I..IIND WINO SPEED CATEGORIES<METERS PER SECOND) MEAN SECTOR 0 0-1. 5 !. 5-3 0 3 0-5 0 5 0-7. 5 7. 5-10 0 >10. 0 TOTAL SPEED l'iNE 0 6 1 0 0 0 7 2. 70 0. 00 2 52 42 0 00 0. 00 0. 00 2. 94 0. 00 32 05 0. 00 0. 00 0. 00 39 NE 0 5 5 0 0 0 10 3 16 0. 00 2 10 2. 10 0 DO 0. 00 0. 00 4. 20 0 00 27 . 27 0. 00 0. 00 0. 00 54 ErJE 0 5 3 0 0 0 B 2 61 0. 00 2 10 1. 26 0. 00 0 00 0. 00 3.36 0. 00 27 . 16 0. 00 0. 00 0. DO . 43 E 1 6 4 1 0 0 12 3. 06 42 2. 52 1. 68 42 0. 00 0. 00 5. 04 05 32 . 22 . 05 0. 00 0. 00 65 ESE 0 3 4 0 0 0 7 3. 14 0 00 1. 26 1. 68 0 00 0. 00 0. 00 2. 94 0 00 16 . 22 0. 00 0 . 00 0. 00 38 3 0 10 0 0 15 3. 72 1 26 0 00 4. 20 0. 00 0. 00 6 30 16 0 00 . 54 11 0. 00 0. 00 81 SSE 1 7 11 7 0 0 26 3 93 42 2 94 4 62 2. '14 0. 00 0. 00 10. 92 05 38 . 59 ::m 0. 00 0. 00 1 40 s 2 6 25 5 0 0 38 3. 57 . 84 2. 52 10. 50 2 10 0. 00 0 00 15. 97 .ll 32 1. 35 0. 00 0. 00 . 05 ssw 2 6 13 0 0 0 21 3. 20 8' 2. 52 5 46 0. 00 0. DO 0. 00 8. 82 11 32 . 70 0. 00 0. 00 0. 00 1 13 S:.J 0 7 4 1 0 0 12 3 19 0. 00 2. 94 1. 68 . 42 0 . 00 0. 00 5. 04 0. 00 38 22 . 05 0. 00 0. 00 65 1 9 6 0 0 0 15 2 75 42 3. 36 2 52 0. 00 0. 00 0. 00 6 30 05 43 32 0 00 0 00 0 00 81 " 2 12 4 0 0 0 18 2 63 84 5. 04 1. 68 0. 00 0 00 0. 00 56 11 65 22 0. 00 0. 00 0. 00 97 ;..;;-.,l,.j 0 6 7 0 0 0 13 3 03 0. 00 2. 52 2 94 0. 00 0 00 0 00 5 46 0 00 32 38 0. 00 0. 00 0. 00 70 1 10 2 0 0 0 13 2 28 42 4 20 84 0. 00 0 00 0. 00 5 46 05 54 ll 0. 00 0. 00 0 00 70 3 2 5 0 0 0 10 2 78 1 26 84 2 10 0 00 0 00 0 00 4 20 16 11 27 0. 00 0. 00 0 00 54 " 1 5 5 1 0 0 12 2 93 42 2. 10 2. 10 42 0. 00 0. 00 5 04 05 27 27 05 0. 00 0 00 65 CALM 1 1 CALM 42 42 05 05 TOTA!_ 18 94 109 17 0 0 ;:::Js J 15 7 56 39 50 45.80 7. 14 0. 00 0 00 100 00 97 5 08 5. 89 92 0 00 0 00 12.85 KE'r' .<X.< NUMBER OF OCCURRENCES Rev. 0 I.. X.< PE"RCEN r OCCURRENCES THIS CLASS: XX.( PERCENf OCCURRENCES ALL CLASSES WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY -10 1'1ETERS) Page 8 of 48 JOINT FREQUENCY DISTRIBUTION BY STAI3ILITY CLASS DAf,'l, FERIOD ALL FEBRUARY COMBINED ST,<;OIL ITY CLASS PASGUILL G o,.;r,.; 0:'.1-SITE l.J I ;J[) SEN30R HEIGHT 10 00 METERS TABLE Gl::Nt:.RATED 11/10/81 15 33. 48 t.JOLF CREEK GENERATING STATION OURLI NGTON, KANSAS IA.ANSAS GAS AND ELECTRIC DAMES AND MOORE JOD NO* 769'1-064 WIND SECTOR :..JINO SPEED PER SECOND) 00-1.515--30 30-5.0 50-75 75-100 >100 MEAN £tJE ESE SE SSE ssw SW i..JSW NNW N CAL:"'! TOT.O,L 1 73 05 0 0 00 0 OJ 0 0 co 0 00 0 0 00 0 00 0 0 00 0. 00 1. 11 I 73 05 4 2 92 22 6 4 38 . 32 3 2. 19 16 2 1. 46 11 4 2. 92 22 5 3. 65 27 4 2. 92 22 0 0. 00 0. 00 0 0. 00 0. OJ 0 0. co 0 00 32 23 36 I 73 0 0 00 0. 00 1 73 05 1 73 05 0 0 00 0. 00 0 0 00 0 00 5 3 65 27 0 0. 00 0 00 1. II 5 3 65 27 4 2 92 . 4. 38 32 14 10.22 76 10 7 30 54 6 4. 38 . 32 6 4. 38 32 0 0. 00 0. 00 60 43 80 3 24 0 0 00 0 00 1 73 05 1 73 05 7 5 11 38 1 73 05 5 3 65 27 7 5. 11 38 3 2. 19 16 5 3. 65 . 27 I 73 . 05 0 0. 00 0. 00 2 1. 46 11 0 0. 00 0. 00 I . 73 . 05 2 1. 46 11 1 73 05 37 27. 01 2. 00 KEY XX"( NUMBER OF OCCURRENCES 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 0 () 00 0 00 0 0 00 0 00 1 73 05 4 92 22 l. II I 73 05 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 () 00 0. 00 0 () 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 8 84 . 43 XXX PERCENr OCCURRENCES THIS CL.eoSS XXX PERCENT OCCURRENCES ALL CLAEiSES 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 TOTAL l 7:1 . 1. ll ;! 1 4h 1L 1 5 11 3!J 1 . 7:1 05 13 9. 49 70 I;;! B. 76 65 11 B. 0::1 59 17 12. 41 . " :5.84 4:J 8 5 84 43 20 14. 60 1. 08 15 10. 9!'.1 . Bl 11 8. 03 . 59 8 5. 84 43 I 73 05 0 0 00 0. 00 137 100.00 7. 40 60 3 25 3 05 3. 66 3 30 2 99 4 12 2 88 2 43 I 89 2 06 2 19 1. 73 2. 19 2. 46 4 70 CALM 2 58 JOINT 1-IIND FREQliEtJCY DISTRIBUTION BY STABILITY CLASS PERIOD: ALL FEBRUARY COMBINED ALL CLASSES DATA SOURCE SEt..tSOR HEIGHT* 10. 00 METERS TABLE GENERATED: 11/10/81. 15.33 48 WOLF CREEK GENERATING STATHJN BURLINGTON, V.ANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO 7699-064 WIND SECTOR WIND SPEED CATEGORIES(METER"S PER SECOND) MEAN 0 0-1 5 1. 5*-3_ 0 3 0-5. 0 5. 0-7. 5 7. 5-10. 0 >10. 0 NNE NE EN;;: E ESE SE SSE s sw WSW WNW N CAL:01 TOTJ1L 5 27 3 16 3 16 4 22 1 05 9 49 4 22 6 32 13 70 9 49 6 32 15 81 9 49 7 38 7 39 5 27 I 05 107 5 78 30 1. 62 24 1. 30 21 1. 13 20 1. 08 19 1 03 25 1. 35 14 . 76 19 1. 03 20 I 08 14 76 24 I 30 40 2 16 30 1. 62 40 2. 16 35 I 89 28 I 51 21 76 VALID OI3SERW*TIONS !JUI1rJER 0::'" INVALID OOSERVATIONS r.U:13ER Oi= OOS!:::RVf\T IONS 50 2. 70 36 1. 94 25 1 35 47 2 54 29 1. 57 31 1. 67 56 3. 02 73 3. 94 44 2. 38 19 1. 03 22 1. 19 40 2 16 27 1. 46 33 1. 78 43 2. 32 64 3 46 639 34 50 1852 188 2040 KEY XX:< NL:i"iOER OF OCCURRENCES 0 < PERCENT OCCURRENCES 20 1. 08 10 54 23 1. 24 II . 59 12 . 65 12 65 49 ;2. 65 47 02. 54 32 l. 73 9 . 49 6 32 13 70 21 :l 13 41 21 57 :3. 08 65 51 428 2:1 11 90 78 PCT 9 22 PCT 100. 00 PCT 11 59 11 59 5 27 I 05 4 22 0 0 00 8 43 18 97 16 . 86 6 32 4 22 3 16 4 22 32 I 73 50 2. 70 25 1 35 198 10 69 3 . 16 2 11 0 0. 00 0 0. 00 0 0. 00 3 16 II . 59 1 05 3 16 1 05 0 0. 00 7 38 13 70 21 1. 13 10 54 77 4 16 TOT AI. SPEED 119 6 43 86 4. 64 77 4 16 83 4. 48 65 3. 51 79 4.2.7 134 7. 24 174 9 40 126 6. 80 60 3. 24 63 3. 40 Ill 5. 99 98 5. 2.9 166 B. 96 21:) 11. 50 19"1 10 64 l 100 00 4 32 4 45 4. 34 3. 78 4. 12 3. 65 4 88 5 19 4 66 4. 30 3. 64 3 40 4 37 5 55 6 05 5 38 CALM 4 76 Rev. 0 WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) Page 9 of 48 .JOINT FREOUC::NCY DISTRIBUTION BY ST,I\BILITY CLASS D,'\TA PERIOD ALL COMBINED ST.l.BILIT'r' CLASS* PASGUILL A OM f f... I TE r,;o HEIGHT 1 0 00 METERS Tt.GLt: GErJERATED 11/10/81 47.44 WOLF CREEX. GENERATING !HATtON BURLINGTON, KANSAS KANSAS GAS AND El_ECTRIC DAMES AND MOORE JOB NO 7699-064 WIND SECTOR WH./0 s::.EED CATEGOHIFSCI"1ETERS PER SECDNDl MEAN 0 0-1.5 1 5-3 0 3 o-::o 0 5 0-7.5 7 5-10 0 :110.0 TO fAL SPEED N'\JE ENE E E3E Sl::: S3E S'3W s1* w NNW N TOTAL 0 0 C0 0. OC> 0 co 00 0 0 00 0. 00 0 0 00 0. 00 1 45 06 0 0. 00 0 00 0 0 00 0 OD 0 0 00 0 00 1 . 45 06 0 0. 00 0. 00 2 90 12 1 45 06 0 0. 00 0. 00 0 0 00 0. 00 0 0 co 0. 00 0 0 00 0 00 0 0. 00 0 co 5 2 26 30 12 0 0 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0. 00 0. 00 1 . 45 06 0 0. 00 0 00 1 . 45 06 12 0 0. 00 0. 00 0 0 00 0. 00 1 45 06 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 7 3. 17 42 " 2 1'1 ::16 12 0 0 00 0 00 0 0 co 0 co 0 0. co 0. 00 12 12 . 95 . 12 1 45 06 3 1.:16 18 1 45 . 06 1 45 06 1 45 06 6 2. 71 . 36 1 45 06 95 . 12 30 13 57 1. 81 KEY XXX NUMBER OF OCCURRENCES 5 2. 26 30 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0 00 1 45 06 5 2. 26 30 13 5. 88 79 10 4. 52 60 10 4. 52 . 60 0 0. 00 0. 00 0 0 00 0. 00 7 3. 17 42 1 45 . 06 7 3. 17 42 11 4. 98 . 66 5 2. 26 . 30 75 33. 94 4. 53 XXX PERCErH OCCURRENCES THIS CLASS XXX PERCENr OCCURRENCES ALL CLASSES 4 1 81 24 0 0. 00 0. 00 0 0 00 0 00 1 45 06 0 0 00 0. 00 9§ 12 7 3. 17 42 11 4 98 . 66 7 3. 17 . 42 5 2. 26 . 30 4 l. 81 . 24 1 45 . 06 0 0 00 0. 00 5 2. 26 30 13 5. 88 79 3 1 36 18 63 28. 51 3. 80 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 2 . 90 12 95 12 12 5. 43 72 4 1. 81 24 3 1. 36 18 1 . 45 06 8 3. 62 48 6 2. 71 36 3 1. 36 18 0 0 00 0. 00 41 18. 55 2 48 17 69 03 2 90 12 0 0 00 0 00 1 45 06 12 9 4 07 54 25 11 31 1 51 25 11 31 1 51 32 14 48 1 93 14 6 33 85 10 4 52 60 11 4 98 66 11 4 98 66 24 10 86 1 45 28 12 67 1 69 10 4 52 60 0 0 00 0 00 :221 100 00 13 35 5 56 3 45 0. 00 8. 20 3 60 6. 31 7 07 7. 39 8. 28 7. 71 7 86 6. 29 11. 5:5 B. 08 7 97 6. 21 CALM 7 52 JOINT WIND FREGLi£NCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD ALL MARCH COMBINED STABILITY CLASS: PASQUILL B DATA SOURCE ON-SITE SENSOR HEIGHT: 10 00 11ETERS TABLE GENFRATEO* 11/10/81. 15. 47. 44. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO* 7699-064 WINO WINO SPEED CATEGORIES(METERS PER SECOND> MEAN SECTOR 0. 0-1. S 1 5-3 0 3. 0-S. 0 5 0-7. S 7 5-10 0 ::-10.0 ESE SSl.J WSW WNri N CALM T8TAL 1 1. 01 06 1 1 01 . 06 1 1. 01 06 1 1. 01 06 0 0. 00 0. 00 0 0. co 0. 00 0 0 OQ 0. 00 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0 OQ 0 0 00 0. 00 0 0 00 0 00 0 0 00 0. CQ 0 0 00 0 O*J 1 1 01 06 1 1. 01 06 0 0 00 0 00 6 6 06 36 3 3 03 18 4 4 04 24 1 1. 01 06 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0 00 1 1. 01 06 0 0 00 0 00 0 0 00 0 00 9 9 09 54 3 3. 03 . 18 1 1. 01 06 0 0 ov 0 00 0 0. 00 0. 00 0 0. 00 0. 00 4 4 04 3 3. 03 l8 1 1. 01 06 4 4. 04 24 4 4. 04 1 1. 01 06 0 0. 00 0 00 1 1. 01 . 06 2. 12 0 0. 00 0. 00 2 2 02 l2 26 . .;:!6 1 :i7 KEY X X .t: NUMBER OF OCCURRENCES 1 I. 01 06 0 0. 00 0. 00 1 1. 01 06 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 2. og 12 0 0. 00 0. 00 3 3. 03 18 3 3. 03 . 18 2 2. 02 12 2 2. 02 12 0 0. 00 0. 00 0 0 00 0. 00 7 7 07 42 6 6. 06 36 27 27.27 1. 63 XX.< PERCENf OCCURRENCES THIS CLASS XXX PERCENf OCCURRENCES ALL CLASSES 2 2. 02 12 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 1 1. 01 . 06 4 4. 04 24 2 2. 02 12 2 2. 02 12 1 1. 01 06 0 0. 00 0. 00 2 2. 02 12 3 3 03 18 1 1 01 06 18 18. 18 1. 09 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 4 4. 04 24 0 0. 00 0. 00 0 0 00 0. 00 2 2 02 . 12 3 3 03 18 0 0. 00 0 00 0 0. 00 0. 00 1 1. 01 06 1 1 01 . 06 1 1 01 06 1 1. 01 06 0 0 00 0. 00 13 13. 13 79 TOTAL SPEED 10 4. 44 10 10 60 6 2. 25 6.06 36 3 3. 33 3. 03 18 1 1. 20 1. 01 06 4 10. 87 4 04 24 4 3. 80 4.04 . 24 :5 4. 98 5. 05 . 30 4 9. 50 4 04 . 24 14 7. 24 14. 14 85 9 5 97 9.09 54 5 7. 02 :5. 30 4 7 90 4 04 24 2 8 30 2. 02 12 6 6 67 6. 06 36 12 6 92 12 12 72 10 5 16 10 10 60 0 CALM 0 00 0 00 99 6. 10 100 00 5 98 Rev. 0 JOINT WOLF CREEK TABLE 2.3-31 (Continued) WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) Page 10 JOINT l.JHJO DISTRIBUTION BY D1;TA PERIOD ALL COMBINED STABILITY CLASS PASGUILL C Tt. SOl:RCE G:\1-SITE l.Jl:-.JO SEt{SOR HEIGHT 10 00 MtTERS TA8LE GENt.RATED 11/10/81 15 47. 44. WTND WitJf) CATEGORIESO*!F::fERS PER SECTGR 0 0-1. 5 1 5-3. 0 3 0 s 0-7. 5 NE Er"E ESE SE s SS:..I WSW w WNW N>l N:"lW N TOTAL KEI{ 1 0 1 5 91 0 00 91 4. 55 06 0 00 06 30 0 4 82 0 0 00 3. 64 1 0 00 0. co 24 12 0 00 1 1 0 0 91 91 0. 00 0 00 06 06 0. 00 0. 00 2 0 0 0 1. 82 0 00 0 00 0. 00 12 0 00 0 00 0 00 0 2 1 0 0. 00 1 82 91 0 00 0 co 12 06 0. 00 0 0 3 0 0 00 0 00 2. 73 0. 00 0. 00 0. 00 18 0. 00 0 0 1 4 0. OD 0. 00 91 3. 64 0 co 0 00 06 . 24 0 0 3 4 0 co 0. 00 2 73 3. 64 0. 00 0. 00 18 . 24 0 0 2 4 0. 00 0. 00 1. 82 3. 64 0. 00 0. 00 . 12 . 24 0 2 3 2 0. 0:) 1. 82 2 73 1. 82 0. 00 12 18 . 12 0 1 1 0 0. OD 91 . 91 0. 00 0. 00 06 . 06 0. 00 0 0 0 0 0. 00 0 00 0 00 0. 00 0. 00 0. 00 0. 00 0. 00 0 0 0 2 0. 00 0. 00 0 00 1. 82 0. 00 0 00 0 00 . 12 0 0 2 2 0. 00 0 00 1 82 1. 82 0. 00 0 00 12 . 12 1 1 1 6 . 91 91 91 5. 45 06 06 06 36 0 0 7 5 0. 00 0 00 6. 36 4. 55 0. 00 0 00 42 30 0 0 00 0. 00 5 11 27 34 4. 55 10 00 24. 55 30. 91 30 66 1. 63 2. 05 XXX NUMBER OF OCCURRENCES XXX PERCENT" OCCURRENCES THIS CLASS XXX PERCENT" OCCURRENCES CLASSES CLASS WOLF CREEK GENERATING BURLINGTON, KANSAS '.;TAT !ON KANSA!3 GAS El.ECTRI( DAMES AND MOORE JOB NO 7699-064 SECOND) MEAN I ::>--10 0 >10 0 TO "TAL SPEED 5 2 14 7. 27 4 55 1. 82 12 73 30 12 85 0 0 6 2 60 0 00 0. 00 5 45 0 00 0. 00 36 0 0 2 1. 90 0. 00 0 00 1 82 0. 00 0. 00 12 0 1 3 4. 93 0 00 . 91 2. 73 0 00 06 18 0 1 4 4 57 0. 00 91 3 64 0. 00 06 24 0 0 3 3. 63 0. 00 0. 00 2 73 0 00 0 00 . 18 1 0 6 6. 23 91 0. 00 5 45 06 0. 00 . 36 2 1 10 6 60 1. 82 . 91 9. 09 . 12 06 60 3 2 11 7. 43 2. 73 1. 82 10 00 18 12 66 0 0 7 4. 40 0 00 0. 00 6. 36 0. 00 0 00 42 0 0 2 3. 45 0. 00 0. 00 1. 82 0. 00 0. 00 12 0 0 0 0. 00 0. 00 0. 00 0. 00 0 00 0. 00 0. 00 0 1 3 8 40 0. 00 91 2. 73 0. 00 06 18 3 1 8 7. 49 2 73 91 7. 27 18 . 06 48 8 0 17 6. 69 7. 27 0. 00 15 45 48 0. 00 1 03 2 0 14 5. 77 1. 82 0 00 12 73 12 0. 00 85 0 CALM 0. 00 0 00 24 9 110 6 07 21. 82 8 18 100.00 1. 45 . 54 6. 64 WJ),jt) DISTRIBUTION BY STABILITY CLASS DATA PERIOD. ALL t1..:!RCH COMBINED STAB IL lTV CLASS. PASOUILL D OAT A E. CIN-S I TE SENSOR HEIGHT 10 00 METERS TABLE GENERATED: 11/10/81. 15. 47. 44. WIND WINO !;;*PEED CATEGORIES<METERS PER SECTOR 0 0-1. 5 1. 5-3 0 3. 0-5 0 5. 5 NNE 0 2 18 22 0. 00 32 2 '72 3. 57 0. co 12 1 09 1. 33 NE 0 8 13 7 0. 00 1 30 2 11 1. 13 0. OJ 48 79 . 42 ENE 2 9 11 4 32 1. 46 1. 78 . 65 12 . 54 . 66 . 24 E 0 12 9 8 0. 00 1. 94 1. 46 1. 30 0. 00 72 . 54 48 ESE 0 5 18 8 0. 00 81 2. 92 1. 30 0. 00 30 1 09 48 SE 2 1 14 11 32 16 2. 1. 78 12 . 06 BS . 66 SSE 1 2 9 2 16 32 1. 46 . 32 06 12 :J4 12 s 0 4 13 24 0 00 65 2 11 3. 89 0. 00 24 79 1 45 ssw 1 5 6 13 16 81 '17 2 11 06 30 36 79 sw 2 0 4 5 32 0. 00 . 65 . 81 12 0. 00 . 24 30 WSW 4 4 3 3 65 65 49 49 24 24 18 18 w 2 0 3 2 32 0. 00 49 32 12 0. 00 18 12 0 2 3 5 0 00 32 49 81 0 00 12 18 30 2 2 6 21 32 32 . 97 40 12 12 :!6 27 1 2 6 32 16 32 97 5. 19 06 12 36 1 93 N 1 2 22 24 16 32 3 57 3 89 06 12 1. :13 1. 45 C4:..! M 0 0 00 0 00 TOTAL 18 60 158 191 2 92 9 72 25 61 30.96 1 09 3 62 9 ,. 11. 53 "EY XXX NUMBER OF OCCURRENCES XXX PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAt1ES AND MOORE JOB NO. 7 699-064 SECOND> MEAN 7 5-10. 0 :>tO. 0 TOTAL SPEED 24 3 69 6 59 3. 89 49 11 18 1. 45 . 18 4 17 2 0 30 4. 33 . 32 0. 00 86 12 0. 00 81 5 1 32 4 69 81 16 19 . 30 . 06 93 3 4 36 5. 09 . 49 65 5 83 . 18 24 2 17 10 9 50 6. 52 1. 62 1. 46 8 10 60 54 3 02 3 1 32 5 39 49 16 19 . 18 . 06 93 0 3 17 5. 04 0. 00 49 f 76 0 00 18 03 18 12 71 7. 10 2 92 1. 94 11 51 1. 09 72 4 29 11 5 41 6 51 1. 78 . 81 6 65 . 66 30 2 48 8 3 22 6. 87 1. 30 49 3 57 48 18 1 33 3 0 17 3 98 49 0. 00 f 76 . 18 0. 00 03 2 5 14 7 62 32 81 2 27 12 30 85 0 6 16 7 80 0 00 . 97 2 59 0 00 36 97 8 3 42 6 41 1. 30 49 6 81 48 18 2 54 16 11 68 7 27 2. 59 1 78 11 02 97 . 66 4 11 9 2 60 5 74 1 46 32 9 72 54 12 3 62 0 CALM 0 00 0 00 122 68 h17 6 21 19 77 11 02 100 00 7 37 4 11 37 26 Rev. of 48 0 WOLF CREEK TABLE 2. 3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STA.BILITY CLASS (MONTHLY 10 METERS) Page 11 of 48 .JOPH Hft.:O FRE!JUENCY DISTRIBUTION BY STABILITY CLASS DAT,:), flER!OH: ALL MARCH COMBINED 1 4 6 27 1. 10 1 65 06 .24 < 36 NF 2 4 5; 55 L 10 12 24 12 ENE 3 8 4 82 2 20 1. lO 18 48 . 24 E 2 8 5 55 2 20 1 37 12 48 30 ESE 2 8 B 55 20 2. 20 12 < 48 < 48 SE I 8 'I 27 2. 20 2. 47 06 ,48 54 SSE 0 8 11 0 00 2, 20 3. 02 Q co 48 < 66 s 0 4 13 0. 00 1. 10 3. 57 Q_ 00 '24 < 7'1 ssw 0 2 " 0" 00 <55 1 65 0 Q<:l < 12 < 36 0 2 5 0, 00 <55 I 37 0, 00 12 < 30 lrlSW 0 4 5 0, 1. 10 1 37 0 24 < 30 w 2 0 0 55 o_ oo 0. 00 12 0. 00 0. 00 \-mw 0 3 6 0. 00 82 1. 6:5 Q_ 00 18 < 36 N" 0 7 8 0. 00 1. 92 2. 20 0. co . 42 < 48 NNW I 5 10 < 27 L 37 2. 75 06 < 30 < 60 N 1 3 12 < 27 . 82 3. 30 < 06 CAl t-r 0 < 18 72 0, 00 0, 00 15 78 110 4 12 21. 43 3"0. 22 < 91 4, 71 6. 64 x:n XXX XXX 3 82 , 18 0 0. 00 o_ oo I .27 06 4 I 10 24 4 ' 10 24 5 37 < 30 B 2. 20 < 48 39 tO. 71 2. 36 18 4 95 L 09 I < 27 < 06 I '27 06 2 <55 . 12 0 0. 00 0. 00 4 1 10 24 6 L 65 < 36 6 1. 65 < 36 102 2E:. 02 6. 16 WOLF CREEK CENERATING Slt,TION DURLING TON, KANSAS GAS AND ELECTRIC DAMES AND .JOU NO 7699-064 MEAN 0 :>10. 0 lOT AI 0 0 89 0 oo 0. 00 0 00 0. 00 0 0 .2. 06 0 00 0. 00 0 00 0. 00 0 0 2 74 0. 00 0. 00 0. 00 0. 00 0 1 3 82 0 00 27 0 00 < 06 2 0 4 02 , :JS 0. 00 !2 0_ 00 2 0 4 00 55 0, 00 '12 0, 00 0 0 4 30 0 00 0 00 0 00 0. 00 15 9 6. 7:5 4 12 2. 47 < 91 54 21 8 7 40 5, 77 2. 20 I 27 48 0 0 3 72 0 00 o_ oo 0 00 o_ oo 0 0 3. 39 0" 00 0. 00 0, 00 0. 00 0 0 3, 50 0, 00 0, 00 0, 00 0, 00 0 0 3 30 0 00 0. 00 0, 00 0. 00 0 0 :3.89 0. 00 0. 00 0. 00 0. 00 1 0 4 35 < 27 0. 00 < 06 0. 00 0 0 4. 23 0 00 0. 00 0. 00 0. 00 CALM 41 18 5, 01 1L 26 4 '15 2 48 1 09 JOiNT HirJD FREOUEUCY DfSTRIBVT!ON BY STABILITY CLASS DATA PER!OD ALL MARCH COi1BlNE:D STABlL!Tl:' CLASS: PASGUILL F WOLF CREEK GENERATING STATION DATA SOL:<<CE. mJ-SIT£ BURLINGTON, KANSAS t-.JI:\10 SENSOR HEIGHT 10.00 KANSAS GAS AND ELECTRIC TABLE GENt.RA'fEO: ll/lQ/81. DAMES AND MOORE JOB NO: 7699-064 WIND !HNO S?E.EO CATEGORIES (ME fERS PER MEAN SECTOR 0. 0-1. 5 L 5-3.0 3 0-5.0 5_ 0-7. 0 /10.0 TOTAl .. SPEED NNE 0 I 2 0 0 0 :J 3. 03 0. 0*:7> 67 1. 34 0. 00 o. 00 0. 00 2. Ot 0. 0*:) 06 12 0. 00 0. 00 0. 00 18 NE 0 4 0 0 0 0 4 I. 97 0. ov 2 68 0. 00 0. 00 0. DO 0. 00 2, 61.1 0. 00 24 D. 00 o_ oo 0. 00 0. 00 24 EtJE I 0 5 0 0 0 " 3. 5S 67 0 00 3. 36 00 0. 00 o_ oo 4. o:l 06 0 00 < 30 ;>, 00 0, 00 0. 00 . 3<'.1 E 0 0 6 0 0 0 " 3 78 0. 00 0 00 4. 03 (), 00 0. 00 0. 00 4. G:l 0. 03 o_ oo 36 Q_ 00 0 00 0. 00 3f, ESE 0 5 6 2 0 0 Lt 3, aa 0. 00 3 31> 4. 03 L 34 0. 00 0. 00 B. 0, 00 30 36 < 12 0 00 Q_ 00 . 79 SE 0 7 13 1 0 0 21 3. 39 o. 00 4. 70 a. 72 < 67 0 00 0. 00 !4, O'J Q_ 00 42 79 < 06 0 00 0. 00 L 27 SSE 0 8 17 1 0 0 26 3. 61 0 00 5, 37 II 41 67 0. 00 0. 00 17, 0. 00 48 L 03 < 06 0. 00 0, 00 L 57 s 1 2 13 0 0 Hl 3. B2 67 1. 34 8. 72 Q_ 00 Q_ oo 12 on < 06 . 12 79 12 0 00 0. 00 1 09 SSLJ I 4 7 0 0 0 1 3 11 67 2. 6B 4. 70 0. 00 o_ oo Q_ 00 9, 06 < ,,. . 42 <>. 00 0, 00 0. 00 . 7;3 sw l 3 1 0 0 0 3. 2 34 < 67 2. 01 < 67 o. 00 0, 00 0 00 06 18 06 00 0. 00 0. 00 . 30 IISW 0 1 0 0 0 0 1 2 50 0 00 67 Q_ 00 Q_ 00 0 00 0. 00 . 67 0. C<J 06 0. 00 0. 00 0. 00 0. 00 06 w 0 I 0 0 0 0 l 30 0. 00 67 0. 00 0. 00 0 00 0. 00 67 0 00 06 0. 00 0. 00 Q, 00 0. 00 Of, 2 1 6 0 0 0 ' " 31 L 34 67 4. 03 0 00 Q_ 00 0. 00 6 04 12 06 36 (1, oo 0. 00 0. 00 <54 NW 1 5 2 1 0 0 9 ;;: 98 67 3 36 1 34 67 0. 00 0. 00 6 04 06 30 '12 < 06 0. 00 0. 00 54 NN:J 0 7 2 0 0 0 '1 2 89 0 00 4. 70 I 34 0. 00 0 00 0. 00 6. 04 0 00 < 42 12 Q, 00 0 00 Q_ 00 <54 N 0 2 3 1 0 0 6 62 0. 00 1 34 2 01 67 Q_ 00 0, 00 4 03 0. 00 12 18 06 0, 00 0. oo 36 CAL:1 0 0 CALM 0. 00 0 00 o. oa-0 00 TOTAL 7 51 83 8 0 0 149 .3. 38 4. 70 34 23 55 70 5 37 0 00 0. 00 100 00 <2 3 08 5 01 48 Q_ 00 0 00 9_ 00 "EY X X.( X.C< XXX Rev. 0 WOLF CREEK TlffiLE 2. 3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) .JOit>:T FREQUENCY DISTRIBUTION BY STo<\BILITY CLASS D,;lA PERIOD ALL 11.AIKH COMBINED STAG ILIT\' CLASS PASGUILL C Df*TM O:ll-SITE SENSOR HEIGHT 10 00 METERS WOLF CREEK GENERATING BURL INGTCN, KANSAS T.;:lu:. GE:\IERATED 11/10/81 47 *IJ4 KANSAS GAS AND ELECTR I I DAf1ES AND MOORE ,JOB NO 7699-064 W [NO SECTOR WINO CATEGORIES<METERS PER SECOND) 0 0-1 5 1 5-3 0 3. 0-5 0 '5 0-7 5 7 :J-10 0 )10 0 ENE ESE SE s::;E 5 s:..1 N CAL:-t TOTAL 0 0 00 0 00 0 0 00 0. co 0 0 co 0 co 1 1 04 o; 0 0 00 0 00 0 0 00 0. 00 1 1 04 06 0 0 00 0 00 0 0. 00 0. 00 0 0 co Q_ 00 1 1. 01 06 2 12 1 1. 04 . 06 2 2. 08 12 1 1. 04 06 1 1 04 06 0 0. 00 0. co 10 10. 42 60 1 1 04 06 0 0 00 0 00 0 0. 00 0 00 1 1 04 06 1 1. 04 06 4 4 17 24 6 6 25 36 4 4 17 24 5 5 21 30 4 4 17 24 2 2. 08 12 4 4. 17 24 4 4. 17 24 4 4 17 24 1 1. 04 . 06 0 0 00 0. 00 41 42. 71 2 48 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 2 2. 08 12 9 9. 37 54 15 15 62 . 91 6 6. 25 36 3 3. 12 18 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 " 4. 17 24 1 1. 04 06 2 2. OB 12 3 3. 18 45 46.87 2. 72 KEY XXX NUMBER :JF OCCURRENCES 0 0 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0 00 () 0. 00 0 00 () 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0 00 () 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0. 00 .(X.( PERCENT OCCURRENCES THIS CLASS XX.( PERCENT OCCURRENCES ALL CLASSES 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 JCIII\!T WIND FREQUENCY DISTRIBUTION BY SU1BIL!TY CLASS D?oTA PERIOD ALL COMBINED 0 0. 00 0 00 0 0 00 0. 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 MEAN TOl AL SPEED 1 1. 04 06 0 0. 00 0. 00 0 0 00 0 00 2. 12 3 3 12 . 18 13 13. 54 79 22 2f-10 10 42 60 8 8 33 48 4 4 17 24 3 3 12 18 6 6. 25 J6 9 9 "37 : 54 7 7. 29 42 4 4. 17 24 4 4. 17 0 0. 1.)0 0. }0 96 100. 00 5. 1:"30 2 80 0 00 0. 00 1 70 3 60 3. 22 3. 19 3. 04 2. 64 2 20 1 77 1 97 2. 87 2. 01 2 67 2. 97 CALM 2. 80 ALL CLASSES DATA SOL'RCE. ON-SITE SENSOR HEIGHT* 10.00 METERS WOLF CREEK GENERATING STATION DURLINGTON, KANSAS TABLE GENERATED 11/10/81. 15.47 44. KANSAS GAS AND ELECTR I(" DAMES AND MOORE JOB NO 7699-064 WIND Sf'EED CATEGORIES<MC:TE:RS PER SECOND) SECTOR 0 0-1. 5 1 5-3. 0 3. 0-5.0 :i. 0-7. 5 7. 5-10. 0 :>10. 0 NE ENE E SE s:::,E 5 ssw WSW NW N CAl;.-; TOTAL 3 18 3 18 8 48 6 36 3 . 18 3 18 2 12 1 06 3 18 3 18 7 42 7 42 3 18 5 30 5 30 4 24 0 0 co 66 3. 99 13 79 24 1. 45 19 1. 15 21 1. 27 21 1. 27 20 1. 21 25 1. 51 14 85 17 1. 03 13 79 12 72 5 30 11 66 19 1 15 16 97 7 42 257 15 52 NCMGER Of:" VALID OBS!::RVATIONS nUM3Er< OF INVALID OBSERVATIONS TOTA'-.. OF OBSERVATIONS 36 2 17 20 1. 21 20 1. 21 20 1. 21 35 2. 11 54 3. 26 58 3. 50 51 3 08 29 1 75 20 1. 21 11 66 " 2! 1. 27 27 1 6:3 22 1 33 51 3. OE3 1656 576 2232 KEr' XX.< tJL:1BER JF OCCURRENCES XXX PERCEtJf OCCURRENCES 36 2 17 7 42 6 36 12 72 15 . 91 30 1. 81 79 4. 77 48 2. 90 11 . 66 6 36 13 79 8 . 48 35 2. 11 62 3 74 47 2. 84 35 2. 11 5 . 30 4 24 12 . 72 7 . 42 8 48 47 2 84 46 2. 78 15 91 9 . 54 4 24 0 0 00 18 1. 09 41 2. 48 15 91 437 26. 39 268 16. 18 74 19 PCT 2'5 81 PCT 100 00 PCT. 5 30 0 0. 00 1 . 06 6 . 36 14 85 1 06 5 30 26 1 57 30 1. 81 7 42 3 18 7 42 16 97 11 66 15 91 2 12 149 9 00 MEAN TOTAL SPEED 128 7 73 56 3 38 59 3 56 69 4 17 100 6 04 107 6 46 128 7 73 218 13 16 1 73 10 45 69 4 17 48 2 '10 40 2 42 59 3. 56 115 6 *?4 1o1 9 72 1.26 7 " 0 0. 00 5 95 3. 40 3. 88 4. 50 5. 53 4. 38 4. 72 6. 57 6 82 5 71 4 79 5. 89 6 42 5 90 6. 53 5. 28 CALM 5 65 Page 12 of 48 Rev. 0 WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) Page 13 of 48 JO[hiT WTUO FREGUEI.JCY IJISTRH3VTION BY STABILITY CLASS DATA PERIOD ALL APR !L COMBINED STr ... 8ILITY CLASS. PASGUILL A o:, T A SOURCE 1 TE I >W SENSOR HE I GHl 10 00 METERS TMOLE GENERATED 11/11/81. 10 37 57 WIND WINO SPEED CATEGOR lES <:-lf.:TEHS PER SECTOR 0 0-1 5 I 0 3 0-5 0 5 0 7 5 Ni\:E 0 4 4 4 0 co I. 25 I 25 I 25 0 OJ 19 19 19 NE 0 I 0 0 00 31 0 00 0. OJ 05 10 0 00 ENE: 0 0 0 0 0 00 () 00 0 co 0 00 0 00 () 00 0 00 0 00 E 0 0 3 3 0 co () 00 93 93 0 00 0 00 15 15 ESE 0 0 0 8 0 co 0 00 0 co 2 49 0. 00 0. 00 0. 00 39 SE 0 0 0 9 0 00 0 00 0 00 2 80 0. 00 0 00 0. 00 44 SSE: 0 0 3 5 0 00 0 00 93 I 56 0 00 0. 00 15 24 0 0 5 15 0. co 0. 00 1. 56 4. 67 0. OJ 0. 00 . 24 . 73 SSI-1 0 0 9 9 0. co 0. 00 2. 80 2. so 0. 00 c 00 . 44 44 sw 0 1 2 c CJ 31 .::2 0 c:: lQ 2 3 0 00 93 62 . 93 0 00 15 10 . 15 w :1 . I 2 2 o2 55 34 10 2 0 7 3 62 C. 00 2 IS 93 10 0. 00 34 . 15 NW 0 0 4 7 0. 00 0. 00 1. 25 2. 18 0. CD 0. 00 19 . 34 N:-..11-.1 0 0 3 10 0. CD 0. 00 . 93 3. 12 0. OJ 0. 00 15 49 N 0 I 4 19 0. 00 31 1. 25 5. 92 0. 00 05 19 . 92 0 0 00 0. 00 TOTAL 3 13 54 99 . 93 4 05 16. 82 30 84 15 63 2 62 4. 80 KEY XXX NUMBER OF OCCURRENCES XXX PERCENT OCCURRENCES THIS CLASS I. XX PERC EN r OCCURRENCES ALL CLASSES WOLF CREEK GENERATING S1ATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE ,JOB NO. 76Y9-064 SECOND l MEAN 7 J-10 0 >10. 0 TDTf,L ':!PEED 0 0 12 4. 00 0. 00 0 00 3. 74 0 00 0. 00 :.a 0 0 3 4. 13 0 00 0 00 '13 0 00 0 00 15 0 0 0 0 00 0 00 0 00 0 OD 0. 00 0. 00 0 00 0 0 6 5 42 0 00 0. 00 I f,7 0 00 0. 00 ;;'9 2 0 10 7. 04 62 0. 00 3 12 10 0. 00 <9 I 0 10 6. 89 31 0 00 3 12 05 0. 00 49 15 25 8 00 4. 67 79 73 10 ;;;'1 24 22 <>6 9. 24 7 48 6. 85 20 56 I. 16 1. 07 3 ;;:>Q 16 7 41 8. 05 4. 98 2. 18 12 77 78 34 I 99 7 9 9 01 12 34 44 1. ('7 6 I 15 6 73 I S7 31 4 1..:7 29 05 73 5 0 ! 6 5 43 56 0 :::..J ;3 24 00 78 5 0 17 5. 55 1. 56 0. 00 5 30 24 0. 00 . 82 12 8 31 8. 25 3. 74 2. 49 9. 66 58 39 I. 50 8 I 22 6. 95 2. 49 31 6. El5 39 05 1 07 1 0 25 5 68 31 0. 00 7 79 . 05 0 . 00 1. 21 0 CALM 0 00 0. 00 102 50 321 7 49 31. 78 15. 58 100.00 4. 95 2 43 15. 57 JOINT lHNO FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD ALL APRIL COMBINED CLASS: PASGUILL B DATA SOURCE mJ-SlTE 5Ef>4SOR HEIGHT* 10 00 METERS TABLE GENERATED: 11/11/81. 10 37. 57. WIND WINO SPEED CATEGORIES (f'"IF::TERS PER SECTOR 0 0-1. 5 1. 5-3 0 3. 0-5 0 5. 0-7 5 N:'\!E NE E ESE SE SSE s SS'..J sw ws:..J w M4 t-.:N,../ N CAL:1 TOTAL KEY 0 0 1 I 0. 00 0 00 1. 14 1. 14 0 00 0 00 05 0 2 () 0 0. OJ 2. 27 0. 00 0. 00 0 co 10 0. 00 0 00 0 0 l 4 0. 00 0. 00 1. 14 4. 55 0 co 0 00 05 19 0 0 I I 0 00 D. 00 1. 14 1. 14 0. 00 0 00 05 05 0 I I I 0. OJ 1. 14 1. 14 1. 14 0 00 05 05 05 0 0 0 4 0. C:> 0 00 0. 00 4. 55 0 00 0 00 0 00 . 19 0 0 0 2 0. co 0. 00 0. 00 2. 27 0 OJ 0. 00 0. 00 10 0 0 I 2. 0 co 0. 00 1. 14 0. 00 0 00 05 . 10 0 0 2 I 0 co 0 00 2. 27 1. 14 0. 00 0 00 10 05 0 1 0 I 0. 00 1. 14 0 00 1. 14 0. 00 05 0 00 . 05 0 I 0 I 0 00 1. 14 0. 00 I 14 0 00 05 0. 00 05 0 0 I I 0 00 0 00 1. 14 1. 14 0. OJ 0 00 05 . 05 0 I I 3 0. 00 L 14 1. 14 3. 41 0 00 05 05 15 0 I I 4 0 00 1. 14 I 14 4 55 0 co 05 05 19 0 0 0 2 0 00 0 00 0 00 2. 27 0 00 0. 00 0. 00 10 0 0 0 4 0 00 0 00 0 00 4. 55 0. 00 0 00 0 00 19 0 0. 00 0 co 0 7 10 32 0. 0) 7.95 11. 36 36. 36 0 00 34 49 I 55 XXX NUMBER !JF OCCURRENCES XX:< PERCENT OCCURRENCES THIS CLASS XX.< PERCENT OCCURRENCES ALL CU\SSES WOLF CREEK GENERATING SfATlON BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7699-064 SECOND> MEAN 7. 5-10. 0 >10. 0 SPEED I 0 3 6 27 1. 14 0 00 :{. 41 05 0 00 . t5 0 0 2 35 0 00 0. 00 2 0 00 0. 00 10 I 0 6 6. 23 1. 14 0. 00 6. t32 05 0. 00 I 0 3 5. 80 1. 14 0. 00 3. 41 05 0. 00 . t5 0 0 3 4 90 0 00 0. 00 3. 41 0. 00 0. 00 15 I 0 5 7. 12 1. 14 0. 00 5 t.,B 05 0. 00 . 3 2 7 9. 01 3. 41 2. 27 7 '!5 15 . 10 J4 4 6 13 9 64 4. 55 6 82 14. 77 19 29 '3 2 1 6 7 57 2. 27 1. 14 6.132 10 05 .:?9 I 1 4 7 05 1. 14 1. 14 4 :j5 05 05 19 0 0 4 35 0. 00 0 00 2. 0 00 0 00 !0 I 0 3 6. 37 I 14 0 00 3 41 05 0 00 15 4 0 9 7 00 4. 55 0. 00 10. .'3 19 0 00 *14 5 0 11 6. 82 5. 68 0. 00 12. ')0 24 0 00 ')3 3 0 5 7 52 3 41 0. 00 5 <"!8 15 0 00 2 0 6 7 28 2 27 0. 00 b 112 10 0 00 0 CALM 0 >)0 0 00 29 10 liB 7 25 32 95 11. 36 100 00 I. 41 49 4 ;*7 Rev. 0 JOINT WOLF CREEK TABLE 2.3-31 (Continued) WIND FREQUENCY DIS'rRIBUTION BY STA,BILITY CLASS (MONTHLY 10 METERS) Page 14 ,.!OINT FREGUEtKY DISTRIBUTION BY SrABILITY DATA f-'ERIOD ALL .6PRIL COMB !NED Sf..:.BIL IfY Clt.SS PASQUlLl c DATA 1.; 1 SE:.N30R HEl GHT 10 00 METER!:i l MBLE:.. GEI\lERATED. 11 I 11/81. 10 37 57 1.-JlND (...JltH) !;,!"EED SECTOR o s l CATEGORIES<MErERS PER 0 3 o :J 0-7 5 rrJE "" ENF ESE sw 1..5:....1 NW N CAU1 TOTAL 0 l l l 0 00 98 98 98 0 00 05 05 05 1 l 1 5 98 98 98 4 90 05 05 05 24 0 0 1 0 00 1 0 00 98 0 00 10 0 00 05 0 0 0 0 0 00 0. 00 0 00 0 00 0 00 0 00 0. 00 0 00 0 0 3 0 0 OJ 0 00 2 94 0 00 0 00 0 00 15 0. 00 0 0 l 6 0 00 0 00 '>B 5. 88 0. co 0 00 05 . 29 0 0 1 3 0 00 0. 00 '>8 2. 94 0 00 0 00 . 05 15 1 0 1 1 >a 0. 00
  • 1i8 98 05 0. 00 05 05 0 0 2 4 0 00 0 00 1. 96 3. 92 0. OJ 0. 00 10 . 19 0 0 2 0 0 00 0 00 1. 96 0 00 0 OJ 0 00 10 0 00 0 0 0 2 0. 00 0. 00 0. 00 1. 96 0 00 0. 00 0. 00 . 10 0 0 1 4 0. 00 0. 00 . '78 3. 92 0. OJ 0 00 05 19 0 0 2 1 0. CQ 0 00 1. '16 . 98 0. 00 0. 00 10 05 0 1 4 4 0 00 . 98 3. 92 3. 92 0 OJ 05 19 19 0 0 1 5 0. 00 0. 00 98 4. 90 0. 00 0 00 05 . 24 0 1 1 3 0 00 98 98 2. 94 0. 00 05 05 15 0 0 00 0. 00 2 6 1 40 1 96 5. 88 20. 59 39. 22 10 29 1. 02 1. 94 KEY XXX NUM3ER OF OCCURRENCES XX:< PERCENT OCCURRENCES THIS CLASS XXX PERCENf OCCURRENCES ALL CLASSES CLASS WOLF CREEK GENERATING STA"T ION BURLINGTON, KANSAS ;.t..ANSAS GAS AND f:.LECTR l C DA/1ES AND MUOHE JOD N(, SECOND> t1EAN 7. 5-10 0 }10. 0 fClTAL SPEED 1 0 4 5 72 98 0 00 :] 92 05 0 00 19 0 0 8 4 80 0. 00 0 00 7 84 0. 00 0 00 39 0 0 3 3 87 0 00 0 00 94 0 00 0. 00 15 0 0 0 0 00 0 00 0. 00 0 00 0 00 0 00 0 00 0 0 3 4. 17 0 00 0. 00 94 0. 00 0. 00 15 1 1 9 7. 00 98 98 B 82 05 05 44 3 1 8 7. 99 2. 94 98 ., 84 15 05 39 6 3 12 8 32 5 88 2. 94 ll 76 29 15 58 4 1 11 6 78 3. 92 98 !0 78 19 05 53 0 0 2 4 20 0 00 0. 00 I 96 0. 00 0 00 10 0 2 4 8 65 0. 00 1. 96 :3 92 0 . 00 10 19 2 0 7 6. 83 1. 96 0. 00 ,, 86 10 0. 00 34 2 0 5 6. 14 1. 96 0. 00 4 90 10 0. 00 24 2 1 12 6. 03 1. 96 98 1:'. 76 10 05 58 0 0 6 6. 18 0. 00 0. 00 :i 88 0 . 00 0. 00 29 1 2 8 7 20 98 1. 96 84 OS 10 39 0 CALM 0 00 () 00 22 11 102 6. 62 21. 57 10. 78 100 00 1. 07 . 53 ,, 95 JOINT L*Hrm FREGUEIJCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD: ALL APRIL COMBINED SH.,BILITY CLt..SS. PASGUILL D DATA SI)URCE. l./ltJO SEN3DR HEIGHT* 10 00 METERS TABLE GENERA.TED: 11/11/81. 10. 37.57 I,., INO WINO CATEGORIES<ME1ERS PER SECTOR 0 0-1 5 1 5-3 0 3 0-5 0 5. 0-7. 5 0 2 13 15 0 00 30 1. '17 2. 28 0. 00 10 63 73 r.,E 0 6 12 8 0 00 91 1 82 1 21 0 00 29 58 39 ENE:. 0 1 !3 3 0. 00 15 1. '17 46 0 OJ 05 63 . 15 l 16 7 15 2. 43 1 06 05 10 78 . 34 ESE 0 2 12 25 0 00 30 1. 82 3 79 0 OJ 10 58 1. 21 SE 0 3 7 28 0. 00 46 1. 06 4_ 25 0. 00 . 15 34 1. 36 SSE 1 1 4 19 15 15 61 2. 88 05 05 19 -92 0 2 5 32 0 00 30 76 4. 86 0 OJ 10 1. 55 SS:.J 0 0 3 17 0 co 0 00 46 2. 58 0 00 0 00 -15 82 sw 0 3§ 4 6 0 OJ 61 91 0 00 10 19 29 0 0 7 4 0. 00 0. 00 1. 06 6! 0. 00 0. 00 :34 . 19 w 1 0 3 8 !5 0 00 46 1 21 05 0 00 !5 39 wr,.:;..j 0 1 7 7 0 00 t 5 1 06 1. 06 0 OJ 05 :14 34 N.J 0 1 10 19 0 OJ 15 l 2. 88 0 co 05 49 92 0 3 " 20 0 00 46 1 '*7 3. 03 0. 00 15 :J3 . 97 N 0 1 19 16 0. 00 15 2. 88 2 43 0. 00 05 '2 78 0 0 co 0 00 TDTAL 3 27 14b 2::14 46 4. 10 22 IS 35. 51 15 1 31 7. 08 11 35 "'-E'r" XXX NUMUER OF OCCURRENCES XX< PERC EN f OCCURRENCES THIS CLASS I. X"!. PERC EN f OCCURRENCES ALL CLASSES WOLF CREEK GENERATING EiTATION KANSAS KANSAS GAS AND ELEC TH :! C DAI1ES AND t10DRE JOB NO 7 SECOND> MEAN 7. 5-10. 0 :>10. 0 TOTAL SPEED 4 0 34 5 37 61 0. 00 16 . 19 0. 00 65 0 0 26 4. 17 0. 00 0 00 :J 95 0 00 0 00 26 1 0 18 4. 56 15 0 00 "' 73 . 05 0 . 00 87 2 0 28 4. 54 . 30 0. 00 25 10 0 . 00 36 4 5 48 6 41 61 . 76 28 19 24 ,_ 33 15 5 58 6 76 2. 28 76 g 80 -73 24 81 19 16 60 8 36 2. 88 2. 43 " 10 92 78 91 36 16 91 8. 09 5_ 46 2. 43 1:1 81 '-75 78 " 42 19 9 48 8. 12 2. 88 1. 37 28 92 44 33 2 0 14 5. 46 30 0. 00 12 10 0 00 68 6 l 18 6 52 91 15 ;? 73 29 05 87 11 0 23 6 63 1. 67 0 00 :! 49 53 0. 00 l 12 7 4 26 6 75 1. 06 -61 95 34 19 26 20 5 55 7. 14 3. 03 76 35 97 24 67 16 4 54 6 66 2. 43 61 El 19 78 19 ,, 62 17 5 58 6 68 2. 58 -76 " so 82 24 81 0 CALM 0 00 0 00 179 70 hS9 6 81 27 16 10 62 100 00 8. 69 3. 40 31 97 of 48 Rev. 0 WOLE' CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 HETERS) Page 1 t-,) of 48 JOINT 1 rm FREGU::::tJCY DISTR!l3UTIOt-l BY STt\BILITY CLASS 1-'E'"RIOD ALL APF1Il COMBINED STMBit_ITY CL.';SS* PASGVILL E WOLF CREEK GENERATING O.;TA tJouqcE 0;'-l-S 1 TE BURLINGTON, KANSAS I tJn SEt-!SOR HEIGHT 10 00 METERS KANSAS GAS AND E:LECTRIC Tt-8LE GENc::_RATED 11/11/81. 10. 37. :>7. DAMES AND 1"100HE NO WIND t-Il NO S!"'EED CATLGORIES(HEfE:RS PER SECOND) MEAN SECTOR 0. 0-1 5 I 5-3 0 J 0-5 0 ,, 0-7 5 7 5-10 0 )-10 0 TlJTAL SPEED 1 1 6 0 0 3 11 , " 20 20 1 21 Q_ 00 0 00 60 2 21 05 05 29 0 00 0. 00 15 53 0 13 7 1 0 0 21 2 76 0. OJ 2 62 1 41 20 0 00 0. 00 23 0 OJ 63 34 05 0 00 0. 00 02 ENE 0 3 7 6 0 0 16 4 24 0 00 60 1 41 1 21 0 00 0 00 3 22 0 00 15 34 29 0. 00 0 00 78 0 1 14 11 1 0 27 5 17 0 OJ 20 2 8.2 2 21 20 0. 00 43 0 00 OS 68 53 OS 0 00 31 E!:iE 0 3 1.3 19 7 1 43 s 74 0 00 60 2 6.:? 3. 82 L 41 20 8 65 0 OJ 1 s . 63 92 34 OS 2 09 SE 0 1 12 21 5 1 40 5. 94 0 OJ 20 2 41 4. 23 1. 01 20 8 OS 0 00 OS . 58 1. 02 24 OS 1 94 S!:oE 0 5 36 34 10 4 89 , 65 0. co 1 01 7. 24 6. 84 2. 01 80 17 91 0. co 24 1. 75 1. 65 49 19 4 32 5 0 3 22 36 26 6 93 6 66 0. ou . 60 4 . 43 7. 24 S. 23 1 21 18 71 0 00 15 1. 07 1 75 1. 26 29 4 51 5!:,1,.1 0 1 L2 24 s 2 44 6. 17 Q_ OJ . 20 2. 41 4 . 83 1. 01 40 8 85 0 OJ OS 58 1 16 24 10 2 13 5"' 0 3 6 7 2 1 19 5. 29 0. 00 60 1. 21 1. 41 40 20 3 82 0. 00 15 29 34 10 05 92 rJ.:irJ 0 1 ' s 0 0 11 4. 39 0 00 20 1. 01 1. 01 0. 00 0. 00 2 21 0 00 OS 24 . 24 0 00 0. 00 53 1 0 3 2 0 0 6 4 03 20 0 00 60 . 40 0. 00 0. 00 1 21 . 05 0 00 15 . 10 0. 00 0 00 29 0 2 1 2 0 0 5 4. 02 0 00 40 20 . 40 0 00 0. 00 1. 01 0. 00 10 05 . 10 0 00 0. 00 . 24 NW 0 6 12 3 0 0 21 3. 71 0. 00 1. 21 2 41 60 0 00 0. 00 4. 23 0. 00 29 58 15 0. 00 0. 00 1. 02 1 3 18 12 1 0 35 4. 66 20 60 3. 62 2. 41 20 0. 00 7 04 OS 15 8., . 58 . OS 0. 00 1. 70 N 1 4 ** 3 4 0 16 4 89 20 80 80 60 . 80 0. 00 3. 22 OS 19 1'> 15 . 19 0. 00 78 CAL:-1 0 0 CALM 0. 00 0. 00 0 co 0. 00 TOTAL 4 50 178 186 61 18 497 5. 47 80 10 06 35.81 37. 42 12. 27 3. 62 100.00 19 2. 43 8 6*l 9. 02 2. 96 87 24. 11 KEY XX< NUMBER OF OCCURRENCES .<XX PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES JOINT FREOUC::JCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD* ALL P.PRIL COMBINED STABILITY CLASS PASOUILL F WOLF CREEK GENERATING STATION DATA SOURCE* ON-SITE BURLINGTON, KANSAS tHNL) SENSOR HEIGHT 10 00 METERS KANSAS GAS AND ELECTRIC TABLE GENt:RATED 11/11/81. 10. 37. 57. DAI'IES AND MOORE JOB NO: 7699-064 WIND WINO SPEED CATEGORIES<METERS PER SECOND> MEAN SECTOR 0 0-1. 5 1. 5-3.0 3 0-5. 0 5. 0-7. 5 7 5-10. 0 >10. 0 TOTAL SPEED N:-ti:. 0 2 4 0 0 0 6 3. 05 0. 00 84 1. 67 0. 00 0. 00 0. 00 2. 51 0. 00 10 . 19 0. 00 0. 00 0 . 00 29 tJE 3 3 :J 0 0 0 9 2 53 1. 26 1. 26 1. 26 0. 00 0. 00 0 00 3. 77 15 15 1 0. 00 0 00 0. 00 . 44 1 3 9 0 0 0 13 3. 06 . 42 1 26 3. 77 0. 00 0. 00 0. 00 5. 44 OS 15 44 0. 00 0. 00 0. 00 63 1 1 6 0 0 0 8 3. 20 42 . 42 2. 51 0. 00 0 . 00 0. 00 3. 35 OS OS 29 0. 00 0. 00 0. 00 . 39 ESE 0 3 14 0 0 0 17 3. 47 0 00 t. 26 5. 86 0. 00 0 00 0. 00 7. 11 0 co 15 68 0. 00 0. 00 0. 00 82 SE 0 15 2:1 s 0 0 43 3 63 0 OJ 6. 28 9 62 2. 09 0. 00 0. 00 17. 99 0 00 73 I. 1 24 0. 00 0. 00 2. 09 SSI:: 0 12 3:1 8 0 0 53 3. 95 0 00 , 02 13. 81 3 35 0. 00 0. 00 22. 18 0 00 58 1. 60 39 0. 00 0. 00 2. 57 5 1 3 14 1 0 0 19 3. 66 42 1 26 s 86 . 42 0 00 0. 00 7.95 05 15 68 05 0. 00 0. 00 . 92 SSI,.j 0 2 4 1 0 0 7 3 06 0. 00 . 84 1 67 42 0. 00 0. 00 2 93 0 OJ 10 19 OS 0. 00 0. 00 . 34 sw 0 2 5 0 0 0 7 3. 47 o. oa . 84 2 09 0. 00 0 . 00 0. 00 2 93 0. O'J 10 24 0. 00 0 00 0 00 34 ws:.1 I 4 3 0 0 0 8 2 84 42 !. 67 1. 26 0. 00 0. 00 0. 00 3.35 05 19 15 0 00 0 00 0. 00 39 w 0 1 0 0 0 3 3 33 0. 00 42 0 00 0. 00 0 00 1 26 0 co OS 10 0. 00 0. 00 0. 00 15 WN\.1 0 6 6 0 0 0 12 3. 07 0 OJ 51 2. 51 0. 00 0. 00 0. 00 5. 02 0. O'J 29 29 0. 00 0. 00 0 00 58 N:..l 0 s 5 0 0 0 10 3. 25 0 OJ 09 2. 09 0. 00 0 00 0. 00 4 18 0 00 24 24 0 00 0 00 0. 00 49 nmJ 0 2 5 1 0 0 8 3 77 0 OJ 84 2 09 42 0 00 0 00 3. 35 0 00 10 24 OS 0 00 0 00 N 0 7 7 2 0 0 16 3 34 0 OJ 93 2 93 84 0 00 0 00 6 69 0. 00 34 34 10 0 00 0 00 78 CAL:-1 0 0 CALM 0 OJ 0 00 0 OJ 0 00 AL 7 71 143 18 0 0 239 3 48 2 93 2'1 71 59 83 7 53 0. 00 0. 00 100 00 Rev. 0 34 :3. 44 6 94 . 87 0. 00 0. 00 11 60 XX< NU.'1GER DF OCCURRENCES XXX PHKEt-.1 f OCCUHRENCES THIS CLASS XX ( PERCENT OCCURRENCES ALL CU\SSES WOLF' CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) Page 16 of 48 ,.10INT Witm FREQUENCY DISTRIBUTION BY SrABILITY CLASS DNTA PE"RIOD ALL APRIL COMOINEIJ ST;.13ILITY CLASS: PASOUILL G ['M T M SOURCE C4-S I TE SENSOR HE J. GHT 10 00 METERS WOLF CREEK GENERATING STATION HURLINGTON. KANSAS T;,OLE GEI>I:::R,.<;TED 11/11181 10.37 57. GAS AND E:l.EC TR I C DAMES AND MOORE JOD "1699-064 WINO EPEED PER SECOND> 0 0-1. 5 l. 0 :1 0 :J 0--7 5 7 0 J.lO 0 NE E ESE !3E SSE N CAl !'1 I"OTA'-0 0 00 0. 00 1 65 05 0 0 O.J 0 00 0 0 OJ 0 OJ 0 0 00 0 O*J 0 0 OJ 0. 00 1 65 05 1 65 05 1 65 05 0 0 00 0 00 2 1. 29 10 3 1. 94 15 2 1. 29 10 1 65 05 0 0 00 0 OJ 0 0 OJ 0. 00 0 0 00 0 00 12 7 74 59 4 2 58 19 3 1 94 15 1 65 05 2 1 29 10 4 2. 58 19 13 8 39 63 12 7. 74 58 3 1. 94 15 2 1 29 10 1 .65 05 2 1. 29 10 3 1. 94 15 3 1. 94 15 5 3. 23 24 1 65 05 3 1 94 15 62 40 00 3 01 4 2 58 19 3 1 94 15 9 5 81 44 15 9 68 73 7 4 52 34 14 9 03 68 18 11.61 87 4 2. 58 19 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 4 2. 58 19 3 1. 94 15 81 52 26 3. 93 \'..E'!' XX.( NU11GEFt OF OCCURRENCES 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0. 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0 00 .<x.c: PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 \.Jirm DISTRIBUTIOf>l BY STABILITY CLASS DATA PEr.:IGD ALL APRIL COMBINEU 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0 00 MEAN TOTAL SPEED 8 5. 16 39 7 4 _52 34 10 " 45 49 17 10 97 82 11 7 10 53 27 17 42 t: 31 31 20 00 1 50 8 :; 16 39 3 L. 94 15 1 65 . OS 4 58 19 6 :] 87 . 29 5 :3.23 24 6 :3.87 29 5 :3 23 . 24 6 :) 87 29 0 0 00 0 00 155 100.00 ..,_52 3 31 2 69 3 52 3. 48 3. 04 3. 10 3. 07 2 61 2 30 2. 80 1. 65 1. 48 1 90 1 87 3 62 3 18 CALM 2 94 f*LL CLASSES Dr..T,; SOURCE 0:--J-SITE WOLF CREEK GENERATING STATION BURL 1 NGTON, KANSAS i.J I hi I) SENSOR HEIGHT 10 00 ME TEES TI.GLE GENC:RATED 11/ll/81 10.37.57 KANSAS GAS AND ELECTR "[ C DAMES AND MOORE NO* 7699-064 :3FEED CATEGORIESO":ETERS PER SECOND) L-IItJ!::' SECTOR o o-1 s 1 o 3. o-!, o s o-7 s 7 s-10. o ::>to. o N CALM TOTA'_ 1 05 5 24 1 05 10 0 0 OJ 0 :J l v 0 0 CJ 3 4 19 1 05 1 05 1 OS 0 0 OJ 31 1 14 68 29 1 41 10 49 6 29 13 63 1 55 :.;o 1 46 t1 53 5 24 11 53 24 13 63 19 92 9 44 17 82 236 11. 45 N'JMBER 0::::-VALID N"JMCEH 0:::'" !11.!\.'/"-.LID 0!35ERVAT10NS TOTAL N.J:13ER: OF 33 !. 60 2 67 7 77 95 4 61 !8 117 :7 17 t;;:o 1 .16 36 1 75 2 04 :m 1 84 6:l3 30. 71 2061 qq 2160 KEY XX< tJUMBER OF OCCURRENCES XXI( PERCENT OCCURRENCES 21 1 02 14 68 14 68 22 1 07 53 2 57 73 3. 54 71 3 44 87 4 56 2 1b 7El t 73 17 82 16 78 37 1. 80 50 2 43 47 2. 28 6 29 0 0 00 2 10 4 19 13 63 23 1 12 50 2 43 96 4 66 46 2. 23 12 58 12 58 19 92 18 87 39 1 89 28 1 :16 609 29. 55 393 19 07 95 42 PCT. 4. ::>8 PCT. 100 00 PCT 3 15 0 0 00 0 0 00 0 0 00 6 29 7 34 25 1 21 53 2. 57 20 97 11 53 4 19 0 0 00 4 19 14 68 5 24 7 34 159 7. 71 MEAtJ TOTAL SPEED 78 :3. 78 76 :3 69 66 :3 20 89 *l. 32 135 6. 55 192 'i' 32 273 1:3 25 302 1*1. 65 160 7 76 69 :3. 35 62 ::! 01 64 :1.11 79 :3 83 146 7 08 135 6 55 135 6 55 0 {) 00 100 00 4. 84 3 47 4 15 4. 51 5. 52 5 40 5 99 7. 55 7. 12 6. 36 5 47 5. 46 , 44 6. 28 5 91 5 79 CALM 5. 92 Rev. 0 "JOINT WOLF CREEK TABLE 2.3-31 (Continued) WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) ,JOINf \Jirm FREQUEtKY OISTRIDUTION BY STABILITY DATA PEN 100 ALL rv .. v COMBINED STf..GILITY CLASS PASGUILL A DMTA SOURCE I TE LJiiJn SErJSOR HEIGHT* 10 00 METEP.S T ..:.OLE GENFRATEO 11 I 11/81 10 41. 53 WIND WINO SPEE.:D PER SEC TOR 0 0-1 , 1 5-*3 0 3 0-5 0 5 0-7. 5 NNF NE ENE ESE SE SSE s SSlJ SW L-.IS:.J w WNW N CALM TOTAL 0 6 7 9 0 00 1 56 1 5:2 2 34 0 00 28 3:2 42 1 2 " 2 26 52 1 56 52 05 09 2!3 09 0 1 7 1 0. co 26 1 8:2 26 0 00 05 3:2 05 0 3 5 4 0. 00 78 1. 30 1. 04 0 00 14 2:3 19 0 6 " 6 0 00 1. 56 1. 56 1. 56 0 00 28 2!3 28 0 2 10 7 0 oa . 52 2 60 1. 82 0. 00 09 46 32 0 2 12 8 0. oa 52 3. 1:2 2. 08 0 00 09 56 . 37 0 0 4 28 0 co 0. 00 1 04 7. 29 0. 00 0 00 19 1. 30 1 3 17 26 78 1. 30 4 43 05 14 23 79 0 1 9 4 0. co . 26 2. 34 1. 04 0. 00 . 05 19 0 4 0 0 0 O*:J 1. 04 0. 00 0. 00 0. 00 19 0. 00 0. 00 0 1 0 1 0 co 26 0. 00 26 0. OD . OS 0 . 00 . 05 0 2 0 0 0. 00 . 52 0 . 00 0 00 0. 00 09 0 00 0. 00 1 0 7 12 26 0. 00 1. 8;2 3. 12 05 0. 00 3:2 56 0 2 9 20 0. co 52 2. 34 5 21 0. oa 09 42 93 0 1:2 13 0. co 3. 1:2 3. 39 0. co 09 . 56 60 0 0. co 0. 00 3 37 99 132 . 78 9. 64 25 713 34. 37 . 14 1 72 4 5'1 6. 12 "'-EY .<XX NUMBER OF OCCURRENCES XX:< PERCEt.Jf OCCURRENCES fHIS CLASS XXX PERGEtH OCCURRENCES ALL CLASSES CLASS WOLF CREEK GENERA TINt; f:>TAT IDN OURL lNG TON, KANSAS KANSAS GAS ,tloND ELECTRIC DAMES AND MOORE .JOB NO 7699-064 SECOND) MEAN 7 5-10. 0 }10 0 TOTAL SPEED 1 0 4 66 26 0 00 99 05 0 00 07 0 0 11 3 52 0 00 0 00 "* 86 0 00 0 00 51 0 0 9 4. 62 0 00 0 00 2. 34 0 00 0 00 42 1 0 13 4 68 26 0 00 3. 39 05 0. 00 60 3 3 24 5. 57 78 78 6. 25 14 14 1. 11 0 0 19 4 66 0. 00 0. 00 4 95 0. 00 0 00 88 3 0 25 5. 18 . 78 0 00 6 51 14 0. 00 1 16 29 9 70 7 79 7. 55 2. 34 18 23 1. 34 42 3. 25 38 16 80 8. 57 9. 90 4. 17 20 83 1. 76 74 3 71 5 3 22 6 40 1. 30 78 73 . 23 14 02 0 0 4 2. 35 0. 00 0. 00 1 04 0. 00 0. 00 19 0 0 2 4. 05 0. 00 0. 00 52 0 00 0. 00 09 0 0 2 2 50 0. 00 0. 00 52 0 00 0. 00 09 0 0 20 5. 12 0. 00 0. 00 5. 21 0 00 0. 00 93 0 0 31 5. 14 0 00 0 00 8 07 0 00 0. 00 1 44 2 0 29 5. 38 52 0. 00 7 55 09 0. 00 1. 34 0 CALM 0 00 0 00 82 31 :l84 6 28 21 35 B. 07 100 00 3. 80 1. 44 17.80 ..JDINT WitW FREGUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD* ALL M . .;v COMBINED STA8ILITY CLASS. PASQUILL [3 DATA SOURCE: C'N-SITE SEtJSOR HEIGHT 10 00 METERS TABLE GENERATED* 11/11/81. 10. 41.53 WIND WINO SPEED PER SECTOR 0 0-1. 5 1 5--3. a 3 0-5. 0 5. 0-7. 5 :....:NE 0 0 3 1 0 co 0. 00 3 26 1. 09 0. co 0. 00 14 . 05 0 1 4 0 0 00 1. 09 4 35 0. 00 0 00 05 . 19 0. 00 ENE 0 1 *0 1 0. 00 1. 09 0 00 1. 09 0. co 05 0. 00 05 E 0 0 0 1 0. co 0. 00 0. 00 1. 09 0. 00 0. 00 0. 00 05 ESE 0 1 0 3 0. 00 1. 09 0. 00 3. 26 0. 00 05 0. 00 . 14 SE 0 0 4 2 0. 00 0 00 4 3S 2. 17 0. 00 0. 00 19 09 SSE 0 0 1 0 0. 00 0 00 1. 0'7 0. 00 0. co 0. 00 OS 0. 00 s 0 1 1 8 0 00 1. 09 1 09 8 70 0 00 05 OS 37 0 0 :3 0 0. co 0. 00 3 26 0 00 0. 00 0. 00 14 0. 00 sw 0 0 0 1 0. 00 0. 00 0. 00 1. 09 0 oa 0. 00 0. 00 05 WSW 0 0 0 0 0 O*J 0 00 0 00 0 00 0. 00 0. 00 0 00 0. 00 w 0 0 3 0 0 00 0 00 3 26 0 00 0 OJ 0 00 14 0. 00 (..It 0 0 1 0 0 co 0 00 1 0'1 0 00 0 00 0 00 05 0. 00 0 2 1 0 00 2 17 1. 09 2. 0 00 09 05 09 N:-.::,.j 0 0 :3 0 0 00 0. 00 3 2n 0 00 0 00 0 00 14 0. 00 0 2 1 0 00 2 17 2 17 1 09 0 00 09 0'1 05 CAL:-1 0 0 00 0. 00 TOTAL 0 8 26 20 0 00 8 70 28 26 21 74 0 oa 37 1 21 93 xx< f'H.JMEER OF OCCURRENCES xx< PERCEt-1 r OCCURRENCES THIS CLASS ..<X.( PERCEtH OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOE NO 7699-064 SECOND) MEAN 7 5-10.0 >10. 0 TO"rAL SPEED 1 0 5 5. 26 1 09 0. 00 5. 43 . 05 0. 00 23 0 0 5 3. 90 0. 00 0. 00 5. 43 0 00 0. 00 23 1 0 3 5. 83 1. 09 0. 00 3. 26 05 0. 00 . 14 0 3 4 10. 05 0. 00 3. 26 4. 35 0. 00 14 19 1 1 6 7. 10 1. 09 1. 09 6. 52 . 05 . 05 28 1 0 7 34 1. 09 0. 00 7. 61 . 05 0. 00 32 0 0 1 3 70 0. 00 0. 00 1. 09 0 00 0. 00 05 11 2 23 7. 76 11. 96 2. 17 25. 00 51 09 1 07 6 2 11 7 94 6. 52 2. 17 11 96 28 09 51 4 0 5 7. 98 4. 35 0. 00 5 43 19 0 00 23 0 0 0 0 00 0. 00 0. 00 0 00 0. 00 0. 00 0 00 0 0 3 3. 93 0. 00 0 00 3 26 0. 00 0. 00 14 0 0 1 3 20 0. 00 0. 00 1 09 0 00 0. 00 05 1 0 6 5. 07 1. 09 0. 00 6 52 05 0 00 28 2 0 5 5 42 2. 17 0. 00 5 43 09 0. 00 23 2 0 7 5. 07 2. 17 0 00 7. 61 09 0 00 32 0 CALM 0. 00 0 00 30 8 9;2 6 53 32. 61 8. 70 100. 00 1. 39 37 ,, 27 Page 17 of Rev. 0 48 JOINT WOLF CREEK TABLE 2.3-31 (Continued) WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) Page 18 of Juun t.:I:'...!D fREQUENCY DISTRII3UTION BY STABILITY OAT A PERIOD ALL IIAY COMBINED STt.3ILIT'i CLASS PASGUILL c DAl k SOURCE (':-.1-SI TE t...!Ir;:*, SEtJSOR HEIGI-lT 10 00 METERS fAHd:: GEfJC:P.t. TED 11 I 11/81 10 41. 53 WIND WHJO SPEED SEC1GR 0 0-1 5 1. 5-3 CATEGORIES <METERS PER 0 3 0-5 0 5 0-7. 5 NNE 'E ENE ESE SE SSE s ssw sw " N CALM TOTAL 0 3 2 5; 0 00 2 33 1 55 1 0 00 14 09 09 0 0 0 1 0 00 0 00 0. 00 78 0 00 0 00 0. 00 05 0 0 1 1 0. co 0 00 78 78 0. 00 0 00 05 05 0 1. 5; 2 2 0 co 1. 55 1. 55 0. 00 09 0 09 0 0 2 2 0 OJ 0 00 1 55 1. 55 o. oa 0 00 09 09 0 0 4 2 0 OJ 0 00 3 10 1. 55 0 00 0. 00 19 09 0 2 1 1 0 00 1. 55 78 78 0 00 09 . OS 05 1 1 6 8 . 78 78 4. 65 6. 20 05 05 28 37 1 1 4 3 78 78 3 10 2. 33 05 05 19 14 0 0 0 1. s§ 0. 00 0. 00 0. 00 0. 00 0 00 0. 00 . 09 0 0 0 0 0 co 0. 00 0 00 0. 00 0. 00 0 00 0. 00 0. 00 0 2 3 0 0. co 1. 55 2. 33 0. 00 0 00 09 14 0. 00 1 1 4 1 78 78 3. 10 . 78 05 . 05 19 05 1 0 0 3 78 0. 00 0. 00 2. 33 05 0. 00 0. 00 14 0 1 2 4 0. co 78 1. 55 3. 10 0. 00 . 05 . 09 19 0 1 0 5 0. 00 78 0. 00 3. 88 0. C:> 05 0 00 . 23 0 0. co 0. co 4 14 31 37 3. 10 10. 85 24. 03 28. 68 19 65 1. 44 1. 72 KE't' XX.( NUMBER OF OCCURRENCES XXX PERCENf OCCURRENCES THIS CLASS XXX PERCENr OCCURRENCES ALL CLASSES CLASS WOLF CREEK GENERATING BURLINGTON, KANSAS STAllON KANSAS CAS AND ELEC TR [ C DAMES AND f1DDRE JOB NO* 7699-064 SECONDl MEAN 7 5-10 0 >to. o TOTAL SPEED 0 0 7 3 96 0 00 0 00 ::. 43 0 00 0. 00 32 0 0 1 5. 10 0 00 0. 00 78 0 00 0. 00 05 1 0 3 5 87 78 0 00 33 05 0 00 14 0 0 6 4 57 0 00 0. 00 *1 65 0. 00 0. 00 28 0 0 4 5. 20 0 00 0 00 :3. 10 0. 00 0. 00 . 19 0 0 6 4. 58 0 00 0 00 1l. 65 0 00 0. 00 28 2 1 7 6 26 1. 55 78 43 09 05 32 13 3 32 6. 97 10. 08 2. 33 2*1. 81 60 14 .I 48 10 3 22 7 38 7. 7'5 2. 33 1:1 05 46 14 :\. 02 0 1 3 8 10 0 00 . 78 " 33 0 . 00 05 . 14 1 0 1 8 00 78 0. 00 78 05 0. 00 . 05 0 0 5 3 32 0. 00 0. 00 3. 88 0 00 0. 00 . 23 1 0 8 4 26 78 0. 00 20 . 05 0. 00 37 0 0 4 4 65 0. 00 0 00 ., 10 0. 00 0. 00 . 19 1 0 8 5 45 . 78 0. 00 6 20 05 0. 00 37 6 0 12 6 90 4. 65 0. 00 9. 30 . 28 0. 00 . 56 0 CALM 0.00 () 00 35 8 129 6. 07 27. 13 6. 20 100.00 1. 62 37 98 JOINT !.JitJD FREOUEtJCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD* ALL Mf..Y COMBINED STt.BILIT'i CLASS: PASGUILL D Dt.TA SOURCE: ON-SITE SEt...!::iOR HEIGHT 10. 00 METERS Tf..l3LE 11/11/81. 10. 41.:53. WIND WINO SPEED CATEGORIES <METERS PER SECTQR 0 0-1. 5 1. 5-3 0 3 0--5.0 5. 0-7. 5 1 1 19 19 18 18 3. 43 3. 43 . 05 05 88 . 88 NE 2 4 14 8 36 72 2. 53 1. 44 09 19 65 . 37 ErJE:. 1 8 12 14 18 1. 44 2. 17 2. 53 05 37 . 56 65 E 0 6 12 11 0. 00 1. 08 2 17 1. 99 0. 00 28 . 56 51 ESE 1 5 9 16 18 90 1 62 2. 89 . 05 23 42 . 74 SE 1 2 18 16 18 36 3. 25 2. 89 05 09 83 . 74 SSE 0 7 13 10 0 co 1. 26 2. 35 1. 81 0 00 32 60 46 1 8 17 40 18 1. 44 3 07 7 22 05 37 79 1. 85 1 1 6 18 18 18 1 08 3. 25 05 05 . 28 83 sw 0 4 1 1 0. 00 72 18 18 0. 00 19 05 05 1 3 5 4 18 54 90 72 05 14 23 19 '" 0 4 10 0 0 00 72 1. 81 0 00 0. 00 19 46 0 00 2 4 5 4 36 72 90 72 09 19 23 19 0 2 2 13 0 00 36 36 2 35 0. 00 09 09 60 0 2 9 15 0. 00 36 1. 62 2. 71 0 co 09 42 70 " 0 7 11 11 0 00 1 26 1 99 1. 99 0 00 32 5l 51 CAL:"! 0 0 00 0 00 TOTAL 11 68 163 200 1. 99 12. 27 29 42 36. 10 51 3. 15 7. 9 27 XX< NU.10ER OF OCCURRENCES XX:< PERCEtl r OCCURRENCES THIS CLASS .ox PERCENT OCCURRENCES ALL CLASSES WOLF CREEK GEt-!ERATING STAT ION BURLINGTON, KANSAS KANSAS GAS AND ELECTFt I C DAMES AND MOORE JOB NO: 7699-064 SECOND) MEAN 7. 5-10 0 )10. 0 TOTAL SPEED 3 3 46 :). 73 54 54 B. 30 14 . 14 2 13 1 0 29 4. 24 18 0. 00 5. 23 05 0 00 1. 34 3 0 3!] 4. 68 . 54 0 00 6 86 14 0 00 1 . 76 2 0 31 4. 73 36 0 00 5. 60 09 0. 00 1. 44 1 0 32 4. 91 18 0. 00 5. 7B 05 0. 00 1. 48 1 0 38 4 93 18 0. 00 6. 86 . 05 0. 00 1 76 3 0 3:3 4 92 . 54 0. 00 5.96 14 0. 00 1. 53 29 24 119 7. 47 5. 23 4. 33 1. 48 1. 34 1. 11 5 52 21 8 55 7 51 3 79 1. 44 9. 93 97 37 2. 55 1 0 7 3 93 18 0. 00 1. 26 05 0. 00 32 0 0 13 4. 02 0. 00 0. 00 2. 35 0. 00 0 00 60 0 0 14 3 34 0 00 0. 00 2. 53 0. 00 0 00 6o 1 0 16 3. 94 18 0 00 89 05 0. 00 74 5 0 22 6 10 . 90 0 . 00 3. 97 23 0 00 1 02 2 0 28 5 19 36 0. 00 5. 05 09 0 00 1 30 3 1 33 5 14 54 18 1: 96 . 14 05 53 0 CALM 0 00 D. 00 76 36 554 5 70 13. 72 6 50 100 00 3 52 1. 67 68 Rev. 0 48 WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 1 0 .l'-1E TE RS ) Page 19 of 48 ....iOitH tnND FREOUE:,JCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD ALL )"1AY COMBINED STf,81L. ITY CLASS PASGUILL E DATA lnNn HEIGHT. 10.00 METERB fAlli_E GENc.RATED 11111/81 10 41.53 WOLF CREEK GENERATING STAT J.ON BURLINGTON, 1-<.ANSAS KANSAS GAS AND ELECTH I C DAMES AND JOB NCI 7699-064 hiND SECTUR WINO SPEED CATEGORIES(MEl"ERS PER SECOND) MEAN 00-151.:::,-30 30-50 75-100 )100 TOTAL SPEED ENE ESE. SE SSE ssw sw CA! M TOTAL KEY 0 0 OJ 0 co 2 3*t 09 4 69 19 2 34 09 2 34 09 1 17 05 0 0. Qi) 0 00 5 84 23 2 34 09 09 1 17 05 09 2 34 09 1 17 05 0 0 00 0 00 1 [7 . '-5 0 0. 00 0. 00 27 4 56 1 25 4 68 19 12 2. 03 56 14 36 65 09 5 84 23 10 1 69 46 16 2 70 74 13 2 20 . 60 7 1 18 32 9 1 52 42 3 51 14 1 17 05 4 68 19 09 2 34 09 4 68 19 108 18. 24 5. 01 ,, 1 42 16 2. 70 74 9 l 52 42 9 1. 52 *-t2 3 :38 93 24 4 05 1.11 32 5. 41 1. 48 25 4 22 1.16 11 1 86 51 10 1. 69 46 0 0 00 0. 00 3 . 51 14 4 68 19 4 68 . 19 12 2 03 56 7 1. 18 :52 195 32.94 9. 04 XXX NUMBER OF OCCURRENCES 16 2 70 74 4 68 19 j 17 05 13 2. 20 60 4 68 19 9 1 52 . 42 25 88 14. 86 4. 08 8 1. 35 37 7 1 18 32 3 51 . 14 1 17 05 1 17 . OS . . 09 11 1. 86 51 9 1. 52 42 202 34. 12 9. 36 XXX PERCENT OCCURRENCES THIS CLASS XX.< PERCENT OCCURRENCES ALL CLASSES 0 0 00 0 00 1 17 05 0 0 00 0. 00 09 0 0 00 0. 00 1 17 05 2 34 . 09 21 3. 55 97 5 84 . 23 1 . 17 05 0 0. 00 0 00 0 0 00 0. 00 1 17 . 05 0 0. 00 0. 00 2 34 . 09 1 17 05 37 6. 25 1. 72 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0. 00 1 17 05 0 0. 00 0. 00 3 1 02 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 23 3 89 1. 07 29 90 34 35 91 62 28 *1 73 L: 30 28 *1 73 1. 30 31 :i. 46 7 77 :2: 13 75 67 :3 48 174 2'i' 39 a 07 33 57 53 29 4. 90 I. 34 7 L. 18 32 7 L. 18 . 32 12 03 56 9 I. 52 . 42 27 56 25 22 :i!* 0 0. 00 0 00 592 100.00 27. 45 5 02 3 57 2 67 4 62 3 84 4. 21 4. 35 6. 42 4 50 4 01 3 74 3. 43 3. 21 3. 68 04 4. 62 CALM 4 82 ,.JOINT l.JIND DISTRIBUTION BY STABILITY CLASS DhTA PERIOD ALL M.4Y COMBINED STABILITY PASGUILL F SOURCE O.N-51 TE SENSOR HEIGHT. 10. 00 METER:Oi TABLE GENERATED: 11111/81. 10 41. 53. WOLF CREEK GENERATING STAl XON BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOD NO* 7699-064 SECTOR WINO SPEED CATEGORIES01ETERS PER SECONDl o o-1. 5 1 o 3 o-5. o 5 o-7 s 7 5-to o :>to. o MEAN 1\'NE ENE ESE SE SSE N TOTAL 0 o. oa 0 co 0 0. 00 0. 00 1 43 OS 1 43 05 2 87 09 0 0 00 0 00 0 0 00 0. 00 1 43 05 2 87 09 0 0 00 0 00 2 87 09 2 87 09 0 g gg 0 0 00 0 co 1 43 05 2 87 09 0 0 00 0 OJ 14 6 09 65 5 2 17 23 13 5 65 60 10 4. 35 . 46 8 3 48 37 12 5 22 56 16 6. 96 74 20 8. 70 93 7 3. 04 32 3 1 30 . 14 5 2. 17 23 09 1 43 05 2 87 09 5 2. 17 23 7 3 04 32 7 3 04 32 123 53 48 5 70 4 1. 74 19 9 3. 91 42 13 5 65 60 13 5. 65 60 8 3. 48 37 5 2. 17 23 9 3 91 .42 12 5 22 . 56 3 1. 30 14 0 0. 00 0. 00 1 '" 05 09 2 87 09 1 43 OS 0 0 00 0 00 7 3 04 89 38. 70 4 13 hEY X X.( HL'f1I3ER OF OCCURRENCE'S 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0 00 1 43 . 05 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 () 0. 00 o_ 00 0 0. 00 0 00 0 0. 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0 00 09 3 1 30 14 XXX PERCENr OCCURRENCES THIS CLASS 1../..X PERCHH OCCURRENCES ALL CLASSES 0 0 00 0. 00 1 43 . OS 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 1 43 05 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0. 00 0 00 0 0. co 0 00 0 0 00 0 00 TOTAL SPEED 9 91 42 23 10.00 1 07 24 10.43 L.11 23 10.00 L. 07 22 'i' 57 .L: 02 21 <i". 13 . 97 29 1 61 1 34 20 B 70 93 8 **. 48 37 5 . 17 23 , c *. 17 23 5 c *. 17 23 4 l 74 . 19 6 c: .. 61 28 8 :! 48 37 18 1'. 83 83 0 0 00 0 00 230 100 00 10 66 3 19 3. 11 2. 88 3. 17 2. 97 2 60 2 83 3 16 2 86 2 30 2 12 2 44 2. 60 2. 58 2 20 3 11 CALM 2 89 Rev. 0 WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY BY STABILITY CLASS (MONTHLY 10 METERS) Page 20 of 48 JOINT t.JIND FREQUErKY DISTRIBUTION BY CLASS DATA PERIOD ALL MAY COMI31NED STM31LITY CLASS PASGUILL G DMTI. SOURCE 0.\l-SITE I>JirJG HEIGHT 10 00 WOLF CREEK GENERATING STATION BURLINGTON, KAtJSAS r;..OLE.. GENC::RATEO 11/11/81. 10.41. 53. KANSAS GAS AND ELECTRIC DAMES AND NOORE .JOB NO 7699-064 WIND 5f'EED CATEGORIES<METERS PER SECOND) SECTOrt 0 0-1. 5 1 :,-3 0 3 0-5 o 5 0-7 5 7 5-10 0 >10. 0 ENE ESE SE SSE ssw sw WSW w NW N CAlM TOTAL 3 1 70 '" 3 1 70 14 0 0 03 0 OJ 2 1 14 09 1 57 05 3 1. 70 14 1 57 05 1 57 05 2 1. 14 09 1 57 05 1 57 05 4 2. 27 19 0 0. co 0. 00 1 57 05 0 0. 00 0. 00 2 1. 14 09 0 0 00 0. 00 25 14 20 1. 16 6 3 41 28 4 2 27 19 9 5 11 42 7 3 98 32 8 4. 55 37 9 5. 11 42 6 3. 41 28 15 B. 52 70 0 0. 00 0 00 1 57 OS 1 57 OS 4 2 27 . 19 10 5. 68 46 11 6. 25 51 9 5. 11 . 42 8 4. 55 37 108 61 36 5. 01 15 8 70 4 2. 27 19 2 1. 14 09 1 57 OS 1 09 1 57 05 3 1 70 14 4 2 27 19 1 09 0 0. 00 0 00 0 0 00 0 00 1 . 57 OS 1 57 05 1 57 05 1 57 05 5 2 84 23 43 24 43 1 99 KEY XXX NU;"!BER OF OCCURRENCES 0 0. 00 0 00 0 0 00 0 DO 0 0. 00 0 00 0 0. 00 0. 00 0 Q_ 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 XXX PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0 00 0 0. 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 J0!lH FRE.OtJf:Ncv U!STRIBUTION BY STABILITY CLASS DATA PERIOD: ALL MAY COMBINED 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 . 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 MEAN TOTAl. SPE.ED 24 l3. 64 1.11 1! 6. 51 11 6 , 10 5. 6B . 46 11 6 51 1:l 7. 39 60 10 5, 6El 46 20 ll, 36 9:1 4 2 2'7 19 1. 0:!, 1 14 09 ,, 5. 11 4;2 11 6. 51 1:3 7, . 60 10 5. 6!3 46 1::; 8. 52 70 0 0 00 0, 00 176 100 00 B. 16 3 10 2 35 2. 59 2 32 2 29 2. 27 2. 69 2. 55 2. 47 2. 00 1. 75 1 68 2. 35 2. 10 2. 48 2. 56 CALM 2. 46 ALL CLASSES DATA SOURCE 0:-.J-SITE SEN30R HEIGHT* 10. 00 METERS WOLF CREEK GENERATING STATION BURLINGTON, KANSAS TL.,OLE GENFRATED: 11/11/81. 10 41. 53. KANSAS GAS AND ELECl RIC DAMES AND MOORE JOB NO: 7699-064 WIND SECTOR NO SPEED CATEGORIES (METERS PER SECOND) 0. 0-1. 5 1 5-3 0 3 0-5. 0 5. 0-7. 5 7. 5-10.0 )10 0 NNC NE ENE E ESE SE SSE s ssw sw WSW w WNW N CALM TOTAL 4 19 8 37 6 28 5 23 6 . 28 5 23 1 OS 9 <2 9 42 3 14 s 23 8 37 5 23 4 19 1 OS 5 23 0 0 co 84 3 89 25 1. 16 36 1 67 43 1 99 28 1. 30 37 1 72 39 1 81 53 2. 46 45 2 09 15 70 20 93 13 60 13 60 23 1 07 1. 23 1 07 31 1 44 466 21.60 NUM3E'R OF VALID OBSERVATIONS N'Jt13ER or ClDSERVATIONS TOTAL OF OBSERVATIONS 59 2 74 53 2. 46 44 2. 04 42 1. 95 47 2. 18 66 3. 06 71 3. 29 69 3. 20 34 1 58 20 93 6 28 17 79 16 74 36 1 67 44 2 04 646 29. 95 2157 75 2232 KEY XX ( NL.::1BER OF OCCURRENCES .<X!. PERCENT OCCURRENCES 47 2. 18 15 70 18 . 83 32 1. 48 31 1. 44 36 1. 67 44 2. 04 172 7 97 46 2. 13 15 70 7 32 2 09 6 28 32 1. 48 50 2 32 41 1. 90 5 . 23 3 . 14 s . 23 5 23 5 . 23 3 14 10 46 103 4. 78 80 3. 71 11 51 1 OS 0 0. 00 3 . 14 6 . 28 7 32 14 65 594 27 54 261 12 10 96 64 PCT. 3 36 PCT 100 00 PCT 3 14 0 0. 00 0 0. 00 3 14 4 . 19 1 OS 1 05 60 2. 78 29 1. 34 4 . 19 0 0. 00 0 0. 00 0 0. 00 0 0. 00 0 0. 00 1 05 106 4. 91 MEAN TOTAL SPEED 143 6. 63 115 5. 33 116 5 38 115 5. 33 130 6, 03 150 6. 95 180 B. 34 458 .21 23 213 9. 87 73 3,:18 :J:::! 1. 48 45 2.09 54 2. 50 80 3. 71 11'/ 5 4;2 136 6 31 0 0 00 2157 100 00 4. 71 3. 55 3 68 4. 35 4. 34 4. 12 4 30 6. 70 7. 18 4 99 3. 43 2. 99 3. 34 4 52 4 74 4 71 CALM 5 06 Rev. 0 WOLF CREEK TABLE 2. 3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) ,JLJ[tH LJIND FREQUENCY DISTRJI3UTION BY STABILITY DATA PERIOD ALL v*JNE corm INED ST.:-3 II_ITY CLASS PASQUILL A DHTA SOURCE CN-Sl TE I r>lf! SENSOR 10 00 METERS lADLE. GEt.:ERATED 11/11/81 10 54. 26. I...! INO WINO SECTOR 0 0-1 5 SPEED CATEGDRIES(I1EfERS PEH 1 >-3 0 3. 0-5. 0 5 0-7 5 N:.JE NE ENE E ESE SE SSE s ssw sw ws:.s w NW N CAL:-1 TOTAL 0 4 B 12 0 00 1 05 0'? 3. 14 0 co 20 3'1 59 0 3 11 0 0 00 79 2 88 0 00 0 CJ 15 54 0. 00 2 2 10 0 52 52 2. 0. 00 10 10 49 0. 00 0 0 3 0 0 00 0 00 79 0. 00 0 OJ 0 00 15 0. 00 0 4 3 0 0. 00 1 OS 79 0. 00 0 OJ 20 1 0. 00 0 2 2 2 0. CJ 52 52 0. 00 10 10 . 10 0 7 l:J 10 0 00 1 83 3 40 2. 62 0 00 35 M 49 0 8 19 33 0. co 2 09 4 97 8. 64 0 co 39 94 1. 63 0 3 25 30 0 03 79 6 54 7. 85 0 00 . 15 1. 23 1. 48 0 7 " 9 0. OD 1 83 2. 09 2. 36 0. 00 35 39 44 0 4 1 o c0 1. 05 5;? . 26 0. 00 20 10 . OS 0 7 8 2 0 00 1. 83 2. 09 . 52 0 00 35 . 39 10 0 1 3 6 0 00 . 26 79 1. 57 0. 03 05 . 30 1 2 0 26 52 0. 00 05 10 0. 00 . 10 1 0 10 26 0. 00 . 52 2. 62 05 0 00 . 10 49 0 4 2 3 0. 00 1. 05 . 79 0 00 20 10 . IS 0 0 co 0 00 4 58 119 120 1 05 15 18 31. 15 31. 41 20 2. 86 '5. 87 5. 92 KEY XX:< NUMBER OF OCCURRENCES .<XX PERCENr OCCURRENCES THIS CLASS XX.( PERCENf OCCURRENCES ALL CLASSES CLASS WOLF CREEK GENERATING BURLINGTON, KANSAS STATIClN KANSAS GAS AND ELECTRIC DAMES AND MOORE ,JOB NO: 7699-064 SECOND) MEAN 7 5-10 0 >10. 0 TOlAL SPEED 1 0 ::?5 5 11 26 0 00 54 05 0. 00 23 0 0 14 3 89 0 00 0 00 3 66 0 00 0 00 69 0 0 14 3. 15 0 00 0 00 3. 66 0 00 0 00 69 0 0 3 3 90 0. 00 0. 00 79 0 00 0. 00 15 0 0 7 3. 04 0 00 0 00 1. B3 0 00 0 00 35 0 0 6 3. 70 0 00 0 00 1. 57 0 . 00 0 00 30 0 0 30 4 30 0. 00 0 00 7. 85 0. 00 0. 00 1. 48 22 2 84 6 17 76 52 21. 99 09 10 4. 14 26 15 99 6. 96 6 81 3. 93 25. 92 1. 28 74 4 88 3 2 29 5 53 79 52 7 59 15 10 1. 43 0 0 7 3. 29 0 . 00 0. 00 1. 83 0 00 0. 00 35 0 0 17 3. 83 0 00 0. 00 4. 45 0. 00 0. 00 84 0 0 10 s 14 0 00 0. 00 2. 62 0 00 0. 00 49 1 0 6 4. 12 26 0. 00 1. 57 05 0. 00 30 3 0 16 6. 25 79 0. 00 4. 19 15 0. 00 . 79 6 0 15 5. 59 1. 57 0. 00 3 93 30 0. 00 74 0 CALM 0 00 0. 00 62 19 382 5 57 16. 23 4. 97 100.00 3. 06 94 18.85 JOINT tnND FREQUENCY DISTRIBUTION BY STABILITY CLASS OAT A Pf?q I 00 ALL ...;.JNE COMBINED STh3ILITY CLASS: PASQUILL B Df'..TA L.JI"Jn SH1SOR HEIGHT* 10.00 METERS TABLE GENERATED: 11/11/81 10 54. 26. WIND wn.m SPEED CATEGORIES(METERS PER SECTOR 0. 0-1. 5 1. 5-3. 0 3 0-5 0 5. 0-7. 5 tJ:-,tE. 0 0 0 1 0 00 0. 00 0. 00 1.11 0 co 0 00 0. 00 . 05 tJF 0 2 0 0 0 00 2. 22 0. 00 0. 00 0 00 10 0. 00 0. 00 ENE 0 1 0 0 0 00 1 11 0. 00 0. 00 0 03 05 0 00 0 00 E 0 0 1 0 0 03 0 00 1.11 0. 00 0 OJ 0. 00 05 0. 00 ESE 0 0 1 2 0 co 0 00 1.11 2 22 0 00 0. 00 OS 10 SE 0 0 0 2 0 OQ 0 00 0. 00 2 22 0. O*J 0 00 0. 00 10 SSE 0 0 1 0 0 co 0 00 1.11 0. 00 0. OJ 0. 00 05 0. 00 0 3 2 9 0 OJ 3 33 2. 22 10. 00 0 00 15 . 10 . 44 ssw 0 1 4 8 0 00 1.11 4 44 8. 89 0 CQ 05 20 39 sw 0 0 :J 2 0 00 0. 00 3. 3:3 2. 22 0. OD 0. 00 15 10 0 0 l 1 0 OD 0 00 1.1L 1.11 0 OJ 0. 00 05 . OS w 0 4 2 0 0 co 4 44 2 2;;? 0. 00 0 CJ 20 10 0 00 0 3 0 0 OJ 3. 33 2 0. 00 0 OJ 15 10 0. 00 0 3 0 4 0 00 3 33 0 00 4. 44 0 00 15 0 00 . 20 NNL>J 0 0 4 5 0 00 0 GO 4 44 5. 56 0 CJ 0 00 2() . 25 N 0 3 0 0 0 OJ 3. 33 0 00 0 00 0 00 15 0 00 0 00 CAl :-1 0 0 00 0 OJ TOTA'._ 0 20 21 34 0 co 22. 22 23 3:1 37 78 0 00 99 1 0 1 68 1--\EY (X . .( NUi'1RER OF OCCURRENCES XX< PERCEr.J f OCCURRENCES THIS CLASS '" PERCEtH OCCURRENCES I1LL CLASSES WOLF CREEK GENERATING 5TATIDN BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 76'7'9-064 SECOND) MEAN 7 5-10. 0 >tO. 0 TOTAL SPEED 0 0 1 6. 10 0 00 0. 00 1 11 0. 00 0. 00 05 0 0 2 2. 15 0 00 0. 00 2 22 0 00 0. 00 10 0 0 1 1. 70 0 00 0. 00 1 11 0 00 0. 00 05 0 0 1 3. 90 0. 00 0. 00 1.11 0. 00 0. 00 05 0 0 3 s 17 0. 00 0. 00 3. 33 0. 00 0. 00 15 0 0 2 5 so 0. 00 0 00 2 22 0 00 0 00 10 0 0 1 5 00 0. 00 0. 00 1 11 0. 00 0. 00 05 10 1 25 6. 84 11. 11 1 11 27 78 49 OS 1 23 2 1 16 5. 79 2 22 1.11 17 78 10 05 79 0 0 5 5. 20 0 00 0. 00 5 56 0. 00 0 00 25 0 1 3 7 47 0 00 1 11 3. 33 0 00 OS 15 0 0 6 2 85 0 00 0. 00 6. 67 0. 00 0. 00 30 0 0 5 3. 24 0. 00 0. 00 5 56 0. 00 0. 00 25 0 0 7 4. 07 0. 00 0. 00 7. 78 0 . 00 0 00 35 0 0 9 s 53 0 00 0. 00 10 00 0 00 0. 00 44 0 0 3 2. 20 0 00 0. 00 3 33 0 00 0 00 15 0 CALM 0 00 0 00 12 3 90 5. 31 13 33 3. 33 100 00 59 15 4 44 Page 21 of Rev. 0 48 WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) Page 22 of ,JOrtH ln;m FREQUEfJCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD ALL ""'0:-..IE CDf1BINEO STHB fl ITY CLASS PASQUILL C DATA 0:\1-SI TE SE.rJ30R HEIGHT lO 00 METERS T:,GLE GENERATED 11/11/81 10 '54 26 CREEK GENERATING STATION 13URLINGTON. KANSAS GAS AND ELECTR 1 C DAMES AND MOORE .JD!3 NO 7699-064 WIND SECTOR WINO SPEED CATEGORIES<MEfERS PER SECOND) 0.0-15 1S-30 30--;50 75-10.0 >100 MEAN NF ENE ESE SE SSE s "3SW sw INSW '"' CAl :1 TOTAL 0 0 00 0 co 1 1 03 05 0 0 co 0 00 0 0 co 0. 00 0 0 00 o. oa 0 0. co 0 co 0 0 00 0 00 0 0. co 0 co 0 0. 00 0 00 0 0 00 0. 00 0 0 co 0. 00 0 0 00 0 co 0 0. co 0. 00 0 0. co 0. 00 0 0 00 0 00 0 0. co 0 00 0 0 co 0. OJ 1 1. 03 05 0 0 00 0 00 1 1 03 05 1 1 03 05 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 1 1 03 05 1 1. 03 05 3 3 09 . 15 0 0 00 0. 00 0 0 00 0. 00 1 1. 03 05 2 2. 06 10 1 1. 03 05 1 1. 03 05 0 0 00 0 00 12 12. 37 59 2 2 06 10 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0 00 1 1 03 05 3 3. 09 15 3 3. 09 15 4 4 12 20 2. . 10 0 0 00 0. 00 0 0. 00 0 00 1 1. 03 . 05 4 4 12 20 5 S. 15 25 4 4. 12 . 20 0 0. 00 0. 00 29 29 90 1 43 KEf XX:< NUMBER OF OCCURRENCES 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 I 1. 03 05 4 4 12 20 12 12 37 59 10 10 31 49 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 1 1 03 05 3 3. 09 15 0 0 00 0 00 0 0. 00 0 00 31 31.96 1. 53 XX.( PERCENf OCCURRENCES THIS CLASS XX:< PERCENf OCCURRENCES ALL CLASSES 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0 00 1 1. 03 OS 10 10.31 49 4 4. 12 20 1 1. 03 05 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 1 1. 03 . 05 17 17. 53 84 0 0. 00 0 00 0 0 00 0 00 () 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0 00 1 1. 03 . 05 2. 10 2. 10 1 1. 03 05 1 1. 03 05 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 7 7. 22 . 35 TOTAL SPEED 2 2 06 10 2 o6 10 1 1. 03 05 0 0. 00 0. 00 1 1. 03 05 4 4. 12 . 20 9 9. 28 44 28 87 1. 38 21 21 65 1 04 3 3. 09 15 1 1. 03 . 05 3 3. 09 15 7 7. 22 3S 9 9. 28 44 5 5 15 25 1 1 03 05 0 0. 00 :::>. 00 97 100 00 4. 79 4 10 2 15 2 70 0. 00 4 40 4 52 5 10 6. 84 6 38 9 67 11.70 6. 10 4 06 4. 60 4 08 7. 70 CALM 5. 84 JOINT FREQU£1-JCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD. ALL JUNE CDt1BlNED STABILITY CLASS PASGUILL D DATA SOURCE. I TE i.JHJO SENSOR HEIGHT 10.00 METERS TABLE GENt-RATED: 11/11/81. 10.54.26. WOLF CREEK. GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7699-064 WIND SECTOR WIIHl SPEED CATEGORIES{METER5 PER SECOND) o. o-1. s 1 5-3 o 3 o--5 o s o-7. 5 7. 5-1o. o :>10. o MEAN NNE ESE SE !3SE CAl i"i TOTAL 0 0 00 0 00 0 0 00 0 0;) 0 0 00 0. 00 0 0 co 0. OD 1 21 05 0 0. 0;) 0. 00 1 21 05 1 21 05 0 0. 00 0. 00 0 0. 00 0 00 1 21 05 0 o. oa 0. 00 1 21 05 0 0 00 0 00 1 21 OS 0 0 00 0 00 0 0 00 0 00 6 1 23 30 3 62 15 4 82 20 . 4I 10 7 1 44 35 4 82 20 7 1. 44 35 10 2. 05 49 9 1. 85 44 4 82 20 41 10 3 62 15 3 62 15 1 21 05 1 21 05 2 41 10 " 1 03 25 67 13 76 3 31 7 1. 44 35 7 1 44 3S 12 2. 46 59 12 2 46 ;9 10 2. 05 .ii9 13 2. 67 b4 24 4. 93 1. 18 :18 7. ElO 1 87 18 3 70 89 5 1. 03 . 25 4 . 82 20 7 1. 44 35 4 82 20 12 2 46 59 13 2. 67 b4 12 2 46 59 198 40 66 977 lo{EY X'/.,( OF OCCURRENCES 2 41 10 1 21 05 2 41 10 4f 10 1 . 21 OS 0 0. 00 0. 00 16 3. 29 79 41 B. 42 2. 02 35 7 19 1. 73 2 41 10 1 21 . 05 0 0 00 0. 00 2 . 41 10 4 82 20 13 2. 67 . b4 4 82 20 126 25 87 6. 22 .(X( PERCENT OCCURRENCES THIS CLASS AX.X PERCENT OCCURRENCES ALL CLASSES 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 4! 10 3 62 15 1 21 05 4T 10 42 8 62 2. 07 22 4 52 1 09 1 21 05 0 0 00 0. 00 0 0. 00 0 00 1 21 05 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 74 15 20 3 65 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 4 82 . 20 6 1. 23 . 30 4! 10 0 0 00 0. 00 4f 10 2 . 41 10 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0 00 16 3 29 79 TOTAL SPEED 12 2. 46 . 59 12 2. 46 59 16 3. 29 79 23 72 13 19 3. 90 94 21 4. 31 1. 04 53 10.88 2.61 135 27. 72 66 85 17. 45 4 19 12 .2. 46 . 59 9 1. 85 . 44 12 ;2 46 59 11 26 54 17 :3 49 84 29 95 43 21 31 04 0 () 00 0 00 487 100 00 03 4 07 3 35 3. 71 3 95 4. 18 3. 49 4. 52 6. 16 6 49 5 36 3 20 4 77 5. 73 4 57 4 60 3 90 CALM 5 18 Rev. 0 JOINT WOLF CREEK TABLE 2.3-31 (Continued) WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) Page 23 of .JOirH tJitW FREQU.::::KY DISTRIBUTION BY STABILITY DATA f'E.RIOD ALL v'JNE CDr113 !NED STA13ILITY CLASS PASQU ILL E Dt'\TA snURCE ON-51 TE I SENSOR HEIGHT 10 00 METERS 11\0LE CENI-Rf..TED 11/11/81 10 ,. 26 WIND WINO SPEED CA1lGOR IES {M\::TERS PER SEC TOR 0 0-1. 5 1. ::.-3 0 3 0-5 () 5 0-7. 5 WJE rJE EtJE ESE SE SSE 55:..1 1-JSW w Ni>l :>.:Nl-1 N CAL!""! TOTAL 1 1 5 1 17 I 7 86 17 OS 05 25 OS 1 8 7 3; 17 1. 38 1 21 OS 39 35 10 0 6 6 1 0 00 1. 04 1 04 17 0 00 30 30 OS 3 6 9 0 52 1 04 1. 55 0. 00 15 30 44 0 00 1 7 7 2 17 1. 21 1 21 35 05 35 35 . 10 0 10 11 3 0 00 1. 73 1 90 52 0. co 49 54 . 15 1 11 48 22 17 1 90 8. 29 3 80 05 54 2. 37 1 09 1 21 94 50 17 3. 63 16 23 8 64 OS 1 04 4. 64 2. 47 1 10 22 ., 17 1 73 3 80 7 77 05 49 1. 09 2. 22 0 10 16 4 0 00 1. 73 2. 76 69 0 co 49 79 . 20 0 7 4 2 0. 00 1. 21 . 69 35 0. 00 35 20 10 0 8 5 0 0 oo 1. 38 86 0 00 0. 00 39 25 0. 00 0 5 6 5 0. 00 . 86 1. 04 86 0. 00 25 30 . 25 1 3 4 2 17 52 69 35 OS 15 20 10 0 3 6 6 0. co 52 1. 04 1. 04 0. 00 15 . 30 30 0 5 5 1 0 00 86 . 86 17 0. 00 25 25 OS 0 0. co 0. 00 10 121 255 146 1 73 20 90 44.04 25. 22 49 5 97 1-2 58 7. 20 KEY XX ( NUMBER OF OCCURRENCES XXX PERCENf OCCURRENCES THIS CLASS XX.( PERCENT OCCURRENCES ALL CLASSES CLASS WOLF CREEK GENERATII\IG KANSAS STATION K/1NSAS GAS AND ELECfR1C DAMES AND MOORE JOB NO* 7699-064 SECOND) MEAN 7 0 >10 0 TOTAL SPEED 0 0 8 3 77 0 00 0 00 1 JS 0 00 0 00 39 0 0 1c3 3 28 0 00 0 00 3 11 0 00 0 00 89 0 0 13 3 10 0. 00 0. 00 2. 25 0. 00 0 00 64 0 0 18 2. 84 0 00 0. 00 3 11 0. 00 0. 00 89 0 0 17 3. 46 0 00 0. 00 2. 94 0 00 0 00 84 0 0 24 3 52 0. 00 0. 00 4. 15 0. 00 0 00 1. 18 3 0 85 4 39 52 0. 00 14. 68 15 0 00 4 19 16 3 185 4 99 2. 76 . 52 31. 95 79 15 9. 13 9 5 97 5. 80 1. 55 86 15 89 44 25 4 54 3 0 33 4. 18 . 52 0 00 5 70 . 15 0. 00 1. 63 0 0 13 3. 33 0 . 00 0. 00 2. 25 0. 00 0. 00 6. 1 0 14 3. 26 17 0. 00 2. 4.2 . 05 0. 00 6 0 0 1,o 4 29 0. 00 0. 00 2. 7<0 0 . 00 0 00 79 3 0 1:3 4. 84 . 52 0 . 00 2. 2S 15 a. 00 M 4 0 19 5 17 69 0 00 3. 28 20 0 00 94 0 0 11 3 27 0 . 00 0. 00 1. 90 0. 00 0. 00 54 0 CALM 0. 00 0. 00 39 8 57'1 4. 57 6. 74 1 38 f.OO 00 1 92 39 28 Sb JOHH WIND FREGUi.:::rJCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD* ALL JUNE COMBINED STA31LtTY Clt..SS: PASQUILL F D.t. T A SOURCE. ON-SITE I.! INO SENSOR HEIGHT* 10. 00 METERS T.t.GLE GENFRMTED* 11/11/81 10.54 26. WIND WINO SPEED CATEGDRIESCMETERS PER SECT 0. 0-1. 5 1. S-3 0 3. o 5. 0-7. 5 0 10 2 0 0. 00 4 46 89 0 00 0 00 49 10 0 00 NE 2 9 3 0 69 4.02 1. 34 0 00 10 44 . 15 0 00 ENE 1 5 1 0 45 2 23 45 0. 00 OS 25 05 0. 00 1 4 2 0 45 1 79 89 0. 00 05 20 . 10 0. 00 ESE 2 12 2 0 69 5. 36 89 0. 00 10 59 10 0. 00 SE 1 15 5 0 45 6 70 2. 23 0 00 OS 74 25 0. 00 SSE 2 23 14 0 89 10 27 6. 25 0. 00 10 1. 13 69 0 00 s 1 12 23 0 45 5. 36 JO. 27 0 00 OS 59 1 13 0. 00 SSW 3 9 5 0 1 31 4 02 2. 23 0. 00 15 44 25 0 00 sw 3 5 3 0 1 34 2 23 1. 34 0 00 15 25 15 0. 00 :..15:..1 2 4 2 0 69 1. 79 69 0 00 10 20 10 0 00 w 1 2 1 0 45 89 45 0 00 05 10 OS 0 00 WtJ:..J 0 5 4 0 0 00 2 23 1 79 0. 00 0 oa 25 20 0. 00 ;"w 0 3 0 0 0 00 1 34 0 00 0 00 0 00 15 0 00 0. 00 1 8 3 0 45 3 57 1. 34 0. 00 05 39 15 0 00 N 0 6 2 0 0 00 2 68 89 0 00 0 00 30 10 0. 00 CAL;1 0 0 00 0 00 TOIAl.._ 20 132 72 0 8 93 58. 93 14 0 00 99 6. 51 3 55 0 00 XX< tJU:1J3ER OF OCCURRENCES .ox PERCErH OCCURRENCES THIS CLASS <XX PERC EN r OCCURRENCES ALL CLASSES WOLF CREEK GENERATING SlATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JDD NO: 7699-064 SECOND) MEAN 7. 5-10. 0 >10. 0 TOTAL SPEED 0 0 12 2. 69 0. 00 0. 00 5. :36 0. 00 0. 00 :;)9 0 0 14 2. 34 0. 00 0. 00 6 0. 00 0. 00 69 0 0 7 2. 16 0 00 0 00 3. 12 0. 00 0. 00 ::::ts 0 0 7 2. 76 0. 00 0 00 3. 12 0. 00 0. 00 35 0 0 16 2. 50 0. 00 0. 00 7. 14 0. 00 0 00 79 0 0 :;'1 2. 61 0. 00 0 00 9. :l7 0 00 0. 00 1 04 0 0 ::39 2. 69 0. 00 0. 00 17. 41 0 00 0. 00 1. 92 0 0 ::36 3 14 0 00 0. 00 16 07 0. 00 0. 00 1. 78 0 0 17 2. 59 0 00 0. 00 7 ::.9 0. 00 0. 00 El4 0 0 11 2 14 0. 00 0. 00 4. s 1 0 00 0. 00 ::-4 0 0 8 2 20 0. 00 0. 00 3 57 0. 00 0. 00 ::9 0 0 4 2 12 0 00 0. 00 1 79 0 00 0 00 20 0 0 9 2. 82 0. 00 0 00 4.02 0. 00 0 00 44 0 0 3 2 00 0 00 0. 00 1. 34 0 00 0. 00 15 0 0 12 2 82 0 00 0 00 5 36 0 00 0. 00 09 0 0 8 2 60 0 00 0 00 3. 57 0 00 0 00 39 0 CALM 0 00 0 00 0 0 2 64 0. 00 0 00 100 00 0 00 0. 00 11 OS Rev. 48 0 WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 r.ffiTERS) Page 2 4 of 4 8 JOINT FREQUEIKY DISTRIBUTION BY STABILITY CLASS DATA PERIOD ,t.,LL .... JNE COMBINED STABILITY CLASS PASQUILL G Dt.TA SCL'::?CE Wirm SH!SOR HEIGHT* 10 00 METERS WOLF CREEK GENERATING STATION BURLINGTON* J.(.ANSAS KANSAS GAS AND ELECTRIC T,t.,BLE GENtRATED 11/11/81. 10 54 26 DAMES AND MOORE JOB NO: 7699-064 WHJO S!='EED PER SECOND> WIND SECTOR 0 0-1. 1 5-3 0 3 0-5.0 5. 0-7. 5 7 5-10.0 >10. 0 NE ESE SE SSE 5 551-J sw N CAL:1 TOTAL 2 I 19 10 1 10 I 60 . 05 I 60 05 0 0 OJ 0 co I 60 05 3 1. 79 15 2 1. 19 10 2 1. 19 10 I 60 05 I 60 05 0 0 00 0 00 I 60 05 3 1. 79 15 1 10 3 I 79 15 0 0 0') 0 co 25 14 89 1 23 12 7. 14 59 5 2. 98 25 3 I 79 15 7 4 17 35 3 1. 79 15 9 5 36 44 19 11 31 94 5 2. 98 25 3 I 79 15 I 60 as 8 4 76 39 1 10 5 2 98 25 10 5 95 49 9 5 36 44 16 9 79 117 69 64 5?7 3 1 79 15 0 0. 00 0. 00 0 0. 00 0 00 1 60 05 4 2. 39 20 3 1. 79 15 4 2 38 20 3 1. 79 15 1 60 05 0 0 00 0 00 0 0 00 0 00 1 10 0 0 00 0. 00 0 0 00 0. 00 4 2 38 20 1 60 05 26 15 48 I 28 KE)' XXI< fHJM[3ER OF OCCURRENCES 0 0. 00 0 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 DO 0. 00 0 0. 00 0 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0 DO 0 00 0 0. 00 0. 00 "<X.( PERCENT OCCURRENCES THIS CLASS XX< PERCENT OCCURRENCES ALL CLASSES 0 0 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 0 0 DO 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0 00 JOif\T IJ"!UD FREQLE:rKY DISTRif.lUfiON OY S1A3ILITY CLASS DATA Pf"RIOD MLL ,;..JNE COMBINIC:D 0 0 00 0 00 0 0 00 0. 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 DO 0. 00 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0 00 0 00 MEAN TOTAL SPEED 17 10 12 84 7 4 17 35 4 2 .. 38 20 9 5. 36 44 7 4 17 35 13 7 74 64 26 15 48 1. 28 10 5 95 49 6 3_ 57 30 l 10 9 5 36 44 4 2 38 20 6 3 57 30 13 7 74 64 15 8 93 74 .::-!0 11 *:yo 99 0 0 00 0 00 168 100 rJO 8 29 2. 49 2. 01 2. 35 2. 59 2 96 2. 52 2. 34 2 30 1 95 1 75 1. 76 3 10 1 85 1 93 2 51 2 28 CALM 2. 32 ALL CL,V35ES Dt.TA SClJ.'(CE C*:-.l-SI TE WOLF CREEK GENERA1"ING STATION BUHLINGHlN, ;<..ANSA*; LHND HEIGHT 10 QO METER3 ;t..ANSAS GAS AND EU:CTRIC TM11LE GEN-_Rt.TED ll/11/131 10 :H 26 DAf'lES AND MOORE J(JD NO 7699-064 WTND \.UNO S?EED CATEGDfnES(ME:1ERS PER SECOND) MEAN SECTOR 0 0-1 5 1 !.1-3 0 3 0-5 0 :> 0-7.5 7 5-10 0 **10. 0 J:?.SE SE SSE ssw CAL:": TOTAL 3 15 6 30 .; 20 4 20 7 35 5 25 6 30 4 20 I 05 2 10 5 25 5 25 3 15 0 0 00 66 3. 26 JO 1 48 32 1 58 20 99 24 1 18 30 1 48 43 2 12 71 3 50 59 2 91 33 1 63 25 1 23 26 1. 28 27 1 33 23 1 13 23 1 13 39 1 92 527 26 00 N'JM:::JFI-< 0::'" VALID OBSERVATIONS NU:13EI-< or I tNAl_ I D 035ERVAT I ON:J TOTAL Nv:'i3ER OF OBSERVATIONS 27 1 33 28 1. 38 29 1 43 28 I 38 28 1 :JB 37 1 83 107 5. 28 183 9 03 77 3 80 35 1 73 13 64 26 1 28 23 1 13 21 1. 04 36 1 78 720 3:5 52 2027 133 2160 KEY XX< NLi13ER OF OCCURHENCES ,(X< PERCENT OCCURRENCES 16 19 3 15 3 15 10 5 25 8 39 145 7. 15 128 6 J1 17 84 5 25 14 69 15 74 34 1. 68 8 39 4:J7 22. 55 93 84 PCT 6 16 PCT 100. 00 PCT 1 05 0 0 00 0 0 00 3 15 1 05 6 30 100 4. 93 63 3 11 8 39 0 0 00 1 05 1 . 05 4 20 7 35 7 35 204 10 06 0 0 00 0 0 00 0 0. 00 0 0 00 0 0 00 0 0 00 0 0 DO 11 54 29 1 43 6 30 2 10 3 15 0 0 00 0 0. 00 0 0 00 53 2 61 TOTAL SPEED 77 3 00 69 3 40 56 2 76 61 3 01 70 3 45 91 4 49 I 1 99 703 24 81 '336 16 58 95 4 69 50 47 60 2 96 64 16 68 3 35 105 5 18 79 3 90 0 0 DO 2027 100 00 3 84 3 OJ 3 09 J 28 3 43 3 26 3 94 5 51 6 12 4 68 3 25 3 74 4 13 3 92 4 51 3 57 CALM 4 60 RE!V
  • 0 WOLF CREEK TABLE 2. 3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) Page 25 of 48 FREQUt:rKY DISTRIDUTJON BY STAB ILl TV CLASS DA1,; PERIOD ALL *. h.JLY COMB INEO STMIJILITY CLASS PASGUILL A WOLF CREEK GENERATING STATION D,l.,TA souncE [1;\1-SITE DURLING TON, KANSAS (._>!f,_;l) SCJSOR HEIGHT 10 00 METERS KANSAS GAS AND EU:.CTRIC TMI3LE GENt-::_R,;TED* 11/11/81 13 42 02 DAMES AND 1100RE NO 7699-064 WIN!) WHJO SPEED CATEGORIES<MI::TERS PER SECOND) MEAN SECTOR 0. 0-1. 5 I 5-3 0 3 0-5 0 ' 0-7 5 7 s 0 )10 0 TOTAL SPEED NNE 0 I 5 7 I 0 14 5 20 0 00 25 I 26 I 77 25 0 00 3 54 0. 0:) 05 33 05 0. 00 66 0 0 5 4 0 0 9 '5. 21 0 co 0 00 1. 26 1. 01 0 00 0. 00 2. 27 0 03 0 00 23 19 0 00 0. 00 42 ErJE 0 3 9 10 0 0 22 4 70 0 03 76 2 27 2 53 0 00 0 00 5. 56 0. OQ 14 42 47 0 00 0. 00 I 03 0 2 7 3 0 0 12 4 46 0. 00 51 1. 77 76 0. 00 0 00 3.03 0. 00 09 33 14 0 00 0. 00 56 ESE:. 0 5 16 2 0 0 23 3. 74 0 00 1 26 4 04 51 0 00 0. 00 5. 81 0 00 23 75 09 0 00 0. 00 1. oa 3E 0 5r 4 0 I 0 7 4 03 0 00 I 01 0. 00 25 0. 00 1. 77 0 00 09 19 0. 00 05 0 00 3:3 SSE 0 3 19 1 1 0 24 4 07 0 00 76 4 80 25 25 0. 00 6. 06 0. co 14 89 05 05 0. 00 1. 1:3 1 5 26 43 12 3 90 5 84 25 1. 26 6. 57 10. 86 3. 03 76 22. 7:3 05 23 1. 22 2. 02 56 14 4. 2;2 ssw 0 2 23 67 3 22 117 6 64 0. OJ 51 5 81 16. 92 76 5 56 29 5'5 0. 00 09 I. 08 3. 14 14 I. 03 5. 4'i' sw 0 I 6 16 I 0 24 5 27 0. OD 25 1. 52 4. 04 . 25 0. 00 6. 06 0. 00 05 28 75 . 05 0. 00 I 1:3 WSW 0 2 4 4 0 0 10 4. 49 0. 00 51 1. 01 1. 01 0. 00 0. 00 2 5:3 0 00 09 19 19 0. 00 0. 00 41 w 0 5 3 9 0 0 ,., 4 69 0 00 I 26 76 2. 27 0 00 0. 00 4 2 0. OD 23 14 42 0. 00 0. 00 80 WtJl.j 0 2 5 1 0 0 13 3 89 0. 00 51 1 26 . 25 0 . 00 0 00 2 02 0. co 09 . 23 05 0. 00 0. 00 313 NW I 2 3 0 0 0 6 2. 97 . 25 51 . 76 0. 00 0. 00 0. 00 1.:J:2 05 09 . 14 0. 00 0. 00 0. 00 213 0 0 0 2 0 0 ;z 5 60 0. 00 0. 00 0. 00 51 0. 00 0. 00 5t 0. co 0. 00 0 00 . 09 0 . 00 0 00 . O!Jl 0 1 6 4 0 0 11 4. 88 0 00 . 25 1. 52 1. 01 0. 00 0. 00 2. 7B 0. 00 05 28 19 0 00 0. 00 s:z CAL:"'l 0 () CALM 0. 00 0. 00 0 00 0. 0() TOTAL 2 36 141 173 19 25 396 5. 4'5 51 9. 09 35.61 43.69 4 80 6. 31 100.00 09 I 69 6 62 8. 12 89 1. 17 18 ,., V..EY XXX NUMBER OF OCCURRENCES XXX PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES .JOINT wrrm FREQUENCY DISTRIBUTION BY STABILITY CLASS DATI'\ PERIOD ALL Ji.JLY COMBINED STt.I3ILITY CLASS: PASGUILL B WOLF CREEK GENERATING STATION DATA SOURCE: 0:-.1-SITE BURLINGTON, KANSAS l-.!INO SEt-.!SOR HEIGHT 10.00 METERS KANSAS GAS AND ELECTRIC GENERHTED: 11/11/81. 13. 42. 02. DAMES AND MOORE J[JB NO: 7699-064 WIND Wif.jQ SPEED CATEGORIES <METERS PER SECOND) MEAN SECTOR 0 0-1. 5 1 0 3. 0-5. 0 5. 0-7. 5 7 5-10. 0 >10. 0 TOTAL SPEED NNE 0 2 3 I 0 0 6 3 97 0. 00 l. 94 2. 91 97 0 00 0. 00 5. 83 0. 03 09 14 . 05 0 00 0. 00 28 NE 1 3 0 0 0 0 4 1. 72 97 2 91 0 00 0. 00 0. 00 0. 00 3. 88 05 14 0. 00 0. 00 0 00 0. 00 19 ENE 0 0 2 0 0 0 2 4 15 0 00 0 00 1. 94 0. 00 0 00 0. 00 I 94 0. OIJ 0 00 09 0. 00 0. 00 0 00 09 0 0 2 0 0 0 2 4. 20 0. 00 0 00 1 94 0. 00 0. 00 0. 00 1. 94 0. 00 0. 00 09 0. 00 0. 00 0. 00 09 ESE 0 2 0 I 0 0 3 3. 10 0 00 1. 94 0. 00 97 0. 00 0 00 2 91 0. 00 09 0. 00 05 0 00 0. 00 14 SE 0 3 I 0 0 0 4 2 57 0. 00 2 91 . 97 0 . 00 0. 00 0. 00 3. 88 0 00 14 05 0. 00 0. 00 0. 00 . 19 SSE 0 I 4 3 0 0 8 4 54 0. OJ 97 3. 88 2. 91 0. 00 0. 00 7. 77 0. 00 05 19 14 0. 00 0. 00 . 38 0 1 14 20 I 1 37 " 36 0 00 97 13. 59 19. 42 97 97 35 92 0 00 05 66 94 05 05 I 74 0 2 5 9 3 0 19 91 0. OJ I 94 4 85 8. 74 2. 91 0. 00 18. 45 0. 00 09 23 42 14 0 00 89 sw 0 0 I I 0 0 2 4. 45 0 00 0 00 97 97 0 00 0. 00 I 94 0. OJ 0 00 05 05 0 00 0. 00 o*9 0 0 0 2 0 0 2 5. 70 0 00 0 00 0 00 1. 94 0. 00 0. 00 1. 94 0 00 0 00 0. 00 09 0 00 0. 00 0'? w 0 3 2 0 0 0 5 2 82 0. 00 2 91 1. 94 0. 00 0 00 0. 00 4.85 0. 00 14 09 0. 00 0 00 0. 00 2:3 \-,J!\1;.,1 0 0 I 0 0 0 I 4 20 0 00 0 00 97 0. 00 0. 00 0. 00 97 0 00 0. 00 . 05 0 00 0 00 0. 00 05 uw 0 I 0 0 0 0 I 2. 00 0 00 97 0. 00 0. 00 0 00 0. 00 97 0. 00 05 0 00 0 00 0 00 0. 00 05 0 I 0 I 0 0 ;? 4 10 0 00 97 0. 00 97 0 00 0. 00 1. 94 0 00 05 0. 00 05 0 00 0. 00 09 N 0 I 2 2 0 0 ::;. 4. 38 0 00 97 1 94 1. 94 0. 00 0. 00 4. s::; 0 00 05 09 09 0 00 0 00 2:3 CAl:"! 0 () CALM 0 00 0 00 0 00 0. OD l 20 37 40 4 1 10:3
  • 71 Rev. 0 97 19 42 35 92 38. 83 3. 88 97 100 Oil 05 94 I 74 I. 88 19 05 4 8:3 KEY XX,( NU:"'!BER OF OCCURRENCES ,(XX PERCENT OCCURRENCES THIS CLASS XX.( PERCH-IT OCCURRENCES ALL CLASSES WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY S'rABILITY CLASS (MONTHLY 10 METERS) JOINT \HND FREQU=.NCY DISTRIBUTION BY STABILITY PERIOD ALL JI.JLY COMBINED STf,I3ILITY CLASS: PASGUILL C DATA SOURCE C:..!-51 TE l.J INn SENSOR HEIGHT 10 00 METERS r;:.uLt. GENERATED 11/ll /81 13 42 02. W"[NO I CATEGOR If.S (METERS PER SECTOR 0 0-1 5 1 5-3 0 3 0 0-7 5 NE ESE SE SSE SS:..I s .. WSW " I\: NNl.J N TDTAL 0 1 5 0 0 00 1 02 5 10 0 00 0 00 05 23 0 00 0 0 1 0 0 00 0 00 1 02 0. 00 0 00 0 00 05 0. 00 0 2 0 0 00 2 04 2 0 00 0 00 09 09 0 00 1 0 1 1 1 02 0 00 1. 02 1. 02 05 0 00 05 05 0 0 2 0 0 OJ 0 00 2. 04 0. 00 0 00 0 00 09 0 00 0 3 0 0 0 00 3. 06 0. 00 0 00 0. 00 14 0. 00 0 00 0 4 3 1 0. 00 4. 08 3. 06 1 02 0 00 19 14 . 05 0 5 9 12 0. 00 5. 10 9. 18 12.24 0. 00 23 42 56 0 3 5 11 0 00 3 06 5. 10 11.22 0. 00 14 23 52 0 0 0 3 0 00 0. 00 0. 00 3. 06 0. 00 0. 00 0. 00 . 14 0 0 1 0 0 00 0 00 1. 02 0. 00 0. 00 0. 00 05 0. 00 0 2 1 0 0. 00 2. 04 1. 02 0. 00 0 co 09 05 0. 00 0 3 0 1 Q_ 00 3 06 0. 00 1. 02 0. 00 14 0 00 . 05 0 0 2 0 0. OD 0 00 2. 04 0. 00 0. 00 0. 00 . 09 0 00 1 4 1 0 1 02 4 08 1. 02 0. 00 05 19 05 0. 00 0 0 4 1 0. 00 0 00 4. 08 1 02 0. 00 0 00 19 . 05 0 0. 00 0 00 2 27 37 30 2. 04 27. 55 37. 76 30. 61 09 1. 27 1. 74 1. 41 XXX NUMBER OF OCCURRENCES XX:< PERCEt.JT OCCURRENCES THIS CLASS XXX PERCErH OCCURRENCES ALL CLASSES CLASS CREEX. GENERATING !;TAT ION BURL lNG TON, KANSAS KANSAS GAS ANU ELF"CTR I C DAt1ES AND l'lDDHE JOD rJo 7699-064 SFCOND> MEAN 7 5*-10 0 :::10 0 TOTAL SPEED 0 0 6 3 80 0. 00 0 00 6 12 0 00 0. 00 28 0 0 1 4 80 0 00 0 00 1 02 0 00 0. 00 05 0 0 4 3. 53 0 00 0 00 4 08 0 00 0 00 19 0 0 3 3. 63 0 00 0. 00 J 06 0 00 0. 00 14 0 0 2 4 20 0. 00 0 00 2. 04 0. 00 0 00 09 1 0 4 3. 77 1. 02 0. 00 4.08 05 0. 00 19 0 0 8 3. 24 0. 00 0. 00 B. 16 0 00 0. 00 38 1 0 27 4 61 1. 02 0. 00 27 55 05 0. 00 1. 27 0 0 19 5. 08 0 00 0. 00 19 39 0. 00 0 00 89 0 0 3 6 03 0. 00 0. 00 3 06 0 . 00 0 00 14 0 0 1 4 90 0. 00 0. 00 1 02 0. 00 0 00 05 0 0 3 2. 80 0. 00 0. 00 3 06 0. 00 0. 00 14 0 0 4 3. 02 0. 00 0. 00 4 08 0 00 0. 00 19 0 0 2 4. 15 0. 00 0. 00 2 04 0. 00 0. 00 09 0 0 6 2. 07 0 00 0. 00 6 12 0. 00 0. 00 28 0 0 5 4. 66 0 00 0. 00 5 10 0. 00 0. 00 23 0 CALM 0 00 0 00 2 0 98 4_ 19 2. 04 0. 00 100 00 09 0. 00 4 60 JOHH FREQUENCY DISTRIBUTION BY STABILITY CLASS D*HA PERIOD* ALL JULY Cot1BINED STABILITY CLASS: PASGUILL D DATA SOURCE* ON-SITE SENSOR HEIGHT* 10. 00 f'"IETERS TMBLE 11/11/81. 13. 42.02 WIND WINO SPEED CATEGOR IE:S <METERS PER SECTOR 0. 0-1. 5 1. 5-3 0 3. 0 5 0-7. 5 Ni"JE NE EI'JC: E SE SSE s ssw S\.J WSW w w:Jw NM*J N TOTAL 1 11 7 2 21 2 27 1. 45 41 05 52 09 1 9 14 3 21 1. 86 2 89 62 05 42 66 14 0 12 5 0. 00 2 48 4 13 1. 03 0. 00 56 94 23 2 17 12 4 . 41 3 51 2. 48 . 83 09 80 '6 . 19 0 18 11 4 0. 00 3 72 2. 27 83 0. 00 84 :52 19 0 3 10 7 0 00 62 2. C7 1. 45 0. 00 14 47 33 1 8 16 3 21 1. 65 3. 31 62 05 38 75 . 14 0 17 48 36 0 OJ 3 51 9 92 7. 44 0. OJ 80 2 25 1. 69 0 7 24 26 0. 00 1 45 4 96 5 37 0 00 33 1. 13 1. 22 0 5 6 3 0 co 1 03 1. 24 62 0. 00 23 28 . 14 1 4 4 0 21 83 83 0. 00 05 19 19 0. DO 0 3 8 4 0. 00 62 1. 65 83 0. 00 14 38 19 0 1 7 7 0 00 21 1 45 1. 4'5 0 00 05 33 33 1 3 6 7 21 62 1 24 1. 45 05 14 28 33 1 2 3 0 21 41 62 0 00 05 09 14 0 00 1 2 14 3 21 41 2. 89 62 05 09 66 14 0 0. 00 0. 00 9 122 210 114 1. 86 25 21 43 39 23 55 42 5 73 9. 85 5. 35 i"El. .'OX NUM3ER OF OCCURRENCES XX"( PERCEtH OCCURRENCES THIS CLASS XX.< PERCEtH OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7699-064 SECOND> MEAN 7 5-10 0 :>10 0 TOTAL SPEED 0 0 21 3. 30 0. 00 Q_ 00 4. 34 0 00 0. 00 99 1 0 28 3. 64 21 0. 00 5. 79 . 05 0. 00 1 31 0 0 37 3. 65 0. 00 0. 00 7. 64 0 00 0. 00 1. 74 1 0 36 3. 36 21 0. 00 7. 44 05 0. 00 1. 69 1 0 34 3. 42 21 0. 00 7. 02 . 05 0. 00 1. 60 2 0 22 4. 80 41 0. 00 4 55 09 0. 00 1. 03 0 0 28 3. 49 0 00 0. 00 5. 79 0. 00 0. 00 1. 31 19 2 122 5. 21 3. 93 . 41 25 21 . 89 09 5.73 99 3 0 60 4 62 0 00 12 40 14 0 00 2 82 0 0 14 4 10 0. 00 0. 00 2.89 0. 00 0 . 00 66 0 0 9 2. 86 0. 00 0. 00 1 86 0. 00 0 00 42 0 0 15 4. 15 0. 00 0 00 3 10 0 00 0. 00 70 0 0 15 4. 86 0. 00 0. 00 3 to 0. 00 0. 00 70 0 0 17 4. 06 0. 00 0. 00 3 51 0 00 0. 00 80 0 0 6 2. 82 0. 00 0. 00 1 24 0 00 0. 00 28 0 0 20 3. 85 0. 00 0. 00 4 13 0. DO 0 00 94 0 CALM 0 00 0 00 27 41 484 4 26 58 100 00 27 09 22 71 Page 26 Rev. of 48 0 WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STl'I.BILITY CLASS (MONTHLY 10 METERS)* Page 27 of 48 JOINT WirJO FREGUC.IKY DISTRIBUTION BY STABILITY CLASS DATA IUD ALL JJL.Y cor*miNED STh3ILITY CLASS PASGUILL E CREEK GENERATlN\; STATION D.4TA SOURCE TE BUI-lLINGTON, I SEf-!SDR HEIGHT 10 00 METERS KANSAS GAS AND ELEC1 fi I C r .:.3LE GENt:::RA fED 11/11/81 13 42 02. DAI*lES AND f'lUORE JOB NO WINO WINO SPEED CATEGORIES <METERS FER SECOND l MEAN SECTOR 0 0-1 5 1 >-3 0 3 0 5 0-7 5 7 5-10 0 )10. 0 "fDTAL SPEED o"..:IJE l 10 5 2 0 0 18 3 08 21 2 09 1 04 42 0 00 0 00 3 76 05 47 23 09 0 00 0 00 84 NE 1 8 10 1 0 0 20 3 42 21 1 67 2 09 21 0 00 0 00 4 18 05 ::JB 47 05 0. 00 0 00 94 ENE 2 12 11 0 1 0 26 3. 22 42 2 51 2 30 0. 00 21 0 00 43 09 56 52 0 00 05 0. 00 22 E 0 13 17 8 2 ;...::? 42 4 45 0. 00 2. 71 3. 55 1 67 42 42 77 0 00 61 80 38 09 09 97 ESE 3 18 10 4 0 0 35 3. 04 63 3 76 2. 09 84 0. 00 0. 00 7 31 '" 84 47 0 00 0. 00 1. 64 SE 4 23 14 0 0 43 2. 86 8.: 4 80 2 92 42 0. 00 0 00 8 98 19 1. 08 66 09 0. 00 0. 00 2 02 SSE 0 43 29 2 0 0 74 3. 03 0 co 8 98 6. 05 42 0 00 0. 00 , 45 0 00 2 02 1. 36 09 0 00 0. 00 3 47 s 2 34 62 28 1 0 127 3. 95 42 7 10 12. 94 5. 85 21 0 00 51 09 1. 60 2. 91 1 31 . 05 0. 00 5. 96 1 13 16 5 0 0 35 3 68 21 2. 71 3. 34 1 04 0 00 0 00 7. 31 05 61 75 23 0. 00 0 00 1. 64 sw 0 5 4 3 0 0 12 3. 64 0. 00 1 04 . 84 63 0. 00 0. 00 2. 51 0 00 23 19 14 0. 00 0 00 56 I.JSW 0 1 3 1 0 0 5 3 52 0 00 . 21 . 63 . 21 0 . 00 0. 00 1. 04 0. 00 05 14 05 0. 00 0. 00 23 w 0 3 1 1 0 0 5 3. 34 0. 00 63 21 . 21 0 . 00 0 00 1. 04 0 00 14 05 05 0. 00 0 00 23 W!\IW 0 0 2 2 0 0 4 4 90 0. 00 0 00 42 . 42 0 . 00 0. 00 . 84 0. 00 0. 00 09 09 0. 00 0. 00 19 NW 2 2 7 0 0 0 11 3. 34 42 42 1 46 0. 00 0. 00 0. 00 2 30 09 09 33 0 00 0. 00 0. 00 . 52 NtJ:..J 1 2 2 1 0 0 6 2. 82 21 42 42 21 0 00 0. 00 1. 25 05 09 09 05 0. 00 0. 00 . 28 N 4 5 3 4 0 0 16 3. 30 84 1. 04 . 63 . 84 0. 00 0. 00 3. 34 19 23 . 14 . 19 0 . 00 0. 00 75 CALM 0 0 CALM 0. 00 0. 00 0 00 0. 00 TOTAL 21 192 196 64 4 2 479 3 51 4. 38 40. 08 40 92 13. 36 84 . 42 100 00 99 9. 01 9. 20 3. 00 19 09 48 KEY XXX NUMBER OF OCCURRENCES XXX PERCEtJ f OCCURRENCES THIS CLASS xx:< PERCENT OCCURRENCES ALL CLASSES JOINT l.JI:m FREOUEtKY DISTRIBUTION BY STABILITY CLASS DATA PERIOD: ALL J\....LY COMBINED STABILITY CLI\SS* PASOUILL F WOLF CREEK GENERATING STATION OATH SOURCE 0:--.l-51 TE BURLINGTON, KANSAS l.Jii*.!O SENSOR HEIGHT 10.00 t1ETERS KANSAS GAS AND ELECTfi I C TABLE GENERATED. 11/11/81 13. 42. 02. DA/1ES AND MOORE JOB NO* 7699-064 WIND WII.W SPEED CATEGORIES(METERS PER SECOND) MEAN SECTOR 0 0-1 5 1. 5-3. 0 3. 0--5 0 5 0-7 5 7 5-10. 0 >to. o 10TAL SPEED UNE l 11 3 0 0 0 " 2 49 27 2. 98 81 0. 00 0 00 0 00 4 07 05 52 14 0 00 0 00 0. 00 70 NE 0 8 0 0 0 0 8 2. 24 0 co 2 17 0 00 0. 00 0 00 0. DO 2. 17 0 00 38 0 00 0 00 0 00 0. 00 . 38 ENt:. 2 15 8 0 0 0 25 2. 70 54 4 07 2. 17 0 00 0 00 0. 00 6 78 09 70 38 0 00 0 00 0. 00 1. 17 E 3 17 13 0 0 0 33 2. 84 81 4 61 3 52 0 00 0. 00 0 00 B. 94 14 80 61 0. 00 0. 00 0 00 1. 55 ESE 8 11 18 0 0 0 37 2. 82 2. 17 2. 98 4. 88 0 00 0. 00 0. 00 10. 03 38 52 84 0 00 0 00 0 00 1. 74 SE 4 31 6 0 0 0 41 2. 32 1. 09 8 40 1. 63 0 co 0. 00 0. 00 11. 11 19 1. 45 28 0 00 0. 00 0 00 1. 92 SSE 1 59 18 0 0 0 78 2 62 27 15 99 4. 88 0 00 0. 00 0. 00 21. 14 05 2 77 84 0 00 0. 00 0. 00 3. 66 2 27 26 0 0 0 55 3. 03 54 7. 32 7. 05 0. 00 0 00 0 00 14. 91 09 1. 27 1 0. 00 0. 00 0. 00 2 58 SSt.-.l 1 ll l 0 a 22 3. 05 27 2. 98 2 44 27 0 00 0. 00 96 . 05 52 42 05 0. 00 0. 00 03 sw 0 6 8 0 0 0 14 2 96 0 00 1. 63 2. 17 0. 00 0 00 0. 00 3 79 0. OJ 28 38 0. 00 0. 00 0 00 66 "sw 1 2 3 0 0 0 6 2 73 . 27 54 81 0 00 0 00 0 00 1. 63 05 09 14 0. 00 0 00 0. 00 28 0 2 3 0 0 0 5 3 14 0. 00 54 81 0. 00 0 00 0. 00 1 36 0. O:J 09 . 14 0. 00 0. 00 0 00 23 ..JNW 0 1 0 0 G 3 3. 20 0 00 27 0 00 0. 00 0 00 81 0 00 05 09 0 00 0 00 0. 00 14 'w 1 1 1 0 0 0 3 2. 33 27 27 27 0 00 0 00 0 00 81 05 05 05 0. 00 0. 00 0. 00 14 'J.\':J 2 5 1 0 0 0 8 1 81 54 1 36 27 0. 00 0. 00 0 00 17 09 23 05 0 00 0 00 0 00 38 " 1 7 8 0 0 0 16 2. 81 27 1 90 2 17 0. 00 0 00 0 00 4. 34 05 33 38 0 00 0 00 0 00 75 CAL :1 0 0 CALM 0 00 () 00 0 C3 () 00 rOTAL 27 214 127 1 0 0 369 2 72 7 32 57 99 34 42 27 0. 00 0 00 10!) 00 0 1 27 10 04 5. 96 05 0 00 0 00 1? 32 Rev. 1-<E'r" ,("XX NUf1BER OF OCCURRENCES XX ( PERCErH OCCURRENCES THIS CLASS XX"< PERCENT OCCURRENCES ALL CLASSES WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STl\BILITY CLASS (MONTHLY 10 METERS) Page 28 of 48 JOINT l.:fND FREGi.-ErJCY DISTRIBUTION BY STABILITY CLASS DI.T,A. PERIOD ALL J'..,LY COMBINED STh3JLITY CL.;SS* PASQUILL G DhTh SOURCE* CN-SITE HEIGHT 10 00 MElERS WOLF CREEK GENERATING STATION BURLINGTON, 1-'.ANSAS Tt.BLE GENERATED 11/11/81 13 42.02 KANSAS GAS AND ELECTRIC DAMES AND MOORE JOU NO 7699-064 WIND 1-JirW SPEED CATEGORIES(METERS PER SECOND) SECTOR 0 0-1. 1 0 3 0-5 0 5. 0-7 5 7 5-10 0 )10. 0 NE ENE ESE SE SSE WSW w WfJW NW NNl-J N CAl :-1 TOTAL 0 0 OQ 0 00 0 0 CQ 0 co 1 50 05 1 50 05 0 0 co 0 00 09 1 50 05 3 1 49 14 1 50 OS 0 0. 00 0. OJ 0 0. 00 0. 00 1 so OS 1 . 50 OS 1 so 05 0 0. OJ 0 00 0 0. 00 0. co 0 0 00 0 00 12 5 94 56 21 10 40 99 9 4. 46 42 5 2. 48 23 10 4. 95 47 9 4. 46 42 13 6. 44 61 27 13. 37 1. 27 15 7 43 70 2 99 09 0 0. 00 0. 00 0 0. 00 0. 00 3 1. 49 14 3 1. 49 . 14 1 50 05 4 1. 98 . 19 6 2. 97 28 128 63. 37 6. 01 3 1 *19 14 09 12 5 94 ,6 7 3 47 33 3 1. 49 14 5 2. 48 23 10 4. 95 47 12 5. 94 56 1 50 05 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 1 . 50 . 05 0 0. 00 0. 00 09 58 28.71 2. 72 KEl' X XX NVM13ER OF OCCURRENCES 0 0 00 0 00 0 0 00 0. 00 1 50 05 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 1 50 05 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 1 . 50 . 05 1 50 . OS 4 1. 98 19 XXX PERCENT OCCURRENCES THIS CLASS XX.< PERCENT OCCURRENCES ALL CLASSES 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 o_ 00 0 0 00 0 00 0 0. 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0 00 JOINT FREQUENCY DISTRIBUTION I?Y STABILITY CLASS DATA PERIOD: ALL J'JLY COMBINED 0 0 00 0 00 0 0 00 0. DO 0 0 00 0. 00 0 0 00 0 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 MEAN TDT.A.L SPEED :Z"4 11. EB 1. 13 11 5 45 9 41 18 8. 91 84 12 5 94 . 56 20 9. 90 94 38 18 81 1. 78 31 15. 35 1. 45 4 1 913 1'Y 0 0.00 0. 00 0 0. 00 0 00 4 1 9!3 1'* .. , 1. 9!3 .1'? :3 1 41? .1*1-2 4!3 . 2:3 ,. 4. 46 . 4:2 () 0. 00 0.00 20:2 100 00 9. 4!3 2 67 2. 71 3 42 2. 65 2 32 2 30 2. 61 72 2. 47 D 00 D 00 1 70 2. 13 .2. 47 ,2 96 3 07 :2 67 ALL CLASSES DATA SIJURCE: 0:-.J-StTE SEt.J30R HEIGHT: 10. 00 METERS WOLF CREEK GENERATING STATION BURLHJGTON, KANSAS TABLE GENERATED* 11 I 11/81 1:1. 42. 02. KANSAS GAS AND EL.ECTR I C DAMES AND MOORE JOB NO: 7699-064 WIND WIIJO SPEED CATEGORIES<METERS PER SECOND> SECTOR 0. 0-1. 5 1. 5-3. 0 3. 0-5. 0 5 0-7. 5 7 5-10. 0 >tO. 0 MEAN NNC: NE ENE ESE SE SSE s SSW N CAL:1 TOTAL 3 14 3 . 14 5 23 7 33 11 52 10 47 3 14 8 38 3 14 0 0 00 2 09 1 05 1 05 6 ;;:a 5 23 6 28 0 0 00 74 3 47 57 2. 67 37 1. 74 49 2. 30 59 2. 77 63 2 96 78 3 66 145 6. 80 104 4. 88 40 1. 88 17 80 9 42 21 99 10 47 10 47 18 84 1 g§ 739 34. 68 NUMBER OF VAl. I D OOSERVAT I DNS N'JMCER OP" I NVAL. I D OOSERVAT IONS TOTAL .... M3ER OF" 013SERVAT IONS 31 1 4e. 3:;:* 1 50 64 3 00 59 2. 77 60 2. 82 40 1. 88 99 4. 65 197 9 24 83 3. 89 25 1. 17 15 70 18 84 17 80 20 94 7 33 39 1. 83 806 37.82 2131 101 2232 KEY :o < Nt.:,13ER OF OCCURRENCES ,(X'( PERCEr.lT OCCURRENCES 12 . 56 8 38 16 75 16 75 11 . 52 9 . 42 10 47 140 6. 57 119 5. 58 26 1. 22 7 33 14 66 11 52 7 . 33 5 . 23 15 70 426 19 99 95 47 PCT 4 53 PCT. 100. 00 PCl 1 05 1 . 05 1 05 3 14 1 05 4 19 1 05 34 1. 60 9 42 1 . OS 0 0 00 0 0 00 0 0 00 0 0. 00 0 0 00 0 0. 00 56 2. 63 0 0. 00 0 0. 00 0 0. 00 2 .09 0 0. 00 0 0. 00 0 0 00 6 . 28 22 1 03 0 0. 00 0 0. 00 0 0 00 0 0. 00 0 0. 00 0 0 00 0 0. 00 30 1 41 TOTAL SPEED 104 4. 88 81 3, 80 135 6. 34 146 6. 85 146 6.8'5 141 6. 62 ,;;;*sa 12. 11 489 22. 95 276 12 9'5 69 3. 24 33 1 55 54 2 53 39 1. 133 43 2. 02 :35 1. 64 132 3 BS 0 0. DO 2131 100 00 3. 32 3. 41 3. 53 3. 58 3. 14 3. 00 3. 04 4. 57 5. 40 4 29 3. 66 3 77 4 OS 3 45 2. 71 3 67 CALM 3 91 Rev. 0 WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) JOINT FREGUO::NCY DlSTRli3UTION JW STAI3ILITY CLASS DMfA ALL AUGUST COMOINED C0Th3II __ {Ty CLASS PASQUILL A 00\1-SITE HEIGHT 10 00 METERS GEt.:o:.RATE.D 11/ll/81 1:3 51 50. WIND S!"EED CATEGORIES <METERS PER SECTL.R 0 0-1 5 1. 0 3 0-5 0 5 0-7 5 NE E ESE SE SSE s ssw sw WSW w w:-.:w NW WJW N CA*.M TOTAL 1 1 7;) 6 3:5 35 2. 10 05 05 09 28 0 0 :2 7§ 0 co 0 00 70 0 co 0 00 09 09 0 0 i 0 0 co 0 00 35 0 00 0 00 0 00 o:5 0 00 1 0 I 0 35 0 00 3:) 0 00 05 0 00 0:5 0. 00 0 2 :l 1 00 70 1 o::; 35 00 09 14 05 0 7§ :; 4 0 00 1 7 1. 40 0 co 09 2:3 19 1 4 6 35 1. 40 1. 2. 10 05 19 23 28 1 2 26 38 35 . 70 9 09 13. 29 05 09 1 21 1. 77 0 4 1 55 0 00 L 40 5 24 19. 23 0. 00 19 . 70 2 56 1 1 6 5 35 35 2. 10 1 75 05 . 05 23 1 1 l. 0 35 35 0. 00 05 05 0. 00 0 0 1 0 0 co 0 00 0. 00 0. OJ 0 00 0. 00 0 2 l 0 0. 00 70 3S 0. 00 0. 00 09 O!i 0. 00 1 2 1 9 . 35 70 35 3. 15 05 09 . 42 0 1 1 9 0. 00 35 3. 15 0. 00 . 05 05 42 1 5 4 35 1. 75 . 70 1. 40 05 23 . 09 19 0 0. co 0. co 8 27 7:! 139 2. 80 9. 44 25. s:;! 48 60 37 1 26 3 40 6. 47 KEY XXX NUMBER OF OCCURRENCES XX.< PERCENT OCCURRENCES THIS CLASS X X ( PERGEtH OCCURRENCES ALL CLASSES WOLF CREEK GENERATING !::TATHJN IWRLINGTQN, Y.,ANSAS KANSAS GAS AND ELECTRIC DAMES At J0 f'l(JOHE NO 7 699-064 SECOND> t1EAN 7 5-10 0 >10 0 TOTAL SPEED 0 0 10 12 0. 00 0 00 3 50 0. 00 0 00 47 0 0 4 00 0 00 0 00 1 40 0 00 0 00 19 0 0 1 3. 90 0 00 0 00 35 0 00 0. 00 05 1 0 3 4. 63 . 35 0 00 1. 05 05 0 00 14 0 0 b 3. 78 0 00 0 00 2 . 10 0 00 0. 00 . 28 0 0 11 4 43 0. 00 0. 00 3. 85 0. 00 0 00 51 1 0 17 4 33 35 0 00 5 94 05 0 00 79 22 0 89 6 03 7 69 0 00 31. 12 1. 02 0. 00 4 14 8 0 82 5 86 2. so 0 00 28 67 37 0. 00 3 81 0 0 13 4 45 0. 00 0 00 4. 55 0 00 0 00 60 0 0 3 2 90 0 00 0. 00 1. OS 0. 00 0 00 14 0 0 1 4 10 0 00 0. 00 35 0. 00 0. 00 . 05 0 0 3 3 20 0. 00 0. 00 1. 05 0. 00 0. 00 . 14 7 0 20 6. 22 2. 45 0. 00 6. 99 33 0. 00 . 93 0 0 11 5 65 0. 00 0. 00 3 85 0. 00 0. 00 51 0 0 12 3. 74 0. 00 0. 00 4. 20 0 00 0 00 56 0 CALM 0. 00 0. 00 39 0 5 46 13. 64 0. 00 100 00 1 81 0. 00 13. 30 JOINT l.JIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD ALL AUGUST COMBINED STABILITY CLASS. PASGUILL B o,;TA SOURCE. 0:-.1-SITE lH NO SENSOR HEIGHT* 1 0 00 METERS T,;BLE GEI-Jt::RATED: 11/11/81. 13 51. 50. WIND WINO SPEED CATEGORIES (METERS PER SECTOR 0. 0-1. 5 1. 5-3 0 3. 0-5 () 5. 0-7. 5 NtJE 0 0 l 1 0 00 0 00 76 76 0. OJ 0 00 . 05 NE 0 0 0 1 0 00 0. 00 0. 00 . 76 0. 00 0 00 0. 00 05 ENE 0 0 l 0 0 00 0 00 . 76 0 . 00 0 00 0 00 0!) 0 00 E 0 0 1 0 0 00 0 00 76 0. 00 0. 00 0 00 0. 00 ESE 0 3 " 0 0 00 2. 27 2. 27 0 00 0. 00 14 14 0. 00 SE 0 2 1 0 00 1. 52 1. S:;! 76 0 00 09 09 . 05 SSE 0 2 1 0 00 1. 52 1. 76 0 00 09 09 05 0 2 14 24 0. co 1. 52 10. 61 18. 18 0 co 09 65 1. 12 ss,.J 0 0 10 19 0 co 0. 00 7. SEI 14. 39 0. 00 0 00 47 88 sw 0 0 :1 3 0. co 0. 00 2 27 2. 27 0 00 0. 00 14 14 wSW 0 2 1 0 0 00 1. 52 76 0. 00 0 00 09 0 00 w 1 3 1 0 76 2 27 76 0 00 05 14 05 0 00 hi:'>iW 0 3 0 0 0. 00 2. 27 0 00 0. 00 0 OJ 14 0 co 0. 00 0 1 1 2 0 OJ 76 . ]t_, 1. 52 0 00 05 . 09 0 0 0 1 0 00 0 00 0. 00 76 0 co 0 00 0. 00 05 N 0 0 ,, 0 0. O.J 0. 00 3. "19 0 00 0. OJ 0 00 2::::1 0. 00 CALM 0 0 CJ 0 co TOTM ... 1 18 4::* 53 76 !3 64 34 09 40. 15 05 84 2 09 2. 47 !"EY xx< OF XXX PERCENT OCCURRENCES lHIS CLASS xx< PERCEtJ T OCCURRENCES Al.L CLASSES WOLF CREEK GENERATING EiTATICN BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7 699-064 SECOND) MEAN 7. 5-10. 0 >10. 0 TOTAL SPEED 0 0 2 5. 10 0 00 0. 00 1. 52 0 00 0. 00 09 0 0 1 6. 80 0 00 0. 00 . 76 0 00 0. 00 05 0 0 1 3 40 0. 00 0. 00 . 76 0. 00 0. 00 05 0 0 1 3. 70 0 00 0 00 . 76 0 00 0. 00 . 05 0 0 6 3 05 0. 00 0. 00 4. 55 0. 00 0. 00 28 0 0 5 4. 00 0. 00 0. 00 3. 79 0. 00 0. 00 . 23 1 0 6 4. 78 76 0. 00 4. 55 05 0. 00 28 7 0 47 5. 57 5. 30 0. 00 35. 61 33 0. 00 2. 19 5 0 34 5. 97 3. 79 0. 00 25 76 23 0 00 1. 58 0 0 6 5 30 0. 00 0. 00 4. 55 0. 00 0. 00 28 0 0 3 3. 03 0 00 0. 00 2 27 0 00 0 00 14 0 0 5 2 26 0 00 0 00 3. 79 0 00 0 00 23 0 0 3 2 30 0 00 0. 00 2. 27 0 00 0 00 14 2 0 6 5 80 1 52 0. 00 4. 55 09 0. 00 28 0 0 1 5 60 0. 00 0 00 76 0 00 0. 00 05 0 0 5 3 80 0. 00 0 00 0 79 0 00 0. 00 23 0 CALM 0 00 0 00 15 0 132 ' 11 11. 36 0. 00 100.00 70 0 00 6 14 Page 29 of 48 Rev. 0 WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY -1.0 METERS) Page 30 of 48 ,Jo::f'-:r DISTRIBUTION BY STABILITY CLASS DA""A ALL AUGUST COMBINED ST,-.l3lLITY CLASS PASQUILL C WOLF CREEK GENERAriNG STATION DHTA SOU"CE TE BURLINGTON, KANSAS I fJO HEIGHT 10 00 METER3 KANSAS GAS ANO ELFCTRIC T MOLL GENERATED* 11/11/81 13. ::11 DAMES AND MOORE ,)QIJ NO 769'1-064 WltJD WINO SPEED CATEGORIES<t':ErERS PER SECOND) !1EAN SECTOR 0 0-1 5 1 0 3 0-5 0 5 0-7 5 7 5-10. 0 ; 10 0 TDTI\L :;PEED :\iNt: 0 2 0 1 0 0 4 3. 87 0 00 1 34 0 00 0 00 0 00 2 0 co 09 0 00 09 0. 00 0 00 !9 0 I 3 I 0 0 " 4 08 0 co 67 2 01 67 0 00 0 00 3 ]6 0 OJ 05 14 05 0 00 0. 00 0 0 0 0 6 4 75 00 0 00 2 01 2. 01 0. 00 0 00 4 03 OJ 0 00 14 14 0 00 0 00 I 0 0 1 0 0 3 4 73 67 0 00 0 00 0 00 0. 00 2 ()1 05 0 00 0. 00 09 0. 00 0. 00 1.4 ESE: 0 0 2 I 0 0 3 4 60 0 00 0 00 I 34 67 0. 00 0. 00 2 01 0 OJ 0 00 09 05 0 00 0 00 14 SE 0 2 I I 0 0 4 3. 87 0 00 I 34 67 . 67 0. 00 0 00 2 0 00 09 05 . 05 0 00 0. 00 19 SSE 0 4 9 I 2 0 16 4 ., 0 00 2. 68 6. 04 67 1. 34 0. 00 10. 74 0 co 19 42 . OS 09 0. 00 ?4 s 0 4 9 17 6 0 ::16 5 61 0 00 2. 68 6. 04 11. 41 4. 03 0. 00 24. 16 0 00 19 . 42 79 . 28 0. 00 1. 67 ss:..r 0 I 13 18 6 0 :m 5 77 0 OJ 67 8. 72 12. 08 4. 03 0. 00 25 ::io 0. 00 . OS . 60 84 28 0. 00 1 77 St.J I I 2 5 0 0 9 5. 16 . 67 67 1. 34 3. 36 0. 00 0. 00 6.04 05 . 05 09 . 23 0. 00 0. 00 *i*2 WSW 0 1 6 0 0 0 7 3. 84 0. O:J 67 4. 03 0. 00 0. 00 0. 00 4 70 0. co 05 28 0. 00 0. 00 0. 00 ::t3 w 0 0 3 I 0 0 4 4 62 0 0-J 0. 00 2. 01 67 0. 00 0. 00 2 68 0. co 0. 00 14 . OS 0. 00 0. 00 :t9 I I 0 0 0 0 2 I 80 67 67 0. 00 0. 00 0. 00 0. 00 1. . 05 OS 0. 00 0. 00 0. 00 0. 00 ()9 NW 0 I 0 1 I 0 3 5 57 0. 00 67 0. 00 67 67 0. 00 2 01 0. co OS 0 00 . OS 05 0. 00 ::4 N;-..jri 0 1 I I 0 0 3 4. 50 0. 00 67 67 67 0 00 0. 00 2. 01 0. 00 05 . OS OS 0. 00 0. 00 i.4 N 0 0 6 0 0 0 6 3 57 0 00 0. 00 4. 03 0. 00 0. 00 0. 00 4 03 0 OJ 0 00 28 0. 00 0 00 0. 00 CAlM 0 0 CALM 0. 00 0 00 0. 00 0. 00 TOTA!... 3 19 58 54 IS 0 1.0:19 5. 02 2. 01 12. 75 38 93 36.24 10.07 0. 00 100 00 14 88 2. 70 2. 51 . 70 0. 00 6. 93 KEY XXX NUMBER OF OCCURRENCES XXX PERCHH OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES JOINT l.JIND DISTRIBUTION BY STABILITY CLASS DATA PERIOD* ALL t.UGUST COMB I NED STABILITY CLASS PASGUILL D WOLF CREEK GENERATING STATIQt." DhTt. SOURCE 0:'>1-SITE BURLINGTON, KANSAS SEtJSDR HEIGHT 10 00 METERS KANSAS GAS AND ELECTRIC T..;I3LE 11/11/81. 13 51. 50. DAMES AND MOORE JOB NO: 7699-064 WIND WINO SPEED CATEGDRIES(METERS PER SECOND> MEAN SECTOR 0 0-1. 5 1 S-3. 0 3. 0-5. (} 5 0-7. 5 7. 5-10. 0 >10. 0 TO TilL SPEED NNE 3 16 14 12 3 0 <1.8 4 20 60 3 20 2 80 2. 40 60 0. 00 9. 60 14 74 65 56 14 0 00 2 3 6 15 13 0 0 4. 07 60 1 20 3 00 2. 60 0. 00 0. 00 7. 14 28 70 60 0. 00 0. 00 1 72 ENE 0 7 19 9 1 0 :16 4. 26 0. co I 40 3 80 1. 80 . 20 0. 00 7. 0. 00 33 88 . 42 05 0. 00 1. 67 E 6 17 10 1 0 :l6 4 39 1 20 3. 40 2. 00 . 20 0 00 7. 09 28 79 47 05 0 00 1 67 ESE 0 7 7 5 0 0 l9 3. 76 0 00 1 40 1. 40 1. 00 0 00 0 00 3. E!O 0. 00 33 33 23 0 00 0. 00 . ElB SE 0 13 10 4 0 0 3. 43 0 00 2. 60 2. 00 80 0. 00 0. 00 5 . .O:tQ 0 00 60 47 19 0. 00 0. 00 1. SSE 0 13 20 9 1 0 '1.3 4 07 0. 00 2. 60 4 00 1. 80 20 0. 00 8. 60 0. 00 60 93 42 OS 0. 00 2 00 s I 20 45 37 8 0 11.1 4. 78 20 4 00 9 00 7. 40 1. 60 0. 00 22. 05 93 2 09 1. 72 37 0. 00 5 1.6 ssw 0 7 29 23 1 0 ;,o 4 68 0. 00 1 40 5. 80 4. 60 20 0. 00 12.00 0 00 33 1. 35 1. 07 . 05 0. 00 2. 79 2 5 10 4 0 0 3. 87 40 1. 00 2. co 80 0 00 0 00 4. 09 23 47 19 0 00 0. 00 98 WS:..J I 3 4 0 0 0 8 3 10 20 60 80 0. 00 0 00 0 00 1. 60 05 14 19 0. 00 0. 00 0 00 :l7 w I I 1 2 0 0 5 4 10 20 20 . 20 40 0. 00 0 00 1 00 05 05 05 09 0 00 0. 00 ;;!3 :.m:..J 2 4 2 0 0 0 8 2 37 40 80 40 0 00 0 00 0. 00 1. 60 09 19 09 0 00 0 00 0. 00 :17 NW I 3 3 5 0 0 12 4. 25 20 60 60 1. 00 0 00 0. 00 2 . ..:;o 05 14 14 23 0. 00 0. 00 I I 3 2 1 0 8 4 so 20 20 60 40 20 0. 00 1 bO 05 05 14 . 09 05 0. 00 :17 N I 7 8 3 1 I ;; 1 4 18 20 I 40 1 60 60 20 20 4 ;;1Q 05 33 37 14 . 05 . 05 8 CAl :'1 0 0 CALM 0. co 0 00 0 00 0 00 TOH\L 18 119 207 138 17 I 4 27 3. 60 23 80 41. 40 27 60 3 40 20 100 00 Rev. 0 84 5 53 9 63 6. 42 79 05 23 e'6 I'\ E)' .OX m.:.'1l3ER OF OCCURRENCES XXI. PERCEtH OCCURRENCES THIS CLASS Xx.< PERCEtJT OCCURRENCES ALL CLASSES WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) Page 31 of 48 JO rr..:r HIND FREQUihiCY DISTRIBUTIOf\1 DY STABILITY CLASS JMTA PEt< IDO ALL ,.;u:;usr COMO INED IL lTY CLASS PASQUILL E WOLF CREEK GENERATING STATION DMTI. C\'J-SI TE OURLINGTON, KANSAS SENSOR HEIGl iT 10 00 METERS KANSAS GAS AND ELECTRIC T,;:lLE GENt:.Rf,TED 11 I 11/81. 13 51 ,0. DAMES AND r'IDOHE ,JOB '" 7699-064 I,.JIND CATEGORIES(I1ETERS PER SECOND) MEAN :3ECTC'R 0 0-1 5 1 5-3 0 3 0 5 0--7 5 7 5-10 0 )10. 0 l:JTAL SPEED 1-.:rJE 1 8 4 3 0 1 17 3 72 17 1 36 L>S 51 0 00 17 89 05 37 19 14 0 00 05 79 NE 1 16 5 3 0 0 25 2 95 17 2 72 05 51 0 00 0. 00 4 24 05 74 23 14 0 00 0. 00 1. 16 I::NE 0 10 8 4 0 24 4 04 0 03 1 70 1. 36 68 0 00 07 0 03 47 37 19 09 0. 00 12 0 10 7 5 0 0 22 3 88 0 00 I 70 1 19 85 0. 00 0. 00 74 0 00 47 33 23 0 00 0. 00 02 I::SE 2 10 13 3 0 0 28 3. 35 34 1 70 2. 21 51 0. 00 0 00 .. 75 09 47 60 14 0. 00 0 00 1 30 SE I 20 10 0 0 0 31 2. 87 17 3 40 1. 70 0 00 0 00 0 00 26 05 93 47 0 00 0 00 0 00 44 0 23 49 13 0 0 85 3. 78 0. 00 3 90 8 32 2 21 0. 00 0. 00 14 43 0 00 1. 07 2. 28 60 0 00 0. 00 .3 95 s 0 49 114 54 3 0 220 4 23 0 00 8. 32 19 35 9 17 51 0. 00 37 35 0 00 2 28 5. 30 2. 51 14 0. 00 10 23 ssw 2 IS 25 13 0 0 55 3 94 34 2 ss 4. 24 2. 21 0. 00 0. 00 ., 34 09 . 70 1. 16 60 0. 00 0. 00 :2. 56 sw 1 6 2 1 0 0 10 3 03 17 1 02 34 . 17 0 00 0. 00 1. 70 05 28 09 OS 0. 00 0. 00 47 I.JS:..J 1 2 1 2 2 0 8 4. 34 . 17 34 . 17 . 34 34 0. 00 1. 36 05 09 05 09 . 09 0. 00 37 " 1 3 0 1 0 0 5 2. 90 17 51 0 00 17 0 00 0. 00 85 05 14 0. 00 05 0. 00 0. 00 23 0 s 2 0 1 0 8 3. 46 0 00 85 34 0. 00 17 0. 00 1 36 0 00 23 09 0. 00 05 0. 00 37 N:.J 1 4 2 3 0 0 10 3. 63 17 68 34 51 0. 00 0. 00 1 70 . OS . 19 09 14 0. 00 0. 00 47 NNL.J 0 5 5 6 0 0 16 4. 31 0. 00 85 85 1. 02 0. 00 0 00 .2. 72 0. OJ 23 23 28 0. 00 0. 00 74 N 1 11 10 2 1 0 25 3 41 17 1. 87 1 70 34 17 0 00 24 OS 51 47 . 09 . OS 0. 00 16 CAL :1 0 0 CALM 0. 00 0 00 0 00 0 00 TOTAL 12 197 257 113 9 1 589 3 85 2 04 33 45 43 63 19. 19 1 53 17 100 00 56 9 16 11. 95 5. 26 42 . OS 27.40 KEY XXX Nt.:r1!3ER OF OCCURRENCES XXX PERCEt-H OCCURRENCES THIS CLASS XXX PERCEtH OCCURRENCES ALL CLASSES JOINT lHND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PER lCD ALL AUGUST COMBINED ST.t.BILIT)' CLASS* PASGUILL F WOLF CREEK GENERATING STATION DATA SOURCE. ON-SITE BURLINGTON, KANSAS SENSOR HEIGHT: 10. 00 METERS KANSAS GAS AND ELECH!IC TAGLE GEIJFRATEO* 11/11/81. 13. 51. 50. DAf1ES ANO MOORE JOB NO: 7699-064 WIND WINO SPEED CATEGOR!ESCMETERS PER SECOND) MEAN SECTOR 0 0-1. 5 1. 5-3 0 3 0--5. 0 5. 0-7. 5 7. 5-10. 0 >tO. 0 TOTAL SPEED 0 6 s 0 0 0 11 2 68 0. 00 1 89 1. 57 0. 00 0. 00 0. 00 3. 46 0 00 28 0 00 0. 00 0. 00 51 NE 3 6 1 0 0 0 10 1. 97 94 1 89 31 0 00 0. 00 0. 00 3. 14 ENE 14 28 05 0 00 0 00 0. 00 47 2 7 3 0 0 0 12 2. 63 63 2. 20 94 0 00 0. 00 0. 00 3. 77 09 33 14 0 00 0 00 0. 00 56 8 5 3 0 0 18 3. 29 2 52 1. 57 94 0. 00 0. 00 5. 66 09 37 23 14 0 00 0. 00 . 84 ESE 2 8 1 2 0 0 13 2. 78 63 2. 52 31 63 0. 00 0. 00 4. 09 09 37 05 09 0. 00 0. 00 . 60 SE 6§ 36 4 3 0 0 45 2. 67 11 32 1. 26 . 94 0 . 00 0. 00 14. 15 09 1. 67 19 14 0. 00 0. 00 2 09 SSE 2 56 19 2 0 0 79 2. 82 63 17 61 5 97 63 0 00 0. 00 24 84 09 2. 60 88 09 0 00 0. 00 3 67 '3 4 28 27 7 0 0 66 3. 27 1. 26 8 81 8. 49 2 20 0 00 0. 00 20 75 19 1. 30 1. 26 33 0. 00 0 00 3 07 '35:-J 2 7 6 0 0 0 IS 2. 67 63 2. 20 1. 89 0. 00 0. 00 0. 00 4. 72 09 33 . 28 0. 00 0 00 0. 00 70 1 1 0 0 0 0 2 1. 40 31 31 0. 00 0 00 0 00 0. 00 63 05 OS 0. 00 0. 00 0. 00 0. 00 09 1 4 0 1 0 0 6 2 50 31 1 26 0 00 . 31 0. 00 0 . 00 I 89 05 19 0 00 05 0. 00 0. 00 28 " 1 3 1 0 0 0 5 1. 92 31 94 31 0. 00 0. 00 0 00 l 57 W>Jrl 05 14 05 0. 00 0 00 0 00 23 1 3 4 0 0 0 8 2 80 31 94 1. 26 0. 00 0 00 0 00 :? 52 oo 14 19 0. 00 0. 00 0. 00 37 N:.J 1 5 6 1 0 0 13 3. 22 31 1 57 1. 89 31 0. 00 0 00 ,, 09 05 23 28 05 0 00 0 00 60 NtJW 0 3 3 1 0 0 7 3. 57 0. 00 94 94 31 0 00 0 00 20 0 00 14 14 05 0. 00 0. 00 33 N 0 6 1 1 0 0 8 3. 12 0. 00 1. 89 31 31 0 00 0 00 52 0 00 28 05 05 0. 00 0. 00 37 CAL:-! 0 0 CALM 0 co " 00 0. 00 " 00 TOTAL 24 187 86 21 0 0 318 2 88 7. 55 58 81 27. 04 6 60 0 00 0. 00 100 00 Rev. 0 1 12 8 70 4. 00 98 0 00 0. 00 79 KEY "' NU!1ilER OF OCCURRENCES XXX PE'RCENr OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STl\BILITY CLASS (MONTHLY 10 METERS) Page 32 of 48 )OrtH I,JlrJD DISTRIBUTION OY Sfl\l3ILITY CLASS D.'dA ALL AUGUST COMBINED ST.t.OILITY CLASS PASGUILL G DMTM G:'J--SITE \-Jff.JO SENSOR HEIGHT* 10 00 METERS TA::ILE GENERATED 11/11/81 13 51 50 WOLF CREE;.{ GENERATHJG BURL! KANSAS Kt,NSAS GAS AND ELECTRIC DAMES AND MOORE ,!0!3 NO 7699-064 WIND SECTOR WINO SPEED PER SECOND) MEAN 0 0-1 5 1 5-3 0 J 0-5 0 0-7 5 7 5-l 0 0 :_'"., 10 0 TOTAL SPEED N:-.lE ESE SE S'EiW CAL:"! TOTAL 4 27 19 1 09 0 0 00 0 co 1 09 1 57 OS 1 09 1 09 0 0. 00 0. 00 0 0. 00 0. 00 1 57 . OS 0 0 00 0. 00 3 1. 70 14 3 1 70 14 5 2 84 23 3 1 70 14 5 2 84 23 0 0 00 0 00 33 18. 75 1. 53 9 5 11 42 4 2 27 19 1 57 OS 11 6 25 51 6 3 41 28 18 10 23 84 37 21 02 1 72 15 8. 52 70 0 0. 00 0 00 0 0. 00 0. 00 1 57 OS 0 0 00 0 00 5 2. 84 23 1 09 3 1 70 14 5 2. 84 23 117 66 48 5 44 0 0 00 0 00 1. 07 1 57 OS 4 2 27 19 5 2 84 2.3 1 57 OS 1 57 OS 1. 09 0 0. 00 0. 00 0 0 00 0 00 1 57 OS 1 57 05 3 1 70 14 1. 09 0 0 00 0. 00 0 0 00 0. 00 23 13.07 1. 07 KEY XXX NUMBER OF OCCURRENCES 0 0 00 0 00 0 0. 00 0 00 1. 09 1 57 05 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 3 1. 70 14 XX< PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 13 7 39 60 8 4 55 :37 4 27 19 18 10 23 84 12 6 82 56 21 11 93 78 40 21 17 9 66 79 0 0 00 0 00 1 57 OS 2 1 14 09 4 2. 27 19 11 6 25 51 9 5. 11 42 6 3. 41 28 10 5. 68 . 47 0 0 00 0. 00 176 100.00 8 19 1 81 2 39 4 57 2 79 2. 93 2 35 2 34 2. 58 0. 00 1. 10 2. 75 1. 72 2. 23 1. 71 1. 78 1. 80 CALM 2. 36 JOINT WitJD DISTRIBUTION BY STiiBILITY CLASS DATA PERIOD: ALL AUGUST COMBINED ALL (!_ASSES DATA WINO HEIGHT. 10.00 METERS TABLE GENE:RATED: 11/11/81 13 51 WOLF CREEK GENERAT!f'!G "5TATION BURLINGTON. KANSAS KANSAS GAS AND E:LECTR Io:: DAMES AND MOORE JOB NO* 7699-064 WIND SECTOR WINO SPEED CATEGORIESCMETERS PER SECOND) MEAN 0 0-1. '5 1 5-3. 0 3. 0-5 0 0-7. 5 7 5-10. 0 >10. 0 NNE Et-IE ESE SE SSE s ssw sw tiW CAL:-1 TOTAl_ 9 42 9 42 2 09 8 37 5 23 5 23 5 23 6 28 4 19 7 33 4 19 7 33 7 33 9 42 4 19 8 37 0 0. 00 99 4 60 42 1. 95 33 1. 53 25 1 16 35 1. 63 36 1 67 93 4 33 139 6 47 120 5 58 34 1 58 14 65 14 65 10 47 23 1 07 18 84 14 65 34 1 58 684 31 81 N1JM8ER OF 'JALID N'JMDEI-< 0.:::-IrNALID OBSERVATIONS TOTAL f!".13ER OF OBSER'JAT IONS 26 1. 21 28 1. 30 3b 1 67 35 1. 63 34 l. 58 33 1. 53 105 4. 88 237 11.02 98 4 56 23 1. 07 14 65 8 37 12 56 15 70 13 60 32 1 49 749 34 84 2150 82 2232 K.E'r' XXX tJU.'18ER OF OCCURRENCES *ox PERCENT OCCURRENCES 24 1. 12 20 93 18 84 21 98 12 56 13 60 32 1. 49 177 8. 23 128 5. 95 18 . 84 3 . 14 4 19 0 0. 00 21 98 20 93 10 47 521 24. 23 96 33 PCT 3 6 7 PC T 100. 00 PCT 3 14 0 0. 00 3 . 14 . 0 0. 00 0 0. 00 5 23 46 2. 14 20 93 0 0. 00 2 09 0 0. 00 1 OS 10 47 1 OS 2 09 95 4 42 1 . OS 0 0. 00 0 0. 00 0 0. 00 0 0. 00 0 0. 00 0 0. 00 0 0. 00 0 0. 00 0 0. 00 0 0. 00 0 0 00 0 0. 00 0 0 00 0 0. 00 1 OS TOTAL SPEED 105 4 88 90 4 19 84 3 91 101 4 70 87 4. 05 144 6. 70 :286 13. 30 !J86 27.26 :284 13.21 62 2. 88 37 1 72 29 1. 35 43 2. 00 73 3. 40 52 2. 42 87 4. OS 0 0 00 2150 100 00 3 76 3 45 4 00 3. 81 3. 35 3. 02 3. 45 464 5. 07 4. 06 3. 37 2. 94 2 64 4 39 4. 27 3 46 CALM 4 06 Rev. 0 JOINT WOLF CREEK TABLE 2. 3-31 (Continued) WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) Page 33 FREOV::.:NCY DISTRIBUTION IlV STABILITY D<\ TA PERIOD ALL S!::PTEMOER COMB !NED CLASS PASGUILL A DATA sm:acE 0:'-J-Sl TE SEtEiOR HEIGHT to 00 1'1ETE"AS T.;DLE GENFRATED: 11/11/81. ):1 '56. 54 WIND WihlO SPE:.ED CA1EGORIE:S0"1tfER5 PER SECTOR 0. 0-1 5 1 5-3 0 3 0-5 0 5 0-7. 5 f\:'JC: NE ErJE ESE SE SSE s ssw S<l WSW w NNW N CALM TOTA!_ 1 2 11 1::1 :J5 70 3 fj] 4 5::1 05 09 . 61 0 3 4 ::J 0 00 1 05 1. :!9 1 05 0 co 14 l9 14 0 0 1 " 0 00 0 00 :lS 1. 0 co 0 00 OS 14 0 1 l 0 0 00 35 :Js 0. 00 0 00 05 OS 0 00 0 5 3 0 0 00 1. 74 1 05 0. 00 0 00 24 14 0 00 4 10 12 1 39 3 48 4 18 1. 74 19 . 47 24 0 3 14 9 0 00 1 05 4 EiB 3. 14 0. 00 14 M . 42 1 14 12 17 35 4. 88 4 18 5 92 05 66 80 2 8 !.1 10 70 2 79 3 El3 3 48 09 38 . 47 0 7 3 1 0 00 2 44 1 OS 35 0 00 33 14 05 2 2 1 0 70 70 :35 0 00 09 09 05 0. 00 0 8 4 0 0. co 2 79 l ::s9 0. OD 0 00 38 19 0. 00 1 3 1 0 35 1. 05 :Js 0 00 . 05 14 05 0. 00 0 0 0 0 0. 00 0 00 0 00 0. 00 0. co 0 00 0 00 0. 00 0 3 12 5 0. 00 1. 05 4 l.8 1. 74 0. 00 14 :)6 24 0 0 7 13 0. 00 0 00 2. 44 4. 53 0 00 0. 00 :J3 61 3 1. 05 14 14 69 97 79 4 ea 24 04 33. 80 27. 53 66 3 25 4 !)6 3. 72 K.EY X XX NU:"BER OF OCCURRENCES XX:< PERCENT OCCURRENCES THIS CLASS XX:< PERCENT OCCURRENCES ALL CLASSES CLASS WOLF CREEK GENERATING STATION DURLif>!GTON, IA..ANSAS KAtJSAS GAS Arm E..LECTR! C DAMES AND MOORE JOB ND: 7699-064 SECOND) MEAN 7 5-10 0 >10. 0 TOTAL SPEED 3 0 :JO 5 10 1. 05 0 00 10 45 14 0 00 1 41 0 0 10 4 11 0. 00 0 00 :1. 48 0. 00 0. 00 47 0 0 4 5 22 0. 00 0. 00 1. 39 0. 00 0. 00 19 0 0 3. 65 0. 00 0. 00 0. 00 0 00 09 0 0 8 3 06 0. 00 0 00 79 0. 00 0 00 38 0 0 31 3 30 0. 00 0 00 10 80 0. 00 0 00 l 46 0 0 26 4 48 0 00 0 00 " 06 0 00 0. 00 i 22 6 0 50 4 79 2. 09 0. 00 1/' 42 . 28 0. 00 . 35 5 0 36 4 54 1 74 0. 00 1 54 24 0. 00 l 69 0 0 11 3. 05 0. 00 0 00 " 83 0 00 0. 00 52 0 0 5 1 96 0. 00 0 00 ' 74 0 00 0. 00 . 24 0 0 12 2. 91 0. 00 0. 00 18 0. 00 0. 00 56 0 0 5 2 46 0. 00 0. 00 1. 74 0. 00 0. 00 24 0 0 0 0. 00 0. 00 0 00 0. 00 0. 00 0. 00 0. 00 4 1 2S s 49 1 39 35 " 71 19 . OS '* 18 8 1 29 6 59 2. 79 35 10. 10 38 05 l 36 3 CALM l.. OS . 14 26 2 287 4 49 9. 06 70 100 00 1. 22 09 1::. 50 ,...IOit-JT FREOUE:NCY DISTRIBUTION BY STABILITY CLASS PERIOD ALL SEPTEMBER COMBINED STABILITY CLASS: PASGUILL 13 DATA SOURCE* TE i-H:"\111 SENSOR HEIGHT* 10 00 METERS 1 ABLE GENt.RATEO* 11 I 11/81. 13. 56. 54 WIND 1-JI:JO SPEED CATEGORIES <M::::TERS PER SECTOR 0 0-1. 5 1. 5-3. 0 3. o-s. o 5. 0-7 5 0 0 3 1 0. 00 0 00 2 38 79 0. 00 0. 00 14 05 NE 0 1 6 1 0. 00 79 4. 76 79 0. 00 05 28 05 ENE 0 4 3 1 0. 00 3 17 2 33 79 0. OJ 19 14 05 E 0 0 2 0 0. 00 0 00 1. '59 0. 00 0. 00 0 00 09 0. 00 ESE 0 1 3 0 0. 00 79 2.:38 0. 00 0 co OS 14 0. 00 =;E 0 2 4 1 0. co 1 59 3 17 . 79 0 00 09 19 OS S::>E 0 2 8 6 0 co 1 59 6.:35 4. 76 0 00 09 :38 28 1 6 14 3 79 4 76 11. 11 2. 38 05 28 M 14 0 4 6 4 0. 00 3. 17 4. 76 3. 17 0. 00 19 :ca 1 sw 0 7 1 2 0 co 5. 56 79 1. sc? 0. 00 33 . 05 09 WS:..J 0 1 0 1 0. 00 79 0. 00 . 79 0 00 05 0. 00 05 1 1 1 0 79 79 79 0. 00 05 05 05 0 00 0 0 I 0 0 00 0 00 79 0. 00 0 co 0 00 05 0. 00 0 2 1 0 0 00 1 59 :'9 0. 00 0 DO 09 05 0 00 MJW 0 0 1 ,, 0 OJ 00 79 3. 17 0 00 DO 05 19 N 0 0 2 5 0. 00 0 00 1 3. 97 0 co 0 00 09 24 CAUi 0 0 Q,) 0 00 TOTAL 2 31 29 1 59 24 60 44 *H 23 09 1 46 2 63 1 36 KE'I' XX.( NU.""1BER OF OCCURRENCES <XX PERCErH OCCURRENCES THIS CLASS XX< PERCtrJr OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STAT fON BURLINGTON, KANSAS KANSAS GAS AND ELECTR l C DAI'iES AND MOORE JOB ND: 7699-064 SECOND> MEAN 7. 5-10 0 >10. 0 TOTAL SPEED 1 0 5 14 79 0. 00 ::J. 97 . OS 0. 00 24 0 0 8 3 82 0. 00 0. 00 b.35 0. 00 0. 00 38 0 0 8 3 36 0. 00 0 00 35 0. 00 0. 00 38 0 0 l. 4 55 0. 00 0. 00 0. 00 0. 00 09 0 0 4 3. 52 0. 00 0 00 ::J. 17 0. 00 0. 00 19 0 0 7 3 70 0 . 00 0. 00 ':).56 0. 00 0. 00 33 0 0 16 4. 71 0 00 0 00 t;;! 70 0 00 0. 00 . 7S 2 0 26 4 07 1 59 0. 00 20 63 09 0. 00 I 22 3 2 19 5. 69 2. 38 1. 59 t::, 08 14 . 09 89 0 0 10 3 27 0. 00 0 00 94 0. 00 0. 00 47 0 0 2 4. 45 0 00 0. 00 (.59 0. 00 0. 00 09 0 0 3 2. 23 0. 00 0. 00 38 0 00 0. 00 14 0 0 1 3. 10 0 00 0. 00 79 0 00 0 00 OS 0 0 3 2 87 0 00 0 00 38 0 00 0. 00 14 0 0 5 5 80 0. 00 0. 00 97 0 00 0 00 24 0 0 7 5 37 0 00 0 00 56 0 00 0 00 33 0 CALM 00 00 6 2 126 4 35 4 76 1. 59 tOO 00 28 09 ,, 93 Rev. of 48 0 WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) ,JOINT l.JI/W FREOUC:fJCY DISTRIBUTION 5Y STABILITY CLASS DATA PER IOO ALL SEPTEMDER COMG ltJED STl,81LITY CL.;Ss. PASGUILL c WOLF CREEK GENERATING STATION DATI. [1;-...J-SITE DURL J NGTON, KANSAS Ir Jl) sErmoR HEIGHT 10 00 METERS KANSAS GAS E::L E..:CTR IC T Anu: GErJI-'RATED: 11 I 11/81. 1:1 '56. :'14 DAMES AND r'iOORE JOB NO: 7699-064 t.Jil\lD t.Jirw SPEED PER SECOND> MEAN SEt: Tl!R () 0-1. :'; 1. 5-3 0 J 0--J 0 , 0-7 5 7 J-10 0 )10. 0 TOT,I\L SPEED 0 2 1 5 0 0 B 4 " 0 00 1 79 8'i' 4 46 00 0 00 7 14 0 00 09 o::. 24 00 0 00 38 NE 0 4 " 3 0 0 10 4 08 0 OJ 3 57 2 2. 68 00 0 00 8. 93 0 co 19 " 14 00 0 00 47 ENS 0 2 " 0 0 0 5 3 22 00 1 79 2 68 0 00 0 00 0. 00 4 46 OJ 09 0 00 0 00 0 00 24 0 1 0 0 0 J 3 93 0 OJ 89 1 79 0. 00 0 00 0 00 2. 0. 00 05 o; 0. 00 0. 00 0 00 14 ESE 0 0 1 0 0 3 4 10 o. oa 0 00 1 79 89 0 00 0 00 2. 68 0 CJ 0 00 0' 05 0. 00 0 00 14 SE 0 1 " 1 0 0 5 3. 80 0 OJ 89 2. 68 89 0. 00 0 00 4_ 'l6 0 00 05 14 . 05 0 . 00 0 00 24 SSE 1 4 4 3 I 0 13 3 84 89 3 57 3. 57 2. 68 89 0. 00 11. '" 05 19 19 14 05 0 00 '" 0 5 12 7 1 0 25 4 25 0 00 4. 46 10 71 6. 25 . 89 0 00 22 32 0. 00 24 56 33 05 0 00 1 18 ss:.J 0 3 3 7 0 2 15 5 47 0. 00 2 68 2 68 6. 25 0 00 1 79 13 39 0. OJ 14 14 33 0 00 09 . 71 sw 0 2 0 4 0 0 6 4 60 0 co 1 79 0 00 3. 57 0. 00 0. 00 5 36 0 co 09 0 00 19 0 00 0. 00 .28 WSI.J 0 2 0 0 0 0 2 2. 35 0. 00 1 79 0. 00 0 00 0. 00 0. 00 1 79 0. 00 09 0. 00 0. 00 0 00 0. 00 . 09 w 0 1 0 0 0 0 1 3. 00 0 00 89 0 00 0. 00 0. 00 0. 00 89 0. co 05 0. 00 0. 00 0. 00 0 00 05 0 0 1 0 0 0 1 J 60 0 00 0. 00 89 0 00 0. 00 0. 00 89 0 00 0 00 05 0 00 0 00 0. 00 05 tJW 1 1 1 0 1 0 4 3. 57 89 89 89 0. 00 89 0. 00 3. 57 05 . 05 05 0. 00 . 05 0. 00 19 NN:.J 0 1 2 4 0 0 7 4. 99 0. 00 89 1. 79 3 57 0. 00 0. 00 6. 25 0. 00 05 . 09 19 0. 00 0 00 33 N 0 0 1 1. 1 0 4 6. 10 0 00 0 00 . 89 89 0 00 3 57 0. OJ 0 00 . 05 09 05 0. 00 19 CALM 0 0 CALM 0. co 0.00 0 00 0 00 TOTAL 2 29 38 37 4 2 112 4 38 1 79 25. 89 33 93 33. 04 3. '57 1. 79 100 00 09 1. 36 1 79 1. 74 19 09 5 27 KEY XXX NU!1!3ER OF OCCURRENCES X XX PERC EN f OCCURRENCES THIS CLASS X X.( PERCEN f OCCURRENCES ALL CLASSES JO[NT :.JIND FREIJUEI>JCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD. ALL SEPTEMBER COMBINED STABILITY CLASS: PASGUILL D DM T A SOURCE* I TE SENSOR HEIGHT 10 00 METERS TABLE GHk.RATED. 11/11/81. 13. 56. 54. WIND WINO SPEED CATEGORIES (METERS PER SECTOR 0. 0-1 5 1. 5-3. 0 3. 0-5. 0 5 0-7 5 NtJI:: 2 6 14 8 35 1. 06 2. 46 1. 41 09 28 66 38 tJE 3 10 9 9 53 1. 76 1. 58 1. 58 14 47 42 42 ENE 2 11 8 9 35 1 94 1 41 1. 58 09 52 38 42 E 5 10 18 5 88 1 76 3. 17 88 24 . 47 85 24 ESE 2 12 23 1 35 2. 11 4 05 18 09 56 1. 08 . 05 SE 4 16 15 0 70 2 82 2. 64 0. 00 19 75 . 71 0. 00 SSE 1 14 21 10 18 2 46 3. 70 1. 76 05 66 . 99 . 47 8 15 24 25 1. 41 2 64 4 23 4. 40 03 71 1. 13 1 18 I 14 20 6 18 2. 46 3. 52 1. 06 05 66 94 28 SW 3 11 11 3 53 1. 94 1. 94 . 53 . 14 52 52 . 14 WSL-.1 1 1 2 2 18 18 35 35 05 05 09 09 w 2 4 2 0 35 70 35 0 00 09 19 09 0 00 l,.jt-::..1 1 6 3 0 18 1. 06 53 0. 00 OS 28 14 0. 00 N;/ 0 6 7 5 0 co 1 06 I 23 88 0. 00 ;;!8 33 24 NNI.<.I 1 9 24 14 18 1 58 23 2. 46 05 42 13 66 N 3 8 32 18 53 1. 41 5 63 3 17 14 38 1. 51 85 CALM 0 0 00 0. 0*::> TOTAL J9 153 233 115 6 87 26 94 41.02 20 25 1. 83 7 20 10 96 5. 41 KEY XX< NU:1llER OF OCCURRENCES XXX PERCEtJ r OCCURRENCES THIS CLASS XX"( PERCEtJf OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE J013 NO: 7699-064 SECOND) MEAN 7. 5-10 0 >10. 0 TOTAL SPEED 10 0 40 5. 14 1. 76 0. 00 7. 04 47 0. 00 1. 88 0 0 31 3. 68 0. 00 0 00 5. 46 0. 00 0. 00 1. 46 0 0 30 3. 78 0. 00 0. 00 28 0 00 0. 00 41 0 0 38 3. 38 0. 00 0. 00 6. 69 0. 00 0. 00 1. 79 0 0 38 3. 51 0. 00 0. 00 6. 69 0 . 00 0. 00 1. 79 0 0 :35 2 94 0. 00 0. 00 6. 16 0. 00 0. 00 1. 65 2 0 48 4. 12 35 0 00 8 45 09 0. 00 2. :26 7 4 133 4. 91 1. 23 70 14. 61 33 19 3. '.0 1 1 43 3 87 18 18 7. :57 OS OS 2. 02 0 0 :28 3 29 0 . 00 0. 00 93 0 00 0 00 :32 0 0 6 4 08 0. 00 0 00 1. 06 0 00 0 00 ;:!B 0 0 8 2 34 0. 00 0 00 1. 41 0 00 0. 00 :m 0 0 10 2. 84 0 00 0. 00 1 76 0. 00 0 00 <17 2 0 4 57 35 0 00 3 :'i2 09 0. 00 I 0 '19 4 47 18 0. 00 8 b3 05 0. 00 2 :JO 0 0 61 4 27 0 00 0. 00 10 ?4 0 00 0 00 2 07 0 CALM 0 00 0. 00 23 5 'Sc'>B 4 06 05 08 100.00 08 24 26. 72 Page 34 of Rev. 48 0 WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STl\BILITY CLASS (MONTHLY 10 METERS) Page 3 -> of 48 JOINT FREQUENCY DISTRIBUTION BY STABILITY CLASS l A PERIOD. ALL SEPTEMDER COMBIF'YED STA:l IL ITY CLt.SS PASQUILL E WOLF CREEK GENER AT I STATION DATA SOL:RCE CN-SI TE BURLINGTON, KANSAS IN I) HEIGHT 10 00 t"lETERS KANSAS CAS ELECTRIC lADLE GENC:RAl ED 11/11/81. 13. 56 54 DAI'1ES AND f'lUORE ,JOB NO: 7699-064 WIND SPEED CATEGORIES(METERS PER SECOND> MEAN 0 0-1 5 1. 0 3 0 S. 0-7 5 7 5-10 0 >10 0 TOTAL SPEED 3 7 :l 4 0 0 17 3 34 70 1 63 '70 93 0 00 0 00 3. 95 14 33 14 19 0 00 0. 00 80 JE 3 13 0 0 0 18 2. 47 70 3 02 0. 00 0 00 0 00 4 19 14 61 0 00 09 0 00 0 00 85 5 10 t:l 0 0 30 3. 06 1. 16 2 33 3. 47 0 00 0. 00
  • 98 24 47 61 09 0 00 0 00 1. 41 £ 2 14 6 0 0 24 2. 90 47 3 26 1. 40 0 00 0 00 i'* 58 09 66 ;:*s 09 0 00 0 00 13 ESE 1 15 5 1 0 0 22 2 67 23 3 49 1. 16 23 0 00 0. 00 5. 12 05 71 ;;:*4 05 0. 00 0. 00 1 03 ::iE 5 18 13 1 1 0 38 2. 81 1. 16 4 19 3 02 23 23 0. 00 8. 84 24 85 . 61 05 05 0 00 1 79 SSE 7 30 3 0 0 92 3. 17 1. 63 6 98 12 09 . 70 0 . 00 0. 00 21 40 33 1 41 2. 45 . 14 0 00 0. 00 4. 33 s 7 20 :13 20 0 0 80 3 82 1 63 4. 65 7. 67 4 65 0. 00 0. 00 18 60 . 33 94 1. 94 0. 00 0. 00 :::1 . 76 ssw 4 8 11 " 0 0 29 3. 45 93 1. 86 2. 1. 40 0 00 0. 00 6. 74 19 38 . 28 0 00 0. 00 1 36 sw 0 9 4 0 0 0 13 2. 89 0 co 2. 09 ';)3 0. 00 0 00 0. 00 :1 02 0. 00 42 . 19 0. 00 0 00 0. 00 61 WSW 3 2 0 0 0 0 5 1. 46 70 47 0. 00 0 00 0 00 0. 00 1. 16 14 09 0 00 0. 00 0. 00 0 00 24 w 0 4 1 0 0 0 5 2. 20 0. 00 93 ;;!3 0. 00 0. 00 0. 00 1. 16 0 OJ 19 OS 0. 00 0 00 0. 00 . 24 wr-:;..J 0 0 0 0 0 0 0 0. 00 0 co 0. 00 0. 00 0. 00 0. 00 0. 00 0 00 0. 00 0. 00 0. 00 0. 00 0 00 0. 00 0. 00 3 3 2 1 1 0 10 3. 26 70 70 . 47 23 . 23 0 . 00 33 14 14 . 09 OS . OS 0 00 47 NI\:W 6 8 3 1 0 0 18 2 27 1. 40 1 86 70 . 23 0 00 0. 00 "** 19 28 38 l.4 OS 0. 00 0. 00 85 N 1 4 ).4 8 0 1 28 4 60 23 93 3 ;;!6 1. 86 0. 00 23 "* 51 OS 19 1>6 38 0. 00 OS l. 32 CALM 1 1 CALM 23 . 23 OS . 05 TOTAL 51 165 160 51 2 1 430 3. 22 11 86 38. 37 37. 11. 86 47 23 100.00 2. 40 7 76 7_ 2. 40 09 05 20.23 KEY .<X::( NUMBER OF OCCURRENCES <XX PERCErH OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES JOINT LJ!ND DISTRIBUTION BY STABILITY CLASS DATA PERIOD* ALL S£PTEMBER COMBINED STA3Il lTY PASGUILL F WOLF CREEK GENERATING STATION DATA SOUrtCE* ON-SITE BURLINGTON, KANSAS l.JIND SEt>lSOR HEIGHT: 10. 00 METERS KANSAS GAS AND ELE.CTR 1 C T.l.3LE GEfJERATED 11/11/81 '56 ,. DAMES AND MOORE JOB ND* ?t-99-064 WIND Wlf-10 SPEED CATEGDRIES<METERS PER SECONDl MEAN SECTOR 0. 0-1. 5 1 S-3 0 3. o 5.0-7.5 7. 5-10. 0 >10. 0 TOTAL SPEED 4 2 9 1 0 0 16 3 08 1. 25 63 2 E32 31 0 00 0. 00 02 19 09 .0:12 OS 0 00 0. 00 75 rJE 3 8 1 0 0 0 12 2. 11 94 2. 51 :n 0. 00 0. 00 0. 00 " 76 14 38 05 0 00 0 00 0. 00 56 EtJE 2 5 9 0 0 0 16 2. 81 63 1 57 2 El2 0. 00 0. 00 0. 00 ,, 02 09 24 .0:)2 0. 00 0. 00 0. 00 75 3 10 7 0 0 0 20 2. 45 94 3. 13 2. l9 0. 00 0. 00 0. 00 6. 27 14 47 ::13 0. 00 0. 00 0. 00 94 ESE 0 15 4 0 0 0 19 2. 58 0. 00 4 70 1 . 0. 00 0. 00 0. 00 ,, 96 0 00 71 19 0. 00 0. 00 0. 00 . 89 S£ 4 40 5 0 0 0 49 2. 23 1 25 12. 54 1 0. 00 0. 00 0. 00 1:i 36 19 1. 88 .:;:!4 0. 00 0 00 0. 00 . 30 SSE 9 54 11 0 0 0 74 2 28 2. 82 16. 93 3 . 0. 00 0 00 0. 00 2:!. 20 42 2. 54 0. 00 0. 00 0. 00 " 48 5 16 l.3 1 0 0 35 2. 59 1 57 5. 02 4. 08 31 0 00 0. 00 10. 97 24 75 61 05 0. 00 0. 00 I 65 ssw 6 10 2 0 0 0 18 2. 08 1. 88 3 13 63 0. 00 0 00 0. 00 :). 64 28 47 09 0. 00 0. 00 0. 00 85 sw 4 3 0 0 0 0 7 1. 43 1. 25 94 0. 00 0 00 0 00 0. 00 . 19 19 14 0 00 0. 00 0. 00 0. 00 33 W5W 1 65 0 0 0 0 3 1 60 31 0. 00 0. 00 0. 00 0 00 . 94 OS 09 0 00 0. 00 0 00 0. 00 14 w 1 2 0 0 0 0 3 1 63 31 63 0 00 0 00 0 00 0 00 . 94 05 09 0. 00 0. 00 0 00 0 00 14 L-:,'JW 1 2 0 0 0 0 3 1 83 31 63 0 00 0 00 0 00 0. 00 94 OS 09 0 00 0. 00 0. 00 0 00 . 14 7 6 1 0 0 0 14 1. 68 2 19 1 88 ::!1 0 00 0. 00 0 00 '* 39 23 28 05 0 00 0. 00 0. 00 66 1\:t 6 6 0 0 0 0 12 1 87 1 E3 1 88 0. 00 0. 00 0 00 0. 00 :1 76 28 28 0 00 0. 00 0 00 0. 00 56 N 2 3 10 1 0 0 16 3 12 63 94 3 1:-1 31 0 00 0. 00 ::_;_ 02 09 14 '<*7 05 0. 00 0. DO 75 2 2 CALM 63 63 09 09 fOTAL 60 184 7".:;:! 3 0 0 319 2 34 Rev. 0 18 81 57 68 22 94 0 00 0 00 100 00 2 82 8 65 3 ::w 14 0 00 0. 00 1 00 Y..EY XX.( NUMDER OF OCCURRENCES xx< PERCE"rJ r OCCURRENCES THIS CLASS XX.< PERCErH OCCURRENCES ALL CLASSES WOLF CREEK TABLE 2. 3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STl\BILITY CLASS 10 METERS) Page 36 of 48 .hHr.T UHJD DISTRI!3UTI(IN BY STABILITY CLASS DATA PER! lJD ALL SEPTEMrlER CDMD I t4ED ST ,.;3 I L I TY CLASS PASOU ILL G DATA 0:-.J-SITE St.I'JSOR HEIGHl 10 00 METERS f,;oLt: CE.Nc.RATED. 11/11/EU 13 5t>. 54 WOLF CREEK GENERATING STATION UURLINGTON, J.(.At6AS GAS AND DAI'lES AND f1[J(JRE JDU NO 7699-064 1-JIND SEC TOR WINO SPEED CATEGORJES<METERS PER SECOND) 0 0-1 1 0 ] 0**5 0 0-7 s 7 5-10 0 >10 0 MEAN Nt E:JE E ESE SE SSE sw N CALM TOTAL 0 0 OJ 0 00 3 1 14 4 l. 41 19 1 35 OS 0 0 OJ 0 00 11 3 87 52 6 "-.11 28 5 1 76 24 5 1. 76 24 09 1 35 05 1 35 05 3 1 06 14 5 1. 76 24 3 1 06 14 1 35 05 1 35 05 52 18.31 2. 45 17 5 99 80 26 9 1, 1 2 82 38 15 5. 28 71 27 9 51 1. 27 27 9 51 1 27 28 9 86 1. 32 8 2. 82 38 09 0 0. 00 0. 00 1 35 05 1 35 05 4 1 41 19 6 2. 11 28 6 2. 11 28 7 2. 46 . 33 183 64. 44 8. 61 15 28 71 6 < 11 28 2 70 09 6 2 11 28 8 2 82 38 5 1 76 . 24 1 35 05 76 . 09 1 . 35 05 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 3 1. 06 14 49 17 25 2. 30 KEY XX'( t>IUt1BER OF OCCURRENCES 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 XX:< PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES 0 0 00 0. 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. DO 0 0 00 0 00 0 0 00 0. 00 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 () 0 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 TOTAL SPEED :'J2 11 ':.?7 1 35 12 :J2 1 65 14 4 93 66 7. 1. 03 35 12 32 1. 65 43 15 14 2 02 35 12 32 1 65 15 5 28 71 8 2 82 38 7§ 09 2 70 09 2 70 09 7 2. 46 33 11 3. 87 52 9 3. 17 42 11 3. 87 52 1 35 . 05 284 1:)0. 00 :l3 36 3 04 2 49 2 09 2 64 2 47 2 03 2 02 1 77 1. 46 1. 05 1. 75 l. 20 1. 74 1. 63 2. 09 2 73 CALM 2. 26 JOIIH IHND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD ALL SEPTEMBER COM[3It.JED ALL CLASSES DATA SOURCE ON-SITE 1-Jlt,JO SEtJSOR HEIGHT: 10 00 METERS TABLE GENc.RATED. 11/11/81 13.56.54. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTHIC DAMES AND MOORE JOB NO: 7699-064 WIND SECTOR WINO SPEED CATEGORIES<MEfERS PER SECOND) 0 0-1. 5 1 5-3 0 3 0-5 0 5. 0-7. 5 7. 5-10. 0 >10. 0 MEAN N:-.JE NE ErJE E ESE SE SSE s ssw sw WSW CALM TOTAL 10 47 12 56 13 61 11 52 3 14 28 1. 32 24 1. 13 27 1 27 18 85 9 42 8 3a 5 24 6 28 16 75 16 75 7 33 7 33 220 10 35 36 1. 69 65 3 06 40 1 88 51 2. 40 75 3. 53 114 5. 36 135 6. 35 84 3 95 49 2. 30 39 1. 83 11 52 21 99 15 71 24 1 13 33 1 55 1 814 38. 29 NU:13ER VAlID OOSERVATIONS N'JM3EH 07" INVALID OD5E"RVATIONS TOTAL f.lvr1BER OF OOSERVAT IONS 56 2 63 29 1. 36 39 1 83 42 1. 98 48 2. 26 57 2 68 Ill 5. 22 110 5 17 54 2 54 19 89 3 14 8 38 6 28 12 56 42 1 98 69 3. 25 705 33. 16 2.t26 34 2160 lo':f'{ XX< f-IUMOER OF OCCVRREI'KES .<X ( PERC EN f OCCURRENCES 32 1. 51 18 85 15 71 7 33 3 14 8 38 31 1. 46 73 3. 43 33 1 55 10 47 3 14 0 0 00 0 0. 00 6 28 ;..:!a l. 32 47 2 21 314 14 77 98 43 PCT 1 57 PCT 100. 00 PCT. 14 66 0 0 00 0 0 00 0 0. 00 0 0. 00 1 . 05 3 14 16 75 9 42 0 0. 00 0 0. 00 0 0 00 0 0. 00 4 19 5 24 9 42 61 2 87 0 0. 00 0 0. 00 0 0. 00 0 0. 00 0 0. 00 0 0. 00 0 0 00 4 19 5 24 0 0 00 0 0 00 0 0. 00 0 0. 00 0 0. 00 1 . 05 12 56 TOTAL SPEED 148 6. 96 124 5. 83 107 5. 03 Ill 5. 22 129 6. 07 208 9.78 304 :l4 30 314 l.4. 77 168 7 90 77 3. 62 25 1 18 34 1 60 27 l 27 62 2 92 125 5. 88 !56 7. 34 7 33 2126 100.00 4 24 3. 09 3. 21 3 00 2 93 2. 66 3 19 4 08 3. 98 3 06 2. 54 2 40 2. 41 3. 04 4 02 4 63 CALM 3 48 Rev. 0 WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STl\.BILITY CLASS (MONTHLY 10 METERS) Page 37 of 48 JOINT t-trrm FREOUi::IKY OISTRI8UTION DY STADILITY CLASS D.*HA f-'ER[OD ALL C:T03ER COM8INED :_)fMf"liLITY CLASS PASGUILL A i),*, T i. I 1 E HEIGHT 10 00 METERS TMJ3LE GErJERMTEO 11111/81. H '57 07 WOLF CREEK GENERATING STATION BUHLINGTON, ).<.AN:-J,\5 GAS ANIJ l:LECTRIC DAMES AND MOORE J[)[3 NO 7699-064 WINO SI:CCTOR CATEGOHlE:><M-':TERS PER SECOND) MEAN 00-15 50-75 75-!00 >100 f[*TAL SPEED E:3E SE: s w N CALM TOTAL 0 0 00 0 00 0 0 co 0 OJ 0 0. 00 0 00 0 0 00 0 00 1 75 05 0 0. 0:> 0 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0. 0:) 0 0 DO 0 00 0 0. co 0. 00 0 0 co 0 OJ 0 0 co 0 00 0 0 00 0. 00 0 0. CD 0. 0*::> 0 0 00 0 co 0 0 00 0 00 1 75 OS 1 75 05 3 2 26 14 1 75 05 1 09 1 75 05 0 0 00 0 00 1 75 05 1 75 05 0 0. 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0 00 0 00 1 s5 09 1 75 05 0 0 00 0 00 1 75 05 14 10. 53 63 1 7:J 05 0 0 00 0 00 1 75 05 1 70 05 1 09 1. 09 3 2. 26 14 3 2 14 1 75 OS 8 6. 02 26 2 1 50 09 1 75 05 0 0 00 0. 00 0 0 00 0 00 1 75 . 05 1. 09 28 21.05 1 26 Y.EY XX"( NU:'18ER OF OCCURRENCES 1 sg 09 1 75 05 0 0 00 0 00 0 0 00 0 00 7 5 26 . 32 0 0. 00 0. 00 0 0 00 0. 00 11 8 27 so 4 3. 01 . 18 1. 09 3 2. 26 14 0 0 00 0. 00 4 3 01 . 18 1 . 75 05 4 3. 01 18 4 3. 01 18 43 32.33 1. 94 XX.< PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES 0 0 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 1 75 05 0 0. 00 0. 00 0 0. 00 0. 00 10 7. 52 . 45 1 75 05 1 . 75 05 0 0. 00 0. 00 0 0. 00 0. 00 2 1. 50 09 1. s8 09 11 8. 27 50 1. 09 30 22 56 1. 35 0 0 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0 00 7 5. 26 . 32 1 s5 09 1. s5 09 0 0 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 6 4. 51 . 27 17 12 78 77 4 01 18 4 01 18 1 09 3 26 14 12 9. 02 54 2 1. 50 . 09 4 01 18 32 24. 06 1. 44 8 6 02 36 13 9 77 59 5 3. 76 23 1 . 75 05 8 6 02 36 4 3 01 18 16 12.03 72 15 11 28 68 0 0 00 0 00 133 100 00 5 99 5 17 3 65 3. 10 2. 80 5 75 3 70 3. 30 7 96 7. 82 5. 93 4 80 3. 50 6. 21 6. 45 7. 54 7. 83 CALM 6. 58 JOINT UIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD ALL C:TOBER COMBINED STf..B IL tTY CLASS PASQUILL B DATA SOURCE \JI:\10 SENSOR HEIGHT: 10 00 METERS TABLE GENERATED* 11/11181 14.57.07. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTR).C DAt1ES AND MOORE JOB NC
  • 7699-064 WIND SECTOR WltJO SPEED CATEGORIES<METERS PER SECOND) 0 0-1. 5 1. 5-3.0 3 0-5 0 5. 0-7. 5 7. 5-10 0 >10. 0 MEAN NE E E3E 51:: s TCTAL 0 0 00 0 00 0 0 OD 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. co 0 00 0 0. 00 0. 00 0 0 0;) 0 co 1 63 05 1 63 05 0 0. OD 0 co 0 0 00 0. 00 0 0 00 0 co 0 0 00 0 co 0 0. 00 0 00 0 0 00 0 00 0 0 00 D OS! 0 0 00 0 co 2 1 75 09 1. 7§ 09 1 88 05 1 88 . 05 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0 00 1. 09 0 0. 00 0 00 0 0 00 0 00 5 4 39 23 1 88 05 1 7; 09 1 7§ 09 3 2 63 14 0 0 00 0 00 2 1 75 09 21 18 42 95 1. 09 1 88 05 0 0 00 0. 00 1 88 05 1 88 05 5 4 :19 23 1 88 05 8 7 02 36 1 88 05 1 88 05 0 0 00 0 00 l 7; 09 0 0 00 0 00 0 0 00 0 00 1 88 05 1 88 05 25 21 93 1 13 io(E) XX( NU:1BER OF OCCUHRENCES 3 2. 63 14 1 88 05 0 0. 00 0. 00 0 0 00 0. 00 1 09 0 0. 00 0. 00 2 1. 75 09 4 3. 51 18 3 2. 63 14 7 6. 14 32 0 0. 00 0. 00 0 0 00 0 00 1 88 . 05 2 1. 75 09 1 88 05 8 7 02 36 34 29 82 1 53 Xx.< PERCEIH OCCURRENCES THIS CLASS XX.< PERCEtH OCCURRENCES ALL CLASSES 0 0. 00 0 00 0 0. 00 0 00 0 0. 00 0 00 0 0. 00 0 00 1 88 . 05 0 0. 00 0. 00 1 88 05 8 7 02 36 2 1 75 . 09 5 4. 39 23 2 1 75 09 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 4 3 51 18 1. 7; 09 25 21 93 1 13 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 s 4. 39 23 1. . 09 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0. 00 7 6 14 32 TOTAL SPEED 7 6. 14 . 32 3 63 14 1 88 OS 1 . 88 . 05 4 ::::1 51 18 5 4. 39 23 6 26 27 26 81 1 17 9 7.89 . 41 18 15 79 81 3 63 14 4 3 51 18 3 2 63 14 5 4 39 23 6 26 27 13 11 40 59 0 0 00 0 00 ! 14 100 00 5 13 4 46 4. 53 2. 90 5. 00 6. 30 3. 86 4 60 7 13 7. 41 5. 83 6. 43 3 12 3 87 4 04 7 43 5. 79 CALM " 84 Rev. 0 JOINT WOLF CREEK 'l'ABLE 2. 3-31 (Continued) WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 HETERS) Page 38 ,JOINT :.;rno FREQUENCY DISTRIBUTION BY STABILITY DATA PERIOD ALL C:TOOER COMO I NED 'ST/.0 Il. IT) CLASS PASQUILL c DATA CN-SITE HEIGHT 10 00 METERS T Atll.E 11/11/01 14 57 07 I.JIND wuw SPEED CATEGORIES<M'::fERS PER !3ECTOR 0 0-1 , 1 >-3 0 3 O-> 0 5 0-7. :5 WJE I'JE GJE ESE SE SSE ssw SW " " CAlM TOTAL 0 I 1 0 00 I 84 84 0 OJ 09 05 05 0 0 2 I 0 OJ 0 00 1. 68 04 0 0-J 0 00 09 05 0 0 3 0 OJ 0 00 2. 52 0. 00 03 0 00 14 0. 00 0 0 5 0 0 co 0 00 4 co 0. 00 0. 00 0 00 23 0. 00 0 0 9 2 0 00 0 00 7 56 1. 68 0 CJ 0 00 41 09 0 1 2 0 0 00 84 1 68 0 00 0 00 05 . 09 0 00 0 2 I 3 0. OJ 1. 68 84 2 52 0 co 09 05 . 14 0 1 4 9 0. OJ 84 3. 36 7. 56 0 co 05 18 41 0 2 4 8 0 co 1 68 3 36 6. 72 0 00 09 18 36 0 0 1. 4 0 00 0. 00 3. 36 0 CJ 0. 00 09 18 0 2 2 0 0. 00 1. 68 1. 68 0. 00 0 OJ 09 09 0. 00 0 I 5 I 0 OJ 84 4 20 84 0. 00 05 23 05 0 I 3 I 0. 00 84 2 52 . 84 0. 00 05 14 05 0 0 2 0 0. 00 0. 00 1. 68 0 00 0. 00 0. 00 . 09 0. 00 0 3 I 3 0. co 2. 52 84 2. 52 0. co 14 05 14 0 I 2 2 0. 00 84 1. 68 1. 68 0. 00 05 09 . 09 0 0 00 0. co 0 16 48 35 0. 00 13. 45 40 34 29. 41 0 00 72 2. 16 I. 58 V.:EY XXX t-:LJ!'18ER OF OCCURRENCES t.x.< PERCENT OCCURRENCES THIS CLASS XX.( PERCEtH OCCURRENCES ALL CLASSES CLASS WOLF CREEK GENERATING STATION DURL I NGTON, KANSAS KM4:..'>AS GAS AND ELECTRIC DAMES AND MOOHE JOD NIJ. 7699-064 SECONOJ MEAN 7 5-10 0 >10. 0 TIJTAL SPEED 0 0 4 3 82 0. 00 0 00 3 36 0 00 0 00 18 0 0 3 4 83 0 00 0 00 0 00 0. 00 14 0 0 3 3 33 0 00 0 00 52 0 00 0. 00 14 0 0 5 4 28 0. 00 0. 00 4 20 0. 00 0. 00 23 0 0 11 4 24 0. 00 0 00 ,, 24 0 00 0. 00 50 2 0 5 5. 22 1. 68 0. 00 ** 20 09 0. 00 23 0 0 6 4 27 0. 00 0 00 '5. 04 0 . 00 0 00 27 6 I 21 6. 60 5. 04 84 17 65 27 . 05 . 95 2 I 17 6 01 I 68 . 84 14 29 09 .05 77 2 0 8 6. 14 1. 68 0 00 6. 72 09 0. 00 36 0 0 4 2. 77 0 00 0. 00 :3.36 0. 00 0 00 . 18 0 0 7 3. 86 0. 00 0 00 !5. 88 0. 00 0. 00 32 0 0 5 4 10 0. 00 0 00 *l. 20 0. 00 0. 00 23 I 2 5 8. 06 84 1. 68 4.20 05 . 09 23 I 0 8 4 65 . 84 0. 00 6. 72 . 05 0. 00 36 2 0 7 5. 40 I 68 0. 00 !5. 88 09 0. 00 . 32 0 CALM 0. 00 0. 00 16 4 119 5. 24 13 45 3. 36 100.00 72 . 18 :;;. 36 .JOINT WHJD FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD. ALL OCTOBER COMBINED STABILITY CLASS: PASGUILL D DAT M SOURCE: 0:--.l-S I TE :JINO SEkSOR HEIGHT 10.00 METERS T.;BLE GENERATED: 11/11/81. 14 57. 07. WIND WINO SPEED CATEGORIES<METERS PER SECTOR 0. 0-1. 5 1. 5-3. 0 3. 0-5 0 5. 0-7. 5 NNE 2 7 7 13 33 1. 16 I 16 2. 16 . 07 32 32 59 NE 0 8 14 I 0. O'J 1. 33 2. 33 17 0. 00 36 63 05 ENE 0 2 4 2 0. 00 33 67 . 33 0 00 . 09 18 09 E I 3 10 2 . 17 50 1 66 33 05 14 45 09 ESE 0 2 5 3 0. 00 33 . 83 50 0. 00 09 . 23 14 SE 2 6 11 3 33 1. 00 1. 83 . 50 07 27 50 14 SSE 0 8 25 10 0 00 1. 33 4 16 1 66 0. 00 36 I. 13 45 s 2 9 35 63 33 I so 5. 82 10. 48 09 41 I. 58 2 84 ssw I 8 13 24 17 I 33 2 16 3 99 C5 36 59 I 08 sw 3 7 6 8 50 I 16 1. 00 I 33 14 32 27 36 WSi-1 4 8 6 0 67 I 33 I 00 0. 00 18 36 27 0 00 0 9 6 3 0 co 1. 50 I 00 50 0 00 41 27 14 WN;..J 0 5 5 II 0 OJ 83 83 1. 83 0 03 23 23 50 I 6 I 4 17 1. 00 17 67 05 27 05 18 1\!Nl.J I 0 10 19 17 0 00 I 66 3 16 05 0 00 45 86 N I 7 28 17 1. 16 4 66 05 09 32 I. 26 CAL!"'i I 17 05 TOTAL 19 90 165 194 3 16 14 98 27. 45 32.28 86 4 05 7 43 8 73 I(£Y XX< Nl.:i"10ER OF OCCURRENCES XX.( PERC EN r OCCURRENCES THIS CLASS <X< PERC EN r OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DANES AND MOORE .JOB NO: 7699-064 SECOND) MEAN 7 5-10. 0 >tO. 0 TOTAL SPEED 2 4 35 5. 29 . 33 67 5. 82 09 . 18 1. 58 0 0 23 3. 63 0. 00 0. 00 3. 83 0. 00 0. 00 I 04 0 0 8 4. 47 0 . 00 0. 00 1. 33 0 00 0. 00 36 I 0 17 3. 85 . 17 0 00 2 83 . 05 0 . 00 . 77 2 0 12 5. 09 . 33 0 00 2 00 09 0. 00 54 8 2 32 5 38 1. 33 . 33 5 32 . 36 . 09 I. 44 7 I 51 4. 97 1. 16 . 17 8. 49 32 05 2 30 33 12 154 6. 42 5. 49 2. 00 25. 62 1. 49 54 6 93 5 II 62 6. 46 83 1. 83 10 32 23 50 2 79 5 0 29 4 58 83 0. 00 4. 83 23 0 00 I 31 2 0 20 3 30 33 0 00 3 33 09 0 00 90 3 0 21 4 20 50 0 00 3 49 14 0. 00 95 5 () 26 5 71 83 0 00 4. 33 23 0 00 1. 17 I 6 19 6 28 17 1. 00 3. 16 05 27 . 86 6 0 36 5 86 I 00 0 00 5 99 27 0 00 1. 62 15 ;:? 55 6 47 2 so 33 9 15 68 0'1 2. 48 I CALM 17 OS 95 3B 601 0 60 15 81 6. 100 00 4 28 I 71 C7 06 Rev. of 48 0 WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) Page 39 of 48 JOINT 1-.'ItJD FREQUENCY DISTRIOUTION OY STABILITY CLASS D.t;TA PERlOD ALL CCT08ER COMBINED STADIL ITY CLASS PASGUILL E ['.; T;., ',OURCE I TE lHNO SUI!SOR HEIGHT* 10 00 f'1ETERS T.;3LE 11/11/81 14 57.07 WIND WIND CATEGOR (f'":ETERS PER SC:C TllR 0 0-1. 5 1 5-3 0 3 0 5 0-7. 5 :"\'><F n::: ENE SJ:: SSE s" w M*l N Cf:1LM TOTAL 0 5 16 6 0 00 86 2 76 1 OJ 0 00 23 7"2 27 3 7 4 1 52 1. 21 69 17 14 32 lEl . OS 0 4 ' 4 0. 00 69 06 69 0 00 18 CJ 18 0 5 4 3 0. 00 86 69 . 52 0. 00 23 18 14 0 3 13 7 0. 00 52 24 1 21 0. 0') 14 59 32 2 11 18 6 3*1 1 90 3 10 1 03 09 so 81 . 27 4 23 29 23 69 3. 97 5 00 3. 97 . 18 1 04 1. 31 1. 04 4 14 59 59 . 69 41 10 . 17 10 17 18 63 2. 66 2 66 1 11 13 9 . 17 1 90 2. 24 1. 5:5 . OS 50 59 . 41 0 11 10 3 0 00 1 90 1 72 . 52 0 00 so . 45 . 14 1 3 3 0 17 52 . 52 0. 00 OS 14 . 14 0 00 2 11 3 1 . 34 1. 90 . 52 17 . 09 so 14 OS 2 9 5 2 . 34 1 55 86 . 34 09 . 41 23 . 09 1 9 6 2 . 17 1. 55 1 03 34 . OS . 41 27 . 09 0 1 12 5 0. OJ . 17 2. 07 . 86 0. 00 OS 54 23 1 4 11 4 17 69 1. 90 69 OS . 18 0 . so . 18 0. co 0. co 21 131 211 135 3. 62 22 59 36. 33 23.28 95 5 90 9. 50 6. 08 KEY X x:< NW1!3ER OF OCCURRENCES XXX PERCENT OCCURRENCES THIS CLASS :ox PERCENT OCCURRENCES ALL CLASSES WOLF CREE:.<, GENERATING STATION UUHL I NGTDN, IA.ANSAS GAS AND E LLC TR I C DI\MES AND NO 7699-064 MEAN 7 0 :*10. o TOTAL SPEED 5 3 35 5 65 86 52 03 23 14 :J8 0 0 15 2 70 0 00 0. OD 59 0 00 0 00 68 0 0 13 4 15 0 00 0. 00 24 0 00 0. 00 59 0 0 12 4 22 0 00 0 00 2 07 D 00 0 00 54 1 0 24 4 73 . 17 0. 00 14 . OS 0. 00 08 7 0 44 4 57 1 21 0. 00 59 32 0. 00 98 2 0 81 4 14 34 0. 00 13 97 09 0. 00 3 65 43 13 192 6 12 7. 41 2 24 33 10 1. 94 59 8 64 3 2 39 4 79 52 34 6 72 . 14 09 1 76 0 0 24 3 49 0. 00 0 00 14 0 00 0. 00 OS 0 0 7 2. 59 0 00 0. 00 1 21 0 00 0. 00 32 68 0 0 17 2 0 00 0. 00 2. 93 0 00 0 00 77 10 0 0 18 3 0 00 0 00 3 10 0 . 00 0 00 . 81 0 0 18 3 24 0. 00 0 00 3 10 0 . 00 0. 00 81 0 0 18 4 17 0. 00 0. 00 3 10 0 00 0 00 81 3 0 23 4 64 . 52 0. 00 3. 97 . 14 0. 00 1 04 0 CALM 0 00 0 00 64 18 ::>so 4 82 11. 03 3 10 100 00 2 88 81 26 11 JD!f'H (.JIND FREQUENCY DISTRIBUTION OY STABILITY CLASS DAT,t, PERIOD ALL OCTOBER COMBINED STk3ILITY CLASS: PASGUILL F D.!.TA SOURCE* 0:-.l-SITE 1-JINO HEIGHT 10 00 METERS THOLE GENt:RATED: 11/11/81. S4 57. 07. WIND WINO SPEED CATEGOR IE:SCMETERS PER SECTOR 0. 0-1. 5 1 5-3. 0 3 0 5. 0-7 5 1 7 10 0 32 2 25 3 0. 00 . 05 32 45 0 00 NE 1 2 0 0 32 64 0 00 0 00 OS . 09 0. 00 0 00 Et.J"E" 0 6 1 0 o. oa 1 93 . 32 0 00 0. OD 27 . 0'5 0 00 E 1 12 6 1 32 3 86 1. 93 32 . OS . 54 27 05 ESE 0 10 7 0 0. 0-J 3. 22 2 25 0. 00 0. 00 45 32 0. 00 SE 1 23 4 0 32 7. 40 1 29 0. 00 . OS 1. 04 . 18 0 . 00 0 27 22 0 0 00 8 68 7. 07 0 00 0 00 1 22 . 99 0. 00 s 2 9 24 6<i 2. 89 7. 72 09 41 1 08 . 09 ssw 3 13 11 0 . 96 4 18 3. 54 0 00 14 59 so 0 00 Sel 2 6 3 0 . 61 1 93 96 0. 00 09 27 . 14 0 00 5 4 1 0 1 61 1 29 . 32 0 . 00 23 18 . OS 0 00 w
  • 2 0 1 29 . 64 0. 00 18 09 0? 0. 00 wr,iw 4 4 ' 1 1 29 1 29 1 9] 32 . 18 18 27 OS 1 17 1.2 0 32 5 47 3. 0 00 OS 77 04 0 00 0 8 7 2 0 DO 57 2 25 64 0 00 36 09 N 1 10 3 0 C2 3 22 96 0 co OS 45 14 0 00 CAt.!1 0 0 co 0 00 TOTAL 26 160 1 1 6 8 36 51 45 38. 26 1 93 1 17 7 20 5 36 . 27 v EY XXX l'lU:1UER OF OCCURRENCES X x*t. PERC EN r OCCURRENCES THIS CLASS X X< PERCENT OCCURRENCES o<\LL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS At,JO ELECTRIC DAMES AND MOORE JOI3 NO: 7699-064 SECONDl MEAN 7. 5-10. 0 >10. 0 TOTAL SPEED 0 0 18 2. 81 0. 00 0. 00 5 79 0. 00 0. 00 81 0 0 3 2. 07 0 00 0. 00 96 0 00 0. 00 . 14 0 0 7 2 31 0 00 0. 00 2 . 25 0. 00 0. 00 . 32 0 0 20 2 95 0. 00 0 00 6 43 0 . 00 0. 00 . 90 0 0 17 2. 84 0. 00 0. 00 5 47 0. 00 0. 00 . 77 0 0 28 2. 66 0. 00 0. 00 9 00 0. 00 0. 00 1 26 0 0 49 3. 02 0. 00 0. 00 15 76 0. 00 0. 00 2 21 0 0 37 3 54 0 00 0. 00 11 90 0 00 0 00 1 67 0 0 27 2. 66 0 00 0. 00 8. 68 0. 00 0. 00 1 22 0 0 11 2. 39 0. 00 0. 00 3 54 0. 00 0. 00 so 0 0 10 1 59 0 00 0. 00 3. 22 0. 00 0. 00 45 0 0 8 1 90 0 00 0. 00 2 57 0 00 0. 00 36 0 0 15 2 69 0 00 0. 00 4 82 0 00 0. 00 68 0 0 30 2. 80 0. 00 0. 00 9 65 0. 00 0. 00 1 35 0 0 17 3 14 0. 00 0 00 5 47 0 00 0. 00 77 0 0 14 2. 67 0 00 0. 00 4 50 0 00 0. 00 63 0 CALM 0 00 0 00 0 0 :HI 2 82 0. 00 0 00 100.00 0 00 0 00 14. 00 Rev . 0 WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION EY STABILITY CLASS (MONTHLY 10 METERS) Page 40 of 48 JOINT tnND FREGVt=::r.JCY DISTRIBUTION BY STABILITY CLASS DAfA ALL C::TOBER COMBINED STA-BILITY CLASS* PASQVILL G DATA 0:-.1-SITE l.J 1 NO HEIGHT 1 0 00 METERS WOLF CREEK. GENERATING STATION BURLINGTON, KANSAS KAt>SSAS GA.S AND ELECTRIC TA3LE GENC.RATED* 11/11/81 14 57. 07. 0Ar1ES AND MOORE JOB NO* 7699-064 WINO SPEED CATEGDRIES<METERS PER SECOND) WIND SECTOR 1.5-30 30-5.0 50-75 7.5-100 >100 ENE ESE SE SSE s sw N CAL:1 TOTAL 1 28 05 4 1 10 18 2 55 09 0 0 00 0 OJ 3 63 , .. 5 1. Ja 23 2 55 09 3 83 " 6 1. 65 27 3 63 14 7 1 93 32 3 83 14 3 63 14 3 63 14 0 0 00 0 00 5; 09 2 55 09 49 13 2 21 18 4. 96 81 6 1. 65 27 6 1 65 27 18 4. 96 81 20 5. 51 90 36 9. 92 1. 62 21 5. 79 95 29 99 31 14 3 86 63 5 1. 38 2 20 36 5 1 38 23 14 3 86 63 25 6. 89 1 13 7 1 93 32 10 2 75 45 242 66 67 10 90 1 3§ 22 c 0 oc 0 00 09 11 3 03 59 s3 14 3 83 14 16 4 41 72 10 2. 75 45 2 55 09 0 0 00 0 00 0 0. 00 0 00 1 28 05 3 83 14 3 83 14 7 1. 93 32 4 1 10 18 70 19 28 3. 15 KEY XXI. NlJ:1BER OF OCCURRFNCES 1 28 . 05 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 1 28 05 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0 00 0 0. 00 0 00 2 . , 09 /..XX PERCENr OCCURRENCES THIS CLASS XX< PERCENr OCCURRENCES ALL CLASSES 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0 00 \Hfm FREGLO::NCY UY STABILITY CLASS T A PEH 1 OD ALL CCTOOER COMO 1 NED 0 0. 00 0 00 G 0. 00 0. 00 0 0. 00 0 oo 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. oo 0. 00 0 0. 00 0 oo 0 0 00 0 oo 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. oo 0 0 00 0. 00 0 0 00 0 00 0 0 00 0 00 MEAN TOTAL SPEED 25 6 89 1 13 10 ;;:: 75 45 10 2 75 45 29 7 99 1. 31 26 7. 16 1. 17 44 12. 12 1. 98 39 10. 74 1 76 43 11 85 1 94 22 6 06 99 8 2. 20 36 15 4. 13 68 9 2. 48 41 20 5 51 90 31 8. 54 1 40 14 3 86 63 16 4 41 72 2 55 09 363 100 00 16 34 2 78 1 88 2. 23 2. 98 2. 33 2. 32 2 82 2. 70 2 11 1. 84 1. 52 1 79 2. 20 2 34 2 95 2 62 CALM 2. 44 AlL CU\SS=:S r >* T ;, <::::=i:t-otC E 1 TE WOLF CREEK GENERATING '3TAT10N OURL I NGTON, !<<.Arl3AS SEtJ30R HEIGHT 10 00 METFRS KANSAS GAS AND ELECTRIC T.:,3LE. GUJFRATED 11/11/81 1-4 "j7 07 DAMES AND MOOHE JOB NO. 7699-064 WINO SPEED CATEGORIESO' .. EfERS PER SECOND) ND SECTOR oo-ts :::J0-50 75-too ESE SE s SSW N CAL!'1 TDTAL 4 18 8 06 o? 4 18 10 45 6 27 12 54 12 54 8 36 17 77 9 <1 9 41 6 27 1 05 5 23 3 14 118 5 31 42 89 27 1 22 JO 90 40 1 80 36 1 62 77 3 47 84 3 78 b3 2 84 48 2 16 34 1 53 26 1 17 30 1 35 37 1. 67 61 75 19 86 30 1 35 674 30 35 1 89 21 95 16 72 :J8 1 71 40 1. 80 45 2. 03 97 4 37 143 6 44 45 2 03 30 1 35 14 63 20 90 22 99 24 1 08 39 1. 76 30 1 35 666 29 99 N'.J!'1:3ER GF VALID 0!3SERVATlQf4S 2221 OF HCI..'ALID OBSERVATIONS 11 TDTAL fh.J."13Ek OF ODSERVATIONS 2232 KEY f..X"( OF OCCURRENCES 1<1. < PERCENT OCCURRErKES 26 1. 17 5 23 6 27 6 27 21 95 9 41 38 1 71 149 6 71 48 2 16 24 1. 08 3 14 5 23 20 90 9 41 34 1 53 46 2. 07 7 32 0 0 00 0 0. 00 1 05 5 23 17 77 10 45 100 4. 50 13 59 13 59 4 18 3 14 7 32 4 18 22 99 24 1 08 449 230 20. 22 10. 36 99 51 PCT 49 PCT tOO 00 PCT 7 32 0 0 00 0 0 00 0 0 00 0 0 00 o9 1 05 38 1 71 18 81 . 0 0 00 0 0 00 0 0. 00 8 36 0 0. 00 8 36 84 3 78 MEAN TOTAL SPEED 128 5 76 61 75 44 1 98 87 3 92 106 4. 77 160 7 20 236 10 63 505 22. 74 184 8 28 111 5 00 64 2 88 67 3 02 95 4 28 112 5 04 115 5 18 143 6 44 3 14 2.221 100 00 4 45 3 14 3 35 3. 41 4 00 377 3 87 5. 92 5 09 4 40 2 77 3 11 3 90 3 76 5. 07 5. 40 CALM 4 54 Rev. 0 WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) iCIIIH tH:JO DISTRIBUTION 3Y STABILITY CLASS Of., T ,.=l, PER I 00 ALL t* 0\IEMDER COMB I NEQ Clt.SS PASGUILL A DMTA TE lJI:m SEt60R HEIGHT 10 00 METERS fhDLE GENi-'"R.t .. TED 11/11/81 15 CO 46 WOLF CREEK GENERATING STATION DURL I NGTON, KANSAS GAS AND ELECTRIC DAI'!ES AND MOUHE ,__,0[1 NO 7699-064 \.JI NO SFCTOR WINO SPEED CATEGOHIE3<1'!ETERS PER SECOND) o 0-1 s 1 s-3 o 3 o-s o s o-7 7 o MEI\N NE: Er.IE SE SSE s sw N ... l N CA!...M TOTAL 0 0 00 0 co 0 0 00 o oa 0 0 00 0 OJ 0 0 OD 0 00 0 0 CD 0 00 1 B*i 05 0 0. OJ 0. 00 0 0 OJ 0 00 0 0 OJ 0 OJ 0 0 00 0 00 0 0 00 0. 00 0 0 co 0 OJ 0 0 co 0. OJ 0 0 co 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0 00 1 84 05 0 0 00 0 00 3 2 52 14 0 0 00 0 00 0 0 00 0 00 1 09 1 84 05 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0 00 0 00 1 84 05 0 0 00 0 00 0 0 00 0. 00 0 0 00 0 00 7 5 88 33 0 0 00 0 01) 1 6i3 09 4 3 36 1 1 8*1 o:s 0 0 01) 0 01) 0 0. 00 0 01) 4 3 36 1 4 3 36 1 1 613 0 0 0 co 0 00 0 0. co 0 00 0 0 co 0 00 0 0. 00 0. 00 0 o on 0 O:J 1 84 0!5 0 0. 00 0. Q;) 18 15. 13 84 KEY XXX NUMBER OF OCCURRENCES 0 0 00 0 00 1 84 05 0 0 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0 co 0 00 8 6. 72 37 7 5. 88 33 1. 09 0 0. 00 0. 00 0 0. 00 0 00 3 2. 52 14 7 , 88 33 7 5. 88 33 5 4. 20 23 4 3 36 . 19 44 36.97 2. 05 xx:< PERCENT OCCURRENCES THIS CLASS XX.< PERCETH OCCURRENCES CLASSES 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 1 84 05 0 0 00 0 00 2 1. 68 09 9 7. 56 42 0 0. 00 0 00 2 1 68 09 3 2. 52 14 5 4. 20 23 5 4. 20 23 6 5. 04 28 33 27 73 1 54 10 0 0 0. 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 1 . 84 05 4 3 36 19 8 6. 72 37 1 84 05 0 0 00 0. 00 0 0. 00 0 00 1. 09 0 0. 00 0. 00 0 0. 00 0. 00 16 13. 45 74 I DTAL r;PELU 0 0 ou 0 00 0 00 6 3 88 5 04 20 4 4. 40 3 36 19 1 4. 30 84 05 2 2 55 1 68 09 2 1. 40 1. 68 . 09 13 5. 45 10 92 61 12 5. 92 10 08 56 10 8. 98 8 40 47 17 9. 74 14 29 79 1 10. 10 84 05 5 7 70 4. 20 23 11 6. 58 9. 24 . 51 14 7 86 11. 76 65 11 7. 65 9. 24 51 10 7 61 8 40 47 0 CALM 0 00 0.00 119 7. 07 100 00 5 54 JOINT DISTRIBUTION BY STABILITY CLASS PERIOD ALL NOVEMBER COMBINED STABILITY CLASS* PASGUILL I3 Dt..Tt.. 0:\1-SITE :.J I i>Jt l HEIGHT. 10 00 METERS T.C.3LE GENi:.RATED* 11/11/81 15 CO 46. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7 699-064 WIND SECTOR WHJO SPEED CATEGORIES<METERS PER SECOND) 0 0-1 5 1 5-3. 0 3 0-5. 0 5. 0-7 5 7 5-10. 0 :>to 0 MEAN NI\IF ENE E SE: SSE s SSW sw WSW N CAU'i TOTA:.... 0 0. co 0. OQ 0 0. 00 0 00 0 0 00 0 OQ 0 0 00 0. co 0 0. 00 0 00 0 0 CD 0 00 0 0 00 0. 00 0 0 OJ 0 OJ 0 0 00 0. 00 0 0 00 0 co 0 0 00 0 00 0 0 00 0 00 0 0 00 0 co 0 0 00 0 00 0 0 00 0 co 0 0 00 0 00 0 0 00 0 00 0 0 CJ 0 00 0 0 00 0 00 3 2. 65 14 2 1 77 09 0 0 00 0 00 1 09 1 88 05 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 1 88 05 1 88 05 1 09 0 00 00 1 09 14 12 39 65 1 88 OS 0 0 00 0 00 1 09 J 0 00 0 OJ 0 0. O:J 0 OJ 0 0 00 o. o; 1. 77 O'y 1 63 05 2 1 7l 09 0 0 0') 0. 00 0 0 00 0 0() " 3. S*l 1'1 I EiB o:J () 0 00 0 00 :l 2 65 14 :l 2 14 10 16 8! 8!:1 XX< NU,""lOER OF OCCURRENCES 1 88 05 1. 09 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 3 2. 65 14 10 B. 85 47 4 3 54 19 5 4 42 23 3 2. 65 14 3 2 65 14 6 5 31 28 5 4. 42 23 4 3. 54 19 1 09 48 42. 48 2 23 XX< PFRCENT OCCURREtJCES THIS CLASS .<XX PERCENf OCCUr-<RENCES CLASSES 1. 09 0 0. 00 0 00 0 0. 00 0 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0 00 0 00 1 88 05 1 88 05 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 8 7 08 37 3 65 14 1 09 17 1 s 04 79 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 1 09 2 1 77 09 1 09 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 6 5. 31 28 1 88 05 1. 09 15 13 27 70 TOTAL SPEED 4 3 54 19 5 4 42 23 4 3. 54 19 0 0 00 0 00 2 1 77 09 1 88 05 5 4 42 23 13 11. 50 61 9 7. 96 42 8 7 08 37 3 2. 65 14 8 7 08 37 8 7 08 . 37 21 18 58 98 11 9 73 51 11 9 73 51 0 0 00 0 00 113 100 00 5 26 6. 65 4. 30 3. 22 0. 00 1. 95 2. 40 5. 52 7. 12 7 44 7. 72 6 23 4. 55 5 45 8. 69 7 16 6 40 CALM 6. 61 Page 41 of 48 Rev. 0 JOINT WOLF CREEK TABLE 2.3-31 (Continued) WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) Page 42 r FREGUtrKY DISTRIBUTION BY STABILITY [, .. PERIOD ALL t..:G'.JEMI3ER COM81NED CLASS PASGUILL c o,;r,; lJ I SErJSOR HEIGHT 10 00 METERS TMOLE GENFRATEO: 1 1111/81 15. O*J 46 \..[NO wirm SPEED CATE.GORIES<METERS PER 0 0-1. 5 I 5-3 0 3 0-5 0 , 0-7 5 NE ErJ£ E:SE ::..£ SS:..J s" Nf-!:.l N CALM TOTA!__ KEY 0 I 3 7 0. 00 68 2 4 76 0. 00 05 14 33 0 3 0 o oa I 2 04 0 00 o ca 09 14 0 00 0 I I 0 0 OJ 68 ,;g 0 00 0 CD OS 05 0 00 0 0 0 0 0 co 0 00 0 00 0 00 0. OD 0 00 0 00 0 00 0 I 0 4 0. 00 68 0 00 2 72 0. CC> 05 0 00 19 0 0 0 1 0. OJ 0 00 0 00 . 68 0. co 0 00 0 00 OS 0 0 3 o_ OJ 0 00 I 2. 04 0. O-J 0 00 . 09 14 0 1 7 6 0. 0-J 68 4 76 4. 08 0 0-J 05 33 28 0 I 3 7 0. OJ . 68 2. 04 4 76 Q_ co . OS 14 33 0 I I 1. 3% 0 00 . 68 . 68 0 G-J 05 OS . 09 0 2 0 I 0 00 I 36 0 00 . 68 0 co 09 0 00 . 05 0 0 4 6 0. co 0 00 2 72 4. 08 o_ co 0 00 19 28 0 1 3 1 0. 00 . 68 2 04 . 68 0. OJ . OS 14 . 05 0 I 0 13 0 00 68 0 00 8. 84 0. OJ . 05 0. 00 61 0 0 3 6 0 co 0 00 04 4 08 0. OJ 0 00 14 . 28 0 0 4 0. OJ 0 00 1 2. 72 0 co 0 00 09 19 0 0 co 0 co 0 12 32 61 0 00 8 16 21. 77 41. so 0 00 56 I 49 2. 84 XX:< NUMfJER OF OCCURRENCES XXX PERCENr OCCURRENCES THIS CLASS XXX PERCENf OCCURRENCES ALL CLASSES CLASS WOLF CREEK GENERAT1NG STATION 13URLI NGTON. GAS AND DAI'lES MOORE JOD I'"JI.) 7699-064 SECOND) MEAN 7. 5-10 0 >10. 0 TUTAL SPEED 8 0 19 6 69 5 44 0 00 9:J 37 0 00 88 I 0 6 4. 05 68 0 oo '* 08 . 05 0 00 20 0 0 ? 3 40 0 00 0 oo l. 36 0 00 0. 00 09 0 0 0 0 00 0 00 0 oo 0 00 0 00 0 00 0 DO 0 0 5 5 56 0 00 0 00 :.1 40 0 00 0 00 23 0 0 I 5 30 0. 00 0 00 68 0. 00 0 oo 05 0 0 5 5 24 0. 00 o_ oa ::!. 40 0 00 0. oo 23 0 I 15 5 29 0. 00 . 68 10. 20 0. 00 OS . 70 I 2 14 6 16 68 1. 36 Ci'. 52 . OS 09 . 65 2 I 7 6. 94 1 36 68 ,, 76 09 OS 33 0 0 3 4 13 0. 00 0 oo 04 0 00 0. 00 14 0 0 10 5 II 0 00 0. 00 6.80 0 00 0. 00 47 0 0 5 4 52 0 00 0 00 :J. 40 0 00 0. 00 . 23 3 5 22 7 74 2. 04 3 40 1'> 97 . 14 23 I 02 7 2 18 7 16 4. 76 1. 36 1 24 . 33 . 09 . 84 8 I 15 7 71 5 44 68 10 20 37 . OS . 70 0 CALM 0 00 () 00 30 12 147 6_ 35 20. 41 8 16 100 00 1 40 56 b. 84 WIND FREI)UErJCY DISTRIBUTION BY SfABILITY CLASS DATA PERIOD ALL NOVEMBER COI1I3INED 5ToG.I31LlT'{ CLASS: PASGVILL D DATA SOVHCE 0:-.l-Sl TE IHNO SENSOR HEIGHT lQ_ 00 METERS TABLE GENF_RATEO 11/11/81. 15 00. 46. WIND 1-.JlNO CATEGOA IES (METERS PER SECTOR 0 0-1. 5 I. 5-3. 0 3 0-5. 0 5. 0-7_ 5 1'!1\!E 1 4 27 16 . 14 54 3. 67 2 18 OS 19 1. 26 74 0 5 20 8 o. O'J 68 2. 72 1. 09 0. O'J 23 . 93 . 37 e:tJE 0 2 9 2 0. C0 27 1 22 27 0 00 09 . <:t2 09 I 3 8 9 . 14 41 1. 09 1 22 05 14 37 . 42 ESE I 0 3 5 14 0 00 . 41 . 68 OS 0 00 14 23 SE 0 5 5 1 0 GO 68 . 68 . 14 0 00 . 23 . 23 . OS =*SE 3 14 20 II 41 I 90 72 1. 50 14 65 93 . 51 s I 20 63 25 . 14 72 8 57 3. 40 . 05 93 2. 93 1 16 0 10 19 30 0. 00 1 36 2 59 08 0. OJ 47 . 83 40 I 0 13 9 14 0 00 1 77 1. 22 OS 0. 00 61 . 42 h'S:.l 0 2 2 6 0. C'J 27 27 . 82 0. 00 09 09 . 28 w 0 7 8 24 0 00 95 1 09 3 27 0 03 33 37 I 12 0 I 12 13 0 OJ 14 I 63 1 77 0. OQ OS 56 61 NW I 3 10 27 14 41 1. 36 3. 67 OS 14 47 I 26 I 2 14 44 14 27 I 90 5 99 05 09 . 65 2 05 N 3 7 11 27 41 95 I 50 67 14 . 33 26 0 0 03 0 00 TIJTA:... 13 85 244 257 I 77 II 56 33. 34_ 97 61 3. 96 11. :J6 II 96 KEY XX( Nlii1BER OF OCCURRENCES "" PERCHJr OCCURRENCES THIS CLASS XXX PERC EN r OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB N*J: SECOND) MEAN 7. 5-10 0 .>10. 0 TOTAL SPEED 13 0 61 5. 40 1. 77 0. 00 a . 30 61 0. 00 84 0 0 33 4 02 0 00 0. 00 ,, 49 0. 00 0. oo 54 1 0 14 4. 66 . 14 0. oo , 90 . OS 0. oo 65 1 0 22 4. 70 . 14 0. oo : 99 . 05 0. 00 02 0 0 9 4 87 0 . 00 0. oo l.. 22 0. 00 0. 00 42 3 I IS 5 00 . 41 14 04 14 05 70 2 0 so 4. 09 . 27 0 00 b. 80 . 09 0. 00 " . 33 34 ;: 145 :;. 33 63 . 27 19.73 58 . 09 6 75 11 6 76 5. 74 I so 82 10 34 51 . 28 54 11 I 35 6. 15 1 so 14 ,, 76 51 05 l 63 7 0 17 b 50 95 0. 00 . 31 . 33 0 00 . 79 3 0 42 5 42 41 0 oo 71 14 0. 00 96 0 0 26 4 89 0. 00 0 00 r 54 0 00 0 00 21 12 I 54 6 OS I 63 14 35 . 56 . OS 5I 21 0 82 6 30 2. 86 0. 00 " 16 98 0 oo " 82 6 0 54 5 23 . 82 0. oo ? 35 28 0 00 ,, 51 0 CALM 0. 00 0 00 125 II 735 5. 40 17 01 1. so 100 00 5. 82 51 34 22 Rev. of 48 0 WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY s*rABILITY CLASS (MONTHLY 10 METERS) Page 43 of 48 -JOINT l.JINO FREGUE:tKY DISTRIBUTION BY STABILITY CLASS Of,fA PERIGO ALL NOVEMBER Cl.JMBINEO ::T,;3IL!TY CLt.SS PASQVILL E DMTA 0:-.l-SITE 1-.! I SU60R HEIGHT 10 00 METERS TMDLE 11/11/81 1:5 OQ 46 WOLF CREEK GENERAT1NG '>TAT ION DURL 1 NGTON, KANSAS GAS AND ELECTHIC DAI'1E:.S AND l'lOORE JOD NlJ WIND SE:CTCR IHNO SPEED CATEGOHIES<METERS PER SECOND) 0.0-1.5 1 5-3 0 3 0 5 0-7 5 7 5-10.0 )10 0 MEAN EN!: ESE SE SSE 5 ssw sw N CALM TOTAL 0 0 00 0 00 0 00 00 1 20 05 0 0 0*) 0 00 1 20 05 0 00 00 0 0 00 0 co 3 60 14 09 0 0 00 0. 00 0 0 00 0 00 4§ 09 0 0 00 0 00 1 20 05 0 0. OJ 0 00 1 20 05 0 0 co 0 00 11 2. 21 51 5 I 01 23 6 1 21 28 3 60 14 0 0 00 0. 00 4 80 19 9 1 81 42 II 2 21 51 19 3 82 88 8 1 61 37 3 60 14 0 0 00 0. 00 10 2 01 47 7 1. 41 33 6 1 21 28 3 60 14 2 40 09 96 19 32 4 47 5 1. 01 23 7 I 41 JJ ' I 81 42 '7 I 81 42 1 1 41 33 7 1. 41 33 25 5. 0:3 1. 16 33 6. 64 1. 54 27 5. 43 1. 26 5 1. 01 23 7 1. 41 33 18 3. 62 84 28 63 30 28 63 30 9 1 81 . 42 4 . 80 19 228 45 88 10 61 KEY I.X.( NVMBER OF OCCURRENCES 4g 09 I 20 05 6 1 21 28 5 1 01 23 09 3 60 14 18 3 62 84 30 6. 04 1. 40 15 3. 02 70 09 1 20 05 5 1 01 . 23 11 2. 21 . 51 14 2. 82 65 11 2 21 51 3 . 60 14 129 25. 96 6. 01 I.XX PERCENf OCCURRENCES THIS CLASS X x:< PERCEtJ f OCCURRENCES ALL CLASSES I 20 00 0 00 0 00 0 0 00 0 00 . 09 0 0. 00 0 00 4 80 19 1 20 05 19 3. 82 88 2 40 . 09 0 0 00 0. 00 0 0 00 0 00 I 20 05 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0 00 0 0 00 0 00 30 6. 04 1. 40 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0 00 0 0 00 0 00 2 40 . 09 I 20 05 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 3 60 14 To-, AL SPEED 13 2 62 bl 14 2 82 65 19 3 El2 88 16 :J 22 74 14 2 82 65 23 4 63 1. 07 55 11 07 2 56 106 21 33 4 93 55 11 07 2 56 10 2 01 47 8 1. 61 37 36 24 68 46 9. 26 2 14 49 9. 86 2 28 23 4 63 1. 07 10 2 01 47 0 0 00 0 00 ::.97 100.00 23. 14 4 11 3 26 4 41 5 06 3 64 4 17 4 61 5. 32 4 48 3. 78 3. 74 3 78 4 25 4.26 4 73 3 84 CALM 4 49 .JDINT lHND FREOU;:;:NCY DISTRIBUTION BY STABILITY CLASS D1HA PERIOD ALL COMBINED STMDILITY CLASS PASGUILL F SOURCE* SENSOR HEIGHT. 10. 00 METERS TABLE GEt>IERATED. 11/11/81 15. 00. 46 WOLF CREEK GENERATING STATION KANSAS KANSAS GAS Ar-ID ELECTRIC DAMES AND MOORE ,JOB NO* 7699-064 W[ND WltW SPEED CATEGDRIES<METERS PER SECOND) SFCTOR 0. 0-1. 5 1 5-3. 0 3 0-:J 0 5. 5 7 0 >10. 0 MEAN NNE NE ESE SE SSE ss:;w ws:J NW N;-..:w CAl :-1 TOTAL 0 0. CQ 0 00 1 30 05 0 0. co 0. OJ 0 0 00 0 co 0 0 00 0 QQ 6f 09 1 30 05 0 0. CJ 0 00 1 30 05 0 0 co 0 00 1 30 05 1 30 05 3 91 14 2 6! 09 0 0 00 0 co 0 0 00 0 00 0 0 00 0. CJ 12 3 66 56 4 1 22 19 7 2 13 33 4 1. 22 19 6 1. 83 28 6 1. 83 28 9 2 74 42 23 01 07 14 4 27 65 8 2. 44 37 8 2. 44 37 17 5 18 79 9 2 74 42 14 4 27 65 14 4 27 65 6 1 83 28 6 I 83 28 !55 47 26 7 22 8 2 44 37 6 1. 83 28 9 2. 74 42 3 91 14 0 0 00 0. 00 8 2. 44 . 37 29 8 84 I 35 24 7. 32 1. 12 10 3. OS 47 7 2. 13 2 61 09 5 1. 52 2:3 19 5 7'7 88 10 3 05 47 3 9! ,,, 4 1 22 19 147 44 82 6 84 KE'l 1.X ( OF OCCURRENCES 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 1 30 05 I . 30 . 05 I 30 05 7 2. 13 . 33 0 0. 00 0. 00 1 30 05 0 0. 00 0 00 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0. 00 1 30 05 XX"< PERCEtJT OCCURRENCES THIS CLASS Xx:< PERCENT OCCURRENCES ALL CLASSES 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0. 00 0. 00 2 61 09 0 0 00 0 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0 00 TOTAL SPEED 12 3 66 56 14 4 27 65 13 3 96 61 9 2 74 42 6 1 83 . 28 20 6 10 93 54 16.46 2. 51 39 11 89 1 82 28 8 54 1 30 15 4 57 70 21 6 40 98 15 4 57 70 36 10 98 1 68 26 7 93 1. 21 9 2. 74 42 11 :3. 35 51 0 0 00 0 00 100 00 15 27 3. 20 2 77 3. 25 2. 97 2. 38 2 91 3 25 3 39 3. 99 3 22 2 69 2 70 3 05 2 68 2 67 2. 93 CALM 3 11 Rev. 0 WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STl\.BILITY CLASS (MONTHLY 10 METERS) Page 44 of 48 JOiNT lHtm FREGVErKY DISTRIBUTION BY STABILITY CLASS DATA 100. ALL f\'OVEMBER COMB !NED ':::iT/,BILITY CLASS PASQUILL G Dt.T,.:, [l;\1-SI TE <Jl:Ji) HEIGHT 10 00 METERS Tr.nu:. \.ENcRATED 11/11/81 15 C'J 46 WOLF CREEK GF.NFRATYNG STATION BURlINGTON, GAS AND ELEC H? I C DAMI:-.5 AND MIJOHE ,JUI3 !699-064 tHJ ZECH_;< :....rrH) £"'EED CATEGORIESWI::..TERS PER SECOtlOl 00-!S 50-75 75-100 >100 lE ESE SE SSE sw NNW CALM TOTAL 1 '8 05 1 48 05 2 96 09 1 48 05 2 96 09 0 0. OJ 0. 00 2 96 09 1 48 05 1 05 1 48 05 3 1. 44 14 2 . 96 09 3 1. 44 . 14 09 3 1. 44 14 1 48 05 0 0. co 0. CD 26 12. 44 1 21 3 'i4 14 09 1 48 05 09 3 1 44 14 10 4 78 47 12 5. 74 56 23 11 00 1 07 0 ";7 23 7 3. 35 33 7 3 35 33 09 5 2. 39 23 6 2. 87 28 4 1. 91 19 3 1. 44 14 95 45 45 4. 42 5 39 23 4 1 91 19 4 1 91 19 3 1 44 14 4 1 91 19 5 2 39 23 21 10.05 98 23 11 00 1 07 ' 2 :J9 23 3 I 44 14 3 I 44 14 3 1 44 14 0 0. 00 0 00 09 0 0 00 0 DO 1 48 05 86 41 15 4 00 KEY X n NCi"lBER OF OCCURRENCES 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0 00 2 '16 09 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 09 XX:< PERCENf OCCURRENCES THIS CLASS :oX PERGENf OCCURRENCES ALL CLASSES 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 () 0 co 0 00 () 0 00 0 00 0 0 co 0 00 0 0 co 0 00 0 0 00 0 00 () 0 00 0 00 () 0 00 0 DO 0 0 00 0 00 0 0 C;Q 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 :OTAL SPEED 9 4 :J1 42 7 3 35 33 7 3 35 33 6 2. 87 28 9 4 31 42 15 7. 18 70 35 16 75 I 63 47 ;22 49 2 19 13 6 22 61 11 5 26 51 13 6 22 . 61 7 3 35 33 8 3. 83 37 10 4. 78 . 47 7 3 35 33 5 2. 39 23 0 0 00 0 00 209 tno oo 9. 73 2 94 2 70 2 87 2 77 2 60 2. 91 3. 16 3 00 3 18 2 51 2 43 2 33 1 82 2. 12 1. 83 2. 32 CALM 2 76 JOINT t.JIND FREQlJ£hiCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD ALL NOVEMBER COMBINED ALL CLASSES DATA SOVriCE. 0:\1-SITE l.Jft.JO SENSOR HEIGHT 10 00 METERS TABLE GEtJERATED. 11/11/81. 15. CO. 46. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTH I C DAMES AND MOORE JOB 1'10: WIND SECTOR WHJO SPEED CATEGORIES (METERS PER SECOND) 0 0-1 5 1 5-3 0 3 0-5 0 5. 0-7. 5 7. 5-10 0 )10. 0 MEAN NE ENE ESE SE SSE 3SW sw WSW w ::AL:'l fOTAL 2 09 3 14 2 09 4 19 3 14 6 28 4 19 4 19 5 23 6 28 6 :;::a 4 19 5 23 0 0 00 63 2 93 17 79 28 1 30 13 61 11 51 18 84 35 1. 63 60 2 79 77 3. 58 32 I 49 19 88 28 1. 30 29 1. :JS 30 1 40 32 1 49 15 70 20 93 464 21 60 'J'JM3EH 0? VAlID [F Ir'NhL I D OGSERVAT IONS "!"OT OF OBSERVAT I 49 2 28 42 1 96 38 1 77 24 1 12 14 65 25 1 16 103 4 80 155 7 22 68 3 17 29 I 35 14 65 42 1. 96 63 2 93 :50 2 33 33 1 54 25 1. 16 774 36 03 21*18 12 2160 /..X/.. N1J;'10ER OF OCCURRENCES XX< PERC EN r OCCURRENCE!:! 26 1. 21 12 56 8 37 14 65 11 51 6 28 44 2 OS 79 3. 68 67 3. 12 18 84 12 56 41 1 91 38 1. 77 66 3. 07 70 3. 26 41 1 91 553 25. 74 99 44 PCT 56 PCT 100 00 PCT 24 1 12 1 05 1 05 3 14 0 0. 00 7 33 4 19 53 2 47 19 88 23 1 07 7 33 6 28 3 14 28 I 30 36 1. 68 237 11. 03 0 0 00 0 0. 00 0 0. 00 0 0. 00 0 0. 00 1 05 0 0 00 8 37 15 70 12 56 1 05 0 0 00 0 0 00 14 65 3 14 3 14 57 2 65 fDTAL SPEED 118 5. 49 85 3. 96 63 2 93 54 2 51 47 2. 19 77 3 58 217 10. 10 377 17. 55 205 9. 54 103 4 80 66 3. 07 123 5 73 140 6 52 196 9 12 161 7 50 116 5. 40 0 0 00 2148 !CO. 00 5 10 3. 59 3. 95 4 30 3. 60 3 68 4. 00 4. 92 5. 26 5 87 4 08 4 44 4 18 5 56 93 5. 41 CALM 4 80 Rev. ()

WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) L!OINT WIND FREQIJEtJCY DISTRIBUTION BY STAB Ill rY Q(,! A PER roo ALL CECEMDER COMI3 I NED ST,.!.,3ll_li) CLASS PASGUILL A o,;r:. 1 TE I) :'JGISOR HEIGHT 10_ 00 METER5 T,l,OU GENt-RATED 11/11/tll. 15 0'1 30 WIND SPI::ED SECTOR 0 0-1 , 1 CAfEGORIES<f'IETERS PER 0 3 0-5 (l , 0-7. 5 N:"Ji::: n=: ErJE E ESE SE SSE WS(-1 w 1.-m;J W.J N TOTAL 0 1 c, 0 0. co 1 56 0 00 0 00 0 00 05 0 00 0 00 0 0 0 0 0 00 0 00 0 oc 0 00 0 00 0 00 0 oc 0 00 0 0 0 0 0 OJ 0 00 0 00 0 00 D 00 0 00 0 00 0. 00 0 0 0 0 0 00 0 00 0 00 0 00 0 co 0 00 0 co 0. 00 0 1 D 0 0. 00 I 56 0 OD 0 00 0 00 05 0. oc 0. 00 0 2 0 0 0 co 3 13 0 00 0 00 0 00 10 0 00 0 00 0 0 0 4 0 00 0. 00 0 00 6 25 0 00 0. 00 0. 00 . 21 0 0 3 5 0 00 0 00 4. 69 7. 81 Q_ 0:) 0 00 . 16 . 26 0 0 0 0 0. 00 0 00 0. 00 0. 00 0. 00 0 00 0 00 0. 00 0 0 0 0 0. 00 0. 00 0 00 0 00 0. 00 0 00 0 00 0. 00 0 1 4 0 0. 00 :l. 56 6 25 0. 00 o_ co . 05 21 0 00 0 0 0 0 0. 00 0. 00 0. 00 0. 00 0. 00 0 00 0. 00 0. 00 1 0 0 0 1 56 0 00 0. 00 0. 00 05 0 00 0. 00 0. 00 0 0 0 3 0 OD 0 00 0. 00 4 69 Q_ 00 0 00 0. 00 . 16 1 0 2 12 1. 56 0. 00 3. 13 18. 75 05 0 00 10 . 63 0 0 3 0 00 0 00 4. 69 3 0 00 0. 00 . 16 10 0 0 00 0 00 2 5 12 26 3 13 7. 81 18 75 40.63 10 26 63 1. 36 1/..E'l X ;q NUMBER OF OCCURRENCES XX:< PERCENT OCCURRENCES THIS CLASS :OX PERCErH OCCURRENCES ALL CLASSES CLASS WOLF CREEK GENERATING STATION OURL 1 NGTON, KANSAs KANSAS GAS AND EL.ECTR I C 0Mf'"1ES AND MOURE NO 7699-064 SECOND> MEAN 7 0 >10. 0 TOTAL SPEED 1 0 , 00 1 56 0 00 3 . 05 0 00 10 0 0 0 0 00 0. 00 0 00 0 00 0 00 0 00 0 00 0 0 0 0 00 0 00 Q_ 00 0 DO 0 00 0. 00 a. DO 0 0 0 0 00 0 00 0 00 0 00 0 00 0. 00 0 00 0 0 1 1. 70 0 00 0 00 1 56 0 00 0 00 05 0 0 2 2 40 0. 00 0 00 3. 13 0 00 0. 00 10 0 0 4 6. 50 0 00 0. 00 6 25 0 00 0. 00 21 0 0 8 5 74 0 00 0. 00 12 50 0 00 0 00 . <l2 0 0 0 0. 00 0 00 0. 00 0 00 0. 00 Q_ 00 0. 00 0 0 0 0 00 0 00 0. 00 0. 00 0 00 0. 00 0. 00 0 0 5 3. 96 0 00 Q_ 00 7 81 0 00 0. 00 .26 0 0 0 0. 00 0 00 0. 00 0 00 0. 00 o_ oo 0 00 0 0 1 . 70 0. 00 0. 00 1. 56 0 00 0. 00 . 05 1 0 4 6. 82 1 56 0 00 6. 25 . 05 0 00 . ,21 13 0 28 7. 12 20. 31 0. 00 43 75 . 68 0 . 00 1. 46 3 1 9 6. 92 4. 69 1. 56 14 06 . 16 . 05 .P 0 CALM 0. 00 0. 00 18 1 M 6. 24 28 13 1. 56 100 00 94 . 05 3. 34 t..JIND DISTRIBUTION BY STABILITY CLASS DATA PERIOD ALL DECEMBER COMBINED ST,;BILITY CLASS. PASGUILL B DATA SQU::-.ICE tH:m SEiJ50R HEIGHT 10_ 00 METEF!S Tt..DLE GEf4ERATED 11/11/81. 15 09 30. WIND WINO SPE"ED CATEGORIES ( Mt::TERS PER SECTQR 0 0-1. 5 !. 5-3 0 3. 0-5_ 0 5. 0-7. 5 N:JE 0 0 0 0 0 00 0. 00 0 00 0. 00 000 0. 00 0 00 0. 00 NE 0 1 0 0 0. 00 99 0. 00 0.00 Q_ 00 .05 0. 00 0.00 EtJE 0 0 0 0 0 00 0 00 0. 00 0. 00 0. 00 0 00 Q_ 00 0 00 E 0 1 0 0 0 00 99 0. co 0 00 0. 00 . 05 0. 00 0 00 ESE 0 1 0 0 Q_ 0() 99 0. 00 0. 00 0. co . 05 0 00 0. 00 SE 0 3 0 0 0. 00 2. 97 0 00 0. 00 0 OD . 16 0 . 00 0. 00 SSE 0 1 1 0 0 00 99 99 0 00 0 OJ . OS . 05 0 00 s 0 0 3 8 0 00 0 00 2 97 7 92 0 00 0. 00 . 16 42 ss:-1 0 0 0 6 0. co 0 00 0 00 5. 94 0. 00 0 00 0 00 . 31 SW 0 1 0 1. Q_ 00 99 0 00 0 00 05 Q_ 00 . 10 1 0 0 4 97 0 00 0 00 3 96 . 05 0. 00 0. 00 21 w 0 1 3 1 0 00 99 2 97 99 0. 00 OS 16 . 05 0 1 0 2 0 00 . 99 0. 00 1. 98 0 00 as 0 00 . 10 1 4 5 9 99 3 96 4. 95 8. 91 05 21 26 . 47 0 2 2 8 00 1 98 1 98 7 92 OJ 10 10 42 N 0 0 0 3 0 00 0 00 0 00 2 97 o_ 00 0 00 0 00 16 CALM 0 0. 00 0 00 2 16 14 43 1. 98 15 84 13 86 ,,2 57 10 83 73 2 24 f',E \ I. X!.. NU:13ER OF OCCUfWENCES !..X.( PERCEtH OCCURREtJCES THIS CLASS XX/.. PERCErH OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTR 1 C DAMES AND MOORE JUB NO: 7699-064 SECOND) MEAN 7. 5-10. 0 )10. 0 SPEED 1 2 3 10. 40 . 99 l. 98 2. '>7 . 05 . 10 16 0 0 1 2. 10 0. 00 0 00 99 0 00 0. 00 OS 0 0 0 0. 00 0. 00 0 00 0 00 0. 00 0. 00 0 DO 0 0 1 2 10 0. 00 0. 00 '19 0 . 00 0. 00 . 05 0 0 1 2. 20 0 00 0 00 . 99 0. 00 0 00 . 05 0 0 3 2. 13 0. 00 0. 00 2 '>7 0. 00 0. 00 16 0 0 2 3 70 0 00 0. 00 1 98 0 00 0. 00 10 0 0 ll 5 36 0 00 0. 00 10 139 0. 00 0. 00 . :57 0 1 7 7 13 0 00 . 99 6 93 Q_ 00 . 05 . :36 0 1 4 6. 20 0. 00 99 3 96 0. 00 05 l 1 0 6 5. 15 . 99 0 00 5 94 . 05 0 00 0 0 5 3 60 0 00 0. 00 4 95 0 00 0. 00 3 0 6 6. 55 97 0 00 5 '14 16 0. 00 :H 2 4 5 98 1 98 3 96 24 ;rs 10 21 1 :m 6 1 19 6 79 5 94 99 18 B1 31 05 '19 4 0 7 7. 09 3 96 0. 00 6 '/3 21 0 00 0 CALM 0 00 0 00 17 9 101 5 96 16 83 8 91 100 00 . 89 47 s_;n Page 45 Rev. of 48 0 WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DISTRIBGTION BY STABILITY CLASS (MONTHLY 10 METERS) JO!tn FREQUCrKY DISTRIBUTION BY STABILITY CLASS OAJA AlL DECEMBER COMf31NED STf..GlLITY CLASS PASQUILL C DATA ON-SITE HEICHT 10 00 METERS TADLE GEfJERhTED 11/11/81. 30 WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOCJR£ .JUU NO* 7699-064 WIND SE,:; TDR 1-Jir-10 5!"EED CAlEGORIES(ME:TERS PER SECOND) 00-151.5-30 30-:JO 50-75 75-100 >tOO MEAN NN1:.: NE EtJE ESE SE SSE SS:.J sw ws:.J N CAt ;1 TOTAL 0 0 00 0 00 0 0 co 0 00 0 0 00 0 00 0 0 00 0 co 0 0 00 0 00 1 57 05 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0 00 1 57 05 1 57 05 0 0. OJ 0. 00 0 0 co 0 00 0 0. 00 0. 00 0 0. co 0 00 0 Q_ OJ 0. 00 0 0. 00 0. OD 3 1. 72 16 1 57 05 1 1§ 10 1 57 05 1 57 05 1 57 05 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 1 57 05 1 1; 10 0 0. 00 0. 00 2 1 15 10 1 57 05 1. 1§ . 10 0 0 00 0 00 1 1 § 10 16 9 20 83 0 0 00 0 00 0 0. co 0 00 0 0 00 0. 00 0 0. 00 0 co 0 0 00 0 00 4 2. 30 21 6 3. 45 31 11 6. 32 . 57 2 1. 15 10 1. 1§ . 10 4 2. 30 21 3 1 72 16 0 0. 00 0. 00 3 1 72 . 16 7 4. 02 36 4 2. 30 21 46 26. 44 2. 40 KEY XXX NUMBER OF OCCURRENCES 0 0 00 0 00 1 , 05 1 57 05 1 l§ 10 1 57 05 1 57 05 4 2. 30 21 3 1. 72 . 16 9 5 17 47 7 4. 02 36 5 2. 87 . 26 0 0. 00 0. 00 7 4. 02 36 7 4 02 . 36 14 8. 05 73 9 5. 17 47 71 40.80 3. 70 XXX PERCErH OCCURRENCES THIS CLASS XXX PERCENr OCCURRENCES ALL CLASSES 2 1 1, 10 0 0 00 0 00 1 57 05 0 0. 00 0 00 0 0. 00 0. 00 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 1 1; 10 1. 1§ 10 11 6. 32 . 57 7 4. 02 . 36 25 14 37 1. 30 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0 00 0 00 0 0 00 0. 00 1 . 57 05 3 1. 72 16 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 1. 1; 10 1 57 . 05 6 3. 45 . 31 13 7. 47 68 TOTAL SPEED 3 1 72 16 3 1 72 16 3 1 72 16 3 1 72 16 1 10 6 3. 45 31 10 5. 75 52 15 8 62 . 78 15 B. 62 78 12 6. 90 63 10 5. 75 52 5 2 87 26 10 5 75 . 52 16 9. ;20 133 :33 18. 'Y7 1. '72 :28 16.09 1. 46 0 0 00 0 00 174 100 00 9.07 677 3 83 5 70 5. 50 4 20 4. 08 5. 12 5 17 6. 28 4 78 4 64 3 28 6. 66 6 56 6. 87 7 47 CALM 6. 03 JCINT WHm DISTRIBUTION BY STABILITY CLASS O,ll,TA PERIOD. ALL C=:CEMBER COMBINED STA3ILITY CLASS PASQUILL D DATA SOURCE. CN-SITE SHE:>OR HEIGHT 10.00 METERS TABLE GENERATED 11/11/81 15. 09. 30. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS GAS AND ELECTRIC DAMES AND MOORE .JOB NO: 7699-064 WlND SECTOR WINO SPEED CAlEGORIESCMETERS PER SECOND) MEAN 1\:NE NE SE SSE s ssw TOTAL 0. 0-1 5 1 5-3 o 3. 0-5. 0 5. 0-7. 5 7. 5-10. 0 >tO. 0 1 13 05 2 27 10 2 27 10 3 40 16 0 0 00 0 co 1 13 05 2 27 10 2 27 10 1 13 05 1 13 05 0 0 C0 0 00 0 0. 0-J 0. CJ 2 27 10 1 13 C5 2 27 10 2 27 10 0 0 00 0 0*:) 2. 96 1 15 17 2 28 89 17 2 28 89 8 1 08 42 5 67 26 5 67 26 2 27 10 6 81 31 6 81 31 1 13 05 8 1. 08 42 4 54 21 7 94 36 3 40 16 8 1. 08 42 12 1 61 63 10 1 34 52 119 15 99 6 20 15 2 02 78 5 67 26 5 67 26 8 1. 08 . 42 14 1 sa 73 18 2. 42 94 17 2. 28 89 14 1. 88 73 20 1. 19 2. 55 99 3 40 16 0 0 00 0 00 11 1 48 57 12 1 61 63 28 3. 76 1. 46 33 4. 44 1 72 11 57 XX.( NL:M!3ER OF OCCURRENCES 12 1 61 63 9 1 21 47 3 40 . 16 1 13 . 05 4 54 21 2 27 . 10 13 1. 75 68 23 3 09 1. 20 26 3 49 1 36 9 1. 21 . 47 5 67 26 4 54 21 20 1 8% 33 44 72 28 76 46 19 2 55 99 211 28. 36 11.00 /..X.< PERCENT OCCURRENCES THIS CLASS XX"< PERCENT OCCURRENCES ALL CLASSES 7 94 36 1 13 05 3 40 16 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 7 94 . 36 14 1 88 73 2 27 10 3 40 16 5 . 67 26 5 67 26 13 1. 75 68 33 4 44 1. 72 25 3 36 1 30 118 15 86 6 15 6 81 . 31 1 . 13 05 0 0. 00 0. 00 0 Q_ 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 3 40 16 3 40 16 2 27 10 1 13 05 4 54 21 0 0. 00 0. 00 10 1 34 52 10 1. 34 52 12 1. 61 63 52 6. 99 2. 71 TOTAL SPEED 58 80 02 35 4.70 1 82 21 f* 17 2 28 . 89 23 3_ 09 1 20 23 3. 09 1. 20 38 5. 11 1. 98 55 7. 39 2. 87 65 8 74 3 39 41 5 51 2 14 16 15 83 20 2 69 1 04 41 5 51 2 14 77 10 35 4 01 113 15 19 5 89 101 13 58 5 27 0 0 00 0 00 744 100 00 :18 79 5 25 3. 87 3 95 3 09 3 95 3 89 4. 22 82 6. 16 4 73 5. 81 6 33 5 27 6. 55 6 35 6 17 CALM 5 53 Page 46 of 48 Rev. 0 JOINT WOLF CREEK TABLE 2.3-31 (Continued) WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) Page 47 of .IOI!'...:T t..:! iW DISTRIBUTION BY STAI3ILITY DATA PERIOD ALL DECEMBER COMBINED STt.GILITY cu;ss PASQUILL E C*MTM SOURCE I TE r r; n SE"i-tSOR HEIGHT to oo METERS ThOLE GENt.RATED 11/11/81 09 30 L-IINO WINO SPEED CATEGORIES <Me** ERS PER SECTOR 0 0-1. 1 ::.*-3 0 3 0-, 0 !; 0-*7 5 NI\:F 1 5 0 24 47 1 18 0 00 OS 10 26 0. 00 1 3 1 0 24 71 24 0 00 OS 16 OS 0 00 D\E 0 1 1 0 0 00 24 24 0 00 0 00 05 05 0. 00 1 3 4 13 24 71 94 3 07 05 16 21 68 ESE 0 1 18 10 0. OD 24 4 25 2. 36 0 00 OS 94 0 18 3 0 00 4. 25 71 0 00 10 94 16 SSE 1 4 21 12 24 94 4. 95 2 83 OS 21 1. 09 63 s 1 0 21 29 24 0. 00 4. 95 6 84 OS 0. 00 1. 09 1. 51 1 3 30 27 24 71 7. 08 6. 37 05 . 16 1 56 1 41 S:..l 0 4 10 5 0. OD 94 2. 36 1 18 0 OJ 21 . 52 26 t.JSW 1 1 3 2 24 24 71 47 05 05 16 10 " 2 10 2 47 2 36 . 47 10 10 52 10 1 5 16 1 24 1. 18 3. 77 24 OS 26 83 . 05 0 13 19 6 0. 00 3 07 4. 48 1. 42 0. OJ 68 99 31 1 6 11 11 24 1 42 2 59 2. 59 . OS 31 57 57 N 0 6 9 0 0. 00 1. 42 2. 12 0. 00 0 00 31 47 0. 00 CAl :1 0 0 00 0 00 TOTAL 11 56 197 121 2. 59 13. 21 46. 46 28. 54 57 2 92 10. 27 6. 31 KEY XXX NU:-1BER OF OCCURRENCES .(XX PERCErH OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES WUW FREQUi::NCY DISTRJBUTIOf-.1 BY STABILITY JATA PERIOD* ALL D:::CEMBER COMBINED STA3 IL tTY CLASS: PASQUILL F DATA SOURCE: CN-SITE lHfJf, HEIGHT 10. 00 METERS GEtJt-RATED. 11/11/81. 15 09 30 '...liND WHJO SPEED SECTOR 0 0-1. 5 1 CATEGORJES<METERS PER 5-3. 0 3. 0-*5. 0 5 0-7. 5 flE ENE I;:SE SE SSE sw " " CAL l"DTAL 0 10 6 0 0 OJ 3. 52 2. 11 0 00 0 00 52 .:H 0 00 1 4 1 0 35 1 41 :15 0. 00 05 21 05 0. 00 0 4 1 0 0. co 1 41 35 0 00 0 OJ 21 05 0 00 0 5 6 1 0. 00 L 76 2. 11 35 0 O*J 26 31 05 2 4 5 0 . 70 1. 41 1 76 0 00 10 21 26 0. 00 0 16 6 0 0. 00 5 63 2. 11 0. 00 0 OD 83 31 0. 00 0 11 34 0 0 00 3 87 11. 97 0 00 0. 00 57 1. 77 0 00 0 12 29 0 00 4 23 10. 21 0 00 63 1. 51 10 0 12 ;;?4 7 0 00 4 23 8 45 2. 46 0. 00 63 1. 25 36 0 1 3 0 0 00 35 1 06 0. 00 0 OJ 05 16 0. 00 2 4 2 0 70 1. 41 70 0. 00 10 21 10 0 00 4 5 6 0 1. 41 1 76 2. 11 0. 00 21 26 31 0 00 2 6 5 0 70 2. 11 1 76 0. 00 10 31 26 0 00 1 13 4 0 35 4 58 1 41 0 00 05 68 21 0. 00 0 9 5 0 0 co 3 17 1 76 0 00 0 00 47 26 0 00 0 4 5 0 0 00 1 41 1. 76 0 00 0 OJ 21 26 0 00 0 0 co 0. 00 12 120 142 10 4 23 25 50 co 3 52 63 6 26 7 40 52 KEY X XI. NUM£:!ER OF OCCURRENCES .(XX PERCEtH OCCURRENCES THIS CLASS X X.< r OCCURRENCES ALL CLASSES CLASS WOLF CREEK GENERAl ING STATION BURL 1 NGTON, K,\NSAS GAS El_EC I R J C 0Af1ES ANO 1100RE NU 7099-064 SECOND) MEAN 7 !:1-10. 0 >10 () f[lTAL SPEED 0 0 8 92 0 00 0 00 l 09 0. 00 0 00 42 0 0 5 2 14 0 00 0 00 I 18 0 00 0 00 26 0 0 2 2 85 0 00 0 00 47 0. 00 0 00 10 0 0 21 4. 93 0. 00 0 00 * 95 0 00 0. 00 . 09 0 0 29 4 70 0. 00 0 00 84 0. 00 0 00 51 0 0 23 4 08 0. 00 0 00 . 42 0. 00 0 00 l. 20 3 0 41 4 81 71 0. 00 q 67 16 0. 00 " . 14 21 74 6 09 4. 95 17. 45 1. 09 10 " 86 11 0 72 5 28 2. 59 0 00 16. 98 57 0 00 ] 75 0 0 19 3. 92 0 00 0. 00 ,, 48 0 00 0 00 99 0 0 7 3. 83 0. 00 0. 00 l 65 0. 00 0 00 06 0 0 16 3 46 0 00 0. 00 ]. 77 0. 00 0. 00 83 0 0 23 3 41 0. 00 0 00 42 0. 00 0. 00 20 1 1 40 4. 22 24 . 24 'I 43 . 05 . 05 ;( 09 0 0 29 4. 32 0 00 0 00 !J 84 0. 00 0. 00 ::.51 0 0 15 3. 18 0. 00 0 00 ]. 54 0. 00 0. 00 78 0 CALM D 00 0. 00 36 3 424 4. 67 8. 49 . 71 100 00 1. 88 . 16 2,;;_ 11 CLASS WOLF CREEK GENERATING BURLINGTON. KAN!":;As STATION KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB t\0: 7699-064 SECOND) MEAN 7 5-10 0 )10. 0 TOTAL SPEED 0 0 16 2 66 0. 00 0. 00 5. 63 0. 00 0. 00 83 0 0 6 2. 28 0 00 0 00 11 0. 00 0 00 31 0 0 5 2. 84 0. 00 0. 00 1. 76 0 00 0. 00 26 0 0 12 3. 18 0 00 0 00 4 23 0. 00 0 00 63 0 0 11 2 90 0. 00 0. 00 3. 87 0 00 0. 00 . 57 0 0 2. 69 0. 00 0. 00 0. 00 0. DO 15 0 0 45 3 57 0 00 0. 00 15. 85 0. 00 0. 00 2. 35 0 0 43 3 43 0 00 0. 00 15. 14 0 00 0. 00 2. 24 0 0 43 3. 74 0. 00 0. 00 15. 14 0. 00 0 00 .2 24 0 0 4 3 57 0. 00 0. 00 1. 41 0. 00 0. 00 21 0 0 8 2. 19 0 00 0. 00 .2 82 0. 00 0. 00 42 0 0 15 2. 52 0. DO 0 00 28 0 00 0 00 78 0 0 13 2 48 0 00 0. 00 ., 58 0. 00 0 00 68 0 0 18 2. 67 0 00 0 00 6 34 0 00 0 00 94 0 0 14 2. 72 0 00 0. 00 4 93 0 00 0. 00 73 0 0 9 3 09 0 00 0. 00 3 17 0 00 0. 00 47 0 CALM 00 00 0 0 284 3 12 0 00 0 00 10() 00 Rev. 0 0 00 0 00 14 81 48 WOLF CREEK TABLE 2.3-31 (Continued) JOINT WIND FREQUENCY DIS'TRIBUTION BY STABILITY CLASS (MONTHLY 10 METERS) l.J[tJD FREI)Ui:NCY DISTRillUTION BY STA8ILITY CLASS DAr A PER I 00 ALL DECEMBER COMB !NED ST;.31LlTY CLASS. PASOUILL G OM T A 001-5 I TE tn;JD SENSOR HEIGHT 10.00 MC:TERS TM!3LE GENERATED 11/11/81 15 07.30 WOLF CREEK GENERATING ST"ATION OURL I r>lGTON, "'-ANSAS GAS AND EL[CTR I C DAME.5 AND f'lOORE ,J0!3 NO 7699-064 WIND SEC TOR l.J I NO SPEED CAl E:GOR IES <METERS PER SECOND l MEAN 0 0-1 1 :;-3 0 3 0-:J () 5 0-7 5 7 5-10. 0 ::10 0 TOTAL SPEED tJ:'\!E NE ESE SE SSE s ssw w CAL:'1 TOTAL 0 00 00 0 co co 0 0. 00 0 00 0 0 00 0 O*J 0 0 00 0 co 0 0 00 0. 00 1 79 05 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0 OJ 1 79 05 1. 10 1 79 05 1 79 05 2 I 57 10 0 0. 00 0. 00 0 0 00 0. 00 8 6. 30 . 42 3 2. 3b 16 3 2 36 16 2 1 57 10 0 0 00 0 00 0 0 00 0 00 8 6 30 42 13 10 24 68 6 4. 72 31 1. 10 0 0. 00 0. 00 1 79 . 05 4 3 15 21 5 3. 94 26 7 5. 51 36 1 10 3 2. 36 16 59 46 46 3. 08 4 3 15 21 I 10 1 79 05 5 3 94 26 1 79 05 15 11 81 78 8 6 30 42 8 6. 30 42 6 4. 72 31 0 0 00 0 00 0 0. 00 0 00 1. 10 0 0 00 0. 00 1 79 05 1 79 05 5 3. 94 26 59 46.46 3 08 KEY XX.( NC!1BER OF OCCURRENCES 0 0 00 0 00 1 79 05 0 0 00 0 00 0 0 00 0 00 0 00 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 D. 00 D. 00 0 D. 00 D. 00 0 0. 00 8. 00 1 79 . 05 XXX PERCENr OCCURRENCES THIS XX.< PERCENT OCCURRENCES ALL CLA:3SES 0 0 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0. 00 0 0 00 0 00 0 0. 00 0 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 () 0 00 0 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 7 5 ::!6 6 4. 72 . :Jl 3 :J6 16 5 3 94 I 79 05 23 18. 11 1, 20 17 :32 1. 15 14 11 02 73 8 6. :10 42 0 0. 00 0. 00 1. . 10 8 6.30 42 6 4. 72 31 9 7. 09 47 5 3 94 26 8 6 30 42 0 0. 00 0. 00 127 100.00 6. 62 2 69 3 00 2 83 4 10 4 00 3. 20 2. 87 3. 24 3. 10 0. 00 I 30 2 19 I 93 2 13 2. 00 3. 15 CALM 2. 88 JOINT t.JIND FREQUENCY DISTRIBUTION BY STAI3ILITY CLASS DAT-A PER 100. ALL DECEMBER COMB I NED ALL CLASSES DATA SOURCE ON-SITE (.JHJO SENSOR HEIGHT 10.00 METERS TA3LE GENERATED* 11/11/81. 15 09.30 WOLF CREEK GENERATING S"TATION BURLINGTON. KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO* 7699-064 WIND SECTOR WINO SPEED CATEGORIES<METEHS PER SECOND) MEAN 0 0-1. 5 1 5-3. 0 3. 0-5. 0 5 0-7. 5 7 0 >10. 0 NNE ESE SE SSE sw WSW w N CAL:-1 2 10 4 21 2 10 4 21 2 10 4 21 3 16 t5 6 31 8 42 7 36 4 21 6 31 0 0 00 60 3 13 34 I 77 30 1 56 16 83 15 78 13 68 33 1. 72 35 1 82 24 1. 25 19 . 99 16 83 11 57 21 1. 09 21 1. 09 47 2 45 31 1 62 25 1 30 391 20 39 G:::-V,t.,LID OI3S£RVATIONS NUM3ER a;:-HI'.'A!_IO OOSERVATIONS TOT,C..!_ t">IU.13ER OF OB5ERVAT 101\!S 30 1. 56 9 47 8 .42 23 1 20 38 1. 98 61 3. 18 87 4. 54 89 4. 64 82 4 28 34 1. 77 16 83 24 1. 25 32 I 67 44 2. 29 56 2. 92 59 3. 08 692 36 08 1918 314 2232 KEY .I.:X.( tHJ,'1l3ER OF OCCURRHJCES <XX PERCENr OCCURRENCES 12 63 II 57 4 21 17 89 15 78 6 . 31 33 1. 72 70 3. 65 75 3 91 23 1. 20 16 83 7 36 30 1. 56 58 3 02 73 3. 81 33 1 72 483 25. 18 B:J. 93 PCT 14 07 PCT 100 00 PCT II 57 I 05 4 21 0 0. 00 0 0 00 0 0. 00 3 16 28 1. 46 25 1. 30 2 10 4 21 5 26 10 . 52 19 99 63 3. 28 39 2 03 214 11 16 8 42 I 05 0 0. 00 0 0. 00 0 0. 00 0 0. 00 0 0 00 6 31 7 36 3 16 I 05 4 21 0 0. 00 17 89 12 63 19 99 78 4. 07 TOTAL SPEED 97 5. 06 56 2. 92 :34 1. 77 59 3 08 68 3. 55 102 5 32 162 8. 45 2.20 11. 47 210 10.95 80 4. 17 54 2. 82 69 3 60 100 5 21 189 9. ElS 241 12 57 177 9 .:::!3 0 0 00 1918 100 00 4. 66 3. 47 3. 78 3 96 4. 05 3 45 4. 11 5. 21 5. 29 4. 56 4 39 3. 94 4 45 5 41 6. 00 5 91 CALM 4 90 Page 4B of 48 Hev. 0 WOLF CREEK TABLE 2.3-32 WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 1 of 48 JOINT Witm FREGUErJCY DISTRIBUTION BY STABILITY CLASS DATA PER 100 ALL JANUARY COMBINED SThi3II_lTY cL,;ss: PASQUILL A WOLF CREEK GENERATING STATION DMT,t, SOURCE. 0:-..!-SI TE BURLINGTON, KANSAS SEN30R HEICHT 60 DO METERS KANSAS GAS AND ELECTRIC r,;BLE GENERATED: 11110/81 15 02. 03. DAMES AND MOORE JOB NO: 7699-064 WIND WitW SPEED CATEGORIES(METERS PER SECOND> MEAN SECTOR 0 0-1-:;. 1. 5*-3 0 3. 0-5. 0 5. 0-7. 5 7. 0 >10. 0 TOTAL SPEED 1 0 0 2 0 0 3 3 83 1. 45 0 00 0 00 2. 90 0. 00 0 00 4 35 05 0 00 0 00 . 10 0. 00 0. 00 . 16 t<E 2 0 1 3 1 0 7 4 " 2. 90 0 00 L 45 4 35 1. 45 0. 00 10. 14 10 0 00 . 05 . 16 05 0. 00 36 ENE 0 1 0 2 0 0 3 4. 80 0 co 1 4'5 0. 00 2. 90 0. 00 0. 00 4. :15 0. 00 05 0. 00 . 10 0. 00 0. 00 16 E 0 0 0 1 0 0 1 6. 20 0. 00 0 00 0. 00 1. 45 0. 00 0 00 1, 45 0. 00 0 00 0. 00 . OS 0 . 00 0. 00 05 ESE 0 0 0 1 0 0 1 7. 10 0. 00 0 00 0 00 1. 45 0. 00 0. 00 1. 45 0. 00 0 00 0. 00 05 0. 00 0. 00 . 05 SE 1 .2 2 1 0 0 6 3. 28 1. 2 90 2. 90 1. 45 0 00 0. 00 8. 70 05 to . 10 . 05 0 . 00 0. 00 . 31 SSE 0 1 1 3 1 0 6 " 93 0. 03 1 45 1. 45 4. 35 1. 45 0. 00 B. 70 0. 00 05 . 05 16 . 05 0. 00 31 s 0 0 0 0 3 3 6 10 13 0. 00 0 00 0. 00 0. 00 4. 35 4. 35 8. 70 0. 03 0. 00 0. 00 0. 00 16 16 . 31 ssw 0 0 0 0 0 1 1 11. 50 0. 00 0 00 0. 00 0. 00 0. 00 1 45 1. 45 0. co 0 00 0. 00 0. 00 0. 00 . 05 05 sw 0 0 0 0 1 0 1 0. 00 0 00 0. 00 0. 00 1. 4:5 0. 00 1. 45 0 00 0 00 0. 00 0. 00 05 0. 00 . 05 WSW 1 1 0 0 1 0 3 4. 33 1. 45 1. 4'5 0. 00 0. 00 1. 45 0. 00 4. 35 05 0'5 0. 00 0. 00 . 05 0 . 00 . 16 w 0 1 0 0 0 0 1 1. 90 0. OD 1. 45 0 00 0. 00 0. 00 0. 00 1. 45 0. 00 05 0 00 0. 00 0. 00 0. 00 05 1-.iNW 0 0 0 0 2 0 2 B. 10 0. 00 0 00 0. 00 0. 00 2. 90 0. 00 2 90 0. 00 0. 00 0. 00 0. 00 10 0. 00 . 10 Nw 0 1 1 1 2 1 6 6. 95 0. co 1 45 1. 45 1. 45 2. 90 1. 45 8, 70 0. 00 . 05 . 05 . 05 10 . 05 . 31 0 0 1 4 4 2 11 B. 22 0. 00 0 00 1. 45 5. 80 5. 80 2. 90 15. 94 0. 00 0 00 . 05 . 21 . 21 10 57 N 1 1 0 1 2 5 10 8. 79 1 45 1. 45 0. 00 1. 45 2. 90 7. 25 14. 49 05 05 0. 00 . 05 10 26 . 52 CALM 1 1 CALM 1. ..;s 1. 45 05 05 TOTAL 7 :a 6 19 17 12 69 6. 66 10. 14 11 5'9 8. 70 27. 54 24. 64 17. 39 100. 00 36 41 . 31 . 98 88 .62 3. 58 KEY XXX NU:'18ER OF OCCURRENCES XXX PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES JOINT WIND FREQUErJCY DlSTRIBUTION BY STABILITY CLASS DATA PER IDD: ALL COMBINED ST.,;BILITV CLASS: PASGUILL B WOLF CREEK GENERATING STATION DATA SOURCE: 0:-.l-BI fE BURLINGTON, KANSAS SENSOR HEIGHT* 60. 00 METERS KANSAS GAS AND ELECTRIC TABLE GENERATED: 11/10/81. 15. 02. 03. DAMES AND MOORE JOB NO: 7699-064 WIND WINO SPEED CATEGORIES<METERS PER SECOND> MEAN SECTOR 0. 0-1. 5 1. 5**3. 0 3. 0-5. 0 5. 0-7. 5 7. 5-10. 0 >10. 0 TOTAL SPEED NNE 0 1 0 5 2 1 9 7. 18 0. 00 1. OL 0. 00 5. 05 2. 02 1. 01 9. 09 0. 00 . 0!5 0. 00 . 26 . 10 . OS . 47 NE 0 I 3 0 0 0 4 3. 42 0. co 1. Ol 3. 03 0. 00 0. 00 0. 00 4.04 0. 00 . o:5 . 16 0. 00 0. 00 0. 00 . 21 BJE 0 .. 13 9 0 0 26 4. 52 0. ov 4. 13. 13 9. 09 0 00 0. 00 26. 26 0. co 21 . 67 . 47 0. 00 0. 00 1. 35 E 0 0 1 1 0 0 2 5. 25 0. 00 0. 00 1. 01 1. 01 0. 00 0. 00 2. 02 ESE 0. 03 0. 00 . 05 . 05 0 . 00 0. 00 10 0 0 0 3 0 0 3 6. 13 0. 00 0 00 0. 00 3. 03 0. 00 0. 00 3. 03 0 00 0. 00 0. 00 . 16 0. 00 0. 00 . 16 SE 0 :z 2 1 0 0 5 4. 00 0. 00 2. 0:2 2. 02 1. 01 0. 00 0. 00 5. 05 0. 00 10 10 . 05 0. 00 0. 00 . 26 SSE 0 0 0 1 0 0 1 5. 40 0. 00 0. 00 0. 00 1. 01 0. 00 0. 00 1. 01 0. 00 0 00 0. 00 . 05 0. 00 0. 00 . 05 s 0 0 1 0 1 0 2 6. 00 0. 00 0. 00 1. 01 0. 00 1. 01 0. 00 2. 02 0. 00 0. 00 . 05 0. 00 . 05 0 . 00 . 10 ssw 1 0 0 0 0 0 1 1. 40 1. 01 0. 00 0. 00 0. 00 0. 00 0. 00 1. 01 . 05 0. 00 0. 00 0. 00 0. 00 0. 00 . OS sw 0 0 1 2 3 0 6 7. 03 0. O'J 0. 00 1. 01 2. 02 3. 03 0. 00 6. 06 0. OJ 0. 00 05 10 . 16 0. 00 . 31 IJSW 0 I 0 0 0 0 1 1. 90 0. 00 1. O.l 0. 00 0. 00 0. 00 0. 00 1. 01 0 00 o:> 0. DO 0. 00 0. 00 0. 00 . 05 w 0 () 1 3 0 0 4 " 97 0. 00 0. 00 1. 01 3. 03 0. 00 0. 00 4. 04 0 00 0. 00 . 05 . 16 0. 00 0. 00 . 21 0 0 1 3 1 0 5 5. eo 0. OJ 0 00 1. 01 3. 03 1. 01 0. 00 5. 05 0. OJ 0 00 05 16 OS 0. 00 . 26 NW 0 0 2 4 0 2 8 8 01 0. 00 0 00 2. 02 4. 04 0. 00 2. 02 B. 08 0. 00 0. 00 10 21 0. 00 10 41 NNW 0 0 1 4 6 3 14 8 41 0. 00 0. 00 1. 01 4. 04 6. 06 3 03 14 14 0. 00 0 00 . 05 21 . 31 16 73 ,, 0 3 1 1 1 2 8 5 97 0 00 3. 03 1. 01 1. 01 1. 01 2. 02 8. 08 0. 00 '" 05 . 05 05 10 41 CALM 0 0 CALM 0 00 0. 00 0 co 0. 00 Rev. TOTAL 1 1 27 37 14 8 99 5. 96 0 1 01 12 1 27. 27 37 37 14. 14 8. 08 100 00 OS 1. 40 1. 92 73 41 5 13 KEY XXX NUMBER oF* OCCURRENCES XXX r OCCURRENCES TH!S CLASS XXX PERCENr OCCURRENCES ALL CLASSES WOLF CREEK TABLE 2 .3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STA3ILITY CLASS (MONTHLY 60 METERS) Page 2 of 48 ,JOINT FREQUENCY DISTR I I3VT ION BY STABILITY CLASS DATA PERIOD. ALL JANUARY COMBINE!:* STAB ILIT't' CLASS PASGVILL c WOLF CREEK GENERATING STATION DATA SOURCE: C:-.1-SI TE BURLINGTON, KANSMi l.JHJO SENSOR HEICHT: 60 00 I"ETERS KANSAS GAS AND ELECTRIC TA::JLE GENERATED: 11/10/81. 15. 02. 03. DAMES AND MOORE .JOB NO 7699-064 WINO WINO SPEED CATEGORIES(METERS PER SECOND) MEAN SECTOR 0. 0-1. 5 1. 5-3. 0 3. o-:-. o 5. 0-7. 5 7 5-10. 0 >10. 0 10TAL SPEED 0 0 I 5 4 4 14 8. 11 0. 00 0 00 73 3. 2. 92 2. 92 10. 22 0. OJ 0 00 . 05 . 26 21 21 . 73 NE 0 2 5 0 0 0 7 3 69 0. OJ I 46 3.65 0. 00 0. 00 0. 00 5, 11 0 00 10 ;.*6 0. 00 0. 00 0 00 . 36 ENE 0 I I 0 0 0 2 2 75 0. 00 73 13 0. 00 0. 00 0. 00 I 46 0. 00 OS OS 0. 00 0. 00 0. 00 10 E 0 0 I 2 0 0 3 5 43 0. 00 0. 00 13 1. 46 0. 00 0. 00 2. 19 0. 00 0. 00 OS . 10 0. 00 0. 00 16 ESE 0 0 0 2 0 0 2 5. 60 0. 00 0. 00 0. 00 1. 46 0. 00 0. 00 1, 46 0. 00 0. 00 0. 00 . 10 0. 00 0. 00 . 10 SE 0 I 0 0 I 0 2 5. 60 0. 00 73 0 . 00 0. 00 . 73 0. 00 1. 46 0. co . OS 0. 00 0. 00 . OS 0. 00 10 SSE I 0 I 0 2 0 4 5. 67 73 0. 00 . "73 0. 00 1. 46 0. 00 2. 92 . OS 0. 00 . OS 0. 00 . 10 0. 00 21 s 0 0 0 3 0 I 4 7. 50 0. 00 0. 00 0. 00 2. 19 0. 00 73 2 92 0. 00 0. 00 0. 00 16 0. 00 . OS 21 0 0 2 6 5 4 17 8. 43 0 00 0. 00 1. 46 4. 38 3. 65 2. 92 12 41 0. 00 0. 00 . 10 31 26 . 21 88 sw 0 0 0 3 I 0 4 6. 45 0 00 0. 00 0. 00 2. 19 73 0. 00 ? . 92 0. 00 0. 00 0. 00 16 05 0. 00 . 21 WSW I 0 0 2 0 0 3 4 80 73 0. 00 0. 00 1. 46 0. 00 0. 00 2. 19 OS 0. 00 0. C*O IO 0. 00 0. 00 16 w 0 6 2 I I 0 10 3. 61 0. 00 4. 38 1. 46 . 7:::1 73 0. 00 7. 30 0. 00 . 31 . 10 . OS . 05 0 . 00 . 52 W:-.lo.l 0 2 3 I I 2 9 6. 29 0. 00 1. 46 2. 19 . 73 . 73 1. 46 6. 57 0. 00 . 10 16 . 05 . OS . 10 47 Nw 0 I I 6 8 5 21 8. 83 0. 00 . 73 . 73 4. 38 5. 84 3. 65 IS . 33 0. 00 . OS . C*5 . 31 . 41 . 26 1. 09 Nl\il-l 0 0 2 I 3 2 8 7. 94 0. 00 0. 00 1. 46 . 73 2. 19 1. 46 5. 84 0. 00 0. 00 . 10 . OS 16 10 . 41 N 0 0 I 13 6 6 26 7. 92 0. 00 0. 00 73 9. 49 4. 38 4. 38 lB. 98 0. 00 0 00 . 05 . 67 . 31 . 31 1. 35 CA'-M I I CALM 73 . 73 OS . OS TOTAL 3 13 ;;:*o 45 32 24 137 7. 06 2. 19 9. 49 14. 00 32.85 23. 36 17. 52 100.00 . 16 67 1. C4 2. 33 I 66 I. 24 7. 10 KEY XXX NUMBER OF OCCURRENCES XXX PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES JOINT WIND FREQUENCY DISTRIBUTION i3Y STABILITY CLASS DATA PERIOD: ALL JANUARY COMBINED STABILITY CLASS: PASOUILL D WOLF CREEK GENERATING STATION DATA SOURCE: ON-SITE BURLINGTON, KANSAS WI SENSOR HEIGHT* 60. 00 METERS KANSAS GAS AND ELECTRIC TABLE GENERATED; 11/10/81. 1'5. 02. 03. DAMES AND MOORE JOB NO: 7699-064 WIND WINO SPEED CATEGOR I E.S ( ME:TERS PER SECOND> MEAN SECTOR 0. 0-1.5 1. 5-3.0 3. 0-5 0 5. 0-7. 5 7. 5-10. 0 :>10. 0 TOTAL SPEED N:\IE 0 4 15 39 28 17 103 7. 36 0. 00 . 54 2. 04 5 . 30 3. 80 2. 31 13.99 0. 00 21 . 7l3 2. o;? I. 45 . 88 5. 34 NE I 6 II '1 5 0 32 5. 10 14 82 1. 49 1. 68 0. 00 4. 35 . OS . 31 . 57 . . 26 0. 00 1. 66 ENS 0 13 ., 1'1 5 0 41 4. 83 o_ 00 1. 77 1. 2:2 1. 90 68 0. 00 S. 57 0. 00 67 . 47 . 7:1 . 26 0. 00 2. 12 E 0 4 II 1 8 0 35 5. 48 0. 00 . 54 I. 4'> 1. 6:3 1. 09 0. 00 4. 76 0. OD . 21 . 57 . 41 0. 00 I. 81 ESE 2 2 ., 4 I 0 18 4. 32 27 . 27 1. 22 . 14 0. 00 2. 45 10 10 . 47 . 21 . OS 0. 00 93 SE 0 0 4 5 0 II 6. 50 0 00 0 00 54 27 68 0. 00 1. 49 0. co 0. 00 21 .10 26 0. 00 57 SSE I I 5 ,, 10 3 27 7. 12 14 . 14 6'3 9!) 1. 36 41 3. 67 OS OS . 2b 36 52 16 I 40 s 0 2 5 1:5 13 28 63 9. 22 0. 00 27 63 2. 04 1. 77 3. 80 8. 56 0. 00 . 10 2o 7B 67 1. 45 3 26 SSI-1 0 3 12 1!) 14 15 59 7 82 0 00 41 1. 63 2. 04 1. 90 2. 04 B. 02 0 00 16 . 6.2 . 7B . 73 78 3. 06 sw 7 ' 10 3 3 31 5. 37 95 82 1. 36 41 41 4 21 10 36 . 31 16 . 16 1. 61 WSW I 7 4 '1 2 0 23 4. 63 . 14 95 . ,. 1. . 27 0. 00 3. 12 . OS . 36 . 21 47 . 10 0 00 l . 19 w 0 4 13 21 7 0 45 5. 58 0. 00 54 1. 77 2. 8:5 95 0 00 6. II 0. 00 21 67 I 0'1 36 0. 00 2. 33 w:--:w 0 3 ,, 1:3 8 22 52 B. 29 0. 00 41 8.2 1. 77 1. 09 2. 99 7 07 0. OD 16 31 67 . 41 I 14 2 69 Nw 0 I II II 20 13 56 8. 04 0. 00 14 1. 4'? I 4'1 2. 72 1. 77 7 61 0. OD OS . 57 57 I. 04 67 2. 90 0 2 7 1*1 10 13 46 8. 25 0. 00 27 95 I 90 1. 36 1. 77 6 25 0. 00 10 :16 7:3 . 52 67 2 . 38 N 0 3 13 27 35 16 94 7. 67 0 00 41 1. 77 3. 67 4. 76 2 17 12. 77 0. 00 . 16 67 I 40 I 81 83 4 87 CALt-1 0 0 CALM 0 co 0. 00 0. CJ 0 00 TOTAL 7 62 141 174 130 736 7 07 95 8 42 19 , ,, 30 ,,, 23 64 17 66 lOO. 00 26 3 21 7 31 11. 50 9 02 6. 74 38 13 Flev. 0 KEY XXX NUMBER OF OCCURRENCE:'3 XXX PE'"RCENr OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES WOLF CRE:EK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTI0N BY STABILITY CLASS (MONTHLY 60 METERS) Page 3 of 48 .JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PEN IOD ALL J,6.NUARY COMB !NED STA3 IL ITY CLASS PASGUILL E WOLF CREE:.\ GENERAl ING STATION DATA SOURCE* ON-51 TE BURLIHGTQN, KANSAS t.JINO SENSOR HEIGHT* 60. 00 METERS KANSAS GAS AND ELECTRIC T,C,BLE 11/10/81 15 02. 03. DAMES AND MOORE JCIB NO: 7699-064 WIND WINO SPEED CATEGORIES (METERS PER SECOND) MEAN SECTOR 0. 0-1. 5 1. 5-3.0 3 0-5. 0 5 0-7 s 7. 5-10. 0 :>to. 0 TOTAL SPEED 0 2 7 10 I 2 22 5. 83 0. 00 42 1. 4B 2. 11 . 21 42 4 . 64 0. 00 10 36 "2 05 10 I. 14 NE 0 10 2 0 16 78 0. 00 . 42 2. 11 42 0. 00 3 38 0. 00 10 . 10 . 52 . 10 0. 00 83 0 0 5 5 2 0 12 5 56 0. 00 0. 00 1. OS 1. 05 . 42 0. 00 2 . 53 0. co 0 00 . 26 . . 10 0. 00 62 E 0 0 0 16 7 2i 24 7. 25 0. 00 0 00 0. 00 3. 38 1. 48 5. 06 0. 00 0 00 0. 00 . 83 36 . 05 1 . 24 ESE 0 0 4 7 9 3 23 7. 57 0. 00 0 00 . 84 1. 48 1 90 63 4. 85 0. 00 0 00 2\ . 36 47 . 16 1 19 SE 0 1 1 5 7 1 15 7. 28 0. 00 21 . 21 1. 0'5 1. 48 . 21 3. 16 0. 00 05 . 05 . . 36 . 05 78 SSE 0 1 2 2 13 19 37 9. 68 0. 00 . 21 .42 . 42 2. 74 4. 01 7 . 81 0. 00 05 .10 . 10 . 67 . 98 1 . 92 s 0 5 6 14 22 25 72 8 72 0. 00 1. 05 1. 27 2. 95 4. 64 '* 27 15. 19 0. O'J . 26 3\ . 73 1. 14 1. 30 3. 73 ssw 0 2 10 23 26 24 85 B. 68 0. 00 42 2. 11 4. 85 5. 49 5. 06 17. 93 0. 00 10 . 52 1. 19 1. 35 1. 24 4 40 sw 0 1 3 11 3 1 19 6. 36 0. 00 . 21 . 63 2. 32 63 . 21 4 01 0. 00 05 . 16 . 57 . 16 05 98 WSW 0 2 2 5 4 0 13 6. 27 0. co 42 . 42 1. 05 . 84 0. 00 2. 74 0. 00 . 10 . 10 26 . 21 0. 00 . 67 w 0 1 9 6 4 3 23 6. 18 0. 00 21 1. 90 1. 27 . 84 63 4 . 85 0 00 . 05 . 47 . 31 . 21 . 16 1. 19 0 1 5 8 14 0 28 6. 98 0. 00 21 1. OS 1. 69 2. 95 0. 00 5. 91 0. 00 05 . 26 . 41 . 73 0. 00 1 45 Nw 0 0 8 16 17 1 42 6. 93 0. 00 0 00 1. 69 3. 38 3. 59 . 21 B. 86 0. 00 0 00 . 41 83 . 88 . 05 2. 18 NNW 0 1 2 10 6 1 20 6. 95 0 00 . 21 . 42 2. 11 1. 27 21 4 22 0. 00 . 05 . 10 . 52 31 05 1 . 04 N 0 1 6 6 7 3 23 6. 93 0. 00 21 1. 27 1. 27 1. 48 . 63 4. 85 0. 00 05 . 31 . 31 36 . 16 1. 19 CALM 0 0 CALM 0. 00 0. 00 0. 00 0, 00 TOTAL 0 20 7:;! 154 144 84 474 7. 59 0. 00 4. 22 15. 19 32. 49 30.38 17. 72 100 00 0. 00 1. 04 3. 7:3 7. 98 7. 46 4. 35 24. 56 KEY XXX NU'"BER OF OCCURRENCES XXX PE,qCENT OCCURRENCES THIS CLASS XXX PE:=tCENT OCCURRENCES ALL CLASSES JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD: ALL JANUARY COMBINED STABILITY CLASS: PASOUILL F WOLF CREEK GENERATING STATION DATA SOURCE: ON-SITE BURLINGTON. II.ANSAS l.JINO SENSOR HEIGHT. 60. 00 METERS KANSAS GAS AND ELECTRIC TABLE 11/10/81. 15. 02. 03. DAMES AND MOORE JOB NO: 7699-064 WIND WINO SPEED CATEGORIES<ME:TERS PER SECOND) MEAN SECTOR 0. 0-1.5 1. 5-3.0 3. 0-5. 0 5. 0-7. 5 7. 5-10. 0 >10. 0 TOTAL SPEED NNE. 0 0 2 7 1 0 10 6. 42 0. 00 0. 00 . 74 2. . 37 0. 00 3. 69 0. 00 0. 00 . 10 :36 05 0. 00 . 52 NE 2 1 3 0 0 0 6 2. 6:5 74 . 37 1.11 0. 1)0 0 . 00 0. 00 2 21 . 10 . 05 16 0. IJO 0 . 00 0. 00 . 31 ENE I 1 0 5 2 0 9 5. 22 . 37 . 37 0. 00 1. BS . 74 0 . 00 3. 32 . 05 . 05 0. 00 . :26 . 10 0 . 00 . 47 E 0 0 1 4 0 0 5 6. 08 0. 00 0. 00 37 1. 48 0. 00 0. 00 1. 85 0. 00 0 00 . 05 :21 0. 00 0. 00 . 26 ESE 0 2 0 6 5 1 14 7. 14 0. 00 74 0. 00 2.:21 1. 8:5 . 37 S. 17 0. 00 . 10 0. 00 !31 26 . 05 73 SE 0 0 I 4 0 1 6 6. 13 0. 00 0. 00 37 1. ,q_g 0. 00 . 37 2. 21 0. 00 0. 00 . .:21 0. 00 . 05 31 SSE 0 1 1 7 0 11 6. 90 0. 00 . 37 . 74 . !37 2. 58 0. 00 4.06 0. 00 . 05 . 10 . OS 36 0. 00 57 s 0 0 3 7 8 1 19 7 18 0. 00 0. 00 1.11 2. 2. 95 37 7.01 0. 00 0. 00 . 16 :36 . 41 05 98 ssw 0 1 :1 18 17 3 42 7. 27 0. 00 37 1.11 6. b4 6. 27 1.11 15. 50 0. 00 . 05 . 16 . 88 . 16 2 18 SW 0 1 15 14 0 32 7 09 0. 00 . 37 5. 5. 17 0. 00 11. 81 0. 00 . 05 . 10 78 73 0. 00 1 66 WSW 0 4 7 14 4 0 29 5. 41 0. 00 1. 48 2. 58 5. 17 1. 48 0. 00 10 70 0. 00 21 . 36 . 73 . 21 0. 00 1 50 w 0 0 6 8 4 1 19 6. 26 Q_ 00 0. 00 2. 21 2. 1. 48 37 7 01 0. 00 0. 00 . 31 .., 21 05 98 W!'liW 0 0 3 12 4 0 19 6 70 0. 00 0 00 1.11 4 .* ;3 1. 48 0. 00 7. 01 0. 00 0 00 . 16 62 . 21 0 . 00 98 N:..J 0 0 4 11 5 0 20 6. 54 Q_ 00 0. 00 1. 48 4. 06 1. 85 0. 00 7 38 0. 00 0. 00 21 !57 . 26 0 . 00 1 04 0 0 0 11 5 1 17 7 14 0 00 0. 00 0. co 4. 06 1. 85 . 37 6 27 0. 00 0 00 0. 00 !57 . 26 05 88 N 0 0 3 5 3 2 13 6 72 0. 00 0 00 1 11 1. 135 1.11 . 74 4 80 0. 00 0. 00 16 :26 16 10 . 6/ CALM 0 0 CALM 0. 00 0 00 0. co 0 00 TOTAL 3 11 40 1:28 79 10 271 6 57 1.11 4 06 14 76 47.:23 29. 15 3 69 100 00 Hev. 0 16 57 2 07 6. 63 4 09 52 14 04 KEY XXX NUf'lBER OF OCCURRENCES XXX PEFtCENf OCCURRENCES 11-HS CLASS XXX PEFtCENT OCCURRENCES ALL CLASSES WOLF' CREEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 4 of 48 JOINT UIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD: ALL JANUARY COMBINED ST.C.BILITY CLASS. PASQUILL G DATA SOURCE. TE lHND SENSOR HEIGHT* 60. 00 WOLF CREEK GENERATING STATION BURL! NGTON. KANSAS GAS AND ELECTRIC TMBLE GEI\!ERATED 11/10/81. 15 02. 03. DAMES AND MOORE JOB NO 7699-064 WIND SPEED CATEGORIES<I'1ETERS PER SECOND> WIND SECTOR o o-1. 5 1. 5-3. o 3. o-:L o ::; o-7 :5 7 5-Io. o :>to. o NNE NE ENE ESE SE SSE s ssw sw WSW WNW NW N CALM TOTAL 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 1 69 . 05 2 1. 39 . 10 0 0. 00 0. 00 1 69 . 05 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 1 . 69 . 05 0 0. 00 0. 00 0 0. 00 0. OJ 5 3. 47 26 1 10 1 . 69 05 1 69 05 1 69 05 4 2. 78 21 1 69 05 0 0 00 0. 00 0 0. 00 0. 00 0 0. oo 0. 00 1 . 69 .05 1 69 . 05 0 0. 00 0. 00 1 69 05 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 13 9. 03 67 0 0. 00 0 00 1 69 05 1. 10 1. 10 5 3. 47 26 3 2. 08 16 8 5. 56 41 1. 10 3 2. 08 . 16 2 1 39 . 10 3 2. 08 . 16 3 2. 08 16 4 2. 78 . 21 1. . 10 0 0. 00 0. 00 0 0. 00 0 00 40 27.78 2. 07 KEY XX:( NUMBER OF OCCURRENCES 2 1. 39 10 0 0 00 0 00 2 1. 39 . 10 5 3. 47 . 26 1 . 69 . 05 3 2. 08 16 4 2. 78 . 21 11 7. 64 57 a :5. 56 . 41 4 2. 78 . 21 5 3. 47 . 26 3 2. 08 . 16 2 1. 39 . 10 2 1. 39 10 3 2. 08 . 16 2 1. 39 10 57 39. 58 2. 95 XXX PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES 1 69 . 05 0 0. 00 0. 00 0 0. 00 0. 00 1 69 05 0 0. 00 0. 00 2 1. 39 10 3 2. 08 16 0 0. 00 0. 00 12 8. 33 62 3 2. 08 16 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 3 2. 08 16 2 1. 39 . 10 0 0. 00 0. 00 27 18.75 1. 40 JOINT WIND FREQUENCY DISTRIBUTION B'r STABILITY CLASS DATA PERIOD: ALL JANUARY COMBINED 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 1. 10 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 Q_ 00 0. 00 0 0 00 0. 00 1. 10 MEAN TOTAL SPEED , 3. 47 26 2 1. 39 10 5 3 47 26 9 6.25 . 47 10 6.94 52 10 6.94 52 19 13 19 . 98 13 9. 03 . 67 24 16.67 1. 24 10 6. 94 52 9 6. 25 47 6 4. 17 . 31 7 4. 86 . 36 7 4. 86 36 6 4. 17 31 2 1. 39 . 10 0 0. 00 0. 00 144 100.00 7 46 , 72 2. 60 4. 12 5. 53 3. 87 5. 02 5. 77 :), 86 7. 17 6. 00 5. 38 4. 97 4. 56 6. 40 6. 03 6. 15 CALM 5. 66 ALL DATA SOURCE: ON-SITE WOLF CREEK GENERATING STATION BURLINGTON, 1-(.ANSAS WINO SENSOR HEIGHT: 60. 00 MElERS 1-(.ANSAS GAS AND ELECTRIC TABLE GENERATED: 11/10/BL 15. 02. 03. DAMES AND MOORE JOB NO* 7699-064 WIND WINO SPEED CATEGORIES<METERS PER SECOND) SECTOR 0. 0-1. 5 1. 5-3.0 3 0-5. C 5. 0-7. 5 7. 5-10. 0 >10. 0 NNE NE ENE ESE SE SSE s* ssw SW WSW NW NNW N CALM TOTAL 1 05 5 26 I 05 0 0. 00 2 . 10 2 10 4 21 0 0. 00 2 . 10 2 . 10 3 . 16 0 0 00 0 0 00 0 0. 00 1 05 I 05 2 10 26 1. 9 . 47 13 . 67 21 1. 09 5 . 26 8 41 7 36 4 . 21 7 . 36 6 . 31 10 . 52 16 83 12 . 62 7 . 36 3 16 3 16 8 41 !39 7 20 N'JMI3ER Oi=' VALID OBSERVATIONS NUMBER O'F' INVALID TOTAL OF OBS£AVATIOI'lS 25 1. 30 26 1. 35 30 1. 55 16 . 83 18 . 93 13 . 67 19 . 98 17 88 30 1. 55 14 73 16 . 83 34 1. 76 22 1. 14 29 1. 50 13 67 24 1. 24 346 17 93 1930 302 ii..EY XX.( Nlii'1BER OF OCCURRENCES XXX PERCENT OCCURRENCES 70 3. 63 22 1. 14 37 1. 92 41 2. 12 24 1. 24 16 . 83 18 . 93 50 2. 59 70 3. 63 45 2. 33 35 1. 81 42 2. 18 39 2. 02 51 2. 64 47 2. 44 55 2 85 662 34.30 86. 47 PCT 13 '53 PCT 100 00 PCT 37 1. 92 8 . 41 9 . 47 16 . 83 15 . 78 15 78 36 1. 87 47 2. 44 74 3. 83 28 1. 45 11 . 57 16 83 30 1. 55 55 2. 85 36 1. 87 54 2. 80 487 23 24 1. 24 0 0. 00 0 0. 00 1 . 05 4 . 21 2 . 10 24 1. 24 58 3. 01 47 2. 44 4 . 21 0 0. 00 4 21 24 1. 24 22 1. 14 22 1. 14 34 1. 76 270 13 99 MEAN TOTAL SPEED 166 8. 60 74 3. 83 98 5 08 79 4. 09 71 3. 68 55 2.85 105 5. 44 179 9. 27 229 11. 87 103 5, 34 81 4. 20 108 5. 60 122 6. 32 160 B. 29 122 6 32 176 9 12 2 10 1930 100 00 7. 04 4. 71 4. 79 6. 07 6. 02 5. 79 7. 62 8 51 B. 01 6. 33 5 22 5. 59 7. 27 7. 55 7. 77 7. 51 CALM 6. 95 Rev. 0 WOLF CREEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 5 of 48 JOINT WINO FREGU£NCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD ALL FEBRUARY CDr113INED STABILITY CLASS. PASOUILL A DATA SOURCE: 0:-..1-SITE WINO SENSOR HEIGHT 60 00 METERS TABLE GENERATED* 11/10/81 15. 33. 48. WOLF CREEK GENERATING STATION BURLINGTON. KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7699-064 WINO WINO SPEED CATEGORIES<METERS PER SECOND> SECTOR 0 0-1. 5 1 5-3. 0 3 0 '5 0-7 5 7 5-10. 0 :>10. 0 MEAN NNE NE ENE ESE SE SSE s ssw sw WSW 1\:NW N CALM TOTAL 0 0 00 0. DO 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 1 1. OS 06 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. co 0 0. 00 0. 00 1 1. 05 . 06 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. co 2 2 11 12 1 1 OS 06 2. tf 12 0 0. 00 0 00 1 1. 05 06 0 0. 00 0 00 1 1. 05 06 1 1. 05 . 06 1 1. 05 . 06 0 0. 00 0. 00 6 6. 32 37 2 2. 11 . 12 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 1S 15. 79 93 1 1. OS 06 1 1. 05 06 0 0. 00 0 00 1 1. OS 06 0 0. 00 0. 00 0 () 00 0. 00 1 1. OS . 06 2 1! 12 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 1 l. OS 06 0 0. 00 0. 00 1 1. OS 06 0 0. 00 0. 00 0 0. 00 0. 00 8 8. 42 50 KEY XXX NUMBER OF OCCURRENCES 4 4. 21 2S 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 3 3. 16 . 19 2 2. 11 . 12 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 2 2. 11 . 12 4 4. 21 . 25 3 3 16 19 s s. 26 31 23 24.21 1. 42 XXX PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES 3 3. 16 19 1 1. OS 06 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 1 1. 05 . 06 1 1. 05 . 06 1 1. OS 06 0 0. 00 0. 00 0 0. 00 0. 00 1 1. OS 06 8 B. 42 . so 2. 1! . 12 18 18.95 1. 11 4 4. 21 25 1 1. 06 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 s s. 26 . 31 0 0. 00 0. 00 2 2. 11 12 1 1. 05 . 06 0 0. 00 0. 00 0 0. 00 0. 00 11 11 58 . 68 5 5. 26 . 31 29 30.53 1. 79 TOTAL SPEED 13 13 68 80 5 5. 26 31 0 0. 00 0. DO 2. tf . 12 1 1 05 06 1 1. 05 . 06 s 5. 26 . 31 s. 2l 31 6 6. 32 . 37 7 7. 37 . 43 5 s. 26 31 3 3. 16 19 2 2. 11 . 12 6 6.32 . 37 22 23 16 1. 36 12 12.63 74 0 0. 00 0. 00 9S 100.00 s. 88 8 1S , 60 0. 00 2. 9:5 1. 40 2. 00 5. 08 4. 72 11.68 3. 01 7. 24 4. 80 7. 20 6. 25 9. 90 9. 35 CALM 7. JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PER I 00: ALL FEBRUARY COMB I NED STABILtTY CLASS: PASGUILL B DATA SOURCE. ON-SITE WIND SENSOR HEIGHT* 60. 00 METERS TABLE GENERATED: 11/10/81 15. 33. 48. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7699-064 WIND SPEED CATEGORIES<METERS PER SECOND) MEAN SECTOR 0. 0-1. 5 1. 5-3.0 3. 0-5. 0 5. 0-7. 5 7. 5-10.0 :>10. 0 tJNE NE ENE E ESE SE SSE s ssw sw w WNW NW NNW N CAL:1 TOTAL 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 1 1. 09 . 06 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 1 1. 09 06 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 0 0 00 0. 00 2 12 0 0. 00 0. 00 1 1. 09 06 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 1 1. 09 06 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 1 1 09 06 1 1. 09 06 0 0. 00 0 00 1 1. 09 06 0 0. 00 0. 00 0 0 00 0 00 " 5. 43 31 2 2. 17 . 12 2. 1 12 1 1 09 06 0 0. 00 0. 00 0 0. 00 0. 00 1 L 09 06 1 1 09 06 0 0. 00 0 00 2 12 4 4. 3S 25 0 0. 00 0. 00 s 5. 43 31 0 0 00 0. 00 1 1. 09 06 0 0 00 0 00 3 3 26 19 22 23 91 L 36 KEY XXX NUMBER OF OCCURRENCES 0 0. 00 0. 00 0 0. 00 0. 00 1 1. 09 . 06 0 0. 00 0. 00 1 1. 09 06 0 0. 00 0. 00 1 1. 09 . 06 1 1. 09 . 06 0 0 00 0. 00 2 2. 17 12 0 0. 00 0. 00 2 2. 17 12 2. 12 3 3. 26 . 19 1 1. 09 06 3 3 26 . 19 17 18 48 1 05 XXX PERCENT OCCURREf\!CES THIS CLASS XX.< PERCENT OCCURRENCES ALL CLASSES 4 4. 35 . 25 1 1. 09 06 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 4 4. 35 . 2S 3 3. 26 . 19 4 4. 35 25 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 1 1 09 06 7 7. 61 43 8 8. 70 50 32 34 78 1. 98 , :5.43 . 31 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 1 1. 09 . 06 1 1. 09 06 1 1. 09 06 0 0 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 1 1. 09 06 5 S. 43 31 TOTAL SPEED 11 11.96 68 4 4. 35 2S 2 2. 17 . 12 0 0. 00 0. 00 1 1. 09 06 2 2. 17 . 12 3 3. 26 19 5 S. 43 . 31 6 6. 52 . 37 11 11.96 68 2 2. 17 12 9 9. 78 56 2 2. 17 12 6 6. 52 . 37 9 9.78 . 56 19 20.65 1. 18 0 0. 00 0 00 92 100 00 5 69 9. 70 4. 4. 3:5 0. 00 6. 70 3. 60 4. 10 8. 98 7. 70 7. 17 6. 4. 19 6. 40 62 8. 91 8. 62 CALM 7. 31 Rev. 0 JOINT WOLF CREEK TABLE 2.3-32 (Continued) WIND FREQUENCY DISTRIBUTICN BY STJ\.BILITY CLASS (MONTHLY 60 METERS) Pag'-' 6 of JOINT WIND FREGUENt.:t DISTRIBUTION BY STABILITY DATA PERIOD: All FEBRUARY COMD INED STABILITY CLASS* PASGUILL C Q;\1-SI TE W Ir>JO SENSOR HEIGHT* 60 00 Tt.llLE 11 I 10/81 15 33.48 WIND WIND SPEED CATEGORIES<M1:::TERS PER SECTOR 0 0-1. 5 1 5-3 0 J 0-5 0 5 0-7 5 NNE NE ENE E ESE SE SSE s ssw S:.l w NW NNo.l N CALM TOTA:... 0 0 1 1 0. 00 0 00 92 92 0 00 0. 00 06 . 06 0 0 2 0 0 00 0. 00 1 83 0. 00 0. DO 0. 00 12 0. 00 0 0 1 0 0 co 0. 00 92 0. 00 0. 00 0. 00 06 0. 00 0 0 0 0 0. 00 0 00 0. 00 0. 00 0. 00 0 00 0 00 0. 00 0 0 1 0 0. 00 0 00 . 92 0 . 00 0. 00 0. 00 . 06 0. 00 0 0 0 1. 0. 00 0 00 0. 00 0. 00 0. 00 0. 00 12 0 0 0 1 0. 00 0 00 0. 00 92 0. 00 0. 00 0. 00 06 0 0 4 4 0. 00 0. 00 3. 67 3. 67 0. 00 0. 00 25 . 25 0 0 0 2 0. 00 0. 00 0. 00 1. 83 0. 00 0. 00 0 00 . 12 0 0 5 0 0. 00 0. 00 4 59 0 00 0. 00 0. 00 31 0. 00 0 1 3 1 0. 00 92 2. 75 . 92 0. 00 . 06 19 06 0 2 2 5 0. 00 1. 83 1. B3 4. 59 0. 00 12 . 12 31 0 0 0 0 0. 00 0 00 0. 00 0. 00 0. 00 0. 00 0. 00 0 00 0 2 0 6 0. 00 1. 83 0. 00 5. 50 0. 00 . 12 0. 00 . 37 0 0 1 7 0. OJ 0. 00 92 6. 42 0. 00 0. 00 . 06 43 0 0 7 4 0. 00 0. 00 6. 42 3 67 0. 00 0. 00 . 43 25 0 0. 00 0. 00 0 5 27 33 0. 00 4. 59 24. 77 30. 28 0. 00 31 1. 67 2. 04 KEY XX:( NUMBER OF OCCURRENCES XXX PERC EN r OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES CLASS WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAf1ES AND MOORE JOD NO* 7699-064 SECOND> MEAN 7 5-10. 0 >10. 0 TOTAL SPEED 2 1 5 8 44 1. 83 92 4 59 12 . 06 31 2 0 4 6. 62 1. 83 0. 00 3. 67 12 0. 00 . 25 1 1 3 7. 83 . 92 92 2 75 . 06 06 19 0 0 0 0 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0 0 1 3 30 0. 00 0. 00 92 0 00 0. 00 06 0 0 2 5 95 0. 00 0. 00 1. 83 0 00 0. 00 12 0 0 1 5. 50 0. 00 0 00 . 92 0. 00 0. 00 . 06 4 0 12 6 71 3. 67 0. 00 11. 01 25 0 00 74 4 2 8 9 02 3. 67 1. B3 7. :14 25 . 12 . 50 2 2 9 7 34 1. 83 1. 83 B. 26 12 12 56 1 0 6 4. B3 . 92 0. 00 5. 50 . 06 0. 00 37 0 0 9 4. 49 0. 00 0. 00 B. 26 0. 00 0. 00 56 0 1 1 10. 30 0. 00 . 92 92 0. 00 06 06 2 0 10 6. 15 1. 83 0 . 00 9. 17 12 0. 00 62 5 5 18 a. 45 4. 59 4. 59 16. 51 31 . 31 1. 11 5 4 20 7. 42 4. 59 3. 67 18. 35 31 . 25 1. 24 0 CALM 0. 00 0 00 28 16 109 7. 10 25. 69 14. 68 100.00 1. 73 . 99 6. 75 WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD: ALL FEBRUARY CDr1BINED STABILITY CLASS: PASOUILL D DATA SOURCE: WINO SENSOR HEIGHT: 60. 00 METEJ=!S TABLE GENERATED. 11/10/81. 15.2::1.48. WIND WINO SPEED CATEGORIESCMETERS PER SECTOR 0. 0-1. 5 1. 5-3. 0 3. 0-5. 0 5. 0-7. 5 NNE NE ENE E ESE SE SSE s ssw sw w WNW NW NNW N CALM TOTAL 0 6 10 20 0. 00 . 89 1. 48 2. 96 0. 00 . 37 62 1. 24 0 9 1'7 18 0. 00 1. 33 2. 81 2 67 0. 00 . 56 1. 18 1. 11 0 3 10 13 0. 00 44 1. 48 1. 93 0. 00 . 19 62 80 0 2 7 13 0. 00 30 1. 04 1. 93 0. 00 12 . 43 . 80 0 0 8 !8 0. co 0. 00 1. 19 2. 67 0. 00 0. 00 . 50 1. 11 0 5 8 11 0. 00 . 74 1. 19 1. 63 0. 00 31 . 50 . 68 0 2 5 7 0. 00 30 74 1. 04 0. 00 . 12 31 43 1 0 8 23 15 0. 00 1. 19 3. 41 . 06 0. 00 . 50 1. 42 0 1 2 4 0. 00 15 . 30 . 59 0. 00 06 12 25 0 0 2 6 0. 00 0 00 30 . 89 0. 00 0. 00 12 37 1 1 2 4 15 . 15 30 59 06 06 12 25 2 0 6 2 30 0 00 89 . 30 . 12 0 00 37 12 0 7 4 3 0. 00 1. 04 59 . 44 0. 00 . 43 25 19 0 2 8 1 0. 00 . 30 1 19 . 15 0 00 12 50 . 06 0 6 12 !9 0 00 89 1 78 2. 81 0. 00 . 37 74 I 18 0 3 19 41 0. 00 44 2 81 6 07 0. 00 19 1 18 2 54 0 0. 00 0. 00 4 47 130 203 59 6 96 19 26 30 07 25 2 91 8 04 12 56 KEY XXX NUMBER OF OCCURRENCES . .<XX PERCENT OCCURRENCES THIS CLASS XX.< PERCENf OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTIH C DAF1ES AND MOORE IIJO: 7 699-064 SECOND) MEAN 7. 5-10. 0 )-10. 0 TOTAL SPEED 5 7 48 6. 54 . 74 1. 04 7 . 11 . 31 43 2. 97 II 7 64 90 1. 63 1. 04 9. 48 68 . 43 3. 96 10 3 39 6. 49 1. 4B 44 5 78 62 . 19 2 . 41 3 0 25 62 44 o. 00 3. 70 . 19 o. 00 1. 55 4 0 30 " 81 . 59 0. 00 4 44 . 25 0 . 00 1. 86 0 0 24 4. 68 0. 00 0. 00 3 56 0 00 o. 00 1. 49 5 0 19 90 74 0. 00 2. 81 31 0 00 1. 18 22 7 61 7. 37 3 26 1. 04 9. 04 1. 36 43 3 . 77 12 7 26 8 70 1. 78 1. 04 3. 85 74 . 43 1. 61 2 5 15 8. 41 30 74 2. 22 . 12 31 93 1 7 16 7. 90 15 1. 04 2 37 06 43 . 99 1 3 14 94 15 . 44 2. 07 06 . 19 87 6 1 21 5 32 . 89 15 3 1! 37 06 1 . 30 11 18 40 9. 47 1. 63 2 67 5 9:J 68 1. II 2. 48 13 4.;;! 92 9 31 1. 93 6 22 !3 63 80 2. 60 5 69 26 52 141 8 91 3 85 7. 70 89 1. 61 3. 22 B. 7:1 0 CALM 0 00 0 00 132 !59 675 7. 19. 23 56 100 00 8 17 9 84 .:;t 77 Rev. 0 48 WOLF CRI<;EK TABLE 2. 3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION EY STABILITY CLASS (MONTHLY 60 METERS) Page 7 of 48 JO!NT WIND FREQUENCY OISTRIBUTION [IY StABlLI1Y CLASS DATA PERIOD* ALL FEBRUARY COI1!3IN£n WIND WINO CATEGORlES(ME:TERS PER SECTOR 0 0-1. 5 0 3 0-5. 0 S. 0-7. S NNE: 0 1 4 9 0. 00 33 1 32 296 0. 00 06 2' 56 1 5 2 2 33 1. 64 66 . 66 04 31 . 12 . 12 ENE 0 1 ,, 5 o. 00 33 1. 64 L 64 0. oo . 06 31 31 E 0 0 0 11 0. 00 0 00 0 00 3. 62 o. 00 0 00 0 0£ 6S 0 0 . 66 4 0. 00 0 00 1. 32 0. 00 0. oo . i;;;: "5 se: 0 0 2 2 0. 00 0. 00 66 . 66 0. 00 0 oo 12 . 12 SSE 0 1 4 13 0. 00 33 1. 32 4. 28 0. 00 . 06 . 25 . 80 s 1 1 3 10 33 . 33 99 3. 29 . 06 . . 19 . 62 ssw 0 3 6 0. 00 . 33 99 1. 97 o. 0{} .06 . 19 . 37 sw 0 1 5 8 0. 00 . 33 L 64 2. 63 0. OD . 31 . 50 WSW 0 2 10 0. 00 0 00 . 66 3. 29 0. 00 0. 00 12 62 w 0 1 2 2 0. 00 . 33 66 . 66 0. 00 06 12 '12 Wtl',., 0 3 6 4 Q, 00 . 99 1. 97 1. 32 0. 00 . 19 . 37 25 NW 1 0 6 4 . 33 0. 00 1. 97 l. 32 .06 o og . 37 . 25 NN¥1 0 7 7 o. 00 0. 00 2 30 2. 30 0. 00 0. oo 43 43 N 1 0 4 18 . 33 0 oo 32 5. 92 . 06 0 00 . 25 1.11 CALM 1 . 33 . 06 TOTAL 5 !5 57 I. 64 4. 93 18 75 . 31 .93 3 53 JI.EY XlC.( NVM3ER OF OCCURRENCES xx:< PERCENT OCCURRENCES Tli!S CLASS XXX PERCENf OCCURRENCES CLASSES WOLF CREEK GENERATING STATION BURLINGTON, t'ANSAS 1-\ANSAS GAS AND ELE C TR I C DAI1ES AND MOORE. JOB NO* 7 69'9-064 SECDNO> MEAN 7 5-10.0 >10. 0 TOTAL SPEED 0 1 5 60 0. 00 . 33 4 0. 00 . 06 1 0 3. 90 . 33 0_ 00 3. . 06 0. 00 0 0 4. 0. 00 0. 00 3 . 0. 00 0. 00 4 0 6 ,, 1 32 0. 00 . 25 0. 00 3 0 o. bl 99 0. 00 19 0. 00 0 0 5. 20 0. 00 0. 00 0. 00 0. 00 8 2 6. 91 2. 63 . 66 . 50 . 12 28 13 8. 35 9. 21 4. 28 I. 73 . 80 5 I b. 49 1. 64 33 . 31 Ob 7 0 6 35 2. 30 () 00 . 43 0. 00 4 0 b 51 1 32 0. 00 25 0. 00 6 0 7. 00 1. 97 0. 00 . 37 0. 00 3 0 , 01 . 99 0. 00 . 19 0. 00 2 1 5. 58 . 66 . 33 '12 . 06 7 2 6. 99 2. 30 . 66 . 43 . 12 3 11 7. 86 99 3. 62 19 68 CALM 8! 31 6. 73 26.64 10.20 5. 01 L 92 JOINT WINO FREQUC:NCY OISTRIB!JiiON BY STABILITY CLASS DATA PERIOD ALL FEBRUARY COMBINED STABILITY CL.ASS: PASGUlLL F WOLF' CREE:K GENERATING STATION DATA SOURCE: ON-SITE BURLINGTON, KANSAS WINO SENSOR HEIGHT* 60. 00 METERS KANSAS GAS AND ELECiR I C TABLE GENeRATED 11/10/SL 15. 33. 48. DAMES AND MOORE JOG NO; 7699-064 WIND i-JINO SPEED CATEGORIEStMETERS PER SECON:O) MEAN SECTOR 0. 0-L 5 1. S-3. 0 3. 0-5.0 5. 0-7. 5 7. 5-10.0 )10. 0 TOTAL SPEE'D NNE 0 0 9 1 0 0 10 4. 47 0. 00 0. 00 4 '" . 46 0. 00 Q_ 00 4 61 0. 00 0. oo 5b 06 0. 00 0. 00 62 NE 0 1 1 I 0 0 3 3. 83 o. 00 . 41> .46 . 46 0. 00 0. 00 1. 38 0. 00 06 . 06 . 06 0. 00 0. 00 .19 ENE 0 1 0 1 0 0 2 4. 70 0. 00 46 0. 00 . 46 0. 00 0. 00 . 92 0. 00 . 06 0. 00 . 06 0. 00 o. 00 . 12 E 1 0 3 5 7 0 16 6. 75 . 46 0 . oo 1. 38 2. 30 3. 23 0. 00 7. 37 06 0. 00 . 19 . :n . 43 0. 00 99 ESE 0 1 0 1 1 0 3 5. 87 0. 00 . 46> 0, 00 . 46 . 4b 0, 00 1 38 0. 00 . 06 0. 00 . 06 . 06 o. 00 19 SE 1 1 5 3 1 2 13 47 46 . 46 2'. 30 1. 39 .46 . 92 5. 9'9 oo . Ob 31 . 19 . 06 . 12 80 SSE 1 0 0 1 5 3 10 e 54 0. 00 0 00 . 46 2. 30 1.38 4. 61 . 06 0. 00 0. 00 . 06 . 31 .19 . 62 s 0 1 2 2 8 6 !9 8. 22 0. co 46 . <jl2 92 3. 69 2. 76 8. 76 0. 00 06 . 12 . 12 50 37 1. 18 ssw 0 1 2 17 12 3 35 7, 34 0. 00 . 46 . 92 7. 83 5. 5J 1. 39 16 13 0. 00 Db 12 t. 05 . 74 . 19 2. 17 sw 0 1 4 !4 11 0 30 b. 78 0. 00 46 1. 84 6. 45 5. 07 0. 00 13. 82 0. Q\) . 06 25 . 8'7 . 69 0, 00 1. 86 WSW 1 0 1 11 1 0 14 98 46 0. oo . 46 :5.07 . 46 0 00 6. 45 . 06 0. 00 .06 . 6S 06 0. 00 . 07 w 0 1 2 13 1 0 17 b. 09 0. 00 46 . 92 5. 99 46 0. 00 7. 83 0. 00 . 06 12 80 06 0.00 1 05 0 1 3 10 3 0 17 6 20 o. 00 . 46 I. 39 4. 61 1.38 0. 00 7 83 0. 00 . 06 . 19 . 62 19 0. 00 1 05 Nw 0 0 1 3 2 0 6 6. 88 0. 00 0 00 46 L 38 . 92 0. 00 2 76 0. 00 0. 00 . 06 . 19 . 12 0. 00 37 NNW 0 0 2 3 0 7 6 59 0. 00 0 00 . 92 1. 38 0. 00 3 2J 0. 00 0. oo 12 . 12 19 0. 00 43 N 0 1 5 4 3 1 14 6 45 o. co 46 2. 30 1 84 1. 3'8 . 46 6 45 0. 00 . 06 31 20 . 19 . 06 87 CAlM 1 1 CALM . 4b 46 Ob 06 TOTAL 5 !0 40 89 sa 15 217 t:L 61 2. 30 4. 61 18 43 41 01 73 6 9! 100 00 . 3! . 62 2 48 0 . 51 59 93 13_ 43 V..E'f' XXX NUMGER OF OCCURRENCES XXX PERCENT OCCURRENCES THIS CLASS .ox PERCENT OCCURRENCES ALL CLASSES Rev. 0 WOLF CREEK TABLE 2. 3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY CLASS (MONTHLY 60 METERS) Page 8 of 48 JOINT FREQUENCY DISTRIBUTION gv STABILITY CLASS DAfA PERIOD: ALL FEBRUARY COMBINED STAl?ILITY CLAE'S_ PASGVILL G DATA SOURCE: ON-SITE SENSOR HEIGHT 60 00 METERS TABLE GENI::.RATED: 11/10/81 1:> 33. 48. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JO;] NO: 7699-064 WIND SPEED CATEGORIEStMC:TERS PER SECOND) SECTOR 0 0-1. 5 1. S-3 0 3 0-5.0 0-7. 5 7 5-10.0 >10. 0 MEAN NNE NE ENE E ESE SE SSE: s ssw sw NNW N CALM TOTAL 0 0. 00 0. 00 0 0 00 o. og 0 00 0 00 0 0 00 0. 00 0 0 00 0. 00 1 81 . 06 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 1 . 81 06 0 0. 00 0. co 2 1. 61 . 12 0 0 00 0. 00 1 81 06 0 0.00 0. 00 0 0. 00 0 00 1 81 . 06 0 0. 00 0. 00 0 0 00 0. 00 1 81 06 0 0. 00 0. 00 1. 67 . 12 0 0. 00 0. 00 0 0. 00 0. 00 1 81 . 06 0 0. 00 0. 00 1 . 81 . 06 0 0. 00 0. 00 7 5. 65 43 1 81 06 0 0. 00 0 DO 1 81 06 1 81 06 0 0. 00 0 DO 1 81 . 06 3 2. 42 19 1 81 06 4 3. 23 . 25 3 2. 42 . 19 3 2. 42 . 19 6 4. 84 . 37 4 3. 23 25 3 2. 42 . 19 3 2. 42 19 1 . 81 . 06 35 28.23 2. 17 KEY XXX NUMBER OF OCCURRENCES 2 1. 61 . 12 1. 6! 12 1 81 . 06 0 0. 00 0 00 1. 6f . 12 0 0. 00 0. 00 1 81 06 5 4. 03 . 31 4 3. 23 25 1. 6t 12 3 2. 42 . 19 6 4. 84 . 37 4 3. 23 . 25 5 4. 03 . 31 3 2. 42 19 1. 6t . 12 42 33,87 2. 60 XXX PERCENf OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 3 2. 42 . 19 1 . 81 06 5 4. 03 31 3 2. 42 . 19 4 3. 23 25 3 2. 42 19 0 0. 00 0. 00 4 3. 23 . 25 4 3. 23 . 25 1 81 . 06 0 0 00 0. 00 28 22. 58 1. 73 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 1. 6f 12 2 1.61 . 12 3 2. 42 . 19 1 81 06 1. 6! 12 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 10 B. 06 62 TOTAL SPEED 3 2. 42 19 3 2. 42 . 19 2 1. 61 12 1 81 06 3 2 42 19 7 5 65 . 43 7 5 65 43 15 12 10 93 12 9.68 74 13 10.48 80 9 7. 26 56 12 9. 68 . 74 13 10 48 . 80 12 9. 68 74 8 6. 45 . 50 4 3. 23 . 25 0 0. 00 0. 00 124 100.00 7. 67 5 83 4 77 4 7, 4. so 5. 87 7. 97 6. 80 7. 85 6. 51 6. 95 6. 14 5. 29 5. 78 6. 25 5. 47 4. 27 CALM 6. 31 .JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD: ALL FEBRUARY C0t1I3INED ALL CLASSES DATA SOURCE: ON-SITE WINO SENSOR HEIGHT: 60. 00 METERS TABLE GENERATED: 11/10/81. 15. 33. 48. WOLF CREEK GENERATJNG STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOII NO: 7699-064 WIND SECTOH WINO SPEED CATEGORIES<METERS PER SECOND) MEAN 0. 0-1. 5 1. S-3. 0 3 0-5.0 5. 0-7. 5 7. 5-10.0 >10. o NNE" NE ENE E ESE SE SSE s ssw sw IJSW NW NNW N CAU1 TOTAL 0 0. 00 1 . 06 0 0. 00 I . 06 1 . 06 2 . 12 2 . 12 2 12 0 0. 00 0 0. 00 2 . 12 4 25 0 0. 00 1 . 06 0 0. 00 2 12 2 . 12 20 1. 24 8 . 50 19 1. 18 5 . 31 3 19 2 . 12 8 . 50 4 25 4 . 25 3 . 19 10 62 5 31 5 31 12 74 5 . 31 7 . 43 4 25 104 6. 44 28 1. 73 27 1. 67 18 1.11 12 . 74 11 . 68 17 1. 05 14 . 87 20 1. 24 13 . 80 23 1. 42 11 . 68 24 1. 49 17 1. 0:) 20 1. 24 25 1. 55 39 2. 41 319 19. 74 NUMBEI-( O'F" VALID OBSERVATIONS 1616 N'.JM:3Ef.< OF IN'JALID OBSERVATIONS 424 TOTAL rJJ:"1BER OF OBSERVATIONS 2040 KEY XXX NL:;'1£3ER OF OCCURRENCES XXX PERCENr OCCURRENCES 37 2. 29 23 1. 42 21 1. 30 29 1. 79 26 1. 61 18 1.11 27 1. 67 47 2. 91 33 2. 04 32 1. 98 29 1. 79 30 1. 86 25 1. 55 26 1. 61 42 2. 60 77 4. 76 522 32.30 79. 22 PCT 20. 78 PCT 100. 00 PCT 14 . 87 16 . 99 11 . 68 14 87 8 . 50 4 25 19 1. 18 71 4. 39 40 2. 48 31 1. 92 11 . 68 8 so 16 99 23 1 42 44 2. 72 47 2. 91 377 23.33 18 1.11 8 . 50 4 25 0 0. 00 0 0. 00 4 . 25 7 . 43 29 1. 79 20 1. 24 10 62 10 62 4 25 2 . 12 19 1 18 61 3. 77 78 4. 83 274 16.96 TOTAL SPEED 105 6. 50 94 5. 82 59 3. 65 59 3. 65 48 2. 97 53 3. 28 73 4. 52 173 10.71 109 6. 75 106 6. 56 68 4. 21 75 4. 64 72 4. 46 94 5 82 179 11.08 247 15 28 2 12 1616 100 00 6. 81 5. 53 6. 00 6. 05 5. 84 5. 31 6. 60 7. 75 7. 83 6. 79 6. 60 5. 60 5 69 7 51 8. 70 8 42 CALM 7. 13 Rev. 0 WOLF CREEK TABLE 2. 3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION EY STl\BILITY CLASS (MONTHLY 60 METERS) Page 9 of 48 JOINT l.J I FREGUt:rJCY DISTRIOVTIDr.: 13Y STABILITY CLASS DAfA PERIOD* ALL t1ARCH COMBINED ST.t.I31LITY CLASS* PASOUILL A WOLF CREEK GENERATING STATION Qt,TA SOU"CE: 0,\1-51 TE BURLINGTON, KANSAS SEtJSOR HEIGHT 60 00 METERS KANSAS GAS AND ELECTRIC TA8LE GENERATED 11/10/81 15. 47 44. DAMES AND MOORE JOJ NO 7699-064 WIND WINO SPEED CATEGORIES I. METERS PER SECOND) MEAN SECTOR 0. 0-1 5 1. 5-3. 0 3 0*-5. () 5 0-7 5 7. :S-10 0 >to o TOTAL SPEED Nr..!E 0 1 0 1! 0 0 12 5. 60 0 00 46 0 00 :1.09 0. 00 0. 00 :1. 56 0. co 06 0 00 68 0 00 0. 00 74 NE 0 0 3 0 0 0 3 3. 70 0. 00 0 00 1 39 0. 00 0. 00 0 00 1. 39 0. co 0 00 19 0. 00 0. 00 0 00 . 19 ErJE 0 0 0 0 0 0 0 0. 00 0. 00 0 00 0. 00 0. 00 0. 00 0. 00 0 00 0. 00 0 00 0. 00 0. 00 0 00 0. 00 0. 00 0 0 0 0 1 0 1 9. 30 0. 00 0. 00 0. 00 0. 00 46 0. 00 . 46 0. 00 0. 00 0. 00 0. 00 . 06 0. 00 06 ESE:. 0 1 0 0 0 0 1 1 70 0. co 46 0. 00 0. 00 0. 00 0 00 . 46 0 00 06 0. 00 0. 00 0. 00 0. 00 . 06 SE 0 0 1 6 1 2 10 7. 42 0. OD 0 00 46 2. 78 . 46 . 93 4.63 0. 0::> 0. 00 06 . 37 06 . 12 62 SSE 0 1 0 8 10 6 25 8. 91 0. 00 46 0. 00 3. 70 4 63 2. 78 1!. 57 0. 00 06 0. 00 . 50 62 37 1. 55 s 0 0 0 9 10 6 25 8. 51 0. 00 0 00 0. 00 4. 17 4 63 2. 78 11. 57 0. O'J 0. 00 0. 00 . 56 62 . 37 1. 55 SSL-.1 1 0 3 7 6 17 34 9. 44 46 0 00 1. 39 3. 24 2 78 7 87 15. 74 . 06 0. 00 19 . 43 . 37 1. 05 2 11 sw 1 1 2 0 2 4 10 7. 73 46 46 93 0. 00 93 1. 85 4 63 . 06 06 12 0. 00 . 12 . 2:5 62 WSI-.! 0 1 2 0 1 3 7 9. 20 0. 00 . 46 . 93 0 . 00 46 1. 39 3 24 0. 00 06 12 0. 00 . 06 19 43 w 0 1 1 4 2 1 9 7. 42 0. 00 . 46 . 46 1. 85 . 93 . 46 4. 17 0. 00 06 06 . 25 12 06 56 0 0 1 1 2 8 12 13. 97 0. 00 0. 00 . 46 46 . 93 3. 70 5 56 0. 00 0. 00 . 06 . 06 12 50 74 NW 1 0 6 4 6 10 27 9 22 . 46 0. 00 2. 78 1. 85 2. 78 4. 63 12 50 . 06 0 00 . 37 . 25 37 62 1. 67 NNW 0 0 0 3 9 9 21 9. 53 0. 00 0. 00 0. 00 1. 39 4. 17 4 17 9. 72 0 00 0. 00 0. 00 . 19 . 56 56 1 30 N 0 0 1 7 5 6 19 8. 41 0. 00 0 00 46 3. 24 2. 31 2. 78 B. 80 0. 00 0 00 06 . 43 31 . 37 1. 18 CALM 0 0 CALM 0. co 0 00 0. 00 0. 00 TOTAL 3 6 20 60 55 72 216 B. 82 1. 39 2. 78 9 26 27. 78 25. 46 33. 33 100.00 19 . 37 1 24 3. 72 3. 41 4. 46 13.37 KEY XX< NUMBER OF OCCURRENCES XXX PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD: ALL MARCH COMB I NED STASILIT"t' CLASS: PASQUILL B WOLF CREEK GENERATING STATION OAT A SOURCE: ON-SITE BURLINGTON, KANSAS WINO SENSOR HEIGHT: 60.00 METERS KANSAS GAS AND ELECTRIC TABLE GENERATED: 11/10/81. 15. 47. 44. DAMES AND MOORE JOB NO 7699-064 WIND WINO SPEED CATEGORIES *:METERS PER SECOND> MEAN SECTOR 0. 0-1. 5 1. 5-3. 0 3. 0-5. () 5. 0-7. 5 7. 5-10. 0 )-10. 0 TOTAL SPEED 1 2 2 4 0 0 9 4. 42 1. 04 2. 08 2. 08 4. 17 0. 00 0. 00 9.37 . 06 . 12 12 . 25 0. 00 0. 00 . 56 2 2 2. 0 0 0 6 2. 37 2. 03 2. 08 0. 00 0. 00 0. 00 6. 25 12 . 12 12 0. 00 0. 00 0 00 . 37 EN F. 0 4 0 1 0 0 5 3. 36 0. 00 4. 17 0. 00 1. 04 0. 00 0. 00 5. 21 0. 00 25 0. 00 . 06 0 . 00 0. 00 . 31 E 0 1 0 0 0 0 1 1. 60 0. 00 1. 04 0. 00 0. 00 0. 00 0. 00 1. 04 0. 00 06 0. 00 0. 00 0. 00 0. 00 06 ESE 0 0 0 0 0 4 4 12. 77 0. 00 0. 00 0 00 0. 00 0. 00 4. 17 4. 17 0. 00 0. 00 0 00 0. 00 0. 00 . 25 25 SE 0 0 4 0 0 0 4 4. 60 0. 00 0 00 4. 17 0. 00 0. 00 0. 00 4. 17 0. 00 0 00 . 25 0. 00 0. 00 0. 00 . 25 SSE 0 0 2 2 1 0 5 6. 12 0. 00 0. 00 2. 08 2. 08 1. 04 0. 00 5. 21 0. 00 0 00 12 . 12 . 06 0. 00 . 31 s 0 0 0 0 0 3 3 13 87 0. 00 0. 00 0. 00 0. 00 0. 00 3. 12 3. 12 0. 00 0 00 0. 00 0. 00 0. 00 19 . 19 ssw 0 0 6 1 5 4 16 7. 63 0. 00 0. 00 6. 25 1. 04 5. 21 4 17 16. 67 0 00 0. 00 37 . 06 31 . 25 99 sw 0 0 1 2 1 2. 6 7. 12 0. 00 0. 00 1. 04 2. 08 1. 04 6. 25 0. 00 0 00 . 06 12 06 12 . 37 WS:-1 0 0 1 1 2 2 6 8. 25 0. co 0. 00 1. 04 1. 04 2. 08 2. 08 6. 25 0 00 0 00 06 . 06 . 12 12 37 0 0 0 0 0 2. 2. 12. 35 0 00 0 00 0. 00 0. 00 0. 00 0. 00 0 00 0. 00 0. 00 0. 00 12 12 WNW 0 0 1 0 0 0 1 4 *o 0. 00 0. 00 1. 04 0. 00 0. 00 0. 00 1. 04 0. 00 0. 00 06 0. 00 0. 00 0. 00 . 06 Nw 0 1 2 t 1 2. 7 8 69 0. co 1. 04 2. 08 1. 04 1. 04 7. 29 0. 0::) 06 . 12 06 06 12 43 0 0 0 3 4 3 10 9 17 0. co 0. 00 0. 00 3. 12 4. 17 3. 12 10. 42 0. co 0 00 0 00 . 19 2" 19 62 N 1 0 0 5 2 3 11 7. 39 1. 04 0 00 0 00 5. 21 2 08 3. 12 11 46 06 0. 00 0. 00 . 31 12 19 68 CALM 0 0 CALM 0 00 0. 00 0. 00 0 00 TOTAL 4 10 21 20 16 25 96 7 20 4 17 10. 42 21. 87 20. 83 16. 67 26.04 100 00 25 62 1 30 1 24 99 1. 55 , 94 KEY <X< NUMBER OF OCCURRENCES Rev. 0 XXX PERC EN r OCCURRENCES THIS CLASS I. X/. PERC EN f OCCURRENCES ALL CLASSES JOINT WOLF' CREEK TABLE 2.3-32 (Continued) WIND FREQUENCY DISTRIBUTION BY S'l'ABILITY CLASS (MONTHLY 60 METERS) Page 10 of JOINT FREOVCNCY DISTRIBUTION BY STABILITY DATA PERIOD ALL f"ARCH COMBINED STt.BILIT'r' CLASS PASOUILL C DATA SOURCE SEf\:SOR HEICHT: 60 00 METERS TABLE GErJERATED: 11 I 10/81. 15.47 44 WIND WINO SPEED CATEGORIES<METERS PER SECTOR 0 0-1. 5 1. 5-3. 0 :J 0-5. 0 5 0-7. 5 NNE NE ENE ESE SE SSE s ssw sw WSW w WNW NW NNW N CAl. M TOTAL 1 0 1 5 93 0. 00 93 4. 63 06 0. 00 06 31 1 3 1 0 93 2 78 . 93 0. 00 06 19 06 0. 00 1 1 2 0 93 . 93 1 85 0. 00 06 06 12 0. 00 0 0 0 0 0 00 0 00 0. 00 0. 00 0. co 0. 00 0 00 0 00 0 2 I 0 0 00 1. 85 93 0 00 0. co 12 . 06 0. 00 0 1 2 1 0 00 93 1. 85 . 93 0. 03 06 . 12 06 0 0 1 3 0. 03 0. 00 . 93 2. 78 0 00 0 00 . 06 . 19 0 0 1 3 0. 00 0. 00 . 93 2. 78 0. 00 0. 00 . 06 . 19 0 0 1 3 0. 00 0. 00 93 2. 78 0. 00 0 00 06 . 19 0 2 1 2 0. 00 1. 85 . 93 1. 85 0. co 12 . 06 12 0 1 0 1 0. 00 . 93 0. 00 . 93 0. 00 . 06 0. 00 . 06 0 0 0 0 0. co 0. 00 0. 00 0. DO 0. 00 0. 00 0. 00 0. 00 0 0 0 1 0. 00 0. 00 0. 00 . 93 0. 00 0. 00 0. 00 . 06 0 0 1 1 0. 00 0. 00 . 93 93 0. 00 0. 00 . 06 06 0 0 1 3 0. 00 0 00 93 2. 78 0. 00 0. 00 . 06 19 1 0 3 8 93 0. 00 2. 78 7. 41 06 0 00 . 19 . so 0 0. 00 0. 00 4 10 16 31 3. 70 9. 26 14. 81 28. 70 25 62 99 1. 92 KEY XXX NUMBER OF OCCURRENCES XXX PERCENf OCCURRENCES TI-llS CLASS XX:< PERCENT OCCURRENCES ALL CLASSES CLASS WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JCB NO: 7699-064 SECOND> MEAN 7. 5-10. 0 >to_ o TOTAL SPEED 2 5 14 B. 53 1. 85 4 63 12. 96 12 31 87 0 0 5 2. 60 0. 00 0. 00 4. 63 0 00 0 00 31 0 0 4 2. 80 0 00 0 00 3. 70 0. 00 0. 00 . 25 0 1 1 14. 80 0 00 93 93 0 00 . 06 06 0 1 4 5. 22 0 00 93 3 70 0. 00 06 . 25 0 0 4 3. 67 0. 00 0 00 3. 70 0. 00 0 . 00 . 25 2 1 7 7. 63 l. 85 . 93 6, 48 12 . 06 43 3 3 10 8. 34 2. 78 2. 78 9. 26 . 19 19 62 2 3 9 B. 47 1. 85 2 78 8. 33 12 . 19 . 56 0 0 5 4. 12 0. 00 0. 00 4. 63 0. 00 0. 00 . 31 0 0 2 4. 30 0. 00 0. 00 1. 85 0. 00 0. 00 . 12 0 0 0 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 1 1 3 10. 27 93 93 2. 78 . 06 . 06 19 1 3 6 9. 55 . 93 2. 78 5. 56 . 06 19 37 9 3 16 8. 67 8. 33 2. 78 14 81 56 19 . 99 1 5 18 7. 31 93 4. 63 16 67 . 06 31 1 11 0 CALM 0 00 0. 00 21 26 lOB 7. 36 19. 44 24 07 100 00 1. 30 1 61 6 69 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD: ALL MARCH COMBINED STABILITY CLASS: PASGUILL D DATA SOURCE. ON-SITE WINO SENSOR HEICHT: 60. 00 METERS TABLE GENERATED: 11/10/81. 15. 47. 44. WIND WINO SPEED CATEGORIES CMETERS PER SECTOR 0. 0-1. 5 1. 5-3.0 3 0-5.0 5. 0-7. 5 NtJE 0 1 7 27 0. 00 . 16 1. 15 4. 44 0. 00 . 06 . 43 1. 67 NE 0 1 9 4 0. 00 . 16 1. 48 . 66 0. 00 06 . 56 . 25 ENE. 0 3 16 4 0. 00 . 49 2. 63 66 0. co . 19 . 99 . 25 E 2 6 10 5 . 33 . 99 1. 64 . 82 . 12 . 37 62 . 31 ESE 0 4 6 19 0. 00 . 66 . 99 3. 12 0. co . 25 . 37 1. 18 SE 1 3 3 17 16 . 49 . 49 2. 80 06 19 . 19 1. 05 SSE 0 2 4 6 0. OQ 33 . 66 . 99 0. 00 12 . 25 . 37 s 0 1 8 14 0. CQ 16 1. 32 2. 30 0. DO . 06 . 50 . 87 ssw 1 3 8 B 16 49 1. 32 1. 32 06 19 . 50 . 50 sw 0 2 1 2 0. 00 33 16 . 33 0. 00 12 06 . 12 WSW 1 4 3 3 . 16 66 49 49 . 06 25 19 19 w 3 2 3 1 49 33 49 . 16 19 12 . 19 . 06 WNri 0 0 1 2 0. 00 0 00 . 16 33 0. 00 0. 00 06 . 12 NW 0 1 3 7 0 00 16 49 1. 15 0. co 06 . 19 43 NNW 0 1 2 14 0 co 16 . 33 2. 30 0 co 06 12 87 N 1 0 6 16 16 0 00 . 99 2. 63 06 0. 00 . 37 99 CALM 0 0. 00 0 co TOTAL 9 34 90 149 1. 48 5 59 14 80 24. 51 56 2 11 5. 57 9 23 KEY XXX NUi'1BER OF OCCURRENCES XXX PERCENf OCCURRENCES THIS CLASS XXX PERCENf OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE .JOB NO* 7699-064 SECOND> MEAN 7. 5-10. 0 >10. 0 TOTAL SPEED 25 20 80 8 18 4. 11 3. 29 13. 16 1. 55 1. 24 4. 95 6 1 21 6. 25 . 99 . 16 3. 45 . 37 . 06 1. 30 3 5 31 86 . 49 . 82 5. 10 19 . 31 1. 92 7 8 38 6 59 1. 15 1. 32 6. 25 . 43 . so 2 . 35 3 12 44 7. 46 49 1. 97 7 . 24 . 19 . 74 2 . 72 7 10 41 7. 73 1. 15 1. 64 6 . 74 . 43 . 62 2. 54 2 3 17 6. 86 . 33 . 49 2. 80 . 12 19 1. 05 20 28 71 9. 28 3. 29 4. 61 11. 68 1. 24 1. 73 4 . 40 11 12 43 7. 90 1. 81 1. 97 7 07 68 . 74 2 66 3 8 16 9 49 . 49 1. 32 2. 63 . 19 50 99 4 0 15 5. 12 66 0. 00 2. 47 25 0. 00 93 3 5 17 7. 56 49 82 2 80 19 . 31 1. 05 4 9 16 11 07 66 1. 48 2 63 . 25 . 56 . 99 12 16 39 B. 91 1. 97 2. 63 6 41 74 . 99 2 . 41 24 26 67 9 69 3 95 4. 28 11 02 1 49 1. 61 4 " 16 13 52 8. 08 2. 63 2. 14 8 55 99 80 3 . 22 0 CALM 0. 00 0. 00 150 176 608 8. 12 24. 67 28 95 100.00 9 29 10 90 37 65 Rev. 48 0 JOINT WOLF CREEK TABLE 2.3-32 (Continued) WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 11 of JOINT WIND FREOUEtJCY DISTRIBUTION BY STABILITY DATA PERIOD ALL MARCH COMBINED STAOILITV CLASS* PASOUILL E DATA SOURCE. ON-SITE tn :Jo SENSOR HEIGHT 60 00 METERS T.;ULE GENERATED 11/10/81. 1'5 47 44 WIND WINO SPEED CATEGORIES<METERS PER SECTOR 0 0-1. :> 1. 5-3. 0 3 0-5. 0 0-7 , t*u::: rJE ENE E ESE SE SSE s ssw sw WSt-.1 w WNW NW Nl\:W N CALM TOTAL 0 0 2 4 0. 00 0. 00 . 57 1. 14 0. 00 0. 00 12 25 0 1 4 0 0 co 29 1. 14 0. 00 0 00 06 25 0 00 0 2 0 0 0. 00 57 0 00 0 00 0. co 12 0 00 0 00 0 2 5 6 0. 00 57 1. 43 1. 71 0. C:J 12 . 31 37 0 4 4 4 0. 00 1. 14 1. 14 1. 14 0. 00 25 25 25 1 5 4 10 29 1. 43 1. 14 2. 86 06 31 . 25 62 0 3 13 8 0. 00 86 3. 71 2 29 0. 00 19 . 80 . 50 0 0 2 11 0. 00 0 00 . 57 3. 14 0. 00 0 00 . 12 68 0 0 2 5 0. 00 0. 00 . 57 1. 43 0. 00 0. 00 12 . 31 0 0 2 2 0. 00 0. 00 . 57 . 57 0. 00 0. 00 . 12 . 12 0 0 3 5 0. 00 0. 00 86 1. 43 0. 00 0 00 . 19 . 31 1 1 1 1 29 29 . 29 . 29 . 06 06 . 06 . 06 0 1 0 6 0. 00 . 29 0. 00 1. 71 0. 00 06 0. 00 37 0 0 . 8 0. 00 0. 00 2. 29 0. 00 0. 00 . 12 . 50 0 1 4 4 0. 00 . 29 1. 14 1. 14 0. co 06 . 25 . 25 0 0 3 14 0. co 0. 00 86 4. 00 0. 00 0 00 . 19 . 87 0 0. 00 0. 00 2 20 51 88 57 5. 71 14. 57 25. 14 . 12 1. 24 3. 16 5. 45 KEY XXX NUMBER OF OCCURRENCES XX:< PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES CLASS WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO 7699-064 SECOND> MEAN 7. 5-10. 0 >HI. 0 TOTAL SPEED 4 1 11 6. 87 1. 14 29 3. 14 25 . 06 68 0 0 , 3 26 0. 00 0. 00 1 43 0 00 0 00 31 1 0 3 4 50 29 0. 00 86 . 06 0 . 00 19 3 18 6. 32 86 14 19 12 11 1 2 15 27 29 57 4 29 06 . 12 93 10 3 6. 70 2. 86 . 86 9. 43 . 62 . 19 2. 04 6 5 35 6. 48 1. 71 1. 43 10. 00 . 37 31 2. 17 32 41 86 10. 00 9. 14 11.71 24. 57 1. 98 2. 54 5. 33 9 31 47 10. 84 2. 57 8. 86 13. 43 56 1. 92 2. 91 6 1 11 7. 78 1. 71 . 29 3. 14 . 37 06 . 68 2 0 10 69 . 57 0. 00 2. 86 . 12 0. 00 62 2 0 6 18 . 57 0. 00 1. 71 . 12 0. 00 37 0 0 7 5. 80 0. 00 0. 00 2. 00 0. 00 0. 00 . 43 3 0 13 7. 04 . 86 0. 00 3 71 . 19 0. 00 80 7 1 17 7 05 2. 00 29 4. 86 43 06 1. 05 15 1 33 7. 25 4. 29 29 9 43 93 06 2. 04 0 CALM 0. 00 0 00 101 88 :350 7. 94 28.86 25 14 100 00 6. 25 5 45 21 67 .JOINT WIND FREGUEr..ICY DISTRIBUTION BY STABILITY CLASS DATA PERIOD* ALL MARCH COMBINED STABILITY CLASS: PASQUILL F DATA SOURCE: 0:\1-SITE SENSOR HEIGHT: 60. 00 METERS TABLE 11/10/81. 15. 47. 44. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DANES AND MOORE .JOB NO: 7699-064 WIND SECTOR WINO SPEED PER SECOND) MEAN NNE NE ENE ESE SE SSE s SW WSW w WNW NNW N CALM TOTAL 0. 0-1. 5 1. 5-3. 0 3 0-5. 0 5. 0-7. 5 7 5-10. 0 0 2 1 2 0. 00 1. 42 . 71 1. 42 0. 00 12 Ob . 12 0 1 1 1 0. 00 71 . 71 71 0. 00 . 06 . 06 . 06 0 0 1 1 0. 00 0. 00 . 71 . 71 0. 00 0. 00 06 Ob 0 0 1 2 0. 00 0. 00 71 1. 42 0. 00 0. 00 . 06 12 0 0 0 1 0. 00 0. 00 0. 00 . 71 0. 00 0. 00 0. 00 . 06 0 0 0 5 0. 00 0. 00 0. 00 3. 55 Q_ 00 0. 00 0. 00 31 0 0 3 5 0. 00 0. 00 2. 13 3. 55 0. 00 0 00 19 31 0 1 1 13 0. 00 71 71 9. 22 0. 00 . 06 . 06 . 80 0 0 3 5 0. 00 0. 00 2. 13 3. 55 0. 00 0 00 19 . 31 0 2 1 2 0. 00 1. 42 71 1. 42 0. 00 12 . 06 12 0 1 2 1 0. 00 . 71 1. 42 . 71 0. OJ . Ob . 12 06 0 0 2 0 0 00 0. 00 1. 42 0. 00 0. 00 0 00 . 12 0. 00 0 1 0 2 0. 00 . 71 0. 00 1. 42 0. 00 . 06 0. 00 . 12 0 0 1 1 0. 00 0. 00 . 71 . 71 0 00 0. 00 06 . 06 0 0 0 5 0. 00 0. 00 0. 00 3. 55 0. 00 0. 00 0. 00 31 0 0 1 1. 4§ 0. 00 0. 00 . 71 0. co 0 00 . 06 12 0 0. co 0. co 0 8 18 48 0. 00 5 67 12 77 34 04 0. 00 50 1 11 2. 97 lo"..EY XX;i. NU;1BER OF OCCURRENCES XX;i. PERCENT OCCURRENCES THIS CLASS ;i.X;i. PERCENf OCCURRENCES ALL CLASSES 1 . 71 . 06 0 0. 00 0. 00 1 71 . Ob 0 0. 00 0. 00 0 0. 00 0. 00 8 5. 67 . 50 11 7. 80 . 68 15 10.64 . 93 8 5. 67 50 2 1. 42 12 0 0. 00 0. 00 0 0. 00 0. 00 6 4 26 37 1 . 71 . 06 0 0. 00 0 00 6 4 26 . 37 59 41. 84 3. 65 :>10. 0 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 2 1. 42 . 12 0 0. 00 0. 00 2 1. 42 . 12 1. 12 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 1 71 06 0 0. 00 0 00 7i 06 8 5 67 50 TOTAL 6 4. 26 . 37 3 2. 13 19 3 2. 13 19 3 ,, . 13 . 19 3 2. 13 19 13 9.22 . 80 21 14. 89 1. 30 32 22. 70 1 . 98 16 11 35 . 99 7 4. 96 . 43 4 84 . 25 2 1. 42 . 12 9 6. 38 . 56 4 2. 84 25 5 3. 55 31 10 7 09 . 62 0 0 00 0.00 141 100.00 B. 73 SPEED 4. 53 4. 13 6. 13 6. 43 9. 60 7. 89 7. 51 7 48 6. 92 5. 43 4 12 4 75 7 69 7 95 6. 38 7 67 CALM 7. 02 Rev. 0 48 WOLF CREEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY S'l'ABILITY CLASS (MONTHLY 60 METERS) Page 12 of 48 JOINT WirW DISTRIBUTION BY STABILITY CLASS DATA PERIOD ALL MARCH COMBINED STf..Bli_ITY CLASS: PASGUILL G DATA SOURCE: TE WINO SENSOR HEIGHT 60. 00 METERS TADLE GENtRATEO: 11/10/81 15. 47. 44. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7699-064 WIND WINO SPEED CATEGORIES<METERS PER SECOND) SECTtJR 0 0-1. 5 1 5-3.0 3 0-5. 0 5. 0-7 5 7 5-10. 0 >tO. 0 MEAN NE ENE. E ESE SE SSE s ssw sw WSW w NW NNW N CALM TOTAL KEY 0 0. 00 0 00 I 1. 04 06 0 0. 00 0_ 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. DO I I 04 06 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 0-:J 0 0 00 0 00 2 2. 03 12 0 0. 00 0. 00 0 0. OD 0. 00 0 0. 00 0 Q{) 0 0 OJ 0. 00 0 0 00 0. 00 4 4. 17 2, I 1. 04 06 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0. oo I I 04 . 06 0 0. DO 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 I 1. 04 . 06 2 2. 08 . 12 0 0. 00 0. 00 0 0. oo 0. 00 0 0 00 0 00 1 1. 04 06 6 6 37 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 I 1. 04 . 06 2 2. 08 12 3 3. 12 . 19 2 2. 08 . 12 I 1. 04 06 1 I 04 06 1 1. 04 06 1 1. 04 . 06 2. . 12 14 14 58 87 XXX NUMBER OF OCCURRENCES 2 2. 08 12 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 2. 12 2 2. 08 . 12 8 B. 33 . 50 5 :5.21 . 31 8 B 33 . 50 2. . 12 0 0. 00 0. 00 3 3. 12 . 19 0 0. 00 0. 00 4 4 17 25 0 0. 00 0. 00 36 37. '!10 2 23 XX.< PERCENT OCCURRENCES THIS CLASS X X.< PERC EN r OCCURRENCES ALL CLASSES 0 0. 00 0. 00 0 0. 00 0. DO 0 0. 00 0. 00 0 0 00 0 00 0 0. 00 D. 00 I 1. 04 . 06 7 7. 29 . 43 12 12. 50 . 74 4 4 17 25 I 1. 04 . 06 0 0. 00 0. 00 I 1. 04 . 06 3 3. 12 19 2. . 12 I 1. 04 06 4 4 17 25 36 37. 50 2 23 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0 00 TOTAL SPEED 3 :3 12 19 I I 04 06 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 3 3 12 19 11 11 46 . 68 21 21 87 I 30 11 11 46 68 12 so 74 5 5 21 31 6 6 25 37 7 7 29 43 3 3 12 19 6 6 25 37 7 7 29 43 0 () 00 0 00 96 100 00 94

  • 87 1. 0 00 0. 00 0. 00 7. 13 7 OB 7. 51 6. 63 98 444 3 25 7 26 7. 07 6. 13 6 53 CALM 6. 40 JOitH t*lirJO FREQLJEfJCY DISTRIBUTION IIY STAOtll'TY CLASS DATA PERIOD ALL tY.RCH COMBINED ALL CLASSES. Df..TI-. ON-SITE SEt'!SOR HEIGHT 60 00 METERS T;.BLE G£r../F"RATED 11/10/Bl 15. 47.44 WOLF CREEK GENERAl lNG STATtON BURLINGTON, KANSAS GAS AND ELECTRIC DAMES AND MOUHE ,JOB N() 7699-064 \.liND SEC TCJR Witm SPEED CATEGORIESlM!:::fERS PER SECOND) 0 0-1. 5 1 5-3.0 3 0-5.0 5 0-7. 5 7 0 ";JO. 0 MEAN NE ENE E ESE SE SSE s SSL..I sw w NiJW N CAL:-! TOTAL 2 12 4 25 \ 06 2 . 12 0 0. OJ I 06 0 0. 00 2 . 12 I 06 I . 06 6 . 37 0 o. oa I . o; 0 0. 00 3 . 19 0 0 00 26 1. 61 7 43 8 50 10 62 9 56 II 68 9 56 7 43 3 . 19 7 . 43 B so 6 37 2 12 2 12 I 06 94 5 82 13 . 80 20 1. 24 19 I IB 16 99 II . 68 14 87 23 1. 42 13 80 25 1 55 II 68 13 . 80 8 . so 4 25 16 99 8 . 50 16 99 230 14. 24 NUM::lER 0!= VALID OBSERVATIONS 1615 INVALID O:JSERVATIONS bl7 TOTAL OF 2232 KE)' XX.t. NUMBER OF OCCURRENCES XX:( PERCENr OCCURRENCES 55 3 41 5 . 31 6 . 37 13 . 80 24 I 49 41 2. 54 34 2. 11 58 3. 59 34 2 II 18 Ill 13 . 80 6 37 15 . 93 36 2. 23 3. 22 432 26.75 72 36 PCT 27 64 PCT 100 00 PCT 32 1. 98 6 37 5 31 II . 68 4 25 27 1 67 39 2 41 92 5. 70 45 2 79 15 93 9 06 B . 50 16 . 99 26 1. 61 54 3 34 49 3 03 438 27 12 26 1. 61 I . 06 5 31 II 68 21 I 30 15 . 93 17 1. OS 83 5 14 67 4 IS 15 93 5 . 31 8 50 18 111 32 I 98 42 2. 60 29 I 80 395 24. 46 T{)TAL SPEED 135 H 36 44 2. 72 46 2. 85 62 :3. 84 71 4 40 108 6.69 121 7.49 15. 3b 176 10.90 67 4 15 49 :J 03 42 2. 60 55 :J 41 99 6 13 142 f3 79 150 9 29 0 0. 00 1615 100. 00 7 39 4 54 5. 25 6 60 7 IB 7 12 7 32 9 09 8. 82 7 28 6. 02 6 67 9 98 8 68 B 93 7 70 CALM 7. 87 0 WOLF CREEK TABLE 2. 3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS} Page 13 of 48 JOINT WIND FREQVi:::r.!CY DISTRIBUTION BY STABILITY DATA PERIOD ALL APRIL COMBINED CLASS CLASS. PASOUtlL A GENERATING STATION DATA O:.i-SITE , KANSAS W!NO SE:NSOR HEIOHT: 60 00 METERS AND ELECTRIC TABLE GENE:RATED: 11/11/81 10. 37. 57 MOORE JOl3 NO: 7699-06.4 WIND WINO CATEGORIES<ME:TE:RS PER SECOND) SECTOR o. s 0 3 0-5.0 s. 0-7. 5 7. S-10.0 >10. 0 TOTAL 0 I 6 5 2 0 14 5. 15 0. 00 31 1. 87 56 . 62 0. 00 4. 36 0. 00 . 05 . 29 '24 . 10 0. 00 1>9 NE 0 2 I I 0 0 4 4. 02 0. 00 .62 . 31 . 31 0. oo 0. 00 l. 25 0. co . 10 . 05 . 05 0 00 0. 00 19 ENE 0 0 0 0 0 0 0 0.00 0 00 0. 00 0. 00 0. 00 0 00 0 00 0 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 e: 0 0 I 0 3 0
  • 7. 20 0. co 0. 00 . 31 0. 00 . 93 0.00 1. 25 0 00 0. 00 . 05 o. 00 . 15 0. 00 . 19 ESE 0 0 1 6 2 0 s6 7. 02 0. 00 0. 00 31 1. 87 . 62 0. 00 0. 00 0. 00 . 05 . 29 . 10 0. 00 . 44 SE 0 0 0 3 9 2 13 8. 37 0. OD 0. 00 0. 00 93 2. 49 .1>2 4.05 0. 00 0. 00 0. 00 . 15 . 39 . 10 63 SSE 0 0 4 0 9 16 29 10 17 0. 00 0. 00 L 25 0. 00 2. 80 4. 98 9 03 0. 00 0. 00 19 0. 00 44 . 78 I. 4! s 0 0 4 8 13 35 60 10 85 0. 00 0. 00 1. 25 2. 49 4 05 10.90 18. 69 0. 00 0. 00 . 19 . 39 '63 l. 70 2. 92 ssu 0 0 4 8 13 15 40 9. 14 0. 00 0. 00 1. 25 2. 49 4, 05 4. 67 12. 46 0. 00 0. 00 . 19 . 39 '63 73 !. 94 su 0 2 3 1 3 16 25 10. 65 o. 00 . 62 . 93 31 . 93 4. 98 7. 79 0 00 . 10 . 05 15 . 78 1. 22 WSIJ 0 I 0 3 1 7 12 9. 07 0. 00 31 0. 00 . 93 31 2. 18 3. 74 o ov 05 0. 00 .15 . 05 . 34 58 w 0 I 7 5 5 0 IB 5. 84 0. 00 31 .2. !B I. 56 L 56 0_ 00 5. 61 0. 00 . 05 34 . 24 24 0. 00 88 1 0 5 2 4 3 15 6. 90 '31 0 00 1. 56 . 62 L 25 . 93 4 67 . 05 0. 00 . 24 10 19 . 15 . 73 NW 0 0 3 3 9 19 34 9. 71 0. 00 0. 00 93 '93 2. eo 5. 92 10. 59 0. 00 0 00 . 15 . 15 44 92 1 65 NNW 0 0 2 7 9 2 20 7. 89 0. 00 0 00 . 62 :2. 18 2. 80 62 6 23 0. 00 0 00 . 10 34 . 44 . 10 97 N 0 I . 13 B 0 24 6 69 0. 00 31 4 05 2 49 0. 00 7 48 o on 05 . 10 . 63 39 0. 00 !. 17 CALM 0 0 CALM 0. 00 0 00 0. 00 0 00 TOTAL l 9 4j 65 8'? 115 321 e. s2 31 2. 49 1::1 40 20.25 27 73 35.83 100 00 05 39 2. 09 3 16 . 33 5. 15. 61 XXX XXX XXX JOINT WI NO FREOUSJ.iCY D I STR I BUT I ON OY STABlLITY CLASS DATA PERIOD ALL .t>.PRIL COMBINED STt.131LlT'( CLASS PASOUILL " WOLF CREEK GENERATING STATION DATA SOURCE rN-SITE BURLlNGTON, KNVSAS l l SENSOR HEIGHT 60.00 METERS GAS AND ELECTRIC T AI3LE GENERATED 11/11/81. to 37. -:r7. DAMES AND MOOHE JOG NO* 7699-064 WINO WHW SPEED CATEGOR iES<t-:E:TERS PER SECONDl SECIGR 0. 0-!. 5 1 5-3.0 3 0-:> 0 5 "J-7 5 7 5-10.0 >10 0 TOTAL NNE 0 0 0 0 1 I 2 9 35 0. 00 0 00 0. 00 0. 00 L 15 L 15 2 30 0. 0-::> 0. 00 0. 00 0. 00 . 05 . 05 10 NE 0 2. I 0 0 0 3 2 90 0 00 1. 15 0. 00 0 00 0. 00 3 45 0 0-J . 10 . 05 Q, 00 0. 00 0. 00 . 15 ENE 0 0 0 1 " 0 5 7 98 0, 00 0. 00 0. 00 1.1:5 4 60 0. 00 75 0. 00 0. 00 0 00 . 05 . 19 0. 00 24 E 0 0 I 2. 2. 3a 0 5 6. 66 0 00 0 00 I 15 0. 00 5. 75 0. 00 0 00 OS 10 10 0. 00 24 0 0 1 0 0 0 1 4 20 0. 00 0. 00 1 15 0. 00 0. 00 0. 00 I 15 0. 00 0 00 05 0. 00 0. 00 0. 00 . 05 SE 0 0 0 0 7 0 7 a. 29 0. 0:) 0 oo 0. 00 0 00 a. O'!' 0 00 B. 03 0. 00 Q. 00 0. 00 0. OQ 34 0_ 00 . 34 SSE 0 0 0 1 0 5 6 12. 22 0. 00 0. 00 0, 00 1 15 0. 00 5. '75 0. 90 0. oo 0. 00 0. 00 . 05 0 00 . :24 29 s 0 0 I 0 3 9 13 11, 61 0. co 0 00 L 15 0. 00 3 45 10, :l4 14 94 0. 00 0 00 . OS 0. 00 15 . 44 . 63 7 20 ssw 0 0 1 1 1 1 4 0. 00 0. 00 1.1:5 1. 1:; 1. 15 L 15 4 60 0. 00 0. 00 OS . 05 . 05 05 . 19 sw 0 0 0 1 l 3 5 11. 18 0. 00 0. 00 0. 00 1. 15 15 3. 45 5 75 0. 0::'1 0 00 0. 00 . 05 . OS 15 WSi.-l 0 1 0 0 1 0 5. 0:> 0. 00 1. 1'5 0 00 0. 00 1 15 o_ oo 2. 30 0. 00 OS 0 00 0 00 . OS 0. 00 10 w 0 0 1 1 2 0 4 7 35 0. co 0. 00 L 15 1. 15 2. 30 0_ 00 4. 60 0. 00 0 00 . OS . 05 . 10 0. 00 19 wN;., 0 1 1 0 3 3 8 8 54 0. 00 1. 15 L 1:> 0. 00 :l. 45-3. 45 9. 20 0 co 05 05 0. 00 15 . 15 . :l9 NW 0 l I 0 7 2 I! 7 99 0 00 1 IS L 15 0. 00 e os 2.:10 12 64 0. 00 . 05 . 05 0 00 34 10 . 53 NNW 0 0 0 I 1 :J 5 9 22 0 00 Q_ 00 0 00 l. 15 1. 15 3" 45 75 0. 00 0 00 0. 00 OS . 05 . 15 24 N 0 0 0 I 3 2 6 8 97 0. 00 0. 00 0. 00 1. 15 3 45 2. 30 6. 90 0. 00 0 00 0 00 . 05 . 15 10 . 29 CALM 0 0 CALM 0 00 0. 00 Q_ 00 0. 00 a a2 TOTAL 0 5 9 9 36 29 07 0. 00 5 75 9. 20 10 34 41 38 33 33 100 00 o. 00 24 39 44 1. 75 1. 41 4 23 Rev. 0 KEY '<XX XlC( XXX WOLF CREEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 14 of 48 JOINT Uirm FREQUC:UCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD: ALL APRIL COMBINED STABILITY CLI.SS: PASGUILL C DATA SOURCE: W nm SENSOR HEIGHT: 60 00 METERS TABLE 11/11/81. 10. 37 57. WIND WINO SPEED CATEGORIES<METERS PER SECTOR 0. 0-1. 5 I 5-3. 0 3 0-5.0 5. 0-7. 5 Nr.JE 0 0 0 I 0. 00 0 00 0. 00 . 98 0. 00 0. 00 0. 00 . 05 I 1 I 4 98 98 . 98 3. 92 05 . 05 . 05 19 EW? 0 I I 0 0. 00 98 . 98 0. 00 0. 00 05 . 05 0. 00 E 0 0 0 0 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 ESE 0 0 I 2 0. 00 0. 00 98 1. 96 0. co 0. 00 . 05 . 10 SE 0 0 0 I 0. 00 0. 00 0. 00 . 98 0. co 0. 00 0. 00 . 05 SSE 0 0 I 0 0. 00 0. 00 . 98 0. 00 0. 00 0. 00 . 05 0. 00 5 0 0 2 0 0. 00 0. 00 1. 96 0. 00 0. 00 0. 00 . 10 0. 00 ssw I 0 2 3 . 98 0. 00 1. 96 .2. 94 . 05 0 . 00 . 10 15 sw 0 0 I 2 0. 00 0. 00 . 98 1. 96 0. 00 0. 00 . 05 . 10 WSW 0 0 0 0 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 w 0 0 0 3 0. 00 0. 00 0. 00 2. 94 0. 00 0. 00 0. 00 . 15 lo:NW 0 0 2 0 0. 00 0. 00 1. 96 0. 00 0. 00 0. 00 10 0. 00 NW 0 0 I 2 0. 00 0. 00 98 1. 96 0. 00 0. 00 05 . 10 NN:..I 0 I 2 3 0. 00 . 98 1. 96 2. 94 0. 00 05 . 10 . 15 N 0 1 I 0 0. 00 . 98 . 98 0. 00 0. 00 . 05 05 0. 00 CALM 0 0. 00 0. 00 TOTAL 2 4 15 21 1. 96 3. 92 14. 71 20. 59 10 19 . 73 1. 02 KEY XXX NUM8ER OF OCCURRENCES xx:< PERCErH OCCURRENCES THIS CLASS <XX PERCEN f OCCURRENCES ALL CLASSES WOLF CREEK GENERAT (NG STATION BVRLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO 7699-064 SECOND) MEAN 7 5-10.0 :>10. 0 TOTAL SPEED 2 I 4 B. 20 1. 96 . 98 3. 92 . 10 . 05 . 19 I 0 8 37 98 0. 00 7. 84 05 0. 00 39 I 0 3 4. bO . 98 0. 00 2. 94 . 05 0. 00 . 15 0 0 0 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0 0 3 4. 93 0. 00 0. 00 2. 94 0. 00 0. 00 15 6 I 8 B. 5. 88 . 98 7 84 . 29 .05 39 4 4 9 10. 12 3. 92 3. 92 B. 82 . 19 . 19 44 2 8 12 10. 22 1. 96 7. 84 II. 76 . 10 . 39 58 4 2 12 3. 92 1. 96 II 76 19 . 10 . 58 0 0 3 0. 00 0. 00 2. 94 0. 00 0. 00 15 I 2 3 II. 53 . 98 1. 96 2 94 . 05 10 . 15 5 0 8 7. 99 4. 90 0. 00 7, 84 . 24 0. 00 . 39 1 I 4 7. 70 . 98 98 3, 92 . 05 . 05 19 4 2 9 8. 71 3. 92 1. 96 B. 82 . 19 10 44 I 0 7 5. 37 . 98 0. 00 6. 86 . 05 0. 00 . 34 4 3 9 9. 21 3. 92 2. 94 8. 82 . 19 . " . 44 0 CALM 0, 00 0, 00 36 24 102 8. 09 35. 29 23. 53 100.00 I. 75 I. 17 4. 96 VOINT WINO DISTRIBUTION BY STABILITY CLASS DATA PER IOO* ALL COMBINED STA!3 I!_lTY CLASS PASOUILL D WOLF CREEK GENERATING STATION DATt. SOURCE 0:-J-SI TE BURLINGTON, KANSAS SENSOR HEIGHT 60. 00 METERS !o'.ANSAS GAS AND ELECTRIC TABLE GENI-RATEO. 11/11/81. 10 37. 57. DAMES AND MOORE JOB NO: 7699-064 WIND WINO SPEED CATEGORIES(METERS PER SECOND) MEAN SECTOR 0 0-1 5 1 5-3 0 3 0-5 0 5 0-7 , 7 5-10. 0 :>to. 0 TOTAL SPEED NNE 0 0 7 12 13 2 34 7. 29 0. OJ 0 00 I 07 1. 83 1. 98 30 '* 18 0 00 0 00 34 58 63 10 1. 65 NE 0 3 12 18 3 0 36 0 ., o. 00 46 1. 83 2. 74 46 0. 00 48 0 00 " 58 88 . " 0. 00 1. 7:) ENE 0 0 4 12 3 1 20 6 <9 0 00 0 00 61 1. 83 . 46 " 3 04 0 00 0. 00 19 58 15 05 97 1 0 6 11 3 3 3 24 6. 38 15 0 00 91 1. 67 46 . 46 65 05 0. 00 29 53 15 15 1 17 8. 19 ESE 0 0 6 13 13 9 41 0. co 0. 00 91 1. 98 1. 98 1. 37 6. 24 0 co 0. 00 29 63 63 44 1. 99 SE 0 3§ 9 6 31 22 70 8 69 0. 00 1. 37 91 4. 72 3. 35 10 65 0. 00 10 44 29 1 , 1 07 3 40 SSE 0 0 0 , 17 34 56 11. 0 00 0 00 0 co 76 2. , 18 8 02 0 00 o_ oo 0. 00 24 83 1. 65 2 72 0 1 2 12 25 48 88 10. 49 0 00 15 30 1 83 3. 81 7. 31 13. 39 0 00 05 10 58 1. 22 33 4 28 9. 84 0 0 1 9 19 22 " 0 00 0 DO 15 1 37 2. 89 3. 35 7 76 0 00 0 DO 00 44 92 1 07 2. 48 8 64 sw 0 0 3 2 6 4 15 0 00 0 DO 46 30 91 61 2 28 0 00 0. 00 15 10 29 19 73 8 01 \.l5W 0 1 3 4 2 7 17 0 00 " 46 61 30 1. 07 * ,. 0 00 00 15 19 10 34 83 7 81 0 1 3 8 3 7 :22 0 00 15 46 I 22 46 1 07 3 35 0 00 05 15 39 15 34 1 07 8 80 0 1 3 5 12 8 29 0 DO 15 46 76 1 83 1 22 4 41 0 00 05 15 24 58 39 1 41 0 0 6 10 13 21 7 50 9 13 0 00 0 00 91 1 52 1. 98 3 20 61 0 00 0 DO 29 49 63 1 02 2 43 30 NN:.l 0 0 5 11 24 9 49 8 0 DO 0 00 76 1 67 3 ., I 37 7 46 0 00 0 00 24 53 1. 17 44 2 38 0 1 4 8 12 30 55 10 00 0 00 15 61 1 22 I 83 4 , 8 37 0 co 05 19 39 58 1 46 2 67 CALM CAL:"i 0 0 0 00 0 00 0 00 0 00 TOTAL 1 10 74 146 199 227 ., 8 90 15 1 52 11 26 2< 22 30 29 34 , 100 00 05 49 3 60 7 10 9 67 11 04 31 '74 Nt;:"'eER OF OCCURRFNCES '" PERCENT OCCURfli-:NCES HHS CLASS "' PERCENT OCCURRENCES ALL CLASSES Rev. 0 WOLF CREEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page lS of 48 JOINT WINO FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD ALL APRIL COMBINED STABILITY CLASS: PASQUILL E DATA SOURCE* 0:">:-SITE :...111-!n SEt-.:SOR HEIGHT 60. 00 METERS T,.;DLE GENERATED. 11/11/81. WIND WINO SPEED CATEGORIES ( PER SECTOR 0. 0-1. 5 1. 5-3.0 3. 0-5. 0 5. 0-7. 5 1\:NE 0 I I 3 0. 00 . 20 . 20 60 0. 00 . 05 . 05 IS NE 0 2 II 3 0. 00 . 40 2. 22 . 60 0. OJ 10 . 53 . 15 ENE 0 0 3 9 0. 00 0. 00 60 1. 81 0. 00 0. 00 . 10 . 44 E 0 0 I 10 0. OJ 0. 00 . 20 2. 02 0 00 0. 00 05 49 ESE 0 I 3 13 0. 00 20 . 60 2. 62 0. co 05 . 15 63 SE 0 0 0 I 0. 00 0. 00 0. 00 20 0. 00 0. 00 0. 00 . 05 SSE 0 I I II 0. 00 . 20 . 20 2. 22 0. 00 . 05 . 05 . 53 s 0 0 3 12 0. OJ 0. 00 . 60 2. 42 0. 00 0. 00 . IS . 58 ss .. 0 0 I 7 0. 00 0. 00 . 20 1. 41 0. 00 0. 00 . 05 . 34 sw 0 0 2 8 0. co 0. 00 . 40 1. b1 0. 00 0. 00 . 10 . 39 WSW 0 0 2 5 0. 00 0. 00 . 40 1. 01 0. 00 0. 00 . 10 . 24 "' 0 I 2 I 0. 00 . 20 . 40 . 20 0. 00 . 05 . 10 . 05 WNW 0 0 I 2 0. 00 0. 00 . 20 . 40 0. 00 0. 00 . 05 . 10 N:.l 0 2 3 7 0. co 40 . 60 1. 41 0. 00 . 10 . 15 . 34 NNW 0 I 5 8 0. 00 20 1. 01 1. b1 0. 00 . 05 . 24 . 39 N 0 I I 8 0. 00 . 20 . 20 1. 61 0. 00 . 05 . 05 . 39 CAlM 0 0. 00 0. co TOTAL 0 10 40 108 0. 00 2. 02 8. 06 21.77 0. 00 . 49 1. 94 5. 25 KEY XXX NU:'113ER OF OCCURRENCES XXX PERCEUf OCCURRENCES THIS CLASS xx:< PERCEN r OCCURRENCES ALL CLASSES JOINT I.J!ND FREGUSNCY DISTRIBUTION BY STABILITY DATA PERIOD ALL APRIL COMBINED STABILITY CLASS: PASGUILL F DATA SOURCE: l.JlrJI) SENSOR HEIGHT: 60.00 METERS TABLE
  • 11/11/81. 10. 37. 57. WIND \.liND SPEED CATEGORIES<METERS PER SECTOR 0. 0-1. 5 I. 5-3. 0 3. 0-5. 0 5. 0-7. 5 t-.1!\lt:. 0 0 I 0 0. 00 0. 00 . 42 2. 09 0. 00 0. 00 . 05 . 24 NE I 0 3 0 42 0. 00 1. 2b 0. 00 05 0. 00 . IS 0. 00 ENE 0 0 2 2 0. 00 0. 00 . 84 . 84 0. 00 0. 00 . 10 10 E I I 2 3 . 42 . 42 . 84 1. 2b . 05 . 05 . 10 . IS ESE 0 2 4 4 0. 00 . 84 1. b7 1. 67 0. 00 . 10 . 19 19 SE 0 0 I 8 0. 00 0 00 .42 3. 0. co 0. 00 .05 39 SSE 0 I 0 17 0. Qi) . 42 0. 00 7 II 0. 00 05 0. 00 . 83 s 0 0 2 14 0. 00 0. 00 . 84 :5.86 0. co 0. 00 . 10 68 ssw I I 3 4 42 42 1. 2b 1. 67 . 05 05 15 . 19 s .. 0 0 0 9 0. 00 0 00 0. 00 3. 77 0. 00 0. 00 0. 00 . 44 WSW 0 0 0 0 0 00 0 00 0 00 0. 00 0. co 0 00 0. 00 0. 00 " 0 0 2 9 0. 00 0 00 84 3. 77 0. 00 0 00 10 44 I.:M.J I 0 0 I 42 0. 00 0. 00 42 05 0 00 0 00 05 NW 0 0 I 5 0. 00 0. 00 . 42 2. 09 0. co 0. 00 . 05 . 24 NNW 0 0 0 3 0. CJ 0 00 0. 00 1. 26 0. 00 0. 00 0. 00 15 N 0 0 . 8 0 00 0 00 3 35 0. 00 0. 00 10 39 CAU1 0 0 00 0 co TOTAL 4 0 23 92 1. 67 2 09 9 62 38. 49 19 24 I 12 4. 47 XX< NL:MBER OF OCCURRENCES <X ( PERCErH OCCURRENCES THIS CLASS ;(X.< PERCENf OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON. KANSAS KANSAS GAS AND ELECTRIC 0At1ES AND MOORE .JOB NO* 7699-064 SECOND) MEAN 7.5-10.0 :>to. o TOTAL SPEED 3 " 13 8. 59 60 1. 01 2. 62 . 15 24 63 0 0 16 4. 39 0. 00 0. 00 3. 23 0. 00 0. 00 l8 4 0 16 6. 71 . 81 0. 00 3. 23 . 19 0. 00 . 78 12 4 27 8. 11 2. 42 . 81 5 44 . 58 . 19 I. 31 20 8 45 8. 20 4. 03 1. 61 9. 07 . 97 39 2. 19 19 16 36 10. 03 3. 83 3. 23 7. 26 . 92 78 I. 75 38 33 84 9. 77 7. 66 b. 65 16. 94 I. 85 1. 60 4. 08 45 40 100 9. 78 9. 07 B. Ob 20. 16 2. 19 1. 94 4. Bb 25 6 39 e. 5. 04 1. 21 7. 86 1. 22 29 I. 90 13 4 27 8. 13 2. 62 . 81 5. 44 . 63 . 19 I. 31 4 I 12 7. 15 . 81 . 20 2. 42 . 19 .05 . 58 I 0 5 4. 82 . 20 0. 00 1. 01 . 05 0. 00 24 4 0 7 7. 41 . 81 0. 00 1. 41 . 19 0. 00 34 5 0 17 b. 18 1. 01 0. 00 3. 43 . 24 0. 00 . 83 16 I 31 7. 27 3. 23 . 20 6. 25 . 78 . 05 I. 51 7 4 21 7. b1 1. 41 . 81 4. 23 . 34 19 I. 02 0 CALM 0.00 0.00 216 122 496 B. 55 43. !55 24 60 100.00 10. 50 5. 93 24. 11 CLASS WOLF CREEK GENERATING STATION BURLINGTON. KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE -.100 NO: 7699-0b4 SECOND> MEAN 7. 5-10.0 >tO. 0 TOTAL SPEED 0 0 II 7. 23 2. 09 0. 00 4 60 . 24 0. 00 53 0 0 4 3. 42 0. 00 0. 00 1. b7 0. 00 0. 00 . 19 2 I 7 6. 89 . 84 .42 2. 93 10 . 05 . 34 7 0 14 6. 2. 93 0. 00 Bb 34 0. 00 . 68 3 0 13 1. 26 0. 00 5. 44 . 15 0. 00 . 63 16 2 27 8. 09 b. 69 . 84 II 30 . 78 . 10 I 31 27 9 04 B 20 II. 30 3. 77 22. 59 I. 31 .44 2 63 13 2 31 7. 70 44 84 12. 97 . 63 . 10 I 51 4 0 13 0 89 1. 67 0. 00 5. 44 19 0. 00 63 5 0 14 7 24 2. 09 0. 00 8b 24 0. 00 68 0 0 0 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 2 0 13 97 . 84 0. 00 5. 44 10 0. 00 63 5 0 7 b. 83 2. 09 0. 00 2.93 . 24 0. 00 34 3 0 9 6. 91 1. 26 0. 00 3.77 15 0. 00 . 44 2 0 5 b. bB 84 0. 00 2. 09 . 10 0. 00 24 4 3 17 7. 1. 67 1. 26 7. 11 19 . 15 83 0 CALM 0. 00 0 00 98 17 7. 23 41 00 7 II 100 00 4 76 83 II 62 Rev. 0 WOLF CREEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBU1riON BY STABILITY CLASS (MONTHLY 60 METERS) Page 16 of 48 JOINT WHJD FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD: ALL P.PRIL COMBINED STABILITY CLASS: PASGUILL G DATA SOURCE: 0;'>4-SJTE SENSOR HEIGHT* 60. 00 METERS WOLF CREEK GENER"TING STATION BURLINGTON, TABLE GENERATED: 11/11/81. 10. 37. 57. KANSAS GAS AND ELECTRIC DAMES AND MOORE NO: 7699-064 WIND WINO SPEED CATEGORIES<METERS PER SECOND> MEAN SECTOR 0. 0-1. 5 1. 5-3. 0 3. 0-5. 0 5. 0-7. 5 7. 5-10. 0 )10. 0 TOTAL SPEED NNE NE ENE E ESE SE SSE s ssw sw WSW w NW NNW N CALM TOTAL 0 0. 00 0. 0*:> 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. co 0. 00 0 0. 00 0. 00 0 0. co 0. 00 0 0. 00 0. 00 0 0. co 0. co 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. co 0. 00 I 65 . OS 0 0. 00 o. oa I . 65 05 I . 65 . OS 0 0. 00 0. 00 0 0. 00 0. 00 I . 65 . 05 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 I . 65 . 05 0 0. 00 0. 00 0 0. 00 0. 00 I 65 . 05 I 65 05 I 65 . 05 0 0. 00 0.00 0 0. 00 0. 00 I 65 .05 7 4. 34 I . 65 . 05 I . 65 . 05 I . 65 . 05 0 0. 00 0. 00 I . 65 . 05 I . 65 . 05 I . 65 .05 0 0. 00 0. 00 3 1. 94 . 15 2 1. 29 10 I . 65 . 00 3 1. 94 . 15 0 0. 00 0. 00 0 0. 00 0. 00 I . 65 . 05 0 0. 00 0. 00 16 10.32 78 " 3. 23 . 24 3 1. 94 . 15 I . 65 . 05 2 l. 29 10 8 16 . 39 8 :5. 16 . 39 14 9. 03 . 68 17 10.97 83 8 5. 16 . 39 2 1. 29 . 10 2 l. 29 . 10 1. . 10 2 1. 29 10 1. . 10 1. 10 5 3.23 . 24 83 55 4. 04 KEY XXX NUMBER OF OCCURRENCES .<XX PERCENr OCCURRENCES THIS CLASS XX:< PERCENr OCCURRENCES ALL CLASSES ,JOINT WIND FREGL:::;:NCY DISTRIBUTION BY STABlliTY CLASS DATA PEtdOD ALL APRIL COMtllNEO 3 1. 94 . 15 0 0. 00 0. 00-0 0. 00 0. 00 8 5. 16 . 39 3 1. 94 . IS 6 3. 87 . 29 7 4. 52 34 10 b. 45 . 49 4 2. 58 . 19 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 2 1. 29 10 4 2. 58 19 47 30.32 2. 28 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. DO I 65 . 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 () 00 () 00 I 65 . 05 10 6. 45 . 49 4 2. 58 . 19 2 1. 29 . 10 II 7. 10 . 53 12 7. 74 . 58 15 9. 68 . 73 23 14.84 1. 12 28 18.06 1. 36 15 9. 68 . 73 4 2. 58 19 4 2 58 . 19 6 3 87 29 3 1. 94 15 2 I 29 10 5 3 23 24 II 7 10 53 0 0 00 0 00 155 100 00 7 54 ALL CLASSES DATA ON-SITE WI Nn SEN30R HE 1 CHT
  • 60 00 METERS WOLF CREEK GENERATING STATION llURLINGTON, l'o.ANSAS TABLE GENERATED 11/11181 10 37 :17 KANSAS GAS AND ELECTRIC: DAMES AND MOORE JOB NO* 7099-064 WIND WINO SPEED CATEGDRlES<I"ETERS PER SECOND> SECTOR 0 0-1 5 1 5-3 0 3 0-5. 0 5 0-7 5 7 5-10. 0 :>10. 0 "" E:NE ESE SE SSE ssw sw WSW CAL:"! TOTAL 0 0 00 2 10 0 0. co 2 10 0 0 00 0 0 00 0 0 00 0 0 00 2 10 0 0 00 0 0 00 0 0 00 2 10 0 0 0-:> 0 0 co 1 OS 0 0 00 9 44 3 " 10 49 1 05 3 1S 2 10 2 10 1 OS 2 10 4 19 4 19 3 " 3 " 2 10 5 24 49 2. 38 16 78 30 1. 46 II 03 11 53 17 83 II 03 7 34 14 68 IS 73 11 03 6 29 18 88 12 58 15 73 15 73 10 49 219 10 NUM3ER Qc; VALID OllSERVATIONS NIJM3ER o;= !NVA!_ID OBSERVATIONS IOJ TOTAL Nv"'3ER OF OBS!::RVATIONS 2160 Xx,c: NUMGER OF OCCURRENCES XX)( PERCEI\IT OCCURRENCES 31 t. 29 1 41 25 L 22 28 1. 30 46 2 24 27 1 31 48 2 33 63 3. 0-6 40 1. 94 25 1. 22 14 68 29 1 41 12 58 29 1 41 35 I 70 43 2 09 29 1 41 4 19 14 68 35 I 70 41 I 99 93 4. 52 102 4 96 111 5. 40 70 3. 40 28 1 36 9 . 44 18 88 29 1 41 41 1. 99 55 2 67 42 2. 04 524 721 47 OS 95 23 PCT 4 77 PCT 100 00 PCT 9 44 0 0 00 2 10 7 34 17 83 43 2 09 102
  • 96 142 6 90 46 2. 24 27 1 31 17 83 7 34 15 73 44 2 14 " 73 42 2. 04 535 26. 01 MEAN TOTAL SPEED 88 4. 28 75 3. 53 2. ::;a 85 4. 13 124 6. 03 176 8 56 12. 69 :::132 16 14 174 8. 46 93
  • 52 50 2 43 76 3 69 73 3. 55 132 6. 42 122 5 93 143 6. 95 0 0 00 2057 100 00 7 12 4 95 6 50 7. 10 7 56 B. 70 9. 73 9 82 8 58 8. b9 7 89 659 7 80 8. 58 7. 71 840 CALM 8. 39 6. 42 4. 60 7. 39 b. 58 7. 00 7. 17 7 01 6. 37 4. 4. 67 4. eo 3. 93 6. 30 6. 68 6. 72 CALM 6 06 Rev. 0 JOIN'r WOLF CREEK TABLE 2.3-32 (Continued) WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 17 of JOINT WINO FREGUaJCY DISTRIBUTION BY STABILITY DATA PERIOD ALL MAY COMB I NED ST.t.B ILITY CLASS: PASOUILL A OAT A SOURCE* ON-SITE WHJD SENSOR HEICHT* 60.00 METERS TA!3LE GENt.RATED: 11/11/81. 10. 41. WIND WINO SPEED PER SECTOR 0 0-1. 5 1 5-3.0 3. 0-5.0 5 0-7. 5 NNE NE ENE E ESE SE SSE s SS:.l S:.l WSW w WNW Nri NN:.l N CALM TOTAL 0 0 8 7 0. 00 0 00 2. 09 1. 83 0. 00 0. 00 37 33 0 2 7 4 0. 00 52 1. 83 1. 04 0. 03 09 . 33 19 0 0 5 3 0. 00 0. 00 1. 31 . 78 0. 00 0. 00 . 23 . 14 0 2 5 4 0. co 52 1. 31 1. 04 0. 00 . 09 . 23 . 19 0 2 9 3 0. 00 . 52 2. 35 . 78 0. 00 09 .42 . 14 0 1 4 1b 0. 00 2b 1. 04 4. 18 0. 00 . 05 . 19 . 75 0 2 9 3 0. C() . 52 2. . 78 0. 00 . 09 . 42 . 14 0 0 2 20 0. 00 0. 00 52 5. 22 0. 00 0. 00 . 09 . 93 0 1 4 7 0. 00 . 26 1. 04 1. 83 0. 00 . 05 . 19 . 33 0 1 2 9 0. 00 2b . 52 2. 0. 00 . 05 . 09 . 42 0 2 0 0 0. 00 . 52 0. 00 0. 00 0. 00 09 0. 00 0. 00 0 3 0 1 0. 00 78 0. 00 2b 0. 00 14 0. 00 . OS 0 2 0 0 0. 03 52 0. 00 0. 00 0. co 09 0. 00 0. 00 0 0 2 10 0. 00 0 00 52 2. 61 0. 00 0 00 . 09 . 47 0 3 7 17 0 00 78 1. 83 4. 44 0 00 14 . 33 79 0 1 7 1b 0. 00 2b 1. 83 4. 18 0 00 OS 33 . 75 0 0. 00 0. 00 0 22 71 120 0. 00 74 18. 54 31.33 0 00 03 3. 32 5 60 KEY .(X( NUMOER OF OCCURRENCES .<X ( PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES CLASS WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE .JOB NO: 7699-064 SECOND) MEAN 7.5-10.0 :>to. o TOTAL SPEED b 1 22 b 02 1. 57 2b 5. 74 . 28 . 05 1. 03 0 0 13 4. 32 0. 00 0. 00 3. 39 0 . 00 0. 00 b1 1 0 9 06 2b 0. 00 2 35 . OS 0. 00 . 42 2 0 13 . 52 0 . 00 3. 39 . 09 0 . 00 .b1 2 1 17 24 . 52 2b 4 44 . 09 . OS 79 3 3 27 6. 61 . 78 . 78 7. OS . 14 . 14 1. 2b 9 5 28 6. 2. 35 1. 31 7 31 42 . 23 1. 31 23 2b 71 9. 19 b. 01 b. 79 18 54 1. 07 1. 21 3. 32 2b 39 77 10. 27 6. 79 10. 18 20. 10 1. 21 1. 82 3. bO 4 , 21 7. 66 1. 04 1. 31 5. 48 . 19 23 98 0 0 2 2. 90 0 . 00 0. 00 52 0. 00 0. 00 09 0 0 4 3 47 0. 00 0. 00 1. 04 0 00 0. 00 19 0 0 2 2. 65 0. 00 0. 00 . 52 0. 00 0. 00 09 4 0 1b 6 31 1. 04 0 00 4 18 19 0. 00 . 75 2 0 29 5 70 52 0. 00 57 09 0 00 35 6 . :J2 b 55 1. 57 8. 3b 28 09 1. 49 0 CALM 0 00 0 00 88 82 383 7. 49 22 98 21. 41 100 00 4. 11 3. 83 17 139 JOHH FREGU:::NCY DISTRIDUTION BY STABILITY CLASS DATA PERIOD* ALL ioAY COMBINED ST.-;OILITY CLASS PASGUILL. B DATA SOURCE ON-SITE WINn SENSOR HEIGHT 60 00 METERS TA8LE GENERATED 11/11/81. 10 41 53. WIND !-liND SPEED CATEGORIES (METERS PER SECTOR 0 0-1 5 1. S-3. 0 ] 0-5 0 5 0-7. s NNE NE E:-Jr:: ESE SE SSE s ssw w NW N CAL:1 TOTAL 0 0 3 2 0. 00 0 00 3. 26 2. 17 0. 00 0 00 14 09 0 1 1 1 0. 00 1 09 1 09 1. 09 a. c0 OS 05 05 0 0 2 0 0 00 0. 00 2. 17 0 00 0. 00 0 00 09 0. 00 0 0 1 0 0 co 0 00 1. 09 0. 00 0 00 0 00 OS 0 00 0 0 1 2 0. 0) 0. 00 1. 09 2. 17 0 00 0 00 05 . 09 0 0 1 5 0. 00 0. 00 1. 09 , 43 0. 00 0. 00 05 . 23 0 0 2 0 0. 03 0. 00 2. 17 0 00 0. oa 0. 00 09 0. 00 0 1 1 b 0. 00 1. 09 1. 09 6. 52 0 00 05 . OS 28 0 0 2 0 0 00 0. 00 2. 17 0. 00 0. 00 0 00 09 0 00 0 0 0 1 0 00 0 00 0. 00 1. 09 0 00 0. 00 0 00 OS 0 0 0 0 0 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0 0 2. 0 0. co 0 00 0. 00 0. 00 0. 00 . 09 0 00 0 0 1 0 0 00 0 00 1 09 0 00 0. 00 0 00 05 0. 00 0 2. 1 2 0 0. OJ 2. 17 0 00 0. OJ 09 09 0 00 0 0 4 0 0 00 0 00 4. 35 0 00 0. 00 0. 00 . 19 0 00 0 1 0 1 0. 00 1 09 0. 00 1. 09 0. OJ 05 0 00 OS 0 0 00 0 00 0 , 23 18 0 00 ' 43 25. 00 19 , 0 00 23 1 07 84 KE't' .<XX NlJ<"'BER OF OCCURRENCES XX.( PERCEt.Jf OCCURRENCES THIS CLASS XX.( PERCENT OCCURRENCES ALL CLASSES WOLF CREEl-<. GENERATING STATION BURLINGTON, KANSAS GAS AND ELECTRIC DAMES AND MOORE .JOB NO* 7699-064 SECOND> MEAN 7 5-10.0 >to. o TOTAL SPEED 0 1 b 5 80 0 00 1. 09 6 52 0. 00 05 28 0 0 3 4 43 0 00 0. 00 3. 26 0. 00 0 00 14 1 0 3 60 1. 09 0 00 3. 26 OS 0 00 14 1 2 4 9 b3 1. 09 2. 17 4.35 OS 09 19 1 2 b 8 43 1. 09 2. 17 6. 52 . 05 . 09 28 1 2 9 7. 60 1. 09 2. 17 9.78 05 09 42 0 2 4 7. 72 0. 00 2. 17 4.35 0. 00 09 19 2 11 21 9. 27 2. 17 11. 9b 22. 83 09 51 98 3 5 10 9. 98 3. 26 5. 43 10. 87 14 23 47 2 1 4 9. 20 2. 17 1. 09 4.35 09 . 05 . 19 0 1 1 10. 30 0. 00 1. 09 1. 09 0. 00 OS 05 0 0 2 4 45 0. 00 0 00 2. 17 0 00 0. 00 09 0 0 1 4. 90 0. 00 0. 00 1. 09 0. 00 0 00 OS 1 1 6 5 42 1. 09 1 09 6. 52 05 05 28 3 0 7 6. 31 3. 26 0. 00 7 b1 14 0 00 33 1 5 8 12 1 09 2 5. 43 OS 09 23 0 CALM 0. 00 0. 00 1b 30 92 7 99 17 39 32 b1 100 00 75 1. 40 4 30 Hev. 48 0 WOLF CREEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHI,Y 60 METERS) Page 18 of 48 BY STAI3IllTY CLASS WOLF CREEK GEt-IERA T 1 NG STAT I ON !.JURLINGTON, KANSAS KANSr\S GAS AND ELECTRlC DAMES MOORE JOB NO 7699-064 CATEGORIES\HEfERS PER MEAN 0 3 0-5. 0 5 0-7, 'S 0 )*10 0 TOTAL SPEED ""* 0 1 <.! 3 0 0 6 4 80 0. 00 78 1 55 2 33 0 00 0 00 4 65 0 00 . 05 09 14 0. 00 0 00 28 NE 0 0 l 1 0 0 2 4 50 0. co 0 00 78 "18 0. 00 0 00 1 55 0 00 0 00 . 05 05 0. 00 0 00 . 09 ENE 0 0 l 0 0 1 2 7 60 0. 00 0 00 . 78 0. 00 0 00 78 1 55 0. 00 0 00 .05 0 00 0 00 05 09 0 l 2 3 1 0 7 5 46 0. co 78 1 55 2 33 . 78 0 00 5 43 0 OQ 05 . 09 14 05 0 00 33 ESE 0 0 2 1 1 0 4 b. 02 0. 00 0 00 1. 55 78 78 0 00 3 !0 0 00 0 00 . 09 05 . 05 0 00 . 19 SE 0 0 s§ 3 0 0 5 5 40 0. 00 0 00 1 2. 33 0. 00 0. 00 3 88 Q_ 00 0 00 09 14 0. 00 0 00 . 23 SSE 0 0 0 3 0 l 4 7. 20 0 00 0 00 0. 00 2. 33 0 00 7!3 ::3. 10 Q, 00 0 00 0 00 14 0 00 05 !9 s 1 1 6 8 8 15 39 8 48 78 . 78 4 65 6. 20 6. 20 l1 63 30 23 . 05 . 05 28 . 37 . 37 . 70 1 82 0 0 1 3 3 10 17 10. 00 0 00 0 oo .78 2 33 ;t 33 7 75 13 18 0 00 0 oo . 05 . 14 . 14 47 . 79 sw 1 0 1 2 1 1 6 7 !0 78 0 00 . 78 L 55 . 78 . 78 4 60 . 05 0. 00 . 05 09 . 05 05 . 28 :..sw 0 0 0 0 ! 0 1 7 60 0. OQ 0. 00 0 00 0. 00 78 0. 00 . 78 0. co 0 00 0. 00 0. 00 . 05 0. 00 05 w 0 1 3 0 0 0 4 2. 97 0. 00 78 2. 33 0. 00 000 0. 00 3 10 0. co 05 . 14 0. 00 0. co 0. 00 . 19 0 0 2 0 1 0 3 5. 73 0. 00 0. 00 1 55 0 00 . 78 0. 00 2 33 0. 00 0. oo 09 0. 00 . 05 0. 00 . 14 NW 0 1 1 5 0 0 7 5. 43 0. 00 78 . 78 3. 88 0. 00 0. 00 5. 43 0. 0*0 .05 05 23 0. 00 0. 00 33 NNW ! 0 2 3 3 0 9 6 08 . 78 0. oo 1. :55 2. 33 2. 33 0. 00 6 98 . 05 0 . 00 . 09 !4 14 0. 00 . 42 N 0 1 0 1 8 3 !3 a. 65 0 00 78 0_ 00 78 6. 20 2 33 10. 08 0. 00 05 0. 00 . 05 37 14 . 6! CALM 0 0 CALM 0 00 0. 00 0. co 0, 00 TOtAL 3 6 26 36 27 31 129 7. 41 2. 33 4 65 20. 16 91 20. 93 03 100 00 14 . 28 1. 21 68 1. 26 45 6. 03 t4.EY x x:< xx:< XXX JOiNT WIND FREGVEt.fCY Dl5TR!J31JTION BY STABILITY CLASS Dl.TA PERIOD* ALL 11AY COMB!NED STABILITY CLASS: PASGVILL. D WOLF CREEK GENERATING STATION DATA SOVR:C!::: ON-SITE BURLINGTON, 1-(,ANSAS HE:IOHT: 60. 00 METERS KANSAS GAS AND ELECTRIC TABLE: GENEA:ATED 11/11/Sl 10. 41. 53 DAMES AND MOORE .JOt:; NO 7699-064 WINO SPEED SECONDl MEAN SECTOR 0. 1. 5-3. 7 5-10.0 >10, 0 TOTAL SPEED NNE 0 2 9 18 !! 7 7 29 0. 00 . 36 1 64 :3.20 2. 01 1. 28 8 0. 00 . 09 . 42 84 . 51 . 33 2 . NE 0 4 12 13 b 0 5. 32 o. 00 . 73 2. 19 2, 37 1.09 0. 00 6. o. 00 . 19 . 56 . 61 . 28 0. 00 1 . HiE 0 5 7 8 13 3 6. 62 0. 00 . 91 1.28 1. 46 2. 37 . 55 6 0. 00 . 23 33 . 37 . 61 . 14 1 . E ! 1 7 13 4 1 5. 91 . 18 . 18 1.29 2. 37 . 73 18 4 . . 05 .05 33 . 61 . 19 .05 1 . ESE 0 3 9 !5 8 0 5 93 0 co 55 L 64 2. 74 1. 46 0. 00 b. 0. 00 . 14 . 42 70 . 37 0. 00 1 S£ 1 1 8 21 8 3 6 39 . !8 18 1 46 3. 83 1. 46 . 55 . 05 05 . 37 . 98 . 37 . 14 sse: 0 ! 9 9 8 3 6. 59 0. 00 . 18 t. 64 1, 64 1. 46 55 0 00 05 42 42 37 14 s 1 2 6 2! 42 51 9 63 18 36 1 09 3 83 7. 66 9 31 . 05 .09 28 . 98 I 96 2. 38 ssw 0 0 3 11 9 25 9. 79 0 co 0 00 55 2. 01 L 64 4 56 0. 00 0. 00 14 . 51 . 42 1 17 sw 1 1 1 3 2 1 b. 04 . 18 . !8 18 . 55 . 36 18 05 . 05 05 14 . 09 05 :.IS ;....I 1 0 5 3 3 0 5 37 18 0. 00 9! "55 . 55 0. 00 . 05 0. 00 23 . 14 . 14 0. 00 " 1 4 10 1 1 0 3 99 . !8 7:1 1. 82 18 . 18 0. 00 . 05 19 . 47 05 05 0. 00 HNri ! 1 3 4 ! 1 566 18 . 18 55 . 73 18 18 05 05 . 14 . 19 05 . 05 N:J 0 2 0 3 4 3 7 75 0 00 36 0 00 55 73 55 Q_ 00 09 0 00 14 19 !4 0 0 3 9 !6 1 7 69 0. 00 0 00 55 1 64 2 92 HI 0 00 0 00 14 42 . 75 .05 N ! 3 5 15 8 3 6 67 !8 55 91 2. 74 1 46 55 05 14 23 70 37 14 CALM 0 CALM 0. 00 0. 00 102 7 40 TOTAL 8 30 97 Rev. 1 46 47 17. 70 18 61 0 :n 40 4 53 4 76 r>E1' :ext: NUMSER OF OCCURREtKES XX.< PERCHtf OCCURRENCES THtS CLASS X X ( FEPCEiH OCCURRENCES ALL CLASSES WOLF CREEK TABLE 2. 3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 19 of 48 JOirH t.JIND 0ISTRI8UTION BY STABILilV CLASS DATA PERIOD ALL t1AY COM8It\!ED ST,;OJLITY CLASS* PASOVILL E DMTA SENSOR HEIGHT oO 00 METERS r,;GLE GErJcRo<;TED: 11/11/81 10 41. 53. WDLF CREEK GENERATING SrATION BURLINGTON, KANSAS K1\NSAS GAS AND ELECTRIC DAMES AND JOB NO 7699-064 lHND WIND SPEED PER SECOND> SECTGR 0 0-1 5 1 5-3 0 3 0-5 0 5 0-7 5 7 5-10 0 >10. 0 MEAN NE ESE SE SSE ssw w NNW N CAL:-1 TOTAL 1 17 05 0 0 00 0. C.J I 17 05 0 0 00 0 00 0 0 00 0 00 1 17 05 0 0 00 0. co 0 0. co 0. 00 1 17 05 0 0 00 0 co 0 0. 00 0. 00 0 0. co 0. OJ 0 0. 00 0. 00 0 0 00 0. 00 0 0. Q;) 0. 00 I 17 05 0 0 00 0 00 5 85 23 09 5 85 23 09 1 17 05 1 17 05 09 3 51 14 4 68 . 19 2 . 34 09 1 17 . 05 3 51 14 1 17 . 05 1 17 05 2 34 . 09 0 0 00 0 00 1 17 05 31 5. 29 1. 45 3 51 14 14 39 65 7 1 19 33 3 51 14 1 17 05 9 1 54 42 9 1. '54 42 10 1 71 47 4 . 68 19 5 85 23 2 34 09 3 51 14 3 51 14 1 17 05 1 17 05 0 0 00 0 00 75 12 80 :3 50 XV: NUM3ER OF OCCURRENCES 6 1. 02 28 8 1 37 :37 17 2. 90 79 8 1. 37 37 11 1. 88 51 12 2. 0, 56 23 3 92 1. 07 21 3 58 98 12 2. 05 56 10 1 71 47 4 68 19 6 1. 02 . 28 1 17 . 05 8 1. 37 37 11 1. 88 51 09 160 27_ 30 7. 47 XX.< PERCEtH OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES 13 2 " 85 23 3 51 14 12 2. 05 56 12 2. 05 56 19 3. 24 89 27 4. 61 1 26 98 16.72 4 58 13 2. 22 61 5 85 23 3 51 14 0 0. 00 0 00 1 17 05 1 17 . 05 9 1 54 42 15 2. 56 70 236 40 27 11.02 3 , 14 0 0 00 0. 00 0 0. 00 0 00 09 0 0 00 0. 00 3 51 14 4 68 19 51 8 70 2 38 5 85 . 23 4 68 19 0 0. 00 0 00 0 0. 00 0 00 1 . 17 05 0 0. 00 0. 00 1 17 05 5 85 23 79 13. 48 3. 69 TOTAl. SPEED 2fl 4. 7H 1 :)1 5 46 1. :30 t;;' 40 4 44 1 . 1 4. 1. 17 46 7 BS 2. 15 66 11 3. 08 1!34 31. 40 8 ::,9 :37 6. 1 73 17 12 2. 05 56 10 1 71 47 7 1. 19 . 33 12 2 05 . 3. 75 1. 03 4. 10 1 12 0 0. 00 0 00 506 100.00 27. :J7 7 22 5. 02 5 53 7 33 7. 17 6. 80 7. 11 9. 14 7. 07 6. 90 5 64 5. 32 5. 69 5. 48 7 19 8 38 CALM 7. 48 JOINT l.JIND FREQUEIJCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD ALL MAY COMBINED STABILITY CLASS: PASQUILL F DATI. SOURCE. WINO SENSOR HEIGHT: 60 00 METERS TABLE GENI-RI.TED: 11/11/81. 10 41 53 WOLF CREE:t. GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTH I C DAMES AND t1DDRE JOB NO* 7699-064 WIND SECTOR WII-.10 SPEED CATEGORIES(Mf.:TERS PER SECOND) MEAN NNE NE ENE E ESE SE SSE s sw w CALM TOTA':.... 0. 0-1. 1. 0 3. 0 5. 0-7. 5 7 5-10.0 >10. 0 0 0. 00 0. 00 0 0. co 0. 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0 co 0 0 00 0. 00 0 0 00 0. co 0 0 00 0 co 0 0. 00 0. 00 0 0. 00 0 co 0 Q_ 00 0 co 0 0. 00 0 00 0 0 00 0 co 0 0. 00 0 00 1 44 05 0 0 00 0 00 0 0 00 0 00 1 44 05 0 0 00 0 00 1 44 05 3 1. 31 14 1 44 05 0 0 00 0 00 0 0 00 0 00 2 87 09 5 2. 18 23 1 44 05 1 44 05 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0. 00 0 00 0 0 00 0 00 14 6 11 65 3 1 31 14 4 1 75 19 4 1 75 19 09 4 1. 75 19 4 1 75 19 4 1. 75 19 5 2. 18 23 5 2. 18 23 4 1. 75 19 1 44 05 0 0 00 0 00 0 0 00 0 00 3 1 31 14 2 87 09 0 0 00 0 00 45 19 65 2 10 I. X ( Nt-MBER OF OCCURRENCES 3 1. 31 14 3 1 31 14 10 4 37 47 12 5. 24 56 8 3. 49 37 13 5. 68 61 7 3. 06 33 13 5. 68 61 6 2. 62 28 2 87 09 3 1 31 14 5 2 18 23 3 1. 31 14 1 44 05 7 3 06 33 9 3 93 42 105 45 85 4 90 <XX PERCENT OCCURRENCES THIS CLASS <X.< OCCURRENCES ALL CLASSES 3 1 31 14 0 0 00 0 00 9 3 93 42 8 3 49 37 7 3. 06 33 5 2. 18 23 6 2. 62 28 9 3. 93 42 9 3. 93 42 0 0 00 0 00 0 0. 00 0 00 0 0 00 0 00 1 . 44 05 0 0 00 0 00 0 0 00 0. 00 4 1 75 19 61 26 64 2 85 0 0. 00 0. 00 0 0. 00 0. 00 1 44 . 05 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 09 3 1 31 14 fDTAL SPEED 9 3. 93 . 42 8 3. 49 37 27 11.79 1 26 23 10.04 1 07 19 8 30 89 9 1. 03 19 8 30 89 32 13 97 1. 49 21 9 17 98 7 3. 06 33 4 1 75 19 5 2. 18 23 4 1 75 19 4 1. 75 19 10 4. 37 47 15 6 55 70 0 0. 00 0 00 100 00 to 70 6 11 4. 51 6. 43 6. 70 6. 65 6 33 5. 88 6. 00 6 50 4 19 4 82 6 10 6 57 5. 05 4 88 7 53 CALM 6. 17 Rev. 0 WOLF CREEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY BY STABILITY CLASS (MONTHLY 60 METERS} Page 20 of 48 JQirn :nrm FREQUO::NCY DISTRI!3UTION DY STABILITY CLASS DATA PE!-\100 ALL J"1AY COI'HllNED ST.t.DILITY CLASS. PASGUILL G Q,.;r,c, SOURCE. C*:-.1-SITE \JrtJO St:t\ISOR HEIGfH* 60 00 METERS WOLF CREEK GENERATING STATION BURL! NGTON, KANSAS GENe..RATED. 11/11/Bl 10 41 ::13 KANSAS GAS AND E:.LECTRIC: DA/'1E5 AND MUURE NO 7699-064 WIND SECTOR WINO SPEED CATEGORIES<METERS PER SECOND) 0 0-1. 5 1 5-3 0 3 0 0 5 0-7 5 7 5-10 0 :' 10 0 NE E ESE SE SSE s ssw sw WSW w NW N CAt :-1 TOTAL 0 0. OQ 0 00 0 0. 00 0 OJ 1 57 OS 0 0 co 0 00 0 0 00 0 OJ 0 0 00 0 co 1 57 . OS 0 0. 00 0 00 0 0 00 0. 00 0 Q_ OD 0 00 0 0 00 0. 00 1 57 OS 0 0. co 0. co 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 1 72 14 0 0 00 0 00 1 09 1 57 OS 1 57 OS 0 0 00 0 00 1 57 05 1 57 05 0 0 00 0 00 2 1 15 09 1 . 57 05 1 . 57 05 1 57 . OS 0 0 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0 00 11 6. 32 51 3 l. 72 14 13 7. 47 61 3 L 72 14 7 4. 02 33 1. lg 09 8 4 60 37 5 2. 87 . 23 1 57 05 1 57 05 1. 1; 09 1 57 05 6 3. 45 28 1 57 . 05 1. 1; . 09 0 0. 00 0 00 1. 09 57 32 76 2. 66 KEY XXX NUMBER OF OCCURRENCES 4 2. 30 19 4 2 30 19 4 2 30 19 6 3 45 28 4 2. 30 19 8 4 60 37 8 4 60 37 7 4 02 33 8 4 60 37 0 0 00 0 00 0 0 00 0 00 1 57 05 5 2 87 23 4 2. 30 19 6 3. 45 28 3 l. 72 14 72 41.38 3. 36 X XX PERC EN f OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES 3 1 72 14 0 0 00 0. 00 0 0 00 0 00 0 0. 00 0 00 1 57 0, 3 1. 72 14 3 1. 72 14 5 2. 87 23 6 345 28 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0. 00 L 09 1 57 05 6 3 45 28 30 17 24 1. 40 JOINT WIND FREGUErJCY DISTRIBUTION l3Y STABILITY CLASS D,t,TA PERIOD ALL MAY COMBINED 1 57 05 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 () 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 () 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 1 . 57 05 MEAN TOTAL SPEED 11 6 ::12 " 19 10 92 El9 9 5. 17 42 14 8 05 65 7 4. o;2 :!3 20 11. 49 93 18 10 34 84 13 7 47 61 17 977 79 3 1 72 . 14 2 1. 15 09 9 5. 17 42 6 3 45 .28 8 4.60 . 37 7 4. 02 33 11 6. 32 51 0 0. 00 0. 00 174 100 00 8. 13 6 71 4 42 4. 62 4 69 6. 04 5. 54 5. 32 6. 83 6. 34 3. 90 3. 20 3. 81 5. 48 6 27 6. '54 7. 15 CALM 5. 58 ALL Cl_ASSES DATA SOURCE. tHNO SENSOR HEIGHT 60. 00 METERS WOLF CREEK GENERATING STATION BURLINGTON, KANSAS TABLE GENERATED: 11/11/81. 10. 41. 53. KANSAS GAS AND ELECTRIC DAMES AND MOORE JOD NO: 7699-064 WIND Wirm SPEED CATEGORIESCMETERS PER SECOND> MEAN SECTOR 0 0-1. 5 1. 5-3. 0 3. 0-5. 0 5. 0-7. 5 7. 5-10. 0 >10. 0 NE E ESE SE SSE s ssw S!J WSW NW CALM TOTAl_ 1 05 0 0. 00 2 09 1 OS 0 0. 00 2 09 1 OS 1 05 1 05 2 09 1 05 0 0 00 2 09 2 09 0 0 00 20 93 5 23 15 70 11 51 7 33 6 28 5 23 9 42 13 61 6 28 5 23 6 28 10 47 4 19 7 33 3 14 7 33 119 5 56 N'Jf13EJ.< a;:-VAL 10 ODSERVAT IONS 0:" I I 0 OBSERVATIONS TOTAL I <u:13ER OF OGSERVA f I 31 l. 45 52 2. 43 29 1 35 27 1. 26 28 1. 31 36 1. 69 38 1 77 31 1. 45 20 93 15 . 70 9 42 24 1 12 10 47 11 51 19 89 14 65 394 18. 40 2141 91 2232 1-\EY XX< NlA1rJER OF OCCURRENCES XX< PERCENT OCCURRENCES 43 2. 01 34 1. 59 42 1. 96 46 2. 15 44 2. 06 78 3 64 53 2. 48 96 4 48 47 2. 20 27 1. 26 10 47 14 65 13 61 31 1 45 53 2 48 47 2 20 678 31.67 95 92 PCT 4 08 PCT 100 00 PCT 36 1. 68 11 . 51 27 1 26 28 1. 31 32 1. 49 39 1. 82 53 2. 48 187 8. 73 69 3. 22 14 65 7 33 1 05 4 19 12 56 34 1 59 48 2. 24 602 28 12 13 . 61 0 0. 00 5 23 5 . 23 3 14 11 51 15 70 154 7. 19 84 3. 92 12 56 1 05 0 0. 00 4 19 2 09 17 79 328 15.32 TOTAL SPEED 129 6. 03 112 5. 23 116 5 42 114 5. 32 113 5. 28 171 7. 99 169 7. 89 483 22. 56 227 10 60 75 3 50 34 1 59 51 2.38 :34 1 65 3 04 113 5 135 6 31 0 0. 00 2141 100 00 6 74 4. 87 6. 01 6. 25 6. 37 6. 46 6. 68 8. 95 8 97 6. 78 5 34 4 32 5 55 6. 16 6 55 7 32 CALM 7. 18 Rev. 0 JOINT WOLF CREEK TABLE 2. 3-32 (Continued) WIND FREQUENCY DISTRIBUTION :CY STABILITY CLASS (MONTHLY 60 METERS) Page JOINT DISTRIBUTION BY STA31LlTY 0...\TA PERIOD ALL CDI-19 INEO STMHILITY CLt.SS PASGUILL A DATA I r J c SEN30R HE lCHT 60 00 METERS rHiJLE GErkRATED 11 I 11/131. tO 5*1 26 WIND CATEGORIES {METERS PER SEC TGR 0 0-1. t 5-3. 0 3 0-5 0 " o-*; 5 NE ENE E ESE SE SSE SS:..J sw L.JS:...t w :...J:-.:>.J N;.l N\:..1 N CALM TOTAL 0 3 8 tO 0 OJ 79 2 tt 2 64 0 00 t5 39 . 49 0 t 12 0 0 co . 26 3 t7 0. 00 0 03 05 59 0. 00 t 3 8 3 26 79 2. tt 79 05 t5 . 3'1 t5 0 t t 0 OJ 26 . 26 0 00 05 tO 05 0 t 7 0 0 co 26 t 85 0. 00 0 OJ . 05 34 0. 00 0 2 2 0. 0\) 53 53 0. co to 10 tO 0 3 7 t3 0 03 79 1. 85 3 43 0. OJ t5 . 34 . 64 t 5 11 2t 26 t 32 2 90 5. 54 05 25 54 1 03 0 0 t5 t5 0 00 0 00 3. 96 3. 96 0 00 0. 00 74 . 74 0 5 8 0 00 1. 32 2 11 0 00 10 25 39 0 3 t 0 0 00 . 79 . 26 0. 00 0 00 t5 . 05 0 00 0 4 6 4 0. 00 t 06 1. 58 1. 06 0. OJ 20 30 . 20 0 0 0 7 0. co 0 00 0 00 1. 85 0. Qi) 0 00 0 00 . 34 t t t 2 26 26 . 26 53 05 OS . 05 . to 0 t t 6 0 co 26 . 26 1. :iB 0. 00 OS . OS . 30 0 t 5 3 0. 00 26 1 32 . 79 0 OJ 05 25 . t5 D 0 co 0. co 3 3t 9t 95 79 8 tB 01 25 07 15 t 53 4 48 4 68 KEi XX"( NVi'13ER OF OCCURRENCES XXX PERCENf OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES CLASS 1-JOLF CREEK GENERATING STATION BURLINGTON, 1\.ANSAS KANSAS GAS AND ELCCTR 1 C DMlES AND r100HE JOB ND. 7699-064 SECOND) MEAN 7 5-10 0 )10. 0 TOTAL SPEED 5 t 27 5 84 t 32 26 t2 25 . 05 33 0 0 13 4 t2 0 00 0 00 3 43 0 00 0 00 64 0 0 15 4 02 0. 00 0 00 CJ 96 0 00 0 00 74 0 0 4 4 07 0 00 00 t 06 0 00 00 20 0 0 8 3 70 0 00 0. 00 ;:' tt D 00 0. 00 39 0 0 6 4 tB 0 00 0. 00 I 58 0 00 0 00 30 5 0 28 5 o5 t 32 0 00 39 25 D 00 38 24 t2 74 7 29 6 33 3 t7 t9 53 t. t8 59 3 64 32 45 t07 B. 90 44 11. 87 28, 23 58 2. 22 5 27 9 5 29 7. 36 2. 37 t 32 65 44 25 43 2 1 7 5 69 . 53 26 1. 85 . 10 05 34 2 0 16 4 54 . 53 0. 00 4. 22 tO 0 00 . 79 1 0 8 6. 61 26 0. 00 11 . 05 0. 00 . 39 1 0 6 5. 03 . 26 0. 00 t 58 . 05 0 00 . 30 5 3 t6 8 03 1. 32 79 4 22 . 25 . t5 . 79 4 s5 15 6. 94 1. 06 3 96 20 . tO 74 0 CALM 0. 00 0. 00 90 69 379 6. 95 23. 75 tB 2t 100 00 4. 43 3 40 18. 66 JOINT lHrm FREGUEUCY DtSTRII3UTION BY STAI3ILITY CLASS DATA PERIOD: ALL .JJNE COMBINED STf..BILITY CLA55: PASGUILL I3 OAT A SOVRCE. ON-SITE SEN50R HEIGHT: 60 00 METERS T,<;J3LE GENERATED: 11/11/81 10. 54.26. WIND SPEED CAlE GOR IES<ME TERS PER SECTOR 0. 0-1. 5 1. S-3. 0 3 0-5. 0 5 0*-7. 5 NNE 0 0 t 0 0. 00 0 00 1. 14 0. 00 0. 00 0 00 . 05 0. 00 NE 0 2 0 0 0. 00 2 27 0. 00 0. 00 0. co tO 0. 00 0. 00 0 0 0 0 0. 00 0. 00 0. 00 0. 00 0. 00 0 00 0. 00 0. 00 E 0 0 t 0 0. 00 0 00 1. 14 0 00 0. CJ 0 00 . 05 0 00 £SE 0 0 0 1 0. CJ 0 00 0 00 1. 14 0. co 0. 00 0. 00 05 SE 0 0 0 1 0. co 0 00 0. 00 1. 14 0 00 0 00 0 00 . 05 SSE 0 0 t 0 0. 00 0 00 t t4 0. 00 0. 00 0 00 OS 0. 00 s 0 t 0 5 0. 00 1. 14 0 00 5. 68 0 00 05 0. 00 25 55:....1 0 0 2 3 0. CQ 0 00 2. 27 3 41 0 OQ 0. 00 . 10 t5 s" 0 0 1 2 0 OJ 0. 00 t t4 2. 27 0 00 0 00 .05 . to WSW 0 t t 0 0. co t t4 t 14 0. 00 0. 00 05 . 05 0. 00 w 0 t 2 2 0. OJ t t4 2. 27 2. 27 0. 00 05 tO . tO 0 0 t 3 0. OJ 0 00 t t4 3 4t 0 CD 0 00 05 ts 0 t 2 2. 0 0) 1. 14 2. 27 0 OJ OS . to tO .. a.J 0 0 t 3 0 00 0 00 t t4 3 41 0 OJ 0 00 05 t5 N 0 0 2 0 0 00 0 DO 2 27 0 co 0 OJ 0 00 . to 0. 00 CALM 0 0 00 0. CJ TOTAL 0 6 tS 22 0 OJ 6 82 t7 05 25 00 0 OJ 30 74 t DB 1-',EY X x:< NL:MOER OF OCCURRENCES X X X PERCEr.J r 0CCURR£NCES THI 5 CLASS I.. X< PERCErH OCCURRE:.NCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTH I C DAMES AND MOORE .JOB NO* 7699-064 SECONDl MEAN 7. 5-10 0 >10. 0 TOTAL SPEED I 0 2 , 60 1. 14 0 00 2. 27 . 05 0 00 . 10 t 0 3 4. 33 1. 14 0 00 3. 41 05 0 00 ts 0 0 0 0. 00 0. 00 0 00 0 00 0. 00 0. 00 0 00 0 0 1 4 eo 0 00 0. 00 1. 14 0. 00 0. 00 . 05 0 0 1 6. so 0. 00 0. 00 1. 14 0. 00 0. 00 . 05 1 0 2 7 " 1 t4 0. DO 2 27 OS 0. 00 10 2 0 3 7. 37 2. 27 0. 00 3 41 to 0. 00 . 15 5 7 te B. 73 5. 68 7 95 20. 45 25 . 34 89 8 5 18 8. 51 9. 09 5. 68 45 . 39 . 25 89 3 t 7 8 39 3 4t 1. 14 7 95 " . 05 34 2 I 5 7. 78 2 27 1. 14 5 68 to OS . 25 0 0 5 4 46 0. 00 0 00 5 68 0 DO 0. 00 . 25 0 0 4 s 52 0 00 0. 00 4 55 0. 00 0 DO . 20 3 0 B 5 95 3 4t 0. 00 9 09 " 0. 00 . 39 3 0 7 7 11 3 4t 0. 00 7 95 t5 0. 00 . 34 2 0 4 6 92 2 27 0. 00 4. 55 . to 0 00 20 0 CALM 0 00 0 00 3t t4 88 7. 39 35 23 15. 9t too 00 t 53 69 4 33 L:l of Rev. 48 0 WOLF CREEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 22 of 48 CLASS PASOUILL C DATI, t..! I NU SENSOR HE 1 GHT 60 00 METERS TABLE GENt.RATEO: 11/11/Bl. 10 5't WOLF CREEK GENERATING STATION DURLING TON, KANSAS GAS f1ND ELECTR 1 C DAMES AND I'ICJDRE JUB Nll 7699-064 WIND SECTOR WINO CATEGORIES(f"!EfERS PER SECOND) ME" AN 0 0-1. 5 1 5-3 0 3 0 5 0-7. 5 7 :J-10 0 >10 0 HllAL SPEED NNE ENE E ESE SE SSE s sw WSW N CALM TOlAL 0 0 00 0. OJ 0 0 00 0 00 0 0 00 0 OCl 0 0. 00 0 co 0 0. co 0 00 0 0 00 0 co 0 0. co 0. OJ 0 0. 00 0. CD 0 0. co 0. 00 0 0. 00 0. OJ 0 0 00 0. co 0 0 00 0 00 0 0. co 0. 00 0 0. 00 0. 00 0 0 co 0. OJ 0 0 00 0 00 0 0 00 0. 00 0 0 co 0 00 0 0 00 0 00 0 0 00 0 00 I I 04 05 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 1 1. 04 05 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0 00 2 2. 08 10 2. 10 2 10 0 0. 00 0. 00 0 0. OD 0 00 0 0 00 0. 00 I 1. 04 OS 1 1. 04 05 1 1. 04 05 2. o§ . 10 0 0 00 0. 00 0 0. 00 0 00 1 1. 04 05 0 0. 00 0 00 4 4. 17 . 20 0 0 00 0. 00 0 0 00 0. 00 14 14 58 69 KEY *o*< NUi113ER OF OCCURRENCES 0 0. 00 0. 00 1 1 04 05 0 0 00 0. 00 0 0 00 0. 00 1 1. 04 05 0 0. 00 0. 00 3 3. 12 15 6 6. 25 30 5 5 21 25 1 1 04 . 05 0 0. 00 0. 00 0 0 00 0. 00 3 3 12 15 5 5. 21 25 4 4. 17 20 0 0. 00 0. 00 29 30.21 1. 43 XX.< PERCHH OCCURRENCES THIS CLASS XX:< PERCENT OCCURRENCES ALL CLASSES 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 6 6. 25 . 30 6 6. 25 30 12 12. 50 59 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 1 1. 04 05 3 3. 12 . 15 2 . 10 0 0 00 0 00 30 31 25 1. 48 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 8 8 33 39 6 6. 25 . 30 4 4 17 20 1 1. 04 OS 1 1. 04 05 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 1 1. 04 05 21 21.87 1 03 10 3 :J 12 15 1 I 04 OS 0 0 00 0 00 1 1 04 05 1 1 04 05 10 10 42 49 21 21 87 1 03 26 27" 08 1 28 5 21 25 1 1 04 05 10 4 4 17 20 12 50 59 6 b 25 30 1 1 04 05 0 0 00 0.00 96 100 00 4 73 4 80 4 30 2 90 0 00 5 10 4 50 7 36 9 12 8 17 10.70 14. 90 9 80 6 55 6. 29 7. 03 10 70 CALM 7. 87 JOINT DISTRIBUTION BY STABILITY CLASS DATA PERIOD: ALL JUNE COMBINED STt.I31LIT'r' CLt.SS: PASGUILL D Ot.TA SOURCE: ON-SITE SENSOR HEIGHT* 60 00 METEF!S TABLE GEN:::.RATED: 11/11/81. 10 54. 26. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELE"CTR I C DAMES AND MOORE NO* 7699-064 WIND WINO SPEED CATEGORIES<METERS PER SECOND> MEAN SECTOR 0 0-1. 5 1. 5-3.0 3 0-5.0 5. 0-7. 5 7 5-10.0 >10. 0 N:-.JE NE EtJE E ESt SE SSE s ssw sw WSVI CAlM TOTAl_ 0 0. 00 0 00 0 0. 00 0 00 0 0. 00 0 co 0 0 00 0. OD 0 o oa 0. co 0 0 00 0. O'J 0 0. 00 0. 00 4! 10 0 0 OD 0. 00 0 0 00 0 00 0 0 co 0 00 1 20 05 1 20 05 0 0 00 0 00 1 20 05 0 0 00 0 OJ 0 0 00 0. 00 5 1 02 25 4I 10 1 20 OS 4 82 20 3 61 15 4 82 20 3 61 15 4I 10 4 82 20 4 . 82 . 20 1 20 05 1 20 05 1 20 05 1 20 OS 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 31 3, 53 7 1. 43 34 6 1. 23 . 30 10 2 05 49 8 1. 64 . 39 10 2. OS . 49 11 2. 25 54 11 2. 25 54 8 1. 64 39 9 1 84 . 44 6 1. 23 30 1 . 20 05 1 20 05 1 20 05 0 0 co 0. 00 3 61 15 5 1 25 97 19 88 4 70 AXX NUM8ER Of-" OCCURRE"NCES 3 61 15 1 . 20 05 2 . 41 10 4 . 82 20 6 1. 23 30 8 1. 64 39 8 1. 64 39 35 7 17 1. 72 27 53 33 4 82 20 7 1 43 34 5 1. 02 25 4f 10 10 2. 05 49 18 3. 69 89 18 3 69 89 158 32 :.!8 7 78 PERCENf OCCURHENCES THIS CLASS XX..< PERCENr OCCURREtKES ALL CLASSES 1 . 20 05 0 0 00 0 00 4I 10 1 20 05 4 82 20 0 0 00 0 00 13 2. 66 64 42 8 61 2. 07 32 6. 56 1. 58 4 . 82 20 0 0 00 0. 00 0 0 00 0 00 1 20 05 1 20 05 6 1 23 30 3 61 15 110 22. 54 5 42 1 20 05 0 0. 00 0. 00 0 0. 00 0. 00 2 41 10 1 20 05 1 20 05 1 20 05 50 10 25 2. 46 20 4. 10 98 5 1 02 25 0 0 00 0. 00 4i 10 2 41 10 2 41 10 0 0 00 0. 00 0 0. 00 0 00 87 17 83 q 28 TOTAL SPEED 14 2. 87 69 8 1. 64 39 18 3 69 89 18 3. 69 . 89 25 5 12 t: 23 23 4. 71 1 13 35 7 17 1. 72 141 2E: 89 " 94 92 IE' 85 4 53 20 4 10 98 9 1 84 44 10 05 49 8 1. 64 39 13 66 64 28 74 38 26 33 1. 28 0 c 00 c.oo 408 lOC 00 ;,:>*1. 03 4. 85 4 01 4. 23 5 13 5. 47 4. 90 6. 29 B. 59 8 03 7. 26 5. 28 6 64 7 20 7. 52 6. 53 6. 08 CALM 7 06 Rev. 0 WOLF CREEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MOWi'HLY 60 METERS) Page 23 of 48 FREQVO:::NCY DISTRit3UTION BY STABILITY CLASS DATA PER I DO ALL JUNE COM8lNE:D STMDILIT'l' CLt.SS PASQUILL E WOLF CREEK GENERAT lNG STATION D..\Tt. SOURCE. TE BURLINGTON, KANSAS I: JD SENSOR HEIGHT 60 00 METERS KANSAS GAS AND ELECTRIC ThOLE 11 I 11 /Ell 10 54 26 DAMES AND MOORE JOB NIJ 7699-064 WIND Wlr.JQ !::PEED CATEGORIES ( t;ETERS PER SECOND) MEAN SEITOR 0 0-1. 5 1 ,_3 0 :J 0-5 0 5 0-7. 5 7 5-10 0 >.to. o TOTAL SPEED NNE 0 2 3 3 4 0 12 6. 12 0 00 34 51 51 68 0. 00 05 0 co 10 15 15 20 () 00 59 NE 0 4 s 0 1 12 4 96 0 00 tB 85 0. 00 17 05 EtJE 10 0 00 20 25 0 00 . 05 59 0 0 11 6 0 0 17 4. 91 0 00 0 00 1 sa 1. 03 0 00 () 00 91 0 00 0 00 54 30 0 00 0. 00 84 0 0 5 7 1 0 13 5 83 0 00 0 00 55 1. 20 17 0 00 ;..:? 22 0 00 0. 00 25 34 05 0. 00 64 ESE 0 0 4 10 3 0 17 6 17 0 co 0 00 68 1 71 51 0. 00 91 0 00 0 00 20 49 15 0 00 84 SE 0 2 5 10 3 22 6. 32 0. 00 34 85 1. 71 51 :3. 76 0 00 10 25 49 15 10 1 08 SSE 0 1 4 14 29 9 57 7 90 0 00 17 68 2. 39 4. 96 1. !54 9. 74 0. co 05 20 69 1 43 44 ;;! 81 s 0 6 7 43 98 37 191 8 43 0. 00 1. 03 1 20 7. 35 16. 75 6. 32 65 0. 00 30 34 2. 12 4. 83 1. 82 9 . 40 ssw 0 1 9 27 65 13 115 B. 21 0. 00 17 1. 54 4. 62 11. 11 2. 22 }CJ. 66 0. OJ 05 44 1 33 3. 20 64 5 66 su 0 1 2 17 13 7 40 7 72 0. co . 17 34 2. 91 2. 22 1 20 6 84 0. CD 05 10 84 64 34 1 97 WSW 0 1 9 5 1 0 16 4. 88 0 00 17 1. 54 . 85 . 17 0. 00 ,, . 74 0. 00 05 . 44 25 . 05 0. 00 . 79 w 1 0 3 2 1 1 8 5. 35 17 0 00 51 ':34 17 17 1 05 0 00 . 15 10 . 05 05 39 WNW 0 0 3 9 7 2 21 7. 02 0 00 0 00 51 1. 54 1. 20 34 :l. 59 0 00 0. 00 15 . 44 . 34 10 1 03 NW 0 0 2 3 5 2 12 7. 84 0. OD 0. 00 . 34 51 . 85 34 . 05 0. co 0. 00 10 15 25 10 59 Nl\:..1 0 0 3 8 2 6 19 7. 68 0 DO 0. 00 . 51 1 37 . 34 1. 03 3 25 0. 00 0 00 . 15 39 10 30 94 N 0 1 5 3 4 0 13 6. 06 0. 00 17 . 85 51 . 68 0 00 ;;! 22 0. 00 05 25 15 20 0 00 . 64 CAL:-1 0 0 CALM 0. 03 0. 00 0. 00 0. 00 TOTAL 3 15 79 172 236 80 585 7. 59 51 2. 56 13. 50 29.40 40 34 13. 68 100.00 15 74 3. 89 B. 47 11 62 3. 94 2B. 80 V..EY XXX NUMBER OF OCCURRENCES XXX PERCEtH OCCURRENCES THIS CLASS XXX PERC EN f OCCURRENCES ALL CLASSES JOINT lH NO FREGUEto.ICY DISTRIBUTION BY STAB ILl TV CLASS DATA PERIOD ALL JUNE COMB I NED STABILITY CLASS PASQUILL F WOLF CREEK GENERI1 T I NG STATION DATA SOURCE BURLINGTON, KANSM> WINO SENSOR HEIGHT 60 00 METERS KANSAS GAS AND ELECTRIC THOLE GENERATED: 11/11/81. 10 54. 26. DAMES AND t100RE NO: 7699-064 WIND WINO SPEED CATEGOR IES<METERS PER SECOND> MEAN SECTOR 0. 0-1. 5 1. 5-3. 0 3. 0-5 0 5 0-7. 5 7. 5-10. 0 )-10. 0 TOTAL SPEED NNE 0 0 3 2 2 0 7 6. 37 0 co 0. 00 1. 32 88 88 0. 00 3. 08 0. 00 0. 00 15 10 10 0. 00 34 NE 1 2 7 0 0 12 3. 70 44 88 3. 09 0. 00 0. 00 5. 29 05 10 34 . 10 0. 00 0. 00 59 ENE 0 0 2 7 2 0 11 6. 52 0. 00 0 00 88 3 08 . 88 0. 00 4. 85 0. 00 0 00 10 34 10 0. 00 54 0 1 0 7 0 0 8 5. 74 0 00 44 0. 00 3. 08 0 00 0. 00 3. 52 0 00 05 0. 00 34 0 00 0. 00 39 ESE 0 1 1 12 1 0 15 6. 13 0. 00 44 44 5. 29 44 0. 00 6 61 0 00 . 05 05 59 05 0. 00 74 SE 0 0 4 11 0 0 15 5. 65 0. 00 0 00 1 76 4. 85 0. 00 0 00 6. 61 0 00 0. 00 20 54 0. 00 0 00 . 74 SSE 0 0 4 8 4 0 16 6. 21 0. 00 0 00 1 76 3 52 1. 76 0 00 7. 05 0 00 0 00 20 39 20 0. 00 79 s 0 1 3 25 16 0 45 6 96 0. 00 44 1. 32 11. 01 7. OS 0. 00 19 82 0. 00 05 15 1. 23 . 79 0. 00 2 . 22 0 1 1 15 10 0 27 7. 11 0 00 44 44 6 61 4. 41 0. 00 11. 89 0 00 05 . 05 74 . 49 0. 00 1 33 sw 2 0 7 9 5 0 23 5 69 88 0. 00 3. 08 3 96 2 20 0. 00 10 13 10 0 00 34 44 25 0. 00 1 13 usw 0 2 3 5 2 0 12 5 30 0. 00 88 1. 32 2 20 88 0. 00 5. 29 0 co 10 15 25 10 0 00 59 " 0 0 4 6 0 0 10 82 0 00 0 00 1 76 2 64 0. 00 0 00 4 41 0 OJ 0 00 20 30 0. 00 0 00 49 0 0 2 3 1 0 6 5 62 0 00 0 00 88 1 32 44 0 00 2. 64 0 00 0 00 10 15 05 0. 00 30 NW 0 0 0 2 0 0 2 6 60 0 00 0 00 0 00 88 0 00 0 00 88 0 00 0. 00 0 00 10 0. 00 0 00 10 r J:J 0 1 1 3 1 0 6 5 27 0 OJ 44 44 1 32 44 0. 00 2. 64 0. 00 05 05 15 05 0. 00 30 N 0 0 4 4 4 0 12 6 67 0 00 0 00 1. 76 1 76 1. 76 0. 00 5. 29 0 00 0 00 20 20 20 0 00 59 CALM 0 0 CALM 0 00 0. 00 0 00 () 00 TOTAL 3 9 46 121 48 0 227 6 16 Rev. 0 1 32 3 96 20 26 53 30 21 '" 0 00 100 00 15 44 2 26 5 96 2 36 0 00 11 18 .EY XXI.. NlJf1!:1ER OF OCCURRENCES xu PERCENr OCCURRENCES THIS CLASS XX.( PERCENr OCCURRENCES ALL CLASSES WOLF CREEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 24 of 48 JOirH wrrm FREQt;t:qcy DISTRIBUTION BY STABILITY CLASS DATA PERIOD ALL uJ:'JE COMOINED ST;..BrLITY PASGUILL G DMfA 60 00 METERS TAOLE GENI.::R/,TED* 11/11/81 10 54 .26 WOLF CREEK GENERATING STATION DURL I NGTflN, KANSAS KANSAS GAS AND E.LEC fR I C Di\MES AND MOORE JOB NO. 7699-064 WIND SECTOR WI!W SPEED CATEGORIES<METERS PER SECOND) MEAN 0 0-1 5 1 5-3 0 3 0-5 0 !J 0-7. 5 7 5-10 0 )10. 0 NE E ESE SE SSE WSW w N CALM TOTAL 0 0 OJ 0. 00 0 0 00 0 00 1 60 05 0 0 co 0 00 1 60 05 1 60 05 0 0 00 0 co 0 0 00 0 00 1 60 05 0 0. co 0 00 1 . 60 05 1. 10 1 60 05 1 . 60 05 0 0 00 0 00 0 0 co 0. OJ 0 0 00 0 00 9 5 36 44 ! 60 05 1 60 05 0 0 00 0 00 4 2 38 20 1 60 05 1 10 1 60 05 0 0 00 0 00 1 60 05 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0 00 0 0 00 0 00 11 6. 55 54 4 2 38 20 12 7 14 59 3 1 79 15 0 0 00 0. 00 1 60 05 2 1 19 10 2 1 19 10 0 0. 00 0 00 1 60 05 1. 10 1 . 60 . 05 1 60 05 0 0. 00 0. 00 1. 10 3 1 79 15 0 o. oa 0. 00 34 20 24 1 67 KEY XX.( NUMBER OF OCCURRENCES !0 5 95 49 3 1 79 15 1 60 05 3 1. 79 ! 5 3 1. 79 15 6 3 57 30 10 5 95 49 17 10 12 84 7 4 17 34 4 2 38 20 3 1. 79 !5 5 2. 98 25 5 2. 98 25 0 0. 00 0. 00 5 2. 98 25 5 2. 98 25 87 51.79 4. 28 XXX PERCHH OCCURRENCES THIS CLASS XXX PERCENf OCCURRENCES ALL CLASSES 1 10 0 0. 00 0. 00 0 0 00 0 00 1 60 05 1 60 05 5 2. 98 25 1 60 05 6 3. 57 . 30 0 0 00 0 00 0 0 00 0 00 1 60 05 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 9 5. 36 44 26 15. 48 1. 28 JOINT WIND FREGUStJCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD* ALL j.JNE COMBINED 1 60 05 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 1 60 05 TOTAL SPEED !8 10 71 09 16 9 79 5 2. 98 25 8 4 76 :J9 7 4. 17 :34 l6 9. 52 79 14 B. :13 69 13.69 1 13 lO 5. 95 49 6 3. :!a 6 3. 8 4. 76 :J9 6 3 57 :!O 3 1. 79 15 8 4. 76 39 14 8. :!3 69 0 0. 00 0 00 168 100.00 8 27 5 94 4 17 3 90 4. 55 4. 80 5. 74 6. 16 7 18 5. 27 5. 12 5. 47 4. 95 5 38 2. 63 5. 57 8. 19 CALM :i. 72 ALL CLASSES DI.TA SOURCE ON-SITE WINO SENSOR HEIGHT* 60. 00 METERS WOLF GENERATING STATION BURLINGTON, KANSAS TABLE GENFRATED: 11/11/81 10. 54. 26. KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7 699-064 WIND WINO SPEED CATEGORIES<METERS PER SECOND> SECTOR 0. 0-1. 5 1 5-3. 0 3 0-5. 0 5. 0-7. 5 7 5-10 0 >10. 0 NNE NE EtJE E ESE SE SSE s NW N CAl :-1 TOTAL 0 0 00 3 15 2 10 0 0 00 1 05 1 05 0 0. 00 3 . 15 1 05 1 05 4 20 2 10 , 05 0 0 00 0 0. 00 23 1. 13 8 39 7 34 8 39 9 44 7 34 9 44 7 34 17 84 8 39 4 20 8 39 6 30 1 05 2 10 2 10 105 5 17 N'JM3EH c;::-VI1LID OOS=:RVATIONS lf'..:\'AI_IQ ODSERVATIOr-15 TOTA!.... OF ODSERVATIONS 28 1. 38 43 2. 12 34 1 67 16 79 23 1 !3 25 1 23 30 1 48 30 1 48 39 1 92 23 1 13 16 79 18 89 7 34 11 54 12 59 21 1 03 J76 18. 51 2031 129 1'-Ei XX.( NVMBER OF OCCURRENCES Xx.< PERCErH OCCURRENCES 28 1. 38 12 59 19 . 94 22 1. 08 33 1. 62 38 1. 87 56 2. 76 152 7 48 99 4. 87 45 2. 22 20 . 98 24 1. 18 32 1. 58 24 1. 18 47 2. 31 33 1 62 15 . 74 1 05 4 20 3 15 9 44 9 44 60 2. 95 197 9. 70 159 7. 83 34 1. 67 8 39 3 15 11 . 54 13 64 19 94 26 1. 28 684 571 33.68 28 11 94. 03 PCT 5 97 PCT 100 00 PCT 3 . 15 1 05 0 0 00 2 10 1 . 05 3 15 10 49 114 5. 61 89 4. 38 1. 3 15 4 . 20 4 20 4 20 9 . 44 3 15 272 13. 3'7 MEAN TOTAL SPEED El2 4 04 67 3.:::10 67 3 30 52 2 56 74 3. 64 85 4. 19 163 8 03 513 25.26 395 19 45 130 6. 40 56 2 76 59 2. 90 57 81 56 2. 76 90 4 43 El5 4 19 0 0. 00 20J1 100.00 5. 75 4. 21 4. 69 5. 22 5. 52 5. 57 6. 81 8. 16 8 22 7 24 564 5. 45 6 53 6 54 6. 95 6 76 CALM 7. 03 Rev. 0 JOINT WOLF CREEK TABLE 2.3-32 (Continued) WIND FREQJE:NCY DISTRIBUTION EY S'rABILITY CLl\.SS (MONTHLY 60 METERS) Page ,JOINT FREIJU.:::rJCY DISTRIBUTION BY STABILITY DATA PEH 100 ALL JvLY COMBINED S T/,3 Il_l TY CLMSS PASGU ILL A DMTI. I TE \..! SEt:SOR HEIGHT. 60 00 METERS TMGLE GEfJERATED 11 I 11/81 13 42 02 WIND CATEGORIES<METERS PER SECTOR 0 0-1. 5 1 ,_3 0 3 0-5 0 5 0-7. 5 ENE E ESE SE SSE 5 '3:..1 WSW w N CAt :"i TOTAL 0 0 2 10 0 OJ 0 00 51 2 54 0 00 0 00 10 49 0 0 3 7 0 co 0 00 76 1 78 0 00 0 00 15 34 0 2 5 12 0. co 51 1. 27 3 05 0 co 10 24 59 0 sf 4 8 0 00 1. 02 2 03 0 00 10 20 39 0 6 12 6 0 co 1 52 3. OS 1. 52 0 00 29 59 29 0 2 2 0 0. 00 51 51 0 00 0 00 10 10 0. 00 0 1 4 14 0 00 25 1 02 3 55 0 co 05 20 68 0 0 9 42 0. 00 0 00 2 28 10. 66 0. 00 0. 00 44 2. 05 1 2 10 53 25 51 2. 54 13. 45 05 10 49 2 59 0 0 10 13 0 co 0 00 2. 54 3. 30 0. 00 0 00 49 . 63 0 1 2 3 0 00 25 51 76 0 co OS 10 . 15 0 1 7 3 0. 00 25 1. 78 76 0. 00 05 34 15 0 1 4 3 0 00 25 I 02 76 0. 00 OS 20 15 0 1 3 1 0 00 25 76 25 0. 00 OS 15 05 1 0 0 0 25 0. 00 0 00 0. 00 OS 0. 00 0. 00 0. 00 0 1 0 8 0. 00 25 0 00 2. 03 0 co 05 0. co 39 0 0 00 0 00 2 20 77 183 51 5 08 19 54 46 45 10 98 3. 76 8 94 KE't" XX< NU:1BER OF OCCURRENCES XXX PERCENf OCCURRENCES THIS CLASS XX.( PERCEtH OCCURRENCES ALL CLASSES CLASS WOLF CREEK GENE"RAriNG BURLINGTON, KANSAS STATION KANSAS GAS AND EU::C rR l C OAME"S AND MOORE JOB NO 7699-064 SECOND) MEAN 7 :J-10 0 )10. 0 TOTAL SPEED 2 0 14 6 66 51 0 00 3 55 10 0. 00 68 1 0 11 5 51 25 0 00 79 05 0. 00 54 3 0 22 5 86 76 0 00 :: .. 58 15 0 00 I 07 0 0 14 4 96 0 00 0 00 :::1. 55 0 00 0 00 68 0 0 24 4. 08 0 00 0. 00 6. 09 0. 00 0. 00 1 17 0 1 5 5. 04 0 00 25 1 27 0 00 05 24 0 I 20 5 53 0 00 25 08 0. 00 OS . 98 28 18 97 7. 93 11 4. 57 24 62 37 88 4. 74 28 17 111 7 58 7. 11 4 31 28 17 1 37 . 83 5 42 5 0 28 5 90 1. 27 0. 00 7 11 24 0. 00 1. 37 1 0 7 5. 69 25 0 00 1. 78 OS 0 00 34 5 0 16 5 31 1. 27 0 00 4 06 24 0 00 78 1 0 9 5. 37 25 0. 00 2 28 05 0 00 44 0 0 5 4. 34 0 00 0. 00 1. 27 0 00 0. 00 . 24 0 0 1 1. 30 0. 00 0. 00 25 0 00 0. 00 05 1 0 10 5. 61 25 0. 00 2 54 . 05 0 . 00 . 49 0 CALM 0. 00 0.00 75 37 394 6 63 19 04 9 39 100. 00 3. 66 1. 81 19.24 JOINT FREQUCr.JCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD: ALL JULY COMBINED STABILITY CLASS. PASQUILL B DI.TA SOURCE. ON-SITE t-!H>lO HEIGHT* 60 00 METERS T.t.BLE GENER.'.TED* 11/11/81. 13 42. 02. WIND SPEED CATEGORIES(METERS PER SEC 0 0-1. 5 1 5-3 0 3 0-5 0 5 0-7. 5 tJNE 0 1 0 5 0 00 1. 00 0 00 5 00 0 00 05 0. 00 24 NE 0 1 1 1 0. 00 1 00 1. 00 1. 00 0. 00 . 05 05 05 ENE 0 1 0 0 0. 00 1 00 0. 00 0. 00 0 00 05 0. 00 0. 00 E 0 0 0 2 0. 00 0 00 0 00 2. 00 0. 00 0 00 0. 00 10 ESE 0 1 1 1 0. 00 1. 00 1. 00 1. 00 0. 00 05 05 05 SE 0 0 1 1 0 00 0 00 1. DO 1. 00 0 00 0. 00 05 05 SSE D 2 3 5 0. 00 2 00 3. 00 5. 00 0 DO 10 15 24 0 I 4 14 D. 00 1 OD 4 OD 14 DO 0. 00 05 20 68 0 1 4 8 0 OJ 1 00 4. 00 B. 00 0. OJ 05 20 39 sw 0 0 1 2 0 00 0. 00 1 00 0 co 0 00 05 . 10 WSW 0 0 1 1 0 co D 00 1 00 1. 00 0. 00 0 00 05 05 w 0 0 0 2 0. 00 0 00 0. 00 2. 00 0 DO 0 00 0 00 . 10 0 0 1 0 0 DO 0 00 1. co 0 DO 0. 00 0 00 05 0 00 0 0 0 1 0 00 0 00 0. 00 1 00 0. 00 D 00 0 00 D5 0 0 1 1 0 00 0 00 1. 00 1. 00 0 co 0. 00 05 05 N 0 0 0 0 0 00 0 00 D. co 0 00 0 DO 0 00 0 00 0 00 CAL:-1 0 0 00 0 00 D 8 18 44 0 00 8 00 18 OD 44 00 0 OJ 39 88 2 15 !J,EY X<< NL.:"lllER OF DCCUHRENCES ;:xx PERCErH OCCURRENCES THIS CLASS .(X"( PERCEIH OCCURREtKES A!_L CLAS!::iES WOLF CREEK GENERATING STATION BURLINGTON, KANSA!J KANSAS GAS AND ELECTRIC DAMES AND MOORE ,JOB NO: 7699-064 SECOND) MEAN 7 5-10. 0 )10. 0 TOTAL SPEED 2 1 9 7 09 2 00 1. 00 9 00 10 . 05 44 0 0 3 3. 53 0 00 0. 00 3. 00 0. 00 0 00 . 15 0 0 1 1 60 0. 00 0 00 1 00 0. 00 0. 00 05 0 0 2 6. 15 0. 00 0. 00 2 00 0. 00 0. 00 . 10 0 0 3 4. 30 0. 00 0 00 3. 00 0 00 0. 00 . 15 0 0 2 5 35 0 00 0. 00 2. 00 0. 00 0 00 10 1 0 11 5. 43 1. 00 0. 00 11 00 05 0. 00 54 11 4 34 7 25 11. 00 4. 00 34 00 54 20 1 66 9 1 23 6 99 9. 00 1. 00 ;;::*J 00 44 . 05 1. 12 0 0 3 6 17 0. 00 0. 00 3 00 0 . 00 0. 00 15 0 0 2 5 50 0 00 0. 00 00 D. 00 0. 00 . 10 1 0 3 6 80 1. 00 0. 00 3. 00 05 0. 00 15 0 0 1 3 30 0 00 0. 00 1. 00 0 00 0 00 05 0 0 1 6. 40 0 00 0 00 1 00 0 00 0 00 05 0 0 2 5 00 0. 00 0. 00 2 00 0 DO 0. 00 10 0 0 0 0 00 0. 00 0. 00 0. 00 0. 00 0. 00 0 00 0 CALM 0. 00 0 00 24 6 100 6 48 24 00 6. 00 100 00 1. 17 29 4.88 21-.) of Rev. 48 0 WOLF CREEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 26 of 48 JOINT \-liND FREOUt:KY DISTRIBtHIOf>l DY STA!3ILITY CLASS D1\TA PE"RIOD ALL CDrHliNED ST.C.3ILITY CLASS PASQUILl. C WOLF CREEK GENERATING !:iTATION DMTA [1:--,j-SI TE DURLINGTON, KANSAS Nl; SLr>JSDR HEIGHT 60 00 t1ETERS KANSAS GAS AND ELI:C:ClRIC TABLE 11 I 11/81 13 42 02 DAf*!ES AND MOORE JOB NO 7699-064 WIND WitJD CATEGORIES(f";EfERS PER SECOND) !'lEAN SEC TOR 0 0-1. 5 1 5-3 0 3 0-5 0 5 0-7. 7 '5-10. 0 >10. 0 TOTAL SPEED NNE 0 0 0 4 I I 6 7 17 0 00 0 00 0 00 4 21 1. 05 1 05 32 0 00 0 00 0 00 20 05 05 29 NE 0 0 0 3 0 0 3 6 00 0 03 0 00 0 00 3 16 0 00 0 00 J 16 0. 00 0 00 0. 00 15 0 00 0 00 15 EtJE. 0 0 I 3 0 0 4 6. 02 0 00 0 00 1 05 3 16 0 00 0 00 4 0 03 0 00 05 15 0 00 0. 00 20 I 0 1 I 0 0 3 3 93 1 05 0 00 1. 05 I 05 0 00 0 00 J 16 05 0 00 05 05 0 00 0. 00 15 ESE 0 0 1 0 0 0 I 4 80 0. 00 0 00 1. 05 0 00 0 00 0 00 1 05 0 OJ 0 00 05 0. 00 0. 00 0 00 05 SE 0 0 1 I 0 1 3 8. 30 0 00 0 00 I 05 I 05 0. 00 1. OS J 16 0 00 0 00 05 05 0 00 05 15 SSE 0 3 1 3 0 0 7 4 34 0 00 3. 16 1. 05 3 16 0. 00 0 00 7.37 0. 00 15 05 15 0. 00 0 00 34 s 0 2 2 17 3 1 25 6 28 0 00 2. II 2. 11 17. 89 3. 16 1 05 26 32 0. 10 10 83 15 05 1. 22 0 2 3 7 8 0 20 6. 48 0. 00 2. II 3. 16 7 37 8 42 0 00 21. 05 0. 00 10 15 34 39 0. 00 98 sw 0 0 0 3 2 0 5 7 26 0 00 0 00 0 00 3. 16 2 II 0 00 ::; 26 0. 00 0. 00 0. 00 15 10 0. 00 24 0 0 0 0 0 0 0 0 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 () 00 0. 00 0 00 0. 00 0 00 0 00 0. 00 0. 00 w 0 3 0 0 0 0 3 2 37 0 00 3. 16 0. 00 0. 00 0. 00 0. 00 3 16 0. 00 15 0. 00 0 00 0 00 0. 00 15 WNW 0 I I I I 0 4 5. 42 0 03 1. 05 1. 05 1. 05 1. OS 0. 00 " 21 0 00 . 05 05 05 . 05 0 00 20 I 0 0 2 0 0 3 4. 67 1. OS 0 00 0 00 2. 11 0. 00 0 00 :J. 16 05 0 00 0. 00 10 0 00 0 00 15 I I 0 0 0 0 2 1. 95 1. 05 I 05 0. 00 0. 00 0. 00 0 00 . II 05 05 0. 00 0. 00 0 00 0. 00 . 10 N I I I 0 0 3 6 6. 47 1 05 1. 05 1. 05 0 00 0 00 3. 16 b 32 05 OS 05 0. 00 0. 00 . 15 29 CALM 0 0 CALM 0 00 () 00 0. 00 () 00 TOTAL 4 13 12 45 15 6 95 5 95 4 21 13. 68 12. 63 47. 37 15. 79 6. 32 100 00 20 63 59 2 20 73 29 4 64 KEY XX"( Nt..:i"113ER OF OCCURRENCES XXX PERCENT OCCURRENCES THIS CLASS XXX PERCENf OCCURRENCES ALL CLASSES JOHH FREQUEtJCY DISTRIBUTION BY STABILITY CLASS DI1TA PERIOD ALL .JJLY COMBINED ST.t.T31LITY CLASS: PASQUILL D WOLF CREEK GENERATING STATION DATA SOURCE* 0:"\i-SITE KANSAS l-!lrJr) SENSOR HEIGHT: 60 00 METERS KANSAS GAS AND ELECTRIC T.t.BLE GENERATED* 11/11/81 13. 42. 02. DAMES AND MOORE JOB NO: 7699-064 WIND WIND SPEED CATEGDRIES<METERS PER SECOND> MEAN SECTOR 0. 0-1. 5 1. 5-3. 0 3 0-5. 0 5. 0-7. 5 7.5-10.0 >10. 0 TOTAL SPEED NNE 0 0 4 8 7 I 20 6. 97 0 00 0. 00 87 I .,. 1. 53 . 22 4. 36 0 00 0 00 20 39 34 05 . 98 tiE 0 0 3 II I 0 15 S. 77 0 00 0. 00 65 2. 40 22 0. 00 3.27 0 00 0 00 15 . 54 05 0. 00 . 73 5. 71 ENE 0 3 14 19 3 2 41 0. 00 65 3. OS 4. 14 65 44 8 93 0. 00 IS 68 93 15 . 10 2 00 E 0 9 IS 13 0 0 37 4 53 0 00 I 96 3. 27 2. 83 0. 00 0. 00 8. 06 0. 00 44 73 63 0 00 0. 00 l 81 ESE 2 7 14 6 4 l 34 4. 48 44 1. 53 3 05 I 31 87 22 7 41 10 34 68 29 . 20 05 1. 66 SE I 2 7 5 8 l 24 5 90 22 44 1. 53 1. 09 1. 74 . 22 5 23 05 10 34 24 39 . 05 l. 17 SSE 0 5 7 8 3 0 23 4 82 0. 00 I 09 1. 53 1. 74 65 0. 00 ; 01 0 00 24 34 . 39 . 15 0 . 00 12 s 0 6 8 48 21 22 105 7 30 0. 00 I 31 1. 74 10. 46 4. 58 4 79 22 88 0. 00 29 39 2. 34 I. 03 l. 07 5 13 ssw 0 4 11 28 24 5 72 6:89 0. 00 87 2. 40 6. 10 5. 23 1. 09 15 69 0 00 20 54 I. 37 I. 17 24 3 52 0 l 6 4 I 0 12 5 08 0 00 22 I 31 87 22 0. 00 2. 61 0 00 OS 29 20 05 0 00 59 WSW 0 0 4 3 3 0 10 6 09 0 00 0. 00 87 65 65 0. 00 IS 0. 00 0 00 20 15 15 0 00 49 w I 1 3 3 5 2 15 6. 85 22 22 65 65 1. 09 44 3 27 05 05 15 15 24 10 73 w"'w 0 0 1 2 9 0 12 7 83 0 00 0 00 .22 44 I 96 0 00 ;;:. 61 0 00 0. 00 05 10 44 0. 00 59 0 I I 5 7 0 14 7. 04 0 00 22 22 I 09 I 53 () 00 3 05 0 00 05 05 34 0 00 68 I 0 0 4 3 1 9 6. 58 22 0 00 0. 00 . 87 65 22 1 96 05 0 00 0. 00 20 15 05 44 N 0 I 3 6 3 3 16 7 08 0 00 22 65 1. :H 65 65 3 49 0 03 05 15 29 15 15 78 CALM 0 0 CALM 0 00 0 00 0 00 0 00 0 TOTAL 5 40 101 173 102 38 459 6 28 Rev. I 09 71 ;:'2 00 ::17 69 22 22 El 28 100 00 24 95 4 9:! 8 45 4 98 1 86 2.2 41 .(X.( NL'.'1!3ER OF OCCURRENCES XX< f OCCURREtKES THIS CLASS XXX PERCErH OCCURRENCES t.LL CLASSES WOLF CREEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 27 of 48 ,JOINT FREQUt:.NCY DISTRIB\.J":-ION BY STABILITY CLASS DATA PERIOD ALL ,_;.__,LY COMBINED STARILITY CLASS* PASGUILL E WOLF CREEK GENERAT lNG STATION DATA SOURCE Q,\1-Sl TE BURL I KANSAS l.JJ;m SENSOR HEIGHT 60 00 METERS KANSAS GAS AND ELECTRIC TA3LE GENERATED. 11111/81 13 42 02 DAf1ES AND MOORE JOB NO* 7699-064 WIND \..liND SPEED CATEGORIES<METERS PER SECOND> MEAN SECTOR 0 0-1 5 1 5-3 0 3 0 5. 0-7 5 7 5-10 0 :.-to o TOTAL SPEED NNE 0 1 1 9 3 0 14 6 49 0 co 22 22 2. 01 67 0 00 12 0 co 05 o:> 44 15 0 00 6B NE 0 4 4 7 1 0 16 4 6B 0 00 B9 89 1 56 22 0 00 3 57 0 OJ 20 20 34 05 0 00 78 0 1 6 13 2 1 23 5. 98 0 00 22 l. 34 2 90 45 ;?2 13 0 00 05 29 63 10 05 1. 12 0 3 14 19 7 3 46 6 07 OJ 67 3 12 4 24 1. 56 67 10 27 00 15 68 93 34 15 .;:> 25 ESE 0 4 6 5 7 1 23 6 OB 0 00 89 1. 34 1. 12 1. 56 22 5. 13 0 00 20 29 24 34 05 1 12 SE 0 3 8 23 5 0 39 5 B1 0. 00 67 1. 79 5. 13 1 12 0. 00 B. 71 0 OJ 15 39 1. 12 24 0 00 1. 90 SSE 0 2 11 27 12 0 52 6. 25 0 OQ 45 2. 46 6 03 2. 68 0 00 11. 61 0. 00 10 54 1 32 59 0 00 2 54 s 0 1 7 72 45 4 129 7 OB 0 00 22 1. 56 16. 07 10. 04 B9 28. 79 0. 00 05 34 3. 52 2 20 20 6. 30 SS:.J 0 0 4 25 23 1 53 7 30 0. 00 0. 00 B9 5. 58 5. 13 . 22 11. B3 0 00 0. 00 20 1. 22 1. 12 05 2. 59 " 0 2 4 5 4 0 15 5. 88 0. co . 45 89 1. 12 B9 0 00 3. 35 0 00 10 20 24 . 20 0 00 73 WSW 0 0 3 3 5 0 11 6. 70 Q_ Qi) 0. 00 67 67 L 12 0. 00 .. 46 0. 00 0. 00 15 15 24 0. 00 54 w 0 0 1 3 1 0 5 6. 38 0. 00 0. 00 22 67 22 0 00 1. 12 0. 00 0. 00 . 05 . 15 . 05 0 00 24 WNW 0 0 0 2 1 0 3 7. 37 0. 00 0 00 0. 00 . 45 . 22 0 . 00 67 0 00 0. 00 0. 00 . 10 . 05 0 . 00 . 15 NU 1 0 0 4 1 0 6 5. 75 22 0. 00 0 00 89 . 22 0 00 1. 34 . 05 0 00 0 00 20 05 0. 00 . 29 NN:J 1 0 0 4 0 0 5 4. 86 22 0 00 0. 00 . B9 0 00 0 00 1. 12 . 05 0. 00 0 00 20 0. 00 0. 00 24 N 0 0 1 3 4 0 8 7 45 0. 00 0 00 . 22 67 89 0. 00 1 79 Q_ OJ 0 00 . 05 15 20 0 00 39 CALM 0 0 CALM 0 00 0. 00 0. 00 0.00 TOTAL 4; 21 70 224 121 10 44B 6. 49 4 69 15 62 50.00 27 01 2. 23 100 00 10 1. 03 3. 42 10.94 5. 91 49 21.88 KEY xn NUMBER OF OCCURRENCES XXX PERCEtH OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES JOINT WIND DISTRIBUTION BY STABILITY CLASS DATA PERIOD. ALL JULY COMBINED STABILITY CLASS PASGUILL. F WOLF CREEK GENERATING STATION DMTA SOURCE. ON-SITE BURLINGTON, KANSAS l.JINn SENSOR HEIGHT* 60 00 METERS KANSAS GAS AND ELECTRIC T.!.BLE GENEPATED* 11/11/81. 13 42.02 DAMES AND MOORE JOB NO* 7699-064 WIND WINO SPEED CATEGDR IES CMETERS PER SECOND) MEAN SECTOR 0. 0-1. 5 1 5-3. 0 3 0-5 0 5 0-7. 5 7 5-10.0 >10. 0 TOTAL SPEED NNE 0 0 3 7 1 9 20 8. 48 0. co 0 00 B5 1. 97 28 2 54 5 63 0 00 0. 00 15 34 05 . 44 9B NE 0 0 4 3 0 0 7 4. 79 0 co 0 00 1. 13 . B5 0. 00 0 . 00 1 97 0. co 0 00 20 15 0. 00 0. 00 34 ENE 0 0 2 2 2 0 6 5 67 0 00 0 00 56 . 56 56 0 . 00 1 69 0 00 0 00 10 . 10 . 10 0 . 00 29 E 0 0 1 17 12 0 30 7. 13 0 00 0. 00 28 4. 79 3. 38 0. 00 B 45 0 co 0. 00 OS B3 59 0 00 1. 46 ESE 0 2 7 7 13 1 30 6. 58 0 00 56 1. 97 1. 97 3. 66 . 28 B. 45 0. 00 10 34 34 63 05 1. 46 SE 0 1 10 21 7 0 39 5. 95 0. OJ 28 2 B2 5. 92 1. 97 0. 00 10 99 0 00 05 49 1. 03 . 34 0. 00 1. 90 SSE 0 0 9 19 B 0 36 6 43 0. co 0. 00 2. 54 5. 35 2. 25 0. 00 10. 14 0 00 0 00 44 93 . 39 0. 00 1. 76 s 0 2 10 57 27 0 96 6. 67 0. 00 56 2. 82 16 06 7. 61 0. 00 27. 04 0 00 . 10 . 49 2 . 7B 1. 32 0 00 4. 69 ssw 0 0 0 19 15 1 35 7. 35 0 00 0. 00 0. 00 5. 35 4. 23 . 28 9 86 0 00 0. 00 0 00 93 . 73 . 05 1. 71 sw 0 0 . 20 2 2 26 6. 64 0. 00 0 00 5. 63 56 . 56 7. 32 0 00 0. 00 10 . 9B 10 10 1 27 :..JSW 0 0 2 9 1 0 12 6. 07 0 00 0 00 56 2 54 28 0. 00 3 3B 0 00 0. 00 10 44 05 0 00 59 w 0 0 0 2 0 0 2 6. 15 0. 00 0. 00 0 co 56 0. 00 0. 00 56 0 00 0 00 0 00 10 0 00 0. 00 10 WN:.J 0 0 0 0 0 2 4 90 0 00 0. 00 0. 00 0. 00 0 00 56 0 OJ 0. 00 10 0 00 0. 00 0 00 10 NW 0 0 1 0 2 0 3 7 27 0. 00 0 00 28 0. 00 56 0 00 85 0. 00 0 00 05 0 00 10 0. 00 15 Nf\!:..1 0 0 2 2 0 0 4 4 BO 0 OJ 0 00 56 56 0 00 0. 00 1 13 0 00 0. 00 . 10 10 0 00 0 00 20 " 0 0 1 3 3 0 7 7 34 0 00 0 00 28 85 85 0 00 1 97 0 00 0 00 05 15 . 15 0 00 34 CAL;'1 0 0 CALM 0 00 0 00 0 00 0 00 TOTAL 0 5 56 18B 93 13 355 6. 68 0 co 1 41 15 77 52 96 26 20 3 66 100 00 Rev. 0 0 00 24 2 73 9 1B 4 54 63 17 33 KEY tX< NUr1BER OF OCCURRENCES '" f OCCURRENCES THIS CLASS Xxt r OCCURRENCES ALL CLASSES WOLF CREEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 28 of 48 .JlJiiH IHND FREGU£:NCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD ALL ..Jl.-L.Y COMBINED Sf,.",8!LITY CLASS PM>GUILL G o;,r;.. SOURCE 0:"-J-SITE Nt> SEtJSOR HEIGHT 60 00 METERS WOLF CREEX. GENERATING STATION BURLINGTON, KANSAS fi-.DLE GENt.RATED: 11/11/81 13 42 02 1-(.ANSf',S GAS AND TR t C DAME:.S AND t100RE JllB NO* 7699-064 WINO SPEED CATEGORIES(I":ETERS PER SECOND) WHJD SECTOR 0 0-1 5 1 5-3 0 3 0-5 0 5 0-7 5 7 '5-10. 0 ) 10. 0 NE ENE ESE SE SSE s sw WNW NW N CALM TOTAL 0 0 co 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0 00 0 co 0 0 co 0 00 0 0 00 0 00 0 0 OJ 0 00 0 0 00 0 00 0 0 DO 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 Q_ 00 0 0 00 0 co 0 0. co 0 00 0 0 00 0 00 0 0 00 0. 00 0 0 OJ 0. 00 0 0. OJ 0 00 1 51 OS 0 0. 00 0 00 1 51 05 0 0 00 0. 00 1 51 05 0 0. 00 0 00 0 0 00 0 00 1 51 05 1 51 05 0 0 00 0. 00 0 0. 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0 00 5 2. 54 24 0 0 00 0 00 4 2 03 20 2 1 02 10 :2 1. o;..::! 10 4 2 03 20 3 1. 52 15 3 1 52 15 I 51 . 05 1. . 10 1 51 . 05 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 1 51 05 23 11.68 1. 12 1-\EY XXX NUi'18ER OF OCCURRENCES 4 2. 03 20 7 3. 55 34 8 4 06 39 6 3. 05 29 5 2. 54 24 8 4 06 39 7 3. 55 34 10 5. 08 49 10 5. OS 49 14 7. 11 68 2 1 02 10 1 . 51 05 1. o§ . 10 1. 10 2 1. 02 10 4 2. 03 20 92 46.70 4 49 Xx:< PERCENT OCCURRENCES THIS CLASS XXX PERCHH OCCURRENCES ALL CLASSES 1. 10 0 0. 00 0 00 7 3. 55 34 11 5. 58 54 3 1 52 15 3 1. 52 15 13 6. 60 63 13 6. 60 63 6 3. 05 29 7 3 55 . 34 0 0. 00 0. 00 1 .51 05 1 51 05 0 0 00 0. 00 0 0. 00 0. 00 2 1. 02 10 69 35.03 3. 37 JOitH HIND FREQUENCY DISTRIBVTION BY STABILITY CLASS DATA PERICD* ALL uULY COMBINED I 51 05 0 0 00 0. 00 1 51 05 0 0 00 0 00 1 51 . 05 1 51 05 0 0 00 0. 00 0 0 00 0. 00 2 1. 02 . 10 1 . 51 05 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 1 51 05 8 4. 06 . 39 MEAN TDTAL SPEED 8 4 06 39 11 5 58 54 19 64 93 19 '1' 64 93 14 '7 11 68 15 7 61 73 23 11 68 1. 12 25 if' 69 1 22 21 10 66 1 03 23 lJ 68 1 12 2 1 02 10 1. 10 3 1 52 15 1 10 2 1. 02 10 8 4. 06 39 0 0. 00 0. 00 197 lOG. 00 9 62 7 14 555 7. 16 7. 40 6. 04 6. 56 7. 10 7. 38 6 98 6. 91 5. 70 7. 25 6. 33 5. 30 6. 35 7. 57 CALM 6. 90 ALL CLASSES DATA SOURCE: ON-SITE WOLF CREEK GENERATING STATION BURLINGTON, KANSAS WliJU HEIGHT 60 00 METERS TABLE GENERATED: 11/11/81. 13.42.02. KANSAS GAS AND El.ECTR I C DAMES AND MOORE ,JOB NO* 7699-064 WINO SPEED CATEGORIES<ME:TERS PER SECOND> WINO SECTOR 0. 0-1. 5 1. 5-3.0 3 0 5. 0-7. 5 7. 5-10 0 >10. 0 ENE E ESE SE SSE s ssw sw WS:...t w NNW N CAL:-1 TOTAL 0 0 00 0 0. 00 0 0 00 1 . 05 2 10 1 05 0 0. OJ 0 0 00 1 05 0 0. 00 0 0 OJ 1 05 0 0 00 4 20 1 05 0 0 00 13 63 3 15 5 24 8 39 14 68 21 1. 03 8 39 13 63 13 63 10 49 3 15 1 05 5 24 2 10 15 1 05 3 15 112 5. 47 tJ'JMBER C*:= VALID DOS!::RVATIONS w..:r1:JE1-< o.c: Ir ;VAl. I D OBSERVAT I ON:3 TOTAL OF 10 49 19 93 30 1. 46 37 1 81 45 2. 20 32 1. 56 :JB 1. 86 41 2 00 34 1. 66 24 1. 17 12 59 11 54 9 44 5 24 3 15 7 34 357 17 43 2048 104 2232 Xx..< IJUMSER OF OCCURRENCES X X ( PERCErJT OCCURRENCES 47 2. 29 39 1. 90 57 2 78 66 3. 22 30 1. 46 59 2. 88 83 4. 05 260 12.70 150 7. 32 61 2. 98 21 1. 03 14 68 10 49 15 73 13 63 24 1 17 18 88 3 15 17 83 30 1. 46 27 1. 32 23 1. 12 37 1. 81 148 7. 23 113 5 52 21 1. 03 10 49 13 . 63 13 63 10 49 3 15 13 63 949 499 46. 34 24 37 91 76 PCT 8 24 PCT 100 00 PCT 13 .63 0 0. 00 4 20 3 15 4 . 20 4 . 20 1 05 49 2. 39 27 1. 32 3 15 0 0 00 t8 0 0 00 0 0 00 1 05 7 34 118 5 76 MEAN TOTAL SPEED 91 4. 44 66 3, 22 116 5. 66 151 7. 37 129 6. 30 127 6. 20 172 8. 40 511 24 95 335 16.36 112 5. 47 44 2. 15 46 2. 25 34 1 66 34 1 66 25 1 22 55 2. 69 0 0 00 2048 100 00 7. 22 5. 23 6. 00 5. 93 5. 35 5 98 6. 00 7 20 7. 22 6 26 6. 13 5 95 6 42 6. 11 5 22 6 91 CALM 6 Rev. 0 WOLF CREEK TABLE 2.3-32 (Continued) JOIN'T WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 29 of 48 JOINT I.J FREnlJ.::=.:rJCY DISTRIBVT IDr,J DY STABILITY CLASS PEtdOD riLl AUGUST COMBINED STAB I CLASS. PASGUILL A WOLF GENERATING STATION DATA. TE OURLINGTON, KANSAS L.! I SENSOR HEIGHT: 60 00 METERS 1-\ANSAS cr,s AND ELECTRIC TADL!.:. A TED 11 I 11/01 13 51. 50. DAMES AND MOORE JOB NO 7699-064 I.JIND WINO SPEED PER SECOND> t1E'"AN SECl OR 0 0-1 5 1 5-3 0 J 0-5 0 5 0-7 5 7 5-10 0 >10 0 TOTAL SPEED Nt-.!E 1 1 0 1 3 0 A , 73 35 35 0 00 35 1. 04 0. 00 .2 OR 05 05 0 00 05 14 0 00 29 NE 1 0 J 5 0 0 9 4 94 35 0 00 1 04 1. 74 0. 00 0. 00 3 12 05 0 00 14 24 0 00 0 00 43 ErJF 1 0 1 0 0 0 2 2 95 35 0 00 35 0 00 0 00 0 00 69 05 0 00 05 0 00 0 00 0 00 10 E 1 0 1 1 1 0 4 5 72 35 0 00 35 35 35 0 00 1 39 05 0 00 05 05 05 0 00 19 ESE 0 2 2 0 0 0 4 3 07 0 OJ 69 69 0 00 0 00 0 00 1 39 0. 03 10 10 0 00 0 00 0 00 19 SE 0 4 6 1 1 0 12 4. 32 0 OD 1. 39 2 08 35 . 35 0 00 ,, 17 0. CCI 19 29 05 05 0. 00 58 SSE 0 4 9 5 1 21 6. 46 0 03 1. 39 3. 12 L 74 35 7 29 0 03 10 19 43 24 05 1. 01 1 4 12 28 24 20 89 7 49 35 1. 39 4. 17 9. 72 8 33 6. 94 30 90 05 19 58 1. :l4 1. 15 96 4 27 ssw 0 1 8 45 22 3 79 6. 99 0 co 35 2. 78 15. 62 7 64 1. 04 27. 43 0. 00 05 38 2. 16 1 06 14 :J 79 1 2 5 6 3 0 17 5 09 35 69 1. 74 2. 08 1. 04 0. 00 :J 90 05 10 24 29 14 0. 00 82 WSW 0 1 0 0 0 0 1 3. 00 0 00 35 0 00 0 00 0. 00 0. 00 35 0. 00 05 0. 00 0. 00 0. 00 0. 00 05 " 0 0 0 0 0 0 0 0. 00 0 00 0 00 0. 00 0 00 0. 00 0. 00 0 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. DO 0 00 wr-.::J 0 3 2 0 0 0 5 3. 42 0. 03 1. 04 69 0. 00 0 00 0. 00 1. 74 0 00 14 10 0. 00 0. 00 0 00 24 Nri 0 0 2 2 3 9 7. 64 0 00 0 00 69 69 1. 04 :3. 12 0 00 0 00 10 10 14 . 10 43 0 3 4 8 3 1 19 6 06 0 00 1 04 1 39 2 78 1. 04 35 b 60 0 co 14 19 38 14 05 91 N 1 3 1 4 2 0 11 4. 78 35 1. 04 35 1. 39 69 0 00 :J 82 05 14 05 19 10 0. 00 53 CALM 0 0 CALM 0. 00 0. 00 0 00 0 00 TOTAL. 7 26 51 110 67 27 288 6 49 2. 43 9 03 17. 71 38. 19 23 26 9. 37 100 00 34 1 25 2 45 5 28 3. 22 1. 30 13.83 KEY xx:< NUMBER OF OCCURRENCES XXX r OCCURRENCES THIS CLASS XX:< PERCErH OCCURRENCES ALL CLASSES JOINT l.JlND FREOC.:::NCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD. ALL COMBINED STAG ILITY CLASS PASGUILL B WOLF CREE:.<.. GENERATING STATION DATA mJ-SITE BURLINGTON, KANSAS l..II;Jfi SENSOR HEIGHT* 60. 00 METERS KANSAS GAS AND ELECTRIC TABLE GENERATED: 11/11/81 13 :51. 50 DAMES AND MOORE JOB NO: 7699-064 WIND WIND SPEED CATEGORIES(METERS PER SECOND) MEAN SECTOR 0. 0-1. 5 1 5-3. 0 3. 0-5. 0 5 0-7. 5 7. 5-10. 0 >10. 0 TOTAL SPEED NNf 0 0 0 0 2 0 2 8. 90 0 00 0. 00 0 00 0. 00 1. 56 0. 00 1. 56 0 00 0 00 0. 00 0 00 10 0. 00 10 NE 0 0 0 0 0 0 0 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 () 00 0 00 0 00 0 00 0. 00 0 00 0. 00 () 00 ENt:. 0 0 1 0 1 0 2 6. 05 0 00 0 00 78 0 00 78 0. 00 l 56 0 03 0 00 05 0 00 05 0. 00 10 E 0 0 1 0 0 0 1 4 50 0 00 0 00 . 78 0. co 0 00 0. 00 78 0. 00 0 00 05 0. 00 0 00 0. 00 05 ESE 0 1 2 0 0 0 3 3 63 0. 00 78 1 56 0. 00 0 00 0. 00 . 34 0 00 05 10 0. 00 0. 00 0. 00 14 SE 0 2 3 3 0 0 8 4 35 0 co 1 56 2. 34 2. 34 0. 00 0 00 6.25 0 00 10 14 14 0. 00 0. 00 . 38 SSE 0 0 1 0 1 1 3 8 53 0. 03 0 00 78 0 00 78 78 2 34 0. 03 0 00 . 05 0. 00 05 05 14 s 0 0 11 11 15 8 45 7 47 0. 00 0 00 8. 59 8. 59 11 72 6. 25 35 16 0. OJ 0 00 53 53 72 38 16 SS:..J 0 0 3 16 9 3 31 7. 33 0. 00 0 00 2 34 12. 50 7. 03 2. 34 24. 22 0 co 0 00 14 77 43 14 1 49 sw 0 1 4 5 3 0 13 6 01 0 00 78 3. 13 3. 91 2 34 0 00 10 16 0 OJ 05 19 . 24 14 0. 00 62 WSW 0 1 1 0 0 0 2 2 85 0 OJ 78 78 0. 00 0. 00 0. 00 1 56 0 OJ 05 05 0. 00 0 00 0 00 10 w 0 3 2 0 0 0 5 2 62 0 00 2. 34 l. 56 0 00 0 00 0. 00 3 91 0 00 14 10 0 00 0 00 0 00 24 1 1 0 0 0 0 2 1 85 78 78 0 00 0 00 0. 00 0. 00 1 56 05 05 0 00 0 00 0 00 () 00 10 Nw 0 1 1 0 2 0 4 5 80 0. 00 78 78 0 00 1 56 0 00 3 13 0 03 05 05 0 00 10 0 00 19 NN:..J 0 0 () 1 1 0 2 8 25 OJ 0 00 0 00 78 78 0. 00 1 56 co 0 00 0. 00 . 05 05 () 00 10 N 0 0 3 1 0 1 5 5 44 0 03 0 00 2. 34 78 0. 00 78 3. 91 0 00 0 00 14 05 0. 00 05 24 CALM 0 0 CALM 0 0. 03 0.00 Rev. 0 CJ () 00 TOTAL 1 10 3:] 37 34. 13 l;-'8 6. 54 78 7 81 25 7EI 28 91 26. 56 10 16 100 00 05 48 1 59 1 78 1 63 62 " 15 "'E)' XX< NUM!iER OF OCCURRENCES XXX PERCENf OCCURRENCES THIS CL.ASS XX< PERCENf OCCURRENCES ALL CLASSES JOIN'r WOLF CREEK TABLE 2. 3-32 (Continued) WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 30 of JOirH LJrtm FREI)t;,::IKY DISTRIBUTION 3Y STABILITY DATA FER IOD ALL AUGUST COMBINED CU\SS PASGUlLL c D..;r.; CJ-SITE SErE OR HEIGHT 60 00 METERS TMJLE GEtJERt. TED 11/11/81 13 51 50. WIND SPEED CA rEG OR I ES ( PER SECTOR 0 0-1 5 1. 5-3 0 3. 0-5 0 5 0-7 5 NrJE 0 0 1 3 0 OJ 0 00 69 2 07 0 OJ 0 00 OS 14 Nf 0 0 0 0 00 () 00 1 0 00 0 00 0 00 10 0. 00 ENt=" 0 1 " 6 0 00 69 1 :a 4 14 0 co 05 10 29 0 0 0 0 0 OJ 0 00 0 00 0 00 0 00 0 00 0 00 0 00 ESE 0 1 1 2 0. OJ 69 69 1 38 0 OJ 05 05 10 SE 1 0 4 0 69 0 00 2. 76 0. 00 05 0 00 19 0 00 SSE 0 0 5 5 0 OJ 0 00 3. 45 3 45 0. 00 0 00 24 24 s 0 0 2 12 0. 00 0 00 1. 38 8. 28 0. OJ 0 00 10 58 0 0 3 15 0 00 0 00 2. 07 10. 34 0 00 0 00 14 72 sw 0 1 4 3 0 00 69 2. 76 2. 07 0. 00 05 19 14 0 0 1 2 0 00 0 00 69 1 38 0. 0:) 0 00 05 10 w 0 0 2 0 0 00 0. 00 L 38 0. 00 0. 00 0 00 10 0. 00 1 1 0 1 69 69 0. 00 69 . 05 OS 0. 00 05 0 0 0 1 0 0) 0 00 0. 00 . 69 0. 00 0 00 0. 00 05 t-!MJ 0 1 1 1 0. CJ . 69 69 69 0. 00 05 05 . OS N 0 1 3 0 0. OJ 69 2. 07 0. 00 0 00 05 14 0. 00 CALM 0 0 co 0. 00 TOTAL 2 6 31 51 1. 33 4 14 21. 38 35. 17 10 29 1. 4'> 2. 45 KEY XX.( OF OCCURRENCES XXX PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES CLASS WOLF GENERATING STATION BURL_ I NGTON, KANSAS Kt\NSAS GAS AND ELECrRIC Di\MES AND 1'100HE JOG NO: 7699-064 SECOND) MEAN 7 ::>-10 0 ::10 0 rDTAL SPEED 1 0 ,, 6 68 69 0 00 3 05 0 00 0 0 3J 4 25 0 00 0 00 1 () 00 0 00 10 0 0 9 5 49 () 00 0 00 6 ;;:!1 0 00 0 00 1 0 1 a 00 69 0 00 b9 05 0 00 05 0 0 4 5 05 0 00 0 00 2. 76 0 00 0 00 19 0 0 4; 3 58 0. 00 0 00 3 0. 00 0. 00 1 2 13 6 32 69 1. :m 8 97 . 05 10 62 11 8 ::!3 B. 27 7 59 5. 52 22. 76 53 38 1 o9 12 5 ::15 7. 77 8 28 3. 45 24 14 58 ;?4 1. 68 6 2 16 7. 24 4. 14 1.:38 11 03 29 10 77 2 0 5 6 62 1. 38 0 00 3. 45 10 0 00 2 0 4 6. 70 1. 38 0 00 2 76 10 0 00 19 0 0 3 3 80 0 00 0 00 2. 07 0 00 0. 00 14 0 0 1 7 30 0 00 0. 00 69 0. 00 0 00 05 0 1 4 6. 42 0 00 69 2 76 0. 00 05 19 1 0 5 4 76 69 0. 00 3 45 05 0. 00 . 0 CALM 0. 00 0 00 37 18 145 6. 95 25 52 12. 41 100.00 1. 78 86 6. 96 JOINT l,!!NO FREOliC:IJCY DISTRIBUTIDr>l BY STABILITY CLASS DATA PERIOD. ALL AUGUST COMBINED STABILITY CLASS: PASOUILL D DATA ON-SITE SENSOR HEIGHT* 60. 00 METERS T..;BLE 11/11/81 13 51 50. WIND WINO SPEED CATEGDR IES(M£TERS PER SECTOR 0 0-1. 5 1 S-3. 0 3 0-5. 0 5 0-7 5 tJNE 0 2 12 14 o. oa 42 2 53 2. 95 0 OJ 10 sa 67 NE 0 4 11 25 0 00 84 2 32 5. 26 0. OJ 19 53 1 20 ENE 0 3 9 25 0 O*J 63 1. 89 5. 26 0 00 14 43 1 20 2 4 9 17 42 84 1. 89 3. 58 10 19 43 . 82 ESE 1 2 6 7 21 42 1. 26 1. 47 05 10 29 34 SE 0 2 8 8 0. 00 42 1. 69 1. 68 0. 00 10 38 . 38 SSE 0 4 10 20 0. CQ 84 2. 11 4. 21 0. 00 19 48 96 s 0 12 41 0 00 2. 53 B. 63 0 00 10 58 1. 97 ssw 0 1 14 29 0. 00 21 2. 95 6. 11 0. 00 05 67 1 39 sw 1 4 11 6 21 84 2.:12 1. 26 05 19 53 29 0 2 1 2 0 co 42 1 42 0 00 10 05 10 w 0 3 1 1 0 00 63 :::?1 21 0 co 14 05 05 W!\.;.J 0 0 1 1 0 00 0 00 21 21 0 co 0. 00 05 05 0 1 1 2 0 00 21 :;!1 42 0 00 05 OS 10 t 0 0 2 2 0 00 0 00 42 42 0 00 0 00 10 10 N 0 2 2 3 0 co 42 42 63 0 co 10 10 14 CAU1 0 0 co 0 00 TOTAL 4 36 110 203 84 58 23 16 42 74 19 73 5 :::*s 9 75 r'EY XX< OF OCCtJRRDKES XX ( PERCENT OCCURRENCt"S THIS CLASS "' PERCENf OCCURRENCE:S ALL CLASSES WOLF CREE:.\ GENERATING STATION I3URLir.JGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7699-064 SECOND> MEAN 7 5-10 0 >10. 0 TOTAL SPEED 4 3 35 5 97 84 63 7. 37 19 . 14 1. 68 2 1 43 5. 54 . 42 . 21 9 05 10 05 2. 07 3 0 40 5. 61 . 63 0. 00 B. 42 . 14 0. 00 1. 92 7 0 39 5. 35 1. 47 0. 00 B. 21 34 0. 00 1 . 87 3 0 19 5 34 . 63 0. 00 4. 00 14 0. 00 . 91 3 0 21 S. 50 63 0. 00 42 14 0. 00 01 6 5 45 6. 26 1. 26 1. 05 9 47 29 24 2. 16 24 17 96 7. 36 5. 05 3. 58 20 21 1 15 82 4. 61 16 6 66 6 84 3. 37 1. 26 13 89 77 29 3 17 4 2 28 " 32 84 42 5 89 19 10 1. 34 2 0 7 5 56 42 0 00 1. 47 10 0 00 34 1 0 6 4 50 21 0. 00 1. 26 05 0 00 29 1 0 3 6. 00 21 0. 00 63 05 0 00 14 4 0 8 6. 70 84 0. 00 1. 68 19 0 00 38 3 1 8 6 90 63 21 1 68 14 05 38 2 2 11 7 22 42 42 2. 32 10 10 53 0 CALM 0 00 0 00 85 37 475 6. 23 17 89 79 100 00 4 08 78 22 81 Rev. 48 0 JOIN'r WOLF CREEK TABLE 2.3-32 (Continued) WIND FREQUENCY DISTRIBUTION BY CLASS (MONTHLY 60 METERS) Page :OINT DISTRIBUTION BY STABILITY DMfA PERIOD ALL AUGUST Cat1n I NED STA3IllTY CLASS PASGUILL E DATA SOL.RCE TE l :M 5Et,30R HEIGHT 60 00 METERS T;,'lLE GEN:::RATED 11/11/81 13 51. 50 LO:IND HINU CATEGORIES(f""EfERS PER SECTC*R 0 0-1 , 1 5-3 0 3 0-5 0 5 0-7. 5 NE ENE ESE SE SSE SS:...I sw l.J$J w NNW N CAL:-1 TOTAL 0 1 8 12 0 OD 18 1 40 2. 10 0 co 05 58 0 3 8 73 0 co 53 1 40 0 00 14 38 19 0 3 8 11 0 00 :::..3 1 40 1 93 0 00 14 38 53 0 3; 5 12 0 co 89 2 10 0 co 10 24 58 0 2 2 11 0 co 35 35 1 93 0. co 10 10 53 0 3 7 20 0 co 53 1 23 3 50 0 OD 14 34 96 0 3; 10 31 0 00 1. 75 5. 43 0 co 10 48 1 49 0 0 11 92 0 00 0. 00 1. 93 16. 11 0 00 0. 00 53 4. 42 0 1 17 51 0. OD 18 2 98 8. 93 0 00 05 82 2 45 0 1 13 4 0 co 18 2 28 . 70 0. 00 05 62 19 0 1 2 1 0. 00 18 35 18 0. OJ 05 10 05 0 0 1 1 0 OD 0 00 18 18 0 co 0. 00 05 05 0 1 3 3 0. OJ 18 53 53 0. OJ 05 14 14 1 0 3 3; 18 0. 00 53 05 0. 00 14 10 0 1 0 6 0 00 . 18 0. 00 1. 05 0. 00 05 0 00 29 0 0 4 10 o. oa 0. 00 70 1. 75 0. OJ 0 00 19 48 0 0 00 0 co 1 21 102 271 18 68 17. 86 47. 46 05 01 4. 90 13.02 KEY XX ( Nl:MBER OF OCCURRENCES XXX PERCEfH OCCURRENCES THIS CLASS XXX PERCEtH OCCURRENCES ALL CLASSES CLASS WOLF CREEK GEt.JERATING STATION BURLH>lGTON, KANSAS GAS AND ELIC:CTRlC DAf*iES AND MOORE JOB NlJ 7699-064 SECOND> MEAN 7 5-10 0 )10. 0 TOTAL SPEED 3 1 25 6 06 53 18 38 14 05 0 1 16 4. :56 0 00 18 "* 80 0 00 05 77 1 0 23 5 23 18 0 00 4 03 05 0 00 1. 10 2 3 24 6 30 35 53 20 10 . 14 15 3 0 18 5 81 53 0 00 ::! 15 14 0. 00 86 1 0 31 5. 21 18 0. 00 43 05 0. 00 49 20 4 67 6. 94 3 50 70 11 73 96 19 3 22 38 58 199 8 11 6. 65 10. 16 34 85 1 83 2. 79 c; 56 10 12 91 6. 82 1 75 2. 10 , 94 48 . 58 4 37 2 0 20 4. 83 35 0. 00 3 50 10 0. 00 96 2 0 6 5. 40 35 0. 00 1 05 10 0 00 29 0 0 3; 4. 90 0 00 0 00 0. 00 0. 00 . 10 1 1 9 6 16 18 18 1 58 . 05 05 43 0 1 7 5 64 0. 00 18 1 23 0. 00 05 34 3 1 11 6 77 53 18 1. 93 14 05 53 5 3 22 7. 10 88 53 3. 85 24 14 1. 06 0 CALM 0.00 0.00 91 85 571 6 88 15 94 14. 89 100.00 4 37 4. 08 27 43 .JOINT t.JIND DISTRIBUTION BY STABILITY CLASS DATA PERIOD: ALL HUGUST COMBINED STI.BILIT'r' CLASS: PASQUILL F DATA SOURCE. ON-SITE SENSOR HEIGHT: 60. 00 METERS TABLE GENERI.TED* 11/11/81 13. 51. 50. WIND Wlr.JO SPEED CATEGORIES<METERS PER SECTOR 0. 0-1. 5 1. 5-3 0 :J. 0-5.0 5. 0-7. 5 NE ENE E ESE SE SSE SSW sw W5:.J w NW t-.:0.1;..1 CAU1 TOTAL 0 0 3 2 0 00 0. 00 98 65 0. OD 0. 00 14 10 0 2 4 4 0 00 65 1 31 1 31 0. 00 . 10 . 19 . 19 0 0 0 3 0 OD 0. 00 0. 00 98 0. 00 0. 00 0. 00 14 0 1 1 7 0. 00 33 33 2. 29 0 00 05 . 05 34 0 0 2 1 0 00 0 00 . 65 33 Q_ 00 0. 00 10 . 05 0 2 2 13 0 00 65 65 4 25 0. co 10 . 10 . 62 1 1 3 25 ?3 33 . 98 8 17 05 05 14 1 20 0 3 4 40 0 O-J 98 1 31 13. 07 0 O-J 14 19 1 92 0 0 5 15 0 co 0 00 1 63 4. 90 0 00 0. 00 24 72 2 1 6 8 65 33 1 96 2 61 10 05 29 38 0 1 3 2 0 00 33 98 65 0. 00 05 14 10 0 6; 3 5 0 00 9a 1 63 0. 00 10 14 24 0 0 1 0 0 00 0 00 33 0 00 0. 00 0 00 05 0 00 1 2 4 6§ 33 65 1 31 05 10 19 10 1 0 3 6 23 0 00 98 1 96 05 0 00 14 29 0 0 2 5 0 00 0. 00 65 1. 63 0 00 0 00 10 24 0 0 co 0 00 , 15 46 138 1 e3 4 90 15 03 45 10 2.; 72 2. 21 6 63 KEY X X ( OF OCCURRENCES XXX PERCEtH OCCURRENCES THIS CLASS XXX PERCENr OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAI'lES AND MOORE .JOE NO: 7699-064 SECOND) MEAN 7 5-10. 0 >10. 0 TOTAL SPEED 0 1 6 5 77 0 00 . 33 1 96 0 00 05 29 0 0 10 4. 28 0 00 0. 00 3 27 0. 00 0 . 00 48 4 1 8 8 61 1. 31 33 61 . 19 05 38 4 1 14 6. 85 1. 31 33 4 58 . 19 05 67 4 1 8 7. 87 1. 31 . 33 2 61 . 19 . 05 38 12 1 30 7 17 3. 92 33 9 80 58 . 05 1 44 7 8 45 7 38 2. 29 2. 61 14 71 . 34 38 2 16 25 20 92 7 98 8. 17 6. 54 30 07 1. 20 96 4 42 3 4 27 6 91 . 98 1 31 8 82 14 19 1 30 0 2 19 5 37 0. 00 . 65 6 21 0 00 10 91 0 0 6 4. 63 0 00 0 00 l 96 0 00 0 00 29 0 1 11 5 46 0 00 33 3 59 0. 00 05 53 0 0 1 4 20 0. 00 0. 00 33 0. 00 0 00 05 0 1 10 4 89 0. 00 33 3 27 0 00 05 48 1 0 11 5 66 . 33 0. 00 3 59 05 C. 00 53 0 1 8 6 39 0 00 33 "* 61 0 00 . 05 38 0 CALM () 00 () 00 60 42 :!06 6. 96 19 61 13 73 100 00 2 88 2 02 14 70 31 of Rev .. 48 0 WOLF CREEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 32 of 48 JOirH DISTRIBUTION BY STABILITY CLASS DATA PERIOD All ,;u:;usr COMBINED CLASS. PASOUILi.... G D.; T I, I TE WOLF CREEK GENERATING BUHL I NGTON. KANSAS SEN:30R HEIGHT .':.0 00 METERS KANSM-> GAS AND EU C 1 C TAGLE GENc_RATEU 11/ll/81 t:J 5150 DAI'1E:S AND MOUHE JCIU 1\!C: 7699-064 Wlt.W SPEED CATEGDRIES<METERS PER SECOND) llllND SECTOR ou-t.5 t5-3D Jo-so so-7s 75-to.o :;too Nt./E EN:::. ESE SE SSE s SS:..J SW N CAt M TOTAL 0 0 00 0 00 0 0 00 0 OJ 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 OJ 0 OJ 0 0 00 0 00 0 0 OD 0 00 1 59 05 0 0 00 0 00 0 0 00 0. OJ 1 59 05 0 0. 00 0. 00 0 0. 00 0. 00 0 0 OJ 0 00 1 59 05 0 0. 00 0 co 3 1. 78 14 0 0 00 0 00 1 59 05 0 0 oo 0 00 1 59 05 0 0 00 0 00 0 0 00 0 00 0 0 oo 0 00 0 0 00 0 00 0 0 oo 0 oo 1. 10 0 0 00 0. oo 0 0 oo 0. 00 1 59 05 0 0 00 0 00 0 0. oo 0 00 0 0. oo 0 oo 5 2. 96 24 1 10 s 96 24 7 4 14 34 4 2 37 19 " 1. 1B 10 1 5'1 05 4 2. 37 19 1 10 () 0 00 0. 00 L 10 1. 10 3 1. 78 14 1 59 05 1 59 05 3 1. 78 . 14 1 1§ . 10 41 24. 26 1 97 KEY XXX OF OCCURRENCES 0 1 /8 14 0 0 00 0. 00 2 1 18 10 5 2 96 24 5 2 96 24 8 4 73 38 1 09 05 5 2 96 24 7 4. 14 34 5 2. 96 1 59 05 1 . 59 . 05 6 3 55 . 29 1 59 05 3 1. 78 . 14 3 1. 78 14 56 33. 14 2 69 XX.( PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 3 1 78 14 1 59 05 6 3. 55 29 3 1. 78 14 6 3. 55 29 4 2 37 19 1 59 05 0 0 00 0. 00 0 0 00 0 00 0 0. 00 0 00 1 59 05 0 0 00 0 00 0 0 00 0 00 25 14. 79 1. 20 JOINT IHND DISTRIBUTION BY STABILITY CLASS DATA PERIOD ALL AUGUST COMBINED 0 0 00 0 00 0 0 00 0. 00 0 () 00 0 00 0 0. 00 0. 00 1 59 05 4 37 19 3 1 78 14 16 9 47 77 15 B 88 72 0 0 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 39 23 08 1 87 MEAN TCJTAL SPEED 5 96 24 6 55 29 9 33 43 13 7. 69 62 9 5 33 43 19 11 24 91 11 6. 51 53 29 17. 16 1 39 27 15. 98 1 30 10 92 48 3 1 78 14 5 2 96 24 8 4 73 38 3 1. 78 . 14 6 ::! 55 29 6 3. 55 29 0 0 00 0. 00 169 100.00 8. 12 5 46 3 93 4. 56 5 75 6. 80 7 94 7 57 9 78 9 59 5 42 4. 53 3. 76 5. 80 6. 43 5. 02 4. 60 CALM 7 19 ALL CLASSES DATA SOURCE: 0:\1-SI TE WOLF CREEK GENERATING STATION BURLINGTON. KANSAS WINO SENSOR HEIGHT* 60 00 METERS KANSAS GAS AND ELECTRIC TABLE 11/11/81. 13.51.50 DAMES AND MOORE J03 NO: 7699-064 WIND SECTOR Wlt-JO SPEED CATEGORIES<ME:TERS PER SECOND) MEAN 0. 0-1. 1. 5-3.0 3. 0-5 0 5. 0-7. s 7 5-10.0 >10. 0 NtJE ENE E ESE SE SSE s SS:..J TOTAL 1 05 1 05 1 05 3 14 1 05 1 05 1 05 1 05 1 05 4 19 0 0. OJ 1 05 2 10 1 05 2 10 0 0 co 23 1 10 4 19 10 48 7 34 8 38 8 38 13 62 9 43 9 43 3 14 12 58 6 29 8 38 7 34 4 19 5 24 6 29 119 5 72 C!= V,'.t,L I D OOS!.::R'*JAT I OtJS o;:-IrNt..l ID OOSERVATIONS TOTAL OF 1 ON3 26 1 25 33 1 59 28 1 34 21 1. 01 17 82 31 1. 49 37 1. 78 54 2. 59 50 2. 40 45 2. 16 10 48 12 58 8 38 1:? 58 13 6:2 17 82 414 19 83 "'E XX ( rJVr1UER OF <X< PERCENT OCCURREtKES 35 1. 68 38 1. 83 47 2 26 42 2. 02 26 1 25 53 2. 55 91 4 37 229 11.00 178 8 55 37 1. 78 8 38 8 38 11 53 10 48 27 1. :30 26 1 25 93 28 PCT 6 72 PCT 100 00 PCT 13 62 9 43 18 86 11 53 23 1 10 43 2. 07 143 6. 87 76 3 65 19 91 6 29 3 14 10 48 11 53 10 48 399 19 16 5 24 2 10 1 . 05 4 . 19 5 24 24 1. 15 147 7. 06 48 2. 31 6 29 0 0 00 1 05 1 05 4 19 4 19 7 34 261 1:2 54 TOTAL SPEED 84 4.03 86 4. 13 93 4 47 96 4. 61 65 3. 12 126 6.05 205 CJ. 85 2a. oo ::156 17. 10 123 91 30 1 44 33 1 59 31 1 49 42 ;? 02 61 < 93 68 :J 27 0 0 00 ;:*os2 100 00 6 05 5. 01 5. 61 5. 89 5. 75 5 93 6. 86 7. 92 7. 22 S. 55 S. 15 4 72 5 04 6 20 6 22 6 15 CALM 6 70 Rev. 0 WOLF CREEK TABLE 2. 3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 33 of 48 .JOIIH t.JirW DISTRI3UTION IJV STABILITY CLASS DATA PERIOD AlL SEPTEMGER C.JMDINED STI.I31LITY CLASS. PASGUILL A 01. T H Q.\1-S I TE \..!I :*JU SCI\'SOR HEIGHT 60 00 METERS Tt..nLE GEr-lC:RATED 11/11/81. 13 WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND EU .. CTR I C DAMES AND 110URE .JUB NlJ 7699-064 WIND SEC TOR WINO SPEED CATEGORIESCMErERS PER SECOND> 00-151.5-30 30-50 !:10-75 75-10.0 >tOO MEAN NE E ESE SE SSE s SS<4 S>J WSW w N CAL:-! TOTAL 1 35 OS 0 0 OD 0 OJ 0 0 00 0 OJ 0 0 00 0 00 0 0 00 0 70 10 2 70 10 0 0. 00 0 00 1 3S OS 0 0 co 0. 00 0 0. 00 0 00 1 3S 05 0 Q_ 00 0. 00 0 0. 00 0. 00 0 0 00 0 OJ 0 0 00 0. 00 0 0. co 0. 00 7 2 46 34 0 0 oo 0 00 3 1 05 14 1 3S OS 0 0 00 0 00 4 1 40 19 5 1. 75 24 75 10 4 1. 40 19 9 3 16 43 6 2 11 29 3 1. 05 14 3 1. 05 14 3 I OS 14 1 3S OS I 3S OS 0 0 00 0 00 45 15 79 2 16 6 2 11 2'1 6 2 11 2'71 0 0 00 0 00 1 3S OS 70 10 10 3 51 4>3 IS 5. 26 72 13 4. 56 10 3. 51 48 *1 1. 40 19 1 35 OS 9 3 16 43 2 70 10 0 0 00 0. 00 1 35 OS 1 35 OS 81 28 42 3 88 KEY XX,( NU:1!3ER OF OCCURRENCES 10 3 51 48 4 1. 40 19 7g 10 0 0 00 0 00 5 1 75 24 6 2 11 29 7 2. 46 :l4 11 3 El6 . 53 12 4. 21 58 . 10 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 1 . 35 . 05 5 1. 75 . 24 15 5. 26 72 80 28.07 3. 84 XXX PERCENf OCCURRENCES THIS CLASS XXX PERCENf OCCURRENCES ALL CLASSES 4 1 40 19 I 35 05 4 1. 40 19 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0. 00 14 4. 91 67 8 2. 81 38 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 4 1. 40 19 14 4. 91 67 49 17 19 2. 35 10 0 0. 00 0 00 1 35 OS 0 0 00 0 00 0 0 00 0. 00 3 1 OS 14 5 I 75 24 I 35 . OS 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 11 3. 86 53 23 8. 07 l. 10 TOTAL SPEED 23 8 07 1. 10 14 4 91 67 8 2. 81 38 1 35 OS 11 J. 86 53 26 9. 12 1 25 31 10.88 1 49 43 15 09 2.06 40 14. 04 1. 92 12 4 21 58 4 1 40 19 13 4. 56 62 5 1. 75 24 2 70 . 10 11 3. 86 53 41 14 39 1. 97 0 0 00 0 00 285 100 00 13 66 6 66 4. 56 7 92 3 40 4 35 4. 73 5. 23 6 01 5. 35 3 49 2 70 3. 40 3. 02 4. 35 6. 58 B. 30 CALM 5. 69 JOir.JT tn:m FREQUt:rJCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD: ALL SEPTEMBER COMBINED STAB IL lTV CLASS: PASGUILL I3 DATA SQU;1:CE. l.JINO SENSOR HEIGHT 60. 00 METERS TABLE GENFRATED: 11/11/Bl 13 56. 54. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7699-064 WIND SECTOR WirJO SPEED CATEGORIESU1ETERS PER SECOND) MEAN NtJE ENE ESE SE SSE s sw WSW w N CALK TOTAL o 5 1. s-3. o 3 o-s. o 5. o-7. 5 7 s-10 o >10. o 0 0. 00 0. 00 0 0 00 o oa 0 0 00 0. 0() 0 0 00 0. 0() 0 0 OJ 0. 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0. 00 0. co 0 0. 00 o. oa 0 0 00 0 OJ 0 0. OJ o. oa 0 0. 00 0. 00 0 0 00 0 00 0 0 OJ 0 00 0 0. 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 2 1 64 10 0 0. 00 0. oo 0 0 00 0 00 1 82 05 2 1. 64 10 1. 1?* 82 05 1 82 05 1 82 05 1 10 0 0. 00 0. 00 0 0. 00 0 00 1 82 05 0 0 oo 0 00 13 10 66 62 4 3. 28 19 4 3. 28 19 4 3. 28 19 0 0. 00 0. 00 4 3. 28 19 1 82 . 05 ,, 4. 92 29 11 9 53 5 4. 10 24 3 2. 46 14 1 05 1. 10 l 82 05 {) 0 00 0 00 1 s;;.' 05 0 0 00 0 00 47 :.18 2 25 KEY XX ( NU:1fiER OF OCCURRENCES 1 82 05 0 0. 00 0. 00 3 2. 46 14 2 1. 64 . 10 1. . 10 3 2. 46 14 3 2 46 14 6 4. 92 29 5 4. 10 24 1. 10 1 . 82 . OS 0 0. 00 0 00 0 0. 00 0 00 0 0 00 0 00 2 1. 64 10 1. 10 32 26 23 1 53 XX< PERCENf OCCURREtJCES THIS CLASS XX.( PERCEtH OCCURRENCES AL.L CLASSES 3 2. 46 14 0 0. 00 0. 00 1 . 82 05 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 5 4. 10 24 3 2. 46 14 3 2. 46 14 0 0 00 0. 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0. 00 3 2 46 14 1 82 05 19 15 57 91 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0 00 0 0. 00 0 00 0 0. 00 0. 00 1 82 . 05 I 82 05 4 3. 28 19 3 2 46 14 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0 00 0 00 1 10 11 9. 02 53 TOTAL SPEED 8 6. 56 38 4 3 28 19 10 B. 20 48 2 1. 64 . 10 6 4. 92 29 6 4. 92 29 17 13 93 81 26 21. 31 1. 25 17 13 93 81 6 4. 92 29 3 2 46 14 4 3 28 19 1 82 05 0 0 00 0. 00 7 5 74 34 5 4 10 24 0 0. 00 0. 00 122 100 00 5 85 6. 05 3. 90 4. 76 6. 50 4. 42 5. 77 6. 16 6. 04 6 8S 4 68 4 40 2 85 4. 40 0 00 5. 94 8 40 CALM 5 78 Rev. 0 JOINT WOLF CREEK TABLE 2.3-32 (Continued) WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page JOINT i>IIND FREGUGJCY DISTRI13UTIOr>! BY STAlllLITY DAfA PERIOD ALL SEPTEMBER COMU INED STMBILITY CLASS PASGUILL c D.t.TA SOURCE TE tJ I ;JO SENSOR HEIGHT. 60. 00 MfTERS T Alll.E GENt.RATED 11/11/EH. 13. 54 WIND WIIW SPEED CAlEGOFtiES(f"':ETERS PER SECTOR 0 0-1. 5 1 J-3 0 3 u-5 o J. Q-7 5 1\:NE tJE Et\:1:_ ESE SE SSE s SSl.J sw w NW N CAL :1 TOTAL KEY 0 0 4 1 0. 00 0 00 74 93 0. 00 0. 00 19 05 0 0 3 2 0 00 0 00 2 80 1 87 0 00 0 00 14 10 0 1 0 0 0 00 93 0. 00 0 00 0 00 as 0 00 0 00 0 1 0 1 0 00 93 0. 00 93 0 00 05 0 00 05 0 1 1 0 0 00 93 93 0 00 0. oo 05 05 0 00 0 1. 4 0 DO 3 74 1 0 co 10 19 10 1 1 7 6 93 93 6 54 5 61 05 05 34 29 0 2 8 9 0. 00 1 87 7 48 8 41 0. 00 10 38 . 43 1 1 1 4 93 . 93 93 3. 74 05 05 05 19 0 1 1 4 0. 00 93 93 3. 74 0. 00 05 05 19 0 0 1 0 0. Q;) 0 00 93 0 00 0. 00 0 00 05 0 00 0 0 0 0 0. 00 0 00 0 00 0. 00 0. 00 0 00 0 00 0. DO 0 1 1 0 0. 00 . 93 93 0 00 0. 00 05 05 o. 00 0 0 1 1 0. co 0. QO 93 93 0. 00 0 QO . 05 05 0 1 0 2 0. 00 93 0 00 1. 87 0 00 05 0. DO 10 0 1 0 0 0. 00 93 0 00 0 00 0. 00 05 0. 00 0 00 0 0 00 0. 00 2 13 32 32 1 87 12. 15 29. 91 29 91 10 62 1. 53 1 53 XX.( NUMBER OF OCCURRENCES XXX PEfiCENf OCCURRENCES THIS CLASS XX:< PERCENT OCCURRENCES ALL CLASSES CLASS WOLF CREE:.<. GENERATENG BURLINGTON, KANSAS GAS AND E.LECTR I C DAI'lES AND MOORE JOB NO 7699-064 SECOND> MEAN 7 5-10 0 )10. 0 TOTAL SPEED 7 1 13 7 43 6. 54 93 12 15 34 05 62 1 0 6 5. 40 93 Q_ 00 5 61 05 0 00 29 1 0 2 6. 20 93 0. 00 1. B7 05 0 00 10 1 0 3 4 90 93 0 00 2. uo 05 0. 00 14 1 0 3 5 10 . 93 0. 00 2 BO 05 0 00 14 0 0 8 3 89 0 00 0 00 7. 48 0. 00 0. 00 38 0 2 17 5 36 0. 00 1 87 15. 09 0. 00 10 !31 3 2 6. 02 2. 80 1. 87 22 43 14 . 10 1 15 2 1 10 6., 1. 87 93 9 35 10 05 48 1 0 7 5 80 93 0 00 6. 54 05 0. 00 34 0 0 1 4 40 0. 00 () 00 '13 0. DO 0 00 05 0 0 0 0 00 0. 00 0 00 0. 00 0 00 0. 00 0. 00 0 0 2 3 00 0. 00 0. 00 1 87 0. 00 0. 00 10 2 0 4 7. 17 1. 87 0 00 3. 74 . 10 0 . 00 19 2 0 5 6 24 1. 87 0. 00 4 67 10 0. 00 . 24 1 0 2 5. 90 93 0 00 1. 87 05 0. 00 . 10 0 CALM 0 00 0 00 22 6 107 5. 84 20. 56 5. 61 100.00 1. 05 29 5. 13 JOHH HIND FREGUEI>JCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD ALL SEPTEMBER COMBINED STAI3ILIT'!' CLASS: PASOUILL D DATA SOURCE: ON-SITE SENSOR HEIGHT* 60 DO METERS TABLE GENERATED: 11/11/81. 13.56.54. WIND WINO SPEED CATEGORIES<METERS PER SECTOR 0. 0-1. 5 1 5-3. 0 3 0-5 0 5. 0-7. 5 NNE 2 2 8 8 37 37 1. 47 1. 47 10 . 10 28 38 NE 0 10 7 4 0. 00 1 84 1. 29 74 0 00 48 34 19 ENE 0 4 5 11 o. oa 74 92 2. 02 0. 00 . 19 24 . 53 E 0 5 8 23 0. 00 92 1. 47 4. 23 0 00 24 3i3 1. 10 ESE 0 5 15 8 0. 00 92 2. 76 1 47 0. 00 24 72 38 SE 1 6 7 21 18 1. 10 1. 29 3. 86 . 05 29 34 1 01 SSE 1 7 12 11 . 18 1 29 2 21 2 02 05 34 . 58 53 s 1 6 18 24 18 1. 10 3 31 4. 41 05 29 86 1. 15 ssw 1 10 10 17 18 1. 84 1. B*J 3. 12 . 05 48 48 81 sw 0 8 10 0 03 1 47 1 84 0. 00 10 38 48 WSW 0 3 2 0 00 55 37 37 0 00 14 10 10 w 1 4 0 18 74 3"1 0 00 05 19 10 0 00 WtJW 0 1 3 2 0 00 18 . 5!:> 37 0 00 05 14 10 0 4 3 11 0 00 74 55 2. 02 0 03 19 14 53 0 1 30 0 00 18 37 5. 51 0 00 05 10 1 44 N 0 2 s 28 0 00 37 5. 15 0. co 10 24 1 34 CALM 0 0 00 0 00 TOTAL. 7 72 11 s 210 1 29 13 24 ;!1 14 38 60 34 3 45 5 51 10 01 1-<EY Xx.< NU11BER OF OCCURRE"NCES 0.( r OCCURRrNC.ES THIS CLASS (X;( r OCCURRENCES ALL CLASSES WOLF CREEK GENERAl"ING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTR l C DAf1ES AND MOORE J[JB NO: 7699-064 SECOND> MEAN 7. 5-10. 0 :>10. 0 TOTAL SPEED 8 10 38 7 13 1. 47 1. 84 6. 99 . 38 .48 1. 82 5 1 27 4 70 92 18 4. 96 24 . 05 1. 29 6 0 26 5. 88 1. 10 0. 00 4. 78 29 0. 00 1. 25 9 2 47 6 10 1. 65 37 B. 64 . 43 10 2. 25 4 0 32 4. 97 74 0. 00 5. 88 . 19 0. DO 1 53 0 1 36 4. 92 0. 00 . 18 6 62 0 00 . 05 1. 73 6 7 44 6 20 1 10 1 29 8. 09 29 34 2 . 11 18 19 86 7 23 3. 31 3. 49 15. 81 . 86 91 4 12 2 3 43 5 45 37 55 7. 90 10 . 14 2 . 06 1 0 21 5 23 18 0 00 3. 86 05 0 00 1. 01 2 0 9 4 97 37 0 00 1. 65 . 10 0. 00 43 2 0 9 3 69 37 0 00 1 65 10 0. 00 43 0 0 6 4 32 0. 00 0. 00 1. 10 0. 00 0 00 29 3 2 23 5 95 55 37 4. 23 14 10 1. 10 10 2 45 6 86 1. 84 37 8 27 48 10 2 16 14 3 52 6 97 2 57 55 9 56 67 14 2 49 0 CALM 0 00 0 00 90 50 !)44 6 11 16 54 9 19 100 00 4 31 2. 40 26. 08 34 of Rev. 48 0 JOINT WOLF CREEK TABLE 2. 3-32 _(Continued) WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page .JOINT FREQUC:NCY DISTRIBUTION IJY STABILITY DATA PFN IOD AlL SEPTEMBER COMLl I STAG ILITY CLASS: PASGUILL E DATI. ON-51 TE L.JlND SENSOR HEIGHT 60 00 METERS TABLE GENERATED 11 I 11/81 I" ,. 54. WIND WIND SPEED SECTOR 0. 0-1. s 1. S-3 CATEGORIES<METERS PER 0 3 0-5 0 5 0-7 5 N:-JE NE ESE SE SSE s ssw SW WSW w WNW NW Nt.U-1 N CAL:-1 TOTAL 0 I 3 2 0. Q\) 24 71 48 0 00 05 14 10 0 3 5 5 0 00 71 I 19 I 19 0 00 14 24 24 0 2 7 2 0 00 48 I 66 48 0 00 10 34 10 0 4 9 9 0 00 95 14 2 14 0 co 19 43 43 0 4 3 8 0. 00 95 71 1. 90 0 00 19 14 "8 I 3 17 15 24 71 4 04 3 56 05 14 81 72 0 3 11 31 0 00 71 2. 61 7. 36 0. 00 14 53 1. 49 1 7 10 39 24 1 66 2. 38 9. 26 05 34 48 I 87 0 2 9 21 0. 00 48 2. 14 4 99 0 00 10 43 1. 01 0 5 8 5 0. 00 1. 19 1. 90 1. 19 0. co . 24 38 . 24 0 0 3 3 0. 00 0. 00 . 71 . 71 0 00 0 00 14 14 1 2 1 24 48 24 10 05 10 . 05 0 0 I 0 0. 00 0. 00 24 0 00 0. 00 0. 00 OS 0. 00 1 3 4 I 24 71 95 24 05 14 19 . 05 1 0 5 3 24 0. 00 1. 19 71 OS 0 00 24 . 14 2 4 I 6 48 95 24 1. 43 . 10 19 05 29 0 0 co 0. 00 B 42 98 151 1. 90 9 98 23 28 35. 87 38 2. 01 4 70 7. 24 KEY XXX NUM8ER OF OCCURRENCES ,(X.'< PERCENf OCCURRENCES THIS CLASS XX:< PERCENT OCCURRENCES ALL CLASSES CLASS WOLF CREEK GENERATING BURL I t-lGTON. KANSAS GAS AND I:.LECTR [C DAMES AND MOORE J()I3 ND 7699-064 SECOND> MEAN 7 5-10 0 ">10. 0 TOTAL SPEED 3 2 11 6 83 71 48 61 14 10 53 0 0 !;) 4 71 0. 00 0. 00 :3.09 0 00 0 00 62 8 3 22 6 99 1. 90 71 ::l. 23 38 14 1. 05 7 I 30 5 71 1 66 24 7 13 34 05 44 0 0 15 4 80 0. 00 0. 00 3 56 0 00 0. 00 72 9 4 49 5 95 2. 14 95 11 64 43 19 35 18 9 72 7 06 4. 28 2. 14 17. 10 86 43 3. 45 15 18 90 7. 10 3. 56 4 28 21. 38 72 86 4. 31 2 1 35 5. 79 48 24 B 31 10 05 I 68 2 0 20 4. 47 48 0. 00 4 75 10 0. 00 96 0 0 6 4 38 0 00 0. 00 I 43 0. 00 0. 00 29 0 0 6 2. 92 0. 00 0. 00 I 43 0 00 0. 00 29 1 0 2 6 45 24 0. 00 48 . OS 0. 00 10 1 I 11 4. 68 . 24 24 ,, . 61 05 . 05 . 53 2 0 11 5 55 48 0. 00 61 10 0. 00 53 11 4 28 7. 07 2 61 95 " 65 53 . 19 I 34 0 CALM 0 00 0 00 79 43 421 6. 2:5 18. 76 10.21 100 00 3. 79 2. 06 20. 18 JOINT FREIJUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD* ALL SEPTEMBER COMBINED STABILITY CLASS: PASGUILL F DATA ON-SITE l..! I NO SENSOR HEIGHT. 60 00 METEP.S TABLE 11/11.181 13 56.54 WIND WINO SPEED CATEGORIES (METERS PER SECTOR 0. 0-1. 5 1. 5-3 0 3 0-5 0 5. 0-7. 5 NNE 0 0 0 4 0 co 0 00 0 00 I 24 0. 00 0. 00 0 00 . 19 NE 0 I 2 3 0 00 31 62 . 93 0. 00 05 10 . 14 Ef'!E 0 1 3 2 0. co 31 . 93 . 62 0 00 05 14 . 10 E 0 0 4 7 0. DO 0. 00 1. 24 2. 17 0. 00 0 00 19 34 ESE 0 1 2 17 0 00 31 62 5. 28 0. co 05 10 81 SE 0 I 7 31 0 00 31 2. 17 9 63 0 co 05 :34 1. 49 SSE 0 3 5 25 0 00 93 1. 55 7 76 0. 00 14 24 1 20 5 0 4 16 34 0 00 I 24 4. 97 10. 56 0 OQ 19 77 1 63 SS:..J 2 I 9 8 62 31 2. 80 2 48 10 05 43 38 sw 0 4 4 8 0 00 I 24 I 24 2 48 0 00 19 19 38 ws:..s 0 2 4 I 0 00 62 1 31 0 co 10 19 05 w 0 2 I 0 00 62 :31 0 00 10 OS 10 J:..S 1 I 0 2 31 31 0 00 62 05 05 0 00 10 NW 0 3 3 2 0 co 93 93 62 0. co 14 14 10 rJ:-..::.z 1 3 I 1 31 93 :31 31 05 14 05 05 " 0 4 I 6 0 00 I 24 :n I 86 0. co 19 05 29 CALM 1 31 05 TOTAL. 5 31 62 I 53 I 55 9 63 19 47. 52 24 I 49 2 7 7. 33 1-'EY XX"< f'JI..;MUER OF OCCUFIRENCE:S AX.< f OCCURRnKES THIS CLA[)S f.. X"< PERCEtJ f OCCURREtKES ALL CLASSES WOLF CREEX GENERATING STATION BURLINGTON. KANSAS GAS AND ELECTRIC DAMES AND MOORE NO: 7699-064 SECOND) MEAN 7. 5-10.0 :>10. 0 TOTAL SPEED 5 4 13 8. 48 1. 55 1. 24 4. 04 24 19 62 1 0 7 5. 33 31 0. 00 2. 17 05 0 00 34 4 4 14 7 64 1. 24 1 24 4. 35 19 19 . 67 4 0 15 6 19 1. 24 0 00 4. 66 19 0. 00 72 1 0 21 6. 1:5 . 31 0 . 00 6 52 OS 0. 00 1. 01 10 0 49 6. 31 3 11 0. 00 15. 22 48 0. 00 2 35 12 0 45 6. 18 3. 73 0. 00 13. 98 . 58 0 . 00 2. 16 10 0 64 5. 87 3. 11 0. 00 19 88 48 0. 00 3 07 3 0 23 5 26 . 93 0. 00 7 14 14 0. 00 1. 10 0 0 16 4. 99 0. 00 0. 00 4. 97 0. 00 0 00 77 0 0 7 3 79 0. 00 0 00 2. 17 0. 00 0 00 34 0 0 5 4. 10 0. 00 0 00 1. 55 0 00 0 00 24 0 0 4 3 77 0 00 0. 00 1 24 0 00 0. 00 19 0 0 8 4. 45 0. 00 0. 00 2 48 0 00 0 00 38 3 0 9 4 66 93 0. 00 2 80 14 0. 00 43 6 4 21 6 82 1 86 I 24 52 29 19 01 I CALM 31 05 59 12 :J22 5 97 18 32 3 73 100 00 2 83 ,8 15. 44 35 of Rev. 48 0 WOLF CREEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 36 of 48 JUirH FREOUErJCY STABlLITY CLASS Oh T A PER I DO ALL SEPTEMBER COMB INE:O STABILITY CLASS PASOVILL G D.t.Tt. SOURCE SENSOR HEIGHT 60 00 METERS WOLF CREEK GENERATitJG STATION BURL HJGTON, J.\ANSAS TM8LE GENFRATED. 11/11/Bt 1:3 56 54 KAN:*;As GAS AND ELE:CTRIC DAI'iES AND MOORE NO: 7699-064 wu-:o SECTOR WINO SPEED CATEGDRIE:"HMETERS PER SECOND> 0. 0-1 5 1 ::>-3 0 3 0-5 0 5 0-7 5 7 5-10 0 >10. 0 NNE E!\!E ESE SE SSE w N CA!..M TOTAL 1 35 05 1 35 OS 0 0 C:J 0 OJ 0 0 O:J 0 co 0 0 0:) 0 00 0 0 co 0 00 0 0 co 0 co 0 0. 0::> 0. 00 0 o_ oo 0 O:J 0 0. 00 0. OJ 1 35 OS 0 0 00 0. 00 0 0. OJ 0. 00 1 35 OS 0 0 co 0. 00 0 0. 00 0. 00 1 35 OS s 1. 75 24 1 35 OS 10 1 35 OS 1 35 OS 0 0 00 0 00 0 0 00 0. 00 10 10 0 0. 00 0 00 1 35 OS 10 1 35 OS 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 1 . 35 OS 14 4 91 67 " 1 o:'l 1*1 t;: 4 21 SH 7t; 10 7z; 10 " 1. 14 " 1. 14 :J 1 14 1;;:' 4 21 SB " 2 11 2'7' 4 1. 40 "' 4 1. 40 .1'7' 4 1 40 1. o5 . 14 4 1. 40 19 1 35 OS 0 0. 00 0. 00 66 23. 16 3. 16 KEY XX:< NUMBER OF OCCURRENCES 7 46 34 16 61 77 10 3 51 48 12 21 58 14 4 91 67 26 9 12 1. 25 OS 20 7 02 96 2 70 10 3 1 OS 14 0 0 00 0. 00 0 0. 00 0 00 0 0 00 0 00 3 1 05 14 1 35 05 3 1 OS 14 139 lf8. 77 6. 66 XX:< PERC EN r OCCURRENCES THIS CLABS XX:< PERCENr OCCURRENCES ALL CLASSES 5 1. 75 24 0 0 00 0 00 8 2. 81 38 5 1. 75 . 24 8 2. 81 38 10 3 51 48 7 2. 46 34 3 1. 05 . 14 1 35 OS 1 35 05 0 0. 00 0. 00 0 0 00 0 00 0 0. 00 0. 00 10 1 35 OS 7 2. 46 34 58 20 35 2 78 JOINT I.Jitm DISTRIBVTION BY STABILITY CLASS DATA PERIOD. ALL SEPTEMBER COMBINED 3 1 OS 14 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 3 1 OS 14 MEAN TOTAL SPEED 20 7 02 96 31 10 88 1. 49 21 37 01 20 7 02 96 25 8 77 1 20 39 13 68 1 87 34 11 93 1 63 :37 12 98 1 77 9 3 16 43 9 3 16 43 7 2 46 34 5 1 75 24 3 1. 05 . 14 10 3 51 . 48 3 1. 05 . 14 11 3 86 53 1 35 . 05 100 00 13 66 6. 85 07 6. 66 6 54 6. 71 6. 75 6 50 5. 43 4 72 5 27 3. 09 3 50 3. 77 5. 01 6. 00 7 32 CALM 5. 99 ALL CLASSES DATA SOURCE: 0:'\1-S!TE WHJtl SEN30R HEIGHT: 60. 00 METERS WOLF CREEK GENERATING STATION BURLINGTON, KANSAS TABLE GENERATED: 11/11/81 1:3.56. 54. KANSAS GAS At*.ID ELECTRIC DAMES AND t100RE JOB NO: 7699-064 WINO SPEED CATEGORIEB<METERS PER SECOND> WIND SECTOR o o-1. 5 1 5-3. o 3. o-5. o 5. o-7. 5 7. 5-1o. o >to. o W\!E NE ENE E ESE SE SSE s SW w N CAL'1 TOTAL 4 19 1 OS 0 0. 00 0 0. OJ 0 0. 00 4 19 4 19 2 10 5 24 0 0 00 1 OS 4 19 1 05 2 10 2 10 2 10 31 1. 63 4 19 19 91 12 58 11 53 15 72 18 86 20 96 27 1 29 24 l. 15 20 96 11 53 13 62 6 29 11 53 7 34 12 58 230 11. 03 tJ'JM3EI-( C*F VALID OI3SER'JAT JOI'!S N'JM!3ER OF IN'./AI ID OBSERVATIONS TOTAL OF OBSERVATIONS 2B 1. 34 3'1 1. 8'/ 21 1 01 24 1 t:.i 30 1 44 4'1 2. 3:) 59 2. s:J Bfl 4. 50 2. 40 "' T! ?;;' 11 5:i 8 38 501 24 208b 74 2160 KEY XXX NUMBER OF OCCURRENCES .0: ( PERCENT OCCURRENCES 33 1. 58 1. 63 30 1. 44 54 59 54 ;;:*, 59 104 4. 99 105 03 143 t .. 86 69 3:. 31 34 1. 63 7 . 34 3 . 14 4 19 19 91 44 2. 11 60 2. 88 35 1. 68 8 38 32 1. 53 26 1. 25 14 67 29 1. 39 48 2. 30 66 3. 16 21 1. 01 5 24 2 10 2 10 1 . 05 8 . 38 25 1. 20 54 2. 59 797 :38. 21 376 18 02 96 57 PCT. 3 43 PCT 100 00 PCT 1 OS 8 38 3 14 0 0. 00 9 43 24 1 15 44 2. 11 8 38 0 0. 00 0 0. 00 0 0. 00 0 0. 00 3 14 2 10 24 1 15 148 7 09 MEAN TOTAL SPEED 126 6. 04 102 4. 89 103 4.94 118 5. 66 113 5. 42 213 10.21 260 12.46 370 17. 74 177 B. 49 91 4. 36 37 1 77 42 2. 01 23 1 10 58 78 91 4 36 160 7 67 2 10 2086 tOO 00 7. 08 4. 85 6. 57 6 04 5. 47 5. 77 6 30 6. 48 5. 63 4. 91 3. 99 3. 44 3. 94 5 37 6 32 7 36 CALM 6. 01 Rev. 0 WOLF CREEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 rllETERS) Page 37 of 48 lJlND FREQUENCY DISTRIBUTION DY STAI31LITY CLASS OAT.; PERIOD ALL C\:TOOER COMG !NED CLASS PASQVll.l A WOLF CREEK GEtlERAT"IN(-1 STATION o,;T,t. :.>OlJRCE* C*"J-SITE 13URLINGTON, SEN50R HEIGHT. 60 00 METERS KANSAS GAS AND ELECTRIC T,:,OLE GDJ.:'"RATED 11/11 /Ell 14 57. 07 DAMES AND MOORE JOB NO 7699-064 WIND WHJO SPEED CATEGORIES (METERS PER SECOND> MEAN 0 0-1 5 I 5-3 0 :::1 0-5 0 5 0-7 5 7 5-10 0 >10 0 TOTAL SPEED rJNE 0 0 I I 2 0 4 6 77 0 OJ 0 00 n 76 I 52 0 00 3 03 0 OJ 0 00 05 05 10 0 00 20 rJE 0 2 I 0 0 0 3 3 43 0 00 I 52 76 0 00 0 00 () 00 2 27 0 00 10 05 0 00 0 00 0 co 15 ENE 0 0 0 0 0 2 3 60 0 OJ 0 00 I 0 00 0 00 0 00 I :j2 0 OD 0. 00 10 0 00 0 00 0 00 10 0 I 0 0 0 3 3 27 0 00 76 I 0 00 0. 00 0 00 2 27 0 00 05 10 0 00 0 00 0 co 15 ESE I 0 2 2 6 12 7 02 76 0 00 I 52 I 52 4 55 76 9 09 05 0 00 10 10 30 05 uO SE 0 0 3 0 0 0 3 4 30 0 co 0 00 2 27 0 00 0 00 0 00 2. 0 OD 0 00 15 0 00 0 00 0 co 15 SSE 0 2 3 0 0 0 5 3 64 0 OD I 52 2 27 0 00 0 00 0. 00 3. 79 0 00 10 15 0. 00 0 00 0 00 25 s 0 0 0 9 7 11 9 90 0. 00 0 00 0 00 6. 82 5 30 8 33 20. 45 0 00 0 00 0. 00 45 35 55 I :35 ssw 0 0 2 4 3 4 13 9 53 0 00 0 00 1 52 3. 03 2 27 3 03 9. fJS 0 00 0 00 10 . 20 15 20 65 SW 0 0 4 1. 0 1. 8 7 24 0. 00 0 00 3. 03 0. 00 6. 06 0 00 0 00 20 10 0 00 10 40 WS:...J 0 0 2 4 0 0 6 s. 25 0 co 0 00 L 52 3. 03 0 00 0 00 4 55 0. OJ 0 00 10 20 0. 00 0 00 30 w 0 0 I I 0 0 1. 5 70 0 co 0 00 76 . 76 0 00 0. 00 0 00 0 00 05 05 0. 00 0 00 10 0 0 I I 4 2 2j 9 9. 04 0. OJ 0 00 . 76 . 76 3. 03 6. 02 0. Q,:) 0 00 . OS OS 20 IS 45 'w 0 2 0 0 5 3 10 8 41 0 00 I 52 0. 00 0. 00 3. 79 2. 27 7 58 0 co 10 0 00 0 00 25 IS 50 NNW 0 0 2 I 2 10 15 9. 73 0. 00 0. 00 1. 76 1. 52 7. 58 11 36 0 00 0. 00 10 OS 10 50 75 N 0 I 0 0 5 4 to 9. 89 0. OJ 76 0. 00 0. 00 3. 79 3. 03 7 :JB 0. co OS 0 00 0. 00 25 ::iO CAl :'1 0 0 CALM 0. co 0 00 0 00 0. 00 TOTA;_ I 8 26 25 34 38 l32 8. 12 76 6 06 19 70 18. 94 25. 76 28 79 100 00 OS 40 I 30 I 25 I 70 I 90 6 58 KEY XX'( NUMBER OF OCCURRENCES XX.< PERCENT OCCURRENCES THIS CLASS XX( PERCENT OCCURRENCES' ALL CLASSES ,JOINT WINO FREGLC:NCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD: ALL CCTOI3ER CDr1I3 !NED STABILITY CLASS. PASGUILL D WOLF CREEK GENERATING DATA SOU:-<CE. ON-SITE BURLINGTON, KANSAS lJIND SENSOR HEIGHT 60 00 METERS KANSAS GAS AND ELECTRIC TABLE GENC:RATEO: 11/11/81. 14. 57. 07. DAMES AND MOORE JOB NO 7699-064 WIND WINO SPEED CATEGDRIES<MEfERS PER SECOND) MEAN SECTOR 0 0-1. 5 1. 5-3.0 3 0-5. 0 0-7. 5 7. 5-10 0 )10. 0 TOTAL SPEED 0 2 0 I 2 0 5 , 32 0. 00 I 98 0 00 99 1. 98 0 00 4 95 0 C0 10 0 00 05 10 0. 00 25 NE 0 I 0 0 0 0 I 2 80 0 00 99 0 00 0 00 0 00 0 00 99 0 00 OS 0. 00 0 00 0. 00 0 00 OS ENE 0 0 I 0 0 0 I 3 50 0 00 0 00 99 0 00 0 00 0 00 99 0. 00 0 00 OS 0 00 0 00 0 00 05 E 0 0 0 I 0 0 I 6 00 0 00 0 00 0 00 99 0 00 0. 00 99 0. co 0. 00 0 00 05 0. 00 0. 00 OS ESE 0 0 I 3 I I 6 6. 88 0. OJ 0. 00 99 2 97 99 99 5 94 0. 00 0 00 OS 15 05 OS 30 SE 0 I I 0 I 5 5 90 0. 00 99 99 I 0. 00 99 4 95 0 00 OS OS 10 0. 00 OS 25 SSE 0 I I I I 0 4 s 87 0. 00 99 99 99 . 99 0 00 3 96 0. 00 05 05 OS OS 0 00 20 s I 0 I 7 5 5 19 B. 04 99 0 00 99 6 93 4 95 4 95 18 81 OS 0 00 05 35 25 25 95 ssw I 0 0 2 3 5 11 9 29 99 0 00 0 00 1. 98 2 97 4 95 10 EJ9 OS 0 00 0. 00 10 IS 25 , sw 0 I 5 2 3 4 IS 7 21 0 00 99 95 1. 98 2. 97 96 14 EIS 0 00 OS 25 10 15 2g 75 WSW 0 I I 0 0 4 6 95 0. 00 99 99 0. 00 0 00 I 98 3 96 0. OJ OS OS 0. 00 0 00 10 ;;w w 0 I 0 0 0 0 I 2 60 0 00 99 0 00 0. 00 0 00 0 00 99 0 00 OS 0 00 0 00 0. 00 0 00 OS 0 I I 0 I 0 3 4. 77 0 00 99 99 0. 00 99 0 00 2. 97 0 00 OS 05 0 00 OS 0 00 IS NW 0 I I I I 6 6 65 0 00 99 99 I 99 99 5 94 0 OJ OS 05 10 05 05 :10 0 0 2 2 I 2 7 7 09 0 00 0 00 98 1. 98 99 1. 98 6 93 0 00 0 00 10 10 05 10 :JS N 0 0 0 3 7 2 12 8 75 0 00 0 00 00 2. 97 6 93 I 98 11 88 0 00 0 00 00 15 35 10 60 CAt:-! 0 0 CALM 0 00 0. 00 0 00 0 00 TOT At 10 15 26 25 23 101 7 28 I '" 90 14 85 25 74 24 75 22 77 100 00 Rev. 0 10 50 75 I. 30 I 25 I IS 5 04 (X( f..Jlli'H3ER OF OCCURRENCES '" PERCErH OCCURHENCES THIS CLASS <X< PERCEN f OCCURRENCES Al_L CLASSES JOINT WOLF CREEK TABLE 2. 3-32 (Continued) WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 38 of "JOINT lJINO FREQUENCY DISTRIBUTION OV STABILITY PERIOD ALL c::TOGER COMB !NED !3T ;,nIL I TY CLASS PASGUILL c Q,;Tt. G:">J-SI TE l.J UJ!l SFr*JSOR HEIGHT 60 00 METERS TMBLE 11/11/81 14 57 07. l-liNO SPEED CATEGOH IES <METERS PER SECTOR o s 1. ::.\-3 0 3 0-5 f) 5 0-7 5 0:f*JE NE D£ ESE SE SSE s ssw SW L.JS:..J w NW N CAL:1 TOTAL 0 1 0 1 0 00 95 0 00 95 0 00 05 0 00 OS 0 1 0 0 0 00 95 0 00 0. 00 0 00 05 0 00 0. 00 0 0 3 1 0 00 0 00 2 86 95 0 00 0. 00 15 05 0 0 5 0 co 0. 00 1 4. 76 0 co 0 00 10 25 0 0
  • 1 0 00 0 00 3 81 95 0 00 0 00 20 05 0 2 0 1. 9§ 0 00 1. 90 0 00 0 co 10 0 00 10 0 0 0 3 0 00 0. 00 0 00 2. 86 0 co 0 00 0 00 15 0 9a 3 2 0. 00 1 2. 86 1. 90 0 00 . 10 15 10 0 2 3 4 0 co 1 90 2. 86 :J 81 0 co 10 15 20 0 0 1 1 0. 00 0. 00 95 . 95 0. 00 0 00 05 05 0 1 1 0 0. 00 95 95 0 00 0 00 05 05 0. 00 0 1 1 1 0 00 95 95 95 0 00 05 05 05 0 0 0 1 0 00 0. 00 0. 00 95 0 00 0 00 0. 00 OS 0 0 3 1 0 00 0 00 2 86 95 0 00 0 00 15 05 0 1 3 1 0 00 95 2 86 . 95 0 00 05 15 05 0 0 1 3 0 00 0 00 . 95 2. 86 0 00 0 00 05 15 0 0 00 0 00 0 11 25 27 0 00 10 48 81 25. 71 0. 00 . 55 1. 25 1. 35 KEY XX.< NU;"BER OF OCCURRENCES .O:< PERCENT OCCURRENCES THIS CLASS <XX PERCENT OCCURRENCES ALL CLASSES CLASS WOLF CREEK GENERATlNG STATION BURLINGTON, KANSAS j.(.ANSAS GAS AND ELU:TR I C DAMES f\NO MOLJRE J(JEJ NO: 7699-064 SECOND> MEAN 7 5-10. 0 )10 0 fDTAL SPEED 0 0 2 4 70 0. 00 0 00 1. 90 0 00 0 00 10 0 0 1 2. 10 0 00 0 00 . 95 0 00 0 00 05 0 0 4 4 52 0 00 0. 00 3 81 0. 00 0. 00 20 0 0 7 5. 27 0. 00 0. 00 6. 67 0 00 0. 00 35 1 0 6 5. 03 95 0. 00 5 71 05 0 00 30 1. 9§ 1. 8 7 00 7. 62 10 10 . 40 2 0 5 7. 86 1. 90 0 00 4. 76 10 0 00 25 9 3 19 7. 67 B. 57 2 86 18 10 45 15 95 6 3 18 7. 44 5. 71 2 86 17 14 30 15 90 1 1 4 7 50 . 95 . 95 3 81 . 05 05 20 0 0 2 3. 30 0. 00 0. 00 1 90 0. 00 0. 00 . 10 0 0 3 4 27 0. 00 0 00 2. 86 0 00 0 00 15 1 0 2 7. 30 95 0. 00 1 90 05 0 00 10 1 3 8 B. 52 95 2. 86 7. 62 05 15 40 1 1 7 5. 47 95 95 6. 67 05 . 05 35 3 2 9 7. 67 2 86 1. 90 8. 57 . 15 10 45 0 CALM 0. co 0 00 27 15 105 6 77 25 71 14 29 100.00 1. 35 75 5 24 JOINT t.nt\10 FREGU:::':rJCY DISTRIBU1 ION BY STA31LITY CLASS DATA PERIOD ALL OCTOBER Cot1I3INED STAl311_ITY CLASS: PASGUILL D DATA SOURCE 0:-..1-SITE t.JINU SEt-.ISOR HEIGHT* 60 00 METERS T.;BLE GENERATED: 11/11/81. 14. 57.07 WIND SPEED CATEGORIES(METERS PER SECTOR 0. 0-1. 5 1. 5-3. 0 3. 0-5. 0 5 0-7. 5 NNE NE ENE E ESE SE SSE s ssw SW :...IS :...I w W0.!W NW N CA!...:-1 TOTAL 0 4 7 7 0. 00 77 1. 35 1. 35 0. OJ 20 . 35 . 35 0 1 9 6 0. 00 19 1. 73 1. 16 0 00 05 45 30 0 0 5 6 0. 00 0. 00 96 1. 16 0. 00 0. 00 25 30 2 0 7 5 39 0. 00 1. 35 96 10 0 00 35 . 25 1 0 2 2 19 0 00 39 39 05 0 00 10 10 0 2 6 7 0 00 39 1 16 1. 35 0 00 10 30 35 0 1 7 10 0. 00 19 1 35 1. 93 0. 00 05 35 50 1 3 18 35 19 58 3 47 6. 74 05 15 90 1 75 2 3 6 12 39 58 1 16 2. 31 10 15 30 60 1 3 1 6 19 58 19 1 16 05 15 05 30 1 3 1 4 19 58 19 77 05 15 05 20 0 2 7 0 co 39 1 35 0 00 10 35 10 0 3 6 3 0. co 58 1 16 58 0. 00 15 30 15 0 1 4 3 0 00 19 77 58 0 00 05 . 20 15 0 1 3 5 0 OJ 19 58 96 0 00 05 15 25 2 1 2 12 39 19 39 2. 31 10 05 10 60 ' 19 05 11 28 91 125 2. 12 39 17 53 08 55 40 4 54 6 23 rtEY XX'( NU:'1BER OF OCCURRErKES XX< PERCENf OCCURRENCES THIS CLASS XXX PERCEtH OCCURRENCES ALL CLASSES WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO* 7699-064 SECOND> MEAN 7 5-10 0 )10. 0 TOTAL SPEED 6 1 5. 99 1. 16 19 4 82 30 05 1 25 0 0 16 4. 64 0 00 0. 00 3 08 0 00 0. 00 80 0 0 11 5. 26 0. 00 0 00 2 12 0 00 0. 00 55 1 0 15 4. 76 . 19 0. 00 2 89 05 0. 00 75 3 3 11 7. 24 58 58 2 12 15 . 15 55 4 14 33 B. 77 77 2. 70 6 36 20 70 1. 65 7 10 35 7 84 1 35 1. 93 6 74 35 50 1 75 49 41 l47 8 78 9 44 7 90 28 32 2. 44 2. 04 7 33 14 5 42 7 00 2. 70 96 8 09 . 70 . 25 2. 09 2 4 17 6 75 39 77 3. 28 10 20 85 1 1 11 4 89 19 19 12 05 05 7 7 7. 49 1. 35 1. 35 4. 82 35 . 35 1 0 7 19 7 45 0 00 1. 35 3 66 0 00 35 95 3 5 16 8 49 58 96 3 08 15 25 EJO 19 3 :n 7 91 3 66 58 97 95 15 19 28 64 9 24 3. 66 39 12 :l3 95 40 3 19 1 CALM 19 05 135 129 7 80 26 01 24 86 100 00 6 73 6 43 25 89 Rev. 48 0 WOLF CREEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILI'rY CLASS (MONTHLY 60 METERS) Page 39 of 48 JOifH t.JIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD. ALL OCTODER COS113 !NED ST;:.GILITY CLASS PASGUILL E WOLF CREEK GENERATING STATION DATA SIJU.""!CE ITE BURLINGTON, KANSAS I; Jtl HEIGHT 60 00 METERS GAS AND ELEC"fRIC TH:JLE GENt.RATED 11/11/81 14 57 07 DAMES AND NOORE JOB NO 7699-064 WINO S!"'EED CATEGORIES{MErERS PER SECOND) MEAN SEC TOR 0 0-1 5 1 5-3 0 3 0-5. 0 5 0-7 5 7. 5-10 0 :>10. 0 TOTAL SPEED 1"\NE 0 0 2 5 5 14 8 76 0 co 0 00 38 '76 96 2. 6H 0 00 0 00 10 10 25 25 JO rJ:::. 0 5 0 0 ,, 4 32 0 OJ 96 0. 00 0. 00 1 72 0 co 10 25 10 0 00 0 00 *t::; ErJE 0 1 5 8 6 0 6. 17 0 00 19 96 1. 53 1 15 0. 00 3 0 OJ 05 25 40 30 0. 00 1 00 0 3 1 11 0 17 7 18 0 00 . 57 19 2. 10 0. 00 3. 0 CJ 10 15 05 55 0. 00 ESE 0 0 3 4 5 14 8 92 0 00 0 00 57 76 96 2. 1>8 0 OJ 0 00 . 10 15 20 25 70 SE 0 1 2 11 10 12 :36 8. 64 0 OJ 19 38 2 10 1 91 2. 29 6. EIB 0 00 05 10 55 50 60 1. BO SSE 1 1 4 11 32 23 72 9. 18 19 19 76 10 6. 12 4. 40 13 77 05 05 20 55 1. 60 1. 15 3. s 1 1 8 38 58 69 9 41 19 19 1 53 7. 27 11. 09 13. 19 33 46 05 05 40 1 90 2. 89 3. 44 8 7:! ssw 0 4 9 15 13 2 43 6 30 0 OJ 76 1 72 87 2. 49 38 8 0. 00 20 45 75 65 10 2. 14 sw 0 1 10 7 2 1 1 5 62 0. 00 19 1 91 1. 34 38 . 19 4. 02 0. 00 05 50 35 10 05 1 05 wSW 0 0 3 3 0 0 6 5. 02 0. 00 0 00 57 57 0. 00 0 00 1. 15 0. 0;:) 0 00 15 15 0. 00 0. 00 ::Jo w 0 1 5 3 1 1 11 5. 55 0. 00 19 96 . 57 19 19 2. 10 0. 00 05 25 15 05 05 0 3 4 8 9 0 6. 17 0 03 57 76 1. 53 1. 72 0. 00 4 0 00 15 20 . 40 45 0 00 1. .:::?0 NW 1 0 6 3 3 0 1:! '5. 65 19 0 00 1 15 57 57 0. 00 2 49 05 0 00 30 15 15 0. 00 65 NN:.-.1 0 0 0 11 5 1 17 7. 37 0 00 0. 00 0 00 2. 10 96 19 3. ';;!5 0 00 0 00 0 00 55 . 25 05 E!S N 1 0 0 8 14 8 ::n 8. 94 19 0 00 0 00 1 53 2. 68 1. 53 5. 93 05 0. 00 0 00 40 . 70 40 1. 55 CALM 0 0 CALM 0. 00 0 00 0 co 0. 00 TOTAL 4 17 68 134 173 127 8 13 76 3. 25 1:3 00 25.62 33.08 24.28 JOO 00 20 85 :3 39 6. 68 8. 63 6. 33 26.08 KEY .ox NUMBER OF OCCURRENCES XX< PERCENT OCCURRENCES THIS CLASS xx:< PERCENT OCCURRENCES ALL CLASSES JOIHT lHfJD FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD. ALL OCTOBER COMBINED STABILITY CLASS: PASGUILL F WOLF CREEK GENERATING STATION DATA SOURCE* ON-SITE BURLINGTON, KANSAS WINO SENSOR HEIGHT. 60. 00 METERS KANSAS GPS AND ELECTRIC TABLE GENERATED 11/11/81 14. 57. 07. DAI'IES AND MOORE JOB NO: 7699-064 !-liND WINO SPEED CATEGORIES (METERS PER SECOND> MEAN SECTOR 0 0-1. 5 1. 5-3 0 0-5 0 5 0-7. 5 7. 5-10. 0 )-10. 0 TOTAL SPEED NNE 0 0 2 9 7 0 18 7. 03 0. 00 0 00 70 3 , 2. 45 0. 00 6. 29 0. OJ 0. 00 10 45 35 0. 00 . 90 Ne 0 0 3 2 0 0 5 4. 84 0. co 0 00 1. 05 70 0 00 0. 00 1. 75 0. OQ 0. 00 15 10 0 00 0. 00 25 ENE 1 2 3 2 1 0 9 4 22 35 70 1. 05 70 35 0. 00 3. 15 05 10 15 10 05 0. 00 . 45 E 0 1 2 1 6 1 11 7. 06 0. 00 35 70 35 2. 10 35 3. 85 0 00 05 . 10 05 . 30 05 55 ESE 1 0 7 5 4 0 17 5. 50 35 0. 00 45 1 75 1. 40 0. 00 5. 94 05 0. 00 35 25 20 0. 00 85 SE 0 0 1 10 5 0 16 7. 28 0 OQ 0. 00 35 3 50 1. 75 0. 00 5. 59 0 00 0 00 05 50 25 0. 00 . 80 SSE 0 1 1 21 17 2 42 7. 53 0 OJ 35 35 7. 34 5. 94 70 14 69 0. 00 05 05 1. 05 . 85 . 10 2 . 09 5 1 0 4 17 22 0 44 7 39 35 0 00 1 40 5 94 7 69 0 00 15 38 05 0 00 . 20 85 1. 10 0 00 2. 19 ssw 0 2 3 9 5 0 19 6 10 0. O'J 70 1 05 3 15 1 75 0. 00 6. 64 0. OJ 10 15 45 25 0 00 95 51' 0 0 8 7 4 0 19 5 67 0. OQ 0 00 2 80 2. 45 1 40 0. 00 6 64 0. ov 0 00 40 35 20 0. 00 95 0 0 11 2 0 0 13 4. 42 0 00 0 00 3 85 70 0 00 0. 00 4 55 0 CD 0 00 55 10 0 00 0. 00 65 w 0 1 3 73 1 0 7 5 26 0 00 35 1. 05 35 0. 00 2 45 0 00 05 15 10 05 0. 00 35 0 0 6 3 9 0 113 6 70 0 00 0 00 2. 10 1. 05 3 15 0 00 6 2 0. CJ 0 00 30 15 45 0. 00 90 t-.::..J 0 0 0 12 11 1 24 7 58 0 00 0 00 0 00 4 20 3 85 35 8 39 0 OJ 0 00 0 00 60 55 . 05 1 20 0 0 1 7 5 0 1:3 6 88 0 OJ 0 00 35 2 45 1 75 0 00 4 55 0 CQ 0 00 05 35 25 0. 00 65 N 0 0 3 7 1 0 11 5 72 0 00 0 00 1 05 2. 45 35 0 00 3 85 0 00 0 00 15 35 05 0 00 "" CAL:-'! 0 0 CALM 0 00 0 00 0 00 0 00 TOTAL 3 7 58 116 98 4 286 6. 61 1 05 2 45 20 28 40 56 34 27 1 40 tOO 00 15 35 89 5 79 4 89 20 14 26 Rev. 0 eEY '" Nl!o113ER OF OCCURRENCES XX( PERCENT OCCURRENCES THIS CLASS Xx.< PERCENT OCCURRENCES ALL CLASSES WOLF CREEK TABLE 2. 3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 40 of 48 JOINT FREQU:;:rKY DISTRIBUTION lh' STABILITY CLASS DATA PEHIOD All CCTOBER COMBINED CLASS. PASGUILL G DATA SOl!RCE ON-SITE l.:I:;u SEt*$0R HEIGHT 60 00 METERS T.:.ULE GENFRATEO 11/11/81 14 ':;7 07 WOLF CREEK GENERAT lNG STATION BURL I NGTQN, KANSAS KANSAS CAS AND ELECTRIC DAI'lES AND JOD NO 7699-064 SEC TOR 1-JINO SPEED PER SECOND) MEAN 0 0-1 5 1 S-3. 0 3 0-5 0 5 0*-7 5 7 :J-10 0 >10 0 TOTAL SPEED ESE SE SSE s NW N CALM TOTAL 0 0 OJ 0. 00 0 0 00 0 00 0 0 00 0 00 0 0 co 0 OD 1 29 05 0 0 00 0 00 0 0 co 0 00 0 0 00 0. 00 1 29 05 0 0. co 0 00 0 0. 00 0. OJ 0 0 OJ 0 00 0 0 00 0 00 0 0 00 0. co 0 0 00 0. OJ 0 Q_ 00 0 00 0 0. 00 0 CQ 10 0 0 00 0 00 1 29 05 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 1 29 05 10 0 0. 00 0 00 1 29 05 1 29 05 0 0 00 0 00 3 88 15 0 0 00 0 00 0 0 00 0. 00 0 0 00 0 00 10 11 3 24 55 1 29 05 5 1 47 25 3 88 15 3 88 15 9 2 65 45 4 1 18 20 7 2 06 35 5 1. 47 25 5 1 47 25 . 10 8 2. 36 40 . 10 3 88 15 5 1. 47 25 10 4 1 18 20 68 20 06 3 39 1-\..EY XXX NUMBER OF OCCURRENCES 8 2 36 40 5 1 47 25 7 2 06 35 7 2 06 35 13 3 83 65 18 5 31 90 18 5 31 90 26 67 30 22 6 49 1 10 4 1 18 20 10 2 95 50 5 1 47 25 9 2 65 45 9 2 65 45 4 1 18 20 6 1 77 30 171 50 44 8 53 XX..< PERCENT OCCURRENCES THIS CLASS XX.< PERCENT OCCURRENCES ALL CLASSES 3 88 15 0 0 00 0 00 10 6 1. 77 30 9 2. 65 45 7 2 06 35 9 2 65 45 15 4. 42 75 2 59 . 10 . 10 1 29 05 0 0. 00 0. 00 5 1. 47 25 10 2 95 50 4 1. 18 20 9 2. 65 45 84 24. 78 4. 19 1 29 05 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 1 29 . OS 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 1 29 . 05 0 0. 00 0 00 0 0 00 0 00 3 88 15 13 3 El3 65 11 3 12 3 60 16 4 72 EJO :12 9 44 1 60 30 8 85 1 50 :16 10 1 DO 47 13 86 2 :34 :.H 9 14 1 55 9 2. t,s 45 19 5 60 95 10 2 95 . 50 17 5 01 85 25 7. 37 1 10 2 95 ,0 21 6. 19 1 05 0 0 00 0. 00 :3:J9 100.00 16 91 6 92 4 81 6 24 6 63 6 33 6 37 6. 24 7 00 5. 78 5. 70 5 45 4. 33 6. 59 6. 84 6 49 6 34 CALM 6. 28 JOINT lHrm DISTRIBUTION BY STABILITY CLASS DATA PERIOD: ALL CCTOBER COMBINED ALL CLASSES DATA SOURCE. ON-SITE l.Jlf>.lll SEI'150R HEIGHT: 60. 00 METERS TABLE 11/11/81. 14.57.07. WOLF CREEK GENERATING BTATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOH NO: 7699-064 SECTOR WINO SPEED CATEGORIES(METERS PER SECOND) MEAN 0 0-1 5 1. 0 3 0-5. 0 5. 0-7 5 7. 5-10. 0 >10. 0 N:-..IE NE ENE ESE SE SSE ssw sw rJw NN-., CAL:-1 TOTAL 0 0. 00 0 0. 00 1 OS 2 10 4 20 0 0 00 1 OS 4 20 4 20 1 OS 1 05 0 0 00 0 0 00 1 OS 0 0 00 3 15 1 05 23 1 15 7 35 8 40 3 15 4 20 0 0 00 7 35 8 40 6 30 12 60 6 30 5 25 9 45 7 35 4 20 2 10 4 20 92 4 59 13 65 23 1. 15 22 1 10 19 . 95 27 1. 35 17 85 23 1. 15 39 1. 95 28 1 40 31 1. 55 27 1 35 19 . 95 21 1 05 19 95 13 65 10 50 351 17 51 tHJ!13Eh: CJ? VALID 08SERIJAT IONS 2005 r!'JM8Eh' o:= IrNA! ID OBSERVATIONS 227 OF OOSERIJA r IONS 2232 NU1DER OF OCCURRENCES XX< PERCENT OCCURRENCES 29 1. 45 15 75 24 1 20 20 1 00 29 1 45 50 2 49 64 3 19 134 6. 68 68 3 39 29 1 45 23 1 15 14 70 25 1 25 30 1 50 31 1 55 39 1 95 624 31. 12 89 83 PCT 10 17 PCT 100. 00 PCT 25 1. 25 0 0. 00 9. 45 24 1. 20 28 1. 40 28 1. 40 68 3. 39 165 B. 23 46 2. 29 14 70 2 . 10 9 45 29 1. 45 34 1. 70 37 1. 85 58 2 89 576 28 73 7 35 0 0. 00 0 0. 00 1 05 10 50 29 1. 45 35 1 75 130 6. 48 19 95 12 60 3 15 8 40 10 50 14 70 17 85 44 2 19 339 16.91 TD-rAL SPEED '" 4. 04 46 2 29 2 94 70 3. 49 98 4. 89 .l:31 653 199 9. 93 .,78 23.84 177 8 83 93 4 64 (,1 3 04 59 2 94 92 4 59 .l02 5. 09 *too 4. 99 :l:;s 7 BB 1 OS 2005 100 00 6 82 4. 47 5. 47 6 14 6 70 7 68 7 83 8. 70 6. 89 6 32 5 10 6 02 6 88 7 40 7 59 8 46 CALM 7. 40 Rev. 0 WOLF CREEK TABLE 2.3-32 (Continued) JOIN'r WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 41 of 48 .JOftH tHrW FREOL.:::.rJCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD All 1\.0VEMBER COMOir>JED STArJILiTY CLASS. PASOUILL A o,;T,t, SOURCE* ON-SITE SFNSOR HEIGHT 60 00 I'IETERS r.;nLE GENt:_RATED: 11111/81. 15 00 46 WOLF CREEK GENERATIN..; !JTATION BURLINGTON. KANSAS KANSAS GAS ELF:C TR I C DAf1ES AND MOOHE JOH NO 7699-064 WIND SECTOR WINO SPEED PER SECOND> MEAN 0 0-1.5 1.5-3 0 3 0 5 7 0 0 TOTAL SPEED 1\:NC rJE ESE SE SSE s WSW NW N CALM TOTAL 0 0 00 0 co 0 0 co 0 00 0 0 OJ 0 co 0 0 00 0 co 1 81 05 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0. OJ 0 0. 00 0 00 0 0. 00 0 OJ 0 0. 00 0 00 0 0. co 0. 00 0 0. cv 0 00 0 0 00 0. co 0 0. co 0. co 0 0 OJ 0 00 0 0. co 0 00 1 84 05 0 0 00 0. 00 0 0 00 0 oo 0 0 00 0 oo 0 0 00 0 00 1 09 1 84 OS 0 0 00 0 00 0 0. 00 0 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0 oo 0 oo 0 0 00 0 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0 00 3 2 52 14 0 0 00 0 00 4 3. :!6 19 0 g gg 0 0 OJ 0 00 0 0 00 0 00 0 0 00 0 00 4 3. 36 19 1 84 . 05 1 84 05 1 84 05 0 0. 00 0. 00 0 0 00 0 00 1 . 84 05 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0 00 12 to. oa 56 !!..EY XXX NU**1BER OF OCCURRENCES 1 84 05 1 84 05 4 3 36 19 1 84 05 0 0 00 0 00 1 84 05 7 5 88 33 7 5 88 33 1 . 84 05 0 0 00 0. 00 0 o. 00 0. 00 1 84 05 :z t. 68 09 2 1. 68 09 5 4. 20 23 0 0. 00 0. 00 33 27. 73 1. 54 XXX PERCErH OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 1 84 05 4 3. 36 19 0 0 00 0. 00 4 3 36 . 19 1 84 05 7 5. 88 33 2 1. 68 09 4 3 36 19 3 2. 52 14 11 9. 24 51 37 31.09 1 73 0 0 00 0 00 0 0. 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 3 52 14 11 9 24 51 5 4 20 23 1 84 05 1 84 05 0 0 00 0 00 9 7 56 42 1. 09 1 84 05 33 27 73 1 54 1 B4 05 5 4 23 4 3 36 19 1 84 05 3 2 14 1 09 12 10 08 56 15 12 70 13 10 92 61 10 8. 40 47 2 1. 68 09 9 7 56 42 5 4. 20 23 15 12. l;,1 70 10 8 40 47 12 10.08 56 0 0. 00 0. 00 119 100 00 5 55 20 4. 76 5 47 6 20 2. 33 3 65 :5. 95 8 63 11 88 10.30 11 1:5 B. 82 7 00 10. 46 8. 63 9 08 CALM 8. 56 JOINT h!HJD FREQUENCY DISTRII3UTION l3Y STABILITY CLASS DATA PERIOD ALL NOVEMBER COMBINED STABILITY CLASS: PASGUILL B DATA SOURCE. CN-SITE SEN30R HEIGHT 60. 00 METERS Tt.flLE GENERATED. 11/11/81. 15.00.46 WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO: 7699-064 WIND SECTOR WINO SPEED CATEGORIES{I"'ETERS PER SECOND) MEAN TOTAL SPEED NNE NE EtJE E ESE SE SSE s ssw sw w rmw CAlM T01 Al 0 0-1. 5 1. 5-3.0 3. 0-5.0 5 0-7 5 7 5-10.0 :>10. 0 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 co 0 00 0 0 00 0. 00 0 0 00 0. 00 0 0. CJ 0. OJ 0 0. 00 0 co 0 0. 0() 0 co 0 0. O*J 0 00 0 0 co 0 00 0 0 00 o ca 0 0 OJ 0. 00 0 0. 00 0. OJ 0 o ca 0 00 0 0 co o oa 0 0 OJ 0 00 0 0 co 0 OJ 0 0 00 0 oo 3 2. 63 14 1 88 05 0 0 00 0 oo 2 1. 75 09 1 88 05 0 0 00 0 oo 0 0. 00 0. 00 0 0 oo 0. 00 0 0. 00 0 00 0 0 00 0 oo 0 0 00 0 00 ! 88 05 1 88 05 0 0 oo 0 oo 0 0 00 0 00 9 7 89 42 1 88 05 1 88 05 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 1 88 . 05 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. OQ 0 00 0 0 00 0 00 1 7; 09 1 68 05 1 88 05 0 0 00 0. 00 3 2 63 14 10 877 47 XX< I'JIJI'1[jER OF OCCURRENCES 0 0. 00 0 00 1 88 05 2 1 75 09 0 0. co 0. 00 0 0. 00 0. 00 1 88 . 05 3 2 63 . 14 6 5 26 28 4 3 51 19 4 3. 51 19 1 88 05 7 6. 14 33 1 88 05 1 7; 09 4 3 51 19 3 2 63 14 39 34 21 1 8;? !.XX PERCENT OCCURRENCES THIS CLASS .<X.< PERCENT OCCURRENCES ALL CLASSES I 88 05 1 88 05 1 88 05 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 1 88 05 6 5 26 28 3 2 63 14 1 . 88 05 0 0. 00 0. 00 1 7; 09 2 1 75 09 4 3 51 19 2 1. 75 09 3 2. 63 14 27 23 68 1 26 1 88 05 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0. 00 3 2. 63 14 2 1. 75 09 3 2 63 14 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 11 9. 65 51 7 6 14 33 1 7; 09 29 25 44 1 35 3 7. 67 2 63 . 14 6 4 48 5. 26 28 4 5. '57 3. 51 19 0 0 00 0. 00 0. 00 2 2. 20 1 75 09 3 4 37 2. 63 14 4 7. 30 3. 51 19 15 8. 76 13. 16 70 9 8 24 7 89 42 8 8. 92 7 02 37 1 7 00 88 05 11 6. 34 9 65 51 5 6 32 4. 39 23 19 10 67 16.67 89 13 10 00 11. 40 61 11 7 82 9. 65 51 0 CALM 0. 00 0 00 114 8 10 100 00 5 32 Rev. 0 WOLF CHEEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 42 of 48 .JOINT WIII!D FREOL!ENCY DISTRinUTCON BY STABILITY CLASS DATA PERIOD ALL hO\IEMBER COMBINED STABILITY CLASS PASGUlLL c CREEK GENERATING STATION Df,TA SOURCE O;..!-SITE BURLINGTON, tNil SENSOR HEICiiT 60.00 M[TERS KANSAS GAS r,NO EL.ECTR I C T ..;oLE GENFRI',TED 11/11 /Bl 1 OJ 46. DAMES AND MClOHE JOB NO 7699-064 WIND WINO CATEGDR IES <METERS PER SECOND) MEAN SEC TtJR 0 0-1. 5 1 5-3.0 3 0-5. 0 5 0 -7 5 7 5--10 0 ::to_ o TOTAL SPEED f\<:\!E 0 2 :3 4 6 8 23 8 20 0 OJ 1 36 2 04 2. 72 4 08 5. 44 15 1"5 "E 0 00 09 14 19 28 37 1 07 0 0 0 0 4 4 62 DC,) 0 00 1 1 0 00 0. 00 2. 72 El\:E 0. 0:) 0 00 . 09 . 09 0 00 0 00 19 0 1 0 1 1 0 3 6 03 0. OD 68 0 00 . 68 68 0. 00 2 04 0. 00 05 0 00 05 . 05 0 00 14 0 0 0 0 0 0 0 0 00 0. co 0 00 0. 00 0 00 0. 00 0 00 0 00 ESE 0. CO 0 00 0. 00 0. 00 0. 00 0 00 0 00 0 1 0 2 0 5 6. 40 0. 00 68 0. 00 1 36 1. 36 0. 00 3 40 SE 0. cv 05 0. 00 09 09 0 00 23 0 0 1 1 0 0 2 4 95 0. OJ 0. 00 . 68 68 o_ 00 0 00 1 36 SSE 0. 00 0 00 . 05 05 0 00 0. 00 09 0 0 0 8 2 0 10 6 92 0. 00 0 00 o_ 00 5. 44 1. 36 0 00 6 80 0 co 0 00 0. 00 37 -09 0 00 47 0 1 3 5 1 2 12 6 96 o oa 68 2. 04 3. 40 68 1 36 8 16 0. 00 05 14 23 05 . 09 0 0 3 5 3 4 15 7 65 0 00 0 00 2. 04 3 40 2. 04 2 72 10 20 0. 00 0 00 14 . 23 14 19 70 :::;:,.., 0 0 0 1. 1 2 5 8. 62 0. co 0 00 0 00 _ 6B 1 36 3 40 0. 00 0 00 0. 00 . 09 . 05 09 I.J5;..1 0 0 1 2 2 0 5 6 82 0. CG 0. 00 . 68 1 36 l. 36 0 00 3 40 w 0. OJ 0 00 05 . 09 09 0. 00 0 0 3 2 1 0 6 6 13 0. O*J 0 00 2. 04 1. 36 68 0. 00 4, 08 0. 00 0 00 . 14 . 09 . 05 0. 00 28 0 0 1 3 1 0 5 6 34 0. 00 0 00 . 68 2. 04 68 0. 00 3 40 NW 0. cv 0 00 . 05 14 . 05 0. 00 23 0 1 0 4 11 6 22 9 21 0. 00 68 0. 00 2. 72 7. 48 4 08 14 97 NN:.J 0. co 05 0. 00 -19 . 51 28 1 03 0 0 0 5 4 9 18 9 68 0. co 0 00 0. 00 3 4{} 2. 72 6 !2 12 ;;:>4 N 0. 00 0 00 0. 00 . 23 . 19 . 42 . 134 0 0 0 2 8 2 12 9. 40 0. 00 0. 00 0. 00 1 36 5 44 1 36 8 16 CALM 0 co 0 00 0. 00 . 09 . 37 . 09 . 56 0 D. OD 0 CALM 0. co 0 00 TOTAL 0 6 17 48 43 0. 00 33 147 7 96 0. co 4 08 11. 56 32 65 29. 25 22 45 100 00 0. 00 28 79 2 24 2. 01 1 ,. 6. B6 KEY X X.< NUMBER OF OCCURRENCES XXX PERC EN r OCCURRENC;ES THIS CLASS XX:< PERCEtH OCCURRENCES ALL CLASSES JOINT F"REGtJENCY DISTRIBUTION BY STAE:ILITY CLASS DATA PER roo ALL NOVEMBER Cot1BINED STf..BILITY CL"SS: PASGUllL D WOLF CREEK GENERAT l NG STAT I Dt.TA TE IlURLINGTON, KANSAS \.UNO SEN3DR HEIGHT* 60 00 METERS KANSAS GAS AND ELECTRIC T.G.BLE GENERATED* 11/11/81 15 co. 4b. DAMES AND MDORE JOB NO 7699-064 WIND WINO SPEED CATEGOR IESCMETEF6 PER 0 MEAN SECTOR 0. 0-1 5 1 5-3. 0 3 0-5. 0 5. 0-7. 5 >10. 0 T01"AL SPEED 1 2 13 21 19 9 65 7 01 . 14 27 1. 77 2. 86 2 59 1. 23 8. 87 05 . 09 61 98 89 42 3 03 NE 1 2 10 17 0 0 30 4 85 14 . 27 1. 36 2 32 0 00 0. 00 4 09 05 09 47 . 0 00 0. 00 1. 40 ENE 0 1 5 7 3 0 !6 5 7! 0 00 14 68 95 . 41 0. 00 2 . 18 0. co 05 23 . 33 14 0. 00 75 1 0 3 8 8 3 23 7 30 . 14 0 00 41 1. 09 1. 09 41 3 14 05 0 00 . 14 37 . 37 14 1_ 07 ESE 0 0 1 2 3 2 8 8 99 0. co 0 00 14 . 27 . 41 27 1. 09 0 co 0 00 05 . 09 . 14 09 . 37 SE 0 1 5 4 1 3 14 6 62 0 co !4 68 55 . 14 . 41 1. 91 0 co . 05 23 . !9 . 05 -14 65 SSE 0 2 12 24 13 15 66 7 42 0 00 27 1. 64 3. 27 1 77 2. 05 9 00 0 00 -09 56 1. 12 . 61 . 70 3 08 s 2 6 34 41 15 28 l26 7 06 . 27 82 4_ 64 5. 59 2 05 3 82 17. 19 . 09 28 1. 59 1. 91 . 70 1 31 5. 88 ssw 0 4 7 32 23 19 85 7 71 0. co 55 95 4 37 3 14 2 59 11. 60 0. 00 . 19 33 1. 49 1 07 89 3. 97 sw 1 2 5 B 13 9 38 7 80 . 14 . 27 68 1. 09 1. 77 1 23 18 05 . 09 23 . 37 -6! 42 77 WSW 0 0 3 4 9 3 19 7 51 0 0) 0 00 41 . 55 1. 23 41 2 59 0 00 0 00 14 19 42 14 89 0 0 5 10 20 4 39 7 89 0. 00 0 00 68 1 36 2 73 . 55 32 0. co 0 00 23 47 . 93 19 132 0 1 2 10 8 1 22 7 17 0. co 14 27 1 36 1. 09 14 3 00 0 03 . 05 09 . 47 . 37 05 1 03 t-1'.4 1 0 1 15 16 16 49 9. 01 14 0 00 14 2 05 2 18 2 18 6 68 05 0 00 . 05 70 75 75 2 29 2 3 7 15 33 28 138 8 43 27 41 . 95 2 . 05 4. 50 3 82 12 01 09 14 33 70 1. 54 1. 31 4 11 N 1 3 6 10 18 7 ., 7 57 14 41 82 1 36 2 46 . 95 6 !4 05 14 28 47 . 84 33 2 10 CAL:-1 0 0 CALM 0 co 0 00 0 00 0 00 TOTAL 10 27 119 228 202 147 7:33 7. 49 1 30 68 16. 23 31. 11 27 56 20 05 tOO 00 Rev. 0 *17 26 5 55 10. 64 9 43 6 86 34 ;w I',EY XX< Nl.-:1:JER OF OCCURRENCES X X"( PERCE;Jf OCCURRENCES THIS CLASS X XX PERC EN f OCCURRENCES ALL CLASSES WOLF CREEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STl'illiLITY CLASS (MONTHLY 60 HETERS) Page 43 of 48 ,.;owr l.JitW FREGLJ;;:tKY DISTRIBUTION BY STABILITY CLASS DATA P[H IOD ALL COMI3 INE:.D STt.GILITY cL..;ss PASGUILL E l.o.!OLF CREEK GENERAl HlG STATION DATk C:-.1-SI TE 8URL lNG TON, KANSAS SFN50R HE:.!GHT 60 00 METERS KANSAS GAS [U: CTR I C T ;,oLE GEN::.RATEO 11111/Bl t:) 00 46 DAf1ES AND MOOHE .JLJB NO* 7699-064 WIND Wit-It) SPEED PER SECOND> MEAN SEClUR 0 0-1 5 1. 5-3 0 3 0-5. 0 " 0-7. 5 7 5-10 0 )10 0 TOTAL 1 1 4;5 2 0 1 9 6. 63 20 20 40 0 00 60 1 81 05 OS 0'1 09 0 00 14 42 NE 0 1 'I 9 0 0 19 5 00 0 00 20 1 8\ I 81 0 00 0 00 83 0 OJ OS 4;: 42 0 00 0 00 89 E0ic. 0 2 I 3 7 8 21 8 59 0 00 40 20 60 1. 41 1. 61 4 23 0 co 09 o:i 14 33 37 98 E 0 0 \ 5 7 0 13 7. 63 0 00 0 00 20 1. 01 1. 41 0 00 2 62 0 co 0 00 0:) 23 33 0 00 61 ESE I I 0 7 3 3 15 7. 21 20 20 0 00 1. 41 60 60 3 02 05 05 0 00 :G 14 14 70 SE 0 1 ,, 12 6 3 26 7 01 0 00 20 81 2. 42 1. 21 60 24 0 00 05 19 56 28 . 14 21 SSE 0 0 4 10 13 22 49 9 22 0 00 0 00 81 2 02 2. 62 44 9 88 0. 00 0 00 1'1 47 61 03 2 29 s I 0 28 40 31 lOS 8 80 20 0 00 1. 01 5. 65 8. 06 6. 25 21 17 05 0. 00 2:1 1. 31 1 87 1. 45 4 90 ssw 0 0 29 15 5 54 7. 36 0 OJ 0. 00 1. 01 5. 85 3 02 1. 01 10. 89 0 00 0. 00 . 2:l 1. 35 70 23 2. 52 sw 0 0 " 5 2 0 13 6. 19 0. 00 0. 00 1. 21 1. 01 40 0. 00 2 62 0 00 0. 00 2B 23 09 0. 00 61 0 0 1 8 2 0 11 6 60 0. 00 0. oo . 20 1. 61 40 0. 00 2 ;t 0. C*J 0. 00 37 09 0. 00 w 0 1 4g ., 9 3 22 7. 54 0 OJ 20 1. 41 1. 81 60 44 0. 00 05 . 09 33 42 14 03 WN:..i 0 0 " 27 21 4 55 7 48 0 OJ 0. 00 60 5. 44 4 23 81 11 09 0 OQ 0. 00 . 14 1. 26 . 98 . 19 2 57 I 0 I 15 21 4 42 7. 83 20 0 00 20 3. 02 4. 23 81 8 47 . 05 0. oo . . 70 . 98 19 1 . 96 tJNU 0 0 0 11 15 4 30 B. 26 0 00 0 00 0 00 2. 22 3. 02 . 81 6 05 0. 00 0 00 0 00 51 . 70 19 I 40 N I I I 5 3 0 11 6. 27 20 20 20 1. 01 60 0. 00 2 22 05 05 . o:; 23 . 14 0. 00 51 CALM 1 1 CALM 20 20 05 . 05 TOTAL 6 8 4!:1 183 164 90 496 7. 81 I 21 1. 61 9. 07 36.90 33.06 18 15 100 00 28 37 2 10 8. 54 7. 65 4 20 23 15 KEY ;<Xx NU;1BER OF OCCURRENCES XXX PERC EN f OCCURRENCES THIS CLASS XX.< PERCENT OCCURRENCES ALL CLASSES JOitH WI:JO FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD ALL NOVEMBER COMBINED STA!JILITY CLASS: PASGUILL F WOLF CREEK GENERATING STATION DATA SOURCE. BURLINGTON, KANSAS l.JINO SENSOR HEIGHT: 60 00 METERS KANSAS GAS AND EU:CTR I C TABLE GEN<'.:RATED* 11/11/81 15. O;). 46. DAMES AND MOORE JOB NO 7699-064 WIND WINO SPEED CATEGORIES <METERS PER SECOND) MEAN SECTOR 0. 0-1. 5 1. 5-3. 0 3 0-5 0 0-7. 5 7. 5-10. 0 >to. o TOTAL SPEED Ntlo!E 0 0 3 5 3 0 11 6 so 0. 00 0 00 92 1. 54 . 92 0 00 01 38 0. 00 0 00 14 23 14 0 00 51 NE 0 0 4 6 2 0 12 5. 64 0. 00 0 00 I 2:3 1. 85 62 0 00 69 0. 00 0 00 ,,, 28 . 09 0. 00 56 I 0 ;2 2 6 I 12 7 02 31 0 00 6:2 62 1. 85 31 69 05 0 00 . 09 09 28 05 56 E 0 I ;2 5 0 I 9 5 90 0 00 31 . 6;2 1. 54 0. 00 31 . 77 0. 00 05 09 23 0. 00 05 42 ESE 0 0 t 8 0 0 9 5. 98 0. 00 0. 00 . 31 2. 46 0 00 0. 00 . . 77 0. 00 0 00 05 37 0. 00 0. 00 42 SE 0 0 t 4 3 0 8 7 31 0 co 0 00 31 I 23 . 92 0 00 46 0 00 0. 00 05 19 14 0 00 37 SSE 0 0 2 8 15 2 27 7 84 0 00 0. 00 62 2. 46 4. 62 62 " 31 0. 00 0. 00 09 37 70 09 1 26 5 0 1 3 :31 30 8 73 7 63 0 00 31 92 9. 54 9. 23 2. 46 2:::* 46 0 00 05 14 1. 45 1. 40 37 41 ssw 0 0 0 12 4 7 23 8 25 0 00 0 00 0 00 3 69 1. 23 2 15 08 0 co 0 00 0. 00 56 19 33 07 sw 0 2 6 7 0 17 6 56 0 00 62 1. 85 2. 15 0. 00 ::. 23 0 00 09 09 28 33 0 00 79 WSW 0 2 5 5 6 0 18 5. 90 0 00 62 1. 5-l 1. 54 1. 85 0 00 , 54 0 00 09 2"3 23 28 0 00 84 w 0 0 6 17 I 0 24 5 83 0 00 0. 00 I 85 5 23 31 0 00 ., 38 0 00 0 00 79 05 0 00 I 12 WNW 0 I 3 10 16 0 3C 6 99 0 co 31 9;2 3 08 4. 92 0 00 'I 23 0 00 05 1 47 75 0 00 I 40 "w 0 0 \1 13 0 26 7 27 0 OJ 0. 00 6:2 3. 38 4 00 0 00 DC 0 00 0. 00 0 51 61 0 00 21 0 0 3 6 5 0 14 7 03 0 00 0 00 9":' 1. 85 1 54 0. 00 4 31 0 co 0 00 14 28 23 0 00 65 N 0 1 3 3 4 I 12 6 29 0. 00 31 9;2 92 I 23 31 :J 69 0 00 05 " 14 19 05 56 CAlM 0 0 CALM 0 00 0 00 0 00 0 00 TOTA:... l 8 4.2 115 20 7 01 31 2 46 12 9:2 42. 77 35 38 6 15 100 Rev. 0 05 37 1 96 6. 49 5. 3"1 93 " 17 Y.Et' XXX NIJMGER OF OCCURRFNCE'3 '" PERCEN r OCCURRENCES THIS CLASS '" PERC EN r OCCURRENCES ALL CLASSES WOLF CHEEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 .1'1ETERS) p age 44 .;tJH:T DISTRIOliTIDr-1 BY STAlliLITY CLASS DAT,\ PER lCD ALL f\:OVEMGER CCMBINED CLMSS. PASGUILL G DATA 0:-.l-SITE LJI:*Jo HEIGHT 60 00 METERS TMDLE G[NEHMTED 11/11/Ell OQ .q.6 WOLF CREEK GENERAriNG [JURLINGTON, 1-',ANSAS G.AS AND LLEC rR I C DAMI:5 AND r100RE JIJI:l ND 7699-064 \HNO SEC TCR W [:\10 SPEED CATEGOR PER SECOND) MEAN 0. 0-1. :) 1. :J*-3 0 :J 0 5 0-7 5 7 0 )10 0 TOTAL SPEED NE ESE SE SSE sw w N CALM TOTAL 0 0 OJ 0 00 0 0 co 0 OD 0 0 00 0 00 0 0 OJ 0 00 0 0 00 0 OJ 0 0 00 0 00 0 O*J OJ 0 0 00 0. 00 1 49 05 1 48 05 0 0 00 0 00 1 49 . 05 0 0. OJ 0 co 0 0 00 0. 00 0 0. co 0 00 0 0 CO 0 00 0 0 00 0 00 3 1. 44 14 1 48 05 I 48 05 0 0 00 0 00 0 0 00 0 00 0 0 00 0. 00 1 48 05 0 0. 00 0 00 0 0 00 0 00 1 48 05 09 1 48 05 2 96 09 1 48 05 0 0 00 0 00 0 0. 00 0 00 I 48 05 11 5 26 51 3 I 44 14 2 96 09 1 <iB 05 4 1. 91 19 1 4El 05 09 0 0 00 0 00 1 48 05 09 3 1 44 14 7 3 35 33 . . 09 3 1 44 14 3 1. 44 . 14 0 0. 00 0. 00 . 09 36 17.22 I 68 KEV X X:< NUMBER OF OCCURRENCES 3 I 44 14 3 1. 44 14 0 0 00 0 00 1 48 05 2 '16 09 09 5 2. 39 ;!3 12 5. 74 56 9 4. 31 42 8 3. 83 37 6 2. 87 28 5 2. 39 23 1 48 05 3 1. 44 14 4 1 91 . 19 3 1. 44 . 14 67 32.06 3. 13 XX.( PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES 6 2 87 co I 48 05 0 0 00 0 00 3 1 44 . 14 0 0 00 0 00 0 3 83 37 11 5. 26 51 24 11. 48 1. 12 15 7. 18 70 7 3. 35 33 5 2. 39 23 4 1. 91 19 0 0. 00 0 00 0 0. 00 0. 00 09 0 0. 00 0 00 86 41 15 4 01 0 0 00 0. 00 0 0 00 0 00 I 48 05 0 0 00 0. 00 1 48 05 0 0. 00 0 00 1 48 05 1 48 05 1 48 05 1 . 48 05 0 0 00 0. 00 0 0 00 0 00 0 0 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 6 2 87 28 1:3 6 2;;! 61 7 ::l 3:J 3:3 ;z 96 0'1 B 3 8:3 37 4 I 91 I 'I 1:3 6 22 61 17 8 1:3 7'1 3!3 Ill 18 1 77 2'T 13 88 1 35 10 1 o:J 19 9 09 8'1 1*' b 70 6'5 ., 2 39 23 6 2 87 28 6 87 28 6 :;! 87 2'3 0 0 00 0 00 209 100 0:::> '-1 75 6 35 5. 33 7 45 6 04 6. 72 7. 02 8 23 8 02 7 36 6. 55 5. 71 5. 74 4 36 5 13 6. 80 4 67 CALM 6 76 JOINT WHm FREOUE:*4CY DISTRIBUTION BY STABILITY CLASS DATA PERIOD* ALL NOVEMBER COMBINED ALL CLASSES DATA SOURCE ON-SITE SENSOR HEIGHT: 60. 00 METERB TABLE GENt:RATED: 11/11/81. 15. CO 46 WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE ,JOB NO: 7699-064 WIND SECTOR WINO SFEED CATEGDRIES<MEfERS PER SECOND> MEAN NNE NE ENE. ESE SE SSE s ssw sw NNW CALM TOTAL 0 0-1. 5 1. S-3 0 3 0-5.0 5. 0-7. 5 7 5-10. 0 >10. 0 'I . o:; () 0. 00 () 0 00 :J . 14 () 0. OD I () 0. 00 0'1 21 9i3 6 28 7 33 5 23 1 . 05 6 28 5 23 2 09 8 37 5 23 6 28 3 14 3 14 4 19 2 09 3 14 6 28 72 3 36 1 17 32 1 49 9 42 10 47 3 14 14 '*5 47 2 19 18 84 17 79 17 79 20 93 14 65 8 37 10 47 15 70 281 13. 11 36 1. 68 39 1. 82 19 89 20 93 21 98 25 1. 17 65 3. 03 130 6. 07 92 4. 29 33 1. 54 26 1 21 49 2 29 54 2. 52 52 2 43 50 2 33 26 1 21 737 34 39 35 1. 63 4 19 18 84 18 84 8 . 37 18 84 56 2. 61 120 5 60 63 2 94 35 1. 63 25 1. 17 44 05 50 2. 33 69 3 22 64 2 99 47 2 19 674 31. 45 21 98 0 0 00 10 47 4 19 6 28 6 28 40 1 87 76 3. 55 49 2. 29 20 93 4 19 8 37 5 23 46 2 15 50 2 33 13 61 358 16. 71 TOTAL SPEED 125 5 83 83 3. 87 62 2. 89 54 2.52 46 2. 15 68 3. 17 185 8. 63 384 17.92 228 10.64 113 5 27 75 3 '50 1:25 5 83 1;27 5 93 179 8 35 179 8 35 109 5 09 1 05 2143 100 00 7 09 5. 00 6. 98 6 94 6. 61 6. 69 7 91 7 87 7. 89 7 52 6 58 7 04 7. 08 8 67 8 49 7. 53 CALM 7 54 of t-l\;M3Ef.l Q;:-VALID OBSERVATIONS NUM3Et-< 0? I J-!'.JAI_l D ODSERVAT IONS TOTAL OF OGSERVAT d143 17 2160 99 21 PCT 79 PCT 100 00 PCT Rev. f.\,EV t..X< NU:1UER OF OCCUHRENCES (X ( PERCEr>l r OCCURPF.NCES 48 0 WOLF CREEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page ,_IQfNT FREOUt::NCY DISTRIBUTinN DY SfABILITY CLASS DATA PER I [l[) ALL DECEMBER STM3li_IT\' CLASS* PASQUILL A OMTA SOU.lCE 001--SITE :J I fJil HEIGHT 60 00 MI:O TEP.S fhOLE. GEi-.JERATFD 11/11/Bl 15 09 30 WOLF CREEK GENERAl ING STATION BURL KANSAS GAS .<\NU ELECTRIC DAI*IES ANO MOORE JOil NO 7 699-064 WIND SECTOR t.JIFW PER SECOND) t-IE AN 00-15 15-3.0 30-50 50--:'5 75-100 >100 TOTAL SPEED EtJE ESE SE SSE w Nw NtJW N CAl:-! TOTAL. 0 0 00 0 00 0 0 OJ 0 00 0 0 O*J 0. 00 0 0 co 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0. Qi) 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. OJ 1 1 56 . 05 1 1 56 . 05 0 0 00 0 OJ 0 0 co 0 00 G 0. 00 0 00 3. 10 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 1 1 56 05 1 1 56 05 0 0 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 3 10 1 1 56 05 ,, 0 00 0 00 0 0 00 0 co 0 0 00 0 Qi) 0 0 00 0 00 1 1 56 OS 0 0. 00 0 00 1 1 56 05 () 0 00 0 00 0 0. 00 0 00 :l 4. 69 . 16 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 3 4. 69 . 16 9 14. 06 47 KEY XX:( NV:'10ER OF OCCURRENCES 0 0 00 0. 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0 00 0 0 00 0 00 1 1 56 05 4 6. 25 21 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0 00 3. . 10 0 0 00 0. 00 I 1. 56 OS 7 10 94 36 5 7. 81 . 26 20 :31 25 1 04 Xx:< PERCENf OCCURRENCES THIS CLASS XXX PERC EN r OCCURRENCES ALL 1 I 56 05 0 0 00 0 00 0 0. 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0 00 0. 00 3 4 69 16 3 4 69 . 16 0 0 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0 00 0. 00 0 0 00 0. 00 1 1. 56 . OS 8 12. 50 . 42 3 10 18 28. 13 94 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 9 14.06 . 47 4 6. 25 21 13 20 31 68 3 t5 10 0 0 00 0 00 0 0 00 0 00 0 0. 00 0 00 1 1 56 05 3 10 4 6. 25 . 21 8 12 50 42 0 0 00 0 00 0 0 00 0. 00 3 4. 69 . 16 2 3. 13 10 1 1 56 05 3 4 69 16 24 37 50 1 25 14 21 88 73 0 0. 00 0 00 64 100 00 3 33 6 55 0 00 0 00 0. 00 1. 90 2. 70 7 82 6. 82 0 00 0. 00 3 90 5 30 80 5. 23 9 29 7. 85 CALM 7. 47 JOirH lHND FREGUC)JCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD* ALL DECEMBER COMBINED STA!3ILtTY CLASS: PASQUILL D DATA SOURCE 0:\1-SITE LH:JO SENSOR HEICHT: 60. 00 HETERS TARLE GENCR1\TEO* 11/11/81 15. 09. 30. WOLF CREEK GENERATING STATION BURLINGTON. KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO 7699-064 WINO SECTOR WH.m Sf'EED FER SECOND) MEAN Nt. ESE SE SSE 5 ssw w N TOTA:.._ o o-1. s 1 s-3. o 3 o-s. o 5 o-7. 5 7 s-10 o :--to. o 0 0 00 0 00 0 0 00 0. 0*:::> 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0 00 0 00 0 0 co 0 00 0 0 00 0 00 0 0 C'J 0. 00 0 0 00 0 00 0 0 00 0. 00 1 *a OS 0 0. OQ 0. CD 0 0 00 0 00 1 98 05 0 0 00 0 00 0 0 co 0 00 l 10 0 0 00 0 00 1 98 05 0 0 00 0 00 1 10 0 0. 00 0 00 2 1 96 . lg 0 00 0 00 0 0 00 0 00 0 0. 00 0. 00 1 98 . OS 0 0 QO 0 00 0 0 00 0 00 1 10 3 94 16 2 1 96 10 0 0 00 0 00 13 12 75 68 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0 00 0 0. 00 0. 00 1 . 98 . 05 0 0. 00 0. 00 1 . 98 . 05 1 98 . OS 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 3 2. 94 16 0 0. 00 0. 00 4 3. 92 21 1 98 05 0 0 00 0 00 11 10 78 >7 r'-.E'r' XXX OF OCCURRENCES 0 0 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0 00 0 0. 00 0 00 3 2 94 16 5 4. 90 26
  • 3 92 . 21 0 0 00 0 00 6 5 88 31 1 98 . OS 1 98 OS 6 5. 88 31 1 98 05 7 6 86 36 34 :!3 33 1 77 XX'< PERCEtJf O*:CVRRENCES THIS Cl (XI.. PERCHH OCCLJRRErJCES ALL CLP.5SES 0 0 00 0. 00 0 0 00 0 00 0 0 00 0. DO 0 0. 00 D. 00 0 0. DO 0. 00 0 0. 00 D. 00 0 0 00 0 00 1 . 98 . OS 5 4 90 . 26 0 0 00 0 00 0 0 00 0 00 1 98 05 1 9% . 10 1 10 7 6 86 36 6 s 88 31 24 23 53 1 25 3 2. 94 . 16 0 0. 00 0. 00 0 0 00 0 00 0 0. 00 0. 00 0 0. 00 0 00 0 0. 00 0. 00 0 0. 00 0. 00 0 0. 00 0. 00 1 98 . 05 1 . 98 . OS 0 0. DO 0 00 0 0 00 0 00 1 98 . 05 5 4 90 26 5 4 90 26 1 10 18 17 65 94 TOTAL SPEED 3 2 94 16 1 98 05 0 0 00 0 00 1 10 1 98 05 2 1 96 . 10 4 3. 92 . 21 7 6, 86 . 36 10 9 80 52 1. 10 6 5 88 31 6 s 88 31 6 5. 88 31 19 61 1 04 17 16 67 88 15 14 71 . 78 0 0 00 0 00 102 100 00 5 .]1 12. 43 2. 10 0. 00 2. 15 3. 10 2. OS 5 37 6. 50 8. 24 7 40 6. 45 4 80 6 73 7 15 7 95 8 31 CALM 7. 12 of 48 Rev. 0 JOINT WOLF TABLE 2.3-32 (Continued) WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 46 of JOINT lHrJD FREGUC:tJCY DISTRII3UTION BY STABILITY DAfA f-'ERIOD ALL D::CCEMBER CDf1G !NED STt.3ILITY CL-'158 PASGUILL c DATA SOURCE I TE l,J 1 HEIGHT 60 00 METERS T.!.Ul.E 11/11/81 15 09 3() WIND SECTOR 0 0-1. 5 SPEED PER 1 5-3 0 3. 0 0-7 5 NtJE NE EtJE E ESE SE SSE s ssu sw WSW tlW Nt-!W N CAL:-1 TOTAL 0 1 0 0 0 00 58 0 00 0 00 0 00 05 0 00 0 00 0 1 0 0 0 03 58 0 00 0 00 0 00 05 0 00 0 00 0 2 0 0 0 O*J 1 16 0 00 0 00 0 oo 10 0. DO 0 00 0 0 0 0 0 oo 0 00 0. 00 0 00 0 00 0 00 0 00 0 00 0 1 1 1 oo 58 58 58 00 05 05 05 1 0 0 4 58 0 00 0 00 2. 33 05 0. 00 0. 00 21 0 0 1 10 0 00 0 00 58 S. 81 0. 00 0 00 05 52 0 0 6 3 0 00 0 00 3. 49 1. 74 0 00 0. 00 31 16 0 1 0 5 Q_ 00 58 0 00 2. 91 0. 00 05 0 00 26 2 1 4 1 1 16 58 2 33 58 10 05 21 05 0 1 2 4 0. co 58 1 16 2. 33 0. 00 05 10 21 0 1 3 1. 0. 00 58 1. 74 0 00 05 16 . 10 0 0 0 0 0 oo 0 00 0. 00 0. 00 0. 00 0 00 0 00 0. 00 0 2 3 4 0 00 L 16 1 74 2 33 0. 00 10 . 16 . 21 0 0 0 15 0 00 0 00 0. 00 8. 72 0 00 0 00 0 00 78 0 1 1 4 0 00 58 58 2. 33 0. 00 05 05 21 0 0 co 0 co 3 12 21 53 1 74 6 98 12. 21 30 81 16 62 1. 09 2. 76 1-(EY XX:< NUi1GER OF OCCURRENCES .(XX PERCENT OCCURRENCES THIS Cl-ASS XX.< PERCENf OCCURRENCES ALL CUl,SSES CLASS WOLF CREEK GENERATJNG BURLINGTON, KANSAS STATION KANSi\S GAS AND ELI.:::CTRIC DAt1i::.S AND t1UORE JOB NO 7699-064 SECOND) MEAN 7 S-10 0 .*10. 0 TOTAL SPEED 1 6 8 11 81 58 3. 49 4 65 05 31 42 0 0 1 2. so 0. 00 0. 00 58 0 00 0 00 05 2 1 5 6 60 1. 16 58 2 '11 10 05 3 0 3 8. 00 1 74 0 00 1 74 . 16 0. 00 16 0 0 3 3. 67 0. 00 0 00 1. 74 0. 00 0. 00 16 0 0 5 5 12 0. 00 0 00 2 91 0 00 0. 00 26 2 0 13 6. 79 1. 16 0 00 7 56 10 0. 00 68 3 3 15 7 53 L 74 1. 74 8 72 16 . 16 78 5 1 12 7 19 2. 91 58 6 98 26 05 62 2 0 10 4 45 1 16 0. 00 5 81 10 0 00 52 1 1 9 5 96 58 58 5 23 05 05 47 0 0 6 4 35 0. 00 0. 00 3 49 0 . 00 0 00 31 5 1 6 8. 72 2. 91 58 3 49 26 . 05 31 6 3 18 7. 33 3. 49 1. 74 10. 47 . 31 16 94 10 8 33 8 34 5 81 4 65 19. 19 52 42 1. 72 9 10 25 9 16 5. 23 5 81 14. 53 47 . 52 1 30 0 CALM 0.00 0 00 49 34 172 7. 50 28 49 19 77 100. 00 2 55 1. 77 8.95 JOINT Witm FREGUEIJCY DISTRIBUTION I3Y STABILITY CLASS DATA PERIOD. ALL DECEMBER COMBINED STt.BILITY CLASS. PASGUILL D DATA SOURCE. WI:-.!U SEt.130R HEIGHT 60 00 METERS TABLE GENERATED: 11/11/81. 15. 09. :::'10. WIND WH.JO SPEED CATEGORIESO<:ETERS PER SECTOR 0 0-1. 5 1. 5-3. 0 3 0-5. 0 0-7. 5 NNE NE EtJE E ESE SE SSE s SSri sw WSW w NW N CAl ;'1 TOTAL 1 8 12 8 . 14 1. 08 1 63 1 08 05 42 62 42 1 8 14 11 14 1 08 1. 90 1. 49 05 42 73 57 0 5 4 3 0. 0-J . 68 . 54 41 0 00 26 21 . 16 1 4 5 8 14 . 54 68 1 08 05 21 26 42 1 4 7 8 14 54 . 95 1. 08 05 21 36 42 1 1 5 11 14 14 68 1. 49 05 05 26 57 1 3 3 26 14 41 41 3. 52 05 16 . 16 1 35 0 1 6 19 0 00 14 81 2 57 0 oo 05 31 99 1 2 8 23 14 27 1. 08 3 12 05 10 42 1 20 0 0 6 13 0. 00 0 00 81 1 76 0. OJ 0 00 31 68 0 4 9 3 0 00 54 1 22 41 0 00 21 47 16 0 1 3 2 0 OD 14 41 27 0. 0:) 05 16 10 1 1 6 8 14 14 81 1 08 05 05 31 . 42 1 ' 6 19 14 14 81 2. 57 05 05 31 99 0 5 9 43 0 03 68 1 22 5. 83 0 co 26 47 2. 24 1 3 16 26 14 41 2 17 3 52 05 16 53 1. 35 1 14 05 11 51 119 231 1 49 6 91 16 12 31 30 57 2 65 6 19 12 02 XX ( NUMTlER OF OCCURRENCES AX"( PERCEtH OCCURRENCES THIS CLASS XX.< PERCENT OCCURRENCES ALL CLASSES WOLF CREEK GENERAl ING STATION BURLINGTON, KANSAS KANSAS GAS AND ELE:CTR I C DAMES AND MOORE JOB NO: 7699-064 SECOND> MEAN 7. 5-10. 0 >10. 0 TOTAL SPEED 11 " 55 7. 31 1 49 2. 03 7 45 57 78 2. 86 5 0 39 4. 90 68 0. 00 5 28 26 0. 00 ;:2. 03 7 1 20 5 75 95 . 14 f: 71 . 36 . 05 04 0 0 18 4. 36 0. 00 0. 00 2. 44 0. 00 0. 00 94 1 0 21 4. 61 . 14 0. 00 2. 85 05 0. 00 1. 09 3 1 22 5. 71 . 41 . 14 f 98 16 05 15 5 1 6. 34 68 . 14 5 . 28 26 . 05 2 03 14 12 52 8. 09 1. 90 1. 63 7 05 73 62 2. 71 19 16 69 7 76 2 57 2. 17 ,, 35 99 83 3 59 9 6 34 7 40 1. 22 81 61 47 31 77 1 3 20 , 48 14 41 71 05 16 04 0 4 10 7. 94 0 00 54 1. 36 0 00 21 52 12 11 39 7 88 1. 63 1 49 28 62 57 03 28 24 79 8 8:3 3. 79 3. 25 10 70 1. 46 1 25 4. 11 31 26 114 7 94 4 20 3. 52 15 45 1 61 1 35 5 93 14 46 106 8 75 1. 90 6 23 14 36 73 2. 39 5. 52 1 CALM 14 05 160 !66 "/30 7 44 21 68 22 49 100 00 8 33 8 64 38 42 Hev. 48 0 WOLF CREEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STl\BILITY CLASS (MONTHLY 60 METERS) Page 47 of 48 .JO!IH 11 I tJO FREQU.:;::-4CY DISTRIBUTION nv STABILITY CLASS DMT PERIOD DECEMBER CDf1lllNE[l CL,C.,SS PA:JGUILL E WOLF CREEK GENERATING STATION D.C.TA ')OURCE Q;-1-S I TE DURLINGTON, KANSAS INn SEU30R HEIGHT 60 00 ME.TERS KANSAS GAS AND ELECTRIC T..:.IJLE GEN:::RATED 11111/81 1 09 30 DAl-lES AUD f*lllOHE .JOB NU 7699-064 WIND WINO SPEED PER SECOND) MEAN SEC TUR 0 0-1 5 1 o-3 0 :J 0-5 0 5 0-7. 5 7 5-10 0 >10 0 TOTAL SPEED 0 1 " 2 0 0 7 4 21 0 00 24 94 47 0 00 0 00 1 65 tlE 0 00 05 21 10 0 00 0. 00 36 0 3 1 2 0 0 6 3 55 0. 00 71 24 47 0 00 0. 00 1 42 ENC: 0 00 16 0:"> 10 0. 00 0 00 31 1 1 C* 1 0 0 3 3 17 24 0 00 0 00 00 71 05 OS 0. 00 OS 0 00 00 16 0 0 1 3 3 0 7 7 11 0 00 0 00 24 71 71 0 00 I 65 ESE 0 co 0 00 16 16 0 00 36 0 I 47 4 12 3 22 7 99 0 00 24 94 2 83 71 19 0 00 05 10 21 62 16 15 SE I 0 0 12 14 29 7 78 24 0 00 0 00 2 83 3. 30 6. 84 05 0 00 0. 00 73 10 1. 51 S:JE I 0 6 8 24 0 39 7 43 24 0 00 I 42 1. El9 5. 66 0 00 9 20 OS 0 00 31 42 I. 25 0. 00 2 03 0 0 0 11 38 42 91 9. 82 0. 00 0 00 0 00 2 59 8. 96 9 91 21. 46 0 co 0 00 0 oc 57 I. 98 2. 19 4. 74 ssu 0 0 2 12 34 13 61 8 74 0 00 0 00 47 2 83 8. 02 3 07 14. :39 0 00 0 00 10 62 1 77 68 3 18 Sl' 0 1 13 5 2 23 6 84 0 00 24 3 07 1. 18 . 47 42 0 00 OS 10 68 . 26 . 10 WSW 0 1 1 4 2 2 10 6. 87 0 00 24 24 94 47 47 2 36 0 CD 05 OS 21 . 10 10 52 " I I 1 5 3 0 11 6. 29 24 24 24 1. 18 71 0. 00 2. 59 l,..jtJ:.J OS OS 05 . 26 16 0 00 . 57 0 2 2 19 2 1 26 6 41 0. 00 47 47 4. 48 . 47 24 6. 13 0. 00 10 10 99 10 05 I 35 NW 0 0 4 15 7 3 29 7. 19 0. 00 0. 00 94 3. 54 1. 65 71 6. 84 0. 00 0. 00 21 78 36 16 1. 51 Nt-!W 0 1 3 20 IS 4 43 7 30 0 CD 24 71 4. 72 3. 54 94 10. 14 0. 00 OS 16 1. 04 78 21 2. 24 N 0 1 1 8 7 0 17 7. 11 0 00 24 24 1. 89 1. 65 0. 00 4. 01 0 00 OS 05 42 . 36 0 00 88 CALM 0 0 CALM 0 00 0. 00 0 00 0. 00 TOlAL 4 13 30 139 166 72 424 7. 86 94 3. 07 7. 08 32 78 39 15 16 98 100 00 21 68 I. 56 7. 24 8 64 3. 75 22. 07 KEY XXX NUMBER OF OCCURRENCES XXX PERCENT OCCURRENCES THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES JOINT lJIND FREQUENCY DISTRIBUTION B"{ STABILITY CLASS DATI. PERIOD: ALL DECEMBER COMBINED STI.BILITY CLASS: PASGUILL F WOLF CREEK GENERATING !HAT ION DATI. SOURCE ON-SITE BURLINGTON, KANSAS l.JINO SENSOR HEIGHT 60. 00 METERS KANSAS GAS At-ID ELECTRIC TABLE GENERATED: 11/11/81. 1:5 09. 30. DAMES AND MOORE JOH NO 7699-064 WIND WINO SPEED CATEGORIES<METERS PER SECOND) MEAN SECTOR 0. 0-1 5 1. 5-3.0 3. 0-5 0 5. 0-7. 5 7 s-to. o >10. 0 TOTAL SPEED rmE 0 I 5 1 3 0 10 5. 43 0. 00 35 1. 75 . 35 1. 05 0. 00 3. 51 0 00 OS . 26 05 16 0. 00 52 NE 0 1 4 5 I 0 11 5. 45 0 00 35 1. 40 1. 75 35 0. 00 3 86 0 00 05 21 26 . 05 0. 00 57 ENE 0 2 2 2 0 0 6 3 85 0. 00 70 70 70 0 00 0. 00 2. 11 0. co 10 10 10 0. 00 0. 00 31 E 2 1 I 6 0 0 10 4 22 70 . 35 35 2. 11 0 00 0. 00 3. 51 10 05 05 31 0. 00 0 00 52 ESE 0 0 I 4 4 0 9 7. 08 0 00 0 00 35 1 40 1 40 0. 00 3 16 0 00 0 00 05 21 21 0 00 47 SE 0 0 2 5 I 0 8 6. 20 0. 00 0 00 70 1. 75 35 0 00 2 81 0. 00 0 00 10 26 OS 0. 00 42 SSE 0 0 4 10 16 0 30 7. 27 0 co 0 00 1. 40 3. 51 5. 61 0. 00 10 53 0 00 0 00 21 52 83 0. 00 I 56 0 I 3 14 27 5 50 7. 74 0. 00 35 1. 0'5 4 91 9. 47 1. 75 17 54 0 00 05 16 73 1. 41 26 2 60 ssw 0 0 2 20 16 16 54 8 59 0. 00 0. 00 70 7. 02 5 61 5. 61 18. 95 0. co 0 00 10 1. 04 83 83 2 81 sw 0 1 2 15 4 0 22 6. 24 0. 00 35 70 5. 26 1. 40 0. 00 72 0. co OS . 10 78 21 0. 00 15 0 0 1 3 2 0 6 6 73 0 00 0 00 . 35 1. 05 70 0 00 2 11 0. 00 0 00 OS 16 . 10 0. 00 31 " 0 1 0 5 2 0 8 6 22 0 00 35 0. 00 1. 75 70 0 00 2 81 0 00 OS 0 00 26 10 0 00 42 0 2 2 7 9 0 20 6 84 0 00 70 70 2. 46 3 16 0 00 02 0 00 10 10 36 47 0. 00 04 0 2 3 6 2 0 13 5 86 0 00 70 1 05 2. 11 70 0. 00 4 56 0 co 10 16 31 10 0. 00 68 0 1 I 1 7 0 10 7 16 0 00 3S 35 35 2. 46 0 00 3 51 0. 00 OS 05 OS 36 0. 00 52 N 0 2 2 5 7 1 17 6 81 0. 00 70 70 1. 75 2. 46 35 96 0 OD 10 10 26 36 OS 88 CAl. 1 1 CALM 35 J5 05 05 TOTAL 3 15 35 109 101 22 6. 98 I 05 5 26 12 28 :38. 25 35 44 7 72 100 00 0 16 78 I 82 5 67 5 26 1 15 14 84 Rev. XX< N!JM[]ER OF OCCURRENCES XXX PERCENr OCCURRENCE3 THIS CLASS XXX PERCENT OCCURRENCES ALL CLASSES WOLii' CREEK TABLE 2.3-32 (Continued) JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS (MONTHLY 60 METERS) Page 48 of 48 ,..'OHH :..'IND FREQU;:NCY DISTRIGUl [,y STABILITY CLASS DAlA PERIOD: ALL CE.:CEMI3ER COMBINED sr;,BILITY CLASS PASGUILL G DMTA ::?OURCE 0:-.1-SITE l<JINO SEt<30R HEIGHT. 60.00 METERS Tf,GLE GENFRHTED 11/11/81 1::, 09 30 \.JOLF CREEK GENERAT[NG STAfiON BURLINGTON, KANSAS GAS AND ELE:::CTRIC DAI1ES AND MOORE JOB NO 7699-064 WIND SEC TClR l.JitlQ SPEED CATEG[JfHE!:,<METERS PER SECOND) 0 0-1 5 1 5-3 0 3 0-5. 0 5 0-7. 5 7 5-10 0 }10. 0 MEAN NE ESE SE SSE SS:..J sw WSW w N CALM TOTAL KEY 1 74 05 0 0. co 0 OJ 0 0 00 0 DO 0 0 00 0 00 0 0 00 0 CD 0 0 OJ 0 00 0 0 00 0. 00 0 0. OJ 0. 00 1 74 05 1 74 05 0 0. 00 0. 00 0 0 00 0. 00 0 0. co 0 00 0 0. co 0. 00 1 74 . 05 0 0. 00 0. co 0 0 00 0. OQ 4 2 94 21 0 0 00 0 00 0 0 00 0 00 0 0 00 0 00 1 74 05 0 0. 00 0 00 0 0 00 0. 00 0 0 00 0 00 1 74 05 0 0. 00 0. 00 1 74 05 0 0 00 0 00 0 0. 00 0 00 0 0 00 0. 00 0 0 00 0. 00 1 74 05 1. 10 6 4 41 31 1 14 0":.* 1 74 05 0 0 00 0 00 0 0 00 0 00 1 74 05 0 0. 00 0. 00 0 0. co 0. 00 0 0 00 0 00 1 74 05 1 74 . 05 0 0. 00 0. 00 0 0. 00 0. 00 1 74 05 1 74 . 05 0 0 00 0. DO 1 . 10 9 6 62 47 XXX NUMBER OF OCCURRENCES 1 74 3 68 26 1 74 05 () 0 00 0 00 1 10 1 74 05 1 10 14 10 29 73 10 7. 35 52 9 6. 62 47 0 0 00 0 00 3 2 21 16 7 5. 15 36 3 2. 21 16 1 . 74 05 1 74 . 05 60 44. 12 3. 12 XXX PERCENT OCCURRENCES THIS CLASS XXX PERCENf OCCURRENCES ALL CLASSES 1 74 05 1 74 05 0 0 00 0 00 0 0 00 0 00 3 2. 21 16 1 74 05 7 5. 15 36 15 11.03 78 13 9. 56 68 0 0 00 0 00 0 0 00 0 00 0 0. 00 0 00 3 2 21 16 4 2. 94 21 1 . 74 05 5 3. 68 26 54 39 71 2 81 0 0 00 0 00 1 74 05 0 0 00 0 00 0 0. 00 0 00 0 0 00 0 00 0 0. 00 0 00 0 0 00 0. 00 0 0. 00 0. 00 1 74 05 0 0. 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0. 00 0. 00 0 0 00 0. 00 0 0 00 0. 00 1 74 oo 3 2. 21 16 TOfAL SPEED 4 2 94 1 8 5 08 42 1 "14 05 1 "l4 05 6 4 41 31 2 1 47 10 9 6 62 47 30 22 06 1 56 26 19 12 1. 35 12 B. 82 62 0 0 00 0 00 3 2 21 16 11 B. 09 57 8 5 88 42 4 2 94 21 11 8 09 . 57 0 0 00 0 00 136 100.00 7.08 4 87 6 99 6 60 2 40 7 57 7 70 8 36 7. 53 7 40 5 49 0. 00 5 97 6. 97 6. 97 4. 55 6. 67 CALM 6. 96 JOitJT IHtm FREQUENCY DISTRIBUTION B'f STAI3Il.ITY CLASS DATA PERIOD* MLL DECEMBER COMBINED ALL CLASSES DMTA SOURCE ON-SITE l.J I SEtJSOR HE I CHT
  • 60 00 ME fERS T .;3LE 11/11/81 15 09 30. WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAt1ES AND t100RE JOB NO: 7 699-064 WIND SECTOR r.JINO SPEED CATEGORIES<METERS PER SECOND> MEAN 0 0-1. 5 1 5-3. 0 3 0-5. 0 5 0-7 5 7 5-10 0 :>10. 0 Nf\:E NE E ESE SE SSE s ssu 51< w N CAL:--i TOTAL 2 . 10 I 05 I 05 3 . 16 1 05 3 16 2 10 0 0 00 2 10 3 . 16 0 o. oa 2 10 2 10 1 05 2 10 1 51 11 57 14 73 10 52 8 42 7 36 4 21 3 16 3 16 3 16 5 26 6 31 4 21 7 36 8 42 10 52 9 47 112 5 83 C:F IJAL I 0 OBSERVATIONS N'.Jf1[lER 0:'= I r;VAL I D ODSER'.;AT I TOTA!.. f,v.18ER OF OD::3ERVATION3 23 1. 20 20 1 04 6 31 7 36 13 68 8 42 15 78 17 88 13 68 15 78 16 83 10 52 11 57 21 1 09 14 73 25 1 30 234 1;:. 18 1721 311 2232 .<XX NU.-;BER OF OCCUHRENCES XXX PERCEtH OCCURRENCES 12 62 23 1. 20 7 36 17 88 19 99 33 1. 72 60 3. 12 70 3. 64 74 3.85 51 2. 65 20 1. 04 20 1. 04 42 2 19 54 2 81 88 4. 58 56 2 92 646 33.63 86 07 PCT 13 93 PCT 100. 00 PCT 17 88 7 . 36 9 47 6 31 20 1. 04 19 99 57 2. 97 101 5 26 92 4. 79 20 1. 04 6 31 6 31 33 1. 72 50 2 60 79 4 11 50 2 60 572 29 78 24 1 25 1 05 2 10 0 0. 00 3 16 3 16 1 05 62 3. 23 48 2 50 9 47 6 31 4 21 14 73 35 1. 82 52 2 71 64 3. 33 328 17. 07 TDlAL SPEED 89 4.63 66 3. 44 35 1 82 41 2. 13 63 3. 28 70 3. 64 138 7. 18 253 13. 17 12 08 103 5. 36 54 2. 81 46 2 39 109 5 67 170 B. 85 245 12. 75 10 67 2 10 ! 921 100 00 7 31 5. 04 5. 35 4. 91 6. 31 6. 45 7 04 8. 46 8 16 6 53 5 98 6 13 7 17 7 81 7 93 8 30 CALM 7 42 0 TABLE 2.3-33 WIND DIRECTION PERSISTENCE (10 METERS) Page l of 36 KANSAS G.C.S ANU ELECTRIC WOLF CREE:.\ GENERATING STATION JOB r...:o. -07699-064-07 DATA PERIOD <YR -rv:ONTH -DAY) -730601 TO 800304 THRESHOLD OF ANEr'!Ot'iE:TER (MPH) -. 74 DATE OF THIS RUN -11/17/81. -10. 01. 50. WIND DIRECTION PERSISTENCE -PASQUILL #A# 1 S!:::CTCR PERSISTENCE CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 12 9 2 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 4 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 EC:t::-14 3 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t'"' SE 19 6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l"%j SSE 24 5 5 3 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 47 21 15 17 7 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n 43 19 18 8 5 7 4 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;.; 25 14 5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 3 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t:lj 12 3 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t:lj 8 4 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 5 5 3 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 10 9 8 3 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N 20 9 4 4 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AVi::RACE WIND SPEED ( t1/SEC) HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ..... "")It c.. "-7 4.99 5. 21 6. 42 5. 77 5. 06 3. 13 0. 6. 32 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. NE 4.62 3. 20 3. 33 B. 20 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ENE 4.06 4. 16 5. 19 0. 0. 5. 92 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. E 4. 10 6. 29 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ESE 3. 68 4. 73 5. 46 9. 06 3. 99 7. 18 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SE 4. 37 5. 04 4. 06 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 c.-r-6. 1 i 5. 03 4. 91 5. 43 3. 68 5. 10 8. 23 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -'"'C. s 6.05 7. 79 6. 46 7. 23 7. 29 7. 93 8. 41 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5.80 7. 21 6. 85 6. 95 7. 60 7. 27 7. 0212. 05 8. 17 0. 0. 0. 0. 0 0. 0. 0. 0 0. 0. 0. 0. 0. 0 7.07 7. 49 5. 69 0. 0. 8. 95 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. WS\J 3.89 7.88 0. 3. 96 0. 9. 62 0. 0. 0. 0. 0. 0 0 0. 0 0 0. 0. 0. 0. 0. 0. 0. 0. l.J 4.87 4. 10 4. 21 5. 63 0. 6. 35 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 6. 22 6. 16 6. 98 0. 0. 0. 14. 33 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. r 6 26 7. 62 7. 68 5 77 8. 52 0. 0. 8. 24 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 6. 92 6. 28 7. 25 6. 55 7. 09 9. 17 0. 6. 96 9. 11 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. r.! 5. 89 5. 53 7. 06 5. 80 7. 63 6. 90 0. 0. 0. 0. 0. 0. 0. O.' 0. 0 0. 0. 0. 0. 0. 0. 0. 0. TOTAL NO OF OBSERVATIONS 26304 Rev. 0 TOTAL OF INVALID OBSERVATIONS = 1351 TABLE 2.3-33 .. \ \....Ull L..LllUCU} WIND DIRECTION PERSISTENCE (10 METERS) Page 2 of 36 KANSAS G.0.S AND ELECTRIC WOLF CREE.K GENrRATING STATION JOB r -07699-064-07 DATA PERIOD <YH -MONTH -DAYl -730601 TO 800304 THRESHOLD OF <MPHl -. 74 DATE OF THIS RUN -11/17/81. TIME -10. 04. 52. DIRECTION PERSISTENCE -PASGUILL #B# 1 SECTOR PERSISTENCE CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 N:'E 7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CJE 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ESE 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :2i SSE 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 21 8 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r_-1 SSl.J 15 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n:j 12 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ws:.J 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 w 8 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :::0 3 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 tr:l t.lt.l 14 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ....... tr:l 9 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;A: WINO SPEED (M/SECl COf,!SECUT I VE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 NN::: 6.68 0. 5. 33 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3.40 3. 74 0 0. 0. 0. 0. 0. 0 4. 27 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ENE 3. 13 0. 6. 72 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. E 4. 5411. 09 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ESE 3.40 0. 10. 87 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. SE 5. 01 4. 05 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SSE 5. 78 0. 0. 5. 27 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. s 6. 53 6. 83 6. 53 5. 91 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5. 61 5. 13 B. 00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 5.24 5. 42 0. 8. 40 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. WSW 6.45 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. w 4.92 0. 2. 49 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. WI\:..J 4.32 6. 09 0. 8. 48 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0 0 0 0. 0 0 0. 6.08 7. 23 9. 32 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 6. 88 6. 83 6. 80 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. N 6. 13 5. 14 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.' 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. TOTAL OF OBSERVATIONS 26304 TOTAL OF ItNALID OBSERVATIONS 1351 Rev. 0 TABLE (Continued) WIND PERSISTENCE ( l 0 ME 'IE RS ) Page 3 of 36 KANSAS GAS AND ELECTRIC WOLF GENERATING STATION JOB rm. -07699-064-07 DATA PERIOD IYH -MONTH -DAYI -730601 TO 800304 THRESHOLD OF ANEMOMETER <MPH) -. 74 DATE OF THIS RUN -11/17/81. TIME -10. 08. 03. WIND DIRECTION PERSISTENCE -PASQUILL #C# 1 SECTOR PERSISTENCE CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 )-24 ,._ 9 7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Jl"""' _:'i:::. 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ESE 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 6 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSE 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t"' s 24 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1Tj v 26 9 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :;o w 8 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 trj 6 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 trj 19 4 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :;>:;: N!;,.; 14 4 7 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r-J 14 1 3 1 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WINO SPEED IM/SECI CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 NI-<E 3. 98 7. 32 0. 10. 16 0. 0. 0. 0. 0. 0. 0. 0, 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ,... v. 3. 58 2. 52 6.20 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ENE 5. 54 7. 21 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. E 5. 30 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ESE 5. 18 3. 96 6. 38 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SE 4.88 4. 74 3. 79 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SSE 5. 31 4. 94 0. 0. 0. 0. 0. 0 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. s 5. 53 4. 70 5. 54 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. ssw 5.78 7.80 5.79 8.86 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 6. 06 6. 00 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. V. 0. 0. 0. WSI-1 4. 14 0. 0. 0. 0 0 0 0. 0. 0. 0. 0. 0. " 0. 0. 0. 0. ,... 0. 0. 0. 0 o: v. v. w 5 32 2. 50 0. 3. 32 0 0 0 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5. 7499. 99 6. 50 0. 8. 35 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 6. 75 5. 2910. 24 0. 6. 24 0. 0. 7. 12 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 5. 91 6. 50 6. 08 0. 99. 9999. 99 0. 0 19 c. ..... ,... . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. v. v. v. N 6.82 3. 31 6. 89 9.18 7.19 0. 0. 0. 7. 68 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. TOTAL OF OBSERVATIONS = 26304 TOTAL t,'Q OF HNI>.UD OBSERVATIONS = 1351 Rev. 0 TABLE 2.3-33 {Continued) WIND DIRECTION PERSISTENCE (10 :METERS) Page 4 of 36 KANSAS GAS ANJJ ELECTRIC WOLF GENERATING STATION JOB -07699-064-07 DATA PERIOD 1'\0NTH -DAY) -7306-Jl TO 800304 THRESHOLD OF ANEJ'!OME:TER (MPH) -. 74 DATE OF THIS RUN -11/17/81. TIME -10. 11. 29. WIND DIRECTION PERSISTENCE -PASQUILL #D# 1 SECTOR PERS I CDNSECUT1VC: HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 44 33 18 10 6 4 2 1 3 2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 NE 45 16 7 7 4 1 2 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 ENE 29 14 10 8 3 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 38 18 9 4 2 2 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 :E: ESE 26 25 5 2 1 4 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 SE 33 20 5 2 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSE 53 25 10 5 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1:" s 141 54 31 14 7 9 5 7 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r:t:l 82 42 12 4 3 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :::::HV 34 9 4 3 i i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 7 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 !:;cl 21 11 8 3 2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 tt:l 32 6 4 5 2 0 2 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 tt:l I.'H 48 27 11 11 5 3 0 1 0 0 l 0 0 0 0 0 1 0 0 0 0 0 0 0 60 28 20 13 7 6 6 1 1 0 0 2 1 0 1 0 0 0 0 0 0 0 0 0 N 68 32 16 13 12 3 2 2 3 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 AVERAGE WWD SPEED (M/SEC/ CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 < L .... 19 20 21 22 23 24 ::-24 ....
  • I .. , NNS 4. 11 4. 96 4. 89 5. 00 6. 58 7. 91 4.83 8. 08 6.03 6. 97 0. 5, 29 0. 0. 6. 79 0. 0. 0. 0. 0. 0. 0. 0. 0. N"' 3. 53 4.27 4. 15 4. 24 6. 96 7. 04 4.63 5. 40 0 0. 0. 0. 0 0. 0. 7. 05 0. 0. 0. 0. 0. 0. 0. 0. '-4. 02 3. 37 4. 14 6. 28 5. 03 4. 04 0. 0. 5. 84 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0 E 4. 09 4. 80 4 64 5. 41 3. 35 5. 40 0. 0. 0. 0. 0. 3. 96 5. 11 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ESE 4. 91 5. 18 5. 45 3. 61 4. 54 4. 88 0. 0. 0. 4. 93 0. 10. 31 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SE 4. 53 5. 04 4. 49 4. 46 0. 6. 00 9.28 9. 50 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SSE 4. 81 5. 74 5. 66 6. 47 4. 49 0. 8. 05 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. s 6. 30 6 03 7. 14 6. 16 5. 94 7. 31 7. 77 8. 43 5. 89 6. 39 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0 5 68 7.21 6. 94 :;, 86 8. 75 7. 03 0. 0. 0. 7. 15 " 0. v. 0. o. 0. 0. 0. 0. 0. 0 0. 0. 0. v. S\J 5.05 4. 83 4. 88 6. 91 4. 40 8. 63 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. WSW 5.04 5.38 2. 68 0. 8. 07 o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. w 4.20 5. 50 5. 48 6. 31 7. 48 2. 99 0. 0. 0. 0. 0. 6.28 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4.69 5. 34 :5. 82 8. 77 7. 78 0. b. 51 6. 27 0. 0. 0. 0. 8. 11 0. 0. 0. 0. 0. 0 0. 0 0. 0 0. h!W 5.90 5. 75 7. 14 7. 70 6.81 7. 70 o. 9. 75 0. 0. 7. 98 0. 0. 0. 0 0. 6. 65 0. 0. 0. 0 0. 0. 0. 5. 40 5. 97 7. 22 5. 51 6.63 6. 61 7. 7399. 99 9.46 0. 0. 6. 0110. 14 0. 6. 72 0. 0. 0. 0. 0. 0. 0. 0. 0. N 4. 59 5. 30 6. 12 6. 13 5. 98 5. 59 6. 65 9. 37 7. 37 5. 01 0. 0. 0 0.' 0. 0 0. 0. 0. 0. 7. 38 0. 99. 99 0. TOTAL t*'O. OF OBSERVATIONS "' 26304 Rev. 0 TOTAL r.:o. OF INVAUO OBSERVATIONS = 1351 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE (10 METERS) Page 5 of 36 GAS AND ELECTRIC WOLF CREEK GENERATING STATION .JOB 1\!0. -07699-064-07 DATA PER I OD ('t'K --DAY> -730601 TO 800304 Ti :RESHOi ... J) OF ANEi*iOMETER <MPHl -. 74 DATE OF THIS RUt< -11/17/81. TIME -10. 14. 31. WIND DIRECTION PERSISTENCE -PASGUILL #E# 1 SECTOR PERSISTENCE CotJSECUT I VE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 N""' 13 13 6 2 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 "-27 9 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E.,tt:: "-29 8 5 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 30 12 7 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ESE 29 13 7 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 64 14 5 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSE 87 39 15 9 6 5 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 118 57 34 28 17 12 12 2 2 0 3 4 1 1 1 0 0 0 0 0 0 0 0 0 -... SSlJ 48 22 13 6 4 2 2 0 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 t"Ij 33 5 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 3 . v 'J 0 0 v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . v w 15 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :::0 26 14 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L":i i 25 10 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 tr:l 28 8 6 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N 28 14 2 1 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :A: WIND SPEED (M/SECl COnSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 )*24 Nr<E 3. 02 5. 10 3. 55 4. 42 0. 0. 10. 23 0. 0. 0. 6. 07 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. NE 2. 94 3. 32 3. 85 0. 0. 0. 2. 15 0. 0. 0 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "' 0. v. 3. 17 3. 33 3. 62 4.44 4. 60 5. 24 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0 0. E 4 52 4. 38 4. 35 6. 62 6. 62 5. 03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ESE 4. 46 3. 77 5. 10 5. 32 5. 08 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SE 3. 79 5. 19 3. 03 6. 01 4. 11 7. 68 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. SSE 3. 87 4. 52 4. 40 5. 54 5. 18 5. 67 5. 18 6. 67 5. 08 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. s 4. 67 5. 14 5. 34 5. 82 5. 19 5. 82 6. 57 3. 92 6.66 0. 6. 04 8. 1610. 20 9. 39 9. 94 0. 0. 0. 0. 0. 0. 0. 0. 0. 4. 63 6. n 5. 17 5. 86 5. 76 8. 07 6. 50 0. 7. 00 0. 8. 10 0. 4. 81 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 94 7 c.-, 5. 02 3. 32 0. 0. 0. 0. 0. 0. A 0. 0. 0. ,... ,... C. 0. 0. 0. 0. 3. 0/ ,_jr::_ w. v. v. v. 3. 07 4. 74 2. 89 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. w 3. 23 4. 71 3. 15 4. 08 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 3. 63 3. 84 4. 08 0. 5. 82 0. c * ' ..). ""ti ,... v . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3.66 4. 19 3. 79 6. 15 4. 53 4.00 4.61 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. sa 4. 29 3. 95 5. 20 6. 27 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. N 4. 17 4. 59 4. 11 3. 38 3. 88 0. 6.06 0. 0. 0. 0. 0. 0. 0.1 0. 0. 0. 0. 0. 0 0. 0. 0. 0. iOTAL NiJ. ur OBSERVATIONS = 26304 Rev. 0 TOTAL NO. OF INVAUD OBSERVATIONS = 1351 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE (10 METERS) Page 6 of 36 KANSAS GAS AND ELECTRIC WOLF GENERATING STATION JOB NO. -07699-064-07 DATA PERIOD ( YR -i":ONTH -DAYJ -730601 TO 800304 THRESHCi....D OF ANEI",OME:TER <MPH) -. 74 DATE OF THIS -11/17/81. TIME -10. 17. 49. DIRECTION PERSISTENCE -PASGUILL #F# 1 SECTOR PERSISTENCE COIJSECUriVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 NNE 15 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 2 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 3 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 24 10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ESE 24 10 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 43 19 7 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i:""' SSE 71 34 17 6 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1-Ij s 63 20 7 4 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 sst..; 31 6 6 5 3 i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n 15 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;::c WSlJ 11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t::l \..) 13 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t<:l 13 5 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I;'! 31 7 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :::-;: ""' 26 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TJ 14 7 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AVi::.RAGE SPEED <MISECl COf.iSECU riVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 :>24 2. 82 3. 17 3. 26 3. 16 3.24 o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. rJE 2 50 2. 79 0. 3. 24 3. 17 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 82 2. 80 2. 91 0. 3. 46 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. E 3 28 3. 19 3. 40 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. ESE 2. 94 3. 78 2. 57 4. 59 1. 40 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. SE 2. 94 2. 98 2. 71 2. 10 2. 60 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. SSE 3. 10 3. 09 2. 76 3. 62 3. 05 3. 06 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 57 3. 50 3. 79 3. 69 -;n,_ 0. 0 0. 0. 0. 0. 0. " 0. 0. " " " " 0 0. 0. 0. 3:32 u. u. v. v. v. 3.20 2. 94 3. 91 3. 87 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 58 2. 86 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 11.-.1r 2. 49 2. 56 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ¥\1.::0\\1 \"..; 3. 02 3. 33 0. 2. 38 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. W' 2. 57 3. 11 4. 26 3. 50 3. 27 0. 0. 0. 3. 99 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. !'I*\; 2. 74 2. 96 2. 32 0. 2.85 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 89 ..., 77 0. 0. o. 0 . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0 0 0. "-* r-J 3. 21 3. 40 3. 26 3. 16 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.1 0. 0. 0. 0 0. 0. 0. 0. 0. 0. TOTAL OF OBSERVA TI Of..IS 26304 TOTAL rm. OF INVA!_ID OBSERVATIONS 1351 Rev. 0 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE (10 :METERS) Page 7 36 KANSAS GAS AND ELECTRIC wOLF CPEEK GENi:.PATING STATION JOB NO. -07699-064-07 DATA PERIOD (YR -J*iONTH -DAY) 730601 TO 600304 THRESHCH .. D OF ANEMOMETER <MPHl -. 74 DATE OF THIS RUN 11/17/81 TIME -10. 24. 23. WINO DIRECTION PERSISTENCE -PASGUlLL ALL 1 SECTOR PERSI!HENCE CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 111 62 42 29 18 4 9 4 9 3 4 2 0 1 0 2 1 0 0 0 0 0 0 0 NE 119 44 30 29 8 7 3 2 3 2 1 0 0 1 0 1 0 0 0 0 0 0 0 0 ENE 101 49 25 17 8 7 4 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 E 126 57 29 21 8 6 3 2 ! 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 ESE 127 63 31 16 12 6 2 5 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 SE 180 91 52 23 14 6 10 2 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 SSE 254 123 75 59 21 23 13 6 5 7 1 1 1 0 0 0 1 2 0 0 0 0 0 0 s 298 164 106 67 62 33 39 20 13 12 7 4 9 5 5 1 4 1 0 0 3 1 1 5 222 104 61 28 26 18 15 11 7 6 6 5 0 2 1 0 1 0 2 0 0 c 0 1 ::; 119 60 21 10 8 2 2 l 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 79 30 11 6 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1:" 92 38 21 10 9 4 1 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 n::t 111 48 12 9 6 3 5 3 2 1 2 2 0 0 0 0 0 1 0 0 0 0 0 0 ll'j 141 59 32 23 17 12 7 5 0 2 4 0 2 0 1 0 2 0 0 1 1 0 2 0 '*' n 124 63 33 29 18 24 13 10 iO 4 6 1 2 0 0 0 1 0 1 0 0 0 0 2 N 139 82 36 24 22 12 7 8 3 5 2 4 1 3 0 0 0 0 0 0 1 1 0 2 ;;o !:?j !:?j ;:>:; AVi:.RACE WINO SPEED (M/SECl CONSECUTl VE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 ' n 15 16 17 18 19 20 21 22 23 24 >24 j,.'""t Nt*lE 3. 88 4.46 3. 97 4. 80 5. 49 2. 90 4. 98 5. 34 5. 61 5. 52 5. 44 6.84 v. 9. 24 0. B. 79 2. 80 0. 0. 0. 0. 0. 0. v. NE 3 33 3. 36 3. 71 3. 62 4. 75 3. 42 5. 21 5. 05 4. 49 4. 77 3. 14 0. 0. 3. 76 o. 7. 05 0. 0. 0. 0. 0. 0. 0. 0. E.,1c-3 35 3. 40 3. 66 4. 22 4. 87 4. 79 4. 82 4.47 5. 84 0. 4 30 4.60 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. E 3. 85 4. 14 4. 32 4. 32 4. 29 4.69 3.80 5. 30 3. 29 0. 0. 3. 88 5, 11 0, o. 0. 0. 0. 0. 0. 0. 0. 0. 0. ESE 3. 45 4. 02 4. 29 4. 34 4. 58 4. 12 7. 56 6. 01 0. 4, 93 0. 8. 30 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. SE 3. 44 3.61 3. 59 3. 50 4. 22 6.06 3.92 4. 52 6.52 0. 0. 0. 0. 0. o. 0. 8. 83 0. 0. 0. 0. 0. 0. 0. SSE 3. 79 3. 87 3. 83 4, 12 4. 72 4. 80 5. 40 5. 55 4. 13 5. 41 2 78 8. 10 6. 11 0. o. 0. 3. 06 4. 0. 0. 0. 0. 0. 0, s 4. 23 4. 77 4. 85 5. 47 5. 43 6. 47 5. 75 6. 69 6.23 5. 83 6. 45 6. 56 7. 12 6. 74 8. 15 8. 87 7. 89 9. 0. 0. 7, 68 5. 91 5. 91 7. 91 ssw 4. 58 5. 54 5. 99 6. 39 6. 25 6. 53 5. 88 7.85 7. 50 7.36 6. 82 7.01 0. 7.37 5.00 0. 7. 62 0. 7 43 0. 0. 0. 0. 5.28 Sll 4. 14 5. 20 5. 20 5. 42 8. 26 8.27 8. 19 4.37 o. 0. 0. 0. 4.46 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3 79 4. 11 4. 08 4. 46 8. 07 6. 72 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. w 362 4. 13 4. l::i 4. 75 4. 76 4.89 5.27 :3.43 5. 14 0. 0. 6.28 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 W' .. '*' ,,,....., 3 72 3. 77 4. 42 6. 22 5. 87 5.09 6. 35 5.9110.34 4. 94 4.87 4.42 0. 0. o. 0. 0. 8. 11 0. 0. 0. 0. 0. 0. 3.90 4.37 5. 00 6 15 5. 18 5.93 8.08 6. 29 0. 4. 39 6. 07 0. 9. 10 0. 8.40 0. 8. 0. 0. 7. 77 7. 31 0. 7.35 0. 4. 13 4.61 5. 66 5. 41 6.06 5.68 7. 13 6. 44 5. 91 6. 49 7. 86 B. 55 8. 42 0. o. 0. 6. 0. :5.49 0. 0. 0. 0. 8. 45 N 4. 41 4. 53 4. 37 5. 48 4.95 6. 21 6. 78 6. 44 4.87 7. 62 7. 54 534 7. 04 6.104 0 0. 0. 0. 0. 0. 7, 38 8. 18 0. c 83 .J. TOTAL rm. OF OBSERVATIONS 26304 TOTAL NO. OF OBSERVATIONS 177 ReV. 0 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE (10 METERS) Page 8 of 36 KANSAS GAS AND ELECTRIC WOLF CREFK GENERATING STATION -JOB -07699-064-07 DATA PERIOD ( YR -l"iONTH -DAY) 73060! TO 800304 T: 1RESHOL.D OF ANEMOI"iE:TER <MPH) -. 74 DATE OF THIS RUN -11117/SL TIME -10. 20. 42. WINO DIRECTION PERSISTENCE -PASGVILL #G# 1 SECTOR PERSISTENCE COtJSECUriVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 NNE 17 3 4 5 2 1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NE 15 5 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Et...!E 10 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 19 8 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ESE 21 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ::z SE 40 12 6 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSE 44 17 11 6 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 29 7 10 2 1 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t"1 SSt.J 16 3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i":rj 4 " ,-.. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 v v 14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 () w 13 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ::<::1 18 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l:?j 22 3 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l:?j tJh!:.J 16 5 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ::>:; N 13 6 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AVERAGE WlNO SPEED (M/SEC) CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2! 22 23 24 :>24 NNE 2. 95 2.42 2. 77 3. 06 3. 16 3. 53 0. 2. 14 0. 2. 87 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ,.,. v. I..;E 2 42 3. 11 2. 92 2. 72 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. E"'-3. 18 2. 78 3 36 3. 59 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. "t:. E 3. 01 2. 86 3. 20 3. 32 0. o. 3.21 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ESE 2. 58 2. 78 2. 99 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SE 2. 46 2. 54 3. 20 2. 88 3. 29 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SSE 2. 74 3.07 2 60 3. 06 0. 99.99 0. 0. 0. 2. 59 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. s 2 94 2.65 2. 95 2. 23 1. 10 2. 82 2. 45 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 55 ..,_., . 93 0 0. 2. 66 ,... 0. 0 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. " ,... 0. 0. ""'1', ,....,. v. v. v. 2.06 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 97 1. 97 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 10 1. 81 2. 30 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. o. 1. 99 2.62 2, 12 0. 0. o. 0. 0. 0. 0. 0. ,... 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 13 1. 85 2 03 2. 78 0. 2. 40 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.29 2. 67 2. 58 3. 40 0. o. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. N 2. 58 2. 55 2. 66 3. 67 2. 29 0. 0. 0. 0. 0. 0. 0. 0. O.t 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. TOTAL OF OBSERVATIONS = 26304 TOTAL NO. OF INVALID OBSERVATIONS = 1351 Rev. 0 TABLE 2.3-33 (Continued) DIRECTION PERSISTENCE (10 METERS) Page 9 of 36 KANSAS G.c.,s AND ELECTRIC WOLF CREEK GENERATmG STATION JOB NO. -07699-064-07 DATA PERIOD <YR -MOi\fTH -DAY> -730601 TO 800304 THRESHOLD OF ANEt10METER <MPH> -'74 DATE OF THIS -11/17/81. TIME -14. 18. 53. WIND DIRECTION PERSISTENCE -PASQUILL #S# 1 SECTOR PERSISTENCE CONSECUTivE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 NNE 38 24 17 10 2 1 2 1 3 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 NE 47 21 8 11 1 2 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Et<E 53 20 12 7 2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 70 34 15 8 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ESE 72 33 18 8 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 129 58 28 14 8 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSE 171 88 52 44 17 14 4 2 4 1 2 0 0 0 1 0 0 0 0 0 0 0 0 0 L' s 186 91 55 41 27 14 21 5 5 3 4 5 1 1 1 0 0 0 0 0 0 0 0 0 i":l:j 90 34 20 9 9 c 4 1 3 " 3 1 1 0 0 0 0 0 0 0 0 0 0 0 .J v 55 17 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n 38 8 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ::0 39 14 7 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t:tj 57 25 5 6 2 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 t:tj 70 24 11 8 6 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 55 27 13 12 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 55 30 11 6 6 1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AI,'ERAGE WIND SPEED <MISEC) CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 2. 86 4. 34 3. 08 3. 34 3. 40 2. 97 3. 50 2. 68 4. 78 0. 4. 17 2. 78 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .. 2 . 56 2. 89 3. 52 3. 08 2. 55 2. 21 2. 15 0. 0. 0. 3. 48 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. :*.= ENE 2. 74 3. 04 3. 58 3.08 4. 10 4.80 3.63 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. E 3. 54 3. 66 3. 89 4. 45 3. 76 4. 76 3. 32 4. 09 3. 29 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 ESE 3. 19 3. 40 3. 64 4. 95 3. 85 4. 26 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SE 3. 12 3. 31 2. 97 3. 39 3. 33 4. 31 2. 82 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SSE 3. 32 3. 55 3. 32 3. 77 3. 91 4. 51 4. 81 4. 79 3. 60 4. 40 2. 63 0. 0. 0. 4. 75 0. 0. 0. 0. 0. 0. 0. 0. 0. s 3. 97 4 36 4. 45 87 4. 78 5. 41 5. 37 3. 57 4. 99 5. 45 7. 5610. 20 9. 39 9. 94 0. 0. 0. 0. 0. " "' " Af. JJ v. v. v. v. 3. 59 4. 60 4. 71 5. 27 3. 78 5. 13 5. 12 3. 40 5. 96 0. 6. 86 6. 42 4. 81 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. St.J 3. 21 3. 51 4. 78 5. 02 3. 32 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 56 2. 70 3. 26 2 58 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. LJ 2. 70 3. 02 2. 82 2. 61 3. 58 5. 16 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. " 0 0. 0. 0. v. v. v. v. 2. 87 3. 61 2. 69 4. 54 0. 5. 41 0. 0. 3. 87 0. 3. 92 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. w . ..;)7 1.1*1 2. 92 3. 25 2. 82 4. 00 3. 94 3. 28 3. 78 2. 52 4. 50 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ""' 3. 24 3 29 3. 64 4. 28 3.49 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. r.J 3. 45 3. 75 3. 12 3. 93 3. 59 3. 34 0. 3. 04 0. 5. 29 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. TOTAL. r.;o. OF OBSERVATIONS = 26304 Rev. 0 TOTAL t'O. OF INVALID OBSERVATIONS = 1351 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE (10 METERS) Page 10 of 36 KANSAS GAS ANO ELECTRIC WOLF CREEK GENERATING STATION JOB NO. -07699-064-07 DATA PERIOD (YR -MONTH -DAY) -730601 TO 740531 THRESH0'-0 OF ANE:i'!OME fER <MPHl -. 74 DATE OF THIS RUN 11113/SL TIME 09. 44. 59. WIND DIRECTION PERSISTENCE -PASQUILL #A# 1 SECTOR PERSISTENCE COtJSECUT IV'£ HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 :>24 4 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Et1E 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ESE 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 5 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSE 10 1 2 1 l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 19 10 9 6 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1:"! SSH 8 6 9 0 3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i":lj 12 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WSiJ 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (') '-! 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;::t) 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t'l 5 2 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 tt:: Ni 3 1 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N 3 5 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;::.;: A"lERAGE I-liND SPEED (M/SEC> CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 .. J.. 12 13 14 15 16 17 18 19 20 21 .=:."'1 """" 23 24 /24 tJNE r.;, !'\It .., "" 0. L "" " .., '"" " " "' " " 0. 0. 0. 0. 0 0. 0. 0. 0 0 0 5:19 \-l", I v . ..J\J v. w], J.I.J '"'* v. v. v. v. V. v. 2. 59 3. 10 o. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. D. 0. 0. 0. 0. 0. 0. 0 ENE 5.24 4. 10 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. E 3. 98 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. ESE 5. 84 0. 7. 07 9. 06 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SE 6.20 0. 5. 70 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. a. 0. 0. 0. 0. SSE 7.00 4. 93 5 58 6. 25 3. 68 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. s 6.62 8. 08 7. 01 8.00 7. 321 1. 8612. 39 0. 0. 0. 0. 0. 0 0 0. 0. 0 0. 0. 0. 0 0. 0. 0 7.05 7.08 7. 97 0. 8. 35 0. 5.4615.04 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 7. 51 8. 2010. 66 0. 0. 0. 0. 0. 0. 0. 0. 0, 0. 0. 0. 0. 0. 0. 0. 0, 0. 0. 0. 0 2. 50 0. 0. 0 0. 9.62 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 6. 02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5. 61 0 0. 0. 0. 0. 0. 0. 0. 0. 0 o. 0 0. 0 0 0 0 0. 0. 0 0. 0. 0. ! 6. 15 8 37 8. 40 4. 9. 01 o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 7.68 7. 54 6. 61 6 0. o. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. . , 5. 68 5. 64 5. 73 7. 0. 0. 0. 0 . 0. 0. 0. 0. 0. 0.' 0. 0. a. 0. 0. 0. 0. 0. 0. 0 " TOTAL OF !Jl3SERVATIONS 8760 TOTAL OF INVA!_ID OBSERVATIONS = 128 Rev. 0 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE (10 METERS) Page 11 of 36 KANSAS GAS AND ELECTRIC WOLF CREEK STATION JOB f,!Q. -07699-064-07 DATA PERIOD CYR -MONTH -DAYI -730601 TO 740531 THRESHOLD OF ANEMOMETER CMPHl -. 74 DATE OF THIS RUt.J -11/13/81. TIME -10. 16. 45. WIND DIRECTION PERSISTENCE -PASGUILL #B# 1 SECTOR PERSISTENCE CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 NNE 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ENE 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ESE 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSE 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C""' s 11 4 l 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i"Ij 5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \.! 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :::0 w 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 tt:l 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t':l !' I 6 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,,,.. 7 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WIND SPEED CM/SECI CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 .... _")/l. t\.lll.iC 5. 61 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0 0. 0 0 0. 0. 0. c. 0. I 3. 52 0. 0. 0. 0. 0. 0. 0. 0. 4. 27 0. " " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. v. v. E*.IC 3. 54 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. E 4. 09 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ESE 3. 40 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SE 3. 81 4. 05 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SSE 5. 78 0. 0. 5. 27 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. " " v. 0. 0. 0. 0. v. v. s 6.45 7. 3110.59 5. 91 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SSlJ 5.94 5.1310.65 0. 0 0 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5. 42 5. 53 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. WSW 6. 15 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 w 3. 37 0. 0 0. 0. o. 0. 0. 0. 0 0 0. 0. 0. 0. 0. 0. " 0. 0. 0. 0. 0. 0. v. WN:..J 3. 40 6. 09 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5.21 6.3411.24 0 0 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 7.04 6. 82 6. 05 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. N 6. 55 5. 57 0 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0.* 0 0. 0. 0. 0. 0. 0. 0. 0. 0 TOTAL NO. OF OBSERVATIONS = 8760 TOTAL NO. OF INVALID OBSERVATIONS = 128 Rev. 0 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE (10 METERS) Page 12 of 36 KANSAS GAS ANO ELECTRIC WOLF CREEK GENi:.RATlNG STATION JOB NO. 07699-064-07 DATA PERIOD (YR -t'iONTH -DAY) 730601 TO 740531 THRESHOLD OF ANEt10ME: fER (MPH> -. 74 Dt;TE OF THIS -11/13/81. TIME -lL 30. 38. WIND DIRECTION PERSISTENCE -PASGUILL #C# 1 SECTOR PERSISTENCE CQt.!SECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 J.-24 4 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NE 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ENE 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ESE 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ::E: SSE 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 9 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t"l 10 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i"l:j SlJ 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 () 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :::tl 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 tXj 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NNW 3 2 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 tXj N 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;::.;: A Vi;.; RAGE WIND SPEED (M/SECl CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 1::i 16 17 18 19 20 21 22 23 24 :>24 NNE 4. 33 5. 58 0. 10. 16 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. NE 3. 36 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. c. 0. 0. ENE 7.49 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. E 6. 75 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. v. ESE 4.29 0. 6. 38 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. SE 4.94 4. 74 3. 79 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SSE 5. 46 4. 94 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. s 5. 25 4.32 5. 05 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5. 43 7. 87 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. StJ 5. 77 6.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ,... 0. 0 0. 0. 0. 0. 0. v. v. 4.01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5.25 2. 50 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 6. 18 0. 0. ,... 0. 0. 0. v. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. "* v. 5.25 6. 93 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5.80 4.89 6. 70 0. 0. o. 0. 0. 5. 19 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. N 6. 14 0. 0. 0. 10. 57 0. 0. 0. 0. 0. 0. 0. 0. 0.1 0. 0. 0. 0. 0. 0. 0. 0. 0 o. TOTAL NO. OF OBSERVATIONS = 8760 TOTAL NO. OF IN\,'ALID OBSERVATIONS = 128 Rev. 0 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE (10 METERS) Page 13 of 36 KANSAS ELECTRIC WOLF CREEK STATION JOB NO. -07699-064-07 DATA PERIOD ( YR -MONTH DAY) -730601 TO 740531 THRESHOL..D OF (MPH) -.74 OF THIS RUIJ -11/13/81. TII1E -11. 33. 22. WINO DIRECTION PERSISTENCE -PASGUILL #D# 1 SECTOR PERSISTENCE CONSECUriVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 :}24 Nh!E 12 13 7 1 3 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **-16 2 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 nt:. ENE 7 4 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 14 4 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ESE 5 5 1 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 9 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSE 19 7 4 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 60 19 8 4 2 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1:"1 SStJ 24 12 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l"rj StJ 17 4 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 WS\4 7 3 0 0 1 0 0 0 0 0 0 0 0 0 " 0 0 0 0 0 0 0 0 0 v w 5 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;;o 15 2 1 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t:::1 t4tJ 20 14 5 4 3 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 t:::1 26 8 4 9 4 3 2 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 N 25 8 4 7 3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AV<:.RAGE WIND SPEED (M/SEC) CONSECUTIVE: HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 )*24 NNE 5. 04 4. 63 4. 48 4. 17 6. 45 7. 89 3. 8. 08 0. 8. 42 0. o. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 3.88 3. 50 4. 03 4. 34 0. 7.04 4. 0. 0. 0. ,.., 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. v. v. u. E .. t= 5.06 2 93 4. 92 6. 9b 5. 33 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. E 4. 92 3.39 2. 87 5. 27 2.35 5. 40 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. ESE 4.49 4. 66 3. 61 4. 29 0. 4. 61 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SE 4. 77 5.23 3. 27 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SSE 5. 61 7. 72 5. 08 4. 38 3. 35 0. 10.88 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. s 6. 72 7. 30 7. 92 6. 04 6. 08 7. 78 7. 33 7. 52 5.89 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 SStJ 5 69 6. 94 4. 83 6. 66 9. 46 o. 0. 0. 0. 0. 0. 0. 0. 0 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 5t4 5.44 3. 49 0. 7. 99 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 4. 72 3. 80 0. 0. 7.36 o. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. w 5. 20 4.46 0. 4. 36 0. 0 0 0 0 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4. 84 6. 4599. 9910. 03 7. 78 o. 0. 5. 82 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. t :,._: 5.86 6. 01 9. 24 9. 19 7.22 o. 0. 9. 75 0. 0. 0. "' " 0. " 0. 6.65 0. 0. 0. 0. 0. 0. 0. 5: 2510: 14 v. 5.38 4. 80 6. 79 6. 13 7. 52 4. 64 8.1799.99 0. 0. 0. o., 0. 0. 0. 0. 0. 0. 0. 0. 0. o. N 4.42 4. 84 5. 87 5. 61 5.1499.99 8. 9699. 99 5.06 0. 0. 0. 0. 0. D. 0. 0. o. 0. 0. 0. 0. 0 o. TOTAL NO. OF OBSERVATIONS = 8760 TOTAL NO. OF INVALID OBSERVATIONS .. 128 Rev. 0 TABLE 2. 3-33 (Continued) WIND DIRECTION PERSISTENCE (10 METERS) Page 14 of 36 KANSAS GAS AND ELECTRIC WOLF GENt::RATINO STATION JOB NO. -07699-064-07 DATA PERIOD <YR -l"iO:-.ITH -DAY) -730601 TO 740531 THRESHOLD OF ANEI"!OME:TER (MPHl -. 74 DATE OF THIS -11/13/81. TIME -11. 36. 25. WIND DIRECTION PERSISTENCE -PASGUILL #E# 1 SECTOR PERSISTENCE CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 s 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 :>24 N'<C 5 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **-Nt=" 8 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 4 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 10 5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ESE 10 3 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 29 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSE 39 13 6 7 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I:" s 56 17 11 15 8 4 4 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 !-:rJ 11 7 4 4 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 11 0 1 2 l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n WS\>1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;::d wr;w 9 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t:rj 9 4 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t:rj 14 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N 7 5 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AVERAGE WIND SPEED <M/SEC) CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 1 ' 12 13 14 15 16 17 18 19 20 21 22 23 24 :>24 NNE 2. 97 4.68 3.06 5. 09 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. A 0. 0. 0. 0. \J, v. NE 2. 55 3.63 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ENE 3. 15 4. 05 4. 23 0. 4.60 0. 0. 0. 0. 0. 0. 0, 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. E 4. 54 4.80 4. 53 6. 54 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ESE 4. 91 3.41 4. 63 0. 3. 77 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SE 3.66 5. 46 2. 50 6. 15 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SSE 4. 11 4. 57 4. 69 5. 08 4. 9.64 4. 72 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. s 4. 86 5. 66 5. 91 5. 94 5. 5. 03 6. 18 4. 33 0. D. 5. 46 5. 56 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SE*t*J 4.29 $ -""""" 4. 7:5 6. 70 5. 8.21 0. 0. 8. 88 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. O.V-O.t 3.89 0. 7. 52 5. 02 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ws;*J 2. 40 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. w 3. 15 3. 72 2 38 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 60 4. 15 3. 72 0. 0. 0. 0. 0. 0. 0. 0 0. 0 0. 0. 0. 0. 0. 0. 0. ,... 0. 0. 0. './, I>CVJ 4. 17 4. 28 4. 21 6.47 5. 04 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 70 3. :56 3 00 6. 45 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4. 19 4. 09 4. 11 0. 2. 27 0. 0. 0. 0. 0. 0. 0. 0. 0.1 0. 0. 0. 0. 0. 0. 0. 0. 0. o. TOTAL OF = 8760 TOTAL r.*o. OF INVALID OBSERVATIONS = 128 Rev. 0 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE (10 METERS) Page 15 of 36 I'.ANSAS GAS ANO ELECTRIC WOLF CREEK GENFRATH-!G STATION JOB tm -DATi\ PERIOD <YR MONTH DAY) 730601 TO 740531 THRESHOLD OF ANE110ME TER <MPHl . 74 DATE OF THIS RUN -11113/81. TIME -10. 20. 19. WINO DIRECTION PERSISTENCE PASGUILL #F# 1 SECTOR PERSISTENCE CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 :>24 N'-ft= 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 *--:..:E 9 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E*'"' 6 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,._ E 6 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ESE 12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 18 10 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L1 SSE 27 9 7 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q h:J s 23 9 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSl*J 14 3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :::0 t.J 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J:tj 3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J:tj 9 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ::>": NN:.J 9 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AVERAGE WIND SPEED <MISECl cot.!SECUTI VE HOURS SECTQR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 )*24 2 94 0. 0. 3. 16 0. 0. 0. 0. 0. 0. 0. ("\ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. v. 2. 40 0. 0 3. 99 3. 17 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 ENE 3. 21 0. 3. 30 0. 3. 46 0. D. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. E 2. 58 1. :52 3. 05 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ESE 3. 06 4. 10 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SE 2. 90 3.31 2 25 2. 0. 0. 0. 0. 0. 0. 0. D. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0. SSE 3. 07 3. 03 2. 79 5. 2. 99 2. 78 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. s 3. 61 3. 59 4. 19 3. 2. 74 3. 71 0. 0. 0. 0. 0. 0, 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 07 2 86 2 63 0. 0. 6. 67 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0. 0. 0. 0. 0. 0. 0. 0. SlJ 2 65 2. 53 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0. 0. 2. 12 0. 0. 0. 0. ("\ 0. 0. 0. 0. 0. 0. 0. " 0. 0. " 0. 0. 0. 0. 0. 0. 0. ...,. v . v. ., 1. 12 0. 0. 0. 0. 0. 0. 0. 0 0, 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. W'* 1. 56 2. 99 4: 26 3. 50 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. ' 3.04 1. 78 0 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.68 2. 77 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. N 3. 50 3. 46 3. 23 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.' 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 TOTAL NO. OF OBSERVATIONS 8760 Tt"\T"Al OF Hi\!ALID OBSERVATIONS 128 U I Mi.-Rev. 0 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE ( 10 METERS) Page 16 of 36 KANSAS GAS AND ELECTRIC WOLF CREEK GENt:RATING STATION J0!3 NO. -07699-064-07 DATA PERIOD <YR -DAY) -730601 TO 740531 TiiRESHOLO OF ANEt'iOt'iETER (MPH) -. 74 DATE OF THIS RUN -11/13/81. TIME -11. 38. 52. WIND DIRECTION PERSISTENCE PASGUILL #G# 1 SECTOR PERSISTENCE Cot,!SECU fiVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 N:JE 3 1 1 3 2 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Et*JE 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ESE 6 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 13 3 "' 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ::Ei SSE 20 7 4 4 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 11 4 7 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t"' 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 rij 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WSW :5 i 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n i.J 7 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;::o lll! 6 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J::rj , .. N:"*Jt,.l 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J::rj N 5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 !7'i AVi::.RAGE WIND SPEED (M/SEC1 CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 )*24 2. 35 1. 94 2. 18 3. 25 3. 16 o. 0. 2. 14 0 2. 87 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. NE 1 99 3.99 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. v. ENE 3. 20 4. 02 0. 0. 0. 0. 0. !2* 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. E '"' 77 3. 14 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. c.. v. ESE 3. 01 2. 73 3. 54 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. SE 2. 75 2 19 2. 77 2. 78 3. 29 o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SSE 2 87 3. 20 ..., 55 3. 12 0. 99. 99 0. 0. 0 . 2. 59 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. s 3. 48 2. 25 3: 00 2.23 0 2.49 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 76 4.84 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0 l. 56 0. 0. 0. 0. o. 0. 0. 0. 0. "' 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. v. 1. 72 1. 97 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. '" 2. 01 2.04 2. 30 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. w:;;.J 2. 54 2. 30 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. l/'J 1. 76 1. 70 2. 03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0 0. 0. 0. 0. 0. 0. 0. 0 /""" 1. 92 2.81 2.88 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.01 2. 10 2. 77 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o.* 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. TOTA!.... OF OBSERVATIONS 8760 TOTA!.... OF INVALID OBSERVATIONS 128 Rev. 0 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE (10 METERS) Page 17 of 36 KANSAS G.t,s ELECTRIC WOLF CREI':"K GENERATING STATION JOB 07699-064-07 DATA PERIOD <YR -l"iONTH -DAYl -730601 TO 740531 THRESHO'--D OF ANEI"iOMETER <MPHl -. 74 DATE OF THIS RUtJ -11/13/81. TIME 10. 23. 44. WINO DIRECTION PERSISTENCE -PASGUILL ALL 1 SECTOR PERSISTENCE CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 e 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 36 20 8 8 6 2 4 2 1 2 1 0 0 0 0 1 1 0 0 0 0 0 0 0 39 11 4 7 2 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 E.._ic 31 14 8 6 2 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 E 33 14 6 2 3 2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ESE 35 16 9 7 3 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 66 25 19 8 7 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSE 93 40 29 22 7 10 6 1 1 s 1 0 0 0 0 0 1 1 0 0 0 0 0 0 s 110 56 37 25 22 13 16 8 5 5 3 2 3 4 3 0 2 1 0 0 0 1 0 1 0 SS(*J 66 33 23 5 9 8 6 3 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 t"' s;J 38 22 8 5 5 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1-l:j I 1/""l I 30 12 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 y..;..::h\1 iJ 31 12 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 17 4 5 3 3 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 :;o f'!'j 54 24 10 6 5 6 4 2 0 0 2 0 1 0 0 0 1 0 0 0 1 0 1 0 t'Sl 1'4"" 39 23 12 8 8 6 2 4 5 2 2 0 1 0 0 0 0 0 1 0 0 0 0 1 t'Sl N 48 27 12 7 7 6 2 2 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 AVERAGE wwo SPEED <MISEC) CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 NI*4E 3. 95 3. 90 2. 73 5. 09 6. 58 3.22 4.06 5.38 1. 89 5. 52 2. 28 0. 0. 0. 0. 9. 15 2.80 0. 0. 0. 0. 0. 0. 0. !-!,._ 3 04 3. 61 2.62 3. 62 2 90 7. 04 4.32 0. 3. 76 4.27 3. 14 0. 0. 3. 76 0. 0. 0. 0 0. 0. 0. 0. 0. 0. "' ENE 3. 72 3. 74 4.28 4. 62 6. 00 5. 15 3. 63 0. 0. 0. 4. 30 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. E 4. 09 4. 50 3. 68 5. 94 2. 60 3. 75 3.80 6. 52 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ESE 3. 69 3.96 3. 74 4. 87 4.87 4. 65 0. 5. 56 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. SE 3. 68 3. 97 3. 19 3. 56 5. 00 0. 3. 32 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. SSE 4. 06 4. 11 3. 89 4. 03 4. 44 5. 40 5. 53 5. 09 5.35 5. 43 2. 78 0. 0. 0. 0. 0. 3. 06 4. 64 0. 0. 0. 0. 0. 0. s 4. 47 5. 11 5. 30 5. 66 5. 37 5. 93 6.26 7. 24 7.02 6. 31 6. 99 7.92 5. 56 6. 42 7. 29 0. 5.87 9. 06 0. 0. 0. 5. 91 0. 6. 57 4. 85 5. 17 5. 73 7.07 7. 18 7. 32 5.2410.40 7. 75 0. 0. 7.66 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. r""fl 4. ,_,__, 5. 80 6.42 ;.}. 8. 70 7. 60 0. 0. 0. 0. 0. 0. 4. 46 0. o. 0. 0. 0. ,., 0. 0. v. 0. o. c:Jlr"i v. 3. 96 3. 36 2. 22 0. 7.36 9. 62 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. l.J 3. 67 3. 57 3. 28 4. 97 2. 59 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 99 3. 90 3. 76 6. 83 6. 28 5.09 0. 5. 82 0. 0. 3. 88 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 3. 58 4. 56 4. 37 5. 98 b. 44 5. 43 7. 7210. 26 0. 0. 5. 08 0. 10. 65 0. 0. 0. 10. 38 0. 0. 0. 7. 31 0. 6.74 0. 4. 33 4. 20 :5. 74 6. 28 5. 68 5. 71 5. 06 5. 92 5. 58 6. 68 6. 64 0. 2. 01 0. 0. 0. 0. 0. 5. 49 0. 0. 0. 0. 9.02 N 4. 12 4. 90 4. 56 4. 94 5. 32 7. 13 7.39 2. 94 5.06 0. 0. 0. 0. 3.*45 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. TOTAL NO. OBSERVATIONS = 8760 TOTAL t*!O. INVALID OBSERVATIONS = 116 ReV. 0 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE (10 METERS) Page 18 of 36 KA0lSAS GAS AND ELECTRIC WOLF CREEK GENt:.RATING STATION JOB NO_ -07699-064-07 DATA PERIOD CYH -MONTH -DAYJ -730601 TO 740531 THRESHC'-.D OF ANEMOMETER CMPHJ -. 74 DATE OF THIS RUtJ -11/17/81. TIME -13. 53. 28. WINO DIRECTION PERSISTENCE -PASGUILL #S# 1 SECTOR PERSISTENCE T I VE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 Nf'E 11 8 3 3 1 0 1 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 "-f-17 7 1 4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ... ::. 17 6 4 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,,. __ E 16 12 2 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ESE 19 10 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 51 14 13 5 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ::2; SSE 71 30 22 19 5 6 2 1 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 79 31 21 18 12 5 7 2 1 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 t"1 28 13 7 4 1 1 3 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 rtj 17 3 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WSt.J 11 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n w 13 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 10 2 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ::0 riLl 27 11 6 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t<:l '" t::tj NNW 20 11 5 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N 21 6 6 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AVERAGE WIND SPEED CM/SECl CON5ECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 :>24 Nt*<E 2. 64 3. 75 2. 77 3. 78 3. 55 0 3.48 2. 68 2. 59 0. 2. 28 2. 78 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 23 3. 13 1. 74 3. 36 0. o. " 0. 0. 0. 3. 48 0. 0. 0. 0. 0. 0. 0. 0. '"' 0. 0. 0. 3: 63 v. v. ENE 2.66 3 56 4. 53 3. 63 4. 60 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. E 3. 30 4. i 5 3. 52 4. 54 3. 57 0. 3. 32 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ESE 3. 50 3. 17 3. 44 4. 85 3. 77 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. BE 3.25 3. 40 2. 96 3. 67 3. 44 2. 24 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SSE 3. 59 3. 53 3 34 4. 02 4. 00 5. 25 4. 72 2. 92 2.64 0. 2. 63 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. s 4.22 4. 76 4 34 5. 15 4. 95 4.85 5. 39 3. 72 3. 80 4. 54 4. 58 5. 37 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 13 3. 92 4. 23 6. 43 2. 54 8. 21 4.82 0. 8.88 0. 0. 6. 42 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. "" 3. 06 3. 67 6. 00 5. 02 3. 32 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 2 18 2. 00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. w 2 14 2. 94 2. 24 2. 66 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 2. 91 3 40 3. 35 3. 50 3. 27 0. 0. 0. 0. 3.87 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 3 23 3 05 3 31 2. 24 5. 04 2. 57 5. 61 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. " 0. 0. " v. v. 2. 99 3. 11 3. 31 5. 12 2. 54 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 3. 10 4. 05 3. 25 3. 34 0. 0. 0. 3. 04 0. 0. 0. 0. 0. O' 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 TOT,O..L NO. OF OBSERVATIOtYS 8760 TOTA'-. tiD. OF INVAUD OBSERVATIONS 4565 Ron .... v
  • 0 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE (10 METEP.S) GAS AND ELECTPIC WOLF CREEK GtNERATING STATION JOA NO. -7699-062-07 DATA PERIOD (YR -MONTH -DAY) -740601 TO 750531 THRESHOLD OF ANEMOMETER (MPHl -.74 DATE OF THIS RUN -07/28/AO. TIME -20,03,29, SECTOR NNE NE ENE E ESE SE SSE s S<;w sw WSW w WNW NW NNW SECTOR NNE NE C.NC E ESE <;E SSE s c;c;w sw WSW w WNW NW NNW N WIND DIRECTION PERSISTENCE -PASQUILL #A# I SECTOR PERSISTENCE CONSECUTIVE HOURS 2 6 !l 5 6 II I 0 14 24 28 13 6 6 5 9 8 11 3 6 2 1 1 3 5 4 11 10 7 2 2 4 3 1 3 4 1 2 1 0 1 2 3 5 6 4 0 2 0 2 6 0 5 I 0 0 0 0 0 2 9 6 0 1 1 0 2 2 2 6 3 0 0 0 1 0 0 2 1 0 0 0 0 1 2 2 AVERAGE WIND SPEED (M/SECI CONSECUTIVE HOURS 2 3 4 5 7 0 0 1 0 1 0 1 4 6 I 0 l 0 0 I 7 5.40 5.99 5.23 5.06 o. 4.55 3.51 3.45 o. o. o. 8 0 0 0 0 0 0 2 2 3 0 0 0 1 0 0 0 8 o. o. 9 I 0 0 0 0 0 0 0 2 0 0 0 0 1 1 0 9 10 0 0 0 0 0 0 0 0 3 0 0 0 0 0 1 0 10 6.32 o. o. o. 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 3.59 4.32 5.19 v. v. O. u. v. v. 4.}4 6,00 o. o. ,o.** o. o. o. o. o. 3.47 4.73 3.86 o. 3.99 7.18 o. o. o. o. 3.61 5.09 2.41 o. o. o. o. o. o. o. 5.48 5.06 4.47 5.02 o. 5.10 8.2) o. o. o. 5.50 7.53 5.87 7.30 6.89 6.94 6.43 o. o. o. 5.60 7.56 5.49 7.02 6.3} 7.44 7.5310.55 8.17 o. 6.65 7.43 4.45 o. o. 8.95 o. o. o. o. 4.1210.71 o. 3.96 o. o. o. o. o. o. 4.21 4.98 4.21 6.86 o. 6.35 o. o. o. o. 6.58 6.16 o. o. o. o. 14.33 o. o. o. 5.91 7.12 6.59 6.54 7,53 o. o. 8,24 o. o. 6,70 6.14 7.54 7.25 6.72 9.17 o. 6.96 9.11 o. 5.46 5.15 o. 4.98 6.82 5.92 o. o. o. o. TOTAL NO, Of OBSERVATIONS 8760 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 o, o. o. o. o. o. o. o. o. o. o. o.
o. o. o. o. 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 o. o. 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 o. o. o. o. a. o. o. o. o. o. o. o. o. o. o. 0. 0. o. o. 0. 0. 0. 0. 0. 0. o. o. o. o. 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 o. o. Vo o. o. o. o. o. o. o.
o. o. o. o. o. o. 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 o. o. n Uo o. o. o. o. o. o. o. o. o. o. o. o. o. 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 o. o. vo o. o. o. o. o. o. o. o. o. o. o. o. o. 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 o. o. Vo o. o. o. o. o. o. o. o. o. o. o. o. o. 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 o. o. 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 o. o. 0 ,._ j 0. 0 ** 0. 0. 0. o. o. o. o. o. o. o. o. 0. 0. o. o. o. o. o. o. 0. 0. o. o. 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 o. o. o. o. o. o.
o. o. o. o. o.
o. o. o. o. o. 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 o. o. o. o. o. o. o. o. o. o. o. o. o. o.
o. o. Page 19 of 36 24 >24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I) 0 0 0 0 0 () 0 0 0 0 0 24 >24 o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. " vo o. o. o. o. o. o. o. o. o. o. o. o. o. Rev. 0 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE ( l 0 rtCTF.RS) GAS ANU CREEK GENERATING STATION JQ.Ci NO. '"" 7699=062-07 DATA PERl00 tyR -MONTH --740601 TO THRESHOLD OF ANEMOMETER (MPH) -,74 DATE Of THIS RUN -a7/28/8a, TIME -2Q,03,2Q, wiND DIRECTION PERSISTENCE-PASOU!LL *8* 1 SECTOR PERSISTENCE CONSECUTIVE HOURS SECTOR 2 3 4 5 NNE NE ENE E ESE SE SSE s ssw S\11 WSW \II WNW NW NNW N SECTOR NNE NE ENE E ESE SE ssE s ssw SW WSW \II WNW Nwi NNW N 3 3 1 a 0 {) 0 3 1 2 3 2 1 7 2 6 0 0 0 0 0 {) 0 3 0 0 0 0 0 2 2 1 0 0 1 0 1 0 0 a 1 0 0 0 0 1 2 0 a 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AVERAGE WIND SPEED (M/SEC) CONSECUTIVE HOURS 2 3 8.28 o. 3.03 o. 1. 79 0. 0. 0. o. o. a. o. o. 4 5 o. o. o. o. 6.72 o. o. o. q ** 0e 0e 1 6 10.87 o. o. o. o. o. o. c. o. 7,64 6,46 4,71 7.17 o. o. o. 7,67 o. o. o. o. o. o. o. b.SS o. 8,19 o. 99,99 a. 6.25 8.13 6.33 9.34 6,84 6o96 o. o. a. 7.40 7.17 o. o. o. o. o. 8.48 a. 0. 0. o. o. o. o. TOTAL NO, OF OrlSERVATlONS 7 a 0 0 0 0 0 0 a 0 0 0 a a a 0 0 7 '" o. o. o. o. o. o. o. o. o. o. o. o. o. a. 8 0 0 0 0 0 0 0 0 a a 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 9 v. 0. o. o. o. o. o. o. o. o. 0. 0. 0 = Q. o. o. o. o. 0. . o. o. o. o. o. a. o. o. o. o.. o. o. o. 8760 10 0 0 0 0 0 0 0 0 0 a a 0 0 0 0 0 10 o. a. o. o. o. o. o. o. o. o. o. o. o. o. o. o. 11 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0. o. o. o. o. o. o. o. o. O, n v. o. o. o. a. o. 12 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 12 o. o. o. o. o. o. o. o. o. n v. 0. o. o. 0. o. 13 a 0 a 0 0 0 0 0 0 a 0 0 0 0 0 0 13 o. o. o. o. o. o. Uo 0. o. o. o. o. o. o. 0. 0. 14 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 o. o. o. o. o. a. o. a.
o. o. a. a. o. o. 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 o. o. o. 0. o. o. o. o. o. G:: o. 0. o. o. o. Vo 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 o. o. o. o. o. o. o. o. o. (!, o. a. o. 0. o. Vo 17 0 0 a 0 a 0 0 0 0 a a 0 0 a a a 17 0. o. o. o. 0. o. o. o. 0. 0. o. o. o. 0. o. 11l 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 18 0. o. o. o. o. o. o. o. o. o. o. a. 0. 0. a. 0. 19 0 0 0 0 0 0 0 a 0 0 a 0 0 0 a 0 19 a. o. o. P* o. o. o. a. 0. o. o. o. 0. 0. o. o. 20 a 0 0 0 0 0 a 0 0 0 0 a 0 0 0 a 20 o. o. a. 0. 0. o. a. o. 0. o. 0. a. a. 0. a. o. 21 0 a 0 a a 0 0 0 a 0 0 0 0 a 0 0 21 o. o. o. o. o. o. o. o. " vo n v* o. 0. o. 0. 0. o. 22 0 0 0 0 a 0 a 0 0 0 a 0 0 0 0 0 22 !), a. a. o. a. 0. o. o. o. o. a.
a. 0. a. a. a. Page 20 of 36 23 a a a 0 0 0 0 0 a 0 0 0 0 0 0 0 23 o .. o. o. o. o. o. a. a. 0. o. a. 0. o. 0. o. o. 24 >24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 24 >24 o. e. 0. o. 0. o. o. o. 0. 0. a. 0. 0. o. o. o. o. o. 0. o. o. o. o. a. 0. o. 0. c. 0. 0. o. Rev. 0 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE ( l. 0 llETERS) bAS ANU WOLf bfNtKATING STATION JOH N'J, -7699-062-07 DATA PlRIOD -MONTH -llAYl -"/40601 TO 750531 THRESHOLD OF Ar-tfHOMEif..R (MPrll -* r"+ DATE OF THIS RUN -0?/?8/80. TINE -20.03.32. wiND DIRECTION PERSISTENCE -PASO\J!LL *C* l SECTOR PERSISTENCt SECTOR 'INE NE ENE E ESE SE sst. " "'" WS>I SECTCR NNE NE ENE E ESE SE SSE s ss* <;w 115>1 * ....... CONSECUTIVE HOURS 2 3 4 2 1 l I 2 s ) 3 0 4 2 9 7 5 3 3 l a a 0 a 0 0 3 a a 0 l l 2 a 4 0 l a a a a 0 l 2 a a 0 l 1 4 l 5 0 0 0 a a a 0 a I 0 0 0 a a a 1 6 0 0 a 0 a a 0 a a a a 0 1 l 1 2 AVERAGE SPEED (M/SECl CONSECUTIVE HOURS 2 3 5 3.69 8.12 o. o. 3,86 2.52 6.20 o. o. a. 4,56 o. 3. 96 0. 6.55 o. 4,69 a. 6,62 o. 'o,69 o. s.a7 7.9! b,J5 0, a. o. a. a. o. a. o. I Q ,* a. a. o. o. a. 8.86 a. 0. o. 7 0 0 0 a 0 a a a 0 a 0 0 a a 1 a 7 0. a. 0. o. a. o. o. 0. a. n v. a. 0. 3.96 o. a. o. o. 'o.aa 5. 79 a. a. a. 0. 0. a. 0. 0. a. 8.35 o. 6.24 a. 8 0 a 0 0 0 a 0 a a a 0 0 0 a 0 a 8 u. 0. o. o. a. a. o. a. a. n v. a. 0. a. 6,8199,99 6,50 u* 7,42 5,66!0.24 a. 7.49 7,Ja 4,84 a. 8,68 a. 5,4! 99.9999,99 a. 9.}!l 5.51 o. a. TOTAL NO. OF 876a 9 0 D 0 0 0 a 0 0 0 a a 0 a l a a 9 o. o. o. o. o. o. 0. o. o. a. o. 7.12 0. 0. l 0 0 0 0 0 a 0 0 0 0 0 0 a 0 0 0 l I 0 ll 0 a a a a a 0 a a a a a 0 a a a II a. o. a. a. o. o. a. o. 0. a. o. o. 0. 0. 0. 0. 0. 0. 0' 0. c. o. o. o. 0. 0. Q, o. 0. 0. 7,6il o. 12 0 a a 0 0 a 0 a 0 0 a a a 0 0 0 12 0. 0. 0. n. 0. 0. a. 0. a. o. o. 0. 0. (). 0. 0. 13 0 0 a 0 a 0 0 a 0 0 0 0 0 0 0 a 13 a. a. a. 0. a. 0. o. 0. a. 0. 0. 0
  • 0. 0. o. 14 0 0 a 0 a a 0 0 0 a a a 0 0 0 0 14 0. a. 0. o. 0. a. a. 0. 0. a. 0. a. o. a. o. IS 0 0 0 a a 0 0 0 0 0 a 0 0 0 a 0 15 0. o. o. 0. 0. o. 0. 0. 0. 0. o. 0. 0. a. 0. 16 0 a a 0 a a a a 0 0 a 0 0 a 0 0 16 0' o. o. o. a. o. a. u. a. (), u
  • a. a. a. a. l 7 0 0 0 0 0 0 a a 0 0 a 0 a a a 0 17 0' 0. o. o. o. o. o. u. o. 0. 0. u. a. o. o. a. 18 0 0 0 a 0 0 0 0 0 0 0 a 0 0 0 18 0' a. o. o. o. o. o. Vo 0. a. 0. u. 0. a. o. 0. 19 a a 0 a 0 0 a a 0 0 a 0 0 0 0 19 o. o. o. D I. o. o. o. o. 0. 0 = o. a. o. o. a. 20 a 0 0 0 0 a a 0 0 0 0 Q 0 0 0 a 20 a. o. o. a. 0. a. o. 0. o. 0. c. o. o. o. o. 21 a a 0 0 0 0 0 0 a 0 0 0 a 0 0 0 21 a. 0. o. o. a. o. 0. o. 0. a. 0. o. o. o. a. o. 22 0 0 0 a a 0 0 0 a 0 a 0 0 0 0 o. o. o. o. 0. o. o. o. o. o. 0. 0. a. o. a. a. Page 21 of 36 23 0 0 0 0 a 0 0 0 a 0 0 0 0 0 0 0 23 a. o. o. 0. a. o. o. o. 0. a. o. 0. 0. o. a. a. 24 >24 a a 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 a 0 0 0 0 0 0 0 a 0 24 >24 o. o. o. o. 0. a. a. o. o. o. o. o. 0. o. 0. a. a. 0. 0. o. o. o. a. u. 0. 0. 0. 0. 0. 0. a. 0. Rev. 0 TABLE 2,3-33 (Continued) Wii-JD DIRECTION PEP..SISTEr-!CE ( 10 L1ETERS) GAS ANO fLfCTR!C STATION JOR NO. -7699-062-07 DATA PERIOD (YR -MONTH -DAY) -740601 TO 750531 THRFSHOLO OF ANEMOMETER (MPH) -,74 DATE OF THIS RUN -07/28/80. TIME -20.03.31. wiNO DIRECTION PERSISTENCE -PASQUILL *D* 1 sECTOR PERSISTENCE SECTOR NNE NE ENE E ESE SE s iol WN\ol N\ol NN\ol N SECTOR CONSECUTIVE HOURS 2 12 I 0 8 10 13 12 10 42 20 7 4 7 10 14 20 16 3 12 6 2 5 lO 7 12 18 12 i 3 2 2 9 13 15 4 8 2 4 5 3 2 4 8 3 2 2 4 2 5 5 4 5 5 2 2 I 0 I 0 5 0 0 0 0 2 5 3 3 6 l 2 1 0 I 0 0 3 2 1 0 2 0 I 6 AVERAGE WIND SPEED CM/SECI CONSECUTIVE HOURS 2 3 5 7 2 0 0 0 0 l 0 5 0 0 0 0 0 1 3 1 7 0 0 0 0 0 I I I 0 0 0 0 1 0 2 0 8 9 0 0 0 0 0 0 0 l 0 0 0 0 0 0 0 1 9 I o 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10 I 1 I 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 II 12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 12 5.63 4.29 ).86 4.98 6ol5 6.3j 5.75 6.67 5,29 6,55 7.15 o. 4,97 5.62 o. o. 5.70 o. o. 7.4Z a. o. o. o. 4,54 o. o. o. 5.86 5.5i o. o. o. o. o. o. 0. o. o. a. o. o. 5.81 o. 4.87 9.28 o. o. o. o. 5.21 6.41 6,69 6,94 8.43 6.92 o. 0. 8,39 c. 0 = 0. o. 0. 0. o. 0. o. o. 0. v; 0. 0. 8.38 0. o. o. 6.82 o. o. 4,40 v. o. ac. o. o. o. o. o. o. o. o. o. 0, o. !3 0 0 0 I I 0 0 0 0 0 0 0 0 0 0 0 13 o. o. 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 o. 0. a. o. J,'l6 o. 10.31 0. o. o. 0. 0. 0. 0. Vo 0. o. 0. o. a. 0. 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 o. o. o. 0. a. c. o. o. 0. 0. o. o. NNE NE ENE E ESE SE SSE s S<;w S\ol WSW w tiN>/ Nw NNW 'I 3.46 5,21 3.50 4,71 4.92 4.92 4.25 6.08 5.90 5.13 4,09 5.49 4,94 4.87 6.)7 4,85 6.29 6.72 4,25 3.83 ..... 7 6,54 2.92 2.89 5.oo 3.84 6.6 .. 5.25 5.33 6.8 .. ... t>9 5,62 6.46 2.!3 7.05 4.30 5.29 8.81 7.43 0. o. 9,06 6,30 3,34 5.25 7.48 o. o. o. o. o. o. o. 6.72 a. a. a. 0. 0. 7,'18 a. o. 0. 0. 8.11 0. 5,6o 8.03 a. o. o. o. 7,33 7.92 7.95 o. n. n. 6.66 5.96 o. 9.37 6.87 o. TOTAL Jf OdSERVAT!ONS 8760 0. o. o. 0. *a. o. 0. 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 16 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 o. o. o. o. o. o. 0. 0. o. o. 0. 0 il 0. 0. 0. 0. o. o. 0. 0. o. o. o. o. 0, D. 0. 0. 6.72 o. o. o. 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 c. o. o. o. o. o. o. o. 0. o. 0. 0. 0. 0. 0. 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0. o. o. o, o. o. o. o. 0. o. a. o. 0. 0. a. 0. 20 0 a 0 0 0 0 0 a 0 0 0 0 0 0 0 20 o. 0. a. 0. a. o. o. 0. 0. 0. 0. 0. o. a. a. 0. 21 0 a 0 a 0 0 0 0 a 0 0 0 0 0 0 0 21 o. o. o. o. o. o. o. 0. 0. 0. o. 0. 0. 0. 0. 0. 22 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 22 a. 0. o. 0. D
  • 0. o. 0. v. 0. 0. 0. 0. 0. 0. Page 22 of 36 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0. 0. 0. 0. a. o. 0. 0. c. ". 0. 0. D
  • 24 >24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 >24 o. o. 0. 0. 0. 0. 0. 0. o. 0. 0
  • u. 0. 0. 0. o. o. 0. o. 0. o. 0. 0. 0. Q. o. u. 0. 0. o. o. Rev. 0 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE bAS AND STATION JOB NO, -7h99-062-07 DATA (tW -MONTri --740601 TO 7S053l TrlRFSHOLU OF ANlHOMETER !MPH) -,74 DATE OF THIS RUN -TIME -20.04,00, SECTOR NNE NE ENE E ESE SE c;c;E s S'iil sw WSW 01 NN:O N iilND DIRECTION -PASOUILL *E* I PERSISTENCE CONSECUTIVE HOURS 2 3 4 5 6 7 8 9 I 0 5 3 7 2 9 1 7 2 5 4 16 4 29 12 32 23 20 7 12 2 1 2 7 1 12 6 8 4 8 1 12 4 1 1 2 1 4 2 7 11 4 0 1 2 0 2 1 0 0 0 1 0 3 1 1 5 0 a a 1 0 2 1 0 a 0 0 1 1 I 2 2 2 0 0 a a 1 0 0 0 0 1 0 0 0 2 2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 a a a 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AVERAGE WIND SPEED !M/SEC) SECTOR NNE NE ENE E ESE c;E SSE s ssw 'ill '" CONSECUTIVE HOURS 2 3.14 2.83 3.13 4,96 4.41 4.09 3.75 4.54 4.1) 3.86 2.84 3.58 J.SJ 3.10 3.B9 4.38 3 4 5 6 7 8 9 10 11 3.76 4.48 o. o. o. o. o. o. o. 2.97 4.06 a. o. a. a. o. o. o. 2.47 2.1a 3,24 5,24 a. o. a. o. 3.6o 5.72 a. , o. o. a. o. o. 3.75 5.46 5.72 6.39 o. o. o. o. o. 5.73 3,45 3.75 4.11 a. o. o. o. o. 4.89 4,33 7.bO 5.27 4,97 &.io b,o7 4,89 o. 4.61 5.69 6.70 4,72 6.58 8.93 o. 6.83 o. 5.35 4.57 o. 7.14 7.94 6.98 o. o. c. 3.99 o. o. o. o. o. n. o. o. 4.34 2.89 o. o. o. a. o. o. o. 5.36 2.67 4.08 o. o. o. o. o. o. o= 4.29 3.36 5.26 4.a3 4.ao 4.61 o. 2.5& 4.15 4.18 o. o. a. o. o. o. o. o. 6.06 o. 0 o. o. 0. 0; a. o. o. TOTAL NO. OF OtiSERYAT!ONS = 8760 ( 10 12 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 o. o. o. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5.28 o. 0. 0. 0. 0. 0. 0. 0. 0. 0; 0= o. o. o. o. o. o. 14 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 14 o. o. o. o. o. a. a. a. o. o. o. 0. 0 i o. 0. 0. 15 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 15 o. o. 0. o. o. o. o. o. " uo o. o. o. o. a. o. o. 16 0 0 0 0 0 0 0 a 0 a 0 0 a a 0 0 16 o. o. o. o. o. o. o. o. o. o. a. o. a. o.
a. o. 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 17 o. o. o. o. o. o. o. o. o. o. o. o. " Vi o. o. o. 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 o. 0. o. o. o. o. o. o. " uo o. o. o. o. o.
o. o. 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 o. o. o. q; o. o. o. o. 0. o. o. o. 0 o. o. o. 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 o. o. o. o. o. o. o. 0. o. 0. o. o. 0 = o. o. o. 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 o. o. o. o. o. a. o. o. o. o. o. o. 0 e o. 0. o. 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 o. o. o. o. o. o. o. o. o. o. 0. o. 0. 0. o. 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 o. o. o. o. o. o. o. 0. 0. o. 0. 0. o. 0. o. Page 23 of 36 >24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 >24 o. o. o. o. o. 0. o. o. o. o. o. o. 0* o. o.
o. o. o. o. o. o. o. a. o. 0. o. o. 0. 0; 0. o. 0. Rev. 0 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE (10 HETERS) KANSAS GAS ANO CREEK GENtRAT!NG STATION JOB NO, -DATA PER!OU IYR -MONTH -DAYl -740601 TO 750531 THRESHOLD OF ANEMOMETER (MPHl -,74 DATE OF THIS RUN -07128180, TIME -20.03.28, DIRECTION PERSISTENCE -PASQUILL *F* 1 SECTOR PERSISTENCE CONSECUTIVE HOURS. SECTOR 2 3 1 I 0 2 4 5 4 5 NNE NE ENE E ESE SE SSE s ssw SW WSW w WNW NW NNW N SECTOR 5 2 6 12 7 13 26 23 11 6 3 6 3 10 7 5 16 8 2 5 0 0 2 1 i) 1 1 0 1 1 0 4 4 2 4 0 0 0 0 0 0 1 0 1 0 0 1 0 1 2 4 0 0 l 0 0 0 1 1 0 0 0 0 l 0 0 1 0 0 0 0 0 0 0 AVERAGE WINO SPEED (M/SECI CONSECUTIVE HOURS 2 7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 B 0 0 0 0 0 0 0 0 0 () 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 () 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4 5 6 7 B 9 IO 11 NNE NE ENE E ESE SE SSE 5 5511 lo'Siol 2.78 3.17 4.67 2.92 2.94 o. 2. 74 o. 3.36 3,89 3,6) 4ol0 J,JO 3.95 O, 3,46 2,8) 3o14 ),25 J,JS 2o86 ),84 3.36 ),6] 3.3't }.}) 3.68 2.41 J.os o. o. 3.24 o. o. 2.49 o. o. o. 0. o, 0. 0. Q, 1 0\ Q, Q, 4.59 o. o. o. o. 2.87 o. o. 4.4] o. 3.72 o. 3.6] o. o. o. 3.46 3.70 o. o. o. 0. 2.21 o. o. o. o. 2.89 a. o. 2.56 o. 2.83 3o75 a. o. o. 2.61 4.53 o. o. o. 2o91 Go Oo Oo O, 3o26 4o50 3o29 3ol6 O, o. o. o. n Vo o. 0. o. o. o. o. u. o. o. a. TOTAL NOo Of OBSERVATIONS ,. 8760 u. o. o. o. 0, c. o. o. o. o. 0. o. 0. 0. o. o. 0. 0. o. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3,'l'l o. 0. 0. 0. 0. a. o. 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 o. o. o. o. 0. 0. 0. o. o. 0. 0. o. 0. o. 0.: 0. !3 0 0 0 0 () 0 0 0 0 0 0 0 0 0 0 13 o. o. o. o. o. 0. 0. o. 0. 0. o. o. 0. 0. o .. o. 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 o. 0. 0. o. o. o. 0. o. Vo 0. o. o. 0. 0. o. 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 o. o. o. o. o. o. o. o. Oe o. o. 0. 0. o. " v. o. 10 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 l6 o. 0. o. o. o. o. o. o. o. 0. o. 0. o. o. i7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l 7 o. o. o. o. 0. o. 0. 0. o. o. 0. o. o. o. o. 0. i8 0 0 0 0 0 0 0 0 0 0 0 0 0 (i 0 0 18 0. o. o. o. 0. o. o. 0. o. o. o. o. o. o. o. o. i9 o. 0. o. q.* 0. o. 0. o. o. 0. 0. o. 0. 0. 0. 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 i) 0 0 20 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 20 0. 0. 0. 0. 0. 0. 0. 0. v. 0. 0. o. 0. \), 0. 0. 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 o. 0. o. 0. c. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. J
  • 22 0. 0. o. o. o. 0. o. 0. a. 0. 0. 0. 0. 0. 0. 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Page 24 of '36 23 0. 0. a. 0. 0. 0. 0. 0. o. 0. 0. 0. c. 0. 0. a 0 0 0 0 0 0 a 0 0 0 0 0 o. o. 0. o. c. o. 0. o. 0. o. 0. o. 0. 0. 0. 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n 0 0 0 0 0 c 0 0 0 0 0. o. 0. o. o. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. Rev. 0 ANV TABLE 2.3-33 (ContlnUea! WIND DIRECTION PERSISTENCE (10 :*IETERS) w<lLF O<EEK Gtt,tf<AT!"'b STATION JOA NO* -DATA PUdO[] IY>> -MONTH -iJA(l -740601 1ll 750S11 THRFSH0L0 OF ANEMOMETER IMPMl -,74 DATE Of THIS RUN-07/?R/BO* TIME -20.U3.5?. wiNO PERSISTENCE -PASOUlll l SECTOR PERSISTENCE CONSECUTIVE HOURS d 9 10 II 12 13 14 15 16 SECTOR NNE ENE E E<;E SE S<;E s so;;w sw IISw WNw Nlol NNI¥ N <;ECTOR NNE NE E 2 9 3 5 7 6 IJ 15 II 3 I 5 2 I 7 9 5 3 I 2 I l 2 6 3 2 0 0 0 l l l 2 3 4 2 2 0 4 4 2 0 0 0 0 0 0 0 0 5 l 0 l 0 2 2 0 0 0 0 0 0 l i 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 o* 0 AVERAGE wiND SPEED IM/SECl CONSECUTIVE HOURS 2 J 4 2.99 2.83 ),4\ 2* 79 2.23 2.22 ).6\ 2.49 3.36 3.!1 2.'H 3.20 2.91 2.59 o. 2.58 3.1"> 3.41 2.84 2.90 2.b6 2.70 3.42 2.61 2.92 o. o. 2.10 o. o. 2.20 2.n o. lo'19 2,8d Oo 2=56 o, z.lt 2,56 ).'00 2.60 o. 5 b 3.14 o. 0. 0 .. ),5'1 01 4. I 0 0.-0. D, 2.9'-' o. ?.93 o. 0. 0. 0. a. 0. 0. 0. 0. 0. 0. 2.78 o. 3,40 o. ).67 o. TOTAL NO. OF OdSERVAT!ONS 7 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 a 0 a 0 0 0 0 0 0 0 0 8 0. 0. 0. 0. 0. 0' 0. 0. 0. 0. 0. 0. o. o. 2*66 o. 0. 0. o. 0. 0. n. o. 0. 0. o. o. 0. 0. 8760 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0. a. 0. o. a. 0. a. o. 0. a. o. a. a. 0. 0 0 a 0 0 0 0 0 0 0 I) 0 0 l 0 0. 0. u. o. 1.}. o. 0. 0. o. 0. 0. o. 0. a. 0. 0 a 0 0 0 0 0 0 0 0 0 0 0 0 1 l 0. (), ('I. D 0. n. n. n. n. n
  • n. 0. n
  • 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 n
  • o. 0. 0. *J
  • 0. 0. 0. 0. 0. 0. 0. n
  • f)
  • 0 0 0 0 0 0 0 0 0 a 0 0 a 0 0 1 3 0. 0. 0;; 0. 0 v. 0. o. 0. o. o. 0. 0. o. o. 0. o. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 o. o. 0. o. 0. o. 0. 0. o. o. o. 0. n. 0. 0. o. 0 0 0 0 0 0 0 0 0 0 D 0 () 0 0 0 IS o. 0. o. 0. 0; 0. 0. o. o. 0. 0. 0. o. o. 0. 0 Vo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0. o. o. 0. 0. o. o. o. o. o. u. o. a. 0. o. 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 7 0. o. 0. 0. 0. o. o. o. 0. o. 0. 0. o. o. 0. o. 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 o. 0. 0. o. 0. 0. o. o. 0. o. o. o. 0. 0. o. 19 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 19 0. 0. 0. o. o. o. a. a. o. a. o. 0. 0. o. 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0. 0. 0. 0. o. u. 0. 0. 0. 0. 0. 0 .. 0. a. 0. a. 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
  • 0. 22 0 0 0 0 0 0 0 0 0 0 0 0 a u 0 0 22 0. 0. 0. 0 Vo 0
  • 0. a. a. 0. 0. 0. o. 0. 0. Page 25 of 36 2J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0. a. 0. 0. 0
  • 0. 0. a. 0. 0. 0. 0. 0. 0. 0 v. 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i!.4 >24 0. o. o. 0. 0. 0. 0. 0. 0. a. 0. 0. 0. 0. 0. o. 0. 0. 0. " v. 0. 0. o. 0. 0. 0. 0. 0. Q. " v. Rf;V. 0 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE (10 METERS) GAS AND JOB NO, -?b99-062-07 DATA PEH!UU (YR -MONTH -DAYI -740601 TO 750531 THRESHOLD OF ANEMOMETER (MPHI -,74 DATE OF THIS RUN-TIME -20.04,13. WIND DIRECTION PERSISTENCE -PASQUILL ALL I SECTOR PERSISTENCE CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 ! 0 !! !2 13 !5 !6 NNE NE ENE E ESE SE SSE 5 ssw WSW II WNW NW NNW N SECTOR 36 22 38 15 31 12 40 15 41 24 54 32 76 43 95 64 84 39 45 18 19 8 35 11 38 18 39 18 40 24 40 27 20 10 8 11 13 20 29 35 16 7 8 4 15 5 10 II 8 5 7 6 7 20 17 II 2 ) ) 2 13 12 11 6 2 4 2 6 4 9 20 II 2 0 ) 2 8 5 7 I 3 3 2 0 3 6 13 8 I 2 0 ) 10 3 3 0 I 0 2 5 5 10 6 0 0 1 4 ! 3 I 0 0 0 1 0 0 4 7 2 0 0 1 ! 3 3 5 0 0 0 0 0 I 4 3 0 0 I 1 0 4 1 0 0 0 0 0 2 i 2 0 0 0 0 2 0 4 0 0 0 0 0 0 2 ) 0 0 0 0 1 4 I 1 0 0 1 2 0 1 1 1 0 0 0 2 0 0 3 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 i 0 0 0 0 0 1 0 0 AVERAGE WIND SPEED <MISECI CONSECUTIVE HOURS 2 3 5 6 7 8 9 10 11 12 13 14 15 16 4,24 S,i'JJ 5.13 2.97 4.52 o. 6.35 5.51 5,84 8,40 o, Q, o, 3.87 4,)8 5.62 3.22 o. o. o. o. o. o. o. o. o. 4o13 5,14 ),74 5,07 3o54 O, O, Q, Q, Oo Oo O, O, 5.15 4,)7 4.63 o. 4.09 o. o. o. 3.91'> o. o. o. 5.21 4,30 5.27 o. 7.56 o. o. o. o. 8.30 o. o. o. 3,83 3,53 J,22 4,34 4,54 Q, 0, Q, Vo Q, Q, Uo Go 0 0 0 0 0 0 0 i 0 0 0 0 0 0 0 0 17 0. o. o. o. o. o. 18 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 18 o. o. o. o. 0. 19 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 19 o. 0. o. Q' a. 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 o. 0. 0. 0. 0. NNE NE ENE E ESE SE SSE 5 sc;w sw WSW 3.41 4.53 3,49 3.02 3o24 3o48 4.13 4.15 3.60 4.57 3.47 3. 75 3.63 3.91 4.\ I 4.60 4.41 5.41 4.14 5.07 3.97 6.78 3.77 4,07 4,IJ ),91'> 4,35 4,94 5,74 4,82 5.35 Q, B,JO Q, O. O, Q, O. 4,99 5,52 6.83 1'>.35 6,o7 5.24 R.JR 5.61 5.42 s.25 s.oo 9,37 s.s7 o. 5.61'> 6,53 6.21 6.05 6.54 8,78 8.04 7.91 8,25 8,84 o. 7,37 o. o. 7.1'>2 s.oJ v* 0. 0. 0. 0. 0. 0. 4.45 3.85 4,12 4.70 4.21 5.oo 4.72 4.32 4.57 1'>.71 7.32 8,95 o. 4,37 o. n. o. o. o. o. o. o. 3.82 4,47 o. 3.83 a. o. o. o. o. o. o. o. o. o. 5.19 4,58 o.27 5,75 5,27 o. 1.so o. a. o. o. o. o. o. 9,06 s.ss o. 6.36 6,4413,99 o. o. o. o. o. a. 5.57 7,03 4.92 4.68 8.0599,99 o. 4,19 4,45 o. 7,55 o. 8,40 o. 5.14 5.23 5.20 6.45 7.37 6.45 6,84 o. 9,08 o. 8.88 o. o. o. 4.23 5.71 4,79 6.09 4.71 s.os 4,68 8,07 l'l.5o 5,59 7,04 1,12 o. 0. TOTAL NO, OF OBSERVATIONS 8760 0. 0. 0. 0. 0. 0. 0. 0. 8. ll 0. l'l. 75 0. 0. o. o. a. 0. 0. 0. 2! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 o. 0. 0. 0. o. !..': o. 0. 0. 0. 0. 0.
0. 0. 0. a. 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 o. 0. o. o. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0. 0. 0. o. o. 0. o. 0. 0. o. o. 0. 0. 0. 0. 0. Page 26 of 36 24 >24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o. 0. 0. a. o. 0. o. 0. 0. 0. o. 0. 0. 7,96 0. 0. 0 0 0 0 0 0 0 a 0 0 0 0 1 0 0. 0. 0. o. o. 0. 0. 6,81'> 0. 0. 0. 0. 0. 0. 8. 14 0. Rev. 0

,,AS ANIJ tltCTi<IC GtNEWATING STATION JUH NO, -DATA PE><!Oil IYW -MONTH -IJAYI -740601 TO 750531 THRESHOLD OF ANtMOMETER -,74 DATE OF THIS RUN -07/2R/HO. TIME -c0.04,2), TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE (10 METERS) 'liND Uli<ECT10N PERSISTENCE -PASQUILL *S* 1 SECTOi< PERSlSTENCt SECTOR NNE NE ENE E ESE SE SSE s ssw Sill WSI>I " f.<t NN'I N SECTOR NNE "'E H;E E E<E SE c;c;E s <;Sw s .. . .,c; .. " .... .. ... ' CONSECUTIVE HOURS 2 20 12 l 7 25 21 32 54 59 36 ltl 9 !4 16 1Y 15 16 3 8 6 5 5 !2 21 33 39 12 10 1 3 B 7 7 14 4 4 2 4 5 5 9 18 20 6 0 4 3 1 3 4 3 5 1 2 3 2 4 3 16 8 3 G 0 I 2 3 4 3 6 0 I 1 l 4 7 5 5 0 a 1 0 4 1 2 AVERAGE WIND SPEED (M/SECI CONSECUTIVE HOURS 2 3 4 5 6 7 1 1 2 2 0 3 3 4 4 0 0 1 0 1 0 0 7 tl 0 0 0 0 0 2 1 2 0 G a 0 I 0 a 0 l:l 9 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 9 2.97 3,7Y 3,78 2.76 3,24 2,97 O, 0, 2.79 2.37 );Ji 2e82 O. 2.d7 3.29 3.03 3.00 3.95 3.62 4,43 3.00 3.20 3.53 5.22 5.43 3.69 3.14 2.53 3.19 3,64 3.55 3.70 4,05 4,5A S,!6 3,J7 4,52 4,32 4,44 3.20 3.39 o. o. 4,48 2,79 o

  • 3.02 2.73 2.9! 2.56 3.36 3.68 1,90 2.90 J.so 2.16 4,66 3,60 j,70 6.39 3.22 3,85 4.139 4,84 o. o. 3.84 0. 3,85 -. ',..., "' ... ;, v. 4,65 4,6) 0. 0. 0. 0. 3.a6 6.10 6.38 3.88 4,84 5,69 4,36 o. 0. 0. 0. 0. 0. 4,09 0. a. 6,67 o. 0. . 0. 0. 5. 16 0. 0. 5.41 o. 0. 0. 4,00 o. 3.37 2.80 3.73 3.31 Q; 0 0. o
  • o. J.7d 3.20 3,70 3.12 o. TOTAL OF 8760 10 0 a 0 0 0 0 l 0 0 0 0 1 a 0 I 0 0. n v. 11 0 0 0 a 0 0 1 0 0 c 0 0 0 0 0 1 11 0. 0. 12 0 0 0 0 0 0 0 1 l 0 0 0 0 0 0 0 12 o. o. 13 0 0 0 0 0 a 0 0 0 c 0 0 1 0 0 0 13 a. o. 14 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 14 0. 0. o. n. o. o. o. o. o. o. o. o. o. a. o. o. o. o. o. o. o. o. o. 4,40 o. o. o. 6,83 O. 5.2A Q, 0. a. o. h.51 o. o. o. o. a. o. o. o. o. n. o. o. 0. D
  • o. *J. 0. n
  • 3.'12 o. "+. s._1 ,j. o. 0. 0. 0. 0. 0. 0. 0. O. S.2Y O. 0. 0. 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 o. o. o. o. a. o. o. o. o. 0
  • a. o. 0. 0. 0. 0. 16 0 0 0 0 0 0 1 0 0 () 0 a 0 0 0 0 16 17 0 0 0 0 0 0 0 0 0 0 a 0 0 0 a 0 17 0. 0. 0 = 0 = 0. 0. 0. a. 0. 0. 0. 0. 4.75 o. O* o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. o. 0. 0. 18 0 0 0 0 0 0 a 0 0 0 0 0 0 0 1A 0. o. 0. 0. o. o. 0. o. 0. 0. 0. o. u. 0. 0. 0. 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 a. o. 0. 0. o. 0. o. 0. 0. o. 0. o. 0. 0. 0. 20 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 20 0. 0. a. 0.
0. 0. 0. 0. 0.
0. 0.; r v. 0. 0. 0. 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0. o. o. a. 0. a. 0. 0. 0. 0. 0 0. 0. 0. 0. 22 0 0 0 0 a 0 0 a 0 0 0 0 0 0 0 2t? o. o. o. a. 0. 0. 0. o. 0. 0. 0. o. 0. 0. 0. 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 o. 0. 0. o. o. o. o. 0. u. 0. o. o. 0. 0. 0. 0. Page 27 of 36 24 >24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q 0 0 0 0 0 0 0 0 0 0 0 <!4 >24 o. 0. o. o. 0. a. a. 0. Q:., o. 0. a. 0 io o. 0. o. o. o. o. o. 0. o. o. 0. 0. 0. o. 0. 0 io 0. 0. 0. Rev. 0 :::8 0 t"' n ::0 tr::1 tr::1 :;>;:

TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE (10 HETERS) Page 28 of 36 KANSAS G.;s AND ELECTRIC WOLF CREF:.\ TI NG -JOB rm. -07699-064-07 DATA PERIOD <YR -i"iONTH -DAY) -790305 TO 800304 THRESHOLD OF ANEI"iot'.ETER <MPH) -. 74 DATE OF THIS -11/13/81 TIME -15.00.14. WIND DIRECTION PERSISTENCE -PASGUILL #A# 1 SECTOR PERSISTENCE CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 )*24 Nr-.!E 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t\E 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ESE 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 4 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t"' ssw 7 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i"Ij sw 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 riSl.J 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (J 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ::0 t'W 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t<:l 6 2 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t<:l N 6 1 2 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :;.::: AVERAGE WIND SPEED (M/SEC) COt-!SECUfiVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 NhlE 6. 91 8. 17 6. 85 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. tJE 0 0 0 8 20 0 0 0. 0. 0. 0. 0. 0, 0 0. 0. 0. 0 0 0 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. E 0. 6. 57 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ESE 4. 56 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SE 4. 44 4 77 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SSE 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. s 6. 65 0. 4. 53 4. 61 7. 93 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5. 15 6 34 6. 24 6. 74 6. 62 6. 22 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 55 0. 0. 0. 0. 0. 0. 0. 0. " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. v. v, v. v. 0. 2. 22 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. l.J 3. 06 2. 32 0. 4. 41 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ......... 0. 0. 6. 98 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. i 9.90 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 6. 79 6. 12 0. 6. 07 7. 82 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 6.97 6. 14 8. 39 5. 45 8. 44 7. 88 0. 0. 0. 0. 0. 0. 0. O.' 0. 0. 0 0. 0. 0. 0. 0. 0. 0. TOTAL OF OBSERVATIONS 8784 TOTAL t*!O. OF I N\IAI_! D OBSERI.'ATIONS = 1197 Rev. 0 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE (10 METERS) Page 29 of 36 KANSAS GAS ANO ELECTRIC WOLF CREf!A. GENt:.RATING STATION JOB -07699-064-07 DATA PERIOD <YK --DAY) -790305 TO 800304 THRESHC:....D OF ANEI"'i0t1E:TER <MPH) -. 74 DATE OF THIS RUN -11/13/81. TIME -15. 04. 04. WIND DIRECTION PERSISTENCE -PASGUILL #B# 1 SECTOR PERSISTENCE VE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ErJE 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ESE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 7 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c-' SSlJ 9 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SlJ 6 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n w 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Wi..:W 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ::tl 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 trj 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 trj N 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :;:>::: AVER/,GE WIND SPEED <M/SEC) COi"SECUfiVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 4.83 0. 5. 33 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 89 3. 74 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 26 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. E 0 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ESE 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SE 7. 40 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 SSE 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. s 6. 19 3. 99 4. 50 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SSl.J 5. 33 0. 6. 84 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 5 26 5. 30 0. a. 40 0. 0. 0. 0. v. 0. 0. v. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. l.J 4. 29 0. 2. 49 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. Wi 5. 25 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. : 9. 41 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 N'*" I I I-., 0. 4. 32 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. N 4. 15 2. 89 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o* 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. TOTAL NO. OF OBSER'i,O.TIOt,jS 8784 TOTAL rm. OF ItNALID OBSERVATIONS 1197 Rev. 0 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE KANSAS GAS AND ELECTRIC WOLF CREEK GENERATING STATION JOB NO. -07699-064-07 DATA PERIOD IYR --DAYI -790305 TO 800304 THRESHOLD OF ANEMOMETER <MPH I -. 74 DATE OF THIS -11/13/81. -15. 06. 51. WIND DIRECTION PERSISTENCE -PASGUILL #C# 1 SECTOR PERSISTENCE SECTOR NL:E r,!E E ESE SE SSE s SECTOR 1\.lto..J:::-r!E _,E ESE SE SSE s su w I *li N CONSECUTIVE HOURS 2 2 0 0 2 1 3 2 10 13 0 2 3 2 3 4 4 3 1 0 1 0 2 0 0 3 2 0 0 0 0 1 0 1 4 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 2 5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WIND SPEED IM/SECI CONSECUTIVE HOURS 2 3 4 5 6 3. 91 8. 39 0. 0. 0. 0. 0. 0. 0. 0. 0. 7. 21 0. 0. 0. 5.24 0. 0. 0. 0. 4.69 3. 96 0. 0. 0. 4. 90 0. 0. 0. 0 3. 79 0. 0. 0. 0. 6. 20 4. 82 6. 52 0. 0. 6.21 7. 48 0. 0. 0 0. 4. 40 7. 14 4.24 8. 17 3. 58 5. 72 0. 0. 0. 0. 3. 28 0. 3. 31 0. 0. 0. 0. 0. 0. 0. 3. 32 0. 0. 0. 0. v. v. u. 6. 38 0 7. 63 0. 0. TOTAL NO. OF OBSERVATIONS TOTAL NO. OF INVALID OBSERVATIONS 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. o. v. 0. 0. 8 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 8 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. u. 0. 0. 8784 1197 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. " u. 0. 0. 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. " u. 0. 0. 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. " v. 0. 0. 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. " v. 0. 0. (10 METERS) 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0. 0. 0 0. 0. 0. 0. 0. 0 0. 0. 0. 0. " v. 0. 0. 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0. 0. 0. 0. " n o: o: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o.* o. 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0. " u. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0 0. 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0. 0. " v. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Page 30 of 36 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0. 0. " v. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 24 )-24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 >24 0. " u. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. v. 0. 0. 0. 0. 0. 0. 0. 0 0. o. 0. 0. 0. :::E; 0 L' i-:rj 0 ;;o t"J t"J ;:><:: Rev. 0 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE (10 METERS) Page 31 of 36 KANSAS AND ELE:CTRIC WOLF CREEK GENERATING STATION JOB rD -07699-064-07 DATA PERIOD (YH -MONTH -DAY) 790305 TO 800304 T:jRESHOLD OF ANEMOMETER -. 74 DATE OF THIS RUIJ -11/13/81. TIME -15. 10. 16. WIND DIRECTION PERSISTENCE -PASGUILL #D# 1 SECTOR PERSISTENCE CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 Nt4E. 20 8 3 4 2 1 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 NE 19 8 4 3 2 0 1 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 14 8 3 3 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 14 9 3 2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ESE 8 10 1 1 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 12 8 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSE 24 6 2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 39 17 15 5 2 0 2 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :E: 38 18 7 3 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 4 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t:"' WSiJ 5 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i"%j 9 6 4 2 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 WN:,.,; 7 2 1 1 0 0 l 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (J 14 4 1 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 7 11 1 2 0 2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ::0 N 27 9 s 3 3 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 t?;J t?;J !",VERAGE WIND SPEED (M/SECl CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 :>24 NNE 3. 94 5. 19 4. 06 4. 93 6. 95 9.46 5. 84 0. 6. 37 0. 0. 5. 29 0 0. 6. 79 0. 0. 0. 0. 0. 0. 0. 0. 0. !-JE 3. 26 4. 13 4. 11 3. 68 7. 63 0. 4. 94 5. 40 0. 0. 0. 0. 0. " 0. 7.05 0. " 0. 0. 0. 0. o. "'* v. '"'* 2. 99 3. 21 3. 74 6. 05 5. 24 4. 04 0. 0. 5. 84 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. E 3. 22 4. 72 4. 65 4.47 4.35 0. 0. 0. 0. 0. 0. 0. 5. 11 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. ESE 3. 57 5. 49 5. 16 2. 92 0. 5. 16 0. 0. 0. 4. 93 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. SE 4.80 4. 52 0. 3. 10 0. 7. 14 0. 9. 50 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. SSE 4. 16 5. 20 6. 64 6. 99 5. 64 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. s 5. 58 5. 86 7. 02 6. 07 4. 66 0. 7.89 8. 91 0. 4.41 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SSII 5. 34 7. 70 7. 59 5. 60 0. 7.03 0. 0. 0. 7. 15 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4. 99 6.43 3. 30 4. 75 0. 8. 63 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5. 95 6. 63 3. 78 0. 8. 78 o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. w 4. 49 6. 88 3. 91 7. 28 0. 2. 99 0. 0. 0. 0. 0. 6. 28 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. wr-:;.; 3 85 5. 72 8. 85 5. 69 0. 0. 6. 30 6. 71 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 o. 5. 27 5. 85 7. 98 8. 24 6. 79 7. 53 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5. 51 5.81 6. 72 6. 48 4. 48 o. 7.07 0. 9. 46 0. 0. 6. 76 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. N 4. 67 5. 17 5. 58 8. 22 5. 92 5. 22 4.35 0. 10. 17 5. 01 0. 0. 0. o' 0. 0. 0. 0. 0. 0. 7. 38 0. 99. 99 0 TOTAl_ NO. OF OBSERV.'I TI ONS = 8784 TOTAL NO. OF INVAUD OBSERVATIONS = 1197 Rev. 0 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE (10 METERS) Page 32 of 36 lo'-ANSAS G.!,S AND ELECTRIC WOLF CREE;<_ GErJf:::RATII\!G STATION JOB -07699-064-07 DATA PERIOD < YR --DAY) 790305 TO 800304 THRESHCLO OF ANEt'iOME fER <MPHl -. 74 D!*.TE OF THIS RUN 11/13/81. TIME -15. 13. 06. i.JIND DIRECTION PERSISTENCE -PASQUILL #E# 1 SECTOR PERSISTENCE Cot!SECUfiVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 N"*"' 3 6 3 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 "-nE 12 2 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E"'-1:.? 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q 0 0 0 0 0 "' E 13 5 5 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Q 0 0 0 0 0 ESE 14 6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 19 6 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSE 19 14 2 1 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :E: s 30 17 12 8 7 6 7 1 1 0 1 3 1 l 1 0 0 0 0 0 0 0 0 0 SSLJ 17 8 5 2 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 sw 10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t'"' WSt.J 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i"tj h! 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 3 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (J t"' 8 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :;o ,,, 6 5 3 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t::tj r* 9 5 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t::tj :;:>;: AVi=:RAGE WINO SPEED (M/SEC) COt**SECUfli.'E HOURS SECTOR 2 3 4 s 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 /24 2. 92 6.05 3. 57 """ 0. o. 10.23 0. 0. 0. 6. 07 0, 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 . 0. ..., . f ,.; 3.26 2.91 3. 80 0. 0. 0. 15 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. ...... -"'"'l,..._ """': ,_,_ ,! 1'!, 0 . 0. 0 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0 0. 0. 0. -..:J.C::.V e:.. Ct! v. ...!, O"'t 1..1. u. v . E 4.28 4.27 4. 04 6.66 0. 5. 03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0 ESE 4. 15 3. 95 0. 4. 12 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SE 3. 74 4. 65 2. 87 7. 08 0. 7. 68 0. 0. 0. 0. 0, 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SSE 3. 56 4. 15 3. 82 6. 72 5. 36 4.39 0. 0. 5.27 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. s 4.45 5. 32 4 51 5. 05 4.90 6. 10 6. 46 3. 51 6.49 0. 7. 37 9.0210.20 9. 39 9.94 0. 0. 0. 0. 0. 0. 0. 0. 0. 5.43 6. 57 6. 00 4. 19 3. 47 0. 6.01 0. 5. 11 0. 8. 10 0. 4. 81 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SlJ 4 09 3 46 0 0 0. 0. 0 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 58 5. 53 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0 (,j 2 70 4. 88 4. 88 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3.93 3. 81 4. 44 0. 5. 82 o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. D. 0. 0. 0. 0. 0. 3. 71 3. 81 0. 7. 44 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4.29 4. 92 4. 52 5. 14 6. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. o. t>l 3. 89 5. 19 0. 3. 38 4. 0. 0. 0. 0. 0. 0. 0. 0. 0.' 0. 0. 0. 0. 0. 0. 0 0 0. 0. TOTAL NO. OF OBSERVATIONS 8784 TOTAL NO. OF INVAl_!D OBSERVATIONS 1197 Rev .. 0 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE (10 METERS) Page 33 of 36 GAS ANiJ ELECTRIC STATION JOB NO. -07699-064-07 DATA PERIOD <YR -r:o:nH -DAY) -790305 TO 800304 THRESHCL.D OF ANEI"!OI"iETER <MPH) -. 74 DATE OF THIS RUtJ -11/13/81. TIME -15. 15. 46. DIRECTION PERSISTENCE -PASGUILL #F# 1 SECTOR PERSISTENCE cm,:SECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 )*24 8 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E"'c 6 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ESE 5 4 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 1? 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSE 18 9 6 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ::E; s 17 3 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 55(*4 6 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I:"' WS(J 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r:tj h! b 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Wh.W 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n "-!!l 12 4 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;;o 1\01>'0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 trl N 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 trl :;:>;: A\h:.RAGE SPEED <MISECl COt-!SECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 NNE 2. 82 0 2. 79 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1-.:t::. 0. 2. 64 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 53 2 80 2. 48 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0 E 2. 75 3. 3i 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ESE 2. 44 3 46 2. 57 0. 1. 40 0. 0. 0. 0. 0. 0. " 0. '"' 0. 0. 0. 0. 0. 0. '"' '"' v. 0. o: u. v. v. SE 2. 43 2. 41 2. 06 1. 66 2. 34 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SSE 2. 95 2. 69 2 67 3. 01 3. 11 2. 68 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. s 3. 15 3. 62 3. 65 0. 0. 3. 38 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 23 2. 82 6. 10 5. 50 3. 12 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 74 2. 22 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 2. 75 2. 56 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0 0 0. 0. '"' 0 0. 0 0. 0. 0. 0 v. w 3. 46 3 33 0 2. 20 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 89 2. 54 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. N:J ;:> 65 3. 15 2. 32 0. '"" ;:>{) 0. 0. 0. 0. 0. 0. 0. 0. 1""1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3.04 0. 0. 0. o: --0. 0. 0. 0. 0. 0. 0. 0. o: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 2 93 3. 10 0. 0. " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. v. TOTAL.. [>!0. OF OBSERVATIONS 8784 TOT F-L. OF INVAUD OBSERVAT I 1197 Rev. 0 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE (10 METERS) Page 34 of 36 KANSAS GriS ANO ELECTRIC W:JLF CREEK STATION JOB -07699-064-07 DATA PERIOD CYR -f".CJNTH -DAYl -790305 TO 800304 THRESHOLD OF CMPHl -. 74 DATE OF THIS RUtJ -11/13/81. TIME -15. 18. 55. WIND DIRECTION PERSISTENCE -PASQUILL #G# 1 SECTOR PERSISTENCE CQt,!SECU fiVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 :>24 NNE 5 1 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 rJE 8 2 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E"-lt: 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "-E 10 3 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ESE 9 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 14 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSE 9 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :E; s 7 1 1 0 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t"" St.J 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cij WSl;J 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r 9 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;:o 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 tx:l 3 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 tx:l ;::>;: AVERAGE WIND SPEED (M/SEC) C T I VE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 )-24 IC "-3. 24 2. 50 2. 75 2. 42 0. 3. 53 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0 0. 0. 0. 0. 0 2. 50 3. 55 3. 27 2. 72 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Et'E 2. 06 1. 82 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0 0 0. E 2. 99 2. 0 2. 54 0. 0. 3. 21 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ESE ,..., 08 ,..., ...,..., 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "' 3. c:.v "-* /CO v. v. v. v. v. v. v. v. SE 2. 07 1. 68 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SSE 2. 30 3. 00 2. 59 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. s 2 45 2. 34 3. 25 0. 1. 10 2. 98 2.45 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. S3W 1. 98 3. 34 . 93 0 . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. S'*' .. 2. 28 0 . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 12 ?:49 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 22 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. v. 1. 87 2. 99 2. 12 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. l .... v. 2. ,...,"' 1. 28 ,... .-, nr-. " " " " " " 0. " u. 0. 0. 0. 0. 0. 0. 0. 0. "--' v. v. v. c:..--ru v. v. v. \J. v. V. \J. u. NN;,J 2 66 2. 59 1. 99 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. co 2. 71 2. 55 0. 2. 29 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. TOTAL rm OF OBSERVATIONS = 8784 TOTAL t.'O OF INVALID OBSERVATIONS = 1197 Rev. 0 TABLE 2. 3-3 3 (Continued) WIND DIRECTION PERSISTENCE (10 METERS) Page 35 of 36 i-'.hNSAS GAS AiJD ELECTRIC WOLF CREE:.<-STATION J0!3 f,iCJ. -07699-064-07 DAT.t, PERIOD <YR --DAYl -790305 TO B00304 THRE'C;HOLD OF ANEt'!OMETER <MPHl -. 74 DATE OF THIS RUtJ -11/13/81. TIME -15. 21. 01. wrrw DIRECTION PERSISTENCE -PASGUILL ALL 1 SECTOR PERSISTENCE CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 )*24 39 20 14 10 6 1 2 2 3 0 2 1 0 1 0 1 0 0 0 0 0 0 0 0 IJE 42 19 17 14 4 2 2 2 2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 Et'E 39 23 9 6 2 3 2 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 E 58 28 12 12 3 2 0 0 1 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 ESE 51 23 9 3 3 3 0 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 60 34 13 8 3 3 2 2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 SSE 85 40 17 17 5 7 2 1 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 s 93 44 34 25 20 7 13 5 4 6 2 1 1 0 1 0 2 0 0 0 3 0 1 3 SS\-J 72 27 22 12 6 2 3 6 1 4 3 2 0 0 1 0 0 0 2 0 0 0 0 1 ,.... 36 20 4 3 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 'J 30 10 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t"" l.J 26 15 9 5 5 2 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1"%1 40 13 4 2 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 16 7 4 4 3 2 2 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 Nh:W 45 16 16 9 5 8 8 3 1 2 0 1 0 0 0 0 1 0 0 0 0 0 0 0 :;o 51 28 14 6 8 3 4 3 0 1 1 1 0 1 0 0 0 0 0 0 1 1 0 2 t<:l t<:l ;:>;: AVi::.RAGE WIND SPEED <MlSECl CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1B 19 20 21 22 23 24 ).24 NNE 4.24 4. 93 4. 24 3. 78 4. 64 2. 22 7. 51 5. 29 5. 61 0. 6. 82 5. 29 0. 9. 24 0. 6. 79 0. 0. 0. 0. 0. 0. 0. 0. t*<E 3.47 3. 40 3. 75 3. 20 5. 45 2.66 5. 65 5. 05 4.86 5. 27 0. 0. 0. 0. 0. 7. 05 " 0. 0. 0. " 0. 0. 0. v. v. ENS: 3. 16 3. 16 2. 70 3. 05 6. 00 4. 39 6. 06 4. 47 5. B4 0. 0. 4.60 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. E 3 49 3. 97 3 88 4. 03 5. 80 5. 68 0 0. 3. 29 0. 0. 3.83 5. 11 0. 0. 0. 0. c. 0. 0. 0. 0. v. v. ESE 3. 17 3. 48 3. 52 3. 19 2. 92 3. 59 0. 6. 12 0. 4. 93 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SE 3. 16 3. 22 3. 80 3. 42 3. 71 7. 78 3. 27 4. 52 6. 52 0. 0. 0 0. 0. 0. 0. 8. 66 0. 0. 0. 0. 0. 0. o. SSE 3. 63 3. 57 3 19 4. 41 5. 79 3. 91 4. 14 4. 46 3. 49 0. 0. 0. 6. 11 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. s 4. 06 4. 59 4. 26 5. 24 5. 07 6. 74 4.67 6. 68 6. 23 5.00 6. 35 4. 97 6. 16 0. 9. 52 0. 9. 91 0. 0. 0. 7. 68 0. 5. 91 8 B8 4. 53 6.24 6. 50 5. 99 4. 95 5. 28 5. 86 6. 27 5. 11 7. 09 5. 38 5. 45 0. 0. 5. 00 0. 0. 0. 7. 43 0. 0. 0. 0. 5. 28 3. 91 4. 68 4. OS 4. 22 7. 93 o. 8. 19 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 50 2. 88 5. 31 4. 44 B. 78 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0 0 o. 3. 35 4. 63 3. 62 " "'"' A A " ...., r...., "--nM 0. 0. 6. 28 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ""T
  • I -../ "'1'. C:.7 &.f', vv v. ....:>. "'t..;l 0. ""tO 2 B1 3. 48 5. 35 1. 85 5. 21 0. 6. 30 5. 47 6. 69 4. 94 5. B6 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4. 07 3. 78 4. 58 3. 62 4. 06 7. 65 8.B1 2. 32 0. 0. 9. 66 0. 0. 0. 0. 0. 0. 0. 0. 7. 77 0. 0. 0. 0. 3. 92 4. 61 5. 78 4. 88 7. 41 5. 37 7. 55 6. 95 3. 84 6. 29 0. 8. 55 0. 0. 0. 0. 6. 21 0. 0. 0. 0. 0. 0. 0. N 4 44 4. 35 4. 34 5. 6B 4. 75 4. 48 7. 00 6. 00 0. 6. 27 8. 59 4. 59 0. 6.94 0. 0. 0. 0. 0. 0 7. 38 B. 18 0 5 83 TOTAL OF OBSERVATIONS 8784 TOTAL OF INVALID OBSERVATIONS = 39 Rev. 0 TABLE 2.3-33 (Continued) WIND DIRECTION PERSISTENCE (10 METERS) Page 36 of 36 KANSAS GAS At,m ELECTRIC WOLF CREEK GENl::.RATING STATION JOB -07699-064-07 DATA PERIOD <YR -t"'ONTH -DAYi -790305 TO 800304 THRESHDLD OF ANEMOMETER iMPH> -. 74 DATE OF THIS RUN -11/17/81. Tit1E -14. 03. 16. lHt40 DIRECTION PERSISTENCE -PASGUILL #S# 1 SECTOR PERSISTENCE CONSECUTIVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 )*24 7 8 10 6 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 t.!E 18 9 6 5 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E'"" 19 9 4 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 29 17 8 4 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ESE 32 11 6 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 46 23 6 6 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSE * 25 12 9 5 5 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. o s 48 22 14 15 10 5 12 3 3 1 1 3 1 1 1 0 0 0 0 0 0 0 0 0 0 SSt*J 26 9 7 2 3 0 1 1 2 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 -,. 20 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t..! 12 7 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n 23 7 2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;:o 24 6 2 4 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I:J:j 20 9 4 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I:J:j N 18 10 2 2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A','ERAGE lHNO SPEED <MISECl CONSECUriVE HOURS SECTOR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 2. 91 5. 47 2. 89 3. 21 0. 0. 3. 51 0. 9. 15 0. 6. 07 0. 0. 0 0. 0. 0 0 0. 0. 0 0. 0. 0 r*E 2. 71 2. 98 3. 58 2 96 2. 55 0. 2. 15 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ENE 2.69 2. 54 3. 16 2. 65 0. 5. 10 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 E 3. 32 ., "'"' 3 . 64 5. 14 fl, ,...,....., 5. 03 0. 3. 29 " " "* 0. 0. " 0. 0. 0. 0. 0. 0. 0. 0. w. -:* u. '-'* '-'* ::::* v. v. ESE 3. 01 3 46 '"' 56 3. 34 4. 26 " ,... ,... 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "--* J., 'tV '-'* u. u. u. u. u. SE 2. 77 2. 91 2. 76 3. 58 0. 7. 68 2. 58 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SSE 3. 06 3. 44 2. 94 3. 39 3. 91 3. 56 3. 69 0. 3. 92 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. s 3. 60 4. 34 4. 42 4. 37 4. 52 5. 75 5. 19 3. 42 4. 77 4. 58 7. 37 9. 0210. 20 9. 39 9. 94 0. 0. o. 0. 0. 0. 0. 0. 0. SSl.J 4. 36 5. 68 5. 52 4. 19 2. 42 0. 6. 01 3. 40 4. 51 0. 7. 02 0. 4. 81 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 34 3. 69 2. 34 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 111""'1' 2. 70 2. 78 5. 17 2. 58 0. 0. 0. 0. 0. 0. 0. 0. 0. ,... 0. 0. 0. ,... ,.., 0. -=-u. v. v. u. v. u. '-'* ;J 2. 92 3. 19 3. 26 2. 61 3. 32 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. W"-HI 2. 49 3. 04 4. 74 2. 28 5. 82 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. o. I-I' I 2. 87 3.29 '"' 55 3. 20 0. 1. 96 2. 52 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 . 0. 0. l"'ri c:. ..J. 7/ 3.37 8§ 3. 89 4. 66 6. 27 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0 0. 0. 0. 3. 36 .j_ 5c: 2. 62 4. 56 3. 72 3. 34 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. o. TOTAL OF OBSERVATIONS = 8784 TOTAL tm OF ItNAUD OBSERVATIONS = 1197 Rev. 0 WOLE' CREEK TABLE 2.3-34 AVERAGE MONTHLY AND ANNUAL DAYLIGH'r CLOUD COVER, AND SUNSHINE FOR TOPEKA, KANSAS Partly Month Clear; Days a) Days January 9 6 February 8 6 March 7 8 April 7 8 May 7 10 June 8 10 July 10 11 August 12 11 September 12 7 October 13 7 November 10 6 December 9 6 Annual 1112 96 a Data Period 1947-1978. b Data Period 1950-1978. source: Sky Cover (a) (Tenth of) PossiblE[ (CelE:!stial Sunshine b) Days (%) 16 6.2 55 14 6.3 54 16 6.7 54 15 6.4 56 14 6.3 59 12 s,. 9 6'-.) 10 s,. 2 69 8 4.9 70
  • 11 s.o 64 11 4.8 61-.::> 14 S.8 54 16 6.2 51 157 :; . 8 60 Environmental Data Service, 1978, Local climatological data, annual summary with comparative data, Topeka, Kansas: mental Science Services Administration, U.S. Department of Commerce, Silver Spring, Maryland. Rev .. 0 WOLF C.REEK TABLE 2.3-35 AVERAGS MON'T'HLY AND ANNUAL DAYLIGfl'T' CLOUD COVER, l\ND SUNSHINE FOH v'IICITI'T'T\, Sky Cover Partly (me nth of) Possible Clear Cloudy Cloudy (Celestial Sunshine __ Days Days nome) ( ---------------*-----------*-------------------* --January 10 6 15 6.0 5') February 8 7 13 6.0 60 March 9 7 15 6. 2 61 April 8 8 14 6.1 62 I'1ay 9 9 13 6.0 64 June 10 10 10 ':l. 3 70 ,July 13 10 8 -1. 7 7'3 August ] 3 ll 7 4. [; 7 *1 September 13 6 11 5. 0 66 October 14 7 10 4.7 ()7 November ll 6 13 ').6 ')C) December 10 7 14 5.9 5B Annual 128 94 143 5. ::, 6'-_)
  • Data Period 1954-1978. Source: Environmental Data Service, 1978, Local climatological data, annual summary with comparative data, Wichita, Kansas: mental Science Services Administration, u.s. Department of Commerce, Silver Spring, Maryland. Rev. 0 TABLE 2.3-36 Sheet 1 of 8 Upper Class Intervals of Hours of Persistence 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 PERSISTENCE OF STABILITY (IN PERCENT) AT CHANUTE F.S.S., A 77.78 22.22 .00 .00 .00 .00 . 0 0 .00 .00 .00 .00 .00 .00 .00 .00 .00 B 64.56 20.25 15.19 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00

  • 0 0 .00 SPRING Stability Class C D E 54.34 30.14 13.70 l. 83 .00 .00 .00 .00 .00 . 0 0 .00 .00 .00 .00
  • 00 .00 3.27 4.01 4. 39 4.09 3.81 3. 73 5.75 l. 9 2 3. 79 3.21 2.86 2.40 3. 91 3.08 4. 81 2.56 39.47 36.80 15.9 8 7. 7 s . 0 0 .00 nn
  • v v . 00 . 0 0 .00 .00 .00 .00 .00 .00 .00
  • Data Period 1955-1964. F 38.91 32.00 26.18 2. 91 .00 . 0 0 .00 . 00
  • 0 0 . 00 .00 .00 . 0 0
  • 0 0 .00 .00 Rev. 0 TABLE 2.3-36 (continued) Sheet 2 of 8 SPRING r T y-.,,.,""' .,..-'o....J,t-'_t-'C:::..L ....... Intervals of Stability Class Hours of Persistence A B c D E F 51 . 00 .00 .00 1. 02 .00 .00 54 . 0 0 .00 .00 2. 8 8 .00 . 00 57 . 0 0 .00 . 0 0 4.19 . 0 0 .00 60 .00 .00 .00 1. 20 .00 .00 63 . 00 .00 .00 2.94 . 0 0 . 0 0 66 .00 .00 . 0 0 2.20 .00 .00 69 .00 .00 .00 3.23 . 0 0 .00 72 . 00 .00 . 0 0 .00 .00 .00 75 .00 .00 .00 1. 00 .00 .00 78 .00 .00 . 0 0 1. 04 . 0 0 .00 0 81 .00 .00 . 0 0 2.70 .00 . 0 0 t"' t'%j 84 .00 .00 . 0 0 1.12 . 0 0 .00 0 87 .00 .00 . 00 . 58 . 0 0 .00 :;o 90 .00 .00 . 00 1. 20 .00 . 0 0 t'j t'j 93 .00 .00 . 0 0 2.48 . 0 0 .00 96 .oo .00 . 0 0 .00 . 0 0 .00 99 .00 . 0 0 . 00 1. 9 8
  • 0 0 .00 102 . 0 0 .00 .00 .68 .00 . 0 0 >1o 2 .00 .00 .00 11.9 4 . 0 0 .00 Rev. o TABLE 2.3-36 (continued) Sheet 3 of 8 SUMMER Upper Class Stability Class Intervals of Hours of Persistence A B c D E F 3 61.90 60.38 48.00 12.36 35.13 34.16 6 23.81 25.38 31.20 12.23 31.73 33.71 9 14.29 12.69 16.80 10.51 29.75 27.64 12 .00 l. 54 4.00 9. 9 4 3.40 4.49 15 .oo .00 .00 5.42 .00 .00 18 .00 .00 .00 6.31 .00 .00 21 .00 .00 .00 15.61 .00 .00 24 .00 .00 .00 3.06 .00 . 0 0 27 .00 .00 .00 3.15 .00 .00 ::E; 30 .00 .00 .00 4.14 .00 .00 0 L' 33 .00 . 00 . 00 .70 . 00 . 0 0 36 .00 .00 . 0 0 3.44 .00 .00 \.l 39 .00 .00 .00 2.48 .00 . 0 0 ::0 t::rj 42. .00 .00 .00 .45 .00 . 0 0 t::rj 45 .00 . 00 . 0 0 2. 39 .00 .00 48 .oo .00 .00 l. 02 .00 .00 Rev. 0 TABLI: 2.3-36 (continued) Sheet 4 of 8 SUM1'1ER Upper Class Intervals of Stability Class Hours of Persistence A B c D E F 51 . 0 0 .00 . 0 0 . 54 .00 .00 54 .00 .00 .00 .00 .00 .00 57 .00 .oo .00 . 61 . 00 .00 60 . 0 0 . 0 0 . 0 0 .64 .00 .00 63 .00 .00 .00 .00 .00 .00 66 .00 nn .. 00 f'lf'l (\(\ . 0 0
  • v v .vv
  • v v 69 . 00 .00 . 0 0 .73 .00 . 0 0 72 .00 .oo .00 .76 .00 .00 75 .00 .00 .00 . 8 0 .00 . 0 0 :a: 0 78 .00 .oo .00 .83 .00 .00 t"" 81 .00 .oo .00 .86 .00 .00 '"IJ 84 .00 .oo .00 .00 .00 .00 () :;d 87 .00 .oo . 0 0 .00 .00 .00 tJ:j 90 . 00 . 0 0 .00 .00 .00 . 0 0 tJ:j 93 .00 . 00 .00 .00 .00 .. 00 96 .00 .00 . 00 1. 02 .00 . 00 Rev. 0 2.3-36 (continued) Sheet 5 of 8 FALL Upper Class Intervals of Stability Class TT-__.._ _ _c nuuL:::> U.L Persistence A B c D E F 3 100.00 53.33 54.81 4.14 30.24 21.6 3 6 .00 40.00 33.65 6.34 25.99 26.62 9 . 0 0 6.67 ll. 54 5.05 20.29 18.85 12 .00 . 00 . 0 0 5.17 20.16 23.66 15 .00 .00 .00 4. 75 3.32 9.24 18 .oo .00 . 00 4.68 . 0 0 .00 21 .00 .00 .00 3.41 . 00 . 0 0 24 .00 .00 .00 2. 34 .00 .00 '"'\""? AA (\(\ (\(\ , (\ .., (\(\ (\("\ ..,.. L ! .vu .vu .uv ..L
  • J I .vv .vv ;: .uu .uu
  • u u 48 .00 .00 .00 2.34 .00 . 0 0 Rev. o TABLE 2.3-36 (continued) Sheet 6 of 8 FALL Upper Class Intervals of Stability Class Hours of Persistence A B c D E F 51 .00 .00 .00 1. 24 .00 .00 54 .00 . 0 0 .00 1. 76 .00 . 00 57 .00 .00 . 0 0 2. 7 8 . 0 0 . 0 0 60 .oo .00 .00 5.36 .oo . 0 0 63 .oo .00 .oo 1. 54 .00 . 0 0 66 .oo .00 .00 1. 61 . 0 0 .00 69 .00 . 00 .00 2. 24 . 00 . 0 0 72 .00 . 00 .00 1.17 .00 . 0 0 75 .00 .00 .00 l. 22 . 0 0 . 0 0 ::E; 0 78 .oo .00 .00 .63 .00 .oo t"' I"IJ 81 . 00 . 00 .oo . 6 6 .00 . 0 0 84 .oo .00 "" . 0 0 .oo .00 n .uu ;;c 87 .oo . 00 .00 . 71 .00 . 0 0 tri t'l:j 90 .oo . 00 . 00 . 7 3 .00 . 0 0 :;>;: 93 . 0 0 . 0 0 . 0 0 2. 2 7 . 0 0 .00 96 .oo .00 .00 .00 .00 .00 99 .00 . 00 .oo 1. 61 . 0 0 .00 102 . 0 0 .00 .00 .83 . 0 0 .00 >1o2 .oo .00 .oo 14.43 . 0 0 .00 Rev. 0 TriBLE 2.3-36 (continued) Sheet 7 of 8 WINTER flY"'nor Class Intervals of Stability Class Hours of Persistence A 2 c D E F 3 100.00 64.29 61.0 7 2.50 37.76 36.52 6 .00 35.71 30.87 4. 0 3 33.14 2 6. 9 5 9 .00 .00 8.05 4.10 12.72 17.02 12 .00 .00 .oo 3.24 15.41 14.18 15 .00 .00 .oo 3. 70 .96 5. 3 2 18 .00 .oo .00 2.78 . 0 0 . 00 21 .00 .00 .00 3.56 .00 .00 24 .00 .00 .oo 3.15 .00 .00 27 .00
  • 0 0 .oo 2. 9 2 .00 .00 30 .00 . 00 .oo 2.78 .00 .00 ::8 33 .00 . 0 0 .00 3. 56 .00 .00 0 t"" 36 .00 .00 .00 2.78 . 0 0 .00 t-Ij 39 .00 . 0 0 .oo 5.11 .00 . 00 n 42 .00 . 00 .00 3.24 . 0 0 .00 :;o t:tj 45 .00 .00 .00 . 6 9 .00 .00 t:tj ;:>;; 48 .oo .00 .oo 1. 85 .00 .00 Rev. 0 Tl\BLE 2.3-36 (continued) Sheet 8 of 8 \'liNTER Up.t?er,Class *Intervals, of Stability Class 'Hours of tPc;rsistence ,, n c D E F .. D 51 . 0 0 0 0 .00 3.54 .00 .oo 54 .oo .oo .oo 2.50 .00 .oo 57 .oo .00 .oo 3. 9 6 .00 .oo 60 .00 .00 .oo 1. 85 .oo .00 63 .oo .. 00 .oo 4.37 .00
  • 0 0 66 .oo .00 .oo 1. 02 .00
  • 0 0 69 .00 .oo .00 l. 06 . 0 0 .00 72 .oo .00 .oo 2.78 .00 .oo 75 .oo .00 .00 .00 . 0 0 .oo 78 .00 .. 0 0 .00 2.41 .00 .oo :8 81 .oo .oo .00 1.87 .oo .oo 0 t"' 84 .00 * (J.O .00 1. 9 4 . 0 0 . 00 r:tj 87 .00 .00 .00 .67 .00 .ou n 90 .00 .oo 1. 39 . 0 0 .oo ;;o t:'j 93 .oo .oo 3.59 .00 .oo t:lj 96 .00 .00 .oo .74 .oo .*oo 99 "" .oo .00 1. 53 .00
  • 00 .uu 102 .oo .00 .00 .00 .oo .00 >102 .oo .oo . 0 0 14.82 .00 .00 Rev. 0 WOLF CREEK TABLE 2.3-37 Page l of 4 STABILITY PERSISTENCE SUMMARY WOLF CREEK GENERATING STATION BURL! NGTON, KANSAS KANSAS GAS AND ELECTRIC DAJviES AND t100RE JOB NO 7699-064--07 DATA PERIOD FRDI1 6/ 1/73 TO 3/ 4/80 DATE TII'iE OF RUN :L0/30/81. 09. 31. 21. NUMBER OF HOURS NUMBER OF PASGUILL STABILITY CONSEr.UriVE HOURS -A---B--c--D--E--F-2 2106 433 573 5917 4089 2073 3 1640 193 266 4696 3053 1338 1:341 4 1250 88 140 :3869 2330 892 5 926 38 78 3263 1798 595 6 659 24 44 2811 1382 388 6cl7 7 445 15 27 1051 247 4El3 8 282 10 20 2086 782 152 9 162 9 14 1801 575 88 244 10 84 8 10 1564 411 48 11 34 7 7 1373 298 25 102 12 15 6 6 1216 201 13 13 11 5 5 1082 128 7 14 9 4 4 962 84 4 12 15 7 3 3 852 54 1 5 16 5 2 2 759 37 0 2 17 3 1 1 676 25 0 0 18 2 0 0 608 17 0 0 19 1 0 0 551 13 0 0 20 0 0 0 503 11 0 0 21 0 0 0 458 10 0 0 22 0 0 0 422 9 0 0 23 0 0 0 390 8 0 0 24 0 0 0 359 7 0 0 >24 0 0 0 334 6 0 0 1244 INVALID HOUR (8). Rev. 0 WOLF CREEK TABLE 2. 3-3 7 (Continued) P2tge 2 of 4 STABILITY PERSISTENCE SUMMARY WOLF CREE:.\ GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAI*iE:S AND I':OORE -JOB NO 7699-064-07 DATA PERIOD FROM 6/ 1/73 TO 5/31/74 DATE AND TII'!E OF RUN 10/30/131. 09. 27. 50. NUMBER OF HOURS NUt1BER OF PASGIJILL STABILITY CU\55 CDimECUriVE HOURS -A--B-* -c--D--E--F-*-(}-2 608 213 211 1905 1427 668 6:37 3 443 100 93 1472 1032 407 4 314 50 48 1204 763 256 :386 5 210 26 24 1017 565 166 295 6 132 19 10 865 422 103 7 75 1:] 5 735 316 59 165 8 39 10 3 621 229 32 us 9 14 9 2 524 160 17 BO 10 2 8 1 444 104 9 47 11 0 7 0 380 68 4 ;!6 12 0 6 0 329 40 1 1.2 13 0 5 0 287 21 0 6 14 0 4 0 248 12 0 2 15 0 3 0 211 6 0 1 16 0 2 0 179 3 0 0 17 0 1 0 152 2 0 0 18 0 0 0 129 1 0 0 19 0 0 0 112 0 0 0 20 0 0 0 98 0 0 0 21 0 0 0 85 0 0 0 22 0 0 0 76 0 0 0 23 0 0 0 68 0 0 0 24 0 0 0 60 0 0 0 >24 0 0 0 52 0 0 0 66 INVALID HOUR <Sl. Rev. 0 WOL.F CREEK TABLE 2 .. 3-37 (Cont:inued) Page 3 of 4 STABILITY PERSISTENCE SUMMARY WOLF CREEK GENERATING STATION BURLINGTON, KANSAS KANSAS GAS AND ELECTRIC DAI"iE:S AND t100RE JOB NO 7699-064-07 DATA PERIOD FRGI'1 6/ 1/74 TO 5/31175 DATE AND TII'IE OF RUN 10/30/81. 09. 26. 44. NUMBER OF HOURS NUMBER OF PASGUILL STABILITY CLASS HOURS -A--B--c--D*--E--F---G-2 1294 116 224 184:3 1208 741 !H9 3 1061 47 124 1492 889 496 396 4 850 15 75 1249 671 343 :we 5 667 4 49 1061 510 233 6 503 2 33 934 383 156 JlBO 7 360 1 22 82'5 274 105 Jl33 8 240 0 17 733 194 70 93 9 148 0 12 657 138 46 60 10 82 0 9 594 94 25 38 11 34 0 7 541 64 13 25 12 15 0 6 38 8 15 13 11 0 5 451 19 5 8 14 9 0 4 410 10 3 4 15 7 0 3 37:2 4 1 2 16 5 0 2 33'7' 2 0 1 17 3 0 1 3013 1 0 0 18 2 0 0 28:3 0 0 0 19 1 0 0 263 0 0 0 20 0 0 0 247 0 0 0 21 0 0 0 23:3 0 0 0 22 0 0 0 22;2 0 0 0 23 0 0 0 0 0 0 24 0 0 0 0 0 0 )24 0 0 0 194 0 0 0 4 INVALID HOUR(Sl. Rev. 0 WOLF CREEK TABLE 2.3-*37 (Continued) Pa.ge of 4 STABILITY PERSISTENCE SUMMARY WOLF CREEK GENERATING BURL! NGTON, KANSAS KANSAS GAS AND ELECTRIC DAMES AND MOORE JOB NO 7699-064-07 D1HA PERIOD FROM 3/ 5/79 TO :31 4/80 DATE AND TII'iE OF RUN 10/30/81. 09. 29. 03. NU:1BER OF HOURS NUMBER OF PASQUILL STABILITY GLASS CONSECUTIVE HOURS -A--B--c--D--E--F--G-2 20<1* 104 138 2169 1454 664 571 3 136 46 49 17:32 1132 4:35 450 4 86 23 17 14:l6 896 2"?3 363 5 49 8 5 11!35 723 1'76 293 6 24 3 1 10:l2 577 1:29 233 7 10 1 0 81S5 461 133 185 8 3 0 0 7:32 359 50 142 9 0 0 0 6;w 277 :25 104 10 0 0 0 5;26 213 14 74 11 0 0 0 166 8 51 12 0 0 0 3'12 123 4 32 13 0 0 0 344 88 2 15 14 0 0 0 304 62 1 6 15 0 0 0 269 44 0 2 16 0 0 0 241 32 0 1 17 0 0 0 2ll6 22 0 0 18 0 0 0 196 16 0 0 19 0 0 0 176 13 0 0 20 0 0 0 1 11 0 0 21 0 0 0 1'10 10 0 0 22 0 0 0 1;24 9 0 0 23 0 0 0 lllO 8 0 0 24 0 0 0 97 7 0 0 >24 0 0 0 BB 6 0 0 1174 INVALID HOUR ( Sl. 0 STABILITY ______ , ____ A A A A A A G G G G G G F G G G WOLF CREEK TABLE 2. 3-37a OCCURRENCES OF A, r,, AND G S'rABILITIES PERSISTING GREATER THAN 12 HOURS NUMBER OF TIME PERIOD CONSE:CUTIVE HOURS --*--*-*-79030705 -79030804 24 79030806 -79030821 16 79030823 -79030921 23 79031003 -79031021 19 79031104 -79031119 16 79031204 -79031218 15 79091720 -79091808 13 79092520 -79092608 13 79100620 -79100708 13 79102720 -79102809 14 79111518 -79111609 16 79111619 -79111708 14 79120119 -79120208 14 79120320 -79120409 14 80011321 -80011409 13 80021122 -80021210 13 Rev. 0 WOLF CREEK TABLE 2.3-38 HOURS OF FOGGING AND ICHIC DUE TO THE COOLING LAKE AT SELECTED RECEPTORS FOR DATA PERIOD: G/01-73 -5/31/74 Visibility Vi s1i bil i ty <lOOM Receptors_ £Q.g_ (1/16 Mile) (1/8 13 5 10 2 18 8 11 11 13 7 10 12 22 15 18 21 15 10 11 22 31 21 22 28 33 20 26 29 40 26 33 35 34 15 28 36 68 37 57 44 49 31 42 45 76 54 66 48 367 259 332 53 50 30 48 54 87 56 80 62 55 33 48 63 86 50 71 71 45 26 41 72 82 46 64 82 62 37 52 Naturally occurring fog (ambient) was predicted for 19 hours. occurring ice (ambient) was predicted for zero hours. Ice 1 2 4 4 Q u 7 () C) 11 4 5' 31 4 8 6 5 5 3 Rev. 0 WOLF CREEK TABLE 2.3-39 HOURS OF FOGGING AND ICING DUE TO THE COOLING LAKE AT SELECTED RECEPTORS FOR DATA PERIOD: 6/01/74 -5/31/75 Visibility Visibility <lOOM <200M l!ll_§_l'li_ 1 e ) _(1/B Mile) 25 4 13 2 32 5 19 11 39 12 2'9 12 39 9 2'3 21 44 15 37 22 60 23 44 28 43 18 31 29 65 30 :i2 35 60 26 44 36 82 40 63 44 63 32 49 45 104 64 87 48 491 314 411 53 43 19 ]3 106 il? 62 68 36 S6 63 113 74 95 71 68 42 59 72 1 01 67 85 82 67 37 57 --------*----Naturally occurring fog (ambient) was for 22 hours. Naturally occurrinr ice (ambient) was predicted for 16 hours. Ice 3 6 11 6 11 l l g 4 l 8 9 6"1 'I I () ') c () Rev. 0 WOLF CREEK TABLE 2.3-40 HOURS OF FOGGING AND ICING DUE TO THE COOLING LAKE AT SELECTED RECEPTORS FOR DATA PERIOD: 3/05/79 - 3/04/80 Visibility Visibility <100M <200MReceptors Fog (1/16 Mile) (1/8 Mile) Ice 1 20 3 10 13 2 31 10 18 20 11 24 3 11 16 12 39 8 26 27 21 25 7 13 14 22 35 7 25 22 28 30 15 18 11 29 46 20 31 19 35 39 17 25 9 36 59 28 45 15 44 46 13 31 6 45 88 44 73 17 48 453 327 407 82 53 35 16 25 10 54 58 35 49 13 62 28 18 22 8 63 52 35 46 8 71 22 15 21 7 72 43 28 36 7 82 37 23 32 6

_____________Naturally occurring fog (ambient) was predicted for 17 hours.Naturally occurring ice (ambient) was predicted for 19 hours. Rev. 0 Receptors 21 22 53 1974 June 0 2 TABLE 2.3-41 HOURS OF FOG DUE TO COOLING LAKE AT SELECTED FOR DATA PERIOD: 6/01/74 -5/31/75 July Aug. Sept. Oct. 0 16 3 0 19 0 11 5 2 10 6 Dec. 13 l 7 2 13 1975 Jan. 0 0 0 Feb. 1 0 10 10 r. ,l'.,pr r*1ay l 5 2 0 l 6 3 0 14 0 0 0 r t'Ij n !:t! t":l t":l Rev. 0 WOLF CREEK TABLE 2.3 -42 FREQUENCY (HOURS) OF TEt*1PERATURE CHANGE Receptor Years* 11 69 12 90 21 66 22 112 48 829 53 102

  • Year 1 = 6/1/73 -5/31/74 Year 2 = 6/1/74 -5/31/75 Year 3 = 3/5/79 -3/4/80 2 42 65 69 93 918 154 >2°C 3 42 79 73 99 854 142 Rev. 0 TABLE 2.3-43 FREQUENCY (HOURS) OF C::A::JGE 1:: VAPOR DEN S1TY DISTRIEU':"ICJ:; (g/m3) DUE TO COOLING LAKE AT SELECTED RECEPTORS FOR DATA PZQ.IOD: 6/01/73 -5/31/74 Water Vapor Density (g/m3) 0 6 11 16 21 26 31 36 41 46 Receptors 5 1 0 15 20 25 30 35 40 45 50 ll 19 40 7 12 18 4 39 13 21 17 43 7 22 24 61 10 0 48 361 182 26 1 3 3 L' I"'Ij 0 53 3 42 21 ::0 t'j t'j Rev. 0 Rece12tors ll 12 21 22 48 53 TABLE 2.3-44 FRI:QUENCY (HOURS) OF CHANGE Ii-i V.i=>.:?OR DEUSITY DISTRIBUTIOl'i (c;1 :-:-_.5 DUE TO COOLING LAKE AT SELECTEJ RECEPTORS FOR DATA PERIOD: 6/01/74 -5/31/75 < 'tiater Vapor Density (g/m") 0 6 ll 16 21 26 31 5 10 1 5 20 25 30 35 64 16 3 74 14 4 73 22 2 93 31 < '-' 140 383 67 9 6 71 61 12 36 110 2 ill 46 115 50 0 t"' () (:lj trJ ::.:: Rev. o Receptors 11 12 21 22 48 53 TABLE 2. 3-45 FREQUENCY (HOURS) OF Cl-iA:':\GE IN VAPOR DENSITY DISTRIBUTIOK ( g/m3) DUE TO COOLING LAKE AT SELECTED RECEPTORS FOR DATA PERIOD: 3j0Sj79 -3/04/80 0 5 6 10 6 11 149 11 15 33 47 32 54 li 20 Water Vapor nt:>nc:itll L.ot'-11""'
  • VJ (g/m3) 16 21 26 31 20 25 30 35 24 29 42 48 12 425 59 100 8 36 40 41 46 45 50 0 !:"' I"'J (J :::c I:J:j I:J:j Rev. 0 TABLE 2.3-46 PHASE 1 METEOROL03ICAL INSTRUMENTATICN ON TO.JER (JUNE 1, 1973 to MAY 31, 1975) Helghts .tvleteorolQJical Pararreters (feet) Sensor ThreshJld Range l\1anufacturer Horizontal Hmd Speed 32,116,196 Precision CUp Anem:xneter o. 6 mph 100 mph Cli.rret i-iodel 011-1, Accuracy + 1% or + 0.15 mph, Whichever is greater Horizontal vvind Direction 32,116,196 Precision Hind Model o. 75 mph 0 to 540° Clirnet 012-10, Accuracy .:!: 3 ° Standard Deviation of 32,116,196 Precision Wind Model 0 to 40° Clirnet ::8 Horizontal Wind Direction 012-10, Accuracy 3 ° 0 t"" t"%1 Terrperature at Reference 32 Aspirated Tneumistors -30 to 50°C Cli.rret () Model 015-3, Accuracy :::0 +0.15°C t::j t:rj -:A: Dewpoint Terrperature 32 Aspirated Dew Cell Model -50 to 50°C Clirnet 015-12, Accuracy 1.1 °C) Temperature Difference 32-116 Aspirated Thermistors -5 to 10°C Clirnet 32-196 Circuit Model 32-277 015-3, Accuracy Radiation 6 'lhermopile, Accuracy :!: 1% 2 Langley/min Eppley Rev. 0 TABLE 2.3-47PHASE 2 METEOROLOGICAL INSTRUMENTATION ON TOWER(MARCH 5, 1979 TO MARCH 4, 1980)Meteorological ParametersHeights(feet)SensorThresholdRangeManufacturerHorizontal Wind Speed32,116,196Precision Cup AnemometerModel 011-1, Accuracy+/- 1% or +/- 0.15 mph,whichever is greater0.6 mph100 mphClimetHorizontal Wind Direction32,116,196Precision Wind Model012-10, Accuracy +/-3°0.75 mph0 to 540°ClimetStandard Deviation ofHorizontal Wind Direction32,116,196Precision Wind Model012-10, Accuracy +/-3°0 to 40°ClimetTemperature at Reference(a)32Platinum Resistance SensorModel R15-31-A-500-B-2-4-X1+/- 0.15°C (system error +/- 0.14°C)-50 to 50°C(b)HY-CALDewpoint Temperature(c)32Cooled Mirror Dew CellModel C1-64, Accuracy 0.5°-50 to 50°CClimetTemperature Difference(a)32-11632-19632-277Platinum Resistance SensorSpecial Circuit ModelCT-825-A-A-A,+/- 0.15°C-5 to 10°CHY-CALPrecipitation6Tipping BucketAccuracy+/-1%0.01 inchWeatherMeasureaHY-CAL temperature sensors are aspirated and shielded by Weather Measure Model IS6FD Motor-aspirated Temperature Shields at 32, 116, and 196 feet. Radiation errors: 0.1°C.Operating temperature range -62.2 to +71.1°C.bPrior to March 14, 1979 the range was -30° to +40C.CDewpoint sensor has its own dedicated Climet aspirated shield; operating range -50° to +50°C,shield error 0.1°C.Rev. 0 WOLF CREEKTABLE 2.3-48OPERATIONAL METEOROLOGICAL INSTRUMENTATION ON TOWER(AFTER MARCH 4, 1980)Meteorological ParametersHeights(feet)SensorThresholdRangeHorizontal Wind Speed32,196AnemometerAccuracy+ 1% or + 0.15 mph,whichever is greater0.6 mph100 mphHorizontal Wind Direction32,196Wind directionAccuracy +3°0.75 mph0 to 540°Standard Deviation ofHorizontal Wind Direction196Standard DeviationAccuracy + 3°0 to 40°Temperature at Reference*32Temperature Sensor (RTD)Accuracy + 0.3°C-50 to 50°CTemperature Difference*32,196Temperature Sensor (RTD)Accuracy + 0.3°C-4 to + 6°CTemperature Difference*32,196Temperature DifferenceTransmitter Accuracy+ 0.1°C-4 to + 6°CTemperature at Reference32Reference TemperatureTransmitter Accuracy+ 0.1°C-50 to +50°C*Temperature sensors are aspirated and shielded.More aspirated temperature shields at 32 and 196 feet.Radiation error: 0.1°COperating temperature range: -62.2°C to 71.1°C.Rev. 13 WOLF CREEK TABLE 2.3-49 LOCATION OF METEOROLOGICAL SENSORS AT THE PERMANENT METEOROLOGICAL SITE Distance of wind sensors from tower 84 inches at both elevations Distance from tower to instrument shed 52 feet Direction of instrument shed from tower East Dimensions of the instrument shed 12 feet x 16 feet x 10 feet 4 inches Distance of rain gauge from instrument shed 90 feet Direction of rain gauge from instrument shed South

Rev. 25 WOLF CREEKTABLE 2.3-50WIND SPEED TRANSMITTERTRUE VS. INDICATED AIR SPEEDTrue Air Speed(mph)Indicated Air Speed(mph)0.51054.50109.521514.55 2019.5922.522.092524.60 3029.63 3534.664039.684544.71 5049.73 6059.79 7069.84 8079.89 9089.94Source:Climet Instrument Company, 1970, Instruction manualModel 011-1 and speed transmitter: Climet InstrumentCompany, Redlands, California.Rev. 0 WOLF CHEEK TABLE 2.:3-51 DATA RECOVERY PHASE 1 (JUNJE 197:3 -JUNE 1975) Height Percent Parameters ( *Recovery Temperature 32 99.6 Temperature 1115-32 88.5 Difference Tempterature 196-32 94.3 Difference Temperature 277-32 96.5 Difference Dewpoint 32 97.3 Wind Speed 32 97.1 Wind Direction 32 99.2 Wind Deviation 32 94.7 Wind Speed 116 95.6 Wind Direction 116 97.3 Wind Deviation 116 92.9 Wind Speed 196 94.0 Wind Direction 196 98.1 Wind Deviation 196 93.6 Rev. 0 WOLF CRE:EK TABI,E 2. 3-52 RECOVERY PHASE 2 (M.ARCH Sr 1979 -MARCH 4, 1980) Height: Percent Parameters (feet) Recovery Temperature :32 96.3 Temperature 116-32 9:2.9 Difference Tempterature 196-32 86.4 Difference Temperature 277-32 79.4 Difference Dewpoint :32 8:8.4 Wind Speed :32 98.8 Wind Direction .32 99.7 Wind Deviation .32 99.5 Wind Speed 116 97.9 Wind Direction 116 97.7 Wind Deviation 116 98.9 Wind Speed 196 96.9 Wind Direction 196 99.5 Wind Deviation 196 97.6 Precipitation 6 99.9 Rev. 0 TABLE 2.3-53 ELEVATIONS OF INSTRUMENTATION USED FOR REGIONAL r-1ETEOROLOGICAL MEASUREMENTS l'-1easur ing Elevation Above Agency Location Parameter Ground (feet) Time Period Chanute Flight Chanute, wind speed, 20 1/0l/55 thru Serv1ce Station Kansas wind direction National Weather Topeka, temperature, 65 1/01/41 thru Service Kansas humidity 43 2/18/44 thru 4 1/31/47 thru 5 8/04/56 of-h Y I 1 '-J.J J.. u National Weather Topeka, precipitation 61 1/0l/41 thru Service Kansas 4 8/04/56 i-h y 11 \...i.ll. \,..L National Weather Wichita, temperature, h l/Ol/41 thru v Service Kansas humidity 51 9/28/44 thru 5 12/01/53 thru National Weather Wichita, precipitation 4 1/01/41 thru Service Kansas 43 9/28/44 thru 5 12/0l/53 thru Source: Local Climatological Data, 1978, Topeka and Wichita, Kansas, U.S. Dept. of Commerce, National Climatic Center, Asheville, North Carolina. 12/31/64 2/17/44 1/30/47 8/03/56 12/31/78 9/27/44 1 ') /"Jl /"70 U 9/27/44 ll/30/53 12/31/78 9/27/44 11/30/53 12/31/78 Rev. 0 0 l:"" i"'l 0 ::c t:r:l t:r:l :;>;: WOJC.,F CREEK TABLE 2.3-54 PLANT AND METEOROLOGICAL PARAMETERS KANSAS GAS & ELECTRIC COMPANY WOLF CREEK GENERATING STATION Parameter II e i g h t of Con t a i nm en t B u i1 d i n <J Plant Vent Height Area of Reactor Building Building Shape Factor Stack Diameter Stack Gas Exit Velocity Plant Grade Elevation Starting Speed Threshold Height of Mixing Layer Meteorological Data Period (On Site) Measurement 63.41 m 66.45 m 2650 m2 0.5 2.11 m 10 m/sec 1099.5 ft (335.2 m) f'1SL 0.33 m/sec 870 m above grade 6/1/73 throLJCJll 5/31/75 and 3/5/79 throuyh 3/4/80 Rev. 0 Affected Sector NNE NE ENE E ESE SE SSE s ssw sw \"iSW \"i hNW NW NM"i N 5% 50% 'I'ABLE 2.3-55 ACCIDENT ATMOSPHERIC RELATIVE CONCENTRATIONS ( X/Q) a FOR 3-YEAR DATA PERIOD Exclusion Zone Circular (1200 m) Low Population Zone Circular (4023 m) Time 2-Hr 2-Hr 8-Hr 16-Hr 72-Hr 624-Hr l. OE-04 2.9E-05 l. 3E-05 8.3E-06 3.4E-06 9.3E-07 7.6E-05 l. 9E-05 7.9E-06 5.1E-06 l. 9E-06 4.9E-07 7.8E-05 2.1E-05 8.4E-06 5.3E-06 2.0E-06 4.7E-07 8.0E-05 2.2E-05 9.0E-06 5.8E-06 2.2E-06 S.SE-07 l.lE-04 3.3E-05 l. 3E-05 8.4E-06 3.1E-06 7.4E-07 l. 3E-04 4.3E-05 l. 7E-05 l.OE-05 3.7E-06 8.5E-07 8.8E-05 2.7E-05 l.lE-05 7.3E-06 2.8E-06 7.3E-07 l.lE-04 3.2E-05 l. 3E-05 8.2E-06 3.0E-06 7.4E-07 1.4E-04 4.3E-05 l.7E-05 l.lE-05 3.8E-06 8.9E-07 1.2E-04 3.8E-05 1. 5E-05 9.1E-06 3.2E-06 7.4E-07 S.OE-05 2.3E-05 9.9E-06 6.5E-06 2.6E-06 7.0E-07 1. 3E-04 4.2E-05 1.6E-05 1. OE-05 3.7E-06 8.4E-07 1.3E-04 4.2E-05 l.7E-05 l.OE-05 3.8E-06 8.9E-07 1. SE-04* 4.4E-05* 1. 8E-05 1. 2E-05 4.7E-06 1.2E-06 1. 5E-04* 4.4E-05* 2.0E-05* 1.3E-05* 5.4E-06* l.5E-06* 1. 5E-04* 4.4E-05* 1 Q]:;'_()t:; -'-eJ"-J V...l l.3E-05* l.SE-06* 1. 4E-04 4.4E-05 1.4E-05 9.8E-06 4.3E-06 1.3E-06 2.5E-05 4.4E-06 2.4E-06 2.0E-06 1.3E-06 6.9E-07 aunits sec/m3. *Maximum sector values. Remarks Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% 0 Highest 0.5% t:"" Highest 0.5% 0 highest 0.5% ;;o Highest 0.5% t:r:1 t:r:1 Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% Highest 5% Highest 50% Rev. 0 Affected Sector NNE NE ENE n r:, ESE SE ,.., £"'t r"l C>CiC s ssw sw WSW w wNW NW NNW N 5% 50% TABLE 2.3-56 ACCIDENT ATMOSPHERIC RELATIVE CONCENTRATIONS (x/Q)a FOR 6/1/73 TO 5/31/74 DATA PERIOD Exclusion Zone Circular (1200 m) Low Population Zone Circular (4023 rn) Time 2-Hr 2-Hr 8-Hr 16-Hr 72-Hr 624-Hr l.2E-04 3.9E-05 l. 6E-05 l. OE-05 3.9E-06 9.8E-07 7.6E-05 1. 8E-05 7.6E-06 4.9E-06 l.9E-06 5.0E-07 7.8E-05 2.0E-05 8.2E-06 5.3E-06 2.0E-06 5.0E-07 , 1"\11 3.1E-05 1.2E-05 7.4E-06 2.6E-06 6.0E-07 l.lE-04 3.3E-05 l.3E-05 8.4E-06 3.1E-06 7.4E-07 1. 3E-04 4.0E-05 l.6E-05 l.OE-05 3.7E-06 8.7E-07 8.8E-05 2.7E-05 l.lE-05 7.4E-06 2.9E-06 7.7E-07 8.3E-05 2.2E-05 9.5E-06 6.3E-06 2.5£-06 6.9E-07 l.SE-04* 4.4E-05* 1.8E-05 l.lE-05 4.3E-06 l.lE-06 8.4E-05 2.4E-05 l. OE-05 6.6E-06 2.6E-06 6.7E-07 7.8E-05 2.1E-05 8.9E-06 5.8E-06 2.3E-06 6.1E-07 1.3£-04 4.1E-05 l. 6E-05 9.8E-06 3.5E-06 S.OE-07 8.8E-05 2.7E-05 l.lE-05 7.2E-06 2.8E-06 7.0E-07 l. 4E-04 4.4E-05* l.8E-05 l. 2E-05 4.5E-06 l.lE-06 l.5E-04* 4.4E-05* 2.0E-05* l.3E-05* 5.6E-06* l.6E-06* 1. SE-04

  • 4.4£-05* 2.0E-05* 1.3E-05* 5.5E-06 l.6E-06* 1.4E-04 4.4E-05 1.5E-05 l. OE-05 4.5E-06 1. 4E-06 2.5E-05 4.5E-06 2.5E-06 2.1£-06 1. 4E-06 7.4E-07 aunits secjm3 *JViax imum sector values Remarks Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% ::;8 0 Highest 0.5% t"" Highest 0.5% '"') Highest 0.5% () :;o Highest 0.5% t'j Highest 0.5% t'j Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% Highest 5% Highest 50% Rev. 0 Affected Sector NNE NE ENE E ESE SE SSE s ssw sw wsv.. w WNW NW NNW N 5% 50% TABLE 2.3-57 ACCIDENT ATMOSPHERIC RELATIVE CONCENTRATIONS (X/Q)a FOR 6/1/74 TO 5/31/75 DATA PERIOD Exclusion Zone Circular (1200 rn) Low Population Zone Circular (4023 m) Time 2-Hr 2-Hr 8-Hr 16-Hr 72-Hr 624-Hr 9.3E-05 2.7E-05 l.2E-05 7.8E-06 3.2£-06 8.7E-07 7.7E-05 l. 9E-05 7.7E-06 4.9E-06 l.9E-06 4.6E-07 7.7E-05 l.SE-05 7.0E-06 4.4E-06 l.6E-06 3.7£-07 7.8E-05 1.9£-05 7.7E-06 4.9E-06 l.SE-06 4.5£-07 7.8E-05 l.9E-05 8.1E-06 5.3E-06 2.1E-06 5.6E-07 l. OE-04 3.1E-05 l.2E-05 7.7£-06 2.8E-06 6.5E-07 l.OE-04 3.lE-05 l.3E-05 B.OE-06 3.0E-06 7.3E-07 l.lE-04 3.3E-05 l. 3£-05 8.2E-06 3.0E-06 7.0E-07 l.lE-04 3.4E-05 l. 4E-05 8.5E-06 3.1E-06 7.5E-07 8.0E-05 2.2E-05 9.0E-06 5.8E-06 2.2E-06 5.5£-07 l.lE-04 3.5E-05 1.4£-05 8.6E-06 3.1£-06 7.2E-07 l. 3E-04 3.9E-05 l. 5E-05 9.5£-06 3.4£-06 7.8E-07 8.8£-05 2.7£-05 l.lE-05 7.0E-06 2.7E-06 6.6E-07 l. SE-04* 4.4E-05* l. 8E-05 l. 2E-05 4.5E-06 l.lE-06 l.5E-04* 4.4E-05* l. 9E-05* l.3E-05* 5.2E-06* l.4E-06* 1.4E-04 Ll -:(j;'_(lt; 1 QJ?_()t; l.2E-05 4.8E-06 1 "J;'_nc:: .... _..._, ..... -..£.. * ...., .t,.J v oJ vv l.4E-04 4.3E-05 l. 4E-05 9.4E-06 4.1E-06 l.3E-06 2.lE-05 3.7E-06 2.1E-06 l. 7E-06 l.lE-06 6.2E-07 aunits secjm3 *Maximum sector values Remarks Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% 0 Highest 0.5% t"1 Highest 0.5% n Highest 0.5% :::0 Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% t.J;_.t-.--.c-0.5% Highest 5% Highest 50% Rev. 0 Affected Sector NNE NE ENE E ESE SE SSE s SSW sw v.JSW w WNW NW NNW N 5% 50% TABLE 2. 3-58 ACCIDENT ATMOSPhERIC RELATIVE CONCENTRATIONS ( x/Q) a FOR 3/5/79 TO 3/4/80 DATA PERIOD Exclusion Zone Circular (1200 m) Low Population Zone Circular (4023 rn) Time 2-Hr 2-Hr 8-Hr 16-Hr 72-Hr 624-Hr 7.8E-05 2.3E-05 1. OE-05 7.1E-06 3.0E-06 8.9E-07 7.6E-05 1. 9E-05 7.9E-06 S.lE-06 2.0E-06 S.OE-07 7.8E-05 2.2E-05 9.0E-06 5.8E-06 2.2E-06 5.4E-07 1.2E-04 3.3E-05 1.3E---05 8.5E-06 3.2E-06 7.8E-07 1.4E-04 4.5E-05 1. 8E-05 l.lE-05 3.9E-06 9.0E-07 1.4E-04 4.5E-05 1. 8E-05 l.lE-05 3.9E-06 9.0E-07 8.8E-05 2.7E-05 l.lE..-05 7.3E-06 2.8E-06 7.3E-07 1.3E-04 4.3E-05 l. 7E-05 l.OE-05 3.7E-06 8.5E-07 1. 3E-04 4.2E-05 1. 6E-05 1. OE-05 3.7E-06 8.4E-07 1.4E-04 4.3E-05 1. 7E-05 l.lE-05 3.8E-06 8.9E-07 8.4E-05 2.3E-05 l.OE-05 6.9E-06 2.9E-06 8.3E-07 1.4E-04 4.3E-05 1.7E-05 l.lE-05 4.0E-06 9.7E-07 1.4E-04 4.4E-05 1.8E-05 l.2E-05 4.4E-06 l.lE-06 1. 5E-04* 5.0E-05* 2.1E-05* 1.4E-05* 5.4E-06 1.4E-06 1.5E-04* 4.5E-05 2.0E-05 1.3E-05 5.4E-06 l.SE-06 1. 5E-04* 2.0E-05 l.3E-05 l C::.k" ..... nh* ..J,. ...., ....... vv ..£. e V.L.J vv l.SE-04 4.5E-05 1. SE-05 l.OE-05 4.6E-06 1. SE-06 2.8E-05 S.OE-06 2.7E-06 2.2E-06 l. 4E-07 7.7E-07 aunits secjm3 *l\!:!:lV i l'i\11n1. sector ,.,. 1 1, __ .n. .&. 1L\ U.llL VO..J..Ut:;.::J Remarks Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% Highest 0.5% highest 0.5% Highest 0.5% Highest 0.5% tj; ...... 'h-r-4-.l.I...L':jlJ.C.::J\... 0.5% Highest so '15 Highest 50% Rev. 0 Distance (km) 0.4 0.8 1.2 1.6 2.4 3.2 " " -..v 4.8 5.6 6.4 7.2 8.0 12.0 16.0 24.0 32.0 40.0 48.0 56.0 64.0 72.0 NNE 1. 06 1. 05 1. 00 1.04 1. 09 1. 05 1.04 1. 05 1. 05 1.05 0.93 0.86 0.81 0.80 0.80 0.80 0.79 o. 71 0.63 0.58 NE 1. 03 1. 05 1. 02 1. 09 1.14 1.14 1.05 1. 02 1 "" ..l.eVU 1. 00 0.99 1. 01 1. 00 0.96 0.93 0.89 0.69 0.57 0.48 0.42 0.37 0.32 ENE 1. 07 1.08 1. 03 1.10 1.16 1. 07 1.00 0.92 0.86 0.81 0.76 0.71 0.68 0.64 0.61 0.59 0.46 0.38 0.32 0.29 0.27 0.26 TABLE 2.3-59 TERRAIN/RECIRCULATION FACTORS -STANDARD DISTANCES GROUND RELEASE E 1. 51 1.43 1. 28 1. 21 1.11 1.10 1.09 0.96 " ""' u.ot 0.88 0.89 0.89 0.79 o. 74 0.68 0.65 0.67 0.68 0.69 0.53 0.42 0.35 BASED ON 6/1/73 THROUGH 5/31/74 ON-SITE DATA Sector ESE SE SSE s ssw sw WSW 1. 02 0.96 1.17 1. 05 1.10 1. 08 1. 31 1.12 0.97 1. 09 1.13 1. 09 1. 06 1. 28 1.10 0.96 1.04 1. 08 1. 07 1. 05 1. 23 1.10 1. 00 1. 07 1. 05 1. 09 1. 05 1. 21 1. 08 1. 02 1. 08 0.99 1. 09 1.05 1.17 1.13 0.99 1.16 1.03 1.14 1. 01 1. 21 1.15 0.97 1.18 1.04 1.16 1.01 l. 27 1.10 0.92 1.14 1.06 1.12 1. 01 1. 26 1.09 0.83 1.13 1.13 1.19 1. 04 l. 26 1.11 0.83 1.12 1.13 1.11 1. 03 1. 28 1.11 0.84 1.11 1.14 1. 05 1. 02 1. 30 1.13 0.85 1.11 1.15 1. 02 1. 03 1. 32 1.13 0.83 1. 04 1.16 1.11 0.90 1. 31 1.11 0.82 1. 00 1.19 1.19 0.83 1. 28 0.95 0.77 0.92 0.94 1. 07 0.78 1.18 0.83 0.72 0.91 0.83 1. 04 0.80 1.11 0.84 0.63 0.81 0.82 0.99 0.70 1. 00 0.85 0.57 0.82 0.95 0.63 0.85 0.52 0.67 0.81 0.93 0.58 0.82 o. 71 0.44 0.61 0.74 0.84 0.53 0.73 0.61 0.37 0.55 0.70 0.77 0.50 0.63 0.53 0.33 0.52 0.64 0.70 0.49 0.57 w WNW 1.11 1. 08 1. 25 1.13 1. 32 1. 05 1. 27 1.08 1. 20 1. 03 1.13 1.15 1. 05 1.18 1.11 1.16 1.13 1.17 1.17 1.17 1.18 1.18 1. 20 1.18 1.18 1.17 1.12 1.14 0.98 1. 09 0.95 1. 04 0.86 0.96 0.78 0.90 0.71 0.85 0.68 0.83 0.65 0.81 0.62 0.78 NW
  • NNW * *
  • N 1. 00 1. 07 1. 06 1.08 1. 05 1. 07 1. 01 1. 06 1. 08 1. 07 1. 01 1. 00 0.98 0.95 0.94 0.88 0.83 0.76 " ..,, v. /..1. 0.67 0.63 0.58 1. 02 1. 07 1. 03 1. 06 1. 01 1. 06 1.04 1. 06 1. 07 1. 05 1. 09 1.10 1. 04 0.99 1. 04 1. 03 0.88 0.73 0.62 0.59 0.55 0.52 1. 05 1. 03 0.98 1. 02 0.96 0.96 0.95 0.96 0.96 0.95 0.95 0.93 0.99 1. 04 1. 02 1. 01 1. 01 0.96 0.92 0.84 0.78 0.71 Rev. 0 WOLF CREEK TABLE 2.3-59d LIMITING ATMOSPHERIC DISPERSION FACTOR, /Q (sec/m3) /Q Site Boundary 0-2 hr. 1.5E-4 Low Population Zone 0-8 hr. 1.9E-5 8-24 hr. 1.3E-5 24-96 hr. 5.3E-6 96-720 hr. 1.5E-6 Rev. 0 CREEK 2. 3-6 0 "This Table has deleb:rl" Rev. 0 WOLF CREEK TABLE 2
  • 3-6 Oa TERRAIN/ROCIRCULATICN (l)RR.EX::TIO.."il' FAcrORS Nr TEN STANDARD (GROUND RELEASE) BASED ON JUNE 1, 1973 to MAY 31, 1974 ONSITE DATA DISTANCE ( KIL0.\1ETERS) NNE NE ENE E ESE SE SSE s SfM 9il Wffi'V tv 0.4 1.14 0.96 0.96 1.10 0.98 0.95 1.08 0.95 1.02 0.99 1.29 1.08 1.2 1.00 1.05 0.94 1.02 1.09 0.91 1.06 0.97 1.04 0.96 1.24 1.28 2.4 1.08 1.07 1.04 0.99 1.05 0.98 1.07 0.91 1.05 0.97 1.17 1.13 4.0 1.07 1.01 0.97 1.03 1.16 0.93 1.19 1.01 1.09 0.89 1.28 1.03 5.6 1.12 0.82 0.88 0.84 1.07 0.80 1.11 1.01 1.22 0.96 1.25 1.11 8.0 1.08 0.94 0.71 0.81 1.10 0.80 1.09 1.06 1.05 0.98 1.31 1.17 16.0 0.80 1.00 0.60 0.69 1.05 0.75 0.99 1.14 1.12 0.77 1.31 1.09 32.0 o. 76 0.88 0.58 0.59 0.74 0.70 0.86 0.80 1.00 0.75 1.09 0.93 56.0 0.73 0.44 0.29 0.63 0.83 0.49 0.65 0.75 0.91 0.55 0.82 0.69 80.0 0.57 0.28 0.24 0.35 0.55 0.31 0.50 0.61 0.75 0.43. 0.56 0.60 \tJm'f NW 1.04 0.99 1.02 1.05 1.03 1.05 1.17 1.01 1.14 0.98 1.17 0.98 1.11 0.94 1.03 0.87 0.84 0.68 0.75 0.55 NNW N 1.00 1.02 1.02 0.97 1.01 0.95 1.03 0.95 1.05 1.00 1.09 0.92 0.98 1.00 1.02 0.93 0.61 0.87 0.51 0.70 n-...... n .I:\.CV
  • v Receptora NE 'ffiBLE 2.3-61 TERRAIN/RECIRCUlATION FACTORS -SPECIAL DISTANCES BASED ON 6/1/73 THROUGH 5/31/74 ON-SITE Sector E ESE SE SSE s ssw Ground Release Exclusion Zone 1.00 1.02 1.03 1.28 1.10 0.96 1.04 1.08 1.07 1.05 1.23 1.32 1.05 1.06 1.03 0.98 Law Population Zone 1.08 1.06 1.00 1.07 1.14 0.96 1.17 1.03 1.15 1.00 1.26 1.04 1.17 1.06 1.06 0.95 Nearest Resident 1.07 1.12 1.11 1.06 1.10 1.00 1.13 1.12 1.15 0.99 1.25 1.10 1.16 1.05 1.04 0.96 Nearest Vegetable Garden 1.05 1.05 1.09 1.06 1.10 1.00 1.14 1.12 1.05 1.01 1.25 1.10 1.16 1.05 1.06 0.96 Nearest Meat Animal 1.01 1.01 1.04 1.13 1.08 1.00 1.14 1.12 1.16 1.06 1.16 1.16 1.16 1.03 1.05 0.94 Nearest Dairy Cow 1.05 1.03 b 1.06 1.08 1.00 1.13 b b b 1.31 1.18 b b 1.05 b Nearest Plant Boundary 1.05 1.14 1.12 1.13 1.08 1.00 1.13 1.12 1.14 1.03 1.16 1.13 1.15 1.06 1.01 0.97 Mixed-Mode Release Exclusion Zone 1.19 1.40 1.05 1.08 1.17 1.19 1.08 1.06 1.17 1.09 1.36 1.20 1.04 0.87 0.78 0.97 Low Population Zone 1.10 1.15 0.95 1.40 1.21 1.08 1.13 1.08 1.26 1.08 1.19 1.10 0.99 0.87 0.84 0.98 Nearest Resident 1.13 1.35 1.03 1.20 1.27 1.19 1.12 1.07 1.26 1.07 Nearest Vegetable Garden 1.10 1.25 0.96 1.20 1.27 1.19 1.14 1.07 1.13 1.12 Nearest Meat Animal 1.18 1.39 1.04 1.10 1.28 1.16 1.14 1.08 1.19 1.07 Nearest Dairy Cow 1.15 1.11 b 1.20 1.28 1.16 1.13 b b b Nearest Plant Boundary 1.15 L36 LOB LlO L23 1.21 1.12 1.08 1.18 1.08 aNo dairy goats withir1 5 rniles. bNo dairy cows within 5 miles. 1.19 1.11 1.19 1.11 1.16 1.14 1.29 b 1.16 0.99 0.99 1.00 b 0.99 0.86 0.84 0.86 0.94 n nn v.oo 0.87 0.84 0.84 0.84 u.OL 0.99 0.99 1.01 b 1.00 Rev. 0 NNl:. 0 4 KM 6 JE-06 'IE -06 5 OE -08 6 JE*-06 6 3E-06 5 9E-06 5 9E-*06 400 0 8 KM 9E-06 WOLF CREEK TABLE 2.3-62 METEOROLOGICAL HE.LAl IVE CONCENTRATION ANALYSIS DATA f'EIIIO:J 06101173 10 os;:_lt/74 1\NNlJAL AVERAGE { GRUUND) 5 T i\NDf\1-*W PTS -T /R CORRECTED ONSJ TE METEOROLOGY Dt\TE. 2:3-NOV-81 TII'"1E 08.01: NE ENE E ESE SE WOLF CREEK GENERATING STATION KANSAS GAG AND ELEC m IC CO BURL lNGTON, KANSAS DAI'JES AND MOORE JOB 7699-064 *07 AFFEClED SECTORS SSE 5 Page 1 of 3 tl 4E-06 ::1 5E-06 1E-06 4 lE-06 5. 2E-06 5 3E* 06 4 EJE-06 6 6E-06 4 flE-06 :JE-06 4. 6E-06 4 :3F -06 6 9[-\-)6 1 1 2E-06 :1 JE-06 BE*-06 3. BE-06 4 9E-06 5 OE-06 4 6E-06 6 JE.-06 4 !E*-06 4 JE-06 4 1E-06 6 -06 1 1E-05 U5 2 2E-0f3 1 3E-08 9E--08 2 OE-08 3 2E-08 4 lf:-08 2E-08 3 2£--00 2 JE-08 2 4E-08 2 lE-08 "JE -08 3 1E-Cl8 6 ;_'E-08 ll -07 4E-06 ::1 SE-06 lE-06 4 lE-06 5 2E-06 5 3E-06 8E-06 6 6E--06 7E-06 JE-06 6E.-06 :JE -06 6 r1E -116 1 <-:t:: -*05 1 :x 4E-06 ::J. 51:::-06 5 lE-06 4 lE-06 5 2E-06 5. 3E-06 4 BE--06 6 6E--06 7E:-06 JE-06 6E-06 "3E-06 6 9E-06 1 ::..>E:-05 1 05 2E-06 ::1 31::-06 BE-06 J 8E--06 4 9E-06 5 OE-06 6E-06 6 JE--06 5E--06 4 IE-06 JE-06 !E-06 6 SE-06 lE-(15 1 2f.: 05 2E-06 ::1 3E-06 BE-06 3. BE-06 4 9E-06 5. OE-06 6[-06 6. JE-06 SE*-06 4 lL-06 4 JE-06 1E-06 6 SE-06 tE-05 1 2E 05 400 400 400 400 400 400 400 400 *WO 400 400 '!*JO 400 400 4':10 1E-06 1E-06 SE-06 1 4E-06 1 7E-06 1. 6E-06 1. 7E-06 2 lE-06 5E-06 JE-06 6E-06 1. 4E-06 2. JE-06 9E-06 4 0!:>06 fiE-06 BE-07 OE-06 4E-06 1. 3£-06 1. 5E-06 1 SE-06 1. 5E-06 1. 9£-06 4E-06 2£-06 5E-06 1 3E-06 2 lE-06 3 t.E-06 3 "/E-06 1 7E-08 6E-O<? 6E-09 6 2E--09 7 4E-09 1. lE-08 1. 3E-08 1 lE-08 1 lE--08 6E-09 7 8E-09 7 8£-09 8 OE-09 1. lE-08 .2 2E-OB 3 6E-U8 1 9E-06 lE-06 l. 1E-06 1. SE-06 1. 4£-06 1 7E-06 1 6E-06 1. 7E-06 2. 1£-06 1. SE-06 3E-06 1 6£-06 1 4E-06 2 ::JE-06 3 9E-06 4 OE-06 1 lE-06 J lE-06 SE-06 1. 4E-06 1 7E-06 1. 6E-06 1 7E-06 2 lE--06 5E-06 3E-06 1. 6E-06 1. 4E-06 3E-06 9E-06 4 OF-06 1 8E-06 9 BE-07 1 OE-06 4E-06 1. 3E-06 1. 5E-06 1. SE-06 1 SE-06 9E--06 4E-06 1 2E-06 1. SE-06 1. 3E-06 2 lE-06 6E-06 3 7E-06 1 BE-06 9 BE-07 l OE-06 1 4E-06 1. 3E-06 1 5E-06 1. 5E-06 1. 5E-06 9E-06 4E-06 1. 2E-06 1 5E-06 1. 3E-06 2 lE--06 3 6E--06 3 7E-06 800 800 800 800. 800. 800. 800 800 BOO 000 BOO. 800 B*JO 800 800 B:)Q 1 2 KM 9 7E-07 5. SE-07 SE-07 7 OE-07 7. 2E-07 8 BE-07 8. 1E-07 8 8 7E-07 4 9E-07 4 9E-07 6 2E-07 6. 4E-07 7. BE-07 7. 3E-07 7 8 3E-09 3 9E-09 3E-09 2. 9E-09 3. SE-09 5. 7E-09 6. 4E-09 5 6E-07 1 lE-06 7 BE-07 6 9£-07 9. 2E-07 7. OE-07 2E-06 OE-06 2 lE-06 7E-07 9 6£--07 7. OE-07 6 lE-07 8 2E-07 6 JE-07 lE-06 1 BE-06 1 8E. -06 7E-09 5 SE-09 3. 9E-09 3. 9E-09 4 3E-09 3 9E-09 5. 8E-09 1 lE-08 1 9 7E-07 5 5E-07 !i SE-07 OE-07 7 2E-07 8. 7E-07 8 1E-07 8 6E-07 1 IE-06 7. BE-07 6 9E-07 9 2E-07 7. OE-07 2E*-06 2 OE-06 2 1E-06 9 7E-07 5 SE-07 SC:-07 OE-07 7. 2E-07 8 BE-07 8 1E-07 8 6E-*07 1 1E-06 7. BE-07 6 9E-07 9. 2E-07 7. OE-07 2E-06 2 OE-06 2 lE-06 8 7E-07 4. 9£-07 9E-07 6. 2E-07 6 4E-07 7 BE-07 7 2E-07 7 8 7E-07 4 9E-07 4 9E-07 6 ?E-07 6. 4E-07 7 8E-07 7. 3E-07 7 6£-07 '? 6E-07 6 9E-07 6 1£-07 8 2E-07 6 2£-07 lE-06 1 BE-06 1 8E-06 7E-07 9 6E-07 7 OE-07 6. 1£-07 8 2E-07 6 JE-07 lE-06 1. BE-06 1 1200 1200 1200 1200 1200 1200. 1200. 1200 1200. 1200. 1200 1200. 12::>0 1200 1 6 KM 6 SE-07 7E-07 5 4E-09 6 5E-07 6 5 7E-07 5 7E-07 1600 NNL 2 4 KM 3 BE-07 3 2E-07 2 9£-09 3 BE-07 3 BE-07 3 2E-07 3 2E-07 2400 3 2 KM 3 BE-07 :3. BE-07 4. 2E-07 4. 6£-07 5. 8£-07 5. 4E-*07 3. 3E-07 3. 3£-07 3. 7E-07 4. lE-07 5. lE-07 4. 7£-07 2 6E-09 : .. 5E-09 1 7E-09 2. 4E-09 3. 7E-09 4 1£-09 3 8£-07 :J BE-07 4 2E-07 4. 6E-07 5. BE-07 5. 4E-07 3 BE-07 :J BE-07 4. 2E-07 4 6£-07 5. 8E-07 5. 4£-07 3 3E-01 :3 3E-07 3 7E-07 4 OE-07 5. 1E-07 4 7E-07 3 3E-07 :1 3£-07 3 7E-07 4. OE-07 5. 1£-07 4. 7E-07 4E-07 7 OE-07 5 4. 4E-07 5 7E"-07 7E-07 7. 9E-07 3E-06 1 4!::.-06 7£-07 6 1E-07 4. 4E-07 3 BE-07 5 OE-07 1E-07 3. SE-09 3 SE*-09 2. 4E-09 2 4£-09 2 6£-09 2. 5E-*09 5 4£-*07 7 OE-07 5 OF-07 4. 4E-07 5 7£-07 4 7£-07 5 4£-07 7 OE.*-07 5 OE-07 4. 4E-07 5 7£-07 4 7£-07 4 7E-07 6 tE-07 4 4E-07 3. BE-07 5 OE-07 4. 1E-07 4 7E-07 6 lE-07 4 4£-07 3 SE*-07 5. OE-07 4. lE-07 6 9£--07 2E.-06 1 ;2E-06 3 7E-09 7 OE-09 1 2E-08 7 BE-07 1 JE-06 4E-06 7 8E-07 1 3E-06 4£-06 6. BE -07 2E -06 2E -06 6 9£-07 2£-06 2E-06 1600 1600 1600. 1600. 1600. 1600. 1600. 1600 1600. 1600. 1600. 1630. 1600 1600. 16JO -8760 TOTAL I NV DES -311 CALMS UPPER LEVEL -0 00 CALMS LOWER LEV -9 00 TOTAL OilS KEY ENTfiY ENTRY ENTRY ENTfiY RELATIVE CONCENlRATION-XOG (S/M**3) ENTRY 2 DEPLETED RELATIVE C:JNCENTRAllOt.l CS/MlH!:-ll RELATIVE DEPOSITION RATE ( 1/M**2> ENTRY 4 DECAYED XOQ CS/1'1!!-*31 -HALF LIFE. 2. 26 DAYS DECAYED XOG CS/MII-*3} -HALF LIFE 8. 00 DAYS ENTRY 6 DEC+DPL XOG CS/H*A-3) -HALF LIF-E 2 26 DAYS DEC+DPL XOG (S/M**3) -HALF LIFE 8. 00 DAYS ENrRY 8 -DISTANCE IN MET<:::R5 NE ENE E ESE 2. 2E-07 2 2E-07 2. 1E-07 2. 5E-07 1. 9£-07 1. 9E-07 1 BE-07 2. lE-07 1. 4£-09 8 2£-10 8 OE-10 1. 2£-09 ?. 2£-07 2 2E-07 2 1E-07 2. 5E-07 2 2E-07 2 .2£-07 2. lE-07 2 5£-07 BE-07 1. SE-07 1 BE-07 2 1E-07 8E-07 1. 8£-07 1 SE-07 2 !E-07 2400 .2400 2400. 2400. SE 3. 3E-07 2 BE-07 1. 9E-09 3. 3E-07 3. 3£-07 2. SE-07 2. BE-07 2400. AFFECTED SECTORS SSE S SSW sw WSW w NW 3. OE-07 2. BE-07 2 5E-07 2. 3E-07 2 1£-09 1 7E-09 3 OE-07 2 BE-07 3 OE-07 2. BE-07 2 SE-07 2. 3E-07 2. 5E-07 2. 3£-07 2400. 2400. :3. 8E-07 2 BE-07 2. 4E-07 3. OE-07 5,:=-07 4. ::JE-07 7 3 2£-07 2. 3E-07 2 OE-07 2 5£-07 2 3 6E-07 5 1. 8£-09 1. :2E-09 1. 2E--09 1 2£-09 1 1 8E-09 :J 3 BE-07 2. BE-07 2. 4£-07 3 OE-07 2 5,::-07 4 2£-07 7 3 BE-07 2. BE-07 2. 4£-07 3 OE-07 2 5!:::-07 4. 2E-07 7 3. 2E-07 2. :JE-07 2 OE-*07 2. 5£-07 li!::-07 3 6E-07 :3 2E-07 2. :3£-07 2 OE-07 2. 5E-07 2 1,;::-07 3 6E-07 2400. 2400 2400 2400 2400 2400 N OE --07 7 ;:::,:;:: -0 I <;'[--07 11:::-07 4E--09 :JI:C-0'7 OE--07 7 OE--07 7 9E--07 6 lE-07 9E*-07 6 lE-07 2400. 2*'100 2 4£-07 1 4E-07 1. JE-07 1 4E-07 1. 7£-07 2. 1£-07 2 1£-07 L 9£-07 2. 6E-07 1. "7E-07 1. 6£-07 1. 9£-07 1 BE-07 2 9E-07 4 9E -07 4 :l,:C:-07 2 OE-07 1. 2E-07 1. lE-07 1. lE-07 1. 4E-07 1 7£-07 1. 7E-07 1 6£-07 2. lE-07 L *lE-07 1. ::JE-07 1 SE-07 1 SE-07 2 4E-07 4 OE -07 3 9:::0-07 1 7E-09 8 SE-10 4. 7E-10 4 9E-10 7 7E-10 1 1E-09 1. 4E-09 1. lE-09 1. 2E-09 7. 4E-10 7. 6E-10 7 3E-10 8 4;::-10 1 lE-09 2. 2E -09 3 'lE-0'1 2 4E-07 1 4E-07 1 3E-07 1. 3E-07 L 7E-07 2 1£-07 2 1£-07 1 9£-07 2. SE-07 1. "7£-07 1 6E-07 1. BE-07 BE-07 2. BE--07 BE:.--07 JC-07 2 4E-07 1. 4E-07 1 3E-07 1 3E-07 1 7E-07 2. lE-07 2. 1£-07 1. 9£-07 .2. 6E-07 1 7E-07 1 6E-07 1. 9E-07 BE-07 2. 9£-07 9E--07 7':.-07 OE-07 1 2E-07 1. lE-07 1 1£-07 1. 4£-07 1. 7E-07 1. 7E-07 1 SE-07 2. lE-07 1 4E-07 1 3E-*07 1 SE-07 5E-07 2. 3E-07 OE--07 9E-07 2 OE-07 1. 2E-07 1 lE-07 1 1E-07 1. 4E-07 1 7E-07 1. 7£-07 1 6E-07 2. 1E-07 1. 4E-07 1. 3£--07 1. :JE-07 1 5E-07 2 4E-07 OE--07 3 9::0-0/ 3200 3200 3200. 3200 3200. 3200. 3200. 3200. 3200 :3200. 3200. 3200 3200 3200 :3200 4 0 KM 7E -07 9 7E --08 9 2E -08 1. OE -07 'IE-07 7 BE-08 7 4£-08 8. OE-08 lE-09 5 4E-l0 3 *)E-10 3 ::JE-10 7E-07 9 6£-08 9 OE-08 9 8E-OB ?E-07 9 7E-08 9 lE-08 9. 9E-08 4E-07 7 7E-08 7 3£-08 7 9£-08 4£-07 7 6E-08 7 JE-08 8 OE-08 1. 3£-07 1. 5E-07 1. OE-07 1 2E-07 5 4E-10 7 7E-10 1 5E -07 1. SE-07 1 2E-07 1 1. 6E-07 1 4E-07 1 9E-07 3E-07 1. 2E-07 1 3E-07 1 4E-07 2 OE--0/ 5E -07 3 :;.,:::-*07 1. 3E-07 1. 1E-07 1 6E-07 OE-07 1 OE-07 1 OE-07 l lE-07 1. 6E-07 BE--07 2 !E-07 9 BE-10 7 5E-10 8. 1E-10 lE-10 5 4E--10 4. 6E-10 5 9E-10 7 4E-10 1 SE.--09 2 :J,::0-07 4000 4000 4000 4000 4. 8 KM 1. 3E-07 1. 3E-07 1. OE-07 1. OE-07 4000 1 4t:.-07 7. 4E-08 6 6£-08 6 9E-08 9 7E-08 1 1E-07 5. BE-08 5 2E-08 5 4£-08 7 6£-08 8 6E-10 3. BE-LO 2 OE-10 2 2E-10 3. 8E-10 1 4E-07 7 3£-08 6 5£-08 6 BE-08 9 6E-08 4E-07 7. 3£-08 6 6£-08 6 9E-08 9 7E"-08 tE-07 5 7E-08 5 !E-08 5 4E-08 7. 6E-08 lE-07 5 BE-08 5 ;2E-08 5 4£-08 7 6E-08 4800 4800 4800 4-800 4800 1. SE-07 1 4E-07 1 9E-07 :JE-07 1 2£--07 1. 3E-07 4:=.:-07 2 OE*-07 5£--07 ,;:::-07 1. 6E-07 1. 4E-07 1 9£-07 '3£-07 1 2E-07 1 3E-07 4E-07 2 OE--07 3 5E*-07 'l::C. -07 1. 2£-07 1. lE-07 1. SE-07 OE-07 1 OE-*07 1. OE-07 lE-07 l 6E-07 8£**07 m:-07 2E-07 4000. 1 3E-07 1. 1E-07 1. 5E-07 1 OE-07 1 OE-*07 1. OE-07 1E-07 1. 6£-0"/ BE -07 m=:-07 4000. 4000 4000. 4000 4000 ' 1 1£-07 1. 2E-07 1 lE-07 1. 5E*-07 1 OE-07 6£-08 1 8 BE-08 9. 2E-08 8 7E-08 1. lE*-07 7. BE-08 6E-08 8 5 4E-10 7. OE-10 5 6E-10 7E-10 3. 7E-10 4 OE-10 3 1 lE-07 1. 2E-07 1 lE-07 1 4E-07 9 BE-08 9 5E-08 1 1 1E-07 1. 2£-07 1 lE-07 1 5£-07 9 9£-08 9 6E-08 1 8 7E-08 9. 1£-08 8 6£*-08 1. lE-07 7 7E*-OB 7 5E-08 8 8 7E-08 9. 2£-08 8 6E--08 1. lE-07 7. BE-08 7. 6C-08 8 4800 4800 4800 4800 *lBOO 4000 4000 4JOO 4000 4000 OE-07 l m:-07 6E-07 OE-*07 -;r: 07 :JE-08 8 31::-08 :JE-0? JE. 07 6E-10 4 3iC:-10 5 7E-10 1 lE.-*09 1 -{)1 OE-07 1 o::::-07 1 6E-07 tJ[-*07 ' 'F* 07 OE-07 1 OE-07 6E-07 UE-*07 2 /1--07 2E -08 E! 2E -08 ;_o[ -08 E1 2E -08 4800 4:100 ::JE-07 :J[-01' 4800 2 ;-_,[ -01 :J:::-07 2 2E-O/ 2 11....: 07 '101!0 i:"iOO TOTAL CH3S -8760 TOTAL !NV OBS -311 CALMS UPPER LEVEL -0 00 CALMS LOWER I. E'.J -9 00 KEY ENlRY 1 RELATIVE CONCENTRATION -XOG (5/MIHI-3) El'llRY 3 RELATIVE DEPOSITION RATE (1/M**2> ENlRY 5 OECAYE.O XOG (S/MII-*3> -HAlF LIFE 8 00 DAYS ENTRY 7 DEC+DPL XOG !SIM**3> -HALF LIFE 8 00 DAYS ENTRY 2 DEP! ETED CONCENrRAl ICJ\1 <SI!'1u:!) ENTRY 4 DECAYf-::0 XOG !S/1'111-11-3)-llf'ltF LilT ;!6 IMY'J ENTRY 6 DCC-+DPL XOQ (S/I"!H"]) -H/-\U-l 1*-r: ;> ;'.t, ENTRY 8 -DIS rANCE HI Rev. 0 WOLF CREEK TABLE 2!.3-62 Page 2 of 3 AV!::_RAGF RELATIVE CONCENTRATION ANALYSIS OAlA PERIOU 06/01/73 ro OS/31/74 1'\NNUAL i\VC::H AGE. < GfWUND) STANDAFW PTS -T IR COHRECTED ONSI TE Ml:. TEDrWLOGY DATE 2J-NOV-81 TIME OB*Q1 25 NNt: NE oNE KM 5 BE-08 5 OE-08 5 9 OE-08 4 5E-08 3 9E-OB 3 6 9E-10 9E-10 1 4E-10 1 1 lE-07 ?E-08 4 9£-08 5 1 5. BE-08 5 OE-08 5 8 9E-08 4£-08 3 BE-08 3 9 OE-08 SE-08 3 9£-08 3 5600 5L.OO 5600 6 4 1-\M ESE SE 1E-08 7 BE-08 8. 1£-08 9£-08 6. OE-08 6. 3£-08 5E-10 2. 9E-10 3 7E*-10 OE -08 7 7E -08 8 OE *-OS !E-08 7. 8E-08 8 1E-08 9E -08 6 OE -08 6 2E -08 9E-08 6. OE-08 6. 3E--08 5600 5600 5600. WOLF CRFI:-_1-\ GlNCHATIN::; KANSA5 GAS AND !,:_LE.C Hi IC CO BURLINGTON, KAN!:.lAS DAMES AND 1'100RE JOD 769?-064-07 AFFECTED SECTORS SSE S SS!...J sw WSW WNW NW N 9 3E-OB 9 4£-08 1 3£-07 8. 3£-0:3 7 BE-08 8 6£-08 8 6E:-.J8 4E-O/ 2 :lE-07 :' 2E-07 7 2E-08 7. 3E-08 9 7E--08 6 4£-013 6. OE-08 6. 7E-08 6 6E-*08 lE--07 1 OE-07 1 7[-0/ 5 3E-10 4 4 6E-10 2 3 OE-10 2. BE-10 3. JE-*10 8 7E-10 I JE -09 9 2E-08 9 3E-08 1 2E-07 8 1£-013 7 7E-08 8 -08 8 DB 1 4E-07 2 :JE-07 Z' 2E
  • 07 9 3E-08 9 4£-08 1 JE-07 8 7. 7E-08 8 6E-08 8. :JE-08 1 4L-07 2 ::JE-07 ;:> 7 1£-08 7. 2£-08 9. 6E-08 6 JE-08 5 9£-08 6 6E-08 6 6E-DB OE-07 1 ElE-07 1 lE*-07 7 2£-08 7 3E-08 9 7E-*08 6. 4E-013 6 OE-08 6. ?E-08 6. 6E-D8 lE-07 1 I:JE-07 J "lE-*07 5600 5600 56::>0 5600 5600. 5600 5600 :'.-600. 9 3£-08 4 SE-08 4 OE-08 4 JE-08 6. 6E-08 6 BE-08 7. 6£-08 7 8£-08 9 BE-08 6. BE-08 6. 6£-08 7 4E-08 7. lE-08 1 lE-07 1 ':'E-07 1 8£**07 1E-08 3 7E-OB 3 OE-03 3. 3E-08 5 1E-08 5 2E-08 5. BE-08 5. 9£-08 7 5£-08 5 2E-08 5 OE-08 5. 7£-08 5 4£-08 8 6E*-08 1. 4F>07 JE-10 2 3E-10 1 1E-1::> 1 2E-10 2. JE-10 3. OE*-10 4 2£-10 3. 6£-10 3 4£-10 2. 3£-10 2 4E-10 2. 3£-10 2 6E-10 3 6 /'E-10 OE-09 2E-08 4 7£-08 3 9E-03 4 2£-08 6. 5E-08 6 7£-08 7 5£-08 7 ?E-08 9 6£-08 6. 7£-08 6 5E-08 7 3£-08 7 OE-08 1 lE-07 1 c;.E.-07 1 BE--07 3E-08 4 BE-08 3 9£-03 4 3E-OB 6 6£-08 6. BE-08 7. 6E-08 7. 8£-08 9 7E*-08 6. BE-0!3 6 5E-08 7 4E-08 7 1E-*J8 1. lE-07 1 9E-07 1. BE-*07 OE -08 3 6E-08 2. 9E-03 3. 2£-08 5. OE-08 5. 1E-OB 5 7E-08 5. 9E-08 7 3E-08 S. 1E-013 4 9E-08 5 6E-08 5. 'IE-08 8 5£*-08 .a.E-07 1 4E-07 7 lE-08 3. 7£-08 3. OE-0-3 3 3E-08 5. OE-08 5. 2£--08 5. 8£-08 5. 9E-OB 7 4£-08 5 2£-0!3 5. OE-08 5. 6E-08 5. 4£-08 B. 6£-08 4E-07 1 'IE-*07 6400 6400. 6400 6400. 6400. 6400. 6400. 6400 6400 6400 6400 6400. 6400 6400 lAOO 64 JO 7 2 KM 7 9£-08 4 1£-08 3 2£-08 3 7E-08 5 7£-08 5. BE-08 6. 4E-08 6. 7£-08 7 9£*-08 5 5. 7£-08 6 4£-08 6. lE-08 9 1£-08 1 /'E-07 1 5 9£-08 3. 1E-08 2. 4£-03 2 BE-08 4. 2£-08 4 4£-08 4. SE-08 5. OE-08 5. 9£ **08 4 3£-0B 4. 2E-08 4 BE-08 4. 6£-08 6 BE*-08 1 1 lE-Ol 3£-10 1 9£-10 8 2E-11 9 9E-11 1 9£-10 2 4£-10 3. 4E"-10 3. OE-10 2 7£*-10 1. 9£-10 2. OE-10 1. 9£-10 2 2£-10 2. 7£-10 5 7E-10 El 5E -10 BE-08 4 OE-08 3 lE-08 3 6E-08 5. 6£-08 5 7E-08 6. 3£-08 6 6£-08 7 BE-08 5 6£-0!3 5. 6E-08 6. 3£-08 6. OE-08 9 OE-08 1 7£-07 1 9£-08 4 lE-08 3. 1E-08 3 7E-08 5. 6£-08 5 BE--08 6. 4£-08 6 7£-08 7. 9£*-08 5. 7£-0!3 5 6E-08 6. 4£-08 6 lE-08 9 1£-08 1 7£-07 1 5£-*07 8£-08 3 OE-08 2 3£-08 2 7£-08 4 2E-08 4 3£-08 4 7£-08 4. 9£-08 S. BE-08 4. 2£-0!3 4. 2£-08 7E-08 4. 5E-08 6 BE-08 1. :IE-07 lE-07 9E-OB 3 lE-08 2 4E-08 2 BE-08 4. 2£-08 4 3E-08 4. 8£-08 5 OE-08 5 9£-0B 4 3£-0!3 4 2E-08 BE-08 4 6E-08 6 BE-08 1 ::-JE-07 lE-07 7200 7200. 7200 7200. 7200. 7200. 7200. 7200. 7200. 7200 7200 7200. 7200. 7200 7200. 72JO. 8 0 KM 6 9E.-08 5 lE-08 3 6E-10 6. 7E-08 6 8E-08 3 6E-08 2 6E-08 3 2 7E-08 1 9£-0:3 2 1 6£-10 6. 4£-11 8 3 5E-08 2 5E-0:3 3 3 6E-08 2E-08 5. OE-08 5. 1E-08 4E -08 3 7E -08 3 BE -08 3E-11 6£-10 2. 1E-10 2E-08 9E-08 5. OE-08 5. BE-08 6 7£-08 5. 01!-0!3 5 OE-08 5. 6E-08 5. 3E-08 7. BE-08 1 :;-E-07 I 3::;:--07 4 3£-08 4 9E*-08 3 ?E-0!3 3 7£-08 4 2£-08 3. 9£-08 5 BE-08 lE-07 'i' 6E-08 2. SE-10 2. lE*-10 1 6E-10 1 7E-10 1 6£-10 1 BE-10 2. 2E-10 bE.-10 b 9E 10 5 7E-08 6. 5E*-08 4. 9E-Of3 4 9E-08 5 SE-08 5 2E-08 7 7E-08 1 3£*07 5 8E-08 6. 6E*-08 5. OE-0!3 4 9£-08 5 6£-08 S. 3E-08 8£-08 1. 1 3E-07 5 OE-08 2 6E-08 5 OE-08 2. 6E-08 2 SE-08 8E-08 9E-08 8000 3 2 2 2E-08 5. OE-09 5 lE--08 3E-08 3. 6E-08 3 7E-08 4E -08 3 7E -08 3 BE -08 5. 5E-08 4. 1£-08 2 8E-10 5. 4E-08 5 5E-08 4. OE-08 4 lE-08 4 2£-08 4. SE-08 3. 6£-0£3 3 6E-08 4 1E-08 3 9£-08 7£-08 IE-07 'i' :JE*-08 4. 3E-08 4 9E*-08 3. 7E-Ot3 3 7E-08 4. lE-08 3. 9E*-08 5 BE-08 lE-07 c.;* 6E-08 8000 8000. 8000 8000. 8000 8000. 8000. 801)0 8000 8000. 8000. 0000. £WOO. POOO. GODO TOTAL OBB -8760 TOTAL INV OBS --311 CALMS UPPER LEVEL -0. 00 CALMS LOWER LEV *-9 00 KEY ENTRY l RELATIVE CONCENTRATION --XOG (S/M**3) ENTRY 2 DEPLETED RELATIVE ENTRY 3 RELATIVE DEPOSITION RATE ( 1/M**2) ENTRY 4 DECAYED XOQ (5/MJHI-3) HALF LIFE 26 0;.\VS ENTRY 5 DECAYED XOG (5/M*il-3) -HALF LIFE 8 00 DAYS ENTRY 6 DEC+DPL XOG (S/Mil-*3) -HALF LIFE ;;:* 26 D/IYS ENTRY 7 DEC-+DPL XOG <SIM**3) -HALF LIFE 8 00 DAYS ENTRY 8 -DISTANCE II'! METERS AFFECTED SECTORS NNE: NE ENE E ESE SE SSE S SSI.J sw WSW w WNW 12 0 KM 3. 5E-08 2 lE-08 1 4E-OB 1 ?E-08 2. 9E-08 2. 9£-08 3. OE-08 3 3E-08 4. 2E*-08 2. 5E-OB 2. 8E-08 3. 2E-08 3. OE-08 2 4E-OB 1 4E-08 l. OE-OB l. 2E-08 2. OE-08 2. OE-08 2. 1E-08 2. 3E-08 2 9E*-08 1. 7£-0B 2. OE-08 2. 2E-08 2 1E-08 1 6E-10 7 6E-11 3 OE-11 3 6E-11 7 9E-11 9 BE-11 1.3E-10 1 2E-10 l.lE*-10 6.7E-1l 8 3E-11 7 7E-11 8 ?E-Ll 3 4E-*08 2 0£-08 1 4E-OB 1 6E-08 2. 8£-08 2. 8£-*08 2 9£-08 3 3£-08 4 tE*-08 2 4£-0B 2 BE-08 3 lE-08 3. OE-08 3 5E-08 2 OE-08 1. 4E*-08 1 7£-08 2. 9E-08 2 BE-08 2 9E-08 3. 3E-08 4 2E--08 2. 5E-OB 2 BE-08 3. 2E-08 3. OE*-08 2 4E-08 1 4E-08 9 6E-09 1 tE-08 2. OE-08 1. 9E-08 2. OE-08 2. 3E-08 2. 9E*-08 1. 7E-OB 1. 9E-08 2 2E-08 2. 1E-08 2 4E-08 1. 4£-08 9 9E-09 1. 2E-08 2 OE-08 2. OE-08 2. OE-08 2. 3£-08 2. 9E--08 1 7E-OB 2. OE-08 2 2E-08 2. 1E-08 12000 12000. 12000. 12000 12000. 12000. 12000. 12000. 12000. 12000 12000 12000. 12000. 16 0 KM NW 1\.Nirl N 4 SE-08 8 .:::E-08 6. OE. 08 3. 1E-08 5 7E-OB 5 6£-08 1 1E-10 2 .:::*E-10 3. 6E-10 4 4£-08 8. OE-08 7 BE -08 4 4E-08 8 lE--08 8 OE-08 3. OE-08 5 t.E-08 ::JE-08 3. 1E-os 5 11::-os :::;E-o8 12000. 1.:::*ooo 1201)0 2 2E-08 1 :JE-08 9. 2E-09 !E-08 1 9£-08 2 OE-08 1. 9£-08 2 3E-08 1 5£-08 8 9E-09 6. lE-09 2E-09 1. 3£-08 1. 3£-08 1 3E-08 1. 5£-08 8 6E-ll 4 4E-11 1 7£-11 2.0£-11 4 6£-11 S.BE-11 7.4E-11 7.6E-11 2 1E-08 1 3E-08 8 7E-09 1 OE-08 1. 9£-*08 1. 9£-08 1 BE-08 2. 2E-08 3 1E*-08 1. 6E-OB 1 9E-08 2 1E-08 2 OE-08 3. OE-08 5 :JE-08 5 ?E-08 2 OE*-08 1 OE-08 1. 2E-08 1 4E-08 1. 3£-08 2 OE-08 3 BE-08 7 3E*-11 3 7E-11 4. 9E-11 4. 4£-11 5. 1E-l1 6 2E-11 1. :JE-10 r: .. 3E-10 3. OE*-08 1. 5E-OB 1 8E-OB 2. OE-08 2. OE-08 2. 9E-08 5 :::'E-08 :..E-08 .?E-08 1 3E-08 9 OE-09 1 lE-08 1 9E-08 9£-08 1. 9E-08 2. 3E-08 3. OE*-08 1. 6E-OB 9E-08 2 OE-08 2. OE-08 2 9£-08 5 :n:.-08 ::*. 6E -OB l 4E-08 8 5£-09 5 8E-09 6 BE-09 1. 2E-08 2E-08 1. 2E-08 1. 5E-*08 2 OE*-08 1. OE-OB 2£-08 1 3E-08 1. 3E-08 1 9E-08 3 ::-E-08 7£-08 1 4E-08 8 6 OE*-09 7 lE-09 1. 3E-08 1. 3E-08 1 3E-08 1 5E-08 2. OE--08 1. OE-OB 1. 2E-08 1 4£-08 l 3£-08 2 OE-08 3 7E -*08 16000 16000 :6000 16000 16000. 16000 16000 16000 16000 16000. 16000 16000 16000 16000 16000 160*JO 24. 0 KM 1 7 6E-09 5 2E-09 5 9E-09 9_ 8E-09 1. lE-08 1. OE-08 1 1E-OB 1. 6£*-08 8 6£-09 1 OE-08 1 1£-08 1. lE-08 1 7E-08 3 3£-08 7 4E-09 4 7E-09 3 2E-09 3 6E-09 6 lE-09 6 6£-09 6 3E-09 6. SE-09 1. OE-08 5 3E-09 6 2£-09 6 SE-09 6. 9£-09 1. lE-08 2 C:E-08 OE-08 3 9E-ll 2 OE-11 7 8 9E-12 1 9£-11 2 6£-11 3 3£-11 2 9£-11 3 2E-11 1 7E-11 2 21::-11 1 8E-11 2.3£-!l 3.0E-11 6 4!::":-11 1 IE 10 IE-08 7 lE-09 4 BE-09 5 5E-09 9 JE-09 OE--08 9 7E-09 1 OE-08 1 5E*-08 8 OE-09 9 6£-09 OE-08 1 lE-08 1 ?E-08 3 :::*E-08 3 1E-UO .2E-OB 7 SE-09 5 lE-09 5 8E-09 9 7£-09 1E-08 1. OE-08 1. OE-08 1 6E*-08 8 4E-09 9 9E-09 OE-08 1. lE-08 1 ?E-08 3 ::::1!::-os ::-*E-08 1£-09 4 4E-09 2 3 4E-09 5 7E-09 6. 2E-09 6 OE-09 6 2E-09 9 SE*-09 5. OE--09 5 9£-09 6 tE-09 6 6£-09 1 OE-08 2 OE-08 1 9E-08 7 .JE-09 4 t.E-09 3 3 6E-09 6. OE-09 6 SE-09 6 2E-09 6 4E-09 9 9E*-09 5 2E-09 6 lE-09 6 4E-09 6. BE-09 1 1E-08 2 C,E-OA OE-08 ;;:*4000 24000 24000 24000 24000 24000 24000 24000 24000. 24000 24000 24000 24000 5 OE-09 3 4E*-09 3 9£-09 5. 9E-09 6 9E-09 6 9E-09 6 4E-09 1 1£--08 6. oE:-09 6 5E-09 7 lE-09 7. IJE-09 IE-08 2 ::A:-08 :.:e-m; 4 BE-09 2 9E-09 2 OE--09 2 3E-09 3. 4E-09 4 OE-09 4 OE-09 3 7£-09 6 JE-09 3 5£-09 3 BE-09 4 lE-09 4 3E-09 5E-09 1 ::::1.-*-0f:l 1 JE.-OH 2 3£-11 1 2E-11 4 5 1E-12 9. BE-12 1 4E-11 1. 9£-11 1 SE-11 1 BE*-11 1 OE-11 1 2E-11 1 lE-11 1 3E-L1 6E-1l :1 /E-ll .2E-_-ll 7 BE-09 6E-09 3 lE-09 3 6E-09 5 5£-09 6 3E-09 6 4£-09 6. OE-09 1 OE*-08 5 5E-09 6 lE-09 6 6£-09 7 OE-09 IE-08 2 ;:;C-08 1E-08 8 lE-09 9E-09 3 3E-09 3 8E-09 5 SE-09 6 7E-09 6 BE-09 6 3E-09 1 lE--08 5 9E-09 6 4£-09 6 9E-09 7. :JE-09 1 lE*-08 ;:> E-08 ;-* :::'F-Of:l 4 2 lE-09 1 8E-09 2 1E-09 3 2E-09 3. 7E -09 3 7E-09 3 5E-09 5 9£*-09 3 2E-09 3 5£-09 3 BE-09 4. lF-09 6 .2E-09 1 2E-l1fl 4 JE-09 2 8E-09 1 9£-09 2 2E-09 3 3E-09 3 9E-*09 3. 9£-09 3 6£-09 6 2E--09 3 4E-09 3 7E**09 4 OE-09 4 2£-0'7 6 4E.-O'i :.E-08 I JL-UEJ J2000 :32000 :32000 :12000. 3.2000 J2000 32000 J2000. :::12000 32000. J2000 J2000 32000 32000 J;: 000 )() TOTAL -8760 TOTAL INV OBS -311 CALMS UPPER LEVEL -0 00 CALMS LOWER LEV *-9 00 KEY EtHRY 1 RELATIVE CONCENTRATION -XOG (S/Mitil-3) ENTRY 2 DEPLETED RELATIVE CONCENTRATION (:C>IM**:l) ENTRY 3 R[LATIVE DEPOSITION RArE ( 1/M**2) ENTRY 4 DECAYED XOQ (S/M*ll-3) -Hl\l F l 1Ft:: 26 OfiYS ErHRY 5 DCCAYED XOG -HALF LIFE 8 00 DAYS ENTRY 6 DEC+DPL XOQ (5/MH*3) -HALF l.If-F ::.' 26 DAYS ENTRY 7 DEC-iOPL XOG CS/M**3) -HALF LIFE 8 00 DAYS ENTRY 8 -DISTANCL IN I"IETERS Rev. 0 40 0 KM WOLF CREEK TABLE 2.3-62 A\.IUIAGE:: "1E_TEDFWLOG1CAL RELAl IVE ANALYSIS DATA f->EHIOC 06/01/73 ro 05/::Jl/74 ANNUAL AVERAGE (GROUND) STANDARD PTS -T /R COimECTED Q,\15 I TE /'iETEOROLOGY DATE 2:::1-NOV-81 TIME 08: 01 25 NE E ESE SE WOLF CRCEK GENE:.HATING SlAT IDN KANSAS GAS AND ELE:TR IC CO DURLING flJN, KANSAS DAMES ANU MOOI1E JOD 7699-064-07 AFFECTED SECTORS SSE S SSW sw Page 3 of 3 w 1-INW NW N 6 2E-09 2 9£-09 2 OE-09 3. lE-09 4 3 4E-09 1. 6E-09 1 lE-09 1 ?E-09 2 5E-11 5 9E-12 2 3E-12 ::J SE-12 6 ?E-09 2 6E-09 1 BE-09 2 7E-09 4 OE-09 2 BE-09 OE-09 3 OE-09 4 lE-09 4E-09 9 BE-10 1 SE-09 2 JE-09 6E-09 1 1E-09 1 6E-09 2 SE-09 4 6E-09 4 6E-09 4 BE-09 7 BE-09 4 OE-09 4 4E-09 4. BE-09 5 lE-09 8 SE-09 2. SE-09 2 SE-09 2 6E-09 4 3E*-09 2 2£-09 2 4E-09 2 6E-09 2 !3E*-09 4 6E-12 8 5E-12 1. lE-11 9. 9£-12 1 lE-11 5 9E-12 7 lE-12 6 3E--12 8 lE-12 1 2E-09 4 lE-09 4 2E-09 4 4[-09 7 2£-09 3 6E-09 4. lE-09 4 4E-09 4. BE-09 7 4E-09 4 4E-09 4. SE-09 4 7£-09 7 6E-09 3 9[-09 4 3E-09 4 7£-09 5. OE-09 7 3E-09 2 3E-09 2 3£-09 4E-09 3 '?E-09 2 OE-09 2£-09 2. 4E-09 2 6E-09 4 4E-09 2. 4E-09 2 SE-09 2 6E-09 4 2. lE-09 2 4£-09 2 6E--09 2. BE-09 4 OE -09 1 1 *;E -08 4E 09 G OE-09 9 ;'E-CJ9 OE -11 JE-ll 4 It: ll 1 4E-O!J 1 6E-03 9E-09 1 1 6E-08 IE-09 7 SE-0'/ 8 7£-09 3E -09 1 9E -09 9 OE -\N 40000 40000 40000 40000 40000. 40000 40000. -'lOOOO 40000. 40000. 40000. 40000 40000 4 0000 4 0000 *lOOGO 48. 0 KM 4 9E-Oq 1 9E-09 1 4E-09 5£-09 3. 7£-09 3. 3E-09 3. 2E-09 3. BE-09 3E-09 1. 9£-09 1. 7E-09 1. 7E-09 2. OE-09 6E-09 1 OE-09 1 lE-11 3 SE-12 4 5E-09 1 7E-09 4 BE-09 1 9E-09 2 3£-09 8 9E-10 5E-09 9 7E-10 48000 48000 56. 0 KM 5E-12 4. BE-12 5. 4E-12 7 2E-12 7 lE-12 lE-10 1 4E-12 1E-09 3E-09 2. 2E-09 3. 3E-09 2 9E-09 2 9E-09 3 4E-09 2 4E-09 3 5£-09 3 2E-09 3. 1E-09 3 7E-09 1. 1E-09 1. 7E-09 1. 5E-09 1. SE-09 1. 8£-09 1 3E-09 1. 9E-09 1 7E-09 1. 6E-09 1 9£-09 48000 48000 48000. 48000. 48000. 6 OE*-10 6 7E-10 48000 6. OE-09 2. 8£-09 3. 2E-09 3 5E-09 3. 9E-09 5 9E-09 9 7E-09 1 3t:-08 3 lE-09 1 5E-09 1 7E-09 1 BE-09 2 OE-09 3. 1E-09 5 lE-09 6 7E-09 7. BE-12 3. 8E-12 4 6E-12 4 IE--12 5 4E-12 6 7E-*12 1 :lE-11 2 8E -11 '5 4E-09 2. 5E-09 2 9E-O'? 3. lE-09 3. 6E-09 4E-09 9 OE-09 1 2E-08 5 BE-09 2. 7E*-09 3. lE-09 3. 4E-09 3. BE-09 7E-09 9 1 2E.-08 2 BE -09 1 3E -09 5E -09 1 6E --09 1 9E -09 2 BE-09 4 7E -0'7 6 2E -09 3 OE-09 1. 4E-09 6E-09 1. BE-09 2. OE-09 3 OE-*09 5 OE-09 6 48000 <18000. 48000 48000. 48000 48000 48000 48000 4 OE-09 1 3E-09 9 SE-10 2 lE-09 3. OE-09 2. SE-09 2 5£-09 3. 1E-09 4 SE-09 2. 2E-09 2. 4E-09 2 6E-09 3 OE-09 4 SE-09 6 EIE-09 1 OE-08 2. OE-09 6 BE-10 4 8E-10 1 OE-09 1. SE-09 1. 2E-09 1. 2E-09 1 SE-09 2 4E-09 1. 1E-09 1. 2E-09 1. 3E-09 1. 5E-09 2. 3£-09 3 4E-0'? 5. OE-09 9E-12 2 2E-12 8. 6E-13 1. 9E-12 3. 6E-12 3. 7£-12 5. OE-12 5. 2E-12 5 7E-12 2 6E-12 3 2E-12 2 8E--12 3. BE-12 4. 7E-12 8 2 OE-11 6£-09 1 2E-09 7 BE-10 1. SE-09 2. 7£-09 2. !E-09 2 2E-09 2. 7E-09 4. 3E-09 1 9£-09 2 1£-09 2 3E--09 2 7E-09 4 lE-09 b 2E-09 9 3 9E-oq 1 3E"-09 8 9E-10 OE-09 2 9E-09 4E-09 2 4E-09 3 OE-09 4 7£-09 2 tE-09 2 3C-09 2. 5E-09 2. 9E-*09 4 4E--09 6 6E-09 9 BE-09 1 BE-09 5. 9£-10 3 9E-10 8 9E-10 1. 3£-09 1 1£-09 1. lE-09 4£-09 2. 2£-09 9. 4E-10 1 1£-09 1 2E-*09 1 4£-09 2 lE-09 :1 lE-09 4 6£-09 2 OE-09 6 SE-10 4 5E-10 1 OE-09 1. 5E-09 1. 2E-09 1. 2E-09 1 SE-09 2 3E--09 1. OE-09 1 2E--09 1. 3E-09 1. 5E-09 2 2£-09 3 :::1£**09 4. 9E-09 56000 56000 56000. 56000. 56000 56000 56000 56000. 56000 56000. 56000 56000. 56000. 56000 56000 S6000 64 0 KM 3 !E-09 9 9£-10 7 3E-10 1 4E-09 2. lE-09 1 SE-09 4 BE-10 3 5E-10 6 6E-10 1 OE-09 5 5E-12 1 SE-12 6 lE-13 1. 1£-12 2 3£-12 7E-09 8 4E-10 5 9E*-10 1 lE-09 1. 9£-09 3 OE-09 9. 4E-10 6 BE-10 1 3E-09 2. OE-09 1 3£-09 4. lE-10 2 9E-10 5 5E-10 9. OE-10 1 4E-09 4 6E-10 3 3E-10 6 2£-10 9 9E-10 64000 64000. .S4000 64000 64000 1. BE-09 1 9E-09 2. 4E-09 8 9 2E-1o 1. 2E-o9 2. SE-12 3 SE-12 3 7E-12 1 SE-09 1 7£-09 .2. lE-09 1. 7E-09 1. SE-09 2 3£-09 7 4E-10 B. OE-10 1. OE-09 8. 2£-10 8 9E-10 1 1£-09 64000. 64000 64000 3. 7£-09 1 7£-09 1. BE-09 2 !E--09 2 1. BE-09 8 2£-10 8 6£-10 1 OE--09 l 2£-09 4 lE-12 1. 9£-12 2. 2E-12 2 lE-12 2. 9£-12 3 3£-09 1 4E-09 1 6£-09 1. 9E-09 2. 3. 6£-09 6£-09 1. 7E-09 2. OE-09 2 'IE-09 1. 6E*-09 9£-10 7 6£-10 9 OE-10 1. lE-09 1 7£-09 7 BE-10 8. 3£-10 9 9E-10 1. 64000. 64000. 64000 64000. 64000. 3 6E-09 :> ::>E-0'1' 7 8t-:-u9 1 7E-09 ;? 6£-09 :::J BE-09 3 4E-12 5 9E.-t:2 1 3 2E-09 C!E-09 7 1E-09 3. 5E-09 5 3E-0'7 7 6E-09 1. 6£-*09 4E-09 3 *lE--09 1 7E-09 :? 6E-09 3 7E-09 64000 64000 64000 TOTAL OBS -8760 TOTAL INV OBS -311 CALMS UPPER LEVEL -0. 00 LOWER. LEV -9 00 i".EY ENTRY 1 RELATIVE CONCENTRATION -XOQ (S/MII-*3) ENTRY 2 DEPLETED RELATIVE CONCENTRATION (!:i/M**3) ENTRY 3 RELATIVE DEPOSITION RATE (i/MH:*2) ENTRY 4 DECAYED XOG (S/MII-llc3) -HALF LIFE 2 26 DI'.YS ENTRY 5 DECAYED XOG CS/M-!Ht*3> -HALF LIFE 8. 00 DAYS ENTRY 6 DEC-<DPL XOG (S/M**3) -HALF LIFE ;;:. 26 0/\YS ENTRY 7 DEC+DPL XOQ <SIM**3> -HALF LIFE 8 00 DAYS ENTRY 8 -DISTANCE IN METERS AFFECTED SECTORS NNE NE EN:: ESE SE SSE S SSW sw WSW w WNW NNW N 72 0 KM 4E-09 7 6E-10 5. SE-10 9 3E-10 1. 6E-09 I. 3E-09 1. 5£-09 1. 9E-09 3 OE-09 1. 4E*-09 1 3E-09 1. SE-09 2. 1E-J9 2. 9E-09 4 4E-09 6 2E-<l9 lE-09 3. 5E-10 2. 7£-10 4 3E-10 7. 4£-10 6. lE-10 7. OE-10 9 1E-10 1 4E-09 6. 4£-10 6 2£-10 8. 2£-10 9. EJE-10 1 4E-09 ;;! lE-09 2 9E---J9 9E-12 1. lE-12 4 5E-13 7 lE-13 1. 6E-12 1 7E-12 2. 6E-12 2 BE-12 3 OE-12 1. 4E*-12 1 5E-12 1 6£-12 2 ::JE.-12 2. 6E-12 4 1 lE--11 2 lE-09 6 3E-10 4 6E-10 7 6E-10 1 4E-09 1 1E-09 1 3E-09 1 7E-09 2 1. 1E-09 1 2E-09 1 SE-09 1 9E-J9 2 bE-09 4 OE-QC> 6E-D9 2 :SE-09 7 2E-10 5 4E-10 8 7E-10 1. 1. 1. 4£-09 1. 9E-09 2 :3£--09 1 3E-09 1. 1 7E-09 2. OE-J9 2. BE-09 4 3E-09 6 lE--09 9 6£-10 3 OE-10 2. lE-10 3. SE-10 6. 4E-10 5. lE*-10 6. OE-10 7 BE-10 1. .2E-09 5. 3£-10 5 4E-10 7 OE-10 8 1. 2E-09 1 9E.-OCJ 2 6E*-09 1 lE-09 3 4E-10 2. SE-10 4 7 1E-10 5. BE-10 6 6E-10 8. 6E-10 1 3E-09 6 OE*-10 6 OE-10 7. BE-10 9. 4E-10 1 3E--09 2 OE-09 2 BE-09 72000 72000 72000. 72000. 72000. 72000. 72000 72000 7:?000 72000. 72000. 72000. 7200-J. 72000 72000 7:::!00() 80 0 KM 9E-09 5. 9E-10 4 9E-10 6. BE-10 1. 2E-09 1. OE-09 1 2£-09 1. 6E-09 2. 4E-09 1. 2E*-09 1. lE-09 1 SE-09 1 BE-09 2 4E-09 :J 7E-09 5 QE*-09 7E-!O 2 6E-10 2 2E-10 3. 1E-10 5. 5E-10 4 5 6E-10 7. OE-10 1 lE-09 5 3E*-10 4 BE-10 6 6E-10 8. OEC-10 1 IE-09 1 7E-09 2 JE--09 3 DE-12 7 6E-13 3 5E-13 4 9£-13 1. lE-12 1. 2E-12 2. OE-12 2 lE-12 2. :2E-12 1. lE*-12 1 lE-12 1 2E-12 1. BE-12 2 GE-12 3 8 JE -12 1 7E-Cq 4 SE-10 3 5 5E-10 1. OE-09 8 4E-10 1 OE-09 1 3E-09 2 OE-09 9 6E*-10 9 2E-10 1 2E-09 1. 6E-*J9 2 1E-09 3 3E-09 4 5E -09 1 BE:.-09 5 5E-10 4 5E-10 6 4£-10 1. 2E-09 9 6E-10 1. 2E-09 1. 5E-09 2 :2E-09 1. 1£*-09 1 OE--09 1 4E-09 1 7E-09 2. 3E-09 3 6E-09 4 9E--*.)9 7 4E-IO 2 2E-10 1 7E-10 2 SE-10 4. 6E-10 3 BE-10 4 7E-10 5 9E-10 9. lE-10 4 3E-10 4 2E-10 5 6E-10 7 lE-10 9. 5£-10 1 SE-09 QE**09 8 JE--10 2 5E-10 2. OE-10 2 9E-10 5 2E-10 4 3E-10 5. 3E-10 6 7E-10 1. OE-09 5 OE-10 4 6E-10 6 3E-10 7 ?E-10 1 OE-09 1 6E-oc; 2 2£--09 80000 80000 EIOOOO. 80000. 80000 80000 80000 80000 130000 00000 80000 80000 00003 00000 JCOOO fOT/\L OGS -8760 TOTAL !NV OBS -311 CALMS UPPER LEV{ L -0 00 CALMS LOWER LEV -9 00 fA;EY EtHHY 1 RE.LAIIVE CONCENTRATION-XOQ (S/M**:J> ENrRY 2 DEPlETI.:.D RU.ATIVE CfJt>CENHiAfliJI'J (5/MH.ll 3 RELAT[VE DEPOSITION RATt.: ( t/MB2) ENTRY 4 DECAY£-.0 XU() (S/MII-11l) Hi\Lf lIfE. 2 ;'t;, FtHRY 5 DECA"YED XCJQ <511'!**3) -Ht\Lf LIFE 8 00 FNIRY 6 OEC-<lJf'L XDG -lll'>,l f-llff: ;._> 26 UHRY 7 ArlO <Gir1**3> -HALF lIFE A 00 DAYS ENH?Y* A -IN I'"!FT£ Wi Rev. 0 WOLF CREEK TABLE 2.3-63 "This Table has been deleted" Rev. 0 WOLF CREEK TABLE 2.3-64 ,w..:.RAGE:. METE-OROLOGICAL RELATIVE CONC[I'IIHMTifJN ANALYSIS Di\TA 1-'[HIOD 06/01/73 ro NNl: t\VLHAGE ( GRUUND) SPE"CIAL P1S. -T/R CORRECTED ONSI TE f*IETEOtWLOGY DATE 2J-NOV 81 TIME OfJ: 11 25 ENE E ESE EXCLUSION 130UNDAHY SE WIILF CREE:K GE.NLRAfiNG STATION I(,Af\ISAS GAS AND ELECTRIC CO DURLINCTON, KANSAS Df.\ME:.S AND I'ICJORE JOB 7699-064-07 AFFECTED SECTORS SSE S SSW WSW w fJ 9 5E-U7 5 5E-07 7 OE-07 7 2E-07 8. GE-07 8 !E-07 8 6£-07 1 iE-06 7. BE-07 8 7E .. 07 4 9£-07 4 9E-07 6 2E-07 6. 4E-07 7. BE-07 7 3E-07 7 ?E-07 9 6E*-07 7 OE*-07 8 :JE-09 3 9£-09 2 3E -09 2 9£,-09 3 BE-09 5 ?E-09 6 4£-09 5 ?E-09 5 sr---09 3. 9f: 09 9 ?E-07 5. SE-07 5 SE-07 7 OE-07 7 2E-07 8 ?E -07 8 lE-07 8 6E-07 1 lE-06 7 8E-07 9 ?E-07 5 5E-07 5. SE-07 7 OE-07 7 2E-07 8 BE-07 8 1E-07 8. 6E--07 1 lE-*06 7 BE-07 8 7E-07 9E-07 4 9£-07 6. 2E-07 6 4E-07 7. BE-07 7 2E-07 7 6E-07 9 6E-07 6. 9E-07 8 7E-07 9£-07 4. 9£--07 6. 2E-07 6. 4£-07 7 SE-07 7. JE-07 7 7E-07 9 6E-07 7 OE-07 6 91::::-07 9 2£-07 7 6 lE-07 8 2E-07 6 3 9£-09 4 3E-09 3 6 9E-07 9 2E-07 7 6. 9E-07 9 2E-07 7 6. lE-07 8 2E-07 6 6 lE-07 8 2E-07 6 OE-07 1. 2E-06 2 :JE-07 1 1E-06 9E -09 5 6E -09 OE-07 1 2£-06 2 OE-07 2E-06 2 2E-07 IE-06 3E-07 lE-06 OE.-06 2. lE-06 BE-06 1 fit:-06 IE-08 1 BE-08 CE-06 2 lE-06 OE-06 2 1[-06 BE-06 1 BE-06 SE-06 1. OE-06 1200 1200 1200. 1200 1200. 1200 1200 1200. 1200 1200. 1200 1200 1200. 1200. 1200 l:::'CJO LOW POPULATION ZONE BE.-07 9. 7E-OG 9 1E-08 9 ?E-08 1. :::JE-07 1. 5£-07 1. 5£-07 1. 4£-07 1 9E-07 1 3E-07 1. 2£-07 1. 3£-07 1. 3E-07 2 1E-07 3 6E-07 3 5£-07 7 BE-08 7 3£-08 7. 8£-08 1 OE-07 1 2E-07 1. 2E-07 1 1£-07 1. 5E-07 1. OE-07 9. 9E-08 1. OE-07 1 lE-07 1. 7E-07 2 9E-07 2 2E-09 5 4E-10 2 9E-10 3 2E-10 5. 3E-10 7. 6E*-10 9 7E-10 7 3£-10 7 9£-10 5 OE-10 5. ::JE-10 4 5£-10 5. 8£-10 7 7E-10 1 5E-09 2 BE-07 9. 6£-08 9 OE-08 9 6E-08 1 3E-07 1 SE-07 1. 5£-07 1 4E-07 1. 9E-07 1 2E-07 1 2E-07 1. 2E-07 1 3E-07 2. 1E-07 3 6E-07 3 'IE-07 n:-o7 JE-09 -1E-07 'IE-07 7E-07 7E-07 4023. BE-07 9. 7E-08 9 lE-08 9. 7E-OB 1. 3E-07 1 SE-07 5E-07 4E-07 1. 9E-07 1. 3£-07 1. 2E-07 1. 2E.-07 1 3E-07 2 1E-07 3 6E-07 3 4E-07 7 7E-08 7 2£-08 7 7£-08 1 OE-*07 1. 2£-07 2£-07 lE-07 1. 5E-07 1 OE-07 9 BE-08 1 OE-07 1. lE-07 ?E-07 2 9£*-07 2 1 SE-07 7 8E-OB 7. 3E-08 7 BE-08 1. OE-07 1. 2E-07 1. 2£-07 lE-07 1 5E-07 1. OE*-07 9 9E-08 1. OE-07 1 1£-*07 4023. 7E-07 2 9E-07 2 4023 4023. 4023. 4023 4023. 4023 4023 4023 4023. 4023. 4023. 4023. NEAf<EST 1 3E-07 1. OE-07 8. 3E-10 1 3E-07 1 JE-07 L OE-07 l.OE-07 4988 RESIDENT 1. ?E-07 1. 4E-07 1 4E-07 1. 2E-07 1 OE-09 5. OE-10 1. 7E-07 1 4E-07 1 7E-07 1. 4E-07 1. 4£-07 1. 2£-07 1.4£-071.2£-07 2816 3138. 1 6E-07 1. 3E-07 5. 9£-10 I 6E-07 1 6£-07 1 3E-07 1 3E-07 2816. 2. lE-07 1. 8E-07 9 8E-10 2 1£-*07 2. lE-07 1 BE-07 1. 8E-07 2735 3. 3£-07 2 8£-07 2. OE-09 3 3E-07 3 3E-07 2. BE-07 2. 8£-07 2333 1. 1£-07 9. 3E-08 1. 9£-07 9. OE-08 7 2E-08 1. 5E-07 6. BE-10 4. 5£-10 7. 9E-10 L 1£-07 9 1£-08 1. 9E-07 1. 1£-07 9. 2£-08 1. 9£-07 8 9£-08 7. lE-08 1. 5E-07 9. OE-08 7 1E-08 1. SE-07 4827. 5632. 4023 1. 6E-07 1 3E-07 6. 6£-10 1. 6E-07 1. 6£-07 1. 3£-07 1 3£-07 3379. 1 1E-07 8. 7E-08 4 7£-10 1 1E-07 1. 1E-07 8 7E-08 8 7E-OB 4:J44 1 6E-07 1 3£-07 6 OE-10 1 6E-07 1. 6£-07 1 3E-07 1 3£-07 3540. 4023. 4023. 1. 1E-07 5. 2E-07 4 2E*-07 8. 1\E-07 8. 6£-08 4 4£-07 3 4£-07 7 1E-07 4. 5£-10 2 3£-09 BE-09 6 6£-09 1 1£-07 5. 2E-07 lE-07 8. 3E-07 1 lE-07 5. 2E-07 4 2E-07 8 1\E-07 8 5E-OB 4. 4E-07 3 4£-07 1£-07 8. 6£-0G 4 4E-*07 3. 4E-07 lE-07 4666. 2092. 3540. 2172 NEAREST VE:.GETABLE 1 lE-07 1 2E-07 1 2E-07 1. 6E-07 2. 1£-07 3. 3E-07 1. 1£-07 9. 3£-08 7 6E-08 9 9£-o8 1 lE-O/ 1. 6£-07 L lE-07 4 7£-07 4 lE-07 8 -1[--07 8 2£-08 1. OE-07 9. 6E-OB 3E-07 1. BE-07 2. 8E-07 8. 3E-08 7 2E-08 5. 7£-08 7. BE-08 8. 7E-08 1. 3E-07 8 6E-08 4 OE-07 3 3E-07 7 !E-07 6 3E-10 7. 2E-10 4 OE-10 9£-10 9 BE-10 2. OE-09 6. 2E-10 4 SE-10 2 SE-10 3 7E-10 4 7E-10 6 OE-10 4 5£-10 2 OE-09 1 BE-09 6 6£-09 1 lE-07 1 2£-07 1. 2E-07 1 6E-07 2 lE-07 3 3E-07 1 OE-07 9 1E-08 7 9. ?E-08 1 1E-07 1 6E-07 1 lE-07 4 6E-07 4 lE-07 8 3E-*07 1 1£-07 2£-07 1 2£-07 1 6E-07 2. 1£-07 3. 3£-07 1. lE-07 9. 2E-08 7 6£-08 9. BE-08 1 1E-07 1 6E-07 1 lE-07 4 7E-07 4 1£-07 8 4£-07 8. lE-08 OE-0'1 9 5£-08 3£*-07 1 BE-07 2 BE-07 8 2£-08 7. lE-08 5. 6£-08 7 7E-08 8 7£-08 1 3E-07 8 3. 9£-07 3 JE.-07 7 lE-07 8 2£-08 OE-07 9 6E-08 3E-07 1. 8E-07 2. BE-07 8. 2£-08 7. 1E-08 5. 7E-08 7 7£-08 B. 7E-*08 1. 3E-07 8. 6E-08 4 OE-07 :J 3E-07 7 lE--07 5792 3379 3540 2816 2735. 2333 5149 5632 7401 4827. 4344. 3540. 4666 TOTAL OBS -8760 TOTAL INV OBS -311 CALMS UPPER LEVEL -0 00 CALMS LOWER LEV -9 00 KEY E!'JTRY 1 RELATIVE CONCENTRATION -XOG (S/M**3) ENTRY 2 DEPLETED RELATIVE CONCENTRATION <SIM**3) ENTRY 3 RELATIVE DEPOSITION RATE ( 1/M**2) ENTRY 4 DECAYED XOG -HALF LIFE:. 2 26 DAYS ENTRY 5 DECAYED XOQ (S/M**3) -HALF LIFE 8. 00 DAYS ENTRY 6 DEC+DPL XOG <SIM**3) -HALF LIFE 2. 26 DAYS ENTRY 7 DEC+DPL XOG (S/M**3) -HALF LIFE 8 00 DAYS ENTRY 8 -DISTANCE IN METERS AFFECTED SECTORS NNf: NE ENE E ESE SE SSE S SSW sw NEAF<I..:ST NEAT ANIMAL 8 BE-07 5 4£-*07 5. 5£-07 3. OE-07 3. 3E-07 4. 4E-07 1. 1£-07 1 OE-07 1. 3£-07 2. 5£-07 8£-07 4. 8£-07 4 9£-07 2 2 BE-*07 3. BE-07 8. 3£-08 7. BE-08 1. OE-07 2 lE-07 5£-09 3 BE-*09 2 3£-09 1. 2£-09 1. 6E-09 2. 7E-09 6 2£-10 4 9£-10 5 OE-10 1 1£-09 8 BE-07 5. 4£-*07 5 SE-07 2 9E-07 3. 2E-07 4. 4£-07 1 OE-07 9. 9E-08 1 3£-07 2 5£-07 8. BE-07 5. 4£-07 5 5£-07 3 OE-07 3. 3£-07 4. 4E-07 1 1£-07 1. OE-07 1. 3E-07 2. 5E-07 7 BE-07 4. 8£-07 4 9£-07 2. 5£-07 2. BE-07 3 BE-07 8. 2E-08 7. 7£-08 1. OE-07 2. 1£-07 7 BE-07 4. BE-07 4 9E-07 2. SE-07 2. BE-07 3 SE-07 8 2£-08 7. 8£-08 1. OE--07 2. 1£-07 1287 1207 1207 1931. 2011. 1931. 5149. 5310 5310 2574 NEP,REST DAIRY COW 7 4E-08 7 4£-08 5 5E-08 5 BE-08 3 9E-10 3. 8£-10 3E-08 7. 3E-OB 4£-08 7 3£-08 4E -08 5 7E -08 5 BE-08 7562 4827 1. 6£-07 3. 3E-07 4 4E-07 7 6E-08 1. 3E-07 2. BE-07 3 8E-07 5 BE-08 NONE 5 9E-10 1. 6£-09 2. 7E-09 4 2E-10 IN 1. 6£-07 3. 2E-07 4 4£-07 7. SE-08 THIS 1 6E-07 3. 3E-07 4 4E-07 7. 6£-08 SECTOR 1 3E-07 2 BE-07 3. 8E-07 5 7E-08 1. 3E-07 2 BE-07 3. 8£--07 5 BE-08 2816 2011 1931. 6436. NEAREST PLANT BOUNDARY NONE IN THIS SECTOR NONE IN THIS SECTOR NONE IN THIS SECTOR WSW w 2. 3E-07 2. 4E-07 2. OE-07 2 OE-07 1. 2E-09 9 7E-10 2 3E-07 2. 4E-07 2 3£-07 2 4£-07 2. OE -07 2 OE -07 2. OE-07 2 OE-07 2414 2735. 5. 3E-08 4 OE-08 1 9E-10 5 2E-08 5 3E-08 3 9E-OB 3 9E-*08 7562 NONE IN THIS SECTOR 5 8E-07 2 7E-07 2. 2E-07 3 OE-07 3. SE-07 4 7E-07 1 1£-07 5 OE-07 2. 3E-07 1. BE-07 2 SE-07 3. OE-07 4 OE-07 9. OE-08 4 7E-09 1. SE-09 8 1£-10 1 2E-09 1 7E-09 2 9£-09 6 BE-10 5 BE-07 2. 7£-07 2 lE-07 2 9E-07 3. 4E-07 4. 6E-07 1. lE-07 5 8E-07 2 7E-07 2 2E-07 3 OE-07 3. 5£-07 4 7£-07 1. lE-07 5 OE-07 JE-07 1 BE-07 2 SE-07 3. OE-07 4 OE-07 8. 9E-08 5 OE-07 2 3E-07 1 BE-07 2. 5E-07 3. OE-07 4. OE-07 9 OE-08 1. OE-07 3 2E-07 2. 6E-07 2 3E-07 2. 2E-07 7. 8E-08 2. 7£-07 2. 2E-07 2 OE-07 1. BE-07 4 9E-10 1 5£-09 1 2E-09 1 2E-09 8 7E-10 9 9£-08 3 2£-07 2 6£--07 2 3E-07 2. 2E-07 1 OE-07 3 2E--07 2 6E-07 2 3E-07 2 2£-07 7 7E-08 2 6E-07 2 2E-07 2 OE-07 1. 8£-07 7 BE-08 2. 7E-07 2. 2£-07 2 OE-07 1. BE-07 1754. 2076 2365. 1931 1931 1866 4827. 5310. 2767 2478. 2414. 2880. NNVJ N 1. OE-07 2 3E-07 4 8£-07 1 1E-06 8 2E-08 1 8E-07 3 9E-07 9 6£-07 4. 2E-10 8 6E-10 2 2E-09 9. 1E-09 1 OE-07 2. 3E-07 4 BE-07 1 lE--06 1 OE-07 2 3E-*07 4. SE.-07 1 1E-06 8. lE-08 l. BE-07 3 9E-07 9 6E*--07 8. 2E-08 1. 8E-07 3 9E-07 9. 6E-*07 NONE IN THIS SECTOR 3701. 3218 1 3E -07 4 BE -*07 1. OE-07 3 9E-07 4 4E-10 2 2E-09 1. :JE-07 4 BE-07 1. 3E-07 4 8E-07 1 OE-07 3 9E-07 1 OE-07 3 9E-07 5632. 3218 17"10 NONE IN TillS SECTOR 1. 7E-07 2. OE-07 7 2E-07 2E-06 1. 4£-07 1 6E-07 6 1E-07 OE-06 7 7£-10 7 2E-10 3. 6E-09 9 6E-09 1. 7E-07 2 OE-*07 7 2E-07 1 2E-06 1. 7E-07 2 OE-07 7 2£-07 1 2E**06 1 4£-07 1 6E-07 6 lE-07 OE-06 1. 'IE-07 1 6E-07 6 lE-07 OE-06 3379 4183 2J'I9 1 7::-JJ TOTAL ODS -8760 TOTAL INV OBS -311 CALMS UPPER LEVE.L -0 00 CALMS LOWER lEV -9 00 KEY ENTRY 1 RELATIVE CONCENTRATION -XOQ (S/MIHI*3> ENTRY 2 DCPI..E.H.D RELATIVE CONCENTRATION E.NTRY 3 RELATIVE DEPOSITION HAlE (1/M*112) ENTRY 4 DECAYE:..D XUQ (S/I"IIfli3) -HALF liFE:..;-> 26 DAYS ENTRY 5 DECAYED XOG CS/M*11*3) -HALF LIFE 8 00 DAYS ENTRY 6 DEC+DPL XUG (5/t"llflf::n -H1\l.F LIFE:. 2 26 01\YS ENIRY 7 DEC-IDPL XOG O:) 1 ()[ 6 OE-06 2 JE-*06 3 BE-06 3 4E-06 3 9£-06 4. 6E-*06 4 2E-06 4 3E-06 3 7E-06 4 :JE-06 4 5E-06 3 '7E-06 6 7E -06 9 6f:-O!.* 9 5 bE-otl "-OE-00 1 JE-*08"' 6E--08 2 3 lE-08 4 lE-08 3 7E-OB 3 4E-08 2 1E-*08 2. 4E-08 2 2 ;JE-08 3 4E-CH3 5 6E:-oa 8 n:-,;o 6 4£*-06 2 8E-*06 2 4E-06 4 OE -06 3 6E-06 4 lE-06 4 8E-*06 4 SE-06 4 SE.-06 3 9£-06 4 SE-06 4 BE-06 4 1E-06 7 1E 1 01:>-0'::* OC* ,:;5 4E-06 2 BE-06 2 4E-06 4 OE*-06 3. 6E-06 4 lE-06 4 8E-*06 SE-06 4 5E-06 ::J 9E-06 4. SE-06 OE-06 4 lE-06 7 lE-06 1 m: *25 OE-06 7£-06 JE**06 BE*-06 3. 4E-06 3 9E-06 4. 6E-*06 2E-06 4 :JE-06 3 6E-06 4 3E*-06 5E-06 3 9E-06 6 9 6F:-06 9 o OE-06 7E-06 2 JE-*06 BE*-06 3. 4E-06 3 9E-06 4. 6£-*06 2E-06 4 3E--06 3 7E-06 4 3E-06 5E-06 3 9E-06 6 7E-OS 9 6E-06 9 400. 400 400 400. 400. 400. 400 400 400 400. 400 400. 400 400 400 '100 0 8 Kt-1 9t:-06 8 BE-07 7 6£-*07 1 2E-06 1. 2E-06 1. IE-06 8. 2E-09 1. 2E-06 1. 2E-06 1 tE-06 1. 1E-06 3E-06 1. 4E-*06 1. 5E-06 1 4E-06 1 2E-06 1. 4E-06 1 7E-06 1. 3E-06 2 JE*-0!:! 3 3£:-06 3 2E-06 1. 3E-*06 1 4E-06 1. 3E-06 1 1E-06 1 3E-06 1 6E-06 1 . .:'E-06 2 lE-O!:! 3 OE-06 2 lE-08 1. 3E-08 1 JE-08 1 lE-08 6 9E-09 7. 9E-09 9 9 f:lE-09 1 2£-0:3 2 OE-08 li:C-G6 f3E-C6 9E-i18 1E>C6 t:iE -C6 m::0:-06 7E-06 8 OE-07 7 OE-07 lE-06 9E-08 6 9E-09 4 3E-09 2E-09 9E-06 8 7E-07 7 6E-*07 2E-06 1. JE-06 1. 4E-*06 1. 5E-06 4E-06 2E-06 1. 4E-06 1 7E-06 1 3£-06 2 3 3£:-06 9E-06 8 BE-07 7 6E-*07 2E-06 1 3E-06 1. 4E-*06 1 5E-06 liE-06 2E-06 1. 4E-06 7E-06 1. JE-06 2 JE-0!:! 3 JE-06 1 7E-06 8 OE-07 6 9E-*07 tE-06 1 2E-06 1. JE-06 1. 4E-06 1 3E-06 1E-06 1 JE-06 6E-06 1. 2E-06 2 1E--0!:! 3 OE:-06 2 I 7E-06 8 OE-07 6 9E-07 1. 1E-06 1. 2E-06 1. 3E-*06 1. 4E-06 1. 3E-06 1 1E-06 1 3E*-06 1. 6E-06 1. 2E-06 2. 1E-0S 3 OE:-06 2 800 800. BOO 800. 800. BOO. 800. 800. 800 BOO BOO. BOO 800 800 000 <JO,l SE-07 4 SE-07 3 8 SE-07 4 OE-07 3 9 6E-09 3 SE-09 2 9 SE-07 4 SE-07 3 SE-07 4 SE-07 3 SE-07 OE-07 3 SE-07 OE-07 3 1200 1200 1 6 K.t-1 5E-07 J. 1E-07 6E-07 2 7E-07 2 JE-09 2 3E-09 1 6 4E-07 3 !E-07 6 4E-07 3. lE-07 2 5 6E-07 2 7E-07 2 5 6E-07 2 7£-07 2 1600 1600 8E-07 5 6E-07 6. 4E-07 6. BE-07 7. 1E-*07 7 7£-07 7. 3£-07 6 2E-07 7. OE-07 9 SE-07 6 SE-07 1. 2E-Ob 1 ?E-06 1 i£-06 4E-07 5. OE-07 5. 7E-07 6 lE-07 6 3E-07 6. 8E-07 6 SE-07 5 SE-07 6 3£-07 8 4E-07 5 HE-07 1. 1 SE:-06 1 'IE-06 2E-09 3 8E-09 4. 2E-09 5. 4E-09 6. 4E-*09 6. 6E-09 5. ?E-09 3 SE-09 3 9E-09 5 2E-09 4 7E-09 6. 3E-O'Y 9 9E-09 8£-07 5 6E-07 6. 4E-07 6 BE-07 7. 1E-*07 7. 6E-07 7 JE-07 6. 2E-07 7 OE-07 9 4E-07 6. 5E-07 1 2E-Ob 7[-06 t..E-06 BE-07 5 6E-07 6. 4E-07 6 BE-07 7. 1E-*07 7 7E-07 7. 3E-07 6 2E-07 7 OE-07 9 5E-07 6 SE-07 1. 7[-06 bE-06 4E-07 5. OE-07 5. 7E-07 6 1E-07 6. 3E-*07 6 8E-07 6. :')E-07 5 5E-07 6. 3E-07 8 4E-07 5 8E-07 1. 5E-06 4E-06 4E-07 5 OE-07 5. 7E-07 6. 1E-07 6. 3E-07 6 8E-07 6 SE-07 5 5E-07 6 3E-07 8 5 BE-07 1. 1£-0,S 5E-06 4E-06 1200 1200. 1200. 1200 1200. 1200 1200 1200 1200 1200 1200. 1200 1200 6£-07 3 4E-07 4 1E-07 4 6E-07 4 ?E-*07 3E-07 3 OE-07 3 6E-07 4 OE-07 4 lE-*07 4E-09 2 JE-09 2. 3 SE-09 4 1E-09 6E-07 3 4E-*07 4 !E-07 4. 6E-07 4 7E-07 6E-07 3 4E--07 4. 1E-07 4 6E-07 4 7E-07 JE-07 3 OE-07 3 6E-07 4 OE-07 4 1£-*07 JE-07 3 OE-07 3. 6E-07 4 OE-07 4 1E-07 1600 1600 1600 1600 1600. 4 BE-07 4. BE-07 4 Ofi-07 4 4E--07 5 9E-07 4. :JE-07 8. OE-07 1 1 lE.-1)6 4. 2E-07 4 2E-07 3 5E-07 3 9E-07 5. 1E-07 3 8E-07 7 OE-07 9 7E:-07 9 :JE--<17 4. OE-09 3 6E-09 2. 2E-09 2 4E-09 3 lE-09 :3 lE-09 4 OE 09 6 4F-0'7' JE-OY 4 BE-07 4 BE-07 4 OE-07 4 4E-07 5 9E-07 4. 3E-07 8 OE--07 1 lE.-06 J E-<)6 4 BE-07 4 BE-07 4 OE-07 4. 4E-07 5 9E-07 4 "3£-07 8 OE -07 1 IC-06 1 1£"-\)6 4 2E-07 4. 2E-07 3 5E-07 3. 9E-07 5 IE-07 3 8£-07 6 9E**07 9 7F-07 9 =;[-Oi' 4 2£-07 4 2E-07 3. 5E-07 3. 9E-07 5. !E-07 3. 1-JE-07 7. OE-C*7 9 7E:-07 9 JC-0/ 1600. 1600. 1600. 1600 1600. 1600 1600 1600 !COO IDTAL OBS -8760 TOTAL !NV ODS -166 CALMS UPPER LEVEL 0. 00 CAU*IS LOWER lEV -3 00 KEY ENTRY 1 RELATIVE CONCENTRATION -XOQ (5/MII-*3) ENTRY 3 RELATIVE DEPOSITION RATE < 1/1'1**2) ENTRY DECAYED XOG (5/M**3) -HALF LIFE 8 00 DAYS ENTRY DEC+DPL XOQ (5/M**3) -HALF LIFE 8 00 DAYS AFFEC fED SECTORS NNE NE ENE ESE SE SSE S SSW 2 4 3 BE-07 1. 8E-07 1. 5E-07 BE-07 2. 2E-07 2. 6E-07 2. 6E-07 2 5E-07 2. 6E-07 3 2E-07 1. 6E-07 1 3E-07 1. 9E-07 2 2E-07 2. 2E-07 2. lE-07 2 2E-07 3 4E-09 1 2E-09 7 1E-09 1 3E-09 1. 8E-09 2. lE-09 1. 9E-09 1. 9E-09 3 BE-07 1 BE-07 1. SE-07 BE-07 2. 2E-07 2. 5E-07 2 6E-07 2. 5E-07 2. 6E-07 3 BE-07 1 BE-07 1 5E-07 1 BE-07 2. 2E-07 2. 6E-07 2. 6E-07 2 SE-07 2 6E-07 3 2E-07 1 6E-07 1 3E-07 5E-07 1 9E-07 2. 2E-07 2 2E-07 2 1E-07 2 2E-07 3 2£-07 1 6E-07 1 3E-07 :JE-07 1. 9E-07 2. 2E-07 2. 2E-07 2. lE-07 2. 2E-07 2400 2400 2400. 2400 2400. 2400 2400 2400. 2400. J 2 Kf.t ENTRY 2 DEPLETED FIELATIVE CONCENTRATION < S/MH: .l) ENTRY 4 DECAYED XOG -H.<'ILF lIFE 2 26 ENTRY 6 DECI-DPL XOG (S/H**3) -HALF l !FE 2 26 .:JAYS ENTRY 8 -DISTANCE IN METERS SW WSW WNW NW N 2. 2E-07 2. 4E-07 3 1E-07 2 ::::"E-07 4 3E-Oi" 6 OE-07 5. 6E-C1 1. 9E-07 2. OE--07 2 6E-07 1 SE-07 3 6E-0/" !J OE-07 4 7£:-C"l 1. 1E-09 1 2£-09 1. 5E-09 1. 2 OE--09 :3 IE-09 4 2. 2E-07 2 4E-07 3. lE-07 2 . .::::E-07 4 3E-07 9E-07 5 tE-07 2. 2E-07 2. 4E-07 3 1E-07 2 ::;.£-07 4 3E-0:7 9E-07 5 6E.-G7 1. 9E-07 2. OE-07 2 6E-07 1 9E-07 3. 6£--07 !J OE-07 4 7E--07 1.9£-07 2.0£-07 2 6E-07 1.1)*£-07 3.6£-07 :J OE*-07 4 7E-07 2400. 2400 2400. Z"400 2400 2 4E-07 2E-07 lE-08 1 2£-07 1. 5£-07 1. 6E-07 1. BE-07 1. ?E-07 1. BE-07 1 4£-07 1 6£-07 1 9E-07 1 ?E-07 2 9£*-0/ 4 lE-07 3 ?E-07 OE-07 OE-07 :-E-08 9 5E-08 1 3£-07 1. 3E-07 1 5E-07 1 4E-07 5E-07 1 1£-07 1. 3E-07 1 6E-07 1. 4£-07 2 4£-0/ 3 4£-07 3 OE-07 OE-09 7 7E-10 4 4£-10 6 5E-10 8. 5E-10 1 1E-09 1 4E-09 1. 2E-09 2E-09 6. 7E-10 7 7E-10 8. 8E-10 1. OE-09 1 JE-O'i' ;;! OE-09 2 8E-09 2 4E-07 2£-07 9 1 1£-07 1. SE-07 1. 6E-07 1 BE*-0"7 7E-07 BE-07 1 4£-07 1. 6E-07 9E-07 1. 7£-07 2 9E-OT 4. lE-07 3 ?E.-C\7 4£-07 2£-07 lE-08 !E-07 1. 5£-07 1. 6£-07 BE-07 7£-07 8E-07 1 4E-07 1. 6£-07 9E-07 1. 7£-07 2. 9E-0/" IE-07 3 7E"-07 OE-07 OE-07 5E-08 /I.E-08 1. 2E-07 1. 3E-07 5£-07 1 4£-07 SE-07 1 1E-07 1. 3£-07 6£-07 1. i!E-07 2 4£--0/" *lE-07 3 OE-07 OE-07 1 OE-07 7 9. 4£-08 1 3£-07 1 JE-07 1. 5E-07 1 4E-07 5£-07 1. lE-07 1 JE-07 6E-07 1 liE-07 2 4£-0/" 3 ,lE-07 3 OE-0 7 J200 3200. 3200 3200 3200. 3200. 3200 3200 3200 3200 :1200 3200. 3;::oo :J:::::oo 3:::::oo 4 0 1-'.M 1 7£-07 8 JE-08 6 JE-08 8 4E-08 1 lE-07 1 2E-07 1. 4E*-07 1 2E-07 1 <lE-07 6 7E-08 5 OE-08 6 7E-08 9 2E-08 9. 4£-08 1 lE-07 1 OE-07 I JC-09 4 9£-10 2 E3E-l0 4 4£--10 5 9£-10 7 9 9E-10 8 6£-10 1 7E*-07 8 2£-08 6. 2E-OB 8 3£--08 1. 1£-07 1 2E-07 1. 3£-07 1 2£-07 1 7£-07 8 3E-08 6 3£-08 8 3£-08 1 1E-07 1 2E-07 1. 3£-07 1 2E-07 1 4E-07 6 6£-08 5 OE-08 6 7£-08 9 lE-08 9 3E-08 1 lE-07 1. OE-07 1 >1E-07 6 7£-08 5 6 7E-08 9 2E-0El 9 4£-08 1 1£-0"1 1. OE-07 +000 4000 4000 40UO 4000. 4000 4000 4000 4 8 Kt1 JE-07 1 OE-07 1. 2E-07 3E-07 1 3E-07 lE-07 8 2E-08 1 OE-07 OE-07 1. OE-07 8 4E-10 4 6E-10 5 SE-10 5 6E-10 :::*E-10 OE--01* :3 OE-07 2 7E-V7 6E-07 ;2 4E-G7 2 2E-0 7 2E -1() I 4E -0<-; 1 9F--(\'f 1 I 1 1 :!E-07 1 OE-07 1 2E*-07 1 3E-07 :*E-07 .2 :3 OE.-07 2 1E -(.l 7 :JL-07 1 OE-07 1 2E-07 1 3E-07 JE-07 2 OE-0? :3 OE-07 2 !E-07 8 2E-08 9 9E-OB OE-07 CE-O/ 1 6E-0? 4E-07 2 lE-07 8 2E-08 1. OE-07 1 CE-07 1 6E:-07 ;; 4E-07 2 4000 4000. 4000. '1000 4000 4000 <WOO 71:-*07 lE-C* 1 2E-*('1 'lCCO 1 4[.*-07 6 3£-08 4 SE-08 7L-08 8 5E-08 8 6E-08 1. OE-07 9 9 f.7JE*-08 8 OE-08 9 6E-08 l 1E-07 9 7£-08 1 7E 01 ,; *tE-07 t(--C*/ 1 lE-07 4. 9E-08 3 6£-08 4 SE-08 6 7E-0El 6 BE-08 8 OE-OU 7 8E-08 7 8[-08 6. 3E-08 7 6E-08 :JE-08 7 /E-08 1 :JE -0/ t 'iE.-07 1 /F. -C*l 9 9E-10 3 5E-to 1 9E-10 2 BE-10 4 2£-10 5 2E-10 7 OE-10 6. 4£-10 5 9[-10 3 4E-10 4 OE-10 3E-10 3E-10 I OE-0'7 1 <1E-(*'Jl 1 4E -07 6 2E-08 5E-08 5. 7E*-G8 8 4(-0El 8 SE-08 1 OE-07 9. BE-08 9 91:-08 7 9E-08 9 :J[-08 1E-07 9 7E-08 61::-07 :2 -07 1E" -C 7 1 IIE-07 6 .2E-08 5E-08 5 7E-08 8 SE-00 8 6E-08 1 OE-07 9 8E-08 9 9£*-08 8 OE-08 9. 6E-08 1 lE-07 9 7E-08 1 7£*-01 *-4E-07 lE-*Cl lE-07 4 9£-08 3 SE-08 4 5E-08 6. 7£-0fl 6. 7E-OO 7 YE-OB 7E-08 7. 8E-08 6 ;::E-08 7 JE*-08 8 4E-08 d:.-08 1 :JE-07 I 'TE-07 1 ;t -*07 lE-07 4 'fE-08 3 'JC-08 4 5E-08 6 7E-OB 6 BE-08 8 OE-OB GE-08 7 BE-08 6 "3E-08 7 5E-08 8 7E-D8 1. :Jt-0/ t 't[-u7 t 'F ()7 *lBVO 4800 4000 4800 4800. 4800 4800. 4800. 4000 '1800 48UO 4000 '1800 4HUO 401)0 -1:.11'0 TOTAL om::. -B760 TOTAL INV ODS -166 C/\l.MS UPPER LEVE"l. -0 00 CALMS LOWER lEV -3 00 KEY LNHn 1 HELATIVE CONCENTRATION XOG EtHR'f 3 HFLATIVE DEPOSITION RATE E.tHRY 5 OECAYED XOG (S/M**3) -HALF LIFE B 00 DAYS E.NrHV 7 DECf.DPL XOG (S/MII-*3> -HALF LIFE H 00 DAYS ENTRY 2 DEPLETED HELATIVL CONCENlRATICN n3/M**:n ENTRY 4 DECAYE-.D XUG -H<'"'.l.F LIFL Ct\YS ENTRY 6 DE.C+DPL XDG <S/MH1:3) -HALF LIFE. l:t\VS ENTRY 8 -DU:;TANCE IN Mt: ff:HS Rev. 0 WOLF CREEK TABLE 2. 3-66 (Continued) Page 2 of 3 AVEHACE I'IF IEORDLOGICAL RELATIVE CONCENlRAriUN ANALYSIS 0/lTA FEfHOJ 06/01174 fD 05/31/75 1\NN\JAL AVER,,GE (<;ROUND) PTS -T /H CORRECTED ONS I TE /'lf. TEOROLUGY WOLF CREEK GtNEHATING STATIUN KANSAS CAS AND EUCCTRIC CO. BURLINGTON, DATE TII'1E 08 12.45 DAMES P..ND l'lDORE ,JOU NE ENE E E.SE 6 KM 1 5 OE-OE3 4E-08 4 :'E-08 6 OE-08 9 0E-Oi3 3 OE-On 7E-08 3. 2E-08 5 3E-08 B Cf-10 2 6£-10 1 4E-I0 3 2E-10 1 4 9E-OB 4E-08 4 6 BE-08 I 2E-07 4 9E-01J 4E-08 4 2E-08 6 GE-08 9 OE-Od 3 BE-On 6E-08 3 2E-08 2E-08 9 3 BE-OB 6E-08 3 3£-08 5600 5600. 5rJ00 5600 5600. 6 4 KM AFFECTED SECTORS SE SSE S SSW 6. 3E-08 8 1E-08 8. 8 SE-(>8 4 9E-08 6 3£-08 6 6E-08 6 6E-*08 3 6E-10 5 3E-10 5 .JE-10 4 BE-10 6. 2E-OB 8 1E-08 8. 4£-00 8 6 3£-08 8 lE-08 8 SE-08 8 5£-08 4 BE-08 6 2E-OB 6 6 SE-08 4. BE-08 6 3E-08 6 6E-OO 6. 6E***OB 5600 5600 5600. 5600. sw WSW NW t/ 6 6E-08 7 OE-08 8. 8 OE--08 4E-Ol ;z IJE-C*7 1 lt: *07 5 1E-08 6 m>OO 6 9£-08 b. lE-07 t ::JE-07 :JE" -07 2. n:-10 3. 1E*-10 3 4£-10 4. OE*-10 C,.E-10 7 8£-10 IE -09 6 6E-OB 7 8. BE-00 7. '?E *08 4E-07 l 9E-C7 1 7E -07 6 6E-08 7 BE-08 8. BE-08 7. '?E*-08 1 4E-07 :2 OE-07 l 7£ -07 5 lE-08 6 OE--08 6 SE-08 6. lE--08 1 l :JE-07 3E 07 5 lE-08 6. OE--08 6. 8E-08 6. 1£--08 1 1E-07 l 5E.-07 :JE -07 5600. 5600 5600. :-... 600 5600 :J600 9 4E-08 4 1E-OB 7E-06 3 SE-08 '5. BE-08 5 'JE-08 6. ?E-08 7 lE-08 6. 6E-OO 5. 5E-08 6. 6£-08 7 7£-08 b 6E--08 1 lE-07 t 6E.-C7 1 l)E -07 7 lE-08 3 IE-08 2 0!:0:-08 2 7£-08 4. 4E-08 4 OE-08 5. 1E:-08 5. 4E-08 5 OE-08 4 2E-08 5 OE-08 5 8£-08 5 OE--08 8 7E-08 L 2E-07 1 1E 07 6 1E-10 2 1 Ol::-10 1 6£-10 2. 6£-10 2 BE-10 4 2E:-10 4 2£-10 3 6£-10 2 1E--10 2 SE-10 2 8E-10 3 3 9E*-l0 6 lE-10 8 4E. -10 9 .JE-08 4 lE-08 2 61:;:--0S 3 SE-08 5 7£-08 5 2£-08 6 6E-08 7 OE-08 6 5£-08 5 4E>OB 6 SE-08 7. 6£-08 6 ()E*-08 lE*-07 6£-07 1 'IE. 07 9 3E-08 4 lE-08 2 ?E:-OB 3 :iE-08 5 8£-08 5 2E-08 6. 7E-OB 7 OE-08 6 6E*-OB 5 5[-08 6 6£-08 7 6£-08 6. bE*-08 lE-07 6E.-07 1 4E -07 7 IE-08 3 lE-08 2 0[-08 2 6£-08 4 4£-08 4 OE-08 5. 1£-0B 5 3£-08 5 OE-08 4 lE-08 5 OE-08 5 8£-08 5. OE*-08 8 t,E-08 2E-07 1 lE: *-07 7 lE-08 3 IE-08 2. OE-08 2. 7E-08 4. 4E-08 4 OE-08 5 lE:-08 5 4£-08 5 OE-08 4. 2E-08 5 OE-08 5. BE-08 5 OE--08 8. 7E-08 L 2E-07 1 1F*-07 6400 6400. 6*l00. 6400. 6400 6400 6400. 6400. 6400. 6400. 6400 6400. 6400 6400 6400 6400 7 ;> KM 8 OE-03 3 SE-08 2. lE-08 3. OE-08 4. 9£-08 4. 5£-08 6 OE-08 2 6£-08 1. 6E-08 2 3E-08 3. 7£-08 3 4£-08 5 1 7£-10 7 BE-11 1 3£-10 2. 1£-10 2 3£-10 7 9£-08 3. 4E-G8 1E-08 3 OE-08 4 9£-08 4. 4E-08 7 9E-08 3 5E-08 2 lE-08 3 4 9E-08 4. 5E-08 5 9£-0B 2 6E-OB 1 6E-08 2 2E-08 3. 6E-08 3. 3E-08 6 OE-08 2. 6E-08 1 6E-08 2 3E*-08 3. 7£-08 3. 4E-08 5. 7t-08 6 1E-08 5 3E-08 4. 2E-08 4 SE-08 4 OE-08 3. 4t-10 3 4E-10 2 8E-10 4. 6E-08 5 7E-08 6 6E-08 5. :tE--08 9 l 4E-07 1 2E.--07 3. SE-08 4 3E-08 4 9E-08 4 :JE--08 6. l IE-07 8 9F-08 1 7£:-10 2. 1E-10 2 JE-10 2 (£--10 3 OE-10 :s 2E-10 6 BE-10 5. 6E-08 6 OE-09 3E-08 4. 6f:-OS 5. 6E-08 6 SE-08 5. t£--08 9 lE-08 4E-07 1 2E-*07 5. 6£-08 6. OE-08 3E-08 4. 6E-08 5 7E-08 6 6E-08 5 ?E--08 9 2E-08 4E-07 1 :'E--07 4 2£-08 4 5E-08 3. 9E-08 3. 4E:-08 4 2E-08 4. 9£-08 4. 2£--08 6 BE*-08 1E-07 8 BE.--08 4. 2E"-08 4 5£-08 4 OE-08 3 4E-08 4 3E-08 4. 9E-08 4 :JE--08 6 9E-OB lE-07 8 BE-08 7200 7200 7200 7200. 7200. 7200 7200. 7200 7200 7200. "1200. 7200. 7200 7-;;*oo 8 0 1-\M 6 9E.-08 3 lE-08 1 7E-08 2 6E*-08 4 4E-08 4 OE-08 4. 9E-08 5 lE-08 2 3£-08 1 3E-08 1 9£-08 3. 2E-08 2 9E-08 3. 6E-08 4 lE-10 1 4E-10 6 lE-11 1 1 BE-10 2. OE-10 2 8E-10 6 OE-08 3 OE-08 1 7E-08 2 6E-08 4 3E-08 3. 9E-08 4 8E-08 6 9E-08 3. OE-08 1 7E-08 2 6E--08 4 3E-08 3 9E-08 4. 9E-08 5 OE-08 2 2E-OB 1 3E-08 1 9E-08 3. 2E-08 2 9E-08 3. 6E--08 5 1E-*08 2 3E-08 1. 3E-08 1 9E-08 3. 2E-08 2 9E-08 3. 6£-08 5 3£-08 4 4 OE-*08 5 5 BE.-08 4 9E--08 7 9E-08 ;:£-07 Ut:
  • 07 3. 9£-08 3 3E-08 3 OE-08 3. ?E-08 4 3£-08 3 6£--08 5 2£-0!::3 4E.--08 2 9E-10 2. 2E-10 1. 4E:-10 1 7£-10 1. 7'£-10 2 ;?E--10 2 4£-10 :JE*-10 6E *-10 5 2£-08 4 4E-08 4 OE-08 5 OE-08 5 7E-08 4 9£--08 7 BE--OB 2E.-07 9 9E" -0!::3 5. 3£-08 4 SE-08 4 OE-08 5 OE-08 5. 8E-08 4 'i'E--08 7. 9£*-08 2E-07 I OE--07 3. 9£-08 3 3E-IJ8 2 9E-08 3. 7E-08 2E-08 3. 6£--08 EJE*-08 9 IE-08 7 3E--08 3 9£-08 3 3£-08 3 3 7E-08 3E-08 3. 6£--08 5 9£-08 9 2E-08 7 'IE--08 8000. 8000. 8000 8000. 8000. 8000. 8000 sooo 9ooo eooo. aooo sooo nooo oooo. 9ooo aooo TOTAL OBS 8760 TOTAL INV OBS -166 CALI'1S LEVEL -0. 00 CALMS LOWE.R LEV -3 00 KEY ENTRY l RELATIVE CONCENTRATION -XOG (5/M**3) ENTRY 2 DEPLETED RELATIVE CONCENTRATION (S/M**3) ENTRY :3 RELATIVE DEPOSITION RATE (1/M**2) ENfRY 4 DECAYED XOG (S/H**3* -HALF LIFE. 2 26 DAYS ENTRY !) DECAYED XOG (S/M**3) -HALF LIFE 8. 00 DAYS ENTRY 6 OEC+DPL XOG (S/1'1**3' -HALF LIFE 2 26 D1\VS ENTRY ., D£C+DPL XOG (5/M**3) -HALF LIFE 8. 00 DAYS ENrRY 8 -DISTANCE IN MEOTERB AFFECTED SECTORS NNE NE ENE E ESE SE SSE S SS'W sw WSW w WN,.J NW I;-;: 0 KM 3 :JE-08 I 7E-08 9 ?E-09 1 3E-08 2. 5£-08 2. 2£-08 2. 3. lE-08 2 2. OE:-08 2. 9£-08 3. 3E-08 2. 8E-08 4 SE-08 2 5£-08 l. 2E-08 6. BE-09 9 2£-09 1. ?E-08 1 5£-08 1 BE0:-08 2. 1£--08 2 OE-08 1 4E-08 2 OE-08 2. 3£-08 2 OE-08 3 2E -08 1 8E-10 6 9£-11 2. 9E-11 4 7E-11 8. 7£-11 9. 4E-11 1. 3E-10 1. 4£-10 1 6. 1E-11 8. 5£*-11 9 4E-ll 1 1. 2£-10 3 :JE-GB 1 7£-08 9 SE-09 1 3£-08 2 4£-08 2. 2E-08 2. 6£-08 3. OE--08 2 7E-08 2. OE-08 2 3 2E"-08 2. 4 4E-08 3 5£--08 7£-08 9 6E-09 1 3£-08 2. 5£-08 2 2£-08 2. 6E-08 3 OE--08 2. 8£-08 2. OE-08 2. 9E-08 3 3E.-08 2. BE-08 4. :JE-08 4£-08 2£-08 6 6E-09 9 lE-09 1 7£-08 1. 5£-08 1. BE-08 2 lE-08 1 9£-08 1. 4E-08 2 OE-08 2 3E.-08 1 3 lE-08 2 SE-08 2E-OB 6 7E-09 9 2£-09 1. ?E-08 1. 5£-08 1. BE-OEl 2. 1£--08 1. 9E-08 1. 4E-08 2 OE-08 2. 3E.-08 2 3 1E-08 12000. 12000 12JOO. 12000 12000. t2000. 12000. 12000. 12000 12000 12000 12000 l:::::'OJO. 12000 16 0 KM N 6 9£-08 6 1E-08 4 BE-08 4 3E-08 2 OE-10 2 9E-10 6 7£-(}8 6 OE-08 6. 8£-08 6 lE-08 7£-08 4 2E -08 8£-08 q. 12000 12000 2 2E-08 lE-013 6 8 4£-09 t. 7£-08 SE-08 1. ?E-OE! 2 1£--08 2 OE-08 1. 3E-08 1. 9£-08 2 1E-OB 1. 3 OE-08 4. SE-08 4 3E-08 1 SE-09 4 1::-09 5 6£-09 1. 1£-08 OE-08 1. u:-OEI 1 4E-08 1 4E-08 8 SE-09 1. 3£-08 1 4£-08 1. 2 OE-08 3 OE-08 2 9E-08 1 3 9£-11 1 6E-ll 2. 6£-11 5. IE-11 5 6£-11 7 SE:-11 8 8E-11 7 7£-11 3. 4E-11 4. 9£-11 5. 3£-11 6. 2£-11 6. BE-ll 1E-10 8E-10 2 1. 1E-Oa 6. o::-09 8 2£-09 1. 6E-08 1 5E-08 1. 7E-OEI 2 lE-*08 2 OE-08 1. 2E-08 1. 9£-08 2 1E-08 1. 2. 9E-08 4E-08 2£-08 1. 1£-013 6 8 4E-09 1 7£-08 1. 5£-08 1. 7£-08 2 1£-*08 2 OE-08 1 3E-08 1 9£-08 2 1£-08 1. ?E"-08 3. OE-08 4 5£-08 4 3F-08 1 4E-08 7 3£-09 4 OE-09 5 5E-09 1. 1E-08 9 ?E-09 1. tt:-08 1. 4£-*08 1 3E-08 8 3E-09 1. 2£-08 4E-08 1 2. OE-08 2 9E-08 BE-08 1 :JE-08 7 5£-09 4 1::-09 5 6£-09 1. lE-08 9 9E-09 1. tE-08 1 4E-*08 1 :::JE-08 8 4E-09 t 3£-08 4E-08 1. 2E-08 2 OE--08 3 OE-08 2 9E-CB 16000 16000 16)00 16000 16000 :.6000 16000. 16000 16000 16000. 16000 16000. 160*)0. 16000 16000 16000 24 0 1-<.M 1 2E-08 6 4E-09 3 5*:;:--09 4 6E-09 8. SE-09 8 2E-09 9 4E::-09 9 8E-09 7 6E-G9 4 OE-09 2 2 BE-09 5 2£-09 5 1£-09 5. BE-09 6 OE-*09 4 SE-11 1 OE-ll 4,:;:--12 1 2E-11 2.1£-11 2. SE-11 3 .JE-11 3 3E-*11 1 2E-08 6 2E-09 31:;:--09 4E-09 8 OE-09 7. 9E-09 9 OE-09 9 5E-09 1 2E-08 6 4E-09 .J 41::-09 5E-09 8. 3E-09 8. lE-09 9 3E-09 9 7E-09 3E -09 "3 BE -09 01::-09 2 7E -09 4. 9E -09 9E -09 5 5E -09 5 BE -*09 SE-09 3 9£-09 11::-09 2 BE-09 5. lE-09 OE-09 5 6 OE-09 24000 24000 24000 24000 24000. :;?4000. 24000 24000 32 0 KM 1 lE.*-08 7 OE-09 1 OE-08 1 lE-08 1. 1E-OB 1 BE-08 2 8E-08 2 6 6£-09 4 3E-09 6. 4£-09 6 7£-09 6 ::OE-09 lE-08 1 7£-*08 1 :Jf:-OB 3 3E-11 1 SC-11 2 2£-11 2 :JE*-11 BE-ll 6E-ll 1 OE-08 6 7£-09 1 OE-08 OE-08 1. OE-08 7[-08 ,_ 7E-08 'lE-08 1 lE"-08 6. 9E-09 1 OE-08 1E-08 1 OE-08 2 7E-08 2 6 :JE-09 4 1E-09 6 1£-09 6 5E-09 6 :JE-09 OE-08 1 6E-08 :JC* 00 6 5£-09 4 3E-09 6 3E-09 6 6E-09 6 *1E-09 1 IE-08 1 7E-C'8 ;,:04000 24000 24000 24000 24000. 24000 8 4 .JE-09 2 3L-09 3 OE-09 5. 1£--09 5 3E-09 6 4E-09 6 OE-09 4 9E-09 6 7 4E-09 7 OE*-04 1 9E-GU I 4 9E-09 :JE-09 1 JE-09 1. 7E-09 2 9E-09 3. 1£-09 3 7E-09 3 5E-09 lE-09 2 9E-09 3 9E-09 4 :JE-09 4 OE*-09 6 7E -09 lE-00 9 8E:-OY 2 6E-11 OE-tl 4 21:-12 6 7E-12 1. 1E-11 4F-11 1 9E:-tl 1 7E-11 1 9E-11 9 ;-::'E-12 1 2£-11 1 :..lE-11 1 6E-11 :3 4[-ll UL-11 8 OE-09 OE-09 2 2C-09 2 9£-09 4 7E-09 OE-09 6 OE-09 5 7E-09 6 tlE-09 4 7£:-09 6 4£-09 OL-09 6 6E *09 IE -08 1 8E-C8 1 6E -Utl 8 3E-09 2.E-OC.1 2: "JC-09 3 OE-09 5 OE-09 2E-09 6 3E*-09 5. 9E-09 7 lE*-09 4. 8E-09 6. 6E-09 7 ;-)E-09 6 'lE*-09 1 IE-<l8 l 9F-OO 1 4 6E-09 2 3E--09 1 2E:-O'f 1 7E-09 2. 7E-09 2. 9E-09 3 5E-09 3 ::JE-09 :J. YE**09 2 ?£:-09 3 7E-09 <l OE-09 3 UE*-09 6 1 OE-08 9 *1F*.*-09 4 6E-09 2 4£-09 1 1 7E-09 2 9£-09 3 OE-09 3 6E-09 3 'IE-09 4 2 m:-09 3 OE--09 4 2E-09 *l OE*-09 6 6E-09 t lE-00 y 7F--\YI 'J:'OOO :12000 :..12000 32000 ::12000 :12000 32000 :QOOO :32000 3:?000 :l2000 :J2000 .,:::'000 TOTAL OGS 8760 TOTAL !NV Of:S -166 CALI'!S UPPEH LEVEL -0 00 CALMS LQI..JER U:V -3 00 Y.EY EnTRY RH.ATIVE CUNCENTRAfiCIN-XOG (S/MJH3) ENlHY 2 OEPl.EfED RELATIVE CONCLNlRATIOI\i .l f-Lli t .? :-'6 ll/'I"S ENTRY DEC+DPL XUO (5/MH*3) -HALF LIFE 8 00 DAYS ENIRY 8-DISlt.!'ICE IN Rev. 0 NhiF <lO 0 KM WOLF CREEK TABLE 2.3-66 (Continued) ,\V[fi/',(;E I'!ElEOROLOGICf'IL RELATIVE'" CCJNCENTRAl ION ANALYSIS DATA PETIIOC.' 06/01/74 ro 05/31/75 ANNUt\L AVER ACE (GROUND) STANDARD PTS T/R CORRECTED ONS I TE METEOROLOGY DATE 2:-NOV-81 T Il'lE 08 12. 45 NE Ef\.E ESE 'WOLF CALU4. :;TATinN KANS/\S GAS AND El.[CTHIC CO I3UHLINGTON, 1-\ND f'lOOHE JOB 76'19-064-07 AFFECTED SECTORS SSE s fiW WSW Page 3 of 3 w b :JE-09 2 5E-09 1 4£-09 2 :JE--09 3 9£-09 3 5£-09 4 2£-09 4 J :JE-09 4£-09 7 5E-10 1 3£-09 2 lE-09 1. 9£-09 2. 3£-09 2 4E-09 lE-09 3 3E-09 *"\ OE-09 4 BE-09 8 2E-O<J ;:::E-OB l "JC -00 OE--09 1 BE-09 2 5E-09 2 7E-09 2 7E-09 4 5£-09 6 ?E-09 7 OE*-09 1 7E-ll 3£-12 2 2E-12 4 6£-12 7. JE-12 8 lE-12 1. lE-11 tE-ll 5 4E-12 JE-12 7 7E-12 9 BE-12 1. lE-11 l '7E-1l 3 11 5 9£-09 2 JE-09 1 JE-09 2. 2£-09 3 6£-09 3 :JE-09 4 OE-09 2£-09 BE--09 3 1E-09 JE-09 4 ?E-09 4 6E-D9 7. 7E-09 1E-0El 1 2[ -08 2£-09 2 4£-09 1 3£-09 2. 3[-09 3 SE-09 3 4E-09 4 2E-09 4E-09 OE--09 3 2£-09 4 e.E-09 4 9E-09 4 BE-09 8 OE*-09 1 3E*-08 3E-09 1 3£-09 6 9E-10 1. 2£-09 2 OE-09 1 BE-09 2 2E-09 2 3E-09 ilE-09 1 3E-09 7 4E-10 1 3E-09 2 lE-09 1. '7E-09 2 3E-09 2. 4E-09 2 6E-09 1. 7£-09 2 3£-09 2 6£-09 2 5E-09 4. 21:::--09 b :::iE-09 6 6E--09 BE-09 1 8E-09 2 5E-09 2 7E-09 2 6E-09 4 4E-09 t, 6E-09 6 9E--09 40000 40000. 40000. 40000. 40000 40000. 40000 40000. 40000. 40030. 40000 40000 4000J 40000 40000 <!0000 48 0 j.(.,M 5 lE-09 1. 6E-09 9 lE-10 6E-09 8. 5£-10 4. 7E-10 1. 2E-11 3 lE-12 1 JE-12 7£-09 1 5E-09 8. 2£-10 9E-09 1. 6£-09 8. BE-10 4£-09 7 BE-10 4 JE-10 6£-09 8 3£-10 4 6E-10 48000 48000 48000. !i6 0 KM 1 9£-09 3. 1£-09 2. 5£-09 9 9£-10 1 6£-09 1 :3E-09 3 JE-12 5 3£-12 S. 2E-12 1 7£-09 2. SE-09 2 :3E-09 1 9£-09 3 OE-09 2 5£-09 9. 2E-10 1. 5£-09 1.:2£-09 9 7E-10 1 6E-09 1. :3E-09 48000. 48000. 48000. 3. OE-09 3. 6£-09 3 9E-*09 2. 3£-09 3 3£-09 3 6£-09 1. 6E-09 1. 9£-09 2 OE-09 1 2£-09 1. 7£-09 1 9E"-09 7. 2E-12 8 2E-12 8 2E-*12 3 4£*-12 4. ?E-12 5 OE-*12 2 8£-09 3. 3E-09 3 6£-09 2 2E*-09 3 OE-09 3 3£-09 3 OE-09 3. 5£-09 3 BE-09 2. 3£-09 3 2£-09 3. 5E-09 1. 5E-09 1. 7E-09 1 c;E-*09 1. lF-09 1. 6E*-09 BE-09 1 5£-09 1 BE-09 2 OE-09 1. 2£-09 1. 7£-09 9£-*09 48000 48000. 48000 48000 48000 48000 3. 6E-J9 6. OE-09 H IE-09 9 7F -O'f 1. 9E-J9 3 lE-09 2£-09 5 1£-09 6. 6£-12 7 JE-12 1E-11 2 JE -11 3 4E-D9 5£-09 7 5£-09 9 OE -09 3 6E-J9 9£-09 7 9£-09 9 SE -09 1. 8E-J9 2. 9£-09 :J 9E-09 4 7E -09 1 9E-J9 3 1£-09 2£-09 5 JE -09 4800::> 48000 48000 43000 4 1£-09 1. 1£-09 6 3£-10 1. 6£-09 2. 6£-09 1. 9£-09 2. 3£-09 2. 9E-09 3 1£-*0'7 1 8£*-09 2 5£-09 2. 7£-09 2 8£-.)9 4 6E-09 7£-09 7 !oE--09 2 lE-09 5 7£-10 3 2E-10 7. 9E-10 1. 3£-09 9 1 2£-09 1. 4£-09 1 6E-*09 9. OE*-10 1. 2E-09 1 4E-09 1 4E-J9 2 JE-09 9£-09 3 9E*-09 9 2E-12 2. OE-12 8 1£-13 2 5E-12 3. 9E-12 3. 6E-12 5 OE-12 6 OE-12 6. OE-*12 2. 4£*-12 3 2£-12 3 4E-12 4 6E-12 5 !E-12 7 2£-12 1 6£*-11 8£-09 OE-09 5 6E-10 4E-09 2. :JE-09 1 7E-09 2. lE-09 :? 7E-09 2 9E-09 1 6E*-09 2 3E-09 2 5E-09 2 6E-*J9 2E-09 2£*-09 7 :lE 09 OE-09 lE-09 6. 1£-10 5£-09 2. 5E-09 1 BE-09 2 3E-09 2. BE-09 3 IE-09 1. 7£*-09 2. 4£-09 2 6£-09 2 BE-,J9 5E-09 5E-09 7. 'iE--09 1 9E-09 5 2E-10 2. 8E-10 7 2£-10 1. 1E-09 B. 6£-10 1. lE-09 1. 3£-09 1. 4E-09 8 lE*-10 1. lE-09 1. 2£-09 3E.-,J9 2 1E-09 c 6£-09 3 2 OE-09 5 6E-10 3. lE-10 7. 7£-10 1. 3E-09 9. :3E-10 1 1£-09 1. 4£-09 1. SE-09 8 ?E*-10 1. 2£-09 1. 3£-09 4E-,J9 2. 3E-09 c. BE-09 3 7£-*09 :c,t,ooo 56ooo. 560-Jo s6ooo 56ooo s6ooo 56ooo. S6ooo s6ooo. 56ooo s6ooo s6oo,J ::.6ooo s6otJo 64 0 KM 3 .:'E-09 B. 4£-10 4. 9E-10 1 OE-09 1. 8E-09 1. 4E-09 1 SE-09 4 lE-10 2 4E-10 5. OE::-10 8. 8E-10 6. 6E-10 6 4E-12 1 3£-12 5. BE-13 l. SE-12 2. SE-12 2. 4E-12 2 BE-09 7 5£-10 4 3E-10 9 2£-10 t. 6£-09 1 2£-09 3 lE-09 8 1£-10 4. 7E-10 1. OE-09 1. 8E-09 1. :3£-09 1 4£-09 3 f_,£-10 2 lE-10 4 SE-10 7. 7£-10 5. CfE-10 1 SE-09 3 9£-10 2 3£-10 4 BE-10 8. 5£-10 6 4E-10 64000. 64000 6401)0 64000. 64000. 64000. 1 GE-09 2 . .2E-09 2 4E-09 8 7£-10 1. lE-09 1 2E"-09 3. 6E-12 4. 3E-12 4 2E-12 1 6E -09 2 OE -09 2 2E -*09 1 7£-09 2 2£-09 2. 3E-09 7. BE-10 9 9£-10 1 lE-*09 8. 4£-10 1 1E-09 1. lE-*OCf 64000. 64000. 64000 TOTAL ODS -8760 TOTAL INV ODEi -166 CALMS UPPER LEVEL NNf-72 0 KM KEY ENTRY 1 RELATIVE CONCENTRATION -XOG (8/M**3} NE ENTRY 3 RELATIVE DEPOSITION RATE <1/MJa;2) ENTRY 5 DECAYED XOG CS/M**3) --HALF LIFE 8 00 DAYS ENTRY 7 DEC+DPL XOG (S/M**3> HALF LIFE 8 00 DAYS AFFECTED SECTORS ENE E ESE SE SSE 5 SSW 1. 4l!-09 6 7E*-10 1. 7E*-12 1. 2E-09 1. 4£*-09 6 OE--10 6. 5E*-10 64000. -0 00 ENTHY 2 ENTHY 4 E.Nlf?Y 6 ENTHY 8 sw 1 9E-09 2 2E-09 9 OE-10 1 lE-09 2 2E-12 2 5E-12 1. 7E-09 2 OE-09 1 BE-09 2. 2E-09 8 lE-10 9 7£-10 8.7£-10 l.OE-09 64000. 64000 2. IJE-*}9 3 7E-09 .<j, 6E-09 5 ':tE-*0<1 1 1 E -*)9 1 BE -09 ;:> 2£-09 '7'E -*09 3. 6E-12 3 7E-12 ::, 3£-12 1. ;::>E-11 2 1E-*)9 3 3£-09 -<1 2£-09 5 '!E-*09 2. 3E-*)9 3. 6£-09 .ll 4E-09 5 :3£--09 1 OE -*)9 1. 6£-09 .... OE *-09 2 .SE -*09 1 1E-09 1 7E-09 ;:* lE-0'1 .2 '3E-*09 64001) 64000 64000 6 '1-000 CALMS LOWER LEV *-3 00 DEPLETED RELATIVE CONCENTRATION CS/M**3) DECAYED XOG CS/f'-1-!H..--3) -LIFE 2 26 DAYS DEC+DPL XOG CS/1'1**-3) -LIFE 2 26 -DI51ANCE IN METEHS WSW w WNW NW NNW N "* 'IE-09 6 4£-10 3 9E-10 7 OE-10 1 4E-09 1 OE-09 1. 4£-09 1. 8E-09 1 1. 1E-09 1. 4E-09 1 BE-09 2 OE-O'T 3 OE--09 3 ?E-09 4 7E-09 1 lE-09 3 OE-10 1. 8E-10 3 3£-10 6 3E-10 4. 7E-10 6. 5E-10 8. SE-10 9 OE-10 5. 3£-to 6 5£-10 8 5E-10 9 2E*-l*J 1 4E--09 1 7E-09 2 2E-09 4 CE-12 9. 5E-13 4 2E-t3 9. 4E*-13 1. 7E-12 1. 6E--12 2 6£-12 3. 2£-12 3. lC.-*12 1. 3E-l2 1. SE-12 1 9E-12 2 BE-1:2 2 BE--12 4 OE-12 8 6E-l2 2. 2£-09 5 7£-10 3. 4E-10 6 2£-10 1 2E-09 8 9E-10 1. 2E-09 1. 6E-09 1 7*-09 1. OE-09 1. 2E-09 1 6E-09 1 BE-O'T 2. 7E*-09 3 :3E-09 4 3E-09 :JE-09 6 3 7E-10 6. BE-10 1 3£-09 9 7E:-10 1 4E-09 1. 8£-09 1 9*-09 1. 1£-09 1. 4E-09 1 BE-09 1 9E-0'7' 2 9£--09 3 ,:,£-09 4 61:::-09 OE-09 2. 6E-10 t 6E-10 2. 9E-10 S 4E-10 4 1E-10 5. 8£-10 7. 7E-10 8. 0*-10 4. 6E-10 5. 8'E-10 7. 6E-10 8. 3E-1*) 1. 2E*-09 1 bE-09 2 m::-09 lE-09 2. 9E-10 1 7E-10 3. 2E-10 6. OE-10 4 5[-10 6. 3E-10 8 :JE-10 8. 7£-10 5. lE-10 6. 3E-10 8. 2E-10 8 9E*-10 1. 4E*-09 1 7E-09 2. lE-09 72000 72000. 7200"). 72000. 72000. 72000 72000. 72000. 72000 72000. 72000 72000 72000 72000 7:::]000 72000 ElO 0 KM 2 OE *G9 5 OE-10 3 :JE-10 5. 2£-10 1. OE-09 7 9E:-10 1. 2£-09 1 5E-09 1. 5E-09 9. 7E-.l0 1. lE-09 1. 5E-09 1. 7E*-09 2 5£--09 3 lE-09 Bl:C-09 8 9E-10 2 2E-10 1 5E-10 2 3E-10 4. 7E-10 3. 5E-10 5 3E-10 6 6E-10 6 9E-10 4. 4E-10 5 lE-10 6 9E-10 7 6E*-10 1. lE--09 1 *1-E-09 ?E-0'7 3 5E-12 6 BE-13 3 JE-13 6 4E-13 1. 2E-12 1. 2E-12 2. OE-12 2. 4E-12 2 3E-12 1. OE-12 1 lE-12 t 5E-12 2. 2£-1:2 2 1E*-12 3 lE-12 6 41:0:-12 7E-09 4 JE-10 2 BE-10 4 5E-10 8 7E-10 6. BE-10 1. OE-09 1 3£-09 1. 3E-09 8 5E-.LO 9 BE-10 1 3E-09 1 5E-09 2 2E*-09 2 BE-09 3 41':-09 9£-09 4 8£-10 3 lE-LO 5. OE"-10 9 8E-10 7 5E-10 1 1£-09 1 4£-09 1 5E-09 9 3E-10 1. 1!:0:-09 1 5E-09 1. 2 4£*-09 3 OE-OCf 3 7E-09 9E-10 1 9£-10 1 3E-10 2 OE-10 3_ 9E--10 3 1E:-10 4 6£-10 5. 9£-10 6 lE-10 3 BE-tO 4. 4E-10 6. 1E-IO 6. SE*-10 9 BE*-10 1 :2£-09 1 SE-09 8 6£-10 2 lE-10 1 4E-10 2 2E*-10 4. 4£-10 3 4E-10 5 lE-10 6 4£-10 6 7£-10 4 2£-10 4 9E-10 6 6E-10 7. 4E-10 1 1E--09 1 4£-09 1 ?E-09 80000 80000 BOOO*J 80000. 80000 80000 80000 60000. 80000 00000 00000 80000 80000 00000 EnJOOO 00000 TUTt\L DOS l760 TOTAL INV OOS -166 CAt MEi UPP£:R -0 00 CALMS t.OWCR l[V 3 00 1-(EY EtHRY L REL.AfiVE" CONCCNTRAfiON -XDG UHRY 2 DfPl ETED CONCE=NIRATI!JN UHRY 3 RELAriVE Of-POSITION RATE C1/M11*2l E.NfRY DECAYf:.D XfJG -LIFE .2 ;::6 DAYS E.UfRY 5 .CECAYt=:D XfJQ (S/M**3) -11!\lF-l !FE 8 00 DAYS ENTRY DE.C-+DPL Xfh) (5/M!!-IIC:JJ -HI;.LF LIFE ;2 ?6 D1\YS fUlWY 7 nr<:+f,f'l nm IS/M"113} -\11\l i_ H-E f"j 00 DAY:. n Dl.li\HIT ll'l Rev. 0 WOLF CREEK TABLE .2.3-67 i\\'EIU\!il:.. LhJICAL HELl\ fiVE CUN\.ENTRAT!ON D1\TA I'ERILllJ 06/01/74 /0 05/Jlr/5 1\IHIJUAL AVLRr.,Ct. <GHOlJND) Sf'LCIAI. PTS -T /R CORRECTED OilS I fE f'!ETEDkDl OCY 23-NOI/-81 Tif'IE 08 18 NNF Nc LNE ESE SE EXCLUSION !JOUN[IARY WOLF CREEK GENERATING :::TATION f-<..ANSAS GAS AND ELECTRIC CO BURL I NGTUN, DAI'lES AND JlJB 7699-064-07 Ar-FECTFD SECTORS !.:iSE S SSW sw WSW w WNW tJNW " 9 5E-l17 4 3 llE-07 !:I 6E-07 6 4E-07 6. BE-07 7 tE--07 7 7 3E-Ol 6 2E-07 7. OE*-07 9 6 5E-07 1 2[-06 1 7E-06 1 It: 06 8 :}E-\)7 4 3 4E-07 5 5 6 lE-07 6 3E-07 6 6 SE-07 5 6. 3E-07 8 -1E-07 5 BE-07 1 1E-06 1 :£-06 '1[-*06 q 6E-07 3 :JE-Oc.' 3. DE-09 4 2E-09 5 4E-09 6. 4E-09 6 6E-09 5 7E-09 3 3 9E-09 5 2E-09 4. 7E*-09 6 JE-09 9 9E-09 .l!E-OG q SE-07 4 SE-0/' 3 BE-07 5 6E-07 6 4E-07 6 BE-07 7 tE-07 7 6E-07 7 JE-07 6 2E-07 7 OE-07 9. 4E-07 6. 1 2E-06 1 7E.-06 1 t:t.* 06 9 SE-07 4 5E-0/ 3 flE-07 5 6. 4£-07 6 BE-07 7 iE-07 7 7. 3£-07 6 2£-07 7 OE-07 9 SE-07 6 2C-06 7E--06 1 t__ *06 8 5£-07 OE-0/ 3 *1E-07 5 OE-07 7F-07 6 lE-07 6 :3E-07 6. BE-07 6 5E-07 SE-07 6 3£-07 8. 4E-07 5 BE--07 u..:-06 5E-06 1. 8 SE-07 3 4E-07 5 OE-07 7E-07 6. 1E-07 6. :3E-07 6. BE-07 6 5E-07 5E-07 6 3E-07 8. 4E-07 5. BE-07 lE-06 5E-06 1 4£.-06 1200 12DO 1200 1200 1200. 1200 1200 12co 12oo 1200. 1200 1200 1200 1:wo 1200 1200 POPULATION ZUNE 8E-07 8 3E*-OG 6 2E-OB 8 lE-08 1 lE-07 1 1E-07 1. :lE-07 1 2£-07 1 3E-07 1 OE-07 1 2E-07 3E-07 2:E-07 2 lE-c-7 3 OE-07 2 6E 5E-07 6 7£*-08 5. OE-OG 6 SE-08 9. lE-08 9 2E-08 1 lE-07 9 SE-08 1 OE-07 8. 1E-08 9 BE-08 OE-07 OE-07 1 7E-07 2 4E-07 lE -07 4E-09 4 2 BE-10 4. 3£-10 5 BE-10 7. 2E-10 9 7E-10 8 SE-10 8 2E-10 4 SE-10 5. 4£-10 SE-10 1£*-10 8 SE-10 1 4E-09 1 5E-09 1 8E-07 8 2E*-08 6 2£-08 8 1£-08 1. lE*-07 1 lE-07 1 3E-07 1. 2E-07 3E-07 1 OE-07 1 2£-07 1 3£-07 21:::-07 2 1£-C7 3 OE-07 2 bE -07 SE-07 8 JE*-08 6 2£-08 8 lE-08 1 lE-07 1 1£-07 1. 3£-07 1 2£*-07 3£-07 1. OE-07 1. 2£-07 1 3E-07 3 2 -07 SE-07 6. 6£*-08 S. OE-08 6 5£-08 9. OE-08 9 IE-08 1 1E-07 9 8E*-08 OE-07 B. OE-08 9 7E-08 1. OE-07 OE-07 1. 7E:-07 2 lfE-07 2 1E*-07 1 6 7£--08 5 OE-08 6 SE-08 9 OE-08 9 2£-08 1. lE'"-07 9 SE-08 OE-07 8. lE-08 9 BE-08 1 OE-07 1 OE-07 1 7E-07 2 4£-07 :2 1E--07 4023 4023 4023 4023. 4023. 4023 4023. 4023. 4023. 4023. 4023 4023 40,23 4023 40 * ...'3 NE/1REST RCS I DENT 1 .JE-07 1 4£--07 9 7£-08 1 . .JE-07 1 9£-07 2. 6E-07 1. OE-07 8. 4£-08 1. 3£-07 1 lE-07 1. 2£--07 8 OE-08 1 1£-07 1 6£-07 2. 2E-07 7. 9£-08 6. SE-08 1. OE-07 9 6£-10 9 4£--10 4 7£-10 7 7£-10 1. lE-09 1. 9£-09 6 9£-10 5. 2£-10 2E-10 3£-07 1 4£--07 9 7£-08 1 3£-07 1. 9£-07 2 6£-07 9. 9E-OB 8 3£--08 .JE-07 3E-07 1. 4£--07 9 7£-08 1 3£-07 1. 9£-07 2. 6£-07 1 OE-07 8. 3£-08 1. 3E-07 OF-07 1 2£-*07 8 OE-08 1 1£-07 1. 6£-07 2. 2£-07 7 BE-08 6 4£-08 1. OE-07 lE-07 1 2£-*07 8 OE-08 1. 1£-07 1. 6£-07 2. 2£-07 7 BE-08 6 4£-DB 1 OE-07 4988 2816 3138 2816 2735. 2333 4827. 5632. 4023 3£-07 1. 1£-07 6E-0"7 1 OE-07 2E>07 3 SE-oJ7 6 51::***07 OE-07 8. 7E-08 3£-07 13 OE-08 SF-07 2 9E-07 6. OE-10 4 7E-10 2E-10 '3 SE-10 2 1 7E-09 ::> 3E 09 1. 3E-07 1 1E-07 1. 6E.-07 1. OE-07 5 2E*-07 3 SE-07 b SE**07 1. 3E-07 1 1E-07 1. 6E-07 1 OE-07 5 2E*-07 3 SE-07 b. SE-07 1 OE-07 8 6£-08 1. 3E-07 7 9E-08 4. SE--07 2. <JE-07 :;. :.OE-*07 1 OE-07 8 7E-08 1 3E-O? B. OE-08 4 5E*-07 2 9E-07 :; :JE*-07 3379. 4344. 3540 *1666 2072 .J540 21"/2 NEAREST VEGETAB .E 1 IE-07 1 OE-*07 8. 1E-08 1. 3£-07 1. 9E-07 2. 6£-07 9. 2E-08 8. 4£-08 5 1£-08 7. 1 lE-07 1 6E-07 l OE-07 4. 7E--07 3 5E.-D7 b :-,L;:-07 8 3E-Oa 8. 6E-08 6 6E-08 1. 1E-07 1 6E-07 2. 2E-07 7. 2E-08 6. SE-08 3 BE-08 6. 2E-08 8 7£-08 3E-O:' B OE*-08 4 OE--07 2 BE-07 :) 510..-*07 7 3E-10 6 3 SE-10 7. 7E-10 1.1£-09 1. 9E-09 6. 2E-10 5 2E-10 2 6E-10 3 4E-10 4 7£-10 2E-10 !'J 5£-10 2 2£--071 1 6E-09 :'i 3E--0'7' 1 1E-07 1 OF-07 8 OE-08 1 3E-07 1 9£-07 2. 6£-07 9 lE-08 8. 3E-*08 5 lE-08 7 BE-08 1 !E-07 1 6E-07 :l OE-07 4 7E--07 3 SF-07 6 1 lE-07 1 OE-07 8 1E-08 1 3E-07 1 9E-07 2. 6E-07 9. 2E-OB 8 3E-08 5 1£-08 7 9E-08 1 1£-07 6£-07 1 OE-07 4 7£--07 3 5E.-07 b SE-07 8 .2£-08 8 6. SE-08 1£-07 1 6E-07 2. 2E-07 7. lE-08 6 4E-08 3 8E-*08 6 2E-08 8 6E-OB 3E-07 9£-08 OE--07 2 BE-07 5[-*07 8 3E-08 8 6E-08 6 6E-08 1E-07 1. 6E-07 2 2£-07 7. 2E-08 6. 4E--08 3 BE-08 6. 2E-08 B. 7E-08 1 :JE-07 B OE-08 OE--07 2. BE-07 SE-07 5792 3379 3540 2816. 2735. 2333. 5149. 563:2: 7401. 4827 4344 3540. 4666 3620. 21/2 TOTAL UBS -8760 TOTAL INV OBS -166 CALMS UPPER LE.VEL -0 00 CALMS LOWER LEV -3. 00 XEY ENTRY 1 RELATIVE CONCENTRATION -XOG fS/MII-*3) ENTRY 2 DEPLETED RELATIVE CONCENlRAliDN CS/M-ll-*:l) ENTRY 3 RELATIVE DEPOSITION RATE (11f'l**2) ENlRY 4 DECAYED XOG (5/l"l*j,cJ) -HALF LJFE 2 26 DAYS EN-rRY 5 DECAYED XOQ (S/M**3) -HALF LIFE 8 00 OAVS ENTRY 6 DEC+DPL XOG CS/,.1**3> -HALF LlFE 2 26 EWRY 7 DEC+OPL XOQ CS/M**3) -HALF LIFE 8 00 DAVS ENlRY 8 -DISTANCE IN METERS AFFECTED SECTORS NE ENE E ESE SE SSE S SSW sw WSW w "lEf',RfEJT MEAT ANJMAL 8 /E-07 4 4£-07 3 BE-07 2 5£-07 2. 9£-07 3. 4E-*07 9. 2£*-08 9 lE-08 9 OE-08 2 OE-07 2. 3E-07 2 7 7E-07 3 9E-07 3 4E-07 2 1E*-07 2 3E--07 3 OE-07 7 2E-08 7. lE-08 7 OE-08 1. 7E-07 2 OE*-07 2 OE-07 8 7E-09 3 4£-09 2 2£-09 1 5£-09 1 8£-09 2. 6£-09 6. 2£--10 5. 7£-10 5. 2E-10 1 OE-09 1 2£-09 1 2£-09 8 7£-07 4 4E-07 3 SE-07 2 4£-07 2. 9E-07 3. 4£-07 9 1E*-08 9. OE-08 8 9E-OB 2 OE-07 2. 3£-07 2 4E-07 8 ?E-*07 4 4E-:J7 3 BE-07 2 4E-07 2. 9£-07 3 4£-07 9 2£-08 9. OE-08 8 9E-08 2. OE-07 2. 3£-07 2 SE-07 7 7E-07 3 9E-J7 3 4£-07 2 1E-07 2. SE-07 3 OE-07 7 lE-08 7. OE-08 6. 9£-08 1 7£-07 2 OE-07 2. OE-07 7 7E'"-07 3 9E--D7 3 4£-07 2 lE-07 2. SE-07 3 OE-07 7 2E-08 7 OE-08 7. OE-08 1. 7E-07 2 OE-07 2 OE-07 121:.l7 1207 1207 1931. 2011 1931 5149. 5310 5310 2574 2414 2735 NEt-.HEST DAIRY CCIW 7 6 3E-08 5 6E -08 9£-08 4 7 4£ --ClB 6 2E -08 7 4E-08 6 JE-08 5 5E*-08 4 9E-08 5 -08 4 9E --08 7:,::-2 4SZ'7 NONE IN THIS SECTOR 1. :::n:::-o7 2 9E-o7 1E-07 2. 5£-07 7E-10 1. BE-09 3£-07 2 9£-07 3E-07 2 9E-07 lE-07 2. 1 1E-07 2 5£-07 2816. 2011. 3. 4E-07 6. 7E-08 3 OE-07 5. lE-08 2. 6E-09 4 2E-10 3 4£-07 6. 7E-08 3 4E-o7 6 3 OE-07 5 3. OE-07 5. 1E*-08 1931 64:36. NONE IN THIS SECTOR NONE IN THIS SECTOR NONE IN THIS SECTOR 5. 4E-08 4 OE-08 1 9£-10 5. 3£-08 5 4E-08 4. OE-08 4 OE-08 7562. NONE IN THIS SECTOR WNW NW NNl-J N 9 7E-08 2 ::JE -07 4 1E-C7 8 SE -07 7 6£-08 1. BE -07 3 3E-C7 7 4E -07 5. 1£-10 9 3E -10 2 OE-C9 7 3E -09 9 6E-08 2. 3E 4 OE-C7 8. ::.E -07 9 6E-08 2. 3E 4 lE-C7 8 SE--07 7. 6E-08 1. 3 JE-C7 7 'lE--07 7. 6E-08 1 3 3E-C7 7 4[: *-07 4827. 3701. 321E. 1.4E*-07 4 IE-*07 1 OE*-07 3. JE-C7 NONE 4 8E*-1C) 2 OE-C9 IN 1 :JE 4 OE-C7 rHIS 1 4. SECTOR 1. OE*-Oi' 3. 3E-C 7 1 OE*-01' 3 :3E-C7 56:32 :3216 17/0 NONE" IN HilS SCCTOR NEiiR!-ST PlANT OCUNDI\RY 5 7£-07 3E-07 1 5£-07 2 SE-07 3 !E-07 3. 6E-07 1. OE-07 9 lE-08 2 .2E-07 2 1E-07 2. 3E-07 2. 2E-07 1 6£-07 2 OE -0/' 6. lE-07 '7 OE-*07 5 OE-07 1 9E-07 1 JE-07 2 lE-07 2. 6E-07 3 lE-07 7 9£-08 7. lE-08 1 BE-07 1 7E-07 2 OE-07 BE-07 1 JE-07 6E -0/ 5 ;2E -07 1 BE-*07 5 'iE-09 1 6E-09 7 7E-10 1. ::.E-09 1 9£-09 2 7E-09 6 9E-10 5 7£-10 1. 5£-09 1. tE-09 1 2E-09 1E-09 9 4E-10 9£-10 :J ;-£-09 7 7[-*09 7£**07 2. 3E-07 5E-07 2 4£-07 3 lE-07 3 6£-07 9 9E-08 9. OE-08 2 2E-07 lE-07 2 3E-07 2E-07 1 SE-07 2 OE 0/' 6 tE -07 '"I OE:-07 7E-07 :::JE-07 5E-07 2 4£-07 3 1E-07 3 6£-07 OE-07 9 OE-08 2 2E-07 2. lE-07 2 3E-07 2 2E-07 1. 6£-07 2 OE -07 6 lE-07 '1 OE-*07 9E-07 9E-07 3E-07 2 lE-07 2 6E-07 3 lE-07 8E-08 7 OE-08 BE-07 1 7£--07 2 OE-07 1 BE-07 1 3E-07 1 6£--0/" 5 1 m:-*07 OE-*07 9E-07 3E-07 2. lE-07 2 6E-07 3 1£-07 BE-08 7 OE-08 8E-07 J 7£-07 2. OE-07 1. BE-07 1 3E-07 1 6£--07 5 7 m.:-07 2076 2365 19:J1 1931 1866 4827. 5310. 2767. 2478 2414 2880. J379 4103 t "/.JD TOTI\l. OJS -8760 TOTAL INV OilS -166 CALMS UPPER LEVEL -0. 00 CALMS LEV -3 00 KEY 1 RELATIVE CONCENTRATION -XOG ENlRY 2 DEPL.En.:n RLLATIV,:::: CONCF::NTRATION f-NT'<Y 3 RELATIVE DE.POSITION RA1E ENTRY 4 DC.CAYED XDG <SIMH3) -Hi\l.F t_JtE. 26 D/\YS 5 DECAYED XOQ (SIM**3) -Hi\1 F LIFE 8 00 DAYS ENTRY 6 DEC+OPL XrJQ (S/Mu:1> -HALF I. lrE :'6 J);\'o'S 7 DEC+-DPL XOG <S//'1JU3) -HALF L1f E 8 00 DAYS ENTRY 8 -Dl!.iTANC[ 11\1 1"1f 1!: f-1:3 Rev. 0 WOLF CREEK 'rABLE :2.3-68 IUThis Table haG ooen delete]" 0 WOLf? CREEK TABLE 2. 3-69 "This Table has J:::een deleted" Rev. 0 WOLF CREEK TADLE 2.3-70 Page 1 0.., .L f"1Clf"llihllOCIC1\L f.l[LATI\'[ i\N*\LYSIS [*AlA fTiiJOD 10 03/04/IJO .\'o"-1\14! AVt-RAGE WOLF GEt<< RI\TH<r. Sl/\TIUN <:N"i **ll LLlCff.IIC CO ... f,[) PTS -liR CORRECH:D T[Ci"iCLUCY Q,\lf. 1 H:C 14 34. AFFCC TEO SECTO!'S NC U<E ESE sc SSE S SSL.J " 0 4 hM o u:._-0.:::> J -06 o 9E Oo EE:.-06 5 JE-06 4 BE-06 5 1E-0.:. 4 5 t.E-06 6 1[-0.-, 6 2E-06 6 OE-06 I :E-CJ 1 ,, 6 ::J b J :t -C<'l o 5 CE-Oo 9!':-0.':> 4 :JE-06 5 J[-06 ::> GE-06 5 'tF -06 6 :._r-06 :E-<)6 I (.[-CJ::. 1 :.c 05 ioE-C*fJ 1 -0d :J ;:_L-'-'11 I tE:::-08 .. 6E-0"3 ::E-OB 2 UC-CU bC-OtJ 3 OE-0\-l 7l-08 ;'f::-,'\-l !E.-UJ G 7E. -,*g b bi.:.-\)b 3 7E -C'h t> S:E-06 C::C-Oh Jl-Oo 4 SE-06 t-iE-06 5 6E-06 6 1[-06 6 6 :.E.-06 B '7<="-06 1 1 _,c *_,.J 6 8E..-00 3 3 7E -Co 6 4 t;[-06 :::E-.-06 4 BE-06 IE-06 4 EiE-06 5 hE-Ob 6 1<:.-0o 6 ::'f:-06 6. :.-E:.-06 8 ">-F.-06 JE--.JS ::E 05 :.,E.-0.-., GE.-0:> -06 ot::-*::-6 :> OE--06 c;E:.-0.':> 5[-0t. Jf_-06 r:<C-OS 5 'iF-06 6 :'E-Oo 8 SE-Oo CE-03 :;::_. 05 CE<*.'> :,c -06 t.E-Oo 5 OE-06 5E-Oo 9E-06 5 3E-06 lE-06 5 9E-Oo 6 :t-06 8 :OE-06 1 OF.-05 1 JE *05 400 40\"J *lOO <100 400 400 400 400 400 400 400 400 4L*O 400 400 -1(,0 0 [i 1-..M 1 OE-C::. I 2 I <c,T-08 JE:-C"l :'C-O::h CL-t'b 9 S'::-J7 1 GE-06 9 l 3::"0 800 1 ;_* 1--'.M IE-06 1 E 1 '1f.-C'6 CE -09 l CE-C8 lE-Cb -Ct:. lE-C.':> H -C6 l <rE-C6 n -oo 1 'iE-06 1 [100 000 ?E-06 7£.-0o 1 4E-Ot> 1 m:.:-06 1 JE-06 1 EE-06 1 C?E-06 -06 L lE-06 3 OE-06 ::E-06 ::E.-Oo 1 1. 6E-*J::. -<E-06 1 6t.-C6 1 EE-06 :' 7E-06 EE-09 7 4E-09 1E-QB 1 IE-0:3 9 4E-09 G ::::E-09 1 CE::-06 2 C<'f-06 IE -08 9 t f-0'-i "' 2E-06 JF-06 lE-CB 1 t::.:-C6 :.:C:-06 1 1 sao 7E-O!> ?E-C::. 5C: -06 BOO 4L -Oo 1 EE-Oc, 1 SE-C'6 ::*-::.-06 BO:J t.!:_-L)6 1 6C*-06 1 BVO :.-1:.-06 4l-O:. OJO t..'E-06 I Gl::.-06 1 6E -Oo t:t:: -v6 1 oE-06 1 EE-06 E-:*0 500 OE-06 OE-06 000 .. 1 [-06 ()t>06 2 (Jf_-06 sc-o 0L-0.':> J GE"-06 lE -CL, 7[*-06 GUO :E-0'::. ;::;:: -*:t.. C6 3 ;:'!:: -C..8 <*':> *1 :"E-Oo ... ,E -Cb .::'E-. *-C6 ;:*:::: -c '::. 0-E -co 3 UC-Co t:.OO 80\:J l IF_-*:*;:. 5 4F-07 S 9f -07 o 7E-07 fJ :;E-07 8 ?E-07 7 3E-07 9. lE-07 8 OE-07 9 :JE-07 9 9E-07 1 :;E-Oc. 1 lE-06 :E-C6 1 H_-06 2 ;::>E-06 9 l:..--07 4 :::;:: -C"7 iJ 7 .:::£-07 l:f::"-07 6 ':E-07" 3 lE*-::7 7 lt:-07 8 :;:::-07 B l lE-C!> 9 .l't--07 *1[-06 1 I:.,E-C6 1 '-fE-06 9 ':£ l 7E-Oq J SE-*\9 5 t:i:.-09 7 1E-0'1' 5 .;f::-{..'9 t.<:.::-0-1 7E.-09 6 b[-09 '7t-.-0'1' t,E-09 1 t,!:::-*28 1 9:'-07 9 8 El ::'E-07 7 JE.-07 9 1[-07 Cf:.:-07 JE-07 1 3E-Ot> IE-Ot.> :.t.-0-'> l Oo 1 1E-Ca 5 'k-07 5 9!: -07 o 7!::-07 8 8 I:C.-07 :::-07 1E-07 Ot:-07 9 JE-07 9F"-07 1 JE-G6 1 IE-06 ::.*E-06 :*::.-06 f.;--07 4 C!o-07 5 :::;r -07 c.C:-07 7 e-E-07 7[-07 6 :?-07 lE-07 lE-07 8 :JE-07 CE-07 1E-06 9 1 .;E-06 I £*:...-07 4 t.:£:*-Ol 5 8 7E"-07 7 "/E-07 6 8 :E-07 !E-07 8 ::::-07 8 9£-07 IE*-06 9 IIE-07 1 4::0:-Uo 1 t;;oo l::'VC> Jo x;::oo 1;::uo 1.:200 1;:oo 1;::o.::> t.;:oo 1;;:oo 1;::oo 12co 1200 1 6 lo\M 7 4[-C7 3 7E-07 4 It -07' S 9E-07 4E-07 EE-07 4 EE-07 S 7E-07 5 2E-07 6 CE-07 6 JC-07 7 8E-07 7 C!:-07 1 OE-0!:> 1 I !:E:.-Oo 6 3 U -07 5 IC-07 4 Et-07 5 Of-07 :'L-07 5 OE-07 6E-07 5 ;::c.-07 bE-07 6 lE-07 8 <.f-07 l C*E-0.':. 1 :::E::.-06 JE-09 IE-09 1 7[ -07 2 ;:::;:-c-9 ::' ::.:::_-09 6[-0)9 3E-C--7 4E-09 3 CE-09 'Vf-\9 3 ("[-0:;1 3 LE-09 -) C:E-CU *11--07 7!::-07 4 It -07 5 5 S 7£-07 b:.-07 7[-07 b Ct::-07 :::, ::::-.::*7 GE-07 CE-07 1 c::::-0.'.:. 1 .;:*;.,:--:-.:, ::t:.-lb 7 *1f -07 7£-07 lE -C7 "'-:'-07 *H:"-*.J7 S E:t::::-07 fJE-07 7E-07 ;[-CP b c:-07 ::::0:-07 7 ,"";!::-07 7 CE-07 Ct::.-Ob 1 ;::_-*_.::, 1 ::r: -tit. 6 40.::-07 -07 5 lf..:-2*7 7:0:--::7 :::;..-07 2E.-G7 5 CE-07 4 6E.-07 ;:::.-07 6 Cot:-07 IE-07 1.:*-07 1 \r..--_.:. :.:.:.-u::. 6 3 t*E -07 5 ![..-07 7t-::,7 CL.-07 ;;:E-07 5 CC-07 4 tE-07 S ZL.-07 S :-::-07 6 6t.-07 lt.-07 'tl-07 1 t:E-C*.;) :::iL-0.=. I.:."JO 1 t..:.J u.oo l .=oo 1600 1 (..co 1600 1600 1600 16CO 1600 1600 1.=.co 1 1 t..:o l.: ... oo. TCTt-: 0:!:3 >=l7FJ-l TOT:.!.._ ltN C:1S -1270 (Al:-15 UPPER LEVEL -0 00 LC;.;[t. l ['./ -3 00 fr<:c,y ! Rt::.,-..TIVE XOG (5/M**J) n.;rqy 2 CEPL£-;""EO FELt\Tl\i[ U<Tr<-.' :l Fif..t_t,TI'.'E R.\TE. (l/1"1**2> ENTRY 4 xca L!F*r: fNT><Y C[CAYt:.O .1.0J tSn"**3l LIFE 8 00 Q;,ys .6 CEC+f*PL XCl3 (S/t-1**3) -HH.LF LIFE ;: ;;::6 u.-.,yS E.NP:<Y UEC+N'L XOJ !SIM**:JJ -.. IALF LIFE 8 1:*0 PAYS DHRY 0 -;'1i::::H.H:O AFFECTED SECTORS E"NE £ ESE SE SSE. S SSW 1,.151-1 NW N "M ;-'E-07 :' IE-07 41:-07 3 CE-07 ::::: 9[-07 3 07 ::' 7>:-07 1E-09 :,L-09 c;E-07 J <;E-07 3 Z<>07 7[:-07 2 QE;"-07 Q(-07 3 :H:: -07 J 4E-O"J Jt-07 3 7[ -07 6 ::t..-C7 7 6E-07 t.L -07 I tJE-07 OJ:-07 ;:' :..E-07 :JE-07 2 ::E-07 4E-07 2 BE:-o? 4E-07 J IE -07 ?E-07 ::t.::-07 6 *H:.-07 3 4f-OY I E <>*:-JO I :.>E-C-7 l 9E"-0'1 lE-09 I EE-C9 1 -09 I -+*-0'1 1 GE-09 ::E -uG SE-09 CE-09 -07 IE-OJ 41>07 7E-07 'iE-07 S""t;:-(;7 3 :::;E-07 J 4E-07 4 1E-07 -07 :; () ::C-07 7 ::'[ -07 7[-07 <rf_-07 '* 9E-07 :I :C-07 3 -<:::.:-07 IE-07 3 7E *07 5 6 7 6:--07 t.:-J7 :! .... :'1 :=:f -0 J :l-JJ ;:*100 c :-o7 c :-o7 ;:.wo -..: 7 2400 :.:' 7t>07 SE-07 2 it:-01 2-lOO 2400 2 :C-(l7 2 JE:-07 2 .2400 .2400 .:;r-o7 2 c:*-o? -4E-o7 2. m:-o7 2 2400 2400 '..E-07 9E-07 2400 ::J IE -07 <1 d:.-07 :;E-07 6 'lE-07 4E-07 3 J[..*-07 4 t:..E.-07 :; JE-07 6 *lt::-07 ;.:400. ::?400 1 4F:-Ol 1 -l 1 9E-07 ;::> ::t"-07 1 lt-Ol l CJE-07 ;> 7 IE-10 1:-10 CE-10 CE-07 l [-07 CE"-07 1 /C-07 7 7E-lO 1 9E-07 cf...-07 ;:E-07 <.;C:-07 <;:[-07 CE -07 2 1 6[-07 1 JE-09 CE-07 2 1[-07 2 :E-07 6E-07 1 7!::-07 1 9F-07 IE-09 9 9 IE:.-10 1 :E-07 7F -07 3 7[-07 O:E-C7 5 c:::-07 l!::-07 3 1[-07 c_,[-(;7 4 lE-07 H:-09 1 PE*-09 ;:*C-09 l 7E-r.9 lE-09 -07 1 <;[-::'7 ct -o7 c:.-o7 ;::> CL-07 CE-<")7 -,,, .:r-Jr .:*.-o' 1 ';F.-07 c::--07 !E-07 ._: ;::_ ::.:: ,_.7 I l o:.:-07 2 -OJ 1 ::;L-07 :Jl-<J7 '-":C:-07 ;> 7C -07 7E-07 *l -lE-C7 CE -07 ;::> 'f-.*-01 3 ?F-07 -l[-(;7 5 Gt-0"/ IE-*}7 -07 3 Of-07 4 lE.-07 * : -"Jl 1 JL-07 1 ;:. 1 M.-G7 ::_-:_ -07 (:.t*_-07 :J2JO j[-*.)7 1 n:-o 7 1 :E-J7 t.!:.. -07 J:co C[-07 6£-()7 (Jf.:*-07 J200 CE-07 2 6!...-( 7 I t..i: -U7 I J:::co /[-07 J;:vo I 'i!:..-07 ll:-07 2 ,*i..*-07 3 Cl-07 :J 4 !1:"-07 :J;;:_'CO :J.::'CO 3200 4 0 1-1"1 1 (, --07 l ..:r-07 I 'SF-07 I t -'* -1 :I ( ( *l 1 : i -"J I ;'i."-G 7 l =*!..-i":f 4 :, -10 =! -]Q ... .::-10 .. <.J[-10 '*i-)79::'::-.:-;*J'i'<f-(:..J .:f-'Jl '1 r.r-t.d 9 --CJ .;r-G7 '..E-*i.J7 1 :..:::-01 7 -(d '<:-ca ll-07 ::.:-o1 :E-07 1 i\E-07 1 ::.E-07 1 :E-07 I 1 , . -07 I 1[-*J7 t :'C-07 I :T-07 1 :::'t:--07 1 ::f-10 0 9 :'L-10 <.;E-_-10 :'[-10 -:.r-07 1 :.t.:-07 <"(>07 1 4C:.-07 :..t:-07 1 :.-f:-07 :::::-07 1 l[-07 ;'l-G7 2E-07 1 3200 J2CO :J2<)0 :.CiJO J:"OC :J:OO eE-o7 7E-07 1 [ -07 u.:-07 :3 ;--t:-.::.7 :::J 6r -07 4r-o7 1 7t -o; tl-07 ::! H:.-('7 ._ <>: -t)"/ :..l-10 6 t1!:-l0 7 *'t -10 7 Jl-10 H*-L'q ll*d-.' r,t:.-01 7[-07 1r-o7 t.L-CJ7 :.T-07 3 t.C-07 Gr>07 7E-07 :' 1t -07 t..E-07 :3 3 LL 07 4t.-07 1 4F_-07 /F -07 :' IE-07 ,_ 2 :; -07 7 :t-CJ 0 C>CJ l!::-07 1 lf:-07 ;'E-07 1 I 4F-07 1 4E-07 ,"E-07 :' 1t-07 2 ';F-07 -:c..:.J .:;,:.c.o 4 Jco -iC'OO 4000 -40.)0 40CO 4000 4000 4000 401)0 40(10 R H 7 1[-(*J 7 * --*..) 7 !.: -c >j <,. , .. -! *J ::J :: -10 :c. ::-i:. -L
  • 7 1 7 ! L-'_-l 7 7 5 c [ -l,d *1;:JQ TCT/IL r;: '3 lo'l ( r **::..;., [ , T ; ' T' f'Jf),{ ;---[*' q 7f"-Cll I :f -07 l I! -07 1 IE-07 1 :'E-01 1 lf_-07 1 z-:.:-07 1 t 4E--07 t .',!::: -07 lE -07 2 ;.--Cd ti q (:_: ::.,!J d 'd -C*d 0 :E-CH 9 B IE-C,l 9 I 11:..-01 1 JE.-U7 :lf-07 1 d*-07 Ll[-07 :"' ;,_-I.J J 40-10 J tt.:-1() 6 I!:.-I:> <ft.-IC .'_[-10 4 tA"-10 (il-10 .[ 10 t!"-10 5 ',L-!0 B t_.F_-ID l --( '"' -(!J 1 IE.-07 1 lf 07 1 CL-(*l 1f-D7 1 1[-07 1 ::.t:-G7 *H.-07 1 -<l-0/ l -OJ tr -01 :_-[-J7 l It -\Jl lC -01 I I ;._[-01 It -t:.J7 l .*;:--07 *H H.-07 1 u -01 It 01 :"" tt:->J :..E.:-*-*1 <..'F-CB £.!"-0*! fJ .r.:-r*'l q 0[-0d /E-t.:O CJ lf-l'd tt.-01 Jf"-07 _'! -07 ,'L-07 ,-L-('1 t* -C9 t!-LiJ Q C.l-Utl 0 tJL-()d !:l J!..-LJ 9 1f-vt1 H /F-(*:1 9 :r-C'tl l 1£ 07 1 !F-07 _;t-01 ;t-07 r'[ U/ 41JOQ -'i":{lQ 4(,-..;0 .;(,QIJ 4UOO 40JO 11.\<00 4tlOO C*\LMS VPP( H l [VEL -0 00 (,\I n<; l 0Nl. R I ( V -") OJ :. r I tf :;_o ;dl**il\.1 (!H.*:(*Jtlli\l!r:*l C';.M**"I) r,:--o7 ;_'("-ill :.-L 0..,. L: 07 Cl -0/ .'r o7 ot ** rt'...t :. (( 0 l(.j ki\OL <ltM**.*J E J
  • I< ¥ -1 f "y (> l'-(l -ti-".LI-LlJ C. [)1\i:_i )l./ ('.,.t'"H*ll-Hi\.IF l.1f[ fl CO ff *!;'"'! ).l,J II -IIIILF '" 3 Rev. 0 WOLF CREEK TABLE 2. 3-70 (Continued) Page 2 of 3 .'-> >--M A'v*<,;]N_;E CC:NCf.".!IRAi !'..:0:1 *<:'MLYS!:::l iJ,;T-' F[HIGD ,-*J O'J/;'q ;U Q3,.J*l'll0 .. 1 .. **'T<-; l*R lCrlR£CTED SE .._GlF *)1,,f![lN ..:.N[) t.l £:: TH I C 1.-L] Dl*:u. JiJ,, TC.'J, OAr-:::..3 ;,N!J f'ICQRE JOB 7o99-064-07 SShl w::w 1-Jt>IW __ **' oE*O!:l 5 :':E-('9 lE-CB 9 .::E-08 9 JE-08 8 4E-CB 9 G£-08 9 :s;;::-09 9 t3E-OG 1 lE-07 t ;::E-07 1 JE-07 1 6E-07 ll-07 "F-07 'E 4 3 4 ':;E-C.3 ;E-Od -+r:.-08 6 :::C:-08 7 :"E-C8 JE--08 ::E-08 a 9 C!::_-08 Uf".-07 I 4[-07 1 .:_E_-D? l *-C:-0.,. 3 .::C:-10 4£-10 cE:-l*J 4L-10 ::E-10 4 7E-10 *l 6E--!0 t>E-10 :J 71:.-!0 11 lf-10 'fE-10 6E--10 6 1 _-f--().;> .... ::: _ 4E-Ce 7 CF-\:8 9 ;::E-*:8 3 -=IE-('8 9 q 4E-{'B 9 hE-Ca l IE-07 I .:£-07 1 ::.E-07 2E-07 lE-07 _::;-07 ::::-.::.J 5 4E-Ct3 7 o:>*-*B -* ;::E-Q3 8 -lE-... 1 '<E-DG 9 :E--*--'B 9 7E-C8 1 lf:-07 I .:'E-07 1 :JE-07 El[-07 IE'-<'d :.::-J' <l :E<:J 4E-(8 0£-08 .2!:::-28 o :.:E-..:*8 7 .::.E-08 7 :E--09 7 :::E-CB 8 :::E-OB a 'f£-08 OE-07 1 4E-07 ,;E-01 7E:-C3 4 :::::-ca ;;:.:::--::3 5 !t:-08 4E-08 b :E.-*JB 7E-03 7 3E-(JB 7 B g 0£-08 CE-07 l 4'E-07 tE-D7 ::OC:-Jl 5!!00 :loCO SoOC ;;c.,..:;.o :..'.JO 5600 SoCO 5-!.00 S600 51'.,00 :/600 5600 ::600 :::..:...uO b 4 1\.'" l *:::.-i-\)'7 oE-Oa :JE-C3 o C*E-08 7 0E-*J8 c;E-*JB 8 2:::-..:*3 4E-08 a OE-08 9 JE-03 1 GE-07 1 lE-07 :JE-07 1 /E-07 ;E-07 7 "'E-00 ::E-03 ]E-08 -l :'.E-C8 :) :;:=_-.;a 5 :E:-08 6 :;E-08 t..E-08 :E-08 7 lE-08 ?E-08 g 2E-08 1. lE-07 l :E-07 !E:-!0 I :::E-!J CE-10 :E-10 :E-!0 -E-: 4 J <?E-10 rn:-10 4£-10 J lE-10 3 6E-10 5 :E-10 JE-:0 4 oE:--:.a 4 5 9E-C':? ?E-\:8 6 qF.-08 -b ;;'::-\..E -3 :E-C..S -r "E-)9 9 :E-08 1 CE-07 l lF-07 1 SE-07 7E-07 <:<':;_-Q? 7 (J-? .-tE* ,yl 6'l00 .:.f'-*J7 cE-C£3 JE--:::3 '?E-08 SE:.-C*8 b 9E-*:8 6 C£-C*G 8 :E-06 JE--08 8 CE-08 9 JE-08 1 0£-07 1 IE-07 1 SE-07 7E-07 I .::;E-..:a ::.E-*::a ;:-E-ca 4 Q::-*:s :E--::-s 5 ZE-C9 .':> ZE-03 5 oE-CB CE-08 7 GE-08 6E-08 8 I IE-07 I :E-07 l ;:,E.-* 8 J SE-08 3 ;:::::-08 4 OE-08 S :E-CS :E-.:3 !> 2£-08 lE-05 7 1£-03 7 oE-G8 8 JE-08 t lE-07 1 3E-07 1 o*100 b400 6.:.oo 6..100 6400 !>._.CO ;:,..:co ::.400 6400 6400 .!..400 a'lVO t.AVO 6400 7 2 M 3 9E.-08 3 4E-C8 lE-08 6 7!::-08 6 QE-OS '5 <:::E-08 ' lE-CB '5 <;>£-*C8 6 BE-08 8 IE-09 8 6E-08 q 4E-08 1 2E-07 1 ':'E-07 1 u:-o;* '<E-<13 6E--::,>g 9E'-C:3 Cf:-(18 :::E-08 4E--J3 :0:::-CS 4 4E-C8 5 ;E-08 6 OE.-08 o 7 OE-08 *JE-08 1 lE-07 I .:E-!0 9 CE-ll 6C-10 1 c:-:-!:J 2:0::-!0 :3 -.:::-10 oE-!0 :E-10 2 4[-10 eE-JO 2. 6E-10 BE-10 .::E-10 t..E-Hl s -lE-ca :::r::--::8 .:;;::--::a lE-*:3 c.. t:.t:-,::.-s c;E-CB GE-C8 *::E-.:'3 7E-Q8 7 'YE-08 8 ':E-C3 9. 3E-G8 1 ;::E-::>7 :E-07 ::E-07 S SE-:3 :J '7C:-C*8 3 4E-OG lE-:3 7E-C8 o Ot-08 5 ::JE-*J8 7 OE-03 9E-VB 6 7E-JB 8 t.IE-G8 2 oC:-08 4E-G9 .:E-07 5E-G7 1 ::E-..1? :::-E<9 'l-E-"9 SE.-08 SE-OB C£-Gli 4 4E-08 4 :E-*:::3 5 ;::::-ue 4 .1E-C8 CE-*:8 9E-C8 4£-08 9E-08 eE-C8 1 !E-07 1 :E-07 o BE-*:1:3 C£'-08 4 5E-O::i l:'::-02 '5 JE-:18 _. 4E-*:8 tE-08 C:E-08 :;t-CB 7 C£'-08 9E-08 !E-07 1 72CO 72GO -;;;:..Jo 7200. ;-;:co 7::-:o 72.::-o. 7200 t:oo. 72;:)0 72CO. 7200 8 0 "-M 7 --+t:-*::3 :3E-GB SE-08 C£-QB 5 :JE-08 1E-C8 5 OE-C'B 5 7 IE-08 7 e.E-08 B ::::E-08 1 OE-07 1 :JE-07 .1£-07 0E-C3 2£-08 4E -*J8 9E-08 7E-Ca 7E-0S 4E-C8 Z!::-03 6£-08 6 CE-08 7. !.-E-03 GE-GB .:E-07 :E-;Q 1 JE.-10 7 C£-11 I JE-l::l 1 SS-10 i 4E-t0 ::E-10 tE-10 '?E-10 1E-10 :E-10 lE-!0 2 JE-10 -;-:::-10 :.:;:-!C' -::-_-Q 4E-C.3 2 7E-03 4 'iE-*:3 3£-08 :E--J8 CE-08 lE-0:9 c;E-*:*8 5 ;;E-Oi:l 6 <;-£-08 8 CE-08 GE-07 1 J:::-c-7 7 4-E-*)a 7E-CB 4E-OS 9£-GB :<£-.-:;a 5 ('E-0':3 lE-03 0E-<::S 5 4E-0B 7 OE-08 7 lE-08 OE-07 1 :::':-07 1 :c:-C7 ..:.c.-'3 C-E-*:8 4 JE--:;a ::!E-08 SE-'.JB tE-*:'8 .1 ::..E:-09 5 1£-*::8 SE-08 <;o£-08 7=::-:a <::E-0t:: .:E-d :':E-03 CE-08 :E-03 4 .lE-08 9E-08 3 7:::::--::3 ..: :::::-:a 4E-C8 5 .;:E-08 5 tE-08 6 CE-08 !..E-G8 *--::-oa E:OOO CCCO =ooo 8000 <:iC.GC *Jo;oc ;G\;0 <JV'JO. t'.oOCO 'JDOO GOOD :..cvo ";'GT .'\L 35 -9784 :::HAL I NV C3S -I I.:AU1S UPPER LEVEL -*J 00 U1LMS LOWER LEV -3 00 "-EY U. :m-.CENTRATICN-XOG !5/M*tt.JJ NE :'1.1 RY :Er"CSITIGN RArE <1tM**2J Ef>< RY 5 :E:::AYED Xl:::;l) <S;M**JJ -HALF LIFE g 00 DAYS ENTRY 7 :::EC ... CPL :(,JQ <StM**3l -'-'ALF 8 00 DA'tS AFFECTED SECTCHS ENE ESE SE SSE SSY ENTRY DEPLE;"ED n:ELAT 1 V£' CONCENTRATiON ( S tM**:I) ENTRY CECAYED XOQ LIFE EtHRY eo DEC+CPL -fiMLF LIFE 2 26 DAYS ENiRY El -lJISTANCE IN r1t=TERS WNW NN!.I -:3 CE-*:'9 1 SE-C-:3 ;: :E-08 J SE-08 OE-08 2 7E-Oi3 J !->E-08 3 IE-08 J OE-OB 4 CE-09 JE-08 4 7E-08 5 9E:-*J8 7 :.E-08 3 -=.E-C-3 l u:::-os l t:E-SB .;E-Ga 1E-C8 1 9E-OB 2 :E-C9 2 BE-09 -: .::-E-08 J =E-08 iE-08 5 !E-*.JS :.:E<J :E-ll 2E-ll 7 :E-11 1 JE-:c 1 :::E-10 lE-!0 8 :?E-ll CE-10 1 IE.-10 1. OE*-10 :t-10 7E-l0 .:::.E l!) -E<3 ::;E-*:..a :<::-:3 3 .!E-Ca 9E-C8 J 1E-C:8 9E-08 ;::E-08 4 6E-08 IE'-C8 7 :E-:8 8 :E-(:3 -:::-_-3 I '.:E-*:*a :E-JS J :::E-08 :E-*JB 2 3 '.::E-00 3 lE-'}8 3 Cr'C-Vtl VE-08 4 'JE-08 4 ?E-08 8£-03 7 8 :::::-*.:3 CE-:8 l ::E-:3 -lE-(.'8 2 OE-08 1 "1-E-CB 2 4E-08 2 lE-*)8 GE*-00 '7E-*J8 CE-08 J ::'E-013 4 c-E-08 :.E--.,.::; -c-Ca .:.E-*-3 "'E-*.:,a !E-:s 1 cE<B 2 -<E-*:*8 :E-08 1 '1E-*JB 5L-')8 ;:E-*JB 2 !E-OCJ OE-CB J 2C-08 :E-0::8 -::::-:..E1 * .;:::::,::u : 1 :coo 1 :ooo 1 tzooo 12000 1 :ooo 1 1 ::ooo r 2000 l ::coo L2ooo ;:covo 1 ;::ouo 1 :c-.;.e, : ) ,,,'1 :t:-::.8 ::E-03 9 '::E-*J<1 '::E-*JB :JE-08 .:::i-*2:3 9 4E-::;> .::. 9 :"E.-*J9 1. o:..,.:C_-,)8 J -=:C-l! I :.;E-!1 :E-ll 4 :::E-ll IE-013 1 eE-JG 2 JE-08 1 LJE-OEI 1 ;:::-GB 1 l ;:E-C*EJ GE-11 0 q .::E-11 7 :::=:-11 6E-ll cE-08 2 SE-08 J lE-08 3 9E-G8 4 7E-C!8 5 9E-*.:B i?E::-09 I QE-08 JE-08 t..E-08 :*E-CE3 'tE-ll 6 *lE-11 o CE-llo -iE-:1 . ._, ::E-11 -:E-10 L _;::--:;: l :£<*3 -!E-(9 1 -<.::-*:8 :E-08 CE-*Jd 2 4E-08 ;;::E-08 EE-OB 5E-C8 7E-*JB OE-C8 UE-CB 4 ::.E---:.9 5 -:-c-::a ::::::--:3 ::-z:-,-_;:, :-E-09 1 -lf--::3 ::::-r::.a C'E-C*B 1 4E-<:03 :E-('8 E£-08 8E-08 3 9E-,::,g /'E-.:5 5 3 -:::'< :Ee-oc.> c.> ::::-*>7 1 :E-CS I :c.--:'<l 1 :..E-*::a I l *'\E-Cd 1 =::::-VB l 6E-*:;B 1 1 ZE-OEI :*E-08 ::CE-CB CE-<::8 :E-C*B 8 .::> 9 6E:.-*J9 l ::E-08 1 ::t::-0<3 GE-08 2 lE-03 2 cE-CB 3 lE-,)8 l e;,:.,,:.o : 6VGO j l6COO 16000 1 !.>COO. 1 oOOO I oC00 16000 ! !1000 l oOCO 16000 l t..OOO 1 ,_,.:,.co 1 ..... 020 ::: :: ... ., 3 -t'-t 2E:-G9 5 7 "i-E-,J9 l ;::E-GB t lE-08 !::E-09 1 !0::-08 :C-08 1 OE--JE' 1 1 4E'-G8 1 UE-08 :...E-03 :> .:.c:-*J-1 .;.:;:-._)9 4 7E -oJ9 =:t:.-*:09 7 CE-,J'>' GE-(8 CC-09 ::E.-*J9 6 :::E-0" 3 g C£-oq l ll::.-08 I 4E-Qt3 l 3 '[-:.u .::r-us 1£-,la -r:-tl :3 7E-:: 1 E'E-11 "fE-!l oE-11 3 !E-ll IE-11 :.E-11 ;[-11 2 GE-11 3 !E-ll *1 ._C-lJ -c-:;:r Z.£-<':9 7 JE-C8 I !E-08 9 lE-*:'7 lC-0.:3 JE-oJS 9 *JE-0" 1 I *lE-CS I :t._-._:3 :::E-*:.8 <OE-:::8 J :[ 4E-09 7 ;:E-*}9 :t::-08 1 lE-08 q 4F-tJQ lC-*:*H 1 GE-LEi t 1 -1t--*.JU 1 7F-G8 J[-C'*d '*f:..-'.:.!.3 :.::.-Ctl :::._-:? -l :.::.-/} ':l <..'C:-09 CJ 7E-11<7 5 .-.r'.-*J'-1 _., 7£-i)'i 7 --::'-']7 6 CE-_.q 3 *lE-09 1 ,:E-*.'8 1 ::::E-Od *-r: *.a :...-J*, J 4 :'-E_-.-,'7 7 :.E-'J9 6 .:.E-()9 5 c...i.;:-*J9 6 c,>[-oJ9 7 ::E-<!'-f 6 _'[-09 ,, :'E-09 1 1!::.-*:-G 1 *lE-L-3 1 E.-t'.l .:E-* ;_:4: -:;') "'..;.:.c.o ;::.;.:;.::,,) .:::-lOOO =4(*(.10 ..::*+GC,) :..:*lVCO :._-lOCO .:..;000 :'4000 4COO -:-:-r,ot ::.:::--'"';. -,.--*' 71::-'::9 7 7 olF-*Jq 6 :':E-09 6 J :'3-*:.q 4 t=:-uq 3 -:r.-oJ"' 4 --1;:' 'l :..:::-1;: "-*-12 9 ;*t:-11 l ,9 b E:.-*i? :__E_-*,-f :E-::r:-1.. 1 7 "> *E-(.*9 :.::E-... -:; o1 ._;:;--ro :::r -,-,, \0: _,..;; -t>* ** I <*9 4 ;_*E-*!'? ,-t->*J'< _._.:::.o _:::cc _..:::*.:co _;:::..Jco .* ::::.;co Gf -09 7 <.,.E -1)9 7 *'.:C-09 4 4 '"f::-l t I c*t. -I l lf!:-*)9 9 :r:-07 Q t-t:-09 1 IE'-OQ 5 :c--;'7 '-E-*J9 6 .-.E:-11 .;r-1 1 c:--1 l O:'E-uG 1 7F-CJG eE-l 1 :'E -*F< l T-Il 7 *£-*>>> *;::-.:..'>' 7 lt-_l I .:E---"' 7 o"[--::;l *:-*-.';..:;> l ![-* J I -E-.l -*)'>' :::_-.-;'f 6 _;: :, :"-, QE-.-,o 4 :..E-.. 4 ::;::-,:'? .::!:.
  • 1>' £-*-..:r!:! c.t::-'9 L! I . ..::c.,o *J.-::: .. :ll _;:.--::.o ::..:-.: .... o _:ceo ,. -* CiS -'37J4 I*N r:;::; -:M MS Uf'f'U-1 LLVEL -,;t l [V -JO \,E-*::::EJ t-Jl E--3 0::-*-l ,, I ,..c_r <TNY ,:*\} ('}/M**Jl 'T;o! ,[..._.-.r:.L *J , , ......... , _E -1 J :....::I*C:li"T:*...::-.< r-1.\lE (l.rl**2J ') i_;J :HI<'i ;Jif?i *1 r P v ., r HY J ,:*J r1..:.1_1-,,, __ ; i'd'<Y ;:_,-,,,-;; r ;::; (_,IM**l)-,.,.,,j-Lltf q ..)() : .* -.vs **,li-i( 7 1-::.0:*!:f'L 1;:_,] H*\Lf-LJf-f:. fJ )0 ;__[" '*LI*L ,._;j l'..:)IM**Jl -r<*'lf l :>l 2 :N RE!V. 0 WOLF CREEK TABLE 2.3-70 (Continued) "'(} 0 I<M AV[RAGt: :-'ETEO!?OLOGJCAl. RELATIVE CONCENTRATION ANALYSIS DA"fA r>ErHUD TO 03/0*1/30 *'TS -T'R LCr<HECTED Qt.*:; t TE t":C: I EGKCLJ-;;.Y DATE ;.>J-Ni)V-dl '!"J,'1£ 14 34 25 ENE SE wllLF CREEK STAT JmJ ,\NO L iC CG 1\fFEC H::O SEC TCRS SSE Page 3 of 3 NW o ::E-09 7(-09 .:E-0'? 4 5 :-E-09 4 <;l£-(19 4 JE-09 5 1[-09 6£-*)9 4 7E-09 6 ;:E-0'1' 9 IE-09 I 1£-08 1 3 t.E 09 I I ;::::::-:;9 J CE-Oq 2 7[-*J9 2 4£-09 BE-G9 1E-J9 2 6E-09 J 4£-0q 6E-09 <!.£-09 8E-09 lE-Oq 9 ',E-(/1 1 /E-11 4 ::E-1.; 6 CE-12 5 7!:-12 9 <;£-12 1 !E-ll 7 JE-12 8 cE-!.;: 9 1 tE-ll J 1£-ll 2 SE-09 ;:> OE-J<1 3 5 CE-,:,q 4 SE-*)Q 4 OE-O<T E!E-09 .:i£-*)9 l!f 4E-09 5 CE-Oq 6 OE-09 'i' 7£-09 1 ;'E-C8 1 cE-*:3 :JE-S9 '"* 7E-*Jq lE-*J'I 4 CE-09 4E-OG' 4 BE-*:)9 4 2!:-09 OE-oJ9 5 5E-*J9 4 6£-09 6 CE-O-? :E-09 GE-C'i' t 0£-09 1 3E-Ca 1 'E-r;a :£-Q<;l 1 4E-0? I 1E-*JOI (E-;:q SE-0'? 6E-09 2 4E-09 3 1E-0'1' ::1E-09 4 lE-09 J£-G9 6 oE--09 8 CE-09 l 1 ::E-Dq ;E-Oq 3 OE-09 :E-09 2 7[-09 J OE-*J9 2 J ::E-O¥ 3 SE-09 4 ::t-09 7£-G9 6 c;:E-09 9 ... 0000 4GOCO 400CO 40000. .:10000 .;QQOO. 40000 40000 4000\) 40000 40000 40000 40000 4CGOO 400!)0 40000 .. e 0 KM :i .;;:E-C9 1 BE-09 1 4-E-0'7' 3 JE-09 4 SE-09 3 SE-09 3 OE-09 4 4 :JE-*)9 3 4E-09 .; -lE-J9 4 7£-09 6 lE-Oq GE-09 E1 =E-09 1 9 -lE-lJ 7 1 7E-0::; :JE-09 1 -* ::,E-0'1' IE-09 BE-09 3E-QQ 3 :-E-G<T 4 tE-09 ':E'*-09 6 <;£-09 ;:E-ll 9E-!2 1 SE-t;;: 4 lE-12 4 JE-i.Z 7C.-t2 6 3E-l2 8 7£-12 7 7E-12 4 7E-12 5 ':E-!2 6 CE-1;: 6 4E-LZ c <;'£-12 -1 7E-C9 1 t:E-*J9 :::?E-0'>' <>E-*J9 4 CE-09 ZE-Gq 2 EE-09 3 EE-09 CE-,;9 3 lE-09 4 *:c::-,:.q :?E-09 5 o:;:;:-oq OE-0Q 7 O::E*-09 1 :*E-Ca CE-09 7E-09 4E-O'T' 3 ;;;:£-09 4 JE-09 4E-09 J CE-09 4 OE-09 .;:£-,)9 3 :E*-09 4 :E-C>9 :i cE-O<? 7 :;.E-*:::q 8 JE*-09 1 :JE-:3 4E-C9 :E-10 6 t:E-1C 1 IE-09 1 7E-09 1 2 OE-09 tE-*19 1 2 2. 2 <CE-09 7£-Q<;l 4 lE*-*Jq 6 ::E-C9 6E-C9 9 tE-10 7 ZE-IC l 7E-09 JE-09 1 SE-09 1 6E-09 IE-09 1 7E-09 _.E-09 3 IE-09 4 C£-0? 4 4E*-0'7 6 4GOOO 48000 48000. 48000 43000. 48000 48000 43000 48000 4fJCGO 45000 48000 *WOOO 0 l-4.M 4 ;::E-09 1 JE-09 1 OE-09 2. 7E-09 3 7£-09 7£-09 2 :::;E-0'1' 3 3E-09 3 6E-09 3 :..'E-09 3 4 7E-09 6 0£-09 6 UE--09 1 c,:;:-013 !E-09 6 3E-10 5 CE-10 l 4E-09 1 CE-09 1 JE-09 1 ;;:E-09 1 6E-C9 1 1 :E-09 7E-C9 -::E-'::9 2 4!:-09 OE-09 JE--J<'1 5 ;:*S:-0'7 9 ;:E-12 et::-12 Q 3 3 2 5E-!2 4 4E-12 6 4E-12 7E-*2 :J 2£-12 SE-.i2 !E<2 4 E:E-12 :E--12 l 5E-Il 3 7E-09 IE-09 9 7.;::-10 4£-09 .2E-09 4E-09 c.. lE-09 3 CE-C*9 2E-09 2 JE-09 <;"E-C'-? ::E-0'1' ::C-09 4E-**J9 q :?E-09 4 CE-09 ;::"E-09 9 C.E-10 6E-09 e:E-09 2 JE-09 3 2E-09 3 -+E-*:19 ;;:: J ::C-09 4E-C'9 4 CE-\:q BE-09 5E-**J9 1 CE-C*f3 1 9E-C9 "-E-10 GE-10 1 2E-Q9 t.E-09 1 ;;:E-09 1. lE-C9 l .::£-(,;;;> 2E-09 :-c-,:9 oE-09 lE-Oq 7C-C9 7E-*J<>' 4 "."E-09 2 JE-09 6 CE-10 9E-l'J ::;;c:-09 1. SE-Qq 1 :E-09 1 :E-09 1 6E-09 :"£-r,q ::?E-09 tE-*:9 1 7E-09 :E-09 S:E-09 2 c;E**09 .::E-09 56000. 56000 SoQOO 56000. 56000 56000 5.:0000 ::.60CJ 5b000 56GCO ::0.'.>000 ::4 0 J ZE-09 9 JE-!0 7 7£-10 1 BE-Oq oE-09 1 9E-09 SE-09 2 5£-09 7E-C*G' 2 Ot!-09 3 <:;£-09 4 6£-09 4 8£-09 8 *':t-r 9 3 7E-10 8 :;;:::-09 :E-10 7E-l0 1 0:£-09 1 3E-C9 9 7E-l0 t *1E-G9 l 2 'JE-09 :E-09 J =<E-J9 JE-12 .;;::E-12 6 7£-lJ l E::E-12 IE-!2 7E-12 4 CE-12 2 :3£-12 .:.o:::-12 !E:-!: SE-12 3 SE-12 4 I :s-11 CE-.:9 SE-10 6 oE-!0 l :::E-09 I 7E-('9 1 t.E-09 2. :::;.:;:-09 .;E-:9 1 SE-0° :E-*::*'7 :::0-C-" J :£-*:.o 4 ::C-u9 7 1£-\)'1 !E-*::.:7 8 tlE-10 JE-!0 1 :-'E-09 2 9£-09 1 7E-09 SE-09 cE-C9 1 r;>£-09 JE-G9 3 S£-09 -\ eE-*J9 4 ">E-*.9 7£-0q 1 :.£-C'? SE-10 ;;:::-10 7 .;E-!*J 1 1E-*29 !E-10 7 2E-l0 :E-J9 I ;;:£--::9 13 t:E-10 1 -t:-IJ9 :::E-'J9 !£-!)9 4 Z.E-10 6 :E-(;9 9 *:E-10 3 -1£-10 1 :E->'Il o ::E-!0 1 ;::::.:-.;9 I ::;::-.;:;9 1 SE-09 ;:::::-09 7C-09 t.ACCO .:;,4000 o4Cl00 e;,4QU.J ::4000 o4C;)0 ,:,..;c,.,:::o 64*JCO :;:;.-0.:..0 ::*lc;,:;o .:;.-1000 .C>*H.*GO. . .-1G00 TCJTAL C:JS -TOT.l.L INV ODS -!270 l.Pi=lER LEVEL -0 0:-0 LO-.."ER LEV -J CO r<EY ENTR'I' i=<E:_AT!'-1£ '-'CO ENTI?Y i<E-ATIVE COTK[NfRATICN lS/Mn .. n KE._.:.fl\.E 4 ;:;ECA*E:J :::C') CS,,"'*<:-]J -rlr;LF L!FE ;:.:, Jl*,'rS ErliKY '; LC::AYED (CJ -L:=E 3 00 J.:.YS E.l\.fFIY .. [,F-L X['.,J CSIH""]) -H*\LF LIFE 2 26 DAYS E:.NlRV 7 GE>LPL 'GQ {5/M.u]) -HALF LtFE 8 00 :JA"VS ENHlY 3-IN r-'.ETFRS flNE NE ENE ""2 0 I(M ESE AFFECTED SSE sw N .... ::E-J9 7 lE-10 o 1 ZE-*JQ ! 4E-09 1 .:o::-,:-9 lE-OQ 2 !E-cq 1 cE-09 G::::-.:;9 4E-09 J :t-C,Q 3 .::;E-09 3 <:<E-<)9 4£-Vq I.E-*)q 7E-l-J 9 :E-10 !> c.E-10 b ::E.-!J -=:-tO 9 7 :E-10 :3 ;:;::-10 l :E-09 1 ::E-09 1 CE-09 1. CE-<:;9 CE-OQ a ::>E-12 8 8E-IJ 4 >:;E-!J :E-1.2 1 -lE-12 i.E-12 z:::-12 <;E-!2 1 7'£-!2 :.C:-1.2 7E-;.2 J >t::-OQ EE-!0 !E-t*) C'E-09 1 t;E-:J9 ;:::E-L:*9 1 ::;:::-'}9 1 .!E-*:.9 ::E-*:9 iE:-*:*9 Ot-.J9 :.E-*:*c; J 4E-*.)9 cE-*.J':' :E-v'l c 7E-:O S C.E-10 1 :.::E-Gq l SE-*)9 CE-,)9 lE-C:9 1 t:E-09 t -::E-0'i' :.:::-09 3 ;::::-C9 J 7E-09 3 CE-r,9 6 :E-O'il -;E-10 2 7E-10 -lE-10 i?E-LJ -::'E-10 7E-10 3E-IO 8 8 '"E-10 c !>E-10 -lE-JJ BE-IO :E-09 6£-09 I 6£-*)9 :.E-C9 1 JE-J9 3 !E-!0 5 4£-10 e:E-!0 6 :E-10 6 :E-10 9 4E-l0 9 .:;.E-!0 7 2E-10 ::0:-10 lE-*:9 !:E-G9 7E-09 I SE-*.Fi' "E-09 ;-;coo 12coo 7.-::'Goo ;:coo -::coo :--;:;aoo 7'2VJO -;;:coo :;;:.c..co /.:GOO 'Z*OOO 72000 7,:oc.o 30 0 ;.<.M :)E-09 5 4£-10 2E-!O 9 CE-10 SE-09 !E-09 ;:E-09 t 7E-Q9 t 7E-09 4E-09 r::-E-10 2 :J:::::-10 JE-10 .JC:-10 7E-IO C-E-10 :E-10 7 5E-10 7 ::.E-10 SE.-1;;;: 6 :E-LJ 3 EE-13 00E-1J 3 :E-13 7E-l;:' 2. oE*-12 :E-12 l *<E-12 l 'E-*.J9 4 4E-10 4 J.E-10 4E-l0 1 .:<::-09 9 :E-tC 1 C*E-09 1 l SE-09 ::'E-09 lE-10 -l 9E-I*J ::E-10 .JE-09 1 !E-09 1 lE-09 1 oE-09 1 .:£-09 I ::E-09 7E-:O GE-10 q£:-10 :E-!0 .:.E-10 4 ZE-10 t:E-10 6 e:E-10 5 .;E-10 8 "'>f:.-10 JE-10 2 ;.'.E-!0 :::J 8E-10 6 .::E-10 4 7:;::-10 1£-10 7 3£-JO :E-IJ 6 CE-10 cooo.J aaooo ooooo Boooo ooo.::o ocoee soooo ooovo scoco :-C")TAL c::JS "E:.f (..:1-lf -*';IV( 1. l ,, r
  • E -,;ot;-' . ' ' ;.l.L !"JV O::JS -1.:70 -A(l:j tS/MtHI)) ?:::;=: T :r::..1 < I -..... 3; ! .... J) -l :; : c:'. '( ':.t::-CG CE-oq 2 SE-09 3 :.E-09 J :.iE-09 :J ::::E-09 :-'E-1::: c;E-10 1 .:E-09 1 4£-09 1 ::E-09 2 JE-09 :.E-l2 CE::-12 lE-12 CE-12 2 7 IE-1;::' t 2 ..!E-*:::9 7E-V9 E:t:-)9 4 ':.E-*J9 4;::-1)9 ::;E-09 7E-C9 3 lE-09 J :c.-c:q 4 "-E--::::;* ..,. EE-10 I rE-09 1 ::E-09 l :E-09 "E-10 3 .... E-!0 I ZE-09 1 _.£-Q<;l 1 :::_-n<;;' CIOOCO 00000 iJOOOO aOOOO 8000.) 8JJVO =-*=..:.d: t'S \ t ::.; -.0 J **I.Li*fl',[' . ._l_t..l! <Ali. ,J * -} ( -' :"' .. -. ' **** ; ,: ,_ : f -:.;: *.,; :: *... , 'l*<.) -..> 11* **.< I REV 0 WOLF CREEK TABLE :2.3-71 1\V!HAGt--Clll'lCENIRt\li{lhii\NI\LYSit-; LMfA 10 03/04/DU ,"\r1Nl/t,L f\VLHAGE < GROUI\lD) Sf'LCIAL f'El -T!R COfmECTED l'lETEUNOlOGY Df\fE 23--NUV-[J 1 T IJ*IE 14 J9. 46 EN[ E ESE E.\CL US ION BOUNDARY SE L-/ULF CfXH-.K CFNUiATING STATION KANS;\S GAS AND E.LECTRIC CO flUf{ll TON, DAtiES AND I"!OORE JOB 76'19-064-07 AFrEC I ED SEC TORE! SSE S SSW sw 1 lE-O;, 5 4t-07 5 9E--07 9 7E-07 8 SE-07 G 7E-07 7 3E-tY/ 9 9 BE-07 4 BE-07 5 JE-07 8 7E-07 7 6E-07 7 BE-07 6 8 9 6E-09 3. 2£-09 2 5E*-09 4 7E-09 3. SE-09 3 BE-09 5 6E-09 7 1 1E-C6 5 4E-07 5. 9E***07 9 ?E-07 8. SE-07 8 ?E-07 7 JE-07 9 1 lE-06 5 4E-07 5. 9E--07 9 ?E-07 8 SE-07 8. ?E-07 7. 3E-07 9 9 SE-07 4 GE-07 5. 3E**07 8 t..E-*07 7 6E-07 7 7E*-07 6 B 9 BE-07 4 BE-07 5 3E-07 8 ?E-*07 7 6E-07 7. ?E"-07 6. 5E-07 8 lE-07 1--J OE-07 9 JE-07 9 9F-07 3E-06 1 ll:-06 1 l BE*-06 2 ,:'E* (:6 lE-07 7 lE-07 8 3E-07 B 9E*-07 1E-06 9 4E-07 1 'IE-06 1 6E:*-06 1 (:*6 lE-09 5 4E-09 4 BE-09 7E*-09 6 :,jE-09 6£-09 5 4F". -09 1 6E-(Al 1E-07 8 OE-07 9 3E-07 9E*-07 1 3E-06 lE*-06 1 5E-Oh 8E -06 2E-C6 lE-07 8 OE.-07 9 3E-07 9 9E*-07 JE-06 1 lE.-06 1 5E-.-0.'J BE -06 2E-.-C6 lE-07 7 l£-07 8 3E-07 8 8E-07 9 *1E-07 1. 4E-0<'J 6E*-06 "/E-C6 lE-07 7 tE"-07 8 3E-07 8 9E--07 lE-06 9 4E-07 1. 4E-Oh 6E**06 'fE-C:6 12u0 1200 1200. 1200. 1200 1200 1200 1200 1200 1 ;:oo 1200 1200 1200 1200 1200 1 LU\.J f'Of'ULATION ZONE 2 OE-07 9 4E.-08 9 9E*-08 4E-07 1. 5E-07 1 5E-07 1 4E-*07 1. 4E-07 I. 4E-07 1 SE-07 1 8E-07 7E-07 2. OE-07 2 7E-0"l 3 2£*-07 3 0E -07 1 6£-07 7 6£-08 8. OE-*08 lE-07 2£-07 1. 2£-07 1 1£-0i' 1 2£-07 1 2£-07 1 2E-07 1 4£-07 4£-07 1. 2 2E*-0' ;-* 6E-*07 2 9£-0/ 1 4£-0? 4 5£-10 3 2£-10 3£-10 BE-10 5. 1£-10 8. 5E-l0 9 OE-10 7. BE*-10 6 2E-10 6. 4E.-10 6£-10 6. 9E-10 8 OE*-10 1 2£--09 VE-09 OE-07 9 3E-OB 9.8£-*08 1 4E-07 1 '5£-07 1 'SE-07 l 4£-07 1 4E-07 1 4E-07 5£-07 1. 7F-07 7E-07 2 OE-07 2 7£-0' :t .2E-07 3 2 OE-07 9 4£-08 9 9E*-08 1 4£-07 1 5£-07 1 5£-07 1 4£-07 1 4E-07 1 4E-07 5£-07 1. 8£-07 1 7E-07 2. OE-07 7£-01 3 2E--07 3 6E-OJ 1 6£-07 7 5£-08 7. 9£*-08 1. lE-07 1. 2£-07 1. 2£-07 1 1£-07 1 1E*-07 1. 2E-07 2£-07 1 4E -07 1. JE-07 1. bl:"-07 2 2£-07 2 6E**Ol 2 CiE *07 1 6£-07 7. 5£-08 7 9£*-08 1. !E-07 1. 2E-07 1 2£-07 1. lE-07 1. 2E-07 1. 2E-07 2£-07 1 4E*-07 1. 4£-07 1 6E-07 2 2£-0"/ 2 6£--07 2 4023 4023 4023 4023 4023. 4023 402:1 4023. 4023 4023 4023 4023. 4023 '7E-07 40:::'3 NEAREST RESIDENT 1 5£-07 1. 7£-07 1£-07 1. 4E-07 6£-10 8 6£-10 4£-07 t 6£-07 4£-07 1 6£-07 lE-07 4E-07 5E-07 2 2E-07 3E-07 1 9E-07 5E-10 9. 6E-10 :JE-07 2 2E-07 5£-07 2 2E-07 3E-07 BE-07 2 5E-07 2 lE-07 8 9E-10 2. 4£-07 2. 5£-07 2. OE-07 3 3£-07 1. OE-07 9. BE-08 1. 4E-07 1 9£-07 1. 6E*-07 2 1E-07 1 6 7£-0"1 3 GE--07 8 8E-'J/ 2 GE-07 8. 2E-OE! 7. 6£-08 1. :2E-07 1 5E-07 1 2E-07 1 7E-07 1. 3E.-07 5 7E--O"/ 3 lE *07 7 5E-07 1 3E-09 6. OE-10 5. 5E-10 7 BE-*H) 8 2E-10 5 6E-10 8 7E-10 5 3E-10 2 IIE*-O'l 1 4E-*09 5. '7E"-09 3. 3E-07 1 OE-07 9. 7£-08 1. 4E-07 1. BE-07 1. 5E*-07 lE-07 1. 6E.-07 6 7E--0:7 7£-*07 8 OE-07 3. JE-07 1 OE-07 9. 7E-08 1. 4E.*-07 1. 9£-07 1. 6E-07 2 lE-07 1. 6 7E-07 3 BE*-07 8 GE-07 2 SE-07 8 lE-08 7. 5£-08 1. 2E-07 1 5E-07 1. 2E-07 1 7E-07 1. 3E-07 5 7E--O:' OE-*07 7 lE-07 4E-07 3E-07 9£*-07 2. OE-07 27:15 2 BE-07 8 1E-C>B 7. 5£-*08 1 1 5E-07 1. 2E**07 1 7E-07 1 7E -07 3 lE-*07 7 J:0:*-07 4908 2816 3138. 2816 2333. 4827. 5632 40:23 3379 4344 :1540 2092 J540 2172 NEAREST VEGETABLE 1 2E-*07 1 .2[-07 1 3E-07 2. 2E-07 2. 5£-07 3. 3E-07 9. 6E-08 9. BE-08 5 7E-08 1 2t-o? 1. 6E--07 !E-07 1 6 OE-07 3 7E-*07 fE-07 8 9£-*0B 9 7E-08 1 DE-07 1 9E-07 2 1E-07 2 BE-07 5£-08 7 6E--08 4 3E-08 9 2E-08 1 2E--07 1. /'E-07 1. 3:=:-07 JE-07 OE-*07 S.::-07 7 3£-10 5 9E-10 4E-10 9 6E"-10 8 9E-10 1. 3E-09 4E-10 5 5E*-10 4 bE-10 6E**10 8 7E-10 5 3;;:-10 2 1E-Oc/ 4E--09 *07 1. lE-07 1 .2E-07 JE-07 2 2E-07 2 4E-07 :3 3E-07 9 5E-(1iJ 9 7E-0El 6E-08 1 .'2E-07 SE-07 2 !E-07 1 6..=:-07 6 OE*-07 3 7E-*07 3 EJE-07 1 2E-07 1 2E-O'l 3E-07 2 2E-07 2. 5E-07 3 3E-07 9 5E-0Ft 9 7£*-08 5 7E-Of! 1 2E-07 6E*-07 2 tE-07 7-:;;.-07 6 OE* 07 3. 7E-*07 8 m: *07 8 SE-08 9 6E-08 JE-07 1 BE-07 2 OE-07 2. 8E-07 7. 4E**U8 7. 5E-08 4 2E::**OB 9 lE-08 2E-07 7E-07 3=:-07 5 3 OE-*07 7 **01 B '=iE-08 9 7E-03 JE-07 1. 9E*-07 2. OE-07 2 BE-07 7. 5E-OB 7. 4 2E-08 9. lE*-08 2E*-07 7E-07 3.=--07 5 lE-07 3 OE-*07 7 5792 3379 3540 2816 2735. 2333 5149 5632 7401. 1827 4344. 3540 4-S66 36:.!0 TOTAL ODS -8784 TOTAL INV ODS -1270 CALI'1S UPPER LEVEL -0 00 CALMS LOWER LE'J -3 00 KEY ENTRY 1 RELATIVE CONCENTRATION -XOG CS/MII-*3) EI-.JTRY 2 DEPLETED RELATIVE" *:ONCENTRATICI'.J ENTRY 3 RELATIVE DEPOSITION RATE (1/M*-11-2) ENTRY 4 DECAYED XOG -HAlF 2 '26 U,\YS ENTRY 5 DECAYED XOG CS/M**3) -HALF LIFE 8. 00 DAYS ENTRY 6 DEC-+DPL XOG (S/MH'.3) -HALF LH-E 2 '26 ENTRY 7 XOG (5/M-11--11-3) -HAL.F LIFE 8 00 DAYS ENTRY 13 -DlSTANCE IN MET£"HS AFfECTED SECTORS NNC NE ENE ESE SE SSE S SSW sw WSW w NW N NE:AHLSf MEAT ANIMAL 1 OE-06 5. 3£-01 5 'YE-07 4 2£-07 3 8E-07 4. 3£-07 9 6£-08 1. IE-07 1. OE-07 3 OE-07 3 4E-07 3 1 6E-07 2 9E-07 4 '3£-07 l -06 8 9E-07 4 7£-07 :JE-(,7 6£-07 3 3£-07 3 7E-07 7. 5E-08 8. 3E-08 7 BE-08 2 2 BE-07 2 7E-07 1 2E-07 4E-07 3 O!:o *0<'> B ?E-09 3 1E*-09 2 :JE*-09 9£-09 1. 5E-09 1 BE-09 5 4E-10 6 lE--10 4 9£-10 1 1 4E-09 1. 'lE-09 5 OE-10 8 9E-1C 7E ,09 n H --O'J 1 OE-06 5 JE-07 5. '7E-07 4 lt:-07 3 BE-07 4. 3E-07 9. 5E-OB 1 lE-07 '7 9E--08 3. OE-07 3 3E-07 :1. 2E.-07 1. 6E-07 2 9E-07 JE-07 .1 2L -Oh 1 OE-06 5 3£-07 9E-07 4. 2£-07 3 BE-07 4 3E-07 9 5E-08 1. lE-07 '7. 9E-08 3 OE*-07 3 3E-07 3 2E-07 6L-07 2. 9£-07 4 3E-07 1 8 9E-*07 4 7£-07 :3E-07 3 6£-07 3. 2£-07 3 7£-07 7 4E-09 8 2E-OB 7 7E*-OB 2 2. BE-07 2. 7E-07 2E-07 4E-07 3 1 OE:--0,::> 8 9E-07 4 7E-07 3E-07 3 6E-07 3. 3E-07 3 7E-07 7 5£-08 8 2E-08 7. 7£*-08 2. 2 SE-07 2. 7E-07 2f:--07 2 4E-07 3 5E-07 1 OE-*0<::0 1207. 1207 1931 2011 1931. 5149 5310. 5310 :;?574. 2414 2735 40::'7 3701. 3218 17/0. DAiRY COW 8 OE-*08 7 IE -08 5 '?E -08 5 6-E -08 4 6E 10 3 2E-10 7 OE -08 DE -08 qE-08 lE-08 8E**08 5£-08 5 9E-08 5 6E-08 7562 4827 2 2E-07 3. BE-07 4 3E-07 7. OE-08 9E"-07 3. :JE-07 3 7E-07 5 3E*-08 NONE 6E."-10 1. 5E-09 1 BE-09 3. 7E-10 IN 2. 2E-07 3. 8E-07 4. 3E-07 6 9E*-08 THIS 2 2E-07 3 8E-07 4 3£-07 6 9E-OB SE:CTOR 1 BE-07 3. 2£-07 3 7E-07 5 2E-08 1 9E-07 3 3E-07 3 7E-07 5 3E-08 2816. 2011 1931 6436 NEt'\RE:;.ST PLANT BOUNDARY NONE IN THIS SECTOR NONE IN THIS SECTOR NONE IN THIS SECTOR 7 6E-08 5 6E-08 2 3E-10 7 4E-08 7 SE-08 5 5£--08 5 6E-08 7562 NONE IN THIS SECTOR 1 Bt::-07 4 1. 4E-07 3 !'lONE 4 SE-10 1 7E-09 IN 1 7£-07 4 THIS 1. 7£-07 4 3E-07 1 :JE-07 3 5E -07 1 4E-07 3 5E-07 56:12 3218 NUNl II< SLC l l1H 6 '5E-07 2 6E-07 2 .t;E-07 2C -07 4 OE-07 6E-07 1 OE-07 1 1E-07 4E-07 3. lE-07 3 4E-07 2 9E-07 2. 2. 6E-07 6 a -Oo '5 7E-07 2 JE-07 2 OE-07 6£-07 3 SE-07 OE-07 8 2E-08 8 3£-08 OE-07 2. t..E-07 2 BE*-07 2 4E-07 2 tE:-07 2 1E-07 5 5E-07 1E.-5 4E-09 1 5E-09 B. E:E-10 1 9£-09 1 6£-09 1. 9E-09 6 OE-10 6. 1E*-10 .l 5£-*09 1 4E-09 1 4E-09 1 3E-09 9 1E-10 7 5E-10 2 7E-0'1 El L.E"-09 6 5E-07 2 6E-07 2 ::E-07 4 lt-07 4 OE-07 4 6E-07 1. OE-07 1 lE*-07 4E-*07 3 lE-07 3 3E**07 9E-07 2. 2 6E*07 6 SE-07 1 ;2E-0t> 6 5E.-07 2 6£-07 2 :lE-07 4 :?E-07 4. OE-07 4. 6E-07 1 OE-07 1 lE *07 4E**07 3 1£*-07 3 3E -07 9E-07 2 SE-07 2 6E-07 6 07 l ;2E: -Ot, 5 bE-07 2. 2E-07 2 C*E-07 3 6E-07 3 5E-07 4 OE-07 8 lE-08 8 2£-08 OE-*07 2 l:E-07 2 8£*-07 2 4E-07 2 1[-07 2 OE-07 5 5E-87 l 1E-Ot, 5 6E-07 2 3f-07 2 C*E-07 3. 6E-07 3. 5E-07 4 OE-07 8 lE-08 8 2E-08 OE-07 2. t.E-07 2 8£*-07 2 4E-07 2 1[
  • 07 2 lE-07 5 5E-D7 1 1E-06 17tJ4 2076 1931 1931. 1866. 4827 5310 2767. 2478 2414 2030 3:-:'79 4183 17 ,d fOTAL OUS -8784 TOTAL INV OBS -1270 CALMS UPPER LEVEL -0 00 CALMS LOWER lEV -:1 00 KEY ENTRY RELATIVE CONCENTRATION-XOQ CS/MII-*3) ENTRY 2 DEPLETED HCLAllVE ENfRV R[LAriVE DEPOSITION ( 1/Mif-11-2) ENTRY 4 DECAYE-"D XOG CS/MH:J) -Hi\! I* lIn-: ;-> ;:::>/, 1),,-.,.s EtHRY DECAYED XOQ <S/MII--11-3) -HALF LIFE B 00 DAYS ENIRY 6 DEC+r,PL XOG (5/MII-IU) -lli\L.F Llf E ;'b !Jt,'.-S DHRY 7 XOG <SIMII--11-3) -11/\lF LIF-E 8 00 D/\YS ENrRY 8 -DFili\NCE IN I'Jt-TliFI Rev. 0 WOLF CREEK TABLE :2. 3-72 "This Table ha:::; been deleted" Rev. 0 WOLF CREEK TABLE ;2_ 3-73 "'I'his Table has teen delete.c:'P' Rev. 0 WOLF CREEK TABLE 2.3-74 f"*Lf[ORLli.OGICAl HU.ATIVE CUNCENTRAIIUN ANALYSIS Page 1 of 3 0f\lA fTifiOO 06/01/13 ro D310,ttuo ;,Ni'JU.6L i\\/f_i(AGL I Gi-<tJUND J 5T;-\NCMW P 15 r /R CUrWECTED ON:)ITE r!ETEOROLUGY -:J YEARS DATE 23--NOV-81 f!i*!E lU 13. 10 tJNl: ENE E ESE 0 4 Kf'"l SE CREE:.K GENU<;-\ I INC STf\rl!ll*l Kt\N::-iA:::-1 G;-\5 AND Eli::ClfllC CO BUHL I NG TlJN, Dflt'IES AND I'IOORF ,JO!J 7t.89-064--0J AFFECTED SSE S :;sw cw 6 -Ot. 3 lE-06 3 ::::E -06 5 3E-06 4. lE-06 4 9E-06 5 OE-06 4 8[-06 5 3E-06 4 ?E--06 4 9E-06 lE-06 4 9L-06 7 6E CJ6 1 1f -0::. l o:, 6 lE-06 3 OE-06 3 OE--06 5. OE--Ot. 3 9E-06 4 t>E-06 4 7E-06 4 5E-06 5 ;)E-06 4 4E *06 4 7E-06 4 9E-06 4 6L-06 7 Z:L::: 06 1 (1[-0:0 1 5 :JE-08 OE-08 1 4£--08 2 OE-08 2 BE*-08 4 OE-08 3. 6£*-08 3 2 4E -08 2 2 6£"-0B 3 2E-08 :Jt:.-CfJ 9 lf. C'[:! b 1E-06 3 2E*-06 ::JE-06 4 lE-06 4 GE-06 5 OE-06 4 SE--06 5 :3E-06 4 7E-06 4 9E-06 5 1E-06 9f**-06 7 t..E*G6 1 lE-05 l *. C o 1E-06 3 2E**06 3E-06 4 1E-06 4 BE-*06 5 OE'"-06 OE>06 3[-06 7E-06 4 9E-06 5 1E-06 9F-06 6[-0fo 1 ::L <*::. 6 lE -06 2 9E-06 3 OE *06 OE -06 3 9E-06 4 6£-06 4 lE*-06 SE-06 :>E-06 4E -06 7E-06 4 9E-06 bF-06 :::'E--06 OE-05 l[-O:J 6 IE*-06 3 OE-06 3 OE-06 OE-06 3 9E-06 4 6E.**06 4 7E-06 SE-06 DE-06 4£::-06 7E-06 4 9E-06 6E-06 7 Of:...-O::i tr v, 400 400 400 400 400. 400 400 400. 400 400. 400 400 400 ij(JQ 4(J() t](J() 0 8 KM 2 OE-06 9 9E-07 1 OE -06 1 6E-06 1 4E-06 1 SE-06 SE-06 1 7E.-06 1. ?E-06 1. 5E--06 1 SE-06 1. SE-06 1 6E:.-06 2 t,E-06 3 7E-C16 8E-06 9. 1£-07 9 2E -07 1. 4£-06 1. 3E-06 1. <'IE-06 3£-06 1. 5£-06 1. :JE-06 1. 3E--06 1 4£-06 1 7£-06 1 2. 3£-06 2E"-06 3 <iE-06 BE-08 7 OE-09 4 6E -09 8 lE-09 7 5E-09 9. 7£-09 2£-08 JE>OB 1. lE-08 7. 9E-*09 8 3£-09 9 9 IE-09 1 :;.*E-08 2 OE-08 3 08 2 OE-06 9 9E-07 1 OE-06 6E-06 1 4E-06 1. 5E-06 1. 5E-06 6E-06 1 /E-06 1. 5E--06 BE-06 1 6E*.-06 2 5£-06 SE-06 3 /E-06 2 OE-06 9 9£-07 1 OE-06 6£-06 1 4E-06 1 5£-06 1 SE-06 1. 61:0-06 1. 7E-06 1. 5E-*06 5E-06 BE-06 1. 2 5C-06 5E-06 3 /E'"-06 1 BE-06 9. IE-07 9 2E -07 4£-06 1. 3E--06 1. 4£-06 1. 3£-06 1. SE-06 1 :JE-06 1. 3E-*06 4£-06 lE-06 5E-06 2 :JE-06 2E-06 3 -06 1 8£-06 9 1£-07 9. 2E -07 1 4£-06 1. 3E-06 1 4£-06 1 3E-06 1 5E-06 1 :lE:.-06 1 3E-*06 *lE-06 1 /E-06 '5E--06 3E-06 3 2E-06 3 'H.:::-06 800 000 800 800 800. 800 BOO 800 800 BOO. 800 GOO ClOO. 800 !JOO 300 1 2 KM 1 OE-06 5. lE-07 OE -07 7 3E-07 7. 3E-07 8. 1E-07 7. 5£-07 8 4£:-07 8. ?E-07 7 7E-*07 7 9E-07 1 OE-06 7 9F-07 :JE-06 1 BE-06 1 LIE_-06 9 OE-07 4 6E-07 SE *07 6 6£-07 6 5£-07 7 2E-07 6. 7£-07 7 5E-07 7 ?E-07 6. 9E-07 7 OF-07 9 7 2E-06 1 6E-06 1 \16 9 2£-09 3 5£-09 2 3E -09 3 BE-09 3. SE-09 5. OE-09 6 2£-09 6 4E-09 :JE--09 4 1E-09 4 2E-09 5 2E-09 4. 4E-09 6 OE-*09 9 8E--09 I OE-06 5 IE-07 OE *-07 7 :JE-07 7 3£-07 8 OE-07 7 5E-07 8 4E-07 ?E-07 7. 7E-*07 7 9E-07 l OE-06 7 9E-07 1 :JE--06 BE--06 1 '"1E 06 OE-06 5 tE-07 OE *07 7 3£-07 7 :::JE-07 8 1£::.-07 7 SE-07 8 4£-07 8 ?E-07 7. 7E-*07 7. 9E-07 1. OE-06 7 1. 3[-06 BE-06 1 *:iE -(lb 9 OE-07 4 6£-07 4 5E *07 6 SE-07 6. SE-07 7. 2E-07 6. 7£--07 7 9 OE-07 4 6£-07 4 5E-07 6 6£-07 6 5E-07 7 2E-07 6 7E-07 7 SE-07 7. 7E-07 6. BE-*07 7 OE-07 9 2E-07 7. OE-(J7 1 2E-06 1 6E-06 1 :c l*6 5E-07 7 7E-07 6 BE-07 7 OE-07 9 2E-07 7 OEC:-07 1 2E-06 1 t..E-06 l 7E -\16 1200. 1200 1200 1200. 1200 1.200. 1200. 1200 !.200 1200. 1200 1200 1200 1200 1200. 2i.*\l 1 6 KM 6 BE-07 3 SE-07 3. 5E *07 4 5£-07 7E-07 5 4£-07 5 OE-07 5 3E-07 7E-07 9fi-07 5 OE-07 6 LJE.-07 5 2E-07 8 6E -07 I 2E-Ot, 1 :-JE-06 5 9E-07 3 IE-07 OE 07 3 9£-07 lE-07 4. 7E--07 4 3E-07 4 6E-07 OE--Ol 3E-07 4 4E-07 5 6E-07 4 6E-07 7 SE *07 1 H: -06 It. 06 6 OE-OY 2 4£-09 5E-09 2 2E.-09 2 4E-09 3 :JE-09 4 OE-09 3 9E-09 ':JE-09 2 SE-09 2 6E-09 3 lE-09 2 8E-C*9 3 BE -09 6 3E-09 \1£-00 6 Bt:-07 3 5E-07 4£-07 4E-07 7E-07 5 3E-07 5 OE-07 5 2E-07 7E-07 4 9E-07 OE-07 6 4E-07 2[-('7 8 6F -07 1 1 :,£-06 6 BE-07 3 SE-07 4E *07 5(:-07 7E-07 5. 4E-07 5 OE-07 5 3L-07 /E-07 4 9E--07 OE-07 6 4E-07 2E-07 8 6E 07 1 2E.-06 1 5 9E-07 3 1E-07 3. OE-**07 3 9E-07 4 1E-07 4 7£.-07 4 3£-07 4 6E:-07 4 ,.,E-07 4 3£-07 4 4E-07 5 6E-07 4 6£:-_--07 7 5E -07 lE-06 l 5 9E-07 3 lE-07 3. OE* .. 07 3 q[-07 4. 1E***07 4 7E-07 4. 3E-07 4 6£-07 5. OE--07 4. 3E-07 4 4E-07 5 bE-07 4 7 'jf::-07 H:-06 1600 !600 1600 1600. 1600 t600. 1l.oo 1600 Juoo 1L.t*O 1600 1600 tc:,oc* tuuo 1..:,oo ;.:o,(hJ TOTAL DOS TOTAL !NV DOS -1747 CALMS UPPER LEVEL -Co 00 CALMS LDWE:.R LEV 00 J.<.FY ENTRY 1 RELATIVE CONCENTRATION -XOQ CS/M**3) ENTRY 2 DEPLETED RELATIVE COI\ICENTRATION ENTRY 3 RELATIVE DEPOSITION RATE (1/1"'1**2) ENTRY 4 DECAYED XOG CS/MH<:J) -HALF LIFE 2 :26 Q,\f::; ENTRY 5 DECAYED XOQ CS/Ma-*3) -HALF LIFE B. 00 DAYS ENTRY 6 DEC+DPL XOG CS/M**3) -HALF lIFE 2 26 01-\"1 .. i E.NfRY 7 DEC+DPL XOG CS/MIH!*3) -HALF LIFE 8. 00 DAYS EN rAY 8 -DISTANCE IN MCTERS AFFECTED SECTORS NE EI'-IE E ESE SE SSE S SSW SI.J WSW w WNI..J tJW 2 4 KM 3 9E-07 2. lE--07 ;;* OIC-07 2 2[-07 2 3 OE-07 2 8E-07 2 ?E-07 3 lE-07 2. 7E-07 2. 7E-07 3 4£-07 2 BE-07 4 /E--07 6 4E-07 C 8E-. -0/ 3 JE-07 1 7£-07 1. 7E-07 1. 9E-07 2. 2£-07 2. 5E-07 2. 3E-07 2. 3E-07 2 6E-07 2 3E-07 2 3E-07 2 SE-07 2 3E-07 3 9£-07 ':) 4E-07 S 7C -0/ 3 2£-09 t. 3£-09 E: 3E-10 1 OE--09 1. 2E-09 1 7E-09 2 1E-09 1 9E-09 1 BE-09 1. 1 3E-09 1 5E-09 1 4E*-09 1 9E-09 :3 1E-09 CE 09 J 9E-07 2 OE-07 OE-07 2 2E-07 2. 5E-07 3 OE-07 2 2. ?E-07 3 lE-07 2 7E-07 2 7E-07 3 3E-07 2. BE -07 4 6E-07 b b 7£" *07 3 9E-07 2 lE"-07 ;::* OE-07 2 2E-07 2 5E-07 3 OE-07 2 7E-07 2 7E-07 3 1£-07 2. 7E-07 2 7£-07 3 3E-07 2. BE-07 4 ?E*-07 4E-07 6 GE 07 3 :JE-07 7£-07 7E-07 9E-07 2 1E-07 2 5E-07 2 :JE-07 2. 3£-07 2 6£-07 2 3E-07 2 3E-07 2 8£-07 2 :JE-07 3 9E-07 4E-07 7C -07 3 3£-07 7E-07 71::-07 9E-07 2. 1£-07 2 5E-07 2. JE-07 2 3E-07 2 6E-07 2 3E-07 2 3£-07 2 BE-07 2 :JE--07 3 9E -07 4E-07 7E -07 2400 2400 2*WO. 2400. 2400 2400 2400 2400 2400 ;,2-100. 2400 2400. 2400 2400 2400 2400 3 ;:? !-(.M 2 5E-07 l. 4E-07 2E-07 5E-07 1. 7E-07 1. 9E-07 1. 9E-07 BE-07 2 lE-07 1 ?E-07 1 BE-07 2 lE-07 2 OE-07 3 tE-07 '1-5E-07 -07 2 lE-07 I IE -07 OE::-07 2£-07 1 4E-07 1 6E-07 1 6E-07 5E-07 7£-07 1 4E-07 1 5£-07 1 7E-07 1. 71:.-07 2 6E-07 "3 ?E-07 7E 07 1 9E 09 7. 8E-10 (\ 71'::-10 4E-10 7 BE-10 1 OE-09 1. 4E-09 2E-09 2E-09 7. 7E-10 8 lE-10 8 BE-10 9. bE*-10 1. 2E-09 ;2 OE-09 =1 !E 07 5E" *fl7 1 :JE-07 1 21:'"-07 1 41:-07 1 7E -07 9E-07 1 9E-07 1 BE,-07 2 1E-Ol 1 7E-07 1 8E ,07 2 lE-07 2 OE-07 3 1E--07 4£-07 *1[ 07 SE-Q/ :l[-07 I 5E-07 1. 7E-07 9£-07 1 9E-07 BE-07 2 lE-07 ?E-07 8£-07 2 tE-07 2. OE-07 3 lE"-07 4 5E-07 :.OE 07 OE -07 lE-07 9 91;::.-oe 2E-07 1 <'IE-07 6E-0-7 1. 6£*-07 5E-*07 1 7£-07 4E-07 5E-07 1 7E-07 1 7E-07 2 6E-07 3 7E--07 J 6[ 0/ 2 OE-07 1 lE-07 1. 01'0:-07 1 2E-07 1. 4E--07 1 6£-07 1 6E-07 5£-07 1 7E-07 1. 4E-07 1 5E-*07 1 'lE-07 1 7£-07 2 6E--07 :3 7E *07 3 7F 07 3200 ::12oo :J2oo 3200 32oo 320o J200 :1200 3;:oo :J2oo :J200 :1200 32oo. 3200 .J:'<>O 4 0 J.(,f1 1 8!::::-0/ 9 IE-OB El 4E-08 1 lE-07 1. 3£-07 1. 4E-07 1 4E-07 1 4E-07 1 6£-07 1 :JE-07 1 4E-07 4£-07 !JE-07 2 2E-07 :3 3 0/ 1 4E-07 7 .JE-OB 6 7E-OO 8 6E-08 1. lE-07 1. 1E-07 1 2£-07 1 1£-07 l 3£-07 1 OE-07 lE-07 lE-07 2E -07 SE-07 ;=! 6E-07 u: -0/ 1 :JE-09 4 'lE-10 :::t OE-1\) 4 4£-10 5 4E-10 6 BE-10 9 5E-10 8 4£-10 lE-10 5. :IE-10 BE-10 5 6E--10 6. 7E-10 BE-10 I ::JE-09 c. lE d9 1 !:l[*-07 9 OE -Ga 8 .JE-08 1 1E--07 1. 3E-07 1 4£-07 1. 4£--*07 1 4E-07 6E-07 1 .;:?[--07 4£ 07 'IE-07 :£-07 2 :1 2E-D7 ;E* ('7 1 8£-07 9 !E-on B <'IE-08 1 1£-07 1 3E-07 1 4E-07 1. 4E-07 1 4E-07 6E-07 1 :JC-07 4£--07 4E-07 '....E-07 2 3 J 07 1 4E-07 7 :JE"-Oil 6 7C--08 8 5F-OR 1 OE-07 1 tE-07 1 1E--07 1 lE-07 1 :W-07 1. at:::-07 1 lE--07 lE-07 2E" -07 1 8[.-*07 ;:_> 6£-07 :"..t: \)7 1 4E--07 7 3£--Q[J 6 7E-OB 8 1 lE-07 1 tE-07 1 2E.-07 1 1E-07 1 3E-07 1 OE--07 1 H:-07 1 IE-07 1 -07 1 I:.JE--0/ ;:_> 6£-C>l ;_: 07 4ooo 4ouo 40oo 4ooo 400o 4ooo 4000 4ooo 400o 4000 4ooo 4000 *woo 4000 400(J 4 8 KM I 4E:.-07 6. 9E-08 6 H::-vF1 7 :JE-08 9 BE-08 1 OE.-07 1 1[-07 1 1E-07 2E.-07 9 1 lE-07 1 2E-07 1 -07 1 BE-07 1 IE -01 5 4E-OU 4 fiC*-OE! 5 8£--08 7 BE--08 8 IE-08 8 :JE-08 8 :JE-08 3E-08 7 ?E-08 8 9 ;:.'E-00 9 :JE *08 1 4E *07 OE -0/ :.L n, 0 I 10 3 JE-10 2 0£.:-10 2 8E-10 3.13E-10 4 OE--10 6 /F-10 6 3E-10 8E-10 3 9[-10 :::.'E 10 4 4E-10 4 UE 10 6 Ol:.-10 1 OL 0'1 I *,r 0 4[-07 6 8E-Ofl 6 m:-08 7 2E-08 9 7E-OfJ 1 OE-07 1 lE-O"/ 1 1£-07 1 2E 07 9 7F"*OB IE 07 1 ;:E-07 1 01 1 UE-07 1 tlE-07 6 CfE-Ofl 6 OL-(IH 7 3E"-08 9 8E-08 1 IJE-07 1 lC*-07 \ \E-07 9 n:-08 1 l!::-0/ 2E 07 ::£::. 07 Uf_ 0/ IE-*07 5 4E-08 4 7L-Ot3 'J ?r: 00 7 7E-OB f:l 0[--08 8 4E-OR 8 LIE-08 7 6£:-0B 8 JE-08 1E-OB :JE 08 4f_-07 ., IE. 0/ 5 4E-Of:l 4 8!::-0G 8E-OD 7 7E-Of3 0 JE-08 8 5E:.--08 8 4E--08 .JE-08 7 7L-08 8 6E= -00 9 9 :Jt:. 08 1 4r 07 *--1800 4000 4!100 4300 41300 4000 41:.100 4800 4000 4000 'IUOU *1000 'IDOO tHJOO 1747 CI\LI'lS L!::.VEL 0 00 Cr'-ILI1S LW.JLR llV I :J 00 c...c -[>7 6\C-. -{)7 m: c*7 ;J[ (".ol *HJOC* ,-r C11 'l 07 llE \)/ \ () i TOTAl fl!JS
  • TOTAL INV 1-\.fY f-_f'JfFIY R[LATIVE CONCENfRAT ION XOG (S/M1H13) EN fRY 'J HELATIVC 1/[f'OSITifJN RAIE ( 1/M-1111-2) FNmY :; DE.CAYED XOO -Hl\tf-t !FE H 00 DAYS UHWl OE:.Ct-UPL XOO -HALF LifE 8 00 DAYS ENlRV 2 DEPLETED RELATIVE: CONCENfRATIOI\i ENrRY 4 DLCAYE:.D XllG -!11'\I.F LIF-T llil'r"S ENlRY 6 U[CtUPL XOO lHE 2 UA'r:J ENIRY 8-IN Rev. 0 WOLF CREEK TABLE 2. 3-7 4 (Continued) Page 2 of 3 tHliJUA! AV[f-11\CE ( GIIOUND l s-* P rs T /R CDr1RECl ED miSITE M[l[CI!HJU)CY -J YffiRS Df11E 2]-NOV-!Jt fU*1E H:l: 13 10 WOLF U<f:E.K G'-Nl*.HAlHIG KAI'i3AS GAS 1\.",jQ Fl_F:CTRIC CCJ IJlJiH. II'H;HJN, li.ANS1\S DriNES AND !'!LIIJi-IE ,JUU 76'-19-064-07 tlN! A! 1--F:CTED SEC SSE S SSW " ENE ESE sw WSI-J !'JNlrJ b j.\{'f ! o; ':7E-0Li q 6E-08 :1 'HC:-OH 7 9E-08 7 !IE OH 8 9 2E *08 Of:.*-07 8 lE*-08 8 BE-OR 9 6E-08 9 7E-OU l :7E 07 2 !E OJ {;l *(fl Y -0:3 4 2E*-OH 3 6E-08 4 6 1E-08 5 UE-08 6 7E-*08 7 08 'IE-08 6 :JE-08 6 BE-08 7 7 :.E* 08 l -07 1 6E' 07 1 u: 07 7 t_.t;-_ 10 :2 6E-1CI 1 1 'll *!0 2 "I'L-10 3 3E.-10 5 !E-10 5 lE 10 4 ?E--10 3 lE-10 J 3 'IE-10 3 7E-t0 .q 7E -10 7 OE* 10 1 ;;T o*; 1 2[ 07 <IE--Of.l 4 SE -OG :'< 3£"-0fl 7 OE-08 7 4E-08 8 ::JE-08 9 IE 08 1 {Jt.-i.JJ 8 OE-08 8 7E-08 9 9 6E-Q8 1 :1:_:: *-07 2 lE 07 ([ 07 1 2E.-07 5 °lE-Oe 4 6E.-08 *lE-oH 7 9£-08 7 8 6E-08 9 2E-*08 J OE--07 a 1£*-08 B BE-08 9 6E-08 9 7E*-OG 07 2 IE *07 (f U7 9 IE-Od Z?E-0:'._ li>OB 6 OE-08 5 IE-08 6 ,':JE-OU 7 lE-*08 E.lF'-08 6 2E-08 6 7E-OG 'IE-08 7 IIE-08 ll: 07 1 6E*07 tt:*UJ 9 :-T-OO ::.*E-OE 5E--OB 4 lE--08 6 tE-08 5 GE-08 6 t.;.E-08 7 lE-.. 08 9E-0El 6. 3E-08 6 ElE--08 4E-08 7 5E-OR ;?[ -07 1 6E 07 1:.i: 0/ 5000 5600. 5600 J600 5600 :)6{*0 5600 5600 5600 5600 5! ... 00 56GO 6 *l 1-\f'l 9 6L:.-0lJ 4 5E-OR 3 6E-08 4 5E-08 6 7E-08 6 3E-OB 7. lE--08 7 7E-00 7 9£-08 6. 7E-OB 7 4E-OB 8 3E-OB 8 lE-OG 1 21::-07 1 7E--07 1 7r. -07 7 3E*08 3 4E-08 7E-08 3. 4E-08 5 lE-08 4. BE--08 4£--08 8E-OB 6 5 1E-OB 5 6 6. 2E-OB 9 1 3£-07 1 :JE"* 07 5 to 2 lE-10 lE-10 1 6E-10 2_ 2 4 <lE-10 4 1E" 10 3 2 4E-10 2 6E-10 2 BE-10 3. OE-*tO 3 7!.0--10 6 OE-10 9 <1E -1D 9 5E-08 4. 4E-03 5E-OB 4 5E-OB 6 6E-08 6 7 0£-0B 7. 6E-08 7. BE--08 6-6E-08 7 :JE-08 8 2E-OB 8_ OE-08 1 2E-07 ?f.-07 1 7"E -07 q 5E-08 4 5E-08 .J 6E-08 4 5E-Q8 6 6 3E-OB 7 lE::-08 7. 6E 08 7 9E-08 6 7E-08 7 IJE-08 8 3E-08 1E-08 1 ;:::>t:-07 ?E"--07 -07 7 2[ *i)8 3 4E -OS 2 7E-08 3 4E-08 5 Oi:::--08 4 7E-08 5. :Jf-08 5 8E 08 6 OE--08 OE--*08 5 6E-08 6. :JE-08 1E-08 9 IJ!:--08 JE-07 3:: -Q7 7 3E-08 3 4E--08 2 7E-08 3 4E-08 5 lE-08 4 BE-08 5 11(::-08 5 BE* 08 6 OE--08 lE-QG 5 6E-OB 6. JE-09 6 lE-OB 9 1 3E:-*07 1 3.0: 07 6-+VO 6400 6400 640o 6400 6400. 6400 640o 640o 6400 64oo 640o t-4oo 6,100 6400 b'i :Jo 7 KM 8 lE-08 3 BE--08 9E-08 3 9E-03 5 7£-08 5. 4£-08 6 OE-08 6 6E-08 6 4E-08 5. 6£-08 6. 4E-08 7 1E-OB 6 lE-08 2. 9E*-08 2 2E-08 2. 9E:-Q8 4 3£-08 4 1£-08 4 :i£-08 4. 9E-OB 4. 8E-OS 4 2E-08 4 BE-08 5 4E-08 4 7£-10 1. 7E--10 8 JE-11 1. JE-JO 1. 9E-t0 2 2£-10 3. 2£-10 3 4£-10 2 7E-10 1 9E-10 2 JE-10 OE-08 OE-07 1 5E-D7 ::-07 2£-08 1. 2E-")7 1 10:: *07 8 OE-08 BE-08 2 BE-08 3. BE-oB 5 6E-08 5 3E-08 5 9£-08 6 SE*-08 6 3E-OB 6E-08 6 3£-08 IE-08 8 IE-08 13E--08 2 9E-08 3. 9E-08 5. 7E-08 5 4E-08 5. 9£-08 6 5£-08 6 4£-08 6E-08 6 4E--08 lE-08 4::0-10 2 8£:*-10 5 lE-10 7 10 9E-08 9 9E. -08 1 SE-:J7 l
  • 07 9E--08 1 OE:-07 1 SE--:)7 1 <i.: *07 5 lE-08 7 4E -08 1 I. 1E 07 6. GE-OB 2. lE-08 2. 9E-QB 4 2£-()8 4 OE-08 4 .il-E"-08 4 9£-08 4 4 2£*-08 4 7E-08 5 3£-08 6 1£-08 2 '?E--08 2 2£-08 2 9£-0S 4 :JE-OB 4 OE-08 4 56-08 4 9E-08 4 BE-08 4. 2£-08 4 BE-OS 5 3£-0/3 7200 7200. 7200 7200 720() 7200 7200. 720Cl 7200 7200 7200 7200 2E-08 7 SF---09 1 2E-07 I HO 07 7200. 7;::-oo 720*J 8 0 KM 7 OE-00 3 *1E-*08 2 3E-08 3 4E-0!3 5 ;::>E-08 2 SE--08 1 7E-08 2 5E-oB 3 9E-t0 1 4E-10 6 SE-ll 1 1E-10 6 9E -08 3 :3E --08 3E -08 3 3E -08 7 OE-08 3 4E-08 2. JE-08 3 4E-08 5 1E-08 4 8E-08 S ;:::E:-os 5 7E-OB 5 4E-0El 4. 9S:-08 5 6E-08 6 3E"-08 OE-08 B 6E: -08 1 4E-07 1 21 -07 3 BE-08 3. SE-08 3 BE-00 4 2E-*J8 4 OE-08 3 6E-08 4 2E-08 4 7E-08 *l 5E--08 6 4E -08 1 OE-07 9 or* 08 1 6E-10 1. SE-10 2 7E-10 2 BE-10 2 2E-10 1 6E-10 1. BE-10 1 9E-10 ;2 OE-10 2 3E-10 :::JF-!0 b 2L -10 5. OE-08 4 7E-08 5. lE-08 '.) 6E--08 5. 3E-OB 4 BE-08 5. 5E-08 6_ 2E-08 !l 9E-08 8 5E-OB .3[-07 J. ;:>f:-01 5 OE-08 4 7E-08 5 7E*-*JB 5 3£-0S 4 9E-08 5. 6£-08 6 3E-OU (, OE:-08 8 6E -08 3E--07 l.. 2E--07 lE-08 2 4!.=:-*08 1 7E-08 2 2E -OS :JE-08 1 7E -08 5E -OS 3. 7£-08 3 5£-08 3 BE-08 4 2E-*J8 3 9E-OB 3 6E-08 4 1E-08 4 6£-0B fJE-08 6 :IE* 08 9E-08 8 Sf: -013 3. 7E-OB 3 5E-08 3 BE-OS 4 2E-1JB 4 OE-08 3 6E-08 4 lE-08 4. 6E-08 4 'lE-08 6 4E-08 OE-07 EJ 91: 08 8000 BOOO 0000 8000. 8000. oooo sooo sOO*J eooo. 8000 uooo Gooo oooo. oooo eooo G<1:1o TOTAL (JfJS -26304 TOTAL If\IV OBS -1747 CAU*lS 1-\EY ENTRY 1 RELATIVE CONCENTRATION -XOO (8/Mu:n LEVEL -0 00 CALMS LOW(R l EV -1 5 00 Ni-H NE L__; () ENTRY 3 RELATIVE DEPOSITION RATE ( 11M**2> ENrRY 5 DECAYED XOO <SIM**3) -HP.L.F LIFE 8. 00 DA"S ENlRY 7 DEC+DPL XOG {S/I'lHf3) -HALF LIFE 8. 00 DAYS AFfEC fED SECTORS ENE ESE SE SSE S SSW 3 t..E-OB 1 9£--08 1 3E-08 1 7E-08 2. 9E-08 2. 7E-08 2 8E-08 3. JE-08 3. 4E-08 2 ::;E-*08 3£-08 q !E-09 2£-0(:J 2. IE-08 1. 9E-08 1 2. 3E-08 .2. 3E-08 1_ 7E-10 IJE--11 3 1E-11 7£C-t1 7 9E-:t1 8. 7E-ll 1 2E-10 1. 4E-10 1 2E-IO :3 ':fE--03 l 3E-08 7E-08 2. 9E-08 2 6E-D8 2 7*-08 3 2E-D9 3 JE-0£-3 J 6E-03 '7£--08 1 JE-08 1 7E-08 2. 9E--08 2. 7E-08 2 DE-08 3_ 3E-08 3 4E-08 2 4E-08 JE--08 8 SE-09 I 2E-08 2 OE-08 1. BE-08 1. 9f"-08 2 :JE-08 3[-08 2 SE-08 :JE--08 9 OE-09 1 2E-08 2_ OE-08 1. 9£-08 1. '7'(--08 2. 3E-J8 2 3E-OfJ 12000 1;->aoo 12000. 12000 12000 12000 1200J 12000 16. 0 hM 2. JE-08 1 2E-*08 8 3£-09 1 1E-08 2. OE-*-08 1. BE-08 1. 8£-08 2. 3£-*JS 2 5£-0S 1 8 :JE--09 5 5E-09 7 4E-09 1. 1. 1 L 5E-*JB 1 6E-08 9 SE-ll 4 OE--11 1 7£-11 6E-11 7£-11 5. 2E--Jt 7 IE-11 8_ 5E-11 7 4E-11 2 2E-08 1 2E-*03 8 OE-09 1 1E-08 9E-08 1 BE-08 1. 76-0A ,"2 2E-08 .2 4E-08 2E:-08 2E-*03 8 2£-09 1. lE-08 2 OE-08 1. BE-OB 1. EE-08 2. 3£-08 2 4E-OB l -IE-08 OE--09 5 3E-09 7 lE-09 1. 3E-08 1. 2E-08 1. 2£-08 1. SE-08 1 6E-08 1 :E-08 8_ 2E-*09 5 5E-09 7 3E-09 1. 3E-OB 1 2£-08 1. 2£-08 1 5£-oJB 1 6E-08 16000 16000. 16000 16000. 16000 16000 16000 16000 16000 ENfRY 2 DEPLETED RELATI\IE CONCENHlA1IOH (8/M!*r.-:<J ENTRY 4 DECAYED >;,,Q -HALF L !Ff 2 2b DI',YS CNTRY 6 DEC+DPL XOO L[FE 2 2C, DtWS ENfRY 8-DISTANCE IN METERS sw WSW w WNW 2. 5E-08 3. 2E:-08 3 t.E-013 :3. :JE-08 4 9F -08 7. 4E-'J8 .. 08 1. 7£-08 2_ 2£::>-08 2 :JE-08 ;2 <lE-08 3 4E. -08 5. 2E-'J8 -.os 7. OE-11 8 '7E-11 9 4E-1t 9. 9E*-11 lF--10 2 OE-10 '3 21: 10 2. 4E-08 3 lE-08 3 :JE-03 3 IIE-08 8E -08 7. 3E--J8 7 :J::: 08 2. 3 2E-08 3 6E-Of3 :3. 'IE-OS 9E -08 7 4E-*J9 7. **08 1 2 2E-08 2 4£-08 :2. 4E-08 3 JE *08 5 lt:-*JS :J -08 1 7E-08 2_ 2E-08 2 :2. 4E-08 3. 4E--08 5 2t.:-D8 ::L 2l-:: 08 1"2000 12000. 12000 12000 12(:00 12000 I. 6E-08 2 lE-08 2_ 3E-08 :2 3£-08 3. 3E -08 4 9E-D8 t. OE-08 1_ 4E-08 1. 5E-08 l 2 2( -08 3 2E-*J3-3.9E-11 5 2E*-11 5 3E-11 ')BE-ll 6 5E-11 1 1E-10 1 5E-08 2 lE-08 2 2£-08 ;? 2E-OB 3 2F -08 4 7E>*J8 1 5E:--08 2. 1E-OB 2 JE-08 :::!. :JE-OR 3 2E -08 4 GE-*JB 1. OE-08 1. 4E-08 1 ::JE-08 l 5E-OB 2. 1E -08 3_ 1[-*JB 1. OE-08 1_ 4E-OB 1. :JE-08 1. 2 2E. *-OEJ 3. 2E:>*JB 16000 1 6000 16000 ! 6000 16000 1 t.>OVD 5 :,f----08 :.r:*-08 o: 10 lt: *-08 oa :3. -08 3 -08 l.:J*](JQ 7 lE-09 4 7E-o9 6 lE-09 1 OE-08 1 9 7E-09 1 !E-*JB 1 JE-08 B. 5E-09 1 JE-08 2£-08 l 3E-08 9E--08 3 DE->JO 'J o*: 03 7 6E-09 4 4E-09 9E-09 3 7E:-09 6 2E-{l9 6 2£-09 6 OE-09 6 SE-09 8 OE-09 5 2t:-09 7 1E-09 3E-09 B. OE-0? 2E -08 1 8F-*J8 I 9l 08 4 l.'TE-11 7 9E-12 2E-1! 1 9E-l1 2 3£-113 2E-11 3 2E--11 :J l.BE-11 2.JE-11 7E-11 3 1(-11 7E-t1 '1 61-: l1 l 2E-08 6 7E-*09 4 4E-09 7E-09 9 SE-09 9 SE-09 9 .::'E-09 1 OE--JB 1 2E-08 8 lE-09 1 H>-08 l IE-08 I 2E-08 1 BE--08 2 9(-*)G .:' '!17 OG l ;::E-CB 7 OE-09 4 f£-o9 h 95 99EE-0099 95. .. 1 85 ! ; !. 3 :J 7 2E-09 4 IE--09 ;-J 7E-09 J. J --O? _ .--.-l J -.., -'--' Y 7 4 _lE-W/ OE-09 3 /E*-09 6. 1E-09 b. lE--09 5. 9£-09 6 qE-,J9 7 9E-09 5 6 9E-09 7 7 4E-09 1 2E 08 Ut_--*'!3 Ol:-OU 24000 ;::4000 24000 24000 24000. 24000 24000 ;_;>4000 24000 24000 24000 2'1000 ::.'4COO -**WOO ,'4000 TliTI\L OOS -26304 TOTAL lNV OtiS --1747 CAL.I"IS UPPEH l [.'JE.I. -0_ 00 LOW[R l [1/ --1 :"'J 00 y.EY EN-RY 1 RELATIVE CONCENTRATION -XOG EN'RY J RELAliVE DFPOSJTJUN RATE (1/M***?l 5 Dr(AY£0 XGO CS/Mall-3) H/\LF lIfT !l 00 DAIS t.N'r<IY 7 DE(t!JPL X:UG -Ht.I.F LIFE B 00 DAf:;J ENTRY DE.PI.ET£:0 RCLAT 1\IE ClJNCENTRA JUN <Stl"1**:lJ ENfr{Y 6 OE.C+-IiPL xon t==:NfRY 8 -fllSll\1\iC£::. HJ H*\1 F L I .,.: db [)NI:.i 0 WOLF CREEK TABLE 2.3-74 (Continued) Page 3 of 3 *fO 0 \'f'l Ri\CE f'\lTLLJHUl OG ICAL HLLr\1" IVE CllNC:t-:NIHAT 1UN ANAL y*;I S ll,"Ui\ PEHIOD 0-:>101//:1 TO 03/04/fl() /11 JNUN. r\VUU1GE:: ( GHtlUND) Sff\NDAHD Pr:-; --T/R CORPECTED Of../5 I TE ML TEOFHJLUGY -3 'rTARS U/iTE 23-NOV*-01 TIME 18 13 10 lNE ESE SE WOLF CHH*.K !>IAfHH>I GAS o'\11!0 E l IC CU 0\Jf?L I NGTON. DAI*1E. S AND ,JOlJ /i,'l'-1-064-01 AFFECl ED SEC fORS SSE 5 !:.iSW w t.JN\-J " 6 09 7E"-O<f 1 UE-09 3 lE-09 4 6E-09 4 3E-09 4 4E-09 4 BE-09 6 2E-0L1 4 OE-09 3 OL-0'1 5 4E-09 5 9C-09 B '-ff--09 l 1 t.r,-OU :J E \}'7 l OE-09 1 7E-09 2 5E 09 2 4E-09 2 4E-09 2 4E-09 2 2E-09 2 /E-09 3 ot-09 3 .JE-09 4 9E -()9 :lE -09 El -0'7 7f> 11 2 :lE-*12 4 6 7E-12 7. SE-12 1 1E*-11 lE-11 2E.-*11 6 dE-12 7 6E*-12 7 ?E"--12 9 lf"-12 1 lt -11 '>'r*11 J .'C 11 9E* 07 1 7E-09 2 8E"-09 4 2E 09 3. 9E-09 4 lE-09 4E -09 5 8E-09 3 6E*-0'7' 6[*-09 5 OE-09 5 ')C-09 ;>t -*.!'1 ;;>!::._ -08 : F-08 ..oE-09 SE-09 1 UE-09 3 OE-U9 4 SE 09 4 2E-09 4 3E-09 4 7E-09 6 1E-0" 3 9E-09 9E-09 5 JE-*09 5 OE-09 7£-09 :-JE*OB 2£-09 1 4E-O'I 9 1E-10 6E-09 2 3E 09 2 2E-09 2 2E-09 2. 4E -09 3 2E-O'"l 2 2 7E-09 3 OE-0'? 4 6 ElE -09 8 Cli -09 *1E:: 1 4E-O"I 9 BE-10 7E -09 2 5E 09 2 JE-09 2 3E-09 2 6E -09 3 3E-OC1 2 tE-09 2 7E-09 2 9E-09 3 2E*-09 4 BL-09 7 1E *09 8 .,JOOV -10000 *+DODO 40000. 40000. 40000. 40000 40000 40000 40000 40000 40000 40000 '10000 40000 *H*OOO 40 0 r\i"l 5 tE-09 1. tlE-QCI 1 2E-09 2 'SE-09 3. 7£-09 3 1£-09 3 lE-09 3 8E -09 I} 7E-09 2 BE--09 "J. 6E-09 3. 9E-09 4 4E.-09 6 !Jt.-09 8 BE *09 1 i:*-,)8 6E-09 9 3E-10 6 4E-10 1 JE**09 2. OE-09 1 6E-09 1 6E-09 2. OE-09 2 5E-09 1 1. 9E-09 2 OE-09 2 ::JE-09 3 4E--09 4 6E**09 6 .::*E-*OC:f 1 ::E-ll 3 1 4E-12 3 ::JE-12 4.8E-12 4 BE*-12 6 9E-12 B.OE-12 7 9E-1;::' 3 9E.-12 4 9E-12 OE-12 6 1E-12 7 m -12 1 1E*11 2 :,E**ll 4 6E-09 1 1 1E-09 2 3E-09 3. 3E-09 2 8E"-09 2 BE-09 3 5E-09 31:.-09 3 3E-09 3 6E-09 4 lE-09:; 9E"-Cl9 8 IE 09 1 11:-08 4 9E-09 1 7E-Oq 2E-09 2 4E-09 3 6E-09 3 OE-09 3 OE-09 3 7E-09 6E-O'l"' 2 ?E*-09 3 5£-09 3. 8E-09 4 :JE-09 6 ::JE.-09 8 6E*09 t. :E-08 2 4£-09 8 3E-10 6E-10 1 2£-09 1. BE-09 1 5E-09 1. SE*-09 1. BE-09 3E-09 1 3E-09 1. 7E-09 1 'IE"-09 2 1E-09 3. H"-09 3E-09 5 ;T-09 2 6E-09 9 OE-10 6. lE-10 1 3E-09 1. 9E-09 1. 6E-09 1 6E-09 1 9E -09 2 4E-O'l 1 1 G£-09 OE-09 2. 3E-09 3 J.::. *09 5E-09 6 ([--09 48000 4EJOOO 48000 48000. 48000 48000 48000 '18000 48000 48000 48000 48000. 48000 48000 *180GO *"iLOGO 56 0 11..1'1 4 lE-09 1 2E-09 8 SE-10 2 lE-09 3. lE-09 2. 3E-09 2 4E-09 3. 1E -09 3 8E-09 2 .2E-09 2. 7E-09 2. 9E-09 3. 4E-09 OC:-09 6 1E 09 9 :-F-09 2 lE-09 6 3E-10 4 3E-10 1 lE-09 1 5E-09 1 2E-09 1 2E-09 1. 5[ -09 1 9E-09 1 1. 4E-09 1 1. ?E-09 2 3 IE 09 4 7E-09 ?E-12 2 OE-t.:;-: 8 ?E-13 2 !:IE-12 3. 6E-12 3. 3E-12 4 BE-12 5. 9E -12 5 2 7E-12 3. 'lE-12 3 4£-12 4. 3E -12 4 9!::--12 7 lE-12 1 u: -11 7E-09 t. lE-09 7 3E-10 1 BE-09 7E-09 2. 1E-09 2 lE-09 2. BE-09 :3 SE-09 1 9E-09 2 4E-09 2. 6E-09 3. 1E-09 5E-09 6E 09 8 4 OE-*0'7 1 2E-09 8 lE-10 OE-09 3 OE-09 2. 2E-09 2 3E-09 3 OE *09 3 7E-orr 2. lE-09 2 6E-09 2. 8£-09 3 4E*-09 9E -09 6 OE 09 9 (1[-09 1 9E-09 5E-10 3. 7E-10 9 3E-10 1 4E-09 OE-09 lE-09 1 4E *09 1 7E-09 9 6E-10 1 2E-09 1 3E-09 1 6E-09 2 3E:-09 2 SE-*09 4 :.E-09 2 OE-09 6 OE-10 4 lE-10 1 OE-09 1. SE-09 1E-09 2E-09 1. 5E *07 l 9E-09 1 OE-09 1 3E-09 1 4E-09 1 7E*-09 2 4E -09 3 OE--09 4 56000 56000 56000 56000 56000 56000 56000 56000 56000. 56000 56000. 56000 :)6000 64 0 KM J lE-09 9 2E-10 6 6E-10 1 4E-09 2 2E-09 1. 7E-09 1 BE-09 2 4E -09 1 ::.E-\n 4 4E-10 3 2E-10 6 1 1E-09 8. 1E-10 8 9E-10 2E *09 6 tE-12 1 6 1E-13 1 5E-12 2 ::;E-12 2 2E-*12 3 4E*-12 2E*12 2 GE--09 7 9E-l0 5. 5E-10 1 2E-09 1. 9E-09 1. 5E-09 1 6E-09 2. lE *09 2 3 OE-0*) 8 GE-10 6 2E-10 1 JE-09 2 lE-09 1 6E-09 1 BE-09 2 3E *09 2 1 JE-09 3 BE-10 2. 7E-10 5 7E-10 9 lE-10 7 lE-10 7 9E-10 1. OE *09 9C -09 1 7E -09 2 OE -09 2 4E -09 2 9E" -09 4 0::: --09 4 9E **0? 7 :" E -09 4E-09 8 1£-10 9 8E-10 1 .::?E-09 1 4E-09 1 9E-09 2 4E -09 3 09 lE-t::::* 1. 'iE-12 2 ::JE--12 2 SE-12 3 :JE -12 3 6E-12 5 3E 12 1 ::.F -11 6E-09 1 1 8E-09 IE-09 2 6E-09 3 6E--09 4 SE 07 6 BE-09 1. 6E-09 2 OE-09 2 3E-09 2 BE-09 3 9[-09 4 8E* 09 C:E-09 JE-09 ?. lE-10 B. 6E-10 OE-09 1 2E-09 1 7E-09 2 2[ 09 ;::E--09 1 SE-09 4 2E-10 3 OE-10 6 3E-10 1. OE-09 7. BE-10 8 bE-10 1. 1E *09 6<1000 C.4000 i:AOOO 64000 64000 64000 64000 64000. 4E-09 7 BE-10 9 4E-10 1 3E-09 1 9E-09 2 JE 0'7 -'E-09 64000 64000. 64000 64000. tAOOO 64000 UfiOOO 10TAL 0[JS -26304 TOTAL !NV ODS-1747 CALMS UPPER LEVEL -0 00 CAtMS LOitiER lEV *-15 o.-:* 1-'EY El*I1RY 1 RELATIVE CONCENTRATION-XOG ENTRY 2 DEPLETED ENTRY 3 RELATIVE DEPOSITION RATE (1/M!H2) EN1RY 4 DECAYED XOG (5/M*>,-3) -H,\LF LIFE ;:?6 Dt\YS 5 DECAYED XOG CS/M-11-*3) -HAlF LIFE 8 00 DI1YS ENTRY 6 DEC+DPL XOG -HALF LIFE 2. 26 ENTRY 7 DEC+DPL XOG (5/MII--11-3) -HALF LIFE B. 00 DI1YS ENTRY 8 -DISTANCE IN METERS NNI:. NE ENE E 72 0 }(..M 2 4E-09 7 OE-10 5-. 2E-10 9 4E-10 1 lE-09 3. 3E-l0 2 4E-10 4. 4E-l0 4 3£-12 6E-13 SE-13 9 3£-13 1E-09 9E-10 3E-10 7 9E-10 3£-09 6 7E-10 9E-10 8. 9E-10 9 BE-10 2 SE-10 2. OE-10 3 7E-10 1 1£-09 3 1E-10 2. 3£-10 4 2E-10 72000 72000 72000. 72000 80 0 KM AFFECTED SEC YORS ESE SE SSE S SSW sw \.l 1-JNW 1. 6E-09 1. 2E-09 1 4E-09 1. 9E -09 2 3E-09 1. 4E-09 1. SE-09 2 OE-09 2. 4E-Or:t 3 3E-*09 7. 5E-l0 5. 7E-10 6. ?E-10 9 lE.-10 1 lE-09 6. 3E-10 7 1E-10 9. 2E-10 1. 1E-09 1 JE-09 1. 6£*-12 1. 5£--12 2 5E-12 3 tE'-12 3. OE-12 1. 5E-12 1 6£-12 1 9£-12 2. 2 7£-12 1 4£-09 1. 1£-09 1 3£-09 1 ?E"-09 2 1£-09 1 2E-09 1 3£-09 1 7£-09 2. lE-09 2 09 1. SE-09 1. 2E-09 1 4£-09 1. 9E"--09 2 2£-09 1 3£-09 1. 5E-09 1 9E-09 2 3E-09 3< lE-09 6 4E-10 4 9E-10 5. 9£-10 8 OE -10 9. 6E-10 5. 5E:-10 6. 2£-10 8 !E-10 1. OE-09 1 JE-*09 7 2E-10 5 5£-10 6 4E-10 8 7E -10 1 OE-09 6 u::-10 6 BE-H) 8 BE-10 1. tE-09 1. :lE-*09 72000 72000. 72000. 72(*00. 72000 72000. 72000. 72000. 72000. 72000 NNW *l OE-0'7 BE-09 1 9E-09 2 7E-09 3 91::-12 9 3 6E-09 5 ;:::E-09 3 9E-09 6£-09 1 7E-09 2 liE-09 1 BE-09 2 bE.* 09 72COO 12000 2. OE-09 5 4E-10 4 4£-10 6 9E-10 1. 2£-09 q 6£-10 1. 2E-09 !.. 6E --09 1 9E-09 1. 2£-09 1. 2E-09 1. 6E-09 2. lE-09 2 7£--09 3 4E-09 4 :'E-09 8 9E-10 2. 4£-10 2. OE-10 3. !E-10 5. 6E-10 4. 3£-10 5. 4£-10 7 OE --10 8 4£-10 5. 3E-10 5 SE-10 7 4E-10 9. :JE-10 1 .?E-09 1 SE-09 2 lE--09 3 3E-12 6. 9E-13 3 5£-13 6 3£-13 1 lE-12 1. 1E-12 1. 9£-12 2 4E**-12 2. 2£-12 1. 2£-12 1. 2E-12 1. 5£-12 2 OE-12 2 *JE--12 '3 lE-12 7 ::E-12 1 ?E*-09 4 5E-10 3. 6E-10 5 7E-10 1. OE-09 8. tE-10 1 OE-09 1 4E--09 1. 6E-09 9 9£-10 1 OE-09 1. 4£-09 1 BE-09 ..JE-09 :3 OE-09 :.E-09 1 9E-09 5 lE-10 4 2£-10 6 5£-10 1. 2E-09 9 2E-10 1. 1£-09 1 5E'-09 1 BE-09 1. 1E-09 1. 2E-09 1 6E-09 2. 2 CE--09 :3 2E-09 7 ?E-10 OE-10 1. 6£-10 6E-10 4 ?E-10 3. 7E-10 4. 7E-10 6 lE*-10 7 JE-10 4. SE-10 4 7E*-10 6 4E-10 8. tE-10 1. *JE*-09 1. JE-09 y..._--09 8 2 3£-10 1. 9E-10 2. 9E-10 5 3£-10 4 lE-10 5 2£-10 6 BE-10 8. 1E-10 5 OE-10 5 2£-10 7 lE-10 8 9E-10 1 1 SE-0'7 OE-l\9 80000 £l0000 80000 80000 800{)0 80000. 00000 OOC*OO 80000 BOOOO f-!0000 80000 00000 O*JOOO £10C00 LOOOO lUTf\l. OfE) -:::'6304 TOTAL INV OilS -1147 CALMS UP:--'ER l LVlL 0. 00 C>\LM'."".; tOWER lEV -15 00 UHRY 1 flELAfl\.iE CONCE.NTRAl"ION-XUQ (5/M**-3) CNTHY 2 Of:PIEHO Rl.LATIVL CONC[N1f?A1IflN (S/MtHUl UHR'( 3 RELATIVE IJ[-POSI1 IOI'l HATE:_ ( E:N1RY DECf\Yl 0 XUG -Hi'-d f L !f f :*'<'-> rNrR'r 3 DCCAYI::D -HAlF-LIFE U fJO DAYS E:NIHY lJf-.C+!il'l. XIJ(f <SIM*<**.3J lli\tf I :u.;: JM'r"S lrJfll'( 1 !HCI[;f'l XIH (S/I']Iitt.ll-lll\tr-fl 00 Rev. 0 tHJI WOLF CREEK TABLE 2. 3-7.5 /\\': ll1\\;t PIL H \JfHlllJCICI'*l R[L,\fiVE CONCFNTHATIDN AN,'.LYSI::; llfd/1 F'LHI(JlJ \h/01//.l 10 03/04/UO Nl ,\rJ!lUAL AVf_ll/',\,L ( C I 1\L P T :1 -I /R C!lHRECT ED nN:_-illC METEilRtll OCY -3 YEARS DAfl 2::J -NUV*-61 l If'IE llJ 21 20 FNt: lSE SE Will F-G[Nf.I?AfH*IC: :->TATIUN 1-\ANSf'-IS AND FLECTR I C CO BtmL I NCTON, KANSAS f\fTECl U) ::;.[CTOHS !Hilii>JDl-.RY WSW " I 0.-Of, lF-0/ :J OE-07 7 :JL Ol 7 :JE-07 8 lE:. -07 7. :JE -07 8 4E-07 8 7E-07 7. 7E *07 7 9E-07 1 0[ -J6 7 ':r'E:-07 9 UE-07 4 6!:.-01 4 :JE-07 6 bE-07 6 5E-07 7 6 ?E-07 7 SE-07 7 ?E-07 6 9E-07 OE-07 9 2f:-J7 7 OE-0/ '1 2E 0'-1 5[-0'1 2 JE-0'7 J 8[ -0'7 3 8E-09 5 OE-09 6 -0'1 6 4E--09 5 4 lE-09 5 2E-J9 4 *!F-0'1 I OE-06 IE-07 Or::-07 7 :JE-07 7 3E -07 8 OE-07 7 SE-07 8 4E-07 8 7E-07 7 7E-07 7. 9E**-07 1 OC-J6 7. 9E-07 OE -06 1£-07 or--07 7 3E-07 7 :JE-07 8 lE-07 7 5E-07 8 4E-07 8 7E-07 7 7E-07 7 9E--07 1 OE-J6 7. 9E-07 OE-07 6E-07 ::iE-07 6 5E-01 6 5E-07 7 6 7E-07 7 7E-07 6 8E-07 7 OE-07 9 2E-J7 7 OE-07 9 0[>07 4 6[-07 6 6E-07 6. 5E-07 7 2E-07 6 7E-07 7 ?E-07 6 BE-07 7 OE--07 9 2E-)7 7 OE--07 1200 1200 1200 1200 1200 1200 1200 1200 1200. 1200. 1200 LO(./ PtJPUL,\T I ON ZONE NW 3E -Q(, 1 Ul--06 1 rE *:t> -Ob I 6f *-06 1 -lE *ih OE-09 '7 llE--09 1 6E-*)!J 3E-06 GE..--06 1 '-7E--*)6 3E*-Ob 8E*-06 9E-<)b 2E*-Ob 6[--06 7E -t)C, 2E--06 6E--*.J6 IE -t)6 1200 l21}J 1 1 9t-_-07 9. 8 3E-08 1 OE-07 1. 3£-07 1 4E-07 4£-07 1 3E-*07 1 5E-07 1 2E-07 1 4E-07 1. 4E.-)7 1. 3E--07 3 3E--07 3 ;';:-,)I' 1 ::iE-07 7 4E-08 6 ?E-08 8 :JE-08 1. OE-07 1 IE-07 1E-07 1. lE-07 1 2E-07 9 9E-08 lE-07 1 1E-J7 1 2E-07 1 8£-07 2 6E--07 2 6E-07 1 JE-09 4 9[-10 3. OE-10 4 2E-10 5. 3£-10 6. 7£-10 9. JE-10 8 2£-10 8 OE-10 5 .:::?E-10 7E-10 5. 5£-10 6 6£--10 H lE-10 1 4E--09 2 lE-09 l 'i'E-07 9 tE-08 B 2E-08 1. OE-07 1 3£-07 1 3E-07 1 4E-07 3E-07 5E-07 1. 2E-07 1. 4E-07 1 liE-*J7 1 -:-.-F-07 JE-07 J JE--07 .:::?:."::-01' 9E-07 9 !E-08 8 JE-08 1 OE-07 1 3E-07 1. 4E-07 L 4E-07 ::JE-07 SE-07 1 . .:::?E-07 1 4E-07 4E-*J7 1. 5::::-07 JE-07 3 3£-()7 ;:E-07 SE-07 7 JE-08 6 6E-08 8 3E-08 1. OE-07 1 lE-07 L 1E-07 1. lE-07 2E-07 9 BE-08 1. lE-07 1E:-*J7 1 2E-07 1 8E-07 2 6E*-u7 1 7 3E-OB 6 7E-08 8 3E-08 1. OE-07 1 lE-07 1.1£-07 1 lE-07 2E-07 9 9£-08 1. lE-07 1E-*J7 1 2E-07 J 8E-o;* 2 6E--07 t>E*-07 4023 4023 4023 4023 4023. 40;23. 4023. 4023. 40.23 4023. 4023. 402.3 4023 40;:>J 40.:?:l r RESIDENT 1 4E-07 6E-07 3E-07 1 "/E-07 2. 1E-07 3 lE-07 1. lE-07 9. 1£-08 1 5E*-07 1. 6E-07 1. 2£-07 1. BE-07 1 2E-07 !1 7E-O/' 3 3£-*07 7 BE-07 1E**07 JE-07 lE-07 4E-07 1. BE-07 2 6E-07 8 3£-08 7. OE-08 1 2E*-07 1. 3E-07 9 9E-08 1 4E-*)7 9 7E-08 4 9E"-07 3 lE-07 ."J 7E-07 lE-10 9 5E-10 5 OE-10 7£-10 9 9E-10 1 7E.-09 6. 6E.-10 5. OE-10 8 OE-10 6. 9£-10 5 OE-10 2E-10 5 1E-10 4E-09 1 bF-09 9E*-09 4E-07 1. 6E-07 3£-07 7£-07 2. lE--07 3 lE-07 1 1£-07 9. OE-08 1. SE--07 1 5E-07 1 2E-07 7E-tJ7 1 :'E-*07 7£-07 3 3£--07 ' SC:-07 4E-07 1 6E-07 3E-07 7E-07 2 1£-07 3 1£-07 1 lE-07 9 lE-08 1. 5£*-07 1 5£-07 1 2£-07 BE-!J7 1 2E-*07 7E-O"i' 3 3£--07 7 BE-0/" 1. lE-07 1. 3£-07 1 1E-07 4E-07 1 BE-07 2. 6£-07 B. 3E-08 7 OE-08 1 2E*-07 1 3£-07 9 BE-08 4E-07 9 7£-08 BE-07 3 1£--07 h 7£-07 1 lE-07 1 3E-07 1 lE-07 4£-07 1. BE-07 2 6E-07 8 3E-08 7 OE-08 1. 2£-07 1. 3E-07 9 9£-08 4£-07 9 7£-08 9£-07 3 lE--07 o 7E-07 4988 2816 31:38 2816 2735 2::J33 4827. 5632. 3379. 4344 3J41). 4666 2092 NEAf,EST V[GETAULE 1 lE-07 1. 2E-07 1 lE-07 1 7E-07 2. lE-07 3 1E-07 9 BE-08 9 lE-08 6. lE--08 9. 1e:-os 1 2E-07 BE-07 1 2£-07 1E-07 3 :3E->*07 r OE.* 07 8 5E-08 9 4£-08 8 BE-08 1 4E-07 1 GE-07 2. 6£-07 7. 6£-08 7 OE-08 4. 6E--08 7 6E-08 9 9E-08 4E-1)7 9 7£-08 4 :JE-0/' 3. tE-*07 7E-07 6 9E-10 6. 6E-10 4 OE-10 7 7E-*10 9 9E-10 1 7E-09 6. OE-10 5 OE-10 2 6E--10 3. ElE-10 5 OE-10 7 2E-10 5 lE-10 lE-09 1 :OE--09 9E"-09 1 1E-07 1 lE*-07 1 lE-07 1 7E-07 2 lE--07 3 1E-07 9. 7E-08 9 OE-08 6 lE-08 9 6E-OB 1 2E-07 1 7C-*)7 1 2E-07 lE-O/' 3 'JE--07 EE-07 lE-07 1 2£-07 1 lE-07 7E-07 2. lE-07 3 lE-07 9 7£-08 9 lE-08 6. lE--08 9 7£-08 1. 2E-07 1 BE-*)7 1 2E-07 lE-O"i' 3 'JE--07 r BE-07 4E-08 9 4E-08 8 7E-08 4E-07 1. BE-07 2 6£-07 7 6E-08 7 OE-OB 4 5£--08 7 6E-08 9 BE-08 4E-!)7 9. 7E-08 4 JE-07 3 lE--07 i":l 7E-07 8 4E-08 9 4E-08 8 8E-08 4E::-07 1 BE-07 2 6E-07 7. 6E-08 7 OE-08 4 6E--08 7. 6E-08 9. 9E-08 4F.-07 9 7E-08 4 JE-07 3 IE--07 (> 7E-07 5792 3379 3540. 2816. 2735 2333. 5149 5632. 7401. 4827. 4344 354() 4666. 3620 :: 1 l"OT.'*L OBS -26304 TOTAL INV OBS -1747 CALMS UPPER LEVEL -0. 00 CAL/'1S LOI./ER LEV -1 00 V,EY ENTRY 1 RELATIVE CONCENTRATION-XCJG CS/M**3) ENTRY 2 DEPLETED RELl\TIVE CONCENrRATIDN F.NrRY 3 RELATIVE DEPOSITION RATE (1/M-11*2) ENTRY 4 DECAYED XOG :S/M**3) -H/-\LF LIFE :2 26 O,\YS ENTRY DECAYED XOG <SIM**3l -HALF LIFE 8 00 DAYS EN1RY 6 DEC+DPL XO(} :S/M!!--11-3) -Ht'\lF LIFE ;2 26 DtWS ENTRY 7 DEC+DPL XOG (S/M**3) -HALF LIFE 8 00 DAYS ENTRY 8 -DISTANCE IN METERS AFFEC fED SECTORS ENE ESE SE SSE S SSW SW WSH WNW ,. NE/\RF:>T M[I\T AbJIMAL 9 1£--07 5 OE -07 5 OE-07 3 2E-07 3. 3E-07 4 OE-07 9. BE-08 9 9£-08 1. 1£-07 2. 5£-07 2 7E-07 2. 7E-07 1. 2£-07 2 5£-37 4E-07 1 OE-OC 8 lE *07 4 4 5E-07 2 7E-07 2 BE-07 3. 5£-07 7 6E-08 ;r 7£-08 8 3E-08 2. 1E-07 2. 2E-07 2 2E-07 9. 3E-08 OE-07 3 6E-07 9 OE .. D7 8 3E-O't 3 3E-09 1 1 t..E-09 2 4E-09 6 OE-10 !:i 6E-10 5 CE-10 1. 2£-09 1 2£-09 1. 2E-09 4. m::-10 9 OE-10 .;? OE-O'J 8 1E--0'7 9 lE-07 OE--07 5. OE-07 3 lE-07 3. 3£-07 4 OE-07 9 7£-08 9 8E-OB 1 IE-07 2 SE-07 2 6£--07 2. 7E-07 1 2E-07 2 SE-07 4E-07 1 CE-0..': 9 lE-07 5 OE-07 5 OE--07 3 tE-07 3 3E-07 4 OE-07 9 7£-08 9 BE-*08 1 lE-07 2 5£-07 2 6E-07 2 7E-07 1 2E-07 2. 5E-07 4E-07 CE* Ot 8 lE-07 4 4 ::JE-07 2 7£-07 2 BE-07 3 5£-07 7 6E-08 7 6£-08 8. 2£-08 2 1£-07 2 2E-07 2 2E-07 9 2£-08 2. OE-'J7 6E-07 OE--07 8 IE"--07 4 4 5E-07 2. 7£-0l 2. 8E-07 3 SE-07 7. 6£-08 7 7E-08 B. 3E-08 2 1£-07 2 2E-07 2 2E-07 9 2£-08 2. OE-37 ::::1 6E-07 OE-**J7 t;:::'U7 1207 1207 1931. 2011 1931 5149 5310. 5310. 2574 2414. 2735. 41327 3701 3218 1?:"0 1\JEf'-.fH-'*IT DAIRY COH 7 6E-08 6 <i£-08 5 7£--08 5 lj£--08 4 'IE-lO 3 :.E-10 7 "JE-08 ["E-08 7 6E-C*8 <>E-Ol--l 7E-07 3. 3£-07 4. OE-07 7 lE-08 4£-07 2 BE-07 3 5£-07 5. 4E-08 NONE 7 7£-10 1. 6£-09 2 4E-09 4 OE-10 IN 1 7£-07 3 :"JE-07 4 OE-07 7 OE-08 THIS 1 7E-07 3 3E-07 4 OE-07 7. lE-08 NONE NONE IN IN THIS THIS I\ ONE IN THIS 1. 5E-J7 4E"-07 1. lE-07 6£-07 NONE 4 6E-10 OE-0'7 IN 4 4£--07 THIS 5£-07 4E-07 I'JONF: IN 6E--08 5 r.E-08 6E-08 5 r.E-*08 SECTOR 4E-07 2 SE-07 3 5. 3£--08 4E-07 2. BE-07 3 5£-07 5. 4£-08 2816 2011. 1931 6436. SECTOR SECTOR 6 OE-08 4. 5E-08 NONE 2. OE-10 IN 6 OE-08 THIS 6. OE--08 SECTOR 4 4E-08 SECTOR SECTOR 1. lE-07 :! 6E-0/ 1 !E-07 ::1 6E-07 SECOUFi tJEt\f<r S T PLfo/'H BOUNDARY 4. 5£-08 7562 563;:!. 3.;;: 18 6 OE-07 :*E-07 2 OE-07 3 3 5£-07 4 3E-07 1 lE-07 '1. 9£-08 6£-07 2 5E-07 2. 7E-07 2. 4E-07 1. 9£-01 2 2E-07 t, 6E-07 1 -o.Jt .2E-07 2 1 7£-07 2 7£-07 3 OE-07 3. 7£-07 8 3£-08 7 7E--08 2 2£-07 2 1£-07 2 2E-07 2. OE-07 1. SE-07 1 7E-Q7 6E-07 9 :::E-07 1 t.E-09 8 2E-10 1 SE-09 1 7E-09 2. 5£-0'? 6 6£-10 6£-10 1. 5E-09 1 2£-09 1 2E-09 1 lE-09 8 7E-10 7 :JE-10 ] ::OE-0'7 8 6E -*J'? 6 OE-07 2 2 OE-07 3 lE-07 3. 5E-07 4 3E-07 1. 1E-07 8£-08 2 6£-07 2. 5E-07 2 6£-07 2 4E-07 1 9E-07 2 2E-87 b 6E-07 1E Ut 6 OE--07 2 ::*E-07 2 OE-07 3 lE-07 3. SE-07 4 3E-07 1 1E-07 9. 8£-*08 2 6E-07 2. :JE-07 2 6£-07 2 4E-07 1 9E-07 2. 2£-)7 b 6£-07 ll:. **Jt 5 2£-07 2 :.*E-07 1 7E-07 2 7E--07 3. OE-07 3. 7E-07 8 3£-08 7 6£-08 2 2E-07 2 lE-07 2 2E-07 2 OE-07 1 5E--07 1 7E -07 6E -07 9 -<17 5 :':E-07 2 :_E:_-07 1 7E-07 2 7£-07 3 OE-07 3 7E-07 B. 3E-08 :i'. 7E--08 2 2E-07 2 lE-07 2 2£-07 2 OE-07 1 ::.F-07 1 7[*-07 6E-07 9 :::t *J7 17'...>4 2365 1931 1931 1866 4827 5310. 2767 2478. 2414 2680 3379 4183 ;. ',::J TOTAL OBS -26304 lOTAL 1NV OBS -1747 CALMS UPPER LE::VEL -0 00 CALMS LOWER LEV -l 5 00 KE( EJlTRY 1 hELATIVE CONCENTRATION-XUG E:NTRY DtPl EfED l(ELATIVl CONCE1\jlHATION CS/t1JHl-.0 rt'-HRY 3 RElATIVE DEPOSITION f.(ArE (1/!1ta2) ENfRY 4 D[CAYED Xtl(J (S/M!H'Jl !I*\LF lif-E<-._'S Jl,\Y:J 5 DECAYE-D XUG -HALF lIFE rJ 00 DAYS ENTRY 6 DE:.C+Of-'l X!JG -Hi\LF l HE: 2 J),\YS Etl!RY 7 D!::.C+W-'L X!JQ (5/MIH1*3l -HAU-LII-E:. t.l 00 DAYS ENfRY 8 -DISlAr-ICl. fN Mf:TtHS Rev. 0 WOLE' CREEK TABLE 2.3-76 "This Table has baen deleted" Rev. 0
  • ---*--**---WOLF CREEK TABLE 2.3-77 "'l'his Table has l::Je(:O deleted" Rev. 0 WOLF CREEK TABLE 2.3-78 VARIATION OF INTAKE Kc WITH WIND DIRECTION UNIT VENT RELEASE

Wind Direction Wolf Creek N 0 NNE 0 NE 0 ENE 0.5 E 1.5 ESE 2.5 SE 1.5 SSE 0.5 S 0 SSW 0 SW 0 WSW 0 W 0 WNW 0 NW 0 NNW 0

Rev. 5 WOLF CREEK TABLE 2.3-79 RELATIVE CONCENTRATION (/Q) AT CONTROL BUILDING AIR INTAKE* From Low Level Release

Percentage Wolf Creek 5 5.33

10 3.62

20 0.66

40 0

For Unit Vent Release Percentage Wolf Creek 5 1.14

10 0.68

20 0.17

40 0

*Units for /Qs are 10-4 m/sec3   

Rev. 5 WOLF CREEK 2.4 HYDROLOGIC ENGINEERING 2.4.1 HYDROLOGIC DESCRIPTION 2.4.1.1 Site and Facilities The plant site is located on the east bank of Wolf Creek about 3.5 miles northeast of Burlington, Coffey County, Kansas. Wolf Creek is a tributary of the Neosho River. Cooling water for the plant is provided by impounding water in a cooling lake on Wolf Creek. Figure 2.4-1 shows the site characteristics, general arrangement of facilities for the plant, and the cooling lake. To create the cooling lake, an earth dam was constructed across Wolf Creek at a point about 4 miles upstream of the creek's confluence with the Neosho River, about 3 miles east of Burlington, and about 3 miles south of the plant. The drainage area of Wolf Creek at the cooling lake dam site is about 27.4 square miles. The cooling lake supports WCGS which has an installed nominal capacity of 1,214 megawatts. It has a surface area of 5,090 acres and a capacity of 111,280 acre-feet at its normal operating level of 1,087 feet. (All elevations are mean sea level elevations in feet.) Supplemental makeup water is pumped from the John Redmond Reservoir on the Neosho River, about 4 miles northwest of the plant.

The station has a grade elevation of 1,099.5 feet and a floor elevation of 1,100.0 feet. The plant's main circulating water screenhouse is located on the east side of the lake. The circulating water is discharged back into the lake through a discharge structure located northwest of the plant (Figure 2.4-1). Baffle dikes and channels are provided to increase the travel time of the circulating water from the discharge point to the screenhouse. A service spillway with a crest elevation of 1,088 feet and an auxiliary (emergency) spillway with a crest elevation of 1,090.5 feet are provided on the east abutment of the cooling lake dam, as shown on Figure 2.4-2, to pass floods up to and including the probable maximum flood (PMF). A low-level outlet works and discharge structure are provided for evacuation of the lake and to release the blowdown discharge. The ultimate heat sink is created within the cooling lake by constructing a submerged dam having a crest elevation of 1,070 feet. The essential service water system pumphouse is located on the northern finger of the ultimate heat sink (Figure 2.4-1).

2.4-1 Rev. 11 WOLF CREEK The plant site is accessible from the Missouri Pacific Railroad, as well as U.S. Route 75. Ground topography along the plant access routes is high and the grades are located well above the PMF level in the lake. The plant access road and railroad bridge openings are designed to pass up to the 100-year flood discharge. Access to the dam is provided from local roads.

Heavily traveled roads affected by the lake have been rerouted. The township roads affected by the lake have been abandoned or relocated. The plant area is provided with a drainage system that drains into the cooling lake. This drainage system protects the plant area from flooding and is designed to pass a 100-year storm runoff without causing flooding at the plant site. The grading and drainage plans for the plant site and typical cross sections are shown in Figures 2.4-3 and 2.4-4, respectively. 2.4.1.2 Hydrosphere The site is located in the Wolf Creek Watershed within the Neosho River Basin, as shown on Figure 2.4-5. The Wolf Creek Watershed is bounded by the Neosho River Valley to the west and Long Creek Watershed to the east. The confluence of Wolf Creek and the Neosho River is approximately 7.1 miles downstream of John Redmond Dam. The plant site is on Wolf Creek approximately 8.5 miles upstream from the confluence. 2.4.1.2.1 Surface Water 2.4.1.2.1.1 The Neosho River Basin

The Neosho River Basin in Kansas includes an elongated area of about 6,300 square miles, and lies chiefly within the Osage Plains physiographic section of the Central Lowland Province (Figure 2.4-5). The Neosho River originates in Morris County, Kansas, flows southeastward and south through the state, and drains into the Arkansas River near Muskogee, Oklahoma. The major tributary to the Neosho River above Burlington, Kansas, is the Cottonwood River, which originates in Marion County and joins the Neosho River about 6 miles east of Emporia, Kansas.

In the upper reaches of both the Neosho and Cottonwood rivers, stream gradients exceed 8 and 6 feet per mile, respectively, but then decrease to less than 2 feet per mile near Emporia. Further downstream, the channel gradient remains at about 1.5 feet per mile, being largely controlled by outcropping limestone and shale bedrock (References 21, p. 17; and 50, p. 8).

Flood control facilities on the Neosho River have been constructed to regulate the river due to frequent floods and droughts.

2.4-2 Rev. 0 WOLF CREEK Overbank flows occur almost yearly on some of the streams within the basin; however, there have been sustained periods of no flow (Reference 24, p. 48). In order to reduce flood damages, a three-reservoir system located in the upper part of the basin has been constructed under the Flood Control Act of 1950. These reservoirs regulate flows, and therefore reduce flood damages and permit supplemental discharges during low-flow periods. Adequate storage to meet future increased water requirements during drought periods is provided. The three reservoirs are illustrated on Figure 2.4-5. A fourth reservoir, the Cedar Point Dam, is to be constructed. Preconstruction planning for the Cedar Point Lake has been deferred at this time with no completion date proposed (U.S. Corps of Engineers). The regulating effects of these structures on Neosho River flows are discussed in Section 2.4.2.1. There is no major river control structure downstream of the site within the state of Kansas. The nearest downstream control structure is Pensacola Dam, near the city of Disney in Oklahoma, approximately 260 river miles from the site. The locations of principal stream gaging stations and their corresponding drainage areas are presented in Table 2.4-1 and on Figure 2.4-5. 2.4.1.2.1.2 Wolf Creek Watershed

Wolf Creek drains southward and into the Neosho River about 3.6 miles downstream of the gaging station at Burlington (Figure 2.4-6). The Wolf Creek Watershed consists of about 27.4 square miles and has a narrow, elongated shape with an average stream gradient of about 7.4 feet per mile. The upper part of the watershed is characterized by undulating to level topography, whereas the lower part is flat with well-established floodplains subject to frequent inundation (Reference 50, Plate A-16). The stream channel is well defined and characterized by many meander bends. The channel banks are steep-sided and relatively stable. They vary in height from about 1.5 feet in the upper reaches to about 5 feet at the mouth. Aerial photographs indicate trees and heavy brush along the banks. Table 2.4-2 gives geomorphological characteristics under natural conditions for selected locations within the watershed.

The rain gauge nearest to the site is at Burlington. Data on average and maximum precipitation and snowfall for this station's period of record, 1885 to 1965, are presented in Section 2.3. The cooling lake has a total surface area of 5,090 acres at a normal operating level of 1,087 feet. Many small farm ponds, both natural and man-made, are located within the watershed; these are utilized particularly during dry periods when natural streamflow

2.4-3 Rev. 0 WOLF CREEK is minimal. Some of the ponds also serve as floodwater impoundments. These small impoundments are not significant to safety-related flooding of the site. No other control structures are located within the Wolf Creek Watershed. 2.4.1.2.1.3 Long Creek Watershed

Long Creek drains an area of about 84 square miles immediately east of the Wolf Creek Watershed. It drains southward and empties into the Neosho River about 3.5 miles southeast of the mouth of Wolf Creek. The stream channel is well defined but meanders considerably within its banks. Geomorphological and hydrological characteristics of this watershed are generally similar to those of the Wolf Creek Watershed. Flooding from Long Creek Watershed will not endanger the site. 2.4.1.2.2 Ground Water

Relatively small to moderate amounts of ground water can be obtained from the alluvial and terrace deposits of the Neosho and Cottonwood rivers. Well yields from these deposits are dependent upon the character and saturated thickness of the unconsolidated sediments. Limestone formations currently yield sufficient water of good quality for domestic and stock uses in parts of the Upper Neosho River Basin (Reference 24, pp. 60-61). However, most of the rock formations underlying the site area do not store enough water to yield useful quantities to wells. The ground-water bearing capabilities of the Neosho River Basin are related to the geology of that region. There are only local areas in the basin where the geological conditions favor development of wells with moderate yields. Figure 2.4-7 presents a generalized geological cross section of the Neosho River Basin in Kansas. Table 2.4-3 lists brief descriptions of the upper geologic formations and related water supply characteristics in the general site vicinity. The thickness of the unconsolidated alluvium along the Neosho River near the site ranges from 0 to 40 feet. The depth to water is generally less than 20 feet in the river valley (Reference 28, pp. 12, 54, 55). Water quality studies indicate that ground water from both the Cambrian and Ordovician formations is generally unsuitable for most water supply purposes. The quality of water supplies from the Pennsylvanian group would be suitable; however, the availability of such supplies is extremely low (Reference 24, p. 60).

Estimated ground-water yields from the alluvial and terrace deposits of the Neosho River near the site range from 10 to 100

2.4-4 Rev. 0 WOLF CREEK gallons per minute and reflect local geomorphological characteristics (Reference 28, p. 55). The inferred recharge rate of the Neosho River ranges from 3 to 6 inches per year (Reference 26, p. 46). Generalized well yields from the upland areas of both Wolf Creek and Long Creek range from 0 to 10 gallons per minute. The depth to the water table in these areas ranges from about 20 to 50 feet, except in scattered local areas where it may exceed 50 feet (Reference 26, pp. 54, 55). 2.4.1.2.3 Water Users

Water rights in Coffey County provide the basis for municipal, industrial, irrigation, and recreational uses. Owners, locations, and authorized rates of water use for this county are listed in Table 2.4-4 and shown on Figure 2.4-8. The city of LeRoy is the nearest municipal water user downstream of the Wolf Creek Watershed.

Incorporated municipal water supply systems from Coffey County to Oklahoma, which utilize the Neosho River as the source of supply, are listed in Table 2.4-5. These include domestic, commercial, industrial, and public-use water requirements.

There are 34 water rights permits granted for irrigation use along the Neosho River from the John Redmond Dam to Oklahoma. The maximum rate of appropriated surface water from the John Redmond spillway location to the Oklahoma state line is 239,404 gallons per minute, with a maximum quantity of 117,065 acre-feet (Reference 20). Rural water districts in Kansas utilizing the Neosho River as the source of supply, either directly or indirectly, are listed in Table 2.4-5. They have been formed in those areas where ground-water resources are limited. Ground-water users within a 20-mile radius of the site are listed in Section 2.4.13. 2.4.2 FLOODS 2.4.2.1 Flood History All floods of record and those of historic significance above and near the site area have been caused by excessive rainfall. Snowfall has had only a minor effect on flooding events. None of the available data or records related any flooding event to dam failure or to ice formation in lakes or along streams and rivers. Surges, seiches, and tsunamis are not applicable flood factors for the site region.

2.4-5 Rev. 0 WOLF CREEK Descriptions of the flood histories of the Neosho River near the site, Wolf Creek in the project watershed, and Long Creek in the watershed immediately east of the site are presented in the sections that follow. 2.4.2.1.1 The Neosho River

Streamflow of the Neosho River near the site has been completely regulated since the John Redmond Reservoir was put into operation in 1963. The gaging station at Burlington, about 6 river miles downstream of the dam, has been in operation since June 1961 and has been monitored by the United States Geological Survey (USGS). The average discharge since 1961 is 1,605 cubic feet per second (cfs). The maximum discharge recorded was 26,200 cfs on September 13, 1961 (Reference 70, p. 320). Table 2.4-6 lists the annual maximum stage and peak discharge for this station's period of record. Before construction of the John Redmond Dam, the nearest gage to the site was located at Strawn, about 18 river miles upstream of Burlington. Gaging at this station was carried out during the periods of June 7, 1902 to October 21, 1941; June 1, 1948 to September 30, 1950; and October 1, 1950 to June 30, 1963, by the Strawn State Bank, the U.S. Army Corps of Engineers, and the USGS, respectively (Reference 58, p. 9). The annual maximum stage and discharge measurements for the Strawn station are listed in Table 2.4-7. The stages shown in Table 2.4-7 for water years 1885 and 1902 to 1947 are approximate, as they were derived from gage-height relations with the stages for upstream and downstream stations at Neosho Rapids and Burlington, respectively. Discharge data for this period are also approximate, based on subsequent stage-discharge relations. Data on past floods at the Strawn gaging station are summarized in three publications by the USGS and by Burns (Reference 67, p. 185; 1968, pp. 277-278; 1968, pp. 394-395; and 5, pp. 376-377). For the purpose of comparison, Table 2.4-8 includes corresponding estimated annual flood peak discharges for the John Redmond dam site under natural flow conditions for the years 1922 to 1951. Lowered peak discharges on some of the moderate floods at the present dam site can be attributed to valley storage between Strawn and Burlington.

The six greatest floods recorded at Strawn occurred in 1951, 1948, 1904, 1945, 1944, and 1909, in descending order of magnitude. The gage heights and discharges of the 1909, 1944, and 1945 floods approximated 26.0 feet and 75,000 cfs. According to the Neosho Valley Times of July 8, 1904, the flood of July 7, 1904, at Neosho Rapids was "the greatest flood that ever visited this community."

2.4-6 Rev. 0 WOLF CREEK Also, the Burlington Republican of July 14, 1904, states that the "flood of July 8, 1904, was the greatest yet. -- The highest record heretofore was that of July 4, 1885" (Reference 68, p. 277). The flood of July 1948 produced the second highest peak discharge of record at Strawn. Heavy rainfall occurred during the period July 14-22, with an accumulation of 12.5 inches at the storm's center. An average of 8.5 inches of rainfall occurred above the present John Redmond dam site (Reference 45). The great storm of July 9-13, 1951, which was centered near the headwaters of the Neosho River, produced the maximum flood of record near the site, as it did over much of east-central Kansas. This flood falls outside the limits of reliable frequency analysis and proved to be greater in magnitude than the standard project flood on some reaches of the Neosho and Cottonwood rivers (Reference 24, p. 55; and 36, p. 299). Above normal rainfall had occurred in May and June of 1951, saturating the soils, and thereby providing optimum conditions for high yield runoff from subsequent rains. Other factors contributing to a high runoff-rainfall ratio from the area were high groundwater levels and bank storage near maximum capacity. Three distinct bursts of intense rains occurred during the period of July 9-13 which caused the record flood. An average of 11.8 inches of precipitation fell above the present John Redmond dam site, but unofficial records indicate that about 18.5 inches fell in the Neosho River headwater region during that same period (Reference 58, p. 17). Severe flooding occurred within the entire basin; Figures 2.4-9 and 2.4-10 outline those flooded areas for the month of July between Burlington and LeRoy. The flood hydrograph for the July 1951 flood at the present John Redmond dam site is presented on Figure 2.4-11. Dependable records of flood data on the Cottonwood and Neosho rivers above Iola are not available for the years prior to 1895. However, various sources indicate that major floods had occurred in the years 1826, 1844, and 1885. The flood of 1844 was caused by a storm and conditions similar to those which caused the 1951 flood. From Indian legend, it has been inferred that the 1844 flood exceeded that of the 1951 event (Reference 67, p. 224). The subsequent stage discharge relation for the gaging station at Strawn has indicated that the July 1885 flood reached proportions of the floods of 1909, 1944, and 1945.

Two of the four reservoirs authorized for flood control purposes on the Neosho and Cottonwood rivers have been in operation since late 1964, and a third reservoir since early 1968. Subsequently, flows from Council Grove and Marion reservoirs on the upper

2.4-7 Rev. 0 WOLF CREEK reaches of the Neosho and Cottonwood rivers, respectively, have been completely regulated. Flows downstream from these dams reflect partial to moderate regulation until flow is again completely regulated by the John Redmond Reservoir. If the Cedar Point Reservoir is completed it will provide further regulation of upstream flows on the Cottonwood River.

The effects of the four reservoirs on discharge frequency at the John Redmond dam site were evaluated by the U.S. Army Corps of Engineers (Reference 52, Plate A-47) and are illustrated on Figure 2.4-12. The curve shape reflects runoff generated from uncontrolled areas coincident with releases from the dams for floods of varying recurrence intervals. The sharp rise in the curve is indicative of the partial loss of control of very large floods. However, the Corps of Engineers has indicated, based on a frequency of occurrence, that a flood in the basin area above John Redmond Dam will produce a total volume greater than the flood storage allocated in the four-reservoir system only once every 16 years (Reference 52, p. 6). In addition, it would have taken more than three times the present flood storage provided in John Redmond Reservoir to control the great flood of 1951 (Reference 24, p. 74). 2.4.2.1.2 Wolf Creek Watershed

Wolf Creek is ungaged and, therefore, no streamflow records are available. Flooding of significance on Wolf Creek is that caused by inundation of the floodplain near its mouth. During the great flood of July 1951, severe flooding occurred on the lower reaches of Wolf Creek and along the low flatland areas adjoining the Neosho River near Burlington. Several miles of the lower reaches of Wolf Creek were inundated by overbank flooding below an elevation of about 1,017 feet, as determined from high water marks at nearby locations. Had the four-reservoir system been in operation above Burlington, flood levels would have been reduced. Figure 2.4-9 delineates the floodplain for three major floods as modified by these reservoirs in the immediate site area. The stage of the 1951 flood near the mouth of Wolf Creek would have been about 2 feet lower than that actually experienced had the reservoir system been operative (Reference 50 , Plate A-16).

2.4.2.1.3 Long Creek Watershed No gaging stations have ever been established on Long Creek. Severe flooding of the lower reaches of the stream occurred during the great flood of July 1951, as evidenced by high water levels reached at nearby locations. The high water levels near the

2.4-8 Rev. 0 WOLF CREEK stream's mouth were approximately at elevation 1,010 feet (Reference 50, Plate A-15). Figure 2.4-9 illustrates the floodplain delineation of reservoir-modified flows for the floods of 1951, 1948, and 1957 in the immediate area. 2.4.2.2 Flood Design Considerations The following flooding events are considered in arriving at the controlling event for the design-basis flood level at the plant site. a. The probable maximum flood (PMF) in the cooling lake due to probable maximum precipitation (PMP) on the drainage area above the cooling lake dam (see Section 2.4.3 for a further discussion). b. Flood waves due to potential failures of dams located upstream on the Neosho and Cottonwood Rivers (see Section 2.4.4 for a further discussion).

c. Effect of local intense precipitation equal to the PMP at the plant site (see Section 2.4.2.3 for a further discussion).

Surges, seiches and tsunamis are not relevant to the Wolf Creek plant site as discussed in Sections 2.4.5 and 2.4.6. The occurrence of a landslide in the area adjacent to the cooling lake that may cause a flood wave and a higher lake flood water level is not considered possible because of the absence of topographic and geologic features conducive to landslide formation in the vicinity of the plant site. The plant grade is not affected by PMF or the backwater caused by PMF in the Neosho River or Long Creek because of the topographic ridges between the plant site and the Long Creek and Neosho River valleys. Based on the considerations and studies made, the PMF condition in the lake is the controlling event that will produce the highest and most critical flood level in the lake.

The cooling lake dam and both the service and auxiliary spill-ways of the cooling lake are designed to withstand the effects of the PMP occurring over the entire drainage basin above the dam site.

Results of the hydrologic analyses and calculations made and discussed in Section 2.4.3 show that the PMF runoff with antecedent standard project flood (SPF) into the lake routed through the service and auxiliary spillways will raise the lake

2.4-9 Rev. 0 WOLF CREEK water level to elevation 1095.0 feet at the dam site (see Section 2.4.8 for a discussion of the spillways). Superimposing the wind wave effect due to a sustained 40-mile per hour overland wind acting on the PMF water level will result in wave runup elevations of 1095.55 feet for significant waves and 1095.8 feet for maximum (one percent) waves at the station. The station's safety-related structures, with floor elevation of 1100.0 feet, are not affected by the PMF in Wolf Creek lake. The maximum wave runup elevation at the main dam corresponding to significant waves due to a sustained 40-mph overland wind acting on the PMF water level is 1099.0 feet. The top of the dam is at elevation 1100 feet (see Section 2.3 and Appendix 3A for a further discussion of wind speed and directions at the Wolf Creek site). Any site grading modification which could cause an impediment to the drainage around the plant (Zones A and B of Figure 2.4-3) would have to be so extensive in nature that standard engineering practice would dictate an evaluation of the storm drainage patterns for the modification. Any future extensive modifications to the site finish grade would be evaluated to determine compliance with out commitment to prevent plant storm runoff from flooding safety-related structures.

Because of 1) the natural slope of the plant compound toward the lake; 2) no credit taken in plant safety analysis for culverts and channels; 3) design of the plant compound finish grade; and 4) the commitment to evaluate extensive site grading modifications the site drainage system including grading, culverts and channels is not considered safety-related. 2.4.2.3 Effects of Local Intense Precipitation Natural ground elevation at the plant site before plant construction varied from elevation 1114.00 feet to 1100.00 feet. The natural drainage pattern of the plant area is to the east, south, and west. A storm drainage system was developed to drain water away from the plant buildings using catch basins, storm drain pipes and drainage ditches. All the finished grades within the plant site area are sloped away from buildings, and the storm runoff is carried away from the site toward the natural drainage courses and finally into the cooling lake. The drainage system is designed to pass a 100-year storm runoff without causing flooding at the plant site. The design rainfall intensities for one-in-100-year storm are shown in Table 2.4-9.

In the event of a local intense precipitation of the severity of a PMP at the site, the storm drainage system will drain the runoff away from the site at its design capacity. Storm runoff in excess

2.4-10 Rev. 11 WOLF CREEK of the design capacity of the storm drainage system, together with the spillover from the roofs of the buildings, would overflow the peripheral roads and railroad tracks, which are at a lower elevation than the floor elevation of the safety-related structures. The peripheral roads and tracks would act as weirs, and the storm water would flow away from the plant buildings toward the east, south, and west into the cooling lake.

All safety-related buildings with flat roofs, where ponding could occur, are designed with a two inch pitch towards the roof drains. A gravel stop fastened to a 2x6 was used around the perimeter of the roofs. No parapets or curbs exist at these roofs. Therefore, the maximum possible ponding depth is approximately four inches. The design basis for the roof drainage system is a rainfall intensity of 7.4 inches per hour with a recurrence interval of 100 years. Any rainfall in excess of this design intensity would overflow the roof curb and the building walls to the site drainage system. During a local probable maximum precipitation, the storm drainage system carries runoff up to the design capacity. Runoff in excess of the design capacity flows outside the system to the natural drainage outlet of the site. Provision is made in the design of the plant yard grading to prevent backwater from endangering safety-related structures. In this analysis no credit is taken for the roof drains and, therefore, they are not considered to be safety-related.

2.4.2.3.1 Precipitation Distribution The local intense precipitation (LIP) at the plant site is obtained using the methodology from NUREG/CR-7046 (Reference 75) and HMR 52 (Reference 76) in 5 minute increments over a 6-hour duration. The 1-hr, 1-mi² LIP at the plant site is 19.0 inches ad the 6-hr, 1-mi² LIP is 28.79 inches. The maximum rainfall intensities for different durations during the LIP are shown in Table 2.4-10. 2.4.2.3.2 Analysis

The site plan (Figure 2.4-3, Sheet 1) shows the location of roads and railroad tracks around the station's buildings. The plant area is graded to elevation 1099.5 feet MSL adjacent to the buildings and slopes away towards the peripheral roads. The plant floor elevation is 1100.0 feet MSL. It is conservatively assumed in the analysis that the site drainage system is not functioning at the time of the LIP. The U.S. Army Corps of Engineers (USACE) Hydrologic Engineering Centers Hydrologic Modeling System (HEC-HMS) (Reference 77) computer model was used to estimate runoff discharge during the LIP event at the plant site. Then, the overland flow hydraulic conditions for the estimated discharges were modeled using the USACE Hydrologic Engineering Centers River Analysis System (HEC-RAS) (Reference 78) computer model. The inputs, development, and results to these hypothetical simulations are described below.

2.4-11 Rev. 27 WOLF CREEK To estimate runoff discharge, the plant area is divided into three sub-basins, as shown in Figure 2.4-3, Sheet 2. Sub-basin 1 is the area west of the powerblock and bounded by Track No. 1 and No. 5 on the north and Track No. 1 on the west and south. The storm runoff over this sub-basin flows west, away from the main plant buildings over plant roads, between gaps in the security barriers, and over Track No. 1 into the cooling lake. Sub-basin 2 contains the powerblock and is bounded by Sub-basin 1 on the west and Sub-basin 3 on the east. The storm runoff over this sub-basin flows north to south over Track No. 1 and plant roads into the cooling lake. Sub-basin 3 is the area east of Sub-basin 2 and the primary access parking area, bounded by the peripheral road on the east, Track No. 1 on the south, and natural high ground on the north. The storm runoff over this sub-basin flows north to south over Track No. 1 and plant roads into the cooling lake. HEC-HMS requires a transformation method be specified for each sub-basin. A unit hydrograph approach was adopted from the Soil Conservation Service's (i.e. SCS, now the Natural Resources Conservation Service [NRCS]) synthetic graph. The lag time specified for HEC-HMS is also adopted from the SCS. To add conservatism to the HEC-HMS model, plant cover (canopy), surface storage, infiltration losses, and baseflow were not specified. The rainfall on the roofs of the buildings is assumed to contribute to runoff without any retention. The area contributing to runoff from Sub-basin 1 is 0.032-mi². The lag time is 7 minutes. The calculated peak runoff from Sub-basin 1 is 843 cubic feet per second, with an arrival time of 11 minutes into the hydrograph. The area contributing to runoff from Sub-basin 2 is 0070-mi². The lag time is 14 minutes. The calculated peak runoff from Sub-basin 2 is 1,242 cubic feet per second, with an arrival time of 21 minutes into the hydrograph. The area contributing to runoff from Sub-basin 3 is 0.050-mi². The lag time is 17 minutes. The calculate peak runoff from Sub-basin 3 is 799 cubic feet per second, with an arrival time of 25 into the hydrograph. The next step is to determine the LIP water surface elevation at the plant site using HEC-RAS. The HEC-RAS model is a steady state, one-dimensional hydraulic model that needs channel geometry descriptions and hydraulic properties (i.e. Manning's roughness coefficient) as input. The topography of the plant site warranted two flow reaches within the HEC-RAS model, as shown in Fig. 2.4-3, Sheet 3. Flow in the center and east side of the plant area generally travels from north to south and was modeled as one reach (MAIN reach), while flow on the west side of the plant area travels towards the west and was modeled as a separate reach (WEST reach). The MAIN reach and WEST reach are divided by the vehicle barriers just west of Road E99,673. The contributing flows into the MAIN reach are from Sub-basin 2 at the top of the reach with a peak discharge of 1,241.9 cfs and midway through the reach, from Sub-basin 3 with a peak discharge of 799.1 cfs, for a total flow in the bottom half of MAIN reach of 2,041 cfs. The contributing flow into the WEST reach is from Sub-basin 1 with 843.2 cfs. The Manning's roughness coefficients (n-values) into the HEC-RAS model are 0.030 for grass, 0.028 for gravel, and 0.015 for asphalt and concrete. The contraction and expansion coefficients are 0.1 and 0.3, respectively, for subcritical flow and minor contraction and expansion of flow. For situations where significant expansion and contraction occur (i.e. buildings and vehicle barriers), the coefficients were increased to 0.3 and 0.5. Roadway embankments and other topographical features running perpendicular of parallel to the flow direction are incorporated into the HEC-2.4-12 Rev. 27 WOLF CREEK RAS model as inline or lateral weirs with a weir coefficient of 2.6. The normal depth option was used as the boundary condition by inputting the energy slope to determine the normal depth. If the energy slope is not known, the slope can be approximated by the ground slope, which is 0.011 for the MAIN reach and 0.008 for the WEST reach.

The safety related buildings of the power block are all found in the MAIN reach and have a floor elevation of 1100.0 feet MSL. The maximum calculated LIP flood water elevations varies through the safety elated buildings at the power block from 1099.92 feet MSL at the north end to 1099.52 feet MSL at the south end. 2.4.2.3.3 Ice and Snow Estimation of the snow load on the roofs of the safety-related structures is based on a frequency analysis of snowpack on the ground combined with a local winter probable maximum precipitation (PMP), which is assumed to occur in the form of snow. The assumption of PMP to occur in the form of snow is very conservative, since snowfall depends on latitude, altitude, and temperature. By combining the antecedent snowpack and the PMP in the form of snow, additional conservatism of the snowpack load is obtained.

Historical snowpack depth data at stations near the sites are analyzed statistically for the months of December through March. Frequency analysis of the maximum monthly snowpack is performed on the data, and a 100-year frequency snowpack depth for each month is selected from the analysis. Based on the analyses, the months of February and March exhibit the highest combined snowpack and winter PMP load. In estimating the snow load on the roofs of the safety-related structures, the effects of wind action on the snowpack and snowfall are considered. This effect tends to decrease the load on elevated buildings and could increase the load on adjacent low roofs due to snow drifts. Site drainage and plant yard grading are designed to handle the runoff from local winter PMP without endangering safety-related structures. In establishing the required grading and outlets, clogging of inlets and certain size culverts by ice is assumed in the design. The maximum postulated ground snow loads have been developed based on frequency analyses of the maximum snowpack on the ground, combined with the local probable maximum winter precipitation in the form of snow. The roof snow load used in the design of the safety-related structures is determined by multiplying the ground snow load by the appropriate coefficient CS given in Figure 2.4-62. The minimum roof snow load used in design is taken as 0.8 times the ground snow load and is increased on the lower levels of multilevel roofs and on roof areas adjacent to projections to account for wind action and drifting. The maximum drifted snow load is taken as 3 times the enveloping ground snow load. Two snow loading conditions are analyzed in the design of safety-related structures, as described in Section 3.8.4.3. The maximum 100-year-recurrence snowpack from each of the sites is analyzed, in combination with other live loads. The enveloping 100-year-

2.4-13 Rev. 28 WOLF CREEK recurrence ground snowpack load for the sites is 91 psf, as shown in Table 2.4-41. This load is increased or decreased when applied to roofs, in accordance with the coefficients given in Figure 2.4-62. In addition, the probable maximum winter precipitation, PMP (winter), in the form of snow, coincident with the 100-year-recurrence snowpack, is analyzed in combination with other normal operating live loads. The enveloping 100-year-recurrence ground snowpack plus PMP (winter) for the sites is 153 psf. This load is increased or decreased when applied to the roofs in accordance with the coefficients given in Figure 2.4-62.

The maximum postulated ground snow load value is shown in Table 2.4-41. The snow load is combined with other loads, in accordance with the loading combinations presented in Section 3.8.4.3. The snow pack with 100-year recurrence interval for Topeka and Wichita, Kansas, is determined from a statistical analysis for the 25-year period of record from 1949-1973. The snow pack with a recurrence interval of 100 years for Topeka and Wichita are 19.9 inches and 20.4 inches, respectively. A conservative value of 0.23 g/cm3 for the snow pack density is obtained from analysis of historical records. The detailed description of the analysis in arriving at the snow pack density is given in Section 2.3. The 100-year snow pack loads on the ground at Topeka and Wichita are 23.8 psf and 24.4 psf, respectively.

To provide a conservative design, it was assumed that the 100-year snow pack load is antecedent to and superimposed on the winter PMP for a duration of 48 hours falling on an area of 10 square miles or less (Reference 73). The load of the 48-hour winter PMP is 103.0, 98.8, 111.3, and 127.9 pounds per square foot for the months of December, January, February, and March, respectively. The effects of wind erosion and drifting are neglected in estimating the snow loads on the ground. 2.4.3 PROBABLE MAXIMUM FLOOD (PMF) ON WOLF CREEK

2.4.3.1 Probable Maximum Precipitation (PMP) The seasonal PMP over the 27.4-square mile drainage area of Wolf Creek was obtained from Reference 73. Monthly and all-season high depth-duration data for the basin, from the above publication, is given in Table 2.4-11.

The location of the dam site and watershed is characterized by Zone 4 as shown in Reference 73. The precipitation data for the

2.4-14 Rev. 27 WOLF CREEK summer month of July are the most critical and are equal to the all-season high values. The PMP distribution is shown in Table 2.4-12 and on Figure 2.4-12. To maximize the runoff, the hourly rainfall distribution presented in Table 2.4-13 was based on U.S. Army Corps of Engineers procedures (Reference 44). 2.4.3.2 Precipitation Losses The topsoil in the Wolf Creek watershed is clay loam. The U.S. Army Corps of Engineers studied the hydrology of the Neosho River basin (Reference 45). Wolf Creek watershed is a part of the lower Neosho River basin. The U.S. Army Corps of Engineers' Tulsa district used an initial loss of 1.00 inch and a constant infiltration loss of 0.04 inch per hour (Reference 45) for the John Redmond Reservoir spillway design flood calculations. A constant infiltration loss of 0.04 inch per hour was used for the Wolf Creek watershed PMF studies. It is assumed that a SPF has preceded the PMF. For that reason the soil moisture supply within the watershed prior to the occurrence of the PMP is assumed to be above normal. Due to these assumptions, initial loss (i.e., rainfall absorbed into the ground) for PMP was not considered. These combined assumptions are conservative for calculation of the PMF. Figure 2.4-13 shows the calculated rainfall excess distribution at various periods of precipitation. 2.4.3.3 Runoff Model The design flood hydrographs were determined by dividing the Wolf Creek watershed into three areas as shown on Figure 2.4-14. Area 1 represents the drainage area at the upstream end of the lake. Area 2 is the remaining area of the watershed excluding the lake area, and Area 3 is the lake area. The relationship between the total drainage area and the lake surface area has an influence on the hydrograph. In this case, the surface area of the lake is approximately 8.2 square miles, which is approximately 30 percent of the total drainage area of Wolf Creek at the dam site. Inflow into a reservoir traverses the reservoir length much more rapidly than along a similar length of natural stream channel. Therefore, hourly rainfall amounts over the reservoir surface area (Area 3) were converted into equivalent cubic feet per second and added to the total runoff hydrograph resulting from Areas 1 and 2. Snyder's synthetic unit hydrograph method (Reference 7) was used to derive the runoff hydrograph from Areas 1 and 2. U.S. Army Corps of Engineers (Reference 45) made a detailed hydrologic study of the Neosho River basin in connection with the

2.4-15 Rev. 27 WOLF CREEK design of the John Redmond Reservoir. Data from this study were used as input to Snyder's mathematical model to generate a unit hydrograph for the Wolf Creek drainage basin. Table 2.4-13 presents a comparison between the important unit hydrograph parameters of the Wolf Creek drainage basin and those developed for the John Redmond and Cedar Point reservoir projects (References 45 and 58). The Wolf Creek watershed has a narrow elongated shape. The values of Snyder's coefficients CP and CT of the unit hydrographs developed for the Neosho River at Council Grove and for the Cottonwood River at Cottonwood Falls were used for the John Redmond reservoir drainage basin by dividing the total drainage area into a number of sub-basins. Wolf Creek watershed is adjacent to some of these sub-basins of the John Redmond watershed. Some of these sub-basin areas have drainage areas as low as 50 square miles. The watershed for the Cedar Point project is fan-shaped, and its stream slope is steep (Reference 57, Page 3-1 and Plate 6). In contrast, Wolf Creek basin has a milder average waterway slope and a narrow elongated shape. Hence, it is more appropriate to use the John Redmond values for Wolf Creek project, since the two projects are in hydrologically similar regions. The values of CP = 0.84 and CT = 1.84, which are the more conservative of those used for the John Redmond reservoir, were therefore adopted for the Wolf Creek project. The pertinent unit hydrograph parameters for pre- and post-project conditions are listed in Table 2.4-14.

2.4.3.4 Probable Maximum Flood Flow There are no other existing or proposed dams on Wolf Creek upstream or downstream of the plant site that will affect the water level at the plant site, except the cooling lake dam for the power plant. The cooling lake dam is designed to withstand the effects of the PMF and coincident wind wave action. A service spillway with uncontrolled crest and an auxiliary spillway are provided to pass floods up to and including the PMF. The dam and the spillways are protected against erosion due to wind wave action and flood flows (see Section 2.4.8.2 for a discussion of erosion protection).

A 1-hour unit hydrograph under natural conditions (without the cooling lake) is shown on Figure 2.4-15. The 100-year and PMF flood hydrographs for Wolf Creek at the dam site under natural conditions are shown on Figure 2.4-17. From Figure 2.4-17, the PMF and the 100-year flood peaks under natural conditions are 40,877 cubic feet per second and 8,363 cubic feet per second,

2.4-16 Rev. 27 WOLF CREEK respectively. These hydrographs are given for comparison purposes only. The synthetic 1-hour unit hydrographs for the sub-basin Areas 1 and 2 are shown in Figure 2.4-16. The pertinent parameters use in developing the unit hydrographs are given in Table 2.4-14. The hourly rainfall amounts over the cooling lake surface area were converted into equivalent cubic feet per second and added to the runoff hydrograph resulting form sub-basin Areas 1 and 2. The input used in computing the flood hydrographs (SPF and PMF) is shown in Table 2.4-15. The combined unit hydrograph ordinates used in the flood hydrograph computations are taken from Figure 2.4-16. The precipitation magnitudes used in the determination of SPF were assumed to be 50 percent of the corresponding values developed for PMP, with the same time distribution. The PMF hydrograph for Wolf Creek at the main dam site under modified conditions (with the cooling lake) is shown in Figure 2.4-18. The PMF peak under modified conditions is 82,089 cubic feet per second. The SPF and 100-year flood hydrographs for modified conditions are shown in Figure 2.4-19.

2.4.3.5 Lake Water Level Determinations The maximum still water level in the cooling lake was determined by routing the PMF hydrograph with an antecedent SPF hydrograph through the lake over the 100-foot-long service spillway and the 500-foot-long auxiliary spillway. The starting pool elevation used for the flood routing computations was 1088.0 feet, which is the crest elevation of the service spillway. It was assumed that the start of the PMF hydrograph was 3 days after the end of precipitation causing the SPF. As the total duration of the precipitation causing SPF was 48 hours, the PMF hydrograph starts 120 hours after the start of the SPF, in the flood routing computations. The computer program "Spillway Rating and Flood Routing" (Reference 53) developed by the U.S. Army Hydrologic Engineering Research Center was used in the computations. The tailwater rating in the chute just downstream of the spillway was developed by the program with a downstream apron elevation of 1074.0 feet and an apron width of 30 feet. Figure 2.4-20 shows the elevation-area-capacity relation for the Wolf Creek lake. The computer program used for spillway rating and flood routing does not take into account the semicircular plan shape of the ogee crested spillways used in the Wolf Creek Lake design (see Figure 2.4-21). The difference between the flow over straight and circular spillways is due to convergence of stream lines in the latter case, hence the coefficient of discharge for circular spillways is slightly lower (Reference 63 and 51). A comparison is made between the coefficients of discharge for the straight and circular spillways under free flow conditions as given in the Engineer Manual, "Engineering and Design, Hydraulic Design of

2.4-17 Rev. 27 WOLF CREEK Spillways", (Reference 51). For the semicircular spillway crest, with a length (perimeter) of 100 feet, the radius (R) is 31.83 feet and P/R = 0.157, where P is the approach depth at spillway. For P/R = 0.15 and HD/R of about 0.2, the coefficient of discharge for a circular spillway is 3.96 (Reference 51, Plate 55), whereas the maximum coefficient for a straight spillway for H/HD = 1.0 is 4.03. (HD and H are the design head and the actual head, respectively). This means that at design head, the circular spillway crest effectively discharges 98 percent of the discharge for a straight spillway of the same length. Reflecting this change in the length of the service spillway crest, it means that the 100 foot long (perimeter) circular spillway crest is as effective as a straight spillway 98 feet wide. The maximum pool elevation for a 95-foot circular service spillway crest using the flood routing program is 1094.98 feet, and for the 100-foot straight service spillway crest it is 1094.94 feet. The above elevations are obtained when the routing is performed together with the auxiliary spillway. From this analysis, it is clear that the difference in elevations (between circular and straight spillway crests of the same length) is not significant. The spillway rating developed by the above program was plotted and shown in Figure 2.4-22. The lake water level variation with time obtained from the flood routing computations is presented in Figure 2.4-23. The maximum water level attained at the main dam site is elevation 1095.0 feet with a peak outflow of 22,845 cubic feet per second passing over the spillways. The loss of cooling lake capacity due to sedimentation over a period of 40 years, including the sediment in the water pumped from John Redmond reservoir is approximately 1 percent of the cooling lake capacity (Section 2.4.8.2) at normal pool elevation. The sediment from the water pumped from John Redmond reservoir settles in the entire reservoir. The sediment from Wolf Creek stream flow is only about one half of 1 percent of the lake capacity. Most of this settles below the normal pool elevation of 1087.0 feet, and only a small percentage of the sediment deposits in the upper reaches around the normal pool elevation (Reference 1). Therefore, the modification to the elevation-area-capacity information on the lake and hence its effect on the maximum still water elevation is insignificant. Further, as the plant location is not in the upper reaches but in the middle reaches of the lake, there would not be any significant change in the flood elevation at the plant site due to sedimentation. The maximum water level at the plant site was determined by making backwater calculations from the dam site to the plant site along the cooling lake, a distance of about 3.2 miles. The backwater computations were made using the U.S. Army Corps of Engineers

2.4-18 Rev. 27 WOLF CREEK computer program "Water Surface Profiles" (Reference 56) for a maximum spillway flood discharge of 22,845 cubic feet per second with a starting elevation of 1095.0 feet. Eighteen cross sections were used between the dam site and the plant site. Cross sections were taken at intervals of 1,000 feet. The values used for Manning's roughness coefficient were 0.03 for the main channel and 0.05 for the floodplain. The backwater computations resulted in a maximum water surface elevation of 1095.0 feet at the plant site, i.e. no increase in pool elevation due to backwater effect. The plant floor elevation is 1100.0 feet, and the plant grade is 1099.5 feet. 2.4.3.6 Coincident Wind Wave Activity 2.4.3.6.1 Plant Site The effect of a sustained 40-mile per hour overland wind from a critical direction was superimposed on the PMF pool elevation at the plant site. The significant (Reference 52) and maximum (1 percent) wave heights were computed to be 2.9 feet and 4.9 feet, respectively. Wind-generated wave runup at the plant site was based on a deep water condition with an effective fetch (Figure 2.4-24) of 2 miles, a wind-tide fetch of 3 miles, a water depth of 36 feet, and the waves acting on a 30:1 (horizontal-to-vertical) smooth ground slope. From an analysis, it was found that the waves are deep water waves (References 47 and 54). The estimated runup by maximum waves is approximately 0.8 foot. Superimposing this wave runup value on the PMF level at the plant site resulted in a wave runup elevation of 1095.8 feet, which is 4.2 feet below the plant floor elevation of 1100.0 feet.

Another combination of pool elevation and wind speed, viz, pool elevation at spillway crest (1088.0 feet) and a probable maximum overland wind speed of 90 miles per hour (Section 2.4.5.1), was also tested to determine the worst combination from the viewpoint of wave runup which is reasonably possible. The estimated runup for maximum waves for this case was computed to be 2.5 feet, and corresponding wave runup elevation is 1090.5 feet. Thus, the 40-mile per hour wind superimposed on PMF pool is the governing event in deciding the minimum plant grade elevation. The plant grade elevation of 1099.5 feet is such that no safety-related structures are exposed to the floodwaters under the worst possible condition as determined above. 2.4.3.6.2 Main Dam Site The maximum wave runup on the main dam and saddle dam V was determined by superimposing the significant wave effects of a coincident 40-mile per hour overland wind on the PMF level at the

2.4-19 Rev. 27 WOLF CREEK dam site. The use of the significant wave is in accordance with the practice of U.S. Army Corps of Engineers (Reference 55) to estimate freeboard allowance for wave action above the maximum reservoir surcharge level. The wave runup calculations are based on an effective fetch (Figure 2.4-25) of 2.4 miles, a wind-tide fetch of 6.1 miles, a water depth of 51 feet, and an upstream slope of the dam of 3:1 (horizontal-to-vertical) with riprap. The runup due to significant wave effects is 3.98 feet, resulting in a wave runup elevation of 1099.0 feet at the dam site. The wave runup elevation due to a 90-mile per hour wind superimposed on a pool elevation at the spillway crest is 1097.9 feet at the dam site. An elevation of the top of the dam of 1100.0 feet is provided.

It can be seen from Table 2.4-16 that the wave runup elevation over the PMF pool elevation due to the maximum wave at the main dam is 1100.40 feet. This is 0.4 foot above the top-of-dam elevation of 1100.0 feet. A gravel service road 1 foot thick is provided above the top of the dam at elevation 1100.0 feet. The top of the road elevation is 1101.0 feet. The wave splash associated with runup due to the few waves up to the maximum wave is less than about half a foot above the top of the dam, hence potential erosion due to wave splash will not damage the dam.

2.4.3.6.3 ESWS Pumphouse A summary of wave runup elevations at the plant site, dam site, and Seismic Category I ESWS pumphouse for both 40-mph and 90-mph wind speed, is given in Table 2.4-16.

2.4.4 POTENTIAL DAM FAILURES (SEISMICALLY INDUCED) Appendix A of Regulatory Guide 1.59 has been replaced by ANSI Standard N170-1976, "Standards for Determining Design Basis Flooding at Power Reactor Sites." Sections 6 and 9 of that standard, "Nonhydrologic Dam Failures," and "Combined Events Criteria," respectively, have been followed in this analysis. Coincident and domino-type failures have been considered and evaluated, including instantaneous removal of the major dams.

The only water impoundments upstream of the cooling lake in the Wolf Creek Watershed are small storage ponds, both natural and man-made. These ponds vary in size from small potholes of depression storage to minor lakes of a few acres. A conservative estimate of the total volume of these small ponds is about 2,000 acre-feet, which would be less than two percent of the total cooling lake volume. If any of the water from these impoundments were released, they would have negligible effects on the cooling lake.

2.4-20 Rev. 27 WOLF CREEK Breaking of the cooling lake earth embankments associated with the Probable Maximum Flood (PMF) would cause that impounded water and the runoff from the watershed upstream of the lake to discharge directly to the Neosho River floodplain. Since the plant grade is at elevation 1,099.5 feet, there would be no possibility of the plant facilities flooding due to this phenomenon. Flood potential at the plant site due to the PMF on Wolf Creek is discussed in Section 2.4.3. The nonhydrologic dam break condition examined in this investigation included the assumption of complete and instantaneous removal of the upstream dams on the Neosho and Cottonwood rivers. In addition, the extremely conservative assumption of a coincident Standard Project Flood (SPF) and 2-year extreme wind speed for a critical direction and length of effective fetch were also considered. Their combined effects near the site are further discussed in Sections 2.4.4.1 through 2.4.4.3. This combination of the flood-causing events is consistent with NRC policy for providing adequate design floor bases (ANSI Standard N170-1976, Section 9). There are three major reservoirs presently in operation within the Upper Neosho Basin which were proposed and authorized as part of a four-reservoir system to be utilized for flood control purposes. The John Redmond, Council Grove, and Marion reservoirs and the proposed Cedar Point reservoir are shown on Figure 2.4-5. Physical and design criteria of the projects are listed in Table 2.4-17. Design capacity curves for the existing reservoirs are shown on Figure 2.4-26. The spillway gate regulation curves and the tailwater rating curves are shown on Figures 2.4-27 and 2.4-28. Because the dams are assumed to fail instantaneously and with complete removal of debris, no discussion of dam seismic design criteria is presented. This assumption is conservative. 2.4.4.1 Dam Failure Permutations The existing and proposed upstream dams are described in the preceding paragraphs. All the dams studied are situated in a region which has experienced relatively few earthquakes, all of which were minor to moderate in intensity. The history of recorded earthquakes in the region with maximum Modified Mercalli Intensities of V to VII is discussed in Section 2.5.2.

Because of the low seismicity within the Neosho River Basin, and because an earthquake of a magnitude which could cause severe damage or complete failure of these dams is unlikely, the existing

2.4-21 Rev. 27 WOLF CREEK and proposed dams have not been designed for seismic acceleration. Furthermore, the plant site on Wolf Creek is at elevation 1,099.5 feet and is approximately 8.5 miles upstream from the confluence with the Neosho River. The maximum pool elevation in John Redmond Reservoir is at elevation 1,075 feet or 24.5 feet below the plant grade. Therefore, the probability of flooding to the site due to dam failure is very low. However, for the purpose of this study, a number of dam failures were postulated, and the resulting floods were evaluated. As a conservative assumption, complete failure of the dam due to the SPF was considered. It was not necessary to relate seismic failure to either the Safe Shutdown Earthquake or the maximum historic earthquake, because the assumption of complete, instantaneous removal of the dams was considered. The floods resulting from a partial erosion failure of earth embankments due to overtopping or from a seismically induced breaching of earth embankments would not be as severe as the case of a complete dam failure coincident with the SPF.

Due to the relative distances between the dams and the site, both single dam failure and multiple dam failure were considered as follows:

a. Single dam failures;
1. John Redmond Reservoir coincident with the SPF; 2. Council Grove Reservoir coincident with the SPF;
3. Marion Reservoir coincident with the SPF; and
4. Proposed Cedar Point Reservoir coincident with the SPF;
b. Multiple dam failures;
1. Sequential failure of Marion and Cedar Point reservoirs coincident with the SPF;
2. Sequential failure of Marion, Cedar Point, and Council Grove reservoirs coincident with the SPF; and
3. Sequential failure of Marion, Cedar Point, Council Grove, and John Redmond reservoirs coincident with the SPF.

2.4-22 Rev. 27 WOLF CREEK By considering successive routing of the flood waves resulting from dam failure in each of the above-mentioned cases, the water levels which would be present at the site were determined. 2.4.4.2 Unsteady Flow Analysis of Potential Dam Failures 2.4.4.2.1 Dam Failure Water Release Rate The method used to determine the outflow which results from the instantaneous failure of a dam is described by Stoker (Reference 42, pp. 333, 513). The assumptions used in this method are as follows:

a. Complete and instantaneous removal of the dam sections that are presumed to fail;
b. The actual cross section at the dam site is rectangularized and resolved into channel and overbank segments which are handled separately; c. Vertical accelerations and cross-channel flow are ignored;
d. In the case of domino-type failures, failure of downstream dam is presumed if a flood resulting from upstream dam failure raises the water level 5 feet above the top of the downstream dam (Reference 38); and
e. A conservative constant downstream water depth of 10 feet is assumed to exist before the dam failure. In reality, the tailwater depth is increasing with time.

Therefore, the computed water release rate based upon a constant tailwater depth will be higher. Conservatively, a maximum flood control reservoir level, including the SPF, Figure 2.4-29, was assumed at the instant of complete dam failure. The initial conditions and peak discharges are summarized in Table 2.4-18. Details of each analysis of outflow rates through the dambreak section are shown on Figure 2.4-

30. The following symbols are used in the calculations of water release rate due to instantaneous removal of the dam:

Ho = the water level below the dam assumed to be maintained at the constant depth;

H1 = the water level above the dam; Q = the discharge through the dambreak section which is resolved into the channel and overbank segments;

2.4-23 Rev. 27 WOLF CREEK dV = the volume of water released from the dambreak section; Ci = the wave propagation speed associated with ith level; Vi = the amount of water stored in the reservoir at ith level; and

Hi = the water level above the dam site at ith level. According to Stoker, the discharge rate, dQ/dt, per unit width at the dam site is a function of the depth Ho and H1. This function is reproduced on Figure 2.4-31 (Reference 42, pp. 333-513). As water flows out of the reservoir, H1 decreases and, consequently, the flow rate, dQ/dt, is reduced. For a given increment of time, dt, the discharge rate, dQ/dt, is assumed to be constant, and the amount of the water released from the reservoir is evaluated by multiplying the discharge, Q, with a time period, dt. By successive iterations, namely, defining a time increment, dt, the volume of water stored in the reservoir can be calculated by subtracting the volume of water flowing through the dambreak section from the initial reservoir storage. Therefore, a different water level, H1, can then be computed based on the area and capacity curves of the reservoirs. By defining another Hi, other values of dQ/dt, Q, dV, and V are obtained. This analysis is discontinued when the water level, Hi, reaches the initial water level below the dam, Ho. The above computations for the water release rate are very conservative. This is because Stoker's theoretical curve, as shown on Figure 2.4-31, was obtained by assuming "A horizontal tank of constant cross section extending to infinity in both directions. . ." (Reference 72, p. 334). As a consequence, the computed theoretical discharge rates will be higher than potential natural conditions.

2.4.4.2.2 Unsteady Flow Model A computer program (SOCH) developed by the Tennessee Valley Authority (TVA) was used for the flood wave routing through the river channels and reservoirs of the Neosho River above the site. This mathematical model has been successfully applied to a number of complex, unsteady flow conditions in the TVA's river basin and reservoir network (Reference 14). The basic principle and input-output requirements are briefly discussed below. The TVA model was formulated to solve the basic equations of unsteady, gradually varied flows in reservoirs and natural rivers.

2.4-24 Rev. 27 WOLF CREEK The two equations of unsteady, gradually varied flow are:

a. Equation of continuity - (AV)x + B h t - q = 0 [2.4-1] b. Equation of motion - g hx + V Vx + g S + qA V = 0f
  [2.4-2]   in which A  = Flow area; V  = Mean velocity; x  = Distance; 

B = Surface width; h = Water surface elevation; t = Time;

q = Lateral local inflow per unit distance and time; g = The gravitational constant; and

Sf = The energy gradient given by S = n VlVl2.21Rf24/3 where n = Manning's roughness coefficient; and

R = Hydraulic radius. Even though the TVA's unsteady flow model was derived for gradually varied flow, applications of the SOCH program to the study of the detailed bore profile of the Watts Bar Reservoir and instantaneous dam failures indicated good agreement with model studies (Reference 40 and 46). The open-channel flow is assumed to be one-dimensional. The flow characteristics, such as depth and velocity, are considered to vary with time only in the longitudinal direction. The channel geometry is three-dimensional.

2.4-25 Rev. 27 WOLF CREEK The necessary input data for routing in a particular river channel or reservoir consist of upstream and downstream boundary conditions, such as discharge or water surface elevation versus time, or a stage-discharge relationship. A steady flow profile may be used as the initial condition. In addition to boundary and initial conditions, input data on local inflows, channel geometry, and boundary roughness (Manning's "n") must also be prescribed. From these input data, the model can determine flows, mean velocities, and water surface elevations at any number of desired locations and times. 2.4.4.2.3 Application of the Unsteady Flow Model

The TVA's SOCH unsteady flow model was used to estimate the potential for flooding at the site due to upstream dam failures. Detailed characteristics of the bore profile were not analyzed since the resultant flood stages were far below the plant grade. Assumption of Manning's coefficient, selection of cross sections, and time and space steps are discussed herein.

In routing the floods through various reaches of the Neosho and Cottonwood rivers, the river meanderings and channel areas were neglected. This is justified when one compares the channel areas with the total inundated flood area (Figures 2.4-9 and 2.4-10). Channel areas are less than 2 percent of the total flood area. A value of Manning's "n" of 0.05 was used throughout the analysis (Reference 6, pp. 106-114). This closely approximates the actual regional conditions of the Neosho and Cottonwood rivers' floodplain areas which are characterized by pasture and cultivation with some scattered brush and weeds. A similar value was also calculated from backwater computations using known flood discharge data and floodplain geometry. Floodplain information for the Neosho and Cottonwood rivers was documented by the U.S. Army Corps of Engineers (Reference 50). Cross sections for the Neosho and Cottonwood rivers above the John Redmond Dam were obtained from this study. Each cross section is identified by the name of its nearest city or town (Figure 2.4-32). Additional cross sections between the above selected cross sections were obtained by linear interpolation at 2-mile intervals. Cross sections downstream from the John Redmond Dam were obtained from USGS 7-1/2 minute topographical maps at 1-mile intervals. There were a total of 102 cross sections. A steady uniform flow rating curve was assumed at a selected site 8 miles down-stream from the John Redmond dam site (Table 2.4-19). The time increment utilized in the computer iterative analysis was 60 seconds. With the above information, the water levels at various times along the river and near the site were evaluated.

2.4-26 Rev. 27 WOLF CREEK 2.4.4.3 Water Level at Plant Site The floods resulting from dam failures discussed in Section 2.4.4.1 were routed through the Neosho and Cottonwood rivers. Estimated maximum water levels and maximum discharges at various control sections and at the site due to a single dam failure or domino-type dam failures were computed and the results summarized in Table 2.4-20. The time-space variations in flood discharges at various selected locations along the Neosho and Cottonwood rivers due to dam failure are shown on Figures 2.4-33 through 2.4-41. The maximum flood at the junction of the Neosho and Cottonwood rivers due to a single dam failure at Council Grove, Marion or Cedar Point reservoirs is 189,200 cfs, 232,900 cfs, and 239,900 cfs, respectively. The peaks due to these dam failures are smaller than or approximately equal to the SPF of the John Redmond Reservoir. Consequently, these floods will not have any measurable effect on the safety of the John Redmond Dam. Domino-type dam failures at Marion and Cedar Point, or Marion, Cedar Point, and Council Grove reservoirs will produce higher peaks (328,800 cfs and 518,000 cfs, respectively) at the junction of the two rivers. These magnitudes, however, are still smaller than the magnitude of the spillway design flood of 640,000 cfs for John Redmond Dam. Therefore, it may be safely concluded that the John Redmond Dam will not be threatened by any combination of upstream dam failures.

Consequently, the Wolf Creek site, including all safety-related facilities, will not be affected by any combination of failure of dams located above John Redmond Reservoir. A minimum topographic elevation of 1,100 feet occurs along the drainage divide between the Neosho River and Wolf Creek valleys upstream of John Redmond Dam within the Southwest 1/4, Section 33, Township 20 South, Range 15 East. This topographic low is about 25 feet above the maximum pool elevation of 1,074.5 feet in John Redmond Reservoir. As the drainage divide is composed of thin residual soils developed on Pennsylvanian bedrock, breaching of this topographic barrier by flood flows into John Redmond Reservoir is precluded. In the case of a single dam failure at John Redmond Reservoir, the maximum flood stage at the confluence of the Neosho River and the Wolf Creek valleys (about 5.0 miles downstream from John Redmond Dam) was determined to be at elevation 1,043.38 feet. The maximum flood stage for distances of up to 8 miles downstream of the John Redmond Dam for this case is shown on Figure 2.4-42 by curve 1. Even in the most critical case, that which postulates the domino-type failure of all four reservoirs (case b.3 of Section 2.4.4.1), the maximum flood stage of the Neosho River was estimated to be 1,044.55 feet at a distance of about 5.0 miles downstream from the John Redmond Dam (Figure 2.4-42, curve 2).

2.4-27 Rev. 27 WOLF CREEK The topographic ridge between the Neosho River and Wolf Creek valleys below John Redmond Dam will separate the postulated flood levels in the Neosho River valley from any facilities at the site, with the exception of the cooling lake main dam. The minimum ground surface elevation along the ridge is about elevation 1,080 feet at the location of Dam V (Figure 2.4-1), which is about 35 feet above the maximum calculated flood elevation of 1,044.55 feet.

Therefore, the effect of flooding in the Neosho River due to dam failures above and including John Redmond Dam is limited to backwater effects on the cooling lake main dam in the Wolf Creek valley.

Wave heights generated by coincident wind activity on the potential maximum flooding levels noted previously in the vicinity of the lower Wolf Creek valley were considered to occur from a sustained 2-year extreme wind speed of 53 mph (ANSI Standard N170-1976). Based on this consideration, wave heights would be on the order of about 5.0 feet for estimated effective fetch lengths of up to 10 miles (Reference 63) and wind originating from the southeast. The effective fetch is the length of water surface over which the wind can generate waves on water. It can also have a slightly curved path, such as when the wind sweeps up the winding river valley between land ridges. The potential maximum instantaneous water level for the combined most extreme flood-causing events at the confluence of the Neosho River and Wolf Creek valleys is estimated to be at elevation 1,049.55 feet. The minimum ground-surface elevation at the location of the cooling lake main dam is about 1,010 feet, or about 40 feet below the potential maximum water level at the confluence of the valleys.

The maximum flood level at the cooling lake main dam for case b.3 of Section 2.4.4.1 was determined by making backwater calculations on Wolf Creek from its confluence with the Neosho River floodplain to the damsite, a distance of about 4,000 feet. In performing the calculations, it was assumed that the peak outflow discharge of the cooling lake service and auxiliary spillways (4,660 cubic feet per second as determined from routing the SPF through the cooling lake) would coincide with a maximum flood stage of 1,049.55 feet at the point of confluence. This elevation was utilized as the starting elevation for the backwater calculations.

The backwater calculations on Wolf Creek were made by applying the Standard Step Method for gradually varied flows (Reference 6). Three channel cross sections between the confluence of Wolf Creek with the Neosho River floodplain and the cooling lake main dam were obtained from USGS 7.5-minute quadrangle topographic maps. The water elevation at the initial section was 1,049.55 feet. An

2.4-28 Rev. 27 WOLF CREEK assumed constant channel flow of 4,660 cubic feet per second (cfs) and a Manning's roughness coefficient of 0.07 were used in the analysis. The calculated results are presented in Table 2.4-21 and show a negligible backwater effect on the maximum flood level at the cooling lake main dam. The maximum water elevation on the downstream slope of the cooling lake main dam, due to the postulated combined maximum flood-causing events in the Neosho and Cottonwood river basins, is conservatively established at elevation 1,049.6 feet. This flood stage is well below surface grades of any Category I facilities at the site and is about 50 feet below the plant yard grade elevation 1,099.5 feet. Flood protection criteria for all Category I facilities are controlled by hydrologic engineering considerations in the Wolf Creek Watershed above the cooling lake main dam as discussed in Section 2.4.10. 2.4.5 PROBABLE MAXIMUM SURGE AND SEICHE FLOODING 2.4.5.1 Probable Maximum Winds and Associated Meteorological Parameters Reports of severe, damaging, meteorological events occurring in Arkansas, Oklahoma, Kansas, and Missouri during the period January 1959 through December 1978 are documented in the U.S. Department of Commerce publication Storm Data, Volumes 1 through 20. Analysis of these documented reports indicates that wind speeds greater than the calculated, annual-extreme, fastest-mile wind speed frequently occur in that region. The site region lies outside the zones of active hurricane activity (Reference 52, p. 126).

Studies for this region have indicated that maximum straight winds occur in conjunction with thunderstorms and associated tornadoes, heavy rainfall, and hail. However, not all the associated phenomena will affect the same area during the same storm; the parent storm may move in any direction depending on the location of the storm relative to the area. Reports studied indicate that winds at a given point lasted from a few minutes to more than 1/2 hour. A peak recorded gust of 138 miles per hour (mph) was measured at Stillwater, Oklahoma, with sustained winds of between 92 and 115 mph for 8 minutes (Reference 65). Maximum estimated winds between 100 and 140 mph were reported in connection with a thunderstorm at Desloge, St. Francis County, Missouri, on July 14, 1972 (Reference 66). Local variations in the distribution of wind direction and speed are expected to exist. For design purposes, a regional historical study of maximum wind speeds was made in order to arrive at an estimated probable maximum wind speed for a 25-minute duration. A 25-minute duration is the minimum time required for wave generation in the cooling lake (Section 2.4.3.6). The fastest observed 1-minute, 1-hour,

2.4-29 Rev. 27 WOLF CREEK and 1-month wind speed values were found in published National Weather Service (NWS) data (Reference 65, pp. 73-74). A number of other occurrences of extreme winds with time durations accurately recorded were also used in the analysis. The observed wind speed values were plotted and a best-fit curve was drawn through the representative points. The probable maximum wind speed of 90 mph for a 25-minute duration was then estimated from the plotted data points.

2.4.5.2 Surge and Seiche Water Levels There are no large bodies of water near the site subject to wind-generated, surge- or seiche-type flooding which could affect plant safety-related structures. The term "wind setup" has been denoted to represent an increase above normal water level resulting from the action of wind stress on water in enclosed lakes and reservoirs (Reference 52, p. 116). Storm water levels resulting from wind setup, wave action, and runup produced from maximum probable winds are discussed in Section 2.4.3.6. Seiches are water surface oscillations and may be of varying periods and heights. They are caused by either barometric pressure or wind forces. The relatively small size of the cooling lake precludes significant changes in water level due to seiches. 2.4.5.3 Wave Action As there are no large bodies of water near the site subject to wind-generated surges or seiches, no discussion is needed. 2.4.5.4 Resonance The natural period of longitudinal oscillations was computed (Reference 18 and

8) for the cooling lake and compared with the wind wave periods. For the case of a long and narrow basin, only longitudinal oscillations are of importance (Reference 18). The method developed by Defant (Reference 8) for closed basins of complex shape was used in the computations.

The computed natural period of the lake is 35 minutes, whereas the periods of wave motion in the lake corresponding to the overland winds of 40 and 90 mph are only 3.48 and 4.96 seconds, respectively. The large difference between the wave periods and the natural period of oscillation of the lake demonstrates that the lake will not sustain wave action of a period to induce resonance.

2.4-30 Rev. 27 WOLF CREEK 2.4.5.5 Protective Structures As there are no large bodies of water near the site subject to wind-generated surges or seiches, no discussion is needed. 2.4.6 PROBABLE MAXIMUM TSUNAMI FLOODING

Tsunami flooding is not applicable to the site because of its remoteness from large bodies of water. 2.4.7 ICE EFFECTS

2.4.7.1 ICE FLOODING There are no records of severe flooding caused by major river or stream ice formation within the Neosho River basin above or near the project area (Reference 10). Any ice formation in lakes or along streams is minimal and has not hindered past reservoir operation. Therefore, the potential for ice flooding in the site area is minimal and not a safety-related factor. 2.4.7.2 FRAZIL ICE

Frazil ice can form in the Wolf Creek cooling lake creating the potential to block Essential Service Water (ESW) intake trash racks. This potential can exist when the water in the lake becomes supercooled. Supercooling requires a large heat loss from the lake associated with low air temperatures (less than 22F), clear water, and usually clear nights. Since the cooling heat transfer is at the surface, strong winds are also needed to mix the supercooled water to a depth low enough to be sucked into the intake. The effects of frazil ice are mitigated by diffusing warmed water in front of the ESW trash racks as described in Section 9.2.1.2.2.2.

2.4.8 COOLING WATER CHANNELS AND RESERVOIRS 2.4.8.1 Channels The configuration of the channels in the Wolf Creek lake is shown in Figure 2.4-1. Three channels direct the flow of circulating water through the cooling lake. The channels are sized to carry 2230 cfs (1,000,000 gpm) at a design maximum discharge velocity of 2.5 fps, assuming a lake low water level of 1075.0 feet. This discharge and the low water level correspond to the operation of two units identical to WCGS Unit No. 1. A maximum permissible velocity of 2.5 fps was chosen to preclude erosion of the material through which the channels are excavated. The channels are 215 feet wide at the bottom (approximate elevation 1070.0 feet) and have sides with 3:1 (horizontal-to-vertical) slopes. The intake channel to the circulating water screen house is 215 feet wide at the bottom and is capable of carrying circulating water for two units. The width of this channel reduces to 107.5 feet near the screen house for Unit No. 1. The bottom of the intake channel to the essential service water pumphouse at elevation 1065.0 feet has a bottom width of 80 feet and has side slopes of 3:1 (horizontal-to-vertical). A berm 55 feet wide is provided at elevation 1070.0 feet. The berms support sheets of ice and prevent any blockage of the channel in the extreme event of the loss of water in the cooling lake to an elevation of 1070.0 feet during winter. Sedimentation in the intake channel does not affect the capability of the essential service water system. Sedimentation of the UHS is discussed further in Section 2.4.11.6. The 80-foot-wide essential service 2.4-31 Rev. 27 WOLF CREEK water channel is designed to provide cooling water for an emergency plant shutdown. This channel can provide 30,000 gpm (67 cfs) of water, which is sufficient for the emergency shutdown of two units identical to WCGS Unit No. 1. The width of this channel reduces to 40 feet near the pumphouse for Unit No. 1.

2.4.8.2 Reservoir The cooling lake is designed to supply cooling water to two units with an installed nominal capacity of 1150 megawatts each. Precipitation over the lake and its drainage basin constitutes a part of the water supply to the lake. Additional makeup water, which is released from the John Redmond Reservoir for this purpose, pumped from the Neosho River immediately downstream of the John Redmond Reservoir and discharged into the lake. The makeup to the lake varies from 0 to 120 cfs, with an annual average rate of 41 cfs. The lake serves as a cooling lake for the heated condenser effluent. Baffle dikes and channels as described in Subsection 2.4.8.1 are provided to increase the travel time of the cooling water form the discharge point to the circulating water screen house intake. The cooling lake has a storage capacity of 111,280 acre-feet and a surface area of 5,090 acres at the normal operating level of 1,087 feet. Figure 2.4-20 shows the lake area-capacity curves as a function of elevation derived from the topographic map of the area. The Wolf Creek drainage area above the cooling lake dam is 27.4 sq. mi. The filling of the lake began on October 27, 1980; normal operating level was reached on May 30, 1982. In calculating the necessary capacity for the cooling lake, the historic drought of 1952-57 was used in the analysis as the worstcase design drought. It is estimated to have a 50-year recurrence interval. Minimum lake water level obtained for one-unit operation through the design drought is 1085 feet. The evaluation of drought effects on the cooling lake is discussed in Section 2.4.11.

Sedimentation rate in the Wolf Creek lake was determined using two different methods, and the higher estimate of the two was used in estimating the sediment accumulating in the lake from the Wolf Creek stream flow. Sedimentation survey data are available for various streams and reservoirs throughout the state of Kansas (References 25, 27 and 64). A correlation analysis was made, with the available data,

2.4-32 Rev. 27 WOLF CREEK between the sedimentation rates and the corresponding drainage areas. A straight line was then fitted through the plotted points by the method of least squares. The sedimentation rate for Wolf Creek lake using this method is estimated to be about 0.587 acre-foot per square mile per year. In the second method, the procedure outlined in Appendix C of the publication, "Sediment Yields from Small Drainage Areas in Kansas" (Reference 27) was used. This procedure takes into account the division of drainage area into cropland and rangeland and the corresponding sediment delivery rates and trap efficiencies. Land classification data were obtained from the "Kansas State Water Plan Studies, Statewide Land Classification" (Ref. 62). This procedure conservatively projects the sedimentation rate for Wolf Creek lake to be 0.67 acre-foot per square mile per year. Using this conservative value, the sediment yield due to stream flow of Wolf Creek alone (including the bedload) would be 515 acre-feet in 40 years. The amount of sediment deposit resulting from a maximum inflow from John Redmond Reservoir of 120 cfs was calculated, using the observed turbidity of Neosho River water near Hartford (Reference 30), to be 565 acre-feet over the 40-year period. Therefore, the loss of lake capacity due to sedimentation over a period of 40 years amounts to approximately 1080 acre-feet. This is equivalent to only about 1 percent of the lake's storage volume at its normal operating level. The estimated sediment volume from Wolf Creek stream flow through the cooling lake is smaller than that from the water pumped from John Redmond Reservoir. This is because the estimated average Wolf Creek stream flow is only about 17 cfs, whereas a continuous maximum inflow from the Neosho River (120 cfs) was assumed in the 40-year sedimentation calculation.

The dam and dike system is designed to withstand the PMF with coincident wind waves. Section 2.4.3 describes the procedures for evaluating the PMF. The following paragraphs present the design bases for the spillways and outlet structures. A general layout of the cooling lake dam, service and auxiliary spillways, and outlet works is shown on Figure 2.4-2. 2.4.8.2.1 Cooling Lake Dam The cooling lake was formed by constructing a main earth dam across Wolf Creek and saddle dams along the periphery of the lake. The main dam has a maximum height of about 100 feet above the creek bed and is approximately 12,260 feet in length. The top of the main dam and the saddle dams is at elevation 1100 feet to provide sufficient freeboard and to prevent overtopping of the dam by the PMF and wind wave action. Riprap is provided on the upstream slopes for erosion protection against wind waves.

2.4-33 Rev. 27 WOLF CREEK The downstream slope and the toe of the main dam are protected against tailwater effects by riprap. Seepage through the dams is discussed in Section 2.5. 2.4.8.2.2 Spillways

A service spillway and an auxiliary spillway are provided on the east abutment of the main dam to pass floods up to and including the PMF (Figure 2.4-43). The service spillway is an uncontrolled concrete ogee-crested spillway that is semicircular in plan. The crest length is 100 feet and the crest elevation is 1088 feet. This concrete service spillway is approximately 14 feet high, and water discharges through it via a 30-foot concrete chute to a stilling basin. The channel downstream of the stilling basin is protected against erosion, with riprap. A pilot channel was excavated to convey the water to the main channel of Wolf Creek.

The auxiliary (emergency) spillway is located approximately 1500 feet east of the service spillway and is of the opencut type with a crest length of 500 feet and a crest elevation of 1090.50 feet. The service spillway will function alone for all floods up to the 100-year flood. For floods greater than the 100-year flood, both the service spillway and the auxiliary spillway will function. Under PMF conditions the peak total outflow is 22,845 cfs, 7318 cfs of which will be discharged by the service spillway. The outflow discharge from both the spillways reaches Wolf Creek through the pilot channel and another existing creek which is a tributary to Wolf Creek. The downstream slopes of the main dam are unaffected by the outflow from the spillways.

Design provisions are made downstream of the auxiliary and service spillways to prevent erosion and ensure the safety of the dam and the spillway structures. The chute downstream of the service spillway is designed to safely discharge the PMF outflow. The plan and sections of the service spillway are shown in Figure 2.4-21. The toe of the dam in the vicinity of the service spillway is at Station 1 + 60 (see Figure 2.4-21) and is at elevation 1086.0 feet MSL. Upstream of Station 2 + 15, necessary freeboard for the chute sidewalls above PMF level is provided (Reference 51). From Station 2 + 15 to Station 2 + 55, the top of the wall is sloped down from elevation 1084.75 feet to 1081.80 feet. The following discussion is provided to demonstrate that the splash of water over the wall does not endanger the toe of the dam.

2.4-34 Rev. 27 WOLF CREEK In the event of any splash of water over the wall due to wave action downstream of Station 2 + 15, water will safely flow away from the toe of the dam, since the ground slopes away from the dam. Station 2 + 55 is the closest station to the toe of the dam where the maximum splash over the side-walls could potentially occur. The maximum discharge over the sidewall at this location would be 7.7 cfs per foot length if the splash over the wall exists continuously at an elevation equivalent to PMF level plus freeboard of 3.34 feet. However, the flow over the wall due to wave action would, in reality, be intermittent. It is conservatively assumed that 50% of the above maximum discharge could spill over the wall. The maximum depth of scour (erosion) due to this flow (impinging over the finished grade adjacent to the chute wall) is calculated at 3.8 feet based on the following equation (Reference 63). ds = 1.32 HT.225q.54 [2.4-3] Where ds = the maximum depth of scour below tailwater level in feet, HT = difference in elevation between (PMF elevation + freeboard) and finished grade elevation in feet, and q = discharge per foot width in cfs.

Conservatively assuming that the scour hole has a slope of 3 to 1, with the maximum scour depth of 3.8 feet, the scour hole extends about 12 feet upstream of Station 2 + 55. There would still be a clear distance of 83 feet from the edge of the scour to the toe of the dam. Between Stations 2 + 55 and 2 + 15, the depth of the scour hole would be smaller. Hence, there would be no effect on the toe of the dam from the scour. At Station 2 + 55 the scour depth is also calculated using the procedure given in Hydraulic Design Criteria for Storm Drain Outlets (Reference 59). From this procedure the depth of the scour hole is calculated to be 2.8 feet. The hole extends 11 feet upstream from Station 2 + 55. In the above calculations, it is conservatively assumed that the splash of water due to wave action over the wall acts like a jet in producing the scour. The calculation assumes a splash time of 30 hours and a 1-foot length of wall.

Following a similar analysis to the above, it is found that the scour at any location downstream of Station 2 + 55 does not affect the safety of the toe of the dam or the dam itself.

2.4-35 Rev. 27 WOLF CREEK Figure 2.4-43 shows the details of erosion protection for the auxiliary spillway. The following specific erosion protection provisions are made in the design so that it can pass the PMF safely and without endangering the dam embankment.

a. The crest of the spillway and the downstream 3:1 slope are formed with a 1-foot-thick concrete apron. The apron on the 3:1 slope continues down to the solid Toronto limestone rock at an elevation of about 1071.0 feet.
b. The 10:1 slopes of both sides of the spillway along the axis of the dam also have a 1-foot-thick concrete apron.
c. On either side of the spillway, the concrete apron, with a 3:1 slope, is continued through the transition of the dam and the spillway channel up to the Toronto limestone rock at an elevation of approximately 1071.0 feet, as shown in Figure 2.4-44. d. The sloping concrete apron on the sides of the spillway channel is continued downstream such that any erosion during PMF is checked at a distance of about 100 feet from the toe of the main dam, and thus does not endanger the dam embankment.
e. The discharge channel and the sides of the channel are backfilled with the excavated local material as shown to the final grade. 2.4.8.2.3 Spillway Design Flood

The PMF is used as the design inflow to the lake to determine the sizes of the spillways. Estimation of the PMF is described in Section 2.4.3. The results are presented in Figure 2.4-18. The PMF inflow is routed through the service and auxiliary spillways by using the U.S. Army Hydrologic Engineering Center's computer program "Spillway Rating and Flood Routing". An antecedent standard project storm was assumed to end 72 hours before the start of the PMP. The resulting PMF outflow hydrograph is also shown in Figure 2.4-18. Peak service spillway discharge would be approximately 7318 cfs, and the maximum reservoir elevation would be 1095.0 feet, with a rise of 7.0 feet above the spillway crest. The spillway rating curve is given in Figure 2.4-22. The tailwater rating curve below the Wolf Creek dam, shown in Figure 2.4-45, was developed from backwater computations upstream from the confluence of Wolf Creek with the Neosho River.

2.4-36 Rev. 27 WOLF CREEK 2.4.8.2.4 Low-Level Outlet Works and Blowdown Structure Low-level outlet works are located in the west abutment of the main dam. This outlet is provided to evacuate enough storage of the cooling lake to permit inspection and repairs of the main dam if necessary. A concrete-encased pipe is provided below the embankment of the main dam up to the center of the dam cross section. The pipe downstream of the center line is carried in a concrete tunnel provided for inspection purposes. The outlet pipe is 60 inches in diameter and is sized according to the procedures outlined by U.S. Army Corps of Engineers (Reference 60). The upstream invert elevation of the outlet pipe is set at 1030.0 feet.

A 30 inch diameter blowdown pipe branches off from the outlet pipe at the downstream end of the outlet works. This blow-down pipe discharges a flow varying from 0 to 60 cfs. Valves and controls are provided for controlling and isolating the flow through the blowdown and outlet pipes. The intake structure, the stilling basin, and the intake and outlet channels were designed according to accepted procedures (References 48, 49 and 63). 2.4.9 CHANNEL DIVERSIONS

There is no historic or topographic evidence indicating that flow in Wolf Creek can be diverted away from its present course. Local relief and the natural geomorphological condition preclude the likelihood of Wolf Creek and its tributaries discharging anywhere other than into the cooling lake. No deeply incised gorges are present in upstream Wolf Creek where landslides could entirely cut off creek flow. Upstream ice jams will not divert flow completely either, since they do not prevent overbank subsurface flow. The essential service water intake is designed to prevent ice from jamming against it and cutting off inflow. Even if the creek flow were temporarily cut off, makeup water to the plant is still available from the John Redmond Reservoir on the Neosho River. Regional topographical conditions also preclude the probability that the upper Neosho River would be diverted away from the John Redmond Reservoir due to ice jams or subsidence. Therefore, it is unlikely that the river inflows would be cut off completely so as to affect the sources of makeup water to the cooling lake. 2.4.10 FLOODING PROTECTION REQUIREMENTS

The flood design considerations are discussed in Section 2.4.2.2. The plant buildings are not affected due to local intense precipitation at the plant site (Section 2.4.2.3). All the

2.4-37 Rev. 27 WOLF CREEK safety-related buildings have their floor elevations above the level obtained by superimposing the maximum wave runup on the PMF level in the cooling lake (Section 2.4.3). The safety-related intake structure for the essential service water system is located at the edge of the cooling lake and is subjected to wave forces as well as high water. The maximum wave runup elevation at the structure is 1100.2 feet with a wave height of 5.0 feet, and a wave period (maximum) of 3.3 seconds. This wave runup elevation due to the maximum wave is based on a vertical wall with an effective fetch that would exist without baffle dike A. However, the intake structure for the essential service water system is designed to withstand a high water elevation of 1102.5 feet. The only openings below elevation 1102.5 feet are the pressure doors and the pump structure forebay opening. The pressure doors are of marine type and are located at plant grade on the west wall of the intake structure. These doors are normally closed and under administrative control. The pump structure forebay normally contains water. Therefore, the safety-related facilities are not affected by the PMF in the cooling lake or by the local intense precipitation at the plant site and no flood protection requirements are necessary. 2.4.11 LOW-WATER CONSIDERATIONS 2.4.11.1 Low Flow in Rivers and Streams Low-flow data of the regional rivers and streams were analyzed statistically for the frequency distribution. The most severe drought of 1952-1957 was shown to have a recurrence interval of 50 years (Section 2.4.11.3). Monthly flows in Wolf Creek for this once-in-50-years drought of 5-year duration were synthesized and are presented in Table 2.4-22. The 5-year low-flow to be expected in Wolf Creek is 1.6 cubic feet per second. The analysis was based on a method described in Chow (Reference 7, p. 18-10 to 18-15). Low-flows in the Neosho River during the same drought period are given in Table 2.4-23. The 5-year duration low-flow rate was computed to be 147.5 cubic feet per second (Section 2.4.11.3). 2.4.11.2 Low Water Resulting from Surges, Seiches, or Tsunamis Consideration of low water conditions resulting from surges, seiches, or tsunamis is not applicable to this site since there are no large bodies of water near the site, nor is the site near a coastal area.

2.4-38 Rev. 27 WOLF CREEK 2.4.11.3 Historical Low Water 2.4.11.3.1 Historical Drought Since Wolf Creek is ungauged, its low-flow history is not available. However, according to the Kansas Water Resources Board (Reference 23, p. 169), the lowest mean discharge for 7 consecutive days for the creek that is expected to recur once in 2 years would be 0 cubic feet per second. Stream flow in Wolf Creek was extrapolated from gauging records obtained at Council Grove, Americus, Strawn, Burlington and Iola, on the Neosho River, and at Madison on the Verdigris River. This takes into consideration the proper adjustments for the respective drainage areas. Low flows calculated for Wolf Creek during the 1952-1957 historic drought period are given in Table 2.4-22. Based on U.S. Army Corps of Engineers data (Reference 45), a low-flow frequency analysis was made for the Neosho River at the John Redmond dam site by using the log-Gumbel distribution procedure. Figure 2.4-46 shows the resulting low-flow frequency curves for durations of l, 2, 3, and 5 years. The 1952-1957 drought, as seen from Figure 2.4-46, has a recurrence interval of 50 years. Average river inflow to the John Redmond Reservoir for this 5-year drought of 50-year recurrence interval is 147.5 cubic feet per second.

2.4.11.3.2 Water Level Determination Lake drawdown analysis was performed to include the 1952-1957 historic drought under projected operation of a 1150-megawatt generating station. Hydrologic data used in the drawdown studies and shown in Tables 2.4-24, 2.4-25, and 2.4-26 include rainfall, natural evaporation, and forced evaporation due to plant heat rejected to the lake, respectively. A conservatively estimated seepage loss of 3.5 cubic feet per second was used.

The period used for the drawdown analysis was 1949-1964, which included the historical drought period of 1952-1957. At the beginning of the analysis period, that is, at the beginning of 1951, the assumed starting lake water level was 1087.0 feet, which is the normal operating level of the cooling lake. The spillway crest elevation is at 1088.0 feet. No makeup water from John Redmond Reservoir is pumped when the cooling lake pool elevation is at or above the normal operating level of 1087.0 feet. The required makeup varies from 0 to 120 cubic feet per second (with an annual average rate of 41 cubic feet per second), depending on the pool elevation in John Redmond Reservoir. Figure 2.4-47 shows fluctuations in the water surface elevation of the Wolf Creek lake for the period 1949-1964.

2.4-39 Rev. 27 WOLF CREEK The computed minimum water level in the cooling lake is 1085.5 feet based on the simulated operation of one unit at 100 percent average load factor and 100 percent capacity factor. At this elevation, there would be 4900 acres of surface area and 104,197 acre-feet of storage remaining. The minimum design operating level for the circulating water screen house, circulating water pumps, and service water pumps for normal operation is 1075 feet. This level is based on the estimated low-water condition during the 1952-1957 historic drought for the operation of two 1150-megawatt units on the cooling lake. At elevation 1075 feet, approximately 3255 acres of surface area and 61,350 acre-feet of storage remain in the cooling lake.

The natural evaporation data used to evaluate cooling lake draw-down are data for Fall River Reservoir. The Fall River Reservoir dam is located approximately 40 miles south and 20 miles west of the Wolf Creek Lake. Fall River Reservoir evaporation data were chosen for the Wolf Creek evaluation because of Fall River's close proximity (<50 miles) to Wolf Creek and because the Fall River weather station was the only station in southeastern Kansas which had Weather Bureau type Class 'A' evaporation instrumentation in operation during the drought of record in Kansas (1952-1957). The evaporation data presented in Table 2.4-26 was calculated by Sargent & Lundy's LAKET computer model in 1979. The LAKET program is proprietary. The LAKET program abstract was provided in WCGS-ER(OLS) response to Question 240.6 (ER). The LAKET user's manual is available in Sargent & Lundy's office for NRC's inspection.

Since the original Tables 2.4-24 through 2.4-26 and Figure 2.4-47 were recorded in the WCSA new LAKET runs were executed to include the 16 year period 1949-1964. These tables and figures were revised to include the more recent output.

2.4.11.4 Future Control The cooling lake is designed to supply adequate water to the plant under a drought condition that is at least as severe as the 1952-1957 historic drought, which has a recurrence of about 50 years. Future upstream uses of Wolf Creek water will not lower minimum flows. Furthermore, any future use of the water upstream of the site has to consider the water rights that have been obtained for the plant.

2.4-40 Rev. 27 WOLF CREEK 2.4.11.5 Plant Requirements The cooling lake described in Section 2.4.8.2 provides the cooling water requirements for the WCGS Unit No. 1 and for a future unit of similar size. The lake supplies cooling water to the circulating water system, the service water system, and the essential service water system, as described in Subsections 10.4.5 and 9.2.1. The ultimate heat sink, which is the source of cooling water for the essential service water system, is created within the lake by a submerged seismic Category I dam, with a crest elevation of 1070 feet, which spans one of the fingers of the lake. A summary of the cooling water requirements for various operating modes is provided below for one unit.

Circulating Water Service Water Water Level in the Lake Flow (gpm) Flow (gpm) H.W.L (1090.0 feet) 510,000 41,000

N.0.L (1087.0 feet) 500,000 40,000 L.W.L (1075.0 feet) 462,000 38,000

The minimum emergency plant shutdown flow for Unit No. 1 is 15,000 gpm, which can be supplied by the Unit No. 1 essential service water system (Section 9.2.1). The following gives the flow, minimum water design elevation, and sump invert elevation for the essential service water system. The essential service water intake structure is shown in Figures 3.8-1, 3.8-2 and 3.8-3. INTAKE STRUCTURE SUMP MINIMUM WATER FLOW INVERT ELEV. DESIGN OPERATING LEVEL (gpm) (ft MSL) (ft MSL) 15,000 1,058 1,068 The ability of pumps to supply sufficient cooling water to the essential service water system during extreme low-water conditions is ensured because the pumps are located as specified above. In the event that the extreme low-water condition requires any emergency shutdown and use of the ultimate heat sink, the minimum flow requirements are met by the ultimate heat sink (see Sections 2.4.11.6 and 9.2.5).

2.4-41 Rev. 27 WOLF CREEK 2.4.11.6 Heat Sink Dependability Requirements The ultimate heat sink that provides water for the essential service water system is a submerged pond. Applicable design considerations and descriptions of the ultimate heat sink are presented in Sections 9.2.5 and 2.5. Low-flow conditions in Wolf Creek do not affect the ability of the ultimate heat sink to perform adequately. The design water surface elevation of the sink is 1070.0 feet, which would be 5.0 feet lower than the design minimum lake elevation during one-unit plant operation (Section 2.4.11.5).

In the vicinity of the ultimate heat sink, the groundwater table rises to the level of the water surface in the cooling lake during normal operating conditions. In case the cooling lake fails, groundwater flow would be toward the sink from the higher groundwater table created by the lake. The possibility of seepage through the submerged dam and its foundation is controlled by the design provision of the dam structure. Therefore, the loss of water from the sink due to seepage would be insignificant. From Section 9.2.5, the maximum allowable sediment within the UHS is 155 acre-feet for one unit operation. However, to provide allowance for 5 acre-feet of losses before realignment of the ESWS from the Service Water Discharge to the UHS under conditions described in Section 9.2.1.2.2.3, and to allow for the sensitivity of these numbers to weather data, the maximum allowable sediment volume will be limited to 130 acre-ft. With an amount of sedimentation less than or equal to 130 acre-ft, the UHS will have sufficient surface area and volume to safely shut down and maintain shut down of the plant. The intake channel bottom in the UHS is at elevation 1065'0" feet and locally slopes downward to elevation 1064'0" at the essential service water pumphouse as shown in Figure 2.4-48.

2.4-42 Rev. 27 WOLF CREEK Figure 2.4-49 shows the locations of the sounding stations in the UHS. Before the lake was filled up, the bottom of the UHS, and the sounding stations shown in Figure 2.4-49, were surveyed. These twenty sounding stations (concrete sediment pads) have been located on the bottom of the ultimate heat sink and essential service water intake canal. Prior to 2003 sedimentation was checked annually by visual inspection at the sediment pads by divers. Between the years 2003 to 2009 the sedimentation levels were not measured. After 2009 sedimentation levels are checked annually by hydrographic methods when the water level is greater than 1975-foot elevation (SNUPPS). Based on trending of past sediment measurements, dredging of the channel is performed on a five-year frequency and the reservoir every fifteen years.

The cooling lake water level in the vicinity of the ultimate heat sink is monitored. Emergency shutdown operations are initiated if the lake water drops to an elevation such that the lake can no longer provide adequate circulating water for normal plant operation. A summary of the PMF pool level and the elevations of the safety-related structures are given in Table 2.4-27. 2.4.12 DISPERSION, DILUTION, AND TRAVEL TIMES OF ACCIDENTAL RELEASES OF LIQUID EFFLUENTS IN SURFACE WATERS

2.4.12.1 Dilution Factors Most of the tanks containing radioactive liquids are housed inside the plant buildings. Any accidental liquid spill from these tanks will be contained in the buildings and reach the basement level. The consequences of this spill reaching the groundwater and to the cooling lake or Wolf Creek through groundwater are discussed in Section 2.4.13. There are only three tanks located outside the plant buildings which contain radionuclides. They are at elevation 1,100.0 feet MSL. These are the condensate storage tank, the refueling water storage tank, and the reactor makeup water storage tank. See Figure 1.2-1, Items M-2, 3 and 4. The largest of these three, which also contains the highest radioactive concentration, is the

2.4-43 Rev. 27 WOLF CREEK refueling water storage tank. It has a capacity of 400,000 gallons (See Table 11.1-6). Therefore, although it is a Seismic Category I, safety-related structure, the effect on surface water of an accidental release of liquid effluent from this tank is considered, because the failure of this tank alone would result in the highest concentrations of radionuclides to be released to surface water.

In the event of failure of the refueling water storage tank, the liquid effluent would reach the site drainage system and would flow to the oil separator south of the main plant buildings and be diluted with the water in the oil separator. Because the capacity of the oil separator available for dilution is less than 10% of the total effluent volume, the effect of dilution in the oil separator would be minimal. After discharge from the oil separator, the effluent would flow through the drainage ditches and reach the cooling lake southwest of the main plant buildings (see Figure 2.4-3). The cooling lake is used for cooling and recirculating the heated plant discharges. The circulating water discharges are discussed in Section 2.4.11.5. Makeup is provided to the lake from the John Redmond Reservoir at an annual average rate of 41 cfs. Blowdown from the lake is discharged into Wolf Creek below the dam and eventually reaches the Neosho River. The blow-down during a normal year averages 3.5 cfs. Due to the recirculation of the plant discharges, makeup from John Redmond Reservoir and the relatively small blowdown, the liquid effluent which reaches the cooling lake is assumed to mix completely with the available capacity of the cooling lake. The cooling lake downstream of the location where the liquid effluent would be released into the lake has a capacity of 83,000 acre-feet, or 27,044 million gallons at the normal operating level of 1087 feet MSL. With this conservative assumption, the cooling lake can thus provide a dilution of at least 67,610 times for this worst-case surface water spill.

The nearest downstream potable surface water user is at Leroy, Kansas, on the Neosho River, approximately 22 river miles downstream of the Wolf Creek Station. The diluted effluent from the cooling lake will be further diluted in the Neosho River before reaching the City of Leroy. The concentrations of the effluent at the site boundary are discussed in Section 2.4.12.2.

A discussion of normal radioactive releases is given in Section 11.2.

2.4-44 Rev. 27 WOLF CREEK 2.4.12.2 Radiological Dose Assessment A review of the concentrations of radionuclides in the refueling water storage tank (Table 11.1-6) shows that all nuclides except three are already at concentrations below 10 CFR 20, Appendix B, Table II, Column 2 limits. The exceptions are:

TANK CONCENTRATION 10 CFR 20 LIMIT Ci/ml Ci/ml_____ H-3 2.5 1x10-3 I-131 3.87x10-6 3x10-7 I-133 7.52x10-6 1x10-6 The analysis in Section 2.4.12.1 shows that the tank concentrations would be diluted by a factor of 67,610. This is more than adequate to assure that concentrations at the cooling lake discharge and all downstream water users will be less than 10 CFR 20 limits. See Table 2.4-4 for a listing of water rights in Coffey County and Figure 2.4-8, which shows all water users and municipal users downstream of the site. 2.4.13 GROUND WATER

2.4.13.1 Description and Onsite Use 2.4.13.1.1 Aquifer Systems This section describes the water-bearing characteristics of the soil and bedrock in the vicinity of the WCGS site. Information about regional aquifers, which includes a 50-mile radius around the site, was obtained from a literature search. Hydrogeologic characteristics of the ground-water system within 5 miles of the site are based on the results of site investigations as described in Section 2.5.4.

2.4.13.1.1.1 Regional Ground-Water Systems Small quantities of ground water are available regionally from three sources within a 50-mile radius of the site. These sources are the alluvial deposits in the river valleys, the near-surface weathered bedrock including shallow soils, and the deep bedrock. The major alluvial aquifers within a 50-mile radius are in the Neosho, Marais des Cygnes, Verdigris, and Osage river valleys. Nearest to the site, the Neosho River flows in a southeasterly direction through Morris, Chase, Lyon, Coffey, Anderson, Woodson,

2.4-45 Rev. 27 WOLF CREEK Allen, and Neosho counties (Figure 2.4-8). It passes within 3 miles southwest of the plant site. The width of the alluvium in the valley ranges from about 1 to 10 miles. The alluvial aquifer in the Marais des Cygnes River Valley is found in Osage, Franklin, Miami, Anderson, and Linn counties. The Marais des Cygnes River flows in an easterly and south-easterly direction and passes about 17 miles north of the site. The alluvial aquifer in the Verdigris River Valley is in Lyon, Greenwood, Woodson, Elk, and Wilson counties. Its closest point is 22 miles southwest of the site. The Osage River Valley alluvial aquifer is in Bourbon County adjoining the state of Missouri about 27 miles southeast of the site at the nearest point. The alluvial aquifers in the site region are composed of silt, sand, and gravel. Yields from wells in the alluvial aquifers are much greater than yields from the other regional sources, and commonly range as high as 100 gallons per minute (Reference 3). Recharge to the alluvial aquifers is derived from precipitation and from ground water in the weathered rock zone where the zone is hydraulically connected to the alluvium. Periods of high river stage may also contribute some short-term recharge. Ground-water discharge occurs where the ground-water table is above and adjacent to surface drainage, and where wells are being pumped. Within a 20-mile radius of the site, the towns of New Strawn, 3 miles west-northwest, and Hartford, 15 miles west-northwest of the plant site, obtain water from alluvial aquifers.

The weathered bedrock is composed of weathered shales, silt-stones, sandstones, and limestones, and the soils derived from them. The process of chemical and physical weathering alters the near-surface bedrock and produces additional porosity in the bedrock materials. The weathered bedrock, which is as deep as 40 feet in places, is sufficiently permeable to yield water to wells. Yields from wells in the weathered bedrock range up to 10 gallons per minute (Reference 3). This zone is developed mainly for domestic and livestock purposes. Recharge to the weathered bedrock is from local precipitation, and discharge occurs into alluvial deposits, streams, and wells.

In the site region, the bedrock units below the weathered zone are composed of sandstones, siltstones, shales, and limestones with typically low water yields (Reference 37). Unweathered bedrock units range in age from Permian to Pennsylvanian and dip gently westward from 10 to 30 feet per mile. Recharge from precipitation occurs primarily at formational outcrops. These bedrock units supply water for domestic and livestock purposes and yield from 1 to 10 gallons per minute to wells (Reference 3).

2.4-46 Rev. 27 WOLF CREEK 2.4.13.1.1.2 Local Ground-Water Systems The local ground-water systems have characteristics similar to the regional systems. Water levels in local wells indicate that the shallow ground-water table closely parallels the topographic surface within at least a 5-mile radial area of the plant site (Figure 2.4-50). Wells in this area tap either or both the alluvium and weathered bedrock. Where these units are contiguous they are hydraulically connected. Vertical recharge is derived from precipitation. During periods of drought, the water levels drop significantly, especially in the weathered bedrock (Reference 4). There are no published reports on the aquifer hydraulic characteristics in Coffey County. Listed below is a summary of hydrogeologic characteristics of local water-bearing units (Table 2.4-28 and Figure 2.4-51) based on the results of site as described in Section 2.5.4 and accompanying tables:

a. The Spring Branch Limestone Member of the Lecompton Formation is a light gray, thin-bedded, fossiliferous limestone interbedded with thinly laminated shale. The Spring Branch Member is absent at the plant site due to erosion but crops out to the north and west of the plant site with a thickness ranging up to 10 feet. It yields less than 1 gallon per minute to local wells;
b. The Stull Shale Member of the Kanwaka Shale Formation is a dark gray, laminated, fossiliferous shale interbedded with light gray, calcareous sandstone and shaley siltstone. It crops out north and west of the site.

Its thickness in Boring B-20 is 51 feet. The Stull Shale Member is absent at the plant site, having been removed by erosion. It yields less than 1 gallon per minute to local wells;

c. The Clay Creek Limestone Member of the Kanwaka Shale Formation is a fine-grained, fossiliferous, gray limestone locally interbedded with sandy shale. Its thickness at the site ranges from 2 to 8 feet. Although it is exposed at the surface east of the site and is present both at the surface and in the subsurface in the western portion of the site area, it has been removed by erosion at the plant site. It yields less than 1 gallon per minute to wells;
d. The Jackson Park Shale Member of the Kanwaka Shale Formation is a laminated, calcareous, gray shale

2.4-47 Rev. 27 WOLF CREEK with a basal, fine-grained, silty sandstone which locally exceeds 10 feet in thickness. The total thickness at the site ranges from 23 to 30 feet. At the plant site, only the lower portion of the Jackson Park Shale Member is present as the overlying portion has been removed by erosion. It yields less than 3 gallons per minute to wells;

e. The Heumader Shale Member of the Oread Formation is a laminated, fossiliferous, dark gray, clayey shale with fine-grained, thin-bedded calcareous zones, and occasional gray limestone lenses. Near the site this unit ranges from 0 to 25 feet in thickness. It is moderately to highly weathered to depths of as much as 20 feet. Yields to wells of less than 3 gallons per minute are obtained from this unit.

None of the deep bedrock units near the site are capable of yielding large quantities of potable water to wells. Listed below are the hydrogeologic characteristics of the deep bedrock units that yield small quantities of water at the site (Table 2.4-28) and Figure 2.4-51), based on the results of site investigations (Section 2.5.4):

a. The Plattsmouth Limestone Member of the Oread Formation is a fine-grained, medium-bedded, fossiliferous, slightly fractured limestone with thin shale and silty clay layers. It has occasional vertical fractures near the surface. At the plant site, the top of the Plattsmouth Limestone is about 34 feet below the plant grade elevation of 1,099.5 feet. Its thickness at the site ranges from 11 to 14 feet. The Plattsmouth Limestone Member yields less than 1 gallon per minute to wells;
b. The Toronto Limestone Member of the Oread Formation is a fine-grained, thin- to thick-bedded limestone with fossil fragment beds. Pinpoint vugs are present at some horizons within the unit. At the plant site, the top of the Toronto Limestone is about 64 feet below the plant grade elevation of 1,099.5 feet. Its thickness at the site ranges from 14 to 19 feet. It generally yields less than 2 gallons per minute to wells;
c. The Ireland Member of the Lawrence Formation is a fine- grained, calcareous sandstone with interbedded siltstone and laminated with clayey shale layers. It has some fractured zones and coal seams. At the plant site, the top of the Ireland Sandstone is about 111 feet below the

2.4-48 Rev. 27 WOLF CREEK plant grade elevation of 1,099.5 feet. Its thickness at the site ranges from 40 to 117 feet, and it yields up to 0.5 gallons per minute to wells; d. The Tonganoxie Sandstone Member of the Stranger Formation is a fine-grained, slightly calcareous, micaceous sandstone. Interbedded with shale and siltstone, it has some vertical fractures. At the plant site, the top of the Tonganoxie Sandstone is about 290 feet below the plant grade elevation of 1,099.5 feet. Its thickness in this area ranges from 42 to 142 feet, and it rarely yields over 3 gallons per minute to wells. During the boring and aquifer testing program (described in Section 2.5.4), none of the deep bedrock formations yielded more than 2 gallons per minute in a 3-inch test hole; only slightly higher yields could be expected with larger diameter wells. The flow rate was measured by air lifting the water out of the hole. The rate of water-level recovery was timed and measured to determine the permeability. Water-level readings in the piezometers show that leakyartesian conditions exist in the deeper bedrock strata below the weathered bedrock. The Toronto Limestone Member and younger strata are recharged principally by local precipitation. Much of the precipitation first recharges the overlying weathered bedrock aquifers which in turn provides some leakage to the deeper units including the Toronto Limestone Member. Pressure tests indicate that the permeability of the deeper bedrock shale units below the Toronto Limestone Member ranges from 10-7 to 10-8 centimeters per second (Section 2.5.4). Ground-water and rock samples from the weathered Jackson Park Shale and Heumader Shale members, and ground water from the Plattsmouth Limestone Member in the Category I area were tested for water-soluble sulfate. It was determined that sulfate concentrations exhibit considerable horizontal and vertical variation within the vicinity of the plant site. The sulfate concentrations in soil and rock samples ranged from 3.1 to 535.0 milligrams per kilogram. Ground-water samples contained sulfate concentrations which ranged from 78.5 to 346.0 milligrams per liter (mg/1). At Well D-26, which was monitored by a water-level recorder during 1973 and 1974 and is located less than one mile northeast from the center of the plant site, sulfate concentrations range from 66 to 71 mg/1. At Well C-2, located approximately 1.75 miles northwest of the plant site, sulfate concentrations have varied between 764 and 1,050 mg/1. For well location and inventory data refer to Figure 2.4-52 and Table 2.4-29.

2.4-49 Rev. 27 WOLF CREEK The criterion used for well sealing was in accordance with Sargent & Lundy's Specifications A-3854, (Section 304.1). This specification is reproduced as Table 2.4-29a. The status of well sealing is presented in Tables 2.4-29b and 2.4-29c.

2.4.13.1.2 Onsite Use There is no anticipated use of ground water at or near the site during plant operation.

2.4.13.2 Sources Although most of the public water supplies in the vicinity of the site are derived from surface-water sources, ground water accounts for a small amount of both municipal and private water needs. Information was obtained from public agency contact and a local water well inventory. A discussion of regional and local ground-water flow regimes is also included in this section. 2.4.13.2.1 Regional Public Ground-Water Use

This discussion of regional public ground-water use applies to a 20-mile radius of the site (Figure 2.4-53). Table 2.4-30 summarizes the information available regarding the municipal supplies in this region. 2.4.13.2.1.1 Present Use

The amount of ground water used for public supplies within a 20-mile radius of the plant site is small. The city of Waverly, Kansas, about 10 miles north-northeast of the site, has five wells (228 to 300 feet deep) (References 19 and

15) which obtain water from the Tonganoxie Sandstone (Figure 2.4-53). An average of 39,000 gallons per day (about 5 gallons per minute per well) is pumped from this system (Reference 15). Bailer tests performed by the driller produced 10-25 gallons per minute, but a sustained yield of 5 gallons per minute is typical. A sanitary seal is installed in each well to prevent pollution from the surface from entering the well through the weathered rock zone.

The municipalities of Williamsburg, 20 miles northeast, and Melvern, 18 miles north of the site, also obtain water supplies from deep wells in the Tonganoxie Sandstone Member (Table 2.4-30). Borehole tests in the Tonganoxie Sandstone near the site produced yields of less than 3 gallons per minute (Section 2.4.13.1.1.2).

2.4-50 Rev. 27 WOLF CREEK The municipalities of New Strawn, located 3 miles west of the site, and Hartford in Lyons County, located 15 miles west-northwest of the site, obtain ground water from wells less than 40 feet deep in the Neosho River alluvium (Reference 21). At Hartford, the static water level is about 32 feet below ground surface; it is about 12 feet below ground surface in the New Strawn well (Reference 20).

The only known ground-water supply being used for industrial purposes within a 20-mile radius of the site is from one well owned by the Atchison Topeka and Santa Fe Railway located about 15 miles northwest of the site (Well No. 39, Table 2.4-4 and Figure 2.4-8). The user has a water right for 10 gallons per minute. 2.4.13.2.1.2 Future Use The use of ground water for public supplies in Coffey County is not expected to increase significantly as a result of population changes (Section 2.1.3). Total projected use (as estimated in 1979) is presented in Table 2.4-31 and shows a decrease in ground-water pumpage between 1965 and 1980 followed by an increase to slightly above 1965 levels in 2020 (Reference 22). The current (February, 1984) projected use of water in Coffey County is shown in Table 2.4-31a. The total use of water for domestic and manufacturing purposes increased by 159 acre-feet between 1965 and 1980, largely due to the increased domestic use of water by both the City of New Strawn, which obtains ground water from the alluvium along the Neosho River and the City of Burlington and the water districts around the site which used treated surface water, during the short term growth between 1970 and 1980. Although the projections shown in Table 2.4-31a for the year 2000 and after are preliminary and are subject to change, the 1984 projections of Table 2.4-31a for the year 2000 are consistent with the 1979 projections of Table 2.4-31, and show a gradual increase in the use of water for domestic and manufacturing purposes through the year 2035.

2.4.13.2.2 Local Ground-Water Use A well inventory was made of 198 wells within 5 miles of the plant site. A summary of the well inventory is listed in Table 2.4-29.

2.4.13.2.2.1 Present Use The local wells are used for domestic and livestock purposes. The 198 wells are reported to produce a total of about 73,400 gallons per day or an average of 382 gallons per day per well. Table 2.4-29 lists the pertinent data collected on each well, and Figure 2.4-52 shows the locations of the property owners of the wells.

2.4-51 Rev. 27 WOLF CREEK The wells supply small quantities of water (1/2 to 10 gallons per minute) from the weathered bedrock and larger quantities from the alluvium. The shallow dug wells have diameters of 3 to 6 feet; the drilled wells have diameters of 6 to 8 inches. Most wells in the area intercept ground water in the weathered bedrock zone where the permeability has been increased by weathering.

There are three water districts within a 5-mile radius of the site. The City of New Strawn is the smallest district and serves the residents of the New Strawn area. This district obtains ground water from the alluvium along the Neosho River below the John Redmond Reservoir near New Strawn. Rural Water Districts No. 2 and 3 serve numerous residents around the site, encompass a larger geographical area than the City of New Strawn, and both obtain treated surface water from the City of Burlington. 2.4.13.2.2.2 Future Use

Information obtained during the well inventory indicates a trend away from domestic ground-water usage and towards the use of treated surface water. Continued local use of ground water for domestic and livestock use is anticipated as shown in the long-term projections (1979 projections) of Table 2.4-31 (References 29 and 11).

District No. 2 plans a gradual increase in participants as the general trend from ground water to treated surface water continues. 2.4.13.2.3 Ground-Water Flow Regimes

This section describes the regional and local potentiometric surfaces and ground-water gradients. Regional conditions within 20 miles of the site are based on a literature search, and a site investigation, detailed in Section 2.5.4, was performed to describe local conditions. The weighted average permeability is given for each water-bearing soil and bedrock unit, and ground-water recharge is discussed. The effects of local pumping on ground-water levels at the plant site are also discussed. 2.4.13.2.3.1 Regional Conditions

Within 20 miles of the site, the shallow ground-water table basically conforms to the topography of the region which has a gradient to the east and south in eastern Kansas. About 15 miles north of the site, shallow ground water in the weathered bedrock zone drains into the Marais des Cygnes River which flows eastward through Osage and Franklin counties, and into Miami County where the river assumes a southeastward course into Missouri (Figure 2.4-53).

2.4-52 Rev. 27 WOLF CREEK To the west and south of the site, the shallow ground water drains into the Neosho River which flows southeastward at a gradienet of about 4 feet per mile through Morris, Lyon, Coffey, Woodson, and Allen counties, where it continues southward into Oklahoma (Figure 2.4-53). 2.4.13.2.3.2 Local Conditions

Surface drainage of the site area is generally to the south by way of Wolf and Long creeks. The gradient of Wolf Creek is about 10 feet per mile, and the gradient of Long Creek is about 7 feet per mile.

2.4.13.2.3.2.1 Potentiometric Surfaces The locations of the B-boring piezometers are shown on Figure 2.4-54. The P-, HS-, and ESW-series piezometers are shown on Figure 2.4-55. Graphs of water-level variations in the piezometers for the various rock units are shown on Figure 2.4-56. The piezometer water-level graphs generally show little change of water levels after the effects of drilling and permeability testing have dissipated, and it may be concluded that the ground-water level in the bedrock units is relatively stable.

Water levels in the inventoried wells (Table 2.4-29) show that the shallow ground-water table closely parallels the topography within at least a 5-mile radius of the plant site. The gradient of the water table, as determined from the water-table contour map, Figure 2.4-50, ranges from 20 to 160 feet per mile, depending on the topography. Direction of ground-water flow is perpendicular to the ground-water elevation contour lines (Figure 2.4-50). The potentiometric surface maps for the Plattsmouth Limestone, the Toronto Limestone, and the Ireland Sandstone members (Figures 2.4-57, 2.4-58, and 2.4-59, respectively) are based on piezometer readings for the individual rock units (Tables 2.4-32 and 2.4-33). The gradient of each of the potentiometric surfaces measured from these figures generally dip west and south away from the plant site at approximately 20 feet per mile. The average potentiometric surface gradient of these three units is about one half the average gradient of the ground-water table as measured in the weathered Jackson Park Shale and Heumader Shale members. The ground-water gradient in the shallow, unweathered bedrock generally reflects surface topography more than regional structural trends. Figure 2.4-57 illustrates the potentiometric surface of ground water in the Plattsmouth Limestone Member. This surface is related to the local topography which indicates that there is some hydraulic connection between the Plattsmouth

2.4-53 Rev. 27 WOLF CREEK Limestone Member and the weathered bedrock zone. Recharge to the Plattsmouth occurs in the upland areas mainly through cross-bed leakage while discharge occurs in the lower areas. An analysis of the piezometer readings shows that water in the deeper, unweathered bedrock units is under semiconfined conditions. The shale units between the deeper limestone and sandstone units (such as the Ireland and Tonganoxie sandstones) retard vertical water movement. Potentiometric contours for ground water in the Toronto Limestone Member, determined from piezometer readings, are shown on Figure 2.4-58. The potentiometric surface also reflects the topographic surface, but the relationship is more subdued than for the Plattsmouth potentiometric surface. The potentiometric surface of the Ireland Sandstone is more dependent upon the westerly regional dip than are the potentiometric surfaces for the shallower units. The configuration of the potentiometric contours (Figure 2.4-59) bears little resemblance to the potentiometric contours of either the Plattsmouth or Toronto Limestone members. Figures 2.4-57, 2.4-58, and 2.4-59 show the potentiometric surface contours prior to filling the cooling lake. After the cooling lake was filled, the ground-water elevations adjacent to the cooling lake in the Plattsmouth, Toronto, and Ireland members gradually rose to the normal operating level of the cooling lake, elevation 1,087 feet. Ground water discharged into Wolf Creek and, after the cooling lake was filled, ground-water gradients in those units along the lake perimeter were reversed. Ground water at elevations above 1,087 in other units were not affected. Because of the low permeability of the inundated bedrock units, the ground-water gradients are steep between the cooling lake level and the undisturbed ground-water levels in the hill slope opposite the lake to the east and west. The steepened gradients affect ground-water conditions only immediately adjacent to the cooling lake. 2.4.13.2.3.2.2 Weighted Average Permeabilities The permeability in the weathered Jackson Park Shale Member ranges from about 5 x 10-7 to 5 x 10-5 centimeter per second (cm/sec) with a weighted average of about 4 x 10-5 cm/sec or 0.8 gallons per day per foot2 (gpd/ft2) (Table 2.4-34). At depths greater than 20 feet, the permeability ranges from 9 x 10-7 to 1 x 10-5 cm/sec6(0.02 to 0.2 gpd/ft2) and the weighted average is 4 x 10-6 cm/sec (0.08 gpd/ft2).

2.4-54 Rev. 27 WOLF CREEK As listed on Table 2.4-34, the weighted average permeability for the Plattsmouth Limestone Member (at 0 to 20 foot depths) is 2 x 10-5 cm/sec (0.4 gpd/ft2). Where the Plattsmouth is found at depths greater than 20 feet the weighted average permeability decreases to 2 x 10-6 cm/sec (0.04 gpd/ft2). The two ranges (0-20 feet and greater than 20 feet) for the Toronto Limestone Member have weighted averages of 2 x 10-5 cm/sec (0.4 gpd/ft2) and 1 x 10-6 cm/sec (0.02 gpd/ft2), respectively. The average permeability for the Ireland Sandstone Member is 4 x 10-6 cm/sec (0.08 gpd/ft2). Throughout the site area the Ireland Sandstone Member is found at depths greater than 20 feet.

The weighted average permeabilities range from 6 x 10-7 cm/sec (0.01 gpd/ft2) to 2 x 10-6 cm/sec (0.04 gpd/ft2) for the following unweathered shales found below the Plattsmouth Limestone Member: Heebner Shale, Snyderville Shale, Unnamed Lawrence Shale, and Robbins Shale members. They serve as confining beds between more permeable limestone and sandstone beds.

Within the site area and surrounding region there are impoundments of surface water for watering stock. A field survey of ponds within Sections 5, 6, 7, and 8 (T 21 S, R 16 E), indicates that in the area of the wolf Creek watershed. All ponds in this area are associated with natural drainage courses on side slopes of hills, and are not the result of seepage from lithologic contacts. Occasional seepage that collects near contacts is due to differential surface weathering at these contacts is due to differential surface weathering. Slightly higher permeabilities are developed by weathering at these contacts but probably extend only several feet into the interior of the hills.

2.4.13.2.3.2.3 Ground-water Recharge An automatic water-level recorder was placed in an unused, dug well (Well D-26) about 1/3-mile northeast of the site (Figure 2.4-52). The well was sealed at the surface to prevent any runoff from entering around the top. The data obtained shows a rapid response between rainfall and the shallow water table (Figure 2.4-60). Based on a map showing the geology of the area (Figure 2.5-22), the dug well extends into the sandstone unit of the Jackson Park Shale Member. The rapid rate of recharge is probably due to infiltration of water through outcrops of the sandstone unit rather than outcrops of the shale and limestone members. The rate of vertical recharge from the surface is expected to be less than the vertical water movement at a greater depth in the sandstone unit of the Jackson Park Shale Member. This is probably related to flow in shallow vertical desiccation cracks and fissures. Following a moderate intense rainfall or during an extended period

2.4-55 Rev. 27 WOLF CREEK of rainfall, it is anticipated that the clays in the weathered bedrock will swell, plugging most of the desiccation cracks. Well response to rainfall would be slower if the water percolated through the surface materials. Recharge to the weathered bedrock is from precipitation. Recharge tothe unweathered Plattsmouth and Toronto Limestone members is principally from vertical downward leakage from overlying units; the Plattsmouth may also receive recharge from precipitation where it outcrops in highland areas on the east ridge which borders the cooling lake. Recharge to the Ireland and Tonganoxie sandstones is from precipitation in their area of outcrop east of the site and from vertical seepage at any place where these formations are in hydraulic connection with the weathered bedrock zone. 2.4.13.2.3.2.4 Effects of Local Pumpage The nearest major pumpage from the bedrock (Tonganoxie Sandstone Member) is at Waverly which is located about 10 miles from the plant site. Because of the distance, and the fact that the pumpage at Waverly averages only about 25 gallons per minute total from 5 wells, the area of influence would not extend to the plant site. There are no significant cones of depression around the shallow dug wells in the weathered bedrock zone in the site area. These wells are used only intermittently for domestic and livestock purposes. 2.4.13.3 Accident Effects 2.4.13.3.1 Introduction

Radioactive liquids from the plant are postulated to enter the ground water as a result of the accidental rupture of specific tanks containing liquid radwaste. The effects of this accidental contamination have been examined at the nearest ground-water discharge locations: lakes, streams, or local wells.

The three tanks postulated to rupture will contain the highest curie inventory of the radioisotopes of relatively long half-lives and of concern to human health (Table 11.1-6): Sr-90, Cs-137, Co-60, and H-3. These tanks are:

a. The spent resin storage tank (Primary);
b. The boron recycle holdup tank (A or B); and
c. The refueling water storage tank.

2.4-56 Rev. 27 WOLF CREEK The first two tanks are located in the radwaste building, while the refueling water storage tank is located outside, between the radwaste building and the turbine-reactor complex. Highest curie contents for Sr-90, Cs-137, and Co-60 are expected in the spent resin storage tank (Primary). The highest concentration of H-3 is expected in the boron recycle holdup tank (A or B), while the greatest curie content of H-3 is expected in the refueling water storage tank. In this accident analysis, we have postulated the rupture of each of these three tanks, as separate isolated events. Rupture of the refueling water storage tank is unlikely because it is a Category I structure. Details of the tanks and their curie content for important radionuclides are given in Table 2.4-35.

Once a tank ruptures, the liquid contents are conservatively assumed to merge immediately with the ground water. Ground water may move initially into the radwaste building and into the spent resin storage tank (primary) and the boron recycle holdup tank (A or B) through the cracks postulated to develop during the accident. Such ground-water movement would occur until the water level in the radwaste building attains the ground-water level existing outside the building. Significant ground-water movement away from the building will occur only after this hydraulic head equilibrium is achieved. To be conservative, the water table at the plant is assumed to be at plant grade, elevation 1,099.5 feet, which is about 5 feet above historical ground-water elevations (Table 2.4-33). The bases of the spent resin storage tank and the boron recycle holdup tank are approximately at elevation 1,071 feet, which is within the Heumader Shale Member. Thus, liquid contents of these tanks would flow down-gradient in the ground water within that unit. The base of the refueling water storage tank is approximately at elevation 1,095 feet. Thus, the liquid radwaste from that tank would seep directly into the adjacent overburden soil and weathered bedrock, as well as possibly into the upper portion of the underlying Heumader Shale Member, and flow down-gradient in these units.

The nearest surface-water body that can be affected by accidental releases at the plant is the cooling lake. The normal operating water level of the lake is at elevation 1,087 feet. The nearest down-gradient location to the shoreline is toward the southeast, about 640 feet from the radwaste building and 770 feet from the refueling water storage tank. Water in the cooling lake enters Wolf Creek from blowdown discharge through the outlet works or by flowing over the service spillway of the main cooling lake dam, located approximately 3.1 miles south of the plant site. At the normal operating level, the cooling lake will contains approximately 111,280 acre-feet of water. The spillway crest has

2.4-57 Rev. 27 WOLF CREEK been established one foot above the normal operating level, or at elevation 1,088 feet. Water-level determinations for the cooling lake are presented in USAR Sections 2.4.3.5 and 2.4.11.3.2. This analysis shows that the average time of contaminant travel to the cooling lake is at least equal to half the expected life of the plant (Table 2.4-37). For this reason, an analysis has also been made for the case of an accidental release toward the end of the life of the plant. Although there are no plans to drain the cooling lake after decommissioning of WCGS, the conservative assumption is made that by the time the contaminants reach the shoreline after such an accident, the cooling lake may have been drained. Thus, consideration was given to contaminant transport down-gradient to the closest discharge point on the tributary to Wolf Creek, approximately 2,450 feet southwest of the radwaste building. Wells C-20 and C-50 (Table 2.4-29 and Figure 2.4-52) are the nearest wells in the down-gradient direction that were not purchased by the Licensees or inundated by the cooling lake. They are the nearest potable water supplies. These wells are located approximately 10,500 and 13,700 feet, respectively, from the radwaste building. The shallow ground water that flows by these wells in the over-burden soils and the underlying Heumader Shale is physically separated from the plant site by the valleys of Wolf Creek and its tributaries, and by the cooling lake. Ground water coming from the direction of these two wells tends to flow toward the plant and discharge into the intervening streams. For this reason, analysis of ground-water transport from the radwaste tanks to the wells was not performed.

In the analysis which follows, it is shown that, with the exception of tritium concentrations, ground water contaminated at the plant site by accidental radioactive releases will have radionuclide concentrations below the maximum permissible concentrations of 10 CFR 20, Appendix B, Table II, for unrestricted areas by the time the contaminated ground water reaches the nearest surface water (the cooling lake or the Wolf Creek tributary). However, it is noted that tritium is a very weak beta emitter (decay energy for total disintegration = 0.0186 MeV) and also, the tritium-related offsite doses from this postulated accident will be a very small fraction of the 10 CFR Part 100 dose limits. The following analysis also shows that the tritium concentration in the cooling lake and the Wolf Creek tributary will be well below the 10 CFR 20 limits for unrestricted areas. The effects of hydrodynamic dispersion, fluid convection, cation exchange, and radionuclide decay were included in the analysis.

2.4-58 Rev. 27 WOLF CREEK 2.4.13.3.2 Description of Analytical Model The model used in this analysis conservatively assumes an instantaneous release of effluent to the ground-water system. Effluent from the refueling water storage tank, because it is a seismic Category I structure, may be released at a slower rate, but the model conservatively assumes an instantaneous release from the tanks. In the case of a slug of solution containing radionuclides which is introduced instantaneously into the ground-water system in an infinitesimally small volume, the following equation is applicable (Reference 2): cm = 1n(4D't) exp -(x-ut)4D't + (y-ut)4D't + (z-ut)4D't + t3/2x'2y'2z'2 [2.4-4] where: c = quantity of radionuclide cation per milliliter of interstitial solution, at any time, t, and at any point x, y, z;

m = total quantity of radionuclide introduced with the slug (microcuries); n = total porosity of the aquifer (dimensionless);

t = time since introduction of the slug (days); x = distance from point of injection in direction of ground-water flow (centimeters);

y = distance laterally, perpendicular to ground-water flow (centimeters); z = distance vertically, from center of slug (centimeters);

   = decay coefficient = 0.693/T1/2 where T1/2 is the  radionuclide half-life, in days; D' = reduced dispersion coefficient   = DRf  (Reference 33),

where:

2.4-59 Rev. 27 WOLF CREEK D = the average dispersion coefficient = (Dx Dy Dz)1/3, and Dx, Dy, Dz = the dispersion coefficients valid for the x, y, and z directions, respectively. ux', uy', uz' = the average velocities of the radionuclide in the x, y, and z directions, respectively (centimeters per day);

For example, ux' = ux Rf where:

ux = average velocity of water in the pores (cm/day) Rf = the reduction factor due to cation exchange (Reference 32): R = 11 + n QC Efbca where: b = bulk density of the aquifer (grams per milliliter); Q = concentration of calcium adsorbed on the exchange complex of the aquifer material (milliequiv- alents per gram) (closely approximated by the cation exchange capacity, for cases where the radionuclide concentration is low relative to the cation concen- tration of the native ground water);

CCa = total concentration of dissolved native cations in the ground water at equilibrium (milliequivalents per milliliter), assumed conservatively to consist entirely of calcium;

2.4-60 Rev. 27 WOLF CREEK E = equilibrium exchange constant for exchange process for the radionuclide displacing calcium on the exchange complex; By integrating Equation 2.4-4 over the dimensions xo , yo , and zo of a slug of finite prismatic volume, we obtain Equation 2.4-5, the analytical model used in this analysis: c = m8nxyz erf x + x2 - ut4Dt - erf x-x2 - ut4Dt oooox'x'ox'x'

 . 

erf

Y + Yo2 4D'yt - erf

Y- yo2 4D'yt .

erf

Z + zo24D'zt - erf

Z-zo2 4D'zt . exp (- t) [2.4-5] where: xo, yo, zo = the dimensions of the slug in the soil at time 0, along the respective axes, and Dx'=D=x Rf, Dy'=Dv Rf , and Dz'=Dz Rf. The Equation 2.4-5 parameters are as defined for Equation 2.4-4 above. Equation 2.4-5 was derived under the assumption that uy =uz =0. The analyses performed used a computer program certified by Dames & Moore (SLUG3D), which solves Equation 2.4-5, with several different output options.

2.4.13.3.3 Selection of Model Parameters A summary of the discharge points, flow paths, and parameter values selected for the model simulations is provided in Table 2.4-36.

2.4-61 Rev. 27 WOLF CREEK Average Hydraulic Gradient (i) - To be conservative, the water-table level at the plant was assumed to be a maximum, at plant grade (elevation 1,099.5 feet). The ground-water elevation assumed at the cooling lake discharge point is the normal operating lake level (1,087 feet), and that at the Wolf Creek tributary to the southwest is 1,048 feet. Thus, for example, the average gradient (i) from the radwaste building to the cooling lake was computed to be:

i = 1,099.5 - 1,087 = 0.0195 [2.4-6] 640

where 640 feet (approximately 19,500 cm) is the shortest distance from the radwaste building to the shoreline of the cooling lake. The average hydraulic gradients from the tanks to the Wolf Creek tributary and the cooling lake are listed in Table 2.4-36. Horizontal Permeability (Kh) - Of the shallow geologic units at the site, the Plattsmouth Limestone Member has the highest measured permeability (2 x 10-4 cm/sec). This is higher than the values for the overlying Heumader Shale Member as shown in Table 2.4-34. There is a possibility that accidentally introduced liquid radwaste could migrate below the Heumader Shale into the Plattsmouth Limestone and flow laterally at least in part in the latter unit. For this reason, and to be conservative, the value of 2 x 10-4 cm/sec (17.3 cm/day) was used for the average coefficient of horizontal permeability. Porosity - Total porosity was estimated on the basis of bulk density measurements on nine samples of Heumader Shale obtained at the site. The average density was found to be 2.29 g/cm3. Then, total porosity (n) was computed from Equation 2.4-7. n = 1 - (b / s ) [2.4-7] where: b = the bulk density, and s = the specific gravity of the solids, assumed to be 2.7 g/cm3. The result was a computed total porosity of 0.15. Effective porosity (ne) was estimated to be 80 percent of total porosity (Reference 41). Thus, ne was assumed to be 0.12. This is the value used to compute ux in Equation 2.4-5, in which: u = Knxhie [2.4-8]

2.4-62 Rev. 27 WOLF CREEK Dispersion Coefficients (D) - The dispersion coefficient in the direction of flow (Dx) was estimated using the approximate equation given by Reference 13: D = 0.67 + 0.5 udD Dxx 50m1.2m [2.4-9] where:

d50 = the median grain size; and Dm = the molecular diffusion coefficient in water, 0.864 cm2/day. Particle size analyses on test pit samples showed that the d50 of the Heumader Shale and the overlying soil and weathered rock was about 0.0005 cm. For all the flow paths examined, Dx was computed to be equal to 0.58 cm2/day. The dispersion coefficient (Dm) is slightly less than the molecular diffusion coefficient in water (Dx) because the median grain size (d50) is very small. As d50 increases, Dx also increases. Based on Figure 7 of Reference 34, the ratio of Dx /Dy2 was estimated to be 1.0 in each case. Thus, Dy = 0.58 cm/day. The value for Dz was set arbitrarily low, 1.0 x 10-6 cm2/day cm2/day, to ensure that no dispersion would occur vertically beyond the upper or lower boundary of the water-table aquifer.

Cation Concentration (CCa) - Water-quality data for the period 1976-1978 were available for five wells located within 3 miles of the center of the site. To be conservative, the highest cation concentration values were selected, because the value of Rf increases as CCa increases. MAXIMUM VALUE IN 3-YEAR PERIOD CATION (mg/l) (meq/ml) Ca 320 0.016 Mg 68 0.0057 K 7.2 0.00018 Na 280 0.012 Total 0.03388

2.4-63 Rev. 27 WOLF CREEK It is a conservative simplification to assume that calcium is the only native cation in the soil exchange complex with which injected strontium, cesium, and cobalt cations would have to compete. The concentration term (Cca) in the reduction factor (Rf) refers to the equilibrium concentration of calcium in interstitial fluids. Thus, CCa was set equal to 0.034 meq/ml. Cation Exchange Capacity (Q) - The approximate composition of the clay minerals of the Heumader Shale and other shale members at the site is 48.3 percent illite, 33.3 percent chlorite, and 18.3 percent kaolinite (Table 2.5-44). As the clay minerals make up about 70 percent of the mineral composition of the shales (Figure 2.5-90), the approximate bulk composition of the shales by clay mineral is 34 percent illite; 23 percent chlorite, and 13 percent kaolinite. Reference 16 states that the range of cation-exchange capacities for the three clay minerals are:

a. Illite, 10 to 40 milliequivalents per 100 grams; b. Chlorite, 10 to 40 milliequivalents per 100 grams; and
c. Kaolinite, 3 to 15 milliequivalents per 100 grams.

To be conservative, the lowest exchange capacity for each mineral is assumed. Using the bulk percentage of each mineral results in cation-exchange capacities for illite, chlorite, and kaolinite of 0.034, 0.023, and 0.004 milliequivalents per gram, respectively. The total cation-exchange capacity of the site shales is 0.061 milliequivalents per gram. Equilibrium Exchange Constants (E) - The equilibrium exchange constant for strontium (ESr-Ca) was estimated on the basis of experimental data for illite and kaolinite provided by Heald (Ref. 17), under the assumption that strontium exchange on chlorite will be close to that for kaolinite. The weighted average value for ESr-Ca was 1.01. To estimate the exchange constants for cobalt and cesium, data on distribution coefficients (kd) for cobalt and cesium, as well as strontium, were analyzed and compared. The data derived from experimental investigations reported by References 39, 43, and 74. The kd values were obtained for each clay mineral (kaolinite or illite) from data obtained under similar experimental conditions. Then, weighted kd values for each

2.4-64 Rev. 27 WOLF CREEK isotope were obtained on the basis of the proportion of the clay minerals in the shale; exchange reactions on chlorite were assumed to be the same as on kaolinite. The resulting estimated kd values for Heumader Shale are: kd(Sr) = 2,235 kd(Cs) = 14,087 kd(Co) = 4,684 Considering that the materials and conditions of the experiments from which these values were derived were essentially the same, it is reasonable to estimate the exchange constants for Cs and Co using ESr-Ca as the standard, on the assumption that E is linearly proportional to kd. Therefore: E 14,0872,235 (1.01) = 6.30Cs-Ca ~ [2.4-10] and E 4,6842,235 (1.01) = 2.10Co-Ca ~ [2.4-11] Dimensions of Slug (Vo) - The volume (Vo) occupied by the slug in the soil at time t = 0 will be approximately: Vo = Volume of Liquid Contents [2.4-12] n

For example, for the boron recycle holdup tank, the volume of liquid contents equals 1.696 x 108 ml. Thus: Vo = 1.696 x 108 = 1.131 x 109 ml [2.4-13] 0.15 For a cuboid slug, xo = yo = zo; hence: xo = yo = zo = (1.131 x 109)1/3 = 1,042 cm [2.4-14] The dimensions of the slug for the other tanks are computed similarly. Because of the large size of the refueling water storage tank, however, it was not reasonable to select a cuboid slug, as that would have resulted in a zo (vertical dimension of the slug in the soil) of 2,160 cm (71 feet), greater than the saturated thick-

2.4-65 Rev. 27 WOLF CREEK ness of the water-table aquifer at the plant. Therefore, z o was taken as 1,219 cm (40 feet) the approximate saturated thickness of the water-table aquifer. This resulted in an xo (=yo ) of 2,878 cm (94 feet). 2.4.13.3.4 Results of Analysis

The results of the postulated rupture of each of the three tanks described in USAR Section 2.4.13.3.1 are presented in Table 2.4-35. Peak concentrations at the discharge points and the time to attain these concentrations are provided for some or all of the following important radionuclides, depending upon the composition of the radwastes in each tank: H-3, Mn-54, Co-58, Co-60, Sr-89, Sr-90, Nb-95, Zr-95, I-131, Cs-134, Cs-137, Ba-140. Cation exchange (E greater than 0) was included in the simulations only for strontium, cesium, and cobalt. As shown in Table 2.4-35, only in the case of tritium did the computed concentrations at ground-water discharge points exceed the maximum permissible concentrations set forth in Appendix B of 10 CFR 20. A peak tritium concentration of 1.21 mCi/ml and 0.57 mCi/ml was computed for ground water discharging to the cooling lake as a result of the rupture of the boron recycle holdup tank (A or B) and the refueling water storage tank, respectively. The 10 CFR 20 limits for tritium are 0.010 and 0.001 Ci/ml for restricted and unrestricted areas, respectively. The computed peak tritium concentrations for ground water discharging to the Wolf Creek tributary were 0.077 and 0.030 Ci/ml from the boron recycle holdup tank and the refueling water storage tank, respectively, which exceed the 10 CFR 20 limit for unrestricted areas. However, the tritium concentration in the cooling lake and the Wolf Creek tributary will be well below the limits for unrestricted areas (see discussion below). Since the nearest water users are downstream of both the cooling lake and the potential discharge point on the tributary to Wolf Creek, the tritium concentrations would be within the 10 CFR 20 limits at the nearest water supply. Details of dilution within the surface-water regime of the cooling lake are discussed in USAR Section 2.4.12. Details of dilution within the Wolf Creek tributary due to ground-water discharge are discussed below.

Calculations show that the rate of addition of tritium to the cooling lake by means of ground-water discharge exceeds its radioactive decay rate. Hence, the maximum contribution to the concentration of tritium in the lake would occur when the entire tritium plume had discharged to the lake, assuming there was no significant discharge of lake

2.4-66 Rev. 27 WOLF CREEK water downstream of Wolf Creek in the interim. The time for the entire plume to enter the lake is calculated to be 10,665 days. At the end of this period, the total number of curies (M) of tritium can be calculated by: M = Moet [2.4-15] where Mo is the initial number of curies of tritium. For this analysis, the refueling water storage tank provides the worst case, as it has a higher Mo value than does the boron recycle holdup tank. M = (3.79 x 109) exp - 0.693 (10,665) 4,478 [2.4-16] = 7.275 x 108 Ci At the normal operating level, the lake will hold 111, 280 acre-feet of water, or 1.3726 x 1014 ml. Assuming complete mixing, the average contribution to the tritium concentration in the lake at peak ground-water discharge concentration levels would be 7.275 x 108 1.3726 x 1014 = 5.30 x 10-6 Ci/ml [2.4-17] which is about 200 times smaller than the 10 CFR 20 limit for unrestricted areas. This is less than the equilibrium tritium concentration in the cooling lake due to normal releases and is well below the limits of 10 CFR 20. Significant dilution would also occur in the tributary to Wolf Creek, thus reducing the peak tritium concentration there to a figure well below the limit for unrestricted areas. A model run (Program SLUG3D) showed that at the time of the peak point concentration, resulting from the rupture of the refueling water storage tank, the average tritium concentration of ground water entering the stream would be approximately 1.62 x 10-2 Ci/ml over a reach of about 175 feet, the computed width of the plume. By straight-line measurement, the tributary is approximately 5,500 feet long, from a northerly point (north of which the stream is ephemeral) southward to the tributary's confluence with Wolf Creek. Dilution would occur as a result of the ground-water discharge into the stream arising from the 5,500-175, or 5,325 feet of uncontaminated reach on the east side, plus 5,500 feet of uncontaminated reach on the west side. However, allowance was made for the fact that the average ground-water discharge coming from the west side could be approximately five times less than that from the east side, because of the much smaller catchment size on the west side. The ground-water discharge rate per lineal foot of stream was assumed to be constant; thus, the dilution

2.4-67 Rev. 27 WOLF CREEK factor was based solely on the ratio of the length of stream receiving uncontaminated ground water to the length of stream affected by the plume. The resulting computed dilution factor was 37.3. Therefore, the expected peak concentration of tritium at the confluence of the tributary with Wolf Creek is 4.3 x 10-4 Ci/ml, compared to the 10 CFR 20 limit of 1.0 x 10-3 Ci/ml for unrestricted areas. 2.4.13.4 Monitoring or Safeguard Requirements Construction of the plant required dewatering of the excavations which extend below the water table (USAR Section 2.5.4.6). It is demonstrated in USAR Section 2.4.13.5.1 that dewatering of plant site excavations during construction did not affect offsite ground-water users. It is demonstrated in USAR Section 2.4.13.3 that the travel time (including the effects of ion-exchange capacity) and dilution effects for an accidental release of radioactive effluent to move from the plant along potential ground-water flow paths to existing or potential future users is sufficiently long to preclude contamination of ground- and surface-water supplies. Radioactive effluent reaching these supplies would have insignificant concentrations of radionuclides. Therefore, ground-water monitoring and safeguards are not required to protect ground-water users, and no monitoring programs or special safeguards are planned. Piezometers and wells located in the area inundated by the cooling lake were sealed prior to filling of the lake except as described below. The piezometers in the cooling lake area which were sealed are listed in Table 2.4-38 and their locations are shown on Figures 2.4-54, 2.4-55, and 2.4-61. Private operating and abandoned wells in the cooling lake area which were sealed are listed in Tables 2.4-29b and 2.4-29c, and the well locations are shown on Figure 2.4-52.

Well D38B was not plugged due to flooding by the water storage pond at the wash plant during construction of the lake, and Wells D-58B, X-D39-1 and X-D18 which were in waste areas and could not be located. This includes all piezometers and wells within the drainage boundaries of the cooling lake below elevation 1097.5 feet (USGS) (cooling lake level under the condition of probable maximum flood and superimposed wind-wave effect) with the exception of the piezometers at Borings B-17, P-14, and LK-10. The piezometers at Borings B-17 and LK-10 have been maintained to monitor local ground-water levels during the operational phase of the plant; although these borings are above the normal pool elevation of the cooling lake, the piezometer installations are

2.4-68 Rev. 27 WOLF CREEK adequately protected to prevent contamination and damage from the cooling lake during flood and wave runup. Piezometer P-14 was damaged during construction and could not be located. Piezometer P-14 is currently located under a parking lot consisting of granular subbase with a 4" asphalt surface course which should protect the groundwater from contamination.

All test borings made at the site, except for those in which piezometers were installed, have previously been backfilled and sealed with cement. The following procedures were used for sealing wells:

a. All drilled wells are sealed with a grout mix.
b. Dug wells greater than 10 feet deep are sealed with a concrete mix.
c. Dug wells or cisterns less than 10 feet deep are plugged by excavating the well or cistern and filling in the resulting hole with compacted cohesive material. During excavation, if it is found that the well or cistern is into bedrock, the hole is sealed with a concrete mix.

2.4.13.5 Design Bases for Subsurface Hydrostatic Loadings 2.4.13.5.1 Plant Site

Water levels measured in piezometers installed in the residual soil, Jackson Park Shale Member, and Heumader Shale Member were generally about 5 feet below the present ground surface; however, some seasonal variations are noted (Figure 2.4-56 and Tables 2.4- 32 and 2.4-33). Data obtained from plant site piezometers measuring the composite water levels of all rock units from the Jackson Park Shale Member to the Plattsmouth Limestone Member (Table 2.4-33) show that the potentiometric water levels are near the ground surface following periods of high precipitation and snow-melt. The shallow water table in the residual soil and weathered bedrock, depending on the amount and frequency of precipitation, is partly perched on the underlying bedrock. After periods of intense precipitation, the water table in the residual soil and weathered bedrock rises at a faster rate than in the unweathered rock units. This is due to greater vertical permeability in the residual soil and weathered bedrock. Because ground-water levels occasionally rise to near the ground surface, the design water level for ground water-induced hydrostatic loading is conservatively established at plant site grade elevation, 1,099.5 feet.

2.4-69 Rev. 27 WOLF CREEK The normal water table at the plant site is 5 feet below grade and all the safety-related structures are designed for full hydrostatic loading to El. 1099.5 ft. MSL which is the plant grade. No permanent underdrains or ground water dewatering systems are installed or planned at the site. 2.4.13.5.2 Uplift Pressures

The water contained in the weathered Heumader Shale Member is under water-table conditions, while the water contained in the Plattsmouth Limestone Member is under semi-confined to water-table conditions. However, uplift pressures in the Heumader Shale Member due to excess hydrostatic pressure and lack of drainage in the Plattsmouth Limestone Member will not be significant. The head in the Plattsmouth Limestone Member will equilibrate as excavation progresses. The piezometer water-level response to surface infiltration indicates that these units have sufficient vertical permeability to allow relief of excess pressure. The hydrostatic pressure in the Toronto Limestone Member is not high enough to affect excavation stability. The drop in head from the Heumader Shale Member to the Plattsmouth Limestone Member (Figure 2.4-57) indicates a downward gradient from the ground surface to the Plattsmouth. Water levels in piezometers installed in the Toronto Limestone Member are lower than those observed in the Plattsmouth Limestone Member (Figures 2.4-57 and 2.4-58). Both natural and recompacted cohesive soils in the site area tend to produce shrinkage or desiccation cracks upon drying. Thus, vertical downward movement of water from precipitation can be expected, even in areas where engineered cohesive fill has been properly placed. In addition, controlled rock blasting of excavations is expected to increase vertical hydraulic connection in the adjacent bedrock and allow an increased hydraulic connection between the bedrock and recompacted soils.

2.4.13.5.3 Dewatering of Excavations Excavations extend to variable depths to attain foundation grades (USAR Section 2.5.4, Figure 2.5-45) with maximum depths of about 41 feet or to elevation 1,058.5 feet. Dewatering of excavations within the Category I area has been accomplished by pumping from sumps in the excavation. With permeabilities averaging 4 x 10-5 cm/sec (0.8 gpd/ft2) in the Jackson Park Shale Member, 6 x 10-6 cm/sec (0.1 gpd/ ft2) in the Heumader Shale Member, and 2 x 10-6 cm/sec (0.04 gpd/ft2) in the Plattsmouth Limestone Member, normal dewatering by pumping from sumps has been used to maintain dry excavations.

2.4-70 Rev. 27 WOLF CREEK Where benches are established (USAR Section 2.5.4), surface-water runoff and ground-water seepage has been intercepted by ditches and directed to sumps. Water levels in weathered and unweathered shale and limestone units equilibrate during excavation. The low permeabilities of these units (Table 2.4-34) have precluded an appreciable amount of seepage into the excavations. Water from precipitation and ground-water seepage has been removed from excavations prior to placing concrete. The method of dewatering by pumping from sumps has been chosen because (1) the volume of ground-water seepage is small, (2) uplift pressures will not be significant, and (3) it is necessary to remove water from precipitation.

At the plant site, the Jackson Park Shale Member was dewatered during excavation. During construction dewatering, the potentiometric level within the Heumader Shale Member is locally lowered to the bottom of that unit at about elevation 1,064 feet, a depth of 35.5 feet below plant grade. The potentiometric level of the Plattsmouth Limestone Member is lowered from about 1,068 to 1,057 feet, or about 11 feet. The lateral extent of dewatering during construction was evaluated by use of an equation cited by Reference 9 as follows: s = s 1 - 2 p eo-udu0xTt/S2 where: u2 = x2S/(4Tt) so = water-level decline in the excavation, in feet; s = net decline in ground-water levels, in feet;

x = distance from the excavation to a hypothetical observation well, in feet; t = time lapsed, in days;

S = storage coefficient of strata, dimensionless;

T = transmissivity of the strata (permeability times saturated thickness in feet - assumed to be constant away from the excavation), gallons per day per foot (gpd/ft).

2.4-71 Rev. 27 WOLF CREEK Assuming an average thickness of 26 feet, a storage coefficient (S) of 0.05, a permeability (k) of 6 x 10-6 cm/sec (0.1 gpd/ft2), a transmissivity (T) of 3.3 gpd/ft and using the Ferris equation above the following water-level changes are calculated to occur in the Heumader Shale Member after 2 years of dewatering:

Distance Decline in From Excavation Water Level (feet) (feet) 50 23.5 100 13.5 200 2.9 500 < 0.03 The above tabulation indicates that beyond a distance of about 500 feet from the excavation, construction dewatering has a negligible effect on the water table. A similar analysis was performed for the Plattsmouth Limestone Member. Because of low permeability and semi-confined conditions, the storage coefficient (S) of the Plattsmouth Limestone Member is conservatively taken as 0.0001. The permeability (k) is taken as 2 x 10-6 cm/sec (0.04 gpd/ft2) (Table 2.4-34). Thus, assuming a 12-foot thickness of this unit, the transmissivity is 0.51 gpd/ft. Water-level changes in the Plattsmouth Limestone Member after 2 years of dewatering are calculated with the Ferris equation and the above input data as: Distance Decline in From Excavation Water Level (feet) (feet) 50 10.6 100 10.1 200 9.2 500 6.6 1,000 3.5 2,000 0.44 3,000 < 0.01

The above tabulation indicates that beyond a distance of about 2,000 feet from the excavation, construction dewatering will have a negligible effect on the water levels in the Plattsmouth Limestone Member. Ground-water level readings in the Plattsmouth from piezometer P-14 about 800 feet from the excavations show that the dewatering calculations are accurate (Table 2.4-33). Present and future ground-water users were not affected by dewatering

2.4-72 Rev. 27 WOLF CREEK excavations at the plant site. The nearest wells outside the site boundary are more than 6,000 feet east of the excavations. Completion of construction has allowed the local water table to recover to its original level. 2.4.13.5.4 Essential Service Water System (ESWS) Pumphouse

Borings ESW-28 and ESW-29 were drilled at the location of the essential service water system (ESWS) pumphouse (Figure 2.5-25). Logs of borings ESW-28 and ESW-29 are presented in USAR Section 2.5, and a cross section through those borings is shown on Figure 2.5-50.

Ground-water conditions in the ESWS pumphouse area were monitored by piezometers installed in Borings ESW-10, ESW-23, HS-29, and HS- 10. The piezometer in ESW-10 measures the potentiometric surface in the Plattsmouth Limestone Member. The ground-water level was at about elevation 1,075 under artesian conditions. The piezometer installed in Boring ESW-23 was isolated in the Plattsmouth Limestone Member, but the water level had not stabilized before it was destroyed in 1975 (Table 2.4-33). Two piezometers have been installed in Boring HS-29. The lower piezometer measures the potentiometric level of the Toronto Limestone Member, while the upper piezometer measures the composite potentiometric level of the overburden through the Plattsmouth Limestone Member. The upper piezometer in Boring HS-29 indicates a stabilized water-level elevation at about 1,050 feet (Figure 2.4-56). About 1,000 feet to the east of the ESWS pumphouse location, at Boring HS-10, a piezometer is isolated in the Plattsmouth Limestone Member. Its hydrograph (Figure 2.4-56) suggests that the Plattsmouth Limestone Member at and near the ESWS pumphouse is under semi-confined conditions with the potentiometric level near the top of the Plattsmouth Limestone Member. The excavation for the ESWS pumphouse extends to about elevation 1,053 feet which is near the base of the Plattsmouth Limestone Member. However, the low permeability of the Plattsmouth Limestone Member and the overlying Heumader Shale Member [2 x 10-6 and 8 x 10-7 cm/sec (0.04 and 0.02 gpd/ft2), respectively] indicates that only minor amounts of ground-water seepage entered the excavation. Dewatering during construction was accomplished by pumping from sumps. As demonstrated in USAR Section 2.4.13.5.3, the area of influence of dewatering was small. The design water level for the ESWS pumphouse is conservatively established at the ground-surface grade or the Probable Maximum Flood level in the lake (elevation 1,095.0) whichever is greater.

2.4-73 Rev. 27 WOLF CREEK 2.4.13.5.5 Category I Pipelines Data obtained from piezometers (Tables 2.4-32 and 2.4-33 and Figure 2.4-56) measuring the composite water levels of all units from the overburden to the Plattsmouth Limestone Member show that the potentiometric water levels are near the ground surface (generally within 5 feet) following periods of high precipitation. Piezometers tapping only the Plattsmouth Limestone Member indicate a water level near the top of the unit. Therefore, the design water level along the ESWS pipelines has been established conservatively at the ground surface or at the maximum cooling lake elevation of 1,095.0 feet, whichever is greatest at any point along the pipeline routes.

The cross sections of the ESWS pipeline alignments (Figures 2.5-47 and 2.5-51) indicate that the pipeline excavations only partially penetrate the Plattsmouth Limestone Member. The low permeability of the near-surface rock units [8 x 10-7 to 4 x 10-5 cm/sec (0.02 to 0.8 gpd/ft2)] indicated that the amount of seepage into the ESWS pipeline excavations during construction was very low. When the excavations were first opened, ground-water inflows originate from the weathered sandstone unit of the Jackson Park Shale Member. These inflows locally dewatered the Jackson Park Shale Member as the excavation proceeded. Ground water in the Heumader Shale and Plattsmouth Limestone members which seeped into excavations were removed by a system of ditches and sump pumps. As demonstrated in USAR Section 2.4.13.5.3, the area of influence of dewatering during construction was small. Temporary dikes were used for installation of the replacement ESW piping where it crossed the lake to the northeast of the plant. The area of the lake crossing was dewatered during installation. 2.4.13.5.6 ESWS Discharge Point Boring B-130 was drilled nearest to the ESWS discharge point. Two piezometers were installed in Boring HS-8, about 1000 feet west of Boring B-130, which monitor ground-water conditions near the location of the ESWS Discharge Point. The lower piezometer measures the potentiometric level of the Toronto Limestone Member while the upper piezometer measures the composite potentiometric level of the overburden and Plattsmouth Limestone Member. The hydrograph (Figure 2.4-56) for the upper piezometer indicates that the water levels near the discharge point are near the existing ground surface. Marshy conditions at the ground surface near the discharge point suggest a water-table condition. The ground-water level in the Toronto Limestone Member is at about elevation 1,057 under artesian conditions.

The final adjacent ground surface elevation is at the base of the ultimate heat sink (UHS) pond, elevation 1,065 feet. The founda-

2.4-74 Rev. 28 WOLF CREEK tion grade is at about elevation 1,059 feet within the Heebner Shale Member (Figure 2.5-51). The low permeability of the Plattsmouth Limestone and Heebner Shale members [averaging about 2 x 10-5 and 4 x 10-6 cm/sec (0.4 and 0.08 gpd/ft2), respectively; see Table 2.4-34 indicates that the rate of ground-water seepage into the excavation during construction was slow and could be removed by pumping from sumps. As demonstrated in Section 2.4.13.5.3, the area of influence of dewatering during construction was small. The design water level for the ESWS discharge point is conservatively established at the maximum cooling lake elevation of 1,095.0 feet. 2.4.14 REFERENCES

1. ASCE Journal of the Hydraulics Division, 1973, Sediment control methods: D. Reservoirs: By the Task Committee for preparation of Manual on Sedimentation of the Committee on Sedimentation of the Hydraulics Division, April 1973. 2. Baetsle, L.H., and Souffriau, J., 1967, Installation of chemical barriers in aquifers and their significance in accidental contamination, in Disposal of radioactive wastes into the ground: Proceedings of a Symposium, 29 May - 2 June, 1967, International Atomic Energy Agency, Vienna.
3. Bayne, C.K., and Ward, J.R., 1967, General availability of ground-water in Kansas: Kansas Geol. Survey, map. 4. Broeker, M. E., and Fishel, V. C., 1961, Groundwater levels in observation wells in Kansas, 1960: Kansas Geol.

Survey, Bull., no. 153.

5. Burns, C. V., 1967, Kansas streamflow characteristics, part 7, Annual streamflow summary tables: Kansas Water Resources Board, Topeka, Kansas, Tech. rept. no. 7 (June).
6. Chow, V. T., 1959, Open-channel hydraulics: McGraw-Hill BookCompany, Inc., New York, p. 115. 7. Chow, ed., 1964, Handbook of applied hydrology: McGraw-Hill Book Company, Inc., New York, Sections 14-6, 21-37, 25-5.
8. Defant, A., 1960, Physical oceanography: Pergamon Press, Inc., v. II.

2.4-75 Rev. 28 WOLF CREEK 9. Ferris, J. G., and others, 1962, Theory & aquifer tests: U.S. Geol. Survey, water-supply paper 1536-E, 174 pp.

10. Flasch, D., 1973, Chief, Hydraulic Branch, U. S. Army Corps of Engineers, Tulsa, Oklahoma district, written communication.
11. Flickinger, Gary, 1979, Kansas Water Resources Board, Topeka, Kansas, telephone communication (June 6).
12. Flickinger, 1984, Kansas Water Office, Topeka, Kansas, written communication (February 20).
13. Fried, J.J., and Combarnous, M.A., 1971, Dispersion in porous media, in Advances in hydroscience: Ven Te Chow, ed., Academic Press, vol. 7, pp. 169-282.
14. Garrison, J.M., Granju, J.P., and Price, J.T., 1969, Unsteady flow simulation in rivers and reservoirs: Journal of the Hydraulics Division, Am. Soc. of Civil Engineers (September).
15. Gettinger, Lucille, 1979, Records, Kansas State Board of Agriculture, Division of Water Resources, Topeka, Kansas, written communication (August 24).
16. Grim, R. E., 1953, Clay mineralogy: McGraw-Hill Book Company Inc., New York. 17. Heald, W. R., 1960, Characterization of exchange reations of strontium or calcium on four clays: Soil Science Society of America Proceedings, vol. 24., pp. 103-106.
18. Ippen, A. T., ed., 1966, Estuary and coastline hydrody- namics: McGraw-Hill Book Company, Inc., New York.
19. Kansas Geological Survey, 1973, Well logs on open-file:

Kansas Geol. Survey. 20. Kansas State Board of Agriculture, 1979, Open-file material: Division of Water Resources, Topeka, Kansas (March).

21. Kansas State Department of Agriculture, 1973, Open-file material: Kansas Water Resources Board.
22. Kansas Water Office, 1984, Open-file material.
23. Kansas Water Resources Board, 1960, Kansas streamflow charac-teristics, Part 2, Low-flow frequency: Tech. rept. no. 2.

2.4-76 Rev. 27 WOLF CREEK 24. ________, 1961a, State water plan studies: Part A, sec. 7 (June).

25. ________, 1961b, A program of fluvial sediment investigations in Kansas: Bull. 6 (July).
26. ________, 1967a, Special water districts in Kansas: Project no. '701', Rept. no. 16, p. 43 (September). 27. ________, 1971b, Sediment yields from small drainage areas in Kansas: Bull. 16.
29. ________, 1967c, Irrigation in Kansas: Project no. '701', Rept. no. 16, p. 43 (September).
29. ________, 1973a, Open-file material.
30. ________, 1973b, Turbidity data for Neosho River at Hartford water intake: (October 16).
31. ________, 1978, Kansas state water plan, water supply and storage program: 5th annual report, Topeka, Kansas.
32. Kaufman, W.J., 1973, Notes on radionuclide pollution of ground waters: Water Resources Engineering Series, Univ. of California, Berkeley.
33. Lai, S., and Jurinak, J.J., 1972, The transport of cations in soil columns at different pore velocities: Soil Science Society of America Proceedings, vol. 36, pp.

730-733.

34. Lenda, A., and Zuber, A., 1970, Tracer dispersion in ground- water experiments: Isotope Hydrology 1970, International Atomic Energy Agency, Vienna, pp.

619-641.

35. Linsley, R.K., and Franzini, J.B., 1972, Water Resources Engineering, second edition, McGraw-Hill Book Company, Inc., New York.
36. Linsley, R.K., Kohler, M.A., and Paulhus, J.L., 1958, Hydrology for engineers: McGraw-Hill Book Company, Inc., New York, pp. 204-207, 297-301.
37. Merriam, D.F., 1963, The geologic history of Kansas: Kansas Geol. Survey, Bull. 162.
38. Newton, D.W., and Cripe, M.W., 1973, Flood studies for safety of TVA nuclear plants, hydrologic and embankment

2.4-77 Rev. 27 WOLF CREEK breaching analysis - presented at the National Meeting on Water Resources Engineering in Washington, D.C.: Tennessee Valley Authority, Knoxville, Tennessee.

39. Parker, F. L., Struxness, E.G., Tamura, T., Bruscia, G.,

Morton, R.J., Eastwood, E.R., and Sorathesn, A., 1960, Clinch River studies: Health Physics Division, Annual Progress Report for the Period Ending July 31, 1960, Oak Ridge National Laboratory, ORNL-2994, pp. 45-57.

40. Price, J.T., and Garrison, J.M., 1973, Flood waves from hydrologic and seismic dam failures - presented at the National Meeting on Water Resources Engineering, Washington, D.C.: Tennessee Valley Authority, Knoxville, Tennessee.
41. Routson, R.C., and Serne, R.J., 1972, Experimental support studies for the percol and transport models:

Battelle Pacific Northwest Laboratories, Richland, Washington, BNWL-1719.

42. Stoker, J.J., 1957, Water waves: Interscience Publishers, New York, pp. 333-513.
43. Tamura, T., 1972, Sorption phenomena significant in radioactivewaste disposal, in Underground waste management and environmental implications: Proceedings of the Symposium held December 6-9, 1971, Memoir 18, APPG.
44. U.S. Army Corps of Engineers, 1952, standard project flood determinations: U.S. Army Corps of Engineers, EM 1110-2-1411 (Revised 1965).
45. _________, 1958, Hydrology, Strawn reservoir: U.S. Army Corps of Engineers, Tulsa, Oklahoma District, Design memorandum no. 2 (February). 46. _________, 1961, Hydrology, Marion dam and reservoir: U.S.

Army Corps of Engineers, Tulsa, Oklahoma District, Design memorandum no. 1 (February). 47. _________, 1962, Summary report of CWI projects CW-164 and CW-165: Beach Erosion Board, OCE, Tech. memorandum no. 132 (November).

48. _________, 1963, Hydraulic design of reservoir outlet structures: EM-1110-2-1602 (August).

2.4-78 Rev. 27 WOLF CREEK 49. _________, 1964, Structural design of spillways and outlet works: EM-1110-2-2400 (November). 50. _________, 1965a, Flood plain information, Neosho and Cottonwood rivers, Kansas: U.S. Army Corps of Engineers, Tulsa, Oklahoma District (February).

51. _________, 1965b, Engineer Manual, Engineering and design, Hydraulic design of spillways: U.S. Army Corps of Engineers, EM-1110-2-1603, Headquarters, Department of the Army, Office of the Chief Engineers (March).
52. __________, 1966a, Shore protection, planning and design: U.S. Army Corps of Engineers, Tech. rept. no. 4, 3rd ed. (June).
53. __________, 1966b, Spillway rating and flood routing: U.S. Army Corps of Engineers, Hydrologic Engineering Center, Computer program 22-52-L210 (October).
54. __________, 1966c, Technical Letter no. 1110-2-8, Computation of free-board allowances for waves in reservoirs: U.S. Army Corps of Engineers (August).
55. __________, 1966d, EC 1110-2-27, Policies and procedures pertaining to determination of spillway capacities and freeboard allowances for dams: U.S. Army Corps of Engineers (August).
56. __________, 1968, Water surface profiles: U. S. Army Corps of Engineers, Hydrologic Engineering Center, Computer program 22-J2-L232 (December).
57. __________, 1969, Reservoir regulation manual for Council Grove, Marion, and John Redmond reservoirs, Upper Grand (Neosho) River, Kansas: U.S. Army Corps of Engineers, Tulsa, Oklahoma District (June). 58. __________, 1971, Cedar Point Lake: U.S. Army Corps of Engieers, Tulsa, Oklahoma District, Design memorandum no. 1 (April).
59. ___________, 1973, Hydraulic design criteria on storm drain out-lets: (Sheets 772-4 to 722-7).
60. ___________, 1975, Engineering Regulation ER-1110-2-50 (May).
61. Thompson, Robert, Kansas State Department of Health and Environment, Topeka, Kansas, telephone communication (February 16).

2.4-79 Rev. 27 WOLF CREEK 62. U.S. Department of the Interior, Bureau of Reclamation, 1971, Kansas state water plan studies, Subreconnaissance land classification report for Kansas: in cooperation with the Kansas Water Resources Board.

63. U.S. Department of Interior, Bureau of Reclamation 1973, Design of small dams: Bureau of Reclamation, second edition.
64. U.S. Department of Agriculture in cooperation with Committee on Sedimentation, Water Resource Council, 1969, Summary of reservoir sediment deposition surveys made in the U.S. through 1965: U.S. Dept. of Agriculture, Rept. no. 1143 May).
65. U.S. Department of Commerce, 1963, Storm data: U.S. Dept. of Commerce, v. 3, no. 7 (July); v. 5, no. 3 (March); v. 6, no. 8 (August).
66. _________, 1972, Storm data: U.S. Dept. of Commerce, v. 14, no. 7 (July). 67. U.S. Geological Survey, 1952, Kansas-Missouri floods of July, 1951: U.S. Geol. Survey, water-supply paper 1139.
68. _________, 1964, Magnitude and frequency of floods in the United States, 1961-65, Part 7, Lower Mississippi River basin, rkansas River basin: U.S. Geol. Survey, water-supply paper 1681, v. 2.
69. _________, 1969, Water resources data for Kansas, part 1, surface water records: U.S. Geol. Survey.
70. _________, 1978, Water resources data for Kansas, Water year 1977: Report KS-77-1.
71. U. S. Weather Bureau, 1865-1965, Kansas, national and annual summaries of climatological data: U.S. Government Printing Office, Washington, D.C.
72. _________, 1961, Rainfall frequency atlas of the United States: U. S. Government Printing Office, Washington, D.C., Tech. rept. no. 40.
73. _________, 1956, Seasonal variation of the probable maximum precipitation east of the 105th meridian for areas from 10 to 1,000 square miles and durations of 6, 12, 24 and 48 hours: U.S. Government Printing Office, Washington, D.C., Hydrometeorological rept. no. 33 (April).
74. Webster, 1975

2.4-80 Rev. 27 WOLF CREEK 75. U.S. Nuclear Regulatory Commission, NUREG/CR-7046, Design-Basis Flood Estimation for Site Characterization at Nuclear Power Plants in the United States of America, November 2011. 76. National Oceanic and Atmospheric Administration, NOAA Hydrometeorological Report No. 52, Application of Probable Maximum Precipitation Estimates - United States East of the 105th Meridian, August 1982. 77. U.S. Army Corps of Engineers, Hydrologic Engineering Center, Hydraulic Modeling System [HEC-HMS], Computer Software, Version 3.5, http://www.hec.usace.army.mil/software/hec-hms/. 78. U.S. Army Corps of Engineers, Hydrologic Engineering Center, River Analysis System [HEC-RAS], Computer Software, Version 4.1, http://www.hec.usace.army.mil/software/hec-ras/. 2.4-81 Rev. 27 TABLE 2.4-1 Sheet 1 of 2 EXISTING STATIONS IN THE UPPER NEOSHO RIVER BASIN Drainage Area Records Flow Rates or Elevation Records Gaging Approximate Above the Station Available Number Location (sguare miles) Since Average Maximum Hinimum 07179400 Council Grove Lake 246 Oct. 1964 Unknown 1,284.64 ft 1,265.79 ft near Council Grove 07179500 Neosho River at 250 Oct. 1938 125 cfs 121,000 cfs 0 cfs Council Grove 07179730 Neosho River 622 Jun. 1963 near Americus 319 cfs 10,900 cfs 0 cfs 07179794 Marion Lake 200 Feb. 1968 Unknown near Marion 1,356.66 ft 1,347.60 ft 0 L' 07179795 Cottonwood River 200 Jul. 1968 87.S cfs 3,3C)0 cfs 0 cfs below Marion Lake n :;;o 07180400 Cottonwood River 754 Jun. 1961 340 cfs 56,000 cfs 5.5 cfs r?J t?:l near Florence 07180500 Cedar Creek near 110 Oct. 1938 54.8 cfs 52,400 cfs 0 cfs Cedar Point 07182250 Cottonwood River 1,740 Mar. 1963 906 cfs 57,500 cfs 8.7 cfs near Plymouth Rev. 0 Rev. 0Gaging Number 07182450 07182510 Source: TABLE 2.4-1 (continued) Sh2et 2 of 2 Approximate Location Drainage Above the Station (square miles) John Redmond Reservoir near Burlington 3,015 Neosho River at Burlington 3,042 Records Available Since Aug. 1963 Jun. 1961 Flow Rates or Elevation Records Average Maximum Minimum Unknown 1,066.81 ft 1,033.80 ft 1,605 cfs 26,200 cfs 1.1 cfs U.S. Geological Survey, 1978, Water resources data for Kansas, water year 1977: Report KS-77-1, U.S. Geological Survey. 0 L' n ;o tlj tlj WOLF CREEK TABLE 2.4-2 GEOMORPHOLOGICAL CHARACTERISTICS OF THE WOLF CREEK WATERSHED At Main Cooling Near the Plant Lake Damsite Site Area (Under (Under Natural Characteristic Natural Conditions) Conditions) Drainage area, in 19.7 27.4 square miles Stream order (reflects 3 4 degree of bifurcation within watershed), dimensionless Length of main stream 12.7 19.1 from divide to point of consideration, in miles Total stream length in 48.5 71.9 drainage area above outlet, in miles Drainage density (average 2.5 2.6 length of streams per unit area within watershed), in miles per square mile Mean overland flow 0.2 0.2 length, in miles Watershed length (straight 7.9 10.6 line length from outlet to outermost point), in miles Shape factor (ratio of length 3.15 4.1 of watershed to its width), dimensionless Difference in elevation 128.5 163 between stream headwater region and outlet, in feet Mean stream gradient, 10.1 8.5 in feet per mile Rev. 0 System Quaternary Tertiary vanian vanian vanian Source: TABLE 2.4-3 GENERALIZED SECTION OF UPPER GEOLOGIC FORHATIONS IN THE REGION SURROUNDING THE SITE Series Pleistocene Pliocene Vir3"inian Virginian Missourian Group Formation Ogallala Shawnee Douglas Lansing Thickness (feet) 0-25 0-3 0-325 0-300 0-160 Physical Characteristics Gravel, sand, silt and clay as alluvium and terrace deposits; very thin local deposits of eolian silt. Gravel and sand, chiefly chert, in a reddish clay matrix, leached and dized. Limestone and shale: shales locally contain channel sandstone. Shale and sandstone. Sandstone locally prises one-third to half of the depositsc Limestone and coal prise less than five percent of the group. Limestone formations and an intervening shale formation; forms two escarpments. Water Supply and Water Quality Characteristics Yields small to moderate supplies of water that is hard and may contain jectionable amounts of iron but otherwise of good quality. Generally above water table. Supplies adequate for mestic and stock use erally available at depths of 30 to 150 feet. Both sodium and calcium ate waters are obtained. Shale beds yield little water, sandstones locally yield dependable domestic and stock supplies* Small supplies for stock and domestic use can erally be developed from limestones, black fissile shales or thin sandstones. Table reproduced, in part, from Kansas Water Resources Board, 1961, State water plan studies, part A, section 7, Neosho unit: Kansas Water Resources Board (June) p. 59. Rev. 0 TABLE 2.4-4 Sheet 1 of 9 \VATER RIGHTS IN COFFEY COUNTY Authorized Authorized Iva ter Haximum Maximum Principal USef Location of Diversion Quantity >*later No. (a) Diversion Point(b) Owner Source Rate (gpr[ll ___ (acre-feet) Usage 1 Sl'l/NH and SH/S\\1 H. Parmely Neosho River 1,300 79 Irrigation 4-23-16 and SE/SE 5-23-16 2 SH/NW and SlqjSI'I }1. Parmely Neosho River 2,160 79 Irrigation 4-23-16 and SE/SE 5-23-16 3 NW/SE City of Lebo Tributary Cole 63 102 Municipal 5-19-14 and vicinity Creek ::E: 4 Slv/21-22-14 City of Gridley Varvel Creek 75 57 Municipal 0 (-! ln'l/28-22-14 h:J 5 NE/NW City of LeRoy Neosho River 200 80 Municipal 0 3-23-16 and vicinity ;::c t:j 6 N/NE Huff's Gardens Rock Creek 450 9 Irrigation t:r.::l :;>;; 27-21-15 7 Nlv/S1ii'/SE Village of Well 60 22 Municipal 10-21-15 Strawn (a)see Figure 2.4-8 for locations. (b)Locations are specified by section division, section, township, and range. Rev. 0 TABLE 2.4-4 (continued) Sheet 2 of Authorized Authorized Water Maximum Maximum Principal Use:r( a) Location of (b) Diversion Quantity Water No. Diversion Point Owner Source Rate (gpm) (acre-feet) Usage 8 NW/Niv/SE Nelson Motors, Neosho River 1,500 350 Recreation 35-21-15 Inc. 125 Irrigation {,-.\ 9 E/NW/NI*,r KG&E John Redmond 24,685-' 25,000 Industrial 10-21-15 damsite 10 SE/SE/NE Rural water 4 wells 60 49 Municipal 7-20-17 District No. 4 11 NE/SN/Siv u.s. Department Troublesome Natural 30 Recreation 2-20-13 of Interior -Creek flow (storage) Bureau of Sport Fisheries and 12 S/N U.S. Department Troublesome Natural 525 Recreation 13-20-14 of Interior -Creek flow (storage) Bureau of Sport Fisheries and Wildlife l3 NI"/SE/SW U.S. Department Neosho River 10,000 (d) 152 Recreation 14-20-13 of Interior -Bureau of Sport Fisheries and Wildlife of natural flo\*lS in Neosho River only at sucn times as mlnlmum of at leo.st 250 cfs rernains downstream from the intake. (dl users number 13-15, 17-21, 23 and 24 are limited to a combined total not to exceed 10,000 gpm. 9 Rev. 0 0 t'"' t'rj ,....., -""' tr:l t_"lj :::>": TABLE 2.4-4 (continued} Sheet 3 of 9 Authorized Authorized vJater Haximum Maximum Principal User( a) Location of (b) Diversion Quantity Hater No. Diversion Point Owner Source Rate (gpm) (acre-feet) Usage 14 Nlv/SE/Siv U.S. Department Neosho River 10,000 (d) 50 Recreation 13-20-13 of Interior -Bureau of Sport Fisheries and 15 SE/NE/SiiT u.s. Department Neosho River 10,000 (d) 330 Recreation 19-20-14 of Interior -Bureau of Sport Fisheries and l'i'ildlife ::2:: 0 Tributary Recreation t"' 16 SE u.s. Department Natural 6 nj 25-20-13 of Interior -l<':::::.n-1n 0V"c.c.lr flov; 1.-.4-............. ..... \ .&-.0 ...... ':) ... '-'-' ............... \0:11-U.J..U.'jCJ ,... Bureau of Sport \. Fisheries and :::0 t"J Wildlife t"J 'd) A 17 NW/NE/NVI u.s. Department Eagle Creek 10,000 \ 73 Recreation 36-20-13 of Interior -Bureau of Sport Fisheries and l'lildlife 18 Nvi/Nvl/NH u.s. Department Eagle Creek lO,OOO{d) 18 Recreation 31-20-14 of Interior -Bureau of Sport Fisheries and Wildlife Rev. 0 TABLE 2.4-4 (continued) Sheet 4 of 9 Authorized Authorized \Vater Maximum Haximum Principal Use:r Location of Diversion Quantity Water No. (a) Diversion Point(b) Owner Source Rate (r;[pn) (acre-feet) Usa:ze 19 Nh'/SlJ/SE u.s. Department Eagle Creek 101000 (d) 40 Recreation 30-20-14 of Interior -Bureau of Sport Fisheries and >'iildlife 20 SW/SE/SE U.S. Department Neosho River 101000 (d) 68 Recreation 20-20-14 of Interior -Bureau of Sport Fisheries and :8 Wildlife 0 10 '000 (d) t"' 21 SI'J/SW/SE u.s. Department Neosho River 212 Recreation :-1j 20-20-14 of Interior -Bureau of Sport () ;::o Fisheries and cr.i Hildlife t'j ::><;: 22 Sl'J/SW/NW u.s. Department Neosho River Natural 72 Recreation 21-20-14 of Interior -flow (storage) Bureau of Sport Fisheries and Wildlife 23 SE/Niv/NW u.s. Department Neosho River 101000 (d) 200 Recreation 28-20-14 of Interior -Bureau of Sport Fisheries and lvildlife Rev. 0 TABLE 2.4-4 (continued) Sheet 5 of 9 Authorized Authorized Water Maximum Maximum Principal Location of Diversion Quantity Water No. (a) Diversion Point(b) Owner Source Rate (gpm) (acre-feet) Usage 24 N'd/SE/HE U.S. Department Neosho River 10, ooo(d) 82 Recreation 33-20.,.-14 of Interior -Bureau of Sport Fisheries and Wildlife 26 u.s. Department Neosho River 8, ooo(e) 36 Irrigation 14-20-13 of Interior -Bureau of Sport Fisheries and Wildlife 0 L' 27 SE/NE/SW u.s. Department Neosho River 8,ooo(e) 70 Irrigation hj ll-20-13 of Interior -n Bureau of Sport ::0 Fisheries and tr:l Wildlife tr:l 28 NH/SW/SE u.s. Department Neosho River 8,oooCel 99 Irrigation ll-20-13 of Interior -Bureau of Sport Fisheries and Wildlife 29 W/NW/NE U.S. Department Neosho River B,OOO(e) 198 Irrigation 14-20-13 of Interior -Bureau of Sport Fisher1es and Wildlife (e)water users numbers 26-34 are limited to a combined total not to exceed 8,000 gpm. Rev, 0 TABLE 2.4-4 (continued) Sheet 6 of 9 Authorized Authorized Water Maximum Maximum Principal Use1 ) Location of Diversion Quantity Water No. a Diversion Point(b) Owner Source Rate (gpm) (acre-feet) Usage 30 SlJ u.s. Department Neosho River s,ooo<el 55 Irrigation 14-20-13 of Interior -Bureau of Sport Fisheries and 31 NW/NE/NW u.s. Department Neosho River s,ooo<el 74 Irrigation 23-20-13 of Interior -Bureau of Sport Fisheries and Wildlife ::E; 0 s, ooo<e) r-' 32 NE/SE/NE u.s. Department Neosho River 45 Irrigation r:tj 23-20-13 of Interior -Bureau of Sport 0 Fisheries and :;u tXJ Wildlife tr.l B,OOO(e) :;:.;: 33 SW/SE/SW u.s. Department Neosho River 58 Irrigation 13-20-13 of Interior -Bureau of Sport Fisheries and Wildlife 34 NE/SH/SW u.s. Department Neosho River s,ooo<el 71 Irrigation 13-20-13 of Interior -Bureau of Sport Fisheries and Hildlife Rev. 0 TABLE 2.4=4 (continued) Sheet 7 of 9 Authorized Authorized Water Maximum Maximum Principal User Location of Diversion Quantity Water No. (a} Diversion Point{b) Owner Source Rate (gpm) (acre-feet) Usage 35 E/NW/NW KG&E Neosho River 76,300(c) 57,300 Industrial 10-21-15 36 NE/NW/NH Martin Marietta Tributary to 12-19-14 Aggregates Frog Creek BOO 50 Industrial 38 NE/NW City of LeRoy Neosho River 160 55 Municipal 3-23-16 and vicinity 40 24-19-16 City of 4 wells 100 25 Municipal Waverly ::E! 0 41 City -<= Neosho River 800 245 i'-iunicipal r-t V-1. hj 26-21-15 Burlington n 42 SW/NH/SW City of Neosho River 100 62 Municipal ::::0 14-20-13 Hartford !:'j !:'j 43 SW/NH/Siv Rural Water Well 15 23 Municipal 7-20-17 District No. 4, Anderson City 44 NW City of Burlington Neosho River 1,000 767 Municipal 26-21-15 Coffey Co. RWD 2 & 3 45 1V'l/SW/SE F. Robrahn Neosho River 650 61 Irrigation 26-21-15 46 SH/NW/NW D. Crotts 21-22-16 Long Creek 1,000 33 Irrigation Rev. 0 Water Use:r No. (a) 47 48 49 50 51 52 53 54 Location of Diversion PoinJb) NW/NE/SE 9-21-15 SE/NE/SW 10-Ll-15 SW/NE/NE 15-21-15 NE/SW/NW 26-21-15 and NW/SW/SE 4-21-16 NE/NE/NE 12-20-16 NW/NH/NE NE/NE/im ll-19-16 3 points 3-19-15 4 points 2 points 2 points 4-19-15 5 points 34-18-15 and in NW in NE in sw, in SE in sw (Osage and co.) TABLE 2,4-4 (continuedj Owner Kansas Fish and Game Commission New Strawn J. Decker W. Strawn Martin Corp. :Rural \t.Ja ter District No. 4 Anderson Co. Rural lvater District No. 4 Osage Co. Niles Farms Inc. Source Neosho River Well Neosho River Neosho River Long Creek 2 Wells Frog Creek Sheet 8 of 9 Authorized Authorized Maximum Maximum Principal Diversion Quantity Water Rate (gpm) (acre-feet) Usage 12,000 150 Recreation 100 84 Municipal 1,050 156 Irrigation 400 40 Irrigation 0 800 307 Industrial L1 I"Ij () ...., "" 25 ')t: Municipal l:':l "'"-' l:':l 75 107 Municipal 3,900 461 Irrigation Rev. 0 Table 2.4-4 frorn"'+-; Sheet 9 of 9 \ ..................................... ..__-......, Authorized Authorized Water Maximum Maximum Principal Use(. ) Location of Diversion Quantity lvater No. a Diversion Point(b) Owner Source Rate (gpm) (acre-feet) Usage 55 4 points in NE, Niles Farms Inc. Unnamed Tributary 1,700 149 Irrigation and 3 points in to Frog Creek Nl\1 7-19-15 56 N/NW/SE H. Miller Unnamed Tributary 800 74 Irrigation 3-20-17 to Elm Creek (direct) Natural 78 Flow (storage) 57 NH/l'>J .. H/SE City of Lebo Unnamed Tributary 120 165 }1unicipal :E; 5-19=14 to n..-.1.-Creek 0 \.....U...Lt:: t"' 1-zj C'"C" /l\11:" /l\1"C" Rural 'fAT-..j....,.....,.. , " , Municipal .JU '-' .... / ... l J..\1 ... nU.L-C..L. -LV _.__, 12-20-16 District No. 4 () ]l.nderson Co .. :::0 t:r:j tzj 59 E/SE/NE K. Crotts Neosho River 1,125 39 Irrigation :;.;: 29-22-16 60 SH/NW City of Hartford 2 Hells 100 28 Municipal 14-20-13 61 SH/SH/NE KG&E Holf Creek Natural 40,000 Industrial 30-21-16 Flows (storage) Source: State Board of Agriculture, 1979, Open-file material: Division of Hater Resources, Topeka, Kansas (March). ReV. 0 ..:::ity or Rural Water District Coffey County LeRoy Anderson County RHD #5 Kincaid RWD #5 to Allen Co. RWD #5 to Coffey Co. RWD #5 to Franklin Co. Woodson County RWD #1 RWD #1 to Allen Co. Allen County Humboldt lola Bassett Gas City LaHarpe RWD #1 RWD #2 RWD #3 R\"'D #4 RWD #5 m-m #6 RWD #7 RWD #8 RWD #9 RWD #10 TABLE 2.4-5 MUNICIPALITIES AND RURAL WATER DISTRICTS IN KANSAS UTILIZING THE NEOSHO RIVER DOHNSTREAH OF THE SITE 1976-1977 2000 Population Annual v<ater Population Annual Water Served Use (acre-feet) Served Use (acre-feet) 653 47.6 992 93.1 1,205 135.0 *

  • 350 28.0 *
  • 240 18.1 240 22.0 55 6. 2 58 7.7 90 10.6 *
  • 360 21.9 462 34.8 200 15.1 200 18.3 2,444 472.7 2,610 511.8 "' Qt::;Q 1 1 0'7 0 .., "'"' 1,309.8 Vf-'VV ..J... f .J..J I * ;.J lfJVV 32 8. 0 28 7.0 522 73.7 580 89.4 621 87.7 670 26 3. 7 22 3.2 42 7. 0 38 6. 3 60 5.3 64 5.7 28 5.9 24 5.3 20 8. 8 18 8. 0 54 6. 9 50 6.4 152 17.8 145 16.9 180 27.7 352 32.4 34 4.3 38 4.8 84 11.7 164 36.2 Sheet 1 of 2 Source of Water Neosho River City of lola, Allen Co. RWD #5 City of lola, Allen Co. City of lola, Allen Co. City of lola, Allen Co. Neosho River Neosho River Neosho River Neosho River City of lola City of lola City of lola City of lola City of lola City of lola City of lola City of lola City of lola City of Iola City of lola City of Humboldt City of Humboldt
  • Present population and water use greater than year 2000; use present values for delivery. Rev. 0 ::8 0 t"' rtj 0 ;:o t::j tr.1 :;;=::

TABLE 2.4-5 (continued) Sheet 2 of 2 1976-1977 2000 City or Rural Population Annual Water Population Annual Water Source Hater District Served Use (acre-feet) Served Use (acre-feet) of Water Neosho County Chanute 10,400 1,309.1 12,526 2, 011.0 Neosho River Erie 1,425 172.0 1,787 469.6 Neosho River St. Paul 713 92.1 921 110.5 Neosho River RWD #3 107 12.3 115 12.5 City of Erie RWD #4 340 30.5 360 32.5 City of Erie RWD #7 620 67.5 700 76.8 City of Chanute RWD #8 196 26.6 231 108.7 City of St. Paul RWD #9 182 26.1 274 43.0 City of Chanute RWD #7 to Allen co. 19 2.0 25 2.7 City of Chanute Chanute to Petrolia 83 18.8 100 22.7 City of Chanute (Allen Co.) Labette County Chetopa 1,663 168.9 1,997 233.3 Neosho River Oswego 2,167 456.2 2,250 437.7 Neosho River Parsons 13,344 2,151.4 16,654 2,345.1 Neosho River Standby and Imp* Ees. RI'ID #l 220 11.0 400 20.0 City of Oswego RWD #2 105 5.2 200 10.7 City of Parsons RWD #4 141 15.4 170 21.5 City of Oswego RHD #7 186 13.1 230 18.4 Neosho RWD #4 RWD #8 700 73.7 900 94.7 Labette RWD #2 Source: Flickenger, G., 1979, Associate Engineer, Written communication, Water :Resources Board, Topeka, Kansas (March 9). Rev. 0 0 t:"' n:j 0 ;:a tt:l tt:l 'A: WOLF CREEK TABLE 2.4-6 PEAK ANNUAL STAGES AND DISCHARGES FOR NEOSHO RIVER AT BURLINGTON ,KANSAS (USGS GAGE NO. 07182510)(a) GAGE HEIGHT DISCHARGE WATER YEAR (feet) (cfs) 1961(b) 31.53 26,200 1962 31.36 24,800 1963 15.56 5,770 1964 14.80 5,200 1965 27.49 16,000 1966 19.31 8,950 1967 22.70 11,700 1968 22.33 11,400 1969 23.18 12,000 1970 20.95 10,500 1971 22.78 11,700 1972 22.27 12,400 1973 25.40 15,300 1974 24.29 14,300 1975 22.81 12,900 1976 18.65 9,620 1977 23.03 13,400 1978 14.48 6,780

____________________

Sources: U.S. Geological Survey, 1966-1977, Water resources data for Kansas, Part 1, Surface water records: USGS.

Thompson, M., 1979, USGS, Lawrence, Kansas, District Office, telephone communication.

(a) The gage is a digital water-stage recorder. Datum of gage is 983.56 feet above Mean Sea Level, datum of 1929. Prior to Oct. 1, 1962, graphic water-stage recorder at same site and datum (U.S. Department of the Interior, 1971).

(b) Gage became operational in June.

Rev. 0 WOLF CREEK TABLE 2.4-7 Sheet 1 of 3 PEAK ANNUAL STAGES AND DISCHARGES FOR THE NEOSHO RIVER AT STRAWN, KANSAS (U.S.G.S. GAGE NO. 071824)(a) Gage Height Discharge Water Year (feet) (cfs) 1885 (b) 26.0 75,000 1902 (b) 24.5 43,000 1903 24.5 43,000 1904 26.5 90,000 1905 20.0 18,000 1906 20.5 19,000 1907 18.0 15,000 1908 24.5 43,000 1909 26.0 75,000 1910 21.0 20,000 1911 18.0 15,000 1912 16.5 13,000 1913 17.0 14,000 1914 13.0 10,000 1915 21.5 21,000 1916 21.5 21,000 _____________________ (a) The gage was nonrecording June 8 to Sept. 26, 1948; re- cording thereafter. Datum of gage is 1,018.78 above M.S.L., datum of 1929, Kansas City Supplementary adjust- ment of 1943; levels by Corps of Engineers (U.S. Geological Survey, 1964; 1969). Period of Record (U.S. Army Corps of Engineers, 1971, p. 9). Month & Year Agency Remarks 6/02 - 10/41 Strawn State Bank Stages only (high water readings only) 6/48 - 9/50 Corps of Engineers Stages & discharges 10/50 - 6/63 United States Stages & discharges Geological Survey (b) Stages shown for the water years 1885, 1902-1947 are based on gage-height relations with stages for stations at Neosho Rapids 17.7 miles upstream and at Burlington 18 miles down- stream, and are approximate only. Annual peaks for these water years 1885, 1902-1947 are based on subsequent stage-discharge relation and are also approximate (U.S. Geological Survey, 1964). Rev. 0 WOLF CREEK TABLE 2.4-7 (continued) Sheet 2 of 3 Gage Height Discharge Water Year (feet) (cfs) 1917 19.5 17,000 1918 14.0 11,000 1919 23.5 33,000 1920 11.5 9,000 1921 10.0 7,000 1922 22.5 25,000 1923 24.5 43,000 1924 16.5 13,000 1925 18.5 16,000 1926 24.0 38,000 1927 25.0 51,000 1928 22.0 23,000 1929 25.5 62,000 1930 19.5 17,000 1931 6.5 5,000 1932 25.5 62,000 1933 16.5 13,000 1934 4.5 4,000 1935 23.5 33,000 1936 19.0 16,000 1937 16.0 13,000 1938 23.0 29,000 1939 8.5 6,000 1940 5.5 4,000 1941 24.0 38,000 1942 25.5 62,000 1943 21.5 21,000 1944 26.0 75,000 1945 26.0 75,000 1946 23.0 29,000 1947 22.5 25,000 1948 27.48 99,200 1949 17.85 15,000 1950 20.24 17,700 1951 30.54 400,000 1952 17.45 14,300 1953 5.80 4,340 1954 5.64 4,020 1955 5.25 3,960 1956 8.22 5,340 1957 22.45 24,900 1958 18.40 13,900 1959 -- 18,200 1960 -- 17,100 1961 24.80 47,800 1962 21.90 22,400 Rev. 0 WOLF CREEK TABLE 2.4-7 (continued) Sheet 3 of 3 Gage Height Discharge Water Year (feet) (cfs) 1963 (c) 8.33 6,960 _______________ (c)Gage discontinued end of June. Sources: Burns, C. V., 1967, Kansas stream flow characteristics, Part 7, Annual stream flow summary tables: Kansas Water Resources Board, Topeka, Kansas, Technical Report No. 7 (June). U.S. Army Corps of Engineers, 1971, Cedar Point Lake: U.S. Army Corps of Engineers, Design Memorandum No. 1 (April). U.S. Geological Survey, 1964, Magnitude and frequency of floods in the United States, 1961-65, part 7, lower Mississippi River basin, Arkansas River Basin: U.S. Geological Survey, Water-Supply Paper 1921, vol. 2. _________, 1969, Water resources data for Kansas, Part 1, Surface water records: U.S. Geological Survey.

Rev. 0 WOLF CREEK TABLE 2.4-8 ESTIMATED ANNUAL FLOOD PEAK DISCHARGES FOR THE NEOSHO RIVER NEAR BURLINGTON AT RIVER MILE 343.7* Discharge Water Year (cfs) 1922 30,000 1923 29,300 1926 71,400 1927 28,100 1928 46,700 1929 65,800 1932 18,900 1935 20,000 1936 16,800 1938 37,700 1941 29,900 1942 65,400 1943 30,500 1944 90,000 1945 91,000 1946 16,000 1947 21,000 1948 102,000 1950 18,600 1951 408,000

____________________

  • No estimates available after 1951.

Rev. 0 WOLF CREEK TABLE 2.4-9 RAINFALL INTENSITY AT THE PLANT SITE FOR 100-YEAR STORM RAINFALL INTENSITY INCHES/HOUR STORM DURATION 100-YEAR STORM 5 minutes 13.6 10 minutes 10.5 15 minutes 8.8 30 minutes 6.2 1 hour 3.9 2 hours 2.3 3 hours 1.7 6 hours 1.0

Rev. 27 WOLF CREEK TABLE 2.4-10 LOCAL INTENSE PRECIPITATION (LIP) AT PLANT SITE MAXIMUM DEPTH DURATION OF PRECIPITATION IN HOURS (inches) 0.5 14.44 1.0 19.0 2.0 20.96 3.0 22.92 4.0 24.87 5.0 26.83 6.0 28.79

Rev. 27 WOLF CREEK TABLE 2.4-11 PROBABLE MAXIMUM PRECIPITATION MONTHLY AND ALL-SEASON HIGH-DEPTH DURATION DATA* DURATION___________________MONTH 6 HOURS 12 HOURS 24 HOURS 48 HOURSJanuary 8.70 . 11.42 14.30 18.10February 10.56 13.25 15.94 19.90March 14.96 17.00 20.10 22.50April 21.00 24.40 26.25 28.40May 24.00 26.60 28.70 30.70June 25.50 28.30 30.30 32.80July 25.50 28.50 30.30 32.80August 25.30 28.10 30.30 32.70September 23.70 26.80 29.70 32.30October 18.30 22.00 25.00 29.60November 11.85 16.12 18.60 22.70December 8.73 11.60 14.30 18.34All-Season 25.50 28.50 30.30 32.80_______________________*Depth of rainfall in inches over Wolf Creek drainage basin. Rev. 0 WOLF CREEK TABLE 2.4.12 (Sheet 1 of 3) PROBABLE MAXIMUM PRECIPITATION STORM DISTRIBUTION CUMULATIVE INCREMENTAL CRITICAL ARRANGEMENT DURATION PRECIPITATION PRECIPITATION OF PRECIPITATION (hr) (in.) (in.) (in.)________ 0-1 9.70 9.70 0.02 1-2 13.50 3.80 0.02 2-3 17.10 3.60 0.03 3-4 20.20 3.10 0.08 4-5 23.00 2.80 0.03 5-6 25.50 2.50 0.02 6-7 26.64 1.1 0.03 7-8 27.09 0.45 0.03 8-9 27.51 0.42 0.04 9-10 27.87 0.36 0.11 10-11 28.20 0.33 0.04 11-12 28.50 0.30 0.03 12-13 28.96 0.46 0.04 13-14 29.14 0.18 0.05 14-15 29.31 0.17 0.06 15-16 29.45 0.14 0.16 16-17 29.58 0.13 0.06 17-18 29.70 0.12 0.05 18-19 29.93 0.23 0.12 19-20 30.02 0.09 0.14 20-21 30.10 0.08 0.18 21-22 30.17 0.07 0.46 Rev. 0 WOLF CREEK TABLE 2.4-12 (Sheet 2 of 3) CUMULATIVE INCREMENTAL CRITICAL ARRANGEMENT DURATION PRECIPITATION PRECIPITATION OF PRECIPITATION (hr) (in.) (in.) (in.)________ 22-23 30.24 0.07 0.17 23-24 30.30 0.06 0.13 24-25 30.91 0.61 0.30 25-26 31.15 0.24 0.36 26-27 31.37 0.22 0.45 27-28 31.56 0.19 1.14 28-29 31.74 0.18 0.42 29-30 31.90 0.16 0.33 30-31 32.06 0.16 2.50 31-32 32.12 0.06 3.10 32-33 32.18 0.06 3.80 33-34 32.23 0.05 9.70 34-35 32.28 0.05 3.60 35-36 32.32 0.04 2.80 36-37 32.43 0.11 0.16 37-38 32.47 0.04 0.19 38-39 32.51 0.04 0.24 39-40 32.54 0.03 0.61 40-41 32.57 0.03 0.22 41-42 32.60 0.03 0.18 42-43 32.68 0.08 0.06 43-44 32.71 0.03 0.07 44-45 32.74 0.03 0.09 Rev. 0 WOLF CREEK TABLE 2.4-12 (Sheet 3 of 3) CUMULATIVE INCREMENTAL CRITICAL ARRANGEMENT DURATION PRECIPITATION PRECIPITATION OF PRECIPITATION___ (hr) (in.) (in.) (in.) 45-46 32.76 0.02 0.23 46-47 32.78 0.02 0.08 47-48 32.80 0.02 0.07

Rev. 0 PARlu'-'IETER D.A. (mi 2) L (mi) L (mi) ca Waterway slope L cP TABLE 2. 4-13 COMPARISON OF UNIT HYDROGRAPH PAR&"'iETERS FOR CREEK, JOHN REDMOND, AND CEDAR POINT PROJECTS NEOSHO RIVER AT COTTONWOOD RIVER WOLF CREEK COUNCIL GROVE AT COTTONWOOD FALLS 27.4000 250.00000 1402.00000 18.2000 23.80000 96.00000 10.2000 8.40000 52.00000 0.0016 0.00251 0.00051 1.8400 1.84000 1.87000 0.8400 0.82800 0.84000 CEDAR POINT RESERVOIR ON CEDAR CREEK Gauge Dam 110.00000 15.00000 6.40000 .00325 l. 20000 l. 21000 119.00000 17.90000 9.10000 0.00264 l. 34000 l. 48000 Rev. 0 TABLE 2.4-14 (Sheet l of 2) UNIT HYDROGRAPH PARAMETERS FOR PRE-AND POST-PROJECT CONDITIONS* BASIC D. A. T T L qpr Qpr w50 w75 DESIGNATION (mi 2) r pr ct c L ca OF D. A. (hr) (hr) _E (mi) (mi) (cfs/mi 2) (cfs) (hr) -POST-PROJECT CONDITION l 8.0 l 4.00 l. 84 0.84 5.61 2.51 134.5 1075 3.9 2.2 2 ll. 2 l 2.00 l. 84 0.84 l. 90 0.53 268.5 3020 l. 90 1.10 :if; 0 t"' Lake area 8.2 ----------t-Ij () :::0 tij PRE-PROJECT CONDITION i:'j Dam site 27.4 1 9.0 l. 84 0.84 18.2 10.2 59.7 1640 9.2 5.3 *The unit hydrograph computations are based on V. T. Chow, Handbook of Applied Hydrology, 1964. Rev. 0 WOLF CREEK TABLE 2.4-14 (Sheet 2 of 2)Definitions of the SymbolsD.A - Drainage AreaTr - Duration of effective rainfall adopted in the studyTpr - Lag time from midpoint of duration Tr to peak of unit hydrograph.Cp,Ct - Coefficients depending upon units and drainage basin characteristics.L - River or stream mileage from the given station to the upstream limits of the drainage area.Lca River mileage from the station to center of gravity of the drainage area.qpr Peak discharge per unit drainage area of unit hydrograph for duration TrQpr qpr times the D.A.W50 Width of unit hydrograph at discharge equal to 50% of the peak discharge.W75 Width of unit hydrograph at discharge equal to 75% of the peak discharge. Rev. 0 TABLE 2.4-15 INPUT TO SPF AND PMF HYDROGRAPH COMPUTATIONS* HOURLY PRECIPITATION (INCHES) FOR SPF DETERMINATION Rainfall Excess: .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .11 .14 .19 .53 .17 .12 1.26 l. 46 1.86 4.86 l. 76 l. 36 .04 .05 .08 .27 .07 .05 .00 .00 .01 .08 .00 .00 Rainfall: .01 .01 .02 .04 .01 .01 .01 .02 .02 .05 .02 .02 .02 .02 .03 .08 .03 .03 .06 .07 .09 .23 .08 .07 .15 .18 .23 .57 .21 .16 l. 30 l. 50 1.90 4.90 1.80 l. 40 .08 .09 .12 .31 .11 .09 .03 .03 .05 .12 .04 .03 0 t-t HOURLY PRECIPITATION (INCHES) FOR PMF DETERMINATION Mj Rainfall Excess: 0 .00 .00 .00 .04 .00 .00 .00 .00 .00 .07 .00 .00 .00 .01 .02 .12 t:tj tlj .02 .01 .08 .10 .14 .42 .13 .09 'lr * ..::o .32 .41 1.10 .38 .29 2.46 3.06 3.76 9.66 3.56 2.76 .12 .15 .20 .57 .18 .14 .02 .03 .05 .19 .04 .03 Rainfall: .02 .02 .03 .08 .03 .02 .03 .03 .04 .11 .04 .03 .04 .05 .06 .16 .06 .05 .12 .14 .18 .46 .17 .13 .30 .36 .45 1.14 .42 .33 2.50 3.10 3.80 9.70 3.60 2.80 .16 .19 .24

  • 61 .22 .18 .06 .07 .09 .23 .08 .07 *Lake Area 8.2 mi2* Rev. 0 WOLF CREEK TABLE 2.4-16 SUMMARY OF INFORMATION ON WAVE RUNUP ESTIMATES1 DAM SITE OVERLAND WIND VELOCITY (mph) PLANT SITE OVERLAND WIND VELOCITY (mph) ESWS PUMPHOUSE OVERLAND WIND VELOCITY (mph) ESWS ACCESS VAULT AV6 WIND VELOCITY (mph) 40 90 40 90 40 90 40 90 Freeboard reference level (FRL) Pool elevation at spillway crest in feet 1088 1088 1088 1088 Probable maximum flood elevation in feet 1095 1095 1095 1095 Fetch distance in miles Effective fetch 2.4 2.4 2.03 2.03 2.11 1.34 3.24 1.08 Wind tide fetch 6.1 6.1 3 3 3.4 3.4 1.62 0.54 Embarkment characteristics Slope of wave-action 3:1 3:1 30:1 30:1 30:1 30:1 6:1 14:1 Slope protection at waveaction elevation Riprapped None None Riprapped Wind tide height Average water depth in feet 51 43 36 28 34 26 34 27 Wind tide height or setup in feet 0.14 1.2 0.14 0.91 0.16 1.1 0.1 0.3 Wave characteristics Wave length (LS) in feet 62 126 55.9 113 56.4 88.2 39 37.2 Significant wave height (HS) in feet 3.25 7.9 2.93 7.2 3 5.7 2.6 2.3 Maximum 1% wave height (Hm) in feet 5.43 13.2 4.9 12 5 9.52 2.9 4.6 Wave runup on embankment Section Height Hs runup above FRL in feet s 3.84 8.7 0.44 1.01 0.45 0.77 1.4 1.3 2Maximum elevation Hs runup in feet 1099.00 1097.90 1095.55 1089.90 1095.60 1089.90 1096.40 1089.30 Height Hm runup above FRL in feet 5.27 11.1 0.69 1.56 0.65 1.15 1.7 1.5 2Maximum elevation Hm runup in feet 1100.40 1100.30 1095.80 1090.50 1095.80 1090.25 1096.70 1089.50 1 The maximum wave runup based on vertical wall at the intake structure of the pumphouse is given in Section 2.4.10. 2. The maximum wave runup elevation is the sum of the FRL + Wind Tide Ht. + Wave Runup. The resultant elevation may vary a few hundredths of a foot from the values shown in this row.

Rev. 28 Characteristics Location: County Streamcourse River mile (from mouth) Drainage Area: Contributing (sq mi) Total <c(sq mi) General Construction Data: Year Authorized Date regulated storage began Dam length (miles) Height of dam above stream bed (ft) Elevation and Storage Data: (d) Haximum pool elevation (ft) Total storage (ac-ft) Top of flood control pool elevation (ft) Allocated flood storage (ac-ft) Top of conservation pool elevation (ft) Allocated conservation storage (ac-ft) TABLE 2.4-17 DAM AND RESERVOIR CHARACTERISTICS(a) Cedar Point \b.J Chase Cedar Creek 4.2 119 119 1950 1. 81 (approx) 124 (approx) 1341.6 171,200 (e) 1335.9 56,700(e) 1324.6 . * . ___ (el J.J.'I 1 :JUU -. Marion Marion Cottonwood River 126.7 200 200 1950 26 Feb 1968 1. 59 67 (approx) 1362.8 142,800 (f) 1358.5 59,900 (f) 1350.5 0.0:::1::1UU Council Grove Morris Neosho River 449.9 246 246 1950 Oct 1964 1. 23 96 1320.0 104,000(f) 1289.0 62,100(f) 1274.0 £t..L1:JUV Sheet 1 of 3 John Redmond Coffey/Lyon Neosho River 343.7 2,450 3,015 1950 1 Sep 1964 4.13 86.5 1074.5 593,800 (f) 1068.0 (f) 531,300 1039.0 ,--.-, cnn (f) U£.1..JVV (alExisting dams are compacted earthfill and were designed by the U.S. Army Corps of Engineers. This agency also supervised the construction of same. The proposed Cedar Point Dam will be of the same type and will also be designed by the corps of Engineers. (blPreconstruction planning should be completed in fiscal year 1981. noncontributing and reservoir controlled areas. (d)Elevations refer to mean sea level datum. remalnlng after 100 years sedimentation. Storage remaining after 50 years sedimentation. Rev. 0 0 t"" t"%j n ::::0 t?j trj Characteristics Strnctures: Spillway: Discharge width and/or control Outlet (includes those for normal regulated flows and low flows): Type Size Hydrologic Data: Spillway design flood (inflow into full pool): Peak flow (cfs) Volume (ac-ft) Runoff (inches) Duration (days) Flood storage outflow: Channel capacity below damsite reservoir (cfs) 2 perceqt flood release (cfs) (g) 4 flood release (cfs) 1 Low flow firm yield: percent drought (cfs) percent drought (cfs) TABLE 2.4-17 (continued) Cedar Point(b) Uncontrolled 300 ft. Conduit for regulated flow 10.0-by 10.75-foot Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Marion Council Grove Gate-controlled Uncontrolled 3 gates at 40 x 40-foot Low-flow pipe 24-inch 173,000 235,500 22.07 6,000 Unknowrfhl Unknown (h) Unknown (h) unKnown {h) 500 ft. Conduit for regulated flow 17-foot diameter 265,000 298,800 22 .. 78 14,000 2,100 1,000 .14 20 Sheet 2 of 3 John Redmond Gate-controlled concrete chute 14 gates at 40 x 35-foot 2 gated low-flow pipes 30-inch 640,000 2,508,000 15.60 10 16,000 12,500 7,200 76 lJS ('1) -* * , +-(hfetlects from storage for flood of given probability. definite data available. Rev. 0 Characteristics uses: Sources: TABLE 2.4-17 (continued) Cedar Poir-,t (b) Flood control, water supply, water quality, recreation, streamflow lation, and fish and wildlife MaricD Flood control, water quality, water supply, recreation and fish and wildlife CO'...!!'"lcil Grove Flood control, water supply, water quality, streamflow lation, tion, and fish and wildlife Sheet 3 of John P.edmo!!d Flood control, water quality, recreation, water supply, streamflow regulation, and fish and wildlife Kansas Water Resources Board, 1967, Special water districts in Kansas: Kansas Water Resources Board, ProjectNo. '701', ReportNo. lb(a) (September). State water plan, water supply and storage program, fifth annual report: Kansas u.s. Army Corps of Engineers, Tulsa, Oklahoma district, 1958, Hydrology, Strawn reservoir: U.S. Army Corps of Engineers, Design Memorandum No. 2 (February). 1959, Hydrology, Council Grove dam and reservoir: U.S. Army Corps of Engineers, Design Memorandum No. (January}. 1961, Hydrology, Marion dam and reservoir: U.S. Army Corps of Engineers, Design Memorandum (February) .. Engineers 1965, Flood plain information, Neosho and Cottonwood rivers, Kansas: (February) . u.s. Army corps of ________ , 1971, Cedar Point Lake: u.s. Army Corps of Engineers, Design Memorandum No. 1 (April). ________ , 1977, Pertinent data sheets for Tulsa District projects: u.s. Army Corps of Engineers (June l). U.S. Geological Survey, 1971, Water resources data for Kansas, Part 1, Surface water records: U.S. Geological Survey. Rev. 0 Item Distance to plant site, in river miles, (approximate) (a) Top of flood control pool elevation in feet Reservoir storage at top of flood control pool in acre-feet Initial water depth below dam, in feet Initial water depth above dam, ..: ........ ..c,... ...... ..LJ.l .L t::::t:: l-Dam length, in miles (approximate) Peak outflow rate, cfs Time increment used in computation, dt, min. ,TPillLE 2. 4-18 INITIAL CONDITIONS AND PEAK DISCHARGES OF COMPLETE DAH FAILURES John Redmond Council Grove Harion Cedar Point 2.8 109.0 168.0 144.2 1068.0 1289.0 1358.5 1335.9 593' 800 (b) 104,000 (b) 142,800 (b) 171,20(}(c) 10.0 10.0 10.0 10.0 48.0 49.0 38.5 81.0 A 1 ') 1 .., ') 1.59 , ,.., , "'1'e.L.,J .J..e£J .L.O.L 5,669,000 2,202,000 2,179,000 3,945,000 10 5 5 5 (a)This distance is that measured from the John Redmond damsite along the Neosho River to a cross section cut perpendicular to the Neosho River through the plant site. (b)Storage remaining after 50 years sedimentation. (c)Storage remaining after 100 years sedimentation. Rev. 0 TABLE 2.4-19 RATING CURVE AT 8 HILES OF JOHN REDMOND DM-1 Stage (ft) 1,020.0 1,030.0 1,040.0 1,050.0 1,060.0 1,070.0 1,080.0 1,090.0 1,100.0 Area (1000 ft2) 228 630 964 1,276 1,598 1,950 2,324 2,684 3,126 (Hydraulic Radius)2/3 7,400 9,700 11,700 ,600 15,300 17,000 18,600 20,100 21,600

  • Hean Velocity = 1 .. 486 n 21'::1 1 /') R -'S..J..t""' v.;here n = R = s = channel roughness, Hanning's "n", 0.05 Hydraulic radius Channel s , 2.5 ft/mi1e.
  • Mean Velocity (fps) 4.78 6.26 7.58 8.79 9.93 11.00 12.03 13.01 13.97 Flo\v Rate (1000 s) 1,600 3,900 7,300 ,200 15,900 21,500 28,000 35,000 43,700 Rev. 0 0 t-1 i":!:j r-.,. \ ,j ::;;; til t::tJ A TABLE 2.4-20 Sheet 1 of 3 MAXIMUM WATER LEVEL AND DISCHARGE DETERMINATIONS Case I John Redmond Dam Failure Location (a) John Redmond 2 Mile (b) Junction w/ Damsite 3 Mile 4 Mile Wolf Creek 6 Mile 8 Mile Maximum Discharge 5,906,700 4,830,000 4,311,800 4,057,000 3,949,200 3,641,200 3,550,400 (cfs) Maximum Stage 1068.00 (feet) Case II Council Grove Dam Failure Location (a) Maximum Discharge (cfs) i4aximum Stage (feet) Council Grove Damsite 1289.00 1054.16 Dunlap .., 1 11 1 {"\ {"\ /.L'::tf....L..VV 1194.02 1052.16 1045.48 Americus Emporia 353,600 257,800 1148.28 1043.38 Junction (c) 189,200 1113.32 1038.22 1028.32 John Dam *'1074.5 (a)I *
  • d
  • f
  • d h * * (
  • 2 4 (Q) *Ocat1ons are 1 entl 1e by t e town or c1ty nearest to the cross sect1on F1gure . -27). ( fistance downstream from damsite. of Neosho and Cottonwood rivers. The John Redmond spillway capacity of 640,000 cfs is sufficient to pass the flood without exceeding the Redmond Reservoir maximum flood elevation 1074.5. Rev .. 0

--TABLE 2.4-20 (continued) Sheet 2 of 3 Case III Marion Dam Failure Location (a) r1arion Cedar Junction(c) John R{§.Tond Damsite Florence Point Elmdale Strong City Dam i<laximum Discharge 2,351,900 665,100 521,200 333,400 297,400 232,900 (cfs) Maximum Stage 1358.50 1296.88 1267.41 1208.83 1185.83 1115.02 "1074.5 (feet) Case IV Cedar Point Dam Failure Location (a) Cedar Point Cedar Strong Junction(c) John Damsite Point Elmdale City Dam Maximum Discharge 4,048,700 2,961,700 407,600 316,900 239,900 0 (cfs) t'1 t"!j Maximum Stage 1336.00 1286.41 1210.04 1186.24 1115.29 -1 f"\-, A c '-. ..LV I "':t * .J n (feet) ::::0 case v Marion and Cedar Point Dam Failures tZJ t:!:j lv1arion Cedar Point Cedar Junction(c) John RE(gfond Location (a) Damsite Damsite Point Elmdale Strong City Dam Maximum Discharge 2,351,900 4,048,700 3,482,900 680,100 524,700 328,800 (cfs) Maximum Stage 1358.50 1336.00 1292.03 1214.65 1190.37 1119.69 <1074.5 (feet) Rev,. 0 TABLE 2.4-20 (continued) Sheet 3 of 3 Case VI f1arion, Cedar Point, and Council Grove Dam Failures n-....::J-......-T"'I-..!-L ,...., ________ *-1--T"'o,--...:l---...:J \.....CUO...L rv..L.l.Ll.. '-V U.L.L\.... ..L. .L \J.L U V C: U V.Ll.L.L £\t;:U.HlUl.LU Location( a) Damsite Damsite Damsite Junction(c) Dam Maximum Discharge 21315,900 4,048,700 2,331,500 518,000 (cfs) Maximum Stage 1358.50 1336.00 1289.00 1128.25 <..1074.5 (feet) Case VII John Redmond, Council Grove, Cedar Point and Marion Dam Failures Location(a) Maximum Discharge (cfs) Maximurn Stage (feet) John Redmond Damsite 6,187,000 1068.00 2 Mile(b) 3 Mile (b) 4 Mile(b) 6 Mile(b) 8 Mile(b) 4,890,000 4,274,100 4,067,000 3,680,500 3,608,300 Case VIII John Redmond, Council Grove, Cedar Point and Marion Dam Failures with Standard Project Floods Location(a) Maximum Discharge (cfs) Maximum Stage (feet) John Redmond Damsite 6,309,800 1068.00 2 Mile(b) 3 Mile(k)) 4 Mile{b) Junction w/ Wolf Creek 6 Mile(b) 8 Mile(b) 5,061,200 4,460,100 4,256,100 4,156,300 3,866,900 3,789,700 1054.34 1053.55 1046.21 1044.55 1039.16 1029.35 T'"\---f'\ e v 0 L1 n :;o t:r.:l [lJ Section z (ft) A 1049.55 B 1049.55 c 1049.55 NOTES: 1. 2. 3. 4. 5. c. Vo 7. 8. 9. TABLE 2.4-21 BACKWATER COMPUTATTON ON WOLF CREEK FOR COMBINED FLOOD-CAUSING EVENTS ON THE NEOSHO RIVER 2/3 v2 A R R n K v 2g H-1 sf sf X hf H2 (ft2) (ft) (fps) (ft) (ft) (ft)(ft) (ft) 98,000 29.8 9.61 0.07 2.00 X 107 0.048 -5 1049.55 -8 4000 1049.6 3.5 X 10 5.4 X 10 ... . .. 74,600 22.3 7.92 0.07 1. 26 X 107 0.062 -5 1049.55 8 2300 0 1049.6 6.1 X 10 1. 4 X 10 9.7 X 10 100,300 25.8 8.73 0.07 1.86 X 107 0.046 3.4 X 10 -5 1049.55 6.3 X 10 -8 1. 0 X 10 -7 900 0 1049.6

Reference:

Chow, VenTe, "Open Channel Hydraulics", McGraw-Hill Book Company, 1959, pp. 274-280. Z = Initial water surface elevation for section. K = 1.49 AR213 I n. v2 H1 = Z + zg Sf= . ()-I. C..C.f'\ '-< -'"t.,vvv X = Distance in feet from the cooling lake main darn. Friction loss in the reach (eddy losses included) . .L H2= Total head, H1 + to nearest tenth of foot . .L RESULT: The water level in Wolf Creek at the cooling lake main dam is at elevation 1049.6 feet. 'D '"'"7 () .L'C:V* v 0 t'1 i"Ij n :::0 t:rJ tz:l :::Al YEAR JANUARY 1947 1948 104.20 1949 1994.00 1950 161.00 1951 71.20 1952 273.00 1953 37.60 1954 7.90 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 11"'\t:.., l.':JOI 1968 1969 8.90 2.70 0.15 231.00 193.00 640.00 203.00 1440.00 274.00 29.40 122. so 277.00 1 1 01'\ l.l..OU 306.00 487.00 FEBRUARY 136.50 2700.00 78.20 120.10 203.00 31.60 9.10 60.10 9.30 0.30 502.5 337.00 1020.00 821.00 1500.00 163.00 26.80 127.00 228.00 11\ .,." l.U./V 159.00 803.00 MARCH 1375.00 870.00 88.30 250.00 1650.00 94.80 12.00 56.70 6.60 57.80 2830.00 295.00 3162.00 1985.00 1213.00 694.00 38.60 670.00 174.00 11'\ 11\ .l.:1' * .lV 163.00 965.00 TABLE 2.4-22 (Sheet 1 Of 2) SYNTHESIZED RUNOFF FOR WOLF CREEK IN ACRE-FEET* APRIL 276.00 980.00 182.00 910.00 2085.00 96.80 42.70 288.00 47.80 1035.00 916.00 690.00 1440.00 2218.00 435.00 187.70 870.00 528.00 1005.00 ,..,,_, "" .L'+..leVV 928.00 1930.00 MAY 710.00 1760.00 572.00 4510.00 796.00 177.60 148.70 465.00 126.50 3580.00 576.00 1950.00 756.00 6450.00 671.00 152.00 460.00 127.00 223.00 I. 0 '"'" '+Oe/V 869.00 3650.00 JUNE 925.00 739.00 1165.00 4360.00 145.50 71.80 435.00 226.00 37.00 1740.00 1228.00 350.00 668.00 1175.00 2200.00 356.00 990.00 3320.00 282.00 f'llOf\ f'\() .L.lOUeVV 1186.00 2270.00 JULY 7220.00 800.00 3370.00 19000.00 71.50 51.00 4.40 283.00 9.80 344.00 3710.00 3080.00 180.00 968.00 434.00 241.00 54.30 2061.00 65.30 ')f'\/.1"\ "" ..JU'-+VeVV 489.00 4840.00 AUGUST 319.00 167.00 3880.00 1160.00 182.00 7.40 25.00 20.90 210.00 24.40 380.00 280.00 718.00 212.00 184.00 26.00 140.00 75.50 93.70 rtt""'O nn 4...1-0.UU 678.00 382.00 SEPTEMBER 650.00 111.00 680.00 5070.00 27.60 3.30 0.60 111.00 0.07 188.10 955.00 142.50 242.00 2030.00 3445.00 15.80 63.80 2655.00 35.80 "'7nn nn /:J:JoVU 67.80 494.00 OCTOBER 38.60 70.80 378.00 186.50 684.00 12.90 1.60 33.40 138.50 3.00 412.00 459.00 3110.00 1282.00 1450.00 726.00 48.70 9.80 474.00 25.80 1')0')f'l {"\/"'\ LOJu.uu 1245.00 870.00 NOVEMBER DECEMBER 30.80 85.80 80.00 90.00 620.00 26.70 3.30 1.80 7.70 0.90 515.00 453.00 282.00 628.00 2340.00 270.00 31.30 418.00 101.00 24.90 518.00 800.00 414.00 225.00 69.00 72.00 84.50 272.00 39.40 8.20 l. 20 2.40 a .15 168.00 148.00 383.00 649.50 478.50 220.00 29.80 194.00 447.00 17.60 331.00 649.00 541.00 0 L' hj n ;;c tr.:i tr.:i ;A; Rev. 0 TABLE 2.4-22 ( Sl!eet 2 of 2) YEAR JANUARY FEBRUARY MARCH APRIL HAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER 1970 244.00 125.00 124.00 2340.00 798.00 2670.00 171. 50 261.00 585.00 650.00 126.00 236.00 1971 386.00 376.00 800.00 124.00 1410.00. 3420.00 2770.00 965.00 39.50 52.00 632.00 627.00 1972 251.00 169.00 87.00 344.00 2139.00 135.00 1515.00 452.00 127.00 58.00 265.00 652.00 1973 2441.00 2599.00 5828.00 4111.00 2198.00 1463.00 433.00 144.00 2546.00 7012.00 2203.00 2232.00 1974 1730.00 700.00 1317.00 1419.00 1304.00 2046.00 101.00 262.00 1028.00 356.00 1869.00 692.00 1975 827.00 1349.00 1335.00 1481.00 544.00 3189.00 1348.00 75.00 96.00 46.00 40.00 160.00 1976 62.00 28.00 34.00 488.00 1267.00 708.00 443.00 55.00 44.00 59.00 36.00 33.00 1977 37.00 37.00 36.00 44.00 1051.00 3754.00 3529.00 428.00 857.00 ::8 0 t-t l":l:j n tJ:j t:tj *Drainage area equals 27.4 square miles. Rev. 0 TABLE 2.4-23 (Sheet 1 of 2) ESTIMATED HONTllLY A@ Ai'iNUAL FLOWS IN ACRE-FEET AT JOHN DN-!SITE* YEAR Jfu.\lJARY FEBRUARY MARCH APRIL }!AY JUNE JULY AUGUST SEPTEHBER OCTOBER NOVEMBER DECEMBER M!NUAL 1922 1,450 3,900 238,200 446,500 106,200 29,820 112,200 27,830 3,300 1,800 47,800 7,850 1,027,000 1923 5,370 3,510 12,850 8,580 114,100 473,300 141,700 10,540 13,920 48,770 21,470 22,680 876,800 1924 12,980 21,660 77,810 59,360 78,760 29,460 44,190 48,080 22' 110 17,000 11,930 6,190 429,500 1925 27,990 16,580 11,960 82,700 22,370 78,770 8,230 1,310 13' 180 7,830 41,690 7,300 319,900 1926 9,360 6,890 7,350 85,500 32,060 15,480 2,190 8,580 463,500 326,000 37,170 27,880 1,022,000 1927 28,980 22,530 129,800 565,600 222,500 267,200 34,800 284,400 127,500 112,900 15,140 13,410 1,825,000 1928 15,630 49,710 51,730 105,300 72,890 383,100 108,000 52,190 15,390 19,080 496,700 140,300 1,510,000 1929 143,100 60,550 60,680 180,900 265,900 131,300 240,200 46,400 11,880 10,720 11 '210 7,850 1,171,000 1930 4, 920 27,500 11,420 26,490 163,500 49,410 6,760 5,610 21,110 4,970 18,130 113,600 453,400 1931 5,550 6,040 21 '720 32,630 43,220 32,080 5,840 1,470 5,050 1,450 266,000 54,740 475,800 1932 36,450 28,550 27,270 33,260 30,200 123,900 218,100 14,240 7,730 3,940 3,310 4,400 531,300 1933 3,820 3,040 5,900 64,020 92 '970 4,590 7,650 12,570 21,820 4,380 1,340 4,230 226,300 1934 2,020 1,520 3,980 20,530 74,130 14,920 1,280 252 4,490 3,340 38,160 7,080 171,700 1935 14,510 7,250 4,020 5,420 413,200 294,900 18,350 19,430 35,060 97,260 193,900 25,650 1,129,000 1936 23,920 8,970 6,710 3,300 42,430 5,190 698 56 4,950 20,800 2,310 8,620 127,900 0 t"1 1937 38,820 103,100 62,520 41 '840 99,250 86,830 14,040 8,500 37,680 1,370 1,340 1,590 496,900 1938 1,460 4, 700 28,310 47,460 706,100 300,600 30,750 37,080 16,730 3,660 9,990 4,840 1,192,000 1q3q 4,370 3,390 Q Ql(\ 1 Q "!/.(\ ,,_ ')('\('\ L.t,L.lV 4,660 25,820 1,570 666 282 662 12oinoo -V' .J.V .J..U' /--tV 1940 1,160 2,600 5,340 48,540 46,820 14,210 1,270 5,310 27,010 1,480 27,230 20,650 ')(\] (:.(\(\ LV.I.,VVV 1941 184,700 38,470 27,650 80,020 79,520 476,700 50,360 160,100 350,600 915,300 200,900 79,960 2,644,000 ttl ttl 1942 39,100 53,710 59,600 210,800 93,440 303,500 52,260 83,760 220,800 114,600 30,340 156,000 1,418,000 1943 76,240 65,540 30,460 23,580 328,700 305,600 49,830 9,930 5,130 22,580 5,480 12,630 Q'l<:; "!()() j_.l_.l' I VV 1944 17,820 17 '7 80 307,500 964,300 283,800 101,200 49,890 94,740 33' 110 97,150 46,390 435,600 2,449,000 1945 39,880 49,770 221,700 704,200 215,200 183,500 124,700 122,400 169,500 167,000 19' 220 14,890 2,032,000 1946 134,000 41,150 81,930 87,750 44,330 127,900 19,160 7,830 43,230 11,950 20,670 36,890 656,800 1947 16,260 7,890 242,300 475,000 107,000 227,800 19,650 7,810 10,680 4,370 3,530 25,600 1,148,000 1948 11,800 28,970 147,500 29,020 79,540 116,700 643,900 37,070 70,790 8,200 9,340 7,910 1,191,000 1949 212,900 292' 900 75,640 112,400 217,300 80,530 87,400 18,150 11,550 42,950 9,360 8,680 1,170,000 1950 16,940 8' 510 9,690 21,210 64,820 128,300 347,900 403,200 71,410 27;900 12,280 11,340 1 1')/. (\(\(\ .L'..LL'-t-,VUV 1951 9,480 18,840 36,650 70,410 468,300 406,300 2,029,000 139,500 445,500 84,930 59,980 31,620 3,801,000 1952 31,540 20,760 184,500 238,300 103,100 37,080 10,140 13,040 4,180 2,450 4,400 5,580 655,100 1953 4,890 4,090 9,120 7,820 29;890 A 1on <:; (:.')(\ 1 1. on C:A'l 317 587 1,420 74,130 .L,....,.uv JUJ 1954 1,320 1,450 2,130 1,730 10,490 38,660 805 2,130 43 790 88 75 59' 710 1955 352 3,460 1,4 70 11 '550 16,810 16,480 24,020 4,230 21,730 20,960 461 401 121,900 1956 610 1,170 625 10,330 21,230 945 151 . 5,850 0 0 0 0 40,900 1957 0 0 802 66,460 346,700 176,900 43,690 4,220 20,930 34,350 44,790 15,500 754,300 1958 18' 140 31,450 255,900 104,800 85,680 110,600 277,400 48,740 81,000 35,010 34,630 14,360 1,098,000 1959 16,830 27,620 26,320 69,000 280,400 49,820 235,600 26,690 23,330 178,400 26,750 27,010 987,800 1960 65,820 103,700 'l(l/. ')(\(\ ,.," c"" 73,470 74,180 18,100 80,480 59,480 167,300 77,020 71,520 1,216,000 J.L.V,JVV 1961 23,860 85,590 240,700 236,950 615,400 102,400 138,200 28;360 186,809 146,900 ')<:;Q Q(\(1 L.-IU,UVV 56,060 2,120,020 1962 145,300 185,400 125,900 46,470 97,340 266,600 62,180 24,630 365,700 93,330 35,670 29;040 1,478,000 *Regulated by Council Grove Lake since August 1963, and Marion Lake since October 1967. Rev. 0 TABLE 2.4-23 (Sheet 2 of 2) YEAR JA.t....-UARY FEBRUARY HARCH APRIL HAY JUNE JULY AUGUST SEPTEl*1BER OCTOBER NOVEHBER 1963 37,290 21,550 71,150 22,380 21,230 42,950 41 '770 4,230 3,490 9,360 3, 710 1964 !. t.c.r. 4,270 3,880 86,820 46,970 98,220 6,380 6,350 8,590 2,220 93,770 '-t-tUV 1965 21,030 19,750 105,700 80,350 22,770 762,800 91,520 14,710 271,600 10,360 8,990 1966 25,270 32,4 70 26,940 71,140 31,050 49,960 7,810 17,320 5,290 940 2,360 1967 4,310 2,870 4,330 35,250 10,660 515,970 92,470 31,700 95,310 285,530 55,000 1968 33,820 20,620 19,470 102,970 98,960 103,640 144,790 32,270 9,560 108,490 104,450 1969 56,160 77,420 144,910 326,370 277,200 396,340 262,090 31,190 58,880 122,000 49,590 1970 34,400 20,780 23,970 290,470 76,800 298,770 24,030 10,410 54,300 87,540 18,300 1971 57,760 86,050 78,060 22,260 132,260 495,610 306,400 57,140 14,790 10,100 95,750 1972 31,690 21,120 15,070 42,920 264,430 20,510 95,640 21,740 24,100 6,890 20,720 1973 202,830 265,490 786,570 320,400 230,320 78,140 37' 920 19,860 424,440 571,850 137,590 1974 159,330 64,000 146,840 148,240 171,830 172,820 17,330 28,380 66,350 41,180 142,220 1975 74,800 152,320 123,100 147,890 64,910 427,950 70,350 25,720 23,690 10,860 10,560 1976 9,330 7,160 8,780 97,570 148,880 86,100 41,070 5,630 3,860 5,330 4,800 1977 4,090 4,070 4,110 7,650 192,330 370,870 191,510 71,090 104,190 42' 100 121,480 1978 12,830 77,190 203,850 132,250 73,500 46,580 31,240 5,510 5,250 2,790 Source: U.S. Army Corps of Engineers, Tulsa, Oklahoma District, 1969, Reservoir regulation manual for Council Grove, Harion, and John Redmond Reservoir, Upper Grand (Neosho) River, Kansas, U.S. Army Corps of Engineers (June) and Private Communication with the Corps of Engineers, Tulsa, Oklahoma District. DECEHBER ANNUAL 3,350 284,460 32,300 394,230 21,960 1,432,000 3,150 273,700 40,670 1,174,070 68,390 847,430 72,000 1,874,450 19,040 958,810 67,510 1,423,690 48,990 613,820 210,630 3,286,040 49,130 1,207,650 19,140 1,161,290 4,190 422,700 28,370 1,141,860 0 t"1 hj () t:r.:l trj Rev. 0 TABLE 2.4-24 RAINFALL IN CPS AT CHANI1l"E1 ICAICSAS 1 1949-1964* ...!!!!!!!!.... ill! lll! !ill !ill. ill! ml ill! ill! .llil .!,2g J*nuary 39.76 3.80 8.50 5. 73 1.09 1.62 8.57 6. 71 4.91 5.59 0.21 8.84 o.oo 10.15 5.73 4,.14 February 17.05 8.11 20.59 7.83 8.67 8.19 18.57 5.29 16.74 6.42 o.oo 12.84 o.oo 5.50 0.92 5.31 March 19.02 6.63 9.95 28.94 22.11 5.92 11.68 4.01 13.81 34.18 9.32 8.42 16.51 17.49 17.96 8.36 April 15.85 15.85 31.30 22.29 17.92 50.63 11.83 12.26 22.42 22.63 13.28 27.29 37.97 2.71 1.28 37.77 !lay 30.51 34.14 33.77 10.91 24.20 29.71 40.87 53.83 56.95 28.54 29.14 28.95 62.42 20.42 10.98 31.88 0 June 32.73 34.94 81.29 3.78 27.28 8.13 27.45 15.35 56.40 so. 76 1S.63 14.55 12.58 45.33 24.27 39.33 t"'"' l'sJ July 53.67 72.22 74.46 26.31 21.67 2.07 5.90 31.01 14.30 66.01 42.50 26.73 11.05 21.40 17.99 7.11 0 August 10.49 45.06 56.72 26.42 4.66 14.04 2.04 18.25 4.55 13.14 22.02 34.25 17.68 14.82 5.86 39.20 l:O September 44.11 1S.34 59.78 3.10 20.89 21.68 59.94 1.32 26.99 49.16 14.34 3.49 80.40 63.96 9.70 14.55 t".. t".. October 17.54 1.19 17.76 o.oo 20.20 32.67 9.91 15.18 26.97 0.07 47.76 43.60 18.04 4.84 *4.35 3.45 November 1.07 0.36 16.96 18.10 !3.68 0.07 0.14 15.53 17.34 9.85 0.64 o.oo o.oo 11.65 9.49 o.oo O.cember 15.27 0.28 3.89 4.34 7.32 11.72 1.69 5.80 11.81 4.90 4.14 o.oo 6.01 2.76 1.66 o.oo Rev. 0 *Source a cb&nute, Kansas meteorologic.al data. TABLE 2. 4-25 MONTHLY AVERAGE NATURAL EVAPORATION IN cfs, 1949 -1964* MONTH 1949 1950 1"951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 January 9.23 12.32 11.82 6.65 7.25 12.48 9.34 10.59 13.68 9.21 9. 71 9.31 12.95 ll. 59 15.29 11.69 February 4.20 9.60 6. 49 8.48 14.14 13.44 8. 00 7.43 5. 02 11.03 7.43 11.41 6. 30 7.76 10.06 13.17 March 8.81 20.23 15.82 12.42 17.11 22.76 18.46 24.16 15.89 7. 46 18.61 7.29 14.08 11.85 11.55 22.03 ::8 April 21.05 29.86 17.09 15.25 31.90 20.70 21.67 34.03 10.72 19.01 25.89 25.71 23.81 22.74 34.38 27.85 0 t"" May 25.44 25.19 27.48 35.78 21.65 27.09 30.31 33.88 24.93 21.27 26.05 31.22 32.39 56.62 35.09 42.61 h:j June 33.95 38.79 28.70 54.86 70.66 45.66 32.88 44.4B 33. bb 48.03 38.89 37.88 34.81 35.43 44.60 J.J

  • I I 0 July 45.18 31.16 27.57 58.42 48.20 74.15 49.42 59.99 49.85 35.98 38.65 40.46 46.92 50.67 60.62 59.36 ;;;o tr.:! August 44.22 34.54 46.45 54.38 64.10 65.63 56.52 75.48 60.25 49.14 54.19 48.83 44.44 61.32 55.12 57.92 tr.:! September 40.24 27.84 66.36 45.99 :"1 40.85 44.65 60.40 51.20 71.86 36.12 44.45 51.80 55.20 42.89 36.57 46.73 October 27.06 33.75 31.88 43.24 37.97 35.27 39.54 38.20 30.48 35.08 30.17 35.78 32.52 29.26 46.55 35.60 November 26.20 29.21 16.32 23.15 23.36 21.05 26.87 27.84 16.78 27.26 23.34 26.59 19.77 19.49 27.55 25.31 December 16.29 9.84 13.46 10.72 17.08 14.49 9.98 9.36 13.03 10.30 8. 92 15.21 12.22 13.59 18.69 ll. 24 *source:-Ca1cu1atea-from meteorological data by LAKE:I' program. Rev. 0 TABLE 2.4-26 MONTHLY AVERAGE FORCED EVAPORATION DUE TO PLANT HEAT REJECTION IN cfs, 1949 -1964* MONTH 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 January 8.09 13.77 14.85 12.68 13.01 11.88 13.55 12.71 12.57 14.02 12.09 12.96 13.25 8. 82 1l. 28 10.53 February 10.41 14.04 9.19 16.06 16.57 16.03 13.39 12.67 12.81 12.21 12.41 14.38 11.99 15.25 8. 46 16.55 March 17.60 16.68 18.35 17.06 18.09 16.95 17.82 18.76 17.46 15.36 18.25 11.60 17.71 15.64 18.17 16.97 ::E; 0 April 19.89 20.42 19.62 18.95 20.03 19.56 21.19 20.09 17.80 20.61 2 0.09 22.02 19.32 20.01 22.82 19.98 t"1 May 24.02 21.68 22.97 25.72 23.03 23.41 23.56 23.30 23.62 23.01 23.90 22.03 22.61 24.80 22.57 23.88 June 26.00 25.65 25.33 25.73 25.82 24.93 23.87 24.65 25.23 25.93 25.04 25.19 24.47 23.02 24.91 24.12 () July 25.87 23.47 24.08 L.:J * .J..L. 24.76 25.86 26.27 24.95 25.95 24.57 24" 36 24-S6 25.16 25.55 25.46 24.90 i;fj t?:l August 25.14 25.00 26.50 25.05 25.20 24.69 25.92 24.79 24.95 25.44 25.54 25.33 24.16 24.91 24.41 24.54 September 23.12 23.79 23.95 23.53 23.33 24.46 23.83 22.73 23.01 23.96 23.97 23. 7l 24.07 22.89 23.85 23.62 October 21.73 21.75 20.75 21.67 21.09 21.41 21.64 21.27 20.73 20 .. 13 1.9. 57 21.26 20.11 2l. 64 21.75 19.46 November 17.32 16.68 15.18 17.05 17.61 17.47 16.71 17.54 17.04 17.95 16.24 17.06 16.81 15.73 17.53 19.46 December 14.81 13.17 14.13 14.01 14.98 14.89 12.44 13.22 14.79 12.69 14.21 14.18 13.82 15.34 12.30 12.39
  • 1 unit (1150 MWe} at 100% average load factor. Rev. 0 WOLF CREEK TABLE 2.4-27 SUMMARY OF ELEVATIONS OF PMF AND SAFETY-RELATED STRUCTURES PMF Pool 1095.0

Top of the dam 1100.0

Plant grade 1099.5

Plant floor 1100.0

Top of the baffle dike in front of UHS 1094.0

Top of the submerged UHS dam 1070.0

Crest of spillway 1088.0

Rev. 0 TABLE 2.4-28 HYDROGEOLOGIC CHARACTERISTICS OF BEDROCK WITHIN A S-MILE RADIUS OF SITE Rock Units Alluvium Doniphan Shale Spring Branch Limestone Stull Shale Clay Creek Limestone Jackson Park Shale Limestone Member of Jackson Park Shale Heumader Shale Platts:ulouth Limestone Physical(a) Properties Silt, clay, sand, and .gravel in river channels. Thinly laminated shale; bedded fine-grained medium bedded Thin-bedded limestone with interbedded laminated shale. Thinly laminated shale; bedded fine-grained sandstone & laminated siltstone. Tnin-to medium-bedded! grained limestone. Thinly laminated shale with interbedded limestone & sandstone. Thin-bedded, fine-grained stone with sand & shale zones. Thinly laminated shale; stone lenses at base. to thick-bedded, fine-grained limestone; bedded thinly laminated shale. Approximate(b) Thickness (feet) 0-30 35+ 8+ 50+ 4-7 17-30 0-9 18-34 11-13 aPhysical properties from information presented in Section 2.5. b of in Borings B-1 through B-21. cAverage permeabilities from pressure tests in Borings B-1 through B-21. dTypical yield estlmated from known well usage in dug and drilled wells. eMcasurcd from pressure tests in borings in cooling lake area. Water Yield Characteristics Small to moderate yields from sand aquifers in valley bottom Negligible Negligible Very small yields from sand lenses Negligible Very small yields Very small yields Negligible Srnall yields Permeability (c) (em/sec) 1.0x10-4(e) 1.0x10-4(e) 2. Ox1 0 -S (e) .... -6Cel 1Xlll --4.4x10 -5 1.9x10 -s 3.0x10 -6 2.3xi0-6 Sheet 1 of 3 Typical(d) Typical Yield Well Depth (qpm) (feet) so 10-30 <1 <1 :8 0 t"" M:j () <1 :::0 t::r::1 t::r::1 <3 <3 <i 10-40 Rev. 0 Rock Units Heebner Shale Leavenworth Limestone Snyderville Shale Toronto Limestone Unnamed Lawrence Amazonia Ireland Sandstone Robbins Shale Haskell Limestone Vinland Shale Westphalia Limestone Physical(a) Properties Thinly laminated, fissile, carbonaceous shale. Medium-bedded, fine-grained limestone. Laminated to thin-bedded shale. Thin-to thick-bedded, grained limestone; rare shale partings & lenses. Thinly laminated shale; bedded, laminated to thin-bedded sandstone. Thin-to medium-bedded, grained, shaley limestone; interbedded, thinly laminated shale. Thinly laminated shale; bedded, laminated to medium bedded, fine-grained stone. Thinly laminated shale; thin to medium bedded, shaley limestone. Thin-to thick-bedded; grained limestone. Thinly laminated to thin-bedded shale; interbedded, discontinuous, to very fine to medium-grained sandstone. Thin-to medium-bedded shaley limestone. TABLE 2.4-28 (continued) Approximate(b) Thickness (feet) 2.5-4 1.0 5-14 14-19 18-30 2-18 40-108 14-90 1-3 1-65 0-13 water Yield Characteristics Negligible Negligible Negligible Small yields Possibly small yields from sandstone Negligible Possibly very small yields from stone layers Negligible Negligible Negligible Possibly very small yields Permeability (c) (em/sec) -6 1.0x10 -7 3. 7x1 0 -6 1.1x10 -!; 1.2x10 --6 1.8x10 -7 1.0x10 -6 3. 3x10 -7 2.6x10 -7 2.1x1 0 -6 3.0x10 -7 4.8x10 Sheet 2 of 3 Typical (d) Yield (gpm) <2 0.5 Typical Well Depth (feet) 10-75 Rev. 0 z < H z 1-1 >< Ul z z "' P-< "' P-< 10-< ;:::J Rock Units Tonganoxie Sandstone Weston Shale South Bend Limestone Physical(a) Properties Thinly laminated to thin-bedded, clayey shale; interbedded with cross-bedded, laminated to medium-bedded sandstone and siltstone. Thinly laminated shale. Thick-to thin-bedded; grained limestone; sandy at base. TABLE 2.4-28 (continued) Approximate(b) Thickness Water Yield (feet) Characteristics 42-142 Small yields 31-109 Negligible 4-6 Negligible Permeability (c) (em/sec) -6 2.8x10 -8 9.2x10 -8 3.8x10 Typical(d) Yield (gpm) 3 Sheet 3 of 3 Typical Well Depth (feet) 200-300 Rev. 0 TABLE 2. 4-29 WELL INVENTORY WITHIN 5 MILES OF THE SITE Approximate Well Land Surface n ............ +-1-. Elevation Depth to Water Level Location(a) J.Jt::'l:-'l-U (feet) (feet, MSL) (feet) Al 18 1144 Above Ground Surface (AGS) A2 30 1164 8 A4 NA (b) NA NA Al4 30 1076 2 Al7 35 1100 3 Al8 30 1100 8 Al9 2 1096 NA A20 18 1112 6 A22 14 1140 AGS A23 NA 1090 NA A23 NA 1093 NA A23 10 1089 NA A24 NA 1099 NA aLocations shown on Figure 2.4-52. bNA indicates data Not Available. cindicates property serviced by Rural Water District No. 3. Approximate Elevation of Water Level Type of (feet, MSL) Well 1144 Dug 1156 Dug NA NA 1074 Dug 1007 Dug 1092 Dug NA Dug 1106 Dug 1140 Dug NA NA NA NA NA NA NA NA Estimated Name of Pumpage Rate Owner (<Jpd) Tenant 250 Bennett 0 Sa lava 0 Phillips 360 Clapp 70 Abbey 530 Anderson NA Anderson 50 Anderson 0 Anderson 230 Williams NA Williams NA Garrepp/ Cord en NA Ander son -owner or tenant at time of 1973 survey. KG&E presently owns or controls all wells within the site boundary. Source: Based on field investigationi Dames & Moore; 1973 and Sheet 1 of 10 Remarks RWD(c) RWD Well to be sealed None Well to be sealed ::E! 0 Well to L' be sealed t'!j ,..., \ . None :::0 tr:l RWD t':l None RWD Well to be sealed Well to be sealed Well to be sealed Rev. 0 TABLE 2.4-29 (continued) Sheet 2 of 10 Approximate Approximate Well Land Surface Elevation of Estimated Name of rocation(a) Depth Elevation Depth to Water Level Water Level Type of Pumpage Rate .. (feet) (feet, MSL) (feet) (feet, MSL) ll Remarks \ UJ .L o;;:;!!CUlr... B2 30 1123 5 1118 Dug 500 Wayne RWD B4 40 1091 8 1083 Dug 310 French RWD B8 20 1091 5 1086 Dug 75 Hess RWD Bll 35 1080 15 1065 Dug 220 Hess None Bl2 16 NA NA NA Dug NA NA RWD Bl2 42 1132 15 1117 Dug 410 Mallon None Bl3 33 NA NA NA Dug 100 Crouch RWD 814 18 1081 AGS 1081 S' Dug NA NA RWD 0 Bl4 22 1083 35 1070 t"' Dug NA NA None l":l:j bl.i:i 22 l.UCU 5 1075 Dug 830 Huffman None n :::0 tJ:j Bl5 25 1062 9 1053 Dug 100 Crouch RWD -L. ... ..i 816 27 1087 2 1085 Dug 840 Allen RWD Bl9 13 NA 2.5 NA Dug NA NA RWD Bl9 31 1113 2.5 1110 Dug 200 Skillman None Cl 25 1097 3 1094 Dug 350 Houser Well to be sealed C2 NA 1101 15 1086 NA 630 Levering RWD C4 NA NA NA NA NA 340 Woods RWD C5 43 1085 11 1074 Dug NA NA Well to be sealed C5 12 1088 7 1081 Dug 500 Woods Well to be sealed C7 15 1075 2 1073 Dug 0 Skillman Well to be sealed C8 30 l.l'l'l Dry ;..;;., ,,_.:; ""i -...:l 0 Anderson RWD """ """ J.J.L..l..L..l.C'U Rev. 0 TABLE 2.4-29 (continued) Sheet 3 of 10 Approximate Approximate Well Land Surface Elevation of Estimated Name of Location (a) Depth Elevation Depth to Water Level Water Level Type of Pumpage Rate 9a\ (feet) (feet, \ (feet) (feet, MSL) Well (gpd) Tenant* ' Remarks ......... , C9 20 1065 AGS 1065 Dug 0 Griffin RWD ClO 20 1058 7.5 1050 Dug 410 Rhoads RWD Cll 40 1030 10 1020 Dug 410 Nelson None Cl7 NA 1084 10 1074 Drilled 0 Hunter Well has been sealed Cl8 75 1080 4 1076 Dug 700 Robinett Well to be sealed C20 22 1090 18 1072 Dug 550 Applicant RWD ::8 C2l 22 1040 5 1035 Dug 210 Robinett None 0 t"1 C23 10 1030 10 1020 Dug 230 Reinker RWD I"Ij 0 C24 36 1022 lO 1012 Dug 660 Decker None :::0 tr.1 C25 12 1020 10 1010 Dug 5400 Likes None tr:! C26 31 NA NA NA Drilled 210 Allen None C27 30 1040 15 1025 Dug 200 Cranford None C28 30 1040 10 1030 Dug 320 Zscheile None C29 30 1020 10 1010 Dug 290 Decker None C30 31 1041 9 1032 Dug 390 Hess None C31 24 1044 13 1031 Drilled 210 Birkbeck None C32 31 1039 4 1035 Drilled 2630 Birkbeck None C33 30 1040 9 1 (i')l ..J.VJ.J.. Dug 110 Rife None C34 15 1031 5 1026 Dug

  • 1 " .Thompson None .... u C35 NA 1031 NA 1026 NA 100 Traymick None C36 33 "!(')")}! ...LU l.UL4 Drilled 210 Hays None C37 28 ; r, ""l; 5 1026 Drilled 210 White None ..L.VJ.J.. Rev. 0 TABLE 2.4-29 (continued) Sheet 4 of 10 Approximate Approximate Well Land Surface Elevation of Estimated Name of Location (a) Depth Elevation Depth to Water Level Water Level Type of Pumpage Rate owner (feet) (feet, MSL) (feet) (feet, MSL) Well Tenant Remarks C38 NA NA NA NA NA 100 Hair CITY (e) C39 27 1020 6 1014 Dug 240 Shepherd CITY C41 NA NA NA NA NA 210 Deitrich CITY C42 25 NA NA NA Dug 3400 Keith None C43 NA 1040 10 1030 Dug 400 Rieschick None . C44 40 1040 10 1030 Drilled 400 Tice None C45 20 NA NA NA Dug 390 Freeman None C49 23 1020 4 1016 Dug 310 Barrett None :8 0 t'"' C50 20 1031 4 1027 Dug 75 Myers None i":!:j 1017 ., 1014 Dug 100 0 C5l 20 ..> Hess None ;:;:J C54 NA NA NA NA NA 100 Glemore t?:: None :;:>:;: C55 30 1033 8 1025 Drilled 580 Bryan CITY C56 30 1030 10 1020 Drilled 630 Paxson CITY C57 NA NA NA NA NA 0 Birk RWD C58 NA NA NA NA Drilled 200 Thompson CITY C59 30 1032 15 1017 Drilled 210 Cochran CITY C60 30 1033 8 ln'lt:: Drilled 410 Bolton CITY C61 40 1032 5 1027 Dug 430 Harson None C61 30 1032 8 1024 Drilled NA Harson None C64 21 1032 7 1025 Drilled llO Vasey None C65 25 1030 15 1015 Dug 290 Caldwell CITY C70 30 1020 31 1017 Dug 1110 Hayes HWD eindicates property serviced by City *:.f Burl ton \.*:ate r supply. Rev. 0 TABLE 2.4-29 (continued) Sheet 5 of 10 Approximate Approximate Well Land Surface Elevation of Estimated Name of Location(a) Depth Elevation Depth to Water Level Water Level Type of Pumpag e Rate Owner . ?§l (feet, MSL) (feet) (feet, HSL) Well (gpd) Tenant:* Remarks \J...t;;;'C"l..J C71 22 1010 5 1005 Drilled 440 Williams None C72 10 1013 1 1012 Dug 1370 Smart None C73 9 1075 NA NA Dug NA Winn None C73 28 1074 NA NA Dug NA Winn None C74 27 1087 NA NA NA NA Williams None C74 23 1087 NA NA NA NA NA None C75 10 1066 NA NA NA NA Woods None C76 1 1083 NA NA NA NA NA None ::8 0 L' C77 9 1056 NA NA Dug NA Anderson None l":tj C77 16 1056 NA NA NA NA Anderson None n tr:l C77 NA 1060 NA NA NA NA Anderson None :::"l ::>:;: Dl 100 1110 5 1105 Dug 380 Nielson RWD Dl 14 NA NA NA NA NA NA NA D2 30 1115 5 1100 Dug 220 Bon RWD D2 NA NA NA NA NA NA NA NA D3 30 1070 6 1064 Dug 150 Miller None D3 NA NA NA NA NA NA NA NA D4 20 1075 4 1070 Dug 10 Wuerfele None DS 40 1060 ll 1049 T'\,....., 440 None VU'j D5 25 NA 11 N.ll. NA NA None D6 20 1060 12 1048 Dug 310 Wuerfele None D7 16 1115 4 J...l..l.l. Dug L:JU Tracy None D8 l c "; " 'i 6 1105 Dug 470 Tragar KWJJ .J.U .l.J..l..l. Rev. 0 TABLE 2. 4-29 (continued) Sheet 6 of 10 Approximate Approximate Well Land Surface Elevation of Estimated Name of Location (a) Depth Elevation Depth to Water Level Water Level Type of Pumpage Rate owner ?al (feet) (feet, MSL) (feet) (feet, MSL) Remarks \';ji:::U/ Tenant-D9 NA 1114 14 1100 NA 650 Hermon None DlO 23 llOS 4 ll01 Dug 560 Cordell RWD Dll 16 1043 2 1091 Dug 230 Johnson Well to be sealed D11 25 1088 4 1084 Dug NA Johnson Well to be sealed Dl2 12 1049 3 1046 Dug 160 Kellerman Well to be sealed D12 20 1048 7 1042 Dug NA Kellerman Well to :::E: be sealed 0 t"i Dl3 NA ll03 7 1096 Dug 650 Taylor None t'Ij n Dl4 26 1102 8 1094 Dug 630 Baldwin RWD ;;0 !:';j 1060 1820 Gifford !:';j DlS 22 1070 10 Dug None "' Dl6 20 1090 5 NA Dug 1060 Kennard None Dl6 35 1090 5 1085 Dug NA Kennard None D17 18 1050 1 1049 Dug ll60 Sa lava None D17 10 1050 1 1049 Dug NA Sa lava None Dl9 50 NA NA NA Dug 710 Yound None D20 180 1068 10 1058 Drilled 6400 Herr None D21 30 1090 5 1085 Dug 900 Bouse None D21 30 1095 3 1092 n ......... NA Bouse r-..one D21 30 1070 3 1067 Dug N.ll. Bouse None 022 30 1100 AGS llOO Dug 1410 Anderson RWD D23 22 1045 J\.f"'tC' 1045 Dug "f.}V Dalby None 24 1058 8 1 r. r r. DuC3 630 Allen None .l.U:JV Rev. 0 TABLE 2.4-29 (continued) Sheet 7 of 10 Approximate Approximate Well Land Surface Elevation of Estimated Name of Location(a) Depth Elevation Depth to Water Level Water Level Type of Pumpage Rate I Foot-' (feet, MSL) (feet) MSL) r.T.-.1 1 (gpd) Remarks , ............... , VVC:.l..J.. lenant D24 18 1050 2 1050 Dug NA Allen None D25 30 1100 4 1096 Dug 1860 Hess Well to be sealed D25 10 1095 AGS 1095 Dug NA Hess Well to be sealed D26 25 1104 5 1099 Dug 230 Bemis None D27 30 1114 7 1107 Dug 150 McReynolds None D28 19 1110 4 1106 Dug 150 Hess RWD :E: ,.... D29 40 1071 l 1070 Dug 0 Hildebrand Well to ....., t"' be sealed l"l:j D32 40 1063 NA NA Dug 300 Hamman Well has () been sealed ;::o D33 42 1062 6 1057 Drilled 220 Snider Well has ;;>;; been sealed D33 30 1060 10 1050 Dug NA Snider Well has been sealed D34 30 1040 15 1025 Dug 325 Sa lava Well has been sealed D34 30 NA NA NA Dug NA Sa lava Well has been sealed D35 NA NA NA NA NA 100 Wynn Well to be sealed D36 28 1030 AGS 1030 Dug 640 Riffenbark Well has been sealed D36 28 1030 AGS 1030 nnn Nl'. .Riffenbark 11 has been sealed D37 25 1035 AGS 1035 Dug 470 Danford Well to be sealed D38 --,c ; ,.... r -, 1060 Dug 470 Iseman Well to LV .l.UU..) J be sealed Rev. 0 TABLE 2.4-29 (continued) Sheet 8 of 10 Approximate Approximate Well Land Surface Elevation of Estimated Name of Location(a) Depth Elevation Depth to Water Level Water Level Type of Pumpage Rate owner (feet) (feet, MSL) (feet) (feet, MSL) Well (qpd) Tenant Remarks D39 38 1062 6 1056 Dug 540 Hess Well to be sealed D39 24 1057 3 1054 Dug NA Hess None D4l 30 1083 5 1078 Dug 560 Martens None D42 30 1085 5 1080 Dug 190 Wuerfele None D43 22 1038 AGS 1038 Dug 1243 Crooks None D43 25 1034 AGS 1034 Dug NA Crooks None D44 22 1041 AGS 1041 Dug 80 Applicant None ::E: D45 30 NA NA NA Dug 300 Ballew None 0 t:"'1 t'Ij D46 30 1042 AGS 1042 Dug 310 Lichlyter None n D47 35 1040 4 1086 Dug 430 Rayl RWD ::0 i?'J trl D47 25 1040 5 1035 Dug NA Rayl None D48 26 1062 9 1053 Dug 620 Alexander None D49 20 1050 8 1042 Dug 900 Finical RWD D50 16 1063 3 1060 Dug 440 Combs None D5l 25 1040 3 1037 Dug 340 Giesy None D52 18 1022 AGS 1022 Dug 390 Spencer None D53 20 1036 AGS 1036 Dug 290 Hess None D54 15 1040 10 1030 Dug 170 Wynn None D55 28 1078 14 1064 Dug 170 Taylor None D56 16 1088 3 1085 Dug 280 Hutson Well to be sealed D57 14 1054 AGS 1054 Dug 250 Vincent \"!ell to be sealed Rev. 0 TABLE 2.4-29 (continued) Sheet 9 of 10 Approximate Approximate Well Land Surface Elevation of Estimated Name of Location(a) Depth Elevation Depth to Water Level Water Level Type of Pumpage Rate (feet) (feet, MSL) (feet) (feet, MSL) ,..,,........::J\ Remarks .Lt:::llOUl-D58 70 1032 6 1026 Dug 360 Bull Well to be sealed D58 16 1044 NA NA Dug NA NA Well to be sealed D58 45 1032 NA NA Dug NA NA Well to be sealed D59 17 1019 6 1013 Dug 110 Morris Well to be sealed D60 8 1046 NA NA Dug NA NA Well to :iS be sealed 0 t"' D61 28 1028 6 1022 Dug 1650 Levering Well to be sealed 0 D6l 28 1018 6 lOll Dug NA Levering Well to :::c t".i be sealed L-j D61 140 1033 19 1014 Drilled NA Levering Well to be sealed D62 29 1018 7 1012 Dug 320 Delong None D63 32 1055 4 1051 Dug 110 Delong Well to be sealed D64 NA NA NA NA NA 100 Gooch None D65 18 1018 AGS 1018 Dug 210 Green None D65 21 1018 AGS 1018 Drilled NA Green None D66 104 1052 8 1044 Dug 2030 Werber None D66 27 1015 3 1012 Dug NA Werber None D67 20 1012 15 997 Dug 410 Gum None D68 18 1020 ll 1009 Dug 470 Saueressig None n Rev. v TABLE 2.4-29 (c:;ontinued) Sheet 10 of 10 Approximate Approximate Well Land Surface Elevation of Estimated Name of Location(a) Depth Elevation Depth to Water Level Water Level Type of Pumpage Rate (feet} (feet, MSL) (feet) (feet, MSL) Well (9Ed) .lt::llOUL. Remarks D69 40 1026 NA NA Dug 560 Means None D70 32 1035 10 1025 Dug 660 Robinson None D71 25 1040 AGS 1040 Dug 800 Engel None D72 32 1040 4 1036 Dug 510 Reed None D73 NA 1080 NA NA NA NA NA None D74 41 1070 NA NA NA NA NA None D75 NA 1070 NA NA NA NA NA None D76 19 1042 NA NA Dug NA Hamman None 0 D77 13.5 1075 NA NA NA NA Reinker None t"' i':rj D78 25 1094 NA NA NA Paxton None (j D78 9 1094 NA NA Dug NA Paxton None w i:ZJ ::,;; D79 25 1085 NA NA NA NA Ellen None D80 16 1093 NA NA NA NA Moor is None D81 12 1085 NA NA NA NA Reinker None D82 25 1085 NA NA NA NA Martens None D82 5 1083 NA NA Dug NA Martens None D83 20 1061 NA NA NA NA Snyder None D83 7 1061 NA NA NA NA Snyder None D84 19 1060 NA NP... NP... NA Hess None D85 10 1080 NA NA Dug NA NA Cistern E2 32 1009 NA NA Drilled 510 Williams None Rev. 0 WOLF CREEK TABLE 2.4-29a PLUGGING OF EXISTING PIEZOMETERS AND EXISTING WELLS General: All existing piezometers and existing wells located within the area to be inundated by the cooling lake were sealed prior to filling of the lake, with the exception of well D38B (see note 1), and wells D-58, X-D39-1 and X-D18 (see note 2). This includes all piezometers and wells within the drainage boundaries of the lake below elevation 1997.5 ft. (SNUPPS) or 1097.5 ft. (USGS) with the exception of piezometers at Borings B-17, P-14 (see note 3), and LK-10. Piezometers at Borings B-17 and LK-10 will be maintained to monitor groundwater levels during plant operations.

Note 1: The well was flooded by the water storage pond at wash plant.

2: The wells are in waste areas and cannot be located. l

3: Piezometer P-14 was damaged during construction and could not be located. Currently, P-14 is covered by l an asphalt parking lot which should protect against l ground water contamination.

Rev. 0 WOLF CREEK TABLE 2.4-29b Sheet 1 of 4 WELLS IN COOLING LAKE AREA THAT REQUIRE SEALING Well Location(a) A-4 A-17 (cistern) A-18 A-23 Name of Owner or Tenant Phillips Abbey Abbey Anderson T."r.!,,,! __ _ ifV ..L _L .L _L Approximate Surface Elevation (feet, mean sea level) Not Available 1100 1100 1100 1090 Date Sealed (b) 11/19/80 (c) 08/01/80 08/01/80 aWell locations refer to the property locations used for the 1973 well inventory as shown on Figure 2.4-52 and as listed in Table 2.4-29 (FSAR). bWells A-4 and C-1 are currently being used by occupied dwellings. eWell A-17 was lost during clearing and excavation to bury remains of structures in area. a -----**-------------wells D-35 and D-59 were eliminated during removal ot material from Borrow Area H and Borrow Area I. eWells D-37 and D-61 have been eliminated during excavation of foundation for Baffle Dike A and Main Dam. fWell D-58 is in waste area and cannot be located. 9well C-5 and Cisterns C-17 and C-18 are reported in Table 240.7-2 as X-C5-11, X-C17-6 and X-C18-1, respectively. h_. . --. . . .. Clstern u-LL was lost aur1ng constructlon. Rev. 0 Well Location(a} C-1 (pond) C-5 (cistern) C-7 C-17 (cistern} C-18 (cistern) D-11 D-12 (cistern) D-25 WOLF CREEK TABLE 2.4-29b (continued) Name of Owner Or Tenant Houser Houser Woods Woods Woods Skillman Hunter Hu:ntei' Robinett Robinett Johnson Johnson Kellerman Kellerman Kellerman Hess Hess Approximate Surface Elevation (feet, mean sea level) 1097 1097 1085 1085 1085 1075 1084 1084 1080 1080 1088 1088 1049 1048 1048 1095 1095 Sheet 2 of 4 Date Sealed (b) (b) 07/28/80 07/28/80 (g) 07/29/80 (g) 11/14/77 07/28/80 (g) 07/30/80 07/30/80 07/25/80 ()7/?/1/Q() (h) 07/24/80 07/24/80 Rev. 0 Well Location(a) D-29 (cistern) D-32 D-33 D-34 D-35 D-36 D-37 (cistern) D-33 D-39 D-56 WOLF CREEK TABLE 2.4-29b (continued) Name of Owner Or Tenant Hildebrand Hildebrand Hamman Hamman Snider Snider Sa lava TtJynn Riffenbark Riffenbark Danford Danford Iseman Hess Hess Hutson AncroximatA --J:J,.. ________ ----------Elevation (feet, mean sea level) 1071 1071 1063 1063 1062 1060 1040 ...... * -* .. 'I .. i'JOt: A.Val.laoJ.e 1030 1030 1035 1035 1063 1062 1057 1088 Sheet 3 of 4 Date Sealed 07/25/80 08/15/80 03/16/79 03/16/79 03/16/79 11/14/77 03/16/79 (d) 03/18/78 03/18/78 (e) 07/25/80 08/15/80 03/15/79 03/15/79 03/15/79 R-** n t:::::V

  • V WOLF CREEK TABLE 2.4-29b {continued) Sheet 4 of 4 ( ) Name of Owner Well Location a Or Tenant D-57 Vincent D-58 Bull D-59 t-iorris D-61 Levering Levering Levering D-63 DeLong Approximate Surface Elevation (feet, mean sea level) Date Sealed 1054 1032 1019 1028 1018 1 " ..., ..... .LU.JJ 1055 03/15/79 ( f ) {d) 07/25/80 (e) ' -' \ e J 06/05/78 Rev. 0 Number A-19-A A-19-B D-34-A D-38-B D-58-B X-A6 X-A18-3 X-A18-4 X-A18-5 X-A23-1 WOLF CREEK TABLE 2.4-29c ADDITIONAL WELLS IN COOLING LAKE AREA FOUND SEALED DURING CONSTRUCTION Location Approximate Surface AEproximate Coordinates Elevation North East (feet, mean sea level) 108,000 91,300 1087 108,000 91,200 1087 3 8; 6 50 101.?()() 1092 ---,--.... 90,500 104,700 1063 85,350 102,900 1032 1(\7 (\(\(\ QQ 1092 _..VIfVVV VVf.JVV 109,650 91,400 1098 109,500 91,450 1094 109,700 91,400 1099 107,650 98,650 1092 a_--*--. --. ----* bWells are currently belng used by occupled dwelling. eWell was flooded by water storage pond at wash plant. dWells are in waste areas and cannot be located. Sheet 1 of 6 Date Sealed (a) (a) (\Q/?(l/7Q ..., ,.,, .. ...,, , ...., (b) (c) 07/29/80 08/01/80 08/01/80 08/01/80 08/01/80 eWell was eliminated during removal of material from Borrow Area A. ha,re been eliminated d1.1ring excavation of foundation for Baffle Dike A. Wells were eliminated during removal of material from Borrow Area D. Rev. 0 WOLF CREEK TABLE 2.4-29c (continued) Sheet 2 of 6 Location Approximate Surface Approximate Coordinates Elevation Nw-nber North East (feet, mean sea level) Date Sealed X-A23-2 107,600 9 817 50 1092 08/10/80 X-C1 100,950 96,400 1092 11/29/78 X-C2 100,890 96,300 1092 11/29/78 X-CS-A-1 103,600 97,200 1092 07/28/80 X-CS-11 101.h()() ----,--.... 9 7; 2 00 1092 07/28/80 X-CS-11-1 98,500 91,900 1092 07/28/80 X-C6 100,500 94,500 1092 07/30/80 X-C7 103,000 Qe:; '<(\(\ 1092 07/31/80 X-C7-A 105,200 91,100 1092 07/28/80 x-es 103,800 93,600 1092 (d) X-C8-12 106,800 89,000 1092 07/29/80 X-C8-13 106,800 88,700 1092 07/29/80 X-C8-14 106,100 91,000 1092 07/29/80 X-C8-15 106,150 91,200 1092 07/29/80 X-C8-15-3 1 f)f\ -() () () _._._,...,._ ...... 89;200 1092 09/23/80 X-C8-16 106,150 90,200 1092 07/29/80 Rev. 0 WOLF CREEK TABLE 2.4-29 c (continued) Sheet 3 of 6 Location Approximate Surface Approximate Elevation Number North East (feet, mean sea level) Date Sealed X-C8-17 1061180 911 210 1092 11/19/80 X-C9 1051500 901500 1092 07/29/80 X-C10 1021700 9 61250 1092 09/23/80 X-C16 1021700 941600 1092 07/31/80 X-C17 102,100 96,000 1092 07/31/80 X-C17-6 961000 951000 1092 07/28/80 X-C18-1 961200 9 61 Q 00 1092 07/25/30 X-C19-A 98,720 96,150 1(10') J... v ./ w 07/28/80 X-C19-B 981720 961150 1092 07/28/80 X-C19-C 981760 961450 1092 07/28/80 X-D1 95,365 101,740 1092 (e) X-D2 951265 101,740 1092 (e) X-D3 951700 101,600 1092 05/16/80 X-D4 94,720 101,780 1092 03/18/78 X-DS 104,100 96,600 1092 07/30/80 X-D10 86,100 1081800 1092 07/25/80 Rev. 0 WOLF CREEK TABLE 2.4-29c (continued) Sheet 4 of 6 Location Approximate Surface Approximate Coordinates Elevation Nui1lber North East (feetL mean sea level) Date Sealed X-D10-1 87,100 109,000 1092 11/20/80 X-D10-20 107,350 98,600 1092 08/01/80 X-D11 85,100 97,900 1092 03/16/79 X-D11-9 103,350 96,600 1092 07/30/80 X-D12 99,400 98,200 1092 07/30/80 X-D13 100,000 98,000 1092 01/80 X-D14 91, 0 00 100,150 1092 09/21/78 X-D17 90,500 qq_qc;() 1092 09/21/78 __ , ____ x-D18 95,950 101,000 1092 (c) X-D19 104,100 96,600 1092 07/30/80 X-D20 103,900 96,500 1092 10/14/80 X-D21 107,300 99,000 1092 08/01/80 X-D21-1 107,500 98,960 1092 11/19/80 X-D22 90,900 100,250 1092 09/21/78 X-D23 94,800 102,750 1092 05/20/80 X-D24 95,850 98,900 1092 (f) Rev. 0 WOLF CREEK TABLE 2.4-29c (continued) Sheet 5 of 6 Location Approximate Surface Approximate Coordinates Elevation l\T, ,1"1"'1 h.-v-....... 4-h East 1+.-,""4-'l¥11_....,_ --""' ,_ ... .,._,\ Date Sealed .l..'ll u.J.ll.J.JC..I-L"iV..L. 1....!..1 \..1.-CCL..f .!.UCO..lJ. i:)C:G. .J..CVC.J..] X-D25 95,950 9 8, 7 00 1092 (f) X-D25-C 92,300 107,900 1092 11/20/80 X-D26 96,000 98,300 1092 08/08/80 X-D27 87,100 107,500 1092 07/25/80 X-D27-1 x7.?oo ..... , ___ 107;300 1092 09/17/80 X-D28 92,200 107,100 1092 07/24/80 X-D29 9 2, 4 00 107,200 1092 07/25/80 X-D30 95,800 104,000 1092 05/20/80 X-D31 99,400 97,900 1092 07/30/80 X-D32 101,800 98,800 1092 07/31/80 X-D33 9 6 1 3 00 97,200 1092 07/25/80 X-D33-5 89,500 99,500 1092 03/16/79 X-D35 94,600 9 61 0 00 1092 07/28/80 X-D39-1 85,500 104,400 1060 (c) X-D41-5 91,000 107,800 1092 07/23/80 X-D41-7 91,000 107,800 1092 07/23/80 Rev. 0 WOLF CREEK TABLE 2.4-29c (continued) Sheet 6 of 6 Approximate Surface Approximate Coordinates Elevation Number North East (feet, mean sea level) Date Sealed X-D41-15 90,750 108,100 1092 07/23/80 X-D41-16 90,550 107,500 1092 07/23/80 X-D42 96,200 105,000 1092 11/19/80 X-D43 94,300 104,300 1092 11/19/80 X-D56 8 51 5 00 105,800 1092 09/17/80 'tJ" T""o. r-..... 107,830 102,750 1115 --. _ _.. .n.-u.:>t U:jf .:5-l/ X-D58 101,630 101,544 1110 08/04/81 Rev. 0 TABLE 2. 4-30 PUBLIC SUPPLY WELLS WITHIN A 20-MILE RADIUS OF SITE (b) Well Well Screen Static (c) Pumping (d) Approx. Depth Diameter Interval Level Level Location (a) Elev. I :C--.._\ (inches) (feet) (feet) (feet) Aguifer l.Lt::::t::l..) Waverly #l 1100 280 6 170-190 950 935 Tonganoxie 200-230 Waverly #2 1100 260 6 165-195 970 945 Tonganoxie 255-265 Waverly #3 1100 228 6 199-205 NA NA Tonganoxie Waverly #4 1100 270 6 142-192 958 943 Tonganoxie 263-268 Waverly #5 1100 300 6 NA 938 NA Tonganoxie Williamsburg #l 1280 190 6 NA 1158 NA Tonganoxie Williamsburg #2 1280 190 6 NA 1164 NA Tonganoxie Williamsburg #3 1280 210 6 NA NA NA Tonganoxie Williamsburg #4 1280 300 6 NA NA NA Tonganoxie New Strawn(e) 1010 32 24 NA 998 NA Alluvium f"ielvern #l 1015 168 6 50-100 906 NA Tonganoxie Melvern #2 1015 160 6 NA NA NA Tonganoxie Melvern #3 1015 94 6 46-71 NA NA Tonganoxie 74-94 Melvern #4 1015 97 6 47-97 NA NA Tonganoxie Melvern #5 1015 80 6 50-80 NA NA Tonganoxie Melvern #6 1015 179 NA NA NA NA Tonganoxie Hartford #l 1036 30 NA NA 1004 NA Alluvium aLocations of municipalities shown on Figure 2.4-53. h elevations in feet above MSL of wells taken from U.S. Geological Survey Topographic Maps. See base map reference for Figure 2.4-53. cStatic level shown as elevation above mean sea level. dPumping level shown as elevation above mean sea level. eWell for New Strawn located in alluvium of Neosho River about l/2 mile downstream from John Redmond Dam (see Reischick below)
  • Sources: Gettinger, L., 1979, Record, Kansas State Board of Agr culture, Division of Water Resources, Topeka, Kansas, written communication August 24) Kansas Water Resources Board, 1973a, Open-file Materia . Reischick, 1973, Farmer's Home Bur ington: Kansas: written communication (Septernberj. Test Yield (gpm) 20 22 10 20 16 10 10 18 :?8 0 18 t"' 30 l"Ij ,..., l3 \ J 6 ttl C"J 20 30 14 10 NA Rev. 0 TABLE 2. 4-31 PROJECTED FUTURE USE OF WATER IN COFFEY COUNTY, KANSAS* 1965 1980 2000 WATER USE SURFACE GROUND TOTAL SURFACE GROUND TOTAL SURFACE GROUND Irrigation 210 20 230 700 0 700 1,800 0 Livestock 1,006 112 1,118 1,499 167 1,666 2,361 263 Manufacturing 0 0 0 86 5 91 132 7 Utilities 0 1 1 7,185 0 7,185 12,045 0 Mining 46 0 46 166 0 166 169 0 Urban Domestic 331 25 356 529 28 557 531 28 Rural Domestic 27 262 289 141 8 149 151 8 Total 1,620 420 2,040 10,306 208 10,514 17,189 306 *All usage values expressed in acre-feet (1 acre-foot equals 325,851 gallons) of water. Sources: Flickinger, G., 1979, Kansas Water Resources Board, Topeka, Kansas, telephone communication (June 6). Kansas Water Resources Board, 1973a, Open-file Material. TOTAL SURFACE 1,800 4,000 2,624 3,585 139 235 12,045 10,995 169 335 559 803 159 146 17,495 20,099 2020 GROUND TOTAL 0 4,000 399 3,984 13 248 0 10,995 0 335 43 846 8 154 463 20,562 Rev. 0 :8 0 t"' t"Ij () tlj ;;>>;

Table 2.4-3la Projected Future Use of Water in Coffey County, Kansas* Water Use 1965 (b) 1980 (a) 2000 (a) 2020 (a) 2035 (a) Domestic and t-ianu f actur i ng 645 804 860 1,004 1,099 Mining 46 169 169 178 184 Thermal Electric l 4,203 29,684 29,684 29,684 Livestock 1,118 1,495 1,781 1,977 2,075 Irrigation 230 970 1,535 1,612 1,689 Total 2,040 7,641 34,029 34,455 34,731 *All usage values expressed in acre-feet (l acre-foot equals 325,851 gallons of water) Sources: (a) Flickinger, G., 1984-Kansas Water Office, Topeka, Kansas, letter dated 2/20/84 (b) Flickinger, G., 1979 -Kansas Water Resources Board, Topeka, Kansas, telephone communication (June 6) (c) Kansas Water Office 1984 open-file material Rev. 0 0 t"' i"Ij n ....... L. ... j l::tj ....... ,..., WOLE' CREEK TABLE 2. 4-32 Sheet. 1 of 42 PIEZOMETER WATER LEVEL READINGS -B BORINGS Boring/Piezometer B-1, P-1 Interval: 132-272 (130-272) Sandstone Water Level Water L<<?ve1 D a e p t h e v 8-04--73 11.5( ) 1,008 .. 3 8-04--73 10.1 a 1,009 .. 7 8-11--73 11.2 1,008 .. 7 8-23-*-73 11.7 1,008 .. 1 8-30-*-73 11.5 1,008 .. 3 9-06--73 11.3 1,008 .. 5 9-13**-73 11.4 1,008 .. 4 9-20--7 3 11.4 1,008 .. 4 9-27--73 10.9 1,008 .. 9 10-18-*-73 10.9 1,008 .. 9 11-15--73 10.9 1,008 .. 9 12-14--73 5.4 1,014 .. 4 1-14--74 10.8 1,009 .. 0 3-14--7 4 10.9 1,008 .. 9 4-19--74 11.0 1,008 .. 8 5-16--74 10.9 1,008 .. 9 7-Hl--74 11.5 1,008 .. 3 8-l!:i--74 11.5 1,008 .. 3 9-12--7 4 11.2 1,008 .. 6 10-17--74 11.2 1,008 .. 6 11-14--74 11.0 1,008 .. 8 12-19--74 11.0 1,008 .. 8 1-15-**75 11.2 1,008 .. 6 3-13--75 11.0 1,008 .. 8 4-18--75 10.9 1,008 .. 9 5-22--75 11.1 1,008 .. 7 9-l!:i--75 11.6 1,008 .. 2 12-22--75 11.6 1,008 .. 2 3-25-**76 11.6 1,008 .. 2 9-10--76 14.8 1,005 .. 0 12-14--76 14.6 1,005 .. 2 Note: Effective interval given in following slotted interval if intervals differ. Interval depths reported are to the nearest foot. Ground surface elevation is given on the logs of borings in Section 2. 5. a Value obtained following falling head permeameter testing. Rev. 0 Boring/Piezometer B-1, P-1 (cont'd) WOLF TABLE 2.4-32 (continued) Water Level __ .}2 ________ Depth 6-0 3*-77 8-10*-77 11-04-*-77 4-21*-78 11.9 11.6 12.7 11.7 12.5 8-25-78 Lost Sheet 2 o:E 4::;! Water Elevation 1,007 .* 9 1,007 .. 1 1,007 .. 1 1,008 .. 1 1,007 .. 3 B-1, P-2 8-04*-73 8-04**-73 8-11-**73 8-2 3-**7 3 8-30*-73 9-06*-73 9-13*-73 9-20*-73 9-27*-73 12.2( I) +2.4 a,) 1,007 .. 6 1,022 .. 2 Interval: 118-125 Vinland Shale 10-18*-73 1 0-15*-73 12-14***73 1-14*-74 3-14*-7 4 4-19*-74 5-16-**74 7-18--74 8-15-**74 9-12***74 10-17--74 11-14--74 12-19-**74 1-15-**75 3-13--7 5 4-18-**75 5-22-**75 9-15--75 12-22***75 3-25--76 9-10--76 12-14-**76 b+ indicates value above ground surface. 6.3 1,013 .. 5 9.6 1,010 .. 2 10.3 1,009 .. 5 10.3 1,009 .. 5 10.5 1,009 .. 3 10.6 1,009 .. 2 10.6 1,009 .. 2 10.6 1,009 .. 2 10.6 1,009 .. 2 10.6 1,009 .. 2 10.5 1,009 .. 3 10.6 1,009 .. 2 11.0 1,008 .. 8 11.2 1,008 .. 6 11.8 1,008 .. 0 11.8 1,008 .. 0 12.0 1,007 .. 8 12.1 1,007 .. 7 12.2 1,007 .. 6 12.1 1,007 .. 7 12.7 1,007 .. 1 12.6 1,007 .. 2 12.6 1,007 .. 2 12.7 1,007 .. 1 12.4 1,007 .. 4 12.8 1,007 .. 0 12.9 1,006.9 15.3 1,004 .. 3 15.6 1,004 .. 2 R.ev. 0 Boring/Piezometer B-1, P-2 (cont'd) B-1, P-3 Interval: 24-84 Ireland SandstonE! WOLF CREEK TABLE 2.4-32 (continued) Water Level Date Depth 4-15-*77 6-03-*77 8-19-*77 .ll-04*-*77 4-21*-*78 8-25*-*78 8-04*-73 8-04*-73 8-11*-7 3 8-23*-73 8-30*-73 9-06*-73 9-13*-7.3 9-20*-73 9-27*-73 10-18*-73 10-15*-73 12-14*-73 1-14*-7 4 3-14--74 4-19--7 4 5-16--74 7-18--74 8-15--74 9-12--74 10-17--74 11*-14--74 12-19--7 4 3-13--7 4-18--7 9-15--7 12-22--75 3-25--76 9-10--76 12-14-*76 4-15-*77 6-0 3-*7 7 8-19-*77 11*-04-*77 13.0 12.8 11.6 13.2 13.2 Lost 11.9(*) 6.7 a 6.8 7.0 7.2 7.1 7.0 7.1 6.5 6.2 5.9 5.5 5.1 4.7 5.0 5.1 6.2 6.6 6.0 6.1 5.4 5.5 5.1 4.3 4.3 4.9 6.7 7.1 7.5 11.4 11.8 9.2 7.6 8.2 11.5 Sheet 3 of 42 Watt::'!r Level E112vatl.on ----------* 1,006.8 1,007.0 1,008.2 1,,006.6 1,,006.6 Lost lj,007.9 1j,013.1 1j,013.0 1j,012.8 1j,012.6 1j,012.8 11,012.8 11.012.8 11.013.3 1,013.6 11.013.9 11.014.3 11.014.7 1,015.1 1,014.8 1,014.7 1,013.6 1,013.2 1,013.8 1,013.7 1,014.4 1,014.3 1,014.7 1,015.5 1,01.5.5 1,014.9 1,013.1 1,012.7 1,012.3 1,008.4 1,00B.O 1,010.6 1,012.2 1,011.6 1,008.3 Rev*. 0 Boring/Piezometer B-1, P-3 (cont'd) 8-4, P-1 Interval: 109-188 Ireland Sandstone B-4, P-2 WOLEI CREBK TABLE 2.4-32 (continued) 4-21-*78 8-25-*78 8-07-73 8-07-*73 8-23-*73 8-30-*73 9-0 6*-*7 3 9-13*-*73 9-20*-*73 9-27*-*7.3 10-04*-*7.3 10-18*-*73 11-15*--7:3 12-13*-7.3 1-14*-74 2-14*-74 3-14*-74 4-19*-74 5-16*-74 6-07*-74 7-18*-74 8-15*-74 9-12*-74 10-1 7*-74 11-14*-74 12-19*-74 1-15--71!) 2-14*-7 !S 3-12--7 5 4-18--75 5-21--7 !S 9-15--7 12-2 2--7 5 3-25*-76 9-10--76 12-14--76 8-07--73 8-07--73 8-2 3--7 3 8-3 0*--7 3 Water Level Depth 12.4 Lost 60. 2 (. ) 10.8 a 50.0 50.0 50.0 49.9 49.9 51.8 49.9 50.0 50.0 49.9 49.8 49.8 49.7 49.7 49.7 49.8 50.1 50.1 49.8 49.8 49.8 49.8 49.9 49.9 49.9 49.9 50.1 50.0 50.2 50.4 50.4 52.9 52.8 57.8() 18.0 a 48.6 48.3 Sheet 4 of .112 Water *----------* 1,007.4 Lost 1,038.3 1,087.7 1,,048.5 1,,048.5 1,,048.5 1,,048.6 1,,048.6 1,,046.7 1,,048.6 1,,048.5 1,,048.5 11,048.6 11,048.7 1,,048.7 1,,048.8 1,,048.8 1,.048.8 1,,048. 7 1,.048.4 1,048.4 1,.048.7 1,.048.7 1,.048.7 1,.048.7 1,048.6 1,.048.6 1,.048.6 1,.048.6 1,048.4 1,048.5 1,048.3 1,048.1 1,048.1 1,04.5.6 1,045.7 1,040.7 1,080.5 1,049.9 1,050.2 Hev. 0 CREEK TABLE 2.4-32 (continued) Sheet of 42 Water Level Water D a e p t Q ______ E ev .:!!_ i B-4, P-2 (cont'd) Interval: 60-86 Snyderville Shale to Unnamed Lawrence B-4, P-3 Interval: 35-48 Heumader Shale to Plattsmouth Limestone 9-06*-73 9-13*-7 3 9-20--73 9-27*-73 10-04*-73 10-18*-73 11-15**-73 12-Ll*--73 1-14--74 2-14*-74 3-14*-74 4-19*-74 5-16--7 4 6-07--74 7-18--74 8-1 4 9-12*-74 10-17--74 11-14*-74 12-19-*-74 2-14--75 3-12--*75 4-18-**7 5 5-21-**75 6-19-**75 12-22-**75 9-10--76 12-14-*-76 8-07-**73 8-07--73 8-2 3--7 3 8-3 0-**7 3 9-06--73 9-13--73 9-20--73 9-2 7--7 3 10-04-**73 48.4 48.1 48.1 1,0!:)0.4 48.2 1,050.3 47.6 47.8 1,o:>o.7 46.1 1,052.4 45.7 1,0:>2.8 45.2 1,0!:>3.3 46.1 1,052 .* 4 46.0 1,0:12.5 46.4 1,052 .* 1 46.3 1,052.2 46.2 1,052 .* 3 46.9 1,0:>1.6 46.8 1' 051 .. 7 46.6 1,0:11 .* 9 46 *. 5 1,052 .. 0 46.5 1,0:12 .. 0 46.2 1,0:12 .* 3 46.3 1,052 .. 2 46.2 1,052 .* 3 46.1 1,052 .. 4 45.7 1,052 .. 8 46.1 1,052 .. 4 45.9 1,052 .. 6 46.6 1,051 .. 9 47.2 1,051..3 47.0 1,052 .. 5 49.8 1,049 .. 7 49.7 1,049 .. 8 42.6( I) 1,055 .. 9 +1.0 a,) 1,099 .. 5 12.5 1,086 .. 0 13.6 1,084 .. 9 14.2 1,084 .. 3 14.3 1,084 .. 2 14.3(c) 1,084 .. 2 37.9( ) 1,060 .. 6 35.4 c 1,063 .. 1 cLow value resulting from slow recovery following purging of piezometers. 0 Boring/Piezometer B-4, P-3 (cont'd) B-4, P-4 Interval:: 5-26 Heumader Shale WOLF' (::REEK TABLE 2.4-32 (continued) water Level Date Depth Sheet 6 of 42 Wa Elevation *------------10-18*-73 11-15*-73 12-13*-7 3 1-14*-74 2-14*-74 3-14*-74 4-19*-74 5-16*-74 6-07*-74 7-18*-74 8-15*-74 9-12*-74 10-1 7*-74 11-14*-74 12-19*-74 1-15*-75 2-14*-75 3-12*-7 5 4-18*-7 5 5-21*-7 5 6-19*-7 5 9-15*-75 12-22*-75 3-25*-76 9-1 0*-7 6 12-14*-76 8-0 7*-*7 3 8-07*-73 8-23*-73 8-3 0*-*7 3 9-06*-73 9-13*-73 9-20*-73 9-27*-*7 3 10-14*-*7 3 11-18*-*7.3 11-15*-*73 12-13*-*73 1-14*-*74 2-14*-74 3-14*-74 4-19*-*74 30.7{c) 18.5(c) 14.3 12.2 10.9 16.0 10.9 9.5 9.0 9.3 9.5 9.4 9.5 9.3 8.9 8.3 7.7 7.3 6.8 6.8 7.0 8.6 8.9 7.4 10.8 10.9 20.3( 1-) +1.0 6.5 6.5 6.5 6.4 6. 3 ( ) 10.8 c 8 o(c) 8:4(c) 6.3 5.2 3.4 3.8 7.6 5.7 ljr067.8 ljr080.0 lj.084.2 lcr086.3 ljr087.6 ljr082.5 ljr087.6 ljr089.0 ljr089.5 ljr089.2 ljr089.0 lj,089.1 ljr089.0 lcr089.2 lcr089.6 1,090.2 lj,090.8 lj,091.2 11,091.7 1Jr091.7 ljr091.5 lj,089.9 ljr089.6 lj,091.1 11,087.7 lj,087.6 lcr078.2 lj,099.5 1,092.0 lj,092.0 11,092.0 1,092.1 1,092.2 1,087.7 1,,090.5 1,090.1 1,092.2 1,,093.3 1,,095.1 1,,094.7 1,090.9 1,092.8 Rev. 0 Boring/Piezometer B-4, P-4 (cont'd) B-5, P-1 Interval: 288-348 Tonganoxie Sandstone WOLF CREEK TABLE 2.4-32: (continued) Water Level _______ . Depth 5-16-74 4.9 6-07-74 4.5 7-18-74 4.6 8-15-74 4.7 9-12-74 4.2 10-17-74 3.7 11-14-74 3.1 12-19-74 2.8 1-15-*75 2-14-*75 3-12*-*75 4-18-*7 5 5-21-*7 !5 6-19-*75 9-15-*75 12-22*-*75 3-25-*76 9-10-*76 12-14*-*76 8-09*-*73 8-09*-*73 8-2 3*-*7 3 8-30*-*73 9-06*-*73 9-13*-*73 9-20*-*73 9-2 7*-*7 3 10-04*-*73 10-18*-*73 11-15*-*7.3 12-13*-*73 1-14*-*74 2-14*-*74 3-14*-*7 4 4-19*-*7 4 5-16*-*7 4 6-0 7*-*74 7-18*-*74 8-15*-*7 4 9-12*-74 10-1 7*-*7 4 11-14*-74 12-19*-74 2.6 2.6 2.8 3.0 3.8 3.9 4.4 6.8 8.1 8.8 9.1 59. 5 ( -) 4.1 a 73.7 74.8 75.4 75.9 75.9( ) 78.1 c 77.5 77.5 77.6 77.3 77.6 77.8 77.6 77.7 77.7 77.7 78.1 78.0 77.9 77.8 77.6 77.8 Sheet 7 of 42 Water Level E11evation 1,093.6 1,094 .. 0 1,093 *. 9 1,093.8 1,094.3 1,094.8 1,095.4 1,095.7 1,095.9 1,095.9 1,095.7 1,095.5 1,094.7 1,094.6 1,,094.1 1,091.7 1,090.4 1,,089.7 1,,089.4 1,,034.4 1,,089.8 1,,020.2 1,,019.1 1,,018.5 1,,018.0 1,018.0 1,,015.8 1,016.5 1,,016.4 1,,016.3 1,016.6 1,016.3 1,,016.1 1,016.3 1,,016.2 1,016.2 1,016.2 11,015.8 11,015.9 1,016.0 1,016.1 11,016.3 1,016.1 Rev. 0 WOLE' CREEK TABLE 2.4-32 (continued) Water Level Boring/Piezometer -------------------Date Depth B-5, P-1 (cont'd) B-5, P-2 Interval: 86-98 Unnamed 1-15*-75 2-14*-75 3-12*-7 5 4-18*-7 5 5-21*-75 6-19*-7 5 9-15*-7 5 12-22*-75 3-25*-76 9-1 0*-76 12-14*-76 8-09*-73 8-09*-73 8-23*-73 8-30*-73 9-06*-73 9-13*-73 9-20*-73 9-27*-73 10-04*-73 10-18*-7 3 11-15*-73 12-13*-73 1-14*-74 2-14*-74 3-14*-74 4-19*-74 5-16*-74 6-0 7*-7 4 7-18*-74 8-15*-74 9-12*-74 10-17*-74 11-14*-74 12-19*-74 1-15*-75 2-14*-75 3-12*-7 !) 4-18*-7 5 5-21*-7!) 6-19*-7 5 9-15*-7 5 12-22*-75 77.7 77.8 77.6 77.5 77.4 77.6 77.8 77.8 77.8 79.0 78.6 59.0(a) 11.4 53.6 53.5 53.4 53.1 52.9 52.7 52.1 52.1 51.1 49.4 47.8 46.5 46.0 45.9 45.8 45.4 45.7 45.7 45.6 45.5 45.4 45.6 45.5 45.5 45.4 45.4 45.5 45.5 45.9 46.0 Sheet 8 of 4 2 Wa -----------1,,016 *. 2 1,,016 .. 1 1,,016 *. 3 1,,016 *. 4 1,.016 .. 5 1,,016 *. 3 1,,016 *. 1 1,016 .. 1 1,.016 .. 1 1,.014 .. 9 1,.015 .. 3 1,,034 .. 9 1,.082 .. 5 1,.040 .. 3 1,,040 *. 4 1,.040 .. 5 1,.040 .. 8 1,,041 .. 0 1,.041 .. 2 1,.041 .. 8 1,.041 .. 8 1,.042 .. 8 1,,044 *. 5 1,,046 .. 1 1,047 .. 4 1,.047 *. 9 1,,048 *. 0 1,,048 .. 1 1,.048 *. 5 1,.048 *. 2 1,.048 .. 2 1,.048 *. 3 1,.048 *. 4 1,.048 *. 5 1,.048 .. 3 1,.048 *. 4 1,.048 *. 4 1,.048 .. 5 1,.048 *. 5 1,.048 .. 4 1,.048 *. 4 1,.048 .. 0 1,.047 *. 9 Rev. 0 Boring/Piezometer B-5, P-2 (cont'd) B-5, P-3 Interval:: 5-72 Overburden to Toronto B-6, P-1 WOLE' CREEK TABLE 2.4-32 (continued) Water Level Date Depth 3-25-*76 45.9 9-10-*76 48.0 12-14-*76 49.0 8-09-*73 30. 9 ( ) 8-09-*73 17.3 a 8-23-*73 9.6 8-30-*73 10.5 9-06*-*73 12.7 9-13-*73 9.3 9-20-*73 8.7 9-27-*73 0.2 10-04*-*73 0.4 10-18-*73 6.3 ll-15-*73 1.5 12-13*-*73 0.8 2-14*-*74 0.7 3-14*-*74 0.4 4-19-*74 1.7 5-16*-*74 1.4 6-0 7*-*7 4 1.4 7-18-*74 7.2 8-15*-*74 9.9 9-12*-*74 5.9 10-17-*74 6.7 11-14*-*74 1.8 12-19-*74 1.4 l-15-*75 5.9 2-14*-*75 2.7 3-12*-*75 0.7 4-18*-*7.5 1.4 5-21-*75 5.3 6-19*-*7 !:i 1.4 9-15*-*75 25.5 12-22*-*7!:) 25.6 3-25-*76 23.6 9-10-*76 31.9 12-14*-*76 34.3 7-06*-*73 102.4 7-28*-*73 91.5(_) 7-28*-*7 3 92.9 Cl Sheet 9 of 42 Water Level Elevation --------* 1,048 .. 0 1,045 .. 9 1,044 .. 9 l, 0 63 ,, 0 1,076 .. 6 1,084 .. 3 1,083 .. 5 1,081..2 1,084 .. 6 1,085 .. 2 1,,093 .. 7 1,,093 .. 5 1,087 .. 6 1,092 .. 4 1,093 .. 1 1,093 .. 2 1,093 .. 5 1,092 .. 2 1,092 .. 5 1,092 .. 5 1,086 .. 7 1,084 .. 0 1,088 .. 0 1,087 .. 2 1,,092 .. 1 1,,092 .. 5 1,088 .. 0 1,091 .. 2 1,093 .. 2 1,092 .. 5 1,088 .. 6 1,092 .. 5 1,,068 .. 4 1,068 .. 3 l ,, 070" 3 1,,062 .. 0 1 ,, 0 59 .. 6 1,,026 .. 0 1,,036 .. 9 1,,035 .. 5 Rev. () WOLF CREEK TABLE 2.4-32 (continued) Boring/Piezometer B-6, P-1 (cont'd) Interval: 263-333 (262-333) Tonganoxie SandstonE! B-6, P-2 Interval: 83-99 Snyderville Shale to Toronto Limestone DatE! 8-09*-*73 8-23*-*7.3 8-30*-*73 9-06*-*7.3 9-13*-73 9-20*-*73 9-27*-*73 10-0 4*-*7 3 10-18*-*73 11-15*-73 12-13*-7 3 10-1 7*-74 11-14*-74 12-19*-74 1-15*-75 2-14*-7'), 3-12*-75 4-18 *-7 !3 5-21*-7 !). 6-19*-7 9-15*-75 12-22*-75 3-25--76 9-10*-76 12-14--76 4-15--77 6-03--77 8-19--77 11-02--77 4-21--7 8 8-25--7B 4-03--79 7-25--79 7*-0 6--7 3 7-29--73 7*-29--7 3 8-09--73 8*-23--73 8*-3 0--7 3 9*-06--73 9-13--7 3 Water Level Depth 100.7 93.2 93.4 93.5 93.2 93.4( ) 179.1 c 125.5(c) 114.4(c) 97.7 94.0 93.3 93.3 93.5 93.3 93.4 93.4 93.5 93.4 93.6 93.6 93.9 93.8 96.6 96.2 94.4 94.0 93.4 93.3 93.4 94.5 93.8 93.6 24.1 23.2 17.7(a) 30.1 22.9 23.2 23.2 23.0 Sheet 10 of 42 Water Level Elevation ----------** 1,027 .. 7 1,035 .. 2 1,,035 .. 0 11,034 .. 9 11,035 .. 2 11,035 .. 0 949 .. 3 1,002 .. 9 11,014 .. 0 11,030 .. 7 11,034 .. 4 11,035 .. 1 1,,035 .. 1 1,,034 *. 9 1,,035 *. 1 1,035 .. 0 1,,035 .. 0 1,.034 *. 9 1,.035 *. 0 1,.034 *. 8 1,.034 *. 8 1,.034.5 1,.034.6 1,031.8 1,032.2 1,034.0 1,034.4 1,035.0 1,035.1 1,035.0 1,033.9 1,034.6 1,034.8 1,104.3 1,,105.2 1,,110.7 11,098.3 11,10.5.5 11,105.2 11,10.5.2 1,,105.4 Rev. 0 WOLF TABLE 2.4-32 (continued) Sheet 11 of 42 Water Level Water Level Boring/Piezometer Date ----------------Depth ____ E 1 __ B-6, P-2 (cont'd) B-6, P-3 Interval: 5-26 9-20*-*73 10-04*-*73 10-18*-*73 11-15*-*73 12-13*-*73 1-14*-74 2-14*-74 3-14*-74 4-19*-74 5-16*-74 6-07*-74 8-15*-7 4 9-10*-74 10-17*-74 11-14*-74 12-19*-74 1-15--7 !) 2-14*-7 !) 3-12*-7 !:i 4-18*-7!) 5-21*-75 6-19*-7 .5 9-15*-7.5 12-22*-75 3-25*-76 9-10--76 12-14-*76 4-15--77 6-03-*77 8-19--77 11-02--77 4-21-*7 a 8-25--78 4-03-*79 7-25-*79 7-06-*73 7-29-*73 7-29-*7 3 8-09-*73 :S-23-*73 23.1 22.3 23.0 22.8 49.8 60.7 61.6 62.4 63.5 64.2 63.5 65.4 66.0 66.2 66.3 66.2 66.3 66.4 66.3 66.4 66.5 66.8 66.8 67.6 67.4 67.2 70.1 69.8 67.8 67.4 67.3 67.3 67.1 67.9 67.1 67.6 23.4 22.7( .. ) 6.2 a 22.4 22.7 1,,105.3 1,106.1 11,105.4 11,105.6 11,078.6 11,067.7 11,066.8 1,,066.0 1,,064.9 1 ,, 0 64. 2 1,.064.9 1,.063.0 1,.062.4 1,.062.2 1,.062.1 1,.062.2 1,.062.1 1,.062.0 1,062.1 1,062.0 1,061.9 1,061.6 1,06.1.6 1,060.8 1,,061.0 1,06.1.2 1,,05:3.3 1,,058.6 1,,060.6 1,,061.0 1,061.1 11, 0 61. 1 1,061.3 11,060.5 11,061.3 11,060.8 11,105.0 1,.105.7 1,.124.2 1,.106.0 1,.10!).7 *Rev. 0 Boring/Piezometer B-6, P-3 (cont'd) Jackson Park Shale WOLE' CREEK TABLE 2.4-32 (continued) Water Date Depth -----------**------8-30*-*73 22.9 9-0 6*-*7 3 23.1 9-13*-*73 22.8 9-20*-*73 23.0 9-27*-*73 23.1 10-04*-*73 22.3 10-18*-*73 22.8 11-15*-*73 22.5 12-13*-*73 21.4 1-14*-*74 21.5 2-14*-*74 20.8 3-14*-*74 18.7 4-19*-*74 18.8 5-16*-*7 4 17.9 6-0 7*-*7 4 18.8 7-18*-*74 21.1 8-15*-*74 21.7 9-10*-*74 21.1 10-1 7*-*74 21.7 11-14*-*7 4 15.8 12-19*-*74 16.2 1-15*-*75 13.7 2-14*-*75 12.1 3-12*-*7.5 10.9 4-18*-*7.5 8.7 5-2 2*-*7 .5 9.9 6-19*-*7.5 8.6 9-15*-*7.:; 12.9 15.9 3-25*-*76 11.5 9-10*-*76 16.0 12-14*-76 19.9 4-15*-*77 14.4 6-03*-*77 9.5 8-19*-*77 11.9 11-0 2*-*7 7 10.3 4-21*-*7 8 6.7 8-25*-*78 9.9 4-03*-79 10.1 7-25*-79 9.5 Sheet 12 of 42 Water Lev,el __ ____:_E_1 v_a t 1,,105 .. 5 1,,105 .. 3 1,,105 .. 6 1,,105 .. 4 1,,105 .. 3 1,,106 .. 1 1,,105 .. 6 1,105 .. 9 1,107 .. 0 1,106 .. 9 1,107 .. 6 1,,109 .. 7 1,109 .. 6 1,,110 .. 5 1,109 .. 6 1,,107 .. 3 1,106 .. 7 1,,107 .. 3 1,106 .. 7 1,,112 .. 6 1,,113 .. 2 1,,114 .. 7 1,,116 .. 3 1,117 .. 5 1,119 .. 7 1,118 .. 5 1,119 .. 8 1,,115 .. 5 1,112 .. 5 1,116 .. 3 1,,112 .. 4 1,114 .. 0 1,114 .. 0 1,,118 .. 9 1,,116 .. 5 1,,118 .. 1 1,121 .. 6 1,118 .. 4 1,,118 .. 3 1,118 .. 9 WOLF CREEK TABLE 2.4-32 (continued) Sheet 13 of 42 Boring/Piezometer 8-7, P-1 Interval: 145-195 Ireland Sandstone 8-7, P-2 Interval: 79-99 Snyderville Shale to To ron to Limestone B-7, P-3 Interval: 40-50 Kereford Limestone to Heumader Shale 8-8, P-1 Interval:: 44-64 Snyderville Shale to Toronto Limestone DatE! 8-09-73 8-23-*73 8-30-*73 9-0 6-*7 3 9-13-*73 9-20-*73 9-27-*73 10-18-*73 8-09*-*7 3 8-0 9*-*7 3 8-2 3*-*7 3 8-30*-*73 9-06*-*73 9-13*-*73 9-2 0*-*7 3 9-27*-*7 3 10-18*-*73 8-09*-*73 8-09*-*73 8-2 3*-*7 3 8-30*-*7 3 9-06*-*73 9-13*-*7 3 9-20*-*73 9-27*-*73 10-18*-*73 8-09*-*7 3 8-0 9*-*7 3 8-2 3*-*7 3 8-30*-*73 9-06*-73 9-13*-73 9-20*-*73 9-20*-*73 9-27*-*73 10-0 4*-73 10-18*-*7 3 11-15*--7:3 12-14*-73 1-14*-74 2-14*-74 3-14*-74 4-19*-74 Water Level Water Level Depth _____ 37.7(a) 1,060.8 53.9 1,044.6 52.0 1,046.5 55.0 1,043.5 53.4 1,045.1 54.7 1,043.8 54.5 1,044.0 54.7 1,043.8 51.8( t) +0. 9 a' > 52.3 52.3 52.3 52.3 52.5 52.4 52.4 48.3( t) +1.8 a,> 3.2 4.6 5.8 4.2 8.2 10.2 11.7 20.2 ( ) 6.0 a 20.4 20.4 20.6 20.5 20.5 20.5 20.4 20.2 20.3 20.0 19.5 18.6 18.0 17.7 17.6 1,,046.7 1,,099.4 1,,046.2 1,046.2 1,,046.2 1,046.2 1,,046.0 1,,046.1 1,,046.1 1,,050.2 1,,100.3 1,,095.3 1,,093.9 1,,092.7 1,,094.3 1,,090.3 1,,088.3 1,,086.8 1,,047.4 1,,061.6 1,,047.2 1,,047.2 1,,047.0 1,,047.1 1,,047.1 1,,047.1 1,,047.2 1,,047.4 1,,047.3 1,,047.6 1,048.1 1,,049.0 1,,049.6 1,049.9 1,.050.0 Rev. 0 Boring/Piezometer B-8, P-1 ( cont' d) B-8, P-2. Interval: 22-34 Plattsmouth Limestone WOLF CREEK TABLE 2.4-32 (continued) Sheet 14 of 42: Water Water Level DatE! Depth Elevation ' -------------*-* 5-16-*74 17.7 1,049 .. 9 6-07*-*74 17.9 1,,049 .. 7 7-18*-*74 19.3 1,,048 .. 3 8-15*-*74 19.7 1,,047 .. 9 9-10*-*74 19.8 1,,047 .. 8 10-17*-*74 19.6 1.,048 .. 0 11-14*-*7 4 19.1 lj,048 .. 5 12-19*-*74 19.4 1j,048 *. 2 1-15*-75 17.8 1jr049,,8 2-14*-75 17.2 1jr050 .. 4 3-12*-75 16.9 1j.OS0 *. 7 4-18*-75 16.5 1j.051..1 5-22*-75 17.3 1,.050 *. 3 6-19*-75 12.8 1,.054.8 19.9 1,047.7 12-22--7!) 18.9 1,048.7 3-25--76 17.1 1,050.5 9-10--76 21.4 1,046.2 12-14--76 20.4 1,047.2 4-15--77 17.0 1,050.6 8-19--7 7 18.6 1,049.0 11*-03--77 19.1 1,,048.5 8-0 9--7 3 Dry( ) Dry 8-09--73 o. 9 .a 1j,066.7 8*-23--73 13.4 1 l' 0 54

  • 2 8-30--73 14.0 1j,053.6 9*-06--73 14.4 1 l' 0 53. 2 9-13--73 14.5 1 l' 0 53 .1 9-20--73 14.6( ) 1j.053.0 9-27--73 23 .1 'c 1j,044.5 10*-04--73 12.4 1,05!).2 10-18--73 12.2 1j.05!5.4 11-15-*73 12.8 1 l' 0 54. 8 1.2--14-*73 11.5 1,.056.1 1--14-*74 11.5 1,056.1 .2-14-*74 10.7 1,056.9 3-14-*7*4 9.7 1,057.9 4-19-*74 10.0 1,057.6 .5-16-*74 10.2 1,057.4 6--07-*74 10.8 1,056.8 7--18-*74 12.9 1,054.7 13--15-74 14.2 1,053.4 Rev. 0 Boring/Piezometer B-8, P-2 (cont'd) B-8, P-3 Interval: 5-17 Overburden to Heumader Shale WOLI' CREEK TABLE 2.4-32 (continued) Date 9-1 0*-*7 4 10-17*-*74 11-14*-74 12-19*-*74 1-15*-*75 2-14*-75 3-12*-75 4-18*-75 5-22*-7.!], 6-19*-75 9-15*-75 12-22*-7!) 3-25*-76 9-10*-76 12-14*-76 4-15*-77 6-0 3*-7 7 8-19--77 11-03*-77 8-09--73 8-09*-73 8*-23*-73 8-30--73 9*-0 6--7 3 9*-13--7 3 9*-20--7 3 9-27--73 10-04--73 10*-18--73 11*-15--73 12*-14--7 3 1*-14-*74 2*-14-*74 3*-14--74 4-19--7 4 5-16--7 4 6*-07-*74 7--18--74 8-15-*74 9*-10-*74 10-17-*74 11-14-*74 12--19-*7 4 Water Level Depth 10.7 13.2 10.3 11.3 8.3 10.9 7.5 9.3 9.7 9.9 13.3 14.8 14.8 15.7 15.8 3.1 4.8 10.1 4.9 Dry 5.91[a) 9.4 9.7 9.9 10.0 10.1 10.3 7.8 7.8 8.3 7.3 7.3 6.6 5.8 6.2 6.4 7.0 9.0 10.2 7.3 8.8 7.2 7.8 Sheet 15 of 42 Water Level E1E:!vation *---------*---1,,056 .. 9 1,054 .. 4 1,057.3 11,056 .. 3 11,059 .. 3 11,0 56,, 7 11,060 .. 1 1.,058 .. 3 1.,057 *. 9 1 *. 057 *. 7 1 *. 054 .. 3 1 *. 052 *. 8 1 *. 052 *. 8 1 *. 051..9 1 *. 051..8 1 *. 064.5 1,062.8 1,057.5 1 *. 062.7 Dry 1,061.7 1,058.2 1,,057.9 1,057.7 1,,057.6 1,,057.5 1,,057.3 1,,059.8 1,,059.8 1,059.3 1,,060.3 1,060.3 11,061.0 11,061.8 11,061.4 11,061.2 1,060.6 11,058.6 1 *. 057.4 1,060.3 1 *. 058.8 1 *. 060.4 1 *. 059.8 Rev .. 0 Boring/Piezometer B-8, P-3 (cont'd) B-9, P-1 Interval: 56-75 Toronto Limestone WOLE' CHEE:K TABLE 2.4-32 (continued) Water Level Date _______ ,_ Depth 8.3 2-14*-*7.5 6.9 3-12*-*7 :, 4.7 5.2 5-2 2*-*7 5 6.0 5.4 9-15*-*75 10.4 12-2 2*-*7 .5 11.6 3-25*-*76 11.8 9-10*-*76 14.7 12-14*-*76 15.3 4-15*-*77 2.4 6-03*-*77 5.8 8-19*-*77 10.9 11-0 3*-*7 7 1.9 7-0 6*-*7 3 31.9 7-29*-*7 3 31. 5 ( ) 7-29*-*7 3 1. 9 a 8-09*-*73 31.8 8-23*-*73 31.9 8-30*-*73 31.9 9-06*-*73 32.1 9-13*-*7.3 31.9 9-20*-*73 31.9 9-27*-*73 10-04*-*73 32.1( ) 51.8 c 10-18*-*7.3 32.1 11-15*-*7 3 32.2 12-13*-*73 32.0 1-14*-*74 32.3 2-14*-*74 32.1 3-14*-*7 4 31.8 4-19*-*7 4 31.6 5-16*-*7 4 31.3 6-0 7*-*7 4 31.1 7-18*-*74 31.4 8-15*-*74 31.6 9-12*-74 31.3 10-17*-*74 31.6 11-14*-74 31.8 12-19*-7 4 31.7 Sheet 16 of 42 Level ------*--*-* 1,059 .. 3 1,060 .. 7 1,062 .. 9 1,,062 .. 4 1,061 .. 6 1,,062 .. 2 1,057 .. 2 1,,056 .. 0 1,,055 .. 8 1,052 .. 9 1,052 .. 3 1,,065 .. 2 1,,061 .. 8 1,,056 .. 7 1,,065 .. 7 1,,046 .. 1 1,,046 .. 5 1,,076 .. 1 1,,046 .. 2 1.,046 .. 1 1,,046 .. 0 1,045 .. 9 1,046.1 1,,046.1 1,045.9 1,,026.2 1.,045.9 1,045.8 1.,046.0 1,045.7 1,,045.9 1.,046.2 1,,046.4 1,,046.7 1.,046.9 1.,046.6 1,046.4 1.,046 .. 7 1.,046.4 1,,046.2 1,046.3 R.ev. 0 Boring/Piezometer B-9, P-1 (cont'd) B-9, P-2 Interval:: 28-4 0 Plattsmouth LimestonE! CREEK TABLE 2.4-32 (continued) Water Date Depth 31.8 2-14*-*75 31.4 3-12-*7.5 31.1 4-18*-*7 30.6 5-21*-*75 30.7 6-19*-*7 30.6 9-15*-*7 30.9 12-2 2*-*7 5 31.6 3-25*-*76 31.2 9-1 0*-*76 34.4 12-14*-*76 34.4 7-0 6*-*7 3 28. 3 7-29*-*7.3 16.8 ( ) 7-29*-*7.3 8.4 a 8-09*-*7 3 14.1 8-2 3*-*7 .3 13.8 8-3 0*-*7 3 13.8 9-06*-*73 13.7 9-13*-*73 13.4 9-20*-*73 13.4( ') 9-27*-*73 20.0 c 10-04*-*73 14.7 10-18*-*73 14.6 11-15*-*7 3 13.4 12-14*-73 12.6 1-14*-74 12.7 2-14*-*74 12.0 3-14*-*74 11.9 4-19*-*7 4 11.8 5-16*-*7 4, 11.5 6-07*-74 11.8 7-18*-*7 4 12.2 8-15*-*74 12.2 9-12*-74 11.9 10-17*-74 12.0 11-14*-74 11.9 12-19*-*7 4 11.6 1-15*-7 !:0 11.8 2-14*-7!:, 11.4 3-12*-7 !:0 11.2 4-18*-7!) 10.7 5-21*-71) 11.2 Sheet 17 of 42 w*a t1H Level Elevation 1,,046 .. 2 1,,046 .. 6 1,046 .. 9 1,,047 .. 4 1,,047 .. 3 1,,047 .. 4 1,,047 .. 1 1,046 .. 4 1,,046 .. 8 1,049 .. 6 1,,049 .. 6 1,049.7 1,,061 .. 2 1,,069 .. 6 1,,063 .. 9 1,,064 .. 2 1,,064 .. 2 1,,064 .. 3 1,064 .. 6 1,064 .. 6 1,, 0 58 .. 0 1,063 .. 3 1,063 .. 4 1,064 .. 6 1,,065 .. 4 1,,065 .. 3 1,,066 .. 0 1,,066 .. 1 1,066 .. 2 1,,066 .. 5 1,066 .. 2 1,,065 .. 8 1,065 .. 8 1,,066 .. 1 1,,066 .. 0 1,,066 .. 1 1,066 .. 4 1,,066 .. 2 1,,066 .. 6 1,,066 .. 8 1,,067 .. 3 1,,066 .. 8 Rev. 0 CREEK TABLE 2.4-32 (continued) Wa t.er Bo r i ng I I? i e z '.:..:=>n:.:.:.1-=-e-=-t-=-e-=-r _____ _ Dat,e Depth B-9, P-2 (cont'd) B-9, P-3 Interval: 6-21 Overburden to Heumader Shale 6-19*-7 s 9-15*-7 .5 12-22*-7 5 3-2 5*-7 6 9-10*-76 12-14*-76 7-0 6*-7 3 7-2 9*-7 3 7-29*-7 3 8-0 9*-7 3 8-23*-73 8-30*-73 9-0 6*-7 3 9-13*-73 9-20*-73 9-2 7*-7 3 10-0 4*-7 3 10-18*-73 11-15*-7 3 12-13*-73 2-14*-74 3-14*-74 4-19*-7 4 5-16*-7 4 6-0 7*-7 4 7-18*-7 4 8-15*-74 9-12*-74 10-17*-74 11-14*-74 12-19*-7 4 l-15*-7 5 2-14*-75 3-12*-75 4-18*-715 5-21*-715 6-19*-7 5 9-15*-75 12-22*-75 3-25*-76 9-10*-76 12-14*-76 11.5 12.1 11.9 11.5 14.8 14.2 17.8 3. 1 ( ) 2.4 a 3.5 3.7 3.8 3.9 3.6 3.5 1.9 0.8 1.0 1.1 1.8 0.8 0.6 1.2 1.4 1.2 3.7 4.2 2.5 3.5 1.7 1.0 1.3 0.8 0.6 0.3 2.0 0.6 4.0 5.4 5.0 8.3 9.7 Sheet 18 of 42 Water Level Elevation *--------1,,066.5 1,,065.9 1,066.1 1,,066.5 1,063.2 1,063.8 1,060.2 1,,074.9 1,075.6 1,,074.5 1,,074.3 1,074.2 1,074.1 1,074.4 1,074.5 1,076.1 1,077.2 1,077.0 1,,076.9 1,076.2 1,077.2 1,077.4 1,076.8 1,076.6 1,076.8 1,074.3 1,073.8 1,075.5 1,074.5 1,076.3 1,077.0 1,076.7 1,,077.2 1,077.4 1,077.7 1,076.0 1,077.4 1,074.0 1,072.6 1,073.0 1,069.7 1,068.3 Re\/. 0 WOLE' CREE:K TABLE 2.4-32 (continued) Water Level Boring /P e._* z_o_m_e_t_e_r ____ _ Date Depth B-1 0, P*-1 Interval: 40-57 (38-57) Snyderville Shale to Toronto 8-07-*73 8-0 7*-*7 3 8-23*-*7 3 8-30*-*7.3 9-0 6*-*7 .3 9-13*-*73 9-20*-73 9-27*-73 10-0 4*-7 3 10-18*-73 11-15*-73 12-13*-73 1-14*-74 2-14*-74 3-14*-74 4-19--7 4 5-16--74 7-18--74 8-15--74 9-12--74 10-17--74 11-14--74 12*-19--7 4 1*-15--7 3*-13--7 5 4-18--75 5-22--75 6-19--75 9*-15--75 12*-2 2--'E:i 3*-2 5-*7 6 9-10--76 1.2*-14-*76 15-*077 6-03-*77 8*-19-*77 11--04-*77 4-21-*7 n 8--25-*78 4--03-*79 7--2 6-*7 9 29.3(_) 1. 3 a 22.2 19.0 22.1 22.1 22.1 21.8 24.3 21.5 20.8 19.7 18.7 17.7 17.0 17.4 17.6 20.1 20.9 19.4 20.1 19.7 19.8 17.5 15.7 15.7 16.9 17.8 21.0 18.9 16.5 22.2 20.2 16.4 17.1 22.8 19.4 15.3 20.6 16.1 19.0 Sheet 19 of 42: Water Leve1 Elevation *---*---*---** 1,,057 .. 5 1,085 .. 5 l ,, 0 64 "4 1.,067 .. 8 11,064 .. 7 11,064 .. 7 11,064 .. 7 11,065 .. 0 1,,062 .. 5 1,,065 .. 3 1,066.0 1,,067 .. 1 1,.068.1 1,.069.1 1,.069.8 1,.069.4 1,.069.2 1,066.7 1,065.9 1,067.4 1,066.7 1,067.1 1,,067.0 1,,069.3 1,071.1 1.,071.1 11,069.9 11,069.0 11,06!5.8 11,067.9 11,070.3 11,064.6 1,066.6 1 ,, 0 70. 4 1,.069.7 1,064.0 1,.067.4 1,071.5 1,066.2 1,070.7 1,067.8 Rev *. 0 Boring/Piezometer B-10, P*-2 Interval:: 5-28 Heumader Shale to Snyderville Shale TABLE WOLF' 2.4-32. (continued) Water Level Date Depth 8-07-*73 23.6(_) 8-07-*73 3.7 d 8-23-*73 15.3 8-30-*73 15.7 9-06-*73 16.0 9-13-*73 15.7 9-20-*73 15.4 9-27-*73 14.5 10-0 4*-*7 3 13.9 10-18-*73 14.9 11-15*-*73 14.1 12-13*-*7.3 14.5 1-14*-*74 15.1 2-14*-*7 4 13.9 3-14*-*74 14.3 4-19*-*7 *4 15.0 5-16*-*74 14.6 7-18*-*74 16.4 8-15*-*74 15.7 9-12*-74 14.3 10-1 7*-*74 15.1 11-14*-74 14.2 12-19*-74 19.8 1-15*-7 .5 14.3 3-13*-7.5 12.8 4-18*-7 .5 13.0 5-22*-75 13.7 6-19*-7 5 13.9 9-15*-7.5 15.0 12-2 2*-7 5 16.0 3-25*-76 15.3 9-10*-76 18.0 12-14*-76 17.9 4-15*-77 16.8 6-03*-77 19.0 8-19*-77 18.4 11-04*-77 14.7 4-21*-7 8 13.2 8-25*-78 16.8 4-0 3*-7 9 15.0 7-2 6*-7 9 19.2 Sheet 20 of 42 Water Level ____ R ____ , 1,063 ... 2 1,083 .. 1 1,071.5 1,071.1 1,070 .. 8 1,,071..1 1,,071..4 1,072 .. 3 1,,072 .. 9 1,,071 .. 9 1,,072 .. 7 1,072 .. 3 1,071 .. 7 1,,072 .. 9 1,,072 .. 5 1,,071 .. 8 1,,072 .. 2 1,070.4 1,071.1 1,,072.5 1,071.7 1,,072.6 1,,067.0 1,072.5 1,,074.0 1,073.8 1,,073.1 1"072.9 1,,071.8 1,,070 .. 8 1,,071.5 1,,068 .. 8 1,,068 .. 9 1,,070 .. 0 1,,067 .. 8 1,,068 .. 4 1,072 .. 1 1,.073 .. 6 1,.070 *. 0 1,.071..8 1,.067 *. 6 Hev. 0 Boring/Piezometer B-11, P--1 Interval: 178-24 0 (175-240) Robbins Shale to Vinland Shale B-11, P--2: Interval: 18-35 (16-35) Toronto B-11, P-*3 WOLE' CREEK TABLE 2.4-32 (continued) Sheet 21 of 42 8-0 6*-*7 3 8-2 3*-7 3 8-30*-73 9-0 6*-7 3 9-13*-73 9-20*-73 9-27*-7 3 10-04*-73 10-18*-73 11-15*-73 12-13*-73 1-14*-74 2-14*-7 4 3-14*-74 4-19*-74 5-16*-7*1 6-07*-7 4 7-18*-7 4 6-26*-73 8-0 6*-7 3 8-0 6--7 3 8-09--7 3 8-23--73 8-30--7 3 9-06--7 3 9-13--73 9-20--73 9-27--7 3 10-04--73 10-18--73 11-15--73 12-13--73 1-14--74 2-14--74 3-14--74 4-19--7 4 5-16--7 4 6-07--74 7-18--74 7-26--7 3 8*-0 6--7 3 8*-0 6--7] Water Level Depth Piezometer 5.6 Blocked Blocked Blocked Blocked Blocked 5.6 3.6 3.6 2.7 Water ------------is 1,084 .. 4 1,,084 .. 4 1,086 .. 4 1,,086 .. 4 1,.087 .. 3 3.0 1,087.0 2.9 1,087.1 2.5 1,087.5 3.6 1,086.4 3.7 1,086.3 4.1 1,085.9 Piezometer damaged 24.0 5.3 5.6 5.7 5.7 5.3 5.3 4.4 3.4 3.6 3.6 2.7 1,.066.0 1,.084.7 1,091.4 1,.084.7 1,.084.4 1,084.3 1,.084.3 1,.084.7 1,084.7 1,08.5.6 1,086.6 1,086.4 1,086.4 1,087.3 3.0 1,087.0 3.0 1,087.0 2.5 1,087.5 3.5 1,086.5 3.7 1,086.3 4.1 1,085.9 Piezometer damaged 7.5 3. 5 l ) 2.4'a 1,,08:2.5 1,,086.5 1,,087.6 Rev *. 0 Boring/Piezometer B-11, P-3 (cont'd) Interval: 5-13 Overburden to Snyderville Shale B-12, P-1 Interval: 90-192 Ireland Sandstone WOLF TABLE 2.4-32 {continued) Sheet 22 of 42 Water Level Depth WatE>.r Elevation 8-09-*73 8-23-*73 8-30-*7 3 9-06-*73 9-13-*73 9-20-*73 9-27-*73 10-04-*73 10-18-*73 11-15-*73 12-13-*73 1-14-*74 :2-14-*'74 3-14-*74 4-19-*74 !)-16-*'74 6-07-*7 4 7-18-*74 8-08-*73 8-08-*7 3 8-23-*73 8-30-*73 9-06-*73 9-13-*7 3 9-20-*73 9-27-*73 10-04-*73 10-18-*7 3 ll-15-*7 3 12-13-*7 3 1-14-*74 :2-14-*74 3-14-*7 4 4-19-*7 Lj 5-16-*7 LJ 7-18-*74 8-15-*74 9-12-*7 4 10-17-*74 ll-14-*7LJ 12-19-*74 2.8 3.1 3.5 3.8 1.9 2. l ( ) 6.1 c 0.6 1.4 2.2 1.5 1,087.2 1,086.9 1,086.5 1,086.2 1,088.1 1,.087.9 1,.083.9 1,089.4 1,088.6 1,087.8 1,088.5 2.2 1,087.8 2.2 1,087.8 1.2 1,088.8 1.8 1,088.2 2.3 1,087.7 2.2 1,087.8 Piezometer damaged 58.2( ) 51.9 a 58.7 58.8 58.9 58.7 58.8 58.5 58.4 58.6 58.5 58.4 58.5 58.6 58.4 58.4 58.5 59.0 59.1 58.8 58.9 58.9 58.8 1,030.3 1,036.6 1,029.8 1,029.7 1,029.6 1,029.8 1,029.7 1,030.0 1,030.1 1,029.9 1,030.0 1,030.1 1,030.0 1,029.9 1,030.1 1,030.1 1,030.0 1,029.5 1,029.4 1,029.7 1,029.6 1,029.6 1,029.7 0 CREEK TABLE 2.4-32 (continued) Sheet 23 of 42 B o r i n g I lc} e:-=z:.:::o..::.:.m-..:..e-..:..t-=e-=-r ___ _ B-12, P*-1 (cont'd) B-12, P--2 Interval: 41-61 Toronto Limestone Water Level Water Level Da t §: ________ Depth ----*------=E-=-1 t 1-15-*75 3-12-*7 :) 4-18-*75 5-21-*75 6-19-*75 9-15*-*7.5 12-22*-*75 3-25*-*76 9-10*-*76 12-14*-*76 8-08*-*73 8-08-*73 8-23*-7 3 8-30*-*73 9-06*-7 3 9-13*-*73 9-20*-73 9-2 7*-*73 10-18*-73 11-15*-7 3 12-13*-7 3 1-14*-74 2-14*-74 3-14*-74 4-19*-7 4 5-16*-7 4 7-18*-74 8-15*-74 9-12*-7 4 10-17*-74 11-14*-74 12-19*-7 4 3-12*-7 5 4-18*-7 5-21*-75 6-19*-7 .5 9-15*-75 3-25*-76 9-10*-7 6 12-14*-76 58.9 58.7 58.7 58.9 58.8 59.2 59.3 59.2 62.5 Blocked 38. 6 ( -) 1.1 a 39.2 39.4 39.5 39.4 39.4 39.2 39.4 39.3 38.9 39.0 38.8 38.4 38.3 38.2 38.7 38.9 38.7 38.8 38.8 38.8 38.7 38.1 37.7 37.9 37.9 38.8 39.1 38.4 41.4 41.2 1,029 .. 6 1,,029 .. 8 1,029 .. 8 1,,029 .. 6 1,,029 .. 7 1,029 .. 3 1,,029 .. 2 1,,029.3 11,026 .. 0 1,049 .. 9 11,087 .. 4 11,049 .. 3 11,049 .. 1 11,049 .. 0 11,049 .. 1 11,049 .. 1 11,049 .. 3 11,049 .. 1 11,049 .. 2 11,049.6 11,049 .. 5 11,049 .. 7 11,050 .. 1 1,050 .. 2 11,050 .. 3 1,,049 .. 8 1,.049 *. 6 1,,049 .. 8 1,,049.7 1,.049 *. 7 1,.049 *. 7 1,,049 .. 8 1,.050 *. 4 1,.050 *. 8 1,.050 *. 6 1,.050 *. 6 1,.049.7 1,.049.4 1,.050.1 1,047.1 1,047.3 Rev. 0 Boring/Piezometer B-12, P*-2 (cont'd) B-12, P*-3 Interval:: 5-32 Heurnader Shale to Snyderville Shale B-14, P*-1 WOLE' TABLE 2.4-32 (continued) Water Level Depth ----*--*****. 4-15-*7 8 38.4 6-0 3 -*7 8 38.3 8-19-*78 39.2 11-04-*78 39.4 8-08-*73 8.8(-) 8-08-*73 2.4 a 8-23-*73 8.9 8-30-*73 9.8 9-06-*73 10.7 9-13-*73 10.8 9-20-*73 11.0 9-27-*73 11.2 10-0 4-*73 13.6 10-18-*73 11.6 11-15-*73 13.4 12-13-*73 15.7 1-14*-*74 15.5 2-14-*74 15.7 3-14-*7 4 15.6 4-19*-*74 18.4 5-16-*74 23.9 7-18-*74 25.7 8-15*-*74 26.9 9-12*-*74 9.0 10-17*-*74 14.8 11-14*-*74 4.5 12-19*-*74 5.9 1-15*-*7!5 7.7 3-12*-*7 !5 9.2 4-18-*75 10.7 5-21*-*7 !5 11.7 6-19*-*7 !5 11.5 9-15*-*75 13.1 12-2 2*-*7 5 15.2 3-25*-*76 14.2 9-10*-*76 27.3 12-14*-76 8-0 5*-*7 3 115.9( ) 8-05*-73 72.0 a 8-11*-7 3 113.4 8-23*-73 115.1 Sheet 24 of 42: Water Level 1,050 *. 1 1,050 *. 2 1,049 ... 3 1,049 .. 1 1,079 .. 7 1,086 .. 1 1,079 .. 6 1,,078 .. 7 1,077 .. 8 1,077 .. 7 1,,077 .. 5 1,,077 .. 3 1,,074 .. 9 1,,076 .. 9 1,,075 .. 1 1,,072 .. 8 1,,073 .. 0 1,,072 .. 8 1,,072 .. 9 1,,070 .. 1 1,,064 .. 6 1,,062 .. 7 1,,061 .. 6 1,,079 .. 5 1,,073 .. 7 1,,084 .. 0 1,,082 .. 6 1,,080.8 1,,079.3 1,, 0 77 .. 8 1.,076 .. 8 1,,077 .. 0 1.,075 .. 4 1,,073 .. 3 11,074 .. 3 1.,061 .. 2 11,000 .. 5 11,044 .. 4 11,003 .. 0 1.,001 .. 3 WOLF' CREEK TABLE 2.4-32 (continued) Boring /l:J ___ _ B-14, P--1 (cont'd) Interval: 280-290 (271-290) Vinland Shale to Tongano}{ i e Sandstone Date ________ ,. .. ,. 8-30*-*73 9-0 6*-*7 3 9-13*-*7.3 9-20*-*7 .3 9-27*-*7.3 10-0 4*-*7 3 10-18*--73 11-15*-*7 3 1 2-1 4 *-* 7 .3 1-14*-*7 4 2-14*-*74 3-14*-74 4-19*-*7 4 5-16*-*7 4 6-0 7*-7 4 7-18*-7 4 8-15*-7 4 9-12*-74 10-1 7*-74 11-14*-7 4 12-19*-74 1-15*-75 2-14*-7 5 3-12*-7 fj 4-18*-7 !) 5-22*-7 5 6-19*-7 !) 9-15*-75 12-2 2*-7 3-25*-76 9-10*-76 12-14*-76 4-15*-7 7 6-03*-77 8-19*-7 7 11-03*-77 4-21*-78 8-25*-78 4-03*-7 9 7-25*-79 Water Level Depth 114.9 115.1 114.9 114.9 114.7 114.5 114.6 114.5 114.2 114.2 114.2 114.0 114.1 114.1 114.2 114.8 115.0 114.6 114.7 114.6 114.7 114.5 114.4 114.2 114.0 114.3 114.4 115.0 115.1 115.3 117.8 117.7 114.6 114.1 113.9 113.7 113.9 114.5 115.0 115.2 Sheet 25 of 42 Level Elevat:i.on ---------*-1.,001 .. 5 1,,001 .. 3 1,,001 .. 5 1.,001 .. 5 1.,001 .. 7 1,,001 .. 9 1,,001 .. 8 1.,001..9 1.,002 .. 2 1.,002 .. 2 1,002 .. 2 1.,002 .. 4 1,002 .. 3 1.,002 .. 3 1.,002 .. 2 1.,001 .. 6 1,,001 .. 4 1.,001 .. 8 1,.001 .. 7 1.,001 .. 8 1.,001 .. 7 1.,001 .. 9 1,002 .. 0 1,.002 .. 2 1 *. 002 .. 4 1,.002 .. 1 1,,002 .. 0 1,,001 .. 4 1,.001 .. 3 1,,001 .. 1 998 .. 6 998 *. 7 1,,001 .. 8 1,.002.3 1,,002 .. 5 1,.002 .. 7 1,.002 .. 5 1,.001 .. 9 1,.001 .. 4 1,, 001.. 2 Rev. 0 Boring/Piezometer B-14, P*-2 Interval: 85-100 Toronto LimestonE! 'fABLE WOLF CREEK 2.4-32 (continued) Water Level Date Depth 8-05-*73 Piezometer 8-2 3-*7 3 0.6 8-30-*73 0.5 9-0 6*-*73 0.7 9-13*-*7.3 0.6 9-20*-*73 0.6 9-27*--7:3 82.7 10-04*--7:3 82.7 1 0 -1 8 *-* 7 .3 82.7 11-1 5 *-* 7 .3 82.7 12-14*-73 82.5 1-14*-74 82.5 2-14*-7 4 82.4 3-14*-74 82.3 4-19*-74 82.3 5-16*-7 4 82.2 6-0 7*-7 4 82.2 7-18*-7 4 82.2 8-15*-74 82.2 9-12*-7 4 82.2 10-1 7*-7 4 82.3 11-14*-74 82.3 12-19*-7 4 82.3 1-15*-7 82.2 2-14*-75 82.2 3-12*-75 82.2 4-18*-75 82.2 5-2 2*-7 5 82.1 6-19*-7 .5 82.1 9-15*-75 82.2 12-2 2--7 .':> 82.1 3-2 5*-7 6 82.0 9*-1 o--7 6 84.2 12*-14--7 6 84.1 4-15--7 7 80.4 6*-0 3--7 7 80.0 8*-19--7 7 80.1 11*-0 3--7 7 80.1 4*-21--7 B 79.6 8-25--78 79.5 4-03-*79 79.2 7*-25--79 79.0 Sheet 26 of 42: Wa r Level Elevation -------*-* is inoperatiVE! 1,115 .. 8 1,,115 .. 9 1,115 .. 7 1,,115 .. 8 1,,115 .. 8 1,,033 .. 7 1,033.7 1,,033 .. 7 1.,033 .. 7 lj,033 .. 9 lj,033 .. 9 ljr034 .. 0 1j,034.1 lj,034 .. 1 lj,034 .. 2 ljr034 .. 2 lj.034.2 1,034.2 1,.034 *. 2 1,.034 *. 1 1,.034 *. 1 1,.034 .. 1 1,.034.2 1,034.2 1,034.2 1,034.2 1,034.3 1,034.3 1,034.2 1,034.3 1,034.4 1,,032.2 1,,03:2.3 lj,036.0 1,,036.4 1,036.3 1j, 036.3 lj,036.8 1j,036.9 lj,037.2 1,.037.4 Rev. 0 Boring/Piezometer B-14, P-3 Interval:: 7-30 Clay Creek Limestone to Kereford TABLE WOLE' CRE.EK 2.4-32 (continued) Water Level Date Depth --------**--* 8-0 5*-*7 3 15.8( ) 8-0 5*-*7 3 14.2 a 8-23-*73 15.7 8-30-*73 16.0 9-06*-*73 16.3 9-13-*73 16.6 9-20-*73 16.7 9-27-*73 12.9 10-04-*73 11.3 10-18*-*73 11.9 11-15*-*73 13.3 12-14*-*7 3 12.7 1-14*-*74 12.2 2-14*-*7 4 12.3 3-14*-*7 4 10.4 4-19*-*7 4 12.0 5-16*-*7 4 11.8 6-0 7*-*7 4 12.4 7-18*-*74 14.9 8-15*-*74 16.3 9-12*-*7 4 13.0 10-1 7*-74 16.4 11-14*-74 11.9 12-19*-74 14.2 1-15*-75 12.3 2-14*-75 11.8 3-12*-7 5 11.4 4-18*-7 5 10.7 5-22*-7 .5 12.8 6-19*-7 5 10.3 9-15*-75 17.0 12-22*-7 5 18.6 3-2 5*-7 6 16.2 9-10*-76 20.4 12-14*-76 24.2 4-15*-77 19.7 6-0 3*-7 7 12.7 8-19*-77 13.8 11-03*-77 10.1 Sheet 27 of 42 ti.on -----*--* 1,100.6 1,,102.2 1,,100.7 1,100.4 1,,100.1 1,099.8 1,099.7 1,,103.5 1,,105.1 1,104.5 1,,103.1 1,,103.7 1,,104.2 1,,104.0 1.,106.0 1,,104.4 1,,104.6 1,104.0 1,,101.5 1.,100.1 1.,103.4 1,,100.0 1.,104.5 1.,102.2 1.,104.1 1.,104.6 1.,105.0 1.,105.7 1,.103.6 1,,106.1 1.,099.4 1.,097.8 1,,100.2 1,,096.0 1.,092.2 1,,096.7 1¥103.7 1,.102.6 1,.106.3 Rev .. 0 B-14, P-3 (cont'd) B-15, P-1 Interval: 124-154 (122-154) Ireland Sandstone TABLE WOLE' CREEK 2.4-32 (continued) Water LeVE!l Depth 4-21*-*7 8 10.3 8-25*-*7 8 16.9 4-0 3*-*7 9 13.2 7-2 5*-*7 9 12.4 8-04*-73 68.9 ( ) 8-04*-*7 3 56.3 at 8-11*-*73 64.4 8-23*-*7 3 64.8 8-3 0*-7 3 67.9 9-0 6*-*7 3 65.0 9-13*-*73 64.7 9-20*-*73 64.9 9-27*--7:3 64.8 10-0 4*-*7 3 64.6 10-18*-*7 3 64.7 11-15*--73 64.6 12-18*-*73 64.3 1-14*-74 64.3 2-14*-7 4 64.4 3-14*-7 4 64.1 4-19*-7 4 64.3 5-16*-74 64.3 6-07*-74 64.3 7-18*-*7 4 65.1 8-15*-*7 4 65.2 9-12*-7 4 65.0 10-17*-74 65.1 11-14*-*74 65.2 12-19*-*74 65.1 1-15*-*75 64.9 2-14*-*7 5 64.8 3-12*-*75 63.7 4-18*-*75 64.6 5-2 2*-*7 .5 64.9 6-19*-7 .5 64.8 9-15*-*7.5 65.5 12-2 2*-7 5 65.4 3-2 5*-7 6 65.1 9-10*-76 68.2 12-14*-76 68.0 Sheet 28 of 42 WatE=r Lev,el Elevation ------11,106.1 1,,099.5 1,,103.2 1,104.0 1,019.1 11,031.7 11,023.6 11,023.2 1,020.1 1,,023.0 11,023.3 11,023.1 1,023.2 11,023.4 1,023.3 1,023.4 11,023.7 11,023.7 11,023.6 11,023.9 11,023.7 11,023.7 11,023.7 11,022.9 11,022.8 11,023.0 11,022.9 11,022.8 11,022.9 1,,023.1 11,023.2 11,024.3 11,023.4 11,023.1 1,,023.2 11,022 .. 5 11,022.6 11,022.9 11,019.8 11,020.0 Rev. 0 Boring/Piezometer B-15, P-1 (cont'd) B-15, P--2 Interval: 40-80 Toronto Limestone to Unnamed Lawrence 'WOLF CREEK TABLE 2.4-32 (continued) Sheet 29 of 42 Water Level WatEH Dabe Depth .. *-------------4-l5*-T7 65.2 1,,022.8 6-0 3*-*7 7 64.8 11,023 .. 2 8-19*-*77 65.4 1,022 .. 6 11-0 3*-*7 7 65.5 1,022 .. 5 8-0 4*-*7 3 49.4( ) 1,038.6 8-04*-*73 33.7 a 11,054 .. 3 8-ll*-73 48.9 1,039.1 8-2 3*-7 3 51.0 11,037.0 8-30*-7 .3 48.9 1,,039.1 9-0 6*-7 3 49.1 1,038.9 9-13*-73 48.7 1,039.3 9-20*-73 49.0 1,039.0 9-27*-73 48.8 1,,039.2 10-0 4*-7 3 48.6 1,039 .. 4 10-18*-73 48.8 1,039.2 11-15*-7 3 48.4 1,039.6 12-18*-7 3 47.9 1,,040.1 l-14*-7 4 47.7 1,040.3 2-14*-7 4 47.3 1,040.7 3-14*-7 4 47.0 1,041 .. 0 4-19*-7 4 47.0 1,,041.0 5-16*-*7 4 46.7 1,041.3 6-0 7*-*7 4 46.9 1,,041.1 7-18*-*74 47.7 1,,040.3 8-15*-74 47.9 1,,040 .. 1 9-12*-74 47.6 1,040 .. 4 10-17*-74 47.7 1,,040.3 11-14*-74 47.5 1,040.5 12-19*-*74 47.6 1,,040.4 1-15*-*7 .5 47.1 1,,040 .. 9 2-14*-75 48.8 1,,039.2 3-12*-*7 5 46.4 1,041.6 4-18*-*7 .5 46.2 1,,041.8 5-22*-*7 5 46.5 1,041.5 6-19*-*7 5 46.6 1,,041.4 9-15*-*7 .5 47.5 1,,040.5 12-2 2*--75 47.7 1,,040.3 3-2 5*-7 6 47.6 1,,040.4 9-1 0*-*76 50.5 1,037.5 12-14*-*7 6 50.5 1,,037.5 Rev. 0 Boring/Pjezometer B-15, P-2 (cont'd) B-15, P-3 Interval:: (4-29) Heumader Shale to Plattsmouth Limestone CREEK TABLE 2.4-32 (continued) Water Level Date Depth 4-15-*7 7 47.6 6-03-77 50.1 8-19-*77 47.9 11-03-*77 48.1 8-04-*73 17.7(_) 8-04-*7.3 1.8 cl 8-11-*73 5.3 8-23-*7.3 5.4 8-30*-*73 5.6 9-0 6*-*7 3 5.6 9-13*-*7.3 5.7 9-20*--73 5.8 9-2 7*-*73 2.7 10-0 4*-*7 3 2.0 10-18*-*73 2.5 11-1 5 *-* 7 .3 3.4 12-18*-*7 3 3.0 1-14*-*74 3.9 2-14*-*74 3.6 3-14*-*7 4 2.1 4-19*-74 3.1 5-16*-*7 4 3.1 6-07*-7 4 3.6 7-18*-74 5.2 8-15*-*7 4 5.5 9-12*-74 2.8 10-1 7*-7 4 5.6 11-14*-7 4 2.7 12-19*-74 3.7 1-15*-*75 4.2 2-14*-7 5 3.4 3-12*-75 3.1 4-18*-*75 2.2 5-2 2*-*7 5 3.2 6-19*-7 .5 2.0 9-15*-7 .5 5.5 12-2 2*-7 5 7.3 3-25*-76 6.2 9-10*-76 8.5 12-14*-76 10.4 Sheet 30 of 42 Wa Level . __ E_l t 1,040 .. 4 1,037 .. 9 1,,040.1 1,,039 .. 9 1,,070 .. 3 1,086.2 1,,082 .. 7 1,,082 .. 6 1,,082.4 1,,082 .. 4 1,,082 .. 3 1,,082 .. 2 1,,085.3 1,086 .. 0 1,,085.5 1,,084 .. 6 1,,085 .. 0 1,,084 .. 1 1,084 .. 4 1,085 .. 9 lj,084 .. 9 lj,084.9 lj,084 .. 4 lj,082 .. 8 1,,082 .. 5 lj,085 .. 2 lj,082 .. 4 lj,085 .. 3 lj,084 .. 3 lj,083 .. 8 lj,084.6 li,084.9 lj,085 .. 8 lj,084.8 lj,086.0 lj,082 .. 5 lj,080.7 li,08l .. 8 lj,079 .. 5 lj,077 .. 6 Rev *. 0 Boring/Piezometer B-15, P-3 (cont'd) B-16, P-1 Interval: 68-91 (61-91) Amazonia Limestone to Ireland Sandstone B-16, P-2 Interval: 23-37 Toronto Limestone WOLF' CREEK TABLE 2.4-32 (continued) Sheet 31 of 42 Water Level WatEH Level Date Depth ElE;!vation ---*---4*-15--77 9.3 11,078.7 6*-03--77 3.6 11,084.4 8*-19--77 5.2 1,082.8 11*-03--77 2.3 11,08.5.7 6*-27--73 47.0 11,057.7 7-28--7 3 64.5f ) 11,040.2 7*-28--73 17.3 .a 11,087.4 8*-11--73 14.5 11,090.2 8*-23-*73 63.4 11,041.3 8*-30-*73 63.4 11,041.3 9*-06-*73 63.5 11,041.2 9*-13-*73 63.5 11,041.2 '9*-20-*73 Blocked 9*-27-*73 Blocked 10*-04-*73 63.5 11,041.2 10*-18-*7 3 63.8 11,040.9 11*-15-*73 64.8 11,039.9 12*-14-*7 3 64.5 11.040.2 1*-14-*74 63.1 11.041.6 .2*-14-* 7 4 62.6 11.042.1 3*-14-*74 62.0 11.042.7 4*-19-*7 4 57.7 11,047.0 5*-16-*7 4 61.9 1,042.8 Piezometer Blocked 6*-27-*73 36.5 1,.06!3.2 7-28-*73 22.9(a) 1,.081.8 7*-28-*7 3 7.8 1,.096.9 8*-11-*73 14.5 1,090.2 8*-23-*73 15.1 1,089.6 8*-30-*73 15.2 1,089 * .2 9*-06-*73 Blocked 9*-13-*7 3 Blocke*d 9*-20-*73 Blocke*d 9--27-*7 3 Blocked 10*-04-*73 Blocked 10--18-*73 Blocked 11-15-*73 Blocked 12*-14-*73 Blocked 1*-14-*74 13.8 1,090.9 :2*-14-*74 14.1 1,090.6 3--14-*7 4 14.5 1,090.2 4--19-*74 15.4 1,089.3 16.1 1,088.6 Piezometer Blocked .. 0 B-17, P-1 Interval: 186-320 Tonganoxie SandstonE! CRE:EK '!'ABLE 2.4-32 (continued) Water Level Dat12 Depth 8-06*-*7 3 Piezomet1r)i.s 8-06*-73 9.9 a 8-0 9*-7 3 35.5 8-11*-73 39.5 8-23*-73 66.4 8-30*-73 72.7 9-06*-73 86.1 9-13*-73 78.2 9-20*-73 79. 3 ( ) 9-27*-73 132.0 c 10-04*-73 100.9(c) 10-18*-7 3 94.5(c) 11-15*-7 3 85.0 12-13*-73 82.3 1-14*-74 81.5 3-14*-74 80.2 4-19*-74 80.0 5-16*-74 10-17*-74 80.6 11-14*-74 80.4 12-19*-74 80.5 1-15*-75 79.9 2-14*-75 79.6 3-12*-7 5 79.4 4-18*-75 79.2 5-2 2*-7 5 79.3 6-19*-75 79.3 9-15*-7 5 80.2 12-22*-75 79.8 3-2 5*-7 6 79.1 9-10*-76 82.2 12-14*-76 81.7 4-15*-77 78.5 6-03*-77 78.3 8-19*-77 78.6 11-03*-77 78.7 4-21*-78 77.7 8-25*-7 8 78.8 4-03*-79 77.8 7-25*-79 78.1 Sheet 32 of 42 wa LE:*v1el M--------1.,091 .. 3 1.,065 .. 7 1.,061 .. 7 1.,034.8 1.,028 .. 5 1.,015 .. 1 1.,023 .. 0 1.,021..9 969 .. 2 1.,000 .. 3 1.,006 .. 7 1.,016 .. 2 1.,018.9 1.,019 .. 7 1.,021..0 1.,021..2 blocked 1.,020 .. 6 1.,020.8 1.,020.7 1.,021.3 1.,021..6 1.,021..8 1.,022 .. 0 1.,021..9 1.,021..9 1.,021..0 1.,021.4 1.,022 .. 1 1.,019 .. 0 1.,019 .. 5 1.,022 .. 7 1.,022.9 1.,022.6 1.,022 .. 5 1.,023.5 1.,022 .. 4 1.,023.4 1.,023.1 WOU' CRE:EK TABLE 2.4-32 (continued) Sheet 33 of 42 Water Level water LE=vel Date Depth Elevation ---------B-17, P-2 Interval: 65-121 Ireland Sandstone 8-06*-*73 60. 3 (-) 1,,040*9 8-06*-*73 5.4 a 1,095.8 8-09*-73 59.0 1,042.2 8-23*-73 53.1 1,048.1 8-30*-73 53.3 1,047 .. 9 9-06*-73 53.4 1,047.8 9-13*-73 53.4 1,.047.8 9-20*-7 3 53.4 1,047.8 9-27*-7 3 54.7 1,046.5 10-0 4*-7 3 53.3 1,047.9 10-18*-73 53.4 1,047.8 11-15*-73 53.3 1,047.9 12-13*-73 52.8 1,048.4 1-14*-74 52.7 1,048.5 3-14--74 52.6 1,048.6 4-19--74 52.7 1,048.5 5-16--74 52.9 1,048.3 10-17--74 53.6 1,047.6 11-14--74 53.4 1,047.8 12-19--74 53.5 1,047.7 l*-15--75 53.0 1,048.2 52.9 1,048.3 3-12--7 52.7 1;,048.5 4*-18--75 52.8 1,048.4 5-2 2*-*7 53.2 1,048.0 6-19***7 53.2 1,048.0 9-15--75 54.1 1,047.1 12*-2 2-*7 s 53.4 1,047.8 3-25--76 53.3 1,047.9 9*-10--76 56.8 1,044.4 12-14***76 56.1 1,045.1 4-15--77 53.6 1,047.6 6-03-*77 53.6 1,047.6 8-19-*-77 53.8 1,.047.4 11-03-*Tl 53.7 1,047.5 4-21-*78. 53.3 1,047.9 8-25-*78 54.3 1,046.9 4-03-*79 53.2 1,048.2 7-25--*79 53.9 1,049.3 RE:!V. 0 TABLE 2.4-32 (continued) B or i ng I P j_ ________ D a_t Water Level Depth B-17, P--3 Interval: 25-40 Toronto Limestone 8-0 6*-7 3 8-06*-7 3 8-0 9*-7 3 8-23*-73 8-30*-7 3 9-06*-73 9-13*-7 3 9-20*-73 9-27*-7 3 10-0 4*-7 3 10-18*-7 3 11-15*-73 12-13*-7 3 1-14*-74 3-14*-7 4 4-19*-7 4 5-16*-74 6-07*-7 4 7-18*-74 8-15*-7 4 9-12*-7 4 10-1 7*-7 4 11-14*-7 4 12-19*-7 4 1-15*-7 5 2-14*-*7 5 3-12*-7 5 4-18*-75* 5-22*-7 5 6-19*-7 5 9-15*-*7 5 12-22*-7 5* 3-25*-*76 9-1 0*-*76 12-14*-*76 4-15*-*77 6-03*-7 7 8-19*-*7 7 11-03*-*77 4-21*-78 8-25*-78 4-0 3*-7 9 7-25*-7 9 29.6( ) 2.0 a 20.6 21.8 21.9 21.8 21.5 21.4 21.2 19.7 19.6 18.8 18.5 19.0 19.4 20.6 20.7 21.0 21.6 21.3 19.8 19.7 18.6 18.6 18.7 18.9 18.4 19.9 21.4 20.8 20.5 20.6 24.8 24.8 23.8 25.0 24.6 22.4 19.4 21.6 22.4 23.1 22.2 Sheet 34 of 42 Water Elevation 1.,071 .. 6 1.,099 .. 2 1.,080.6 1.,079 .. 4 1.,079 .. 3 1.,079 .. 4 1,,079 .. 7 1.,079 *. 8 1,,080 .. 0 1.,081 .. 5 1,,081 .. 6 1,,082 .. 4 1.,082 .. 7 1.,082 .. 2 1.,081 .. 8 1.,080 .. 6 1.,080 .. 5 1.,080 .. 2 1.,079 .. 6 1.,079 .. 9 1.,081 .. 4 1.,081 .. 5 1.,082 .. 6 1.,082 .. 6 1.,082 .. 5 1.,082 .. 3 1.,082 .. 8 1.,081 .. 3 1.,079.8 1.,080.4 1.,080 .. 7 1.,080 .. 6 1.,076 .. 4 1.,076 .. 4 1,,077 .. 4 1,,076 .. 2 1.,076 .. 6 1,,078 .. 8 1,,081 .. 8 1,,079 .. 6 1.,078.8 1.,078 .. 1 1 *. 079 *. 0 R:ev. 0 B-18, P-1 Interval: 76-100 (74-100) Ireland Sandstone WOLI!' CRE:EK TABLE 2.4-32 (continued) Water Level Da Depth 8*-08--'73 8*-08--73 8*-23*--7 3 8*-3 0*--7 3 9*-06--73 9*-13*--7 3 9*-20*--7 3 9*-27*--73 10*-04*--73 10*-18*--7 3 11*-15*--73 12*-13*--73 1*-14*--7 4 2*-14*--7 4 3*-14*--7 4 4*-19*--7 4 5*-16*--74 7*-18*--7 4 8*-15--7 4 9*-12--74 10*-17*--74 11*-14*--74 12 *-1 9 *--7 4 1*-15*--7 5 2*-14*--7!:> 3*-12--75 4*-18*--75 5*-2 2*--7 !) 6*-19--7 5 9*-15--7 5 12*-22*--7!:> 3*-2 5*--7 6 9*-1 0--7 6 12*-14--76 4*-15--7 7 6*-03*--7 7 8*-19--77 11*-02--77 11.4( ) 0.1 a 11.5 11.5 11.5 11.4 11.4 12.3 11.4 11.5 11.4 11.4 11.5 11.9 11.6 11.7 11.6 11.9 11.7 11.5 11.6 11.8 11.8 11.8 11.9 11.9 11.7 11.8 11.5 11.8 11.9 12.0 14.7 14.5 12.1 11.7 11.5 11.3 Sheet 3.5 of 42 Water Elevation 1,,050.7 1.,062.0 1.,050.6 1,,050.6 1,,050.6 1,,050.7 1,,050.7 1,,049.8 1,,050.7 1,,050.6 1,,050.7 1.,050.7 1.,050.6 1.,050.2 1.,050.5 1.,050.4 1,,050.5 1.,050.2 1.,050.4 1,,050.6 1,,050.5 1.,050.3 1,,050.3 1,,050.3 1.,050.2 1.,050.2 1,,050.4 1.,050.3 1,,050.6 1.,050.3 1.,050.2 1,,050.1 1.,047.4 1.,047.6 1,,050.0 1.,050.4 1.,050.6 1,,050.8 Hev *. 0 WOLF CRE:EK TABLE 2.4*-32 (continued) Water Level Bo r in g I P i e z _ __ Depth B-18, P-2 Interval: 19-35 Snyderville Shale to Toronto Limestone 8*-08***73 8--23*-*73 8--30-*7 3 9--06-*73 9--13---73 9--20-*73 9--27---7 3 10--04*--73 10-18-*7 3 11--15-.. 73 12--13--73 1--14-74 2--14-74 3--14-74 4--19-74 5--16-741 7--18-74 8--15--74 9--12-74 10--17-74 11-*14-74 12-*19-*7 4 1-*15-7 5 2-*14--7 !j, 3-*12-75 4-*18-75 :i-*22-7 5 6-*19-*75 12-*22-75 3-*2 5-7 6 9-*10-76 12-*14-*76 4-*15-*77 6-*03-*7 7 8-19-77 11-0 3-*7 7 1.4 (a) 6.5 7.3 7.2 6.8 6.6 6.5 5.3 5.3 5.4 5.8 6.9 8.5 9.1 9.7 8.8 8.8 8.3 6.4 6.6 6.1 6.5 7.6 8.7 9.9 9.4 9.4 7.2 6.9 7.8 9.9 10.8 11.4 12.0 10.4 8.0 5.0 Sheet 36 of 42 Level *-------------1,060.7 1,.054.8 1,054.9 1,055 *. 5 1,05:>.6 1,056.8 1,056.8 1,056.7 1,056.3 1,055 * .2 1,053.6 1,053.0 1,052.4 1,053.3 1,053.3 1,053.8 l,OS:i.7 1,055.5 1,056.0 1,055t.6 1,053.4 1,052.2 1,052.7 1,052.7 1,054.9 1,055,.2 1,054.3 1,052.2 1,051.3 1,050.7 1,050.1 1,051.7 1,054.1 1,057.1 Hev. 0 Boring/Piezometer B-18, P-3 Interval: !:i-14 Heebner Shale to Snyderville Shale B-20, P-1 Interval: 101-114 Clay Creek Limestone to Jackson Park Shale WOLF ClR.E:EK TABLE 2.4-32 (continued) Sheet 37 of 42 Water Level Level Elevation Da Depth *----------8-08*--73 8-08*--73 8-23*-*73 8-30*--73 9-0 6*-*7 3 9-13*-*73 9-20*-*73 9-27*-*73 10-04*-*73 10-18*-*7 3 11-15*-*73 12-13*-*7 3 1-14*-*74 2-14*-*74 3-14*-*7 4 4-19*-*74 5-16***7 4 10-17***74 11-14*-*74 1.2-19*-*74 1-15*-*7!:1 2-14*-*75 3-12*-*7!5 4-18*-*7 !:1 5-22*-*75 6-19*-*7!:1 9-15*-*7 !:1 12-22***7!:1 8-11*-*73 8-11*-*73 8-2 3*--7 3 8*-30*-*73 9-06*--73 9-13*-*7 3 9-20*--73 9-27*--73 10-04*-*7 3 10-18*-*7 3 11-15*-*73 12-13*-*73 4. 3 ( ) l. 6 a 4.8 4.9 4.9 4.8 4.8 3.9 2.9 4.4 5.4 6.3 6.6 6.6 4.5 6.7 Piezometer 6.6 5.0 5.6 5.7 5.3 6.2 5.7 6.1 3.3 5.8 6.7 Piezometer +2.3la, J 13.1 17.1 19.8 18.3 24.0(c) 4l.3(c) 42.4(c) 42.3(c) 42.5( ) 42.4 c 1,057.8 1,.060.5 1,.057.3 1,.057.2 1,057.2 1,.057.3 1,.057.3 1,058.2 1,.059.2 1,057.7 1,.056.7 1,.05!3.8 1,.055.5 1,.05!).5 1,057.6 1,05!).4 blockE:!d 1,05!3.5 1,057.1 1,.056.5 1,056.4 1,056.8 1,055.9 1,056.4 1,056.0 1,058.8 1,056.3 1,055.4 1,136.8 1,121.4 1,117.4 1,114.7 1,116.2 1,110.5 1,093.2 1,092.1 1,092.2 1,092.0 1,092.1 Rev. 0 Boring/Piezometer B-20, P*-1 (cont'd) B-2 0, P-*2 Interval: 41-81 Spring Branch Limestone to Stull Shale WOLF CHEEK TABLE 2.4-32 (continued) Water Level Date Depth 1-14-*74 2-14-*74 3-14-*74 4-19-*74 5-16-*74 6-07-*74 7-18-74 8-15*-*7*q 9-1 0*-*7 4 10-1 7*-*74 11-14*-*74 12-19*-*74 1-15*-*7!5 2-14*-*75 3-12*-*7!) 4-18*-75 5-21*-7 5 9-15*-7 5 12-22*-71) 3-25*-76 9-10*-76 12-14*-76 4-15*-77 6-0 3*-7 7 8-19*-77 11-03*-77 4-21*-78 8-25*-7!3 4-03*-79 7-25*-79 8-11*-73 8-11--7 3 8-20*-7 3 8-23--73 9-0 6--7 3 9-13--73 9-20--73 9-27--73 10-0 4**-7 3 10-18--73 11*-15--73 12-13***73 42.5 42.5 42.3 42.3 42.4 42.5 42.4 42.5 42.5 42.5 42.5 42.6 42.5 42.5 42.5 42.5 42.4 42.6 42.6 42.5 42.7 45.7 45.4 42.0 42.4 42.5 42.5 41.6 44.8 42.7 43.1 38.6,, b) +2.2\a, 36.3 32.8 37.7 38.3 38.8(c) 56.7 (c) 49.9(c) 42.3( ) 43.9 ,C 41.1 Sheet 38 of 42 Water 1,092 .. 0 1,092 ... 0 1,092.2 1,092 .. 2 1,092 .. 1 1,,092 .. 0 1,092 .. 1 1,,092 .. 0 1,,092 .. 0 1,,092 .. 0 1,,092 .. 0 1,,091 .. 9 11092 .. 0 11092 .. 0 1,,092 .. 0 1,,092 .. 0 11092 .. 1 1,,091 .. 9 1,,091 .. 9 1,.092 .. 0 1,.091 .. 8 1,.088 *. 8 1,089.1 1,.092 *. 5 1,.092 *. 1 1,.092 *. 0 1,.092 *. 0 1,.092 *. 9 1,.089.7 1,091.8 1,091.4 1,09.5.9 1,.136.7 1,098.2 1,,101.7 1,096.8 1,,096.2 1,,095.7 1,,077.8 11084.6 1,,092.2 1,,090.6 1,.093.4 Rev. 0 WOLF CIRE:EK TABLE 2.4-32 (continued) Sheet: 39 of 42 Water Level Wate!r Depth ElE!vation B-20, P-2 (cont'd) 1-14**-74 41.1 1,,093.4 :2-14-*74 40.4 1,,094.1 3-14-*74 39.9 1,,094.6 4-19-*7 4 39.8 1,094.7 5-16-*7 4 39.3 1,,09!).2 6-07-*74 39.5 1,,094.9 7-18-*74 40.0 1,,094.5 8-15***74 39.6 1,,094.9 9-10-*74 41.8 1,092.7 10-1 7-*7 4 39.4 1,,095.1 11-14-*7 4 39.1 1,,09!5.4 1:2-19***7 4 39.0 1,,09!).5 1-15-*7 38.6 1,095.9 38.2 1,,096.3 3*-12***75 37.8 1,,096.7 37.5 1,,097.0 37.6 1,,096.9 37.7 1,,096.8 37.9 1,,096.6 37.1 1,097.4 3-2 5-*7 6 36.3 1,,098.2 9-1 0-*7 6 40.0 1,094.5 1:2-14***76 39.4 1,,095.1 4-15-*77 35.7 1,098.8 6-03-*77 35.8 1,,098.7 8-19-*77 36.4 1,,098.1 l.l-03***77 36.3 1,098.2 4-21-*78 34.3 1,,100.2 8-25-*7B 37.6 1,096.9 4-03-*79 34.9 1,099.6 7-25-*79 35.9 1,,098.6 8-11-*73 12.7 ( ) 1,,121.8 8-11-*7 3 12.0 a 1,122.5 B-20, P-3 8-23-*73 12.6 1,121.9 8-30-*73 13.0 1,,121.5 Interval: 21-29 9-06-73 13.2 1,121.3 9-13-*73 13.0 1,121.5 Doniphan Shale 9-2 0-*7 3 13.3 1,121.2 9-27-*7 3 13.8 1,,120.7 10-04-*73 13.0 1,121.5 10-18-*73 13.4 1,121.1 11-15-*73 13.0 1,,121.5 1:2-13***73 13.0 1,121.5 Rev. 0 Boring/Piezometer B-20, P--3 (cont'd) B-21, P--1. Interval: 74-91 Toronto WOLF CRIE:EK TABLE 2.4-32 (continued) Water Level Date Depth 1-14*-7 4 2-14*-*74 3-14*-74 4-19*-74 5-16*-74 6-07*-74 7-18*-74 8-15*-74 9-12*-74 10-1 7*-7 4 11-14*-7 12-19*-74 1-15*-75 2-14*-7!5 3-12*-75 4-18*-75 5-21*-7!5 6-19*-75 9-15*-7!5 3-25*-76 9-10*-76 12-14*-76 4-15*-77 6-0 3*-7 7 8-19*-77 11-03*-77 4-21*-78 8-25*-78 4-03*-79 7-25*-79 8-1 0*-7 3 8-10*-73 8-23*-73 8-30*-73 9-06*-73 9-13*-73 9-2 0*-7 3 9-27*-7 3 10-04*-73 13.5 13.4 13.1 12.7 12.0 11.9 12.2 12.6 12.7 13.4 13.7 13.7 14.0 13.6 13.0 11.5 11.8 11.5 12.1 14.5 15.8 17.0 18.7 17.1 15.8 14.1 12.9 12.6 14.7 15.5 11.9 62.8( t) +2 .1 a'
  • 51.6 57.5 60.5 61.9 62.9( ) 11.7 a 64.8 Sheet 40 of 42 wa LE:*v*9l Elevation 1 *. 121..0 1,,121..1 1,,121..4 1,,121..8 1,,122 .. 5 1 *. 122 .. 6 1 *. 122 .. 3 1,,121..9 1 *. 121..8 1,,121..1 1 *. 120 .. 8 1 *. 120 *. 8 1,,120 .. 5 1.,120 *. 9 1 *. 121..5 1 *. 123 .. 0 1 *. 122 *. 7 1,,123 .. 0 1,,122 .. 4 1 *. 120 .. 0 1,,118 .. 7 1,,117 .. 5 1 *. 115 .. 8 1,,117 .. 4 1,,118 .. 7 1,,120 *. 4 1 *. 121..6 1,,121..8 1 *. 119 .. 8 1,,119 .. 0 1.,122 .. 6 1.,055 .. 0 1.,119 .. 9 1,,066 .. 2 1,,060 .. 3 1.,057 .. 3 1,,055 .. 9 1.,054 .. 9 1 *. 106 .. 1 1 *. 053 .. 0 Rev. 0 Boring/Piezometer B-21, P*-1 (cont'd) B-21, P-*2 Interval: 48-60 Plattsmouth Limestone WOLJ:.' CREEK TABLE 2.4-32 (continued) Water D a Depth 10-18-*73 11-15*-*73 12-13*-*7 3 1-14*-*74 2-14*-*74 3-14*-*7 4 4-19*-*74 5-16*-*74 6-0 7*-*7 4 7-18*-*74 8-15*-74 11-14*-74 12-19*-74 5-21*-75 6-19*-75 3-25*-76 9-10*-76 12-14*-76 8-1 0*-7 3 8-10*-7:3 8-23--73 8-3 0*-7 3 9-0 6*--7 3 9-13--73 9-20--73 9-27--73 10-04--73 10-18--73 11-15--73 12-13*--73 1-14--7 4 :2-14-*74 .3-14-*7 4 4-19-*7 4 64.3 63.6 63.0 62.7 62.5 62.4 62.6 62.8 62.9 63.1 63.2 63.1 62.9 63.1 62.7 62.6 62.6 62.5 62.5 62.6 62.5 62.9 62.8 63.0 65.8 65.4 Piezometer 1. 3 aJ 8.4 11.0 13.2 15.2 17.0(c) 37.l(c) 37.4(c) 37.6(c) 38. 7 (' ) 38. 5 'c 40.1 40.3 40.1 40.1 Sheet 41 of 42'. Wat<<3r Level Elevation 1,053 .. 5 1,054 .. 2 1,,054 .. 8 1,,055 .. 1 1,,055 .. 3 1,055 .. 4 1,,055 .. 2 1,,055 .. 0 1,,054 .. 9 1,,054 .. 7 1,,054 .. 6 1,,054 .. 7 1,,054 .. 9 1,.054 .. 7 1,,055 .. 1 1,055.2 1,.055 .. 2 1,.055 *. 3 1,.0.55 .. 3 1,.055.2 1,.0.55 *. 3 1,054 *. 9 1,.055.0 1,054.8 1,052.0 1,052.4 is inoperativ*e 1,,116.5 1,109.4 1,,106.8 1,,104.6 1,,10:2.6 1,100.8 1 ,, 080.7 1,,080.4 1,080.2 1,079.1 1,079.3 1,077.7 1,077.5 1,077.7 1,.077.7 Boring/Pjezometer B-21, P-2 (cont'd) B-21, P*-3 Interval: 5-43 Jackson Park Shale to Heumader Shale CREEK TABLE 2.4-32 (continued) Water Level Date Depth 40.1 40.3 Sheet 42 of 42 LE:!V*el l,r077 .. 7 l,r077 .. 5 5-16*-*7*4 6-0 7*-*7 4 7-18*-*74 Piezometer blocked 8-10*-*73 8-10*-73 8-23*-*73 8-30*-73 9-06*-73 9-13*-73 9-20*-73 9-27*-73 10-04*-73 10-18*-73 11-15*-73 12-13*-7.3 1-14*-74 2-14*-74 3-14*-74 4-19*-74 5-16*-74 6-07*-74 7-18*-74 8-15*-74 9-12*-74 10-17--74 11-14*-74 12-19*-7 4 1-15--75 2-14--7 5 3-12--7.5 5-21--7 5 9-15--75 12-22 .. -75 3-25--76 9-10-*76 12-14-*7 6 11.4( ) 3.3 a 11.2 11.3 11.5 11.1 11.5 11.2 11.4 11.9 11.8 12.0 12.6 12.7 12.6 12.3 11.6 12.4 11.6 11.5 11.6 12.1 12.6 12.7 13.2 13.2 13.0 11.8 12.0 11.6 11.7 13.1 13.8 15.9 17.2 11r106 .. 4 1,,114 .. 5 1.,106 .. 6 1,,106 .. 5 1,,106 .. 3 1,,106 .. 7 1,,106 .. 3 1,,106 .. 6 1,,106 .. 4 1,.105 .. 9 1,.106 .. 0 1,.105 .. 8 1,.105 .. 2 1,.105 *. 1 1,.105 *. 2 1,105.5 1,106.2 1,.105.4 1,106.2 1,106.3 1,106.2 1,105.7 1,105.2 1,105.1 l,r104.6 1,104.7 1,rl04.8 l,r106.0 1,rl05.8 l,rl06.2 1,106.1 l,r104.7 1,104.0 1,101.9 1,100.6 Rev. 0 CHEEK TABLE 4-33 Sheet 1 of 15 PIEZOMETER WATER LEVEL READINC:f:) *-P -HS -ESW -LK -* BORINGS Boring/Piezometer P-1, P-1 Interval: 66-82 (65-83) Toronto Limestone P-1, P-2 Interval: 7-48 (2-50) Jackson Park Shale to Plattsmouth Limestone P-3, P-1 Interval: 71-89 (70-90) Toronto Limestone Date 12-21**-73 1-30***74 2-14**-7 4 2-1!:,-*-74 2-20***74 3-03**-74 4-22**-74 5-21**-74 6-2 !:)**-7 4 9-22**-74 10-29**-74 3-11**-75 4-11**-75 12-21**-73 1-30***74 2-14***74 2-1!:,**-74 2-20**-74 3-03**-74 4-22:**-7 4 5-21**-7 4 6-2 5,**-7 4 9-22**-7 4 10-29***74 3-11**-75 4-11***75 12-21**-7 3 Water Level Depth 45.9 47.0 48.1 47.9 47.5> 47.1 48.3 48.7 49.0 48.7 48.6 47.9 48.3 6.0 4.9 5.9 5.3 5.2 9.4 4.4 4.6 4.9 6.3 6.6 4.2 3.9 Water Elevation 1,055.2 1,053.6 1,053.6 1,053.7 1,096.3 1,097.4 1,096.4 1,097.0 1,097.1 1,092.9 1,097.9 1,097.7 1,097.4 1,096.0 1,095.7 1,098.1 1,098.4 5.1 1,108.1 Piezometer damaged Note: Effective interval given in parenthesis following slotted interval if intervals differ. Interval depths reported are to the nearest foot. Ground surface elevations are given on the logs of borings in Section 2. 5. Rev. 0 WOLF TABLE 2.4-33 (continued) Sheet 2 of 15 Boring/Piezometer P-3, P-2 Interval: 6-54 (4-56) Jackson Park Shale to Plattsmouth Limestone P-9, P-1 Interval: 69-80 Toronto Limestone P-9, P-2 Interval: 4-51 Jackson Park Shale to Plattsmouth Limestone Water Level Date Depth Water Elevation , _ ___::.:...;;. _________ ,, 12-21-**73 1-30-*74 2-14-*74 2-15-*74 2-20-*74 3-03-74 4-22-*74 5-21-*7 4 6-25-*7 4 9-22-*74 10-29-* 7 4 3-11-*75 12-21-*73 1-30*-*74 2-08-*74 2-15*-*7*4 2-20*-*7*4 4-22*-*74 5-21*-*74 6-25*-*74 9-22*-*74 10-29*-7 4 3-11*-7.5 4-11*-75 12-21*-73 1-30*-74 2-08*-74 2-14*-74 2-15*-74 2-20--74 4-22--74 5-21-74 6-25--74 9-22--74 10-29--74 Water frozen at ground surface 4.1 8.1 5.0 4.8 4.7 4.7 5.2 8.0 6.9 7.4 4.8 4.5 46.3 47.9 49.2 48.8 48.7 49.6 50.2 50.5 50.5 50.7 49.4 49.8 20.2 7.1 7.2 6.9 11.4 8.8 6.2 6.2 4.6 5.0 41.1 1,109 .. 1 1,105.1 1,108.2 1,108.4 1,108.5 1,108 .. 5 1,108 .. 0 1,105 .. 2 1,106 .. 3 1,105 ... 8 1,108 ... 4 1,108 .. 7 1,058 .. 2 1,,056 .. 6 1,,055 .. 3 1,,055 .. 7 1,,055 .. 8 1,054 .. 9 1,,054 .. 3 1,054 .. 0 1,054 .. 0 1,053.8 1,,055 .. 1 1,.054 .. 7 1,084.3 1,.097 *. 4 1,.097 *. 3 1,.097 *. 6 1,.093 *. 1 1,095.7 1,.098.3 1,.098.3 1,099.9 1,099.5 1,063.4 Hev. 0 WOLF CHEEK TABLE 2.4-33 (continued) Boring I I? ll e..::::* z:...::.o.:....m:....:::e:....:::t:....:::e-=-r ___ _ P-9, P-2 (cont'd) P-lOA, P--1 Interval: 135-155 (134-155) Ireland Sandstone P-lOA, 1?--2 Interval: 71-87 Toronto Limestone P-1 OA, P--3 Interval: 4-52 Jackson Park Shale to Plattsmouth Limestone DatE! Water Level Depth --***------3-11*-*7 :; 5.0 4-11*-*7:> 5.4 12-21*-*73 44.1 1-30*-*74 56.5 2-15*-*74 57.2 2-20*-*74 57.4 3-03*-*74 59.2 4-22*-*74 60.7 5-21*-*74 59.1 6-25*-74 59.B 9-22*-*74 60.0 10-29-74 60.4 3-11*-*7 5 59.6 4-11*-*75 59.7 12-21*-*73 47.6 2-15*-*74 53.0 2-20*-*74 52.5 3-03*-*7 4 52.3 4-22*-74 53.6 5-21*-74 54.3 6-25*-*74 54.9 9-2 2*-*7 4 54.8 10-29*-*74 54.6 3-11*-715 53.8 4-11*-7'!) 54.1 12-21*-73 5.3 1-30*-74 5.0 2-14*-74 5.1 2-15*-74 9.5 2-20*-*74 7.4 3-03*-74 0.9 4-22*-74 3.7 5-21*-7 4 4.0 6-25*-7 4 3.9 9-22*-74 4.6 10-29*-74 4.9 Sheet 3 of 15 WatE:!r Level E1E:!vati.on 1,,099.5 1,,099.1 1,,064.3 1,051.9 1,,051.2 1.,051.0 1,,049.2 1,,047.7 1.,049.3 1.,048.6 1,,048.4 1,,048.0 1.,048.8 1.,048.7 1.,060.8 1,,055.4 1.,055.9 1,,056.1 1,,054.8 1,,054.1 1,,053.5 1.,053.6 1,,053.8 1,,054.6 1,,054.3 1,,103.1 1,,103.4 1,,103.3 1.,098.9 1,,101.0 1,,107.5 1,.104.7 1,,104.4 1,,104.5 1,,103.8 1,,103.5 Hev. 0 WOLF CHEEK TABLE 2.4-33 (continued) Sheet 4 of 15 Boring/Piezometer -------P-lOA, P--3 (cont'd) P-12, P-1 Interval:: 67-83 Toronto Limestone P-12, P--2 Interval: 3-50 Jackson Park Shale to Plattsmouth Limestone P-14, P--1 Interval: 66-83 (65-83) Toronto Limestone P-14, P-2 Interval: 4-49 (3-50) Date 4-11*-*7.5 12-21*-*73 1-30*-*74 2-08*-*74 2-14*-74 2-15*-*74 2-20*-74 3-03*-74 12-21*-73 1-30*-74 2-14*-74 2-15*-74 2-20*-74 10-29*-7 4 3-11*-7 5 4-11*-75 12-21*-73 2-15*-74 2-20*-74 4-22*-74 5-21*-74 6-25*-74 9-22*-74 10-29*-7 4 3-11*-75 4-21*-78 8-25*-7B 4-03*-79 7-25*-79 12-21*-73 1-30*-74 2-14*-74 Water Level Water Level Depth Elevation ------*-3.5 1,004.9 3.3 1,005.1 21.7 1,080.5 55.9 1.,046.3 48.0 1.,054.2 47.1 1.,055.1 48.8 1.,053.4 53.0 1.,049.2 51.0 1.,051.2 Piezometer blocked 8.0 1.,094.2 22.1 1 *. 080.1 8.0 1,,094.2 7.6 1,,094.6 7.4 1,,094.8 Piezometer blocked 8.1 1,,094.1 7.1 1,,095.1 3.5 1,,098.7 Piezometer blocked 49.6 1,,054.3 51.6 1,.052.3 52.1 1,.051.8 52.6 1,.051.3 52.5 1,,051.4 52.6 1,.051.3 52.5 1,.051.4 51.7 1,.052.2 52.0 1,.051.9 48.5 1,.055.4 50.5 1,.053.4 48.4 1,.055.5 48.3 1,.055.6 2.1 1,.101.8 0.8 1,.103.1 2.0 1,101.9 R.E!\l. 0 WOLF CHimK TABLE 2.4-33 (continued) Boring/Piezometer P-14, P*-2 (cont'd) Jackson Park Shale to Plattsmouth Limestone P-20, P*-1 Interval: 71-84 (70-86) Toronto Limestone P-20, P-2 Interval: 4-50 (7-50) Jackson Park Shale to Plattsmouth Limestone Date 2-15-*74 2-20-*74 4-22-*74 5-21--7 4 6-25-*74 9-22-74 10-29-*74 4-11-*75 4-21-*78 8-25*-*78 4-03*-*79 7-25*-*79 12-21*-*73 2-08*-*74 2-14*-* 7 4 2-15*-*74 2-20*-*74 3-03*-*74 4-22*-74 5-21*-*74 9-22*-*74 10-29-74 3-11*-7 5 4-11*-75 12-21*-73 2-08*-74 2-14*-74 2-15*-74 2-20*-74 3-03-74 4-22--74 5-21--74 9-22--74 10-29--74 3-11--75 4-11--75 Water Level Depth 2.0 2.0 3.3 1.8 2.6 4.0 4.6 0.9 1.9 5.8 8.9 5.9 8.7 48.3 50.8 50.5 53.0 50.4 51.2 51.5 51.7 52.0 51.5 51.3 48.8 5.0 4.5 9.7 4.5 4.3 4.4 3.8 3.8 5.1 6.7 3.7 3.2 Sheet 5 of 15 Water Level E14:!Vat:i.on ---------1, 10L 9 1,10L.9 1,100 ... 6 1,102 ... 1 1, 10L 3 1,099 .. 9 1,099 .. 3 1,,103 .. 0 1,102 .. 0 1,098 .. 1 1,095 .. 0 1,,098 .. 0 1J,095 .. 2 1,,058 .. 2 1J,055 .. 7 1J,056 .. 0 1J,053 .. 5 1J,056 .. 1 1,055 .. 3 1J,055 .. 0 1J,054 .. 8 1J,054 .. 5 1J,055 .. 0 11,055 .. 2 11,057 .. 7 1J,10L5 1,102 .. 0 11.096 *. 8 11,102 .. 0 11,102 .. 2 11.102 *. 1 11.102 .. 7 11.102 *. 7 11.101.4 1,.099 *. 8 1,.102.8 1,103.3 Rev .. 0 WOLF CREEK TABLE 2.4-33 (continued) Boring/Piezometer P-32, P*-1 Interval: 66-78 (65-78) Toronto Limestone P-32, P-2 Interval: 4-51 Jackson Park Shale to Plattsmouth Limestone P-36 Interval: 44-47 (41-47) Plattsmouth Limestone Water Level DatE! ---------**** Depth 12-21-*73 45.2 2-08*-*74 49.0 2-14*-*74 47.0 2-15*-*74 48.9 2-20*-74 46.2 3-03*-74 46.8 4-22*-7 4 47.0 5-21*-74 47.7 6-25*-74 48.0 9-22*-74 47.6 10-29*-74 48.9 3-11*-7 5 46.5 4-11--75 46.9 12-21--73 4.1 2-08--74 3.9 2-14--74 4.0 2*-15--74 3.8 2-20--74 3.6 3*-03--74 3.3 4-22--74 3.1 5-21--74 3.6 6-25-*74 4.3 9-22-*74 5.1 10-29--74 6.1 3-11-* 7 2.9 2.9 5-13-*74 41.5 6-28-*74 39.7 7-0 1-*7 4 43.7 7-08-*74 43.3 7-23-*74 42.6 9-11-*74 36.6 9-19-*74 36.8 9-22-74 36.6 9-25-74 37.5 9-29-74 38.0 10-03-74 38.0 10-06-74 36.3 10-29-74 36.8 Sheet 6 of 15 wa Level ------*-* 1,,056 .. 0 1,,052 .. 2 1j,054 .. 2 1j,052 .. 3 1j,055 .. o lj,054 .. 4 1,.054 .. 2 1j.053 *. 5 1j.053.2 1,.053.6 1,.052 *. 3 1,.054. 7 1,054.3 1,097.1 1,,097.3 1,,097.2 1,,097.4 1,097.6 1j,097.9 1,098.1 1j,097.6 1,096.9 1j,096.1 1j,095.1 1,098.3 1,.098.3 1,.065.6 1,.067.4 1,063.4 1,063.:8 1,064.5 1,070.5 1,070.3 1,070.5 1,069.6 1,069.1 1,069.1 1,070.8 1,070.3 Rev. 0 WOLF CHEEK TABLE 2.4-33 (continued) Boring/Piezometer P-36 (cont'd) P-37 Interval: 47-49 (44-50) Plattsmouth Limestone DatE: 3-11-*7.5 4-11-* 75 5-21--7 6-19-*75 7-17-*75 8-12-*75 9-15-*75 10-29--75 11-12-*75 12-22-*75 1-14--76 2-13-*76 3-25-76 5-06-*76 9-10-*76 10-15-*76 11-19-*76 12-14-*76 1-26*-*77 2-09*-*77 5-13*-*74 6-28*-*74 7-01*-*74 7-08*-*74 7-23*-*74 9-11*-*74 9-19*-*74 9-22*-*74 9-25*-*74 9-29*-*7 4 10-0 3*-7 4 10-06*-74 10-29*-*74 3-11*-75 4-11*-75 5-21*-7 5 6-19*-75 7-1 7*-7 5 8-12--75 9-15*-75 10-29*-75 11-12*-7 5 Level Depth 32.3 31.8 30.8 30.2 30.2 29.2 28.8 28.3 28.2 28.1 27.7 27.5 27.3 26.8 29.2 28.9 28.5 28.3 28.2 28.3 41.5 37.5 41.5 40.9 40.2 33.8 33.9 33.8 33.8 34.9 35.0 34.5 33.5 28.4 27.9 26.9 26.3 26.3 25.3 24.9 24.2 24.2 23.6 Sheet 7 of 15 Wat,er E1,evation 1,074 .. 8 1,075 .. 3 1,076 .. 3 1,076 .. 9 1,076 .. 9 1,077 *. 9 1,078 .. 3 1,078 .. 8 1,078 .. 9 1,079 *. 0 1,079 .. 4 1,079 *. 6 1,079 *. 8 1,080 *. 3 1,077.9 1,078.2 1,078.6 1,,078.8 1,,078.9 1,,078.8 1,,065.0 1,,061.0 1,,061.6 1,,062.3 1,,067.5 1,,069.0 1,,074.1 1,,074.6 1,075.6 1,,076.2 1,,076.2 1,,077.2 1,,077.6 1,.078.3 1,.078.3 1,.078.9 Hev. 0 WOLF CREEK TABLE 2.4-33 (continued) Boring/Piezometer P-37 (cont'd) HS-1, P-1 Interval: 30-37 Snyderville Shale to Toronto Limestone HS-1, P*-2 Interval: 3-20 (7-20) to Plattsmouth Limestone HS-3 Interval:: 3-18 Plattsmouth Limestone to Toronto Limestone Date 1-14-**76 2-13-.. 76 .. 76 5-06-.. 76 9-1()-.. 76 .. 76 11-19-.. 76 12-14-.. 76 l-26-.. 77 2-09-.. 77 1-30-*74 2-08-74 3-08-*7 4 4-22-*74 5-26-* 7 4 10-29-* 7 4 3-11--7 4-11-*75 1-30-*74 2-08-*74 3-08-*74 4-22-*74 5-26-* 7 4 6-24-*74 10-29-*74 3-11-* 7 4-11-*75 1-30-*74 2-08-*74 4-22-*74 5-26-*74 6-24*-*74 10-29-*74 3-11*-*75 4-06*-*7.5 Water Level Depth 23.4 23.1 22.9 22.4 24.4 24.4 24.0 23.7 23.6 23.9 13.2 13.6 14.5 15.8 19.0 17.9 13.7 15.5 2.0 2.6 2.5 1.9 2.6 2.1 5.2 2.2 2.2 6.6 7.3 6.6 6.6 7.5 7.2 6.5 6.8 Sheet B of 15 Water Elevation ------*-----1,079 .. 1 1,079 .. 4 1,079 .. 6 1,080 .. 1 1,078 .. 1 1,078 .* 1 1,078 .. 5 1,078 .. 8 1,078 .. 9 1,078 .. 6 1,056 .. 3 1,055 .. 9 1,055 .. 0 1,053 .. 7 1,050 .. 5 1,051..6 1,05*5 .. 8 1,053 .. 8 1,067 .. 5 1,066 ... 9 1,067 ... 0 1,067 ... 6 1,066 ... 9 1,067 ... 4 1,064 .. 3 1,067 ... 3 1,067 ... 3 1,,054 ... 1 1,053 .. 4 1,,054 .. 1 1,,054 ... 1 1,,053 .. 2 1,,053 .. 5 1,,054 .. 2 llr053 .. 9 0

'WOLF CREEK TABLE 2.4-33 (continued) Sheet 9 of 15 Boring/Piezometer HS-5, P*-1 Interval: 24-30 Toronto Limestone HS-5, P-2 Interval: 5-10 ( 4-10) Plattsmouth Limestone HS-8, P--1 Interval: 31-40 Toronto Limestone HS-8, P-*2 Interval: 5-10 Plattsmouth Limestone Date 1-30-*74 2-08-*74 3-08-74 4-22-*74 5-26-*74 6-24-*74 10-29-*74 1-30*-*74 2-08*-*74 3-08-74 4-22*-74 5-26*-*74 6-24*-74 10-29*-74 3-11*-75 4-06*-75 5-21*-75 1-30--74 2-08--74 3-08--74 4-22--74 5-26--74 6-25--74 10-29--74 1*-1 7 --']!!:) 4-0 6--7 5-21*--7 5 1*-3 0*--7 4 2-08*--74 3*-0 8**-7 4 4-22*--74 5-26***74 6-2 5*--7 4 10-29***74 .l-1 7*-*'l 4--06***7S 15--21--*'"l s Water Level Waber Level Depth El1evation ------*---* 13.2 1,055 ... 9 13.1 1,056 ... 0 14.4 1,054 ... 7 15.3 1,053 ... 8 14.8 1,054 ... 3 15.7 1,053 .. 4 10.0 1,059 .. 1 14.7 1,,054 .. 4 16.1 1,,053 .. 0 9.3 1,059 .. 8 7.4 1,061..7 7.7 11,061 .. 4 7.4 11,061 .. 7 7.2 11,061 .. 9 7.6 11,061..5 9.0 1,060.1 3.2 11.065 *. 9 5.8 1,.063 .. 3 Piezometer damaged 12.0 1,058.5 13.0 1,057.5 13.0 1,057.5 14.8 1,055.7 16.5 1,054.0 17.7 1,05:2.8 15.8 1,054.7 13.5 1,,057.0 11.8 1,058.7 13.4 1,,057.1 18.3 1,052.2 3.7 1,066.8 4.5 1,066.0 4.2 11,066.3 5.0 1,065.5 5.2 11.065.3 5.6 11.064.9 7.8 1,.062.7 7.0 1,.063.5 3.4 1,.067.1 3.2 1,067.3 6.7 1,063.:3 0 WOLF CHEEK TABLE 2.4-33 (continued) 10 of 1!:, Boring/Piezometer HS-10, P-1 Interval: 43-50 Toronto Limestone HS-10, P*-2 Interval: 17-25 Plattsmouth Limestone HS-20, 1?-*1 Interval: 35-43 Toronto Limestone HS-20, P-*2 Interval: 2-18 Overburden to Plattsmouth Limestone Date 2-0B*-*74 3-08***74 4-22***74 5-23-*7 4 6-24***7 4 10-29***74 3-12-*7!) 4-0 6-* 7 4-12-*7!) 5-21-*7 5 2-08-*74 3-08-*74 4-22-*74 5-23-*7 4 6-24-*74 10-29-*74 4-06-*75 4-12*-*75 5-21*-*7.5 2-08*-*74 3-08*-*7 4 4-22*-*74 5-26*-*74 6-25*-*74 10-29*-74 3-11*-7!) 2-08*-7 4 3-08*-74 4-22*-74 5-26*-7 4 6-25*-74 10-29*-74 3-11--75 Water Level Water L1=ve.l Elevation Depth 32.5 28.6 27.1 27.1 27.7 30.5 26.7 26.5 26.4 29.2 20.2 24.5 23.1 22.4 22.1 15.1 15.1 15.7 15.8 19.0 9.1 10.4 11.3 7.0 7.3 *-------------1,045 .. 2 1,049 .. 1 1,050 .. 6 1,050 .. 6 1,050 .. 0 1,047 .. 2 1,051..0 1,05,1..2 1,051..3 1,048 .. 1 1,057 .. 5 1,053 .. 2 1,054 .. 6 1,055 .. 3 1,055 .. 6 1,062 *. 6 1,062 .. 6 1,062 .. 0 1,,061..9 1,,058 .. 7 Frozen 1,073.8 1,072 .. 5 lj,071..6 1,075 .. 9 lj,075 .. 6 Piezometer blocked 3.8 2.7 2.9 2.8 2.7 2.8 1,.079 .. 1 1,.080 *. 2 1,.080 *. 0 1,080 .. 1 1,080.2 1,080.1 Piezometer blocked RE?:V .. 0 WOLF' CREEK TABLE 2.4-33 (continued) 11 of 15 ______ __ HS-29, P-1 Interval: 61-67 (57-68) Toronto Limestone HS-29, P*-2 Interval: 5-44 (4-44) Overburden Heumader Shale to Plattsmouth Date 2-1 !:,---7 4 3-09**-74 4-22**-74 5-27**-7 4 6-24**-74 10-29**-74 3-12***75 4-06***75 4-12***75 6-19***75 7-17***75 8-12***7.5 9-15-**75 10-29***75 11-12***75 12-22***7.5 1-14***76 2-13***76 3-25***76 5-06-**76 9-10-**76 10-15-**76 11-19-**76 12-14-**76 1-26--*77 2-09-**77 2-15--*74 3-09-**74 4-22-*74 5-27-*74 6-24--74 10-29-* 7 4 3-12-*75 4-06-*75 4-12-*75 6-19--75 7-17-*75 8-12-*7.5 Water Level Water L*evel Depth Elevation 41. 5* 1,049.9 42.0 1,049.4 41.1 39.9 41.5 1,049.9 Piezometer blocked 41.3 41.2 41.2 40.6 1,050.8 40.7 1,050.7 40.7 1,050.7 40.7 1,050.7 41.1 1,0:>0.3 41.2 1,0:>0 .* 2 46.6 1,044 .* 8 40.8 1,o:;o .* 6 41.5 1,049 .. 9 41.6 1,049 .. 8 41.1 1,050 .. 3 47.6 1,043 .* 8 43.1 1,048 .. 3 42.7 1,048 .. 7 42.9 1,048 .. 5 43.0 1,048 .. 4 43.2 1,048 .. 2 16.7 1,074 .. 7 16.3 1,075 .. 1 15.4 1,076 .. 0 15.2 1,076 .. 2 14.9 1,076 .. 5 18.6 1,072 .. 8 10.5 1,080 .. 9 10.4 1,081..0 10.8 1,080 .. 6 10.1 1,081..3 10.8 1,080.,,6 13.9 1,077 ... 5 17.5 1,073.,9 Rev. I) INOLF CHEEK TABLE 2.4-3J (continued) Sheet 12 of 1!:1 Boring/Piezometer HS-29, P-2 (cont'd) HSA-1, P*-1 Interval: 15-22 Toronto Limestone HSA-1, P*-2 Interval: 3-12 Overburden ESW-10 Interval: 42-50 (41-50) Plattsmouth Limestone DatE! 10-29 ***7 5 11-12***7.5 12-22:***75 1-14***76 2-13***76 3-25***76 5-06***76 9-10***76 10-1!5***76 11-19***76 12-14***76 l-26***77 2-09***77 l-30***74 2-08***74 3-08***74 4-22-**74 5-27***74 6-24-**74 10-29***7 4 3-11***7.5 l-30***74 2-0B**-74 9-29***74 :L0-0 3***7 4 10-0 6***7 4 10-29***74 3-12-**75 4-0 6***7 .5 4-12-**7.5 5-21-**75 6-19***75 7-17-**7.5 8-12-**7'.5 Water Level Depth 20.3 21.1 26.1 29.1 31.8 35.6 38.7 46.2 46.3 46.5 46.4 Water L1evel Elevation *------------1,071.1 1,070.3 1,065.3 1,062.3 1,0:i9.6 1,055.8 1,052.7 1,045.2 1,045.1 1,044.9 1,045.0 Piezometer dry Piezometer dry 3.9 5.0 5.0 4.6 5.0 5.4 6.7 1,0:i0.1 1,049 .* 0 1,049.0 1,049 .* 4 1,049 .* 0 1,048 .* 6 1,047 .* 3 Piezometer blocked 5.3 1,048.7 Piezometer blocked 36.1 1,0:i9 .. 3 36.7 1,058 .. 7 34.6 1,060 .* 8 32.3 1,063 .* 1 22.2 1,073 .* 2 21.6 1,073 .* 8 21.5 1,073 .* 9 20.7 1,074 .. 7 20.2 1,075 .. 2 20.2 1,075 .* 2 19.7 1,075 .. 7 19.7 1,075 .. 7 Rev. 0 WOLF CRI<.:gK TABLE 2.4-33 (continued) Sheet 13 of 15 Boring/Piezometer ESW-10 (cont'd) 3 Interval: 36-44 (35-44) Plattsmouth Limestone LK-3, P-1 Interval: 3.0-7.0 Brown Silty Clay LK-3, P-2 Interval: 81.5-96.5 Toronto Limestone Water Level Date Depth Water LE!Ve1 Ehwation 1-14*-*76 2-13*-76 3-25*-76 5-06*-76 9-10*-76 10-15*-76 11-19*-76 12-14--7 6 1-26--7 7 2-09--77 9-29--7 4 10-29--74 2-2 o--7 3-12--75 4-06-*751 5-21-*7 !) 6-19-*75 7-17-*7 !:i :S-12-*7 !:i 9-15-*7!) 1-3 0-*7 4 1-31-*74 4-13-*74 5-22-*74 1-31-74 4-13-74 !5-2 2-7 4 6-25-7Lll 10-29-74 19.9 20.0 20.3 20.2 20.2 20.3 19.8 21.5 22.0 21.8 21.9 21.9 22.2 1,r075.5 1,.075.1 1,,075.2 1,,075.2 1,,075.1 1,,075.6 1,.073.9 1,.073.4 1,073.6 1,073.5 1,073.5 1,073.2 Piezometer dry 43.5 1,.049.3 43.3 43.3 43.2 43.2 34.5 34.8 34.8 1,,049.5 1,049.5 1,,049.6 1,,049.6 1 f 0 58. 3 l,,OSB.O 1,.ose.o 1,.057.7 35.1 Piezometer damaged Piezometer Piezom*eter Piezom,eter Piezometer Piezometer 49.4 49.8 49.3 49.5 44.1 50.0 50.9 dr*y dry dry dry dry 1,043.1 1,042.7 1,043.2 1,043.0 1,048.4 1,042.!5 1,041.6 Rev. 0 WOLF CHEEK TABLE 2.4-33 (continued) Sheet 14 of 15 Boring/Piezometer LK-3C Interval: 1.5-5.0 Brown Silty Clay LK-3D Interval: 10.5-14.0 Jackson Park Sandstone LK-6A Interval: 2.0-10.0 Plattsmouth Limestone LK-7, P-*1 Interval: 5.0-10.7 Toronto Limestone LK-7, P-2 Interval: 33.0-91.7 Unnamed Lawrence LK-8 Interval: 8.6-24.6 Silty Clay (Alluvium) Date _____ N_O .. M 2-09*-*74 4-13*-74 5-2 2*-7 4 6-25*-74 10-29*-74 2-09*-74 4-13*-74 5-22*-74 6-25*-74 10-29*-711 1-30*-74 2-0 9--7 4 4-13--74 5-21--7 4 10-29--74 4-15--77 6-03--77 8-19--77 11-03--77 4-21*--78 8-2 5*--7 8 4-03*-*79 7-25*--79 1-28*--7 4 2-09*-*74 4-13--*7 4 5-22--*74 10-3 0--*7 4 1-28--*74 :2-09--*74 4-13--*74 5-21--*7 4 10-30---74 1-30---74 2-0 9*--7 4 4-13--74 4 10-30--74 Water Level Water Lev,eJ Depth ElE=vation ---------M----*-1.7 14,073 .. 1 1.3 14,073 .. 5 2.5 14,072 .. 3 3.3 14,071 .. 5 5.1 1,069 *. 7 Ground surface 1,.070 *. 7 Ground surface 1,.070 *. 7 1.5 1,.069.2 2.0 1,068.7 3.3 1,067.4 1.3 1,056.0 2.3 1,055.0 2.0 1,055.3 2.7 1,054.6 3.7 1,053.6 1.6 1,,05'5.7 2.2 1,,05.5.1 3.1 1,,054.2 0.5 1,,056.8 1.5 1,,05.5.8 3.4 1,,053.9 1.4 2.2 3.0 1,050.0 4.1 1,048.9 5.2 1,047.8 5.4 1,047.6 7.7 34.0 1,019.0 34.1 1,018.9 33.0 1,020.0 37.5 35.3 1,017.7 8.7 1,015.0 9.4 1,014.3 10.9 1,012.8 11.5 1,012.2 11.8 1,011.9 0 WOLF CHEEK TABLE 2.4-33 (continued) Sheet 15 of 15 B or i ng I ___ _ Date LK-9 Interval: 3.0-6.0 Brown Silty Clay LK-10 Interval: 2.0-5.0 Silty Clay 1-30--74 2-09-*74 4-13-*74 5-22-*74 10-30-*74 4-13-*74 5-09-74 5-22-*74 11-03-*77 4-21*-*78 8-25*-*78 4-03*-*79 Water Level Wat<er Level Depth El,evation -------*R** 4.6 1,069 *. 2 5.4 1,068 *. 4 5.8 1,068 .. 0 5.8 1,068 *. 0 5.9 1,067 *. 9 2.4 1,095 *. 2 2.4 1,095 *. 2 2.4 1,095.2 0.9 1,096.7 1.7 1,,095.9 Piezometer dry 1.3 Rev. 0 WOLF' CREEK TABLE 2 .. 4-*34 PERMEABILITIES OF ROCK UNITS BY DEPTH (a,b) Permeability (em/sec) 0 -20 Feet______________ Greater ______ _ Weighted (e) Weighted (e) Rock Units(c) Alluvium Doni ph an Shale Spring Br*anch Limestone Stull Shale Clay Creek Limestone Jackson Park Shale Heumader Shale Plattsmouth Limestone Heebner Shale Leavenworth LimestonE? Snyderville Shale Toronto Limestone ---Unnamed Lawrence Shale Amazonia Limestone Ireland Sandstone Robbins Shale Aver e r a9. e 3xl0-5 2xlo-5 to 4xlo-5 __ (d) (d) 3xlo-7 to 7xlo-5 (d) 4xlo-5 5xl0 -7 to 4xlo-6 3xlo.:..7 to 3xlo-5 8xlo-7 4xlo-6 to 2xlo-*4 2xl0-6 lxlo-6 to 4xl0-6 4xl0-7 iJ to 4xl 0-6 6xlo-7 lxlo-6 iJ to 6xlo-*5 2xl0-6 3xlo-6 (d) (d) 4xlo-6 (d) (d) lxlo-7 ----------------*-(d) (d) (d) 3xlo**? to 4xlo***6 9xl0 --7 to lxlo**S SxlO ***7 to Hxlo-*6 lxlO ***7 to 3xl0 --5 iJ to 2xl0 --7 2xl0 --7 to 4xl0 -*7 iJ to 9xlo**"7 iJ to :ixl 0 --6 iJ to 2xlo-*5 iJ to 3x 1 0 -*S iJ to 2x l 0 -*S to 1 xl 0 -* 7 aTypical permeabilities for units below the Robbins Shale are presented in Table 2.4-28. bNumbers refer to the depths below ground surface for which the indicated meability values are valid. Permeabilities were measured by field falling head permeameter tests and by water pressure tests. cLithologic descriptions are presented in Table 2.4-28. dUnit not penetrated at this depth in the test borings. eWeighted averages were calculated from permeability test data by summing over the thickness of each formation, the product of the permeability, and the ness over which it was applicable. Then the sum was divided by the formation thickness. iJ Represents "no take" during test. 0 TABLE 2. 4-35 DETAILS OF TANKS POSTULATED TO RUPTURE IN ACCIDENT ANALYSIS FOR WOLF CREEK GENERATING STATION(a) Spent Resin Boron Recycle Storage Tank Holdup (Primary) (A OR B) Location In Radwaste In Radwaste Building Building Elevation of Bottom Slab (ft above msl) 1,071.5 1,071.5 Diameter (ft) 7.0 20.0 Filled Height (ft) 7.3 19.1 Volume of Liquid Contents (gal) 2,095.0 44,800 Volume of Liquid Contents (ml) 7.929 X 106 1.696 X 108 Curie Content for Radionuclides Radionuclide Half-Life (days) H-3 (b) 4,478. Negligible 5.92 X 102 Mn-54 303., 2.91 --l 1.12 10 -3 X lU-X 102 -2 Co-58 71 .. 3 6 .. 10 X J * .JV X 10 Co-60 1,924.9 2.56 X 102 7.37 X 10-3 sr-89 52.0 9.80 () X 10-9.67 X 10 -3 Sr-90 10,263.5 l. 35 x* 10° 3.08 X 10-4 Nb-95 35.2 3.00 X 10° l. 75 X 10-4 Zr-95 65.0 2.12 X 10° l. 99 X 10-4 I-131 8.07 1.17 X 103 3.99 X 10° Cs-134 74 8. 8 l. 78 X 103 9.29 X 10° Cs-137 11,099.9 l. 48 X 103 6.75 X 1 o0 Ba-140 12.8 l. 63 X 10° 4.05 X 10-3 aFrom Standard Plant FSAR Table 11.1-6. Refueling Water Storase Tank Outside; between Radwaste Building and the Turbine-Reactor Com lex 1,095.0 40.0 42.5 400,000 1.514 X 109 3.79 X 103 6.99 10 -6 X -4 3.36 X 10 4.58 X l0-5 -5 5.92 X 10 l. 92 X 10 -6 l. 31 X 10-6 l. 25 X 10-6 2.34 X 10-2 l. 39 X 10-2 l. 01 X lD-2 2.56 X 10-5 bTritium inventories in the tanks are based on an assumed tritium conce tration of 3.5 in the primary c olant which is applicabl value of given by NUREG-0 Chapter 1 of Standard Plant FSAR. only for plants with maximum recyc This compares with the 17 which is applicable for plants w th moderate recycling. (See Rev. 0 0 t"' l"l:j CJ ?:l tXJ t!j WOLF CHEEK 2.4-36 PARAMETER VALUES USED IN MODELING GROUND-WATER TRANSPORT 01' RllDIONUCLIDES FOLLOWING POSTULATED OF RADWASTE 'l'ANKS AT WOLF CREEK GENERATING STATION Origin Spent Resi:n Storage Tank (Primary) or _________________ Tank Destination Direction from origin Distance (em) along flow path to destination (discharge point) Average hydraulic gradient, i Horizontal permBability Total porosity, n Effective porosity, ne Dispersion coBfficients (cm2/day) Total concentra1:ion of cations in ground water (rneq/ml), cca Cation exchanqe capacity (meq/g), Q Equilibrium exchange constants, E Co-Ca Sr-Ca Cs-Ca Initial dimensions of slug in formation (em) X 0 z 0 Cooling Lake 19,507 0.0195 17.3 0.15 0.12 0.58 0.58 ---IJ 1. Ox10 0.034 0.061 2. 10 1. 01 6.30 375.3* ( "1042) 375.3* ("I 042) 375.3* ("I 042) 'I'ributary to Wolf Creek 74,676 0.0210 17.3 0.15 0.12 0.58 0.58 -6 1. Ox10 0.034 0 .. 061 2 .. 10 1 .. 01 6 .. 30 375 .. 3* (1042) 375 .. 3* (1042) 375 .. 3* ( 1042) Refueling Water ___ Cooling Lake 23,470 0.0162 17.3 0.15 o. 12 0.58 0.58 -6 1.0x10 0.034 0.061 2.10 1. 01 6.30 2,878 2,878 1,219 Tributary to .Wolf Creek 80,772 o .. 0194 17.3 o *. 15 o. 12 o.58 0.58 1. Ox1 0 --6 0.034 o. 06"1 2. 10 1.01 6.30 2,878 2,878 1 '219 *Dimensions in parentheses refer to the boron recycle holdup tank, while those without paren1:heses refer to the resin storage tank (Primary), 0 WOLF CREEK TABLE 2.4-37 RESULTS OF COMPUTER SIMULATION A. POSTULATED RUPTURE OF THE SPENT RESIN STORAGE TANK (PRIMARY)

At Nearest Point on the Cooling Lake At Nearest Point On Tributary To Wolf Creek Maximum Permissible Concentration Radionuclide Cmax(a) tmax(b) Cmax(a) tmax(b) In 10 CFR 20, Appendix B, Table II For Unrestricted Areas (Ci/ml) H-3(e) --(d) --(d) --(d) --(d) 1 x 10-3 Mn-54 4.4 x 10-7 6.93 x 103 6.2 x 10 -25 2.47 x 10 4 1 x 10-4 Co-58(c) < 10-50 4.1 x 105 < 10-50 1.4 x 106 1 x 10-4 Co-60(c) < 10-50 3.96 x 105 < 10-50 1.41 x 106 5 x 10-5 Sr-89(c) < 10-50 2.0 x 105 < 10-50 7.0 x 105 3 x 10-6 Sr-90(c) 2.9 x 10-7 1.95 x 105 3.6 x 10-22 6.95 x 105 3 x 10-7 Nb-95 < 10-50 6.88 x 103 < 10-50 2.46 x 104 1 x 10-4 Zr-95 2.3 x 10-33 6.90 x 103 < 10-50 2.46 x 104 6 x 10-5 I-131 < 10-50 6.80 x 103 < 10-50 2.5 x 104 3 x 10-7 Cs-134(c) < 10-50 1.2 x 106 < 10-50 4.3 x 106 9 x 10-6 Cs-137(c) 1.6 x 10-30 1.18 x 106 < 10-50 4.20 x 106 2 x 10-5 Ba-140 < 10-50 6.83 x 103 < 10-50 2.5 x 104 3 x 10-5 acmax = peak concentration in Ci/ml at specified discharge point. Btmax = time of peak concentration, in days after occurrence of postulated rupture. CCation exchange hold-back included in simulation. DPresent in tank only in negligible amounts. ETritium concentrations at tanks are based on an assumed tritium concentration of 3.5 Ci/gm in the primary coolant which is applicable only for plants with maximum recycling; this compares with the value of 1 Ci/gm for tritium in the reactor coolant given by NUREG-0017 applicable for plants with moderate recycling. (See Chapter 11 of Standard Plant FSAR.)

Rev. 14 WOLF CREEK TABLE 2.4-37 (sheet 2) B. POSTULATED RUPTURE OF THE BORON RECYCLE HOLDUP TANK (A OR B) At Nearest Point on the Cooling Lake At Nearest Point On Tributary To Wolf Creek Maximum Permissible Concentration Radionuclide Cmax(a) tmax(b) Cmax(a) tmax(b) In 10 CFR 20, Appendix B, Table II For Unrestricted Areas (Ci/ml) H-3(e) 1.21 x 10-0 6.85 x 103 7.7 x 10-2 2.46 x 104 1 x 10-3 Mn-54 1.1 x 10-12 6.81 x 103 2.4 x 10-30 2.46 x 104 1 x 10-4 Co-58(c) < 10-50 4.1 x 105 < 10-50 1.4 x 106 1 x 10-4 Co-60(c) < 10-50 3.90 x 105 < 10-50 1.41 x 106 5 x 10-5 Sr-89(c) < 10-50 2.0 x 105 < 10-50 7.0 x 105 3 x 10-6 Sr-90(c) 4.1 x 10-12 1.92 x 105 7.8 x 10-27 6.93 x 105 3 x 10-7 Nb-95 < 10-50 6.76 x 103 < 10-50 2.45 x 104 1 x 10-4 Zr-95 3.8 x 10-38 6.79 x 103 < 10-50 2.45 x 104 6 x 10-5 I-131 < 10-50 6.67 x 103 < 10-50 2.5 x 104 3 x 10-7 Cs-134(c) < 10-50 1.2 x 106 < 10-50 4.3 x 106 9 x 10-6 Cs-137(c) 1.3 x 10-33 1.16 x 106 < 10-50 4.19 x 106 2 x 10-5 Ba-140 < 10-50 6.9 x 103 < 10-50 2.5 x 104 3 x 10-5

C. POSTULATED RUPTURE OF THE REFUELING WATER STORAGE TANK H-3(e) 5.7 x 10-1 9.56 x 103 3.0 x 10-2 2.85 x 103 1 x 10-3 Co-60(c) < 10-50 5.42 x 105 < 10-50 1.63 x 106 5 x 10-5 Sr-90(c) 1.6 x 10-17 2.68 x 105 3.3 x 10-33 8.04 x 105 3 x 10-7 Cs-137(c) 7.8 x 10-50 1.61 x 106 < 10-50 4.84 x 106 2 x 10-5

Rev. 14 Boring* Number =-=-=---B-4 B-5 B-8 B-9 B-10 B-12 B-15 B-18 HS-1 HS-3 HS-5 HS-8 HS-10 HS-20 HS-29 HSA-l ESW-10 ESW-23 CWP-1 CWD-3 CW-3 LK-3 (SP) LK-3 LK-3C LK-3D LK-7 LK-8 LK-9 WOLF CREEK TABLE 2.4--38 TEST BORING PIEZOMETERS IN COOLING LAKE AREA WHICH REQUIRE SEALING Number of Piezometers Surface Elevation _ ___!( fee an sea 1 e 1 ) t 4 3 3 3 2 3 3 3 2 1 2 2 2 2 2 2 l 1 1 1 1 1 3 1 1 2 1 1 1098.5 1093.9 1067.6 1078.0 1086.8 1088.5 1088.0 1062.1 1069.5 1060.7 1069.1 1070.6 lOTI. 6 1082.9 1091. 4 1054.0 1095.4 1092.8 1090.8 1087.6 1097.8 1092.2 1092.5 1.074.9 1070.1 1053.0 1.0 23. 8 1073.7 03--01-77 03--01-77 11--11-77 03--01-77 11--11-77 11--22-77 11--20-77 11--17-77 11--17-77 11--16-77 11--17-77 01--06-77 03--01-77 ll--17-77 03--01-77 10--25-77 01--05-78 03--01-77 01--05-78 11--16-77 11--16-77 11--16-77 01--06-78 11-22-77 11--22-77

  • Locations of B-series borings shown on Figure 2.4-54. r...oca tions of HS-and ESW-ser ies borings shown on 2. 4-5 Locations of CW-and LK-series borings which require sealing shown on Figure 2.4-61. Hev. 0 WOLF CREEK Table 2.4-39 is superseded by Table 2.4-29b Rev. 0 TABLE 2.4-40 SUMMARY OF FIELD, WATER PRESSURE TEST RESULTS, ULTIMATE HEAT SINK MEMBER Hew11ader Shale Plattsmouth Limestone Heebner Shale Leavenworth Limestone Snyderville Shale Toronto Limestone ( 1) q, -( 2) 1. 0 X 10 -8 AVERAGE(2) PERMEABILITY PERivlEABILITY RANGE (em/sec) (em/sec) 3.0 X 10 -6 to 6.0 x 10 -6 4.0 X 10 -6 to 14.0 x 10 -6 r to 29.0 x 10-6 9.0 x 10-0 7.0 X 10-6 to 36.0 x 10 -6 9.0 X 10-6 to 48.0 x 10 -6 20.0 X 10-6 to 100.0 x 10 -6 take" ; Q l"'\1""\ 1TIO:::Ii .f='1r\T.o.7 .;l"'\..f-r'\ r'71""'\l"'\n .._,_.._......,..L..'--4._ ...... , ..&.. * ,_ * .l..L-....J ltL\..,.l,.oo.o.J;U..L..._'-A. .._ YV ...L. .. L.L '-'-' ._._ ..J '-LI'JJ..&.'-* em/sec assumed for "no take" records when computing __ (1) NO. NO. U.l:'. TESTS NO *rAKES 8 6 26 15 29 16 29 13 36 17 22 6 averages. Rev. 0 :::E: 0 t"' 1-l:J () ;::v t:t::l ;::.:::

WOLF CREEK TABLE 2.4-41 DESIGN GROUND SNOW LOAD PMP (Winter) Snow Load 100-Year Recurrence with 100-Year Recurrence Snowpack Load Snowpack Psf psf_________ Standard plant 91(1) 153 facilities Safety-related 24 153 site facilities

(1) The 91 psf load is based on data from the Sterling site and has been retained, even though the Sterling unit has been cancelled.

Rev. 0 WOLF CREEK 2.5 GEOLOGY AND SEISMOLOGYThis section provides detailed information on the geological and seismological characteristics of the plant. This section also provides the methods, criteria, and findings of the investigations. Based on the results of those investigations, it is concluded that there are no geological, seismological or foundation support conditions that adversely affect the design, construction and operation of Wolf Creek Generating Station (WCGS). The final geological and seismological design of the Wolf Creek power block structures, systems and components is based on three sites (Callaway, Wolf Creek and Sterling) to ensure conservatism in the seismic design envelope. Certain items, whose final design was completed prior to the cancellation of Tyrone (the fourth SNUPPS site), are within the envelope for the four original sites.The Wolf Creek Generating Station site is located in Coffey County, Kansas, approximately 3.5 miles northeast of Burlington, Kansas (Figure 2.5-1). The site is located within the Central Stable Region of the North American Continent. This region was subjected to deformation which resulted in the formation of arches and basins during Mesozoic and Paleozoic time. These of broadscale basins and arches were modified locally by folding and faulting. During geotechnical investigations of the site and surrounding region, no major faults were identified within 15 miles of the site. Shear zones, faults, and folds within the Pennsylvanian age strata are overlain by undeformed Pennsylvanian shale, undeformed sandstone, or gentle anticlinal folds in the overlying material. As these faults are either underlain or overlain by undeformed Pennsylvanian rock, deformation occurred more than 280 million years before the present. These faults can be defined as noncapable according to Appendix A to 10 CFR 100. The surface bedrock in the site area consists of alternating layers of Pennsylvanian age shales, limestones, sandstones, and a few thin coal seams.These bedrock units dip gently to the west and northwest and have been folded locally into small-scale plunging anticlines and synclines. At the site, the Precambrian surface is at a depth of approximately 2,750 feet. The undifferentiated, clastic/"granite wash" sequence may exceed 1,000 feet in thickness, and appears to rest on a granitic basement complex. The site area has been submaturely to maturely dissected by the Neosho River and its tributaries to form flat to gently rolling uplands with a maximum topographic gradient of approximately 80 feet per mile from the uplands to the valley floors. Residual soils ranging in thickness from 0 to 16 feet have been developed on the Pennsylvanian strata. Quaternary alluvium, which reaches a thickness of approximately 25 feet, is present in the tributary 2.5-1 Rev. 0 WOLF CREEK valleys, and scattered Teritary age deposits of clayey gravel cap some of the higher hills in the site area. Glaciation during Pleistocene time terminated to the north of the site area; therefore, glacial deposits are not present at the site. The plant site is located in a relatively seismically stable region of the central United States. No earthquake epicenter has been reported closer than 40 miles to the site, and the nearest shocks have had epicentral intensities no greater than Modified Mercalli Intensity (MMI) III. At distances of about 90 miles from the site, two earthquakes of MMI VII have been recorded. Since 1800, only eight earthquakes of MMI V or greater have occurred within 100 miles of the site, and 16 events of MMI VI or greater have been recorded within 200 miles. Recorded earthquakes have not generated intensities greater than VI at the site. None of the buildings in the vicinity of the site have sustained any known structural damage due to earthquakes, nor is there any geological evidence of major ground motion. Both an Operating Basis Earthquake (OBE), corresponding to horizontal acceleration of 6 percent of gravity, and a Safe Shutdown Earthquake (SSE) of 12 percent of gravity at the site have been selected as design criteria for the facilities. The specified SSE is derived from consideration of the possible effects of an MMI VII event occurring along the trend of the eastern margin of the Nemaha Anticline (the Humboldt fault zone which is 50 miles to the west at its closest approach to the site); an MMI VIII earthquake at the nearest approach of the seismogenic region associated with the western flank of the Nemaha Anticline; a recurrence of the New Madrid earthquakes of 1811-1812; and a random MMI VII event occurring near the site. However, a seismic evaluation of the WCGS structures using the Lawrence Livermore Laboratories spectrum is contained in Appendix 3C. This spectrum is enveloped by a Regulatory Guide 1.60 spectrum anchored at 0.15g. The results of comprehensive geotechnical investigations at the site demonstrate that competent foundation materials are present for establishing conservative design and construction criteria for support of the Category I facilities (Figure 2.5-2). Major Category I structures are supported on competent rock. Only minor, localized modification of foundation materials is required to provide uniform support of structures. There are no geologic features at or near the site which would preclude its use for the construction and operation of the nuclear power station. Geologic investigations to determine site characteristics included a review of published and unpublished data; discussions with individuals, agencies, and companies; field reconnaissance and 2.5-2 Rev. 0 WOLF CREEK detailed investigations, including aerial photographic interpretation, drilling and sampling, and surface and borehold geophysics; geological mapping of excavation surfaces; and laboratory testing of soils, rock, and water samples.The firms that performed the following investigations and services are listed below: INVESTIGATION OR SERVICE PERFORMED BY Geologic Literature Review Dames & Moore Geological Investigation, Mapping and Aerial Photo Interpretation Dames & Moore Soil Survey Soil Conservation Service Drilling Hemphill Drilling Company and Raymond International, Inc. Boring Supervision Dames & Moore Geophysical Exploration Dames & Moore Birdwell Division of Seismograph Service Corporation Laboratory Testing Dames & Moore Geotesting Inc. Dr. Marshal Silver Dr. F. Michael Wahl Walter H. Flood & Company Foundation Engineering Dames & Moore Slope Stability Sargent & Lundy Vibratory Ground Motion Dames & Moore Surface Faulting Dames & Moore Stability of Subsurface Materials Dames & Moore Construction Surveillance Dames & Moore Test Blasting and Blast Vibration Monitoring Dames & Moore 2.5-3 Rev. 0 WOLF CREEK Since 1975, additional investigations of the cooling lake, dam, and dike areas included: 1. Vertical exploratory test borings drilled with a boring spacing that provided, along with other tests that were conducted, sufficient detail of subsurface materials to insure that no unexpected conditions would be encountered during construction. Rock samples were obtained using NX wireline core barrels, which provide rock core approximately 1-7/8 inches in diameter. Undisturbed soil samples were obtained using a 3-1/2 inch outside diameter by 2-3/8 inch inside diameter Dennison sampler. Relatively undisturbed samples were obtained using a Dames & Moore sampler. This sampler obtains samples approximately 2-1/2 inches in diameter. Disturbed samples were obtained using the Standard Penetration Test procedures; 2. Water-pressure testing to evaluate rock quality and to provide permeability data; 3. Piezometers to monitor ground-water conditions and to provide ground-water data; 4. Permeameter tests to obtain additional ground-water parameters; 5. Representative rock core and soil sample testing to evaluate the physical characteristics of the soil and rock. The samples were analyzed as soon as possible after collection. The testing program included the following: a. Unconfined compression; b. Unconsolidated-undrained triaxial compression;

c. Consolidated-undrained triaxial compression; d. Dynamic triaxial; e. Resonant column; f. Particle size analysis; g. Atterberg limits;
h. Moisture and density determinations; i. Compaction; 2.5-4 Rev. 0 WOLF CREEK j. Consolidation; k. Shrink-swell of solids; l. Permeability; and m. Dispersive soil tests. These investigations provided the basic data for assessing the response of the soil and geologic materials to the construction and operation of the facilities. Most on-site post-PSAR geotechnical investigations were completed during 1976 (see USAR Section 2.5.1.2.2 and References 58 thru 68). Geologic mapping of excavation surfaces was started in April 1977 and completed during November 1980. Results were presented in interim reports that also included discussions of investigations concerning site faulting and folding.Relevant data were incorporated into USAR Section 2.5.1.2 (Reference 70). During 1979, the Wolf Creek Generating Station PSAR and question responses, supplemented with post-PSAR site investigations and other studies, were synthesized into Section 2.5 of the FSAR document. The additional studies included the following: 1. USAR Section 2.5.1.1 - Regional Geology: Information on regional geology, tectonics, and oil and gas exploration wells was updated. State geological surveys were contacted and a literature search, which had been on-going since 1975, was continued to determine if any studies relevant to the site had been conducted. Much of the recently published data has been the product of the NRC-funded Nemaha Uplift Seismotectonic Study Group. These data are presented in USAR Section 2.5.1.1. 2. USAR Section 2.5.1.2 - Site Geology: Information on site geology obtained since 1975 during site geotechnical investigations, excavation surface mapping, interviews, and literature review was incorporated into USAR Section 2.5.1.2. Information on site stratigraphy, faulting and folding, and engineering geology was updated. Geological maps and structure contour maps were modified to incorporate mapping and boring data obtained since 1975. 3. USAR Section 2.5.2 - Vibratory Ground Motion: This section was updated to include data on seismicity, seismology, and regional tectonics published since 1975. These revisions incorporate a discussion of data obtained from the microearthquake network operated by the Kansas Geological Survey. 2.5-5 Rev. 1 WOLF CREEK 4. USAR Section 2.5.3 - Surface Faulting: Section 2.5.3 of the PSAR was updated to incorporate the results of investigations concerning penecontemporaneous deformation mapped at the site. In June 1981, the following additional information was synthesized in order to update Section 2.5: 1. FSAR Section 2.5.1.1.5.1.17 - Geophysical Anomalies and Structures - was updated to include a discussion on the origin of circular positive aeromagnetic anomalies in the Forest City Basin; 2. The LANDSAT lineament map of eastern Kansas was compared with both aeromagnetic and Precambrian surface maps for the area. The results of this investigation are contained in FSAR Section 2.5.1.1.5.1.18 - LANDSAT Lineaments; 3. Information concerning hydrocarbon exploration wells was updated to May 11, 1981; and 4. Frank Wilson, Senior Geologist of the Kansas Geological Survey, and Dr. Otto Nuttli of St. Louis University were contacted in order to address informal questions from the NRC staff. 2.5.1 BASIC GEOLOGIC AND SEISMIC INFORMATION 2.5.1.1 Regional Geology2.5.1.1.1 Regional Physiography The regional study area is composed of two major physiographic divisions, the Interior Plains Physiographic Division and the Interior Highland Physiographic Division (Figure 2.5-3). The Interior Plains constitutes the major part of central United States and is characterized by moderate to low relief. The Interior Highland Physiographic Division is characterized by submaturely to maturely dissected hills, plateaus, and second-cycle mountains with moderate to high relief (References 93 and 227, p. 276). 2.5.1.1.1.1 Interior Plains Physiographic Division Most of the regional area is situated within the Interior Plains Physiographic Division. Within the regional study area, two provinces are recognized: the Central Lowlands Province, which 2.5-6 Rev. 1 WOLF CREEK consists of low relief plains with youthful to mature dissection, and the Great Plains Province, which is characterized by submaturely to maturely dissected plains and plateaus of low to moderate relief. The Central Lowlands Province is subdivided into the Osage Plains Section, the Dissected Till Plains Section, and the Arkansas River Lowlands Section. The site is located in the Osage Plains Section which is characterized by relatively low relief, gently dipping rock strata and east-facing escarpments.The major rivers in the Osage Plains Section are entrenched and drain from the northwest to the southeast. Bedrock is at or near the earth's surface. The Dissected Till Plains Section is characterized by dissected till plains which have been blanketed with loess. Scattered bedrock outcrops are also present.

The Arkansas River Lowland Section contains low relief floodplain deposits consisting of gravels, silts, and clays. In the study area, the Great Plains Province is represented by the High Plains and the Dissected High Plains Sections. The High Plains are developed on Pliocene and Pleistocene deposits which are largely unconsolidated material and make up a great wedge of silts, clays, and gravel in western Kansas. The High Plains Section is divided by the Arkansas River Lowlands Section of the Central Lowlands Province. The Dissected High Plains generally consist of maturely dissected plains and plateaus which have been eroded from Cretaceous deposits.The eastern and western boundaries of this section roughly delineate the band of Cretaceous outcrops in Kansas. 2.5.1.1.1.2 The Interior Highlands Physiographic Division Two provinces of the Interior Highlands Division are also included within the regional study area; the Ozark Plateau Province and the Ouachita Province.Within the study area, the Ozark Plateau Province is subdivided into the Springfield-Salem Plateau Section, which is characterized by maturely developed karst topography, and the Boston Mountains Section, a series of submaturely to maturely dissected hills and second-cycle mountains with moderate to high relief. The Arkansas Valley Section is the only subdivision of the Ouachita Province present within the regional area. It is characterized by broad, flat-lying floodplain areas. 2.5.1.1.2 Regional Geologic Setting The region surrounding the site lies within the Central Stable Region of the North American Continent (Figure 2.5-4) (Reference 137). This province is a tectonically stable area characterized by gently dipping sedimentary rock of Mesozoic and Paleozoic age that overlies a basement complex of Precambrian igneous and meta- 2.5-7 Rev. 0 WOLF CREEK morphic rocks. Scattered surficial deposits of Tertiary and Quaternary age are present throughout the region. The distribution of the geologic units is shown on Figure 2.5-5; generalized west-to-east and south-to-north geologic cross sections are shown on Figure 2.5-6; a structural contour and lithologic map of the Precambrian surface is shown on Figure 2.5-7; a Bouguer gravity anomaly map of the regional area is presented on Figure 2.5-8; and an aeromagnetic map of eastern Kansas is Presented on Figure 2.5-9. Most of the regional area is located within the Central Lowland Province of the Interior Plains Physiographic Division (Figure 2.5-3) (References 93 and 227, p. 276) and is characterized by low to moderate relief with submature to mature stream dissection. Quaternary deposits are Pleistocene in age and include glacial, lacustrine, fluvial, and aeolian deposits. Glacial deposits are present only in the northern part of the regional area and were not deposited at the plant site.Quaternary alluvium is found in the valleys of the major drainages within the study area. Tertiary deposits in the study area consist of the widely scattered erosional remnants of an alluvial plain that extended eastward from the Rocky Mountains during Late Tertiary time. West of the site area, arkosic material derived from the Rocky Mountains interfingers with chert gravels derived from the western Osage Plains (Figure 2.5-3). In the site area, Tertiary deposits are largely accumulations of chert gravel. These deposits occur as dissected terraces, 100 to 200 feet higher than the present major streams (Reference 286).The Paleozoic bedrock deposits dip very gently to the west within the study area. Erosion has truncated many of these units, and surface rocks become progressively older from west to east across the regional area (Figure 2.5-5). The bedrock strata have been structurally modified by gentle arching and downwarping to form broad domes and basins. The Precambrian basement in the regional area mainly consists of granitic rocks, silicic volcanics, metamorphic rocks, mafic intrusives, clastic sediments and granite wash. In eastern Kansas, the extent and thickness ofundifferentiated clastics, metasediments, and granite wash, which may range in age from Precambrian to Cambrian, has not been determined. The Precambrian surface dips gently to the west across the regional area, but the relief on this surface locally may exceed 500 feet per mile, as it does in the area of the Nemaha Anticline. Reference 45 indicates that the Precambrian surface occurs approximately 2,750 feet beneath the site. Rock below this depth appears to consist of coarse to medium clastic sediments of undetermined thickness (Figure 2.5- 2.5-8 Rev. 0 WOLF CREEK 7). The underlying Precambrian crystalline complex is thought to consist of granitic rock (see USAR Sections 2.5.1.1.3.1 and 2.5.1.1). The Precambrian rocks are overlain by younger sedimentary formations which range in age from Cambrian to Pennsylvanian. The Bouguer Gravity Anomaly Map indicates a gravity high parallel to the axis of the Nemaha Anticline (Figure 2.5-8). This gravity high is an extension of the midcontinent gravity high (Figure 2.5-10, Reference 136). The gravity anomaly is west of the axis of the anticline, suggesting structural control of intrusion along former fracture lines (Reference 277, p. 102). There is evidence of westward dipping reverse faulting along the east flank of this structure (Reference 174, p. 222). The epicenters of the most significant earthquakes in Kansas appear to be located west of the axis of the Nemaha Anticline. The Kansas Geological Survey has relocated one epicenter to the eastern flank of the Nemaha, but this location is questionable and depends on interpretation of available data. These earthquakes are apparently associated with deep-seated adjustments along fracture zones related to the inferred fault contact between the Central North American Rift System (Midcontinent Geophysical Anomaly) and the western margin of the Nemaha Uplift. Recent investigations, however, indicate that some microseismicity in northern Kansas appears to be associated with the discontinuous Humboldt fault zone on the eastern margin of the Nemaha Anticline (Reference 272, p. 7, 55; and 249,

p. 134-135). At the present time, there is no evidence in the region that any faults should be considered capable. 2.5.1.1.3 Regional Geologic History The discussion of regional geologic history of the study area is based on a review of published information. All eras of geologic time are represented by strata, but many systems were either not entirely deposited or were removed to some extent by erosion; therefore, many periods are not completely represented.The incompleteness of the time record makes it necessary to assign many of the geologic events to time intervals rather than to a more specific time. The interpretation of the pre-Lower Pennsylvanian geologic history is based on subsurface data, which is sparse in some areas. The interpretation of the post-Lower Pennsylvanian geologic history is based on both borehole data and on surface exposures. Post-Pennsylvanian, pre-Quaternary history in the eastern portion of the area can only be inferred because rocks of this age are missing. 2.5-9 Rev. 0 WOLF CREEK Graphic representation of the evolution of the structural features within the regional area is shown on Figure 2.5-11; the locations of most of these features are shown on Figure 2.5-4; and the stratigraphic units are shown on Figure 2.5-12. 2.5.1.1.3.1 Precambrian Era Knowledge of the Precambrian within the regional area is based on the interpretation of scattered borehole, geophysical, and geochronologic data.The Precambrian crystalline basement consists of igneous and metamorphic rocks (Figure 2.5-7). Precambrian sediments and mafic igneous rocks occur in an area west of the Nemaha Anticline. The igneous rocks and at least some of these sediments are related to the Central North American Rift System (USAR Section 2.5.1.1.5.1.17). The lithologic nature of the Precambrian surface is still open to debate due to the scarcity of deep well data in many areas (Figure 2.5-7). Based on available data, one interpretation indicates that a sequence, which may exceed 1,000 feet in thickness, of undifferentiated Cambrian to Precambrian clastic sediments, metasediments, igneous and metamorphic rock fragments, and "granite wash" may overlie the crystalline basement complex in a wide band that may extend from Missouri through Kansas into Nebraska (Reference 174, p. 158-169). An alternate interpretation of basement lithology does not show the wide band of Precambrian sediments crossing eastern Kansas, but does show several isolated areas containing metasedimentary rocks (Reference 14 and 272, p. 10). According to Reference 14, the crystalline basement complex north and west of the site consists of granitic rocks which range in composition from granite to quartz monzonite and which were emplaced at medium crustal levels (mesozonal).These rocks appear to range in age from 1,750 to 1,450 million years before present (m.y.) (Reference 14). The crystalline basement south of the site appears to consist of granitic plutons which were emplaced at shallow crustal levels (epizonal) and associated felsic or silicic volanics with an average age of 1,380 m.y. for this terrain (Reference 14). Granites and felsic volcanics of approximately the same age occur in the basement in northeastern Oklahoma and Missouri (References 14 and 158, Plate 1). During the Precambrian, the regional study area was a site of deformation, metamorphism, and igneous intrusion about 1,750 to 1,500 m.y. This event appears to coincide with the Penokean Orogeny [1,800 to 1,600 m.y. (Reference 88, Plate 1)]. Southern portions of the regional study area were affected by shallow granitic intrusions and volcanic activity at about 1,380 m.y., although radiometric age dates from Oklahoma indicate a period of thermal activity about 1,200 m.y. (Reference 14 and 158, p. 13). This thermal activity may be related to the Mazatzl Orogeny dated about 1,450 to 1,250 m.y. (Reference 88, Plate 1). 2.5-10 Rev. 0 WOLF CREEK Crustal uplift and erosion was followed by a tectonic event approximately 1,100 m.y. ago that crosscut older terrain. This younger event consisted of faulting, igneous activity and sedimentation along the Central North American Rift System (CNARS) (Figures 2.5-4, 2.5-13 and 2.5-14; USAR Sections 2.5.1.1.4.1 and Nemaha Anticline, initial uplift of this structure may have occurred during the Precambrian and may be related to formation of the CNARS (USAR Section 2.5.1.1.5.1.9). During Precambrian time, the Central Kansas Uplift (Figure 2.5-4) may have experienced some relative elevation (Figure 2.5-11). The configuration of the present Precambrian surface is one considerable relief in Kanss (Figure 2.5-7) and in Nebraska (Reference Burchett, 1978, Figure 2).This relief was produced during the Late Precambrian, pre-Paleozic time interval which represents a major unconformity in the geologic history of the regional area. During that time, weathering of the granitic basement surface began to produce an arkosic, detrital rock and sediment that may range in age from Precambrian to Middle Pennsylvanian. This material is commonly called "granite wash" in drillers' logs. Arkosic rocks within the band of Precambrian sedimentary rocks have also been described as granite wash. In Kansas, there is no record of Paleozoic deposition until Upper Cambrian time, and locally, the Precambrian may be directly overlain by deposits ranging in age from Cambrian to Pennsylvanian (Reference 124). 2.5.1.1.3.2 Paleozoic Era Crustal movements within the regional area during Paleozoic time resulted in the formation of broad basins and arches or domes. Some of these major crustal structures may have formed in response to basement tectonics (see USAR Sections 2.5.1.1.5.1.9 and 2.5.2.2). These crustal movements resulted in intermittent emergence and submergence of the land surface. Consequently, a series of marine sedimentary rocks with occasional interbedded nonmarine deposits are preserved within the region. The emergence of the land masses resulted in periods of erosion that are represented by unconformities within the stratigraphic section. A discussion of the Paleozoic history from Cambrian through Permian time is presented below. 2.5.1.1.3.2.1 Cambrian Period No Early or Middle Cambrian age rocks have been reported in the midcontinent.The Late Cambrian is represented by a marine sedimentary sequence of a basal arkosic sandstone overlain by beds of dolomite deposited in an epicontinental sea environment. 2.5-11 Rev. 0 WOLF CREEK There is widespread evidence of crustal instability during this period and extending into the Early Ordovician (Figure 2.5-11). The structural activity consisted of downward movement along the Nemaha Anticline, the Hugoton Embayment, and the Anadarko Basin; upward movement along the Ozark Dome and in the area of the North Kansas Basin (the southeast Nebraska Arch, (Reference 123); and a downward tilting of the Central Kansas Uplift to the southeast, the Chautauqua Arch to the southeast, the Forest City basins to the southeast, the Salina Basin to the southwest, and the Sedgwick Basin to the south. The downward movement of the Hugoton Embayment began in Cambrian time and continued intermittently through the Middle Permian. The southward tilting of the Sedgwick Basin also began in Cambrian time and continued intermittently through Middle Permian time, although the structure was relatively stable at the end of the Early Ordovician and the Mississippian. The crustal instability that occurred during the Cambrian is best represented by the many angular unconformities in the sequence. An unconformity also separates the Cambrian System from the overlying Ordovician System. 2.5.1.1.3.2.2 Ordovician Period The Ordovician in the regional study area is represented by a thick marine sequence of dolomites and dolomitic limestones overlain by sandy dolomites, sandstones, and shales. Crustal movements continued during Ordovician time (Figure 2.5-11). The Anadarko Basin in Oklahoma continued to move downward. In Kansas, movements which began during the Cambrian ceased toward the end of the Lower Ordovician.There were renewed crustal movements along most of the structures in Kansas in the early Middle Ordovician; however, in several instances, these renewed movements represent reversals in the direction experienced during Cambrian time.Upward movements along the Central Kansas Uplift and the Pratt Anticline started in Early Middle Ordovician and continued through Mississippian time.Northeastern Oklahoma was uplifted during Middle Ordovician time. This portion of Oklahoma probably emerged during the later portion of the Middle Ordovician, submerged during a portion of the Late Ordovician, and emerged again at the close of the Ordovician (Reference 118, p. 106). Downward movement of the North Kansas Basin began in the Middle Ordovician and extended through the Devonian. From Ordovician through Devonian time, the North Kansas Basin comprised most of the area of the later Forest City and Salina basins. Prior to the Middle Ordovician, the area of the North Kansas Basin was a broad southward plunging arch, the southeast Nebraska Arch (Reference 123, p. 160). 2.5-12 Rev. 0 WOLF CREEK Along the Chautauqua Arch, uplift began in the Middle Ordovician and continued through Devonian time. This uplift along the Chautauqua Arch resulted in the exposure at the surface of larger areas of Arbuckle carbonate rocks in southeastern Kansas, western Missouri, northeastern Oklahoma and northeastern Arkansas upon which a karst topography was developed. Sinkholes developed and later were filled with Simpson deposits (Reference 174). Many unconformities are present in the Ordovician system, and a disconformity separates the Ordovician from overlying rocks. 2.5.1.1.3.2.3 Silurian Period The Silurian System in the regional area is represented by marine limestones and dolomites. These rocks are no younger than mid-Silurian in age (Reference 286, p. 15). The crustal movements initiated during the Ordovician continued during the Silurian. The continued crustal instability and resulting areas of nondeposition and postdepositional erosion restricted these deposits mainly to the North Kansas Basin. 2.5.1.1.3.2.4 Devonian Period Devonian strata consist primarily of marine limestones and dolomites in Kansas.Most of the Devonian is no older than mid-Devonian in age (Reference 286, p. 15).Crustal movements and uplift in Middle to Late Devonian time resulted in the development of unconformities. Figure 2.5-11 shows that such unconformities are recognized in the north and central Oklahoma Platform and along the Nemaha Anticline. Northeastern Oklahoma tilted abruptly to the south during the Middle Devonian, and the Devonian, Silurian, and Ordovician strata were subjected to erosion (Reference 118, p. 106). This area was submerged during Late Devonian time (Reference 118, p. 107). At the close of Devonian time, recognizable unconformities along the Nemaha Anticline, the Chautauqua Arch, and the North Kansas Basin (Figure 2.5-11) were developed. These unconformities represent both periods of nondeposition due to uplifted land masses and periods of erosion of the exposed sediments. Crustal tilting during this period is also reported in northeastern Oklahoma (Reference 118, p. 106). The exact time break between the Devonian and Mississippian is not clearly defined. This time interval is represented by a thick shale sequence that unconformably overlies older deposits and in turn is disconformable with younger deposits. It is probable that this shale is both Mississippian and Devonian in age (Reference 286, p. 16). 2.5-13 Rev. 0 WOLF CREEK 2.5.1.1.3.2.5 Mississippian Period Deposits of Mississippian Age are mostly shallow water carbonates. The older Mississippian strata are marine, while the younger are both marine and nonmarine.Mississippian time was one of considerable structural activity. Several unconformities are present within the Mississippian section as illustrated on Figures 2.5-11 and 2.5-12. Northeastern Oklahoma was uplifted, tilted, and eroded during Late Early Mississippian time and submerged again during the Middle Mississippian (Reference 118, p. 107). A major change in the structural development within the regional area took place near the end of the Mississippian and in the early portion of the Pennsylvanian. Many structures began to develop during this period, and movements along older structures became more pronounced. The upward movement of the Chautauqua Arch ceased at the end of Devonian time, and tilting to the northwest occurred during the Mississippian. The Anadarko Basin started to subside during Early Mississippian time and continued to subside through the Middle Permian. At and near the end of Mississippian time and during Early Pennsylvanian time, erosion resulted in the development of a major unconformity that is recognized in all the major structural features (Figure 2.5-11). Anticlines were truncated and material was deposited in the synclinal troughs, creating regional unconformities. The Mississippian surface was subjected to deep weathering and the local development of solution features (Reference 174, p. 135).2.5.1.1.3.2.6 Pennsylvanian Period Lower Pennsylvanian strata are confined to the extreme southwestern part of the region of study in the Hugoton Embayment and are composed of marine shales, limestones, and sandstones. The Lower Middle Pennsylvanian Series are also restricted mainly to the extreme southwestern part of the region (Hugoton Embayment), which is the northwestern part of the study area, but may extend into northeastern Kansas (Reference 286). The Middle and Upper Pennsylvanian deposits are cyclic and consist of marine shale and limestones alternating with nonmarine beds containing coal. Crustal deformation continued during Pennsylvanian time (Figure 2.5-11).Tilting of the Chautauqua Arch ceased at the end of the Mississippian.Mississippian strata had been deposited over the tural element. During the Pennsylvanian, the Cherokee Basin 2.5-14 Rev. 0 WOLF CREEK developed on the Chautauqua Arch and the Nemaha Anticline began actively uplifting and dividing the North Kansas Basin area into the Forest City Basin in the east and the Salina Basin in the west (Reference 174, p. 130, 182). The Bourbon Arch developed as a divide between the Forest City and Cherokee Basins during the Pennsylvanian. This "arch" is marked by a thinning of the Middle Pennsylvanian Cherokee Group (Reference 126, p. 38). In Oklahoma, the greatest period of mountain building, including folding and faulting, occurred in the Pennsylvanian (Reference 127, p. 1). During the Early and Middle Pennsylvanian, faulting occurred in the Ozarks (References 92, p. 19; and 118, p. 109). No well-defined boundary exists in the western portion of the area between the Upper Pennsylvanian and Lower Permian, which suggests a transitional sedimentation sequence. A disconformity can be demonstrated only locally (Reference 174). In the eastern portion of the area, the Pennsylvanian strata constitute much of the present land surface. In northeastern Kansas, southeastern Nebraska, southwestern Iowa, and northwestern Missouri, Quaternary deposits unconformably overlie the Pennsylvanian rocks (Reference 286, Figure 13, p. 61). Scattered local deposits of Tertiary age material are present in the central portion of the project area (Coffey, Anderson, Osage, Lyon, Cottonwood, Woodson, and Wilson counties, Kansas); this relationship represents a post-Pennsylvanian, pre-Tertiary unconformity (Reference 286, Figure 11, p. 58).2.5.1.1.3.2.7 Permian Period Permian age strata are present only in the western part of the study region.These deposits are predominantly marine in the lower part of the section and marine and nonmarine in the upper part (Reference 286, p. 43). The Permian contains thick evaporite sequences that include salt deposits. The Nemaha Anticline and the Ozark Uplift were positive features; no deposition took place along the Ozark Uplift. Nondeposition and later erosion have also removed most Permian units from the Nemaha Anticline. Recent mapping in northeastern Kansas and southeastern Nebraska suggests that uplift of the Nemaha Anticline has occurred in that area since the Middle Permian (Reference 29, p. 8-9; and 84, p. 16-17; see USAR Section 2.5.1.1.5.1.9). The downward movement of the Forest City and Cherokee basins ceased during Early Permian time, and possible downward tilting to the northwest started and continued through the Quaternary. A major unconformity that represents the close of Permian time is present. In the western portion of the area, the unconformity may 2.5-15 Rev. 0 WOLF CREEK be post-Permian to present; post-Permian, pre-Quaternary; post-Permian, pre-Cretaceous; or post-Permian, pre-Tertiary. 2.5.1.1.3.3 Mesozoic Era The sequence of geologic events that occurred in the study area during the Mesozoic Era must largely be inferred from surrounding regions due to the regional absence of Triassic and Jurassic age rocks. Cretaceous rocks are found only in limited parts of the regional area. 2.5.1.1.3.3.1 Triassic Period No rocks of Triassic age are present within the regional area and were probably never deposited. Detailed knowledge of geologic events that occurred during this time interval is not available. 2.5.1.1.3.3.2 Jurassic Period No rocks of Jurassic age are present within the regional area. Detailed knowledge of geologic events that occurred during this time interval is, therefore, not available. Jurassic age deposits are present west of the regional study area in western Kansas, and the present margin of these rock units represents an erosional boundary. While the Jurassic deposits may have extended farther east into the regional study area, they probably never extended into the site area. 2.5.1.1.3.3.3 Cretaceous Period Rocks of Cretaceous age are present in the western part of the region of study.The majority of the Cretaceous strata represent marine deposition, but some nonmarine units are recognized. The direction of the downward tilting of the Central Kansas Uplift and the Salina Basin changed from the southwest to the northwest and continued through Tertiary time. A major unconformity marks the close of the Cretaceous. During the Cretaceous, igneous bodies such as the Silver City and Rose domes in Wilson County and the Stockdale Kimberlite and other plugs in Riley County were emplaced. These intrusions apparently occurred along previously existing fracture planes (References 38, p. 3-12; and 24; 285; and 14, p. 2863-2868). 2.5.1.1.3.4 Cenozoic Era The Cenozoic Era, which includes the Tertiary and Quaternary periods, is represented by widely scattered deposits throughout 2.5-16 Rev. 0 WOLF CREEK the area of study. The absence of Lower Tertiary and Lower Quaternary deposits within the regional area limits the interpretation of the geologic history during this time interval. 2.5.1.1.3.4.1 Tertiary Period Tertiary deposits in the region of study occur primarily in the western portions. These deposits are nonmarine and are predominantly stream-deposited gravel, sand, and silts. These deposits represent the remains of a Tertiary depositional surface of low relief that extended eastward from the Rocky Mountains. West of the Osage Plains, arkosic material derived from the Rocky Mountains interfingers with chert gravels derived from the western Osage Plains. The scattered Tertiary deposits in the Osage Plains were derived from the plains and consist, predominantly of chert gravel in a brownish red clay matrix (Reference 286, p. 58). Tertiary deposits rest unconformably over older bedrock and are unconformably overlain by younger material or are present at the surface. 2.5.1.1.3.4.2 Quaternary Period The Quaternary System is represented in the regional study area mainly by glacial deposits in the northern and northwestern portion of the area.However, glaciation did not extend to the site. Eolian deposits are distributed throughout the area, but are primarily Pleistocene loess and are most extensive in the north and western parts of the region. Quaternary fluvial deposits are present along streams. Some crustal uplift and tilting possibly continued into Quaternary time (Reference 174). The Central Kansas Uplift and Salina Basin experienced downward tilting to the east. Historic earthquake and recent microearthquake activity associated with the Nemaha Anticline suggests that it is experiencing some deep-seated adjustments. 2.5.1.1.4 Regional Stratigraphy In preparing USAR Section 2.5.1, every attempt was made to use the same nomenclature as the Kansas Geological Survey. This nomenclature is slightly different from that used by the United States Geological Survey (USGS) in that the Quaternary System, as defined by the USGS, is divided into the Pleistocene and Holocene Series. The Kansas Geological Survey includes only the Pleistocene Series in the Quaternary System. The period of time described by the USGS as Holocene (approximately the last 8,000 to 10,000 years) is termed the Recent Stage of the Pleistocene Series by the Kansas Geological Survey, and the term Holocene is not used. 2.5-17 Rev. 0 WOLF CREEK Sedimentary rocks and deposits representing most periods in the geologic column, with the exception of the Jurassic and Triassic, are present within the region. Rocks older than Pennsylvanian are mainly known through subsurface exploration (wells). Tertiary and Quaternary deposits overlie Paleozoic deposits at several isolated locations. The discussion of regional stratigraphy in the following section is very generalized and is confined to major time-stratigraphic units. Detailed discussions of rock-stratigraphic units are presented in USAR Section 2.5.1.2.2. A stratigraphic column with a brief lithologic description of the units within the region is shown on Figure 2.5-12. 2.5.1.1.4.1 Precambrian The shallowest Precambrian age rocks in Kansas were encountered in Nemaha County at an elevation of 588 feet above sea level (Reference 174, p. 157); in Pawnee and Johnson counties, Nebraska, they are in excess of 500 feet above sea level (Reference 31, p. 15; 28, p. 2). The deepest Precambrian age rocks in Kansas were encountered in Barber County at an elevation of 4,595 feet below sea level (Reference 174, p. 158). Within the regional area, the Precambrian crystalline basement predominantly consists of igneous and metamorphic rocks. These rocks are composed of primarily granitic rocks and minor amounts of mafic igneous rock, quartzite, and schist. Pre-Upper Cambrian sediments consisting of interbedded feldspathic sandstone, shale, and arkose (Rice Formation) have been mapped in the subsurface of Central Kansas (Reference 228). These or similar sediments are associated with the mafic igneous rocks within the Central North American Rift System (USAR Section 2.5.1.1.5.1.17). The lithologic nature of the Precambrian surface is still open to debate due to the scarcity of deep well data in many areas (Figure 2.5-7). One interpretation indicates that a sequence of undifferentiated Precambrian to Cambrian clastic sediments, metasediments, igneous and metamorphic rock fragments, and granite wash may overlie the crystalline basement in a wide band. This sequence may extend from Missouri through Kansas into Nebraska and may exceed 1,000 feet in thickness (Reference 174, p. 158-168; 286, p. 9). These pre-Upper Cambrian clastics have been called "arkose," "red clastics," "granite wash," "metamorphics," "metasediments," "quartzite," "gneiss," and "granite" (Reference 228). In addition to the Rice Formation mentioned above, three other rock types which have been logged as "granite wash" are feldspathic Reagan (Upper Cambrian)

Sandstone, Pennsylvanian basal conglomerate, and in situ weathered granitic crystalline basement rock (Reference 228, p. 382). The age of weathering may range 2.5-18 Rev. 0 WOLF CREEK from Precambrian to Middle Pennsylvanian. An interpretation of geophysical logs from a well in Woodson County, 20 miles from the site, indicates that coarse-to medium-grained clastic rocks were encountered at a depth of 2,750 feet (Reference 331). The presence of this sediment in eastern Kansas supports the contention that undifferentiated Precambrian - Cambrian clastics are present between the Bonneterre Dolomite and the Precambrian crystalline basement.Another interpretation of basement lithology does not show the band of undifferentiated sediments-granite wash across eastern Kansas, but instead shows several isolated areas containing metasediments (References 14 and 273, p. 10). Since there are no wells that reach the Precambrian surface, no data are presented for Coffey, Anderson and Linn counties. Data from wells, which penetrate the Precambrian crystalline complex in nearby counties, indicate that granitic rock is present beneath the undifferentiated Precambrian - Cambrian clastics. Recent radiometric age dating on granitic to quartz monzonitic rocks north and west of the site resulted in the following ages: 1,660 100 m.y., 1,500 m.y., and 1,636 , 20 m.y. [uranium-lead (U-Pb) age of zircons] from Rush, Russell, and Nemaha counties, respectively. The samples from Rush and Russell counties were dated at 1,460 m.y. and 1,382 m.y., respectively by rubidium-strontium (Rb-Sr), whole-rock methods. Radiometric dating of rocks west, south, and east of the site resulted in the following ages: 1,350 m.y. (Rb-Sr whole rock) and 1,350 m.y. (U-Pb age of zircons) from Greenwood County; 1,100 100 m.y. (Rb-Sr whole rock) and 1,400 100 m.y. (U-Pb of zircons) from a xenolith in Rose Dome Cretaceous-age peridotite, Woodson County (Bickford and others, in press). The first group of rocks appears to be older and to have been intruded at medium crustal depths (mesozonal). Southeastern Kansas appears to have been affected by shallow granitic intrusions (epizonal-depth of 6.5 km or less) and felsic volcanic activity at approximately 1,380 m.y. (Reference 14). Potassium-argon and rubidium-strontium feldspar and whole rock dates on similar rocks from northeastern Oklahoma indicate a period of thermal activity at approximately 1,200 m.y. (Reference 158, p. 13). These data appear to be representative of minimum ages of granitic crystalline basement beneath the site.In north-central Kansas, mafic igneous rocks are flanked and partly overlain by feldspathic sandstone, arkose, and reddish siltstone. These rocks occur along the trend of the Midcontinent Geophysical Anomaly and appear to be a subsurface continuation of the 1,100 m.y. Keweenawan Series exposed in the Lake Superior area (USAR Section 2.5.1.1.5.1.17). The distribution of these mafic and associated clastic rocks is shown on Figures 2.5-10, 2.5-13 and 2.5-14. 2.5-19 Rev. 0 WOLF CREEK 2.5.1.1.4.2 Paleozoic Over 2,000 feet of Paleozoic rocks from Cambrian through Permian age are present within the regional area. A brief description of the Paleozoic systems follows.2.5.1.1.4.2.1 Cambrian System Lower and Middle Cambrian age deposits are not present and were probably never deposited within the area. Late Cambrian time is represented by sandstone and dolomite strata resting unconformably on the Precambrian basement (Reference 286, p. 12). Cambrian strata are absent from the highest portions of the Nemaha Anticline. The basal Cambrian sandstones were not deposited in the site area. The lowest Paleozoic unit in the area is the Bonneterre Formation (Figure 2.5-12). A thick carbonate sequence, the Arbuckle Group (Figure 2.5-12), which is undifferentiated Upper Cambrian and Lower Ordovician (Reference 286, p. 12-13), is present in the site area and overlies the Bonneterre Formation. 2.5.1.1.4.2.2 Ordovician System The Lower, Middle, and Upper Ordovician is represented by deposits consisting of dolomites, limestones, sandstones, and shales unconformably overlying the Cambrian deposits (Reference 286, p. 12). Numerous unconformities are present within the Ordovician (Figure 2.5-11), and a disconformity separates the Ordovician deposits from the overlying Silurian deposits (Reference 286, p. 15).Ordovician age strata are absent from the higher portions of the Nemaha Anticline and the Central Kansas Uplift. Their absence is due either to nondeposition or to erosion (Merriam, 1963, p. 145). In the site area, a thin carbonate is present between the Middle Ordovician Simpson deposits and the Devonian-Mississippian Chattanooga Shale. It has not yet been established whether this unit is a Middle Ordovician Viola or a Silurian-Devonian Hunton deposit (Reference 295). 2.5.1.1.4.2.3 Silurian System Silurian age deposits are present in the subsurface throughout much of northeastern Kansas, southeastern Nebraska and northwestern Missouri. They consist primarily of dolomites, which disconformably overlie Ordovician strata (Reference 286, p. 15). A disconformity also separates the Silurian strata from the overlying Devonian strata (Figure 2.5-11) (Reference 150, p. 53). 2.5-20 Rev. 0 WOLF CREEK The Silurian and the lower portion of the Devonian consist of a thick carbonate sequence, which makes the Silurian-Devonian disconformity difficult to recognize. This portion of the section is generally classified as undifferentiated Silurian and Devonian (Reference 286, p. 15). 2.5.1.1.4.2.4 Devonian System Devonian deposition is represented by dolomites, limestones, sandstones, and shales throughout much of the area. Some Devonian deposits are exposed in the southeastern portion of the region, but they are known to be absent from the crest of the Nemaha Anticline. A disconformity separates the Lower Devonian from the overlying Upper Devonian. The Upper Devonian consists of a shale sequence, the Chattanooga Shale, which is generally classified as undifferentiated Upper Devonian and Lower Mississippian. No well defined break is recognized between the Upper Devonian and Lower Mississippian, which suggests continuous deposition. 2.5.1.1.4.2.5 Mississippian System The Mississippian age deposits consist primarily of shallow-water marine carbonates with some nonmarine deposits. The older deposits are marine, and the younger are both marine and nonmarine (Reference 286, p. 17). The rock types primarily include dolomites and limestones with some sandstones and shales. The surface distribution of the Mississippian age deposits is shown on Figure 2.5-5. They crop out in the southeastern portion of the regional area. 2.5.1.1.4.2.6 Pennsylvanian System Pennsylvanian deposits form the bedrock surface at the site area and throughout the eastern portion of the regional area (Figure 2.5-5). The lithologies represented within the Pennsylvanian System (Figure 2.5-12) include shale, limestone, sandstone, and coal. The Middle and Upper Pennsylvanian rocks were deposited in a complex of alternating marine and nonmarine sedimentary environments. These repeating sedimentary units of shale, sandstone, and limestone are called cyclothem deposits and are very well developed within Kansas.2.5.1.1.4.2.7 Permian System Permian age deposits are present at the surface or in the subsurface only in the western portion of the regional area and are not present in the site area Figure 2.5-5). The lower portion of the Permian deposits are marine and the upper portion are nonmarine. The lower deposits consist of limestones and shales and the upper 2.5-21 Rev. 0 WOLF CREEK deposits consist of predominantly reddish brown shales, siltstones, and sandstones with interbedded salt, gypsum, anhydrite, and dolomites (Reference 174, p. 80). 2.5.1.1.4.3 Mesozoic 2.5.1.1.4.3.1 Triassic System There are no Triassic age deposits within the regional area. 2.5.1.1.4.3.2 Jurassic System There are no Jurassic age deposits within the regional area. 2.5.1.1.4.3.3 Cretaceous System Cretaceous age deposits are present only in the western portion of the study area (Figure 2.5-5). These deposits are predominantly marine, but some nonmarine deposits are present. The upper portions consist of shales, chalks, limestones, and bentonites. Cretaceous igneous bodies are also present in Riley and Wilson counties. 2.5.1.1.4.4 Cenozoic 2.5.1.1.4.4.1 Tertiary System Tertiary age deposits are present only as scattered remnants within the central and west-central portion of the area. These deposits are nonmarine and represent alluvial deposits derived from the area to the west (Reference 286, p. 58). They consist of gravels, sands, silts, and clays. Locally, these deposits are cemented with calcium carbonate. 2.5.1.1.4.4.2 Quaternary System Quaternary deposits are nonmarine and include glacial, lacustrine, fluvial, and eolian sediments. Glacial deposits are present in the northern and northwestern portion of the area. The lacustrine deposits tend to be localized and associated with the glacial deposits. Fluvial deposits are associated with the various rivers and streams. Eolian deposits are distributed throughout the area, but are thin to absent near the central portion of the regional area. 2.5.1.1.5 Regional Tectonic Structures The site lies within the Central Stable Region tectonic province of the North American Continent (Figure 2.5-4) (Reference 137, p. 23). The tectonic history has included moderate deformation which 2.5-22 Rev. 0 WOLF CREEK resulted in the formation of broad arches and basins during Mesozoic and Paleozoic time (Reference 174, p. 222). These major structural features have been modified locally by faulting and additional folding. A summary of folding and faulting within the regional area is presented below.No geological conditions are known to exist that adversely affect the design, construction, or operation of the Wolf Creek Generating Station. 2.5.1.1.5.1 Regional Folding The distribution of the major structural arches and basins within the area of investigation is shown on Figure 2.5-4, and their structural development is graphically summarized on Figure 2.5-11. Tables 2.5-1 through 2.5-6 present a state-by-state compilation of folds within the regional area. The distribution of smaller scale, more localized folds is shown on Figure 2.5-15. The regional cross sections on Figure 2.5-6 illustrate the folds and faults along the cross-sectional lines. The discussion in this section and subsequent sections is based on a review of available literature and information which represents the most current thinking of the state geological surveys in the regional area. The large-scale tectonic features within the area of investigation include the Central Kansas Uplift, the Pratt Anticline, the North Kansas Basin, the Salina Basin, the Sedgwick Basin, the Anadarko Basin, the Hugoton Embayment, the Nemaha Uplift, the Forest City Basin, the Bourbon Arch, the Cherokee Basin, the Ozark Uplift, and the smaller-scale Abilene Anticline and Irving Syncline. A brief discussion of each of these features is included in the following. The discussion of the smaller-scale, localized features is limited primarily to general characteristics and trends. According to Reference 174, the configuration and magnitude of the various large-scale structural elements are a reflection of the structure of the Precambrian basement. 2.5.1.1.5.1.1 Central Kansas Uplift The Central Kansas Uplift (Reference 174, p. 180) is the largest positive structural feature in Kansas (Figure 2.5-4). It is located in the western portion of the regional study area, covers approximately 5,700 square miles and trends northwest-southeast. It is considered to be a pre-Middle Pennsylvanian, post-Mississippian structural feature. The Central Kansas Uplift separates the Salina and Sedgwick basins on the east from structural features located to the west. Surface formations of Quaternary, Tertiary, and Cretaceous age mask this underlying structure. The sedimentary strata overlying the crest of the fold are generally less 2.5-23 Rev. 0 WOLF CREEK than 5,000 feet thick. On the crest, Pennsylvanian age strata directly overlie the Precambrian basement. On the flanks, the pre-Pennsylvanian strata are folded, truncated, and overlain by Pennsylvanian rock. On a regional scale, the Central Kansas Uplift appears to extend northwestward into Nebraska as the Cambridge and Chadron Arches. 2.5.1.1.5.1.2 Pratt Anticline The Pratt Anticline (Reference 174, p. 182-183) is a broad southward-plunging fold which extends from the Central Kansas Uplift into northern Oklahoma (Figure 2.5-4). It separates the Hugoton Embayment on the west from the Sedgwick Basin on the east. This anticline is considered to be pre-Middle Pennsylvanian, post-Mississippian in age. Approximately 5,000 feet of sedimentary strata, including Quaternary, Tertiary, Permian-Pennsylvanian, Mississippian, and Ordovician-Cambrian, overlie the Precambrian basement.Mississippian age strata are absent from the crest of the fold. 2.5.1.1.5.1.3 North Kansas Basin The North Kansas Basin occupied an area which now contains both the Salina and Forest City basins (Reference 174, p. 182). This basin was a large downwarped area located north of the Chautauqua Arch and east of the Central Kansas Uplift.It is considered to be pre-Mississippian in age. The basin began to develop in Ordovician time and existed as a structural feature into Mississippian time.Numerous periods of structural adjustment occurred, and a major period of erosion occurred at the end of Mississippian time. Following Mississippian time, structural development of the Nemaha Anticline in Kansas and Nebraska subdivided the North Kansas Basin into the Salina Basin and the Forest City Basin (Figure 2.5-4). 2.5.1.1.5.1.4 Salina Basin The Salina Basin (Reference 174, p. 182-183) is the second largest basinal feature in Kansas (Figure 2.5-4). It covers approximately 12,700 square miles and is located in the northwestern portion of the regional area. It is considered to be post-Mississippian in age, and Cretaceous age strata indicate the continued development of the structure through this time interval. The axis of the basin trends northwest and plunges to the north. The basin is limited on the east by the Nemaha Anticline and on the west by the Central Kansas Uplift. Sedimentary strata in the basin have a maximum thickness of approximately 4,500 feet and include Tertiary, Cretaceous, Jurassic, Permian-Pennsylvanian, 2.5-24 Rev. 0 WOLF CREEK Mississippian, Devonian-Silurian, and Ordovician-Cambrian age strata resting on Precambrian clastics, mafic igneous rocks or crystalline basement. 2.5.1.1.5.1.5 Chautauqua Arch The Chautauqua Arch is an anticlinal extension of an early phase of the Ozark Uplift and occupied the area of the present Cherokee Basin. It is considered to be pre-Mississippian in age and has been modified during post-Mississippian time. Along its crest, Pennsylvanian strata overlie Ordovician-Cambrian strata. Structural development in post-Mississippian time resulted in the development of the Nemaha Anticline, the Sedgwick Basin, and the Cherokee Basin in the general area of the older Chautauqua Arch. 2.5.1.1.5.1.6 Sedgwick Basin The Sedgwick Basin (Reference 174, p. 183) is a south-dipping, shelf-like area in south-central Kansas that merges with the Anadarko Basin of Oklahoma (Figure 2.5-4). It is considered to be a pre-Middle Pennsylvanian, post-Mississippian structure and is bounded on the east by the Nemaha Anticline and on the west by the Central Kansas Uplift. The basin contains Permian-Pennsylvanian, Mississippian, Devonian-Silurian, and Ordovician-Cambrian strata overlying the Precambrian basement. Quaternary deposits are present at the surface in the northern portion of the basin. Sedimentary deposits are as thick as 5,500 feet. 2.5.1.1.5.1.7 Anadarko Basin The Anadarko Basin is located in Oklahoma in the southwestern portion of the regional area (Figure 2.5-4). It lies west of the Nemaha Anticline and merges to the north with the Sedgwick Basin in Kansas. The basin is considered to be post-Permian and pre-Cretaceous in age. The basin contains Permian-Pennsylvanian, Mississippian, Devonian, Silurian, Ordovician, and Cambrian age strata estimated to be in excess of 30,000 feet thick. 2.5.1.1.5.1.8 Hugoton Embayment The Hugoton Embayment (Reference 174, p. 181) is a large, shelf-like extension of the Anadarko Basin into western Kansas (Figure 2.5-4). It is considered to be pre-Mesozoic in age. The eastern edge of the embayment area is limited by the Pratt Anticline and the Central Kansas Uplift. In Kansas, the sedimentary strata which dip southward are estimated to be approximately 9,500 feet thick.These strata include sedimentary deposits of Pleistocene, Tertiary, Cretaceous, Jurassic, Triassic, Permian-Pennsylvanian, Mississippian, and Ordovician-Cambrian age overlying the Precambrian basement. 2.5-25 Rev. 0 WOLF CREEK 2.5.1.1.5.1.9 Nemaha Anticline (Uplift) The Nemaha Anticline is one of the most significant structural features in Kansas (Figure 2.5-4). This feature trends N20 E from Oklahoma to northeastern Kansas and then turns northward into Nebraska. The structural geology of the Nemaha Anticline and adjacent areas can be discussed as a two-level model:Precambrian granitic basement (Nemaha Uplift) and overlying Paleozoic sedimentary rocks (Nemaha Anticline). Drilling, geological, and geophysical data indicate that these structures are bordered on the east by a discontinuous series of steeply dipping fractures known as the Humboldt fault zone (USAR Section 2.5.1.1.5.2). The Nemaha Anticline, as expressed in the sediments, overlies a topographic high located in the basement adjacent to and west of the Humboldt fault zone. The Nemaha Uplift is bordered on the west by the Midcontinent Geophysical Anomaly (MGA) which consists of Precambrian mafic rocks and associated sediments (USAR Section 2.5.1.1.5.1.11). In the Paleozoic sediments, the Nemaha Anticline is bounded on the west by the Irving Syncline.This syncline appears to be located above the basement contact zone between the Nemaha Uplift and rocks associated with the MGA. Based on the spacing of geophysical anomaly contour lines, this contact appears to be a steeply dipping fault zone. To the west of this contact zone, a topographic high in the basement surface coincides with high anomaly values and is overlain by arched Paleozoic sediments forming the Abilene Anticline (USAR Section 2.5.1.1.5.1.15).Topographic relief on the Precambrian surface is most pronounced at the eastern margin of the Nemaha Uplift under the anticline, but becomes less pronounced as the basement surface dips toward the west. Seismic surveys in Nemaha County indicate that the Humboldt fault zone may be a wide, complex shear zone (Reference 84). The presence of shear zones in granitic basement along the Nemaha Anticline can be inferred from reports of cataclastic textures (Bickford and others, in press). The topographic relief in the basement underlying the Nemaha Anticline may be due to differential uplift along several subparallel shear zones within the Nemaha Uplift rather than movement along one discreet fault. Greater relief at the eastern margin of the Nemaha Uplift may be the result of greater displacement along the Humboldt and other, as yet unmapped, fault zones within the Nemaha Uplift crustal block. The Nemaha Anticline is recognizable by the surface expression of the Permian and Pennsylvanian age strata, but is a more pronounced feature in the subsurface. The anticline separates the Forest City Basin and the Cherokee Basin on the east from the Salina 2.5-26 Rev. 0 WOLF CREEK Basin and the Sedgwick Basin on the west. Pennsylvanian age strata directly overlie Precambrian basement rocks along the crest of the structure. The depth to the Precambrian basement along the crest ranges from approximately 600 feet near the Nebraska-Kansas state line to over 4,000 feet in Oklahoma. On the flanks, the pre-Pennsylvanian strata are folded, truncated, and overlain by Pennsylvanian strata (Reference 174, p. 182). While the Nemaha Anticline is generally considered as pre-Middle Pennsylvanian, post-Mississippian in age, initial movements occurred prior to this time.Lyons (Reference 159, p. 111) suggested that the geographic and parallel relation between the MGA, which he named the Greenleaf anomaly, and the Nemaha Anticline implied a genetic relationship. He also stated that logs from several wells show that rocks of the Ordovician Simpson Group overlap rocks of the Cambro-Ordovician Arbuckle Group, indicating some topographic relief during the Ordovician (Reference 159, p. 114). If these data and implications are correct, the Nemaha Uplift would be, at least partly, Precambrian in age (USAR Section 2.5.1.1.5.1.17). Additional uplift of the Nemaha Anticline may have occurred before or during Kinderhookian (Lower Mississippian) time (Reference 150, p. 142). This conclusion is based on the observation that deposition in the North Kansas Basin was interrupted and Kinderhookian deposits are confined east of the Nemaha Anticline. According to reference 150, the distribution of the St. Joe and Reeds Spring formations (Lower Mississippian-Osagian) indicates that these units overlapped the flank of the incipient Nemaha Anticline. Initial uplift of the anticline appears to have initiated the separation of the Forest City and Salina basins as early as Osagian time. Only the Burlington-Keokuk sequence (upper Osagian stage) extended across the Central Kansas Uplift and the rising Nemaha Anticline (Reference 150, p. 142-143). Therefore, during Mississippian time, deformation along the Nemaha Anticline included initial movements and maximum development, which occurred at the end of Mississippian deposition (Reference 150, p. 143). A west-east regional cross section showing the Nemaha Anticline (Figure 2.5-6) illustrates the structure at its closest approach to the site. Figure 2.5-6 also shows no evidence of offset of any strata younger than Mississippian along the Humboldt fault zone. This is also apparent from examination of structure contours on the top of the Mississippian, as fault offset along the Humboldt fault zone does not appear on this horizon (Reference 175) or on younger horizons (Reference 177 and 270). As shown on Figure 2.5-6, the offset at the base of the Kansas City Group occurs along a northwest trending normal fault which crosscuts the Humboldt fault zone (Figure 2.5-7; Reference 270 and 45). This northwest-trending fault does not offset the top of the Lansing Group (Reference 177 - also see USAR Section 2.5.1.1.5.2). 2.5-27 Rev. 1 WOLF CREEK Recent mapping in Nemaha County, Kansas (approximately 130 miles north-northwest of the site) and in southeastern Nebraska suggests that uplift of the Nemaha Anticline has occurred along northern portions of the Humboldt fault zone in post-Permian time. Generally, it cannot be determined whether faulting or folding has occurred (References 29, p. 8-9; 84, p. 16-17; and 249, p. 136-137). Displacement along the Humboldt fault zone appears to decrease, and the absence of Paleozoic rocks is less pronounced further southwest along the Nemaha ridge in Pottawatomie County, Kansas (Reference 272, p. 21). Faulting has resulted in vertical displacement of Late Silurian or Early Devonian through Mississippian rocks in Pottawatomie County. In the northeastern part of this county, faulting was inferred to have offset the base of the Kansas City Group (Upper Pennsylvanian). However, this surface and Upper Pennsylvanian through Lower Permian rocks appear to be folded or draped across the trace of the Humboldt fault zone toward the southwest (Reference 272, p. 21; and 270). 2.5.1.1.5.1.10 Forest City Basin The Forest City Basin (Reference 174, p. 181) is located in the northeastern portion of the region in Kansas, Nebraska, Missouri, and Iowa (Figure 2.5-4). Lee (Reference 149, p. 13) reported that the Forest City Basin was originally both a structural and topographic basin which did not come into existence until after Mississippian time. The basin was formed by rejuvenation of the Nemaha Anticline prior to Pennsylvanian deposition and associated downwarping of a post-Mississippian unconformity. Its age is considered as post-Mississippian, pre-Pleistocene. The basin is bounded on the west by the Nemaha Anticline and on the south by the Bourbon Arch. The basin contains a maximum of approximately 4,000 feet of Permian, Pennsylvanian, Mississippian, Devonian-Silurian, and Ordovician-Cambrian age sedimentary strata overlying the Precambrian basement. 2.5.1.1.5.1.11 Bourbon Arch The Bourbon Arch (Reference 174, p. 179) is essentially east-west trending in the central portion of the study area (Figure 2.5-4). It is considered to be pre-Middle Pennsylvanian, post-Mississippian in age. The arch is a low feature which separates the Forest City Basin on the north from the Cherokee Basin on the south. The term "arch" may be a slight misnomer, because this feature served only as a divide between the Forest City and Cherokee basins during the Pennsylvanian and the position of the arch is marked only by thinning of the Pennsylvanian Cherokee sediments (Reference 126, p. 30). Following development of the Nemaha Anticline, the North Kansas Basin was divided into the Salina Basin and the Forest City Basin. In the area of the Chautauqua 2.5-28 Rev. 1 WOLF CREEK Arch, the Cherokee Basin developed and the Bourbon Arch served as a divide between the Forest City and Cherokee basins. The area of the Bourbon Arch can not be seen on structure contour maps of the top of the Pennsylvanian Lansing Group nor on a structure contour map of the base of the Kansas City Group (both younger than the Cherokee Group) (Reference 126, p. 36; and 270). While both the Nemaha Anticline and the Bourbon Arch are pre-Middle Pennsylvanian, post-Mississippian in age, examination of structure contour maps and isopach maps indicate that the Nemaha Anticline formed prior to the Bourbon Arch (Reference 151) (USAR Section 2.5.1.1.5.1.9). According to Reference 151, thicknesses of Mississippian limestones indicate that formation of the arch was initiated during the interval which followed post-Mississippian erosion, prior to Pennsylvanian deposition. Relative thicknesses of lower Pennsylvanian rocks also indicate that the Bourbon Arch had developed by the early Pennsylvanian. "Arching" was contemporaneous with subsidence of the Cherokee Basin to the south. The Forest City Basin, to the north, existed as a land-locked shallow basin within which 200 feet of black shale accumulated. The sedimentary record indicates that the Cherokee and Forest City basins were rejoined when sedimentation occurred continuously across the Bourbon Arch in "middle Cherokee time" (Reference 151, Sheet 6). In its discussion of the tectonics of the Nemaha and Bourbon Arches, Reference 4 indicated that initial movements of the Nemaha Anticline occurred during the Lower Mississippian. Deposition of Mississippian carbonate rocks continued across the Nemaha trend. After deposition of the St. Louis Limestone near the end of Meramecian time, the Nemaha Anticline bisected the North Kansas Basin.The Mississippian Ste. Genevieve Formation is preserved above a slightly eroded surface on the St. Louis Limestone only to the east of the Nemaha Anticline in the relatively down-dropped Forest City Basin. The Bourbon Arch appears to have remained stationary while the Forest City and Cherokee basins formed in response to reactivation of the Nemaha Anticline. During the early Middle Pennsylvanian, initial filling of the Forest City Basin resulted from erosion of the elevated Nemaha Uplift and other emergent areas.A completely different provenance is indicated for the Forest City Basin sediments which were deposited after the Bourbon Arch was inundated during later mid-Pennsylvanian time (Reference 4, p. 277). The development of the Bourbon Arch is considered in the same structural context as the Forest City and Cherokee basins which should be regarded as one continuous structural province, and not 2.5-29 Rev. 0 WOLF CREEK in the structural context of the Nemaha Anticline. The Nemaha Anticline marks the western boundary of the two basins. The Bourbon Arch separated two areas accumulating sediments, but this separation appears to be typical of the Middle and Late Pennsylvanian basins of North America. It would be misleading, therefore, to place too much emphasis on the development of individual basins (Reference 126, p. 30). 2.5.1.1.5.1.12 Cherokee Basin The Cherokee Basin (Reference 174, p. 180) is located in the south-central portion of the regional area (Figure 2.5-4). It is considered to be pre-Middle Pennsylvanian, post-Mississippian in age and is an extension of the Arkoma Basin of Oklahoma into southeastern Kansas. The northern part of the basin is separated from the Forest City Basin by the Bourbon Arch, and the western side is bounded by the Nemaha Anticline. The basin overlies the older Chautauqua Arch and has a maximum thickness of sedimentary strata of 3,500 feet. Early Pennsylvanian age rocks overlie Cambrian-Ordovician age strata throughout most of the basin. The Precambrian surface does not reflect the basinal structure. 2.5.1.1.5.1.13 Ozark Uplift The Ozark Uplift is a major structural feature in Missouri. The western portion of the Ozark Uplift is located in the southeastern portion of the area east of the Cherokee Basin (Figure 2.5-4). It is considered to be a dominant structural feature throughout the Paleozoic (Reference 88, p. 55). Subsidence, which occurred in the Ozark region prior to deposition of the St. Peter Sandstone, was followed by uplift during deposition. The Ozark Uplift was exposed to erosion by the end of the Silurian. Deposition of Devonian sediments was followed by another period of uplift and erosion. The Ozarks were inundated and became a site of extensive deposition during the Mississippian. Renewed uplift at the end of the Mississippian was followed by Pennsylvanian transgression which may not have covered the entire area (Reference 88, p. 53-59). 2.5.1.1.5.1.14 Boston Mountains The Boston Mountains are located in the southeastern portion of the regional area along the southern edge of the Ozark Uplift (Figure 2.5-4). The mountains are characterized by numerous folds and faults with a general east-west trend and secondary northeast and northwest trends. The Boston Mountains appear to be a transitional area between the Ozark Uplift to the north and the Arkansas Valley (Arkoma Basin) to the south (Reference 88, p. 227). 2.5-30 Rev. 0 WOLF CREEK 2.5.1.1.5.1.15 Abilene Anticline and Irving Syncline The Abilene Anticline and Irving Syncline are two smaller structures apparently related to the Nemaha Uplift and MGA (Figure 2.5-15, Table 2.5-3, and USAR Section 2.5.1.1.5.1.9). The Abilene Anticline is an arch in Paleozoic sedimentary rocks (eastern flank of Salina Basin), which is located above a topographic high in the Precambrian surface. This topographic high is located close to the geophysical maxima of the MGA. The axis of the Abilene Anticline trends northeast and plunges to the southwest. The southern portion of the anticline is subparallel to the Nemaha anticlinal axis, but these two structures appear to converge toward the Kansas-Nebraska border. The Irving Syncline (between the Nemaha and Abilene anticlines) is a downwarp in the sediments located above a topographic low in the Precambrian surface. This topographic low appears to coincide with closely spaced geophysical contour lines (Figures 2.5-7, 2.5-8 and 2.5-9). The Irving Syncline, therefore, may be located above a steeply dipping fault zone which separates the Nemaha Uplift from the MGA maxima (See USAR Section 2.5.1.1.5.1.17). Initial development of the Precambrian surface configuration beneath the Irving Syncline and Abilene Anticline may have occurred during the Precambrian and would be related to the formation of the Central North American Rift System (Section 2.5.1.1.5.1.17). Initial development of the Abilene Anticline and Irving Syncline may have occurred during late Mississippian to early Pennsylvanian time (Reference 38, p. 3). Following Mississipian deposition, uplift exposed Mississippian limestones to erosion along the crest of the Abilene Anticline. All Paleozoic rocks were eroded from the crest in northern Kansas. Since the anticline plunges to the southwest, the depth of erosion decreases in this direction (Reference 238, p. 124-126). The seas reinvaded northeastern Kansas during the Middle Pennsylvanian (Desmoinesian). Renewed periods of uplift during the Late Pennsylvanian (Missourian and Virgilian) are indicated by thinning of the Upper Pennsylvanian Lansing, Douglas, Shawnee, and Wabaunsee Groups above the crest of the Abilene Anticline (Reference 174, p. 112, 113, 115, 118). Further uplift related to emplacement of ultramafic intrusions in Riley County may have occurred during the Cretaceous (USAR Section 2.5.1.1.5.2). The crest of the Nemaha Anticline is located several miles east of the axis of the Irving Syncline, which is several miles east of the axis of the Abilene Anticline. The Irving Syncline probably formed passively as a structural low flanked by two tectonically positive structures: the Nemaha and Abilene anticlines. While the Nemaha Anticline may have formed as a result of uplift in the basement, the Abilene Anticline may have formed as a result of passive folding in the overlying sedimentary rocks (Section 2.5.2.2). 2.5-31 Rev. 0 WOLF CREEK 2.5.1.1.5.1.16 Local Structures The small-scale localized structures are shown on Figure 2.5-15 and listed in Tables 2.5-1 through 2.5-6. These structures are associated with each of the large-scale structural basins and arches. The small-scale fold axes and the strike of the faults generally conform to regional trends: N20 E; N40 to 60 W; and N45 E. Limbs of folds generally dip less than 5 degrees. Most faults dip steeply and have normal displacement. The central portion of the regional area is relatively free of folding or faulting. The smaller-scale features range in shape from domes to elongated synclines and anticlines. Some are symmetrical, some asymmetrical, and many have associated faults. The limbs of many folds appear to dip more steeply with depth, and several are structural traps for oil and gas. The major periods of folding are listed in Table 2.5-7. The Kansas Geological Survey performed a seismic reflection survey in 1980 along approximately 4.75 miles of an east-west county road crossing the John Redmond Dam. The survey was performed using the Mini-Sosie* technique for 6-fold data. Preliminary data processing in January 1982 and preliminary interpretation by the Kansas Geological Survey indicated the possibility of a faulted small-scale anticline at depth near the southwestern end of the John Redmond Dam (Reference 313) at a location approximately 6.4 miles west-southwest of the site. Subsequent review of the preliminary data by Dames & Moore and discussions with the Kansas Geological Survey led to the conclusion that evidence of faulting based on the seismic data was not compelling.Surficial and excavation surface geologic mapping along the make-up water system (Reference 326 and 72) and soils and geology exploration by the U.S. Army Corps of Engineers for the foundation of the John Redmond Dam (U.S. Army Corps of Engineers, 1959) show no evidence of surface faulting within 5 miles west-southwest of the site. In Woodson and Riley counties, Kansas, igneous plugs have intruded into the Paleozoic sediments. Potassium-Argon (K-Ar) dating of the Woodson County mica peridotites (Rose Dome and Silver City Dome) has given ages of 88 to 91 m.y. (Reference 285). Rubidium-Strontium (Rb-Sr) mineral isochron dating of the Stockdale Kimberlite plugs in Riley County (Reference 25), K-Ar mineral, and fission track dating (Reference 24) show that the date of emplacement of these plugs is Cretaceous. ____________________

  • Trademark of Elf-Acquitaine Production. 2.5-32 Rev. 0 WOLF CREEK 2.5.1.1.5.1.17 Geophysical Anomalies and Structures Midcontinent Geophysical Anomaly (Rift System) - The Bouger Gravity Anomaly map (Figure 2.5-8) illustrates a marked agreement between azimuths of anomalies and trends of the Nemaha and Central Kansas uplifts (Reference 277, p. 97). A westward shift of the gravity anomaly from the axis of the Nemaha Anticline strongly suggests structural control of intrusions along preexisting fracture zones (Reference 277, p. 102). These positive gravity anomalies are also characterized by pronounced magnetic anomalies, suggesting igneous or metamorphic rocks of mafic composition at depth (Figure 2.5-9 and Reference 277, p. 94). The gravity and magnetic high parallel with the Nemaha Anticline is a continuation of the MGA. This anomaly can be traced for more than 600 miles from Lake Superior to the Salina Basin in central Kansas and appears to be caused by a sequence of mafic, layered intrusives (and extrusives) and arkosic rocks that are probably fault-bounded and tilted along the margins of the anomaly (Figure 2.5-10). The Kansas segment of the MGA appears to have been offset 50 miles eastward from its northeastward continuation (Figure 2.5-10). On the basis of magnetic, gravity, and geologic data, Reference 136 postulated that the MGA indicates the presence of a Precambrian Rift System. A model of the geophysical anomaly across the Iowa segment shows a fault-bordered basin of mafic rocks approximately 5 miles thick resting on Precambrian basement rocks (Reference 136, p. 2196). Reference 202 interpreted gravity, seismic, and geologic data across the MGA to represent the "Central North American Rift System." According to Reference 202, this density contrast was caused by a mafic mass that has a deep central feeder and a larger volume than that proposed by Reference 136 within felsic country rock (Figure 2.5-13). Reference 159, p. 117-118) estimated the high density core to be approximately 33 miles in width, but gave no data on its possible vertical extent (Figure 2.5-14). The area delineated by the MGA is flanked by clastic sedimentary rocks (Figures 2.5-7 through 2.5-10). The anomaly and sedimentary rocks are also flanked by an older Precambrian metamorphic and igneous terrain. Rocks associated with the anomaly are gabbros and possibly basalts, which are overlain in places by clastic rocks similar to those exposed in Minnesota. Therefore, these rocks appear to be a subsurface continuation of the 1,100 m.y. Keweenawan Series (References 15, 202 and 136). Where control is available, it can be shown that the mafic rocks are bordered on the east and west by high-angle faults (References 202, Figure 5; and 136, Figure 3). 2.5-33 Rev. 0 WOLF CREEK Along the western margin of the MGA in Minnesota and Wisconsin, the Keweenawan volcanic rocks are separated from associated clastic rocks by the steeply dipping Douglas fault. This fault is mapped at the surface and, by using aeromagnetic data, can be extended southward for about 25 miles beneath the Paleozoic cover (Reference 136, p. 2191). A postulated subsidiary feature, the Pine Plains fault, is located east of and extends south of the Douglas fault.The Lake Owens fault in Wisconsin appears to be located near the eastern margin of the MGA. In southwestern Wisconsin and northern Minnesota, gravity and magnetic data show that the steeply westward dipping Hastings fault bounds Keweenawan basalt on its eastern margin (Reference 136, p. 2191-2,192). The spacing of aeromagnetic contour lines suggests the presence of similarly located faults in the Precambrian basement of central Kansas (Figure 2.5-9).

The inferred eastern border fault is the contact zone between the Central North American Rift System to the west and the Nemaha Uplift to the east and appears to underlie the Irving Syncline (USAR Sections 2.5.1.1.5.1.15). The MGA appears to have been a Precambrian zone of rifting, sedimentation, and igneous activity at approximately 1,100 m.y. Other Anomalies - A series of strong positive anomalies in the Forest City Basin is a prominent feature on the aeromagnetic map of eastern Kansas (Figure 2.5-9). From a comparison of geologic sections, magnetic profiles, and the aeromagnetic map, there appears to be little correlation between structure or configuration of the basement rocks and these magnetic anomalies (Figure 2.5-7; Reference 328, p. 157, 160 and 162). On a regional scale, there appears to be little or no correlation between these strong magnetic anomalies and Bouguer gravity anomalies (Figures 2.5-8 and 2.5-9; Reference 1, p. 149). Locally, three of the strong magnetic anomalies in the Forest City Basin appear to have associated weak gravity highs (Reference 328, p. 172; Reference 272, p. 15). A similar, but weaker magnetic anomaly is located in Coffey County approximately 2 miles west of the site. This magnetic anomaly does not appear to have an associated gravity anomaly (Reference 276). However, the results of this and other studies of the Forest City Basin magnetic highs were inconclusive. In general, these geophysical anomalies appeared to be the result of density - magnetic (i.e. lithologic) contrasts within the basement, but not necessarily at the basement surface (Reference 272, p. 15), and did not appear to represent basement configuration. More recently, drilling was completed on one of these circular anomalies, in Miami County, on December 10, 1979 (Figure 2.5-14a - Feature A). The basement rock is coarse-grained granite composed essentially of microcline-perthite, plagioclase, quartz, biotite, and minor muscovite along with accessory minerals. This rock contains about 2 percent magnetite by weight; enough to account for the positive magnetic anomaly (References 246 and 281). A boring on a circular anomaly in Douglas County 2.5-34 Rev. 0 WOLF CREEK was completed on March 19, 1980 (Figure 2.5-14a - Feature B). This rock is a medium-grained granite, mineralogically almost identical to the sample from Miami County. Uranium-lead ages on zircons indicate any age of 13616 m.y. from the Miami County sample and 133912 m.y. from the Douglas County sample.These circular anomalies, therefore, appear to be mineralogically similar and contain relatively abundant magnetite and sphene. These data suggest that the almost-circular, strong positive magnetic anomalies underlying the Forest City Basin are caused by Precambrian granite intrusions containing a relatively high amount of magnetite. 2.5.1.1.5.1.18 LANDSAT Lineaments Lineaments in eastern Kansas visible on multiseasonal LANDSAT MSS 5 and MSS 7 imagery were mapped by Reference 166. Figure 2.5-14a is a composite of the aeromagnetic and LANDSAT lineament maps published by the Kansas Geological Survey (Reference 166 and 284). This composite was used to determine which LANDSAT lineaments appear to coincide with aeromagnetic anomalies or trends in contour lines. Figure 2.5-14b is a composite of the LANDSAT lineament map and the map of the Precambrian basement surface (Reference 45). The latter map was used to determine which LANDSAT lineaments appear to coincide with trends or structures in the basement surface. Lineament No. 1 has the longest trace in eastern Kansas. Lineaments No. 2 through No. 8 appear to correspond to features on both the aeromagnetic and basement surface maps. Lineaments No. 9 through No. 24 appear to correlate with aeromagnetic anomalies or trends in magnetic intensity contour lines.Lineaments No. 25 through No. 34 appear to correspond with either structures or topographic contour trends in the basement surface. Only a short portion of Lineament No. 1 appears to coincide with the trend of aeromagnetic intensity contours. This lineament, informally termed the "Neosho Lineament" by Reference 272 marks an approximately 90-mile long straight segment of the Neosho River. A segment of approximately 29 miles appears to coincide with trends in magnetic intensity contours (Figure 2.5-14a). Although a northwest-trending grain is apparent in the basement, no known features correspond with the "Neosho Lineament" (Figure 2.5-14b). This lineament is not visible on the map of the Precambrian surface or on structure contour maps of the Arbuckle, Mississippian, Kansas City, and Lansing rocks (Reference 177, 175, 176, 45 and 270). Lineament Group No. 2 corresponds with geophysical anomalies and basement trends associated with the Central North American Rift System (Figures 2.5-14a and 2.5-14b). Lineament Group No. 3 appears to be associated with the Nemaha Uplift (Figures 2.5-14a and 2.5-14b). Lineaments 4, 5, and 6 correspond, 2.5-35 Rev. 0 WOLF CREEK in part, to geophysical anomalies and trends in the basement surface. These lineaments are located near northwest-trending faults in the basement surface that crosscut the Nemaha Uplift (Figures 2.5-14a and 2.5-14b). Lineament No. 6 appears to overlie one of these faults. Lineaments No. 7 and No. 8 may be reflections of the Abilene Anticline. Lineaments 9 through 12 correspond with either the Nemaha Uplift or CNARS.Northwest-trending Lineament No. 13 crosscuts the Nemaha trend and is the northeast boundary of a rectangular area of lower magnetic intensities and gentler gradients. This lineament corresponds to a structurally complex area on the map of the Precambrian surface and is located near deflections in contour lines at the base of the Kansas City Group (Figure 2.5-14a and Reference 270). Lineament No. 14 is the northeast-trending, northwestern boundary of the area discussed above (Figure 2.5-14a). Lineaments No. 15 through 21 appear to correspond with trends in the aeromagnetic intensity map.Lineament No. 17 may be related to a Precambrian intrusive (USAR Section 2.5.1.1.5.1.17). Curvilinears No. 22 and No. 23 are associated with Precambrian intrusives (USAR Section 2.5.1.1.5.1.17). Curvilinear No. 24 corresponds with an intense magnetic low circular anomaly within a broad east-west trending zone of low magnetic intensity. Lineament No. 25 corresponds with a fracture zone or inferred fault that may be a northwestward continuation of the Chesapeake Fault Zone (Figure 2.5-14b; also see USAR Section 2.5.1.1.5.2). Northwest-trending Lineaments No. 26 through No. 29 appear to correspond with contour trends in the Precambrian surface (Figure 2.5-14b). Lineaments No. 30 through 33 appear to be related to the Nemaha Uplift (Figure 2.5-14b). Curvilinear No. 34 is located above a depression in the Precambrian surface (Figure 2.5-14b). In summary, northeast-and northwest-trending lineaments are predominant in eastern Kansas. Most northeast-trending lineaments, which correspond with geophysical or Precambrian surface features, are related to the CNARS or Nemaha Uplift. Most north-west-trending features appear to be related to Precambrian basement terrane. Curvilinears 23 and 24 appear to correspond with younger Precambrian granites that have intruded older Precambrian terrane. Faulting in the vicinity of Lineaments No. 4, 5, and 6 is discussed in USAR Section 2.5.1.1.5.2 (Faults No. 24). On the basis of current data, the "Neosho Lineament" does not appear to be related to structure in the basement of overlying sedimentary rocks. All of the lineaments shown in Coffey County on the LANDSAT lineament map of eastern Kansas (Reference 166) are discussed below. These lineaments are identified by number and shown on Figures 2.5-36 Rev. 0 WOLF CREEK 2.5-14c and 2.5-14d. The LANDSAT lineament map was compared with the following references: - State geological map (Reference 125); - Kansas state base map (Reference 263); - Aeromagnetic map of eastern Kansas (Reference 284; Figure 2.5-9); - Bouguer gravity map of southeastern Kansas (Reference 282); - Configuration of the Precambrian surface (Reference 45); - Gelogic map of the Precambrian basement (Reference 15);

-  Figure 2.5 Regional Fold Map; and  -  Figure 2.5 Regionl Fault Map. On the basis of this comparative analysis, all of the LANDSAT lineaments in Coffey County appear to be geomorphic in origin. Whereas this analysis has determined that these lineaments do not correspond with the location of documented folds or faults; anomalously straight segments of stream channels may be controlled by a locally well-developed joint system. Closely-spaced joints often result in preferential erosion of a linear stream segment. As discussed in USAR Section 2.5.1.1.5.1.18, Lineament No. 1 is a portion of the "Neosho Lineament" (Reference 272). A 29-mile long segment, southeast of the site in northeastern Woodson County, appears to coincide with trends in magnetic intensity contours (Figure 2.5-14a). Lineament No. 1A is a portion of the Neosho Lineament extending from Emporia, Kansas to John Redmond Reservoir, west of the site. This lineament is defined by the channel of the Neosho River and has no signature on the aeromagnetic map. Part of Lineament No. 1A coincides with an intense gravity low west of the site, but the lineament also cross-cuts the Bouguer gravity contour lines. This gravity low does not coincide with the aeromagnetic contours, and geophysical evidence for basement control of this lineament is not convincing. As noted, the "Neosho Lineament" is not visible on the map of the Precambrian surface on structure contour maps of overlying marker beds. The "Neosho Lineament", therefore, appears to be geomorphically, rather than structurally, controlled. As noted, portions of Lineaments No. 1 and No. 26 in Woodson County appear to coincide with contour trends on the map of the Precambrian surface. This trend appears to be partly coincident with the southwestern and northeastern flanks of the Neosho Falls 2.5-37 Rev. 1 WOLF CREEK Dome. Lineament No. 26 is a relatively straight segment of the Neosho River channel between the confluence of Turkey Creek, the South Fork, and the Neosho River, southwest of LeRoy, and the town of Iola. It is conceivable that parts of these lineaments are controlled by closely spaced joints. Structure contour maps of overlying sediments show no evidence of faulting. Lineament No. 35 corresponds with a southeast flowing tributary to the South Fork of the Neosho River. This stream cuts through upland terrace deposits of chert-gravel alluvium into bedrock. This lineament is geomorphic in origin.Parallelism with aeromagnetic contours appears to be fortuitous. Lineament No. 36, in south-central Coffey County, corresponds with the northeast flowing South Fork of the Neosho River. According to the geologic map of Kansas, the northwest bank of the stream appears to be composed of more resistant limestone in one area and chert-gravel alluvium in another segment. The portion of Lineament No. 37 in Anderson County appears to coincide with a drainage divide between Kenoma and Elm Creeks, northwest of Harris, Kansas.This drainage divide appears to project northwestward into Coffey and Osage Counties.Lineament No. 38 coincides with a northwest-to-southeast flowing tributary to Pottawatomie Creek. Lineament No. 39 trends northeast-southwest. The southwestern portion, west of Sharpe, corresponds with southward flowing Long Creek. The stream is flowing parallel to the strike of rocks belonging to the Shawnee Group. Northeast of Williamsburg, the stream is located adjacent to a cuesta formed by the more resistant Toronto Limestone Member of the Shawnee Group. Lineament No. 40 corresponds, partly, with northeastward flowing Long Creek and, partly, with a tributary to Long Creek. A steep stream bank is underlain by relatively more resistant Lecompton Limestone (Reference 204). Lineament No. 41 corresponds with Long Creek and an eastern tributary to Long Creek, west of Burlington, Kansas. At this location, the stream is flowing at the base of a cuesta underlain by Toronto Limestone. This erosional scarp marks the contact between the Shawnee and underlying Douglas Groups. Lineament No. 42 corresponds with Turkey Creek, which is a northeast flowing tributary to the Neosho River. This lineament also appears to be geomorphically controlled. 2.5-38 Rev. 0 WOLF CREEK Lineaments No. 43 and No. 44 appear to be erosional in nature and partly controlled by streams flowing along the base of limestone supported banks.Lineament No. 45 appears to correspond with a linear drainage divide northeast of Ottumwa. Curvilinear No. 46 can be divided into three sections. The southwest portion corresponds with Long Creek, west of Burlington, Kansas. The southern portion is formed by the Neosho River near the town of LeRoy. The eastern portion is formed by Indian Creek. The preceding section addressed the occurrence and origin of LANDSAT lineaments within Coffey County (the site county), Kansas. Nine lineaments discussed in USAR Section 2.5.1.1.5.1.18 appear to be structurally controlled (two folds, seven faults). In addition, several other lineaments appear to correspond with folds and faults shown on Figures 2.5-15 and 2.5-16. These lineaments are identified on Figures 2.5-14c and 2.5-14d. Lineaments No. 2 and No. 9 correspond with the Abilene Anticline (Fold No. 6 - Figure 2.5-15 and Table 2.5-3). The Abilene Anticline is located above a topographically high area on the Precambrian surface close to the geophysical maxima reflecting the Midcontinent Geophysical Anomaly. Lineament No. 5 corresponds with Fold No. 33 and Fault No. 24 (Figure 2.5-15, Table 2.5-3; Figure 2.5-16, Table 2.5-10). The northwest trending Cedar Creek syncline overlies a graben in the Precambrian surface (see USAR Section 2.5.1.1.5.2, page 2.5-34). Lineaments No. 3 and No. 10 correspond with segments of the Humboldt fault zone (Fault No. 2 - Figure 2.5-16, Table 2.5-10). Lineament No. 3 corresponds with a steep slope on the Precambrian surface (eastern margin of Nemaha Uplift). Lineament No. 10 corresponds with a trend on the aeromagnetic map. Lineament No. 32 corresponds with Faults 25 and 30 (Figure 2.5-16, Table 2.5-10) and reflects part of the Humboldt fault zone. Lineament No. 55 may reflect Fault No. 16 (Figure 2.5-16, Table 2.5-10), part of the Nemaha Uplift system of faults (see USAR Sections 2.5.1.1.5.1.9 and 2.5.1.1.5.2).Lineament No. 31A, in Wabaunsee County, corresponds with Fault No. 20 in the Precambrian surface (Figure 2.5-16, Table 2.5-10), which trends northwest across the Humboldt fault zone. Lineament No. 28 corresponds partly with a depression in the Precambrian surface and is located close to a possible northwestward projection of the Eldorado Springs North fault zone (Fault No. 69 - Figure 2.5-16, Table 2.5-10; and USAR Section 2.5.1.1.5.2. 2.5-39 Rev. 0 WOLF CREEK Lineament No. 28 corresponds partly with a depression in the Precambrian surface and is located close to a possible northwestward projection of the Eldorado Springs North fault zone (Fault No. 69 - Figure 2.5-16, Table 2.5-10; and USAR Section 2.5.1.1.5.2, page 2.5-34). Lineaments Nos. 47 and 48 may correspond to the axis of the Brownville Syncline, the deepest portion of the Forest City Basin (Fold No. 5 - Figure 2.5-15, Table 2.5-3). Lineament No. 49 corresponds with Fold No. 21 and Fault No. 22 (Figure 2.5-15, Table 2.5-3; Figure 2.5-16, Table 2.5-10). This lineament reflects the northeast trending John Creek Anticline, which is part of the faulted east flank of the Alma Anticline. Lineaments Nos. 50, 51, 52, and 53 may be related to the northeast trending Reese, Beaumont, Countryman, and Winfield anticlines, respectively (Folds Nos. 44, 45, 63, and 57, respectively - Figure 2.5-15, Table 25-3).

These folds occur in sedimentary rock above the basement, have been mapped at the surface, and mapped in the subsurface using structure contours. Curvilinear 54 coincides with the location of the northwest trending Florence-Urshel anticline in Marion County (Fold No. 29 - Figure 2.5-15, Table 2.5-3). Curvilinear 56 appears to be related to unnamed faults shown on structure contour maps of Silurian- Devonian "Hunton" rocks (Reference 175) and on top of Mississippian rocks (Reference 332). These faults, however, are not visible on the structural contour map of the base at the upper Pennsylvanian Kansas City Group (Reference 270). (Also see Figure 2.5-16, Table 2.5-10). The 1867 MMI VII Manhattan, Kansas earthquake may have occurred along a fault in the basement beneath, or adjacent to, the Abilene Anticline (see Figure 2.5-64 and USAR Sections 2.5.1.1.5.1.15 and 2.5.2.1). There is no evidence to relate this earthquake to either Lineament No. 2 or No. 9. In fact, Reference 85 has relocated the epicenter of this event eastward to the vicinity of Wamego (see USAR Section 2.5.2.1). Most of the significant earthquakes within 200 miles of the site can be associated with the Nemaha Uplift or the adjacent Central North American Rift System (USAR Section 2.5.2.3). Figures 2.5-64 and 2.5-75 indicate that many of these earthquakes are associated with the east or west flanks of the Nemaha Uplift. Although these zones appear to be seismogenic, there is no evidence, to date, relating epicentral locations to any particular lineament. Other earthquake epicenters shown on Figure 2.5-64 cannot be related with any degree of certainty to a particular LANDSAT lineament. 2.5.1.1.5.1.19 Recent Studies References 281 and 246 document the results of investigations performed to define more precisely geological and geophysical characteristics of the buried Precambrian basement of Kansas. 2.5-40 Rev. 0 WOLF CREEK These publications strongly support the Applicant's earlier interpretations, presented in this document, of several features within the basement and, therefore, do not affect the previous conclusions regarding site safety. Both of these publications have been referred to in USAR Sections 2.5.1.1.5.1.17 and 2.5.1.1.5.1.18. Reference 281 discusses the aeromagnetic survey and the resulting aeromagnetic anomaly map. The aeromagnetic map of eastern Kansas, available from the Kansas Geological Survey, were reproduced as Figure 2.5-9 and is referred to in Section 2.5.1. The three major features described by Reference 281 are the Central North American Rift System (CNARS), a large east-west trending negative anomaly and the group of strongly positive, circular aeromagnetic anomalies in the Forest City Basin. The buried CNARS is reflected by northeast-trending positive aeromagnetic anomalies and closely spaced contour lines in the north central portion of Figure 2.5-9 (see USAR Section 2.5.1.1.5.1.17). Several lineaments visible on LANDSAT imagery appear to correspond with features on the aeromagnetic and basement surface maps that are apparently associated with the CNARS (Lineament Group No. 2 - Figures 2.5-14a and 2.5-14b). Lineament Group No. 3 appears to be associated with the Nemaha Uplift (USAR Section 2.5.1.1.5.1.18, Figures 2.5-14a and 2.5-14b). Reference 281 confirms interpretations stated in Sections 2.5.1 and 2.5.2 that the CNARS appears to extend southward into southern Kansas and Oklahoma and that mafic volcanics did not reach the Proterozoic surface in southern Kansas. In southern Kansas, the CNARS appears to be represented by prominent magnetic lineaments. Reference 281 indicates that the rift in southern Kansas may not have progressed beyond the stage of block faulting and possibly dike intrusion.Reference 281 also supports the hypotheses inferred in Section 2.5.2.2 that the Nemaha block and bounding faults might be related to the formation of the CNARS (i.e., the Nemaha block was topographically higher and not involved in subsequent foundering). These data do not alter interpretations presented in Section 2.5.2. The second major feature, an east-west trending aeromagnetic low centered about Wichita, may, according to Reference 281, reflect a crustal boundary between a northern 1,625 million-year-old (m.y.) mesozonal granitic terrane and a southern 1,400 m.y. epizonal granite and rhyolite terrane. Precambrian basement lithologies are discussed in USAR Section 2.5.1.1.4.1. This anomaly had previously been discussed by Reference 325 and by Reference 272. Structure contour maps on the top of Cambro-Ordovician Arbuckle rocks, Silurian-Devonian "Hunton" rocks, Mississippian rocks, the Upper Pennsylvanian Lansing Group and on the base of the Upper 2.5-41 Rev. 0 WOLF CREEK Pennsylvanian Kansas City Group do not indicate a geologic structure associated with this large negative anomaly (References 176, 175, 177, 270 and 332). In addition, this large negative magnetic anomaly is not marked by a concentration of historic macro- or microearthquake epicenters. Although the source of these magnetic lows is not clear, this basement feature does not appear to be significant to site safety. The third major geophysical feature discussed by Reference 281 and 246 is the group of circular, strongly positive magnetic anomalies in the Forest City Basin (see USAR Section 2.5.1.1.5.1.17). These features and the aeromagnetic survey of Kansas were also discussed at a meeting in the NRC offices (Docket No. 50-482, April 20, 1976). Earlier interpretations which indicated that these features are the results of density-magnetic (i.e., lithologic) contrasts within the Precambrian basement were confirmed by two deep borings (References 246). These circular, strongly-positive, magnetic anomalies appear to result from Precambrian granitic intrusives (containing approximately 2 percent magnetite) which intruded older Precambrian granitic crust (see USAR Section 2.5.1.1.5.1.17 and Figure 2.5-14a; References 246 and 281). These data provide further confirmation that the magnetic highs do not represent upfaulted basement blocks. These anomalies, therefore, are not significant to site safety.References 282, 247 and 248 were also reviewed and are discussed below as inter-related data. The Bouguer gravity maps of northeastern and southeastern Kansas (References 282 and 283) were spliced together to produce the composite in Figure 2.5-8a.The most striking feature on Figure 2.5-8a is the large, northeast trending, positive gravity anomaly located in the northwestern portion of the map. This positive gravity anomaly reflects mafic intrusives or lava flows related to the buried Central North American Rift System (CNARS) (See USAR Section 2.5.1.1.5.1.17 and Figures 2.5-7 to 2.5-10). The flanking gravity lows reflect the presence of Precambrian clastic deposits associated with this ancient rift (See USAR Section 2.5.1.1.5.1.17 and Figures 2.5-13 and 2.5-14; and Reference 248).A relatively steep north-trending gravity gradient located just east of N40.0- E96.0 appears to be related to the Humboldt fault zone. The gradient curves toward the west about 20 km south of the Nebraska border. This curvature may reflect either a branch of the Humboldt fault zone or an indirect relationship between the gravity gradient and fault zone (Reference 248). The origin of the gravity low in the Forest City Basin (northeastern part of Figure 2.5-8a) is not known (Reference 248). A comparison between aeromagnetic and gravity anomaly maps (Figures 2.5-8a and 2.5-9) shows that, in general, the circular pos- 2.5-42 Rev. 1 WOLF CREEK itive aeromagnetic anomalies in the Forest City Basin are not associated with positive gravity anomalies. The origin of these aeromagnetic anomalies (younger Precambrian granites intruded into older Precambrian granite terrane) has been discussed elsewhere and accounts for the absence of corresponding positive gravity anomalies (USAR Section 2.5.1.1.5.1.17). An almost circular gravity low (-65 to -67 mgal) in Osage County, approximately 15 miles due north of the site corresponds with a circular positive aeromagnetic anomaly (1000 to 2000). The coincidence of a magnetic high and gravity low may indicate that the underlying crust contains an intrusion different in composition from the Miami and Douglas County Precambrian granites (Reference 246). Reference 248 discusses the closely spaced aeromagnetic contours in Osage County (north of Coffey Co.) that curve sharply from a northwest to a northeast trend, the "Osage elbow". The reference infers that this feature reflects block faulting in the crystalline basement that may have effected overlying sediments during the Pennsylvanian. There is no directly comparable feature on the Bouguer gravity anomaly map. A gravity low at approximately 37° 42'N, 96° 26'W lies within the Wichita aeromagnetic low (Figure 2.5-8a; and Reference 281). The shapes of these lows are not coincident and the origin of the Wichita low is not known. An area of relatively high Bouguer gravity values is located in extreme southeastern Kansas (Figure 2.5-8a). This gravity high encompasses an area containing isolated positive aeromagnetic highs. The region of high gravity values may represent Precambrian felsic volcanic terrane whereas coincidence with aeromagnetic highs may reflect undiscovered mafic intrusions (Reference 15). It is interesting to note that contour trends visible on the 1964 Bouguer gravity map of the United States (Figure 2.5-8) have been defined in greater detail on Figure 2.5-8a. This observation can be corroborated by following the -60 mgal contour at the site on Figure 2.5-8 and comparing it with the -60 mgal contour on Figure 2.5-8a. This comparison indicates that the major northeast and northwest trends visible on Figure 2.5-8 have been defined in greater detail by recent surveys. The Bouguer gravity map of southeastern Kansas shows that there are no closely spaced contours indicating sharp gravity gradients in Coffey County (Reference 283). Detailed analysis of the Bouguer gravity map, other geophysical data and subsurface data will add to our knowledge of crust and mantle structure beneath eastern Kansas. On the basis of these data, there are no indications of crustal features that may represent a hazard to site safety. 2.5-43 Rev. 0 WOLF CREEK Reference 247 lists all microearthquakes recorded by the Kansas Geological Survey's microearthquake network between 1977 and May 1, 1981. Maps showing these epicentral locations show no new trends that have not been discussed elsewhere (Reference 247; and USAR Section 2.5.2). Microearthquakes in Nemaha and Wabaunsee counties and in southern Cowley County appear to have occurred along segments of the Humboldt fault zone. Two epicenters are located in the vicinity of a northwest trending fault on the Precambrian surface, northeast of lineament No. 6 (Figure 2.5-8a; Fault No. 24 - Figure 2.5-16, Table 2.5-10).Other microearthquake epicenters occur along the northwest margin of the CNARS.As discussed in USAR Section 2.5.2.3, this microearthquake activity indicates that portions of the Humboldt fault zone and margins of the CNARS appear to be seismogenic.According to Reference 247, a sensitivity analysis of the Kansas microearthquake network indicates that magnitude 1.5 earthquakes will be detected within 200 miles of the site toward the northwest, north and northeast. Magnitude 1.5 earthquakes occurring within 140 miles toward the southeast will be detected. The microearthquake network will detect all magnitude 2.0 quakes within 200 miles of the site, except for parts of northwestern Arkansas and southcentral Missouri. The network will detect all earthquakes as small as magnitude 2.2 within 200 miles of the site. The data summarized above are significant to site safety in that seismicity appears to occur along segments of the Humboldt fault zone, Nemaha Uplift faults and CNARS border faults, consistent with conclusions stated in USAR Section 2.5.2. In addition, no microearthquake trends have appeared in the site vicinity or along previously unknown structures. Reference 248 discusses the structure and tectonic history of the Salina and Forest City basins and the intervening Nemaha ridge and anticline. Seismic reflection data confirm statements presented in this document. In summary, Reference 248 states: - The Nemaha Uplift basement consists of cataclastically deformed granite; - The Humboldt fault zone is an approximately 200 m wide zone of complex deformation rather than a single, continuous fault; - Folding and faulting of Pennsylvanian sediments indicates that continuous or sporadic uplift of the Nemaha ridge occurred contemporaneously with Pennsylvania sedimentation; 2.5-44 Rev. 0 WOLF CREEK - Faulting along the Humboldt fault zone in northern Nemaha County affects Permain rocks but based on the interpretation of seismic reflection records, displacement may be on the order of 12 m, rather than 50-75 m (Reference 84); - The pattern of microearthquake epicenters indicates that many faults along the Nemaha Uplift have been experiencing slight adjustments at depth. Earthquakes have been occurring within a wide zone of deformation rather than along one continuous fault; and - Microearthquakes in Washington, Republic and Cloud counties appear to be related to faulting within the CNARS. Epicenters in Barber County are probably related to basement faults associated with a southeastward extension of the CNARS. Reference 248 hypothesizes that petroleum and mineral deposits in the Forest City Basin may be more widespread than previously believed and may have formed due to the passage of a mantle hot spot beneath Kansas during the Cretaceous.If this hypothesis proves to be correct, there will be no adverse impact on the site because the Applicant controls all mineral rights within the site boundaries.The publications discussed above are significant in that they contribute further to our knowledge of geology and seismology in the site region. The data contained within these publications supports statements contained within this document concerning geologic structures, tectonic history, geophysical anomalies, and seismicity. There are no data within these publications that indicate the existence of a feature that would represent a hazard to site safety2.5.1.1.5.2 Regional Faulting The distribution of faults within the area of investigation is shown in Figures 2.5-16 and 2.5-17; their characteristics are detailed state by state in Tables 2.5-8 through 2.5-13. The attitude of faults clusters about three general trends within the region; N20° E, N50° W, and N65° E. The faults tend to be high angle displacements of the Precambrian surface and range from inferred fracture zones with no known displacement to over 3,000 feet. Faults exposed at the surface are mainly the result of tectonic adjustments. Other faults are the result of block slumping, landslides, or penecontemporaneous subsidence resulting from differential consolidation of sediments. No major faults have been confirmed within 15 miles of the plant site. 2.5-45 Rev. 0 WOLF CREEK The age of the faulting is established by determining the age of the oldest stratum which overlies the fault and is not cut by the fault. In those cases where the faulting occurs at the earth's surface, the age of faulting is based on the interpretation of the tectonic history as related to the geologic history.The N20°E trending Humboldt fault zone in eastern Kansas and Nebraska, the Chesapeake Fault Zone in southeastern Kansas and southwestern Missouri, and the Thurman-Wilson Fault in southeastern Nebraska and southwestern Iowa represent the longest fault zones within the region. The N20°E trending Humboldt fault zone is discontinuous, but traceable, and extends from Oklahoma through Kansas into Nebraska. This feature is apparently the result of crustal adjustments along the eastern side of the Nemaha Anticline. These faults are considered to be Paleozoic in age. The Humboldt fault zone is a discontinuous series of faults along the eastern margin of the Nemaha Uplift (Section 2.5.1.1.5.1.9). This zone can be traced to approximately 50 miles west of the site at its closest approach (USAR Section 2.5.1.1.5.1.9 and Figure 2.5-7). Examination of the east-west regional geologic cross section indicates that strata younger than Mississippian are not displaced along the Humboldt fault zone 50 miles west of the site (Figure 2.5-6). Structure contour maps of the top of the Mississipian (Reference 332), the base of the Upper Pennsylvanian Kansas City Group (Reference 270), and the top of the overlying Lansing Group (Reference 177) indicate no fault offset of beds along the trace of the Humboldt fault zone west of the site. Deformation along the Humboldt fault zone is no younger than post-Mississippian, pre-Middle Pennsylvanian at its closest approach to the site. Recent mapping in northeastern Kansas and southeastern Nebraska suggests that deformation has occurred along northern portions of the Humboldt fault zone in post-Permian time (Reference 29, p. 8-9; 84, p. 16-17; and 249, p. 136-137 - also see USAR Section 2.5.1.1.5.1.9). Fault displacement appears to decrease southwestward (Reference 272, p. 21). In Pottawatomie County, Kansas, faulting has resulted in vertical displacement of Late Silurian or Early Devonian through Mississippian rocks. In the northeastern part of the county, faulting was inferred to have offset the base of the Kansas City Group (Upper Pennsylvanian). This marker and Upper Pennsylvanian through Lower Permian rocks appear to be folded or draped across the trace of the Humboldt fault zone in the southern part of the county (Reference 272, p. 21; and 270). It appears, therefore, that only in northern Kansas and southern Nebraska has post-Upper Pennsylvanian faulting occurred along the Humboldt fault zone. 2.5-46 Rev. 0 WOLF CREEK During a recent detailed investigation, Reference 84 did not directly observe faulting in Quaternary sediments along the trace of the Humboldt fault zone.It inferred, from geomorphic data, that faulting may have altered the drainage pattern in Kansan-age glacial till. Reference 84, p. 28) states: "The absence of bedrock exposures and the nature of unstratified material make it difficult to establish faulting as the cause . . ." of the lineament formed by two streams.The Kansas Geological Survey has continued to investigate the lineament described by Reference 84) near Baileyville in Nemaha County, Kansas. A seismic profile was run at approximately right angles to, and across, the trend of the two streams discussed above, which are incised in unconsolidated soil and underlying Kansan-age glacial till. The processed data indicate that shallow subsurface marker beds are offset 30 to 50 feet, down to the west, across an inferred N15° W-trending fault located beneath the creeks. This up on the east, down on the west displacement along a N15W-trending fault may have occurred in response to right lateral wrench faulting along the southeastern margin of the Central North American Rift System or other subparallel northeast-trending faults in the crystalline basement during the Cretaceous (Table 2.5-16; also see USAR Section 2.5.2.2). Reference 312, written communication - Table 2.5-16) has interpreted the geomorphic features at the Baileyville site (i.e., the stream divide west of the creeks is approximately 40 feet higher than that on the east and asymmetric tributary development to the west of the streams) as a result of displacement along a preexisting fault due to differential movement resulting from glacial rebound.Although the precise age of the inferred glacial rebound has not been rigorously proven, it is assumed to be post-Kansan, possibly Recent (Holocene) (Reference 312). Excluding the Humboldt fault zone, twelve faults occur 50 miles or closer to the site. The Chesapeake fault zone (Fault No. 1, 36 miles east of the site, Figure 2.5-16 and Table 2.5-10) does not occur at the surface in Kansas (Reference 291). This fault was originally mapped along a 25-mile segment from Lawrence to southern Dade counties, Missouri. In this segment, where the fault can be proven to exist, it is dated as pre-Pennsylvanian, because it is overlain by Pennsylvanian-age channel sandstone (Reference 168, p. 19). Control for extending this structure further westward into Dade county and Kansas is extremely sparse (Figure 2.5-18). Because of insufficient data to define a fault, Reference 43 extension of the structure into eastern Kansas was inferred and was intended to reflect a northwestward continuation of the fault as a fracture zone (Reference 291). 2.5-47 Rev. 0 WOLF CREEK Fault Numbers 69 and 70 (Figure 2.5-16 and Table 2.5-10), which had not been shown on previous maps of the Precambrian surface, appear on a recent map (References 43 and 45). Fault Number 69 appears to be a possible extension of the Eldorado Springs North (Bolivar-Mansfield) trend northwest from Missouri.The extension of this zone into Kansas is based on very sparse data. This zone had previously been interpreted as a valley on the basement surface (Reference 43). Fault Number 70 is based on sparse control and had also been interpreted previously as a bedrock valley. An extension of the latter fault is not mapped to the southeast in Missouri (Reference 5; and 168, Plate 1). Both faults are not shown on the structure contour or isopach maps of the Arbuckle Group.Therefore, if they exist, they would be pre-Middle Ordovician (Reference 44, Plate 1; 174, p. 204). Merriam's (Reference 332) structural contour map on the top of the Mississippian shows no offset which indicates that Fault Number 7 (Figure 2.5-16 and Table 2.5-10) is also pre-Pennsylvanian. Faulting cannot be proven along the trend of Fault Number 7 because of lack of control (References 43 and 291) but was inferred from estimates of depth to the Precambrian surface (Reference 45). Faults Number 24 (approximately 50 miles west of the site) appears to represent a graben in the Precambrian surface (Reference 45). An inferred fault offsetting the base of the Kansas City Group is in the same area as Faults Number 24 (Figure 2.5-6). This fault, if it exists, would be pre-Late Pennsylvanian because it does not appear to offset the top of the overlying Lansing Group (Reference 177). The band of faults trending northeast to the north of the site (Faults 8, 9, 10, 11, and 12 on Figure 2.5-16) and Fault Number 5 to the southeast of the site appear to be associated with disturbance during Pennsylvanian deposition.These faults do not extend below the Stanton Limestone and are considered to be nontectonic (Figure 2.5-12 and Table 2.5-10). These faults appear to have resulted from differential compaction along the edges of channel-deposited sandstones. These faults appear to have developed after deposition of the Stanton Formation and prior to deposition of the Kanwaka Formation (Reference 203, p. 62-69; Reference 308, Reference 204, p. 19-20; Reference 330, p. 20; Reference 8). Fault Number 6, southwest of the site, is associated with emplacement of the Silver City Dome, and therefore is Cretaceous in age (References 285 and 266). Faulting in those portions of Nebraska which lie within 200 miles of the site is associated with the Forest City Basin and the Nemaha Anticline. According to Reference 287), 2.5-48 Rev. 0 WOLF CREEK "interpretation of the geologic history suggests that these features started to develop during the Ordovician and were fully developed by Pennsylvanian time. Based on the structural development of these features, [it is inferred] the major faulting is Late Mississippian in age. [Recent mapping indicates that some faulting occurred in post mid-Permian time (Reference 29, p. 8)]. Undisturbed Pleistocene deposits overlie faults throughout the area." Therefore, surface faulting is interpreted to be pre-Pleistocene in age. Reference 309 considers "all faulting to be pre-Quaternary in age because of the undisturbed Pleistocene age deposits which overlie the faults throughout the area." The faults are associated with the Thurman-Redfield structural zone. It also states that "interpretation of its geologic history suggests that these features started to develop during the Precambrian and apparently were fully developed by the close of Pennsylvanian time. Based on the structural development of these features,

[it is inferred] faulting is pre-Cretaceous in age". In western and southern Missouri, faulting is reported to have occurred during the Precambrian, Cambrian, Early Ordovician (pre-St. Peter), Late Missisippian (pre-Pennsylvanian), and Pennsylvanian. The Missouri Geological Survey reports that there are no faults younger than 35,000 years in that part of Missouri within 200 miles of the site (Reference 296). In northern Arkansas (Reference 35, p. 10), the faults are generally high-angle, normal faults with small vertical displacements. There are some faults which have horizontal displacements. The normal faults tend to be downthrown on the south or east. The faulting is considered to have occurred from Middle Mississippian through the end of Pennsylvanian time. Surface faulting in northeastern and north-central Oklahoma is believed to be Pennsylvanian and Permian in age. Movement along these faults is thought to have ceased before the Triassic, because the major structures in the area were fully developed prior to the Triassic. The Oklahoma Geologic Survey (Reference 303) considers "all the faulting to be pre-Quaternary in age, because undisturbed Quaternary deposits overlie the faults in many places." The Quaternary deposits which overlie the faults consist of both Recent alluvial deposits and pre-Recent, Pleistocene terrace deposits. While a high-level terrace in north central Oklahoma contains a Pearlette ash, which has been dated as late Kansan in 2.5-49 Rev. 9 WOLF CREEK age, the age and relationship of other terraces is not accurately known and, therefore, may be only dated as Wisconsinan or older, or approximately 10,000 years before the present. Many small en-echelon faults have been mapped in northeastern Oklahoma, and the number of faults known is much greater than in adjacent southeastern Kansas.There are three possible explanations for this phenomenon:  1. The majority of faulting is thought to have occurred during   the Ouachita Uplift. Therefore, forces would dissipate   outward and the faulting frequency would decrease with   distance;  2. The fault occurrences generally become less numerous and   well-defined as the surface formations become more shaley to the north;  3. The area of Oklahoma with numerous faults has been more   extensively mapped. There have been numerous investigations   in this area and the results of these have been incorporated into the state geologic map. A more accurate explanation probably falls somewhere among the three theories.The fault map of Oklahoma, shown on Figure 2.5-17, indicates that fault frequency does decrease northward and westward from the Ouachita Mountains.

However, there is no reason to assume that faulting ceases at the state line; therefore, small faults which have not been identified possibly exist in Kansas.Reference 268 shows a close correlation between the joint pattern in south-central Kansas and pattern of joints and en-echelon faults in Oklahoma. These were also studied and described by Reference 333 as radiating outward from the Ouachita Mountains. Therefore, the major reason for less faults being mapped in Kansas is that less faults occur. The tectonic forces apparently dissipated outward from the Ouachita Mountains during the initial Ouachita Uplift, resulting in the formation of joints beyond the area of faulting. Reference 268 states that the belief that the faulting in south-central Kansas is older than jointing and that jointing and regional tilting are closely related and may be contemporaneous products of the same deformational period.The joints are defined as probably between post-Early Permian and pre-Early Cretaceous in age and may have formed as a result of northwest, horizontal, compressive forces generated by wrench tectonics during the initial Ouachita Mountain Uplift; therefore, faulting in his study area (in south-central Kansas) has a minimum age of pre-Early Cretaceous. 2.5-50 Rev. 0 WOLF CREEK Reference 25 in a study of The Stockdale Kimberlite pipe in Riley County, Kansas, believe the intrusion was apparently emplaced between 120 and 100 m.y. (Reference 25 and 24). Emplacement occurred along a preexisting fault or joint planes associated with the Abilene Anticline. Reference 38 interpreted the same general relationship between tension cracks from strike-slip faulting and the emplacement of the Kimberlite plugs in the Manhattan, Kansas, area and also states that some of the thrust faults and folds may have been formed by release of energy when the intrusions were emplaced. Reference 38 did not state the exact age of high-angle faulting, but the high-angle faults, such as the one along the Tuttle Creek Reservoir, are sometimes masked by unconsolidated deposits that are partly Pleistocene glacial deposits. Where masked, the faults are older than the unconsolidated deposits. These faults are, therefore, preglacial. Based upon geomorphic evidence discussed above and presented in Table 2.5-14a, the Kansas Geological Survey has inferred the presence of post-Kansan faulting in Nemaha County, Kansas. However, there is no rigorous proof that known surface faults have moved at or near the earth's surface once in the last 35,000 years or more than once in the last 500,000 years (Table 2.5-14). The youngest age of faulting in the area as interpreted by the various state surveys is summarized in Table 2.5-15. 2.5.1.1.5.3 Regional Jointing Joint systems are well-developed in Kansas and are best exposed in the limestone units. Even though the origin of joints is highly speculative, Reference 268, p. 3-22) shows that eastern Kansas and northern Oklahoma are characterized by two dominant joint sets. These sets have a mean strike of N60E and N35°W and were interpreted to have developed between post-Early Permian and pre-Early Cretaceous time by compressional forces generated during the initial Ouachita Mountain uplift. These joint sets show a close correlation with the en-echelon faults in Oklahoma and probably formed during the same period of deformation. The joint sets in Wilson County (approximately 30 miles south of the site area) have trends of N55°E and N35°W (Reference 174, p. 254) that correspond well to the regional trends identified by Reference 268. Franklin County, approximately 15 miles to the northeast of the site area, is characterized by joint trends of N58°W, N20°W, and N23°E (Reference 268, p. 254). On the basis of field measurements and airphoto evaluation, joint patterns in the site area correspond well to the regional trends in the study by Ward. The site area contains one trend which strikes N60°E, another which strikes N30°W, and a third set which strikes N15°E. 2.5-51 Rev. 1 WOLF CREEK 2.5.1.1.5.4 Regional Stability 2.5.1.1.5.4.1 Natural Features (Karst) 2.5.1.1.5.4.1.1 Surface No solution features have been observed in Coffey County. The closest known sinkholes are approximately 40 miles northwest of the site in southern Douglas County. These sinkholes have developed in the Plattsmouth Limestone and are associated with the Worden Fault (Reference 203, p. 41). In northern Lyon County, approximately 40 miles northwest of the site, a reeflike expansion in the Permian Red Eagle Limestone locally exhibits sinkhole development (Reference 268, p. 187). Approximately 45 miles to the west of the site in Chase County, sinkholes have developed in the Fort Riley Limestone and along an outcrop band extending generally north and south (Reference 268, p. 187). Other solution features in eastern Kansas are associated with outcrop patterns of thick, water-soluble rock; local reeflike buildups of carbonates; faulting; or stream channel diversions. No solution features have been reported in Coffey County. The stratigraphy, structure, and geologic history of the site area is not conducive to the development of solution features. The near-surface rocks have low permeabilities and a low carbonate percentage. No faulting is known, no reef development has been observed, and no stream channel changes are known. Therefore, the possibility of instability due to sinkhole or cavern development is considered minimal (see USAR Section 2.5.1.2.5.3). 2.5.1.1.5.4.1.2 Subsurface Between Arbuckle Group deposition and Simpson Group deposition, the carbonates of the Arbuckle Group were subjected to solutioning, and a karst topography was developed. The sinkholes that developed were filled with Simpson Group clastic sedimentary rocks. Two sinks in the Arbuckle Group have been located by deep drilling in Coffey County. The Cram No. 1 Allen well located in Section 13, Township 21 South, Range 15 East and the Herbel and Tyrell No. 1 Henning well located in Section 22, Township 21 South, Range 16 East both penetrated anomalously thick sections of Simpson Group rocks (Reference 174, p. 147). The Cram No. 1 Allen well penetrated 288 feet of Simpson Group Rock at a depth of 1,934 feet. These karst features are inactive and deeply buried; therefore, these solution features are not considered significant to stability of the site. 2.5-52 Rev. 0 WOLF CREEK 2.5.1.1.5.4.2 Man's Activities Figure 2.5-19 shows the location of oil and gas fields in and near Coffey County. Oil was first discovered in 1903 near LeRoy in the south-central part of the county. Historically, oil production has been confined to the southern and southwestern parts of the county (Reference 124 p. 159). The majority of this production and exploration has been confined to Pennsylvanian and Mississippian strata (Reference 124, p. 159-165; and 11, p. 20-21). Total production recorded in Coffey County to the end of 1971 was 3,685,263 barrels of oil. In the past, natural gas has been produced in the southwestern portions of Coffey County, but the records of the State Corporation Commission of Kansas (Reference 289) show no present gas production in the county. The regulation of all phases of oil and gas production is under the jurisdiction of the State Corporation Commission of Kansas; the Corporation Commission regulations are presented in General Rules and Regulations for the Conservation of Crude Oil and Natural Gas (Reference 106). Regulations regarding casing are in Corporation Commission Rule 82-2-123 and State Statutes 55-115, 55-136, and 55-137. The regulations require: a. Surface pipe or casing shall be set to a depth not less than 25 feet below the bottom of the formation supplying water to the deepest water well in use for domestic purposes within a radius of one mile from the proposed drill site, or the deepest well supplying water to a municipality within three miles of the drill site, whichever is deeper. b. At all drill sites where Tertiary and younger deposits (including so-called unconsolidated deposits) are present, surface pipe shall be set to a depth of not less than 25 feet below the base of such deposits. c. The operator shall set not less than 20 feet of surface pipe in any well. The owner or operator shall not commence the drilling operation until after he has received notice of the amount of surface pipe or casing necessary to be set from the State Corporation Commission. d. In Coffey County, in addition to the above rules, in Townships 21, 22, and 23 South, Ranges 15, 16, and 17 East, a minimum of 200 feet of casing will be set; in all other areas of Coffey County, a minimum of 150 feet will be set. 2.5-53 Rev. 0 WOLF CREEK e. The owner or operator of any well put down for the purpose of exploring for and producing oil or gas shall, before drilling into the oil or gas-bearing rock, incase the well with good and sufficient wrought iron oil-well casing, and in such manner as to exclude all surface or fresh water from the lower part of such well, and from penetrating the oil or gas- bearing rock. Should any well be put down through the first into a lower oil or gas-bearing rock, the same shall be cased in such manner as will exclude all fresh or salt water from both upper and lower oil or gas-bearing rocks penetrated. f. The casing of any well shall be subject to inspection by the State Corporation Commission and shall be of proper weight and of good quality. Exploratory drilling during 1972-1973 in the deeper Viola-Simpson horizons has resulted in the discovery of several small oil fields (Figure 2.5-19). Approximately 7 miles west of the site in Sections 8, 9, 10, and 11, Township 21 South, Range 14 East, the Lake Shore, Thompson, and Pierett fields have been brought into production (Figure 2.5-19). Initial production figures for the discovery wells for these fields were as follows: Lake Shore Field, 35 barrels of oil per day (Reference 213, p. 8);Thompson Field, 50 barrels of oil per day; Pierett Field, 50 barrels of oil per day (Reference 212, p. Oklahoma-Kansas 26). Approximately 5.5 miles southeast of the site, the Avon Field shown on Figure 2.5-19, recorded initial production of the discovery well as 25 barrels of oil per day (Reference 215, p. 30). The Ottumwa Field is located approximately 7 miles northwest of the site (Figure 2.5-19). The discovery well for this field was from Mississippian horizons, and 12.5 barrels of oil per day was recorded (Reference 214, p. Kansas Completions 2). The Lake Shore-Thompson-Pierett Complex is an elongated anticlinal structure approximately 2.5 miles long in the northeast-southwest direction and 1.5 miles long in the northwest-southeast direction. It has a structural closure of less than 20 feet. The pay zone is less than 10 feet thick and appears to be controlled by the overlying barrier of the Chatanooga Shale. Production is from the first unit below this shale, the Viola, when it has not been removed by erosion, or in its absence, the stratigraphically lower Simpson sand. This field is fairly well defined with over 50 test wells drilled and approximately 30 producing wells. Maximum bottom hole pressure on record for this complex at the Kansas State Corporation Commission is 565 psi. No gas is produced from this complex. 2.5-54 Rev. 0 WOLF CREEK The Avon Field is stratigraphically and structurally similar to the Lake Shore Field. The Avon Field is smaller in areal extent. Seventeen wells have been drilled to date and its exact dimensions are becoming well defined. Maximum bottom hole pressure on record for this field with the Kansas State Corporation Commission is 696 psi. No gas is produced from this field. The Ottumwa Field produces from the Mississippian. Only three wells have been drilled to date and very little information has been released. The field appears to be controlled by a highly porous zone in the Mississippian that is located on a small anticline. Maximum bottom hole pressure on record for this field with the Kansas State Corporation Commission is 590 psi. No gas is produced from this field. The files of the Kansas State Corporation Commission, Kansas State Geological Survey, and independent operations show 80 wells have been drilled within Township 20 South, Ranges 15 and 16 East; Township 21 South, Ranges 15 and 16 East; and Sections 1 through 18, Township 22 South, Ranges 15 and 16 East as of May 11, 1981. The location of these wells is shown on Figure 2.5-20, and the information about these wells is tabulated in Table 2.5-16. No drilling incidents or accidents related to high bottom hole pressure are known within this area or within the Lake Shore-Thompson-Pierett Complex, or the Ottumwa Field. As indicated by Table 2.5-20, no production has been recorded within 5 miles of the site, and the closest producing field is the Avon.The Lake Shore-Thompson-Pierett Complex and the Ottumwa Field, located 7.5 miles away, are the next closest production fields to the plant site. Drilling permits are presently being issued for this area, and wells drilled outside the property boundary are shown on Figure 2.1-2. Within the property boundary, no permits are pending, no permits will be issued, and no oil and/or gas exploration wells will be drilled. Although oil and/or gas may be present at depth within 5 miles of the site, the wells which have been drilled within 5 miles of the site have not indicated the porosity, permeability, or structure necessary for oil or gas production. The Pennsylvanian cyclic sequence does not lend itself to geophysical mapping as the records tend to be distorted and washed out. Therefore, this technique has not been used for delineating the deeper structures. Within the property lines, the Licensees control all mineral rights (Figure 2.1-3). No oil and gas explorations are allowed within the property boundary. 2.5-55 Rev. 0 WOLF CREEK No subsidence has ever been reported in eastern Kansas due to removal of oil, gas or water from deep reservoirs, and no uplift has occurred during repressurization and secondary recovery operation processes in deep reservoirs (Table 2.5-17) (Reference 311 and 290). Instability of surface materials due to removal of oil, gas, or water is not considered a problem at the site. Large salt deposits are located in western Kansas, but salt is not present in the Coffey County area. Instability of subsurface materials due to removal of salt is, therefore, not a possibility. Coal resources are negligible in Coffey County (Brady and others, 1976). In the area of the site, only one coal seam of extent is present, the Williamsburg Coal. Throughout the site, this coal ranges in thickness from 0.1 to 0.8 feet and is present in the subsurface at the plant site at a depth of about 104 feet [(Elevation 1002) USAR Section 2.5.1.2.2.2.1.1.2.1.1]. From approximately 1890 to 1916, five small mines operated in the area, with the coal used for home use and threshing operations. These mines were located in Section 21, Township 20 South, Range 17 East (approximately 9 miles northeast of the plant site); Section 29, Township 20 South, Range 17 East (approximately 7.5 miles northeast of the plant site); Section 14, Township 21 South, Range 16 East (approximately 4 miles east of the plant site); Section 28, Township 21 South, Range 16 East (approximately 3.5 miles south-southeast of the plant site); and Section 33, Township 21 south, Range 16 East (approximately 4.5 miles southeast of the site) (Reference 19, p. 64-65 and 74).No mines have been in operation since approximately 1916, and no mines are proposed in the immediate vicinity of the site. It is presently not economically feasible to remove a seam as thin and as deep as the one under the site. All mineral rights within the site property boundary are controlled by the Licensees. Mining of the coal seam within the site boundary will not be allowed; therefore, the coal seam will have no effect on the safety-related stability of subsurface materials at Category I facilities. Several sand and gravel quarries are present near the site. Because these are surface workings, subsurface subsidence need not be considered. Some stripping of Tertiary gravels has occurred on the upland portions between Wolf Creek and the Neosho River. These operations are far enough removed from the plant site and will have no effect on the stability of subsurface materials at Category I structures.Although Kansas has produced large quantities of lead and zinc, these deposits are restricted to the southeast corner of the state. No other mineral deposits are known in the Coffey County 2.5-56 Rev. 0 WOLF CREEK area. No potential hazards to the power plant facilities exist due to the extraction of subsurface minerals. 2.5.1.1.5.4.3 Regional Warping Although minor and local structural movement may have occurred during the Cenozoic, the major structural features show no evidence of movement (Reference 268, p. 221). The majority of earthquakes in the region appear to be spatially related to the Nemaha Anticline. No surface displacement has been noted and the earthquakes are thought to be the result of deep-seated minor adjustments. No potential instability due to regional warping is known to exist at the site. 2.5.1.1.6 Regional Ground Water A detailed treatment of ground-water and surface-water hydrology is presented in USAR Section 2.4. Minor quantities of ground water for domestic livestock and municipal use are available in the region. The regional aquifers consist of three types. They are the alluvial deposits in river valleys, weathered bedrock, and the deep bedrock.Yields as high as 100 gpm per well can be expected from alluvial deposits in the river valleys (Reference 10). The municipalities of New Strawn and Hartford obtain their water supply from this source. A description of the wells at these locations is given in Table 2.4-30. No other municipalities within 20 miles of the site obtain water from wells in alluvial deposits. Yields as high as 10 gpm per well can be expected from the weathered bedrock in the region (Reference 10). This source is commonly used for private domestic and livestock supply within 5 miles of the plant site. A description of the wells in the region is given in Table 2.4-30. No municipalities within 20 miles of the site obtain water from this source. Yields as high as 100 gpm per well can be expected from the deep bedrock in the region about 5 to 15 miles east, northeast, and southeast of the site (Reference 10). This source is limited almost exclusively to the Tonganoxie Sandstone aquifer from which the towns of Melvern, Waverly and Williamsburg obtain their municipal water supply. Yield from this aquifer at these sites is about 10 gpm based on drilling records from the wells. A description of the wells at these locations is given in Table 2.4-30. No other municipalities within 20 miles of the site obtain water from deep bedrock aquifers. Field investigations indicate that only very limited yields can be expected from the Tonganoxie Sandstone Member at the site. 2.5-57 Rev. 1 WOLF CREEK The shallow ground-water flow pattern in the weathered bedrock reflects the topographic expression in the region. Recharge occurs into this zone by infiltration of precipitation. The gradient in the deeper bedrock varies from 10 to 50 feet per mile, dipping from the west-southwest to northwest. Recharge into the water-bearing formations occurs primarily as direct infiltration in outcrop areas. The numerous shale and siltstone rock units in the region with characteristic low permeabilities restrict the vertical infiltration into the underlying formations. These low permeability aquicludes commonly cause artesian pressures in the deep bedrock water-bearing horizons. Piezometric data confirming the presence of artesian pressures in the bedrock in the site area are presented in USAR Section 2.4.13. No ground-water conditions in the region were found that have an adverse affect on the WCGS facilities. 2.5.1.2 Site GeologyComprehensive geologic investigations were performed within a 20-square mile area that included the entire site boundary. The basic purpose of these investigations was to determine the subsurface conditions throughout the site in sufficient detail and to depths adequate for evaluating the acceptability of the site for the safe construction and operation of Category I facilities. Areas of the site at the locations of Category I facilities were investigated in sufficient detail to provide criteria for design. The geologic investigations consisted of the following: a. A review of all available literature related to the site. The Bibliography of North American Geology was examined for a listing of reference material pertinent to the site. Recent publications were surveyed to determine the existence of pertinent information not listed in the bibliography. Publications from state and federal agencies in the area were examined. A list of geologic theses of the Kansas universities was examined and the pertinent manuscripts obtained. b. Interviews were conducted with the state, and federal agencies in the region, such as the various state geological surveys, the Soil Conservation Service, the U.S. Corps of Engineers, and the Kansas State Corporation Commission, were contacted for information. These agencies provided unpublished information such as well logs, unpublished reports, and local geologic maps. In addition to opinions on geological conditions not documented in the literature, experts from the various state geological surveys supplied letters which documented the most current geological interpretations concerning the 2.5-58 Rev. 0 WOLF CREEK age of faulting and folding within their state. Kansas State Geological Survey personnel visited the site several times to confirm stratigraphic and structural interpretations. Private organizations and individuals, when cooperative, supplied additional unpublished information, such as drilling logs, structure contour maps, and other geological information based on their experience in the area.

c. Large-scale, black and white and infrared aerial photographs of the site area were obtained and examined. d. A boring program was initiated. This program included 21 widely spaced borings in the vicinity of the site and 94 borings in the Category I area to ascertain the details of the stratigraphy, structure, ground-water, and foundation conditions in the site area. These borings are sufficient to provide the needed design recommendations for the plant, ultimate heat sink (UHS),

UHS (Category I) dam, and the essential service water system (ESWS) pipelines, pumphouse, and discharge structure. An additional 40 borings in the category I area were performed to ascertain the details of the stratigraphy, structure, ground-water, and foundation conditions for the replacement ESWS pipelines. 2.5.1.2.2 Site Stratigraphy Results of boring programs in the areas of non-Category I structures were evaluated for geological suitability of the site and to provide design criteria. These geotechnical investigations were conducted along the circulating water system, main dam and spillways, saddle dams, preliminary and alternate baffle dikes, Routes 1 and 8 with causeways, the railroad spur, bridges, switchyard, and the make-up water system. Additional borings were drilled in the lake, borrow pit, and quarry areas.

e. A field mapping program was completed. All outcrops, quarries, and road cuts were examined. Geologic maps of excavation surfaces were included in interim or supplemental reports to the applicants by Dames & Moore.
f. A soil survey of the site area was performed by the Soil Conservation Service.
g. Geophysical borehole logging was conducted in six boreholes to help define geological and engineering characteristics of the subsurface materials.

2.5-59 Rev. 28 WOLF CREEK h. Surface and borehole geophysical surveys (refraction, surface wave, ambient, and crosshole) were conducted to further refine the geologic and engineering characteristics of the subsurface material in the Category I area. i. The hydrological characteristics of the surface and subsurface materials were evaluated through borehole pressure testing, falling head and constant head permeameter testing, and installation and monitoring of piezometers. j. Laboratory investigations were conducted. These investigations included static and dynamic strength testing of rock and soil; compaction, consolidation, dispersive, and permeability testing of soil; index property tests of soil and rock; swell load tests on soil; and mineralogical, swelling, and slaking testing of shales. Geologic investigations were conducted to assess the lithologic, stratigraphic, and structural geologic conditions of the site. This section presents the physical characteristics and geologic history of each lithologic unit encountered at the site. Figure 2.5-21 shows surficial geology and the distribution of the Quaternary and Tertiary age alluvium within the site area. Bedrock geology is shown on Figures 2.5-22 and 2.5-23, and Figures 2.5-24, 2.5-25, and 2.5-26 illustrate the topographic configuration of the bedrock surface in the site area. The geologic conditions at the site are evaluated as suitable for the safe design, construction, and operation of the Category I facilities. Surface-water and ground-water conditions at the site are discussed in USAR Section 2.4. The ground-water conditions at the Category I area are also discussed in USAR Section 2.5.4. 2.5.1.2.1 Site Physiography The site is located within the Osage Plains Section of the Central Lowlands Province (Reference 256, p. 250). The Osage Plains Section has been further subdivided into the Cherokee Lowland, the Chautauqua Hills, the Osage Cuestas and the Flint Hills Lowland (Reference 227, p. 275-277). The site is located within the Osage Cuestas subdivision, an area that is characterized by a series of east-facing escarpments. The Osage Cuestas trend northeast-southwest between flat to gently rolling plains. Bedrock is present at or near the land surface and consists of alternating limestones, shales, and sandstones which dip gently to the west and northwest. 2.5-60 Rev. 0 WOLF CREEK These cuestas result from differential erosion of the gently dipping bedrock strata. The crest of each escarpment is capped by resistant limestones in the southern portion and by resistant sandstones in the northern portion of the site. The physiographic land forms that predominate in the site area are shown on Figure 2.5-27. The level to gently rolling uplands, which form the drainage divides, are capped generally by limestone or sandstone, although remnants of Tertiary alluvial gravel are found on some of the higher hills (Figure 2.5-21). The lowest topographic areas are the bottomlands and floodplains, which consist mainly of Recent alluvial deposits along the Neosho River and its tributaries. Between the bottomlands and the uplands are moderately to steeply sloping uplands and valley walls. Although the upland surfaces are controlled by the limestone and sandstone units, the valley slopes are developed largely in the shales, and the grade of the slopes is usually indicative of the slope lithology. The Neosho River and its tributaries have provided the controlling influence in the development of the slopes and land forms in the site area. The topographic relief of the site is variable, depending on the distance from the main streams and tributaries. A maximum relief of 80 feet can occur from the uplands to the valley floors within a distance of approximately 1 mile.

The Neosho River provides the major drainage within the site area, flowing northwest to southeast. Wolf Creek and Long Creek are the principal tributaries to the Neosho River and flow north to south. The smaller tributaries have formed a dendritic pattern with a predominant east-west trend (Figure 2.5-27).

2.5.1.2.2 Site Stratigraphy Initially, 21 widely spaced borings were drilled in the site area to determine structural and stratigraphic relationships. Subsequently, 37 additional borings were completed at the plant site, and 57 borings were drilled in the area of the ESWS. Soil and rock samples were obtained from these borings for laboratory testing. Figures 2.5-28, 2.5-29, 2.5-30 and 2.5-31 show the locations of the borings. The initial holes are designated as B-Series Borings, the plant site borings are the P-Series, the borings in the ultimate heat sink are the HS-Series, and the borings along the original ESWS pipeline and those at the ESWS pumphouse and original discharge structure are the ESW-Series. An additional 40 borings, the B-100- series, were drilled along the revised ESWS routing to support the replacement of the ESWS pipe due to corrosion. Eight exploratory borings were drilled with a rotary bit at the locations shown on Figure 2.5-30. These borings were used to help delineate the extent of a buried alluvial channel. Sixteen test pits were excavated in the area of the Category I structures to determine

2.5-61 Rev. 28 WOLF CREEK the suitability of the near-surface material for construction purposes. The locations of these test pits, designated as TP-Series, are shown on Figures 2.5-30 and 2.5-31. The information from the drilling program is shown on the boring logs. An explanation of the symbols used on the boring logs is included on Figures 2.5-32 and 2.5-33. The B-Series boring logs are presented in numerical order on Figures 2.5-34a through 2.5-34u; the logs of the P-Series borings are shown on Figures 2.5-35a through 2.5-35kk; the HS-, ESW- and B-100-Series borings are presented on figures 2.5-36a through 2.5-36zzzz and the test pit logs are shown on figures 2.5-37a through 2.5-37g. 2.5.1.2.2.2 Rock Additional subsurface data were obtained during several supplementary geotechnical investigation of the Wolf Creek site. The results of these investigations were included in supplementary reports written by Dames & Moore for the Licensees (see List of References for Section 2.5). The area of investigation (number of completed borings in parentheses) include: circulating water system (15), main dam (90), saddle dams (51), original and alternate baffle dikes (76), lake (13), quarry (15), borrow areas (112), Routes 1 and 8 with causeways (45), railroad spur and bridges (53), and make-up water system (15). Boring logs and laboratory test data are included in appendices to the appropriate reports. Boring locations are shown on Figures 2.5-28, 2.5-29, 2.5-30,and 2.5-31.

2.5.1.2.2.1 Overburden Overburden deposits present within the site area include Quaternary and Tertiary age deposits and residual soil developed on bedrock. All overburden was classified using the Unified Soil Classification System (Figure 2.5-33). Soil thickness maps are shown on Figure 2.5-38 for the area of Category I facilities and on Figure 2.5-39 for the plant site. 2.5.1.2.2.1.1 Quaternary Deposits

Pleistocene glaciations did not extend as far south as the site area (USAR Section 2.5.1.1.3.4.2), but Recent and pre-Recent Pleistocene alluvial deposits are present in the Wolf Creek Valley (Figure 2.5-21). This alluvium consists of silty clays which vary in thickness across Wolf Creek Valley. Thickness increases to 35 feet at Boring D-72 (Figure 2.5-29; Reference 60, p. 41 and Plate A-2-57) and approximately 36 feet as mapped in the Main Dam foundation excavation on the eastern side of Wolf Creek Valley (Reference 71, Figure 10-N). The variation in thickness of alluvial soils generally reflects bedrock topography. As noted in previous reports (Reference 60, p. 41-42; and 71, p. 8 and Figures 10-L and 10-N), the thickest deposits of Quaternary alluvium are

2.5-62 Rev. 28 WOLF CREEK located in Wolf Creek Valley where silty clay with occasional basal chert gravel fills the bedrock valley and a buried stream channel. Alluvial deposits are present along the small tributaries to Wolf Creek. In the area of the UHS Category I dam, the channel of a pre-existing tributary has been buried by alluvial deposits. The configuration of this buried channel, which generally parallels the existing stream, is delineated by the bedrock contours shown on Figure 2.5-25 and on the soil thickness map (Figure 2.5-38). Field reconnaissance, shallow roller-bit borings, and the geophysical refraction survey were used to delineate the extent of the buried alluvial material. Compaction tests were performed in accordance with ASTM D 698-70 on a bulk sample of alluvium from TP-1, a mottled brown and gray silty clay (CL). Optimum moisture content was 15.0 percent with a maximum dry density of 108.2 pcf. Atterberg limits were determined for two samples of alluvium. The liquid limit ranged from 41 to 47 percent in TP-1 and Boring B-1, respectively, and the plastic limit ranged from 19 percent in TP-1 to 22.8 percent in Boring B-1. The range of the plasticity index was from 22 percent in TP-1 to 24.2 percent in Boring B-1. Unconfined compression tests on recompacted soil for two samples of alluvial soil from Boring B-1 resulted in a minimum shear strength of 2,100 psf with a degree of compaction of 92.8 percent and a maximum shear strength of 4,080 psf with a degree of compaction of 97.5 percent (ASTM D 698-70). Results from eight moisture and density tests on alluvial soil samples from two borings yielded a minimum moisture content of 8.5 percent in Boring HS-2 and a maximum moisture content of 25.4 percent in Boring B-1. Dry densities ranged from 97.6 pcf in Borings B-1 and HS-2 to 125.8 pcf in Boring HS-2. Unconfined compression tests on two samples of alluvium from Boring B-1, a mottled gray and light brown silty clay (CL-CH), resulted in values that ranged from a minimum shear strength of 936 psf at a moisture content of 25.4 percent and a dry density of 97.6 pcf at 19 feet to a maximum shear strength of 5,980 psf at a moisture content of 22.1 percent and a dry density of 101.5 pcf at 7.5 feet.Four samples from Boring HS-2, which penetrates the alluvium along the alignment of the Category I dam, were subjected to unconfined compression testing. One sample from the topsoil, a dark brown-gray silty clay (ML-OL), had a shear strength of 1,720 psf with a moisture content of 14.0 percent and a dry density of 97.6 pcf. Below the topsoil was a mottled brownish, light brown silty clay with some sand (CL). The strength of this material tended to decrease with depth as the clay content increased. The 2.5-63 Rev. 0 WOLF CREEK sample from 2 feet had a shear strength of 2,340 psf at a moisture content of 8.5 percent and a dry density of 125.8 pcf, and the sample at 8 feet had a shear strength of 1,450 psf at a moisture content of 23.3 percent and a dry density of 99.1 pcf. Recompacted samples of the alluvium from TP-1, a mottled brown and gray silty clay (CL), were tested by unconsolidated-undrained and consolidated-undrained triaxial compression testing. These samples were recompacted to 95 percent ASTM D 698-70. The unconsolidated-undrained tests gave a shear strength of 450 psf at a 600-pound confining pressure. The consolidated-undrained tests gave an effective cohesion of 275 to 300 psf with an effective friction angle of 20.0 to 20.4 degrees.Additional laboratory test data on properties of Quaternary alluvium are available in reports on several geotechnical investigations throughout the site (Reference 60). 2.5.1.2.2.1.2 Tertiary Deposits Scattered high-level deposits of Tertiary gravels cap some of the higher hills in the site area (Figure 2.5-21). This material is reddish brown to gray, clayey, chert gravel to gravelly clay with some fine to coarse sand (Unified Soil Classification GC or CL). The percentage of clay versus gravel varies with depth and location. These gravels occur as dissected terrace deposits at elevations approximately 80 feet above the present stream drainage. During preliminary investigations, this material was found in the upper 2 feet of Boring B-14 and the upper 4.2 feet of Boring B-15. This gravel was penetrated by several borings drilled for geotechnical investigations of the site area (i.e. References 60 and 66). The most extensive deposit of Tertiary gravels is located west of Wolf Creek where the Main Dam alignment curves from east-west to northwest-southeast (Figure 2.5-21) and is locally up to 9 feet thick (Reference 58, p. 7, Plate 3, and Plate A-2-41). No formal stratigraphic name has yet been applied to these gravels and their age is assumed to be Tertiary on the basis of chert provenence (Flint Hills, approximately 35 miles west of the site area) and regional geologic history (Reference 286, p. 58). 2.5.1.2.2.1.3 Residual Soil Developed on Pennsylvanian Bedrock Residual soil deposits at the site developed in situ on the underlying Pennsylvanian strata. The character and thickness of the residual soil is variable and reflects the composition of the underlying bedrock. The soil ranges from a silty sand with traces of rock fragments (Unified Soil Classification SM) to a soft clay with a trace of sand (Unified Soil Classification CH). 2.5-64 Rev. 0 WOLF CREEK The thickness of residual soil at the boring locations in the Category I area ranged from 0.3 feet at Boring HS-4 to 16.0 feet at Borings B-4 and HS-28. The variability in soil thickness in the site and Category I area reflects the lithology of the underlying bedrock with thick soil developed on the shales and thin soil developed on the sandstones and limestones. This is apparent in the plant area where soil developed on the Jackson Park Sandstone is 4 to 8 feet thick (Figures 2.5-23, 2.5-38, and 2.5-39). In Borings B-4 and B-5, the soil thickness increases on the opposite side of the Jackson Park-Heumader contact where soil is present to a depth of up to 16 feet. These borings contain 9.5 and 10 feet of residual Heumader, respectively. The soil cover thins downslope toward the UHS where erosion has removed the Heumader Shale Member and the Plattsmouth Limestone Member is closer to the surface (Figure 2.5-23) The plasticity of the residual soil is highly variable. Shear strengths of the soil were determined by unconfined compression tests, direct shear tests, and unconsolidated-undrained triaxial compression tests. Test results are presented on the boring logs and are tabulated along with the testing procedures in Section 2.5.6.2 and appendices to supplemental geotechnical investigations referenced in USAR Section 2.5. Atterberg limits were determined for 52 samples. The liquid limit ranged from 24.0 percent to 90.7 percent in Borings P-8 and HS-16, respectively, and the plastic limit ranged from 13.4 percent in Boring P-7 to 32.2 percent in Boring HS-16. The plasticity index ranged from 7 percent in TP-11 to 58.5 percent in Boring HS-16. The soils developed on shales and limestone are generally quite plastic (CL to CH); soils developed on the sandstones, such as within the Jackson Park Shale Member, have lower plasticity (CL, ML, SC and SM). Results from 66 moisture and density tests on residual soil samples from 30 borings and test pits showed a minimum moisture content of 9.0 percent in Boring HS-1 and a maximum moisture content of 39.2 percent in Boring HS-16. Dry densities ranged from 82.6 pcf in Boring HS-16 to 127.3 pcf in Boring P-8. Compaction tests on residual soils were performed in accordance with ASTM D 698-70 on five test pit samples. Minimum optimum moisture content was 16.3 percent in the TP-4/TP-6 combined sample, and maximum optimum moisture content was 23.1 percent in TP-5. Maximum dry density ranged from 86.3 pcf in TP-5 to 103.0 pcf in TP-2. 2.5-65 Rev. 0 WOLF CREEK Direct shear testing on one sample of residual soil from Boring B-9 resulted in a peak shear strength of 520 psf and a yield shear strength of 346 psf at a moisture content of 28.4 percent and a dry density of 90.9 pcf, respectively. Unconfined compression tests on 31 samples of residual soil from 22 borings showed shear strength values that ranged from a minimum of 420 psf at a moisture content of 25.7 percent in Boring B-8 to a maximum of 6,860 psf at a moisture content of 12.5 percent in Boring B-4. Unconsolidated-undrained triaxial compression tests on undisturbed residual soil were performed on 15 samples from 13 borings. The minimum shear strength recorded from a reddish brown to light gray silty clay (CH) was 422 psf at a confining pressure of 346 psf and a moisture content of 27.7 percent from Boring P-11. The maximum shear strength obtained was from a mottled brown and gray silty clay (CL-ML) from Boring P-6. The shear strength of this sample was 8,160 psf at a confining pressure of 202 psf and a moisture content of 12.6 percent.The results of consolidated-undrained triaxial compression testing of undisturbed soil samples ranged from an effective cohesion of 345 psf within an effective friction angle of 27.3 degrees for a gray-brown silty clay (CH) from Boring HS-21 to an effective cohesion of 1,290 psf with an effective friction angle of 14.3 degrees for a brown clay (CH) from Boring HS-15. Unconsolidated-drained and consolidated-undrained triaxial compression tests were performed on samples recompacted to 95 percent ASTM D 698-70 and ASTM 1557-70. The results of the unconsolidated-undrained test ranged from a shear strength of 390 psf at a confining pressure of 600 psf for a light olive silty clay (CL) from TP-6 to a shear strength of 6,946 psf at a 2,160 psf confining pressure for a light olive-gray silty clay (CL) from TP-11. Dynamic triaxial tests for soils were conducted on samples from three borings and the results are presented in USAR Section 2.5.6.2. Samples from four borings were subjected to resonant column testing, and those results are presented in USAR Section 2.5.6.2. The variability of the test results is indicative of both the variation in the parent material (limestones versus sandstones versus shales) and of the degree of weathering, which is a function of the relative depth of the sample. It is extremely difficult to draw a definitive soil-rock contact, especially in the thick shale sequences, because the contact is not sharp but gradational. 2.5-66 Rev. 0 WOLF CREEK A careful examination of the test results in USAR Section 2.5.6.2 indicates that the residual soil samples tend to increase in strength with depth. (With depth, there is less weathering; therefore, the sample is more like the parent material.) This is perhaps illustrated best in the results of unconfined compression testing of samples from Boring B-4. The three samples tested increased in strength from 4,880 psf at 7.5 feet to 6,860 psf at 13.5 feet, 2.5 feet above the soil-rock contact. 2.5.1.2.2.1.4 Soil Conservation Service Soil Survey The Soil Conservation Service (SCS) of the United States Department of Agriculture conducted a soil survey of the site area. Six soil associations have been identified within the project area (Figure 2.5-40). These consist of various combinations of 11 different soil series (Reference 305 and 299). The soil descriptions, which include general engineering properties, are intended to characterize the various soil series throughout their geographic range, although they may not be completely representative of the unit in a specific location. The information from this survey was used to help determine boring and test pit locations to better evaluate the exact engineering characteristics of the soil throughout the site. The Kenoma Series is typically a very dark, grayish brown silt loam and silty clay, which occurs on nearly level to sloping, convex, erosional uplands (mostly on narrow drainage divides). The soil exhibits very low permeability and is moderately well drained with a slow to medium rate of runoff, depending on the local slope gradients. The soil has a high shrink-swell potential under natural conditions. The Olpe Series is typically a very dark, grayish brown and dark brown gravelly silt loam and gravelly clay that occurs on high terraces and uplands. The soil has very low to low permeabilities and is well drained with a medium to rapid rate of runoff. The Woodson Series is typically a very dark, gray silt loam, silty clay, or silt that occurs on nearly level to gently sloping uplands. The soil is characterized by very low permeabilities and high shrink-swell potential. The Summit Series is typically a black silty, clay loam occurring on uplands and foot-slopes. The soil has a low permeability and is poorly drained with a medium to rapid rate of runoff, depending on the slope gradient. The soil has a moderate shrink-swell potential. 2.5-67 Rev. 0 WOLF CREEK The Eram Series is typically a very dark, grayish brown clay loam and clay that occurs on upland surfaces. For brief periods of time during the winter and spring months, a perched water table occurs locally within the Eram Series at a depth of 1 to 2 feet from the surface. The soil has low permeability and is moderately well drained with a medium to rapid rate of runoff. The soil exhibits moderate shrink-swell potential. The Lula Series is typically a very dark, grayish brown silt loam and silty clay loam which occurs on nearly level and gently sloping uplands. The soil exhibits moderate permeabilities and is well drained with a slow to medium rate of runoff. The soil has a low to moderate shrink-swell potential. The Dennis Series is typically a very dark, grayish brown silt loam and silty clay loam occurring on uplands. The soil has high permeabilities and is moderately well drained with a medium rate of runoff. The soil exhibits high shrink-swell potential. The Bates Series is typically a very dark brown and dark, yellowish brown loam and clay loam which occurs on undulating to gently rolling uplands. The soil has moderate permeabilities and is well drained with a medium to rapid rate of runoff. The soil exhibits low to moderate shrink-swell potential. The Mason Series is typically a dark brown silty loam or silty clay loam which occurs on low terraces, extending along the streams. The soil is characterized by low permeabilities and the runoff rate is slow to moderate. The soil exhibits low to moderate shrink-swell potential. The Oakwood Series is typically a very dark, grayish brown silty clay loam which occurs on nearly level floodplains. The soil has low to moderate permeabilities and is poorly drained with slow surface runoff. The water table is at or near the surface during some periods of most years. The soil exhibits moderate shrink-swell potential. The Verdigris Series is typically a very dark, grayish brown silt loam that occurs on nearly level floodplains. The soil has moderate permeability and is moderately well drained with slow to medium rates of runoff. The soil exhibits low to moderate shrink-swell potential. The Osage Series is typically a black to very dark brown, silty clay. It occurs as the topsoil along major drainages or nearly level floodplains and is subject to occasional flooding. The soil has very low permeability and is generally poorly drained with slow to very slow runoff rates. The soil exhibits high to very high shrink-swell potential. 2.5-68 Rev. 0 WOLF CREEK 2.5.1.2.2.2 Rock At the site, surface and subsurface bedrock deposits range in age from upper Pennsylvanian to Precambrian. Upper Pennsylvanian age rocks crop out at the surface and underlie the surficial soil deposits.

Initially, 21 geologic borings, the B-Series borings, ranging in depths from 124 to 453 feet, were drilled to identify the geologic conditions of the project area. Thirty-seven additional borings, the P-Series borings, were later drilled in the area of the plant site to depths ranging from 46 to 417 feet. During the fall of 1973 and the summer of 1974, a total of 33 exploratory borings were drilled to depths between 15.3 and 117.5 feet in the UHS area (Borings HS-1 through HS-31, HSA-1 and HSA-2, Figure 2.5-30). These borings were supplemented by eight shallow probe borings drilled to depths of 3.5 to 29.0 feet in order to define an alluvial-filled channel crossing the alignment of the UHS-Dam (Borings E-1 through E-8, Figure 2.5-30; Reference 59). Borings ESW-1 through ESW-26 were drilled during August and September, 1974 as part of the Essential Service Water System geotechnical investigation (Reference 69). Boring ESW-27 was drilled in April, 1975 and Borings ESW-28 to ESW-31 were completed between January 18 and January 20, 1977. The 31 ESW-Series borings range between 19.5 and 80.0 feet deep (see Figures 2.5-30 and 2.5-31 for location). Additional borings, the B-100-Series, were later drilled in support of replacing the ESWS piping. The 40 B-100-Series borings range between 3 and 45 feet deep (see figure 2.5-98 Sht. 2 for location). In addition to the 99 borings referenced above, 15 borings ranging from 15.4 to 56.2 feet deep were drilled in the plant vicinity as part of the geotechnical investigation for the circulating water system (CWD-Series, CW-Series, and CWP-Series, Figures 2.5-28, 2.5-30, 2.5-31). The results of the circulating water system and other geotechnical investigations are included in reports written by Dames & Moore for the Applicants (see references for USAR Section 2.5). The areas of investigation (number of borings, series designation, and depth ranges in parentheses) include: main dam and service spillway foundations (90, D-Series, which range in depth from 6.7 to 76.5 feet); saddle dams I through V (51, D-dam number series, 13.5 to 76.9 feet); originally proposed baffle dikes A and B (43, DA- and DB-Series, 11.0 to 54.2 feet); alternate baffle dikes A and B (33, DA 100- and DB 100-Series, 4.5 to 21.5 feet); lake area (13, LK-Series, 52.3 to 154.8 feet); on-site rock quarry areas (15, Q-Series, 7.7 to 47.7 feet); soil borrow materials (112, BA-Series, 3.6 to 34.8 feet); Routes 1 and 8 and causeway (31, CR 100- and CL 100-Series, also BAL-Series, 0.2 to 31.5 feet); Route 8 causeway and bridge (14, CR-Series, 15.2 to 29.8 feet); railroad spur and bridges (53, RR-Series, 4.5 to 38.0 feet); switchyard (8, 54-Series, 18.8 to 21.8 feet); and make-up water system (26, PL-Series, 14.0 to 62.2 feet).

2.5-69 Rev. 28 WOLF CREEK Detailed logs of the B-Series borings are presented in numerical order on Figures 2.5-34a through 2.5-34u, P-Series borings on Figures 2.5-35a through 2.5-35kk, and the HS-, ESW-and B-100-Series borings are presented on figures 2.5-36a through 2.5-36zzzz. 2.5.4.2.2.3 Materials underlying the Category I Pipelines E-Series boring logs are presented in Table A-1 of Dames & Moore's ultimate heat sink report (Reference 59). An explanation of the symbols and conventions used in the boring logs is included on Figures 2.5-32 and 2.5-33. A detailed description of the soil and rock characteristics penetrated in the borings is presented on the logs of borings. A detailed stratigraphic column (Figure 2.5-41) of the upper Pennsylvanian formations present at the site has been compiled from the boring logs. A generalized stratigraphic column (Figure 2.5-12) showing the entire stratigraphic section, including the Precambrian basement complex, was developed from a review of published and unpublished material, private communications, and boring data. The following discussion of stratigraphy includes a composite, lithologic description of the rocks within the units that were penetrated by the borings and a brief summary of the depositional environment of the unit. A brief lithologic description of the anticipated stratigraphic conditions is presented for rock units below the depths penetrated by the borings. Estimated thicknesses and probable depths of units below the plant site are provided. The engineering properties of the units for which test data are available are discussed. The engineering properties presented were determined by the methods discussed in USAR Section 2.5.4. The testing methods can be divided into four categories: (1) dynamic (in situ borehole logging), (2) dynamic (laboratory), (3) dynamic (site geophysics), and (4) static (laboratory). Generally, the values for the elastic properties obtained with in situ methods are higher than those obtained by laboratory testing of core samples. Variation between the in situ and laboratory results occur because the laboratory tests cannot totally simulate the temperature and stress conditions of the natural rock environment. For instance, the in situ borehole logging method utilizes a sound pulse of very short duration and a very low stress level. The resulting compressional and shear wave velocities are, therefore, due entirely to elastic rock deformation. Static laboratory test results can be affected by plastic deformation or influenced by microfissures in the sample. The in situ methods are not affected significantly by microfissures especially if they are filled with water.

2.5-70 Rev. 28 WOLF CREEK All shale at the site is clay shale, wholly or chiefly composed of argillaceous material that becomes clay during weathering. Zones and layers are found throughout the shale sections which completely or partially have reverted to clay by weathering and ground-water action. These zones and layers are described as clayey on the logs and in the following stratigraphic sections. The consistency of these layers in their natural state ranges from stiff to very stiff. Core recovery and rock quality designation (RQD) values are provided for each unit penetrated by borings. Rock quality designation is a modified core recovery value in which only the summation of the lengths of all pieces of core greater than or equal to 4 inches are considered as a percentage of the total length of a run. In massive rock, RQD values can be a good indication of in situ fracture frequency and competency of the rock. However, in shale units, which by definition are laminated or fissile, it is difficult to determine the true RQD values. This is due to the difficulty in determining whether horizontal separations represent in situ conditions, drilling breaks, or natural partings that separated as the shale was removed from the core barrel. In instances where high core loss and low RQD values were noted, there was no loss of drilling fluid. Examination of the core, geologic records, and geophysical borehole logs did not indicate the presence of voids or highly fractured zones.In addition, when such core losses occurred, such as in Boring HS-27 from 15 to 36 feet, either blockage of the core barrel was noted due to slight swelling of shales, or the shale core had slipped through the core catcher. Whenever the core slipped from the core catcher, effort to retrieve the core usually resulted in damage to it. During coring, the shale laminae and clayey zones were extremely sensitive to the slightest change in the drilling techniques.In several instances, such as in Boring P-10 from 62 to 70 feet and in Boring P-9 from 242 to 252 feet, core recovery was 100 percent and RQD was zero from breakage along these laminae. To help visualize the character of the subsurface units, Figures 2.5-42a through 2.5-42k contain photographs of core obtained from Boring P-9 which is located directly under the Unit 1 reactor containment structure (Figure 2.5-31).2.5.1.2.2.2.1 Pennsylvanian System 2.5.1.2.2.2.1.1 Virgilian Stage The Upper Pennsylvanian rocks that were penetrated by the borings and are exposed at the surface in the project area belong to the 2.5-71 Rev. 0 WOLF CREEK Virgilian Stage of the Pennsylvanian System. The Virgilian Stage is represented in descending order by the Shawnee Group and the Douglas Group. 2.5.1.2.2.2.1.1.1 Shawnee Group The Shawnee Group consists of a sequence of shale and lime stone facies with some interbedded sandstones (Figures 2.5-12 and 2.5-41). Folding has resulted in a gentle northwesterly dip on these strata. Because of its surface exposure, the unit has been thinned and removed by erosion in the southern and southwest portions of the site. Most of the surface bedrock at this site belongs to the Shawnee Group. However, bedrock underlying the alluvium in major valleys and at out-crops along valley slopes in the southern portion of the site belongs to the Douglas Group (Figures 2.5-21 and 2.5-22). The Shawnee Group is represented by the Lecompton Limestone, the Kanwaka Shale, and the Oread Limestone (Figure 2.5-41). All the younger formations of the Shawnee Group have been removed by erosion. 2.5.1.2.2.2.1.1.1.1 The Lecompton Limestone The Lecompton Limestone is present only in the northern and western parts of the site (Figures 2.5-21 and 2.5-22). The total stratigraphic thickness of the Lecompton is not present in the site. Only the two basal members, the Doniphan Shale Member and the Spring Branch Limestone Member are present, the rest having been removed by erosion. The Spring Branch Limestone and Doniphan Shale members were penetrated by Borings B-20 and LK-13 (Figure 2.5-28). 2.5.1.2.2.2.1.1.1.1.1 The Doniphan Shale Member The Doniphan Shale Member consists of medium gray to grayish orange sandstone that is laminated to medium bedded, fine to very fine grained, well cemented, slightly to highly calcareous, and locally shaley and micaceous. It is interbedded with grayish olive shales that are calcareous, clayey, and locally sandy. Occasional laminae of highly calcareous sandstone are present near the base of the Doniphan Shale Member. The Doniphan Shale Member crops out in the northwestern portion of the site and was penetrated only by Borings B-20 and LK-13 (Figures 2.5-21 and 2.5-22). The thickness of the Doniphan Member encountered in the site ranged from 22 to 40 feet. At the plant site, it has been removed by erosion. 2.5-72 Rev. 0 WOLF CREEK The Doniphan Shale Member most probably represents sedimentation of the continental margin stage of megacyclothem development (Reference 324, p. 567).It represents an area of shale deposition on the continental shelf where sand, plant remains, and other fossil fragments were intermittently introduced by spasmodic distal turbidity currents (Reference 87, p. 14-17). In Boring B-20, the Doniphan Shale Member was characterized by an average core recovery of 91 percent and an average RQD value of 61 percent. In Boring LK-13, the mean weighted recovery was 64 percent with a mean weighted RQD value of 57 percent. One water pressure test of the Doniphan Shale Member in Boring LK-13 gave a permeability value of 1 x 10-4 cm/sec. 2.5.1.2.2.2.1.1.1.1.2 Spring Branch Limestone Member The Spring Branch Limestone Member consists of medium-light gray limestone which is thin bedded, very fossiliferous, and shaley to very shaley. It is interbedded with medium-dark gray shale which is thinly laminated, very calcareous, fossiliferous, and contains numerous clayey shale laminae. The Spring Branch Limestone Member crops out in the north-western portion of the site and was penetrated by Borings B-20 and LK-13. The thickness of the Spring Branch Member ranges from 3.5 to 10 feet. At the plant site, it has been removed by erosion. The Spring Branch Limestone Member represents the argillaceous, transgressive marine stage of a megacyclothem (Reference 324, p. 567). It resulted from deposition of silt and clay into a shallow marine environment where brachiopods, gastropods, and pelecypods flourished. In Boring B-20, the Spring Branch Limestone Member is characterized by an average core recovery of 97 percent and an average RQD value of 61 percent. In Boring LK-13, the mean weighted recovery was 100 percent and the mean weighted RQD value was 81 percent. One water pressure test of the Spring Branch Limestone Member in Boring LK-13 gave a permeability of 1 x 10-4 cm/sec. The bottom of the Spring Branch Limestone Member corresponds with the bottom of the Lecompton Limestone Formation and the top of the Kanwaka Shale Formation. 2.5.1.2.2.2.1.1.1.2 Kanwaka Shale The Kanwaka Shale is subdivided into three members: the Stull Shale Member, the Clay Creek Limestone Member, and the Jackson Park Shale Member. The Kanwaka Shale crops out throughout the northern and northwestern portions of the site but has been re- 2.5-73 Rev. 0 WOLF CREEK moved by erosion from the southern and eastern portions (Figures 2.5-21 and 2.5-22). A complete stratigraphic section of the Kanwaka Shale is depicted on Figure 2.5-41. Borings B-20 and LK-13 penetrated the entire section, while Borings B-6, B-13, B-14, B-19, B-21, borings in the lake area (LK-Series), borings along the saddle dam alignments, and PL-Series borings penetrated only the lower portions. The soil in Borings B-4 and B-5 was developed from residuum of the Jackson Park Shale Member, although no unweathered rock recognizable as the Jackson Park Shale Member was present in the borings. The P-Series borings, drilled at the plant site, either encountered the lower Jackson Park Shale Member in the upper few feet of the borings or residual soil derived from weathering of the Jackson Park. Several of the HS-Series borings near the plant site also penetrated the lower Jackson Park Shale Member or residual soil derived from weathering of the Jackson Park. 2.5.1.2.2.2.1.1.1.2.1 Stull Shale Member The Stull Shale Member consists of medium dark to medium light gray shale that weathers to yellowish brown, is thinly laminated to thin bedded, calcareous to very calcareous, fossiliferous, and locally sandy. It is interbedded with light gray, laminated to thin-bedded, fine-grained, calcareous to very calcareous sandstone that weathers to yellowish or olive-brown and medium dark gray shaley siltstone, which is laminated to medium-bedded with plant fossils.Highly fossiliferous zones and clayey shale layers are present locally within the unit. The sandstone facies is locally cross-bedded. In the northwest portion of the site area, excluding the make-up water line, a 0.2-foot thick seam of black shaley coal occurs in a sandy shale facies in the middle of the unit (Figure 2.5-34t, Boring B-20; Dames & Moore, 1976i, Figures A-2-1 and A-2-5, Borings Dl-2 and Dl-9; Reference 62, Plate A-25; and Reference 326, Figure 17, Boring LK-13). The Stull Shale Member crops out extensively in the northwestern quarter of the site where the sandstone facies forms the cap rock on many of the upland surfaces (Figures 2.5-21 and 2.5-22). The entire thickness of the Stull Member was penetrated only in Boring B-20, where it is 51 feet thick. The Stull Shale Member was mapped in the excavation trench for the make-up water pipeline (Reference 326). In the western part of the site area, the Stull Member appears to consist of a shale-sandstone-shale facies sequence. The unit has been removed by erosion at the plant site. The friable sandstone facies of the Stull Shale Member has been interpreted as the initial deposit of the Lecompton megacyclothem (Reference 184, p. 152).The Stull Shale Member was probably formed by the depostion of sand, silt, and organic debris on a deltaic plain prior to the transgression of the sea. 2.5-74 Rev. 0 WOLF CREEK The Stull Shale Member is characterized by core recovery values that ranged from 88 to 99 percent and RQD values which ranged from 50 to 82 percent in Borings B-13 and B-20. In Boring LK-13, mean weighted core recovery was 97 percent and the mean weighted RQD value was 77 percent. Where this member is exposed to surface weathering (Boring B-13, borings for saddle dams I and II, and borings for the Route 8 causeway), average thickness has been decreased by erosion, the rock is of poorer quality, and mean weighted recovery and mean weighted RQD are correspondingly lower. At the Route 8 causeway, average thickness is 5.8 feet, weighted core recovery values ranged from 42 to 100 percent with a mean of 87 percent, and weighted RQD values ranged from 0 to 98 with a mean of 50. At saddle dams I and II, the average thickness is 12.4 feet, weighted core recovery values ranged from 62 to 100 percent with a mean of 84.7 percent, and weighted RQD values ranged from 19 to 96 percent with a mean of 52 percent. Water pressure testing of the Stull Shale Member in Borings LK-13 and Dl-6 indicated an average permeability of 2.0 x 10-5cm/sec with a range from 8 x 10-6 to 4.3 x 10-5 cm/sec. 2.5.1.2.2.2.1.1.1.2.2 Clay Creek Limestone Member The Clay Creek Limestone Member is a light gray to medium gray limestone that weathers to orange-brown and is thin to medium bedded, fine grained, and fossiliferous. Burrow and possible algal structures are well developed in the basal section and are indicative of the unit. Locally, the limestone beds are separated by a 2- to 5-foot highly weathered bed of orange-brown, slightly sandy shale. The Clay Creek Limestone Member is present on high divides in the eastern portion of the site (see Figures 2.5-21 and 2.5-22) and is present at the surface and in the subsurface in the western portion of the site. The basal section is visible on the west bank of the Neosho River, south of John Redmond Dam, and in the excavation for the make-up water screenhouse. The thickness ranges from 2 to 8 feet. The complete Clay Creek Limestone Member is present in Borings B-13, B-20, LK-13, D2-3, and CR-9. The upper portions of the Clay Creek Member are present in several borings for saddle dam I, saddle dam II, and the Route 8 causeway. The lower portions are present in Borings B-6, B-7, B-14, and B-19 in and several borings for saddle dam II and saddle dam III. It has been removed by erosion at the plant site. The environment of deposition of the Clay Creek Limestone Member appears to have been a shallow, near-shore, clear-water environment. This interpretation is based on the fossils present and the general lack of clayey material within the unit. The Clay Creek 2.5-75 Rev. 0 WOLF CREEK Limestone represents the upper, last stage of a megacyclothem beginning with the Ireland Sandstone Member of the Lawrence Formation. Moore (Reference 184, p. 150) supports this when he says that the Kanwaka Shale, of which the Clay Creek Limestone Member is a part, "comprises the terminal part of the Oread megacyclothem and the initial part of the Lecompton megacyclothem. The Clay Creek Limestone Member is the uppermost bedrock unit encountered in Borings B-6, B-7, B-14, and B-19, and it is slightly to highly altered by surface weathering at the locations of those borings. At these borings, core recovery ranged from 40 to 100 percent, and RQD ranged from 0 to 88 percent.Where the unit is deeper and less weathered, core recovery was 100 percent, and RQD values ranged from 64 percent to 82 percent from Borings B-13 and B-20, respectively. At other locations where the Clay Creek Limestone Member is completely penetrated, RQD was relatively high (4.4 feet, 100 percent weighted recovery, 93 percent weighted RQD in Boring LK-13; 7.1 feet, 100 percent weighted recovery, 54 percent weighted RQD in Boring D2-3; and 3.4 feet, 100 percent weighted recovery and 34 percent weighted RQD in Boring CR-9). At saddle dams I, II, and III, the Clay Creek Limestone Member is either the uppermost bedrock unit or is overlain by a relatively thin section of Stull Shale. Therefore, average thickness is 4.3 feet, weighted recovery ranged from 67 to 100 percent with a mean of 84.7 percent, and RQD values ranged from 0 to 60 percent with a mean of 35.8 percent. At the Route 8 causeway, the Clay Creek is again relatively close to the surface and average thickness is 3.2 feet; mean recovery ranged from 94 to 100 percent with a mean of 98 percent; and RQD values ranged from 34 to 71 percent with a mean of 57.1 percent. At a confining pressure of 4,003 psf, resonant column testing performed on one sample of the Clay Creek Limestone Member from Boring B-7 resulted in a shear wave velocity of 2,040 fps and a modulus of rigidity of 21.0 x 106 psf. Three-dimensional, geophysical borehole logging of the Clay Creek Limestone Member in Borings B-6 and B-9 determined an average compressional wave velocity of 6,266 fps, a shear wave velocity of 2,680 fps, and an elastic modulus of 0.57 x 106 psi. Water pressure testing of the Clay Creek Limestone Member at saddle dams I, II, and III gave an average permeability of 6.1 x 10-6 cm/sec with a range from 4.1 x 10-8 to 3.1 x 10-5 cm/sec. 2.5.1.2.2.2.1.1.1.2.3 Jackson Park Shale Member The Jackson Park Member consists of three sedimentary facies. Each facies varies in thickness and may be locally absent, and vertical sequences are variable across the site area. In general, 2.5-76 Rev. 0 WOLF CREEK a vertical sequence of Jackson Park consists of limestone, shale, sandstone, and limestone subunits in stratigraphically descending order. The upper limestone subunit was encountered in Borings B-13, B-20, PL-5, PL-12, PL-13, PL-14, PL-15, PL-17, PL-18, PL-19, and PL-23, is exposed on the east bank of the Neosho River south of John Redmond Dam, and was mapped in the excavations for the make-up water screenhouse and intake channel (References 58, Appendix A; and 326, Figure 17H). This limestone is light gray, thin to medium bedded, fine grained, and contains 0.02- to 0.4-foot layers of medium gray, dense, very calcareous shale. The argillaceous facies of the Jackson Park Member consists of medium gray to dark gray, yellowish gray weathering, thinly laminated to thin-bedded, very calcareous, locally fossiliferous shale. This shale facies is interbedded with 0.01- to 0.04-foot lenses of light gray, fine-grained, calcareous sandstone. Occasional 0.1-foot, medium brown, dolomitic concretions occur in the basal shale. A medium dark gray, thinly laminated, calcareous, shaley siltstone facies occurs at the base of this upper limestone at the make-up pipeline intake channel and screenhouse. Post-PSAR geological mapping of excavations indicates that the dominant facies of the Jackson Park Member at the power block and lake area is a sandstone.This sandstone is light brown; weathers to light yellowish orange; is thin to medium bedded, fine to very fine grained, and silty; and contains some clay.Generally, this subunit is slightly to moderately weathered; however, it is locally highly weathered and clayey. Basal Jackson Park Sandstone, mapped in the saddle dam IV excavation, the yard startup transformer excavation, the ESWS excavation, and the circulating water discharge channel and observed in fire and sewer line excavations west of the turbine and control buildings, is calcareous and contains light gray, sandy limestone interbeds and lenses. This sandstone was mapped in interbedded contact with light gray, sandy limestone in the foundation of the yard start-up transformer and in the saddle dam IV keytrench excavation. This interbedded contact was also observed in the sewer/fire line trenches mentioned above. When observed in preliminary borings for the Applicants PSAR and subsequent foundation investigations, this lower limestone was interpreted, in some cases, as the Kereford Member of the Oread Formation (Reference 63, Plate A-2M). However, based upon observation of the interbedded contact, the sandy limestone at the base of the sandstone is interpreted as a facies of the Jackson Park Member. Therefore, the Kereford Limestone Member appears to be absent from the site area. Field mapping of several borings in previous investigations supports the interpretation of this limestone as a Jackson Park facies. 2.5-77 Rev. 0 WOLF CREEK A light gray, medium-bedded, fine-grained limestone with some shale partings is located between the Jackson Park Shale and the underlying Heumader Shale in the area of the make-up water screenhouse and intake channel (References 63 and 326).Limestone occupies the same stratigraphic interval in Boring D2-12 at saddle dam II (Reference 66, Plate A-2-14). Limestone at this interval appears to be a lateral equivalent of limestone interbedded with the light brown Jackson Park Sandstone. However, sandstone is absent from the make-up water screenhouse section, and limestone at the screenhouse can be interpreted as a Jackson Park facies (a thicker limestone facies, no sandstone facies present). This lower limestone was previously identified as Kereford when encountered in a boring for the make-up water system geotechnical investigation (Reference 63, Boring PL-23). No continuity with limestone at the base of the sandstone has been observed either in outcrops, excavations, or borings. A unique interpretation of limestone at the base of the Jackson Park Sandstone or beneath Jackson Park Shale may not be possible without further investigations. Because of direct observation of the interbedded contact, the Jackson Park Limestone facies interpretation is favored.The Jackson Park has been removed by erosion in the south-western portion of the site and is present as a continuous subsurface unit in northwestern areas of the site. Thicknesses of the Jackson Park Shale Member encountered in borings at the site range from 23 to 34 feet. Only the lower Jackson Park Shale Member is present at the plant site. Most of this member has been removed by erosion. Some of the borings were drilled through a zone believed to be equivalent to the Jackson Park Shale Member. Because of deep, near-surface weathering, these borings penetrated residual soil derived from this member rather than rock recognizable as the Jackson Park Shale Member. At the plant site, as much as 11.5 feet of recognizable Jackson Park Shale Member was penetrated. Recovery ranged from 12 to 100 percent and RQD from 0 to 59 percent, which reflects the variability of the degree of weathering within the unit. As elevation and the corresponding thickness of this member increase, core recovery and RQD values also show a general increase. The Jackson Park Shale Member was probably deposited in a shallow, near-shore environment that received an abundant supply of clay, silt, and sand from a nearby, low-lying land area. The limestone facies appears to represent detritus free environments. Evidence of this is based on the environment of deposition of the under- 2.5-78 Rev. 0 WOLF CREEK lying Kereford Limestone Member (absent at the site), which Moore (Reference 324, p. 339) attributes to a near-shore area with a muddy bottom. The Jackson Park Shale Member probably represents the transition from this environment to the clear-water environment of the overlying Clay Creek Limestone Member. Core recovery in the Jackson Park Shale Member in the B-Series borings ranged from 61 to 100 percent and averaged 92 percent. RQD values ranged from 35 to 95 percent and averaged 71 percent. Both core recovery and RQD were lower in near-surface, weathered zones. In the cooling lake area, the Jackson Park Shale Member was completely penetrated by Borings LK-13, D2-3, D2-7, D2-8, D2-12 and D3-3. The average thickness of this member in these six borings is 19.4 feet. The mean weighted recovery in these borings ranged from 90 to 100 percent with a mean of 95.1 percent. Weighted RQD values ranged from 52 to 96 percent with a mean of 69.6 percent. Weighted core recovery of the Jackson Park Shale Member in the LK-Series borings ranges from 89 to 100 percent with a mean of 94.5 percent. Weighted RQD values ranged from 26 to 96 percent with a mean of 68.1 percent.Weighted core recovery in the saddle dam series borings ranged from 20 to 100 percent with a mean of 84 percent. Weighted RQD values ranged from 0 to 79 percent with a mean of 50 percent. Both core recovery and RQD were lower in near-surface weathered zones (for detail see boring logs in appendices to the Dames & Moore geotechnical reports for the saddle dams, Route 8 causeway, circulating water system, cooling lake, railroad spur and bridges and switchyards).Rock previously recognized as the Kereford Limestone Member is characterized by an average core recovery of 98 percent and an average RQD value of 82 percent in the B-Series borings. Because this interval is considerably thinner than the length of a core run, core recovery and RQD values cannot be applied strictly to this member. Unconfined compression testing of two samples in the Jackson Park Shale Member at the plant site gave values which ranged from 2,220 psi with a static modulus of elasticity of 0.382 x 106 psi in a sample from Boring P-6 to a compressive strength of 2,330 psi with a static modulus of elasticity of 0.323 x 106 in a sample from Boring P-9. These two samples have an average Poisson's ratio of approximately 0.32 and an average bulk modulus of approximately 0.31 x 106 psi. Resonant column tests were performed on one sample of the Jackson Park Shale Member from Boring P-9. Results are presented in USAR Section 2.5.4.2.1.4.1 and accompanying tables. 2.5-79 Rev. 19 WOLF CREEK Results of three-dimensional geophysical borehole logging of the Jackson Park Shale Member indicated an average compressional wave velocity of 7,720 fps, a shear wave velocity of 3,320 fps, and an elastic modulus of 1.21 x 106 psi.Three-dimensional geophysical borehole logging provided an average compressional wave velocity of 9,600 fps, a shear wave velocity of 4,950 fps, and an elastic modulus of 2.27 x 106 psi for the lower limestone facies of the Jackson Park Shale Member. Clay analyses of three shale samples of the Jackson Park Shale Member revealed no expandable clay minerals and indicated that the clay fraction is approximately 50 percent illite, 35 percent chlorite, and 15 percent kaolinite. The samples have low to medium-high slaking durabilities and swelling pressures up to 900 psf in a 1,500 minute test. Water pressure testing of the B-Series borings gave an average permeability of 4.4 x 10-5 cm/sec with a range up to 4.7 x 10-5 cm/sec with some borings showing no water loss at the pressure used. At the plant site, values ranged up to 5.0 x 10-5 cm/sec with an average permeability of 1.3 x 10-5 cm/sec.Higher losses can be expected in the weathered Jackson Park Shale Member (USAR Section 2.4.13.2). Water pressure testing of the Jackson Park Shale Member in the cooling lake area gave an average permeability of 5.2 x 10-6 cm/sec with a range up to 2.7 x 10-5 cm/sec with some borings showing no water loss at the pressure used. During pressure testing, the packer spacing was considerably greater than the thickness of the lower limestone facies of the Jackson Park Shale Member; therefore, water flow characteristics of the unit could not be delineated precisely. Analysis of test data reveals that the lower Jackson Park Limestone is characterized by an apparent average permeability of 1.9 x 10-5 cm/sec. The bottom of the Jackson Park Shale Member corresponds with the bottom of the Kanwaka Shale Formation and the top of the Oread Limestone Formation. 2.5.1.2.2.2.1.1.1.3 Oread Limestone Formation The Oread Limestone is present throughout the site, and in the southern and eastern portions, it crops out extensively (Figures 2.5-21 and 2.5-22). In the northern and western portions of the site, it crops out in the stream valleys or forms a continuous subsurface unit. Members of the Oread Limestone Formation which are present at the site are, in order of increasing age, the Heumader Shale, Plattsmouth Limestone, Heebner Shale, Leavenworth Limestone, Snyderville 2.5-80 Rev. 0 WOLF CREEK Shale, and Toronto Limestone. The Kereford Limestone Member, which is recognized in other parts of Kansas as the uppermost member of the Oread Formation, is absent from the site area. Limestone which had been identified as the Kereford Member during investigations for the PSAR and previous geotechnical investigations is now recognized as a facies within the Jackson Park Shale Member. This interpretation is based upon the occurrence of this limestone as lenses within the sandstone and on the interbedded relationship between the limestone and basal Jackson Park Sandstone in excavations for saddle dam IV, the ESWS, the circulating water discharge channel, the yard start-up transformer, and in sewer/fire line trenches west of the turbine and control buildings (for additional discussion see USAR Section 2.5.1.2.2.2.1.1.2.3).2.5.1.2.2.2.1.1.1.3.1 Heumader Shale Member The Heumader Shale Member consists of medium dark gray shale which weathers to pale or dark yellowish brown. It is thinly laminated to medium bedded, calcareous to very calcareous, fossiliferous, clayey, and locally sandy with occasional 0.01-foot lenses of light gray, fine-grained, calcareous sandstone.This shale also contains occasional, light brown, siltstone stringers and nodules. In its basal portions, the Heumader Shale Member is interbedded with 20 to 40 percent fossils and 0.01- to 1.5-foot beds of shaley limestone. This basal facies is a gray, thinly laminated to irregularly bedded, very calcareous, fossiliferous shale which is best developed in the northern portions of the site. Clayey layers and zones are common throughout the member.The Heumader Shale Member crops out in a band running from the northeast quadrant of the site to the southwest quadrant (Figures 2.5-21 and 2.5-22). It is present in the subsurface in the northwestern quadrant of the site but is absent in the southeastern quadrant, due to removal by erosion. The borings, drilled in the site area, indicated that the thickness of the Heumader Shale Member ranges from 18 to 34 feet. At the plant site, this member averages 27 feet in thickness and is present at an average depth of 13 feet (Elevation 1,092). In the LK-Series of borings, the Heumader Shale Member has an average thickness of 27.8 feet. The Heumader Shale Member crops out extensively in the area of the UHS (Figure 2.5-23). The Heumader Shale Member is a marine shale which was deposited in a shallow sea. It represents the transitional area between the near-shore and offshore. In the 13 B-Series borings, which penetrated the Heumader Shale Member, core recovery averaged 90 percent and ranged from 68 to 100 percent. RQD values ranged from 0 to 88 percent with an average of 66 percent. Core recovery and RQD values were lower in 2.5-81 Rev. 0 WOLF CREEK near-surface weathered areas. Of the borings in the plant site and in the UHS area, core recovery averaged 89 percent and RQD averaged 74 percent. In the cooling lake area, Borings LK-3, LK-3C, LK-3D, LK-4, LK-12, LK-13, D2-3, D2-7, D2-8, D2-12 and D3-3 completely penetrated the Heumader Shale Member with thicknesses ranging from 14.0 to 37.0 feet and averaging 24.6 feet. In these borings, weighted recovery ranged from 81 to 100 percent with a mean of 95.2 percent. Weighted RQD values ranged from 6 to 96 percent with a mean of 62.0 percent. Core recovery and RQD values were lower in weathered near-surface areas where the Heumader Shale Member has been partly removed due to erosion. Unconfined compression testing of the Heumader Shale Member at the plant site provided results ranging from a compressive strength of 56 psi with a static modulus of 0.00104 x 106 psi in Boring P-4 to a compressive strength of 300 psi with an elastic modulus of 0.0343 x 106 psi in Boring B-4. The samples of the Heumader Shale Member tested by unconfined compression testing were characterized by an average Poisson's ratio of approximately 0.41 and an average bulk modulus of 0.0046 x 106 psi. Resonant column tests were performed on five samples of the Heumader Shale Member from five borings. Results of these tests are discussed in USAR Section 2.5.4.2.1.4.1 and presented in accompanying tables. Average values calculated from three-dimensional borehole logging of the in situ rock mass characterize the Heumader Shale Member as having a compressional wave velocity of 8,130 fps, a shear wave velocity of 4,160 fps, and an elastic modulus of 1.63 x 106 psi. In contrast to the results obtained in the unconfined compression and resonant column tests, the three-dimensional borehole logging suggests that the in situ Heumader is generally good quality shale. It can be concluded that the Heumader Shale Member contains rock with properties which vary with its composition, degree of weathering, and fracturing.Geophysical investigations at the plant site measured average compressional wave velocities of 6,000 fps and shear wave velocities of 1,400 to 1,500 fps.In the area of the UHS, compressional wave velocities averaged 4,300 fps with shear wave velocity of 1,925 fps. Clay analyses of three shale core samples from the Heumader Shale Member identified no expandable clay minerals. Its clay fraction consisted of 50 percent illite, 30 percent chlorite, and 20 percent kaolinite. The samples have low to medium slaking durabilities, and swelling pressures that ranged up to 900 psf in 2,520 minutes. 2.5-82 Rev. 0 WOLF CREEK Wet density tests performed on seven Heumader Shale Member samples from six P-Series borings gave a minimum wet density of 137 pcf in Boring P-11 and a maximum wet density of 160 pcf in Boring P-2. No tests were run for HS-Series borings.Water pressure testing of the B-Series borings provided an average permeability of 3.0 x 10-6 cm/sec with a range up to 1.3 x 10-5 cm/sec. At the plant site, values ranged up to 5.0-6x 10-5 cm/sec with an average permeability of 5.7 x 10-6 cm/sec. In the area of the UHS, values ranged up to 6.0 x 10-6 cm/sec with an average permeability of 3.18 x 10-6 cm/sec. Water pressure testing of the Heumader Shale Member borings in the cooling lake area gave an average permeability of 2.3 x 10-6 cm/sec with a range up to 1.2 x 10-5 cm/sec. Many of the tests indicated no water loss at an effective pressure equal to overburden pressure. 2.5.1.2.2.2.1.1.1.3.2 Plattsmouth Limestone Member The Plattsmouth Limestone Member consists of light gray to medium gray limestone which weathers to yellowish brown and is thin to thick bedded, fine to very fine grained, and fossiliferous. It is interbedded with 0.02- to 0.7-foot partings or layers of medium gray, calcareous, locally clayey shale.Calcite-lined vugs occur in the basal section of the Plattsmouth Member in various locations in the lake area. The Plattsmouth Limestone Member crops out in the southern half of the site and is present in the subsurface in the northern half (Figures 2.5-21 and 2.5-22). The borings at the site show that the thickness of the Plattsmouth Member ranges from 11 to 14 feet. The Plattsmouth Limestone Member is present in the subsurface at the plant site at a depth of about 40 feet (Elevation 1,065) and it crops out extensively throughout the area of the UHS (Figure 2.5-23). The Plattsmouth Limestone Member, according to Moore, was deposited in clear, sunlit waters far from the closest shore (Reference 324, p. 318). Wagner stated that it was deposited during the normal regressive stage of the Oread cyclothem in an environment where sea level was dropping and the shoreline was retreating from its former positions (Reference 324, p. 584-585). Core recovery from the borings in the Plattsmouth Limestone Member throughout the site averaged 91 percent, and RQD values averaged 70 percent. In near-surface weathered zones, core recovery ranged from 28 to 92 percent with an average of 69 percent, and RQD values ranged from 0 to 65 percent with an average of 31 percent. In deeper, unweathered areas core recovery ranged from 87 to 100 percent with an average of 98 percent, and RQD values ranged from 2.5-83 Rev. 0 WOLF CREEK 52 to 97 percent, with an average of 72 percent. At the plant site, core recovery averaged 98 percent and RQD averaged 85 percent, while at the UHS the recovery averaged 92 percent and RQD averaged 68 percent. These lower values in the UHS reflect the effect of exposure and weathering. Twenty-two borings drilled during geotechnical investigations for the cooling lake, saddle dams, and main dam completely penetrated the Plattsmouth Limestone Member (References 62, 66 and 60). In the cooling lake area, the thickness of the Plattsmouth Limestone Member ranged from 10.1 to 14.6 feet with an average thickness of 11.8 feet. Weighted recovery in these 22 borings ranged from 54 to 100 percent with a mean of 90.3 percent. Weighted RQD values ranged from 15 to 100 percent with a mean of 52.2 percent. Generally, weighted recovery and RQD decreased in these 22 borings as thickness of overburden decreased. Lower recovery and RQD values reflect the effect of weathering and exposure. Ten samples of the Plattsmouth Limestone Member were subjected to unconfined compression testing. The results ranged from a compressive strength of 4,040 psi with a modulus of elasticity of 4.00 x 106 psi in Boring ESW-25 to a strength of 16,400 psi with a modules of elasticity of 9.03 x 106 psi in Boring B-5. These samples had an average Poisson's ratio of 0.27 and an average bulk modulus of 4.36 x 106 psi. Resonant column tests were performed on six samples of the Plattsmouth Limestone Member from six borings. Results of these tests are presented in USAR Section 2.5.4.2.1.4.1 and accompanying tables. Shockscope testing of three samples of the Plattsmouth Limestone Member gave an average compressional wave velocity of 17,900 fps, a modulus of elasticity of 8.0 x 106 psi, and a modulus of rigidity of 3.1 x 106 psi. Average values from three-dimensional borehole logging show that the Plattsmouth Limestone Member is characterized by a compressional wave velocity of 13,100 fps, a shear wave velocity of 6,280 fps, and an elastic modulus of 4.13 x 106 psi. Seismic refraction surveys at the plant site gave a compressional wave velocity for the Plattsmouth Limestone Member which averages 14,300 fps. Geophysical shear wave surveys resulted in a shear wave velocity of about 6,200 fps for the member. In the UHS, the compressional and shear wave velocities were 12,000 and 6,000 fps, respectively. 2.5-84 Rev. 0 WOLF CREEK Water pressure testing of the B-Series borings gave an average permeability of 2.3 x 10-6 cm/sec with a range up to 1.3 x 10-5 cm/sec. At the plant site, the test results ranged up to 0.1 x 10-5 cm/sec with an average permeability of 1.3 x 10-6 cm/sec. At the UHS, values ranged up to 1.4 x 10-5 cm/sec with an average permeability of 4.6 x 10-6 cm/sec. In the cooling lake area, water pressure testing gave an average permeability of 8.1 x 10-6 cm/sec with a range up to 1.3 x 10-4 cm/sec. The unit is typically dense with widely spaced, tight fractures, and in many of the borings, no water was lost during pressure testing. However, where exposed close to the surface in excavations for the main dam, the Plattsmouth Member contained many more closely spaced joints, and some were open. 2.5.1.2.2.2.1.1.1.3.3 Heebner Shale Member The Heebner Shale Member consists of dark gray to grayish black carbonaceous shale which is thinly laminated, fissile, and locally fossiliferous at the top.It is interbedded with layers and lenses containing 5 to 10 percent medium gray to pale yellowish brown calcareous siltstone. A thin carbonaceous seam was observed on the east wall of the Main Dam keytrench excavation at Station 13+65, (Figure 2.5-29), but was not laterally traceable (Reference 326). Additional carbonaceous laminae were observed in the Heebner Shale Member at the service spillway area south of the main dam. The Heebner Shale Member has been removed by erosion in the valley areas and southern portions of the site.It crops out in the southern and central portions and is present in the subsurface in the northern portions (Figures 2.5-21 and 2.5-22). The borings indicate that the thickness of the Heebner Shale Member ranges from 2.5 to 4.2 feet at the site. The Heebner Shale Member is present in the subsurface at the plant site at a depth of about 52 feet (Elevation 1,053) and crops out in the area of the UHS (Figure 2.5-23). In the cooling lake area, the Heebner Shale Member has an average thickness of 3.6 feet. Wagner attributes deposition of the Heebner Shale Member to an environment of the stagnant-water, marine stage and describes it as a shallow sea, far from the shoreline with little circulation and an oxygen-poor environment (Reference 324, p. 583). The sea floor was a relatively flat plain upon which tidal or current movement was minimal. Moore, in his study of faunal assemblages, agrees with this interpretation (Reference 324, p. 345). Core recovery in the Heebner Shale Member throughout the site ranged from 24 to 100 percent with an average of 92 percent, and RQD values ranged from 0 to 100 percent with an average of 68 percent. In general, near-surface weathered areas had lower 2.5-85 Rev. 0 WOLF CREEK recovery and RQD values. In the area of the plant site, recovery averaged 97 percent and RQD 88 percent; while in the area of the UHS, recovery averaged 93 percent and RQD 73 percent. Four borings for the circulating water system contained complete sections of the Heebner Shale Member. Weighted recovery ranged from 93 to 100 percent with a mean of 98.3 percent. Weighted RQD values ranged from 40 to 70 percent with a mean of 54 percent. In the cooling lake area, 39 borings penetrated complete sections of the Heebner Shale Member. Weighted recovery ranged from 6 to 100 percent with a mean of 82.5 percent. Weighted RQD values ranged from 0 to 95 percent with a mean of 49.9 percent. Most lower values along the main dam alignment show the effects of weathering and relatively thin overburden. Five samples of the Heebner Shale Member were subjected to unconfined compression testing. The results ranged from an unconfined compressive strength of 710 psi with a modulus of elasticity of 0.77 x 106 psi in Boring ESW-23 to a compressive strength of 2,520 psi with a modulus of elasticity of 2.35 x 106 psi in Boring ESW-25. The samples tested had an average Poisson's ratio of 0.34. Resonant column tests of the Heebner Shale Member were performed on one sample from a B-Series boring and one sample from an HS-Series boring. Results of these tests are presented in USAR Section 2.5.4.2.1.4.1 and accompanying tables.Three-dimensional velocity logging gave an average compressional wave velocity of 9,270 fps, a shear wave velocity of 4,710 fps, and an elastic modulus of 1.92 x 106 psi. Because of the thickness of the Heebner Shale Member, Leavenworth Limestone Member, Snyderville Shale Member and their stratigraphic position between the Plattsmouth Limestone Member and Toronto Limestone Member, it is not feasible to separate these three members by a geophysical seismic refraction survey or a shear wave survey. The values obtained for this zone correlate closely with Birdwell values and characterized this zone as having an average compressional wave velocity from 6,000 to 7,000 fps with a shear wave velocity of approximately 3,500 fps. Shale analyses performed on two core samples from the Heebner Shale Member show that the unit contained no expandable clay minerals. Its clay fraction consisted of 70 percent illite, 20 percent chlorite, and 10 percent kaolinite. The samples were characterized by a high slaking durability. Swelling pressure tests on two samples gave swelling pressures up to 835 psf in a 2,460 minute test. 2.5-86 Rev. 0 WOLF CREEK Wet density tests performed on two Heebner Shale Member samples from Boring P-10 gave a minimum wet density of 137 and a maximum wet density of 139 pcf. No tests were run for HS-Series borings. During pressure testing, the packer spacing was considerably larger than the thickness of the Heebner Shale Member. Most water losses occurred along the upper and lower contacts of the unit. Water pressure testing of the B-Series borings gave an average permeability of 1.0 x 10-6 cm/sec with a range up to 1.8 x 10-5 cm/sec. At the plant site, the range was up to 2.5 x 10-5 cm/sec with an average of 2.5 x 10-6 cm/sec. In the UHS area, values ranged up to 2.9 x 10-5 cm/sec with an average of 9.15 x 10-6cm/sec. Water pressure testing of the Heebner Shale Member in the cooling lake area indicated an average permeability of 2.4 x 10-6 cm/sec with a range up to 1.0 x 10-5 cm/sec. In many borings, no water loss was recorded when tested at overburden pressure. 2.5.1.2.2.2.1.1.1.3.4 Leavenworth Limestone Member The Leavenworth Limestone Member consists of light bluish gray to medium gray limestone which is thin to medium bedded, fine grained, fossiliferous, and shaley at its top and base. At the plant site, the Leavenworth Limestone Member contains a basal facies of shaley, calcarenitic limestone with a maximum thickness of 1.1 feet. The Leavenworth Limestone Member is continuous throughout the project area, except in valley areas and in the southernmost portions where it has been removed by erosion. It crops out in the southern and central portions of the project area and is present in the subsurface in the northern portion (Figures 2.5-21 and 2.5-22). The average thickness of the Leavenworth Limestone Member is 1.0 foot throughout the site. It occurs in the subsurface at the plant site at a depth of about 55 feet (Elevation 1,050). At the plant site, the Leavenworth Limestone Member is better developed than in most areas of the project area as the average thickness is 2.0 feet. The Leavenworth Member is stratigraphically the lowest unit which crops out in the UHS area and is the uppermost rock unit where the overlying Heebner Shale has been removed by erosion (Reference 59). The average thickness of the Leavenworth in the UHS area is 1.2 feet. In a section of the main dam keytrench west of Wolf Creek, this limestone has been partly replaced by reddish brown clay that appears to be a product of intense weathering along zones of closely spaced joints (Reference 326, p. 14-15). Remnant blocks of limestone have a highly weathered brownish rind and a moderately to slightly weathered core. 2.5-87 Rev. 0 WOLF CREEK Wagner attributes the Leavenworth Limestone Member to an environment where current action oscillated fossil fragments back and forth, breaking them into small grains (Reference 324, p. 580-582). Calcium-rich waters then cemented the small grains into a cryptocrystalline, calcareous precipitate. The thickness of the Leavenworth Limestone Member is considerably less than that of a core run; therefore, core recovery and RQD computations are not restricted to this unit. Core recovery data throughout the site suggest that the limestone unit is characterized by an average core recovery of 95 percent and an average RQD value of 64 percent. In the plant area, RQD averaged 88 percent and recovery averaged 97 percent, while in the area of the UHS, recovery averaged 91 percent and RQD averaged 71 percent. Two borings for the circulating water pumphouse (CWP-2 and CWP-3) completely penetrated the Leavenworth Limestone, which has an average thickness of 1.0 foot. Weighted recovery ranged from 92 to 100 percent with a mean of 96 percent. Weighted RQD values ranged from 59 to 70 percent in the borings which penetrated the Leavenworth Limestone Member in the cooling lake area. The average thickness of this member is 0.8 foot in the lake area. Weighted recovery ranged from 0 to 100 percent with a mean of 82.8 percent. Weighted RQD values ranged from 0 to 95 percent with a mean of 57.7 percent. Unconfined compression testing of six samples of the Leavenworth Limestone Member gave results ranging from an unconfined compression strength of 6,800 psi with a modulus of elasticity of 7.55 x 106 psi in Boring P-12 to an unconfined compression strength of 14,700 psi with a modulus of elasticity of 11.5 x 106 psi in Boring ESW-25. The samples tested had an average Poisson's ratio of 0.24 and an average bulk modulus of 4.63 x 106 psi. Averaged results from three-dimensional borehole logging indicated that the Leavenworth Limestone Member is characterized by a compressional wave velocity of 8,930 fps, a shear wave velocity of 4,530 fps, and an elastic modulus of 1.80 x 106 psi. Resonant column tests of the Leavenworth Limestone Member were performed for samples from three P-Series borings and one HS-Series boring. Results of these tests are presented in USAR Section 2.5.4.2.1.4.1 and accompanying tables. Shockscope testing of the Leavenworth Limestone Member indicated an average compressional wave velocity of 16,700 fps, a modulus of elasticity of 7.0 x 106psi, and a modulus of rigidity of 2.6 x 106 psi. 2.5-88 Rev. 0 WOLF CREEK Because the packer spacing is considerably greater than the thickness of the unit, water pressure testing could not be confined to the Leavenworth Member.Water pressure testing of the B-Series borings indicated an average permeability of 3.7 x 10-7 cm/sec. At the plant site, the average permeability was 2.9 x 10-6 cm/sec. In the area of the UHS, the average was 6.99 x 10-6cm/sec. In the cooling lake area, the average permeability was 2.3 x 10-6cm/sec with a range up to 2.0 x 10-5 cm/sec. Many borings showed no water loss when tested at overburden pressure. 2.5.1.2.2.2.1.1.1.3.5 Snyderville Shale Member The Snyderville Shale Member consists of light gray to dark greenish or olive-gray shale that is thinly laminated to medium bedded, very calcareous, clayey, and locally fossiliferous. It contains occasional 0.1- to 0.3-foot lenses of limestone. The limestone lenses are light gray to dark greenish gray, fine grained, and locally shaley and fossiliferous. Numerous 0.5- to 0.7-foot clayey shale zones occur throughout the unit. The Snyderville Shale Member often contains numerous fractures which dip from 20 to 60 degrees, many of which are slickensided. When observed in excavations, some of the carbonate content appears to be the result of caliche development. The Snyderville Shale Member crops out in the southern and central portions of the project area and is present in the subsurface in the northern portion (Figures 2.5-21 and 2.5-22). The Snyderville Shale Member occurs at a depth of about 57 feet (Elevation 1,048) at the plant site. In the UHS area, this member crops out in the southern and western portions and is present in the subsurface below the UHS dam (Figure 2.5-23). The Snyderville Shale Member has an average thickness of 10.5 feet. In the cooling lake area, the thickness of this shale varies from 3.2 to 14.4 feet with an average thickness of 7.6 feet. Both Wagner and Moore ascribe deposition of the Snyderville Shale Member to a near-shore, shallow-water environment (Reference 324, p. 579 and 311). This is what Wagner typifies as the continental margin (Reference 324, p. 578). Throughout the site, core recovery for the Snyderville Shale Member averaged 94 percent and ranged from 83 to 100 percent, and RQD values ranged from 23 to 93 percent with an average of 64 percent. At the plant site and in the UHS area, core recovery averaged 97 percent and RQD values averaged 75 percent. Thirty-six borings completely penetrated the Snyderville Shale Member in the cooling lake area. Weighted recovery ranged from 23 to 100 percent with a mean of 82.2 percent. Weighted RQD values ranged from 6.0 to 100 percent with a mean of 61.2 percent. 2.5-89 Rev. 0 WOLF CREEK Unconfined compression testing of six samples of the Snyderville Shale Member gave results ranging from an unconfined compressive strength of 90 psi with a modulus of elasticity of 0.0036 x 106 psi in Boring P-9 to an unconfined compressive strength of 1,330 psi with a modulus of elasticity of 0.323 x 106psi in Boring B-5. The samples had an average Poisson's ratio of 0.35 and an average bulk modulus of 0.0044 x 106 psi. Average values from three-dimensional borehole logging indicated that the Snyderville Shale Member is characterized by a compressional wave velocity of 7,290 fps, a shear wave velocity of 3,690 fps, and an elastic modulus of 1.15 x 106 psi. Resonant column testing was performed on a sample of Snyderville Shale Member from Boring P-11. Results of this test are discussed in USAR Section 2.5.4.2.1.4.1 and tabulated in accompanying tables. Shale analyses performed on three core samples from the Snyderville Shale Member showed that the unit contains no expandable clay minerals. Its clay fraction consists of 80 percent illite, 10 percent chlorite, and 10 percent kaolinite. The samples had very low slaking durabilities. Swelling pressures ranged up to 1,600 psf in a 4,320 minute test. Shale density analyses on samples of the Snyderville Shale Member from Boring P-10 gave a density of 141 pcf.Water pressure testing in the Snyderville Shale Member indicated that water losses are low. Testing of the B-Series borings gave an average permeability of 1.1 x 10-6 cm/sec with a range up to 5.5 x 10-6 cm/sec. At the plant site, values ranged up to 2.5 x 10-5 cm/sec with an average permeability of 1.5 x 10-6 cm/sec. In the UHS area, the average permeability was 9.48 x 10-6 cm/sec and values ranged up to 4.8 x 10-5 cm/sec. At the cooling lake area, the average permeability was 3.7 x 10-6 cm/sec with a range up to 3 x 10-5 cm/sec. Many of the borings had no water loss when tested at an effective pressure equal to overburden pressure. 2.5.1.2.2.2.1.1.1.3.6 Toronto Limestone Member The Toronto Limestone Member consists of light gray to very light gray limestone that weathers to a grayish orange or dark yellowish brown. It is thin to thick bedded, fine grained, and fossiliferous with fossil fragment beds. Five to 15 percent, pinpoint-sized, isolated vugs are developed locally.This member is interbedded with 0.001- to 0.3-foot layers of greenish gray, calcareous clayey shale. This limestone can be recognized in the field by its characteristic grayish orange to dark yellowish brown weathering and abundant fusulinids. 2.5-90 Rev. 0 WOLF CREEK The Toronto Limestone Member crops out in the southern portion of the site and is present in the subsurface in the central and northern portions (Figures 2.5-21 and 2.5-22). In the project area, the borings indicate that the thickness of the Toronto Limestone Member ranges from 13 to 19 feet. This member is present in the subsurface at the plant site with an average thickness of 16.3 feet and at a depth of about 68 feet (Elevation 1,037). It is also present in the subsurface in the area of the UHS at depths ranging from approximately 20 to 40 feet. In the lake area, the Toronto Limestone has an average thickness of 15.4 feet. The Toronto Limestone Member was deposited in a near-shore, shallow-water environment, rich in calcium carbonate, and subjected to periodic influxes of clay and silt. Wagner characterizes this as the argillaceous, transgressive marine stage of megacyclothem development (Reference 324, p. 578). At the site, core recovery in the Toronto Limestone Member ranged from 88 to 100 percent with an average of 98 percent, and RQD values averaged 72 percent and ranged from 33 to 93 percent. At the plant site, recovery averaged 98 percent and RQD values 86.5 percent. Values were slightly lower in the UHS area where recovery averaged 95 percent and RQD averaged 62 percent. Thirty-three borings completely penetrated the Toronto Limestone Member in the cooling lake area. Weighted core recovery ranged from 74 to 100 percent with a mean of 93.6 percent. Weighted RQD values ranged from 34 to 100 percent with a mean of 63.1 percent. Unconfined compression testing of eight samples of the Toronto Limestone Member gave results ranging from an unconfined compressive strength of 2,430 psi with a modulus of elasticity of 0.526 x 106 psi in Boring P-12 to an unconfined compressive strength of 17,260 psi with a modulus of elasticity of 0.952 x 106psi in Boring B-4. The samples tested had an average Poisson's ratio of 0.29 and a bulk modulus that ranged from 0.49 x 106 psi in Boring P-12 to 4.6 x 106 psi in Boring P-6. Resonant column tests were performed on five samples of the Toronto Limestone Member from five borings. Results of these tests are presented in USAR Section 2.5.4.2.1.4.1 and accompanying tables. Three-dimensional borehole logging within the Toronto Limestone Member indicated an average compressional wave velocity of 12,700 fps, a shear wave velocity of 6,580 fps, and an elastic modulus of 4.16 x 106 psi. 2.5-91 Rev. 0 WOLF CREEK Uphole velocity surveys and shear wave velocity surveys in the Toronto Limestone Member indicated a compressional wave velocity of 11,600 to 11,700 fps and a shear wave velocity of 6,000 to 6,200 fps. Water pressure testing in the Toronto Limestone Member indicated very low flows. Water pressure testing of the B-Series borings gave an average permeability of 1.2 x 10-6 cm/sec with a range up to 2.3 x 10-5 cm/sec. At the plant site, the average permeabilty was 2.4 x 10-6 cm/sec with a range up to 4.9 x 105 cm/sec. In the area of the UHS, the values ranged up to 1.0 x 10-4cm/sec with an average permeability of 2.57 x 10-5 cm/sec. In the cooling lake area, the values ranged up to 9.0 x 10-5 cm/sec with an average permeability of 1.6 x 10-5 cm/sec. Many of the borings had no water loss when tested at an effective pressure equal to overburden pressure. The base of the Toronto Limestone Member marks the base of the Oread Limestone Formation and of the Shawnee Group, and it conformably overlies the older Douglas Group (Figure 2.5-41). 2.5.1.2.2.2.1.1.2 Douglas Group At the site, the Douglas Group consists of facies of sandstone, siltstone, and shale that are usually intermixed and separated by gradational contacts between the members. A few thin facies of limestone and coal are interbedded throughout the group (Figure 2.5-41). The uppermost part of the Douglas Group, the Lawrence Formation, is present in the subsurface throughout the site, except in the southern portion where it crops out along the stream valleys (Figures 2.5-21 and 2.5-22). The lower part of the Douglas Group is present in the subsurface throughout the site. The complete stratigraphic section of the group was penetrated by numerous borings within the project area. This group is divided into the Lawrence Shale and the underlying Stranger Formations. 2.5.1.2.2.2.1.1.2.1 Lawrence Formation The Lawrence Formation is present throughout the site in the subsurface. Along the Neosho River, Long Creek, and the southernmost segment of Wolf Creek, the Lawrence forms the bedrock along the valleys and beneath the river alluvium (Figures 2.5-21 and 2.5-22). All recognized members of the Lawrence Formation are present within the project area. In order of increasing age, they are the Unnamed Lawrence Shale Member, which contains the Williamsburg 2.5-92 Rev. 0 WOLF CREEK Coal Bed, and the Amazonia Limestone, Ireland Sandstone, Robbins Shale, and Haskell Limestone Members. 2.5.1.2.2.2.1.1.2.1.1 Unnamed Lawrence Member The portion of the Lawrence Formation between the bottom of the Oread Limestone and the top of the Amazonia Limestone Member is an unnamed member. The member consists mainly of medium gray to dark gray shale that is laminated and locally calcareous, carbonaceous, and fossiliferous. The shale is interbedded with light to medium gray, thinly laminated to medium-bedded, fine- to very fine-grained, calcareous sandstone and medium dark gray, laminated to thin-bedded, micaceous siltstone. The upper part of the Unnamed Lawrence Shale Member is generally free of sandstone lenses or laminae. This sandstone-free unit overlies a deeper zone consisting of approximately equal portions of shale, siltstone, and sandstone. The shale, siltstone, and sandstone zone comprises the major part of the Unnamed Lawrence and rests on the Williamsburg Coal Bed.Locally, a 0.5- to 1.0-foot very carbonaceous shale layer occurs directly above or below the coal bed. The basal zone of the Unnamed Lawrence Shale Member occurs between the Williamsburg Coal Bed and the Amazonia Limestone Member and consists of medium gray to dark greenish gray, very calcareous shale. Locally, this basal, calcareous shale has numerous, well-developed, slickensided fractures oriented at 20 degrees to the horizontal. These fractures were not observed offsetting the Williamsburg Coal Bed or the underlying Amazonia Member in the low-level outlet tunnel excavation (Reference 73). Clayey shale layers and broken zones occur throughout the member. The borings taken at the site indicate that the thickness of this member ranges from 18 to 30 feet. At the plant site and in the UHS area, the Unnamed Lawrence Shale Member averages about 24 feet in thickness. The unit is present in the subsurface at a depth of about 85 feet at the plant site (Elevation 1,020). The Unnamed Lawrence Shale Member is continuous throughout the subsurface of the site except where it crops out along the valleys in the southern portion (Figure 2.5-22). In the area of the cooling lake, the Unnamed Lawrence Shale Member has an average thickness of 24.4 feet. The Williamsburg Coal Bed occurs near the base of the Unnamed Lawrence Shale Member. It is a black, thinly laminated to medium-bedded, shaley coal which occurs within the Unnamed Lawrence Shale Member. It occurs in the subsurface throughout the project area. The borings taken in the project area indicate that the thickness of the bed ranges from 0.1 to 0.8 foot. The Williamsburg Coal is present in the subsurface at the plant site at a depth of about 104 feet (Elevation 1,002). 2.5-93 Rev. 0 WOLF CREEK The environment of deposition of the Unnamed Lawrence Shale Member is complex.According to Wagner, the upper shale portion falls into the argillaceous, transgressive marine stage during which deposition occurred in a shallow sea very near the shore (Merriam, 1964, p. 576). The remainder of the unit, including the Williamsburg Coal Bed, is the product of a transitional environment described by Wagner as the continental to marine transitional stage (Reference 324, p. 574). Moore states that this member was deposited in an environment of shallow water lagoons, swamps, and low-gradient, sluggish streams (Reference 324, p. 574). The lithologies present at the site represent the final stages of a prograding deltaic environment; Wagner describes the prograding deltaic environment as a complex of several environments (Reference 324, p. 573). The section between the Amazonia Limestone Member and the upper shale facies of the Unnamed Lawrence Shale Member resulted from deposition of silt, sand, and carbonaceous material on a nearly level, flooded, delta plain.The gradation to the upper shale facies began with the transgression of the sea over the delta plain and continued with deposition in the near-shore, shallow sea environment. Throughout the site, the Unnamed Lawrence Shale Member is characterized by core recovery values which ranged from 83 to 100 percent with an average of 96 percent. RQD values averaged 49 percent and ranged from 8 to 82 percent. The clayey shale layers commonly observed are a major contributing factor to this unit's relatively low RQD values. At the plant site and in the UHS area, recovery averaged 98 percent and RQD averaged 78 percent. Thirteen borings completely penetrated the Unnamed Lawrence Shale Member in the area of the cooling lake. Weighted recovery in the cooling lake area ranged from 73 to 100 percent with a mean of 92 percent. Weighted RQD values ranged from 27 to 98 percent with a mean of 50.2 percent. Unconfined compression testing of four samples of the Unnamed Lawrence Shale Member gave results ranging from an unconfined compressive strength of 125 psi with a modulus of elasticity of 0.069 x 106 psi in Boring ESW-25 to an unconfined compressive strength of 1,780 psi with a modulus of elasticity of 1.17 x 106 psi in Boring B-7. The samples tested had an average Poisson's ratio of 0.39. Wet density tests performed on two Unnamed Lawrence Shale Member samples from two P-Series borings indicated a minimum wet density of 144 pcf in Boring P-10 and a maximum wet density of 156 pcf in Boring P-9. 2.5-94 Rev. 0 WOLF CREEK Three-dimensional borehole logging of the Unnamed Lawrence Shale Member indicated an average compressional wave velocity of 7,870 fps, a shear wave velocity of 4,050 fps, and an elastic modulus of 1.48 x 106 psi. The site geophysical shear wave and compressional wave studies agree closely with these values; they indicated an average compressional wave velocity of 7,500 to 7,800 fps and an average shear wave velocity of 3,950 to 4,000 fps for the Unnamed Lawrence-Amazonia-Ireland-Robbins interval. Resonant column testing was performed on one sample of the Unnamed Lawrence Shale Member. Results of the test are presented in USAR Section 2.5.4.2.1.4.1 and accompanying tables. Clay mineral analyses performed on three shale core samples from the Unnamed Lawrence Shale Member showed that the unit contains no expandable clay minerals. Its clay fraction consists of 45 percent illite, 35 percent chlorite, and 20 percent kaolinite. The samples are characterized by slaking durabilities that ranged from very low to medium high, and swelling pressures ranging up to 1,150 psf in a 3,960 minute test. Water pressure testing of the Unnamed Lawrence Shale Member indicated low water losses even though the unit contains lenses of fine-grained sandstone. Water pressure testing of the B-Series borings gave an average permeability of 1.8 x 10-6 cm/sec with a range up to 2.3 x 10-5 cm/sec. At the plant site, the average permeability was 7.0 x 10-7 cm/sec with a range up to 7.0 x 10-7cm/sec. In the cooling lake area, the average permeability was 1.5 x 10-5cm/sec with a range up to 9.7 x 10-5 cm/sec. Many of the tests showed no water loss when tested at overburden pressure. 2.5.1.2.2.2.1.1.2.1.2 Amazonia Limestone Member The Amazonia Limestone Member contains light to dark greenish gray shale which is thinly laminated and very calcareous. The Amazonia Limestone Member contains 5 to 50 percent, light green or greenish gray limestone nodules, lenses, and shaley fossiliferous limestone layers. At the site, the member grades laterally from a sequence of very shaley limestone in the northern portion of the area to a thickened sequence of interbedded, very calcareous, clayey shales, limestones, and shaley limestones in the central portion of the area. Along the southern boundary of the site, the member thins to a greenish gray, thin- to medium-bedded, very calcareous, fossiliferous shale above a greenish gray, thin- to medium-bedded, fossiliferous limestone. 2.5-95 Rev. 0 WOLF CREEK The Amazonia Limestone Member is continuous throughout the subsurface at the site, except in the lower reaches of Wolf Creek and in the Neosho River Valley where it has been removed by erosion. The borings taken in the project area indicate that the thickness of the Amazonia Limestone Member ranges from 2 to 18 feet. The member is present in the subsurface at the plant site as interbedded limestone and calcareous shale at a depth of about 108 feet (Elevation 997). In the cooling lake area, the thickness of the Amazonia Limestone Member ranges from 2.9 to 9.2 feet with an average thickness of 6.1 feet.The Amazonia Limestone Member is similar to the overlying Unnamed Lawrence Shale Member and the upper part of the underlying Ireland Sandstone Member as it is a product of the complex interaction of marine and nonmarine environments. The Amazonia Limestone Member represents a near-shore, shallow, carbonate-rich environment. Throughout the site, core recovery in the Amazonia Limestone Member ranged from 88 to 100 percent with an average of 97 percent. RQD values averaged 54 percent and ranged from 21 to 86 percent. At the plant site and in the UHS area, core recovery averaged 99 percent and RQD averaged 80 percent. Fourteen borings in the LK- and D-Series completely penetrate the Amazonia Member in the cooling lake area. Weighted recovery ranged from 52 to 100 percent with a mean of 92.9 percent. Weighted RQD values ranged from 35 to 100 percent with a mean of 59.7 percent. Lower recovery and RQD values appear to reflect the decreased thickness of rock overlying the Amazonia Limestone in the vicinity of the main dam and Wolf Creek Valley. Unconfined compression testing was performed on two samples of the Amazonia Limestone Member. The sample tested from Boring P-9 had an unconfined compressive strength of 4,410 psi, a modulus of elasticity of 3.15 x 106 psi, and a Poisson's ratio of 0.30. The similar values for the sample from Boring ESW-25 were 2,750 psi, 2.1 x 106 psi, and 0.35, respectively. A sample of the shaley portion of the Amazonia Limestone Member from Boring ESW-25 had an unconfined compression strength of 118 psi, a modulus of elasticity of 0.064 x 106 psi, and a Poisson's ratio of 0.44. Three-dimensional borehole logging within the Amazonia Limestone Member showed an average compressional wave velocity of 8,640 fps, a shear wave velocity of 4,520 fps, and an elastic modulus of 1.67 x 106 psi. 2.5-96 Rev. 0 WOLF CREEK Resonant column tests were performed on two samples of the Amazonia Limestone Member from two HS-Series borings. Test results are presented in USAR Section 2.5.4.2.1.4.1 and accompanying tables. Water pressure testing of the B-Series borings gave an average permeability of 1.0 x 10-7 cm/sec. In the cooling lake area, the average permeability was 2.8 x 10-6 cm/sec with a range up to 2.2 x 10-5 cm/sec. Many of the tests showed no water was lost during pressure testing. No permeability tests were run on HS-Series borings. 2.5.1.2.2.2.1.1.2.1.3 Ireland Sandstone Member The Ireland Sandstone Member consists of medium dark gray, thinly laminated, locally carbonaceous, clayey shale. It is interbedded with light gray, laminated to medium-bedded, crossbedded and locally contorted, fine- to very fine-grained, micaceous, and locally calcareous sandstone. It is also interbedded with medium gray, laminated to medium-bedded, carbonaceous, micaceous siltstone. Three different zones are recognizable within the Ireland Sandstone Member. The upper zone is predominantly shale with 10 percent or less interbedded sandstone lenses. This zone grades downward to a middle zone of approximately equal amounts of sandstone, siltstone, and shale with localized zones of contorted sandstone. A 0.6- to 0.9-foot seam of black, shaley coal that overlies a layer of soft, clayey shale is included in the middle zone. The sandstone percentage of the middle zone decreases downward, and the zone grades into the basal zone of the Ireland Sandstone Member that is a shaley siltstone directly overlying the Robbins Shale Member. Throughout this member are clayey shale layers and laminae, 30-degree to vertical fractures, and occasional 30- to 60-degree slickensided fractures.Borings indicate that the thickness of the Ireland Sandstone Member at the site ranges from 39.5 to 117.1 feet. In the cooling lake area, the thickness ranges from 51.8 to 83.6 feet. The Ireland Sandstone Member does not crop out in the site, but is a continuous subsurface unit. It is present at the plant site at a depth of about 115 feet (approximate Elevation 990). At the site, the Ireland Sandstone and Robbins Shale members are apparently the result of a prograding deltaic environment. In this type of environment, sloping foreset beds were developed along the front of the delta that was overloaded by a continued influx of material. This overloading caused slumping and mass movements which probably caused the local, distorted bedding features apparent in the borings. 2.5-97 Rev. 0 WOLF CREEK The variations in the thickness of the Ireland Sandstone Member at the site are due both to differential compaction and the environment of deposition. Minor changes in depositional environment, such as channel location, water depth, and current velocity resulted in local differences in the deposited sediment as well as the rate of sedimentation. These local differences resulted in the subtle lithologic differences that separate the Ireland from the underlying Robbins Shale Member. Core recovery in the Ireland Sandstone Member averaged 97 percent with a range from 88 to 100 percent. RQD values, however, reflect the commonly occurring soft shaley layers within the Ireland Sandstone Member and ranged from 0 to 100 percent with an average of 54 percent. Three borings completely penetrate the Ireland Sandstone Member in the cooling lake area. Weighted recovery ranged from 89 to 100 percent with a mean of 96.4 percent. Weighted RQD values ranged from 47 to 59 percent with a mean of 62.7 percent.Unconfined compression testing of five samples of the Ireland Sandstone Member gave results ranging from an unconfined compressive strength of 169 psi with a modulus of elasticity of 0.1 x 106 psi in Boring ESW-25 to an unconfined compressive strength of 2,190 psi with a modulus of elasticity of 1.46 x 106psi in Boring B-7. A sample from Boring P-9 had a Poisson's ratio of 0.36 and a bulk modulus of 0.0074 x 106 psi. The sample from Boring ESW-25 had a Poisson's ratio of 0.43, while that from B-7 was not recorded. Resonant column testing was performed on three samples of the Ireland Sandstone Member. Results of the tests are presented in USAR Section 2.5.4.2.1.4.1 and accompanying tables. Three-dimensional borehole logging within the Ireland Sandstone Member indicated an average compressional wave velocity of 8,560 fps, a shear wave velocity of 4,350 fps, and an elastic modulus of 1.72 x 106 psi. Wet density tests performed on five Ireland Sandstone Member samples from two borings gave a minimum wet density of 147 pcf in Boring P-10 and a maximum wet density of 156 pcf in Boring P-9. Clay mineral analyses performed on three shale core samples from the Ireland Sandstone Member showed that it contains no expandable clay minerals. Its clay fraction consists of 50 percent illite, 30 percent chlorite, and 20 percent kaolinite. The samples are characterized by a medium slaking durability and swelling pressures ranging up to 1,425 psf in a 2,760 minute test. 2.5-98 Rev. 1 WOLF CREEK Water pressure tests were conducted selectively throughout the Ireland Sandstone Member; both the upper sandy zone and the lower silty shale zone were tested. Water pressure testing of the B-Series borings gave an average permeability of 3.3 x 10-6 cm/sec and ranged up to 2.5 x 10-5 cm/sec. At the plant site, the average permeability was 7.7 x 10-7 cm/sec with a range up to 4.0 x 10-6 cm/sec. In the cooling lake area, the average permeability was 8.9 x 10-6 cm/sec with a range up to 5.0 x 10-5 cm/sec. Many of the borings showed no water loss. 2.5.1.2.2.2.1.1.2.1.4 Robbins Shale Member The Robbins Shale Member is a medium dark to dark gray shale that is thinly laminated to medium bedded, slightly carbonaceous, and locally micaceous.Numerous 0.05- to 0.1-foot medium gray, clayey shale zones, layers, and laminae occur throughout the member. Occasional 10- to 70-degree fractures, vertical to 45-degree clay-lined fractures, and 55-degree slickensided fractures are present throughout the Robbins Shale Member. At the site, the Robbins exhibits four additional distinct facies below the upper shale zone: two limestones (or very calcareous shales); a basal carbonaceous shale; and a shale with occasional, well-developed, dolomitic concretions (Figure 2.5-41). The Robbins Shale Member does not crop out in the project area but forms a continuous subsurface unit. The borings taken at the site indicate that the thickness of the Robbins Shale Member ranges from 14 to 90 feet. The member is present in the subsurface at the plant site at a depth of about 198 feet (Elevation 908). The fossils, calcareous shales, limestones, and black carbonaceous shale indicate that the Robbins Shale was deposited in a marine environment. The Robbins Shale Member, as present in the project area, represents what Wagner refers to as the normal, regressive marine stage (Reference 324, p. 584). The very carbonaceous shale facies is representative of Wagner's stagnant water marine stage (Reference 324, p. 583). The depositional environment was in shallow water, far from the shore, with little or no water movement. In some parts of Kansas, such as Wilson County, the upper limits of the Robbins Shale Member mark the ending of a period of marine transgression. Following deposition of the Robbins Shale, the sea receded in these areas and this member was exposed to subaerial erosion. Following the period of erosion, the area was inundated by another marine transgression and the Ireland Sandstone Member was deposited disconformably over the Robbins Shale Member. However, this sequence of events does not appear to have occurred at the site. The gradational nature of the contact between the 2.5-99 Rev. 0 WOLF CREEK Ireland Sandstone and the Robbins Shale Member observed in core samples and excavations suggests that during the regression, the sediments of the Robbins Shale Member were not exposed to erosion in the project area. Instead, the sediment in the Robbins Shale Member and Ireland Sandstone Member sequence was deposited continuously. The gradational change in lithology between those two members marks a gradual change from a shallow marine environment to a prograding deltaic environment. Core recovery in the Robbins Shale Member ranged from 78 to 100 percent with an average of 95 percent. RQD values ranged from 8 to 99 percent with an average of 60 percent. RQD values were much lower in boreholes that contained numerous clayey layers within the unit. Three additional borings, (LK-7, LK-9, LK-10), drilled in the cooling lake area did not completely penetrate the Robbins Shale Member. Weighted recovery ranged from 68 to 100 percent with a mean of 89 percent. Weighted RQD values ranged from 35 to 79 percent with a mean of 54 percent. Unconfined compression testing of three samples of the Robbins Shale Member gave results ranging from an unconfined compressive strength of 407 psi with a modulus of elasticity of 0.0225 x 106psi in Boring P-9 to an unconfined compressive strength of 1,950 psi with a modulus of elasticity of 1.31 x 106psi in Boring B-11. The sample from Boring P-9 had a Poisson's ratio of 0.33 and a bulk modulus of 0.022 x 106 psi. Resonant column testing was performed on one sample of the Robbins Shale Member. Results of the tests are presented in USAR Section 2.5.4.2.1.4.1 and provided in accompanying tables. Three-dimensional borehole logging within the Robbins Shale Member gave an average compressional wave velocity of 8,050 fps, a shear wave velocity of 4,170 fps, and an elastic modulus of 1.58 x 106 psi. Wet density tests performed on three Robbins Shale Member samples from two borings indicated a minimum wet density of 138 pcf and a maximum wet density of 157 pcf. Clay mineral analyses performed on a shale core sample from the Robbins Shale Member showed that the shale contains no expandable clay minerals. Its clay fraction consists of 40 percent illite, 40 percent chlorite, and 20 percent kaolinite. Laboratory tests indicated a medium slaking durability and swelling pressures that reach 3,725 psf in 6,720 minutes. 2.5-100 Rev. 0 WOLF CREEK Water pressure testing of the Robbins Shale Member showed negligible water losses. Water pressure testing of the B-Series borings gave an average permeability of 2.6 x 10-7 cm/sec with a range up to 5.0 x 10-7 cm/sec. At the plant site, the average permeability was 3.9 x 10-7 cm/sec, and values ranged up to 5.4 x 10-7 cm/sec. Many borings showed no water loss during testing. 2.5.1.2.2.2.1.1.2.1.5 Haskell Limestone Member The Haskell Limestone Member consists of light gray to medium light gray limestone that is thin to thick bedded, fine grained, and fossiliferous (10 to 20 percent fusulinid fossils). It is locally shaley in its basal section with occasional dark gray shale partings. This unit does not crop out at the site, but forms a continuous subsurface unit. The borings taken at the site indicated that the thickness of the Haskell Limestone Member ranged from 1 to 5.3 feet. The unit is present at a depth of about 260 feet (Elevation 844) at the plant site. The base of the Haskell Limestone Member marks the base of the Lawrence Formation and the top of the Stranger Formation. According to Ball and Wagner, the Haskell Limestone Member is believed to have been deposited in marine, relatively near-shore, shallow areas (Reference 7, p. 271; Reference 324, p. 580). The length of a core run was considerably greater than the thickness of the Haskell Limestone Member; therefore, core recovery and RQD computations were not restricted to the unit. Core recovery data suggest that the Haskell Limestone Member is characterized by an average core recovery of 98 percent and an average RQD value of 72 percent. Unconfined compression testing of one sample of the Haskell Limestone Member from Boring P-9 gave an unconfined compressive strength of 12,430 psi with a modulus of elasticity of 13.0 x 106 psi. The sample had a Poisson's ratio of 0.21 and a bulk modulus of 7.5 x 106 psi. The sample tested from Boring P-9 has a Poisson's ratio of 0.21 and a bulk modulus of 7.5 x 106 psi. Resonant column testing was performed on one sample of the Haskell Limestone Member. Results of the tests are presented in USAR Section 2.5.4.2.1.4.1 and accompanying tables. Three-dimensional borehole logging within the Haskell Limestone Member indicated an average compressional wave velocity of 12,100 fps, a shear wave velocity of 6,250 fps, and an elastic modulus of 3.66 x 106 psi. 2.5-101 Rev. 0 WOLF CREEK During water pressure testing, the packer spacing was greater than the thickness of the Haskell Limestone Member; consequently, flows could not be restricted to this unit. Water pressure testing of the Haskell Member in the B-Series borings gave an average permeability of 2.1 x 10-7 cm/sec. At the plant site, the average permeability was 3 x 10-7 cm/sec, and the range was 7.0 x 10-7 to 7.5 x 10-7 cm/sec. 2.5.1.2.2.2.1.1.2.2 Stranger Formation The Stranger Formation is present throughout the project area as a continuous subsurface unit. The complete stratigraphic section of the Stranger Formation was penetrated by numerous borings at the site. The recognized members of the Stranger Formation are, in order of increasing age, the Vinland Shale, Westphalia Limestone, Tonganoxie Sandstone, and the Weston Shale members (Figure 2.5-41). 2.5.1.2.2.2.1.1.2.2.1 Vinland Shale Member The Vinland Shale Member is extremely variable with respect to lithology and thickness throughout the site. This member consists of a greenish gray to dark gray, clayey shale that is thinly laminated to thin bedded, calcareous, slightly carbonaceous, and locally fossiliferous and includes two locally well-developed layers of black shaley coal. It includes the only recognized channel-deposited sequence in the project area (Figure 2.5-43). This channel-deposited material consists of a complex sequence of greenish gray to dark gray shale that is thinly laminated to medium bedded, slightly to very calcareous, locally fossiliferous, slightly carbonaceous, and locally silty. The channel sequence is interbedded with medium gray siltstone that is thin bedded, micaceous and calcareous, and light-gray to medium-gray sandstone. The sandstone is thinly laminated to thick bedded with occasional, contorted bedding; is fine grained, locally well cemented, calcareous, and micaceous; and has occasional dark gray shale partings. The Vinland Shale Member is present throughout the subsurface at the site. The borings taken at the site indicate that the thickness of the member ranges from 1 foot at the southeastern margin at the channel to 72 feet in midchannel (Figure 2.5-43). This member is present at a depth of about 266 feet (Elevation 839) at the plant site. Data from Borings B-2, B-3, B-4, B-5, B-11, B-18, P-9, and P-10 indicate that the current in the channel had locally eroded the Westphalia Member. At these locations, the Vinland Shale Member lies unconformably on the Tonganoxie Sandstone Member.Where channeling has locally removed the Westphalia Limestone Member, the basal facies of the Vinland Shale Member usually contains lenses and layers of light olive-gray, fusulinid limestone that is thin to medium bedded, shaley, and sandy with occasional pebble-sized limestone fragments. 2.5-102 Rev. 0 WOLF CREEK The environment of deposition of the Vinland Shale Member is difficult to determine. The calcareous, channel-deposited shale facies of the Vinland Shale Member with its marine fossils is most probably the result of deposition in submarine channels. This would indicate that a shallow, gently sloping, sea-floor environment predominated during the deposition of the Westphalia Limestone and the Vinland Shale Members. This hypothesis is based on a lateral variation within the channel deposits from a shale facies to the siltstone-sandstone facies. After the infilling of the submarine channels, the sea level rose and the vertical gradation to the shale facies was completed throughout the member. Core recovery in the Vinland Shale Member ranged from 81 to 100 percent with an average of 98 percent. RQD values averaged 67 percent and ranged from 4 to 97 percent.Unconfined compression testing of two samples of the Vinland Shale Member indicated an unconfined compressive strength ranging from 2,170 psi with a modulus of elasticity of 0.428 x 106 psi in Boring P-9 to an unconfined compressive strength of 2,980 psi with a modulus of elasticity of 1.017 x 106psi in Boring B-9. The sample from Boring P-9 had a Poisson's ratio of 0.32 and a bulk modulus of 0.40 x 106 psi. Resonant column testing was performed on one sample of the Vinland Shale Member. Test results are presented in USAR Section 2.5.4.2.1.4.1 and tabulated in accompanying tables. Three-dimensional borehole logging within the Vinland Shale Member gave an average compressional wave velocity of 10,100 fps, a shear wave velocity of 5,220 fps, and an elastic modulus of 2.46 x 106 psi. Wet density tests performed on two Vinland Shale Member samples from Boring P-10 gave a minimum wet density of 151 pcf and a maximum wet density of 153 pcf. Shale density analyses of two samples of the Vinland Shale Member from Boring P-10 provided an average density of 152 pcf. Pressure testing data indicated a relatively low permeablity for the Vinland Shale Member. In water pressure testing of the B-Series borings, an average permeability of 3.0 x 10-6 cm/sec with a range up to 2.2 x 10-5 cm/sec was obtained. At the plant site, the average permeability was 4.0 x 10-7cm/secwith a range of 1.1 x 10-7 to 7.5 x 10-7 cm/sec. 2.5-103 Rev. 0 WOLF CREEK 2.5.1.2.2.2.1.1.2.2.2. Westphalia Limestone Member The Westphalia Limestone Member consists of light gray or light olive-gray, fusulinid limestone that is thin to thick bedded. This member contains numerous limestone pebbles. The composition of the Westphalia is variable and may contain 10 to 30 percent greenish gray shale partings or layers. The environment of deposition of the Westphalia Limestone Member was most probably shallow marine (Reference 7, p. 271). The borings taken at the site indicate that the thickness of the Westphalia Limestone Member ranges from 0 to 13 feet. The Westphalia Limestone Member is not present in the subsurface at the plant site where a thicker section of the Vinland Shale Member occupies this stratigraphic interval (Figure 2.5-44). In the site area, this member is continuous, except where it has been removed during deposition of the Vinland Shale Member. Core recovery in the Westphalia Limestone Member ranged from 98 percent to 100 percent with an average of almost 100 percent. RQD values averaged 75 percent and range from 51 percent to 98 percent. Three-dimensional borehole logging within the Westphalia Limestone Member resulted in an average compressional wave velocity of 13,500 fps, a shear wave velocity of 6,820 fps, and an elastic modulus of 4.43 x 106 psi. Water pressure testing of the B-Series borings gave an average permeability of 4.8 x 10-7 cm/sec with a range up to 3.9 x 10-6 cm/sec. At the plant site, the average permeability was 3.8 x 10-7 cm/sec and ranged up to 4.0 x 10-7 cm/sec.Many borings showed no water loss. 2.5.1.2.2.2.1.1.2.2.3 Tonganoxie Sandstone Member The Tonganoxie Sandstone Member consists of predominately medium dark gray shale that is thinly laminated to thin bedded, locally very clayey, and slightly carbonaceous. The shale is interbedded with light gray sandstone that is laminated to thick bedded, locally crossbedded with distorted bedding, fine to very fine grained, locally calcareous, and silty. This member also contains light gray to medium dark gray, laminated to thick-bedded, micaceous and sandy siltstone. Numerous clayey layers, pale yellowish brown concretions, occasional calcareous sandstone layers and thinly laminated, grayish black carbonaceous shale layers occur locally within the Tonganoxie Member. Highly fractured zones with numerous high- and low-angle fractures, slickensided fractures, and clay-lined fractures occur locally throughout the unit. The 2.5-104 Rev. 0 WOLF CREEK Tonganoxie Sandstone Member consists of an upper facies of sandstone, siltstone, and shale which grades into a lower shaley siltstone facies. The Tonganoxie Sandstone Member does not crop out in the project area but forms a continuous subsurface unit. The borings taken at the site indicated that the thickness of the Tonganoxie Sandstone Member ranges from 42 to 142 feet. The unit is present in the subsurface at the plant site at a depth of about 295 feet (Elevation 810). The environment of deposition of the Tonganoxie Sandstone Member is similar to that of the Ireland Sandstone Member of the Lawrence Formation (Reference 7, p. 310; Reference 324, p. 572; Reference 155, p. 117). Both members represent the initial stages of megacyclothem development. As with the Ireland Sandstone Member, the subaerial channel sands commonly associated with the Tonganoxie Sandstone Member are absent within the project area (USAR Section 2.5.1.2.2.2.1.1.2.1.4). The gradational nature of the contact between the Tonganoxie Sandstone and Weston Shale members indicates that deposition was not interrupted. The sea became shallower and the shoreline advanced closer, which caused coarser detritus to be deposited at the site. The deformational sedimentary structures observed in the Tonganoxie Sandstone Member formed penecontemporaneously with deposition. Saturated, weak sediments of the foreset beds at the delta front were overloaded by newly arrived sediment; subsequently, slumping occurred to establish equilibrium, and sediment disturbance resulted. Core recovery in the Tonganoxie Sandstone Member ranged from 77 to 100 percent with an average of 97 percent. RQD values averaged 67 percent and ranged from 0 to 98 percent. RQD values are greatly reduced in areas that contained numerous clayey layers. Unconfined compression testing of four samples of the Tonganoxie Sandstone Member provided results ranging from an unconfined compressive strength of 1,260 psi with a modulus of elasticity of 0.357 x 106 psi in Boring B-17 at Elevation 881.7 feet to an unconfined compressive strength of 3,130 psi with a modulus of elasticity of 0.968 x 106 psi in Boring B-17 at Elevation 799.9 feet.Resonant column testing was performed on two samples from two B-Series borings.Results of these tests are presented in USAR Section 2.5.4.2.1.4.1 and accompanying tables. 2.5-105 Rev. 0 WOLF CREEK Three-dimensional borehole logging within the Tonganoxie Sandstone Member indicated an average compressional wave velocity of 9,300 fps, a shear wave velocity of 4,850 fps, and an elastic modulus of 2.13 x 106 psi. The three-dimensional logging showed that the compressional wave velocity, shear wave velocity, and elastic modulus increase in the upper, more sandy facies of the Tonganoxie Sandstone Member. Wet density tests performed on three Tonganoxie Sandstone Member samples indicated a minimum wet density of 154 pcf in Boring P-10 and a maximum wet density of 156 pcf in both Borings P-10 and P-9. Pressure testing of the Tonganoxie Sandstone Member was concentrated in the upper, more sandy facies of the unit. Water pressure testing of the B-Series borings gave an average permeability of 2.8 x 10-6 cm/sec with a range up to 3.7 x 10-5 cm/sec. At the plant site, the average permeability was 1.7 x 10-7cm/sec with a range up to 2.1 x 10-7 cm/sec. Many borings had no water loss when tested at an effective pressure equal to overburden pressure. 2.5.1.2.2.2.1.1.2.2.4 Weston Shale Member The Weston Shale Member consists of medium gray to dark gray shale that is thinly laminated, slightly carbonaceous, and, locally, contains plant fossils. Occasional, soft clayey shale layers; carbonaceous shale layers; and pyrite nodules are present throughout the member. Occasional low-angle fractures, low-angle slickensided fractures, and vertical or near-vertical, open fractures occur locally within the unit. The member does not crop out at the site but forms a continuous subsurface unit. The borings taken at the site indicate that the thickness of the Weston Shale Member ranges from 31 to 109 feet. The Weston Shale Member is present in the subsurface at the plant site at a depth of about 370 feet (Elevation 735). According to Wagner, the Weston Shale Member represents the end of the regressive stage of a megacyclothem (Reference 324, p. 588). The Weston Shale Member was deposited in a shallow, near-shore, marine environment similar to that of the Robbins Shale Member of the Lawrence Formation (USAR Section 2.5.1.2.2.2.1.1.2.1.4).Core recovery in the Weston Shale Member ranged from 48 to 100 percent with an average of 95 percent. RQD values averaged 67 percent and range from 0 to 100 percent. RQD values were greatly reduced in areas that contain numerous clayey shale layers. 2.5-106 Rev. 0 WOLF CREEK Unconfined compression testing of one sample of the Weston Shale Member gave an unconfined compressive strength of 1,250 psi with a modulus of elasticity of 0.555 X 106 psi in Boring B-4. Resonant column testing was performed on one sample from Boring B-4. Test results are presented in USAR Section 2.5.4.2.1.4.1 and accompanying tables. Three-dimensional borehole logging within the Weston Shale Member indicated an average compressional wave velocity of 8,550 fps, a shear wave velocity of 4,470 fps, and an elastic modulus of 1.80 x 106 psi. Wet density tests performed on three Weston Shale Member samples provided a minimum wet density of 150 pcf in Boring P-10 and a maximum wet density of 160 pcf in Boring P-9. Water pressure testing of the B-Series borings gave an average permeability of 9.2 x 10-8 cm/sec with a range up to 1.7 x 10-7 cm/sec. Water was not lost in many borings during pressure testing of the Weston Member. 2.5.1.2.2.2.1.2 Missourian Stage The oldest upper Pennsylvanian rocks penetrated by borings in the project area are those of the Missourian Stage. Only the upper part of this stage, the Stanton Limestone of the Lansing Group, was penetrated by the borings. 2.5.1.2.2.2.1.2.1 Lansing Group Rocks of the Lansing Group and the underlying Kansas City Group are similar in Coffey and adjacent counties. The combined thickness of these groups is about 430 feet in Coffey County (Reference 124, p. 161). The Lansing Group is conformable with the underlying Kansas City Group (Reference 174, p. 117). An isopach map indicates that the Lansing Group has a thickness of approximately 75 feet in the site area (Reference 174, p. 119). This group contains, in descending order, the Stanton Limestone, the Vilas Shale, and the Plattsburg Limestone.2.5.1.2.2.2.1.2.1.1 Stanton Limestone The Stanton Limestone Formation contains three limestone members that are separated by two shale members. Northward from Anderson County, directly east of Coffey County, the Stanton Limestone Formation is rather uniform in thickness and character. However, in Anderson County and southward, the formation has many facies variations (Reference 286, p. 33; and 109, p. 45-47). 2.5-107 Rev. 0 WOLF CREEK The Stanton Limestone is present throughout the subsurface in the project area.The three uppermost members were penetrated by borings; these are the South Bend Limestone Member, the Rock Lake Shale Member, and the Stoner Limestone Member. The borings did not extend below the Stoner Limestone Member of the Stanton Limestone Formation; therefore, the Eudora Shale Member, the Captain Creek Limestone Member, and the basal Benedict bed, if present beneath the site, were not penetrated. Information about the characteristics of the deeper units has been obtained from published and unpublished literature and written communications with various sources. Information was also obtained from examination of material on file at Benson Mineral Group, Inc., Independence, Kansas, and the Cornish Oil Well Service, Chanute, Kansas. Core recovery in the Stanton Limestone Formation ranged from 92 to 100 percent with an average of 98 percent. RQD values averaged 89 percent and ranged from 52 to 100 percent. Three-dimensional borehole logging within the Stanton Formation resulted in an average compressional wave velocity of 14,800 fps, a shear wave velocity of 8,060 fps, and an elastic modulus of 6.08 x 106 psi. Water pressure testing of the B-Series borings gave an average permeability of 3.8 x 10-8 cm/sec with a range of 3.6 x 10-8 cm/sec to 3.9 x 10-8 cm/sec. 2.5.1.2.2.2.1.2.1.1.1 South Bend Limestone Member The South Bend Limestone Member was penetrated by 11 borings in the project area. It consists of light gray to medium light gray limestone that is thin to thick bedded, fine grained, and fossiliferous. It is sandy in its basal 0.5 to 1.5 feet and has occasional brownish gray shale partings. Vertical, calcite-healed fractures were commonly encountered in the unit. Boring B-16, taken in the southern part of the area, identified a basal unit of light gray, thin- to medium-bedded, fine-grained, sandy limestone. The South Bend Limestone Member does not crop out within the project area, but forms a continuous subsurface unit. The borings indicated a thickness of 4 to 6 feet in the project area. According to Wagner, the South Bend Limestone Member was deposited in a shallow, clear-water sea where conditions for precipitation of calcium carbonate were apparently near optimum (Reference 324, p. 588). Due to the nearness of the shoreline, fine-grained quartz sands and occasional clayey muds also were deposited. The sand was generally incorporated into the limestone, and the shale formed thin layers upon which carbonate deposition took place. A five-foot section of the South Bend Member exposed in a quarry 2.5-108 Rev. 0 WOLF CREEK west of Altoona in Wilson County, Kansas, appears to represent channel fill that was reworked by a subsequent transgression (Reference 109, p. 35). West of the Elk City Dam in Montgomery County, Kansas, basal oolitic, cross-bedded quartz sandstone appears to represent the beginning of carbonate deposition in a shallow agitated marine environment. Higher units in the South Bend Member record further transgression with deposition in an environment further offshore (Reference 109, p. 40-41). 2.5.1.2.2.2.1.2.1.1.2 Rock Lake Shale Member The Rock Lake Shale Member was penetrated by 11 borings in the project area.It consists of medium dark gray shale that is thinly laminated, calcareous, and sandy. It is interbedded with irregular layers and lenses of light gray, locally sandy, slightly fossiliferous limestone and occasional beds of medium light gray sandstone that is thin to thick bedded, fine to medium grained, and slightly calcareous. Occasional 70-degree to vertical, open fractures are developed locally in the member. The Rock Lake Shale Member forms a continuous subsurface unit throughout the project area. Borings taken in the project area indicate that the thickness of the member ranged from 4 to 15 feet. The member was deposited in a near-shore area covered by a shallow sea where abundant clay and silt were supplied. According to Wagner, local depressions were filled in with lenticular limestone deposits, and thin sandy beds were distributed throughout the area (Reference 324, p. 587). During this time, the sea was continuing its regression; Wagner assigns the Rock Lake Shale Member to a near-shore, argillaceous marine stage (Reference 324, p. 586). The Rock Lake Shale Member is a laterally heterogeneous near shore shale that contains many fossil tracks, trails and burrows, with locally occurring clams. Land plants and brackish water invertebrates were found east of the site near Garnett. In northern Nebraska, however, lithology and fossils in the Rock Lake Member appear to reflect the beginning of the succeeding marine transgression. Heckel interprets this member as the basal transgressive unit of the South Bend cyclothem (Reference 101, p. 40-41). 2.5.1.2.2.2.1.2.1.1.3 Stoner Limestone Member The Stoner Limestone Member was penetrated by seven borings in the project area, although none of them passed completely through the unit. The Stoner Limestone Member consists of very light gray to medium gray limestone that is thin to thick bedded and fine to 2.5-109 Rev. 0 WOLF CREEK medium grained with local pale bluish gray shale partings. Numerous stylolites are present locally as well as occasional fusulinid fossils. The member forms a continuous subsurface unit throughout the project area. The borings taken in the project area indicated that the minimum thickness of the member ranged from 2 to 10 feet. Measurements at outcrops or on core samples indicate that the Stoner Limestone Member is more than 10 feet thick in Wilson and Montgomery counties (Reference 101, p. 29). Wagner (Reference 324, p. 585) describes the environment of deposition of the Stoner Limestone Member as a shallow sea, relatively far from shore, whose depth during sedimentation was first increasing, then decreasing. It represents a normal regressive stage in megacyclothem development. In southeastern Kansas, the upper Stoner Member contains algal mound facies and is also found as channel fill (Reference 101, p. 54-55). Below the Stoner Limestone Member, the Eudora Shale Member and Captain Creek Limestone Member complete the Stanton Limestone. 2.5.1.2.2.2.1.2.1.2 Vilas Shale The Vilas Shale is a sandy, silty, and carbonaceous gray shale that locally contains beds of sandstone and fossiliferous, sandy limestone (Reference 286, p. 33). Heckel interprets the Vilas Shale as the basal transgressive unit of the Stanton cyclothem (Reference 101, p. 40). 2.5.1.2.2.2.1.2.1.3 Plattsburg Limestone The Plattsburg Limestone consists of two limestone members separated by a shale member (Reference 286, p. 32). The upper limestone, the Spring Hill Member, is the regressive limestone of the Plattsburg cyclothem and contains a complex mound facies (Reference 101, p. 36). 2.5.1.2.2.2.1.2.2 Kansas City Group The Kansas City Group conformably underlies the Lansing Group and conformably overlies the Pleasanton Group (Figure 2.5-12). This group contains 12 formations and 27 named members of alternating marine and nonmarine units (Reference 174, p. 125). Lithologically, the Kansas City Group contains interbedded limestones, shales, occasional sandstones, and a few thin coal beds (Reference 286, p. 28-31). 2.5-110 Rev. 0 WOLF CREEK The combined thickness of the Lansing and Kansas City groups in Coffey County is about 430 feet (Reference 124, p. 161). The thickness of the Kansas City Group, therefore, is on the order of 335 to 355 feet in Coffey County. The top of this group is at an approximate depth of 475 feet at the plant site. A structural contour map indicates, based on geophysical well log control, that the base of the Kansas City Group beneath the plant site is at an Elevation of 290 to 300 feet above Mean Sea Level (Reference 270). 2.5.1.2.2.2.1.2.3 Pleasanton Group The Pleasanton Group disconformably overlies the Marmaton Group (Reference 286, p. 27), and because of the irregular surface on which it was deposited, the thickness of the Pleasanton Group in Coffey County ranges from 100 to 150 feet (Reference 124, p. 161). The top of this group is estimated to be at a depth of 810 feet below the plant site (Reference 270). Three formations are recognized in the Pleasanton Group in Kansas. Lithologically, the group consists primarily of shales and sandstones with occasional thin limestone beds (Reference 286, p. 25-27). 2.5.1.2.2.2.1.2.4 Marmaton Group The Marmaton Group disconformably underlies the Pleasanton Group (Reference 174, p. 129). Eight formations within the Marmaton Group are recognized in Kansas (Reference 286, p. 25). Lithologically, the group consists primarily of shales and limestones with occasional, discontinuous sandstone members. In Coffey County, this group ranges in thickness from about 150 to 200 feet (Reference 124, p. 161). The top of this group is estimated to be at a depth of 955 feet below the plant site. 2.5.1.2.2.2.1.2.5 Cherokee Group The Cherokee Group, found between the base of the Marmaton Group (Fort Scott Limestone) and the top of the Mississippian, contains both marine and nonmarine strata. Surface mapping subdivides the group into two formations, the Krebs and the Cabaniss (Reference 286, p. 23). The main lithologies of the Cherokee Group are sandstone and sandy shale with some limestone. The most important coal beds in the state are present in this group (Reference 286, p. 23). The thickness of the Cherokee Group in Coffey County is about 375 feet (Reference 124, p. 161). The top of this group is at an approximate depth of 1,115 feet below the site. 2.5-111 Rev. 0 WOLF CREEK The Cabaniss Formation is principally shale, but contains some sandstone, limestone, and coal. It contains the Weir-Pittsburgh Coal Bed, the most important commercial coal bed in Kansas, which is about 3.6 feet thick. The Weir-Pittsburgh Bed is probably the thickest coal which could occur beneath the site.2.5.1.2.2.2.2 Mississippian System The Mississippian "Lime" is approximately 300 to 350 feet thick in Coffey County. The top of the Mississippian System is at an approximate depth of 1,490 feet below the site. 2.5.1.2.2.2.2.1 Upper Mississippian Series - Meramecian Stage The Upper Mississippian Series in Kansas consists primarily of beds of limestone and dolomite, with interspersed beds of sandstone and shale, and minor amounts of chert (Reference 286, p. 20). In Coffey County, these rocks disconformably underlie the Pennsylvanian Cherokee Group and disconformably overlie Mississippian Osagian age rocks. There are four recognized formations in the Upper Mississippian in eastern Kansas. From youngest to oldest, these formations are the St. Genevieve Limestone, the St. Louis Limestone, the Salem Limestone, and the Warsaw Limestone. The St. Louis Limestone is the youngest Meramecian unit in Coffey County (Reference 255, p. 4-7). The thickness of the Meramecian strata in the area of the site is about 80 feet. 2.5.1.2.2.2.2.2 Lower Mississippian Series - Osagian Stage The lithologies of the Osagian Stage consist of dolomite, limestone, chert, and cherty dolomite. In descending order, two formations that are recognized in Kansas are the Burlington-Keokuk Limestone (undifferentiated) and the Fern Glen Limestone (Reference 286, p. 19). Examination of well logs indicates that the rocks of the Osagian Stage are about 90 feet thick in Coffey County. 2.5.1.2.2.2.2.3 Kinderhookian Stage Rocks of the Kinderhookian Stage are predominantly cherty dolomite with beds of limestone and shale. An angular unconformity separates rocks of the Kinderhookian Stage from overlying Osagian rocks (Reference 286, p. 18). An examination of well logs indicates that the thickness of Kinderhookian strata is about 100 feet. 2.5-112 Rev. 0 WOLF CREEK 2.5.1.2.2.2.3 Undifferentiated Upper Devonian-Lower Mississippian 2.5.1.2.2.2.3.1 Boice Shale The Boice Shale is a light or dark greenish-gray, silty or dolomitic shale with basal beds of red shale or ferruginous oolite. These beds lie disconformably on the Chattanooga Shale (Reference 286, p. 17). The term "Boice" is normally restricted to shales disconformably overlying the Chattanooga Shale. Since there is no evidence for such a disconformity in the Coffey County area, the shale sequence between the Kinderhookian and the Hunton or Viola is considered to be Chattanooga (Reference 295). 2.5.1.2.2.2.3.2 Chattanooga Shale The Chattanooga Shale is a silty, pyritiferrous, dark gray to black shale (Reference 174, p. 139). It overlies limestone, the Hunton or Viola, in the northwest part of Coffey County. Further south and east, the Chattanooga Shale unconformably overlies the Arbuckle Group. In Coffey County, the Chattanooga is approximately 50 feet thick, and the middle part is somewhat sandy (Reference 124, p. 162). The top of this sequence is approximately 1,840 feet below ground surface at the plant site. 2.5.1.2.2.2.4 Undifferentiated Devonian-Silurian-Middle Ordovician 2.5.1.2.2.2.4.1 Hunton Group or Viola Limestone In the northern part of Coffey County, a 50-foot thick, limestone unit is present below the Chattanooga. The unit thins southeastward and is absent in the southern part of the county. This unit is called either the Hunton Group or the Viola Limestone (References 290 and 24, p. 162). Whereas some subsurface maps indicate this limestone may be Viola (Reference 174, p. 145-146), others indicate the Viola is absent beneath the site and, therefore, the limestone would be Hunton (Reference 74, Plate 3). At present, the correct stratigraphic nomenclature of this unit has not been determined. In parts of the state where the units are distinct, the Hunton Group consists of a light gray to buff, fine to medium crystalline dolomite, which is locally vuggy and porous. Chert is also present in various amounts (Reference 174, p. 145).The Viola Limestone consists of gray, buff, and brown, medium to coarsely crystalline dolomite, which is vuggy and contains various amounts of gray, white, opaque, and generally spicular chert (Reference 174, p. 146). This unit is approximately 10 feet thick in the area of the site and lies 1,890 feet below the site. 2.5-113 Rev. 0 WOLF CREEK 2.5.1.2.2.2.4.2 Simpson Group - St. Peter Formation In Coffey County, the Simpson Group ranges from zero to slightly more than 100 feet in thickness and unconformably overlies the Arbuckle Group (Reference 174, p. 147). An abnormally thick sequence of the Simpson Group has been reported in eastern Kansas and is thought to represent filled sinkholes which developed in the underlying Arbuckle rocks (Reference 174, p. 147-149; and 290, Plate 2). The Simpson Group is represented at the site by the St. Peter Formation. In Kansas, the St. Peter Formation consists of three zones: an upper and lower zone of sandstone and a middle zone of green clay shale (Reference 147, p. 10-12). At the site, this formation is believed to be approximately 50 feet thick. The top of this formation lies 1,950 feet below the site. 2.5.1.2.2.2.5 Lower Ordovician - Upper Cambrian 2.5.1.2.2.2.5.1 Arbuckle Group The Arbuckle Group consists of Upper Cambrian and Lower Ordovician deposits and includes the Eminence Dolomite, Gasconade Dolomite, Roubidoux Formation, Jefferson City Dolomite, and Cotter Dolomite (Reference, 286, p. 13). Rock types of the Arbuckle Group consist mainly of white to brown, finely crystalline to cryptocrystalline dolomite with large amounts of various types of chert in its upper parts. Some beds are sandy and contain minor amounts of glauconite and pyrite (Reference 174, p. 150). The average thickness of this group in Coffey County is about 450 to 500 feet (Reference 124, p. 162). The Arbuckle Group is present about 2,000 feet below the site. 2.5.1.2.2.2.5.2 Bonneterre Dolomite The Bonneterre Dolomite represents the lower part of the Upper Cambrian Series.It is a glauconitic, noncherty dolomite that is dark gray to brown in eastern Kansas. It includes sandy and silty dolomite and locally, near the top, dolomitic shale beds (Reference 286, p. 12). In Coffey County, the estimated thickness of the Bonneterre Dolomite is 50 to 100 feet, and it rests unconformably on the underlying beds (Reference 124, p. 162). The top of this formation lies about 2,450 feet below the site. 2.5.1.2.2.2.6 Undifferentiated Upper Cambrian-Precambrian Cole (Reference 45) indicates that the Precambrian surface occurs at a depth of approximately 2,750 feet beneath the site. The lithologic nature of this surface is open to debate since no wells 2.5-114 Rev. 0 WOLF CREEK have been drilled below the Bonneterre Formation in Coffey County. Based on interpretation of geophysical data from a well in Woodson County, 20 miles from the site, coarse-to-medium-grained clastic rocks were encountered at a depth of 2,750 feet. This well was drilled through 140 feet of clastic material before reaching a crystalline granitic basement at a depth of 2,890 feet (Reference 293). This particular well is located on the thinner, southern margin of a postulated belt of undifferentiated clastics, metasediments, igneous and metamorphia rock, and granite wash, which on the basis of well records from surrounding counties appears to thicken toward the site (USAR Sections 2.5.1.1.3.1, 2.5.1.1.4.1). These data support the existence of clastic material between the Bonneterre Dolomite and granitic crystalline basement beneath the site. However, the precise thickness of this clastic material at the site is still open to question. Where the undifferentiated clastics/"granite wash" is overlain by the Lamotte (or Reagan) Sandstone, the basal Cambrian unit in the midcontinent, it is classified as Precambrian in age (Reference 268, p. 9). In Coffey County, where no Lamotte Sandstone is thought to be present, the sedimentary rock unit overlying the igneous and metamorphic rocks is classified as Precambrian to Upper Cambrian. 2.5.1.2.2.2.7 Precambrian Crystalline Complex The exact depth of the Precambrian crystalline complex beneath the site is not known. A recent geologic map of the Precambrian basement does not show the wide band of Precambrian sediments crossing eastern Kansas, but does show several isolated areas containing metasediments (USAR Sections 2.5.1.1.3.1 and 2.5.1.1.4.1; References, 15, and 279, p. 10). Due to the absence of deep wells, this map shows no data for Coffey, Anderson, and Linn counties.However, based on available data from adjacent counties, the Precambrian crystalline complex beneath the site appears to consist of either granitic to quartz monzonitic rock emplaced at medium crustal depths or granitic rock emplaced at shallow crustal depths (References 15; 272, p. 10; and 174, p. 158). The former rock types range in age from 1,750 to 1,450 m.y. and the latter averages 1,380 m.y. (USAR Sections 2.5.1.1.3.1 and 2.5.1.1.4.1). From the total thickness of overlying material in adjacent counties, the estimated depth to the Precambrian crystalline complex is approximately 2,900 to 4,000 feet. 2.5-115 Rev. 0 WOLF CREEK 2.5.1.2.3 Site Geologic History The broad aspects of the geologic history of the site are the same as those described in USAR Section 2.5.1.1.3. More specific details on the environment of deposition of the units at the site are described in USAR Section 2.5.1.2.2, and details of minor structural movements are described in USAR Section 2.5.1.2.4.Earthquake history for the site is described in USAR Section 2.5.2.1, and the effects of prior earthquakes are described in USAR Section 2.5.2.4. 2.5.1.2.4 Site Structural Geology The geologic structure at the site consists of a sequence of sedimentary strata dipping gently to the northwest with minor folds superimposed on this regional trend. Three prominent jointing patterns are present within the project area; one is a northwesterly trending pattern, and the other two trend to the northeast (Figure 2.5-52). These trends are indicated prominently on aerial photographs of the site at many outcrop locations and in excavations mapped during the construction phase of Unit No. 1. No evidence of faulting or shearing had been observed in outcrop or borings during investigation for the PSAR. However, during the construction phase, several shear zones and faults were mapped within the Heumader Shale Member of the Oread Formation and one normal fault was mapped in the Unnamed Member of the Lawrence Formation. These faults are not capable as defined by Appendix A to 10 CFR 100 (see USAR Section 2.5.1.2.4.1). There are no known zones of unrelieved residual stress in the bedrock. The minor folding and jointing of the bedrock at the site are structural features which are considered in design and construction to preclude any adverse effect on the operation of safety-related structures. 2.5.1.2.4.1 Site Faulting Faulting at the site has not been identified in the literature. The results of the PSAR site investigation (field reconnaissance and detailed geological mapping, examination of outcrops, quarries and road cuts, aerial photo interpretation, and examination of cores from the boring programs) did not indicate any offset of beds or cataclastic zones indicative of faulting. During the construction phase of the WCGS, several shear zones (up to approximately one foot wide), shear planes, and faults within the Heumader Shale Member of the Oread Formation have been mapped in the excavations for the power block (south and north slopes of fuel building, east slope of diesel generator building, east slope at reactor building, and north-east slopes of turbine building), 2.5-116 Rev. 0 WOLF CREEK ESWS, circulating water system, main dam, and saddle dam IV. These features have been discussed in previous reports (References 70, 325, 326, 72 and 354). Shear zones, as described in these investigations, consist of closely spaced fractures or a single-fracture plane across which relative movement has occurred, but sense and amount of displacement is unknown. In contrast, faults are fractures across which relative movement has occurred and the sense of relative movement is known. In all cases, displacement is on the order of tenths of a foot or less or is not measurable because marker beds have not been offset. Several faults that have an apparently dominant reverse sense of movement and dip at high to low angles are associated with asymmetric, inclined folds, minor shear planes within the cores of these folds, and bedding plane shears. Orientation of faults and shear zones is varied, but sense of displacement, when known, is consistently reverse (Reference 326, Figures 6-M, 6-U, 8-AA, 8-C, 10-C, 10-F, 12-B, and 12-E; Reference 72, Figures 5-D, 5-E, 6-D, 6-FF, 6-GG, 6-KK, 6-PP, 6-RR, 6-DDD, 6-FFF, 6-HHH, 7-B, and 7-C).

Faulting and folding are generally confined within the upper Heumader Member, but one fault in the cooling lake area offsets the upper Heumader/lower Heumader contact with an apparent reverse sense of displacement (Reference 326, Figure 12-E). This fault does not extend to the keytrench floor (saddle dam IV), and degree of deformation decreases to bedding plane slip within the upper few feet of lower Heumader. Nine mapped faults that offset the upper Heumader/ lower Heumader contact in the original ESWS excavations are either overlain by undisturbed marker beds, soil profiles, or undeformed rock that does not contain distinctive marker beds (Reference 72, Figures 6-GG and 6-AA, Figures 6-KK and 6-CC, Figures 6-PP and 6-W, Figures 6-RR and 6-FF, and Figure 6-DDD, Figure 6-FFF, Figure 6-HHH, and Figures 7-B, 7-C, and 7-D) or underlain by undeformed Plattsmouth Limestone (Reference 72, Figure 7-C). Generally, faults within the upper Heumader are overlain by either undeformed Heumader, undeformed Jackson Park Sandstone, or a gentle rise in the Jackson Park/Heumader contact overlain by undeformed Jackson Park (Reference 70; Reference 325, Figures 3-E, 9-I, 9-Q, 9-V, 9-W, 9-DD, 10-F, 10-G, 10-I, 11-K, and 11-M; and Reference 326, Figures 6-A, 6-C, 6-M, 6-N, 8-H, and 10-A; and 72, Figures 5-E, 5-H, 6-FF, and 6-RR, and 6-HHH).

These data indicate that faulting occurred prior to consolidation of the Heumader and lowermost Jackson Park Members and was penecontemporaneous with deposition of uppermost, lower Heumader, upper Heumader, and lower Jackson Park Sandstone. These deformational features, therefore, are noncapable as defined by Appendix A to 10 CFR 100 (Reference 70, 71 and 72).

2.5-117 Rev. 28 WOLF CREEK The following figures were prepared as index maps for locating, by number, the noncapable deformation features described in this section. - Figure 2.5-62a: Location of Deformation Zones Beyond Plant Area - Heumader Shale Member; - Figure 2.5-62b: Location of Deformation Zones - Power Block - Heumader Shale Member; - Figure 2.5-62c: Location of Deformation Zones - Circulating Water System and Northwest Part of Essential Service Water System - Heumader Shale Member; and - Figure 2.5-62d: Location of Deformation Zones - Southeast Part of Essential Service Water System - Heumader Shale Member. Table 2.5-15a and 2.5-15b identifies these zones of deformation by number, the location of each feature, and the appropriate Dames & Moore report containing detailed geologic maps and descriptions. Several noncapable faults or shear zones that deform geologic units other than the Heumader Shale Member were mapped during the excavation of the main dam foundations. One fault was observed in the east wall of the low-level outlet tunnel excavation and was mapped on a scale of 1 inch to 1 foot (1:12). Deformation is confined to the Unnamed Member of the Lawrence Formation. The fault strikes N5 W and dips 50° to 70° NE. Slickensides rake 80 to the north.Stratigraphic displacement of the Williamsburg Coal Bed and overlying and underlying shales, bedding plane drag, and slickenside rake indicate that movement along the fault was dominantly normal (Reference 326, Figure 10-V; see Reference 72, Figure A-1 for a revised Figure 10-V). Apparent maximum displacement of 0.5 foot occurs near the base of the excavation. The fault branches into two distinct splays approximately 3 feet above the tunnel floor. Displacement was observed to decrease progressively upward along these splays, and displacement and faulting are not observed approximately 0.5 feet above the tunnel floor. Therefore, three observations are relevant: a. No trace of the fault was observed in the floor of the excavation; b. The main fault and its splays terminate within an interval of 5 feet above the Williamsburg Coal; and 2.5-118 Rev. 0 WOLF CREEK c. The fault is overlain by a least 4 feet of apparently undisturbed shale. Movement along this fault appears to have occurred prior to deposition of the uppermost Lawrence Formation and overlying Toronto Limestone. Since this evidence establishes age of deformation as over 280 m. y., there is no known macroseismic activity associated with this feature, and there are no known capable faults with which it can be associated, the fault can be defined as noncapable according to Appendix A to 10 CFR 100. Representatives of both the Kansas Geological Survey and the NRC inspected the fault and concurred with Dames & Moore's conclusion. Deformation affecting the coal seam within the Ireland Sandstone Member of the Lawrence Formation was mapped in the excavation for the service spillway of the main dam. The Ireland Member was exposed in the 3:1 floor of the spillway discharge channel at Station 7+15 and in the east and west excavation slopes between Stations 7+15 and 8+23. The locations of these features are tabulated and shown in plan view in Section 2.5.1.2.4.1. In the service spillway discharge channel, the Ireland Member consisted of laminated, light tan or grey to greenish grey, micaceous, sandy shale or shaley fine sandstone (USAR Section 2.5.1.2.2.2). Small-scale cross beds were well-exposed in the walls, and ripple marks were exposed on bedding plane surfaces in the floor of the excavation. The coal seam within the Ireland Member was approximately 8 inches thick in the spillway excavation. As exposed in the excavation, the seam appeared to be discontinuous at 16 points along the walls and floor (Reference 72, Figures 11-H through 11-L).These features were originally numbered 1 through 17. However, feature No. 12 was later interpreted as an unrelated, depositional thinning of the coal bed and was not investigated further. Feature No. 2 is located on the 3:1 floor at Station 7+15 but was too small to be mapped on the scale of Figure 11-H (Reference 72). It is similar in appearance to the other 15 features. At each point of rupture, the coal bed was broken or separated and the intervening zone had been filled from above or below with Ireland Shale. The shale in most cases was sheared and contained numerous polished, slickensided and curved planes crosscutting one another. Some fragments of coal occurred within the intervening shale. The shale-filled breaks in the coal were irregular in shape and ranged in size from a few inches to nearly a foot in width. A number of the shear zones contained nodules of pyrite a few inches in diameter and at least one shear zone appeared to contain sphalerite. 2.5-119 Rev. 0 WOLF CREEK In some places the coal bed has been slightly bent and tilted on either side of the break giving the appearance of displacement on the order of 1 to 2 inches.A number of the more significant features in the walls were mapped in detail at horizontal and vertical scales of 1 inch = 1 foot (Reference 72, Figures 11-U through 11-Y). A distinctive marker bed consisting of a light tan to light gray, fine grained, calcareous sandstone with patches of grey or light brown fossiliferous limestone occurs at the base of the Amazonia Member, which immediately overlies the Ireland Member. The bed is approximately 0.7 feet thick and occurs in the walls of the service spillway excavation 12 feet above the top of the Ireland Coal seam. The marker bed was traced and carefully examined where it crops out in the 3:1 north slope and on the east and west walls of the excavation. No evidence of shearing or displacement of the marker bed was found. Clay or shale-filled breaks in the sandstone were found at 6 points along the marker bed, 2 on the west wall, 3 on the east wall and 1 on the south-facing 3:1 slope. The zones ranged from 1/2 to 8 inches in width and exhibited some slickensided, polished surfaces in the intervening clay or shale zone. All the slickensides in the shale were oriented in a subvertical direction, but no vertical displacement of the sandstone marker bed was detected (Reference 72, Figure 11-Y). No shearing could be traced downward to the Ireland Coal.Therefore, shearing in the Ireland Member did not affect the overlying Amazonia Limestone Member. No evidence of shearing was present in the nearly flat excavation surface of the spillway floor. This indicates that the deformation of the Ireland Coal was not the result of deep-seated faulting. One linear feature, located near the southern end of the excavation floor between Stations 7+95 and 8+23, is a sand dike (Reference 72, Figure 11-M). The 16 disturbed zones in the Ireland Coal were examined in detail. Evidence of soft-sediment deformation is presented below and indicates that the shales above and below the coal bed were either unconsolidated or semi-consolidated when the deformation took place. The deformation is, therefore, interpreted as having occurred immediately after sedimentation or during early diagenesis. 1. No main central shear can be distinguished in most of the zones of shearing, nor can any shear be traced either upward or downward for any great distance. Only in features No. 13 and No. 14 could a single main shear be distinguished and traced. At these two locations the shears could 2.5-120 Rev. 0 WOLF CREEK be traced only 6 and 8 feet, respectively, above the coal bed. At other locations the shears died out within a shorter vertical distance. The shearing, therefore, appears to be compensatory in nature resulting from dewatering and/or compaction of unconsolidated sediments (Reference 72, Figures 11-J, 11-W, and 11-X). 2. The penecontemporaneous or early diagenetic origin of the deformation is directly or indirectly indicated by a number of observations. Most of these indicate that the Ireland sandy shales either behaved plastically or locally, may have liquified and flowed into gaps in the ruptured Ireland Coal bed. a. Shale (mud) was locally injected between the bedding planes of the coal on either side of shale-filled zone of shearing. The injected shale between the coal layers pinches out away from the central shear zone (Reference 72, Figures 11-U to 11-W). b. Shale in the gaps between segments of the coal bed appears to have flowed into place rather than sheared down or up in the coal bed along shear planes. c. In a gap in the coal bed (feature No. 13), there is a mixing of discernably bedded and nonbedded sandy shale with no shearing or evidence of a break between the two types of sediment. This implies that the materials were introduced into the gap in the coal bed as unconsolidated sediments with a resulting partial destruction of stratification in the shale (Reference 72, Figure 11-W). d. Bedding in the shale locally conforms to the walls of the break or shear zone in the coal. e. The coal seam does not appear to have been shattered, although it is presently very brittle, but rather to have been ruptured, separated and displaced slightly by flowage of the surrounding sediments. 2.5-121 Rev. 0 WOLF CREEK f. Sheared shale found in the gaps in the coal bed does not occur as discrete, broken fragments. The sheared shale shows no fragment outlines and generally shows no stratification. It occasionally exhibits a weakly developed bedding related to the geometry of the walls of the adjacent coal or to the minor shears within the shale. 3. The nature and geometry of the shearing in the shale-filled gaps in the Ireland Coal bed are also indicative of local differential compaction, i.e., shearing of nontectonic origin. a. Many of the slickensided shears intersect, but do not cut across the top or bottom of the coal bed. b. Shears converge at coal breaks but most do not extend across the zone where the gap in the coal occurs. c. Bending of the coal beds is opposite to, rather than consistent with, the apparent direction of movement along the shears that offset the coal. This suggests that rupturing may be due to abnormal pore pressures above, or more likely below, the coal bed. Differential compaction might also cause the same result. d. Vertical displacement of the coal bed on opposite walls of the shear zone is minor and often absent. None of the slickensided fractures indicate horizontal displacement. The slickensides present would tend to indicate relative vertical movement (moderate to high angle dip-slip), however vertical displacement of the coal seam is a maximum of approximately 2 inches. Slickensided shears extend up to the base of the coal bed but do not extend into or across it. e. Although the shale filling the breaks in the coal seam contains many curved, polished, and slickensided surfaces, none of the shears affect the coal. 2.5-122 Rev. 0 WOLF CREEK Shears often extend from the sandy shale above the coal downward into the shale in the coal break or from the sandy shale below upward into the shale between the coal. Very few shears extend all the way from the shale above through to the bottom of the coal seam. All of the shears die out at or near the bottom of the coal seam. None of these shears extend through the coal to the underlying shale. f. Irregularities in the shales overlying the coal, such as folds and steeply dipping bedding planes die out upward in the stratigraphic section. 4. The Williamsburg Coal bed above the basal Amazonia marker bed was found to be unsheared where it crosses the northern (3:1) floor slope of the spillway channel. No evidence of disruption of the Williamsburg Coal was noted during inspection. The conclusions reached after the field studies were completed indicate that the deformation involving the coal seam within the Ireland Member in the Service Spillway excavation was penecontemporaneous or early diagenetic. The field evidence indicates that the Ireland sandy shales were not lithified at the time of deformation and that they may have liquefied and flowed during deformation. The coal was at least partially lithified at the time of deformation as is evidenced by the fact that discrete coal layers within the seam were pried apart and mud was injected between them. This observation implies that the coal was buried deeply enough to have been at least partly indurated. All indications are that the deformation is old, probably Pennsylvanian in age, and not directly related to tectonism. Representatives of both the Kansas Geological Survey and the Water Resources Board of the Kansas State Board of Agriculture inspected the features and also concluded that the structures are related to post-burial compaction while the sediments were in a semi-indurated state. The features were not caused by tectonic activity and are not capable faults as defined by Appendix A to 10 CFR 100. The site is located on the flank of the Bourbon Arch, a pre-upper Lansing feature (Figure 2.5-4, and USAR Section 2.5.1.1.5.1.1.1; Reference 124, p. 64-65). All known faulting within 50 miles of the site is either pre-Pennsylvanian (Fault Nos. 1 and 7, Figure 2.5-16), the result of penecontemporaneous differential compaction of Pennsylvanian deposits (Fault Nos. 5, 8, 9, 10, 11, and 12, Figure 2.5-16), or associated with Cretaceous igneous activity (Fault No. 6, Figure 2.5-16). 2.5-123 Rev. 0 WOLF CREEK At approximately 50 miles to the west, Fault No. 23 (Figure 2.5-16) does not appear on structure contours at the top of the Mississippian and from examination of the west-east Regional Cross Section (Figure 2.5-6) shows no evidence of offset of any strata younger than Mississippian. Fault No. 24, approximately 50 miles west of the site, appear to represent a graben in the Precambrian surface (Figure 2.5-7; Reference 45 ). An inferred fault offsetting the base of the Kansas City Group is in the same area as Faults No. 24 (Figure 2.5-6; Reference 270). This fault, if it exists, is pre-Late Pennsylvanian because it does not appear to offset the top of the overlying Lansing Group (Reference 177). The geological history within 50 miles of the site indicates no post-Pennsylvanian activity which would be associated with faulting.Slickensided fractures are ubiquitous in the Snyderville Shale Member of the Oread Formation where exposed in the Main Dam keytrench excavation (Reference 326, Figure 10-J). These fractures dip at high to low angles, are concave upward, and have diverse orientations. No offset within the Snyderville or at either upper or lower contact has been observed. Slickensided fractures also occur in the basal, medium gray to dark greenish gray, calcareous, clayey shale of the Unnamed Member of the Lawrence Formation. These diversely oriented fractures do not offset contacts with either the underlying Amazonia Limestone Member or overlying Williamsburg Coal Bed.Exposure of the Williamsburg Coal in the low-level outlet tunnel excavation revealed several local gentle folds. These folds may have resulted from movement along fractures in the underlying Unnamed Lawrence or could be the result of differential compaction by overlying sediments. No fractures were observed extending upward from the shale into the core of folds in the overlying coal. In general, the small slickensided fractures with no associated offset, noted in some of the shales at the site (USAR Section 2.5.1.2.2.2.1.1), may have formed during the Ouachita Uplift and may be related to the formation of the regional joint pattern (USAR Section 2.5.1.2.4.3), or may be the result of minor adjustments (differential compaction) along the edge of the Vinland channel. Therefore, these fractures are not related to activity along tectonic structures in the site area. 2.5.1.2.4.2 Site Folding Localized folding occurs in the basal 5 feet of the Jackson Park Sandstone in the northeast corner of the Circulating Water pipeline trench (References 325; 326, Figures 8-LL and 8-LLL). The interlimb area of these folds is generally 5 feet wide. Interlimb angles are variable, and fold geometry can be described as tight 2.5-124 Rev. 0 WOLF CREEK immediately above the Jackson Park/Heumader contact to open or gentle 3 feet above it. Detailed mapping and trenching parallel to the trend of axes indicates that these folds decrease in amplitude and are actually elongated, doubly-plunging domes with a 10-foot, generally east-west trending, hinge line between depressions. Generally, no shearing was observed. All folds had some soft to medium stiff clay and broken sandstone in a relatively damp core zone.In several folds, sandy clay in the core zone fills joints that extend downward into the underlying Heumader Shale. A claylined void occurs in the core zone of one of the mapped folds. The origin of these features is unknown, but may be related to the penecontemporaneous deformation documented above and in previous reports (USAR Section 2.5.1.2.4.1 and References 70, 325 and 326). The presence of folds in the Heumader Shale Member has been documented in previous reports and is discussed above (Section 2.5.1.2.4.1 and Reference 70, 325; and 326). These folds are asymmetric and inclined. Folds and shear zones which occur at the same locations appear to be geometrically and perhaps kinetically related. Folds are usually confined to the upper Heumader with undisturbed shale located above folded bedding (Reference 326, Figures 6-N, 6-V, and 10-A). At several locations, the Jackson Park/Heumader contact is gently arched (Reference 326, Figures 6-A and 6-C). Undisturbed Jackson Park sandstone is often observed above these elevated contact zones (Reference 326, Figures 6-F, 6-T; also see Reference 69 and 325). Lowermost bedding appears to become thin over the arch but thickens adjacent to the arch. These data are compatible with the information presented above (USAR Section 2.5.1.2.4.1) and indicate that deformation occurred during deposition of basal Jackson Park sandstone and prior to lithification. All data observed in the youngest rock units on site indicate that the latest deformation occurred during the Pennsylvanian (over 280 m.y.). There is no known macroseismic activity associated with these zones, and there are no known capable faults with which these can be associated. Faults and shear zones associated with these folds are noncapable as defined by Appendix A to 10 CFR 100. Ductile deformation consisting of small, symmetric, concentric folds occurs within the Heebner and Snyderville Shale Members and within the Williamsburg Coal Bed. Folding in the Heebner and Snyderville is local and occurs immediately above or below reddish-brown, clay-filled joints in the Leavenworth Limestone Member (Reference 326, Figure 10-J). Folding affects only the lowermost Heebner and uppermost Snyderville Members. Both shales appear to have "flowed" into the space formerly occupied by continuous Leavenworth Limestone. Folding, therefore, appears to be related to differential compaction and is nontectonic in nature. 2.5-125 Rev. 0 WOLF CREEK Small, concentric folds occur in the Williamsburg Coal Bed (Reference 326, Figure 10-U). These folds do not appear to be geometrically related to fractures in the underlying shale and do not affect overlying shales of the Unnamed Member of the Lawrence Formation. These folds, therefore, appear to have formed as a result of differential compaction. Figures 2.5-53 through 2.5-57 show structure contour maps on five stratigraphic horizons: Plattsmouth, Leavenworth, Toronto, Haskell, and Stanton Limestone Members. Because the near-surface strata have been explored more extensively in the areas of the plant site and UHS, structure contour maps with greater detail of the Plattsmouth, Leavenworth, and Toronto Limestone Members are presented for those areas (Figures 2.5-58 through 2.5-61). In and near the site (as shown on Figures 2.5-53 through 2.5-61), the sedimentary strata generally strike north-northeast and dip gently to the west-northwest at 20 to 30 feet per mile. This general structural trend of the strata is modified by a plunging anticline-syncline sequence in the central portion of the site. The axes of these folds trend approximately N70E and plunge 30 to 50 feet per mile to the southwest. The presence of these folds was inferred from subsurface data and geologic excavation mapping (Figures 2.5-53 through 2.5-61; References 58 and 326). The three near-surface limestone units, the Plattsmouth, Leavenworth, and Toronto Limestone Members, display similar structural patterns. The structural patterns are best defined in the Plattsmouth and Leavenworth Limestone Members, except in the extreme southern portion of the site where erosion has removed these units from much of the land area. In the vicinity of the plant site, the near-surface beds lie on the nose of a southwesterly plunging anticline.Figure 2.5-59 shows that very small-scale undulations locally modify the anticlinal structure. Structure contours on the deeper limestone units, the Haskell Limestone Member and the Stanton Formation, reflect somewhat simpler structural patterns than the near-surface units (Figures 2.5-56 and 2.5-57). These simpler patterns are largely a result of the low density of data points available for the deeper units. In the vicinity of the plant site and the UHS, the deeper units display a similar anticline-syncline sequence as that of the shallower strata. This structural parallelism indicates that some gentle warping of the beds has occurred at the site since deposition of the Oread Formation. Geologic sections of the site illustrate the near uniformity in thickness of the shallower lithologic units, but also show variations in thickness forthe deeper strata (Figure 2.5-44). An 2.5-126 Rev. 0 WOLF CREEK isopach map of the interval from the base of the Toronto Limestone Member to the top of the Stanton Formation reveals that the Douglas Group thins in the vicinity of the anticline at the plant site (Figure 2.5-62). This thinning suggests that structural movement occurred prior to or contemporaneously with deposition of the Douglas Group. Within the Douglas Group, the Vinland Shale Member shows a significant increase in thickness in the vicinity of Boring B-11 (Figure 2.5-43). The main axis of the thickened Vinland Shale Member trends northeast-southwest across the site at approximately the same orientation as the anticline-syncline fold axes. The thickening of the Vinland Shale Member and absence of the Westphalia Limestone suggests that pre-Haskell stream channeling has removed the Westphalia Member and the upper portion of the Tonganoxie Sandstone Member locally (Figure 2.5-44). The structural deformation at the site is at least in part a result of penecontemporaneous differential compaction of the Pennsylvanian sediments along the edge of the Vinland channel as the small-scale features shown on the structure contour maps (Figures 2.5-56 and 2.5-57) have a close correlation with the Vinland channel. The final movements probably were coincident with the joint formation and occurred as a result of the northwest horizontal compressive forces generated during initial Ouachita Mountain uplift (Reference 268, p. 3-22), slight modification occurring during the Cretaceous in conjunction with forces generated during the Laramide Orogeny. 2.5.1.2.4.3 Site Jointing Jointing at the site is shown on Figure 2.5-52. Three predominant jointing patterns are present in the site area; these joint patterns trend N60° E, N15° E, and N30° W and closely follow the regional joint trends. The age of the joints is possibly post-Early Permian to pre-Early Cretaceous.The joints are considered to have formed as a result of northwesterly horizontal, compressional forces generated by wrench-fault tectonics during the initial Ouachita Mountain uplift (Reference 268, p. 3-22). Joints in the site area are almost always vertical and vary no more than 5 degrees from the vertical. Based upon examination of quarries, outcrops, and roadcuts, joint spacing appears to range from 3 feet to about 50 feet.Examination of the cores indicates that joints are more widely spaced in the subsurface. Joints exposed at the surface range from closed to open as much as 6 inches. The near-surface open joints are usually filled with clay and residual debris. 2.5-127 Rev. 0 WOLF CREEK Numerous joints were observed in excavations and mapped during the construction phase of the WCGS (References 70, 325, 326). The majority of joints are subvertical. In several cases, joints were filled with reddish brown clay.This clay was most frequently observed within joints in limestone that had been subjected to some solution weathering at or near the surface. In addition, joints were observed in the sandstone facies of the Stull Shale, the Jackson Park sandstone facies, the Heumader Shale Member, the Heebner Shale Member, the Unnamed Lawrence Member, and the Ireland Sandstone Member. Many N50E joints in the Heebner were filled with fine-grained calcite, and many of these joints did not propagate upward into the overlying Plattsmouth Limestone (Reference 71, Figure 10-D). The presence of joints in the Main Dam foundation necessitated excavation of cutoff trenches between Station 8+00 and 18+00, Station 36+07 and 47+70, and Station 85+50 and 105+10 (Figure 2.5-29; Reference 326, Figure 9). Many joints and shear planes were highlighted by a yellowish brown stain indicating that ground-water movement and oxidation had occurred along these planes. Ground water was observed seeping into excavations at several locations. In most cases, either the foundation or a keytrench excavation extended below the point of seepage. At depths below 10 to 20 feet, the joints seen in cores are tight and almost always closed. Examination of cores indicated that the few open joints located in the subsurface had a maximum measured open width of about 1/8 inch. Keytrench wall mapping supports the conclusion drawn from the examination of cores that fracture frequency within most units at the site decreases with thickness of overburden. The streams in the area of the site appear to be at least partially controlled by jointing with the control being most apparent where streams are located on competent units such as the limestones. Small-scale slumping of limestone blocks resulting from erosion of the underlying shales along stream banks probably is accentuated due to jointing. Slope failure along joints in the upper Heumader was documented in the interim reports on excavation mapping (References 325 and 326). During the construction phase, slumping on parts of excavation slopes was noted in the power block, circulating water pipeline, main dam and saddle dam IV excavations (Reference 326, Figures 8-F, 10-C, 12-B and 12-D). These localized slope failures generally occurred along shear planes or joints that strike parallel to the slope and dip toward the excavation. 2.5-128 Rev. 0 WOLF CREEK Slope failure was also observed on the east side of Wolf Creek Valley where the Main Dam excavation crosses the buried bedrock valley of Wolf Creek. A mudslide occurred after a period of extensive rain and after the slope toe had been removed during excavation of alluvium that filled the buried valley.Slide debris was removed by excavation equipment. Tertiary to Quaternary stream erosion and downhill slumping of jointed Toronto Limestone was documented by excavation of a supplementary exploratory trench in the Main Dam Foundation at Station 77+50 (Reference 326, Figure 10-0 for location). This trench was excavated in order to determine why large blocks of Toronto Limestone appeared to be in stratigraphic contact with the Unnamed Member of the Lawrence Formation at elevations ranging from 1,046.3 feet to 1,011.0 feet although an excavated, in situ contact was clearly visible at an excavation bench located at approximately Elevation 1,052 from Stations 79+00 to 78+00. Exposures in the trench showed that the Unnamed Lawrence Member and Williamsburg Coal Bed are not faulted (Reference 326, Figure 10-00). Blocks of Toronto Limestone were observed in the trench wall in a surficial matrix of yellow-brown, silty clay to greenish gray clay overlying bedrock. These large blocks of Toronto Limestone have apparently been eroded from the very steep, eastern bank of the ancestral Wolf Creek, moved downslope by the nontectonic, geomorphic process of mass wasting, and subsequently been buried by alluvium.A geologic map of the north wall and preliminary borings document the presence of this former main channel of Wolf Creek (Reference 326, Figure 10-N; Reference 58). 2.5.1.2.5 Site Engineering Geology 2.5.1.2.5.1 Evidence of Prior Earthquakes The site has been exposed to the effects of at least 17 humanly perceptible earthquakes since 1800; the closest recorded earthquake to the site was the 1903 Intensity II event near Baldwin, Kansas, 40 miles northeast of the site. USAR Section 2.5.2.3 describes the estimated effects of major historical earthquakes at the site; USAR Section 2.5.2.1 outlines the earthquake history of the site area. There is no physical evidence of landslides, subsidence, ground breakage or offset of beds or any other such feature which would be caused by an earthquake occurring near the site. There have also been no historically recorded tremors in the area that could be related to earthquakes occurring within 40 miles of the site. 2.5-129 Rev. 0 WOLF CREEK 2.5.1.2.5.2 Deformational Zones The information presented in USAR Sections 2.5.1.2.2 and 2.5.1.2.4 delineates zones of deformation investigated during construction of the WCGS. No major zones of structural weakness composed of crushed or disturbed materials have been found. Minor deformational zones containing highly weathered, locally distorted clay are near-surface phenomena which grade with depth to weathered, distorted shale. Weathered, clayey material in these shear zones was removed from the foundation excavation and mapped on excavation walls prior to construction (Reference 70 and 325). The largest scale deformational features noted during the site investigation were the anticline and synclines described in USAR Section 2.5.1.2.4.2. Small-scale shear zones, faults, and folds are described in USAR Sections 2.5.1.2.4.1, and USAR Section 2.5.1.2.4.2. The distorted sandstone bedding noted throughout the Ireland Sandstone and Tonganoxie Sandstone members is probably penecontemporaneous with deposition.According to Weimer, "These deformed layers are believed to result mainly from gravity-induced slumping and sliding on oversteepened depositional slopes associated with the delta progradation process, aided by movement of clays which developed high pore pressures" (Reference 189, p. 76). The slickensided fractures noted in several of the shale beds probably resulted from differential compaction of the Pennsylvanian deposits along the edges of the Vinland channels (USAR Section 2.5.1.2.2.2, and 2.5.2.4.1). The only other feature noted during the site investigation that may be related to deformation was the joints described in USAR Section 2.5.1.2.4.3. 2.5.1.2.5.3 Solution and Weathering Features In eastern Kansas, known solution features are confined to areas containing thick outcrops of water soluble rock, local reef build-up of carbonates, faulting of carbonates, or stream channel diversion (USAR Section 2.5.1.1.5.4.1.1). As none of these conditions are present at the site, the possibility of instability due to solutioning is considered minimal. In addition, the relatively low permeabilities of the limestone, the overlying soil units, and interbedded shales apparently precluded the development of major karst features. John Redmond Reservoir, which has been in operation since 1963, is the closest large body of water to the Wolf Creek lake. The site geology has been examined and found to have a similar geologic setting to that of the cooling lake site.However, the 2.5-130 Rev. 10 WOLF CREEK John Redmond Reservoir site lies down dip from Wolf Creek and is underlain by slightly higher stratigraphic units. The Clay Creek Limestone and Jackson Park Shale Members of the Kanwaka Shale Formation are the two main stratigraphic units exposed at the surface near the spillway at John Redmond Dam. The Jackson Park Shale Member is composed of alternating beds of limestone and shale in this area. The two main limestone units cropping out at the cooling lake site are the Plattsmouth Limestone and Toronto Limestone Members of the underlying Oread Limestone Formation. No evidence of solutioning of the limestone units in the vicinity of the spillway at John Redmond Reservoir was noted during field investigations.Reference 327 has stated that Foundations and Materials Section personnel observed no indications of any large-volume solutioning of limestone in the vicinity of John Redmond Reservoir. Two types of features were found during the site explorations and excavation mapping which can be attributed specifically to limestone weathering or solutioning. One type of feature, irregular elongated hollows (karren), are formed by the concentration of solution activity along lines of weakness such as joints. Another type of feature is a group of non-linear hollows that curve in an irregular manner and are not associated with joints. This latter pattern may have been caused by organism trails or burrows prior to lithification.Trail or burrow fillings may have been preferentially dissolved. Within the site area, karren separated by rounded divides have been noted in areas where the Plattsmouth and Toronto Limestone Members are exposed as the surficial bedrock units and in the main dam keytrench where the Plattsmouth and Toronto occur at or near ground surface. The curved solution features not associated with joints have been mapped in portions of the ultimate heat sink dam foundation approximately between Stations -0+50 and 1+00 at approximately Elevation 1062.8 to 1062.4 (Reference 72, Figures 8MM, 8DD, and 8EE). Linear solution features (karren) occur approximately between Stations 10+08 and 14+15 at approximately Elevation 1065.6 to 1069.2 (Reference 72, Figures 8U through 8BB and 800 through 8TT). In both areas the Plattsmouth Limestone had been covered by clayey soils prior to excavation (Reference 72, Figures 8B, 8G, 8E, 8F, and 8J). Linear solution grooves have also been mapped in portions of the excavation surface of the ultimate heat sink pond between Station AM (Elevation 1077.5) and Station BC (Elevation 1066.7) where the Plattsmouth Limestone had been covered by slightly weathered Heumader Shale (Reference 72, Figures 9I through 9L). As noted in the preliminary site investigation and during construction, this feature is generally 2.5-131 Rev. 0 WOLF CREEK not found in areas where the Plattsmouth and/or the Toronto are overlain by other stratigraphic units (Reference 326). Typically, karren at the site have rounded divides between the grooves that are spaced from one to several feet apart. The grooves are usually about an inch wide at the surface of the limestone outcrop. However, they narrow quickly with depth and disappear within several feet of the surface. As observed and mapped in the main dam keytrench, solution activity in the Plattsmouth and Toronto Limestones occurred at joint intersections and along existing joints and resulted in widening those joints. These joints are presently filled with reddish brown clay. Erosion by ancestral Wolf Creek has formed a valley that is floored by successively lower stratigraphic units ranging from the Plattsmouth Limestone Member at higher elevations to the Lawrence Formation at lower elevations (Figure 2.5-22). Mapping in the main dam keytrench, transverse to Wolf Creek valley, indicates that solution activity along joints has occurred in the Plattsmouth and Toronto Limestone Members where those units had occurred as the uppermost bedrock unit. This solution activity did not affect overlying or underlying shales or the shale layer within the plattsmouth limestone.Solution activity did not occur at locations where the Plattsmouth and Toronto limestones are covered by the Heumader and Snyderville shales, respectively.This fact is documented in geologic maps of the main dam keytrench walls (Reference 326, Figure 10J, Sta. 37+06 to Sta. 38+00; Reference 72, Figure 11A, Sta. 42+00 to Sta. 43+50) Many of the features shown on the two figures referred to above represent solution activity which had occurred along joint intersections and along individual joint surfaces. Blocks of sound limestone between joints which are shown on these figures were plucked away from the keytrench wall during blasting and excavation giving the impression of wide solution features where sound rock had actually occurred between clay-filled fractures.Coring and pressure testing data obtained during the main dam foundation investigation had indicated that the Plattsmouth and Toronto limestones have relatively low permeabilities below the upper weathered zone and where overlain by the Heumader and Snyderville Shales. (For example see Reference 60, Figures A-2-8, A-2-9, A-2-33, and A-2-36 for borings D-14, D-18, D-40 and D-43, respectively). No solution features were observed in the main dam keytrench from Sta. 8+00 to Sta. 18+00 (Reference 326, Figure 10D). Subsurface investigations and excavation surface mapping indicate that solution features do not occur throughout the 2.5-132 Rev. 0 WOLF CREEK Plattsmouth and Toronto limestones, but occur along near-surface joints at locations where overlying rock units have been removed by stream erosion in Wolf Creek valley. As observed and mapped in the ultimate heat sink dam foundation between Stations -0+50 and 1+00, the irregular, non-linear solution features occur in areas where the Plattsmouth Limestone Member was overlain by 5 to 8 feet of topsoil, silty clay, clay, and extremely to moderately weathered Heumader shale (Reference 72, walls on Figures 8B and 8G, floors on Figures 8M, 8DD, 8EE, and 8FF. Widths of clay-filled fractures are noted on each figure). Most of the features in this area appear similar to those shown to scale on the detail inset on Figure 8M (Reference 72). These curving, irregular features differ from the linear karren observed elsewhere and do not appear to be associated with fractures. None of the curved solution features were continuous across the UHS dam foundation. Clay-filled joints, apparently widened by solution activity, are rare but occur at approximately Station 0+35, 70'R of centerline; Station 0+38, 60'L of centerline; and Station 1+00, 83'L of centerline. Both the curving irregular features and the joints discussed above were mapped on excavation surfaces ranging in elevation from approximately 1062.8 to 1062.1.No solution features were observed on the foundation surface at approximately 1061.0 to 1060.4 (i.e., south and east of the excavation ledge) (Reference 72, Figures 8N, 8M, 8EE, and 8FF). This observation, coupled with hand excavation of several of the clay-filled solution features and joints, indicates that these features range up to almost 1 foot in depth. These data indicate that both solution features along joints and the irregular features are restricted to the uppermost 1-foot of rock and implies that the occurrence of the curving irregular features is lithologically controlled. Solution features in the Plattsmouth Limestone at the UHS dam between Station 1+00 and approximately Stations 2+55 to 3+00 (i.e., below WCGS elevation 1061) are rare and appear to be joint controlled (Reference 72, Figures 8N, 80, and 8GG). Solution activity appears to have widened many joints occurring between Stations 10+08 and 14+15 at the southeast end of the ultimate heat sink dam (Reference 72, Figures 8W through 8BB and 8OO through 8TT). The excavation surfaces which contain these clay-filled joints range in elevation from 1964.4 to 1969.2 and had been overlain, prior to excavation, by 4 to 8 feet of silty clay and extremely weathered limestone (Reference 72, Figures 8E, 8F, and 8J).The clay-filled joints in this area range up to almost 2 feet in width. Hand excavation and observations across ledges indicate that these features are generally on the order of up to 1 foot in depth. Only two clay-filled fractures in the Plattsmouth Limestone are continuous across the dam foundation and 2.5-133 Rev. 0 WOLF CREEK cross the centerline at approximately Stations 11+15 and 11+20 (elevation approximately 1066.5 - Reference 72, Figures 8X and 8PP). Other portions of the Plattsmouth foundation surface between Stations 8+60 and 10+08 contain either tight joints or more widely spaced, clay-filled joints up to 1 inch wide (Reference 72, Figures 8U, 8V, 8MM, and 8NN). Mapping of abutment surfaces containing the base of the Plattsmouth Limestone indicates that solution features are not through-going to the top of the underlying Heebner Shale (Reference 72, Figure 8ZZ; also see Figure 8WW). Logs for Borings HS-15 and HS-1 indicate that no joints and solution features were observed within the Plattsmouth limestone beneath the northwestern portion of the foundation and that both core recovery and RQD were high (Figures 2.5-30, 2.5-36o, and 2.5-36a). No solution features were observed in borings HS-3, HS-5, HS-16, and HS-31 where the Plattsmouth limestone occurs as the upper bedrock unit in the southeastern portion of the ultimate heat sink dam foundation (Figures 2.5-36c, -36e, -36p, and -36gg). No water losses were reported during drilling. The presence of delicate calcite crystals in isolated 0.08 ft. diameter vugs near the base of the Plattsmouth limestone are another indication that solution features do not occur throughout this unit.These data and a cross-section along the UHS dam axis indicate that, as at the main dam, solution features in the Plattsmouth limestone appear to occur only where it is the uppermost bedrock unit in the vicinity of Quaternary stream channels (Figure 2.5-48). Solution features at the southeast end of the ultimate heat sink dam foundation are similar to those at the main dam keytrench in that stratigraphically lower horizons in the Plattsmouth are affected at locations where stream erosion has cut down through the limestone.The irregular, curved solution features and more widely spaced joints in the northern portion of the ultimate heat sink dam foundation differ in that their occurrence is restricted to approximately a 1-foot interval. Some solution pitting and karren were mapped in the ultimate heat sink pond between Stations AI and BC (elevations 1078 to 1066.7, respectively) (Reference 72, Figures 9 and 9H through 9L). Observation across ledges and hand excavation indicate that these features generally range up to 0.5 to 0.6 foot in depth. This general area had been covered by 5.5 to 7.7 feet of topsoil and silty clay prior to excavation. Pressure testing in Borings HS-8 and HS-22 in the vicinity of these features indicated no water take within the Plattsmouth limestone (Figures 2.5-36h and 2.5-36v). Additional pressure testing in borings HS-10, HS-20, HS-24, and HS-29 indicated no water takes within the Plattsmouth limestone in the ultimate heat 2.5-134 Rev. 0 WOLF CREEK sink pond area (Figures 2.5-36j, -36t, -36x, and -36cc). These data and the rock core descriptions indicate the absence of solution features in the Plattsmouth limestone and infer that the three joints described as open in logs for Borings HS-5, HS-20, and HS-22 had been closed or filled prior to drilling (Figures 2.5-36e, -36t, and -36v). In addition to these subsurface data, no solution features were mapped within the Plattsmouth limestone where excavated for the essential service water pipeline corridor within the ultimate heat sink pond (Reference 72, Figures 6III through 6TTT), for the foundation for the essential service water pumphouse (Reference 72, Figures 7A through 7D), or for foundations within the power block (Reference 325, see Figures lA and lB for locations of maps within power block). See USAR Section 2.5.6.6.4 for a discussion of estimated seepage through the foundation rock of the UHS dam. The cooling lake (WCGS-ER(OLS) Sections 3.3 and 3.4) receives water from runoff, precipitation, and make-up water released from John Redmond Reservoir and loses water through seepage, evaporation, and discharge. The results of analyses for a 16-year period indicate (WCGS-ER(OLS) Rev. 3, Section 3.3 and Table 3.3-1) that with one unit operating, an average of 46.9 cfs released from John Redmond Reservoir is pumped into the lake from the Neosho River for make-up and 27.3 cfs comes into the lake from rainfall and runoff. With two units operating, these figures would be 60.9 and 27.3 cfs, respectively. Discharge averages 21.7 cfs with one unit in operation. Discharge would average 20.8 cfs with a second unit in operation. Seepage is assumed to be 3.5 cfs with either one or two units in operation. The remaining water loss occurs through evaporation. (See USAR Sections 2.4.8.2 and 2.4.11.5.) The three most important parameters which effect the potential for solutioning of limestone are the calcium concentration, temperature, and pH of the water.An increase in any one of these parameters will decrease the potential of water to cause limestone solutioning. This is demonstrated in the calcium solubility curves presented on Figure 2.5-63. Under normal operating conditions, the make-up water from John Redmond Reservoir has been estimated to have an average calcium concentration of 89 mg/1 (WCGS-ER(OLS) Section 3.6, and Table 3.6-1). Rainfall and runoff water can be assumed to have a concentration similar to existing water in Wolf Creek, which averaged approximately 48 mg/1 in a 1973 sampling program (Reference 131, Appendix 2.5A, and page 5 of Table 5A-2). Therefore, with one unit operating at 100 percent average annual load factor, the concentration of calcium in the cooling lake water is estimated to be approximately 172 mg/1 on the average. 2.5-135 Rev. 0 WOLF CREEK With two units operating at 88.5 percent annual average load factor, the average calcium concentration of the cooling lake is estimated to be 214 mg/l.These figures represent the average conditions. However, the amount of rainfall, make up, and blowdown varies from year to year. In simulating the period from 1949 to 1964, it was found that the calcium concentrations in the cooling lake would vary from approximately 172 mg/l to approximately 218 mg/l with one unit operating at 100 percent average annual load factor. With two units operating, the concentrations would vary from approximately 214 to 389 mg/l.Based on analysis of the above 16-year period, the seasonal 50 percentile temperature of the cooling lake water with one unit operating at 100 percent average annual load factor has been estimated to vary from a minimum of approximately 2.6C at the plant inlet to a maximum of approximately 43.1C at the plant discharge (WCGS-ER(OLS) Section 3.4 and Table 3.4-2). The pH of the lake water will probably be 7.5 or higher, and is assumed to be that of John Redmond Reservoir, which varied from 7.9 to 8.3 in a 1973 to 1975 sampling program (WCGS-ER(OLS) Table 2.4-11). By plotting the above values of calcium concentration, temperature, and pH on Figure 2.5-63, the cooling lake water is shown to be nearly saturated or saturated with respect to calcium during most operational conditions. Calcium concentration, temperature, and pH were measured four times at John Redmond Reservoir during 1973 (Reference 131, Appendix 2.5A and Table 2.5A-2): CALCIUM CONCENTRATION TEMPERATURE SAMPLING DATE (mg/l) (°C) pH 3/27/73 33 9.2 8.2 6/12/73 67 24.5 8.3 9/11/73 66 23.0 8.1 12/12/73 42 2.2 7.3 Plotting the above data on Figure 2.5-63 indicated that water in John Redmond Reservoir is generally unsaturated with respect to calcium and much below the values expected within the cooling lake. In simplistic terms, the Wolf Creek lake acts as an evaporation basin with either one or two operating units. The calcium concentration, temperature, and pH of the water will always be above the corresponding values of the make-up water being released from John Redmond Reservoir and pumped from the Neosho River. An increase in any one of these three parameters 2.5-136 Rev. 10 WOLF CREEK will decrease the ability of the cooling lake water to dissolve limestone.Therefore, there is less potential for solution activity in the limestone units at the Wolf Creek lake than at John Redmond Reservoir. The cooling lake water is not likely to dissolve limestone outcrops or riprap because the lake water is normally nearly saturated or saturated with respect to calcium. The predicted lack of limestone solution activity at the Wolf Creek lake is further substantiated by the fact that no evidence of large-volume solutioning had been noted at John Redmond Reservoir after 12 years of operation, even though its water is unsaturated with respect to calcium (Reference 327). The ground water in limestone formations, which will be recharged by the cooling lake water, will be at or near saturation levels for calcium. Therefore, the effect of the cooling lake water on the ground-water regime will not create the possibility of development of karst features. The bedrock units at the site have been weathered to depths ranging from 8 to approximately 30 feet below the ground surface. Because the rock units at the site are characterized by very low permeabilities and the water table is near the ground surface, weathering does not extend to greater depths. The type and degree of weathering which affects the bedrock is largely dependent upon lithology. The shale units typically weather more deeply and severely than the limestones. Weathering of the shales results in discoloration and a decrease in rock strength and consistency; the weathering typically is concentrated along subhorizontal bedding planes and joints. The clay minerals comprising the shales commonly are degraded and hydrated by the weathering process, resulting in a "clayey" shale matrix. Generally, the limestone units at the site are weathered along fracture surfaces and along shaley horizontal bedding planes and are a barrier to deeper weathering. Weathering extends completely through a limestone unit only when the unit is very thin or when the unit is exposed at or very near the ground surface. When the limestone is covered by 10 feet or more of shale or soil, weathering does not extend below the base of the limestone unit. Weathering of the limestones results in rock discoloration and loss of strength. Except where the limestone is very near the surface and highly weathered, the loss of strength is minor. These properties were observed during the preliminary site investigation and confirmed while mapping the relatively continuous exposure in the main dam keytrench (Reference 326). 2.5-137 Rev. 10 WOLF CREEK The soil overlying the Jackson Park Shale Member at the plant site extends to a depth of about 6 feet and represents the residual products of the weathering process. Below this soil, the Jackson Park Shale Member, which is comprised mainly of sandstone, extends to approximately Elevation 1,092. This unit has been discolored and is slightly to highly weathered. The Jackson Park Shale Member overlies the Heumader Shale Member, which is slightly to moderately weathered to a depth of approximately 28 feet (Elevation 1,072). The Heumader Shale Member is not discolored or weathered below elevation 1,072 although clayey zones of lower strength may be present locally. In the area of the UHS, the degree of bedrock weathering varies with location and is a reflection of the near-surface lithology. The UHS dam is constructed in an area where the Plattsmouth Limestone Member crops out at the surface.Weathering here does not extend below the base of the Plattsmouth Limestone Member except along the present creek drainage, where the Plattsmouth has been eroded, the Heebner Shale is exposed, and weathering does not extend below the base of the Leavenworth Limestone Member (4 feet below the base of the Plattsmouth Limestone Member). The Heumader Shale Member occurs in the near surface in most of the reservoir area of the UHS. In these areas, the Heumader Shale Member is slightly to highly weathered to a maximum depth of about 20 feet; weathering does not extend below the underlying Plattsmouth Limestone Member.2.5.1.2.5.4 Residual Stresses Evaluation of the geological history of the site indicates that the last major tectonic activity occurred during the initial uplift of the Ouachita Mountains and minor activity occurred during the Cretaceous with uplift of the Rocky Mountains. During the Cretaceous, minor igneous activity occurred in eastern Kansas and is associated with the Silver City Dome and Rose Dome in Wilson County and similar features in Riley County. The site is located on the flank of the Bourbon Arch, a structure formed prior to deposition of the Upper Lansing Group. There is no evidence of any tectonic activity within 36 miles of the site. Faulting along minor deformational zones, mapped during the construction phase, occurred during Pennsylvanian time and is discussed further in USAR Section 2.5.1.2.4.1. The site has never been exposed to glaciation; therefore, no residual stresses related to ice loading are present.Examination of excavation surfaces, cores, quarries, roadcuts, and outcrops would indicate that some force has been dissipated through jointing, faulting, and folding. Examination of the quarries indicated no evidence of rock burst, spalling, or other features which would be associated with unrelieved residual stresses. The seismic history of the site vicinity also indicates 2.5-138 Rev. 0 WOLF CREEK no unrelieved residual stresses are present. It is, therefore, concluded that no unrelieved residual stresses are present at the site and that this is not a factor to be considered in design. 2.5.1.2.5.5 Stability of Subsurface Materials The information presented in USAR Sections 2.5.1.1.5.4.1 and 2.5.1.1.5.4.3 indicates that no potential instability of surface or subsurface materials exists at the site due to regional warping or the development of karst features. The subsurface soils at the site do not consist of materials subject to liquefaction or thixotropy; therefore, liquefaction and thixotropy present no hazards to the site area. In their natural state, some of the soils and shales have a slight potential for swelling (USAR Section 2.5.1.2.2.1.4). When placed under a low confining pressure (600 psf or more), the soils have a negligible swelling potential (USAR Section 2.5.6.2.5.1). The swelling potential of the shales increases with depth and is probably related to the release of its natural confining pressure. The swelling potential of any near-surface shale is very low to negligible (USAR Section 2.5.6.2.5.2.3). Some of the shale members, mainly the Snyderville and Unnamed Lawrence Shale Members, are characterized by very low slaking durabilities (USAR Section 2.5.6.2.5.2.2). These two shales lie below excavation depth of most Category I structures and did not present a problem during construction. The Snyderville Member was exposed in the foundation excavation for the UHS dam.The shale units present at excavation depths are the Heumader Shale and the Heebner Shale Members. The Heebner Shale Member has a high slaking durability, and the Heumader Shale Member has a low to medium slaking durability. Requirements for protecting this member depended on its position in each excavation and on the length of time it was exposed during construction.Protective measures are discussed in USAR Sections 2.5.4 and 2.5.5. The Heumader Shale Member is distinguished from other shales in the Category I Area (Figure 2.5-23) by its stratigraphic position, being overlain by overburden or by the Jackson Park Member and underlain by the Plattsmouth Limestone Member (USAR Section 2.5.1.2.2.2.1). 2.5.1.2.5.6 Effects of Man's Activities The Avon Field (5.5 miles southeast of the plant site), the Lake Shore-Thompson-Pierett Complex (approximately 7.0 miles west of the plant site), and the Ottumwa Field (approximately 7.0 miles 2.5-139 Rev. 0 WOLF CREEK northwest of the site) are the closest oil fields to the site. These fields are located on small anticlinal structures that do not extend into the site (see USAR Section 2.5.1.1.5.4.2). All mineral rights are controlled by the Licensees, and no drilling is permitted within the property boundaries, which are shown on Figure 2.1-2. In addition, no subsidence in eastern Kansas has been reported due to the removal of oil, gas, or water, and no uplift has occurred due to repressurization and secondary recovery processes (Table 2.5-15; Reference 311 and 290). Therefore, instability due to removal of oil or gas is not considered to be a factor in design or safe operation of the plant. No economic coal resources occur in the site area. There has been and will be no mining within the site; therefore, instability due to the removal of coal is not a factor to be considered in plant design (USAR Section 2.5.1.1.5.4.2). There is no other anticipated activity of man which could cause instability of surficial or subsurface materials; therefore, instability due to man's activities is not a factor to consider in design. 2.5.1.2.6 Site Ground Water A detailed discussion of the regional and local ground-water environment is given in USAR Section 2.4.13. The ground-water investigation methods used at the site are discussed in USAR Section 2.5.4.3.2. The techniques used in determining ground-water conditions were water pressure testing, monitoring of piezometers, and field permeameter testing. Figures 2.4-54, 2.4-55, and 2.4-61 show the locations of the piezometers installed in the borings. Tables 2.4-32 and 2.4-33 list the holes in which piezometers were installed, the depth and geologic unit in which they were installed, and the piezometric readings taken between July 1973 and April 1979.Fifty piezometers were installed in the B-Series borings, 19 in the P-Series borings, and 15 in the HS-Series borings. The results of the pressure testing are presented on the boring logs and in Table 2.4-34. The results of additonal pressure testing are presented in reports on geotechnical investigations of the cooling lake area, main dam, and saddle dam foundations (Reference 62, 60 and 66). Water levels in dug wells and water table wells installed during 1973 indicate that the ground-water table closely follows the topography (Figure 2.4-50). In the site area, the water table generally slopes to the south toward Wolf Creek. At the plant site, the water table ranges from 2 to 10 feet below the ground surface. The soil and weathered bedrock zone act as an unconfined, nonhomogeneous aquifer yielding up to about 5 gpm per 2.5-140 Rev. 0 WOLF CREEK well. Beneath the weathered bedrock and between relatively impermeable shales, water occurs under semi-confined conditions in some of the formations, principally the Toronto Limestone Member, Ireland Sandstone, and Tonganoxie Sandstone Members. The low permeability values as shown in Table 2.4-38 indicated seepage into excavations below the weathered rock zone would be minor. Collector ditches and sump pumps were generally sufficient to keep excavations dry during construction. A detailed discussion of the dewatering system and design bases for subsurface hydrostatic loadings is presented in USAR Section 2.4.13.5. 2.5.2 VIBRATORY GROUND MOTION A discussion and an evaluation of the seismic and tectonic characteristics of the site and surrounding region are presented in this section. The purpose of this investigation was to develop seismic design criteria for major structures of the Wolf Creek Generating Station (WCGS). Description and results of the field investigations and laboratory testing programs which provided background information for this investigation are presented in USAR Sections 2.5.4.1, 2.5.4.2, and 2.5.4.3. 2.5.2.1 Seismicity The site is located in a seismically stable region of the central United States. No earthquake epicenter has been reported closer than 40 miles to the site, and the nearest shocks have had intensities no greater than Modified Mercalli Intensity (MMI) III (Table 2.5-18). However, there have been earthquakes of MMI VII at distances of about 90 miles from the site. A list of seismic events significant to the site is presented in Table 2.5-19.This table includes all earthquakes within 100 miles of the site, earthquakes of MMI V and greater that have occurred within 200 miles of the site, and all other earthquakes that were felt at the site. The epicenters of these earthquakes are plotted on Figure 2.5-64. Table 2.5-20 lists the earthquakes that were perceptible at the site. The maximum site intensity exceeded MMI IV only during the New Madrid earthquakes of 1811-1812. The closest known earthquake to the site was of MMI II and occurred near Baldwin, Kansas, 40 miles away. Another nearby event occurred 60 miles away near Lawrence, Kansas, and had an intensity of MMI III (Reference 174 and 334). These small events are not known to be related to any recognized geologic structures. 2.5-141 Rev. 0 WOLF CREEK With the exception of earthquakes associated with the Nemaha Anticline, the largest earthquake that has occurred within 100 miles of the site has been assigned an MMI VI. The nearest MMI VI-VII earthquake occurred 140 miles south of the site where the trends of the Nemaha Uplift and Ouachita Mountains intersect (Figure 2.5-64; Reference 334). No major earthquakes relevant to the seismicity of the site have been located by instrumentation. Installation of a microearthquake network by the Kansas Geological Survey began in the spring of 1977. The three-station network was expanded to six stations in the late summer of 1977. Presently, the network system consists of nine permanent stations and three portable seismographs (Reference 272). This network is intended to record the seismicity in Kansas not normally detectable without the aid of instrumentation. Major reliance for historic earthquakes is placed on descriptive reports of the effects of individual earthquakes for purposes of locating the events and assigning a relative damage capability. It should be borne in mind that assigned MMIs describe the effects (on people and structures) of an earthquake at a particular location. By themselves, intensities may or may not be characteristic of the total energy radiated in an earthquake. Individual earthquakes that have occurred in the area and are considered to be relevant to this study for the purpose of either establishing the Safe Shutdown Earthquake (SSE) or illustrating possible tectonic relationships are addressed in the following discussion. The 1867 Manhattan, Kansas Earthquake - The MMI VII, Manhattan, Kansas, earthquake of April 24, 1867, 39.5N, 96.7W (Reference 334), was felt over an area of 300,000 square miles (Reference 85, p. 9). This event was assigned an MMI VII based on reported earthquake effects (Table 2.5-21). The epicentral location is approximately 105 miles northwest of the site (Reference 173).Based on additional accounts for the 1867 event, the Kansas Geological Survey (Reference 85) relocated the April 24, 1867 event to Wamego, Kansas (39.2N,96.3W), which is approximately 75 miles northwest of the site. The MMI at the site based on felt reports was a IV (Table 2.5-25; Figures 2.5-65 and 2.5-67) or a V (Figure 2.5-66). Figures 2.5-65 through 2.5-67 are isoseismal maps for the April 24, 1867 earthquake prepared in Reference 334, 85 and 325, respectively. The isoseismal contours are superimposed on the population figures (by counties) for the eastern portions of the states of Kansas and Nebraska in the year 1867. These figures are based on the U.S. Censuses of 1860 and 1870. The population figures were arrived at using the following formula: 2.5-142 Rev. 0 WOLF CREEK 1867 population = 1860 population [2.5-1] + 7/10 (1870 population - 1860 population) Perhaps the best authority on this earthquake is John D. Parker, late Professor of Natural Science at Lincoln College in Topeka, Kansas. Extensive use has been made of Professor Parker's "Memoranda of the Earthquake of April 24, 1867," (Reference 335) contained in the Kansas Collection of the Kenneth Spencer Research Library in Lawrence, in drawing up the isoseismal map shown on Figure 2.5-66. Professor Parker was of the opinion that the earthquake occurred somewhere along the Kansas-Colorado border and that two "seismic waves" were propagated eastward from this "epicenter" interfering constructively and destructively across the state of Kansas and eastward into Missouri. He arrived at this conclusion from a study of the arrival times of the "seismic waves" reported from various towns throughout eastern Kansas. This difference in arrival time is readily explained by the fact that in 1867 local clocks could easily be inaccurate by one-half or three-quarters of an hour. Thus, the difference in arrival times is not real. However, latter-day authors still make reference to these "seismic waves" (Reference 42) as ground waves. The maximum MMI caused by this earthquake was at Manhattan and Louisville, Kansas. The epicenter was probably closer to Louisville where a few chimneys were toppled and horses in the streets were reported to have fallen down. The maximum MMI assigned is a VII. An MMI VII has also been assigned to the Manhattan area (Table 2.5-21). This intensity value is based on a report of a possible 2-foot wave observed on the Kansas River. However, it should be noted that no wave was observed on the Big Blue River which empties into the Kansas River at Manhattan. Although walls in the few stone buildings were reportedly cracked, Professor B. F. Mudger of the State Agricultural College in Manhattan stated in a letter to Professor Parker dated April 30, 1867, "a few stone buildings, with weak walls, were fractured but none fell." It is important to note that the walls of these buildings were weak to begin with. From Professor Mudger'sremarks, we are assured that the intensity could not have been MMI VIII in Manhattan. Professor Mudger gives probably the most accurate description of the arrival time of the shock: I call the whole vibration one shock. The time (duration) of the shock was 10 seconds. At the end of about the third second (of the ten) a more heavy and severe motion was felt, which increased, say 2 seconds, and then diminished. 2.5-143 Rev. 0 WOLF CREEK If the 3-second interval is taken to be the S-P time, (the difference in arrival times between shear and primary waves) the epicenter would be placed between 15 and 25 kilometers (corresponding to hypocentral depths of 20 to 0 kilometers) away from Manhattan. The Kansas Geological Survey has assigned an MMI of VII-VIII to the Manhattan event and relocated the epicenter to the Wamego area based on a report of possible liquefaction on the floodplain of the Kansas River three miles south of Wamego and strong shaking at the town of Louisville about 10 miles north of that point (References 272; and 85). It has been well documented in the literature that MMIs are greater on alluvium or earthfill sites than those on hard-rock sites at the same epicentral distance (References 186 and 111). In Reference 98 it was recognized that ground motion from the New Madrid events was amplified by river alluvium. In describing the damage of the December 16, 1811 shock, it gives Drake's description of the damage near Cincinnati: It [the violent earth motion] seems to have been stronger in the valley of the Ohio than in the adjoining uplands. Many families living in the elevated ridges of Kentucky, not more than 20 miles from the river (the Ohio River), slept during the shock; which can not be said, perhaps, of any family in town. It appears that this isolated description of an MMI VIII near Wamego may have resulted from amplification of ground vibration on a floodplain rather than a characteristic response from energy released by the 1867 earthquake. Modified Mercalli Intensities of VII have been assigned to Leavenworth, Kansas; Paola, Kansas; and St. Joseph, Missouri. Reports from these areas included damage to large brick buildings; heavy furniture was moved and damaged; and people found it difficult to stand. (See Table 2.5-21 for complete list of felt reports.) At Lawrence, Kansas, the 1867 earthquake has been assigned a MMI VI intensity (Table 2.5-21). Several stones were thrown down from the top of a wall of the Unitarian Church in Lawrence. However, Professor Frank H. Snow at the State University at Lawrence describes the condition of the church in a letter to Professor Parker dated May 20, 1867: Several stones there (at the church) are so loose and before the 'quake' that a very gentle motion would suf-fice to send them tumbling to the ground. Professor Snow also gives an important insight regarding the press reporting of the effects of the earthquake: 2.5-144 Rev. 0 WOLF CREEK The effects produced were by no means so alarming as a stranger would suppose them to have been, from the accounts of our newspapers. It appears from these press reports that most of the people who fled outdoors were working in second and third story offices. The fall of plaster was also limited to the second and third floors. The only mention of the effects of the earthquake near the site was a report in the Kansas Patriot, Burlington, Kansas, which stated: The earthquake on Wednesday last was felt at Leavenworth and Lawrence, much more sensibly in those places than in the Neosho Valley. The earthquake was also felt in Omaha and Fort Kearney, Nebraska as well as in western Missouri. It was reported from along the Mississippi River at Dubuque, Iowa; St. Louis, Missouri; and possibly Cairo, Illinois. In St. Louis, Missouri, most of the reports described damage in upper stories of buildings. Damage that occurred in Dubuque, Iowa was limited to upper stories since "persons on the ground could hardly detect a shock" (Reference 335). An MMI VI was assigned to Dubuque by DuBois and Wilson (Reference 85, p. 9). This earthquake may have been felt in Chicago. However, contemporary newspaper accounts state that if it had been felt, it was only recognized as an earthquake after the city had learned from press accounts that there had been an earthquake in eastern Kansas. Coffman and von Hake (Reference 42) reported that the earthquake was felt in Kentucky. Although no account of this report was found, it is conceivable that if the earthquake was felt in Cairo, Illinois, it may have been felt in portions of Kentucky across the Ohio River. Reid (Reference 336) states that this earthquake was also felt in parts of Indiana, but this report has not been verified. Parker (Reference 208) reported that the earthquake caused an acre of ground 3 miles south of Carthage, Ohio, to sink 10 feet. In his investigations, Reid (Reference 336) acknowledges this reported occurrence, but states specifically that the earthquake was "not felt in Ohio." The Manhattan, Kansas earthquake of 1867, therefore, appears to have had an epicentral MMI of VII. 2.5-145 Rev. 0 WOLF CREEK The 1877 Eastern Nebraska Earthquakes - The MMI VII eastern Nebraska earthquakes of November 15, 1877 (41 N; 97 W), were felt over an area of 140,000 square miles. The second earthquake was the larger of the two. The earthquake occurred at a distance of more than 200 miles from the site. The site intensity generated by this earthquake was MMI 0-III. A tabulation of felt reports for this earthquake is provided in Table 2.5-22. Figure 2.5-68 shows an isoseismal map (Reference 334) for this earthquake superimposed on the population figures by counties for the eastern portions of the states of Nebraska and Kansas for the year 1877. The population figures were calculated from U.S. Census data using the following formula: 1877 population = 1870 population [2.5-2] + 7/10 (1880 population - 1870 population) There is uncertainty as to the epicenter locations for the two earthquakes.The U.S. Coast and Geodetic Survey (USCGS) has tentatively placed the epicenters at 41 N, 97 W. Because the two earthquakes were only 45 minutes apart and because of uncertainties in local timing of the earthquakes, it is impossible to assess the damage caused by each individual earthquake. Thus, the resulting damage reports are reports of cumulative damages from the two earthquakes. There is some indication that not all towns reporting damage felt both earthquakes; however, this is difficult to determine because of differences in local timing. As shown on Figure 2.5-68, there are several isolated higher intensity areas near Yankton, South Dakota, and North Platte, Nebraska. It has been suggested by Reference 334 that this may be the result of other earthquakes activated by the major earthquake at 12:30 p.m. Tectonically, it is not likely that faulting in one area would produce faulting in areas 100 to 200 miles distant. These isolated higher intensity areas are more likely the result of the soil conditions present along the Missouri and Platte River valleys. Furthermore, most of the reports from these areas concerned effects observed in second and third story offices. This is corroborated by the New York Times statement of November 16, 1877: Distinct earthquake shocks . . . were plainly felt . . . especially in upper stories of brick and stone buildings. The 1906 Manhattan, Kansas Earthquakes - The MMI VII Manhattan, Kansas, earthquake of January 7, 1906 (39.2 N; 96.5 W), was felt over an area of 36,000 square miles. The earthquake occurred 85 miles northwest of the site. The site intensity generated by this 2.5-146 Rev. 0 WOLF CREEK earthquake was MMI I-III (Figure 2.5-69). A tabulation of felt reports for this earthquake is presented in Table 2.5-23. Figures 2.5-69, 2.5-70, and 2.5-71 show isoseismal maps for this earthquake by Reference 334 and 85 and Dames and Moore, respectively. DuBois and Wilson indicate that site intensity may have reached MMI IV. This earthquake is quite similar to the Manhattan (Wamego) earthquake of 1867 in epicentral location and intensity. Both earthquakes were assigned an MMI VII. The main difference between the two earthquakes is the size of the felt area. The felt area of the 1867 earthquake is approximately 8.5 times the felt area of the 1906 earthquake. The 1935 Tecumseh, Nebraska, Earthquake - The MMI VI Tecumseh, Nebraska, earthquake of March 1, 1935, (40.3° N; 96.2° W) was felt over an area of 50,000 square miles. Two earthquakes occurred within 4 minutes of each other about 145 miles north of the site. The site MMI generated by this earthquake was I-III. A tabulation of felt reports for this earthquake is given in Table 2.5-24. Figures 2.5-72, 2.5-73, and 2.5-74 show isoseismal maps of these earthquakes by Reference 334 and 192, and Dames and Moore, respectively. The first earthquake was the larger of the two. Seismographs at St. Louis and Florisant, Missouri; Ann Arbor, Michigan; Chicago, Illinois; and Des Moines, Iowa recorded the earthquakes. Lugn (Reference 157) reported that automatic pressure recorders on a water pipeline between Ashland and Lincoln, Nebraska, indicated pressure variations caused by the earthquakes. Damage was confined to the immediate epicentral area near Tecumseh where chimneys were cracked and a few toppled. Frank Neumann of the USCGS (Reference 192) assigned a maximum intensity of MMI VI to Tecumseh. Lugn (Reference 157) states in the following that the earthquakes were caused by slippage along the Humboldt fault along the east side of the Nemaha Anticline: The writer is in complete agreement with other geologists and seismologists that the tremors were caused by a slight slip along the old fault which delimits the east side of the buried Nemaha mountains. In addition to the earthquakes discussed above, there were three MMI V earthquakes; one MMI IV earthquake; and one MMI I-III earthquake in 1929 in northeastern Kansas. The MMI V earthquakes resulted in the shaking of houses and the rattling of windows and 2.5-147 Rev. 0 WOLF CREEK dishes in Manhattan and Junction City, Kansas (Reference 108). The felt areas associated with these three MMI V earthquakes are 15,000, 8,000, and 1,000 square miles. The MMI V earthquake of October 21 was barely discernible on the seismograph at Lawrence, Kansas. Four earthquakes with epicenters outside the state of Kansas were felt in the site vicinity. The MMI X-XII New Madrid earthquakes of 1811-1812 were felt at the site at the MMI V-VI level. These earthquakes occurred approximately 350 miles from the site (Reference 126 and 245). The MMI VII Bonham, Texas earthquake of 1882 occurred about 240 miles south-southeast of the site. This earthquake was felt over an area of 135,000 square miles. The earthquake rattled windows, moved furniture in Wichita, and rattled windows and caused chandeliers to sway in Leavenworth, Kansas (Reference 183).The site intensity caused by this earthquake is rated as an MMI III- IV.Docekal's (Reference 334) isoseismal map of the earthquake indicates a site intensity of MMI I-III. The Charleston, Missouri, earthquake of 1895 that had an epicentral MMI VIII generated a site intensity of MMI III (Reference 152). The El Reno earthquake of 1952, which had an epicentral MMI VII, was felt over an area estimated to vary from 140,000 to 247,000 square miles. The epicenter was 225 miles from the site. Reports from Iola, Kansas, indicate that an earthquake which occurred in 1952 was felt at the MMI IV level, and Emporia, Kansas, reports indicate that the earthquake was felt at MMI III (Reference 187). The intensity felt at the site was between MMI III and MMI IV levels. The Catoosa, Oklahoma earthquake of October 30, 1956, which was not felt, has been discussed by Brazee and Cloud (Reference 23), the Bulletin of the Seismological Society of America (Reference 26), Docekal (Reference 334), and Coffman and Van Hake (Reference 42). Docekal and Coffman and Von Hake depend heavily on Brazee and Cloud's (Reference 23) assignment of a maximum MMI VII at the Foster Ranch (just west of Catoosa), where an oil well (Coshow No. 2) was shut down by slippage of strata and the sticking of a drilling tool. However, there is no specific MMI rating associated with the oil well phenomena observed at the Foster Ranch. This subsurface slippage may have been due to movement along a fault or to a partial collapse and shearing of rock, which is more likely. In either case, oil field operations in the vicinity could have been the triggering force for the earthquake, since the 2.5-148 Rev. 0 WOLF CREEK epicenter lies toward the eastern margin of very large oil fields near Tulsa.Docekal (Reference 334) has also considered the earthquake to be "man-made" and suggested that even the felt area might have been controlled by location of oil pools (as shown by Reference 154, Figure 6-13, p. 200; and Reference 120). No incidents of fallen chimneys or of significant structural damage at or near the epicenter were reported. At Tulsa, about 10 miles west of Catoosa, one cracked foundation and one instance of cracked plaster (indicating MMI VI effects) occurred. More damage would certainly have been reported in Tulsa (1956 population of 200,000) if this event had been greater than MMI VI. Examination of contemporary newspaper accounts from communities located near the epicenter of the Catoosa earthquake also indicate an intensity of ground motion much smaller than MMI VII. For example, the Tulsa World stated (Reference 259): A search by Tulsa World for something to give photographic evidence was fruitless. Not so much as a broken dish could be located - thus no pictures with this story. Other newspaper accounts substantiated an MMI of VI or less, including the Tulsa Tribune (Reference 258); Sapula Daily Herald (Reference 225); Claremore-Rogers County News (Reference 40a); Muskogee Daily Phoenix (Reference 190); Perry Daily Journal (Reference 210); Claremore Daily Progress (Reference 406); and the Pawhuska Journal Capital (Reference 209). It can be concluded that the maximum value of MMI VII assigned to the 1956 Catoosa earthquake is not confirmed by local felt reports. The maximum intensity observed in the epicentral region or at Tulsa was no greater than MMI VI.The felt area associated with the 1956 earthquake has been estimated as 3,700 square miles by Brazee and Cloud (Reference 23) and 9,500 square miles by Docekal (Reference 334). The average felt area for an MMI VII event in the central United States is over 200,000 square miles (Reference 191). The April 9, 1952 El Reno, Oklahoma earthquake of epicentral MMI VII had a felt area of 140,000 square miles according to Coffman and Von Hake (Reference 42), or 247,000 square miles according to Docekal (Reference 334). A felt area of not more than 9,500 square miles for the 1956 Catoosa earthquake is less than 1/20 of the average felt area expected for an earthquake of MMI VII in the Midwest.The felt area for the Catoosa earthquake corresponds to an intensity of about MMI V (Reference 191). 2.5-149 Rev. 0 WOLF CREEK The magnitude of the 1956 Catoosa earthquake was approximately 4.0 (Reference 337) or 4.2 (Reference 307). This may be contrasted with a magnitude of 5.5 for the El Reno, Oklahoma earthquake of 1952 and the southern Illinois earthquake of November 9, 1968. An event of magnitude 4.0 would normally correspond to an earthquake of epicentral intensity of only MMI V (Reference 191). Therefore, MMI VI is a conservative value for the maximum ground motion associated with the 1956 Catoosa earthquake. As discussed in USAR Section 2.5.2.6, Reference 199 and 112 indicate that the maximum horizontal acceleration associated with an MMI VII event (such as the November 9, 1968 southern Illinois earthquake) is 0.05g. This level of ground motion is consistent with the damage near the epicenter of the 1968 southern Illinois and 1952 El Reno, Oklahoma earthquakes. The damage caused by the 1956 Catoosa earthquake of MMI VI was much less than that caused by either of the above two earthquakes. Reference 181 has assigned a maximum horizontal acceleration of 0.01g to Midwest earthquakes of MMI VI. A low acceleration value for the 1956 Catoosa earthquake is in agreement with the damage reports from the epicentral region. The maximum ground acceleration associated with the SSE is discussed in USAR Section 2.5.2.6. In addition to the earthquakes discussed above, there have been several random events not associated with any known structures (USAR Section 2.5.2.2). Within 100 miles of the site, the largest random events have been two MMI V earthquakes near Kansas City in 1931 and 1961, about 80 and 90 miles, respectively, from the site. Throughout the site region (200-mile radius; more than 120,000 square miles), there have been only nine random events of MMI V. Individual earthquakes that have occurred in the regional area and that are considered relevant for the purpose of either establishing the SSE or for illustrating possible tectonic relationships have been discussed. The following section describes apparent relationships between geologic structures and tectonic activity. 2.5.2.2 Geologic Structures and Tectonic ActivityThe site and the regional area are located within the Central Stable Region tectonic province of North America, an area characterized by sedimentary deposits of Paleozoic and Mesozoic ages that have been folded into broad-scale basins and arches. The site lies within a seismically stable portion of this tectonic province; no major faults are known to exist within 15 miles of the plant site. The near-surface bedrock consists of alternating layers of Pennsylvanian age shales, limestones, sandstones, and a few thin coal seams.Below these near-surface deposits, approx- 2.5-150 Rev. 0 WOLF CREEK imately 2,750 feet of Paleozoic sedimentary strata overlie rocks of Precambrian age. The Precambrian rocks consist of an unknown thickness of sedimentary deposits (which may exceed 1,000 feet) resting on a granitic basement complex. The site area has been submaturely to maturely dissected by the Neosho River and its tributaries to form flat to gently rolling uplands. The tributary valleys contain Quaternary alluvium, which reaches a thickness of approximately 25 feet, and scattered, thin, clayey gravel deposits of Tertiary age cap some of the higher hills. Residual soils, ranging in thickness from 0 to 16 feet, have developed on the Pennsylvanian strata. The lithology, stratigraphy, structure, and geologic history of the site are discussed in detail in USAR Section 2.5.1.2. Figure 2.5-75 shows the tectonic structures within the regional area and the locations of earthquake epicenters. These structural features and their tectonic histories are described in USAR Section 2.5.1.1.5. Smaller-scale folds are shown on Figure 2.5-15, summarized in Tables 2.5-1 through 2.5-6, and described in USAR Section 2.5.1.1.5.1.16. Fault distribution in the regional area is shown on Figures 2.5-16 and 2.5-17, summarized in Tables 2.5-8 through 2.5-13, and described in USAR Section 2.5.1.1.5.2. The most significant tectonic features in the region are the Nemaha Uplift (USAR Section 2.5.1.1.5.1.9) and the Midcontinent Geophysical Anomaly (MGA) (USAR Section 2.5.1.1.5.1.17). The MGA is a northeast trending gravity and magnetic high extending from Central Kansas northeastward to the Lake Superior region. According to King and Zietz (Reference 136), the MGA is a buried belt of mafic rocks approximately 600 miles in length with an average width of 40 miles (Figures 2.5-7 through 2.5-10). The sequence appears to consist mainly of layered basalt flows and gabbros and is most likely fault-bounded and tilted along the margins.The individual units of this feature appear to have been offset by east-west trending transform faults. The Kansas portion appears to have been offset to the east just north of the Kansas border (Figure 2.5-10). On the basis of magnetic, gravity, and geologic data, King and Zeitz (Reference 136) postulated that the midcontinent gravity high formed as a result of a Precambrian rift system. They proposed that the location of the rift was controlled by the driving mechanism of the associated plates and that the location of the transform faults was controlled by a pre-Keweenawan (Precambrian) fracture zone. On the basis of the gravity and magnetic data and the assumed densities, King and 2.5-151 Rev. 0 WOLF CREEK Zietz (Reference 136) proposed a model for the Iowa portion of this feature.Their model shows a fault-bordered basin, containing mafic rocks approximately 5 miles thick, that rests on Precambrian basement rocks. Ocola and Meyer (Reference 202) also examined the midcontinent gravity high (MCGH), also known as the MGA, which they termed the Central North American Rift System (CNARS), on the basis of gravity, seismic, and geophysical data.According to the proposed model (Reference 202, p. 5,185-5,186): Differences arrived principally from two factors: First, the determination density through velocity and, second, the bounds placed on permissible models by travel times. The resulting densities are significantly higher than heretofore proposed. The present data support the occurrence, at the core of the MCGH of rock of velocity 6.9 km/sec (density of 3.08 gm/cm3) imbedded principally in rock of velocity 6.4 km/sec (density of 2.94 gm/cm3). Thus the new models suggest that the MCGH is the result of the juxtaposition of two basic rock types having a density contrast of 0.14 gm/cm3 rather than the density contrast of 0.20 gm/cm3 or greater as previously used for gravity model computation (References 338 and 339), a contrast typical of basic versus acid rock types. The inevitable result of the decreased density contrast is an increase in the anomalous volume (about 40 percent) and the depth to which it extends. This has made previous inferences of a deep, central feeder model (References 340 and 341) more plausible. The model proposed by Ocola and Meyer is characterized by a high density central core with a minimum thickness of 28 kilometers under the Iowa-Nebraska segment of the midcontinent gravity high (Figure 2.5-13). These authors considered that during the Late Precambrian the midcontinent structure was similar to the present Red Sea Rift. King and Zietz (Reference 136) and Ocola and Meyer (Reference 202) concentrated mainly on that part of the MGA north of the Kansas state line. King and Zietz (Reference 136) indicated the extreme southern end of this feature to be located near the 38th parallel in Kansas (Figure 2.5-10). Gravity and magnetic data in Kansas indicate a similar high density core situated in the center of the Kansas section of the midcontinent gravity high west of the axis of the Nemaha Anticline (Figure 2.5-14; Reference 159). Lyons estimated the high density core to be approximately 33 miles in width, but gave no data on 2.5-152 Rev. 0 WOLF CREEK its possible vertical extent. Ocola and Meyer (Reference 202) indicated that echelon segments of the MGA occur in Kansas-Oklahoma and Oklahoma-Texas. Based upon data presented above and in USAR Sections 2.5.1.1.5.1.9, 2.5.1.1.5.1.15, and 2.5.1.1.5.1.17, a cross-section showing the Nemaha Uplift and CNARS is presented on Figure 2.5-76. It appears, therefore, that following the Penokean Orogeny (1,600 to 1,800 m.y.) and following at least the thermal activity associated with the Mazatzal Orogeny (1,250 to 1,450 m.y.), the crystalline basement of Kansas and possible preexisting structural trends were crosscut by the north-northeast trending CNARS (USAR Sections 2.5.1.1.3.1 and 2.5.1.1.4.1; Reference 88, Plate 2). The CNARS may represent the failed arm of a triple junction, the arm along which crustal plate separation did not occur. Since the mafic and associated clastic rocks along or adjacent to the MGA are a subsurface continuation of the Keweenawan Series, rifting occurred approximately 1,100 m.y. (Reference 14). The Nemaha Uplift basement block is located east of and in inferred fault contact with the CNARS (USAR Sections 2.5.1.1.5.1.9 and 2.5.1.1.5.1.17). Initial formation of the Nemaha Uplift appears to have resulted in topographic relief, and this relative elevation of the Nemaha block may be related to formation of the Precambrian rift. Uplift of the Nemaha block and arching of the overlying anticline appear to have occurred in the Early Mississippian Period. Continued uplift of the Nemaha Anticline and initial development of the Abilene Anticline and Irving Syncline occurred during late Mississippian to early Pennsylvanian time. Uplift of the Nemaha and Abilene Anticlines continued in the Late Pennsylvanian through the Permian, resulting in thinning of the Lansing, Shawnee, and Wabaunsee Groups above the crests of those structures. It also caused draping or folding of sediments across the trace of the Humboldt fault zone and faulting along this zone in northern Kansas (USAR Sections 2.5.1.1.5.1.9 and 2.5.1.1.5.1.15). This uplift may have occurred in response to left-lateral wrench faulting in the basement complex along the preexisting Humboldt and parallel fault zones. While the basement blocks were affected by left-lateral wrench faulting, they were also affected by a north-northwest oriented maximum component of horizontal stress resulting from regional compression during the Ouachita Orogeny. This tectonic model, which combines transcurrent faulting and compression (transpression) along the Humboldt and rift system fault zones, would account for uplift of the Nemaha basement block and the formation of many of the major structural elements in the vicinity of the Nemaha Uplift in eastern Kansas and in western Missouri (Figures 2.5-15, 2.5-16, and 2.5-17; Reference 251, p. 2,082, 2,090, 2,099). Structural 2.5-153 Rev. 0 WOLF CREEK elements compatible with such a model would include: N20-25E trending faults and folds (Humboldt fault system, Nemaha and Abilene anticlines); north-south to north-northeast trending faults and fractures (Reference 166); and N50-65Wfaults and fractures (Chesapeake fault system and associated folds in Missouri and normal faults cross-cutting the Nemaha Anticline). The Stockdale Kimberlite and five other ultramafic igneous intrusions occur along the trend of the Abilene Anticline in Riley County. Further north, a carbonatite occurs along the same trend in the subsurface of southern Nebraska (Reference 272, p. 3). The emplacement of these intrusions has been dated as Cretaceous (USAR Section 2.5.1.1.5.1.16). Fractures along which the intrusions were emplaced appear to have opened in response to right-lateral, strike-slip faulting in the basement along a fault or fault zones parallel to the axis of the Abilene Anticline (Reference 38, p. 3-12). This inferred fault or fault zone would be subparallel to the Humboldt fault zone but located toward the west within the CNARS/Salina Basin block (Figure 2.5-76). If inferences concerning sense of movement along the Humboldt or rift system fault zones are correct, this opposite sense of movement, linked with alkalic to ultramafic intrusions, appears to reflect a reorientation of principle stress axes, a different intraplate-tectonic regime, and a possible reactivation of the fault zone separating the CNARS from the Nemaha Uplift block.Sbar and Sykes (Reference 342) used focal mechanisms of earthquakes, stress measurements, and geologic observations to describe contemporary stress patterns in the eastern United States. Their results indicate that maximum principle compressive stress is nearly horizontal and trends east to northeast in the area west of the Appalachian Mountains to central North America (Reference 342, Figure 5, p. 1878). The actual stress distribution may be locally complex, but hydrofracturing measurements have also indicated an east to northeast horizontal component of maximum compressive stress in North America (Reference 116, p. 33-36). The contemporary stress pattern in the site region appears to be quite different from the inferred Late Paleozoic pattern. Faulting along the Humboldt zone or along inferred rift system zones on a scale similar to Late Paleozoic deformation seems highly unlikely. Historical microseismicity (USAR Section 2.5.2.1) and contemporary microearthquake activity might be caused by the east to northeast trending horizontal compressive stress. Not enough data are available, however, to relate contemporary stress patterns with 2.5-154 Rev. 0 WOLF CREEK seismicity in the site region. However, since there is no evidence that seismicity or tectonic activity has originated at or near the site since the Pennsylvanian, it is not likely that the contemporary regional stress system will trigger tectonic activity at the site. An empirical correlation which relates seismicity and the presence of mafic intrusives in silicic or felsic basement rocks has been noted in other areas of the central and south-eastern United States (Reference 171). The density contrast between mafic rocks which are the source of the MGA and the silicic Nemaha Uplift block could be the triggering mechanism for earthquakes along the western margin of the Nemaha (USAR Section 2.5.2.3). The site is located on the northern flank of the Bourbon Arch and the southern flank of the Forest City Basin (Figure 2.5-75). The broad-scale crustal movements which produced these features ended in Late Paleozoic time. Small-scale folds in the site area also formed at this time (USAR Section 2.5.1.2.4.2). Some of these anticlines act as structural traps for oil field reservoirs near the site. The Bourbon Arch was not an active uplift, but a passive hinge line between the Forest City Basin to the north and the Cherokee Basin to the south during their early stages of development (USAR Section 2.5.1.1.5.1.11). Small faults within 20 miles of the site are related to differential compaction and consolidation of the Pennsylvanian sediments rather than regional tectonics (USAR Section 2.5.1.1.5.2).The Chesapeake and parallel fault zones are discussed in USAR Section 2.5.1.1.5.2. The Chesapeake Fault can be dated as pre-Pennsylvanian because it is overlain by undeformed Pennsylvanian sandstone. Other northwest trending faults that crosscut the Humboldt fault zone do not appear on structure contour maps of the Lansing Group and must be pre-Upper Pennsylvanian. Geophysical investigations of the site, which included refraction and surface wave surveys, did not reveal the existence of local tectonic features beneath the site (USAR Section 2.5.4.4). Rayleigh and Love wave dispersion studies in Eastern Kansas and Western Missouri indicate five layers in the crust (Reference 343). These layers correspond to the Pennsylvanian cyclic sequence, the pre-Pennsylvanian/post-Precambrian sediments, the basement granitic complex, a mafic lower zone, and the mantle. The zones were calculated to have the following parameters: 2.5-155 Rev. 0 WOLF CREEK SHEAR WAVE VELOCITY DEPTH LAYER (km/sec) (km) P wave S wavePennsylvanian 2.68 1.55 0 - 0.42 Pre-Pennsylvanian/ Post-Precambrian 5.37 3.10 0.42 - 0.74 Granitic 6.24 3.60 0.74 - 18.6 Mafic 6.67 3.85 18.6 - 37.2 Mantle 8.24 4.76 37.2 - (?) In compiling information for the transcontinental geophysical survey, Warren (Reference 269) lists two deep seismic refraction lines that were run within 200 miles of the site. One line was located approximately 120 miles south of the site, extending southwestward from Chelsea, Oklahoma. The second line extended eastward from St. Joseph, Missouri, approximately 115 miles northeast of the site. The Chelsea, Oklahoma, line indicated the presence of three layers in the crust below the surface veneer of sedimentary, volcanic, and metamorphic rocks. The upper layer, characterized by a compressional wave velocity of 5.9 km/sec, extended to a depth of 14 kilometers, and was presumed to be of granitic composition. From 14 to 30 kilometers was a zone with a velocity of 6.65 km/sec, and from 30 to 51 kilometers was a zone with an average velocity of 7.2 km/sec. The two deeper layers were assumed to be of a more mafic composition than the upper layer. The Mohorovicic discontinuity, the break between the lower crustal layer and the mantle, was at a depth of 51 kilometers; the upper mantle was characterized by a compressional wave velocity of 8.3 km/sec. The St. Joseph line indicated that surficial material with an average velocity of 5.0 km/sec extended to 2 kilometers. The crust contained three velocity layers. They were 6.1 km/sec from 2 to 12 kilometers, 6.0 km/sec from 12 to 24 kilometers, and 6.7 km/sec from 24 to 42 kilometers. The Mohorovicic discontinuity was indicated at a depth of 42 kilometers and the underlying upper mantle had a velocity of 8.0 km/sec (Reference 269). Extrapolation of this information suggests a slight north to south increase in compressional wave velocities and crustal thickness. Extrapolation of the data to the site area places the mantle at a depth of approximately 46 kilometers with a velocity of approximately 8.1 km/sec. Literature searches and personal communications with various geologists and geophysicists confirm that the broad, large-scale features discussed above are the only tectonic features beneath the site. 2.5-156 Rev. 0 WOLF CREEK Other structures within the site region have been described as components of a major feature. Heyl (Reference 115) noted an east-west trending zone of faults and intrusions that approximately follows the 38th parallel from northeastern Virginia to south central Missouri and termed this zone the 38th parallel lineament. The western end of the lineament is the Newburg Fault Zone, which has been described by McCracken (Reference 344). The Newburg Fault Zone is a graben with northwest striking faults, located approximately 215 miles southeast of the plant site. Heyl's postulation of possible westward extension of the lineament is based on the work of Snyder and Gerdemann (Reference 244). The structures included in this westward extension are the following: a. The Hazel Green Volcanics, Laclede County, Missouri (number 48 in Table 2.5-11 and on Figure 2.5-16); b. The Decaturville Structure, Camden County, Missouri (number 47 in Table 2.5-11 and on Figure 2.5-16); c. The Weaubleau Creek Structure, St. Clair and Hickory counties, Missouri (number 18 in Table 2.5-11 and on Figure 2.5-16); and d. The Silver City and Rose domes in Woodson and Wilson counties, Kansas (numbers 46 and 47 in Table 2.5-3 and on Figure 2.5-15). Heyl could find very little evidence in the area of the Silver City and Rose domes to extend the lineament further. He states (pages 890-891): The two domes form the west end of the well-defined part the 38th parallel lineament. West of them, toward the Rocky Mountain front, only a few features that suggest the possible extension of the lineament are known: (1) Three oil and gas domes on or near the line between the Silver City Dome and Wichita, Kansas. In these domes drill holes have penetrated metamorphosed Paleozoic rocks containing vesuvianite, garnet, and other metamorphic materials (Reference 345). (2) Zinc deposits similar to those in the Tri-State which have been found at depth (Reference 346) in the northern edge of the Anadarko Basin in southwestern Kansas. (3) An isolated intrusion of alkalic igneous rocks at Two Buttes Dome in southeastern Colorado, which lies along the extension of the lineament. (4) A west trending fault zone about 120 miles long which has been mapped between the Two Buttes area and the Wet Mountains and the Rampart Range of the 2.5-157 Rev. 0 WOLF CREEK Rocky Mountains (Reference 347). (5) Alkalic intrusions and breccia bodies of Cambrian age, many associated thorium and barium veins (Reference 348), and east trending fault zones in the Wet Mountains. The components of the following portions of the postulated lineament within 200 miles of the site are of the following ages: Hazel Green Volcanics - Cambrian (Reference 244, p. 483); Decaturville structure - post-Silurian (Reference 344); Weaubleau structure - post-Burlington (Mississippian), pre-Cherokee (Pennsylvanian) (Reference 13); Rose Dome and Silver City Dome - 88 to 91 m. y. (Cretaceous) (Reference 285). The structures comprising the 38th parallel lineament, especially its westward extension, are quite old. No seismicity has been associated with this postulated lineament; therefore, the 38th parallel lineament is not considered to be significant to the site. Apparent relationships between geologic structures and tectonics have been discussed above. This section has also included discussions of geologically old tectonic structures in the site vicinity. In addition, this section has included discussions of the structure of the earth's crust in the site area and a discussion of the postulated 38th parallel lineament. The following section addresses the question of correlations of earthquake activity with geologic structures or tectonic provinces. 2.5.2.3 Correlation of Earthquake Activity with Geologic Structures or Tectonic ProvincesAll of the earthquakes in the regional area occur within the Central Stable Region tectonic province. Most of the significant earthquakes within 200 miles of the site can be associated with the Nemaha Uplift or the adjacent CNARS (USAR Sections 2.5.1.1.5.1.9 and 2.5.1.1.5.1.17). Figures 2.5-64 and 2.5-75 indicate that many of these major earthquakes appear to be associated with the west flank of the Nemaha Anticline. A microearthquake network is currently being operated by the Kansas Geological Survey (USAR Section 2.5.2.1). The survey has reported twelve microearthquakes occurring within or near Kansas borders between December 1, 1977 and the end of September 1978 (Reference 272,

p. 42). Several of these minor earthquakes appear to be related to portions of the eastern flank of the Nemaha Anticline and along the discontinuous Humboldt fault zone (Reference 272, Figure 23, p. 42-45; and Reference 249, p. 135). On the basis of this microseismic activity and a reevaluation of felt reports, Reference 85 relocated the epicenter of the 1867 Manhattan earthquake to the vicinity of the trace of Humboldt fault zone 2.5-158 Rev. 0 WOLF CREEK near Wamego, Kansas (USAR Section 2.5.2.1). Two other earthquake epicenters were also relocated to areas along the eastern margin of the Nemaha Anticline (USAR Section 2.5.2.1). The Nemaha Anticline was a tectonically positive feature from the Early Mississippian to the beginning of the Middle Pennsylvanian, with some deformation continuing into Permian time. This structural arch forms a boundary between the Forest City and Cherokee basins on the east and the Sedgwick and Salina basins on the west. There is evidence for westward dipping reverse faults on the eastern flank of the anticline (Reference 174, p. 182, 221-225). Because there has been no observable surface offset, Merriam (Reference 174, p. 221-225) considers earthquakes along the Nemaha Anticline to result from minor adjustments of deep-seated rocks that may have continued since Permian time. The activity may possibly be related to the westward dipping reverse faults. The deep-seated nature of the foci would place the epicenters to the west of the anticline axis, 80 to 120 miles from the site at the nearest approach. Seven of the 17 events felt at the site originated on the Nemaha Anticline.The historic seismic activity has been restricted to only a few spots along the 400-mile length of the structure. This phenomenon of seismic isolation has led Docekal (Reference 334) to examine the geology and tectonics near the Nemaha Anticline and to propose a more complex theory of seismogenesis than that of Merriam (Reference 174). Docekal attributes the seismic activity near the Nemaha Anticline to deep structures and a zone of weakness at the junction of the Precambrian Keweenawan volcanics and Nemaha-type granitic rocks. The model for this type of analysis is similar to that shown on Figures 2.5-14 and 2.5-16. This zone of weakness may be the eastern border fault of the CNARS (Reference 136 and 202). Further discussion of the Nemaha Anticline and the CNARS is presented in USAR Section 2.5.2.2. Both Docekal (Reference 334) and Merriam (Reference 174) agree that the major seismic activity occurs on the west flank of the Nemaha Anticline. Merriam's work is not necessarily inconsistent with that of Docekal, who had access to more recent geophysical and geologic data. According to Docekal, earthquakes are generated at points west of the axis of the Nemaha Anticline where it is closely associated with a Precambrian, Keweenawan mafic volcanic belt. This region of Keweenawan mafics terminates to the south at about latitude 38.5 N, 75 miles from the site (even though the nearest approach of the east flank of the structural anticline is only 50 miles from the site). This 75-mile approach of the seismogenic region of the anticline is further substantiated by Docekal's study of isoseismal maps. Docekal has 2.5-159 Rev. 0 WOLF CREEK related the distribution and elongation of isoseismal lines to basement structure. Using this method, particular basement structures may be identified as they are outlined by isoseismal line "lobes". These maps show a definite break in basement structure at the southern termination of the mafic sequences.Also, as shown on Docekal's Figure 2-A, maximum intensities experienced along the Nemaha Anticline are projected as lobes of MMI V, MMI VI, and MMI VII along the anticline to the north and south. However, at the area nearest the site, the value is only MMI IV. This indicates seismic inactivity of the Nemaha Uplift at its nearest approach to the site. Docekal states the maximum intensity at the site from any earthquake, except the New Madrid earthquakes, was IV. As discussed in USAR Section 2.5.2.2, an empirical correlation appears to relate seismicity in parts of the central and southeastern United States with the presence of mafic intrusions in silicic or felsic basement rocks (Reference 171). This seismicity might be related to stress concentrations around these inclusions due to the different mechanical/physical properties of the mafic intrusives and silicic country rock. In Kansas, stress concentrations or density contrasts may be the triggering mechanism for major seismicity along the fault zone contact between the CNARS and the granitic Nemaha block. In seismically active faults such as the San Andreas in California, lengths of the fault that have neither exhibited earthquakes nor creep are sometimes called "seismicity gaps". Seismicity gaps are regions that have geologic and tectonic environments similar to those of adjacent areas but have not been as active as adjacent areas. Such conditions also occur in some areas in Italy and Iran, where seismic subregions are known to have been alternately active and inactive. Presumably, such regions are postulated to be the loci of future earthquakes that will occur as stress accumulates within these regions. In the case of the Nemaha Uplift and Humboldt fault zone, no continuous seismogenic structure exists. The mafic volcanics and the proposed Precambrian rift terminate to the northwest of the site and do not continue southward at the nearest approach of the Nemaha Anticline to the site (USAR Section 2.5.2.2 and Figures 2.5-7, 2.5-10, 2.5-13, and 2.5-14). It is the zone of weakness at the junction of the mafic volcanics with the uplift that is seismologically significant. A seismicity gap does not exist to the immediate west of the site on the Nemaha Uplift, because that structure does not appear to be, in itself, a seismogenic structure. However, if microseismicity is associated with the Humboldt fault zone, these minor events may not be related to density contrasts in the basement but to deep-seated adjustments 2.5-160 Rev. 0 WOLF CREEK along preexisting structures in response to contemporary regional stress (USAR Section 2.5.2.2). The small number of earthquakes, 13 (Reference 272) cannot be used to interpret an increase in regional stress along the Humboldt fault zone in the vicinity of the site. No microearthquake epicenters have been located within 50 miles of the site (Reference 272, Figure 23), and the Humboldt fault zone has not experienced movement at its closest approach to the site since pre-Middle Pennsylvanian time (USAR Section 2.5.1.1.5.2). Some of the moderate earthquakes used by Docekal to delineate the "midcontinent seismic trend" coincide generally with offsets in the Keweenawan mafic belt, which are either inferred from the MGA or predicted by Reference 349. The possible association of earthquakes with offsets in the rift system may indicate that some of the recent seismicity is controlled spatially by preexisting and crosscutting regional Precambrian fracture zones (Reference 272, p. 4). In northwestern Kansas and southwestern Nebraska, several epicenters of both historic earthquakes and microearthquakes appear to be related to the Central Kansas Uplift and the Chadron and Cambridge Arches in Nebraska. Both micro- and historic seismicity suggest that this structural trend may be experiencing tectonic adjustments (Reference 272). In addition to earthquakes associated with these structures, there have been a few other small events randomly distributed throughout the area that are not easily correlated with known geologic structures. The nearest, major, mapped fault to the site is the Chesapeake Fault, 36 miles to the east-southeast. It has been shown in USAR Section 2.5.1.1.5.2 that the last movement of this fault was in pre-Pennsylvanian time; therefore, this fault is not capable as defined in appendix A to 10 CFR 100. A few earthquakes have occurred with epicenters somewhat near the trend of the fault. However, these were quite small events and random chance would place some events near such a long linear feature. The Bourbon Arch is discussed in USAR Sections 2.5.2.2 and 2.5.1.1.5.1.11.This Arch has not been active since Pennsylvanian time and is not associated with faults. It has no history of seismic activity or earthquake generating potential.The Cherokee and Forest City basins are primarily Paleozoic sedimentary basins.There are no known faults specifically related to these basins. There have been a few randomly occurring earthquakes with epicenters in these basins, mostly of MMI V or less. These may be related to adjustments at the border flexures of the 2.5-161 Rev. 0 WOLF CREEK basins, although this has not been established. These events must be considered as random with maximum intensities of MMI V. The most active seismic region in the central United States is the New Madrid seismic zone (Reference 200, p. 22). This area, which is located in the Mississippi Embayment section of the Gulf Coastal Plain tectonic province, is approximately 350 miles east of the site. No known major faults are located within 15 miles of the site. Minor faulting at the site is confined within the Heumader Shale Member of the Oread Limestone Formation and in the Unnamed Member of the Lawrence Formation. These faults, which appear to be the result of penecontemporaneous deformation, are noncapable as defined in Appendix A to 10 CFR 100 and are discussed further in USAR Section 2.5.1.2.4.1. A fault in Allan County, 15 miles southeast of the site, is a minor offset. Another small offset is reported in Coffey County, 15 miles north of the site. These and other nontectonic structures are discussed in USAR Section 2.5.1.1.5.2 and are not associated with any earthquake activity.This section has discussed apparent correlations of earthquake activity with geologic structures or tectonic provinces. Major earthquake activity appears to be associated with the inferred fault zone that separates the eastern margin of the CNARS from the Nemaha Uplift. Several triggering mechanisms for these major earthquakes have been discussed. There is no seismic gap along the eastern margin of the Nemaha Uplift, because the Humboldt fault zone is not a continuous seismogenic structure. If microseismicity is associated with the Humboldt fault zone, these minor events may be related to deep-seated adjustments along preexisting structures. The following section elaborates upon these data in a discussion of maximum earthquake potential. 2.5.2.4 Maximum Earthquake PotentialThe site is located within the Central Stable Region tectonic province in a gentle basinal area having a low level of seismicity (Figure 2.5-75). Although this concept of the region is adequate when subdividing the general region into a few large divisions, it is an oversimplification and should not be used to evaluate the maximum earthquake potential at a specific site. Seismically, the difference between subregions may be greater than the difference between the Central Stable Region and adjacent large-scale tectonic regions. The Central Stable Region is actually composed of a series of large basins and uplifts that include the Nemaha Uplift to the north and west, the Ouachita Mountain trend to the south, the Ozark Uplift to the east, and a generally featureless area to the northeast that grades into the Mississippi River Arch 2.5-162 Rev. 0 WOLF CREEK and the Illinois Basin. Each of these large features has its own tectonic and seismological history. In evaluating the maximum potential earthquake for the Wolf Creek site, major features that must be considered are generally located within the regional study area (Figure 2.5-75) and include the Nemaha Uplift, the CNARS, the Forest City Basin, and other structures described in USAR Sections 2.5.1.1.5 and 2.5.2.2. The major zone of seismicity in the region surrounding the site is associated with the Nemaha Uplift and adjacent CNARS (USAR Sections 2.5.1.1.5.1.9, 2.5.1.1.5.1.17, 2.5.2.2, and 2.5.2.3). At least four MMI VII earthquakes have been associated with the Nemaha Uplift (USAR Section 2.5.2.3). These seismic events have occurred at different points along the 400-mile length of the anticline and imply that this structure and related faults localize moderate seismic activity. These data suggest that the Nemaha Uplift/CNARS contact is not a seismogenic structure along its entire length, as is discussed in the previous section. Since 1860, and perhaps as early as 1845, the population in Kansas has been such that the effects of an MMI VIII (or larger) earthquake along the Nemaha trend would have been reported. The shocks of an MMI VIII earthquake would also have been felt to some degree in western Missouri. No earthquakes were noted in that area as far back as 1825 to 1830. Thus, the time of recorded earthquake activity of events greater than Intensity VII can reasonably be extended to 155 years. Modified Mercalli Intensity VII earthquakes are also not characteristic of the entire Central Stable Region but only of some of its tectonic subdivisions. The main seismic activity within the site region has been located on the western margin of the Nemaha Uplift along the inferred fault contact with the CNARS (USAR Section 2.5.2.3). The mafic igneous rock within the CNARS presents a marked density contrast when compared to the granitic basement of the Nemaha Uplift (USAR Sections 2.5.2.2 and 2.5.2.3). The contact zone between the mafic and felsic rock types spatially coincides with most of the major seismic activity within the regional area. The other main location of seismic activity is associated with the intersection of the Nemaha trend with the Ouachita trend. Neither of these trends exhibit marked seismic activity by themselves. It is only at this intersection or where the Nemaha Anticline is in close proximity with the CNARS that major seismic activity occurs. According to Docekal (Reference 334), Nemaha-type events are associated either with the intersection of Precambrian fracture zones and the Nemaha Uplift (Tecumseh event, 1935), fracture zones parallel to the Nemaha trend and adjacent to the CNARS (Manhattan, 1867 and 1906), or the intersection of the 2.5-163 Rev. 0 WOLF CREEK Nemaha trend and the Ouachita-Arbuckle tectonic system (El Reno event, 1952).The Ouachita trend is approximately 200 miles from the site at its closest approach. In addition, microseismic activity appears to be associated with the Humboldt fault zone. Based on data presented in USAR Sections 2.5.2.1, 2.5.2.2, 2.5.2.3 and above, an MMI VII event occurring along the western margin of the Nemaha Uplift at its closest approach to the site (75 miles) appears to be reasonable as a maximum probable earthquake. Such an event would be approximated by the Manhattan (Wamego) earthquake of 1867, which produced site intensities of IV (USAR Section 2.5.2.1). A more conservative approach by the Kansas Geological Survey indicates that the site intensity produced by the 1867 earthquake was no more than MMI V (USAR Section 2.5.2.1). Two different estimates for the maximum geologically credible earthquake appear to have approximately equal degrees of conservatism. One approach is to move this maximum probable event of an MMI VII to the nearest approach of the Nemaha Uplift (Humboldt fault zone) to the site, a distance of 50 miles. An alternative approach is to postulate an event larger than ever definitively felt, an MMI VIII earthquake, at the nearest approach of Docekal's seismogenic region, or the inferred fault contact between the Nemaha Uplift and the CNARS, a distance of 75 miles from the site. Attenuation curves have been developed for the four major earthquakes along the Nemaha Uplift: Manhattan (Wamego), 1867 (Figure 2.5-77); Eastern Nebraska, 1877 (Figure 2.5-78); Manhattan, 1906 (Figure 2.5-79); Tecumseh, 1935 (Figure 2.5-80). These earthquakes would be similar to the maximum probable event postulated nearest the site, since they appear to be related to the contact zone between the CNARS and the Nemaha Uplift (USAR Section 2.5.2.3). Although an MMI VIII event can be postulated as geologically possible along Docekal's seismogenic region, it is not probable. As stated in USAR Section 2.5.2.1, a report of an MMI VIII for the 1867 Manhattan event has been attributed to the fact that flood-plain alluvium tends to amplify vibration. If an MMI VIII earthquake were to occur, it might occur only in areas susceptible to such motion (see above), and the resultant energy would not propagate far from the epicenter. This is substantiated by the fact that MMI VII values for most of the Nemaha-type events were propagated only for short distances. The 1906 MMI VII Manhattan earthquake was probably not felt at the site, which is only 85 miles away (Reference 334), although reported site intensities vary from I to IV (USAR Section 2.5.2.1). The attenuation curves referred to above (Figures 2.5-77 through 2.5-80) were constructed along the two semimajor and semiminor axes of the relevant isoseismal maps (Figures 2.5-65 through 2.5- 2.5-164 Rev. 0 WOLF CREEK 74). These curves have been used to determine ground motion at the site for the proposed maximum earthquakes. Therefore, by using the first method for the maximum earthquake (MMI VII at 50 miles), the site intensities based on the attenuations of the four historic shocks above would be V, IV, IV, and IV, respectively. For the second method (MMI VIII at 75 miles), the site intensities would be VI, IV, IV, and V, respectively. The maximum site intensity from either of these two methods is MMI VI. As an exercise, an extremely conservative approach was examined by postulating an MMI VIII event at the nearest approach of any part of the Nemaha Uplift, the Humboldt fault zone 50 miles west of the site. Site intensities would be VI, V, V, V, respectively, based on the attenuation curves shown on Figures 2.5-77 through 2.5-80. With this ultra-conservative postulation, none of the four attenuations exceeds the design ground motion. Several general relationships for the attenuation of MMIs with distance have been derived for earthquakes in the central United States (defined as the region east of the Rocky Mountains and west of the Appalachians). Gupta and Nuttli (Reference 103) derived the following equation describing this type of relationship:I(R) = Io + 3.7 - 0.0011 R - 2.7 log R (for R>20 km) [2.5-3] where:I(R) = The site intensity at a distance of R kilometers from an earthquake of epicentral intensity Io . Gupta (Reference 102) refined the above relationship by measuring the areas occupied by isoseismals of 10 earthquakes in the central United States for various intensities and by applying the least squares method. The following attenuation relationship was obtained: I(R) = Io + 2.35 - 0.00316 R - 1.79 log R (for R>20km) [2.5-4] where:I(R) = The site intensity at a distance of R kilometers from an earthquake of epicentral intensity Io . Nuttli and Herrmann (Reference 200) further modified the relationship for earthquakes in the central United States and obtained the following equation: 2.5-165 Rev. 9 WOLF CREEK Imm = 3.1 + Io - 2.46 log10 R (for R>20 km) [2.5-5] where:IMM = the site intensity at a distance R kilometers from a source with maximum intensity Io . These three attenuation relationships were derived from data measured on alluvium in the Mississippi Embayment. Unconsolidated soils can increase ground displacement, wave amplification, particle velocity, ground acceleration, and, therefore, earthquake intensity. Because the site is located on bedrock, attenuated intensities derived from any of the three relationships are higher than would be experienced. In spite of the amplification effect and assuming a maximum earthquake of epicentral MMI VII at a distance of 50 miles from the site, the calculated site intensity values are V-VI (5.4-5.7). Similarly, if one considers a maximum earthquake of MMI VIII at a distance of 75 miles from the site, the site intensity value becomes VI.

Therefore, the maximum site intensity value as a result of Nemaha-type events is VI, the same as obtained above by other methods. To be even more conservative, a postulated MMI VIII event, 50 miles from the site, would attenuate to a site MMI of VI (6.4), which is also well within the recommended design acceleration for the Safe Shutdown Earthquake (Figure 2.5-81). An MMI of VI would also bracket ground motion from an MMI XI-XII New Madrid-type event (Reference 245) or any local random events (USAR Section 2.5.2.1 and below).The NRC staff, in a separate analysis, considered the possibility that earthquakes with intensities greater than MMI VIII could occur along the Nemaha Uplift (Reference 265, p. 2-20). However, if earthquakes of intensity MMI X had been occurring, some geological evidence of recent movement would have been observed. Since no such evidence is known, the NRC Staff decided that a conservative upper bound for earthquakes associated with the Nemaha Uplift would be less than MMI X. If an earthquake with an MMI less than X were to occur along the Nemaha at its closest approach to the site (50 miles west), the attenuation of this conservative, upper bound earthquake would result in a site intensity no greater than MMI VII (Reference 265, p. 2-20). No studies have been done relating the length of a geological structure such as an anticline or uplift to earthquakes that may be produced along such a structure. There is no continuous fault along the Nemaha Anticline. The faults that exist are discontinuous (USAR Section 2.5.1.1.5). Several authors have found relationships between the length of fault rupture and the 2.5-166 Rev. 0 WOLF CREEK magnitude of the earthquake causing the rupture, but these relationships are approximate at best and have been analyzed only for tectonic areas where surface faulting occurs. They are not accepted for the nonsurface faulting east of the Rocky Mountains. Total fault length has been used by Housner (Reference 117) to determine the maximum earthquake magnitude. Greensfelder (Reference 101) based his analysis on Bonilla (Reference 18) and related maximum earthquake magnitude to the length of fault rupture as a means of determining the energy release. Almost all of the faults used by Bonilla and all of those studied by Housner were strike-slip faults, mostly in California. Wyss (Reference 280) noted that surface rupture length does not necessarily approximate the source geometry of an earthquake and suggested that estimates of expected magnitude based on fault rupture area would be more reliable. At the present time, none of these estimating methods can be applied to the Humboldt fault zone or faults related to the Nemaha Uplift and the CNARS. In summary, all events of MMI VII within 400 to 500 miles of the site can be related to known structures or seismogenic regions. There are no capable structures near the site, and the random events in the study region of the site (200-mile radius) have intensities no greater than V, although a maximum random event of VI based on the 1956 Catoosa event (USAR Section 2.5.2.1) is still within the limits of the design earthquakes. The NRC staff also chose an earthquake similar to the 1956 Catoosa event as the maximum random earthquake.However, the NRC Staff felt that an MMI VII would be an appropriate value for the random earthquake that could occur at the site (Reference 265, p. 2-20). The site is located in a stable portion of Kansas that has experienced only minor earthquake activity of relatively low intensity. The return periods for various horizontal accelerations have been calculated according to the procedures of Cornell (Reference 50) using the attenuation relationships developed by Donovan (Reference 81) and the central U.S. magnitude-intensity relations proposed by Nuttli (Reference 199). This method uses historical earthquakes that are placed into a three-dimensional model of the region. The locations are analyzed by spherical trigonometry and a least-squares fit is made into the Richter frequency-magnitude equation. The return periods for areal and linear seismogenic sources at specified distances from the point of interest are calculated. The recurrence interval is evaluated using both a Bayesian and Poisson probabilistic approach. Earthquakes that have occurred within a 200-mile radius of the site and along the entire length of the Nemaha Anticline and the New Madrid series of 1811-1812 have been used in deriving the following: 2.5-167 Rev. 0 WOLF CREEK HORIZONTAL ACCELERATION RETURN PERIOD (a, as percent gravity) (years)____ 0.02g 100 0.03g 300 0.04g 800 0.05g 2,000 0.075g 20,000 0.10g 4,000,000 The method described above has been used successfully for a variety of problems. For completeness, more conventional recurrence relationships are also provided below. The area between latitudes, 35N and 41N, and longitudes, 92W and 100W, was selected for a study of intensity-recurrence relationships. This region covers epicenters within a distance of at least 200 miles from the site and has an area of about 180,000 square miles (Figure 2.5-75). Nuttli (Reference 199) examined the magnitude-recurrence relation for the central Mississippi River Valley seismic region for the interval 1833 through 1972. As expected, the earthquake data set was found to be incomplete for the interval, 1833 to 1972, especially for the smaller events. Applying a test described by Stepp (Reference 250), the available earthquake data for the past 100 years appear to be complete for events of approximately body wave magnitude, m b, 4.1 (corresponding to maximum intensity of about MMI V) and larger. While examining seismicity of the southeastern United States, Bollinger (Reference 17) arrived at a similar conclusion regarding the reporting of MMI V events over the last 100 years. Therefore, it may be assumed that all or nearly all events of MMI V and greater have also been included in Table 2.5-19 for the interval, 1873 to 1981. The region around the site may be divided into two distinct zones on the basis of their vastly different seismic histories. Most epicenters of large and small earthquakes lie along the Nemaha trend, a zone about 50 to 60 miles in width and located about 50 miles west of the site. Within this area, the seismic zone (called Region I) has an area of about 30,000 square miles. The remaining zone (called Region II) has much lower seismic activity and an area of about 150,000 square miles. The distribution of seismic events of MMI V or larger during the interval, 1873 to 1981, for Regions I and II (as obtained from Table 2.5-19) is as follows: 2.5-168 Rev. 0 WOLF CREEK MAXIMUM MMI NUMBER OF EVENTS NUMBER OF EVENTS (Io ) IN REGION I IN REGION II TOTAL VII 3 2 5 VI - VII 0 1 1 VI 4 l 5 V - VI 2 3 5 V 6 9 15 IV - V 1 l 2 It should be noted that one MMI VII event which was included in Region II is not a random event. This event, the 1882 western Arkansas (Bonham, Texas) event, occurred approximately 240 miles south of the site along the Ouachita trend. It was included for the sake of completeness in Region II, because it was felt at the site and did not occur along the Nemaha trend. With the exception of this event, there have been no events in Region II definitively greater than MMI VI. In order to present a conservative analysis the 1956 Catoosa, Oklahoma earthquake has been included as an MMI VI-VII rather than an MMI VI. A least-squares, straight-line fit has been applied to an equation of the following form: log N = a - b I [2.5-6] where: N = The number of events per year of MMI I and greater; a and b are constants. Therefore, log N = 0.963 - 0.357 I (for Region I) and log N = 1.211 - 0.410 I (for Region II) where: N = The number of events per year within the areas of the two seismic regions. It can be seen from the attenuation curves on Figures 2.5-77 through 2.5-80 that the average MMI within a radius, R, of 10 miles from the epicenter is the same as the epicentral intensity, which can be expressed in the following: 2.5-169 Rev. 0 WOLF CREEK I site = I epicenter for R < 10 miles [2.5-7] It may be noted that this relationship has also been obtained by Cornell and Merz (Reference 51) in their study of northeastern earthquakes near Boston. Considering the number of events, n, per year within a radius of 10 miles, the above equations provide the following results for various MMI values: Io n (Region I) n (Region II) I 4.2 x 10-2 1 3 x 10-2 II 1.9 x 10-2 5.2 x 10-3 III 8.2 x 10-3 2.0 x 10-3 IV 3.6 x 10-3 7.8 x 10-4 V 1.6 x 10-3 3.0 x 10-4 VI 6.9 x 10-4 1.2 x 10-4 VII 3.0 x 10-4 4.6 x 10-5 VIII 1.3 x 10-4 1.8 x 10-5 IX 5.9 x 10-5 6.9 x 10-6These results demonstrate that for very small intensity earthquakes, the number of events per unit area per unit time in the Nemaha Trend region (Region I) is only slightly greater than that in Region II. For large intensity events, Region I shows many more earthquakes than Region II. Therefore, the maximum credible earthquake, or maximum earthquake, to affect the site is postulated as an event considerably larger than that which has occurred historically (10 to 15 times the energy release of the largest historical earthquake). This earthquake may be defined as an MMI VIII event some 75 miles from the site, the nearest approach of Docekal's seismogenic area associated with the location of mafic intrusives in the CNARS or at the probable location of events on Merriam's proposed westward dipping Nemaha reverse faults. Alternately, this earthquake may be defined as an MMI VII event occurring 50 miles from the site at the nearest approach of the Nemaha Uplift (Humboldt fault zone). As discussed in USAR Section 2.5.2.3 and in this section, the whole length of the Nemaha Uplift cannot be considered as a major seismogenic structure. The postulation of an MMI VIII event on the eastern margin of the Nemaha Uplift 50 miles from the site introduces an appropriate degree of conservatism by selection of an intensity that is much greater than any historic event. 2.5-170 Rev. 0 WOLF CREEK An MMI VII event occurring along the western margin of the Nemaha Uplift at its closest approach to the site (75 miles) appears to be reasonable as a maximum probably earthquake. Such an event would be approximated by the Manhattan, Kansas earthquake of 1867 that produced site intensities of IV to V. Two estimates for the maximum geologically credible earthquake appear to be equally conservative. One approach is to postulate an MMI VII event along the Humboldt fault zone, 50 miles from the site. The other approach would postulate an MMI VIII approach along the western margin of the Nemaha Uplift. An even more conservative approach would postulate the occurrence of an MMI VIII event along the Humboldt fault zone. The NRC Staff has determined that a conservative upper bound for earthquakes associated with the Nemaha Uplift would be less than MMI X. Such an earthquake occurring 50 miles from the site would result in a site intensity no greater than MMI VII (Reference 265, p. 2-20). All of these postulated earthquakes would attenuate to site intensities within the recommended design acceleration for the SSE. 2.5.2.5 Seismic Wave Transmission Characteristics of the SiteMaterial properties for each stratum under the site and the methodology used to ascertain these properties are described in the sections listed in the following. Soil properties and their classification are described in USAR Section 2.5.4.1. Bulk densities and shear modulus and its variation with strain levels are described in 2.5.4.2. Seismic compressional and shear velocities are described in USAR Section 2.5.4.4. Water table elevation and its variation for each stratum is described in USAR Section 2.4.13.2. The methodology used to determine these material properties can be found in USAR Section 2.5.4.10. The site lies at least 300 miles from the New Madrid seismotectonic area, defined as Region I by Nuttli (Reference 198, Figure 5). According to Nuttli (Reference 198), a New Madrid-type event will have an epicentral intensity of XI (body wave magnitude (m b ) = 7.2) and will generate site accelerations (for hard rock) of 0.005, 0.021, and 0.012 times the acceleration of gravity for surface waves having periods of 0.33, 1.0, and 3.3 seconds, respectively. Data for sedimentary rocks and conglomerates (Reference 98) suggest that the predominant period of maximum acceleration would be approximately 1.4 seconds for an epicentral distance of 300 miles. Assuming an earthquake of magnitude, mb = 7.5, the maximum site acceleration in rock, based on the studies of Schnabel and Seed (Reference 226) or Seed and others (Reference 231), is less than 0.03g at an epicentral distance of 300 miles. A conservative extrapolation of the mb = 8 attenuation curves.(Reference 231, 2.5-171 Rev. 0 WOLF CREEK Figure 10) employs the following: A = - 0.004 + (14.39/R) [2.5-8] where: A = The site acceleration expressed as a fraction of gravitational acceleration; and R = The epicentral distance in kilometers. This extrapolation results in an acceleration value of less than 0.03g at a distance of 300 miles (483 kilometers). If an amplification factor of 1.5 (USAR Section 2.5.2.6; Reference 198, p. 37) is applied to bring the rock acceleration value to the foundation rock units, then a conservative value of peak acceleration at the site due to a New Madrid-type event may be taken as 0.045g. This acceleration is less than that assumed for the site OBE (USAR Section 2.5.2.7). The effects of low frequency, long duration, ground motion resulting from an occurrence of a New Madrid-type event have been evaluated in order to ensure the conservatism of the SSE response spectra (Figure 2.5-82). This evaluation was performed using the following approach: a. The horizontal accelerograms of two historical earthquakes having a long time duration and with predominant energy in the period range of 1 to 3 seconds were selected. These accelerograms were scaled to a peak acceleration of 0.045g for periods of about 0.01 seconds and then used to compute model response spectra; b. The model response spectra of the scaled accelerograms were compared to the horizontal SSE response spectra (Figure 2.5-82) prepared in accordance with Regulatory Guide 1.60; c. The SSE response spectra (Figure 2.5-82) were compared with the seismic design recommendations for the central United States, provided by Nuttli (Reference 198). 2.5-172 Rev. 0 WOLF CREEK The accelerograms chosen for evaluation were those from the 1949 Olympia, Washington earthquake, and the 1968 Tokachioki, Japan earthquake. They are considered to possess seismic characteristics that approximate the low frequency, long duration site ground motion that would be generated by an earthquake of MMI XI postulated to occur at the western boundary of the New Madrid seismotectonic area about 300 miles from the site. Murphy and Ulrich (Reference 188) have described the record of the Olympia, Washington earthquake recorded at Seattle, about 40 miles from the epicenter.A magnitude mb = 7.1 has been assigned to this event. Its duration in Seattle was less than 70 seconds. The Tokachioki, Japan, earthquake is considered to be even more representative of the postulated New Madrid earthquakes because of its size and long duration This earthquake had a magnitude ms = 7.9 and a duration of about 120 seconds at the recording station (Hachinohe Harbor), 120 miles from the epicenter. The predominant energy was in the period range of 1 to 3 seconds. When scaled to a peak acceleration of 0.045g, the computed model response spectra for both accelerograms fall within the entire SSE response spectra (Figure 2.5-82). Therefore, it is concluded that the effect of earthquake duration and frequency response between 0.3 and 3 Hz have been conservatively incorporated into the site SSE response spectra. Furthermore, the SSE response spectra (Figure 2.5-82) envelopes the ground motion spectra proposed by Nuttli (Reference 198) in the period range of 1 to 3 seconds. A ground motion response spectra curve for Nuttli's Region I at an epicentral distance of 300 miles consists of the following three points: a. At period T = 3.3 seconds, the resultant dis- placement = 2.7 centimeters; b. At period T = 1.0 seconds, the resultant velocity = 3.4 cm/sec; and c. At period T = 0.33.seconds, the resultant accelera- tion = 0.005g. The resultant or total ground motion values proposed by Nuttli can be resolved into horizontal and vertical components as shown by Mohraz, Hall, and Newmark (Reference 182). Since the magnitude of either component is less than the resultant, the comparison of horizontal component spectral values derived from Regulatory Guide 1.60 with those for total ground motion is conservative. 2.5-173 Rev. 0 WOLF CREEK A comparison of the SSE and the scaled response spectra, as well as Nuttli's proposed spectra is shown in Figures 2.5-85a through 2.5-85c. The 1949 Seattle, Washington and 1968 Hachinohe Harbor Tokachioki, Japan earthquake records, used in the scaled response spectra, were obtained from published sources (Washington response spectra from the Reference 33, and Japan response spectra from Reference 207). For each, the envelope of both 5% damped horizontal response spectra components was determined and then scaled to a peak ground acceleration of 0.045 g and drawn using Figure 2.5-82 as a base (Figures 2.5-85a and 2.5-85b). The SSE response spectra envelopes the response spectra for each earthquake. Nuttli's proposed spectra does not exceed the SSE curve of Figure 2.5-82 (Figure 2.5-85c). The above values may be compared with the corresponding values computed in accordance with Regulatory Guide 1.60: a. Displacement = 11.0 centimeters for T equal to or greater than 4 seconds; b. Velocity = 0.6 to 17.1 cm/sec for T = 0.03 to 4 seconds; c. Acceleration = 0.12g for T less than or equal to 0.03 second. Therefore, based on an evaluation of the two historical acceleration records and an evaluation of the work of Nuttli (Reference 198), the SSE response spectra for the Wolf Creek site are considered to be conservative and adequate to take into account the effects of low frequency and long duration ground motion resulting from an occurrence of a New Madrid-type event. 2.5.2.6 Safe Shutdown EarthquakeBased on the data presented in USAR Section 2.5.1.1.5 and the analysis presented in USAR Section 2.5.2.4, the Safe Shutdown Earthquake (SSE) is conservatively defined as an MMI VIII earthquake with an epicenter on the western flank of the Nemaha Uplift adjacent to the southern limit of the CNARS (Reference 334) or to the seismogenic portion of the westward dipping reverse faults (Reference 174). The epicenter of such an event could not occur any closer than 75 miles from the site. This event would generate a maximum ground motion of MMI VI at the site. However, recent work by the Kansas Geological Survey suggests that portions of the Humboldt fault zone along the eastern flank of the Nemaha Uplift are seismogenic (Reference 85; and 249 and 272).The 2.5-174 Rev. 0 WOLF CREEK epicenter of such an event could not occur any closer than 50 miles from the site. At that distance, an MMI VII or VIII event would generate a maximum ground motion of MMI VI (6.4) at the site (USAR Section 2.5.2.4). The maximum horizontal ground motion at the site resulting from the SSE would be about 0.02 to 0.08 times the acceleration of gravity (g) for average foundation conditions (Figure 2.5-81). To be consistent with conservative design bases, non-power block safety-related structures, systems, and related components have been designed for safe shutdown at a horizontal acceleration of 0.12g. However, a seismic evaluation of these structures, systems and components using the Lawrence Livermore Laboratories spectrum is contained in Appendix 3C. This spectrum is enveloped by a Regulatory Guide 1.60 spectrum anchored at 0.15g for structural components founded on bedrock. Power block safety-related structures, systems, and related components have been designed for a safe shutdown at a horizontal acceleration of 0.2g. Investigations have attempted to establish relationships between the epicentral intensity and acceleration of earthquakes (References 193, 52, 257, 196, 141, 102, 103, 201, 186 and 200). These investigations developed acceleration/ MMI relationships in an attempt to further evaluate the correlation between instrumentally recorded earthquakes and reported epicentral intensities (see Figure 2.5-81). Nuttli and Herrmann (Reference 200) used a body wave magnitude/acceleration relationship, instead of MMI. However, MMI can be related to body wave magnitude as shown in the following equation: Io = 2mb - 3.5 (Reference 200) [2.5-9] These empirical relationships (see Figure 2.5-81) between intensity and acceleration can be used to assess the ground motion of an earthquake occurring at the site. One of the earliest relationships is presented by Neumann (Reference 193). He relates acceleration (a) to MMI (Io) in the following equation: log a = 0.308 Io + 0.041 [2.5-10] Application of the equation is restricted to an affected area with an epicentral distance of 25 kilometers. Coulter, Waldron, and Devine (Reference 52) plotted accelerations against MMI in order to further evaluate the correlation between instrumentally recorded earthquakes and reported epicentral intensities. These curves represent documented strong motion records and their corresponding intensity ratings for various 2.5-175 Rev. 14 WOLF CREEK geologic settings. In addition to the empirical data, Coulter, Waldron, and Devine (Reference 52) assimilated the work of others, Barosh (Reference 9), Hershberger (Reference 156), Gutenberg and Richter (Reference 104), Medveden, Sponheuer, and Karnek (Reference 172), and Peterschmitt (Reference 211), in their recommended curves (Figure 2.5-81). The intensity-acceleration relationships developed by Coulter, Waldron, and Devine (Reference 52) are based on data from West Coast records (Reference 294). For regions east of the Rocky Mountains, one should not use empirical relations derived from earthquakes within the western states (Reference 196).Detailed studies of attenuation characteristics of earthquakes in the central United States were carried out by Nuttli (Reference 196 and 197). Calculations of acceleration yielded a conservative value for horizontal acceleration of 0.05g in the epicentral region of an MMI VII earthquake, such as the southern Illinois earthquake of 1968 (Reference 306). This value is in conformity with the damage observed in the 1968 earthquake (Nuttli, 1974; written communication). Similar calculations for an MMI VI earthquake indicate a horizontal acceleration of only 0.01g (Reference 181). Until recently, the most complete intensity-acceleration correlation was that of Trifunac and Brady (Reference 257), which is based on arithmetic averages of accelerations from 187 accelerograms of 57 western United States earthquakes: log a = 0.30 I + 0.014 [2.5-11] where: a = Peak horizontal acceleration (cm/sec2); and I = Local Modified Mercalli Intensity. A more recent study was carried out by the Computer Sciences Corporation (CSC) for the NRC (Reference 186) with data measured from almost 1,500 strong motion accelerograms. Computer Sciences Corporation found that Trifunac and Brady's data more closely conform to a log-normal distribution and that logarithmic means of accelerations would be statistically more appropriate for the intensity-acceleration correlation. A least-squares fit to the logarithmic means of Trifunac and Brady's accelerations for MMI V-VIII yields the following equation: log a = 0.25 I + 0.23 [2.5-12] 2.5-176 Rev. 0 WOLF CREEK The above relationship is almost identical to CSC's best correlation of peak horizontal ground acceleration and MMI from their worldwide sample: log a = 0.24 I + 0.26 [2.5.13] Computer Sciences Corporation (Reference 186) found a general dependence of acceleration on epicentral intensity (IO), site intensity (I), and epicentral distance (R). Computer Sciences Corporation developed a correlation equation based on 405 strong motion observations from 145 western Unites States earthquakes relating peak horizontal acceleration to local intensity (I), epicentral intensity (Io), and epicentral distance (R) in kilometers. log aH = 0.83 + 0.17 I + 0.07 Io - 0.45 log R [2.5-14] Assuming this relation holds for the central United States it can be combined with the equation below (Reference 102) which shows the spatial attenuation of intensity in the central United States: I = Io + 2.35 - 0.00316 R - 1.79 log R [2.5-15] to yield log aH = 0.24 Io + 1.23 -0.00054 R - 0.75 log R. [2.5-16] A graphic representation of these relationships indicates that the maximum horizontal ground motion at the site resulting from the SSE would be approximately 0.02 to 0.08 times the acceleration of gravity for average foundation conditions (Figure 2.5-81). Nuttli and Herrmann (Reference 350) recently surveyed earthquakes within the central United States in order to establish an acceleration-body wave magnitude relationship for the midcontinent. Their recommended equation for maximum horizontal acceleration on saturated alluvial soils in the Mississippi Embayment is as follows: log aH = 0.84 + 0.52 mb - 1.02 log R (for R > 15 km) [2.5-17]where: mb = Body wave magnitude. 2.5-177 Rev. 1 WOLF CREEK Body wave magnitude is related to MMI by Equation 2.5-9. This relationship should be used with caution outside the Mississippi Embayment since loose, nonrigid surface soils like those in the Embayment region generally amplify earthquake-induced ground displacement and cause the local intensity to increase. Similar references to this amplification effect are common in seismological literature. An empirical approach indicated that unconsolidated soils can increase ground displacements and wave amplification by a factor of 4 to 5, particle velocities by a factor of 2 to 3, and ground acceleration by about l to 1.5 (Reference 196). If we assume a worse case, an MMI VIII earthquake along the Humboldt fault zone at its closest approach to the site, and if we use the conservative attenuation relationship developed by Nuttli and Herrmann (Reference 200) for saturated alluvial soils in the Mississippi Embayment (therefore, not relevant to eastern Kansas), horizontal acceleration at the site would be only 0.078g. Therefore, the SSE of 0.12g is extremely conservative and probably exceeds the sustained acceleration value which would be associated with an MMI VII or VIII earthquake occurring near the site. However a seismic evaluation of Wolf Creek Generating Station structures utilizing the Lawrence Livermore Laboratories spectrum is contained in Appendix 3C. This spectrum is enveloped by a Regulatory Guide 1.60 spectrum anchored at 0.15g. The SSE of 0.12g also includes an estimate of any possible earthquake wave amplification effect caused by cyclothemic layers and surficial material. The cyclothemic layers will have little or no effect as the typical shear wave velocities for unweathered shale layers is 3,500 fps or greater with a Poisson's ratio of 0.32. The limestones have a typical shear wave velocity of 5,000 fps or greater with a Poisson's ratio of 0.31. Magnitudes for the maximum random earthquake near the site and the maximum event associated with the Nemaha Uplift were determined using equation 2.5-9 on page 2.5-150 (Reference 200). These two magnitudes are (a) for the maximum random earthquake using epicentral intensity of MMI VII, mb = 5.25 and (b) the maximum event associated with the Nemaha Uplift using epicentral intensity of MMI VIII, mb= 5.75. Attenuation of ground motions is a still-evolving subject, especially for the Central United States of attenuation equations. Accordingly, Table 2.5-10a presents peak ground accelerations calculated according to best available recent attenuation equations. Examination of this table indicates that for (a) the maximum random earthquake near the site a conservative value of peak ground acceleration would be 0.10 g. The table indicates two 2.5-178 Rev. 0 WOLF CREEK distance measures, R=17.7 and R=25 kilometers. R=17.7 represents a mean radius for a circle of 25 kilometer radius (i.e., 17.7 kilometers divides a 25-kilometer radius circle into a smaller circle and an annulus of equal areas).For item (b), the maximum event associated with the Nemaha Uplift Table 2.5-10a indicates that a conservative value would be an acceleration of 0.05 g. A recent study (Reference 146) has presented mean and 84 percentile 5% damped response spectra determined from 15 accelerograms recorded on rock sites.These spectra were sorted into those with ML between 4.8 and 5.8 (i.e., central ML approximately equal to 5.3) and those with ML between 5.3 and 6.3 (i.e., ML= 5.8). In this range, mb and ML are substantially equivalent. The former, with ML=5.3, is appropriate for the maximum random event, if scaled to a PGA = 0.10 g. This is presented in Figure 2.5-85d, together with the Wolf Creek 5% damped SSE spectra. This figure indicates that the mean spectra is everywhere less than the SSE spectra, while the 84 percentile is equal or less than the SSE everywhere except for a small region from about 0.07 to 0.10-second natural period.Similarly, it is seen on Figure 2.5-85e, with ML = 5.8 appropriate for the maximum event associated with the Nemaha Uplift when scaled to 0.05 g, that both mean and 84 percentile are everywhere less than the comparable 5% damped SSE spectra. In summary then: (a) For maximum random event: mb = 5.25 PGA = 0.10 g Mean response spectra everywhere conservative 84 percentile response spectra everywhere conservative except 0.07 to 0.10 seconds. (b) For maximum event associated with Nemaha Uplift: mb = 5.75 PGA = 0.05 g Mean and 84 percentile response spectra everywhere conservative 2.5-179 Rev. 0 WOLF CREEK Studies have been conducted to determine the effect of the alternating Pennsylvanian cyclothems on possible spectral amplification of ground motion at the site. The method used here for spectral amplification analysis is based on the methods of Duke and Leeds (Reference 86) and Matthieson and others (Reference 165). While more sophisticated methods for this type of analysis exist, this technique is sufficiently general so that small errors in the model will not appreciably affect the final outcome. A variety of data was used to determine the amplification, but the model below represents one of the best average models: THICKNESS SHEAR-WAVE VELOCITY DENSITY LAYER (ft) (ft/sec) (lb/ft3) 01 Initial Layer 7000 165 02 535 4500 150 03 555 5000 155 04 140 4250 145 05 80 4000 145 06 17 6200 160 07 16 3500 140 08 12 6200 165 09 7 1735 150 10 20 1025 135 (surface layer) These are generalized data based on geological and geophysical studies at the site as presented in USAR Sections 2.5.1, 2.5.4.4, and 2.5.4.2.1. These calculations have led to a determination of amplification factors of 1.3 to 1.5 at five percent damping. This means that motion present in the dense Mississippian carbonates would be amplified a maximum of 1.3 to 1.5 times at the surface for waves with periods above 0.1 second. Standard attenuation curves, such as the one used by Donovan (Reference 81), taken from the Nemaha seismogenic area or even the values for MMI VI ground motion (Reference 52) give ground motion at depth no more than 0.04g. Multiplying that figure by 1.5 gives a value of 0.06g, which agrees well with the value obtained by surface and historical methods. The resulting surface motion from amplification of the waves from the Mississippian limestones are, thus, still well below the recommended SSE. Ground motion at the site resulting from larger, more distant shocks, such as a New Madrid 1811-1812 type sequence, would also be less than the specified design acceleration of 0.12g. However, the duration of shaking would be somewhat longer for the larger more distant shocks than for the smaller, but closer, MMI VII events. The response spectra will adequately envelop any longer period motion for a recurrence of the New Madrid events (discussed in USAR Section 2.5.2.5). 2.5-180 Rev. 0 WOLF CREEK Although regional seismic history indicates maximum random events of no more than MMI VI within 400 miles of the site, the response spectra will envelop acceleration derived from local random events of intensities greater than VII but less than VIII. Response spectra for use in designing structures to resist earthquake loading are presented on Figures 2.5-82 through 2.5-85. The response spectra are scaled or normalized to the expected maximum horizontal acceleration of 0.12g produced by the SSE and the 0.06g produced by the OBE (USAR Section 2.5.2.7).The vertical response spectra are normalized to two-thirds of the horizontal accelerations. The response spectra are based on recommended criteria by Newmark, Blume, and Kapur (Reference 194) and Regulatory Guide 1.60. The spectra represent the maximum amplitude of motion over the natural frequency range of various structural elements with typical degrees of damping. The Lawrence Livermore Laboratories spectrum, contained in Appendix 3C, has also been used to seismically evaluate non-power block safety-related structures, systems and components. This spectrum is enveloped by a Regulatory Guide 1.60 spectrum anchored at 0.15g. 2.5.2.7 Operating Basis EarthquakeThe Operating Basis Earthquake (OBE) is defined as a recurrence of the New Madrid earthquake near its historic epicenter; such an event produced site intensities of V-VI. These intensities would result in ground motions of 0.02 to 0.04g at the site (see Figure 2.5-81). This range of accelerations also brackets the resultant ground motions from MMI VII earthquakes associated with the seismogenic area of the Nemaha Uplift as well as local random events. Consistent with the conservatism already developed for the SSE, the maximum horizontal acceleration for the OBE is established as 0.06g and constitutes a level of ground motion with a low probability of occurring during the operating life of the WCGS (USAR Section 2.5.2.4). 2.5.2.8 Response SpectraFigures 2.5-146 through 2.5-151 present the response spectra for the WCGS power block and demonstrate that the selected spectra for the standard plant design SSE and OBE envelope the bounds of the spectra for the WCGS site. The response spectra are scaled or normalized to the maximum horizontal ground acceleration for the SSE of 0.20 g and for the OBE of 0.12 g in accordance with Regulatory Guide 1.60. 2.5-181 Rev. 0 WOLF CREEK 2.5.3 SURFACE FAULTING The data contained in USAR Sections 2.5.1 and 2.5.2 and the interpretation and conclusions drawn from the data indicate that there are no known tectonic faults within 15 miles of the site and no capable faults are present within 200 miles of the site. Therefore, the site does not require design for surface faulting.2.5.3.1 Geologic Conditions of the SiteThe lithologic, stratigraphic, and structural geologic conditions of the site and surrounding region, including geologic history, are presented in USAR Sections 2.5.1.1 and 2.5.1.2. 2.5.3.2 Evidence of Fault OffsetFaults and shear zones were mapped in foundation excavations within the Heumader Member of the Oread Limestone Formation. One fault was mapped offsetting the Williamsburg Coal Bed within the Unnamed Member of the Lawrence Formation. These faults are overlain by unfaulted Pennsylvanian sedimentary rock and, therefore, are noncapable, as defined by Appendix A, to 10 CFR 100 (Section 2.5.1.2.4.1). No other faults are known to exist within 15 miles of the site. 2.5.3.3 Earthquakes Associated with Capable FaultsThere have been no historically reported earthquakes within 40 miles of the site. No capable faulting is known to exist within 200 miles of the site. 2.5.3.4 Investigation of Capable FaultsThere are no capable faults within 200 miles of the site. 2.5.3.5 Correlation of Epicenters with Capable FaultsNo capable faulting is known to exist within 200 miles of the site; no earthquake epicenters are associated with capable faults within 200 miles of the site. 2.5.3.6 Description of Capable FaultsNo capable faulting is known to exist within 200 miles of the site. 2.5-182 Rev. 0 WOLF CREEK 2.5.3.7 Zone Requiring Detailed Faulting InvestigationGeologic investigations of the site have not indicated evidence of capable faulting. Faults observed in foundation excavations were mapped in detail and found to be noncapable, as defined by Appendix A, to 10 CFR 100. There is no basis to warrant detailed faulting investigations. 2.5.3.8 Results of Faulting InvestigationA detailed faulting investigation was not required at the site. 2.5.4 STABILITY OF SUBSURFACE MATERIALS This section presents an evaluation of the stability of the subsurface materials that underlie the foundations of Category I structures. The evaluation is based on the actual grades and final values for foundation loads. 2.5.4.1 Geologic FeaturesThe geologic features of the site are discussed in detail in USAR Section 2.5.1.2. A detailed description of the field explorations performed at the site is presented in USAR Section 2.5.4.3. A comprehensive field investigation program, including borings, test pits, geophysical surveys, and field reconnaissance, was undertaken to determine the geologic features at the site and their significance to site stability. No major solution features were noted in the limestone units during the investigation. At depth, joints in the limestone units were tight and lacked solution features. Irregular, elongated indentations formed by the concentration of surface weathering along joints and bedding planes was noted in areas where the Plattsmouth and Toronto Limestone members are exposed as the surficial bedrock. The joints were filled with reddish brown clay. These minor solution features are narrow and disappear within several feet of the surface (USAR Section 2.5.1.2.5.3). The drill rig "geolograph" record revealed no drops in the drill bit, and the geophysical borehole logging indicated no cavities. Known solution features in southeastern Kansas are confined to areas containing thick outcrops of water-soluble rock, local carbonate reefs, faulting or stream channel diversion (see USAR Section 2.5.1.1.5.4.1.1). As none of these conditions are present at the site, the possibility of instability due to solutioning is considered minimal. In addition, the relatively low permeabilities of the limestones themselves and the low permeabilities of the overlying soils and interbedded shales preclude the development of karst features. 2.5-183 Rev. 0 WOLF CREEK Ground water leaving the cooling lake through seepage will be saturated or near saturated with respect to calcium at all times (USAR Section 2.5.1.2.5.3).Therefore, the effect of the cooling lake on the ground-water regime will not increase the possibility of instability due to the development of karst features.The closest approach of underground mining to the site is 3.5 miles to the southeast in the northwest-southwest portion of Section 28. Coal mining took place in this area in an operation that ended about 1916. Since none of these drifts extends under the site, there is no danger of surface or subsurface subsidence (USAR Sections 2.5.1.2.5.6 and 2.5.1.1.5.4.2.) The nearest producing oil well is 5.5 miles to the southeast of the plant site (USAR Sections 2.5.1.2.5.6 and 2.5.1.1.5.4.2.) Since neither oil nor gas will be extracted from beneath the site property and only minor amounts of ground water are withdrawn within a 5-mile radius, there is no potential for surface or subsurface subsidence caused by the withdrawal of fluids. Field investigations reveal a gently plunging anticlinesyncline structure at the site (Figures 2.5-53 to 2.5-61). No evidence has been found to suggest that any movements have occurred since the Paleozoic Era. Investigations show that joint patterns representing local adjustments to the gentle structural flexures of Paleozoic time exist. Joints representing stress relief from the erosion of overlying sediments are also found in the borings and nearby quarries. Since this area has never undergone glaciation, the possibility of any residual stresses remaining in the rock is minimal. Field investigations and laboratory tests revealed no soil or rock strata that might be unstable due to mineralogy, consolidation, or water content during a seismic event (USAR Section 2.5.1.2.5.4). Slickensided fractures noted in some shale formations underlying areas of Category I facilities are more numerous in the UHS area, particularly in the area of the Vinland Channels (Figure 2.5-43). These slickensided fractures are believed to have formed as a result of differential compaction along the edges of these channels (USAR Section 2.5.1.2.5.2). Several shear zones and faults were mapped within the Heumader Shale Member of the Oread Limestone Formation and one fault was mapped within the Unnamed Member of the Lawrence Formation. These features, overlain by unfaulted Pennsylvanian sedimentary rock, occurred during the Pennsylvanian and, therefore, are not capable as defined by Appendix A to 10 CFR 100 (USAR Section 2.5.1.2.4.1). 2.5-184 Rev. 0 WOLF CREEK Ground-water samples and soil and rock samples obtained in the Category I area as well as in neighboring water wells indicate that water-soluble sulfate concentrations could reach 1,000 mg/1 of ground water (USAR Section 2.4.13.1.1.2). The maximum concentration of soil and rock samples obtained in the area of Category I structures was 535 mg/kg for the Heumader Shale Member at Boring ESW-2. Ground water from the Plattsmouth Limestone Member at Boring ESW-8 had an average sulfate concentration of 346 mg/1. Frost depths representing 1 in 100 year events are used in the design of all Category I structures. Frost depth, x, is computed using the modified Berggren formula:x = 48K.S.FI/L [2.5-18] where: FI = the 1 in 100 year recurrence freezing index described in USAR Section 2.3.2.2; K, S, and L = Physical parameters of the soil; and = A dimensionless constant. The values used for S are based on Sanger (Reference 244). Using the above method, the 1 in 100 year recurrence frost depths are computed to be: a. 3.4 feet for cohesive natural soils and cohesive backfill; and b. 4.1 feet for granular backfill and all soils beneath paved surfaces. 2.5.4.2 Properties of Underlying Materials2.5.4.2.1 Laboratory Test Procedures This section presents the procedures and results of a laboratory testing program that was performed to assess the engineering properties of the subsurface materials. The tests were performed on representative soil and rock samples extracted during the test boring program, which is described in USAR Section 2.5.4.3. The results are presented on the boring logs and/or are summarized in tables and on figures that are referenced in the following sections. Test procedures used for the dam and embankment analyses are also described in USAR Section 2.5.6.4.1.4.1. 2.5-185 Rev. 1 WOLF CREEK Soil samples were obtained from 3-inch diameter Shelby tubes, 2 1/2-inch inside diameter (I.D.) Dames & Moore thin-wall and Type U Samplers, and 2 3/8-inch I.D. Denison samplers. Rock samples were obtained from NX-wireline core barrels. All laboratory tests were performed by Dames & Moore unless otherwise stated.2.5.4.2.1.1 Static Strength Tests 2.5.4.2.1.1.1 Strength Tests on Soil 2.5.4.2.1.1.1.1 Unconfined Compression Tests Selected representative soil samples at in situ and recompacted densities were subjected to unconfined compression tests. A load deflection curve was plotted for each test, and the strength of the soil was defined as the peak shear strength or the shear strength at 15 percent strain, whichever occurred first.Determinations of natural moisture content and dry density were made in conjunction with the tests. The results of the tests are shown on the boring logs and are summarized in Tables 2.5-25 and 2.5-26. The testing procedure was in conformance with ASTM D 2166. 2.5.4.2.1.1.1.2 Direct Shear Test Direct shear testing was performed by Dames & Moore on a representative soil sample obtained from Boring B-9. The shear strength of the soil sample was determined from the resulting load-deflection curve. Field moisture content and dry density determinations were made in conjunction with the test. The test results are summarized in Table 2.5-27 and are shown on the log for Boring B-9, Figure 2.5-34i. The tests were run in accordance with ASTM D 3080-72. 2.5.4.2.1.1.1.3 Triaxial Compression Tests Unconsolidated-undrained and consolidated-undrained triaxial compression tests were performed on selected undisturbed and recompacted soil samples under confining pressures representative of their in situ condition. For the consolidated-undrained test, samples were fully consolidated under the desired all-around pressure. The samples were then tested, and the following parameters were recorded: axial load, deflection, and pore pressure. Stress path curves and Mohr envelopes were drawn to define the effective stress strength parameters. A load-deflection curve was drawn for each test, and the shear strength was defined using the same failure criterion as for the unconfined compression tests. Effective stress parameters used in the analysis of the UHS are shown in Table 2.5-65. Parameters for samples obtained outside the UHS were not used in the analysis and, therefore, are not presented. In addition to natural moisture content and dry density, Atterberg limits were determined for some of the samples. 2.5-186 Rev. 0 WOLF CREEK The tests were performed by Dames & Moore and Geotesting, Inc., San Rafael, California. The test results are presented on the boring logs and in Tables 2.5-28 through 2.5-31. The tests were run in accordance with ASTM D 2850-70, the U.S. Army Manual EM 1110-2-1906 and "The Measurement of Soil Properties in the Triaxial Test" (Bishop and Henkel, 1962). 2.5.4.2.1.1.2 Strength Tests on Rock The strength of the subsurface rock units was evaluated by subjecting representative rock core samples to unconfined compression tests. These tests were performed by Walter H. Flood and Company, Inc., Chicago, Illinois.Samples approximately 4 inches in height and 2 inches in diameter were subjected to a constant rate of axial strain. The modulus of elasticity and Poisson's ratio were computed at 40 percent of the unconfined compressive strength. The bulk modulus was computed from the elastic modulus and Poisson's ratio. The results of the strength tests are presented in Table 2.5-32. The tests were run in accordance with ASTM D 2938-71. 2.5.4.2.1.2 Compaction, Consolidation, and Permeability Tests 2.5.4.2.1.2.1 Compaction Tests Representative bulk samples and soil samples obtained from the borings were used to determine the compaction characteristics of the soils which may be used as earthfill materials. Compaction tests were performed in accordance with ASTM Standards D 698-70 and D 1557-70. Harvard Miniature Compaction Tests were performed in accordance with the proposed ASTM method for Harvard Miniature Compaction Tests (Reference 273). Grain-size analyses were also performed in conjunction with the compaction tests (Figure 2.5-90, Sheets 1 through 4).These tests were performed by Dames & Moore and Geotesting, Inc. The results of the compaction tests are shown on Figure 2.5-86 and are presented in Table 2.5-33.2.5.4.2.1.2.2 Consolidation Tests Consolidation tests were performed on selected, representative, undisturbed and remolded samples of soil to determine their compressibility characteristics. The samples tested were confined laterally in a ring and incrementally subjected to increasing vertical loads, while the resulting deformations were measured. Most samples were unloaded incrementally and then reloaded to determine the unload/reload characteristics. The consolidation test results are presented on Figures 2.5-88a through 2.5-88j. Natural water content and dry density were determined in conjunction with each test and are presented on Figures 2.5-88a through 2.5-88j. The tests were run in accordance with ASTM D 2435-70. 2.5-187 Rev. 0 WOLF CREEK 2.5.4.2.1.2.3 Permeability Tests Permeability tests were performed by Dames & Moore and Geotesting, Inc., on representative undisturbed soil samples to evaluate their permeability characteristics. The testing process generally followed the procedures outlined in ASTM D 2434-68, except that a falling head rather than a constant head test was used to measure the permeability. The test results are summarized in Tables 2.5-34 and 2.5-35. 2.5.4.2.1.3 Classification Tests 2.5.4.2.1.3.1 Particle-Size Analyses Grain-size analyses were performed in conjunction with the compaction tests according to ASTM Standard D422-63. The analyses of the gradation curves were used primarily for classification and correlation purposes. The results of the particle-size analyses are presented on Figure 2.5-90. 2.5.4.2.1.3.2 Atterberg Limits Tests Atterberg limits were determined on representative soil samples and in conjunction with the triaxial compression and consolidation tests in order to define the plasticity characteristics of the soil. The liquid limit and plastic limit determinations were made in accordance with ASTM Standards D 423-66 and D 424-59. The results of the Atterberg limits determinations were used for classification and correlation and are shown in Table 2.5-36. 2.5.4.2.1.3.3 Moisture and Density Determinations 2.5.4.2.1.3.3.1 Soil Samples Moisture content and density determinations were made on samples in accordance with ASTM Standard D 2216-66. The results are shown on the boring logs and in Table 2.5-37. 2.5.4.2.1.3.3.2 Rock Samples Bulk density determinations on rock core samples were performed by Dames & Moore in conjunction with resonant column testing (Section 2.5.4.2.1.4.1) and are listed with the results of these tests in Table 2.5-38. In addition, bulk density determinations were performed on representative shale, siltstone, and sandstone samples and are presented in Table 2.5-39. The tests were performed in general accordance with the 1970 U.S. Army Engineer Manual EM 1110-2-1906. 2.5-188 Rev. 0 WOLF CREEK 2.5.4.2.1.4 Dynamic Tests Dynamic tests were performed by Dames & Moore, Geotesting, Inc. and Professor Marshall Silver, University of Illinois, Chicago. 2.5.4.2.1.4.1 Resonant Column Tests Resonant column (dynamic torsional shear) tests were performed on selected undisturbed soil samples and rock cores to evaluate their modulus of rigidity and damping. The tests were conducted over a range of confining pressures at natural moisture content. The testing method is described in detail on Figure 2.5-91. The test results are presented in Tables 2.5-38 and 2.5-40. Dynamic values obtained from resonant column tests on limestone samples were considerably lower than those obtained from static and other dynamic tests. These limestone values are considered invalid since the rigidity of the resonant column testing apparatus was not sufficient for testing high strength rocks. The tests were performed in general accordance with the procedures described in "Suggested Method of Test for Shear Modulus and Damping for Soils by the Resonant Column" (Reference 107) in ASTM STP-479. 2.5.4.2.1.4.2 Shockscope Tests Compressional wave velocity (shockscope) tests were performed on representative rock samples by Professor M. L. Silver in the Soil Mechanics Laboratory at the University of Illinois, Chicago Circle Campus. The velocity observed in the laboratory was used to verify field velocity measurements obtained during the geophysical survey. Although the laboratory test values (Table 2.5-41) were found to be slightly higher than the field geophysical values (Tables 2.5-46 and 2.5-51), it should be noted that the laboratory tests represent values for intact rock and an RQD of 100 percent. In the test, samples are subjected to a physical shock; the time required for the shock wave to travel the length of the sample is measured. The velocity of compressional wave propagation is then computed. The samples were tested in an unconfined state. The tests were conducted in accordance with ASTM D-2845-69. 2.5.4.2.1.4.3 Dynamic Triaxial Tests The dynamic behavior of the various soil strata encountered at the site was determined by testing representative soil samples obtained by Shelby tubes, Dames & Moore soil samplers, and Denison samplers. 2.5-189 Rev. 0 WOLF CREEK 2.5.4.2.1.4.3.1 Sample Preparation To prepare the undisturbed cohesive samples for dynamic material property test, the samples were first extruded from their liners or brass rings and placed in a mitre box where the ends were trimmed square. The average diameter and initial height and weight of the sample was recorded, and the sample density was calculated. The triaxial cell was assembled around the sample. The samples were then consolidated isotropically under estimated in situ pressure to simulate field conditions as closely as possible. 2.5.4.2.1.4.3.2 Laboratory Procedure The dynamic triaxial tests were performed under controlled strain conditions.To begin the test, a very small amplitude, 0.5-cps, sine wave signal was programmed into the loading frame. The piston was connected to the load cell, the recording equipment was zeroed, and the sample was cycled at the lowest possible strain amplitude. At the tenth load cycle, the pen of the x-y recorder was lowered to record the load-deformation hysteresis loop for modulus and damping calculation. The tenth load cycle was chosen for modulus and damping determination as representative of the duration of strong motion for the SSE postulated for the site. At the end of cycle 25, the test was stopped.The drainage valve was then opened and excess pore water pressure was allowed to dissipate. The drainage valve was again closed, a new slightly higher strain amplitude was programmed, and another test was performed. This procedure was repeated six or seven times for each sample to provide a record of dynamic sample response covering the range of vertical strain between approximately 0.01- to 1.0-percent, single-amplitude axial strain. The results are summarized in Table 2.5-42 and on Figure 2.5-92. Values of dynamic Young's modulus (E) were determined by measuring the slope of the line connecting the extreme points of the hysteresis loops obtained at the tenth load cycle. The same loop was used to calculate the hysteretic damping. Since the behavior of soils is strain dependent, these modulus and damping values are related to the single amplitude vertical strain (v), which is defined as the value measured from the origin to the peak value of strain.Values for modulus of rigidity and shear strain presented on Figure 2.5-92 were calculated from the values of modulus of elasticity using Poisson's ratio. The value of Poisson's ratio required for these calculations is generally estimated, because accurate measurement of Poisson's ratio is difficult to accomplish experimentally. The tests were performed in general conformance with the procedures recommended in the NRC Regulatory Guide 1.138. 2.5-190 Rev. 0 WOLF CREEK 2.5.4.2.1.5 Other Tests 2.5.4.2.1.5.1 Swell Load Tests on Soil Samples Swell load tests were performed by Dames & Moore and by Geotesting, Inc. The test procedures are described in USAR Section 2.5.6.4.1.4.1.9. The results of the swell load tests are indicated on Figures 2.5-96a through 2.5-96d.2.5.4.2.1.5.2 Shale Analyses Dr. F. Michael Wahl of Gainesville, Florida, was contracted to perform X-ray diffraction analyses, swelling tests, and slake durability tests on selected shale samples obtained from drilling operations. 2.5.4.2.1.5.2.1 Clay Mineralogy The X-ray diffraction analyses were performed on representative samples of shale to evaluate the type and approximate quantity of those clay minerals comprising the clay fraction (less than 2 microns) of the samples. The samples were examined both before and after treatment with ethylene glycol. Three complete X-ray patterns were obtained for each sample. The results of the clay mineralogy studies are presented in Table 2.5-43. The tests were performed in general accordance with the procedures recommended in NRC Regulatory Guide 1.138.2.5.4.2.1.5.2.2. Slake-Durability Tests The slake-durability index for all samples was determined by the slake-durability test apparatus developed by Franklin (Reference 95) and Chandra (Reference 37), using the procedures outlined by Gamble (Reference 99). This test is intended to assess the resistance offered by a rock sample to weakening and disintegration when subjected to changes in water content due to a standard drying and wetting cycle. A description of the slaking durability of the sample was obtained from a comparative scale based upon the slake durability index (Id) for a two-cycle test. The descriptive slaking durability scale, supplied by Dr. F. Michael Wahl, is as follows: 2.5-191 Rev. 0 WOLF CREEK TWO-CYCLE TEST (Id) DESCRIPTIVE SLAKING DURABILITY <30 very low 30-60 low 60-85 medium 85-95 medium high

>95 high The results of the slake-durability tests are presented in Table 2.5-43, and Idvalues for the two-cycle test are shown on the boring logs. The tests were performed in accordance with the procedures outlined in "The slake durability test," International Journal of Rock Mechanics and Mineral Science (Reference 96).2.5.4.2.1.5.2.3  Swelling Pressure Tests A potential volume change (P.V.C.) meter was used to test the shale samples for swelling characteristics. The P.V.C. meter was developed for the Federal Housing Administration by T. William Lambe (Reference 142). The equipment consists of a typical consolidometer sample unit; that is, a sample ring with porous stones above and below the sample. A metal plate with a depression in the center to accommodate a piston with an oval end is placed above the porous stone. A joining ring is bolted in place above the sample, and a piston, attached to the proving ring, is lowered into the depression in the loading plate with a screw jack. Deflections of the ring are measured on a dial calibrated in ten-thousandths of an inch. The tests were performed in general accordance with the procedures recommended in NRC Regulatory Guide 1.138.The test results, showing swelling pressure in psf versus time, are presented in Table 2.5-44. 2.5.4.2.2  Subsurface Materials 2.5.4.2.2.1  Materials Underlying the Plant Site The plant site was covered by residual soils developed on and into the underlying Pennsylvanian strata. The interface between the soil and bedrock was a gradational contact, but the soil blanket was generally 4 to 8 feet thick. The soil profile showed wide variations in properties and composition, ranging from high plasticity clays to low plasticity clayey silty sand.Geologic cross sections for the plant site are shown on Figures 2.5-45 and 2.5-46. 2.5-192 Rev. 0 WOLF CREEK Design soil properties listed in Table 2.5-45 are based on average representative test results. Tangent modulus values were calculated according to Janbu (Reference 121). Results of soil testing are presented in Section 2.5.4.2.1 and accompanying tables and figures. Comparison of the dynamic shear moduli from the dynamic triaxial tests with the shear moduli obtained from the field geophysical surveys shows good agreement, considering the difference in strain levels (USAR Sections 2.5.4.4 and 2.5.4.2.1. The design shear modulus value presented in Table 2.5-45 is based on an average of the moduli obtained from the dynamic triaxial tests. The relationship between the strain level and the dynamic modulus of rigidity is discussed in USAR Section 2.5.4.2.1.4.3 and accompanying tables and figures. The underlying bedrock consists of alternating limestones, shales, and sandstones which dip gently to the south and southwest. The plant is on a small anticline which locally modifies the normally west to northwest dipping strata at the plant site area (Figures 2.5-53 to 2.5-61). The evaluation of parameters for the rock members is described below. However, the resonant column testing yielded results that were too low, particularly for stronger rock. The value of the resonant column tests was, therefore, limited in the evaluation of dynamic properties of rocks. The Jackson Park Shale Member, which is the uppermost bedrock unit at the site, is a yellowish brown, fine-grained, thin- to medium-bedded sandstone. The upper portion of this member is highly weathered, but the lower portion is moderately weathered with some highly weathered lenses. Jointing in the plant site borings in the Jackson Park Shale Member show 30- to 60-degree weathered fractures in the lower portion of this member. The core recovery and RQD ranged from 12 to 100 percent and 0 to 59 percent, respectively, which reflects the variability of the degree of weathering in this unit. Due to erosion, the thickness of this unit across the plant site ranges from 1.4 feet to 11.5 feet with an average thickness of 8 feet. Its average upper surface elevation is approximately 1,100 feet, and its contact with the underlying Heumader Shale Member occurs at an average elevation of approximately 1,092 feet. The elastic moduli and strength parameters of the Jackson Park Shale Member were determined by both static and dynamic testing. The results show uniform properties across the plant site. Design properties are presented in Table 2.5-45. The static and dynamic test results are presented in USAR Section 2.5.4.2.1 and accompanying tables and figures. 2.5-193 Rev. 0 WOLF CREEK The Heumader Shale Member, underlying the Jackson Park Shale Member, is a medium dark gray shale that weathers to a pale to dark yellowish brown. It is thinly laminated to medium bedded with a basal calcareous facies that extends through approximately 14 feet of its total average thickness of 27 feet. Stiff to very stiff clayey layers and zones averaging 1-inch thick, are common throughout the member, and slight to moderate weathering is present mainly in the upper facies. Infrequent jointing ranging from 30 to 60 degrees was found in the plant site borings through the upper portion of the Heumader Shale Member. Core recovery averaged 99 percent and RQD averaged 89 percent. The thickness of this unit across the plant site ranges from 23.6 to 30.7 feet.Its average upper surface elevation at the plant site is 1,092 feet. The elastic moduli and strength parameters of the Heumader Shale Member were determined by static and dynamic testing and by field geophysical surveys. The wide range of elastic and strength properties across the plant site are attributable to variations in the degree of weathering and to the condition of the sample at the time of testing since this unit has a low to medium potential for slaking (USAR Section 2.5.4.2.1). Other factors that adversely affect the strength and elastic parameters are composition, degree of fracturing in a sample, and coring procedures. The strength parameters are based on average values of the unconfined compression tests that provided a conservative value for compressive strength, considering the above factors that affect the strength. Included in the evaluation of the unconfined compression strength for the Upper Heumader Shale Member were samples from the highly weathered shale in Boring B-4 at depths of 10.5 and 13.5 feet (Table 2.5-25). These unconfined compression strength values for design values were selected at 70 and 140 psi for the Upper and Lower Heumader shale members, respectively. The static and dynamic moduli presented as design properties in Table 2.5-45 and on Figures 2.5-97a and 2.5-97b were obtained by evaluating results determined by the following tests and methods: a. Static and dynamic laboratory tests;  b. Considering RQD as a measure of quality; 
c. Field geophysical techniques; d. Evaluating available literature on Pennsylvanian shales. Both shear and compressional velocities from the field geophysical tests were considered. However, since both the Upper and Lower Heumader Shale members at the plant site are below the water 2.5-194 Rev. 0 WOLF CREEK table, evaluation of moduli based on the compressional wave velocities is difficult. However, shear wave velocities from the Heumader Shale members at the plant site indicate average velocities at 1,400 to 1,500 fps. These velocities are considered quite reliable. On the other hand, shear wave velocities obtained by the resonant column testing were 500 to 750 fps and 900 to 1,000 fps for the Upper and Lower Heumader Shale Members, respectively.

Considering the uncertainty regarding the stiffness of the resonant column test apparatus, these velocities may be low although the relative difference in velocity may be valid. The shear moduli (low shear strain) for the Upper Heumader Shale was, therefore, chosen based on an average shear wave velocity of 1,000 fps, while that for the Lower Heumader Shale Member was chosen as 1,800 fps. Shear moduli for high shear strains were selected close to those of the static moduli. The static elastic values obtained from the testing were considered too low, based on one or more of the above-mentioned factors that had an adverse effect on the strength properties. Therefore, a ratio of the dynamic [resonant column (Table 2.5-38), in situ seismic (USAR Section 2.5.4.4)] to static moduli was compared to previously published values on shales (Reference 279), and the static moduli were adjusted accordingly. Ratios of modulus of elasticity and unconfined compression strengths for similar material were also considered (Reference 178). Comparison of the in situ seismic and resonant column moduli showed close agreement. Underlying the Heumader Shale Member is the Plattsmouth Limestone Member which consists of a light to medium gray, fine-grained, thin- to thick-bedded limestone. This limestone is interbedded with 0.25- to 8.4-inch partings of calcareous, clayey shale and is generally weathered. Investigation of jointing in the Plattsmouth plant site borings shows infrequent 30- to 60-degree joints. These borings also show calcite-lined vugs very infrequently, averaging 0.75 to 1.0 inch in size. Core recovery at the plant site averaged 90 percent, and RQD averaged 85 percent. The thickness of the Plattsmouth Limestone Member across the plant site ranges from 11.8 to 13.7 feet. This unit's average upper surface elevation at the plant site is 1,065 feet. The elastic moduli and strength parameters of the Plattsmouth Limestone Member were determined by static and dynamic testing and by field geophysical surveys. A summary of geophysical properties of subsurface materials at the plant site is presented in Table 2.5-46. The elastic moduli are presented in Table 2.5-45. The strength was determined by taking the lower bound of the unconfined compression tests (USAR Section 2.5.4.2.1.1.2) and reducing the obtained value based on RQD and the effect of shale partings (USAR Section 2.5.4.10.1.1). The value used for design was, thus, 170 psi. The dynamic moduli are in close agreement with those

2.5-195 Rev. 27 WOLF CREEK values obtained from both shockscope (USAR Section 2.5.4.2.1.4.2) and geophysical tests, considering the effect of RQD. Dynamic values obtained from resonant column tests were considerably lower than those obtained from both dynamic and static tests. Their values are considered invalid since the rigidity of the resonant column testing apparatus was not sufficient for testing high strength rock. For results of the static and dynamic tests, see USAR Section 2.5.4.2.1. The Heebner Shale Member, underlying the Plattsmouth Limestone Member, consists of a grayish black, thinly laminated, carbonaceous shale which contains lenses of yellowish brown, calcareous siltstone. Across the plant site, the top of the Heebner Shale Member is found at an average elevation of 1,053, and the thickness of this unit ranges from 2.1 to 4.1 feet with an average thickness of 3 feet. Core recovery and RQD in the plant site borings averaged 97 and 88 percent, respectively. These borings show no weathering and only occasional vertical joints. The elastic moduli of the Heebner Shale Member and underlying Leavenworth Limestone and Snyderville Shale Members were grouped together to form a single lithologic unit, but the strength parameters were determined for each member individually. Elastic properties were determined by static and dynamic testing and by geophysical testing . Static properties were determined by analyses of unconfined compression tests. The design elastic properties are presented in Table 2.5-45, and the strength properties are found in USAR Section 2.5.4.2.1 and accompanying tables and figures. The static and dynamic elastic moduli were determined by taking a weighted average of the three members so that the moduli for the equivalent member would reflect the same deformation characteristics as the individual units treated separately.Strength properties were determined directly from unconfined compression tests.The static elastic properties of the Snyderville Shale Member show wide variation due to loss through slickensiding, and poor samples because of low slaking durabilities (USAR Section 2.5.4.2.1.5.2.2). The Leavenworth Limestone Member, underlying the Heebner Shale Member, consists of a 2-foot thick, fine-grained, thin- to medium-bedded limestone which is shaley in its basal 1.0 foot. The top of the Leavenworth Limestone Member is found at an average elevation of 1,050 at the plant site. Core recovery and RQD in this unit averaged 97 and 88 percent, respectively. No evidence of jointing or weathering is found in the plant site borings that encounter the Leavenworth Limestone. 2.5-196 Rev. 0 WOLF CREEK Underlying the Leavenworth Limestone Member is the Snyderville Shale Member, which is a light gray to olive-gray, thinly laminated to medium-bedded, nonweathered, calcareous, clayey shale that contains lenses of limestone up to 3 1/2 inches in thickness. Numerous clayey shale zones, reaching thicknesses of approximately 6 inches, occur throughout this unit. The Snyderville Shale Member contains numerous 20- to 60-degree fractures, many of which are slickensided. These fractures and slickensides are the result of internal adjustments in the Snyderville Shale Member that probably occurred during minor folding. Borings at the plant site show an average core recovery of 97 percent and an average RQD of 75 percent. The top of this unit is found at an average elevation of 1,048 and has a thickness that ranges from 8.2 to 12.8 feet across the plant site and an average thickness of 10 feet. The Toronto Limestone Member, underlying the Snyderville Shale Member, consists of a light gray, fossiliferous, unweathered limestone. This limestone is fine grained, thin to thick bedded and has interbeds of greenish gray, calcareous shale up to 3 1/2 inches in thickness. Borings in this unit have an average core recovery of 98 percent and an average RQD of 86.5 percent. These borings also show occasional vertical joints and infrequent 30- to 60-degree joints.Pinpoint vugs were noticed in isolated, localized areas. The top of the Toronto Limestone Member is found at an average elevation of 1,037 and has a thickness that ranges from 4.0 to 18.8 feet across the site and an average thickness of 16 feet. The elastic moduli and strength parameters of the Toronto Limestone Member were determined by static and dynamic testing and by field geophysical surveys. The elastic moduli are presented in Table 2.5-45 and the strength results, which were determined by an average of the unconfined compression tests (Table 2.5-32), are in close agreement and are presented in USAR Section 2.5.4.2.1.1.2.The dynamic moduli are in close agreement with those values obtained from both shockscope and geophysical tests. Dynamic values obtained from resonant column tests were considerably lower than those obtained from both dynamic and static tests and were considered invalid since the rigidity of the testing apparatus was not sufficient for testing high strength rocks. For results of the static and dynamic tests see USAR Section 2.5.4.2.1 and accompanying tables and figures.Compacted structural backfill (crushed limestone) was used under some structures in the power block area. Properties for crushed limestone were obtained from Dames & Moore tests and available literature on similar material (Reference 236). Pertinent parameters for this material are shown in Table 2.5-45 and on 2.5-197 Rev. 0 WOLF CREEK Figures 2.5-97d and 2.5-97e. The coefficient of sliding friction for lean concrete against different types of subgrade material is shown in Table 2.5-47. 2.5.4.2.2.2 Materials Underlying the Essential Service Water System Pumphouse The residual soil at the location of the ESWS pumphouse is developed on the Heumader Shale Member (Figure 2.5-47). Its thickness averages 14 feet and ranges between 10 and 16 feet (Figures 2.5-38, 2.5-47, and 2.5-50). The soil consists of clayey silts, silty clays, plastic clays, and fat clays with stiff to hard consistencies. There are no granular soils at the ESWS pumphouse site. The design soil properties (Table 2.5-48) are based on average representative test results. Results of the various soil tests are annotated on the boring logs (Figures 2.5-36a to 2.5-36ee) and summarized in the tables referenced in USAR Section 2.5.4.2.1. Recommended dynamic properties are also shown in Figure 2.5-97a. The underlying bedrock of the Oread Formation consists of alternating limestones and shales to a depth of about 77 feet. These units dip to the southwest (Figures 2.5-53 to 2.5-61) as a result of the gentle folding of otherwise west to northwest regional dipping of strata. Geologic cross section G-G' (Figure 2.5-47) graphically correlates the stratigraphic units at the plant site with the same units at the ESWS pumphouse. A detailed cross section at the pumphouse is presented on Figure 2.5-50.To the east of Boring ESW-8 (Figure 2.5-47), the Jackson Park Shale Member has been removed by erosion. The uppermost unit in this area is the Heumader Shale Member. The top of the Heumander is found at elevations ranging between about 1,082 and 1,076 feet. This unit is thinly laminated to medium bedded with a basal calcareous facies that extends through most of its total average thickness of 18 feet at the ESWS pumphouse. The Heumader Shale Member has properties that are similar to those reported in USAR Section 2.5.1.2.2.2.1.1.1.3.1 for the plant site (Tables 2.5-47 and 2.5-48). These properties were evaluated using the same procedures outlined in USAR Section 2.5.4.2.2.1.Similarly, the stratigraphic units that underly the Heumader Shale at the ESWS pumphouse have physical properties that are almost identical to those of corresponding units found at the plant site some 2,500 feet to the west. The minor differences that do exist are discussed below. 2.5-198 Rev. 0 WOLF CREEK Shale partings and clay seams within the Plattsmouth Limestone Member were observed in the rock samples obtained at the plant site and the ESWS pumphouse. Three-quarter inch to 1-inch vugs were found at the other locations within the UHS, but were not observed in the borings at the ESWS pumphouse. The largest vugs observed at this location were about 0.25 inch in size.

Resonant column tests were performed on limestone specimens from the Plattsmouth Limestone, Leavenworth Limestone, and Toronto Limestone Members that underlie the ESWS pumphouse. Dynamic modulus values obtained from these resonant column tests are considered invalid, because the rigidity of the testing apparatus was not sufficient for high strength rocks.

Although the average core recovery of the Heebner Shale and Leavenworth Limestone Members was the same at the plant site and ESWS pumphouse, the RQD values at the pumphouse averaged about 14 percent less than corresponding plant site values (74 versus 88 percent). However, within the Snyderville Shale Member, which underlies these two units, the average core recoveries and RQD values were similar to those measured at the plant site. The RQD values for the Toronto Limestone Member were lower than at the plant site (59 versus 86.5 percent), although the core recovery at the two sites was almost identical.

The lower RQD found at the ESWS pumphouse is probably related to drilling procedures. The ESWS pumphouse borings were drilled by Hemphill Drilling Company, while the majority of those taken at the plant site were drilled by Raymond International, Incorporated.

Properties for structural fill and sliding coefficents of friction are discussed in USAR Section 2.5.4.2.2.1. 2.5.4.2.2.3 Materials Underlying the Category I Pipelines

Twenty-five, ESW-Series borings were drilled along the alignment of the original ESWS pipelines at the locations shown on figure 2.5-30. Due to corrosion the original underground ESWS piping was replaced and rerouted. The stratigraphic units which occur along the pipeline routes and the pipe invert grades are shown in Figures 2.5-47 and 2.5-51. The original ESWS borings are retained because of similarity to the new ESWS routing and to maintain site geologic information. Detailed descriptions of substructure materials are provided on the logs of borings (Figures 2.5-36hh through 2.5-36zzzz). Routes for both the discharge and intake lines are parallel from the plant to junctions southwest and northwest of the ESWS pumphouse (figure 2.5-98). As seen on Figure 2.5-47, the invert of the intake pipeline is founded primarily in clay with CLSM and residual soil used as backfill.

2.5-199 Rev. 28 WOLF CREEK The discharge pipeline lies parallel to the intake pipeline and is founded in the same material as the intake piping from the power block to the ESWS pumphouse, between boring locations B-105 and B-140. From that location routed north and east around the cooling lake and then south to an access vault, the discharge pipeline is founded in clay with CLSM and residual soil used as backfill. From access vault AV6 to the discharge location the discharge pipelie is encased in tremie concrete and mainly founded in silty clay near the surface of the lake bed and finally the discharge point is founded in exposed Leavenworth Limestone member (Figures 2.5-98, 2.5-47, and 2.5-51). Between Borings ESW-1 and ESW-5, B-101 and B-102, and in the vicinity of ESW-8, the basal sandstone unit of the Jackson Park Shale Member overlies the Heumader Shale Member. Traces of very highly weathered Jackson Park Shale were found within the soil samples from most of the other borings along the intake route. At locations where a full section of the Heumader Shale Member is present, its average thickness is approximately 30 feet. From near boring B-107 following the ESWS discharge route to B-148. The Heumader Shale Member is the surface bedrock unit. The Plattsmouth Limestone Member is the surface bedrock unit between B-148 and the ESWS Discharge Point. Along the pipeline alignments, the average core recovery was 87 percent, and the average RQD was 65 percent in the Heumader Shale Member. The corresponding values for the Plattsmouth Limestone Member were 96 and 46 percent, respectively. The general characteristics of the overburden and rock units encountered during the excavation for the ESWS pipelines are discussed in USAR Sections 2.5.1.2.2.2, 2.5.4.2.2.1, and 2.5.4.2.2.2. No significant variations in these properties were noted along the ESWS pipeline alignments. Structure contour maps of the Plattsmouth, Leavenworth, and Toronto Limestone members along the pipeline alignments are provided in Figures 2.5-58 through 2.5-61. Soil thickness maps of the Category I area and plant site are shown on Figures 2.5-38 and 2.5-39, respectively. The natural slopes along the pipeline routes are generally flatter than one vertical to ten horizontal. USAR Section 2.5.5 discusses the slope stability for the UHS. Dynamic properties for the pipe bedding materials are shown on Figure 2.5-97c and 2.5-97e. These properties were obtained as discussed in USAR Section 2.5.4.2.2.1.

2.5-200 Rev. 28 WOLF CREEK 2.5.4.2.2.4 Materials Underlying the ESWS Discharge Point One boring, B-130, was drilled nearest the location of the ESWS discharge point at the locations shown on Figure 2.5-98 Sht. 2. A geologic profile is presented on Figure 2.5-51. Detailed descriptions of subsurface materials are provided on the logs of borings (Figures 2.5-36eee, 2.5-36fff, 2.5-36ggg, and 2.5-36cccc). Figure 2.5-30 shows the topography to be relatively flat at the site of the ESWS Discharge Point. The present ground surface elevation Is approximately 1,069 feet at the discharge point. The soil in this area is generally less than 9 feet in thickness. It consists of about 1.5 feet of organic silty clay that is underlain by residual medium plastic clays developed by weathering of the underlying Plattsmouth Limestone Member. The moisture content of these soils is quite high and the area is very poorly drained. The general characteristics of the rock units that underlie the ESWS Discharge Point are described in USAR Section 2.5.1.2.2.2 and in 2.5.4.2.2.1 for the plant site. Structure contour maps of the near-surface Plattsmouth, Leavenworth, and Toronto Limestone Members are presented on Figures 2.5-58, 2.5-60, and 2.5-61, respectively. As shown on Figures 2.5-23 and 2.5-51, the uppermost bedrock unit is the Plattsmouth Limestone Member. This unit is slightly weathered and has an average core recovery of 93 percent and an average RQD of 69 percent. It extends in depth to an elevation of about 1,058 feet and is approximately 12 feet in thickness. Underlying the Plattsmouth Limestone Member is the Heebner Shale Member which extends in depth to about elevation 1,054 feet. The upper portion of the unit is moderately weathered and the lower portion is essentially unweathered. The thin Leavenworth Limestone Member separates the Heebner Shale Member and the Synderville Shale Member, which extends in depth to about elevation 1,042 feet. An average core recovery of 95 percent and an average RQD of 55 percent were obtained for the combined Heebner Shale, Leavenworth Limestone, and Synderville Shale Members in the three borings at the original ESWS discharge structure. This information is applicable to the new discharge point due the close proximity of its location. Boring B-115, drilled for the ESWS below ground pipe replacement project, provided similar results as well. A description of the lower stratigraphic units is provided on the log of Boring B-130 (Figure 2.5-36oooo). 2.5.4.2.2.5 Materials Underlying the UHS

The subsurface conditions at the UHS are discussed in USAR Section 2.5.6.2.

2.5-201 Rev. 28 WOLF CREEK 2.5.4.3 Exploration This section presents a complete discussion of the techniques and results of the field explorations and laboratory tests used in determining the properties of the soil and rock units at the site of the Wolf Creek Generating Station, Unit No. 1. The soil and rock properties which are presented in this section have been determined by the boring program, field tests, geophysical explorations, and laboratory tests. 2.5.4.3.1 Test Borings and Test Pits

Twenty-one widely spaced geological borings were drilled at the site by the Hemphill Drilling Company under the supervision of Dames & Moore. An additional 37 borings were drilled in the area of the plant site, and 57 borings were drilled in the ESWS area. These borings were drilled by the Hemphill Corporation and by Raymond International, Inc., under the supervision of Dames & Moore. The boring program was performed from May 1973 to October 1974. To support replacement of the ESW below ground piping due to corrosion of the original piping, 40 borings were drilled in the area of the new ESWS area. The borings were drilled by Fugro Consultants Inc. under te supervision of Bechtel Power Corporation. Additional borings were drilled in non-Category I components (see USAR Section 2.5.1.2.2). The purpose of the borings was to determine the details of the lithology, stratigraphy, structure, physical properties, and ground-water characteristics of the subsurface strata. The borings ranged in depth from 2.5 to 453 feet below the ground surface and were drilled at the locations shown on the various plot plans (Figures 2.5-28, 2.5-30, 2.5-31, and 2.5-98 Sht. 2). In addition, 16 test pits were excavated in the area of the UHS and at the plant site in order to visually inspect the in situ soil and to obtain representative bulk samples with which to determine the compaction characteristics of the various soil types in the area. The locations of these test pits are shown on Figures 2.5-30 and 2.5-31. An additional eight test pits were excavated in the area of the new ESWS piping. These test pits are shown on figure 2.5-98 Sht. 2. Eight roller bit borings were also drilled along the axis of the UHS dam to help define the boundaries of the buried alluvial channel. The location of these borings is shown on Figure 2.5-30.

The borings were advanced using truck-mounted and trackmounted rotary drill rigs. Water was used for fluid circulation during the drilling operation. The holes were cased to the top of the bedrock before the coring operations commenced. The soil and rock units encountered during the drilling operations are described in the boring logs (Figures 2.5-34a through 2.5-34u for the B-Series borings; Figures 2.5-35a through 2.5-35kk for the P-Series borings; Figures 2.5-36a through 2.5-36zzzz for the HS-, ESW- and B-100-Series borings; and Figures 2.5-37a through 2.5-37g for the test pits). Figure 2.5-32 presents an explanation of the symbols and terminology used on the logs.

2.5-202 Rev. 28 WOLF CREEK Several methods for obtaining soil samples were employed. Undisturbed soil samples were obtained using a 3-inch Shelby tube and by drilling using a Denison, double-tube core barrel with a 2-3/8 inch I.D. and 3 1/2 inch 0.D..Soil samples were also obtained by using the Dames & Moore Type U Sampler which is approximately 3.25 inches in 0.D. and approximately 2.42 inches in I.D.Disturbed soil samples were obtained utilizing a standard split spoon sampler, which has an 0.D. of approximately 2 inches and an I.D. of approximately 1 3/8 inches.The Shelby tubes were advanced by hydraulic pushing. Immediately after withdrawing the Shelby tube from the borehole, the open ends of the Shelby tube were sealed with paraffin to preserve the natural moisture content of the sample. The samples were shipped to the laboratory in an upright position and remained sealed until laboratory testing was initiated. Undisturbed samples obtained with the Denison, double-tube, core barrel were contained in 2-foot liners, which were located in the inner, nonrotating barrels. Immediately after sampling, the liners containing the undisturbed samples were sealed at both ends with paraffin to preserve the moisture content of the samples. These samples were shipped to the laboratory bottom side up in a vertical position. The samples remained sealed until they were tested in the laboratory.The Dames & Moore Sampler was advanced by driving with a 340-pound hammer falling 24 inches. Samples extracted with the Dames & Moore Sampler were packaged in plastic bags and placed in plastic containers. The samples were transported in cushioned containers fabricated from metal or heavy fiber-board.Some samples were also obtained using the Dames & Moore Sampler by fitting a thin wall extension on the end of the bit and pushing the sampler hydraulically. The thin wall extension has an I.D. of approximately 2 1/2 inches and is 6 inches long. Samples obtained by this latter method were stored and transported in the same method as other samples obtained with the Dames & Moore Sampler. The Standard Penetration Test procedure was utilized in obtaining the split spoon samples. To provide Standard Penetration Test data and soil samples for soil classification, a 2-inch, 0.D., split spoon sampler was advanced by dropping a 140-pound hammer 30 inches. The disturbed samples obtained from the split spoon sampler were stored in sealed glass jars. Bulk samples obtained from the test pits were sealed in large plastic bags. These samples were then shipped to the laboratory for testing. The soil samples extracted from the borings were examined to determine their geologic significance and classified in the field in accordance with the Unified Soil Classification System (Figure 2.5-203 Rev. 0 WOLF CREEK 2.5-33). Soils engineers verified field classifications in the laboratory by visual examination and testing. Results of index property tests were used to confirm these classifications. Rock was cored utilizing NX-wireline core barrels 10 feet in length. Rock core obtained by the drilling was approximately 2 inches in diameter.Representative samples of each shale member were sealed in plastic bags and plastic containers for laboratory testing. The lithology, physical characteristics, recovery, and RQD of the core were logged in the field.Stratigraphic correlation of rock units and checking of the field logs were completed in a field office in New Strawn, Kansas. 2.5.4.3.2 Ground-water Explorations 2.5.4.3.2.1 Water Pressure Tests To help evaluate the mass permeability and transmissivities of the subsurface formations, water pressure testing was performed in many of the borings in the site area under the supervision of Dames & Moore personnel during the period from May 1973 through January 1974. Double-inflatable packers with packer spacings ranging from 4.5 to 13.0 feet were used. The interval between the packers consisted of perforated pipe. The very low permeabilities encountered in the strata at the site required modification of the pressure testing apparatus from a pump/flow gage system to a calibrated bottle/nitrogen system.The calibrated bottle/ nitrogen system was much more accurate in the measurement of small water losses. Tests were performed at the effective overburden pressure and at 0.75 times the effective pressure. The effective pressure at the center of the packer was 1 psi per foot of depth from ground surface to the center of the zone being tested. The results of the test are presented as permeability in cm/sec, k, which is computed according to the formula (Reference 78): k = Q2LH log Lre [2.5-19] where: H = Total head in feet; Q = Water loss in gpm; L = Interval distance between packers in feet; and r = Radius of borehole in inches. 2.5-204 Rev. 0 WOLF CREEK The information was plotted on a nomograph that converted the final results to cm/sec. The results are presented in USAR Section 2.4.13, Tables 2.4-34 and 2.5-34, and on the boring logs. 2.5.4.3.2.2 Piezometers To determine the ground-water conditions at the site, 92 piezometers were installed in the boreholes under the supervision of Dames & Moore between July 1973 to January 1974. The piezometers consisted of 0.75-inch, I.D., PVC pipe, perforated throughout the length of the zone being monitored. Gravel was placed around the piezometers in the monitored zones, and the zones were sealed above and below with bentonite pellets or cement grout. The remainder of the borehole was filled with cement grout or gravel. When more than one piezometer was installed in a boring, this procedure was repeated for each piezometer. A summary of the depths at which piezometers were installed, the zones monitored, and the water levels recorded are presented in Table 2.4-

32. The locations of the piezometers are shown on Figures 2.4-54 and 2.4-55. 2.5.4.3.2.3 Field Permeameter Tests Field permeameter tests were conducted in the piezometers by Dames & Moore.The results of the tests are shown in Tables 2.4-34 and 2.5-34. The methods of testing were as follows: a. Falling Head Permeameter Tests
1. Initial water level readings were recorded to determine the static water level before testing; 2. The piezometer was rapidly filled to the top with water. The volumes of water used and time for filling were recorded; 3. Over a period of 20 to 50 minutes, the rate that the water level dropped in the piezometer was recorded by determining the water level readings at even-minute intervals; 4. Water levels in other piezometers within the boring were rechecked to determine if the piezometers were properly sealed; and 2.5-205 Rev. 0 WOLF CREEK 5. The field observations permitted calculation of the permeabilities of the zones monitored by each piezometer. b. Constant Head Permeameter Tests (Modified) 1. Initial static water levels in the piezometers were recorded; 2. The piezometer was filled with water. The volume of water required for filling and the filling time were recorded; 3. The water level in the piezometer was recorded versus time to determine the rate of outflow of water into the interval tested; 4. The piezometer was refilled with water to the same level as in Step 2. The amount of water used for refilling was recorded; 5. Steps 3 and 4 were repeated for a total of 20 to 50 minutes; and 6. These records enabled the calculation of the permeability of the monitored zone. 2.5.4.3.3 Geophysical Explorations The following geophysical studies were conducted in the area of the plant site and UHS: a. A seismic refraction survey was conducted to establish the compressional wave velocities of the near-surface soil and bedrock materials.

The results of this survey were used to determine the depths to the various seismic units under the site; b. An uphole compressional wave velocity study was performed to further establish the compressional wave velocities of the soil and bedrock materials; c. Uphole shear wave velocity surveys were completed to establish the shear wave velocities in near-surface soil and bedrock materials; 2.5-206 Rev. 0 WOLF CREEK d. Crosshole shear wave surveys were used to determine the shear wave velocities in the bedrock; e. Surface shear wave studies were conducted to establish shear wave velocities in the soil and shallow bedrock; f. Surface wave studies were performed to determine the types and characteristics of surface waves generated at the site; g. Ambient vibration measurements were completed to determine the predominant frequencies of ground motion of the site due to background noise levels; h. Borehole geophysical logs were run to provide detailed density values and compressional and shear wave velocities of bedrock. The locations at which the above studies were conducted are shown on Figures 2.5-98 and 2.5-99. The field work for these studies was conducted by Dames & Moore in two phases.The initial phase of activity, from June 11, 1973 to June 26, 1973, consisted of refraction surveys and compressional and shear wave studies in the plant site area. The remainder of the field work was conducted from November 12, 1973 to December 5, 1973 and consisted primarily of work in the UHS area (USAR Section 2.5.6). 2.5.4.3.3.1 Seismic Refraction Survey The seismic refraction survey was conducted along five profiles, Seismic Profile 1 through Seismic Profile 5, positioned at the locations shown on Figure 2.5-98. A total of 11,350 linear feet was profiled using refraction techniques.In addition to the above survey, a total of 2,100 linear feet of detailed seismic refraction profiling was conducted along portions of Profiles 1 through 5. This detailed profiling was conducted to establish velocity control within the near-surface weathered zone and to examine more closely any anomalous conditions encountered along Profiles 1 through 5. Seismic energy used in the refraction survey was produced by explosive charges placed in shallow, drilled holes. The energy released by detonation of the explosive charges was detected by 2.5-207 Rev. 0 WOLF CREEK vertically oriented geophones spaced at either 10-, 25-, or 50-foot intervals along the profiles. The geophones had a natural frequency of 14 Hz and were fitted with a spike to assure proper coupling with site materials. The signal detected by the geophones was input to either an SIE RS-44 refraction recording system (an SIE RA-44 seismic amplifier coupled with an SIE R-6 recording oscillograph) or an Electro-Tech Labs ER-75A-12 "Porta-Seis." Permanent seismic records were obtained on Kodak Direct Print linagraph paper or Polaroid film.2.5.4.3.3.2 Uphole Compressional Wave Velocity Surveys Compressional wave velocities were determined using uphole techniques at Borings B-4, HS-1, and HS-14. This technique provided a check against compressional wave velocities obtained from the seismic refraction survey. Small explosive charges were detonated in shallow, drilled holes located around each boring. The energy released by the explosive charges was detected by a series of geophones affixed at intervals of 25 feet to a special cable suspended in each boring. The signal detected by the geophones was recorded using the SIE refraction system. The geophone cable was raised in the boring between recordings to provide geophone intervals of 5 feet in Borings B-4 and 2.5 feet in Borings HS-1 and HS-14. Recordings were made to a total depth of 275 feet in Boring B-4, 102 feet in HS-1 and 104 feet in HS-14. 2.5.4.3.3.3 Uphole Shear Wave Velocity Surveys Shear wave velocity measurements were made in Borings B-4 and HS-1 using an uphole velocity technique. The uphole shear wave technique provides vertical travel time data that are not affected severely by velocity inversions. Two energy sources were used for the recordings made at Boring B-4. The first method consisted of impacting an 8-pound sledgehammer against a plank placed in a shallow trench. Both vertical and horizontal impacts were recorded with the horizontal impacts occurring along a tangent to the boring. The second method made use of a detonating cord set in trenches on opposite sides of the boring.Both charges were detonated simultaneously to provide horizontal ground motion around the boring in opposing directions. In recordings made at Boring HS-1, only the detonating cord source was used. Detection of the energy was accomplished using a three-component, 4.5-Hz borehole geophone (Mark Products L-1-3DS) and the SIE RS-44 refraction recording system. The position of the geophone was 2.5-208 Rev. 0 WOLF CREEK changed between each series of recordings to provide the time-depth data from which velocities were determined. 2.5.4.3.3.4 Crosshole Shear Wave Velocity Surveys Two crosshole shear wave studies were performed within the plant site and UHS areas. The studies in the plant site area made use of Borings B-4 and B-5.Borings HS-1 and HS-15 were used for this study in the UHS area. The locations for these studies are shown on Figure 2.5-98. Explosive charges were detonated in shallow, drilled holes at distances varying from 500 to 2,500 feet from Boring B-4, and at distances between 500 and 1,750 feet from Boring HS-1. The shot holes were located in line with both borings in each set used for the crosshole surveys. A three-component, 4.5-Hz borehole geophone (Mark Products L-1-3DS) was suspended at the same elevation in each borehole. Recordings were made using the SIE RS-44 system. The borehole geophones were placed at various elevations during the course of the surveys to provide representative data from the various formations encountered in the boreholes. The interval travel time between shear wave arrivals at each boring was used for shear wave velocity determinations. 2.5.4.3.3.5 Surface Shear Wave Velocity Studies Two shear wave velocity studies, designed to obtain velocity values for near-surface materials, were conducted in the vicinity of Borings B-4 and B-5 and in the area near Borings HS-1 and HS-15. The recordings made in the vicinity of Borings B-4 and B-5 used two, 4.5-Hz, three-component geophones (Mark Products L-1-3DS) coupled to the SIE RS-44 recording system. Four Sprengnether S-6000 seismometers with a natural frequency of 2 Hz, coupled with a multiple-station Sprengnether System VS-1200-4 amplifier and an Electro-Tech Labs SDW-100 recording oscillograph, were used in the vicinity of Borings HS-1 and HS-15. The oriented detectors used were placed in a profile array extending away from a shallow trench. Vertical and horizontal impacts initiated by an 8-pound sledgehammer against the sidewalls and base of the trench were recorded for each array. The horizontal impacts were made in opposing directions transverse to the detector line. Following each set of recordings, the array was extended outward to a greater distance from the energy source. Reversals of secondary transverse motion were plotted as time-distance data for each geophone. Shear wave velocities were obtained by applying best-fit line segments through this data. 2.5-209 Rev. 0 WOLF CREEK 2.5.4.3.3.6 Surface Wave Studies Recordings of surface waves generated by an explosive source were made in the plant site area and in the UHS area. Figure 2.5-98 shows the locations of these surface wave studies. Surface waves generated by detonating small explosive charges in shallow drilled holes at one end of each surface spread were detected by four, oriented, three-component, 2-Hz, Sprengnether S-6000 seismometers spaced at intervals of 100 feet. The signal detected by the seismometers was fed to the VS-1200-4 amplifier coupled with the Electro-Tech Labs SDW-100 recording oscillograph. Recordings were made of seismometer response at distances of 500 to 2,300 feet from the energy source at the plant site and at distances of 500 to 2,000 feet in the UHS area. 2.5.4.3.3.7 Ambient Vibration Measurements Measurements of the ambient background motion of the site and its response to natural motion generators are indicative of the site dynamic properties. These measurements were made in two locations as shown on Figure 2.5-98. An oriented, three-component, 2-Hz, S-6000 Sprengnether seismometer coupled to the VS-1200-4 amplifier and the Electro-Tech Labs SDW-100 recording oscillograph was utilized to record the ambient ground motion. Motion was recorded in three modes: displacement, velocity, and acceleration. In each mode, ground motion was recorded in three components (radial, vertical, and transverse).The seismograph had gain characteristics as follows: 20,000 in the displacement mode; 2,000 in the velocity mode; and 200 in the acceleration mode. 2.5.4.3.3.8 Borehole Geophysical Logging The Birdwell Division of the Seismograph Service Corporation was contracted to perform borehole geophysical logging. During the period of May through June 1973, a suite of logs consisting of gamma ray, neutron, density, three-dimensional velocity, caliper, and temperature logs was completed in Borings B-4, B-5, B-6, B-7, B-11, and B-16 (Figure 2.5-99). The results of the Birdwell logging are presented on Figures 2.5-100a through 2.5-100f. 2.5.4.4 Geophysical SurveysGeophysical investigations at the site consisted of seismic refraction surveys; compressional, shear, and surface wave surveys; and ambient vibration measurements. The studies were conducted at the following locations: 2.5-210 Rev. 0 WOLF CREEK a. Seismic refraction surveys in the plant site area (Profiles 1 and 2), in the UHS area (Profiles 4 and 5), and near the area connecting the plant site and UHS area (Profile 3); b. Uphole compressional wave velocity surveys in the plant site area (Boring B-4), in the UHS area (Boring HS-1), and near the ESWS pumphouse (HS-14); c. Shear wave velocity studies in the plant site area along Profile 2 and in the UHS area along Profile 4, including uphole and crosshole shear wave surveys, Birdwell three-dimensional velocity logging and surface shear wave studies; d. Surface wave studies in the plant site area along a north-south line through the Category I area and in the UHS area along a line normal to the UHS dam; e. Ambient vibration measurements in the plant site area at a location northwest of the Category I area and in the UHS area along the axis of the UHS dam. Figure 2.5-98 presents these locations. Survey procedures are presented in USAR Section 2.5.4.3.3 and the results are summarized below. 2.5.4.4.1 Seismic Refraction Surveys Compressional wave velocities of the various subsurface layers under the site were evaluated by plotting the first arrival times of the seismic energy at each geophone location against the distance of each geophone from the source of the seismic energy. Compressional wave velocity computations and layer determinations were made by applying best-fit line segments through the time-distance data. Corrections for shot depth and offset were applied to each record. Topographic corrections were applied to the data when applicable. Time-distance plots for Profiles 1 through 5 are presented on Figures 2.5-101a through 2.5-101e. Time-distance plots of the detailed profiling are presented on Figures 2.5-101f and 2.5-101g. Computations of depths to identifiable velocity interfaces were made using time-intercept and/or critical distance methods at each shot point. A variation of the time-intercept method for a shot buried in various layers was followed for depth computations when the shot occurred at or near a refracting interface (Reference 139). 2.5-211 Rev. 0 WOLF CREEK The interpretive cross sections shown below each of the time-distance plots represent a compilation of all available data, both from the refraction data itself and from all available boring information. In addition to the information from the borings, information from the shot hole drillers was utilized in interpreting the refraction data. The refraction studies indicate that four basic velocity units are present at most of the areas investigated. A thin, near-surface, low velocity zone, indicated by velocities in the range of 700 to 1,800 fps, is representative of the residual soil zone and alluvial soil areas. A second velocity unit, indicated by velocities in the range of 2,000 to 4,000 fps, represents weathered bedrock and unsaturated shales. This second unit generally consists of the Jackson Park Member and the Heumader Member (Figure 2.5-41). A higher velocity unit, represented by velocities ranging from 5,000 to 8,000 fps, indicates saturated shales. At the plant site, this unit generally corresponds to the Heumader Shale Member. This velocity unit is not encountered at some locations at the UHS where the Heumader Shale Member has been eroded away. The highest velocity unit recognized, having velocities in the range of 11,000 to 14,700 fps, corresponds to the various limestone units (the Plattsmouth Limestone, Leavenworth Limestone, and Toronto Limestone Members) found at the site.Between the top of the Plattsmouth Limestone Member and the base of the Toronto Limestone Member, five separate lithologic units are present throughout most of the plant and UHS area. The three limestone members, the Plattsmouth, Leavenworth, and the Toronto Limestone Members, are separated by two shale members, the Heebner and Snyderville Shale members. The occurrence of these shale members beneath limestone members caused velocity inversions that prevented the determination of additional velocity and depth information from the refraction studies. Some of the apparent velocities, such as along Profile 1 from Stations 0+00 to 11+50 and along Profile 2, appear to be anomalous when comparisons of varying shot distances are made. The apparent velocities along the segment of Profile 1 decrease from a high of 17,300 fps for near-shot distances to 12,750 fps for long-shot distances. The amplitude of the first arrival energy decreased significantly with increasing shot-to-detector distances. Identification of real first arrival times was impossible, and the picks had to be made on the first trough of the refracted wave train. An additional arrival, which is interpreted to be a wave guide (channel-wave) arrival, apparently occurs within the limestone section. These arrivals were indicated on the refraction records as secondary, relatively high frequency waves with an apparent velocity between 8,000 and 12,000 fps. These channel-waves were of high amplitude and arrived 2.5-212 Rev. 0 WOLF CREEK at the same time as the first trough of the real refracted head-wave. This produced interference between the two wave systems and resulted in the observed apparent velocities being indicative of true head-wave arrivals at the short, shot-to-detector distances and channel-wave arrivals at the longer shot-to-detector distances. Thus, the apparent velocities are slower for longer shot-point-to-detector distances than for the nearer shot distances. The seismic refraction profiling conducted along Profile 4 indicates the existence of an additional, possibly anomalous, zone from Stations 4+95 to 12+05 and from 14+95 to 18+55. An initial 25-foot geophone spacing employed for the survey along Seismic Profile 4 did not permit detailed evaluation of conditions within those areas. To provide the necessary detail, a 10-foot spacing was used. Adjustments to the data for topography and the incorporation of drilling information permitted a thorough evaluation of these areas. The results obtained indicate that these anomalous velocity plots can be attributed to erosion and thinning or thickening of refracting members along the segment from Stations 4+95 to 12+05 (Figure 2.5-101f). A monoclinal flexure of the refracting members is indicated between Stations 14+95 and 18+55 (Figure 2.5-101g). The velocities shown on the time-distance plot indicate this flexure and the loss of the Leavenworth Member to the south of the fold. Field reconnaissance and the results of the boring program have also confirmed the presence of this flexure. No reliable determination of the depth to the top of the high velocity refractor, the Plattsmouth Limestone Member, can be made along the north-northeastern portion of Profile 2 (Figure 2.5-101b). The occurrence of near-surface, well-cemented, calcareous sands and carbonate layers within the Jackson Park Shale Member cause anomalous refraction information to be generated. Use of the data presented on the time-distance plots for this portion of Profile 2 to determine layer velocities and depths results in computed depths greater than those determined by drilling and in shale velocities higher than observed elsewhere. The Jackson Park Member is interpreted as the source of the 7,700- to 8,100-fps layer with no underlying shale velocity indicated. Velocity determinations only for the Plattsmouth Limestone Member were made for this portion of the profile, and these velocity values are in agreement with other observed limestone velocities. The depression of the top of the Plattsmouth Limestone Member, as determined by refraction studies along Profile 1, Stations 2+00 to 8+00 (Figure 2.5-101a), is not considered to be a representation of the actual top of that member. The depression is considered to be related to a lowering of the water table in this vicinity. 2.5-213 Rev. 0 WOLF CREEK Boring logs from Borings P-7 and P-26 indicate that the top of the Plattsmouth Member is above the velocity interface shown along Profile 1 at this point. Several apparent, total travel time mis-ties on reversed profiles, such as exhibited along Profile 4 from Stations 6+95 to 8+05, result from topographic and weathering corrections applied to the field data (Figure 2.5-101f). In these cases, the corrections were made to each shot point elevation rather than to a common datum. Corrections applied to the time-distance data for Profile 3 were made using elevation 1,081 as datum. Adjustments for elevation were made to the time-distance data for Profile 2 to remove effects caused by the topographic low occurring at Station 18+50. No additional indications of possible anomalous conditions are encountered along the remainder of the refraction profiles. The computed depths of velocity units along the refraction profiles compare very favorably with the depths that various members are found in borings at the site. 2.5.4.4.2 Uphole Compressional Wave Velocity Surveys The uphole compressional wave velocity survey data from Borings B-4, HS-1, and HS-14 were evaluated by plotting the travel time from the shot to each geophone against depth in each boring. The travel times were corrected to a vertical path. The resulting time-depth plots are presented in Figures 2.5-102a through 2.5-102c.The occurrence of velocity inversions is confirmed by the uphole compressional wave velocity surveys conducted in Borings B-4, HS-1, and HS-14. The results of these surveys (Figures 2.5-102a through 2.5-102c) confirm the velocities determined by the refraction studies. Additional units encountered on the uphole surveys are primarily shale members below the Toronto Limestone Member having velocities of 6,800 to 7,800 fps. The determinations of velocities ranging from 10,000 to 14,000 fps correspond to the occurrence of the Plattsmouth and Toronto Limestone Members. The shale members occurring between the Plattsmouth and Toronto members are indicated as a single, lower velocity unit by the slowdown in travel times measured at those depths. The uphole survey in Boring B-4 indicates the presence of a high velocity unit, approximately 18,000 fps, at a depth of approximately 255 feet. A Birdwell, three-dimensional log was run in this boring, and the integrated travel time from this log is also plotted on Figure 2.5-102a. The data from this three-dimensional survey indicates that the above-mentioned velocity of approximately 18,000 fps is spurious. The low 2,625-fps velocity 2.5-214 Rev. 0 WOLF CREEK encountered in the upper 33 feet of Boring HS-14 represents the unsaturated Jackson Park and Heumader Shale members. 2.5.4.4.3 Shear Wave Velocity Surveys The uphole shear wave survey and the surface shear wave survey are considered the best methods for obtaining these shear wave velocities for the subsurface conditions encountered. Due to the occurrence of the Plattsmouth and Toronto Limestone Members near the surface, little useful velocity data can be discerned from the crosshole shear wave surveys conducted at both locations. Shear wave velocity values for the members occurring between the top of the Plattsmouth Limestone and base of the Toronto Limestone cannot be established individually for each member. The five separate lithologic units encountered within this 45- to 46-foot thick interval are each less than 20 feet in thickness. Due to these thicknesses and the velocity contrasts between the limestones and shales, shear wave velocities for each of the individual members were not measured. Crosshole and uphole shear wave results, however, do indicate a velocity of 6,000 to 6,200 fps for these strata. This shear wave velocity range is considered to be representative of the limestone members. Actual shear wave arrivals on the Birdwell three-dimensional logs were observed only within the Plattsmouth, Toronto, Haskell, and South Bend Members. All other shear wave velocities reported by Birdwell were computed from the compressional wave velocity, and the bulk density was computed by an empirical formula. A comparison of compressional and shear wave velocity values obtained from the Birdwell three-dimensional logs and from the other geophysical surveys shows very similar results in all units with the exception of the Jackson Park and Heumader Shale Members. The compressional wave velocity results for those members are in close agreement; however, the shear wave velocity values differ significantly. The 1,400- to 1,500-fps shear wave velocity determined from the surface shear wave surveys are considered more reliable than the Birdwell results for these members because of the empirical nature of the Birdwell shear wave formula. 2.5.4.4.4 Surface Wave Surveys Surface wave types and characteristics determined by the surveys conducted in the plant site and UHS area are summarized in Table 2.5-49. The values presented are indicative of surface waves generated by a small explosive source.Particle-motion analysis indicated that the M1 and M2 type Rayleigh waves are most clearly defined. Indications of Love wave motion are not as well developed. The results obtained are presented in Table 2.5-49. 2.5-215 Rev. 0 WOLF CREEK Examination of surface wave arrivals recorded during the crosshole surveys indicate the possibility of frequencies lower than those reported from the surface wave records. A Rayleigh wave with a frequency content in the range of 5 to 7 Hz, in addition to the 11- to 20-Hz range observed on the surface wave records, is indicated on the records. Possible shear wave arrivals noted on the surface wave records yield velocities in the range of 6,000 to 7,000 fps. These velocities may be indicative of shear arrivals through the Plattsmouth or Toronto Limestone Members. First arrival energy observed on surface wave records showed velocities in the range of 10,000 to 12,000 fps. Particle motion indicated on these records was reversed from the motion that would be anticipated for refracted head-wave arrivals. The velocities and observed particle motion is interpreted to be the result of the channel-wave system previously discussed in USAR Section 2.5.4.4.1.2.5.4.4.5 Ambient Ground Motion Surveys The results of the ambient vibration measurements are presented in Table 2.5-50. No significant frequency content was noted on the ambient records. The inclusion of motion values during operation of a bulldozer at a distance of approximately 750 feet from the recording site is provided to contrast the conditions displayed on the recordings taken at the plant site and in the UHS area when activity was at a minimum 2.5.4.4.6 Summary of Results The summary of geophysical properties of subsurface materials at the plant site are presented in Table 2.5-46 and in Table 2.5-51 for the UHS. The values presented in these tables are considered to be the best representative values for the materials at the plant and UHS sites. The velocity values determined by all of the various methods are in agreement, except for the variances previously discussed. Compressional and shear wave velocity values that could not be determined by other site geophysical studies are based on the Birdwell Elastic Property Logs for Borings B-4, B-5, and B-11 (Figures 2.5-100a through 2.5-100f). 2.5.4.5 Excavations and Backfill2.5.4.5.1 Plant Site The topography at the plant site was generally flat with ground elevations ranging from Elevation 1,102 to 1,109 feet. Because of 2.5-216 Rev. 0 WOLF CREEK the absence of strong relief, no major grading was required to achieve the final grade of 1,099.5 in the plant area. Quality assurance was performed according to Sargent & Lundy specifications and is discussed in USAR Section 2.5.4.5.5.2.5.4.5.1.1 Excavations All excavations in the Heumader Shale at the plant site were conducted with conventional excavation equipment, except for minor blasting required in the circulating water intake and discharge trenches, reactor building, and the auxiliary building areas. All excavations in the Plattsmouth Limestone required blasting. Blasting was monitored (USAR Section 2.5.4.13), and the results of the blast monitoring program are presented in the Dames & Moore blast evaluation report (Reference 71). No blasts were considered to have generated particle velocities that would prove damaging to the foundations. Slopes greater than 20 feet in height were generally cut at two horizontal to one vertical, while slopes less than 20 feet high were cut at one horizontal to one vertical. Slopes below Elevation 1,072 were cut vertical. An excavation plan is shown on Figure 2.5-103. Profiles of the power block excavation are shown on Figure 2.5-104. 2.5.4.5.1.2 Dewatering No ground-water accumulation due to seepage was ever recorded; however, water accumulation from precipitation was significant at times. Water accumulation in the excavations was removed by sump pumps. The foundation surfaces in the shale member were protected by application of gunite and therefore were not exposed to cooled water. 2.5.4.5.1.3 Protection of Exposed Surfaces After excavation, vertical surfaces were protected by application of gunite, while horizontal surfaces were covered with a minimum 6-inch thick concrete mud mat to preserve the integrity of the foundation material while the foundation was being constructed. Excavation slopes were also protected when expected to be exposed for long periods of time. Application of gunite was conducted according to Sargent & Lundy specifications. The mud mats and gunite were placed only after thorough cleaning with compressed air. The locations of gunite protection and mud mats are shown in Figure 2.5-105c. 2.5-217 Rev. 0 WOLF CREEK 2.5.4.5.1.4 Inspection and Mapping The foundation excavations were carefully inspected, monitored, and mapped by experienced engineering geologists. The results of the mapping study and the inspection program are presented in Dames & Moore final reports (Reference 72 and 74). General features are discussed in USAR Section 2.5.1.2.4. 2.5.4.5.1.5 Backfill The locations of lean concrete fill, granular fill, and cohesive fill are shown on Figures 2.5-105a, 2.5-105b, and 2.5-105c, respectively. Cohesive fill was used as backfill only, while grandular fill was used as both structural fill and backfill. Sources for structural granular fill and backfill were crushed limestone from off-site quarries in the Plattsmouth Member Limestone.Compaction and placement data will be presented upon completion of the fill and back-fill operation. All fill and backfill were compacted and tested according to the requirements outlined in Sargent and Lundy's specifications for sitework, miscellaneous sitework, and earthwork testing. A summary of the results of field density and moisture content tests used for quality control during construction of structural fill under and backfill around Category I structures is provided on Figures 2.5-105d through 2.5-105v. 2.5.4.5.1.5.1 Material Specifications and Placement Criteria 2.5.4.5.1.5.1.1 Granular Fill Granular fill used for support of Category I structures consisted of well graded, crushed limestone from approved sources. The material was required to meet the following specifications: SIEVE SIZE ALLOWABLE RANGE (PERCENTAGE PASSING)2 in. ( 50 mm) 100 1-1/2 in. ( 37.5 mm) 90-100 1 in. ( 25.0 mm) 80-100 3/4 in. ( 19.0 mm) 70-90 3/8 in. ( 9.5 mm) 52-70 No. 4 4.75 mm) 37-53 No. 10 2.0 mm) 22-37 No. 30 (600 micron) 10-23 No. 40 (425 micron) 7-20 No. 200 ( 75 micron) 0-10 2.5-218 Rev. 0 WOLF CREEK Granular fill used in Category I areas was of the same specifications as above, except that 15 percent passing number 200 sieve was allowed. The material was placed in lifts not exceeding 12 inches and compacted to 95 percent of the maximum density as determined by ASTM D 1557-70. 2.5.4.5.1.5.1.2 Cohesive Fill Cohesive fill consisted of inorganic cohesive soils obtained from onsite excavations. Approval of such material was done at the site by the resident geotechnical engineer. Cohesive fill was placed in lifts not exceeding 8 inches and compacted to 95 percent of the maximum density as determined by ASTM D 698-70. The specification for the cohesive backfill material is provided in USAR Sections 301.2, 301.3 and 301.4 of Table 2.5-37a. 2.5.4.5.1.5.1.3 Bedding Material The project specifications allowed six different types of granular material to be used for bedding material for support of pipelines. These materials range from gravel with gradations confined within 3/4 inch to the number 8 sieve, to well-graded sands with 2 to 10 percent passing the number 100 sieve. The pipe bedding was placed in lifts not exceeding six inches and compacted to a relative density of not less than 80 percent as determined by ASTM D 2049-69. 2.5.4.5.1.5.1.4 Lean Concrete Fill Lean concrete fill consisted of granular material stabilized with portland cement in order to achieve a minimum 28-day strength of 2,000 psi. 2.5.4.5.2 ESWS Pumphouse The location of the ESWS Pumphouse is shown on Figure 2.5-30. The pumphouse is founded partly in the Plattsmouth Limestone Member at Elevation 1,052, and partly on granular backfill at approximately Elevation 1,088. 2.5.4.5.2.1 Excavations All excavations at the ESWS Pumphouse were performed with conventional excavation equipment. The excavation slopes were cut at a one horizontal to one vertical slope. 2.5-219 Rev. 0 WOLF CREEK 2.5.4.5.2.2 Dewatering No accumulation of water from ground-water seepage was observed; however, removal of water from precipitation runoff was necessary at times. Dewatering was performed using sump pumps.

2.5.4.5.2.3 Protection of Exposed Surfaces No special measures, such as application of gunite or placement of mud mats, were necessary to protect exposed surfaces.

2.5.4.5.2.4 Inspection and Mapping The foundation excavations were carefully monitored, inspected, and mapped by experienced engineering geologists. The results of the mapping study and the inspection program are presented in References 72 and 74). Specific features are described in USAR Section 2.5.1.2.4. 2.5.4.5.2.5 Backfill Granular structural fill and backfill is used at the location of the ESWS pumphouse. The material is placed and compacted according to Sargent and Lundy specifications (see USAR Section 2.5.4.5.1.5). 2.5.4.5.3 Category I Pipelines and Electrical Ducts

The pipeline routes are shown on Figure 2.5-98. The invert elevation of the ESWS intake pipe varies from 1093.5 at the plant interface to 1091.5 at the ESWS pumphouse. The ESWS discharge line invert elevation varies from 1093.5 at the plant interface to 1065 at the ESWS discharge point. The electrical ducts are placed next to the pipes until the pumphouse. Consequently, the pipes and ducts are founded in both the Heumader Shale Member and Plattsmouth Limestone Member. 2.5.4.5.3.1 Excavations

The excavations for the ESW pipeline and electrical ducts were done by conventional excavation equipment. 50 blasting shots were required to allow excavation in the Plattsmouth Limestone for the discharge branch of the ESW pipelines. Blasting was monitored to assure that specified vibration limits were not exceeded for the in-place concrete, as described in USAR Section 2.5.4.13.1. Excavation slopes were cut at a slope of one vertical to one horizontal. Replacement ESW pipelines were installed using conventional excavation equipment. However no blasting was performed for the replacement pipeline excavation.

2.5-220 Rev. 28 WOLF CREEK 2.5.4.5.3.2 Dewatering The excavations for the ESWS pipelines and electrical ducts required only the removal of water accumulated from precipitation runoff. Northeast of the plant the ESW piping crosses beneath the lake. Dikes were installed and these areas were dewatered prior to excavation for the piping. 2.5.4.5.3.3 Protection of Exposed Surfaces Because of the temporary nature of the excavation, protective coating of the exposed Heumader Shale Member was not required.

2.5.4.5.3.4 Inspection and Mapping The excavations for the ESWS pipeline and electrical ducts were monitored, inspected, and mapped by experienced engineering geologists. The results of the mapping study and the inspection program are presented in Dames & Moore final reports (References 72 and 74). The excavations for the new ESWS piping are presented in the Fugro final report (Reference 354). General features are discussed in USAR Section 2.5.1.2.4.

2.5.4.5.3.5 Backfill The ESWS pipelines were primarily placed on controlled low strength material (CLSM) as bedding. CLSM was also used as backfill to a point 12 inches above the pipeline crest elevation. From CLSM above the crest to the surface, cohesive fill was used. A portion of the discharge piping from access vault AV6 to the discharge point was incased in tremie concrete to 24" above the pipeline crest elevation. The electrical ducts were encased in concrete. In some areas the concrete encasement was poured against in-situ materials; in other areas 12 inches of granular bedding material was placed between the encasement and any cohesive fill material at the sides and bottom of the encasement. Cohesive material was used as backfill above the encasement. On the west side of the Control Building and Diesel Generator Building extending west to the road, south to the southwest corner of the Diesel Generator Building and 20' north of the ESW MH-1, approximately 12 inches of the cohesive fill has been removed and replaced of AB-3 crushed rock. The backfill materials were placed, compacted, and tested according to Sargent and Lundy specifications (USAR Section 2.5.4.5.1.5). Details of the different types of backfill and bedding materials used in the construction of ESWS seismic Category I piping and electrical duct banks are provided in Specification A-3852, (Section 301.5). This specification is reproduced on Table 2.5-54a (sheets 1 through 4). 2.5.4.5.3.6 Seismic Analysis

USAR Section 3.7(B).3.12 addresses the seismic analysis of buried piping and tunnels (such as the electrical duct banks). These components were designed to remain functional after a seismic event which is determined by the SNUPPS design envelope (USAR Table 1.2-1). The WCGS seismological design parameters are an OBE of .12g and an SSE of .2g.

2.5-221 Rev. 28 WOLF CREEK 2.5.4.5.4 ESWS Discharge Point Design considerations call for the ESWS discharge point to be founded at an elevation of about 1,062.5 feet. As shown on Figure 2.5-30, the present ground surface elevation at the discharge point is 1,070 feet. This places the foundation near the base of the Plattsmouth Limestone Member.

The excavation operations were conducted in a manner similar to that outlined in USAR Section 2.5.4.5.1 for the plant site structures. This excavation was performed in the base of the UHS excavation, which is described in USAR Section 2.5.4.5.5.

The plans and typical cross-sections of the excavation limits, backfill and fill materials for the ESWS discharge point are shown in Figures 2.5-105 and 2.5-105z. 2.5.4.5.5 UHS Reservoir 2.5.4.5.5.1 Dewatering The excavation for UHS Reservoir required only the removal of water accumulated from precipitation runoff. 2.5.4.5.6 Quality Assurance and Quality Control Quality control and quality assurance organizations at the site performed the inspection and monitoring functions necessary to insure compliance with the project specifications and provided documentation to support that compliance. Quality control personnel continuously monitored the fill and backfill operations. The prepared subgrade was inspected immediately before placement of fill and backfill materials was initiated and the surface of each lift was inspected for contamination before succeeding lifts were placed. In-place moisture content and density determinations were performed in accordance with rigid frequency requirements given in the project specifications. The in-place moisture and density tests were performed to assure compliance with the density and compaction moisture content criteria given in the specifications. 2.5.4.6 Ground-Water Conditions A detailed discussion of the ground-water conditions at the Wolf Creek site is presented in USAR Section 2.4.13. Hydrographs of all piezometers are shown on Figure 2.4-56, and water levels are recorded in Table 2.4-32 and 2.4-33.

2.5-222 Rev. 28 WOLF CREEK As discussed in USAR Section 2.4.13.5, water levels measured in piezometers installed in the Heumader Member, Jackson Park Member, and the overburden are generally within about 5 feet of the ground surface; however, some seasonal variations are noted. The shallow water table in the weathered bedrock and soil reflects the amount and frequency of precipitation and is perched on the underlying, unweathered bedrock. The drop in head from the Heumader to the Plattsmouth indicates a downward gradient from the ground surface to the Plattsmouth Member. The water levels in piezometers installed in the Toronto Member are lower than those for the Plattsmouth Member. Uplift pressures in the Heumader Member due to excess hydrostatic pressures in the Plattsmouth Member will not occur. Also uplift in excavations due to hydrostatic pressures caused by the lack of drainage will not occur. The piezometer readings indicate that the Heumader and Plattsmouth Members have sufficient vertical permeability to allow relief of excess pressure as evidenced by piezometer response to surface infiltration. The hydrostatic pressure in the Toronto Member is not high enough to affect the stability of the base of excavations (USAR Section 2.4.13.5.2). Water-soluble sulfate concentrations found in soil, rock, and ground-water samples from the Category I area, as well as neighboring water wells, are discussed in USAR Sections 2.4.13.1.1.2 and 2.5.4.1. 2.5.4.6.1 Plant Site The ground-water table at the plant site is approximately 5 feet below ground surface. Ground-water fluctuations at the site, including a continuous record of water levels in a water table well less than 1/4 mile from the site, are described in USAR Section 2.4.13.2.3.2. Basically, the shallow water table in the weathered bedrock and soil aquifer will reflect the amount and frequency of precipitation. During the operation of the plant, the shallow water table ranges from within a few feet of the ground surface to a depth of less than 10 feet when the cooling lake level is at elevation 1,087 feet. The low permeability of the soils and weathered bedrock indicated that the amount of seepage into the excavations during construction would be very low. Sump pumps located in the excavations were adequate to remove the seepage and any runoff that occurred after periods of heavy rainfall. The maximum elevation that the cooling lake may reach during the probable maximum flood (PMF) is 1,095.0 feet. Because of this high elevation during a period of flooding, saturation of the 2.5-223 Rev. 0 WOLF CREEK soils may raise the ground-water level to near the ground surface at the plant site. Thus, the design ground-water level has been conservatively assumed to be at Elevation 1,099.5 for the final plant grade. The design bases for hydrostatic loadings on subsurface portions of safety-related structures are presented in USAR Section 2.4.13.5.

2.5.4.6.2 Ultimate Heat Sink The present hydraulic gradient of the ground water in the soil and weathered bedrock slopes towards the creek bottom at the base of the UHS area. This gradient would be reestablished should the cooling lake be lost, causing water from saturated material of the lake bottom along the sides of the UHS to drain into the UHS. Results of permeameter and pressure tests show that the materials underlying the UHS are sufficiently impermeable to prevent significant leakage through its sides and base (Table 2.4-40). Thus, the UHS will provide adequate containment of water for the ESWS. Minor leakage, is balanced in part by ground-water flow into the UHS.

Normal dewatering methods, such as pumping from sumps, were used during the construction of the UHS, because the permeability was very low within the material excavated. Hydrogeologic conditions at the UHS are discussed in USAR Section 2.5.6.2.1.2.3. 2.5.4.6.3 ESWS Pumphouse The shallow ground-water level in the vicinity of the ESWS pumphouse is marked on geologic cross sections J-J' on Figure 2.5-50. The base of the ESWS pumphouse is designed such that it is placed near the base of the Plattsmouth Limestone Member. No other dewatering methods than pumping from sumps were anticipated during construction, because the permeability determined from field measurements in rock and laboratory tests on soil is very low within the strata to be excavated (Table 2.5-34). The maximum design elevation of the cooling lake is 1,095.2 feet, about 3 feet above the present ground surface at the ESWS pumphouse. The design basis for hydrostatic loadings on subsurface portions of the ESWS pumphouse is presented in USAR Sections 2.4.13.5 and 2.5.4.10.2.

2.5-224 Rev. 28 WOLF CREEK 2.5.4.6.4 Category I Pipelines Geologic cross section, Figure 2.5-47, indicates that the shallow ground-water table along the Category I pipeline routes will be in the overburden. The depth to ground water varies along the ESWS pipeline route. It is closer to ground surface near the plant site than near the ESWS pumphouse and ESWS discharge point. Laboratory permeability test values for the natural soils and field permeability test values for the Heumader Shale and Plattsmouth Limestone members are very low, which suggested that normal dewatering techniques, such as pumping from sumps, could be used during pipeline construction in these units (Table 2.5-35).

2.5.4.6.5 ESWS Discharge Pipe Encasement and Discharge Point The ESWS discharge pipe encasement and discharge point lies in the eastern arm of the UHS. Ground-water conditions are similar to those described in USAR Section 2.5.4.6.2 for the UHS. 2.5.4.7 Dynamic Soil and Rock Properties The design dynamic soil and rock properties at the site are listed in Tables 2.5-45 and 2.5-48 and Figures 2.5-97a through 2.5-97h for the plant site and ESWS pumphouse. These values are based upon the following: a. A review of all available field and laboratory tests performed during this investigation;

b. A review of the geophysical surveys performed during this investigation; and
c. A review of the latest available literature.

Descriptions and results of the field investigations and the laboratory testing program which provided background information for the investigation of the dynamic soil and rock properties are presented in USAR Sections 2.5.4.2.1 and 2.5.4.2.2. Soil structure interaction analyses are described in USAR Section 3.7.2.4. Dynamic analysis of buried pipelines and duct banks is described in Section 6.0 of Bechtel Topical Report, BC-TOP-4A. No dynamic tests were performed on the pipe bedding material, since several alternative materials were to be used as pipe bedding. The pipe bedding materials ranged in gradation from gravelly sand to medium sand with little or no fines. The shear modulus range and strain degradation curves (Figure 2.5-97c) were, therefore, chosen as those for dense sands and gravelly sands as

2.5-225 Rev. 28 WOLF CREEK presented in Reference 236. Dynamic triaxial tests on the Heumader shale were not performed due to problems with slaking during coring and high fissility of the core. Resonant column tests were attempted on some samples (Table 2.5-38), however, due to uncertainty regarding the applicability of the resonant column tests on rock samples (insufficient apparatus stiffness) and the problems with slaking and fissility of the core samples, these test results were not regarded as reliable and were only used for evaluation of a possible lower bound shear modulus. The strain degradation curves on Figure 2.5-97a and b, were, therefore, based on the geophysical test results for anchor points at 10-4 percent shear strain, the strain degradation curves for the residual soils (Figure 2.5-97f), and judgment.The shear wave velocities at the plant site, measured along an open end line using a sledgehammer for impact energy, indicated an average shear wave velocity for the Upper and Lower Heumader shales in the range of 1400 to 1500 feet per second. Since the strength of the Lower Heumader shale (being calcareous in nature) is higher than the Upper Heumader shale, the shear wave velocity in the Upper Heumader shale should be lower than that in the Lower Heumader shale. The resonant column tests on samples from the Upper Heumader shale showed shear wave velocities in the range of 500 to 800 feet per second.Considering that these tests results would be too low (insufficient testing apparatus stiffness and shale fissility), the shear wave velocity for the Upper Heumader shale at the plant site was estimated to be 1000 feet per second. Thus, since the average velocity for the Heumader shale was measured in the range of 1400 to 1500 feet per second, the shear wave velocity of the Lower Heumader shale was estimated to be 1800 feet per second. These velocities correspond to shear moduli of approximately 5 x 106 and 15 x 106 pounds per square foot for the Upper and Lower Heumader shales, respectively. The strain degradation curves for the Upper Heumader shale was selected as that of the upper bound for the residual soils at the site (Figure 2.5-97f).However, the shear modulus for the Lower Heumader shale due to its calcareous nature and higher strength, was considered less strain dependent, and a flatter strain degradation curve was estimated for this material. The compressional wave velocity in the Heumader shale near the ESWS Pumphouse (Boring HS-14, Figure 2.5-102c) was measured by an uphole compressional wave velocity survey. The average compressional wave velocity obtained was approximately 2625 feet per 2.5-226 Rev. 0 WOLF CREEK second for both the Upper and Lower Heumader shales. The Upper Heumader shale at Boring HS-14 is highly weathered and soil-like, and would, with a Poisson's ratio of 0.4 to 0.45, have a shear wave velocity in the range of 1050 to 800 feet per second. However, the Upper Heumader shale at the ESWS Pumphouse (Borings ESWS-28 and ESWS-29) is slightly less weathered than at Boring HS-14.The shear wave velocity for the Upper Heumader shale at the ESWS Pumphouse was, therefore, estimated to be the same as that at the plant site, namely 1000 feet per second. The Lower Heumader shale at the ESWS Pumphouse is also weathered to a lesser degree than at HS-14. The shear wave velocity for the Lower Heumader shale was, therefore, estimated to be 1300 feet per second, giving a shear modulus of 8 x 106 pounds per square foot at a strain of 10-4 percent and lower. This shear modulus corresponds to a Poisson's ratio of approximately 0.40 using a compressional wave velocity of 3200 feet per second. The strain degradation curves were taken as those for the Heumader shale at the plant site.Since similar materials tend to have comparable strain degradation characteristics, the strain degradation curves obtained from dynamic triaxial tests on shale samples taken in Illinois (Maquoketa Shale) are shown on Figure 2.5-97i (Carroll County Station Site Suitability, Site Safety Report Docket Nos. S50-599 and S50-600). Also shown are the strain degradation curves for the Heumader Shale from Figure 2.5-97b. The Maquoketa Shale contains the same type clay mineral constituents as the Heumader Shale, and, in addition, the fractional clay contents are within 10 to 20 percent of those of the Heumader Shale. The Atterburg Limits for both shales are between 30 and 40 percent for the Liquid Limit and between 15 and 20 percent for the Plastic Limit. No measurable swelling clay minerals were detected in either shale, and both shales exhibit similar strength properties. Figure 2.5-97i presents the mean strain degradation curve for 13 tests for the Maquoketa Shale and the test results for a sample from the Maquoketa Shale with the highest unconfined compressive strength (460 pounds per square inch as compared to 300 pounds per square inch obtained for the Lower Heumader Shale). As shown, the strain degradation characteristics for the Maquoketa Shale are quite similar to those estimated for the Heumader Shale. Therefore, the estimated strain degradation curves for the Heumader Shale are considered representative. 2.5.4.8 Liquefaction PotentialAll safety-related structures (Figure 2.5-30), except portions of the Category I pipelines, are founded on rock, concrete fill, or granular structural fill.Analysis of existing subsurface data show that all soils under the Category I pipelines are clayey with the plasticity index exceeding 10 percent and would, therefore, 2.5-227 Rev. 0 WOLF CREEK not be subject to liquefaction (Reference 82). The granular structural fill and pipe bedding are compacted to relative densities in excess of 80 percent. Analyses based on Seed and Idriss (Reference 230) indicate that no liquefaction will take place for the postulated SSE. 2.5.4.9 Earthquake Design Basis An SSE corresponding to a maximum, horizontal, seismically induced motion of 0.12 times the acceleration of gravity (0.12g) has been selected for the site. However, a seismic evaluation using the Lawrence Livermore Laboratories spectrum has been performed. This spectrum is enveloped by a Regulatory Guide 1.60 spectrum anchored at 0.15g. Discussions of the SSE and the seismic evaluation using the Lawrence Livermore Laboratories spectrum are presented in USAR Section 2.5.2.6 and Appendix 3C. However, all seismic Category I power block structures are designed for an SSE of 0.20 g maximum horizontal and vertical ground acceleration. The OBE is a minimum of one-half the ground acceleration of the selected SSE. All seismic Category I power block structures are designed for an OBE of 0.12 g maximum horizontal and vertical ground acceleration.

2.5.4.10 Static Stability 2.5.4.10.1 Plant Site All Category I and other major structures are supported on mat foundations with the exception of portions of the turbine building, which is founded on conventional spread footings. Foundation levels, dimensions, and static loads for the power block are listed in Table 2.5-52. Final plant grade is at Elevation 1,099.5. The foundations of the powerblock structures and systems are designed for the subsurface conditions that result in the most conservative foundation thickness and reinforcing steel. 2.5.4.10.1.1 Bearing Capacity Static bearing capacity of the foundation bedrock was evaluated on the basis of shear strengths and unconfined compression strengths determined from the unconfined compression tests (USAR Section 2.5.4.11). Due to slaking of the shale members samples, the values for shear strength and, hence, bearing capacity are considered to be conservative. Unconfined compression strengths obtained from the limestone samples are considered to be representative for rock with an RQD of 100 percent. The in situ strength of

2.5-228 Rev. 27 WOLF CREEK the rock mass was, therefore, adjusted by applying a reduction factor to the shear strength based on measured RQD and the effect of joints and thin shale partings. Based conservative on the lowest obtained RQD for the Plattsmouth Limestone Member (50 to 60 percent), the elastic modulus was reduced according to Deere and others (Reference 79). Assuming a linear relationship between modulus of elasticity and unconfirmed compression strength, the latter was reduced by a factor of 10. The unconfined compressive strength was reduced by an additional factor of three to consider the effect of shale partings. The ultimate bearing capacity and allowable static and dynamic bearing capacities for the plant site buildings are presented in Table 2.5-53. Factors of safety in all cases exceed three for static loads. A factor of safety in excess of two will be maintained for dynamic loading. Bearing capacities for structures resting on compacted granular fill or the Upper Heumader Shale Member were calculated using a multilayer system (Reference 264) and by neglecting the beneficial effect of the underlying Plattsmouth Limestone Member. Bearing capacity for structures resting on the Lower Heumader Shale Member were based on the strength of the shale only. Bearing capacity of the granular structural fill was based on a conservative estimate of an internal angle of friction of 40 degrees. This angle was based on Dames & Moore test results for similar material. Lean concrete fill was used at the power block area in places where it was difficult to place structural backfi11 properly or where sufficient quantities of structural backfill were unavailable during the early stages of construction.2.5.4.10.1.2 Settlement The settlement calculations are based on structures supported directly on bedrock exposed at foundation grade, except for the areas shown on Figure 2.5-105a where lean concrete was placed. Also, the fuel building and tanks, portions of the auxiliary building, and some footings in the turbine building are supported on granular structural fill. The compressibility characteristics of the foundation subgrade materials were evaluated based on the results of laboratory tests, field geophysical measurements, and published data. The results are summarized in Table 2.5-45. 2.5-229 Rev. 0 WOLF CREEK Due to slaking and softening during coring, the values for static elastic moduli for the shales were modified and evaluated on the basis of the dynamic modulus adjusted according to the measured RQD, the effect of clayey layers, shear strength from unconfined compression tests, and staticdynamic modulus ratios for similar rock obtained from available literature (Reference 279). Settlements of plant site structures were calculated based upon static loads using the methods of settlement analysis described in USAR Section 2.5.4.11.The calculated settlements for static loads at various locations are shown in Figure 2.5-106. Any reduction in effective foundation loads from buoyancy was not included. Maximum computed settlement was 1.5 inches in the fuel building.The maximum differential settlement was 1.1 inch and occurred within the fuel building. Estimated maximum and minimum settlements are presented in Table 2.5-54.Following excavation, rebound was assumed to be elastic and will amount to approximately 1/4 inch. The settlements will be elastic and will occur essentially upon application of the dead load. Differential settlements between adjacent structures were evaluated on the basis that the significant differential movements are those that occur after the connections between structures are made. It is anticipated that the differential settlements between adjacent structures will be on the order of 1/8 inch after the structures are interconnected. Settlement versus time plots for Category I structures are presented on Figures 2.5-106a through 2.5-106h. The maximum total and differential settlements measured are presented in Table 2.5-54b and Figures 2.5-106i and 2.5-106j. It appears that most of the settlements have been completed, therefore, only negligible settlements are expected in the future. The measured total and differential settlements compare well with these predicted for all structures, with only minor differences. These differences were small and well within the allowable ranges (Table 2.5-54b). The impact of these differences should, therefore, be negligible. 2.5.4.10.1.3 Earth Pressures All structures were designed to resist full hydrostatic ground-water pressure, assuming a ground-water level of Elevation 1,099.5 feet. All mat foundations were designed to resist hydrostatic uplift pressures. The earth pressure coefficients were applied using an equivalent fluid pressure for static conditions and assuming that undrained 2.5-230 Rev. 0 WOLF CREEK conditions will prevail during an earthquake. The force distribution on the walls due to the static component of the lateral earth pressure was assumed to be triangular with the resultant force acting at one-third of the height of the wall above the base. The incremental difference in forces between the static and dynamic cases will have an inverted triangular distribution with the resultant assumed to act at two-thirds of the height of the wall above the base.The dynamic lateral earth pressures are for at-rest conditions only. They will be assumed to act at one-third the height of the wall above the base. Lateral earth pressures from surcharge loading will act at midheight between the elevation of the load and the base of the wall. The earth design pressure diagrams are shown on Figure 2.5-107a & 107b for Wolf Creek site and Figure 2.5-152 for the SNUPPS design. Methods of calculation are discussed in Section 2.5.4.11.The plots of the magnitude and distribution of lateral earth and water pressures as well as dynamic lateral pressures are provided in Figures 2.5-107c through 2.5-107h. 2.5.4.10.2 ESWS Pumphouse The ESWS pumphouse is supported by a mat foundation within the lower Plattsmouth Limestone Member at an elevation of about 1,053 feet. 2.5.4.10.2.1 Bearing Capacity The static bearing capacity of the bedrock supporting the main portion of the ESWS pumphouse was evaluated on the basis of unconfined compression test results (USAR Section 2.5.4.11). Unconfined compression tests were performed on representative samples from the Plattsmouth, Leavenworth, and Toronto Limestone Members as well as the interbedded Heebner and Snyderville Shale Members; results of these tests are presented in USAR Section 2.5.4.2.2. The bearing capacity of the granular fill was estimated on an internal angle of friction of 40 degrees, which gave an ultimate bearing capacity in excess of 60,000 psf for both static and static plus dynamic loads. Since the static and static plus dynamic loads on the structural fill are 6,600 psf and approximately 12,500 psf, respectively, the factors of safety are on the order of 5 or higher for both loading conditions. From USAR Section 2.5.4.2.2, it is apparent that the bearing capacity of the lower pumphouse foundation is controlled by the strength of the Snyderville Shale Member. Calculations show that the net ultimate bearing capacity of the Snyderville is approxi- 2.5-231 Rev. 14 WOLF CREEK mately 60,000 psf when based on the mean value of all unconfined compression tests performed on the Snyderville Shale (except the high value obtained from Boring B-5, Table 2.5-32). If only tests from the UHS are used to determine the bearing capacity of the Snyderville shale, a value of close to 75,000 psf is obtained. As pointed out in USAR Section 2.5.4.10.1.1, the ultimate bearing capacity value is considered conservative because of slaking of the shale during sampling operations. Therefore, a factor of safety of approximately 10 is obtained for the static load of 6,600 psf. The static plus dynamic load is distributed over an area (the northeast corner of the structure) in a prismatic fashion with a maximum intensity at the northeast corner of 23,000 psf. Therefore, the maximum load intensity will decrease with depth and be reduced to less than one half of the maximum at the top of the Synderville shale. Therefore, the factor of safety under static plus dynamic load is on the order of 5 or greater. 2.5.4.10.2.2 Settlement

Settlement calculations for the ESWS pumphouse are based on direct founding on the Plattsmouth Limestone Member and structural fill at foundation grade. These calculations were performed in the same manner as described in USAR Section 2.5.4.10.1.2.

Employing the design gross static bearing value of 6,600 psf, the analysis showed that the maximum probable settlement of the ESWS pumphouse will be less than 0.25 inches. The maximum probable differential settlement will be less than 0.15 inches. These settlements are elastic and will occur essentially upon application of the load. 2.5.4.10.3 Category I Pipelines The locations of Category I intake and discharge pipes are provided on Figure 2.5-98 Sht. 2. The pipe invert elevations are shown on Figures 2.5-47 and 2.5-51. 2.5.4.10.3.1 Settlement

The Category I pipe inverts are established in rock and residual soil. The base of the pipeline trench consists of hard residual clay, highly to moderately weathered Heumader shale, and slightly weathered to unweathered Plattsmouth Limestone. The materials underlying the base of the pipe trenches are subjected to greater stress than previously existed only where the discharge pipe extends under the cooling lake. The cooling lake water imposed an added stress on foundation materials until the ground-water system attained equilibrium with the cooling lake.

2.5-232 Rev. 28 WOLF CREEK Geologic residual stresses, elastic rebound and swelling of foundation materials during excavation, swelling of foundation materials after inundation by the cooling lake, effective stress changes in foundation materials from preconstruction to post-construction conditions, and deformation properties of foundation and backfill materials were evaluated to determine total and differential settlements along the pipeline routes.

Residual stresses remaining in the rocks are believed to be minimal (USAR Section 2.5.1.2.5.4). The site area has not been glaciated, and the observed joints suggest relief of stresses due to erosion of overlying sediments and to local structural adjustment. Therefore, the potential for heave associated with geologic stresses during or after excavation is considered to be minimal. Some minor elastic rebound of the shales occurred as the trenches were excavated. Most of this expansion was taken up as elastic settlement when pipelines, bedding material, and backfill were placed in the trench. The test results (Tables 2.5-43 and 2.5-44) indicate that the swelling potential of these members was not appreciable. Uplift pressures in the Heumader Shale Member during construction due to lack of drainage or to excess hydrostatic pressures in the underlying Plattsmouth Limestone and Toronto Limestone members was not significant (USAR Sections 2.4.13.5 and 2.5.4.6). The maximum change in effective stress from preconstruction to postconstruction conditions was estimated to be less than 2,000 psf where the discharge line underlies the UHS Pond. This stress change resulted in negligible settlement of foundation materials. Compacted granular or CLSM backfill material is provided beneath the pipelines and extends to 1 foot above the invert of the upper-most pipe in the pipeline trench. Tremie concrete is provided beneath the discharge piping between access vault AV6 and the discharge point and extends 2 feet above the piping. On-site excavated cohesive soils were utilized above the pipeline and bring the trench to final grade. Any swelling of the cohesive backfill will have a negligible effect on the pipelines.

The typical transverse cross-sections of the excavation limits, backfill and fill materials for the ESWS pipeline are shown in Figure 2.5-105w. Details of the typical longitudinal section and cross-section of the interface between the ESWS pipes and structures are provided in Figures 2.5-105x through 2.5-105z. The settlements for the ESWS pipeline have been calculated near the connection points at the control building and the ESWS pumphouse. At the control building, the static settlement caused by the structures is cal-

2.5-233 Rev. 28 WOLF CREEK culated to be 0.2 inch. The calculation also shows that the settlement at a distance of 20 feet from the control building is approximately 0.1 inch. Settlement of the pipe close to the building from backfilling above the pipe was computed to be on the order of 0.1 inch. Therefore, it is concluded that the total and differential settlements of the ESWS pipeline caused by static loads will be less than the total settlement of the control building (i.e. less than 0.2 inch). Settlements of the pipeline from dynamic loads are negligible. Settlements of the control building during dynamic loadings will be elastic and recoverable with maximum deflection computed to be less than 0.1 inch. The settlement computations for the ESWS pumphouse show that the settlements of the ESWS pumphouse structure will be less than 0.25 inch. The settlement of the ESWS pipe next to the ESWS pumphouse is computed to be on the order of 0.1 inch. Total and differential settlements of the pipe at the ESWS pumphouse structure will, therefore, be on the order of 0.1 inch. The settlement of the ESWS pipe under dynamic loads will be negligible. The settlement of the pumphouse during dynamic loading will be less than 0.1 inch. Total and differential settlements of the ESWS pipe and the ESWS pumphouse structure will, therefore, be less than 0.1 inch.

Total and differential settlement at the ESWS discharge point will be negligible under both static and dynamic loads. The ESWS pipeline is founded on a maximum of 12 inches of pipe bedding over bedrock or structural fill. Since the combined weight of the piping and the backfill is approximately equal to the removed overburden, any settlement occurring from static loads will be due to the compression of the underlying material from the weight of the backfill. On this basis settlements along the pipeline are negligible. Settlements close to the structures (control building and ESWS pumphouse) where the thickness of the structural fill underlying the pipe is between 10 and 20 feet is calculated to be on the order of 0.1 inch. The pipe bedding is compacted to 80 percent relative density. The structural fill is placed at 95 percent of the maximum dry density as determined by ASTM-D1557 (Modified Proctor). Recent correlations between relative density and Modified Proctor tests show this density corresponds closely to 100 percent relative density (see Table 2.5-48). No settlement due to compaction from dynamic load was, therefore, anticipated for the structural fill.

2.5-234 Rev. 28 WOLF CREEK Any settlements due to dynamic loads arose from compaction of the granular pipe bedding under the pipeline. Settlement calculations were, therefore, performed in accordance with Silver and Seed (Reference 242) and Pyke, et al (Reference 217). These calculations show that the settlements of the ECCS pipeline from dynamic loads was negligible.

It is concluded that heave of rock or soil units due to geologic residual stresses, rebound during excavation, swelling of foundation materials upon inundation by the cooling lake, or excess ground-water pressures will not affect the function nor pose a hazard to the Category I ESWS pipelines. The maximum net settlement of the pipelines is estimated to be less than 1/8 inch.

2.5.4.10.4 ESWS Discharge Point The location of the ESWS discharge point is shown on Figure 2.5-98 Sht. 2. The discharge point will be founded on the Plattsmouth Limestone Member at Elevation 1064. Maximum bearing pressures are estimated on the order of 0.8 kips per square foot, whereas the maximum static plus dynamic bearing pressure will be on the order of 1.0 kips per square foot. The bearing capacity of the stratigraphic column below the foundation grade, including the Plattsmouth Limestone Member, is well in excess of the applied static and dynamic loads and provides factors of safety well in excess of the required minimum (USAR Section 2.5.4.10.1.1). Settlements resulting from the applied loads are negligible.

2.5.4.11 Criteria and Design Methods The subsurface walls for the seismic Category I power block and ESWS structures are designed as rigid, restrained walls to resist static at-rest and dynamic pressures. The lateral earth pressures used in the design of these walls were based on the maximum pressures developed. The equations developed, as shown in Figure 2.5-152 for the power block and Figures 2.5-107a & 107b for the Wolf Creek site related Category I structures, are used in conjunction with the soil parameters and the enveloping earthquake loads to compute the lateral pressures at the top and bottom of the subsurface walls. The maximum earth pressures thus computed are taken as the enveloping pressures and are used in design. In addition, a minimum surcharge of 250 pounds per square foot is assumed to act over the backfill surface, and the resulting pressures on the subsurface walls are included in the design loads. Similarly, the surcharge loads of foundations located near the subsurface walls are included in the design of the walls.

2.5-235 Rev. 28 WOLF CREEK The design criteria are based on established soil and rock mechanics principles discussed in the references cited below. Bearing capacity values were established using the Meyerhof bearing capacity factors as defined in Terzaghi and Peck (Reference 253), D.F. Coates (Reference 41), U.S. Department of the Navy (Reference 264) and on results of shear strength tests.

Settlements were computed using the tangent modulus method after Reference 121 and the Dames & Moore ECP-10 computer program, "Analysis of Settlements Due to Areal Loads" with a modification for the tangent modulus method. The ECP-10 computer program was developed by Dames & Moore and uses the Boussinesq stress distribution theory assuming flexible foundations.

Static earth pressures were computed using Rankine's and Jaky's earth pressure theory (Reference 253) and the total stress concept. Dynamic earth pressures were computed according to Seed and Whitman (Reference 235) and Sabzevari and Ghahramani (Reference 223).

Factors of safety were chosen according to accepted procedures and practice (Table 2.5-53), using a minimum factor of safety of 3.0 for static loads and 2.0 for dynamic loads.

2.5.4.12 Techniques to Improve Subsurface Conditions No special techniques, such as pressure grouting, were required to improve subsurface conditions beneath Category I structures. The results of comprehensive boring programs at each of the Category I facilities established that competent bearing materials are present beneath foundation grades at the plant site ESWS pumphouse, and ESWS pipelines (USAR Section 2.5.4.2). At the UHS dam, soil and highly weathered rock was removed to competent rock, as described in USAR Section 2.5.6, to attain the foundation surface for the earthfill UHS dam. Therefore, techniques to improve subsurface conditions consisted of normal foundation preparation for placement of fill or concrete on rock bearing surfaces. The foundation preparation for the UHS dam is described in USAR Section 2.5.6. Foundation preparation for ESWS pipelines was provided as discussed in the Dames & Moore essential service water system report for the original ESWS pipelines (Reference 69). Bechtel essential service water system report (Reference 355) used the Dames & Moore report and Fugro (Reference 354) for foundation preparation for the replacement ESWS pipeline and discharge point. Foundation preparation for the Category I plant structures and ESWS pumphouse, consisted of removal of foundation materials disturbed by excavating equipment, cleaning of the bearing surfaces, and placement of mud mats. The preparation of foundation surfaces included removal of unsatisfactory material resulting from disturbance by excavation operations. Hard rock promontories were removed using careful blasting techniques to avoid damaging the foundations. Loose blocks

2.5-236 Rev. 28 WOLF CREEK of rock were removed by hand picking and wedging techniques. Localized seams of weathered rock exposed at bearing surfaces were removed by hand shoveling.Bearing surfaces were thoroughly cleaned with air jets to provide a clean surface for concrete placement. Foundation preparation was inspected by a qualified engineer or engineering geologist who determined that competent rock was attained at foundation bearing grades and that unsatisfactory material was removed.2.5.4.13 Subsurface Instrumentation2.5.4.13.1 Blast Monitoring During the last evaluation program, all blasts were monitored using Sprangnether Engineering Seismographs, Models VS-1100 and VS-1200. These instruments measured ground motion in terms of particle velocity in three orthogonal directions (longitudinal, transverse and vertical). The seismographs obtained from each blast recorded were analyzed by measuring peak to peak amplitudes. The amplitudes were converted to representative particle velocities and summed to obtain the actual ground motion for each seismogram.The vibrational criteria used at the site were specified by Bechtel Power Corporation and by Sargent & Lundy specifications. These documents established allowable maximum particle velocity in the vicinity of concrete up to 11 hours old as 0.1 inch per second, in the vicinity of concrete from 11 hours to 7 days old as 0.5 inch per second, in the vicinity of concrete from 7 to 28 days old as 2.0 inches per second, and in the vicinity of concrete older than 28 days as 2.5 inches per second. Any blast estimated to yield less than 10 percent of the permissible particle velocity did not require monitoring. No blasts were found to cause particle velocities that would be detrimental to the concrete structures. 2.5.4.13.2 Settlement Monitoring No settlement monitoring program was required. 2.5.4.14 Construction NotesNo significant construction problems arose during the excavation and backfilling of the Category I areas. During the excavation of the circulating water pipe trench (non-Category I), local instability was noticed. Slopes were cut in the Upper Heumader 2.5-237 Rev. 0 WOLF CREEK Shale at one horizontal to one vertical. The slopes exceeding 20 feet in height in the Heumader Shale at the power block were revised from one horizontal to one vertical to two horizontal to one vertical. No problems were noticed with the slopes in the power blocks excavations. Upon installation of the emergency fuel oil vaults for emergency fuel oil tanks, the coating for the tanks was discovered to be peeling; the tanks were uncovered to allow recoating of tanks. A retaining wall was installed between the Reactor Makeup Water Tank Foundation and the Fuel Oil Tanks to provide slope protection for Reactor Makeup Water Tank and for personnel safety. The retaining wall was cut off at elevation 1086' and left in place. 2.5.5 STABILITY OF SLOPES Unit No. 1 at the Wolf Creek site is located within a very gently sloping open area. There are no natural slopes surrounding the Category I power block structures whose failure could adversely affect the safety of the unit. In addition, there are no cut or fill slopes in this area whose postulated failure could adversely affect the safe shutdown of the unit following the SSE. Slopes of interest to the safe operation and shutdown of the unit are the slopes, both natural and manmade, forming the UHS that is part of the ESWS. 2.5.5.1 Slope CharacteristicsThe UHS is shown schematically on Figure 2.5-108, and consists of a 95-acre Category I submerged pond with an average depth of 5 feet (also see introduction to 2.5.6). It was formed by excavating and damming a portion of the 5,090-acre main cooling lake. The maximum design elevation of the cooling lake is 1,095.0 feet, and the normal operating level is 1,087 feet. The UHS dam crest elevation is 1,070 feet. The UHS bottom elevation is 1,065 feet. The thickness of the natural soil cover above the bedrock in the UHS area averages about 6 feet and ranges from 0.3 foot near the UHS dam to a maximum of about 18 feet near the ESWS pumphouse. 2.5.5.1.1 Description of UHS Slopes The natural slopes surrounding the UHS pond are very flat, ranging from one vertical to 15 horizontal to one vertical to 60 horizontal. The rolling topography gradually slopes toward Wolf Creek and varies in elevation from approximately 1,087 feet at the edge of the cooling lake to 1,054 feet at the location of the UHS dam. 2.5-238 Rev. 0 WOLF CREEK The topography of the natural ground and the limits of cuts and fills are shown on Figure 2.5-108. The man-made slopes forming the periphery of the UHS were excavated from Elevation 1,070 to 1,065 at grades varying from 1.0 to 6.7 percent. The slopes between the existing grade elevation and 1,070 are designed to be five horizontal to one vertical. Figure 2.5-109 presents details of the typical man-made slopes forming the UHS. Figure 2.5-108 shows the plan view of the locations of these slope cross sections. The ESWS intake channel is located in the northwestern portion of the UHS. The details of the intake channel slopes are presented on Figures 2.5-108 and 2.5-110. The excavated slopes on the channel consist of five horizontal to one vertical, from existing grade to Elevation 1,070, and slopes of three vertical to one horizontal, from Elevation 1,070 to 1,065 feet. A 55-foot bench is provided at Elevation 1,070 along the intake channel to protect against blockage by sheet ice. The benching details are shown on Figure 2.5-110. The icing conditions are described in Reference 134. Filter bedding and riprap was placed on the slopes of the intake channel adjacent to the ESWS pumphouse. On the south side of the channel, the protection consisted of 3-foot thick riprap and 3-foot thick underlying filter bedding. On the north side of the slope, 2-foot-6-inch thick riprap and 3-foot thick bedding was provided. The details of the protection are shown on Figure 2.5-111.

The ESWS discharge point is in the eastern arm of the UHS. The excavated slopes near the discharge point are very flat, having a maximum slope of 1 percent below Elevation 1,070. The slopes between existing grade and Elevation 1,070 are five horizontal to one vertical. A typical cross section of the slope at the location is shown on Figure 2.5-110.

2.5.5.1.2 Exploration The exploration program at the site of the UHS is discussed in USAR Section 2.5.6.2.1.

2.5.5.1.3 Ground-Water Conditions The ground-water conditions at the site of the UHS are discussed under USAR Section 2.5.6.2.1.

2.5-239 Rev. 28 WOLF CREEK 2.5.5.1.4 Subsurface Conditions 2.5.5.1.4.1 Stratigraphy The stratigraphy and geologic features at the UHS site are discussed in USAR Section 2.5.6.2.1. 2.5.5.1.4.2 Laboratory Testing Program Undisturbed samples of soil and rock were tested in order to evaluate the in situ properties of soil and rock at the site of the UHS. The following tests were performed: a. Tests On Soil 1. Particle-Size Analysis; 2. Atterberg Limits Test;

3. Moisture and Density Determination; 4. Specific Gravity Determinations; 5. Consolidation Tests;
6. Unconfined Compression Tests; and 7. Consolidated Undrained Triaxial Tests. b. Tests On Rock 1. Moisture and Density Determination; 2. Unconfined Compression Tests; 3. Resonant Column Tests; and 4. Wave Propagation Tests (Shockscope Tests). The results of the laboratory tests on the soil and rock at the site of the UHS are presented in Reference 59. The Laboratory Testing program is also discussed in USAR Section 2.5.6.4. Soil properties selected for use in the slope stability analysis are presented in Table 2.5-55. 2.5.5.2 Design Criteria and AnalysesAs stated previously, the slopes of interest to the safe operation and shutdown of the unit are the natural and manmade slopes forming the UHS. The design criteria and analyses of these slopes are described below. 2.5.5.2.1 Natural Slopes The natural slopes in the UHS area are quite flat, ranging from one vertical to 15 horizontal to one vertical to 60 horizontal. 2.5-240 Rev. 0 WOLF CREEK The loss of water in the cooling lake would drain water to the top elevation of the UHS dam at Elevation 1,070 feet. Even though the soils in the natural slopes would be saturated, the residual strength of the natural soil is more than adequate to forestall any slides from occurring on such flat slopes. Any minor sloughing that may occur at the head of the small valleys would not travel more than a few feet, definitely not affecting the UHS storage. Due to the characteristics of the residual soils, the creation of subaqueous flows is not deemed possible. In addition to the above factors, there is no evidence of slides having occurred in the area. For a discussion of siltation within the UHS, see USAR Section 2.4.11.6. 2.5.5.2.2 Excavation of Slopes The profiles of the excavated slopes in the UHS, the intake channel, and near the outlet structure are given in USAR Section 2.5.5.1.1. The slope protection required for the slopes near the pumphouse in the intake channel is also discussed in USAR Section 2.5.5.1.1. 2.5.5.2.2.1 Ultimate Heat Sink Slopes The UHS slopes forming the periphery of the UHS are designed to be five horizontal to one vertical between the existing grade and elevation 1,070 feet.From elevation 1,070 to 1,065 feet, the grades vary from 1.0 to 6.7 percent.

The typical cross sections of these slopes are shown on Figure 2.5-109. The water table for the end-of-construction condition is at elevation 1070 feet at the toe of the 5:1 slope. The soil cover in the excavated UHS slopes is thin and weaker than the bedrock existing at shallow depth. For those slopes, a circular failure arc would not develop, and, therefore, their stability has been investigated using the wedge method of analysis. In this method, it is assumed that if failure should occur, it would do so by a sliding-block type of mechanism with a vertical boundary between the blocks. The potential failure mass is broken up into two or three wedges. The shear resistance along the several segments of the failure surface is expressed in terms of the applicable strength parameters and a safety factor which is the same for all segments. A computer program was not used for the stability analysis. The method of analysis used is the procedure outlined in Figures 7-5 and 7-6 of the March 1971 Department of the Navy Design Manual, NAVFAC DM-7. 2.5-241 Rev. 1 WOLF CREEK The soil properties used in the stability analyses are shown in Table 2.5-55.The cross section analyzed is shown on Figure 2.5-112. The conditions analyzed are: a. The end of construction; b. Steady state seepage; and c. Steady state seepage plus SSE (0.12 g). The end of construction case was examined using a total stress analysis in which parameters C cu and cu corresponding to the consolidated-undrained condition are used to evaluate the shear strength of the soil. For steady-state seepage condition, an effective stress analysis was used. The minimum safety factors computed and those required for various cases are summarized in Table 2.5-56. It can be seen that there is an ample margin of safety for all the cases considered. In each of these analysis, the water level was assumed to be at the ground level along the slope and a hydrostatic water pressure was included in the driving force on the sliding failure wedge. Additional analysis of the UHS slopes, using the Lawrence Livermore Laboratories spectrum, is located in Appendix 3C. 2.5.5.2.2.2 ESWS Pumphouse Intake Channel Slopes The excavated slopes in the channel consist of five horizontal to one vertical slopes from existing grade to Elevation 1,070 feet, and have slopes of three horizontal to one vertical from Elevation 1,070 to 1,065 feet. There is a 55-foot bench at Elevation 1,070 feet. The water table for the end-of-construction condition is at elevation 1065 at the toe of the 3:1 intake channel slope. The two slopes (upper slope five horizontal to one vertical and lower slope three horizontal to one vertical) have been analyzed for the following conditions: a. Submerged with water level in cooling lake at Elevation 1087 ft; b. Submerged with SSE of 0.12g; c. Rapid drawdown of cooling lake from Elevation 1087 ft to 1070 ft; 2.5-242 Rev. 1 WOLF CREEK d. End of construction-short-term using undrained strength parameters; e. End of construction-long-term using drained strength parameters; and f. End of construction with SSE of 0.12g. The BISHOP computer program was used to investigate the stability of slopes for all the above design conditions (Figures 2.5-113a through n). The details of this program are given in USAR Section 3.12. The soil properties used in the analyses are given in Table 2.5-55. The shale was conservatively assumed to have the properties of residual clay for the stability analyses. The 3H:1V side slopes of the ESWS Intake Channel are cut into the Heumader Shale material. During early stages of design and as presented in the PSAR these slopes were specified to be 1H:1V. During the excavation of the power block, it was discovered that this material weathers rapidly if it is not protected from exposure. Subsequently, the slopes of the ESWS Intake Channel were flattened to 3H:1V and the material was conservatively assumed to have the properties of residual clays which had been derived from weathering of similar shale material found where the Heumader Shale formation was exposed along the Wolf Creek Valley. The residual strength is much less than the strength of unweathered shale.When the material is assumed to be soil in and below the slope, the slip circle method of analysis is applicable. The effective stress method of analysis was used for evaluating the steady state condition with and without an SSE of 0.12g. The minimum factors of safety obtained for the static case are 7.13 for the three horizontal to one vertical slope and 3.37 for the five horizontal to one vertical slope; the minimum factors of safety with SSE effects are found to be 3.37 and 1.86, respectively. These factors are higher than required, as indicated in Table 2.5-57.For the cross-section presented in Figures 2.5-113a through 2.5-113h the minimum factor of safety for the stability of the 3H:lV slope is higher than the minimum factor of safety for the 5H:lV slope because the height of slope above the toe of the 3H:lV slope is 5 feet and the height of slope above the toe of the 5H:lV extends from elevation 1070 to existing grade and is much greater than 5 ft. The height of the 3H:lV slope is limited to 5 ft. because of the 55 ft. wide bench provided at elevation 1070. 2.5-243 Rev. 0 WOLF CREEK The results of the stability analysis are shown in Table 2.5-57 which shows the minimum factor of safety for each condition as well as the minimum required factor of safety. Figures 2.5-113a through n show the geometry, soil properties, and critical failure circles for the various conditions analyzed. The slopes were analyzed using effective stress (drained) soil strength parameters for the submerged conditions with and without an SSE of 0.12g. As shown in Table 2.5-57 the factors of safety obtained were well in excess of the minimum required. Total stress (undrained) soil strength parameters were used to analyze the short-term end of construction condition which would occur immediately after excavation. As time passes and the slopes are exposed, drainage occurs. This condition was analyzed using both effective stress and total stress soil strength parameters and both with and without an SSE of 0.12g. As shown in Table 2.5-57 the factors of safety obtained were well in excess of the minimum required. Additional analysis of the ESWS Pumphouse Intake Channel slopes, using the Lawrence Livermore Laboratories spectrum, is contained in Appendix 3C. The intake channel section analyzed for stability is Section C-C. This section is shown in Figure 2.5-110. The slope analyzed by the wedge method, Figure 2.5-112, is located near the UHS dam where the soil overburden is shallow. Slopes cut at 5:1 shown in Sections A-A and B-B (Figure 2.5-109) have a lesser height than the 5:1 slope at Section C-C and, would thus have a greater stability.Rapid drawdown effects on the 5:1 slopes above elevation 1070 ft were analyzed using effective stress soil strength parameters. This condition was analyzed as a sudden removal of the water acting against the downstream slope that was present in the submerged condition with the same available shear resistance existing on the failure plane. Table 2.5-57 shows that the factor of safety is in excess of the minimum required. A drawdown from the normal cooling lake level 1087 ft to top of UHS dam elevation at 1070 ft would not affect the 3:1 slopes of the ESWS intake channel between elevations 1070 and 1065 ft because these slopes would still remain submerged and no increase in driving force would occur. 2.5-244 Rev. 0 WOLF CREEK 2.5.5.2.2.3 Slopes Near the Discharge Point The excavated slopes near the discharge point are very flat, having a maximum slope of l percent below Elevation 1,070. The slopes between the existing grade and Elevation 1,070 are similar to those in the UHS. Stability analyses of these slopes are described in USAR Section 2.5.5.2.1.

Based on the results of the analyses described above, it is concluded that the excavated slopes of the UHS, the intake channel slopes, and the slopes near the outlet structure are stable under all extreme design loading conditions.

2.5.5.2.3 Excavated Slopes The results of slope stability analyses of excavated slopes have shown that the slopes have factors of safety well in excess of the minimum required. In these analyses the material within which the slopes were excavated was assigned soil strength parameters for residual clay soils. Much of the excavated slopes are within shale which has not weathered in residual clay. Thus, the strength parameters for the slope material have been conservatively selected. Based on the relatively large factors of safety and conservatively selected strength parameters, a dynamic slope stability analysis using finite elements is not required. 2.5.5.2.4 Liquefaction The UHS slopes and ESWS intake channel slopes have been excavated into shale deposits and overlying residual soil deposit. These materials do not contain any sand or granular soil layers or deposits which could be subject to liquefaction. 2.5.5.3 Log of Borings The location of all borings performed for the evaluation of subsurface conditions at the UHS site are shown on Figure 2.5-30. The logs of borings are presented on Figures 2.5-34a through 2.5-34u.

Detailed field procedures are discussed in Appendix A of the above-referenced report (Reference 59). 2.5.5.4 Compacted Fill UHS dam structure fill material is described in USAR Section 2.5.6.4.1.4.

2.5-245 Rev. 28 WOLF CREEK 2.5.6 EMBANKMENTS AND DAMS Cooling water for the Wolf Creek Generating Station is provided by impounding water in a cooling lake on Wolf Creek. Figure 2.5-114 shows the general arrangement of facilities for the cooling lake. The maximum design water elevation of the lake is 1095.0 feet for the probable maximum flood (PMF).

To create the cooling lake, an earth dam (main dam) was constructed across Wolf Creek. Five saddle dams along with the natural topography of the ground serve as the perimeter of the cooling lake. Two baffle dikes and three channels are provided within the lake to provide circulation of water between the discharge and intake. The main dam and the saddle dams have a crest elevation of 1,100 feet and the baffle dikes have a crest elevation of 1,094 feet. The normal operating water level of the main cooling lake is 1,087 feet. The UHS is formed by constructing a Category I UHS dam in one finger of the main cooling lake and excavating to provide a 5 foot minimum depth pond behind the UHS dam. This dam has a crest elevation of 1,070, and is submerged during normal plant operation. In the event of loss of main cooling lake dam, the UHS will provide storage capacity sufficient for safe plant shutdown.

Cooling water for post-accident and post-fire safe shutdown is circulated by means of the Category I ESWS which consists of ESWS pipelines and duct banks, an ESWS pumphouse, and an ESWS discharge point. The locations of these facilities are shown on Figure 2.5-114. 2.5.6.1 General The main dam is constructed across Wolf Creek at a point about 4 miles upstream of the Creek's confluence with the Neosho River, about 3 miles east of Burlington and about 3 miles south of the plant. The dam impounds water of Wolf Creek to form a 5,090-acre cooling lake to provide cooling water required for the plant operation. The main dam is designed to be stable under all conditions of reservoir operation. The stability of the slopes was investigated under the following loading conditions:

a. End of construction;
b. End of construction plus horizontal OBE = 0.06g;
c. Steady seepage with pool at the crest of the service spillway Elevation 1088 feet, normal operating pool Elevation 1,087 feet;

2.5-246 Rev. 28 WOLF CREEK d. Steady seepage with pool at the crest of the service spillway Elevation 1088 feet, normal operating pool Elevation 1,087 feet plus horizontal OBE = 0.06g; and e. Sudden drawdown from pool at the crest of the service spillway Elevation 1,088 feet to Elevation 1,030 feet. The simplified Bishop method is used in the static stability analyses. In this method, the failure surface is assumed to be an arc of a circle. The factor of safety is defined as the ratio of the moment of the available resisting forces along the failure arc to the moment tending to cause sliding. The pore pressures that may develop in the embankment during construction were also considered in the analysis. The slopes of the main dam are designed to ensure, under static loading conditions, a minimum factor of safety of 1.4, 1.5, and 1.2, respectively, for the loading conditions listed previously in items a, c, and e. Under seismic loading conditions, a minimum factor of safety of 1.0 is applied to the loading conditions listed previously in items b and d. The stability analyses results presented in Figure 2.5-115b through 2.5-115d indicate that side slopes of three horizontal to one vertical are adequate for the upstream and downstream slopes of the main dam to ensure its stability under both static and seismic loading conditions. The soil used for the main dam embankment is a silty clay alluvium which is placed as a homogeneous earth fill. A typical section of the main dam showing the riprap layers, rock toe, and drainage blanket is shown in Figure 2.5-115a.The blanket drain under the downstream portion provides for controlled seepage and uplift pressures. A crest width recommended by the Bureau of Reclamation has been used in the design, and a service road has been provided along the crest of the main dam. The riprap for the slope protection was designed for the wind wave activity as described in USAR Section 2.5.6.4. Two filter layers (fine and coarse), 18 inches thick, measured perpendicular to the slope face, and a rock blanket, 3 feet thick (2 feet below Elevation 1,070), also measured perpendicular to the face of the slope, provide the necessary slope protection. This is placed only on the upstream slope. Riprap is also provided in the downstream portion of the dam below Elevation 1,025 to protect it from flood levels in lower Wolf Creek. The downstream slopes are covered with topsoil and seeded to prevent surface erosion. Figure 2.5-115a shows the main dam geometry. 2.5-247 Rev. 14 WOLF CREEK The locations of the five saddle dams are shown on Figure 2.5-114. These dams fill in the natural topography of the ground to serve as the perimeter of the cooling lake. With the exception of saddle dam IV, all are founded above the normal operating level of the cooling lake. Nevertheless, the selected slopes of the dams are the same as those of the main dam. The crest of the saddle dams is at Elevation 1,100 feet. The maximum height for each dam varies from 5 to 38 feet above the bedrock level. The geometry of the saddle dams is a homogeneous section of cohesive materials. Slope protection on the lakeside consists of riprap placed on a filter bed of granular material with controlled gradation. The downstream slopes are covered with topsoil and seeded to prevent surface erosion. Internal filters and drains are not required for saddle dams, except for saddle dam IV, because these dams are generally not subject to unbalanced hydrostatic pressures during the normal operating levels of the cooling lake. All other design features of saddle dams are similar to those described above for the main dam. Two baffle dikes are provided to guide the circulation of water between discharge and intake. The locations of these dikes are shown on Figure 2.5-114.The geometry of the baffle dikes is similar to the main dam. Each dike is either a homogeneous section composed of cohesive materials or a section with a rock core covered with a minimum of 10 feet of cohesive material. The rock is excess from the site excavation. The crest is at Elevation 1,094 feet. The crest also serves as a service road for future maintenance and project access. Riprap of the same quality as for the main dam is placed on both faces of the baffle dikes. The riprap extends below the minimum operating levels of the cooling lake. This provides adequate protection against erosion from wave action.Blanket drains are not required for the baffle dikes since they will normally function under balanced hydrostatic pressures. All other design features of the baffle dikes are similar to those described above for the main dam. The UHS dam is a submerged Category I dam located in one finger of the main cooling lake as shown in Figure 2.5-114. In the event of loss of the main cooling lake water, the UHS dam will retain a sufficient volume and surface area of water to provide cooling for post-accident and post-fire safe shutdown of the plant. 2.5-248 Rev. 14 WOLF CREEK The UHS dam is an earthfill dam approximately 1,700 feet in length and 18 feet in height above the Leavenworth Limestone foundation rock surface at the maximum section. The crest of the dam is at Elevation 1,070. Predominantly clayey soils excavated during the construction of the UHS were utilized to build the UHS Dam. The slope configuration of four horizontal to one vertical is used for the UHS dam. The downstream slope was designed for instantaneous drawdown with pore pressures equal to the maximum level of the cooling lake. The width of the UHS dam is designed to provide a safe percolation gradient through the embankment at full UHS reservoir level of Elevation 1,070. A crest width of 20 feet was used. Camber was provided along the crest of the dam to insure that the freeboard will not be diminished by the embankment consolidation. The dam height is designed to provide storage necessary to allow the UHS to meet design bases stated in USAR Section 9.2.5 and to account for losses from evaporation and seepage. The rock slope protection for the UHS dam is designed for scour and embankment erosion potential during the hypothetical main dam and baffle dike break which creates a flow corresponding to an overtopping condition of the dam. The erosion protection consists of two filter layers (fine and coarse) 18 inches thick measured perpendicular to the slope face and a rock blanket 4 feet thick also measured perpendicular to the face of the slope. Longitudinal and transverse sections of the dam are included on Figures 2.5-116 and 2.5-117.The slope protection also protects the UHS dam from wave action when the UHS reservoir elevation is at 1,070 feet. 2.5.6.2 Exploration2.5.6.2.1 Ultimate Heat Sink 2.5.6.2.1.1 Exploration Program The exploration program described below is a summary of the field exploration program performed in the UHS area. A detailed description of the program and procedures are provided in Reference 59. 2.5.6.2.1.1.1 Test Borings and Test Pits The subsurface soil, rock, and ground-water conditions at the Category I UHS dam for the Wolf Creek site were investigated by drilling exploratory test borings and by excavating test pits (see Figure 2.5-30 and Figures 2.5-36a through 2.5-36cc). 2.5-249 Rev. 14 WOLF CREEK A total of 59 test borings were drilled and 12 test pits were dug during the period, spring 1973 through summer 1974. The borings ranged in depth from 3.1 to 402.9 feet below existing ground surface. The test pits were excavated to bedrock. Soil samples were obtained using 3-inch diameter shelby tubes, 2 3/8-inch diameter Denison samplers, and the Dames & Moore Type U sampler both with and without a thin-wall attachment (2 3/8-inch I.D.). Bulk type soil samples were obtained from the test pits. Rock cores were obtained with NX-wireline equipment.2.5.6.2.1.1.2 Ground-Water Exploration Water levels were recorded in open boreholes and test pits. In addition, pressure meter tests were performed in 17 borings. The water levels are noted on the logs of borings, Figures 2.5-36a through 2.5-36lll and 2.5-37a through 2.5-37g.Piezometers were installed in a total of 15 borings in the UHS area (Figure 2.5-118), and both falling and constant head permeability tests were performed in a total of nine boreholes. The results of the permeability tests are shown on the logs of borings, and the piezometer readings are presented in the Dames & Moore ultimate heat sink report (Reference 59). 2.5.6.2.1.1.3 Engineering Geophysical Exploration The field work for the geophysical exploration was conducted during November and December 1978 and included the following studies in the vicinity of the UHS: a. A seismic refraction survey to establish compressional wave velocities of bedrock and the materials overlying bedrock; b. Uphole compressional wave velocity studies to further establish the compressional wave velocities of bedrock and materials overlying bedrock; c. Uphole shear wave velocity surveys to establish shear wave velocities in near-surface materials and the underlying bedrock; d. Crosshole shear wave surveys to establish shear wave velocities in bedrock; e. Surface shear wave studies to establish shear wave velocities in near-surface materials; 2.5-250 Rev. 14 WOLF CREEK f. Surface wave studies to determine the types and characteristics of surface waves generated at the site; g. Ambient vibration measurements to determine the predominant frequencies of ground motion of the site due to background noise levels; and h. Borehole geophysical logs to provide detailed values of compressional and shear wave velocities of bedrock. The locations at which the above studies were conducted are shown on Figure 2.5-98. The results of the studies are shown on Figures 2.5-101a through 2.5-101g and 2.5-102a through 2.5-102c and in Tables 2.5-58 through 2.5-60. 2.5.6.2.1.2 Summary of Geologic Conditions 2.5.6.2.1.2.1 Soil Conditions Except for the alluvial soils in the tributary to Wolf Creek, the soils in the UHS are interpreted to be residual soils developed through the weathering of the underlying parent bedrock. The principal parent rock units are the Heumader Shale, Plattsmouth Limestone, and the Heebner Shale members. The alluvial soils encountered in field explorations are predominantly silts and silty clays, although some silty sands with clay and gravel were noted overlying the Plattsmouth Limestone Member. Based on data from test borings and test pits, the thickness of soil at the UHS area averages about 6 feet at the boring locations and ranges from 0.3 foot at HS-4 to 16.0 feet at HS-28. However, scattered rock outcrops are present, particularly in the creek bottom which crosses the alignment of the UHS Dam. A generalized soil thickness contour map (Figure 2.5-38) was prepared based on the results of site explorations and shows that, in general, the soil cover is thickest along slopes and thinnest in the creek valleys and hill tops. This is a reflection of the underlying lithology as the shales tend to be the slope-forming units. Alluvial deposits are present along the small tributaries to Wolf Creek. In the area of the UHS, the channel of a preexisting tributary has been buried by alluvial deposits. The configuration of this buried channel generally parallels the existing tributary and is delineated on the bedrock contour and soil thickness maps (Figures 2.5-38 and 2.5-25, respectively). 2.5-251 Rev. 0 WOLF CREEK 2.5.6.2.1.2.2 Rock Conditions A bedrock topographic map for the Category I area is presented on Figure 2.5-25. The bedrock geology is shown on Figure 2.5-23. Rock underlying the UHS area belongs to the Heumader Shale, Plattsmouth Limestone, and Heebner Shale members of the Oread Limestone Formation. These units are discussed below in stratigraphically descending order (see USAR Section 2.5.1.2 for more detail).The uppermost rock unit in the UHS is the Heumader Shale Member. As shown on Figure 2.5-23, the Heumader Shale Member is present along the western abutment of the UHS Dam, but is absent at the eastern abutment (Figures 2.5-23 and 2.5-48). In the vicinity of the UHS, the thickest section of the Heumader Shale Member is about 33 feet thick, where completely penetrated at Boring ESW-8. The upper Heumader Shale is approximately 23 feet thick and is medium dark gray to dark yellowish brown, thickly laminated, clayey, calcareous, and, normally, moderately to highly weathered. The lower Heumader Shale, approximately 10 feet thick, is medium dark gray, thinly laminated, clayey, calcareous, fossiliferous, and slightly to moderately weathered with numerous limestone fragments and nodules. Rock core samples contained frequent joints with inclinations ranging from 30 to 60 degrees. Core recovery of the Heumader Shale Member, evaluated from the logs of borings for the UHS area, averaged about 80 percent. Overall RQD of the Heumader Shale Member generally decreases as section thickness decreases. The Plattsmouth Member is continuous in the subsurface in the area of the UHS and ESWS pumphouse. Figures 2.5-23 and 2.5-51 show that the Plattsmouth Limestone is, in general, the uppermost bedrock unit within the two arms of the UHS east of a point between Boring HS-7 and ESW-15. Along the UHS dam alignment, the Plattsmouth has been locally removed by erosion between Borings E-5 and HS-4 (see Figures 2.5-23 and 2.5-48). Undercutting of the Heebner Shale Member by the creek has caused minor slumping of the overlying Plattsmouth Limestone Member at and near Boring HS-4 (Figure 2.5-48). Test borings (Figure 2.5-50) indicate the Plattsmouth Limestone is approximately 13 feet thick. The Plattsmouth is light olive-gray, fossiliferous, thin to thick bedded with clay to clayey shale seams in the upper 7 feet. Except for the uppermost 4 to 10 inches, which is moderately weathered, the upper 7 feet of this limestone is slightly weathered. The remainder of the section is generally unweathered. Throughout the UHS area, the borings encountered clay to clayey shale seams, which are up to 0.7-foot thick within the upper 7 feet, and infrequent joints (ranging from 45 to 75 degrees). Structural contours for the top of the Plattsmouth Limestone Member are presented on Figure 2.5-58. Rock 2.5-252 Rev. 0 WOLF CREEK quality properties for the Plattsmouth Limestone Member are summarized in Table 1 of the ultimate heat sink report (Reference 59). The Heebner Member is a grayish black, thinly laminated, very calcareous shale.This member crops out in the creek bed that crosses the alignment of the UHS Dam (Figure 2.5-48) and has been locally removed by erosion at Borings E-7 and E-8 (Figure 2.5-48) and by weathering and/or erosion south of the UHS dam (see logs of Borings HSA-1 and HSA-2). However, field explorations indicate that the Heebner Shale is continuous beneath the UHS and ESWS pumphouse and intake channel. The Heebner Shale Member is unweathered, except between Boring E-5 and about 100 feet southeast of Boring HS-16 where it is slightly to highly weathered. The average thickness of the Heebner in the UHS area is 3.0 feet. The Leavenworth Member is a light bluish to medium gray, thin-to thick-bedded, and fine-grained limestone. The average thickness of the Leavenworth in the UHS area is 1.2 feet. A structural contour map of the top of the Leavenworth Limestone Member is presented on Figure 2.5-60. Field exploration indicates that the Leavenworth Limestone is unweathered and continuous beneath the entire UHS and alignment of the UHS dam. The Leavenworth is the stratigraphically lowest unit which crops out in the UHS area and is the uppermost rock unit where the overlying Heebner Shale has been removed by erosion beneath the UHS Dam (Figure 2.5-48). The Snyderville Member is a greenish to olive-gray, mottled, laminated to medium-bedded, very calcareous shale and is also unweathered and continuous throughout the UHS area. Core samples of the Snyderville Shale often contain numerous closed to open fractures with inclinations ranging from 20 to 60 degrees. Some fractures contained slickensides. The average thickness of this unit in the UHS area is 10.0 feet. The Snyderville Member does not crop out in the UHS area. Due to the thinness of the Leavenworth Limestone Member, the latter three members of the Oread Limestone Formation may be considered as a single unit with nearly uniform engineering and seismic properties. The average core recovery and RQD calculated from borings penetrating this engineering unit in the UHS area were 95 and 65 percent, respectively. Other core recovery and RQD values at specific locations within the UHS area are presented in Table 1 of the Dames & Moore ultimate heat sink report (Reference 59). The Toronto Limestone Member that underlies the Snyderville Shale Member is light gray, thin to thick bedded, fine grained, fossiliferous and contains interbeds of calcareous shale up to 0.6 foot thick. The core samples contained occasional vertical joints and 2.5-253 Rev. 0 WOLF CREEK other less frequent joints with inclinations which varied from 30 to 60 degrees. The Toronto Limestone Member does not crop out in the UHS area. For a detailed description of the stratigraphic units underlying the Toronto Limestone Member of the Oread Limestone Formation, see USAR Section 2.5.1.2 and the logs of borings presented on Figures 2.5-34a through 2.5-34u. 2.5.6.2.1.2.3 Hydrogeologic Conditions The hydrogeologic conditions within the entire Category I area have been determined by evaluating data from pressure and permeability tests, water-level measurements in 103 piezometers and 115 open boreholes, and from continuous monitoring of water levels in the (former) Bemis well located approximately 1/3 mile northeast of the site. Of the many piezometers installed in the entire Category I area, 31 are located near the UHS. Their locations are shown on Figure 2.5-118. Hydrographs for those piezometers isolated in the overburden or in members of the Oread Formation are provided in Dames & Moore's ultimate heat sink report (Reference 59 Appendix A, Figure A-60). Hydrographs for deeper units are presented on Figure 2.4-56. In addition to the permanent piezometers, temporary piezometers were installed and field permeability tests were conducted at the HSSP-Series borings shown on Figure 2.5-118. Those piezometers were removed following testing. Measurements of water levels in open borings and piezometers tapping near-surface materials within the UHS area indicated that the water table is near the surface. The ground water contained within the soil and the Heumader Shale Member is under water-table conditions. The ground water contained in the shallow soil and in the moderately to highly weathered shale bedrock is commonly perched on the less weathered bedrock. The position and altitude of the water table is dependent on the amount and frequency of precipitation, the topographic relief, and the permeability of the materials. After periods of intense precipitation, the water table in the soil and weathered shale rises at a rate faster than that in the unweathered rock units. In particular, the lower calcareous unit of the Heumader Shale Member is believed to be relatively impermeable and to retard water percolating downward through the upper units into the Plattsmouth Limestone Member. Further, the hydraulic gradient of the water table generally follows and is a subdued reflection of the topography and slopes towards the creek bottom in the UHS area. The UHS is a local area of ground-water discharge from the soil and Heumader Shale Member. 2.5-254 Rev. 0 WOLF CREEK The ground-water in the Plattsmouth Limestone Member is under semi-artesian to water-table conditions. Water levels measured in piezometers during the spring of 1976 indicate that the Plattsmouth Limestone had an artesian head of approximately 20 feet (above top of the member) at the power block (Reference 59, Figure A-60, Appendix A) and tapping the Plattsmouth Limestone Member near the ESWS discharge point. However, water levels measured in piezometers near Boring HS-29 and the UHS Dam suggest that the Plattsmouth Limestone Member has little or no artesian head at those locations. The UHS is locally an area of ground-water discharge from the Plattsmouth Limestone Member. Although the piezometer readings indicate that the Toronto Limestone Member possesses an artesian head of approximately 15 feet at the location of the UHS, the difference in water levels between the residual soil overburden and the Toronto Limestone Member indicates a decreasing head with depth. Both the Heebner Shale and Snyderville Shale members, for the most part, hydraulically insulate the ground water contained in the Toronto Limestone Member from ground-water conditions occurring in the overlying Plattsmouth Limestone. 2.5.6.2.2 Main Dam 2.5.6.2.2.1 Exploration Program

The information provided below presents a summary of the field exploration and the geologic conditions along the main dam site. Detailed description of the subsurface investigations and the geologic condition are provided in Reference

60.

2.5.6.2.2.1.1 Test Borings and Test Pits The subsurface conditions along the main dam and service spillway alignments were investigated by drilling a total of 92 exploratory test borings and excavating a total of 15 test pits. The borings range in depth from 6.7 to 76.5 feet. The test pits were excavated to depths ranging from 1.5 to 12.0 feet. The boring locations are shown on Figure 2.5-119.

Soil samples were obtained using the Dames & Moore Piston and Type U Samplers, both having an I.D. of 2.4 inches. Bulk soil samples were also obtained from the test pits, and rock samples were obtained from the borings utilizing NX-wireline equipment. The

2.5-255 Rev. 28 WOLF CREEK test pits were dug to evaluate limestones exposed near the surface and to further evaluate the alluvium within the valley. Graphical presentation of the soil and rock encountered in the borings and test pits is presented on the logs of borings and logs of test pits in the Dames & Moore main dam report (Reference 60). 2.5.6.2.2.1.2 Ground-Water Exploration Ground-water levels were observed in the borings and test pits during the field exploration and are noted on each log of borings. Water pressure tests were also performed in selected boreholes to help evaluate the mass permeabilities of the subsurface formations. 2.5.6.2.2.2 Summary of Geologic Conditions 2.5.6.2.2.2.1 Soil Conditions Overburden along the Main Dam alignment consists of topsoil, Quaternary and Tertiary alluvium, and residual soils. Topsoil varies from brown, organic, silty clay to clayey silt and has an average thickness of approximately 0.8 foot on ridges and valley slopes and an average thickness of approximately one foot in Wolf Creek Valley. Quaternary alluvium is present within Wolf Creek Valley and generally consists of yellowish brown and gray silty clays and clayey silts that are plastic to highly plastic. This alluvium is locally sandy and contains silt lenses and occasional basal deposits of chert gravel. The alluvium ranges in thickness from 10 feet along Wolf Creek Valley margins to 36 feet in a buried (former) Wolf Creek channel. Tertiary alluvial deposits are reddish brown to gray, clayey chert gravels. The percentage of clay varies with depth and location. Residual soils, which have developed from underlying bedrock, consist of low plasticity to high plasticity clays. Thickness of the residual soil varies and reflects the composition of the underlying bedrock. These soils have generally developed to depths of less than 15 feet over shale and generally less than 5 feet over limestone. Subsurface profiles are shown on Figure 2.5-119. 2.5.6.2.2.2.2 Bedrock Conditions Rock which forms the bedrock surface of the main dam belongs to the Kanawaka Shale and underlying Oread Limestone and Lawrence Shale Formations.Characteristics of these members as mapped or observed in borings along the main dam alignment are discussed below. Subsurface conditions are shown on Figure 2.5-119. 2.5-256 Rev. 0 WOLF CREEK The sandstone facies of the Jackson Park Shale Member of the Kanawaka Formation forms part of the bedrock surface and foundation slopes of the main dam foundation in the vicinity of Station 0+00. This facies is a light brown, laminated to thin-bedded, very fine-grained, calcareous, silty sandstone. The Jackson Park Member is moderately to highly weathered at this location and is absent from the rest of the main dam alignment due to erosion. The Heumader Member of the Oread Formation is a medium gray, thinly laminated to thin-bedded, calcareous, silty shale. Generally, this unit is moderately weathered at the bedrock surface and becomes less weathered and increasingly calcareous with depth. The Heumader is a relatively impermeable unit and was mapped in the main dam foundation from Station 0+00 to Station 4+60 and from approximately Station 15+00 to Station 37+06. The Plattsmouth Limestone Member is light to medium gray, thin to thick bedded, and fine grained. The limestone is interbedded with gray, thin, discontinuous shale layers and also contains one continuous, medium gray, clayey, calcareous shale bed that is approximately 0.5 to 0.7 foot thick. Relatively unfractured Plattsmouth serves as the main dam foundation from Station 4+60 to Station 8+00. At most locations where the Plattsmouth occurs near ground surface, the bedrock is broken by numerous, irregular joints (open and clay-filled). At those locations, the limestone is generally slabby and moderately weathered, and the shale interbeds and partings are weathered to clay. [Keytrenches were excavated along the main dam axis (Stations 8+00 to 18+00, Stations 37+06 to 41+70, and Stations 86+30 to 105+10) and filled with compacted clay in order to reduce seepage through these fractured, more weathered, near-surface zones.] The Heebner Member is a grayish black, thinly laminated, fissile, carbonaceous shale. This unit was exposed in the walls of keytrench excavations from Station 8+00 to 18+00, Station 37+06 to 39+50, and Station 85+50 to 105+10.The Heebner is often crosscut by closed or calcite-filled, N50-60E joints. These keytrenches were excavated to the top of the underlying Leavenworth Limestone due to the high fissility of the Heebner. This shale unit was exposed in the main dam foundation from approximately Station 41+75 to 42+20 and from approximately Station 85+80 to 86+20 (and partly to Station 89+30). The Leavenworth Member is a light bluish gray to medium gray, thin-to thick-bedded, fine-grained limestone. The top of the Leavenworth was utilized as the floor of the keytrenches where fractures in the limestone were widely spaced (Station 8+00 to 18+00, Station 37+06 to 39+50, and Station 85+50 to 105+10). 2.5-257 Rev. 0 WOLF CREEK Where the Leavenworth occurs close to the ground surface, it is frequently jointed and the rock appears to have weathered to reddish brown clay in fracture zones (Reference 326). The Synderville Member is an olive-gray, laminated to medium-bedded, locally clayey, calcareous shale. Where overlying Leavenworth Limestone was highly jointed or absent due to erosion, the main dam keytrench was excavated into the relatively impermeable Synderville Shale. The Synderville was mapped on the main dam foundation from approximately Stations 42+25 to 43+50 and from Station 85+50 to approximately Station 87+00. This member is moderately weathered in the vicinity of Stations 42+00 to 43+50, where it occurs close to the surface.

The Toronto Limestone Member forms the bedrock foundation of the main dam on portions of the east and west slopes of Wolf Creek Valley (Stations 43+00 to 47+75 and Stations 79+00 to 85+50, respectively). This limestone is light gray, thin to thick bedded, and fine grained and also contains interbeds of greenish gray calcareous shale. Where the Toronto occurs close to the surface, shale interbeds are weathered to clay, and the weathered limestone contains both open and clay-filled joints. In the latter locations, keytrenches were excavated and filled with compacted, cohesive clay in order to reduce seepage beneath the dam (Stations 41+95 to 47+75 and approximately Station 79+00 to Station 81+00). The Unnamed Member of the Lawrence Formation consists of greenish gray to medium dark gray, thinly laminated, locally carbonaceous, calcareous shale with sandstone and siltstone interbeds. The Williamsburg Coal Bed within the Unnamed Member is a black, thin-bedded, shaley coal which was exposed in the low-level outlet tunnel excavation and in a supplementary exploration trench in the east abutment. The Unnamed Member was also exposed in the keytrench from approximately Stations 42+75 to 48+00 in the west abutment. A keytrench was excavated from Stations 48+70 to 52+00 and filled with compacted, cohesive clay fill in order to reduce seepage through the coal. The Amazonia Member consists of an upper, greenish gray, thin- to medium-bedded, very calcareous, clayey shale and a lower, greenish gray, thin- to medium-bedded fossiliferous limestone. The Amazonia Member was exposed in the discharge channel excavations west of Wolf Creek, locally in the main dam excavation across Wolf Creek Valley, and in both the east and west abutments. This unit was highly weathered or absent due to erosion at the discharge channel and main dam excavations.

2.5-258 Rev. 28 WOLF CREEK The Ireland Member of the Lawrence Formation contains shale, sandstone, siltstone, and coal facies. The Ireland Member was exposed in the low-level channel excavations and in the main dam excavation across Wolf Creek Valley. This unit was highly weathered to partly absent at channel and main dam excavations. The presence of coal within the Ireland required excavation of keytrenches at the base of the upstream (north) excavation slope from Station 60+75 to Station 64+05 and from Station 73+10 to Station 77+40. 2.5.6.2.2.2.3 Hydrogeologic Conditions The ground-water levels recorded during the field exploration program are shown on the subsurface sections, Figure 2.5-119, and on the logs of borings. These observations were made in open borings several days after completion of the borings. The ground-water elevations generally reflect the topography as shown on the subsurface sections and are interpreted to represent a water-table condition in the soil and weathered rock zone. The direction of ground-water flow generally parallels the surface drainage. Recharge is accomplished primarily by infiltration of precipitation into the soil and weathered rock zone. 2.5.6.2.3 Saddle Dams

2.5.6.2.3.1 Exploration Program The exploration program outlined below is a summary of the exploration program performed along saddle dams I through V during the period, May 7, 1974 through August 13, 1974. The exploration program is described in detail in Reference

66. 2.5.6.2.3.1.1 Test Borings and Test Pits

The field exploration program included a total of 51 exploratory borings and nine test pits. The test borings ranged in depth from 13.5 to 76.9 feet below the existing ground surface; the test pits were excavated to depths ranging from 4.2 to 11.5 feet. The locations of all test borings and test pits performed during the field exploration program are indicated on the plot plans, Figures 2.5-120 through 2.5-124. Saddle dam VI was not required for the design of the cooling lake and was, therefore, eliminated from

2.5-259 Rev. 28 WOLF CREEK construction; however, the borings have been included for general information.The logs of borings and test pits are shown in the Dames & Moore saddle dam report (Reference 66). Soil samples were obtained using the Dames & Moore Type U Sampler and the Standard Split Spoon [Standard Penetration Test Procedures (ASTM D 1586-67)].Bulk soil samples were also obtained from the test pits. Rock samples were obtained utilizing NX-wireline core barrels. 2.5.6.2.3.1.2 Ground-Water Exploration Ground-water seepage was observed in several of the test pits during the exploration and is noted on each log of test pits (Reference 66). Water levels were recorded in the borings, and pressure meter tests were performed in selected boreholes. The results of these tests and the ground-water levels are recorded on the logs of borings (Reference 66). 2.5.6.2.3.2 Summary of Geologic Conditions 2.5.6.2.3.2.1 Soil Conditions Three types of overburden were encountered along the saddle dam alignments.The topsoil consists of brown, organic silty clay and clayey silt. The average thickness of the topsoil is approximately 1.0 foot on ridges and valley slopes.Tertiary gravel deposits cap ridge tops along the alignment of saddle dams IV and V. These alluvial deposits consist of gravel within a clay matrix.Because the percentage of clay within the matrix varies with depth and location, permeability varies considerably. Residual soils have developed through weathering of underlying parent rock along all saddle dam alignments.These soils generally vary from plastic to highly plastic clays. Residual soil thickness reflects the composition of the underlying bedrock. Saddle dams I and II are founded on residual soils that vary from clays to silty clays. Subsurface sections along the saddle dams are shown on Figures 2.5-120 through 2.5-124.2.5.6.2.3.2.2 Bedrock Conditions Rock present in the saddle dam foundations belongs to the Kanawaka Shale and underlying Oread Limestone Formation. These formations are subdivided into members which are described below in stratigraphically descending order.Subsurface sections along the saddle dams are shown on Figures 2.5-120 through 2.5-124. 2.5-260 Rev. 0 WOLF CREEK The Stull Shale Member of the Kanawaka Formation forms the bedrock surface underlying the residual soil foundation for saddle dam I and for the northern half of saddle dam II. The Stull Member consists of interbedded shale, sandstone, and some siltstone. This relatively impermeable shale is predominantly medium light gray, weathers to yellowish brown or light olive-brown, and is also thinly laminated, calcareous, and silty with some fine-grained sandstone. Some interbeds of siltstone to fine-grained sandstone are often present. This member is generally moderately weathered at the bedrock surface and becomes less weathered at depth. The Clay Creek Limestone Member forms the bedrock surface underlying residual soil in the southern half of saddle dam II and the entire length of saddle dam III. This limestone is predominantly light gray, medium to thick bedded, and fine-grained. The relatively impermeable Clay Creek Limestone is moderately to slightly weathered where the overburden is less than 10 feet thick and generally unweathered where the overburden is thicker than 10 feet. The Jackson Park Member forms the bedrock surface at the north ends of saddle dams IV and V. The facies mapped in both saddle dams is a light brown to yellowish orange, laminated to thin-bedded, fine-grained, calcareous, silty sandstone. This sandstone is moderately weathered and relatively impermeable.Light gray, sandy limestone is interbedded with Jackson Park Sandstone in the northern keytrench of saddle dam IV. The Heumader Shale Member of the Oread Formation forms the bedrock surface along most of saddle dams IV and V. This member is a medium to olive-gray, thinly laminated to thin-bedded, silty shale. The Heumader contains siltstone and limestone interbeds and grades more calcareous towards its base. The Heumader Shale generally is moderately weathered at the bedrock surface, becomes less weathered with depth, and is also relatively impermeable. The Plattsmouth Member is light gray, thin- to thick-bedded, fine- to very fine-grained, fossiliferous limestone and is interbedded with medium gray, calcareous shale. The top of the Plattsmouth serves as part of the saddle dam IV foundation. 2.5.6.2.3.2.3 Hydrogeologic Conditions The ground-water levels recorded during the field exploration program are shown on the subsurface sections, Figures 2.5-120 through 2.5-124, and on the logs of borings (Reference 66). These observations were measured in open borings several days after 2.5-261 Rev. 0 WOLF CREEK completion of the borings. The ground-water elevations generally reflect the topography as shown on the subsurface sections and are interpreted to represent a water-table condition in the soil and weathered rock zone. The direction of ground-water flow generally parallels the surface drainage. Recharge is accomplished primarily by infiltration of precipitation into the soil and weathered rock zone. 2.5.6.2.4 Baffle Dikes 2.5.6.2.4.1 Exploration Program The exploration program described below is a summary of the field exploration program performed for baffle dikes A and B during the period of March 24 to April 15, 1975. The complete exploration program is described in Reference 58. 2.5.6.2.4.1.1 Test Borings and Test Pits The subsurface conditions for baffle dikes A and B and related channels were investigated by drilling a total of 33 exploratory test borings, 20 along the alignment of dike A and 13 along the alignment of dike B. The test borings ranged in depth from 4.5 to 21.5 feet below the existing ground surface. In addition, a total of five test pits were excavated along channel alignments, four at dike A channels, and one at dike B channel. The test pits ranged in depth from 3.0 to 11.0 feet and were approximately 10 feet in length and 2 feet in width. The locations of the borings are shown on Figures 2.5-125 through 2.5-129.Soil samples from the borings were obtained with the Dames & Moore Type U Sampler. Samples were also obtained utilizing the Standard Split Spoon Sampler. Bulk samples were obtained from the test pits. Rock cores were obtained using NX-wireline equipment. Graphical representation of the soil and rock encountered is shown on the logs of borings and logs of test pits (Reference 58). 2.5.6.2.4.1.2 Ground-Water Exploration Ground-water levels were observed in the open boreholes and test pits during the course of the investigation and are noted on the bottom of each log of borings and log of test pits (Reference 58). 2.5-262 Rev. 0 WOLF CREEK 2.5.6.2.4.2 Summary of Geologic Conditions 2.5.6.2.4.2.1 Soil Conditions Overburden along the alignment of both baffle dikes consists of topsoil, Quaternary alluvium, and residual soils. The topsoil has an average thickness of approximately 1.2 feet, but is locally absent due to erosion or disturbance by man. Topsoil is generally thicker in valleys where it overlies alluvial deposits. Quaternary alluvium generally consists of brown and gray, stiff to very stiff, silty clays. Alluvial deposits which occur along Wolf Creek and its tributaries are derived from the erosion of residual soils and highly weathered rock. Alluvial soils were mapped in the foundation of baffle dike A from Stations 18+10 to 21+20 and along margins of the excavation from approximately Stations 93+10 to 98+20. Alluvium was mapped in the foundation of baffle dike B from Stations 17+30 to 17+75, Stations 19+40 to 25+80, and from Stations 43+00 to the northwest end. Residual soils which are derived from underlying bedrock consist of low to high plasticity clays with local traces of sand and gravel. The thickness of residual soil deposits varies and reflects the composition of underlying bedrock. (In general, these soils may reach a depth of 15 feet above shales and 10 feet above limestones.) Residual soils were mapped in the foundation for baffle dike A from Stations 0+00 to 18+10, Stations 33+00 to 66+60, Stations 70+55 to 77+35, and in other intervals noted in the following section.Residual soils were mapped in the foundation for baffle dike B from Stations 0+00 to 13+00, Stations 17+75 to 18+40, Stations 25+80 to 28+00, and Stations 37+00 to 93+00. See USAR Section 2.5.1.2.2 and Reference 351 for a complete description of soils. Boring logs are included in the appendix of the Dames & Moore baffle dike report (Reference 351). Geologic cross sections are shown on Figures 2.5-125 through 2.5-129. 2.5.6.2.4.2.2 Bedrock Conditions Rocks which underlie the baffle dikes belong to the Kanawaka Shale and underlying Oread Limestone and Lawrence Shale formations. Characteristics of these rocks as mapped in baffle dike foundation excavations and logged in borings are discussed below in stratigraphically descending order (see USAR Section 2.5.1.2.2 for a more complete description). General characteristics of these rock members are discussed in USAR Section 2.5.4. Geologic cross sections are shown on Figures 2.5-125 through 2.5-129. The sandstone facies of the Jackson Park Shale Member of the Kanawaka Formation forms the bedrock and residual soil surface at the north end of baffle dike A and the eastern end of baffle dike 2.5-263 Rev. 0 WOLF CREEK B. At baffle dike A, this facies is a medium to yellowish gray, laminated to thin-bedded, very fine-grained, calcareous, silty sandstone that is highly weathered. From Station 0+00 to Station 15+00, the Jackson Park at baffle dike B consists of the same highly weathered facies and residual orange-brown sandy clay.The Heumader Shale Member of the Oread Formation forms the bedrock surface for part of baffle dike A, most of baffle dike B, and the channel adjacent to baffle dike B. This member is a medium gray (weathering to light yellowish or olive-gray), thinly laminated to thin-bedded, calcareous, silty shale. The Heumader contains limestone interbeds and becomes more calcareous toward its base. At the northern end of baffle dike A, the Heumader is highly weathered to brown silty clays that locally contain some fine sand. The Plattsmouth Limestone Member underlies parts of baffle dike A and is also present along the middle portion of the northern baffle dike A channel, where it outcrops near a tributary to Wolf Creek. This unit is medium to light gray, thin- to thick-bedded, fine-grained limestone with occasional partings and interbeds of gray, thinly laminated, calcareous shale. Although the Plattsmouth Member generally is moderately to slightly weathered, shale interbeds are weathered to clay where exposed near ground surface. The Plattsmouth was mapped in the foundation excavation for baffle dike A from approximately Stations 21+20 to 22+50, at Station 36+00, and from approximately Stations 85+65 to 87+00. The Heebner Member is a grayish black, thinly laminated, very calcareous shale.This unit was exposed in a ledge at approximately Station 22+50 in the foundation excavation of baffle dike A. The Heebner has weathered to gray-brown silty clay approximately between Station 33+00 and Station 36+00.Residual soil derived from the Heebner Member occurs southeast of Station 36+10 but contacts between this and other residual soils could not be discerned (Reference 326). The Heebner Member is deeply weathered to gray-brown, clayey residual soil from approximately Stations 84+70 to 85+65 and Stations 87+00 to 88+00 in the foundation of baffle dike A. The Leavenworth Member is a light bluish gray to medium gray, thin- to thick-bedded, fine-grained limestone. This 1-foot thick unit was exposed in a subvertical face at approximately Station 22+50 in the excavation for baffle dike A. The Leavenworth Member was mapped in the foundation excavation of baffle dike A from Station 31+00 to approximately Station 34+50 and at both Stations 84+60 and 88+00. 2.5-264 Rev. 0 WOLF CREEK The Snyderville Shale Member is olive-gray, laminated to medium bedded, locally clayey, and calcareous in the foundation excavation for baffle dike A.Although this unit is slightly weathered approximately between Stations 26+00 and 31+00, it is highly weathered approximately between Stations 22+50 and 24+00. Olive-gray to brown clayey residual soils, which appear to have been derived from the Snyderville Member, occur in the vicinity of Station 56+00 to approximately Station 61+00, in the vicinity of Station 76+00, between Stations 83+70 and 84+55, and between Stations 88+00 and 89+10. The Toronto Limestone Member is light gray, thin to thick bedded, and fine grained and also contains interbeds of greenish-gray, calcareous shale. This limestone forms portions of the baffle dike A foundation from approximately Stations 22+60 to 28+00, Stations 45+00 to 46+20, Stations 66+60 to 70+55; Stations 77+35 to 83+70, Stations 88+70 to 94+60, and Station 97+65 to the southeast end of the structure. This unit generally is slightly to moderately weathered, but is moderately to highly weathered approximately between Stations 92+00 and 94+60 and southeastwards from Station 97+65. The Unnamed Member of the Lawrence Formation consists of greenish gray to medium dark gray, thinly laminated, locally carbonaceous, calcareous shale with sandstone interbeds. The Williamsburg Coal Bed is a black, thin-bedded, shaley coal that occurs within the Unnamed Member. The Unnamed Member and coal bed were exposed in the baffle dike A foundation approximately between Stations 94+60 and 97+65. (The shale is moderately weathered above and slightly weathered below the slightly weathered Williamsburg Coal.) Rocks underlying baffle dikes A and B generally strike north-northeast and dip gently to the west-northwest at 20 to 30 feet per mile. This general structural trend is modified beneath the baffle dike A alignment by an anticline-syncline sequence which plunges to the southwest (USAR Section 2.5.1.2.4.2 and Figures 2.5-53 and 2.5-54; Reference 351). 2.5.6.2.4.2.3 Hydrogeologic Conditions The ground-water levels recorded during field explorations are indicated on the logs of borings (Reference 58). Measurements were made in open borings upon and after completion of drilling operations. Ground-water elevations generally reflect the topography and are interpreted to represent water table conditions in the soil and weathered rock zone. The water tables are generally perched in the soil and weathered rock zone, and the ground-water flow parallels the surface drainage. Ground-water 2.5-265 Rev. 0 WOLF CREEK flow is very slight and is concentrated at joints and fractures in the rock.Recharge is accomplished primarily by infiltration of precipitation into the soil and weathered rock zone. 2.5.6.3 Foundation and Abutment Treatment2.5.6.3.1 Ultimate Heat Sink Dam Piezometers HS-1, HS-3, and HS-5 have been grouted fully in the UHS dam foundation area. The location of the piezometers is presented on Figure 2.5-118. No other foundation treatment procedures were performed on the UHS dam foundation. Piezometer grouting data for the UHS dam are presented in Table 2.5-61.2.5.6.3.2 Main Dam and Main Dam Spillways The foundation treatment at the main dam and main dam spillways was comprised of the following: a. Dental treatment by hand compaction of cohesive material against irregular surfaces of the keytrench walls on the main dam, on the main dam abutment, and against concrete surfaces of the low-level outlet; b. Piezometer and well plugging; c. Lean concrete mud mat on foundations of low-level outlet and service spillway; and d. Application of gunite to excavated walls of low- level outlet. 2.5.6.3.2.1 Dental Treatment Dental treatment was performed by hand compaction of select cohesive material against irregular surfaces in the key-trenches and on the abutment between Stations 79+00 to 79+50 from the centerline to the downstream toe of the dam. The purpose of the dental treatment was to provide better control of the compaction effort in areas inaccessible to machinery and to provide a good seal between the irregular rock surfaces and the embankment fill. 2.5.6.3.2.2 Piezometer and Well Plugging Piezometer and well plugging was performed in order to minimize or eliminate seepage of impounded water into the deeper foundation zones (Table 2.5-61). 2.5-266 Rev. 0 WOLF CREEK 2.5.6.3.2.3 Mud Mat Concrete mud mats on the foundations of the low-level outlet and service spillway were used to level and protect the foundation from deterioration by weathering during construction. The level surface provided a better base for concrete forming and a better surface for final cleaning prior to concrete foundation placement. The slower construction process of placing and tying reinforcing steel for these structures dictated the need for longer protection from the weather. 2.5.6.3.2.4 Gunite Gunite was used on the excavated walls of the low-level outlet to protect the wall face from deterioration by weathering. The slow construction process, as described above, justified the need for gunite treatment of the walls. 2.5.6.3.3 Effectiveness of Treatment 2.5.6.3.3.1 Dental Treatment Compaction of cohesive material by hand-operated compaction equipment was observed by Daniel International Corporation Quality Control (DIC-QC) personnel. To further assure an effective seal between the cohesive material and the walls, abutments, or concrete surfaces, the best available material was selected for this use. The material used was as free of clods and as close to optimum moisture content as possible. During the compaction process, in-place field density tests were performed by DIC-QC personnel. The results of all density tests are presented Table 2.5-62. 2.5.6.3.3.2 Piezometer and Well Plugging The effectiveness of piezometer and well plugging was evaluated by visual observation by D&M geotechnical staff. Well plugging data are presented in Table 2.5-61. 2.5.6.3.3.3 Mud Mat Visual observation was used to evaluate the effectiveness of mud mats. Prior to the placement of concrete foundations on mud mats, an inspection was performed by D&M geotechnical staff. Documentation of these inspections is presented on D&M Surveillance Reports available at the WCGS site. 2.5-267 Rev. 0 WOLF CREEK 2.5.6.3.3.4 Gunite Gunite placement on the walls of the low-level outlet was visually observed by D&M geotechnical staff. Prior to fill placement, the walls were geologically mapped, inspected, and approved. 2.5.6.3.4 Construction Procedures 2.5.6.3.4.1 Dental Treatment Cohesive material to be compacted by hand-operated equipment was selected from the best material available. The material was placed in 3-inch thick loose lifts and compacted with "Whacker" or "Powder Puff" type, hand-operated compactors.The quantity of cohesive material compacted by hand-operated equipment is unknown. In the keytrenches, abutment Stations 79+00 to 79+50, and at the low-level outlet, the hand-compacted material became part of the main dam embankment. Quantity records for these specific areas are not available. 2.5.6.3.4.2 Piezometer and Well Plugging Three wells and one piezometer in the main dam, spillways, and saddle dam were scheduled for plugging, as presented in Table 2.5-61. Piezometer LK-8 was grouted by inserting a 1/2-inch diameter pipe to the bottom of the piezometer and pumping grout while raising the pipe until the piezometer was filled. Well D-61c was removed by excavation for the main dam foundation. Information on type and quantity of material used for well plugging is shown in Table 2.5-

61. Well D-61b was not located. A systematic and diligent search for this well was made using graders and scrapers to carefully excavate the well location and adjacent area. When the final cleaning of the main dam foundation was completed, another unsuccessful search was made for the well during the geologic mapping of the foundation. It can only be postulated that the well is either mislocated or had been previously destroyed. 2.5.6.3.4.3 Mud Mat Low-level outlet and service spillway foundations which were covered with a concrete mud mat were cleaned both by hand and by air blower equipment. These areas were inspected and approved for mud mat placement by D&M geotechnical staff. The documentation of approval is presented on D&M Surveillance Reports available at the WCGS site. 2.5-268 Rev. 0 WOLF CREEK 2.5.6.3.4.4 Gunite Excavated walls at the low-level outlet, which were to receive gunite, were cleaned by hand prior to gunite placement. Gunite was mixed on location and applied to the wall with standard air-blown mortar equipment. The quantity of gunite placed at the low-level outlet was 6.4 cubic yards. 2.5.6.3.5 Saddle Dams No special foundation treatment and construction procedures were required at the saddle dams. 2.5.6.3.6 Baffle Dikes The only foundation treatment required on the baffle dikes was the plugging of Wells XC-2, XD-3, and XD-4. Well XC-1 was scheduled for plugging but was removed by foundation excavation for Baffle Dike B. The need, justification, effectiveness, and construction procedure for the baffle dike wells were the same as described in USAR Section 2.5.6.3.1 for the main dam, spillways, and saddle dams. The location of the wells is presented on Figure 2.5-118. Quantities and type of material used for plugging is presented in Table 2.5-61. 2.5.6.4 Embankment2.5.6.4.1 Embankment Features The embankment features of the main dam, saddle dams, baffle dikes, and the UHS dam are described below. 2.5.6.4.1.1 Main Dam The main dam is about 12,260 feet long and is a homogeneous earth embankment from its base at unweathered rock to a crest elevation of 1,100 feet.Keytrenches totaling about 2,000 feet in length were excavated from the base of the dam into the rock at three portions of the axis of the dam and back-filled with compacted cohesive soil to reduce any possible seepage. The trenches have a width of 10 feet at their base. These trenches are provided where the limestone foundation rock is slabby or broken to cutoff any potential seepage path along joints. A service spillway with a crest elevation of 1,088 feet and an auxiliary (emergency) spillway with a crest elevation of 1,090.5 feet is provided on the east abutment of the cooling lake dam to pass floods up to and including the probable maximum flood (PMF). 2.5-269 Rev. 0 WOLF CREEK An outlet structure is provided to release the blowdown discharge. The blanket drain provides for controlled seepage and uplift pressures. The maximum height of the main dam is 100 feet above the bedrock. Stability analyses discussed in USAR Section 2.5.6.5 demonstrate that side slopes of three horizontal to one vertical will insure slope stability throughout its life. A typical section of the main dam showing the riprap layers, rock toe, and drainage blanket is shown in Figure 2.5-115a. The subsurface materials encountered at the main dam site include alluvial soil, residual soil, and rock materials. For the portion of the dam where the height of the dam is less than 10 feet, the subsurface materials are proofrolled before embankment construction with unsuitable areas excavated to suitable materials. For the portion of the dam between 10 and 20 feet in height, a keytrench 10 feet minimum width at the bottom with one horizontal to one vertical side slopes is excavated to rock and backfilled with compacted cohesive soil. For other areas where the height of the dam is greater than 20 feet, the soil materials have no relevance to the foundation conditions because they have been excavated and removed to an unweathered rock surface. The rock materials underlying the main dam site have been thoroughly investigated by detailed geologic studies, a number of borings, and test pits.The bedrock is mainly a thinly laminated siltstone with interlaminations of shale and sandstone. Near the abutments, alternating layers of limestone and shale appear with a few thin coal seams. The extent of solutioning and weathering of the limestone can be related to the amount of calcium in the water, the amount of calcium that can be retained in solution by the water, and the amount of calcium present in the limestone. At the Wolf Creek site, there is no evidence of solutioning in the limestone. For a discussion of subsurface conditions at the main dam, see USAR Section 2.5.6.2.2. The soils for the compacted embankment fill to construct the main dam are alluvial soils from on-site borrow areas located in the reservoir upstream of the dam (Figure 2.5-130). The excavated soil profile begins with a thin layer (up to 30 inches) consisting of brown and black organic clayey silt having a Unified Soil Classification of ML or OL. This layer is stripped and wasted or stockpiled for later use as landscape and downstream seeding. Beneath this topsoil is a layer of mottled gray and yellowish brown silty clay alluvium of medium to high plasticity and of low permeability, having a Unified Soil Classification of CL. The cohesive material used for the Main Dam was drawn from borrow 2.5-270 Rev. 0 WOLF CREEK areas C, D, E, F, G, H, I, J and K, as well as the Main Dam excavation across the Wolf Creek Valley, as shown on Figure 2.5-130. Bulk samples were obtained from the test pits for laboratory testing of the structural fill material. The grain-size distribution curves obtained for the material are shown on Figure 2.5-90, sheets 5 through 7. The filter materials in the main dam were selected as described in USAR Section 2.5.6.4.1.4. The bulk of the material for the blanket drain is obtained from the Plattsmouth Limestone; is produced from the on-site quarries; and is the quality specified for fine riprap filter materials. The material for the blanket drain in the Main Dam closure area is a mixture of natural sand and crushed Limestone, supplied by the Fogle Quarry at Ottawa, Kansas. For designing the riprap for the main dam, methods similar to those outlined in the 1973 U.S. Army Corps of Engineers "Shore Protection Manual" were used. The riprap for the upstream slope protection on the main dam varies by elevation, as follows: At elevation 1060' and above, 1700 pound riprap from the Toronto Limestone Member meeting the gradation outlined in Table 2.5-98; from elevation 1050' to 1060', 755 pound riprap from the Toronto Limestone Member meeting the gradation outlined in Table 2.5-99; and below elevation 1050', 755 pound riprap from the Plattsmouth Limestone meeting the gradation outlined in Table 2.5-99.A wind velocity of 50 mph and a significant wave height or 4.2 feet for the main dam were used for the design criteria, as well as a unit weight of 155 pcf and a KRR (stability coefficient for granular, angular, quarry stone randomly placed) of 2.5 for the graded riprap. Placement of fill materials is made to densities greater than 95 percent of the maximum dry density at moisture contents ranging from 2 percent below to 2 percent above optimum moisture content as determined from the ASTM Standard Proctor test D698-70. The soil fill materials for the dam are placed in uniform lifts not exceeding 8 inches in loose thickness with each layer compacted to the required density prior to placement of succeeding layers. The granular fill for the blanket drain and the filters beneath the riprap are placed in lifts not exceeding 18 inches and compacted to at least 80 percent relative density with vibratory compaction. No compaction requirements are required for the dumped riprap blanket. Laboratory consolidation tests were performed on remolded samples of the borrow material. The results are shown on Figure 2.5-89. Since the embankment is founded on rock, the greater majority of the consolidation takes place within the soil fill. Except 2.5-271 Rev. 0 WOLF CREEK where the height of the main dam is 20 feet or less, a camber of 1.5 percent of the height of the dam is provided throughout the length of the main dam so that the freeboard will not be diminished by the embankment consolidation. The camber is provided when the dam is topped out, and much of the consolidation will have already occurred. 2.5.6.4.1.2 Saddle Dams Except for the saddle dam IV, all saddle dams are founded above the normal operating level of the cooling lake. The maximum height of these dams varies from 5 feet to 38 feet above the bedrock level. These dams are homogeneous embankments of cohesive materials with crest elevation at 1,100 feet. The selected slopes of the dams are three horizontal to one vertical, the same as those of the main dam. Portions of the lakeside slopes of Saddle Dams I, II, and III are flattened to a five horizontal to one vertical slope. The flattened areas are from stations 10 + 50 to 14 + 50 at Saddle Dam I; stations 15 + 00 to 24 + 50 at Saddle Dam II; and stations 11 + 50 to 21 + 50 at Saddle Dam III. The subsurface conditions at the saddle dams are discussed in USAR Section 2.5.6.2.3. The properties of the foundation and borrow materials to be used for saddle dams are the same as those for the main dam. Embankment materials are from selected excavation for the saddle dams and borrow areas described in USAR Section 2.5.6.4.1.1. The materials are cohesive clays, compacted to a minimum of 95 percent optimum dry density of the Standard Proctor compaction, ASTM D 698-70.Filter materials are of the gradation defined for the main dam, and placed as a bedding layer for the riprap slope protection. A granular drainage blanket is provided for Saddle Dam IV. Internal filters and drains are not required for the other saddle dams, because they are not subject to wetting during cooling lake normal operating levels. Riprap slope protection design procedure is the same as that required for the main dam. The design wave height is 3.2 feet as determined for Saddle Dam IV.

The riprap for Saddle Dams IV and V is from the Toronto Limestone formation and is the 1,700 pound gradations as outlined in Table 2.5-98. It is 2 feet, 6 inches thick for Saddle Dam V and 3 feet thick for Saddle Dam IV. The downstream slopes of all saddle dams are protected by seeding. The lakesides of Saddle Dams I, II and III are seeded with grass. 2.5-272 Rev. 0 WOLF CREEK The cohesive fill is placed and compacted in accordance with the standards set forth for the main dam. Similarly, the riprap and filter bedding are placed as described for the main dam. For portions of saddle dams having height greater than 20 feet, a camber of 1.5 percent of the height of dams is provided to account for any settlement of embankment. The other embankment features of the saddle dams are similar to those of the main dam. 2.5.6.4.1.3 Baffle Dikes The geometry of baffle dikes A and B is similar to that of the main dam. They are a homogeneous section composed of cohesive materials, except Baffle Dike A which has a rock core section. The height of the dikes varies from 10 feet to 82 feet above the bedrock. The subsurface conditions at the baffle dikes are discussed in USAR Section 2.5.6.2.4. The compacted fill is from suitable excavated materials or from selected borrow areas and consists of cohesive clays. The properties of the foundation and borrow materials are similar to those of the main dam embankment fill. The fill was compacted to 95 percent dry density of the Standard Proctor compaction as defined by ASTM D 698-70. Where a rock core section was used, the rock compaction procedures were developed from on-site test sections. The cohesive soil cover was compacted to the same cohesive fill requirements. Filter materials are granular, noncohesive, and of the gradations defined for the main dam. They were placed as a bedding for the riprap slope protection.Blanket drain materials were not required for the baffle dikes since they normally function under balanced hydrostatic pressures. Riprap of the same quality as that for the main dam was placed on both faces of the baffle dikes. The riprap extends below the minimum operating levels of the cooling lake. This provides adequate protection against erosion from wave action.Based on the 100-year flood and wind-wave runup, the design of the riprap for the lake side of the baffle dikes is the same as that for the main dam. The riprap for the lakeside of Baffle Dike A consists of a 3 foot thick layer of 1,700 pound gradation riprap above the bench at elevation 1070', and a 2 foot thick layer of 755 pound riprap below the bench. The riprap for the lakeside of Baffle Dike B consists of a 3 foot thick layer above the bench at elevation 1070' and a 2 foot thick layer below the bench, of the 1,700 pound riprap, except for a section between stations 28 + 50 to 37 + 00 where a 2 foot thick layer of the 755 pound riprap was used below the bench. 2.5-273 Rev. 0 WOLF CREEK On the landward side of the Baffle Dikes, the design for the riprap has a maximum weight of 185 pounds, a weight of the 50 percent size of 50 pounds, and a minimum weight of 10 pounds, except several areas on the east side of Baffle Dike A, where riprap from the Toronto Limestone, which was lighter than the specified 185 pound riprap gradation, was used below elevation 1075' (msl). Baffle dikes are provided with a camber of 1.5 percent of the height of the dikes where their heights exceed 20 feet. This camber ensures that the freeboard is not diminished due to consolidation of dikes. 2.5.6.4.1.4 Ultimate Heat Sink Dam The UHS dam is an earthfill dam approximately 18 feet in height above the foundation rock surface at its maximum section. The side slopes of the dam are designed to be four horizontal to one vertical. The subsurface materials encountered at the UHS dam site included alluvial soil, residual soil, and rock materials. The soil materials have been excavated and removed to a fresh rock surface. The subsurface conditions at the UHS dam are discussed in USAR Section 2.5.6.2.1. The bedrock underlying the UHS dam is a series of shales and limestones, identical to that underlying the entire plant site to the northwest. During the exploration, no drill water losses were encountered in any of the soil or rock borings. Variations in foundation conditions under the dam are not abrupt, but occur over large horizontal distances, and the abutments are flat-sloping. The dam is founded on competent rock. The soils for structural fill to construct the UHS dam will come from on-site excavation upstream of the UHS dam within the excavation limits of the UHS complex as shown on Figure 2.5-130 and are selected so as to provide the most impervious clays available. Laboratory tests on samples taken from test pits and borings within the UHS area indicated that the materials are suitable for embankment construction and are available at a number of locations. These soils consist of deposits of clay of medium to high plasticity and of low permeability. Their character and thickness are variable and reflect the composition of the underlying bedrock. They range from silty sand with traces of rock fragments to plastic clays with traces of sand. 2.5-274 Rev. 0 WOLF CREEK The soil profile excavated for borrow began with a thin (0- to 2-foot) surface horizon of slightly organic clayey silt having a Unified Soil Classification of ML. This layer was stripped and wasted or stockpiled for later use in final grading and landscaping in other portions of the project. The remaining soil profile is grouped into two predominantly clay materials which have a Unified Soil Classification of CL and CH. The maximum in-place density ranges between 125.8 and 87.3 pcf for the CL soil and between 104.2 and 82.6 pcf for the CH material. A complete list of the in-place densities as determined from undisturbed samples obtained during the drilling program of the UHS is shown as Table 2.5-63. These soils were the predominant source of the potential embankment material. Both bag and jar samples were obtained from the test pits and borings for laboratory testing. Significant physical properties of representative specimens of these materials are summarized in Tables 2.5-63 and 2.5-64.Grain-size distribution curves are shown in Figure 2.5-90, sheets 1 through 4. The plots indicate little significant variation in the deposits either laterally or with depth. A description of the test procedures used is provided below.2.5.6.4.1.4.1 Test Procedures 2.5.6.4.1.4.1.1 Sample Processing Each bulk sample was processed by passing the entire contents through a No. 4 screen and then sorting the gravel sizes retained through use of a mechanical shaker. If the materials were not sufficiently plastic to be forced through the Number 4 screen, air drying was permitted to create a workable condition that facilitated the plus and minus Number 4 size separation. The sorted material was placed into moisture-proof bags, tied, and marked with identification tags. 2.5.6.4.1.4.1.2 Moisture Content Determination of moisture content in the laboratory was performed in accordance with ASTM Test Designation D 2216/71. 2.5.6.4.1.4.1.3 Atterberg Limits Test Liquid and plastic limits were determined in accordance with ASTM Designations D 423-66 and D 424-59, respectively. 2.5-275 Rev. 0 WOLF CREEK 2.5.6.4.1.4.1.4 Particle-Size Analysis Particle sizes larger than 74 microns (No. 200 mesh sieve) were determined by mechanical sieving; sizes finer than 74 microns were determined by hydrometer analysis. All minus Number 4 material was soaked overnight and dispersed using an air jet dispersion apparatus, and hydrometer readings were then taken.After completing the necessary hydrometer readings, the soil slurry was washed on a Number 200 mesh sieve and the retained portion dried to a constant weight for subsequent dry sieving to obtain the percentage of the various sand sizes.The percentages of sizes larger than Number 4 sieve were determined during sample processing. 2.5.6.4.1.4.1.5 Specific Gravity Determinations Specific gravity values were determined for all materials by the pycnometer method in which an extremely high vacuum was applied to a soil-water mixture of each specimen until all air had been removed. A mechanical shaking apparatus assisted in freeing the soil of absorbed air. The reported values are considered apparent specific gravity, which is defined as a ratio of a mass of unit volume of the impermeable portion of a soil at a stated temperature to a mass of the same volume of gas-free distilled water at the same temperature. 2.5.6.4.1.4.1.6 Compaction Test Two series of compaction tests were completed for this testing program.Procedures for both series were in accordance with ASTM test method D698-70 (Method A), except for the later "5-point" series wherein the material was reused for the several moisture-density compaction points. Each compaction point was molded from prebatched soil that was moisture conditioned for at least 16 hours. Soil batches containing overdried material prepared for the second compaction series were moisture conditioned for at least 24 hours at the initial moisture level and for about 1 to 2 hours at each increase in moisture. Moisture content of each compaction point was determined by oven drying the entire compaction specimen in the initial series and by paring a cylindrical moisture sample for oven drying from the compaction specimens containing reused soil. Compacted soil remaining in the surplus material after molding a compaction specimen was broken down and passed through a Number 4 screen before adding moisture and curing for subsequent test points. 2.5-276 Rev. 0 WOLF CREEK 2.5.6.4.1.4.1.7 Consolidated-Undrained Triaxial Compression Test Test specimens were prepared by remolding moisture conditioned soil directly into a 2 1/2-inch mold. The specimens were then wrapped with prepared filter-paper jackets, encased in latex membranes, and mounted on the triaxial specimen base. After the test chamber was assembled, initial burette data were recorded and saturation by seepage and incremental backpressure were undertaken until a "B" saturation parameter of 0.95 or greater was attained. The designated consolidation pressure was then isotropically applied to the specimen, and time versus volume change measurements were recorded. Upon completion of primary consolidation, the interior valves were closed and axial stresses slowly applied, maintaining a constant strain rate determined for each specimen from its consolidation behavior. Tests were terminated at specimen failure. The entire test specimen was then removed and dried to a constant weight for moisture content and unit weight determinations. Pore pressure measurements were taken during the stressing phases of all triaxial tests, and the Mohr's diagrams were plotted. Consolidated-undrained triaxial compression test results on recompacted soil samples are provided in Table 2.5-31. Pore pressures were measured at top and bottom of samples and the average pore pressure taken to compute effective stress from the total stress. Table 2.5-65 shows how effective stress is computed from the total stress. Borrow material is considered only from the area of TP-1, TP-2, and TP-3, and, hence, the Mohr circle is drawn only for the test results in these areas.Figure 2.5-131 is the Mohr envelope drawn from the results of TP-1, TP-2 and TP-3, respectively. Figure 2.5-131 also shows the Mohr envelope drawn combining all the TP-1, TP-2 and TP-3 test results. From all these Mohr envelopes, a conservative effective stress parameter, c' = 265 psf and = 20, is chosen for slope stability analysis of the UHS dam. A modified Mohr diagram is also presented in Figure 2.5-131 on the tests performed for TP-1, TP-2 and TP-3. 2.5.6.4.1.4.1.8 Unconsolidated-Undrained Triaxial Compression Test Remolded triaxial test specimens were constructed as described in USAR Section 2.5.6.4.1.4.1.7 and were placed in the test chamber. After a saturation "B" parameter of 0.95 or greater was attained, the interior valves were closed and the full confining pressure applied as quickly as possible. Loading was simultaneously begun 2.5-277 Rev. 14 WOLF CREEK with the application of confining pressure. Axial loading was increased at a uniform rate of strain until failure was indicated. Pore pressure was monitored throughout the loading. After completing the axial loading, the entire specimen was removed and oven dried to a constant weight for moisture content and unit weight determinations. Results of the unconsolidated-undrained triaxial compression tests on the recompacted samples are provided in Table 2.5-29. Since the borrow materials are considered only from the areas of TP-1, TP-2 and TP-3, a conservative undrained parameter, c = 450 psf and = 0, is considered. 2.5.6.4.1.4.1.9 Swell Tests Test specimens for the one-dimensional swell tests were prepared and compacted by kneading the sample into a 2 1/2-inch diameter oedometer ring. Final target density was achieved by slightly compressing the molded soil to the desired specimen height using a circular steel plate. Each specimen and ring was then placed into a standard consolidometer loading frame and subjected to a 0.05 tons per square foot seating load. Stress equilibrium was then created by allowing the specimen to freely strain in the axial direction under the imposed nominal loading before proceeding with the test. Axial loading pressures of 0.31 or 0.62 tons per square foot (tsf) were used on separate specimens of the same sample. Inundation was created during the loading sequence between 2 and 4 minutes, and the tests were continued for 24 hours. Because of the behavior of the swell test, additional tests were undertaken to verify the original test results with the variable stress fields and saturation conditions likely to be encountered in the construction. The supplemental swell study was undertaken on Sample TP-3 (composite 1 foot to 3 feet and 3 to 5 feet), deemed representative of all soils being tested. In this supplemental study, test specimens were molded in a separate cylinder using only kneading effort, and the soil was then transferred directly into the confining test rings. Two parameters were varied -- stress history and time to inundation -- and the resulting swell or axial strain versus time recorded. Since no significant difference in swell behavior or potential was noted between the initial and supplemental swell test results, further supplemental swell testing was not considered necessary. 2.5.6.4.1.4.1.10 Consolidation Tests Test specimens for the consolidation tests were prepared directly into the oedometer rings in the same manner as described in USAR Section 2.5.6.4.1.4.1.9. Fixed-ring type consolidometers were 2.5-278 Rev. 14 WOLF CREEK used for all consolidation tests, and loading started with a small seating load of 0.05 tsf maintained for 24 hours or until the specimens ceased to consolidate. At this time, the standard loading sequence of doubling the prior load was started, allowing up to 24 hours between loadings, as appropriate.After completing the 6.4-tsf loading, the specimens were allowed to rebound at loads of 1.6, 0.4 and 0.1 tsf, allowing 24 hours at each rebound load. Deformation versus time readings were taken for each loading step, and void ratio-pressure curves and time-deformation curves were plotted for each test. Upon completion of testing, the entire specimen was removed and used to determine moisture, void ratio, and density. 2.5.6.4.1.4.1.11 Permeability Tests Permeability test specimens from bulk materials were prepared in the same manner as triaxial test specimens, resulting in permeability test specimens with diameters of 2.87 inches and heights of approximately 2 inches. Following preparation, each specimen was encased in a rubber membrane without a filter jacket, and incremental back-pressure saturation techniques was employed to ensure complete saturation. Following this, density increases, if appropriate, were achieved by increasing the confining pressure and then allowing the specimens to consolidate. Several test runs were made at each density using different initial hydraulic gradients. Falling-head testing techniques were used in making the permeability determinations, and each value has been corrected to a viscosity at 20C.2.5.6.4.1.4.1.12 Stress-Controlled Dynamic Triaxial Compression Test Triaxial compression tests incorporating cyclic loading under controlled stress conditions were performed on saturated test specimens of remolded soil. Test specimens were prepared by molding the soil directly into a 2.87-inch diameter mold. The specimens were then wrapped in filter paper jackets, encased in latex membranes, and mounted on the triaxial specimen pedestal. After placing the specimen in the dynamic triaxial chamber, incremental backpressure saturation was applied to assure saturation prior to consolidation and subsequent repeated loading. In all cases, a "B" saturation parameter of 0.95 or greater was attained at the maximum backpressure level prior to consolidation. 2.5-279 Rev. 1 WOLF CREEK Consolidation cycles were performed under the following loading conditions.The specimens were first consolidated under isotropic conditions, at principal stress ratios, kc = 1/3, of 1.25 and 1.75. Time versus interior volume change behavior was recorded during consolidation cycles, thus assuring completion of primary consolidation. Corresponding measurements of the exterior confining fluid were also made during the saturation and consolidation phases as a further check on the specimen volume changes.Upon completion of the primary consolidation in both phases, an air cushion was established within the triaxial chamber by drawing off a portion of the confining fluid, closing the drainage valves, and applying a predetermined reversing cyclic axial stress at a frequency of 1 cps. Tests were performed with the stress reversal controlled so that the peak stresses were maintained for a relatively short period of time, resulting in "sawtooth" shaped loading pulses. Measurement of dynamic pressure, strains, and axial loads was accomplished with electronic transducers, and traces of the analog values were simultaneously recorded throughout the entire test. Dual traces for the axial strain were recorded at different amplification levels so that a more precise record could be obtained during the early portion of the test when the strain was low, as well as during the later portion of the test when values of large magnitude were anticipated. The stress-controlled dynamic triaxial test results for the compacted clay are given in Table 2.5-66. These test results are also plotted on Figure 2.5-93. 2.5.6.4.1.4.1.13 Strain-Controlled Dynamic Triaxial Compression Test Test specimens were prepared as described in USAR Section 2.5.6.4.1.4.1.12 and mounted in a triaxial test apparatus. A backpressure saturation technique was employed to attain a "B" saturation parameter of 0.95 or greater. Upon completion of saturation, the specified isotropic consolidation pressure was applied, and volume change versus time readings were recorded until 100 percent primary consolidation was completed. Following consolidation, each specimen was subjected to approximately 20 cycles of loading, which was applied with a series of offset circular cams that axially strained the specimen in a sinusoidal manner at 1 cps. Loading started with the smallest cam offset and progressed through a series of three larger cam offsets. Between each different cyclic strain, the specimens were 2.5-280 Rev. 9 WOLF CREEK permitted to drain for a sufficient period of time to dissipate any pore pressure and to reestablish the designated effective confining pressure. The axial load, axial strain, and pore pressure variations during each application of strain were recorded on an electronic stripchart. The load-deflection hysteresis loops were recorded on an XY recorder at selected times during the application of cyclic strain. Following dynamic testing, the entire test specimen was removed from the chamber and oven dried for moisture content and unit weight determination. The shear modulus of the soil controls the velocity of the propagating shear waves due to earthquake and is expressed as the equivalent secant modulus, determined by the slope of a line passing through the ends of the hysteresis loop at the peak stress and strain after each loop. Figure 2.5-94 provides the laboratory results of the shear modulus. The damping ratio provides the measure of the energy absorbing characteristics of soil. Under earthquake loading, damping arises from nonlinear frictional effects as mineral particles slide up on adjacent particles. The strain energy released during unloading is less than the strain energy stored during loading. Figure 2.5-95 provides the damping values from the laboratory results. 2.5.6.4.1.4.1.14 Dispersive Soil Tests Soils from borrow locations within the UHS area and from the borrow area for the main dam and saddle dam were tested for dispersion. The tests were done according to the recommended procedures of the Soil Conservation Service (1976) and that of Sherard (Reference 239 ) and included double hydrometer tests, tests for dissolved sodium and total dissolved salts (TDS) and pinhole tests.The test results are presented in Table 2.5-67. The test procedures are described in the above-mentioned references. The dispersive characteristics of the UHS embankment were first investigated during the search for borrow material sources for the UHS embankment fill. At that time, potential borrow material was tested using the SCS method (Reference 240) and Sherard's method (Reference 241). Chemical tests were also performed. The results (samples from Test Pits HSDC-1, -2, -3 shown on Table 2.5-67d) did not indicate a significant dispersive potential. During and after construction of the embankment, samples taken from borrow material (UHS-1 to UHS-3 shown on Table 2.5-67e) and the embankment (CUHS-1 to CUHS-3 shown on Table 2.5-67a) were again tested using Sherard's method. At this time, the tests showed dispersive 2.5-281 Rev. 0 WOLF CREEK behavior. However, when the samples showing dispersive behavior were tested using water from the John Redmond Reservoir (the water in the Wolf Creek Lake is primarily water pumped from the John Redmond Reservoir), the samples did not test dispersive. Because of concern for failure from dispersive piping during filling, Mr. James L. Sherard was consulted. Mr. Sherard's evaluation and recommendations are shown in a attached letter (Table 2.5-67f). In accordance with Mr. Sherard's recommendations, the UHS dam was monitored closely during and after filling, and no signs of distress or piping were noticed.Consequently, there should be no danger of the UHS dam embankment failure from dispersive piping. The results of the dispersion tests on samples from the main dam embankment are shown on Table 2.5-67e. It should be noted, however, as was the case for the samples from the UHS dam embankment, that when the samples showing dispersive behavior were tested using water from the John Redmond Reservoir, the samples did not test dispersive. The conditions at the main dam are being visually inspected weekly. To provide assurance of the safety of UHS dam, the UHS basin was filled with water while the downstream (toe) water level was kept at or below 1955 feet for a thirty-day observation period. During the UHS fill and observation periods, the performance of the UHS dam was assessed through a program of visual inspection, monitoring of movement instrumentation and monitoring of water elevations.The UHS basin was filled and maintained with water from the John Redmond Reservoir to an elevation of 1069.0 to 1069.5 feet, while the lake water elevation downstream of the dam was maintained below elevation 1055 feet for a thirty-day observation period. Pumping operations to fill and maintain the water elevations in the UHS basin were performed in accordance with the criteria specified in Table 2.5-67a and the test procedure specified in Table 2.5-67c. During the fill and observation periods, daily measurements, to the nearest 0.1 foot, were taken to record the water elevation in the UHS basin, in the lake downstream of the UHS dam and in a downstream pond which is southwest of the UHS dam. In addition, pump flow rates were measured and pumping periods were recorded for all pumping operations necessary to maintain the water elevation in the UHS basin and to remove water from the area at the toe of the UHS dam. Prior to filling the UHS basin, the base elevations and coordinates were recorded for monuments 1 through 9 on the UHS dam. During the fill and observation periods, the monuments were periodically monitored for vertical and horizontal movement, per the procedures outlined in Table 2.5-90. During the initial fill 2.5-282 Rev. 10 WOLF CREEK period, from May 20, 1980 to September 30, 1980, vertical movements of the monuments were recorded weekly; for the remainder of the fill period and the thirty-day observation period, vertical movements were recorded monthly.Horizontal movements of the monuments were recorded monthly from May 23, 1980 to September 24, 1980, and thereafter, per the schedule defined in Table 2.5-90. The monument monitoring data recorded during the fill and observation periods indicates vertical movements in a range from 0.1 inches to 0.6 inches, (May 20, 1980 to January 5, 1981) and horizontal movements from 0.8 inches to 3.1 inches (May 23, 1980 to September 24, 1980). In addition, the UHS dam and the area downstream of the dam were inspected weekly during the fill and observation period for seepage, stability and segregation of the riprap material. Data recorded during the UHS dam test program are on file at the Wolf Creek Generating Station, Unit No. 1. The UHS dam test data, and the results of the visual inspection were reviewed and summarized in the Section entitled "Observation Period" (Reference 73). The "Observation Period" section of this report is provided in Table 2.5-67b. The data and observations recorded during the UHS program are within the normal ranges for a compacted earth dam. Plasticity indices were determined for samples from the borrow material. Once the material was compacted in-place, additional test samples were taken to verify that the range of plasticity indices did not deviate significantly from the range of indices for the material initially tested from the borrow areas. The in place plasticity indices were evaluated by the field geotechnical inspection staff and found consistent with the borrow material data. The range of plasticity indices for main dam materials are given in Tables 2.5-74 and 2.5-75. The indices for the UHS dam materials are given in Tables 3 and 5 of a 1981 Dames & Moore Report (Reference 73). 2.5.6.4.1.4.2 Filter Materials Since no deposits of sand or sand and gravel suitable for use as transition zones of filters in the proposed structure were found, such material is purchased offsite or manufactured by crushing the limestone rock members. The design of the filter materials was made such that (a) no significant head is lost in flow through the filters, and (b) no significant invasion of soil is permitted 2.5-283 Rev. 0 WOLF CREEK into the filter. The gradation requirements of the filter material are based on particle size which was developed by Terzaghi and later extended by the U.S. Army Corps of Engineers at Vicksburg, Mississippi (Reference 143) and the U.S. Navy Design Manual DM-T. The resulting filter specifications relate the grading of the protective filter to that of the soil protected and the riprap by the following: D(15) Riprap < 10 D(85) Coarse Filter 4 < D(15) Riprap < 20 (a) D(15) Coarse Filter D(15) Coarse Filter < 25 D(85) Fine Filter 4 < D(15) Coarse Filter < 20 (a) D(15) Fine Filter D(50) Coarse Filter < 25 D(50) Fine Filter D(15) Fine Filter < 5 (b) D(85) Soil 4 < D(15) Fine Filter < 20 (ab) D(15) Soil D(50) Fine Filter < 25 (b) D(50) Soil D(15), D(50), and D(85) are the particle sizes from a particle-size distribution plot at 15, 60, and 85 percent, respectively, finer by weight. The gradation relationship between the filter and the riprap layer was designed using the Corps of Engineers criteria (Reference 239) for which the D(15) size of the riprap does not exceed 10 times the D(85) size of the filter. The following factors were considered in the selection of the filter thickness: _________________________a This limit may be increased to 40 if the finer material is well graded (uniformity coefficient > 4). b These criteria need not be satisfied if the resulting filter material contains more than 5 percent fines (<.074mm-No. 200 sieve). 2.5-284 Rev. 0 WOLF CREEK a. The wave action as the lake drawdown occurs; b. The gradation of the riprap; and c. Plasticity and gradation of the embankment materials. 2.5.6.4.1.4.3 Riprap Materials The rock for the riprap blanket for both the upstream and downstream slopes meet the quality specifications for concrete aggregate. Riprap was obtained by blending the Plattsmouth Limestone from the onsite quarry with large size rock from the Southbend Limestone from the Fogle Quarry in Ottawa, Kansas. Testing of the Plattsmouth formation has been conducted by the Kansas State Department of Transportation and Dames & Moore. The testing of the Southbend formation has been conducted by Dames & Moore. Results are summarized in Table 2.5-68 and 2.5-68a. Within the site area, the Plattsmouth Limestone has a maximum thickness of approximately 12 feet. This formation has many thin shale partings. It is found that the pieces having an average thickness of 6 to 9 inches and a maximum of 1 foot can be obtained. The Southbend formation is a formation of limestones which does not contain fragments of shale partings or bedding planes. This formation is found at the Fogle Quarry at Ottawa, Kansas. The cooling lake waters are saturated or near saturated with respect to calcium at all times. The water's ability to dissolve the limestone is, therefore, minimal, and the immersion of limestone riprap into the environment of the cooling lake does not affect the integrity of these blocks. During the unlikely postulated total loss of the main cooling lake dam and baffle dike "A", the slopes and crest of the UHS dam would be subjected to a flow of water over the crest. Adequate erosion protection has been provided for the upstream and downstream slopes as well as the crest of the dam. The techniques for design of rock sections for overtopping were presented by Oliver (Reference 205). 2.5-285 Rev. 0 WOLF CREEK 2.5.6.4.1.4.4 Field Construction All phases of the site preparation and earthwork operations were performed under the technical supervision of qualified geotechnical engineers who determined that all work was performed in compliance with project earthwork specifications and project quality assurance criteria. Placement of fill materials was made to densities greater than 95 percent of the maximum dry density at moisture contents ranging from 2 percent below to 2 percent above optimum moisture content as determined from the Standard Proctor Test D 698-70.The soil fill materials for the dam was placed in uniform lifts not exceeding 8 inches in loose thickness with each layer compacted. The granular fill for the filter beneath the riprap was placed in lifts not exceeding 18 inches and compacted to 80 percent relative density with vibratory compaction.No compaction requirement was required for the dumped riprap blanket. The quality control procedures established the methods employed to accomplish the work covered in the specifications. The quality control procedures were as follows: a. Identify methods for performing the required speci- fication work; b. Describe special construction methods, work procedures, and personnel qualifications required for accomplishing the work; c. Establish acceptance criteria for determining that important activities have been accomplished satisfactorily; d. Identify control measures necessary to ensure implementation of required inspection points; e. Provide measures to ensure that material, equipment and services conform to procurement documents; f. Provide traceability of materials to ensure identification of all materials used for incorporation in the UHS dam; and 2.5-286 Rev. 0 WOLF CREEK g. Provide for identification, documentation, segregation, disposition, and/or resolution of nonconforming materials and workmanship used in safety-related construction that fails to meet established requirements. The laboratory consolidation tests were performed on the fraction of the embankment soil finer than the Number 4 sieve. The results of consolidation tests for both the recompacted and undisturbed soil specimens are given in Table 2.5-69 and are shown in Figures 2.5-88f through 2.5-88h. The compressibility of the filter and rock sections was very small and occurred during construction. 2.5.6.4.2 Compaction 2.5.6.4.2.1 Ultimate Heat Sink 2.5.6.4.2.1.1 Laboratory Testing A total of 17 compaction tests, including both Standard and Modified Proctor (ASTM D-698 and D-1557, Method A), were performed during the investigation on samples obtained within the UHS area. The results of these tests and the grain-size distributions for the compacted soils are shown in the Dames & Moore ultimate heat sink report (Reference 59). The test procedures are discussed in USAR Section 2.5.6.4.1.4.1.6. Borrow material for the UHS dam was obtained from within the area of the excavation for the UHS. The maximum dry densities determined from the Standard Proctor tests ranged from 87 to 112 pcf, and optimum moisture contents ranged from 15 to 28 percent. The range of values obtained indicates a wide variation in properties and composition (liquid limits ranging from 36 to 80). Due to the large variation in maximum dry densities and optimum moisture contents, large variations in compacted densities occurred depending on the plasticity of the borrow material. Frequent field density and compaction tests were, therefore, performed to ensure that the compaction criteria for the UHS dam area were met. The summary of the field density tests are shown on Figures 2.5-114a and 2.5-114b. Based on the field tests, 16 of the 195 field tests failed to meet the compaction criteria by 1 to 4 percent compaction. However, all failed areas were recompacted, or the failing material removed and replaced. Moisture content data are summarized on Figure 2.5-114d. Triaxial tests on six samples obtained from three different boreholes drilled in the UHS-embankment were also performed. The test results are shown on Figure 2.5-114c. As can be seen, all tests 2.5-287 Rev. 0 WOLF CREEK yielded strengths higher than the design strength. Based on this information, the strength parameters used in the design are valid. 2.5.6.4.2.1.2 Field Control The UHS dam foundation was prepared as described in USAR Section 2.5.6.4.2.2.3.Location of the UHS dam and UHS is shown on Figure 2.5-114. 2.5.6 4.2.2 Main Dam and Main Dam Spillways 2.5.6.4.2.2.1 Laboratory Testing Borrow material for the main dam embankment has been obtained from borrow areas within the Wolf Creek Valley. An extensive study of the soils within the borrow areas has been reported in "Final Report, Geotechnical Investigation, Soil Borrow Materials, Wolf Creek Generating Station, Unit No. 1, for Kansas Gas and Electric Company and Kansas City Power and Light Company" (Reference 55). A summary is also given in USAR Section 2.5.6.3. A total of 21 Standard Proctor compaction tests (ASTM D698-70 Method of Compaction) were performed during the investigation for the main dam on representative bulk samples from each borrow area. Test results shown in the Dames & Moore main dam report (Reference 60) were used to generate generalized compaction criteria for the borrow materials. 2.5.6.4.2.2.2 Field Tests Several test fills were performed on granular blanket drain material. The primary purpose of the test fills was to select the optimum lift thickness for placement of this material which is manufactured by crushing limestone from the on-site quarry. Limestone material is susceptible to breakdown with excessive compactive effort. To minimize this breakdown during placement and compaction, variable lift thicknesses were evaluated. Lift thicknesses of 18, 36, and 72 inches were evaluated to select the lift thickness which would have less than 5 percent passing the Number 200 screen and an average relative density of 70 percent after compaction. The relative density, in-place dry density, and gradation results of these test fills are summarized in Table 2.5-70. All laboratory and field testing, except petrographic examination and freeze thaw tests, were performed by DIC-QC personnel. 2.5-288 Rev. 0 WOLF CREEK Lift thicknesses of 18 inches were selected because satisfactory and repeatable results could be more easily obtained using standard construction methods. To meet specification requirements, it was necessary to use material which had a low percentage of material passing the Number 200 screen prior to compaction.To monitor the gradation of the granular drainage blanket material, numerous daily samples were obtained at the crusher. Gradation tests were performed on these samples to evaluate the gradation of the material being produced and provide information for adjusting the crushing, screening, and washing operations as necessary. Lift thicknesses of 36 and 72 inches had satisfactory gradations but were rejected because the in-place relative densities, while considered acceptable, were less than desired for standard construction procedures. The 36- and 72-inch test fills were proofrolled with six passes using a 50-ton pneumatic roller and accepted. A test fill was also performed on granular toe drain material. The purpose of the test was to establish a performance type placement and compaction procedure that could be observed and verified visually. The large size of the toe drain material makes it difficult to reliably test for relative density. Toe drain test fill results are presented in Table 2.5-71. The method of placement and compaction selected was using a lift thickness of 1 foot and compacting with two passes using a 6-ton vibratory drum roller. 2.5.6.4.2.2.3 Field Control Clearing and grubbing was performed using dozers and scrapers. Foundation excavation and preparation for the main dam and spillways was also performed using dozers and scrapers and/or a belt loader and belly dumps. Blasting was used to break hard rock. Foundations were prepared for approval by final cleaning using graders, front end loaders, and hand labor as required. All blasts expected to exceed 10 percent of the allowable peak particle velocity were monitored. The results of the blast monitoring is shown in Table 2.5-72. One of the blasts for keytrench excavation exceeded the allowable peak particle velocity at the concrete cutoff walls of the low-level outlet structure. The concrete cutoff walls and all other concrete at the low-level outlet were inspected by D&M geotechnical staff immediately following identification of the excessive particle velocity. No damage was observed. 2.5-289 Rev. 0 WOLF CREEK Prior to fill placement, all foundations that were in natural soil were proof rolled using a 20-ton, self-propelled sheepsfoot. The site geotechnical staff observed the proof rolling. Any soft areas discovered during the proof rolling were excavated to sound material to provide an acceptable foundation.Documentation of proof rolling is presented on D&M Surveillance Reports available at the WCGS site. All foundations were jointly inspected and approved by Kansas State Division of Water Resources (DWR) personnel and D&M geotechnical staff. Several types of fill material were specified for use on the main dam and spillways as outlined below. a. Cohesive embankment; b. Granular drainage blanket; c. Granular toe drain; d. Granular fine bedding; e. Granular coarse bedding; f. 30-inch riprap; g. 22-inch riprap; h. 6-inch riprap; and i. Miscellaneous compacted granular fill, granular bedding, and gravel drain. A typical section is presented on Figure 2.5-115. Center line profiles of the main dam are presented on Figure 2.5-132. Cohesive embankment material was obtained from approved borrow areas or approved foundation excavation areas as specified on project drawings. Documentation of test results on cohesive material is presented in Table 2.5-62. Borrow and foundation areas were previously investigated and evaluated during the initial site studies. These studies formed the basis for the borrow and foundation areas shown on project drawings. As borrow or foundation areas were excavated, fill material was evaluated visually and approved by the D&M geotechnical staff. To document material approval, additional samples were obtained from the source areas for laboratory testing. 2.5-290 Rev. 0 WOLF CREEK Cohesive fill was placed in approximately 3-inch-thick loose lifts for compaction with hand-operated compaction equipment, such as "Whackers", "Jumping Jacks", or "Powder Puffs." Loose, lift thicknesses of approximately 8 inches were used where heavy compaction equipment could be used. Prior to compaction, the material was mixed and broken down using a dozer-towed disk.Self-propelled, 20-ton, sheepsfoot compactors were used for compaction. At the beginning of long holidays, or when precipitation was imminent, the fill surface was sealed for protection by rolling the fill with loaded scrapers and/or graded for drainage. Prior to placing additional fill, the surface was scarified by discing. The fill was placed as close to optimum moisture content as possible. The S&L specification requires +2 percent of optimum. Small deviations for a few tests were authorized and approved by the resident geotechnical engineer, however. All cohesive fill placed at the main dam and spillways was compacted to 95 percent of maximum dry density as determined by ASTM Test Designation D698. A lift thickness summary of the cohesive embankment fill for the main dam and saddle dams is presented in Table 2.5-73. Documentation of in-place field density test results performed during placement operations is presented in Table 2.5-62. Other control tests performed on cohesive material are presented in Tables 2.5-74 and 2.5-75. All granular materials used on the main dam, except the gravel drain, were produced from the approved on-site quarry. Gravel drain materials were obtained from a locally approved quarry. Granular drainage blanket material was hauled by end dump truck from the crusher at the onsite quarry to the placement area. This procedure reduced the handling necessary to place the material and minimized breakdown of the limestone. Granular drainage blanket material was placed in 18-inch-thick loose lifts and compacted with a 6-ton vibratory roller. Granular drainage blanket material was compacted to 85 percent relative density as determined by ASTM-D-2049.Documentation of control tests is presented in Table 2.5-76. Toe drain material was hauled from the crusher to the placement area using Belly Dumps. Lifts were controlled to 12 inches in thickness using dozers.The lift was then compacted with two passes using a 10-ton vibratory roller.Compaction was visually observed by DIC-QC or D&M geotechnical staff. 2.5-291 Rev. 0 WOLF CREEK Gravel drain was used as the permeable material around the drain pipes under the service spillway channel. Gravel drain material was placed by hand labor in 3-inch lifts. The material was compacted by "Whacker" type, hand-operated compactors. Compaction of this material was observed visually since it was not possible to test the material by usual methods in the confined 14-inch wide and 17-inch deep trench. 2.5.6.4.2.3 Saddle Dams 2.5.6.4.2.3.1 Laboratory Testing Borrow material for the saddle dams was obtained from the borrow areas in the Wolf Creek Valley. The testing program is discussed in the Dames & Moore alternate baffle dikes report (Reference 58). 2.5.6.4.2.3.2 Field Control The field control procedures used for the saddle dams are identical to those used for the main dam (USAR Section 2.5.6.4.2.2). However, except for saddle dam IV, no granular toe drains or drainage blanket are used at the saddle dams. Figures and tables pertaining to the field control procedures for the saddle dams are presented with those for the main dam and spillways. 2.5.6.4.2.4 Baffle Dikes 2.5.6.4.2.4.1 Laboratory Testing Compaction tests were performed on representative samples of potential borrow materials encountered in the test pits. All compaction tests were performed in accordance with the ASTM Test Designation D 698-70 method of compaction. Test results are presented in "Final Report, Geotechnical Investigation, Alternate Baffle Dikes A and B and Alternate Channels, Wolf Creek Generating Station, Unit No. 1 for Kansas Gas and Electric Company and Kansas City Power and Light Company" (Reference 58). 2.5.6.4.2.4.2 Field Tests Sargent & Lundy specifications permit the contractor to use shale and rock to construct the inner core section of the baffle dikes. The contractor elected to use waste rock and shale from the on-site quarry and foundation excavations to construct a rock core in baffle dike A. To evaluate the compaction characteristics of the rock and shale, a test fill was constructed at baffle dike A. The primary purpose of the test fill was to evaluate the number of passes required to compact an 18-inch thick lift of rock and shale. Because of the rock size, it was not feasible to reduce 2.5-292 Rev. 0 WOLF CREEK the lift thickness. Also, based on prior experience with rock fills, it was not considered good practice to increase lift thicknesses greater than 18 inches for this material. Rock and shale for the test fill was placed by end dump trucks and leveled to 18-inch lift thickness using dozers. To evaluate the compactive effort required (95 percent of the maximum dry density as determined by ASTM D 698-70), the lifts were compacted with two to four passes using a 25-ton minimum, self-propelled, sheepsfoot compactor. The compaction was observed by the D&M geotechnical staff to determine the minimum number of passes required to compact the rock and shale. Based on these observations, a minimum of two passes was approved for compacting the rock and shale. 2.5.6.4.2.4.3 Field Control The foundation preparation procedure for the baffle dikes was the same as that described in USAR Section 2.5.6.4.2.2. Location of the baffle dikes is shown on Figure 2.5-114. Centerline profiles of the baffle dikes are presented on Figure 2.5-133. Foundations for the baffle dikes were inspected by the geotechnical staff prior to fill placement. Foundation approval is documented by D&M Surveillance Reports. Types of fill material specified for use in the baffle dike construction are as follows: a. Cohesive embankment;

b. Rock and shale embankment; c. Granular fine bedding; d. Granular coarse bedding; e. 15-inch riprap; and f. 30-inch riprap.

Cohesive material was obtained from approved borrow areas, baffle dike foundation excavation, or from the on-site quarry excavation. Material evaluation and approval was the same as described in USAR Section 2.5.6.4.2.2.Documentation of test results on cohesive material is presented in Tables 2.5-77 through 2.5-79. Baffle dike cohesive fill placement, compaction, and protection were the same as described in USAR Section 2.5.6.4.2.2, except that no hand-operated compaction equipment was required. 2.5-293 Rev. 0 WOLF CREEK Documentation of in-place field density test results performed during placement is presented in Table 2.5-78. Other control tests performed on cohesive material are presented in Tables 2.5-79 and 2.5-80. Rock and shale embankment material was obtained from the on-site quarry excavation, baffle dike foundation, or main dam foundation excavation. Only baffle dike A was constructed with portions of the core using compacted rock and shale. Baffle dike B was constructed entirely of compacted cohesive embankment material. Locations of compacted rock and shale embankments in baffle dike A are presented on Figure 2.5-134. The rock and shale material was placed by end dump trucks and leveled to 18 inches in thickness with dozers. The lift was compacted with two passes using a 25-ton minimum, self-propelled sheepsfoot compactor. The compaction was visually observed by DIC-QC personnel and/or D&M geotechnical staff. 2.5.6.5 Slope Stability2.5.6.5.1 Main Dam Stability Analysis 2.5.6.5.1.1 Shear Strength of Materials Preliminary unconfined compression and consolidated-undrained triaxial tests were performed on remolded samples from the borrow area test pits. The samples were compacted according to ASTM D 698-70 with densities of at least 93 percent of Standard Proctor and moisture content ranging from plus or minus 4 percent of optimum. The results of the strength tests are given in Table 2.5-81. An average shear strength of 1,800 psf was used for the end of construction slope stability analysis, while the effective stress parameters used for the steady state and rapid drawdown conditions were a cohesion of 280 psf and a friction angle of 25 degrees. Other parameters used in the analyses are given in Table 2.5-82. 2.5.6.5.1.2 Stability Analysis The main dam is designed such that its slopes are stable under all reservoir operation conditions. The various loading conditions considered in the analyses are described below. The minimum factors of safety used are in accordance with standard practice commonly used for embankment design. 2.5-294 Rev. 0 WOLF CREEK Minimum Required Condition Safety Factor1. End of construction 1.4 2. Steady-state flow, cooling lake 1.5 at Elevation 1087 3. Sudden drawdown, Elevation 1087 1.2 to Elevation 1030 4. End of construction plus horizontal earthquake force (0.06g) 1.0 5. Steady state seepage with cooling lake at Elevation 1087 with horizontal earthquake force (0.06g) 1.0 As noted above, the steady-state cooling lake elevation was taken as 1,087 feet, and the rapid drawdown condition water level was taken down to Elevation 1,030 feet. For the steady-state seepage condition, an estimate for the phreatic line was based on a flow net construction. The computer program SLOPE was used for evaluating the safety factors for the main dam slopes. The details of SLOPE program are described in USAR Section 3.12.For static stability analysis, the program SLOPE uses the simplified Bishop method. In this method, the failure surface is assumed to be an arc of a circle. The pore pressures developed in the embankment during construction are also considered in the analyses. The safety factor is defined as the ratio of the moment of the available resisting forces to the moment tending to cause sliding.To evaluate the effect of an earthquake loading on the stability of slopes and embankments, a pseudo-static force is used in the computer program SLOPE to represent the deformation effects of earthquake motions. The static force is applied to a slope mass bounded by the slope profile and the assumed failure surface. The earthquake force for a slice is equivalent to the slope mass of that slice times a percent of the acceleration of gravity. Slope mass is calculated using the total unit weights, and does not take into account any pore pressure effects. The earthquake force for each slice is applied horizontally through the center of gravity of that slice. 2.5-295 Rev. 0 WOLF CREEK In the analysis, an earthquake force equivalent to 0.06g corresponding to the OBE was used to determine the stability of the main dam. The safety factors obtained from the stability analyses are greater than the minimums described above and are given in Table 2.5-83. Figures 2.5-115b through 2.5-115d show the critical slip circles for the cases investigated. Riprap and filter layers are placed on the upstream slopes and a rock toe is placed on the downstream end of the dam to provide protection against tailwater erosion.2.5.6.5.2 Saddle Dams Stability Analyses Because of similar geometry and embankment features, the stability analyses made for the main dam have been applied to the saddle dams. 2.5.6.5.3 Baffle Dikes Stability Analyses Analyses were the same as those for the main dam, as described in USAR Section 2.5.6.5.1. For the rock core section of the baffle dike, the minimum factor of safety obtained for the worst condition (rapid drawdown) is 1.2. For the rock core section of the baffle dike, the rock was assumed to have C = 0, = 35 degrees properties. 2.5.6.5.4 UHS Dam Stability Analyses 2.5.6.5.4.1 Shear Strength of Materials In the process of evaluating the shear strength of the soil, a series of laboratory triaxial tests were performed on samples taken from the UHS reservoir. The soil specimens tested represented the range of materials found in the UHS reservoir limits and adjacent areas. The laboratory test samples were compacted and tested at optimum water content plus 3 percent and density of 95 percent of Standard Proctor D 698-70, which was selected to simulate the conditions that will be obtained during construction. For determining the strength of compacted, impervious soils, the following tests were used. Undrained tests were performed primarily to determine the relationship between the shear strength and normal pressure in terms of total stresses for use in the analysis of the stability of the dam during the period immediately after construction. Consolidated-undrained tests were performed 2.5-296 Rev. 1 WOLF CREEK with the pore pressure measured to determine the strength parameters in terms of effective stress (C' and '). The purpose of the test is to obtain the strength for use in the effective stress method of analysis. The tests were conducted on compacted samples which were completely saturated in order to obtain the lowest shear strengths. The results of the testing are shown in Table 2.5-78. The filters are compacted to 80 percent relative density within the embankment to prevent liquefaction during an earthquake. Rock strengths listed in Table 2.5-32 are based on laboratory unconfined compressive tests on NX-rock core from the plant and pumphouse site areas. The shear strength and modulus characteristics of the rock are such that they may be excluded from consideration in the dam analysis. The rock strength of the riprap blanket has been estimated based upon published data and adopted criteria for construction. 2.5.6.5.4.2 Stability Analyses 2.5.6.5.4.2.1 Static Stability Analysis The stability analysis was made for the most critical section of the dam shown on Figure 2.5-135. The soil parameters used in the analysis of various conditions are also shown on the figure. The increase in strength due to the filters and large riprap blanket were not considered in the analysis. The solution to each of the design conditions was made by the use of computer program SLOPE, which solves for the stability of embankment employing the modified Bishop method of slices for a circular arc. The computer program is described in USAR Section 3.12. The static loading conditions analyzed for the stability slopes are as follows: a. The end of construction; b. Rapid drawdown, lake water Elevation 1,087 to Elevation 1,050; c. Steady-state seepage, cooling lake at Elevation 1,050; and d. Fully submerged condition. The end of construction case was examined using a total stress analysis in which an estimate was made of the shear strength that will be available considering the pore pressure of the compacted 2.5-297 Rev. 1 WOLF CREEK samples. The minimum factor of safety of 1.4 was selected on the basis of the degree of conservatism for the selection of the soil strength. The effective stress method of analysis was used in evaluating the rapid drawdown condition on embankment stability. In the effective stress method of analysis, the results of consolidated-undrained tests on saturated clay samples were used to determine the shear strength. In the analysis, the drawdown is assumed to be instantaneous and no drainage occurs during the time the water level is lowered due to the postulated loss of water in the cooling lake. For the analysis, the drained strength was determined by taking into consideration the stresses to which the soil is consolidated prior to drawdown. Lowe and Karafath's (Reference 156) method for determining this shear strength and for accomplishing the necessary stability calculations was used. A factor of safety of 1.2 was selected as the minimum. For the steady state seepage condition, an effective stress analysis was used with the pore pressures estimated from a flow net. The shear strengths used were determined from consolidated-undrained tests on saturated samples to which pore pressures are applied simulating those which may exist under the gravity flow of the dam. A conservative assumption was made concerning the ratio of the permeabilities in the horizontal and vertical directions. The degree of anisotropy was conservatively selected as nine. A safety factor of 1.5 was considered satisfactory when computed with a method of calculation in which pore pressures were estimated from a steady-state flow net. Long-term stability of the embankment was analyzed using an effective stress analysis with pore pressures corresponding to equilibrium conditions of the main cooling lake. To provide assurance of a conservative design, a higher factor of safety (1.5) has been provided to allow for the possible decrease in the shear strength of the clay with time. Also, the strength of the weakest material encountered was used in the analysis for stability. The factors of safety obtained from the slope stability analyses for the above loading conditions are given in Table 2.5-84. 2.5.6.5.4.2.2 Seismic Analysis of UHS Dams The methods of analyses used to evaluate the seismic stability of the UHS dam are (a) the pseudo-static analysis using the soil strength parameters provided in USAR Section 2.5.6.5.1, and (b) the finite element analysis using the method proposed by Seed and others (Reference 232) and Seed and others (Reference 233). 2.5-298 Rev. 1 WOLF CREEK Additional seismic analysis of the UHS dam using the Lawrence Livermore Laboratories spectrum is presented in Appendix 3C. 2.5.6.5.4.2.2.1 Pseudo-static Analysis In the pseudo-static method of analysis, the end of construction, steady-state seepage, and long-term stability conditions havebeen evaluated using a 0.12g acceleration. The selection of the seismic coefficient is based on the SSE conditions for the site. The effects of the seismic loading will not be applied to the rapid drawdown condition, because the rapid drawdown condition is a direct result of the SSE. Also, the time period for the earthquake is shorter in duration than the improbable event that the main dam and baffle dyke A would disappear, resulting in a drawdown condition from Elevation 1,087 (normal cooling lake elevation) to the lowest level of the UHS dam. For end of construction, prior to filling the cooling lake, the saturated, unconsolidated-undrained (UU) shear strength parameters are applicable to the stability analysis. This shear strength is expressed in terms of total strength. This analysis contains the implication that the field pore pressures will not exceed those experienced in the laboratory test. The recognition of this fact does not invalidate the use of such test results in the computation. The steady seepage condition, where the UHS is stablized at the maximum storage level that can be maintained for a period to produce equilibrium throughout the embankment, creates a critical case for analysis of the downstream slope. The saturated, consolidated-undrained, corrected-for-pore-pressure (CU w/pp) shear strength parameters are applicable to the stability analysis of the downstream slope. The analysis is done in terms of effective stresses, and a flow net is constructed to determine the phreatic line and uplift forces to be used. The horizontal seismic coefficient, as established and reported in USAR Section 2.5.2, is applied uniformly throughout the embankment. The seismic coefficient multiplied by the mass of an individual slice gives the earthquake force on the zone. This force times the moment arm provides the earthquake overturning moments on the section. Vertical accelerations are neglected. The results of the pseudo-static stability studies for a uniform slope of four horizontal to one vertical provided the safety factors shown on Figure 2.5-135 for circular sliding surfaces. The results are also given in Table 2.5-84. 2.5-299 Rev. 0 WOLF CREEK 2.5.6.5.4.2.2.2 Finite Element Analysis 2.5.6.5.4.2.2.2.1 Introduction In the finite element method of analysis, the procedure used for evaluating the seismic stability of the UHS dam consists of the following steps: a. A dynamic response analysis of the UHS dam is con- ducted to evaluate the shear stress time history at various locations throughout the embankment. The response computation is performed using the finite element method of analysis. The computer program used to compute the response incorporates the strain- dependent modulus and the damping ratio for each element of the model. b. The irregular shear stress time histories obtained for the various locations throughout the embankment are represented by equivalent uniform shear stresses corresponding to a certain number of cycles. c. Analysis is performed to determine the static stresses existing in the embankment prior to the earthquake. d. The cyclic shear stresses required to cause strains greater than 5 percent in the material for conditions representative of those existing in the embankment are determined by means of appropriate dynamic triaxial compression tests on representative specimens of the materials. e. The seismic stability of the embankment is evaluated by comparing the shear stress required to cause strains greater than 5 percent with the equivalent shear stresses induced due to the SSE. The soil properties for the dam correspond to those that are expected to be obtained in the constructed dam, and are to be based on laboratory test results, field measurements, and published and unpublished data. A comprehensive series of dynamic triaxial compression tests was conducted to evaluate the strength characteristics and dynamic properties of the remolded saturated specimens. Strength characteristics of the material were obtained from the stress-controlled dynamic triaxial compression texts. The dynamic properties, shear modulus, and damping ratio were obtained from the strain-controlled dynamic triaxial compression test. 2.5-300 Rev. 0 WOLF CREEK 2.5.6.5.4.2.2.2.2 Design Earthquake and Loading Conditions The SSE of 0.12g is considered at the free field of the foundation level of the Category I UHS dam. (See Appendix 3C for additional seismic analysis.) The horizontal and vertical design response spectra for the SSE of 0.12g horizontal ground acceleration are shown on USAR Figures 3.7(S)-1 and 3.7(S)-2. In accordance with the design criterion, the dam will remain stable, assuming that the horizontal and vertical accelerations act simultaneously, while the water level is at the steady-state design water surface elevation of 1,087 feet.

2.5.6.5.4.2.2.2.3 Procedures Used in Seismic Stability Evaluation The following steps are used in evaluating the seismic stability of the dam:

a. Generation of Synthetic Accelerograms: The computer program RSG (described in USAR Section 3.12) is used to generate synthetic accelerograms for horizontal and vertical motions such that the response spectra of these accelerograms essentially envelop the design response spectra. These normalized accelerograms are shown on Figures 2.5-136 and 2.5- 137.

The close matching of the response spectra obtained for the artificial accelerograms with the design response spectra is demonstrated on Figures 3.7-3 through 3.7-8.

b. Dynamic Response Analysis: The horizontal and vertical rock motion obtained above in Step a. are simultaneously used for the dynamic response analysis of the dam to evaluate the shear stress time histories at various locations in the dam. The results of the computation of the response provide values of cyclic stress that are likely to be induced in the soils during an earthquake.

The response of the dam is obtained using the dynamic finite element method of analysis. Figure 2.5-138 shows the finite element representation for the submerged UHS dam. The dynamic material properties are incorporated in the analysis using strain-dependent modulus and damping values.

2.5-301 Rev. 27 WOLF CREEK The computer program QUAD-4 (Reference 119) is employed to compute the response. This computer program is described in USAR Section 3.12. The evaluation proceeds by assigning shear modulus and damping values to each element in the dam. Because these values are strain dependent, they would not be known at the start of the analysis, and an iteration procedure is required. At the outset, values of shear moduli and damping are estimated and the analysis is performed. Using the computed values of average strain developed in each element, new values of modulus and damping are determined from the appropriate data relating these values to strain. Proceeding in this way, a solution is obtained incorporating modulus and damping values which are compatible with the average strain developed, and the shear stress time history in each element of the dam is generated. c. Representation of Irregular Shear Stress Time History by Equivalent Uniform Shear Stress: The procedure used to represent the irregular shear stress time history of any element by an equivalent uniform shear stress corresponding to any N number of cycles is similar to the method proposed by Lee and Chan (Reference 148). d. Static Stress Analysis: A knowledge of the initial static effective stress conditions is required for the evaluation of the cyclic strength of materials in the dam. For this purpose, an incremental finite element approach is used that simulates the con- struction of an embankment in a series of layers. The dam is divided into several horizontal layers, each represented by quadrilateral elements. During any increment of the layer, appropriate values of the Young's modulus, E, and Poisson's ratio, , are assigned to each element. After determining the stresses, E and are reevaluated for the average stress conditions during the new increment and compared with the assigned values. If a significant difference is obtained, the E and values are adjusted until a reasonable correspondence is established between the input and the computed values. This process is continued until the last layer is added. The effect of buoyancy on stresses is evaluated by using submerged unit weight for the material 2.5-302 Rev. 1 WOLF CREEK in the dam. The analysis is conducted using the computer program ISBILD. This computer program is described in USAR Section 3.12. Table 2.5-85 provides the soil properties used in the static stress analysis of the UHS dam. The finite element model used for this analysis is similar to that being used for the dynamic analysis. e. Dynamic Material Properties: To conduct the analysis, it is necessary to determine the cyclic shear stress required to cause strains greater than 5 percent in the material of the dam for conditions representative of those existing in the dam prior to earthquake loading. These data are obtained by conducting appropriate cyclic loading triaxial compression tests on representative specimens of the material in accordance with the procedures described by Seed and Peacock (Reference 234). The details of these tests are described in USAR Section 2.5.6.4. f. Evaluation of Seismic Stability: The initial stress conditions and the failure conditions for the dynamic triaxial test specimens are given in Table 2.5-106. Following the computation procedure suggested by Seed and others (Reference 233), the cyclic load test data in Table 2.5-86 lead to the results presented in Table 2.5-87. These results are plotted on Figure 2.5-139. On this figure, the initial stress conditions on a soil element are expressed by the values, fc , the normal stress on the potential failure surface before earthquake, fc the shear stress on the same surface at the same time, and = fc /fc . Figure 2.5-139 shows the values of cyclic shear strength to be applied in the direction of potential failure to cause 5 percent axial strain in 5 cycles for different initial stress conditions. The laboratory test data provide results for values of equal to 0.108 and 0.288. The stress conditions causing 5 percent axial strain for other values of have been interpolated and plotted in Figure 2.5-139. The initial static normal and shear stresses are computed along several planes within the UHS dam. Typical values of initial effective normal stress, o,initial shear stress, o', and the 2.5-303 Rev. 1 WOLF CREEK ratio,o/o', along the base of the UHS dam are presented in Figure 2.5-139.These values, together with the cyclic tests data presented in Figure 2.5-139, are used to determine the cyclic strength required to cause 5 percent strain in 5 cycles. The minimum factors of safety for various elements against local failure due to seismic loading are determined by comparing the shear strength required to cause strains greater than 5 percent with the equivalent shear stresses induced by the simultaneous action of both horizontal and vertical rock accelerations.The induced equivalent uniform shear stresses are determined using the procedure described in Step c. 2.5.6.5.4.2.3 Safety Factors Results of studies of the foundation and borrow materials available for construction of the UHS dam, as well as the seismicity of the project, have been considered in the assignment of safety factors. The following safety factors are in accordance with standard practice and are used for embankment design: Minimum Condition Safety Factor1. End of construction 1.4 2. Steady-state flow, cooling lake Elevation 1,087 1.5 3. Steady-state flow, cooling lake at Elevation 1,050 1.5 4. Sudden drawdown, lake water Elevation 1,087 to 1.2 Elevation 1050 5. Earthquake (SSE) for conditions 1, 2, and 3 (pseudo-static) 1.2 6. Earthquake (SSE) for conditions 2 and 3 (finite element) 1 1 In the pseudo-static method of analysis, the effect of an earthquake is approximated for the embankment by finding the pseudo-static force or moment produced by the accelerating mass of earth involved in the zone of potential shear. This inertia force is added to the forces or moments producing failure.The resulting safety factor is defined as the ratio of the resisting forces provided by the soil shear strength to the sum of the forces tending to produce motion. The computed factors of safety using the pseudo-static method of analysis are given in Table 2.5-84. 2.5-304 Rev. 1 WOLF CREEK In the finite element dynamic stability analysis, the seismic stability is evaluated by comparing the shear stresses, tf, required to cause 5 percent strain at any location to the shear stresses, td, induced by the SSE. The ratio is considered to represent a local factor of safety against the development of 5 percent strain. In view of the previous experience (reported by Reference 233), a minimum value of the stress ratio tf/td greater than 1.1 provides an ample margin of safety for seismic stability. Table 2.5-88 provides the computed factor of safety for the finite element model of the submerged UHS dam. Due to the symmetry of the model, only half of the model factor of safety is provided in Table 2.5-88. The results of dynamic analyses indicate that the UHS dam will have an ample margin of safety under the seismic loading conditions. 2.5.6.5.4.2.4 Stability Analysis Using Static Strength Following Cyclic Loading To assess the effects of cyclic straining on the soil strength, undrained static loading tests were performed on the compacted samples and on the samples which had been subjected to cyclic loading. The results of static triaxial tests on samples which were subjected to cyclic loading are shown on Figure 2.5-141. The loss of strength due to 11 cycles was determined by the ratio of the undrained strength of sample after 11 cycles to the static undrained strength. Table 2.5-89 provides the test results for loss of strength. The test results in Table 2.5-89 indicate that for 3c = 600 psf and K c = 1.0 the sample retains undrained shear strength of 390 psf after straining for 11 cycles. The stability analysis of the UHS dam was performed using the retained undrained shear strength in the computer program SLOPE. The stability analysis for the dam shows a minimum factor of safety of 2.07. This indicates that the use of design strength parameters following cyclic loading provides ample margin of safety for the dam. The natural slopes in the immediate vicinity of the outlet structure are flat, ranging from one vertical to 15 horizontal through one vertical to 60 horizontal. The residual strength of the soil forming these slopes after saturation is more than adequate. The details are described in USAR Section 2.5.6.4. 2.5-305 Rev. 1 WOLF CREEK 2.5.6.6 Seepage Control2.5.6.6.1 Main Dam Seepage Control To determine the need and extent of seepage control required for the main dam, the foundation conditions underlying the site have been investigated by detailed geologic studies, a number of borings, and test pits. In addition, field permeability tests were conducted in selected borings using single and double inflatable packers. The permeability of the compacted fill used for the embankment construction was determined in the laboratory using both the falling head and constant head permeameter tests. The details of these explorations and their results are discussed in USAR Section 2.5.6.2. Based on the exploration and testing indicated above, it was concluded that the foundation conditions underlying the main dam are practically impermeable. The amount of seepage from the cooling lake through the bedrock was analyzed, and the results of the seepage analyses indicated that the water loss from the cooling lake due to seepage through the foundation of the main dam will be very minor, and the foundation rocks need no special treatment to prevent seepage. Based on the laboratory permeability tests, the permeability of the cohesive embankment material was determined to range from 4 x 10-8 cm/sec to 8 x 10-8cm/sec. To provide a conservative estimate for the seepage through the embankment, a permeability value of 8 x 10-7cm/sec was used for the compacted soil in the seepage analysis. The permeability of the filter material was assumed to be 1 x 10-3 cm/sec based on permeability of well-graded sands and gravels. The rock used as the riprap was assumed to be free draining. The seepage through the main dam was calculated using the computer program SEEPAGE (see USAR Section 3.12). Based on the permeability values of various materials as described above, a seepage rate of 0.6 x 10-5 cfs/ft of main dam was computed. An adequate drainage system is provided near the downstream toe of the dam to remove this insignificant amount of seepage water so that ponding and subsequent softening near the toe does not occur and to prevent potential erosion of the downstream soils. On the basis of seepage analyses described above both through the foundation as well as the embankment, it was determined that no other seepage control measures will be necessary to prevent seepage through the embankment and the foundation of the main dam. However, during the foundation preparation, it was decided that two key-trenches should be provided along portions of the axis of the dam to prevent any potential seepage through the base of the dam. The details of this design change are given in USAR Section 2.5.6.9. 2.5-306 Rev. 0 WOLF CREEK The performance monitoring instrumentation, and the criteria for each set of instrumentation on the main dam, the saddle dams and the baffle dikes are described in Section 2.5.6.8 of the USAR, and Sections 3.2.2.4, 3.3.1.4 and 3.4.1.4 of WCNOC-24, "Engineering Data Compilation for Wolf Creek Lake." The program for periodic monitoring of the instrumentation and periodic inspection of the main dam, the saddle dams and the baffle dikes is presented in Wolf Creek Specification C-403 see reference 352. During operation of the Wolf Creek Generating Station, the performance of the main dam is evaluated through a program of movement monitoring and visual inspection, using the same procedures discussed above. Vertical and horizontal movement of the main dam will be monitored, as defined in of Table 2.5-90. The down-stream slope, the toe and the immediate downstream area of the main dam is visually inspected in accordance with the same schedule noted in Table 2.5-90 for vertical movement. Visual inspection will also include flow measurements at the weir installed at the toe of the main dam at Station 56 + 96. Data collected on the vertical and horizontal movements of the main dam are presented in Tables 2.5-92 through 2.5-95. Data collected on the main dam piezometer water level elevations are presented in Table 2.5-96. Locations of movement monuments and piezometers installed in the main dam are shown on Figure 2.5-142. The data collected per Tables 2.5-92 through 2.5-95 show lateral movements on the order of 0 to 4 inches with most of the movements taking place within and west of the closure section (west of approximately station 60+00). No analysis was performed to predict the lateral movements, however, the movements recorded are considered within the expected range. These movements are primarily the results of the non-symmetrical softening of the embankment that takes place during the filling of the reservoir. Very little data on lateral movements of dam embankments taking place during reservoir filling are available. This is particularly the case for embankments less than 100 feet high such as the Main Dam Embankment at Wolf Creek; however, data from dams ranging in height from 250 to 700 feet high show lateral movements between 10 and 20 inches (Reference 138; 195 and 164). The maximum settlement recorded through lake fill is on the order of five inches and was observed within the closure section. 2.5-307 Rev. 10 WOLF CREEK Settlements outside the closure section range from 0 to 3 inches. It is felt that the higher settlements recorded within the closure section reflect its shorter construction period, thereby not allowing time for completion of the construction related settlements prior to installation of the settlement monitoring monuments. Also, the embankment outside the closure section was nearly completed 6 to 12 months before construction started on the closure section. The recorded settlements represent approximately 1/2 of 1 percent of the embankment height. Based on reports on settlements of earth dams (Reference 138, 195 and 164) settlements up to one percent of the embankment are considered normal and acceptable. During operation of the Wolf Creek Generating Station, visual inspection of the main dam includes inspection for abnormal seepage, per paragraph 3.1.2.5 of Reference 76 . Any areas showing signs of seepage, such as excessively wet areas, springs, or boils as photographed and described. Any amount of solids associated with the flow is estimated and reported. If the seepage rate is judged to be excessive, the flow rate is measured either by timing how long a container of known volume takes to fill, or by constructing a temporary weir in the drainage channel at the toe of the main dam. Records of the flow rate, the location of the seep and/or weir, date and time, weather conditions, and recent precipitation are kept for areas which show signs of seepage. Any source of excessive seepage is investigated to determine cause and potential severity affecting the dam safety in accordance with the requirements of state jurisdiction.One such area of abnormal seepage, located at the toe of the main dam at Station 58+50, has been under observation since April 1981. Observations have been made at approximately weekly intervals. Data collected on this area of seepage are presented in Tables 2.5-97 and 2.5-100. The cooling lake elevations of each seepage observation are also shown on these tables. Figure 2.5-143 shows the locations of the seep and of the flow measuring weir. Prior to completion of the weir in September 1983, the seepage observations were generally made by visual inspection and, therefore, do not represent precise quantitative data. However, these observed rates are considered to represent reasonable approximations of the actual seepage rates. The observed seepage indicates a wide range of flow rates ranging from 5 milliliters per second (ml/sec) to 1500 ml/sec. The majority of these observations, however, indicate seepage flow rates of less than 100 ml/sec.Higher flow rates which occasionally occur are attributed to increased infiltration through the toe drain due 2.5-308 Rev. 0 WOLF CREEK to precipitation prior to the observation dates; these higher flows are not considered to represent increases in seepage through the main dam embankment.These conclusions are supported by the fact that peaks in the observed seepage are always followed by a return to a substantially lower rate on later observations. In order to illustrate the relationship between precipitation and fluctuations in the observed seepage flow rates, the two sets of data are graphically compared on Figure 2.5-144. To provide quantitative data on this identified area of seepage,a weir has been constructed approximately 150 feet downstream, at Station 56+96 (see Figure 2.5-143). A section of the drainage ditch has been lined with a reinforced concrete slab to alleviate any future erosion. A pool of water is retained in the lined section by a reinforced concrete weir wall. Flow measurements are made using a steel plate "V" notch weir, which is centered on and attached to the weir wall. This weir is capable of measuring flows up to approximately 1.5 cubic feet per second (cfs). The theoretical discharge curve of this weir is given by the following equation, where Q is the discharge rate in cubic feet per second (cfs), and H is the height of water above the weir crest, in feet:Q = 1.25 H2.5.Since the weir is located in the drainage ditch at the dam toe, the measured flows integrate seepage through the main dam with surface runoff and subsurface drainage from tributary landside surfaces of the main dam. Flow measurements from the weir commenced in mid-September, 1983, and are tabulated in Table 2.5-100. Measurements have been taken at approximately weekly intervals, and during and/or following periods of precipitation. The measured flows have varied from essentially zero up to 0.35 cfs. Flow measurements above 0.0180 cfs are related to precipitation which occurred prior to the flow measurements. The relationship between precipitation and measured flow rates is graphically illustrated in Figure 2.4-145. Peak flow rates through the weir occur immediately following a period of precipitation; shortly after cessation of the precipitation, the flows diminish to a value well below the maximum anticipated seepage rate of 0.0180 cfs. As previously stated in this section, the computed seepage rate through the main dam is 0.6 x 10-5 cfs/linear foot. The location of the seep at Station 58+50 is a low point in both the finish grade and the toe drainage blanket.Water seepage through the main dam from approximately Station 40+00 to Station 87+00 (a distance of 4700 feet) will migrate toward and exit from the drainage blanket at Station 58+50. If a conservative tributary 2.5-309 Rev. 0 WOLF CREEK length of 3000 feet is used, the maximum anticipated seepage rate is 3000 feet times 0.6 x 10-5 cfs/linear foot, equal to 0.0180 cfs (510 ml/sec). Except for the occasional peak flows, which are attributed to surface runoff and subsurface drainage, both the observed flow rates and the measured flow rates are well under the anticipated flow rate. Furthermore, the amount of flow has no discernable relationship with the elevation of the cooling lake. The Dames & Moore report "Results of Filling Inspection and First Periodic Inspection, Main Dam and Reservoir," (Reference 77) summarizes the performance monitoring program for the main dam during and after the initial filling of the reservoir. Inspection reports and engineering review summaries are prepared in accordance with the requirements of state jurisdiction. The filling inspection report, as well as subsequent dam inspection reports, are maintained on file at the Wolf Creek Generating Station, and will be available for reference in accordance with paragraph C.5 of Regulatory Guide 1.127. The main dam is not considered a back-up structure to the safety-related Seismic Category I, Ultimate Heat Sink (UHS) dam. As stated in USAR Section 2.5.6.1, the UHS dam is designed to retain sufficient cooling water to safely shutdown the plant, assuming a loss of the main dam and cooling lake water. 2.5.6.6.2 Saddle Dams Seepage Control All saddle dams with the exception of saddle dam IV are dry and do not retain water under normal operating conditions of the lake. They do, however, retain water for a short duration during the PMF. Since the crosssectional details of the saddle dams are similar to those of the main dam, it is concluded that the seepage through saddle dams would be insignificant. For saddle dam IV, visual monitoring of wet areas along the dam toe shall be performed quarterly beginning 1993. 2.5.6.6.3 Baffle Dikes Seepage Control Baffle dikes were mainly constructed to control the flow of water in the cooling lake and are subjected to the same water levels on both sides. 2.5.6.6.4 UHS Dam Seepage Control The extent of the seepage control measures required in the UHS dam was determined by detailed analysis of data from the geologic exploration, a number of borings, and test pits at the site of the UHS dam. In addition, field permeability tests were made across the entire length of the dam. A series of 150 water pressure 2.5-310 Rev. 7 WOLF CREEK tests were made on the total stratigraphic geologic column to a depth of 2 1/2 times the height of the dam. A summary of the results of the permeability tests is shown in Table 2.5-35. The measured in-place values for rock permeability at the site of the dam, which include the effects of rock jointing, range from 0 to 48 feet per year. A representative value for an upper limit of rock mass permeability is 100 feet per year. The conservative upper limit was exceeded by none of the tests conducted at any location within the entire bounds of the UHS. In addition, both falling and constant head permeameter testing was conducted to complement the pressure test results in specific zones. The representative permeability value for the natural and recompacted soil samples was obtained from laboratory permeability tests. The results of these tests are shown in Table 2.5-36. For compacted embankment clays an average permeability of 3.6 x 10-8 cm/sec was measured. In the analysis for seepage through the embankment, a value of 1 x 10-7 cm/sec was used in order to provide a conservative estimate of seepage through the embankment. Based on the average permeability of compacted well-graded sands and gravels, the permeability of the filter material was assumed to be 1 x 10-3 cm/sec. The rock used as the riprap blanket was assumed as completely free draining.Seepage through the UHS dam was computed using the computer program SEEPAGE.The details of this program are described in USAR Section 3.12. Based on the permeability values described above, a discharge of 0.23 x 10-4 cfs/ft through the dam was calculated. Based on the results of the seepage analyses through the foundation and embankment of the UHS dam, it is concluded that no special seepage control measures are required. Adequate drainage is provided near the toe of the dam so that softening at the toe does not occur. The performance monitoring instrumentation is described in WCNOC Specification C-404, "Periodic Inspection of Safety Related Water Structures and Reservoir."Details for installation of the instrumentation are shown on Sargent & Lundy drawing S-81. The program for periodic monitoring of the instrumentation and periodic inspection of the UHS and UHS dam is presented in WCNOC Specification C-404, "Periodic Inspection of Safety Related Water Structures and Reservoir."Instrumentation measurements on the UHS dam are performed in accordance with Table 2.5-90. Refer to USAR Section 2.5.6.8.4 for additional information on the UHS dam Instrumentation and Monitoring. 2.5-311 Rev. 1 WOLF CREEK 2.5.6.7 Diversion and Closure2.5.6.7.1 Creek Diversion During Main Dam Construction Dewatering during construction was generally handled by gravity drainage and supplemented where required by ditches and sump pumps. The water levels observed in the borings indicated a perched water level within the soil and upper weathered rock zone. Seepage from this zone is expected to be small. The bedrock units beneath the soil and weathered rock zone are generally saturated, but do not contain large quantities of water due to the absence of extensive jointing and fracturing of the rock mass. Seepage from these units is also minimal and limited to joints and the contacts between the shale and limestone units. Surface runoff from rainfall was diverted from the dam foundation areas by minor grading and ditching, except along Wolf Creek. Diversion and control of flows in Wolf Creek was provided during the construction period. The flow was diverted into a temporary channel through the dam until the final closure was made. On July 31, 1980, during the dry season, approval was given to commence placing fill in the temporary opening; closure was completed on September 22, 1980. After closure, the impounding of water was begun and the reservoir filled to the level of the low-level outlet. The side slopes for the temporary opening were cut down to a slope of approximately one vertical to three horizontal prior to placement of fill material. These slopes provided a good bonding surface between the previously placed fill and the fill of the closure section. This further reduces the possibility of cracking due to differential settlements between the dam and closure section. 2.5.6.7.2 Creek Diversion for Saddle Dams Construction Creek Diversion for the saddle dams was not required as the foundations were well above the Wolf Creek water levels. Other dewatering details are the same as those for main dam construction. 2.5.6.7.3 Creek Diversion for Baffle Dikes Construction For baffle dikes construction, diversion or collection of water from the watershed above the dam was provided during construction as discussed for the main dam. The flow was diverted to culverts through baffle dikes. 2.5-312 Rev. 0 WOLF CREEK 2.5.6.7.4 Diversion of Water During UHS Dam Construction Diversion or collection of water from the watershed above the UHS dam was provided during the construction period. The water flow was diverted in a temporary channel through the dam from station 4 + 15 to 4 + 40. On May 3, 1980 approval was given to commence closing the channel; closure was completed on May 4, 1980. At this time, the flow was impounded behind the dam. The foundation preparation required for the dam was completed in the area of the temporary opening. The water was channeled through this prepared area.The portion of the embankment on either side of the diversion opening was then completed. The side slopes of the opening did not exceed one vertical to four horizontal. These flat slopes provided a good bonding surface between the previously constructed embankement and the material to be placed. They also reduced the danger of cracking or differential settlement between the dam and the closure section. The average rate of embankment placement in the closure section was faster than the rate at which the water rose in the UHS reservoir. Care was exercised during filling of the closure section so that the quality of the work is not sacrificed. Also, care was used to obtain the required densities and, thus, avoid excessive settlement of the completed dam. 2.5.6.8 Performance Monitoring2.5.6.8.1 Main Dam Instrumentation Measurements of internal pore pressures and vertical and horizontal movements during and after construction are monitored by the following system of instrumentation in general accordance with Regulatory Guide 1.70: a. Pore pressure cells of the Casagrande Porous-Tube type are installed in the highest portion of the main dam. A group of pore pressure cells are located to record pore pressures down-stream at selected stations and in the various formations below the dam and in the abutments. b. Concrete monuments are placed on the crest of the dam to measure external settlements after construction. In 1987 new monuments were added. c. Non Electric Piezometers, consisting of a wellpoint placed in a borehole with filter pack, are 2.5-313 Rev. 4 WOLF CREEK located in the valley downstream of the dam and record the ground-water levels before and after construction. These are necessary to obtain information regarding changes in ground-water levels. d. A system of triangulation points, sufficiently remote from the main dam, is provided. These basic points are suitable for construction and postconstruction control points. In compliance with the provisions of Kansas statutes KSA 82a-301 to 305 "regulating the placing of dams and other obstructions in streams and the making of changes in the course, current or cross-section of streams within the state..." the Operating Agent has submitted appropriate applications and received permits for all applicable structures for the construction of WCGS. The Division of Water Resources (Kansas Department of Agriculture) is responsible for the inspection of various structures in accordance with the provisions of the National Dam Safety Act. Representatives of the Division of Water Resources were contacted to inspect the foundations of the Wolf Creek lake dam and related structures after excavation was completed. Approval for each area excavated was granted before the construction and backfilling of the structure was undertaken. The initial safety inspection of the cooling lake main dam was performed by the Kansas Division of Water Resources and/or The U.S. Army Corps of Engineers following filling of the cooling lake. However, the Operating Agent initiated a periodic inspection program including an initial completion inspection, and a periodic inspection program performed during and following filling of the cooling lake. This inspection program includes those facilities required by Regulatory Guide 1.127 and also the main dam embankment and the saddle dams. The inspection program includes: a complete visual inspection of the dam and the erosion protection (riprap and vegetative cover); inspection of the downstream area for seepage, wet areas and boils; periodic monitoring of vertical and horizontal movements; and observation of the water levels in the installed piezometers. The frequency of the inspection was monthly during the filling of the cooling lake. After filling and during the inservice period, all performance instrumentation was initially monitored monthly except for the horizontal movement surveys which were performed on an annual basis. After steady state was recorded, monitoring has been extended as noted in Table 2.5-90 (Sheet 2 of 4). The visual inspection is performed annually for the first four years, every two years for the next four years, and every 2.5-314 Rev. 10 WOLF CREEK five years thereafter. In addition, complete inspections will be performed following draw-down in excess of five feet and refilling to normal pool elevation.2.5.6.8.2 Saddle Dams Instrumentation The instrumentation of the saddle dams consists of placement of concrete settlement monuments. Piezometers are installed in Saddle Dam IV to record piezometric levels in the embankment. In 1987 new monuments and electric piezometers were added. 2.5.6.8.3 Baffle Dikes Instrumentation The measurement of movements of the baffle dikes consists of concrete settlement monuments located on the crest. Pore pressure cells are not required as the baffle dikes will normally function under balanced heads.Foundation piezometers are not required for the above reason, and, secondly, they are not accessible after the cooling lake is filled. 2.5.6.8.4 Ultimate Heat Sink Dam Instrumentation and Monitoring Measurements of the horizontal and vertical movements at the crest of the dam during filling were made. These measurements were made from the time the core crest was completed until the dam was submerged beneath the cooling lake.Monuments were established at the abutments and at 300-foot intervals along the crest to facilitate these measurements. Prior to submergence of the UHS dam, the monitoring system used to measure horizontal and vertical movements of the dam utilized concrete piers located at Stations -2+00, 0+00, 2+00, 4+00, 5+50, 7+00, 8+50, 10+00 and 12+00 along the centerline at the dam crest. These piers are 3 feet in diameter and are embedded in the embankment 5 feet and extend 1 foot above the riprap. A survey marker is embedded in the center of each pier. A comparison marker consisting of a 3 inch diameter pipe with a survey marker attached that extends up to elevation 1091 feet was also provided for making measurements after the piers had become submerged. However, the comparison markers were bent by ice flows, and are no longer used for measuring horizontal and vertical movement. After the comparison markers were bent, inspection confirmed that the 3 inch diameter comparison marker pipes were bent above the concrete piers, and the concrete piers were not damaged. These survey monuments were installed at completion of riprap placement on the UHS dam and initial elevations were measured on May 20, 1980 and initial coordinate locations were established by trilateration techniques from reference monuments on May 23, 1980. 2.5-315 Rev. 11 WOLF CREEK Vertical settlement readings are taken monthly and as of July 10, 1981, the maximum vertical settlement is 0.72 inches at Station 4+00. The height of dam embankment is the greatest at this location (Figure 2.5-116) and the observed settlement is well within the estimated settlement of 1.35 inches for an embankment height of 17 feet and has no influence on the safety of the UHS dam. As of the February 16, 1981 measurement of horizontal movement, all of the movements were within 1.57 inches of their initial location as established on May 23, 1980. The magnitudes of the movements are within the expected survey accuracy and all or a portion of the movement could be attributed to this.Even if the measured movements have actually occurred, their magnitudes are not large and have no influence on the safety implication of the UHS dam. The quantity of water pumped into the UHS reservoir during the 30-day monitoring period of the UHS dam filling test was 388,740 cubic feet. The quantity of water pumped from the downstream toe of the UHS dam to maintain a water elevation of 1055 feet during this 30-day monitoring period was 57,710 cubic feet. The UHS dam has a zone extending 30 feet beyond the toe of the embankment which has been excavated to rock and backfilled to grade elevation with riprap stone. This is shown on Figures 2.5-116 and 2.5-117. During the 30-day observation period, water was pumped from a sump at the low point in this area to maintain the water level in this area below elevation 1055 feet. The net cumulative amount of water pumped from this area during the period 11/7/80 to 12/6/80 was 347,400 gallons which corresponds to a seepage rate of 8.3 gpm. The net cumulative amount was obtained by taking the total amount of water pumped and subtracting the volume of precipitation falling on the downstream face and excavated toe area during the 30-day period. The seepage during this period was 8.3 gpm which corresponds to 0.154 x 10-4cfs/ft length of dam. This is less than the predicted seepage rate of 0.23 x 10-4 cfs/ft as given in USAR Section 2.5.6.6.4. During the filling, no estimates of deformation of the UHS dam were made. The locations of movement monuments are provided in Figure 2.5-117a, and the measured deformations for each monument are presented in Tables 2.5-60a through 2.5-60d. From these tables, it may be seen that the vertical movements during the filling period are on the order of less than 0.5 inch and on the 2.5-316 Rev. 0 WOLF CREEK order of 0.1 inch during the observation period (Table 2.5-60b). The UHS dam has been constructed with a conservative 3.5 percent camber, so that the crest elevation will remain above elevation 1070.0 feet (msl), as described in Sargent & Lundy Report No. SL-3831, Paragraph 2.2.3.5. The observations of the horizontal movements for September 24, 1980 (Table 2.5-60d) show deformations up to 3 inches along the axis of the UHS dam and deformation close to 1 inch transverse to the axis of the UHS dam. However, the survey data for the prior and subsequent periods, including the observation period, show movement on the order of 1 inch or less. It is, therefore, felt that the data for September 24, 1980 does not reflect actual movements. Actual movements should, therefore, be considered on the order of 0.5 inch for vertical displacements and 1 inch or less for horizontal displacements. These recorded horizontal and vertical movements are considered normal and have no impact on the safety of the UHS dam. When the UHS dam is submerged, the dam's profile is regularly monitored either by hydrographic sounding techniques using an echo sounding system, or by having a diver physically inspect the dam. To provide assurance that the hydrographic sound survey can be performed over the same portion of the dam each time, navigating and positioning benchmarks are established. The hydrographic survey area is preplotted in a grid pattern such that in the unlikely event a change has occurred, it can be noted on the profile, and divers may be used to confirm any anomalies. Pore pressure cells for measurement of internal pore pressures are not required. The dam is submerged during its operating life. The embankment fill is saturated and not subject to development of seepage gradients. A series of pads are located on the bottom of the UHS to provide reference points to measure buildup of sedimentation. A monitoring program is instituted on a periodic basis to insure that UHS maintains the required volumetric capacity. 2.5.6.9 Construction Notes2.5.6.9.1 Construction History All lakework construction was completed by October, 1980. After completion of the rough excavation of the UHS basin, several areas of the finished bottom were higher than the high point 2.5-317 Rev. 0 WOLF CREEK elevation of 1,065 feet (msl). These high areas were in the Plattsmouth Limestone and would have been difficult to blast and excavate. To provide the required UHS storage capacity, the north lobe of the UHS was extended 75 feet to the west in an area between the ESWS intake channel and a point about 500 feet northeast of the UHS dam. (See Figure 2.5-108 for asbuilt configuration.) 2.5.6.9.2 Design and Procedure Changes The most significant design change on the project was the excavation of two additional keytrenches on the main dam. These keytrenches were excavated between main dam Stations 8+00 to 18+00 and 37+06 to 46+90. The location of these keytrenches is presented on Figure 2.5-114.During the initial site studies and planning, several key-trench areas were identified and included on the project plans. As the excavation for the main dam foundation reached final grade, inspections by D&M geotechnical staff revealed two areas where the limestone foundation was highly jointed. In consultation with Sargent & Lundy (S&L), Kansas State Division of Water Resources (DWR) personnel, and D&M geotechnical staff, a decision was reached to excavate key-trenches through the jointed limestone to more competent foundation material. This would eliminate the possibility of the jointed limestone providing a water migration path beneath the foundation. Excavating keytrenches and compacting cohesive fill in the excavation minimizes the water seepage, reduces the water losses, and provides additional safety to the structure. The procedure for excavating and filling the keytrenches is described in USAR Section 2.5.6.3. Another design change of a less significant nature was the excavation of the Heebner Shale in the keytrench of the main dam between Stations 85+60 to 102+05. The location for this excavation is presented on Figure 2.5-114. The original plans provided for founding the main dam on the Heebner Shale between these stations. During final cleaning of the Heebner Shale, however, it became apparent that the shale could not be cleaned satisfactorily. The platy nature of the shale caused excessive breakage under the wheel and track loads of construction traffic. To remedy this problem, the Heebner Shale was excavated and removed between Stations 85+60 and 105+05. Approximately 4 to 5 feet of Heebner Shale was removed in this area down to the Leavenworth Limestone. The Leavenworth Limestone is a very competent, relatively unjointed rock unit that provided a superior foundation for compacting cohesive fill. 2.5-318 Rev. 0 WOLF CREEK Several of the procedure changes incorporated on the project are presented below: a. Granular drainage blanket lift thickness increased from 12 to 18 inches; b. Toe drain compaction testing changed from in-place relative density tests to visual observation; and c. Test frequencies changed from those specified on various cohesive and granular materials. During placement of the original test fill for the granular drainage blanket, it became apparent that breakdown of the soft limestone was occurring during compaction. Breakdown of this material caused the placed material to fail the S&L specification requirement of having less than 5 percent passing the Number 200 screen after compaction. To minimize the breakdown, lift thicknesses of 18, 36, and 72 inches were evaluated as described in USAR Section 2.5.6.4. The S&L specifications required 12-inch lifts on granular drainage blanket material. A lift thickness of 18 inches for placement and testing was selected.Because of the large size of the toe drain material (4 inches), it is impractical to perform in-place density tests with any degree of reliability.For this reason, a test fill was evaluated as described in USAR Section 2.5.6.4. A procedure was approved for placement of the toe drain material and compaction by two passes with a 10-ton vibratory roller. The S&L specification required placement of 12-inch thick lifts and compacting to 85 percent relative density as determined by ASTM D 2049. As construction progressed and more testing information became available for review, test frequencies were changed where justified. Frequency testing is specified in S&L specification. These changes were requested only after individual evaluation of the tests were completed. All test frequency change requests were submitted to S&L for review and approval. Following is a list of test frequency changes: Change Item a. Change grain-size analysis from one test per 4,000 cubic yards to one test per 10,000 cubic yards for the main dam, saddle dams, and baffle dikes on embankment fill. b. Change from compacting toe drain to 85 percent relative density to two passes with vibratory roller and visual observation. 2.5-319 Rev. 0 WOLF CREEK c. Change from one in-place density test per 1,000 cubic yards to three grain-size tests per 4,000 cubic yards using the average of three tests for record on granular drainage blanket. 2.5.6.10 Operational Notes Embankment performance history since completion of construction is continually updated and is compiled in WCNOC 55. 2.5-320 Rev. 4 WOLF CREEK 2.

5.7 REFERENCES

SECTION 2.5 Published References 1. Agocs, W.B., 1959, Comparison of basement depth from aero- magnetics and wells along the northern border of Kansas in Hambleton, W.W., ed., Symposium on geophyics in Kansas; Kansas Geol. Surv., Bull. 137, p. 143-152. 2. American Geological Institute, 1977, Bibliography and index of Kansas geology through 1974: Kansas Geol. Survey, Bull. 213, 190 p. 3. American Geophysical Union and United States Geological Survey, 1964, Bouger gravity anomaly map of the United States. 4. Anderson, K.H., and Wells, J.S., 1968, Forest City Basin of Missouri, Kansas, Nebraska, and Iowa: The American Association of Petroleum Geologists, Bull., vol. 52, no. 2. 5. Anderson, K. H., and others, 1979, Geologic map of Missouri: Missouri Geological Survey, scale 1:500,000. 6. Arbenz, J. K., 1956, Tectonic map of Oklahoma, showing sur- face structural features: Oklahoma Geol. Survey, map. 7. Ball, S.M., 1964, Stratigraphy of the Douglas Group in the northern Midcontinent Region: Univ. of Kansas, Unpublished Ph.D. Dissertation, vol. 1, p. 89, 146, 255-271, 310. 8. Ball, S.M., Ball, M.M., and Laughlin, D.J., 1963, Geology of Franklin County, Kansas: State Geol. Survey of Kansas, Bull. 163, p. 38, pl. 1. 9. Barosh, P.J., 1969, Use of seismic intensity data to predict effects of earthquakes: U.S. Geol. Survey Bull. 1279, Washington, D.C. 10. Bayne, C. K., and Ward, J. R., 1967, General availability of ground water in Kansas: U.S. Geol. Survey and State Geol. Survey of Kansas. 11. Beene, D.L., 1973, Oil and gas productions in Kansas during 1971: State Geol. Survey of Kansas, Special Distribution Publication 64, p. 20-21. 2.5-321 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 12. Berggren, W.P., 1943, Prediction of temperature distribution in frozen soils, Transactions of the American Geophysical Union, Pt. 3, p. 71-77. 13. Beveridge, T.R., 1951, The geology of the Weaubleau Creek area, Missouri: Missouri Geol. Survey and Water Resources, vol. XXXII, 2nd series, p. 60, 77-81. 14. Bickford, M.E., and others, 1971, Metamorphism of Precambrian granitic xenoliths in a mica periodotite at Rose Dome, Woodson County, Kansas: Geol. Soc. Am. Bull., vol. 82, no. 10, p. 2863-2868. 15. Bickford, M.E., Harrower, K.L., Nusbaum, R.L., Thomas, J.J., & Nelson, G.E., in press, 1979, Map of Precambrian basement rocks in Kansas: Kansas Geol Survey, Map M-9, scale 1:500,000 16. Bishop, A.W., and Henkel, D.J., 1962, The measurement of soil properties in the triaxial test: London, Edward Arnold Publishers, Ltd. 17. Bollinger, G.A., 1973, Seismicity of the Southeastern United States: Seism. Soc. Am. Bull., vol. 63, no. 5, p. 1785- 1808. 18. Bonilla, M.G., 1970, Surface faulting and related effects in earthquake engineering: Prentice Hall, Englewood Cliffs, N.J. 19. Bowsher, A.L., and Jewett, J.M., 1943, Coal resources of the Douglas Group in east-central Kansas: State Geol. Survey of Kansas, Bull. 46, p. 64-65. 20. Brady, L.L., Adams, D.B., and Livingston, N.D., 1976, An evaluation of the strippable coal reserves in Kansas: Kansas Geol. Survey, Mineral Resources Series 5, 40 p. 21. Brady, L.L., and others, 1971, Kansas mineral industry report 1971: State Geol. Survey of Kansas, Special Distribution Publication 61, p. 35. 22. Branson, C. C., and others, 1965, Geology and oil and gas resources of Craig County, Oklahoma: Oklahoma Geol. Survey, p. 47-50, pl. 1. 2.5-322 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 23. Brazee, R.J., and Cloud, W.K., 1958, United States earth- quakes: U.S. Department of Commerce, Washington, D.C., 78 p. 24. Brookings, D.G., and Naeser, C.W., 1971, Age of emplacement of Riley County, Kansas kimberlites and a possible minimum age for the Dakota Sandstone: Geol. Soc. Am. Bull., vol. 82, p. 1723-1726. 25. Brookings, D.G., and Woods, M.J., 1970, Rb-Sr geochronologic investigation of the basic and ultrabasic xenoliths from the Stockdale Kimberlite, Riley County, Kansas: State Geol. Survey of Kansas, Bull. 199, part 2, 12 p. 26. Bulletin of the Seismological Society of America, 1957, Seismological notes: Seism. Soc. Am. Bull., vol. 47, no. 1, p. 77-83. 27. Burchett, R.R., 1971, Guidebook to the geology along portions of the lower Platte River valley and Weeping Water valley of eastern Nebraska: Nebraska Geol. Survey, Conservation and Survey Div., fig. 4. 28. -----, 1978, Regional tectonics and seismicity of eastern Nebraska: U.S. Nuclear Regulatory Commission, NUREG/ CR- 0053, 19 p. 29. Burchett, R.R., and Arrigo, J.L., 1978, Structure of the Tarkio Limestone along the Humboldt fault zone in south- eastern Nebraska: Nebraska Geological Survey, R.I., no. 4, 112 p. 30. Burchett, R.R., and Carlson, M.P., 1966, Twelve maps summar- izing the geologic framework of southeastern Nebraska: Nebraska Geol. Survey, Conservation and Survey Div., Rept. of Invest. no. 1, figs. 7, 9, 12. 31. Burchett, R.R., and Reed, E.C., 1967, Centennial guidebook to to the geology of southeastern Nebraska: Nebraska Geol. Survey, Conservation and Survey Div., p. 15-17. 32. Bush, W.V., Haley, B.R., Stone, C.G., Holbrook, D.F., and McFarland, J.D., III, 1977, A guidebook to the geology of the Arkansas Palezoic area (Ozark Mountains, Arkansas Valley, and Quachita Mountains): Arkansas Geological Commission, 79 p. 2.5-323 Rev. 9 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 33. California Institute of Technology, Earthquake Engineering Research Laboratory, Analyses of Strong Motion Earthquake Accelerograms, Vol. III - Response Spectra, Part B, EERL 73-80, February 1973, Pasadena. 34. Caplan, W.M., 1957, Subsurface geology of northwestern Arkan- sas: Arkansas Geol. and Conservation Commission, Info. Circ. 19, pls. I, IV, VI, VIII, X, XIV. 35. -----, 1960, Subsurface geology of pre-Everton rocks in northern Arkansas: Arkansas Geol. and Conservation Commission, Infor. Circ. 21, pl. III, p. 10. 36. Carlson, M.P., 1970, Distribution and subdivision of Precam- brian and lower and middle Paleozoic rocks in the subsurface of Nebraska: Nebraska Geol. Survey, Rept. of Invest. no. 3, p. 1, fig. 2. 37. Chandra, R., 1970, Slake-durability test for rock: Univ. of London, Imperial College, London, England, Master's Thesis. 38. Chelikowsky, J.R., 1972, Structural geology of the Manhattan, Kansas, area: State Geol. Survey of Kansas, Bull. 204, p. 11. 39. Clair, J.R., 1943, The oil and gas resources of Cass and Jackson Counties, Missouri: Missouri Geol. Survey and Water Resources, vol. XXXVII, 2nd series, p. 35, 44, 50,

61. 40a. Claremore-Rogers County News, 1956, p. 1 (October 30). 40b. Claremore Daily Progress, 1956, p. 1 (October 30) 41. Coates, D. F., 1965, Rock mechanics principles: Canadian Dept. of Mines and Tech. surveys, mines Branch Mono. 874. 42. Coffman, J.L., and Von Hake, C.A., 1973, Earthquake history of the United States: National Oceanic and Atmospheric Administration, Boulder, Colorado 43. Cole, V.B., 1962, Configuration of top of Precambrian base- ment rocks in Kansas: Kansas Geol. Survey, Oil and Gas Inv., no. 26, map. 2.5-324 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 44. -----, 1975, Subsurface Ordovician - Cambrian rocks in Kan- sas: Kansas Geol. Survey, Subsurface Geology Series 2, 18 p. 45. -----, 1976, Configuration of the top of Precambrian rocks in Kansas: Kansas Geol. Survey, Map M-7, scale 1:500,000. 46. Cole, V.B., and Ebanks, W.J., Jr., 1974, List of Kansas wells drilled into Precambrian rocks: Kansas Geological Survey, Subsurface Geology Series 1, 101 p. 47. Cole, V.B., Merriam, D.F., and Hambleton, W.W., 1965, Final report of the Kansas Geological Society basement rock committee and list of Kansas wells drilled into Pre-cambrian rocks: State Geological Survey/The University of Kansas, special distribution publication 25. 48. Condra, G.E., 1927, The stratigraphy of the Pennsylvanian System in Nebraska: Nebraska Geol. Survey, Conservation and Survey Div., Bull. 1, 2nd series, p. 15. 49. Condra, G.E., and Reed, E.C., 1959, The geological section of Nebraska: Nebraska Geol. Survey, Conservation and Survey Div., Bull. 14A, p. 1, 2, fig. 2. 50. Cornell, C.A., 1971, Probablistic analysis of damage to structures under seismic loads, in Dynamic waves in Civil Engineering: Wiley & Sons, London, Howells, D.A., ed. 51. Cornell, C.A., and Merz, M.A., 1974, A Seismic risk analysis of Boston: presented at the National Conference A.S.C.E., Cincinnati, Ohio, (April). 52. Coulter, H.W., Waldron, H.H., and Devine, J.F., 1973, Seismic and design considerations for nuclear facilities, in Proceedings of the fifth world conference on earthquake engineering: Rome, Italy, paper no. 302. 53. Croneis, C., 1930, Geology of the Arkansas Palezoic area: Arkansas Geol. Survey, Bull. 3, p. 170-335, pls. 1-A, 1-B, III. 54. Curtis, N.M., Jr., and Ham, W.E., 1972, Geomorphic provinces of Oklahoma, in Geology and earth resources of Oklahoma: Oklahoma Geol. Survey and Oklahoma State Dept. of Education, p. 3. 2.5-325 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 55. Dames & Moore, 1974, Preliminary Geotechnical investigation soil borrow materials Wolf Creek Generating Station, Unit No. 1; for Kansas Gas & Electric Co. and Kansas City Power & Light Co., Dames & Moore, October 1, 1974. 56. -----, 1975a, Geotechnical investigation on-site rock quarry areas Wolf Creek Generating Station, Unit No. 1; for Kansas Gas & Electric Co., and Kansas City Power & Light Co., Dames & Moore, September 21, 1975. 57. -----, 1975b, Geotechnical investigation proposed switchyard Wolf Creek Generating Station, Unit No. 1; for Kansas Gas

 & Electric Co., and Kansas City Power & Light Co., Dames &   Moore, May 23, 1975. 58. -----, 1976a, Geotechnical investigation alternate baffle   dikes A and B and alternate channels Wolf Creek Generating Station, Unit No. 1; for Kansas Gas & Electric Co., and   Kansas City Power & Light Co., Dames & Moore, July 1,   1976. 59. -----, 1976b, Geotechnical investigation Category I Pond and   Dam Ultimate Heat Sink Wolf Creek Generating Station, Unit   No. 1; for Kansas Gas & Electric Co., and Kansas City   Power & Light Co., Dames & Moore, October 15, 1976. 60. Dames & Moore, 1976c, Geotechnical investigation main dam and   service spillway foundations Wolf Creek Generating Station, Unit No. 1; for Kansas Gas & Electric Co., and Kansas City Power & Light Co., Dames & Moore, September   20, 1976. 61. -----, 1976d, Geotechnical investigation proposed circulating   water system Wolf Creek Generating Station, Unit No. 1; for Kansas Gas & Electric Co., and Kansas City Power &   Light Co., Dames & Moore, June 10, 1976. 62. -----, 1976e, Geotechnical investigation proposed cooling   lake Wolf Creek Generating Station, Unit No. 1; for Kansas Gas & Electric Co., and Kansas City Power & Light Co.,   Dames & Moore, February 19, 1976. 2.5-326 Rev. 0 WOLF CREEK 

REFERENCES:

SECTION 2.5 (continued) 63. -----, 1976f, Geotechnical investigation proposed make-up pipeline, river pumphouse, intake channel, and discharge structure Wolf Creek Generating Station, Unit No. 1; for Kansas Gas & Electric Co., and Kansas City Power & Light Co., Dames & Moore, October 18, 1976. 64. -----, 1976g, Geotechnical investigation proposed railroad spur and bridges Wolf Creek Generating Station, Unit No. 1; for Kansas Gas & Electric Co., and Kansas City Power & Light Co., Dames & Moore, July 12, 1976. 65. -----, 1976h, Geotechnical investigations proposed Route 1 and 8 and the Causeway Borrow Area Wolf Creek Generating Station, Unit No. 1; for Kansas Gas & Electric Co., and Kansas City Power & Light Co., Dames & Moore, June 29, 1976. 66. -----, 1976i, Geotechnical investigation proposed Saddle Dams I through VI Wolf Creek Generating Station, Unit No. 1; for Kansas Gas & Electric Co., and Kansas City Power & Light Co., Dames & Moore, June 17, 1976. 67. -----, 1976j, Geotechnical investigation Route 8 causeway and bridge Wolf Creek Generating Station, Unit No. 1; for Kansas Gas & Electric Co., and Kansas City Power & Light Co., Dames & Moore, June 28, 1976. 68. -----, 1976k, Geotechnical investigation soil borrow mater- ials Wolf Creek Generating Station, Unit No. 1; for Kansas Gas & Electric Co., and Kansas City Power & Light Co., Dames & Moore, July 6, 1976. 69. Dames & Moore, 1977a, Geotechnical investigation ESWS pipe- lines, pumphouse and discharge structure Wolf Creek Generating Station, Unit No. 1; for Kansas Gas & Electric Co., and Kansas City Power & Light Co., Dames & Moore, August 12, 1977. 70. -----, 1977b, Penecontemporaneous deformation zones Wolf Creek Generating Station; for Kansas Gas & Electric Co., and Kansas City Power & Light Co., Dames & Moore, May 20, 1977. 2.5-327 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 71. -----, 1979a, Report of blast evaluation program Wolf Creek Generating Station, Unit No. 1; for Kansas Gas & Electric Co., and Kansas City Power & Light Co., Dames & Moore, January 3, 1979. 72. -----, 1981a, Final report - volumes I and II, results of geologic excavation mapping Wolf Creek Generating Station, Unit No. 1; for Kansas Gas & Electric Co., and Kansas City Power & Light Co., Dames & Moore, August 13, 1981. 73. ----- 1981b, Final report, Surveillance of Earthwork - UHS Dam, Wolf Creek Generating Station, Unit No. 1; for Kansas Gas & Electric Co. and Kansas City Power & Light Co., Dames & Moore, August 18, 1981. 74. -----, 1982a, Final report, Surveillance of Earthwork - Power Block, Wolf Creek Generating Station, Unit No. 1; for Kansas Gas & Electric Co. and Kansas City Power & Light Co., Dames & Moore, May 10, 1982. 75. -----, 1982b, Final report, Surveillance of Earthwork - Essential Service Water System, Wolf Creek Generating Station, Unit No. 1; for Kansas Gas & Electric Co. and Kansas City Power & Light Co., Dames & Moore, May 26, 1982. 76. -----, 1982c, Procedures for Periodic Inspection of the Main Dam and Reservoir and the Ultimate Heat Sink, Wolf Creek Generating Station, Unit No. 1, Dames & Moore, November 2, 1982. 77. -----, 1983, Report, Results of Filling Inspection and First Periodic Inspection, Main Dam and Reservoir, Wolf Creek Generating Station, Unit No. 1; for Kansas Gas and Electric Company, Dames & Moore, June 6, 1983. 78. Davis, C. V., and Sorensen, K.E., 1969, Handbook of applied hydraulics: McGraw-Hill, 3rd ed. 79. Deere, D.U., and others, 1967, Design of surface and near- surface construction in rock, in Failure and breakage of rock, 8th Symposium on rock mech., C. Fairhurst, ed.: Amer. Inst. of Min., Metall., and Petr. Engr., 581 p. 2.5-328 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 80. Denison, R. E., Burke, W.H., Otto, J. B., and Hetherington, E.A., 1977, Age of igneous and metamorphic activity affecting the Ouachita foldbelt, in Stone, C.G., ed.: Symposium on the Geology of the Ouachita Mountains, vol. I, Arkansas Geol. Commission, p. 25-40. 81. Donovan, N.C., 1973, Earthquake hazards for buildings (ground motion design earthquake) in Building practices for disaster Standards, U.S. Dept. of Commerce, National Bureau of Standards, Washington, D.C., p. 82-111. 82. Donovan, N.C., and Singh, S., 1976, Liquefaction criteria for the trans-Alaska pipeline, Liquefaction problems in geotechnical engineering: American Society of Civil Engineers Annual Convention (October 1), p. 139-167. 83. Donnelly, E.B., 1965, Wisby and Wisby North fields, in Kansas oil and gas fields: Kansas Geol. Soc., vol. IV, p. 290-297. 84. DuBois, S. M., 1978, The origin of surface lineaments in Nemaha County, Kansas: U.S. Nuclear Regulatory Commission, NUREG/CR-0321, 36 p. 85. DuBois, S. M., and Wilson, F. W., 1978, List of earthquake intensities for Kansas, 1867-1977: Kansas Geol. Survey, Environmental Geology Series No. 2, 56 p. 86. Duke, C.M., and Leeds, D.J., 1962, Site characteristics of southern California strong-motion earthquake stations: University of California, Los Angeles, Report 62-55. 87. Dunbar, C.0., and Rodgers, J., 1957, Principles of stra- tigraphy: John Wiley & Sons, New York, New York, p. 13- 17. 88. Eardley, A.J., 1962, Structural geology of North America: Harper and Row, New York, New York, 2nd ed., p. 51, 55, 224. 89. Elder, J.A., 1969, Soils of Nebraska: Nebraska Geol. Survey, Conservation and Survey Div., Resource Dept. no. 2, p. 7. 2.5-329 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 90. Elster, T., 1965, Donald Field, in Kansas oil and gas fields: Kansas Geol. Soc., vol. IV, p. 68-77. 91. Eppley, J.F., 1965, Earthquake history of the United States: U.S. Coast and Geodetic Survey, Washington, D.C. 92. Fay, R.0., and Roberts, J., 1971, Geology, in Appraisal of the water and related land resources of Oklahoma: Oklahoma Water Resources Board, Region IX, Publication 36,

p. 19. 93. Fenneman, N. M., 1946, Physical divisions of the United States: U.S. Geol. Survey, reprinted 1957. 94. Figueroa, J.J., 1960, Some considerations about the effect of Mexican earthquakes in Proceedings, II World Conference on Earthquake Engineering, Japan, vol. III. 95. Franklin, J. A., 1970, Classification of rock according to mechanical properties: Univ. of London, Imperial Col- lege, London, England, Ph.D. Dissertation. 96. Franklin, J.A., and Chandra, R., 1972, The slake-durability test, International Journal of Rock Mechanics and Minerals Science: London, Pergamon Press Ltd., vol. 9, p. 325-341. 97. Frye, J. C., and Swinefrod, A., 1949, The plains border physiographic section, in Transactions of the Kansas Academy of Science: State Geol. Survey of Kansas, vol. 52, no. 1, p. 71-80. 98. Fuller, M.L., 1912, The New Madrid earthquakes: U.S. Geol. Survey, Bull., no. 494, 119 p. 99. Gamble, J.C., 1971, Durability-plasticity classification of shales and other argillaceous rocks: Univ. of Illinois, Urbana, Illinois, Unpublished Ph.D. Dissertation. 100. Gentile, R.J., 1976, The geology of Bates County, Missouri: Missouri Geol. Survey, R.I. 59, 89 p. 101. Greensfelder, R. G., 1974, Map of maximum bedrock acclera- tions in California: California Division of Mines and Geology, Map Sheet 2. 2.5-330 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 102. Gupta, I. N., 1976, Attenuation of intensities based on iso- seismels of earthquakes in central United States: Earthquake notes, vol. 47, no. 3, p. 13-19. 103. Gupta, I. N., and Nuttli, 0.W., 1976, Spatial attenuation of intensities for central U.S. earthquakes: Bull. Seis- mological Society America, vol. 66, p. 743-751. 104. Gutenberg, B., and Richter, C. F., 1942, Earthquake magni- tude, intensity, energy, and acceleration: Seismol. Soc. Am. Bull., vol. 32, p. 163-191. 105. Haley, B. R., 1976, Geologic map of Arkansas: Arkansas Geo- logic Commission, Scale 1:500,000. 106. Hammer, R.J. (compiler), 1973, General rules and regulations for the conservation of crude oil and natural gas: State Corporation Commission at the State of Kansas, Topeka, (January). 107. Hardin, B.0., 1970, Suggested method of test for shear modulus and damping of soils by the resonant columns, Special Procedures for Testing Soil and Rock for Engineering Purposes, American Society for Testing and Materials, ASTM STP 479. 108. Heck, N.H., and Bodle, R.R., 1931, United States earthquakes of 1929: U.S. Dept. of Commerce, Coast and Geodetic Survey, Washington, D.C. 109. Heckel, P.H., 1978, Field guide to upper Pennsylvanian cy- clothemic limestone facies in eastern Kansas: Kansas Geol. Survey, Guidebook Series 2, 79 p. 110. Heinrich, R., 1941, Contribution to the earthquake history of Missouri: Seismol. Soc. Am. Bull., vol. 31, p. 187- 224. 111. Herrmann, R.B., 1979a, written communication. 112. -----, 1979b, personal communication. 113. Hershberger, J., 1956, A comparison of earthquake accelera- tions with intensity ratings: Seismol. Soc. Am. Bull., vol. 46, no. 4, p. 317-320. 2.5-331 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 114. Hershey, H.G., and others, 1960, Highway construction mater- ials from the consolidated rocks of southwestern Iowa: Iowa Geol. Survey and Iowa State Highway Commission, Bull. no. 15, fig. 17. 115. Heyl, A.V., 1972, The 39th Parallel lineament and its rela- tionship to ore deposits: Economic Geology, vol. 67, p. 879-894. 116. Hinze, W.J., Braile, L.W., Keller, G.R. and Lidiak, E.G., 1977, A tectonic overview of the central midcontinent: U.S. Nuclear Regulatory Commission, NUREG-0382, 106 p. 117. Housner, G.H., 1969, Engineering estimates of ground shaking and maximum earthquake magnitude: Fourth World Conference on Earthquake Engineering, Santiago, Chile. 118. Huffman, G. G., 1958, Geology of the flanks of the Ozark Uplift: Oklahoma Geol. Survey, Bull. 77, p. 89-109, pl. VI. 119. Idriss, I.M., Lysmer, J., Hwang, R., and Seed, H.B., 1973, A computer program for evaluating the seismic response of soil structures by variable damping finite element procedures. Report EERC 73-16, Earthquake Engineering Research Center, University of California, Berkeley, July, 1973. 120. International Petroleum Encyclopedia, 1970; Petroleum Pub- lishing Company, 367 p. 121. Janbu, N., 1967, Settlement calculations based on the tangent modulus concept: Univ. of Norway, Troudheim, Norway, Soil Mechanics and Foundation Engineering Bull. 2. 122. Jennings, J.E., and Robertson, A. Mac G., 1969, The stabil- ity of slopes cut into natural rock in Proceedings VII International Conference of Soil Mechanics and Foundation Engineering, Mexico City, vol. 2, p. 585-590. 123. Jewett, J.M., 1951, Geologic structures in Kansas: State Geol. Survey of Kansas, Bull. 90, p. 114-167. 124. -----, 1954, Oil and gas in eastern Kansas: State Geol. Survey of Kansas, Bull. 104, p. 57, 80-290. 2.5-332 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 125. -----, 1964, Geologic map of Kansas: Kansas Geol. Survey, Map M-1, scale 1:500,000. 126. Jewett, J.M., and Merriam, D.F., 1959, Geologic framework of Kansas - a review for geophysicists, in Symposium on geophysics in Kansas, W.W. Hambleton, ed.: State Geol. Survey of Kansas, Bull. 137, p. 9-52. 127. Johnson, K.S., and others, 1972, Geology and earth resources of Oklahoma: Oklahoma Geol. Survey and Oklahoma State Dept. of Education, Educational Publication no. 1, p. 1-5. 128. Jones, V.L., and Lyons, P.L., Vertical - intensity magnetic map of Oklahoma: Oklahoma Geol. Survey, Map GM-6. 129. Jopling, D.W., and Cashion, K., 1959, Regional gravity of Kansas, in Symposium on geophysics in Kansas, W.W., Hambleton, ed.: State Geol. Survey of Kansas, Bull. 137,

p. 9-52. 130. Jordon, L., 1962, Geologic map and section of pre-Pennsyl- vanian rocks in Oklahoma: Oklahoma Geol. Survey, Map GM-
5. 131. Kansas Gas & Electric Company and Kansas City Power & Light, 1974, Wolf Creek generating station environmental report: Wichita, Kansas, vol. I-IV. 132. Kansas Geological Society, 1956a, North-south electric log cross section from Nebraska to Oklahoma along sixth principle meridian: plate. 133. -----, 1956b, East-west-south electric log cross section from township 35-2W to 34-43W: plate. 134. Kennedy, J.F., and Patincloux, J.C., 1976, Frazil ice forma- tion in ultimate heat sink - Wolf Creek Generating Station for Kansas Gas & Electric. Bechtel Power Corporation. 135. King, C.R., 1965, Alameda Field, in Kansas oil and gas fields: Kansas Geol. Soc., vol. IV, p. 1-17. 136. King, E.R., and Zietz, I., 1971, Aeromagnetic study of the midcontinent gravity high of the central United States:

Geol. Soc. Am. Bull., vol. 82, p. 2187-2208. 2.5-333 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 137. King, P.B., 1959, The evolution of North America: Princeton Univ. Press, Princeton, New Jersey, p. 23. 138. Kjaernsli, B., and Torblaa, I., (1968), Leakage Through Horizontal Cracks in the Core of Hyttejuvet Dams; The Norwegian Geotechnical Institute Publication No. 80, OSLO, Norway. 139. Knox, W.A., 1967, Multilayer near-surface refraction com- putations, in Seismic refraction prospecting: Soc. Explor. Geophysicists, p. 197-216. 140. Krinitzky, E.L., 1974, Fault assessment in earthquake engi- neering, miscellaneous paper S-73-1, State-of-the-art for assessing earthquake hazards in the United States: U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, May. 141. Krinitzsky, E.L., and Chang, F.K., 1975, State-of-the-art for assessing earthquake hazards in the United States; Earthquake intensity and the selection of ground motions for seismic design; Miscellaneous paper S-73-1, Report 4, September, 1975, U.S. Army Engineer Waterways Experiment Station, C.E., Vicksburg, Mississippi. 142. Lambe, T.W., 1960, Soil PVC Meter: Federal Housing Adminis- tration, FHA-701, Cat. no. 10589. 143. Lambe, T.W., and Whitman, R.V., 1969, "Soil Mechanics" - Wiley & Sons. 144. Landes, K.K., 1959, Petroleum geology: John Wiley & Sons, New York, New York, 2nd ed. 145. Lane, R.G.T., Temporary dam construction under water and overtopped by floods: Ninth International Congress on Large Dams, Instanbul, Turkey, vol. IV, question 35, p. 59-83. 146. Lawrence Livermore National Laboratory, 1981, NUREG/CR-1582, Seismic Hazard Analysis, Application of Methodology, Results and Sensitivity Studies, Vol. 4. 2.5-334 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 147. Leatherock, C., 1945, The correlation of rocks of Simpson age in north-central Kansas with the St. Peter Sandstone and associated rocks in northwestern Missouri: Kansas Geol. Survey, Bull. 60, pt. l, p. 1-16. 148. Lee, K.L., and Chan, K., 1972, Number of equivalent signi- ficant cycles in strong motion earthquakes: Proceedings of the International Conference on Microzonation for Safer Construction, Research and Application, Vol. II, Nov., 1972. 149. Lee, W., 1943, The stratigraphy and structural development of the Forest City Basin in Kansas: State Geol. Survey of Kansas, Bull. 51, p. 13. 150. -----, 1956, Stratigraphy and structural development of the Salina Basin area: State Geol. Survey of Kansas, Bull. 121, p. 53, 93-96, 142-143. 151. Lee, W., and others, 1946, The stratigraphy and structural development of the Forest City Basin of Missouri, Kansas, Iowa and Nebraska: U.S. Geol. Survey, Oil and Gas Invest., Prelim. Map 48, shs. 5 and 6. 152. Leeds, D. J., 1972, The underground seismic environment: Proceedings North American Rapid Excavation and Tunnelling Conference, A.I.M.E., vol. 1, p. 157-168. 153. Leps, T.M., 1973, Embankment-Dam Engineering, Casagrande volume - flow through rockfill: John Wiley and Sons, New York. 154. Levorsen, A.I., 1956, Geology of petroleum; Freeman & Co., San Francisco, 703 p. 155. Lins, T.W., 1950, Origin and environment of the Tonganoxie Sandstone in northeastern Kansas: State Geol. Survey of Kansas, Bull. 86, part 5, p. 117. 156. Lowe, J., III, and Karafiath, L.L., 1959, Stability of earth dams upon drawdown, Proceedings of the First Panamerican Conference: vol. 2, p. 537. 157. Lugn, A.L., 1935, The Nebraska earthquake of March 1, 1935: Science, vol. 81, no. 2102, p. 338-339. 2.5-335 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 158. Luza, K.V., 1978, Seismicity and tectonic relationships of the Nemaha Uplift in Oklahoma: U.S. Nuclear Regulatory Commission, NUREG/CR-0050, 67 p. 159. Lyons, P.L., 1959, The greenleaf anomaly, a significant gravity feature in Symposium on geophysics in Kansas: University of Kansas Publications, State Geological Survey of Kansas, Bull. 137, Hambleton, W.W., ed., p. 105. 160. Lyons, P.L., Jones, V.L., and Jacobsen, P., 1964, Vertical- intensity magnetic map and Bouguer gravity-anomaly map of Oklahoma: Oklahoma Geol. Survey, Maps GM-6, GM-7, p. 11. 161. Mack, L. E., 1962, Geology and groundwater resources of Ottawa County, Kansas: State Geol. Survey of Kansas, Bull. 154, p. 24. 162. Marcher, M.V., 1969, Reconnaissance of the water resources of the Fort Smith Quadrangle, east-central Oklahoma: Oklahoma Geol. Survey, Hydrologic Atlas l, Map HA-1, sh. 1. 163. Marcher, M.V., and Bingham, R.H., 1971, Reconnaissance of the water resources of the Tulsa quadrangle, northeastern Oklahoma: Oklahoma Geol. Survey, Hydrologic Atlas 2, Map HA-2, sh. 1. 164. Marsal, R.J., (1959), Earth Dams in Mexico, Proceedings of the First Panamerican Conference on Soil Mechanics and Foundation Engineering, Mexico, September 7-12. 165. Matthiesen, R.B., and others, 1964, Site characteristics of southern California strong-motion earthquake stations, Part II: University of California, Los Angeles, Report 64-15. 166. McCauley, J.R., Dellwig, L.F., and Davison, E.C., 1978, LANDSAT lineaments of eastern Kansas: Kansas Geol. Survey, Map M-11, Scale 1:500,000. 167. McCracken, M.H., 1961, Geologic map of Missouri: Missouri Geol. Survey and Water Resources, map. 2.5-336 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 168. -----, 1971, Structural features of Missouri: Missouri Geol. Survey and Water Resources, Dept. of Invest. 49, p. 8-67, pl. 1. 169. McCracken, E., and McCracken, M.H., 1965, Subsurface maps of the lower Ordovician (Canadian series) of Missouri: Division of Geological Survey and Water Resources, State of Missouri, Rolla. 170. McGinnis, L.D., and Ervin, C.P., 1974, Earthquakes and block tectonics in the Illinois Basin: Geology, vol. 2, no. 10. 171. McKeown, F.A., 1978, Hypothesis: many earthquakes in the central and southeastern United States are causually related to mafic intrusive bodies: Jour. Research U.S. Geol. Survey, vol. 6, no. 1, p. 41-50. 172. Medvedev, S.V., Sponheuer, S., and Karnik, V., 1963, Seis- mische Skala, in Proceedings of the third conference on earthquake engineering. 173. Merriam, D. F., 1956, History of earthquakes in Kansas: Seismological Society of America Bull., vol. 46, no. 2, p. 87-96. 174. Merriam, D.F., 1963, The geologic history of Kansas: State Geological Survey of Kansas, Bull. 162, 317 p. 175. Merriam, D.F., and Kelly, T.E., 1960, Preliminary regional structural contour map on top of Mississippian rocks in Kansas: Kansas Geological Survey, Oil and Gas Inv. no. 23, map. 176. Merriam, D.F., and Smith, P., 1961, Preliminary regional structural contour map on top of Arbuckle rocks (Cambrian- Ordovician) in Kansas: Kansas Geological Survey, Oil and Gas Inv. no. 25, map. 177. Merriam, D.F., Winchell, R.L., and Atkinson, W.R., 1958, Preliminary regional structural contour map on top of the Lansing Group (Pennsylvanian) in Kansas: Kansas Geol. Survey, Oil and Gas Inv. no. 19, map. 2.5-337 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 178. Mesri, G., and Gibala, R., 1971, Engineering properties of a Pennsylvania shale, Stability of Rock Slopes: Pro- ceedings of the Thirteenth Symposium on Rock Mechanics, New York, American Society of Civil Engineers, p. 57-75. 179. Miser, H.D., 1954, Geologic map of Oklahoma: U.S. Geol. Survey and Oklahoma Geol. Survey, map. 180. Miser, H.D., 1954, Geologic map of Oklahoma: U.S. Geol. Survey and Oklahoma Geol. Survey, map. 181. Mitchell, B.J., 1974, St. Louis University, written commun- ication. 182. Mohraz, B., Hall, W.J., and Newmark, N.M., 1972, A study of vertical and horizontal earthquake spectra: Nathan M. Newmark, Consulting Engineering Service, Urbana, Illinois, U.S. AEC Contract no. AT (49-5) - 2667. 183. Monthly Weather Review, 1882, Annual report of the chief signal officer to the Secretary of War for the year 1882: U.S. Government Printing Office, Washington, D.C. 184. Moore, R. C., 1949, Divisions of the Pennsylvanian System in Kansas: State Geol. Survey of Kansas, Bull. 83, p. 150- 152. 185. Murphy, J.R., and O'Brien, L.J., 1977, The correlation of peak ground acceleration amplitude with seismic intensity and other physical parameters: Bulletin of Seismological Society of America, vol. 67, no.3, p. 877-915. 186. -----, 1978, Analysis of a worldwide strong motion data sample to develop an improved correlation between peak acceleration, seismic intensity, and other physical parameters: Computer Services Corporation (for U.S. Nuclear Regulatory Commission) NUREG-0402. 187. Murphy, L.M., and Cloud, W.K., 1954, United States earth- quakes of 1952: U.S. Dept. of Commerce, Coast and Geodetic Survey, Washington, D.C. 188. Murphy, L.M., and Ulrich, F.P., 1951, United States earth- quakes, 1949: U.S. Coast and Geodetic Survey. 2.5-338 Rev. 0 WOLF CREEK

REFERENCES:

SECTlON 2.5 (continued) 189. Murray, D.K., and Marvin, R.G., 1973, A guide to uppermost Cretaceous stratigraphy, central Front Range, Colorado: deltaic sedimentation, growth faulting and early Laramide crustal movement: The Mountain Geologist, vol. 10, no. 3, p. 53-97. 190. Muskogee Daily Phoenix, 1956, p. 3 (October 31) 191. Necioglu, A, and Nuttli, 0.W., 1974, Some ground motion and intensity relations for the Central United States: Earthquake Eng., and Struct. Dynamics, vol. 3, p. 111-119. 192. Neumann, F., 1937, United States earthquakes of 1935: U.S. Dept. of Commerce, Coast and Geodetic Survey, Washington, D.C. 193. -----, 1954, Earthquake intensity and related ground motion: University of Washington Press, Seattle, Washington. 194. Newmark, N.M., Blume, J.A., and Kapur, K.K., 1973, Design response spectra for nuclear power plants: Am. Soc. Civil Engineers Annual Meeting, San Francisco, California. 195. Nobari, E.S., and Duncan, J.M., (1972), Movements in dams due to reservoir filling; Proceedings of the specialty conference on performance of earth and earth-supported structures, Purdue University, Lafayette, Indiana, June 11-14. 196. Nuttli, 0.W., 1973, The Mississippi Valley earthquakes of 1811-1812: Intensities, ground motion and magnitude: Seismol. Soc. Am. Bull., vol. 63, no. l, p. 227-248. 197. -----, 1973a, Seismic wave attenuation and magnitude rela- tions for eastern North America: Jour. Geophys. Res., vol. 78, no. 5, p. 876-885. 198. -----, 1973b, State-of-the-art for assessing earthquake hazards in the United States; Design earthquakes for the Central United States: Miscellaneous Paper S-73-1, Report 1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi. 2.5-339 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 {continued) 199. -----, 1974, Magnitude-recurrence relation for central Mis- sissippi Valley earthquakes: Seism. Soc. Am., Bull. 64, no. 4, p. 1189-1207. 200. Nuttli, 0.W., and Herrmann, R.B., 1978, State-of-the-art for assessing earthquake hazards in the United States; Credible earthquakes for the central United States: Miscellaneous Paper S-73-1, Report 12, December 1978, U.S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss. 201. O'Brien, L.J., Murphy, J.R., and Lahoud, J.A., 1977, The correlation of peak ground acceleration amplitude with seismic intensity and other physical parameters: U.S. Nuclear Regulatory Commission, NUREG-0143. 202. Ocola, L.C., and Meyer, R.P., 1973, Central North American rift system, structure of the axial zone from seismic and gravimetric data: Jour. of Geophysical Research, vol. 78, no. 23, p. 5173-5194. 203. O'Connor, H.G., 1960, Geology and ground-water resources of Douglas County, Kansas: State Geol. Survey of Kansas, Bull. 148, p. 65-67, pl. 1. 204. O'Connor, H.G., and others, 1955, Geology, mineral resources, and ground-water resources of Osage County, Kansas: State Geol. Survey of Kansas, vol. 13, part 1, p. 19, pl. 1. 205. Olivier, H., 1967, Through and overflow rockfill dams new design techniques: Paper 7012 in Proceedings of the Institute of Civil Engineers, March, vol. 36. 206. Oros, M.0., and others, 1975, Oil and gas fields in Kansas: Kansas Geol. Survey, Map M-3A, scale 1:500,000. 207. Ohta, Y., et. al., Observation of 1- to 5-second micro- tremors and their application to earthquake engineering, Part I: Comparison with long-period acceleration at the Tokachioki earthquake of 1968, Bull. Seism. Soc. Am., vol. 68, no. 3, pp 767-779, June 1978. 2.5-340 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (Continued) 208. Parker, M.C., 1971, Resume of oil exploration and potential in Iowa: Iowa Geol. Survey, Public Infor. Circ. no. 2, fig. 1. 209. Pawhuska Journal Capital, 1956, p. 1 (October 30). 210. Perry Daily Journal, 1956, p. 1 (October 30). 211. Peterschmitt, E., 1952, Sur la variation de intensite micro- seismique avec la distance epicentrale: Bureau Central Seismol. Internationale, Pub. Series A, no. 8, p. 183-208. 212. Petroleum Information Corporation, 1973a, Oil and gas opera- tions in the Mid-Continent, Rocky Mountains and Northeast Regions: 1972 Resume, p. 26. 213. -----, 1973b, Kansas, mid-year review: July 24, p. 8. 214. Petroleum Information Corporation, 1973c, Petroleum informa- tion: August 28, p. 2. 215. -----, 1973d, Mid-Continent Region: Newsletter ed., vol. 20, no. 181, September 14, p. 30. 216. Poulos, S.J., Hirschfeld, R.C., 1973, Embankment - Dam Engi- neering Casagrande Vol., Wiley & Sons, New York. 217. Pyke, Robert, Seed, H. Bolton, and Chan, Clarence K., 1975, "Settlement of Sands Under Multidirectional Shaking", Journal of the Geotechnical Engineering Division, volume 101, no. GT4, American Society of Civil Engineers, pp 279- 398. 218. Reed, E.W., Schoff, S.L., and Branson, C.C., 1955, Ground- water resources of Ottawa County, Oklahoma: Oklahoma Geol. Survey, Bull. 72, p. 32-35, pl. 1. 219. Reid, M.W., 1922, Collected earthquakes memos: National Oceanic and Atmospheric Administration, clippings. 220. Richardson, J.M., 1965, Rino Pool, in Kansas oil and gas fields: Kansas Geol. Soc., vol. IV, p. 193-199. 221. Riggs, E.A., 1960, Major basins and structural features of the United States: C.S. Hammond & Co., New Jersey. 2.5-341 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 222. Rockwood, C., 1882, Some recent earthquakes: Am. Jour. Sci., vol. 23, no. 11, p. 239. 223. Sabzevari, A., and Ghahramani, A., 1974, Dynamic passive earth-pressure problems: Am. Soc. Civil Engineers, Jour. of the Geotech. Engineering Div., vol. 100, no. GT-1, p. 15-30. 224. Sanger, F.J., 1963, Degree-days and heat condition in soils; in Proceedings of the 1st International Conference on Permafrost, p. 260-262. 225. Sapulpa Daily Herald, 1956, p. 1 (October 30). 226. Schnabel, P.B., and Seed, H.B., 1973, Accelerations in rock for earthquakes in the western United States: Seismol. Soc. America, Bull. vol. 63, no. 2, p. 501-516. 227. Schoewe, W.H., 1949, The geography of Kansas, part II, phys- ical geography, in Transactions of the Kansas Academy of Science: State Geol. Survey of Kansas, vol. 52, no. 3, p. 275-277. 228. Scott, R.W., 1966, New Precambrian (?) formation in Kansas: Am. Assoc, Pet. Geol., Bull., vol. 50, no. 2, p. 380-384. 229. Seed, H.B., and Chan, C.K., 1959, Undrained Strength of Com- pacted Clays After Soaking: Jour. Soil Mech. ASCE - vol. 85 SM6 - Dec. 1959, p. 31-47. 230. Seed, H.B, and Idriss, I.M., 1971, Simplified procedure for evaluating soil liquefaction potential, Journal of the soil Mechanics and Foundations Division; Proceedings of the American Society of Civil Engineers, vol. 97, no. SMA (September), p. 1249-1273. 231. Seed, H.B., Idriss, I.M., and Kiefer, F.W., 1969, Charac- teristics of rock motions during earthquakes: Journal of the Soil Mech. and Found. Div., ASCE, vol. 95, p. 1199-1218. 232. Seed, H.B., Lee, K.L., and Idriss, I.M., 1969, An analysis of the Sheffield Dam failure: Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 95, No. SM5, Nov., 1969. 2.5-342 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 233. Seed, H.B., Lee, K.L., Idriss, I.M., and Makdissi, F., 1973, Analysis of the slides in the San Fernando dams during the earthquake of February 9, 1971: Report EEFC 73-2, Earthquake Engineering Research Center, University of California, Berkeley, March, 1973. 234. Seed, H.B., and Peacock, W.H., 1971, Test procedures for measuring soil liquefaction characteristics: Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, p. 1099-1119, Aug., 1971. 235. Seed, H.B., and Whitman, R.V., 1970, Design of Earth-Re- taining Structures for Dynamic Loads, in Proceedings of the Specialty Conference on lateral stresses in the ground and design on earth-retaining structures: Am. Soc. Civil Engineers, Soil Mechanics and Foundations Div. 236. Shannon and Wilson, Inc., and Agbabian-Jacobsen Associates, 1972, Soil behavior under earthquake loading conditions: Report for the U.S. Atomic Energy Commission. 237. Shawver, D.D., 1965, 0.S.A. Field, in Kansas oil and gas fields: Kansas Geol. Soc., vol. IV, p. 175-183. 238. Shenkel, C.W., Jr., 1959, Geology of the Abilene Anticline in Kansas: Kans. Geol. Soc., Ann. Field Conf., no. 24, p. 116-128. 239. Sherard, J.L., and others, 1966, Earth and earth rock dams engineering problems of design and construction: John Wiley & Sons, New York. 240. Sherard, James L., Dunnigan, Lorn P., and Decker, Ray S., (1976): Identification and nature of dispersive soils; Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No. GT4, April. 241. Sherard, James L., Dunnigan, Lorn P., Decker, Ray S., and Steele, Edgar F., (1976): Pinhole Test for Identifying Dispersive Soils; Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No. GT2, January. 2.5-343 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 242. Silver, Marshall L., and Seed, H. Bolton, 1971, "Volume changes in sands during cyclic loading", Journal of the Soil Mechanics and Foundation Division, volume 97, no. SM9, American Society of Civil Engineers, pp 1171-1182 243. Snyder, F.G., 1968, Tectonic history of midcontinental States: University of Missouri at Rolla (UMR) Journal, V.H. McNutt Colloquium Series 1, no. l, p. 75. 244. Snyder, F.G., and Gerdemann, P.E., 1965, Explosive igneous activity along an Illinois-Missouri-Kansas axis: Am. Jour. of Sci., vol. 263, p. 465-493, June. 245. Stearns, R.G., and Wilson, C.W., Jr., 1972, Relationships of earthquakes and geology in west Tennessee and adjacent areas: Report prepared for Tennessee Valley Authority, Vanderbilt University, Nashville, Tennessee. 246. Steeples, D.W., and Bickford, M.E., 1981, Piggyback drilling in Kansas: an example for the continental scientific drilling program: EOS (Trans., American Geophys. Union), vol. 62, no. 18, p. 473-476. 247. Steeples, D.W., 1981a, Microearthquake network activities, fiscal year 1980: Kansas Geological Survey, Report to the Kansas City District, Corps of Engineers, July 29, 1981. 248. Steeples, D.W., 1981b, Structure of the Salina-Forest City interbasin boundary from seismic studies: Kansas Geological Survey prepared for the W.H. McNutt Memorial Lecture Series, to be published in Univ. Missouri (Rolla) Journal No. 3, 36 p. 249. Steeples, D.W., DuBois, S.M., and Wilson, F.W., 1979, Seis- micity, faulting, and geophysical anomalies in Nemaha County, Kansas: Relationship to regional structures: Geology, vol. 7, no. 3, p. 134-138. 250. Stepp, J. C., 1972, Analysis of the completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquakes hazard: Pro- ceedings International Conference Microzonation, Seattle, Washington, vol. 2, p. 897-910. 2.5-344 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 251. Sylvester, A.G., and Smith, R.R., 1976, Tectonic transpres- sion and basement-controlled deformation in San Andreas fault zone, Salton trough, California: American Assoc. Petroleum Geol. Bull., vol. 60, no. 12, p. 2081-2102. 252. Tarr, R.S., Jordan, L., and Rowland, T.L., 1965, Geologic map and section of pre-Woodford rocks in Oklahoma: Oklahoma Geol. Survey, Map GM-9. 253. Terzaghi, K., and Peck, R.B., 1967, Soil Mechanics in Engi- neering Practice: John Wiley & Sons, New York, New York. 254. Thiers, G.R., and Seed, H.B., 1968, Cyclic stress-strain characteristics of clay: Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM2, March 1968. 255. Thompson, T.L., and Goebel, E.D., 1968, Conodonts and Stra- tigraphy of the Meramecian Stage (upper Mississippian) in Kansas: State Geol. Survey of Kansas, Bull. 192, p. 4-7. 256. Thornbury, W.D., 1965, Regional geomorphology of the United States: John Wiley & Sons, New York, New York, p. 250- 251. 257. Trifunac, M.D., and Brady, A.G., 1975, On the correlation of seismic intensity scales with the peaks of recorded strong ground motion: Bulletin Seismological Society of America, vol. 65, no. 1, p. 139-162. 258. Tulsa Tribune, 1956, p. 1 (October 30). 259. Tulsa World, 1956, p. 1 (October 31). 260. United States Army Corps of Engineers, 1959, John Redmond Dam and Reservoir - Design Memorandum No. 3: geology, soils and structural foundations. U.S. Army Engineer District, Tulsa. 261. United States Atomic Energy Commission, 1973, Regulatory guide 1.60--Design response spectra for seismic design of nuclear power plants: Rev. 1. 262. United States Department of Commerce, 1928-1970, U.S. earth- quake yearly list: U.S. Dept. of Commerce. 2.5-345 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 263. United States Geological Survey, 1932, Geologic map of the United States: Washington, D.C., reprinted 1960. 264. United States Department of the Navy, 1971, Design manual - soil mechanics, foundations, and earth structures; NAVFAC, DM-7, 1971. 265. United States Nuclear Regulatory Commission, 1975, Safety Evaluation Report related to construction of Wolf Creek Generating Station, Unit No. 1, NUREG-75/080, Docket No. STN 50-482. 266. Wagner, H.C., 1954, Geology of the Fredonia Quadrangle, Kansas: U.S. Geol. Survey, Washington, D.C. 267. Walters, R.F., 1977, Land subsidence in central Kansas re- lated to salt dissolution: Kansas Geol. Survey, Bulletin 214, 82 p. 268. Ward, J. R., 1968, A study of joint patterns in gently- dipping sedimentary rocks of south-central Kansas: State Geol. Survey of Kansas, Bull. 191, part 2, p. 3-22. 269. Warren, D. H., 1968, Transcontinental geophysical survey (35-39N), Seismic refraction profiles of the crust and upper mantle: Dept. of the Interior, U.S. Geological Survey, Washington, D.C., p. 1. 270. Watney, W.L., 1978, Structural contour map: Base of Kansas City Group (Upper Pennsylvanian) - eastern Kansas: Kansas Geological Survey, Map M-10, scale 1:500,000. 271. Weiss, A., 1951, Construction Technique of Passing Floods Over Earth Dams: ASCE Transactions, paper 2461: vol. 116, p. 1158-1178. 272. Wilson, F.W., 1979, A study of the regional tectonics and seismicity of eastern Kansas - Summary of project activities and results to the end of the second year, or September 30, 1979: U.S. Nuclear Regulatory Commission, NUREG/CR-0666, 68 p. 273. Wilson, S.D., 1964, Suggested method of test for moisture- density relations of soils using Harvard compaction apparatus, Harvard Miniature Mold compaction: Am. Soc. Testing and Materials, Procedure for Soils Testing Committee D-18. 2.5-346 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 274. Winslow, A., 1894, Lead and zinc deposits: Missouri Geol. Survey and Water Resources, vol. II, sec. 2, p. 429-434. 275. Wolfe, A., Brady, L.L., and Romero, G., 1978, Directory of Kansas Mineral Producers: Kansas Geol. Survey, Mineral Resource Series 8, 79 p. 276. Woods, R.C., 1978, A correlation of gravity and magnetic anomalies in central Coffey County and western Anderson County, Kansas: Unpublished M.S. thesis, Dept. of Geology, Wichita State Univ., Wichita, Kansas, 51 p. 277. Woolard, G.P., 1959, The relation of gravity to geology in Kansas, in Symposium on geophysics in Kansas, W.W. Hambleton, ed.: State Geol. Survey of Kansas, Bull. 137, p. 63-103. 278. Woolard, G.P., 1968, A catalogue of earthquakes in the United States prior to 1925: Hawaii Institute of Geophysics, HIG-68-9 (based on unpublished data compiled by Reid, H.F., and published prior to 1930). 279. Wuerker, R.G., 1956, Annoted tables of strength and elastic properties of rocks: Petroleum Branch, AIME, Paper no. 663-G (December). 280. Wyss, M., 1979, Estimating maximum expectable magnitude of earthquakes from fault dimensions: Geology, vol. 7, p. 336-340. 281. Yarger, H.L., 1981, Aeromagnetic survey of Kansas: EOS (Trans., American Geophys. Union), vol. 62, no. 17, p. 173-178. 282. Yarger, H., Lam, C., Sooby, R., Martin, A., Rothe, G., and Steeples, 1981, Bouguer gravity map of southeastern Kansas: Kansas Geological Survey, Open-File September 1, 1981, Scale 1:500,000. 283. Yarger, H., Ng., K., Robertson, R., and Woods, R., 1980, Bouguer gravity map of northeastern Kansas: Kansas Geological Survey, Open-File April 1, 1980, Scale 1:500,000. 2.5-347 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 284. Yarger, H.L., Robertson, R.R., and Wentland, R.L., in press, Aeromagnetic map of eastern Kansas: Kansas Geol. Survey, Map M-12, scale 1:500,000. 285. Zartman, R.E., and others, 1967, K-Ar and Rb-Sr ages of some alkalic intrusive rocks from central and eastern United States: Am. Jour. Sci., vol. 265, p. 848-870. 286. Zeller, D.E., ed., 1968, The stratigraphic succession in Kansas: State Geol. Survey of Kansas, Bull. 189, p. 8-61, pl. 1. Unpublished References287. Burchett, R.R., 1973a, Research geologist, Nebraska Geolo- gical Survey: Written communication, May 15. 288. -----, 1973b, Research geologist, Nebraska Geological Survey: Written communication, June 15. 289. Carlisle, R.K., 1974, State Corporation Commission of the State of Kansas, Conservation Division: Written communication, June 28. 290. Cole, V.B., 1973a, Private consultant, Wichita, Kansas: Written communication, July 31. 291. -----, 1973b, Private consultant, Wichita, Kansas: Written communication, August 4. 292. -----, 1973c, Private consultant, Wichita, Kansas: Written communication, September 26. 293. Cornish Oil Well Services, 1968, Radioactivity log - Tesoro Petroleum Corporation, Ryser "A" No. 1, Woodson County, Kansas. 294. Coulter, H.W., 1975, U.S. Geological Survey, Reston, Va., written communication. 295. Ebanks, W.J., Jr., 1973, Chief, subsurface geology section, Kansas Geological Survey: Written communication, July 19. 2.5-348 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 296. Fellows, L.D., 1973a, Assistant state geologist, Missouri Geological Survey and Water Resources: Written Communication, July 20. 297. -----, 1973b, Assistant state geologist, Missouri Geological Survey and Water Resources: Written communication, July 20. 298. Gupta, I.N. and Nuttli, 0.,W., Spatial attentuation of in- tensities for central U.S. earthquakes, paper to be presented at the 56th Annual Meeting of the American Geophysical Union in June 1975. 299. Hager, R., 1973, Acting state administrative officer, Kansas Soil Conservation Service: Written communication, August 3. 300. Haley, B. R., 1973, Geologist, United States Geological Survey: Written communication, April 17. 301. Hambleton, W. W., 1973a, Director, Kansas Geological Survey: Written communication, April 17. 302. -----, 1973b, Director, Kansas Geological Survey: Written communication, August 6. 303. Johnson, K.S., 1973a, Geologist, Oklahoma Geological Survey: Written communication, June 29. 304. -----, 1973b, Geologist, Oklahoma Geological Survey: Writ- ten communication, June 29. 305. McBee, C.W., 1973, State soil scientist, United States Department of Agriculture, Soil Conservation Service: Written communication, May 31. 306. Nuttli, 0.W., 1974, St. Louis University, Written communica- tion. 307. Nuttli, 0.W., and Brill, K.G., Jr., in press, Earthquake source zones in the central United States determined from historic seismicity: Submitted to the NRC in September 1980. 308. O'Connor, H.G., 1974, Hydrologist, Kansas Geological Survey: Written communication, February 11. 2.5-349 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 309. Van Eck, 0.J., 1973a, Assistant state geologist, Iowa Geo- logical Survey: Written communication, June 19. 310. -----, 1973b, Assistant State Geologist, Iowa Geological Survey: Written communication, June 19. 311. Wilson, F.W., 1973, Engineering Geologist, Kansas Geological Survey: Written communication, July 17. 312. -----, 1981, Senior Geologist, Kansas Geological Survey: Written communication, December 28. 313. -----, 1982, Senior Geologist, Kansas Geological Survey: Written communication, January 22. Uncited References314. ASTM Technical Publication No. 377, 1964, Compaction of Soils: 77th Annual Meeting ASTM Chicago. 315. Barden, L., and Sides, G.R., 1970, Engineering Behavior and Structure of Compacted Clay: Jour. Soil Mech. ASCE, vol. 96 SM4. 316. Bishop, A.W., and Bjerrum, L., 1960, The Relevance of the Triaxial Test to the Solution of Stability Problems: ASCE Research Conf. on Shear Strength of Cohesive Soils. 317. Holtz, W.G., and Gibbs, H.J., 1956, Engineering Properties of Expansive Clays: ASCE Trans., vol. 121, Paper 2814, p. 641-677. 318. ICES Slope, Bailey, W.A., 1974, McDonnell Douglas Automation Company. 319. Li, C.Y., 1959, Construction Pore Pressures in an Earth Dam: Jour. Soil Mech. ASCE, vol. 85, no. SM5. 320. Seed, H.B., and Chan, C.K., 1956, Structure and Strength Characteristics of Compacted Clays: Jour. Soil Mech. ASCE, vol. 85 SM5. 2.5-350 Rev. 0 WOLF CREEK

REFERENCES:

SECTION 2.5 (continued) 321. Stallard, A.H., 1966, Materials Inventory of Coffee County Kansas: State Highway Commission of Kansas Research Dept. Report No. 2, 1966. 322. U.S. Dept. of the Interior, 1972, Design of Small Dams: Bureau of Reclamation, Second Edition. 323. United States Geological Survey, 1927, State of Kansas base map, scale 1:500,000. 324. Merriam, 1964. Additional References325. Dames & Moore, 1978, Interim Report results of detailed geological excavation mapping Wolf Creek Generating Station, Unit No. 1; for Kansas Gas and Electric Co., and Kansas City Power & Light Co., Dames & Moore, May 5, 1978. 326. 1979b Second interim report results of geologic excavation Mapping Wolf Creek Generating Station, Unit No. 1; for Kansas Gas & Electric Co., and Kansas City Power & Light Co.,Dames & Moore, July 9, 1979. 327. Bishop, BJ, 1975, Chief Operation Division, Tulsa District of U.S. Army Corps of Engineers, oral communication. 328. Merriam and Hambleton, 1959. 329. Lidiak and Zietz, 1976. 330. Miller, 1969. 331. Cornish Oil Well Services, 1968. 332. Merrian, 1960. 333. Melton, 1929. 334. Docekal, 1970, Earthquake history of the stable interrior: unpublished Ph.D. Dissertation, Univ. of Nebraska, Lincoln, Nebraska. 335. Parker, John D., Professor of Natural Science Lincoln College Topeka "Memoranda of the Earthquake of April 24, 1867", Kansas Collection of Kenneth Spencer Research Library in Lawrence, Kansas. 2.5-351 Rev. 0 WOLF CREEK 336. Reid, 1986. 337. Docekal, 1971. 338. Thiel, 1956.

339. Craddok, et el, 1963. 340. Coons, 1966. 341. Cohen, 1966.

342. Shar and Sykes, 1973. 343. Meek, 1962.

344. McCraken, 1972. 345. Gott and Hill, 1953. 346. Evans, 1962.

347. MacLachlin and Kleinkopt, 1969. 348. Brock and Singewald, 1968.

349. Chase and Gilmer, 1973. 350. Nuttli and Herman, 1978. 351. Dames & Moore, 1975, Final Report-Geotechnical Investigation for Alternate Baffle dikes. 352. WCNOC Specification C-403, Periodic Surveillance of Nonsafety-Related Water Structures and Reservoir. 353. WCNOC 55 The Main Dam Periodic Inspection. 354. Fugro, 2013, ESW Piping Replacement - Geotechnical Data Report. 355. Bechtel, 2014, Subsurface Investigation and Foundation Report. 356. Bechtel 2014, Addendum to Subsurface Investigation and Foundation Report.

2.5-352 Rev. 28 TABLE 2. 5-l Sheet 1 of 3 SUHHARY OF FOLDS IN ARKANSAS WITHIN THE REGIONAL AREA Fold Nwnber(o) Name 1 2 3 4 5 a Osage Anticline Price Mountain Syncline Clifty Anticline Wharton Arch Sneeds Creek Do roe Location Ark.-Carroll Mo. -Law*ren.ce, Barry Carroll, Ben-ton, Washington Madison Madison Madison, Identification(b) Ark.-S (Croneis, 1930, pl. l-A) SC(Caplan, 1957, pl. I) Mo.-SC(McCracken, 1971, pl. 1) s (Croneis, 1930, pl. 1-A) s (Crone is, 1930, pl. 1-A) SC(Caplan, 1957, pl. I) s (Croneis, 1930, pl. 1-A) sc (Caplan, 1957, pl. I) s (Crone is, 1930, pl. 1-A) SC(Caplan, 1957, pl. I) Fold nur:-l?ers co=respond to those sho\*Jn on Figure 2. 5-15. b A Aerial photographs B Borehole Gg G!:"avity Gm Gs Seismic Sc Structure ontours For S<:Ju.rces cite ?.EFE?..E:JCES: 2. 5 Length of Strike Plunge Axis of of (miles) Axis Axis 60 N45°W to N-S 26 N30°E to N35°E 10 Approx. E-W 9 E-W w ll N70°W to E-W to N70°E Remarks Probably extends into Missouri as the Osage-Verona Anticline (Fold No. 93); Steep E flank and tively flat w* flank; faulted along E flank (Green Forest Fault) near southern end. NW limb faulted by Glade f'ault to the north and Price Mountain Fault to the south. Short, steep, irregular slope to-v.rard the Clifty Creek Faults to the north; long, gradual slope toward the Brush Creek Fault to the south; irregular, indefinite slope toward the Price Mountain svncline to the west; irrPgulHr, steep slope tol*?a.rd the Moody Hollow Fault to the east (Croneis, 1930, p. 185). Bounded by the Reed Creek Fault on i.:he north and the Drakes Creek Fault on the west; the general area is located on a Precambrian "high11* Bounded on south by the Compton and Sneeds Creek Faults; eastern part of fold much more pronounced than western part. Rev, 0 :.:E: 0 L' r:j l) :;o tr:l trj ::>;:

Fold Number

    VUL-J.l fork is 4.5 miles long, N dips average S0, S limb dips average 3°; Three Rocks Anticline lies between the two forks. Lies between the two branches of the Chester Syncline; S limb dips age somewhat more than 4°, N limb dips average 3° and 4°. S flank dips range from 2° to 13° and average 5° and 6°; N flank dips average 3o. N limb dips average less than 3°, S limb dips average more than 4° . .. , -------,e ____ .-.,0 ..__ , ....,o l'-1 .l...l..llU.J U..LiJ.::;, LcUl\j\:.;;: L.LV1H L-i....U ' S limb dips range from 10 to 4° Rev. 0 0 t"' r.j \.J :;o t:t;l trj " Fold ,_, Number1u1 Narne Location 14 15 16 17 18 19 Liberty Hill Crawford Anticline Cove Syncline Lee Creek Anticline Pine Mountain Anticline Uniontown Syncline Cedarville Anticline Crawford Crawford c:ra...,.*fcrd crawford Crawford TABLE 2.5-1 (continued) Identification(b) s (Croneis, 1930, pl. 1-A) SC(Caplan, 1957, pl. I) s (Croneis, 1930, pl. 1-A) S (Croneis, 1930, pl. 1-A) SC (Caplan, 195 7, S (Croneis, 1930, pl. l-A) SC (Caplan, 1957, pl. I) S (Croneis, 1930, pl. 1-A) S (Croneis, 1930, pl. 1-A) SC(Caplan, 1957, pl. I) Length of Strike Axis of (miles) Axis 5 E-W to 0 NBO W 14 N70°W to N70°E 9 10 N65vw 6 N60°E 7.5 N55°E Plunge of Axis Sheet 3 of 3 Remarks Two NE-trending normal faults lie at right angles to the axis on both limbs but apparently do not cross the crest; N limb dips average 5° S limb dips average 3° and 4 . Western part (main part) is 3.5 miles long, dips average 3°; fold branches to the east -North Fork is 10 miles long, N limb dips average 3°, S limb dips average 4° and 5°; South Fork is 7 miles long, dips average 5° or more; the Lee Creek Anticline lies between the two forks. Lies between the two forks of the Cove Syncline; N limb dips range from 3° to 7°, S limb dips range from 2° to 10°. N limb dips average more than so, s limb dips average 30 and 40. N limb dips range from 20 to 70 s limb dips from 20 to o' range 8
    • N limb dips average 40 and 50' s limb dips average so. Rev. 0 TABLE 2.5-2 SUMMARY OF FOLDS IN IOWA WITHIN THE REGIONAL AREA Fold Number<ol Name Location Identification(b) l 2 3 4 5 6 Glenwood Mills SC(Hershey and Syncline others, 1960, fig. 17) Lyons Mills SC(Hershey and Anticline others, 1960, fig. 17) Bartlett Iowa-Fremont, Iowa-Syncline Mills SC(Hershey and Neb.-Cass others, 1960, fig. 17) Neb.-SC(Condra and Reed, 1959, fig. 2) Tabor Fremont SC(Hershey and Anticline others, 1950, fig . .J..IJ Malvern Mills SC(Hershey and Anticline others, 1960, fig. 17) Red Oak Montgomery SC(Hershey and Anticline others, 1960, fig. 17) a Fold numbers correspond to those shown on Figure 2. 5-15. b A Aerial photographs B Borehole Gg Gravity G:n !-!ag:1etics Gs Seismic S Surface mapping Sc Structure contours For Sources cited above, see

    REFERENCES:

    SECTION 2. 5. Length of Strike Plunge Axis of of (miles) Axis Axis 12 N50°E 13 N50°E 11 N70°E 4 N65°E 7 Nl0°W to Nl5°E 10 NlsnE to N35°E Sheet l of 2 Remarks Extends into Nebraska (Fold No. 6). <' 0 L' "'j ,.... \. ;::a t:tj t:tj A A structural high extends from the Anticline to the Red Oak Anticline. Rev. 0 Fold Number(o) Name 7 8 9 Farragut Anticline New Market Anticline Redfield Structural Zone Location Fremont Adams, Page, Taylor Iowa-Story, Boone, Dallas, Guthrie, Adair, Cass, Montgomery, Millsi Fremont Neb.-Cass, Otoe TABLE 2.5-2 (continued) Identification(b) SC(Hershey and others, 1960, fig. 17) SC(Hershey and others, 1960, fig. 17) SC(Hershey and others, 1960, fig. 17; Parker, 1971, fig.l; Van Eck, 197 3b) SC(Burchett, 1971, fig. 4) Length of Axis (miles) 13 21 180 Strike of Axis N30°W to N20°E N30°E to N65°E Plunge of Axis Sheet 2 of 2 Remarks A structural high extends from the Hamburg-Farragut Anticline to the Red Oak Anticline. Structural zone marked by a series of domes and anticlines with some faulting; probably extends into Nebraska (Fold No. 5). Rev 0 TABLE 2.5-3 SUMMARY OF FOLDS IN KANSAS WITHIN THE REGIONAL AREA Fold Name 1 2 3 5 6 a Commerce Trough Barneston tAb ilene) Anticline Irving Syncline A!1ticline Brownville Syncline Abilene Anticline Location Kan.-Cherokee Ok.-Ottawa, Craig Kan.-Marshall Neb.-Johnson, Pawnee Kan.-Marshall, mie Neb.-Pawnee Nemaha Kan.-Brown, Nemaha, Jackson, mie, aunsee, Harris, Chase Neb.-Nemaha, Richardson Riley, Clay, Dickinson IdentificationCb) Length of Axis (miles) Kan.-S(Jewett, 1951, p. 127) Gm(Jopling and Cashion, 1959, fig. 1) OK.-S(Arbenz, 1956) Kan.-S(Jewett, 1951, p. 117) Neb.-S(Condra and Reed, 1959' fig. 2) Kan.-S(Jewett, 1951, p. 117) SC(Merriam, 1963, p. 205, fig. 112) Gm(Jopling and ion, 1959, fig. 1) Neb.-S(Condra and Reed, 1959; fig. 2) S{Jcwett and Merriam, 1959, p. 39) Kan.-S(Jewett, 1951, p.l22) SC(Merriam, 1963, p. 203, fig. 111) Gm(Jopling and ion, 1959, fig. 1) Neb.-SC(Burchett, 1971, fig. 4) ::6 45 25+/- 85 S(Jewett, 1951, p.ll4) 180 SC(Merriam, 1963, p.203, fig.lll) Gm(Jopling and Cashion, 1959, fig. 1) Fold numbers correspond to those shown on Figure 2.5-15. b A Aerial photographs B Borehole Gg Gravity Grn Magnetics Gs Seis;-;-,ic S Surface mapping Sc Structure For Sources cited above 1 see REFERE:ICES: SECTION 2. 5. Strike of Axis Plunge of Axis Sheet 1 of 7 Remarks Also called the Miami Syncline in Oklahoma (Fold No. 1). Northern extension of the Abilene Anticline; Fold No. 3 in Nebraska. The term Irving Syncline is not used in Nebraska (Fold No. 4). M.aj or movement: PL e-i,LL!::isissippidn (Cole, 1973c) Marks the deepest part of the Forest City Basin in Nebraska (Fold No. l). Contains the McPherson gas field; the Barneston Anticline is the northern extension of the Abilene Anticline; steeply dipping SE limb, gently dipping NW limb. Rev. 0 ,-.,. \. Fold Number(o) 7 8 9 ltl 11 12 13 14 15 16 17 Name Tipton Anticline Fairport-Natoma Anticline Alta Vista Anticline Alma Acker land Anticline McLouth Anticline McLouth North Anticline Maywood Anticline Morris Anticline Gorham Structure Pfeifer Anticline Location Mitchell Russell, Osborne Wabaunsee, Morris Wabaunsee, Morris Leavenworth v>::;;::.J.._J..I;;J...;:;JV,Ut Leavenworth Jefferson Wyandotte Wyandotte, Johnson Russell Ellis, Russell TABLE 2.5-3 (continued) Length of Strike Axis of Identification(b) (miles) Axis S(Jewett, 1951, p. 162) 3 N-S S(Jewett, 1951, p. 134) 15 Nl0°E SC(Merriam, 1963, p.201, fig. 110) Gm(Jopling and Cashion, 1959, fig. 1) SC(Merriam, 1963, p. 238, fig. 135) 2 Nl6°E SC(Merriam, 1963, 38 0 N40 E .f";,..... 112) ... ...,.,.;, ""--"-":;j* S(Jewett, 1951, p. 114) 1 NW-SE S(Jewett, .l.ji':J.L, p. 143) 9 NW-SE SC(Nerriam, 1963, p. 205, fig. 112) S (Jewett, 1951, p .. 143) 7 NW-SE SC(Herriam, 1963, p .. 205, fig. 112) S(Jewett, 1951, p. 144) 6 SW-NE S(Jewett, 1951, p. 145) 1 NE-SW Gm(Jopling and Cashion, 1959, fig. l) S(Jewett, 1951, p. 138) 10 N40°W SC(Cole, 1962) S(Jewett, 1951, p. 151) 30 Plunge of Axis N Sheet 2 of 7 Remarks Part of the Central Kansas Uplift; contained the first discovered oil in Kansas; W limb dips 50' to 200'/mi., E limb dips 15' to 40' /mi. Part of the Nemaha Anticline; contains the Alta Vista oil field; steeply dipping E limb. Associated with a series of en echelon folds. Domelike; contains the Ackerland oil and gas pools. Domelikei faulted in Mississippian and lower rocks; oil pcols cf the field. Ncrthern extention. of the I*1cLouth Anticline; contains oil and gas pools of the McLouth North field. Elongate dome. *Dips on NW flank 160'/mi. Anticlinal structure; part of the Central Kansas Uplift; high-angle fault on SW side; contains the Gorham oil pool. In general alignment with the port-Natoma Anticline. Rev. 0 Fold Nw,-J)er(o) Narne 18 19 20 21 22 23 24 25 26 27 28 29 Ellsworth Anticline Russell Rib Lindsborg Anticline John Creek Anticline Rush Rib Kraft-Prusa Structure Geneseo Uplift Tobias Anticline Conway Syncline Voshell Anticline Graber Anticline Urschel Fold TABLE 2.5-3 (continued) Location Ellsworth Identification(b) Length of Axis (miles) S(Jewett, 1951, p. 133) SC(Merriam, 1963, p. 203, fig. 111) Gm(Jopling and Cashion, 1959, fig. l) 22 Ellis, Russell, S(Jewett, 1951, p. 155) 48 Barton SC(Jewett, 1951, p. 155) Saline, McPherson Morris Ellis, Rush, Barton Russell, Barto!!; Ellsworth Ellsworth, Rice Rice McPherson, Reno McPherson, Harvey, Reno McPherson, Harvey Marion SC(Merriam, 1963, p. 205, fig. 112) SC(Merriam, 1963, fig. 134) S(Jewett, 1951, p. 155) SC(Merriam, 1963, p. 207, fig. 114) SC(Jewett: 1951. 1 11'1. J:"l:"* ..... , ..... "7:.£., Herriam, 1963, p. 195) Gm(Jopling and Cashion, 1959, fig. 1) SC(Jewett, 1951, p. 138; Merriam, 1963, p. 203, Fig. lll) SC(Co1e, 1973c) Gs (Cole, l973c) SC(Jewett, 1951, p. 128) Gm(Jopling and Cashion, 1959' fig. l) SC(Merriam, 1963, p. 205, fig. 112) Gm(Jopling and Cashion, 1959, fig. 1) SC(Jewett, 1951, p. 139) Gm(Joplinq and Cashion, 1959, fig. l) S(Jewett, 1951, p. 135) SC{Jewett, 1951, p. 135) 7 4 to 5 52 15 27 3.5 40+/- 40 12 3 Strike of Axis 0 N45 W N-S Nt"l-SE Plunge of Axis s sw Sheet 3 of 7 Remarks Subsidiary structure of the Central Kansas Uplift; contains several oil pools. Major movement: sippian (Cole, 1973c) Part of the Central Kansas Uplift; anticlinal structure. Major movement: Pre-!>!ississippian (Cole, 1973c) Contains the Lindsborg oil field. Part of the Alma Anticline; faulted on E flank; contains the John Creek oil field. Part of the Central Kansas Uplift; anticlinal structure. Associated with burried gr2phy; part of the Central Kansa!:i Uplift. Part of Central Kansas Uplift; tains several oil pools which are faulted. E limb faulted. Along W side is a reverse fault with W side down 400ft.; contains several oil pools. Contains Mississippian limestone oil oools. Last movement: Permian (Cole, 1973c) Anticlinal structure containing the Florence-Urshel oil field. Rev. 0 Fold , , NumberiOI Name 30 31 32 33 34 35 36 37 38 39 Elmdale Dome Rib Elbing Anti::line Cedar Creek Syncline Mildred Dome Mound ro..: .. ....... ._.I Dome Burns Dome El Dorado Anticline Virgil Anticline Falls Dome Location Chase Rush, Pawnee Marion, Butler Chase Anderson, Allen Linn , .. __ ,: --i*.ia.J....Lu .... , Butler Butler Greenwood ¥-leeds on TABLE 2.5-3 {continued) Identificationib) S(Jewett, 1951, p. 134) Length of Axis {miles) E-W N-S SC(Jewett, 1951, p. 151) S(Jewett, 1951, p. 132) SC(Jewett, 1951, p. 132; Cole, 1962) Gm(Jopling and Cashion, 1959, fig. 1) S{Jewett, 1951, p. 124) SC(Cole, 1962) SC{Jewett, 1951, p. 145) 9 12 26 16 10 1 S(Jewett, 1951, p. 145) 6 SC(Jewett, 1951, p. 145) Gm(Joplinq and Cashion, 1959, fig. 1) S{Jewett, p. .,....,..,, 9 SC(Jewett, 1951, p. 123) Strike of Axis N25°E N20°W N65°W E-W Plunge of Axis S{Jewett, 1951, p. 159) 12 NE-SW SC{Jewett, 1951, p. 120) Gm{Jopling and Cashion, 1959, fig. 1) S(Jewett, 1951, p. 163) SC{Merriam, 1963, fig. l39j SC {Herriarr,; 1963; 85) 5 long NW-SE 0.25 wide Sheet 4 of 7 Remarks Part of the Nemaha Anticline; dips 30 -40. Part of the Central Kansas Uplift; anticlinal structure. Major ment: Pre-Mississippian Northern extension of the Bluff City-Valley Center-Elbing anticlinal trend. Part of the Nemaha Anticline; a large graben structure. Contains the Mound City oil pool

    • Part of the Nemaha Anticline. Contains most prolific oil pools in Kansas; part of the Nemaha Anticline; includes substructures: Bancroft Syncline, Bishop Syncline, Boyer Dome, Chelsea Dome, Chestney Dome, Dunkle Syncline, Fowler Syncline, Hammond Syncline, Hegberg Syncline, Koolger Nose, Lincoln Syncline, Oil Hill Dome, Ramsey Syncline, Ralston Syncline, Robinson Dome, Shumway Dome, Theta Syncline, Whitewater Nose, Wilson Dome. Domelike; may be the northern sion of the Beaumont Anticline; tains the Virgil oil pool. Mav have been formed by intrusion of material into the vanian sequence; similar structure to Silver City Dome and Rose Dome. Rev. 0 Fold Number(c} Name 40 41 42 43 44 45 46 47 48 49 Pratt Anticline Cunningham Anticline Greenwich Anticline Walnut Syncline-Reese Beaumont Anticline Silver City Dome Rose Dome Coats Anticline Willcwdale Anticline Location Stafford, Pratt, Barber Pratt, Kingman Sedgwick Butler Greenwood Greenwood, Butler Woodson, Wilson Woodson Pratt Kingman 50 Valley Center Sedgwick Anticline TABLE 2.5-3 (continued} Identificationib) Length of Axis (miles} SC(Merriam, 1963, p. 205, fig. 112) Gm(Jopling and Cashion, 19591 fig., 1) SC(Merriam, 1963, p. 205, fig. 112) SC(Cole, 1962) S(Jewett, 1951, p. 164) SC(Jewett, 1951, p. 164) 76+/- 10 5 12 S(Merriam, 1963, p. 244, 5 fig. 140) SC(Merriam, 1963, fig. 140) S(Jewett, p. 119) 25 SC(Merriam, 1963, p. 205, fig. 112) Gm(Jopling and Cashion, 1959, fig. 1) S(Jewett, 1951, p. 159) SC(Merriam, 1963, fig. 84) S(Jewett, 1951, p. 154) SC(Merriam, 1963, fig. 84) SC(Merriam, 1963, fig. 128) ......... /!1.*---.! .:J;... \.i' .. U:;:::J...i.. ..L.Ci .. Hi1 145) 1963, .r:.:_ .i..i.ij
    • 3 3 2 SC(Merriam, 1963, p. 183) 12 Strike of Axis NE-SW NE-SW E-W E-V'-1 0 NlO E Plunge of Axis sw Sheet 5 of 7 Remarks Southern extension of Central Kansas Uplift. Contains the Cunningham oil and gas pools; horst structure. Part of the Nemaha Anticline. Last movement: Pre-Lower Permian (Cole, l973c) NW limb dips steeper than SE. In same trend as Dexter-Otto Anticline to south and Virgil to north. May have been formed by intrusion of igneous material into the sylvanian sequence; structure lar to Neosho Falls Dome and Rose Dome. May have been formed by intrusion of igneous material into the vanian sequence; granite exposed at surface; structure similar to Neosho Falls Dome and Silver:-City Dome. Contains Coats oil field; narrow horst. Part o£ the Bluff City-Valley Elbing trend; contains the Valley Center oil pool. Rev. 0 Fold Number(o) Name 51 52 53 54 55 56 57 58 59 60 61 62 Augusta (North and South) Anticlines Fredonia Dome Pittsburg Anticline Bluff City Anticline Redbud Dome Slick-Carson Dome Winfield Anticline Longton Anticline Cherryvale Anticline Joplin Anticline Lawton Trough Graham Dome Location Butler Wilson Kan.-Crawford Mo.-Barton, Jasper Sumner, Harper Cowley Cowley Cowley Elk, Chautauqua Montgomery Kan.-Cherokee Mo.-Jasper, Newton Kan.-Cherokee Mo.-Jasper Cowley TABLE 2.5-3 (continued) Identificationlb) Length of Axis (miles) S(Jewett, 1951, p. 116) 4; 7 S(Jewett, 1951, p. 137) 6 SC(Merriam, 1963, p. 205, to fig. 112) 7 Kan.-S(Jewett, 1951, p. 151) Mo.-SC(McCracken, 1971, pl. 1) SC(Merriam, 1963, p. 183) S(Jewett, 1951, p. 154) SC(Jewett, 1951, p. 159) S(Jewett, 1951, o. 167) SC(Merriam, p. 205, fig. 112) SC(Merriam, 1963, p. 205, fig. 112) Gm(Jopling and Cashion, 1959' fig. 1) S(Jewett, 1951, p. 127) Kan.-S(Jewett, 1951, p. 141) Gm(Jopling and ion, 1959, fig. 1) Mo.-SC(McCracken, 1971, pl. 1) Kan.-S(Jewett, 1951, p. 142) Mo.-SC(McCracken, 1971, pl. 1) SC(Jewett, 1951, p. 138) 23 40 1 1 15 27 5 28 l9 l Strike of Axis N-S; NE-SW N-S 0 N50 E Nl0°W rn --o N40 W N40°W Plunge of Axis NW s Sheet 6 of 7 Remarks Part of the Nemaha Anticline; divided into north and south structures; probably faulted on E side; equallv diooinq limbs. Major Lower Pennsylvanian (Jewett, 1951, p. 116) Extends into Missouri (Fold No. 85) as the Galesburg-Pittsburg Anticline. Part of the Bluff City-Valley Elbing anticlinal trend. Part of the Nemaha Anticline. C0[1Laius t.he Slie:k.-CctL :::ouu ui.l LielU
    • Also called Longton Ridge. Mostly located in Missouri (Fold No. 86)
    • Extends into Missouri (Fold No. 87). Contains the Graham oil pool. Rev. 0 Fold Number
        :;

    TABLE 2.5-4 Sheet 1 of 11 SUH1\I;"\RY OF FOLDS IN MISSOURI WITHIN THE REGIONAL AREA Fold Number(o) Name 1 Tarkio Structure 2 Corning Structure 3 Hamilton-King City-Quitman Axis (Anticline) 4 Trenton Anticline 5 College Hound-Buck-lin Anticline 6 Blackburn School Anticline 7 Breckenridge Anticline a Location Atchison Holt Nodaway, .t\ndrew, Gentry, DeKalb, Daviess, Caldwell -..-+-1.... Harrison, HV.!.. L...!.!; Grundy, Living-ston: Linn Linn, Macon, ?.arcdolph, 1-'Ionroe Livingston Caldwell Identification(b) SC(McCracken, 1971, p. 63, pl. 1) SC(McCracken, 1971, pl. 1) B (McCracken, 1971, p. 21) SC(!vlcCracken, 1971, pl. 1) c.,..., . 0"-\.L"J.I....-'--.!..Ct\...-.">..tll.; 1971, pl. 1) SC(HcCracken, 1971, pl. 1) SC(McCracken, 1971, pl. 1) SC(McCracken, 1971, pl. 1) Fold nur.bers correspond to those shown on Figure 2.5-15. b A = Aerial photographs B = Borehole Gg = Gravity Gm = Hagnetics Gs = Seismic S = Surface map?ing Sc = Str1.1c:tu.re For Sources cited above, see

    REFERENCES:

    2. 5. Lenqth of Axis (miles) 1.5 1 80 00 uu 42 6 3 Strike of Axis N-S NlQ0W to Nl5°W N55°W >.*c o0 *.* v " NS5°W N35°W N-S to N3 Plunge of Axis NW Remarks Anticline; contains oil. Anticlinal structure; contains oil; associated with grarcitic rocks. Large gentle anticlinal ture. lir:ill, slightly steeper sw li::-.b. Rev. 0 ::E 0 L' I"'j n :;a t:tj ttl TABLE 2.5-4 (continued) Sheet 2 of ll Length of Strike Plunge Fold Axis of of Number(o) Name Location Identi fication(b) (miles) Axis Axis Remarks 8 Cameron-DeKalb SC(McCracken, 1971, 25 N55°W Br-oad structure; part of 1-.'W Union Star pl. l) Missouri1s structural grain. Syncline 9 Savannah Andrew SC(McCracken, 1971, 3 N30°E Elongate dome. Structure pl. 1) 10 Filmore Andrew SC(McCracken, 1971, 4 E-W Anticlinal nose. Structure p. 30) 11 Cameron Clinton, SC(McCracken, 1971, 10 N-S N Anticlinal structure; contains Structure Caldwell pl. 1) Turney gas field. 12 Lathrop Clinton SC(McCracken, 1971, 2 N40°W Contains the Lathrop gas field. Dome pl. 1) 0 '"" oOo.* t"' 13 Polo Caldwell SC(McCracken, 1971, 2 l'ILU vv Anticlinal structure. t":Lj Structure pl. l) n ;;o 14 Go*w*er Clinton SC 1971, 4 N40°E t:rj ..... AT1ticline pl. l) *--15 Hammond Clinton SC(McCracken, 1971, 1.5 NSC01'1 Contains the Hamrnond gas field; (North pl. l) anticlinal str'..lcture. Plattsburg) Structure 16 South Clinton SC(McCracken, 1971, 2 Nl5°E Small dome. Plattsburg pl. 1) Structure 17 Richmond-Buchanan, SC (!1cCracken, 1971, 56 N60°W Large gentle anticline. St. Joseph Clinton, Clay, pl. 1) Anticline Ray 18 Ellington Clay SC(McCracken, 1971, 2 E-W Elongated dome. Structure pl. l) 19 Paradise Clay SC(McCracken, 1971, 5 N3cPW (Smithville) pl . l) . :..nticline t<.ev!! 0 TABLE 2.5-4 (continued) Sheet 3 of ll Length of Strike Plunge Fold Axis of of 1"\ Location Identification{b) Number\ ... , Name (miles) Axis Axis Remarks 20 Nashua Clay SC(McCracken, 1971, 2 0 N40 E Anticlinal structure; contains Structure pl. l) the Nashua gas field. 21 Liberty Clay SC(McCracken, 1971, 2 N30°E Structure pl. 1) to NScf'w 22 Parkville Platte SC(McCracken, 1971, 2 N30°E Anticlinal structure. Structure pl. l) 23 Prairie Platte SC(McCracken, 1971, 2 E-W Anticlinal structure. Point pl. l) Structure 24 Belgium Platte SC(McCracken, 1971, 1 NE-SW Domal structure. Bot torus pl. 1) (Lakeside) Structure 25 Avondale Clay SC(McCracken1 1971, 2 r.;E-SW s Ar,ticli:oal structure; contains Structure pl. 1) the .. *c;-;.dale gas fields. 26 Centropolis Jackson SC(NcCracken, 1971, 1 N-S Flat-topped Dome p. 18; pl. 1) 27 Coloma Carroll SC(McCracken, 1971, 9 N65°W Anticline pl. l) 28 Salisbury-Charltan SC(McCracken, 1971, 6 N45°W Quitman pl. 1) Anticline 29 Howard Chari tan, SC(McCracken, 1971, 19 N5G0W Has been called both a syncline County Howard pl. 1) and a structural basin. Syncline 30 Browns Boone SC(McCracken, 1971, 14 N35°]'J Station pl. 1) Anticline Rev; 0 Fold Nwnber(a) Name 31 32 33 34 35 36 37 38 39 40 Fish Creek Anticline Co*.; Creek Anticline Blue Lick Anticline Knobnoster Anticline Kansas City-Blue Springs-T--1. J...JUUt:: VO.I.,...J\.. Syncline Blue Springs Anticline Centerview-Kansas City Anticline Penn Valley Syncline Hartin City Anticline East Grandview Anticline Location Saline, Howard, Boone Saline Saline Johnson .Jackson Jackson Jackson, Johnson Jackson Jackson Jackson TABLE 2.5-4 (continued) Identi fica tion(b) SC(HcCracken, 1971, pl. l) S (McCracken, 1971, p. 21) SC(HcCracken, 1971, pl. 1) S (HcCracken, 1971, p. 12) SC(HcCracken, 1971, pl. 1) SC(HcCracken, 1971, pl. 1) SC(McCracken, 1971, p. f p..L. l) SC(McCracken, 1971, p. 13, pl. 1) SC(HcCracken, 1971, pl. l) SC(McCracken, 1971, p. 49, pl. 1) SC(HcCracken, 1971, p. 43, pl. :l_) 1971, p. 27, pl. 1) Length of Axis (miles) 48 26 14 6 30 7 64 20 5 Strike of Axis 0 N50 1'1 Plunge of Axis NW Sheet 4 of 11 Remarks Gentle dips on NE limb. Also called the Burris Syncline. Part of the City Anticline; contains the Blue Springs gas field. Several smaller structures are identified along this anticline. Bifurcates forming two major synclines. Contains a series of small Located between the two branches of the Penn Valley Syncline. Rev. 0 TABLE Fold Name Location Identificationlb) 41 King Cass SC(McCracken, 1971, Anticline p. 38' pl. l) 42 Knoche Cass SC(McCracken, 1971, Anticline p. 39' pl. 1) 43 Main City-Cass SC(McCracken, 1971, Belton p. 42, pl. 1) Syncline 44 Jaudon Cass SC(McCracken, 1971, Anticline p. 37, pl. 1) 45 East Cass SC(McCracken, 1971, Cleveland Anticline p. 27, pl. 1) 46 North West. Cass SC (!..'lcCr-3.cken, l97li Line p. _, "' Syr:cline 47 West Grandview Jackson SC(McCracken, 1971, Structure -p. 67, pl. l) West Grandview Terrace 48 West Dolan Cass SC(McCracken, 1971, Syncline p. 67, pl. l) 49 Riner Cass SC(McCracken, 1971. (Kelly) p. 53, pl. 1) Dome so Harless Cass SC(McCracken, 1971, Creek-South p.34, pl. 1) Creek 51 Prettyman Cass SC(McCracken, 1971, Anticline p. lB. pl. l) 2.5-4 (continued) Length of Strike Axis of (miles) Axis l N-S 1 N-S 28 N2C0W to N2C0E 2 E-W 4 Nl0°W to Nl0°E -N40°W Lo E-W 2.5 N45°w to N-S 4.5 E-W 2 N4C0E 4 N40°V.,. 0 6 NlO W Plunge of Axis N Sheet 5 of 11 Remarks Flat-topped dome. Consists of two sharp,elongate domes. Appears to be offset by the Belton Fault Cor:-tplex .. Consists of two anticlines and a small depression. A western extension of the Main City-Belton Syncline. A western extension of the Main City-Belton Sy:-:cline. Associated \*lith the Nest Grandvle'"w* gas field; consists of a small dome and monocline; may be part of the Martin City Anticline. Merges with the Main City-Belton Syncline to the east. Consists of several smaller struc-Rev. 0 Fold Number( a) Name Location 52 Archie-Cass Lonetree-Peculiar SyEcline 53 Harrisonville Cass Anticline 54 Cass Depression 55 Pleasant Cass Hill-Garden City-Dayton Syncline 56 La Due-Cass, Henry Freeman Anticline 57 Lewis Henry Trough 58 Benton County Benton Anticline 59 Proctor Morgan, Camden Anticline 60 Long Bates Dome 61 Schell ,__..,, .;...,,_ Bates, St. Clair '---'--'-.}. Rich Hill Anticline TABLE 2.5-4 (continued) Identifica tionlb) SC(McCracken, 1971, p. 10, pl. 1) SC(McCracken, 1971, p. 18' pl. 1) SC(McCracken, 1971, p. 18, pl. 1) SC(McCracken, 1971, p. SO, pl. 1) SC(HcCracken, 1971, pl. l) SC(McCracken, 1971, pl. l) SC(McCracken, 1971, pl. 1) SC(McCracken, 1971, pl. 1) SC(McCracken, 1971, pl. 1) SC U*1cCracken, 1971, pl. 1) Length of Axis (miles) 20 ll 3 30 56 5.5 25 40 1 33 Strike of Axis N-S to 0 N40 W E-W to NSSU\<1 N60°W N70°W N25°W to0 0 1'1 NW-SE N6 Plunge of Axis Sheet 6 of ll Remarks Consists of two flat domes. Southward extension of the ern limb of the Penn Valley Syncline. Broad axis with se!ltle dips. Bordered on either side by syn-clinal areas. W flank dips 4°, E flank dips 1°. SW side has the steeper dip. Asyrr-.:rtetrical anticllne v.;ith a steep SW limb; it may be a fault in the pre-Pennsylvanian Paleozoics; wrere it :r:tay be an extension of the Cldorado Springs Fault. Rev. 0 TABLE 2.5-4 (continued) Sheet 7 of 11 Length of Strike Plunge Fold Axis of of Number(o) Name Location Identification(b) (miles) Axis Axis Remarks 62 Ackerman Bates SC(McCracken, 1971, l --Anticlinal structure. Structure pl. l) 63 Blue Ridge St. Clair, SC(McCracken, 1971, 9 N30°W Steep W limb terminates in the School Cedar pl. 1) Eldorado Springs North Fault; Anticline E limb gentle; structure probably part of the Schell City-Rich Hill Anticline. 64 Little Hickory SC(McCracken, 1971, 4 N40°W NW Very gentle S limb. Weaubleau pl. 1) Anticline 65 Galmey Hickory SC(McCracken, 1971, 3 N30°E Gentle dips p.,o to 1 °) ; two small ::8 Church p. 32) faults cut the Vl limb. 0 Anticline L' hj 66 Cedar Point u; SC U*1cCracken, 1971, 2 *---o ... uoubly Gentle dlps P'2° to 1°). \ J ...................... 1 N.':>U n ;;o AnL.i.t.;l.ine p. B) Plunging c:::.J !:"1 67 1.5 0 ,.;: Jordan Creek Hickory SC(McCracken, 1971, N40 W Doubly Anticline p. 38) Plunging 68 0 Vanderman Hickory SC(McCracken, 1971, 2 N40 W NW Dips slightly greater than 1°. Branch p. 64) Syncline 69 Humansville St. Clair, s (McCracker,, 1971, 10 N4C0W Dips less than 1°. Anticline Polk p. 35) SC(McCracken, 1971, nl 1\ <:-* _, 70 Bolivar-Polk, Dallas, SC(McCracken, 1971, 33 N60°W Steep SW limb. Marshfield Webster pl. l) to0 Anticline N70 W o __ 71 Morrisville-Polk SC(HcCracken, 1971, 20 N70 V. Part of the Bolivar-Marshfield Briqhton pl. 1) t-n_ Anticline. Fold N4Sw .. n t::Vo v TABLE 2.5-4 (continued) Sheet 8 of 11 Length of Strike Plunge Fold Axis of of Number(a) Name Location I den ti fica tion(b) (miles) Axis Axis Remarks 72 Sac River Lawrence, SC(McCracken, 1971' 9 N50°W Anticline Greene pl. l) 73 North Dry Polk SC(McCracken, 1971, 15 N50°W Sac pl. 1) to Syncline N70Dw 74 Graydon-Polk, Greene, SC(McCracken, 1971, 30 NE limb is steep and faulted in a North view Webster pl. l) to number of places (Graydon Springs Anticline E-W Fault Zone); merges with Springfield Anticline to east. 75 Springfield Webster, s (McCracken, 1971, 42 N45% Steeper on N fla:1k than on s flank; Anticline Christian, p. 61) to mostly topographic feature-may not :::8 Lawrence SC(McCracken, 1971, N70% ne structural. 0 pl. 1) t-1 I"'j 76 Dry Creek Webster SC(McCracken, 1971, 4 N60 'W NW Domelike; cut off by Dry Creek Fault (J Anticline pl. l) Complex at XE edge. ::::0 [Z.J e<j 77 Fordland Webster SC(McCracken, 1971, 6 E-1fl w s flank gentle; N flank broken by Anticline pl. l) Fordland Fault. 78 South Dade, Greene SC(McCracken, 1971, 13 N40 °W Sac-Ash pl. 1) to Grove N70 °W Syncline 79 Stinton Lawrence SC(McCracken, 1971, 6 E-W Gentle sw dip; NE dip (40 to 60). Anticline pl. l) to N2G0 W 80 Newport Barton, Dade SC(McCracken, 1971, 15 N40° W NW Basin pl. l) 81 Golden City-Barton, Dade SC(McCracken, 1971, 40 N75° W NE limb steep. ' Miller Lawrence pl. l) to N35° W Rev= 0 Fold Number(o) Name 82 83 84 85 86 87 88 Lamar Syncline Jasper Anticline Carthage Sag Pittsburg Anticline Joplin _l\_!"!ticline Lawton Trough Galena Anticline Location Vernon, ton, Jasper Barton, per, Newton Barton, per Mo.-Barton, Jasper, Kan.-Crawford Mo.-Jasper, Kan. -Cherokee Mo.-Jasper Kan.-Cherokee Jasper TABLE 2.5-4 (continued) Identif ication(b) S (McCracken, 1971, p. 40) SC(McCracken, 1971, pl. 1) SC(McCracken, 1971, pl. l) SC(McCracken, 1971, pl. 1) Mo.-SC(McCracken, 1971, pl. l) Kan.-S (Jewett, 1951, p. 151) Mo.-SC{McCrackenj 1971, pl. 1) Kan.-S (Jewett, 1951, p. 141) Gm(Jopling and Cashion, 1959, fig. 1) Mo.-SC(McCracken, 1971, pl. l) Ka.n.-S (Jewett, 1951, p. 142) SC(McCracken, 1971, pl.l) Length of Axis (miles) 39 52 28 23 28 19 5 Strike of Axis N50°W to0 N30 W 0 N4C W 0 N2'. W 0 N45 H 0 N50 W Plunge of Axis NW Sheet 9 of 11 Remarks Gentle synclinal structure with dips of 10 or 2°. Probably extends into Kansas as the Pittsburg Anticline (Fold 53). SW flank dips steeper fc:d to Kansas (Fold No. 60). Extends into Kansas (Fold :-<o. 61). May extend intc Kansas the of Galena in Cherokee County, Kansas. Re\7. 0 Fold 90 91 92 94 Horse Creek ine Ht. Shira L;plift Sulfur Washburn Syncline i).::>dg(.::-Location No .. -:.1cDona Ok. Ottawa }<1cDonald McDonald Barry No. -La,wrence, Barry -Carro.ll Livingston 95 Creek Jackson 96 97 South sas City Dome Lisle Anticline Jackson Cass TABLE 2.5-4 (continued) (McCracken, 1971, pl. l) Ok. S (l,rb0.nz, 195 ) 1971, 1971, s (NcCracken. l . ' 1971, p. . pl. l) s (McCracken, 1971, ' 1971, sc 1 1971, l) Ar.<. (Cr-one 1930, pl. 1-A) SC(McCracken, 1971, pl. .1) SC 1971, l) SC(McCracken, 197 ' 1) SC ar:ken, 1971, pi. l) Length of 47 E-W to l. N70°E 14 N3S0E 60 1.5 N-S 2 2.5 N4C0W 2.5 0°\q v; t l 0 of ll Remarks 20 di;;s on l 5° to limb, Fold So. 2 in f so, S has e a short distance into s. ; w Greasy Creek FauJt. Extends Arkansas as Ant (Fold 1 W 1inb dips 10°. into 83.:Jge Part of the Centerview-Ka:lsas Anticline. Rev. 0 :E; 0 !:""' I"Il 0 :.0 t".l trl ::"1 Fold Number
      ::

    State Kansas Nebraska Iowa Missouri Arkansas Oklahoma WOLF CRF.:E:K TABLE 2.5-*7 MAJOR PERIODS OF FOLDING 'WITHIN THE REGIONAL AREA Major Periods of Folding Mississippian through Pennsylvanian Ordovician and Mississippian Precambrian and Pennsylvanian Precambrian, Ordovician, Silurian, Devonian, Pennsylvanian Ordovician, Silurian Mississippian, Pennsylvanian Pennsylvanian and Permian Merriam, 1963 Burchett, 1973b Van Eck, 1973b Fellows, 1973b Denison and others, 1977 Johnson, 1973b

    • For Sources cited above, see

    REFERENCES:

    SECTION 2.5. Fau1t(a) Number Name Long Creek Green Forest Osage Moody Hollow C1 ifty Creek Glade Location Boone Carroll Newton Madison, Carroll Ben Carroli Benton Identification (b) (Croneis, 1930, p. 198) S (Croneis, 1930, p. 197) sc (Caplan, 1960, pl. III) (Croneis, 1930, p. 199) (Croneis, 1930, p. 199) (Croneis, 1930, p, 195) {CrcneisJI 1930, p. 197) (McCracken, 1971, p. 60) aFaul t numbers correspond to those shown on Figure 2. 5-16. bA : Aerial Photographs B = Borehole Gg : Gravity Gm Magnetics Gs Seismic Surf<"3ce Mapping SC

    • Structure Contours cG = Graben Horst N "" Normal T : Tt":rust R : Reverse ...... N, s, E, II = Directions H : High Angle Note: Fer scL.:.rces cited above, Section 2.5. TABLE 2.5-8 Sheet 1 of 3 SUMMARY OF FAULTS IN ARKANSAS WITHIN THE REGIONAL AREA Type (c) N N N N Length of Fau1 t (miles) 1.5 2. 5 9. 5 2 2; 4; 2 Strike E-W Relative Displacement SW side down less than 50 ft (Croneis, 1930, p. 198) NE side down a maximum of 300 ft (Croneis, 1930, p. 197) s side down less than 100 ft (Croneis, 1930, p. 199) SE side down 100 ft (Croneis, 1930, p. 199) fault S side down at least 75 ft; eastern faults N side down an average of 50 ft {Croneis, 1930, p. 195} Remarks NE limb of the Osage Anticline NE extension of the Drakes Creek zone of faulting The western and caste :rrJ faults of the Clifty Creek faulting are in the same trend, but are not continuous (Croneis, 1930, p. 195) SE side down an average of 100 ft (Croneis, Southwestward extensions of 1930, p. 170) this zone of disturbance are the Price Mountain, Onda, and Glade Creek Faults. Possible southwestward ex tension of Shell Knob-Eagle Rock structure in Missouri Rev. 0 Name Location Reed Creek Madison Drakes Creek Madison, s Washington, s Carroll Brush Creek Washington, Mad is on 10 White River Washington, Mad is on ll Price Mountain Washington, s Benton s 12 Rhea Washington 13 Onda Washington 14 Frisco Crawford Identification {b) {Croneis, 1930, p. 203) {Haley and others, 1976) {Crone is, 1930, p. 196) {Haley and others, 1976) {Crone is, 1930, p. 192) (Crone is, 1930, p. 206) {Haley and others, 1976) (Crone is, 1930, p. 202j (Bush and others, 1977, p. 5 and cross section) (Haley and others, 1976) (McCracken, 1971, p. 60) (Crone is, 1930, p. 203) (Crone is, 1930, p. 199) (Haley and others, 1976) (Croneis, 1930, p. 331) (Haley and others, 1976) Type {c) N N N N TABLE 2.5-8 {continued) Length of Fault (miles) s. 5 50 17::!:_ 18.5 12 68 (combined) 8. 5 2. 5; 2. 5 extended Strike N45°E N50°E to N50°W N65°E to E-W --N45°E N58°E E-W and N50°E 5 N80°E extended-16 to E-W Sheet 2 of 3 Relative Displacement Remarks SW side down approximately 400 ft {Croneis, Almost normal to the Drakes 1930, fig. 14) Creek zone of faulting. A more easterly trending fault zone. SE side down a maximum of 400 ft {Crone is, 1930, p. 196) s side down from 100 to 300 ft (Croneis, 1930, p. 192) s side down on E-W section up to 300 ft; W side down on NE-SW section (Croneis, 1 a'l.n ')f'lt::' ,-. SE side down an average of less than 200 ft; maximum of 300 ft (Croneis, 1930, p. 202) SE side down 100 ft (Croneis, 1930, p. 203) s side down 50 ft on E-W section; SE side down less than so ft on NE-SW section (Crone is, 1930, p. 199) S side down NE extension is the Moody Hollow Fault. Extended SW (Haley and others, 1976) Terminates at the Drakes Creek Fault Crosses the Price Mountain and Brush Creek Faults. Does not cru::..:::; cut but. may be extension of Brush Creek. Fault:. North-westward extension of Rhea Fault. Northeastward extension of zone of disturbance is the Glade Fault; southwestward extensions are the Onda and Cove Creek Faults. Possible southwestward extension of Shell Knob-Eagle Rock structure in Missouri. May continue a short distance into Oklahoma. NE extension is the White River Fault. The main fault is part of a zone of disturbance that includes the Glade and Price Mountain Faults to the north and the Cove Creek Fault to the south; main fault: 1s minated by the E-W fault. Through-going according to Haley and others, 1976. Part of the Boston Mountains. Cross cuts the Drakes Creek fault. U'"'TT f'i .L"\.C V
    • V Name Location Identification {b) 15 Evansville Washington (Crone is, 1930, p. 196) 16 Cove Creek Crawford, s (Crone is, 1930, p. 196) Washington sc (Caplan, 1957, pls. IV, VI, VII, X, XIV) 17 Davidson Crawford (Crone is, 1930, pl. 1-A) 18 Washington (Haley and others, 1976) 1';1 Compton Newton, (Cronei s, 1930' pl. 1-A, r-tadison P* 195-196) (Haley and others, 1976) (Bush and others, 19771 pl. 4) 20 Sneed s Creek Faults Newton (Cronei s, 1930, pl. 1-A, p. 204-205) 21 Benton (Haley and others, 1976) 22 Benton, (Haley and others, 1976) Washington 23 Madison (Haley and others, 1976) 24 Crawford, (Haley and others, 1976) Franklin 25 Crawford (Haley and others. 1976) 26 Carroll (Bush and others, 1977, pl. 2) 27 Carroll (Bush and others, 1977, pl. 3) Type N N G N N N N N N N N N TABLE 2. 5-8 (continued) Length of Fault (miles) 10 5. 5 3; 3 varies 12 varies 16 40 varies varies 15 l. 4+ 2+ Strike N60°W to N80°W N25°E N70°W E-W N70°E N80°W N45°E N35°-40°E E-W E-W N50°-75°E N50°W Relative Displacement N side down 100 ft (Croneis, 1930, p. 196) SE side down S side down s side do"'n apprcx imatel y 300 ft side down side down approx irnatel y 150 ft Varies Varies Varies SE side down SW side down Sheet 3 of 3 Remarks Part of the Boston Mountains. Crosses the Evansville Fault. Group of E-W faults north of Frisco, south of White River faults. Structurally related to Sneeds Creek dome. May continue SW into Oklahoma. May extend SW into Oklahoma and NE into Missouri as the Greasy Creek Fault. Group of E-W faults. Group of E-W faults. Subparallel to Drakes Creek Fault. f"' L\.CV e V TABLE 2.5-9 OF FAULTS IN IOWA WITHIN THE REGIONAL AREA Fault Number<o) Name 1 a Redfield Structural Zone Location Identif ica tion(b) Iowa-Story, Boone, las, Guthrie, Adair, Cass, Montgomery, Mills, mont Neb.-Cass, Otoe Gm (IGS, 1970, p. ll and sheet) Type of Fault(c) Fault numbers correspond to those shown on Figure 2.5-16. b A Aerial photgraphs B Borehole r.-...._ __ V";j \,.]J..QV.L LY Gm Hagnetics Gs Seisnic S Surface mapping Sc Structure contours For Sources cited above, see HEFE?.E!ICES: c G Graben H Horst N Norr..al T Thrust R Reverse rl N,S,E,W = Directions H High-angle Length of Fault (miles) Strike 180 Dip(d) Relative Displacement Remarks A structural zone believed to represent a change in the lithology of the basement rocks and to be bounded by faults. This structural zone is inferred to be tinuous with a structural trend in Nebraska (No. 1) and to extena through Iowa (Parker, 1971, p. 2, fig. 1). It represents a zone of both folding and faulting. Rev. 0 TABLE 2.5-10 SUMMARY OF FAULTS IN KANSAS WITHIN THE REGIONAL AREA Fault(a) Number Name Chesapeake Fault Zone Humboldt Location KS -Linn, Bourbon MO -Vernon { 7), Barton(?), Dade (?), Lawrence, Christian(?), Stone{?) KS -Wabaunsee, Pottawatomie, Nemaha Identification (b) KS-SC (Cole, 1976) MO -SC (McCracken, 1971, pl. 1, P* 19-20) KS -SC (Cole, 1962; Merriam and Smith, 1961; Merriam and Kelly, 1960; Merriam, 1960) (Cole, 1973b) (DuBois, 1978) NB-Richardson, Nemaha, Otoe, NB-S (Condra, 1927, p. 15) Cass, Sarpy, Douglas SC (Burchett, 1966, fig. 7 KS -Crawford and Carlson, 1965, figs. 9 and 12 in Burchett and Carlson, 1966) KS -SC (Merriam, 1960) f'ault numbers corres!JOnd to those shown on Figure 2.5-16. bA
    • Aerial Photographs B = Borehole Gg = Gravity Grn= Gs S
    • Surf ace Mapping SC = Structure Contours cG = Graben H = Horst N = Normal T = Thrust R = Reverse d"-l c:. E'. w = H = High Angle Note: For sources cited above, see

    References:

    Section 2.5 Type (c) Length of Fault (miles) 30(?) 25 proven 163 1.5 to 5 Strike N50°W N70°E to N-S N4C0n N55°W N15°E N35°E Dip (d) Relative Displacement NE side down 100 ft Cole, 1976; McCracken, 1971, pl. 1) At surface, E side down 100 ft (Condra, 1927, p. 15); on the basement, E side down 1000 ft (Cole, 1962) W side down Sheet 1 of 7 Remarks In Kansas, possibly only fracturing (Cole, 1973b). Age of last movement: Post-U. Mississippian (Merriam, 1963, P* 212); pre-Pennsylvanian (McCracken, 1971, p. 19) Located on the east flank of the Nemaha .Anticline. Evidence of thrusting, repeated members in pre-Mississippian strata (Merriam, 1963, p. 222}. Age of last movement: {Merriam, 1960; Merriam, 1963, p. 204). Post-Permian inferred in Nemaha County, Kansas and southeastern Nebraska (DuBois, 1978, p. 14-18) A group of 3 small faults; the longest is shown on the structure contcur =-.a;:s = Rev. 0 0 t'1 t'zj n , t%j t:%j A Fault Ia) Number 11 13 14 15 Name Silver City Dome Worden Location KS -Allen, Anderson Woodson Wilson, Neosho Coffey, Osage Osage Osaqe, Franklin Franklin Douglas! Franklin Douglas Jefferson, Leavenworth KS -Cherokee CK -Ottawa KS -Pottawatomie TABLE 2. 5-1 0 (continued) Identification (b} KS -S (Miller, 1969, P* 20) s (Wagner, 1954) sc (Cole, 1962) S (O'Connor, 1955, p. 19) s {O'Connor, 1955, pl. 1) s {O'Connor, 1955, p. 19) S (Ball, Ball and Laughlin, 1963, p. 38) s (O'Connor, 1960, P* 65-67; Ball, Ball and Laughlin, 1963, P* 38) s (O'Connor, 1960, P* 65 and pl. 1) sc (Merriam and Kelly, 1960; Merriam, 1960) KS -SC (Cole, 1962) s (Merriam, 1963, P* 252) Length Type of (c) Fault (miles) o. 7 1.2 27 1.5 15 1.5 15 Strike Dip (d) N35°W E-W to N60°W N,H N55°W N60°W N45°E N60"E N40°E N-S to E-W N35°W N65°W N10°E N45°E Relative Displacement NW side down (Miller, 1969, pl. 1) N side down 20 to 200 ft (Wagner, 1954) Sheet 2 of 7 Remarks May not extend to depth (Cole, 1962; Cole, 1976) On the north side of the Silver City Dome, associated with emplacement. Age of last movement: Cretaceous (Zartm£.n and others, 1967) SW side down approximately Fracture line on Pre-Cambrian, possibly 300 ft (Cole, 1962)

    • not faulting (Cole, 1973b). Age of last movement: Pre-Pennsylvanian (Merriam, 1960} N side down 20 to 50 ft (O'Connor, 1955, p. 19, pl. 1) NW side down (O'Connor, 1955, pl. 1) SE side down 30 to 40 ft (O'Connor, 1955, p. 19) NW side down (Ball, Ball and i.augh::i.in, 1963, pJ... 1) S and E sides down SW side down S side down E side down approximately 700 ft (Cole, 1962) May not extend to depth (Cole, 1962; Cole, 1976) May not extend to depth (Cole, 1962; Cole, 1976)
    • May not extend to depth (Cole, 1962; Cole, 1976) May not extend to depth (Cole, 1962; CoJ..e, 1976} May not extend to depth (Cole, 1962; Cole, 1976. May be a series of en echelon faults {O'Connor, 1960, P* 65) Age of last movement: vanian (O'Connor, 1960, p. 65) Probably slump faulting Rev. 0 Fault(a) Number 17 18 19 20 21 23 24 25 26 27 28 Tuttle Creek Reservoir Chase County Elbing Location KS -Nemaha Pottawatomie Riley, Pottawatomie Wabaunsee, Riley ottawa Wanaunsee, Chase Chase, Greenwood Butler Chase, Butler, Cowley Marion, Butler Butler TABLE 2.5-10 (continued) Identification (b) KS-sc (Cole, 1962) S (Chelikowsky, 1972, p. 11) SC (Cole, 1962) s (Chelikowsky, 1972, P* 11) SC (Cole, 1962) Gs (Cole, 1973b) s (Mack, 1962, p. 24) (Cole, i9bL; 1963, Jh237-8, 134-B, -C, -E, 135-A) SC (Cole, 1962) SC (Cole, 1962) SC (Cole, 1962) sc (Cole, 1973) B Tilted block; beds 58% thicker (Cole, 1973) SC (Cole, 1962) Length Type of Fault (miles) 22 23.5 18 29, 19 to 3 46 10 Strike Dip(d) N15°E N25°E N80°E N40°W N60°W _o E N20°E N45°W, N35°W N30°W to N50°W N20°E N10°W N50°W Relative Displacement E side down 518 ft (Cole, 1962) E side down 170 ft (Chelikowsky 1972, p. 11) 700 ft on Pre-Cambrian (Cole, 1962) N side down 25 ft (Chelikowsky, 1972, p. 11) 3200 ft (Cole, 1962) NE side down 20 ft {Mack, 1962, p. 24; Cole, 1973b) SE side down 100 ft E side down 960 ft (Cole, 1962) Deep graben SE side down 200 to 1400 ft; SW side down 200 to 750 ft (Cole, 1962) E side down 1400 ft (Cole, 1962) E side down 4 75 ft (Cole, 1973b) SW side down 500 ft (Cole, 1962) Sheet 3 of 7 Remarks Associated with the Humboldt Fault. On the west side of Nemaha Anticline. Probably does not extend deep. Part of Nemaha Fault System1 associated .,.,.ith Joi1..-1 Cre*k., !-till Creek, Davl.s Ranch and Ashburn oil fields. Part of the Nemaha Fault System. Part ?f the Nemaha Fault System. Age of last move.tTi.ent: Pre-Late vanian (Merriam, Winchell and Atkinson, 1958) Three small faults on west side of Fault No. 261 part of the Nemaha Fault System; flanking the Robinson, Wilson and Chesney Domes. On east flank of Burns Dome 1 part of the Nemaha Fault System. Part of the Nemaha Fault System. Part of the Nemaha Fault System. Rev. 0 Fault(a) Number 29 30 31 32 33 34 35 37 38 39 40 41 Name L::>cation KS -Butler Butler Augosta West Butler Butler Augosta East Butler Butler, Cowley Hittle Pool COwley Winfielri Cowley Olurchill Field Cowley, Sumner Oxford Field Swnner Voshell McPherson, Harvey, Reno Ellsworth Ellsworth, Russell Geneseo-Edwards Fields Ellsworth, Rice TABLE 2. 5-10 Identification (b) KS -SC (Cole, 1962) sc (Cole, 1962) sc (Cole, 1962) sc (Cole, 1962) sc (Cole, 1962) sc (Cole, 1962) sc (COle, 1962) sc (Cole: i962) sc (COle, 1962) sc (COle, 1962) B (COle, 1973b) sc (Merriam and Smith, 1961; Cole, 1962) sc (Merriam and Smith, 1961; Cole, 1962) sc (Cole, 1962) (continued) Length Type of Fault (miles) Strike 3. 5 N20°E N50°W N15°E 4.5 N25°E N30°E 4.5 N25°E and N5°E N35°W N25°E N25°E R 35 N20°E 32 N60°W N20°W Relative Displacement E side down 200 ft (Cole, 1962) Tilted block, throw from a few feet to 200 ft (Cole, 1962) W side down (Cole, 1962), probably only tight fold E side down 500 ft (Cole, 1962) 700 ft maximum throw on each side (Cole, 1962) E side down 250 ft NE side down 500 ft (Cole, 1962) 1000 ft throw on w, 500 ft throw on E (Cole, 1962) 700 ft throw on w, 700 ft throw on E (Cole, 1902) W side down 200 ft (Merriam and Smith, 1961 )J 400 ft on basement (Cole, 1962) SE side down 200 ft {Merriam and Smith, 1961) SW side down 350 ft (Cole, 1962) Sheet 4 of 7 Remarks Part of the Nemaha Fault System. Part of the Nemaha Fault System. Part of the Nemaha Fault System. Part of the Nemaha Fault System. Part of the Nemaha Fault System. Part of the Nemaha Fault System. Wir!fi'i?'ld oil field; Pr'i?'carnbriar! is faulted, probably only a very sharp dip on younger strata. Part of the Nemaha Fault System. Part of the Nemaha Fault System. Associated with the Voshell Anticline; thrust repeated members in at least 6 wells. Age of last movement: Cretaceous (Merriam, 1963, P* 254). Associated with the Ellsworth Anticline. Age of last movement: Pre-Cretaceous (Merriam, 1963, P* 254). May be en echelon 1 Dakota as folded, Rev. 0 Fault(a) 42 43 45 46 47 40 49 50 51 52 Lyons and Lyons SW Fields Tobias Field Wisby Field Peace Creek Leesburq Field Chance Pool Field Brehm Pool Location KS -Rice Rice, Reno Reno Reno Reno, Stafford Stafford Ness, Rush, Pawnee, Stafford Stafford Pratt Kingman, Pratt Pratt TABLE 2.5-10 (continued) Identification (b) KS-SC (Cole, 1962) SC {Cole, 1962) SC {Cole, 1962) Gs {Donnelly, 1965, p. 290) SC {Cole, 1962) SC (Cole, 1962) SC {Cole, 1962) SC (Merriam and Smith, 1961; Cole, 1962; Merriam, 1963) SC (Cole, 1962) SC (Cole, 1962) sc (Cole, 1962) SC (Cole, 1962) Length of Fault (miles) to 9 3.5 14 65 11 each Strike 0 N20 E 0 N45 E 0 N40 E Relative Displacement Two narrow horsts; north one has from 100 to 200 ft throw on Arbuckle; south one has 100 to 300 ft throw on Arbuckle {Cole, 1973b) E side down 300 ft on Arbuckle {Cole, 1973b) E side down 350 ft (Cole, 1962) E side down SE side down 300 ft 1Qh?l * ----# *---' NW side dC',;,"T.. , 25 ft (Cole, 1962) SW side down 200 ft (Cole; 1973) SW side down 600 ft (Cole, 1962) E side down 150 ft (Cole, 1962) NW side 100 ft throw, SE side 100 to 300 ft throw (Cole, 1962) E side down 325 ft on Arbuckle {Cole, 1962) Sheet 5 of 7 Remarks Highly fractured area -condemned for storage of nuclear waste .. Two other faults associated with ture {Donnelly, 1965, P* 295). Age of last movement: Pre-Pennsylvanian (Donnelly, 1965, P* 292). Fracture line on Precambrian surface, possibly not faulting {Cole, 1973b). Associated witli oil and gas field. Tilted block on southeast end {Fault Nos. 48 and 49} .. Age of last movement: Pre-Pennsylvanian Rev. 0 Name 53 Coats-Clara Pools 54 55 56? 57 58 Fairport 60 61 Gorham 62 Rush County Horst (Rush Rib) 63 64 Alameda 65 Donald Location KS -Pratt, Barber Pratt Barber, Comanche Smith Rooks, Osborne Ellis, Russell, Osborne Russell Russell Ellis, Russell Trego, Ellis, Rush, Barton, Stafford Butler Kingman Barber TABLE 2.5-10 (continued) Identification (b) KS -SC (Cole, 1962) SC (Cole, 1962) sc (Cole, 1962) SC (Cole, 1962) sc (Cole, 1962) SC (Merriam and Smith, 1961; Cole, 1962) SC {Cole: 1962} sc (Cole, 1973) sc (Cole, 1962) SC (Cole, 1962) SC (Cole, 1962) SC (King, 1965, P* 7, 9, and 10) SC (Elster, 1965, p. 68) Length of Fault (miles) 4,5 45 25 7.5 2.5 11 43, 60 Strike Di (d) N35°E N40°E N40°W N70°W N-S 0 to N10 E NJ0°W N75°W N40°W N45°W, N20°W N15°E N35°E N20°E Relative Dis lacement Narrow horst; SE end down 250 ft on Arbuckle, NW end down 200 ft on Arbuckle SE side down NW side down 175 ft (Cole, 1962) NE side down 300 ft (Cole, 1962) SW side down 300 ft (Cole, 1962) W side down 100 ft (Merriam and Smith, 1961) SW side do*w1l 100 to 150 ft (Cole, 1962} SW side dow-n 4 30 ft (Cole, 1962) SW side down 375 ft, NE side down 250 ft (Cole, 1962) SE side down 650 ft (Cole, 1962) NW side down 70 ft 1965, p. 7, in KGS V, IV) -NW side down 200 ft II* ... , _ KGS V. IV) Sheet 6 of 7 Remarks Age of last movement: Pre-Pennsylvanian Long fracture line extending into Barber County (Cole, 1973b). In light of recent development, no horst is present; may be more faulting. May not exist (Cole, 1976), May well be right lateral strike-slip fault with displacement as much as 6 mi. Age of 1ast movement: Pre-Cretaceous (Merriam, 1963, p. 254) 1 faulting !'::-c-r':!==:.i.:..-. (Cvle, 1. Age of last Pre-PerL115ylvania!'! Age of last movement: Pre-Pennsylvanian Faulting mainly in Pre-Cambrian time. Age of last movement: Pre-Pennsylvanian Part of the Nemaha Fault System. Associated with Alameda Oil Field. Age of last movement: Pre-M. Pennsylvanian (King, 1965, p. 4) Associated with Donald Oil Field, Rev. 0 i..:'".J Fc3ult (a) Nt. . 66 67 68 69 Gillian o.s.A. Rino Name Location KS -Sedgwick Sedgwick Rice, Reno Linn TABLE 2.5-10 (continued) Identification (b) KS -SC (Shawver, 1965, P* 84-85) Gs (Shawver, 1965, P* 78) SC (Shawver, 1965, p. 179-181) Gs (Shawver, 1965, p. 175) SC (Richardson, 1965, p. 193) Gs (Richardson, 1965, p.193) SC (Cole, 1976) s:: (Cole, 1976 Length Type of Fault (miles) 1.5 20 Strike Di (d) Relative Displacement NW side down 220 ft, SE side down 70 ft (Shawver, 1965, p. 78) NW side down 200 ft (Shawver, 1965, P* 175) SW side down 100 ft (Richardson, 1965, P* 197) SW side down approximately 50 ft (Cole, 1976) Sj:i side duwn ':.\::U=i-ft (Cole, 1976) Sheet 7 of 7 Remarks Associated with Gillian Oil Field; two faults forming a tilted block. Age of last movement: Pre-Mississippian (Shawver, 1965, p. 78). Associated with O.S.A. Oil Field. Age of last movement: Pre-Pennsylvanian (Shawver, 1965, p. 177). Seismic suggests other faults in diate area. Age of last movement: Pennsylvanian {Richardson, 1965, P* 194). Basement surface valley shown on Cole, 1962.. Possible NW extension of Eldorado Springs Ncrth Fa'..!lt in Missc'..!ri {McCracken, 1971, p. 27). Age of last movement: Pre-Middle Ordovician {Merriam, 1963, p. 204;. :Oasernent surface vailey tsf1own on Cu.ie, 1962. Very sparse control. No extension mapped in Missouri (Anderson and others, 19 76). Age of last movement: Middle ?rdovician (Merriam, 1963, p. 204) Rev. 0 WOLF CREEK Table 2.5-lOa COMPARISON OF CALCULATED PEAK GOOUND Acn:LERATION (PGA) VALUES = 5.25 within 25 km: (i.e. , random event) EQUATION 1. Corrputer Sciences Co:rp. log a = 0.25 I + 0.23 (using Trifunac & Brady data) 2 . Corrputer Sciences Co:rp. log a = 0. 2 4 I + 0. 26 (using worldwide data) 3. Corrputer Sciences Co:rp. log a = 0.83 + 0.17 I + 0.07 I0 -0.45 log R (using 145 Western US records) REFERENCE FSAR NO. Murphy & O'Brien, 1978 2.5-12 Murphy & O'Brien, 1978 2.5-13 Murphy & O'Brien, 1978 2.5-14 4. Derived log a = 0.24 I0 + 1.23 -0.00054 R -0. 75 log R FSAR (using Gupta attenuation) 2.5-16 5. 6. NUREG/CR-1582 (1981) (distance weighted) NUREG/CR-1582 (1981) (magnitude weighted) Campbell/TERA (1981): ln a = -0.005 + 1.14 -0.0026 R -0.501 ln R ln a= 0.74 + 1.12 0.0007 R-0.733 ln R 7. Eqn. 7, using fault PGA = 0.0142e*79M (R+0.0286e*778M)-*862e-yR distance 8. Eqn. 8, using epicentral PGA = 0.0823e*922M(R+25.7)-1.27e-yR distance where M = 1.02 + 0.30 5.59), M = 1.64 -3.16 ( > 5.59) 2 Y = y c = .023 -0.0 48 M + 0.00028 M (b) = 5.75 at 50 miles (80 km): , .e., Nemaha-associated event) Eqn. 4 above (derived) (see above) 'l<'nn 7 above (C/TI" ... .Rll.) (see abo\7!:) Eqn. 8 above (C/TERA) (see above) Eqn. 5 above (NUREG) (see above) Egn. 6 above (N'"l.JREG) (see above) NUREG/CR-1582, Vol. 4, p. 14, eqn. 3-8 (1981) NUREG/CR-1582, Vol. 4, p. 17, eqn. 3-13 (1981) K.W. Carrpbell, "A Ground Motion Model for the Central United States Based on Near-Source Acceleration Data" p. 213-232, Vol. 1, quakes and Earthquake neering: the Eastern United States, conf. Sept. 14-16, 1981, Knoxville, TN, Ann Arbor Science Publishers, Ann Arbor, MI 48106 2.5-16 PGA PGA (R=25km) (R=17.7km) .097 .089 .078 .072 .075 .071 .063 .092 (R=80km) .049 1'\")1 .v...:>.L .050 .064 .050 .097 .089 .091 .094 .091 .092 .086 .116 NOTE I= VII I =VII I< I =VII 0 distance-weighted model weigb.ted model R = fault distaT}.ce R = epicentral distance Rev. 0 TABLE 2. 5-11 SUMMARY OF FAULTS IN MISSOURI WITHIN THE REGIONAL AREA Name Chesapeake Fault Zone Seneca s:-:e: l Eagle Rock Location MO-Vernon(?), Barton(?), Dade (?) , Lawrence, Christian(?), Stone(?) KS -Linn, Bourbon MO -Newton OK -Ottawa, Delaware, Mayes Barry Identification (b) MO -SC (McCracken, 1971, pl.1, p. 19-20) KS -SC (Cole, 1976) MO -B (McCracken, 1971, p. 59) OK -S (Reed, Schoff and Branson, 1955, pp. 33-34; Marcher 1 (t*1c racKer:, 197
    • p. 60) SC \i*ic raci-..en, 197
    • pl. 1) afault numbers correspond to those shown on Figure 2.5-16. bA : Aerial Photographs B Borehole Gg Gravity Gm Magnetics Gs Seismic S Surface Mapping SC Structure Contours For cited above, see

    REFERENCES:

    Sect ion 2. 5. cG Graben H : Horst T = Thrust R : Reverse dN,S,E,W: Directions H : High-angle Type G Length of Fault (miles) 25 proven 65 13 Strike Relative Di sp1acement NE side down 100 ft. (Cole, 1976; McCracken, 1971, pl. l); 100 to 370 ft. (McCracken, 1971, p. 59); 90 to 140 ft. (Reed, Schoff and Branson, 1955, p. 33) SE side down 100 ft. (McCracken, 1971, p. 60) Sheet 1 of 7 Remarks In Kansas, possibly only fracturing (Cole, l973b). Age of last movement: Post U. -Mississippian (Merriam, 1963, p. 212) Pre-Pennsylvanian (McCracken, 1971, p. 19) In Missouri, the downd rapped block is 200 to 1,500 ft. wide; in Oklahoma, the graben ture dies out to the west but faulting is present. Possibly an ext:ension of the Price Mountan Fault and cline of ArKansas. Rev. 0 Fault (a) 10 11 12 Name Greasy Creek South West City Pineville Brush Creek Lampe Granby Ritchey Silver Creek Portland Location Barry, McDonald McDonald McDonald, Newton McDonald Stone Newton Law*rence, Newton Jasper Identification (b) (Winslow, 1894 p. 429) SC (McCracken, 1971, pl. 1) (Haley, 1976) (McCracken 1971' p. 61) SC (McCracken, 1971, p. 61) (McCracken 1971' p. 49) (McCracken, 1971, p. 15) (Winslow, 1894, p. 429) ........... i l97l, pl. l} {McCracken, 1971' p. 33) {McCracken, 1971, p. 54) SC (t>".cCracken, 1971, pl. 1) Gm (McCracken, 1971' pp. 52-54) (McCracken, 1971, p. 60) A (McCracken, 1971, p. 60) (McCracken, 1971, p. 51) TABLE 2.5-11 (continued) Type of Fault(c) sors Length of Fault (miles) 25 14 21 12.5 29 2. 5 Strike N40°E E-W to N85°E N20°E N85°E N30°E N70°E E-W N60°E N60°E Dip(d) Relative Displacement 27°N SE side down 250 ft. (McCracken, 1971, p. 33) N side down 120 ft. at surface, 220 ft. in the subsurface (McCracken, 1971, p. 61) N side down 50 to 100 ft. (McCracken, 1971, p. 50) N side down 50 to 100 ft. (McCracken, 1971, p. 15) SE side down 100 ft. "(McCracken, 1971, p. 40) N side down side down 150 ft. (McCracken, 1971, p. 54) SW side down 60 ft.; NW side down 20 ft. (McCracken, 1971, p. 60) SE side down 25 ft. (McCracken, 1971, p.51) Sheet 2 of 7 Remarks May extend through NW Arkansas into Oklahoma. May be the eastward ex tens ion of the South West City Fault (No. 5). Age of last movement: P r e-Pennsyl vani an (McCracken, 1971, p. 54). Minor fault Minor fault Rev. 0 ::8 0 t"' t"Ij \ J :;d [?j trj 13 14 15 16 18 19 20 21 Name Alba-Neck City Structures Ten O'Clock Run Eldorado Springs North Eldorado Springs Caplinger Mills Creek Structural Complex Stockton Faulting Dade County Fair Play Location Jasper Taney, Stone Bates, Vernon Cedar Cedar St. Clair, Hickory Cedar Dade Polk Identification(b) (McCracken, 1971, p. 8) (Winslow, 1894, p. 430) SC (McCracken, 1971, pl. l) (McCracken, (1971, p. 27) sc McCracken, 1971, p. 27) (Gentile, 1976, p. 36) (McCracken, 1971, p. 27) sc .l-::7! i 1'-'* acken: 1971, p. 17) (Beveridge, 1951, pp. 60, 77-81) (McCracken, 1971, p. 62) (McCracken, 1971, p. 22) (McCracken, 1971, p. 29) TABLE 2. 5-11 (continued) Type (c) N N N and R Length of Fault (miles) 28 39 l to 2 to 3 17 Strike E-W N-S, E-W, NE, NW E-W to NW arc N30°W to i-.iOU0VV H Relative Displacement SW side down SW side down 150 ft. (McCracken, 1971, p. 27) SW side down 150 to 270 ft. (McCracken .1..-::u ... , p. 27) S side dow!: apprcx ima tel y 60 ft. (McCracken, 19671, p. 17) Generally, NE side down less than 80 ft. (McCracken, 1971, p. 66) NE side down 30 to 110 ft. (McCracken, 1971, p. 62) SW side down NE side down Sheet 3 of 7 Remarks Area of complex minor flexures, brecciation and minor faulting; on east flank of Pittsburg Anticline. Also mapped in old mine workings. May be the subsurface sion of the Schell City-Rich Hill Anticline; probably part of the Bolivar-Mansfield Fault System. Possible surface branch is Upper Pennsylvanian. Probablv oart of the Mansfieid. Fault System. M.x*_. be related \...Ht: Eldorado Springs Fault; probably part of the Bel i i eld Fault System Age of last movement: J?re-Pennsylvanian (McCracken, 1971, p. 66) Probably part of the Mansfield Fault System. Three faults mapped by naissance work. Part of the Bolivar-Mansfield Fault System. Rev. 0 rault (a) Nur.1ber Name Location Identification (b) 22 Bolivar Polk s (McCracken, 1971, p. 13) 23 Huron Polk s (McCracken, 1971, p. 35) 24 Schofield Polk s (McCracken, 1971, p. 59) 25 Fair Grove Dallas, s (McCracken, Greene 1971, p. 29) 26 Graydon Polk, s (McCracken, Springs Greene 1971, p. 33) Fault Zone 27 St.afford Greene, 5 {HcCrctck.en, l97l; Pe 62) 28 Valley Mills Greene, s (McCracken, Fault zone Webster 1971, p. 64) 29 Pearson Greene s (McCracken, Creek Fault 1971, p. 49) System 30 Danforth Greene s (McCracken, Graben 1971, p. 22) (McCracken, 1971, p. 22) TABLE 2.5-11 (continued) Length Type of (c) Fault (miles) strike N 6+ N55°W and N75°W N 4. N50°W 5. 3 G 3 N70°W to 4 N 3. 5 N50°E and N20°W N 19 N75°W N 15+ N-S ::.n.-1 N 20 E-W N 2 N55°W to 3 G 3 N60°W DiE(d) Relative DisElacement SW side down 30 to 150 ft. SW side down NE side down H W Side down 150 ft. N side down 2 to 200 ft. ... -!-"--"----, ........ [\1 b.LUt:! UUWI1 .l.UV .l..l.* N side down maximum of 170 ft. N side down 10 to 20 ft. 70 to 100 ft. Sheet 4 of Remarks Part of the Bolivar-Mansfield Fault System. Includes three faults mately along the same trend; part of the Bolivar-Mansfield Fault System. Forms a graben with the E end of the Huron Fault; part of the Bolivar-Mansfield Fault System. Part of the Bolivar-Mansfield Fault System. Probably a segment of the Bolivar-Mansfield Fault System. t-0lfft5 I.De 5UULUt:'lll l..H.JUinJd.ty cf the Strafford Grabe!"le __ of the Valley Mills Fault Zone. Rev. 0 0 t"'1 n::l 0 ..... /Y tiJ TABLE 2. 5-11 (continued) Sheet 5 of 7 Length Type of (a) Identification (b) (c) Fault DiE(d) Name Location (miles) Strike Relative Di selacement Remarks 31 Kinser Greene (McCracken, N75°W s side down 50 ft. Bridge 1971' p. 38) (McCracken, 1971' p. 38) 32 Sycamore Greene (McCracken, 6+ NE N side down 130 to Creek 1971' p. 63) 170 ft. 33 Sac River Greene, (McCracken, 22 N50°W NE side down 50 Lawrence, 1971' p. 55) 80 ft. Christian N70°E 34 Johnson Mill Lawrence (McCracken, NW side down 75 ft. 0 1971' p. 37) t"1 35 Strafford Greene, (McCracken, G E-W 125 ft. Between the Graydon Springs hj Graben Webster 1971' p. 62) to Fault Zone and the Strafford N80°W Fault. () Jb Dry Creek Webster (McCracken, 6+ N35°W Associated ':-!i th T"'\,...,, Creek :::0 J*aul t Com-1971' p. 24) l\nticline. t:r:! t-'.o.\;;i\. C:tJ 37 Fordland Webster (P"!cCracken, 4. 5 E-W N side down 45 ft. Forms north boundary of Ford-1971' p. 31) land P..nticline; part of the Bo 1 iva r-=P.ansf i eld Fault System. 38 Diggins Webster, (McCracken, 12 N70°W s side down 15 to 140 ft. Part of the Bo 1 iva r-Mansf i e ld wright 1971, p. 23) to Fault system. 15 39 Sarvis Webster s (McCracken, Scis-N25°W NE side down at SE end Point 1971, p. 58) sw side down at NW end 40 Dogwood Webster, (McCracken, Sci s-6. 5 N55°W NE side down at SE end Part of the Bolivar-Mansfield Douglas 1971' p. 24) sw side down at NW end Fault System. 41 Mansfield Wright, (McCracken, N 22.5 N35°W NE side down Part of the Bolivar-Mansfield Douglas, ( 1971' p. 43) to P::.1tl+-c:, * .,. .. .,...,., Webster (McCracken, N40°W 1971' p. 43) Rev. 0 TAS::.E 2. 5-ll (continued) Sheet 6 of 7 Length Type of (a) Identification (b) (c) Fault Name Location (miles) Strike DiE(d) Relative Diselacement Remarks 42 Bryant Doug las (McCracken, N 1.2 N30°E NW side down maximum Creek 1971' p. 16) of 80 ft. 43 Highland-Christian, (McCracken, N 13 N60°W sw side down ville Stone 1971' p. 34) 44 Ponce de Stone s (McCracken, N30°W sw side down so to 60 Leon 1971' p. 51) to ft. (McCracken, 1971' N65°W p. 51) 45 Galena Stone (McCracken, G E-W Down approximately 40 Graben 1971' p. 32) ft. (McCracken, 1971' p. 32) 46 Red Arrow Camden (McCracken, 5. 5 N50°W sw side down approxi-1971' p. 52) mately 100 ft. (Me 0 sc (McCracken, Cracken, 1971, p. 52) t"" 1971' pl. 1) l".tj Gm (P'icCracken, 19 71 o. 52) 0 47 Decatur--Camden (McCracken: Diam. Brecciated core, astrobleme, :N ville 1971' p. 23) crypt.ovolcar.o, c rypto-Structure explosive structure. t:rj 48 Hazelgreen Laclede B (Snyder & Volcanic ash found in Vo:!.canics Ge rdemann single drill core in 1965' p. 483) basal Paleozoic (upper Cambrian) sandstone. 49 wardsville Cole (McCracken, N N30°W NE side down 100 ft. Horst on north end; brec-1971' p. 66) and and (McCracken, 1971' cia ted chert and fault (McCracken, H l p. 66) gouge. 1971, P* 66) 50 Fox Hollow Boone (McCracken, N-5 w side down 120 ft. Small fault. 1971' p. 31) (McCracken, 1971, p. 31) 51 Everett Cass (Clair, 1943, G Fault p. 50) Rev. 0 TABLE Type Fault (a) Number Name Location Identification (b) 52 Bel ton Cass (Clair, 1943, Fault p. 44) Complex 53 Salt Fork Saline (McCracken, 1971' p. 58) sc (McCracken, 1971' p. 58) 54 Saline City Saline (McCracken, 1971' pp. 57-58) 55 Gallatin Daviess (McCracken, 1971' p. 32) 56 Bolivar-Bates, Vernon, (McCracken, Mansfield St. Clair, 1971' p. 13) and Fault Cedar, Dallas, G System Dade, Polk, Grce!i.e; --1 --1 57 Unnamed Several; Lake of s (Anderson and N the Oza rks Region others, 1979) (many) 2.5-11 (continued) Length of Fault Dip(d) (miles) Strike Diam. 3 13 N50°W H 22 N45°W 1.8 N-S N50°W Varies varies; many N50°W Relative Displacement Down 25 ft. along s boundary; down 143 ft. in N part SE side down 200 to 250 ft. (McCracken, 1971' p. 58) sw side down 100+ ft. (McCracken, 1971' p. 58) E side down Up to 300 ft. (McCracken, 1971) p. 13) Varies; many NE side down down Sheet 7 of 7 Remarks Associated with Fish Creek Anticline. Includes the following faults: Eldorado Springs North, ado Springs, Caplinger Sto kton, Bolivar, Fair Play, GtayUon Spr flyS, Huru111 Diy<::Jin.::.1 j:;l"'\r lar!.d; Dagwood .. Rev. 0 TABLE 2.5-12 OF FAULTS IN NEBRASKA WITHIN THE REGIONAL AREA Fault Nu:-r,ber(a) Name a Location Neb.-Cass, Otoe Iowa-Story, Boone, Dallas, Guthrie, Adair, Cass, Montgomery, Mills, Fremont Identif ica tion(b) SC(Burchett, 1966, fig. 7; Carlson, 1965, figs. 9 and 12, in Burchett and Carlson, 1966) Length Type of of Fault Faul t(c) (miles) Strike 180 Fault nunbers correspond to those shown on Figure 2. 5-16. b A Aerial photgraphs Bo.cehole c d B Gg Grn Gs s Gravity Hagnetics Seisnic Surface mapping Sc Structure contours For Sources cited above, see REFEREnCES: SECTION 2.5. G Graben H Horst N Normal T 'l'hrust N,S,E,W = Directions H = Dip(d) Relative Displacement SE side down Sheet l of 2 Remarks Formerly referred to as the Thurman-Wilson trend in Neb. (Burchett and Peed, 1967, p. 17). Probably represents a zone of both folding and faulting. The Union Fault is a localized structural feature located along the trend and exposed in the Missouri River bluff (Carlson, 1969, fig. 2 in Carlson, 1970). The structural trend is probably an extension of the Thurman-Redfield Structural Zone in Iowa (Fault No. l). Rev. 0 Fault Number<c) Name 2 Humboldt 3 Crete Location son, Nemaha, Otoe, Cass, Sarpy, Douglas Kan.-Wabaunsee, Pottawatomie, Nemaha Saline, Seward, Lancaster -.

    • 0-0
    • 0 '" Neb.-S (Condra, 1927, p. 15) SC(Burchett, 1966, fig. 7; Carlson, 1965, figs. 9 and 12 in Burchett and Carlson, 1966) Kan.-SC (Cole, 1962; Merriam and Smith, 1961; Merriam and Kelly, 1960; Merriam, 1960) B (Cole, l973b) SC{Ca.rlsun, 1967' fig. 2 in Carlson, 1970) TABLE 2.5-12 (continued) Type of Fault{c) T Length of Fault (milesj Strike 163 20 Dip(d) Relative Displacement H At surface, E side down 100 ft. (Condra, 1927, p. 15); the basement, E side down 1000 ft. (Cole, 1962) SE side down Sheet of 2 Remarks Located on the east side of the Nemaha Anticline. Evidence of thrusting, peated members in Mississippian strata riam, 1963, p. 222) Age of last movement: Pre-Mississippian (Merriam, 1960; Merriam, 1963, p. 204) Rev. 0 TABLE 2. 5-13 Sm'IMARY OF FAULTS IN OKLAHGr.l.."\ WITHIN THE REGIONAL AREA Fault Number(o) Name l Welch Steppe Fault 3 Location Fault Craig Ford Ottawa Ottawa Type of Fault(c) s {;-!archer and N Bingham, 1971, Map I-iA-2, Sheet l) s (Reed, Schoff and Branson, 1955, p. 34; Marcher and Bingham, 1971, !*lap HA-2, Sheet l) A (Reed,Schoff and Branson, 1955, p. 34) s (Reed, Schoff and Branson, 1955, pl. I; :1archer and Bingham, 1971. Map HA-2, Sheet ll a Fault numbers correspond to those shown on Figure 2.5-17. b c d A B Gg Gm Gs s sc For G H N T R Aerial photgraphs Borehole Gravity Magnetics Seismic Surface mapping Structure contours Sources cited above, see REFEREnCES: SECTION 2. 5. Graben Horst Norrnal Thrust Reverse .......... -..... -. . . = H High-angle Length of Fault (miles) Strike 7.5 N20°E 3.5 N50°E Q_ N30 ]:; Relative Displacement side down 25 to 5 *; ft. (Branson and others, 1965, pp. 47-49) NW side down 30 ft. (Reed, Schoff and Branson, 1955, p. 34) NW side down S:-.ect Remarks Jn west flank of Miami Syn cline Trough Fault Number(o) Name Location Ottawa Ottawa Ottawa Ottawa Ottawa Ottawa Identi fica tion(b) s (Reed, Schoff and Branson, 1955, pl. I; Marcher and Bingham, 1971, Map HA-2, Sheet 1) s (Reed, Schoff and Branson, 1955, pl. I; Marcher and Bingham, 1971, Map HA-2, Sheet 1) s (Reed, Schoff and Branson, 1955, pl. I; Marcher and Binqham, 1971, Map HA-2, Sheet l) s (Marcher and Bingham, 1971 Map HA-2, Sheet 1) s (Reed, Schoff and Branson, 1955, pl. I; Marcher and Bingham, 1971, Map PJI.-2, Sheet 1) s (Reed, Schoff ar;.d Bre.nsa:r:., 1955, pl. I; Marcher and Bingharrl, 1971, Hap l!A-2, Sheet l) TABLE 2.5-13 (continued) Type ,,.., Faul t'y' G G Length of Fault (miles) Strike 1 1.5 2 2 Relative Displacement NW side down NW side down NW side down NW side down SW side down NE side down Sheet 2 of 17 Remarks On west flank of Miami cline Trough). On west flank of Miami cline Trough) . On west flank of Miar:1i cline (Com.'11erce Trough) . Forr:1s NE side of graben with Fault No. 9. SW Sldc of with Fault Ko. B. Rev: 0 Fault Nmnber(a) Name 10 11 12 13 14 15 16 Dupree Fault Whiteoak Creek Fault Seneca £au.LL. Big Cabin Fault Condry School Fault Little Pryor Creek Fault Location Ottawa Craig Craig Delaware, Mo. -Newton Craig, Mayes Craig, Rogers Craig, Rogers TABLE 2.5-13 (continued) Identif ica tion(b} S (Marcher and Bingham, 1971, Map HA-2, Sheet 1) Type of Fault(c) S (Marcher and N Bingham, 1971, Map HA-2, Sheet 1) S (Marcher and Bingham, 1971, Hap HA-2, Sheet 1) Gm (Jones and Lyons, 1964, Map GM-6) s Bingham, 1971, Hap HA-2, Sheet 1) B (McCracken, 1971, p. 59) s (Marcher and Bingham, 1971, Map HA-2, Sheet 1) Gm (Jones and Lyons, 1964, Map GM-6) s (Marcher and Bingham, 1971, Map HA-2, Sheet 1) s (Marcher __ _, Q.J..lU.. Bingham, 1971, Map HA-2, Sheet l) N N Length of Fault (rniles) 2 6 16 68.5 4.5 2 5 Strike to N50°E N30°E to N45°E N60°E N45°E Dip(d) Relative Displacement NW side down SE side down 90 ft. (Branson and others, 1965, p. 48) N side down more than 100 ft. (Branson and others, 1965, p. 48) 90 to 200 ft. J..n Oklahoma (Reed, Schoff and Branson, 1955, p. JJj; 100 to 370 ft. in souri (McCracken, 1971, p. 59) NW side down 25 ft. or more (Branson and others, 1965, p. 48) SE side down 35 ft. (Branson and others, 1965, p. 48) NW side down to 100 ft. (Branson and others, 1965, p. 48) Sre!2t 3 of 17 Reinarks Magnetic low suggests ment faulting (Lyons, Jones and Jacobson, 1964, p. 11). In OklahurcLa, -r .c--*., ....._ U.L .LctU.l..l..-t.he ing continues further SW, but the graben structure ends ana only sinale displacement is in width of downdropped block is 200 to 1500 ft. (McCracken, 1971, p. 59); Fault No. 2 in Missouri. Magnetic low suggests ment faulting (Lyons, Jones and Jacobson, 1964, p. ll). Terminates to the SW in Fault No. 17. Rev. 0 Fault Nurnber(o) Name 17 18 19 20 21 22 23 24 25 Booker School Fault Location Rogers Craig, Rogers Rogers Rogers Rogers Nowata Mayes, Rogers Mayes Craig Identif ica tioJ.b) s (Marcher and Bingham, 1971, Map HA-2, Sheet 1) s (Marcher and Bingham, 1971, Map HA-2, Sheet 1) s (Marcher and Bingham, 1971, Map HA-2, Sheet 1) s (Marcher and Bingham, 1971, Map HA-2, Sheet l) s (Marcher and Bingham, 1971, Map HA-2, Sheet 1) s (Marcher and Bingham, 1971, Map HA-2, Sheet 1) s U*1archer and Bingham, 1971, Map HA-2, Sheet 1) s (Marcher and Bingham, 1971, Map HA-2, Sheet s (Marcher and Binqham, 1971, Map HA-2, Sheet _LJ TABLE 2.5-13 (continued) Type of Fault(c) N Length of Fault (miles) 5 1.5 1.5 2.5 Strike N40°W N45°E N25°W N20°W N5°E N20°E N45°E N65°E N35°E Dip(d) Relative SW side down NW side down 65 ft. (Branson and others, 1965, p. 48) NE side down NE side down SE side down NW side do*,.;n NW side down SE side down Sheet 4 of 17 Remarks Rev. 0 <! 0 L' hj (J tr.1 tr:1 !A:

    Fault Number(o) Name 26 27 28 Locust Fault 29 30 31 32 33 34 Grove Location Delaware Delaware Mayes Mayes, Hogers Rogers Mayes Mayes Mayes TABLE 2.5-13 (continued) Length Type of of Fault Identification(b) Fault(c) (miles) Strike Dip(d) Relative Displacement s (Marcher and 5.5 N50°E S side down Bingham, 1971, to -_o_ Map HA-2, Sheet NClU t; 1) s (Marcher and 5.5 N30°E NW side down Bingham, 1971, Map HA-2, Sheet l) s (Marcher and N 10 N-S NW side down a maxi-Bingham, 1971, mum of 200 ft. (Huff-Map HA-2, Sheet man, 1958, p. 91) l) s (Marcher and 7. 5 N40°E NW side down Bingham, 1971, Map HA-2, Sheet 1) s (Marcher and 10; N30°E Slde down Bingh;").m: 1971, 4; Map HA-2, Sheet 2 l) s U*1archer and N55°E SE side dOVvT! Bingham, 1971, Map HA-2, Sheet 1) s (Marcher and 2 N4Q0E NW side down Bingham, 1971, Map HA-2, Sheet 1) s (Marcher and 5.5 N30°E NW side down Bingham, 1971, l'1ap HA-2, Sheet 1) s (Marcher and 1. 5; sides down Bingham, 1971, 1; N5f6 UE; w I Ch,....., ............ l NS W 1) Sheet uf 17 Remarks Along the trend of the 0 Seneca Fault. t"1 n:j () Th!:"'CC' txJ t1j Three faults. ... _ ... ..,. " ru::::::v . v Fault, , Number \OJ Name 35 36 37 39 40 41 42 Location Mayes; i1ayes, Rogers Wagoner Wagoner Wagoner Wagoner Wagone-r Identification(bj S (Marcher and Bingham, 1971, Map HA-2, Sheet 1; Marcher, 1969, Map HA-l, Sheet 1) s (Marcher and Bingham, 1971, Map HA-2, Sheet 1) s (Marcher and Bingham, 1971, Hap HA-2, Sheet 1) '"' (Marcher ann Bingham, 1971, !v!A p tL .. 2, 1) s (IV'.archer and Bingham, 1971, Map HA-2, Sheet 1; Marcher, 1969, Map HA-l, Sheet 1) s (Marcher and Bingham, 1971, Map HA-2, Sheet 1) s (Marcher and Bingham, 1971, Map HA-2, Sheet 1) s (Marcher and Bingham, 1971, lT.lO..tJ HA-2, Sheet l) TABLE 2.5-13 (continued) Length Type of of . , Fault (miles) Strike Dip(dj Relative Displacement 12 NW side down 2 SE side down 2.5 SE side down SE side down 17 NW side down SE side down NW side down 6 SE side down Sheet 6 of 17 Remarks Along the trend of the Seneca Fault. Along the trend of the Seneca Fault. Along the trend of thP Seneca Fault. Rev. 0 Fault Nurnber(c) Name 43 44 45 46 47 48 49 50 Location Rogers, Wagoner Hayes, Rogers, Wagoner Hayes, Wagoner Mayes vlagoner Wagoner Wagoner --.. -. . . 11.\ 1.aent1.!: 1.ca tl.On" S (Harcher and Bingham, 1971, Hap HA-2, Sheet 1) S {Harcher and Bingham, 1971, Map HA-2, Sheet 1 S (Harcher and Bingham, 1971, Map HA-2, Sheet 1) S (Marcher and Bingham, 1971, U7\_ ') ,...,1 ___ , .. uc-o--.::.., .,:)lH:!t:!L l; Iv1archer 1 1969, r*1ap HA-l Sheet l) ' S (Marcher and Bingham, 1971, Map HA-2, Sheet l) S (Harcher and Bingham, 1971, Map HA-2, Sheet 1; Marcher, 1969, Hap HA-l Sheet 1) ' S (Marcher and Bingham, 1971, Map HA-2, Sheet l) S (Harcher and Bingham, 1971, Map HA-2, Sheet l; Harcher, 1969, Map HA-l; Sheet 1) TABLE 2.5-13 (continued) Type of Fault(c) G Length of Fault (miles) Strike 6.5 9.5 7.5 1.5 2.5 Relative Displacement SE side down SE side down SE side down NW side down SE side down NW side down SE side down Sheet 7 of 17 Remarks Along the trend of the Seneca Fault. Along the trend of the Seneca Fault. Rev. v Fault Number(o) Name 51 52 53 54 55 56 57 Lost City Fault Fourteen Mile Creek Fault Double Springs Fault Location Wagoner Wagoner Wagoner Cnerokee Cherokee Cherokee il.dair Identif ica tion(b) s (I1archer and Bingham, 1971, Map HA-2, Sheet l; Marcher, 1969, Map HA-l, Sheet 1) s (Marcher and Bingham, 1971, Map HA-2, Sheet 1) s (Marcher and Bingham, 1971, Hap HA-2, Sheet l) s and Bingi1arn 1971; 1.r1 rr-,.. "' ,.... 1 , .. .-.. ul:-" uH-L., l; ... :::l.-chcr, 19 6 9, I1ap HA-l, Sheet 1 s U*1archer and Bingham, 1971, Map HA-2, Sheet l; Marcher, 1969, Map HA-l, Sheet 1) s (Marcher and Bingham, 1971, M2p Sheet 1; Marcher, 1969, Map HA-l, Sheet l) S ctnd Bingham, 1971, Map HA-2, Sheet l) TABLE 2.5-13 (continued) Type of Faul t(c) H H N Length of Fault (miles) Strike l 0.5 N20°E to N5C0E N-S to to l. 5 E-W 1.2 15 20 E-W -11 Go0E N60°E N60°E to !'!80°E N60'JE Dip(d) Sheet 8 of 17 Relative Displacement Pemarks NW side down S side down SE side down 150 to 10n t t _ (Hll ffman: 1 (\ C: () -(") 1 \ _ ..L J .J U 1 fJ * ::J ..L J 1 .l'< NW side down a max1-mum of 200 ft. man, 1958, p. 91) NW side down a ;,,uJu of 27 5 ft. man, 1958, p. 92) dc*.J..*:: Five faults. A complex of 3 faults; the .shor*t frl11 1 T 0. hcr:;t Branches at SW to forr horst structure. Rev. 0 0 t-1 rxj n -;:A..! t::r::1 trJ Fault Number(a) Name 58 59 60 Tahlequah Fault 61 FloHer Creek Faults 62 Hulbert Fa:u1t 63 South r--1nskogee Fault 64 Qualls-Welling Fault 65 Fault 66 North Cookson Fault 67 Location Wagoner Wagoner Cherokee Wagoner, Cherokee Cherokee Muskogee, Cherokee Cherokee Adair, Cherokee l'.dair, Cherokee Cherokee Identif ica tion(b) s (Marcher, 1969, Hap H.P* .. -1, Sheet l) s (Marcher, 1969, Map HA-l, Sheet 1) s (Marcher, 1969, Map HA-l, Sheet 1) s (f.1archer, 1969, Map HA-l, Sheet l) s (I'-1archer I 1969, Map HA-l -Shee!: l) s (;>1archer, 1969' Map Ill\-], Sheet 1) s (Marcher, 1969, !1ap HA-l, Sheet 1) s U'larcher, 1969, Map HA-l, Sheet l) s (Marcher, 1969, Map HA-l, Sheet 1) s (Marcher, 1969, t*lap HA-l, Sheet 1) TABLE 2.5-13 (continued) Type of Faul t(c) N N N N N N N Length of Fault (miles) Strike 2; NlO 0E 1.5 0E 5; N3C0E; 2; N40°E; 1.5 N65°E E-W to N40°E 6; N70°E ::._ c: i-n N60°E 18 N65°E 19 N45°E ... l'<'!U L 13 N40°E N70°E oiJd) Relative Displacement W side down NW side down NW side down 50 ft. (Huffman, 1958, p. 92) NW side down 155 ft. 1 f.J* SU) NW side down a ;,_m of 250 to 300 ft. (Huffman, 1958, p. 92) NW side down 325 ft. (Huffman, 1958, p.93) SE side down NW side down 200 to 310 (Eufff:',an, 1958, p. 94) mv side LE Remarks Two small faults. One main fault with two small branching faults. Two en small graben w:*h Cookson Dr..-.7 ('\ .1.'-C::: v * ......, 0 t"" t'zj ,...

    • J :::0 ttj tr:1 :;,;;:

    Fault Nu:nber(a} Name 68 69 70 71 72 73 74 7S 76 77 Keefe ton Fault Webber's Cove Fault Red Springs Fault Blackgum Fault Baron Graben Evansville Fault City Fault Church Fault Location Muskogee Muskogee Sequoyah, Muskogee Cherokee Cherokee Adair Adair Adair Sequoyah Adair Identi fica tion(b) s (Marcher, 1969, Map HA-l, Sheet l) s (Marcher, 1969, Map HA-l, Sheet 1) s (Marcher, 1969, Map HA-l, Sheet l) s (Marcher, 1969, Map HA-l, Sheet l) s (Marcher, 1969, Map HA-l, Sheet l) s (Marcher, 1969, Map HA-l, Sheet l) s (Marcher, 1969, Map HA-l, Sheet l) s (Huffm.'m, l95R, p. 97, map) s (Marcher, 1969, Map HA-l, Sheet .l.) s (Marcher, 1969, Map HA-l, ShePt l) TABLE 2.5-13 (continued) Type of Fault(c} N N N G G N N N Length of Fault (miles) 17 5 7; 3.5 2; 2 18 10 Strike E-W N50°E N60°E N40°E N25°E E'-W NS0°W to 5 0°E Dip(d} Relative Displacement NW side down N side down SE side down 50 to 130 ft. (Huffman, 19581 P* 96) NW side down 200 ft. (Huffman, 1958, p. 95) NW side down 250 to 300 ft. (Huffman, 1 Q t;R Qt; \ .... ..,_,...,, J:'* .,_,, 75° Maximum of 200 ft. on (Huffman, 1958, p. 97) E side SE side down more than 700 ft. (Huffman, 1958, p .. 96) SE side down a mum of 200 ft. man, 1958, p. 96) Sheet 10 of 17 Remarks May be continuous with Cedar Creek Fault to west. a with South Cookson Fault; may be southern extension of Porum Syncline. May be a cf Evansville Fault of Arkansas. Intersects the south end of Lyons Fault. Forms a graben with Greasy Creek Fault at west end. Rev. u Fault Number<al Name 78 79 80 81 82 83 84 85 86 Little Lee Creek Fault Lyons Fault Greasy Creek Fault North and South son Faults Warner Horst North T.ocation Adair Adair, Sequoyah Sequoyah, Adair Adair Sequoyah Ok.-Adair Ark .. -Crawford Sequoyah Muskogee, Mcintosh Haskell TABLE 2.5-13 (continued) Length Type of of Fault Identification(b) Fault(C) (mi 1cs) Strike Dip(d) Relative Displacernent s (Marcher, 1969, Map HA-l, Sheet 1) s (Marcher, 1969, Map HA-l, Sheet 1) s (Marcher, 1969, l1ap HA-l, Sheet 1) s (Marcher, 1969, Map HA-l, Sheet 1) s (Marcher, 1969, TT.,. , Sl1eet .. -1.1:-' ll.[;.-..L f lJ Ok.-s (!'-!archer, 1969, !-lap HA-l, Sheet 1) Ark.-s (Croneis, 1930, pl. 1-A) s (Marcher, 1969, Map HA-l, Sheet 1) s (Marcher, 1969, Map HA-l, Sheet 1) s (Marcher, 1969, Map HA-l, Sheet 1) N N 13 N 14 16 G 4; E-W 14;18 N-S 4;3 13 11 E-W N25 °E N60 °W 0E N80 °W N20°E Lu N80°E N85°E E-W,;, N60°E E-W to N50°E S side down SE side down 700 ft. (Huffman, 1958, p. 96) N side down a maximum of 530 ft. (Huffman, 1958, p. 97) N side down SE side down North fault has dis-placement of 150ft., south fault has less (Huffman, 1958, p.97) E-W faults down on S sides N-S faults down on W sides NW side down S side down Sheet ll of 17 Remarks Intersects the north end of the Marble City Fault. Intersects the north end of the Akins Fault. North end intersects the middle uf the Akins Eault .. Continuations of the Davidson Faults 17) of Arkansas. Four faults. Rev. 0 :E: 0 t""1 l'%j n ::::0 tlJ tx:1 TABLE 2.5-13 (continued) Length Type of Fault of Fault __ __ Strike 87 88 89 90 91 92 93 94 95 96 97 Pecan Creek Fault Fault Haskell Haskell Muskogee Muskogee Muskogee Muskogee Muskogee Muskogee Muskogee Okrnulgee Okmulgee s s s s s s s s s s s (Marcher, Map HA-l, l) (Marcher, Map HA-l, l) (Marcher, Map HA-l, l) (Marcher, Map HA-l, l) (Marcher, Map HA-l, l) (Marcher, Map HA-l, l) (Marcher, Map HA-l, l) (Marcher, Map HA-l, l) (Marcher, Map HA-l, l) (Marcher: i*"iap nH-.!.1 1) (r>larcher, Map HA-l, l) 1969, N30°E Sheet 1969, H 2; N60°E Sheet 5; 10 1969, 5 N40°E Sheet 1969, 4.5 N20°E Sheet to N60°E 1969, 4.5 N40 °E Sheet 1969, 1.5 N35CE Sheet 1969, Sheet 1969, 4.5 Sheet 1969, 21 N60°E Sheet 1969, 5; Sheet 1969, Sheet Dio(d) Relative Displacement SE side down NW side down Unknown NW side down SE side down N side down NW side down SE sides SE side down Sheet 12 of 17 Remarks South end intersects middle of Fault No. 86. Three faults to form horst structure. Has two faults branching from so'.lth side. Two parallel faults. Rev .. 0 Fault Number(o) Name Location 98 Sam Creek Muskogee Fault 99 South Qualls Cherokee Faults 100 Muskogee 101 Warner Horst Muskogee, South Mcintosh 102 Gifford Cherokee Fault 103 Kav 104 Kay 105 Kay 106 Kay 107 Kay lOB Kay .l...U:-1 Kay; Noble llO Grant TABLE 2.5-13 (continued) Length Type of of Fault Identification(b) Faul t(c) (miles) Strike Dip(d) Relative s (Marcher, 1969, Map HA-l, Sheet 1) s (Marcher 1 1969, Map HA-l, Sheet l) s (Marcher 1 19691 Map HA-l, Sheet l) s (I>iarcher 1 1969, Map HA-l, Sheet 1\ -'-I s (Marcher, 1969, 1-lap HA-l, Sheet l) SC(Jordan. 1962) SC(Jordan, 1962) SC(Jordan, 1962) SC(Jordan, 1962) SC(Jordan, 1962) SC(Jordan, 1962) SC(Jordan, 1962) SC(Jordan, l9G2) 2; E-W 3.5 to 0 N55 E N N40°E N80°W 16 E-W to N20°E N 4. 5 N70°E Nl S0E to N30°W N70°1'l Nl0°E N5°E Nl0°E H 3; N70°E; N40°E N40°W 5 Nl0°E S sides down SE side down 40 to 250 ft. (Huffman, 1958, p. 94) S side down SE side down S side down !Jl'l side SW side down SE side down W side down W side down NE side down E side Uown Sheet 13 of 17 Remarks Two intersecting faults. Southern part forms horst with northern part of Greenleaf Lake Fault. May to northeast as Cedar Creek Fault. E end intersects southern part of Fourteen Mile Creek Fault. Northern end intersects ern end of Fault No. 104. Two faults intersecting to form "edge shape. Rev: 0 :E: 0 t'"1 l"7j \ J :;u r:::rJ l:7j !:'\: Fault Number(o) Name 111 112 113 114 115 116 117 118 119 120 121 122 123 Location Identif ica tion{b} Noble SC(Jordan, 1962) Garfield SC(Jordan, 1962) Garfield SC (Jordan, 1962) t;oble, Payne SC (Jordan, 1962) Garfield, Logan, SC(Jordan, 1962) KingfishPr Pawnee Creek Payne Payne Kingfisher, Logar: Creek Wagoner, :-lusf:ogee :1uskcgee, Okrnulgee SC(Jordan, 1962) SC (Jordan, 1962} SC(Jordan, SC (Jordan, 1962) SC (Jordan, 1962) SC(Jordan, 1962) SC(Tarr, Jordan and Rowland, 1965) SC(Tarr, Jordan ctnU ?.uwlctnd, 19 6 5) TABLE 2.5-13 (continued) Type of Fault{C) H H G G Length of Fault (miles) Strike 4; N30°E; 5 N85°W 4; N30°E; 6; N-S* 12 N40°E 3; N-S* 6.5 N60°E Nl0°W N20°E N20°E ll Nl5°E E-W N30°E 56 Nl0°W 14 N20°E 10; N40°E 12 12 N20°E Relative Displacement SE side down SW side down NW side down NW side down SE side down N side down SE side down W side down SE side down NW side down Sheet 14 of 17 Remarks Two faults intersecting to form wedge shape. Three intersecting faults. Two intersecting faults; forms a graben with southern part of No. 112. Series of similarly trending faults. Two parallel faults. Rev. ('\ v :8 0 L1 h.J n :::0 tiJ t:tj TABLE 2. 5-13 (continued) Sheet J s : 7 Length Type of Fault Number(o) Name Location Identification(b) of Faul t(c) Fault (miles) Strike Dip(d) Relative Displacement Remarks 124 Fulcher Cherokee s (Marcher, 1969, 5 E-W SE side down Fault Hap HA-l, Sheet to l) N50°E 125 Greenleaf Cherokee, s (Marcher, 1969, N 11 N45°E NW side down 40 to 175 Northern part forms horst Lake Fault Muskogee Map HA-l, Sheet to ft. (Huffman, 1958, P* with southern part of South 1) N80°E 9 3) Qualls Fault. 126 South Cook-Cherokee s (Marcher, 1969, N 12 N60°E SE side down a maximum Forms graben with Blackgum son Fault Map HA-l, Sheet of 300 ft. (Huffman, Fault; may be southern ex-1) 1958, p. 94) tension of Porum Syncline. :E: 127 Barber Fault Cherokee s (Marcher, 1969, N 3 N60°E SE side down a maximum 0 Map HA-l, Sheet of 300 ft. (Huffman, L' l) 1958, p. 95) I"Ij f-J 128 Aklns Fault ::;equoyan s (Marcher, 1969, 6 N40°E SE side down Intersects south end of Greasy ;;;o Map Hb.-l, Sheet Creek Fault. tij l) C:tJ 129 Crittenden Cherokee s (Marcher, 1969, N 2.5 N60°E SE side down a maximum Fault 1'-lap HA-l, Sheet of 100 ft. (Huffman, l) 1958, p. 92) 130 Linder Bend Sequoyah s (Marcher, 1969, N 1.5 N30°E SE side down from 30 South end intersects northern Fault Map HA-l, Sheet to over 200 ft. part of Webber's Cove Fault. l) (Huffman, 19 58, p. 95) 131 Waqoner s (Marcher, 1969, 5 Nl0°E SE side down Map HA-l, Sheet to l) N30°E 132 Wagoner s (Marcher, 1969, 5 Nl0°E SE side down Map HA-l: Sheet tn 1) NJ5.0E 133 Wagoner s (Marcher, 1969, 4.5 N55°E SE side down Map HA-l, Sheet ,, ... , Rev. 0 TABLE 2, 5-13 (continued) Sheet 16 of 17 Length Type of Fault Identification(b) of Fault Number(o) Name Location Fault(c) (miles) Re1narks 134 Wagoner s 1969, 5 N45°E SE side down Sheet l) 135 Wagoner s (Marcher, 1969, G 5 N35°E SE side down Forms graben with Fault No. Map HA-l, Sheet 136. 1) 136 Wagoner s (Marcher, 1969, G 3.5 N:fw NH side down with Fault Hap HA-l, Sheet to 1) 137 Wagoner s (Marcher, 1969, H 2; N15°E NW side down Forms horst with Fault No. Map HA-l, Sheet 6.5 138. 0 l) t"'l l':tj le)Q 1969, Q 5 N-S side '\...---.1... __ ;: L L ,....-. .* '1 1. () LVJ....l.U-b WJ.l.H S:ClUJ..L 4'\IV* Lu (1 i37. !:0 1) NJD-E t%J t:rj 139 Wagoner s (Marcher, 1969 2 NlS-E SE side down ;,;: Hap HA-l, 1) 140 Muskogee s (Marcher, 1969, 1.5 Nl5°E NW side down Map HA-l, Sheet 1) 141 Muskogee s 1969. 1 N70°W NE side down 1) 142 Cherokee s 1969, 3 N25°E NW side down , Sheet 143 Adair s (Marcher, 1969, G 2; ; Two intersecting faults to 1*1ap Hl".-1 , Sheet 2. N4 form g=aben. 1} Rev. 0 Fault Number(a) Name 144 145 146 147 148 149 Cedar Creek Fault Location Sequoyah Haskell Ok.-Ottawa Kan.-Cherokee Muskogee, Sequoyah Identi f ication{b) S (Marcher, 1969, Map HA-l, Sheet 1) S (Marcher, 1969, Hap HA-l, Sheet l) S (Cole, 1962) S (Marcher, 19 6 9, Map HA-l, Sheet 1) Osage, Pawnee, S (Arbenz, 1956; Payne, Creek Miser, 1954) Tulsa1 Lincoln, Okmlllgee, Okfuskee Kay, Grant, Garfield, Noble, Logan, Oklahoma, Cleveland, McClain SC (Lutz, 1978, pl. I) TABLE 2.5-13 (continued) Length Type of of Fault Fault(cl (miles) Strike N 9. 5 i 10.5 2 15 3 l to to 15 N55°E N70 °E Nl0°E to N40°E Hostly NW-SE NNW to NNE Dip(d) Relative Displacement SE side down NW side down E side down SE side down Variable S!!.eet J..7 of 17 P.e!Clarks Two parallel faults. Fault No. 15 in Kansas. be continuous with Webber's Cove Fault to east and Warner Horst South to west. Series of faults in vanian strata along the Pennsylvanian-Permian contact. Shown on map of basement rocks. Rev. " v 0 t'1 hj n ::tl t_':!:j t:rj !A: WOLF CREEK TABLE 2.5-14 LETTER FROM THE DIRECTOR OF THE KANSAS GEOLOGICAL SURVEY (August 6, 1973) KANSAS GEOLOGICAL The University of Kansas Office of the Director August 6, 1973 Dr. JohnS. Trapp Dames & Moore 1550 Northwest Highway Park Ridge, Illinois 60068

    Dear Dr. Trapp:

    JIH GDL WGP DOS MLK La""rence, K.ansas 660*'14 913-8t34-310l Rl't JJK ... .i Mf JP FILE Ull. T. I. UU!I. I am replying to your letter of July 197:3 to Mr. Charles K. Bayne, Associate Director of the Geological Survey, regarding the most recent age of faulting and folding within the area of interest of the proposed Wolf Creek Nuclear Plant for the Kansas Gas & Electrie Company. I understand that the Atomie Energy Commission defines an active fault as one wbich has moved at or near the earth's once in the past 35, 000 years or more than once in the past 500, 000 years. Regrettably, there is no known stratigraphic evidence to prove or disprove fault movement or tectonic folding in Kansas during the past half.-mill.ion years. Tertiary and younger sediments in eastern Kansas are unconsolidated sands, gravels, silts, and clays, which are not suitable indicators for dating structural movement. We have no evidence to indicate that knovm surface faults have moved at or near the earth's surface once in the last 35, 000 years or Inore than once in the last 500, 000 years. The clustering of earthquake epicenters of historic record along the trend of the Nemaha Anticline in Nebraska, Kansas, and Oldahoma, indicates that this structure is tectonically active at the present time. The location of earthquake epicenters on or near other known geological structures in Kansas may indicate that they are also tonically active (Merriam, 1963, Geologic History of Kansas, Kansas Geological vey Bulletin 162, pp. 221-225). WWH/dc Very cordial regards, ---w .. William W. Hambleton Director Hev .* 0 CREEK KANSAS Environmental Geology Section 1930 Avenue "A"., Ca.n1pus V\Test The Unilversity of l<.ansa;s Lawrence. I<.ansas 60044 91a-BG4-4991 TABLE 2 ... 5-14a Page 1 of 6 December 28, 19Sl LETTER FROM THE KANSAS GEOLOGICAL SURVEY Mr. David F. Fenster Project Geologist Dames & Moore 1550 Northwest Highway (DECEMBER 28, 1981) Park Ridge, Illinois 60068

    Dear Mr. Fenster:

    DAMES & MOORt JAN 0 4 This is in response to your telephoned request for an updated opinion of the age of most recent faulting at or near the surface in easte:r11 Kansas. Based on the results of our USt\RC-sponsored studies to date, we believe we have geologic, geomorphic and geophysical evidence of post-Kansan faulting near the surface in several areas in extreme northeastern Kansas. The most clear-cut example is an area near Baileyville, in western Nemaha County. This area was discussed previously by S. M. DuBois (NUREG/CR-0321, 1978, p. 12-14, Figure 5). DuBois described a linear stream system with asymmetric tributaries and paralleling narrow, linear stream divides. The streams are shallowly incised into unconsolidated soil and underlying glacial till deposits in an area of relatively low--surface relief. DuBois estimated from sparse water-well data that the depth to bedrock was approximately 30-60 ft. Two power auger holes drilled subsequently near the streams used up all the available auger stem, slightly more than 100 ft, without encountering bedrock. A later seismic reflection line across the stream trend indicated that the thickness of unconsolidated deposits, mainly Kansas glacial tiLl and thin surficial soils, was approximately 150 ft. DuBois pointed out that north-flowing Negro Creek, because of the angle and the way its tributaries join the main stream (see figure attached), viously had flowed south. She concluded that "recent" uplift of the land surface had caused piracy of Negro Creek by an east-flowing tributary of Turkey Creek near the northwest corner of the area. Because of the asymmetric tributaries on the west and the fact that the crest of the narrow, linear stream divide on the west was approximately 40 ft higher than that on the east (see topographic profile attached), it \vas assumed that the relative uplift was on the west. Although not stated, offset by faulting was suspected to be the most likely cause of these anomalous phic features. As stated earlier, a seismic profile was run at approximate right angles to and across the trend of the streams at a later date. 1nis line \vas reduced and computer processed about a month ago. About 30 to 50 ft of offset tn shallow subsurface marker beds is indicated beneath the creeks. SurprisingLy, Rev. 0 CREEK TABLE 2.5-14:a (continued) Mr. David F. Fenster -page 2 -* December 28, 1981 however, the offset is down to the west. Page 2 of 6 Groundwater levels in the auger holes drilled near and on opposite sides of the two streams and in available nearby water wells indicate an abrupt approximate 30 ft gradient to the west, probably indicating offset of meable zones in the till. The till in this area is silty to fine sandy. No abrupt changes in lithology are apparent, thus we do not think the streams are related to the effects of till lithology such as differential compaction adjacent to a buried sandybody or bedrock channel. Although it cannot be rigorously proven without core drilling into rock, I believe that the above evidence strongly suggests post-Kansan ing. rrne narrow linear stream divides and the almost total absence of tri*** butaries on the east side of the two streams further suggest to me that ing, if present, occurred after the development of the subdued topographic surface or during Recent (Holocene) time. I have noted a number of similar streams and divides in areas overlain by several hundred feet of glacial till in northeastern Kansas and northweste:rn Missouri. In most instances, however, the short or absent tributaries and the long, narrow linear stream divides are on the west. All trend close to 15 °NW. If these linear parallel, ridge-stream .systems are the geomorphic sigr,a*** ture of geologically yonng faulting, it is interesting to note that the lSc'NW trend is approximately 90° to the principal horizontal compressive stress field in the central !viidcontinent as reported by Sbar and Sykes and more recently by Zoback and Zoback. Under those conditions, it would be expected that any reactivation of existing faults would produce up-to-the east reverse faulting and a geomorphic signature or erosion similar to the more pervasive ones cited immediately above which have long tributaries on the east or on the uplifted side and short or no tributaries on the west, adjacent to the ridge marking the edge of the down-dropped side. The fact that the sense of bedrock movement of the Baileyville feature is opposite to what I would expect to me that it ma.y be caused by fairly recent reverse reactivation of a pre-existing fault by differential movement resulting from glacial rebonnd. The area is adjacent to the inferred boundary of the Nebraskan ice sheet and about :so miles east of the western margin of the Kansan ice sheet (see figure attached). The area is also adjacent to a major inferred bounding fault on the southeast flank of the Central North American Rift System. This bounding fault is believed to have been reactivated as a right lateral wrench fault during the Cretaceous. The Baileyville feature is propeTly aligned to ha.ve been a minor thrust or reverse fault associated with that sense of movement. If my interpretation is correct, then the inferred Recent movement may be associated with glacial rebound and is not strictly tectonic. Rev .. 0 WOLF CRE:EK TABLE 2.5-14a (continued) Page 3 of 6 Mr. David F. Fenster -page 3 -December 28, 1981 The longer features in NE Kansas and \JW Missouri may be as so cia ted 'l'li th the contemporary stress field. This has not been and, perhaps, cannot be proven. 1be White Cloud earthquake of 1927 occurred on the projection of one of those linear streams and we have recorded microearthquakes in the same area. Because geologically young deposits are rare in the unglaciated part of eastern Kansas, it is difficult to determine the age of nost recent faulting. However, under my direction and NRC fumding, Kim Eccles recently an M.S. thesis at Kansas State University. His work consisted of field studies of an area underlain by the trace of the 1--Iumboldt fault zone in northwestern Wabaunsee County, southeast of Manhattan, Kansas. His study covered an area of a prominent northwest trending subsurface graben that cross-cuts the NNE trending Humboldt zone. Eccles (unpublished thesis, 1980) determined that faulting broke the surface in Permian rocks over some of the subsurface fau1ts. He also stated that from airphoto studies, one of the* faults appeared to offset entiated Quaternary glacio-fluvial deposits, presumably of Kansan age. [ have not confirmed this in the field. In summary, the youngest surface faulting that we can document is Kansan. Recent movement on an infen:.-c!d fault near Baileyville may be Tela ted to continued glacial rebound. FWW:ep cc: W. W. Hambleton, KGS T. Schmidt, USNRC H. LeFevre, USNRC 7.. erel-*y_,_ ;* j.. .' 1 _ _, -**-r /

    • tl/ I / . ' .. ;_, ______ J;_-f'/?tt:L !/;. , -----( Frank W .. Wilson Senior Geologist RE!V. 0 I I' I r ,, ., r** 1 I I I L I '* I .: i;. <j 1.. I .. I I / \ .. ' ' \ l CRBEI<; TABLE 2.5-14a (continued) Page 4 of 6 \ i ! l i ! \. .. t_, *-'-V"'. ., / J f't. Rev. 0 WOLF' CREEK TABLE 2 .. 5-14:a (continued) Page 5 of 6 l-('1')/ \(' il .'. :)1_1 I'.' 1)1 'i *' ' * *. ' '*) J \ ' \ i I I I (_ / i I \ \ J j '-t_ t:;ucjl_j(*r;;tori: ZUx ), l .) '1 i : ',; i ')r ;., of r: Ver fllf ii:LI , \ , *.'r **' : r:)<, \ (' f [ i : i o\: ). I,.' I :--..,] ___ ' * .,._,, Ft. r ',. jl ' " Rev .. I)

    . . . . . . . . -*-. l9

    • i "*'-* . ' . . l_ . . . . . . . . WOLE' -\ j I \ """".,-{* ---------------! \ --------*--****----------*---of 6 I -f ---\ 1 j ----.--J Rev. 0 WOLE' CREEK 2., 5*-15 AGE OF YOUNGEST FAULTING WI'rHIN THE REGIONAL AREA State Kansas Nebraska Iowa Missouri Arkansas Oklahoma (b ')I Post Pennsylvanian Inferred post-Kansan'c) Definitely pre-Pleistocene, probably post-Permian Definitely pre-Pleistocene, probably pre-Cretaceous . (b 'Ji Post Pennsylvan1an
    • End of Pennsylvanian Probably pre-Triassic, definitely pre-Quaternary Table 2.5-14 Table 2.5-14a Burchett, 1973a Van Eck, 1973a Caplan, 1960, p. 10 Johnson, 1973a aFor sources cited above, see FmJ;'ERENCES: Section 2. 5. bCannot. be determined more accurately from stratigraphic information. From evidence in adjacent states generally dated as pre-Pleistocene ( 197 3b: Fellows, 1973a)
    • cPost-Kansan faulting due to differential glacial rebound has been inferred by Wilson, 1981, written communication (Table 2.5-14a). Rev. 0 Feature Number(a) Site Location 1 Saddle Dam IV 2 Saddle Dam IV 3 Saddle Dam IV 4 Main Dam 5 Main Dam 6 Main Dam 7 Reactor Building 8 Reactor Building 9 Reactor Building 10 Reactor Building 11 Reactor Building 12 Fuel Building 13 Fuel Building 14 Fuel Building 15 Fuel Building 16 Fuel Building 17 Fuel Building 18 Fuel Building WOLF CREEK Table 2. 5-l')a
    • SUr.M\RY OF DEB"'RMATION ZONES HEUMADER SHALE MEr1BI;;R 4 shear. planes 3 shear. plartes 8 shear. planes, 1 fault 1 shea.r. zone, 2 shear planes !5 shear. p lartes 1 shear plarte 1 shear plarte 1 shear plar:te 1 shear zone, 1 shear plane 1 shear. p larte 1 shear plarte 1 shear. plarte 1 shear. plane 1 shear. plane 1 shear. plane 2 shear. planes 1 infer.red shear plane 1 fault., 12 shear planes D&M 1979b Figure 128 D&M 1979b Figure 12A D&M 1979b Figure 12E D&M 1979b Figure lOA D&M 1979b Figure lOC D&M 1979b Figure lOF D&M 1978 Figure 3D D&M 1978 Figure 3E D&M 1978 Figure 3! D&M 1978 Figure 3! D&M 1978 Figure 3! D&M 1978 Figure lOC D&M 1978 Figure lOC D&M 1978 Figure lOC D&M 1978 Figure lOD D&M 1978 Figure lOD D&M 1978 Figure 10D D&M 1978 Sheet. 1 of 6 Figures lOF, lOG, 10H ----*------*--*---.. -..... -numbers corresporrl to locations of defonnation zones srJOwn on Figures 231.1-*1 throu9h 231.1-4. bD&M 1978 = Dames & Moore, 1978 (see FSAR Site Addendwn, SE!ction .2.5. 7 for canplete reference). D&M 1979b = Dames & Moore, 1979b (see FSAR Site Addendun,, Section 2.5. 7 for canplete reference). D&M 1981 = Dames & Moore, 1981, Results of geologic excavation mapping, Wolf Creek Generating Station, Unit No. 1, for Kansas Gas & Electric Company and Kansas City Power & Light Company: .Dame5 & Moore (August 13).

    WOLE' CREE:E< Table 2. 5-lSa (contimJE'ri) Feature .::.:N.::umbe==r=---(-a_) __ __::::Sl.=-* t::::e Location 19 Fuel Building 4 shear zones, 10 shear planes 20 Fuel Building 1. shear zone 21 Fuel Building l shear zone 22 Radwaste Building 1 shear plane 23 Ra&vaste Building 1 shear zone 24 Rad11raste Building 1 shear zone 25 Radwaste Building 1 shear* plane 26 Diesel Generator Building 1 shear zone 27 Diesel Generator Building 1 shear zone, 1 shear plane 28 Diesel Generator Building 1 shear plane 29 Control Building 1 shear 30 Comrrunication Corridor 1 shear plane 31 Comrramication Corridor 1 shear plane 32 Control Building 1 shear plane 33 Comrrunication Corridor 1 shear plane 34 Turbine Building 1 shear zone 35 Comrrunication Corridor 1 shear plane 36 Comrrunication Corridor 4 shear* planes 37 Comrrunication Corridor 1 shear plane 38 Auxiliary Building 1 shear* plane 39 Turbine Building 1 shear plane 40 Turbine Building 1 shear* plane D&M 1978 Figure 10! D&M 1978 Figure lOA D&M 1978 Figure lOA D&M 1978 Figures 11M D&M 1978 Figure llLM D&M 1978 Figure UK D&M 1978 Figure llLC D&M 1978 Figure 6A D&M 1978 Figures 6C, D&M 1978 Figure 6C D&M 1978 Figure 7B D&M 1978 Figure 8B D&M 1978 Figure 8B D&M 1978 Figure 7C D&M 1978 Figure 8B D&M 1978 Figure 9I D&M 1978 Figure 8C D&M 1978 Figure 8C D&M 1978 Figure 8D D&M 1978 Figure 5G D&M 1978 Figure 9D D&M 1978 Figure % Sheet. 2 of 6 and llN 6E, 6F' l<:eV.. 0 Feature Number(a) 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 WOLF CREEl'\ Sheet 3 of 6 Table 2. 5-1.5a (cont.inued) Site Location (b) :::.==="------------_____ Report Turbine Buiding Turbine Buiding Turbine Buiding Turbine Building Turbine Building Turbine Building Turbine Building Turbine Building Turbine Building Turbine Building Turbine Building Circulating Water System Discharge Excavation Circulating Water System Discharge Excavation Circulating Water System Discharge Excavation Circulating Water System Discharge Excavation Circulating Water System Discharge Excavation Circulating Water System Intake Excavation Circulating Water System Intake Excavation Circulating Water System Intake Excavation Circulating Water System Intake Excavation Circulating Water System Intake Excavation Circulating Water System Intake Excavation 2 sherur-planes 1 shear plane 1 shear pl<me 1 shear :zone 1 shear p:lcme 2 shear :zones 3 shear planes 3 shea1: pi<mes, 1 shear zone 1 shear pl<me 1 shear pl<me a few shear planes 1 shear zone 2 shear zones, l shear plane 1 shear zone 1 shear zone 1 shear zone 4 shear planes 1 shear plane 2 shear zones, l shear plane 3 shear pl<mes, slightly folded and sheare.:1 area 1 shear zone a few srnall shear zones D&M 1978 Figure 9Q D&M 1978 Figure 9Q D&M 1978 Figure 9EE D&M 1978 9V and 9W D&M 1978 l'igure 9U D&M 1978 Figure 9DD D&M 1978 9:C D&M 1978 l"igure 9U D&M 1978 l"igure gr* D&M 1978 l"igure 9S D&M 1978 9AA D&M 1979b l"igure 80 D&M 1979b Figure 8N D&M 1979b Figure 8N D&M 1979b !o'igure 8N D&M 1979b Figure 8N D&M 1979b Figure 8;! D&M 1979b Figure 8I D&M 1979b Figure 811 D&M 1979b Figures 811 and EIHH D&M 1979b Figure 8F D&M 1979b Figure 81 Hev. 0 WOLF CREEK 'I'able 2. 5-*lSa (c:orrtinuoo) Feature _Nc::umbe __ r_<_a_> __ --=Sit:e Location 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 Circulating Water SystEm Intake Excavation Circulating Water SystEm Intake Excavation Circulating Water SystEm Intake Excavation Circulating Water SystEm Intake Excavation (Unit 2) Circulating Water SystEm Intake Excavation (Unit 2) Circulating Water SystEm Intake Excavation (Unit 2) Circulating Water SystEm Intake Excavation (Unit 2) Circulating Water SystEm Intake Excavation (Unit 2) Circulating Water SystEm Intake Excavation (Unit 2) Circulating Water SystEm Intake Excavation Circulating Water SystEm Intake Excavation Circulating Water SystEm Intake Excavation Circulating Water SystEm Intake Excavation Circulating Water SystEm Punphouse & Intake Channels Essential Service Water SystEm Essential Service Water SystEm Essential Service Water SystEm Essential Service Water SystEm Essential Service Water SystEm Essential Service Water SystEm Essential Service Water SystEm Essential Service Water SystEm 2 sheat:* planes 5 shear planes plus 3 possible shear planes 1 shea:r plane 1 she.a:r plane 1 she.a:r plane 1 she.:u:* plane 1 shear zone,. 2 shear planes 1 sllear* plane 1 sllear* plane 1 sllear plane 1 sllear zone 1 sllear* plane 2 slleax zone.f; 2 faults, 2 shear zones 1 sllear plane 3 sllear planes 1 sllear* zone 1 sllear plane 1 sllea:r zone, 2 shear planes 1 sllear* plane 1 sllear plane 2 sllear* zones D&M 1979b FigurE! 8F D&M 1979b Sheet of 6 Figures 8F' and 8FF' D&M 1979b Figure 8F D&M 1979b Figure 8C D&M 1979b Figure 80 D&M 1979b Figure 80 D&M 1979b Figures 8C and 8CC D&M 1979b Figure 8E D&M 1979b Figure 8E D&M 1979b Figure 8B D&M 1979b Figures 8B and 8BB D&M 1979b Figure 8B D&M 1979b Figures 8A and BAA D&M 1981 Figures lOA, lOA-2, lOB-2, lOB-3, lOB-S,. 10B**6, lOB-8 D&M 1981 Figures 5C and SD D&M 1981 Figure SE D&M 1981 Figure SH D&M 1979b Figure 6A D&M 1979b Figure 6A D&M 1979b FigurE! 6A D&M 1979b Figure 6B D&M 1979b Figure 6C WOLF Table 2. 5-l:ia (corrt:lnuerl) Feature _N:.::urnbe=::..::..:r=-(-a_l __ .....::;:.S=it=e Location 85 Service Water System l shear z:one 86 Service Water System 2 shear. zones, 5 shear planes 87 Service Water System 2 sheat:r. planes 88 Service Water System l shear. plane 89 Service Water System l shea:r. plane 90 Service Water System l shear. plane 91 Service Water System 3 shea:r. planes 92 Service Water System :2 shear planes 93 Service Water System l shea:r. plane 94 Service Water System :2 shear planes 95 Service Water System l fault: 96 Service Water System l shear plane 97 Service Water System :2 shear planes 98 Service Water System 1 shear plane 99 Service Water System 1 shear z:one 100 Essential Service Water System 1 fault: 101 Service Water System 1 shear p 1 ane 102 Service Water System l poss.ible shear plane 103 Service Water System l shear plane 104 Service Water System l shear. plane 105 Service Water System 1 shear zone 106 Service Water System 1 shear z:one Sheet .5 of 6 (b) Report D&M 1979b Figures 6G D&M 1979b Figure 6F D&M 1979b Figure 6::: D&M 1979b Figure 6D D&M 1979b Figure 6I D&M 1979b Figure 6I D&M 1979b Figure 6H D&M 1979b Figure 6N D&M 1979b Figures 6M D&M 1979b Figure 6R D&M 1979b Figure 60 D&M 1979b Figure 6X D&M 1979b Figure 6W D&M 1979b Figure 6AA D&M 1979b Figure 6llif D&M 1981 Figure 6B and 6D D&M 1981 Figure 6K D&M 1981 Figure 6L D&M 1981 Figure 6P D&M 1981 Figure 6V V D&M 1981 Figure 60 D&M 1981 Figure 6ll1 Rev. 0 Table 2. 5-l5a (con1t:iru1ro) Feature _N_urnbe ___ r_(_a_> ____ :Location 107 Essential Service Water Systen 1 appacrenl::. shear zone, 1 poss.ible shear plane 108 Essential Service Water Systen 1 possible shear plane 109 Service Water Systen 1 shea:r plane 110 Service Water Systen 1 fault 111 Service Water Systen 1 fault 112 Essential Service Water Systen 1 fauH:,. l shear plane 113 Service Water Systen 1 fauH: 114 Service Water Systen 1 fauH: 115 Service Water Systen 2 shear planes 116 Essential Service Water Systen 2 shea:r planes 117 Service Water Systen 118 Essential Service Water Systen 1 fault 119 Service Water Systen 1 shear plane 120 Essential Service Water System several shears 121 Essential Service Water Systen l fauH: 122 Essential Service Water Systen 3 faul:t:s 123 Essential Service Water Systen l possible shear zone 124 Essential Service Water Systen l shear zone, 1 shear plane 125 Essential Service Water Systen 3 shea.r z-ones 126 Essential Service Water Systen 1 fau.l*t: 127 Essential Service Water Systen SOliE <g?IErent shears Sheei: 6 of 6 (b) Report D&M 1981 Figure 6ZZ D&M 1981 Figure 6DDD D&M 1981 Figure 6EEE D&M 1981 Figurea 6DDD, 6Cf:G, 6HHEI D&M 1981 Figure 6HHH D&M 1981 Figure 6E'E'F D&M 1981 Figures 713, D&M 1981 Figure 6-G:; D&M 1981 Figures 6HH D&M 1971 Figure (;J,J D&M 1981 Figure 6KK D&M 1981 Figure 6KK D&M 1981 Figure 6J,J D&M 1981 Figures 6IL D&M 1971 Figure 600 D&M 1981 Figure 6PP D&M 1981 Figure 6V D&M 1981 Figure 6V D&M 1981 Figure 6EE D&M 1981 Figures 6FF, D&M 1981 Figure 6SS 7C, 7D, 7E and 61'1M 6CQ, 6HJR J;:ev .. 0 Feature (a) Nuinber 128 129 130 131 WOLF CREEK TABLE 2. 5-15b SUMMARY OF DEFORMATION ZONES GEOLOGIC UNI'rS OTHER THAN THE HEm-1ADER SHALE l'.IJEivlBER Site Location Low-level outlet tunnel Auxiliary spillway N. exc. slope Service spil hvay Service spillway Type(s) of Deformation(s) b and Geoloqic Unit Report Reference( ) Normal fault Unnamed of the Lawrence Formation Shear zone Heebner Shale Member Shears, soft sediment deformation features #1, #11-#17 (no deformation D&M 1979b Figure 10V; revised in D&M 1981 as Figure A-1 D&M 1981 Figures 11Q and 11R 1981 Figures 11H and 11U Figures llJ, 11W, llX, at #12} and llY Ireland Sandstone Member Shears1 soft sediment deform.ation features #2-#10 Ireland Sandstone Member D&M 1981 Figures 11t 1nd llV Figure 11H c aFeature numbers correspond to locations of deformation zones shown on Figure 231.1-1. UOC!.YJ. 1 r\..,i""\1-.L::J/::J.U-Dames & Moore, 1979b (see FSAR Site Addendum, Section 2.5.7 for complete reference). D&I"i 1981 = Dames & Moore, 1981, Results of geologic excavation mapping, Wolf Creek Generating Station, Unit No. 1, for Kansas Gas & Electric Company and Kansas City Power & Light Company: Dames & Moore (August 13). cFeature #2 is located at Station 7+15, in the face of the 3:1 slope, 17 feet east of the west excavation slope. This feature is not visible at the scale of Figure 11H but is similar in appearance to the other mapped features. Rev9 0 WOLF CREEIK TABLE 2: .. 5*-16 Sheet 1 of .-.) OIL WELLS DHILL.ED IN THE VICINI'I'Y OF THE SITE Total Well Completion Depth Unit at Number(a) Date 1 Depth Comments 1 11-19-23 1,198 Dry 2 5-29-72 2,160 Jl.r buck 1 e Dry 3 6-05-72 2,185 Arbuckle Dry 4 3-04-23 2,060 Dry 5 11-20-39 1,639 Mississippian Dry 6 7-23-74 1,953 Arbuckle Dry 7 7-23-74 1,955 Arbuckle Dry 8 12-18-22 1,970 Dry 9 1,578 M:il ss iss i ppi an Dry 10 9-22-39 2,222 Arbuckle Dry 11 5-20-73 2,100 e Dry 12 4-19-53 1,400 Dry 13 1,590 Mississippian Dry 14 11-05-24 1,896 Arbuckle Dry 15 2-27-74 1,863 Arbuckle Dry 16 11-13-74 1,896 Arbuckle Dry awell numbers correspond to those shown on Figure 2.5-20. Source: Information contained in the proprietary files of the Bensen Mineral Group, Incorporated (Independence, Kansas) and the open files of the Kansas Geological Survey and the State Corporation Commission of Kansas and Petroleum Information Corporation, Continent Region Newsletter(s) 1973-1981. Dashes indicate no data available. Rev. 0 WOLF CREEK TABLE 2.5-16 (continued) Sheet 2 of 5, Total Well Completion Depth Unit at Number ( a) *---=-D=-a-=t-=e ___ _e t ) ______ Tot: a 1 De:*__. P:..:t:..:h.::.__ ___ ts __ _ b 17 18 19 20 21 22 23 24 25 26 27 28 29 30(b) 3l(b) 32(b) 33(b) 34 (b) 6-04-23 5-06-53 10-28-63 10-30-61 4-23-60 11-08-43 7-07-74 8-05-74 1-31-28 12-06-73 8-09-51 12-30-51 2-08-30 10-19-72 9-19-72 10-30-73 5-04-73 10-30-73 Wells in Avon Field. 2,425 Arbuckle Simpson 1,445 Mississippian 1,600 1,515 1,245 1,910 Viola 2,012 Arbuckle 1,216 1,612 Mississippian 1,516 .Mississippian 1,765 Arbuckle 1,780 Arbuckle 1,688 Viola 1,777 Arbuckle 1,698 Viola Dry Dry Dry Dry Dry Dry Abandon Location Dry Dry Dry Dry Dry Dry Dry BHP(c) :.2 3--514 IPP(d) 25 Dry BHP IPP 25 BHP 5>90--580 cBHP = Bottom Hole Pressure in pounds per square inch. diPP = Initial Performance Pumping in barrels of oil per day. Rev. 0 Well Number(a) 35 (b) 36(b) 37 (b) 38 (b) 39 (b) 40(b) 41 (b) 42(b) 43 44 4 5 (b) 46 (b) 47 48 49(b) 50 51 52 53 54 55 56 WOLF TABLE 2.5-16 (continued) Sheet 3 of 5, Total Completion Depth Unit at __ D_a_t_e ___ _,_( _f e_ a J. D e_,_p_t_h __ CommentE: 4-29-74 4-24-74 4-05-74 1-28-74 . 9-28-73 6-07-74 8-21-74 7-25-74 5-22-51 7-29-74 9-10-74 9-10-74 7-15-74 9-26-74 11-03-74 3-19-75 4-01-75 4-07-75 4-16-75 5-12-75 4-30-75 4-25-75 1,750 1,699 1,680 1,696 1,859 1,686 1,017 1,685 1,058 1,693 1,725 1,910 1,790 1,765 2,229 2,071 2,0.36 1,824 1,900 1,840 1,722 Simpson Viola Viola Viola Arbuckle Viola Pennsylvanian Pennsylvanian Viola Viola Arbuckle Simpson Arbuckle Arbuckle Arbuckle Arbuckle Arbuckle Simpson Viola Dry BHP 40-20 Dry IPP 45 IPP 30 Dry IPP 15 Abandoned Dry Dry Dry IPP 25 IPP 25 Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Rev. 0 WOLF CREEl< TABLE 2.5-16 (continued) Sheet 4 of Total Well . Completion Dept:h Unit at .. ____ ___ 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 7-30-75 8-05-75 7-26-75 11-02-75 10-18-7 5 10-07-75 11-11-75 1-22-76 3-05-76 3-05-76 3-04-75 5-22-76 6-08-76 6-06-76 5-29-76 6-29-76 10-11-76 10-16-76 11-18-76 4-10-77 12-19-77 11-04-77 1,822 1,900 1, 8 so 1, 1,900 1,913 1,748 1, 7.':il 1,937 1,934 2,007 1,97:i 1,993 1,860 1,925 1,939 1,953 1,964 2 1 28 :; 1,04:0 2, 01.8 2,010 Simpson Arbuckle Arbuckle Simpson Arbuckle Arbuckle Viola-Simpson Simpson Simpson Simpson Arbuckle Arbuckle Arbuckle Arbuckle Arbuckle Viola Arbuckle c* u:Lmpson Arbuckle Squirrel Simpson Arbuckle Dry Dry Dry Dry Dry Dry Dry Dry IPP 20 BOPD IPP 20 BOPD Dry Dry Dry Dry IPP 16 BO + 104 mmP Dry Dry Dry B BOPD Dry Rev. o 79 80 WOLF CREE:K TABLE 2.5-16 (continued) Completion Date 9-17-78 7-13-79 1,746 1,670 Unit at To tal D1:: Simpson Arbuckle Sheet .5 of 5 Comments Dry Dry Rev. 0 WOLF (::HEEK TJI.BLE :2 .. 5-17 Paqe 1 of 2 LETTER FROJIII. THE DIRECTOR OF THE KANSAS GEOLOGICAL SUHVEY {1\ugust 3, 19 7 3) KANSAS GEOLOGICAL SURVEY Office of the Director August 3, 1973 Dr. John S. Trapp Dames & Moore 1550 Northwest Highway Park Ridge, Illinois 60608

    Dear Dr. Trapp:

    1030 Avenue "'A._, Campu:s West 'I'hc University of 1:\:ansas I..Jnwrel-tce, KansnH 66044 913-804-3905 The State Geological Survey of KarLEas, organized on a continuing basis in 1889, has accumulated and analyzed data in printed and file form concerning the geology of Kansas over that period. These data relating to oil and gas fields .in eastern Kansas reveal no known cases of ground subsidence resulting from removal of oil and gas. Mr. Frank Wilson, Engineering Geologist with our Environmental Geology Section, has been in close contact with this subject through personal experience and inquiry, and has contacted other appropriate people who may be about the subject. Prior to joining the Kansas Geological Survey in 1969, Mr. Wilson served as an Engineering Geologist for the Kansas Highway Commission for 1'7 years. Most of his work was in eastern and southeastern Kansas. Because of the relative abundance of oil and gas fields in southeastern Kansas, many of tho proposed highway routes which he investigated wore in or near such oil-or gas-producing fields. During the 17 years he was in the field in that area, and during the subsequent four years as Engineering Goolol:,rist with tho Kansas Geological Survey, he has not observed or heard of any subsidence as tho result of oil and gas production. Mr. Wilson has consulted with Margaret Oros, Head of the Oil and Gas sion of the Geological Survey, :md with Dr. Paul Hilprnan, formerly of the Oil :md Gas Division and now Chief of the Environmental Geology Section of the Kansas logical Survey. No reported or observed instances of land-surface subsidence in eastern Kansas resulting from withdrawal of oil, gas, or water from deep reservoirs are known to them. Rev. 0 WOLF CREEK TABLE 2. 5-*17 (continued) Page 2 of 2 Dr. JohnS. Trapp --2-1nn Mr. Wilson also has consulted with Mr. Bruce Latta, Chief of the Oil Field Section of the State Board of Health concerning your question. His geologists stantly are in the oil fields monitoring brino disposal problems. They would be the first to notice or to be informed of any *subsidence or problems associated with sidence.. Mr. Latta has stated that he is not aware of any observations or reports of subsidence due to oil and gas production in eastern Kansas. The State Geological Survey of Kansas lalows of no cases where repressuri-* zation of producing fields by oil, gas, or water has resulted in surface uplift. Again, Mr. Wilson during 17 years in the field in the area and subsequent investigations as Engineering Geologist with the Kansas Geolog;:ical Survey, has not observed or heard of any uplift due to secondary repressuring of oil producing zones in the area of Kansas east of the subcrop of the Permian salt horizons. Our staff agree that if any subsidence has occurred, it would be evident most likely in the area of the El Dorado field in Butler County. This is one of the oldest fields in Kansas, and it produces both oil and gas from multiple horizons ranging from the Permian down to the "granite wash." There are two U.S. Coast and Geodetic second-order level lines through or near the area of possible subsidence. These are the Strong City to ElDorado, Kansas, second**order line, no. 90, first surveyed in 1940; and the Florence to Augusta second-order line, no. 27, first surveyed In 1!>34. These lines have been resurveyed and adjusted periodically. You may wish to compare the elevations of bench marks in the ElDorado oil field area over the period of record to determine if there is any evidence of prog-ressive downward adjustment. WWH/de Please call upon us if we can be of further service to you. Very cordial regards, William W. Hambleton Direetor Rev .. 0 TABLE 2. 5-18 MODIFIED MERCALLI IWENSITl' (DAMAGE) SCALE OF 1931 (Abridged) I. Not felt except by a very few under especially circumstances. (! Rossi-Forel Scale.) II. III. Felt only by a few persons at on upper floors of buildings. suspended objects may swing. Forel Scale.) rest, especially Delicately (I to II Rossi-Felt quite noticeably indoors, especially on upper floors of buildings, but many people do not it ?s may rocK V1brat1on like passing of truck. Duration estimated. (III Rossi-Forel Scale.) IV. During the day felt indoors by many, outdoors by few. At night some awakened. Dishes, windows, doors disturbed; walls make creaking sounds. Sensation like heavy truck striking building. Standing motorcars rocked noticeably. (IV to V Rossi-Forel Scale.) V. Felt by nearly everyone, many awakened. Some dishes, windows, etc., broken; a few instances of cracked plaster; unstable objects overturned. Disturbances of trees, poles, and other tall objects sometimes noticed. Pendulum clocks may stop. (V to VI Rossi-Forel Scale.) VI. Felt by all, many frightened and run outdoors. Some heavy furniture mov d a few instances of fallen plaster or damage slight_ (VT tn VII Ross -himneys. orel Scale.) VII. Everybody runs outdoors. Damage negligible in buildings of good design and construction; slight to moderate in well-built ordinary structures; considerable in poorly built or badly designed structures; some chimneys broken. Noticed by persons driving motorcars. (VIII Rossi-Forel Scale.) VIII. IX. Damage slight in specially designed structures; considerable in ordinary substantial buildings with partial collapse; great in poorly built structures. Panel walls thrown out of frame structures. Fall of chimneys, factory stacks, columns, monuments, walls. Heavy furniture overturned. Sand and mud ejected in small amounts. Changes in well water. Persons driving motorcars disturbed. (VIII+ to IX Rossi-Forel Scale.) Damage considerable in specially designed structures; well-designed frame structures thrown ouL of plumb; qreat in substantial buildings, with partial collapse. Buildings shifted off foundations. Ground cracked conspicuously. Underground pipes broken. (IX+ Rossi-Forel Scale.) X. Some well-built wooded structures destroyed; most masonry and frame structures destroyed with foundations; ground badly cracked. Rails bent. Landslides considerable from river banks and steep slopes. Shifted sand and mud. Water splashed (slopped) over banks. (X Rossi-Forel Scale.) XI. Few, if any, (masonry) structures remain standing. Bridges destroyed. Broad fissures in ground. Underground pipelines completely out of service. Earth slumps and land slips in soft ground. Rails bent* greatly. XII. Damage total. Waves seen on ground surface. Lines of sight and level distorted. Objects thrown upward into the air. Rev. 0 -.-... Sources* 1 1 1 1,2,3,4 1,2,3,4 2 2,3,5 2,3,7 ' n J.. I L.t 0 .., 0 1 '2 2,3,4,9 2,9 2,7 1 '2' 3' 4 1,2,3,4,7 3,7,10 Year** 1811 (b) 1812(b) 1812 (b) 1867(b) 1875 (a) 1877 (b) 1879 1881 (a) 1882 (b) 1 QQ -'-"-'""'-' , ..... J 1895 (b) 1897 (a) l90l(aj 1903(a) 1904 Date Dec 16 Jan 22 Feb 7 Apr 24 Nov 8 Nov 15 i1a r May 19 Oct 22 Feb 21 Oct 31 Dec 2 Jan 3 Jan 13 Oct 27 1906(a,b) Jan 7 1906 (a) Jan 8 Modified Hercalli Intensity X-XI XI-XII XI-XII VII v VII (2) IV-V III VII III VIII IV v I-II IV-V VII III *For list of Sources, see Pages 4 and 5. TABLE 2.5-19 Page 1 of 5 SEISMIC EVENTS SIGNIFICANT TO THE SITE Body wave Magnitude*** Location Latitude Longitude 6.8-7.3 New Madrid, Missouri 36.6 89.6 2,000,000 7.3-7.8 New Madrid, Missouri 36.6 89.6 2,000,000 7.3-7.8 New Madrid, Missouri 36.6 89.6 2,000,000 5.3 Manhattan (Wamego) , Kansas 39.5 96.7 300,000 4.3 Valley Falls, Kansas 39.3 95.5 8,000 5.3 East Nebraska 41.0 97.0 140,000 3.8-4.3 Kirwin, Kansas 39.3 99.0 3.3 Lawrence, Kansas 38.9 95.2 5.3 Bonham, Texas 33.6 95.6 135,000 3.3 Carthage, Missouri 37.2 94.3 5.8 Charleston, Missouri 37.0 89.4 1,000,000 3.8 Eastern Kansas 45,000 4.3 El Dorado Springs, Missouri 37.5 94.0 2,000 2.3-2.8 Baldwin, Kansas 38.5 95.2 -3.8-4.3 Dodge City, Kansas 37.7 100.0 2,700 5.3 Manhattan, Kansas 39.2 96.5 36,000 3.3 Manhattan, Kansas 39.3 96.6 **Events with Intens tv V or areater at distances of 100 to 200 miles from the site are listed in the table. All events within 100 miles o the are indicated in the table and are denoted with (a). All events perceptible at the site are denoted with ( j. ***Body wave magnitude (Mb) is calculated from the relationship I0 2(Mb) -3.5 (Reference 9). Rev. 0 0 t"' l;:j ,..., \. ?:j tt:i t".l r: Sources* 2,3,4,7 2,3,4,7 2,3,4,7 2,3,4,7 2,3,4,7 1,2 1,2 1,2 2,3,4,7 ., < A a 2 6 1,2 ' " .l.t"-2,3,4,9 l, 2, 3, 4 1,2,3,4 1,2,3,4,10 1;2;3;4;10 2,3,4,10 2,3,4,10 1 '1 '") II 1 1"\ *r'-t...Jt...,.t*v "-: 1 .J. v Year** l906(a) 1906 (a) l906(a) l907(a) 1907 (a) 1917 1918 1918 l919(a) 1 a1 ,._, .... .,\""'I 1920(a) 1924 l925(b) 1926 l927(a) 1927 l928(a) Date Jan 15 Jan 19 Jan 23 Jan 2 Jan ll Mar 28 Sep l Sep 10 May 26 Jul 26 Oct 3 Jun 6 Jul 30 Jun 20 Jan 7 Mar 18 Nov 8 l929(a,b) Sep 23 1929(a;b) 1929(a) 1929 , (\"")(), 1-. k\ .,L._,.IL._,.I \<,.lfl..,,} Oct 21 Oct 23 Nov 26 ,.., __ !do;:;: ...... 7 Dec 27 Modified Mercalli Intensity II-III II-III III (2) IV IV VI V-VI v IV IV-V III III VI v IV-V V-VI IV V(2) II-III IV " . VI TABLE 2.5-19 (continued) Body Wave Magnitude*** 2.8-3.3 2.8-3.3 3.3 3.8 3.8 4.8 4.3-4.8 4.3 3.8 ") 0 II ") .J.u-"% * .J 3.3 3.3 4.8 ... .) 3.8-4.3 4.3-4.8 3.8 4.3 ' " '::!: * ..::: 2.8-3.3 3.8 ' ., ;; 0 Location Manhattan, Kansas Manhattan, Kansas Manhattan, Kansas Arkansas City, Kansas Arkansas City, Kansas Texas Panhandle El Reno, Oklahoma El Reno, Oklahoma Wichita, Kansas .... t....: V'IJ..\, . .J.!J.. \..Q I Kansas Mic::c::,....nri ......... -_. ...... .. -........ ._., ............ _.. ............... Near Cleveland, Oklahoma Texas Panhandle Oklahoma-Arkansas Border McPherson, Kansas White Cloud, Kansas Beloit, Kansas Manhattan, Kansas Junction t-;..; ._..._ -..1 I Kansas Junction City, Kansas Ashland, Kansas !.!0..!!.!.!0. '-'-0.!! i !.O..H;:,o..;:, Oklahoma Latitude 39.3 39.3 39.3 37.1 37.1 35.3 35.5 35.5 37.7 ..) I

    • I 38.2 36.3 35.4 35.5 38.4 40.0 39.5 39.2 39.2 39.0 37.2 ..);:J.,L. Longitude 96.6 96.6 96.6 97.0 97.0 101.2 97.9 98.0 97.3 97.3 94 .l 96.5 101.3 94.9 97.7 95.3 98.1 96.3 96.5 96.8 99.7 ::10::> Page 2 of 5 (m1 J Local 400 1,000 9,500 4,000-10,000 3,000 200,000 18,000 4,000 300 Local 15,000 8,000 J.,uuu .;;fvvv Rev. 0 0 t"' t-1j :::0 tij t;tj :;;>;;

    Sources* 2,3,4,6,10 1,2,3,4,6,10 1,2,4,10 1,2,6,10 1,2,10 1,2,10 6 1,2,10 6 ') ') II 11' Lf.Jt"':l.f.J..V 1,2,10 4,6 1,2,10 1,2,10 1,2,10 6 1,2,10 1,2,10 1,2,4,6 1,2,10 1 ' . Year** Date 1931 {a) Aug 9 1932 Jan 28 1933 Feb 20 1933 Aug 19 1935 (b) Mar 1 1936 Jun 19 1937 Jun 8 1939 (b) Nov 23 1941 Oct 18 , n 11" .J..:J";.L 1948 1948 1950 1951 Sep 10 Mar ll Apr 2 Feb 8 Jun 20 1952(b) Apr 9 1952 Apr 11 1952 Apr 16 1953 Mar 17 1956 Jan 6 1956 Feb 16 1956 Oct 30 .!.:::n.L!.. ;..pr J..) 1961 t TABLE 2.5-19 (continued) Modified Mercalli Body Wave Intensity_ Hagnitude*** VI v V-VI V-VI VII VI IV v v IV VI IV v VI VII IV v VI(2) V=VI VI VI-VI I v 4.8 4.3 4.3-4.8 4.3-4.8 5.3 4.8 3.8 4.3 4.3 3.8 4.8 3.8 4.3 4.8 5.3 3.8 4.3 4.8 li "? --)i 0 "':l.*...J-"':l.eV 4.8 4.8-5.3 Location Turner, Kansas Ellis, Kansas Norton, Kansas El Reno, Oklahoma Tecumseh, Nebraska Borger, Texas Near Shawnee, Oklahoma Griggs, Illinois Near Cordell, Oklahoma Hays, Kansas Dalhart, Texas Beechwood, Kansas Lebanon, Hissouri Amarillo, Texas El Reno, Oklahoma Near Tabler, Oklahoma El Reno, Oklahoma Concho, Oklahoma Barber County, Kansas Edmond, Oklahoma Catoosa, Oklahoma Norton, Kansas Southeast Oklahoma Latitude 39.1 39.0 39.8 35.5 40.3 35.8 35.3 38.2 35.4 38.9 n 37.7 37.4 35.5 35.4 35.1 35.4 35.6 37.3 35.4 36.2 3Y.9 35 .. 0 Longitude 94.7 99.6 99.8 97.8 96.2 101.3 96.9 90.1 99.0 ';19.3 102.5 97.2 92.4 103.0 97.8 97.8 97.8 97.8 98.5 -::11 * ..) 95.7 100.0 :::':J.U Page 3 of 5 (mi ) 300 2,000 5,700-6,000 500 50,000 44,000 25,000 150,000 250 115,000 5,500 25,000 247,000 140,000 8,000 2,700 22,500 5,000 3,700 1,400 8,000 Rev. 0 :2: 0 t"' t'l:J 0 7-J trj tr:l ?'\ TABLE 2.5-19 (continued) Page 4 of 5 Modified Mercalli Body Wave Sources* Year** Date Intensity Magnitude*** Location Latitude Longitude (mi ) 1 1 1 1 1 5 8 5 5 -' Sources: 1961 (a) Dec 25 v 4.3 Excelsior Springs, Missouri 39.1 94.6 11,000 1965(b) Oct 20 VI 4.8 Eastern Missouri 37.7 91.1 160,000 1966 Jul 20 v 4.3 Borger, Texas 35.7 101.2 12,000 1968 May 2 v 4.3 Oklahoma 35.2 96.3 1968(b) Nov 9 VII 5.3 South Central Illinois 38.0 88.5 500,000 1969 May 2 v 4.3 Oklahoma (Eastern) 35.2 96.3 13,000 1969 Jul 1 II-III 3.0 Belle Plaine, Kansas 37.4 97.0 1974 Feb 15 v 4.3 Northwest Texas (near Groomj 35.2 100.7 1976 Apr 16 IV 3.8 Texas Oklahoma boraer 36.1 99.9 1r\""7C .,., __ ," .I.V n Near Arnett, Oklal1oma 36.1 99.8 .J..:JIU .t"\tJ L .l. J .J.O l Coffman, J.L. and Von Hake, C.A., 1973, Earthquake history of the United States: National Oceanographic and Atmospheric Administration, Boulder, Colorado. 2 Coulter, H.W., Waldron, H.H. and Devine, J.F., 1973, Seismic and design considerations for nuclear facilities: Proceedings of the Fifth World Conference on Earthquake Engineering, Rome, Italy, Paper No. 302. 3 Docekal, J., 1970, Earthquake history of the stable interior: Unpublished Ph.D. dissertation, University of Nebraska, Lincoln, Nebraska. 4 DuBois, S.M. and Wilson, F., 1978, List of earthquake intensities for Kansas. 1867-1977: Survey, Environmental Geology Series 2, 56 pp.-* ----5 National Oceanic and Atmospheric Administration, 1978, Earthquake data file, area 35-42N, 87-103W, unpublished computer printout. 6 Merriam, D. F., 1956, History of earthquakes in Kansas: Seismological Society of America Bulletin, vol. 46, no. 2, pp. 87-96. 7 , 1963, Earthquakes of Kansas, The geologic history of Kansas: ----r6"2. State Geological Survey of Kansas, Bulletin 8 Nuttli, O.W., 1974, Magnitude-recurrence relation for central Mississippi Valley earthquakes: Seismological Society o[ Bulletin, vol. 64, pp. 189-1207. Rev. 0 ::2; 0 t"' 1-!j n :::0 t:rJ t:!:j TABLE 2.5-19 (continued) Page 5 of 5 9 Nuttli, o.w. and Herrmann, R.B., 1978, State-of-the-art for assessing earthquake hazards in the United States; Credible earthquakes for the central United States: United States Army Engineer waterways Experiment Station, Vicksburg, Mississippi, Miscellaneous Paper S-73-1, Report 12. 10 Reid, M.W., 1922, Collected earthquake memos: National Oceanographic and Atmospheric Administration, clippings. 11 Rockwood, c., 1882, Some recent earthquakes: American Journal of Science, vol. 23, no. 11, p. 239. 12 Heinrich, R., 1941, Contribution to the earthquake history of Missouri: Seismological Society of America Bulletin, vol. 31, pp. 187-224. 13 u. s. Department of Commerce, 1928-1970, U.S. earthquake yearly list: U.S. Department of Commerce. Rev. 0 ::E! 0 t"" l"!j :::0 t:j tt:l :::>::: Year 1811 1812 1812 1867 1877 1882 1895 1906 1925 ..1..;1£-::J 1929 1929 1935 1939 1952 1965 1968 Date Dec 16 Jan 22 Feb 7 Apr 24 Nov 15 Oct 22 Oct 31 Jan 7 Jul 30 Sep 23 Oct 21 Dec 7 Mar 1 Nov 23 Apr 9 Oct 20 Nov 9 TABLE 2.5-20 EARTHQUAKES PERCEPTIBLE AT THE SITE Distance from Site Site MMI(a) Location MMI (miles) New Madrid, Missouri X-XI 350 V-VI New Madrid, Missouri XI-XII 350 V-VI New Madrid, Missouri XI-XII 350 V-VI Manhattan (Wamego), Kansas VII (b) 105 IV (c) Eastern Nebraska VII 225 I Bonham, Texas VII 240 III-IV Charleston, Missouri VIII 350 III Manhattan, Kansas VII 85 I-III(?) (d) Texas Panhandle VI 360 II Manhattan, Kansas v 75 I I..'.ianhattan, Kansas v 80 I Manhattan, Kansas v 80 I Tecumseh, Nebraska VII 145 III Griggs, Illinois v 300 I El Reno, Oklahoma VII 225 III-IV Eastern Missouri VI 260 II South Central Illinois VII 390 II Note: The primary reference for this table was Docekal, J., 1970, Earthquake history of the stable interior: University of Nebraska, Lincoln, unpublished Ph.D. dissertation. Additional information on the above events may be found in WCGS-1 FSAR Table 2.5-20. aA site intensity of I indicates that the Wolf Creek site was en the cuter bounds of the felt area. 0Epicentral intensity (MM) was VII-VIII according to DuBois & Wilson, 1978. See Section 2.5.5.1 and WCGS-1 FSAR Section 2.5.2.1 for discussion. inteu.sit*y* {NM} of'*./ accvrdiuc. to Dw.Dois"' 8.!*1 ** and Wilson. F_. 1978. Li.oL o[ eorLhuudke intensities for Kansas, 1867-1977; Kansas Survey, Geology 2, 56 Elgure dSite intensity (MM) of IV according to DuBois and Wilson, 1978, Figure 5. 0 t"' 0 ti:l ti:l :;:>::: Rev. 0 Location Manhattan (Wamego) , Kansas TABLE 2.5-21 Sheet l of 23 1867 MANHATTAN (WAMEGO), KANSAS, EARTHQUAKE FELT REPORTS, INTENSITIES ASSIGNED BY DAMES & MOORE Assigned Modified Merca11i Intensity VI -VII VIII UTT V.J.....L Reference 6 6 6 5 6 h 1 II vI .J..""% 6! 11 Earthquake Effects And Intensity Rating Glass shaken from lamp (VI) Shaking & rocking of every house (VI) General alarm -people fled from hnilr!innc (UTT\ ---.... \.-....-, Walls cracked (VI) Special report from 3 mi. S in Wabaunsee Co. -"on the farm of John Cotton, *** during the quake the earth opened and water was thrown out of the opening in considerable quantities. At \.A" ... """"' ... t'..J.\AVC l.lV'-.LOL. U.L.;::)"-Clll\..oC from above the earth opened and fire and smoke issued out. So one of our papers states."(VIII) Light Artie es (e.g., stacked photographs pitched over to SW 11!\ \ v J Clocks stopped (V) Rev. 0 0 I:"" l"l:j (J ::>;:) t!j tt:l Location Manhattan (Wamego), Kansas (cont'd) TABLE 2.5-21 (cont'd) Sheet 2 of 23 Assigned Modified Mercalli Intensity Reference 6' 11 3' 5 11 11 ") I: c. ..J' ..J' u' 10, 11, 14 c. 11 111 u, .L.Lt .L6oj'; 6 6 Earthquake Effects And Intensity Rating Most inhabitants frightened (VI) Stones loosened from buildings (VI) Stone buildings shook but not a crack was caused (not VI) Few stone buildings with weak walls were fractured but none ... "'!"! ... -'="'==="' J:e.l.i \Vl r10t. Vll.l) Two foot wave on Kansas River observed {VII) No wave observed on Big Blue River which empties into the Kansas River at Manhattan (not VII) Aftershock occurred between ...J*VV and 4:00A.M. Thursday (one day later) Cattle alarmed (V) Rev. 0 :2:! 0 t:"" rij 0 t:::j i.."'".J ;A; Location Leavenworth, Kansas TABLE 2.5-21 (cont'd) Sheet 3 of 23 Assigned Modified Mercalli Intensity VII Reference 13 13 6 13 6 13 6 6 6, 13 13 Earthquake Effects And Intensity Rating No disturbance registered on barometer Duration estimated (III) Six-foot saws leaning against wall moved out 6 inches (VII) Windows rattled slightly (IV) .C::.t-ntro nino -------*-l:'*l:'-..... '-J.&..V\...U U_t-'Q.L '-1 i:)UlllC' ;1"\;Y"'t-s Ji /'tTTT\ v _,_.._ J:-' .LH':;j "% .L 1'-'ll-Light articles aggitated (V) Two contiguous buildings lifted up; separated 2 inches, settled back (VII) Woman received electrical shock from spring water, smoke seen to come from bank (VII) Pendulum clocks stopped (IV) Plaster shaken from upper ceiling (VI) n-... .,. ("\ !.'\t;::V

    • V 0 t:"" n ;::c t:!:j t"l ...... ,...."!

    TABLE 2.5-21 (cont'd) Location Assigned Modified Mercalli Intensity Leavenworth, Kansas (cont'd) Louisville, Kansas VII Paola, Kansas VII Reference 13 13 6' 13 13 6' 13 6 6' 13 6, 13 13 6' 13 13 Sheet 4 of 23 Earthquake Effects And Intensity Rating Crockery destroyed (VI) Piles of dry goods overthrown (VI) In restaurants tables became ed and dishes fell (VI) Commotion among the people (VI) Agitation of water in river {VT -VT T i \.-----I Man shaken off load of hay (VI) Horses fell down in the streets {VII) Chimneys toppled and fell (VII) Duration estimated (III) Those standing on the ground almost thrown down (VII) Windows rattled (IV} T""!o---,, Ke v. v ::8 0 I:""' i"!j n ::ti t!j tlj Location Paola, Kansas (cont'd) St= Joseph; Missouri TABLE 2.5-21 (cont'd) Assigned Modified Mercalli Intensity VII Reference 6 6 13 12 13 13 13 5 h 1 .. v, ..I. ...I Sheet 5 of 23 Earthquake Effects And Intensity Rating Large brick building which housed the Republican newspaper office much injured -one side knocked down and destroyed west to west direction (VIII) Sound -rolling of large train over railroad {VI) windows rattled (IV) Buildings swayed (V) Direction <=>c::i-i m;:, i-<=>1'1 f T\1\ ---... ... --\ """ v J Water in tumblers spilled (IV) Hanging lamps jostled out of place (V) Walls cracked (VI) Almost every man, woman, and child fled into the streets (VI) TABLE 2.5-21 (cont'd) Location Assigned Modified Mercalli Intensity St. Joseph, Missouri (cont'd) Reference 61 13 13 6 6 6 13 4 4 Sheet 6 of 23 Earthquake Effects And Intensity Rating Windows broken (VI) Portions of plastering shaken off in one or two houses (VI) Rumbling noise (V) Shaking of entire surface of terra firma (VII) Ladies fi.TT!\ \ y ... .J. i Boxes ...... ,._,, ..... .__,.:J "-""" """J.J. J.Ul;; J.J. \-UJ. J.ll;;U thrown from counters .,...... ...... , -j:-'U..L.C (VI) Brick wall of new school house, standing on elevated piece of ground where street had been cut down, was cracked from the ground several feet up (VI-VII) Bank on which school house stood rent in a distinct seam (VI-VII) Rev. 0 :E; 0 t"1 ...... .. , 0 :;c tt:l t:r:l Location Solomon, Kansas Atchison, Kansas TABLE 2.5-21 (cont'd) Assigned Modified Mercalli Intensity VII VI Reference 6 4 4 4 4 41 6 4 Sheet 7 of 23 Earthquake Effects And Intensity Rating Train on Pacific RR violently ed by shock locomotive was stopped and train men abandoned cab for fear the boiler was about to blow up (VII) Rumbling noise heard "" \ v I Felt on second third floors auu f T T T) \---I Windows rattled (IV) Felt by people sitting on first floor (IV) Drug store: glass jars rattled, chandeliers vibrated (IV) f"'YA,...Iro.r\7 co+-"ro * ......,., '!."'C'""C'"",.,,.'!."'...---...---1 ... --.. --.a..v ..... n.'-.a..:I ':::j..L.U.,;:).U'fVUJ..Ct and lamps shook (IV) Rev. 0 :8 0 t'"' "'J CJ :::0 tr:l tr:l :;;;; Location Atchison, Kansas (cont'd) Des Moines; Iowa TABLE 2.5-21 (cont'd) Assigned M r'l; r; r'l .. o ____ e_ Mercalli Intensity VI Reference 6 4 6 6 6 6 6, 13 Sheet 8 of 23 Earthquake Effects And Intensity Rating People fled from buildings to street (VI) Many alarmed (V) Water in White Creek moved rapidly after a standstill for several days (VI-VI I) Vibration passed westward or north-ward Wave moved from south to north /'tTT 'tT'T" T \ \V.J..-V.J...J..) First oscillation followed by heavier more perceptibly felt swell (VI-VII) persons sitting 1n -:. __ l..;!la.LL::> (I I I) Buildings shook (III-IV) Rev. 0 Location Dubuque, Iowa TABLE 2.5-21 (cont'd) Assigned Modified Mercalli Intensity VI Reference 6, 13 13 6, 13 6 6 6 6 e:; 13 Vf 6, 13 12 3, 6 Sheet 9 of 23 Earthquake Effects And Intensity Rating Persons upon the ground could hardly detect a shock, but the occupants of second and third stories felt it very plainly (III) Duration estimated (III) Window panes rattled (IV) Three shocks felt {IV) Openings formed in brick walls (VI) Gas burners vibrated like pendulum (VI) Cases shook in newspaper room (VI) Pictures shook upon walls (V) Chandeliers swayed to and fro ITT\ \ v) Direction estimated (IV) Panic -many fled outside (V-VI) Rev. 0 Location Dubuque, Iowa (cont'd) Emporia, Kansas Holton, Kansas TABLE 2.5-21 (cont'd) Assigned Modified Mercalli Intensity V -VI VI Reference 3' 13 6 6, 7 6, 7 6 7 6' 7 6 6 Sheet 10 of 23 Earthquake Effects And Intensity Rating In a few buildings some plaster fell in upper stories (VI) Persons in chairs undulated wards and forwards (VI) Rumbling noise heard (V) Duration estimated (IV) Windows rattled (IV) Brick and stone houses more severly affected than frame houses (VI) Cans and bottles disturbed (V) Small books fell from shelves l\1-UT' \ "

    • I Panic -people fled from ings (VI) People fled to (VI) Kev. 0 Location Holton, Kansas (cont'd) lola, Kansas Junction City, Kansas TABLE 2.5-21 (cont'd) Assigned Modified Merca1li Intensity IV 1TT V.i. VI Reference 6, 13 6 -6, 13 c u 6 6 20 6 5, 20 Sheet 11 of 23 Earthquake Effects And Intensi ty___B_ating Goods and wares fell off the shelves in several dry goods stores (VI) Shook buildings (VI) Rattled crockery on shelves Shook houses (VI) Very heavy shock ( T \T \ \-* I Rocked buildings to and fro, moving several inches (VI) People in second story went down stairs (V-VI) Shock seems not to have extended over a quarter of a mile in width Well being dug destroyed (VI) Rev. 0 0 t:""' (1 ::0 I:"J t%j A TABLE 2.5-21 (cont'd) Sheet 12 of 23 Assigned Modified Mercalli Location . Kansas City, Missouri VI Reference 13 13 13 13 13 13 12 12 13 13 13 Earthquake Effects And Intensity Rating Duration estimated (IV) Shaking and rocking of every house (IV) Crockery on shelves rattled (IV) Direction estimated 111\ \ v J Glass on lamps shaken (V) Moveable articles of furniture moved (VI) People rushed out of houses (VI} Portions of plaster were broken off one or two houses (VI) Breaking of plaster (VI) Tables moved (VI) Portions of plastering were shaken off one or two houses but no serious damage was done (VI) Rev. 0 :E: 0 t"' nj 0 ;;o Cr::l i::%:j ?';

    Location Lawrence, Kansas TABLE 2.5-21 (cont'd) Assigned Modified Sheet 13 of 23 Mercalli Earthquake Effects Intensity__ Reference And Jntensity Rating VI 3, 6, 17 9 2 5 3, 17 1::; 9 "" f)_ 9 -. 2, 6 6, 9 () , , :It .l.':l 9 Rumbling noise heard (V) Felt on second and third stories (III) Not felt by people out of doors (not V) Rattled crockery (V) Bettles broken on shelves /'tJ'T \ \ v .l. J Plaster cracked (VI) Doors and windows broken (VI) Type thrown down in printing office (VI) Tumbled some bundles from shelves /'tTT \ Bottles shaken off drugists shelves {VI) Walls in some instances slightly cracked (VI) Rev. 0 0 !:""' n ;;o tlj tr:! Location Lawrence, Kansas {cont'd) Lecompton, Kansas Marysville, Kansas TABLE 2.5-21 {cont'd) Assigned Modified Mercalli Intensity V-VI VI Reference 6 6 13 13 13 3 3 6' 21 21 c:: c: ...J' v Sheet 14 of 23 Earthquake Effects And IntensityRating Three shocks felt over a period of 30 seconds {IV) Panic -people fled to streets {VI) Duration estimated (IV) Windows and doors rattled {IV) T"'iro,....+-;"'1"'\ .. _....:1 /"(T\ '-""' '-* v,, 'I;;.;;:, '-* 1u a '-c u \ v J Loud rumbling noise heard { '\J \ \

    • I Doors and shutters swung back and f,..,rrh nn ----..... \"I Windows, doors, shutters, stove pipes rattled, waved, and swung back -t=-._J,..t.,. 11"T\ U!H . .A .LV.L l,..,lJ, \ \J) In stores bottles and packages rattled (IV) Temporary alarm of a few (V-VIj 0 0 t'1 hj rj ::0 l:.".l Location Marysville, Kansas (cont'd) Oskoloosa, Kansas Ottawa, Kansas TABLE 2.5-21 (cont'd) Assigned Modified Mercalli Intensity VI V-VI Reference 5, 6 6 6, 9 6, 21 13 6, ll, 13 6 6 6 6 Sheet 15 of 23 Earthquake Effects And Intensity Rating Bottles fell off shelf (VI) Felt by people on first and second floor (III) Some articles shaken from shelves and broken (VI) Man fishing in Spring Creek sees trees tremble (VI) 0 t"' t"7j n Duration short (III) Moveable objects moved (VI) Houses vibrated (VI) Rumbling noise (V) Cupola of new school house reeled like druken man (VI) Houses emptied of occupants (V-VI) Buildings shaken (V) Rev. 0 :;o C:I:J ..... *-" A Location Topeka, Kansas Warrensburg, Missouri TABLE 2.5-21 (cont'd) Assigned Modified Merca1li Intensity VI VI Reference 6 18 6 18 5 14 6, 13 6 6, 13 6 Sheet 16 of 23 Earthquake Effects And Intensity Rating Floor heaved and sank lower than its normal level (VI) Rumbling noise heard (V) Horses broke loose from hitching racks and ran toward open country (VI) Duration estimated (IV) Windows broken (VI) People fled from church; many junmping through the broken windows (VI) No damage done T.al 1 1 ro -.,:: -1,.... * , ..--1-.. \..... --.. .... -II --! .C. -----_, nu.l..l..;> v.L 1..-UUJ.. 1..-u uc::avt::u a;:, .I..L ILlUVt:U by a shock from SW" (VI) Plastering fell from ceiling ( \i-\iT \ '\ ,. *-I Buildings moved T'T \ \ v .L ) Rev. 0 Location Wyandotte, Kansas Montgomery County, Kansas Mound City, Kansas TABLE 2.5-21 (cont'd) Assigned Modified Merca11i Intensity VI v v Reference 13 13 6' 13 6, 13 13 h , 6, 13 6, 13 --1, 6 l h v 13 e:.. 1 v, .J.. _, Sheet 17 of 23 Felt Earthquake Effects And Intensity Rating Duration estimated (IV) Windows rattled and jarred (VI) Dishes shaken (IV) Direction estimated (V) Those Doors jarred open (V) Houses swayed (VI) ,,,, \ v ! Shook buildings and dishes off the shelves (IV-V) 't-.ltf"..f-+o.1.f-\.-...<r.T ___ ..,.....,_ L.\....-. .L.'tV\.. UJ J. .LU.Lll':j stage (not VI I) Direction estimated (V) Water shaken from buckets (VI) Kev. 0 ::8 0 L' ;,.: ;;o t::IJ t'lj A Location Mound City, Kansas (cont'd) Olathe, Kansas Jefferson City, Kansas TABLE 2.5-21 (cont'd) Assigned Modified Mercalli Intensity v III Reference 6, 13 6, 13 6 13 6, 13 6, 13 6 6 13 Sheet 18 of 23 Earthquake Effects And Intensity Rating Tumbling of loose articles (V) Doors of some rooms opened (V) Houses violently shaken (VI) Duration estimated (III) Glass ware in the drug store almost thro\*ln from Shingles on the roofs of houses were seen to break loose (V) Houses seen to totter, wave back and forth (VI) Deep rumbling sound (V) Noticed only by a few persons (I I I) Rev. 0 Location St. Louis, Missouri Salina, Kansas TABLE 2.5-21 (cont'd) Assigned Modified Mercalli Intensity III > III Reference 4 12 19 13 6 Sheet 19 of 23 Earthquake Effects And Intensity Rating Felt slightly (III) Furniture, crockery, etc. shaken (IV-V) "Effects of the shock diminished in force after crossing the Missouri River. We are lead to this conclusion from a careful perusal of our St. Louis exchange. At that point, there seems to have been a slight shock, but from our personal knowledge of the temporary structures of which a large por= tion of that city is composed; we are satisfied it never could have withstood the terrific shock we experienced here without damage to both buildings and human life." Duration estimated (IV) Shaking lasted 10 seconds, no damage reported Rev= 0 Location Wathena, Kansas Humbolt, Kansas Fort Kearney, Nebraska Omaha, Nebraska Weston, Missouri Sedalia, Missouri Cairo, TABLE 2.5-21 (cont'd) Assigned Modified Mercalli Intensity III * * * * *
    • Reference 13 13 13 13 13 13 13 13 Sheet 20 of 23 Earthquake Effects And Intensity Rating "Small earthquake" Duration estimated (III) Earthquake felt, no intensity assigned. Earthquake felt, no intensity Earthquake felt, no intensity assigned. Earthquake felt, no intensity assigned. Earthquake felt, no intensity assigned. Earthquake felt, no intensity assigned. Rev. 0 Location Carthage, Ohio Nebraska Arkansas Missouri Kentucky Indiana
    • No intensity assigned TABLE 2.5-21 (cont'd) Assigned Modified Mercalli Intensity * * * * *
    • Reference 13 3, 10, 13, 14; 15 3, 5, 10, 13, 14, 15 3 10, 14, 15 1 ("' "+-1 .... , January 8, 19061 Topeka, Kansas. Sheet 21 of 23 Earthquake Effects And Intensity Rating Three mi. S of Carthage on Miami Canal an acre of ground sank 10' leaving a perpendicular wall of 10' on all sides (questionable report). Earthquake felt, no intensity assigned. Earthquake . -ass1gned. Earthquake felt, no intensity assigned. Earthquake felt, no intensity assigned Earthquake felt, no intensity assigned 2 Cardley, Richard, 1867, Reverand, Lawrence, communication, May 'l. Rev. 0 TABLE 2.5-21 (cont'd) Sheet 22 of 23 3 Coffman, J.L. and Von Hake, C. A., 1973, Earthquake history of the United States: National Oceanographic and Atmospheric Administration, Boulder, Colorado. 4 Daily Free Press, April 25 & 26, 1867, Atchison, Kansas. 5 Docekal, Jerry, 1970, Earthquake history of the stable interior: University of Nebraska, Lincoln, Nebraska, unpublished Ph.D. dissertation. 6 DuBois, Susan M. and Wilson, Frank W. 1978, List of Earthquake Intensities For Kansas, 1867-1977: Environmental Geology Series 2, Kansas Geological Survey, The University of Kansas, Lawrence, Kansas 7 Emporia News, April 26, 1867, Emporia, Kansas. 8 Kansas New Era, Lecompton, Kansas, April 30, 1867. 9 Lykins, H.R., 1867, Journal of Science, V. 44, 139. 10 Merriam, D.F., 1963, The geologic history of Kansas: State Geol. Survey of Kansas, Bull. 162. 11 Mudger, B.F., 1867, Professor State Agricultural College, Manhattan, Kansas: written communication, April 30. 12 New York Times, April 25, 1867, New York, New York. 13 Parker, J.D., 1867, Memoranda of the earthquake of April 24, 1867 (scrapbook of manuscripts, notes and mounted clippings): Kansas Collection of the Spencer Research Library, Lawrence, Kansas. 14 ________ ,1868, Journal of Science, V. 45, no. 129. 15 H.F., 1968, A catalogue of earthquakes States pr1or to ( COITipl i ed by t'_'f-., ., ---_., \ l"'. ..L .r. a r u j
    • 16 Snow, Frank H., 1867, Professor State University, Lawrence, Kansas: written communication, May 20. Rev. 0 TABLE 2.5-21 (cont'd) Sheet 23 of 23 17 Tribune, April 25, 1867, Lawrence, Kansas. 18 Tribune 17a, April 25, 1867, Topeka, Kansas 19 Tribune, 17b, April 30, 1867, Topeka, Kansas. 20 Union, April 27, 1867, Junction City, Kansas. 21 Williams, W.G., 1867, American Journal of Science, V. 44, p. 139. Rev. 0 Location Columbus, Nebraska Lincoln, Nebraska Omaha, Nebraska TABLE 2.5-22 Sheet 1 of 8 1877 EASTERN NEBRASKA EARTHQUAKE FELT REPORTS, INTENSITIES ASSIGNED BY DAMES & MOORE Assigned Modified Mercalli Intensity VII VII VI Reference 5 2,5,7 6 5 1,5,6 6 5 1 1 1 Earthquake Effects And Intensity Rating Duration estimated (III) Walls cracked (VI-VII) Bells in public buildinq (VII) --Duration estimated (III) r.::::.nrr 1.. '"""""'"=' Felt eSpecially in upper ies of brick and stone ings Direction "-t....Ol '-..&..lUU '"' \ v I Clock moved on wall (V) Chandelier swung back and forth (V) Felt in every part of the \V city Rev. 0 0 t"1 n :::0 ('l:J l::tj ;A; Location Omaha, Nebraska Council Bluffs, Iowa North Platte, Nebraska Sioux City, Iowa TABLE 2.5-22 (cont'd) Assigned Modified Mercalli Intensity VI v v VI Reference 1 1 6 1,6 h_7 -, ' 5 2 2,5,7 5 5 t::: ..! Sheet 2 of 8 Earthquake Effects And Intensity Rating Tables and chairs shaken (V-VI) General stampede of citizens into the streets (VI) No damage resulted Duration estimated (III) nirol""'t-iAn \VJ People flee from brick buildings I "f.,\ \ v) Duration estimated (III) Cracked walls in upper floor (V-VI) Overturned printing cases (VI) __ ,_,:_..._J.,..-...J /TTT\ .i...IUJ..CIL..I.VU c;::,L..i.!UQL.t:U \.l.L.LJ Panic in church (V-VI) Rev. 0 :E: 0 L' n :;o C"J tzj :A:

    Location Sioux City, Iowa (cont'd) Yankton, South Dakota West Point, Nebraska Atchison, Kansas Clarks, Nebraska TABLE 2.5-22 (cont'd) Assigned Modified Mercalli Intensity VI v IV III III Reference 1 1,5,2,5 5;2 t:. c:. -'IV 6 6 5 4 5 Sheet 3 of 8 Earthquake Effects And Intensity Rating Nearly everyone ran into the street (V-VI) One wall in the high school cracked (VI) Duration estimated {III} Cracked walls in upper ':::J.----..-Y-.1.'-People rushed from their houses in fright (V-VI) Fall of some plaster (VI) Rattled windows (IV) People from upper stories in several buildings ran into streets (III-IV) Duration estimated (III) Rev. 0 0 t"' \ J :::0 t:r:1 t'J ;::>::: Location St. Joseph, Mo. Wyandotte, Kansas Big Springs, Nebraska De Sota, Nebraska Fort Hartsuff, Nebraska Fort McPherson, Nebraska Genoa, Nebraska Grand Island, Nebraska Kearney Junction, TABLE 2.5-22 (cont'd) Assigned Modified Mercalli Intensity III III * * * * *

    • Reference 2 8 2 2 2 2 2 2 2 Sheet 4 of 8 Earthquake Effects And Intensity Rating Intensity MM (III) Felt by people on high ground and those in brick buildings (I I I) Earthquake felt, no sity assigned. Earthquake felt, no sity assigned. Earthquake felt, no sity assigned. Earthquake felt, no sity assigned. Earthquake felt, no sity assigned. Earthquake felt, no sity assigned. Earthquake felt, sity assigned. no inten-Rev. 0 Location Ogallala, Nebraska Plattsmouth, Nebraska Paxton, Nebraska Potter, Nebraska Sidney, Nebraska Sutton, Nebraska Wisner, Nebraska Boone, Iowa Boonsboro, Iowa n---_ _ T _. __ .. .;a TABLE 2.5-22 (cont'd) Assigned Modified Mercalli Intensity * *
    • * * * * * *
    • Reference 2 2 2 2 2 2 2 2 2 .:. Sheet 5 of 8 Earthquake Effects And Intensity Rating Earthquake felt, no sity assigned. Earthquake felt, no sity assigned. Earthquake felt, no sity assigned. Earthquake felt, no inten-c: ; r \7 .::l c c ; rf ,..... o r1 ---.I \,..t...,...,.';:j ...... '-....... Earthquake felt, no sity assigned. Earthquake felt, no sity assigned. Earthquake felt, no sity assigned. Earthquake felt, no sitv assianed. ---..) -Earthquake felt, no inten-si ty ass igr1ed. -. . ----LartnquaKe telt, no inten-sity assigned. Rev. 0 :E; 0 L' h:j () :;c ...... . -" J::Ij Location Dubuque, Iowa Iowa City, Iowa Logan, Iowa Monticello, Iowa Odgen, Iowa Tabor, Iowa Lawrence, Kansas Kansas City, Kansas Topeka, Kansas TABLE 2.5-22 (cont'd) Assigned Modified Mercalli Intensity * * * " * * * *
    • Reference 2 2 2 2 2 2 t;_A -, -5,8 5,8 Sheet 6 of 8 Earthquake Effects And Intensity Rating Earthquake felt, no sity assigned. Earthquake felt, no sity assigned. Earthquake felt; no sity assigned. Earthquake felt, no sity assigned. Earthquake felt, no sity assigned. Earthquake felt, no si ty assigned. J<';:,rt-hn11:>lra -Fol +-,..,,... ..... -............. "'1 ..... _, .. _ ..... ...... ...., sity assigned. in ten-.£..1.1 '-C"l.l-Earthquake felt, no sity assigned. ""'-.J..,I'-"4.1. '-.1..1.'-jUU.J"""' .L'\;;..L.'-f 11V ..1..1.1\.-CJJ-...... ,. ___ ,: ___ _J .::)J. -=y = Rev. 0 0 t"1 (1 ;.:v tl:j t<:l Location Fort Tandall, South Dakota Olivet, South Dakota Springfield, South Dakota Albert Lea, Minnesota Winebago City, Minnesota St. Joseph, Missouri La Crosse, Wisconsin *No intensity assitned. TABLE 2.5-22 (cont'd) Assigned Modified Mercalli Intensity * * * * *
    • Reference 2 2 2 5,2 2 Sheet 7 of 8 Earthquake Effects And Intensity Rating Earthquake felt, no sity assigned. Earthquake felt, no sity assigned. Earthquake felt, no sity assigned. Earthquake felt, sity assigned. Earthquake felt, sity assigned. no inten-Earthquake felt, no sity assigned. Earthquake felt, no sity assigned. l Chicago Daily News, November 16, 1877, Chicago, Illinois 2 Coffman, J.L. and Von Hake, C.A., 1973, Earthqwuake history of the United States: ti onal Ocear1ographic ana Atmospheric Boulder, Colorado. Rev. 0 TABLE 2.5-22 (cont'd) Sheet 8 of 8 3 Commonwealth, November 16, 1877, Topeka, Kansas. 4 Daily Champion, November 16, 1877, Atchison, Kansas. 5 Docekal, Jerry, 1979, Earthquake history of the stable interior: University of Nebraska, Lincoln, Nebraska, unpublished Ph.D dissertation. 6 New York Times, November 16, 1877, New York, New York. 7 Rockwood, c., 1878, American Journal of Science, V. 115, p. 26 and 238. 8 Wyandotte Herald, November 16, 1877, Kansas City, Kansase Rev. o Location Manhattan, Kansas TABLE 2.5-23 Sheet 1 of 12 1906 MANHATTAN, KANSAS, EARTHQUAKE FELT REPORTS, INTENSITIES ASSIGNED BY DAMES & MOORE Assigned Modified Mercalli Intensity Reference VII 1,5 1, 5 1; 5 l l, 5 , t: -'-r.J 6 3, 5 1, 3, 4, 5 5 ;::: J Earthquake Effects And Intensity _f(ating Rumbling noise (V) Dishes on table shaken together (IV) \Nave from SW to NE (VI) No damage done (not VI) Articles fell from shelves (VI) People fled houses terrified (VII) Plaster cracked (VII) Some cracks in walls (VII) Brick chimneys knocked down from c.rthAI"'\1 h11i1r:!inrt Tin;,...""' ..... __ ... .._ __ ..._ _....,...t...&._..t. .. .I."::JI V.L.I.oi.V.LA. .&..U\o.;.J..L..L.V freight depot, and several houses (VII) Lateral motion followed by vertical rncvernent (VI) Persons in the dining room of the Gillett Hotel rushed out into the street (VI) Rev. 0 0 t"1 l:i:j ,.-, \ .. ::0 C"J t:::j ?::

    Location Manhattan, Kansas (cont'd) Alma, Kansas Junction City, Kansas TABLE 2.5-23 (cont'd) Assigned Modified Mercalli Intensity VI VI Reference 5 5 5 5 5 5 5 5 1' 5 1 1:; .... ' ..; Sheet 2 of 12 Earthquake Effects And Intensity Rating Aftershock 20 minutes later Vase, lamp or bottle broken in every house (VI) Aftershock January 23 at 8:00 am Walls rocked, floors weaved (VI) Windows rattled, chinaware jumped (VI) People felt weak in the knees (VI) Followed by second shock at 10:30 pm which was slight, and caused no alarm (IV) r ""*,. V"1'1Tnh1; 'I'"\-t:"'"-1'1-....:J ,..... _____ -1.-.--1,.. L.JVWV .L. U.UaJo.../..L. .L.lJ.';:1 .::JVU.1J.U ,t-'J. U\...CCUCU (V) Dishes and windows rattled (IV) Some parts of town: many frightened people left their homes (VI) Rev. 0 0 L' t':!:j n ::0 -.. t':l TABLE 2.5-23 (cont'd) Location Assigned Modified Mercalli Intensity Junction City, Kansas (cont'd) Wamego, Kansas VI Westmoreland, Kansas VI Abilene, Kansas v Reference 1, 5 4, 5 4, 5 5 5 5 5 1, 5 1 -t; -, -1 Sheet 3 of 12 Earthquake Effects And Intensity Rating In some houses articles were shaken from shelves and tables (VI) Plaster knocked from walls (VI) Plaster knocked from walls (VI) Things tumbled about generally (V) Pictures shaken from wall (VI) Bottles shaken from shelves (VI) Plastering jarred off courthouse in places (VI) Rattled dishes (IV) lAi;, t-r::> y i n n 1 ;, c c c h rl * ----.... ";j ..... --..... ..... ...... -.... --motion (V) ... ...,.""-L. '""'A./..&."'-Many people alarmed (V) xev. u :8 0 t:""1 \ .J ::0 i:'j t'j ?;; Location Abilene, Kansas Cleburne, Kansas Emporia, Kansas TABLE 2.5-23 (cont'd) Assigned Modified Mercalli Intensity V-VI V-VI Reference 1 5 5 5 5 5, 6 5 5 5 Sheet 4 of 12 Earthquake Effects And Intensity Rating Some people did not notice the shock (III) Movement plainly perceptible (V) Some dishes broken (V) Some people very much disturbed, thinking an explosion had oc= cur red (V) More severe than at Irving (V-Vl) 3 shocks -Vibrations lasted for about sixty seconds (III) Many people frightened, several ran outdoors (V) Dishes rattled, houses shook (VI) More severe four miles north of town, lighter to the east, hardly f" <=> 1 t-C>l"\ 11t-h r. f" k'm nr. r i :::> .._.._\,.4.._,.,. *""' 0 0 t"" "'!j n ;;v .. -.. tJ:j A Location Emporia, Kansas (cont'd) Hope, Kansas St. Joseph, Missouri TABLE 2.5-23 (cont'd) Assigned Modified Mercalli Intensity v V-VI Reference 5 5 5 5 5 5 5 5 5 5 Sheet 5 of 12 Earthquake Effects And Intensity Rating Three distinct shocks all over Lyon Co. (IV) No damage reported (V) Buildings trembled (VI) Doors slammed shut in houses (V) Rattled dishes and tinware (V) Detached pictures from wall (V) Frightened small children (V) Shock came from south and lasted ten seconds Tables did freakish stunts, floors swayed, dishes danced (VI) Rev. 0 Location TABLE 2.5-23 (cont'd) Assigned Modified Sheet 6 of 12 Mercalli Earthquake Effects Intensity Reference And Intens_i.ty RA_ting St. Joseph, Missouri (cont'd) 5 Plates on racks attached to wall fell to floor (V) Topeka, Kansas V-VI 1 1, 1 1 --, 5 5 5 1 . 1 1 5 " -t; -Felt on 3rd floor (III) Rattled glass on glass lamps (IV) Houses and windows shake (IV) Dishes, windows, doors rattled f TU' \ ,J.. y ! Roaring sound followed by the shock (VI) Baby fell from lounge (VI) Slight shock resulting in curious inquiries at telephone office !:lc1.o.on

    • l"tT\ 4 ... -. .... ""'.._,,. __ 1:"" n"""t.J \ V J People fled Gillett Hotel (V-VI) Not felt by man riding bike (not VI) Rev. U 0 t"' i-!J J :;o tr:l t:&:J ?':

    Location Auburn, Kansas Blue Rapids, Kansas Irving, Kansas TABLE 2.5-23 (cont'd) Assigned Modified fvlerca11i Intensity IV IV IV-V Reference 5 5 5 5 5 5 5 5 5 5 Sheet 7 of 12 Earthquake Effects And Intensity Rating Stove 1 ids rattled (IV) Houses shook (VI) Same reports from Dover, in Shawnee Co. Many people felt trembling or rocking (IV) Not severe (IV) In Great Western Mines, 500-600 n.f= rnf"lr .f'o11 /\il __ --=-.L......,-:,._ \VJ Rattled dishes on supper table Beds shaken violently (V) Some people quite alarmed (V) Similar reports from Bigelow Kev. u (IV) 0 t'"' (} :::0 t::rj t:rJ Location Kansas City, Missouri Lawrence, Kansas Lincoln, Nebraska Seneca, Kansas TABLE 2.5-23 (cont'd) Assigned Modified Mercalli Intensity IV IV (?) IV (?) IV Reference 5,6 6 5, 6 5 5 5 5 c: ..J 5 c ..J 6 Sheet 8 of 12 Earthquake Effects And Intensity Rating Duration 23 seconds (IV) Shook windows (IV) Rattled dishes (IV) Direction: from north (V) Shook chandeliers (V) No doubt about shaking here, (IV) although severer to the west Did not cause alarm (IV) Shook globes and chandelier fastenings (IV) Distinctly felt although no damage was reported (IV) Jarred windows (IV) Rattled dishes (IV) Location Wathena, Kansas Woodbine: Kansas Marysville, Kansas Valley Falls1 Kansas White Cloud, Kansas TABLE 2.5-23 (cont'd) Assigned M r'lifcr'l .. Mercalli Intensity IV-V IV I-III II-III II-III Reference 5 6 6 5 6 5 Sheet 9 of 12 Earthquake Effects And Intensity Rating Severe earthquake accompanied by rumbling sound noticed here (V) Traveled N-S (V) Houses shaken (V) Dishes rattled (IV) c<h",...J., /T"t7\ --. ....... -... ..;:;Jj.J.VVn. \.L. V J Doors slammed (V) Dishes rattled in cupboards (IV) Noticed by people sitting (II) Slight but distinct shocks every day or so from Jan. 7 -Jan. 23 Felt, but not very severe Rev_ 0 Location Wichita, Kansas Oskaloosa, Kansas Henington, Kansas Beloit, Kansas Kansas City, Kansas Salina, Kansas Skiddy, Kansas TABLE 2.5-23 (cont'd) Sheet 10 of 12 Assigned Modified Mercalli Intensity II-III * * * * *

    • Reference 6 51 6 41 7 41 f 3 1 4 f 7 4 f 7 2' 6 5 Earthquake Effects And Intensity Rating Felt only in large downtown ings and W side of Arkansas River (III) Reports from surrounding small towns estimated shock lasted 3-4 seconds (III) Earthquake felt, no intensity assigned .. Earthquake felt, no intensity assigned. Earthquake felt, no intensity assigned. Earthquake felt, no intensity assigned. Earthquake felt, no intensity assigned. Most of the wells at Skiddy have gone dry use to be half before the earthquake .L UJ. J. Rev. 0 0 t"' (1 :::0 trJ tr:l A Location Minneapolis, Kansas Clay Center, Kansas Plattsmouth, Nebraska Falls City, Nebraska Brook, Nebraska Joplin, Missouri Bethany, Missouri TABLE 2.5-23 (cont'd) Assigned Modified Mercalli Intensity * * * * * *
    • Reference 6 6 31 4 4 4 21 5 3, 4 Sheet 11 of 12 Earthquake Effects And Intensity Rating Earthquake felt, no intensity assigned. Earthquake felt, no intensity assigned. Earthquake felt, no intensity assigned. Earthquake felt, no intensity assigned. Earthquake assigned. no intensity Earthquake felt, no intensity assigned. Earthquake felt, no intensity assigned. Rev. 0 TABLE 2.5-23 (cont'd) Sheet 12 of 12 Location Assigned Modified Merca11i Intensity Reference Earthquake Effects And Intensity Rating St. Joseph, Missouri v 41 6 Earthquake felt, no intensity assigned. assigned. 1 Capital, January 8, 1906, Topeka, Kansas. 2 Chicago Daily Tribune, January 8, 1906, Chicago, Illinois. 3 Coffman, J.L. and Vontlake, C.A., 1973, Earthquake History of the United States: National Oceanographic and Atmospheric Administration, Boulder, Colorado. 4 Docekal, Jerry, 1970, Earthquake History of the Stable Interior: University of Nebraska, Lincoln, Nebraska, unpublished Ph.D. dissertation. 5 DuBois, Susan M. and Wilson, Frank W. 1978, List of Earthquake Intensities For Kansas; 1867-1977: Environmental Geology Series 2, Kansas Geological Survey, The University of Kansas, Lawrence, Kansas. 6 Inter Ocean, January 8, 1906, Chicago, Illinois. 7 J\1prri.::am_ n p l'f'ho r:..t:::!d"\,ANir" --l= S"--"--,... __ , ....... ---** _.c T?---.,,---, -*---*--..... , -***t .... _....,_,, olo.i..&'-'--V..I.V':::J.I.'-LJ...L "-VJ...:J V.L L\O..u.:>au. I....QL.t:: Ut::U.J..e uurvt:::y U.L 1"\.d!l::Sd::S, Bull .. 162, p. 80-290. Rev. 0 :a: 0 t'"' t-rj () ':0 t"l t-r:1 Location Tecumesh, Nebraska Humboldt, Nebraska -*. .... ;nee \....l'Cy, TABLE 2.5-24 Sheet 1 of 5 1935 TECUMSEH, NEBRASKA EARTHQUAKE FELT REPORTS, INTENSITIES ASSIGNED BY USCGS Assigned Modified Mercalli Intensity VI VI v Reference 2 2 2,3 2 2,3 4 4 4 4 Earthquake Effects And Intensity Rating Two shocks, four minutes apart Sleepers awaken (V) Chimneys cracked (VI) Few windows broken (VI) Plaster and stone walls cracked (VI) Few walls cracked (VI) Dishes broken (VI) Few toppled chimneys (VI-VII) Two shocks Pictures tilted on wall (V) Some plaster and walls cracked (VI) Felt oy nearly everyone (V) Many alarmed (V) Rev. 0 Location Pawnee City, Nebraska (cont'd) Peru, Nebraska Shubert, Nebraska Stella, Nebraska St. Mary's, Nebraska TABLE 2.5-24 (cont'd) Assigned Modified Mercalli Intensity v v v v Reference 4 4 4 4 4 4 4 4 4 4 4 4 ., Sheet 2 of 5 Earthquake Effects And Intensity Rating Clock made to strike (V) Pendulum clocks stopped (V) Pendulum clocks stopped (V) Frightened many (V) Damage slight (V) Felt by all ( VT \ \ y .. J Frightened many (V) Pendulum clocks stopped (V} Bricks loosened ; __ ..... ;7'n--l:'i' ,,1\ .1.1.1 \,..J.J.L.UU1CX \VJ Felt by all (VI) Frightened many (V) Pendulum clocks o;:)O...UJ:"J:"CU ! 't T \ \ v I Bricks loosened in cn1mney \VJ Rev. 0 :2:: 0 t'"' i"rj ,..., \ .i :;o t'J c::J ;::><;

    Location Wymore, Nebraska Riverton, Iowa TABLE 2.5-24 (cont'd) Assigned M r'l

    • r * ' .. 1 1 ea Mercalli Intensity v v Reference 4 4 4 4 4 Sheet 3 of 5 Earthquake Effects And Intensity Rating Shock felt, accompanied by roaring noise Pictures displaced (V) Pendulum clocks stopped (V) Felt by all (V) Cemented walls cracked "Intensity IV in Nebraska: Auburn, Blue Spring, Crab Orchard, Du Bois Fairbury, Fall City, Fullerton, Holmesville, Howe, Liberty, Lincoln, Nebraska City, Nemaha, Odell, Plattesmouth, Rulo, Salem, Steinaver, Table Rock, Virginia. Intensity IV in Iowa: Clarinda, Emerson, Keosauqua, Mt. Ayr, Tabor, Thurman. Intensity IV in Kansas: Atchison, Bern, Burlington, Burr Oak, Clay Center, Downs, Hamlin, Havens111e, Hanover, Hiawatha, Holton, Horton, Junction City, Manhattan, Marysville, Okote, Osage City, Salina, St. Mar's, Topeka, Troy, Wamego, Wheaton, White Cloud. Intensity IV in Missouri: Oregon and St. Joseph. Intensity III and under in Nebraska: Central City, Columbus, Franklin, Fremont, Friend, Guide Rock, Hastings, Minden, Norfolk, Omaha, Red Cloud, Superior. Re"i:J. 0 TABLE 2.5-24 (cont'd) Sheet 4 of 5 "Intensity III and under in Iowa: Albion, Anita, Atlantic, Bedrord, Carroll, Cedar Rapids, Centerville, Chariton, Corydon, Council Bluffs, Creston, Cumberland, Davis City, Des Moines, Elkader, Glenwood, Grundy Center, Hawarden, Logan, Melrose, Missouri Valley, Oakland, Van Meter, Webster City, Winterset. Intensity III and under in Kansas: Baldwin, Belleville, Centralia, Chapman, Clifton, Cloverbrook, Concordia, Council Grove, Elmdale, Emmett, Emporia, Everest, Fairview, Florence, Fort Scott, Garnett, Heizer, Kansas City, La Cygne, Lawrence, Leavenworth, Lindsborg, Lyndon, Marion, Minneapolis, Morrill, Norton, Onaga, Oneda, Ottawa, Paola, Pomona, Pratt, Republic, Reserve, Russell, Smith Center. Intensity III and under in Missouri: Carrollton, Excelsior Springs, Harrisonville, Kansas City, Kingston, Langdon, Liberty, Mount City, Rockport, Savannah. Not felt in Nebraska: Alma, Blair, Kearney, Ravenna. Not in Iowa: Akron, Albia, Alta, Alton, Belle Plaine, Belmond, Clinton, Columbus Junction, Dodge, Esterville, Fairfield, Forest City, Harlan, Humboldt, Inwood, Knoxville, Le Claire, Legrand, Manchester, Marathon, Mason City, Monroe, Muscatine, New Hampton, Oelwein, Ottumwa, Osage, Perry, Pocohontas, Rockwell City, Sac City, Spencer, Toledo, Wapello, washington. Not felt in Kansas: Alden, Anthony, Ashland, Bucklin, Carbondale, Cimarron, Colby, Coldwater, Columbus, Cottonwood Falls, Dresden, Elkhart, Eureka, Fredonia, Garden City, Great Bend, Greensburg, Hays, Healy, Hill City, Hudson, Hugoton, Independence, ---... -, ;.,.,-'-.l.n_.&._f "'".&.""".Hl--f .&-1\.A.&.J.Ulf .&..1'-"'.._,'-*t .&..I.&.AJC.&.U_.f t*iVI:11C1.i:JiV11f Minneapolis, Mount Hope, Ness City, Norwich, Oakley, Oberlin, Parsons, Plains, Plainville, Quinter, Randolph, Reading, Richfield, Scott City, Scranton, Sharon Springs, St. Francis, Sublette, Syracuse, Toronto, Tribune, Trousdale, Ulysses, Wagstaff, Wakeeney, Wellington, Winfield. l\.1 ,-.. i--Fa 1 i-; n M; c c,... 11,... ; * ("" h 1 1 ; ,... -. h r. T V"\ .f-M "'!to -r-. 1 1 .i..l.L .1.-.I..L.t.JUVV.L..L.* """I.J..L.-....L..J..'-"V"-J..I.'!i;;;;f J...JU1llVJ.1"-f t*.lU.Li:JiL.lO...L..l..* f 1\1-1 'IY"r"'-.......,. --4=------II \ \J..'i'Cl .. UUO.lJ.f L.'C.L.'CLCll\...C Rev. 0 0 t=' * "'..i (J >tl tr:l tr:l ;A:

    TABLE 2.5-24 (cont'd) Sheet 5 of 5 1 Coffman, J.L., and Von Hake, C.A., 1973, Earthquake history of the United States: National Ocenographic and Atmospheric Administration, Boulder, Colorado. 2 Docekal, Jerry, 1970, Earthquake history of the stable interior: University of Nebraska, Lincoln, Nebraska, unpublished Ph.D. dissertation. 3 Merriam, D.F., 1963, The geologic history of Kansas: State Geol. Survey of Kansas, Bull. 162, p. 80-290. 4 Neumann, Frank, (no date), United States Earthquakes 1935: United States Coast and Geodetic Survey, p. 16 and 17. Rev. 0 WOLF' CRE:E:K TABLE 2.5-25 RESULTS OF UNCONFINED COMPRESSION TESTS ON UNDIS'IURBED SOIL Sli.MPLES .E*'ield Shear Moisture Dry Depth Stren<Jth Content Density Soil Boring (feet) (psf) ____ _j_p c t) (I2Cf) ___ B-1 7.5 5,980 22.1 101.5 CirCH B-1 19.0 936 25.4 97.6 CL--CH B-4 7.5 4,880 17.7 105.6 cr. B-4 10.5 6,160 13.0 119.2 CL B-4 13.5 6,860 12.5 120.7 CL B-5 4.0 820 20.8 107.5 CL B-6 5.0 865 23.6 119.2 CL B-8 1.5 420 2 ,. "7 94.6 CL ** .)

    • j B-9 4.5 1,640 20.3 105.9 CIJ P-1 2.5 6,440 16.5 111.3 P-8 3.5 857 20.B B5.3 P-12 3.5 2,050 19.4 101.5 MIJ P-13 6.0 3,190 15.7 115.3 CL HS-1 1.0 921 9.0 107.8 CL HS-1 2.5 1,740 24.4 105.3 CL HS-1 4.5 1,320 17.4 110.6 :::c: HS-1 6.0 2,030 23.6 96.0 HS-2 1.0 1,720 14.0 97.6 MI, HS-2 2.0 2,340 8.5 125.8 CL HS-2 4.0 2,030 2 0 .. :i 101.8 cr. HS-2 8.0 1,450 23.3 99.1 cr. HS-5 2.5 1,650 36.7 83.9 CH HS-6 9.0 774 20.3 102.6 CI, ESW-5 4.5 2,491 16.2 111.9 cr. ESW-6 3.0 1,877 16.3 103.4 cr. ESvl-7 3.0 2,631 23.4 108.3 CI, ESW-9 6.6 2,714 18.8 111.5 CB ESW-11 3.5 2,190 19.5 106.3 CL ESW-13 5.0 3,243 18.8 113.9 CL ESW-17 2.0 3,249 25.3 9B.l CH ESW-20 2.0 1,405 31.1 90.1 CH Rev .* 0 WOL:f CRlmK TABLE 2.5-26 RESULTS OF UNCONI'INED COMPRESSION TESTS ON RECOMPACTED SOIL SAMPLES Degree of Shear Moisture Dry Depth Compaction* Strength Content Density Soil Boring (feet) (_Eercent) __ (percent) ( p c f ) B-1 7.5 92.8 2,100 13.7 107.2 CL-CH B-1 7.5 97.5 4,0:30 17.1 112.6 CL-CH
    • Harvard Miniature Method. Rev .. 0 TABLE 2.5-27 RESULTS OF DIRECT SHEAR TEST ON SOIL l\1 __ .,....,.., ..... , Peak Yield J..'lU.l..J.UO...L Constant Shear Shear Moisture Dry Depth Pressure Strength Strength Content Density Soil Boring (feet) (psf) (psf) (psf) (percent) (pcf) Type B-9 1.5 500 520 346 28.4 90.9 SM-ML Rev. 0 TABLE 2.5-28 RESULTS OF UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TESTS ON UNDISTURBED SOIL SAMPLES(a) Boring B-4 B-5 B-7 P-2 P-4 P-5 P-6 P=7 P-8 "D-1 1 * -L-L HS-14 HS-14 HS-15 HS-15 HS-16(b) HS-16(b) Depth (feet) 6.0 6.5 1.5 2.5 6.0 2.0 2.0 2.5 4.0 6.0 1.0 4.0 4.0 4.0 Shear Strength (psf) 1,900 3,000 1,245 1,769 2,435 6,720 8,162 1,757 422 998 1,234 977 3,077 804 822 Confining Pressure (psf) 2,000 2,000 500 418 605 202 202 ,...,...., '-J:JL. 288 346 1,000 2,000 1,000 1,000 1,000 1,872 astrain rate equals 6.0 inches per hour. bTwo-stage test on the same test specimen. Field Moisture Content (percent) 18.6 17.9 31.7 20.4 15.7 12.1 12.6 (\ () ;:;.o 1 a .1 ..i.....le"':t ')'7 '7
    • I 27.0 22.9 30.2 18.7 24.6 24.6 Saturated Moisture Content (percent) 27.2 23.7 33.0 21.1 27.5 27.5 Dry Density (pcf) 108.1 113.1 88.7 104.1 114.0 114.7 114.3 ., ., ,... ,... .L.L:J.:J 107.0 98.0 95.3 98.9 86.6 109.3 100.2 100.2 Rev. 0 Soil Type HL CL CH CL SH ML CL-ML lvlL CH CH CH MH-OH CH CL-CH CL-CH TABLE 2.5-29 RESULTS OF UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TESTS ON RECOMPACTED SOIL SAMPLEs(a) Saturated Shear Confining Moisture Dry Depth Strength Pressure Content Density Soil Test Pit (feet) (psf) (psf) (percent) (pcf) Type TP-1 TP-1 TP-2 TP-2 TP-3 TP-3 'T'P-Ll/rpp_,::; -"-..0.. -., ..... v TP-4/TP-6 TP-5 TP-5 TP-E TP-6 TP-11 TP-11 TP-12 l. 0-3.0 1.0-3.0 1.0-4.0 1.0-4.0 l.0-5.0 1 n_c: n ..L.u-...;.v ? n-A () /1 C:-A C:: L..eV -:T.aVf..L*..J -z*...J 2.0-4.0/1.5-4.5 2.0-4.0 2.0-4.0 5.0-6.0 5.0-6.0 3. 0 (b) 5.o-s.5(b) 2. 4 (b) 450 660 750 880 630 860 460 760 410 660 390 630 2223 6946 6390 600 1800 600 1800 600 1800 600 1800 600 1800 600 1800 2160 2160 2160 23.6 23.5 26.9 27.0 36.1 36.5 37.6 37.4 43.1 41.8 36.2 -:),::; ":l -JUe...J l3.7(C) 14.4(c) l8.l(c) 102.7 102.8 97.9 97.9 87.3 87.3 ()., .., 0 I
    • I 87.7 82.0 82.0 87.6 0"7 c: U I
    • U 112 118 108 a Samples recompacted to 95 percent maximum dry density per ASTH D698-70. Strain rate equals 6.9 inches per hour. b Samples recompacted according to ASTM Dl557-70. c Not saturated. Represents as tested moisture content. Rev. 0 CL CL CH CH CH CH CH CH C!-I (""' t.r ..... J, CL CL CL CL CH :8 0 t"" F.lj 0 :::c t<:l t<:l ::>'::

    Boring HS-14 HS-14 HS-15 HS-15 T't r-. "'1 ,_, n.::.-.J..t HS-17 HS-21 HS-21 Depth (feet) 4.0 6.0 1.0 4.0 2.5 " (\ '+/-.V 1.0 2.5 TABLE 2.5-30 RESULTS OF CONSOLIDATED-UlJDRi'\INED TRIAXIAL COMPRESSION TESTS ON UNDISTURBED SOIL SA.L'11PLES(a) tive Cohesion (psf) 415 415 575 1290 575 750 345 345 Effective Friction Angle (degrees) 20.8 20.8 19.8 14.3 22.0 21.3 27.3 27.3 Consoli-Shear dation Strength(b) Pressure (psf) (psf) 980 1000 1410 2000 1210 1000 2540 2000 1390 1000 2175 2000 1145 1000 1360 2000 Initial Moisture Content (percent) 27.4 22.3 29.1 19.2 20.4 22.4 34.3 33.0 Saturated Moisture Content (percent) 29.4 22.9 29.2 21.0 23.1 35.1 34.2 Dry Density (pcf) 85.3 99.6 94.6 99.0 105.2 104.2 83.2 87.1 anuring consolidation, the sample drained from both ton and bortorr1,.

    • c d . IlLter paper ra1ns were used. Pore pressures were only measured at r_he bottom ... th , _ --e sarnp.1.e. bstrain rate equals 0.05 inches per hour. Rev. 0 Soil Type CL CH MH-OH CH CL CL CH CH Boring/ Depth Test Pit (feet) TP-1 1.0-3.0 TP-1 1.0-3.0 TP-1 1.0-3.0 TP-1 1.0-3.0 TP-1 1.0-3.0 TP-2 l.0-4.0 TP-2 , {'\ , {'\ ..L.v-'"t.v TP-2 1.0-4.0 TP-2 1.0-4.0 TP-2 l.0-4.0 TP-3 l.0-5.0 TP-3 ., r'\ .... 1'\ J._.u-:).v TP-3 1.0-5.0 TP-4/TP-6 2.0-4.0/1.5-4. TP-4/TP-6 2.0-4.0/1.5-4. TP-4/'I'P-6 2.0-4.0/1.5-4. 7?-4/T?-6 2.0-4.0/1.5-4. TP-5 2.0-4.0 TP-5 2.0-4.0 TP-5 2.0-4.0 TP-5 2.0-4.0 TP-6 5.0-6.0 TP-6 5.0-6.0 TP-6 5.0-6.0 TABLE 2.5-31 RESULTS OF CONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TESTS ON RECOMPACTED SOIL SAMPLES(a) Sheet 1 of 2 Strain Peak Pore Pressure Saturated Fate (inches/ Consolidation at Peak Moisture Dry Pressure Stress ) Deviator Stress Cor.tent Density Soil hour) (psf) _ (psf)____ (psf) _____jpercent) (pcf) Type l. 740 600 1080 440 23.6 102.8 CL l. 740 1200 1140 900 2L.6 102.8 CL l. 140 1800 1400 1300 22.2 102.8 CL 0.276 600 960 400 23.9 102.7 CL 0.048 1800 1440 1160 22.1 102.8 CL 0.960 600 1160 260 22.6 97.9 CH 0.960 1200 1380 600 25.5 97.9 CH 0.480 1800 1740 1000 25.2 97.9 CH 0.072 600 1180 280 26.7 97.9 CH 0.048 1800 1640 1000 24.9 97.9 CH 0.660 600 960 440 34.6 87.3 CH 0. 360 1200 1200 800 32.9 87.3 0. 360 1800 1480 1080 31.8 87.3 CH 0 0.660 600 720 480 35.1 87.7 CH L' 0.240 1200 920 620 3 2. 4 <l I. 7 CH '-::i 0.180 1800 10 80 1000 30.9 87.7 Cii 0.054 1800 1100 960 30.2 s 7. 7 en 0.360 600 680 300 !11 n ,., r< '"t..L.v 0.012 1200 840 570 38.6 82.2 CH 0.006 1800 1020 940 37.1 82.2 CH 0.029 1800 660 340 40.3 82.2 CH 0.066 600 520 280 34.2 87.6 CL 0.028 1200 700 530 32.2 87.7 CL 0.010 1800 960 760 30.8 87.7 CL aDuring consolidation, the sample drained from both top and bottom; side filter Pore Pressures were measured at top and bottom of the sample; the average pore compute the effective parameters. paper drains were used. pressure was used to h uPeak deviator stresses correspond to strains of less than 10 percent= Rev. 0 TABLE 2.5-31 (continued) Sheet 2 of 2 Strain Peak Pore Pressure Saturated Rate Consolidation Deviatol(b at Peak Moisture Dry Boring/ Depth (inches/ Pressure Stress ) Deviator Stress Content Density Soil Test Pit (feet) hour) (psf) (psf) (psf) (percent) (pcf) Type P-16 & 18 3.0-5.0 0.064 575 4060 920 17.8 114 ML P-17 & 18 5.0-8.0 0.050 1000 3600 450 17.5 114 SC P-22 3.0-5.0 0.050 1150 2100 520 21.8 115 CL P-26 & 28 3.0-5.0 0.180 2000 5450 460 18.6 112 CL TP-9 5.0 (\ 1440 2437 -338 24.2 103.4 CH ::8 v.u.J TP-9 5.0 0.025 2880 3206 331 23.8 103.1 CH ,.... ....., TP-9 5.0-6.0 0.032 1224 2691 -ll5 21.5 113.8 l_ .rl !::9 TP-9 5.0-7.5 0.05 1296 1581 245 26.1 1 "o r CH . -" ...J...UO.U n TP-10 2.0-3.0 0.024 2160 3281 -ll5 26.8 101.1 CH :;o TP-10 '"'! 1"1 ...., "" 0.032 1224 1906 1296 31.5 96.0 CH t=l tC..U-.) .. U TP-10 2 .. 0-3.0 0.015 1152 4349 25.8 104.4 CH (%j J'.., ::,:::: TP-11 3.0 0.360 14 40 6664 -1138 16.4 106.0 CL-ML TP-11 3.0 0.012 2880 4143 1138 19.0 118.0 CL-ML TP-11 3.0 0.025 6480 12,949 2189 17.7 118.5 CL-ML TP-11 5.0-8.5 0.025 1440 3825 -763 " ' 120.0 CL L..L * .L TP-ll 5.0-8.5 0.012 2160 4543 -965 19.1 116.1 CL TP-11 5.0-8.5 0.025 2880 6982 -1448 18.2 119.5 CL TP-12 2. 4 0.025 14 40 4831 72 24.9 106.7 CH TP-12 2. 4 ('\ ('\('\j 2880 4421 1541 25.8 109.0 CH v.uv..; TP-12 2.4 0.032 6480 6297 3629 25.9 lll.S CH Rev. 0

    TABLE 2.5-32 Sheet 1 of 5 RESULTS OF UNCONFINED COMPRESSION TESTS ON ROCK CORE SAMPLES Boring Geologic Unit and Lithology

    Depth (feet) Elevation (feet)Unconfined Compressive Strength (psi)Static Modulus of Elasticity* times l0-6 (psi) Poisson's Ratio* Bulk Modulus times 10-6 (psi) P-6 Jackson Park Sandstone 7.4 1099.2 2,220 0.382 0.31 0.34 P-9 Jackson Park Sandy Siltstone 9.9 1094.6 2,330 0.323 0.30 0.27 P-ll Heumader Shale 25.3 1078.1 69 0.00182 0.37 0.0023 B-4 Heumader Shale 22.9 1075.1 300 0.0343 - - P-4 Heumader Shale 36.3 1069.3 56 0.. 00104 0..42 0.0022 P-9 Heumader Shale 35.8 1068.7 131 0.00553 0.40 0.0092 ESW-12 Heumader Shale 17.8 1072.8 161 0.0914 0.42 - ESW-12 Heumader Shale 30.0 1060.6 103 0.0764 0.43 P-9 Plattsmouth Limestone43.1 1061.4 8.600 5.93 0.29 4.7 HS-28 Plattsmouth Limestone 33.0 1058.8 6,690 9.26 0.27 - HS-29 Plattsmouth Limestone 34.2 1057.2 11,420 8.59 0.22 - B-4 Plattsmouth Limestone 43.9 1054.6 9,300 9.59 - - P-12 Plattsmouth Limestone 48.0 1054.2 7,350 3.80 0.23 2.3

    • At 40 percent of unconfined compressive strength Additional borings (B-100-Series) and compression testing was performed for replacement ESWS piping and the results are similar to what is recorded in the table. Rev. 28 TABLE 2.5-32 (continued) Sheet 2 of 5 Unconfined Static Modulus Compressive of Elasticity* Bulk Modulus Geologic Unit Depth Elevation Strength times lo-6 Poisson's times lo-6 Boring and Lithology (feet) (feet) (psi) (psi) Ratio* (psi) B-5 Plattsmouth 41.5 1052.4 16,440 9.028 Limestone P-6 Plattsmouth 49.5 1051.1 9,340 10.3 0.22 6.1 Limestone HS-28 Plattsmouth 42.8 1049.0 5,380 4.78 0.29 :8 Limestone 0 ESW-12 Plattsmouth 46.9 1043.7 5,970 4"571 0.34 L" Limestone . -" ES\'I-2 5 Plattsmouth 4.0 1066.4 4,040 4.0 0.27 ,) Limestone ::0 P-ll Heebner 55.1 1048.3 1,460 0.0968 0.29 Shale B-4 Heebner 50.3 1048.2 1,490 0.375 0.077 trl tr.:i Shale HS-28 Heebner 45.5 1046.4 1,110 O.llO 0.30 Shale ESW-23 Heebner 46.1 1046.7 710 0.7676 0.39 Shale ESW-25 Heebner 11.3 1059.1 2,520 2.353 0.37 Shale P-6 Leavenworth 55.6 1051.0 10,070 7.080 0.25 4.7 Limestone P-9 Leavenworth 57.4 1047.1 6,840 5.29 0.28 4.0 Limestone P-12 Leavenworth 55.4 1046.8 6,800 7.56 0.26 5.2 Limestone HS-28 Leavenworth 47.9 1044.0 10,910 8.43 0.24 Limestone HS-29 T"eavRnwort.h 49.0 1042.4 11:710 Limestone Rev. 0 TABLE Geologic Unit Depth Elevation Boring: and Litholog:y (feet) (feet) ESW-25 Leavenworth 12.6 1057.8 Limestone P-12 Snyderville 57.5 1044.7 Shale B-5 Snyderville 54.9 1039.0 Shale HS-29 Snyderville 52.6 1038.9 Shale c...-.. .... ...:J ............... .: 1 1 ........ 65.9 1038.6 o.JJ.J..:J U.C.L V ..L -1.. .J..OC. Shale HS-28 C::nurioY"U; 1 1 o 56.3 1035.6 ..., ...... .1 ...... v ......................... Shale ES\.'i-25 Snyderville 14.5 1055.9 Shale B-4 Toronto 67.6 1030.9 Limestone P-6 Toronto 75.8 1030.8 Limestone B-5 Toronto 63.7 1030.2 Limestone HS-29 Toronto 61.8 1029.6 Limestone HS-28 Toronto 63.8 1028.0 Limestone P-12 Toronto 77.8 1024.4 Limestone P-9 Toronto 86.2 1018.3 Limestone ESW-25 Toronto 35.6 1034.8 Lirrle stone 2.5-32 (continued) Unconfined Static Modulus Compressive of Elasticity* Strength times lo-6 (J2Si) (J2Si) 14,710 ll. 538 93 0.00402 1,330 0.323 175 o.ol27 90 " f"'f"'t")Cf"\ v.uv...Juv 151 0.014 176 0.1037 17,260 10.9 9,120 6.32 13,390 8.59 2,910 0.857 6,760 3.85 2,430 0.526 5,580 3.73 5,390 4.095 Poisson's Ratio* 0.23 0.35 0.32 " '>C V*...JV " .,, v.J.L 0.39 0.27 0.30 0.24 0.32 0.28 0.31 Sheet 3 of 5 Bulk Modulus times lo-6 (J2Si) 0.0045 " 1"\f'\A") 4.6 0.49 2. 8 n -*.. " r ... t::: v. v ::E:: 0 t"1 n :::0 t'J t"l TABLE 2.5-32 (continued) Sheet 4 of 5 Unconfined Static Modulus Compressive of Elasticity* Bulk Modulus Geologic Unit Depth Elevation Strength times lo-6 Poisson's times lo-6 Boring and LitholO:l:J!: (feet) (feet) (Esi) (Esi) Ratio* (Esi) B-7 Unnamed Lawrence 99.2 999.3 1,780 1.17 Shale P-9 Unnamed Lawrence 109.9 994.6 147 0.00867 0.38 0.012 Shale ESvl-2 5 48.9 1021.5 125 0.0694 0.42 Shale ESW-25 Lar.*Jrence C') 'I 1007.2 210 0.14 0.39 U.) * .G :;:: Shale P-9 P.. .. rnazonia 114 .. 9 989.6 4,410 3.15 0.30 2.6 0 ;-; Limestone ::.... '*) Amazonia 70.2 1000.2 2,750 2:095 0=35 Limestone 0 ESW-25 Amazonia 71.2 999.2 118 0.064 0.44 :::0 t:j Shale C:tj B-6 Ireland 149.1 979.3 290 0.0303 :,;: Shale ESW-25 Ireland 78.6 991.8 169 0.1007 0.43 Shale P-9 Ireland 141.8 962.7 Siltstone 178 0.00623 0.36 0.0074 B-4 Ireland 184.5 914.0 1,680 0.438 Siltstone B-7 Ireland 191.2 Siltstone 907.3 2,190 l. 46 Rev. 0 TABLE 2.5-32 (continued) Sheet 5 of 5 Unconfined Static Modulus Compressive of Elasticity* Bulk Modulus Geologic Unit Depth Elevation Strength times lo-6 Poisson's times 10-6 Boring and Lithology (feet) (feet) (psi) (psi) Ratio* (psi) B-17 Robbins 131.4 Shale 969.8 1,190 0.345 B-11 Robbins 140.4 949.6 1,950 l. 31 Shale P-9 Robbins 235.8 868.7 407 0.0225 0.33 0.022 Shale P-9 Haskell 262.1 842.4 12,430 13.0 0.21 7.5 Limestone P-9 Vinland 287.2 817.3 2,170 0.428 0.32 0.40 Sandstone B-9 Vinland 292.3 785.7 2,980 1 .. 02 Siltstone :8 B-17 Tonganoxie 219.5 881.7 1,260 0.357 0 --t"' Shaley Siltstone hj B-17 Tonganoxie 261.3 839.9 "") "'7(),f\ 0.957 --,c.. I 1 7V \-} Siltstone :::0 B-17 Tonganoxie 301.3 799.9 3,130 0. 968 --t:'J Siltstone t::j B-9 Tonganoxie 312.4 765.6 1,670 0.368 --;;;; Shale B-4 Weston 369.3 729.2 1,250 0.555 Shale Rev. 0 Boring/ Test Pit B-1 P-4 P-6 P-9 P-12 TP-1 TP-2 TP-3 TP-4/TP-6 TP-5 TP-6 TABLE 2. 5-33 RESULTS OF COMPACTION TESTS ON SOIL Depth (feet) 9.5-19.0 5.0 3.5 2.0-3.0 3.5 1.0-3.0 1 11-L1 () -'-eV -:::teV 1.0-5.0 2. 0-4. 0/1. 5-4.5 2.0-4.0 5.0-6.0 Optimum Moisture Content (percent) 15.7 13.0 13.0 16.2 14.6 16.4 20.7 18.2 16.5 25.7 22.4 Maximum Dry Density (pcf) 115.4 126.1 108.2 114.3 111.7 108.8 102.9 92.2 92.6 87.4 93.1
    • ASTN D698-70 = American Society for Testing and Materials Standard D698-70, Method A H.M.M. = Harvard Miniature Mold Soil Type CL-CH SM SM sc .Lv1L CL CH CH CH CE CL Type of Test* H.M.1'1. H.M.M. H.M.M. H.M.M. H.M.M. ASTM D698-70 ASTI\1 D698-70 ASTH D698-70 ASTM D698-70 ASTM D698-70 AST£,1 D698-70 Rev, 0 0 t:'"' 9 (-J ?::! t:J:j !:J:j A TABLE 2.5-34 Sheet 1 of 2 FIELD PERMEABILITY TEST RESULTS ULTIMATE HEAT SINK A. PRESSURE WATER-LOSS TESTING Average Permeability Permeability* Range Number Member (em/sec) (em/sec) of Test Heumader 3.0 X 10-6 -6.0 X 10-6 8 Plattsmouth Ls. 4.0 X 10-6 -1.4 X 10-5 26 Heebner 9.0 X 10-6 -2.9 X 10-5 29 Leavenworth T ., " , "-6 t'X "' r , " -5 29 J....o;:)o I
    • U X .LU YJ -..).0 X .LU Snyderville 9.0 X ,"-6 nl -II 0 X , "-5 "'r .l.U p '+/-oO .LU ..)0 Toronto Ls. 2.0 10 -5 ,0 LO 10 -4 22 X -X B. CONSTANT HEAD PERMEAMETER TESTING Slotted Interval Permeability Boring Number (feet) Member (em/sec) HS-SP-2 2.5 -7.0 Soil 1.2 X 10-6 HS-SP-4 ') () -1 1 t; c-;, , " X , "-6 ..... v *-L*-' .J..oV .l.V HS-SP-5 2.0 -7.0 Soil 4.7 X 10-6 HS-SP..-6 ..., " II II Soil X , ,...-4 L..oV '+/-*'+/- J.IJ Number of No Takes 6 15 16 13 17 6 * = No take recorded. 10-6 em/sec assumed when computing averages. Rev. 0 TABLE (continued) Sheet 2 of 2 C. FALLING HEAD PERMEAMETER TESTING Slotted Boring Interval Number Piezometer (feet) Members Permeability Monitored (em/sec) HS-1 A 2.5 -19.5 Soil-Plattsmouth Ls. 6.1 X lo-6 HS-3 B 30.0 -37.0 Snyderville-lo-6 Toronto Ls. 2.7 X HS-3 A (test 2) 3.0 -17.9 Plattsmouth Ls. 8.5 X 10-6 Toronto Ls. A 4.8 -9.8 HS-5 Plattsmouth Ls. 9.0 X 10-6 Snyderville-0 _..., B 23.5 30.3 " . Toronto r c t: A X , n-I l-Ij .......... ...lo"% ..I.V A 4.8 -9.8 B 31.0 -39.5 HS-8 _c: n Plattsmouth Ls. 4.4 X 10 v :::0 ['j Snyderville-,,...-6 ['j Toronto Ls. 2.2 X :;:>;: ..I.V HS-20 A (test 2) 2.0 -18.0 Soil-Plattsmouth Ls. 7.6 X 10-6 B 35.0 -43.0 Toronto Ls. nil 7\ 3.0 -11.5 h. B 1 1:;", () ')') ') v ""*" HSA-1 Soil nil , "-5 T , .., X '-'""* .L
    • I .LV Rev. 0 TABLE 2.5-35 RESULTS OF LABORATORY FALLING HEAD PERMEABILITY TESTS ON UNDISTURBED AND RECOMPACTED SOIL SAMPLES Field or Initial Saturated Moisture Dry Depth Head Permeability Content Content Density Soil Location (feet) (feet} (em/sec} (!2ercent) (!2ercent) (£Cf} Type HS-1 2.5 17 s.Sx1o-e 26.8 27.5 97.9 CL HS-3* 1.0 30 1.1x10-7 25.0 CL HS-3* 1.0 30 2. 7x1o-e 2 5. 0 27.5 92. 1 CL HS-6* 1(\ (\ ')(\ &:. 5.6x1o-a 1 c ... 0 IV. V L.-V*V I..) * £ CL t'""i t-IJ HS-6* 10.C 20.6 v1-*L'!' l.il 15.2 "! £ 1 119.9 CL () _j.*vw <Vo 2 Days ::0 tx:l t:Ij TP-1
    • 1.0-3.0 30.3 2.2x10-8 17.7 104.1 CL :A: TP-1* 1.0-3.0 30.3 4.1x10-s 17.7 105.3 CL TP-3* 1.0-5.0 21.7 5.6x10-9 19.6 91.9 CH TP-3* 2.0-5.0 21.7 7.Sx1('-s , 9. 6 90.') CH
    • Two-stage test on a single test specimen. Rev. 0 WOLF CREEKTABLE 2.5-36 Sheet 1 of 3 RESULTS OF ATTERBERG LIMITS TESTS Liquid Plastic Plasticity Boring/ Depth Limit Limit Index Soil Test Pit (feet) (percent) (percent) (percent) Type B-1 3.5 47.0 22.8 24.2 CL B-4 9.0 40.2 17.6 22.6 CL B-4 13.5 38.3 18.8 19.5 CL B-7 1.5 73.2 25.9 47.3 CH B-8 1.5 33.4 21.6 11.8 CL B-9 4.5 43.4 20.8 22.6 CL P-5 2.0 34.7 15.1 19.6 CL P-6 2.0 40.0 15.9 24.1 CL P-7 2.5 31.8 13.4 18.4 CL P-7 4.3 26.6 17.0 9.6 SM P-8 2.5 34.4 15.7 18.7 CL P-8 3.5 24.0 15.7 8.3 SC P-11 3.5 55.2 19.5 35.7 CH HS-2 4.0 46.8 17.7 29.1 CL HS-6 4.0 57.6 24.9 32.7 CH HS-6 8.0 38.2 18.4 19.8 CL HS-14 4.0 57.0 27.5 29.5 CH HS-14 6.0 52.2 21.9 30.3 CH HS-15 1.0 50.1 28.1 22.0 MH-OH HS-15 4.0 51.1 20.4 30.7 CH HS-16 1.0 48.4 23.0 25.4 CL HS-16 4.0 90.7 32.2 58.5 CH HS-17 2.5 49.8 19.4 30.4 CL HS-17 4.5 61.5 23.8 37.7 CH HS-21 2.5 73.0 31.8 41.2 CH TP-1 1.0-3.0 41 19 22 CL TP-2 1.0-2.0 67 28 39 CH TP-2 2.0-4.0 66 25 41 CH TP-3 1.0-3.0 64 22 42 CH TP-3 3.0-5.0 62 21 41 CH TP-4 2.0-4.0 63 23 40 CH TP-5 1.5-3.0 77 26 51 CH TP-6 1.5-4.5 69 26 43 CH TP-6 5.0-6.0 48 24 24 CL

    Rev. 28 WOLF CREEK70 26 44 CH65 2144 CH63 2241 CH80 23 57 CH32 18 14 CL26 19 7 CL-ML402020 CL412120 CL6122 39 CE382315 CL15 21 CL18 14 CL17 17 CL25 23 CL19 19 CL21 14 CL18 42 CH24 47 CHTABLE 2.5-36 (continued) Sheet 2 of 3 Liquid Plastic Plasticity Boring/ Depth Limit Limit Index Soil Test Pit (feet) (percent) (percent) (percent) Type TP-9 2.0-4.0 TP-9 5.0-6.0 TP-9 6.0-7.5 TP-10 2.0-3.0 TP-11 2.2 TP-11 3.0 TP-11 5.0 TP-11 8.5 TP-12 2.4 TP-12 5.0 ESW-2 3.5 36 ESW-5 4.5 32 ESW-6 3.0 34 ESW-7 3.0 48 ESW-11 3.5 38 ESW-13 5.0 35 ESW-17 2.0 60 ESW-20 2.0 71 B-103 7.5-9.5 47.0 18.0 29.0 CL B-104 6.2-7.7 49.0 18.0 31.0 CL B-104 18.5-20 50.0 19.0 31.0 CL B-105 10.4-12.4 52.0 16.0 36.0 CL B-106 5-6.85 42.0 14.0 28.0 CL B-106 13.5-15 49.0 16.0 33.0 CL B-107 5.1-6.9 39.0 14.0 25.0 CL B-107 10.0-12.0 53.0 19.0 34.0 CL B-112 0.0-1.5 39.0 14.0 25.0 CL B-112L 6.85-7 43.0 27.0 16.0 CL B-112L 9.5-11 46.0 29.0 17.0 CL B-112L 12.5-14.5 46.0 29.0 17.0 CL B-112L 15-17 47.0 29.0 18.0 CL B-113L 6.9-7 48.0 30.0 18.0 CL B-113L 10.75-10.95 47.0 30.0 17.0 CL B-113L 12.5-14 45.0 30.0 15.0 CL B-114L 7.5-9 44.0 27.0 17.0 CL B-114L 15.7-15.85 44.0 27.0 17.0 CL B-115L 16.65-17 44.0 28.0 16.0 CL B-120 25.5 45.0 31.0 14.0 CL B-120 28.0 46.0 31.0 15.0 CL B-122 26.6 48.0 33.0 15.0 CL B-124 30.5 40.0 24.0 16.0 CL B-125 28.4 44.0 30.0 14.0 CL B-125 31.0 42.0 26.0 16.0 CL B-131 2.5-4.5 69.0 21.0 48.0 CL B-131 5-6.5 69.0 19.0 50.0 CL B-131 7.5-9 53.0 18.0 35.0 CL B-131 12.5-14 70.0 53.0 17.0 CL B-140 6.0-7.5 69.0 20.0 49.0 CL B-140 18.5-20.0 46.0 15.0 31.0 CL Rev 28 WOLF CREEK TABLE 2.5-36 (continued) Sheet 3 of 3 Liquid Plastic Plasticity Boring/ Depth Limit Limit Index Soil Test Pit (feet) (percent) (percent) (percent) Type B-141 18.5-10 48.0 18.0 30.0 CL B-142 5.3-6.9 46.0 16.0 30.0 CL B-142 18.5-19.8 44.0 18.0 26.0 CL B-143 3.4-4.9 60.0 15.0 45.0 CL B-145 5-7.0 47.0 17.0 30.0 CL B-148 3.5-5 49.0 14.0 35.0 CL TP-102 1.5-3 25.0 15.0 10.0 CL TP-102 5.5-6.5 48.0 19.0 29.0 CL TP-104 9-10.0 45.0 15.0 30.0 CL TP-107 6.5-7 57.0 18.0 39.0 CL TP-107 17-18 45.0 15.0 30.0 CL TP-108 3-3.5 55.0 17.0 38.0 CL TP-108 7-7.5 59.0 17.0 42.0 CL TP-109 4-4.5 55.0 15.0 40.0 CL TP-109 10-11.0 45.0 15.0 30.0 CL Test Pit 1 4-4.5 42.0 13.0 29.0 CL Test Pit 2 1.5-3 64.0 16.0 48.0 CL Test Pit 2 5.5-6.5 64.0 18.0 46.0 CL Test Pit 3 1.5-2.5 62.0 15.0 47.0 CL Test Pit 3 5-6.0 55.0 15.0 40.0 CL Test Pit 3 9-10.0 53.0 17.0 36.0 CL Test Pit 3 14-15 50.0 17.0 33.0 CL Rev 28 WOLFCREEK TABLE 2.5-37 Sheet 1 of 3 RESULTS OF MOISTURE AND DENSITY DETERMINATIONS ON SOIL Boring Depth (feet) Field Moisture Content (percent)Dry Density (pcf) SOIL TYPE B-1 3.5 25.5 97.8CL B-1 7.5 22.1 101.5CL-CH B-1 9.5 20.1 107.2 CL-CH B-1 14.0 24.3 99.0 CL-CH B-1 19.0 25.4 97.6 CL-CH B-4 6.0 18.6 108.1 ML B-4 7.5 17.7 105.7 CL B-4 9.0 20.6 106.8 CL B-4 10.5 13.0 119.2 CL B-4 12.0 17.2 116.6 CL B-4 13.5 12.5 120.7 CL B-5 1.5 23.2 99.1 CL B-5 4.0 20.8 107.5 CL B-5 6.5 17.9 113.1 CL B-6 2.0 17.6 103.6 CL B-6 3.0 18.6 108.6 CL B-6 5.0 23.6 119.2 CL B-7 1.5 31.7 88.7 CH B-8 1.5 25.7 94.6 CL B-9 1.5 28.4 90.9 SM-ML B-9 3.0 23.4 98.7 ML-CL B-9 4.5 20.3 105.9 CL P-1 2.5 16.5 111.3 SC P-2 2.5 20.4 104.1 CL P-2 3.5 17.7 110.7 SC P-4 4.0 22.1 103.8 ML-CL P-4 6.0 15.7 114.0 SM P-5 2.0 12.1 114.7 CL P-5 3.0 13.0 116.5 SM P-6 2.0 12.6 114.3 CL P-7 4.3 9.8 115.5 SM P-8 2.5 19.4 107.0 CL P-8 3.5 20.8 85.3 SC

    Rev. 28 WOLFCREEK TABLE 2.5-37 (continued) Sheet 2 of 3 Boring/ Test Pit Depth (feet) Field Moisture Content (percent)Dry Density (pcf) Soil Type P-8 4.0 19..7127.3ML-CL P-11 2.0 17.7111.4SC-SM P-11 2.5 27.798.0SC-SM P-11 3.5 23.9102.5SC-SM P-12 3.5 19.4101.5ML P-12 4.5 19.0116.9SM P-13 6.0 15.7115.3CL HS-1 1.0 9.0107.8CL HS-1 2.5 25.6*100.6*CL HS-1 4.5 17.4110.6SC HS-2 1.0 14.097.6ML HS-2 2.0 8.5125.8CL HS-2 4.0 20.5101.8CL HS-2 6.0 22.6*96.9*CL HS-2 8.0 23.399.1CL HS-5 2.0 35.486.4CH HS-5 2.5 36.783.9CH HS-6 4.0 23.399.6CL-ML HS-6 9.0 20.3102.6CL HS-14 4.0 27.2*90.3*CH HS-14 6.0 22.998.9CH HS-15 1.0 30.286.6MH-OH HS-15 4.0 19.0*104.2*CH HS-16 4.0 39.282.6CH HS-17 2.5 21.4*104.7*CH-CL HS-21 1.0 34.383.2CH HS-21 2.5 33.087.1CH ESW-1 4.5 14.1114.2CL ESW-2 3.5 14.1 104.6CL TP-9 2.0-4.0 25..51*-CH TP-9 5.0-6.0 21.7*-CH TP-9 6.0-7.5 19.8 -CH TP-10 2.0-3.0 23.6*-CH B-103 7.5-9.5 18.4115.3CL B-105 1.4-12.4 22.6115.8CL B-106 5-6.85 22.5112.2CL B-107 5.1-6.9 20.6116.4CL B-107 10-12.0 21.5116.7CL B-113 16.85-17 17.2116.8CL B-114 6.85-7 16.6115.7CL B-114 11.85-12 18.4114.5CL

    • Average of two tests Rev. 28 WOLFCREEK TABLE 2.5-37 (continued) Sheet 3 of 3 Boring/ Test Pit Depth (feet) Field Moisture Content (percent)Dry Density (pcf) Soil Type B-115 6.85-7 16.7116.9CL B-131 2.5-4.5 32.596.1CL B-142 5.3-6.9 19.4122.3CL B-143 5.5-7.5 21.8115.8CL B-145 5-7.0 18.3121.0CL B-146 8.1-10 18.5124.6CL B-148 5.5-7.5 23.8111.3CL TP-101 0.5-1.5 10.3103.4CL TP-102 1.5-3.0 9.9117.8CL TP-102 5.5-6.5 18.1107.5CL TP-104 9.0-10.0 17.6113.9CL TP-105 8.0-9.0 21.5101.0CL TP-106 2.5-3.5 16.2117.5CL TP-107 6.5-7.0 23.4102.7CL TP-107 17.0-18.0 13.5111.5CL TP-108 3.0-3.5 18.797.6CL TP-108 7.0-7.5 21.3109.4CL TP-109 4.0-4.5 8.7102.0CL TP-109 10.0-11.0 15.4117.0CL Rev. 28 WOLF CREEK TABLE 2. 5-37a ( Shee1: 1 of 5) rHSCELL.ANEOUS srrg WORK L _g_ REEK T N D ;I Vf 301. EARTHHORK 301.1 Earthwork shall this Project, drawings. conform to the Specif:Lca.tion requirements of and the design a. All references to t:he following publ ica*t:ions are to the latest issue of each, together with latest additions and/or amendments thereto, as of the date of Contract, unless otherwise indicated; references to the sponsoring agencies will be made in accordance with *the abhr*eviat.ions indicated:: al. ASTM *********** American Society f:or Testing and 301.2 a. 301.3 b. bl. c. Materials: S*tandard Speci fica*tions Borrow Areas: Cohesive material for backfill shall be taken from borrow areas, as indicated on the drawings or as otherwise approved. Selective loading and plac:in9 might be required to produce required quality and uniformity of backfill.. .A:t all times durin9 operations in borrow areas, Contractor shall maintain adequate drainage to nearest natural drainage outlets. Compacted Backfill: Backfill Materials: Inorganic cohesive backf:i.ll material, Type CCF2 J' shall be approved material from previous tion or borrow areas. The approval shall be by Resident Geotechnical Engineer. Preparation of Subgrade: cl. Subgrade to receive compacted backfill shall be inspected by Purchaser to determine if it 1.s suitable and has sufficien*t bearing capacity for the fill material and loads to be placed over it. Rev .. 0 c2. WOLF C:RKE:K TABLE 2.5-37a (Sheet 2 of 5) Thoroughly break backfill area to of fill material. placing backfill. and turn soil underlying the depth of 6 in. before deposit.ion Break. qround on the same day as c3. The surfaces on which st.ruct.ura.l backfill will be placed shall be free of construction debris, loose or decayable matter, soft: materials and standinq water or free ice. d. Cohesive compacted backfill shall be 'I'ype CCI?2 material conforming to the following requirements: dl. Control tests will be made by the testing tory during the progre:ss of t:he work to ensure that materials are compa.cted to a dry densit:y equal to or greater than t:he minimum values fied. The minimum relative compaction is defined as a percentage of the maximum value obtained in the ASTM test designation 0698. d2. Earthfill materials shall be compacted to a mum dry density to a density equal to or greater than 95 percent: of maximum value. backf i 11 shall he using a s foot or pneumatic tire compaLct:or. In order 1to uniform coverage of the fill, and to construction inspect:ion anc:l control, tion of each layer shall proceed in a systematic, orderly and continuous d3. The moisture content of all eart.hfill materials shall as uniform as prac*ticably throughout each layer, except where o*therwi.se indicated, shall be within the ran9e specified at the time o1: compaction. d4. The backfill material shall be compact:ed at: a moisture content which shall be between 2 percent below and 2 percent abmre *the optimum moisture content. d5. The moisture condi t:ionin9 of materials shall be performed in t:he borrow areas by discing 1, harrowing, plowing, blading, or other sui means. Moisture condit:ioning in the backfill shall be limited t:o minor adjustments prior compaction. d6. Compaction of backfill mence i:f the moisture c:ont:ent is shall not com-* not within Rev. 0 WOLE' CHE:E::K TABLE 2.5-37a (Stmet 3 of 5) d6. (continued) specified limits. materials which are but not compacted prior to drying out or becomin9 too wet, due to rain or o1:her causes, shall removed and replaced o.r to obtain proper moisture cont:ent: .. d7. Earthfill materials shall be spread in mately fla*t layers (horizont.al or sloped as quired) in such a as to obtain Jla.yers of relatively uniform th:ick.ness *iNithout spaces tween successively deposibed loads. Placing and spreading shall be done in such as to prevent segregation. The maximum lif1: thickness for earthfill materials shall not exceed 8 in. where heavy compaction equipment is used .. The maximum loose lift thickness shall not exceed 3 in. where power *tampe:rs or similar special paction equipment is used, and it may be necessary to reduce the thickness below this 3 in. maximum in order to obtain the t:equired minimum density .. d8. Where compacted earthfill is to be placed against existing soil cut slopes, each lift shall be keyed into the existing slope by removing existing material in steps as each lift: is placed and by compacting the lift over cut surface. gl. General: Backfill shall placed to lines and grades indicated on 1:he drawings. No brush,, roots, sod or other perishable or unsuitable rials shall be placed in backfill. g2. If the compacted surface of any layer of material is too smooth or too dry to bond properly with succeeding layer, it sh<:tll be roughened or loosened by scarifying, light d:iscing, or by other acceptable means, and it. sh.:tll be sprinkled before the succeeding layet' placed thet'eon. If the surface becomes rutted *or uneven subsequent to compaction, it shall be flattened and leveled before placing the next layer of material. ing equipment shall be rout:ed across the backfill in such a way as to the formation of rut.s or lanes in the backfill. Rolling shall be parallel to the building axis except where there is insufficient working room for such opera-* tions or where adjacent. t:o structures. Additional cross rolling will be required in the turnaround areas and elsewhere as r-equired to obtain uniform compaction. Rev. 0 g3. g4. g5. g6. g7. WOLF TABLE 2.5-37a (Sheet 4 of 5) The surface of the backfill shall at all times be kep*t reasonably smooth a.nd free from humps or hollows. The fill surface shall be sloped with a grade of approximately 3 percent in order to en-* sure drainage during of wet weather. Upon suspension of fillingr operations for a period in excess of 12 hours or in wet weather, the face of the backfill shall be rolled smooth t.o seal it against excessive absorption of mois*turE! and to facilitate runoff. During drying weather, the surface shall be sprinklE!d as is to minimize drying. Prior to resuming backfill ment and compaction of any area, following the suspension of continuous a.nd systematic operations, the backfill surface shall be scarified and/or disced and moisture conditioned as required. If drying to moisture cont:ents the specified minimum has reached a of' more than 2 i.n. ,. the backfill surface shall be reprocessed and compacted prior to the placement. of additional materials. Backfill operations shall be suspended durinsr periods of extended wet: weather. Upon r:-esuming operations, all mat.erials which are <.':!xcessively wet or soft shall be removed either stockpiled, reprocessed or wasted. 'I'h.e removal of we*t or soft: material shall be carried t:o such depith as is necessary to firm materials. The exposed surface shall be scarified or lightly disced in order to provide an adequat:e bond with the subse-* quent layer of backfill. Under no circumstances shall ice, snow, or frozen material be incorporated in the backfill. In the event that the fill surface becomes froZ(:!n during construction, all frozen materials shall be vated and wasted before addi t:ional material i.s placed. Where it is necessary to backfill adjacent par-* tions of the backfill at different times, the nection between the i:vm portions must be con-* structed in such a way as to provide a uniformly compacted, well-bonded contac1:. Prior to commenc-* ing the lower level backfill, the existing mate-* rial shall be trimmed back t.o expose firm, moist: material which meets both tlw moisture content and compaction requirements for t:he zone. Rev. 0 g8. g9. 301.4 a. b. bl. WOLF CREEK TABLE 2.5-37a 5 of 5) The trimming may be reprocessed or wasi:ed. The trimmed slope shall not be steeper than 3 tal to 1 vertical. Where ramps are required, they shall be ed of compacted fill wh:i.ch all of the men*t moisture content and compaction requirements specified for the adjacent backfill zone. Equipment: Compaction Equipment:: Equipment to be used for constructing various types of fill may consist of any type normally considered suitable to construct: embankments. In addition to the foregoing equipment, the lowing equipment shall be avail able at Projec1: Site: Power tampers to rial in areas wherE! roller or tractor. US<i:!d for compaction of ma*te-* it. is :impractical to US(:! a b2. A plain cylindrical roller, weighing not less than 1,000 lbs. per lineal foot for rolling the of backfill smooth for drainage in case of heavy precipitation. b3. Discs, harrows and motor !Jraders for drying and maintaining fill. Rev. 0 Depth Boring (feet) B -7 8.5 p -9 8.6 HS-15 9.0 p-30 12.1 p -ll 14. 6 TABLE 2.5-38 RESULTS OF RESONANT COLUHN TESTS ON ROCK CORE SAMPLES
    • Sheet 1 of 8 Moisture Elevation Geologic Unit content (feet) and Lithology (percent) 1090.0 Clay Creek Limestone 1095.9 Jackson Park Sandstone Heumader Shale 1091.9 Heumader Shale 1088.8 Heumader Shale 15.3 Dry Confining Density Pressure (pcf) (psf) 161.8 122.9 107.1 135.9 134.6 0 4,003 5,990 615 615 1,330 1,330 0 720 1,440 1 (j'){'j 1,020 2,050 2,050 3,050 3,050 1,020 1,020 1,560 1,560 2,040 2,040 2,560 2,560 2,560 Shear Strain Amplitude (percent) 0.000062 0.000063 0.000061 0.000342 0.000676 0.000341 0.000699 0.001333 0.00116 0.00104 0.004349 0.008346 0.004191 0.007498 0.004131 0.007398 0.005807 0.009035 0.005961 0.010214 0.005537 0.009782 0 .. 000595 0.000973 0.001290 Shear Wave Modulus of Velocity Rigidity times (ft/sec) lo-6 (psf) Damping (percent) 1,860 2,050 2,070 2,750 2,750 2,750 2,750 4 82 565 629 ,...,,. 0/U 638 660 625 665 638 524 496 531 522 538 533 529 517 491 17.3 21. 0 21.6 28.9 28.8 28.9 28.8 0.89 l. 23 1. 52 1.93 1. 72 1. 84 1. 65 l. 87 l. 72 1.15 1.03 1.18 1.14 1. 21 1.19 1.17 1.12 1. 01 8. 2 7.2 6. 9 2.9 2.9 2.9 3.4 2.7 2.7 2.7 A 1 '"t.J... 3.7 4.5 5.1 7.1 6.0 " v TABLE 2. 5-38 (continued) Sheet 2 of 8 Shear Shear Moisture Dry Confining Strain Wave Modulus of Depth Elevation Geologic Unit Content Density Pressure Amplitude Velocity Rigidity times Damping "'l""'\"Y".;Y\rT f-F,..... ...... *\ (feet) Litl1ology (percent) (pcf) (psf) (percent) (ft/sec) . -. . .... \.J.J......LJ..L';;j \.._Cc:;l-J auu J.U v {pst) {percent! 0 0.00012 716 2.26 4. 9 B -4 22.4 1076.1 Heumader 2.0 139.4 4,003 0.00012 729 2.35 Shale 5,990 0. 00013 818 2.95 3.8 p -27 31.0 1074.0 Heumader 143.1 2,040 0.000264 960 4.10 4.0 Calcareous 2,040 0.000550 963 4.12 Shale 2,040 0.000837 965 4.14 4.6 4,100 0.000283 953 4.04 4.0 4,100 0.000523 960 4.10 4,100 0.000812 958 4. 08 5.7 6,180 0.000266 969 4.18 4.7 6,180 0.000501 977 4.28 6,180 0.000737 977 4.28 A f"l ... u ::8 p -4 39.0 1066.6 Plattsmouth 166.2 4,100 0.000179 2,760 39.4 3.3 0 t"' Limestone 4rl00 0 .. 000334 '") hQr'i 37;3 ;.,., -i"'-"-'V . -..; 6,150 0.000171 2,890 43.1 3.28 6,150 0.000364 2,830 41.2 '\ ;;o 8,200 0.000151 3,070 48.5 3.5 t:IJ 8,200 0.000353 2,930 44.1 t:IJ 10,200 0.000199 3,140 50.9 2.8 ::"i 10,200 0.000324 3,110 50.0 f"l 0.000015 2,060 21. 8 u B -4 40.4 1058.1 Plattsmouth 165.4 4,003 0.000014 2,480 31.7 Limestone 5,990 0. 000014 2,530 32.9 HS-14 43.2 1048.5 Plattsmouth 162.3 0 0.000159 2,120 22.6 Limestone Rev-0 TABLE 2.5-38 (continued) Sheet 3 of 8 Shear Shear Moisture Dry Confining Strain Wave Modulus of Depth Elevation Geologic Unit content Density Pressure Amplitude Velocity .Damping. 'Rn'Y"inrr 1-Foo+-\ (feet) and Lithology (percent) (pcf) (psf) (percent) (ft/sec) lU -lps:t:J (percent) ................. d \...__..._'-I p -9 43.9 1060.6 Plattsmouth 159.6 4,100 0.000199 3,690 67.4 2.0 Limestone 4,100 0.000414 3,700 67.8 1.8 6,170 0.000210 3,680 67.0 1.7 6,170 0.000433 3,720 68.5 2.1 8,200 0.000198 3,700 67.8 1.8 8,200 0.000431 3,720 68.7 2. 2 p -11 51.0 1052.4 Plattsmouth 164.7 3,100 0. 000142 2,740 38"5 3.9 Limestone 3,100 0.000276 2,650 35.8 4,850 0.000242 3,230 53.4 2.3 4,850 0.000448 3,220 53.1 6,800 0.000192 3,350 57.4 2.4 6,800 0.000341 3,430 62.0 8,700 0.000171 3,640 67.8 2.1 ::8 8,700 0.000223 3,520 63.4 0 8,700 0.000326 3,660 68.fi t:"" n .,.., " 0.000390 -, r-Ar"' 64.0 i"%j 01 I UV Jr.:J'iV 8,700 0.000585 3,670 68.9 () :::c 0 0.000027 2,210 24.4 8.1 tTl B -7 67.0 1031. 5 Plattsmouth 160.4 4,003 0.000029 2,120 22.4 7.0 ;:>;; Limestone 5,990 0.000040 1,420 10.1 9. 5 0 0.000225 1,880 14.9 6.3 HS-15 32.3 1045.1 Heebner 7.1 127.3 720 0.000195 2, 03 0 17.5 4. 6 Shale 1,440 0.000178 2,140 19.3 4. 2 0 0.000032 1,470 9.30 7.1 B -7 74.4 1024.1 Heebner 138.6 4,003 0.000040 1 ']')(l 12.8 6.1 ..... ' .......... Shale 5,990 0.000064 1,600 11.0 6. 8 Rev. ,... v TABLE 2.5-38 (continued) sheet 4 of 8 Shear Shear Moisture Confining Strain Wave Modulus of Depth Elevation Geologic Unit content Density Pressure Amplitude Velocity Rigidity times Damping Boring (feet) (feet) and Lithology {percent) (pcf) (psf) (percent) (ft/sec) 10-6 (psf) \.E_ercent) HS-14 48.3 1043.4 LeavenwoYth ---168.3 0 0.000094 2,760 39.7 Limestone P-4 53.5 1052.1 Leavenworth ---159.3 6,150 0.000317 3,780 70.5 1.3 Limestone 6,150 0. 000622 3, 790 71.2 l. 5 8,200 0.000326 3,770 70.4 1.3 8,200 0.000668 3,790 71.0 1.4 10,300 0.000346 3,770 70.2 1.3 10,300 0.000669 3,790 70.9 1.4 12,300 0.000336 3,770 70.3 1.3 12,300 0.000668 3,790 71.0 1.4 P-9 56.4 1048.1 Leavenworth ---166.4 6,150 0.000284 3,770 73.6 1.6 Limestone 6,150 0.000510 3,770 73.5 2.2 2§ 8,200 0.000285 3,770 73.5 1.6 8,200 0.000508 3,780 73.8 2.1 1A JAn n Jon IJ o 1 c .J..V1.JVU -'f'uv /J.O .J.. * ..; ,......_ 10,300 0.000507 3,780 73.9 2.3 n J /On , r U.UUULOO J1JOV /J.O 12,300 0.000421 3,780 73.8 2.1 .... P-ll 56.6 1046.8 Leavenworth ---166.5 5,800 0.000321 3,670 69.6 1.3 Limestone 5,800 0.000585 3,680 67.0 1.6 7,750 0.000307 3,670 69.6 1.3 7,750 0.000586 3,680 69.9 1.6 9,700 0.000267 3,660 69.3 1.7 9,700 0.000495 3,670 69.7 0.5 12,200 0.000196 3,640 68.7 1.8 12,200 0.000359 3,660 69.3 2.6 Revs 0 TABLE 2.5-38 (continued) Sheet 5 of 8 Shear Shear Moisture Dry Confining Strain Wave Modulus of Depth Elevation Geologic Unit content Density Pressure Amplitude Velocity Rigidity times Damping Boring (feet) and Lithology (percent) (pcf) (psf) (percent) (ft/sec) 1o-6 (psf) (percent) \.LC::t::L} p -11 64.7 1038.7 Snyderville ---136.4 8,200 0.001408 1,140 5.49 3.4 Shale 8,200 0.002156 l, 130 5.44 8,200 0.002761 1,140 5.47 10,200 0. 001366 1,160 5.67 3.4 10,200 0.002144 1,170 5.78 10,200 0.002757 1,160 5. 7l 3.4 12,300 0. 001334 1,170 5.79 3.9 12,300 *0.002144 1,180 5.93 12,300 0.002641 1,190 5.96 4. 6 0 0.000065 1,060 5.33 B -11 27.0 1063.0 Toronto ---152.8 4,003 0.000018 2,300 25.0 Limestone 5,990 ('\ (\()f'\f"\1"7 2,370 26.6 ---S' v.vvvv.J....t 0 0 0.000071 1,030 5.02 ---1:""' i":l:j B -4 72.0 1026"5 Toronto ---151 .. 5 ,., nn":l: 0 .. 000074 ") Q 1 ('1 37 .. 1 8 .. 3 -:..;vv..J ...... _,_....., Limestone 6,005 0.000074 2,820 37.4 9.2 (-.J :;v ? -4 75.4 1030.2 Toronto ---149.1 8,200 0.000378 3,370 !:':! 52.7 1.5 tr:l Limestone 8,200 0.000778 < ':lR(l 53 .. 0 1 .. 6 ::>:;: -'!---' 10,200 0.000354 3,370 52.6 1.8 10,200 0.000717 3,380 53.0 1.8 12,300 0.000188 3,340 51.8 3.2 12,300 0.000401 3,380 52.8 3.0 14,300 0.000157 3,350 52.0 3.6 14,300 0.000351 3,380 53.0 3.4 Rev. 0 TABLE 2.5-38 (continued) Sheet 6 of 8 Shear Shear Moisture Dry Confining Strain Wave Modulus of Depth Elevation Geologic Unit content Density Pressure Amplitude Velocity Rigidity times Damping Boring 14=.-...--.-4--\ -. ..... ...:J T "'-k...-.. 1 ....... ......,. .. ,. I ........ ,.... ...... ,...... ................ +-\ (...-,.,...,..(:\ !...-..-.+:\ (percent) (ft/sec) lo-6 (psf) (_E.ercent) \.l..CC::L.j \J...CCL.) O.llU ..l.J...LL.J.lU...LV"j:f \ J::-IC:::.L I.... C:::ll L. J \!:--'-I \l!.::>>J...j p -9 78.1 1026.4 Toronto ---150.6 8,200 0.000206 3,740 65.4 1.8 Limestone 8,200 0.000474 3,760 66.1 1.7 10,300 0.000253 3,750 65.6 1.6 10,300 0.000519 3,770 66.6 1.5 12,300 0.000300 3,760 66.0 1.5 12,300 0.000612 3,790 67.0 1.3 13,800 0.000327 3,770 66.4 1.1 13,800 0.000656 3,800 67.4 1.5 0 0.00026 903 3.72 9.3 B -7 95.5 1003.0 Toronto ---146.9 4,003 0.000074 1,310 7.77 8. 6 Limestone 5,990 0.000039 1,500 10.3 8. 3 8.6 121.6 <"' HS-1 54.0 1015.5 Unnamed 0 0.000441 1,140 5.30 5.5 << 0 Lawrence 720 0.000388 1,130 6.18 5.3 t"' Shale 1,440 0.000367 1,270 6.60 5.0 l"l:] HS-l 81.9 987.6 Amazonia ---170.3 0 0.000097 2,690 38.3 n ---:;c) 'r.!---+-......... -. tT1 J..J...l..J.Ut:::,::, L..Uiit:: !:7:1 HS-15 87.9 989.5 Amazonia 8.8 117.0 5.7 :::>>: 0 0.000192 1,800 12.8 Shale 720 0.000173 1,910 14.3 " ' _; ... 1,400 0.000160 1,990 15.7 4.9 0 0.000060 975 4.53 B -5 109.7 984.2 Ireland ---153.4 4,003 0.000062 1,158 6.39 Shale 5,990 0.000071 1,369 8.92 Rev. 0 TABLE 2.5-38 (continued) Sheet 7 of 8 Shear Shear Moisture Dry Confining Strain Wave Modulus of Depth Elevation Geologic Unit content Density Pressure Amplitude Velocity Rigidity times Damping Boring (feet) (feet) and Lithology (percent) (pcf) (psf) (percent) (ft/sec) lo-6 (Esf) (£ercent) 0 0.000034 1,370 8.96 B -4 185.0 913.5 Ireland 2.0 151.1 4,003 0.000022 2,090 20.9 4.1 Silc:stone 5,990 0.000019 2,250 24.2 4.8 0 0.000016 1,630 12.8 7.0 B -7 191. 6 906.9 Ireland 0.2 154.3 4,003 0.000019 1,490 10.7 7.8 Siltstone 5,990 0.000033 1,610 12.4 7.9 0 0.000076 1,000 4.70 B -11 141.2 948.8 Robbins 0.2 150.2 4,003 0.000068 1,080 5.41 Shale 5,990 0.000073 1,340 8.40 p -9 261.6 842.9 Haskell ---161.0 1,440 0.000175 3,910 76.4 2.2 ::>: Limestone 1,440 0.000318 3,890 75.8 2.7 6 2,880 0.000199 4,070 82.8 1.7 t"' t"Ij 2,880 0.000376 4,0fi() 82.6 2.2 3,750 0.000226 4,040 81.9 1.4 n 3,750 0.000458 4,050 1.8 ;;e t:l:j 81.9 t:l:j 0 0.000020 2,120 21.1 7.5 ;;>;: B -9 291.8 786.2 Vinland 2.0 147.7 4,003 0.000034 2,370 26.2 8.1 Siltstone 6,005 0.000019 2,410 27.2 8.1 B -17 224.0 877.2 Tonganoxie 4.5 147.5 l 0.000171 504 l. 22 6.7 Siltstone 4,003 0.000040 1,520 11.1 6.0 5,990 0.000032 1,720 14.1 6.4 Rev. 0 TABLE 2.5-38 (continued) Sheet 8 of 8 Shear Shear Moisture Dry Confining Strain Wave Modulus of Depth Elevation Geologic Unit content Density Pressure Amplitude Velocity Rigidity times Damping Borin,SI l.C--.L.\ and Lithology t ....... ,...._ .................... J.-\ ! ............... .+::\ (-.-..,...,.t=\ (percent) (ft/sec) lo-6 (psf) (percent) \l..t:::CL/ \l..t::!t:::!L} \l::::'-.1.1 \,t:::I::>..LJ 1 0.0000120 997 4.84 B -4 338.2 760.3 Tonganoxie 3.1 152.0 4,003 0.0000032 2,180 23.1 5.7 Shale 5,990 0.0000027 2,390 27.7 5.3 0 0.000028 1,810 16.0 5.0 B -4 368.8 729.7 Weston 2.0 154.2 4,003 0.000031 1,930 18.2 5.0 Shale 5,990 0.000030 1,980 19.1 5.1
    • The validity of the resonant column test results for limestone rock core samples is in question because the rigidity of the testing apparatus is not sufficient to test high strength samples. ReV. 0 0 t"' nj r, \.; C%J L_":j ;A; Boring P-9 P-2 P-3 P-12 P-6 P-6 P-ll P-10 P-10 TABLE 2.5-39 BULK DENSITIES OF SELECTED ROCK SAMPLES Geologic Unit and Lithology Heumader Member; moderately weathered shale Heumader Member; calcareous, non-clayey, fossiliferous, unweathered shale Heumader Member; calcareous, non-clayey, unweathered shale u,.....,,.,......,_-..rl,......,.... "tr,......,......,_h_ ......... ..--..:l---.1--, ...... J.J.C U..lUO.U.'C.L J..*.lt;;:::.LLL.UC:::.l... t HlVUCJ... 0. L..t::.L:f weathered shale HeUJ.u.ader r*1ember; clayey, slightly weathered shale Heumader Member; very calcareous, fossiliferous, unweathered shale Heumader Hember1 very calcareous, very clayey, slightly weathered shale Heebner Member; carbonaceous shale Heebner Depth (feet) 18.8 28.0 39.2 , A " ..L.':I.V 27.0 38.0 ..., ,. , .)O.J. 56.4 h:h 0 ..JV*J Elevation (feet) 1085.7 1076.6 1074.0 , nn n " ..L.VOO.L. 1079.6 1068.6 1067.3 1052.0 i c: ..J...V..J..J...*..J Sheet 1 of 3 Wet Density (pcf) 138 160 149 138 139 141 137 139 1 ":17 ..LJ I Rev. 0 0 t"" "] CJ !:lJ ["] L:::j ;:;:;:

    TABLE 2.5-39 (continued) Sheet 2 of 3 Depth Elevation Wet Density Borinq Geologic Unit and Lithology (feet) (feet) (pcf) P-10 Snyderville Member; very 63.3 1045.1 141 calcareous shale P-10 Unnamed Member of Lawrence 91.2 1017.2 144 Formation; siltstone P-9 Unnamed Member of Lawrence 94.2 1013.3 156 Formation; sandy siltstone P-10 Ireland Member; clayey shale 121.4 987.0 148 P-10 Ireland Member; silty 140.3 968.1 153 o o::.auu.o::.l-One i"l:J P-9 Ireland Member; siltstone 152.5 952.0 155 M t<j P-9 Ireland silty shale 187.8 916.7 156 P-10 Ireland Member; shaley 221.9 886.5 147 siltstone P-10 Robbins Member; shale 232.8 875.6 157 P-9 Robbins Member; shale 256.0 848=5 154 P-10 Robbins Member; shale 267.9 840.5 138 P-10 Vinland Member; carbonaceous 284.5 823.9 153 shale P-10 Vinland Member; siltstone 291.0 817.4 151 Rev. 0 TABLE 2. 5-39 (continued) Sheet 3 of 3 Depth Elevation Wet Density Boring Geologic Unit and Lithologv (feet) (feet) (pcf) P-10 Tonganoxie Member; sandy 324.6 783.8 154 shale P-10 Tonganoxie Member; shale 340.8 767.6 156 P-9 Tonganoxie Member; shale 343.2 761.3 156 P-10 Weston Member; shale 347.3 761.1 155 P-10 Weston Member; shale 356.1 752.3 150 P-9 Weston Member; shale 392.8 711.7 163 Rev. 0 TABLE 2.5-40 RESULTS OF RESONANT COLUMN TESTS ON UNDISTURBED SOIL SAMPLES Shear Shear ,..,.,._..; ..... ..... ,.... n-.... Confining Strain Wave ..... .c .L.*J.U.l.;:::l L-U.J...t:: J...IJ..::f U.L Depth Soil Content Density Pressure Amplitude Velocity times Damping Boring (feet) Type (J2ercent) (J:2Cf) (J:2sf) (percent)_ (ft/sec) 10 (psf) (percent) 0 0.000142 356 0.505 B -4 6.0 ML 18.6 108.1 2,002 0.000112 453 0.817 5.1 4,003 0.000126 570 l. 29 5.6 5,990 0.000095 610 l. 48 6.1 0 0.000187 258 0.276 2. 9 B -5 6. 5 CL 17.9 113.1 1,987 0.000161 381 0.600 3.2 3,989 0.000153 484 0.972 3.3 6,005 0. 000092 527 1.15 p -2 3.0 CL 17.7 108.5 200 0.00415 318 0.40 6.7 200 0.00976 288 0.33 ---:E: 405 0.00366 355 0.50 7.2 0 t:"' 405 0.00831 337 0.45 ---i"'j 620 0.00353 379 0.57 6. 9 n 620 0.00781 355 0.50 ---..,... "" HS-17 4.5 CL-CH 21.2 105.0 0 0.000482 598 l. 41 ---tr:! 720 0.000339 730 2.11 , " Jl " 0.000335 736 2.14 .L':I:'+/-U Rev. 0 TABLE 2. 5-41 RESULTS OF SHOCKSCOPE TESTS Dynamic Dynamic Modulus of Modulus of Compressional Elasticity Rigidity_6 Depth Geologic Unit Wave Velocity Times lo-6 Times 10 Boring (feet) and Lithology (fps) (psi) (psi) P-4 39. 0 Plattsmouth 17,000 7.2 2.8 Limestone P-4 53.5 Leavenworth 15,100 5.7 2.2 Limestone 43.9 Plattsmouth 17,800 7.9 3.0 :E; P-9 0 Limestone t"" t'Ij n Leavenworth , ..., ...,AA ..., " P-9 56.4 l./1/UU I * ':J 3.0 Limestone t=j P-11 51.0 Plattsmouth 19,000 9. 0 .., ..Jo.J Limestone P-ll 56. 6 Leavenworth 17,100 7.4 2.8 Limestone Rev. 0 TABLE 2.5-42 RESULTS OF DYNAMIC TRIAXIAL COHPRESSION TESTS ON SOIL Field Cyclic Single Modulus Moisture Drv Confining Deviator Anlpli tude of Soil Content Density Pressure Stress Shear Strain Rigidity Damping Borinsr. Depth Elevation Ty2e (Eercent) (J2Cf) (psf) (J2Sf) (J2ercent) (psf) (percent) p -4 4.0 1101.6 ML-CL 22.1 103.8 520 97.8 0.0087 56.4xl0! 9.7 182.3 0.0182 50.0xl04 10.9 323*2 0.0411 39.3xl04 11.9 484.2 0.0828 29.3xl04 12.6 650.8 0.158 20.6xl04 14.1 990.8 0.260 l9.0x104 1386.6 0.535 12.9xl0 0.0062 5 p -11 2.0 1101. 4 CH 17.7 111.4 390 152.8 l2.4xlo4 363.7 0.0201 90.7xl04 12.8 603.6 0.0446 67.7x104 ll.l 765.6 0.0924 4l.4xl04 --:8 1391.4 o. 172 40.5xlo4 --0 t" 2064.9 0.302 34.2xl0. --i9:j .,,..,c .., n C1C ..., t: o ... , ("\ "% -J.LIU.I VeV.LV £..Je0A..LV --,-, ';. 19.0 11c: a t::Q" ..,.,, " 1'\ 1'\,C"'\ n., 1"'\--, 1"'1 4 10.9 ::0 p -12 4.5 1097.7 s:"! .JUV L./.J..eJ VeV.J..U£. 0Jo02\..LU4 ("] 571.8 0.0378 75.6xl0. 9.3 C:::j 1004.8 0.0804 --;::;;; ,r..,A r 0.161 .l.0/'+/-,0 :>L:,l.Xl.U4 2284.6 0.258 44.3xl04 3277.4 0.552 29.7xl0 Rev. 0 TABLE 2.5-43 RESULTS OF CLAY MINERALOGY AND SLAKING TESTS ON SHALE SAMPLES Depth Boring (feet) Elevation (feet) Geologic Unit Percent_, Illite101 Id, One (b) Id, Two (b) Oeser ptive Percent ,_, Percent , , Cycle Test Cycle Test Sla (b) Chlorite101 Kaolinite1a1 (Percent) (oercent) Durab l1ty B-19 B-6 B-7 B-6 B-14 B-14 B-6 B-19 B-6 B-19 B-15 B-16 B-5 B-19 B-5 B-19 B-16 B-6 17.3 24.7 36.5 48.0 42.2 43.3 78.4 63.5 55.4 45.3 89.2 1()") ") ..LV...J*...J 108.5 130 .l 99.5 226.0 1074.9 110 3. 7 1061.9 1080.4 1074.2 1073.1 1050.0 1028.7 1046.6 1022.8 1038.5 1059.4 1004.7 ('1()0 (\ ;; 00. :J 985.4 962.1 1005.2 902.4 Jackson Park Jackson Park Jackson Park Heumader Heumader Heumader Heebner Heebner Snyderville Snyderville Snyderville Unnamed Lawrence Unnamed Lawrence Unnarned Lawrer1ce Ireland Ireland Robbins 50 40 50 50 50 50 70 70 80 80 80 50 50 40 50 50 50 40 30 40 40 30 30 30 20 20 15 10 lO 30 40 40 30 30 30 40 20 20 10 20 20 20 10 10 5 10 10 20 lO 20 20 20 20 20 aClay mineral data is presented as a percentage of the total clay fraction. bslake-durability testing is described in Section 2.5.6. 93 81 82 85 80 76 98 98 16 9 13 52 93 92 93 90 89 91 85 48 44 64 57 51 97 95 3 4 5 9 79 87 81 81 70 76 Medium High Low Low Medium Low Low High High Very Low Very Low Very Low Very Low Medium High Medium Medium Medium Medium Rev. 0 VifOLF' CEElm 2. :;--4 4 Sheet 1 of 3 RESULTS OF SWELLING PHESSURE ON SHALE Depth Boring (feet) Geologic Unit B-19 17.3 Jackson Park B-6 24.7 Jackson Park B-7 36.5 Jackson Park B-6 48.0 Heumader B-14 42.2 Heumader B-14 43.3 Heumader B-6 78.4 Heebner ______ 0 30 90 1020 1500 0 30 60 4320 0 420 1440 1740 0 30 60 120 240 1200 1440 4320 0 60 120 1080 1440 2520 0 15 60 2520 0 60 180 1080 1440 2640 Swelling Pressure (psf) 100 42.5 67.5 850 900 100 150 200 225 100 125 225 200 100 2 2 3 2 425 511 630 675 7 2 100 650 760 850 900 900 100 2 2 2 7 480 100 2 2 3 2 511 550 560 Rev .. 0 WOLI CREEK 'rABLE 2.:5-44 (cont.inued) Sheet 2 of 3 Depth Time Swelling Boring (feet) Geologic Unit ________ l.!.!!:i nut e s ) ( ________ B-19 63.5 Heebner 0 100 15 5 60 4 5 1020 800 1440 830 2460 835 B-6 81.8 Snyderville 0 100 15 325 30 425 60 630 1440 1400 2700 1500 4320 1600 B-19 69.4 Snyderville 0 100 60 110 120 110 180 125 2880 130 B-15 55.4 Snyderville 0 100 360 125 1440 135 2880 160 4320 175 B-16 45.3 Unnamed Lawrence 0 100 5 225 15 225 30 225 60 230 120 250 1440 275 B-5 89.2 Unnamed Lawrence 0 100 15 250 60 325 120 325 180 325 1440 300 B-19 103.3 Unnamed LawrencE:! 0 100 15 425 75 875 3960 1150 Rev. 0 WOLF CREEK TABLE 2.!5-44 (continued) Sheet 3 of 3 Depth Time Swelling Pressure Boring (feet) Geologic Unit (minutes) ( _____ B-5 108.5 Ireland 0 100 30 325 900 750 1800 800 2400 830 B-19 130.1 Ireland 0 100 30 775 90 1030 1200 1250 1560 1300 .2760 1425 B-16 99.5 Ireland 0 100 60 560 180 725 420 760 1740 850 4260 900 B-6 226.0 Robbins 0 100 15 275 180 2100 240 2400 420 2800 1260 342.5 1800 3500 2640 3550 2880 3560 6720 3725 Rev. 0 TABLE 2.5-45 DESIGN STATIC AND DYNAMIC PROPERTIES OF SUBSURFACE MATERIALS AT THE PLANT SITE Average Average Modulus of Elasticity Modulus of Rigidity Foundation Elevation Depth (psf) Dynamic(a) (psf) Poisson's Nat erial (feet) (feet) Static Static Dynamic(a) Ratio Overburden Soil ll05 -1100 0 -5 0.5 X 106(b) 1.5 X 106 0.2 X 106(b) 0.4 X 106 0.4 Jackson Park Shale 1100 -1092 5 -13 46 X 106 79 X 106 18 X 106 29 X 106 0.3 (sandstone facies) Upper Heumader 1092 -1072 13 -28 1 X 106 0.4 X 106 (a) 0.4 Shale Lower Heumader 1072 -1065 28 -40 5 X 106 1.9 X 106 (a) 0.35 Shale Plattsmouth 1065 -1053 40 -52 400 X 10° 700 X 106 150 X 106 h 270 X 10-0.3 Limestone l"L.-, --,""'"' -'0 ,no 150 , nO ,nO 58 *nO 0.3 nccuuc.1. .:JUd...L.t::J .1VJJ J..VJ/ J<. 00 "-l*J X iU X iU o.L X iU X iU Leavenworth Lime-C-nH....-:Ip,...*n; 1 1 o ..,,_,_J ............ ., .................. Shale Toronto 1037 1020 68 85 700 on6 700

    • n6 270 .. 6 270 .. 6 0.3 --X lU X lU X lU X lU Limestone aFar Heumader Shale, see Figure 2.5-97b. Strain range for sandstone and limestone is 0.0001 to 0.001 percent but modulus values are also applicable to SSE strain levels. Strain range for soil is shown on Figure 2.5-92. Values presented are for a strain range of 0.1 to 1.0 percent. bValues based on tangent modulus from consolidation test. cValues based on resonant colunn, literature review and previous exper1.ence. dSee Figure 2.5-97c, 2.9-d, and 2.9-97e. Sheet 1 of 2 Wet: Density (c) Damping* (pcf) (percent) 130 11 125 3 135 4 150 4 """ """ 165 2 0 t"' rrj 140 4 ,..., \ " ...... t:lJ t:lJ ;;>'; 160 2 Rev. 0 TABLE 2.5-45 (continued) Sheet 2 of 2 Average Average Modulus of Elasticity Modulus of Rigidity Damping(c) Foundation Elevation Depth (psf) Dynamic(a) ( psf) . (a) Poisson's Wet Density Material (feet) (feet) Static Static DynamJ.c Ratio (pcf) (percent) Unmamed Lawrence 1020 -998 85 -107. 40 X 106 200 X 106 15 X 106 78 X 106 0.3 160 3 Shale Ireland Shale 998 -940 107 -165 50 X 106 240 X 106 20 X 106 90 X 106 0.3 155 3 Ireland Siltstone 940 -910 165 -195 50 X 106 240 X 106 20 X 106 90 X 106 0.3 155 3 Robbins Shale 910 -850 195 -255 60 X 106 200 X 106 23 X 106 78 X 106 0.3 150 3 Vinland Shale-850 -705 255 -300 110 X 106 300 X 106 42 X 106 115 X 106 0.3 150 2 Siltstone-and Limestone Tanganoxie Shale 705 -745 300 -360 95 X 106 270 X 106 106 106 0 35 X 100 X 0.35 150 3 t"' and Sandstone t-:l:j n \.Jest!J:Cl Shale 745 -775 360 390 80 X 10° 'i/.t: X ',-,6 23 X * ,-,6 90 X 155 3 A:: .i...'"+...J .iV .iU v * .J.:; t<:l i:.".l Granular Structural Variable 1.3 ,A6 (d) 0.5 (d) 0.35 150 (d) A X J.U X lU Fill Rev. 0 Depth (feet) 0-10 10-36 36-48 48-64 64-82 OL-255 259-262 262-393 393-402 Geologic Unit(s) Residual soil and weathered bedrock Heumader Member Plattsmouth Member Heebner, Leavenworth and Snyderville Hembers Toronto Member Unnamed Lawrence, and Robbins Members Haskell Hember Vinland, Tonganoxie and Weston Members South Bend and Rock Lake Members TABLE 2.5-46 SUMMARY OF GEOPHYSICAL PROPERTIES OF SUBSURFACE MATERIALS AT THE PLANT SITE(a) Material Description Silty clay and weathered shale Somewhat clayey calcareous shale* Dense, fine-grained limestone with shale layers Interbedded carbonaceous shale, limestone, and clayey calcareous shale Fossiliferous limestone with occasional thin shale layers Interbedded shale, siltstone Bnd a thin coal bed and limestone layer occur in the upper 25 feet; pure shale is present in the basal 60 feet Dense, fine-grained limestone Interbedded siltstone, shale and sandstone; pure shale is present in the basal 30 feet Dense limestone with shale and siltstone Compressional Wave Velocity (ft/sec) 2,300 6,000 14,000 7,000 11 '700 ""'! u ; ,uvv H ()()()(b) J.J,vvv 8 500(b) ' 16,500(b) aDepths and descriptions based on Boring B-4. Poisson's Ratio 0.463-0.475 0.467-0.471 0.378 0.333 0.305 0.322 0.30l(b) 0.333(b) 0.346(b) bindicates values obtained from Birdwell Elastic Property borings B-4, B-5 and B-11. wave velocity measured by Birdwell. dShear wave velocity empirically computed by Birdwell= Shear Wave Velocity (ft/sec) 500 600 1,400-1,500 6,200 3,500(b,d) 6,200 4,000 8 """(b,c) ,vvv 4,250(b,d) 8,000(b,c) Measured Average Unit Weight (pcf) 99 113 139 160 165 147 153 lL:t-\ .:..-IV 154 148-154 Bulk Density (pcf) 154 (b) Rev. 0 WOLE1 'l'ABLE 2 .. S*-4 7 HORIZONTAL COEFFICIENTS OF FRICTION AGAINS'I' MASS CONCRETE FOR STRUCTURAL COMPONENTS Subgrade Material Bedding Material(a) Of Crushed Rock{a) Structural Fill Residual Soil Upper Heumader Shale Lower Calcareous Heumader Shale Upper Plattsmouth Limestone(b,c) Lower Plattsmouth Limestone(c) Plattsmouth Limestone(d,e) Heebner Shale Snyderville Shale 0.55 0.60 0.20 0.22 0.30 0.30 0.50 0.70 0.30 0 .. 30 aBedding material and crushed rock structural fill assumed to be compacted to at least 80 percent lative density and to a minimum dry density of at least 95 percent as determined be ASTM D 1557-70, respectively. bCoefficient of friction based on the residual strength parameters of the moderately to highly weathered shale seams present in the upper tions of the Plattsmouth Limestone. cAt ESWS pumphouse dAt the plantsite eA continuous layer, 0.4 to 0.9 feet in thickness, of clayey shale is present with average elevation 1,057.3 at depths of 6.0 to 7.0 feet below the top of the Plattsmouth Limestone at the Containment Building. A coefficient friction of 0.3 should be used for this layer. Rev .. 0 TABLL 2.:5-48 DESIGN STATIC AND DYNAMIC PROPERTIES OF SUBSURFACE MATERIALS AT THE ESWS PUMPHOUSE Average Average Z..iodulus of Elasticity Foundation Elevation Depth ( sf) Material (feet) (feet) Static Dxnamic Overburden 1092-1077 0-15 0.61 X 106(a) 2.6 X 106(b) Soil Heumader Shale 1077-1059 15-33 2.0 X 106 Plattsmouth 1059-1047 33-45 400 X 106 700 X 106 Limestone Heebner Shale, 1047-1033 45-59 21.5 X 106 150 X 106(c) Leavenworth Limestone, Snyderville Shale Toronto 1033-1015 59-77 700 X 106 700 X 106(c) Limestone of as 500 times the strength and the modulus of rigidity calculated from the assumed Poisson's ratio. bValues estimated from compressional wave velocities measured during the uphole survey of Boring HS-14. For Heumader Shale, see Figure 2.5-97a. cStrain range for limestone and shale is 0.00001 to 0.001 percent. Modulus of Rigidity ( sf) Static Dynamic 0.21 x 106(a) 0.91 X 106(b) 0.70 X 106 150 X 106 270 X 106(c) 8.2 X 106 58 X 106(c) 270 X 106 270 X 106(c) Wet Poisson's Density Damping Ratio (J2Cf) (Eercent) 0.4 120 4 0.40 140 4 0.30 165 2 0.30 140 4.0 0.30 160 2 Rev 0 WOLF CREEKTABLE 2.5-48aRESULTS OF DENSITY TESTMATERIALNO.MAXIMUM DRYDENSITY, PCFASTM-D1557MAXIMUM/MINIMUM3DRY DENSITY, PCFASTM-D204995 PERCENT OF MODIFIED PROCTOREXPRESSED AS RELATIVE DENSITY %11140.6136.0/101.89421140.8135.5/102.49632147.0139.2/105.110142142.6131.9/105.31102Report "Field Density and Laboratory Investigation of the CrushedStone Fill, CallawayPlant Units 1 and 2". Dames & Moore Report for UnionElectric Company dated August8, 1975.1Test on CCFI Material, Marble Hill Nuclear Power Plant.3Wet Method.Rev. 0 Observation Location Plant Site Heat Sink Observed Wave 112 Type Rayleigh M Type Raheigh Love M2 Type Rayleigh M1 Type Rayleigh Love TABLE 2.5-49 SURFACE WAVE DATA IN THE CATEGORY I AREA Wave Type Particle Motion Vertical-Radial Prograde Vertical-Radial Retrograde Transverse Vertical-Radial Proqrade Vertical-Radial Retrograde Transverse Predominant Frequency (Hz) 12 10-17 8.5-17 17 17-20 10-17 Apparent Wave Length (Ft) 214 190-112 294-147 175 144-122 Apparent Velocity (Ft/sec) 2570 1900 2500 2970 2440 Observed Limit of Wave Train (cvclesl l 15 15 1 15 10 Rev. 0 TABLE 2.5-50 A1*1BIENT GROUND MOTION MEASURE.MENTS Frequency I Ambient Station (hertz) Mode(c) ---D (in) Heat Sink ---A (in/sec/sec) 4 0 to 52
    • 5 .(a) V (ln/sec) Heat Sink ---D (in) (with bulldozer ---A (ln/sec/sec) moving at distance 9.5(b), .66(b) V (ln/sec) of approx. 750 I) I I ---D (in) Plant Site ---A (in/sec/sec) 20 to 75(a) llo(a LV _l.i!1L_secj_ _ I -***----_ _J ----aFrequency content variable within specified ranges -no characteristic frequency observed bFrequency content uniform -characteristic frequency observed en -Displacement A -Acceleration V -Velocity dToo small to determine Ground Motion x 10-3 T v R nil (d) nil nil nil nil nil .0225 .02 .0125 nil nil nil n1l nil nil .0375 .0375 .0225 nil nil nil nil nil nil ....... ()()'71:; *-VI....I () 05 *VV Rev. 0 0 [:"I ":r.l 0 :;::; J:l:l J:l:l . ., --*--s -*-*m* -**"*-----

    Depth (feet) 0-7 7-20 20-35.8 35.8-50.7 so. 7-110 Geologic Unit(s) Residual soil and weathered bedrock Heumader Member(d) Plattsmouth Member Heebner, Leavenworth and Snyderville Members Toronto Member Unnamed Lawrence, Ireland and Robbins TABLE 2.5-51 SUMMARY OF GEOPHYSICAL PROPERTIES OF SUBSURFACE MATERIALS AT THE ULTIMATE HEAT SINK(a) Material Description Silty clay and weathered shale Somewhat clayey calcareous shale Dense, fine-grained stone with shale layers Interbedded carbonaceous shale, limestone, and clayey calcareous shale Fossiliferous limestone with occasional thin ell 1 ............... .-..._ --..... ..z ._ ............ Interbedded shale, stone and sandstone; a thin coal bed and limestone layer occur in the upper 25 feet; pure shale is present in the basal 60 feet Compressional Wave Velocity (ft/sec) 750-1400 4,300(e) 12,200 6,150 11,600 7,500 Poisson's Ratio 0.300-0.455 0.375(e) 0.340 0.333(b) 0.313 0.305 and descriptions based on Boring HS-1. Shear Wave Velocity (ft/sec) 400 1,925(e) 6,000 3,5ooCb,c) 6,000 3,950 bindicates values obtained from Birdwell Elastic Property Logs, Borings B-4, B-5 and B-11. cshear wave velocity empirically computed by Birdwell. dHeumader Member not present in Boring HS-1 but does occur in ultimate heat sink area. es1edge hammer shear test. fvalues are from B-4 and B-5. Measured Unit Weight6 (pcf) 99-113 139 160-165 14 7-153 150-154 ... n...verage Bulk Density6 (pcf) 152 166 154 165 160 ::E; 0 t'"' rJ:J n ::0 t:r:! !::r:j WOLF CREEK TABLE 2.5-52 PLANT FOUNDATION DIMENSIONS, ELEVATIONS, AND LOADS Structure Approximate Plan Dimension (feet) Foundation Elevation (feet) Stratigraphic Unit at Foundation Elevation Assumed Uniform Foundation Pressure (Static) (psf) Reactor Building 154 diameter 1088.5 Tendon Gallery at 1074 Core at 1064 Upper Heumader Lower Heumader 7,500 7,500 Control Building 70 x 154 1068 Lower Heumader 7,900 Auxiliary Building 160 x 217 1068 Lower Heumader 7,900 Fuel Building 91 x 122 1093.5 Upper Heumader 10,600 Diesel Generator Building 65 x 88 1089.5 Upper Heumader 5,300 Hot Machine Shop 68 x 43 1094.5 Upper Heumader 5,600 Radwaste Building 196 x 82 1071.5 Lower Heumader 5,900 Turbine Building 155 x 320 Variable Upper and Lower Heumader 2,000 to 11,000 Radwaste Tunnel 28 x 180 1071.5 Lower Heumader 7,000 Drum Storage Building 59 x 100 1094.5 Upper Heumader 2,700 Communications Corridor 70 x 38 1071.5 Lower Heumader 4,000 ESW Vertical Loop Chase 28.33 x 16.33 1070 Lower Heumader 4,100 Rev. 29 WOLF CREEK TABLE 2.5-53 DESIGN STATIC AND DYNAMIC BEARING CAPACITIES OF SUBSURFACE MATERIALS AT THE PLANT SITE Foundation Ultimate Bearing CapacityAllowable Bearing Capacity (psf) Bearing Pressure (psf) Computed Safety Factor Structure Elevation (psf)Static(a)Dynamic(b) Static Dynamic Static Dynamic Reactor Building 1,064-1,088.5 60,000(d) 20,000 30,000 7,500 23,000 8.0 2.6 Control Building 1,068 60,000 20,000 30,000 7,900 13,000 7.6 4.3 Auxiliary Building 1,068 60,000 20,000 30,000 7,900 13,000 7.6 4.3 Fuel Building 1,093.5 60,000(c)20,000 30,000 10,600 26,900 5.7 2.2 Diesel Generator Building 1,089.5 50,000(c)17,000 25,000 5,300 18,700 9.4 2.7 Hot Machine Shop 1,099.5 30,000 10,000 15,000 5,600 5,700 5.4 5.3 Radwaste Building 1,071.5 60,000 20,000 30,000 5,900 9,200 10.2 6.5 Turbine Building Above 1,075 Below 1,075 30,000 60,000 10,000 15,000 15,000 30,000 Variable Variable Variable Variable 3 3 2 2 Radwaste Tunnel 1,071.5 60,000 20,000 30,000 4,000 N/A 15 N/A Drum Storage Building 1,094.5 30,000 10,000 15,000 2,700 3,000 11.1 10 Communications Corridor 1,071.5 60,000 20,000 30,000 4,000 6,000 15 10 ESW Vertical Loop Chase 1,070 25,200 10,100(e)12,600 3575 4290 7.0 5.9 aBased on a minimum factor of safety of 3.0. bBased on a minimum factor of safety of 2.0. cGranular fill and mud mat to 1,086. dHigher portions on lean concrete backfill. eBased on a minimum factor of safety of 2.5. Rev. 29 WOLF CREEK TABLE 2.5-54 SETTLEMENTS OF POWER BLOCK FOUNDATIONS Settlement(a) Computed Structure Allowable(b)Maximum Minimum Reactor Building 1 1/2 0.5 0.3 Auxiliary/Control Building 1 0.3 0.2 Diesel generator Building 1 0.7 0.3 Fuel Building 1 3/4 1.4 0.4 Radwaste Building 1 0.2 0.1 Drum Storage 1 0.4 0.1 Pipe Tunnel 1 0.2 - Tank Foundations a. Refuel Water b. Condensate c. Demineralization d. Reactor 1 1 1 1 1 0.9 0.4 0.2 0.4 0.2 - - - Communications Corridor 1 0.2 0.1 Hot Machine Shop 1 0.4 0.2 Transformer Vaults 1 0.2 - Transformer Footings 1 0.3 0.1 Condensate Tank Trench 1 0.1 - Auxiliary Boiler Building 1 0.3 0.2 Emergency Fuel Oil Tank 1/2 0.3 - Emergency Fuel Oil Vault 1 0.3 - Turbine Building 1-1 1/2 0.5 0.2 ESW Vertical Loop Chase 1 0.1 - aSee Figure 2.5-106. bBased on input from Bechtel Power Corporation, 1979, Letter BLSE 7534, August 24. Rev. 29 301.5 WOLF' CRI\E: I< TABLE 2.5-54a 1 of 3) SPECIFICATION A-3852 Amd. 3, 05*-10**-77 Bedding for Circulatin9 Water Pipeline j' Wannin9 Water Pipeline, 1N"a.ter ESWS lines and ESWS Electrical Duct Banks: Amd. 2 a. The bedding shall be shaped to the underside of the pipe to prov*ide a continuous firm bearing. Amd. 4 al. There shall be a minimum of 6 inches of bedding below the pipe inverts v;rhere bottom of the trench is soil and a minimum of 12 inches of beddinq where the bottom of the t:J:::ench is rock. Amd. 4 a2. The bedding shall extend to at least. the mid height of the pipe :for pipelines and to a minimum of 12 inches above the crown elevation of ESWS pipelines. A minimum of 12 inches of beddinq material shall be placed a.lon9 the sides of pipes and the ductbanks that are not poured a9ainst in-situ ma*terial s. vfuere the ESWS banks can be placed against in-situ material, ding material is not rE!qu:Lred. b. When placing backfill the differential level from one side to the other side of the pipe or ductbank shall not exceed one foot. c. Bedding Material: c1. ESWS Pipeline, ESWS Electrical Duct Banks, lat.ing Water Pipelines, v1a.rming Wat.er Pipeline and Service Water Pipeline: c1.1 Bedding material shall be a pea gravel o:r crushed stone with not less than 95% passing 1/2 inch and not less than 95% *to retained on the No. 4 sieve. The bedding material shall have less than 5 percent friable malterials as determined by ASTM C-142 and less than 45 percent loss as determined by ASTM C-131. Rev. 0 Amd. 3 Amd. 4 Amd. 4 Amd. 4 WOLF CREEK TABLE 2.5-54a (Sheet 2 of 3) Amd. 5 c2. As an alternate to Paragraph c1 the following gradation may be used. Amd. 4 c2.1 Bedding material shallconform totheapplicable requirements of Paragraph 301.5. Bedding material shall have less than 5 percent friable materials as determined by ASTM C-142 and less than 45 percent loss as determined by ASTM C-131; except gradation shall be one of the following: (1) ALTERNATE NO. 1 Sieve Size Passing %Note:Alternate No. 1 is equally replaced with crushed stone conforming to the requirements of designation SCA-2 of Kansas State Department of Transportation Specifications Section 1102. 3/4" 95-1003/8" 40-60#8 0-05 (2) ALTERNATE NO. 2 Sieve Size Passing % 1/2" 95-100 #4 0-20 #8 0-08 (3) ALTERNATE NO. 3Amd. 4 Sieve Size Passing % 3/4" 100 3/8" 85-100 #8 40-60 #30 5-30 #100 0-02 (4) ALTERNATE NO. 4Amd. 4 Sieve Size Passing % 3/8" 100 #4 95-100 #8 50-85 #16 22-50 #30 8-35 #50 5-30 #100 0-15 Rev. 28 WOLF CREEK TABLE 2.5-54a (Sheet 3 of 3) (5) ALTERNATE NO. 5 Amd. 5 Sieve Size Passing % 1" 100 3/4" 90-100 3/8" 20-55 #4 0-10 #8 0-5 (6) ALTERNATE NO. 6 (Sand) Amd. 5 Sieve Size Passing % 3/8" 100 #4 95-100 #8 80-100 #16 50-85 #30 25-60 #50 10-30 #100 2-10 Note: Alternate No. 6 is equally replaced with fine aggregate conforming to the requirements of designation FA-A of Kansas State Department of Transportation Specifications Section 1104. d. The bedding material shall be placed in not more than 6 inch layers and vibratory tampered to a relative density of not less than 80% as determined by ASTM D-2049 or ASTM D-4253 and ASTM D-4254. e. Controlled Low Strength Material (CLSM) meeting the requirements of Specification C-101, Addendums 1 & 2 to Revision 26 (Document No. 25707-00-3PS-DB01-10001 and 25707-000-3PS-DB01-10002 respectively) shall be used as the pipe bedding material when specified on the issued drawings. The CLSM material shall be installed in accordance with Specification 10466-C-103, Addendum 1 to Revision 21 (Document No. 25707-000-3PS-DB02-10001). Testing of the CLSM material and/or installation shall be in accordance with Specification 16577-C-191, Addendum 1 to Revision 20 (Document No. 25707-000-3PS-SY01-10001).

    Rev. 28 WOL,JE' CREEK '!'able 2. 5-54b ANI> __ FOUNDl\TION PRESSURE DATE CF (static) F'IRST READ INS _______ __ -*--------STRUCrDRE (psf)a m. __ ____ __ ___ Aux:iliary Building 7,900 A-1 1/9/80 A-2 1/9/80 A-3 1/9/80 A-lA 6/8:2 Contml Buildirg 7,900 C-1 2/llO C-lA 7/77 Generator 5,300 Buildirg D-1 2/l/80 I}-2 2/1./80 D-3 2/l/80 Fuel Building 10,600 F-1 2/l/80 F-2 2/1/80 F-3 2/1./80 F-4 2/l./80 Radwaste Buildin:j 5,900 2/6/80 R-2 2/6/80 R-3 2/6/80 R-4 2/6/80 Reactor Building 7,500b R-10 8/78 R-20 (AZM-135) 8/713 R-30 (AZM-225) 8/78 R-40 B/78 Turbine Buildin:j 2,000 to 11,000 T-1 9/78 T-1A 2/::JO T-2 9/78 T-2A 2/80 T-3 2/80 T-3A 2/80 T-4 9/78 T-4A 2/80 T-4B 10/llO T-:<A 2/80 ESWS Pumpoouoo 6,600 PH-1. 2/80 PH-2. .2/130 PH-3 2/80 PH-4 2/BO E-1 L/:'ll E-2: 5/Bl E-2A L/84 E-3 1/131 E-4 '5/81 E-4A L/114 aProvided :Ln Bechtel letter BISE-7534, (8-24-*79'). bPr01ridoo in Bechtel letter BISE-7686, (10-11.-79). settlement as of November, 1983. 2001.9798 2002.0399 2001.9955 2001.9590 2003.9757 1973.9860 2001.9750 2002.0150 2002.0086 2001.9862 2001.9887 2002.0721 2001.9300 2002.0040 2002.0176 2001.9973 2001.9849 2001.0280 2001.0130 2000.9960 2001.0130 2000.0090 1999.9050 1982.9900 1999.9918 1999.8997 2000.4822 2000.0040 2000.4848 2000.0014 1999.8015 1958.0440 1958.0004 1958.0547 1958.0169 2002.023 2002.049 2002.034 2002.093 2002.054 2001.. 963 '\.tX!suroo settlement as of July 1980;: no readirgs thereafter. settlement as of December, 1981, rcplaco:l by A-lA. 0.2 to 0.3 0.2 to 0.3 0.3 to 0.7 0.4 to 1.4 0.1 to 0.2 0.3 to 0.5 0.2 to 0.5 0.1 to 0.25 fM:Xlsuroo settlement as of September,, 1980; new rocrm.nrent: T-4B was established. settlenxmt as of April, 1980; rronumenb3 i.naccess:Lble thereafter. settlement as of January, 1984. settlaoont as of ,July 1982, monument ina.cc:e03si.ble thcrca.fb?r. jM:Xlsurcrl settlement as of May, 1982, rrom.lllEnt dest:royed. settlenxmt as of April, 1984. 0.08: to i\-29 L.O 0.12. 0.18 0.29 0.08 0.11 to 0.34 1.0 0.141 0.34( 0.42 to 0.62 1.0 0.42 0.62 0.54 0.313 to 9:-68 1. 75 0.6 x: 0.68. 0.23 to 0.30 1.0 0.25 0.30 0.23 0.25 0.31 to 0.43 1.5 0.41 0.43 0.43 0.31 O.U to 0.19 l.ll-1. 5 0.19 0.13 0.18 0.14 0.17 0.16f 0.06i 0.10. 0.14J 0.19 0.0 to l.O 0.049 0.029 0.029 0.04h 0.2f!h 0.14 0.0 h 0.26h 0.11 0.0 Rev.. 0 Soil Soil Shale TABLE 2.5-55 SOIL PARAMETERS FOR STABILITY ANALYSIS OF ESWS PUMPHOUSE CHANNEL AND UHS SLOPES Total Stress Effective Density <Pcu Ccu <j> I C' (pcf) (degree) (psf) (degree) (psf) 124 10 585 20 400 150 35 5,000 35 5,000 Rev. 0 IUl *"Mila (I) IC*rllf4 \ .. w,.Lt :.. __ 7_ hi'# l*llfl 1 I '\ S :'t:__ ....... . IG*3 '! Y.*KI fii".J.-.. I C'\\:> ...... 17-0 21:1._ -*

    • r4 * ,c, I l.G*/ 111*7 ! .. I .............. , ***. l 48 4" ****** .... (). () Q 'l.. O*t.o1. , .... ,., ......... , . , .. b 10 ' ..._ ' ..._ sratn . .; 10-.. ,.-(;QaOifoOtl . . . . 4 4 c . . . ..... II*' I S'l 1'l. :: :r,, ,,, . ! :114 a, B1'11flo
    • a,," 3:JctiT'lefl : 1ia1 -a,) 'Jn-IS7kl.L!1:H
    • a 1 * :H4i ' . tl I " -IGI !i2.L A, O*l(o 0*4-0 -n*3?. f, .... ! !:fL. .!:21. ._It. err-£1.Utu:.L H.!! : Al. .. lt-li 'f-¢._ ; .!!.:..'!_'-n1:i! M 5 t""t* 15 Z9 ! ,.a,.o1, !7G 71 .. ,,, !!H ** */aii,*fir e-IG ;!C.: 4 .Q 111*5 lt.'l.. 2* LL .. *I 'IJ'L (I. I. II WOLF CREEK Table 2.5-55a SUMMARY OF CONSOLIDATED UNDRAINED TRIAXIAL TEST DATA ON UHS EMBANKMENT MATERIAL _(2,1_ ('-) () () () -:. 3 __ 4 __ 11G"3-1'16 Cl lld 11:; Tc.1*L _j!}*7 l<l!: 0*5" 0*49 t---=----0'\\o <:) Ia 1.\:l .. -f--;! .. _!/4*R los:L I 00*2. C:5'1J t:r4(._ .. 5" ss "' t.*to'l.. ()* 0 t. '2. (H!Ol. Q*QO'l. --** .. .... . .. b .. to" ltl" b ..
    • IO to b ,., ' ..._ ' --' --' --' ..._ ' ..._ ' " ,.-.. ... .; ..... .. ,.-.. "'-.. . . . = . . . . . = .. = .. : c : 4 4 ... 4 . .. . * . . * . * . " .. * .. m 5:2::_ ,., '2*f0 ltl*1 , .... **1r 65 1152. IH-=" 571. -516 -iHT r.:-**-* .11{.]. 33{! Hn .4:W; iil3i !!}t_ <tiS H.B ---f---113i} .54_1 0*1 0*3 o*2.1 e* o 0*1.7 5.:1-: C.* f3.. -1!1:].. 1*1: __ -13} 158 118. I!H1. .4.1 _101_ ffi\1>"L .3)7l _2(,'\l. !LU 1.!;.1-j' 111,!_ llfd 1'ilfr 1lE! .:2t-?.!.:L .111 1na £'fl. _<(3_ .1Ji -*(HI\ <?:11 t.*4-0 l*1.'l. '3.*0 15* I *5 . () () () () () tb" lb .. lb' ; ,; ; .. b' 10 ,., .. -' ..._ I --' -' -' -'" D' lb-D' 10" " 10" " lb-" lb ,; . = * .. .. . . . c : = : = : c .. c 4 * ..
    • a .. * .. * .. * --1---. ,_ Rev. 0 WOLF CREEK rrABLE 2. 5-*56 RESULTS OF SLOPE STABILITY ANALYSIS FOR UHS EXCAVMrED SLOPES USING WEDGE ANALYSIS Condition Computed Minimum Required Minimum _______ F_a_c !:or f_ e ty_ ____ F a c t:..o r of __ safety End of Construction 7.8 1..4 Steady State 5.3 1 .. 5 Steady State plus SSE (0.12 g) :3. 1 .. 2 Rev. 0 Condition 5:1 Slopes Submerged -Lake level @ el 1087 Submerged + 0.12g SSE Rapid Drawdown -el 1087 to 1070 End of Construction (Short=-term) End of Construction (Long-term) End of Construction +0.12g SSE (Long-term) 3:1 Slopes Submerged -Lake level above el 1070 Submerged +0.12g SSE End of Construction (Short-term) End of Construction (Long-term) TABLE 2.5-57 Safety Factors of Slope Stability Analysis for ESWS Intake Channel Excavated Slopes Effective Stress Parameters 5.91 2. 16 2.82 3.37 1. 86 7.13 3.37 5.02 Total Stress Parameters 2.86 3.14 1. 74 3.88 5.69 5.97 Required Minimum Factor of Safety 1.5 1.2 1.2 1.5 1.5 1.2 1.5 1.2 1.5 1.5 Rev. ::E: 0 t"' r:tj 0 :;o t"lj t:':l :;>;: r. v WOLF CREEK TABLE 2. 5-58 COMPRESSIONAL AND SHEAR WAVE VELOCITIES, ULTIMATE HEAT SINK El . (a) UHS Dam ESWS Pumphouse evat1on (b) ( ) (d) ( f) Material (feet) Vp(fps) Vs(fps) c Vp(fps) Vs(fps) e, In-Situ Soil Heumader Shale Member Upper Lower Plattsmouth Limestone Member Heebner Shale -Leavenworth Limestone and Snyderville Shale Merrtbers Toronto Limestone Hember Unnamed Lawrence -Amazonia Limestone Members 1,072-1,077 1,450 + 975 1,060-1,072 1,047 -1,060 13,050 + 1,500 1, 031 1, 047 5,525 + 1,250 1,013-1,031 12,800 + 1,000 984 -1,013 6,800 + 800 375 + 250 6,375 + 725 2,775 + 625 6,675 + 650 3,575 + 425 1,425 2,625 2,625 14,000 6, 150 10,600 6,800 685 1,075 i,260 6,915 3,275 5,675 3,675 aElevations based on Borings HS-14 and HS-15. b Compressional wave velocities measured at alignment of UHS dam. Mean and + one standard deviation values are listed. cShear wave velocities at alignment of UHS dam based on an evaluation of measured shear wave and compressional wave velocities. Hean and + one standard deviation values are listed. d("'! TI"\T'"'o'Y ; 't"'\ 1 l"7.::11'U' ,_.,....-\,;.....; 1"'1\ '>,;¥ '}-_,7 'i'i-.,1-,,..,-: _,... _ _.;,......'i"tro. +--......__.,..,._.;_..,_ t.;""' 1,..-1 W-.ve ve..s.., .. n .... ..L'-".J-eS U.j:'.i.J.V..Le '-evu . .t.L..L.":iu.c a'-l:SO..L..L.l.J.'=' 1""2:* e Shear wave velocities estimated from Vp measurements at HS-14 shear wave data from similar materials. f_ ----------The standard deviations listed for Vp and Vs at the dam alignment can be used to estimate the variations that are associated with the velocity values listed for the ESWS pumphouse. Rev. 0 TABLE 2.5-59 SURFACE WAVE DATA FOR THE ULTIMATE HEAT SINK Predominant Apparent Apparent Observed Wave Type Frequency Wave Length Velocity Wave Particle Motion (Hz) (ft) (ft/sec) M2 Type Vertical-Radial, 17 175 2,970 Rayleigh Prograde Ml Type Vertical-Radial, 17-20 144-122 2,440 Rayleigh Retrograde Love Transverse 10-17 Observed Limit Of Wave Train (cycles) 1 1 I:; ... .J 10 Rev. 0 0 TABLE 2.5-60 AMBIENT GROUND MOTION MEASUREMENTS IN THE ULTIMATE HEAT SINK Ambient Station Heat Sink Heat Sink (with bulldozer moving at distance of approx. 750') aD-Displacement A -Acceleration V -Velocity Frequency (Hertz) D A v D A v Mode(a) (in) (in/sec/sec) (in/sec) (in) (in/sec/sec) (in/sec) Ground Motion T v "l (c) n1 nil nil nil .0225 .02 nil nil nil nil .0375 .0375 X b Frequency content variable within specified ranges -no characteristic frequency observed. cNil -too small to be measured. d Frequency content uniform -characteristic frequency observed. 10-3 R nil nil .0125 1'"\ ; , J.l * ..L nil .0225 Rev. 0 WOLF CREEK Table 2.5-60a Sheet 1 of 3 VERTICAL MJVEMENT MJNUMENT DATA UHS DAM Wca.tion Monunent (feet) Date of Survey and Elevation Number Station Offset 05/20/80 05/27/80 06/03/80 06/10/80 06/17/80 06/24/80 07/01/80 07/08/80 07/15/80 07/22/80 07/29/80 1 (-) 2+00 0 1978.031 1978.023 1978.022 1978.021 1978.038 1978.036 1978.039 1978.046 1978.030 1978.030 1978.038 2 . 0+00 0 1978.276 1978.269 1978.264 1978.266 1978.282 1978.279 1978.282 1978.290 1978.274 1978.275 1978.279 3 2+00 0 1978.369 1978.364 1978.360 1978.363 1978.370 1978.376 1978.378 1978.387 1978.374 1978.380 1978.377 4 4+00 0 1978.753 1978.740 1978.733 1978.732 1978.736 1978.739 1978.740 1978.744 1978.733 1978.742 1978.733 5 5+50 0 1978.663 1978.653 1978.648 1978.650 1978.656 1978.656 1978.661 1978.666 1978.654 1978.664 1978.656 6 7+00 0 1978.565 1978.555 1978.554 1978.555 1978.559 1978.563 1978.568 1978.573 .1978.559 1978.573 1978.563 7 8+50 0 1978.414 1978.404 1978.401 1978.406 1978.410 1978.414 1978.414 1978.416 1978.408 1978.424 1978.410 8 10+00 0 1978.289 1978.280 1978.276 1978.283 1978.287 1978.291 1978.296 1978.296 1978.288 1978.304 1978.291 9 12+00 0 1978.093 1978.084 1978.084 1978.089 1978.094 1978.098 1978.100 1978.101 1978.094 1978.113 1978.095 Note : Elevations refer to SNUPPS reference datum. Rev. 0 WOLF CREEK Table 2.5-60a Sheet 2 of 3 Location Monunent (feet) Date of Surve:r: and Elevation Number Station Offset 08/05/80 08/12/80 08/19/80 08/26/80 09/02/80 09/09/80 09716/80 09723/80 09/30/80 11/04/80 12/01/80 1 (-) 2+00 0 1978.034 1978.040 1978.035 1978.037 1978.036 1978.046 1978.032 1978.035 1978.030 1978.031 1978.026 2 0+00 0 1978.276 1978.283 1978.273 1978.280 1978.277 1978.287 1978.275 1978.277 1978.272 1978.275 1978.272 3 2+00 0 1978.373 1978.375 1978.367 1978.377 1978.375 1978.380 1978.379 1978.373 1978.372 1978.375 1978.379 4 4+00 0 1978.729 1978.730 1978.720 1978.728 1978.724 1978.726 1978.731 1978.721 1978.719 1978.720 1978.722 5 5+50 0 1978.651 1978.652 1978.642 1978.652 1978.648 1978.649 1978.653 1978.643 1978.642 1978.643 1978.644 6 7+00 0 1978.557 1978.560 1978.550 1978.558 1978.556 1978.556 1978.560 1978.551 1978.549 1978.550 1978.553 7 8+50 0 1978.406 1978.407 1978.397 1978.406 1978.404 1978.403 1978.406 1978.397 1978.394 1978.396 1978.397 8 10+00 0 1978.288 1978.286 1978.280 1978.291 1978.287 1978.288 1978.288 1978.281 1978.278 1978.284 1978.289 9 12+00 0 1978.090 1978.089 1978.084 1978.096 1978.091 1978.093 1978.092 1978.083 1978.081 1978.084 1978.085 Rev. 0 WOLF CREEK Table 2. 5-60a (continued) Sheet 3 of 3 Location Monunent (feet) Date of Survey and Elevation Number Station Offset 01/05/81 1 (-) 2+00 0 1978.019 2 0+00 0 1978.264 3 2+00 0 1978.379 4 4+00 0 1978.709 5 5+50 0 1978.632 6 7+00 0 1978.542 7 8+50 0 1978.387 8 10+00 0 1978.278 9 12+00 0 1978o073 Rev. 0 WOLF CREEK Table 2.5-60b Sheet 1 of 2 VERI'ICAL MJVEMENT MJNUMENT DATA I:HSDAM Location Monunent (feet) Date of Survey and Cumulative and MOITellleJ1t Nurnl:er Station Offset 05/27/80 06/03/80 06/10/80 06/17/80 06/24/80 07/01/80 07/07/80 07/15/80 07/22/80 07/29/80 08/05/80 1 (-) 2+00 0 0.10 0.11 0.12 -0.08 -0.06 -0.10 -0.18 0.01 0.01 -0.08 -0.04 2 0+00 0 0.08 0.14 0.12 -0.07 -0.04 -0.07 -0.17 0.02 0.01 -0.04 0.00 3 2+00 0 0.06 0.11 0.07 -0.01 -0.08 -0.11 -0.22 -0.06 -0.13 -0.10 -0.05 4 4+00 0 0.16 0.24 0.25 0.20 0.17 0.16 0.11 0.24 0.13 0.24 0.29 5 5+50 0 0.12 0.18 0.16 0.08 0.08 0.02 0.04 0.11 -0.01 0.08 0.14 6 7+00 0 0.12 0.13 0.12 0.07 0.02 -0.04 -0.10 0.07 -0.10 0.02 0.10 7 8+50 0 0.12 0.16 0.10 0.05 0.00 0.00 -0.02 0.07 -0.12 0.05 0.10 8 10+00 0 0.11 0.16 0.07 0.02 -0.02 -0.08 -0.08 0.01 -0.18 -0.02 0.01 9 i2+00 0 o.u O.ii 0.05 -O.Oi -0.06 -0.08 -O.iO -0.01 -0.24 -0.02 0.04 Notes: 1. All rrovernents are in inches. 2. Positive nunl:er indicates settlerrent. Rev. 0 WOLF CREEKTable 2.5-60b (continued) Sheet 2 of 2 Location (feet) Date of Survey and Cumulative Movement Monument Number StationOffset08/12/8008/19/8008/26/8009/02/8009/09/8009/16/8009/23/8009/30/8011/04/8012/01/8001/05/811 (-) 2+000-0.11-0.05-0.07-0.06-0.18-0.01-0.050.010.000.060.142 0+000-0.080.04-0.050.01-0.130.01-0.010.050.010.050.1432+000-0.070.02-0.10-0.07-0.13-0.12-0.05-0.04-0.07-0.12-0.1244+0000.280.400.300.350.320.260.380.410.400.370.5355+5000.130.250.130.180.170.120.240.25 0.240.230.3767+0000.060.180.080.110.110.060.170.190.180.140.2878+5000.080.200.100.120.130.100.200.240.220.200.32810+0000.040.11-0.020.020.010.011.100.130.060.000.13912+0000.050.11-0.040.020.000.010.120.140.110.100.24Rev.0 WOLF CREEK Table 2.5-60c Sheet 1 of 2 HORIZONTAL MOVEMENT MONUMENT DATA UiS DAM Location Date of Survey and Coordinates Monument (feet) 5/23/80 6/25/80 07/23/80 08/21/80 09/24/80 Number Station Offset North East North East North East North East North East 1 (-) 2+00 0 98071.529 102244.256 98071.461 102244.139 98071.488 102244.226 98071.541 102244.106 98071.617 102244.011 2 0+00 0 97916.880 102370.959 97916.857 102370.923 97916.859 102370.892 97916.920 102370.821 97916.975 102370.700 3 2+00 0 97762.179 102497.783 97762.165 102497.714 97762.147 102497.762 97762.226 102497.689 97762.259 102497.564 4 4+00 0 97607.647 102624.344 97607.657 102624.361 97607.654 102624.372 97607.712 102624.279 97607.786 102624.192 5 5+50 0 97491.336 102719.270 97491.337 102719.282 97491.314 102719.276 97491.387 102719.188 97491.426 102719.123 6 7+00 0 97375.299 102814.312 97375.269 102814.293 97375.246 102814.345 97375.330 102814.233 97375.366 102814.123 7 8+50 0 97259.144 102909.218 97259.135 102909.257 97259.146 102909.296 97259.200 102909.149 97259.246 102909.063 8 10+00 0 97143.284 103004.258 97143.275 103004.245 97143.259 103004 .. 270 97143 .. 362 1 n"lnnA ..,, "l 97143:393 103004;082 9 12+00 0 97022.872 103158.715 97022.851 103158.725 97022.771 103158.652 97022.843 103158.647 97022.993 103158.567 Notes: 1. Coordinates refer to SNUPPS reference grid. 2. See Figu_re 241.24-4-1 for location of the move.rnent monument. Rev. 0 WOLF .CREEK Table 2. 5-60c (continued) Sheet 2 of 2 Location Date of Survey and Coordinates Monunent (feet) 11/06/80 02/16/81 Number Station Offset furth East furth East 1 (-) 2+00 0 98071.593 102244.267 98071.541 102244.188 2 0+00 0 97916.919 102370.906 97916.934 102370.861 3 2+00 0 97762.230 102497.783 97762.218 102497.745 4 4+00 0 97607.713 102624.324 97607.687 102624.313 5 5+50 0 97491.402 102719.254 97491.357 102719.227 6 7+00 0 97375.346 102814.315 97375.310 102814.237 7 8+50 0 97259.206 102909.233 97259.194 102909.198 8 10+00 0 97143.374 103004.231 97143.362 103004.267 9 12+00 0 97022.952 103158.714 97023.002 103158.732 Rev. 0 WOLF CREEK Table 2.5-60d HORIZONTAL OOVEMENT UHS DAM Location Date of Survey and Cumulative Movement Monument (feet) 06/25/80 07/23/80 08/21/80 09/24780 11/06/80 Ntmlber Station Offset South West South 1 (-) 2+00 0 0.82 1.40 0.49 2 0+00 0 0.28 0.43 0.25 3 2+00 0 0.17 0.83 0.38 4 4+00 0 -0.12 -0.20 -0.08 5 5+50 0 -0.01 -0.14 0.26 6 7+00 0 0.36 0.23 0.64 7 8+50 0 0.11 -0.47 -0.02 8 10+00 0 0.11 0.16 0.30 9 12+00 0 0.25 -0.12 1.21 Notes: 1. + indicates novement towards south or west. -indicates movement towards north or east. 2. All novements are in indles. West South West South West South West 0.36 -0.14 1.80 -1.06 2.94 -0.77 -0.13 0.80 -0.48 1.66 -1.14 3.11 -0.47 0.64 0.25 -0.56 1.13 -0.96 2.63 -0.61 0.00 -0.34 -0.78 0.78 -1.67 1.82 -0.79 0.24 -0.07 -0.61 0.98 -1.08 1. 76 -0.79 0.19 -0.40 -0.37 0.95 -0.80 2.27 -0.56 -0.04 -0.94 -0.67 0.83 -1.22 1.86 -0.74 -0.18 -0.14 -0.94 0.54 -1.31 2.11 -1.08 0.32 0.76 0.35 0.82 -1.45 1. 78 -0.96 0.01 Sheet 1 of 1 02/16/81 South West -0.14 0.82 -0.65 1.18 -0.47 0.46 -0.48 0.37 -0.25 0.52 -0.13 0.90 -0.60 0.24 -0.94 -0.11 -1.56 -0.20 Rev. 0 TABLE 2. 5-61
    • WELL AND PIEZOMETER PLUGGING Location Type Number Coordinates(a) Plugging Volume Remarks Main Dam, Spillways, and Saddle Dams well D-6lb N83,200 E99,900 Not located well D-61 N83,400 E99,800 Removed by excavation well D-63 N83,300 E99,250 2.5 yd3 Concrete piezometer LK-8 N83,385.5 El00,359.8 2.3 qts Grout Baffle Dikes well XC-1 Nl00,910 E96,350 Removed by excavation well XC-2 Nl00,890 E96,300 12.0 yd3 Concrete well XD-3 N95,700 El01,600 6.0 yd3 Concrete well XD-4 N94,720 El01,780 46.0 yd3 Concrete ::8 0 HS-1 (2) (b) N97, 92!. 4 El02,373.2 Ultimate Heat Sink piezometer t"' 3.4 qts Grout i'"Ij 0 1.84 qts Grout ::0 t%j piezometer HS-3 (l) (b) N97,534.7 El02,690 t:tj 0.165 qt Grout piezometer HS-5 (2) (b) N97,147.8 El03,006.8 2.48 qts Grout 0.92 qt Grout (a)SNUPPS coordinates. (b)Number in parentheses denotes number of piezometers at location. Rev. 0 TABLE 2. 5-62 IN-PLACE DENSITY TEST SUMMARY FOR MAIN DAM AND SADDLE DAMS COHESIVE EMBANKMENT FILL Location Offset In-Place Sheet 1 of 83 i"iaterial Moisture Correcting .J...L VUL Elevation (c) Test Centerline Identification Station (b) Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 24 85+00 100 N 1,969.0 LW-5 25.0 93.6 33 31-S 84+00 90 s 1,968.0 LW-5 25.5 94.9 36 32 84+50 100 s 1,968.0 LW-5 26.7 92.1 36 33 85+00 110N 1,969.0 LW-5 25.0 90.4 37 36 84+00 90 s 1 968.0 LW-5 24.7 93.1 38 37 85+00 110 N 1,969.0 LW-5 27.4 89.6 39 38 84+00 90 s 1,968.0 LW-5 20.7 99.2 39 85+00 110 N 1,969.0 LW-5 21 .. 8 97.7 182 31+15 3 E 1,969.0 LW-5 18.0 95.4 183 28+40 0 1,975.0 LW-5 21.5 94.8 184 184 28+40 0 1,975.0 LW-5 20.6 95.1 185 20+50 0 1,976.0 LW-5 24.0 88.6 200 186 32+14 1 w 1,973.0 LW-13 23.0 98.3 187 28+95 2 E 1,976.0 LW-7 25.1 102.1 200 20+50 0 1,976.0 LW-7 25.7 102.0 201 19+30 2 w 1,977.0 LW-8 23.7 97.7 202 34+69 0 1,977.0 LW-8 23.6 97.2 (a)The "S" following the test number indicates that a sand cone correlation test was run with the nuclear test indicated. fb1 indicates a Main Dam station; Roman numeral (I, II, III, IV, V) prefix indicates a ' 'No prefix Saddle staticr.; A or B prefix indicates a A B station. (c)SNUPPS datum .. 0 Dou J.'\.'-v
    • 0 1"""1 !"J:j n ,..... "" tri TABLE (continued) Sheet 2 of 83 Location Offset In-Place from Elevation(c) Material i'loisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number ( %) (%) Number 203-S 34+00 1 w 1,980.0 LW-11 28.2 98.3 209 82+40 100 N 1,969.0 LW-2 25.5 92.3 213 210 82+40 100 N 1,969.0 LW-2 22.2 91.7 213 211 82+40 100 N 1,969.0 LW-2 22.2 92.2 213 212 102+08 4 N 1,970.0 LW-5 27.1 87.6 217 213 82+40 100 N 1,969.0 LW-2 18.5 96.3 214 102+08 4 N 1,970.0 LW-5 26.2 89.3 217 215 81+60 10 s 1,969.5 LW-13 22.2 96.9 216 84+00 30 s 1,969.5 LW-13 24.3 95.1 0 t"' 217 102+08 4 N 1,970.0 ":rJ LW-13 23.2 96.1 . ' 218 82+00 50 N 1,969.5 LW-13 25.1 93.7 219 tJ:j 219 82+00 50 N 1,969.5 !J:j LW-13 24.8 96.2 F<1 "' 220 78+00 30 s 1,958.0 LW-13 25.1 96.0 243 221 81+00 60.5 s 1,970.0 LW-13 24.5 96.5 222 101+25 3 s 1,970.5 LW-13 26.2 94.4 224 223-S 80+60 57 s 1,962.0 LW-13 23.0 100.5 224 101+25 3 s 1,970.5 L\"l-13 24.8 95.5 225 83+90 84 s 1,970.0 LW-13 22.7 98.5 226 80+77 25 s 1 01';7 -f-...... L\"!-13 21 .. 6 227 85+10 70 N 1,973.0 LW-13 24.9 96.6 96+00(d) 3 N 1,984.0 LW-2 21.1 98.1 "-"-0 (d) In keyway .. Rev= 0 TABLE 2.5-62 (continued), Sheet 3 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number ( %) (%) Number 229 102+00(d) 3 s 1,989.0 LW-2 19.1 99.1 230 87+00 (d) 3 N 1,977.0 LW-2 21.2 97.0 231 93+05 4 N 1,980.0 LW-2 18.5 98.0 232-S 97+40 32 s 1,987.0 LW-1 21.8 95.2 233 103+05 0 1,991.0 LW-1 21.8 96.7 234 85+42 106 s 1,973.0 LW-2 20.6 96.5 235 87+65 5 s 1,980.0 LW-1 23.0 95.8 236 81+42 88 s 1,966.0 LW-4 17.9 97.4 :2:. 237 91+06 4 s 1,989.0 LW-4 19.1 0 95.6 t"i n::l 238-S 85+20 14 N 1,972.0 LW-8 24.7 95.9 n 239 88+08 40 s 1,982.0 LW-15 23.1 97.5 :-.; t?-j t:r:l 240 83+60 99 N 1,972.0 LW-4 18.2 97.1 ?"! 241 92+25 6 s 1,991.0 LW-4 17.9 97.5 242 84+28 77N 1,965.0 LW-3 19.1 96.4 243 78+00 30 s 1,958.0 LW-2 20.8 95.5 244 79+05 55 s 1,956.0 LW-4 18.7 95.5 245 82+20 27 N 1,969.0 LW-4 17.1 97.9 246 90+20 20 s 1,992.0 LW-4 17.2 98.7 247 85+40 60 N 1,975.0 LW-2 20.0 97.2 248 82+50 0 1,968.0 LW-4 15.5 101.3 ,..,..,, .......... 5 s 1,970.0 LW-4 17.2 97.8 L. .. :7 O..JTL.V 250 81+00 50 N J,<lf17.0 LW-4 l7. 5 97.4 Rev. 0 TABLE 2.5-62 (continued) Sheet 4 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number ( %) (,., Nuf:1.ber \ o 1 251 91+00 15 N 1,994.0 LW-4 16.3 100.0 252 80+45 6 N 1,964.0 LW-18 24.5 95.5 253 83+27 40 N 1,977.0 LW-1 23.8 95.1 254 85+05 96 N 1,981.0 LW-1 24.6 93.8 277 255 101+24 97 N 1,992.0 LW-2 19.3 97.6 256 110+70 3 s 1,994.0 LW-2 20.6 97.6 257 85+05 96 N 1,981.0 LW-1 24.5 92.2 277 258 85+30 10 N 1,980.0 LW-12 27.4 96.0 :E: 259 89+15 33 s 1,984.0 LW-18 21.1 96.1 0 t'"' 260 90+10 5 N 1,991.0 LW-12 22.6 100.0 ! ! 263 98+00 10 N 1,989.0 LW-15 24.1 95.1 :::0 C".i 264 87+00 30 s 1,983.0 tt:1 LW-15 23.5 95 .. 8 265 87+90 15 s 1,984.5 LW-15 28.5 92.1 270 266 84+30 7 s 1,973.0 LW-16 23.3 94.7 267 267 84+30 7 s 1,973.0 LW-16 25.8 96.0 268 81+40 83 N 1,970.0 LW-16 27.8 92.9 269 269 81+40 83 N 1 O/n n L\Al-1 7 24.7 95.8 ... ,.,.,,v.v 270 87+70 15 s 1,984.5 LW-15 23.4 97.2 271 99+48 3 N 1 QQ') c::.. L\A!-17 20.0 95 .. 3 ...... r .... ..,"--..... 275 91+40 41 N 1,996.0 LW-2 20.2 97.5 276 84+00 83 N 1,981.0 LW-2 21.3 95.7 277 85+05 96 N 1,981.0 LW-l 22.2 96_0 0 i.'\.'1:;: v
    • Test Number(a) 278-S 279 280 281 282 283 284 285 286 287-S 288 289 290 291 292 293 294 295 296 297 298-S 299 Location Station(b) 95+95 100+98 84+00 80+00 84+00 58+00 84+00 5+15 2+40 6+10 7+20 7+20 6+30 0+65 6+30 5+80 7+25 6+10 6+20 5+25 5+90 1+70 Offset from Centerline (feet) 6 s 8 s 5 N 20 s 5 N 0 5 N 70 E l E 94 w 49 E 49 N 30 w 5 E 30 w 35 E 65 \AJ 75 w 60 E 70 E 90 w 0 TABLE 2.5-62 (continued) Elevation (c) (feet) 1,987.5 1,994.5 1,975.0 1,965.0 1,975.0 1,991.0 1,975.0 1,962.0 1,966.0 1,961.0 1,961.0 1,961.0 1,961.0 1,983.0 1,961.0 1,961.5 1,961.5 1,962.0 1 0&::') (1 1,962.5 1,962.5 l.980.5 Material Identification Number LW-1 LW-2 LW-3 LW-3 LW-3 LW-3 LW-3 LW-18 LW-12 LVJ-17 LW-17 7 LW-17 LW-11 LW-17 LW-10 LW-10 LW-10 LW-10 LW-10 LW-10 In-Place Moisture Content (%) 21.8 20.2 19.4 19.1 20.1 17.4 18.9 24.0 27.9 <")C C L:.JeV 26.l 19.0 25.2 25.1 23.9 20.0 23.9 21.3 L.U
    • I 22.6 22.2 '">? 0 L -.1 '-' Sheet 5 of 83 Compaction (%) 97.4 96.7 93.5 95.5 94.3 99.2 97.3 96.3 96.7 95.1 94.7 103.4 93.6 99.2 97.3 99.5 95.3 98.8 95.5 93.8 "' r ... Correcting Test Number 284 284 289 292 300 Rev. 0 ::8 0 t"' i""!j \ J !;d t".l t".l Test Number(a) 300 301 302 303 304 305-S 306 307 308 309 310 315 316 317-S 318 319 320 321 322 323 325 Location Station(b) 5+90 1+20 5+65 34+00 39+75 85+45 81+00 7+30 5+20 2+90 34+00 85+45 34+70 34+70 5+20 34+00 34+70 28+10 39+00 43+50 v 6+00 Offset from Centerline (feet) 90 w 0 60 E 30 w 0 20 N 40 N 50 E 90 w 6 w 30 w 20 N 35 E 35 E 90 w 30 w 35 E 0 0 0 0 1?0 F: TABLE 2.5-62 (continued) Elevation(c) (feet) 1,962.5 1,980.5 1,965.0 1,979.0 1,963.0 1,967.8 1,964.0 1,965.0 1,965.0 1 077 (l .. , ... , , ...... 1,979.0 1,967.8 1,979.0 1,979.0 1,965.0 1,979.0 1,979.0 1,961.0 1,973.5 1.967.0 Material Identification Number LW-10 LW-10 LW-18 LW-2 LW-17 LW-17 LW-17 LW-10 LW-10 r t..I 1 n LW-2 LVl-2 LW-2 LW-2 LW-10 LW-2 LW-2 LW-2 LW-l LW-17 LW-1 L\Al-2 In-Place Moisture Content (%) 19.6 21.2 23.5 24.3 22.2 28.0 16.3 19.9 23.9 22.7 18.8 22.4 22.3 20.5 19.4 20.6 19.1 21.7 23.4 Sheet 6 of 83 Compaction (%) 96.8 95.3 97.2 91.8 97.8 90.3 101.9 97.6 94.1 97.4 94.2 98.4 93.2 94.8 97.2 96.1 96.0 97.2 88.6 95.6 95.2 Correcting Test Number 319 315 318 320 320 Rev. 0 TABLE 2.5-62 (continued) Sheet 7 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 326-S v 6+80 140 w 1,968.0 LW-2 18.8 97.9 327 v 6+00 75 w 1,968.0 LW-2 24.9 91.3 331 328 v 1+00 0 1,987.0 LW-2 23.9 92.5 338 329-S v 41+00 4 N 1,963.0 LW-1 24.9 90.6 333 330 v 6+00 75 w 1,968.0 LW-2 21.2 94.2 331 331-S v 6+00 75 w 1,968.0 LW-2 19.6 98.0 332 v 1+00 0 1,987.0 LW-2 22.8 94.1 338 333 v 41+00 4 N 1,963.0 LW-1 20.4 99.4 334-S v 1+00 0 1,987.0 LW-2 26.8 87.9 338 0 t"' 335 v 6+00 130 E 1,969.0 LW-18 23.1 95.5 () 336 v 5+00 115 w 1,970.5 LW-18 30.0 86.4 352 ::c t:<.l 337 v 5+50 0 1,970.0 LV;-18 23.6 96.3 338 v 1+00 0 1,987.0 LW-2 21.9 95.8 339-S v 3+00 6 s 1,989.0 LW-2 23.7 90.2 347 340 5+00 115 w 1,970.5 LW-18 26.3 91.7 352 341 5+90 20 w 1,971.5 LW-18 23.3 97.0 2+40 10 w .) .. £ 1,982.0 LW-18 26.1 92.4 353 343 42+00 6 N 1,958.0 LW-1 23.0 95.4 344 47+00 0 1,943.0 LlAJ-1 24 .. 7 92:2 371 345 6+20 so E 1,971.0 LW-18 23.2 97.1 v 3+00 6 s 1,989.0 LW-2 21.6 93.7 347 .J"1V 347 v 3+00 6 s 1,989.0 LW-2 20.4 95 .. 6 Rev. 0 TABLE 2.5-62 (continued) Sheet 8 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Centerline Identification Content Compaction Test Number 348 v l+OO 20 s 1,991.0 LW-19 23.4 96.8 352 5+00 115W 1,970.5 LW-15 22.6 96.2 353 2+40 10 w 1,982.0 LW-18 19.4 98.5 354 23+00 7 E 1,987.5 LW-15 22.6 98.6 355 29+00 0 1,981.0 LW-19 21.0 100.2 356 33+00 80 w 1,990.5 LW-1 18.7 98.8 357 6+60 100 E 1,971.0 LW-19 25.6 95.1 358 6+00 0 1,971.0 LW-19 25.5 92.0 362 359 6+90 75 w 1,969.0 LW-19 :E: 24.3 95.4 0 t"' rr.i 360 47+00 0 1 1'1 Lh' ..... l9 94.0 371 ,.._,...;'7.-.;*V L.Li, I 361 30+10 50 E 1,978.5 LW-19 () 17.5 93.6 l:.'lj 362 1,971.0 l:.'lj 6+00 0 LVI-19 23.3 97.4 A 363 3+00 3 E 1,980.5 LW-18 21.0 99.6 364 100+00 5 s 1,993.5 LW-2 20 7 97.6 365 17+85 2 E 1,947.0 LW-19 27.2 92.0 394 366 47+00 0 1,948.0 LW-19 26.8 93.4 371 367 41+00 60 s 1,971.0 LW-2 23.2 94.0 373 368 6+00 100 E 1,974.0 LW-2 21.0 96.4 369 !7+85 2 E 1,947.0 27.4 90.2 3!!4 370 47+00 0 1,943.0 LW-19 26.6 93.7 371 47+00 0 1,943.0 LW-19 23.9 95.8 .J/.L 372 5+00 0 1.975.0 2 ..,., c ' .jj':.; :':..-.J -* ::'.) .. ":} Rev. 0 TABLE 2.5-62 (continued) Sheet 9 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) 373 41+00 60 s 1,971.0 LW-2 17.0 98.2 37 4 39+00 75 s 1,974.5 LW-2 20.0 96.2 375 8+00 0 1,975.0 LW-2 22.0 95.9 376 7+00 llOW 1,969.0 LW-2 18.9 100.0 377 3+00 0 1,982.0 LW-2 18.4 98.5 378 4+80 125 E 1,978.5 LW-2 21.7 96.7 379 7+10 35 w 1,970.0 LW-2 18.2 99.9 380 27+00 0 1,980.5 LW-2 18.4 96.3 381 33+00 10 w 1,990.0 LW-2 16.3 99.5 0 L' 382 42+50 6 N 1,959.5 LW-8 22.9 99.9 r-.tj (-} 383 37+90 0 1,967.0 LW-8 21.9 98.7 ::0 i:':l 384 45+60 80 s 1,958.0 20.1 98.5 i:':l :;>;; 392 v 2+50 20 N 1,990.0 LW-4 16.1 99.2 393 39+30 75 s 1,974.5 LW-2 18.9 97.4 394-S 17+85 2 E 1,947.0 LW-19 14.7 107.3 395-S 33+00 15 w 1,992.0 LW-2 20.4 96.2 396-S 28+00 5 E 1,983.5 L\'1-2 17.8 95.4 397 17+60 3 w 1,952.0 LW-19 21.7 97.8 398 72+90 95 w 1,968.0 L\'1-7 29.5 399 90+00 85 w 1,964.5 LW-8 23.2 96.5 Ann 17+65 4 w 1,958.0 LW-3 16.4 95.3 -,VV 401 47+10 95 s 1,950,0 LW-2 21.4 96.9 Rev. 0 TABLE 2.5-62 (continued) Sheet 10 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) ( %) Number 402 40+00 35 s 1,974.0 LW-2 21.4 96.5 403 38+00 80 s 1,977.0 LW-2 18.7 97.2 404 33+00 0 1,994.0 LW-2 20.1 97.7 405 29+00 10 w 1,988.0 LW-2 18.6 99.8 406 80+50 10 N 1,968.0 LW-2 20.1 95.7 407 86+60 20 s 1,986.0 LW-2 21.3 95.0 408 99+00 0 1,994.0 LW-2 21.0 95.2 409 16+40 2 E 1,947.0 LW-2 19.7 97.3 410 32+00 5 w 1,983.0 LW-3 20.0 98.6 0 411 29+00 5 w 1,982.5 LW-2 21.6 92.0 H 418 -*-" 412 17+00 12 E 1,950.0 LW-19 27.3 88.5 413 n :;o ...... 413 17+00 0 1,950.0 LW-19 24.9 95.8 c*J t:tJ :;>;: 418 29+00 5 w 1,982.5 LW-2 17.5 95.4 419 80+05 80 N 1,965.0 LW-2 21.0 97.0 420 83+80 5 s 1,977.0 LW-2 20.8 95.7 421 40+40 6 N 1,962.0 LW-19 23.1 97.8 422 103+95 4 N LW-1 21 .. 3 96.,3 423 34+00 10 w 1,987.0 LW-18 23.9 95.3 424 26+86 7 E 1,988.0 LW-2 20.3 95.7 425 46+20 6 N 1,947.0 LW-2 18.0 98.0 426 -"'IJI. 1"\f'\ " 1 nn1 " L\"/=19 nc: n L.'iTUU v .J..t;J;l..L.*V .t:.....Je...) ;;,v.;;; 429 98+95 8 N 1,997.0 LW-2 18.3 98.1 Rev. 0 TABLE 2.5-62 (continued) Sheet ll of 83 Location Offset In-Place from Elevation (c) Material Moisture Correcting Test Station (b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) {%) Number 430 90+10 4 N 1,997.0 LW-4 16.3 100.3 431 85+90 0 1,983.0 LW-2 18.9 97.1 432 82+12 14 s 1,976.0 LW-2 17.3 96.2 433 15+80 3 E 1,955.0 LW-3 19.7 96.3 434 37+85 60 s 1,978.0 LW-2 18.3 98.7 435 41+00 27 s 1,969.5 LW-2 19.5 97.4 436 46+70 75 s 1,951.0 LW-1 22.4 96.8 437 38+10 3 N 1,955.0 LW-1 18.1 95.2 438-S 26+00 4 w 1,991.0 LW-1 17.3 96.9 0 t"" 29+85 7 E 1,982.5 LW-2 18.9 95.8 I"%J 440 42+90 3 s 1,955.5 LW-4 12.1 () 97.0 Z! t<:l 441 38+30 4 s 1,967.0 LVJ-2 19.4 96.2 trj :;>;: 442 95+90 14 N 1,995.0 LW-3 18.8 96.2 443 83+87 39 N 1,981.0 LW-1 21.1 96.4 444 87+95 4 N 1,994.5 LW-3 20.2 95.5 445 15+12 6 E 1,950.0 LW-4 15.1 96.0 Jlllr ,.. 33+90 30 E "i':lO-.::> 1,986.0 L\'i-2 19.6 97.8 447-S 32+50 40 E 1,993.5 LW-2 19.1 96.9 448-S 102+60 10 s 2,000.5 LW-3 18.4 97e5 449-S 41+70 4 N 1,956.0 LW-3 18.3 97.0 453 8':l1C:f"\ 1 1:" 'to.T , ,.......,....,. ,.... LW-3 15.5 100.5 .)T.JV .J....) l'l J.. f ';J I I
    • U 454 88+90 0 1,996.0 LW-3 18.2 98.1 ReTJ. 0 TABLE 2.5-62 (continued) Sheet 12 of 83 Location Offset In-Place from Elevation (c) Material Moisture Correcting Test Station (b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Nur:1ber 455 27+00 5 E 1,987.0 LW-3 19.0 98.2 456 32+00 10 w 1,986.0 LW-3 19.5 96.5 457 39+00 5 s 1,965.5 LW-3 18.1 97.3 458 44+00 4 N 1,951.0 LW-2 20.7 96.2 459 6+00 105 E 1,974.0 LW-3 16.2 95.7 460 5+00 5 E 1,975.0 LW-3 20.7 95.2 461 40+40 5 N 1,964.0 LW-3 19.5 97.2 462 42+60 6 s 1,954.5 LW-3 18.9 97.6 :E 463-S 91+85 10 s 1,998.5 LW-3 16.9 101.2 0 t:"" r:j 464-S 82+22 30 N 1 010 fl .,J... f .,.1 IV e V T t.1 ') 23.0 92.5 465 n 465 82+22 30 1,978.0 Ll'J-3 oc: 0 :::0 N 19.0 .;:;;v.v C"J 466 6+00 95 N 1,971.0 t:tj LW-2 19.7 96.2 :;>:; 467-S 32+90 4 w 1,996.0 LW-3 18.6 98.2 468-S 26+95 15 E 1,989.0 LtAJ.-3 17.7 100.0 4 72 89+65 6 s 1,998.0 LW-3 18.8 98.1 47 3 37+66 6 s 1,981.0 LW-3 19.5 97.3 474 47+40 .., s 1,942.5 LW-3 16.3 100.3 I 475 30+30 20 E 1,987.0 LW-3 22.7 90.9 481 476 22+15 6 E , ('){),f"' 1:" L\"J-3 20.1 nr. c. 478 ;l'":t. v 477 6+30 90 E 1,974.0 LW-3 16.7 100.3 478 22+15 6 E 1,990.5 LW-3 18.6 97.0 479-S 30+30 20 E , 00"7 " . 48l -J-: j ! "-' .C.'-+/-..,'i ReV. "' v TABLE 2.5-62 (continued) Sheet 13 of 83 Location Offset In-Place from Elevation(c} Material Moisture Correcting Test Station(b} Centerline Identification Content Compaction Test Number(a} rrc.,:::::.r' (feet) Number (%) (%) Number \ ..................... , 480-S 82+20 10 s 1,976.0 LW-3 18.7 97.2 481 30+30 20 E 1,987.0 LW-3 19.0 97.4 482 4+75 75 E 1,979.0 LW-1 17.0 97.2 483 4+55 69 w 1,975.0 LW-2 20.1 95.8 484 0+60 4 E 1,991.0 LW-3 17.6 99.4 485 40+70 3 N 1,965.0 LW-19 24.5 97.0 486 44+15 2 s 1,953.5 LW-3 18.5 95.4 487 84+95 2 s 1,992.0 LW-3 17.6 99.8 488-S 91+00 9 N 2,000.5 LW-3 23.8 91.4 493 0 t:"" 489 95+91 6 N 1,996.0 LW-3 17.9 100.4 --.. \.i 490 22+40 4 E 1,990.0 LW-3 l7. 4 98.9 ;;o t<.l 491 29+95 4 1,986.0 LW-3 18.8 98.4 trl ;;.;: 492 6+65 120 E 1,973.5 LW-3 20.0 95.4 493-S 91+00 9 N 2,000.5 LW-3 17.3 98.5 494 79+90 4 N 1,969.0 LW-2 21.1 96.1 495 v 1+00 10 E 1,994.0 LW-2 19.7 102.2 496 39+70 4 N l 07n n ....._ 1
    • v
    • v LW-3 19.8 95.7 497 2+25 5 E 1,984.0 LW-3 18.6 100.4 498 8+25 0 1,947.0 LW-19 24!!4 499-S 85+80 10 s 1,991.0 LW-3 18.3 98.0 82+60 25 s ..Juv-u 1,977.5 LW-3 15.3 98.3 501 8+30 10 P. 1,950.0 LW-3 18.2 98.4 Rev. 0 TABLE 2.5-62 (continued) Sheet 14 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Numher(a) (feet} (feet) Number (%) (%) Number 502-S 32+40 5 E 1,988.0 LW-3 15.3 102.7 503-S 25+00 5 w 1,994.0 LW-3 20.2 94.3 508 504 8+15 0 1,955.0 LW-3 16.7 98.1 505 23+00 5 w 1,994.0 LW-3 20.3 94.9 508 506 13+00 6 E 1,947.5 LW-3 16.8 101.8 507 6+70 100 w 1,971.0 LW-3 18.6 98.7 508 23+00 5 w 1,994.0 LW-3 19.8 97.4 509 85+05 24 s 1,987.0 LW-2 20.5 95.8 -""' 510 15+65 6 w 1,952.0 LW-4 0 16.3 100.4 t"' t'7j 511 9+50 5 w 1 oc:.n n 3 '" ' 97.0 () .._,_,_.v.v J..Oe'f 517 46+00 3 N 1,947.0 ::0 LW-4 13.3 104.5 t<:l 518 13+90 4 w 1,952.5 LW-4 16.8 101.5 :::-:: 519 16+00 80 w 1,962.5 LW-3 18.9 98.8 520 13+60 100 w 1,961.0 LW-4 17;0 101.2 521 10+20 ll5W 1,962.0 LW-4 18.4 97.0 522 43+30 2 N 1,959.0 LW-4 17.7 98.8 523 21+58 15 \*J 1,988.0 LW-4 17.2 99.0 524-S 33+82 30 w 1,997.5 LW-3 18.7 97.2 525 35+40 60 N , 0.""70 r: ,).._: J! v .. ....} LW-3 20.0 96.3 526 43+00 80 N 1,962.5 LW-2 21.5 96.2 527 16-t-40 6 E 1,952.5 LW-4 14.0 101.8 528 45+45 0 1,954.0 3 '" ' .l.0 ... ..!.. 98 .. 3 Rev. 1'\ v TABLE 2.5-62 (continued) Sheet 15 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number (a) (feet) (feet) Number (%) {%) '11.1 .. l,_Uil!J..JCl. 529 12+10 4 \*J 1,951.0 LW-2 21.4 96.1 530 46+10 3 N 1,950.0 LW-4 16.4 101.2 535 17+00 2 E 1,968.5 LW-2 21.3 97.5 536 5+05 40 w 1,975.0 LW-2 20.0 95.9 537 1+95 5 w 1,986.5 LW-3 19.1 97.4 538 10+80 6 E 1,954.0 LW-4 16.9 100.6 539 10+15 124 w 1,960.5 LW-4 18.5 98.6 540 12+90 108 VJ 1,960.0 LW-4 16.6 100.7 """ """ 0 541 16+00 90 VJ 1,964.5 LW-4 18.2 98.8 t"' t"%j 542 43+10 55 N 1 ae:::/1 n L\*l-2 19.0 95.8 0 ;:o 543 24+20 6 w 1,998.0 LW-3 19.2 98.4 t<j i:I:l t; _.,., 30+80 8 E 1,991.0 LW-4 17.2 100.4 :;.: 545 14+85 6 w 1,958.5 LW-4 16.5 101.7 546 83+10 0 1,983.5 LW-4 14.8 100.7 549 15+95 4 E 1,961.0 LW-1 21.8 96.8 550 10+25 70 E 1,960.0 LW-3 18.1 98.2 551 11+95 121 E 1,956.0 LW-3 18.7 91.0 552 45+65 3 s 1,957.5 LW-2 20.3 96.2 553 9+80 5 E 1 nr:'l n LW-4 15.3 103.3 .1...; ':JJ! = v 554 84+10 15 N 1,985.0 LW-3 19.2 97.4 555 9+95 75 w 1,960.5 LW-3 18.5 97.9 556 15+00 9 5 L\*J-2 ,,.., _, j. Rev. 0 TABLE 2.5-62 (continued) Sheet 16 of 83 Location Offset In-Place from "JI-.L.--.:-, Hoistu.re Correcting Elevation (c) 1"10 Lt:::.L J..O..L Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 557 15+00 95 w 1,964.0 LW-4 15.1 99.4 558-S 13+10 0 1,958.5 LW-19 24.9 95.6 559 44+60 60 N 1,960.0 LW-2 19.5 96.7 560 38+30 4 s 1,975.0 LW-2 19.4 97.7 563 81+10 18 N 1,977.5 LW-2 20.2 95.2 564 26+35 0 1,995.0 LW-4 17.7 99.0 565 30+18 3 E 1,990.5 LW-4 16.8 99.7 566 44+05 4 N 1,959.0 LW-2 20.9 95.1 ::E; 0 567 14+90 105 E 1,964.0 18.2 "" A t"' :;1::1.'-t. i"Ij 568 10+15 75 E 1,961.5 LW-4 17.1 100.0 n LW-4 :::0 569 8+50 98 w 1,963.0 15.1 96.3 t=:J 570 12+80 85 w 1,961.0 LW-2 tz::l 20.6 94.7 572 "' 571 15+85 4 w 1,964.5 LW-19 21.0 101.3 572 12+80 85 w 1,961.0 LW-2 18.0 101.8 57 3 84+85 4 s 1,987.5 LW-4 16.2 99.4 574 32+23 5 E 1,990.0 LW-3 22.2 93.9 627 57 5 25+98 0 1,995.0 LW-4 17.5 100.0 576 11+12 97 E 1,963.0 LW-3 20.5 97.0 577 16+05 101 E 1,967.5 L\AJ-3 19 .. 8 96.7 578-S 12+25 5 w 1,961.5 LW-2 25.6 88.2 584 579 42+90 10 N 1,968.0 LW-3 17.9 96.3 580 37+60 3 s 1,980.5 LW-3 19.4 Rev. 0 Test Number(a) 581-S 582 583-S 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 60::> Location Station(b) 9+35 12+60 5+85 12+25 16+65 11+15 8+00 40+00 43+85 16+10 7+05 10+00 15+00 8+50 14+10 5+95 18+30 15+33 12+00 5+05 10+25 9+95 Offset .L.l. VUI Centerline (feet) 90 E 60 E 50 E 5 w 20 w 100 w llOW 0 20 s 100 E 90 E 20 E 15 w 50 w llOW 135W 30 E 80 E 115 E 111 E 115 w 120 w TABLE 2.5-62 (continued) Elevation(c) (feet) 1,964.5 1,963.5 1,973.5 1,961.5 1,966.0 1,960.0 1,966.0 1,971.0 1,968.5 1,966.0 1,972.0 1,963.5 1,965.5 1,967.5 1,966.0 1,972.5 1,967.0 1,966.0 1 Oh"l t;. ...r..f.../V.J*..J 1,976.5 1,963.5 1 ae::< n .... ,_, ............. Hate rial Identification Number LW-3 LW-3 LW-2 LW-2 LW-3 LW-3 LW-2 LW-2 L\A!-17 LW-17 LW-15 LW-2 LW-5 LW-5 LW-17 LW-2 LW-2 LW-4 LW-17 LW-18 In-Place i'ioisture Content (%) 19.6 16.3 19.6 21.2 17.8 17.7 19.3 21.0 20.3 25.4 20.9 23.6 19.4 18.6 20.0 21.9 20.3 19.1 17.6 22.6 21.4 Sheet 17 of 83 Compaction (%) 97.9 96.8 96.4 96.8 96.6 97.8 95.7 95.2 99.8 99.8 98.2 98.3 98.7 98.9 95.1 98.2 98.5 97.0 99.2 99 .. 9 Correcting Test Number Rev. 0 TABLE 2.5-62 (continued) Sheet 18 of 83 Location Offset In-Place .C---Material 1*1o is ture Correcting .L. L Vlll Elevation(c) Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 603 6+60 100 w 1,970.5 LW-18 22.5 97.6 604 7+30 60 w 1,970.0 LW-18 20.3 97.6 605 4+30 125 E 1,981.0 LW-3 18.2 99.9 606 9+20 50 E 1,967.0 LW-4 16.5 102.6 607 13+00 130 E 1,962.5 LW-2 21.3 93.9 608 608 13+00 130 E 1,962.5 LW-2 19.7 97.0 609 18+20 90 E 1,971.5 LW-3 20.1 96.7 610 7+95 40 w 1,968.5 LW-3 20.0 96.3 :E: 611 14+90 100 \"1 1,965.5 20.0 95.9 0 t'"' !-:j 612 18+50 80 w 1 ae:;Q T Tttf-19.4 97.8 ..... , ................ .J ....... n 613 16+50 110 E 1,970.0 LW-3 18.6 95.4 :::0 LlJ t"l 614 10+80 20 E 1,964.5 LW-3 20.8 95.8 ;;>;: 615 6+95 115 E 1,972.5 LW-15 24.3 98.7 616 4+85 96 w 1,979.0 LW-2 21.9 95.0 617 6+75 125 w 1,973.5 LW-3 18.9 97.6 618 11+90 101 w 1,962.0 LW-3 18.1 97.4 619 9+95 ll2W 1,964.5 LW-2 20.3 96.1 620 37+55 6 s 1,979.5 LW-2 18.1 97.8 621 42+90 24 s 1 Ot:::'1 n "' 0 ?.'7:eJ 622 16+30 100 E 1,969.0 LW-3 19.1 96.4 623 14+45 85 E 1,967.5 LW-4 17.7 99.0 624 9+85 25 E 1;968 ... 5 LW-l 22.0 96.2 Rev. u TABLE 2.5-62 (continued) Sheet 19 of 83 Location Offset In-Place from Elevation(c) lviaterial ivioisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 625 4+75 120 E 1,982.5 LW-1 21.5 96.9 626 18+30 120 w 1,972.0 LW-2 19.8 94.8 628 627 32+23 5 E 1,990.0 LW-3 14.9 105.1 628 18+30 120 w 1,972.0 LW-2 19.8 97.6 629 7+00 90 w 1,972.0 LW-4 17.6 100.1 630 9+00 20 w 1,968.0 LW-4 18.5 97.2 631 16+90 100 E 1,969.5 LW-3 19.4 96.5 632 13+50 20 E 1,966.0 17.6 98.4 ::: ,., 5+30 ,,.., E 1 f\Of't f'\ LW-17 ,.., 98.8 0 V..>..> .. v .L1Jov.v L.L.eU t'"' hj 634-S 8+00 120 E 1 07'1 (\ 1 ..,, .., ,..,.., ,.., .J... f .J I'
    • V L..l..eL.. :;J I
    • U .-, \.J 635 9+50 30 E 1,968.0 LW-4 17.4 99.3 ::tl Cl:J t;Jj 636-S 8+80 100 w 1,967.5 LW-2 21.1 97.4 ;:>::; 637-S 5+10 50 w 1,966.5 LW-2 19.8 93.1 644 638-S 43+00 10 s 1,972.0 LW-3 19.9 92.2 648 639 1+40 40 w 1,994.5 LW-2 24.9 91.2 647 640 17+95 60 w 1,965.5 LW-3 19.9 96.2 641 14+00 135 w 1,963.0 LW-3 19.7 96.5 642 14+60 lll E 1,970.0 LW-3 16.9 97.0 643 18+70 90 E , ()"j'") f'\ LW-3 16.0 99.0 .J..;;liL=V 644 5+10 50 w 1,976.5 LW-3 17.0 100.9 645 17+40 100 w 1,978.5 LW-3 18.7 99.0 646 15+98 65 E 1 a'7n n 19 .. 9 95 .. 2 +!_, ............ n-...... 0 TABLE 2.5-62 (continued) Sheet 20 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number ( %) (%) Number 647-S 1+40 40 w 1,994.5 LW-3 19.9 96.2 648-S 43+00 10 s 1,972.0 LW-3 18.7 98.3 649 12+70 100 E 1,964.0 LW-3 18.1 96.5 650 8+80 20 w 1,970.0 LW-3 19.2 97.1 v ')_LC.C 24 , 001 () L\Al-1 22.8 96.2 UJ.I. £-TV..J 652 IV 17+80 1 E 1,975.0 LW-3 18.3 97.8 653 18+10 70 w 1,972.5 LW-3 18.7 98.5 654 9+00 65 E 1,971.0 LW-14 19.7 95.9 655 15+80 85 E 1,972.5 LW-3 20.1 96.2 0 t'"' r.rj 656 5+98 0 1,977.5 LW-14 ..,, ..., ()") ..., 657 LJ... *! :7J.! n ....... 657 5+98 0 1,977.5 LW-18 22.8 97.0 "" tt:l tzj 658-S 14+60 50 w 1,965.0 LW-3 18.3 98.8 :::><:: 659 11+35 70 E 1,967.0 LW-17 24.5 97.9 660 5+85 0 1,978.0 LW-17 22.4 100.1 661 17+30 15 E 1,974.0 LW-3 21.1 95.2 662 36+85 2 s 1,983.0 LW-4 14.7 104.2 663 42+12 10 s 1,968.0 LW-1 22.4 97.0 664 17+00 90 E 1 ,971. 0 LW-4 16.9 99.7 665 11+00 10 E 1,967.5 LW-19 24.3 97.3 666 6+05 30 E 1,978.0 LW-4 17.3 97.2 667 17+10 70 w 1,971.0 LW-2 20.6 96.1 668 14+20 40 w 1,966.0 LW-3 19.0 99.2 Rev. 0 TABLE 2.5-62 (con+/-.inued) Sheet 21 of 83 Location Offset In-Place from Elevation (c) Material t*1o isturE! Correcting Centerline Identification Content Compaction Test Number 669-S 75+20 225 s 1,908.5 LW-3 19.3 97.3 670-S 75+50 !60 s 1,907.0 LW-3 19.9 96.7 671 73+40 250 s 1,908.0 LW-3 21.3 94.6 672 672 73+40 250 s 1,908.0 LW-3 19.2 97.5 673 74+00 200 s 1,908.5 LW-19 23.5 97.7 674 74+90 40 s 1,907.0 LW-2 20.1 97.4 675 75+00 205 s 1,913.0 LW-3 19.4 98.3 679 74+90 275 s 1,911.5 LW-3 19.9 95.3 ::E: 680 8+00 50 w 1,97.'>.0 LW-3 20.1 97.8 0 t"' ......... ., ..... 75-t-00 ::.0 s 1,908.0 LW-3 21.7 94.6 ooJ.-u (-J 682 18+10 105 E 1,975.5 LW-17 24.5 97.8 ::tl t"l t"l 683 9+70 50 E 1,972.5 LW-5 22.1 AQ ;?'l 68 4 75+00 50 s 1,913.0 LW-3 20.9 96.4 685 72+50 290 s 1,910.5 LW-3 20.2 97.6 686 73+20 110 s 1,911. 0 LW-3 20.2 96.7 687 16+60 60 E 1,974.0 uv-5 21.9 96.9 688 17+10 20 1,974.0 LW-2 19.8 97.9 689 18+05 !lOW 1,979.0 LW-18 21,7 99.1 690 75+20 210 s !,911. 5 LW-18 22.6 691 73+10 70 s 1,913.0 LW-4 18.4 100.8 692 2+40 10 E 1,991.0 LW-3 19.8 96.6 693 5+15 15 w 1.982.0 LW-::1 19.2 97.3 Rev. 0 TABLE 2.5-62 (continued) Sheet 22 of 83 Location Offset In-Place ffom Elevation(c) Material l'loisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 694 76+00 275 s 1,913.0 LW-4 18.2 99.8 695 13+25 30 E 1,969.0 LW-18 22.2 98.9 696 7+40 20 w 1,978.0 LW-3 20.0 96.2 697 74+00 160 s 1,908.5 LW-4 18.0 99.4 698 73+60 30 s 1,908.0 LW-4 17.1 100.3 699 17+70 80 w 1,974.5 LW-2 21.1 96.7 700 17+10 55 E 1,971.0 LW-18 21.5 99.9 701 74+50 200 s 1,909.5 , n , nn ..L7e..L 702 73+10 100 s 1 Q 1 , " -'-f..I..I...J..*V 100.9 0 .l. I * ::J t"' 10 ., 703-S 75+50 60 s 1,911.0 ..1.0
    • I ";:lleL. () 704 73+00 280 s 1,911.5 LW-4 19.2 99.9 :::0 I:J:j 1,911.0 LW-4 t1j 705 75+60 175 s 19.5 98.3 :;:>::: 706 73+00 50 s l ,911. 0 LW-4 17.7 101.8 710 74+00 200 s 1,913.0 LW-3 19.8 96.9 711 75+00 100 s 1,913.0 LW-4 18.9 98.8 712 11+80 39 E 1,968.5 LW-3 19.2 98.4 713 9+10 10 E 1,973.5 LW-3 18.6 99.4 714 5+85 15 w 1,979.5 LW-3 18.3 98.9 715 17+95 50 LW-3 18.1 97.4 716 76+25 50 s 1,926.5 LW-3 19.3 100.1 717 73+50 140 s 1,913.0 LW-4 18.3 99.4 718 17+10 70 E 1 077 " .., , c :;70..,.) ...... , -' . '
    • v L,.J_ = _, Rev. 0 TABLE 2.5-62 (continued) Sheet 23 of 83 Location Offset In-Place .r::; __ --Naterial Moisture Correcting J..l. Ulll Elevation(c) Test Station (b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 719 72+80 240 s 1,913.0 LW-4 17.8 98.2 720 73+30 150 s 1,913.0 LW-4 17.7 100.0 721 74+85 90 s 1,911. 0 LW-4 17.4 102.0 722 72+90 195 s 1,914.0 LW-3 21.2 95.4 724-S 12+90 35 w 1,965.0 LW-18 21.4 100.5 725-S 5+98 5 E 1,982.0 LW-3 20.1 97.3 726-S 74+10 100 s 1,911.0 LW-14 18.2 102.8 727 76+40 260 s 1,928.0 L\A!-4 1Q c: ..i.U*...J 99.8 728 71+15 200 s 1,913.0 L\"l-4 1t: n 102.7 0 ..J..U*.:::7 !:'"' 729 17+50 96 E 1,975.5 L\A!-3 20.7 ,.,.., '"> ::II .L. n 730 75+10 110 s 1,914.5 LW-4 18.2 101.4 ;;o C:EJ t"J 731 4+30 15 1,986.0 LW-4 17.9 99.7 ;:>;; 732 72+15 270 s 1,912.0 LW-4 19.8 96.9 733 11+05 30 E 1,970.5 LW-4 19.4 98.0 734 74+25 130 s 1,914.0 LW-4 18.0 101.1 735 76+00 190 N 1,905.0 LW-2 20.8 97.3 736 74+45 28 N 1,906.5 LW-2 19.2 99.2 737 75+00 250 N 1,905.0 LW-24 18.4 95.0 738 43+00 10 N 1,966.0 Ll*J-4 18.3 99.1 739 39+00 10 s 1,977.0 LW-18 22.4 99.6 ..,An 74+50 100 N 1,908.0 , .. v LW-24 19.7 94.3 743 741 'i+f)CJ 10 E 1,982.5 L\"!-24 16.2 Re\l. 0 TABLE 2.5-62 (continued) Sheet 24 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test . Station(b) Centerline Identification Content Compaction Test Number{a) (feet) (feet) Number {%) (%) Number 742 9+05 20 w 1,975.0 LW-3 21.3 96.2 743 74+50 100 N 1,908.0 LW-24 18.1 97.5 744 18+50 30 w 1,980.5 LW-4 21.5 94.4 750 745 76+25 280 s 1,930.0 LW-24 18.0 97.5 746 75+10 75 N 1,910.5 LW-4 19.2 97.7 74 7 73+70 200 N 1,911.0 LW-4 20.2 97.2 748 72+15 170 s 1,913.0 LW-4 21.0 97.2 749 75+20 90 s 1,917.5 LW-4 19.2 99.4 0 L' 750 18+50 30 w 1,980.5 LW-4 20.9 95.7 l""rj .-, \..; 751 15+75 0 1,971.5 LW-4 19.1 98.0 :::0 C:tJ 752-S 75+80 100 N 1,912.0 19.6 98.8 i:'j :A: 753-S 74+40 225 N , ..... , "' I"\ LW-4 19.6 95.9 754-S 72+50 150 s 1,914.5 LW-3 20.5 99.1 755 74+60 225 s 1,924.0 LW-24 18.8 95.2 756-S 11+60 10 w 1,971.5 LW-18 23.0 99.5 757-S 7+10 4 E 1,981.0 LW-24 20.0 96.1 758-75+80 40 s 1,917.0 LW-24 16.6 100.8 759 73+60 100 N 1,912.0 LW-3 20.2 97.7 760 75+70 250 N 1,912.5 LW-14 18.8 98.4 75+10 25 N 1,914.0 LW-14 19.8 97.9 IU.L 762 19+95 15 w 1,986.0 f.W-4 20.3 95.3 763 17+00 0 1:974 .. 0 4 19,3 94,7 767 Rev. 0 TABLE 2.5-62 (continued) Sheet 25 of 83 Location -Offset In-Place frorr: M-..a-.-.-->-.1 "JI-: -"-**--Correcting Elevation(c) l'lO.'-C".L..LO..L. Test Station (b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 764 73+40 200 N 1,910.0 LW-24 20.8 93.7 770 765 3+85 5 w 1,990.5 LW-3 19.9 97.8 766 7+10 10 E 1,981.0 LW-3 21.4 96.2 767 17+00 0 1,974.0 LW-24 20.2 96.4 768 75+20 100 N 1,914.5 LW-18 22.6 98.6 769 73+40 200 N 1,910.0 LW-24 20.1 94.4 770 770 73+40 200 N 1,910.0 LW-24 19.6 95.4 771 71+20 290 s 1,914.0 LW-4 19.5 97.1 772 73+80 150 s 1,916.0 :E: LW-24 18.1 99.5 0 t"' 773 75+90 220 s 1,9?R.O LW-24 15.0 102.1 *-.; n 774 45+30 20 s 1,958.5 LW-3 19.4 97.9 !;0 t<:1 775 36+55 lO N 1,984.0 LVJ-4 17.3 99.5 t<:1 776 75+50 275 N 1,914.0 LW-24 21.2 94.2 779 777 75+20 95 N 1,913.0 LW-4 21.5 95.1 778 19+00 15 w 1,983.0 LW-4 19.0 98.3 779 75+50 275 N 1,914.0 LW-4 19.0 97.2 780 74+50 10 N 1,913.0 LW-4 19.0 99.7 781 14+90 0 1,970.5 LW-24 13.5 100.5 782 76+50 160 N 1,918.0 LW-24 16.7 97.8 783 71+10 230 s 1,914.5 LW-4 19.7 97.1 784 72+40 150 s 1,916.0 LW-4 18.8 95.5 78 5 75+40 200 s l,9iiLO LW-4 21.6 95.7 Rev. 0 TABLE 2.5-62 (continued) Sheet 26 of 83 Location Offset In-Place from ""'-............. .: -.., rt.o is tur e Correcting Elevation (c) J.QJ. Test Centerline Identification Content Compaction Test Number 786 76+00 70 s 1,921.5 LW-4 17.2 97.4 787 10+90 25 E 1,974.5 LW-24 17.2 96.5 788 4+50 5 E 1,986.5 LW-4 17.9 98.3 789 76+05 15 N 1,918.0 LW-5 19.5 97.1 790 74+40 130 N 1,912.5 LW-24 17.0 99.9 791 74+85 270 N 1,913.5 LW-24 15.4 102.0 792 15+30 15 w 1,973.0 LW-24 18.1 99.2 793 18+90 10 E 1,980.5 LW-24 16.0 101.8 794 76+00 60 s 1,924.5 LW-24 '" 0 99.2 0 t"'i 795 11+40 20 E 1,974.0 !.:.W-24 16.0 "f(ll"\ ") .!.-VV*..) *-" () 796 5+80 0 1,984.0 LW-24 18 9 <}4,9 797 ;::o 1?'::1 797 5+80 0 1,984.0 L\.'v'-24 18.6 96.4 t:<:l ;::.;: 798 76+70 130 N 1,917.5 LW-24 21.8 91.8 804 799 18+30 10 w 1,984.0 LW-4 17.7 100.8 800 16+40 18 w 1,974.5 LW-24 19.4 95.4 801 74+60 255 s 1,922.0 LW-5 20.4 97.5 802 2+80 225 s 1,920.0 LW-24 17.6 99.0 803-S 75+00 40 s 1,921.5 LW-3 21.3 96.6 804-S 76+70 130N 1,917.5 20.1 96.8 805-S 76+90 250 N 1,925.0 LW-14 18.3 97.9 806-S 74+10 280 N 1,917.0 LW-31 14.0 96.3 807-S 72+3(! 190 N 1 01< (\ Lt"J-15 ..,. A "11"11"1 ,c .... , ............. -.; ,..,.o;,"':t ..l.VV::V Rev. 0 TABLE 2.5-62 (continued) Sheet 27 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number ( %) ( %) Number 808 73+30 250 s 1,919.5 LW-24 20.4 93.8 825 809 5+60 25 w 1,975.5 LW-24 17.4 98.2 810 16+40 0 1,976.0 LW-24 19.0 96.2 811 76+70 265 s 1,934.5 LW-15 24.3 100.1 812 18+90 25 w 1,983.5 LW-24 19.9 93.7 820 813 76+50 40 s 1,920.5 LW-15 23.5 98.1 814 76+85 40 N 1,922.0 LW-15 25.6 95.1 815 74+65 100 N 1,916.5 LW-15 27.3 95.5 826 816 73+80 275 N 1,917.0 LW-15 23.0 99.4 :E: 0 817 /OT.£.J "'1C c " ' ()1() " L\Al-15 29.1 91 .. 6 821 t"' "-V-' ..Lt:J.J..;;t*.J r:tJ 818 18+90 25 1 0 Q 1: c_ 4 18.9 94.8 820 .J..fJV.J*-' 819 12+85 5 w 1,968.0 LW-24 18.4 96.4 t':rj t':rj :;>;: 820 18+90 25 w l:-983e5 LW-24 15.4 101.8 821 76+25 265 N 1,919.5 LW-15 25.7 96.7 822 73+30 250 s 1,919.5 LW-24 19.7 94.8 825 823 72+10 60 s 1,916.5 LW-24 17.9 97.8 O'"lA IV 23+30 4 V"-., ... ! 1,987.0 LW-4 20.5 96.3 825 73+30 250 s 1,916.5 LW-24 17.4 98.3 826 74+65 100 N 1,916.5 LW-24 20.8 95.1 827 76+83 220 N 1,930.0 LW-24 16.7 99.7 828 75+40 270 N 1,925.0 LW-31 15.0 99.1 829 76+40 90 N , '"'....,,.. n. LW-26 ,.., " '"" c: .J. I e U .J.UVeV ReV. 0 Test Number(a) 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 Location Station(b) 77+50 73+85 76+15 77+40 IV 17+30 IV 11+75 IV 9+30 IV 12+75 72+00 76+00 76+20 72+15 75+80 75+90 73+20 74+00 76+95 67+70 73+00 76+50 73+90 73+00 Offset from Centerline (feet) 200 s 75 N 150 N 270 N 3 w 60 w 100 E 70 E 100 N 200 N 50 N 230 s 260 s 20 s 0 150 N 285 N 20 s 10 s 200 N 220 N 260 N TABLE 2.5-62 (continued) Elevation(c) (feet) 1,951.5 1,912.5 1,917.5 1,933.0 1,975.0 1,963.0 1,968.0 1,967.5 1,917.5 1,923.5 1,925.0 1,916.0 1,932.5 1,927.5 1,917.5 1,917.5 1,924.0 1,917.5 1,917.0 1,923.5 1,917.0 l,9i8.5 Material Identification Number LW-15 LW-26 LW-26 LW-18 LW-31 LW-24 LW-24 LW-24 L\Al-26 LW-14 LW-15 LW-24 LW-14 LW-15 LW-15 LW-15 LW-18 LW-15 L\AI-15 LW-5 LW-5 LW-14 In-Place Hoisture Content (%) 20.5 18.5 18.1 19.4 13.9 20.4 17.3 18.1 17.4 18.2 23.1 19.1 17.2 21.9 26.2 19.9 19.8 21.0 23.7 21.2 19.0 19.5 Sheet 28 of 83 Compaction (%) 100.8 96.3 95.8 96.7 99.8 93.1 95.6 97.0 nn ., :7;;;
    • I 99.8 98.7 96.3 95.4 98.5 95.7 102.3 100.3 101.6 98 .. 5 98.7 100.6 99.2 Correcting Test Number (\ -=:: v * -.., 0 r r.j 0 ::c trl trl :;>;;
    • rABLE 2.5-62 (continued) Sheet 29 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station (b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 852 68+60 275 s 1,908.0 LW-15 21.7 101.0 853 69+20 200 N 1,908.5 LW-15 21.7 101.2 854 67+30 190 s 1,907.0 LW-18 20.8 100.7 855 66+10 80 s 1,907.5 LW-14 16.4 99.9 856 67+70 130 s 1,907.0 LW-14 20.5 97.0 857 68+90 0 1,911.5 LW-14 16.8 97.3 858 74+70 75 s 1,924.5 LW-14 19.2 98.8 859 72+30 25 s 1,919.5 LW-14 21.6 94.9 860 :E! 860 72+30 25 s 1,919.5 LW-14 21.4 95.2 0 -L" 861 20 s 1,914.5 LW-14 21.5 ':!4.2 862 *-.-U/TOV { 862 67+80 LU 0 1,914.5 LW-14 20.4 96.3 ;;o t:r:l 863 77+00 50 N 1,922.5 LW-26 22.4 91.5 866 t:r:l 864 44+05 1 c::. .,.,l 1,964.5 LY.J-25 22.7 97.6 ...!.....J !.'! 865 39+50 0 1,976.0 LW-25 13.9 101.5 881 866 77+00 50 N 1,922.5 LW-14 19.0 95.9 867 72+40 230 N 1,919.5 LW-14 17.6 95.8 868 67+00 260 N 1,910.5 LW-18 .. ,, .., 100.3 L.U
    • J 869-S 76+00 75 N 1,921.5 LW-18 23.4 97.6 870-S 72+30 60 N 1,917.5 ..,, " "'"' ' L...1.*V J I
    • J.. 871-S 69+90 120 N 1,915.0 LW-15 21.6 100.0 872 68+10 200 N 1,913.5 LW-15 21.5 101.3 873 65+50 175 N 1,912.5 LW-18 21.8 1(\f) J ..LVVe-' Rev. 0 TABLE 2.5-62 (continued) Sheet 30 of 83 Location Offset In-Place from Elevation(c) i*iaterial i*ioisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 874 66+10 225 N 1,913.0 LW-15 22.1 100.6 875-S 65+70 260 s 1,907.5 LW-33 22.5 97.4 876-S 68+60 200 s 1,910.0 LW-33 20.3 97.5 877-S 73+30 275 s 1,921.0 LW-33 18.5 100.4 878 65+20 10 N 1,908.0 LW-14 17.2 97.0 879 67+90 10 s 1,910.0 LW-33 21.6 96.7 880 75+00 25 s 1,925.5 LW-33 20.9 99.2 881 39+50 0 1,976.0 LW-31 15.5 100.0 :E; 882 65+60 27 5 N 1,911.0 14.8 nn .., 0 ;;1;;/e I t"' 883 68+80 ?80 N 1,912.0 LW-18 22.6 99.9 **..; 884 73+90 250 N 1,915.5 LW-22 lfi,9 97.5 !::0 t>:l 885 66+00 75 N , 01 f) LW-18 ' 99.1 t>:l J.t;,/.J...J*V L..l.e.L 886 68+95 55 N 1,912.0 LW-33 19.6 97.0 887 71+90 50 N 1,918.0 LW-18 22.0 100.2 888-S 76+25 65 s 1,929.5 LW-22 14.3 98.5 897 889-S 73+20 80 s 1,923.0 LW-22 18.0 95.8 890-S 70+20 20 5 1,918.0 LW-15 25.8 96.3 891-S 66+70 250 s 1,913.0 LW-15 20.4 95.7 892-S 70+30 280 s 1,925.0 LW-15 20.2 98.2 893-S 72+60 275 s 1,919.5 LW-26 18.8 95.9 894 77+00 27 5 N 1 n....,"' n ..L.t:::'.).leU LW-18 24.8 97.1 895 73+60 255 N 1,924.0 LW-22 18.5 98.4 Rev. 0 TABLE 2.5-62 (continued) Sheet 31 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) t:umber 896 68+00 280 N 1,921.0 LW-22 21.9 97.8 897 76+25 65 s 1,929.5 LW-22 15.8 102.2 898 65+50 200 s 1,909.0 LW-33 21.4 97.9 899 70+00 250 s 1,913.0 LW-33 19.8 100.0 900 76+00 25 N 1,926.0 LW-26 19.3 95.0 901 74+00 75 N 1,923.0 LW-33 23.1 96.1 902 71+80 100 N 1,920.0 LW-26 19.0 96.3 90 3 69+40 40 N 1,920.0 LW-22 17.7 96.5 904 1,929.0 :E; 76+10 30 s LW-26 20.7 92.7 910 0 t"' 905 72+80 50 s 1,925.0 LW-33 20.5 97.4 tlJ 906 66+50 50 s 1,923.0 LW-22 19.4 96.8 () ttl 907 76+10 30 s 1,929.0 L\'1-26 19.4 94.2 9'" .LV ttl :;.;; 908 73+55 190 N 1,921.0 LW-15 21.2 100.5 909 69+90 190 N 1,919.5 L\'1-15 22.1 98.4 910 76+10 30 s 1,929.0 L\'1-26 17.8 97.3 911 67+10 60 N 1,909.5 L\'1-15 25.1 90.8 912 912 67+10 60 N 1,909.5 LW-15 20.7 95.9 913 69+83 0 1,916.5 L\'1-18 20.2 102.2 914 74+40 90 N 1,923.5 LW-15 23.1 95.1 915 71+15 245 N 1,914.5 L\'1-18 21.7 98.8 916 65+15 '10 n l\l , 1"\()11 " LW-33 ,,., ,., 97.9 L.VV !." ..1.t:7V'::t*V ..1.::.'.:::::' 917 76+45 200 s , ......... Jl r-LW-15 23.0 96.6 J.,::;:l.)q.:> Rev. 0 TABLE 2.5-62 (continued) Sheet 32 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 918 74+30 230 s 1,929.5 LW-15 19.6 98.7 919 72+85 100 s 1,925.0 LW-18 20.3 98.2 920 70+95 210 s 1,921.5 LW-18 20.6 97.3 921 68+95 285 s 1,918.5 LW-18 20.2 96.2 922 66+85 60 s 1,915.0 LW-18 19.0 98.0 923 26+97 4 E 1,994.5 LW-33 17.6 100.3 924 13+75 10 w 1,971.0 LW-33 20.9 96.0 925 5+15 0 1,986.5 LW-33 21.6 97.3 :::E; 926 17+60 10 E 1,982.0 LW-33 17.8 100.3 0 L" 927 74+80 230 N 1,920.0 LW-15 19.8 97.5 (} 928 71+00 200 N 1,918.0 LW-15 20.9 99.5 ;;o t<J 929 68+10 250 N 1,913.0 LW-15 21.6 100.1 t:<.l 930 65+80 275 N 1,911.0 LW-15 23.4 99.0 931 66+00 100 N 1,914.0 LW-15 22.9 96.7 932-S 72+50 25 N 1,919.5 LW-15 20.1 98.3 933-S 40+65 100 N 1,969.0 LW-14 20.4 95.9 934 66+50 50 s , ,.... ........ .-LW-15 22.4 98.5 J.1:;vo.:> 935 68+50 100 s 1,912.5 LW-14 16.7 96.8 936 73+00 150 s , ,...,1"\ 1'"\. LW-15 21.7 101.7 .lt::::'l.l::::'I.U 937 76+00 190 s 1,931.5 LW-15 21.3 97.8 938 72+00 250 s 1 0')'1 n LW=l4 "" ., nc n -'-fJL.L.*V L...Ve£. :JJ.:J 939 70+20 260 s , n, t::' r. LW-15 22.2 99.1 J..,:JJ.u.u Rev. " v TABLE 2.5-62 (continued) Sheet 33 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 940 67+90 280 s 1,910.0 LW-15 21.9 100.6 941-S 68+25 0 1,909.5 LW-15 18.0 101.3 942-S 25+90 10 E 1,997.0 LW-15 20.2 101.4 943-S 29+95 15 w 1,991.0 LW-15 18.3 100.9 944-S 37+50 75 N 1,983.0 LW-14 17.0 96.1 945 65+75 280 N 1,914.0 LW-15 20.2 97.6 946 70+50 230 N 1,917.0 LW-15 20.7 100.7 947 74+50 210 N 1,920.0 LW-15 19.9 100.0 948 75+90 30 s 1,926.5 LW-15 21.6 97.6 0 t-1 949 72+UU u 1,917.5 LW-15 23.R 95.2 ,-) 950 68+20 15 s 1,917.0 LW-15 21.1 98.1 tz:j 951 76+00 60 s 1,931.5 L\"l-15 20.9 , '" ' tt:i .L.V.J...*"'+/- :,;: 952 72+90 100 s 1,926.5 LW-15 22.2 99.5 953 69+95 120 s 1,921.5 LW-15 22.0 99.9 954 66+10 150 s 1,917.5 LW-33 20.2 97.4 955 16+15 5 w 1,976.5 LW-2 19.7 98.6 956 12+70 15 w 1,971.5 LW-15 17.7 99.8 957 7+15 0 1,982.5 LW-2 20.3 96.9 958 75+00 250 s 1,932.5 LW-15 21.9 96.9 959 71+80 275 s 1,925.5 LW-15 23.9 97.2 960 68+40 ')Cf'\ c 1 n 1.., c LW-15 21.2 98.1 G.VV '-' .l.t:J.J...Ie.J 961 32+75 5 w 2,001.5 LW-15 13.8 101.6 974 Rev. 0 TABLE 2.5-62 (continued) Sheet 34 of 83 963 38+00 120 N 1,968.5 LW-15 19.4 98.5 964 75+85 275 N 1,929.5 LW-15 20.4 100.2 965 72+50 260 N 1,924.5 LW-15 20.7 96.8 966 68+60 280 N 1,920.5 LW-34 21.6 99.9 967 66+00 90 N 1,919.5 LW-34 18.9 99.8 968 70+05 60 N 1,923.5 LW-33 20.1 97.5 969 74+60 15 N 1,925,5 LW-15 23.5 95.9 971-S 76+65 185 N 1,929.0 LW-33 21.7 96.6 0 t'"'l 972,=5 72+15 280 N 1,924.0 LW-13 19.2 00 .., .,I.J ._I l"r:\ r. \. 973-S 68+45 160 N 1,921.0 LW-33 22.3 95.0 ;;o ('i] J:l:j 974-S 32+75 5 w 2,001.5 r r.-r_, r::. ' n ' 96.1 "" ........ .1.....1 ..LO,..J. 975-S 18+35 22 w 1,984.0 LW-34 22.5 97.9 976-S 11+80 15 E 1,975.0 LW-34 21.3 100.1 977 5+40 0 1,987.5 LW-34 17.8 98.6 978 67+50 35 N 1,916.0 LW-33 20.7 97.6 979 70+30 <"\A 'Ill .£.-v L'* 1,918.5 LW-33 18.0 96.8 980 76+40 5 N 1,927.5 LW-33 20.3 96.1 981 75+00 10 s 1,927.5 LW-33 20.1 98.1 982 70+50 25 s 1,920.0 LW-15 21.7 99.2 983 67+30 200 s 1,915.0 LW-15 22.5 99.5 984 69+15 140 s 1,918.0 LW-14 24.1 91.8 e>n-. ;;:r;;..) Rev. 0 -*"='=====---* *ex* -" --77-(

    TABLE 2.5-62 (continued) Sheet 35 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 985 67+50 280 N 1,919.0 LW-15 19.6 98.9 986 69+60 275 N 1,919.0 LW-15 19.4 95.1 987 73+50 260 N 1,922.5 LW-33 19.3 96.2 988 68+00 75 N 1,917.0 LW-33 21.4 97.8 989 72+50 110 N 1,919.0 LW-15 23.0 95.0 990 76+25 75 N 1,928.0 LW-15 21.5 94.5 991 991 76+25 75 N 1,928.0 LW-33 20.9 97.4 993 69+15 140 s 1,918.0 LW-33 20.3 98.1 :::E; 994 71+90 260 s 1,918.5 LW-15 21.7 100.0 0 I:"' nne: '7 11 'on ')('1('1 r" , ,...,.,,.... r-LW-34 21.4 100.0 hj JJ..J 1-;.--rov L.VU 1:' .l.rJL.':7e::J 996 67+80 250 N 1,918.5 LW-34 23.6 97.3 () tz::l 997 70+75 275 N 1,919.5 LW-15 23.0 98.4 tr.i ;:>:; 998 76+25 255 N 1,929.5 LW-33 17.6 98.9 999 75+85 75 N 1,927.5 LW-34 20.1 95.4 1000 72+95 100 N 1,922.0 LW-34 20.5 98.9 1001 68+75 60 N 1,916.5 LW-34 20.9 98.8 1002 67+95 10 s 1 OlQ n 15 ')!:: 0 ,...,.. _._,...;_._veu L.JeU ::?0.£ 1003 74+40 0 1,923.0 LW-15 25.7 93.2 1009 1004 66+50 265 N 1 o1e:;: n L\AJ=l5 27.8 1008 ...L.fJ.J-VeV * .::> 1005 69+00 230 N 1,920.5 LW-15 23.5 96.4 1006 72+97 265 N 1,924.5 LW-34 18.8 95.9 1008 66+50 265 N 1,916.0 L\AJ-15 23.5 nc: .., :;IJ

    • I Rev. 0 TABLE 2.5-62 (continued) Sheet 36 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number ( %) (%) Number 1009 74+40 0 1,923.0 LW-15 20.9 100.3 1010 75+80 100 N 1,929.5 LW-15 23.1 98.9 lOll 72+40 120 N 1,925.5 LW-15 23.3 94.1 1012 1012 72+40 120 N 1,925.5 LW-15 23.6 98.1 1013 68+10 90 N 1,920.5 LW-15 22.2 100.1 1014 67+20 75 s 1,917.0 LW-36 17.7 97.6 1015 70+05 125 s 1,921.0 LW-24 16.1 99.4 1016 74+80 150 s 1,932.0 LW-24 18.3 95.5 1017 74+60 225 s 1,920.0 LW-24 17.9 96.7 ,....., .._, C"' 1018 72+6U 240 s 1,920.0 LW-34 20.1 96.3 Cfj 1019 68+40 280 s 1,924.0 LW-24 17.4 95.7 n J:lj 1020 67+10 275 N 1,919.5 LW-33 21.0 97.1 trl "' 1021 70+80 230 N 1,921.5 LW-15 22.4 99.9 1022 75+50 290 N 1,931.0 LW-33 20.3 96.0 1023 75+98 5 N 1,935.5 LW-33 20.1 96.2 1024 72+10 35 N 1,923.5 LW-34 23.8 96.8 1025 68+50 25 N ., ,... .... ,.. ,.... LW-34 27.7 95.1 .l.t::1L.lJ.lJ 1026 25+65 5 E 1,998.5 LW-14 19.8 97.8 1027 68+95 225 s , 1"11'"7 ,... LW-34 20.7 99.8 J..,::::'J..t.u 1028 71+00 275 s 1,922.5 LW-33 21.3 97.6 1029 75+00 ')Qf'l c 1 Q'"l":). ('\ L\"l-33 21.4 ac: " L-,..IV U .J..fJ-.J-J*V 11"\")f"\ 76+30 275 N , n-.,., n LW-15 ... , 96.3 .J..VJU .J..t;J.JL.*V L..J * .l.. Rev. " v TABLE 2.5-62 (continued) Sheet 37 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number ( %) (%) Number 1031 73+00 260 N 1,927.0 LW.:..15 24.3 97.4 1032 69+60 260 N 1,923.5 LW-34 24.3 96.0 1033 76+85 35 N 1,930.0 LW-15 21.0 98.1 1034 73+70 90 N 1,925.0 LW-22 19.4 94.6 1039 1035 69+10 90 N 1,924.0 LW-15 21.8 99.7 1036 67+80 60 s 1,920.0 LW-38 16.9 95.6 1037 70+35 40 s 1,924.5 LW-34 22.6 100.0 1038 74+75 50 s 1,926.0 LW-34 30.7 100.9 1039 73+70 90 N 1,925.0 LW-33 21.5 98.1 ,... """ t"' 1040 16+10 1u E LW-36 14.6 9S.2 '"ZJ 1041 11+00 5 w 1,952.0 LW-34 24.4 97.3 (l ::0 t<:1 1042 4+85 10 w 1,991.5 LW-15 20.8 97.9 t<:1 /'i 1043 67+75 280 s 1,919.0 LW-22 18.5 99.0 1044 70+00 210 s 1,921.0 LW-33 19.6 99.1 1045 72+95 270 s 1,929.0 LW-33 18.6 101.3 1046 75+80 210 N 1,929.5 LW-33 19.5 97.8 lf'l/1"'7 ""7<")or.r. 280 N ., """ Jl 1"\ LW-15 22.0 94.3 1048 .J..V'-j;/ /L.TVU ..Lt:1L:L:t.U 1048 72+00 280 N 1,924.0 LW-15 23.8 99.5 1 f'lll(), 67+05 ""11"\r. ,., , ,.,., t"\ ,... LW-33 17.1 97.7 .J..U"i:;:.> L.UU 1\1 ..L,::1.LJ.:J 1050 76+05 40 N 1,934.0 LW-33 21.6 96.7 1051 73+30 110 N 1,930.5 LW-33 "'){'; 1 97.4 £.Ve.J.. 1052 68+85 7() 1 (),")<"') " LW-34 96.7 IV .L'I ..L.t74..LeV L.Ue.J Rev. 0 TABLE 2.5-62 (continued) Sheet 38 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number ( %) (%) Number 1053 67+60 5 s 1,918.0 LW-33 21.0 97.9 1054 69+95 20 s 1,921.0 LW-36 17.8 98.8 1055 72+60 0 1,927.5 LW-33 21.4 97.6 1056 74+95 298 N 1,928.0 LW-33 18.5 98.4 1057 70+40 215 N 1,925.5 LW-33 18.0 99.4 1058 67+00 245 N 1,919.0 LW-33 20.2 97.9 1059-S 68+25 40 s 1,918.0 LW-37 19.3 97.7 1060-S 70+40 70 s 1,922.5 L\Al-15 22.1 100=0 1061-S 74+10 55 s 1,928.5 r t.r_ J .11 r 100.2 0 .L..oVV-J'":t L.leO t"' 1062-S 75+50 75 N 1 a1:n t::. '" ' tTl .... ,_,_,...,._, ..1.;7e.l.. ::/0
    • I 1063-S 72+25 100 N 1,927.0 LW-33 20.0 96.6 (") :::v ttl 1064-S 69+10 , "1'\ ,., , n.-. ..... r-LW-37 19.1 99.6 L ... .J .LV V 1.'11 ..l.t':JL.L..:> 1065 76+20 290 s 1,938.0 LW-33 18.8 100.1 1066 72+80 260 s 1,927.5 LW-33 20.4 98.6 1067 68+50 275 s 1,922.5 LW-33 20.3 98.8 1068 76+10 290 N 1,931.5 LW-15 23.7 96.0 1069 73+70 270 N 1,929.0 LW-3 21.0 95.1 1070 68+65 250 N 1,925.0 LW-15 20.7 99.3 1071 75+50 100 s 1 O"'l') n 14 '" 96.7 _..f..I..JL.*U J...':J.L. 1072 70+90 90 s 1,925.5 LW-14 19.6 97.1 1073 75+00 75 N 1,931.5 LW-15 25.9 91.7 1074 1074 75+00 75 N 1,931.5 LY.!-15 21"'5 nc ., :J -* = ..J Rev. 0 TABLE 2.5-62 (continued) Sheet 39 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station (b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number ( %) (%) Number 1075 72+40 60 N 1,928.0 LW-15 25.9 95.7 1076 70+20 90 N 1,924.5 LW-15 22.6 98.1 1078 75+08 305 s 1,935.0 LW-4 16.5 98.9 1079 73+00 210 s 1,928.5 LW-4 20.4 95.1 1080 69+10 295 s 1,918.5 LW-33 21.9 95.7 1081 67+35 140 s 1,914.5 LW-33 22.0 96.9 1082 70+05 50 s 1,916.0 LW-34 24.4 89.4 1083 1083 70+05 50 s 1,916.0 LW-34 22.8 99.1 nc c :E! 1084 77+30 10 s 1,939.0 L\>J-34 19.7 .:7VeV 0 !:""' 1085 66+00 270N 1,913.0 LW-4 17.8 98.3 n:j ,.., \ 1086 68+70 280 N 1,915.0 LW-4 13.3 99.4 -"" t<:l 230 N 1 n LW=l8 '" " 96.7 ...... 1087 76+15 !...-.l ... ..!..:;'..,\.) ::>':: 1088 76+40 110 N 1,996.0 LW-33 21.4 97.4 1089-S 72+60 75 N 1,929.5 LW-33 19.7 87.8 1090-S 68+50 50 N 1,923.0 LW-33 20.5 95.6 1091-S 67+75 60 s 1,919.5 LW-34 17.2 97.0 1092=8 69+25 125 s 1,923.0 LW-34 21.5 93.7 1095 1093-S 72+00 75 s 1,925.5 LW-34 22.8 95.1 74+80 25 s 1,931.0 LW-34 21.4 100.1 1095 69+25 125 s 1,923.0 LW-34 22.5 96.5 1096 75+20 260 s 1 tlJ'"7 f1 .J.. f ;;I...J I e V LW-18 23.5 94.6 1097 1097 75+20 260 s , t"\'""l.., I"\ J.., ':J .J I
    • U LW-18 22.6 98.7 Rev. 0 TABLE 2.5-62 (continued) Sheet 40 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station (b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 1098 75+55 215 N 1,933.0 LW-37 18.0 97.4 1099 71+30 250 N 1,928.0 LW-37 20.9 97.0 llOO 69+00 230 N 1,922.5 LW-37 19.1 97.5 ll01 67+05 200 s 1,917.0 LW-37 17.6 100.1 ll02 67+30 75 s 1,918.0 LW-3 17.9 100.0 1103 71+30 100 s 1,927.5 LW-3 18.6 99.4 1104 75+85 250 s 1,938.5 LW-18 18.1 99.4 ll05 73+20 220 s 1,930.0 LW-37 21.2 95.1 ll06 69+20 255 s 1,922.0 LW-32 16.4 0 96.0 t"" C:j 1 "i '"'"' 69+10 25 N 1,920.5 Lw-:n 18.5 99.1 .J..J..Vi () 1108 40 1,925.0 LW-3 18.4 99.4 !::o 69+85 N t!J t:<:l ll09 75+30 10 N 1,937.0 LW-37 16.1 97.1 ,..,., "' 1110 72+75 75 s 1,928.5 LW-37 20.8 96.6 1111 69+20 0 1,923.0 LW-37 19.9 97.0 1ll3 66+05 290 N 1,918.0 LW-18 17.4 97.1 1ll4 68+45 275 N 1,922.0 LW-37 17.1 100.0 1115 73+35 240 N , ()"::') 1:: ..l.f:::J.JL.e.J LW-18 22.4 96.7 lll6 76+90 180 N 1,935.5 LW-4 17.9 99.2 1117 73+00 150 N 1,930.5 LW-18 20.4 97.1 1118 67+80 160 N 1,923.0 LW-4 17.4 99.9 1119 76+85 50 N 1,938.0 L\*l-18 20.6 99.4 ll20 73+45 25 s l Q")Q ..L.J./4-Ue.J 13.6 97.4 ll2l Rev. 0 TABLE 2.5-62 (continued) Sheet 41 of 83 Location Offset In-Place from Elevation (c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 1121 73+45 25 s 1,928.5 LW-18 20.7 97.2 1122 69+50 60 s 1,923.5 LW-32 16.2 95.0 1123 77+20 260 N 1,939.0 LW-34 23.8 96.1 1124 73+60 270 N 1,932.5 LW-34 21.6 95.8 1125 69+15 210 N 1,924.0 LW-34 21.3 98.5 1126 67+50 90 N 1,921.0 LW-38 15.9 97.0 1127 70+75 75 N 1,927.0 LW-18 21.9 97.4 1128 75+10 70 N 1,933.0 LW-36 18.3 99.6 1129 76+25 60 s 1,938.5 LW-36 18.1 ::!! 96.1 0 t"" 1130 73+80 100 s 1,931.0 LW-37 21.2 97.5 () 1131 69+55 80 s 1,923.0 LW-36 18.1 99.0 t'j 1132 75+75 200 s 1,938.0 L\-'!-36 14.8 96.1 t".l 1133 71+25 290 s 1,927.0 LW-22 16.9 98.5 1134 69+00 255 s 1,922.0 LW-37 18.4 99.6 1135 77+35 275 N 1,939.5 LW-3 19.5 98.2 1136 73+75 280 N 1,933.0 LW-34 21.5 91.7 1139 1137 ....,, ',,.. 265 N 1,930.5 LW-34 20.0 100.1 /..L.I.L.:J 1138 67+50 225 N 1,920.5 LW-33 16.9 99.7 1139 73+75 280 N 1,933.0 LW-3 19.6 98.0 1140 66+80 30 N 1,918.5 LW-33 20.1 98.6 1141 70+00 100 N 1 0.'1() £: LW-33 21.2 97.0 1142 74+60 75 N , ............... ,... LW-33 ?1. 5 96.3 .1,::-J.).) * .J -n---0 Kev.

    TABLE 2.5-62 (continued) Sheet 42 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number ( %) (%) Number 1143 76+25 60 s 1,939.5 LW-18 21.0 97.8 1144 71+90 120 s 1,928.5 LW-33 18.5 100.4 1145 68+60 100 s 1,923.5 LW-18 25.0 93.0 1149 1146 68+75 225 s 1,923.5 LW-33 21.8 95.6 1147 71+15 285 s 1,927.5 LW-3 18:2 99.5 1148 74+60 200 s 1,937.5 LW-3 18.0 97.4 1149 68+60 100 s 1,923.5 LW-33 21.6 97.9 1150 77+60 240 N 1,941.0 L\AJ-32 17.8 f\C , :8 1151 72+80 285 N 1,931.0 Lh7-3 10 ..,

    • 0 ..1..0
    • I :10.': t"' hj 1152 70+25 700 N 1,928.0 L\AJ-18 22.1 " * ..) n 1153 77+00 75 N 1,941.0 LW-18 21.2 100.6 :;o C'J tz:j 1154 71+70 100 N 1,930.0 LW-18 21.9 98.2 ;;>;; 1155 70+30 85 N 1,930.5 LW-18 19.9 99.4 1156 76+80 60 s 1,939.0 LW-36 17.7 98.2 1157 72+95 85 s 1,931.0 LW-33 22.2 96.4 1158 69+45 65 s 1,925.5 LW-33 19.3 98.2 1159 67+40 225 s 1,918.5 LW-4 17.5 100.7 1160 70+40 245 s 1,925.0 LW-33 21.8 96.9 1161 72+98 268 s 1,932.5 L\"J-4 17=2 100.6 1162 70+30 250 N 1,930.5 LW-4 19.5 96.0 , , .:::::., '"7"")1, 1"\ 150 N ..L...L.VJ /..)T..L.U 1,933.0 LW-37 21.8 96.1 1164 76+15 200 N i; 939.0 LW-4 19.1 nc l"l--"rT 0 1'\.t:::V*

    Test Number(a) 1165 1166 1167 1168 1169 1170-S 1171-S 1172-S 1173-S 1175-S 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 Location Station (b) 75+95 71+90 71+90 71+25 76+80 70+60 72+90 76+50 77+00 68+10 76+30 73+00 69+45 78+30 75+50 69+30 77+90 75+70 72+05 67+75 77+35 Offset from Centerline (feet) 0 10 N 10 N 100 s 120 s 285 s 210 s 245 s 230 N 240 N 270 N 150 s 250 s 275 s 200 N 215 N 230 N 60 N 0 150 N 80 N 100 s TABLE 2.5-62 (continued) Elevation(c) (feet) 1,937.0 1,930.0 1,930.0 1,929.0 1,942.0 1,927.5 1,932.0 1,941.5 1,941.0 1,933.5 1,924.0 1,943.0 1,933.5 1,925.5 1,948.0 1,939.5 1 OJn n ..Lf../-.JVeV 1,945.0 1,938.0 1,933.0 1,923.5 Material Identification Number LW-37 LW-37 LW-37 LW-18 LW-4 LW-33 LW-33 LW-33 LW-37 LW-j I LW-32 LW-4 LW-34 LW-34 LW-34 LW-1 r t.T , o LW-4 LW-37 LW-34 In-Place Moisture Content ( %) 19.9 15.0 20.5 21.7 16.0 21.8 21.0 22.2 20.0 20.2 14.6 18.5 24.3 22.5 22.7 22.6 21.3 19.8 21.2 22.1 -,r; 0 L..VeO 20.0 Sheet 43 of 83 Compaction ( %) 96.0 94.9 95.9 97.2 96.0 97.4 96.8 95.5 97.0 96.2 98.1 99.6 95.4 97.7 95.0 96.7 98.5 96.1 95.4 95.7 96.0 Correcting Test Number 1167 Rev. 0 Test Number(a) 1187 1188 1189 1190 1191 1192 1193 1194 1195 .LJ..JO 1197 1198 1199 1203 1204 1205 1206 1207 1208 1209 1210 1211 Location Station (b) 74+85 73+25 66+90 65+60 70+15 73+25 77+80 74+35 67+90 66+10 iJTUJ 67+00 73+40 72+70 70+30 68+80 66+00 77+10 77+10 72+95 69+90 78+00 Offset from Centerline (feet) 140 s 160 s 85 s 295 s 274 s 160 s 230 N 250 N 295 N 130 N 100 N 20 N 0 190 s 90 SN 135 s 245 s 200 N 200 N 280 N 245 N 200 s TABLE 2.5-62 (continued) Elevation(c) (feet) 1,937.0 1,931.5 1,919.0 1,919.5 1,927.5 1, 931.5 1,945.0 1,935.5 1,927.0 1,918.5 1,932.0 1,924.0 1,933.0 1,934.5 1,929.5 1,924.5 1,944.0 1,944.0 1,936.5 1,932.5 1 0/lt:: I: Material Identification Number LW-23 LW-4 LW-33 LW-33 LW-4 LW-4 LW-37 LW-37 LW-37 LW-37 LW-4 LW-37 LW-37 LW-37 LW-24 LW-24 LW-34 LW-33 LW-24 L\'1-24 In-Place Moisture Content ( %) 21.2 23.1 19.7 21.1 18.8 17.6 19.4 20.4 19.2 2u. 7 15.1 19.4 19.7 18.7 17.3 19.5 22.9 17.2 17.8 18.2 21.6 Sheet 44 of 83 Compaction (%) 97.0 90.3 100.0 96.2 97.2 99.7 98.5 97.5 98.1 '91.0 100.5 97.1 97.7 100.4 98.7 94.9 97.1 92.9 98.3 97.3 [l'j '7 ;:; I

    • I 95.2 Correcting Test Number 1192 1231 1208 Rev. 0 Test Number(a) 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 Location Station(b) 66+90 69+40 71+80 74+25 77+00 58+70 57+ 50 58+ 50 59+00 60+00 53+30 60+50 58+00 55+90 55+90 61+90 59+20 64+50 67+10 68+80 72+50 69+80 Offset from Centerline (feet) 50 N 75 N 120 N 150 w 60 N 230 N 260 N 180 N 195 N 120 N 285 N 175 N 150 N 100 N 100 N 50 s 65 s 40 s 100 s 135 s 240 s 200 s TABLE 2.5-62 (continued) Elevation(c) (feet) 1,924.5 1,928.0 1,934.0 1,937.0 1,940.0 1,897.5 1,898.5 1,897.0 1,897.0 1,896.0 1,898.0 1,902.0 1,900.5 1,900.5 1,900.5 1,898.8 1,899.0 1,917.0 1,920.5 1,924.5 1 l1 ::::: .J..tJ..J"-1*..J 1,928.5 Material Identification Number LW-15 LW-33 LW-15 LW-37 LW-32 LW-15 LW-22 LW-15 LW-15 LW-.34 LW-37 LW-34 LW-33 LW-34 LW-33 LW-34 LW-33 LW-4 LW-33 LW-4 LW-4 In-Place Moisture Content (%) 22.5 17.7 21.1 20.1 15.5 20.8 18.0 20.9 22.9 Ll. u 20.1 20.7 21.0 26.4 20.9 27.2 19.0 17.7 20.9 19.9 15.5 'r n .1.o.o Sheet 45 of 83 Compaction (%) 98.5 96.6 96.9 99.1 99.5 95.1 97.4 96.7 96.6 97.1 97.4 100.1 98.5 95.6 98.8 97.5 95.6 98.5 96.1 95.9 ii,,-, ;; 98.3 Correcting Test Number 1226 Rev. 0 ::;z 0 Li iij (-) tt:l trJ :::0:::

    TABLE 2.5-62 (continued) Sheet 46 of 83 Location Offset In-Place from Elevation(c) Material iv1oisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 1234 66+10 235 s 1,915.5 LW-4 16.0 99.5 1235 56+15 280 N 1,905.0 LW-34 23.2 98.8 1236 59+ 50 150 N 1,902.0 LW-34 22.3 98.0 1237 58+00 70 N 1,900.0 LW-34 18.1 97.0 1239 61+80 75 s 1,900.5 LW-18 17.3 95.0 1240 59+00 120 s 1,897.5 LW-18 19.1 100.6 1241 56+00 200 N 1,902.0 LW-18 20.7 97.1 1242 59+80 150 N 1,904.0 LW-18 19.5 98.4 1243-S 67+60 50 N 1,921.0 16.0 98.5 0 t:"'1 nc n .... .i 1244-S 72+20 80 N 1,933.0 LY.!-1 15.6 J.J*:7 1245 1245 72+20 80 N 1.933.0 LW-1 (-J 17.7 100.4 !::o tr:l trJ 1246 77+00 1n.n 't..t 1,944.0 LW-32 14.5 96.2 .J..VV J.\1 1247 59+00 100 N 1,925.5 LW-6 16.0 96.7 1248 61+00 80 N 1,925.5 LW-4 14.3 98.6 1249 62+30 60 N 1,920.5 LW-10 17.6 95.7 1250 65+00 60 s 1,922.0 LW-24 17.3 99.7 1251 67+00 65 s 1,921.5 LW-24 16.4 100.6 1252-S 60+90 200 N 1,905.0 LW-35 13.5 93.1 1253 1253-S 60+90 200 N 1,905.0 16;6 98.8 1254-S 61+00 100 N 1,905.0 LW-15 16.8 97.1 1255-S 61+00 100 N 1,905.0 LW-15 15.5 100.4 1257 1256-S 59+ 50 75 N l,YCJ2.5 LW-15 13.6 00 () J I,._J Rev. " u TABLE 2.5-62 (continued) Sheet 47 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 1257 61+00 100 N 1,905.0 LW-15 21.5 102.8 1258 59+ 50 75 N 1,902.5 LW-15 25.8 95.9 1259 62+00 200 N 1,909.5 LW-15 18.2 102.8 1260 57+00 150 N 1,897.5 LW-15 19.8 97.7 1261 59+00 200 N 1,904.5 LW-15 20.5 98.3 1262 59+80 100 s 1,896.0 LW-15 19.2 101.6 1263 58+25 100 s 1,896.0 LW-15 24.9 98.6 1264 59+ 50 150 s 1,897.0 LW-15 19.5 99.5 ::E: 1265 60+25 100 s 1,897.0 LW-10 17.7 95.1 ,.... '-' L' 1266 56+75 100 N 1,898.0 LW-15 19.1 99.5 1267 58+00 150 N 1,905.5 LW-10 18.5 100.7 0 ::0 t<:l 1268 62+00 50 N 1,909.5 T r.r , r::: 26.7 95.3 t%j ;::.;: 1269 60+25 285 N 1,900.5 LW-15 23.0 97.8 1270 58+ 50 240 N 1,904.5 LW-40 21.5 98.4 1271 58+75 150 N 1,903.5 LW-37 20.2 99.4 1272 65+35 265 N 1,920.5 LW-15 22.2 96.8 1273 67+80 285 N 1,926.5 LW-15 22.0 98.0 1274 68+00 125 N 1,925.5 LW-3 17.0 96.6 1275 69+00 60 N 1,928.5 LW-41 18.5 96.6 1276 71+70 25 s 1,930.5 LW-15 22.1 96.0 73+25 100 N 'i i"'\"ir ,.. LW-15 23.8 95.8 .J.L:./1 1278 75+80 50 N 1,938.5 LW-15 ?3. 5 94.7 !980 Rev. 0 TABLE 2.5-62 (continued) Sheet 48 of 83 Location Offset In-Place from Elevation (c) Material Hoisture Correcting Test Station (b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 1279 76+10 25 N 1,943.0 LW-15 19.6 95.9 1280 75+30 50 N 1,938.5 LW-15 22.8 99.2 1281 59+00 75 s 1,906.0 LW-33 16.8 100.0 1282 59+00 100 s 1,909.0 LW-15 22.1 95.9 1283 61+50 125 s 1,903.0 LW-15 21.0 99.5 1284 58+00 290 s 1,903.5 LW-40 11.2 101.2 1285 58+00 290 s 1,903.5 LW-40 17.7 97.4 1286 65+35 265 N 1,907.5 0 ..,.., L.L.e..J 1,907.5 ...,.., n :8 1287 59+80 200 N 0 -'JeV 96.9 0 t"" l?R8 58+60 100 N 1 an? n 0 ..,.., " n' n 1289 t"lj ..... , ... .., ...... ..., L. I e V O'"ieV 58+60 100 N 1,902.0 0 1289 LW-40 22.3 97.1 A:J t::l 1290 66+00 270 s , t"\"'1"1 .... LW-15 17.5 94.8 L. .... .J .l.t::1L..J..eU " 1291 60+30 280 N 1,913.0 LW-40 21.7 96.0 1292 64+40 275 s 1,914.0 LW-40 16.5 101.9 1293 66+05 275 s 1,921.0 LW-40 24.3 92.0 1294 65+05 255 s 1,919.5 LW-44 19.1 99.1 1295 67+95 56 s 1,922.5 LW-44 21.7 95.2 1296 68+90 25 s 1,922.5 LW-44 20.9 98.8 1297 70+00 15 s 1,923.5 4 18;8 101.1 1298 66+10 255 s 1,921.0 LW-40 17.4 100.6 , '"'11"\n 73+10 175 N 1,936.5 LW-42 15.9 102.0 .l.L.";J';j 1300 76+10 100 N 1;943;;0 LW-45 23.1 .., ' ..., ,-,,....., ...!..._)V..,L Rev. 0 TABLE 2.5-62 (continued) Sheet 49 of 83 Location Offset In-Place from Elevation(c) r*1aterial Moisture Correcting Test Station (b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Nu!Clber 1301 76+10 100 N 1,943.0 Ll'l-44 18.8 83.7 1308 1302 57+30 280 N 1,907.0 Ll'l-40 22.4 94.3 1303 1303 57+30 280 N 1,907.0 L\'1-40 19.4 96.6 1304 59+25 285 N 1,906.0 L\'1-12 24.6 92.7 1305 1305 59+25 285 N 1,906.0 L\'1-12 24.3 95.2 1306 57+90 145 N 1,907.5 L\'1-44 19.8 100.6 1307 62+95. 100 N 1,909.0 Ll'l-12 24.3 98.4 1308 76+10 100 N 1,943.0 LW-13 19.9 95.5 1309 54+20 155 s 1,914.5 24.1 85.1 1310 0 t"' lJlO-S 54+20 155 s ),914.5 LW-39 20.1 97.0 i"Ti r.. \. 4 1311 53+90 290 s 1,908.5 11'1-17 18.9 95.2 -"" t:'l 1 Of"\""7 n -1312-S 57+30 215 N L..Le::> 96.0 .... .J.. 1..; VI

    • V ::,;; 1313-S 60+95 200 N 1,907.0 Ll'l-20 20.8 93.8 1314 1314 60+95 200 N 1,907.0 L\'1-20 21.0 96.9 1315 60+05 0 1,902.0 L\'1-48 22.4 95.0 1316 62+95 20 N 1,909.0 Ll'l-40 18.4 96.6 , J, ""7 63+20 80 s .J....J..L/ 1,909.0 L\'1-23 18.5 95.3 1318 66+90 25 s 1,922.0 L\'1-49 22.6 96.6 1319 70+05 40 s 1,932.5 LW-44 23.2 95=2 1320 76+30 65 s 1,944.5 Ll'l-44 21.7 98.6 1321 C:.(L.L1 C ..J;JT.J....) ")()('\ ""' JVU J.\1 1 Arr.""7 r. Ll'l-23 22.6 96.3 1322 63+10 275 N 1,910.5 LW-23 16.7 97.0 0 TABLE 2.5-62 (continued) Sheet 50 of 83 Location Offset In-Place from Elevation(c) Material ;vlo is ture Correcting Test Station{b) Centerline Identification Content Compaction Test Number{a) (feet) (feet) Number {%) (%) Number 1323 69+05 200 N 1,931.0 LW-23 17.1 102.5 1324 73+85 170 N 1,939.5 LW-23 19.3 97.1 1325 58+00 320 s 1,904.0 LW-44 20.0 95.8 1326 60+10 295 s 1,905.0 LW-44 24.6 93.8 1334 1327 63+40 270 s 1,909.0 LW-44 26.3 94.7 1335 1328 66+75 220 s 1,922.0 LW-23 22.3 96.8 1329 66+05 115 s 1,920.5 LW-12 23.7 95.5 1330 63+90 90 s 1,904.0 LW-23 20.4 96.9 ::E: 1331 61+10 40 s 1,902.0 LW-23 18.3 99.9 r-, ._, L' l33L 57+10 75 s 1,902.0 LW-23 15.9 lf"\1'\ " i--.j ...L.VU*V (-) 1333 60+10 295 s 1,905.0 LW-44 25.1 90.1 1334 t:r:j 1334 6 0-1-l 0 295 s 1 a ru::. n 98.1 t:r:j L;U.::> :;,;:: 1335 63+40 270 s 1,909.0 LW-23 20.3 97.8 1336 63+95 280 N 1,916.5 LW-45 20.8 95.1 1337 59+90 240 N 1,907.0 LW-44 20.7 96.3 1338 58+85 0 1,906.0 LW-42 16.1 97.6 ,.,.," .J_..).):::<' 62+00 20 s 1,908.0 LW-23 19.4 97.0 1340 64+00 70 N 1,914.5 LW-23 18.9 97.4 1341 55+70 290 s 1,904.5 LW-42 99;0 1342 61+95 255 s 1,908.0 LW-44 21.9 97.5 1343-S 64+70 285 s 1 Ar.r. ,-J..t:::7U:::7.:> LW-43 15.0 95.4 1344-S 67+60 250 s 1:926.0 LW-44 30.3 89.9 1-, Jl L .!....)":t...) Rev. 0 TABLE 2.5-62 (continued) Sheet 51 of 83 Location Offset In-Place from Elevation(c) Haterial i*ioisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 1345 67+60 250 s 1,926.0 LW-42 16.0 95.3 1346 60+35 245 N 1,909.0 LW-23 18.5 97.9 1347 57+85 280 N 1,910.5 LW-48 20.5 95.5 1348 60+60 200 N 1,909.5 LW-20 22.0 97.1 1349 57+70 0 1,907.0 LW-23 16.6 102.4 1350 63+00 10 N 1,912.5 LW-44 25.6 94.8 1351 1351 63+00 10 N 1,912.5 LW-44 21.5 101.0 1352 56+00 200 s 1,907.5 LW-44 20.8 95.9 1353 54+00 160 s 1,908.0 LW-15 27.5 94.0 1354 0 1354 54+00 160 s 1,908.0 LW-15 t"" 25.2 96.2 l"%j 1355 57+80 180 s 1,907.5 LW-44 23.7 95.1 n -"'"' tr.l 1356 60+30 300 s 1 ono n 3 15.2 101.2 J...O.J !AI 1357 62+85 150 s 1,908.0 LW-15 20.0 98.6 1358 65+70 170 s 1,916.0 LW-45 16.4 98.6 1359 70+85 195 N 1,935.5 LW-23 16.1 101.5 1360 73+80 185 N 1,939.5 LW-23 21.5 92.1 1361 1361 73+80 185 N 1,939.5 LW-23 19.2 96.9 1362 58+40 300 N 1,909.0 LW-21 23.3 97.4 1363 63+30 275 N 1,913.5 LW-21 23.5 96e5 1364 61+85 220 N 1,911.0 LW-21 25.4 95.0 1368 1365 58+90 100 s 1,905.0 LW-23 19.2 100.7 1366 61+30 160 s l,9n7.n LW-21 20.9 98.8 n-T-r t"t:::'V* 0 TABLE 2.5-62 (continued) Sheet 52 of 83 Location Offset In-Place from Elevation(c) t*1aterial l*ioisture Correcting Test Station (b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 1367 63+70 5 s 1,909.5 LW-23 17.6 99.1 1368 61+85 220 N 1,911.0 LW-21 23.9 96.3 1369 56+30 300 s 1,912.5 LW-21 19.2 95.0 1370 62+75 280 s 1,906.5 LW-23 18.3 97.9 1371 59+15 315 s 1,902.0 LW-21 22.8 96.1 1372 58+ 50 15 N 1,907.0 LW-21 21.7 97.3 1373 61+90 5 N 1,910.0 LW-21 25.0 94.8 1377 1374 61+90 5 N 1,910.0 LW-21 24.9 95.2 1377 :E; 1375 63+20 30 s 1,909.0 LW-40 18.3 95.7 0 L' 1376 59+85 20 s 1,908.5 LW-21 16.4 95.9 .... .J () 1377 61+90 5 N 1.910.0 LW-21 23.9 95.7 !;0 f::l:j 1378 64+90 295 s 1,912.5 LW-23 t".l .l.O * .) '::':: . .:) ::,:;; 1379 62+50 300 s 1,906.5 LW-23 17.3 96.1 1380 59+85 285 s 1,902.5 LW-23 16.2 94.1 1383 1383 59+85 285 s 1,902.5 LW-45 16.8 97.5 1384 59+00 275 N 1,911.5 LW-42 17.5 96.1 1385 61+70 85 N 1,912.5 LW-21 22.9 97.4 1386 58+85 80 s 1,906.0 LW-40 16.3 98.9 1387 61+20 135 s 1, 911.0 18.0 1388 64+20 40 s 1,913.0 LW-40 17.5 98.6 1389 64+85 270 N 1,921.5 LW-40 21.0 99.3 1390 58+60 290 s 1,905.0 LW-48 22.6 96.6 Rev& 0 TABLE 2.5-62 (continued) Sheet 53 of 83 Location Offset In-Place from E1evation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number (a) (feet) (feet) Number ( %) (%) Number 1391 63+35 300 s 1,911.0 LW-42 18.0 99.0 1392 69+70 130 N 1,935.0 LW-42 17.5 98.6 1393 74+40 102 N 1,940.5 LW-44 20.9 96.2 1394 58+95 5 s 1,906.0 LW-47 20.4 96.7 1395 60+00 70 s 1,908.5 LW-45 16.8 98.9 1396 63+70 50 s 1,912.0 LW-48 19.9 93.9 1397 1397 63+70 50 s 1,912.0 LW-48 19.7 97.9 1398 65+75 15 N 1,923.0 LW-41 19.0 95.7 1399 70+90 20 s 1,935.5 LW-34 30.2 89.5 1614 0 t""' 1400 'i4+2U 5 t) 1,940.0 LW-42 14.3 95.3 "'] 1401 78+15 30 s 1,948.0 LW-42 17.7 97.3 f-) ::0 1402 63+50 280 s 1,914.0 LW-41 l7. 5 95.5 t>:1 1403 59+95 295 s 1,909.0 LW-48 18.2 98.0 1405 59+85 260 N 1,910.0 LW-49 19.0 98.3 1406 58+60 100 N 1,905.0 LW-49 17.3 100.2 1407-S 62+00 100 s 1,913.0 LW-49 19.0 98.8 1408-S 59+ 50 125 s , nn""' n LW-49 ,..., " f"\IC ...... .I.. I
    • 0 ::n;. L. 1409-S 63+50 225 s 1,914.5 LW-49 16.4 95.7 1410-S 69+85 100 s 1,935.5 LW-48 22.7 99.4 1411-S 58+40 260 s 1,905.5 LW-23 16.5 91.1 1413 1412-S 58+40 260 s 1,905.5 L\*J-23 18.3 100.7 1413 58+40 260 s 1,905.5 LW-23 "" " 98.1 L.Ve:J Rev. 0 TABLE 2.5-62 (continued) Sheet 54 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 1414 64+50 150 s 1,914.0 LW-48 17.6 100.1 1415 61+50 140 s 1,912.0 LW-48 17.3 96.0 1416 58+50 75 s 1,906.0 LW-48 18.7 96.1 1417 60+40 150 s 1,910.0 LW-48 21.9 98.4 1418 62+00 130 s 1,913.5 LW-44 19.8 98.5 1419 64+00 160 s 1,914.0 LW-48 19.0 95.6 1420 64+50 125 N 1,922.5 LW-49 17.8 99.0 1421 58+75 275 N 1,907.0 LW-49 15.7 96.3 1422 64+40 0 1,923.0 LW-48 20.0 97.7 :s 0 1423 rnor-r. 1,910.5 LW-48 LJ..6 t'1 uvo...;v :;v i\j 100.9 '"!j 1 ...,..,.., ..i..":I:L."'i -,""""'" iLTLV 75 N 1,938.5 LW-41 14.9 97.3 0 ;;o 1425 76+40 75 N 1,945.5 LW-44 23.3 98.1 tr:l [lJ :"1 1426 59+00 275 s 1,907.5 LW-50 19.5 102.1 1427 62+80 260 s 1,915.0 LW-50 18.0 97.6 1428 66+00 260 s 1,924.5 LW-48 21.9 99.2 1429 59+40 290 N 1,911.0 LW-50 19.1 100.8 1430 61+50 290 N 1 ()1..., r. ..Lr:7..LL.*U LW-46 22.9 95.4 1431 61+50 290 N 1,912.0 LW-46 24.3 95.8 1432 61+50 270 N 1,912.0 LW-47 27.7 89.4 1438 14 33 63+70 270 N 1,914.5 LW-50 23.3 98.0 1434 63+80 100 s 1,915.0 LH-45 17.4 99.6 1435 62+50 140 s 1 a 1 A n A 100.0 .. L.Ue"::J Rev. 0 TABLE 2.5-62 (continued) Sheet 55 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) {%) Number 1436 61+30 180 s 1,914.0 LW-49 16.5 99.1 1437 63+70 160 s 1,915.5 LW-45 19.0 98.5 1438-S 61+50 270 N 1,912.0 LW-47 19.4 98.3 1439-S 61+50 260 N 1,912.0 LW-47 22.8 94.5 1452 1440-S 60+50 260 N l, 911.5 LW-47 22.5 94.9 1453 1441 60+50 125 N 1,911.5 LW-47 20.1 99.2 1442 58+70 100 N 1,908.0 LW-49 22.7 98.0 1462 1443 55+70 100 s 1,910.0 LW-45 18.7 100 .. 0 :iS 1444 56+60 230 s 1,910.5 LW-45 18.3 98.1 0 r ..i....'-i'-i..i 61+00 80 s 1,914.5 LW-50 18.5 98.2 r-..J n 1446 59+80 70 s 1,907.0 LW-45 16.0 100.0 ;:>::? t'j 1447 58+70 110 s 1,907.0 LW-45 ...,, c 95.8 t'j L.'J. J 1448 78+00 100 N 1,937.0 LW-49 22.4 96.0 1449 77+10 80 N 1,937.0 LW-42 12.4 98.0 1450 75+50 80 N 1,945.5 LW-42 14.9 97.5 1451 69+50 80 N 1,936.0 LW-50 20.3 99.5 1452 61+50 ""'JCI"\ N 1,912.0 LW-47 20.7 96.6 £UV 1453 60+50 260 N 1,911.5 LW-47 18.4 99.2 1454 60+10 280 s 1,911.0 LW-49 15.2 1455 61+90 280 s 1,915.0 LW-47 16.4 99.7 1456 62+90 290 s 1 01:::::: :: LW-45 17.4 100.4 .J.-t:J.L..Je....J 1457 64+50 280 s 1 n, r " J.,;J.J..OeU LW-39 15.9 97.5 Rev. 0 TABLE 2.5-62 (continued) Sheet 56 of 83 Location Offset In-Place t*1aterial Moisture l..L V1LL Elevation (c) I....UL.Lt'l.,;l...l11::1 Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 1458 71+50 60 s 1,938.5 LW-47 15.2 99.7 1459 75+50 80 s 1,945.5 LW-50 16.8 98.5 1460 72+50 60 s 1,939.5 LW-45 12.1 99.6 1461 77+50 80 s 1,952.5 LW-45 13.7 96.9 1462 58+70 100 N 1,908.0 LW-48 22.2 100.6 1463 61+00 225 N 1,915.5 LW-49 18.8 98.5 1464 63+25 175 N 1,916.0 LW-50 22.3 99.2 1465 65+00 275 N 1,913.0 LW-49 21.7 98.5 1AC::C:: 62+50 100 N 1 01 < (l TlAT-11 Q ')') ,::; ac:: 7 0 ...L.""'XVV ..... ,.., ..... ..., ..... ....... .. """""-' ""'""'. v --'*' t:"' 1467 59+90 0 1,907.5 LW-48 22.4 97.6 ...... n 1468 64+25 50 N 1,916.5 LW-48 20.8 96.5 !;0 t:x:l 1469 58+00 ,nl"' ro 1,907.5 LW-47 ' ' t:x:l .l.UU .::> L.Ve..1.. ::7:1.'+/- :;;>;; 1470 61+00 75 s 1,915.0 LW-45 17.4 99.8 1471 64+50 50 s 1,916.5 LW-45 17.3 97.5 1472 64+40 50 s 1,916.5 LW-45 17.7 96.8 1473 71+75 50 N 1,939.0 LW-49 19.2 99.0 1474 74+75 0 1,946.0 LW-49 17.9 99.2 1475 77+50 75 N 1,953.0 LW-45 17.4 97.1 1476 61+60 250 s 1,915.5 L\11!-48 24.3 98.1 1477 62+10 260 s 1,916.0 LW-50 18.2 97.0 1478 65+25 250 s 1,917.0 LW-47 18.7 97.0 1479 63*'-75 225 s 1,916.0 LW-47 14.9 96.6 Rev. (\ v Test Number(a) 1480 1481 148 2 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1508 Location Station (b) 71+00 74+50 78+00 60+75 57+ 50 58+75 59+ 50 64+00 62+25 62+50 65+25 58+00 Offset from Centerline (feet) 50 s 70 s 90 s 150 s 220 s 185 s 175 s 250 s 0 100 s 30 N 270 N 60+00 250 N 62+00 175 N 63+50 150 N 64+00 160 N 76+00 25 N 74+10 50 N 71+50 75 N 77+75 75 s E 99,734, N 83,635(e) 58+25 300 N (ejUSGS coordinates. TABLE 2.5-62 (continued) Elevation (c) (feet) 1,938.5 1,946.0 1,953.5 1,915.5 1,908.0 1,909.0 1,908.0 1,916.5 1,913.5 1,918.0 1,918.0 1 017 (\ 1,918.0 1,919.0 1,920.0 1,921.0 1,947.0 1,944.0 1,940.0 1,948.5 1,932.0 1,915.0 Material Identification Number LW-48 LW-48 LW-47 LW-49 LW-48 LW-48 LW-50 LW-43 LW-48 LW-47 LW-48 T t.r 1: f'\ un-...;v LW-40 LW-50 LW-50 LW-48 LW-50 LW-50 L\*1-47 LW-50 LW-45 LW-49 In-Place Moisture Content (%) 25.0 21.8 19.1 18.9 26.4 20.8 19.8 13.9 23.6 13.3 25.1 '>A ' L.V.J.. 21.9 21.8 19.6 21.8 19.8 17.6 15 .. 9 21.7 18.6 19.2 Sheet 57 of 83 Compaction (%) 95.2 100.1 98.6 99.3 96.5 98.1 101.3 96.3 96.7 100.0 97.S 99.9 99.8 97.3 95.9 98.9 96.5 99.9 99.7 98.0 100 .. 1 Correcting Test Number Rev. 0 TABLE 2.5-62 (continued) Sheet 58 of 83 Location Offset In-Place from Mater ia1 Moisture rnrrPrt-inn Elevation(c) -..., ..................... -Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 1509 60+20 250 N 1,917.0 LW-43 16.3 99.9 1510 63+00 290 N 1,917.5 LW-49 19.6 98.8 1511 65+30 240 N 1,919.0 LW-49 18.8 100.4 1512 65+00 200 s 1,922.0 LW-45 14.0 99.5 1513 63+20 250 s 1,915.0 LW-44 19.6 99.9 1514 61+00 210 s 1,913.5 LW-49 15.2 98.8 1515 60+80 205 s 1,913.5 LW-41 14.5 99.5 1516 77+50 50 N 1,947.5 LW-47 15.8 99.8 1517 75+00 0 1,946.5 LW-41 15.8 100.0 ::E: ""' .._, t"' 1518 73+25 50 s 1,945.0 LW-48 LL.l ':!::!.':! 1519 72+00 75 N 1,941.0 LW-49 19.4 98.0 (1 t::r.:l 1520 69+85 75 s 1,939.0 LW-49 19.4 98.8 t::r.:l A 1521 64+75 0 1,922.0 LW-48 23.2 99.4 1522 61+00 0 1,918.5 LW-50 20.9 99.2 1523 58+75 50 s 1,916.5 LW-49 17.3 99.0 1524 56+ 50 100 s 1,912.5 LW-47 17.8 99.4 1525 61+50 280 s 1,920.0 LW-45 19.2 97.5 1526 63+25 275 s 1,915.0 LW-45 19.1 96.8 1529 74+75 75 N 1,946.0 LW-50 21.3 100.0 1530 70+20 65 N 1,942.0 LW-50 21.3 99.6 1 C:..":ll C.!.Lf'\() 1 c:.n l.T 1 Q")"J ('\ 8 'lt:e A ('}t:C .., ..1.....1-J.J.. VI I VV ..I...JV ,_,. ..J-tJ.J..J*V L...J*"';t ;;;...J*L 1532 63+80 250 N 1,920.0 LW-49 '>n n nn n L.V*'::J :::?o.o Rev. 0 TABLE 2.5-62 (continued) Sheet 59 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 1533 58+50 200 N 1,909.0 LW-48 23.7 95.5 1534 62+00 180 N 1,920.0 LW-49 19.7 98.0 1535 57+00 260 s 1,907.0 LW-48 21.3 99.5 1536 60+00 270 s 1,911.0 LW-50 18.2 98.8 1537 62+00 270 s 1,915.5 LW-48 22.1 98.4 1538 64+70 270 s 1,922.0 LW-48 22.0 98.3 1544 59+00 0 1,914.0 LW-47 18.7 99.4 1545 62+00 A 1,917.0 L\AJ=4 7 18.2 98.6 ::E; u 1546 63+50 0 1,918.5 LW-49 0 19.7 97.6 t""1 r:j 1517 CO_t_l"'n 0 1,925.0 LW-43 16.3 97.7 n VUTVV :::0 1548 70+00 0 1 ()II f\ c LW-50 22.6 98.4 i:"J ..L.t::J'"iVeJ !:7j 1549 75+00 0 1,943.0 LW-49 22.1 98.0 1550 56+ 50 300 s 1,910.5 LW-43 15.4 96.5 1551 58+70 280 s 1,916.0 LW-45 19.1 98.7 1552 60+50 270 s 1,918.0 LW-45 14.3 96.7 1553 62+70 250 s 1,919.0 LW-50 16.9 98.0 1554 77+00 80 N 1,954.0 LW-47 23.5 96.3 1555 72+00 80 N 1,944.5 LW-47 21.3 95.1 1556 69+00 100 N 1,941.0 LW-47 14.9 99.8 1557 67+30 110 N 1 O"l""l r. ..1-fJ..J..J*V LW-47 20.5 98.8 1558 64+00 160 N 1,921.0 LW-45 18.1 100.1 1559 61+00 260 N 1 a 1 a " ..&.f./..1-_,/*..J LW-47 19.8 97.3 Rev. ,... v Test Number(a) 1560 1561 1562 1563 1564 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 li:OC: .L. ._1(.) J 1586-S Location Station(b) 58+50 57+50 61+00 62+40 64+00 70+00 73+00 76+00 65+00 fi3+00 60+00 59+00 56+70 Offset from Centerline (feet) 280 N 70 s 70 s 90 s 90 s 50 s 100 s 100 s 200 s 250 s 270 s 280 s 250 s N 83,195, E 99,569(e) N 83,195, E 99,569(e) N 83,210, E 99,590{e) '" N 83,190, E 99,570'-' 15+00 40 E 16+70 30 w 75+50 20 w 80+00 20 E 49+80 30 E TABLE 2.5-62 (continued) Elevation(c) (feet) 1,918.0 1,917.5 1,916.5 1,919.5 1,921.0 1,945.0 1,947.0 1,952.0 1 0'111 ('\ 1,919.0 1,918.5 1,915.5 1,932.0 1,932.0 1,933.0 1,933.0 1,977.0 lf972 .. 0 1,980.5 1 071 c:.. _,.., ....... _, i'iaterial Identification Number LW-45 LW-47 LW-43 LW-45 LW-45 LW-49 LW-47 LW-45 i T.I Jl 1"'1 LW-46 LW-46 LW-49 LW-45 LW-45 LW-45 LW-45 LW-54 LW-54 LW-54 LW-54 T r.r C: II LJ ** -J"":! In-Place Moisture Content (%) 19.6 17.2 14.4 16.1 16.7 21.8 15.3 18.9 18.4 18.3 21.0 11.6 18.3 16.7 16.1 19.1 18.8 16.4 24.2 ,,., ,., Sheet 60 of 83 Compaction (%) 99.0 100.0 99.3 99.0 98.8 97.8 99.0 99.3 98.9 99.3 98.6 99.7 98.2 98.4 98.4 95.3 96.8 104.5 97.1 101.7 Correcting Test Number 1579 Rev. 0 TABLE 2.5-62 (continued) Sheet 61 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number ( %) (%) Number 1587-S 48+80 40 E 1,968.5 LW-54 19.2 99.1 1588-S 46+60 30 E 1,969.5 LW-54 19.6 104.8 1589-S 45+10 25 E 1,967.5 LW-54 19.9 102.5 1590-S 44+40 20 E 1,970.5 LW-54 22.9 100.8 1591 66+75 75 N 1,929.5 LW-48 21.6 94.9 1620 1592 68+60 100 N 1,940.0 LW-50 15.6 98.0 1593 71+00 0 1,945.0 LW-50 20.9 99.3 1594 74+00 50 s 1,948.5 LW-50 20.2 96.4 1595 77+00 100 N 1,954.0 LW-48 20.1 96.5 :::8 0 t"'1 1596 78+50 iS s 1,958.0 LW-49 19.6 97.5 -. -" 1597 64+50 220 N 1,924.0 LW-50 18.8 97.2 (j ::u t<:l 1598 59+ 50 275 N 1,918.0 L\AJ-4 9 16.6 99.2 t::tJ 1599 57+00 220 N 1,908.0 LW-49 16.7 99.7 1600 56+75 235 N 1,908.0 LW-48 18.5 96.4 1601 57+75 100 s 1,915.5 LW-45 15.1 99.7 1602 59+ 50 100 s 1,918.0 LW-45 16.7 98.6 1603 62+50 150 s 1,919.5 LW-45 15.3 98.3 1604 64+75 125 s 1,923.5 LW-49 19.2 97.2 1605 54+75 325 N 1,905.0 LW-45 14.6 1606 53+ 50 300 N 1,904.0 LW-48 18.8 98.8 1607 54+75 '1"7C L/J N , ","' "' ..lt::?..lL.eU LW-49 16.6 97.7 1608 53+30 .<OOU N 1,910.0 LW-45 18.4 97.0 Rev. " v TABLE 2.5-62 (continued) Sheet 62 of 83 1609 61+00 250 s 1,917,5 LW-47 13.3 96.8 1610 63+00 225 s 1,920.5 LW-49 18.5 97.8 1611 63+50 225 s 1,920.5 LW-50 13.1 97.1 1675 1612 57+ 50 200 s 1,915.5 LW-50 19.3 98.2 1613 59+ 50 175 s 1,918.0 LW-49 18.2 99.9 1614 70+90 20 s 1,935.5 LW-34 21.6 96.4 1620 66+75 75 N 1,929.5 LW-48 19.3 107.3 1621 59+00 250 N 1,924.5 LW-45 16.1 95.5 ::E: 0 1622 58+30 220 N 1,918.5 LW-50 19.3 98.6 t"' 1623 58+50 80 N 1,920.0 LW-45 h;j 17.3 100.4 n 1624 60+50 50 N 1,922.0 LW-48 19.7 100.2 l:Xj t::1 1625 64+00 0 1,927.0 LW-45 16.8 96.4 1626 66+50 30 N 1,933.5 LW-49 19.7 99.7 1627 70+00 0 1,941.5 LW-43 18.0 98.0 1628 72+00 40 s 1,945.0 LW-49 21.1 99.3 1629 73+00 50 s 1,947.0 LW-43 15.0 101.2 1630 75+00 0 1,949.5 LW-49 19.5 97.8 1631 78+50 80 s 1,961.0 L\<1-43 14.7 97.9 1632 73+00 100 s 1,947.0 LW-45 16.8 97.6 1633 68+00 80 s 1,934.0 LW-47 19.2 87.9 1634 68+00 80 s 1,934.0 LW-47 18.0 94.1 1676 1635 69+00 100 s 1,935.5 LW-47 21.3 97.2 1641 60+00 150 N 1,919.5 LW-45 17.6 98.5 Rev. 0 TABLE 2.5-62 (continued) Sheet 63 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 1642 61+00 90 s 1,921.0 LW-50 17.2 98.1 1643 62+75 75 N 1,925.0 LW-48 21.6 101.5 1644 61+50 225 s 1,922.5 LW-50 18.8 102.0 1645 62+00 220 s 1,923.5 LW-45 17.8 99.8 1646-S 60+50 250 s 1,920.5 LW-50 20.4 101.3 1647-S 59+00 270 s 1,920.0 LW-48 19.0 99.8 1648-S 58+70 190 s 1,920.0 LW-47 16.7 98.8 1649-S 56+00 240 s 1,913.5 LW-46 17.8 99 .. 7 1650 55+70 240 s 1,912.0 LW-45 16.7 98.6 0 -1651 55+00 100 N 1,920.0 T TA7_/I c 1., ., ""' ' 1671 "'j J..,.Jfl-"':1:...1
    • I ::JI*<:t 1652 59+00 150 N 1,918.0 LW-46 22.2 99.1 n ;;o J::rj 1653-S 63+00 250 N 1,922.0 LW-47 15.7 100.3 1654-S 61+80 260 N 1,923.0 LW-43 13.3 100.3 1655-S 59+00 200 N 1,918.0 LW-49 16.0 98.5 1656-S 57+00 50 s 1,916.5 LW-50 29.7 91.7 1672 1657 57+00 55 s 1,916.5 LW-50 25.3 95.4 1658 56+00 50 s 1,915.5 LW-50 25.6 95.9 1659 59+00 so s 1,917.5 LW-50 21.9 100.4 1660 61+00 c:n c lt92l.O LW-50 21 .. 4 .!.U.L.L. l_J\_) '-=" 1661 62+00 40 N 1,923.5 LW-45 17.6 98.5 1662 62+50 100 N 1,924.5 LW-45 18.5 98.5 1663 54+ 50 100 s 1 o 1 n n 4 5 18 .. 1 ()0 ,.. -"-!J-"-V*V .:n..:> v Rev. 0 TABLE 2.5-62 (continued) Sheet 64 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 1664 55+ 50 80 s 1,911.0 LW-50 20.4 100.4 1671-S 55+00 100 N 1,920.0 LW-49 19.8 101.6 1672-S 57+00 50 s 1,916.5 LW-49 18.6 97.8 1673-S 57+00 55 s 1,916.5 LW-49 25.8 92.3 1677 1674-S 56+00 50 s 1,915.5 LW-49 14.9 97.7 1675 63+50 225 s 1,920.5 LW-50 20.6 99.4 1676 68+00 80 s 1,934.0 LW-47 21.1 98.1 1677 57+00 55 s 1,916.5 LW-49 18.0 100.3 :E: 1678-S 66+00 60 s 1,930.5 LW-45 21.5 96.4 0 t-= !"!j 1679-S C.."'7..i..f'tf't rn 1,932.0 LW-45 21.2 96.6 1681 VI I UU uu "' () 1680-S 69+50 60 s 1 ()"')C' ,... LW-50 22.3 101.0 ;;o l:%j l:%j 1681 67+00 50 s 1,932.0 LW-45 19.9 99.5 :"1 1682 67+00 55 s 1,932.0 LW-45 19.8 98.5 168 3 63+50 100 N 1,923.5 LW-50 22.1 100.8 1684 61+50 80 N 1,923.0 LW-43 15.1 98.9 1685 59+ 50 80 N 1,917.0 LW-45 17.3 97.7 1686 57+00 90 N 1,917.5 LW-45 17.8 98.1 1687 54+00 100 N 1,911.0 LW-47 15.9 96.4 1688 53+ 50 100 N 1 n-; n n LW-43 15.1 97.3 -L1.7-Lv.v 1689 54+00 180 s 1 a, n c: LW-45 18.6 100.5 _._,_,.LVe.J 1690 55+00 160 s 1,911.5 LW-45 18.1 100.9 1691 58+00 ,"'"' ,... 1,919.0 LW-45 19.0 99.2 .l..:::;>V Cl Rev. 0 TABLE 2.5-62 (continued) Sheet 65 of 83 Location Offset In-Place from Elevation{c) f*1aterial Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number{a) (feet) (feet) Number (%) (%) Number 1692 60+00 280 s 1,920.5 LW-47 15.8 97.9 1696 62+75 80 N 1,926.5 LW-49 20.2 99.0 1697 61+00 60 N 1,923.0 LW-49 21.0 99.4 1698 60+00 150 N 1,920.5 LW-47 18.6 99.8 1699 59+00 200 N 1,919.0 LW-49 19.4 98.8 1700 57+00 50 N 1,918.0 LW-47 18.1 99.8 1701 55+ 50 100 N 1,921.5 LW-49 20.6 97.8 1702 54+ 50 100 N 1,921.5 5 20.9 "" r :E; 0 1703 63+00 200 N 1,923.0 7 19.5 99.8 t:"" 1-:j 1704 62+00 40 N 1,924.5 L!Al-4 7 10 " "" r ..LVeV ::JJ.::J () 1705 59+00 50 N :;o 1,919.0 LW-47 19.2 98.9 [.l'J t:lj 1706 56+00 250 s 1,916.5 LW-45 21.6 97.3 1707 59+00 280 s 1,919.0 LW-45 19.5 98.4 1708 62+60 230 N 1,923.0 LW-47 14.7 96.6 1709 58+85 200 N 1,918.0 LW-47 16.6 97.0 1710 60+85 185 N 1,923.0 LW-46 19.3 95.5 1711 54+10 135 N 1,916.0 LW-44 23.4 100.8 1712 57+30 60 N 1,920.0 LW-47 17.7 97.3 1713 60+25 200 s 1,921.0 15.6 95.8 , ..,, Jl .l..l.l.'::l: 58+40 270 s 1,920.5 LW-41 14.6 96.5 , '71 h. ..LI..I...J 56+30 240 s 1,920.0 LW-46 19.0 95.7 , ..,,!'\ 59+00 280 N 1,925.5 1 A A r .J..I.l.';J ;J ..... v Rev. 0 TABLE 2.5-62 (continued) Sheet 66 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test N .. (feet) (feet) Number (%) (%) Number Uo.t)....'O:::: J.. 1720 54+00 290 N 1,915.0 LW-44 20.9 96.7 1721 55+00 220 N 1,916.0 LW-49 16.8 95.9 1722 59+10 190 N 1,922.0 LW-49 18.1 97.3 1723 60+70 190 N 1,920.5 LW-50 17.5 97.3 1724 63+00 290 N 1,920.0 LW-44 20.2 98.5 1725 54+00 270 s 1,919.0 LW-44 20.5 97.5 1726 63+50 80 s ............. .... LV.J-47 18.3 95.5 .l1':JLI.U 1727 67+00 30 s 1,933.5 LW-44 23.1 94.7 1728 :2: 1.933.5 4 0 1728 67+00 30 s .__, L 1729 7l+CO 2G s 1,942.0 LVV-44 20 .. 5 ';}::0.4 n 1730 75+00 40 s 1,948.0 LW-44 20.0 97.2 :::0 t:r:l t"l 1731 60+00 50 s 1,920.0 L\*l-44 "'" ., 98.6 ;:>:; £.UeJ 1732 57+50 50 s 1,920.0 LW-38 13.9 98.4 1737 73+00 0 1,945.0 LW-49 19.5 99.9 1738 68+00 25 N 1,934.0 Li'i-50 22.6 99.4 1739 61+00 175 N 1,921.0 'LW-47 17.0 100.0 1740 54+00 100 N 1,915.0 LW-50 23.5 96.3 1741 75+00 25 N 1,948.5 LW-48 23.2 97.0 1742 73+25 25 s 1,945.0 LW-48 25.4 98.4 1743 71+50 75 s 1,943.0 LW-50 22.3 99.2 1744 70+00 100 s , (l/11 " LW-50 n 98a5 L'i.O 1745 69+50 50 N , Q")h c: ..l..f..I.JVe..J 8 23.4 100.4 Rev. 0 Test Nunber(a) 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1763-S 1764-S 1765-S 1766 1767 1768 1769 1770 1771 1772 Location Station(b) 68+00 65+00 63+00 61+00 60+00 58+00 59+00 61+00 58+75 56+25 54+ 50 53+ 50 59+00 56+00 53+ 50 55+00 62+00 66+00 70+00 75+00 77+00 62+25 Offset from Centerline (feet) 0 so s 100 s 100 N 100 s 0 125 s 125 s 100 N 100 s 150 N 100 s 175 s 200 s 275 s 100 s 100 s 125 s 120 s 100 s 1'1f'\ C' .L£U ..:J 150 N TABLE 2.5-62 (continued) Elevation(c) (feet) 1,934.5 1,929.0 1,921.0 1,921.5 1,920.5 1,921.0 ., ....... """ ... ... ,:, 1,921.5 1,922.0 1,919.0 1,920.0 1,915.0 1,926.0 1,922.0 1,923.0 1,924.5 1,927.0 1,935.0 , {"\"")() 1"'\ J..,J:>J.v 1,951.5 , fit:::'!:: " J..1;;;u..;.v , Q"')t:: " Material Identification Number LW-49 LW-50 LW-45 LW-50 LW-48 LW-49 LW-45 LW-47 LVJ-50 L\Al-49 LW-49 LW-40 Li'i-45 LW-48 LW-40 LW-49 LW-49 LW-49 LVJ-49 9 In-Place Moisture Content (% j 21.6 22.6 15.8 22.0 22.9 21.4 18.1 17.0 19 .. 4 22.7 20.4 17.8 22.8 17 .l 21.8 21.7 17.8 16.7 18.5 18,. 0 ,., .., .J.t.£. Sheet 67 of 83 Compaction (%) 99.7 100.2 99.5 100.7 99.6 98.3 98.8 100.0 99 :1 l00e4 98.9 no o ;i'UeU 99.0 99.8 98.9 96.5 100.8 98.1 98.3 98.8 97.6 98.7 Correcting Test Number Rev. 0 :Ei 0 t"" t"%j 0 :::0 tl:J t:J:j ;;;<;

    TABLE 2.5-62 (continued) Sheet 68 of 83 Location --c5ffset In-Place from Elevation (c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 1773 63+00 150 N 1,926.5 L\'1-4 9 17.6 99.9 1774 68+00 125 N 1,940.0 LW-45 18.1 100.9 177 5 69+50 125 N 1,942.5 LW.:.45 19.6 99.2 1776 74+00 125 N 1,953.0 LW-45 16.9 101.0 1777 75+25 125 N 1,954.5 LW-45 16.5 99.5 1778 76+50 100 N 1,956.5 LW-45 18.2 99.8 1782-S 57+00 250 s 1,929.5 LW-50 24.0 100.2 1783-S 55+00 275 s 1,927.0 LW-50 22.4 101.2 :8 178'1-S 53+75 *")i c c "1 r L'f1-:iiJ 22.6 100.2 0 .::.....:.....: ._;, .... ,;;L...; * ..; 1:" 1785-S 64+55 25 s 1,935.0 LW-48 17.7 99.4 i""Xj () 1786-S 66+50 35 s 1,937.0 LW-49 15.7 99.9 t::rj 1787-S 69+00 50 s 1 Q"}O n 'r t.7 A" 18.7 93.6 1788 tiJ ..L.t.J..J.JeV -"':+/- u :;>;: 1788 69+00 50 s 1,939.0 LW-40 21.3 101.1 1789 69+00 52 s 1,939.0 LW-40 21.8 100.7 1790 65+00 75 s 1,936.0 LW-40 21.2 98.4 1791 63+00 0 1,933.5 L\"l-40 22.6 00 " :;;o.:;; 1792-S 60+50 75 N 1,931.5 LW-48 22.8 98.9 1793-S 58+75 50 N 1,930.5 LW-48 19.1 99.2 1794-S 56+00 0 1,928.0 LW-48 22.5 99.9 1798-S 59+50 250 N 1,925.0 LW-43 14.7 99.8 1799-S 61+50 250 N 1,928:0 LW-50 18.6 99.5 1800-S 57+00 280 N 1,920.0 LW-50 20.3 99.7 Rev. 0 TABLE 2.5-62 (continued) Sheet 69 of 83 Locat t 1801 59+00 100 s 1,935.0 LV.:-49 21.3 98.0 1802 61+00 100 s 1,938.0 LW-50 20.6 99.4 1803 61+00 0 1,938.0 LW-49 19.6 99.4 1804 63+00 100 s 1,941.0 LW-49 19.6 99.4 1805 64+50 50 s 1,942.5 LW-49 20.7 97.4 1806 66+50 0 1,945.0 LW-49 20.2 96.6 1807 68+75 65 s 1,948.0 LW-48 20,0 99.6 1808 70+50 75 s 1,950.0 LW-48 22.0 98. 3 0 1809 71+25 75 s 1,951.0 LW-49 17.3 97.4 1:'"' !"':.j 1810 73+00 75 s 1;952 .. 5 L\ti-48 20.4 1nn vv. () :;o 1811 74+00 0 1,953.5 LW-49 20.1 99.4 i:".l i:".l 1812 75+00 25 s 1,954.5 LW-50 22.7 98.9 1813 76+00 50 s 1,956.0 LW-47 21.3 99.5 1814 77+00 75 s 1,957.0 LW-49 20.2 99.7 1815 78+00 0 1,958.0 LvJ-49 19.0 99.2 1821-S 71+25 80 N 1,948.0 LW-50 22.2 89.2 1823 1822-S 71+50 80 N 1,948.0 LW-50 18.1 97.2 1823 1823-S 71+60 60 N 1,948.0 LW-50 19.8 97. 1 1824-S 78+00 85 s 1,949.0 LW-50 19.5 95.3 1825 61+75 0 1,929.0 Lvl-4 9 13.6 95.0 1833 1826 62+00 0 1,929.0 LW-49 14.1 94.0 1835 1827 65+00 50 s 1,934.0 LW-44 , ., ' .I. ** J. 94.9 1828 Rev. 0 TABLE 2.5-62 (continued) Sheet 70 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Nur'.be r (a) (feet) (feet) Number ( %) (%) Number 1828 65+00 so s 1,934.0 LW-44 19.1 97.2 1829 65+10 55 s 1,934.0 LW-44 18.7 97.3 1830 65+05 45 s 1,934.0 LW-44 19.0 96.6 1831 65+10 45 s 1,934.0 LW-44 18.7 97.9 1832 65+00 55 s 1,934.0 LW-44 20.2 96.2 1833 61+75 0 1,929.0 LW-49 18.3 96.6 1834 61+75 0 1,929.0 LW-49 19.7 95.2 1835 62+00 50 s 1,929.0 LW-49 16.3 96.3 ::E; 0 1836 6?+00 50 s 1;929.0 9 19.6 9S.7 L' i"l:j 1837-S 75+00 50 s 1 O!i'7 n 21.2 98.0 n .._,..;-.,.v :;o 1838-S 76+00 75 s 1,948.0 LW-50 19.2 97.6 tr.1 tJj ....,. 1849 55+00 40 s 1,923.0 LVJ=47 ',. ' 100.2 "' J.O.':l 1850 59+00 50 s 1,931.5 LW-50 17.0 95.7 1851 61+25 35 s 1,933.0 LW-50 19.5 99.6 1852 65+00 so s 1,936.0 LW-47 15.9 95.5 1853 69+00 60 s 1,944.0 LW-49 17.3 nn n ;;;;.v 1854 72+50 75 s 1,947.0 LW-50 17.7 95.2 1855 59+00 125 N 1,931.5 LW-50 17.3 96.7 1856 62+00 100 N 1,933.5 LW-50 19.7 96.7 1857 65+00 100 N 1,936.0 LW-50 16.5 97 .. 3 18 58 68+00 100 N 1,944.0 LW-45 15=8 99.5 18 59 72+00 110 N 1,951.0 LW-49 19.5 96.0 Rev. 0 TABLE 2.5-62 (continued) Sheet 71 of 83 Location Offset In-Place from E1evation(c) Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number ( %) (%) Number 1860 75+00 100 N 1,955.0 LW-45 18.2 95.8 1869 55+00 120 s 1,923.5 LW-50 21.9 98.0 1870 58+00 100 s 1,930.0 LW-49 19.5 98.3 1871 62+00 100 s 1,935.5 LW-50 21.2 97.8 1872 63+50 55 s 1,935.0 LW-50 21.3 98.0 1873 65+00 125 s 1,936.5 LW-49 21.9 95.5 1874 67+00 70 s 1,938.5 LW-50 21.7 98.2 1875 69+00 75 s 1,944.5 LW-50 19.6 99.2 1876 71+00 25 s 1,946.0 LW-49 19.1 96.9 0 L-1877 74+75 100 N 1 oc:.c c: ,L!::,;...) _,"' J LW-49 20.7 97.5 rxJ n 1878 62+50 100 N 1,933.5 LW-49 19.8 96.1 !:0 t>j 1879 65+50 80 N 1,937.5 LW-49 20.0 96.4 t::j 1880 58+ 50 100 N 1,931.0 LW-49 19.2 97.8 1892 54+00 0 1,922.0 LW-42 18.2 97.5 1893 57+00 75 s 1,930.0 LW-40 21.5 QQ , .,1../e.J.. 1894 59+00 100 s 1, 931.5 LW-42 17.7 97.9 1895 61+00 120 s 1,932.5 LW-22 16.4 97.3 1896 64+00 100 s 1,935.5 LW-50 20.6 97.2 1897 67+00 0 1,939.0 LW-44 21.2 96.6 1898 69+00 50 s 1,945.0 LW-42 17.9 97.1 1899 71+00 100 s 1,947.0 LW-44 21.8 99.5 1900 5"/+00 100 s 1,928.0 LW-44 21.3 99.4 Rev. 0 TABLE 2.5-62 (continued) Sheet 72 of 83 Location Offset In-Place from Elevation(c) Material Correcting Test 'a' lh\ Centerline Identification Content Compaction Test Number' 1 Station'u' (feet) (feet) Number ( %) ( %) Number 1901 62+50 100 N 1,934.0 LW-44 20.3 99.8 1902 65+50 100 N 1,938.0 LW-42 16.2 96.8 1903 71+00 25 N 1,947.0 LW-43 17.2 95.8 1912 55+00 100 N 1,910.0 LW-50 18.5 97.7 1913 57+00 25 N 1,920.0 LW-49 19.6 98.8 1914 58+ 50 0 1,931.0 LW-49 17.8 99.7 1915 60+75 25 s 1,932.0 LW-47 17.5 99.5 1916 62+50 75 s 1,932.0 LW-49 18.3 99.3 0 '1 n.,.., 65+CC ; :I 1,937.5 LW-49 98.o t-"i 1918 67+50 100 N 1,943.0 LW-48 21.9 99.8 n :;o 1919 69+00 50 N 1,948.0 LW-50 20.8 95.3 t:t.:! L-:1 10"1f'l 59+75 100 s , ........... ,.., ,... J..r':JL.":J.v LVi-45 16.0 97.1 1921 62+00 100 s 1,932.0 LW-45 16.9 96.4 1922 65+00 100 s 1,937.0 LW-40 22.8 100.7 1923 68+00 75 s 1,942.0 LW-50 22.7 100.0 1924 70+00 0 , nc:'l " T" '*' ..,n 25.0 95.5 .J..r:J...JL.eU l...V'f-.JJ 1925 72+00 100 N 1,955.0 LW-39 25.9 95.9 1926 73+00 0 1,956.0 LW-39 25.8 97.6 1927 75+00 100 s 1,959.0 LW-39 23.8 99.9 1928 76+00 50 s 1,963.0 LH-39 24.0 98 ;s 1929 77+00 50 s 1,968.0 L\*J=39 " nn ., LJ*V JO

    • I 1930 78+00 0 1,973.0 LW-39 24.1 98.0 Rev. 0 TABLE 2.5-62 (continued) Sheet 73 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Nur:1ber(a) (feet) (feet) Number (%) (%) Number 1931 79+00 100 N 1,977.0 LW-39 26.8 95.5 1932 1932 79+00 90 N 1,977.0 LW-39 21.6 100.3 1933 79+00 95 N 1,977.0 LW-39 24.3 97.8 1934 76+50 50 N 1,964.0 LW-39 23.1 97.8 1935 71+50 0 1,955.0 LW-48 24.2 99.6 1936 69+00 0 1,946.0 LW-50 19.8 100.9 1949 69+00 25 s 1,946.5 .. J-48 23.4 ::;tO.L. 1950 71+50 50 s 1,954.5 LW-48 22.1 99.9 0 19 51 73+75 25 N 1!957.0 LVJ-39 22.5 98 .. 3 tij 1952 Jl *..... ,... 25 s 1,958.0 LW-48 19.1 98.6 tS:.-t-L.::; 0 :::0 1953 75+75 50 s 1,963.5 LW-48 19.8 97.9 t:tJ trj 1954 77+00 50 N 1,969.5 5 18.7 98a3 -... , 1955 78+00 0 1,974.0 LW-45 17.9 98.7 1956 79+00 40 N 1,978.0 LW-45 17.4 100.5 1957 56+00 75 s 1,915.0 LW-39 18.3 96.8 1958 57+00 50 s 1,920.5 LW-49 19.3 99.3 1959 57+50 75 s 1,923.0 LW-49 18.8 99.8 1960 59+ 50 0 1,932.0 LW-50 19.9 100.1 1961 61+50 75 N , f"\'"'1 .... ,... LW-48 19.8 97.6 1962 64+00 75 s 1,936.0 LW-50 17.7 95.3 1963 66+00 0 1,939 .. 0 LW-50 18.1 96.8 1964 68+00 50 s 1 nAJ " LW-48 22.0 96.3 .J.t:;t"i..J*V Rev. 0 TABLE 2.5-62 (continued) Sheet 74 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test 1-:umber(a) (feet) (feet) Number (%) (%) Number 1974 69+25 40 N 1,952.0 LW-45 18.0 98.0 1975 72+50 20 N 1,955.5 LW-45 14.9 95.4 1976 75+60 15 s 1,964.5 LW-45 18.4 99.1 1977 78+50 20 s 1,972.5 LW-43 15.9 99.1 1978 58+50 50 N 1,929.0 Lvl-45 18.8 98.2 1979 61+00 25 N 1,933.0 LW-45 17.1 98.3 1980 63+50 75 N 1,937.5 LVJ-49 n ..L I
    • U 99.3 1981 66+25 50 N 1,942.0 LW-43 15.4 99.6 1982 64+50 0 1!939 .. 0 LW-49 19.8 ::E: 0 1983 62+00 20 s 1,934 .. 0 LW-49 t" 17.9 100.1 n 1984 57+50 20 N 1,929.0 LW-49 19.7 99.4 ;;u 1985 54+ 50 60 N 1,923.0 LW-49 tr.l 'n .l:;",L tr.l !A: 1986 56+ 50 50 s 1,924.0 LW-47 16.2 99.3 1987 59+75 60 s 1,931.5 LW-47 17.9 99.9 1988 72+00 60 s 1,955.0 LW-45 19.4 98.2 1989 73+50 0 1,957.5 LW-41 15.8 98.6 1990 75+50 50 s 1,965.5 LW-45 16.1 97.3 1991 78+25 0 1,975.0 LW-45 18.5 99.3 2001 58+40 50 s , l""'ln n. .lt:1.5U.U LW-42 16.3 96.9 2002 60+00 25 s 1, 931.5 LW-41 13.6 96.8 2003 63+00 0 1,936.5 LW-40 17.2 96.3 2004 66+00 10 s 1 Oil") n ..Jo.f;;./""lL*V LW-48 18.4 95.6 Rev. 0 TABLE 2.5-62 (continued) Sheet 75 of 83 Location Offset In-Place from Elevation (c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Nuwber (a) (feet) (feet) Number ( %) (%) Number 2005 59+00 75 N 1,930.5 LW-40 18.8 99.1 2006 62+00 100 N 1,934.5 LW-40 21.0 97.6 2007 65+20 110 N 1,941.0 LW-40 22.7 96.0 2008 68+00 115 N 1,948.0 LW-41 16.8 96.1 2009 70+70 30 s 1,955.5 LW-32 12.9 100.5 2010 74+90 25 s 1,964.0 LW-29 19.1 99.2 2011 77+00 90 N 1,968.0 LW-32 15.1 99.0 2012 73+00 100 N 1,957.0 LW-32 15.9 98.7 ::8 2013 60+00 60 s 1,932.0 0 LW-42 17.9 98.1 !:""' , ... ..i 2014 64+20 0 1,939.0 LW-48 20*5 96.3 f-J 2015 67+00 25 s 1,943.5 LW-48 20.5 95.7 trj tt:l 2026 56+00 0 1,923.5 LW-43 16.0 98.1 :;>:;: 2027 59+00 100 s 1,931.0 LW-43 16.1 98.2 2028 62+00 75 s 1,934.5 LW-47 18.0 100.1 2029 66+00 50 s 1,943.0 16.3 ';)I *.) 2030 69+00 25 s 1,952.5 LW-50 20.8 100.2 2031 71+00 0 1,954.0 LW-47 19.6 99.4 2032 74+00 25 s 1,959.5 LW-47 19.4 99.9 2033 76+50 50 s 1,967.0 LW-49 19.9 00 ..;.,t*..J 2034 78+25 50 s 1,976.5 LW-45 16.4 98.5 2035 54+50 75 N 1,923.5 LW-49 19.7 98.0 n-,.,,., 0 !.":..o;:; './

    Test Number(a) 2036-S 2037-S 2038-S 2039-S 2040 2041 2042 2043 2044 2045 2060-S 2061-S 2062-S 2063-S 2064 2065 2066 2067 2068 2069 2070 Location Station(b) 57+00 57+00 63+25 67+00 69+75 71+50 74+00 77+50 78+50 77+60 57+00 61+50 65+00 70+50 72+00 74+50 76+00 78+00 55+00 57+10 59+50 Offset from Centerline (feet) 75 N 60 N 75 N 75 N 60 N 70 N 75 N 25 N 50 N 50 s 75 s 75 s 75 s 0 0 15 N 20 N 20 N 60 N 40 N 50 N TABLE 2.5-62 (continued) Elevation(c) (feet) 1,927.5 1,927.5 1,938.0 1,943.5 1,953.5 1,956.5 1,959.5 1,970.5 , 077 c .,.!... ; """ l t ...... 1,971.5 1,928.0 1,934.0 1,940.5 1,955.0 1,958.0 1,961.0 1,966.0 1,974.0 1,922.5 1,928.5 i Q"2'J n .J..t..I.J.&..*V Material Identification Number LW-48 LW-47 LW-49 LW-49 LW-45 LW-49 LW-49 LW-45 T T.r li E 5 LW-44 LW-45 LW-45 LW-45 LW-50 'LW-44 LW-45 L\'l-4 5 LW-49 LW-49 LW-49 In-Place Moisture Content (%) 19.9 17.6 19.9 20.2 19.8 17.5 18.4 17.1 J..;

    • i .,.., c:: .J-I
    • J 18.0 18.3 17.8 19.4 18.8 16.8 18.3 18.1 18.9 18.6 'n -, ..1..0
    • I Sheet 76 of 83 Compaction (%) 96.7 99.6 98.2 101.5 99.1 99.1 98.7 99.1 * ::; 98.5 97.9 98.5 96.3 95.5 96.8 96.8 98.7 99.6 97.6 97.8 Correcting Test Number Rev. 0 ::8 0 :-' **J 0 :;o t:lj tr:1 TABLE 2.5-62 (continued) Sheet 77 of 83 Location Offset In-Place from Elevation (c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number ( %) (%) Number 2071 61+80 20 N 1,934.5 LW-49 18.5 98.6 2072 64+25 40 s 1,940.0 LW-48 19.1 96.0 2073 66+50 25 s 1,943.0 LW-47 19.9 97.4 2074 68+90 70 s 1,949.0 LW-47 19.4 98.0 2075 71+75 50 s 1,958.0 LW-48 19.2 99.9 2076 74+25 20 N 1,960.5 LW-33 19.1 95.7 2077 76+00 25 N 1,965.0 LW-33 19.7 98.4 2078 54+00 50 N 1,921.5 LW-33 20.4 97.9 :8 2079 56+ 50 50 N 1,921.5 LW-49 16.9 97.0 0 t"' l"l:j 2080 59+00 80 N 1 1 9 16.0 ::::o.o n ,..,..;_, .... ..; :N 2081 62+50 75 N 1,938.0 LW-49 16.4 97.8 t:rj t1:j 2082 65+50 60 N 1,943.0 LW-45 17.8 99.0 2083 69+00 0 1,954.0 LW-45 17.8 99.9 2084 72+25 30 N 1,958.5 LW-49 19.6 97.8 2087 50+00 75 N 1,929.5 LW-40 18.4 97.8 2088 49+85 75 s 1,928.0 LW-44 19.3 98.5 2089 49+25 so N 1,936.0 LW-44 17.7 95.6 2090 53+ 50 0 1,920.0 LW-49 18.7 97.2 2091 56+75 100 N 1,928.5 LW-50 20.9 97.8 2092 58+25 50 N 1,930.5 LW-50 20.0 98.7 2093 60+50 25 N 1,933.0 LW-50 19.0 99.0 Rev. 0 Test Number(a) 2094 2095-S 2096-S 2097-S 2098 2099 2100 2101 2110-S 2111-S 2112-S 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 T.ocation Station(b) 62+40 68+50 64+75 72+25 74+75 78+00 49+50 51+00 57+00 69+00 67+00 54+00 61+50 65+00 56+ 50 54+75 63+50 58+75 60+00 59+25 65+75 Offset from Centerline (feet) 50 N 70 N 75 N 60 N 20 N 20 s 50 N 0 60 s 25 N 50 N 40 s 60 s 0 50 s 60 s 0 40 N 40 s 40 N 50 N TABLE 2.5-62 (continued) Elevation(c) (feet) 1,938.5 1,953.5 1,941.0 1,959.5 1,961.5 1,975.0 1,930.0 1,921.0 1,::12::1.0 1,954.5 1,950.0 1,921.0 1,935.0 1,941.5 1,929.0 1,925.0 1,940.0 1,931.5 1,932.5 1,932.0 1!'942.5 Material Identification Number LW-49 LW-49 LW-48 LW-50 LW-49 LW-49 LW-44 LW-49 Lw-:,o LW-47 LW-49 LVI-50 LW-50 LW-49 LW-44 LW-46 LW-46 LW-45 LW-48 LW-49 In-Place Moisture Content ( %) 15.1 17.7 18.5 18.9 16.1 15.7 24.0 17.1 18.3 22.3 19.5 22.1 21.9 16.4 22.1 16.8 16.5 15.8 '>'> A L.L.e'i 1C. ::::: .J..Ue..J 'n A .LOe':i Sheet 78 of 83 Compaction (%) 96.9 98.1 98.7 99.1 97.7 98.2 99.6 96.4 97.0 99.9 97.9 98.6 99.5 99.9 99.7 96.9 97.1 98.6 nn A JJ'.'"% [";"7 "7 :;I I e I 98.9 Correcting Test Number 0 0 L' i"tj n ':N tr1 tri TABLE 2.5-62 (continued) Sheet 79 of 83 Oil set In-Place from Elevation(c) Material Moisture Correcting Centerline Identification Content Compaction Test 2131-S 58+00 50 N 1,931.0 LW-48 19.2 99.2 2132-S 65+00 25 N 1,942.0 LW-49 15.9 96.4 2133-S 69+00 75 N 1,955.5 LW-49 16.9 97.5 2134 61+50 40 s 1,935.5 LW-49 17.6 98.6 2135 67+00 20 s 1,951.0 LW-33 19.0 97.7 2136 59+00 50 N 1,932.5 LW-45 18.5 99.5 2137 61+50 0 1,935.5 LW-45 17 .l 96.4 2138 63+15 50 s 1,939.5 LW-49 17.6 98.1 :::: 2139 65+50 50 N 1,943.0 LW-50 19.8 95.2 0 t"' 2140 49+75 0 1,928.5 LW-48 21.1 95 8 hj ,-, '.; 2141 50+75 220 s 1,923.0 LW-49 17.8 99.2 t"l 2149 59+00 60 s 1,941.0 LW-45 17.9 98.1 I:'J :::-;; 2150 62+15 20 N 1,946.0 LW-45 ..L I
    • I 98.0 2151 63+25 30 s 1,949.5 LW-48 17.9 96.7 2152 65+50 0 1,953.5 LW-47 14.0 95.6 2153 65+75 20 s 1,954.0 LW-48 20.5 97.5 2154 68+25 60 N 1,960.0 LW-49 19.1 98.3 2155 57+50 50 N 1,937.5 LW-48 21.4 96.9 2156 60+50 40 N 1,942.0 LW-48 21.8 96.2 2157 52+ 50 20 s 1,947.5 LW-49 16.4 96.8 2158 65+00 40 N 1,952.5 Li*i-49 ' . .l.:).l.::l: 97.7 Rev. 0 T.ABLE 2.5-62 (continued) Sheet 80 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 2159 66+50 60 s 1,957.0 LW-49 20.1 97.7 2160 68+50 40 N 1,961.0 LW-45 18.9 96.0 2168 56+40 20 s 1,942.0 LW-66 21.0 99.8 2169 60+70 10 s 1,955.0 LW-48 17.7 100.6 2178 68+80 45 N 1,966.5 LW-63 19.7 96.7 2179 62+95 70 N 1,959.0 LW-62 18.9 101.8 2180 73+55 130 N 1,972.5 LW-63 19.4 98.5 2181-S 61+35 190 N 1 a LY.l-65 20.0 95.0 :E; ..... , _, _, , . _, 2182 60+90 5 N 1,960.5 LW-63 20.9 0 100.0 t"' I"'Ij 2183 63+80 30 N 1,960.5 LW-63 18.6 100.0 n ::0 2184 72+90 10 s 1,969.5 LW-63 20.5 98.3 t<:1 2185 78+04 '"" N ., n...,n. ,.,. LW-60 16.3 99.0 ..LVV 1 ;J I::;
    • U 2186 73+20 85 N 1,972.0 LW-45 15.0 97.7 2187 57+60 90 N 1,949.5 LW-61 20.1 101.1 2188 59+90 0 1,955.5 LW-45 16.5 97.3 2189 65+85 10 s 1,962.5 LW-45 17.8 95.4 2190 72+35 10 N 1,969.5 LW-63 15.8 97.2 2191 75+50 60 N 1,976.5 LW-41 18.5 95.7 2192 71+25 45 N 1 07() () ..... ,...,, ........... 6 17;<9 97.0 2193-S 65+18 96 N 1,959.0 LW-63 17.3 96.7 2194 61+65 20 N 1,960.0 LW-40 17.4 95.9 n-T? '..: -0 TABLE 2.5-62 (continued) Sheet 81 of 83 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station (b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 2195 67+15 5 N 1,966.5 LW-48 20.5 97.7 2196 76+25 65 N 1,977.5 LW-42 21.1 97.0 2197 72+10 60 N 1,971.5 LW-40 18.4 95.9 2198 49+05 195 s 1,934.5 LW-42 13.9 97.2 2199 63+30 10 N 1,962.0 LW-40 19.9 95.4 2200 66+95 20 N 1,966.5 LW-40 21.3 97.6 2218 62+40 100 N 1,962.0 LW-45 17.7 99.4 2219-S 70+05 75 N 1,969.0 LW-43 16.9 96.0 ::E: 2220 50+90 70 s 1,925.5 0 LW-48 23.1 98.9 t'1 1-Ij 2221 60+15 55 " , ncco n T" '*' At"\ 19.1 98.9 ,...., " ..L1;;..;u.v LVV-':iO \ :::0 2222 67+45 0 1,966.0 Lt:!-44 21.1 n.c ""7 .. -.. ;7Ue/ tr:l 2223 72+00 10 N 1,972.0 LW-40 21.1 96.6 ;:>:: 2224 68+95 90 N 1,968.5 LW-40 19.6 101.2 2225 64+75 100 N 1,966.0 LW-40 21.1 100.1 2226 50+07 18 N 1,932.0 LW-39 20.5 98.6 2227 61+50 60 N 1,961.5 LW-39 l7. 5 98.4 2228 51+15 210 s 1,924.0 LW-48 24.2 91.6 2229 2229 51+15 210 s 1,924.0 LW-48 22.5 95.1 2230 50+30 ..,,,., s , n L\*i-46 16.8 95.4 £....!..'-' 2231 77+00 30 N 1,977.0 LW-50 15.7 95.0 2232 70+00 25 N 1,972.0 LW-63 23.6 102.3 ReV: 0 TABLE 2.5-62 (continued) Sheet 82 of 83 Location Offset In-Place from Elevation(c) Material t-1oi-sture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 2233 61+15 60 N 1,965.0 LW-48 22.5 99.3 2340 I 16+00 2 w 1,996.5 LW-53 25.9 97.4 2341 I 11+25 8 w 1,994.0 LW-53 26.9 97.1 2342 I 7+80 4 E 1,996.0 LW-53 26.7 97.5 2343 I 2+12 0 1,997.0 LW-75 20.3 99.9 2344 I 16+00 5 N 1,997.0 LW-70 18.7 97.7 2345 I 13+00 10 s 1,994.5 LW-70 21.7 95.3 2346 I 8+00 0 1,997.0 LW-71 18.3 98.3 ::E; 0 2347 I 4+50 0 1,995.0 LW-76 18.9 95.9 t"' 2372 l l:,+:,il 8 E r::j 1,998.0 LW-76 20.0 100.5 n 2373 I 12+85 5 w 1,995.5 LW-69 18.2 97.6 :;o t<:i t?j 2374 I 7+12 0 1,999.0 L\*J-69 17.7 100.9 2375 I 3+80 0 1,999.0 LW-74 16.1 98.1 2564 II 1+17 5 E 1,999.5 LW-71 19.8 103.8 2565 II 10+06 21 E 1,996.0 LW-71 18.3 104.8 2566 II 13+50 15 w 1,996.0 LW-71 19.7 102.9 "")CC""7 L..JU/ II 3+84 13 w 1,995.5 LW-71 19.3 100.0 2568 II 9+24 0 1,996.0 LW-71 16.9 101.5 2569 II 6+65 8 E 1,995.0 LW-71 nn ' ::J;J=..l.. 2574 II 6+72 3 w 1,993.5 LW-69 20.0 97.1 2575 II 10+10 0 E , '"'"" ,.. LW-69 19.5 96.2 v .J..t"::l::li.:J Rev. v TABLE 2.5-62 (continued) Sheet 83 of 83 Location -onset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Nur.1ber{a) (feet) (feet) Number {%) {%) Number :;; 2576 II 9+80 7 w 1,997.0 LW-69 19.9 95.9 2577 II 7+00 4 E 1,998.0 LW-64 24.3 102.0 2578 II 10+62 0 2,000.0 LW-74 15.8 97.1 2591 II 4+10 14 w 1,994.0 LW-74 15.6 97.5 2592 II 6+02 36 E 1,993.5 LW-74 19.0 97.5 2593 II 8+10 27 E 1,993.0 LW-69 16.2 96.7 2594 II 8+77 32 w 1,992.0 LW-74 19.5 96.6 2595 II 5+90 10 w 1,991.5 :8 LW-70 18.5 98.2 0 t"" 2596 II 7+64 0 1,993.5 LW-69 17.1 105.4 '"-J 2597 II 0+91 7 E 1,998.0 LW-69 19.7 103.8 !::d tr:l 2598 II 9+20 22 1,993.5 LW-69 21.8 99.0 t:tJ !A: 2599 II 12+99 18 E 1,995.5 LW-69 19.6 98.9 Rev. 0 TABLE 2.5-63 Sheet 1 of 2 RESULTS FROM MOISTURE AND DENSITY TESTS Field or Initial Saturated Dry Depth Moisture Content Moisture Content Density Soil Location (feet) (percent) (percent) (pcf) Type HS-1 1.0 9.0 -107.8 CL HS-1 2.5 25.6 27.5 105.3 CL HS-1 4.5 17.4 -110.6 sc HS-2 1.0 14.0 -97.6 NL HS-2 2.0 8.5 -125.8 CL :;: 0 t" HS-2 4.0 18.8 20.8 105.6 CL 1""Ij (J HS-2 r " .......... c ,.. ,. " CL !;0 u.u ..c...c..o -::10.::1 t'l t'l HS-2 Q (1 23.3 99.1 CL !A: '-'OV -HS-3 1.0 25.0 27.5 91.2 CL HS-5 2.0 35.4 -86.4 CH HS-5 2.5 36.7 -83.9 HS-6 9.0 20.3 -102.6 CL HS-6 10.0 34.8 -87.3 CL HS-6 11.0 15#2 16.1 119.9 CL HS-7 c: 21.6 -, ", II ,.,,. ...;J ,;. --* .l..VJ..oi":t: \.,.L Rev. 0 TABLE 2.5-63 (continued) Sheet 2 of 2 Field or Initial Saturated Dry Depth Moisture Content Moisture Content Density Soil Location (feet) (percent) (percent) (pcf) Type HS-14 4.0 27.2 28.3 90.3 CH HS-14 6.0 22.6 23.3 99.2 CH HS-15 1.0 29.7 31.0 90.6 MH-OH HS-15 4.0 19.0 21.2 104.2 CH HS-16 4.0 39.2 41.9 82.6 CH 20.4 21.6 105.2 ::; HS-17 2.5 CL 0 t"' i"1j HS-17 22:4 23.1 104.2 f"'T "' ..... n ::0 HS-21 1.0 34.3 35.1 83.2 CH t'Ij ...... "' HS=21 2.5 33.0 "'\ A .... .}"% * .! .... . ru ...... HS-22 3.5 28.1 96.3 CH TP-1 1.0-3.0 18.0 23.1 102.8 CL TP-2 !. 0-4.0 23.3 26.1 07 a I"'U J I e J vH TP-3 1.0-5.0 20.9 34.4 87.3 CH TP-4/ 2.0-4.0/ 19.3 33.9 87.7 CH TP-6 l. 5-4.5 TP-5 2.0-4.0 '?C:. 1 40.3 nT'l '-n TP-6 5.0-6.0 24.9 33.9 Q/ t=. f"'T v ! : .. _,..!...! Rev. 0 2.5-64 sheet 1 of 2 RESULTS OF CLASSIFICATION TESTS (ATTERBERG LIMITS AND GRAIN SIZE ANALYSIS) Liquid Plastic Plasticity >14 <t200 <0.005 Depth Limit Limit Index sieve Sieve mm Soil Location (feet) (£_e_rs:e_llt) (percent) (percent) (percent} Tvoe HS-2 4. 0 46.8 17.7 29.0 CL HS-6 4.0 57.7 24.9 32.8 CH HS-6 9.0 38.2 18.4 19.8 CL HS-7 3.5 44.4 17.9 26.5 CL HS-i4 i.O 57.0 27.5 29.5 CH :8 0 t"' HS-15 1. 0 50.1 26:1 22.0 MD-0 n HS=15 .. " 51. 1 20.4 30.7 CH ::0 ... v tr:l HS=16 1. 0 48.4 23.0 tr:l 25. 4 CL HS-16 4.0 90.7 32.2 58.5 CH HS-17 2. 5 49.8 19.4 30.4 CL HS-17 4.5 61.5 23.8 37.7 CL HS=21 "" 73.0 3 j. 8 41.2 CH HS-22 3.5 69.1 25.2 43.9 CH TP-1 1. o-41.0 19.0 22.0 n n 73.9 30.0 CL vov 3.0 Rev. 0 Location TP-2 TP-2 TP-3 TP-3 TP-4 TP-5 TP-6 TP-6 Depth (feet) 1.0-2.0 2.0-4.0 1.C-3.0 3 .. 0-5.0 2.0-4.0 2.0-4.(' 1. 5-4.5 5.0-6.0 Liquid Limit (percent) 67.0 66.0 64.0 63.0 77.0 69.0 48.0 TABLE 2.5-64 (continued) Plastic Limit (percent) 28.C 25.0 22.C 23.0 26.0 26.0 24.C Plasticity Index (percent) 39.0 41.0 42.C 40.0 51.0 43.0 )#4 Sieve (percent) 6. c 4.C 0.0 0.0 o.o 0.0 " " v.v <#200 Sieve (percent) 66.8 63.3 90.9 86.4 96.2 97. 5 94.4 t"n ,, :10 ... Sheet 2 of 2 <0.005 mm (percent) 42.5 52.8 50.0 49.g 50.1 64.3 68.0 70.0 Soil 'Type CH CH CH CH CH CH CL Rev. u Test Pit TP-1 II II II II TP-2 II II II II TP-3 II II TP-9 II II " TP-10 II II 1ROLE' CREEK 'TABLE 2.5-65 EFFECTIVE STRESS PARAME'rERS -MODIFIED MOHR DIAGRAM Depth (Ft.) 1'-3' II II II II 1'-4' II II II II 1'-3' II II 5 I II 5'-6' J'-7' 2'-3' II II 0.84 1.17 1. 60 0.78 1.62 0.88 1. 29 1.77 0.89 1.72 0.78 1. 64 1. 20 1.94 3.04 1. 96 1.44 2.72 1. 57 2.75 Qj: 0.30 0.60 0.90 0.30 0.90 0.30 0.60 0.90 0.30 0.90 0.30 0.90 0.60 0.72 1.44 0.61 0.65 1. 08 0.61 0.58 u 0.22 0. 4 !) 0.6!) 0.20 0.58 0.13 0.30 0.50 0.14 0.50 0.22 0.54 0.40 --0.17 0.17 --0.06 0.12 --0.06 0.65 0.19 0.62 0.72 0.95 0.5B 1. 04 0.75 0.99 1.27 0.75 1. 22 0.56 1.10 0.80 2.11 2.88 2.02 1. 32 2.78 0.92 2.56 0.08 0.15 0.25 0.10 0.32 0.17 0.30 0.40 0.16 0.40 0.08 0.36 0.20 0.89 1.27 0.67 0.53 1.14 -0.04 0.39 ------------------0.350 0.43!3 0.600 0.340 0.680 0.460 0.64!) 0.83!) 0.45!) 0.810 0.320 0.730 0.500 1.500 2.075 1.345 0.9251 1. 960 0.440 1. 475 0.:270 0.:285 0 .. 350 0 .. :240 0 .. 360 0 .. 290 0 .. 345 0 .. 435 0 .. 295 0 .. 410 0 .. 240 0 .. .370 0 .. 300 0 .. 610 0 .. 800 0 .. 675 0 .. 395 0 .. 8:20 0 .. 4:80 LO:S5 ------------------\la-and u are at peak stres:::.. 1U1 units are ts:f. 4-1 I. 0 [J} +l JN {; 0.5 o=O. 125 X (tan 9)=20° C'=.::L = 0.133 ps:E . c;os e ---,---------------0.5 1.0 I. 5 Cf ... it + <f3' 2 (tsf) 0 TP-* I A TP**2 TP**-3
    • X 2.0 TP--9 TP*--10 ReV * ()

    WOLF CRE:E:K 'l'i'lc;JLE 2.5*-*66 STRESS CONTROLLED DYNAMIC 'l'E I "AXIAL TEST RESULTS Cyclic Axial No. of Sample Test a3c Load to 5% 'Total No. No. Kc ( fj_ __ . f) i air!:._ TP-3 l l. 25 0.6 0.61 -* TP-3 2 l. 0.6 0.69 18 TP-3 3 l. 0.6 0.80 5 TP-3 l l. 2!:) 0.9 0.69 18 TP-3 2 l. 2:; 0.9 0.93 3 TP-3 3 l. 2!:1 0.9 0.62 41 TP-3 l l. 7!:1 0.6 0.58 16 TP-13 2 l. 7S 0.6 0.71 15 TP-13 3 l. 75 0 .. 6 0.81 3 TP-13 l l. 75 0 .* 2 0.15 -* TP-13 2 l. 75 0 .. 2 0.43 39 TP-13 3 l. 75 0 .. 2 0.69 3 *5% strain was not reached for a large number of cycles. Rev. 0 TABLE 2

    • 5-6 7 Sheet 1 of 2 TEST FOR DISPERSIVE SOILS Results Pinhole (a) Results Pinhole For Samples (a) scs<al scs Chemical Test (a) Samples at Natural Water Air Dried And Moisture Sample Atterberg Natural ASTM D 698 Or Dried to B. L. Added To ......, O.M.C. Test Pit Depth Soil Limits Test Water Dispersion TDS Na y-y max o.M.c. DispersfJ::j + % yd max Dispersin;l Remarks No. ( ft) e L.L. P.L. P.I. Content Test ' (me /i) (%) ( cf) (%) " Class " d (PCF) ASTM 698 Class HSDC-1 3.0-3.5 CH 55 21 34 22.0 63 6.95 82 101 21 21 ND-3 20.4 -1 101 100 ND-2 (Residual Heumader) HSDC-1 6.0-6.5 CL 42 20 22 21.6 73.5 12.17 77 106 20 20 ND-3 19.0 -1 106 100 (3 Tests) Only sample with dispersive :;£ (Residual D-1 failure by pinhole and only 0 Heumader) after Air drying. t-t HSDC-2 3.0-4.0 CH 48 20 2a 19.0 37.5 10.80 73 102 21 20 ND-1 18.8 -2 102 100 ND-1 h:j (Residual ................ n HSDC-2 5.5-6.0 CH 51 20 31 23 .. 8 19.4 5. 75 a7 100 20 -3 iOi 101 ND-2 23 20 ND-3 tx.:l (Residual Heumader) t?:j HSDC-3 2.0-3.0 CH 64 22 42 23.5 45.4 9.32 81 (Residual 95 24 22 ND-2 23.7 -95 100 ND-3 Heumader) HSDC-3 4.5-5.0 CH 77 29 48 32.5 73.6 10.16 80 93 27 29 ND-3 25.8 -1 94 101 ND-2 (Residual Heumader) M.DTP-1 6 -a CL 40 1a (Alluvium) 22 21.6 56.1 2.as 24 1a ND-1 MDTP-2 a. 5-9. e CL 36 17 19 28.7 77.4 4.67 4Test procedures described in *Identification and Nature of Dispersive Soils,* ASCE Geotechnical Journal, No. 4, 287-301 (1976,* April. bClassification procedures described in *Pinhole Testing for Identifying Dispersive Soils,* ASCE Geotechnical Journal, No. 1, 69-85 ( 1976) January. cEstimated at optimum. Rev. 0 Sample Atterberg Natural scs1"1 Test Pit Depth Soil Limits Test Water Dispersion No. ( ft) L.L. P.L. P.I. COntent Test, % ASTP-1 3-4 CH 62 27 35 ).3 (Weathered H.eebr:.er Shale) ASTP-1 6-6.5 CL 42 22 20 0.3 {Weathered Snyderville Shale} BORINGS HS-22 1.8-;l.) CH 70 (Residual Pohu) BAJ<-6 s-7 CL (Alluvium) UHS-1 CL {Heumader) UHS-2 CL (Heumaderl UHS-3 CH {Heumader) SCS Chemical Test (a} TDS Na (me /t) (%) 1. 77 16 ).60 17 2.18 59.6 64.19 6. 7 94.54 48 212.8 21 42.5 37 TABLE 2.5-67 (continued) Results Pinhole (a) Samples at Natural Water ASTM D 698 Or Dried w B.t.. y-yd max O.M.C. ( f). (%) w% Class 100(c) 18 o-1 100(c) 18 o-1 1DO(c) 20 ND-1 Results Pinhole For Samples(a) Air Dried And Moisture + -<J.M.C. Added To rv O.M.C .. % yd max d (PCF) ASTM 698 DisperftYe Class Sheet 2 of 2 Remarks From residual soils at location of main dam auxillary spillway. Saxnples air dried during -... for chemical testing. Rev. 0 WOLF CREEK TABLE 2.5-67A FILLING OF ULTIMATE HEAT SINK RESERVOIR The filling procedure shall be as follows: 1. Fill UHS reservoir by pumping from downstream of the UHS dam or by discharging the water from the raw water line into the ESWS discharge pipeline. If the water is to be discharged into the heat sink other than through the ESWS discharge Point, the discharge point should be at least 200' upstream of the UHS dam toe. The Dames & Moore Resident Geotechnical shall approve the discharge provisions and may require construction of a splash pad. 2. The water level in the area downstream of the UHS dam shall be maintained below elevation 1955. 3. Fill UHS Reservoir to elevation 1969.5 maintaining water level downstream of UHS dam below elevation 1955. 4. A 30-day observation period shall begin when the UHS reservoir water level reaches elevation 1969. When the water level reaches 1969.5, pumping shall stop until the remainder of the 30-day observation is complete. 5. If at any time during the 30-day observation period the water level in the UHS reservoir exceeds elevation 1969.5, the water shall be pumped out of the UHS to elevation 1969.5. A 1000 gpm pump should be used for this pumping. 6. After completion of the 30-day observation period, the water from the raw water pumps shall be pumped into the area downstream of the UHS dam. 7. After the completion of the 30-day observation period, the water level in the UHS reservoir shall be maintained at elevation 1969.5 by pumping and discharging to the area downstream. The discharge point shall be at least 200 feet downstream of the UHS dam toe. The discharge provisions shall be approved by the Resident Geotechnical Engineer and construction of a splash pad may be required. 8. After the area downstream of the UHS dam has been filled to elevation 1969.5, the water levels upstream and downstream shall be equalized by pumping until the water level has reached the top of the fine bedding. The estimated filling time to elevation 1969.5 for the UHS reservoir at 2 cfs through the raw water pipeline is approximately 95 days. For record, the pumping rate, pumping time and UHS water level should be recorded daily.

    Rev. 28 WOLF CREE:J< OBSERVATION PERIOD In Sargent & Lundy letters ALK-3542 and ALK-3543 a 30 daily observation was required in 1:he filling procedure of the UHS dam. This observation period was: recommended by James L. Sherard in a le*tter dated May 16 ,r 1.980 to make a posit.ive assurance of the safety of the UHS da.m against the re:mote possibility of a dispersive pipin9 failure. The boundary conditions of this observation that the UHS water level was to be maintained between e leva.ti.ons 19 69 and 19 69. 5 while maintaining the water level downstream of the UHS dam below elevation 1955 for 30 days.. Filling of the UHS be9an on June 2, 1980 and the boundary conditions specified in ALK-3543 were met on November 7, 1980. During the filling of the UHS and the 30-day observa1:ion period Kansas Gas and Electric Co. personnel recorded *the amount of water pumped from the downstream toe of the UHS dam as a determination of the volume of seepage through the: dam. During the tion period only 388,740 cubic feet: of water were pumped into the UHS basin. Durin9 1:he observation period, no significant change in t:he UHS basin water level was observed and seepage quantities observed *were in line with what Sargent & Lundy had anticipated for normal seepage. The seepage wa*ter also remained clear throughout period. During UHS filling and hold period Dames & Moore personnel made a weekly inspection of t:he d:ownstream area o:E the UHS dam. No unusual or deleterious were observed. Rev.. 0 Table 2. 7c WOLF CHEgK KANSAS GAS & ELECTRIC COMPANY WOLF CREEK GENERATING STATION ULTIMATE HEAT SINK FILL SPECIAL PROCEDURE sua ooo1 W. EPARED BY LEA'DER DAT Rev. 0 Section 1.0 2.0 3.0 4.0 5.0 6.0 7 .. 0 Appendix A 8 c WOLF CREEK 'I'able 2 *1:)*--67c (Continued) Page 2 of 10 TABLE OF Title OBJECTIVES LIMITING CONDITIONS REFERENCES EQUIPMENT NOTES AND PRECAUTIONS PREREQUISITES .PRDCEDDllE Title INITIAL VALVE LINEUP TEMPORARY UHS FILL LAKE LEVEL MONITORING TEMPORARY PIPING -CIHCULATING WATER STRUCTURE TO ULTIMATE HEAT SINK 1 1 1 2 2 .3 6 7 8 Rev. 0 1.0 2.0 2.1 2.2 2.3 3.0 3.1 3.1.1 3.1.2 OBJECTIVES WOLE' CREE:K Table 2.5-67c (Continued) 3 of 10 The objectives of this procedure are to provide a method to initially fill the ultimate heat sink portion of the cooling lake using temporarily installed piping, to record and transmit specific data required by Nuclear Plant Engineering during the hold period, to fill the temporary lake on the southwest side of the Ultimate Heat Sink Dam, to document and control the water levels on either side of the Ultimate Heat Sink (UHS) Dam, and to minimize overtopping of the Ultimate Heat Sink Dam. CONDITIONS The Ultimate Heat Si*nk (northeast pf the UHS dam) be £il.l-ed to approxi111ate.ly ..e.lleva.ti_on .between ,\) 1 ann 1915:9. 5:1 and *m:aintained thin those el.-evatimlS nnJ::il ilirected by Nucl-ear Plant :The *water on the southwest side of t.he UHS dam shall be maintained below 1955J to the extent practical. After Nuclear Plant Engineering has determined that the water has been retained behind the UHS dam for a sufficient period of time (approximately 30 days) the water level in the Ultimate Heat Sink shall be maintained between elevations 1969.0' and 1969.5', and the water level on the southwest side of the UHS dam may be increased. When the water level on the southwest side of the UHS dam reaches the water level on the northeast side of the UHS dam, the water levels on both sides of the UHS dam shall be allowed to increase until the temporary lake is filled. Care shall be exercised to minimize waterflow across the top of the UHS dam (overtopping) REFERENCES Piping and Instrumentation Diagrams M-21, Rev. D, Circulating Water System P&ID M-24, Sheet 1, Rev. E, Cooling Lake Makeup and Blowdown System P&ID Rev. 0 3.1.3 3.1.4 3.1.5 3.2 3.2.1 3.2.2 3.2.3 3 .* 4 3.5 4.0 4.1 4.2 4.3 5.0 5.1 5.2 WOLE' CREEK Table 2. '::,-*-67c (Cont.inued) Pa9E' 4 o:f 10 M-24, Sheet 2, Rev. c, Cooling Lake Makeup and Slowdown System P&ID M-25, Sheet 1 I Rev. D, Makeup Demineralizer System M-26, Sheet 2, Rev. c, Screen Wash System P&ID Schematic Diagrams El005-PG/WL010, Rev. c, Au:Kiliary Raw Water Pump El005-PG/WL011, Rev. D, Auxiliary Raw Water Pump El005-PG/WM010, Rev. D, Raw Water Pump lA E.lO D, Ra\i' Water Pump lB .Temporary Pill .Line drawing .£o,.r llHS *Telephon-e* conver.sa+/-.i:on :G.-M..L .. "Johnson, .27 Ma¥ 1980., A .. M. OA OB P&:ID Sargent and Lundy letter to M.L. Johnson, ALK-3543, June 3, 1980, Filling the Ultimate Heat Sink Reservoir. EQUIPMENT Two 600 gpm engine driven portable pumps, or equivalent Four lengths of suction hosing for pumps specified in Section 4 .. 1 Three lake level indication markings, in 1/10 foot increments, located in the UHS basin and in the pond on SW side of the UHS dam and in the toe of the UHS dam on the SW side. The upper most increment shall be above 1970 NOTES AND PRECAUTIONS Due to the extremely large area which drains into the northeast side of the UHS dam, the northeast side of the UHS dam is expected to fill rapidly during periods of heavy precipitation. Care should be exercised to avoid a raw water pump trip on low suction water level in the Makeup Discharge Structure. Rev .. 0 5.3 5.4 6. o. 6.1 6.2 6.3 6.5 7.0 7.1 7.1.1 7.1.2 7.1.3 7.1.4 WOLF CREEK *rable 2. f3r**6 7c (Continued) Page 5 of 10 The two 600 gpm pumps shall be capable of pumping water in either direction through the temporary piping shown in Appendix Cfi The elevation on the both sides of the UHS dam will be measured at the elevation markers. PREREQUISITES Provision has been made to supply water to the auxiliary raw water pumps. All testing has been completed on the raw water pumps, auxiliary raw water pumps and associated piping and systems required to supply water to the UHS. The Makeup St .. ructure Raw Water ..Pump suct.ion pit is clear o.£ personnel and debr;i.s. Com:pl ete tbe 'Ill:i 'LiaJ. Va1*lle Lineup :as .*shown ln *Appendix A. Notify Dames and Moore before any water into the UHS to allow them to monitor erosion of the discharge water if erosion may occur. PROCEDURE Filling the Ultimate Heat Sink If the makeup water line has been dewatered, start the Auxiliary Raw Water Pumps OV.IL02PA and OWL02PB according to operating procedure WL-002. If the makeup water line is filled, start the Auxiliary Raw Water Pumps OWL02PA and OWL02PB according to operating procedure WL-001. The Makeup Discharge Structure Raw Water pump suction pit has filled with water as identified by a water discharge over the weiro Start the Raw Water Pumps lWMOlPA and lWMOlPB according to operating procedure WM-001. NOTE: Lake level monitoring and adjustment shall be performed in accordance with section 7.3o Fill the Ultimate Heat Sink to an elevation between 1969.0' and 1969.5' as indicated on the elevation markers located in the UHS basin ( being corrected) to the SNUPPS elevaton datum). Rev. 0 7.1.5 7.2 7.2.1 7.2.2 7.2 ... 3 7.3.1 7.3.2 7.3.3 7.3.4 WOLF CREEK Table 2.5-67c {Continued) Page (: of 10 Maintain the water level in the Ulimate Heat Sink between 1969.0' and 1969.5' until directed by Nuclear Plant Engineering to proceed with the fill of the temporary lake finger. Filling the Finger Note: Lake level monitoring and adjustment shall be performed in accordance with section 7.3. At the direction of Nuclear Plant Engineering, begin fill of the temporary lake finger. Fill the southwest. side! of UHS dam to the same elev.at:ion as the northeast sfde o*f the UHS dam equalizirlg the water levels on both sides of the UHS dam. Complete fil.ling o£ the* temporary Jake fin:ger... Ca.re shall be .exer:ci.sed :t:o .m.i.nimi:zE wat:eril.o:w ac.r.o:ss .:t..h:e .t:.o_p -of the UES dam. *Lake Level .Mo.ni.:t.oring and Adjustment During the hold period, daily level measurements will be recorded for the UHS basin, the downstream toe of the UHS dam, and the downstream pond on the SW side of the UHS dam. Pumping flow rates and time durations will also be recorded. These records will be transmitted to KG&E Construction and the Dames and Moore Geotechnical Engineer for disposition per instructions by Nuclear Plant Engineering. All lake and pumping rates shall be recorded on Appendix B. Water level on either side of the UHS dam shall be maintained as practical by appropriate use of the temporary pumps. Following periods of heavy precipitation and because of the large area draining into the northeast side of the UHS dam, it may be necessary to align the temporary pumps to transfer water from the northeast to the southwest side of the UHS dam to minimize waterflow over the top of the dam. Rev. 0 WOLF CH.EEK Table 2.5-67c {Continued) Paqe "/ of 10 .1\PPENDIX A INITIAL VALVE LINEUP --------=-----------------*-I I VALVE NUMBER I POSITION I I DESCRIPTION ---------..;..--------*----* OWL02PA PI Isolation I __ o _____ l I I OWL024A OWL02PA Isolat:ion ______ ____ c_:L ____ I ---I I OWL004A _* _O_W_L_O_O_S __ -:-__ M_a_k_e_u ... p __ PI I :so 1 at l on ___ o _____ l I I OWLOlPA Isolation _____ -....:-J ____ c_:L ____ I I I OWLOOlA OWL02PB PI Isolation I 0 I I I OWL024B OWL02PB Isolation I CL l I I OWLOlPC Isolat:ion 1 CL 1 f l OWLOOlC I __ O_W_L_O_O_l_B __ -:-_O_W_L_O_l_P __ IsoJ.ation. _____ -+1___ CL 1 I I .I I OWL0.29 Manh-oJ:-e t2 *vent :![sol l 0 I 1 1 -----*-., 1 OWL007 Manhole 12 Manual Vent 1 __ C:L ____ I t I __ O_W_L_0_3_0 __ -=--__ M_a_n_h_o_l __ j:S.!!__]P o in t V n t _I _s_o_l ___ -:-----C_> ____ 1 __ O_W_L_0_0_9 __ -=--__ M_a_n_h_o_l __ e_..;..#_3_JH j:S.!!_ lP t Manu a 1 I _s _o_l ___ ---:-____ c_: L --*-__ O_W_L_O_l_O __ -:-__ M_a_n_h_o_l __ e___.,;.#_3_A_ Dewatering I so l_a_t_i_o_n __ --=---* CL _______ O_W_L_0_3_l _____ __ M_a_n ___ h_o_l __ e_#_4_JHi:S.!!_ Point Vent _I_s_o_l _______ () ____ O_W_L_O_l_2 ____ ___ M_a_n_h_o __ l. __ Pt Manual Vent CL ____ O_W_L_0_3_2 ___ -=--___ M_a_n_h_o __ l __ i. g h l? o i n t Vent ._I _s _o _1__ ------+--*-0 ___ , __ ______ O_W_L_0_2_7 _____ -=--___ M_a_n_h_o __ l. __ Manual Vent CL ___ O_W_L_0_3_3 __ -=--__ M_a_n_h_o_l __ e_i_6_jB i. g h 1? oint Vent I_s_o_l ___ ___ o ___ , __ __ O_W_L_0_2_8 ___ -=--__ M_a_n_h_o_l __ e--'-#_6_jB i:S.!!_ 1? t Man ua 1 Ve_n_t ___ ____ c_: L ___ _ __ l_W_M_0_0_3_A __ :-_l_W_M ___ O _l_P __ A_D_i_s i=h a r PI I so 1 at _i o_n ____ 0 ____ l_W_M_0_0_2_A __ :--_l_W_M_O_l_P __ h a I so 1 at CL __ l_W_M_0_0_3_B __ :-_l_W_M_O_l_P __ B_D_i_s. ph a PI I so 1 at ,_i o_n ____ -:---() __ l_W_M_0_0_2_B __ .;..__l_W_M_O_l_P __ B_D_i_s. h a I so 1 at ion*------'---CL 0 = Open CL = Clos:ed *r -Throttled L = Locked (Prefix) Rev. 0 CREEK. Table 2.5-67c (Continued) Paqe 8 of 0 l\PPENDIX A INITIAL LINEUP ----------,.------------* ------=-------**-I VALVE I NUMBER I DESCRIPTION POSITION ------::,..-------*-I (Later) Temp F' i 11 L_i 0 L r.. *r. I --------!--_C_i_r_c_\'I __ Tt_r_W_a. i ng_ Line I so 1 a ._t_i _o_n ___ I 1CW002 I CL I . "A" 8" PVC Fill Line Isolation ----------;.--------*-----0 *------=---*----**-I I "B" 4" PVC Bypa2ss __ _ I I "C" I I I ______ ___,_ ____________ _ 1 1 1 J 1 1 I j ---------:---------*-----J t J I f I I I I I I I I ---------:--------------______ ___,_ ________ . ____ _ ---------!----------------------!----------------CL CL -------:--*----**-I 1 1 I J I --------*---:i----*----*-1 I I I *------:--------**-1 I -------*---:-------**-*--------*----:--------*-*------:--------**--------=--------**-0 = Open CL = Closed = Throttled L = Locked (Prefix) () Table 2. 5 .. *67c (Continued) WOLF UHS LEVEL MONITOR RECORD "Example Only" LEVE:LS* I . I I DOWNSTREAM I DATE/TIME UHS BASIN I PbND I I DOWNS'I'REAM TOE OF U HS Dl\fil I . _ _j __ ._ *--------------*-*Actual readings on level indicators. Elevation markers are marked in increments of 0.1 foot. Read to nearest 0.1 foot. Recorded by DAILY PUMPING RECORDS: type of pump, run time, and location to where wat:er was pumped). DATUM ELEVATIONS DATE STREAM UHS BASIN I POND -,---1 ELEVATIONS* I I DOWNSTREAM UHS BASIN I POND --------:---------*-,---1 DOWNSTREAM OF UHS DOWNS'I'REAM TOE OF UHS I *In feet (by KG&E) Calculation by DAILY PUMPING ACTIVITY Summary: (Record total amount of water, in gallons, and location it was pumped to). ... Table 2.5-67c (Continued) Paqe 10 of 10 WOLE' CREEK APPE:NDI)< G Tcrnpor:ary Pipinq -Circu]atinCJ Intake .Structut:-c to Ultimate Heat Sink Locate at 'Top of CW Structure Rip-Rap From 1*Jarming Line Nozzle _1 _______ *------*------*----*--. Discharge to UHS Basin 6 t::: l _ _j I J l J J B"rvc Rev. 0 WOLF CREEK Table 2.5-67d TEST FOR DISPERSIVE SOilS UHS rnM Results Pinhole(a) Sarrples at Natural Water Or Dried to P.L. s:s(a) SCS Chemical Test (a) ve Class (b) Sarrple Atterberg Natural AS'IM D 698 ffiter Tests With Test Pit D2pth Soil Limits Test W3.ter Dispersion 'IDS Na y y rrax O.M.C. Content Distilled Redrrond No. (ft) L.L. P.L. P.r. O:mtent Test, % (meqji:) (%) (%) (%) W3.ter Hater<cl HSDC-1 3.0-3.5 G! 55 21 34 22.0 63 6.95 82 101 21 21 ND-3 (Residual Heurrader) HSDC-1 6.0-6.5 CL 42 20 22 21.6 73.5 12.17 77 106 20 20 ND-3 (Residual Heurrader) HSDC-2 3.0-4.0 G! 48 20 28 19.0 37.5 10.80 73 102 21 20 ND-1 (Residual Heurrader) HSDC-2 5.5-6.0 G! 51 20 31 23.8 19.4 5. 75 87 100 23 20 ND-3 (Residual Heurrader) HSDC-3 2.0-3.0 G! 64 22 42 23.5 45.4 9.32 81 95 24 22 ND-2 (Residual Heurrader) HSDC-3 4.5-5.0 G! 77 29 48 32.5 73.6 10.16 80 93 27 29 ND-3 (Residual Heurrader) procedures described in "Identification and Nature of Dispersive Soils," ASCE Geotedmical Journal, 102, No. 4, 287-301 (1976) April. bclassification procedures described in "Pinhole Testing for Identifying Dispersive Soils," ASCE Geotedmical Journal, 102, No. l, 69-85 (1976) January. Cffiter purrped fran Jolm Redrrond Reservoir. dEstirrated at optirm.nn. Results Pinhole For Sarrples(a) Air Dried And Moisture Added To -O.H.C. Water Content % yd rrax (%) :!:o.M.C. yd (PCF) AS'II'l G98 20.4 -l 101 100 19.0 -l 106 100 18.8 -2 102 100 20 -3 101 101 23.7 95 100 25.8 -1 94 101 Sheet 1 of 2 Dispersive Class(b) Rerrarks ND-2 (3 Tests) Coly sanple with dispersive Irl failure by pinhole and only after air drying. ND-1 ND-2 ND-3 ND-2 Rev. 0 WOLF CREEK Table 2. 5-67d(continued) Sarrple Atterberg Natural s:s(a) scs Cl1emical Test (a) AS'IM D 698 Test Pit !Epth Soil Limits Test Wl.ter Dispersion TDS Na y-y rrax O.M.C. N:l. (ft) 'I)'pe L.L. P.L. P.r. Cbntent Test, % (meg/£) (%) (pcf) (%) 3.3 l. 77 ASTP-1 3-4 rn 62 27 35 (Weathered 16 Heebner Slale) ASTP-1 6-6.5 CL 42 (Weathered 22 20 0.3 3.60 17 Snyderville Slale) BORINGS HS-22 1.8-2.3 rn (Residual 70 2.18 59.6 Fbhu) UHS-1 5 CL (Heumader) 94.54 48 loo(dl 18 UHS-2 4 CL (Heumader) 212.8 21 lOo(dl 18 UHS-3 4 rn (Heumader) 42.5 37 lOo(dl 20 CUHS-1 7.0 CL (Residual) CUHS-2 12.0 CL 48 (Residual) ClJHS-3 4.0 CL (Residual) 60 Results Pinhole(a) Sarrples at Natural Water Or Dried to P.L. Dispersive Class(b) Wl.ter Tests With Water Cbntent Distilled Redmond Cbntent (%) ffiter Wl.ter(cl (%) D-1 D-2 ND-1 27.2 D-2 18.4 D-1 ND-1 15.1 D-1 ND-3/ND-2 Results Pinhole For Sarrples(a) Air Dried And Moisture Added To -0./<!.C. y<:l. (PCF) % yd rrax AS'IM 698 Dispersive Class(b) Sheet 2 of 2 Rerrarks Fran residual soils at location of rrain dam auxillary spillway. Sarrples air dried during storage -moisture added for dlemical testing. Rev. 0 Sample Atterberg Test Pit Depth Soil Limits Test No. (ft) Type L.L. P.L. 6-8 CL 40 18 (Alluvium) MDI'P-2 8.5-9.8 CL 36 17 (Alluvium) E\liK-6 5-7 CL (Alluvium) Boring Elevation lB 1976 CL 2B 1970 CL 3B 1964 CL 3C 1964 CL 4B 1956 CL 7A 1906 CL lOA 1912 CL lOC 1914 CL llB 1922 CL l2B 1926 CL 14A 1935 CL 14B 1935 CL P.I. 22 19 WOLF CREEK Table 2.5-67e TEST FOR DISPERSIVE s:JIIS MAIN J:l.l'IM AND SADDLE J:l.l'IM IV Natural scs(a) SCS Chemical Test<a) Water Dispersion TDS Na Cbntent Test, % (meg/c) (%) 21.6 56.1 2.88 24 28.7 77.4 4.67 2 7 64.19 6.7 56 8 17 5 4 60 1 12 3 Sheet 1 of 2 Results Pinhole{a) Samples at Natural Water Or Dried to P.L. Dispersive Class(b) Water Tests with Cbntent Distilled Redmond (%) Water Water(c) 18 ND-1 D-1 D-1 D-2 D-2 ND-1 D-1 D-1 aTest procedures described in "Identification and Nature of Dispersive Soils," ASc10 Geotechnical Journal, 102, No. 4, 287-301 (1976) April. bClassification procedures described in "Pinhole Testing for Identifying Dispersive Soils," ASCE Geotechnical Journal, 102, No. 1, 69-85 (1976) cwater pumped from John Redmond Reservoir. dsaddle Dam IV. eHain Dam closure section. Rev. 0 Sarrple Test Pit I:*pth Soil Nc:>. (ft) Type furing Elevation SDA-l(d) 1994 CL ...... ...... -C-1 1921.5 CL C-2 1928.5 CL C-3 1942 CL C-4 1950 CL C-5 1954 CL C-6 1961.5 CL C-7 1966.5 CL C-8 1974.5 CL C-9 1979 CL C-10 1995 CL WOLF CREEK Table 2 .5-67e (continued) Atterberg Natural Limits Test Water L.L. P.L. P.I. Cbntent scs(a) Dispersion Test, % 53 SCS Olernical Test(a) 'IDS Na (meq/£) (%) Sheet 2 of 2 Results Pinhole(a) Sarrples at Natural Water Or Dried to P.L. Dispersive Class(b) Water Tests with Cbntent Distilled Redmond (%) Water Water(c) ND-4 ND-1 ND-1 ND-1 ND-1 ND-1 ND-1 ND-1 ND-1 Rev .. 0 WOLF Table 2 .. 5-*67f Sheet: 1 ot 2 LETTER FRON Jl\MES L. SHERARD COHCERNING DISPERSIVE CLAYS IN THE UHS TIAM TELEPHONE: 17141 224-0455 TELEX 910 33SI607 MESA SERV SDG Dames and Hoare 1550 Northwest Highway Park Ridge, Ill 60068 1 AM E S L. 5 H E RA R D C:ONSULriNC fNC!NEER 3483 STnEET SA!'-1 DIEGO, 92110 At1:ention: Mr. Terje Preber, Senior Engineer Gentlemen: Hay 16, 1980 I am writing in your response to your letter of May 12, 1980 (DHLK-678), in connec1:ion wi:th the dispersive clay problem at the Ultimate Heat Sink Dam, Wolf Creek Generating Station No. 1. In this letter and in several telephone discussions with Mr. Preber, you have described for me t:he main aspects of this structure, generally as follows: 1). It is a homogeneous clay dam about 20 feet maximum height above the natural ground surface, 4:1 side slopes on bot:h sides with riprapand filter blankets as E;hown on a sketch you sent me (attachment 5) . 2). All soil overlying bedrock has been excavated over the whole foundation of the dam, with maximum deptr of excavated soil of about 10 feet. 3). The bedrock is horizontaly bedded shale and limestone, apparently highly impervious and relativelyfree from joints and cracks. 4) . The UHS Dam is an emergency E>tructure to be submerged in the main cooling water res:ervoir and only would be called to act as a dam in the event of failure of the main dam. 5) . The UHS dam has been completed recently und,er careful, specialized engineering control of the construction and foundation preparation. 6). Water iE> presently being pumped into a port:ion of the main reservoir in such a way that there will be water on both of the UHS Dam at about t:he same level, bu1: so far the rising water 'level has not reached the toes of t.he UHS dam. 7). It has recently been demonstra*ted by labora1:ory tests that the UHS Darn embankment mat.eria:L is a dispersive clay. r,.1 [\ \" Cl (* r!1 \! 1:.: U 0 WOLF CHimK '['able 2. 5-67 f Sheet 2 of 2 JAM E.5 L 5 H ERARD Page 2 On the basis of this information you have asked me to form on the safei:y of the dam as relat:E:d to the special problem of dispersive clay erosion. You l1ave asked me to do this because I helVe spent a lot of time in thE: last several years studying the problem of dams of dispersive clay. I am pleased to consult with you on this on the basis that I consider it essentially as a theoretical problem, since I have not visited the site and have no personal knowledge of the foundation condition or construction operations. My opinions below are based on the assump-tions tha*t the foundation is relatively impervious and t:he emb.:::mkment was well built with the det:ails, shown on ai:tachmE!nt: 5. As a first general observation it seems apparen*t that the dam is built of dispersive clay, t.he bO)si: results presented (Samples UHS 1-3 and CUHS 1-3) are typical of this type of clay. My main opinion is that the dam should be completely safe. Wit:h 4:1 side slopes, excavation to impervious bedrock over the whole foundation area, and a sand filter at the downstreant side, the likelihood of piping due *to dispersiv(: clay erosion is negligible. On the other hand, because of the importance of the structure I suggest considera1tion of t:esting it by filling the UHS reservoir first with water only on the one side and the downstream toe kept dry for observai:ion. All experience and theory indicates that problems wi-th dams of dispersive clay develop very soon after the first reservoir filling (usually within a few days). Hence, if the reservoir is filled for about one month with no observed leakage at the downstream toe, I believe that it: can be concluded with complete confidence that the dam is a wholly safe struct:ure. Very truly yours, James L. sherard I Rev. 0 WOLF CRE:EK TABLE 2.5-68 CHARACTERISTICS OF ON-SITE AGGRE:GATE SOURCES(2) Specific-Saturated Gravity Specific Gravity-Dry Los Angeles Abrasion Test Absorption (1) Loss Rat1o Toronto -----2:.45-2.51 2.33-*2.41 31.4-38.2% 2. 4 6-5. 2 6%

    • 91-*. 9 6% Plattsmouth ... 2. 5 6-:L 66 2.48-2.59 26.5-3!5.8% 1.2-3 .. 2%
    • 92-.9 6% Notes: 1. Soundness Loss Rat.i.<) determined according to Kansas State of Transportation procedures. 2. For characteristj_cs of the riprap in t.he UHS 1 see Table 2.5-*68a. Ref: 1. Stallard, A.H .. , 1966, Materials Coffey prepared by the State Highway Commission o:E Kansas in cooperation with the u.s. Department of Commerce, Bureau of Public Roads. 0 Test Number RRAT-12 RRAT-13 RRAT-14 RRAT-15 RRAT-16 RRAT-17 RRAT-19 WOLF Rock T:vpe Southbend Limestone Plattsmouth Lirnestone Southbend Limestone Plattsmouth Southbend Limestone Plattsmouth T * .._ Plattsmouth --------------L----------------------REEK TABLE 2. 5-6 Sa Petrographic Analysis* Acceptable Acceptable Acceptable Acceptable Acceptable Acceptable ... ___ Acceptable QUALIFICATION TF..ST DATA RIPRAP UHS DAr-1 IA Abrasion (Req < 35% Loss) 24.1 26.5 28.8 31.6 31.0 29.0 27.5 32.2 Freeze-Thaw (Reg< 15% Loss) 0.45 0.56 10.80 3.00 4.38 ..., "" * ..:;v 1 .. 47 3.18
    • Petrographic exami.Ylations -were perfo:rmEd by Law Engineeri.Ylg Testing Company. Sodium Sulfate Soundness (Reg <10% Loss) 1.36 6.96 3.41 6.51 6.48 5.15 5 .. 10 6.15 Specific Gravity (R..oq 2.4) 2.67 2.68 2.69 2.63 2.68 ..., ,...., ..:::.ot 2 .. 65 2.65 Ref: (1) Da'lles & r.b::>re -Final Report, Surveillance of Earthwork UHS & UHS Dam. Wolf Creek Generating Station, Unit No.1, August 18, 1981. ; Absorption (R..oq 0.52 0.69 0.26 1.06 0.29 " rr. u.ou 0;70 OA2 ReV. 0 Location TP-1 HSA-1 HS-2 HS-5 HS-16 HS-17 Depth (feet) TABLE 2.5-69 RESULTS OF CONSOLIDATION TESTS ON UNDISTRUBED AND RECOMPACTED SOIL SAMPLES Preconsolidation Pressure Index (psf) (in/in) 1.0-3.0 1,600 0.124 3.0 3,600 0.134 6.0 -0.170 2.0 4,600 0.150 4.0 Q /inn n 10n -r-z.vv 4.5 8,600 0.112 aCompressibility Index is defined as Cc/(l+e). bswelling Index is defined as Cs/(l+e). . Index D) Soil (in/in) Type -CL 0.050 CL 0.034 CL -CH 0 n. """)"") ,..,., t v.vL.£. l...n n :;o 0.040 CL ('J t<:l :;;>:; Rev. 0 TABLE 2.5-70 Sheet 1 of 4 GRANULAR DRAINAGE BLANKET TEST FILL RESULTS Percent Passing Station Lift Relative Dry #200 Screen Test Location Thickness Density Density After Gradation Number Date Main Dam (inches) (%) (pcf) Compaction Test Date 1 08/10/78 39+00 18 106.0 117.4 10.5 to 40+00 2 08/10/78 39+00 18 119.3 123.8 9.2 to 40+00 0 3 08/10/78 39+00 18 126.0 127.3 9.1 t:"" to 40+00 n ::0 4 08/10/78 39+00 18 105.4 117.1 10.8 tr.l tr::l 40+00 ;:;;:: L.V 5 08/10/78 39+00 18 110.6 119.5 8.3 II fL.L f'> f'> L.V --:t.VTUV 6 08/10/78 39+00 18 106.3 117.5 7.7 to 40+00 7 08/10/78 39+00 18 97.5 113.6 8.2 to 40+00 8 08/10/78 39+00 18 119.9 1 "l II 1 8.6 to 40+00 c , "/'), /"70 c. c. _l__ (\ r: , 0 f'>C " , ...., , r::-u .l.Vf.::J.l.fiO UUT:;1J .l.O :;1\Jo::J .l..G.l.oJ 7 10/31/78 66+95 18 59.5 109.8 Rev. 0 TABLE 2. 5-70 (continued) Sheet 2 of 4 Percent Station Lift Relative Passing Dry #200 Screen Test Location Thickness Density Density After Gradation Number Date Main Dam (inches) (%) (pcf) Compaction Test Date 8 10/31/78 66+80 18 75.7 114.6 1.8 9 10/31/78 66+80 18 63.3 110 .. 9 2 .. 9 10 11/02/78 67+00 18 98.6 122.1 3.9 and 66+50 11 11/02/78 67+00 18 77.0 116.3 -::8 0 L' 12 ll/02/78 67+05 18 37 .. 2 105.4 -n ::0 13 11/02/78 67+05 18 64.6 112.9 -t:1j t:1j 14 11/02/78 67+15 18 97.8 122.0 2.7 15 11/02/78 67+15 18 67e5 ll3e7 16 11/02/78 67+15 18 92.3 120.5 1 10/28/78 69+60 36 30.6 102.2 2 10/28/78 69+60 36 100.8 122.9 3 10/28/78 69+60 36 16.3 98.8 1 10/31/78 69+60 36 109.9 126.2 3.8 1 (\ /')Q /"7Q .J..VfL.VfiV 2 1f"'/')1/"70 69+60 36 ("'\, r .,,,..., ..., ..LV,' J.l./ I 0 ..L l. ::1
    • I Rev. 0 TAlJLE 2. 5-70 \ co:1 tinued) Sheet 3 of 4 Percent Passing Station Lift Re1a ti ve Dry #200 Screen Test Location Thickness Density Density After Gradation 1\.lt'lrnh-V" Date !Via in Dara ( i ncl1es) (%) (pcf) Compaction *rest Date L'IJ UHl.UC .L 3 10/31/78 69+68 36 55.9 108.8 4 10/31/78 68+80 36 104.2 124.1 5 10/31/78 68+85 36 66.1 111.7 9 09/05/78 40+00 72 79.1 113.3 1.6 08/28/78 ::E: to 40+75 0 t"' i-:!:j 10 09/05/78 40+00 72 96.1 1 1 1 a f\Q/')Q/IQ ...!... ...!... ! J VVf LV/ ! V , .. to 40+75 ::0 t:tj t:tj 11 09/05/78 40+00 72 81.4 113.9 1.0 08/28/78 ;:><:; to 40+75 1E 10/26/78 78+00 72 69.1 112.6 3.2 2E 10/26/78 75+00 72 10.6 97.5 3E 10/26/78 74+20 "7') 26.1 , "' , , I .!. .LV.Lo.L 4E 10/26/78 73+75 72 34.7 103.2 5E 10/26/78 73+00 72 35.5 103.4 1 10/27/78 76+90 72 0 91.2 3.2 Rev. 0 2.S-70 (continued) Sheet 4 of 4 Percent Station Lift Relative Passing Dry #200 Screen Test Location Thickness Density Density Number Date Main Dam (inches) (%) (pcf) After Gradation Compaction Test Date 2 10/27/78 76+25 72 10.1 97.4 4.6 3 10/27/78 75+50 72 0 93,5 L9 4 10/27/78 75+50 72 16.7 98.9 5 10/27/78 76+25 72 0 92,7 1.2 10/26/78 78+00 r 10/27/78 76+90 72 5,1 96:3 0 1..2 ln/?{:./7P. .._ ...... , I-""7r *** -...r. /CTUIJ Rev. 0

    ?ABLE 2.5-71 GRAIN-SIZE DISTRIBUTION FOR MAIN GRANULAR DRAINAGE BLANKET AND GRANULAR Test Location Material Identification Number Station Offset(a) Granular Drainage Blanket LGDB-1 71+00 175 s LGDB-2 71+00 175 s LGDB-3 75+00 175 s T '7"2..Lt:::n 175 s "-'YJ.JJ,....J -;:r l.,JI..JV LGDB-5 73+50 175 s LGDB-6 73+50 175 s LGDB-7 74+25 200 s LGDB-8 74+25 200 s LGDB-9 74+25 200 s LGDB-1 0 76+75 200 s LGDB-11 76+75 200 s LGDB-12 '7C:...L'7t::: 200 s IV I l..J (a)Direction and footage offset from centerline. Sheet 1 of 4 DAM TOE DRAIN Grain-Size Distribution Percent Percent Percent Passing Passing Passing 3/8 in. #10 #200 86 20 1 84 14 1 85 17 1 ::8 0 ..,.., 16 .... t"' I I L. 83 19 2 n :::0 tt:l 82 19 2 tt:l 95 38 5 95 34 4 95 38 5 92 30 4 92 34 5 93 29 II '2 ,, ---" .Ke v. v

    2. 5'="71 Sheet 2 of 4 Grain-Size Distribution Location Percent Percent Percent Test Offset(a) Passing Passing Passing Material Identification Number Station 3/8 in. #10 #200 LGDB-13 74+00 145 s 91 27 2.8 LGDB-14 76+20 135 s 71 19 1.6 LGDB-15 74+50 160 s 83 16 1.6 LGDB-16 74+50 160 s 84 20 2.1 LGDB-17 74+50 160 s 82 25 2.1 0 t'i LGDB-18 78+00 150 s Q&:: -:l£1 -:1 ') :-o:j vv .J v .JoL. () LGDB-19 78+00 150 s 82 12 1.2 ::0 t':l trl LGDB-20 78+00 1 c:.n c. Q1 1 II , ') .L.JV ..... V-'-.... ""% ..LoL. LGDB-21 66+50 84 26 3.9 LGDB-22 74+60 135 s 96 Jl""l "+/-.G 5.9(b) LGDB-23 68+00 180 s oe::: ')t::: c , (b) vv LU Jo..l. LGDB-24 70+50 150 s 89 28 5.3(b) LGDB-25 64+00 .-,A , A 2.0 /'% J.'% LGDB-26 64+00 01 19 ..., Jl UJ.. .Go"+/- 64+00 82 22 2.8 Rev. 0 (b)EDR 133.

    TABLE 2.5-7l Sheet 3 of 4 Grain-Size Distribution Location Percent Percent Percent Test Offset(a) Passing Passing Passing Material Identification Number Station 3/8 in. #10 #200 LGDB-28 66+00 80 17 2.4 LGDB-2 9 67+00 72 13 2.1 LGDB-30 68+00 82 21 3.3 LGDB-31 65+00 82 22 4.6 LGDB-32 66+00 81 23 4.3 0 t"1 LGDB-3 3 67+00 78 17 3.1 "'J () LGDB-34 65+00 80 22 3.8 !:'.1 !:'.1 LGDB-3 5 64+40 89 31 Jl I; ......... ;,;;: LGDB-36 64+75 82 24 4.0 LGDB-37 64+87 77 17 ") '7 o I LGDB-38 65+00 90 'Jh ":1 1 <..V .......... LGDB-39 64+45 95 40 4.6 LGDB-40 86+50 '7'7 19 "' 0 I I L.oO LGDB-41 85+50 Qe:; ..,, ":1 c:. vv L. .... ...loU r rtT"'n II"' 93 39 b.l L\..lUD-!:i: L. Rev. 0 Test Material Identification Number Granular Toe Drain LT-1 TD-1 TD-2 TD-3 *TABLE 2. 5-7 .i (continued) Sheet 4 of 4 Grain-Size Distribution Percent Percent Percent Location Passing Passing Passing Station Location 3 in. 1 1/2 in. 3/8 in. 83+00 97 60 7 65+00 98 49 3 68+00 93 69 20 66+00 100 77 18 Rev. 0 0 t"" I"'Ij (J !:l:j Blast Purpose Structural Excavation (a)Reference FCR #1-0230-C. (b)Equipment malfunction. TABLE 2. 5-72 LAKEWORK MONITORED BLASTS PERFORMED FROM DECEMBER 20, 1977 TO FEBRUARY 2, 1979 Allowable Maximum Peak Blast Number/ Particle Velocity Blast Location Date Time of Day (seconds) Hain Dam Keytrench 05/ll/78 8 0.13 05/11/78 9 0.07 05/12/78 10 0.13 05/12/78 11 0.13 05/15/78 12 1.4 05/16/78 15 0.07 05/17/78 16 0.13 U:>/1/F/'d 1'/ 0.13 05/17/78 18 0.13 05/24/78 21 0.07 05/25/78 22 0.13 05/25/78 23 0.13 05/25/78 24 0.13 05/25/78 25 0.07 (c)Contractor given permission to shoot prior to equipment set-up due to severe thunderstorm. (d)CoDwunications failure. Sheet 1 of 6 Recorded Peak Particle Velocity (seconds) 0.041 O.l76(a) NR (b) (c) 0.564 0.035 0.036 0 t"" 0.009 "'::: CJ 0.109 :;o t;rj NR (d) t=:l ;;>'; NR (b) 0.016 0.012 0.006 Rev. 0 Blast Purpose Structural Excavation (cont'd) Blast Location Main Dam Keytrench (cont'd) Service Spillway TABLE Date 05/26/78 05/26/78 05/31/78 06/01/78 06/01/78 06/02/78 06/02/78 06/03/78 06/03/78 06/06/78 06/07/78 06/07/78 06/08/78 06/08/78 06/09/78 06/10/78 06/10/78 06/13/78 06/14/78 06/15/78 09/28/78 09/29i78 2.5-72 (continued) Maximum Peak Blast Number/ Particle Velocity Time of Day (seconds) 26 0.07 27 0.07 31 0.07 32 0.07 33 0.07 34 0.13 35 0.07 36 0.13 37 0.13 40 0.07 41 0.07 42 0.07 43 0.07 44 0.07 45 0.07 46 0.13 47 0.13 50 0.07 51 0.07 52 0.13 54 0.07 55 0.13 Sheet 2 of 6 Recorded Peak Particle Velocity (seconds) 0.008 0.012 0.007 0.001 0.009 0. 011 0.018 0.011 :E; 0 0.007 t"' 0.004 (-) o. 004 t'Ij trl 0.02 ;;;;:: 0.008 0.027 0.038 0.006 0.027 0.015 0.019 0.020 NR(b) 0.004 Rev. 0 Blast Purpose Structural Excavation (cont'd) Test Blasts Production Blasts (e) Test blast. Blast Location Service Spillway (cont'd) Ultimate Heat Sink Lakework Quarry & Moore not notified of blast. TABLE 2.5-72 (continued) Date 09/29/78 12/13/78 12/14/78 12/18/78 12/19/78 01/24/79 02/06/79 02/19/79 12/20/77 12/22/77 12/23/77 12/27/77 12/28/77 12/29/77 06/05/78 06/08/78 06/09/78 06/12/78 06/12/78 Blast ....... J..... .......... / L.'I!UlllU'= L..f Time of Day 56 61/4:23 PM 62/4:42 PM 66/4:35 PM 67/4:29 PM 79/4:32 PM 82/3:35 PM 88/4:27 PM N/A N/A N/A N/A N/A N/A 4:30 PM 2:00 PM 6:00 PM 9:15 AM 3:05 PM Allowable Maximum Peak ,.,_, __ ,:.._ __ (seconds) 0.13 0.1 0.5 0.1 0.5 2.0 0.1 O.l N/A N/ .. ll. N/A N/f... N/A N/A 1.4 0.07 0.07 1.4 1 A Sheet 3 of 6 Recorded Peak Particle Velocity (seconds) 0.007 0.002 0.02 0.02 0.02 0.335(e) 0.017 0.014 (\ V*-'-' 0.22 Ool26 u. u .J"'i l. 05 0.044 0.0176 0.0157 0.031 NR(f) NR (f) ReV. 0 ::8 0 t"l \ J :;o trl trl ;::>;i TABLE 2.5-72 (continued) Sheet 4 of 6 Allowable Maximum Peak Recorded Peak Blast n--.L.!_,_ __ ..:...._ __ Particle Velocity Blast Purpose Blast Location Date Time of Daz (seconds) (seconds) Production Blasts Lakework Quarry 06/13/78 9: 15 AM 1.4 NR (f) (cont'd) (cont 'd) 06/13/78 12:10 PM 0.07 0. 017 06/13/78 2:30 PM 0.07 0.006 06/14/78 9:30 AM 0.07 0.020 06/14/78 2:30 PM 0.07 0.018 06/15/78 9:00 AM 0.13 0.024 06/15/78 4:30 PM 0.13 0.023 06/27/78 5:35 PM 0.07 0.0092 06/28/78 11:30 AM 0.07 0.016 0 t"' 06/28/78 5:05 PM 0.07 0.015 F!j 06/29/78 2; 30 Pt*'l 0.13 O.OC89 n !=V rr:! 06/30/78 5:35 PM 0.07 0.01 t<:1 07/01/78 10:30 AM 0.07 0.0042 07/05/78 1:05 PM 0.07 0.0069 07/06/78 10:10 AM 0.07 0. 0 055 07/06/78 4:30 Pivl 0.07 NR (b) 07/07/78 11: OS AM 0.07 0.0090 07/07/78 5:00 PM 0.07 0.012 07/10/78 1:45 PM 0.07 0.006 07/11/78 9:30 At-1 0.13 0.0057 Rev. 0 TABLE 2.5-72 (continued) Allowable Maximum Peak Blast Number/ Particle Velocity Blast Purpose Blast Location Date Time of Day (seconds) Production Blasts Lakework Quarry 07/24/78 9: 10 AM 0.07 (cont'd) (cont'd) 07/24/78 2:40 PM 0.07 07/25/78 10:20 AM 0.13 07/27/78 2:35 PM 0.07 07/28/78 9:30 AM 0.13 07/28/78 4:30 PM 0.13 08/01/78 8:45 AM 0.13 08/03/78 2:00 PM 0.13 08/09/78 9:55 AM 0.13 08/ll/?8 9: lG ----08/15/78 9:40 _Ajvj 08/15/78 3:30 PM 0.13 08/21/78 10:10 AM 0.13 08/22/78 10:30 AM 0.13 09/22/78 10:30 AM 2.0 09/28/78 2:00 PM 0.07 09/29/78 9:15 AM 0.13 09/29/78 1:40 PM 0.13 10/03/78 5:00 PM 0.07 10/23/78 12:45 PM 0.07 10/23/78 5:25 PM 0.07 10/24/78 11:25 AM (\ , V*.J....J Sheet 5 of 6 Recorded Peak Particle Velocity (seconds) 0.00012 0.0071 0.014 0.03 0.0055 0.018 0.013 0.0147 0.021 ?(d) 0.005 (d) 1\Jt< 0.0054 0.015 lh\ 0.034 0.0156 0.011 0.002 0.0037 () ()(\ ")0 U e V U "-U Rev. " v =8 0 t"' hj {-) ::0 tr:l t:".i ;;>;; Blast Purpose Production Blasts (cont'd) Miscellaneous Blasts Blast Location Lakework Quarry (cont'd) Service Spillway Circulating Water Intake TABLE Date 10/24/78 10/26/78 10/31/78 ll/01/78 11/01/78 11/03/78 11/09/78 11/10/78 11/ll/78 11/:30_/78 12/0l/78 12/14/78 12/15/78 12/19/78 ll/02/78 ll/02/78 11/02/78 11/03/78 11/03/78 10/17/78 10/20/78 2.5-72 (continued) Allowable Maximum Peak Blast Number/ Particle Velocity Time of Day (seconds) 3:45 PM 0.13 10:15 AM 0.07 10:35 AM 0.07 10:40 AM 0.07 5:25 PM 0.07 2:20 PM 0.07 10:10 AM 0.07 3:30 PM 0.13 10:42 AM 0.13 1:10 PM n_n7 j;jU AJ*I 0=07 9:40 AM 0.07 10:25 AM 0.07 10:30 AM 0.07 Power Pole #1 0.13 Power Pole #2 0.13 Power Pole #3 1.4 Power Pole #4 1.4 Power Pole #5 1.4 59 0.5 60 0.1 Sheet 6 of 6 Recorded Peak Particle Velocity (seconds) 0.005 0. 0 0 28 0. 0 0 35 NR(d) 0.002 0. 003 0.0045 0.0025 0.0061 :E: 0 1:4 -----. i .;.j 0 .. 004 (-) 0.002 t:r:l t%j :;>;; o. 003 0.02 0.08 0.012 0.022 0.062 0.106 0.059 0.005 Rev. 0 TABLE 2.5-73 Sheet 1 of 61 LIFT THICKNESS SUMMARY FOR MAIN DAM AND SADDLE DAMS COHESIVE EMBANKMENT FILL Location Offset from Lift Date Station(a) Centerline Lift Thickness Fill Type(b) (feet) Number (inches) 11/19/77 85+00 70N 1 8 c 85+10 65N 2 8 c 85+15 90N 3 8 c 85+10 90N 4 8 c 83+50 llON 1 8 c 84+00 40N 2 8 c 0-::!..L()() 90S , 0 ,... V,jiVV .J.. 0 1..-82+50 lOOS 2 8 r< '-' ll/21/77 85+00 90S 1 6 c 84+50 lOOS 2 6 c 03/22/78 31+15 3E 1 8 c 28+40 " 1 8 c u 32+14 lW , 0 ro .J.. u 1..-03/30/78 28+95 2E 1 8 c (a)No prefix indicates Main Dam station; Roman numeral prefix (I, II, III) indicates Saddle Dam station. (b)t;'.;,, +-"'""'"" r< L. .I. * ...L \... :t * ""' R = Cohesive embankment; = Rock fill embankment; GDB = Granular drainage blanket; GTD = Granular toe drain. Rev. 0 0 t'"1 t"%j 0 ;;o tx:! tx:! :Al 'l'ABLE 2. 5-7 3 (continued) Sheet 2 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Fill Type(b) Date (feet) Number (inches) 03/31/78 19+30 -1 8 c 34+67 -1 8 c 04/01/78 34+00 1W 1 8 c 26+00 -1 8 c 21+00 -1 8 c 04/13/78 99+00 -1 8 c 10 2+0 0 -1 8 c 0 t""' 04/14/78 96+00 -1 8 c h:j ...._ 82+40 lUUW 1 8 c () ';C 85+00 -1 8 c t:j ... J 04/15/78 81+60 lOS , 8 c .J. 84+00 30S 1 8 c 84+50 60N 2 8 c 81+00 608 2 8 c 84+00 SON 2 8 c 78+00 30S l 8 c 99+00 38 1 8 c 99+00 0 1 8 ("' ..... 04/21/78 101+25 3S 1 8 c 80+50 -1 8 c 85+00 -1 8 c .J. 83+90 84S 1 8 ro \.., 82+00 -2 8 c Re't.l, (\ .., 2.5-73 (continued) Sheet 3 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 04/22/78 96+00 3N 2 8 c 102+00 3S 4 8 c 87+00 3N 3 8 c 98+00 20S 1 8 c 04/24/78 93+05 4N 2 8 c 103+05 0 1 8 c 85+42 106S 1 8 c (') , I Ji I"\ , ,... c O..L.T'%V ..L. 0 0 t"" ,;;,... 91+06 4S 3 " --... ..... "=" -; ...... n 85+20 14N l 8 c ;:c 82+40 l 8 c [.tj [.tj 88+08 40S 1 8 ,., ;,;: \.. 04/26/78 83+60 99N 1 8 c 81+28 77S 1 8 c 04/27/78 79+05 55S 3 8 c 82+20 27N 1 8 c 112+00 1 8 c 05/03/78 83+80 1 8 c 92+00 1 8 c 05/04/78 82+50 1 8 c 84+00 1 8 c 102+25 1 8 c 122+00 1 8 ,., j_ L. ...... ---.-. u TABLE 2.5-73 (continued) Sheet 4 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Fill Type(b) Date {feet) Number (inches) 05/05/78 81+50 20N 1 8 c 84+00 50S 1 8 c 83+00 0 1 8 c 05/10/78 85+30 10N l 8 c 89+15 33S 1 8 c 90+10 5N 1 8 c 101+24 7N 1 8 c 111+00 -l 8 c 0 I:"' 87+00 -l 8 c hj n 05/15/78 83+00 SON l 8 ,., ::0 '-* b::J 84+50 " l 8 c t:r.J u " 87+90 l5S 1 8 c 100+00 20S 1 8 ro '-* 05/16/78 99+48 3N l 8 c 84+30 78 1 8 c 81+40 83N 1 8 c 87+90 15S 1 8 c 100+00 -1 8 c 05/17/78 95+95 6S 1 8 c 84+00 83N 1 8 c 100+98 85 l 8 c 91+40 4N 1 8 c 05/22/78 42+00 lOON 1 8 c Rev. 0 TABLE 2.5-73 (continued} Sheet 5 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Tyee (b) Date (feet) Number {inches) Fill 05/25/78 6+50 1 8 c 5+00 2 8 c 2+00 1 8 c 05/26/78 5+15 70E 1 8 c 2+40 lE 1 8 c 7+20 49E 2 8 c 05/30/78 7+20 49E 1 6 c 0 t-t 6+30 30vJ , c c .L 0 0+65 5E l k r' () v '-' 5+80 31;k' 2 6 "' ;;;] '-' tl:j 0+90 2 6 c 1:':1 2+75 3 6 c 7+25 65\1 2 6 ,... ..... 05/31/78 6+10 75W 1 6 c 6+20 60E 1 6 c 5+25 70E 2 6 c 5+90 90W 2 6 c 1+20 0 1 6 r< .... 1+20 0 2 6 c 06/01/78 5+65 60E 1 6 c 34+00 30W , 6 c .L 89+75 (l , c ro v .L u \.. 85+45 20N 1 6 c 81+00 40N 1 6 c 2+20 l 6 c 3+50 2 6 c ReV. 0 Date 06/02/78 06/03/78 06/05/78 06/06/78 06/07/78 06/08/78 TABLE 2.5-73 (continued) Location Offset from Station(a) Centerline Lift (feet) Number 5+20 90N 1 43+50 0 1 6+00 120E 1 6+80 140W 1 6+30 75W 1 5+00 0 2 7+00 20E 2 3+00 0 1 24+00 0 l 27+00 SOE l -.." . " "' sow 1 .)UTUU 35+00 n 1 v ..L 39+00 0 , .!. V3+00 0 1 42+00 758 1 38+00 50S 1 5+00 100E 1 7+00 20E 1 3+00 0 1 42+00 0 1 V1+00 208 l V3+50 30N 2 4+50 lOOE 1 t::-1-t::() {) 1'\t.*, , _!!...JV .!. 7+00 0 1 2+00 0 1 Sheet 6 of 61 Lift Thickness Fill Type(b) (inches) 6 c 6 c 8 c 8 c 8 c 8 c 8 c 0 t"" 8 ,.. "1j '-' 8 c n 8 c :::c t:tj 8 c crJ 8 r< ;:>;: ..... 8 c 8 c 8 c 8 c 8 r< ..... 8 c 8 c 8 c 8 c 8 c 8 ,... 1.... " 0 '.... 8 c 8 c Rev. n v TABLE 2.5-73 (continued) Sheet 7 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness . (b) Date (feet) Number (inches) F1ll Type ' 06/09/78 38+00 40S 1 8 c 44+00 50S 1 8 c 6+50 0 1 8 c 4+20 110E 1 8 c 7+00 100W 1 8 c 83+00 20W 1 8 c 90+00 20S 1 8 c 100+00 0 1 8 c 0 06/10/78 Vl+50 20N l 8 c t:"" n:j 2+40 lOW l 8 c () 28+00 ,--"' l 8 .. ;:Q u '-""',

    • I"\ I"' 50E l 8 c trl .J.LTUU t:tj 41+00 0 1 Q ,., ..L v '--06/12/78 31+00 0 1 8 c 29+00 30E 1 Q ,., v '"' 27+00 20W l 8 c 39+00 50S 1 8 c 42+00 50S 1 8 c 06/13/78 38+00 20S 1 8 c 44+00 80S 1 8 c 28+00 0 1 8 c 33+00 20W l 8 c 17+50 0 2 8 c 06/14/78 80+00 0 l 8 c Ot:::..Lt::n "lf"IC , 0 ,., vv! vv £. V:,._J 0 ,_ 84+00 20N 2 8 c Rev. 0 TABLE 2.5-73 (continued) Sheet 8 of 61 Location Offset from Lift Date Station(a) Centerline Lift Thickness Fill Type(b) (feet) Number (inches) 06/14/78 90+00 0 2 8 c 97+00 15S 1 8 c 100+00 0 2 8 c 28+00 15W 1 8 c 33+00 0 1 8 c 44+00(c) 0 1 8 c 16+00(c) 0 2 8 c ...,., 28+00 0 1 8 ""' c 0 33+00 15W 1 8 c t"' "!j 06/15/78 36+50 20S l 8 c ,..... \' 42+50 Qnc:_ 1 Q c ;:c VV'-' v "'\A 1 1"\ A 0 , " c t:t:l .G':ITUU J. 0 t:t:l 98+00 0 1 8 c ::>:: 82+00 0 1 8 c .... 90+00 ss 1 8 c 06/16/78 30+00 -1 8 c 37+00 -1 8 c 42+00 -1 8 c 95+00 -1 8 c 81+00 -1 8 c 90+00 -1 8 c 06/17/78 95+90 14N 1 8 c 87+95 4N l 8 c 15+12 6E 1 8 c 33+90 30E l 8 c ")'").J_C:{) Jl()t:' 1 0 0 -lL!_lV -'-v '-' Rev. 0 I-\ keyway.

    TABLE 2.5-73 (continued) Sheet 9 of 61 Location Offset from Lift Date . fa) Centerline Lift Thickness ( h' Station (feet) Number (inches) Fill 06/17/78 102+60 lOS 1 8 c 41+70 4N 1 8 c 06/19/78 5+00 llOE 1 8 c 7+50 0 1 8 c 6+00 lOOW 1 8 c 2+40 0 1 8 c 97+00 0 1 8 c 84+00 258 1 8 c 0 t'"' 90+00 lON 1 8 ,., t'Ij .... '--40+00 0 l 8 c n V2+00 0 1 8 c :::0 ttj t<:i 28+00 20E , 8 I" .... \... 06/22/78 23+00 0 1 8 c 4+75 lODE 1 8 c 6+50 1 ovJ 1 8 ,., '--7+50 llOW 1 8 c 84+00 0 1 8 c 90+00 308 1 8 c 41+75 0 1 8 c 06/23/78 3+00 0 1 8 c 25+00 lOE 1 8 c 33+00 20W 1 8 c 82+00 30S 1 8 c 91+50 0 1 8 c 38+00 0 1 8 r .... '"" T") I A r\ "\ A'II.T , 8 ,.., VJTV\.) L.Vl.l .J.. \,_, Rev. 0 TABLE 2.5-73 (continued) Sheet 10 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness ( h' Date (feet) Number (inches) Fill Type'-' 06/24/78 29+95 4\tV 1 8 c 22+40 4E 1 8 c 95+91 6N 1 8 c 6+65 l20E 1 8 c 0+60 4E l 8 c 91+00 9N 1 8 c 44+15 28 1 8 c 30+00 2 8 (' '-' 0 06/26/78 81+00 0 1 8 ,... t"' ... '-hj 86+00 20N l 8 (' v 23+00 20E l 8 (' '"' :::0 33+00 0 l 8 c t2J c:J 9+50 40\*v , 8 c ;A; .l. 16+00 60\tll 1 8 c 15+00 90W 2 8 c 8+15 12E 3 8 c 14+00 0 1 8 c 06/27/78 82+00 248 1 8 ,.., ... '-85+30 0 1 8 ,... ..... 28+00 0 1 8 c 34+00 20W 1 8 c 11+20 0 2 8 c 44+00 40N 1 8 ,.., '-45+00 30N 2 Q r< v '-06/28/78 10+00 , 8 c ... '11Af'\ l 8 c L.TUV 36+40 60N 1 8 c n--.:7 0 '!

    • Date 06/28/78 06/29/78 06/30/78 0'7 /(11 /'70 TABLE 2.5-73 (continued) Location Offset from -* . . (a) ::;t:at:lon * * (reet) 45+45 33+82 21+58 16+00 13+90 5+05 1+95 43+10 24+20 30+80 83+10 16+00 13+00 14+20 12+90 15+95 11+95 9+80 15+00 13+10 44+60 38+30 12+00 84+10 80+00 01...1_1("\ U-L.T.J..V 26+35 0 30W 15V..' 80W 4W 40W 5W 55N 6W 81!: 0 90W 108W 4E l21E 5E 95W 0 60N 4S l5N , .J..Ql" 0 Lift Number 2 1 1 2 1 1 1 1 1 l l l 1 4 2 1 1 2 1 3 1 1 4 1 2 , .l. 1 Lift Thickness (inches) 8 8 8 8 8 6 6 6 6 6 6 6 6 6 6 8 8 8 8 8 8 8 8 8 8 6 6 Sheet 11 of 61 (b) Fill Type' ' c c c c c c c c c c c c ,... '-c c c c c c c c c c c c ,..., '-c 0 :E; 0 t"' h'j () :::0 t'j t'j ;:>;;

    TABLE 2.S-73 (continued) Sheet 12 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) .Number (inches) Fill 07/01/78 44+0S 4N 1 6 c 14+90 lOSE 1 6 c lO+lS 7SE 1 6 c 12+80 8SW 1 8 c 1S+8S 4W 1 6 c 84+8S 4S 1 ,.. c 0 30+18 3E 1 8 c lS+OO 2 6 c 07/05/78 8+00 llOW l 8 c :E: 0 11+15 lOOW l 8 ,., t"" rJ:j 12+25 sw 1 8 c 5+85 50E 1 8 c (} 12+60 60E 1 Q r tJ:j ... v tJ:j 9+3S 90E 1 8 c 10+00 20E 1 8 c 44+00 0 1 8 c 38+00 lON 1 8 c 07/06/78 7+SO 0 2 8 c 12+SO 20E 2 8 c 16+10 lOOE , ,.., c .L 0 7+0S 90E 1 8 c 10+00 20E 1 8 c 15+00 , r-... "' A c .l .J VA.J 1. 0 8+SO sow 1 8 c 14+10 110W 1 Q r ..... v S+9S 13SW 1 8 c 4+50 lOOE 2 8 I"' \... 7+30 90E 2 8 c Rev. 0 TABLE 2.5-73 (continued) Sheet 13 of 61 Location Offset from Lift Station{a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 07/06/78 16+00 20E 2 8 c 18+00 0 2 8 c 10+00 40W 2 8 c 14+30 100W 2 8 c 07/07/78 10+80 20E 1 8 c 12+20 0 1 8 c 4+30 125E 1 8 c 9+20 50E 1 8 c :E; 13+00 130E 1 8 c 0 18+20 90E , " r t"" ' 0 '"' i""ZJ 7+95 40\-'J 1 8 c () 14+90 lOOW l 8 c :::0 18+50 sov.J 1 8 ,., !:%j \., 6+60 100W 1 8 c !A: 10+25 115W 1 8 c 6+95 115E 1 8 c 42+10 20N 1 8 c 36+00 0 1 8 c 7+30 60W 1 8 c 07/08/78 17+10 1 8 c 15+40 1 8 c 11+90 101W 1 8 c 6+75 .1. 8 c 4+85 96W 1 8 c 9+95 ll2vJ 1 Q ,., .).. u '-37+55 68 1 8 c 42+90 248 1 8 ,., \.. Rev. 0 TABLE 2.5-73 (continued) Sheet 14 of 61 Location Offset from Lift Date Station(a) Centerline Lift Thickness Fill Type(b) (feet) Number (inches) 07/08/78 16+30 lODE 1 8 c 14+45 85E 1 8 c 9+85 -1 8 c 4+75 120E 1 8 c 18+30 120W 1 8 c 13+00 -1 8 c 3+50 -1 8 c , 11

    • r ,.., , , , " , () c ..l.LfTOU ..l...l...l.L:. ..1. 0 18+70 90E l 8 c 0 07/ll/78 5+10 5 OtnJ l 8 c t'"' '.l..J 17+40 lOOW l 8 ,., '-\-) 1+40 40W l 8 c '::d 12+70 100E 1 8 c t:"l ..L t:r:l 8+80 20W 1 8 c :;;>:: 43+00 lOS 1 8 c IV17+80 lE 1 8 c 07/12/78 18+70 -1 8 c 18+10 70W 1 8 c 9+00 65E 1 8 c 15+80 85E 1 8 c 5+98 0 1 8 c 14+60 sow 1 8 c 4+10 -1 8 c 7+50 -2 8 c 11+00 -'") 8 ,., '-2+00 -, 8 ,., ..L "--07/15/78 Rev. f'l v TABLE 2.5-73 {continued) Sheet 15 of 61 Location Offset from Lift t Centerline Lift Thickness Date Station ,a) (feet} Number (inches) Fill 'l'ype (b) 07/17/78 17+10 70W 1 8 c 14+20 40W 1 8 c 2+40 0 1 8 c 10+00 20W 1 8 c 73+00 150S 1 8 c 75+00 lOOS 1 8 c 73+50 40S 2 8 c 75+50 1208 2 8 c 07/18/78 75+20 225S 1 8 c 0 t"" 74+90 4US 1 8 c "".:! 73+50 2 8 c ,..... \. 75+50 1108 2 8 c ::0 ...... 74+00 30S 3 8 I"' !..-.l ..... t;:j !": 07/19/78 73+20 llOS 1 8 c 16+60 60E 1 8 c 17+10 20W 1 8 c 18+05 110W 1 8 c 75+20 210S ") 8 ,... "-'-' 73+40 -2 8 c 8+00 sow 1 8 c 9+70 50E 2 8 c 3+00 -2 8 c 07/20/78 17+70 8 (\'{,, vn 1 8 c 17+10 55E 1 8 c 18+10 40W 2 Q c u 15+50 60E .... 8 c 4 Re"v*. 0 TABLE 2.5-73 {continued) Sheet 16 of 61 Location Offset from Lift Station{a) Centerline Lift Thickness Type{b) Date (feetj Number {inches) Fill 07/20/78 3+15 0 2 8 c 12+50 0 2 8 c 76+00 275S 1 8 c 74+00 160S 1 8 c 73+60 30S 2 8 c 74+50 200S 2 8 c 73+10 100S 2 8 c 75+50 60S 3 8 c 73+00 280S 3 8 c :::8 76+25 40S 4 8 c 0 t:"1 73+20 H:iU ti 4 8 c ..., II 1 r. I"\ 225S 4 8 c () /<tTUU ...,.....,. . ...,,... 50S 5 8 c !'0 /.)T/:> !:%j 13+25 , 8 ,.. !:%j ...IV'-' .J.. 1..-;;>;: 7+40 20W 1 8 c 07/21/78 74+00 200S 1 8 ,.. \..-75+00 lOOS 1 8 c 11+80 39E 1 8 r '"' 9+10 lOE l Q 0 v 5+85 15W l 8 c 17+95 sow 1 8 c 76+25 250S 2 8 c 73+50 140S 2 8 c 72+90 195S Q 0 ..J v 74+00 3 8 r '"' 07/22/78 17+50 Q&::J< 1 0 I" .J.. u '-75+10 llOS , 0 \... .l. 4+30 15W 1 8 c Rev. 0 Date 07/22/78 07/24/78 07/25/78 TABLE 2.5-73 (continued) Sheet 17 of 61 Location Station(a) 72+15 11+05 76+40 71+15 74+25 76+00 74+45 12+90 5+98 74+10 ...,""'I , IL.T.J..;:) 75+20 74+50 76+00 72+75 75+00 73+50 75+25 75+80 7+00 15+00 19+50 17+00 73+40 3+85 '7_L1f' .J. V 17+60 Offset from Lift Centerline (feet) 270S 30E 260S 200S 130S 190N 28N 35W 5E lOOS , ..., A,.., .J../Vu 90S 70N 250N 2608 lOOS 25S 240N SON 0 0 50E 0 200N sw 4E Lift Number 2 1 2 1 1 1 1 1 1 l 1 l 1 1 1 2 2 2 2 2 1 1 1 1 2 l , -'-1 Thickness (inchesj 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 Fill Type(b) c c c c c c c c c c c c r ..... c c c c c c c c c c c c c c Rev. 0 TABLE 2.5-73 (continued) Sheet 18 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Fill Type(b} Date {feet) Number {inches) 07/25/78 75+20 lOON 2 8 c 75+80 lOON 1 8 c 74+40 225N 1 8 c 72+50 1508 1 8 c 74+60 22 1 8 c 11+60 lOW 1 8 c 07/26/78 71+10 2308 1 8 c 72+40 1505 1 8 r< ... ...., 75+40 200S 1 8 c 0 76+00 7 l 8 ,., t"" .... !-:tj 75+00 40N 1 8 c n 75+20 95N 1 8 c :::0 o::l 19+00 15W 1 8 c t'J 14+90 0 1 8 c ;;';: 10+90 25E 1 8 c 4+50 5E 1 8 c 73+50 150N 2 8 c 75+50 225N 2 8 c 44+00 0 1 8 c 07/27/78 75+00 -2 8 c 73+00 -2 8 c 76+05 15N 1 8 c 74 0 130N 1 ,.., c 0 74+85 270N 1 8 c 15+30 15W 1 8 c 18+90 10E 1 8 c 76+00 60S 1 8 c 11+40 20E 1 8 c Rev. " u TABLE 2.5-73 (continued) Sheet 19 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 07/27/78 5+80 0 2 8 c 76+70 130N 2 8 c 18+30 lOW 2 8 c 16+40 18W 2 8 c 74+60 2558 2 8 c 72+80 2258 2 8 c 07/28/78 76+70 2658 1 8 c 76+50 408 1 8 c :E: 76+85 90N 1 8 c 0 73+80 275N l 8 c h:j I.., I 265N l 8 c iOTL:;:) (J ..., " I , 1"\ 60S l 8 c :::0 /.GTJ.V 74+00 " 1 0 ""' t:<:i u ..t.. u ..... cxj 76+00 208 1 8 c " 75+50 lOON 1 8 c 73+10 250N 1 8 c 74+00 SON 1 8 c IV23+30 4W l 8 r '-IV14+00 2 8 r-IV7+00 2 8 c IV3+00 1 8 c V2+00 1 8 c 07/31/78 66+50 40N 2 Q ,... v 68+50 75N 2 8 r '-69+00 1258 2 8 r '-67+00 20 ') Q "' u 75+90 20S , ,... \.... ..L 0 73+20 0 1 8 c Rev. 0 Tl,BLE 2.5-73 (continued) Sheet 20 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 07/31/78 74+00 150N 1 8 c 76+95 285N 1 8 c 73+00 lOS 1 8 c 71+00 408 1 8 c 74+50 lOON 1 8 c 75+00 200N 1 8 c 72+00 lSON 1 8 c 67+70 20S 1 8 c ,... {"'\ * ,... r\ ., 1"\ r\,.., , n c oo-r-uu .iUUt> .i 0 68+50 1958 l 8 c ::8 0 69+50 250S l 8 , t"1 Clj 08/01/78 76+50 200N 1 8 c () ::0 73+90 220l'l! l 8 c t<:l 73+00 260N 1 8 c 08/02/78 76+00 1 8 c 65+50 1 8 c 70+10 1 8 c 69+20 200S 1 8 c 67+30 190S 1 8 c rr, , 1"\ 80S , 8 c OO"'t".iU .i 67+70 130S 1 8 c 68+90 0 1 8 c 74+70 75S l 8 c 72+30 25S 1 8 c 67+80 ")nc 1 Q r <<..VU ... v '-77+00 SON 1 8 c 44+05 15N 1 8 ro '-' 39+50 0 1 8 c n-... ., 0 r.-...c v
    • Tl\BLE 2.5-73 (continued) Sheet 21 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Fill Type(b) Date (feet) Number (inches) 08/02/78 72+40 230N 1 8 c 67+00 260N 1 8 c 08/03/78 76+00 75N 1 8 c 72+30 60N 1 8 c 69+90 120N 1 8 c 68+10 200N 1 8 c 65+50 175N 1 8 c r r, , r-. 225J:..J , () ,.., OO'T".LU .L 0 65+70 260S 1 8 c :8 0 68+60 200S 1 8 c t"' "%1 73+30 2758 l 8 c 65+20 lON l 8 c (J -""' 75+00 258 1 8 c t_':!:j ...... . -.. 68+80 280N 1 8 c ?::: 73+90 250N 1 8 c 08/04/78 71+80 lOON l 8 c 69+40 40N 1 8 c 76+10 30S 1 8 c 72+80 50S 1 8 c 73+55 l90N 2 8 c 69+90 190N 2 8 c 76+25 65S 1 8 c 73+20 808 l 8 c 70+20 20S 1 8 c 66+70 250S 1 Q r ..... v .... 70+30 280S 1 8 c 72+60 27 58 1 8 r '-' 77+00 275N 1 8 c <;;Vo 0 TABLE 2.5-73 (continued} Sheet 22 of 61 Location Offset from Lift 8tation(a) Centerline Lift Thickness Fill_ 'f_ype (b) Date (feet) Number {inches) 08/04/78 73+60 255N 1 8 c 68+00 280N l 8 c 65+50 2008 l 8 c 70+00 2508 l 8 c 76+00 25N l 8 c 74+00 75N 1 8 c 08/05/78 68+00 30N 1 8 c 72+10 505 1 8 c 0 13+75 lOW 1 8 c t"' ..l n:! ln+un bW 1 8 r ,_. 5+15 0 l 8 r () '-;;o 17+60 lOE l 8 c C'J t1j 7 1 n 308 1 8 c ::>>: ..I.V J.. 67+10 60N l 8 c 69+83 0 1 8 c 74+40 90N 1 8 c 71+15 245N l 8 c 65+15 280N 1 8 ,... .... 76+45 2008 l 8 c 74+30 2305 1 Q r .... " .... 72+85 lOOS l 8 c 70+95 2108 1 8 c 68+95 2855 l 8 c 66+85 60S , 8 c .J. 26+97 4E l 0 I" v .... 08/07/78 5+00 -1 8 c .L 17+20 -1 8 A \., 19+50 -1 8 c Rev. 0 -----**-* -------.--.. ... .. -------Tt777Z z** *--r -*--zz **-------* ----** 7rrrt:T*--* *v ---------------------------* -----..... _. ---*-*--------------*

    TABLE 2.5-73 (continued) Sheet 23 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness 'T'un<=>(b) Date (fppt-) f\It1mhPr (inrhPc::) F' i 1 1 ,----, -.. -.... *---,--*-... *--, -----.zr:--08/07/78 11+50 -1 8 c 40+00 -1 8 c 44+50 -1 8 c 74+80 230N 1 8 c 65+75 -1 8 c 70+50 230N 1 8 c 74+50 210N 1 8 c 70+00 -1 8 c 71+25 -l 8 c 65+50 -l 8 c :E: 0 76+50 -l 8 ,.., ...... L" 70+50 l 8 r' hj -..... 68+00 -l 8 c 0 ;;o 74+25 -1 8 c t:tJ 67+00 280S 1 8 c tlj :,::; 72+75 -1 8 c 08/08/78 75+85 275N 2 8 c 72+50 260N 2 8 c 68+60 280N 2 8 c 66+00 90N 2 8 c 70+05 60N 2 8 c 74+60 15N 2 8 c 77+00 -2 8 c 18+10 , 8 c ... 4+80 -1 ..L 8 c 76+00 60S 1 8 c 72+90 100S 1 8 c 69+95 1208 1 8 , .._ 66+10 150S 1 8 c T""i---r. !'\ev. v TABLE 2.5-73 (continued) Sheet 24 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Fill Type(b) Date (feet) Number (inches) 08/08/78 16+15 5W 1 8 c 12+70 15W 1 8 r ...... 7+15 0 1 8 c 75+00 250S 1 8 c 71+80 275S 1 8 c .L 68+40 260S 1 8 c 32+75 5W 1 8 c 43+00 115N 1 8 c 38+00 120N 1 8 c :a: 0 ,-,o ;,-,,-l J'lo CO tAll .,. C' fo.l ., 8 n t"' VOiUJiiO uo-rvv i L. ..... tTl 76+65 1 1:;.1\1 2 8 c ..i,.V () '7 'LJ... 1 I:; ')Q()1\T ') Q r ...... /L.I.J...J £.V V.1.'4 L. v ...... "" 68+45 160N 2 8 c tr.:: ._. L.-.J 18+35 22W 1 8 c :;.:;: 11+80 15E 1 8 c 5+40 0 1 8 c 67+50 35N 1 8 c 70+30 20N 1 8 c 76+40 5N 1 8 c 75+00 lOS 1 8 c 70+50 25S 1 8 c 67+30 200S 1 8 c 69+15 140S 1 8 c 67+50 280N l 8 c 69+60 275N 1 8 c 73+50 260N 1 8 c 08/10/78 23+00 -2 8 c 27+00 -2 8 c 68+50 -2 8 ,-. \.... Rev. " v TABLE 2.5-73 (continued) Sheet 25 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 08/10/78 72+10 2 8 c 75+15 2 8 c 68+75 60N 1 8 c 67+95 lOS l 8 c 74+40 0 1 8 c 66+50 265N l 8 c 69+00 230N l 8 c 72+97 265N 1 8 c 69+15 l40S l 8 c 71+90 260S l 8 c 0 -:./:..LOn .IIIII-t"" ; -.o;; vv .:..vv..,; ..... ""' '-67+80 250N l 8 c (-) 70+75 275N l 8 c !::0 76+25 255N l 8 c tt:1 t::l 75+85 75N l 8 c ;;>;: 08/ll/78 75+50 290N 2 8 c 75+98 5N 2 8 c 72+10 35N 2 8 c 68+50 25N 2 8 c 25+65 5E 2 8 c 68+95 225S 2 8 c 71+00 275S 2 8 c 66+50 265N l 8 c 74+40 0 l 8 c 75+80 lOON l 8 c 72+40 l20N l 8 c 68+10 90N l 8 c 57+20 75S , 8 I" .l. \... 70+05 l25S 1 8 I" \... .. ..-0 Kt:V* TABLE 2.5-73 (continued) Sheet 26 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 08/ll/78 74+80 lSOS 1 8 c 74+60 225S 1 8 c 72+60 240S 1 8 c 68+40 280S 1 8 c 67+10 275N 1 8 c 70+80 230N 1 8 c 08/12/78 68+40 2 8 c CI\1"1C: ") 0 ""' U;:1T/J ,c. 0 1.,.. :E: 72+00 280N l 8 c 0 67+05 200:N l 8 c t"' f=1j 76+05 40N l 8 c r-........ '. 73+30 llON 2 8 c :;o 68+85 70N ..... ,., c J:%j L 0 t"1 67+60 5S ..... 8 c ?": L. 69+95 20S 2 8 c 72+60 0 2 8 c 74+95 298N 2 8 c 70+40 215N 2 8 c 67+00 245N 2 8 c 75+40 2 8 c 71+10 2 8 c 76+85 35N 1 8 c 73+70 90N 1 8 c 69+10 l Q r v ..... 67+80 60S 1 8 c 70+35 40S 1 8 c 74+75 50S 1 8 c 16+10 lOE 1 Q f' .... u " 11+00 1 Q f' v ..... D=H 0 J,.'\.'1,;,.. v

    • TABLE 2.5-73 (continued) Sheet 27 of 61 Location Offset from Lift Station{a) Centerline Lift Thickness Fill Type(b) Date (feet) Number (inches) 08/12/78 4+85 lOW 1 8 c 67+75 280S 1 8 c 70+00 210S 1 8 c 72+95 270S 1 8 c 75+80 210N 1 8 c 08/14/78 72+00 -2 8 c 70+50 -2 8 c L01Ar\ -,.., 8 ro OOTUU £. "" ::E: 67+00 -2 8 c 0 t"1 69+25 -2 8 c m 76+20 2908 1 8 c \-:l 72+80 2608 1 8 c :::0 t"l 68+50 275S 1 8 c ::J 76+10 290N 1 8 c ;:>::; 69+10 lOON 1 8 c 71+50 -1 8 c 67+25 -1 8 c 74+00 -1 8 c 73+50 -1 8 I" 1..., 77+00 -1 8 c 75+00 75N 1 8 c 76+50 -2 8 c 74+25 -2 8 c 08/15/78 75+08 305S l 8 c 73+00 2105 1 8 c 69+10 295S 1 8 c 67+35 111nc 1 Q I" ..L u '-70+05 50S 1 Q I" v '-n-..... 0 1:'\'=V*

    TABLE 2.5-73 (continued) Sheet 28 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number {inches) Fill 08/15/78 77+30 lOS 1 8 c 66+00 270N 1 8 c 68+70 280N 1 8 c 76+15 230N 1 8 c 68+00 1 8 c 72+30 1 8 c 08/16/78 69+25 1255 1 6 c 72+00 25S 1 6 c ::E; 74+80 258 1 6 c 0 69+85 1 6 c L' 75+20 2608 l r-c 0 () ""7C I It 1""1 ., "t 1'\-., T 1 6 /UT':tU .l..l.U l'l c.; !:<:! 72+60 75N , c ,.. i::rJ .... u ..... t".i 68+50 SON , 6 c :;;;;; .L 67+75 60S 1 6 c 69+25 l25S 1 6 c 67+10 1 6 c 70+65 1 6 c 08/17/78 75+85 2508 1 8 c 73+20 2208 1 8 c 69+20 255S 1 8 c 67+50 1 8 c 72+20 1 8 c 73+50 1 8 c 75+30 10N 1 8 c 76+50 1 8 c 77+00 , n c J.. 0 74+00 1 8 c Rev. 0 TABLE 2.5-73 (cortinued) Sheet 29 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness 'b Date (feet) Number (inches) Fill Type ( ) 08/17/78 71+00 -1 8 c 70+50 -1 8 c 08/18/78 66+05 290N 1 6 c 68+45 275N 1 6 c 73+35 240N 1 6 c 76+90 180N 1 6 c 73+00 150N 1 6 c C"110f"\ , c f'\'Jr.l , ,-, -0/TOU .L 0 Ul'l .L 0 ..._ """ 70+10 l 6 c 0 -t"" 75+00 -2 6 c l'"!j n i-T; 08/19/78 76+85 SON 1 r c 0 Clj 73+45 25S l r c tr.l 0 69+50 60S l 6 c 77+20 260N 1 6 c 73+60 270N 1 6 c 69+15 210N 1 6 c 08/21/78 75+00 250N 1 8 c 71+50 200N 1 8 c 66+50 275N 1 8 c 76+50 lOON 1 8 c 70+25 65N 1 8 c 68+00 0 l 8 c 74+00 50S 1 8 c 72+00 75S 1 8 c 65+50 60S 1 8 c Rev. 0 Sheet 30 of 61 TABLE 2.5-73 (continued) Location Offset from Lift Station(a) Centerline Lift Thickness 'T'vnl'>(b) Date ffl'>l'>r\ Number finrh!'>c:\ Fill \---._, \. -**-* .. --, -.I r-08/22/78 76+00 230S 1 8 c 74+00 250S 1 8 c 71+50 280S 1 8 c 67+00 220S 1 8 c 77+00 200N 1 8 c 70+00 280N 1 8 c 68+00 250N 1 8 c 65+50 220N 1 8 c (\Q/')7/./'7Q 74+60 75N l 8 ::E; VVf IV c 0 70+50 l 8 ,.., t'"' *.:...; 67+80 758 l 8 c (-) 69+50 1258 l 8 c :::0 72+25 100S 1 8 c I:J:j I:J:j 74+00 250S 1 8 c :;.;: 76+50 225S 1 8 c 71+20 17 5S 1 8 c 08/24/78 76+80 60S 1 6 c 72+95 85S 1 6 c 69+45 65S 1 6 c 67+40 225S 1 6 c 70+40 245S 1 6 c 72+98 268S 1 6 c 77+00 l 6 c 77+50 1 6 r .J,. '-71+40 1 6 c 08/25/78 70+30 , 6 ro J. 73+10 150N 1 6 ro Rev. " v TABLE 2.5-73 (continued) Sheet 31 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 08/25/78 76+15 200N 1 6 c 75+95 0 1 6 c 71+90 lON 1 6 c 71+25 lOOS 1 6 c 76+80 120S 1 6 c 08/26/78 70+60 285S 1 6 c 72+90 2108 1 6 c 76+50 245S 1 6 c 77+00 230N 1 6 c 0 72+85 240N l 6 c r r. * , ,.... 270i..J 1 6 c OOT".LU (J 74+30 l 6 c ;;o 75+75 , 6 " /::tj ..L 1.... [tj :"1 08/28/78 64+75 1 6 c 67+20 1 6 c 70+00 1 6 c 74+50 1 6 r '-08/29/78 76+30 1508 1 8 c 73+00 2508 1 8 c 69+45 275S 1 8 c 78+30 200N 1 8 c 75+50 215N l 8 ,... \.-67+75 80N 1 8 r '-08/30/78 77+35 1nnc: Q ,... ..... u \.-74+85 , .., "("" ..L"+/-VU 8 c Rev. 0 TABLE 2.5-73 {continued) Sheet 32 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 08/30/78 73+25 160S 1 8 c 66+90 85S 1 8 c 65+60 295S 1 8 c 70+15 274S l 8 c 69+10 80S 1 8 c 08/31/78 77+80 230N l 6 c 74+35 250N l 6 c t:""'11f"\A , 10' ,., O/T::1U ..L. u \... 66+10 l30N l 6 c 0 75+05 l 6 c t"" *-... 73+40 0 l 6 c () 70+10 l20N l 6 c ;;o 69+40 200N l 6 c l:'j t=:J 85+00 45S 1 6 c ;:><; 84+00 50S 1 6 c 09/01/78 72+70 190S 1 8 c 70+30 90S 1 8 c 68+80 l35S l 8 c 66+00 245S 1 8 c 77+10 200N 1 8 c 72+95 280N 1 8 c 69+90 245N 1 8 c 78+00 200S l 8 c 73+20 150S 1 8 c 09/02/78 58+70 230N l 8 c 57+ 50 260N 1 8 ,.., I.., 58+50 180N 1 8 c Rev. ,... v TABLE 2.5-73 (continued) Sheet 33 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 09/02/78 59+00 160N 2 8 c 55+50 200N 2 8 c 58+30 285N 2 8 c 66+00 lOOS 1 8 r ..... 69+50 250S 1 8 c 70+00 50S 1 8 c 71+00 280S 1 8 c 73+00 150S 1 8 c :.:E; '""' 09/05/78 60+50 175N 1 6 c t'"' !-:j 58+00 l50N l 6 r ..... 55+90 lOON l 6 ,, n '"" :::0 61+90 50S l 6 c czj t:z:i 64+50 40S , 6 c .l. 67+10 lOOS 1 6 c 72+50 240S 1 6 c 70+00 0 1 8 c 09/06/78 61+80 75S 1 Q r v ..... 59+00 120S 1 8 c 56+00 200N 1 8 r ..... 59+80 l50N 1 8 c 60+50 75S 1 8 c 62+00 lOON 1 8 c 58+ 50 60N 1 Q t" u \... 62+25 80S 1 8 r ..... na /n7 /7Q t:;Q.J_(\() 1 (\r\1\T 1 c: t" VJfVIfiV .,J.JIVV ..L.VVl.'! .J_ u \... C 1 I("\("\ ('\/"1'-"t , 0 c UJ..TVU OV1\I J. 62+30 60N 1 6 c Rev. 0 TABLE 2.5-73 (continued) Sheet 34 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 09/07/78 65+00 60S 1 6 c 67+00 65S 1 6 c 09/11/78 56+20 190N 1 8 c 61+20 200N l 8 c 62+50 60N 1 8 c 64+50 lOGS 1 8 c 67+00 250S 1 8 c 68+50 225S 1 8 c :lE 68+00 200S 1 8 c 0 65+35 265N l 8 c t= 67+80 285N 1 8 ... '-n 68+00 125N l 8 c :::0 69+00 60N 1 8 c t:r:l ..L tt:l 71+70 258 1 8 c ;::>;; 73+25 lOON 1 8 c 75+30 SON 1 8 c 76+10 25N l 8 c 57+00 758 1 8 c 59+00 1008 1 8 ,... ..L '-61+50 1258 1 8 c 78+00 258 1 8 c 56+50 1758 1 8 c 09/12/78 65+35 265N 1 Q ,... v '-59+80 200N 1 8 c 58+60 lOON 1 8 c 60+30 ')Q nJ..r 1 Q ,... L..VVJ.'i ... v '-C_/I_I_ Af'\ , " c V"";T--:V LIJC> .l. 0 95+05 2558 1 8 c Rev. 0 Date 09/12/78 09/13/78 09/15/78 09/16/78 09/18/78 TABLE 2.5-73 Location Offset from Centerline Station (a) (feet) 67+95 68+90 70+00 66+10 73+10 57+30 59+25 76+10 57+90 62+95 55+00 56+00 76+10 57+00 70+00 69+10 54+20 53+90 57+30 60+95 60+05 62+95 70+00 63+20 c:.c:.__j_nn VV!;;/V 568 258 15S 25S 175N 280N 285N lOON l45N lOON l50N 200S lOON 1008 lON 0 155S 290S 215N 200N 0 20N 150N 80S ")C:(" L.JQ Lift Number 1 1 1 1 1 1 1 1 l l l l 1 1 1 l 1 1 1 1 1 l l 1 , ..L Lift Thickness (inches) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 Sheet 35 of 61 *---(h) F lll Type '--' c c c c c c c c c c c c c c c c c c c c c c c c Rev. o Date 09/18/78 09/19/78 TABLE 2.5-73 (continued) Location Offset from Centerline Station (a) (feet) 70+05 76+30 59+15 63+10 69+05 73+85 57+10 59+50 58+00 60+10 63+40 66+7 5 66+05 63+90 61+10 57+10 63+95 59+90 58+85 62+00 64+00 55+70 61+95 64+70 67+60 60+35 54+00 59+10 60+00 40S 65S 300N 275N 200N 170N 40S 150S 320S 295S 2708 220S lOSS 90S 40S 75S 280N 240N 0 20S 70N 290S 255S 285S 250S 245N 150S 100S 0 Lift Number 1 1 1 1 1 1 1 1 1 l l l l 1 1 1 l 1 1 1 1 1 1 1 ..J.. 1 1 1 1 1 Lift Thickness (inches) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 Sheet 36 of 61 Fill Type(b) c c c c c c c c c c c c c c c c c c c c c c c c c c c c Rev. 0 TABLE 2.5-73 (continued) Sheet 37 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness ( b \ Date (feetj Number (inchesj Fill Type' ' 09/19/78 73+00 150N 1 8 c 70+50 190N 1 8 c 09/21/78 57+70 0 1 8 c 63+00 10N 1 8 c 56+00 2008 1 8 c 54+00 1608 1 8 c 57+80 1808 1 8 c 60+30 3008 1 8 c ::E! 62+85 1508 1 8 c 0 L' hj 09/22/78 58+40 300N l 8 c n r..,,..," ,...., .. l 8 c O.JT..)U L. I :>L'J t'j hl-l-Qt:; 2'){)1\T 1 0 r' tlJ V.....l L. v ..... ..L u ...... :;;;; 58+90 1008 1 8 c 61+30 1608 1 8 c 63+70 58 1 8 c 56+30 3008 1 8 c 62+75 2808 1 8 c 59+15 3158 1 8 c 58+50 15N 1 8 c 64+30 lOON 2 8 c 62+00 150N 2 8 c 57+40 200N 2 8 c 61+90 SN 2 8 c 63+20 30S 2 8 c 59+85 20S 2 8 r .__ 64+90 295S 2 Q c v C.')..L-1::{) ")f'\f"\C ..., <"'> ..... .....!V .,)VV;..J L 0 ..... 60+60 0 2 8 c 63+60 70S 2 8 c Rev. 0 TABLE 2.5-73 (continued) Sheet 38 of 61 Location ----Offset from Lift Date Centerline Lift Thickness b Station{a) (feet) Number (inches) Fill Type( ) 09/23/78 59+00 275N l 8 C 61+70 85N l 8 C 58+85 80S l 8 C 61+20 135S l 8 c 64+20 40S l 8 c 64+85 270N l 8 C 58+60 290S l 8 c 63+35 300S l 8 c 69+70 l30N l 8 C 74+40 l02N 1 8 C 58+9 5 58 l 8 c **J 60+00 70S l 8 C Q 63+70 50S l 8 C 1chl , Q r v 70+90 20S l 8 C 74+20 5S l 8 c 78+15 30S l 8 c 63+50 280S 2 8 c 59+95 295S 2 8 C 58+00 200N 2 8 C 09/25/78 64+50 150S 1 6 c 61+50 140S 1 6 c 58+50 75S l 6 c 60+40 150S l 6 c 62+00 130S l 6 c 64+00 160S l 6 C 64+50 l25N 6 C 58+75 275N 6 C Rev. 0 TABLE 2.5-73 (continued) Sheet 39 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness { h' Date (feet) Number (inches) Fill 09/26/78 64+90 0 1 6 c 60+50 SON 1 6 c 72+70 75N 1 6 c 76+40 75N 1 6 c 59+00 275S 1 6 c 62+80 260S 1 6 c 66+00 260S 1 6 c 59+40 290N 1 6 c 61+50 290N 1 6 c 0 61+50 290N 1 6 c L' i":rJ 61+50 270N l 6 c n 63+70 """'...,.E"'."l."! l 6 c L. ! U!\J :::0 ........................ lOOS l 6 c *-" o.J-rou 62+50 1 ll f\C 1 c: ,., -..L""%Vs....J .J. v ,.., 61+30 1808 , r c .L 0 63+70 160S 1 6 c 09/27/78 60+50 260N l 6 c 61+50 260N 1 6 c 60+50 125N 1 6 c 58+70 lOON 1 6 r ..... 55+70 lOOS 1 6 c 56+60 230S 1 6 c 61+00 80S 1 6 c 59+80 70S 1 h c v 58+70 llOS 1 6 r ..... 78+00 lOON l 6 c 77+10 Q f\1\T 1 c. ,., VVJ."'I .J. u .-,C__t_r:::A o,.....,, , c /JT...JV OUl'i ..L 0 69+50 80N 1 6 c 0L:"l.'f7 (I v v TABLE 2.5-73 (continued) Sheet 40 of 61 Location Offset from Lift . (a) Centerline Lift Thickness Type(b) Date Stat1on (feet) Number (inches) Fill 09/27/78 60+10 280S 1 6 c 61+90 280S 1 6 c 62+90 290S 1 6 c 64+50 280S 1 6 c 71+50 60S 1 6 c 75+50 80S 1 6 c 72+50 60S 1 6 c 77+50 80S 1 6 c 09/28/78 61+00 225N 1 6 c ::8 0 63+25 17 l 6 c t"' 65+00 275N l c:. c v (} 62+50 lOON l 6 c 59+90 0 l r c t_':l:j 0 t:"l 64+25 SON 1 6 c ::-;;; 58+00 lOOS 1 6 c 61+00 75S 1 6 c 64+50 50S 1 6 c 64+40 50S 1 6 c 71+75 SON 1 6 c 74+75 0 1 6 c 77+50 75N 1 6 c 61+60 250S 1 6 c 62+10 260S 1 6 c 65+25 250S 1 r ,.... .... 0 \... 63+75 225S 1 6 c 71+00 50S 1 6 c 74+50 70S 1 6 c 78+00 90S 1 6 ,.., ..... '-0 TABLE 2.5-73 (continued) Sheet 41 of 61 Location Offset from T i 4"+-L.l.&. .L '-Station(a) Centerline Lift Thickness Type (b) Date (feet) Number (inches) Fill 09/29/78 58+00 270N l 6 c 60+00 250N l 6 c 62+00 l75N l 6 c 63+50 lSON 1 6 c 64+00 l60N l 6 c 76+00 25N l 6 c 74+10 SON l 6 c 71+50 75N 1 6 c 60+75 1508 l 6 c 57+50 2208 1 c: ,., 0 ... u \..-t"' 58+75 lbjti l 6 c i'"Xj 59+50 1758 l 6 0 r'\ " , ... 64+00 2508 1 6 c ;;c !:';1 62+25 () , 6 c t!j u .L ?'/ 62+50 lOOS l 6 ,-. " 65+25 30N l 6 c 77+75 *-* 758 1 6 c 83,635Nt..:5J 99,734E 4 6 c 10/02/78 58+25 300N l 6 c 60+20 250N l h ,., v '-' 63+00 290N l 6 c 65+30 290N l 6 c 65+00 2008 l 6 c 63+20 2508 l 6 c 61+00 2108 1 c: ,., .... v \.-60+80 2058 1 c: ,., .... v \..-77J...r::.r. r::. () i\l , ,.. c II I...JV ..JUl. ... .L 0 (c) 'SNUPPS coordinates. Rev. 0 TABLE 2.5-73 (continued) Sheet 42 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Fill Type(b) Date (feet) Number (inches) 10/02/78 75+00 0 1 6 c 73+25 50S 1 6 c 72+00 75N 1 6 c 69+85 75S 1 6 c 64+75 0 1 r c 0 61+00 0 1 6 c 58+75 50S 1 6 c 56+ 50 100S 1 6 c 61+50 280S 1 6 c 63+25 275S 1 6 c 0 t'"' '"' 10/03/78 74+75 1 8 c I ;,; l.'l n "7/"'!.t,....A ,-I"'T l 8 c -/VTL.U o::n>j """ l:zj 67+00 1 c:; nl\T 1 Q ,... ....... ..4-...,..V,&,'I ... v ...... !...-...! 63+80 250N 1 8 ,., ?';: \_,. 58+ 50 200N 1 8 c 62+00 180N 1 8 c 57+00 260S l 8 c 60+00 270S 1 8 c 62+00 270S 1 8 c 64+70 270S l 8 c 10/04/78 59+00 0 1 6 c 62+00 0 1 6 c 63+50 0 1 6 c 68+00 0 l 6 c 70+00 0 l 6 ,... ...... 75+00 0 1 6 c i::;&:.LI::(\ "')Af'\C , 6 ,., -!U!...JV ..JV!...)U J. ,_ 58+70 2808 1 6 c Rev. 0 TABLE 2.5-73 (continued) Sheet 43 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Fill Type(b) Date (feet) Number (inches) 10/04/78 60+50 270S l 6 c 62+70 250S 1 6 c 10/05/78 77+00 80N l h ,... v '-' 72+00 80N 1 6 c 69+00 lOON 1 6 c 67+30 llON 1 6 c 64+00 160N 1 6 c 61+00 260N 1 6 c 58+ 50 , c c 0 .L 0 L' 57+50 70S l 6 ,... iJ;j '-' 61+00 70S 1 6 c n 62+40 90S 1 6 c :>:1 t".l 64+00 90S , 6 c t".l .l. 10/06/78 70+00 50S 1 6 c 73+00 1008 l 6 c 76+00 lOOS 1 6 c 65+00 200S 1 6 ,... 63+00 250S 1 6 c 60+00 270S 1 t:. ,... .... v ""' 59+00 280S 1 6 c 56+70 250S 1 6 c 83,195N 99,569E 8 3 c 83,195N 99,569E 8 3 c 83,210N 00 1 ') "') ,... -"-'f-'JVL.J ..L L. ..) 00 1 ') "') ,... .,.,.,., I....; I V.L..I ..L L. ..) 10/07/78 66+75 76!'-J l 6 c 68+60 lOON l 6 c Rev. 0 TABLE 2.5-73 (continued) Sheet 44 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 10/07/78 71+00 0 1 6 c 74+00 50S 1 6 c 77+00 SON 1 6 c 78+50 75S 1 6 c 64+50 220N 1 6 c 59+50 275N 1 .... c 0 57+00 220N 1 6 c 56+75 235N l 6 c 57+7 5 lOOS l 6 c :E: 57+ 50 lOOS 1 6 c 0 62+50 l50S l 6 t"" .... 64+75 l25S l 6 c () 54+7 5 325N 1 6 c :::0 53+50 300N 1 6 c !:".1 !:".1 54+7 5 275N 1 6 c ;::.;; 53+30 280N 1 6 c 61+00 250S 1 6 c 63+00 225S 1 6 c 63+50 225S 1 6 c 57+50 200S 1 6 c 59+50 175S 1 6 c 10/09/78 59+00 250N 1 6 c 58+30 220N 1 6 c 58+50 80N l 6 c 60+50 SON 1 6 c 64+00 0 1 c. ,., u \... 66+50 30N 1 6 c 70+00 f'\ , 6 ,.., u -L 72+00 40S 1 6 c Rev. 0 TABLE 2.5-73 (continued) Sheet 45 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness (b) Date (feet) Number (inches) Fill Type ' 10/09/78 73+00 50S 1 6 c 75+00 0 1 6 c 78+50 80S 1 6 c 73+00 100S 1 6 c 68+00 80S 1 6 c 68+00 80S 1 6 c 69+00 100S 1 6 c 63+50 150N 1 6 c 64+25 lOON 1 6 c 65+00 6N 1 6 c 0 55+00 l50N l 6 c s .. J 57+00 200N 1 6 c (J ::0 10/10/78 60+00 150N , 6 c t"l .}._ t;tj 61+00 90S 1 6 c ;::.;: 62+15 75N 1 6 c 61+50 2258 1 6 c 62+00 2208 1 6 c 60+50 2508 1 6 c 59+00 2708 1 6 c 58+00 190S 1 6 c 56+00 240S 1 6 c 55+70 240S 1 6 c 55+00 lOON 1 6 c 59+00 150N 1 6 c 63+00 ON 1 6 c 61+80 260N 1 6 ,.., ..... 59+00 200N , 6 ,.,. ... ..... 00 50S , ,.. c .l. 0 56+00 55S 1 6 c Rev. 0 ----...... TABLE 2.5-73 {continued) Sheet 46 of 61 Location Offset from Lift Station(a} Centerline Lift Thickness Fill Type(b) Date (feet) Number (inches) 10/10/7S 56+00 50S 1 6 c 59+00 50S 1 6 c 61+00 60S 1 6 c 62+00 40N 2 6 c 62+50 lOON 2 6 c 54+50 lOOS 2 6 c 55+ 50 80S 2 6 c 10/11/7S 57+00 55S 1 6 c 66+00 60S 1 6 c 0 67+00 b l 6 c clj 69+50 60S 1 6 c (J 67+00 50S l 6 c :::0 67+00 558 1 6 ,... t".l '-t'il 63+50 lOON 1 6 c 61+50 SON 1 6 c 59+50 SON 1 6 c 57+00 90N 1 6 c 54+00 lOON 1 6 c 53+50 lOON 1 6 c 54+00 lSOS l 6 c 55+00 160S 1 6 c 58+00 190S 1 6 c 60+00 2808 1 6 c 10/12/7S 62+75 SON 1 6 c 61+00 60N , 6 c .J.. 60+00 150N 1 6 c 59+00 200N , 6 c .l. 57+00 SON 1 6 c 55+50 lOON l 6 c Rev. 0 TAELE 2.5-73 (continued) Sheet 47 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 10/12/78 54+50 lOON 1 6 c 63+00 200N 1 6 c 62+00 40N 1 6 c 59+00 SON 1 6 c 56+00 250S 1 6 c 59+00 280S 1 6 c 10/13/78 62+60 230N 1 8 c 58+05 ""')f) ("J 'h.T , 8 ,... ..L ...... 60+85 185N 1 8 c 0 54+10 l35N l 8 c !:""' ....... 57+30 60N l 8 c *-* 60+25 200S 1 8 c (J 58+40 276S 1 8 c ::0 t;J:j 56+30 240S 1 8 c !A: 57+10 260N 1 8 c 61+10 280N 1 8 c 53+40 270N 1 8 c 10/14/78 59+00 280N 1 8 c 54+00 290N 1 8 c 55+00 220N 1 8 c 59+10 190N 1 8 c 60+70 190N 1 8 c 63+00 290N l 8 c 67+00 30S 1 8 c 71+00 20S 1 8 c ... 75+00 40S 1 8 c 63+50 80S 1 0 ,... ..L u ...... 60+00 50S 1 8 c Rev. 0 TABLE 2.5-73 (continued) Sheet 48 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 10/14/78 57+50 50S 1 8 c 77+00 70N 1 8 c 75+00 75N 1 8 c 70+00 20N 1 8 c 10/16/78 73+00 0 1 6 c 68+00 25N 1 6 c 61+00 175N 1 6 c 54+00 lOON 1 6 c 75+00 25N 1 6 c 0 .-,""j1>""\L :""j c::c: , c: , .... t"' i .JTL..J '-..JU ..... v '-' hJ 71+50 75S l r c 0 "7n..L.nn 1nnc l 6 c n /VIVV :;;; 69+50 SON 1 6 c f:lj t'!j 68+00 0 1 6 c 65+00 50S 1 6 c 63+00 lOOS 1 6 c 61+00 lOON 1 6 c 60+00 lOOS 1 6 c 58+00 0 1 6 c 59+00 125S 1 6 c 61+00 125S 1 6 c 58+7 5 lOON 1 6 c 56+25 lOOS 1 6 c 54+50 l50N l 6 c 53+50 lOOS 1 r c 0 10/17/78 59+00 175S 1 6 c 56+00 2008 1 6 c 53+50 275S l 6 c Rev. 0 TABLE 2.5-73 (continued) Sheet 49 of 61 Location Offset from Lift Centerline Lift Thickness 'T'uno(b) n::.t-o ff'oot-\ l'Jun1be r finr-hoc\ ].., i 1 1 .l.Jl,A. '-"'-'-' ""'"""' '-.... '"".L ... \._ __ '-/ \""-.I..L_ ...... _.....,, ..... ... "".It'-10/17/78 55+00 lOOS 1 6 c 62+00 lOOS 1 6 c 66+00 125S 1 6 c 70+00 120S 1 6 c 75+00 lOOS 1 6 c 77+00 120S 1 6 c 62+25 150N 1 6 c 63+00 150N 1 6 c 68+00 l25N l 6 c :g 69+50 125N 1 6 c 0 74+00 12 51'! l 6 t"" hj 75+75 l25N l 6 c n 76+50 lOON l 6 c tz::l !::tj 10/18/78 57+00 2508 1 6 c ;;;::; 55+00 275S 1 6 c 53+75 215S 1 6 c 64+55 258 1 6 c 66+50 35S 1 6 c 69+00 50S 1 6 c 69+00 5S 1 6 c 69+00 52S 1 6 c 65+00 75S 1 6 c 63+00 0 1 6 c 60+50 75N l 6 c 58+75 SON 1 6 r' \... 56+00 0 1 6 c 10/19/78 59+50 , 6 ,... J.. L. 61+50 250N 1 6 ,... ...... "' ReV. v TABLE 2.5-73 (continued) Sheet 50 of 61 Location ---offset from Lift Station{a) Centerline Lift ickness . l { h' Date (feet) Number (inches) F1 1 Type'-' 10/19/78 57+00 200N 1 6 c 59+00 100S l 6 c 61+00 100S 1 6 c 61+00 0 1 6 c 63+00 lOOS 1 6 c 64+50 50S 1 6 c 66+50 0 1 6 c 68+75 658 1 6 c 70+50 75S 1 6 c ::iE; 0 71+25 75S 1 6 c -73+00 758 l 6 c -.. ...., J'!

    • j""<, ,, I <;;-t-1.) U 0 2 6 c 75+00 258 2 6 c 76+00 50S ,., 6 c "' 77+00 7 2 6 c 78+00 0 2 6 c 10/20/78 71+25 80N 1 6 c 71+50 SON 1 6 c 71+60 60N 1 6 c 78+00 858 l 6 c 61+75 0 1 6 c 62+00 0 1 6 c 65+00 50S 1 6 c 65+10 55S 1 6 c 65+05 45S l 6 c 65+10 45S , 6 c .!.. 65+00 5 1 6 c <:" " 1 ,. c u v 62+00 50S 1 6 c CV* 0 TABLE 2.5-73 (continued) Sheet 51 of 61 Location Offset from Lift Date Station(a) Centerline Lift Thickness Fill Type(b) (feet) Number (inches) 10/20/78 85+00 50S 1 6 c 76+00 75S 1 6 c 10/21/78 55+00 40S 1 6 c 59+00 50S 1 6 c 61+25 35S 1 6 c 65+00 50S 1 6 c 69+00 60S 1 6 c 72+50 758 l r c 0 59+00 l25N l 6 c 0 62+00 l 6 ,., 65+00 lOON 1 6 c "':l 68+00 lOON 1 6 c 0 ;;o 72+00 llON 1 6 c 75+00 lOON 1 6 c [!j 10/23/78 55+00 120S 1 6 c 58+00 lOOS 1 6 c 62+00 lOOS 1 6 c 63+50 55S 1 6 c 65+00 125S 1 6 c 67+00 70S 1 6 c 69+00 75S 1 6 c 71+00 25S 1 6 c 74+75 l 6 '-62+50 lOON 1 h c .... v 65+50 SON 1 6 c 58+50 lOON 1 6 c Rev. 0 TABLE 2.5-73 (continued) Sheet 52 of 61 Location Offset from Lift Date Station(a) Centerline Lift Thickness fh' (feet) Number (inches) Fill 10/24/78 54+00 0 1 6 c 57+00 75S 1 6 c 59+00 lOOS 1 6 c 61+00 l20S 1 6 c 64+00 lOOS 1 6 c 67+00 0 l 6 c 69+00 50S 1 6 c 71+00 lOOS l 6 ,., '-' 57+00 lOON 1 6 c :E; 62+50 lOON 1 6 ,... 0 ..... \.,.. t=1 b!:l+::>iJ lUUN l 6 c --" 71+00 25N l 6 r () '"' ;;o ttJ 72+00 1Af\'J.T ..., 6 c trJ J-U U!.'J ,G 10/25/78 73+00 0 l 6 r :>:: '-' 75+00 lOOS 1 6 c 76+00 50S l 6 c 77+00 50S 1 6 c 78+00 0 1 6 c 79+00 lOON 2 6 c 79+00 90N ') 6 r "" \... 79+00 95N 2 6 c 76+50 SON 2 6 c 71+50 0 2 6 c 69+00 () ..., 6 c u ,G 55+ 50 , 6 ,... ..... \.,.. 57+00 l r r. 0 \... 58+50 " l 6 c u -I"\ I-,-Ljt; l 6 c -**-,-.. VV' I....; 62+50 75S l 6 c -*C v
    • 0 TABLE 2.5-73 (continued) Sheet 53 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness . (h) Date (feet) Number (inches) Fill Type'-' 10/25/78 65+00 75N 1 6 c 67+50 lOON 1 6 c 69+00 SON 1 6 c 59+75 lOOS 1 6 c 62+00 lOOS 2 6 c 65+00 lOOS 2 6 c 68+00 75S 2 6 c 70+00 0 2 6 c 10/26/78 56+00 75S 1 6 c 0 t'"' 57+00 l 6 c i4_J 57+50 75S l 6 c (-) 59+ 50 0 1 6 c " tTj 61+50 75N , 6 ,., to::i .l. ...... :A: 64+00 75S 1 6 ,., \... 66+00 0 1 6 c 68+00 50S 1 6 c 69+00 258 1 6 c 71+50 50S 1 6 c 73+75 25N 1 6 c 74+25 25S 1 6 c 75+7 5 50S 1 6 c 77+00 SON 2 6 c 78+00 0 2 6 c 79+00 40N 2 6 c 10/27/78 69+25 40N l 6 r '-72+50 20N l 6 r "" ..,t:',Cr'\ ,o::r , r-,., IJ'"UV J...:JC .L u \... 78+50 20S 1 6 c Rev. 0 TABLE 2.5-73 (continued) Sheet 54 of 61 Location Offset from Lift Date Station(a) Centerline Lift Thickness 'T'un<:>(b) (f'<:><:>t-\ Number finf"'hQc::\ Fill \---..... , \ ......... -...... --, 10/27/78 S8+SO SON 1 6 c 61+00 2SN 1 6 c 63+SO 7SN 1 6 c 66+2S SON 1 6 c 64+50 0 1 6 c 62+00 20S 2 6 c S7+SO 20N 2 6 c S4+SO 60N 2 6 c 56+50 50S 2 ,.. c 0 59+75 60S 2 6 c 72+00 60!'J 2 6 73+50 0 ") 6 c 75+50 50S 2 6 c 78+25 0 2 6 c 10/28/78 58+40 50S 1 8 c 60+00 25S 1 8 c 63+00 0 1 8 c 66+00 lOS 1 8 c 59+00 75N 1 8 c 62+00 lOON 1 8 c 65+20 110N 1 8 c 68+00 115N 1 8 c 70+70 30S 1 8 c 74+90 25S l 8 c 77+00 90N , 8 ,... .J.. \.-73+00 lOON 1 8 c 60+00 60S 2 8 c Rev. 0 TABLE 2.5-73 (continued) Sheet 55 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness ( h' Date (feet) Number (inches) Fill 10/30/78 56+00 0 1 6 c 59+00 100S 1 6 c 62+00 75S 1 6 c 66+00 50S 1 6 c 69+00 25S 1 6 c 71+00 0 1 6 c 74+00 25S 1 6 c 76+50 50S l 6 c 78+25 50S 1 6 c ::E; 54+50 75N 2 6 c 0 t-t 57+00 7:>N 2 6 c ;-... j 57+00 60N 2 6 r .. (-) '-' 7:1 63+25 75N 2 6 c J::l:i 67+00 75N ..., 6 tr:i ,c. \.... A 69+75 60N 2 6 ,.., "' 71+50 70N 2 6 c 74+00 75N 2 6 c 77+50 25N 2 6 c 78+50 SON 2 6 c 77+60 50S 2 6 c 10/31/78 57+00 75S 1 6 c 61+50 75S 1 6 c 65+00 75S 1 6 c 70+50 0 1 c:. ro v '-' 72+00 0 l 6 ,.., "' 74+50 l5N l 6 " \.... 76+00 'J n 1\T l c:. c &...V.i.'i v -JO!I'\f"\ """ ._.l , r !OTVV L.Vl\l .l. 0 .._ 55+00 60N 2 6 c 0 I\."t;; v
    • TABLE 2.5-73 (continued) Sheet 56 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Fill Type(b) Date (feet) Number (inches) 10/31/78 57+10 40N 2 r c 0 59+50 SON 2 6 c 61+80 20N 2 6 c 64+25 40S 2 6 c 66+50 25N 2 6 c 68+90 70S 2 6 c 71+75 50S 2 6 c 74+25 20N 2 6 c 76+00 25N 2 6 c ::E: 54+00 SON 3 6 c 0 t:. t:: ..i..::::. (\ t:. () f\T "2 c:. ,-, t"' ...;v 1 ...;v ..JV.i.'f ...; v "' ""'".J 59+00 80N 3 6 c c:, 62+50 75N 3 6 c 65+50 60N 3 6 c ttl ttl 69+00 0 3 6 c ;::o::: 72+75 30N 3 6 c 11/01/78 50+00 75N 1 6 c 49+85 75S 1 6 c 49+25 SON 1 6 c 53+ 50 0 1 6 c 56+75 lOON 1 6 c 58+25 SON 1 6 c 60+50 25N 1 6 c 62+40 5 Ql\j 1 6 c 68+50 70N 1 6 c 64+75 75N 1 6 c 72+25 60N 1 6 c 74+75 20N , c '"' _l D l.. 78+00 20S 2 6 c Rev. " v TABLE 2.5-73 (continued) Sheet 57 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness (b) Date (feet) Number (inches) Fill Type* 11/01/78 49+50 SON 2 6 c 51+00 0 2 6 c 11/02/78 57+00 60S 1 6 c 69+00 25N l 6 c 67+00 SON 1 6 c 54+80 40S 1 6 c 61+50 60S 1 6 c 65+00 0 1 6 c :8 56+50 50S 2 6 c 0 ----6 t"' jif+! j 60S 2 c i":rj 63+50 0 2 6 c n 58+75 40N 2 6 c "" tr:l 60+00 408 ") c:. c t:!'J L. v 59+25 40N 2 6 c !:": 65+25 SON 2 6 c 11/03/78 58+00 SON l 6 c 65+00 25N 1 6 c 69+00 7SN 1 6 c 61+50 408 1 6 c 67+00 208 1 6 c S9+00 SON 2 6 c 61+SO 0 2 6 c 63+15 50S 2 6 c 65+50 SON 2 6 c 49+75 0 l 6 c 50+7 5 2708 1 6 c Rev. 0 TARLE; 2.5-73 (continued) Sheet 58 of 61 Location Offset from Lift c-t-a-t-;,._,.,(a) Centerline Lift Thickness Type(b) Date (feet} (incl1es) ):;'; 1 1 \.-.LVl.l. J..".l....l....l.. 11/04/78 59+00 60S 1 6 c 62+15 20N 1 6 c 63+25 30S 1 6 c 65+50 0 1 6 c 65+75 20S 1 6 c 68+25 60N 1 6 c 57+50 SON 2 6 c 60+50 40N 2 6 c 62+50 20S 2 ,. c 0 65+00 40N 2 6 c 0 t"' 60S ,. c v-....; * --....; 68+50 40N 2 6 c n ;;o L"J 11/08/78 56+40 20S l 8 c t1j 60+70 lOS l 8 c 70+40 40N l 8 c 67+70 70N 1 8 c 64+00 20N l 8 c 11/09/78 68+80 45N 1 8 c 62+95 70N 1 8 c 73+55 130N l 8 c 61+35 190N l 8 c 60+90 SN 1 8 c 63+80 30N l 8 c 72+90 lOS 1 8 c 78+04 lOON 2 8 c 73+20 85N 2 8 c 57+60 90N 2 8 c 59+90 0 2 8 c 65+85 lOS ,.., 8 c ..!. Rev. 0 TABLE 2.5-73 (continued) Sheet 59 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness Fill Type(b) Date (feet) Number (inches) 11/10/78 75+50 60N 2 8 c 71+25 45N 2 8 c 65+18 96N 1 8 c 61+65 20N 1 8 c 67+15 5N 1 8 c 76+25 65N 1 8 c 72+10 60N 1 8 c 49+05 195S l 8 c 50+ 50 0 1 8 c 63+30 lON 2 8 c 0 66+95 20!'! .., c ll/ll/7A 62+40 lOON ? (' 0 --,--,*---:::0 70+05 75N 2 8 c t%j 50+90 70S 1 8 c [:rj :::-::: 60+15 55N 1 8 c 67+95 0 1 8 c 72+00 lON 1 8 c 68+95 90N 1 8 c 64+75 lOON 2 8 c 50+07 18N 1 8 c 61+50 60N 2 8 c 51+15 210S 1 8 c 50+30 210S 1 8 c 11/14/78 77+00 30N 1 8 c 70+00 25N 1 8 c 61+15 60N 1 8 c Rev. u TABLE 2.5-73 (continued) Sheet 60 of 61 Location Offset from Lift Station(aj Centerline Lift Thickness Type(bj Date (feet) Number (inches) Fill 11/21/78 82+00 1008 1 8 c 80+50 1308 1 8 c 75+00 1808 1 8 c 12/05/78 66+00 1008 1 8 c 70+00 1508 1 8 c 12/12/78 I16+00 sw 1 6 c "T" , , * , r'\ l5E , ,. c .L.L.L"t".LU .L 0 1')/17:./'7Q Il6+00 , 8 0 .......... , ..... -; . '-' !11+25 8W 1 8 c '*J I7+80 4E 2 8 c () I2+l2 0 2 8 c :::0 tt::l t:tj """ ... , 12/14/78 I16+70 0 1 8 c Il1+00 58 2 8 c I8+00 5N 2 8 c 12/15/78 Il5+58 8E 1 8 c I 12+8 5 sw 2 8 c I7+12 0 2 8 c I3+80 0 3 8 c ., ,.... .1--II4+10 2 8 l.L./ L.U/ I 0 \.... II6+02 36E 2 8 (' '-' II8+10 27E 2 8 c / II8+77 32W 2 8 c II5+90 1 At .. t ') 8 ,.. ..L u vv J II7+64 (\ 3 8 ,.. u Rev. 0 TABLE 2.5-73 (continued) Sheet 61 of 61 Location Offset from Lift Station(a) Centerline Lift Thickness { h' Date {feet) Number (inches) Fill 12/20/78 II0+91 7E 2 8 c II9+20 22W 2 8 c II12+99 18E 2 8 c 12/21/78 II1+17 SE 2 8 c II10+06 21E 2 8 c II13+50 lSW 2 8 c II3+84 13W 1 8 c II9+24 0 1 8 c II6+65 8E 2 8 c 0 i..' 12/22/78 II6+72 3W l 8 {....., ..... () IIlO+lO BE l 8 c :::0 II9+80 .... 8 c r:r::l L. t;r:j II7+00 4E 3 8 c A II10+62 0 4 8 c Rev. 0

    'l'ABLE 2. 5-7 4 Sheet 1 of 3 SUMMARY OF COMPACTION DATA FOR MAIN DAM AND SADDLE DAMS Com12action Data Optimum Maximum Grain Size Distribution Material Moisture Dry Atterber9: Limits Percent Percent Percent Identification Location(a) Depth Content Density Liquid Plasticity Passing Passing Passing Unified Soil Number (feet) (%) (,ECf) Limit Index #4 #200 0.005 rom Classification LW-1 MD Excavation 67+00 2.0 20.0 104.0 52 32 100 95.2 48.5 CH 5 N LW-2 MD Excavation 67+00 5.0 19.3 106.5 46 26 100 96.0 44.2 CL 5 N LW-3 MD Excavation 51+00 5.0 18.3 108.4 41 21 100 82.9 41.0 CL 0 LW-4 MD Excavation 51+00 2.0 17 .o 109.0 38 19 100 89.3 35.6 CL 0 LW-5 MD Excavation 55+00 3.0-4.0 18.4 106.3 39 ::: 19 100 99.1 47.0 CL 0 0 t"l i-rj LW-14 MD Fill 29+60 1 ,976. 0 (EL) \JJJ 17.7 108.6 43 20 100 98.0 43.0 CL () 0 :::0 t:<:l LW-15 MD Fill 96+00 22.5 101.3 66 36 100 96.8 57.9 tJ.j CH ?<; 0 LW-17 MD Fill 80+60 1,962.0 (EL) 21.9 101 .4 57 30 100 95.5 50.0 CH 57 s LW-18 MD Fill 85+20 1,972.0 (EL) 20.3 103.3 61 39 100 96.8 53.1 CH 14 N LW-19 MD Fill 41+00 1,963.0 (EL) 21.9 101 .6 57 36 100 96.0 50.4 CH 4 N LW-20 sw Corner BAG 2.0 22.7 99.8 56 32 100 96.3 54.7 CH LW-21 sw Corner BAG 5.0 20.2 102.9 53 30 100 94.7 53.6 CH LW-22 NE Corner BAG 2.0 19.3 102.0 43 20 100 95.9 43.2 CL LW-23 NE Corner BAG 5.0 18.6 105.0 42 22 iOO 97.1 45.2 CL (a)MD indicates Main Dam; BA indicates Borrow Area; ED indicates Baffle Dike; UHS indicates Ultimate Heat Sink: 00+00 indicates station; 107 N indicates 107 feet north of centerline (offset); 0 indicates on the centerline. " Rev. v \ .u J Elevation in SNUPPS datum. Material Identification Number LW-24 LW-26 LW-27 LW-30 LW-31 LW-32 LW-33 LW-34 LW-36 LW-37 LW-38 LW-39 LW-40 LW-41 LW-42 LW-43 LW-44 LW-45 LW-46 Location(a) MD Fill 75+20 225 s E Side BAK NW Corner BAJ SE Corner '01\"T Corner BAJ E Side BAK SE Corner BAK SW Corner BAK Center BAK NE Corner BAK MD Fill 75+00 100 s MD Fill 76+25 280 s MD Fill 70+00 W Side BAI Center BAI Center BAH SE Corner BAH W Side BAH W Side BAF E Side BAF E Side BAF Depth (feet) 1,908.5 (EL) 4.0 4.0 8.0 10.0 10.0 10.0-12.0 10.0 6.0 2.0-6.0 1,913,0 (EL) 1,930.0 (EL) 6.0-12.0 1.0-6.0 6.0 1.0-5.0 TABLE 2.5-74 (continued) Compaction Data Optimum Maximum Moisture Content (%) 16.1 16.6 15.8 18.8 14.3 15.4 19.4 21.6 16.9 18.6 15.1 21.6 20.8 16.6 18.0 16.6 21.1 17.7 18.2 Dry Density (pcf) 111.9 112.3 111.9 iiO.O 105.2 113.6 113.7 105.8 102.6 108.8 107.1 116.7 103.3 104.4 110 .s 107.0 112.2 102.9 109.7 105.4 . i07. 7 Atterberg Limits Liquid Limit 36 35 29 39 38 29 34 47 54 33 42 34 52 so 34 39 34 63 47 46 35 Plasticity Index 21 17 10 22 20 12 16 25 32 13 23 16 30 30 16 20 19 46 34 30 20 Sheet 2 of 3 Grain Size Distribution Percent Passing #4 100 100 100 iOO 100 100 100 100 100 100 100 96.1 100 100 100 100 100 100 100 100 100 Percent Percent Passing Unified Soil #200 0.005 mm Classification 92.8 40.5 CL 92.8 42.8 CL 92.1 32.3 CL 86.3 38.5 CL 91.1 37.4 CL 79.1 27.5 CL 79.4 35.2 CL 98.3 51.2 CL 97 .. 6 55.3 97.5 41 CL 92.4 43.7 CL 77.1 32.2 CL 95.9 47.9 CH 92.8 42.7 CH 89.1 27.6 CL 97.2 38.5 CL 88.1 25.7 CL 93.9 44.9 CH 83 .. 3 37 .. 6 CL 98.3 40.8 CL 96.4 36.7 CL Rev. 0 () TABLE 2.5-74 (continued) Sheet 3 of 3 Comoaction Data Optimum Maximum Grain Size Distribution Material Moisture Dry Limits Percent Percent Percent Identification (a) Depth Content Density Liquid Plasticity Passing Passing Passing Unified Soil Number Location (feet) (%) (J2Cf) Limit Index #4 #200 0.005 mm Classification LW-48 w Side BAF 21.4 102.1 63 47 100 93.8 49.3 CH LW-49 MD Fill 66+00 18.3 106.8 41 22 100 95.2 31.7 CL 100 N LW-50 MD Fill 59+25 1 ,906. 0 (EL) 20.5 103.8 57 36 100 94.4 40.0 CH 285 N LW-59 SE Corner BAJ 1.0-2.0 21.8 97.5 44 20 100 96.8 39.0 CL LW-61 NE Corner BAD 6.0 20.4 103.2 44 24 100 85.4 41.9 CL LW-62 Center BAE 1.0-2.0 19.6 101.9 35 15 100 90.7 16.6 CL LW-63 SE Corner BAD 1.0-6.0 20.0 103.2 47 27 100 96.8 50.1 CL ,.... ._, LW-64 NW Corner BAD 1.0-6.0 22.0 99.9 52 31 100 95.8 51.4 CH t'"' ...... LW-65 NE Corner BAE 1.0-2.0 20.7 101.0 45 25 100 92.0 51.1 CL n ;;v LW-66 Center BAE 5.0-6.0 19.8 100.3 45 22 100 95.8 53.0 CL [".J t:rJ A LW-67 SW Corner BAC 1.0-5.0 20.3 103.5 52 32 100 94.1 49.8 CH LW-68 SW Corner BAC 5.o-8.o 18.7 106.6 45 27 100 94.5 45.2 CL LW-69 SW Corner BAC 19.9 105.4 49 29 100 94.5 47.4 CL LW-72 N Side BAC 1.0-8.0 18.8 105.2 45 28 100 96.2 40.4 CL LW-73 BAC 1.0-5.0 19.0 106.9 42 22 100 91.8 39.3 CL LW-74 E Side BAB 2.0-6.0 17.1 107.9 34 14 100 97.1 30.0 CL LW-75 w Side BAB 2.0-8.0 20.2 103.2 51 29 100 98.3 49.1 CH Rev: 0 'fABLE 2.5-75 Sheet 1 of 18 SOIL PROPERTIES FOR MAIN DAM AND SADDLE DAMS Location Grain-Size Distribution Offset from Material Atterber9 Limits Percent Percent Percent Test Centerline Identification Liquid Plasticity Passing Passing Passing Unified Soil Number Station* (feet) Number Limit Index #4 #200 0.005 mm Classification A-238 84+00 40 N LW-8 70 41 100 96.1 56.0 CH A-241 30+00 0 LW-5 42 18 100 97.4 37.0 CL A-243 32+80 0 LW-13 52 28 100 96.9 44.0 CH l>.-246 96+80 0 L\A/-5 51 31 100 oc c AO n CH :;J...J * ..J ":io.u A-247 103+60 0 LW-4 57 29 99.9 94.5 50.5 CH A-253 80+90 0 LW-2 48 28 100 90.5 45.0 CL A-256 98+00 0 LW-2 45 23 99.9 91.7 42.5 CL :as A-257 93+25 " LW-4 34 14 100 95.8 36.0 CL 0 u t"' A-258 80+90 0 LW-4 32 15 100 86.3 3L5 CL :.j n A-259 88+50 0 LW-2 36 20 100 87.1 32.0 CL :;o t:Ij A-261 79+80 0 LW-3 37 19 99.9 80.8 35.0 CL t'j :;>;: A-262 82+00 0 LW-4 37 20 ------CL A-263 84+00 0 LW-2 54 36 ------CH A-264 88+00 0 LW-18 59 35 ------CH A-265 86+00 0 LW-15 70 48 100 96.6 56.0 CH A-266 100+00 0 LW-2 64 41 ------CH A-267 --0 LW-2 40 22 ------CL A-268 42+00 0 LW-14 64 41 ------CH A-269 6+90 0 LW-2 38 20 ------CL l*.-270 7+15 0 LW-18 59 35 99.9 "' " " CH ::J':t

    • u 'i! = v *No prefix indicates Main Dam station; Roman numeral -(I, TT III) indicates Saddle Dam station. 0 ...... , Rev.

    TABLE 2.5-75 (continued) Sheet 2 of 18 Location Grain-Size Distribution Offset from Material Atterber9 Limits Percent Percent Percent Test Centerline Identification Liquid Plasticity Passing Passing Passing Unified Soil Number Station* (feet) Number Limit Index #4 #200 0.005 mm Classification A-271 7+00 0 LW-2 48 29 CL A-272 5+50 0 LW-10 43 26 CL A-273 34+70 0 LW-2 49 31 CL A-274 41+00 0 LW-19 57 36 CH A-275 7+00 0 L\A/-18 64 43 CH A-276 60+00 0 LW-17 57 37 CH A-277 47+00 0 LW-19 60 39 CH A=278 44+00 0 LW-4 44 28 100 92.1 41.0 CL A-279 80+00 0 LW-4 40 24 CL 0 t"" A-280 3+00 0 LW-3 53 34 n:j 10 0 94.3 48.,5 CH n A-282 32+00 0 LW-2 46 31 CL ;::v t:LJ t::z:j A-284 35+00 0 LW-2 38 20 CL ?;: A-286 29+00 0 LW-2 41 23 CL 1'. ..... (")("I 83+00 0 LW-2 41 22 CL n.-L.oo A-289 37+00 0 LW-2 49 31 100 89.6 38.0 CH A-290 21+50 0 LW-2 37 21 CL A-291 8+00 0 LW-3 35 19 CL A-293 7+50 0 LW-2 37 20 99.9 73.2 28.5 CL A-295 v 3+00 0 LW-3 40 23 CL A-296 91+00 0 LW-3 44 26 100 87.9 35.0 CL Rev. 0 TABLE 2.5-75 (continued) Sheet 3 of 18 Location Grain-Size Distribution Offset from Material Atterber2 Limits Percent Percent Percent Test Centerline Identification Liquid Plasticity Passing Passing Passing Unified Soil Number Limit Index if4 #200 0.005 mrn Classification A-297 6+00 0 LW-2 34 18 ------CL A-298 85+80 0 LW-3 39 22 ------CL G-633 82+60 0 LW-3 ---99.9 86.1 34.2 A-300 8+50 0 LW-2 34 17 ------CL A-301 43+50 0 LW-3 34 17 100 85.5 38.0 CL A-305 11+00 0 Ll'l-3 36 19 ------CL A-306 13+10 0 LW-19 51 30 100 95.6 52.2 CH A-308 13+50 0 LW-3 34 16 100 87.0 38 .o CL =E; A-313 12+25 0 LW-2 47 26 100 93.4 45.0 CL 0 t"1 r.j A-314 16+00 0 LW-1 38 20 99.9 89.7 37.0 CL n A-315 11+00 0 LW-18 43 25 100 93.5 40.5 CL t>:1 !:"1 A-316 5+00 0 LW-3 35 17 100 84.9 35.0 CL ;;>:; A-317 8+80 0 LW-1 37 19 99.9 86.9 37.5 CL A-318 16+00 0 LW-2 33 16 100 84.7 34.0 CL A-319 14+60 0 LW-3 34 17 99.9 84.1 35.0 CL A-320 17+00 0 Lv*i-2 34 16 100 90.2 32.0 CL A-321 18+00 0 LW-3 37 20 ------CL A-324 75+00 50 s LW-3 35 19 100 87.3 37.0 CL A-325 75+50 60 s LW-4 35 19 100 8 2. 4 3$.0 CL A-326 12+90 35 w LW-18 51 32 100 95.8 51.5 CH Rev. 0 Test Number A-331 A-335 A-339 A-340 A-341 A-342 A-343 A-344 A-345 A-346 A-347 A-349 A-350 A-351 A-353 A-354 A-355 A-356 A-357 A-359 Location Offset from Centerline Station* (feet) 16+00 0 75+80 100 N 75+00 0 6+00 0 73+00 0 75+00 0 72+00 0 74+00 30 N 76+25 65 s 77+00 0 65+70 260 s 70+00 100 N 37+50 75 N 72+00 0 8+35 22 w 32+75 5 w 11+80 15 E 72+15 280 N 76+90 0 78+00 0 TABLE 2.5-75 (continued) Material Identification Number LW-4 LW-4 LW-38 LW-24 LW-15 LW-3 LW-26 LW-15 LW-22 LW-26 LW-33 LW-15 LW-14 LW-15 LW-34 LW-15 LW-34 LW-33 LW-33 LW-33 Atterberg Limits Liquid Plasticity Limit Index 35 18 39 22 38 20 36 19 41 21 49 39 37 19 57 36 40 19 53 33 41 21 51 32 43 25 36 16 39 21 41 21 46 25 45 26 53 33 51 32 Grain-Size Distribution Percent Passing #4 100 99.9 99.9 99.9 100 100 100 100 100 100 100 100 100 99.9 Percent Passing #200 91.8 88.4 79.1 91.3 86.4 96.6 96.6 95.9 94.6 96.5 94.2 97.1 96.2 96.6 Percent Passing 0.005 mm 41.5 41.0 31.5 45.0 36.0 49.5 33.0 39.8 44.0 35.0 45.0 53.0 51.5 Sheet 4 of 18 Unified Soil Classification CL CL CL CL CL CL CL CH CL CH CL CH CL CL CL CL CL CL CH CH Rev. 0 0 Test Number A-360 A-362 A-364 A-365 A-366 A-367 A-369 A-370 A-371 A-372 A-373 A-374 A-375 7< -,-,c n-...Jt u A-377 A-378 A-379 A-380 A-381 A=382 Location Station* 68+45 82+50 16+00 73+00 68+00 70+00 77+00 96+47 85+00 72+00 80+00 98+00 5+00 ,no I'll'\ .J.OTVU 12+00 71+50 8+00 69+00 69+00 67+00 Centerline (feet) 160 N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TABLE 2.5-75 (continued) Material Identification Number LW-33 LW-3 LW-24 LW-15 LW-15 LW-33 LW-39 LW-3 LW-3 LW-15 LW-24 LW-3 LW-3 LW-3 LW-24 LW-15 LW-24 LW-15 LW-33 LW-15 Atterberg Limits Liquid Plasticity Limit Index 50 32 30 12 34 16 55 35 54 39 56 42 50 35 34 20 35 22 54 26 31 13 38 20 42 29 41 29 38 25 50 34 39 25 56 37 50 29 53 33 Grain-Size Distribution Percent Passing jl4 100 100 100 100 Percent Passing #200 96.2 97.1 96.7 95.1 Percent Passing 0.005 mm 49.0 45.0 44.5 52.5 Sheet 5 of 18 Unified Soil Classification CH CL CL CH CH CH CL-CH CL CL CH CL CL CL CL CL CH CL CH CH CH Rev* 1'\ v :E; 0 t'"' !"!j (') Ai (Ij tzj TABLE 2.5-75 (continued) Sheet 6 of 18 Location Grain-Size Distribution Offset from Material Atterber<;l Limits Percent Percent Percent Test Centerline Identification Liquid Plasticity Passing Passing Passing Unified Soil Number Station* (feet) Number Limit Index #4 #200 0.005 mm Classification A-383 77+00 0 LW-15 55 25 100 96.8 48.5 CH A-384 76+50 0 LW-15 59 37 10 0 96.2 51.0 CH A-385 68+60 250 N LW-15 55 33 CH A-386 73+70 0 LW-15 52 24 100 90.3 39.0 CH A-387 70+00 0 LW-4 44 19 CL A-388 74+50 0 LW-18 43 22 CL A-389 67+00 0 LW-34 48 28 CL A-390 68+00 " LW-4 57 37 CH v A-391 75+50 0 LW-15 45 27 100 90.9 44.4 CL 0 t" A-392 74+00 0 LW-4 49 30 100 96.1 51.5 CL .... n A-412 72+00 70 s LW-41 37 16 100 82.0 31.5 CL :;o t:tj A-413 69+00 100 s LW-41 39 19 100 89.4 34.0 CL ;:rJ A-414 57+ 50 0 LW-40 53 34 100 92.3 42.0 CH ' "' c 0 LW-45 44 26 CL A-416 75+50 0 LW-23 34 15 CL A-417 57+00 0 LW-36 36 14 CL A-418 77+50 0 LW-4 46 27 100 86.5 44.5 CL A-419 59+00 0 LW-30 47 27 CL A-420 76+90 0 LW-33 55 32 100 95.0 55.0 CH A=42l 56+00 0 LW-36 35 15 100 95.8 29. 0 CL Rev. 0 TABLE 2.5-75 (continued) Sheet 7 of 18 Location Grain-Size Distribution Offset from Material Atterberg Limits Percent Percent Percent Test Centerline Identification Liquid Plasticity Passing Passing Passing Unified Soil Number Station* (feet) Number Limit Index H #200 o.oos mm Classification A-422 65+00 0 LW-34 48 30 100 95.2 34.0 CL A-423 73+90 0 LW-34 40 23 CL A-424 73+00 0 LW-15 53 36 CH A-425 71+25 0 LW-37 45 29 CL A-426 56+00 0 LW-18 50 31 CH A-427 68+80 0 LW-37 35 17 100 92.6 35.0 CL A-428 68+00 0 LW-15 44 26 99.9 91.5 39.0 CL A-429 76+25 0 LW-37 42 25 100 87.5 41.4 CL A-430 69+50 0 42 25 100 87.8 37.0 CL 0 .. A-431 72+70 0 LW-33 40 23 10 0 85.0 39.0 CL () A-432 70+00 0 LW-30 36 20 10 0 79.5 28.1 CL ::0 t%j A-433 77+50 0 LW-37 31 13 100 88.6 27.5 CL ....,. A-434 76+00 0 LW-4 39 22 100 90.1 35.0 CL A-436 CCI A/"\ 0 LW-37 44 27 100 92.4 40.5 CL uu*uu A-437 69+00 200 N LW-23 39 22 100 85.4 39.5 CL A-438 75+00 0 LW-37 42 24 100 77.9 39.5 CL A-439 70+00 0 LW-33 37 18 100 85.3 24.9 CL A-440 58+00 0 LW-48 51 33 100 91.2 48.3 CH A=44l 77+50 0 LW-44 54 35 100 95.4 44.8 CH A-442 63+00 0 LW-50 45 27 100 92.0 41.3 CL Rev. 0 TABLE 2.5-75 (continued) Sheet 8 of 18 Location Grain-Size Distribution Offset from Material Atterber9 Limits Percent Percent Percent Test Centerline Identification Liquid Plasticity Passing Passing Passing Unified Soil Nurnber Station* (feet) Number Limit Index #4 #200 0.005 mm Classification A-443 57+00 0 LW-50 43 25 99.9 87.2 39.0 CL A-444 58+00 0 LW-49 40 19 100 94.5 38.5 CL A-445 63+50 0 LW-50 55 36 100 91.8 46.0 CH A-446 64+00 0 LW-20 44 27 100 91.2 45.0 CL A-447 64+50 0 LW-48 44 27 100 91.5 46.0 CL A-448 62+50 0 LW-48 45 28 100 92.8 45.1 CL A-449 67+00 50 N LW-33 40 22 CL A-450 81+00 0 LW-24 33 16 CL 0 A-451 Crltf'l.t"\ 0 LW-20 40 23 CL t"" OJ'TUU r.r:l A-452 76+00 0 LW-20 38 21 \....!..: () :;c A-453 66+50 0 LW-37 39 23 CL t:!j ...... A-454 83+00 0 LW-3 . -. 36 18 CL ::>>: A-455 119+00 0 LW-3 36 18 CL A-456 81+50 0 LW-3 39 21 CL A-457 98+00 0 LW-2 35 17 CL A-458 101+50 0 LW-2 36 21 CL A-459 90+75 0 LW-3 38 22 CL A-460 74+00 0 LW-15 54 36 CH A-467 78+50 75 s LW-39 48 29 100 94.8 34.5 CL A-468 70+00 100 N LW-45 60 37 100 78.6 44.1 CH 0 TABLE 2.5-75 (continued) Sheet 9 of 18 Location Grain-Size Distribution Offset from Percent Percent Percent Test Centerline Passing Passing Passing A-469 69+00 0 LW-50 52 33 100 93.7 40.8 CH A-470 76+00 0 LW-40 52 31 100 95.9 42.1 CH A-471 58+ 50 200 N LW-50 53 31 100 94.1 40.0 CH A-472 104+10 0 LW-3 37 20 ------CL A-473 100+50 0 LN-3 31 14 ------CL A-474 89+00 0 LN-3 41 23 ------CL A-475 75+50 0 LW-2 48 30 ------CH A-47G 103+00 0 LW-2 33 16 ------CL 0 A-477 71+50 0 LW-15 56 36 ------CH. t"1 "J A-478 98+00 0 LW-24 33 15 ------CL n A-479 102+50 0 LW-2 34 19 !::c1 ------CL i::rj i::rj A-480 72+00 0 LW-37 37 17 ------CL ;A: A-481 65+00 0 LW-37 39 21 ------CL "1\ ""'"" n.-.,.o..c. 69+50 0 LW-34 35 16 ------CL A-483 76+50 0 LW-37 34 16 ------CL A-484 63+50 100 s LW-50 43 21 100 91.7 39.6 CL A-486 65+50 200 s LW-45 37 17 100 85.7 33.1 CL A-487 58+00 100 s LW-44 49 30 100 95.6 44.2 CL A-488 60+00 300 N LW-44 40 20 100 96.3 43.3 CL A-489 74+00 0 LW-37 35 17 ------CL Rev. 0 TABLE 2.5-75 (continued) Sheet 10 of 18 Location Grain-Size Distribution Offset from Material Atterberg Limits Percent Percent Percent Test Centerline Identification Liquid Plasticity Passing Passing Passing Unified Soil Number Station* (feet) Number Limit Index #4 #200 0.005 mm Classification A-490 84+00 0 LW-3 43 23 ------CL A-491 71+00 0 LW-37 34 17 ------CL A-492 74+50 0 LW-33 46 24 ------CL A-493 67+50 0 LW-15 54 33 ------CH A-495 76+00 60 N L\AJ-40 57 36 100 98. 2 <:A n I'U ....J":l*V '-" A-496 59+50 100 N LW-46 38. 19 100 97.3 42.0 CL A-498 113+00 0 LW-3 33 15 ------CL A-499 72+00 0 LW-17 35 16 ------CL A-500 73+00 0 LW-36 45 24 ------CL 0 f>.-501 75+00 0 LW-15 45 24 CL f'!j ------(J A-502 84+00 0 LW-3 33 15 ------CL ;N txJ A-503 111+00 0 LW-3 34 16 CL tij ------:;:>:;: A-504 70+00 0 LW-33 50 30 ------CH A-505 77+50 0 Lw-33 35 16 ------CL A-506 72+00 150 s LW-49 40 21 ------CL A-507 73+00 0 LW-4 35 17 ------CL A-508 76+00 120 s LW-47 48 30 ------CL A-510 85+25 0 LW-2 48 29 ------CL A-511 96+75 0 LW-2 34 17 ------CL A-512 70+00 50 N LW-49 45 24 ------CL Rev. 0 TABLE 2.5-75 (continued) Sheet 11 of 18 Location Grain-Size Distribution Offset from Mate rial Limits Percent Percent Percent Test Centerline Identification Liquid Plasticity Passing Passing Passing Unified Soil Number Station* (feet) Number Limit Index ll4 #200 0.005 mm A-513 70+00 0 LW-23 43 24 CL A-514 58+00 200 s LW-2 52 33 CH A-515 59+00 0 LW-45 48 29 CL A-517 66+00 200 N LW-46 43 23 CL A-518 60+00 280 s LW-47 44 24 CL A-519 64+00 0 LW-39 51 31 CH A-520 57+00 300 s LW-45 40 23 CL A-521 61+50 125 s 5 50 31 CH :E: 0 A-522 78+00 0 LW-49 39 19 CL t'1 '"J A-523 58+00 300 N LW-39 42 25 CL n 64+00 100 s LW-45 34 l7 CL t1j t:r:j A-526 58+ 50 100 s LW-39 47 27 CL ;,:;; A-527 70+00 100 w LW-45 36 19 100 94.5 43.3 CL l>.-528 78+00 " T T.T If,-.. 37 19 100 94.8 42.5 CL .JV " L..YV-':i"::J A-529 76+80 0 LW-47 46 26 100 98.0 52.3 CL A-530 65+00 100 N LW-49 40 20 100 93.6 40.6 CL A-531 59+00 0 LW-48 35 17 10 0 92.7 42.2 CL A-532 59+75 50 N LW-44 40 21 CL A-534 60+00 0 LW-45 41 21 100 93.6 44.5 CL A-535 72+00 .JV N LW-50 46 25 CL Rev. 0 TABLE 2.5-75 (continued) Sheet 12 of 18 Test Centerline Passing Unified Soil 0.005 mm Classification A-536 66+00 0 LW-45 39 22 100 91.0 42.2 CL A-538 62+00 200 N LW-48 37 18 ------CL A-540 66+00 0 LW-40 49 28 ------CL A-541 77+00 40 s LW-41 37 20 ------CL A-542 57+00 0 0 An .. v 21 ------CL A-543 59+00 0 LW-42 46 28 ------CL A-544 73+00 0 Ll<i-30 38 20 ------CL A-545 67+00 0 LW-50 44 25 ------CL ::.: 0 A-546 57+75 0 LW-44 53 36 ------CH t"' --. A-547 74+50 0 LW-43 41 25 ------CL A-548 60+00 0 LW-48 45 25 ------CL A-549 71+90 0 LW-44 46 26 ------CL ::>:: A-550 78+00 0 LW-42 35 17 ------CL A-551 69+00 0 LW-45 40 22 ------CL A-552 65+00 0 LW-50 49 29 ------CL A-553 59+00 100 N LW-15 42 22 ------CL A-554 64+50 0 LW-45 42 24 ------CL A-555 60+20 0 LW-33 58 37 ------CH A-556 64+00 0 LW-50 40 22 ------CL A-559 73+75 215 s LW-40 46 25 100 98.5 43.3 CL ReV. 0 TABLE 2.5-75 (continued) Sheet 13 of 18 Location Grain-Size Distribution Offset from Material Atterber9 Limits Percent Percent Percent Test Centerline Identification Liquid Plasticity Passing Passing Passing Unified Soil Number Station* (feet) Number Limit Index jf4 #200 0.005 mm Classification A-560 57+00 250 s LW-40 43 24 100 97.8 42.5 CL A-566 68+00 0 LW-47 42 22 10 0 94.6 39.0 CL A-568 59+ 50 250 N LW-43 33 16 100 89.5 32.9 CL A-569 53+50 0 LW-48 41 22 100 88.6 39.2 CL A-576 72+00 0 ')'7 .. ,, ':J:::J.";:J 84.3 38.0 CL - LV A-579 74+00 0 LW-49 42 23 100 92.8 47.0 CL A-580 65+00 75 s LW-45 37 20 100 86.9 41.7 CL A-581 56+00 100 s LW-50 36 15 100 93.7 39.2 CL ::E: 0 A-582 67+00 75 N .. J-49 43 25 100 94.2 38.8 CL t"' 1-:rj A-583 54+00 0 LW-45 42 24 100 90.7 43.4 CL 0 ..... 60+50 0 LW-50 46 28 100 99.1 43.5 CL N trj t=j A-588 67+00 0 LW-45 40 23 100 91.7 45.0 CL :;.;: A-589 56+00 250 s LW-45 36 18 100 90.4 39.8 CL A-590 65+00 "'" '*' LW-43 36 18 100 92.2 39.5 CL .cvv " A-591 59+00 100 N LW-48 46 26 100 95.0 48.5 CL A-592 57+00 50 N LW-48 39 21 100 88.8 41.5 CL A-598 57+00 60 w LW-45 42 24 10 0 93.8 46.0 CL 66+00 0 LW-50 40 19 100 95.2 46.0 CL 00 76+00 50 N LW-40 52 30 10 0 95.3 50.0 CH A-601 70+00 " LW-49 41 v 22 100 94.0 39.7 CL Rev. 0 Test Number A-603 A-609 A-610 A-611 A-612 A-613 A-615 A=616 A-617 A-619 A-620 A-622 A-623 1\ c.-..c A-626 A-627 A-628 A-629 A-634 A-635 Location Offsetrrom Centerline Station* (feet) 76+00 0 68+00 100 N 62+25 0 57+00 0 75+00 0 63+00 0 67+00 50 N 68+50 80 N 76+00 30 N 73+00 0 57+00 60 s 64+00 50 s 58+00 0 61+50 75 s 72+00 75 N 72+00 60 w 69+50 100 s 80+00 0 75+00 60 s 60+50 30 N TABLE 2.5-75 (continued) Material Identification Number LW-17 LW-45 LW-49 LW-45 8 LW-47 LW-49 LW-48 0 LW-43 LW-50 LW-48 LW-61 LW-45 LW-45 LW-53 LW-39 LW-45 LW-39 LW-24 Atterberg Limits Liquid Plasticity Limit Index 40 37 47 49 37 49 42 37 43 40 40 47 31 46 48 66 54 40 42 42 20 20 27 29 '0 -'-0 28 22 20 23 19 18 28 11 27 30 44 34 23 24 23 Grain-Size Distribution Percent Percent Percent Passing Passing Passing #4 #200 0.005 mm 100 91.4 39.0 100 90.3 30.6 100 94.1 42.0 100 95.8 44.0 100 94.7 33.8 100 94.5 46.0 Sheet 14 of 18 Unified So i 1 Classification CL CL CL CL CL CL CL CL CL CL CL CL CL CL CL CH CH CL CL CL Rev. 0 :E; 0 t'"' 1"%'.] n :::0 t"1 ;:;.;; TABLE 2.5-75 (continued) Sheet 15 of 18 Location Grain-Size Distribution Offset from Material Atterberc;;1 Limits Percent Percent Percent Test Centerline Identification Liquid Plasticity Passing Passing Passing Unified Soil Number Station* (feet) Number Limit Index #4 #200 0.005 mm Classification A-636 58+50 40 N LW-44 56 35 CH A-637 71+50 0 LW-48 46 26 CL A-647 64+00 250 N LW-47 52 33 CH A-648 62+00 75 N LW-41 35 16 CL A-649 57+00 100 s LW-42 41 22 CL A-652 69+50 0 LW-45 50 29 CH A-654 66+00 150 s LW-15 45 28 CL A=655 59+00 s . ' 24 CL ::E: I.J ..... 0 A-661 75+00 0 LW-45 43 23 100 92.7 45.8 CL 1:"" IIj A-662 59+00 150 w LW-44 42 21 100 97.5 47.2 CL {J :::0 A-663 61+00 20 5 LW-45 42 25 100 83.5 35.0 CL t:tJ i?:j A-669 64+75 75 N LW-48 46 25 10 0 95.8 39.0 CL "' A-670 72+75 60 N LW-50 36 17 100 90.5 34.1 CL A-672 65+00 25 N LW-49 38 19 CL A-673 59+ 50 100 s LW-30 57 36 CH A-674 58+70 0 LW-47 44 24 CL A-675 61+50 250 N LW-50 48 27 CL A-676 68+00 0 LW-45 45 27 CL A-677 60+00 0 LW-50 53 33 CH A-679 69+00 25 N LW-47 41 23 99.9 88.9 38.5 CL Rev. 0 TABLE 2.5-75 (continued) Sheet 16 of 18 Location Offset from Test Centerline A-680 58+00 0 LW-45 45 24 100 94.6 44. 2 CL A-682 69+00 75 N LW-49 44 27 100 87.7 39.0 CL A-683 58+00 50 N LW-48 42 23 100 95.0 42.0 CL A-687 70+50 0 LW-43 40 20 100 88.5 42.2 CL A-689 66+50 0 LVJ-66 41 21 100 88.6 42.3 CL A-690 82+90 0 LW-67 Ill 22 99.5 87.7 42.4 CL A-691 61+00 0 LW-66 47 27 100 91.2 44.0 CL A-693 61+35 0 LW-65 55 38 100 97.3 46.0 CH :;:;: 0 A-696 60+25 0 LW-65 37 19 100 96.1 32.2 CL t"" '""".i A-698 65+18 0 LW-63 36 16 100 96 .. 0 37.0 CL n ::0 A-699 49+05 0 LW-49 36 19 99.8 90.0 34.5 CL t".l t".l A-700 61+15 0 LW-48 47 27 99.9 89.3 44.1 CL A-709 50+00 0 LW-48 37 20 ------CL A-710 57+00 75 N LW-4 5 48 28 ------CL A-711 51+00 0 LW-48 39 19 ------CL A-712 62+00 100 N LW-48 50 31 ------CH A-713 55+00 0 LW-15 65 45 ------CH A-714 75+00 100 N LW-45 36 19 ------CL A-716 57+00 200 N LW-50 51 34 ------CR A-717 70+00 125 N LW-43 45 26 ------CL 0 TABLE 2.5-75 (continued) Sheet 17 of 18 Location Grain-Size Distribution Offset from Material Atterber<;! Limits Percent Percent Percent 'Test Centerline Identification Liquid Plasticity Passing Passing Passing Unified Soil Number Station* (feet) Number Limit Index #4 #200 0.005 mm Classification A-718 60+00 100 s LW-48 40 20 CL A-719 69+00 100 s LW-45 47 27 CL A-720 49+90 0 LW-42 31 12 CL A-721 73+00 0 LW-37 43 23 CL A-724 63+00 0 LW-47 46 24 CL A-725 54+00 0 LW-45 53 31 CH A-726 67+50 50 s LW-41 40 20 CL A-729 72+00 110 N L\*/=4 9 39 23 CL 0 A-730 62+00 25 s LW-45 48 28 CL t"" *-.; A-732 64+55 25 s LW-48 42 21 CL () A-734 76+00 75 s LW-50 39 21 CL t'j A-736 62+00 200 N LW-46 t'.l 45 26 CL :;;>;; A-739 55+00 0 LW-48 39 22 CL A-740 56+00 0 T r.r J1 c. 38 17 CL A-741 57+00 75 s LW-44 47 25 CL A-743 75+00 50 s LW-50 50 31 CH A-744 78+00 85 s LW-50 43 25 CL A-745 63+25 75 N LW-49 47 26 CL 47 59+00 0 LW-43 45 25 CL A-748 55+00 275 s 0 51 .JU CH Rev. 0 TABLE 2.5-75 (continued) Sheet 18 of 18 Location Grain-Size Distribution Offset from Material Atterber9 Limits Percent Percent Percent Test Centerline Identification Liquid Plasticity Passing Passing Passing Unified Soil Number Station* (feet) Number Limit Index #4 #200 0.005 mm Classification A-749 59+00 100 s LW-48 46 27 ------CL A-750 75+00 75 s LW-42 39 19 ------CL A-756 I 17+00 0 LW-75 64 38 100 97.9 54.0 CH A-767 I 16+70 3 s LW-75 56 35 ------CH A-780 II 10+62 0 LW-74 50 29 100 95.4 46.0 CH A-786 II 6+65 8 E LW-71 47 27 ------CL A-790 II 8+77 32 w LW-74 45 26 100 94.4 38.4 CL A-802 II 5+40 0 LW-74 45 27 ------CL A-803 II 9+80 7 w LW-69 48 26 ------CL ::2; 0 Jl.-805 9+30 10 N LVJ-69 42 22 F'T t"-1 II ------n::i ........ , ,.. II 13+50 15 w LW-71 48 29 100 92.8 43.1 CL F. A-O..L:J " . ...... ""' t<:l t<:l Rev. 0 TABLE 2.5-76 IN-PLACE DENSITY TEST SUMMARY FOR MAIN DAM AND SADDLE DAMS GRANULAR DRAINAGE BLANKET Location Offset Test (a) from Elevation(b) Material Dry Relative Centerline Identification Density Density Number Station (feet) (feet) Number (pcf) (%) LFB-1 84+60 60 s 1,980.0 LWRD-3 115.0 80.4 LFB-2 84+60 60 s 1,980.0 LWRD-3 121.0 102.1 LFB-3 83+75 60 s 1,979.0 LWRD-3 124.2 112.8 LFB-4 83+60 65 s 1,979.0 LWRD-3 119.4 96.5 LFB-5 83+50 55 s 1,979.0 1 <")II 1 112.4 J...C.'"ia.l LFB-6 83+25 60 s 1,978.0 LWRD-3 126.0 118.5 LFB-7 83+40 65 s 1,979.0 LWRD-3 122.3 106.5 LGB-1 76+50 215 s 1,946.5 .. JRD-4 120.9 95.1 LGB-2 74+25 205 s 1,944.0 LWRD-4 124.5 105.3 LGB-3 77+50 185 s 1,947.0 LWRD-4 118.0 86.5 LGB-4 71+00 150 s 1,941,0 LWRD-4 111.5 65.4 LGB-5 72+00 140 s 1,942.0 LWRD-4 112.0 67.1 LGB-6 77+75 215 s 1,947.5 LWRD-4 126.5 110.7 LGB-7 78+00 180 s 1,948.0 LWRD-4 118.5 88.0 LGB-8 78+75 215 s 1,948.5 LWRD-4 122.7 100.3 LGB-9 73+50 190 s 1,943.0 LWRD-4 121.0 95.4 Note: Saddle dam drainage blanket not placed as of February, 1979. (a)The "S" following the test number indicates that a sand cone correlation test was run with the nuclear test indicated. (b)SNUPPS datum. Sheet 1 of 3 Correcting Test Number LFB-2 0 t"" r-:tj () -,... t!j ;A: LGB-17 LGB-18 Rev. 0 TABLE 2.5-76 (continued) Sheet 2 of 3 Location Offset Test(a) from Elevation(b) Material Dry Relative Correcting Centerline Identification Density Density Test Number Station (feet) (feet) Number (pcf) ( %) Number LGB-10 74+00 185 s 1,944.0 LWRD-4 123.8 103.4 LGB-11 74+50 200 s 1,944.5 LWRD-4 122.2 98.9 LGB-12 71+00 150 s 1,941.0 LWRD-4 122.6 100.0 LGB-13 72+00 140 s 1,942.0 LWRD-4 120.1 92.8 LGB-14 75+00 185 s 1,945.0 LWRD-4 120.0 92.5 LGB-15 75+50 205 s 1,945.5 LWRD-4 120.3 93.1 LGB-16 76+00 210 s 1,946.0 LWRD-4 121.1 95.7 LGB-17 71+00 150 s 1,941.0 LwRD-4 124.0 103.9 0 t:"" LGB-18 72+UU 140 s l,Y42.0 LWRD-4 123.2 101.7 , .... ..i LGB-19-S 73+00 180 s 1,937.5 LWRD-4 125.7 108.5 \-) >0 crl LGB-20-S 72+75 160 s 1,937.5 Ll'i'RD-4 120.7 94.5 L":i LGB-21-S 71+50 150 s 1,937.0 LWRD-4 124.7 105.9 Top of LGB-22 73+25 160 N Blanket LWRD-4 118.8 88.9 LGB-23 71+53 195 s 1,934.5 LWRD-4 119.0 89.5 LGB-24 75+64 130 s 1,944.0 Lw'RD-4 124.4 10 5. 0 LGB-25 66+00 100 s 1,926.5 LWRD-4 122.3 99.1 LGB-26 74+10 167 s 1,939.0 LWRD-4 129.6 118.8 LGB-27 78+35 110 s 1,965.0 LWRD-4 130.0 119.8 LGB-28 70+15 98 s 1,935.0 LWRD-4 129.5 118.5 LGB-29 70+69 147 s 1,935.0 127.3 112.8 Rev. 0 TABLE 2.5-76 (continued) Sheet 3 of 3 Location Offset Test(a) from Elevation(b) Material Dry Relative Correcting Centerline Identification Density Density Test Number Station (feet) (feet) Number {pcf) ( %) Number LGB-30 69+50 123 s 1,928.0 LWRD-4 121.2 96.0 LGB-31 83+40 55 s 1,976.0 LWRD-4 122.7 100.3 LGB-32 64+60 105 s 1,924.5 LWRD-4 120.0 92.5 LGB-33 81+10 65 s 1,972.0 LWRD-4 118.7 88.6 LGB-34 80+60 30 s 1,971.0 LWRD-4 122.3 99.1 LGB-35 64+33 130 s 1,924.5 LWRD-4 132.3 125.5 LGB-36 69+50 147 s 1,928.0 LWRD-4 132.2 125.2 LGB-37 79+45 100 s 1,965.5 LW'RD-4 127.8 114.1 ::E: 0 t"1 LGB-38 79+05 iU C> 1,967.5 LWRD-4 126.6 lll.u iij ,, LGB-39 65+60 200 s 1,926.5 LWRD-4 124.7 105.9 " .. :::c LGB-40 66+30 184 s 1,926.5 LWRD-4 t?:i 127.6 113.6 t?:i ;;>;: LGB-41 67+10 200 s 1,928.0 LWRD-4 128.0 114.7 LGB-42 69+00 210 s 1,928.0 LWRD-4 127.9 114.4 LGB-43-S 64+40 90 s 1,926.0 LWRD-4 131.8 124.3 LGB-44-S 64+15 110 s 1,924.5 LWRD-4 125.3 107.5 LGB=45-S 65+00 71 s 1 r\'"'1""7 L LW'RD-4 , '""' r lU U

    • U J.. t:l'-1. J .lL.L..O LGB-46-S 65+00 155 s 1,929.0 LWRD-4 122.0 98.3 LGB-47-S 64+45 110 s 1,927.5 LWRD-4 120.5 93.9 LGB-48-S 64+87 70 s 1,928.5 L\tv'RD-4 115.3 78.0 LGB-49 LGB-49-S 64+87 70 s 1,928.5 L\*JRD==4 121.4 96.6 Rev. 0 TABLE 2.5-77 Sheet 1 of 10 SOIL PROPERTIES FOR BAFFLE DIKES A AND B Location Grain-Size Distribution Offset from Material Atterberg Limits Percent Percent Percent Test Centerline Identification Liquid Plasticity Passing Passing Passing Unified Soil Number Station* (feet) Number Limit Index #4 #200 0.005 mm Classification A-190 A83+00 0 LW-6 44 26 100 65.0 46.0 CL G-489 A93+00 0 LW-9 99.9 94.7 57.0 G-490 A83+30 0 LW-6 100 99.7 70.5 AlOO+SO 0 LW-9 66 36 100 97.8 63.4 CH A-196 A104+20 0 LW-7 81 58 100 96.6 65.5 CH A-197A A 0 LW-5 70 41 100 96.9 59.5 CH A-197 A82+00 10 w LW-5 62 41 100 97.2 46.0 CH 0 A-198 A80+00 0 LW-6 67 46 100 95.2 64.5 CH t"' *-.,; 9 AlOl+OO 0 LW-7 77 55 100 97.1 !:'"? n l...n \.J _}/. v ;;c A-200 A89+50 0 LW-6 38 18 100 91.6 49.7 CL t<:l t<:l A-201 A82+00 100 s LW-5 46 26 100 94.6 40.0 CL A-202 A 0 LW-5 68 41 100 96.2 51.1 CH A-203 A89+95 0 LW-5 48 26 100 96.1 42.5 CL A-204 A72+80 0 LW-7 74 52 100 97.5 52.5 CH A-205 A91+00 0 LW-7 77 52 100 96.4 62.8 CH A-207 A98+00 190 E LW-9 77 54 100 95.8 59.5 CH A-208 A91+25 50 E LW-7 76 50 100 97.5 64.2 CH A-209 Al04+00 0 LW-9 68 42 100 95.8 53.8 CH A-210 A89+50 40 E LW-9 65 43 100 96.6 53.1 CH A-211 A85+50 0 46 24 100 nc c :;;,.JeU A A A CL ':i"ieU *A and B indicate Baffle Dike A or B. Rev. 0 TABLE 2.5-77 (continued) Sheet 2 of 10 Test Centerline A-215 Al03+90 0 LW-7 76 54 100 95.5 59.3 CH A-217 A99+50 0 LW-7 67 38 100 97.4 52.4 CH A-218 A102+30 0 LW-7 64 36 99.8 92.8 51.0 CH A-219 A60+00 0 LW-11 69 44 100 97.7 60.6 CH A-220 M9+00 0 LW-13 68 46 100 97.6 56.5 CH A-221 A43+00 0 LW-8 72 48 100 92.5 59.8 CH A-222 A44+00 0 LW-11 75 53 100 96.2 53.8 CH A-223 A76+20 0 LW-8 80 51 100 95.4 59.7 CH 0 t-1 A-224 A56+0U u LW-12 76 48 9fl. 8 94.2 54.5 CH n:l A-225 A69+00 0 LW-8 70 42 99.8 96.0 56.5 Cl-l () ?j t'.:1 A-226 11104+35 0 LW-7 73 44 99.9 93.4 56.2 CH !:rj :;:.:: A-227 A52+00 0 LW-12 63 37 100 96.2 54.2 CH A-228 A51+70 0 LW-11 77 51 100 98.2 55.5 CH A-229 A45+40 0 LW-8 86 54 100 94.8 59.8 CH A-230 A65+80 0 LW-9 70 39 100 95.4 61.5 CH 11._"')":)1 r1 £...,.;.)... A6l+72 0 LW-5 71 43 100 96.6 55.8 CH A-232 A46+50 0 LW-13 48 19 100 89.9 63.7 CL A-233 A60+50 0 LW-8 68 40 100 92.5 54.9 CH A-234 A64+00 0 LW-12 70 42 100 97.4 57.5 CH A-235 .1'>.99+00 0 LVl-9 72 42 100 93.4 56.5 CH A-236 A57+00 0 LW-7 62 36 100 96.6 56.0 OH/MH A-237 A90+20 0 LW-8 65 35 100 96. 47.5 CH Rev. 0 TABLE 2.5-77 (continued) Sheet 3 of 10 Location Offset from Test Centerline A-240 A43+00 0 LW-8 50 27 100 9 3. 7 48.0 CH A-242 A44+10 0 LW-11 47 29 99.9 85.7 41.5 CL A-245 A27+00 0 LW-7 46 23 100 94.4 42.5 CL A-248 A61+00 0 LW-12 60 31 99.8 93.2 63.0 CH/OH A-249 MB+OO 0 LW-11 57 37 100 95.9 47.0 CH A-251 A34+00 0 LW-1 46 27 100 95,1 42.0 CL A-283 A91+00 0 LW-7 91 68 100 95.6 65.0 CH A-285 48 A99+00 0 LW-7 7l ----CH 0 A-287 A79+0U 0 LW-7 66 41 I:"' ------CH 1':rj A-292 74 49 95.0 n A69+00 0 LW-12 100 55.0 CH -...... t:tj A-294 A85+00 0 Li'l-7 73 51 ------CH J:rj :;:o:; A-299 A92+00 0 LW-12 70 46 ------CH A-302 AlO 2+0 5 0 LW-7 68 42 ------CH A-303 A90+10 0 LW-7 62 35 ------CH A-304 AlOO+OO 0 LW-7 56 29 ------CH A-307 A94+00 0 LW-7 61 38 ------CH A-358 A96+00 120 w LW-12 61 40 100 93.2 56.0 CH A-361 A95+00 0 LW-12 66 48 ------C!-1 A-435 A5+00 0 S-4 28 8 75.7 50.2 13.0 CL A-466 A7+00 0 55 34 100 90.7 50.0 CH Rev. u TABLE 2.5-77 (continued) Sheet 4 of 10 Location Grain-Size Distribution Offset from Material Att rberg Limits Percent Percent Percent Test Centerline Identification Ligu d Plasticity Passing Passing Passing Unified Soil Number Station* (feet) Number Lim t Index #4 #200 0.005 mm Classification A-485 Al6+00 0 LW-51 46 21 100 94.8 31.0 CL A-494 ASO+OO 95 E LW-57 50 30 10 0 94.4 53.6 CH A-497 A7+00 0 LW-54 51 31 100 92.6 49.0 CH A-509 A7+00 0 LW-12 55 36 CH A-516 A44+00 30 E LW-53 48 29 CL A-525 A25+00 0 LW-53 55 34 CH A-533 A56+00 20 w LW-54 48 25 100 88.1 55.0 CL A-539 A59+00 20 E LW-56 43 19 100 93.3 58.0 CL 0 C-1 i-"!j l*.-558 7\i:"CI/"\1"\ 20 E LW-54 65 36 10 0 92.1 49.5 \..n r * .J...;<vv n A-561 A70+50 50 E LW-53 68 41 100 93.0 52.0 CH ::0 1:':1 t:tj A-565 A25+50 150 'vi LW-60 47 26 100 60.5 39.5 CL ;;>:: A-567 AC.'1..J....nn oJL.IVV 'LJ E LW-6 53 31 100 87.1 46.5 CH A-577 A24+50 100 w LW-52 56 35 100 86.2 so. 5 CH A-578 A26+70 130 w LW-58 47 27 99.7 58.9 44.0 CL A-58 5 A65+00 50 w LW-6 50 30 100 80.1 46.5 CL A-58 6 A24+0l 0 T t.1 t:" ") 51 31 lOU 86.2 46.0 CH .I-IV'i-.:;.,) A-587 A23+00 50 w LW-53 48 27 100 86.7 49.0 CL A-593 A27+00 0 LW-55 51 28 100 84.7 50.,0 CH A-594 A31+00 120 w LW-57 45 25 99.7 75.5 42.0 CL A-595 A27+00 0 L\AJ-55 C'"7 34 10 0 76.5 48.5 CH Jl Rev. 0 TABLE 2.5-77 (continued) Sheet 5 of ! 0 Location Grain-Size Distribution Offset from Material Att rberg Limits Percent Percent Percent Test Centerline Identification Liqu d Passing Passing Unified Soil ....... _.. ............. '"' ... '-1 ....................... Number Station* (feet) Number Lim t Index #4 #200 0.005 mm Classification A-596 A28+30 80 E LW-6 42 23 100 79.3 39.5 CL A-597 A71+50 50 E LW-53 55 30 10 0 87.5 54.5 CH A-602 A72+00 5 w S-12 44 23 100 67.8 47.0 CL A-604 A26+00 150 E LW-54 48 28 100 70.0 37.0 CL A-605 A27+80 100 w LW-53 61 39 100 88.7 47.5 CH A-614 A30+00 120 E LW-53 62 39 100 89.1 47.0 CH A-618 A38+00 45 w LW-53 45 21 CL A-621 A24+00 0 LW-53 50 27 CH 0 t"'1 i':!:j A-6:24 A)S+OO 60 w LW-58 51 33 CH n ..... A-631 A25+00 120 w LW-55 51 30 CH "" ........,; ---t'tj A-632 A26+50 50 E L\AJ-57 58 37 CH A-633 A70+50 0 LW-45 49 29 CL A-641 A26+00 130 w LW-54 47 28 CL A-642 A27+20 160 w LW-60 41 22 CL A-650 A61+00 20 w S-12 36 16 CL A-651 A28+00 0 LW-6 56 32 CH A-653 A30+20 20 w LW-8 57 38 CH A-658 A73+10 75 E LW-60 48 27 92o0 63o8 40o0 CL A-659 A50+00 50 w LW-60 51 29 93.3 65.5 48.0 CH A-668 A29+00 120 w LW-60 40 21 99.9 OU
    • I 39.0 CL Rev. 0 TABLE 2.5-77 (continued) Sheet 6 of 10 Location Grain-Size Distribution Offset from Material Atterberg Limits Percent Percent Percent Test Centerline Identification Liquid Plasticity Passing Passing Passing Unified Soil Number Station* (feet) Number Limit Index #4 #200 0.005 mm Classification A-671 A54+00 10 E LW-52 60 36 100 89.6 51.0 CH A-684 A54+00 10 w LW-53 60 38 100 91.7 53.5 CH A-685 A4l+OO 40 w LW-53 55 32 100 91.7 54.5 CH A-688 A23+10 40 w LW-54 53 32 10 0 93.5 53.5 CH A-692 A39+10 30 E LW-53 41 19 100 90.4 35.5 CL A-694 A23+85 130 E LW-52 65 42 100 94.3 51.0 CH A-697 84+00 40 s LW-71 53 33 100 90.8 48.0 CH A-701 844+88 25 s LW-64 52 30 ------CH ::E; 0 .... ....,,......., n/Cot"'A 0 47 ?5 ------CL t'1 n-; VL. .LlVTVV l:ij A-703 84+30 10 s LW-71 49 25 100 92.4 !!0 !::::: "' "::::U *.J >....L. () ;::<;: A-704 842+60 40 N LW-64 56 30 , '"' .LU U 96.1 45.0 CH t:'j t:l:j A=705 A56+00 10 E LW-58 55 34 99.9 91.6 50.5 CH !A: A-706 811+00 75 s LW-66 39 21 10 0 89.9 37.0 CL A-707 87+00 20 s LW-75 48 29 100 81.2 41.0 CL A-708 812+00 70 s LW-61 51 31 100 88.9 37.5 CH A-715 A23+50 120 E LW-55 58 32 ------CH A-7238 A49+10 25 E LW-56 55 32 100 91.8 44.0 CH A-727 842+00 45 N LW-71 52 31 100 87.5 48.5 CH A-728 A38+80 10 w LW-58 53 31 10 0 87.5 43.0 CH A=73l 4+0 0 10 E LW-14 51 28 ------CH 0 TABLE 2.5-77 (continued) Sheet 7 of 10 Location Grain-Size Distribution Offset from Material Atterberg Limits Percent Percent Percent Test Centerline Identification Liquid Plasticity Passing Passing Passing Unified Soil Number Station* (feet) Number Limit Index #4 #200 0.005 mm Classification A-733 A66+50 0 LW-57 64 36 CH A-737 A49+30 5 E LW-54 46 25 CL A-738 A47+50 20 E LW-52 59 37 CH A-742 A67+00 55 w LW-56 48 27 CL A-746 A29+00 140 w LW-6 49 30 CL A-751 A28+50 120 w LW-6 49 30 CL A-752 816+00 20 N LW-63 58 32 CH A-753 837+50 0 LW-64 52 31 CH 0 L' A-754 Bl?+OO Q 7 6 ..;:;; 34 lOG 94.3 4i.:> CH A-755 10 LW-72 46 25 100 88.2 49.0 CL n 835+00 s " .Z>.78+00 0 U'i-56 55 35 t".l 10 0 89.5 Sl. 0 CH trl :;>:; A-758 817+00 30 s L\*l-7 4 "'" 10 0 46.0 CH JV .JU A-760 Bl6+00 0 LW-71 57 33 CH A-761 A68+50 60 E LW-56 51 29 99.9 91.3 57.0 CH A-762 839+70 0 LW-71 49 31 99.9 92.5 47.5 CL A-763 A78+00 0 LW-58 48 25 CL A-764 B39+40 62 N LW-70 51 31 10 0 93.1 46.5 CH A-765 B34+60 48 N LW-70 42 22 100 94.9 41.5 CL A-766 B36+93 44 s LW-71 47 27 CL A-768 A79+84 48 E LW-54 63 40 10 0 92.2 57.0 r'U '-" Rev. 0 TABLE 2.5-77 (continued) Sheet 8 of 10 Location Grain-Size Distribution Offset from Material Atterberg Limits Percent Percent Percent Test Centerline Identification Liquid Plasticity Passing Passing Passing Unified Soil Number Station* (feet) Number Limit Index #4 #200 0.005 mm Classification A-769 A72+18 69 E LW-60 47 25 99.7 84.1 49.5 CL A-770 B45+10 0 LW-70 52 31 '"" 95.7 46.5 CH .l.VV A-771 B43+85 25 s LW-71 40 21 100 94.1 41.5 CL A-772 B16+76 0 LW-56 52 29 100 94.0 46.0 CH A-773 B35+10 20 N LW-71 46 27 100 93.0 42.0 CL A-774 A81+66 35 w LW-52 53 29 100 84.7 43.0 CH A-775 B34+00 40 N LW-71 45 25 100 89.6 42.5 CL A-776 B15+67 12 s LW-56 53 28 99.9 95.7 49.0 CH ::8 A-777 B44+00 0 LW-70 44 25 10 0 96.0 43.5 CL 0 t""' f"J:j A-778 0 r r .. r_c: "') '" 30 100 9 2. 3 47.:, CH LIU -..JL. J.l. 0 A-779 A76+40 33 w LW-52 58 36 '"" -. 5G.5 CH .l.VV ou.J J::rj t"1 2 Bll+95 23 N LW-76 53 30 CH ;:>;: A-783 B17+00 25 s LW-71 51 30 CH A-784 B29+50 20 s LW-71 38 19 CL A-785 B44+60 80 s LW-71 46 27 --CL A-787 Bl5+15 100 s LvJ-70 42 21 100 95.4 41.0 CL A-788 B18+00 0 LW-71 41 22 100 89.9 35.5 CL 1'.-789 B29+00 0 LW-70 52 32 10 0 95.6 39.0 CH A-791 Bl9+00 0 LW-70 !+/-:) 26 100 37.0 CL A-792 A22+00 0 LW-57 54 31 10 0 89.2 46.5 CH Rev. 0 TABLE 2.5-77 (continued) Sheet 9 of 10 Location Grain-Size Distribution Offset from Material Atterberg Limits Percent Percent Percent Test Centerline Identification Liquid Plasticity Passing Passing P;:l,C:C:::inn Unified Soil .................... Number Station* (feet) Number Limit Index #4 'll200 0.005 mm Classification A-793 842+40 30 s LW-71 51 30 CH A-794 A29+00 0 LW-53 53 32 CH A-795 814+98 70 N LW-71 45 24 CL A-796 818+04 47 N LW-70 40 20 CL A-797 830+45 90 s LW-70 41 21 CL A-798 819+50 0 LW-70 46 27 CL A-799 816+00 0 LW-70 43 24 CL A-800 810+40 0 LW-70 44 25 CL 0 t"" 7\ Or'\, 25 hj .... D.i /TLU s LW-i.i 43 22 CL ,-, \.J A-804 Bl4+75 0 LW-70 42 22 CL :;:o C":l A-806 838+30 45 N LW-70 50 30 CH t%J ;A; A=807 B37+60 0 LW-71 44 26 CL A-808 Bl6+00 80 N LW-71 42 23 CL A-809 B40+55 15 N LW-70 48 28 CL-CH A-810 Bl4+50 85 s LW-71 40 20 CL . .'\-811 01 11-L-C:n n T"f.T ...,, 36 20 CL v I .1. A-812 812+00 0 LW-71 48 30 100 87.2 39.0 CL A-813 814+00 0 LW-70 44 25 100 94.3 40.0 CL A-814 A23+50 0 LW-54 52 31 100 84.2 46.0 CH A-816 Bl6+00 0 46 27 10 0
    • I 43.5 CL 0 .!.'-'='"'

    TABLE Location Offset from Material Test Centerline Identification Number Station* (feet) Number A-817 Bl9+00 0 LW-71 A-818 B32+00 80 N LW-70 A-819 Bl8+30 70 N LW-71 A-820 B3l+OO 60 N LW-70 2.5-77 (continued) Sheet 10 of 10 Grain-Size Distribution Att rberg Limits Percent Percent Perr..;eut Liqu d Plasticity Passing Passing Passing Unified Soil Lim t Index #4 #200 0.005 mm Classification 39 20 100 96.3 36.5 CL 42 21 10 0 95.9 43.5 CL 48 29 100 95.9 44.5 CL 48 29 100 95.2 47.0 CL Rev. 0 ::E; 0 t'"' ") n ::u t<:! !:'j ;:>;; Sheet 1 of 37 TABLE 2.5-78 IN-PLACE DENSITY TEST SUMMARY FOR BAFFLE DIKES A AND B COHESIVE EMBANKMENT FILL Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 1 A 73+45 62 w 1,964.0 LW-8 27.7 95.1 2 A 72+50 80 w 1,964.0 LW-8 25.6 96.4 3 A 72+61 77 w 1,964.0 LW-8 26.9 92.7 29 4 A 86+70 40 E 1,964.0 LW-7 24.8 102.3 5 A 86+70 40 E 1,964.0 LW-7 26.7 97.7 6 A 86+70 40 E 1,964.0 LW-7 25.2 104.0 7 A 79+50 32 w 1,950.0 LW-8 16.7 98.4 :E; 0 8 A 78+06 :w F. LW-8 19"9 t"' '"1J 9 A 78+12 24 E 1,955.0 LW-8 18.9 102.3 n :::c 10 A 81+27 107 E 1,951.0 LW-6 17.9 91.5 14 tt.:! tt.:! 11 A 81+27 107 E 1,951.0 LW-6 23.6 98.3 14 ;:>;: 12 A 81+17 97 E 1,951.0 LW-7 34.9 90.5 13 13 A 81+17 97 E 1,951.0 LW-6 19.5 100.8 14-S A 81+27 107 E 1,951.0 LW-6 20.5 100.6 15 A 80+94 95 E 1,951.0 LW-6 20.7 95.5 16 A 80+65 4 E 1,951.0 LW-6 20.7 97.9 17 A 83+06 115 E 1,956.0 LW-6 21.5 97.8 (a) The nsn following the test number indicates that a sand cone correlation test was run with the nuclear test indicated. /h\ and B prefixes V'C!!VLo::: Baffle Dike A or D= Rev. 0 TABLE 2.5-78 (continued) 2 of 37 Location Offset rn,.Place from Elevation(c) Material Moisture Correcting Test Station (b) Centerline Identification Content Compaction Test Number (a) (feet) (feet) Number ( %) (%) Number lS A 79+71 41 E 1,952.0 LW.,6 16.3 104.7 19 A 79+60 38 E 1,953.0 LW.,6 16.8 101.2 20 A 83+12 85 w 1,959. 0 LW""6 18.0 105.3 21 A 82+98 81 w 1,958.0 LW.,.6 19.7 98.3 22 A 77+97 114 E 1,957.0 LW.,7 26.4 100.4 23 A 78+30 104 E 1,956.0 LW.,.7 28.1 99.0 25 A 89+50 100 E 1,954.0 Lw,.g 28.0 108.0 26 1>. 89+55 90 E 1,954.0 LW"9 30.2 104.0 <: 27 A 88+92 25 E 1,956.0 LW-,.6 26. 2 91.8 34 0 t"1 '71 28 A 88+70 30 E , nee n LW-,.6 22.1 94. 3 35 .l.t:JJV,v (J 29 A 72+61 77 w 1,964.0 LtAl77 -,c " 102.4 ;c LJ.:J b::l b;! 30 A 88+66 101 w 1,958.0 LW.,-9 24.3 111.5 34 A 88+92 25 E 1,956.0 Lw,g 31.0 104.2 35 A 88+70 30 E 1,956.0 Lw.,.g 31.9 103.5 40 A 89+30 116 w } t 9 59

    • 0 LW.,.7 24.8 101.0 41 A 90+89 134 E 1,957.0 LW,.7 27.2 10 0. 0 42 A 90+76 130 E 1,957.0 LW,-7 23.8 103.5 43 A 89+30 5 E 1,959.0 LW77 27.4 97.5 44 A 89+18 , n .i.*-* E li959.0 LVJ-::-7 27.8 95.6 45 A 90+10 97 \'<' 1,956,0 LW.,.7 25 .. 6 102.7 46 A 89-+95 90 w 1, 956.0 L\V-,.7 27.4 101.8 47?5 A 89+14 15 E 1 QC() A 28.2 uu '! -'--". 7 Re'l u Sheet 3 of 37 TABLE 2.5-78 (continued) Location Offset In-,. Place from Elevation(c) Mate rial Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number (a) (feet) (feet) Number ( %) ( %) Number 48 A 91+90 55 E 1,951.0 LW.,.8 23.4 95.1 49 A 92+15 50 E 1,950.0 LW78 23.2 98.3 50 A 89+70 30 E 1,957.0 LW.,.7 32.0 96.3 51 A 89+00 20 w 1,960.0 LW.,.7 28.9 97.7 52 A 102+80 110 E 1,958.0 LW.,.9 28.6 109.7 53 A 100+40 100 E 1,953.0 LW.,.9 26.7 110.6 54 A 102+40 80 w 1,952.0 Lw.,.9 30.0 103.1 55 A 101+15 80 w 1,949.0 LW?9 25.1 112.2 56 A 88+60 90 w 1,964.0 ::E; LW-,.7 27.3 101.6 0 i:""' Llt!77 1f"\/\ ...., . 57 A 92+90 185 w 1,950.0 26.2 .J..VUeL. \.J 58 A 93+80 100 w L 946.0 LW,.7 25,8 103.5 ;;o ttj 59 P.. 92+00 20 E 1,954.0 LW.,-7 26.7 102.7 tr:l 60 A 98+90 105 E 1,946.0 LW77 27.9 98. 5 61 A 100+65 75 w 1,950.0 Lw,.7 26.1 102.6 62 A 103+50 65 E 1,957.0 LW77 25.6 104.1 63 A 104+05 135 w 1,955.0 LW,.7 26.7 102.3 64 A 104+30 100 !:: 1,959.0 LW-,.7 26.1 103.1 65:7S A 104+35 105 E 1,959.0 LW.,.7 30.2 95.8 66 A 102+50 100 w L 95 3. 0 L'l:!7'8 96.8 67 A 102+55 104 w 1,953.0 LW.,8 23.5 94,3 71 68 A 104+12 150 E 1,960.0 LW.,-.8 23.0 96.4 69 A 92+00 125 w -,,954,0 LW-,.7 28.5 ()0 0 ,_, ,. <.) Re\i. 0 TABLE 2.5-78 (continued) Sheet 4 of 37 Location Offset In,. Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compact ion Test Number(a) (feet) (feet) Number ( %) (%) Number 70 A 91+50 llOW 1,955.0 LW,.7 26.3 100.4 71 A 102+55 104 w 1,953.0 LW?6 19.4 101.0 72,.S A 102+30 130 E 1,958.0 LW,.7 31.7 92.4 73 73 A 102+30 130 E 1,958.0 LW,.7 29.0 95.8 74 A 98+23 187 E 1,949.0 LW,.7 38.1 88.9 75 75 A 98+23 187 E 1,949.0 LW,.7 30.3 96.7 76 A 103+36 126 E 1,960.0 LW,.7 25.9 101.7 77 A 103+25 30 E 1,960.0 LW-,.9 34.6 100.2 ::.8 0 L' 78 A 83+15 97 w 1,965.0 LW-,.8 22.8 97.9 79 J!.. 83+00 104 1 OCt: r. r t.r 0 25.4 93.4 80 n -LtJV.J*V l..IVV?O :;v 104 w 1,965.0 L\AJ7<8 22.4 '"" A t'.1 80 A 83+00 ..LV V e "i t'.1 ;;>:; 01 A 85+92 70 w 1,970.0 LW-,.8 24.6 100.8 V.!. 82 A 86+00 74 w 1,970.0 LW,.8 22.5 101.1 83 A 76+77 90 w 1,966.0 LW-,.9 34.0 101.9 84 A 76+85 95 w 1,966.0 LW-,.9 31.4 10 3. 9 85 A 76+89 100 w 1,966.0 LW-,.9 33.4 10 2. 7 86 A 61+30 50 E 1,965.0 LW-,.8 22.3 10 2. 4 87 A 61+42 54 E 1,965.0 LW-,.7 28.2 101.5 88 *"* 55+85 0 1,970.0 LW78 23.6 98.7 89 A 55+90 4 w 1,970.0 LW,.8 23.5 99.3 90 A 72+00 80 w 1,967.0 LW?7 28.2 101.0 91 A 72+20 70 w 1 01"7 n 25:5 .!.V'f * .t. ..... ........... .., Rev. ,... v Sheet 5 of 37 TABLE 2.5-78 (continued) Location Offset In-, Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number ( %) (%) Number 92 A 82+75 90 w 1,965.0 LW-,8 25.4 96.5 93 A 83+10 100 w 1,968.0 LW-,8 24.0 99.9 94 A 68+50 30 E 1,956.0 LW-,7 29.5 97.8 95 A 68+00 20 E 1,955.0 LW-,7 30.5 96.6 96 A 68+20 0 1,956.0 LW-,7 29.1 97.8 97 A 67+50 75 E 1,958.0 LW-,7 25.9 100.6 98-,S A 61+00 90 E 1,963.0 LW-,8 22.0 96.5 99 A 64+42 44 E 1,962.0 LW-,1 22.8 92.4 104 100 A 64+42 44 E 1,962.0 0 LW-,1 22.4 94.2 104 L' hj 101 . 82+80 nc E , nr-, n LW7l0 20.5 101.0 n ::>U .l.1JO.J.u n ;::c 102 A 82+23 107 w 1,963.0 22.4 96.4 ...... --" tzj 103 A 69+10 100 E 1,962.0 LW-,10 23.0 92.1 ..... 104 ,..,.. 104 A 69+10 100 E 1,962.0 LW-,7 26.5 102.3 105 A 64+42 44 E 1,964.0 LW-,7 28.4 10 2. 2 106 A 59+94 30 E 1,969.0 LW-,7 27.7 98.4 107 A 60+10 20 E 1,968.0 LW-,7 25.4 99.0 108 A 67+27 105 E 1,958.0 LW-,7 28.9 94.2 109 109 A 67+27 105 E 1,958.0 LW-,7 28.3 97.4 110 A 53+60 59 1,970.0 LW77 .LO .q 1.\JtS.L. 111 A 54+10 45 w 1,970.0 LW-,7 27.2 101.5 112 A 52+00 70 w 1,968.0 LW-,12 31.7 95.3 113 113 *"* 52+00 7C l;968=C LW712 27.9 .l.UV.l-0 TABLE 2.5-78 (continued) Sheet 6 of 37 Location Offset In7Place from Elevation(c) Material Moisture Correcting Test Station (b) Centerline Identification Content Compact ion Test Number(a) (feet) (feet) Number ( %) (%) Number 114 A 47+00 50 w 1,960.0 LW712 26.9 10 2. 2 115 A 67+81 12 w 1, 9 58.0 LW77 26.7 100.7 116 A 68+10 3 w 1,956.0 LW77 23.8 10 2.1 117 A 69+19 122 w 1, 9 53. 0 LW79 37.9 101.7 118 A 66+15 110 w 1,962.0 LW79 32.5 10 5. 4 119 A 65+90 100 w 1,962.0 LW77 27.0 99.9 120 A 70+40 106 E 1,964.0 L'i'b7 25.0 103.6 121 .r:.. 47+50 60 E 1,961.0 L\"1713 29.6 94.3 ,
    • c ..... v 0 122 A 47+20 50 E 1,961.0 LW713 29.0 9 5. 8 146 t"' t"'!j 123 A 64+00 30 w 1,965.0 LW710 22.9 94.4 124 n ;:<:; 1 ">A . 64+00 30 w 1,965.0 LW7ll .., .!.U.J...O w ... <. .. r> '-I
    • L. trl 125 A 60+07 10 w 1,967.0 LW77 23.9 102.4 ;...A-1 126 A 48+50 25 w 1,965.0 LW7ll 30.9 99.3 127 A 51+70 19 E 1,970.0 LW7ll 29.2 98.0 128 A 38+40 75 w 1,977.0 LW-,.11 33.2 95.7 144 129 A 45+30 85 w 1,960.0 LW-,.11 33.3 93.1 145 130 A 52+10 40 w 1,971.0 LW711 32.7 95.8 140 131 A 52+00 35 w 1,971.0 LW713 25.0 101.5 132 A 58+00 60 "i C1r::C1 r, LW7ll "" [ 99.3 ..Lt:.JU;JeU L.":t:eO 133 ."to. 60+00 30 \AJ 1,970.0 L\"/:::,.12 27.3 1nn , ..LVVe..L 134 A 63+50 50 w 1,966.0 LW711 31.6 96.4 141 135 P. 65+00 20 \"i 1,963.0 L!.l. 102 .. 1 Rev. v Test Number (a) 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 , c c -'-.JU 157 TABLE 2.5-78 (continued) Location Station(b) A 59+00 A 63+00 A 58+80 A 55+00 A 52+10 A 63+50 A 84+50 A 77+10 A 38+40 A 45+30 A 47+50 A 67+00 A 68+00 A 66+90 A 69+00 A 69+00 A 76+45 A 83+50 A 96+50 A 94+40 A 95+00 A 90+50 Offset from Centerline (feet) 0 20 E 10 E 50 E 40 w 50 w 70 w 80 w 75 w 85 Y.! 60 E 0 20 E 20 w 0 10 w 100 E 100 E 150 E 145 E 145 E 110 w Elevation(c) (feet) 1,970.0 1,968.0 1,971.0 1,972.0 1,971. 0 1,966.0 1,967.0 1,966.0 1,977.0 1,961.0 1,958.0 1,956.0 1' 9 58.0 1,955.0 1,955.0 1,962.0 1,960.0 1,942.0 1,943.0 1 n J..!'..;...; ...... v Material Identification Number T t.r , , LIV'i7.l..l. LW-,.8 In-,. Place Moisture Content ( %) 25.7 25.1 25.9 26.6 21.0 29.3 27.0 22.2 28.1 27.4 24.1 30.3 32.2 31.6 30.2 21.7 21.3 19.4 1 G i ...... 21.5 22.4 26.2 Sheet 7 of 37 Compaction (%) 103.0 104.3 97.7 99.6 100.1 101.2 97.2 101.2 102.5 10 2. 9 84.5 81.5 oo c: v ..... u 8 2. 8 97.8 101.5 101.0 100.8 101.4 100.8 98.6 Correcting Test Number 168 169 168 151 Rev. 0 TABLE 2.5-78 (continued) Sheet 8 of 37 Location Offset In., Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number ( %) (%) Number 158 A 85+50 95 w 1,962.0 LW.,1l 28.6 101.5 159 A 64+40 60 w 1,966.0 LW.,11 27.7 98.4 160 A 60+00 20 w 1,965.0 LW.,8 23.4 95.3 161 A 56+00 0 1,966.0 LW.,8 20.4 98.0 162 A 52+00 40 w 1,971.0 LW.,12 24.3 99.6 163 A 39+00 20 w 1,977.0 LW.,9 33.2 100.3 164 A 43+00 40 w 1,961.0 LW.,ll 28.3 92.9 166 165 A 35+00 40 w 1,965.0 LW.,9 33.2 98.4 """ ..... 0 166 A 43+00 40 w 1,961.0 LW71l 28.5 97.2 t:'"1 h) 167 A 45+70 75 \A! 1 Ot:.Q n T t.J _ 1 1 30.6 95.8 n .. , .J ,JJ. v l..lfV7..L..L ;:;;::; 168 A 67+00 0 1,958.0 LW.,? 29.8 95.5 t:rj [l:j 169 A 68+00 20 E 1,956.0 LW-,.7 28.2 97.1 :A1 170 A 46+00 75 E 1,963.0 LW.,10 16.2 99.8 171 A 49+50 75 w 1,970.0 LW.,ll 26.0 100.8 172 A 53+00 85 w 1,971.0 LW.,11 28.4 98.1 173 A 42+50 30 w 1,969.0 LW.,8 22.2 100.7 174 A 36+00 60 w 1,973.0 LW.,7 24. 1 99.2 175 A 46+20 30 E 1,960.0 LW7ll 26.8 97.3 176 A 47+00 40 1,963 .. 0 LY.J7ll 26.8 97.6 177 A 46+50 75 E 1,963.0 LW.,13 21.7 99.8 178 A 41+00 50 w 1,970.0 LW.,8 19.8 100.5 179 A 38+00 0 lr975.C LW78 21.8 97.1 Pou v
    • 0 Sheet 9 of 37 TABLE 2.5-78 (continued) Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station (b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number ( %) (%) Number 180 A 35+00 20 E 1,970.0 LW-8 21.8 97.3 181 A 39+00 30 w 1,976.0 LW-8 22.3 96.2 188 A 50+00 10 E 1,970.0 LW-13 18.0 98.7 189 A 51+80 0 1,972.0 LW-13 22.4 97.5 190 A 56+00 10 w 1,972.0 LW-13 19.6 100.5 191 A 58+90 0 1,971.0 LW-13 18.7 10 3. 3 192 A 61+00 20 w 1,970.0 LW-2 17.1 97.8 193 A 62+20 10 E 1,970.0 LW-2 18.5 95.6 """ """ 0 194 A 65+50 5 w 1,965.0 LW-13 21.3 98.6 !:"" "'J A 67+50 20 E 1:959.0 LW-2 16.6 98.6 n 196 A 64+50 30 E 1,970.0 LW-8 24.8 92.5 N 197 t'j ttl 197 64+50 30 E 1 O""lfl f\ '" ' .LU.C.
    • q .J., J f v. v .l.Je.l. 198 A 67+00 20 E 1,960.0 LW-11 26.7 99.3 199 A 65+00 40 w 1,970.0 LW-13 23.2 97.8 204 A 44+10 35 w 1,964.0 LW-12 24.1 98.7 205 A 47+05 30 w 1,961.0 LW-12 23.3 100.4 206 A 44+50 60 w 1,964.0 LW-8 21.8 95.0 207 A 47+80 90 w 1,965.0 LW-13 21.6 101.2 208 A 45+30 75 w 1,963.0 LW-13 22.6 101 .. 1 261 A 96+75 160 w 1,950.0 LW-11 32.9 91.0 --(d) "".., A 82+00 94 E L.VL. 1,956.0 LW-11 32.6 92.2 349 (d)i*iaterial removed. 0 TABLE 2.5-78 (continued) Sheet 10 of 37 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number{a) {feet) (feet) Number ( %) (%) Number 272 A 96+75 160 w 119 50
    • Q LW-11 33.7 88.6 _(d) 273 A 81+75 94 E 1,956.0 LW-11 33.2 88.9 349 274 A 93+85 85 E l, 961.0 LW-10 22.0 97.7 311 A 89+90 70 E 1,961.0 LW-6 20.2 100.0 312 A 74+00 65 w 1,961. 0 LW-7 26.0 102.7 313 A 80+00 60 w 1,949.5 LW-7 31.6 93.4 350 314 A 73+00 65 E 1,961.0 LW-7 24.1 103.0 349 A 81+75 94 E 1,956.0 LW-11 30.5 95.3 :::E: 350 A 80+00 60 w 1,949.5 0 LW-7 28.8 97.0 1:"" (d) "':! 351 A 96+75 160 w 1 Qt;:f) {\ T' t.r '1 , 31.6 94.7 ... ,.,...,v.v J...,fl-.l. ..I.. A 'J 385 A 93+00 150 E 1,950.0 LW-11 25.7 10 0. 8 :::c: t'.l 386 77+00 90 1,965.0 LW-7 30.3 96.1 t%j A E ;A: 387 A 86+00 75 VJ 1,971.0 LW-7 28.8 99.8 388 A 77+00 70 w 1,965.0 LW-7 27.4 100.8 389 A 96+75 160 w 1,9 50.0 LW-11 31.0 93.7 390 A 88+00 95 E 1,968.0 LW-7 28.8 97.9 391 A 75+00 75 E 1,970.0 LW-7 25.9 98.9 414 A 99+40 160 w 1,948.0 LW-7 26.2 100.1 415 A 97+00 155 w 1,947.0 LW-7 29.2 95,2 416 A 89+00 85 E 1,964.0 LW-7 26.7 100.2 417 A 81+50 90 E 1,967.0 LW-7 25.4 101.4 427 A 84+85 0 1,978.5 L\'J-7 30.7 96.1 Rev. 0 'Y Sheet 11 of 37 TABLE 2.5-78 (continued) Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number ( %) (%) Number 428 A 76+10 5 w 1,984.5 LW-7 28.7 98.5 450 A 88+75 60 w 1,968.0 LW-7 31.3 94.4 451 451 A 88+75 60 w 1,968.0 LW-7 29.0 98.0 452 A 88+75 95 w 1,958.5 LW-7 31.4 95.9 469 A 93+05 100 w 1,955.0 LW-7 28.4 98.9 470 A 99+03 108 E 1,953.5 LW-7 26.5 96.4 471 A 77+00 100 w 1,964.5 LW-7 28.9 97.6 512 A 88+20 60 E 1,973.0 LW-12 23.7 98.6 513 A 86+50 55 w 1,972.5 LW-7 26.6 98.6 0 L' '.O.J 514 A 79+90 120 w 1 Ot:.t;. f'l TT.T ,""' 24.8 101.1 .... ,_,,..,,..,.v (-) 515 A 86+60 43 w 1,973.0 LW-10 19.5 nr , '::0 :::;'0 * ..1. t".l 516 A 100+05 135 w 1,950.5 LW-7 31.4 96.3 ::>::: 531 A 96+75 120 E 1,958.0 LW-12 24.1 100.3 532 A 99+90 110 w 1,952.5 LW-8 22.6 99.1 533 A 84+80 53 w 1,974.0 LW-7 25.3 100.2 534 A 93+60 107 E 1,953.5 LW-7 26.3 99. 3 547 A 84+70 45 E 1,975.0 LW-7 24.4 99.9 548 A 99+30 123 w 1,953.5 LW-7 25.8 99.0 561 A 93+75 100 \AJ 1 Ot::t:: " LW-7 28.8 nii r 562 ....... , v ::1'-:teO 562 A 93+75 100 w 1,955.0 LW-7 25.2 1()1 II ..LV..Le":t 676=S A 100+80 50 E 1,966.0 LW-6 15.1 102.3 677 A 97+ 10 20 E 1,958.0 L"*J=6 15.5 102.4 Rev. 0 Sheet 12 of 37 TABLE 2.5-78 (continued) Location Offset In-Place t*ia te rial ioioisture Correcting ..L.L UHI Elevation(c) Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 678-S A 94+50 10 E 1,957.5 LW-6 10.6 108.3 970 A 100+00 110 w 1,957.5 LW-12 23.6 98.2 992 A 95+70 120 E 1,945.5 LW-10 19.8 97.0 1007 A 95+50 125 w 1,958.0 LW-12 23.4 100.4 1077 A 99+30 100 E 1,951.0 LW-8 23.4 99.1 1112 A 96+80 130 w 1,958.5 LW-8 21.0 99.8 1200 A 5+60 2 w 1,988.0 LW-1 17.8 96.6 1201 A 3+70 15 w 1,990.0 LW-1 22.4 96.5 0 1202 A 0+95 0 1,990.5 LW-12 26.3 98.7 t" !"tj 1238 A 101+80 125 \ .. ! , 0&0') (\ 2 5 1 r> A , , , r .J.t""'V.&..eV .l.V*":t ..1...1...1..0 \;. 1483 A 10+00 0 1,992.5 S-12 15.9 96.3 t:=.l t:=.l 1502 A 37+00 0 1,978.5 S-14 17.1 97.9 1503 A 39+50 25 E 1,977.5 S-14 19.0 96.4 1504 A 40+00 25 w 1,977.5 S-14 17.5 95.7 1505 A 12+80 40 E 1,979.0 LW-55 24.1 96.1 1506 A 16+10 80 w 1,972.0 LW-9 31.9 100.1 1507 A 19+30 0 1,967.0 LW-53 25.9 96.9 1527 A 52+25 0 1,976.0 LW-54 20.0 99.0 1528 *"'* 44+75 50 E LW-54 19.5 97.4 1539 A 45+00 60 w 1,959.0 LW-53 23.2 98,4 1540 A 45+40 32 w 1,969.5 LW-54 23.3 99.1 1541 A 44+50 30 w 1,970.5 L\A/-53 24"'7 00 A :.l :_.J Rev. n v Sheet 13 of 37 TABLE 2.5-78 (continued) Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 1542 A 48+60 24 w 1,968.0 LW-54 20.7 98.0 1543 A 49+40 18 w 1,968.0 LW-53 27.8 96.5 1565 A 16+50 40 w 1,968.5 LW-52 24.7 99.0 1566 A 17+70 20 w 1,966.5 Uli-52 24.8 99.7 1567 A 18+50 0 1,967.0 LW-55 26.3 98.6 1568 A 10+00 30 E 1,981.0 LW-54 21.5 102.4 1569 A 7+00 0 1,985.0 LW-54 20.3 101.6 1615 A 38+00 25 E 1,981.0 LW-6 16.3 102.3 :E; 0 1616 A 40+10 25 w 1,980.0 LW-6 17.9 100.0 !:"" l'l:j 1617 A 42+50 30 1,978.0 L1N-6 16.4 10 l. 4 I'"'\ \. ::c 1618 A 46+75 30 E 1,976.0 LW-6 15.7 102.7 t':i l::r:l 1619 A 49+50 25 w 1,977.0 LW-6 15.6 96.7 1636 A 48+00 25 w 1,976.0 LW-6 18.2 104.9 1637 A 46+00 25 w 1,972.0 LW-6 16.9 10 2. 8 1638 A 56+00 25 E 1,979.5 LW-6 16.8 104.9 1639 A 50+00 " 1,977.0 LW-6 17.0 99.5 u 1640 A 52+00 25 E 1,979.0 LW-6 18.5 99.1 1665 A 49+00 25 w 1,976.5 s-12 14.7 102.3 166G A 52+00 50 E 1,974.5 14.2 10 2. 7 1667 A 55+00 20 w 1,980.0 S-12 16.0 102.1 1668 A 59+00 20 E 1,980.0 S-12 14.2 99.7 1669 A 60+00 15 E 1!'975.5 S-12 12.6 101.1 Rev. 0 Sheet 14 of 37 TABLE 2.5-78 (continued) Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number (a) (feet) (feet) Number ( %) (%) Number 1670 A 57+ 50 10 E 1,977.0 S-12 14.0 101.5 1693 A 54+00 40 E 1,972.0 S-12 13.9 102.5 1694 A 58+25 5 E 1,978.0 S-12 14.9 100.8 1695 A 72+00 5 w 1,977.0 S-12 12.7 101.5 1716 A 61+75 50 E 1,971.5 S-12 15.9 101.6 1717 A 66+50 15 E 1,972.0 LW-14 23.6 96.7 1718 A 64+00 10 E 1,972.0 LW-14 20.7 99.9 1733 A 54+50 45 w 1,977.0 LW-57 24.1 97.4 :2:; 1734 70+40 5 1,981.5 LW-54 0 A E 22.8 97.8 t"' h:j 1735 A 59+25 50 \Ill 1 at:: a n 7 ..,, .., nn n ..Lf-'V-'eV L"':t
    • L.. ;10.::;1 () 1736 A 56+75 45 E 1,974.0 LW-53 14.4 98.9 ;;c C:IJ tiJ 1758 > ..,, 'I"\ I"\ 60 E 1,968.0 LW-6 14.3 99.4 " /.LTUU 1759 A 68+50 0 1,959.0 LW-6 20.4 96.3 1760 A 67+50 50 E 1,961.5 LW-58 20.1 97.9 1761 A 56+ 50 50 E 1,982.0 LW-56 24.2 99.2 1762 P.. 48+00 55 E 1,979.5 LW-6 20.4 100.8 1779 A 46+50 30 E 1,976.0 LW-56 '>n ' 97.4 "V*.l. 1780 A 49+50 35 E 1,983.0 LW-53 18.1 97.7 1781 A 55+00 20 E 1 QQ') c:. LW=54 21; 6 9 s. 6 1795 A 68+00 60 E 1,961.0 LW-55 24.1 90.9 1796 1796 A 68+00 60 E 1,961.0 LW-55 23.4 99.1 1797 A 70+50 50 E 1,963.0 L\A!-53 24.3 99 2 Rev. 0 TABLE 2.5-78 (continued) Sheet 15 of 37 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number ( %) (%) Number 1816 A 28+50 50 E 1,957.0 LW-8 21.4 96.7 1817 A 28+00 0 1,957.5 LW-8 18.7 98.3 1818 A 47+50 20 E 1,974.5 LW-52 22.9 99.1 1819 A 63+00 25 E 1,976.0 LW-8 22.8 95.1 1820 A 71+50 50 E 1,966.5 LW-53 26.8 97.3 1839 A 24+00 50 E 1,940.5 LW-54 20.3 101.9 1840 A 28+50 70 E 1,935.5 LW-8 23.2 99.8 1841 A 27+50 20 w 1,944.5 LW-54 22.4 99.4 ::E: 0 1842 A 25+00 120 E 1,937.5 LW-6 15.1 110.0 t'1 1843 A 24+10 120 E 1 OA") r. LW-55 24.3 98.6 ..Lf:;;l":t...J.v \.i. :;o 1844 A 30+00 150 w 1,951.0 L\"!-54 -,A n 98.0 t':l L."+/-*O 1845 A 30+50 155 i'i 1,951.5 t:tj LW-8 23.6 10 0.1 1846 A 30+20 20 w 1,952.5 LW-8 22.7 99.5 1847 A 28+00 0 1,948.5 LW-6 14.4 103.8 1848 A 27+00 0 1,940.5 LW-55 25.0 103.4 1861 A 24+00 0 1,940.5 LW-53 24.7 104.6 1862 A 23+10 100 w 1,938.5 LW-8 25.1 97.6 1863 A 29+00 70 w 1,947.5 LW-56 23.4 99.5 1864 .I>. 30+50 100 Q , r'\111"\ r-.. l-6 I I I':-103.2 '-' J..,::J':%:7.::) .J./. u 1865 A 28+30 80 E 1,940.5 LW-6 1 A C. '"' ., .J..'"%*V :JJ
    • I 1866 A 27+00 110 E 1,937.5 LW-8 25.0 99.3 1867 A 54+00 50 \A! 1;972=5 LW-8 23.0 102. u T"\ "' v Sheet 16 of 37 TABLE 2.5-78 (continued) Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) ( %) Number 1868 A 67+00 55 w 1,961.0 LW-56 19.8 100.1 1881 A 30+50 40 E 1,960.5 LW-56 22.4 99.9 1882 A 28+50 45 E 1,960.5 LW-53 24.5 100.6 1883 A 27+00 60 E 1,954.0 LW-56 19.9 100.9 1884 A 24+00 0 1,942.5 LW-56 22.9 100.0 1885 A 25+00 50 w 1,946.0 LW-56 22.2 99.7 1886 A 27+80 100 w 1,960.5 LW-53 24.9 100.2 1887 A 23+20 120 E 1,938.0 LW-6 16.0 108.1 1888 A 26+50 30 E 1,947.5 LW-52 20.2 97.7 0 t"' hj 1889 A 23+50 70 w 1,939.5 LV.!-52 24.6 no c
    • v n 1890 A 24+00 140 w 1,942.5 LW-52 23.9 97.4 :::0 C%J t:!:j 1891 A 29+00 140 w 1,947.0 LW-6 18.6 'j I. I A 1904 A 27+00 130 E 1,952.5 LW-52 23.3 98.6 1905 A 29+00 100 E 1,953.0 LW-51 29.0 10 0. 2 1906 A 29+00 120 E 1,953.5 LW-7 24.7 87.5 1907 1907 A 29+00 120 E 1,953.5 LW-7 23.3 96.7 1908 A 23+00 50 w 1,932.5 LW-53 25.4 102.3 1909 A 24+00 110 w 1,933.5 LW-8 24.3 100.5 1910 A 26+00 130 \"! 1 OAA t:.. L\AJ=54 '>"7 0 95.2 1948 .... !J-:%-;J.*.J L!: 0 1911 A 28+50 120 w 1,951.5 LW-6 16.5 105.6 1r.J""i A 26+00 150 E 1,949.0 LW-54 25.1 96.6 .J..;7.)1 1938 A 29+00 100 E 1;954.5 LW-54 22.3 95.7 n-.... (\ !\.t::V. v Sheet 17 of 37 TABLE 2.5-78 (continued) Location Offset In-Place from Elevation(c) Material t*1oisture Correcting Test Station (b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 1939 A 27+50 80 w 1,961.5 LW-6 13.6 10 5. 5 1940 A 25+00 0 1,947.0 LW-54 20.7 99.3 1941 A 25+50 150 w 1,947.0 LW-58 10.5 10 5. 9 1945 1942 A 23+20 50 E 1,940.5 LW-54 23.0 101.2 1943 A 24+00 80 w 1,944.5 LW-6 16.1 107.9 1944 A 27+20 160 w 1,944.0 LW-6 12.6 10 7. 9 1945 A 25+50 150 w 1,947.0 LW-58 13.9 105.7 1946 A 26+00 130 w 1,944.5 LW-54 27.2 94.8 1948 :::E: 1947 A 26+50 150 w 1,949.5 0 LW-54 24.3 97.9 t"' i"l:j 1948 A 26+00 130 w 1,944.5 LW-54 17.9 10 2. 2 CJ 1965-S A 27+00 100 w ?J 1,957.5 LW-6 13.2 102.7 cri t:J:j 1966-S A 24+50 120 .. ! 1,945.5 LW-55 25.9 96.2 1967-S A 23+50 30 w 1,933.5 LW-58 19.5 101.0 1968-S A 26+30 165 E 1,950.5 LW-55 25.7 96.4 1969 A 28+00 100 E 1,945.5 LW-58 17.0 100.4 1970 A 29+00 0 1,946.5 LW-58 10.8 100.5 1994 1971 A 27+50 150 E 1,955.0 LW-52 20.4 97.8 1972 A 29+00 0 1,946.5 LW-58 12.8 110.4 1994 1973 A 25+00 120 w 1,946.0 LW-58 17.3 00 0 ::/ 1992 A 28+80 160 w 1,958.5 LW-58 15.4 10 2. 3 1993 A 29+00 0 1,946.5 LW-58 12.5 102.9 1994 1994 A 29+00 0 1,946.5 LW-58 13.5 105 .. 4 n-T-r I\.CV* 0 Sheet 18 of 37 TABLE 2.5-78 (continued) Location Offset In-Place from Material Moisture Elevation(c) \...UJ..Lt::\...L.J.ll"::J Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) ( %) Number 1995 A 26+70 130 w 1,952.0 LW-58 18.8 97.8 1996 A 24+02 170 w 1,946.0 LW-52 21.7 97.9 1997 A 24+01 0 1,946.5 LW-53 16.9 97.5 2052 1998 A 24+00 50 w 1,947.0 LW-53 20.8 95.9 1999 A 23+50 50 E 1,944.0 LW-53 19.7 96.4 2046 2000 A 24+05 80 E 1,946.0 LW-56 16.6 95.9 2016 A 30+00 145 w 1,957.5 LW-55 21.1 99.8 2017 A 28+00 120 w 1,951.0 LW-54 18.1 99.9 0 2018 A 25+00 0 1,940.0 LW-53 18.3 101.3 t" t"J:j 2019 A 23+50 50 E 1,944.0 LW-53 14.9 96.9 2046 CJ ;...u 2020 A 31+50 30 w 1,962.5 LW-52 16.9 97.2 t:<:l t:<:l 2021 A 33+25 25 \"! 1,967.0 T hi_ I: 11 9.3 96.3 2050 ..J "2 2022 A 24+50 100 w 1,940.0 LW-52 21.2 99.8 2023 A 26+00 110 w 1,953.0 LW-57 19.2 100.0 2024 A 28+00 100 w 1,950.5 LW-57 20.1 99.5 2025 A 29+00 50 w 1,952.5 LW-57 18.9 97.4 2046 A 23+50 50 E 1,944.0 LW-53 23.8 98.8 204 7 A 25+00 90 E 1,949.5 LW-53 23.7 97.5 2048 A 27+20 20 E 1,957.0 LW-55 21.8 96.0 2049 A 30+00 40 E 1,959.5 LW-56 18.5 97.4 2050 A 33+25 25 w 1,967.0 LW-54 19.4 97.2 2051 A 24+01 0 1,946.5 LW-53 18.6 9L6 2052 ** f'l !.'-"= v
    • v Sheet 19 of 37 TABLE 2.5-78 (continued) Location Offset In-Place ("r,yypr't"inn ion Test Number 20 52 A 24+01 0 1,946.5 LW-53 19.6 99.0 2053 A 23+50 90 E 1,945.0 LW-53 23.6 97.3 2054 A 26+00 10 E 1,950.0 LW-53 23.4 94.3 2102 2055 A 29+60 100 E 1,957.5 LW-53 25.9 95.4 2056-S A 26+50 80 E 1,954.0 LW-52 23.0 96.9 2057-S A 24+50 20 E 1,949.5 LW-52 22.0 98.6 2058-S A 23+50 120 E 1, 938.5 LW-55 25.3 99.0 2059-S A 29+60 120 E 1,959.0 LW-52 20.8 96.6 2085 A 31+00 120 w 1,961.0 LW-57 18.8 99.7 0 i::"' hj 20d6 p. 25+j0 llOW 1,954.5 LW-58 17.5 98.6 2102 A 26+00 10 E 1,950.0 LW-53 22.0 102.0 2103 A 33+50 125 w 1,971.5 LW-58 19.3 101.6 2104 A 29+00 120 w 1,955.5 LW-60 11.5 106.0 2126 2105 A 24+50 110 w 1,948.5 LW-60 16.3 98.4 2106 A 31+50 llSW 1,962.5 LW-58 13.0 97.0 2125 2107 A 37+00 40 w 1,978.5 LW-53 22.5 98.3 2108 A 38+50 20 w 1,980.5 LW-53 13.8 87.8 2123 2109 A 41+00 35 w 1,978.0 LW-58 20.5 98.7 2123 A 38+50 20 w 1,980.5 LW-53 25.0 103.3 2124 A 54+00 10 E 1,987.0 LW-52 23.9 98.0 .... £..;..,_...; A 31-tSO 115 \*1 1,962.5 LW-58 16.0 103.2 2126 A 29+00 120 w 1,955.5 Llv'-58 14.9 10 4. 3 1""'l_ .... £\.t:'V* 0 Sheet 20 of 37 TABLE 2.5-78 (continued) In-Place Material Sture Correcting ion Test Number 2127 A 56+20 15 E 1,983.5 LW-57 21.8 98.9 2128 A 59+00 10 w 1,990.5 LW-56 19.4 100.2 2129 A 57+00 60 w 1,970.5 LW-58 20.3 97.4 2130 A 66+70 70 w 1,959.0 LW-58 16.2 99.3 2142 A 41+00 40 w 1,980.5 LW-53 22.9 99.0 2143 A 44+80 30 w 1, 971.0 LW-60 17.6 101.4 2144 A 26+20 170 E 1,956.0 LW-57 18.6 96.6 2145 A 29+00 160 E 1,953.5 LW-53 26.2 100.6 0 2146 A 72+00 60 w 1,970.5 LW-53 25.5 10 3. 9 Ll l':rj 2147 A 60+50 70 w 1,971.0 Lhi-54 ..,., ., "" " n ::J:).£. ;::.o 2148 A 47+50 25 E 1,974.5 LW-58 19.1 101.5 trl t%j 2161 A 54+00 10 hi 1,984.5 LW-53 25.1 102. 0 2162 A 60+35 25 E 1,980.5 LW-56 18.3 99 .1 2163 A 71+60 65 w 1,969.0 LW-57 20.0 99.8 2164 A 62+70 80 w 1,967.0 LW-57 23.4 100.0 2165 A 39+50 30 w 1,987.5 LW-57 21.0 103.2 2166 A 45+00 35 E 1,973.0 LW-60 15.3 10 4. 6 2167 A 49+30 5 E 1,980.5 LW-54 20.4 96.0 2170 A 39+10 30 E 1,987.0 LW-53 ..,, ' 99. 7 L-t*"':t 2171 A 23+85 130 E 1,936.0 LW-52 22.1 98.6 2172 A 23+50 20 E 1,936.5 LW-52 21.9 99.0 2173 A 77+00 65 E 1,965,5 LW-58 19.0 lOa. 4 Re\?'. 0 Sheet 21 of 37 TABLE 2.5-78 (continued) Location Offset In-Place from Material Moisture ,-. ..... ,... ............. .._.; __ ..... E1evation(c) ..... V.I.. L C\,.. \... Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) ( %) Number 2174 A 70+55 70 E 1,968.0 LW-56 21.9 99.4 2175 A 23+70 0 1,940.0 LW-53 23.9 100.1 2176 A 75+00 60 w 1,974.0 LW-58 19.1 96.2 2177 A 65+00 75 w 1,969.5 LW-54 23.5 99.8 2201 A 23+10 40 w 1,930.0 LW-54 21.3 99.1 2202 A 68+00 60 E 1,963.5 LW-60 14.2 104.9 2203 A 78+20 70 E 1,965.0 LW-60 14.8 99.4 2204 A 21+40 60 w 1,962.0 LW-58 19.7 97.8 0 2205 A 23+90 10 E 1,945.0 LW-53 24.0 100.6 t"" hj 2206 A 21+60 0 1,962.0 LW-54 20.9 97.7 n N 2207 A 22+00 40 w 1,960.5 LW-58 19.0 98.2 tlJ t=.J :;:>:; 2208 A 23+70 100 1,963.0 ...,, A 98.3 £....1..":t 2209 A 67+20 50 w 1,968.5 LW-60 17.2 10 0. 8 2210 A 80+00 60 E 1,963.5 LW-60 14.7 105.1 2211 A 73+10 75 E 1,972.0 LW-60 15.0 107.8 2212 A 60+00 65 w 1,975.5 LW-60 14.8 108.6 2213 A 24+88 110 E 1,952.0 LW-51 26.3 99.3 2214 A 29+80 100 w 1,959.0 LW-58 17.0 98.7 2215 A 44+08 20 w 1,983.0 LW-60 11.1 101.0 2216 A 50+95 24 E 1,985.0 LW-60 12.9 101.9 2217 A 54+10 10 E "> Ai"r-i"" LW-60 10.5 113.2 J.,:;o:J.::J 2234 A 38+00 30 w 1,985.0 LW-60 l7. 8 99.0 n-.... 0 .t"\.eV*

    Sheet 22 of 37 TABLE 2.5-78 (continued) Location Offset In-Place from Elevation(c} Material Moisture Correcting Test Station(b} Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number {%) (%) Number 2235 A 45+00 25 w 1,979.0 LW-55 28.0 101.8 2236 A 49+80 15 E 1,981.5 LW-52 23.7 100.4 2237 A 56+00 10 E 1,982.0 LW-58 18.8 97.0 2238 B 4+30 10 s 1,993.5 LW-71 15.6 97.7 2239 B 2+70 15 s 1,993.5 LW-12 27.0 99.1 2240 B 1+15 10 s 1,990.5 LW-71 21.1 98.5 2241 B 2+10 20 N 1,987.5 LW-12 24.5 101.6 2242 B 6+00 45 N 1,981.0 LW-12 23.3 97.3 2243 B 6+00 40 s 1,981.0 0 LW-12 29.3 98.2 L' 2244 B 10+80 40 N , nco r: LW-12 .. 93.4 2247 n .Lf:7U;I*..J L'::l:e'::!: 2245 B 6+50 10 N 1,979.0 LW-75 21.5 99.3 1:'1 t".i 2246 B 7+00 20 s 1,978.5 LW-75 19.8 99.7 2247 B 10+80 40 N 1,969.5 LW-12 21.3 101.0 2248 B 8+20 10 s 1,977.5 LW-75 16.5 95.1 2249 B 8+60 45 s 1,975.0 LW-61 18.9 98.0 2250 B 10+30 50 s 1,972.0 LW-61 18.8 98.9 2251 B 12+00 70 s 1,971.5 LW-61 19.1 95.0 2252 B 12+50 0 1,972.0 LW-61 18.2 98.7 2253 B II 11..L00 "':1""2'VV '"JC C' LJ Ll 1 f"lCA C: .J...;:!I.JV:J LW-64 24.9 98.2 2254 B 46+00 15 s 1,960.5 LW-64 21.0 99.9 2255 B 46+80 10 s 1,963.5 LW-64 22.3 96.8 2256 B 14+40 20 !-! 1 Ot::./1 f'l '" " "" . .!.;;.'=V ::'O*'i Rev. 0 Sheet 23 of 37 TABLE 2.5-78 (continued) Location Offset In-Place .c;..,. __ a11-.&.. --: -, Moisture COLLecting .Ll.VUI Elevation(c) Test Station(b) CenteLline Identification Content Compaction Test Number (a) (feet) (feet) Number (%) ( %) Number 2257 B 14+15 40 s 1,954.0 LW-69 16.2 95.1 2258 B 43+40 50 N 1,959.5 LW-64 25.0 96.8 2259 B 44+90 75 N 1,960.5 LW-64 25.2 95.5 2260 B 46+30 60 N 1,963.0 LW-64 20.4 98.8 2261 B 6+20 40 N 1,980.0 LW-66 19.9 99.3 2262 B 9+00 30 N 1,974.5 LW-69 17.7 98.7 2263 B 10+00 60 s 1,972.5 LW-69 19.1 96.9 2264 B 11+00 55 s 1,972.0 LW-66 14.2 101.2 2289 ..,.. """ 0 2265 B 40+00 30 s 1,957.0 LW-64 32.6 87.1 2273 t"' 2266 B 42+60 40 N 1 01:;7 (\ L\"!-64 29.4 87.6 2268 ..._I J _, , *..., n 2267 B 42+60 40 N 1,957.0 LW-64 23.1 93.6 ;;o 2268 !:':! tr1 2268 B 42+60 40 N 1,957.0 LW-64 21.5 100.5 2269 B 43+80 20 N 1,957.5 LW-64 24.4 95.5 2270 B 45+00 20 N 1,962.0 LW-64 24.0 99.4 2271 B 44+50 100 s 1,960.5 LW-64 20.1 96.0 2272 B 40+00 30 s 1,957.0 LW-64 25.5 92.4 2273 2273 B 40+00 30 s 1,957.0 LW-64 18.3 10 5. 7 2274 A 66+50 55 w 1,973.5 LW-57 22.2 92.9 2280 2275 *"'* 52+00 40 \"l 1!984.5 L\"J-54 22.1 2276 A 49+10 25 E 1,979.5 LW-56 18.3 100.6 2277 A 41+80 30 E 1,983.5 LW-56 20.0 99.2 2278 A 39-'-50 20 E 1,990.5 LW-54 23.1 95.1 ,.. '='-.:;:;:;: " '!' v Sheet 24 of 37 TABLE 2.5-78 (continued) Location Offset In-Place from Elevation(c) Hater ial t'ioisture Correcting Test Station (b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 2279 A 58+00 0 1,983.5 LW-54 22.3 98.6 2280 A 66+50 55 w 1,973.5 LW-57 18.8 98.3 2281 B 38+80 70 N 1,959.0 LW-71 16.3 99.2 2282 B 42+00 45 N 1,962.5 LW-71 18.0 102.6 2283 B 43+50 20 N 1,959.5 LW-74 16.4 10 2. 9 2284 B 42+70 30 s 1,959.5 LW-74 17.9 97.3 2285 B 41+20 30 s 1,961.0 LW-70 19.5 96.5 2286 B 39+55 40 s 1,960.0 LW-73 17.9 98.8 2287 B 15+20 120 s 1,946.5 0 LW-69 20.3 104.0 t'"' hj 2288 B 16+00 100 s 1 " L\A!-28 22.8 , '"' 0 ..... . ._, ..J.VV*U n 7.) 2289 B 11+00 55 s 1,972.0 LW-69 15.5 10 0 .l ::'1 t>:l 2290 A 66+30 60 E ., ,.....,r ,.. LW-58 20.6 98.5 * .:> 2291 A 71+30 50 E 1,974.5 LW-54 26.1 96.0 2314 2292 A 38+80 10 w 1,986.0 LW-58 20.1 99.5 2293 A 42+90 20 E 1,983.5 LW-55 31.1 94.4 2294 2294 A 42+90 20 E 1,983.5 LW-55 27.5 97.0 2295 A 66+50 65 w 1,975.0 LW-25 26.2 92.8 2312 2296 B 34+70 20 s 1,966.5 LW-72 18.2 10 2.1 2297 B 35+00 10 s , nco " LW-72 16.3 106 .l 2298 B 36+70 40 s 1,962.5 LW-63 19.1 10 3.1 2299 B 37+50 70 s 1,961.5 LW-64 20.4 103.8 2300 B 38+25 90 s 1 Qhf'l c;, .. !-72 17-7 l02e9 *!...,....,....,._, Rev. 0 Test Number (a) 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320-S 2321-S 2322-S TABLE 2.5-78 (continued) Location Station(b) B 16+50 B 15+30 B 16+20 B 15+30 B 15+10 B 15+10 B 16+90 B 17+00 B 16+00 B 15+20 B 16+00 A 42+90 A 66+50 A 71+30 A 39+8 5 A 47+60 A 56+00 A 38+15 B 15+80 B 15+90 B 16+70 B i7+00 Offset from Centerline (feet) 40 s 80 N 100 N 70 s 90 N 90 N 30 N 0 40 s 100 s 20 N 20 E 65 w 50 E 13 w 7 w 20 w 5 E 40 N 80 N 0 30 8 E1evation(c} (feet) 1,948.0 1,948.0 1,950.0 1,947.5 1,948.5 1,948.5 1,953.5 1,953.5 1,950.5 1,953.5 1,983.5 1,975.0 1,974.5 1,984.0 1,973.0 1,972.0 1,984.0 1,951.0 1,949.0 1,953.5 1.954.0 f*1a ter i a l Identification Number LW-76 LW-76 LW-76 LW-76 LW-76 LW-76 LW-76 LW-76 LW-76 LW-76 LW-63 LW-55 LW-25 LW-54 LW-54 LW-54 LW-60 LW-54 LW-28 LW-73 LW-74 In-Place Moisture Content (%} 22.1 21.8 18.4 25.9 27.2 25.0 26.1 21.7 24.2 19.8 16.9 26.2 22.8 24.7 19.4 23.4 17.4 24.2 "" c LV=lJ 22.9 20.6 18.3 Sheet 25 of 37 Compaction (%} 10 0. 0 10 4.1 10 6. 9 96.5 93.0 10 0. 6 96.2 97.4 100.3 10 2. 8 96.8 100.3 97.3 96.6 100.7 97.5 99.0 96.1 97 .. 2 96.7 96.0 98 .. 5 Correcting Test Number 2306 Rev. 0 Test Number(a) 2323-S 2324 2325 2326 2327 2328 2329 2330 2331 LJj2 2333 2334 2335 2336 2337 2338-S 2339-S 2348 2349 2350 2351-S 2352-S TABLE 2.5-78 (continued) Location Station(b) B 15+30 A 68+45 B 17+00 B 15+40 B 16+00 B 45+10 B 42+45 B 36+80 B 35+05 B 38+35 B 38+35 B 42+75 A 68+50 A 73+70 A 78+00 A 81+40 A 74+65 B 17+25 B 44+06 8 15+67 8 34+86 8 37+18 Offset from Center1 ine (feet) 90 s 30 E 70 N 93 s 0 65 N 40 N 27 N 65 s 45 s 45 s 15 s 60 E 70 E 65 E 65 w 47 w 85 N 47 N 12 s 35 N 27 Elevation(c) (feet) 1,949.0 1,977.5 1,954.0 1,949.5 1,953.5 1,966.0 1,964.0 1,973.0 1,976.5 L970.0 1,970.0 1,968.0 1,975.0 1,975.5 1,966.0 1,968.5 1,978.5 1,956.0 1 Qhh [\ ... , .... v ........ v 1,952.5 l/977.0 1,965.5 Identification Number LW-76 LW-57 LW-71 LW-71 LW-71 LW-70 LW-70 LW-71 LW-70 0 LW-70 LW-70 LW-56 LW-56 LW-56 LW-56 LW-56 LW-71 LW-56 LW-70 Lt"J-70 In-Place i>ioi sture Content (%) 23.2 22.1 21.4 21.9 19.9 16.7 19.9 20.3 22.7 24.8 20.3 19.5 20.7 20.4 22.0 21.8 24.1 22.9 25.5 17.7 20.0 23:6 Sheet 26 of 37 Compaction ( %) 99.3 99.9 97.3 95.4 96.8 98.0 96.8 100.8 96.5 A' ::,:1-q. :> 99.4 10 l. 5 100.8 100.6 98.9 98.3 97.9 99.6 95.3 9 5.8 93.3 :::J.!..J. Correcting Test Number 2333 2360 2358 2353 Rev. 0 0 t"' Mj n ;;o t:J TABLE 2.5-78 (continued) Sheet 27 of 37 Location Offset In-Place from Elevation (c) i*iaterial Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Number (a) (feet) (feet) Number (%) (%) Number 2353 B 37+18 27 s 1, 965.5 LW-70 20.9 96.2 2354 B 34+86 35 N 1,977.0 LW-70 18.9 94.5 2358 2355-S B 44+06 47 N 1,966.0 LW-70 23.8 93.0 2360 2356 B 16+76 35 N 1,955.5 LW-56 19.0 98.0 2357 B 16+85 48 s 1,956.0 LW-53 16.6 91.4 2361 2358 B 34+86 35 N 1,977.0 LW-70 18.8 99.5 2359 B 38+41 28 N 1,971.0 LW-70 22.7 95.0 2360 B 44+06 47 N 1,966.0 LW-70 22.2 98.3 :2: 0 2361 B 16+85 48 s 1,956.0 LW-73 17.4 98.0 1:"1 H:j 2362 A 70+75 55 E 1 0"70 n 18.5 99.6 n .... ;:;o 2363 A 79+84 48 E 1,968.0 LW-54 22.6 n LZJ :J I

    • 0 2364 A 67+50 50 w tx.l 1,978.0 LW-54 21.8 95.6 ;A; 2365 A 70+00 39 w 1,973.0 LW-53 25.0 98.3 2366 A 75+60 65 w 1,973.0 LW-58 17.9 101.5 2367 A 72+18 69 E 1,981.5 LW-60 15.5 100.6 2368 A 75+74 52 E 1,975.5 LW-60 15.9 98.9 2369-S A 76+00 49 w 1,976.0 LW-52 21.5 101.6 2370 A 67+80 60 w 1,981.0 LW-60 18.1 99.3 2371 ."A. 82+00 65 \AJ 1 n..,r:: t: Lhi-55 JC C 98.1 LV e..) 2376 B 34+95 70 s 1,970.0 LW-70 22.2 99.2 2377 B 38+99 60 s 1,964.0 LW-71 22.5 98.2 2378 B 15+45 30 N 1 Ot:"') n T T.T ""'lr" 24.5 97.6 .... 1J (\ v
    • v Test Number (a) 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395-S 2396 2397 2398 2399 2400-S TABLE 2.5-78 (continued) Location Station (b) B 33+00 B 31+35 B 28+77 B 45+69 B 43+10 B 39+67 B 36+47 B 34+05 B 32+00 D .5U"'tOU B 29+10 B 15+05 B 29+20 B 35+15 B 40+45 B 42+90 B 42+90 B 35+05 B 31+00 B 28+67 B 39+70 B 45+76 Offset from Centerline (feet) 17 N 100 N 87 N 6 s 0 35 s 75 s 83 s 15 s \) 70 s 106 s 50 N 33 N 40 N 35 N 35 N 5 s 20 s 23 s 82 s 100 s Elevation (cj (feet) 1,973.0 1,965.0 1,969.0 1,973.0 1,971.0 1,963.0 1,968.0 1,972.0 1,962.5 1,962.5 1,959.5 1,954.0 1,966.0 1,977.0 1,962.0 1,962.0 1,962.0 1,972.0 1,960.5 1,964.0 1,963.5 , 1"\"'""A _l, ::1 I U * :J Material Identification Number LW-70 LW-71 LW-71 LW-76 LW-70 LW-70 LW-71 LW-70 LW-70 LW-71 LW-71 L\"l-7 4 LW-71 LW-70 LW-71 LW-70 LW-71 LW-71 LW-71 LW-71 LW-71 LW-71 In-Place Moisture Content ( %) 20.8 21.7 20.0 26.5 21.9 21.7 20.8 21.3 25 .o 21.2 19.8 17.8 20.4 20.6 22.1 17.0 20.7 21.8 22.6 20.1 18.9 20_0 Sheet 28 of 37 Compaction (%) 99.5 97.0 96.0 95.3 97.9 95.5 98.1 96.0 96.1 96.1 96.4 98.5 97.8 96.8 96.5 91.6 97.8 98.7 97.1 100.5 97.6 97 4 Correcting Test Number 2395 Rev. 0 ::E; 0 t"" i""Ij n , !-!-! t?j Sheet 29 of 37 TABLE 2.5-78 (continued) Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station (b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number {%) (%) Number 240 l B 15+85 0 1,956.5 LW-76 25.8 93.2 2404 2402 B 15+18 65 s 1,952.5 LW-76 22.2 10 4. 9 2403 B 14+92 10 N 1,953.0 LW-74 17.5 99.6 2404 B 15+85 0 1,956.5 LW-76 23.2 101.9 2405 A 75+43 so E 1,976.5 LW-55 26.5 10 0. 0 2406 A 66+00 60 w 1,983.5 LW-76 21.4 96.0 2407 A 76+00 55 w 1,978.5 LW-76 25.8 98.4 2408 A 80+20 65 w 1,969.5 LW-55 28.7 93.6 2409 :8 2409 A 80+20 65 w 1,969.5 LW-55 23.7 101.0 0 t"" L4.Ll.J A 72+00 so E 1,973.0 LW-55 25.3 99.7 . *J 2411 A 78+00 45 E 1,978.0 LW-58 17.9 99.5 (-j tt::l 2412 B 38+50 40 s 1 ae:::e::: c: .,.,....._.v.-' LW-75 20.3 102.1 ttl ;:>;; 2413 B 36+00 25 s 1,969.5 LW-75 16.9 99.0 2414 B 33+75 30 s 1,973.5 LW-70 23.2 97.7 2415 B 31+50 55 s 1,962.0 LW-70 20.7 98.4 2416 B 44+86 0 1,963.5 LW-70 19.3 97.3 """A , "7 I B 41+42 78 N 1,972.0 LW-70 21.5 99.7 2418 B 34+60 48 N 1,977.0 LW-70 20.8 99.7 2419 B 31+06 0 1,963.5 LW-70 21.6 98 = 7 2420 B 30+36 12 N 1,967.0 LW-70 20.6 102.1 2421 3 15+67 55 N -; r * .-n .-.J..,::t::>J.::> LW-76 22.8 99.8 2422 B 16+20 33 s 1,957.0 LW-71'; 22.1 10 3. 5 Rev. 0 Sheet 30 of 37 TABLE 2.5-78 (continued) Location Offset In-Place !via ter ial Moisture Correcting .Ll. UHL Elevation (c) Test Station(b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%) (%) Number 2423 B 28+71 97 N 1,969.5 LW-70 20.5 97.7 2424 B 33+43 25 N 1,973.5 LW-71 20.4 99.2 2425 B 37+60 0 1,972.0 LW-70 18.4 96.5 2426 B 39+40 62 N 1,971.0 LW-70 23.0 98.9 2427 B 42+59 17 N 1,969.0 LW-71 21.1 99.6 2428 B 14+8 3 60 N 1,954.0 LW-74 17.5 10 0. 3 2429 B 17+02 75 s 1,961.0 LW-71 19.8 97.6 2430 B 24+00 32 N 1,977.0 LW-76 19.0 95.1 2431 B 25+93 13 N 1,976.5 0 LW-76 23.0 98.2 t:'"" t'7j 2432 B 25+55 30 s 1 077 " L\ .. J-71 '0 n ,,... 1"\ ,.. n ...... ,J ....... _. .J.O* ;;I .l.V U
    • 0 2433 B 23+87 42 s 1,974,0 LW-71 19.6 98.3 t>: t"J -")J'o"')JI B 45+32 s 1,962.0 L\*i-71 19.7 10 0. 6 !:": L."':tJ"i I':J 2435 B 39+73 87 s 1,963.5 LW-71 20.0 99.0 2436 B 36+93 44 s 1,968.5 LW-71 21.2 99.0 2437 B 34+88 75 s 1,972.5 LW-71 20.3 99.1 2438 B 15+76 55 s 1,959.5 LW-76 25.1 95.0 2439 B 16+78 49 N 1,961.0 LW-58 16.0 98.7 2440 B 30+50 105 s 1,949.0 LW-76 22.4 99.1 2441 B 29+84. 95 s 1 Qt:;l " LW-70 21.6 ................ 2442 A 81+66 35 w 1,973.5 LW-52 23.3 102.1 2443 A 79+99 42 w 1,970.5 LW-55 24.3 10 0.1 2444 A 74+32 40 E 1 OQ 1 t:; 5 ..,_, A ,/"\"') f'\ ..... !! -............... <6L=":t ...!..VL: ::7 n-'r'T _u.;;::v. 0 Sheet 31 of 37 TABLE 2.5-78 (continued) Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station (b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number (%} (%} Number 2445 A 78+68 45 E 1,976.5 LW-55 25.5 96.3 2446 A 77+36 46 w 1,979.5 LW-52 19.4 101.1 2447 A 80+10 37 w 1,972.5 LW-52 19.2 103.0 2448 B 37+08 40 N 1,974.5 LW-70 21.5 98.0 2949 B 42+05 25 N 1,970.0 LW-71 17.1 97.1 2450 B 32+18 70 N 1,968.5 LW-70 18.0 95.7 2451 B 30+85 95 N 1,966.5 LW-70 21.9 91.4 2452 2452 B 30+85 95 N 1,966.5 LW-70 19.5 99.5 0 2453 B 28+50 45 N 1,976.5 LW-71 18.0 97.5 L' i"Ij 2454 B 42+10 35 N l,97LO LW-71 17.9 97.1 CJ 2455 B 37+97 4 s ;;o 1.969.0 LW-70 23.5 95.2 t:%1 tr.1 2456 B 11+95 ,., N L..J 1,969.0 LW-76 n LJ..
    • 103.2 ::>;: 2457 B 9+47 16 N 1,976.0 LW-76 23.3 10 6. 6 2458 B 7+01 22 s 1,980.5 LW-73 20.1 100.7 2459 B 5+10 26 s 1,983.0 LW-73 21.8 96.2 2460 B 11+80 45 s 1,974.5 LW-72 19.2 95.2 2461 B 7+67 8 s 1,979.5 LW-73 16.1 10 2.1 2462 B 3+30 6 N 1,990.0 LW-76 20.3 96.5 2463 B 45+10 15 s l,97LO LW-70 20.8 97.3 2464 B 33+63 0 1,976.5 LW-71 19.8 96.6 '"1ACL:" B 31+15 12 N 1,965.5 LW-71 20.2 95.0 "'-":t.U._) 2466 B 28+96 62 N 1,975.0 LW-70 23.7 97.5 Rev. 0 TABLE 2.5-78 (continued) Sheet 32 of 37 Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station(b) Centerline Identification Content Compaction Test Nurnber(a) (feet) (feet) Nurnbe r ( %) (%) Nurnbe r 2467 B 44+65 25 s 1,967.5 LW-70 24.9 94.8 24 70 2468 B 41+05 40 s 1,966.5 LW-71 18.7 95.4 2469 B 38+18 47 s 1,970.0 LW-70 19.3 96.4 2470 B 44+65 25 s 1,967.5 LW-70 20.1 97.9 2471 B 10+86 43 s 1,975.0 LW-76 21.4 99.5 2472 B 9+30 15 s 1,978.0 LW-76 22.0 101.0 2473 B 10+04 33 N 1,974.5 LW-76 20.2 102.9 2474 B 31+05 60 s 1,966.0 LW-71 21.0 97.8 0 2475 B 29+20 50 s 1,964.0 LW-70 18.0 100.1 t""' Czj 2476 B 17+00 25 s 1 Ot:t:: t: 1"f.7 -II"" 21.9 99.3 C' _.,_,V..Je.J .. ::0 2477 B 29+60 30 N 1,975.0 L\AI-71 1r;:: "7 C>C " tri *vet JUeO tJ:j 2478 B 35+50 50 N 1,980.5 LW-70 21.0 97.3 2479 8 38+00 20 N 1,977.5 LW-70 19.7 97.3 2480 B 41+00 10 N 1,975.5 LW-71 19.1 97.2 2481 B 43+85 0 1,974.5 LW-70 19.1 96.4 2482 B 15+15 100 s 1,957.0 LW-70 19.3 97.0 2483 B 18+20 80 s 1,966.5 LW-70 18.2 97.1 2484 B 16+00 0 1,962.0 LW-70 22.8 99.5 2485 B 16+75 75 N 1:960=0 LW-71 --:;r, c. L-V
    • V 97.9 2486 B 30+80 85 s 1,977.5 LW-70 22 .l 98.0 2487 B 29+00 80 N 1,976,0 LW-70 21.7 98.3 2488-S B 14+50 85 s 1 oc:.c: f"\ LV *! .lU .L
    • b _._!J-'>J*V 'D0'-7-0 J,.'\.-y
    • Sheet 33 of 37 TABLE 2.5-78 (continued) Location Offset In-Place from Elevation(c) Material Moisture Correcting Test Station (b) Centerline Identification Content Compaction Test Number(a) (feet) (feet) Number ( %) (%) Number 2489-S B 17+20 25 s 1,963.0 LW-71 19.7 97.9 2490-S B 29+50 20 s 1,962.0 LW-71 18.4 95.1 2491-S B 31+00 60 N 1,968.5 LW-70 20.4 97.4 2492-S B 18+30 70 N 1,967.0 LW-71 20.4 99.0 2993-S B 16+00 80 N 1,962.5 LW-71 19.4 98.1 2494 A 81+50 45 E 1,975.5 LW-58 15.0 103.7 2495 A 72+30 35 w 1,981. 5 LW-55 22.8 10 0. 9 2496 A 78+60 50 w 1,973.0 LW-57 20.7 97.9 2497 A 77+25 40 E 1,985.5 LW-58 19.7 98.5 0 J:"1 hj 2498 A 79+44 40 w l;980o5 LW-55 27.4 97.7 n 2499 B 15+50 55 s 1,963.0 LW-70 20.8 96.5 !::v ..... ......, --.. 2500 B 17+65 60 s 1 OCt: c:: .J..f:IV.Je.J L\*{-71 -,' A .£.J.e"f 99.8 !A; 2501 B 27+70 20 s 1,975.0 LW-71 19.4 100.8 2502 B 30+00 70 s 1,972.0 LW-71 19.4 100.1 2503 B 18+50 50 N 1,967.0 LW-71 20.1 98.1 2504 B 16+00 75 N 1,962.5 LW-71 20.1 97.6 2505 B 29+30 40 N 1,974.0 LW-70 23.5 99.8 2506 B 31+90 0 1,972.0 LW-70 21.7 95.7 2507 B 18+25 90 s 1,968.0 LW-70 22.6 99.9 2508 B 15+80 10 s 1,963.0 LW-71 20.7 99.8 2509 B 27+60 80 s 1,975.0 LW-70 23.4 96.2 2510 B 17+00 65 N 1,963.0 LW-74 19.6 10 0. 7 n-..... 0 .t'\.t::Ve Test Number(a) 2511 2512 2513 2514 2515-S 2516-S 2517-S 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 TABLE 2.5-78 (continued) Location Station(b) B 14+20 B 31+75 B 28+50 B 17+20 B 30+45 B 18+04 B 14+98 A 76+20 A 79+15 ll .. 76+40 A 24+90 A 34+05 A 28+40 A 28+40 A 25+50 A 22+05 B 19+05 B 14+83 B 16+90 B 18+03 B 18+50 8 16+10 Offset from Centerline (feet) 50 N 75 N 0 80 s 90 s 47 N 70 N 35 E 45 E 33 w 95 E 110 w 104 w 104 w 85 E 80 E 20 N 6 N 15 s 63 N 35 s 85 s Elevation(c) (feet) 1,961.0 1,973.0 1,976.0 1,964.5 1,973.0 1,969.0 1,962.0 1,983.5 1,982.0 , 00.11 1"1 ..1.1;/U"'i:*V 1,955.0 1,971.5 1,957.0 1,957.0 1,957.5 1,961.5 1,971.0 1,965.0 1,963.5 1,969.0 1,970.5 Material Identification Number LW-71 LW-71 LW-71 LW-70 LW-70 LW-70 LW-71 LW-56 LW-56 LW-52 LW-52 LW-52 LW-53 LW-53 LW-56 LW-52 LW-71 LW-71 Lhi-71 LW-70 LW-70 In-Place Moisture Content ( %) 20.9 20.5 21.8 21.6 20.5 20.4 19.7 22.5 22.1 21.7 23.3 32.0 22.2 23.1 23.4 20.2 20.3 21.9 21.5 20.9 L!J * !:'J Sheet 34 of 37 Compaction (%) 97.8 100.7 96.7 96.2 99.6 95.3 97.9 101.2 100.1 100.4 100.6 91.9 96.1 98.2 96.7 98.9 98.0 95.5 95.1 95.2 Correcting Test Number 2524 Rev. 0 Test Number(a) 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 TABLE 2.5-78 (continued) Location Station(b) B 28+23 B 18+70 B 16+60 B 14+03 B 15+77 B 15+77 B 28+23 B 28+23 B 29+57 R 31+07 B 27+97 B 30+12 B 32+00 A 29+05 A 23+50 A 24+15 A 19+15 B 13+90 B 17+45 B 17+25 B 14+30 B 15+10 Offset from Centerline (feet) 72 s 25 N 20 N 83 s 67 s 67 s 72 s 72 s 42 s' 26 s 14 s 25 N 0 98 w 100 w 110 E 50 E 10 N 63 N 85 s 0 47 N Elevation(c) (feet) 1,976.5 1,967.0 1,967.0 1,961.5 1,965.5 1,965.5 1,976.5 1,976.5 1,975.0 1,975.5 1,974.0 1,958.5 1,956.5 1,961.0 1,971.5 1,968.5 1,966.0 1,970.0 1,960.0 1,963.0 Material Identification Number LW-70 LW-71 LW-71 LW-71 LW-70 LW-70 LW-70 LW-70 LW-71 LW-70 LW-71 LW-71 LW-60 LW-54 LW-60 LW-60 LW-71 LW-71 LW-70 LW-70 LW-70 In-Place Moisture Content ( %) 21.8 20.5 19.1 21.9 21.7 20.0 20.9 20.6 21.1 21.2 19.6 19.5 20.2 16.3 20.1 18.0 20.4 19.8 21.1 20.9 18.8 Sheet 35 of 37 Compaction (%) 98.6 99.0 98.3 98.1 94.7 101.4 93.1 94.5 96.8 96.8 98.2 99.3 97.9 95.6 99.5 97.1 95.2 97.1 98,.8 99.2 99.1 98.5 Correcting Test Number 2538 2533 2533 *Rev. 0 TABLE 2.5-78 (continued) Sheet 36 of 37 Location Offset from 2555 B 19+80 30 N 1,975.5 LW-71 18.9 101.8 2556 B 16+70 15 N 1,969.0 LW-71 22.0 96.3 2557 B 14+05 80 N 1,966.5 LW-71 19.5 95.4 2558 B 14+12 70 s 1,963.0 LW-71 20.8 98.5 2559 B 17+75 0 1,970.5 LW-71 21.2 97.5 2560 B 17+34 85 N 1,972.0 LW-71 18.2 101.3 2561 B 18+97 88 s 1,971.0 LW-58 16.0 97.5 2562 B 16+57 72 s 1,970.5 LW-71 18.1 98.6 :iS 0 2563 B 13+15 35 N 1,970.0 LW-71 20.6 98.8 t"" i"zl 2570 A 34+05 85 \-'! , 0"7Jt r: LW-60 17.8 100.5 n * ..J :N 2571 A 30+00 87 w 1,973.5 L\"I-6 0 18.0 99.7 tt l'l:j 2572 A 20+95 80 w 1,964.5 LW-57 23.0 97.8 :;-;: 2573 A 22+15 80 E 1,965.5 LW-57 23.4 96.7 2579 B 17+05 45 s 1,973.0 LW-70 21.9 97.9 2580 B 15+20 5 N 1,969.0 LW-71 20.5 98.3 2581 B 19+10 30 N 1,977.0 LW-71 18.8 96.2 2582 B 18+40 80 s 1,975.0 LW-71 19.3 99.4 2583 B 15+05 65 s 1,971.5 LW-70 22.1 97.6 2584 B 13+00 60 N 1,972 .. 5 15.6 98.3 2585 B 14+00 40 s 1,968.5 LW-71 20.3 95.6 2586 B 13+00 60 N 1,972.5 LW-70 18.4 95.8 2587 B 17+05 70 N LW-71 22.1 07 * .;;; (. q Rev. 0 TABLE 2.5-78 (continued) Sheet 37 of 37 Location Offset In-Place from Elevation (c) Material Moisture Correcting Test Station (b) Centerline Identification Content Compaction Test Number (a) (feet) (feet) Number (%) (%) Number 2588 B 13+97 75 N 1,970.5 LW-70 22.1 97.5 2589 B 7+60 25 N 1,987.0 LW-71 16.7 99.7 2590 B 12+18 5 s 1,976.0 LW-71 15.9 104.0 Rev. 0 Date 11/14/77 11/15/77 11/16/77 ll/17/77 i'"i/i0/"7"7 .l...Lf..L0/11 11/19/77 11/21/77 TABLE 2.5-79 LIFT THICKNESS SUMMARY FOR BAFFLE DIKES A AND B EMBANKMENT FILL Location Offset from Lift Station(a) Centerline Lift Thickness (feet) Number (inches) A72+00 -76+00 0 1 8 A70+55 -76+00 0 l-2 8 A82+00 -88+00 0 1-3 8 A7l+OO 77+00 (\ , 18 v .l. A77+00 82+50 0 j_Ji 8 ... "% A77+00 -84+00 " l-2 8 u A71+00 -77+00 0 1 1 Q ... .J.U A80+50 -84+50 0 1 8 A75+00 -79+10 0 1 8 A88+50 -n l-4 8 -'VIVV v A88+50 1-nn 0 1-'2 0 ..., ..... v v ... ..J u Sheet 1 of 46 Fill Type(b) c c c R ,.. 1.... c n n c c , 1.... ,.., 1.... (a)No prefix indicates a Main Dam station; Roman numeral prefix indicates a Saddle Dam station; A or B prefix indicates a Baffle Dike A or B station. Cohesive embankment; R = Rock fill embankment; uub = Granular drainage blanket; GTD = Granular toe drain. Rev. 0 TABLE 2.5-79 (continued) Sheet 2 of 46 Location Offset from Lift Date Station(a) Centerline Lift Thickness Fill Type(b) (feet) Number (inches) 11/22/77 A88+50 -90+00 0 1-2 8 c A71+00 -77+00 0 1-3 12 R 11/23/77 A7l+OO -77+00 0 1-2 12 R A77+00 -81+00 0 1 5 R 11/29/77 A82+00 lOGE 1 6 c A81+50 sow 1 6 c A79+00 0 1 6 r 0 '-t"' '71....,, 1 r'l A _,...,."'" 0 1 8 c (J hiJ..-r"UU -; ; -rvv ll/30/77 'J\n-J1Lf'\ f\.., I r 1"'\ 0 1 8 c ?;) /"\0/T::>U -t!=j t".i :A: 87+50 -93+50 n , 0 ,.., v b Q '--12/01/77 100+00 -104+00 0 1 8 c 86+00 -87+00 0 1-2-3-4 8 R 12/02/77 87+50 -93+50 0 l 8 c 100+00 -104+00 0 1 8 ,.., '-83+00 -87+00 0 1-2-3-4 16 R 12/03/77 87+50 -93+50 0 1 8 c 100+00 -104+00 0 1-2 8 c 81+50 -83+00 0 l-2 18 R 82+00 -85+00 0 l 1Q R ...!-'-" 12/07/77 Q")..J_(1(1 -0'1-1-t:n n , , 0 ,.... vv -VL!..JV v 4. J.O l ") /(\Q /77 !! Rev. /'\ u Date 12/13/77 12/14/77 12/15/77 12/16/77 12/19/77 12/20/77 TABLE 2.5-79 (continued) Location Station(a) 10 2+8 0 100+40 97+50 99+25 99+00 102+75 88+60 92+90 93+90 99+00 101+00 103+50 104+00 88+00 -94+00 98+00 -105+32 98+00 -105+00 88+0 0 -92+0 0 87+00 -93+00 100+00 -105+00 80+00 -86+00 "7l..LC::I1 /..LI...JV "7C:.-'-a::: n IV I ...IV ('\"f,r\r\. 1""\"\11"'\1"\ 0 /""t"L'V -Offset from Centerline (feet) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 v Lift Number 1 1 1 1 1 1 1 1 l 1 l 1 .J.. l 1 1 1-2-3-4 1-2-3 1 1-2-3 1-2 1-2 1-2 , .1.-L. Lift Thickness (inches) 8 8 10 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 12 8 8 2 L. Sheet 3 of 46 Fill Type(b) c c c c c c c c c c c c c c c c c c R c c R .K Rev. 0 :8 0 t"' ...... CJ trj t:z:j TABLE 2.5-79 (continued) Sheet 4 of 46 Location Offset from Lift Centerline Lift Thickness , Date Station (a) (feet) Number (inches) F'i11 Type (o) 12/21/77 12/22/77 12/28/77 12/29/77 12/30/77 01/03/78 01/04/78 87+00 -71+50 -82+00 -71+50 -82+00 -57+00 -54+00 -71+00 -71+00 -82+00 66+50 77+45 -53+00 -66+00 -66+00 -53+00 -44+00 -44+00 -44+00 8 0 -76+50 -93+00 76+50 86+50 76+50 93+00 64+00 64+00 76+50 77+00 86+50 70+55 82+00 66+00 70+00 69+00 66+00 53+00 49+00 70+00 93+00 86+50 34+00 -44+00 76+00 -93+00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 1 1 1 1-2 1 1 1-2 1 1-2 ' "' l 1 1 1 1-2-3-4 1 1 1 1 1 1 1 1 12 12 8 8 8 8 8 18 8 8 8 18 8 8 8 8 8 8 8 18 12 6 12 R R c c c c c R c c c R c c c c c c c R R c R Rev. 0 :e 0 L' r'lJ n ::e t".l !:'j :..::

    TABLE 2.5-79 (continued) Sheet 5 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Fill Type(b) Date (feet) Number (inches) 01/05/78 89+00 -90+00 0 1 12 R 49+00 -68+00 0 1 6 c 33+00 -49+00 0 1 6 c 79+00 -83+00 0 1 12 R 01/06/78 51+00 0 1 8 c 57+00 30W 1 8 c 60+00 lOW 1 8 c ::E; 63+00 55\AJ 1 Q r' 0 v '-t"1 67+50 40W l 8 c "-'-.J 54+00 7 OV.J 1 8 c \-J ;a llr\1("\f"\ 1 8 c t::Jj '%::7TUU .l.UL tJ::l 01/07/78 65+00 60E 1 8 c .b 85+00 sow 1 8 c 55+00 0 1 8 c 44+00 70E 1 8 c 82+00 0 l 12 R 01/10/78 77+50 -79+50 0 l 18 R 01/11/78 82+00 -83+90 0 1 18 R 01/12/78 77+00 -82+00 0 1 12 R 01/13/78 76+50 -77+00 0 1 12 R 81+00 -84+50 0 l 12 D n 01/23/78 78+50 0 1 12 R 79+50 0 1 12 R Rev. 0 TABLE 2.5-79 (continued) Sheet 6 of 46 Location --Offset from Lift Station(a) Centerline Lift Thickness Fill Type(b) Date (feet) Number (inches) 01/24/78 0 1 12 R 81+50 -83+50 0 1 12 R 01/25/78 76+00 0 1 12 R 78+00 0 1 12 R 80+00 1"\ 1 12 R v 01/27/78 ...,. ""' I r-' I"'\ 75+00 " 1 1 ") R /..O::T:)U -u .l. .l.<<. 0 t"" 01/28/78 81+00 -85+00 0 l 18 R 'T1 () -01/30/78 78+00 n 1 18 R "" -v ... -. -75+00 0 1 18 R !...-...! .l. 01/31/78 84+00 0 1 18 R 81+00 0 , 18 R J. 02/01/78 79+00 0 1 18 R 77+50 0 1 18 R 02/02/78 76+50 0 1 18 R 75+00 0 1 18 R 02/03/78 73+00 0 1 18 R 71+00 0 1 18 R 02/04/78 82+00 0 l 18 R 84+00 0 1 18 R Rev. 0 TABLE 2.5-79 (continued) Sheet 7 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Fill Type(b) Date (feet) Number (inches) 02/06/78 76+00 -81+00 0 1 18 R 02/10/78 71+00 -74+70 0 1 18 R 02/27/78 70+55 -71+55 0 1-2 18 R 03/0l/78 78+00 0 1 12 R 82+00 0 l 12 R :E: 71+00 0 1 12 R 0 n 1 1 ., n !:""' ; ...; ; v v v .... ..i.. £. l\. i":IJ 94+00 80E 1 12 t'( n -"" 03/03/78 68+50 -71+00 0 l-2-3 1 r, R t:rj ...... :;>;; 03/06/78 69+00 0 1 18 R 69+50 0 2 12 R 68+75 0 3 18 R 93+00 150E 1 18 R 95+00 160E 1 18 R 94+00 140E 1 18 R 95+00 lSOE 1 18 R 94+50 50E 1 18 R 91+00 50E 1 12 R 96+00 50E .1. 18 R v TABLE 2.5-79 (continued) Location Offset from Date Station(a) Centerline Lift (feet) Number 03/08/78 95+25 40W 1 95+00 0 1 95+10 25E 2 94+80 70E 2 95+00 lOOW 3 95+00 50E 3 69+00 20E 1 70+00 0 2 03/09/78 97+00 l 95+50 l20E 1 96+50 0 l 96+50 c:.rn,.r " ...1vn 95+00 20E .., L. 96+80 lOOW 2 95+40 30E 3 96+00 0 3 96+90 lOOW 3 95+50 0 4 96+00 lOOE 4 96+50 100W 4 03/10/78 94+45 -96+45 0 1-2-3 03/11/78 94+00 50E l-2 96+00 sm*i l-2 97+00 50\A/ 1-2 n.c...l_c-" 1"\ , .., v ..l.-L 95+00 50E 1-2 Lift Thickness (inches) 12 12 12 12 12 12 12 12 18 18 18 10 .LU , ,.., .LO 18 18 18 18 18 18 18 18 18 18 1 Q ... v , " ..LO 18 Sheet 8 of 46 Fill Type(b) R R R R R R R R R R R ,.... f"', R R R R R R R R R R R n "" R Rev. 0 0 t"" ri:J n t':l trj ;::.:: TABLE 2.S-79 (continued) Sheet 9 of 46 Location Offset from Lift Date Station(a) Centerline Lift (feet) Number Thickness Type(b) (inches) Fill 03-13-78 94+00 -96+00 0 l-2 18 R 03/14/78 9S+OO 0 l 18 R 96+00 0 l 18 R 97+00 SOw l 18 R 9S+SO 7SE l 18 R 96+7S sow 1 18 R 96+00 lOOE 2 18 H 95+25 n ') v .c. 18 R 97+30 2 18 R 96+20 0 2 18 R 0'7..Lnfi " l J I I VV v , r> R ..LO 97+30 " , v ..L 18 D n 9S+SO 7SE l 18 R 96+00 lOOW l 18 R 97+7S 1sow 1 18 R 94+90 0 1 1 Q R ..L.V 94+00 17SE 2 18 R 95+00 0 2 18 D L\ 9S+SO lOOvJ 2 18 R 96+00 0 2 18 R 97+00 lSOW 2 18 R 03/16/78 94+50 150E 1 18 R 97+00 lOOE l 18 D ... OC..Lnn C'A'!' , , .;tV!VV ..JVC ..L J..O K 97+00 40E 1 18 R Rev. 0 TABLE 2.5-79 (continued) Sheet 10 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 03/17/78 96+SO lOOE 2 18 R 96+30 130E 1 8 c 94+40 14SE 2 8 c 94+00 140E 3 8 c 9S+OO 14SE 4 8 c 03/18/78 98+00 sow 1 18 R nn. nn SOE , 18 R ::10TUU J. 0 (l'l,/')()/7Q 95+50 0 l 18 R t" --; .:r...;;; 95+75 30E 2 18 R (J 96+00 sow 2 18 R ::0 48+00 60W 1 8 c !?':! t:::j S3+00 7SW 1 8 c :A: 4S+OO 0 1 8 c 46+2S 40W 2 8 c 3S+OO 6SW 2 8 c 40+00 7SW 2 8 c 03/21/78 46+00 0 1 8 c 47+00 30E 1 8 c 4S+2S 0 2 8 c 46+SO 60W 2 8 c 97+00 0 l 18 R 96+SO 30E 1 18 R 97+SO sow 1 18 R 03/22/78 38+00 0 1 8 , .l. \.-3S+OO 20W 1 8 c Rev. 0 TABLE 2.5-79 (continued) Sheet 11 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 03/22/78 41+00 sow 1 8 c 39+00 30W 1 8 c 46+00 0 1 8 c 4S+OO 40E 1 8 c 9S+OO 0 1 18 R 9S+50 0 1 18 R 9S+OO 70E 1 18 R 0 03/28/78 96+00 0 1 1") R -J..C.. ". 94+50 50E l 12 R i'-!j 93+50 , l 12 R \ J .i.UW ::0 t':l 03/29/78 49+00 n ' , "j ,.., t"1 v ... -'-"' r-, ;;:>;i Sl+OO () , , .., R u .!.L. S3+00 0 1 12 R S7+00 20E 1 12 R S9+00 20W 1 12 R 63+00 0 1 12 R 6S+OO lOW 1 12 R 97+00 50E 1 12 R 96+00 0 1 12 R 97+SO sow 1 12 R 03/30/78 62+00 0 1 18 D n 63+50 20W 1 18 R 65+00 1 18 R 67+00 0 1 1 Q D J..U n. Rev. 0 TABLE 2.5-79 (continued) Sheet 12 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Fill Type(b) Date (feet) Number (inches) 03/30/78 98+50 0 1 18 R 97+50 60E 1 18 R 98+25 40W 1 18 R 03/31/78 67+50 0 1 18 R 67+00 30E 1 18 R 04/01/78 44+00 0 1 8 c 0 66+00 (\ , 8 ,.., (.4 v ..L \... 67+00 0 l 12 R .... .J () !;:0 04/05/78 44+00 50E l 8 c t<j 42+50 60E ; 8 c t%.1 ..L :A: 69+50 r. l 18 R v 67+50 20E 1 18 R 04/07/78 70+30 0 1 18 R 96+80 0 1 12 R 41+00 0 1 8 ,... \... 04/08/78 47+80 0 1 8 c 45+30 0 1 8 c 95+70 0 1 18 R 04/12/78 51+40 0 1 18 R 54+00 0 l 18 R 94+50 n 1 1 0 ,..., v ..L ..LU Rev. 0 TABLE 2.5-79 (continued) Sheet 13 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Fill Type(b) Date (feet) Number (inches) 04/12/78 96+00 0 1 18 R 96+80 0 1 18 R 99+05 0 1 18 R 100+40 0 1 18 R 98+35 0 1 18 R 97+00 0 1 18 R "A/1-::J/..-,o 92+50 " , 18 R V'-t.f.J...:Jf/0 v J.. =E: 93+25 0 1 18 R 0 94+70 0 l 18 ,.., i::""i !-zj 97+60 0 l 18 R ,-J 98+10 0 1 18 E !:0 99+00 0 1 18 R tr.l 100+00 0 1 18 R ?;: 102+50 0 1 18 R 56+00 0 1 18 R 58+00 0 1 18 R 04/14/78 84+00 0 1 12 R 04/15/78 94+00 80E 1 18 R 95+50 90E 1 18 R 05/10/78 84+00 0 1. 8 c 96+00 0 1 8 c 06/10/78 94+00 100E 1 8 c 74+00 Q(\V i 0 I" JVL:.I .1. u T"'l --* 0 TABLE 2.5-79 (continued) Sheet 14 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 06/12/78 70+00 sow 1 8 c 90+00 100W 1 8 c 80+00 95W 2 8 c 77+00 90E 1 8 c 93+00 150E 1 8 c 06/13/78 70+00 70E 1 8 c 89+00 90E 1 8 c :::!8 0 !:""' ilf'\/lLi./7'?. 75+00 0 l 8 c i"!J ...... -, -.. , '-80+50 0 2 8 c n -99+00 0 1 12 R ..-v 93+00 " , , ..., R -u .l .LL: 92+50 0 l 12 :;:>::: D n 96+00 0 1 12 R 97+20 0 1 12 R 100+00 0 1 12 R 06/16/78 99+00 0 1 8 c 90+00 0 l Q ro '-' '-' 87+00 0 1 8 c 06/17/78 89+00 0 1 12 R 06/19/78 90+00 60E l c:. R v nc:. /'"J1 /'7o 0-::!...L(l(l r. 1 , ") r> VVfL.i.fiU J..JIUV u .L .LL. C'. r'\ Jl!,... ("\ , .lL R :::7!:!:-:-vu v J. Rev. 0 TABLE 2.5-79 (continued) Sheet 15 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Fill Type(b) Date (feet) Number (inches) 06/21/78 97+00 0 1 12 R 99+00 0 1 12 R 100+00 0 1 12 R 94+00 0 1 8 c 85+00 0 1 8 c 06/22/78 75+00 0 l 8 c ...., 1"\ I r\ 1"\ " , 8 c tu-ruu u J. :E; 90+50 0 l 8 c 0 68+00 0 l 8 c !:""' "'] 80+00 0 2 8 c n A; 06/26/78 90+00 lSSE 1 8 c rr. [!j 100+00 0 l 8 R ;;>;: 102+00 lOOW 1 8 R 95+00 lOOE 1 8 R 93+00 0 1 8 R 94+50 70W 1 8 R 06/27/78 86+60 43W 1 8 c 100+05 135W 1 8 c 88+00 60E 1 8 c 06/28/78 99+90 l 8 c 84+80 53\.V 1 7 c 93+60 107E 1 8 c 84+00 60E 1 8 c Rev. 0 TABLE 2.5-79 (continued) Sheet 16 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Fill Type(b) Date (feet) Number (inches) 06/29/78 99+30 l23W 1 8 c 06/30/78 96+00 120W 1 8 c 84+00 lOOE 1 8 c 07/15/78 93+00 0 1 8 R 98+00 n 1 8 ,.... v ..L t\ 103+00 0 1 Q R v 95+00 () , 8 R v .l. 0 97+00 0 1 12 R t"" riJ 07/17/78 92+00 0 l 8 H. (J 100+00 lOOE 1 Q n tr.l ..L v n t":i 95+00 6m*J 1 8 R ;::.:;: ..L 102+00 0 l 8 R 07/18/78 94+50 lOE 1 18 R 100+80 50E 1 9 R 97+10 20E 1 8 R 93+00 0 1 8 R 07/28/78 102+00 0 1 12 R 99+00 0 1 12 R 95+00 n , , .., R v .!. .J..L. 92+00 0 1 12 R 07/29/78 92+20 0 1 12 R 94+50 0 1 12 R Rev. r; v TABLE 2.5-79 (continued) Sheet 17 of 46 Location Offset from Lift Date Station(a) Centerline Lift Thickness Fill Type(b) (feet) Number (inches) 07/29/78 93+30 0 1 12 R 95+40 0 1 12 R 96+80 0 1 12 R 98+00 0 2 12 R 99+10 0 2 12 R 100+00 0 2 12 R 100+25 0 3 12 R 100+80 0 3 12 R :E: 102+00 (\ ':! 12 R 0 v ..J t'"' -" 07/31/78 95+00 40E l 18 R n 99+50 0 l 18 R :::0 t:lj 101+00 , 1 Q D t<:! ..L ..LV .!. \. 92+50 0 1 18 R 97+00 25E 1 18 R 98+00 0 1 18 R 08/09/78 95+70 0 1 8 c 08/10/78 95+00 0 1 8 c 08/14/78 95+00 0 1 8 c 97+00 0 1 8 c 08/16/78 95+00 0 1 12 R 99+00 0 1 12 R 1(\(\.J...I:;(\ n 1 1 '? D ..L.VVI...JV v .L .L ... H 08/18/78 96+80 0 1 6 c Rev. 0 TABLE 2.5-79 (continued) Sheet 18 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Fill Type(b) Date (feet) Number (inches) 08/21/78 91+50 0 1 18 R 93+00 0 1 18 R 94+25 0 1 18 R 95+00 0 1 18 R 96+75 0 1 18 R 98+00 0 1 18 R 101+50 0 1 18 R :2:; 08/23/78 92+00 0 1 18 R 0 t"1 95+25 50E l 18 ,,, "'j 97+00 20W 1 18 R n -'-100+00 30W 1 18 R ....... .. -. 101+50 35E 1 18 R t<:l ...... 94+50 40W 1 18 .-'"! R 93+00 0 1 18 R 08/25/78 98+00 0 1 12 R 97+00 0 1 12 R 94+50 0 1 12 R 91+50 0 1 12 R 100+90 0 1 12 R 08/28/78 93+00 0 l 18 R 94+25 30E .L .lU R 100+50 0 1 18 R 97+00 lOW 1 18 R 90+75 20E 1 18 R Rev. 0 TABLE 2.5-79 (continued) Sheet 19 of 46 Location Offset from Lift , \ Centerline Lift Thickness , Date Station \a, (feet) Number (inches) Fill Type tb) 08/30/78 08/31/78 09/02/78 09/05/78 09/28/78 09/29/78 09/30/78 10/02/78 88+00 66+00 68+00 71+00 5+00 63+00 64+00 5+60 0 99+00 101+00 101+80 10+00 37+00 37+50 40+00 12+80 16+10 19+30 52+25 44+75 0 0 0 0 0 0 0 (I v 0 0 " v 0 0 25E 40E 80W 0 0 SOE 1 18 R 1 18 R 1 18 R 1 18 R 1 8 c 1 18 R 1 18 R 2 0 ro 0 1.... 2 8 (' "' 1 18 R 1 18 R 1 8 c 1 6 c 1 6 c 3 t:. c v 3 6 c 1 8 c 1 8 c 1 8 f"' ...... 1 1::' c u l 6 c 0 :lEi 0 I:"' l"l:j ;;o t'l trJ ;;>:; TABLE 2.5-79 (continued) Sheet 20 of 46 Location Offset from Lift ("' \ Centerline Lift Thickness I b \ Date (feet) Number (inches) Fill Type\ 1 10/03/78 45+00 60W l 6 c 10/04/78 45+40 32W l 8 c 44+50 30W l 8 c 48+60 24W 1 8 c 49+40 l8W l 8 c 10/05/78 16+50 40W l 6 c :Ei 17+70 1 c:. ,... 0 v \... 18+50 0 l 6 c " 11'\if'\f'\ """\,...., ri 1 6 c ..LVTUU .ji.Jt.. n 7+00 0 l 6 c ::>::l t".l (.lj 10/06/78 15+00 40E , 6 c J. 16+70 20W 1 6 c 75+50 20W l 6 c 80+00 20E 1 6 c 49+80 30E 1 6 c 48+80 40E 1 c: c -'-u 46+60 30E 1 6 c 45+10 25E 1 6 c 44+40 20E l 6 c 10/07/78 38+00 25E l 6 c 40+10 25W 1 6 c 42+50 30W 1 6 c 46+75 30E 1 c:. ,... -'-v \... 49+50 '") 1: T.c 1 6 c L .J VV Rev. 0 TABLE 2.5-79 (continued) Sheet 21 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 10/09/78 48+00 25W 1 6 c 46+00 25W 1 6 c 56+00 25E 1 6 c 50+00 0 1 6 c 52+00 25E 1 6 c 10/10/78 49+00 25W , r c l. 0 52+00 SOE , c: ;-. .L u \., 55+00 20W 1 6 c 0 59+00 20E l 6 c t"' "..O..J ,-) 10/11/78 60+00 15E 1 8 c :::0 57+ 50 10E , 8 c I:J:j .L t:!j :A: 10/12/78 54+00 40E 1 8 c 58+25 5E 1 8 c 72+00 5W 1 8 c 62+00 30E 1 8 c 10/13/78 61+75 50E 1 8 c 66+50 15E 1 8 c 64+00 lOE 2 8 c 70+00 45E 1 8 c 66+00 45E , 8 , .J.. \., 10/14/78 54+50 45W 1 8 c 70+40 5E 1 8 c 59+29 l 8 r* ..... 56+75 45E 1 8 c Rev. 0 TABLE 2.5-79 (continued) Sheet 22 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 10/14/78 70+00 0 2 8 c 10/16/78 71+00 60E 1 6 c 68+00 0 1 6 c 67+50 50E 1 6 c 10/17/78 46+50 30E 1 6 c 49+50 35E 1 6 c 55+00 20E 1 6 ,... ..... 0 c* i-zj ,A /,r"l /r-'Jr\ 68+00 60E l 6 c .l.iJj.l.Of/0 n ..., I"\ I ,.. 1"\ 50E l 6 c :::0 /U""t":JU t:tj tr:l 10/19/78 28+50 50E l ,.. c :::;: 0 28+00 0 1 6 c 47+50 20E 1 6 c 63+00 25E 1 6 c 71+50 50E 1 6 r '-" 10/20/78 24+00 50E 1 6 c 28+50 70E 1 6 c 27+50 20W 1 6 c 25+00 120E 2 6 c 24+10 120E ') c:. ,... Lo v ..... 30+00 l50Y.J 2 h r v '-" 30+50 2 6 r '-" 30+20 ') () t.; ') c. ro L..Vrl £. v ..... 28+00 '"' '""' c u L. 0 27+00 0 2 6 c Rev. 0 TABLE 2.5-79 (continued) Sheet 23 of 46 Location Offset from Lift Date Station(a) Centerline Lift Thickness Type(b) (feet) Number (inches) Fill 10/21/78 24+00 0 1 6 c 23+10 lOOW 1 6 c 29+00 70W 1 6 c 30+50 lOOE 1 6 c 28+30 80E 1 6 c 27+00 llOE 1 6 c 54+00 sow 1 6 c 67+00 1 6 c :8. 0 t"' 30+20 l 6 "'j 40E c 28+50 45E l 6 c n :::ti li1/?'.F7R --,--,*-27+00 60E l 6 c t=1 24+00 A l 6 ro v \.... ,"; 25+00 sow l 6 c 27+80 lOOW 1 6 c 23+20 l20E 2 6 c 26+50 30E 2 6 c 23+50 70\-'/ 2 6 c 24+00 140W 2 6 c 29+00 14 0\Al 2 6 c 10/24/78 27+00 130E 1 6 c 29+00 lODE 1 6 c 29+00 l20E 1 6 r .... '-23+00 smA: l 6 c 24+00 l 6 c '"JC::.J..{\{\ 1 ":l (\!.} 1 c:: r £..U-,VV ..L..JV¥'1' .... v '-28+50 ., 0""\1""\r_'l" , ,.. ..LL.U\I'll .l. 0 \... Rev. (\ v TABLE 2.5-79 (continued) Sheet 24 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 10/25/78 26+00 150E 1 6 c 29+00 lOOE 1 6 c 27+50 80W 1 6 c 25+00 0 1 6 c 25+50 150W 1 6 c 23+20 50E 1 6 c 24+00 80W 2 6 c 27+20 160W 1 6 c :::E; 26+50 150W 3 6 c 0 t"' i:LJ 10/26/78 27+00 lOOW l 6 c n 24+50 l20W l 6 c !:':' t?::! 23+50 30vi , 6 c 1:':! ..1. ;;.: 26+30 165E 1 6 r ..... 28+00 lOOE 1 6 c 29+00 0 1 6 c 27+50 150E 1 6 c 25+00 120W 1 6 c 10/28/78 30+00 145W 1 8 c 28+00 120W 1 8 c 25+00 0 1 8 c 23+50 50E 1 8 c 31+50 30W l 8 r' ..... 33+25 25Y.J 1 8 c 24+50 lOOW l 8 c 26+00 ll 0\'i l Q r v ..... 28+00 l t") \.,. 0 " .1.'\...:;:::; v

    • v TABLE 2.5-79 (continued) Sheet 25 of 46 Location Offset from Lift Centerline Lift Thickness Date Station(a) (feet) Number {inches) Fill Type(b) 10/28/78 29+00 sow 1 8 c 30+00 15E 1 8 c 27+50 40E 1 8 c 25+00 100E 1 8 c 10/30/78 28+80 160\IV 1 6 c 29+00 0 1 6 c 29+00 0 1 6 c 26+70 l30W 1 6 c 0 24+02 1 70\AJ 5 h ("' t"' "' '-'"".J 24+01 0 9 6 c n 24+00 sow 1 6 c !N 23+50 SOE .. r c ;::zj .1. '0 t"l 24+05 80E 9 6 c 29+60 120E 1 6 c 25+00 90E 1 6 c 27+20 20E 1 6 c 30+00 40E 1 6 r '"' 33+25 25W 1 6 c 23+50 90E 1 6 c 26+00 10E 2 6 c 29+60 100E 2 6 c 26+50 80E 1 6 c 24+50 20E 1 6 c .... 23+50 l20E 1 6 c 25+50 llOW 2 6 r"' \... 10/31/78 26+00 .L 15 R 30+00 70W 1 15 R 31+00 l20t'i 1 6 c Rev. 0 TABLE 2.5-79 (continued) Sheet 26 of 46 Location Offset from Lift Centerline Lift Thickness b Date Station(a) (feet) Number {inches) Fill Type( ) 11/01/78 33+50 125W 1 6 c 29+00 120\I'J 3 6 c 24+50 llOW 3 6 c 31+50 l15W 3 6 c 37+00 40W 1 6 c 38+50 20W 1 6 c 41+00 35W 1 6 c 23+20 0 1 15 R 0 24+00 30E 1 15 R ;; 25+00 30.8 l 15 R 26+50 lOGE 1 15 H n 28+00 60E l 15 R 0 29+00 140E 1 15 R t.":l 30+00 120E 1 , " .l-R 30+80 80E 1 15 R 32+30 lOE 1 15 R 34+50 90E 1 15 R 11/02/78 54+00 lOE 1 6 c 16+10 30E 1 15 R 17+00 0 1 15 R 18+00 sow 1 15 R 20+50 20W 1 15 R 16+50 45\v 2 1 r:; .... _, R 17+30 40W 2 15 R 19+00 15E 2 15 R 20+00 0 2 1 r:; ... -' R 17+00 30E .... 15 R ;) 0 --

    TABLE 2.5-79 (continued) Sheet 27 of 46 Location Offset from Lift 'a) Centerline Lift Thickness Type(b) Date Station' (feet) Number (inches) Fill 11/02/78 18+50 20W 3 15 R 19+10 0 3 15 R 16+50 0 4 15 R 18+70 50E 4 15 R 20+20 20W 4 15 R 31+50 115W 1 6 c 29+00 120W 1 6 c 56+20 15E 1 6 c :E: 59+00 1 rn.r , 6 c 0 .&.. VI"¥ .l. t"" 57+00 60W 2 6 ,... h:j '--66+70 70W l 6 c 0 t:rj 11/03/78 41+00 A f1t ... Y , 6 c t!j ':t vvv .!. :,;: 44+80 30W l c:. ,... v ...... 26+20 170E 2 6 c 29+00 160E 1 6 c 72+00 60W 1 6 c 60+50 70W l 6 ro ...... 47+50 25E , 6 c .!. 11/04/78 54+00 10\'1 1 6 c 60+35 25E 1 6 c 23+20 130E 1 15 R 23+50 4 0\*! , 15 R .l. 24+00 6 0\A/ 1 , 1: ,..., .... .l...J t\ 24+50 25E l , 1: ,..., .J...J n 26+00 140E , , ,. R .L .!.:J 26+30 l 15 R u 26+80 sow 1 15 R Rev. 0 TABLE 2.5-79 (continued) Sheet 28 of 46 Location Offset from Lift (;:, ' Centerline Lift Thickness I b \ Date (feet) Number (inches) Fill J 11/04/78 27+50 lOOW 1 15 R 28+00 50E 1 15 R 29+00 135E 1 15 R 29+00 20W 1 15 R 29+50 0 1 15 R 30+00 15E 1 15 R 31+00 90E 1 15 R 31+85 45W 1 15 R 0 32+40 100W 1 , t:; D t"' ..L..J "" 33+00 0 l 15 R """"*_," SOE 1 15 R 0 JJTiiJ :;o 34+00 "'" 1 15 R C"J .O:::U.t:.. 34+50 c:. nt.r 1 , t: T'\ t:IJ VVlt ...._ ........ n "' 71+60 65W l 6 c 62+70 80W 1 6 c 39+50 30W 1 6 c 45+00 35E 1 6 c 49+30 5E l 6 c 11/08/78 39+10 30E l 6 c 11/09/78 23+85 130E 2 6 c 23+50 20E 5 6 c 77+00 65E 1 c:. ("' v '"' 70+55 70E 1 6 c 23+70 0 12 6 c 75+00 6 0\AJ , c:. ro ..L v '-t::t:_._"" 75t"i , r c V..JTVV .l. 0 Re\T: 0 TABLE 2.5-79 (continued) Sheet 29 of 46 Location Offset from Lift Date 'a' Centerline Lift Thickness Type(b) Station\ 1 (feet) Number (inches) Fill 11/10/78 23+10 40W 4 6 c 68+00 60E 1 6 c 78+20 70E 1 6 c 21+40 60W 1 6 c 23+90 lOE 4 6 c 21+60 0 1 6 c 22+00 40W 1 6 c 23+70 150W 7 6 c :::!8 67+20 t:: nt.r , c: I" 0 ..J vrv .J. v \., 80+00 60E 2 6 c r-: ...... -" 73+10 75E 2 6 c 0 60+00 65W l 6 c ;;o [!:j t:J 11/11/78 44+08 20W l 8 c !:A: 50+95 24E 1 8 c 54+10 10E 1 8 c 67+00 60E 1 8 c 58+50 40W 1 8 r '-' ll/14/78 24+10 20E 1 15 R 24+75 40W 1 15 R 25+00 120W 1 15 R 25+50 0 1 15 R 25+90 lOOE , , t:: R .J. .J...J 26+20 140E l 1 t:: D ... .J n 26+80 30W 1 15 R "J'1...1..nn n l , c: .,..., L. I IV V v .J.J n. "",..., . ""\" ..... r-,.-. L.:>.t:. .L l.:J X Rev. 0 TABLE 2.5-79 (continued) Sheet 30 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 11/14/78 27+50 40E 1 15 R 27+90 145\-1.' 1 15 R 28+00 130W 1 15 R 28+00 sow 1 15 R 28+40 20E 1 15 R 29+00 lOOE 1 15 R 30+00 120E 1 15 R 31+00 0 1 15 R 32+00 1:;(1!;' , 15 R :8 .JV.W .... 0 33+50 ij l 15 ["""' '-r:1 38+00 30\ti l 6 c 45+00 l 6 c n ?::l 49+80 it:t;: 1 6 c .... !-.-...! ('J 56+00 lOE , 6 c .L 11/20/78 4+30 lOS l 6 c 2+70 158 1 6 c 11/21/78 1+15 lOS 1 6 c 2+10 20N 1 6 r' ..... 6+00 45N 2 6 c 6+00 40S 1 6 c 23+10 20E 1 15 R 23+50 70E 1 15 R ... 23+90 l20E l lC::. ... ..., R 24+20 1:;(11;' 1 15 F\. 24+70 n , , c: ,.., v .... J..J !<. 25+00 ""') r\ , l.:i R .:; v .L 25+40 BOW l 15 R 25+70 llO\ti l 15 R Rev. 0 TABLE 2.5-79 (continued) Sheet 31 of 46 Location Offset from Lift Station{a) Centerline Lift Thickness Type{b) Date {feet} Number (inches) Fill 11/21/78 26+00 130W 1 15 R 26+30 145W 1 15 R 27+00 60W 1 15 R 27+50 0 1 15 R 27+90 80E 1 15 R 28+10 llSE 1 15 R 28+60 120E 1 15 R 29+00 30E 1 15 R 29+80 0 1 15 R ::?!; 0 1 nt.l , , J:: ..... t"'= JV; JWV ..i..Vii ... ..i..J ... 1-:!:j 31+30 70W 1 15 R 32+00 120W 1 15 R (J :;o 34+00 0 1 15 R ...... i..-.J 35+50 20E 1 15 c:J R :;>:: 11/28/78 22+10 sow 1 15 R 23+00 100W 1 15 R 23+50 0 1 15 R 24+05 40E 1 15 R 24+80 130E 1 15 R 25+20 40E 1 15 R 25+70 25W 1 15 R 26+00 90W 1 15 R 27+15 0 l 15 R 27+70 SOE 1 15 R 28+10 120W 1 15 R 28+60 70W 1 15 R 29+00 ""'""-1' , 15 R n-...... !"I 1'\.t::::Ve v TABLE 2.5-79 (continued) Sheet 32 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 11/28/78 29+40 20E 1 15 R 29+90 80E 1 15 R 30+20 140E 1 15 R 31+00 30E 1 15 R 31+70 0 1 15 R 32+10 25W 1 15 R 32+50 90W l 15 R ""'\'""\. <"'\1"'\ "I "'I"'\ Y.T l 15 R .:;.:;-r-..::u l..:iUW 34+00 20W 1 15 R 35+00 ""'\ r-T-1. , 15 0 H t-i 35+75 60E l 15 R ""1 n ll/29/78 10+80 40N l 6 c :;o t:E:j 6+50 lON 1 6 c tl:J 7+00 20S 1 6 c 10+80 40N 1 6 c 8+20 lOS 1 6 c 11/30/78 8+60 45S 1 6 c 10+30 50S 1 6 c 12+00 70S 2 6 c 12+50 0 3 6 c 44+88 25S 2 6 c 46+00 lSS 2 6 c 46+80 lOS 2 6 c 14+40 20N 2 6 c 14+15 40S 3 6 c 43+40 r: n11.T A c .... :..JUl'l '"+/- u \..... 44+90 75N 5 6 ,... 1..... n,....-..:7 0 !.'\.C V

    • Sheet 33 of 46 TABLE 2.5-79 {continued) Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 11/30/78 46+30 60N s 6 c 6+20 40N 1 6 c 9+00 30N 1 6 c 10+00 60S 1 6 c 11+00 sss 1 6 c 12/01/78 40+00 30S ! 6 c 42+60 40N 1 6 c 43+80 20N 1 c:.. r' ::8 v "" 0 4S+OO 20N 1 6 c t"" AJI1Cn , nnt"' , c ,... ":i":iT;..JV .LV Vi:> .l. u ...... (-j 12/04/78 66+SO ssw 1 6 c 23+SO lOE 1 15 R ,., A 23+80 70E , 15 ,... .l. t\ 24+20 30E 1 lS R 24+60 0 1 1S R 2S+OO 20W 1 1S R 2S+7S 100W 1 1S R 26+1S 130W 1 1S R 26+50 n , , .-R OVV'I .l .l:J 27+00 2SW 1 1S R 27+40 0 1 1S R 27+75 20E l 15 R 28+40 100E 1 1S R 29+00 l20E , 15 R .l ....... .-. * """"n , A 0"\'r'i l 15 R L:::1T".)V .l':iV.I!. 29+90 40E l 15 R Rev. l"l v TABLE 2.5-79 (continued) Sheet 34 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 12/04/78 30+30 0 1 15 R 30+80 llOW 1 15 R 31+30 130W 1 15 R 32+00 20W 1 15 R 32+45 lOW 1 15 R 32+90 50E 1 15 R 33+50 l20E l 15 R 34+00 , 15 R '%UJ::. .l 52+00 40W 1 6 c 0 IIG-Lln 25E l 6 t:"i .....-...;; ... v !"lj 41+80 30E 1 6 c 39+50 20E l 6 c n ...... ""' 58+00 0 l 6 c -L-..! -!...-..: 12/05/78 66+30 60E 1 6 c 71+30 50E 1 6 c 38+80 lOW 1 6 c 42+90 20E 1 6 c 66+50 65W 1 6 c 12/05/78 38+80 70N l 6 c 42+00 45N 1 6 c 43+50 20N 1 6 c 42+70 30S l 6 c 41+20 30S l 6 c 39+55 40S 1 6 c 15+20 120S 1 6 c 16+00 lOGS 1 6 c Rev. 0 T/>,BLE 2.5-79 (continued) Sheet 35 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 12/06/78 26+50 20E 1 18 R 27+10 0 1 18 R 27+75 lOW 1 18 R 28+40 20E 1 18 R 32+00 5W 1 18 R 34+35 35W 1 18 R 35+85 40E 1 18 R rrorr\ rr-.. _., 1 8 c oo-r::>u O::>W 77+10 sow 1 8 c ::8 42+90 20E l 8 c 0 C"" 47+60 7W l 8 c "'J 56+00 20W 1 8 c n !:J:! tr::! 12/06/78 15+20 lOOS 4 6 c trj 16+00 20N 6 6 c :;>'; 34+70 20S 2 6 c 35+00 lOS 2 6 c 36+70 40S 2 6 c 37+50 70S 2 6 c 38+25 90S 2 6 c 16+50 40S 2 6 c 15+30 BON 2 6 c 16+20 lOON 2 6 c 15+30 70S 2 6 c 15+10 90N 3 6 c 16+90 30N 3 6 c 17+00 0 3 6 c 16+00 40S 4 6 r> Rev. 0 TABLE 2.5-79 (continued) Sheet 36 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Fill Type(b) Date (feet) Number (inches) 12/07/78 23+10 0 1 18 R 22+60 20W 1 18 R 28+00 50E 1 18 R 29+25 40W 1 18 R 30+25 0 1 18 R 32+40 25E 1 18 R 12/08/78 23+30 0 1 18 R ::8 24+50 40E 1 18 R 0 !:=i 25+00 100\AJ l 1 Q n -..r..v n . -" 26+00 1 00\'J l 1 Q n () ..r..v .("\ 27+00 0 1 18 H c:J 27+30 ,,..,..., , 18 R ..LU.C.. .l. 12/11/78 29+60 0 1 18 R 29+00 40E 1 18 R 28+50 60E 1 18 R 27+00 n 1 18 n v ..L n 26+00 3mv 1 18 R 24+00 r:: n t.* 1 1 0 n .....JVt._ ..L ..LU n 23+00 lOW 1 18 R 22+80 0 1 18 R 22+50 20E 1 18 R 22+10 40E , , () R J. J.O 15+80 /! ('\l* .. T 1 6 c --, -..... , '--:J:V.&.'III ..L 1t::...LJ1() Of"\1\..T , r c .L 0 16+70 u l 6 c 17+00 30S 2 6 c Rev. 0 TABLE 2.5-79 (continued) Sheet 37 of 46 Location Offset from Lift ( \ Centerline Lift Thickness I b \ Date Station a, (feet) Number (inches) Fill ' 12/12/78 15+30 90S 2 6 c 69+00 50E 1 6 c 78+00 70E 1 6 c 30+00 0 1 18 R 29+00 0 1 18 R 27+10 0 1 18 R 25+70 0 1 18 R 24+35 0 1 18 R 23+90 () 1 1 0 n v .J.. .J..U n 0 23+70 0 l 18 R lTJ 22+40 0 l 18 R n 12/13/78 17+00 ..,t"\l..T , (") ,... C:r:l I VL'J .l. (; """ t:J:j 15+40 93S l 8 c 16+00 0 1 8 c 45+10 65N 1 8 c 42+45 40N 1 8 c 36+80 27N 1 Q r v " 35+05 65S , 8 ,... .l. 1... 38+35 45S l 8 c 42+75 15S 1 8 c 68+50 60E 1 8 c 73+70 70E 1 8 c 78+00 65E 1 8 f" .J.. 81+90 1 Q r v " 1'1/111/"70 1""/..L')t::: Ot:::>.> 1 0 f" .LGf I U ..L /IL.J U-Jl.'-1 .J.. u . .,_, , J.. 0 !..-n-'(7 0 1'\.C::Ve TABLE 2.5-79 {continued) Sheet 38 of 46 Location fset from Lift Centerline Lift Thickness Date Station(a) (feet) Number (inches) Fill Type(b) 12/14/78 37+18 278 1 8 c 44+06 47N 1 8 c 16+76 35N 2 8 c 34+86 35N 1 8 c 38+41 28N 1 8 c 16+85 488 2 8 c 70+75 E l 8 c 79+84 48E 1 8 c 67+50 sow 1 8 c 0 70+00 39W l 8 c ... '*J 75+60 65W 1 8 c n 72+18 h01:' l 0 "' t:r.:l v-' '-' IJ "' tij 12/15/78 75+74 1 8 c 76+00 49W 1 8 c 67+80 60W 1 8 c 82+00 65W 1 8 c 29+00 0 1 18 R 27+00 40W 1 18 R 25+50 20E 1 18 R 39+67 35S 1 8 c 36+47 758 1 8 c 34+05 83S 1 8 c 32+00 15S 1 8 c 30+60 0 1 8 c 29+10 7 l 8 c 34+95 70S l Q c v Pf'"'\1"T L'-C V
    • 0 :;:;;; * ... *---* ___ ,_ -t7TZ ----* ** ---t -------c*--* ---------* *-* ---------------z ** -*----*-*---------*--;----* -----*-

    TABLE 2.5-79 (continued) Sheet 39 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 12/lS/78 38+99 60S 1 8 c 1S+4S 30N 1 8 c 33+00 17N 1 8 c 31+3S lOON 1 8 c 28+77 87N 1 8 c 4S+69 6S 1 8 c 43+10 0 2 8 c 39+67 3S8 2 8 c :E; 36+47 7SS 2 8 c 0 < A..Lr. Q":lC ' Q !"' t-t v...; V..Jt.J "-v " rij 32+00 l5S 2 8 c () 30+60 0 2 8 c :;c 29+10 70S 2 8 c t':l lS+OS 106S 2 8 c ;;>;: 29+20 sow 2 8 c 28+67 23S 2 8 c 39+70 82S 2 8 c 4S+76 lOOS 2 8 c 30+10 208 2 8 c 12/16/78 7S+43 SOE 1 8 c 66+00 60W 1 8 c 76+00 ssw 1 8 c 80+20 65W l 8 c 72+00 SOE 1 8 c 78+00 4SE 1 8 c 31+00 40E 1 18 R 32+00 ,... ' ' ,..., R IJ oL 26+00 0 1 18 R 1 18 R L I I -J V "% -"--' Rev. 0 TABLE 2.5-79 (continued) Sheet 40 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 12/16/78 44+86 0 1 8 c 41+42 78N 1 8 c 34+60 48N 1 8 c 31+06 0 1 8 c 30+36 12N 1 8 c 38+50 40S 1 8 c 36+00 255 , 8 c ..L ':l.f\C: 1 Q , ..J ..J I I oJ ..JVU ..L v \... 31+50 558 , 8 c ::E: J. 15+67 55N l 8 c 0 -... 16+20 33S l 8 c 28+71 97N 2 8 c () 33+43 25N 2 8 c :::0 t1j 37+60 0 2 8 , trJ \... 39+40 62N 2 8 c 42+59 17N 2 8 c 14+83 60N 2 8 c 17+02 75S 2 8 c 24+00 32N 1 8 c 25+93 13N 1 8 c 25+55 30S l 8 c 45+32 798 2 8 c 39+73 878 2 8 c 36+93 AAr< .... 8 :... "":tt.;tC) £. 34+88 758 2 8 c 15+76 558 3 8 c 16+78 498 3 8 c 30+50 lOSS l 8 I"' " 29+84 955 1 8 c 23+87 .. : ....... , 8 'iL.U .1. ' Rev. 0 TABLE 2.5-79 (continued) Sheet 41 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 12/17/78 81+66 35W 1 8 c 79+94 42W 1 8 c 74+32 40E 1 8 c 78+68 45E 1 8 c 77+36 46W 2 8 c 80+10 37W 2 8 c 22+30 0 1 18 R ..., Jt 'r-" ....... , , n R L:':l"'t":JU .):JJ:. l. l.O 25+40 l5W 1 18 R 0 7+67 8S 2 8 c -3+30 6N 2 8 ,.... -" '-' 45+10 158 2 8 c (j :;o 33+63 0 2 8 c t:tJ 31+15 12N 2 8 c c:::J ::X: 28+96 62N 2 8 c 44+65 25S 2 8 c 41+05 40S 2 8 c 38+18 47S 2 8 c 10+86 43S 2 8 c 9+30 15S 2 8 c 10+04 33N 2 8 c 37+08 40N 1 8 c 42+05 25N 1 8 c 32+18 70£.J 1 8 c 30+85 95N 1 8 c 39+85 85N 1 8 c 28+50 45N 1 8 c 42+10 35N 1 8 ,.... ..L \.-37+97 4S 1 8 c Rev. ,... v TABLE 2.5-79 (continued) Sheet 42 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Fill Type(b) Date (feet) Number (inches) 12/17/78 11+95 23N 1 8 c 9+47 16N 1 8 c 7+10 22S 1 8 c 5+10 268 1 8 c 11+80 45S 1 8 c 12/18/78 31+05 60S 1 8 c 29+20 50S 1 8 c 17+00 258 1 8 c ::E; 0 +60 1 Q c t""' .... '$ v 35+50 SON 1 8 c 38+00 20N 1 8 c (J ;;o 41+00 10N 1 8 c t>:l 43+85 0 1 8 c t?=l 15+15 100S 1 8 c 18+20 80S 1 8 c 16+00 0 1 8 c 16+75 75N 1 8 c 30+80 85S 1 8 c 29+00 SON 1 8 c 14+50 85S 2 8 c 17+20 25S 2 8 c 29+50 20S 1 8 c 31+00 60N 2 8 c 18+30 70N 2 8 c 16+00 80N 2 8 c 31+50 45E 1 8 c 72+30 35W 1 8 c 78+60 sow 1 8 c Rev. 0 TABLE 2.5-79 (continued) Sheet 43 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 12/18/78 77+25 40E 2 8 c 79+44 40W 2 8 c 23+50 25E l 18 R 24+50 25W l 18 R 12/19/78 15+50 55S l 8 c 17+65 60S 1 8 c 27+70 20S l 8 c 30+00 70S l 8 c 10_i_&::f\ :::: fill..i , 0 , ... 0 ..i..U-T..J V _; U.l.\i .l. u '-C' 16+00 75N 1 8 ,... hJ \.. 29+30 40.N l 8 c n 31+90 0 l 8 c :;o !:".! 18+25 90S l 8 c I:Jj 15+80 lOS l 8 c 27+60 80S 1 8 c 17+00 65N 1 8 c 14+20 SON 2 8 c 31+75 75N 2 8 c 28+50 0 2 8 c 17+20 80S 2 8 c 30+45 90S 2 8 c 18+04 47N 2 8 c 14+98 70N 2 8 c 76+20 35E 1 8 c 79+15 45E 1 8 c 76+40 33W l 8 c Rev. 0 TABLE 2.5-79 (continued) Sheet 44 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 12/20/78 20+50 lOE l 18 R 22+00 0 l 18 R 24+50 20W l 18 R 26+00 0 l 18 R 24+90 95E l 8 c 34+05 llOW l 8 c 28+40 104W 2 8 c 25+50 85E 2 8 c :E: 22+05 80E 3 8 c 0 ..... 19+05 20N l 8 c 14+83 , 6N l 8 c n 16+90 l5S l 8 c ;;c; tzJ 18+03 63N , 8 ,.. ;,:*=.; .J.. ..... 18+50 358 2 8 c :;>;: 16+10 858 2 8 c 18+70 25N 2 8 c 15+77 678 2 8 c 14+03 838 3 Q r v ..... 16+60 20N 3 8 ro ..... 29+57 42S 1 8 c 30+12 25N 1 8 c 12/21/78 29+05 98W l 8 c 23+50 lOOW 2 Q r u ..... 24+15 110E 1 8 c 10...L.1t:: 50E 2 8 c ..!.... ../ ! _, 33+00 Ot::t.: Q r J ... rrw .,J u ..... 35+00 ,1"\T'\ , 1Q .LV.C: .l. ..LV 29+50 25W 1 18 R 27+00 0 l 18 R Rev. 0 TABLE 2.5-79 (continued) Sheet 45 of 46 Location Offset from Lift Station(a) Centerline Lift Thickness Type(b) Date (feet) Number (inches) Fill 12/21/78 26+00 20E 1 18 R 13+90 10N 1 8 c 17+45 63N 1 8 c 17+25 85S 1 8 c 14+30 0 1 8 c 15+10 47N 1 8 c 19+80 30N 2 8 c 16+70 15N 2 8 c ::!8 14+05 SON 2 8 "' 0 '-14+12 205 3 8 ,., **.J ...... 17+75 0 3 Q (-J v '-17+34 85N 3 8 c ::0 18+97 88S 4 8 i.. ... .J ..._ CJ.j 16+57 72S 4 8 r ...... 28+50 20S 1 8 c 29+25 70S 1 8 c 32+74 40N 1 8 c 12/22/78 34+05 85v; 1 8 c 30+00 87W l 8 c 20+95 sow 2 8 c 22+15 80E 1 8 c 20+00 15E 1 18 R 22+00 20\-'.! l 18 R 25+50 0 l 18 R 17+05 45S l 8 c 15+20 t:; 1\1 1 Q r' ..... .L u '-19+10 -, r'\ .... T , c .l. 0 18+40 80S 2 8 c Rev. 0 TABLE 2.5-79 (continued) Sheet 46 of 46 Location Offset from Lift (a' Centerline Lift Thickness Type(b) Date Station ' (feet) Number (inches) Fill 12/22/78 15+05 65S 2 8 c 13+00 60N 2 8 c 14+00 40S 3 8 c 13+00 60N 3 8 c 17+05 70N 3 8 c 13+97 75N 3 8 c 7+60 25N 1 8 c 12+18 58 1 8 c 15+20 < (ll.J A 0 c 0 ..JVL."\1 ... 0 19+10 u 4 8 (" '-14+70 lON 4 8 c () 17+80 20N 4 8 c [?:j (lJ Rev. 0 TABLE 2. 5-80 Sheet 1 of 3 SUMMARY OF COMPACTION OAT}. FOR BAFFLE DIKES A AND B Com12action Data Optimum Maximum Grain Size Distribution Material Moisture Dry Limits Percent Percent Percent Identification (a) Depth Content Density Liquid Plasticity Passing Passing Passing Unified Soil Number Location (feet) (%) (,!2Cf) Limit Index #4 #200 0.005 rom Classification LW-1 MD Excavation 67+00 2.0 20.0 104.0 52 32 100 95.2 48.5 CH 50 N LW-2 MD Excavation 67+00 5.0 19.3 106.5 46 26 100 96.0 44.2 CL 5 N LW-6 BDA Excavation 83+00 17.5 106.5 37 15 100 85.9 26.5 CL LW-7 BDA Excava-cion 72+00 26.0 94.7 80 55 95.1 88.6 55.5 CH LW-8 BDA Fill 73+45 1,964.0 (EL) (b)21.6 102.5 61 41 100 94.4 62.9 CH 62 w LW-9 BDA Excavation 99+00 33.4 87.6 65 33 100 96.8 63.4 CH :8 0 LW-10 BDA Excavation 82+23 18.8 105.5 45 25 100 95.6 47.3 r-r. t"" 107 w hj () LW-11 BDA Fill 64+99 27.0 94.8 72 45 100 96.3 59 .. 9 Cli ;;;;; tzj LW-12 BDA Fill 48+00 25.2 97.3 65 43 iOO 96.5 55.7 CH LW-13 BDA Fill 46+50 22.3 99.6 51 24 100 89.7 65.9 CH LW-14 MD Fill 29+60 1,976.0 (EL) 17.7 108.6 43 20 100 98.0 43.0 CL LW-16 BDA Fill 67+00 1,960.0 (EL) 23.7 99.0 57 30 99.8 88.4 65.9 CH 20 E LW-25 BDA Fill 94-50 1,957.5 (EL) 20.0 104.5 52 31 100 82.3 56.2 CH iO E LW-28 Stringtown Cemetery Road Borrow Area 22.0 100.6 50 26 100 92.2 46.0 CH (a)MD indicates Main Dam; BA indicates Borrow Area; BD indicates Baffle Dike; UHS indicates Ultimate Heat Sink; 00+00 indicates station; 107 N indicates feet north of centerline (offset); 0 indicates on the centerline, SNUPPS coordinates. *v 1 (b)Elevation in SNUPPS datum. Rev. 0 TABLE 2.5-80 (continued) Sheet 2 of 3 Com12action Data Optimum Maximum Grain Size Distribution Material Moisture Dry Limits Percent Percent Percent Identification (a) Depth Content Density Liquid Plasticity Passing Passing Passing Unified Soil Number Location (feet) (%) (J2Cf) Limit Index #4 #200 0.005 mm Classification LW-51 UHS o.o-2.0 29.7 89.6 87 62 100 94.9 61.8 CH N 98,300, E 104,600 LW-52 UHS o.o-3.o 21.7 102.4 54 32 100 88.2 47.5 CH N 97,700, E 103,200 LW-53 UHSD 2+00 2.0-4.0 24.4 98.8 65 42 100 91.1 56.9 CH 250 NE LW-54 UHS 5.0 20.8 105.2 45 26 100 87.1 45.3 CL N 98,200, E 104,000 LW-55 UHS 2.0-5.0 25.1 97.0 63 38 100 90.5 49.4 CH N 98,300, E 104,600 ::E: 0 LW-56 BDA Fill 7+00 20.0 106.0 55 34 100 90.7 50.0 CH t"1 --.. LW-57 BDA Fill 50+00 20.5 105.9 50 30 100 94.4 52.8 CH 75 E :N t".l LW-58 s Side UHS 18.2 110.1 44 21 100 88.4 54:0 CL t".l !:"'l LW-60 BDA Fill 25+50 16.0 ii3.2 47 26 100 60.5 39.0 CL 150 w LW-61 NE Corner BAD 6.0 20.4 103.2 44 24 100 85.4 41.9 CL LW-63 SE Corner BAD 1.0-6.0 20.0 103.2 47 27 100 96.8 50.1 CL LW-64 NW Corner BAD 1.0-6.0 22.0 99.9 52 31 100 95.8 51.4 CH LW-66 Center BAE s.o-6.0 19.8 100.3 45 22 100 95.8 53.0 CL LW-69 SW Corner BAC 19.9 105,4 49 29 100 94,5 47.4 CL LW-70 s Side BAA 1.0-7.0 20.7 102.9 54 35 100 97.3 49.3 CH LW-71 Center BAA 3.0-8.0 19.6 106.2 46 24 100 93.7 43.0 CL LW-72 N Side BAC 1.0-8.0 18.8 105.2 45 28 100 96.2 40.4 CL LW-73 BAC i.0-5.0 19.0 106,9 42 22 100 91.8 39.3 CL Rev. 0 Material Identification Location(a) Depth Nw-nber (feet) LW-74 E Side BAB 2.0-6.0 LW-75 w Side BAB 2.0-8.0 LW-76 BDB Excavation 40+00 1. 0 30 s S-12 N 100,070, E 100,856 S-14 N 100,150, E 100,275 TABLE 2.5-80 (continued) Com.12action Data Optimum Maximum Grain Moisture Dry Limits Percent Content Density Liquid Plasticity Passing (%) (J2Cf) Limit Index #4 17.1 107.9 34 14 100 20.2 103.2 51 29 100 23.0 98.6 57 33 100 14.8 114.2 34 17 100 16.0 112.0 42 17 100 Size Distribution Percent Percent Passing Passing #200 0.005 mm 97.1 30 .o 98.3 49.1 95.6 46.8 88.1 42.7 93.6 47.7 Sheet 3 of 3 Unified Soil Classification CL CH CH CL CL Rev. 0 '., Test Pit Depth Moisture Dry Number (feet) Content (%) TPL-lA 5.0-6.0 15.7 TPL-lA 5.0-6.0 12.5 TPL-lB 5.0-6.0 17.4 TPL-3A 5.0-6.0 16.0 TPL-3A 5.0-6.0 10.9 TPL-3C 10.5-12.0 21.2 TPL-3C 11.0-12.0 13.5 TPL-4A 4.0-6.0 14.6 TPL-4A 4.0-6.0 {\ , "'*-'-TPL-48 8.0-10.0 17.3 TPL-48 8.0-10.0 20.3 TPL-48 1 , 8.0-10.0 11.8 TPL-48::: 10.0-11.5 20.0 TPL-4B 'c:; 10.0-11.5 19.3 TABLE 2.5-81 REMOLDED STRENGTH TESTS Density Percent Compaction (pcf) (Standard Proctor) 114 10 3 (b) 116 104 {b) 106 99 112 101 {b) 116 104 (b) 100 93 (c) 113 107{d) 113 102 (b) lll 100 {b) 111 103 103 95 108 100 102 95 101 94 Triaxial (CU) Compression Confining Pressure {psf) 2,000 600 6,000 6,000 500 9,500 Haximum Shear Stress(a) {psf) 2,300 1,600 2,650 3,870 810 3,520 aMaximum shear stress or shear stress at 10% strain, whichever occurs first. b8ased on maximum dry density for TPL-lA, -3A and -4A mixture. (Ref. Figure 2.5-87) c8ased on average maximum dry density for TPL-18, -48 and -4D. (Ref. Figure 2.5-87) dBased on maximum dry density for TPL-4C at 11.0 to 12.0 feet. (Ref. Figure 2.5-87) eResidual soils. Unconfined Compression Undrained Shear Strength (psf) 6,200 2,020 5,700 6,110 5,640 4,160 6,180 1,560 Rev. 0 ::?:: 0 t"' (-) !:0 tr:1 tzJ TABLE 2.5-82 SOIL PARAMETERS USED IN STABILITY ANALYSIS OF MAIN DAM End of Construction Steady State and Rapid Drawdown Cohesion PHI Density Cohesion PHI Density Soil (psf) <Po (pcf) (psf) <Po {pcf) Embankment 1,800 0 120 280 25 127 Sand Drain 0 32 130 0 32 130 Residual Soil 1,800 0 110 200 24 110 Rock (Assumed) 5,000 35 150 5,000 35 150 Riprap 32 115 0 TABLE 2.5-83 RESULTS OF SLOPE STABILITY ANALYSIS FOR MAIN DAM Condition End of construction Steady state flow, cooling lake at El. 1,087 ft Sudden drawdown, El. 1,087 ft to El. 1,030 ft End of construction plus horizontal earthquake force (0.06 g) Steady seepage with cooling lake at El. 1,087 with horizontal earthquake force (0.06 g) Computed Factor of Safety 1. 52 1.70 1.20 , .,, ..L.or:::....L 1. 38 Minimum Required Factor of Safety 1.4 1.5 1.2 , rl .LeV l.O 0 :E: 0 L' hj n ....... i.."'"..i ....... *-- WOLF CHEEK TABLE 2. 5-*84 RESULTS OF SLOPE STABILITY ANALYSIS FOR UHS DAM SLOPES Analysis ___ Factor of Safet*i(_ __ Static Pseudo-Static End of construction 2.45 Rapid drawdown from lake water 2.18 elevation (1,087) to El. 1,050 Steady state seepage, cooling lake at El. 1,050 Fully submerged in water 2.50 4.67 1.48 1. 57 2.09 ReV. 0 WOJC,F' TABLE 2.5-85 SOIL PARAMETERS FOR STATIC STRESS ANALYSIS OF SUBMERGED liHS DAM Total Weight (pcf) Submerged Weight (pcf) Ef feet i ve Cohesion, c' ( psf) Effective Angle of Internal Friction, $1 (deg) Poisson's Ratio, Modulus of Elasticity, E ( psf} :::: = :::: = = :::: 118.0 55.6 265.0 20.0 0.4 50,000 Rev. 0 WOLE' CREEK TABLE 2. 5-*8 6 INITIAL STRESS AND FAILURE CONDITIONS Failure Condition Initial Stress Condition Cyclic .i\x i a 03c 01 03 ll dp (tsf) No. Sample K ( tsf) (ts E) (tsf) For 5 Cycles c *-------*--* 1 TP-3 1. 25 0.6 0.75 0.6 0 .. 780 2 TP-3 1. 25 0.9 1.125 0.9 0 .. 850 3 TP-13 1. 75 0.2 0.35 0.2 0 .. 615 4 TP-13 1. 75 0.6 1. 0!:> 0.6 0 .. 830 Rev. 0 No. 1 2 3 4 1NOL.F CRE:JE:K TAB:LE 2.5-87 CYCLIC SHEAR STENGTH, Tf' AND NORMAL STRESS, ofc, FROM STRESS-CONTROLLED DYNAMIC TRIAXIAL TEST Cyclic E:hE?ar Normal Stress 03c Strength *J fc K (tsf) Tf ( tsf) (tsf) c Cl. = TfC *---* or fc TP-3 1.25 0.6 0 .. 360 0.6=*0 O.lOB TP-3 1.25 0.9 0 .. 400 0.975 0.108' TP-13 1. 75 0.2 0 .. 293 0. 2=*0 0.288 TP-13 1. 75 0.6 0 .. 387 0.742 0.28H Rev. 0 WOLF CREEK 'I'ABLE 2. 5-88 T T COMPUTED FACTOR OF f/ d FOR FINITE ELEMENT MODEL OF SUBMERGED UHS DAM Initial Vertical Initial Normal Shear Cyclic Induced Element Stress Stress 1[ Shear Shear T 0 Strength Stre!ss F. S=== f 0 T u t T T No. o ( psf) f) L _________ g_ ____ 2 82.61 21.52 0 .. 261 125.0 40.6 3.08 3 187.01 38.75 0 .. 207 205.0 72.7 2.82 4 293.85 57.85 0 .. 197 295.0 117.4 2.51 5 403.42 76.58 0 .. 190 370.0 163.5 2.26 6 517.00 83.34 0 .. 161 430.0 211.3 2.04 7 622.00 90.62 o .. 146 480.0 255.2 1.88 8 730.26 90.11 0 .. 123 525.0 293.4 1. 79 9 830.84 79.52 o .. 096 535.0 1. 10 912.40 56.27 0 .. 062 560.0 350.1 l. 60 11 955.98 29.33 0 .. 031 565.0 364.9 l. 12 969.67 8.43 0.009 560.0 369.8 l. 51 18 622.32 90.62 o .. 146 480.0 1. 96 26 89.73 25.60 0 ,, 285 1 0 66.5 2.26 27 184.50 40.67 0 ,, 220 230.0 104.7 2.20 28 289.85 48.74 0 .. 168 295.0 155,.5 1. 90 29 396.79 63.03 o .. 159 3

    • 0 202.9 1. 72 30 509.84 60.48 0 .. 119 400.0 241.8 1. 65> 31 615.58 56.85 0.092 440.0 273.0 1.61 32 701.52 40.47 0.058 480.0 296.9 1.62 33 747.62 20.29 0 ** 027 490.0 311.9 l. 57 34 761.39 5.63 0.007 490.0 317.0 l. 55* 39 509.84 60.48 0.119 400.0 237.0 1.69 46 89.19 22.43 0.252 135.0 99.9 1.35 47 180.15 32.95 0.183 205.0 135.6 1.'51 48 288.32 34.86 0.121 275.0 176.6 l. 49 394.67 43.90 0.111 330.0 205*.9 1.60 50 489.18 28.16 0.058 370.0 226.1 1.64 51 535.12 12.39 0.023 390.0 239.7 1.63 52 547.84 3.28 0.006 400.0 244.5 1.64 56 394.64 43.90 0.111 330.0 202:.7 1.63 63 182.06 25.86 0.142 200.0 126.0 1. 159 64 275.60 18.12 0.066 245.0 142:.5 1.72 65 318.72 9.28 0.029 265.0 153.0 1. 73 66 330.77 1.77 0.005 270.0 158.1 1.71 69 275.60 18.12 0.066 142:.1 l. 76 74 83.40 10.11 0.121 102.0 64.0 l. !59
    • 0 TABLE 2. 5-89 UNDRAINED STATIC STRENGTH AFTER DYNAMICALLY LOADING THE SAMPLE Cyclic Axial Undrained c* o3c No. of Cycles Load c* c(static) c(static) Sample Test No. ( psf) K N lldp (psf) (psf) (psf) (%) c TP-13 1 600 1.0 11 400 390 580 67.2 TP-13 2 400 1. 75 11 400 519 580 89.5 TP-13 3 1,200 1. 75 11 940 800 1,030 78 *Undrained shear strength after dynamic loading. Rev. 0 WOLF CREEK TABLE 2.5-90 (Sheet 1 of 4) FURNISHING AND INSTALLATION OF INSTRUMENTATION 303.6 Measurements will be taken by Purchaser not by Contractor as follows: a. Piezometers: The non electric piezometers shall be read as indicated in U.S. Bureau and referenced to the top of the piezometer tube. The elevations of the tops of the piezometer tubes shall be periodically checked because they may be subject to settlements within the dam. The electric piezometers shall be read with the use of a digital readout calibration - shall be per manufacturer's standards. b. Vertical Settlement: The vertical movements of the settlement points shall be determined by measuring their elevation by a closed level loop using second order accuracy. (Error of closure must be less than 0.035 M where M is the length of the level loop in miles.) c. Horizontal Movement: The horizontal movements of the settlement points shall be determined by computing their displacements from their initial position. The coordinates of their position will be computed from a triangulation network using electronic distance measuring devices. The network shall consist of the triangulation reference points and selected monitoring points on the dam. The lateral movements perpendicular to the dam axis of the intermediate monitoring points shall be determined by the offsets measured by sighting between the monitoring points used in the network. The location of each monitoring point shall initially be established. On subsequent surveys the position of the intermediate points parallel to the dam axis shall be determined if the monitoring points used in the network show movements perpendicular to the dam axis in excess of six inches. Inclinometers added in 1987 will supplement the horizontal monument readings. d. Sedimentation: The accumulation of sediments in the UHS Reservoir and ESWS Intake Channel shall be determined by visual observation and measurements of sediment depth on pads located on the bottom of the reservoir and channel. These observations shall require diving apparatus. If the sediments on the pads become excessive, a sounding of the reservoir and channel may be needed. An initial sounding shall be conducted after the initial filling of the UHS Reservoir to correlate the sounding data with the surveyed reservoir bottom data and provide a baseline so that future soundings can be interpreted and evaluated. Rev. 7 WOLF CREEK TABLE 2.5-90 (Sheet 2 of 4) e. Schedule of Measurements e1. Main Dam, Saddle Dams and Baffle Dikes: Vertical Horizontal Inclinometers Phase Piezometers Movement Movement Added in 1987 e1.1 Main Dam and Saddle Dams:e1.1.1 During construction Monthly Monthly Initial e1.1.2 During lake filling Monthly Monthly El. 1930 19501970 1987e1.1.3 During operation Monthly** Monthly+ Yearly*** Monthly* e1.1.4 Drawdown or filling At occurrence At occurrence __ At occurrence in excess of 5 ft. during operation e1.2 Baffle Dikes e1.2.1 During construction NA Monthly** NA e1.2.2 During lake filling NA Monthly** NA e1.2.3 During operation NA Monthly+ NA e1.2.4 Drawdown or filling NA At occurrence NA in excess of 5 ft. during opertion _________________________** Until steady state is recorded; quarterly thereafter and yearly beginning in 1995.
    • Until steady state is recorded; quarterly thereafter and semi-annually beginning in 1993 and yearly beginning in 1995. + Until steady state is recorded; quarterly thereafter and yearly beginning in 1993 and every 5 years beginning in 1994 (1999, 2004...etc). *** Every 5 years beginning in 1994 (1999, 2004...etc). Rev. 10 WOLF CREEK TABLE 2.5-90 (Sheet 3 of 4) e2. UHS Dam and UHS Vertical Horizontal Sediments UHS Phase Movement Movement Pads Profile (Note 3) (Note 4) (Note 5) (Note 6) e2.1 During filling of Monthly Initial Spot Visual --

    UHS 1969.5 Inspec.

    e2.2 UHS at 1969.5 At occurrence At occurrence Visual Inspec. --

    e2.3 Filling of area Monthly At start of -- -- downstream of filling down-UHS dam to stream area 1969.5

    e2.4 UHS at 1970 At occurrence At occurrence -- Initial survey after filling when level is at approxi- mately 1970 e2.5 UHS filling to Monthly At occurrence -- -- 1975

    e2.6 UHS at 1975 At occurrence At occurrence Inspec. -- e2.7 Water level Monthly Note 7 Inspec. When >1975 Yearly required, base on visual inspection Sediment Pads e2.8 Drawdown below At occurrence At occurrence Inspec. -- 1975 At occurrence

      • Until steady state is recorded - quarterly thereafter.

    Notes:

    1. The above schedule will be subject to change based on the evaluation of the records and behavior of the dam or dike.
    2. Good documentation is required because impact of results will depend upon change from one observation to the next. Frequent initial data as called for in this schedule required to establish reliable baseline data.

    Rev. 25 WOLF CREEK TABLE 2.5-90 (Sheet 4 of 4) Notes: 3. Monthly until submerged. If no movement is noted, then yearly through 2002 and every five years thereafter.

    4. Sight along horizontal movement hubs and measure offsets. 5. Visual inspection to measure sedimentation thickness 6 months and 12 months after filling of UHS. Diver can measure accumulated thickness of sediment on pads. Sedimentation was inspected and trended annually from 1984 through 2002. Between 2003 and 2009 sedimentation levels were not inspected. Annual sedimentation inspections were resumed in 2010 using hydrographic methods.
    6. Initial survey after filling must be taken by the method planned to be used in the future and to make a comparison to the survey data taken before filling. 7. No horizontal measurement will be taken of UHS dam after it is submerged.
    8. In 1987 new settlement markers, piezometers, and inclinometers were added to the Main Dam. Also new settlement markers and piezometers were added to Saddle Dam IV.

    Rev. 25 WOLF CREEK TABLE 2.5-91 SCHEDULE OF MEASUREMENTS FOR MAIN DAM, SADDLE DAMS, AND BAFFLE DIKESTable DeletedRev. 10 Monument Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Location (ft) WOLF CREEK Table 2.5-92 VERTICAL MOVEMENT MONUMENT DATA MAIN DAM Date of Survey and Elevation Sheet 1 of 6 Station Offset 10/31/80 12/02/80 01/08/81 02/06/81 03/06/81 04/03/81 05/08/81 06/05/81 07/10/81 08/05/81 09/04/81 2+00 4+00 6+00 8+00 10+00 12+00 14+00 16+00 18+00 20+00 34+00 36+00 38+00 40+00 42+00 44+00 46+00 48+00 50+00 10 Lakeside 2000.555 2000.550 2000.548 2000.550 2000.547 2000.545 2000.541 2000.541 2000.543 2000.543 2000.543 10 Lakeside 2000.523 2000.518 2000.514 2000.515 2000.511 2000.508 2000.506 2000.503 2000.506 2000.505 2000.506 10 Lakeside 2000.771 2000.765 2000.762 2000.765 2000.760 2000.755 2000.753 2000.747 2000.748 2000.748 2000.748 10 Lakeside 2000.706 2000.700 2000.696 2000.686 2000.692 2000.684 2000.683 2000.676 2000.677 2000.678 2000.677 10 Lakeside 2000.913 2000.908 2000.905 2000.906 2000.902 2000.894 2000.893 2000.883 2000.883 2000.886 2000.884 10 Lakeside 2000.635 2000.633 2000.626 2000.628 2000.625 2000.616 2000.615 2000.602 2000.605 2000.607 2000.604 10 Lakeside 2000.886 2000.884 2000.875 2000.877 2000.875 2000.867 2000.865 2000.851 2000.851 2000.856 2000.853 10 Lakeside 2000.929 2000.927 2000.917 2000.920 2000.916 2000.911 2000.909 2000.894 2000.891 2000.897 2000.896 10 Lakeside 2001.169 2001.166 2001.158 2001.160 2001.160 2001.155 2001.157 2001.140 2001.136 2001.142 2001.140 10 Lakeside 2000.422 2000.421 2000.413 2000.414 2000.416 2000.412 2000.414 2000.396 2000.394 2000.401 2001.400 10 Landside 1999.843 1999.844 1999.841 1999.839 1999.841 1999.841 1999.839 1999.843 1999.843 1999.844 1999.846 10 Landside* 2000.116 2000.120 2000.118 2000.120 2000.119 2000.120 2000.119 2000.122 2000.123 2000.123 2000.125 14 Landside 2000.520 2000.524 2000.519 2000.522 2000.521 2000.521 2000.522 2000.522 2000.525 2000.523 2000.525 14 Landside 2001.150 2001.149 2001.143 2001.147 2001.144 2001.143 2001.144 2001.144 2001.144 2001.143 2001.147 14 Landside 2000.879 2000.873 2000.865 2000.867 2000.864 2000.862 2000.860 2000.859 2000.859 2000.857 2000.862 14 Landside 2000.703 2000.691 2000.678 2000.678 2000.673 2000.669 2000.667 2000.662 2000.662 2000.659 2000.657 14 Landside 2001.002 2000.981 2000.964 2000.961 2000.953 2000.947 2000.942 2000.936 2000.935 2000.931 2000.929 14 Landside 2001.563 2001.546 2001.606 2001.598 2001.589 2001.587 2001.593 2001.597 2001.593 2001.570 2001.559 14 Landside 2001.587 2001.534 2001.495 2001.481 2001.464 2001.453 2001.441 2001.433 2001.421 2001.416 2001.411 Note: Elevations refer to SNUPPS reference datum. Subtract 900.0 from values qiven to obtain MSL eouivlent. aDate of surveY was 12/11/80. bDate of survey was 8/26/81. cProbably survey error. Elevation should be 1921.774 See WCNOC-55 for Subsequent years Rev. 4 Monument Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Location (ft) WOLF CREEK Table 2.5-92 (continued) rate of Survey and Elevation Sheet 2 of 6 Station Offset 10/02/81 11/06/81 12/04/81 01/20/82 02/12/82 03/09/82 04/13/82 05/12/82 06/16/82 07/06/82 08/06/82 2+00 4+00 6+00 8+00 10+00 12+00 14+00 16+00 18+00 20+00 34+00 36+00 38+00 40+00 42+00 44+00 46+00 48+00 50+00 10 Lakeside 2000.545 2000.544 2000.541 2000.542 2000.539 2000.535 2000.537 2000.536 2000.539 2000.537 2000.540 10 Lakeside 2000.507 2000.503 2000.501 2000.500 2000.499 2000.495 2000.494 2000.493 2000.495 2000.497 2000.499 10 Lakeside 2000.749 2000.743 2000.741 2000.741 2000.739 2000.734 2000.732 2000.734 2000.734 2000.735 2000.738 10 Lakeside 2000.677 2000.671 2000.667 2000.662 2000.657 2000.648 2000.649 2000.649 2000.649 2000.650 2000.653 10 Lakeside 2000.886 2000.880 2000.876 2000.873 2000.868 2000.859 2000.863 2000.861 2000.860 2000.865 2000.867 10 Lakeside 2000.607 2000.599 2000.594 2000.595 2000.592 2000.579 2000.583 2000.584 2000.583 2000.588 2000.591 10 Lakeside 2000.857 2000.849 2000.842 2000.844 2000.838 2000.824 2000.828 2000.832 2000.829 2000.833 2000.834 10 Lakeside 2000.897 2000.890 2000.880 2000.885 2000.875 2000.864 2000.868 2000.870 2000.870 2000.874 2000.873 10 Lakeside 2001.140 2001.133 2001.124 2001.128 2001.121 2001.109 2001.112 2001.117 2001.117 2001.122 2001.121 10 Lakeside 2000.400 2000.394 2000.389 2000.395 2000.389 2000.379 2000.381 2000.389 2000.390 2000.397 2000.399 10 Landside 1999.846 1999.846 1999.845 1999.843 1999.843 1999.817 1999.807 1999.810 1999.813 1999.819 1999.818 10 Landside 2000.125 2000.126 2000.127 2000.125 2000.124 2000.097 2000.089 2000.090 2000.093 2000.098 2000.098 14 Landside 2000.526 2000.528 2000.530 2000.527 2000.527 2000.499 2000.492 2000.494 2000.497 2000.503 2000.504 14 Landside 2001.145 2001.146 2001.147 2001.141 2001.147 2001.116 2001.109 2001.110 2001.114 2001.118 2001.118 14 Landside 2000.860 2000.859 2000.859 2000.852 2000.855 2000.827 2000.818 2000.819 2000.825 2000.828 2000.830 14 Landside 2000.650 2000.644 2000.644 2000.634 2000.639 2000.613 2000.598 2000.598 2000.602 2000.607 2000.605 14 Landside 2000.924 2000.920 2000.920 2000.913 2000.913 2000.888 2000.872 2000.874 2000.876 2000.883 2000.881 14 Landside 2001.546 2001.560 2001.564 2001.558 2001.558 2001.541 2001.527 2001.525 2001.530 2001.533 2001.527 14 Landside 2001.401 2001.396 2001.386 2001.372 2001.372 2001.350 2001.328 2001.331 2001.328 2001.332 2001.324 Rev. " v Monument Number 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 Location (ft} WOLF CREEK Table 2.5-92 (continued} D:tte of Survey and Elevation Sheet 3 of 6 Station Offset 10/31/80 12/02/80 01/08/81 02/06/81 03/06/81 04/03/81 05/08/81 06/05/81 07/10/81 08/05/81 09/04/81 52+00 54+00 56+00 58+00 60+00 62+00 64+00 66+00 68+00 70+00 72+00 74+00 76+00 78+00 80+00 82+00 84+00 86+00 88+00 90+00 44+00 48+00 14 Landside 2001.937 2001.844 2001.780 2001.755 2001.726 2001.709 2001.687 2001.673 2001.655 2001.648 2001.636 14 Landside 2001.130 2001.040 2000.979 2000.957 2000.928 2000.913 2000.889 2000.880 2000.859 2000.855 2000.846 14 Landside 2000.888 2000.800 2000.741 2000.719 2000.694 2000.680 2000.657 2000.648 2000.627 2000.623 2000.615 14 Landside 2001.139 2001.318 2001.266 2001.246 2001.223 2001.210 2001.190 2001.182 2001.162 2001.158 2001.151 14 Landside 2001.950 2001.897 2001.855 2001.844 2001.823 2001.813 2001.797 2001.788 2001.770 2001.767 2001.759 14 Landside 2001.512 2001.479 2001.449 2001.442 2001.426 2001.420 2001.408 2001.404 2001.389 2001.387 2001.381 14 Landside 2001.621 2001.593 2001.567 2001.563 2001.547 2001.541 2001.529 2001.526 2001.513 2001.509 2001.505 14 Landside 2001.991 2001.971 2001.946 2001.941 2001.927 2001.924 2001.915 2001.909 2001.898 2001.892 2001.887 14 Landside 2002.112 2002.088 2002.077 2002.069 2002.057 2002.055 2002.047 2002.043 2002.032 2002.025 2002.022 14 Landside 2001.637 2001.620 2001.603 2001.598 2001.585 2001.579 2001.575 2001.569 2001.561 2001.551 2001.547 14 Landside 2001.428 2001.413 2001.397 2001.391 2001.381 2001.376 2001.373 2001.365 2001.361 2001.351 2001.350 14 Landside 2000.822 2000.808 2000.790 2000.782 2000.772 2000.767 2000.765 2000.755 2000.752 2000.744 2000.742 14 Landside 2000.194 2000.177 2000.163 2000.156 2000.148 2000.142 2000.137 2000.130 2000.126 2000.120 2000.118 14 Landside 2000.568 2000.558 2000.549 2000.544 2000.542 2000.538 2000.540 2000.535 2000.535 2000.533 2000.533 14 Landside 2000.602 2000.594 2000.587 2000.584 2000.582 2000.579 2000.582 2000.579 2000.578 2000.578 2000.578 14 Landside 2000.981 2000.971 2000.968 2000.967 2000.965 2000.961 2000.966 2000.960 2000.960 2000.963 2000.961 14 Landside 2000.548 2000.539 2000.536 2000.537 2000.535 2000.534 2000.539 2000.533 2000.535 2000.535 2000.537 10 Landside 2000.906 2000.902 2000.897 2000.897 2000.897 2000.898 2000.901 2000.899 2000.900 2000.901 2000.901 10 Landside 2000.455 2000.451 2000.446 2000.446 2000.445 2000.444 2000.448 2000.446 2000.445 2000.446 2000.448 10 Landside 2000.638 2000.638 2000.635 2000.636 2000.637 2000.637 2000.638 2000.638 2000.637 2000.638 2000.638 Landside Toe 1961.565 1961.551 1961.561 1961.560 1961.574 1961.589 1961.576 1961.603 1961.592 1961.604b h 134 Landside 1961.733 1961.748 1961.754 1961.761 1961.756 1961.778 1961.763 1961.791 1961.782 Rev. 0 Monument Number 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 Location (ft) woLF CREEK Table 2.5-92 (continued) Date of Survey and Elevation Sheet 4 of 6 Station Offset 10/02/81 11/06/81 12/04/81 01/20/82 02/12/82 03/09/82 04/13/82 05/12/82 06/16/82 07/06/82 08/06/82 52+00 54+00 56+00 58+00 60+00 62+00 64+00 66+00 68+00 I{)...J....tir\ /V'VV 72+00 74+00 76+00 78+00 80+00 82+00 84+00 86+00 88+00 90+00 44+00 48+00 14 Landside 2001.623 2001.612 2001.600 2001.581 2001.578 2001.555 2001.530 2001.530 2001.526 2001.529 2001.517 14 Landside 2000.834 2000.824 2000.813 2000.795 2000.794 2000.771 2000.750 2000.746 2000.742 2000.746 2000.734 14 Landside 2000.602 2000.593 2000.582 2000.562 2000.563 2000.537 2000.520 2000.514 2000.508 2000.516 2000.505 14 Landside 2001.137 2001.132 2001.122 2001.102 2001.102 2001.079 2001.062 2001.058 2001.053 2001.063 2001.051 14 Landside 2001.746 2001.742 2001.734 2001.715 2001.715 2001.694 2001.674 2001.673 2001.668 2001.679 2001.684 14 Landside 2001.371 2001.370 2001.362 2001.345 2001.345 2001.327 2001.309 2001.310 2001.305 2001.312 2001.302 14 Landside 2001.492 2001.495 2001.489 2001.472 2001.470 2001.454 2001.433 2001.435 2001.427 2001.434 2001.428 14 Landside 2001.874 2001.882 2001.878 2001.859 2001.855 2001.841 2001.821 2001.821 2001.814 2001.820 2001.814 14 Landside 2002.007 2002.014 2002.012 2001.992 2001.989 2001.975 2001.953 2001.954 200l.949 2001.952 2001.946 1 II I --..J ... ..: .J-l."t L..GIIU;)IUC' 2001.534 2001.539 2001.537 2001.520 2001.521 2001.504 2001.483 2001.484 2001.479 2001.483 2001.477 14 Landside 2001.338 2001.344 2001.342 2001.328 2001.327 2001.314 2001.295 2001.297 2001.294 2001.299 2001.294 14 Landside 2000.731 2000.734 2000.732 2000.716 2000.713 2000*701 2000.682 2000.685 2000.683 2000.692 2000.590 14 Landside 2000.106 2000.109 2000.108 2000.089 2000.087 2000.072 2000.055 2000.060 2000.055 2000.059 2000.056 14 Landside 2000.527 2000.533 2000.534 2000.519 2000.521 2000.509 2000.497 2000.503 2000.501 2000.502 2000.499 14 Landside 2000.575 2000.579 2000.578 2000.565 2000.567 2000.558 2000.548 2000.553 2000.553 2000.555 2000.555 14 Landside 2000.961 2000.962 2000.967 2000.954 2000.957 2000.953 2000.946 2000.951 2000.953 2000.955 2000.957 14 Landside 2000.536 2000.534 2000.538 2000.527 2000.529 2000.524 2000.519 2000.522 2000.523 2000.522 2000.523 10 Landside 2000.902 2000.900 2000.903 2000.894 2000.897 2000.894 2000.885 2000.889 2000.892 2000.892 2000.891 10 Landside 2000.445 2000.446 2000.446 2000.434 2000.436 2000.432 2000.424 2000.429 2000.428 2000.427 2000.426 10 Landside 2000.637 2000.636 2000.637 2000.531 2000.628 2000.626 2000.623 2000.624 2000.624 2000.623 2000.621 Landside Toe 1961.580 1961.586 1961.604 1961.555 1951.614 1961.591 1961.598 1961.606 1961.608 1961.610 134 Landside 1951.752 1961.769 1961.782 1961.724 1961.782 1961.757 1961.776 1961.776 1951.772 1961.771 Rev. 0 WOLF CREEK Table 2.5-92 (continued) Sheet 5 of 6 Location Monument (ft) Date of Surve1 and Elevation Number Station Offset 10/31/80 12/02/80 01/08/81 02/06/81 03/06/81 04/03/81 05/08/81 06/05/81 07/10/81 08/05/81 09/04/81 42 52+00 134 Landside 1961.095 1961.055 1961.042 1961.041 1961.030 1961.039 1961.021 1961.039 1961.026 1961.038b 43 56+00 134 Lands ide 1961.364 1961.331 1961.317 1961.314 1961.305 1961.312 1961.293 1961.311 1961.298 1961.314b 44 60+00 134 Landside 1960.900 1960.879 1960.882 1960.879 1960.879 1960.887 1960.871 1960.889 1960.876 1960.906b 45 64+00 134 Landside 1961.797 1961.775 1961.781 1961.778 1961.782 1961.790 1961.775 1961.791 1961.779 1961.812b 46 68+00 134 Landside 1961.947 1961.924 1961.938 1961.931 1961.930 1961.940 1961.925 1961.938 1961.931 1961. 967b 47 72+00 134 Landside 1961.818 1961.798 1961.806 1961.799 1961.804 1961.814 1961.799 1961.809 1961.802 1961.844b 48 76+00 134 Landside 1961.926 1961.907 1961.911 1961.913 1961.914 1961.926 1961.908 1961.918 1961.913 1961. 959b 49 80+00 Landside Toe 1963.731 1963.718 1963.732 1963.732 1963.732 1963.749 1963.736 1963.742 1963.741 1963.790° 50 49+00 Landside Toe 1942.156a 1942.156 1942.155 1942.151 1942.149 1942.147 1942.146 1942.148 1942.146b 51 52+00 Lands ide Tuc 1930.766 1930.755 1930.750 1930.748 1930.747 1930.734 1930.743 1930.744 1930.746 . ---___ b UJU.iJts 52 56+00 Landside Toe 1920.774c 1921.780 1921.772 1921.779 1921.779 1921.765 1921.770 1921.781 1921.782 1921. Ill " 53 60+00 Landside Toe 1919.624 1919.611 1919.608 1919.614 1919.612 1919.603 1919.603 1919.613 1919.615 1919.607u 54 64+00 Landside Toe 1922.966 1922.953 1922.949 1922.957 1922.954 1922.948 1922.944 1922.959 1922.961 !::ILL. ::I'D 55 68+00 Landside Toe 1927.551 1927.540 1927.534 1927.542 1927.539 1927.532 1927.525 1927.541 1927.545 1927.526b 56 72+00 Landside Toe 1932.906 1932.889 1932.887 1932.893 1932.891 1932.886 1932.877 1932.894 1932.895 1932.881b 57 76+00 Landside Toe 1941.235 1941.218 1941.217 1941.224 1941.222 1941.216 1941.206 1941.230 1941.228 1941. 220b .,,., 46+00 I T--1955.784a 1955.786 1955.787 1955.776 1955.795 1955.783 1955.811 1955.800 IV IV'=' l::I:J:J.d!O Rev. 0 WOLF CREEK Table 2.5-92 (continued) Sheet 6 of 6 Location Honument (ft) I:ate of SUrvey and Elevation Number Station Offset 10/02/81 11/06/81 12/04/81 01/20/82 02/12/82 03/09/82 04/13/82 05/12/82 06/16/82 07/09/82 08/05/82 42 52+00 134 Iandside 1960.995 1960.996 1961.003 1960.941 1960.992 1960.971 1960.981 1960.982 1960.971 1960.969 43 56+00 134 Iandside 1961.270 1961.267 1961.274 1961.211 1961.263 1961.245 1961.258 1961.262 1961.249 1961.250 44 60+00 134 Iandside 1960.862 1960.861 1960.871 1960.806 1960.863 1960.840 1960.842 1960.853 1960.841 1960.836 45 64+00 134 Iandside 1961.764 1961.768 1961.774 1961.721 1961.771 1961.775 1961.760 1961.768 1961.764 1961.760 46 68+00 134 Iandside 1961.917 1961.921 1961.924 1961.870 1961.926 1961.899 1961.905 1961.910 1961.904 1961.901 47 72+00 134 Iandside 1961.792 1961.796 1961.799 1961.743 1961.796 1961.774 1961.783 1961.788 1961.789 1961.788 48 76+00 134 Iandside 1961.904 1961.905 1961.905 1961.855 1961.901 1961.884 1961.889 1961.891 1961.887 1961.887 49 80+00 Iandside Toe 1963.732 1963.737 1963.740 1963.696 1963.746 1963.728 1963.730 1963.732 1963.731 1963.728 50 49+00 Iandside Toe 1942.148 1942.150 1942.151 1942.149 1942.147 1942.149 1942.147 1942.144 1942.144 1942.145 1942.143 51 52+00 LaTldside Toe 1930.743 1930.739 1930.746 1Q'lf\ .,..,'l .J..J.JV* t.J..J 1930.733 1930.739 1930.742 1930.736 1930.746 1930.738 1930.739 52 56+00 Iandside Toe 1921.779 1921.780 1921.783 1921.766 1921.762 1921.783 1921.777 1921.781 1921.799 1921.786 1921.787 53 61'\,1'\1'\ UTVV Landside Toe 1919.617 1919.618 1919.620 1919.619 1919.611 1919.629 1919.628 1919.628 1919.630 1919.641 1919.645 54 64+00 Toe 1922.955 1922.955 1922.954 1922.954 1922.946 1922.961 1922.963 1922.969 1922.984 1922.997 1922.999 55 68+00 Iandside Toe 1927.533 1927.530 1927.528 1927.518 1927.523 1927.531 1927.533 1927.533 1927.526 1927.537 1927.536 56 72+00 Iandside Toe 1932.887 1932.885 1932.883 1932.878 1932.881 1932.887 1932.888 1932.891 1932.878 1932.885 1932.886 57 76+00 Iandside Toe 1941.228 1941.222 1941.218 1941.220 1941.229 1941.227 1941.230 1941.229 1941.214 1941.219 1941.221 70 46+00 Iandside Toe 1955.784 1955.793 1955.813 1955.756 1955.828 1955.803 1955.828 1955.830 1955.842 1955.843 Rev. 0 WOLF Location 'ft' CREEK Table 2.5-93 VERTICAL MOVEMENT MAIN DAM Sheet 1 of 6 Monument Number Station Offset Date of Survey and Cumulative Movement 12/02/80 01/08/81 02/06/81 03/06/81 04/03/81 05/08/81 06/05/81 07/10/81 08/05/81 09/04/81 10/02/81 2 3 4 5 6 7 8 " ::; 10 ll 12 13 14 15 16 17 18 19 2+00 4+00 6+00 8+00 10+00 12+00 14+00 16+00 18+00 ?n.J...nn '-V'VV 34+00 36+00 38+00 40+00 42+00 44+00 46+00 48+00 50+00 10 Lakeside 10 Lakeside 10 Lakeside 10 Lakeside 10 Lakes ide 10 Lakeside 10 Lakeside 10 Lakeside iO Lakeside 10 Lakeside 10 Landside 10 Landside 14 Landside 14 Landside 14 Landside 14 Landside 14 Landside 14 Landside 14 Landside Notes: .A11 movements are in inches. 0.06 0.06 0.07 0.07 0.06 0.02 0.02 0.02 0.04 0.01 -0.01 -0.05 -0.05 0.01 0.07 0.14 0.25 0.20 n CA Uo U'"t Positive number indicates settlement. See WCNOC-55 for Subsequent years 0.08 0.11 0.11 0.12 0.10 0.11 0.13 0.14 0.13 0.11 0.02 -0.02 0.01 0.08 0.17 0.30 0.46 -0.52 ' "' lol.U 0.06 0.10 0.07 0.24 0.08 0.08 0.11 (\ ,, Uo.L.l. 0.11 O.li 0.05 -0.05 -0.02 0.04 0.14 0.30 0.49 -0.42 1.27 0.10 0.14 0.13 0.17 0.13 0.12 0.13 0.16 0.11 0.07 0.02 -0.04 -0.01 0.07 0.18 0.36 0.59 -0.31 1. 48 0.12 0.18 0.19 0.26 0.23 0.23 0.23 0.22 0.17 0.12 0.02 -0.05 -0.01 0.08 0.20 0.41 0.66 -0.29 l. 61 0.17 0.20 0.22 0.27 0.24 0.24 0.25 0.24 0.14 0.10 0.05 -0.04 0.02 0.07 0.23 0.43 0. 72 -0.36 1. 75 0.17 0.24 0.29 0.36 0.36 0.40 0.42 0.42 0.35 0.31 0.0 -0.07 -0.02 0.07 0.24 0.49 0.79 -0.41 1. 85 0.14 0.20 0.28 0.35 0.36 0.36 0.42 0.46 0.40 0.34 0.0 -0.08 -0.06 (\ f\7 VoU/ 0.24 0.49 0.80 -0.36 1. 99 0.14 0.22 0.28 0.34 0.32 0.34 -0.36 0.38 0.32 0.25 -0.01 -0.08 -0.04 0.08 0.26 0.53 0.85 -0.08 2.05 0.14 0.20 0.28 0.35 0.35 0.37 0.40 0.38 0.35 0.26 -0.04 -0.11 -0.06 0.04 0.20 0 .. 55 0.88 0.05 2.11 Rev. 4 0.12 0.19 0.26 0.35 0.32 0.34 0.35 0.38 0.35 0.26 -0.04 -0.11 -0.06 0.06 0.23 0.64 0.94 0.20 2.23 Monument Nll!lll::Er 1 2 3 4 5 6 7 8 9 10 ..l..L 12 13 14 15 16 17 18 19 Location (ft) Station Offset 2+00 10 Lakeside 4+00 10 Lakeside 6+00 10 Lakeside 8+00 10 Lakeside 10+00 10 Lakeside 12+00 10 Lakeside 14+00 10 Lakeside 16+00 10 Lakeside 18+00 10 Lakeside 20+00 10 Lakeside 10 Ia.nUs.i.de 36+00 10 Landside 38+00 14 Landside 40+00 14 Landside 42+00 14 Landside 44+00 14 Landside 46+00 14 Landside 48+00 14 I.&1dside 50+00 14 Landside WOLF CREEK Table 2.5-93 !=ntinued) Sheet 2 of 6 Date of Survey and Cumulative r.bvement 11/06/81 12/04/81 01/20/82 02/12/82 03/09/82 04/13/82 05/12/82 06/16/82 07/06/82 08/06/82 0.13 0.24 0.34 0.42 0.40 0.43 0.44 0.47 0.43 0.34 -0.04 -0.12 -0.10 0.05 0.24 0. 71 0.98 f\ f\A 2.29 0.17 0.26 0.36 0.47 0.44 0.49 0.53 0.59 0.54 0.40 -0.02 -0.13 -0.12 0.04 0.24 0. 71 0.98 -0.01 2.41 0.16 0.28 0.36 0.53 0.48 0.48 0.50 0.53 0.49 0.32 0.00 -0.11 -0.08 0.11 0.32 0.83 1.07 n nc v.uu 2.58 0.19 0.29 0.38 0.59 0.54 0.52 0.58 0.65 0.58 0.40 0.00 -0.10 -0.08 0.04 0.29 0.77 1.07 0.06 2.58 0.24 0.34 0.44 0.70 0.65 0.67 0.74 0.78 0.72 0.52 0.31 0.23 0.25 0.41 0.62 1.08 1.37 " ""'I':" u * .Go 2.84 0.22 0.35 0.47 0.68 0.60 0.62 0.70 0.73 0.68 0.49 0.43 0.32 0.34 0.49 0.73 1.26 1.56 ,... ,.., v."tJ 3.108 0.23 0.36 0.44 0.68 0.62 0.61 0.65 0. 71 0.62 0.40 0.40 0.31 0.31 0.48 o. 72 1.26 1.54 ,... Ar U.'tO 3.072 0.19 0.34 0.44 0.68 0.64 0.62 0.68 0.71 0.62 0.38 0.36 0.28 0.28 0.43 0.65 1.21 1.51 3.108 0.22 0.18 0.31 0.29 0.43 0.40 0.67 0.64 0.58 0.55 0.56 0.53 0.64 0.62 0.66 0.67 0.56 0.58 0.30 0.28 0.29 U.3U 0.22 0.22 0.19 0.38 0.38 0.61 0.60 1.15 1.18 1.43 1.45 0.36 0.43 3.06 3.16 Rev. 0 Monument Nt.lmber 20 21 22 23 24 25 26 27 28 29 31 32 33 34 35 36 37 38 39 40 Location (ft) Station Offset 52+00 14 Landside 54+00 14 La.ndside 56+00 14 Iandside 58+00 14 Landside 60+00 14 Landside 62+00 14 Landside 64+00 14 Landside 66+00 14 Landside 68+00 14 Landside 70+00 14 Landside 72-t-00 14 Landside 74+00 14 Landside 76+00 14 Ia.11dside 78+00 14 Landside 80+00 14 Landside 82+00 14 Landside 84+00 14 Landside 86+00 10 Landsi&:! 88+00 10 La.ndside 90+00 10 Landside 44+00 Iandside Toe 48+00 134 Landside 12/02/80 1.12 1.08 1.06 0.64 0.40 0.34 0.24 0.29 0.20 0.18 0.17 0.20 0.12 0.10 0.12 0.11 0.05 0.05 0.0 0.17 -0.18 01/08/81 1. 88 1.81 1. 76 0.62 1.14 0.76 0.65 0.54 0.42 0.41 0.37 0.38 0.3i 0.23 0.18 0.16 0.14 0.11 0.11 0.04 0.05 -0.25 WOLF CREEK Table 2.5-93 (continued) rate of Survey and Cumulative r.bvernent 02/06/81 03/06/81 04/03/81 05/08/81 06/05/81 2.18 2.08 2.03 0.86 1.27 0.84 0.70 0.60 0.52 0.47 0.48 0.46 0.29 0.22 0.17 0.13 O.il 0.11 0.03 0.06 -0.34 2.53 2.42 2.33 1.14 1.52 1.03 0.89 0.77 0.66 0.62 0.56 0.60 0.55 0.31 0.24 0.19 0.16 0.11 0.11 0.02 -0.11 -0.28 2.74 2.60 2.50 1.30 1.64 1.10 0.96 0.80 0.68 0.70 0.62 0.66 n v.o.G 0.36 0.28 0.24 0.12 0.10 0.13 0 .. 01 -0.29 -0.54 3.00 2.89 2.77 1.54 1.84 1.25 1.10 0.91 0.78 0.74 0.66 0.68 0.68 0.34 0.46 0.18 0.11 0.06 0.08 0 .. 00 -0.13 -0.36 3.17 3.00 2.88 1.63 1.94 1.30 1.14 0.98 0.83 0.82 f\ "1C V*/U 0.77 0.40 0.28 0.25 0.18 0.08 0.11 0.00 -0.46 -0.70 Sheet 3 of 6 01/10/81 08/05/81 09/04/81 10/02/81 3.38 3.25 3.13 1.87 2.16 1.48 1.30 1.12 0.96 0.91 n nn v.ou 0.84 0.82 0.40 0.29 0.25 0.16 0.07 0.12 -0.32 -0.59 3.47 3.30 3.18 1.92 2.20 1.50 1.34 1.19 1.04 1.03 0.92 0.94 0.89 0.42 0.29 0.22 0.16 0.06 0.11 n n v.v -0.47 -0.79 3.61 3.41 3.27 2.00 2.29 1.57 1.39 1.25 1.08 1.08 0.94 f\ ()C v.Ju 0.91 0.42 0.29 0.24 0.13 0.06 0.08 0.0 3.77 3.55 3.43 2.17 2.45 1.69 1.55 1.40 1. 26 1.24 1.0!; ' M"> .L.V:7 1.06 0.49 0.32 0.24 0.14 0.05 0.12 0.01 -0.18 -0.35 Rev. 0 Monument Number 20 21 22 23 24 25 26 27 28 29 ..JU 31 32 33 34 35 36 37 38 39 40 41 location (ft) Station Offset 52+00 14 I.andside 54+00 14 I.andside 56+00 14 I.andside 58+00 14 I.andside 60+00 14 I.andside 62+00 14 I.andside 64+00 14 I.andside 66+00 14 I.andside 68+00 14 I.andside 70+00 14 I.andside ., __ . ., /L.TVV .LciilU;;S..LUC 74+00 14 I.andside 76+00 14 I.andside 78+00 14 Landside 80+00 14 I.andside 82+00 14 I.andside 84+00 14 I.andside 86+00 10 Lat"ldside 88+00 10 I.anside 90+00 10 I.andside 44+00 I.andside Toe 48+00 134 L3....'1.dside WOLF CREEK Table 2.5-93 (continued) Sheet 4 of 6 rate of Su:rvey and Cumulative M:Jvement 11/06/81 12/04/81 01/20/82 02/12/82 03/09/82 04/13/82 05/12/82 06/16/82 07/06/82 08/06/82 3.90 3.67 3.54 2.23 2.50 1. 70 1.51 1.31 1.18 1.18 .i..VJ.. 1.06 1.02 0.42 0.28 0.23 0.17 n ""' v.vt 0.11 0.02 -0.25 -0.43 4.04 3.80 3.67 2.35 2.59 1.80 1.58 1.36 1.20 1.20 .i..V.J 1.08 1.03 0.41 0.29 0.17 0.12 n nA 0.10 0.02 -0.47 -0.59 4.27 4.02 3.91 2.59 2.82 2.00 1. 79 1.58 1.44 1.40 1.27 1.26 0.59 0.44 0.32 0.25 n 'A Ve..L"':i: 0.25 0.08 0.12 0.11 4.31 4.03 3.90 2.59 2.82 2.00 1.81 1.63 1.48 1.39 .i. * .t!:.i. 1.31 1.28 0.56 0.42 0.29 0.23 n " v * ..L..L 0.23 0.12 -0.59 -0.59 4.58 4.31 4.21 2.87 3.07 2.22 2.00 1.80 1.64 1.60 1.37 1.45 1.46 0.71 0.53 0.34 0.29 n ** Ve..L'1:' 0.28 0.14 -0.31 -0.29 4.88 4.56 4.42 3.07 3.31 2.44 2.26 2.04 1.91 1.85 .L.ov 1.68 1.67 0.85 0.65 0.42 0.35 n '><= 0.37 0.18 -0.40 -0.52 4.88 4.61 4.49 3.12 3.32 2.42 2.23 2.04 1.90 1.84 l..Ji 1.64 1.61 0.78 0.59 0.36 0.31 " -.n VeLV 0.31 0.17 -0.49 -0.52 4.93 4.66 4.56 3.18 3.38 2.48 2.33 2.12 1.96 1.90 1.61 1.67 1.67 0.80 0.59 0.34 0.30 " , .., Ve.i../ 0.32 0.17 4.90 4.61 4.46 3.06 3.25 2.40 2.24 2.05 1.92 1.85 1.55 1.56 1.62 0.79 0.56 0.31 0.31 " , .., v * ..J...I 0.34 0.18 -0.52 -0.47 5.04 4.75 4.60 3.20 3.19 2.52 2.32 2.12 1.99 1.92 1.61 1.58 1.66 0.83 0.56 0.29 0.30 " 'n u * .Lo 0.35 0.20 -0.54 -0.46 Re\7, 0 WOLF CREEK Table 2.5-93 (continued) Sheet 5 of 6 Location Monument (ft) !:'ate of Survey and Cumulative M::>vemcnt Number Station Offset 12/02/80 01/08/81 02/06/81 03/06/81 04/03/81 05/08/81 06/05/81 07/10/81 08/05/81 09/04/81 10/02/81 42 52+00 134 Iandside 0.48 0.64 0.64 0.78 0.67 0.89 0.67 0.83 0.68 1.20 43 56+00 134 Iandside 0.40 0.56 0.60 0. 71 0.62 0.85 0.64 0.79 0.60 1.13 44 60+00 134 Iandside 0.25 0.22 0.25 0.25 0.16 0.35 0.13 0.29 -0.07 0.46 45 64+00 134 Landside 0.26 0.19 0.29 0.18 0.08 0.26 0.07 0.22 -0.18 0.40 46 68+00 134 Iandside 0.28 0.11 0.19 0.19 0.08 0.26 0.11 0.19 -G.24 0.36 47 72+00 134 Landside 0.24 0.14 0.23 0.17 0.05 0.23 0.11 0.19 -0.31 0.31 48 76+00 134 Iandside 0.29 0.18 0.16 0.15 0.00 0.22 0.10 0.16 -0.40 0.26 49 80+00 Landside Toe 0.16 -0.01 -0.01 -0.01 -0.22 -0.06 -0.13 -0.13 -0.71 -0.01 so 49+00 Iandside Too 0.00 0.01 0.06 0.08 0.11 0.11 0.10 0.12 0.10 51 52+00 Ia11.dside Toe 0.13 0.19 0.22 0.23 0.38 0.28 0.26 0.24 0.34 0.28 Iar1dside Toe: -v.u; -o.02 -0.06 V.l.l. 0.05 -o.os 0.08 V.U4 -0.06 .J<. ..;Q"'i""UU 53 60+00 Iandside Toe 0.16 0.19 0.12 0.14 0.25 0.25 -0.02 -0.05 0.20 0.08 54 64+00 La!'ldside Toe 0.16 0.20 0.11 0.14 0.22 0.26 0.08 0.06 0.28 0 .. 13 55 68+00 Iandside Toe 0.13 0.20 " " " ' . 0.23 0.31 0.12 0.07 0.30 0.22 v * .J....L v * ..L't 56 72+00 Iandside Toe 0.20 0.23 0.16 0.18 0.24 0.35 0.14 0.13 0.30 0.23 57 76+00 Iandside Toe 0.20 0.22 0.13 0.16 0.23 0.35 0.06 0.08 0.18 0.08 70 46+00 Iandside Toe -0.02 -o.o4 0.10 -o.13 0.01 -G.32 -o.19 -o.38 0.0 Rev. 0 Monument Number 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 70 Location (ft) Station Offset 52+00 56+00 60+00 64+00 68+00 72+00 76+00 80+00 49+00 52+00 I:C_J _ _flf\ ..JV*VV 60+00 64+00 68+00 72+00 76+00 46+00 134 Landside 134 Landside 134 Landside 134 Landside 134 Landside 134 Landside 134 Landside Landside Toe Landside Toe Landside Toe La.-ldside Toe Landside Toe Landside Toe La11dside Toe Landside Toe Landside Toe Landside Toe WOLF CREEK Table 2.5-93 (continued) Date of Survey and CUmulative Movement 11/06/81 12/04/81 01/20/82 02/12/82 03/09/82 04/11/8? 05/16/82 1.19 1.16 0.47 0.35 0.31 0.26 0.25 -0.07 0.07 0.32 n -u.ui 0.07 0.13 0.25 0.25 0.16 -0.11 1.10 1.08 0.35 0.28 0.28 0.23 0.25 -0.11 0.06 0.24 =u * .L.l. 0.05 0.14 0.28 0.28 0.20 -0.35 1. 85 1.84 1.13 0.91 0.92 0.90 0.85 0.42 0.08 0.40 V.l.V 0.06 0.14 0.40 0.34 0.18 0.34 1.24 1.21 0.44 0.31 0.25 0.26 0.30 -0.18 0.11 0.40 U.l.':t 0.16 0.24 0.34 0.30 0.07 -0.53 1.49 1.43 0.72 0.26 0.70 0.53 0.50 0.04 0.08 0.32 -0.11 -0.06 0.06 0.24 0.23 0.10 -0.23 1.37 1.27 0.70 0.44 0.50 0.42 0.44 0.01 0.11 0.29 -0.04 -0.05 n nA v.v't 0.22 0.22 0.06 -0.53 1.36 1.22 0.56 0.35 0.44 0.36 0.42 -0.01 0.14 0.36 -U.lHl -0.05 -0.04 0.22 0.18 0.07 -0.55 06/16/82 0.14 0.24 -0.30 -0.07 -0.22 0.30 0.34 0.25 Sheet 6 of 6 07/09/82 1.49 1.38 0.71 0.40 0.52 0.35 0.47 0.00 0.13 0.34 -0.14 -0.20 -0.37 0.17 0.25 0.19 -0.70 1.51 1.37 0.77 0.44 0.55 0.36 0.47 0.04 0.16 0.32 -0.16 -0.25 A AI\ =v.":tv 0.18 0.24 0.17 -0.71 Rev. 0 WOLF CREEK Table 2a5-94 Sheet 1 of 6 HORIZONTAL MOVEMENT MONUMENT DATA DAt*1 Location Date of Survey and Cordinates Monument Utl 10/31/80 11/24/80 01/15/81 02/25/81 12/10/81 Number Station Offset North East North East North East North East North East 1 2+00 10 Lakeside 866i7 .169 96638.293 86677.146 96638.284 86677.143 96638.278 86677.142 96638.282 2 4+00 10 Lakeside 86506.883 96743.954 86506.862 96743.994 86506.873 96743.929 86506.872 96743.936 3 6+00 10 Lakeside 86337.092 96848.954 86337.080 96848.946 86337.103 96848.934 86337.093 96848.940 4 8+00 10 Lakeside 86166.943 96953.074 86166.926 96953.064 86166.957 96953.068 86166.944 96953.065 5 10+00 10 Lakeside 85997.287 97059.225 85997.271 97059.208 85997.301 97059.212 85997.288 97059.202 6 i2+00 10 Lakeside 85827.090 97164.580 85827.074 97164.555 85827.106 97164.564 85827.092 97164.548 7 14+00 10 Lakeside 85656.856 97270.144 85656.843 97270.113 85656.862 97270.111 85656.849 07?7n 1 n'l " 1C;f"\t"; 10 Lakeside 85486.874 97374.939 85486.857 97374.918 85486.882 97374.900 85486.880 97374.894 u .tu*uu 9 18+00 10 lakeside 85316.827 97480.359 85316.823 97480.359 85316.842 97480.331 85316.854 97480.334 10 20+00 10 Lakeside 85146.893 97586.028 85146.908 97586.053 85146.913 97586.020 85146.927 97586.019 11 34+00 10 Landside 83945.071 98305.553 83945.184 98305.482 83945.229 98305.424 83945.148 98305.502 83945.188 98305.472 12 36+00 10 Landside 83794.547 98440.816 83794.688 98440.686 83794.708 98440.677 83794.650 98440.729 83794.688 98440.699 13 38+00 14 Landside 83704.228 98622.204 83704.346 98622.110 83704.396 98622.077 83704.311 98622.159 83704.349 98622.114 14 40+00 14 Landside 83646.380 98814.111 83646.507 98814.001 83646.554 98813.991 83646.472 98814.038 83646.508 98813.998 15 42+00 14 Landside 83589.112 99005.306 83589.250 99005.195 83589.300 99005.180 83589.221 99005.245 83589.219 99005.178 16 44+00 14 Landside 83531.002 99197.277 83531. 157 99197.154 83531.202 99197.140 83531.140 99197.210 83531.126 99197.130 17 46+00 14 Landside 83473.224 99388.477 83473.384 99388.333 83473.422 99388.325 07117-::! 11n1 99388.318 83473.351 99388.323 V...J"T/.Jo"TV.L 18 48+00 14 Landside 83416.160 99579.954 Destroyed 83416.187 99579.861 83416.171 99579.851 83416.089 99579.849 19 50+00 14 Landside 83357.919 99771.535 83358.056 99771.391 83358.109 99771.379 83358.098 99771.382 83358.037 99771.397 Note: Coordinates refer to SNUPPS reference qrid. See WCNOC-55 for Subsequent years Rev. 4 WOLF CREEK Table 2.5-94 (continued) Sheet 2 of 6 Location Date of Survey and Cordinates Monument 06/16/82 07/09/82 Number Station Offset North East North East 2+00 10 Lakeside 86677.067 96638.286 2 4+00 10 Lakeside 86506.810 96743.933 3 6+00 10 Lakeside 86337.051 96848.927 4 8+00 10 Lakeside 86166.899 96953.066 5 10+00 10 Lakeside 85997.253 97059.210 6 12+00 10 Lakes ide 85827.082 97164.572 7 14+00 10 Lakes ide 85656.852 97270.118 8 16+00 10 Lakeside 85486.889 97374.907 9 18+00 10 Lakeside 85316.883 97480.322 10 20+00 10 lakeside 85146.962 97585.988 11 34+00 10 Landside 83945.197 98305.522 12 36+00 10 Landside 83794.691 98440.733 13 38+00 14 Landside 83704.357 98622.157 14 40+00 14 Landside 83646.513 98814.044 15 42+00 14 Landside 83589.213 99005.203 16 44+00 14 Landside 83531.117 99197.163 17 46+00 14 landside 83473.344 99388.345 18 48+00 14 Landside 83416.070 99579.871 19 50+00 14 Landside 83358.017 99771.410 Note: Coordinates refer to SNUPPS reference grid. Rev. 0 WOLF CREEK Table 2.5-94 (continued) Sheet 3 of 6 10/31/80 11/24/80 01/15/81 02/25/81 Date of Survey and Cordinates Location Monument (ft) 12/10/81 Number Station Offset North East North East North East North East North East 20 52+00 14 Landside 83300.779 99963.105 83300.907 99962.950 83300.956 99962.950 83300.950 99962.950 83300.897 99962.943 21 54+00 14 Landside 83242.865 100154.536 83242.982 100154.350 83243.014 100154.368 83243.019 100154.357 83242.998 100154.347 22 56+00 14 Landside 83188.191 100348.050 83188.191 100348.008 83188.213 100348.037 83188.220 100348.017 83188.209 100347.980 23 58+00 14 Landside 83183.020 100550.729 83183.249 100550.593 83183.107 100550.557 83183.004 100550.651 83183.064 100550.608 24 60+00 14 Landside 83190.896 100750.894 83191.130 100750.742 83190.967 100750.701 83190.867 100750.787 83190.926 100750.752 25 62+00 14 Landside 83199.588 100950.464 83199.826 100950.312 83199.662 100950.274 83199.556 100950.353 83199.589 100950.323 26 64+00 14 Landside 83207.848 101150.097 83208.090 101149.960 83207.925 101149.911 83207.823 101150.001 83207.839 101149.981 27 66+00 14 Landside 83216.127 101349.906 83216.372 101349.766 83216.212 101349.753 83216.118 101349.804 83216.112 101349.793 28 68+00 14 Landside 83225.237 101549.621 83225.462 101549.492 83225.318 101549.471 83225.238 101549.524 83225.213 101549.536 29 70+00 14 Landside 83233.415 101749.557 101749.452 83233.469 101749.414 A(IA u .. u: .. .;.J.'TV"t 101749.458 101749.485 30 72+00 14 Landside 83241.871 101948.583 83242.007 101948.491 83241.906 101948.471 83241.852 101948.476 83241.821 101948.506 31 74+00 14 Landside 83249.778 102149.227 83249.874 102149.144 83249.797 102149.139 83249.758 102149.114 83249.716 102149.164 32 76+00 14 Landside 83258.253 102348.472 83258.293 102348.382 83258.239 102348.378 83258.223 102348.349 83258.172 102348.391 33 78+00 14 Landside 83267.225 102548.731 83267.257 102548.729 83267.221 102548.725 83267.232 102548.671 83267.194 102548.731 34 80+00 14 Landside 83274.681 102748.425 83274.677 102748.408 83274.654 102748.402 83274.887 102748.344 83274.641 102748.428 35 82+00 14 Landside 83283.250 102948.372 83283.205 102948.355 83283.208 102948.347 83283.248 102948.285 83283.209 102948.368 36 84+00 14 Landside 83291.767 103147.942 83291.688 103147.914 83291.716 103147.911 83291.763 103147.850 83291.741 103147.928 37 86+00 10 Landside 83304.566 103347.536 83304.462 103347.494 83304.511 103347.489 83304.560 103347.434 83304.535 103347.512 38 88+00 10 Landside 83312.459 103548.052 83312.338 103548.004 83312.421 103548.001 83312.463 103547.944 83312.444 103548.014 39 90+00 10 Landside 83320.619 103747.113 83320.476 103747.055 83320.595 103747.066 83320.627 103746.990 83320.610 103747.059 40 44+00 Landside Toe O'JI11"J ?"Jn U..J"'T.LL..oL..L..V 99167.878 83412. 141 99167.837 Q")/110 1JIC. OJ'"t.LC..o .1'-tU nn1cr n.,.., JJ.LUI.O..J/ 0'1111 I") , '}(\ O..J'tlL.lJU 99167.825 83412.133 99167.819 41 48+00 134 Landside 83300.883 99545.244 83300.823 99545.553 83300.820 99545.543 83300.800 99545.536 83300.815 99545.529 Rev. 0 WOLF CREEK Table 2.5-94 (continued) Sheet 4 of 6 Location Date of Survey and Cordinates Monument (ft) 06/16/82 07/09/82 Number Station Offset North East North East 20 52+00 14 Landside 83300.881 99962.945 21 54+00 14 Landside 83242.986 100154.345 22 56+00 14 Landside 83188.192 100347.980 23 58+00 14 Landside 83183.176 100550.706 24 60+00 14 Landside 83191.020 100750.843 25 62+00 14 Landside 83199.680 100950.386 26 64+00 14 Landside 83207.921 101150.020 27 66+00 14 Landside 83216.187 101349.814 28 68+00 14 Landside 83225.279 101549.525 29 70+00 14 Landside 83233.427 101749.466 30 72+00 14 Landside 83241.847 101948.450 31 74+00 14 Landside 83249.708 102149.099 32 76+00 14 Landside 83258.137 102348.311 33 78+00 14 Landside 83267.144 102548.643 34 80+00 14 Landside 83274.564 102748.334 35 82+00 14 Landside 83283.118 102948.276 36 84+00 14 Landside 83291.647 103147.828 37 86+00 10 Landside 83304.421 103347.410 38 88+00 10 Landside 83312.321 103547.909 39 90+00 10 Landside 83320.479 103746.942 40 44+00 Landside Toe 83412.077 99167.819 41 48+00 134 Landside 83300.804 99545.534 Rev. 0 WOLF CREEK Table 2.5-94 (continued) Sheet 5 of 6 Location Date of Survey and Cordinates Monument (ft) 10/31/80 11/24780 01715781 02/25/81 12/10/81 Number Station Offset lbrth East lbrth East North East North East lbrth East 42 52+00 134 Iandside 83185.085 99928.482 83185.046 99928.457 83185.032 99928.456 83185.009 99928.446 83185.010 99928.450 43 56+00 134 Iandside 83069.344 100326.265 83069.308 100326.246 83069.298 100326.258 83069.273 100326.223 83069.276 100326.228 44 60+00 134 Iandside 83070.945 100754.401 83070.887 100754.400 83070.868 100754.396 83070.893 100754.466 83070.874 100754.429 45 64+00 134 Iandside 83088.102 101155.691 83088.067 101155.681 83088.049 101155.683 83088.064 101155.741 83088.051 101155.703 46 68+00 134 Iandside 83104.586 101554.745 83104.577 101554.728 83104.566 101554.724 83104.572 101554.773 83104.527 101554.764 47 72+00 134 Iandside 83121.107 101954.939 83121.121 101954.944 83121.117 101954.928 83121.109 101954.967 83121.087 101954.962 48 76+00 134 Iandside 83138.103 102354.097 83138.125 102354.109 83138.124 102354.084 83138.102 102354.113 83138.083 102354.106 49 80+00 Iandside Toe 83159.566 102753.230 83159.594 102753.250 83159.599 102753.240 83159.566 102753.252 83159.573 102753.243 50 49+00 Iandside Toe 83208.206 99622.462a 83208.209 99622.474 83208.196 99622.464 83208.214 99622.468 ,. 51 52+00 La.11dside Toe 83084.508 99898.621 83084.494 99898.595 83084.491 99898.603 83084.489 99898.579 83084.513 99898.588 52 r:.c.nn ..., __ ........ " .... ,. n..-.-4 /'\ ................ ,. ... ,.. ..... 82936.604 100306.716 82936.057 100306.734 829.36.057 100306.676 82936.067 100306.695 ..JV0VV .U:::UlUU.LUt;:;: J.Ut:: O.G:;:1JOeU:J.:J ..L.UU.JUOeiUL. 53 60+00 Iandside Toe 82924.836 100759.410 82924.788 100759.403 82924.829 100759.378 82924.797 99759.428 82924.802 100759.364 54 64+00 La.11dside Toe 82950.384 101160.864 82950.352 101160.855 82950.378 101160.849 82950.355 101160.888 82950.351 101160 .. 810 55 68+00 Iandside Toe 82987.203 101560.467 82987.184 101560.468 82987.195 101560.466 82987.180 101560.486 82987.188 101560.432 56 72+00 Iandside Toe 83025.208 101958.596 83025.214 101958.614 83025.217 101958.603 83025.206 101958.623 83025.206 101958.587 57 76+00 Iandside Toe 83066.380 102357.043 83066.392 102357.076 83066.390 102357.062 83066.370 102357.072 83066.360 102357.049 70 46+00 Iandside Toe 83340.754 99348.821a 83340.754 99348.796 83340.734 99348.814 83340.739 99348.803 of survey was 12/05/80. Rev. 0 WOLF CREEK Table 2.5-94 (continued) Sheet 6 of 6 Location Date of Survey and Cordinates Monument (ft) 06/16/82 07/09/82 Number Station Offset North East North East 42 52+00 134 Landside 83185.007 99928.449 43 56+00 134 Landside 83069.240 100326.210 44 60+00 134 Landside 83070.890 100754.449 45 64+00 134 Landside 83088.063 101155.724 46 68+00 134 Landside 83104.537 101554.778 47 72+00 134 Landside 83121.083 101954.967 48 76+00 134 Lnadside 83138.084 102354.103 49 80+00 Landside Toe 83159.567 102753.247 83159.563 102753.259 50 49+00 Landside Toe 83208.173 99622.444 51 52+00 Landside Toe 83084.508 99898.547 52 56+00 Landside Toe 82936.102 100306.665 53 60+00 Landside Toe 82924.813 100759.455 54 64+00 Landside Toe 82950.355 101160.888 55 68+00 Landside Toe 82987.202 101560.485 56 72+00 Landside Toe 83025.216 101958.619 57 76+00 Landside Toe 83066.362 102357.062 70 46+00 Landside Toe 83340.661 99348.777 aDate of survey wa 12/05/80 Rev. 0 WOLF CREEK Table 2.5-95 Sheet 1 of 3 HORIZONTAL MOVEMENT MAIN !ll\M IDeation Date of Survey and Cumulative Movement Monument (ft) 11/24/80 01/15/81 02/05/81 12/10/81 06/16/82 07/09/82 Ntmlber Station Offset South West South West South West South vvest South West South "\'Vest 1 2+00 10 Lakeside 0.28 0.11 0.31 0.18 0.32 0.13 1.22 0.08 2 4+00 10 Lakeside 0.25 -0.48 0.12 0.30 0.13 0.22 0.88 0.25 3 6+00 10 Lakeside 0.14 0.10 -0.13 0.24 -{). 01 0.12 0.49 0.32 4 8+00 10 Lakeside 0.20 0.12 -0.17 0.07 -0.01 0.11 0.59 0.10 5 10+00 10 Lakeside 0.19 0.20 -{).17 0.16 -{). 01 0.28 0.41 0.18 6 12+00 10 Lakeside 0.19 0.30 -0.19 0.19 -0.02 0.38 0.10 0.10 7 14+00 10 Lakeside 0.16 0.37 -0.07 0.40 0.08 0.49 0.05 0.31 8 16+00 10 Lakeside 0.20 0.25 -0.10 0.47 -0.07 0.54 -0.18 0.38 9 18+00 10 Lakeside 0.05 0.0 -o.l8 0.34 -o.32 0.30 -{). 67 0.44 10 20+00 10 Lakeside -0.18 -0.30 -0.24 0.10 -0.41 0.11 -0.83 0.48 11 34+00 10 I.andside -1.36 0.85 -1.90 1.55 -{). 92 0.61 -1.40 0.97 -1.51 0.37 12 36+00 10 Landside -1.69 1.56 -1.93 1.67 -1.24 1.04 -1.69 1.40 -1.73 1.00 13 38+00 14 I.andside -1.42 1.13 -2.02 1.52 -1.00 0.54 -1.45 1.08 -1.55 0.56 14 40+00 14 Landside -1.52 1.32 -2.09 1.44 -1.10 0.88 -1.54 1.36 -1.60 0.80 15 42+00 14 I.andside -1.66 1.33 -2.26 1.51 -1.31 0.73 -1.28 1.54 -1.21 1.24 16 44+00 14 Landside -1.86 1.48 -2.40 1.63 -1.66 0.80 -1.49 1. 76 -1.38 1.37 17 46+00 14 Landside -1.92 1. 73 -2.38 1.82 -2.12 1.91 -1.52 1.85 -1.44 1.58 18 48+00 14 Landside -0.32 1.12 -0.13 1.24 0.85 1.26 1.08 1.00 19 50+00 14 I.andside -1.64 1. 73 -2.28 1.87 -2.15 1.84 -1.42 1.66 -1.18 1.50 Notes: + indicates rrovement toWR_rds s::mt_h or west. ..... indicates move-rent t:OVtards or east. All IlDITernents are i_n i_ne-hes. See WCNOC-55 for Subsequent years Rev. 4 Location Monument ( ft) 11/24/80 South West Number Station Offset 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 52+00 14 Landside -1.54 1.86 54+00 14 Landside -1.40 2.23 56+00 14 Landside 0.0 0.50 58+00 14 Landside -2.75 1.63 60+00 14 Landside -2.81 1.82 62+00 14 Landside -2.86 1.82 64+00 14 Landside -2.90 1.64 66+00 14 Landside -2.94 1.68 68+00 14 Landside -2.70 1.55 70+00 14 Landside -2.14 1.26 72+00 1 r-. ..i.e ..LV 74+00 14 Landside -1.15 1.00 76+00 14 Landside -0.48 1.08 78+00 14 =0.38 " "" v.v"" 80+00 14 Landside 0.05 0.20 82+00 14 Landside 0.54 0.20 84+00 14 Landside 0.95 0.34 86+00 10 1.25 0.50 88+00 10 Landside 1.45 0.58 90+00 10 Landside 1.72 0.70 44+00 Landside Toe 0.95 0.49 48+00 134 0.72 -3.71 WOLF CREEK Table 2.5-95 (continued) Date of SUrvey and CUmulative Movement 01/15/81 02/05/81 12/10/81 06/16/82 South West South West South West South West -2.12 1.86 -1.79 2.02 -0.26 0.16 -1.04 2.06 -o.85 2.32 -0.89 2.28 -0.92 2.23 -1.02 1.84 -0.97 1.80 -0.64 1. 72 -G.42 1 ..,. ...L * ..)'2: -0.23 1.06 0.17 1.13 n ru:::: n """ VeVJ v.ul 0.32 0.28 0.24 0.30 0.61 0.37 0.66 0.56 0.47 0.61 0.29 0.56 0.89 0.49 0. 76 -3.59 -2.05 1.86 -1.85 2.15 -0.35 0.40 0.19 0.94 0.35 1.28 0.38 1.33 0.30 1.15 0.11 1.22 -o.o1 1.16 0.14 1.19 0.23 1.28 0.24 1.36 0.36 -0.08 1.48 " .,.., -2.47 0.97 0.02 1.04 0.05 1.10 0.07 1.22 -o.o5 1.30 -0.10 1.48 0.11 0.64 1.0 -3.50 -1.42 1.94 -1.60 2.27 -0.22 0.84 -0.53 1.45 -0.36 1. 70 -0.01 1. 70 0.11 1.39 0.18 1.36 0.29 1.02 0.47 0.86 0.60 0.92 0.74 0.76 0.97 0.97 0.37 0.0 0.48 -0.04 0.49 0.05 0.31 0.17 n .,.., v.JI 0.29 0.18 0.46 0.11 0.65 1.04 0. 71 0.82 -3.42 -1.22 1.92 -1.45 2.29 -0.01 0.84 Sheet 2 of 3 07/09/82 South Hest -1.87 0.28 -1.49 0.61 -1.10 0.94 -0.88 0.92 -0.72 1.10 -o.5o 1.15 -0.13 1.09 1.60 0.84 1.54 1.39 1.93 0.97 1.06 1.40 1.09 1.58 1.15 1.44 1.37 1. 74 1.51 1.66 1. 72 1.68 2.05 1. 72 0. 71 " no= Ve::JJ -3.48 Rev. 0 WOLF CREEK Table 2.5-95 (continued) Sheet 3 of 3 location Da.te of Survey and Cumulative Movement Monument (ft) 11/24/80 01/15/81 02/05/81 12/10781 06/16/82 07/09/82 Station Offset South West South West South West South West South West South West 42 52+00 134 Iandside 0.47 0.30 0.64 0.31 0.91 0.43 0.9 0.38 0.94 0.40 43 56+00 134 Iandside 0.43 0.23 0.55 0.08 0.85 0.50 0.82 0.44 1.25 0.66 44 60+00 134 Iandside 0.70 0.01 0.92 0.06 0.62 -o. 78 0.85 -0.34 0.66 -0.58 45 64+00 134 Iandside 0.42 0.12 0.64 0.10 0.46 -0.60 0.61 -0.14 0.47 -0.40 46 68+00 134 Iandside 0.11 0.20 0.24 0.25 0.17 -0.34 0.71 -0.23 0.59 -0.40 47 72+00 134 Iandside -0.17 -0.06 -0.12 0.13 -0.02 -0.34 0.24 -0.28 0.29 -0.34 48 76+00 134 Iandside -0.26 -0.14 -{). 25 0.16 0.01 -{) .19 0.24 -0.11 0.23 -0.07 49 80+00 Iandside Toe -0.34 -0.24 -0.40 -0.12 0.0 -0.26 -0.08 -0.16 -0.01 -0.20 0.04 -0.35 50 49+00 Iandside Toe -0.04 -{) .14 0.12 -0.02 -{) .10 -0.07 0.40 0.22 51 52+00 Landside Toe 0.17 0.31 0.20 0.22 0.23 -0.50 -0.06 0.40 0.00 0.89 52 56+00 Iandside Toe -£.59 -0.17 -{). 02 -0.38 -o.02 0.31 -().14 0.08 -O.Sfi 0.44 53 60+00 Iandside Toe 0.58 0.08 0.08 0.38 0.47 -0.22 0.41 0.55 0.28 -0.54 54 64+00 Toe 0.38 0.11 0.07 0.18 0.35 -0.29 0.40 0.65 (\ '"' -o.29 v.JJ 55 68+00 Landside Toe 0.23 -0.01 0.10 0.01 0.28 -0.23 0.18 0.42 0.01 -0.22 56 72+00 Iandside Toe -{). 07 -0.22 -{).11 -0.08 0.02 -0.32 0.02 0.11 -{).10 -0.28 57 76+00 Iandside Toe -0.14 -0.40 -0.12 -0.23 0.12 -0.35 0.24 -0.07 0.22 -0.23 70 46+00 Iandside Toe 0.0 0.30 0.24 0.08 0.18 0.22 1.12 0.53 Rev. 0 U:x:ation (ft) WOLF CREEK Table 2.5-96 PIEZOOETER WATER LEVEL ELEVATIONS MAIN DAM rate of Sul::ve Sheet 1 of 10 Number Station Offseta Screen Interval 11/26/80 12/05/80 12/12/80 12/19/80 01/02/81 01/09/81 02/06/81 03/05/81 04/02/81 05/06/81 1 12+60 10 LK 1958.3-1964.2 1968.22 1967.40 1966.79 1966.17 1965.61 1965.37 1964.66 1964.34 1963.92 1963.48 2 12+60 10 LD 1959.8-1966.3 1973.52 1972.00 1970.53 1969.58 1967.65 1966.97 1965.20 1964.07 1963.75 1962.31 3 12+60 40 LD 1957.8-1962.9 1962.71 1962.61 1962.24 1961.91 1961.89 1961.84 1961.60 1961.63 1961.36 1960.73 4 12+60 130 LD 1955.5 -1960.6 Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry 5 36+50 40 LD 1958.1-1963.6 1974.29 1973.66 1973.16 1972.53 1971.99 1971.55 1970.05 1968.88 1967.88 1967.38 6 36+75 40 LD 1953.2-1958.2 1966.75 1965.61 1964.79 1964.21 1963.50 1963.23 1962.18 1961.27 1960.61 1959.98 7 41+60 40 LD 1937.5-1944.5 1950.97 1951.00 1950.85 1950.63 1950.60 1950.45 1949.97 1950.40 1950.55 1951.62 8 47+00 14 LK 1947.0 -1952.5 1950.48 1950.51 1950.14 Dry 1949.64 Dry 1949.02 1949.85 1952.23 1954.65 9 47+00 14 LD 1947.0-1952.0 1950.39 1950.27 Dr:y 1950.13 1949.97 1949.95 1950.12 1949.82 Dry 10 47+00 39 LD 1946.7-1952.7 1954.42 1954.61 1954.37 1953.70 1954.03 1953.92 1953.64 1953.62 1953.42 1953.11 11 47+00 173 LD 1943.7-1949.2 1946.19 Dry Dry Dry Dry Dry Dry Dry Dry Dry 12 49+00 40 LD 1925.7-1929.7 1933.60 1933.30 1932.83 1931.98 1931.75 1931.44 1930.35 1929.99 1929.88 1930.17 13 51+00 75 LD 1910.0-1915.5 1943.79 1943.21 1942.79 1942.19 1941.37 1941.01 1939.55 1933.33 1937.51 1936.50 14 52+50 14 LK 1924.5-1930.6 1940.56 1938.32 1937.03 1935.68 1935.13 1934.68 1934.07 1934.03 1946.87 1936.52 15 52+50 14 LD 1925.2 -1931.4 1993.21 1970.69 1965.26 1962.05 1958.67 1957.65 1955.60 1954.61 1954.12 1953.36 16 52+50 74 ID 1925.0 -1930.0 1927.21 Dry Dry Dry Dry Dry Dry Dry Dry Dry 17 ... , 18 52+50 338 LD 1919.9 -1925.0 1923.59 1922.60 Dry Dry Dry Dry Dry 59+00 14 LK 1917.0 = 1922.3 1929.81 1920.11 1919.80 1920.05 1919.49 1919.35 Dry D:ry D:ry Dry Dry 19 59+00 14 LD 1916.6 -1921.8 1935.82 1922.93 1921.25 1920.45 1920.67 1920.13 1919.65 1918.96 D:ry l'bte: Ele"vat.ions refer SNUPPS reference daturn. LD-Landside. See WCNOC-55 for Subsequent years D:ry Dry 1917.99 Rev. 4 Location (ft) WOLF CREEK Table 2.5-96 (continued) Sheet 2 of 10 D:tte of Surve Number Station Offseta Screen Interval 06/01/81 07/01/81 08/04/81 09/10/81 10/05/81 11/06/81 12/02/81 01/04/82 02/10/82 03/03/82 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 12+60 10 LK 1958.3 -1964.2 1964.48 1963.38 1962.40 Dry 1961.74 1961.47 1961.47 1960.84 1960.50 Dry 12+60 10 LD 1959.8 -1966.3 Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry 12+60 40 LD 1957.8-1962.9 1960.83 1961.19 Dry Dry 1960.08 1960.03 1960.88 1960.72 1960.00 Dry 12+60 130 LD 1955.5 -1960.6 Dry 1957.30 Dry Dry 1957.07 1959.49 1959.79 1957.92 Dry Dry 36+50 36+75 41+60 47+00 !1"'7.._(\(\ -::.; *uv 47+00 40 LD 1958.1-1963.6 1967.99 1967.99 1968.21 Dry 1969.88 1970.42 1970.64 1968.50 1968.78 1967.57 40 1D 1953.2 -1958.2 1960.08 1952.08 1959.25 Dry 1959.84 1960.01 1961.22 1962.00 1961.97 1962.56 40 LD 1937.5-1944.5 Dry Dry 1957.72 1961.51 1964.56 1967.86 1970.03 1970.62 1971.02 1972.13 14 LK 1947.0 -1952.5 1956.24 1959.44 1964.63 1967.44 1970.19 1973.19 1975.63 1975.80 1975.98 1976.69 14 LD 1947.0-1952.0 1949.51 1952.01 1949.18 1950.77 1953.90 1959.03 1963.15 1965.32 1ncc 39 LD 1946.7-1952.7 1953.12 1953.22 1952.28 1952.85 1953.61 1955.69 1960.07 1963,08 1963.56 1965.27 47+00 173 LD 1943.7-1949.2 1949.91 Dry Dry 1945.87 1949.68 1948.76 Dry 1948.03 1950.29 49+00 40 LD 1925.7-1929.7 1930.99 1931.49 1932.90 1933.91 1934.68 1934.98 1934.79 1933.39 1932.39 1932.13 51+00 75 LD 1910.0-1915.5 1936.11 1936.01 1934.38 1934.50 1934.30 1933.78 1933.99 1933.57 1933.00 1932.83 52+50 14 LK 1924.5-1930.6 1936.23 1935.73 1934.15 1934.72 1934.41 1933.81 1934.07 1933.36 1933.28 1933.33 52+50 14 LD 1925.2-1931.4 1952.97 1952.67 1951.74 1951.06 1950.77 1949.94 1949.70 1949.12 1948.42 1948.07 52+50 74 LD 1925.0 -1930.0 Dry 1934.32 1947.65 1930.52 1953.72 1951.94 1932.23 1946.97 1936.10 52+50 338 1D 1919.9 -1925.0 Dry 59+00 59+00 14 LK 1917.0 -1922.3 Dry 14 1D 1916.6 -1921.8 Dry Dry 1918.68 Dry 1918.23 Dry Dr_/ Dry Dr.f D.ty Dr_i Dry Dry Dry Dry Dry Rev. 0 Location (ft) Screen WOLF CREEK Table 2.5-96 (continued) Sheet 3 of 10 Da. te of Surve Number Station Offseta Interval 04/01/82 05/05/82 06/01/82 07/02/82 08/02/82 09/03/82 10/07/82 11/08/82 12/01/82 1 12+60 10 1958.3 -1964.2 Dry 1960.88 1961.18 1961.08 1961.70 1952.04 1952.70 1952.86 1954.53 2 12+60 10 LD 1959.8 -1966.3 Dry Dry Dry Dry Dry Dry Dry 1950.63 1952.05 3 12+60 40 LlJ 1957.8-1962.9 Dry 1960.29 1961.08 1961.08 1961.11 1963.02 1963.35 1963.51 1964.59 4 12+60 130 LD 1955.5-1960.6 1957.47 1956.96 1960.20 1958.65 1957.12 Dry Dry 1995.76 1998.68 5 36+50 40 LD 1958.1-1963.6 1967.06 1966.75 1967.59 1969.34 1971.98 1985.41 Dry 1989.49 1989.99 6 36+75 40 LD 1953.2-1958.2 1962.85 1963.27 1965.23 1966.83 1968.58 1973.22 1973.63 Dry 1974.54 7 41+60 40 LD 1937.5-1944.5 1972.10 1974.20 1976.74 1977.59 1978.03 1936.20 1935.95 1935.35 1935.94 8 9 10 ll 12 13 14 15 16 17 18 19 47+00 47+00 1A T"r7 .. .ut\ 1947.0-1952.5 1977.28 1979.12 1982.51 1983.66 1983.89 1977.35 1977.34 1976.59 1977.CJ1 14 LD 1947.0-1952.0 1966.75 1967.48 1969.03 1970.73 1971.43 1950.08 1950.25 1949.89 1950.80 47+00 39 LD 1946.7-19S2.7 1965.55 1965.70 1 (JC"7 "'10 1 n,-, ... ...,.., ..J..JVf*IU .L.700.,i.) 1969.75 Hi b. 78 197 6. 77 197 6. 62 1977.58 47+00 173 LD 1943.7-1949.2 1947.97 1947.29 1949.58 1948.28 1947.07 1996.78 1995.86 1997.57 1999.74 49+00 40 LD 1925.7-1929.7 1933.31 1934.04 1935.38 1936.98 1937.93 1924.94 1925.69 1925.24 51+00 52+50 52+50 52+50 1925.49 75 LD 1910.0 -1915.5 1933.22 1933.14 1933.88 1933.38 1933.18 1883.25 1884.51 1883.41 Dry 14 LK 1924.5-1930.6 1938.82 1935.27 1933.93 1932.86 1932.28 1933.45 1934.03 1933.68 Dry 14 LD 1925.2-1931.4 1947.75 1947.11 1946.84 1946.29 1946.19 1949.73 Dry 1943.97 Dry 74 LD 1925.0-1930.0 1938.78 1926.70 1967.63 1934.13 1936.52 1931.95 1930.52 1928.74 Dry 52+50 338 LD 1919.9 -1925.0 Dry Dry 1920.97 Dri Dry Dry !Jry 59+00 59+00 14 LK 1917.0-1922.3 Dry 14 LD 1916.6-1921.8 Dry Dry Dry 1918.35 Dry 1917.80 Dry Dry Dry Dry 1838.31 Dry Dry Dry Dry f\ru Dry Dr.t Rev. 0 Location If.+-\ \.L'-J Screen WOLF CREEK Table 2.5-96 (cont1nued) Sheet 4 of 10 Date of Surve Nwnber Station Offset a Interval 01/05/83 02/07/83 03/01/83 05/12/83 06/02/83 08/03/83 10/04/83 12/07/83 01/06/84 1 12+60 10 LK 1958.3-1964.2 1954.75 1955.68 1955.85 1967.48 1967.89 1968.18 1969.10 1969.68 Dry 2 12+60 10 LD 1959.8-1966.3 1952.81 1954.77 1954.89 1967.82 1968.34 1968.83 1969.10 1969.73 1966.33 3 12+60 40 LD 1957.8 -1962.9 1966.25 1967.34 1967.30 1966.28 1966.90 1967.00 1967.98 1969.39 1968.89 4 12+60 130 LD 1955.5 -1960.6 1998.48 1998.77 1997.39 1958.11 1958.58 1957.00 Dry 1959.97 1959.76 5 36+50 40 LD 1958.1-1963.6 1989.08 1988.32 1986.69 1974.15 1974.43 1977.57 1982.12 1982.56 1981.06 6 36+75 40 LD 1953.2-1958.2 1976.28 1976.71 1976.54 1973.24 1973.83 1973.17 1973.05 1975.56 1975.05 7 41+60 40 LD 1937.5 -1944.5 1936.69 1936.35 1936.27 1978.72 1979.00 1977.97 1977.19 1977.41 1975.62 8 47+00 14 LK 1947.0-1952.5 1977.18 1976.98 1977.28 1984.78 1984.97 1984.20 1983.04 1983.00 1982.96 9 47+00 14 LD 1947.0-1952.0 1950.91 1950.97 1950.72 1972.47 1972.57 1972.78 1972.47 1972.98 1968.75 10 11 12 13 14 15 16 17 18 19 47+00 1978.40 1978.40 1971.63 1971.71 1970.52 1970.54 197lo09 47+00 173 LD 1943.7-1949.2 2000.57 Dry 1999.55 1948.98 1948.58 1945.38 Dry 1947.01 1949.80 49+00 40 LD 1925.7-1929.7 1924.48 1923.81 1923.48 1938.58 1939.05 1940.32 1940.76 1940.28 1937.33 51+00 75 LD 1910.0-1915.5 1883.92 1883.74 1883.49 1933.37 1933.53 1931.63 1933.70 1933.97 1933.42 52+50 14 LK 1924.5-1930.6 1935.73 1936.08 1936.78 1936.03 1936.81 1937.21 1940.25 1946.42 1944.17 52+50 14 LD 1925.2-1931.4 1943.55 1943.61 1943.11 1933.89 1943.71 1942.91 1938.53 1941.53 1940.11 52+50 74 LD 1925.0-1930.0 1944.38 1948.65 1950.86 1944.48 1948.19 1935.19 1926.82 1947.62 1978.60 52+50 338 LD 1919.9 -1925.0 1963.92 Dr1 Dry Dry Dry Dry Dry 59+00 59+00 14 LK 1917.0-1922.3 1836.45 Dry 14 LD 1916.6-1921.8 1918.21 Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dr.f Rev. 0 WOLF CREEK Table 2.5-96 (continued) Sheet 5 of 10 IDeation (ft) Screen Date of Survey Number Station Offset a Interval 02/03/84 03/06/84 04/03/84 1 12+60 10 LK 1958.3 -1964.2 1970.29 1970.19 1970.23 2 12+60 10 LD 1959.8 -1966.3 1970.33 1970.23 1969.83 3 12+60 40 ill 1957.8 -1962.9 1969.19 1968.59 1969.30 4 12+60 130 LD 1955.5 -1960.6 1959.46 1959.96 1960.51 5 36+50 40 ill 1958.1 -1963.6 1978.76 1976.46 1975.85 6 36+75 40 LD 1953.2 -1958.2 1974.65 1973.85 1974.55 7 41+60 40 LD 1937.5-1944.5 1977.62 1977.72 1978.52 8 47+00 14 LK 1947.0-1952.5 1983.06 1983.06 1984.21 9 47+00 14 ill 1947.0 -1952.0 1973.25 1972.75 1973.08 10 47+00 39 LD 1946.7-1952.7 1974.69 1974.89 1975.61 11 47+00 173 LD 1943.7-1949.2 Dry 1949.80 1950.60 12 49+00 40 LD 1925.7-1929.7 1936.83 1937.03 1937.54 13 51+00 75 LD 1910.0 -1915.5 1933.82 1932.92 1933.41 14 52+50 14 LK 1924.5 -1930.6 1943.67 1943.97 1944.16 15 52+50 14 ill 1925. 2 -1931.4 1940.31 1939.11 1940.18 16 52+50 74 LD 1925.0 -1930.0 1951.70 1970.80 1978.16 17 52+50 338 LD 1919.9 -1925.0 Dry Dry Dry 18 59+00 14 LK 1917.0 -1922.3 D:t:y D:t:y D:t:y 19 59+00 14 ill 1916.6 -1921. 8 Dry Dry Dry Rev. 0 WOLF CREEK Table 2.5-96 (continue:]) Sheet 6 of 10 Location (ft) Screen 03. te of SUrve N\.Jillb=r Station Offset a Interval 11/26/80 12/05/80 12/12/80 12/19/80 01/02/81 01/09/81 02/06/81 03/05/81 04/02/81 05/06/81 20 59+00 75 ill 1894.6 -1901.1 1898.55 1898.94 1898.88 1898.41 1898.95 1898.97 1899.42 1900.10 1900.96 1901.90 21 59+00 80 ill 1916.4 -1921.9 1934.65 1925.92 1922.44 1920.24 1919.07 1918.93 Dry Dry Dry 1918.13 22 59+00 270 ID 1911.4 -1916.6 1914.26 Dry Dry Dry Dry Dry Dry Dry Dry Dry 23 75+50 14 LK 1931.9 -1937.1 1950.14 1946.21 1944.47 1945.17 1944.86 1943.48 1939.63 137.81 1937.09 1936.82 24 75+50 14 ill 1932.1-1937.0 1986.83 1964.56 1958.93 1955.44 1951.63 1950.37 1947.48 1945.89 1944.68 1945.55 25 75+50 64 ill 1929.5 -1936.0 1936.92 1935.63 1934.59 Dry Dry Dry Dry Dry Dry Dry 26 75+50 213 ill 1930.3 -1935.4 1935.70 1934.46 1933.85 1933.47 1932.93 1932.66 1932.09 Dry Dry Dry 27 78+50 60 ill 1917.0 -1922.5 1935.70 1935.84 1935.97 1935.95 1936.35 1936.51 1937.37 1938.67 1941.89 1945.23 28 78}60 60 LD '1(), .... '11:::' ,.... 11"\')'1 n. "f"\"')C t::"") 1n-,r .,,-1t"\1r" ,-...., .L.7..JU.4.i .i..J..JU * .JJ .l.J..JO,...J.J J..J...JO * .JL. .L:::;..J;.:J..L .1..:1'2-'+/-. iV .LJ.c......;.v -_;_;;;...;..L.v .L;;...;v.v...; ..L.;;...;v. ;;,; ..L;:;.:;u.u..::. 29 80+50 60 LD 1944.9 -1951.2 1958.51 1959.86 1960.09 1959.93 1959.69 1959.56 1959.06 1958.74 1958.83 1958.55 Rev. 0 WOLF CREEK Table 2.5-96 (continued) Sheet 7 of 10 Location (ft) Screen Date of Surve Number Station Offset a Interval 01/01/81 07/01/81 08/04/81 09/10/81 10/05/81 11/06/81 12/02/81 01/04/82 02/10/82 03/03/82 20 59+00 75 LD 1894.6 -1901.1 1902.39 1902.79 1903.17 1904.06 1904.77 1905.36 1906.48 1907.57 1908.14 1908.71 21 59+00 80 LD 1916.4 -1921.9 1917.82 1919.02 1918.42 1918.01 Dry Dry 1906.48 Dry Dry Dry 22 59+00 270 LD 1911.4 -1916.6 Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry 23 75+50 14 LK 1931.9 -1937.1 1936.52 1936.02 1935.72 1935.35 1935.12 1935.01 1934.54 1934.25 Dry Dry 24 75+50 14 LD 1932.1-1937.0 1945.40 1945.30 1943.7 6 1944.48 1944.44 1942.87 1943.68 1942.02 1937.16 1948.18 25 75+50 6410 1929.5 -1936.0 Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry 26 75+50 213 LD 1930.3 -1935.4 Dry 1942.08 1935.78 1936.24 1933.68 1937.10 1937.81 Dry 1936.66 1937.07 27 78+50 60 LD 1917.0-1922.5 1946.92 1948.52 1953.11 1958.83 1957.35 1960.81 1962.27 1962.36 1963.61 1963.62 28 78+60 60 LD 1925.0 -1931.0 Dry 1948. 64 1949.75 1952.13 1952.87 Dry Dry 1955.89 1956.43 1957.03 29 80+50 60 w 1944 -195L2 1960.95 1966.31 1963.86 1963.98 1963.04 1963.54 1963.25 Rev. 0 WOLF CREEK Table 2.5-96 (continued) S'neet 8 of 10 IDeation (ft) Screen of 9Jrveu Number Station Offset a Interval 04/01/82 05/05/82 06/01/82 07/02/82 08/02/82 09/03/82 10/07/82 11/08/82 12/01/82 20 59+00 75 I.J) 1894. 6 -1901.1 1909.54 1910.92 1911.60 1912.40 1913.09 1933.66 1934.91 1934.94 Dry 21 59+00 80 I.J) 1916.4 -1921.9 Dxy Dxy 1917.93 Dry Dxy Dxy Dxy Dry 1926.85 22 59+00 270 I.J) 1911.4 -1916.6 Dry Dry 1913.44 Dry Dry Dry Dxy Dry 1933.91 23 75+50 14 LK 1931.9 -1937.1 Dry 1933.66 1933.74 1933.44 Dxy Dry Dxy Dxy 1916.47 24 75+50 14 I.J) 1932.1-1937.0 1935.74 1934.74 1935.08 1933.83 Dcy Dry 1918.15 1918.09 1917.59 25 75+50 64 I.J) 1929.5 -1936.0 Dxy Dry 1933.62 Dxy Dxy Dcy Dcy Dry 1936.02 26 75+50 213ID 1930.3 -1935.4 1936.57 1935.17 1938.58 1937.48 1935.82 1995.16 1991.91 1995.91 "'!()()....., ()(\ ..LJ;;JJ.::J;;J 27 78+50 60 I.J) 1917.0 -1922.5 1964.51 1966.20 1977.91 1968.71 1973.52 1984.09 1983.17 1983.32 1982.98 '">0 ""7(),/'"1"\ 60 LD 1925. 0 -1931.0 1957.92 1958.02 1962.07 l96l.02 1960.64 1968.25 1968.16 1969.32 1969.73 """ /OTOU 29 80+50 60 LD 1944.9 -1951.2 1964.23 1965.14 ., nr..., n11 1967.54 1967.91 1953.68 1954.35 1954.19 1954.69 .l.::10 t.O'i Rev. 0 WOLF CREEK Table 2.5-96 (continued) Sheet 9 of 10 (ft) Date of Surve !\'umber Station Offset a Interval 01/05/83 02/07/83 03/01/83 05/12/83 0 6/02/83 08/03/83 10/04/83 12/07/83 01/06/84 20 59+00 75 LD 1894.6 -1901.1 1936.11 1936.78 1936.90 1917.89 1917.84 1918.58 1918.55 1918.28 1919.25 21 59+00 80 LD 1916.4 -1921.9 1920.93 Dry Dry Dry Dry Dry Dry Dry Dry 22 59+00 270 LD 1911.4 -1916.6 1933.96 Dry Dry Dry Dry Dry Dry Dry Dry 23 75+50 14 LK 1931.9 -1937.1 1916.50 Dry 1916.51 Dry Dry Dry Dry Dry Dry 24 75+50 14 LD 1932.1-1937.0 1917.86 Dry 1917.11 Dry Dry Dry Dry Dry Dry 25 75+50 64LD 1929.5 -1936.0 1935.53 Dry Dry Dry Dry Dry Dry Dry Dry 26 75+50 213 LD 1930.3 -1935.4 1998.15 1998.98 1997.82 1937.06 1937 .OS 1935.37 1933.06 1934.46 1934.85 27 78+50 60 LD 1917.0-1922.5 1988.15 1998.14 1988.56 1974.00 1974.61 1968.90 1967.73 1970.11 1970.78 28 78+60 60 LD 1925.0 -1931.0 1972.15 1972.31 1973.04 1964.71 1965.11 1962.20 1967.86 1964.11 1963.89 29 80+50 60 LD 1944 .. 9 -1951.2 1954 .. 54 1 n.c .11 or ., f'lr:-Jl .......... .L..700.L.O 1969.63 1968.92 1968.29 l%7.90 Rev. 0 WOLF CREEK Table 2.5-96 (continued) Sheet 10 of 10 Location (ft) Screen Date of Survey Nurnter Station Offset a Interval 02/03/84 03/06/84 04/03/84 20 59+00 75 LD 1894. 6 -1901.1 1920.15 1919.25 1919.67 21 59+00 80 LD 1916.4 -1921.9 D:r:y D:r:y D:r:y 22 59+00 270 LD 1911.4 -1916.6 D:r:y 1912.98 1913.73 23 75+50 14 LK 1931.9 -1937.1 D:r:y D:r:y D:r:y 24 75+50 14 LD 1932.1 -1937.0 D:r:y D:r:y Dry 25 75+50 64 LD 1929.5 -1936.0 D:r:y D:r:y Dry 26 75+50 213 I.D 1930.3 -1935.4 1937.45 1938.15 1939.38 27 78+50 60 LD 1917.0 -1922.5 1972.48 1976.98 1980.38 28 78+60 60 ill 1925.0 -1931.0 10C') c:n 1965.09 1966.82 29 80+50 60 LD 1944.9 -1951.2 1968.00 1968.70 1969.11 Rev. 0 WOLF CHE!EK TABLE 2.5-97 (Sheet 1 of 4) OBSERVED SEEPi\G\:0: RATES MAIN DAM STATION 58+50 Observed Cooling Lake Inspection Seepage Rate Elevation ___________________________ _________________________ ___ _ 4-24-81 40 4-30-81 20 5-08-81 18 5-15-81 30 19.5B.9 5-21-81 200 5-29-81 100 1960.7 6-04-81 80 1961.3 6-12-81 80 1962.8 6-19-81 150 196 3 .. 7 6-24-81 125 1964.6 7-02-81 12!) .* 6 7-09-81 20 1966 .. 6 7-17-81 20 1967.0 7-24-81. 1[-.) 196B.3 7-30-81 10 1969.2 8-06-81 r-.) 1970.0 8-14-81 30 1970.8 8-21-81 !" .) 1970 .. 8 8-28-81. 1'-.) 1971.0 9-03-81. 100 1972.0 9-10-81 9 [" .) 1972.5 9-16-81 7 r-.) 1973.4 9-24-81. 7'" .) 1974.1 10-02-81. 50 1974.5 10-08-81 50 10-16-81 400 1976.1 10-23-81. 110 1976.8 10-29-81. 50 1.977.2 --*-**--**-------*-*-**--*-,-*--*--*-NOTES: 1.. Elevations refer to SNUPPS reference datum. 2. Observed seepage rates are plotted on Figure 2.5-144. 3. Seepage observations \vere made! on downstream t:oe of Main Dam at Station 513+50. Location is shown on Figure 2.5-143. 4. Unobservable due to ice cover. 5. l ml/scc == 0.0000353 cubic feet per second. 6. Unobservable due to consi:ruction of flow measuring weir. Rev. 0 WOLF CRE:gK TABLE 2.5-97 (Sheet 2 of 4) Observed Cooling Lake Inspection Seepage Rat.e Elevation _ _______________________ ________ **-----------_______ !:.L ___ _ 11-06-81 500 1977.9 11-12-81 50 1978.7 11-19-81 10 1979.2 11-25-81 10 1979.3 12-03-81 40 1979.5 12-10-81 50 1979.5 12-18-81 10 1979.5 12-23-81 10 1979.5 12-31-81 10 1979.5 1-08-82 (See No*t:.e 4) 1979.5 1-15-82 (See No*t:.e 4 ) 1979.5 1-22-82 (See 4) 1979.5 1-28-82 (See 4) 1979.5 2-04-82 (See Not:.e 4) 1980.3 2-12-82 100 1980.3 2-18-82 1000 1980.4 3-05-82 40 1980.4 3-11-82 40 1980.6 3-18-82 1500 1980.8 3-25-82 85 1980.9 4-02-82 40 1981.0 4-08-82 20 1981.3 4-16-82 10 1982.0 4-23-82 10 1982.4 4-29-82 20 1982.7 5-06-82 250 1983.6 5-14-82 250 1984.8 5-20-82 200 1985 .. 9 6-02-82 1500 1987 .. 5 6-11-82 800 1987.6 6-18-82 250 1987.6 6-25-82 1500 1987.4 7-02-82 100 1987.5 7-09-82 25 1987.5 7-19-82 300 1988.0 7-22-82 200 1987.9 7-30-82 25 1987.8 8-05-82 25 1987.8 8-12-82 25 1987.5 8-20-82 15 1987.5 8-26-86 10 1987.5 9-03-82 10 1987.5 9-09-82 25 1987.5 9-16-82 15 1987.5 9-22-82 5 1987.2 0 WOLF CREEK TABLE 2.5-97 (Sheet 3 of 4) Cooling Lake Inspection Seepage Rate Elevation ___ ____________________ ____ _ 9-30-82 t" _) 1987.2 10-07-82 5 1987.0 10-14-82 5 1987.3 10-22-82 5 1987.0 11-01-82 10 1987.0 11-05-82 10 1987.1 11-12-82 150 1987.1 11-18-82 7 t" _) 1987.0 11-24-82 40 1986.8 12-02-82 400 1982.0 12-13-82 200 1986.8 12-17-82 200 1986.7 12-22-82 200 1987.0 12-30-82 300 1987.0 1-07-83 25 1987.0 1-14-83 275 1987.0 1-21-83 200 1987.0 1-28-83 290 1987.0 2-04-83 290 1987.0 2-10-83 400 1987.3 2-18-83 275 1987.5 2-25-83 250 1987.8 3-04-83 250 1987.8 3-11-83 250 1987.1 3-18-83 2 2 1987.5 3-25-83 200 1987.8 3-31-83 225 1987.8 08-83 500 1988.5 4-14-83 300 1988.4 4-22-83 300 1988.1 4-29-83 500 1988.3 5-05-83 30 1988.6 5--13-83 2 50 1988.3 5-20-83 200 1988.0 5-31-83 200 1988.4 6-03-83 1250 1988.5 6-09-83 6 1983.5 6-16-83 250 1988.5 6-24-83 50 1988.3 7-01-83 40 1988.2 7-08-83 30 1988.1 7-15-83 (See Not.e 6) 1988.3 7-22-83 (See Not.e 6) 1987.7 7-28-83 (See Not.e 6) 1987.4 8-05-83 (See Not:.e 6) 1987.4 8-12-83 (See No*t:.e 6) 1987.1 () 1NOLF CRE:EK TABLE 2.5-97 (Sheet 4 of 4) Observed Cooling Lake Inspec*tion Seepage Elevation _ ________________ _1 L ________________________ __ _ 8-19-83 {See No1t:e 6) 1987.3 8-26-83 (See Noi!:e 6) 1987.1 9-02-83 (See Nob2 6) 1987.0 9-09-83 (S:ee Noi::e 6) 1987.0 Rev. 0 TABLE 2. 5-98 1, 700 lbs RIPRAP GRADATIONS 'Ibtal Weight Sample Rock Percent Greater Size Weight ( lb) Percent Smaller of Sample Date Type Than 1, 700 lb 85% 50% 15% Than 100 lb (lb) 10/16/79 Toronto 6.6 1,000 330 125 10.1 25,757 10/23/79 Toronto 0 1,250 600 125 9.5 26,855 10/26/79 Toronto 0 1,100 320 125 10.0 30,114 10/29/79 Toronto 0 940 430 120 11.0 31,621 :E; 0 t:""' 11/14/79 490 135 9.8 31,843 !":!J Toronto 11.6 1,350 ,-... \ J ::a 11/15/79 To ron i-n 0 840 320 l15 10.8 37,800 [l:J t'j :"! 11/26i79 Toronto 0 1,150 460 165 7.9 27,969 12/27/79 Toronto 0 1,000 545 145 8.5 36,177 12/27/79 Toronto 0 1,100 500 165 7.0 40,728 2/05/80 Toronto 0 1,100 500 105 13.0 41,078 2/07/80 Toronto 0 1 ?()() 400 140 9.0 ..i..,_..,..., ,_,...,,_ 2/11/80 Toronto 20.0 670 115 5.0 43,294 4/17/80 'Ibronto 10.0 1,650 450 1 Q(l Q t:; 44,950 .J...JV Vo.J Rev. 0 TABLE 2 *. 5-99 755 lbs RIPRAP GRADATIONS 'Ibtal Weight Sample Rock Percent Greater Size Weisht (lb) Percent Smaller of Sample Date Type lhan 755 lb 85% 50% 15% Than 45 lb (lb) 3/16/79 Plattsmouth 0 275 110 22.0 10,477 4/12/79 Plattsrocmth 0 545 250 70 5.0 29,682 8/07/79 Toronto 15.3 750 125 25.0 11,507 8/14/79 Toronto 10.4 600 150 22.1 33,572 ::E; 0 t"" 8/16/79 Toronto 10.7 560 175 15.7 9,932 0 ;;o 9/10/79 Toronto 3.0 355 195 93 5.2 ?i:\_i:\{7 __ , ___ !:':l 9/10i79 Toronto 3.0 530 210 86 6.6 27,657 1/12/80 Toronto 5.0 400 180 50 0 17,088 Rev. 0 TABLE 2.5-100 (Sheet 1 of 2) MEASURED FLOW RATES FROM WEIR AT MAIN DAM STATION !56+96 Cooling Lake Inspection Rate Elevation Date (ft /sec) 'feet) ---.. --*----*--____ ,..__\_ ____________ _ 9-1.6-83 0.00069 1986 .. 6 0.0016 1987.0 0.0004 1987.0 10-07-83 0.00001 1986.5 10-1.1-83 0.028 1986 .. 6 10-1.2-83 0.0039 1986.6 10-1.4-83 0.0011 1986 .. 6 10-1.9-83 0.02? 1986.6 0. 4 1986 .. 6 10-?6-83 0.0039 1986.7 11-01-83 0. 35 1986.8 11-04-83 1986.8 11-1.0-83 0.039 1986.6 11-18-83 0.0039 1986.8 11-?5-83 0.0039 1987.0 12-09-83 0.010 1986.0 12-16-83 0.01?8 (See Note 5 ) 198 7 .. 0 0 (See Note 5) 1986.5 12-30-83 0.1.26 (See Note 5 ) 1986.7 1-06-84 0.09?2 (See Note 5) 1987.0 1-1.3-84 0.0197 (See Note 5) 1981.0 (See Note 5) 1987.0 (See Note 5 ) 1987 .. 0 2-03-84 0.009 1987.0 2-1.0-84 0.011 1987.0 2-17-84 0.009 1987.0 0.0039 1987.0 3-09-84 1987.0 3-16-84 0.0108 1987.0 0.043 1987.6 3-30-84 1988.0 4-06-84 1988.0 4-1.3-84 1988.0 1988.4 5-04-84 0.0284 1988.0 5-11-84 0.00?6 1988.0 5-18-84 1988.0 0.0016 1988.0 0.001 1988.0 6-01-84 0.0004 1988 .. 0 6-07-84 0.0002 1988.0 6-1.5-84 0.013 1988.6 6-18-84 0.0062 (No Data) RE:!V. 0 WOLF CR.EE:K TABLE 2.5-100 (Sheet 2 of 2) Cooling Lake Inspection Rat.e Elevation ______________ __ 6-22-84 6-27-84 6-28-84 0.0092 0.011 0.011 1988.0 (No Data) 1988.0 1. Elevations refe1: 1:o SNUPPS reference dat:um. 2. Flow rates were determined using a V notch The theoretical discharge over the by the cqua.i:ion: Q = 1.25H

    • Q is in ft /sec and H is in feet. weir. given where 3. Location of weir is shown on Fi9ure 2 .. 5--1.43. 4. Measured flow rates are plotted on Figure 2.5-145. 5. Unreliable data, since wat:er in the weir '#as frozen over. 6. 1 ft3/sec = 28320 ml/sec.}}