ML14259A302

From kanterella
Jump to navigation Jump to search
Relief Request SWOL-REP-1-U2: Submittal of Revised Areva Calculations. Part 3 of 15
ML14259A302
Person / Time
Site: Diablo Canyon Pacific Gas & Electric icon.png
Issue date: 09/15/2014
From:
AREVA
To:
Office of Nuclear Reactor Regulation
Shared Package
ML14259A323 List:
References
DCL-14-084 32-9219780-002
Download: ML14259A302 (59)


Text

Cant o n ed Document 0402-01-F01 (Rev. 018, 01/30/2014)

A AREVA CALCULATION

SUMMARY

SHEET (CSS) Document No. 32 -9219780 -002 Safety Related:

D No Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Title Non Proprietary PURPOSE AND

SUMMARY

OF RESULTS: PURPOSE: The purpose of this calculation is to qualify the Diablo Canyon Unit 2 safety/relief nozzle weld overlay design to the requirements specified in Reference

[5]. The purpose of Revision 001 is to revise proprietary markings.

The purpose of Revision 002 is to revise proprietary markings.

SUMMARY

OF RESULTS: The calculation demonstrate that the design of the Pressurizer safety/relief nozzle weld overlay for the Diablo Canyon Unit 2 meets the stress and fatigue requirements of the Design Code (Reference

[3]). Based on the loads and cycles specified in References

[6] and [8]. the conservative fatigue analysis indicates that Pressurizer safety/relief nozzle weld overlay design has the maximum usage factor of [ ] for specified number of cycles per Reference

[6] compared to the ASME Code allowed maximum value of 1.0. This document is the Non-Proprietary version of 32-9049114-005.

Proprietary information is contained within bold square brackets"[]".

Westinghouse proprietary information is contained within blue boxes. *The 108 pages include pages 1, 1A, 2 through 4, 4A, 5 through 106. THE FOLLOWING COMPUTER CODES HAVE BEEN USED IN THIS DOCUMENT:

CODENERSION/REV CODENERSION/REV ANSYS 11.0 (Rev. 000) ANSYS 14.0 (Rev. 002) THE DOCUMENTCONTAINS ASSUMPTIONS THAT SHALL BE VERIFIED PRIOR TO USE DYES Page 1 of 1 08*

Coritr---lled* D6curii-er1 A AREVA 0402-01-F01 (Rev. 018, 01/30/2014)

Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Review Method: Design Review (Detailed Check) D Alternate Calculation Signature Block P/RJA Name and Title and (printed or typed) Signature LP/LR Date Tom Riordan 12SEP2014 Engineer Ill p Samer Mahmoud R q -J 2-.Jl( Principal Engineer Tim M. Wiger A f/tz/;.; Manager '--' Note: P!RIA designates Preparer (P), Reviewer (R), Approver (A); LP/LR designates Lead Preparer (LP), Lead Reviewer (LR) Pages/Sections Prepared/Reviewed/Approved All Pages All Pages (Detailed Check) All Pages Project Manager Approval of Customer References (N/A if not applicable)

Name . Title (printed or typed) (printed or typed) Signature Date N/A N/A N/A N/A Mentoring Information (not required per 0402-01) Name Title Mentor to: (printed or typed) (printed or typed) (P/R) Signature Date N/A N/A N/A N/A N/A Page 1A A AREVA Document 0402-01-F01 (Rev. 018, 01/30/2014)

Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Record of Revision Revision Pages/Sections/Paragraphs No. Changed Brief Description I Change Authorization 000 All Original Release All Non-proprietary document for 32-9049114-003 001 CSS, page 1 Updated the purpose and summary. :Page 7 Deleted revision specific purposes Throughout Proprietary markings of material names removed. Appendix C Proprietary markings on schematic plots of indications removed. Non-proprietary document for 32-9049114-004 Throughout Added Westinghouse proprietary indicators.

005 Throughout Updated proprietary markings Non-proprietary document for 32-9049114-005 Page 2 Controlled Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Table of Contents Page SIGNATURE BLOCK ....................................................................................................................

1A RECORD OF REVISION ...................................................................................................................

2 TABLE OF CONTENTS ...........*..................*....................*......**........***.*.......................*............*.......*.*..............*.....

3 LIST OF FIGURES ...................................................................................................................................................

4 LIST OF TABLES ....................................................................................................................................................

5 ( 1 PURPOSE ......*..........*.................*.......*.*.**..*......**.*......*.*..*.........*.*........................*...................*..............***..*.*.*

? 2 ANALYTICAL 1\iETHODOLOGY

.................................................................................................................

8 3 KEY ASSUMPTIONS

.......................................................................................................................................

9 4 DESIGN IN"PUT .................................................................................................................................................

9 4.1 GEOMETRY .......................................................................................................................................

...........

9 4.2 FINITE* ELEl\ffiNT MODEL .............................................................................................................................

9 4.3 MATERIALS

...............................................................................................................................................

11 4.4 BoUNDARYCoNDmoNs

...........................................................................................................................

15 4.5 LOADS ..........................................................................................................................................

.............

18 4.5.1 E'(fernal Loads .........................................

..............................................................

..............................

18 4.5.2 Design Conditions

...............................................................................................................................

19 4.5.3 OperationalT'ransient Loads ...............................................................................................................

19 5 CALCULATION

...............................................................................................................................................

30 5.1 DESIGNCoNDmoN

...................................................................................................................................

30 5.2 THERMAL ANALYSIS .................................................................................................................................

32 5.3 STRESS ANALYSIS ......................................................................... , ...........................................................

53 5.4 ASME CODE CRITERIA .............................................................................................................................

60 5.4.1 ASME Code Prima1y Stress Intensity

{SI) Criteria .............................................................................. 60 5.4.2 ASME Code Primmy + Secondmy Sf Range and Fatigue Usage Criteria .........................................

60 6 RESULTS SUI\111\1ARY/CONCLUSIONS

.....................................................................................................

76 7 REFERENCES

.................................................................................................................................................

77 8 COMPUTER OUTPUT FILES ......................................................................................................................

78 APPENDIX A .............................................................................................................................................................

82 A-1 PURPOSE ...........................................................................................................................................................

83 A-2 STRESS AND TEMPERATURE EVALUATION

..........................................................................................

83 APPENDIX B-Comparison of ANSYS 11.0 and 14.0 Results .............................................................

85 APPENDIX C-Stresses for Safety Nozzle WOL Fracture Mechanics Analysis for Outage 2R17 .. 99 Page 3 Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary List of Figures Page Fig1.1re 1 Finite Element Model .....................................................................................................

10 Figure 2 Finite Element Model Details of Buttering, Nozzle to Safe End Weld, Safe End, Safe End to Pipe Weld and Weld Overlay) ...................................................................................

10 Figure 3 Smfaces for Thetmal Boundruy Conditions (Tetnperature)

...........................................

16 Figure 4 Surfaces for Stn1ctural Boundruy Conditions (Pressure)

...............................................

17 Fig1.u*e 5 Defotmed Shape vs. Un-Defonned Shape .....................................................................

30 Figure 6 Stress Intensity Contours for Design Condition

.............................................................

31 Figtu*e 7 Locations for Evaluation of Temperature Gradients

......................................................

33 Figure 8 Temperatures of Selected Locations (HUCD) ...............................................................

34 Figure 9 Thermal Gradients of Selected Locations (HUCD) .......................................................

35 Figure 10 Tetnperatures of Selected Locations (LDLI) ................................................................

36 Figure 11 Thetmal Gradients of Selected Locations (LDLI) ........................................................

37 Figure 12 Tetnperatures of Selected Locations (LLD) .................................................................

38 Figure 13 Thermal Gradients of Selected Locations (LLD) .........................................................

39 Figm*e 14 Temperatures of Selected Locations (LOL) ...........................................

......................

40 Figtue 15 Thetmal Gradients of Selected Locations (LOL) .........................................................

41 Figure 16 Tetnperatures of Selected Locations (LOP) .................................................................

42 Figt1re 17 Thetmal Gradients of Selected Locations (LOP) .........................................................

43 18 Tetnperatures of Selected Locations (LOF) .................................................................

44 Figm*e 19 Thetmal Gradients of Selected Locations (LOF) .........................................................

45 Figure 20 Temperatures of Selected Locations (RT) ....................................................................

46 Figm*e 21 Thetmal Gradients of Selected Locations (RT) ............................................................

47 Figure 22 Tetnperatures of Selected Locations (TRT) .................................................................

48 Figtire 23 Thermal Gradients of Selected Locations (TRT) .........................................................

49 Figure 24 Tetnperatures of Selected Locations (IASA) ...............................................................

50 Figm*e 25 Thermal Gradients of Selected Locations (IASA) .......................................................

51 Figm*e 26 Temperatures of Selected Locations (SVO) .................................................................

52 Figure 27 Thermal Gradients of Selected Locations (SVO) .......................................

  • ..................

53 Figure 28 Path Lines for Stress Analysis ......................................................................................

62 Figure 29 Partial Path Lines for Stress Analysis ..........................................................................

63 Figure A -1 Paths Defmed for Fracture Mechanics Evaluation

...................................................

84 Figure B-1 Stress Intensity Contours for Design Condition using ANSYS 14.0 .............................

85 Figure B-2 Temperature of Selected Locations (HUCD) using ANSYS 14.0 .................................

86 Figure B-3 Thermal Gradients of Selected Locations (HUCD) using ANSYS 14.0 ........................

87 Page.4 Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary List of Figures (continued)

Page Figure B-4 Temperature of Selected Locations (LDLI) using ANSYS 14.0 ...................................

88 Figure B-5 Thermal Gradients of Selected Locations (LDLI) using ANSYS 14.0 ..........................

89 Figure C-1 Safety Nozzle "A" Indication Plot ......................................................................................

99 Figure C-2 Safety Nozzle "B" Indication Plot ....................................................................................

1 00 Figure C-3 Safety Nozzle "C" Indication Plot ..... ; ..............................................................................

1 00 Figure C-4 Path Lines Defined for Fracture Mechanics Evaluation

...............................................

1 01 Figure C-5 Radial Stress at Time [ ] (hr) in HUCD ...................................................................

1 04 Figure C-6 Shear Stress at Time [ ] (hr) in HUCD ....................................................................

104 Figure C-7 Radial Stress at Time [ ] (hr) in HUCD ................................................................

1 05 Figure C-8 Shear Stress at Time [ ] (hr) in HUCD ..................................................................

1 05 Figure C-9 Radial Stress at Time [ ] (hr) in IASA ....................................................................

1 06 Figure C-10 Shear Stress at Time [ ] (hr) in IASA .............................................................

.106 Page 4A Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary List of Tables Page Table 1 Pressurizer Upper Head Material Properties

...................................................................

12 Table 2 Safety/Relief Nozzle Material Propet1ies

........................................................................

13 Table 3 Safe End Matetial Properties

...........................................................................................

13 Table 4 Safe End to Liner Weld, Nozzle to Safe End Weld and Buttering Material Propetties

.. 13 Table 5 Safe End to Pipe Weld, Cladding and Liner Matetial Properties

....................................

14 Table 6 Pipe Material Properties

...................................................................................................

14 Table 7 Weld Overlay Material Properties

...................................................................................

14 Table 8 Applicable Extetnal Loads ...............................................................................................

18 Table 9 Summary of External Loads ............................................................................................

18 Table 10 Transients for Safety/Relief Nozzles ................................. , ...........................................

19 Table 11 Heatup and Cooldown (HUCD) ....................................................................................

20 Table 12 Step Load Increase and Decrease (LILD) ......................................................................

21 Table 13 Large Step Load Decrease (LLD) ..................................................................................

22 Table 14 Loss of Load (LOL) .......................................................................................................

23 Table 15 Loss of Power (LOP) .....................................................................................................

24 Table 16 Loss of Flow (LOF) ......................................... , .............................................................

25 Table 17 Reactor Trip (RT) ..........................................................................................................

26 Table 18 Tm*bine Roll Test (TRT) ................................................................................................

27 Table 19 Inadvertent Auxiliaty Spray Actuation (IASA) .............................................................

28 Table 20 Safety/Relief Valve Opening Transient (SVO) .............................................................

29 Table 21 Temperature Gradients oflnterest

.................................................................................

32 Table 22 Time Points of Interest for the HUCD Transients

.........................................................

54 Table 23 Time Points of Interest for the LDLI Transients

...........................................................

55 Table 24 Time Points of Interest for the LLD Transients

.............................................................

56 Table 25 Time Points of Interest for the LOL Transients

.............................................................

57 Table 26 Time Points of Interest for the LOP Transients

.............................................................

57 Table 27 Time Points of Interest for the LOF Transients

.............................................................

58 Table 28 Time Points of Interest for the RT Transients

...............................................................

58 Table 29 Time Points of Interest for the TRT Transients

.............................................................

58 Table 30 Time Points of Interest for the IASA Transients

...........................................................

59 Table 31 Time Points of Interest for the SVO Transients

............................................................

59 Table 32 Path Lines for Linearized Stresses .......................................

.........................................

61 Table 33 Geometric Characteristics of Path Line Cross-Section

..................................................

64 Table 34 Maxitnum Primary + Secondary SI due to Extetnal Loads ...........................................

65 Page 5 ControUed Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary List of Tables (continued)

Page Table 35 Summary of Maximum Primary+ Seconda1y SI Ranges for Membrane+

Bending Stresses .............................................................................................................................

..... 67 Table 36 PATH9-outside node of Maximum Primary+ Secondary SI Range for Membrane+

Bending Stress Components

.................................................................................................

68 Table 3 7 Stress Category and FSRF in Fatigue Evaluation

..........................................................

69 Table 38 Relief/Safety Nozzle, Head Fatigue Usage Calculation

................................................

70 Table 39 Buttering, Nozzle to Safe End Weld Fatigue Usage Calculation

..................................

71 Table 40 Safe End Fatigue Usage Calculation

.............................................................................

72 Table 41 Safe End to Pipe Weld Fatigue Usage Calculation

........................................................

73 Table 42 Pipe Fatigue Usage Calculation

.....................................................................................

74 Table 43 Weld Overlay Fatigue Usage Calculation

.....................................................................

75 Table 44 Sullllllary of Results .......................................................................................................

76 Table 45 List of Relevant ANSYS Input and Output Files ..........................................................

78 Table A-1 Paths Description

.......................................................................... ............................

83 Table B-1 Computer Files .................................................................................................................

90 Table C-1 Path Lines Description

......................................................................................................

! 01 Page 6 Controned Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary 1 PURPOSE It is well recognized that the Alloy 600/82/182 dissimilar metal welds (DMW) are susceptible to the primaty water stress conosion cracking (PWSCC), especially those in high temperature components such as pressurizer nozzles. Pacific Gas and Elechic (PG&E) plans to mitigate the presstuizer nozzle Alloy 82/182 dissimilar metal welds (DMW) with structural weld overlays (SWOL) for the Diablo Canyon Unit 2 during the spring 2008 refueling outage for Unit 2. Since the three safety nozzles have the same dimensions with the relief nozzle (Reference

[ 1 ]), only one design is created based on the 1ninimum weld overlay design (Reference

[11]); the results also bounded maximum weld overlay design (Reference

[11 ]). Detailed sizing calculation of the weld overlay has been documented in Reference

[2] for the safety and relief nozzles. The pressurizer safety/relief nozzles are located on the upper head of the pressurizer.

The weld overlay is designed to cover both the Alloy 82/182 DMW and the austenitic stainless weld between the safe end and nozzle or piping. Application of weld overlays alters the local stress distribution.

A detailed finite element analysis (FEA) is therefore conducted to investigate stress conditions under Va.J.ious operational transients.

The results are summarized in this repot1 to certify that ctiteria per ASME Code Section ill for Class 1 components, Reference

[3], are satisfied for the pressurizer safety/relief nozzle with weld overlays.

The analysis is focused on the overlaid region for requirements on both stTess distribution and fatigue failure criterion.

The main scope of the analysis includes the piping, stainless steel weld between the safe end and piping, safe end, DMW between the safe end and nozzle, safety/relief nozzle and SWOL. In addition , post-processing of thermal and structural results is perfotmed to provide data for fracture analysis of the safety/relief nozzle (see Appendix A). It should be noted that the original safety/relief nozzle configuration without the weld overlay is not analyzed in this calculation.

The application of the SWOL will increase the secondary stress due to thennal gradients and added discontinuities at the SWOL to pipe, and SWOL to nozzle junctures.

The cumulative fatigue usage factors calculated in this document assume the safety/ relief nozzle SWOL has been in place since the plant conception.

Therefore, the usage factors calculated will be higher than the actual usage factors based on sumtning safety/relief nozzle's usage ptior to SWOL and usage with the SWOL. The purpose of this calculation is to qualify the weld overlay design to the requirement specified in Reference

[8]. The design is qualified to meet the criteria and fatigue requirements of the Reference

[3].

  • Page 7 ControUed Document A AREVA Document No.32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary 2 ANALYTICAL METHODOLOGY The general methodology of the stress analysis consists of: 1) Only the minimum SWOL will be modeled and evaluated.

Based on past experience , the stresses due to transients had minor differences between the n1aximum SWOL and 1ninin1um SWOL, and the minimum SWOL stresses due to external loads control over the maximum SWOL. Therefore, it is reasonable to evaluate the minimum SWOL only. 2) Building 2-D models of the safety/relief nozzle 1ninimum weld overlay and adjacent part of the pressurizer upper head. The model incorporates the geometry (of the adjacent upper head, nozzle , safe end, welds, weld overlay , pipe) of the pressurizer safety/relief nozzle (Reference

[ 1] & [ 11 ]), appropriate materials and boundary conditions.

The 2-D model is converted into a 2-D finite element model with axisymmetric elements that treat the 2-D 1nodel as if it were rotated 360° around the center axis. There are two fmite element models consisting of thermal and structural elements , respectively so as to enable the thermal and structural analysis using ANSYS 11.0 (Reference

[4]) 3) Applying the design conditions of the pressure and temperature to the structural finite element model and obtaining the deformation and stresses in the model. The deformation field is used to verify the correct behavior of the model and correct modeling of the boundary and load conditions. 4) Applying the thermal loads pertaining to the service level transients (in the form of transient temperatures and corresponding heat transfer coefficients versus time). Each of the major service level transients requires a separate run on the thermal fmite element model. 5) Reviewing the results of the thermal analysis by examining the magnitude of temperature difference between key locations of the model. The time points of the maximum temperature gradient are those at which the maximum thermal stresses develop. 6) Applying the corresponding mechanical (pressure) and thermal (nodal temperature) loads at each time point identified in step 4 to the structural finite element model. Since the weld overlay configuration contains layers of different materials having different coefficient of expansion, it is possible that one material is in compression and another is in tension due to thermal expansion.

The standard method in defining a path is to go from a free surface to a free surface. However , using tlus method and applying the mathematical equations that ANSYS uses to fmd the membrane and membrane + bending stresses, may average the stresses at the boundary of the two materials.

Since there is no guidance on how to evaluate sections with multiple materials , in addition to the free surface to free surface path, two partial paths (one in each material) are generated at the same location.

These paths will be used to check the 3Sm criteria and to obtain the maximum Ke factor. It is recognized that no continuous and progressive displacement can occur in one of the materials without the other _ material restraining that displacement.

Therefore this approach is very conservative.

7) Hand calculating the effects due to nozzle external loads and adding the resulting stresses to the stress results due to pressure and temperature effect. 8) Comparing the results to the ASME Code criteria for acceptability.
9) Docmnenting stresses and temperatures for the fracture mechanics analysis of the safety/relief nozzle weld overlay design. Page 8

.Document A A R EVA Document No. 32-9219780-002

[ Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary 3 KEY ASSUMPTIONS There are no major assumptions for this calculation.

Minor assumptions are noted where applicable.

4 DESIGN INPUT 4.1 Geometry Two weld overlay configurations are provided for the safety/relief nozzles (Reference

[II]) in tenns of the overlay size -the minimum and maximum weld overlay. The minimum weld overlay has a thickness of[ ]measured from the nozzle end outside surface , at the Alloy 82/182 DM weld and is tapered on to the pipe covering the weld at the safe end-pipe connection. 4.2 Finite Element Model One fmite element models is built based on the minimum weld overlay design. Model 1s developed with ANSYS 11.0 (Reference

[4]) and documented in the following computer file: DC2 _geo.out The 2-D model is meshed with the 8-node PLANE183 elements in the structural analysis and all ele1nents are replaced by the equivalent thennal elements PLANE77 in the thermal analysis.

The meshed model is shown in Figure I and Figure 2. J Finite element model is built with the liner attached to the inside surface of the nozzle. Where in the field the liner is inserted inside of the nozzle and welded at the ends. To study the effect of this discrepancy at the same analysis , the influence is negligible without any effect on fmal results. The largest contribution to the stresses is due to a thermal effect The interface between the inserted liner and the nozzle is considered to have a higher thermal conduction resistance than the fused cladding (modeled configuration).

This resistance could be significantly increased during a cool down transient when a separation of the liner and the nozzle could occur , decreasing thermal stresses. A sensitivity study was performed on similar nozzle to simulate the effect on stresses due to heat transfer reduction during the liner separation.

The sensitivity study concluded that the fused or inserted liners produced similar stresses (+/- 2 % difference which is negligible for this type of nozzle). Page 9 Document A AREVA Document No.32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Safe End to Liner Weld Nozzle Liner Safety/Relief Nozzle Pressurizer Upper Head Figure 1 Finite Element Model Safe End to Pipe Weld Safe End Nozzle to Safe End Weld Buttering Weld Overlay Figure 2 Finite Element Model Details of Buttering, Nozzle to Safe End Weld, Safe End, Safe End to Pipe Weld and Weld Overlay) Page 10 Controlled Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary

4.3 Materials

Reference

[ 5] provides the material designations and properties of the various components. Per the same reference, the material properties for the structural analysis shall be in accordance with ASl\.1E Code 1965 Edition including Addenda through Summer 1966 (Reference

[12]) for existing material and ASl\.1E Code 2001 Edition including Addenda through 2003 (Referenee

[3]) for weld filler material.

Since not all materials and material properties for existing components are provided by Reference

[12], later Addenda or Editions of the ASl\.1E Code (Referenee

[13], Reference

[14], and Reference

[15]) were used to determine the remaining material properties.

Pressurizer Upper Head Safety/Relief Nozzle Safe End Nozzle to Safe End Weld Buttering Weld Pipe Safe End to Pipe Weld Cladding Nozzle Liner Safe End to Liner Weld Weld Overlay (2) -SA-533, Grade A, Class 2 -SA-508, Class 2 -SA-182, F316L -Alloy 82 and 182 equivalent to Alloy 600 (SB-166) * -Alloy 82 and 182 equivalent to Alloy 600 (SB-166) -SA-376, TP 316 -SA-213 TP304 <1) ' -SA-213 TP 304 (1) ' -SA-213, TP 304 -Alloy 82 equivalent to alloy 600 (SB-166) -Alloy 52M equivalent to Alloy 690 (SB-166) Note (1): Per Ref. [5] par. 4.1.5 and 4.1.7 specifies that the cladding material properties should be equivalent to ER309 weld filler material and the existing pipe to safe end weld is E308 austenitic stainless steel. These materials are used for welding co1nponents with siniilar cheniical composition such as Type 304 (18Cr-8Ni) material.

Therefore material SA-213, TP304 is considered representative of these materials.

Note (2): Per Ref. [5] par. 4.2.2 specifies material (Alloy 82 and ER309L) for the "Barrier Layer." This very thin layer (0.065in., Reference

[11]) is not modeled in detail in this analysis and is covered by the weld overlay filler material.

The effect on the results is negligible.

The analysis herein uses the thermal properties -mean coefficient of thermal expansion (a), specific heat (C), thermal eonductivity (k) and the mechanical properties-modulus of elasticity (E), Poisson's ratio (!!), density (p ). These pertinent properties (thermal & structural) for the materials are listed in the following tables. Page 11 Controlled Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief. Nozzle Weld Overlay Structural Analysis-Non Proprietary Young's Modulus Poisson's Ratio Density Coefficient of Thermal Expansion Thermal Conductivity Specific Heat Design Stress Intensity Yield Strength E f.! p a k c Sm Sy [10 6 psi] [-] [lb/in3] [10-6 in/in-°F]

[Btu/hr-in-°F]

[Btu/lb-°F] [ksi] [ksi] Tensile Strength Su [ksi] (Cis a calculated value: C = k/(p

  • thermal diffusivity) where thermal diffusivity is taken from the same source as "k")
  • Note: Values for Coefficient of Thermal Expansion in Table 1 through Table 6 were taken frotn Reference

[13] (ASME Code, 1965 Edition including Addenda through Winter 1967) instead of the main source of the material properties

-Reference

[ 12] (ASME Code, 1965 Edition including Addenda through Summer 1966). The small negligible differences have no effect on the results in the documented analysis.

Table 1 PressuriZer Upper Head Material Properties SA-533, Grade A, Class 2 (C,Mn,Mo)

Temp I E I J.L I p I a I k I C I Sm I Sy I Su I Reference I [12] typical [16] [13] [15] I calculated I [14] [14] [14] Page 12 Co ntr o U ed Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Table 2 Safety/Relief Nozzle Material Properties SA-508, Class 2 (C, 1/2Mo,Cr,Ni)

Temp 1 E . I J.L I p I a I k J C J Sm I Sy I Su I Reference I [12] typical [16] [13] [15] I calculated I [13] [13] [13] Table 3 Safe End Material Properties SA-182, F316L (17Cr-12Ni-2Mo)

Temp I E I J.L I p I a I k I C I Sm I Sy I Su I Reference I [12] I typical I [16] I [13] I [15] I calculated I [12] I [12] I [12] Table 4 Safe End to Liner Weld, Nozzle to Safe End Weld and Buttering Material Properties Alloy 600, SB-166 (Ni-Cr-Fe)

Temp I E I J.L I p I a I k I C I Sm I Sy I Su I Reference. I [12] typical [16] [13] [15] I calculated I [13] [13] [13] Page 13 Cont r o ll ed Document A .AREV.A Document No.32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Table 5 Safe End to Pipe Weld, Cladding and Liner Material Properties SA-213, TP304 (18Cr-8Ni)

Temp I E I ll I p I a I k I c I Sm I Sy I Su Reference I [12] I typical I [16] I [13] I [15] I calculated I [12] I [12] I [12] Table 6 Pipe Material Properties SA-376, TP316 (16Cr-13Ni-3Mo)

Temp I E <1) I ll I p I a I k I C I Sm *I Sy I Su I Reference I [12] typical [16] [13] [15] I calculated I [12] [12] [12] Note (1): Small differences in E used in ANSYS input file have negligible impact on the results. Table 7 Weld Overlay Material Properties Alloy 690,58-166 (58Ni-29Cr-9Fe)

Temp I E I ll I p I a I k J C J Sm I Sy ( Su I Reference I [3] typical (16] [3] [3] I calculated I [3] (3] [3] Page 14 Contro ll ed Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary

4.4 Boundary

Conditions The model simulates , in 2-D space , a section of the safety/relief nozzle, safe end , related welds , pipe , and part of the adjacent pressurizer upper head. Thermal Analysis:

During operation , the inside surfaces of the Upper Head (INSHEAD), the inside surface of the Nozzle , Nozzle to Safe End Weld , Safe End , Safe End to Pipe Weld and Pipe (INSNOZ) are in contact with the pressurizer steam temperature. An appropriate heat transfer coefficient (HTC) and bulk temperature (BT) versus time is applied on these surfaces (Figure 3). The pressurizer steam temperature varies with time depending upon the service load condition that is being applied and is discussed further in section 4.5.3. The outside surfaces of the Upper Head , Nozzle , Pipe and Weld Overlay (OUTHEAD) are exposed to the ambient temperature in conjunction with a small HTC. The safety/relief nozzle is assumed to be insulated. A very small HTC o{ jJTU!hr-in 2 -F is used in this calculation.

Structural Analysis:

Pressurizer steam pressure is applied to all surfaces of these components:

INSHEAD, INSNOZ (Figure 3 and Figure 4). The upper end of the reducer (ENDCAP) has a pressure , p*, applied to represent the hydrostatic end load from the piping closure. The exteriors of the pressurizer head are not loaded by pressure.

Pressure p* is calculated as follows: P*d2 p*---D2 -d 2 Where: p = actual pressure applied d = ID of the pipe D = OD of the pipe The boundary conditions for the structural analysis are set to have zero displacement in the circtunferential direction (CF) (from the nozzle axis) (Figure 4). Page 15 Document A AREVA Document No.32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 3 Surfaces for Thermal Boundary Conditions (Temperature)

Page 16 Contro U ed Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 4 Surfaces for Structural Boundary Conditions (Pressure)

Page 17

.ControUed Document A AREVA Document No.32-9219780-002

-*---Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary

4.5 Loads

Loads applied to the n1odel include temperatures and heat transfer coefficients for the thermal analysis , and internal pressures for the structural analysis.

Exten1al forces and moments are evaluated by hand calculation and added to the results from the fmite element analysis.

4.5.1 External

Loads The applicable exten1al loads applied at the safe end are defined in Reference

[ 6] and [7]. The Thermal Expansion (TH), OBE and Valve Operating (VO) loads are listed in Table 8 and Table 9 and are further evaluated in Section 5.4.2.1 for pri1nary + secondary SI Ranges. Table 8 Applicable External Loads Note (I): Loads are enveloped from loads on page 8 , 9 , 10 and 11 of Reference

[6]. All other loads are taken from Table 2B of Reference

[6]. Table 9 Summary of External Loads Note (I): Shear is calculated as the SRSS ofFy and Fz. Note (2): Bending is as the SRSS of My and Mz. ----Page.18 Controlled Document A A R EV.A Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary

4.5.2 Design

Conditions Diablo Canyon Units 1 & 2 pressurizer is designed to satisfy the applicable ASME Code criteria at the design pressure of 2485 psig and temperature of 680°F are assunling.

These design conditions are simulated on the model by applying a unifonn and reference temperature of 680°F throughout the model (the temperature is used to determine the material properties and not for thermal expansion) and uniform pressure of 2485 psig on all inside surfaces of the model. Equivalent end cap pressure is also applied on the pipe cross-section.

4.5.3 Operational

Transient Loads The safety/relief nozzles are located on top of the pressurizer such that the inside surfaces are subjected to the pressurizer steam region thermal and pressure conditions.

The applicable Level A (Normal) and Level B (Upset) transients defmed in References

[6] and [8] are listed in Table 10 together with the corresponding number of cycles. Some transients such as Steady State Fluctuations and Boron Concentration Equalization are insignificant in fatigue evaluation and are neglected.

NB 3226 (e) of ASME Code (Ref. [3]) does not require evaluation for the first ten cycles of Testing Condition and therefore, Primary Hydro Test at 3107 psig (Ref. [6]) is not included in fatigue analysis.

The Safety Valve Opening and the Relief Valve Opening transients have the same trend , but Safety Valve Opening transient has higher pressure a temperature.

Since both transients cannot occur. at the same time , conservatively is used Safety Valve Opening transient to cover also Relief Valve Opening transient.

Plant Loading and Unloading transient Reference

[8] for safety/relief nozzles have the constant parameters (temperature and pressure);

therefore Plant Loading and Unloading transient is a steady state condition for safety/relief nozzles and does not affect present analysis.

Table 10 Transients for Safety/Relief Nozzles Abbreviation Transient Name Design Cycles HUCD Heatup at 1 00°F/hr [Normal] 250 Cooldown at 1 00°F/hr [Normal] LOLl 10% Step Load Decrease [Normal] 2,500 1 0% Step Load Increase [Normal] LLD Large Step Load Decrease [Normal] 250 LOL Loss of Load [Upset] 100 LOP Loss of Power [Upset] 50 LOF Loss of Flow [Upset] 100 RT Reactor Trip [Upset] 500 TRT Turbine Roll Test [Test] 10 lAS A Inadvertent Auxiliary Spray Actuation

[Normal] 12 Page 19 Controlled Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary SVO/RVO (1) Safety Valve Opening Transient I 50 Relief Valve Opening Transient LT (2) Leak Test at 2485 psig [Test] 60 OBE OBE 400 Note (I) see discussion above Table 10 *Note <2> Leak Test at 2485 ps i g is included in HUCD transient.

The following tables list the time points used in the thermal analysis. Table 11 Heatup and Cooldown (HUCD) '"" . I-I-1-1-1-1-1-I-I-1-1-'-r-.... ------

-


. . .. . Page 20 Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Table 12 Step Load Increase and Decrease (LILD) --I ------------------------


.. Page 21 Controlled Document A ARE V A Document No.32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary -. I .. -. I a e arge tep oa ecrease . T bl 13 L S L dO (LLD) . . Page 22 Co Document A A R EVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Table 14 Loss of Load (LOL) jiiiil -I"' . -. .. . Page 23 Controlled Document A AREV.A Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Table 15 Loss of Power (LOP) -r"' . I I I I I I[ J l Page 24 Controlled Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Table 16 Loss of Flow (LOF) -----------------------


r-r--. . Page 25 Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Table 17 Reactor Trip (RT) I"' . .. \ --.. Page 26 Controlled Document A AREVA Document No.32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Table 18 Turbine Rol Jest (TRT) I"' -. I I I --. . Page 27 Controlled Document A AREVA Document No.32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Table 19 Inadvertent Auxiliary Spray A lA A) ctuation ( s --I --.. Page 28 Controlled Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary T bl 20 S f t /R r f V I 0 T . t (SVO) a e a etVJ e1e ave IIJ epmg rans1en ,.. -I. -*Page 29 Controlled Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary 5 CALCULATION

5.1 Design

Condition Stress analysis of the model under the design pressure provides a basis for verification of the expected behavior of the model, the boundary and load conditions and verifies attenuation of stress effects at regions distant from the nozzle. The ANSYS output for the design condition is documented in the following ftle: DC2 _des _pres.out Figure 5 shows a deformed shape of the model under design pressure along with the defonned shape. The stress intensity contours developed in the model tmder design pressure case are shown in Figure 6. Figure 5 Deformed Shape vs. Un-Deformed Shape Page 30 Contro ll ed Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 6 Stress Intensity Contours for Design Condition Page 31 Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary

5.2 Thermal

Analysis The ANSYS input files containing the transient defmition, as tabulated in Table 11 to Table 20 are: HUCD tr.mac LDLI tr.mac LLD tr.mac LOL tr.mac LOP tr.tnac The ANSYS output files are listed as follows: Themml analysis:

DC2 HUCD th.out --DC2 LDLI th.out --DC2 LLD th.out --DC2 LOL th.out --DC2 LOP th.out --Temperature gradients:

DC2 HUCD dt.out --DC2 LDLI dt.out --DC2 LLD dt.out --DC2 LOL dt.out --DC2 LOP dt.out --LOF tr.mac RT tr.mac TRT tr.mac IASA tr.mac SVO tr.mac DC2 LOF th.out DC2 RT th.out DC2 TRT th.out --DC2 IASA th.out --DC2 SVO th.out --DC2 LOF dt.out DC2 RT dt.out DC2 TRT dt.out --DC2 IASA dt.out --DC2 SVO dt.out --The results of the thermal analyses are evaluated to identify the n1aximum and minimum temperature gradients between critical locations in the model and the corresponding time points. These temperature gradients generate n1aximum and nlinimum thermal stresses, which in turn contribute to maximum range of stress intensities in the model. The node numbers corresponding to the two locations for evaluation of temperature gradient are listed in Table 21. The locations are shown in Figure 7. Table 21 Temperature Gradients of Interest Gradient Node Numbers Description Designation A1_A2 1487 1600 Nozzle to head conjunction 81_82 1235 1483 OD change on nozzle C1_C2 1324 1452 Safe end weld to weld overlay 01 02 1574 1408 Safe end to weld overlay E1_E2 1790 285 Thickness change from pipe to weld overlay F1_F2 2145 2171 ID to OD head Page 32 Controlled Document A A.REVA Document No. 32-92.19780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 7 Locations for Evaluation of Temperature Gradients The temperatures of selected nodes versus transient time as well as the temperature gradients are shown in Figure 8 to Figure 27. These figures are provided to show the trend and for visual aid only. Specific data is taken from computer output files. Computer file "DC2 _ inp _ dt.mac contains definition of the node numbers for temperature and gradients calculation.

Page 33 Controlled Document A A.REVA. Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 8 Temperatures of Selected Locations (HUCD) Page 34 Contro U ed Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 9 Thermal Gradients of Selected Locations (HUCD) Page 35 Controlled Document A AREVA Document No.32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 10 Temperatures of Selected Locations (LOLl) Page 36 Controlled Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 11 Thermal Gradients of Selected Locations (LOLl) Page 37 Contro ll ed Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 12 Temperatures of Selected Locations (LLD) Page 38 Controlled Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 13 Thermal Gradients of Selected Locations (LLD) Page 39 C_ontrolied Docum nt A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 14 Temperatures of Selected Locations (LOL) Page 40 Controlled Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 15 Thermal Gradients of Selected Locations (LOL) Page 41 Controlled Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary

  • Figure 16 Temperatures of Selected Locations (LOP) Page 42 Controlled Document A AREVA Document No.32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 17 Thermal Gradients of Selected Locations (LOP) Page 43 Controlled Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 18 Temperatures of Selected Locations (LOF) Page 44 Controlled Document A AREVA Document No.32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 19 Thermal Gradients of Selected Locations (LOF) Page 45

. Controlled Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 20 Temperatures of Selected Locations (RT) Page 46 Controlled Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 21 Thermal Gradients of Selected Locations (RT) Page 47 Controlled Document A AREVA Document No.32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 22 Temperatures of Selected Locations (TRT) Page 48 Contro U ed Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 23 Thermal Gradients of Selected Locations (TRT) Page 49 Controlled Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 24 Temperatures of Selected Locations (IASA) Page 50 Controlled

  • Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 25 Thermal Gradients of Selected Locations (IASA) Page 51 Controlled Document A AREVA Document No.32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 26 Temperatures of Selected Locations (SVO) Page 52 Controlled Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Figure 27 Thermal Gradients of Selected Locations (SVO) 5.3 Stress Analysis Stress analyses are performed at the ti1ne points listed in Table 22 through Table 31. These time points include those at which the maximum temperature gradients (maxi1num thermal stresses) and the maximum and minimum pressures occur, as well as those of analytical interest.

The nodal temperature at the particular time points is read into the structural model directly from the result file of the thermal analysis.

The corresponding pressure is obtained by interpolation from Table 11 through Table 20. The con1puter output files for structural analyses are: DC2 HUCD st.out --DC2 _ LDLI _stout DC2 LLD stout --DC2 LOL stout --DC2 LOP st.out --DC2 LOF st.out DC2 RT stout DC2 TRT st.out --DC2 IASA stout --DC2 SVO st.out --Page 53 Controlled Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Table 22 Time Points of Interest for the HUCD Transients

---Page 54 Controlled Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Nozzle Weld Overlay Structural Analysis-Non Proprietary Table 23 Time Points of Interest for the LOLl Transients Page 55 Controlled Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Table 24 Time Points of Interest for the LLD Transients


Page 56 Controlled Document A AREVA Document No. 32-9219780-002 Diablo Canyon Unit 2 Pressurizer Safety/Relief Nozzle Weld Overlay Structural Analysis-Non Proprietary Table 25 Time Points of Interest for the LOL Transients


Table 26 Time Points of Interest for the LOP Transients

---Page 57