ML13053A214
ML13053A214 | |
Person / Time | |
---|---|
Site: | South Texas |
Issue date: | 10/31/2012 |
From: | Chen J, Freed A Westinghouse |
To: | Office of Nuclear Reactor Regulation |
References | |
NOC-AE-13002957 WCAP-17636-NP, Rev 0 | |
Download: ML13053A214 (273) | |
Text
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 WCAP-17636-NP October 2012 Revision 0 Analysis of Capsule W from the South Texas Project Nuclear Operating Company South Texas Unit 2 Reactor Vessel Radiation Surveillance Program Westinghouse
Enclosure NOC-AE-13002957 WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-17636-NP Revision 0 Analysis of Capsule W from the South Texas Project Nuclear Operating Company South Texas Unit 2 Reactor Vessel Radiation Surveillance Program Amy E. Freed*
Jianwei Chen*
October 2012 Reviewers: Elliot J. Long*
Materials Center of Excellence I Arzu Alpan*
Radiation Engineering and Analysis Approved: Frank C. Gift*, Manager Materials Center of Excellence I
- Electronically Approved Records Are Authenticated in the Electronic Document Management System.
Westinghouse Electric Company LLC 1000 Westinghouse Drive Cranberry Township, PA 16066
© 2012 Westinghouse Electric Company LLC All Rights Reserved
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 iii RECORD OF REVISION Revision 0: Original Issue WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 v TABLE OF CONTENTS L IST OF TA B L ES ...................................................................................................................................... vii LIST OF FIGURES ................................................................................. ix EX EC U TIV E SUM MARY .......................................................................................................................... xi 1 SUM M ARY O F R ESU LTS ........................................................... .............................................. 1-1 2 IN TRO DU C T ION ........................................................................................................................ 2-1 3 BACKGROUND ......................................................... 3-1 4 DESCRIPTION OF PROGRAM .............................................................................................. 4-1 5 TESTING OF SPECIMENS FROM CAPSULE W .................... ............................... !............ 5-1 5.1 O V ERV IE W ................................................................................................................... 5-1
.5.2 CHARPY V-NOTCH IMPACT TEST RESULTS ........................................................... 5-2 5.3 TEN SILE TEST RESU LTS ............................................................................................ 5-4 5.4 1/2T COMPACT TENSION SPECIMEN TESTS ........................................................... 5-4 6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY ....................................................... 6-1 6.1 IN TR OD U C TIO N ............................................................................................................ 6-1 6.2 DISCRETE ORDINATES ANALYSIS .......................................................................... 6-2 6.3 N EU TRON D O SIM ETRY .............................................................................................. 6-5 6.4 CALCULATIONAL UNCERTAINTIES .................................. 6-5 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE ....................................................... 7-1 8 RE FEREN C E S ............................................................................................................................. 8-1 APPENDIX A VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY MEASUREMENTS ........................................................................... A-i APPENDIX B LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS ................................ B-I APPENDIX C CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD ...................................... C-i APPENDIX D SOUTH TEXAS UNIT 2 SURVEILLANCE PROGRAM CREDIBILITY E VAL UATIO N ............................................................................................................... D -i APPENDIX E SOUTH TEXAS UNIT 2 UPPER-SHELF ENERGY EVALUATION ...................... E-I WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 vii LIST OF TABLES Table 4-1 Chemical Composition (wt%) of South Texas Unit 2 Reactor Vessel Surveillance M aterials (U nirradiated)(a) ........................................................................................... 4-3 Table 4-2 Heat Treatment History of the South Texas Unit 2 Reactor Vessel Surveillance M aterials(a) ....... ............................................................................................................... 4-4 Table 5-1 Charpy V-notch Data for the South Texas Unit 2 Intermediate Shell Plate R2507-1 Irradiated to a Fluence of 4.201 x 1019 n/cm 2 (E > 1.0 MeV) (Longitudinal Orientation)
. .......................... ............................................................................................................. 5 -5 Table 5-2 Charpy V-notch Data for the South Texas Unit 2 Intermediate Shell Plate R2507-1 Irradiated to a Fluence of 4.201 x i019 n/cm 2 (E > 1.0 MeV) (Transverse Orientation)..5-6 Table 5-3 Charpy V-notch Data for the South Texas Unit 2 Surveillance Program Weld Metal (Heat*
- 90209) Irradiated to a Fluence of 4.201 x 1019 n/cm 2 (E > 1.0 MeV) ............ 5-7 Table 5-4 Charpy V-notch Data for the South Texas Unit 2 Heat-Affected Zone (HAZ) Material Irradiated to a Fluence of 4.201 x 1019 n/cm 2 (E > 1.0 MeV) .......................................... 5-8 Table 5-5 Instrumented Charpy Impact Test Results for the South Texas Unit 2 Intermediate Shell Plate R2507-1 Irradiated to a Fluence of 4.201 x 1019 n/cm 2 (E > 1.0 MeV)
(Longitudinal O rientation) ............................................................................................... 5-9 Table 5-6 Instrumented Charpy Impact Test Results for the South Texas Unit 2 Intermediate Shell Plate R2507-1 Irradiated to a Fluence of 4.201 x 1019 n/cm 2 (E > 1.0 MeV)
(Transverse Orientation) ................................................................................................ 5-10 Table 5-7 Instrumented Charpy Impact Test Results for the South Texas Unit 2 Surveillance Program Weld Metal (Heat # 90209) Irradiated to a Fluence of 4.201 x 1019 n/cm 2 (E >
1.0 M eV ) ................. ........................................................................................................ 5-11 Table 5-8 Instrumented Charpy Impact Test Results for the South Texas Unit 2 Heat-Affected Zone (HAZ) Material Irradiated to a Fluence of 4.201 x 1019 n/cm 2 (E > 1.0 MeV) .............. 5-12 Table 5-9 Effect of Irradiation to 4.201 x 1019 n/cm 2 (E > 1.0 MeV) on the Charpy V-Notch Toughness Properties of the South Texas Unit 2 Reactor Vessel Surveillance Capsule W M aterials ........................................................................................................................ 5-13 Table 5-10 Comparison of the South Texas Unit 2 Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper-Shelf Energy Decreases with Regulatory Guide 1.99, R evision 2, Predictions .................................................................................................. 5-14 Table 5-11 Tensile Properties of the South Texas Unit 2 Capsule W Reactor Vessel Surveillance Materials Irradiated to 4.201 x 1019 n/cm 2 (E > 1.0 MeV) ............................................. 5-15 Table 6-1 Calculated Neutron Exposure Rates and Integrated Exposures at the Surveillance C apsule C enter(a) .............................................................................................................. 6-7 Table 6-2 Calculated Azimuthal Variation of Maximum Exposure Rates and Integrated Exposures at the Reactor Vessel Clad/Base M etal Interface .............................................................. 6-11 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 viii Westinghouse Non-Proprietary Class 3 Table 6-3 Calculated Fast Neutron Exposure of Surveillance Capsules Withdrawn from South Texas U nit 2 .............................................................................................................................. 6 -15 Table 6-4 Calculated Surveillance Capsule Lead Factors .............................................................. 6-16 Table 7-1 Surveillance Capsule W ithdrawal Schedule .................................................................... 7-1 Table A-1 Nuclear Parameters Used in the Evaluation of Neutron Sensors ............................. A-10 Table A-2 Monthly Thermal Generation During the First Fifteen Fuel Cycles of the South Texas Unit 2 Reactor (Reactor Power of 3800 MWt from Startup Through the End of Cycle 9; uprate from 3800 MWt to 3853 MWt at the beginning of Cycle 10; and, 3853 MWt for C ycles 11 through 15) .............................................................................................. A -11 Table A-3 Calculated Cj Factors at the Surveillance Capsule Center Core Midplane Elevation... A- 14 Table A-4a Measured Sensor Activities and Reaction Rates Surveillance Capsule V ............... A- 16 Table A-4b Measured Sensor Activities and Reaction Rates Surveillance Capsule Y ..... :......... A- 17 Table A-4c Measured Sensor Activities and Reaction Rates Surveillance Capsule U ................ A-18 Table A-4d Measured Sensor Activities and Reaction Rates Surveillance Capsule W ............... A- 19 Table A-5 Comparison of Measured, Calculated, and Best-Estimate Reaction Rates at the Surveillance Capsule C enter ......................................................................................... A-20 Table A-6 Comparison of Calculated and Best-Estimate Exposure Rates at the Surveillance C apsule C enter ........................................................................................ A-22 Table A-7 Comparison of Measured/Calculated (M/C) Sensor Reaction Rate Ratios Including all Fast N eutron Threshold Reactions...............................................
.................................. A-23 Table A-8 Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios ..................... A-23 Table C-I Upper-Shelf Energy Values (ft-lb) Fixed in CVGRAPH ............................................. C-i Table D- 1 Calculation of Interim Chemistry Factors for the Credibility Evaluation using South Texas Unit 2 Surveillance Capsule Data ................... .................................................... D-4 Table D-2 South Texas Unit 2 Surveillance Capsule Data Scatter about the Best-Fit Line ............. D-5 Table E-1 Predicted Positions 1.2 and 2.2 Upper-Shelf Energy Values at 34 EFPY ....................... E-3 Table E-2 Predicted Positions 1.2 and 2.2 Upper-Shelf Energy Values at 54 EFPY ....................... E-4 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 ix LIST OF FIGURES Figure 4-1 Arrangement of Surveillance Capsules in the South Texas Unit 2 Reactor Vessel .......... 4-5 Figure 4-2 Capsule W Diagram Showing the Location of Specimens, Thermal Monitors, and D osim eters ................................................................................................................ 4 -6 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Longitudinal Orientation) ....................................... 5-16 Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Longitudinal Orientation) ............................ 5-17 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Longitudinal Orientation) ............................... 5-18 Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Transverse Orientation) .................... 5-19 Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Transverse Orientation) ............................... 5-20 Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Transverse Orientation) .......................................... 5-21 Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for the South Texas Unit 2 Reactor Vessel Surveillance Program Weld Metal (Heat # 90209) ............................................. 5-22 Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for the South Texas Unit 2 Reactor Vessel Surveillance Program Weld Metal (Heat # 90209) ............................................. 5-23 Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for the South Texas Unit 2 Reactor Vessel Surveillance Program Weld Metal (Heat # 90209) ........................................................ 5-24 Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for the South Texas Unit 2 Reactor Vessel Heat-Affected Zone Material .................................... 5-25 Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for the South Texas Unit 2 Reactor Vessel H eat-Affected Zone M aterial ............................. ................................................ 5-26 Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for the South Texas Unit 2 Reactor Vessel H eat-A ffected Zone M aterial ......................................................................................... 5-27 Figure 5-13 Charpy Impact Specimen Fracture Surfaces for South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Longitudinal Orientation) ....................................... 5-28 Figure 5-14 Charpy Impact Specimen Fracture Surfaces for South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Transverse Orientation) .......................................... 5-29 Figure 5-15 Charpy Impact Specimen Fracture Surfaces for the South Texas Unit 2 Reactor Vessel Surveillance Program Weld Metal (Heat # 90209) ........................................................ 5-30 Figure 5-16 Charpy Impact Specimen Fracture Surfaces for the South Texas Unit 2 Reactor Vessel H eat-A ffected Zone Material ......................................................................................... 5-31 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 x Westinghouse Non-Proprietary Class 3 Figure 5-17 Tensile Properties for South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Longitudinal Orientation) .......................................................................................... 5-32 Figure 5-18 Tensile Properties for South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Transverse O rientation) ............................................................................................. 5-33 Figure 5-19 Tensile Properties for the South Texas Unit 2 Reactor Vessel Surveillance Program Weld M etal (H eat # 90209) .............................. *................................................................. 5-34 Figure 5-20 Fractured Tensile Specimens from South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Longitudinal Orientation) ..................................................................... 5-35 Figure 5-21 Fractured Tensile Specimens from South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Transverse Orientation) ........................................................................ 5-36 Figure 5-22 Fractured Tensile Specimens from the South Texas Unit 2 Reactor Vessel Surveillance Program W eld M etal (H eat # 90209) ............................................................................. 5-37 Figure 5-23 Engineering Stress-Strain Curves for South Texas Unit 2 Intermediate Shell Plate R2507-1 Tensile Specimens HL7, HL8 and HL9 (LoAgitudinal Orientation) ...................... 5'38 Figure 5-24 Engineering Stress-Strain Curves for South Texas Unit 2 Intermediate Shell Plate R2507-1 Tensile Specimen HT7, HT8, and HT9 (Transverse Orientation) .............................. 5-39 Figure 5-25 Engineering Stress-Strain Curve for South Texas Unit 2 Surveillance Program Weld Metal (Heat # 90209) Tensile Specimen HW7, HW8, and HW9 .................................. 5-40 Figure 6-1 South Texas Unit 2 r,0 Reactor Geometry with a 12.5' Neutron Pad Span at the C ore M idplane .............................................................................................................. 6-17 Figure 6-2 South Texas Unit 2 r,0 Reactor Geometry with a 20.00 Neutron Pad Span at the C ore M idplane ............................................................................................................... 6-18 Figure 6-3 South Texas Unit 2 r,0 Reactor Geometry with a 22.5' Neutron Pad Span at the C ore M idplane ............................................................................................................... 6-19 Figure 6-4 South Texas Unit 2 rz Plane with Neutron Pad at 350 Azimuthal Angle ................ 6-.20 Figure 6-5 South Texas Unit 2 r,z Plane with Surveillance Capsule and Neutron Pad at 290 A zim uthal A ngle ............................................................................................................ 6-2 1 Figure E-1 Regulatory Guide 1.99, Revision 2 Predicted Decrease in Upper-Shelf Energy as a Function of Copper and Fluence ..................................................................................... E-2 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 xi EXECUTIVE
SUMMARY
The purpose of this report is to document the testing results of surveillance Capsule W from South Texas Unit 2. Capsule W was removed at 18.30 EFPY and post-irradiation mechanical tests of the Charpy V-notch and tensile specimens were performed. Upon opening Capsule W, all the internal ferritic steel components were corroded indicating that the capsule enclosure leaked; however, the corrosion on the specimens was not enough to cause inaccurate mechanical test results. A fluence evaluation utilizing the neutron transport and dosimetry cross-section libraries was derived from the ENDF/B-VI database.
Capsule W received a fluence of 4.201 x 1019 n/cm 2 (E > 1.0 MeV) after irradiation to 18.30 EFPY. The 2
peak clad/base metal interface vessel fluence after 18.30 EFPY of plant operation was 1.38 x 1019 n/cm (E > 1.0 MeV).
This evaluation led to the following conclusions: 1) The measured percent decreases in upper-shelf energy for all the surveillance materials contained in South Texas Unit 2 Capsule W are less than the Regulatory Guide 1.99, Revision 2 [Ref. 1] predictions. 2) The South Texas Unit 2 surveillance plate and weld data are judged to be credible. This credibility evaluation can be found in Appendix D. 3) All beltline materials exhibit a more than adequate upper-shelf energy level for continued safe plant operation and are predicted to maintain an upper-shelf energy greater than 50 ft-lb through end-of-license (34 EFPY) and end-of-license renewal (54 EFPY) as required by 10 CFR 50, Appendix G [Ref. 2]. The upper-shelf energy evaluation is presented in Appendix E.
Lastly, a brief summary of the Charpy V-notch testing can be found in Section 1. All Charpy V-notch data was plotted using a symmetric hyperbolic tangent curve-fitting program.
October 2012 WCAP-1 7636-NP WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 1-1 1
SUMMARY
OF RESULTS The analysis of the reactor vessel materials contained in surveillance Capsule W, the fourth capsule removed and tested from the South Texas Unit 2 reactor pressure vessel, led to the following conclusions:
" Charpy V-notch test data were plotted using a symmetric hyperbolic tangent curve-fitting program.
Appendix C presents the CVGRAPH, Version 5.3, Charpy V-notch plots for Capsule W and previous capsules, along with the program input data.
" Capsule W received an average fast neutron fluence (E > 1.0 MeV) of 4.201 x10 1 9 n/cm 2 after 18.30 effective full power years (EFPY) of plant operation.
- Irradiation of the reactor vessel Intermediate Shell Plate R2507-1. Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction (longitudinal orientation), resulted in an irradiated 30 ft-lb transition temperature of -2.6°F and an irradiated 50 ft-lb transition temperature of 34.1 °F. This results in a 30 ft-lb transition temperature increase of 35.3°F and a 50 ft-lb transition temperature increase of 41.3°F for the longitudinally oriented specimens.
- Irradiation of the reactor vessel Intermediate Shell Plate R2507-1 Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major working direction (transverse orientation), resulted in an irradiated 30 ft-lb transition temperature of 56.6°F and an irradiated 50 ft-lb transition temperature of 89.57F. This results in a 30 ft-lb transition temperature increase of 74.91F and a 50 ft-lb transition temperature increase of 71.2°F for the transversely oriented specimens.
" Irradiation of the Surveillance Program Weld Metal (Heat # 90209) Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 12.3°F and an irradiated 50 ft-lb transition temperature of 49.31F. This results in a 30 ft-lb transition temperature increase of 26.4°F and a 50 ft-lb transition temperature increase of 37.3°F.
" Irradiation of the Heat-Affected Zone (HAZ) Material Charpy specimens resulted in an irradiated 30 ft-lb transition temnperature of -54.5°F and an irradiated 50 ft-lb transition temperature of -14.5°F.
This results in a 30 ft-lb transition temperature increase of 55.8°F and a 50 ft-lb transition temperature increase of 67.2°F.
- The average upper-shelf energy of Intermediate Shell Plate R2507-1 (longitudinal orientation) resulted in an average energy decrease of 4.0 ft-lb after irradiation. This results in an irradiated average upper-shelf energy of 134.0 ft-lb for the longitudinally oriented specimens.
- The average upper-shelf energy of Intermediate Shell Plate R2507-1 (transverse orientation) resulted in an average energy decrease of 6.0 ft-lb after irradiation. This results in an irradiated average upper-shelf energy of 93.0 ft-lb for the transversely oriented specimens.
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 1-2 Westinghouse Non-Proprietary Class 3
- The average upper-shelf energy of the Surveillance Program Weld Metal (Heat # 90209). Charpy specimens resulted in an average energy, decrease of 3.0 ft-lb after irradiation. This results in an irradiated average upper-shelf energy of 94.0 ft-lb for the weld metal specimens.
- The average upper-shelf energy of the HAZ Material Charpy specimens resulted in an average energy decrease of 16.0 ft-lb after irradiation. This results in an irradiated average upper-shelf energy of 130.0 ft-lb for the HAZ Material.
Comparisons of the measured 30 ft-lb shift in transition temperature values and upper-shelf energy decreases to those predicted by Regulatory Guide 1.99, Revision 2 [Ref. 1] for the South Texas Unit 2 reactor vessel surveillance materials are presented in Table 5-10.
- Based on the credibility evaluation presented in Appendix D, the South Texas Unit 2 surveillance plate and weld data are credible.
- Based on the upper-shelf energy evaluation in Appendix E, all beltline materials contained in the South Texas Unit 2 reactor vessel exhibit a more than adequate upper-shelf energy level for continued safe plant operation and are predicted to maintain an upper-shelf energy greater than 50 ft-lb through end-of-license (34 EFPY) and end-of-license renewal (54 EFPY) as required by 10CFR50, Appendix G [Ref. 2].
" The calculated 34 EFPY (end-of-license) and 54 EFPY (end-of-license renewal) neutron fluence (E > 1.0 MeV) at the core mid-plane for the South Texas Unit 2 reactor vessel using the Regulatory Guide 1.99, Revision 2 attenuation formula (i.e.; Equation #3 in the Guide) are as follows:
Calculated (34 EFPY): Vessel inner radius* = 2.50 x 10' 9 n/cm 2 (Taken from Table'6-2)
Vessel 1/4 thickness = 1.49 x 1019 n/cm 2 Calculated (54 EFPY): Vessel inner radius* = 3.91 x 1019 n/cm 2 (Taken from Table 6-2)
Vessel 1/4 thickness = 2.33 x 1019 n/cm2
- Clad/base metal interface.
October 2012 WCAP-17636-NP WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 2-1 2 INTRODUCTION This report presents the results of the examination of Capsule W, the fourth capsule removed and tested in the continuing surveillance program, which monitors the effects of neutron irradiation on the South Texas Project South Texas Unit 2 reactor pressure vessel materials under actual operating conditions.
The surveillance program for the South Texas Unit 2 reactor pressure vessel materials was designed and recommended by the Westinghouse Electric Corporation. A description of the surveillance program and the pre-irradiation mechanical properties of the reactor vessel materials are presented in WCAP-9967
[Ref. 3], "Houston Lighting & Power Company South Texas Project Unit No. 2 Reactor Vessel Radiation Surveillance Program." The surveillance program was planned to cover the 40-year design life of the reactor pressure vessel and was based on ASTM E185-79 [Ref. 4], "Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels." Capsule W was removed from the reactor after 18.30 EFPY of exposure and shipped to the Westinghouse Materials Center of Excellence Hot Cell Facility, where the post-irradiation mechanical testing of the Charpy V-notch impact and tensile surveillance specimens was performed.
This report summarizes the testing of the post-irradiation data obtained from surveillance Capsule W removed from the South Texas Unit 2 reactor vessel and discusses the analysis of the data.
October 2012 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 3-1 3 BACKGROUND The ability of the large steel pressure vessel containing the reactor core and its primary coolant to resist fracture constitutes an important factor in ensuring safety in the nuclear industry. The beltline region of the reactor pressure vessel is the most critical region of the vessel because it is subjected to significant fast neutron bombardment. The overall effects of fast neutron irradiation on the mechanical properties of low-alloy, ferritic pressure vessel steels such as SA533 Grade B Class 1 (base material of the South Texas Unit 2 reactor pressure vessel beltline) are well documented in the literature. Generally, low-alloy ferritic materials show an increase in hardness and tensile properties and a decrease in ductility and toughness during high-energy irradiation.
A method for ensuring the integrity of reactor pressure vessels has been presented in "Fracture Toughness Criteria for Protection Against Failure," Appendix G to Section XI of the ASME Boiler and Pressure Vessel Code [Ref. 5]. The method uses fracture mechanics concepts and is based on the reference nil-ductility transition temperature (RTNDT).
RTNDT is defined as the greater of either the drop-weight nil-ductility transition temperature (NDTT per ASTM E208 [Ref. 6]) or the temperature 60'F less than the 50 ft-lb (and 35-mil; lateral expansion) temperature as determined from Charpy specimens oriented perpendicular (transverse) to the major working direction of the plate. The RTNDT of a given material is used to index that material to a reference stress intensity factor curve (KI, curve) which appears in Appendix G to Section XI of the ASME Code
[Ref. 5]. The Klc curve is a lower bound of static fracture toughness results obtained from several heats of pressure vessel steel. When a given material is indexed to the K1c curve, allowable stress intensity factors can be obtained for this material as a function of temperature. Allowable operating limits can then be determined using these allowable stress intensity factors.
RTNDT and, in turn, the.operating limits of nuclear power plants can be adjusted to account for the effects of radiation on the reactor vessel material properties. The changes in mechanical properties of a given reactor pressure vessel steel, due to irradiation, can be monitored by a reactor vessel surveillance program, such as the South Texas Unit 2 reactor vessel radiation surveillance program, in which a surveillance capsule is periodically removed from the operating nuclear reactor and the encapsulated specimens are tested. The increase in the average Charpy V-notch 30 ft-lb temperature (ARTlNrT) due to irradiation is added to the initial RTNDT, along with a margin (M) to cover uncertainties, to adjust the RTNDT (ART) for radiation embrittlement. This ART (initial RTNDT + M + ARTNDT) is used to index the material to the K1 , curve and, in turn, to set operating limits for the nuclear power plant that take into account the effects of irradiation on the reactor vessel materials.
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 4-1 4 DESCRIPTION OF PROGRAM Six surveillance capsules for monitoring the effects of neutron exposure on the South Texas Unit 2 reactor pressure vessel core region (beltline) materials were inserted in the reactor vessel prior to initial plant startup. The six capsules were positioned in the reactor vessel between the neutron pads and the vessel wall as shown in Figure 4-1. The vertical center of the capsules is opposite the vertical center of the core.
The capsules contain specimens made from the following:
" Intermediate Shell Plate R2507-1 (longitudinal orientation)
" Intermediate Shell Plate R2507-1 (transverse orientation)
" Weld metal fabricated with Type B-4 weld wire, Heat Number 90209, Linde Type 124 flux, Lot Number 1061, which is identical to that used in the actual fabrication of the intermediate to lower shell circumferential weld seam and the lower shell longitudinal weld seams
- Weld heat-affected zone (HAZ) material of Intermediate Shell Plate R2507-1 Test material obtained from the intermediate shell plate (after thermal heat treatment and forming of the
.,plate) was taken at least one plate thickness from the quenched edges of the plate. All test specimens were machined from the 1/4 thickness location of the plate after performing a simulated post-weld stress-relieving treatment on the test material. Test specimens were also removed from weld and heat-affected zone metal of a stress-relieved weldment joining Intermediate Shell Plate R2507-1 and adjacent Intermediate Shell Plate R2507-2. All heat-affected zone specimens were obtained from the weld heat-affected zone of Intermediate Shell Plate R2507-1.
Charpy V-notch impact specimens from Intermediate Shell Plate R2507-1 were machined in the longitudinal orientation (longitudinal axis of the specimen parallel to the major rolling direction) and also in the transverse orientation (longitudinal axis of the specimen perpendicular to the major rolling direction). The core-region weld Charpy impact specimens were machined from the weldment such that the long dimension of each Charpy specimen was perpendicular (normal) to the weld direction. The notch of the weld metal Charpy specimens was machined such that the direction of crack propagation in the specimen was in the welding direction.
Tensile specimens from Intermediate Shell Plate R2507-1 were machined in both the longitudinal and transverse orientations. Tensile specimens from the weld metal were oriented perpendicular to the welding direction.
Compact Tension (CT) specimens from Intermediate Shell Plate R2507-1 were machined in the longitudinal and transverse orientations. CT specimens from the weld metal were machined with the notch oriented in the direction of welding. All specimens were fatigue pre-cracked according to ASTM E399 [Ref. 7].
'All six capsules were to contain dosimeter wires of pure iron, copper, nickel, and aluminum-0.15 weight percent cobalt (cadmium-shielded and unshielded). In addition, cadmium-shielded dosimeters of Neptunium ( 23 7Np) and Uranium ( 238U) were placed in the capsules to measure the integrated flux at specific neutron energy levels.
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 4-2 Westinghouse Non-Proprietary Class 3 The capsules were to contain thermal monitors made from two low-melting-point eutectic alloys, which were sealed in Pyrex tubes. These thermal monitors were used to define the maximum temperature attained by the test specimens duringirradiation. The composition of the two eutectic alloys and their melting points are as follows:
2.5% Ag, 97.5% Pb Melting Point: 579°F (304'C) 1.5% Ag, 1.0% Sn, 97.5% Pb Melting Point: 590'F (310°C)
I The chemical composition and heat treatment of the unirradiated surveillance materials is presented in Tables 4-1 and 4-2, respectively. The data in Tables 4-1 and 4-2 was obtained from the original surveillance program report, WCAP-9967 [Ref. 3], Appendix A.
Capsule W was removed after 18.30 effective full power years (EFPY) of plant operation. This capsule contained Charpy V-notch, tensile, 1/2T-CT fracture mechanics specimens, dosimeters, and a thermal monitor.
The arrangement of the various mechanical specimens, dosimeters and thermal monitors contained in Capsule W is shown in Figure 4-2.
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 4-3 Table 4-1 Chemical Composition (wt%) of South Texas Unit 2 Reactor Vessel Surveillance Materials (Unirradiated)(a),
.22 U.U12 Mn 1.55 1.45 P 0.006 0.010 S 0.012 0.011 Si 0.21 0.38 Ni 0.65 0.15 Mo 0.56 0.53 Cr 0.05 0.12 Cu 0.04 0.01 Al 0.021 0.012 Co 0.011 0.013 Pb < 0.001 0.001 W < 0.01 0.005 Ti < 0.01 < 0.01 Zr 0.001 < 0.001 V 0.002 < 0.002 Sn < 0.001 < 0.001 As 0.014 0.003 Cb < 0.01 < 0.001 N2 0,009 0.004 B < 0.001 < 0.001 Notes:
(a) Data obtained from WCAP-9967 [Ref. 3].
(b) Weld Wire Type B4, Heat Number 90209, Flux Type Linde 124, and Flux Lot Number 1061. Surveillance Weldment is from the weld between the Intermediate Shell Plates R2507-1 and R2507-2.
WCAP-17636-NP October 2012 Revision 0
Enclosure' NOC-AE-13002957 4-4 Westinghouse Non-Proprietary Class 3 Table 4-2 Heat Treatment History of the South Texas Unit 2 Reactor Vessel Surveillance Materials(a)
Austenitized @ 1600 + 25 4 hrs. Water-Quenched (871 0C)
Intermediate Shell Plate Tempered @1225+/-25 4 hrs. Air-Cooled R2507-1 (663-C) I I Stress Relieved @ 1150 + 50 10.5 hrs. Furnace-Cooled (621-C)
Surveillance Program Weld Stress Relieved @ 1150 +/- 50 8 hrs. Furnace-Cooled Metal (Heat # 90209) (621 C)
Note:
(a) Data obtained from WCAP-9967 [Ref. 3].
WCAP-1 7636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 4-5 Da CORE BARREL NEUTRON PAD 4301,5"1 Z APSULE u (58,5s)
V 61 o) 270.
t241 -) Y W. j 21.5
'238.54) X REACTOR VESSEL 1800 PLAN VIEW ELEVATION VIEW Figure 4-1 Arrangement of Surveillance Capsules in the South Texas Unit 2 Reactor Vessel WCAP-17636-NP October 2012 Revision 0
4-6 Westinghouse Non-Proprietary Class 3 4-6 Westinghouse Non-Proprietary Class 3
-. 15RICo LEGEND: HL - INTERMEDIATE SHELL PLATE R2507-1 (LONGITUDINAL) Ii ;i .
HT - INTERMEDIATE SHELL PLATE R2507-1 (TRANSVERSE) Fe -
- 579*F_
HW - WELD METAL (HEAT # 90209) MONITOR 1-7-'--Al-'5%CI (Cd)
HH - HEAT-AFFECTED ZONE MATERIAL N, Large Spacer Tensiles Compacts Compacts Ch---Charpys Charpys HW9 HW45 111145 HW42 HH42 HW39 HH39 THX HW8 HW12 HW11 HW1O HW9 HW44 HH44 HW41 1141 HW38 HH38 HW7 HW43 HH43 HW40 HH40 HW37 HH37 TOP OF VESSEL 4 CENTER 2 37 Np 238 IT Compacts Compacts Charpys Charpys Dosimeter Tensiles Charpys HW36 HH36 HW33 HH33 HL9 HL45 HL12 HL11 HL1O HL9 HW35 HH35 HW32 HH32 461 HL8 HW34 HH34 HW31 IA HH31 HL 7 HL43 CENTER NoCENTER SCu Al;-.15%CO Cu Al 1-.5%0Co Fe .-.-.-.. iiFe
- I I ! A-. o d 590F 1 1-.15%Co (Cd)
MONITOR -. 15%aN(CTOMO II Ni 11 UCompacts Ni Charpys Charpys Charpys Charpys Compacts Compacts Tensiles HT42 HL42 HT39 HL39 HT36 HL36 11T33 HL33 HTz HT41 HL41 HT38 HL38 HT35 HL35 HT32 HL32 HT12 HT11 HT10 HT9 8 0 HT40 HL40 HT37 HL37 H34 HL34 HT31 T CENTER -0 BOTTOM OF VESSEL Co -0 Figure 4-2 Capsule W Diagram Showing the Location of Specimens, Thermal Monitors, and Dosimeters "4 CD WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 5-1 5 TESTING OF SPECIMENS FROM CAPSULE W 5.1 OVERVIEW The post-irradiation mechanical testing of the Charpy V-notch impact specimens and tensile specimens was performed at the Hot Cell Facility at the Westinghouse Materials Center of Excellence. Testing was performed in accordance with 10 CFR 50, Appendices G and H [Ref. 2] and ASTM Specification E185-82 [Ref. 8].
The capsule was opened upon receipt at the hot cell laboratory. Upon opening Capsule W, all the internal ferritic steel components were corroded indicating that the capsule enclosure leaked; however, the corrosion on the specimens was not enough to cause inaccurate mechanical test results. The specimens and spacer blocks were carefully removed, inspected for identification number, and checked against the master list in WCAP-9967 [Ref. 3]. All of the mechanical test specimens were in their proper locations.
The thermal monitors were supposed to be located in three (3) different positions in the capsule; however, neither of the 579°F temperature monitors were found. Examination of the 590'F thermal monitor indicated that the temperature monitor did not melt. Based on this examination, the maximum temperature to which the specimens were exposed was less than 590'F.
The Charpy impact tests were performed per ASTM Specification E23-07a [Ref. 9] on a Tinius-Olsen Model 74, 358J machine. The Charpy machine striker was instrumented with an Instron Impulse system.
Note that the instrumented Charpy data is for information only. The Instron Impulse system has not been calibrated to ASTM Standard E2298-09 [Ref. 10], so the instrumented energy, load, time, and stress data are considered for information only.
The instrumented striker load signal data acquisition rate was 819 kHz with data acquired for 10 ins.
From the load-time curve, the load of general yielding (Fgy), the time to general yielding, the maximum load (Fm) and the time to maximum load were determined. Under some test conditions, a sharp drop in load indicative of fast fracture was observed. The load at which fast fracture was initiated is identified as the brittle fracture load (Fbf). The termination load after the fast load drop is identified as the arrest load (Fa). Fgy, Fm, Fbf, and Fa were determined per the guidance in ASTM Standard E2298-09 [Ref. 10].
The energy at maximum load (Win) was determined by integrating the load-time record to the maximum load point. The energy at maximum load is approximately equivalent to the energy required to initiate a crack in the specimen. Therefore, the propagation energy for the crack (Wp) is the difference between the total energy (W,) and the energy at maximum load (Win). Wt is compared to the dial energy (KV). Wt derived from the instrumented striker were all within 15% of the calibrated dial energy values (except one value at very low energy where the 15% limit does not apply) as required in ASTM E2298-09 [Ref. 10],
which indicates that the instrumented data is trustworthy.
Percent shear was determined from post-fracture photographs using the ratio-of-areas methods in compliance with ASTM E23-07a [Ref. 9] and A370-09 [Ref. 11]. The lateral expansion was measured using a dial gage rig similar to that shown in the same specifications.
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 5-2 Westinghouse Non-Proprietary Class 3 Tensile tests were performed on a 250 KN Instron screw driven tensile machine (Model 5985). Testing met ASTM Specifications E8-09 [Ref. 12] and E21-09 [Ref. 13].
Elevated test temperatures were obtained with a three-zone electric resistance split-tube furnace with a 10-inch hot zone. Specimiens were soaked at temperature (+/-5°F) for a minimum of 20 minutes before testing. All tests were conducted in air. The specimens were round 0.25-inch diameter with a 1.25-inch reduced section. Load was applied through a clevis and pin connection.
The yield load, ultimate load, fracture load, uniform elongation and elongation at fracture were determined directly from the load-extension curve. The yield strength (0.2% offset method), ultimate tensile strength and fracture strength were calculated using the original cross-sectional area. The final diameter and final gage length was determined from post-fracture photographs.
This final diameter measurement was used to calculate the fracture stress (true stress at fracture) and the percent reduction in area. The final gage length was used to calculate total elongation after fracture.
5.2 CHARPY V-NOTCH IMPACT TEST RESULTS The results of the Charpy V-notch impact tests performed on the various materials contained in' Capsule W, which received a fluence of 4.201 x 1019 n/cm 2 (E > 1.0 MeV) in 18.30 EFPY of operation, are presented in Tables 5-1 through 5-8 and are compared with the unirradiated and previously withdrawn capsule results as shown in Figures 5-1 through 5-12. The unirradiated and previously withdrawn capsule results were taken from WCAP-9967 [Ref. 3], WCAP-13182 [Ref. 14], WCAP-14978 [Ref. 15], and WCAP-16093-NP [Ref. 16].
The transition temperature increases and changes in upper-shelf energies for the Capsule W materials are summarized in Table 5-9 and led to the following results:
Irradiation of the reactor vessel Intermediate Shell Plate R2507-1 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction (longitudinal orientation), resulted in an irradiated 30 ft-lb transition temperature of -2.6°F and an irradiated 50 ft-lb transition temperature of 34.1 °F. This results in a 30 ft-lb transition temperature increase of 35.3°F and a 50 ft-lb transition temperature increase of 41.3°F for the longitudinally oriented specimens.
Irradiation of the reactor vessel Intermediate Shell Plate R2507-1 Charpy specimens, oriented with the longitudinal, axis of the specimen perpendicular to the major working direction (transverse orientation), resulted in an irradiated 30 ft-lb transition temperature of 56.6°F and an irradiated 50 ft-lb transition temperature of 89.5°F. This results in a 30 ft-lb transition temperature increase of 74.9°F and a 50 ft-lb transition temperature increase of 71.2°F for the transversely oriented specimens.
Irradiation of the Surveillance Program Weld Metal (Heat # 90209) Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 12.3°F and an irradiated 50 ft-lb transition temperature of 49.3°F. This results in a 30 ft-lb transition temperature increase of 26.4°F and a 50 ft-lb transition temperature increase of 37.3°F.
WCAP-.17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 5-3
- Irradiation of the Heat-Affected Zone (HAZ) Material Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of -54.5'F and an irradiated 50 ft-lb transition temperature of -14.5'F.
This results in a 30 ft-lb transition temperature increase of 55.8°F and a 50 ft-lb transition temperature increase of 67.2°F.
- The average upper-shelf energy of Intermediate Shell Plate R2507-1 (longitudinal orientation) resulted in an average energy decrease of 4.0 ft-lb after irradiation to 4.201 x 1019 n/cm2 (E > 1.0 MeV). This results in an irradiated average upper-shelf energy of 134.0 ft-lb for the longitudinally oriented specimens.
" The average upper-shelf energy of Intermediate Shell Plate R2507-1 (transverse orientation) resulted in an average energy decrease of 6.0 ft-lb after irradiation to 4.201 x 1019 n/cm 2 (E > 1.0 MeV). This results in an irradiated average upper-shelf energy of 93.0 ft-lb for the transversely oriented specimens.
- The average upper-shelf energy of the Surveillance Program Weld Metal (Heat # 90209) Charpy specimens resulted in an average energy decrease of 3.0 ft-lb after irradiation to 4.201 x 1019 n/cm 2 (E
> 1.0 MeV). This results in an irradiated average upper-shelf energy of 94.0 ft-lb for the weld metal specimens.
- The average upper-shelf energy of the HAZ Material Charpy specimens resulted in an average energy decrease of 16.0 ft-lb after irradiation to 4.201 x 1019 n/cm 2 (E > 1.0 MeV). This results in an irradiated average upper-shelf energy of 130.0 ft-lb for the HAZ Material.
" Comparisons of the measured 30 ft-lb shift in transition temperature values and upper-shelf energy decreases to those predicted by Regulatory Guide 1.99, Revision 2 [Ref. 1] for the South Texas Unit 2 reactor vessel surveillance materials are presented in Table 5-10.
The fracture appearance of each irradiated Charpy specimen from the various materials is shown in Figures 5-13 through 5-16. The fractures show an increasingly ductile or tougher appearance with increasing test temperature. Load-time records for the individual instrumented Charpy specimens are contained in Appendix B.
All beltline materials exhibit a more than adequate upper-shelf energy level for continued safe plant operation and are predicted to maintain an upper-shelf energy greater than 50 ft-lb through end-of-license (34 EFPY) and end-of-license renewal (54 EFPY) as required by 10 CFR 50, Appendix G [Ref. 2]. This evaluation can be found in Appendix E.
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 5-4 Westinghouse Non-Proprietary Class 3 5.3 'TENSILE TEST RESULTS The results of the tensile tests performed on the various materials contained in Capsule W irradiated to 4.201 x 1019 n/cm 2 (E > 1.0 MeV) are presented in Table 5-11 and are compared with unirradiated results as shown in Figures 5-17 through 5-19.
The results of the tensile tests performed on the Intermediate Shell Plate R2507-1 (longitudinal orientation) indicated that irradiation to 4.201 x 1019 n/cm 2 (E > 1.0 MeV) caused increases in the 0.2 percent offset yield strength and the ultimate tensile strength when compared to unirradiated data [Ref. 3].
See Figure 5-17 and Table 5-11.
The results of the tensile tests performed on the Intermediate Shell Plate R2507-1 (transverse orientation) indicated that irradiation to 4.201 x 10"9 n/cm 2 (E > 1.0 MeV) caused increases in the 0.2 percent offset yield strength and the ultimate tensile strength when compared' to unirradiated data [Ref. 3]. See Figure 5-18 and Table 5-11.
The results of the tensile tests performed on the Surveillance Program Weld Metal (Heat # 90209) indicated that irradiation to 4.201 x 10"9 n/cm 2 (E > 1.0 MeV) caused increases in the 0.2 percent offset yield strength and the ultimate tensile strength when compared to unirradiated data [Ref. 3]. See Figure 5-19 and Table 5-11.
The fractured tensile specimens for the Intermediate Shell Plate R2507-1 material are shown in Figures 5-20 and 5-21, while the fractured tensile specimens for the Surveillance Program Weld Metal (Heat # 90209) are shown in Figure 5-22. The engineering stress-strain curves for the tensile tests are shown in Figures 5-23 through 5-25.
5.4 1/2T COMPACT TENSION SPECIMEN TESTS Per the surveillance capsule testing contract, the 1/2T Compact Tension Specimens were not tested and are being stored at the Westinghouse Hot Cell Facility.
October 2012 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 5-5 Table 5-1 Charpy V-notch Data for the South Texas Unit 2 Intermediate Shell Plate R2507-1 Irradiated to a Fluence of 4.201 x 1019 n/cm 2 (E > 1.0 MeV) (Longitudinal Orientation)
TemClperature ~ Imac Vn ) Lateral Expansion.1 Shear' Number OC ft-lbs Joules
' ~Inds mm 111 HL44 -70 -57 7 9 4 0.10 0 HL39 -20 -29 14 19 9 0.23 5 HL40 -10 -23 31 42 19 0.48 10 HL34 0 -18 32 43 21 0.53 15 HL41 10 -12 46 62 31 0.79 20 HL36 20 -7 42 57 29 0.74 20 HL38 30 -1 33 45 20 0.51 20 HL33 40 4 53 72 37 0.94 35 HL37 50 10 67 91 42 1.07 40 HL32 72. 22 83 113 50 1.27 45 HL35 130 54 101 137 62 1.57 70 HL43 160 71 114 155 68 1.73 80 HL31 200 93 122 165 82 2.08 95 HL45 220 104 136 184 80 2.03 100 HL42 250 121 143 194 79 2.01 100 WCAP- 17636-N October 201 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 5-6 Westinghouse Non-Proprietary Class 3 Table 5-2 Charpy V-notch Data for the South Texas Unit 2 Intermediate Shell Plate R2507-1 Irradiated to a Fluence of 4.201 x 1019 n/cm 2 (E > 1.0 MeV) (Transverse Orientation)
'Sam11ple 'Iemperature
,,nry' Impaict Feo atcrIlExasm ax uso Shear Number tt-lbs i'Joules,. ~ mils 0m HT40 -70 -57 4 5 0 0 0 HT45 0 -18 17 23 12 0.30 5 HT41 30 -1 21 28 10 0.25 10 HT34 40 4 15 20 11 0.28 15 HT33 50 10 .27 37 18 0.46 15 HT37 60 16 29 39 20 0.51 15 HT42 60 16 25 34 13 0.33 20 HT32 72 22 44 60 28 0.71 25 HT35 72 22 45 61 26 0.66 25 HT44 80 27 46 62 30 0.76 30 HT43 100 38 51 69 33 0.84 40 HT31 130 54 75 102 50 1.27 45 HT36 200 93 86 117 59 1.50 95 HT38 220 104 96 130 68 1.73 100 HT39 250 121 97 132 66 1.68 100 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 5-7 Table 5-3 Charpy V-notch Data for the South Texas Unit 2 Surveillance Program Weld Metal (Heat # 90209) Irradiated to a Fluence of 4.201 x 1019 n/cm 2 (E > 1.0 MeV)
Sam~ple Temperature / ' mpact FEnerfyy Lateral ExApansion Shear Numbe CFOft-lbs .Joules 1$Kmils> mm11 o' HW40 -70 -57 4 5 0 0 10 HW37 -20 -29 15 20 14 0.36 20 HW38 0 -18 27 37 23 0.58 30 HW31 20 -7 57 77 44 1.12 45 HW33 30 -1 32 43 28 0.71 40 HW32 40 4 34 46 29 0.74 45 HW35 40 4 38 52 31 0.79 45 HW39 50 10 56 76 45 1.14 65 HW45 60 16 54 73 42 1.07 60 HW44 72 22 56 76 46 1.17 65 HW34 100 38 78 106 58 1.47 75 HW43 130 54 93 126 54 1.37 90.
HW42 200 93 92 125 65 1.65 95 HW36 220 104 91 123 62 1.57 100 HW41 250 121 98 133 69 1.75 100 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 5-8 Westinghouse Non-Proprietary Class 3 Table 5-4 Charpy V-notch Data for the South Texas Unit 2 Heat-Affected Zone (HAZ)
Material Irradiated to a Fluence of 4.201 X 1019 n/cm 2 (E > 1.0 MeV)
<~emperaIture
'Ipl Impact Enleirgy aterll<Ex"pallsion sher-ft-lbs Jou K"mil's ~>
HH42 -150 -101 5 7 - 2 0.05 0 HH37 -90 -68 23 31 11 0.28 10 HH36 -70 -57 32 43 19 0.48 15 HH33 -60 -51 7 9 3 0.08 15 HH31 -50 -46 39 53 19 0.48 20 HH44 -20. -29 51 69 25 0.64 .25 HH34 0 -18 42 57 22 0.56 35 HH40 0 -18 72 98 42 1.07 50 HH39 30 -1 113 153 73 1.85 80 HH45 .50 10 37 -50 24 0.61 45 HH41 70 21 99 134 52 1.32 95 HH38 72 22 114 155 77 1.96 90 HH35 130 54 106 144 66 1.68 100 HH43 200 93 154 209 79 2.01 100 HH32 250 121 159 216 69 1.75 100 WCAP- 17636-NP October 2012 Revision 0
Westinghouse Non-Proprietary Class 3 5-9 Table 5-5 Instrumented Charpy Impact Test Results for the South Texas Unit 2 Intermediate Shell Plate R2507-1 Irradiated to a Fluence of 4.201 x 1019 n/cm 2 (E > 1.0 MeV) (Longitudinal Orientation)
HL44 -70 7 6.3 10 4 4290 0.12 3300 0.09 3670 N/A HL39 -20 14 12 14 9 3740 0.18 3300 0.05 3580 N/A HL40 -10 31 28 10 27 4170 0.48 3300 0.06 4160 N/A HL34 0 32 28 13 27 4100 0.48 3300 0.06 4100 N/A HL41 10 46 41 11 36 4300 0.62 3300 0.06 4180 N/A HL36 20 42 37 12 36. 4240 0.62 3300 0.06 4230 100 HL38 30 33 29 12 26 4030 0.48 3200 0.07 4000 300 HL33 40 - 53 46 13 35 4200 0.60 3200 0.06 4110 700 HL37 50 67 58 13 35 4180 0.61 3200 0.06 3950 900 HL32 72 83 74 11 35 4250 0.61 3100 0.05 3680 1400 HL35 130 101 93 8 33 4040 0.60 2900 0.05 3250 2210 HL43 160 114 103 10 33 3950 0.62 2800 0.07 2780 2050 HL31 200 122 111 9 31 3840 0.60 2700 0.06 1480 1100 z
HL45 220 136 124 9 31 3860 0.60 2700 0.05 N/A N/A 0
HL42 250 143 131 8 31 3800 0.61 2500 0.05 N/A N/A C)0 N)
(D
-41 (D WCAP- 17636-NP October 2012 Revision 0
5-10 Westinahouse Non-Proprietarv Class 3 Table 5-6 Instrumented Charpy Impact Test Results for the South Texas Unit 2 Intermediate Shell Plate R2507-1 Irradiated to a Fluence of 4.201 x 1019 n/cm 2 (E > 1.0 MeV) (Transverse Orientation)
HT40 -70 4 3.8 5 3.1 3990 0.09 2200 0.05 3900 N/A HT45 0 17 15 12 13 3770 0.26 3100 0.07 3650 N/A HT41 30 21 19 10 14 3630 0.29 3100 0.08 3500 N/A HT34 40 15 13 13 9 3450 0.19 3200 0.08 3400 400 HT33 50 27 23 15 21 3780 0.40 3100 0.06 3760 220 HT37 60 29 25 14 21 3810 0.40 3200 0.06 3750 200 HT42 60 25 22 12 18 3930 0.36 3100 0.07 3880 500 HT32 72 44 38 14 34 4100 0.62 3100 0.06 4080 1060 HT35 72 45 39 13 34 3940 0.62 3100 0.06 3850 800 HT44 80 46 40 13 35 4070 0.62 3100 0.06 3940 1100 HT43 100 51 44 14 34 4010 0.60 3100 0.06 3900 1800 HT31 130 75 66 12 34 3980 0.61 2800 0.06 2440 1690 HT36 200 86 78 9 31 3770 0.60 2600 0.06 3020 2600 z
HT38 220 96 87 9 32 3780 0.62 2600 0.06 N/A N/A 0 9
HT39 250 97 89 8 32 3760 0.62 2700 0.06 N/A N/A 00 05
- 4. CD~
WCAP-17636-NP October 2012 Revision 0
Westinghouse Non-Proprietary Class 3 5-1"1 Table 5-7 Instrumented Charpy Impact Test Results for the South Texas Unit 2 Surveillance Program Weld Metal (Heat # 90209)
Irradiated to a Fluence of 4.201 x 1019 n/cm 2 (E > 1.0 MeV)
HW40 -70 4 3.1 23(a) .1.7 3580 0.06 2600 0.05 3520 N/A HW37 -20 15 14 7 4 4150 0.11 3500 0.08 3570 900 HW38 0 27 25 7 3 3790 0.09 3100 0.06 3690 600 HW31 20 57 52 9 34 4000 0.64 3000 0.08 3730 1100 HW33 30 32 28 13 18 3720 0.36 3100 0.08 3370 1200 HW32 40 34 31 9 21 3750 0.40 3200 0.06 3550 1300 IHW35 40 38 35 8 27 3830 0.51 3100 0.06 3810 1400 HW39 50 56 50 11 33 3730 .0.62 3100 0.07 3330 1830 HW45 60 54 47 13 33 3760 0.62 3000 0.06 3520 1590 HW44 72 56 51 9 33 3840 0.61 3000 0.06 3530 1720 HW34 100 78 72 8 34 4020 0.61 3000 0.05 3360 2230 HW43 130 93 87 6 34 4000 0.62 3000 0.05 3280 2750 HW42 200 92 85 8 32 3760 0.63 2900 0.07 2900 2520 z
HW36 220 91 83 9 30 3650 0.60 2800 0.05 N/A N/A 0 HW41 250 98 89 9 31 3730 0.61 2700 0.06 N/A N/A C)-)
Note:
(a) Values are within approximately 1 Joule, as acceptable per ASTM E2298-09.
N) 0 CD 4CD, WCAP-17636-NP October 2012 Revision 0
5-12 Westinahouse Non-ProDrietarv Class 3 Table 5-8 Instrumented Charpy Impact Test Results for the South Texas Unit 2 Heat-Affected Zone (HAZ) Material Irradiated to a Fluence of 4.201 x 1019 n/cm 2 (E > 1.0 MeV)
HH42 -150 5 5.3 -6 4.7 4560 0.11 3400 0.06 4480 N/A HH37 -90 23 22 4 21 4410 0.36 3300 0.06 4280 N/A HH36 -70 32 29 9 28 4340 0.46 3400 0.07 4220 N/A HH33 -60 7 6 10 3.5 4420 0.09 3200 0.05 3630 400 HH31 -50 39 36 8 32 4560 0.50 3300 0.05 4420 510 HH44 -20 51 44 14 39 4570 0.62 3500 0.06 4300 560 HH34 0 42 37 12 30 4320 0.50 3400 0.06 4250 1600-HH40 0 72 63 13 37 4450 0.62 3200 0.06 4070 1670 HH39 30 113 102 10 36 4270 0.62 3200 .0.07 1680 1000 HH45 50 37 33 11 16 3890 0.26 3300 0.06 3500 2100 HH41 70 99 90 9 35 4180 0.60 3200 0.06 N/A N/A HH38 72 114 107 6 36 4310 0.61 3100 0.06 1020 460 HH35 130 106 96 9 35 4110 0.61 3100 0.06 N/A N/A z
HH43 200 154 141 8 43 4040 0.77 2900 0.06 N/A N/A 0 HH32 250 159 147 8 34 4040 0.62 2800 0.05 N/A N/A 0
cU) 4CD~
WCAP-17636-NP October 2012 Revision 0
Westinghouse Noin-Proprietary Class 3 5-13 Table 5-9 Effect of Irradiation to 4.201 x 1019 n/cm 2 (E > 1.0 MeV) on the Charpy V-Notch Toughness Properties of the South Texas Unit 2 Reactor Vessel Surveillance Capsule W Materials Intermediate Shell Plate R2507-1 -37.9 -2.6 35.3 -1.0 41.4 42.4 7.2 34.1 41.3 138 134 -4 (Longitudinal)
Intermediate Shell Plate R2507-1 -18.3 56.6 74.9 25.4 97.7 72.3 18.3 89.5 71.2 99 93 -6 (Transverse)
Surveillance Program Weld Metal -14.1 12.3 26.4 9.8 37.2 27.4 12.0 49.3 37.3 97 94 -3 (Heat # 90209)
Heat-Affected Zone Material -110.3 -54.5 55.8 -60.9 1.5 62.4 -81.7 -14.5 67.2 146 130 -16 Note:
(a) Average value is determined by CVGraph (see Appendix C).
z 0
L M)
C) 0 CD (31-n
-.1 (0 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 5-14 Westinghouse Non-Proprietary Class 3 Table 5-10 Comparison of the South Texas Unit 2 Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper-Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions V 0.2448 16.1 16.5 Intermediate Shell Y 1.248 27.6 34.3 20 4 Plate R2507-1 (Longitudinal) U 2.493 32.4 , 28.9 24 1 W 4.201 35.5 35.3 27 3 V 0.2448 16.1 12.2 14 Intermediate Shell Y 1.248 27.6 36.0 20 ---
Plate R2507-1 (Transverse) U 2.493 32.4 40.5 24 W 4.201 35.5 74.9 27 6 V 0.2448 15.2 0.0(c) 14 4 Surveillance Program y 1.248 26.0 3.6 20 2 Weld Metal (Heat # 90209) U 2.493 30.5 20.4 24 2 W 4.201 33.5 26.4 27 3 V 0.2448 --- 0.0(c) --- 6 Heat-Affected Zone Y 1.248 --- 47.6 --- 6 Material U 2.493 --- 14.9 --- 12 W 4.201 --- 55.8 1--
I1 Notes:
(a) Based on Regulatory Guide 1.99, Revision 2, methodology using the mean weight percent values of copper and nickel of the surveillance material.
(b) Calculated by CVGraph Version 5.3 using measured Charpy data (See Appendix C).
(c) Measured ARTNDT value was determined to be negative, but physically a reduction should not occur; therefore, a conservative value of zero is used.
October 2012 WCAP- 17636-NP WCAP- October 2012 Revision 0
Westinghouse Non-Proprietary Class 3 5-15 Table 5-11 Tensile Properties of the South Texas Unit 2 Capsule W Reactor Vessel Surveillance Materials Irradiated to 4.201 x 1019 n/cm 2 (E > 1.0 MeV)
HL7 78 76.2 97.6 3.06 200 62.4 9.9 24.9 69 Intermediate Shell Plate R2507-1 HL8 1 300 [ 71.4 89.8 1 2.95 1 158 60.2 9.5 [ 21.1 62 (Longitudinal)
HL9 550 70.3 91.5 3.22 149 65.5 10.2 20.9 56 HT7 75 76.9 97.5 3.33 182 67.9 10.0 22.6 63 Intermediate Shell Plate R2507-1 HT8 300 70.7 89.2 3.01 142 61.3 8.8 19.2 57 (Transverse)
HT9 550 69.4 93.2 2.81 91 57.3 9.2 15.8 37 Surveillance HW7 75 80.6 96.5 3.07 197 62.6 10.6 27.1 68 Program HW8 300 75.8 90.6 2.97 167 60.6 10.1 22.9 64 Weld Metal (Heat #90209) HW9 "550 1 75.0 1 94.2 3.19 1 170 1 64.9 1 9.5 1 21.4 1 62 z
0 0
j>::
m
(.0 C:
WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 5-16 Westinghouse Non-Proprietary Class 3 Intermediate Shell Plate 112R507.1 (LT)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07109/2012 02:46 PM Data Set(s) Plotted Curve Plant Capsule Material Or. Heat # I 1 South Texas 2 UNIRR SA533B I LT NR 62 067- 1 2 South Texas 2 V SA533BI LT NR 62 067-1I 3 South Texas 2 Y SA533BI LT NR 62 067-1!
45 South Texas 2 U SA533BI LT NR 62 067- I South Texas 2 W SA533BI LT NR 62 067-300 250 20 w
~100fiso s0
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Dog F 0 1 a 2 03 A 4 V5 Results Cumi Iluence LE USE d-USE T (4,30 d-T (,.30 T C50 d-T *.40
- 2. 2 138.0 .0 -37. 9 .0 -7.2 .0 2 2.2 139.0 1.0 -21.4 16.5 6.4 13.6 3 2.2 133.0 -5.0 -3.6 34.3 30. 3 37.5 4 2.2 137.0 -1.0 -9.0 28.9 21.9 29. 1 5 2. 2 134. 0 -4.0 -2.6 35. 3 34.1 41.3 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Longitudinal Orientation)
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 5-17 Intermediate Shell Plate R2507- I (LT)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07/09/2012 02:48 PM Data Set(s) Plotted Curve Plant Capsule Material Orl. Heat #
South Texas 2 UNIRR SA533B I LT NR 62 067-I 2 South Texas 2 V SA533B I LT NR 62 067-1 3 South Texas 2 Y SA533B I IT NR 62 067-I 4 South Texas 2 U SA533B1 LT NR 62 067-1 5 South Texas 2 W SA533B I LT NR 62 067-I 200 1SO E
3100 s
50 0 4-
-300.0 0.0 300.0 600.0 Temperature In Dog F 0 1 0 3 a 4 V 5 kr*lt, Curve Fluence L;SE USE d-tSE T (35 d-T YS5 1.0 83.6 .0 -1.0 .0 2 1.0 85. 4 L.8 5.8 6.8 3 1.0 83. 2 -. 4 37.8 38.8 4 1.0 7q. 8 -3.8 32.7 33.7 5 1A0 81.6 -2.1 41.4 42.4 Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Longitudinal Orientation)
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 5-18 Westinghouse Non-Proprietary Class 3 Intermediate Shell Plate R2507-1 (LT)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07/09/2012 02:48 PM Data Set(s) Plotted Curve Plant Capsule Material Orl. Heat #
1 South Texas 2 UNIRR SA533B I LT NR 62 067-1 2 South Texas 2 V SA533B1 LT NR 62 067-1 3 South Texas 2 Y SA533BI LT NR 62 067-1 4 South Texas 2 U SA533B I LT NR 62 067- 1 5 South Texas 2 W SA533BI LT NR 62 067-1 125 100 II 75 50 20 0-
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Dog F 0 1 3 2 0 3 A4V 5 Results Curl? Fluence LSE USE d-USE T @50 d-T 12P50
.0 100.0 .0 27. 2 .0 2 .0 100.0 .0 38.6 11.4 3 .0 100.0 .0 45. 2 18.0 4 .0 100.0 .0 56.0 28. 8 5 .0 300.0 .0 81.2 54. 0 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Longitudinal Orientation)
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietaiy Class 3 5-19 Intermediate Shell Plate R2507.1 (TL)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07109/2012 02:52 PM Data Set(s) Plotted C.urve Plant Capsule Material ott. Heat #
South Texas 2 UNIRR SA533B I iT NR 62 067-I 2 South Texas 2 V SA533B] iT NR 62 067-I 3 South Texas 2 Y SA533B I TL NR 62 067-1 4 South Texas 2 U SA533B I it NR 62 067-1 5 South Texas 2 W SA533B I iT NR 62 067-I 300 250 4200 1w so0 0 4-0
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Dog F 0 1 a 2 0 3 A 4 v 5 Re~mti Curve Fraence LSE ISE d-USE T V'30 d-T (P30 T (,'50 d-T Co0 2.2 99.0 .0 -18.3 .0 18.3 .0 2 2. 2 105.0 6.0 -6. 1 12.2 45.2 26.9 3 2.2 102.0 3.0 17.7 36.0 55.2 36.9 4 2.2 104.0 5.0 22. 2 40.5 65.4 47. I 5 2.2 93. 0 -6.0 56, 6 74.9 89.5 71.2 Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Transverse Orientation)
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 5-20 Westinghouse Non-Proprietary Class 3 Intermediate Shell Plate R2507-1 (TL)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07109/2012 02:53 PM Data Set(s) Plotted Curve Plant Capsule Material 01. Heat #
1 South Texas 2 UNIRR SA533B1 TL NR 62 067-1 2 South Texas 2 V SA533B1 TL NR 62 067-I 3 South Texas 2 Y SA533BI TL NR 62 067-1I 4 South Texas 2 U SA533BI TL NR 62 067-1 5 South Texas 2 w SA533B 1 TL NR 62 067-1 200 150 IS aC 3.100 50 0 .-
-300.0 0.0 300.0 600.0 Temperature In Dog F 0 1 a2 03A4 &5 Results Cur*e Rluence LSE USE d-USE T@q5 d-T@t35 1.0 67.0 .0 25. 4 .0 2 1.0 78.3 11.3 47. 9 22. 5 3 1.0 65. 3 -1.7 67. 1 41.7 4 1.0 68. 3 1. 3 82.0 56.6 5 1.0 67. 3 .3 97. 7 72. 3 Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Transverse Orientation)
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 5-21 Intermediate Shell Plate R250-l (TL)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 0710912012 02:54 PM Data Set(s) Plotted C'urve Plant Capsule Material Onl. Heat #
South Texas 2 UNIRR SA53381 TL NR 62 067-1 2 South Texas 2 V SA533B11 TL NR 62 067-1 3 South Texas 2 Y SA533BI TL NR 62 067-1 4 South Texas 2 U SA533B I iT NR 62 067-1 5 South Texas 2 w SA53381I iT NR 62 067-I 125 100 I 75 I
so 25 0o-
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Dog F 0 1 a 2 03 ,a 4 v Reiults Curve Romenc LSE USE d-USE T 0,i50 d-T o-50 1 .0 100.0 .0 28.2 .0 2 .0 100.0 .0 67.0 38.8 3 .0 100.0 .0 57. 5 29. 3 4 .0 100.0 .0 89, 4 61.2 5 -0 100.0 .0 118.8 90.6 Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Transverse Orientation)
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 5-22 Westinghouse Non-Proprietary Class 3 Surveillance Program Weld Material CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07/09/2012 02:59 PM Data Set(s) Plotted Curve Plant Capsule Material On. Heat #
South Texas 2 UNIRR SAW NA 90209 2 South Texas 2 V SAW NA 90209 3 South lexas Y SAW NA 45 South Iexas U SAW NA 90209 South Texas 2 W SAW NA 300 250 4200 w
?;100
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Dog F 01 02 03 4v Results Curvie Fluence LSE USE d-USE T (ý30 d-T (p30 T 9*54 d-T ( 50 2.2 97. 0 .0 -14. 1 .0 12.0 .0 93.0 -4.0 -22.4 -8. 3 18. 1 6. 1 2 2.2 3 2.2 95. 0 -2.0 -10.5 3.6 30.4 18.4 4 2.2 95. 0 -2.0 6.3 20.4 33.3 21.3 5 2.2 94.0 - 3.0 12.3 26.4 49. 3 37. 3 Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for the South Texas Unit 2 Reactor Vessel Surveillance Program Weld Metal (Heat # 90209)
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 5-23 Surveillance Program Weld Material CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07/09/2012 03:00 PM Data Set(s) Plotted Curve Plant Capsule Material On. Heat #
South Texas 2 UNIRR SAW NA 90209 2 South Texas 2 V SAW NA 90209 3 South Texas 2 Y SAW NA 90209 4 South Texas 2 U SAW NA 90209 5 South Texas 2 W SAW NA 90,209 200 150 l100 s
04-
-300.0 0.0 300.0 600.0 Temperature In Deg F 0 1 0 2 0 3 & 4 v 5 Rewult%
('urve Ihuenme LSF USE d-USE T O35 d-T O35 1.0 71.8 .0 9.8 .0 2 1.0 75. 6 3. 8 6.9 -2.9 3 1.0 72. 3 ,5 28. 6 18.8 4 1.0 66.9 -4.9 35. 3 25.5 5 1.0 65. 3 -6.5 37. 2 27.4 Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for the South Texas Unit 2 Reactor Vessel Surveillance Program Weld Metal (Heat # 90209)
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 5-24 Westinghouse Non-Proprietary Class 3 Surveillance Program Weld Material CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07/09/2012 03:01 PM Data Set(s) Plotted Curve Plant Capsule Material Ori. Heat #
1 South Texas UNIRR SAW NA 90209 2 South Texas 2 V SAW NA 90209 3 South Texas 2 y SAW NA 90209 4 South Texas 2 U SAW NA 90209 5 South Texas 2 W SAW NA 90209 125 100 75 U) 25 01-
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Dog F 0 1 02 03 A 4 v 5 Results Curme Flueace ILSE USE d-USE T @'50 d-T @50
.0 100.0 .0 -13.4 .0 2 .0 100.0 .0 -1.8 11.6 3 .0 100.0 .0 .7 14. I 4 .0 100.0 .0 13.8 27.2 5 .0 100.0 .0 40. 8 54. 2 Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for the South Texas Unit 2 Reactor Vessel Surveillance Program Weld Metal (Heat # 90209)
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 5-25 Heat Affected Zone CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07109/2012 03:03 PM Data Set(s) Plotted Curve Plant Capsule Material Oil. Heat #
South Texas 2 UNIRR SA533BI NA NR 62 067-1 2 South Texas 2 V SA533B I NA NR 62 067-1 3 South Sout Texas Texas22 Y SA533B I NA NR 62 067-1 4 South Texas 2 U SA533B I NA NR 62 067-1 5 W SA533B! NA NR 62 067-I 300 4A z
w
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Dog F 01 02 03 a 4 v 5 Results Fluenc- LSE USE d-USE T 'Y-40 d-T Ca1 T 05*% d-T 0 50 146.0 -110.3 .0 -81.7 .0 2.2 .0 13T. 0 2.2 137.0 -9.0 -117.2 -6.9 -83.9 -2.2 2.2 137. 0 -9.0 -62.7 47.6 -31. 1 50.6 3
4 2.2 129. 0 -17.0 -95.4 14.9 -50. 5 31.2 5 2.2 130.0 -16.0 -54. 5 55.8 -14.5 67.2 Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for the South Texas Unit 2 Reactor Vessel Heat-Affected Zone Material WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 5-26 Westinghouse Non-Proprietary Class 3 Heat Affected Zone CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07/09/2012 03:04 PM Data Set(s) Plotted Curve Plant Capsule Material Oril. Heat #
1 South Texas 2 UNIRR SA533B I NA NR 62 067-1 2 South Texas 2 V SA533BI NA NR 62 067-1 3 South Texas 2 Y SA533BI NA NR 62 067-1 4 South Texas 2 U SA533BI NA NR 62 067-I 5 South Texas 2 W SA533BI NA NR 62 067-1 C
3100 0 "Nmmw-ymmC V I i
-300.0 0.0 300.0 600.0 Temperature In Dog F 01 02 *3 4 4 v 5 Rewits Cur*e Fluence ISE USE d-USE T @P35 d-T 035 1.0 75.8 .0 -60. 9 .0 2 1.0 74. 3 -1.5 -63.6 -2.7 3 1.0 76. 1 .2 -4.0 56. 9 4 1.0 64.5 -11. 3 -21.5 39. 4 5 1.0 73.3 -2.5 1.5 62. 4 Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for the South Texas Unit 2 Reactor Vessel Heat-Affected Zone Material WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 5-27 Heat Affected Zone CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07/09/2012 03:04 PM Data Set(s) Plotted Cunre Plant Capsule Material Ori. Heat #
South Texas 2 UNIRR SA53313I NA NR 62 067-I 3 South Texas 2 V SA533B I NA NR 62 067-1l South Texas 2 Y SA533BI NA NR 62 067-1 4 South Texas 2 U SA533B I NA NR 62 067-I 5 South Texas 2 W SA533B I NA NR 62 067-1 125 i
I
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Dog F 0o1 2 03 A 4 v S Cur Fluece ISE USE d-USE T 0.40O d-T o5o
.0 100.0 .0 -73.6 .0 2 -0 100.0 .0 -65.8 7.8 3 .0 100.0 .0 -1.4 72. 2 4 .0 100.0 .0 -27.3 46. 3 5 .0 I00.0 .0 9. 5 83. I Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for the South Texas Unit 2 Reactor Vessel Heat-Affected Zone Material WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 5-28 Westinghouse Non-Proprietary Class 3 HL44, -700 F HL39, F HL40, -l 0-F HL34, U-F 1-1141, 10-Y HlLi, 2U't HL38, 30°F HL33, 40°F HL37, 50°F HL32, 72°F HL35, 130-F HL43, 160-F HL3I, 200-F HL45, 220°F HL42,250°F Figure 5-13 Charpy Impact Specimen Fracture Surfaces for South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Longitudinal Orientation)
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 5-29 HT40, -70°F HT45, 0-F HT41, 30-F HT34, 407F HT33, 50 0 F H137, 6L"F H'142,6U-Pý HT32, 72-P HTJ:), 72-Pý H'144, SU-Y HT43, 100-F HT31, 130°F HT36, 200°F HT38,2200 F HT39,2507F Figure 5-14 Charpy Impact Specimen Fracture Surfaces for South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Transverse Orientation)
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 5-30 Westinghouse Non-Proprietary Class 3 HW40, -7U-P' HW37, -2Uk'F HW3Z, UIF HWJ I Y.U*I 1W-1W3, 3UwIP HW32, 40 0 F HW35, 40°F HW39, 50°F HW45, 60°F HW44, 72 0F HW34, 100°F HW43, 130 0 F Figure 5-15 Charpy Impact Specimen Fracture Surfaces for the South Texas Unit 2 Reactor Vessel Surveillance Program Weld Metal (Heat # 90209)
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 5-31 HH42, -150°F HH37, -90°F HH36, -70°F HH33, F HH31, F HH44, -20°F HH34, 07F HH4O, 0-F HH1-39, 30 0 F HH45, 50-F HH41, 70-F HH38, 72-F HH35, 130-F HH43, 200-F HH32, 250-F Figure 5-16 Charpy Impact Specimen Fracture Surfaces for the South Texas Unit 2 Reactor Vessel Heat-Affected Zone Material WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 5-32 Westinghouse Non-Proprietary Class 3 120.0 100.0
ý3---.Ulti~ma*ten0. YeT Sten gth Ultmat TeniledStrength 80.0 60.0 40.0 20.0 0.0 100 200 300 400 500 600 Temperature (F)
Legend: Aand
- and n are unirradiated A and o and o are irradiated to 4.201 x 1019 n/cm 2 (E > 1.0 MeV) 80.0 70.0 Area Reduction 60.0 60.0
-40.0 a
30.0 Total Elonaation 20.0 10.0 Uniform Elongation 0.0 0 100 200 300 400 500 600 Temperature (F)
Figure 5-17 Tensile Properties for South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Longitudinal Orientation)
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 5-33 120.0 100.0 Ultimate Tensile Strength 80.0 0.2% Yield Strength b.--.--.
a 60.0 40.0 20.0 0.0 0 100 200 300 400 500 600 Temperature (*F)
Legend: Aand e and . are unirradiated A and o and o are irradiated to 4.201 x 1019 n/cm 2 (E > 1.0 MeV) 80.0 70.0 60.0 50.0 40.0 0
30.0 20.0 10.0 0.0 0 100 200 300 400 500 600 Temperature (*F)
Figure 5-18 Tensile Properties for South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Transverse Orientation)
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 5-34 Westinghouse Non-Proprietary Class 3 120.0 100.0 0Uimat Tensils Strength 60.0 0.2% Yield Strength a
60.0 6n 40.0 20.0 0.0 0 100 200 300 400 800 600 Temperature (F)
Legend: Aand
- and s are unirradiated A and o and o are irradiated to 4.201 x 1019 n/cm 2 (E > 1.0 MeV) 80.0 70.0 Area Reduction 60.0 50.0
-- 40.0 30.0 Total Elongation 20.0
-'-- Uniform Elongation 10.0 0.0 0 100 200 300 400 600 600 Temperature (F)
Figure 5-19 Tensile Properties for the South Texas Unit 2 Reactor Vessel Surveillance Program Weld Metal (Heat # 90209)
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 5-35 Specimen HL7- Tested at 78'F Spe3 n6 4 7 8 9Tta.
Specimen HL8 - Tested at 30 0 OF 1 2 ~3 4 o6 7 89 ,
Specimen HL9 - Tested at 550OF Figure 5-20 Fractured Tensile Specimens from South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Longitudinal Orientation)
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 5-36 Westinghouse Non-Proprietary Class 3 Specimen34 - T at 8 975.
Specimen HT7 - Tested at 757F 1 ,,t,,
AI,,1 3 I.4i.. .L 2 L.I,, 78I .1 ..
U .. .6I . .I..9 "
3 4. .7 8 9 Specimen HT9 - Tested at 550F17 Figure 5-21 Fractured Tensile Specimens from South Texas Unit 2 Reactor Vessel Intermediate Shell Plate R2507-1 (Transverse Orientation)
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 5-37 1 a 3 4 o 6 7 8 9 Specimen HW7 - Tested at 75°F Specimen3 4 - 6 a 300 0F Specimen HWA8 - Tested at 300'17 Specimen HW9 6 7 8 9 Specimen HW9 - Tested at 550°F Figure 5-22 Fractured Tensile Specimens from the South Texas Unit 2 Reactor Vessel Surveillance Program Weld Metal (Heat # 90209)
WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 5-38 Westinghouse Non-Proprietary Class 3 1gW,-
800 ........... --------- --- -----------------
60 40- .......... .. ...... ... ....... .... ..
U) 20.
nF -1 1 1- ; -
1 -";- - 1 - - 1- t - 4-4-9 - - -1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Strain [%]
I nc.
so 60
-g 60
.b 40 V) 20 n-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Strain [%]
100 90 80 70 60 50 40 30 20 10 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Strain [%]
Figure 5-23 Engineering Stress-Strain Curves for South Texas Unit 2 Intermediate Shell Plate R2507-1 Tensile Specimens HL7, HL8 and HL9 (Longitudinal Orientation)
WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 5-39 innI 80 I............- ~-.........-...-..,. ,.......
- x60 40 20
. i = * =
V 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Strain [%]
inn 80 60 ........ . . ..
240 ..... ..... .... ....
ý7:
20 ...... ...... ...... ..
E* i i i
............... i i i ! i 6 i i i i i i ! i i i i i i i i i i i i ! i i i f 9 i i i i i i i i t i i ! i i P-1 ---
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Strain [%]
IA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Strain [%]
Figure 5-24 Engineering Stress-Strain Curves for South Texas Unit 2 Intermediate Shell Plate R2507-1 Tensile Specimen 1T7, HT8, and HT9 (Transverse Orientation)
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 5-40 Westinghouse Non-Proprietary Class 3 In'.
so i. ......... . ... ......
a2 20 0
1 2 i
3 i i 4
i i i 5
i i 6
i 7
i i 8
i i 9
i i i i 10 11 i i 12 i i i 13 i i 14 P i 15 i
16 i i 17 i i i 18 i i 19 i i 20 i i i 21 22 i i i 23 i i 24 I I I 25 I
26 I
27 Strain [%]
100 U'
20.
4L i ;I0 Il i l ! ; ;4 I...
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Strain [%]
- A
'A) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Strain [%]
Figure 5-25 Engineering Stress-Strain Curve for South Texas Unit 2 Surveillance Program Weld Metal (Heat # 90209) Tensile Specimen HW7, HW8, and HW9 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 6-1 6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY
6.1 INTRODUCTION
This section describes a discrete ordinates S, transport analysis performed for the South Texas Unit 2 reactor to determine the neutron radiation environment within the reactor pressure vessel and surveillance capsules. In this analysis, fast neutron exposure parameters in terms of fast neutron fluence (E > 1.0 MeV) and iron atom displacements (dpa) were established on a plant- and fuel-cycle-specific basis. An evaluation of the most recent dosimetry sensor set from Capsule W, withdrawn at the end of the fifteenth plant operating cycle, is provided. In addition, to provide an up-to-date data base applicable to the South Texas Unit 2 reactor, the sensor sets from the previously withdrawn capsules (V, Y, and U) are presented in Appendix A of this report. Comparisons of the results from these dosimetry evaluations with the analytical predictions served to validate the plant-specific neutron transport calculations. These validated calculations subsequently formed the basis for providing projections of the neutron exposure of the reactor pressure vessel for operating periods extending to 60 EFPY.
The use of fast neutron fluence (E > 1.0 MeV) to correlate measured material property changes to the neutron exposure of the material has traditionally been accepted for the development of damage trend curves as well as for the implementation of trend curve data to assess the condition of the vessel. In recent years, however, it has been suggested that an exposure model that accounts for differences in neutron energy spectra between surveillance capsule locations and positions within the vessel wall could lead to an improvement in the uncertainties associated with damage trend curves and improved accuracy in the evaluation of damage gradients through the reactor vessel wall.
Because of this potential shift away from a threshold fluence toward an energy-dependent damage function for data correlation, ASTM Standard Practice E853-01, "Analysis and Interpretation of Light-Water Reactor Surveillance Results," [Ref. 17] recommends reporting displacements per iron atom (dpa) along with fluence (E > 1.0 MeV) to provide a database for future reference. The energy-dependent dpa function to be used for this evaluation is specified in ASTM Standard Practice E693-01, "Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements per Atom" [Ref. 18]. The application of the dpa parameter to the assessment of embrittlement gradients through the thickness of the reactor vessel wall has already been promulgated in Revision 2 to Regulatory Guide 1.99, "Radiation Embrittlement of Reactor Vessel Materials" [Ref. 1].
All of the calculations and dosimetry evaluations described in this section and in Appendix A were based on the available nuclear cross-section data derived from ENDF/B-VI and made use of the latest available calculational tools. Furthermore, the neutron transport and dosimetry evaluation methodologies follow the guidance of Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence" [Ref. 19]. Additionally, the methods used to develop the calculated pressure vessel fluence are consistent with the NRC-approved methodology described in WCAP-14040-A, Revision 4, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves," [Ref. 20].
WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 6-2 Westinghouse Non-Proprietary Class 3 6.2 DISCRETE ORDINATES ANALYSIS The arrangement of the surveillance capsules in the South Texas Unit 2 reactor vessel is shown in Figure 4-1. Six irradiation capsules attached to the neutron pad are included in the reactor design that constitutes the reactor vessel surveillance program. The capsules are located at azimuthal angles of 58.50, 61.00, 121.50, 238.5°, 241.0', and 301.50 as shown in Figure 4-1. These full-core positions correspond to the following octant symmetric locations: Figure 6-1 shows the octants with no surveillance capsules with a 12.50 neutron pad, and a surveillance capsule located at 31.50 from the. core cardinal axes is shown in Figure 6-2 for the 121.50 and 301.50 single surveillance capsule holder locations found in octants with a 20.00 neutron pad segment, and the surveillance capsules located at'290 from the core cardinal axes is shown in Figure 6-3 for the 61.00 and 241.00 dual surveillance capsule holder locations found in octants with a 22.50 neutron pad segment. In Figure 6-3, the 58.5' and the 238.50 dual surveillance capsule holder locations found in octants with a 22.50 neutron pad segment are also shown. The stainless steel specimen containers are 1.655-inch by 1.25-inch and are approximately 60.68 inches in height [Ref. 21].
The containers are positioned axially such that the test specimens are centered on the core midplane, thus spanning the central 5 feet of the 14-foot-high reactor core.
From a neutronic standpoint, the surveillance capsules and associated support structures are significant.
The presence of these materials has a marked effect on both the spatial distribution of neutron flux and the neutron energy spectrum in the water annulus between the neutron pads and the reactor vessel.. In order to determine the neutron environment at the test specimen location, the capsules themselves must be included in the analytical model.
For the South Texas Unit 2 analysis, all of the transport calculations were carried out using the RAPTOR-M3G three-dimensional parallel discrete ordinates code Version 2.0 [Ref. 22] and the BUGLE-'96 cross section library [Ref. 23]. The BUGLE-96 library provides a 67-group coupled neutron-gamma ray cross-section data set produced specifically for light water reactor applications. In these analyses, anisotropic scattering was treated with a P 5 legendre expansion and the angular discretization was modeled with an S 16 order of angular quadrature.
Three 3-dimensional r-0-z geometry models were built for South Texas Unit 2. Plan views in the r, 0 plane of the r-O-z geometry of the South Texas Unit 2 reactor at the core midplane are shown in Figures 6-1, 6-2, and 6-3. In each of these figures, a single octant is depicted showing the arrangement of neutron pads and surveillance capsules as applicable. In regard to these three geometries, it should be noted that the maximum exposure of the pressure vessel occurs in octants with the 12.50 neutron pad span where no surveillance capsules are present. Further, the surveillance capsules with dual holders and ex-vessel neutron dosimetry [Ref. 24] are located in octants with the 22.50 neutron pad span. The surveillance capsules with single holders are located in octants with the 200 neutron pad span.
Section views in the rz plane of the r-0-z model with 22.50 neutron pad span of the South Texas Unit 2 reactor is shown in Figure 6-4 and Figure 6-5 for azimuthal angles at 350 and 290, respectively. The surveillance capsule can be seen in Figure 6-5 for the azimuthal angle at .290. In the rz plane, the model extended radially from the centerline of the reactor core out to a location interior to the primary biological shield and over an axial span from an elevation about three feet below the active fuel to about five-and-a-half feet above the active fuel. The important features in the rz plane, such as the stainless steel former plates located between the core baffle and core barrel regions were explicitly included in the r-O-z models.
WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 6-3 Other features important to ex-vessel neutron dosimetry such as reactor pressure vessel insulation region and ex-core detector wells were also included in the models.
In developing the r-0-z analytical models of the reactor geometry shown in Figures 6-1 through 6-5, nominal design dimensions were employed for the various structural components. Water temperatures and, hence, coolant densities in the reactor core, bypass, and downcomer regions were taken to be representative of full power operating conditions. These coolant temperatures were varied on a cycle-specific basis and are described in more detail later in this section. The reactor core itself was treated as a homogeneous mixture of fuel, cladding, water; and miscellaneous core structures such as fuel assembly grids, guide tubes, et cetera. These three 3-dimensional models have the same number of 208 radial by 197 azimuthal by 190 axial intervals with the same fine mesh boundaries. The differences between these three models are implemented by filling cells with different zone materials. Mesh sizes were chosen to assure that proper convergence of the inner iterations was achieved on a pointwise basis. The pointwise inner iteration flux convergence criterion utilized in the r-0-z calculations was set at a value of 0.001.
The core power distributions used in the plant-specific transport analysis for the South Texas Unit 2 reactor were taken from appropriate design documentation [Ref. 16, 25 - 31 ]. The data extracted included fuel assembly-specific initial enrichmentsi beginning-of-cycle bumups and end-of-cycle burnups.
Appropriate axial power distributions were also obtained.
For each fuel cycle of operation, the fuel assembly-specific enrichment and burnup data were used to generate the spatially dependent neutron source throughout the reactor core. This source description included the spatial variation of isotope-dependent (U-235, U-238, Pu-239, Pu-240, Pu-241, and Pu-242) fission spectra, neutron emission rate per fission, and energy release per fission based on the bumup history of individual fuel assemblies. These fuel assembly-specific neutron source strengths derived from the detailed isotopics were then converted from fuel pin cartesian coordinates to the [r,0,z] spatial mesh arrays used in the RAPTOR-M3G discrete ordinates calculations.
Selected results from the neutron transport analyses are provided in Tables 6-1 through 6-4. In Table 6-1, the calculated exposure rates and integrated exposures, expressed in terms of both neutron fluence (E > 1.0 MeV) and dpa, are given at the radial and azimuthal center of the octant symmetric surveillance capsule positions, i.e., for the 29.00 dual capsule, 31.5' dual capsule, and 31.50 single capsule. These results, representative of the axial midplane of the active core, establish the calculated exposure of the surveillance capsules withdrawn to date as well as projected into the future. Similar information is provided in Table 6-2 for the reactor vessel inner radius at five azimuthal locations. The vessel data given in Table 6-2 were taken at the clad/base metal interface, and thus, represent maximum calculated exposure levels on the vessel.
From the data provided in Table 6-2 it is noted that the peak clad/base metal interface vessel fluence (E > 1.0 MeV) at the end of the sixteenth fuel cycle (i.e., after 19.63 EFPY of plant operation) was 1.48 x 10'9 n/cm 2.
Both calculated fluence (E > 1.0.MeV) and dpa data are provided in Tables 6-1 and 6-2. These data tabulations include both plant- and fuel-cycle-specific calculated neutron exposures at the end of the sixteenth fuel cycle as well as future projections to 20, 26, 30, 34, 40, 44, 48, 54, and 60 EFPY. The calculations account for an uprate from 3800 MWt to 3853 MWt that occurred at the beginning of Cycle WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 6-4 Westinghouse Non-Proprietary Class 3
- 10. The projections were based on the assumption that the core power distributions and associated plant operating characteristics from Cycle 15 [Ref. 30] were representative of future plant operation. The future projections are also based on the current reactor power level of 3853 MWt.
The calculated fast neutron exposures for the four surveillance capsules withdrawn from the South Texas Unit 2 reactor are provided in Table 6-3. These assigned neutron exposure levels are based on the plant-and fuel-cycle-specific neutron transport calculations performed for the South Texas Unit 2 reactor.
2 From the data provided in Table 6-3, Capsule W received a fluence (E > 1.0 MeV) of 4.20 x 1019 n/cm after exposure through the end of the fifteenth fuel cycle (i.e., after 18.30 EFPY of plant operation).
Updated lead factors for the South Texas Unit 2 surveillance capsules are provided in Table 6-4. The capsule lead factor is defined as the ratio of the calculated fluence (E > 1.0 MeV) at the geometric center of the surveillance capsule to the maximum calculated fluence at the pressure vessel clad/base metal interface at the time the capsule is removed from the reactor. In Table 6-4, the lead factors for capsules that have been withdrawn from the reactor (V, Y, U, and W) were based on the calculated fluence values' for the irradiation period corresponding to the time of withdrawal for the individual capsules. Capsules X and Z remain in the reactor and their lead factors have also been reported in Table 6-4, based on End-of-Cycle (EOC) 15, which is the last completed cycle.
-J October 2012 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 6-5 6.3 NEUTRON DOSIMETRY1 The validity of the calculated neutron exposures reported in Section 6.2 is demonstrated by a direct comparison against the measured sensor reaction rates and via a least-squares evaluation performed for each of the capsule dosimetry sets. However, since the neutron dosimetry measurement data merely serve to validate the calculated results, only, the direct comparison of measured-to-calculated results for the most recent surveillance capsule removed-from service is provided in this section of the report. For completeness, the assessment of all measured dosimetry removed to date, based on both direct and least-squares evaluation comparisons, is documented in Appendix A.
The direct comparison of measured versus calculated fast neutron threshold reaction rates for the sensors from Capsule W, that was withdrawn from South Texas Unit 2 at the end of the fifteenth fuel cycle, is summarized below.
I Reaction Ratte,, (rpslatomn) K !~
~~Reactioti Measuired N (M iS C,alculated~ (C) M/C Rýatio 63 Cu(n,a) 60Co 4.05E-17 4.14E-17 0.98 54 54 Fe(n,p) Mn 4.26'E-15 4.49E-15 0.95 58 Ni(n,p)58Co 6.39E-15 6.26E-15 1.02 238 U(Cd) (n,f) 137 Cs 2.2 1E-14 2.35E-14 0.94 237 Np(Cd) (n,f)137Cs 2.10QE-13 2.21E-13 0.95 Average: 0.97
'_% Standard Deviation: 3.4 The measured-to-calculated (M/C) rea6tion rate ratios for the Capsule W threshold reactions range from 0.94 to 1.02, and the average M/C ratio is 0.97 +/- 3.4% (Icy). This direct comparison falls well within the
+/- 20% criterion specified in Regulatory Guide 1.190; furthermore, it is consistent with the full set of comparisons given in Appendix A for all measured dosimetry removed to date from the South Texas Unit 2 reactor. These comparisons validate, the current analytical results described in Section 6.2; therefore, the calculations are deemed applicable for South Texas Unit 2.
6.4 CALCULATIONAL UNCERTAINTIES The uncertainty associated with the calculated neutron exposure of the South Texas Unit 2 surveillance capsule and reactor pressure vessel is based on the recommended approach provided in Regulatory Guide 1.190. In particular, the qualifiation of the methodology was carried out in the following four stages:
- 1. Comparison of calculations with benchmark measurements from the Pool Critical Assembly (PCA) simulator at the Oak Ridge National Laboratory (ORNL).
- 2. Comparisons of calculations with surveillance capsule and reactor cavity measurements from the H. B. Robinson power reactor lbenchmark experiment.
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 6-6 Westinghouse Non-Proprietary Class 3
- 3. An analytical sensitivity study addressing the uncertainty components resulting from important input parameters applicable to the plant-specific transport calculations used in the neutron exposure assessments.
- 4. Comparisons of the plant-specific calculations with all available dosimetry results from the South Texas Unit 2 surveillance program.
The first phase of the methods qualification (PCA comparisons) addressed the adequacy of basic transport calculation and dosimetry evaluation techniques and associated cross-sections.' This phase, however, did not test the accuracy of commercial core neutron source calculations nor did it address uncertainties in operational or geometric variables that impact power reactor calculations. The second phase of the qualification (H. B. Robinson comparisons) addressed uncertainties in these additional areas that are primarily methods related and would tend to apply generically to' all fast neutron exposure evaluations.
The third phase of the qualification (analytical sensitivity study) identified the potential uncertainties introduced into the overall evaluation due to calculational methods approximations as well as to a lack of knowledge relative to various plant-specific input parameters. The overall calculational uncertainty applicable to the South Texas Unit 2 analysis was established from results of these three phases of the methods qualification.
The fourth phase of the uncertainty assessment (comparisons with South Texas Unit 2 measurements) was used solely to demonstrate the validity of the transport calculations and to confirm the uncertainty estimates associated with the analytical results. The comparison was used only as a check and was not used in any way to modify the calculated surveillance capsule and pressure vessel neutron exposures previously described in Section 6.2. As such, the validation of the South Texas Unit 2 analytical model based on the measured plant dosimetry is completely described in Appendix A.
The following summarizes the uncertainties developed from the first three phases of the methodology qualification. Additional information pertinent to these evaluations is provided in Reference 20. Please note the uncertainties assigned in the table below for capsule and vessel inner radius are taken from References 32 and 33, respectively.
S. . ...... .Vessel Cap.le IR PCA Comparisons 3% 3%
H. B. Robinson Comparisons 3% 3%
Analytical Sensitivity Studies 10% 11%
Additional Uncertainty for Factorsnot Explicitly Evaluated 5% 5%
Net Calculational Uncertainty 12% 13%
The net calculational uncertainty was determined by combining the individual components in quadrature.
Therefore, the resultant uncertainty was treated as random and no systematic bias was applied to the analytical results.
The plant-specific measurement comparisons described in Appendix A support these uncertainty assessments for South Texas Unit 2.
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 6-7 Table 6-1 Calculated Neutron Exposure Rates and Integrated Exposures at the Surveillance Capsule Center(")
Cumulative u1'*
mulatie ,Neutro Ilux (E--10*0NeV): [n/cm -]i Cy cle Irradiation 'Irradiation Len~h' Tine V~inme Cycle J{F~)
EFPSI U1 ' D11F29.0 Dual31.5 ~ingl,Ie 3 1.5~
S I 2.75E+07 2.75E+07 0.87 8.97E+10 9.74E+10 9.61E+10 2 2.24E+07 4.99E+07 1.58 6.75E+10 7.13E+10 6.90E+10 3 3.28E+07 8.27E+07 2.62 7.67E+10 8.15E+10 7.90E+10 4 4.13E+07 1.24E+08 3.93 8.08E+10 8.69E+10 8.57E+10 5 3.79E+07 1.62E+08 5.13 7.OOE+10 7.55E+10 7.44E+10 6 4.89E+07 2.11E+08 6.68 5.65E+10 5.95E+10 5.86E+10 7 2.93E+07 2.40E+08 7.61 7.23E+10 8.49E+10 8.40E+/-10 8 3.98E+07 2.80E+08 8.87 6.97E+10 7.66E+10 7.56E+10 9 4.54E+07 3.25E+08 10.31 6.14E+10 6.78E+10 6.69E+10 10 3.38E+07 3.59E+08 11.38 6.82E+10 7.37E+10 7.26E+10 11 4.35E+07 4.03E+08 12.76 6.55E+10 7.21E+10 7.12E+10 12 4.32E+07 4.46E+08 14.13 6.21E+10 6.77E+10 6.68E+10 13 4.45E+07 4.90E+08 15.54 6.30E+10 6.90E+10 6.81E+10 14 4.26E+07 5.33E+08 16.89 6.47E+10 7.13E+10 7.04E+10 15 4.45E+07 5.78E+08 18.30 6.33E+10' 6.89E+10 6.79E+10 16 4.20E+07 6.19E+08 19.63 6.53E+10 7.23E+10 7.13E+10 Future 1.17E+07 6.31E+08 20.00 6.33E+10 6.89E+10 6.79E+10 Future 1.89E+08 8.20E+08 26.00 6.33E+10 6.89E+10 6.79E+10 Future 1.26E+08 9.47E+08 30.00 6.33E+10 6.89E+10 6.79E+10 Future 1.26E+08 1.07E+09 34.00 6.33E+10 6.89E+10 6.79E+10 Future 1.89E+08 1.26E+09 40.00 6.33E+10 6.89E+10 6.79E+10 Future 1.26E+08 1.39E+09 44.00 6.33E+10 6.89E+10 6.79E+10 Future 1.26E+08 1.51E+09 48.00 6.33E+10 6.89E+10 6.79E+10 Future 1.89E+08 1.70E+09 54.00 6.33E+10 6.89E+10 6.79E+10 Future 1.89E+08 1.89E+09 60.00 6.33E+10 6.89E+10 6.79E+10 Note:
(a). Neutron exposure values reported for the surveillance capsules are centered at the core midplane.
(b) Effective-Full-Power-Seconds October 2012 WCAP- 17636-NP WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 6-8 Westinghouse Non-Proprietary Class 3 Table 6-1 (Continued) Calculated Neutron Exposure Rates and Integrated Exposures at the Surveillance Capsule Center(a)
I 2.75E+07 2.75E+07 0.87 2.45E+18 2.66E+18 2.62E+18 2 2.24E+07 4.99E+07 1.58 3.97E+18 4.26E+18 4.18E+18 3 3.28E+07 8.27E+07 2.62 6.48E+18 6.94E+18 6.77E+18 4 4.13E+07 1.24E+08 3.93 9.82E+18 1.05E+19 1.03E+19 5 3.79E+07 1.62E+08 5.13 1.25E+19 1.34E+19 1.31E+19 6 4.89E+07 2.11E+08 6.68 1.52E+19 1.63E+19 1.60E+19 7 2.93E+07 2.40E+08 7.61 1.74E+19 1.88E+19 1.85E+19 8 3.98E+07 2.80E+08 8.87 2.01E+19 2.18E+19 2.15E+19 9 4.54E+07 3.25E+08 10.31 2.29E+19 2.49E+19 2.45E+19 10 3.38E+07 3.59E+08 11.38 2.52E+19 2.74E+19 2.70E+19 11 4.35E+07 4.03E+08 12.76 2.81E+19 3.06E+19 3.01E+19 12 4.32E+07 4.46E+08 14.13 3.08E+19 3.35E+19 3.30E+19 13 4.45E+07 4.90E+08 15.54 3.36E+19 3.66E+19 3.60E+19 14 4.26E+07 5.33E+08 16.89 3.63E+19 3.96E+19 3.90E+19 15 4.45E+07 5.78E+08 18.30 3.91E+19 4.27E+19 4.20E+19 16 4.20E+07 6.19E+08 19.63 4.19E+19 4.57E+19 4.50E+19 Future 1.17E+07 6.31E+08 20.00 4.26E+19 4.65E+19 4.58E+19 Future 1.89E+08 8.20E+08 26.00 5.46E+19 5.95E+19 5.86E+19 Future 1.26E+08 9.47E+08 30.00 6.26E+19 6.82E+19 6.72E+19 Future 1.26E+08 1.07E+09 34.00 7.06E+19 7.69E+19 7.58E+19 Future 1.89E+08 1.26E+09 40.00 8.25E+19 9.OOE+19 8.87E+19 Future 1.26E+08 1.39E+09 44.00 9.05E+19 9.86E+19 9.72E+19 Future 1.26E+08 1.51E+09 48.00 9.85E+19 1.07E+20 1.06E+20 Future 1.89E+08 1.70E+09 54.00 1.1OE+20 1.20E+20 1.19E+20 Future 1.89E+08 1.89E+09 60.00 1.22E+20 1.33E+20 1.32E+20 Note:
(a) Neutron exposure values reported for the surveillance capsules are centered at the core midplane.
(b) Effective-Full-Power-Seconds WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 6-9 Table 6-1 (Continued) Calculated Neutron Exposure Rates and Integrated Exposures at the Surveillance Capsule Center(a) uuL e, .,n ete
/i A tdpais CN le Irrmlaiation Iriadiation Length J me: Time Cycle C IFFPS'"'I Iý ' JEFPYJ Dua 29.0O" DuaFl35O1 Si I ,Ic3 1. -5 1 2.75E+07 2.75E+07 0.87 1.75E-10 1.90E-10 1.87E-10 2 2.24E+07 4.99E+07 1.58 1.31E-10 1.38E-10 1.33E&10 3 3.28E+07 8.27E+07 2.62 1.49E-10 1.58E-10 1.52E-10 4 4.13E+07 1.24E+08 3.93 1.57E-10 1.69E-10 1.66E-10 5 3.79E+07 1.62E+08 5.13 1.36E-10 1.46E-10 1.44E-10 6 4.89E+07 2.11E+08 6.68 1.09E-10 1.15E-10 1.13E-10 7 2.93E+07 2.40E+08 7.61 1.40E-10 1.65E-10 1.62E-10 8 3.98E+07 2.80E+08 8.87 1.35E-10 1.48E-10 1.45E-10 9 4.54E+07 3.25E+08 10.31 1.19E-10 1.31E-10 1.29E-10 10 3.38E+07 3.59E+08 11.38 1.32E-10 1.42E-10 1.40E-10 11 4.35E+07 4.03E+08 12.76 1.27E-10 1.39E-10 1.37E-10 12 4.32E+07 4.46E+08 14.13 1.20E-10 1.31E-10 1.29E-10 13 4.45E+07 4.90E+08 15.54 1.22E-10 1.33E-10 1.31E-10 14 4.26E+07 5.33E+08 . 16.89 1.25E-10 1.38E-10 1.35E-10 15 4.45E+07 5.78E+08 18.30 1.22E-10 1.33E-10 1.31E-10 16 4.20E+07 6.19E+08 19.63 1.26E-10 1.40E-10 1.37E-10 Future 1.17E+07 6.31E+08 20.00 1.22E-10 1.33E-10 1.31E-10 Future 1.89E+08 8.20E+08 26.00 1.22E-10 1.33E-10 1.31E-10 Future 1.26E+08 9.47E+08 30.00 1.22E-10 1.33E-10 1.31E-10 Future 1.26E+08 1.07E+09 34.00 1.22E-10 1.33E-10 1.31E-10 Future 1.89E+08 1.26E+09 40.00 1.22E-10 1.33E-10 1.31E-10 Future 1.26E+08 1.39E+09 44.00 1.22E-10 1.33E-10 1.31E-10 Future 1.26E+.08 1.51E+09 48.00 1.22E-10 1.33E-10 1.31E-10 Future 1.89E+08 1.70E+09 54.00 1.22E-10 1.33E-10 1.31E-10 Future 1.89E+08 1.89E+09 60.00 1.22E-10 1.33E-10 1.31E-10 Note:
(a) Neutron exposure values reported for the surveillance capsules are centered at the core midplane.
(b) Effective-Full-Power-Seconds October 2012 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 6-10 Westinghouse Non-Proprietary Class 3 Table 6-1 (Continued) Calculated Neutron Exposure Rates and Integrated Exposures at the Surveillance Capsule Center(a)
Cumulative 'Cufmuative. l11-n Atomi Displacement [dpal+
Ccle Irradiation lrraiation Length ,ine Time ic Cycle [EFrPIS' "I jvýIEES] rEPI-1 Dual 29.0"~ Dual 31.50 -ii I 2.75E+07 2.75E+07 0.87 4.77E-03 5.19E-03 5.09E-03 2 2.24E+07 4.99E+07 1.58 7.72E-03 8.30E-03 8.09E-03 3 3.28E+07 8.27E+07 2.62 1.26E-02 1-.35E-02 1.31E-02 4 4.13E+07 1.24E+08 3.93 1.91E-02 2.05E-02 1.99E-02
- 5. 3.79E+07 1.62E+08 5.13 2.42E-02 2.60E-02 2.54E-02 6 4.89E+07 2.11E+08 6.68 2.96E-02 3.16E-02 3.09E-02 7 2.93E+07 2.40E+08 7.61' 3.37E-02 3.65E-02 3.57E-02 8 3.98E+07 2.80E+08 8.87 3.90E-02 4.24E-02 4.14E-02 9 4.54E+07 3.25E+08 10.31 4.44E-02 4.83E-02 4.73E-02 10 3.38E+07 3.59E+08 11.38 4.89E-02 5.31E-02 5.20E-02 11 4.35E+07 4.03E+08 12.76 5.44E-02 5.92E-02 5.80E-02 12 4.32E+07 4.46E+08 14.13 5.96E-02 6.49E-02 6.35E-02 13 4.45E+07 "4.90E+08 15.54 6.50E-02 7.08E-02 6.94E-02 14 4.26E+07 5.33E+08 16.89 7.03E-02 7.66E-02 7.51E-02 15 4.45E+07 5.78E+08 18.30 7.58E-02 8.26E-02 8.10E-02 16 4.20E+07 6.19E+08 19.63 8.1OE-02 8.84E-02 8.67E-02 Future 1.17E+07 6.31E+08 20.00 8.25E-02 9.OOE-02 8.82E-02 Future 1.89E+08 8.20E+08 26.00 1.06E-01 1.15E-01 1.13E-01 Future 1.26E+08 9.47E+08 30.00 1.21E-01 1.32E-01 1.29E-01 Future 1.26E+08 1.07E+09 34.00 1.36E-01 1.49E-01 1.46E-01 Future 1.89E+08 1.26E+09 40.00 1.60E-01 1.74E-01 1.71E-01 Future 1.26E+08 1.39E+09 44.00 1.75E-01 1.91E-01 1.87E-01 Future 1.26E+08 1.51E+09 48.00 1.90E-01 2.08E-01 2.04E-01 Future 1.89E+08 1.70E+09 54.00 2.14E-01 2.33E-01 2.28E-01 Future 1.89E+08 1.89E+09 60.00 2.37E-01 2.58E-01 2.53E-01 Note:
(a) Neutron exposure values reported for the surveillance capsules are centered at the core midplane.
(b) Effective-Full-Power-Seconds October 2012 WCAP-1 7636-NP WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 6-11 Table 6-2 Calculated Azimuthal Variation of Maximum Exposure Rates and Integrated Exposures at the Reactor Vessel Clad/Base Metal Interface 1 2.75E+07 2.75E+07 0.87 1.22E+10 1.89E+10 2.20E+10 2.93E+10 2.93E+10 2 2.24E+07 4.99E+07 1.58 1.21E+10 1.75E+10 1.75E+10 2.28E+10 2.28E+10 3 3.28E+07 8.27E+07 2.62 1.18E+10 1.81E+10 1.86E+10 2.33E+10 2.31E+10 4 4.13E+07 1.24E+08 3.93 1.19E+10 1.80E+10 1.97E+10 2.78E+10 2.76E+10 5 3.79E+07 1.62E+08 5.13 9.84E+09 1.49E+10 1.68E+10 2.36E+10 2.33E+10 6 4.89E+07 2.11E+08 6.68 8.81E+09 1.30E+10 1.40E+10 1.96E+10 1.96E+10 7 2.93E+07 2.40E+08 7.61 7.53E+09 1.19E+10 1.83E+10 3.25E+10 3.22E+10 8 3.98E+07 2.80E+08 8.87 8.20E+09 1.29E+10 1.73E+10 2.52E+10 2.52E+10 9 4.54E+07 3.25E+08 10.31 7.71E+09 1.14E+10 1.54E+10 2.14E+10 2.14E+10 10 3.38E+07 3.59E+08 11.38 9.05E+09 1.42E+10 1.70E+10 2.21E+10 2.21E+10 11 4.35E+07 4.03E+08 12.76 8.17E+09 1.27E+10 1.68E+10 2.46E+10 2.46E+10 12 4.32E+07 4.46E+08 14.13 8.15E+09 1.25E+10 1.56E+10 2.29E+10 2.29E+10 13 4.45E+07 4.90E+08 15.54 7.44E+09 1.18E+10 1.59E+10 2.27E+10 2.27E+10 14 4.26E+07 5.33E+08 16.89 8.15E+09 1.21E+10 1.64E+10 2.34E+10 2.34E+10
- 15 4.45E+07 5.78E+08 18.30 8.65E+09 1.26E+10 1.59E+10 2.24E+10 2.24E+10 16 4.20E+07 6.19E+08 19.63 8.31E+09 1.24E+10 1.65E+10 2.38E+10 2.38E+10 Future 1.17E+07 6.31E+08 20.00 8.65E+09 1.26E+10 1.59E+10 2.24E+10 2.24E+10 Future 1.89E+08 8.20E+08 26.00 8.65E+09 1.26E+10 1.59E+10 2.24E+10 2.24E+10 Future 1.26E+08 9.47E+08 30.00 8.65E+09 1.26E+10 1.59E+10 2.24E+10 2.24E+10 Future 1.26E+08 1.07E+09 34.00 8.65E+09 1.26E+10 1.59E+10 2.24E+10 2.24E+10 Future 1.89E+08 1.26E+09 40.00 8.65E+09 1.26E+10 1.59E+10 2.24E+10 2.24E+10 Future 1.26E+08 1.39E+09 44.00 8.65E+09 1.26E+10 1.59E+10 2.24E+10 2.24E+10 Future 1.26E+08 1.51E+09 48.00 8.65E+09 1.26E+10 1.59E+10 2.24E+10 2.24E+10 Future 1.89E+08 1.70E+09 54.00 8.65E+09 1.26E+10 1.59E+10 2.24E+10 2.24E+10 Future 1.89E+08 1.89E+09 60.00 8.65E+09 1.26E+10 1.59E+10 2.24E+10 2.24E+10 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 6-12 Westinghouse Non-Proprietary Class 3 Table 6-2 (Continued) Calculated Azimuthal Variation of Maximum Exposure Rates and Integrated Exposures at the Reactor Vessel Clad/Base Metal Interface I 2.75E+07 2.75E+07 0.87 3.32E+17 5.15E+17 6.OOE+17 8.OOE+17 8.OOE+17 2 2.24E+07 4.99E+07 1.58 5.83E+17 8.76E+17 9.62E+17 1.31E+18 1.31E+18 3 3.28E+07 8.27E+07 2.62 9.70E+17 1.47E+18 1.57E+18 2.07E+18 2.07E+18 4 4.13E+07 1.24E+08 3.93 1.46E+18 2.21E+18 2.37E+18 3.22E+18 3.21E+18 5 3.79E+07 1.62E+08 5.13 1.83E+18 2.77E+18 3.01E+18 4.12E+18 4.09E+18 6 4.89E+07 2.11E+08 6.68 2.26E+18 3.40E+18 3.69E+18 5.08E+18 5.05E+18 7 2.93E+07 2.40E+08 7.61 2.48E+18 3.75E+18 4.22E+18 6.03E+18 6.OOE+18 8 3.98E+07 2.80E+08 8.87 2.80E+18 4.27E+18 4.90E+18 7.03E+18 7.OOE+18 9 4.54E+07 3.25E+08 10.31 3.15E+18 4.78E+18 5.59E+18 8.01E+18 7.97E+18 10 3.38E+07 3.59E+08 11.38 3.46E+18 5.26E+18 6.16E+18 8.74E+18 8.71E+18 11 4.35E+07 4.03E+08 12.76 3.81E+18 5.81E+18 6.88E+18 9.82E+18 9.79E+18 12 4.32E+07 4.46E+08 14.13 4.16E+18 6.34E+18 7.54E+18 1.08E+19 1.08E+19 13 4.45E+07 4.90E+08 15.54 4.49E+18 6.87E+18 8.24E+18 1.18E+19 1.18E+19 14 4.26E+07 5.33E+08 16.89 4.82E+18 7.37E+18 8.91E+18 - 1.28E+19 1.28E+19 15 4.45E+07 5.78E+08 18.30 5.20E+18 7.92E+18 9.61E+18 1.38E+19 1.38E+19 16 4.20E+07 6.19E+08 19.63 5.54E+18 8.42E+18 1.03E+19 1.48E+19 1.48E-+/-19 Future 1.17E+07 6.31E+08 20.00 5.64E+18 8.57E+18 1.05E+19 1.51E+19 1.50E+19 Future 1.89E+08 8.20E+08 26.00 7.25E+18 1.09E+19 1.35E+19 1.93E+19 1.93E+19 Future 1.26E+08 9.47E+08 30.00 8.32E+18 1.25E+19 1.55E+19 2.22E+19 2.21E+19 Future 1.26E+08 1.07E+09 34.00 9.40E+18 1.40E+19 1.75E+19 2.50E+19 2.49E+19 Future 1.89E+08 1.26E+09 40.00 1.10E+19 1.64E+19 2.05E+19 2.92E+19 2.92E+19 Future 1.26E+08 1.39E+09 44.00 1.21E+19 1.80E+19 2.25E+19 3.21E+19 3.20E+19 Future 1.26E+08 1.51E+09 48.00 1.32E+19 1.96E+19 2.45E+19 3.49E+19 3.49E+19 Future 1.89E+08 1.70E+09 54.00 1.48E+19 2.19E+19 2.76E+19 3.91E+19 3.91E+19 Future 1.89E+/-08 1.89E+09 60.00 1.64E+19 2.43E+19 3.06E+19 4.34E+19 4.33E+19 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 6-13 Table 6-2 (Continued) Calculated Azimuthal Variation of Maximum Exposure Rates and Integrated Exposures at the Reactor Vessel Clad/Base Metal Interface 1 2.75E+07 2.75E+07 0.87 1.88E-1 1 2.89E-11I 3.39E-1 1 4.45E-1 I 4.45E-1 1 2 2.24E+07 4.99E+07 1.58 1.87E-11 2.68E-11 2.70E-1l 3.46E-11 3.46E-11 3 3.28E+07 8.27E+07 2.62 1.83E-11 2.78E-11 2.87E-11 3.53E-11 3.50E-11 4 4.13E+07 1.24E+08 3.93 1.84E-11 2.77E-11 3.03E-11 4.22E-11 4.19E-11 5 3.79E+07 1.62E+08 5.13 1.52E-11 2.29E-11 2.59E-11 3.58E-11 3.55E-11 6 4.89E+07 2.11E+08 6.68 1.36E-11 2.00E- 1 2.16E-11 2.98E-11 2.98E-11 7 2.93E+07 2.40E+08 7.61 1.17E-11 1.83E-11 2.82E-11 4.93E-11 4.88E-11 8 3.98E+07 2.80E+08 8.87 1.27E- 11 1.99E-11 2.67E-11 3.83E- 11 3.83E-11 9 4.54E+07 3.25E+08 10.31 1.19E-11 1.76E-11 2.37E- 1 3.26E-11 3.26E-11 10 3.38E+07 3.59E+08 11.38 1.40E-11 2.18E-11 2.62E-11 3.36E-11 3.36E-11 11 4.35E+07 4.03E+08 12.76 1.27E-11 1.96E-11 2.59E-11 3.73E-11 3.73E-11 12 4.32E+07 4.46E+08 14.13 1.26E- 11 1.93E-11 2.40E-11 3.48E-11 3.48E-11 13 4.45E+07 4.90E+08 15.54 1.15E-1I 1.82E-11 2.45E-1I 3.44E-11 3.44E-11 14 4.26E+07 5.33E+08 16.89 1.26E-11 1.87E-11 2.53E-11 3.56E-11 3.56E-11 15 4.45E+07 5.78E+08 18.30 1.34E-11 1.93E-11 2.46E-11 3.40E-11 3.40E-11 16 4.20E+07 6.19E+08 19.63 1.29E-11 1.91E-11 2.54E-1I 3.62E-11 3.62E-11 Future 1.17E+07 6.31E+08 20.00 1.34E-11 1.93E-11 2.46E- 1 3.40E-11 3.40E-11 Future 1.89E+08 8.20E+08 26.00 1.34E-11 1.93E-11 2.46E-11 3.40E-11 3.40E-11 Future 1.26E+08 9.47E+08 30.00 1.34E-11 1.93E-11 2.46E-11 3.40E-11 3.40E-11 Future 1.26E+/-08 1.07E+09 34.00 1.34E-1I 1.93E-1I 2.46E-1I 3.40E-1I 3.40E-1I Future 1.89E+08 1.26E+09 40.00 1.34E-11 1.93E-11 2.46E-11 3.40E-11 3.40E-11 Future 1.26E+08 1.39E+09 44.00 1.34E-11 1.93E-11 2.46E-11 3.40E-11 3.40E-11 Future 1.26E+08 1.51E+09 48.00 1.34E-11 1.93E-11 2.46E-11 3.40E-11 3.40E- 11 Future 1.89E+08 1.70E+09 54.00 1.34E-11 1.93E-11 2.46E-11 3.40E-11 3.40E-11 Future 1.89E+08 1.89E+09 60.00 1.34E-11 1.93E-11 2.46E- 11 3.40E-11 3.40E- 11 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 6-14 Westinghouse Non-Proprietary Class 3 Table 6-2 (Continued) Calculated Azimuthal Variation of Maximum Exposure Rates and Integrated Exposures at the Reactor Vessel Clad/Base Metal Interface I 2.75E+07 2.75E+07 0.87 5.14E-04 7.90E-04 9.26E-04 1.21E-03 1.22E-03 2 2.24E+07 4.99E+07 1.58 9.01E-04 1.34E-03 1.48E-03 1.99E-03 1.99E-03 3 3.28E+07 8.27E+07 2.62. 1.50E-03 2.26E-03 2.42E-03 3.15E-03 3.14E-03 4 4.13E+07 1.24E+08 3.93 2.25E-03 3.39E-03 3.66E-03 4.89E-03 4.87E-03 5 3.79E+07 1.62E+08 5.13 2.83E-03 4.25E-03 4.65E-03 6.25E-03 6.22E-03 6 4.89E+07 2.11E+08 6.68 3.49E-03 5.22E-03 5.69E-03 7.71E-03 7.67E-03 7 2.93E+07 2.40E+08 7.61 3.84E-03 5.76E-03 6.51E-03 9.16E-03 9.11E-03 8 3.98E+07 2.80E+08 8.87 4.34E-03 6.55E-03 7.56E-03 1.07E-02 1.06E-02 9 4.54E+07 3.25E+08 10.31 4.88E-03 7.35E-03 8.63E-03 1.22E-02 1.21E-02 10 3.38E+07 3.59E+08 11.38 5.35E-03 8.08E-03 9.51E-03 1.33E-02 1.32E-02 11 4.35E+07 4.03E+08 12.76 5.90E-03 8.92E-03 1.06E-02 1.49E-02 1.49E-02 12 4.32E+07 4.46E+08 14.13 6.44E-03 9.75E-03 1.16E-02 1.64E-02 1.64E-02 13 4.45E+07 4.90E+08 15.54 6.95E-03 1.06E-02 1.27E-02 1.79E-02 1.79E-02 14 4.26E+07 5.33E+08 16.89 7.47E-03 1.13E-02 1.38E-02 1.94E-02 1.94E-02 15 4.45E+07 5.78E+08 18.30 8.06E-03 1.22E-02 1.48E-02 2.1OE-02 2.09E-02 16 4.20E+07 6.19E+08 19.63 8.58E-03 1.30E-02 1.59E-02 2.25E-02 2.24E-02 Future 1.17E+07 6.31E+08 20.00 8.74E-03 1.32E-02 1.62E-02 2.29E-02 2.28E-02 Future 1.89E+08 8.20E+08 26.00 1.12E-02 1.68E-02 2.08E-02 2.93E-02 2.93E-02 Future 1.26E+08 9.47E+08 30.00 1.29E-02 1.92E-02 2.39E-02 3.36E-02 3.36E-02 Future 1.26E+08 1.07E+09 34.00 1.45E-02 2.16E-02 2.70E-02 3.79E-02 3.79E-02 Future 1.89E+08 1.26E+09 40.00 1.71E-02 2.52E-02 3.16E-02 4.44E-02 4.43E-02 Future 1.26E+08 1.39E+09 44.00 1.87E-02 2.76E-02 3.47E-02 4.87E-02 4.86E-02 Future 1.26E+08 1.51E+09 48.00 2.04E-02 3.01E-02 3.78E-02 .5.30E-02 5.29E-02 Future 1.89E+08 1.70E+09 54.00 2.29E-02 3.37E-02 4.25E-02 5.94E-02 5.94E-02 Future 1.89E+08 1.89E+09 60.00 2.54E-02 3.73E-02 4.71E-02 6.58E-02 6.58E-02 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 6-15 Table 6-3 Calculated Fast Neutron Exposure of Surveillance Capsules Withdrawn from South Texas Unit 2 Ir-Adiatioi IinTice F"Ilune ( A.0 N] C Iron Displa1cemnwits Ga1psuIe V 0.87 2.45E+18 4.77E-03 Y 5.13 1.25E+19 2.42E-02 U 10.31 2.49E+19 4.83E-02 W 18.30 4.20E+19 8.1OE-02 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 6-16 Westinghouse Non-Proprietary Class 3 Table 6-4 Calculated Surveillance Capsule Lead Factors Capsule 11)Anid Locationisati Lead Factor V (61°) Withdrawn EOC 1 3.06 Y (241.0°) Withdrawn EOC 5 3.03 U (58.50) Withdrawn EOC 9 3.11 W (121.5-) Withdrawn EOC 15 3.04 X (238.5') In Reactor 3.09*
Z (301.50) In Reactor 3.04*
The lead factors for the capsules remaining in the reactor are calculated based on EOC 15, the last completed operating cycle.
WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 6-17 S*W Std Sto 1* .mw k p.i Cw. SWu fr inM" Cocde 0
N N
U
(.4
(.4 0
N 0
Sn N
So Sn 5-)
Tý k"V 0
0.0 33.8 67.5 101.2 135.0 168.8 202.5 236.2 270.0 I
[cm]
Figure 6-1 South Texas Unit 2 rO Reactor Geometry with a 12.50 Neutron Pad Span at the Core Midplane WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 6-18 Westinghouse Non-Proprietary Class 3
=Cr -wi StodnsSu ft- RConre one M Cfw sie Q0-C'4 0n-U,-
CR4
'0.0 202'.5 236.2 270.0 "
[cm]
Figure 6-2 South Texas Unit 2 r,0 Reactor Geometry with a 20.00 Neutron Pad Span at the Core Midplane WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 6-19 M Cw, M Siam~ St. on=s Ref - kaw I,* M Catoo Siw
- iw" -oC~f I
'so 04-C'4-N' 0
0.0 3135.0 168.8 20 .2 7
[CM]
Figure 6-3 South Texas Unit 2 rO Reactor Geometry with a 22.50 Neutron Pad Span at the Core Midplane WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 6-20 Westinghouse Non-Proprietary Class 3 C4 Z E
0 0
00 (6t 4.115E+02 cm O.OOE+00 4.11E+02 Figure 6-4 South Texas Unit 2 rz Plane with Neutron Pad at 350 Azimuthal Angle WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 6-21
+A I-E Q
04 LaJ (0
(0 4.115E+02 cm O.OQE+00 4.11E+02 Figure 6-5 South Texas Unit 2 rz Plane with Surveillance Capsule and Neutron Pad at 290 Azimuthal Angle WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 7-1 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE The following surveillance capsule removal schedule (Table 7-1) meets the requirements of ASTM E185-82 [Ref. 8] and is recommended for future capsules to be removed from the South Texas Unit 2 reactor vessel.
Table 7-1 Surveillance Capsule Withdrawal Schedule 61.00 Withdrawn V 3.06 0.87 2.448 x 101" (29.0', dual) (EOC 1)
Y241.0 Withdrawn 3.03 5.13 1.248 x 1019 (29.00, dual) (EOC 5)
U 58.50 Withdrawn 3.11 10.31 2.493 x 10'9 (31.50, dual) (EOC 9)
W 121.50 Withdrawn 3.04 18.30 4.201 x 1019 (31.50, single) (EOC 15)
X(d) 238.50 In Reactor 3.09 (e) ---
(31.50, dual)
Z(d) 301.50 In Reactor 3.04 (e)
_ (31.50, single)
Notes:
(a) Updated in Capsule W dosimetry analysis; see Table 6-4.
(b) EFPY from plant startup.
(c) Updated in Capsule W dosimetry analysis; see Table 6-3.
(d) If South Texas Unit 2 plans to pursue additional license renewals, then the two standby capsules located in the reactor vessel can serve as the 80-year and 100-year operating license capsules. Capsules X and Z have approximately equivalent lead factors and per Table 6-1 have accumulated approximately equivalent fluence. Therefore, at this time, there is no advantage to pull one capsule instead of the other. Whichever capsule is pulled as the 80-year capsule, the other will serve as the 100-year capsule. ,
(e) Capsule X or Z should be withdrawn at the refueling outage after 26 EFPY of plant operation, which is when the fluence on the capsule will be greater than once but less than twice the peak 80-year vessel fluence. The withdrawal schedule for the remaining capsule, which could be considered a 100-year capsule, should be determined when the 80-year capsule is tested because predicted core operation and current regulations may change.
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 8-1 8 REFERENCES
- 1. U.S. Nuclear Regulatory Commission, Regulatory Guide 1.99, Revision 2, Radiation Embrittlement of Reactor Vessel Materials, May 1988.
- 2. 10 CFR 50, Appendix G, Fracture Toughness Requirements, and Appendix H, Reactor Vessel Material Surveillance Program Requirements, Federal Register, Volume 60, No. 243, December 19, 1995.
- 3. WCAP-9967, Revision 0, Houston Lighting & Power Company South Texas Project Unit No. 2 Reactor Vessel Radiation Surveillance Program,January 1982.
- 4. ASTM El 85-79, Standard Practicefor Conducting Surveillance Tests for Light-Water Cooled NuclearPower Reactor Vessels, American Society for Testing and Materials, 1979.
- 5. Appendix G to the 1998 through the 2000 Addenda Edition of the ASME Boiler and Pressure Vessel (B&PV) Code,Section XI, Division 1, FractureToughness Criteriafor ProtectionAgainst Failure.
- 6. ASTM E208, StandardTest Methodfor Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of FerriticSteels, American Society for Testing and Materials.
- 7. ASTM E399, Test Methodfor Plane-StrainFractureToughness of Metallic Materials, American Society for Testing and Materials.
- 8. ASTM El 85-82, Standard Practicefor Conducting Surveillance Tests for Light-Water Cooled NuclearPower Reactor Vessels, E706 (IF), American Society for Testing and Materials, 1982.
- 9. ASTM E23-07a, Standard Test Method for Notched Bar Impact Testing of Metallic Materials, ASTM, 2007.
- 10. ASTM E2298-09, Standard Test Method for Instrumented Impact Testing of Metallic Materials, ASTM, 2009.
- 11. ASTM A370-09, Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM, 2009.
- 13. ASTM E21-09, Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials, ASTM, 2009.
- 14. WCAP-13182, Revision 0, Analysis of Capsule V from the Houston Lighting and Power Company South Texas Unit 2 Reactor Vessel Radiation Surveillance Program,February 1992.
- 15. WCAP-14978, Revision 0, Analysis of Capsule Y from the Houston Lighting and Power Company South Texas Unit 2 Reactor Vessel Radiation Surveillance Program,December 1997.
WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 8-2 Westinghouse Non-Proprietary Class 3
- 16. WCAP-16093-NP, Revision 2, Analysis of Capsule Ufrom the South Texas ProjectNuclear Operating Company, South Texas Unit 2 Reactor Vessel Radiation SurveillanceProgram,July 2007.
- 17. ASTM E853-01, Standard Practice for Analysis and Interpretation of Light-Water Reactor Surveillance Results, E706 (1A), American Society for Testing and Materials, 2001.
- 18. ASTM E693-0 1, StandardPracticefor CharacterizingNeutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom (DPA), E706 (ID), American Society for Testing and Materials, 2001.
- 19. U.S. Nuclear Regulatory Commission, Regulatory Guide 1.190, Calculationaland Dosimetry Methods for DeterminingPressure Vessel Neutron Fluence, March 2001.
- 20. WCAP-14040-A, Revision 4, Methodology Used to Develop Cold Overpressure Mitigating System Setpoints andRCS Heatup and Cooldown Limit Curves, May 2004.
- 21. Drawing 6117E78, Revision 1, 4 Loop XL IrradiationSpecimen Guide, December 1975.
- 22. LTR-REA-11-149, Revision 0, Software Release LetterforRAPTOR-M3G Version 2.0 on GNU/Linux 2.6, November 7, 2011.
- 23. RSICC Data Library Collection DLC- 185, B UGLE-96, Coupled 47 Neutron, 20 Gamma-Ray Group Cross Section LibraryDerivedfrom ENDF/B-Vlfor LWR Shielding and PressureVessel Dosimetry Applications, July 1999.
- 24. Drawing 10025E52, Revision 0, South Texas Unit 2 Ex-Vessel Neutron Dosimetry Installation, September 2006.
- 25. WCAP- 15937, Revision 0, The Nuclear Design and Core Management of the South Texas Unit 2 Nuclear Power Plant Cycle 10, October' 2002..
- 26. WCAP-1 6218-P, Revision 0, The Nuclear Design and Core Management of the South Texas Unit 2 Nuclear PowerPlant Cycle 11, March 2004.
- 27. WCAP-16462-P, Revision 0, The Nuclear Design and Core Management of the South Texas Unit 2 Nuclear PowerPlant Cycle 12, November 2005.
- 28. WCAP-16725-P, Revision 0, The Nuclear Design and Core Management of the South Texas Unit 2 NuclearPower Plant Cycle 13, April 2007.
- 29. WCAP- 16991 -P, Revision 0, The Nuclear Design and Core Management of the South Texas Unit 2 NuclearPower Plant Cycle 14, October 2008.
- 30. WCAP-17222-P, Revision 0, The Nuclear Design and Core Management of the South Texas Unit 2 Nuclear PowerPlant Cycle 15, April 2010.
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 8-3
- 31. WCAP-17509-P, Revision 0, The Nuclear Design and Core Management of the South Texas Unit 2 NuclearPowerPlant Cycle 16, November 2011.
- 32. WCAP-15557, Revision 0, Qualification of the Westinghouse Pressure Vessel Neutron Fluence EvaluationMethodology, July 1998.
- 33. WCAP-16083-NP-A, Benchmark Testing of the FERRET Code for Least Squares Evaluationfor Light Water ReactorDosimetry, May 2006.
October 2012 WCAP-17636-NP WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 A-1 APPENDIX A VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY MEASUREMENTS A.1 NEUTRON DOSIMETRY Comparisons of measured dosimetry results to both the calculated and least-squares adjusted values for all surveillance capsules withdrawn from service to date at South Texas Unit 2 are described herein. The sensor sets from these capsules have been analyzed in accordance with the current dosimetry evaluation methodology described in Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence" [Ref. A-1]. One of the main purposes for presenting this material is to demonstrate that the overall measurements agree with the calculated and least-squares adjusted values to within +/- 20% as specified by Regulatory Guide 1.190, thus serving to validate the calculated neutron exposures previously reported in Section 6.2 of this report. Please note only three of the four bare wires, along with the cadmium-shielded dosimeter, were found in each of the three dosimeter blocks. After comparing to the gamma-ray spectrometry counting results, it is concluded that the bare aluminum-0.15 weight percent cobalt wires are missing. Since the bare cobalt dosimeter wires are responding mostly to thermal neutrons, missing these dosimeter wires has no impact on the validation of the radiation transport models.
A.1.1 Sensor Reaction Rate Determinations In this section, the results of the evaluations of the four neutron sensor sets analyzed to date as part of the South Texas Unit 2 Reactor Vessel Materials Surveillance Program are presented. The capsule designation, location within the reactor, and time of withdrawal of each of these dosimetry sets were as follows:
Capsule IDkinilLocation Withdrawval Time Irithiionie [LF'P4 Y]
V 29.0' Dual End of Cycle 1 0.87 0
Y 29. ' Dual End of Cycle 5 5.13 U 31.5' Dual End of Cycle 9 10.31 W 31.5' Single End of Cycle 15 18.30 The azimuthal locations included in the above tabulation represent the first octant equivalent azimuthal angle of the geometric center of the respective surveillance capsules.
The passive neutron sensors included in the evaluations of Surveillance Capsules V, Y, U, and W are summarized as follows:
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 A-2 Westinghouse Non-Proprietary Class 3 Copper-63 o"Cu(n,c)"uCo X X X X 54 54 Iron-54 Fe(n,p) Mn X X X X 58 Nickel-58 Ni(n,p) 5 1Co X X X X 238 37 Uranium-238 U(n,f)1 Cs X X X X 237 37 Neptunium-237 Np(n,f) 1 Cs X X X X 59 Cobalt-Aluminum* Co(n,y) 60Co X X X X
- The cobalt-aluminum measurements for this plant include both bare and cadmium-covered wire sensors.
Since all of the dosimetry monitors were located at the radial center of the material test specimen array, radial gradient corrections were not required for these reaction rates. Pertinent physical and nuclear characteristics of the passive neutron sensors are listed in Table A-1.
The use of passive monitors such as those listed above does not yield a direct measure of the energy-dependent neutron flux at the point of interest. Rather, the activation or fission process is a measure of the integrated effect that the time- and energy-dependent neutron flux has on the target material over the course of the irradiation period. An accurate assessment of the average neutron flux level incident on the various monitors may be derived from the activation measurements only if the irradiation parameters are well known. In particular, the following variables are of interest:
- the measured specific activity of each monitor,
- the physical characteristics of each monitor,
- .the operating history of the reactor,
- the energy response of each monitor, and
- the neutron energy spectrum at the monitor location.
Results from the radiometric counting of the neutron sensors from Capsules V, Y, and U are' documented in References A-2, A-3, and A-4, respectively, and re-evaluated in Reference A-5. The radiometric counting of the sensors from Capsule W was carried out by Pace Analytical Services, Inc. In all cases, the radiometric counting followed established ASTM procedures. Following sample preparation and weighing, the specific activity of each sensor was determined by means of a high-resolution gamma spectrometer. For the copper, iron, nickel, and cobalt-aluminum sensors, these analyses were performed by direct counting of each of the individual samples. In the case of the uranium and neptunium fission sensors, the analyses were carried.out by direct counting preceded by dissolution and chemical separation of cesium from the sensor material.
The irradiation history of the reactor over the irradiation periods experienced by Capsules V, Y, U, and W was based on the monthly power generation of South Texas Unit 2 from initial reactor criticality through the end of the dosimetry evaluation period. For the sensor sets utilized in the surveillance capsules, the half-lives of the product isotopes are long enough that a monthly histogram describing reactor operation has proven to be an adequate representation for use in radioactive decay corrections for the reactions of interest in the exposure evaluations. The irradiation history applicable to Capsules V, Y, U, and W is given in Table A-2.
WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 A-3 Having the measured specific activities, the physical characteristics of the sensors, and the operating history of the reactor, reaction rates referenced to full-power operation were determined from the following equation:
A R=
No F Y n Pi C1 [1 - ex"'j] [e'd'j]
i=1 Pref where:
R = Reaction rate averaged over the irradiation period and referenced to operation at a core power level of Pref (rps/nucleus).
A = Measured specific activity (dps/g).
No = Number of target element atoms per gram of sensor material.
F = Atom fraction of the target isotope in the target element.
Y = Number of product atoms produced .per reaction.
Pi = Average core power level during irradiation period j (MW).
'Pref = Maximum or reference power level of the reactor (MW).
Ci = Calculated ratio of O(E > 1.0 MeV) during irradiation period j to the time weighted average O(E > 1.0 MeV) over the entire irradiation period.
X* = Decay constant of the product isotope (1/sec).
tj = Length of irradiation period j.(sec).
tdj = Decay time following irradiation period j (sec).
n = Total number of irradiation periods.
and the summation is carried out over the total number of monthly intervals comprising the irradiation period.
In the equation describing the reaction rate calculation, the ratio [Pj]/[Pref] accounts for month-by-month variation of reactor core power level within any given fuel cycle as well as over multiple fuel cycles. The ratio Cj, which was calculated for each fuel cycle using the transport methodology discussed in Section 6.2, accounts for the change in sensor reaction rates caused by variations in flux level induced by changes in core spatial power distributions from fuel cycle to fuel cycle. For a single-cycle irradiation, Cj is normally taken to be 1.0. However, for multiple-cycle irradiations, particularly those employing low-WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 A-4 Westinghouse Non-Proprietary Class 3 leakage fuel management, the additional Cj term should be employed. The impact of changing flux levels for constant power operation can be quite significant for sensor sets that have been irradiated for many cycles in a reactor that has transitioned from non-low-leakage to low-leakage fuel management or for sensor sets contained in surveillance capsules that have been moved from one capsule location to another.
The fuel-cycle-specific neutron flux values along with the computed values for Cj are listed in Table A-3.
These flux values represent the cycle-dependent results at the radial and azimuthal center of the respective capsules at the axial elevation of the active fuel midplane.
Prior to using the measured reaction rates in the least-squares evaluations of the dosimetry sensor sets, additional corrections were made to the 238U measurements to account for the presence of 231U impurities in the sensors as well as to adjust for the build-in of plutonium isotopes over the course of the irradiation.
Corrections were also made to the 238U and 237Np sensor reaction rates to account for gamma-ray-induced fission reactions that occurred over the course of the capsule irradiations. The correction factors applied to the South Texas Unit 2 fission sensor reaction rates are summarized as follows:
Correction Factor Caipsul Caps*u Capsule U Cýsule Wd W
235U Impurity/Pu Build-in 0.875 0.836 0,793 0.736 238U(7,f 0.967 0.968 0.967 0.969 Net 238U Correction Factor 0.846 0.809 0.767 0.713 237 Np(yf) , 0.990 0.990 0.990 0.990 These factors were applied in a multiplicative fashion to the decay corrected uranium and neptunium fission sensor reaction rates.
Results of the sensor reaction rate determinations for Capsules V, Y, U, and W are given in Table A-4a through Table A-4d. In Table A-4a through Table A-4d, the measured specific activities, decay corrected saturated specific activities, and computed reaction rates for each sensor indexed to the radial center of the capsule are listed. The fission sensor reaction rates are listed both with and without the applied corrections for 238U impurities, plutonium build-in, and gamma-ray-induced fission effects.
A.1.2 Least-Squares Evaluation of Sensor Sets Least-squares adjustment methods provide the capability of combining the measurement data with the corresponding neutron transport calculations resulting in a best-estimate neutron energy spectrum with associated uncertainties. Best estimates for key exposure rate parameters such as 4(E > 1.0 MeV) or dpa/s along with their uncertainties are then easily obtained from the adjusted spectrum. In general, the least-squares methods, as applied to surveillance capsule dosimetry evaluations, act to reconcile the measured sensor reaction rate data, dosimetry reaction cross sections, and the calculated neutron energy spectrum within their respective uncertainties. For example, R i +SR 8 i ig )((Pg -*6g) g relates a set of measured reaction rates, Ri, to a single neutron spectrum, %~,through the multigroup dosimeter reaction cross section, uig, each with an uncertainty 6. The primary objective of the least-WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 A-5 squares evaluation is to produce unbiased estimates of the neutron exposure parameters at the location of the measurement.
For the least-squares evaluation of the South Texas Unit 2 surveillance capsule dosimetry, the FERRET code [Ref. A-6] was employed to combine the results of the plant-specific neutron transport calculations and sensor set reaction rate measurements to determine best-estimate values of exposure parameters (4(E > 1.0 MeV) and dpa) along with associated uncertainties for the four in-vessel capsules analyzed to date.
The application of the least-squares methodology requires the following input:
1., The calculated neutron energy spectrum and associated uncertainties at the measurement location.
- 2. The measured reaction rates and associated uncertainty for each sensor contained in the multiple foil set.
- 3. The energy-dependent dosimetry reaction cross sections and associated uncertainties for each sensor contained in the multiple foil sensor set.
For the South Texas Unit 2 application, the calculated neutron spectrum was obtained from the results of plant-specific neutron transport calculations described in Section 6.2 of this report. The sensor reaction rates were derived from the measured specific activities using the procedures described in Section A. 1.1.
The dosimetry reaction cross sections and uncertainties were obtained from the SNLRML dosimetry cross-section library [Ref. A-7]. The SNLRML library is an evaluated dosimetry reaction cross-section compilation recommended for use in LWR evaluations by ASTM Standard El018, "Standard Guide for Application of ASTM Evaluated Cross-Section Data File, Matrix E706 (JIB)" [Ref. A-8].
The uncertainties associated with the measured reaction rates, dosimetry cross sections, and calculated neutron, spectrum were input to the least-squares procedure in the form of variances and covariances. The assignment of the input uncertainties followed the guidance provided in ASTM Standard E944, "Standard Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance" [Ref. A-9].
The following provides a summary of the uncertainties associated with the least-squares evaluation of the South Texas Unit 2 surveillance capsule sensor sets.
WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 A-6 Westinghouse Non-Proprietary Class 3 Reaction Rate Uncertainties The overall uncertainty associated with the measured reaction rates includes components due to the basic measurement process, irradiation history cofrections, and corrections for competing reactions. A high level of accuracy in the reaction rate determinations is assured by utilizing laboratory procedures that conform to the ASTM National Consensus Standards for reaction rate determinations for each sensor type.
After combining all of these uncertainty components, the sensor reaction rates derived from the counting and data evaluation procedures were assigned the following net uncertainties for input to the least-squares evaluation:
6 1Cu(n, () 60Co. 5%
54 54 Fe(n,p) Mn 5%
58 Ni(n,p) 58 Co 5%
238 37 U(n,f) 1 Cs 10%
2 37 37 Np(n,t) 1 Cs 10%
59 60 Co(nY) Co 5%
These uncertainties are given at the 1a level.
Dosimetrv Cross-Section Uncertainties The reaction rate cross sections used in the least-squares evaluations were taken from the SNLRML library. This data library provides reaction cross sections and associated uncertainties, including covariances, for 66 dosimetry sensors in common use. Both cross-sections and uncertainties are provided in a fine multigroup structure for use in least-squares adjustment applications. These cross sections were compiled from the most recent cross-section evaluations, and they have been tested with respect to their accuracy and consistency for least-squares evaluations. Further, the library has been empirically tested for use in fission spectra determination as well as in the fluence and. energy characterization of 14 MeV neutron sources.
For sensors included in the South Texas Unit 2 surveillance program,, the following uncertainties in the fission spectrum averaged cross sections are provided in the SNLRML documentation package.
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 A-7 63 Cu(n,a)60 Co 4.08-4.16%
54 Fe(n,p)" 4Mn 3.05-3.11%
58 Ni(n,p) 58Co 4.49-4.56%
238 U(n,f)t 37Cs 0.54-0.64%
237 Np(n,f) 137 Cs 10.32-10.97%
59 Co(nY) 60Co 0.79-3.59%
These tabulated ranges provide an indication of the dosimetry cross-section uncertainties associated with the sensorsets used in LWR irradiations.
Calculated Neutron Spectrum The neutron spectra input to the least-squares adjustment procedure were obtained directly from the results of plant-specific transport calculations for each surveillance capsule irradiation period and location. The spectrum for each capsule was input in an absolute sense (rather than as simply a relative spectral shape). Therefore, within the constraints of the assigned uncertainties, the calculated data were treated equally with the measurements.
While the uncertainties associated with the reaction rates were obtained from the measurement procedures and counting benchmarks and the dosimetry cross-section uncertainties were supplied directly with the SNLRML library, the uncertainty matrix for the calculated spectrum was constructed from the following relationship:
Mgg = R' + Rg
- Rg,* P where Rn specifies an overall fractional normalization uncertainty and the fractional uncertainties Rg and Rg, specify additional random groupwise uncertainties that are correlated with a correlation matrix given by:
Pgg,=[1-015gg, +e-H where
- g')2 H = (g 2y72 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 A-8 Westinghouse Non-Proprietary Class 3.
The first term in the correlation matrix equation specifies purely random uncertainties, while the second term describes the short-range correlations over a group range y (0 specifies the strength of the latter term). The value of 6 is 1.0 when g = g', and is 0.0 otherwise.
The set of parameters defining the input covariance matrix for the SouthTexas Unit 2 calculated spectra was as follows:
Flux Normalization Uncertainty (Rn) 15%
Flux Group Uncertainties (Rg, Rg,)
(E > 0.0055 MeV) 15%
(0.68 eV < E < 0.0055 MeV) 25%
(E < 0.68 eV) 50%
Short Range Correlation (0)
(E > 0.0055 MeV) 0.9 (0.68 eV< E < 0.0055 MeV) 0.5 (E < 0.68 eV) 0.5 Flux Group Correlation Range (,y)
(E > 0.0055 MeV) 6 (0.68 eV < E < 0.0055 MeV) 3 (E < 0.68 eV) 2 A.1.3 Comparisons of Measurements and Calculations Results of the least-squares evaluations of the dosimetry from the South Texas Unit 2 surveillance capsules withdrawn to date are provided in Tables A-5 and A-6. In Table A-5, measured, calculated, and best-estimate values for sensor reaction rates are given for each capsule. Also provided in this tabulation are ratios of the measured reaction rates to both the calculated and least-squares adjusted reaction rates.
These ratios of M/C and measured-to-best-estimate (M/BE) illustrate the consistency of the fit of the calculated neutron energy spectra to the measured reaction rates both before and after adjustment. In Table A-6, comparison of the calculated and best-estimate values of neutron flux (E > 1.0 MeV) and iron atom displacement rate are tabulated along with the best-estimate-to-calculated (BE/C) ratios observed for each of the capsules.
The data comparisons provided in Tables A-5 and A-6 show that the adjustments to the calculated spectra are relatively small and well within the assigned uncertainties for the calculated spectra, measured sensor reaction rates, and dosimetry reaction cross sections. Further, these results indicate that the use of the least-squares evaluation results in a reduction in the uncertainties associated with the exposure of the surveillance capsules. From Section 6.4 of this report, it may be noted that the uncertainty associated with the unadjusted calculation of neutron fluence (E > 1.0 MeV) and :iron atom displacements at the surveillance capsule locations is specified as 12% at the 1c level. From Table A-6, it is noted that the corresponding uncertainties associated with the least-squares adjusted exposure parameters have been reduced to 6% for neutron flux (E > 1.0 MeV) and 7-8% for iron atom displacement rate. Again, the uncertainties from the least-squares evaluation are at the 1 level.
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 A-9 Further comparisons of the measurement results (from Tables A-5 and A-6) with calculations are given in Tables A-7 and A-8. These comparisons are given on two levels. In Table A-7, calculations of individual threshold sensor reaction rates are compared directly with the corresponding measurements. These threshold reaction rate comparisons provide a good evaluation of the accuracy of the fast neutron portion of the calculated energy spectra. In Table A-8, calculations of fast neutron exposure rates in terms of
ý(E > 1.0 MeV) and dpa/s are, compared with the best-estimate results obtained from the least-squares evaluation of the capsule dosimetry results. These two levels of comparison yield consistent and similar results with all measurement-to-calculation comparisons falling well within the +/-20% limits specified as the acceptance criteria in Regulatory Guide 1.190.
In the case of the direct comparison of measured and calculated sensor reaction rates, the M/C comparisons for fast neutron threshold reactions range from 0.85 to 1.19 for the 20 samples included in the data set. The overall average M/C ratio for the entire set of South Texas Unit 2 data is 1.00 with an associated standard deviation of 9.5%.
In the comparisons of best-estimate and calculated fast neutron exposure parameters, the corresponding BE/C comparisons for the capsule data sets range from 0.91 to 1.02 for neutron flux (E > 1.0 MeV) and from 0.92 to 1.04 for iron atom displacement rate. The overall average BE/C ratios for neutron flux (E > 1.0 MeV) and iron atom displacement rate are 0.97 with a standard deviation of 4.9% and 0.98 with a standard deviation of 6.5%, respectively.
Based on these comparisons, it is concluded that the calculated fast neutron exposures provided in Section 6.2 of this report are validated for use in the assessment of the condition of the materials comprising the beltline region of the South Texas Unit 2 reactor pressure vessel.
WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 A-10 Westinghouse Non-Proprietary Class 3 Table A-1 Nuclear Parameters Used in the Evaluation of Neutron Sensors Reaction of Tlarget to~il 90%. Re'sponse ~Produc Fssioi Yield Monitor Mate1rial Init erest VF raCtioI1 Rng C LHa1Pfife VY 63 Copper-63 Cu(n,a) 0.6917 4.9-11.9 5. 2 7 2 y n/a 54 Iron-54 Fe (n,p) 0.0585 2.1 -8.5 312.1 d n/a 58 Nickel-58 Ni (n,p) 0.6808 1.5-8.3 70.82 d n/a 238 Uranium-238 U (n,f) 1.0000 1.3-6.9 30.07 y 6.02 237 Neptunium-237 Np (n,f) 1.0000 0.3 -3.8 30.07 y 6.17 59 Cobalt-Aluminum Co (n,y) 0.0015 non-threshold 5.272 y n/a (a) The 90% response range is defined such that, in the neutron spectrum characteristic of the South Texas Unit 2 surveillance capsules, approximately 90% of the sensor response is due to neutrons in the energy range specified with approximately 5% of the total response due to neutrons with energies below the lower limit and 5% of the total response due to neutrons with energies above the upper limit.
October 2012 WCAP-1 7636-NP WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 A-1I Table A-2 Monthly Thermal Generation During the First Fifteen Fuel Cycles of the South Texas Unit 2 Reactor (Reactor Power of 3800 MWt from Startup Through the End of Cycle 9; uprate from 3800 MWt to 3853 MWt at the beginning of Cycle 10; and, 3853 MWt for Cycles 11 through 15)
Mar-89 0 May-91 2550275 Jul-93 0 Sep-95 2748240 Apr-89 76126 Jun-91 2746866 Aug-93 0 Oct-95 538289 May-89 656280 Jul-91 2837924 Sep-93 0 Nov-95 2174143 Jun-89 1094991 Aug-91 2837741 Oct-93 0 Dec-95 2792787 Jul-89 1902515 Sep-91 1177346 Nov-93 0 Jan-96 1428146 Aug-89 1794876 Oct-91 0 Dec-93 0 Feb-96 2391887 Sep-89 1886300 Nov-91 0 Jan-94 0 Mar-96 2804951 Oct-89 2579773 Dec-91 553038 Feb-94 0 Apr-96 2735628 Nov-89 263923 Jan-92 2191813 Mar794 0 May-96 2826664 Dec-89 0 Feb-92 2511067 Apr-94 0 Jun-96 2735536 Jan-90 1191912 Mar-92 2663411 May-94 89867 Jul-96 2826866 Feb-90 2252641 Apr-92 2374113 Jun-94 1616148 Aug.96 2826725 Mar-90 2297162 May-92 2826840 Jul-94 2744301 Sep-96 2735681 Apr-90 1397572 Jun-92 2746316 Aug-94 2838840 Oct-96 2826463 May-90 1523075 Jul-92 2830229 Sep-94 2746957 Nov-96 2735320 Jun-90 2644265 Aug-92 2828031 Oct-94 2843329 Dec-96 2823541 Jul-90 2077578 Sep-92 2744301 Nov-94 2748148 Jan-97 2816826,.
Aug-90 2828214 Oct-92 2842963 Dec-94 2719383 Feb-97 586009 Sep-90 2361563 Nov-92 2648845 Jan-95 2833527 Mar-97 2589484 Oct-90 0 Dec-92 2601026 Feb-95 2565024 Apr-97 2722685 Nov-90 0 Jan-93 1988535 Mar-95 2515372 May-97 2521680 Dec-90 1608911 Feb-93 242486 Apr-95 2736514 Jun-97 2735544 Jan-91 2607255 Mar-93 0 May-95 2839848 Jul-97 2826926 Feb-91 2427337 Apr-93 0 Jun-95 2747965 Aug-97 2827018 Mar-91 2372189 May-93 0 Jul-95 2839756 Sep-97 2736000 Apr-91 2578032 Jun-93 0 Aug-95 2839848 Oct-97 2830666 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 A-12 Westinghouse Non-Proprietary Class 3 Table A-2 (Continued) Monthly Thermal Generation During the First Sixteen Fuel Cycles of the.
South Texas Unit 2 Reactor (Reactor Power of 3800 MWt from Startup Through the End of Cycle 9; uprate from 3800 MWt to 3853 MWt at the beginning of Cycle 10; and, 3853 MWt for Cycles 11 through 15)
Nov-97 2568374 1 Jan-00 261.4339 Mar-02 2827200 May-04 2839573 Dec-97 2629752 Feb-00 2114928 Apr-02 2731622 Jun-04 2748240 Jan-98 2647080 Mar-00 2826014 May-02 2821637 Jul-04 2839848 Feb-98 2553509 Apr-00 2731166 Jun-02 2294318 Aug-04 2839848 Mar-98 2826653 May-00 2826379 Jul-02 2653555 Sep-04 2746591 Apr-98 2732170 Jun-00 2144477 Aug-02 2827200 Oct-04 2843696 May-98 2827200 Jul-00 2826014 Sep-02 2735818 Nov-04 2747874 Jun-98 2735818 Aug-00 2826562 Oct-02 79253 Dec-04 2839665 Jul-98 2656018 Sep-00 2735818 Nov-02 0 Jan-05 2839848 Aug-98 2826562 Oct-00 2830210 Dec-02 795432 Feb-05 1859826 Sep-98 2569469 Nov-00 2735453 Jan-03 155001 Mar-05 2839848 Oct-98 273600 Dec-00 2826379 Feb-03 0 Apr-05 2744392 Nov-98 3057298 Jan-01 2826470 Mar-03 1618988 May-05 2839115 Dec-98 2715389 Feb-01 2066683 Apr-03 2744392 Jun-05 2748240 Jan-99 2694504 Mar-01 292752 May-03 2833252 Jul-05 2839756 Feb-99 2553418 Apr-01 2383238 Jun-03 2748240 Aug-05 2839573 Mar-99 2827109 May-01 2464498 Jul-03 2839848. Sep-05 2652876 Apr-99 2732078 Jun-01 2723050 Aug-03 2838565 Oct-05 71821 May-99 2791085 Jul-01 2825650 Sep-03 2747690 Nov-05 7787 Jun-99 2729069 Aug-01 2817989 Oct-03 2843696 Dec-05 2635929.
Jul-99 2713930 Sep-01 2735635 Nov-03 2729644 Jan-06 2836275 Aug-99 2606405 Oct-01 2210962 Dec-03 2824366 Feb-06 2839207 Sep-99 2727336 Nov-01 2735909 Jan-04 2839756 Mar-06 2564841 Oct-99 982406 Dec-01 2826835 Feb-04 2656632 Apr-06 2836917 Nov-99 1765723 Jan-02 2826197 Mar-04 2736697 May-06 2744026 Dec-99 2783242 Feb-02 2552050 Apr-04 199339 Jun-06 2823633 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 A-13 Table A-2 (Continued) Monthly Thermal Generation During the First Sixteen Fuel Cycles of the South Texas Unit 2 Reactor (Reactor Power of 3800 MWt from Startup Through the End of Cycle 9; uprate from 3800 MWt to 3853 MWt at the beginning of Cycle 10; and, 3853 MWt for Cycles 11 through 15)
Jul-06 1 2745492 Nov-07 2839482 Mar-09 1 2563375 Jul-10 2866170 Aug-06 2839848 Dec-07 2751813 Apr-09 2833985 Aug-10 2865522 Sep-06 2838749 Jan-08 2839298 May-09 2745583 Sep-10 2771848 Oct-06 2747690 Feb-08 2839482 Jun-09 2837833 Oct-10 2864690 Nov-06 2843604 Mar-08 2656449 Jul-09 2747324 Nov-10 648876 Dec-06 2748240 Apr-08 2833985 Aug-09 2838840 Dec-10 2863765 Jan-07 2839848 May-08 2747324 Sep-09 2839207 Jan-11 2841757 Feb-07 2839848 Jun-08 2746957 Oct-09 1709772 Feb-1 2587644 Mar-07 2522060 Jul-08 2746683 Nov-09 2838840 Mar-ll 2860621 Apr-07 1858910 Aug-08 2838199 Dec-09 2747232 Apr-11 2772126 May-07 167551 Sep-08 2837741 Jan-10 2838932 May-1 2864320 Jun-07 2835909 Oct-08 2644357 Feb-10 2838107 Jun-11 2771756 Jul-07 2748240 Nov-08 305055 Mar-10 2563558 Jul-11 2864043 Aug-07. 2839756 Dec-08 2349654 Apr-10 2455736 Aug-l1 2609837 Sep-07 2803846 Jan-09 2839665 May-10 2648306 Sep4l1 2771756 Oct-07 2748240 Feb-09 2838749 Jun-10 2772311 Oct411 2645716 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 A-14 Westinghouse Non-Proprietary Class 3 Table A-3 Calculated Fast Neutron Flux (E > 1.0 MeV) and Cj Factors at the Surveillance Capsule Center, Core Midplane Elevation I 2.75E+07 8.97E+10 8.97E+10 9.74E+10 9.61E+10 2 2.24E+07 6.75E+10 7.13E+10 6.90E+10 3 3.28E+07 7.67E+10 8.15E+10 7.90E+10 4 4.13E+07 8.08E+10 8.69E+10 8.57E+10 5 3.79E+07 7.OOE+10 7.55E+10 7.44E+10 6 4.89E+07 5.95E+10 5.86E+10 7 2.93E+07 8.49E+10 8.40E+10 8 3.98E+07 7.66E+10 7.56E+10 9 4.54E+07 6.78E+10 6.69E+10 10 3.38E+07 7.26E+10 11 4.35E+07 7.12E+l 0 12 4.32E+07 6.68E+10 13 4.45E+07 6.81E+10 14 4.26E+07 7.04E+10 15 4.45E+07 6.79E+10 Time Weighted 8.97E+10 7.61E+10 7.54E+10 7.60E+10 Average Flux WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 A-15 Table A-3 (continued) Calculated Fast Neutron Flux (E > 1.0 MeV) and Cj Factors at the Surveillance Capsule Center, Core Midplane Elevation 1 2.75E+07 1.00 1.18 1.29 1.26 2 2.24E+07 0.89 0.95 0.91 3 3.28E+07 1.01 1.08 1.04 4 4.13E+07 1.06 1.15 1.13 5 3.79E+07 0.92 1.00 0.98 6 4.89E+07 0.79 0.77 7 2.93E+07 1.13 1.11 8 3.98E+07 1.02 1.00 9 4.54E+07 0.90 0.88 10 3.38E+07 0.96 11 4.35E+07 0.94 12 4.32E+07 0.88 13 4.45E+07 0.90 14 4.26E+07 0.93 15 4.45E+07 0.89 Average 1.00 1.00 1.00 1.00 f
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 A-16 Westinghouse Non-Proprietary Class 3 Table A-4a Measured Sensor Activities and Reaction Rates of Surveillance Capsule V NIl[u e tctviwt atedi** A ted Reaction kdji Reaction LPicatioii1 (dps/,g) ' (dpslg') Rate"' (rpsv,"t~oni) 63 Cu (na) 6 0Co Top 3.50E+04 3.54E+05 5.39E-17 Middle 3.38E+04 3.42E+05 5.21E-17 Bottom 3.33E+04 3.36E+05 5.13E-17 Average 5.25E-17 4 54 1 Fe (n,p) Mn Top 9.97E+05 3.2 1E+06 5.09E-15 Middle 9.73E+05 3.13E+06 4.97E-15 Bottom 9.43E+05 3.03E+06 4.81E-15 Average 4.96E-15 5
8Ni (n,p) 58Co Top 7.13E+06 4.60E+07 6.59E-15 Middle 6.89E+06 4.45E+07 6.37E-15 Bottom 6.60E+06 4.26E+07 6.10E-15 Average 6.35E-15 23 37 8U (n,f) 1 Cs (Cd) Middle 1.15E+05 5.91E+06 3.88E-14 239 3 .2 8 E-14tb) 235 Pu, and y fission corrections:
Including U, 237 Np (n,f) 37 1 Cs (Cd) Middle [ 9.86E+05 5.07E+07 3.23E-13 Including y fission corrections: 3.20E-13'e) 59 60 Co (n,y) Co Top 7.25E+06 7.32E+07 4.78E-12 Middle 7.47E+06 7.55E+07 4.92E-12 Bottom 7.80E+06 7.88E+07 5.14E-12 Average 4.95E-12 59 60 Co (n,y) Co (Cd) Top 4.09E+06 4.13E+07 2.70E-12 Middle 4.24E+06 4.28E+07 2.80E-12 Average 2.75E-12 Notes:
(a) Measured specific activities are indexed to a counting date of March 15, 1991.
23 (b) The average 8U (n,f) reaction rate of 3.28E-14 includes a correction factor of 0.875 to account for plutonium build-in and an additional factor of 0.967 to account for photo-fission effects in the sensor.
237 (c) The average Np (n,f) reaction rate of 3.20E-13 includes a correction factor of 0.990 to account for photo-fission effects in the sensor.
(d) Reaction rates are referenced to the Cycle 1 rated reactor power of 3800 MWt.
WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 A-17 Table A-4b Measured Sensor Activities and Reaction Rates of Surveillance Capsule Y N"Iured AciivityNý Satuated Activityv Adjusted Reaction W~iction~,> Location (d s/) R;dsg~ate (rps/atom,;
63 60 CU (n,a) Co Top 1.19E+05 2.85E+05 4.35E-17 Middle 1.16E+05 2.78E+05 4.24E-17 Bottom 1.14E+05 2.73E+05 4.17E-17 Average 4.25E-17 54 54 Fe (n,p) Mn Top 1.63E+06 2.66E+06 4.22E-15 Middle 1.59E+06 2.59E+06 4.11E-15 Bottom 1.55E+06 2.53E+06 4.01E-15 Average 4.11E-15 5
"Ni (n,p) "SCo Top 1.03E+07 4.18E+07 6.02E-15 Middle 1.OIE+07 4.1OE+07 5.90E-15 Bottom 9.70E+06 3.96E+07 5.67E-15 Average 5.86E-15 2 38 13 7 U (n,f) Cs (Cd) Middle 5.06E+05 4.69E+06 3.08E-14 235 239 2.49E-14(b)
Including U, Pu, and y fission corrections:
237 37 Np (n,f) 1 Cs (Cd) Middle 3.56E+06 3.30E+07 2.11 E-13 Including y fission corrections: 2.08E-13(c) 59 60 Co (n,y) Co Top 2.33E+07 5.58E+07 3.64E-12 Middle 2.41E+07 5.77E+07 3.77E- 12 Bottom 2.45E+07 5.87E+07 3.83E-12 Average 3.75E-12
'Co (n,y) 6 0Co (Cd) Top 1.26E+07 3.02E+07 1.97E-12
/ Middle 1.29E+07 3.09E+07 2.02E-12 Bottom 1.32E+07 3.16E+07 2.06E- 12 Average 2.02E-12 Notes:
(a) Measured specific activities are indexed to a counting date of June 19, 1997.
(b) The average 238U (n,f) reaction rate of 2.49E-14 includes a correction factor of 0.836 to account for plutonium build-in and an additional factor of 0.968 to account for photo-fission effects in the sensor.
(c) The average 237Np (n,f) reaction rate of 2.08E-13 includes a correction factor of 0.990 to account for photo-fission effects in the sensor.
(d) Reaction rates are referenced to the Cycles 1-5 average rated reactor power of 3800 MWt.
October 2012 WCAP- 17636-NP WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 A-18 Westinghouse Non-Proprietary Class 3 Table A-4c Measured Sensor Activities and Reaction Rates of Surveillance Capsule U
/Measurcd Acthvitya $S>tu4rK te(~vfty AdjsedReaction Reacton Loation('dps/g) ( jps/g) Rt d rsaon 6 60 1CU (n, () Co Top 1.88E+05 2.93E+05 4.46E-17 Middle 1.80E+05 2.80E+05 4.27E-17 Bottom 1.78E+05 2.77E+05 4.23E-17 Average 4.32E-17 54 54 Fe (n,p) Mn Top 1.86E+06 2.85E+06 4.52E-15 Middle 1.78E+06 2.73E+06 4.32E-15 Bottom 1.74E+06 2.66E+06 4.23E-15 Average 4.36E-15 5
8Ni (n,p) 58Co Top 1.17E+07 4.55E+07 6.51E-15 Middle 1.13E+07 4.39E+07 6.28E-15 Bottom 1.09E+07 4.23E+07 6.06E-15 Average 6.28E-15 137 238u (n,f) Cs (Cd) Middle 1.12E+06 5.47E+06 3.59E-14 235 239 2.75E-14(b)
Including U, Pu, and y fission corrections:
237 Np (n,f) 1 37 Cs (Cd) Middle [ 8.07E+06 3.94E+07 2.51 E-13 Including y fission corrections: 2.49E-13(c) 59 60 Co (n,7) Co Middle 3.61E+07 5.62E+07 3.67E-12 3.76E+07 5.85E+07 3.82E-12 3.79E+07 5.90E+07 3.85E-12 Average 3.78E-12 59 Co (ny) 6°Co (Cd) Middle 1.94E+07 3.02E+07 1.97E-12 1.99E+07 3.1OE+07 2.02E- 12 Bottom 2.05E+07 3.19E+07 2.08E-12 Average 2.02E-12 Notes:
(a) Measured specific activities are indexed to a counting date of February 1, 2003.
(b) The average 238U (n,f) reaction rate of 2.75E-14 includes a correction factor of 0.793 to account for plutonium build-in and an additional factor of 0.967 to account for photo-fission effects in the sensor.
(c) The average 237Np (n,f) reaction rate of 2.49E-13 includes a correction factor of 0.990 to account for photo-fission effects in the sensor.
(d) Reaction rates are referenced to the Cycles 1-9 average rated reactor power of 3800 MWt.
WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 A-19 Table A-4d Measured Sensor Activities and Reaction Rates of Surveillance Capsule W 1iMasured Acti~it [Sart \Ctltý Reaction RAdjusted 63 Cu (n,a) 6°Co Top 2.04E+05 2.74E+05 4.18E-17 Middle 1.96E+05 2.63E+05 4.01E-17 Bottom 1.94E+05 2.60E+05 3.97E- 17 Average 4.05E-17 4 54 1 Fe (n,p) Mn Top 1.46E+06 2.73E+06 4.33E-15 Middle 1.42E+06 2.66E+06 4.21E-15 Bottom 1.43E+06 2.67E+06 4.24E-15 Average 4.26E-15 5t 5 Ni (n,p) 1Co Top 4.34E+06 4.52E+07 6.47E-15 Middle 4.34E+06 4.52E+07 6.47E-15 Bottom 4.18E+06 4.36E+07 6.24E-15 Average 6.39E-15 238 137 U (n,f) Cs (Cd) Middle 1.55E+06 4.73E+06 3.10E-14 235 239 Pu, and y fission corrections: 2.21E-14(b)
Including U, 237 Np (n,f) 137 Cs (Cd) Middle J 1.09E+07 3.32E+07 2.12E-13 Including y fission corrections: 2.10E-13(c) 59 Co (ny) 6°Co (Cd) Top 8.27E+06 1.11E+07 7.24E-13 Middle 7.49E+06 1.01E+07 6.56E-13 Bottom 8.34E+06 1.12E+07 7.30E-13 Average 7.04E-13 Notes:
(a) Measured specific activities are indexed to a counting date of June 15, 2012.
238 (b) The average U (n,t) reaction rate of2.21E-14 includes a correction factor of 0.736 to.account for plutonium build-in and an additional factor of 0.969 to account for photo-fission effects in the sensor.
(c) The average 237Np (n,f) reaction rate of 2.1OE-13 includes a correction factor of 0.990 to account for photo-fission effects in the sensor.
(d) Reaction rates are referenced to the Cycles 1-15 average rated reactor power of 3823 MWt.
WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 A-20 Westinghouse Non-Proprietary Class 3 Table A-5 Comparison of Measured, Calculated, and Best-Estimate Reaction Rates at the Surveillance Capsule Center Capsule V Reaction 16te frps/"a'tom]nj Ricw Meatsured ~" Calculated ~Best-Estirnate NrVMC M/BE 63 6 Cu(n,a) °Co 5.24E- 17 4.80E-17 4.95E-17 1.09 1.03 54 Fe(n,p) 54 Mn 4.95E-15 5.38E-15 5.11 E-15 0.92 0.97 55 5 Ni(n,p) 8Co 6.35E-15 7.54E-15 6.98E-15 0.84 0.91 23 37 8U(n,f)1 Cs (Cd) 3.28E-14 2.88E-14 2.79E-14 1.14 1.18 237 37 Np(n,f)1 Cs (Cd) 3.20E-13 2.75E-13 2.98E-13 1.16 1.08 59 Co(nY) 6°Co 4.95E-12 4.06E-12 4.88E-12 1.22 1.01 59 60 Co(n,7) Co (Cd) 2.74E-12 2.81E-12 2.78E-12 0.98 0.99 Note:
See Section A. 1.2 for details describing the Best-Estimate (BE) reaction rates.
Capsýule I~~
!.e..tion Rate [rkpsato.i ...
Reaction Measulred~WCaculated' BetEtml ,M/G W R/E~
63 Cu(n,a) 60 Co 4.25E-17 4.29E-17 4.13E-17 0.99 1.03 54 4 Fe(n,p)1 Mn 4.I1 E-15 4.71E-15 4.26E-15 0.87 0.96 5 5 "Ni(n,p) 8Co 5.83E-15 6.58E-15 5.96E-15 0.89 0.98 23 37 8U(n,f)1 Cs (Cd) 2.49E-14 2.49E-14 2.26E-14 1.00 1.10 237 137 Np(n,f) Cs (Cd) 2.08E-13 2.35E-13 2.12E-13 0.89 0.98 59 Co(n,7)6°Co 3.75E-12 3.44E- 12 3.70E-12 1.09 1.01 59 60 Co(n,7) Co (Cd) 2.02E-12 2.39E-12 2.04E-12 0.85 0.99 Note:
See Section A. 1.2 for details describing the Best-Estimate (BE) reaction rates.
October 2012 WCAP-17636-NP WCAP- 1763 6-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 A-21 Table A-5 (Continued) Comparison of Measured, Calculated, and Best-Estimate Reaction Rates at the Surveillance Capsule Center
.Reaction Rate [rpn.atom 6Cu(n,oc)6Co 4.32E-17 4.27E-17 4.23E-17 1.01 1.02 4
1 Fe(n,p)Sa Mn 4.35E-15 4.68E-15 4.53E-15 0.93 0.96 5
"Ni(n,p)8Co 6.28E-15 6.54E-15 6.38E-15 0.96 0.98 238 37 U(n,f)1 Cs (Cd) 2.75E-14 2.47E-14 2.46E-14 1.12 1.12 237 137 Np(n,f) Cs (Cd) 2.49E-13 2.34E-13 2.43E-13 1.06' 1.02 59 6 Co(n,y) °Co 3.78E-12 3.41E-12 3.73E-12 1.11 1.01 59 Co(n,y) 60 Co (Cd) 2.02E-12 2.34E-12 2.05E-12 0.86 0.99 Note:
See Section A. 1.2 for details describing the Best-Estimate (BE) reaction rates.
Reaction Hate [r'ps/atom], l
~Reaction Mleasured Calculated Bcst-Esthiiate ~ /CV N.UIBE 63 60 Cu(n,a) Co 4.05E-17 4.14E-17 4.02E-17
- 0.98 1.01 54Fe(n,p)54Mn 4.26E-15 4.49E-15 4.35E-15 0.95 0.98 "Ni(n,p)-sCo 6.39E-15 6.26E-15 6.18E-15 1.02 1.03 23 8U(n,f)137Cs (Cd) 2.21E-14 2.35E-14 2.26E-14 0.94 0.98 237 37 Np(n,f)1 Cs (Cd) 2.10E-13 2.21E-13 2.07E-13 0.95 1.02 59 Co(nY) 6°Co (Cd) 7.03E-13 2.13E-12 7.34E-13 0.33 0.96 Note:
See Section A. 1.2 for details describing the Best-Estimate (BE) reaction rates.
WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 A-22 Westinghouse Non-Proprietary Class 3 Table A-6 Comparison of Calculated and Best-Estimate Exposure' Rates at the Surveillance Capsule Center CIICalculat ed Best-Estimate"u Best-EStinmate' P,F/T, Clapsulc liD LUncertaiiit, (Ia)'
V 8.964E+10 8.855E+10 6% 0.988 Y 7.713E+10 7.019E+10 6% 0.910 U 7.664E+10 7.759E+10 6% 1.012 W 7.274E+10 6.955E+10 6% 0.956 Note:
Calculated results are based on the RAPTOR-M3G transport calculations taken at the core midplane following the completion of each respective capsule's irradiation period and are the average neutron exposure over the irradiation period for each capsule. See Section A.1.2 for details describing the Best-Estimate (BE) exposure rates.
Iron A moni Displacement Rate Idpa'sj Calcula1ted Q lkBst-Estinilate iBest-Estimate ~ BE/c Capsule 11) U~ncrti IY V 1.748E-10 1.763E-10 8% 1.009 Y 1.498E-10 1.358E-10 8% 0.907 U 1.485E-10 1.495E- 10 8% 1.006 W 1.402E-10 1.272E-10 7% 0.907 Note:
Calculated results are based on the RAPTOR-M3G transport calculations taken at the core midplane following the completion of each respective capsule's irradiation period and are the average neutron exposure over the irradiation period for each capsule. See Section A. 1.2 for details describing the Best-Estimate (BE) exposure rates.
WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 A-23 Table A-7 Comparison of Measured/Calculated (M/C) Sensor Reaction Rate Ratios Including all Fast Neutron Threshold Reactions 63 Cu(n,a)60 Co 1.09 0.99 1.01 0.98 54 54 Fe(n,p) Mn 0.92 0.87 0.93 0.95 58 58 Ni(n,p) Co 0.84 0.89 0.96 1.02 238 137 U(n,f) Cs (cd) 1.14 1.00 1.12 0.94 237 Np(n,f)137Cs (Cd) 1.16 0.89 1.06 0.95 Average 1.03 0.93 1.02 0.97
% Standard Deviation 13.8 6.7 7.5 3.4 Note:
The overall average M/C ratio for the set of 20 sensor measurements is 0.99 with an associated standard deviation of 9.2%.
Table'A-8 Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios V 0.98 1.02 Y 0.90 0.92 U 1.00 1.02 W 0.95 0.92 Average 0.96 0.97
% Standard Deviation 4.5 6.0 October 2012 WCAP-1 7636-NP WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 A-24 Westinghouse Non-Proprietary Class 3 A.2 REFERENCES A-1 U. S. Nuclear Regulatory Commission, Regulatory Guide 1.190, Calculational and Dosimetry Methods for DeterminingPressure Vessel Neutron Fluence, March 2001.
A-2 WCAP-13182, Revision 0, Analysis of Capsule V from the Houston Lighting and Power Company South Texas Unit 2 Reactor Vessel Radiation Surveillance Program, J. M. Chicots et al., February 1992.
A-3 WCAP-14978, Revision 0, Analysis of Capsule Y from the Houston Lighting and Power Company South Texas Unit 2 Reactor Vessel Radiation Surveillance Program, E. Terek, et al.,
December 1997.
A-4 WCAP-16093-NP, Revision 2, Analysis of Capsule U from the South Texas Project Nuclear Operating Company, South Texas Unit 2 Reactor Vessel Radiation Surveillance Program, B. N.
Burgos, July 2007.
A-5 WCAP-17358-NP, Revision 1, Ex-Vessel Neutron Dosimetry Programfor South Texas Unit 2 Cycles 13 and 14, F. A. Alpan, April 2012.
A-6 F. Schmittroth, FERRET Data Analysis Code, HEDL-TME 79-40, Hanford Engineering Development Laboratory, Richland, WA, September 1979.
A-7 RSICC Data Library Collection DLC-178, SNLRML Recommended Dosimetry Cross Section Compendium, July 1994.
A-8 ASTM Standard E 1018-09, Standard Guide for Application of ASTM Evaluated Cross Section DataFile, Matrix E 706 (JIB), 2009.
A-9 ASTM Standard E 944-08, Standard Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance,E 706 (IIA), 2008.
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 B-1 APPENDIX B LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS
- "HLXX" denotes Intermediate Shell Plate R2507-1, longitudinal orientation
- "HTXX" denotes Intermediate Shell Plate R2507-1, transverse orientation
" "HWXX" denotes weld material
" "HHXX" denotes heat-affected zone material Note that the instrumented Charpy data is for information only. The instrumented striker was not calibrated per ASTM E2298-09.
WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 B-2 Westinghouse Non-Proprietary Class 3 OM-1 1381 Ih Tne-1 6.20 ms 6000.00 -
30 0 0 4 .00-3000.00-1000.00.
I t. Ii 1~k~J\ ~
1.00
~ IAhi. AJAiL.J&A A A kM 1AAj~zj A&... Aa'A A-A M A h 3.00h Ah AA A^ A 4.00
&.~ kA.P. 9LA ~Ii.AAA
& %Aýj% gk A-&A m A A.
ý k AI A A m. I ja #-AjL 0.00 2.00 5.00 6.00 I k Time- (mas)
HL44, -70°F Lnnd-1 R.92 Ih Time-1 6.20 ms 6000.00 09d-I 6 92 Ib 5000.00 4000.00 3 00 0 0 0 i .
2000.00.
1000.00 n nn II I
0.00 I ma it 1.00
ý 2.00
-4.1L~J'~ ~
3.00 JE&A h.L 11. 9 4.00 E~ A 5.00
. i~LA ... ~ ~
6.00 The-1 (me)
HL39, -20°F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 B-3 nLoa-11fl37Ib Tirne-I R;22 me 1000000
.....37.. ... ... ...
5000.00 4000.00 3000.00 2000.00 1000.00 0.00 1.00 2.00 3.00 4.00 5.00 6.0(
Time-1 (ms)
HL40, -10°F re.Load-1 Rfliflflfi 13.83 Ib Time-1 622 ms 5m0 0.00 400 0.00 0.00 20C v.00 ioi: 0.00 0.00 00 ILAAA6 1.00 A
W*m0.f ALk l&A~.
3.00 4A-fm 4.00 A AL-5., .4-A 5.00 6.00 Time-1 (ms)
HL34, 0°F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 B-4 Westinghouse Non-Proprietary Class 3 oed-1 41.49 1b Thie-1 6.22 ma DLUAJAN I 5000.00 4000.00 300000 2000fl0 1000.00 JR=. L 000 .~ - 0a W1s 1
.i. I-.3 .. 1h - MLL.
M.OK A Mt 06 O0DO 1.00 2.00 3.00 4.00 5.00 6.00 TiMe-1 (me)
HIL41, 10OF
.Lad-1 48R3 M1 Tirre-I 821 ma S"000DI SO o00 400 0.0 0.00 2O0 0.00 100 0.00 0.0 m~ 1 AAAAAAflAA..i.
10 2.00 3.00 ahA 4.00 5.00 6.O0 Tin-e (ma)
HL36, 20°F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 B-5
-1ad-I 27.53 b Thie-I 6.21 ms RgIM.
50'00.00 4000O000 3000.00 2000.00 1000.00 nrJ A 1 ý14-- A-&.~A A &kj6.4.&&AjA LA r 0.00 1.00 2.0 3.00 4.00 5.00 6.00 Thie-1 (ms)
HL38, 30°F Load-I 0.00 Ib Tism-1 6.19 ms FUnMM mc~ .00*
40C Do0 M.00 3Dx K.00 v00
__ __ ¶L.. AAAA~~ A,.A-A
.&APtJ'AA%.L 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Tkn-1 (ms)
HL33, 400 F WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 B-6 Westinghouse Non-Proprietary Class 3
.oed-1 48.1a Ib TkTae1 6.18 ma IM M.
5000.00 400G0f0 3000.00 2000.00 Ve ... P 1000DO 0.004 Vh Ti o-ý=ý mPm hAMMAI 0.00 1.00 2.00 3.00 COO 5.00 siX T"me-1 (ms)
HL37, 500 F RI V 00 Load-1 20.71 Ib Time-1 6.22 ms wsoil 400 0DO
~300 0.00 1000, 200 0.00 DOn 00F &A&
0.00 1.00 2.00 3.00 4.00 5.00 6.00 Tkne-1 (ma)
HL32, 72 0 F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 B-7 3.00 6.00 Time-I (ms)
HL35, 130 0F L.oedI 20.65 Ib Tine-1 6.17 ms SMOOCT 5000O.O 4000.00 2000.00.
1000.00' I1l11 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Time-1 (me)
HL43, 160 0F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 B-8 Westinghouse Non-Proprietary Class 3 Lea-1 13.77hI Thie-1 6.19ms 6000.001- -
5000.00 4000.00 3000.00 1 D000
[IlEI, 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Time-l (ms)
HL31, 200°F L
osm m -Load-i SM Ib Rl.t 9 ib rine-A 6.21 "m 5000.00 4000.00 3000.00 I
2000.00 1000.00 n m4 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Time-i (ms)
HL45, 2200 F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 B-9 0.00 2.00 3.00 4.00 5.00 6.00 Tme-l (im)
HL42, 250°F L-L*i- 55.23 Tme-I 6.21 rns BW0.0Ci --
500 0.00 400n nn 0.00 h
0.00 200 0.00 100 nnnII kA4 P.. &AAl k h A- A4 LAi at m Nk- A&A. A.--
0.00 1.00 2.00 3.00 4.00 The-1 (ms)
HT40, -70°F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 B-10 Westinghouse Non-Proprietary Class 3 3.00 e0o To-I (me)
HT45, 00F
-ec6-I 6.88 Ib Tke-I 6.20 ms 5000 00 4000.00 3000.00 2000.00 1000.00
" J ýAJA m kdA~i L -A 6 tj,&. 6 - --- -MJA 1.00 2.00 3.00 400 5.00 6.00 Thne-1 (ms)
HT41, 30°F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 B-II Laed-I 3.47 b tM-I 62 amM FTM M 0.00 40C J00
.000 20C0.00 0.00 tm A 0.00 1.00 2.00 3.00 4.00 6.00 Tkie-I (ma)
HT34, 40°F Lowt-1 48.21 Ib "rie-1 6.20 ma Min m fAx0.00 40C0.00 30C0.00 2DC 0.00 10(
I &--
0.00 1.00 2.00 3.00 5.00 6.00 Te-1 (mw)
HT33, 50°F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 B-12 Westinghouse Non-Proprietary Class 3 And-1 62.201b Thie-1 6.07 m M=A.LRJU.
600000 400000
,,p000.0 2000.00 1000.00 LA. k~A-L gi 0.00 1.00 2.00 3.00 4.00 5.00 6.0(
Thoe-1 (m)
HT37, 60 0F Fn MLoad-l 13.81 b Tine-1 6.15 ms 6000.00 4000.00, 3000.00 2000M0 100 .000 ~LAJ
.. PA ^0, A-&4 p . A*t,-
0.00 1.00 2.00 3.00 4.00 5.00 6.00 TM-l (me)
HT42, 60OF WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 B-13 0.00 1.00 2.00 3.00 500 6.00 Tkie-1 (me)
HT32, 72 0 F I
0.00 1.00 2.00 3.00 4.00 5.00 6.00 Tbee-1 (m)
HT35, 72-F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 B-14 Westinghouse Non-Proprietary Class 3 Load-I 31.00 Ib Thie-I 6.20 mu 5000.00 4000.00
[000.00 Vee 2000.00 1000,00 NA A 0o00 1.00 2.00 3.00 4Dl0 5.O0 6.0 Time-I (ma)
HT44, 80°F Anm nn Load-I 55.15b Thie-I 6.17 mr MM000D 400DOW
~3000DO 2000.00 10w00D nm MI.k
-A A . A 0.00 1,00 2.00 3.00 4DO 5.00 6.00 Thm-i (MS)
HT43, 100OF WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 B-I5
.Led-I 17.24 b Time-I 6.21 mis 5000.00+
4000.l00 3000.00" 2000.00-1000.00 1 ~.M. K.Ai i-0.00 1.00 2.00 3.00 4.00 5.00 6.00 Time-1 (ms)
HT31, 130 0 F Load-1 27.52 Ib Time-I 6.21 ms 5000D0 4000,00 3000.00.
2000.00-1000.00 0.ow 1.00 2fl0 30 Cml 6.00 Time-I (ma)
HT36, 200OF WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 B-16 Westinghouse Non-Proprietary Class 3
-- -- Lood-I 20.8 Ib Tme-1 6.16 ma 4000m*O S3000.00' 2000.00 1000.00.
1 L .............
0.00 1.00 2.00 3.00 4.00 5.00 Thne-1 (me)
HT38, 220°F La~l1 27A7 h Thime-1 8.21 ma i Looi-I 276 kw 21m 5000.00 4000.00-3000.00 2000.00 1000 OB1mI 0.00 1.00 3.00 4.{0 5.00 Tike-1 (ma)
HT39, 250°F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 B-17
.oed-1 6.91 lb Tne-1 6.05 me 3=.00" 4000.00 3000.00.
2000.00.
10 .D
,r,1111IiAi.A A kakAfiALL..JAL-AAA-- A.&A ... A AaA,&
5.00 AA-.&.A LLA&-
0.00 IDa 2.00 3.00 Tfr-1 (MS)
HW40, -70°F 30xx00.0 2000.00 IOM-001-3.00 Tim-I (me)
HW37, -20 0 F October 2012 WCAP- 7636-NP WCAP-117636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 B-18 Westinghouse Non-Proprietary Class 3 0.00 1.00 2.00 3.00 4.00 5.00 6.00 HW38, OOF 6.00 Tkie-1 (ma)
HW31, 20°F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 B-19 Ioam& 75.71 Ib Thra-1 6.17 ma Fwm rin 5000.00+
4000.00 00 .00 30 2000.00 1000.00 rl AMAuA -A A-&
n o.o0 1.00 2.00 3.00 4.00 5.00 6.00 Thwi-I (me) i]Fi HW33, 30 0 F This-I 6.18 me Anm m - oad-I 56 SO Ib
- lll 50O0.00 4000.0 20ODO.O 1000.00
~PL.AAIAP~ AAJiA 0.00 1 00 NAA.&%2.00 N A A Aý&3.00 4.C0 5.00 8.00 XM nnn 4.-
Tme-I (mq)
I-W32, 40°F WCAP- 17636-NP III October 2012 Revision 0
Enclosure NOC-AE-13002957 B-20 Westinghouse Non-Proprietary Class 3 Load-1 17.27 b TkIe-1 6.00 m=
5W00.0 4000.00
.J 2000.00' 1000.00" 0.00,P
~MIA~AAAA Al.
-l6-A-,A jt -- ---- L 0.00 1.00 2.00 3.00 4.00 5.00 6.0(
Tine-i (ms)
HW35, 40°F RinnnnnLood-l 17.21 IL Thie-1 6.21 me 5010.00 4000.00 3000.00 2000.00 1000.00 IA 00 1 lp 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Tine-1 (mn)
HW39, 50°F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 B-21 tLl. RIh9 I ThmA.1 R_17ms
ým -OOCI-1621 b Tkm-I 6.17 500000 4000.00 2300000 200000 1000.00 0.00 0.00 1.00 2.00 3.00 4.00 5.00 6.0(
Tme-I (mS)
HW45, 60°F Load-I 20.731b Tme-1 6.21 me 5000.00 4000.00-3000.00 2000.00-1000.00 nfln. I . , , . -* r-,r* l. = -- --- * -- :
0.00 1.00 2.00 3.00 4.00 5.00 6.00 Tkme-I (ms)
HW44, 72°F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 B-22 Westinghouse Non-Proprietary Class 3 Lid1345 Ih Thmn-1 A.l nms L00:1- 3.46 5000.00.
4000.00 30M.00 2000.00-1000.00 "I
0 , .4 .
0.0O 1.00 2.00 300 4.00 5.00 6.00 Tiw-I (rm)
HW34, 100 0 F Loed-1 10.38 b Tkm-1 6.21 ma RrM M.
5000.00 4000.00 3000.00 2000.00 1000.00
- M I *
- nI nIInI 0.00 1.00 2.00 3.00 4.00 5.00 6D00 Tkie-1 (ma)
HW43,130 0F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 B-23 ad-1 344hI Tni-t 6.21 ins 6000,o0L 1 344b Tne-I 621 ms 5000.00 4000.00 M3000.00 2=.00 1000.00 0.00 30 01ic 1.00 2.00 3.00 4.00 5.00 6.00 Time-I (mS)
HW42, 2000 F I ,4A ~ ~ Tm,,*.l R47m*
Lood-1 20 68 b Tne-1 6 17 5000.00.
4000.00-j3 00 0l.00 2000Afl0 Iguana.
I L i'l i'ii'* I1 Ii li Ii i i =i * "
U*
1.00 2fl0 3.00 4.00 6.00 Tkne-I (mn)
HiW36, 2200 F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 B-24 Westinghouse Non-Proprietafy Class 3 Load-i 31.07 Ib Time-1 6.21 ms
~uFT=M
,600.00.
400.00-j30M000 2000.00 1000.00 I . .
I1 Illl I I I l I l l . . .
0.00 1.00 2.00 3.00 4.00 5.00 6.00 Thme- ("w)
HW41, 250°F 500000 4000.00 3000 00 2000.00 0.00 1.00 2.0o 3.00 4.00 5.00 6.00 Time-1 (rns)
HH42, -150 0 F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 B-25 Load-I 6.89 Ib kw.1 6.16 ms 0.00 40C 0.00 0.00 0.00 10C .000 nnmn k&La LjA&A. A & LoAA,. A. fi &A A.. A f APLAA.
0.00 1.00 2.00 3.00 4.00 5.00 6.00 T",ne-1 (ms)
HH37, -90°F oCId-1 3801 Ib T1"*-1 6.20 ma 0.00 40C 0.00 230C 20C J.00 n rmhn/L AA A.A. *AA A.A, A--FA. .A 0.00 1.00 2.00 3.00 4.00 6.00 Thw -1 (ma)
HH36, -70 0 F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 B-26 Westinghouse Non-Proprietary Class 3 Ln d- 51.1 Ib Time-1 6.20 ma 5000.00 4000.00 30000 2000.00 1000.00 nm, I ILULAuIIAILJ IhA
. M Aa. .AAI AA" m -
A" ,P
."m
- - ^
-- A&.
dA k 0.O0 1.00 2.00 3.00 4.00 5.00 6.00 Tkne-I (ma)
HH33, -60°F 50.00 4000.00 2M00 20000 1000.00' I .00 2.00 3.00 4.00 5.00 6.00 Time-I (mS)
HH31, -50°F WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 B-27 0.00 1.00 3.00 4.00 6.00 Time-1 (ms)
HH44, -200 F aoed-155.17 ib Tuee-1 6.21 m=
40OO.00 33000.00 100 .000 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Tie- l(ma)
HH34, 00F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 B-28 Westinghouse Non-Proprietary Class 3 Lood-I 38..Mb Time-I 5.71 ms 5000.00 4000.00 1300 0.00 200 0.00 100 0.00 rbr,- AAA Ar 0.00 1.00 2.00 3.00 5.00 6.00 Time-I (ms)
HH40, 0°F Lo4d1 13.77 :) Tme-1 6.18 ms 40 00 .00-4000.00' 2000.00-1000.00.
ll lll I I l l : : * : . . .
0.00 1.00 2.00 3.00 4COD 5.00 Time-I (me)
HH39, 30°F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 B-29 Lood-1 S8. Ib Time-1 6.22 fn 5000.00 4000.l0 00 0 3 .00 2000.00 1000.00 lllUl A M 4-0.00 1.00 2.00 3.00 4.00 5.00 8.00 Tlme-1 (me)
HH45, 50°F Load-I 34.59 b Time-1 6.20 me 5000.0 4000.00 3000D00 I
2000.00 1000.00
-I.
0001 flflj~4 i i -
0.00 I J0 2.00 3.00 4.00 5.00 6.00 Tie-I (,m) 1841, 70°F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 B-30 Westinghouse Non-Proprietary Class 3 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Tfi-I (me)
HH38, 72 0 F 5000.00.
4000.00, 2000.00 0.00 1.00 3.00 4.00 5.00 6.00 Tkne-1 (MS)
HH35, 130 0 F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 B-31 Load.-1 10.33 Ib The-1 6.14 ms 00.00 4000.00 000 3 .00.
2000.00 1000.00
-- A-- 1 L* * .............
nfl" 0.00 1.00 2.00 3.00 4C0 5.00 6.00 Thm-1 (ms)
HH43, 200 0F Loed-1 10.381b Tine-1 622 ms 5000.00 4000*00 3000.00-2000.00.
1000.00 nm. -4 2.00 3.00 4.00 5.00 6.00 Time-1 (Ms)
HH32, 2500 F WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-1 APPENDIX C CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD Contained in Table C-I are the upper-shelf energy (USE) values that are used as input for the generation of the Charpy V-notch plots using CVGRAPH, Version 5.3. The definition for USE is given in ASTM E185-82 [Ref. C-i], Section 4.18, and reads as follows:
"upper shelf energy level - the average energy value for all Charpy specimens (normally three) whose test temperature is above the upper end of the transition region. For specimens tested in sets of three at each test temperature, the set having the highest average may be regarded as defining the upper shelf energy."
If there are specimens tested in sets of three at each temperature, Westinghouse typically reports the set having the highest average energy as the USE (usually unirradiated material). If the specimens were not tested in sets of three at each temperature, Westinghouse reports the average of all Charpy data (> 95%
shear) as the USE, excluding any values that are deemed outliers using engineering judgment. Hence, the Capsule W USE values reported in Table C-i were determined by applying this methodology to the Charpy data tabulated in Tables 5-1 through 5-4 of this report. USE values documented in Table C-1 for the unirradiated material, as well, as Capsules V, Y, and U, were also determined by applying the methodology described above to the Charpy impact data reported in WCAP-9967 [Ref. C-2], WCAP-13182 [Ref.' C-3], WCAP-14978 [Ref C-4], and WCAP-16093 [Ref. C-5]. The USE values reported in Table C-1 were used in generation of the Charpy V-notch curves..
The lower-shelf energy values were fixed at 2.2 ft-lb for all cases. The lower-shelf Lateral Expansion values were fixed at 1.0 mils in order to be consistent with the previous capsule analysis [Ref. C-5].
Table C-1 Upper-Shelf Energy Values (ft-lb) Fixed in CVGRAPH Intermediate Shell Plate R250 Longitudinal Orientation Intermediate Shell Plate R2507-1 99 105 102 104 93 Transverse Orientation Surveillance Program Weld Metal 93 95 95 94 (Heat # 90209)
Heat-Affected Zone (HAZ) Material 146 137 137 129 130 CVGRAPH Version 5.3 plots of all surveillance data are provided in this appendix, on the pages following the reference list.
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-2 Westinghouse Non-Proprietary Class 3 C.1 REFERENCES C-I ASTM E185-82, Standard Practicefor Conducting Surveillance Tests for Light- Water Cooled Nuclear PowerReactor Vessels, E706(IF), ASTM, 1982.
C-2 WCAP-9967, Revision 0, Houston Lighting & Power Company South Texas Project Unit No. 2 Reactor Vessel Radiation Surveillance Program,June 1982.
CG3 WCAP-13182, Revision 0, Analysis of Capsule V from the Houston Lighting and Power Company South Texas Unit 2 Reactor Vessel Radiation SurveillanceProgram,February 1992.
C-4 WCAP-14978, Revision 0, Analysis of Capsule Y from the Houston Lighting and Power Company South Texas Unit 2 Reactor Vessel Radiation Surveillance Program,December 1997.
C-5 WCAP-16093-NP, Revision 2, Analysis of Capsule U from the South Texas Project Nuclear Operating Company, South Texas Unit 2 Reactor Vessel Radiation Surveillance Program, July 2007.
Qctober 2012 WCAP- 17636-NP WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-3 This page is intentionally blank.
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-4 Westinghouse Non-Proprietary Class 3 C.2 CVGRAPH VERSION 5.3 INDIVIDUAL PLOTS Unirradiated Intermediate Shell Plate R2507-I (Longitudinal)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04113/2012 08:54 AM Page I Coefficients of Curve 1 A = 70.1 B = 67.9 C = 82.37 TO = 17.92 D = 0.O0E+00 Equation is A + 1 * [Tanh((T-To)I(C+DT))]
Upper Shelf Energy= 138.0(Fixed) Lower Shelf Energy=2.2(Fixed)
Temp030 ft-lbý=-37.9 Dog F Temp@50 fl-lbs=-7.2 Deg F Plant: South Texas 2 Material: SA533B 1 Heat: NR 62 067-1 Orientation: LT Capsule: UNIRR Fluence: n/cmA2 300 250 200
)0 100 50 0
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
- 100, 00 6. 00 9. 53. -3. 53.
- 50, 00 I5, 00 24, 09 -9. 09
-50. 00 2E 00 24. 09 - 3. 09
-25. 00 46. 00 37, 61 8. 39
-25. 00 47. 00 37. 61 9. 39 00 42. 00 55. 56 -13, 56 00 50. 00 " 55 56 -. 56
- 25. 00 83. 00 75. 92 7.08
- 25. 00 90. 00 75. 92 14.08 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-5 Unirradiated Intermediate Shell Plate R2507-1 (Longitudinal)
Page 2 Plant: South Texas 2 Material: SA533Bi Heat: NR 62 067-1 Orientation: LT Capsule: UNIRR Fluence: n/crn-2 Charpy V-Notch Data Temperature Input CVN Computed CV N Differential
- 75. 00 94. 00 110. 83 - 16. 83
- 75. 00 105. 00 110. 83 -5.83 125. 00 t38. 00 128. 61 9. 39 125. 00 138. 00 128. 61 9. 39 125. 00 139. 00 128. 61 10. 39 200. 00 90. 00 136. 39 -46. 39 200. 00 132. 00 136. 39 -4.39 200. 00 141. 00 136. 39 4.61 300. 00 137. 00 437. 86 - .86 Correlation Coefficent = ,955 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-6 Westinghouse Non-Proprietary Class 3 Unirradiated Intermediate Shell Plate R2507-1 (Longitudinal)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04113/2012 08:59 AM Page 1 Coefficients of Curve I A = 42.32 B=4L32 C = 65.52 TO= 10.7 D = 0.00E+00 Equation is A + B * [Tanh((T-To)/(C+DT))]
Upper Shelf LE,=83,6 Lower Shelf L.E,= ,0(Fixed)
Temp.@LE. 35 mils=-JI0 Deg F Plant: South Texas 2 Material: SA533BI Heat: NR 62 067-1 Orientation: LT Capsule- UNIRR Fluence: n/cmn2 200 150 a.100 53 50
' / 0t 0
-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input LE. Computed L.E. Differential
- tOO. 00 4. 00 3. 72 S.28
-50. 00 5. 00 12. 20 7. 20
- 50. 00 14. 00 12. 20 1. 80
-25. 00 27. 00 21. 80 5. 20
-25. 00 28. 00 21. 80 6. 20 00 26. 00 35 63 -9. 63 00 30. 00 35. 63 -5. 63
- 25. 00 55, 00 51. 20 3. 80
- 25. 00 61.00 51. 20 9. 80 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-7 Unirradiated Intermediate Shell Plate R2507-1 (Longitudinal)
Page 2 Plant: South Texas 2 Material: SA533B1 Heat: NR 62 067-1 Orientation: LT Capsule: UNIRR Fluence: n/cmA^2 Charpy V-Notch Data Temperature Input LE Computed L.E. Differential
- 75. 00 64. 00 73. 46 -9. 46
- 75. 00 69. 00 73. 46 -4.46 125. 00 86. 00 81. 19 4.81 125. 00 88. 00 81. 19 6.81 125. 00 86. 00 81. 19 4.81 200. 00 80. 0 83. 38 -3. 38 200. 00 80. 00 83. 38 -3.38 200, 00 83. 00 83.38 -,38
-. 63 300. 00 83. 00 83.63 Correlation Coefficient = .982 October 2012 WCAP- 7636-NP WCAP-117636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-8 Westinghouse Non-Proprietary Class 3 Unirradiated Intermediate Shell Plate R2507-1 (Longitudinal)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 09:00 AM Page 1 Coefficients of Curve I A = 50. B = 50. C = 77.84 TO = 27.13 D =0.OOE+00 Equation is A + B * [Tanh(Tr-To)/(C+DT))]
Temperature at 50% Shear= 27.2 Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: LT Capsule: UNIRR Fluence: n/cmA2 125 100 75 0,
to 25
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percen Shear Differential
- 100. 00 3. 00 3. 67 - . 67
-50. 00 18.00 12. II 5. 89
- 50. 00 14. 00 12 11 1. 89
-25, 00 25. 00 20. 76 4.-24
-25. 00 20. 00 20 76 - . 76 00 29. 00 33. 24 -4.24 00 34. 00 33. 24 1 76
- 25. 00 45. 00 48. 63 -3 63
- 25. 00 51. 00 48. 63 2. 37 October 2012 WCAP- 17636-NP WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3, C-9 Unirradiated Intermediate Shell Plate R2507-1 (Longitudinal)
Page 2 Plant: South Texas 2 Material: SA533B1 Heat: NR 62 067-1 Orientation: LT Capsule: UNIRR Ftuence: n/cm^2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
- 75. 00 73. 00 77. 38 -4. 38
- 75. 00 71. 00 77. 38 -6. 38 125. 00 100. 00 92.52 7,48 125. 00 100. 00 92. 52 7,48 125. 00 100. 00 92. 52 7,48 200. 00 100. 00 98. 84 1 16 200. 00 100. 00 98. 84 I. 16 200. 00 00. 00 98. 84 1. 16 300. 00 100.00 99.91 09 Correlation Coefficient = .994 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-1O Westinghouse Non-Proprietary Class 3 Capsule V Intermediate Shell Plate R2507-1 (Longitudinal)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 08:56 AM Page 1 Coefficients of Curve I A=70.6 B=68.4C=74.74 TO=29.6 D=O000E+004
. Equation is A + B * [Tanh((T-ToY(C+DT))]
Upper Shelf Energy= I39.0(Fixed) Lower Shelf Energy=2.2(Fixed)
Temp@30 ft-tlb.-21.4 Deg F Temp@50 ft-lbs=6.4 Deg F Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: LT Capsultc V Fluence: n/cm^2 300 250
- 200 150 0 9 C
100 00 50 0 - -~ - - -~-
0 0
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
- 75. 00 12. 00 10. 05 I. 95
- 50. 00 14. 00 16. 73 -2. 73
- 35. 00 35. 00 22. 83 12. 17
- 25. 00 45. 00 27 96 17. 04
- 10.00 - 42. 00 37 41 4. 59
.00 17. 00 44. 85 -27. 85
- 10. 00 49. 00 53. 07 -4, 07 25 00 66. 00 66. 40 -, 40
- 50. 00 92. 00 88. 82 3. 18 WCAP-17636-NP October 2012 Revision 0
Enclosure
- NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-I1 Capsule V Intermediate Shell Plate R2507-1 (Longitudinal)
Page 2 Plant: South Texas 2 Material: SA533BI Heat: NR 62 067-1 Orientation: LT Capsule: V Fluence: n/cmA2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
- 75. 00 117.00 107. 70 9 30 1oo. 00 121. 00 120.95 05 125.00 121. 00 129. 12 -8. 12 150. 00 143. 00 133.75 9. 25 200. 00 132.00 137:58 -5. 58 250. 00 143. 00 138.63 4. 37 Correlation Coefficient =.977 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-12 Westinghouse Non-Proprietary Class 3 Capsule V Intermediate Shell Plate R2507-1 (Longitudinal)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 09:01 AM Page 1 Coefficients of Curve I A = 43.2 B = 42.2 C =79.42 TO = 21.4 D= 0.OOE+00 Equation is A + B
- ITanh((T-ToY(C+DT))]
Upper Shelf LE,=85.4 Lower Shelf LE,=I.0(Fixed)
Temp. @LE. 35 mils,=5.8 Deg F Plant: South Texas 2 Material: SA533BI Heat: NR 62 067-I Orientation: LT Capsule: V Fluence: n/cm^2 200 150 1100
.9 50 0 . 1-
-300.0 0.0 300.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input LE. Computed L.E. Differential
-75. 00 7. 00 7.85 -, 85
-50. 00 8. 00 12.99 -4. 99
- 35. 00 22. 00 17.43 4. 57
- 25. 00 36. 00 21 02 14. 98
-10.00 30. 00 27. 34 2. 66
.00 16. 00 32. 10 - 16. 10 10.00 32. 00 37. 19 -5. 19
- 25. 00 49. 00 45. 12 3, 88
- 50. 00 59. 00 57. 78 1. 22 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-13
. Capsule V Intermediate Shell Plate R2507-1 (Longitudinal)
Page 2 Plant" South Texas 2 Material: SA533BI Heat: NR 62 067-1 Orientation: LT Capsule: V Fluence: n/cm^2 Charpy V-Notch Data Temperature Input LE. Computed L.E. Differential
- 75. 00 70. 00 68. 03 1.97 300. 00 76. 00 75. 16 84 125. 00 79. 00 79. 62 -. 62 150. 00 85. 00 82. 22 2. 78 200. 00 83. 00 84. 48 - 1.48 250. 00 83. 00 85, 14 -2. 14 Correlation Coefficient = .974 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-14 Westinghouse Non-Proprietary Class 3 Capsule V Intermediate Shell Plate R2507-1 (Longitudinal)
CVGRAPH 5,3 Hyperbolic Tangent Curve Printed on 04/13/2012 09:01 AM Page 1 Coefficients of Curve I A = 50. B = 50. C = 83.3 TO = 38.55 D = 0.OOE+00 Equation is A + B * [Tanh((T-ToY(C+DT))]
Temperature at 50% Shear= 38,6 Plant: South Texas 2 Material: SA533B1 Heat: NR 62 067-1 Orientation: LT Capsule: V Fluence: n/cm^2 125 100 75
'U 50 25
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
- 75. 00 5. 00 6. 14 -1 .14
- 50. 00 10. 00 10. 66 -. 66
- 35. 00 20. 00 14.61 5. 39
-25. 00 25. 00 17. 86 7. 14
- I0. 00 25. 00 23. 77 1. 23
, 00 20. 00 28. 38 8. 38 10.00 25. 00 33,51 -8. 51 25, 00 45, 00 41, 94 3. 06
- 50. 00 60. 00 56. 83 3. 17 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957
- WestinghouseNon-Proprietary Class 3 C-15 Capsule V Intermediate Shell Plate R2507-1 (Longitudinal)
Page 2 Plant: South Texas 2 Material: SA533B1 Heat: NR 62 067-1 Orientation: LT Capsule: V Fluence: n/cm^2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
- 75. 00 75. 00 70. 58 4. 42 100. 00 80. 00 81 .39 - 1. 39 125. 00 80. 00 88. 85 -8. 85 150. 00 1100. 00 93. 56 6, 44 200. 00 100. 00 97. 97 2. 03 250. 00 100. 00 99. 38 .62 Correlation Coefficient = .989 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-16 Westinghouse Non-Proprietary Class 3 Capsule Y Intermediate Shell Plate R2507-1 (Longitudinal)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 08:57 AM Page 1 Coefficients of Curve I A = 67.6 B = 65.4 C = 89.4 TO = 54.89 D = 0.OOE+00 Equation is A + B * [Tanh((T-ToY(C+Dl))]
Upper Shelf Energy=1 33.0(Fixed) Lower Shelf Energy=-22(Fixed)
Temp@30 ft-lbs=-3,6 Deg F Temp@50 ft-lbs-30.3 Deg F Plant: South Texas 2 Material: SA533B1I Heal: NR 62 067-1 Orientation: LT Capsule: Y Fluence: -n/cni2 300
-8 200 0
U-0 w
z 100 so
.0
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature input CVN Computed CVN Differential
-90. 00 2. 00 7. 12 -5. 12
-60. 00 7. 00 11. 50 4. 50
-40. 00 14. 00 16, 18 -2. 18
- 20. 00 13. 00 22. 83 -9.83
-15.00 37. 00 24. 85 12. 15
-5. 00 39. 00 29. 35 9. 65 00 41 00 31, 83 9. 17
- 25. 00 35. 00 46, 51 -11.51
- 50. 00 57 00 64. 02 -7.02 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-17 Capsule Y Intermediate Shell Plate R2507-1 (Longitudinal)
Page 2 Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: LT Capsule: Y Fluence: n/m^A2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
- 72. 00 87. 00 79. 96 7. 04 J00. 00 95. 00 98. 06 -3. 06 150. 00 121. 00 119. 08 1. 92 200. 00 128. 00 128. 10 -. 10 250. 00 141. 00 131 36 9. 64 300. 0 13 1. 00 132. 46 -I . 46 Correlation Coefficient = .988 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-18 Westinghouse Non-Proprietary Class 3 Capsule Y Intermediate Shell Plate R2507-1 (Longitudinal)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 09:02 AM Page 1 Coefficients of Curve I A = 42.11 B = 41.11 C = 82,95 TO= 52.28 D)= 0,00E+00 Equation is A + B * [Tanh((T-To)/(C+DT))]
Upper Shelf L.E.=83.2 Lower Shelf LE.=l.0(Fixed)
Temp.@LE. 35 mils=37.8 Deg F Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: LT Capsule: Y Fluence: n/cm^2 200 150 E
C Ea 100 50 0 *=
-300.0 0.0 300.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input LE. Computed LE. Differential
-90. 00 .00 3.58 - 3, 58
-60. 00 2. 00 6. 14 -4. 14
- 40. 00 5. 00 9.02 -4. 02
- 20. 00 7. 00 13. 25 -6. 25
-15.00 22. 00 14. 56 7. 44
-5. 00 23. 00 17.51 5. 49 S. 84 100 25, 00 19. 16 5,
- 29. 06 5 , 06
- 25. 00 24. 00
- 50. 00 41. 00 40. 98 02 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-19 Capsule Y Intermediate Shell Plate R2507-1 (Longitudinal)
Page 2 Plant: South Texas 2 Material: SA533B 1 Heat: NR 62 067-1 Orientation: LT Capsule: Y Fluence: ntccmA2 Charpy V-Notch Data Temperature Input LE. Computed L.E. Differential 72.00 49. 00 51.71 -2. 71 1.00. 00 65. 00 63. 46 1. 54 150.00 77. 00 76 11 89 200. 00 82. 00 80. 96 1. 04 250. 00 80. 00 82. 53 -2. 53 300. 00 84. 00 83. 02 .98 Correlation Coefficient =.991 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-20 Westinghouse Non-Proprietary Class 3 Capsule Y Intermediate Shell Plate R2507-1 (Longitudinal)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04113/2012 09:02 AM Page 1 Coefficients of Curve I A = 50. B = 50. C = 74.49 TO = 45.15 D = 00ODE+00 Equation is A + B * [Tanh((T-Toy(C+DT))]
Temperature at 501 Shear = 45.2 Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: LT Capsule: Y Fluence: n/cmA2 125 100 75 2 50 25 0 -
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent S-ear Differential
- 90. 00 2.00 2.59 -. 59
-60. 00 5.00 5.61 61
-40. 00 10. 00 9. 23 77
-20.00 to. 00 14.81 -4. 81
- 15. 00 15. 00 16. 59 - 1 59
-5. 00 20. 00 20. 64 64 00 20. 00 22. 93 - 2. 93
- 25. 00 45. 00 36,79 8.21
- 50. 00 55. 00 53. 25 1. 75 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-21 Capsule Y Intermediate Shell Plate R2507-1 (Longitudinal)
Page 2 Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: LT Capsule: Y Fluence: n/cmA2 Charpy V-Notch Data Temperatue Input Percent Shear Computed Percent Shar Differential
- 72. 00 65. 00 67. 28 2. 28 100. 00 80. 00 81 . 34 I. 34 150. 00 90.00 94. 35 -4. 35 200 00 100.00 98. 46 1. 54 250, 00 100.00 99. 59 .41 300. 00 too. 00 99. 89 tII Corietation Cofficient = .97 October 2012 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-22 Westinghouse Non-Proprietary Class 3 Capsule U Intermediate Shell Plate R2507-1 (Longitudinal)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 08:57 AM Page I Coefficients of Curve I A = 69.6 B = 67.4 C = 82.62 TO = 46.61 D = O0O0E+00 Equation is A + B
- tTanh((T-Toy(C+DT))]
Upper Shelf Energy-137.O(Fixed) Lower Shelf Encrgy=22(Fixed)
Temp@ 30 ft-lbs-9.0 Deg F Temp@50 fi-lbs=21.9 Deg F Plant: South Texas 2 Material: SA533BI Heat: NR 62 0671 Orientation: LT Capsule: U Fluence: n/cm^2 300 250
- 200 150 41 IJJ 100 50 0
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
-50. 00 7.00 14. 06 -7. 06
-25. 00 28. 00 22. 44 5. 56 00 22. 00 35, 16 - 13. 16
- 10. 00 46. 00 41.55 4. 45
- 20. 00 58. 00 48.61 9ý 39
- 40. 00 60, 00 64. 22 -4. 22
- 50. 00 68. 00 72. 37 -4, 37
- 75. 00 107. 00 91. 89 15. I1 100. 00 105 00 107. 96 -2. 96 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-23 Capsule U Intermediate Shell Plate R2507-1 (Longitudinal)
Page 2 Plant: South Texas 2 Material: SA533B 1 Heat: NR 62 067-1 Orientation: LT Capsule: U Fluence: n/cmA2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential 125.00 105.00 1 19.,43 - 14. 43 150.00 127.00 126. 80 .20 175.00 127. 00 131.23 -4. 23 200. 00 144. 00 133.79 10. 21 225. 00 143. 00 135.23 7. 77 250. 00 133. 00 136. 03 -3 03 Correlation Coefficient =.983 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 C-24 Westinghouse Non-Proprietary Class 3 Capsule U Intermediate Shell Plate R2507-1 (Longitudinal)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/1312012 09:03 AM Page I Coefficients of Curve I A = 40.41 B = 39.41 C = 70.9 TO = 42.4 D = 0.OOE+O0 Equation is A + B * [Tanh((T-ToV(C+DT))j Upper Shelf LE.=79.8 Lower Shelf L.E.= 1.0(Fixed)
Temp.@LE. 35 mils=32.7 Eleg F Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: LT Capsule: U Fluence: nrcmA^2 200 150 -t E 50oo 5O 0
0 1
-300.0 0.0 300.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input LE. Computed L.E Differential 50, 00 I .00 6. 42 5. 42
-25. 00 15.00 It. 24 3. 76
.00 I1. 00 19 30 8. 30
- 10. 00 28. 00 23. 56 4.44
- 20. 00 35. 00 28. 36 6. 64
- 40. 00 37. 00 39. 08 -2* 08
- 50. 00 40. 00 44. 62 -4 62
- 75. 00 63. 00 57, 36 5. 64 too. 00 65. 00 66 86 - 1. 86 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-25 Capsule U Interniediate Shell Plate R2507-1. (Longitudinal)
Page 2 Plant: South Texas 2 Material: SA533B1 Heat: NR 62 067-1 Orientation: LT Capsule: U Fluence: n/cmA2 Charpy V-Notch Data Tempenature Input LE. Computed L.E. Differential 125. 00 70. 00 72. 84 -2. 84
[so. 00 75, 00 76, 21 -1.21 175. 00 78. 00 78, 00 100 200. 00 82. 00 78. 92 3. 08 225. 00 81.00 79. 37 1.63 250. 00 78. 00 79. 60 - 1. 60 Cowrreation Coefficient = .988 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 C-26 Westinghouse Non-Proprietary Class 3 Capsule U Intermediate Shell Plate R2507-1 (Longitudinal)
CVGRAPH 5.3 Hyperbolic Tangent Curve Prinled on 04/13/2012 09:03 AM Page I Coefficients of Curve I A = 50. B = 50. C = 56.64 TO = 55.93 D = O.OOE+00 Equation is A + B * [Tanh((T-ToY(C+DT))]
Temperature at 50% Shear = 56.0 Plant: South Texas 2 Material: SA533BI Heat: NR 62 067-1 Orientation: LT Capsule: U Fluence: n/cm^i2 125 100 75 0
50 25 0
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input Percent Shear 'Computed Percent Stear Differential
-50. 00 2.00 2. 32 - . 32
-25. 00 10, 00 5.43 4. 57
. 00 15.00 12. 19 2. 8 1 I0. 00 15.00 16. 50 -I. 50
- 20. 00 25. O0 2J. 95 3. 05
- 40. 00 30. 00 36. 30 -6. 30
- 50. 00 40. 00 44. 78 -4, 78
- 75. 00 75. 00 66. 23 8, 77 IO0. 00 .85. 00 82. 58 2. 42 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-27 Capsule U Intermediate Shell Plate R2507-1 (Longitudinal)
Page 2 Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientatiorn: LT Capsule: U Fluence: ý n/cm^2 Charpy V-Notch Data Temperature Input Percent Shear Computed Prcent Shear Differential 125. 00 85.00 91.97 -6 97 I50. 00 100.00 96. 52 3. 48 175. 00 90. 00 98,53 -8. 53 200. 00 100. 00 99. 39 .61 225. 00 100.00 99, 75 25 250. 00 100. 00 99. 89 . II Correlation Coefficient .993 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-28 Westinghouse Non-Proprietary Class 3 Capsule W Intermediate Shell Plate R2507-1 (Longitudinal)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on (Y7/09/2012 11:45 AM Page 1 Coefficients of Curve I A = 68.1 B = 65.9 C = 97.07 ýTO = 61.37 D = 0.OOE+00 Equation is A + B * [Tanh((T-To)/(C+DT))]
Upper Shelf Energy= I34.0(Fixed) Lower Shelf Energy=2.2(Fixed)
Temp@30 ft-lbs-2.6 Deg F Temp@50 ft-lbs=34.1 Deg F Plant: South Texas 2 Material: SA533B1 Heat: NR 62 067-1 Orientation: LT Capsule: W Fluence: n/cmA2 300 250
- 200 i* 150 ISO z
> 100 50
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
-70. 00 7 00 10.45 3. 45
-20. 00 14. 00 22. 97 - 8.97
. 10. 00 31. 00 26. 83 4. 17
.00 32. 00 31. 23 77
- 10. 00 46. 00 36. 16 9. 84
- 20. 00 42. 00 41. 60 -40
- 30. 00 33, 00 47. 52 -14.52
- 40. 00 533 00 53. 82 - . 82
- 50. 00 67. 00 60. 42 6. 58 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-29 Capsule W Intermediate Shell Plate R2507-1 (Longitudinal)
Page 2 Plant: South Texas 2 Material: SA533BI Heat: NR 62 067-1 Orientation: LT Capsule: W Fluence: n/m^A2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
- 72. 00 83. 00 75. 29 7. 71 130. 00 101. 00 108. 22 -7.22 160. 00 114.00 118. 73 -4,73 200. 00 122. 00 126, 83 -4. 83 220. 00 136. 00 129. 17 6. 83 250. 00 143. 00 131. 35 1 1. 65 Correlation Coefficient = .986 October 2012 7636-NP WCAP- I17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-30 Westinghouse Non-Proprietary Class 3 Capsule WV Intermediate Shell Plate R2507-1 (Longitudinal)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07/0912012 11:51 AM Page I Coefficients of Curve I A = 41.29 B = 40.29 C = 100.47 TI) = 57.17 D = 0.00E+00 Equation is A + B
- ITanh((T-ToY(C+DT))]
Upper Shelf L.E.-81,6 Lower Shelf LE,=t.0(Fixed)
Temp.@L.E, 35 mils=41.4 Deg F Plant South Texas 2 Material: SA533BI Heat: NR 62 067-1 Orientation: LT Capsule: W. Fluence: n/cm^2 200 150 0-50 0 4--
-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input LE. Computed L.E* Differential N.
-70. 00 4. 00 6. 94 -2. 94
- 20:00 9. 00 15. 27 -6 27
- 10. 00 19.00 17. 76 1.24
.00 21. 00 20. 55 S.4"5 10.00 31. 00 23. 65 7. 35
- 20. 00 29, 00 27 03 i. 97
- 30. 00 20. 00 30. 65 - 10. 65 40,.00 37. 00 34 47 2. 53
- 50. 00 42. 00 38. 4 3. 59 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-31 Capsule W Intermediate Shell Plate R2507-1 (Longitudinal)
Page 2 Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: LT Capsule: W Fluence: n/cmA2 Charpy V-Notch Data Temperalu re Input L.E. Computed L.E. Difterential
- 72. 00 50 O00 47, 19 2. 81 130. 00 62.00 66.26 -4. 26 160. 00 68. 00 72, 36 - 4. 36 200. 00 82. 00 77. 14 4. 86 220. 00 80. 00 78. 54 1. 46 250. 00 79.00 79.87 87 Correlation Coefficient - .984 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-1.3002957 C-32 Westinghouse Non-Proprietary Class 3 Capsule W Intermediate Shell Plate R2507-1 (Longitudinal)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07/09/2012 11:53 AM, Page I Coefficients of Curve I A, =50; B =50. C = 92.64 TO = 81.11 D =.O0E+00 "
Equation is A + B * [Tanh((T-Toy(C+DT))]
Temperature at 50% Shear= 81.2 Plant: SouthTexas 2 Material: SA533BI Heat: NR 62 067-1 Orientation: LT Capsule: W Fluence: - rncm^2 U) 0 0.
0 o .lO. o. - 00.0
-] - 00- - 400.0 5 600.
-300.0 -200.0 -100.0 0.0 100.0 200.0-- 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature lnput Percent Shear Computed Percent Shear Differential
-70: 00 .00 3. 69 -,3. 69
-20. 00 5. 00 10.,13 -5. 13
-10. 00 10. 00 12.27 - 2. 27
- 00 15. 00 '14. 79 . 21
- 10. 00 20. 00 -17,72 2.28 11 20- 00 20.' 00 21. 09 1. 09
- 30. 00 20, 00 24, 91 -4. 91 40r 00 ,35. 00 29, 16 5, 84
- 50. 00 40. 00 33.81 6. 19, WCAP-17636-NP October2i02 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-33 Capsule W Intermediate Shell Plate R2507-1 (Longitudinal)
Page 2 Plant: South Texas 2 Material: SA533B 1 Heat: NR 62 067-1 Orientation: LT Capsule: W Fluence: nrcm^2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
- 72. 00 45, 00 45, 10 -. 10 130. 00 70. 00 74. 18 -4. 18 160. 00 80. 00 84.60 -4, 60 200. 00 95. 00, 92. 87 2. 13 220. 00 100W00 95. 25 4. 75 250. 00 100. 00 97. 46 2. 54 Correlation Coefficient = .994
~XJC A P 1 7~f-~MP +,-d,.~. ')A1 -)
Revision 0
Enclosure NOC-AE-13002957 C-34 Westinghouse Non-Proprietary Class 3 Unirradiated Intermediate Shell Plate R2507-4 (Transverse)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/1312012 I1:06 AM Page I Coefficients of Curve I A = 50.6 B = 48.4 C = 82.85 TO = 19.32 D = 0.OOE+00 Equation is A + B
- ITanh((T-ToY(C+DT))]
Upper Shelf Energy-=99.0(Fixed) Lower Shelf Energy=2.2(Fixed)
Temp@30 ft-lbs 1-8.3 Deg F Temp@50 ft-Ibs=18.3 Deg F Plant: South Texas 2 Material: SA533BI Heat: NR 62 067-1 Orientation: TL Capsule: UNIRR Fluence: ncm^A2 300 250 4200 0
U.
w 100 50
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Difi*erential
- 50. 00 to.00 17.49 -7.49
- 25. 00 25ý 00 26. 93 -1.93
-25. 00 35. 00 26. 93 8. 07
.00 40. 00 39. 51 49
- 00 40. 00 39.51 49
- 00 40. 00 39.51 49
- 25. 00 46. 00 53. 91. -7.91
- 25. 00 5t. 00 53ý 91 - 2. 91
- 25. 00 68. O0 53.91 14. 09 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-35 Unirradiated Intermediate Shell Plate R2507-1 (Transverse)
Page 2 Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: TL Capsule: UNIRR Fluence: n/cmA2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential 75, 00 70. 00 78. 98 - 8. 98
- 75. 00 71. 00 78. 98 -7.98
- 75. 00 82, 00 78.98 3. 02 125. 00 94. 00 92. 00 2. 00 125. 00 94. 00 92. 00 2. 00 125. 00 100. 00 92. 00 8. 00 200. 00 102, 00 97.78 4. 22 200. 00 106. 00 97, 78 8. 22 300. 00 96. 00 98. 89 -2. 89 Correlation Coefficient S977 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-36 Westinghouse Non-Proprietary Class 3 Unirradiated Intermediate Shell Plate R2507-1 (Transverse)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04113/2012 11:07-AM Page t Coefficients of Curve I A= 34.01 B = 33.01 C = 70.51 TO = 23.25 D = O.OOE+OO Equation is A + B
- lTanh((T-To)/(C+DT))]
Upper Shelf L.E.=67.0 Lower Shelf LE.=i.O(Fixed)
Temp.@LE. 35 mils=25.4 Deg F Plant: South Texas 2 Material: SA533B t Heatr NR 62 067-1 Orientation: TL Capsule: UNIRR Fluence: n/cm^2 200 150
.M E
C 2100 0l 50 0 4=
-300.0 0.0 300.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input LE. Computed L.E. Differential
-50. 00 Io00 8. 35 -7.35
-25. 00 12. 00 14. 39 -2. 39
-25. 00 .17. 00 14. 39 2. 61 00 22, 00 23.51 -1.51
.00 22. 00 23.-51 -1. 51
.00 27. 00 23.51 3. 49
- 25. 00 32. 00 34. 83 2. 83
- 25. 00 34. 00 34, 83 -. 83
- 25. 00 47. 00 34. 83 12. 17 I.
WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-37 Unirradiated Intermediate Shell Plate R2507-1 (Transverse)
Page 2 Plant: South Texas 2 Material: SA533BI Heat: NR 62 067-1 Orientation. TL Capsule: UNIRR Fluence: n/cmA2 Charpy V-Notch Data Temperature Input LE. Computed L.E. Differential
- 75. 00 49. 00 54. 66 5ý 66
- 75. 00 49. 00 54. 66 - 5. 66
- 75. 00 52. 00 54. 66 2. 66 125. 00 66, 00 63. 53 2, 47 125. 00 70. 00 63. 53 6. 47 125. 00 67. 00 63. 53 3.47 200. 00 59. 00 66. 59 -7. 59 200. 00 69. 00 66. 59 2. 41 300. 00 68. 00 67. 00 1.00 Correlation Coefficient = .974 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-38 Westinghouse Non-Proprietary Class 3 Unirradiated Intermediate Shell Plate R2507-1 (Transverse)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 11:07 AM Page I Coefficients of Curve 1 Av= 50. B = 50. C = 90.2 TO= 28.14 D = 0.OOE+00 Equation is A + B * [Tanh(fT-ToY(C+DT))]
Temperature at 50% Shear= 2812 Plant: South Texas 2 Material: SA533B1 Heat: NR 62 067-1 Orientation: TL Capsule: UNIRR Fluence: n/cmA2 125 100
-75 1 50 25
-300.0 -200.0 4100.0 0.0 100.0 200.0 ,3( )0.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
- 50. 00 18.00 15.02 L. 98"
- 25. 00 25. 00 23. 54 1. 46
- 25. 00 25. 00 23. 54 1 46 00 34. 00 34. 89 -. 89
-00 34. 00 34. 89 -. 89
.00 40. 00 34. 89 5. I!
25, 00 48. 00 48. 26 -. 26
- 25. 00 47, 00 48. 26 - 1.26
- 25. 00 48. 00 48. 26 -. 26 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957
. Westinghouse Nori-Proprietary Class 3 C-39 Unirradiated Intermediate Shell Plate R2507-1 (Transverse)
Page 2 Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: TL Capsule: UNIRR Fluence: ,n/cm^A2, Charpy V-Notch Data Temperature Input Percent Shear Computed Perent Shear Differential
- 75. 00 59. 00 7i. 87 -14. 87
- 75. 00 68. 00 "7*3. 87 -5. 87
- 75. 00 75.00 73. 87 1. 13 125. 00 100. 00 89.54 1.0. 46, 125. 00 100. 00ý. 89. 54 MO.46 125. 00 95. 00": 89. 54 5. 46 200. 00 100. 00 97..83 2.17 200. 00 100.00 97. 83 2. 17 300W 00 !oo. 00 99,. 76 24 Correlation Coefficient = M83 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-40 Westinghouse Non-Proprietary Class 3 Capsule V Intermediate Shell Plate R2507-I (Transverse)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 0411312012 11:08 AM Page I Coefficients of Curve I A = 53.6 B = 51.4 C = 120.42 TO = 53.64 D = 0AIOE+00 Equation is A + B * *anh((T-To)/(C+DT))]
Upper Shelf Energy= 105.0(Fixed) Lower Shelf Energy=2.2(Fixed)
Temp@30 ft-lbs=-6. I Deg F Temp@50 ft-lbs-45.2 Deg F Plant: South Texas 2 Material: SA533B13 Heat: NR 62 067-1 Orientation: TL Capsule: V Fluence: n/cm^2
__ _ _ _I__ _ _ _I_ __ _ _I_ __ _ _I_ _
- lUU 250 200 0
U.
150 C 0 LU 0
100
.0 50 0
0 13 -i
-300.0 0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch I)ata Temperature Input CVN Computed CVN Differential
_ 70. 00 9. 00 13. 89 -4.89
- 50. 00 28. 00 17. 80 M0.20
-35. 00 17. 00 21. 38 -4.38
-25. 00 33. 00 24. 11 8. 89
.00 29. 00 32. I1 3. I 1
- 25. 00 40. 00 41. 60 1- 60
- 40. 00 42. 00 47 80 -5. 80
- 50. 00 60. 00 52 05 7. 95
- 75. 00 62. 00 62. 62 - 62 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-41 Capsule V Intermediate Shell Plate R2507-1 (Transverse)
Page 2 Plant: South Texas 2 Material: SA533B 1 Heat: NR 62 067-1 Orientation: TL Capsule: V Fluence: n/cmA2 Charpy V-Notch Data Temperantu Input CVN Computed CVN Differential 100. 00 66. 00 72.46 -6. 46 125. 00 75. 00 80. 93 -5. 93 150. 00 93. 00 87.74 5. 26 200.-00 96. 00 96. 69 -. 69 250. 00 I I 1. 00 101ý 20 9. 80 275. 00 119. 00 102. 46 16.54 Correlation Coefficient = .978 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-42 Westinghouse Non-Proprietary Class 3 Capsule V Intermediate Shell Plate R2507-1 (Transverse)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 11:09 AM Page I Coefficients of Curve I A = 39.64 B = 38.64 C = 127.63 TO = 63.3 ) = O.OOE+00 Equation is A + B
- ITanh((T-Toy(C+DT))].
Upper Shelf L.E.=78.3 Lower Shelf L,E.=1,0(Fixed)
Temp,@LE. 35 rnils=47.9 Deg F Plant: South Texas 2 Material: SA533B1 Heat: NR 62 067-1 Orientation: TL Capsule:,V Fluence: WcmA2 200 150 E
C
&. 100 50 0 4=
-300.0 0.0 300.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input LE. Computed L.E Differential
- 70. 00 5.00 9,52 -4, 52
-50. 00 17. 00 12. 20 4. 80
-35. 00 11. 00 14. 64 - 3. 64
-25. 00 23. 00 16.49 6, 51
. 00 22. 00 21.91 09
- 25. 00 26. 00 28. 38 -2. 38 40, 00 30, 00 32. 67 2. 67 50 00 .40, 00 35. 63 4. 37
- 75. 00 40. 00 43. 18 - 3. 18 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-43 Capsule V Intermediate Shell Plate R2507-1 (Transverse)
Page 2 Plant: South Texas 2 Material: SA533BI Heat: NR 62 067-1 Orientation: TL Capsule: V Fluence: ncm^2 Charpy V-Notch Data Temperture Input LE. Compute d L.E. Differential i00. 00 48. 00 50. 46 2. 46 125.00 58. 00 56 .99 1. 01 150. 00 66, 00 62, .49 3.51 200. 00 71.00 70
- 17 83 250. 00 74. 00 74 .35 -,35 275. 00 74. 00 75 .59 -1. 59 Corretation Coefficient = .989 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-44 Westinghouse Non-Proprietary Class 3 Capsule V Intermediate Shell Plate R2507-4 (Transverse)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 0411312012 11:09 AM Page I Coefficients of Curve I A = 50. B.= 50. C = 98.22 TO = 66.97 D = 0.OOE+00 Equation i. A + B * [Tanh((T-To)/(C+DT))]
Temperature at 50% Shear = 67.0 Plant: South Texas 2 Material: SA533R1 Heat: NR 62 067-1 Orientation: TL Capsule: V Fluence: n/cmA2 125 100 75 0L 50 25 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
-70. 00 5. 00 5.79 -. 79
- 50. 00 15. 00 8. 46 6. 54
- 35. 00 15. 00 I1. 14 3. 86
-.25. 00 20. 00 13. 32 6. 68
. 00 20. 00 20. 36 -. 36
- 25. 00 25. 00 29. 85 -4. 85
- 40. 00 30. 00 36. 60 -6. 60
- 50. O0 50. 00 41.44 8. 56
- 75. 00 50. 00 54. 08 - 4. 08 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3. C-45 Capsule V Intermediate Shell Plate R2507-1 (Transverse)
Page 2 Plant: South Texas 2 Material: SA533B1. Heat: NR 62 067-1 Orientation: TL Capsule: V Fluence: n/cmA2 Charpy V-Notch Data Tempemture Input Percent Shear Computed Percent Shear Differential 100.00 60.'00 .66.21 -6. 21 125. 00 70.00 76.52 -6. 52 150. 00 100,00 84. 43 15. 57 200. 00 100.00 93.75 6. 25 250. 00 100. 00 97.65 2.35 275. 00 100. 00 98.57 I. 43 CorrlationCoeffc*ent =.983 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-46 Westinghouse Non-Proprietary Class 3 Capsule Y Intermediate Shell Plate R2507-4 (Transverse)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 1: 10 AM Page I Coefficients of Curve I A = 52.1 B = 49.9 C = 86,62 TO = 5883 D = tOOE+00 Equation is A + B
- fTanh(QT-ToY(C+DT))j Upper Shelf Energy=102.0(Fixed) Lower Shelf Encrgy=2.2(Fixed)
Temp@30 ft-lbs= 17.7 Deg F Temp@50 ft-lbs=55.2 Deg F Plant: South Texas 2 Material: SA533B1 Heat: NR 62 067-1 Orientation: TL Capsule: Y Fluence: n/cm^2 300 250
- 200 0
us 50 0 - 4 --
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input CVN ' Computed CVN Differential
- 80. 00 4. 00 6.09 -2. 09
-30 00 17. 00 13. 57 3. 43
-15.00 17. 00 17. 56 56
- 5. 00 25. 00 20. 80 4. 20 MO.00 Ia. 00 26. 62 -8. 62
- 25. 00 40. 00 33. 55 6. 45
- 40. 00 39. 00 41.42 -2. 42 50, 00 42. 00 47. 03 -5. 03
- 72. 00 66. 00 59.63 6. 37 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-47 Capsule Y Intermediate Shell Plate R2507-1 (Transverse)
Page 2 Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: TL Capsule: Y Fluence: n/cmA2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential 100. 00 74.00 74. 18 -. 18 150. 00 87. 00 91. 16 -4. 16 200. 00 96. 00 98.31 -2.31 250. 00 111.00 100.81 10. 19 300. 00 111. 00 101.62 9. 38 350. 00 103.00 101.88 1. 12 Correlation Coefficient =990 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-48 Westinghouse Non-Proprietary Class 3 Capsule Y Intermediate Shell Plate R2507-4 Transverse)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 11: 10 AM Page Coefficients of Curve 1 A =33.17 B=3 2.17 C = 91.16 TO= 6L84 D = 0LOOE+00 Equation is A + B * [Tanh((T-ToY(C+DT))j
- UpperShelfLE.=65.3 . Lower ShelfLEf= .X(Fixed)
' Temp.@LE. 35 mils=67.1 Deg F Plant: South Texas 2 Material SA533B 1 Heat: NR 62 067-1 Orientation: TL Capsule: Y Fluence: WtoA^2
.9 E
C
.2 UI
-300.0, 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature InptutLE. Computed.lE. *Differential
- 80. 00 1' 00 3. 74 - 2.:74
- 30. 00 9. 00 8,57 .43
- 15. 00 7. 00 11.06 -4. 06 S.5;.00 16.00 13. 06 2. 94 10 00 9.00 16. 62 -7. 62
.25. 00 25, 00 20.,84 ..4. 16
- 40. 00 27. 00 25.61 1.39 50ý 00 29. 00 29. 02 -. 02
- 72. 00 39. 00 11 336:. 74 2. 26 WCAP- 17636-NP October 2012 Revision 0'
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 C-49 Capsule Y Intermediate Shell Plate R2507-1 (Transverse)
Page 2 Plant: South Texas 2 MateriaL SA533BI Heat: NR 62 067-1 Orientation: TL Capsule: Y Fluence: n/cm^2 Charpy V-Notch Data Temperatur InputLE. Computed L.E Differential 100.00 50, 00 45. 90 4. 10 150.00 48. 00 57. 22 - 9. 22 200. 00 60. 00 62. 38 2. 38 250.00 66. 00 64. 32 I. 68 300. 00 68. 00 65, 00 3. 00 350W00 67, 00 65. 23 1. 77 Correlation Coefficient =.985 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-50 Westinghouse Non-Proprietary Class 3 Capsule Y Intermediate Shell Plate R2507-1 (Transverse)
CVGRAPH5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 11:11 AM Page 1 Coefficients of.Curve 1 A = 50, B = 50. C = 72.78 TO = 57.41 D =0,O0E+00 Equation is A + B # tTanh((T-ToY(C+DT)))
Temperature at 50% Shear = 57.5 Plant: South Texas 2 Material: SA533BI ' Heat: NR 62 067-1 Orientation: TL Capsule: Y Fluence: in/cnm2 125 100 tu 75
- a. 50 25
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
- 80. 00 2. 00 2.24 - .24
-30. 00 5. 00 8. 30 -3.30
- 15. 00 10. 00 12.03 -2. 03
-5. 00 20. 00 15.25 4. 75
- 10. 00 15. 00 21.37 -6.37
- 25. 00 30. 00 29. 10 .90
- 40. 00 40, 00 38V 26 1. 74
- 50. 00 50. 00 44. 93 5. 07
- 72. 00 60. 00 59. 89 .,l3 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-113002957 Westinghouse Non-Proprietary Class 3 C-51 Capsule Y .Intermediate Shell Plate R2507-1 (Transverse)
Page 2 Plant: South Texas 2 Material: SA533BI Heat: NR 62 067-1 Orientation: TL Capsule: Y Fluence: n/cmA2 Charpy V-Notch Data Temperauum Input Percent Shear Computed Percent Shear Differential t00. 00 70. 00 76. 32 -6. 32 150. 00 95. 00 92.72 2. 28 200. 00 0oo. 00 98.05 1. 95 250. 00 o00. 00 99. 50 .50 300. 00 1W 00 99. 87 13 350. 00 100..00 99. 97 03 Coirelation Coefficient = .996 October 2012 WCAP- 17636-NP WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-52 Westinghouse Non-Proprietary Class 3 Capsule U Intermediate Shell Plate R2507-1 (Transverse)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 11:12 AM Page 1 Coefficients of Curve I A = 53.1 B = 50.9 C = 100.88 TO = 71.5 D = 0.O0E+00 Equation is A + B * [Tanh((T-To)1(C+DT))]
Upper Shelf Energy=104.0(Fixed) Lower Shelf Energy=2.2(Fixed)
Temp@30 ft-lbs=22-2 Deg F Temp@50 ft-1bs=65.4 Deg F Plant: South Texas 2 Material: SA533BI Heat: NR 62 067-1 Orientation: TL Capsule: U Fluence: n/cmA2 300 250 200 0
0 U.
LM150 C)
LU 0--
100 00 50 0
0 - I4
- - i
-300.0 0
-200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperatue Input CVN Computed CVN Differential
-75. 00 2. 00 7. 49 -5. 49
-50. 00 10. 00 10.60 60
-25. 00 24. 00 15. 30 8. 70
.00 22. 00 22.06 06
- 25. 00 32. 00 31, 17 -7. 83
- 50. 00 35, 00 42. 42 42
- 60. 00 50. 00 47.32 2. 68
- 75. 00 59. 00 54. 87 43 13 100. 00 64, 00 -3.
- 67. 11 I1 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-53 Capsule U Intermediate Shell Plate R2507-1 (Transverse)
Page 2 Plant: South Texas 2 Material: SA533BI Heat: NR 62 067-1 Orientation: TL Capsule: U Fluence: n/cmA2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential 125. 00 79, 00 77. 82 1. I8 150.00 79. 00 86. 27 -7. 27 190. 00 10t,00 95, 13 5. 87 225. 00 102.00 99. 37 2. 63 250. 00 108.00 lot. 13 6. 87 275. 00 104. 00 102.23 1. 77 Correlation Coefficient = .991 WCAP-17636-NP Or October 2012 Revis'ion 0
Enclosure NOC-AE-13002957 C-54 Westinghouse Non-Proprietary Class 3 Capsule U Intermediate Shell Plate R2507-1 (Transverse)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 11:12 AM Page t Coefficients of Curve 1 A = 34.64 B = 33.64 C = 92.04 TO = 81.01 D = 0.OOE+0O Equation is A + B * [Tanh((T-To)t(C+DT))]
Upper Shelf L.E.=68.3 Lower Shelf L.E.= 1.0(Fixed)
Temp.@LE. 35 mils=82.0 Deg F Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: TL Capsule: U Fluence: nJcmA2 200 150 E
.2 PL100.
I.
50 0
-300.0 0.0, 300.0 600.0 Temperature In Deg F Charpy V-Notch Data
,Temperature Input LE. Computed L.E. Differential
-75.00 00 3. 19 -3. 19
- 50. 00 00 4. 69 -3. 69
-25.00 10. 00 7.11 2. 89
- .00 00 10. 87 ,13
- 25. 00 18. 00 16.37 1. 63 50.00 20, 00 23. 72 -3.72
- 60. 00 30. 00 27. 09 2.91
- 75. 00 31. 00 32,45 1. 45 100. 00 44. 00 41. 48 2 52 WCAP- 17636-NP
- October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-55 Capsule U Intermediate Shell Plate R2507-1 (Transverse)
Page 2 Plant: South Texas 2 Material: SA533B 1 Heat: NR 62 067-1 Orientation: TL Capsule: U Fluence: n/cm^2 Charpy V-Notch Data Temperatmu Input L.E. Computed L.E. Differential 125. 00 5t. 00 49. 59 1 41 150. 00 50. 00 56. 00 -6 00 190. 00 67. 00 62. 52 4. 48 225. 00 63. 00 65.46 -2, 46 250. 00 66. 00 66. 61 -. 61 275. 00 69. 00 67. 30 1. 70 Correlation Coefficient = .992 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-56 Westinghouse Non-Proprietary Class 3 Capsule U Intermediate Shell Plate R2507-1 (Transverse)
CVGRAPH 5,3 Hyperbolic Tangent Curve Printed on 04/I3/2012 11:13 AM Page I Coefficients of Curve I A = 50. B = 50. C = 62.1 0 = 89.31 I) =0OOE+00 Equation is A + B * [Tanh((T-To)Y(C+DT))j Temperature at 50% Shear = 89.4 Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: TL Capsule: U Fluence: n/crn^2 125 100 I-Lu 75 S
U, S
2 50 S
a-25 0
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
- 75. 00 2. 00 50 I 5o
-50. 00 5. 00 I. 11 3 89
-25. 00 10. 00 2. 46 7. 54
.00 10. 00 5. 33 4. 67
- 25. 00 15. 00 II. 19 3. 81
- 50. 00 20. 00 21. 99 -1 99
- 60. 00 25. 00 28. 0l -3. 01
- 75. 00 35. 00 38. 67 -3. 67 tOo. 00 60. 00 58. 52 1 .48 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-57 Capsule U Intermediate Shell Plate R2507-1 (Transverse)
Page 2 Plant: South Texas 2 Material: SA533BI Heat: NR 62 067-1 Orientation: TL Capsule: U Fluence: n/cmA2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 125. 00 80. 00 75. 94 4. 06 150. 00 85. 00 87. 59 -2. 59 190. 00 100. 00 96. 24 3. 76 225. 00 100. 00 98. 75 25 250. 00 100. 00 99.44 56 275. 00 100. 00 99. 75 25 Correlation Coefficient = .997 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-58 Westinghouse Non-Proprietary Class 3 Capsule W Intermediate Shell Plate R2507-1 (Transverse)
CVGRAPH 5.3. Hyperbolic Tangent Curve Printed on 07/09/2012.12:17 'PM Page 1 Coefficients of Curve I A=47,6 B=45.4C=71.22 T0o=5.69 D=0.OOE+00 Equation is A + B
- iTanh((T-To)/(C+DT))]
Upper Shelf Energy=93.0(Fixed) Lower Shelf Energy=2.2(Fixed)
Temp@30 ft-lbs=56.6 Deg F Temp@50 ft-lbs=89.5MDeg F Plant: South Texas 2 Material: SA533BI Heat: NR 62 067-1 Orientation: TL Capsule: W Fluence: rdcm^2 300 250 A 200 150 100 s-
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0* 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
- 70. 00 4. 00 3. 33 67
.00 17. 00 9.71 7.29
- 30. 00 21. 00 17. 92 3. 08
- 40. 00 15. 00 21. 91 -6.91
- 50. 00 27. 00 26 58 .42
- 60. 00 29. 00 31. 90 2. 90
- 60. 00 25. 00 31. 90 -6. 90
- 72. 00 44. 00 38. 98 5, 02
- 72. 00 45. 00 38 98 6. 02 WCAP- 17636-NP October 2012 Revision.0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-59 Capsule W Intermediate Shell Plate R2507-1 (Transverse)
Page 2 Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: TL Capsule: W Fluence: n/cm^A2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
- 80. 00 46. 00 43.98 2 02 100. 00 51.00 56. 60 5. 60 130. 00 75. 00 72. 69 2.31 200. 00 86. 00 89. 48 -3. 48 220, 00 96. 00 90. 96 5. 04 250. 00 97. 00 92. 11 4. 89 Correlation Coefficient = 987 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-60 Westinghouse Non-Proprietary Class 3 Capsule W Intermediate Shell Plate R2507-1 (Transverse)
CVGRAPH 5.3 Hyperbolic Tangent Curve Prinmed on 07109/2012 12:20 PM Page 1 Coefficients of Curve 1 A "=314.15 B = 33.15 C = 77.48 TO = 95.62 D = 0.O0E+OO Equation is A + B [Tanh((T-To)/(C+DT))]
Upper Shelf L.E.=67.3 Lower Shelf L.E.= 1.O(Fixed)
Ternp.@LE. 35 mils=97.7 Deg F Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: TL Capsule: W Fluence: n/e^nA2 200 150 E
1.00 so 0 4=
-300.0 0.0 300.0 600.0 Temperature In Deg F Charpy V-Notch Data.
Temperature Input L E. Computed L.F Differential
- 70. 00 00 1.91
- 1. 91
.. 00 12. 00 6. 18 5. 82
- 30. 00 10. 00 11.29 29
- 40. 00 II. 00 13.74 -2. 74
- 50. 00 I8. 00 16.61
- 20. I. 39
- 60. 00 00 19,'90 10
- 60. 00 13. 00 - 6, 19.90 90
- 72. 00 28. 0o 24. 35 3, 65
- 72. 00 26. 00 24. 35 1. 65 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-61 Capsule W Intermediate Shell Plate R2507-1 (Transverse)
Page 2 Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: TL Capsule: W Fluence: n/cmnA2 Charpy V-Notch Data Tempemture Input L..E Computed L.E Differential
- 80. 00 30. 00 27. 56 2. 44 100. 00 33. 00 36. 02 - 3. 02 130. 00 50. 00 47. 96 2. 04 200. 00 59. 00 63. 10 -4. 10 220. 00 6V. 00 64, 73 3. 27 250. 00 66. 00 66.09 -. 09 Correlation Coefficient =,988 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-62 Westinghouse Non-Proprietary Class 3 Capsule W Intermediate Shell Plate R2507-1 (Transverse)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 0710912012 12:23 PM Page I Coefficients of Curve I A = 50. B = 50. C = 78.45 TO = 118.77 D = O0OE+00 Equation is A + B
- ITanh(CT-ToY(C+DT))]
Temperature at 50% Shear = 118.8 Plant: South Texas 2 Material: SA533B1I Heat: NR 62 067-I Orientation: TL Capsule: W FlRuence: dcamA2 125 100 75 i.
?0 50 25 0 .
-300.0 -200.0 -100.0 0.0- 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
- 70. 00 00 81 00 5. 00 4.62 38
- 30. 00 10. 00 9. 42 58
- 40. 00 15. 00 t1. 84 3. 16
- 50. 00 15. 00 24. 76 .24 60, 00 25. 00 i8.27 3, 27
- 60. 00 20. 00 8s 27 1. 73
- 72. 00 25. 00 23 28 1.72
- 72. 00 25. 00 23. 28 1 72 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-63 Capsule W Intermediate Shell Plate R2507-1 (Transverse) ,
Page 2 Plant: South Texas 2 Material: SA533BI Heat: NR 62 067-1 Orientation: TL Capsule: W Fluence: n/cm^2 Charpy V-Notch Data Temperature Input Percent Shear Computed percent Shar Differential
- 80. 00 30. 00' 27.12 2. 88 100.00 40. 00 38. 26 1. 74 130.00 45. 00 57,1 1 -12. 11 200. 00 95.00 88. 80 6, 20 220. 00 i00.00 92.96 7. 04 250. 00 too. 00 96.60 3. 40 Correlation Coefficient =.992 October 2012 WCAP-17636-NP WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-64 Westinghouse Non-Proprietary Class 3 Unirradiated (Weld)
CVGRA PH 53 Hyperbolic Tangent Curve Printed on 04/13/2012 02:06 PM Page 1 Coefficients of Curve 1 A = 49.6 B = 47,4 C = 5&26 T0 = 11.49 D = O.OOE+00 Equation is A + B
- ITanh((T-To)/(C+DT))]
Upper Shelf Energy=97.0(Fixed) Lower Shelf Energy=2.2(Fixed)
Temp@30 ft-lbs=-14. I Deg F Temp@50 ft-lbs= 12.0 Deg F Plant: South Texas 2 Material: SAW Heat: 90209 Orientation: NA Capsule: UNIRR Fluence: n/cm*2 300 250
- 200 U-150 C
w z
> 100 0
5o 0
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
- 100. 00 8. 00 4.22 3. 78
- 50, 00 16. 00 12.44 3. 56
- 25. 00 30. 00 23. 27 6. 73
- 25. 00 35. 00 23. 27 i1. 73 00 21. 00 40. 37 -19. 37
- 00 28. 00 40. 37 -12.37
- 25. 00 68. 00 60. 40 7. 60 25, 00 69. 00 60. 40 8. 60
- 75. 00 85. 00 87. 37 -2.37 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 C-65 Unirradiated (Weld)
Page 2 Plant: South Texas 2 Material: SAW Heat: 90209 Orientation: NA Capsule: UNIRR Fluence: n/cm^2 Charpy V-Notch Data Temperature Input CVN Computed CVN )Differential
- 75. 00 93_ 00 87. 37 5 63 125. 00 90. 00 95. iI *5t1 125. 00 94. 00 95.11 -1. I!
200. 00 99. 00 96. 85 2. 15, 200. 00 100. 00 96. 85 3. 15 300. 00 103. 0.0 97 00 6. 00 Corretation Coefficient = .972 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-66 Westinghouse Non-Proprietary Class 3 Unirradiated (Weld)
CVGRAPH 5.3 Hyperbolic TangentCurve Printed on 04/13/2012 02:07 PM Page I Coefficients of Curve 1 A = 36.41 B = 35.41 C =56.1 TO = 11.94 D = O.OOE+00 Equation is A + B * [Tanh((T-To)/(C+DT))]
Upper Shelf L.E.=71.8 Lower Shelf LE.=l.0(Fixed)
Temp,@LE. 35 mil,-9.8 DegF Plant: South Texas 2 Material: SAW Heat: 90209 Orientation: NA Capsule: UNIRR Fluence: n/cmn'2 200 150 E
S.2 0
50 0
-300.0 0.0 300.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input LE. ComputedL.E. Differential
- t00. 00 1. 00 2. 29 - I. 29
-50. 00 9. 00 8 01 .99
-25. 00 22. 00 15 96 6. 04
-25. 00 24. 00 15. 96 8. 04 00 16. 00 28 98 12.98 00 21.00 28 98 -7.98
- 25. 00 49. 00 44. 50 4. 50
- 25. 00 51. 00 44. 50 6. 50
- 75. 00 .65. 00 65.05 05 L
WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-67 Unirradiated (Weld)
Page 2 Plaint: South Texas 2 Material SAW Heat: 90209 Orientation: NA Capsule: UNIRR Fluence: n/crn^2 Charpy V-Notch Data Temperaturu Input LE. Computed L.E. Mifferential
- 75. 00 66. 0 65, 05 .95 125.00 66. 00 M7058 -4. 58 125. 00 70. 00 70. 58 - . 58 200. 00 77. 00 71. 73 5. 27 200. 00 70. 00 71. 73 - 1. 73 300. 00 71. 00 71. 81 -,81 Correlation Coefficient = .977 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-68 Westinghouse Non-Proprietary Class 3 Unirradiated (Weld)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 02:07 PM Page I Coefficients of Curve I A = 50. B = 50. C = 85.75 TO = -13.43 D = 0.OOE+00 Equation is A + B
- ITanh((T-Toy(C+DT))]
Temperature at 50% Shear ='- 13.4 Plant. South Texas 2 Material: SAW Heat: 90209 Orientation: NA Capsule: UNIRR Fluence: n/cmA2 125 100 0
2 0
0.
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
- 100. 00 33. 00 t1 . 72 6.28'
-50. 00 29. 88 3. 12
-25. 00 43. 00 43. 29 -. 29
-25. 00 47. 00 43. 29 3.71
.00 50. 00 57. 77 -7. 77
.00 50. 00 57. 77 -7.,77
- 25. 00 77. 00 7 1, 02 5, 98
- 25. 00 67. 00 7 1. 02 -4, 02
- 75. 00 93. 00 88. 72 4. 28 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-69 Unirradiated (Weld)
Page 2 Plant: South Texas 2 Material: SAW Heat: 90209 Orientation: .NA Capsule: UNIRR Fluence. n/cm^2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
- 75. 00 94, 00 88. 72 5 28 125. 00 100.00 96. 19 3.81 125.00 I00. 00 96. 19 3. 81 200. 00 100. 00 99. 32 68 200. 00 IOO. 00 99. 32 68 300. 00 100. 00 99. 93 07 Correlation Coefficient = M988 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-70 Westinghouse Non-Proprietary Class 3 Capsule V (Weld)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 02:08 PM Page I Coefficients of Curve 1 A = 47.6 B = 45.4 C = 87.57 TO = 13.42 1) = 0.00E+0O Equation is A + B
- ITanh((T-Toy(C+DT))]
Upper Shelf Energy=93.0(Flixed) Lower Shelf Energy=2.2(Fixed)
Temnp@30 ft-lbs=-22,4 Deg F Temp@50 ft-lbs=18. Deg F Plant: South Texas 2 Material: SAW Heat: 90209 Orientation: NA Capsule: V Fluence: n/cmA2 300 250 r200 LM150 w
100 50 0
0 0
0
-300.0 -200.0. -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temrerature Input CVN Computed CVN Differential
- 100. 00 7. 00 8.53 - L.. 53
-75. 00 18. 00 12. 84 5. 16
-50. 00 28. 00 19.47 8. 53
-25. 00 33. 00 28. 87 4. 13 00 26. 00 40. 70 -14. 70
- 15. 00 35. 00 48.42 -13. 42
- 25. 00 73. 00 53. 57 19.43
- 30. 00 53. 00 56. 09 - 3. 09
- 50. 00 61. 00 65. 53 -4.53 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-71 Capsule V (Weld)
Page 2 Plant: South Texas 2 Material: SAW Heat: 90209 Orientation: NA Capsule: V Fluence: n/cmA2 Charpy V-Notch Data Temperature Input CV N Computed CVN Differential
- 75. 00 80. 0 75. 13 4. 87 t0M. 00 86. 00 81. 96 4. 04 150. 00 88. 00 89. 16 -1. 16 200. 0 95, 00 91,74 3. 26 225. 00 99. 00 92. 28 6.72 275. 00 98. 00 92. 77 5. 23 Correlation Coefficient = .964 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-72 Westinghouse Non-Proprietary Class 3 Capsule V (Weld)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 02:09 PM Page 1 Coefficients of Curve I A= 38.31 B = 37.31 C = 103.22 TO = 16.02 D= 0.OOE+00 Equation is A + B * [Tanh((T-ToY(C+DT))]
Upper Shelf L.Eý=75,6 Lower Shelf L.E.=10(Fixed)
Temp.C@LE. 35 mils=6.9 Deg F Plant: South Texas 2 Material: SAW Heat: 90209 Orientation: NA Capsule: V Fluence: n cmA2 200 150 E
a100 so 50 0 "01ý 0
0 /0 n -
-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input L E. Computed LE. Differential
-t00. 00 6. 00 8. 13 -2. 13
-75. 00 11. 00 1 1. 92 92
- 50. 00 23. 00 17. 24 ,5.76
-25, 00 31. 00 24. 22 6. 78 00 21. 00 32. 56 - I1. 56
- 15.00 30. 00 37. 94 -7.94 25; 00 ý53. 00 41. 55 1. 455
- 30. 00 43. 00 43. 33 -. 33
- 50. 00 47. 00 50. 16 -3. 16 WCAP-17636-NP
. WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-73 Capsule V (Weld)
Page 2 Plant: South Texas 2 Material: SAW Heat 90209 Orientation: NA Capsule: V Fluence: n/cmA2 Charpy V-Notch Data Temperature Input LF. Computed L.E. Differential
- 75. 00 58. 00 57. 57 43 100. 00 68. 00 63. 36 4. 64 ISO. 00 69. 00 70. 44 -I. 44 200. 00 73. 00 73. 56 - .56 225. 00 76, 00 74. 34 1. 66 275. 00 73. 00 ,75. 12 -2. 12 Correlation Coefficient = .971 October 2012 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-74 Westinghouse Non-Proprietary Class 3 Capsule V (Weld)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 02:09 PM Page 1 Coefficients of Curve I A = 50 B = 50. C = 77.83 TO = -1.82 D = 0.O0E+00 Equation is A + B * [Tanh((T-To)/(C+DT))l Temperature at 50% Shear = -1.8 Plant: Soibth Texas 2 Material: SAW Heat: 90209 Orientation: NA Capsule: V Fluence: n/cmA2 125 100 75 U) 50 25
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V.Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
- t00. 00 5. 00 7.43 -2.43
-75. 00 10. 00 13. 23 - 3. 23
-50. 00 25. 00 22. 48 2. 52
- 25. 00 45. 00 35. 53 9. 47 00 45. 00 51. 17 -6.17
- 15. 00 60. 00 60. 64 -. 64 25, 00 70. 00 66, 58 3. 42
- 30. 00 60. 00 69. 38 - 9.'38
- 50. 00 80. 00 79. 11 89 WCAP-17636-NP October 2012 I Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-75 Capsule V (Weld)
Page 2 Plant: South Texas 2 Material: SAW Heat: 90209 Orientation: NA Capsule: V Fluence: n/cmA2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
- 75. 00 90. 00 87. 81 2. 19 100. 00 100. 00 93. 19 6. 81 150, 00 t.
100. 00 98, 02 98
.200. 00 100. 00 99. 44 56 225. 00 100. 00 99. 7.1 29 275. 00 100. 00 99. 92 08 Correlation Coefficient = 0991 October 2012 WCAP-1 7636-NP WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-76 Westinghouse Non-Proprietary Class 3 Capsule Y (Weld)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 02:10 PM Page I Coefficients of Curve I A = 48.6 B = 46.4 C = 89.93 TO = 27.68 D = O.OOE+O0 Equation is A + B * [Tanh((T-ToY(C+DT))J Upper Shelf Energy=95.0(Fixed) Lower Shelf Energy=-2.2(Fixed)
Temp@30 ft-lbs=-10.5 Deg F Temnp@50 ft-lbs=30.4 Deg F Plant: South Texas 2 Material: SAW Heat: 90209 Orientation: NA Capsule: Y Fluence: n/cmA2 300 250
- 200 150 0
100 0 Z0 Jý.
50 0C 0
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Inpul CVN Computed CVN Differential
- 100. 00 6. 00 7. 32 -1.32
-75. 00 7. 00 10. 78 -3. 78
-50. 00 17. 00 16. 20 s80
- 24. 15 -3. Ii
-25. 00 21. 00
-15.00 35. 00 28. 10 6. 90
-5.00 38. 00 32. 44 5. 56 J0. 00 48.00 39. 59 8.41
- 35. 00 38. 00 52, 37 14. 37
- 50. 00 49. 00 59. 89 -10, 89 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-77 Capsule Y (Weld)
Page 2 Plant: South Texas 2 Material: SAW Heat: 90209 Orientation: NA Capsule: Y Fluence: n/cmA2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
- 72. 00 79. 00 69. 78 9. 22 115. 00 80. 00 83. 36 -3. 36 125. 00 93. 00 85. 44 7. 56 200. 00 99. 00 93. 03 5. 97 250. 00 103. 00 94. 34 8. 66 300. 00 100, 00 94.78 5. 22 Correlation Coefficient = .979 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-78 Westinghouse Non-Proprietary Class 3 Capsule Y (Weld)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 02:10 PM Page 1 Coefficients of Curve I A = 36.63 B = 35.63 C = 90.6 TO = 32.67 D = 0.00E+00 Equation is A + B * [Tanh((T-ToY(C+DT))]
Upper Shelf L.E.=72.3 Lower Shelf L.E.= 1.0(Fixed)
Temp.@LE. 35 mils=28.6 Deg F Plant: South Texas 2 Material: SAW Heat: 90209 Orientation: NA Capsule: Y Fluence: ncmra^2 200 150 C
- .l0 2L 100 50 0 k
-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input LE. Computed L.E. Differential
- 00. 00 . 00 4. 62 -4. 62
-75. 00 2.0 0 7. 06 -5. 06
-50. 00 1 1. 00 1o. 90 t0
-1].
-25. 00 15.00 o 16.59 59
-15.00 23. 00 19. 44 3. 56
-5.00 27. 00 22. 62 4.- 38 1O. 00 34. 00 27.90 6. I0
- 35. 00 32. 00 37.55 - 4. 55
- 4.
- 50. 00 39. 00 43. 37 37 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-79 Capsule Y (Weld)
Page 2 Plant: South Texas 2 Material: SAW Heat 90209 Orientation: NA Capsule: Y Fluence: n/cm^2 Charpy V-Notch Data Temperture Input LE. Computed LE Differential
- 72. 00 50. 00 51, 20 -I. 20 115.00 65. 00 62,31 2. 69 125. 00 66,00 64. 05 1. 95 200. 00 71. 00 70. 54 46 250. 00 71. 00 7 1. 68 -. 68 300. 00 71 '00 72. 07 -1. 07 Correlation Coefficient = .990 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-80 Westinghouse Non-Proprietary Class 3 Capsule Y (Weld)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 02:11 PM Page I Coefficients of Curve I A = 50. B = 50. C = 76.84 TO = .61 D = O.OOE+0O Equation is A + B
- tTanh((T-ToY(C+DT))]
Temperature at 50% Shear= .7 Plant: South Texas 2 Material: SAW Heat: 90209 Orienta*ion: NA Capsule: Y Fluence: n/cmA2 125 100 75 U)
?.
- 0. 50 25 01 -4ý- 1- 1 14 1.-~- 1+-I-i-4--I
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
- 100. 00 10. 00 6.79 3.21
- 75. 00 10. 00 12. 26 -2. 26
-50. 00 25. 00 21. 13 3. 87
-25. 00 30. 00 33, 92 -3. 92
-1 5. 00 35. 00 39. 98 -4.98
- 5. 00 45. 00 46. 35 - 1. 35 10.00 70. 00 56. 08 13.92
- 35. 00 60. 00 70. 99 - 10. 99
- 50. 00 80. 00 78. 34 1. 66 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-81 Capsule Y (Weld)
Page 2 Plant: South Texas 2 Material: SAW Heat: 90209 Orientation: NA Capsule: Y Fluence: n/cmA2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential.
- 72. 00 90. 00 86.51 3. 49 115. 00 95, 00 95. 15 -. 15 125. 00 95. 00 96. 22 - 1. 22 200. 00 100. 00 99. 45 .55 250. 00 100I 00 99 85 .15 300. 00 100. 00 99. 96 04 Correlation Coefficient = .988 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-82 Westinghouse Non-Proprietary Class 3 Capsule U (Weld)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 02:12 PM Page 1 Coefficients of Curve I A = 48.6 B = 46.4 C = 59.19 TO = 31.42 D = 0,00E+00 Equation is A + B
- fTanh((T-Toy(C+DT))]
Upper Shelf Energy=95.0(Fixed) Lower Shelf Energ=-2.2(Fixed)
Temnp@30 ft-lbs=6.3 Deg F Temp@50 ft-lbs;=33.3 Deg F Plant: South Texas 2 Material: SAW Heat: 90209 Orientation: NA Capsule: U Fluence: n/'cm^2 300 250 200 150 z
_0 100 0
/0 50 0
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
-75. 00 4. 00 4.68 68
- 50. 00 10. 00 7.77 2. 23
- 25. 00 17. 00 14. 21 2. 79
.00 28. 00 26. 05 1. 95
- 10. 00 28. 00 32. 50 -4. 50
- 30. 00 41. 00 47. 49 -6. 49
- 50. 00 72. 00 62.71 9. 29
- 50. 00 64. 00 62.71 1. 29
- 75. 00 74. 00 77. 69 - 3. 69 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-83 Capsule U (Weld)
Page 2 Plant: South Texas 2 MateriaL: SAW Heat: 90209 Orientation: NA Capsule: U Fluence: n/cmA2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential 125. 00 94. 00 .91. 23 2. 77 150. 00 86. 00 93. 34 -7.34 200. 00 91, 00 94. 69 - 3, 69 225. 00 97. 00 94. 87 2. 13 250. 00 96. 00 94. -94 1.06 275, 00 104. 00 94. 98 9. 02 Correlation Coefficient = .990 October 2012 WCAP-17636-NP WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-84 Westinghouse Non-Proprietary Class 3 Capsule U (Weld)
IC*VGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 02:12 PM Page I Coefficients of Curve I A = 33.94 B = 32.94 C = 57.78 TO = 33.41 1) = 0.OME+00 Equation is A + B * [Tanh((T-ToY(C+DT))]
Upper Shelf L.E.--66.9 Lower Shelf LE.=l.0(Fixed)
Temp.@LE. 35 mils=35.3 Deg F Plant: South Texas 2 .Material: SAW .Heat:.9020)9 Orientation: NA Capsule: U Fluence: nfciiiA2 200 150 E
.2 9.100 soo 00 00 50 0
0
-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input LE, Computed L.E Differential
- 75. 00 00 2.51 -2. 51
-50. 00 3. 00 4. 48 1.48
-25. 00 10. 00 8. 70 IL 30
.00 20. 00 16. 77 3. 23
- 10. 00 20. 00 21.28 I. 28 30, 00 25. 00 32. 00 ..00
- 50. 00 50. 00 43..14. 6. 86
- 50. 00 45. 00 43. 14 1. 86
- 75. 00 51. 00 54. 26 -3. 26 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-85 Capsule U (Weld)
Page 2 Plant: South Texas 2 Material: SAW Heat: 90209 Orientation: NA Capsule: U Fluence: n/cmnA2 Charpy V-Notch Data Temperatum Input L E. Computed LE. Differential 125, 00 64. 00 64. 22 - ,22 ISO. 00 62. 00 65. 73 -3. 73 200. 00 63 00 66. 67 -3. 67 225. 00 67. 00 66. 79 . 21 250, 00 71 . 00 66, 84 4. t6 275. 00 70, 00 66. 8'6 3. 14 Correlation Coefficient = .990 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-86 Westinghouse Non-Proprietary Class 3 Capsule U (Weld),
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04113/2012 02:12 PM Page 1 Coefficients of Curve I A = 50. B = 50. C = 74.04 TO = 13,7 D = 0oOOE+O0 Equation is A + B * [Tanh(W'-ToY(C+DT))]
Temperature at 50% Shear = 13.8 Plant: South Texias 2. Material: SAW Heat: 90209 Orientation: NA Capsule: U Fluence: n/cm^2 125 100 75 4-
- a. 50 25 0 1 , 1 1
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
-75. 00 t0. 00 8. 35 1.65
.50. 00 15..00 15. 18 -. 18
-25. 00 25. 00 26.01 -1. 01
.00 45. 00 40. 85 4. 15 tO. OO 40, 00 47. 50 -7.50
- 30. 00 65. 00 60. 83 4ý 17 50, 00 75. 00 72.72 2.28
- 50. 00 70. 00 72.72 - 2 72
- 75. 00 85. 00 83. 97 1. 03 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-87 Capsule U (Weld)
Page 2 Plant: South Texas 2 Material: SAW Heat: 90209 Orientation: NA Capsule: U Fluence: n/cmn^A2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 125. 00 95. 00 95. 29 -. 29 150. 00. 95, 00 97. 54 2. 54 200. 00 98. 00 99, 35 1. 35 225. 00 98. 00 99. 67 1. 67 250, 00 100. 00 99. 83 17 275. 00 10o, 00 99. 91 09 Correlation Coefficient = .996 October 2012 WCAP-17636-NP WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-88 Westinghouse Non-Proprietary Class 3 Capsule W (Weld)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07/09/2012 12:31 PM Page 1 Coefficients of Curve I A = 48.1 B = 45.9 C = 80.71 TO = 45.9 D = 0.00E+00 Equation is A + B * [Tanh((T-To)/(C+DT))]
Upper Shelf Energy-=94.0(Fixed) Lower Shelf Erergy=2.2(Fixed)
Temp@30 ft-lbs= 12.3 Deg F Temp@50 ft-lbs=49.3 Deg F Plant: South Texas 2 Material: SAW Heat: 90209 Orientation: NA Capsule: W. Fluence: n/cmA2 300 250 200 S15 10 z
> 100 0
-- l - --
50 0
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
-70. 00 4. 00 7. 12 - 3. .12
-20. 00 15.00 17. 20 - 2. 20
.00 27. 00 24. 49 2. 51
- 20. 00 57. 00 33. 86 23. 14
- 30. 00 32. 00 39. 17 -7. 17
- 40. 00 34. 00 44. 75 -10. 75
- 40. 00 38. 00 44, 75 - 6, 75
- 50. 00 56. 00 50. 43 5. 57
- 60. 00 54. 00 56. 04 - 2. 04 October 2012 WCAP-17636-NP WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-89
.Capsule W (Weld)
Page 2 Plant: South Texas 2 Material SAW Heat: 90209 Orientation: NA Capsule: W Fluence: n/cmA2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
- 72. 00 56. 00 62. 45 - 6. 45 100. 00 78. 00 74. 96 3. 04 130. 00 93. 00 83. 84 9. 16 200. 00 92. 00 92. 03 -. 03 220. 00 91. 00 92. 79 - 1. 79 250. 00 98. 00 93. 42 4 58 Correlation Coefficient = .962 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-90 Westinghouse Non-Proprietary Class 3 Capsule W (Weld)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07/09/2012 12:34 PM Page 1 Coefficients of Curve I A = 33.17 B = 32.17 C = 86.96 TO = 32.18 D = 0.O0E+O0 Equation is A + B * [Tanh((T-To)/(C+DT))]
Upper Shelf L.E.=65.3 Lower Shelf L.E.= I.0(Fixed)
Temp,@L.E. 35 mils=37.2 Deg F Plant; South Texas 2 Material: SAW Heat: 90209 Orientation: NA Capsule: W Fluence: nTcm^2 200 150 0
50 I I I0 0
0
-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input L.E. Computed L.E. Differential
-70. 00 00 6. 60 -6. 60 S -20.00 14, 00 15. 89 - 1.89 0.0 23. 00 221 . 78 L. 22
- 20. 00 44. 00 28.70 15. 30
- 30. 00 28, 00 32. 37 -4.37 40.00 29. 00 36. 06 -7.06
- 40. 00 31.00 36. 06 -5. 06
- 50. 00 45. 00 39. 68 5. 32
- 60. 00 42. 00 A43. 13 -1. 13 WCAP-,17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-91 Capsule W (Weld)
Page 2 Plant: South Texas 2 Material: SAW Heat: 90209 Orientation: NA Capsule: W Fluence: nlcmA2 Charpy V-Notch Data Temperature Input LE. Computed L.E Differential
- 72. 00 46. 00 46. 96 -. 96 too. 00 58. 00 54. 17 3. 83 130.00 54.00 59. 21 -5.21 200. 00 65. 00 64 02 . 98 220. 00 62. 00 64. 50 2.50 250. 00 69. 00 64. 92 4. 08 Cormation Coefficient =.956
~1 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-92 Westinghouse Non-Proprietary Class 3 Capsule W (Weld)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07/09/2012 12:36 PM Page 1 Coefficients of Curve I A = 5O. B = 50. C = 93.78 TO = 40.71 D = 0.00E+00 Equation is A + B * [Tanh((T-ToY(C+DT))]
Temperature at 50% Shear = 40.8 Plant: South Texas 2 Material: SAW Heat: 90209 Orientation: NA Capsule: W Fluence: n/cm^2 125 100 I..
m 75 C',
0 50 25 0 , --- - -300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
-70. 00 10, 00 8.62 1.38
-20. 00 20. 00 21.51 -1.51
.00 30. 00 29. 56 .44
- 20. 00 45. 00 39.14 .5. 86
- 30. 00 40. 00 44. 32 -4.32
- 40. 00 45. 00 49. 62 - 4. 62 40.00 45. 00 49.62 -4. 62
- 50. 00 65. 00 54. 94 10. 06
- 60. 00 60. 00 60. 14 -. 14 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-93 Capsule W (Weld)
Page 2 Plant: South Texas 2 Material: SAW Heat: 90209 Orientation: NA Capsule: W Fluence: n/cm^A2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
'72. 00 65. 00 66. 09 09 75'.
100. 00 00 77. 98 - 2. 98 130, 00 90. 00 87, 04 2. 96 200. 00 95. 00 96. 76 76 220. 00 too, 00 97. 86 2. 14 250. 00 too. 00 98. 86 I. 14 Correlation Coefficient = .990 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-94 Westinghouse Non-Proprietary Class 3 Unirradiated (Heat Affected Zone)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/1.312012 02:49 PM Page 1 Coefficients of Curve I A = 74.1 B = 71.9 C = 78.16 TO = -54.54 D = 0.O0E+OO Equation is A + B * [Tamh((T-To)/(C+DT))]
Upper Shelf Energy=-146.0(Fixed) Lower Shelf Energy--2.2(Fixed)
Temp@30 ft-lbs=-I 10.3 Deg F Temp@50 ft-lbs=-81,7 Deg F Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: NA Capsule: UN1RR Fluence: n/cmA2 300 250
, 200 0
IL 150 41 z
> 100 50 0 *
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
- 200. 00 19.00 5. 60 13.40
- 100. 00 30. 00 36.43 -6. 43
- 100, 00 31.00 36, 43 - 5. 43
-50. 00 60. 00 78. 27 - 18.27
-50. 00 90. 00 78. 27 11.73
-50. 00 106. 00 78. 27 27. 73 00 70. 00 117.45 -47.45 00 117.00 1 17. 45 -. 45 00 130.00 1 17. 45 12. 55 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-95 Unirradiated (Heat Affected Zone)
Page 2 Plant: South Texas 2 Material: SA533B1 Heat: NR 62 067-1 Orientation: NA Capsule: UNIRR Fluence: n/cmA^2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
- 25. 00 t26, 00 129.38 - 3. 38
- 25. 00 140. 00 129.38 10. 62
- 75. 00 150.00 140.96 9. 04
- 75. 00 189. 00 140. 96 48. 04 125. 00 110. 00 144.56 34. 56 125. 00 113.00 144.56 -31.56 150. 00 155. 00 145. 24 9. 76 150. 00 155.00 145. 24 9. 76 200. 0 192.00 145. 79 46. 21 Correlation Coefficient = .874 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-96 Westinghouse Non-Proprietary Class 3 Unirradiated (Heat Affected Zone) ,
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04113/2012 02:49 PM Page 1 Coefficients of Curve I A = 38.42 B = 37.42 C = 79.84 TO = -53.61 D= O.OOE+O0 Equation is A + B
- tTanh((T-To)/(C+DT))]
Upper Shelf L.E.=75.8 Lower Shelf LE.= .0(Fixed)
Temp. @L.E 35 mils=-60.9 Deg F Plant: South Texas 2 Material: SA533B 1 Heat: NR 62 067-1 Orientation: NA Capsule: UNIRR Fluence: n/cmA2 200 150 E
C 0
50 L c 0 0 0
.300.0 0.0 300.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input L E. Computed L.E Differential
- 200. 00 4. 00 2, 86 .1. 14 100..00 13.00 18.83 -5. 83
- 100. 00 14. 00 18,83 -4. 83
-50. 00 38. 00 40. 11 -2. 1 1
-50. 00 47. 00 40, II 6:89
- 50. 00 55. 00 40. 1 1 14. 89
- 00 35. 00 60."35 -25. 35
- 00 47. 00 60. 35 - 13. 35
.00 68. 00 60. 35 7. 65 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-97 Unirradiated (Heat Affected Zone)
Page 2 Plant: South Texas 2 Material: SA533BI Heat: NR 62 067-1 Orientation: NA Capsule: UNIRR Fluence: n/cmA2 Charpy V-Notch Data Temperature Input L E. Computed L.R Differential
- 25. 00 75. 00 66. 67 8. 33
- 25. 00 76. 00 66, 67 9. 33
- 75. 00 79. 00 72. 97 6. 03
- 75. 00 76. 00 72. 97 3. 03 125. 00 67. 00 75 00 -8. 00 125, 00 67. 00 75ý 00 -8. 00 150. 00 77. 00 75. 39 1. 61 150. 00 81. 00 75. 39 5. 61 200. 00 77. 00 75.71 1. 29 Correlation Coefficient = .924 October 2012 WCAP-17636-NP WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-98 Westinghouse Non-Proprietary Class 3 Unirradiated (Heat Affected Zone)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/1./2012 02:49 PM Page 1 Coefficients of Curve I A =50. 1 = 50. C = 79.32 TO = -73.6 D = 0.OOE+00 Equation is A + B * [Tanh((T-To)/(C+DT))j Temperature at 50% Shear = -73.6 Plant: South Texas 2 Material: SA533B1 Heat: NR 62 067-1 Orientation; NA Capsule: UNIRR Fluence: nfcnt2 125 100 i
'I, 75 0
0 50 25 0 ' J .. -4r
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temerature Input Percent Shear Computed Percent Shear Differential
-200. 00 9. 00 3.97 ,5.. 03
- 100. 00' 33. 00 33. 95 -. 95
- t00. 00 35. 00 33. 95 1. 05
-50. 00 56. 00 64.45 -8. 45
-50,00 64. 00 64. 45 - 45
-50.00 73. 00 64, 45 8.55 00 65. 00 86.48 -21.48
- 00 83. 00 86. 48 -3 48
.00 100. 00 86. 48 13.52 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-99 Unirradiated (Heat Affected Zone)
Page 2 Plant: South Texas'2 Material: SA533B1I Heat: NR 62 067-1 Orientation: NA Capsule: UNIRR Fluence: n/cm^2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
- 25. 00 too. 00 92. 32 7. 68
- 25. 00 100. 00 92. 32 7. 68
- 75. 00 100. 00 97.69 2.31
- 75. 00 too, 00 97.69 2.31 125. 00 100. 00 99. 34 *66 125. 00 100. 00 9.9. 34 66 150. 00 00 99.65 *35 150. 00 100. 00 99.65 35 200. 00 OO. 00 99. 90 to Correlation Coefficient = .967 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-100 Westinghouse Non-Proprietary Class 3 Capsule V (Heat Affected Zone)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 02:5 1 PM Page 1 Coefficients of Curve 1 A = 69.6 B = 67.4 C = 89.15 TO = -57.22 1) = O.DOE+00 Equation is A + B
- UTanh((T-To)/(C+DT))]
Upper Shelf Energy=1 37.0(Fixed) Lower Shelf Energ-2.2(Fixed)
Temp@30 ft-lbs=-1 17.2 Deg F Temp@50 ft-lbs=-83.9 Dee F Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: NA Capsule: V Fluence: n/cm^2 300 250
- 200 150 W
z 100 50 0
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
- 150. 00 4. 00 17. 15 - 13. 15
- 100. 00 17.00 39. 53 - 22. 53
- 100. 00 98. 00 39. 53 58. 47
-75. 00 56. 00 56. 33 - . 33
- 65. 00 41. 00 63. 73 - 22. 73
.50. 00 85, 00 75. 05 9. 95
-25. 00, 57, 00 92. 95 - 35, 95
- 10. 00 95. 00 102. 30 -7, 30
.00 136. 00 107. 76 28. 24 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-101 Capsule V (Heat Affected Zone)
Page 2 Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: NA Capsule: V Fluence: n/cm^2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
- 25. 00 132. 00 118.60 t3. 40
- 60. 00 129. 00 127. 94 1. 06
- 00. 00 141. 00 133. 15 7. 85 150. 00 137. 00 135.72 1. 28 200. 00 III 00 136.58 - 25ý 58 225. 00 170. 00 136.76 33. 24 Correlation Coefficient = .863 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C(-102 .Westinghouse Non-Proprietary Class 3 Capsule V (Heat Affected Zone)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/1-32012 02:51 PM Page 1 Coefficients of Curve 1 A = 37.67 11= 36.67 C = &3.37 TO = -57.55 1) = 0.00F+0 Equation is A + B
- IT-anh((T-ToY(C+DT))]
Upper Shelf L.E.=74.3 Lower Shelf L.E.=l.O(Fixed)
Temp.@L.E. 35 mils=-63.6 Deg F Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: NA Capsule: V Ruencd: n/cm^2 200 150 E
5100 0 4-"'=
-300.0 0.0 300.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input LE. Computed L.E. Differential
-. 150. 00 I. 00 8.20 -7.20
- toW. 00 i i00 20. 46 -9. 46
- too. 00 49. 00 20. 46 28. 54
-75. 00 30. 00 301 10 -. 10
-65. 00 22. 00 34. 40 12.40
- 50. 00 43. 00 40. 98 2. 02
.25. 00 40. 00 51.30 - 11. 30
.10. 00 48. 00 56. 57 -8. 57
- 00 75. 00 59. 60 .15. 40 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-103 Capsule V (Heat Affected Zone)
Page 2 Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: NA Capsule: V, Fluence: n/cmA2 Charpy V-Notch Data Temperature Input LE. Computed LE. Differential
- 25. 00 76. 00 65. 44 10. 56
- 60. 00 69. 00 70.21 -1.21 100. 00 72. 00 72. 70 -. 70 I50. 00 78. 00 73. 83 4. 17 200. 00 64. 00 74. 18 - M. 18 225. 00 75. 00 74. 25 .75 Correlation Coefficient = .895 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-104 Westinghouse Non-Proprietary Class 3 Capsule V (Heat Affected Zone)
CVGRLAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 02:52 PM Page I Coefficients of Curve I A = 50. B = 50. C = 81.63 TO = .65.88 D = 0.OOE+00 Equation is A + B
- tTanh((T-T0)I(C+DT))J Temperature at 50% Shear = -65.8 Plant: South Texas 2 Material: SA533BI Heat: NR 62 067-1 Orientation: NA Capsule: V Fluence: n/cmA2 125 100 75 (I)
- a. 50 25
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
- 150.,00 2. 00 11.30 -9. 30
- 100.00 15.00 30. 24 -15. 24 too. 00 65. 00 30. 24 34. 76
- 75. 00 45. 00 44. 44 56
- 65. 00 40. 00 50. 54 54
- 50. 00 60. 00 59.61 39
- 25. 00 60. 00 73. 14 14
- 10. 00 70. 00 79. 72 - 9. 72
. 00 too.0oo 83., 40 16. 60 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-105 Capsule V (Heat Affected Zone)
Page 2 Plant: South Texas 2 Material: SA533B 1 Heat: NR 62 067-1 Orientation: NA Capsule: V Fluence: n/cmA2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
- 25. 00 100.00 90. 26 9. 74
- 60. 00 100.00 95. 62 4. 38 100. 00 I00.00 98.31 1. 69 150. 00 100. 00 99. 50 50 200. 00 99. 85 15 225. 00 100. 00 99. 92 08 Correlation Coefficient = .925 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-106 Westinghouse Non-Proprietary Class 3 Capsule Y (Heat Affected Zone)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 02:54 PM Page 1 Coefficients of Curve I A = 69.6 B = 67.4 C = 84.43 TO = -5.86 D = 0.OE+00 Equation is A + B * [Tanh((T-To)/(C+DT))]
Upper Shelf Energy=137.0(Fixed) Lower Shelf Energy=2.2(Fixed)
Temp@30 ft-lbs=-62.7 Deg F Temp@50 ft-lbs=-3 1.1 Deg F Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: NA Capsule: Y Fluence: n/cm^2 300 250 200 0
U-0 150 0 o z
> 100 50
. /Y 0 00 0
0 4 0
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
- 160. 00 4. 00 5. 61 -1.61
- 125. 00 51. 00 9. 77 41. 23
- 125. 00 5. 00 9. 77 -4. 77
-90. 00 12. 00 18. 37 -6.37
-60. 00 30. 00 31. 47 -1 47
-25. 00 43. 00 54. 58 -I . 58
.00 54. 00 74. 27 -20. 27
- 25. 00 129. 00 93. 19 35.81
- 25. 00 97. 00 93. 19 3.81 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-107 Capsule Y (Heat Affected Zone)
Page 2 Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: NA Capsule: Y 'Fluence: nkrn/A2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
- 50. 00 105. 00 108.65 - 3, 65
- 72. 00 109. 00 118.59 -9,59 100. 00 128. 00 126.85 1. Is 140. 00 124.00 132,87 8. 87 175. 00 135.00 135. 17 -. 17 250. 00 162.00 136.69 25.31 Correlation Coefficient = .944 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-108 Westinghouse Non-Proprietary Class 3 Capsule Y (Heat Affected Zone)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 02:54 PM Page I Coefficients of Curve I A 38.54 B -37.54 C = 66.49 TO - 2.19 D -O-.E+00 Equation is A + B
- ITanh((T-To)!(C+DT))]
Upper Shelf L.E.=76. 1 Lower Shelf LE.= I..O(Fixed)
Temp.@LE. 35 mnils=-4.0 Deg F C Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: NA Capsule: Y Fluence:. nkcm^2 200 150 I.2 100 0
50 0
-300.0 0.0 300.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input LE.
- Computed LE. Differential
- 160. 00 .00 t. 57 - I. 57
- 1,25. 00 23. 00 2. 60 20. 40
- 125. 00 2:'00 2.60 -. 60
-90. 00 00 5.42 -5.42
-60. 00 I5. 00 11, 02 3. 98 00 22. 00 23. 99 - I.,99
,00 25. 00 37. 30 -12.30 25%00 '64. 00 50. 93 13. 07 25.00 55. 00 50. 93 4. 07 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-109 Capsule Y (Heat Affected Zone)
Page 2 Plant: South Texas 2 Material: SA533BI Heat NR 62 067-1 Orientation: NA Capsule: Y Fluence: nrccmA2 Charpy V-Notch Data Temperature Input LE. Computed L.E Differential
- 50. 00 60. 00 6 1t 67 -1. 67
- 72. 00 60. 00 67. 89 -7.89 too. 00 76. 00 72. 32 3, 68 140. 00 74. 00 74. 91 -. 91 175. 00 72. 00 75. 67 - 3. 67 250. 00 80. 00 76. 04 3. 96 Correlation Coefficierit = .965 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-110 Westinghouse Non-Proprietary Class 3 Capsule Y (Heat Affected Zone)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 02:55 PM Page I Coefficients of Curve I A 50. B =50. C = 68.59 TO = .1.46 D = 0.OOE+00 Equation is A + B * [Tanh((T-ToY(C+DT))]
Temperature at 50% Shear =1-.4 Plant: South Texas 2 Material: SA533BI Heat: NR 62 067-I Orientation: NA Capsule: Y Fluence: n/cmA2 125 100
~1 75 0
50 25-0 00
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature , Input Percent Shear Computed Percent Shear Differential
- 160. 00 .5. 00 .97 4. 03
- 125. 00 25. 00 2. 65 22. 35
- 125. 00 5. 00 2. 65 2. 35
-90. 00 to. 00 7.03 2, 97
- 60. 00 20. 00 15.35 4, 65
-25. 00 25. 00 33. 48 - 8. 48
.00 40. 00 51. 06 -11. 06
- 25. 00 80. 00 68. 39 61
- 25. 00 70M00 68. 39 1. 61 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1,3002957 Westinghouse Non-Proprietary Class 3 C-111 Capsule Y (Heat Affected Zone)
Page 2 Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: NA Capsule: Y Fluence: n/cmA2 Charpy V-Notch Data Temperature Input Percent Shear Computed percent Shear Differential
- 50. 00 85. 00 81L77 3. 23
- 72. 00 85. 00 89. 49 -4. 49 100. 00 1OO. 00 95, 07 4. 93 140ý 00 100. 00 98.41 1. 59 175.00 100. 00 99,42 .58 250. 00 too. oo 99.93 07 Correlation Coefficient = .981 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-112 Westinghouse Non-Proprietary Class 3 Capsule U.(Heat Affected Zone)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 02:55 PM Page 1 Coefficients of Curve I A = 65.6 B.= 63.4 C = 116.78 TO = -21.26 D =O.OE+00 Equation is A + B
- ITanh((T-To)/(C+DT))]
Upper Shelf Energy=- 29.0(Fixed) Lower Shelf Energy=2.2(Fixed)
Temp@30 ft-lbs=-95.4 Deg F Temp@50 ft-lbs=-50.5 Deg F Plant: South Texas 2 Material: SA533Bl Heat: NR 62 067-1 Orientation: NA Capsule: U Fluence: n/emA2 300 250 200 150 0o 0
100 0 00 50.
00 50 0
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
- 200. 00 6. 00 7.87 -1.87
- 150. 00 7. 00 14.79 -7.79
-125. 00 13. 00 120. 55 -7.55
- 108. 00 30. 00 25.61 4. 39
-75. 00 52. 00 38. 32 13.68
-50. 00 36. 00 50. 30 -14. 30
-25. 00 56. 00 63. 57 -7,57
. 00 90. 00 77. 02 12, 98
- 25. 00 130. 00 89. 48 40. 52 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Propri etary Class 3 C-113 Capsule U (Heat Affected Zone)
Page 2 Plant: South Texas 2 Material: SA533B I Heat: NR 62 067-1 Orientation: NA Capsule: U Fluence: n/cmA2 Charpy V-Notch Data Temperature Input CV-N Computed CVN Differential
- 50. 00 61.00 100. 1 -39. 11
- 75. 00 96. 00 108. 55 -12.55 125. 00 115.00 119. 42 -4, 42 I50, 00 J4, 00 122 59 - a. 59 175. 00 144. 00 324 75 19. 25 200. 00 143. 00 26. 20 16. 80 Correlation Coefficient = .927 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-130029.57 C-114 Westinghouse Non-Proprietary Class 3 Capsule U (Heat Affected Zone)
CVGRAPH 5,3 Hyperbolic Tangent Curve Printed on 04/13/2012 02:56 PM Page 1
- Coefficients of Curve I A = 32,75 B = 31,75 C = 69A41 TO = -26.49 D = 0.00EO+0 Equation is A + B
- tTanh((T-ToY(C+DT))]
Upper Shelf L.E.=64.5 Lower Shelf LE.=l.0(Fixed)
Temp. @L.E. 35 mils=-2 15 Deg F Plant: South Texas 2 Material: SA533B 1 Heat: NR 62 067-1 Orientation: NA Capsule: U Fluence: nfcmA2, 200 150 E
.2 C
100 0 00 0 O 50 0* -
0 00 q 0
-300.0 0.0 300.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input LE. Computed LE. Differential 200. 00 .:,00 1.43 1. 43
- 150. 00 1. 00 2.76 ,- 76 125. 00 4. 00 4.51 51 108. O0 lI. 00 6. 54 4. 46
-75. 00 18, 00 13.58 4.42
-50. 00 15. 00 22. 39 -7.39
-25. 00 26. 00 33-. 43 *7. 43
.00 52. 00 44:. 31 7. 69
- 25. 00 75. 00 52. 76 22. 24 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-115 Capsule U (Heat Affected Zone)
Page 2 Plant: South Texas 2 Material: SA533BI Heat: NR 62067-1 Orientation: NA Capsule: U Fluence: n/m^A2 Charpy V-Notch Data Temperatue Input LE. Computed L.E, Differential
- 50. 00 35. 00 58. 19 -23. 19
- 75. 00 53. 00 61. 27 - 8. 27 125, 00 65. 00 63, 71 1, 29 150. 00 53. 00 64, 11 -11. 1l 175. 00 73. 00 64. 31 8. 69 200. 00 76. 00 64.41 11. 59 Correlation Coefficient = .923 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-116 Westinghouse Non-Proprietary Class 3 Capsule U (Heat Affected Zone)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 04/13/2012 02:56 PM Page I Coefficients of Curve 1 A = 50. B = 50. C = 82.3 TO = -27.32 D = 0.OOE+00 Equation is A + B
- 1TanhtfT-ToY(C+DT))i Temperature at 50% Shear = :27.3 Plant: South Texas 2 Matedal: SA533B I Heat: NR 62 067-I Orientation: NA Capsule: U Fluenee: n/cm^2 125 100 75 U
0 a- 50 25 0 k * " Y ---- I - -- 1 1 4 - 4
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
- 200. 00 2. 00 1.48 52
- 150. 00 2. 00 4.83 - 2. 83
- 125. 00 5. 00 8.52 - 3. 52
- 108. 00. t0. 00 12. 34 2. 34
-75. 00 15. 00 23. 89 89
-50, 00 35, 00 36. 56 56'
'-25.00 '55. 00 51,41 3. 59,
. 00 80. 00 66. 01 21. 99
- 25. 00 too. oo 78. 10 90 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 C-117 Capsule U (Heat Affected Zone)
Page 2 ,
Plant: South Texas 2 Material: SA533B 1 Heat: NR 62 067-I Orientation: NA Capsule: U Fluence: nrcm^2 Charpy V-Notch Data Temperature tnput Percent Shear Computed Percent Shear Differential
.50. 00 55.00 86.75 -31. 75
- 75. 00 70. 00 92. 32 .22. 32 125. 00 100. 00 97. 59 2. 41 150.00 100I00 98.67 1. 33 175.00 100.00 99. 27 73 200. 00 100. 00 99.60 40 Correlation Coefficient = .950 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-118 Westinghouse Non-Proprietary Class 3 Capsule W (Heat Affected Zone)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07/09/2012 12:40 PM Page I Coefficients of Curve I A = 66.1 B - 63.9 C = 104.35 TO = 12.28 D = 0.OOE+00 Equation is A + B * [Tanh((T-To)/(C+DT))]
Upper Shelf Energy=1 30.0(Fixed) Lower Shelf Energy=2.2(Fixed)
Temp@30 ft-lbs=-54.5 Deg F Temp@50 ft-lbs=- 14.5 Deg F Plant: South Texas 2 Material: SA533B! Heat: NR 62 067-1 Orientation: NA Capsule: W Fluence: ntcm^2 300 250 A 200 0
IL 0
Lm150 uJ C
00 100 0.0 50 0
0
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
- 150. 00 5. 00 7,65 -2. 65
-90. 00 23. 00 17. 97 5. 03
-70. 00 32. 00 24. 08 7. 92
-60. 00 7. 00 27. 78 -20. 78
-50. 00 39. 00 31. 93 7. 07
-20. 00 51. 00 46. 94 4. 06 00 42. 00 58. 61 -16. 61
- 00 72. 00 58, 61 13. 39
- 30. 00 113. 00 76. 85 36. 15 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-119 Capsule W (Heat Affected Zone)
Page 2 Plant: South Texas 2 Material: SA533B I. .Heat: NR 62 067-I Orientation: NA Capsule: W Fluence n/cmA2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential
- 50. 00 37. 00 88. 24 -5 1 24
- 70. 00 99. 00 98. 23 77
- 72. 00 114. 00 99. 14 14. 86 130. 00 106. 00 117. 88 - 1. 88 200. 00 154. 00 126. 59 27. 41 250. 00 159. 00 128. 67 30. 33 Correlation Coefficient = 904 WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 C-120 Westinghouse Non-Proprietary Class 3 Capsule W (Heat Affected Zone)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07/09/2012 12:40 PM Page 1
Coefficients of Curve I
.:A 37.17 B = 36.17 C = 88.97. TO = 6.81 D =O.OE+00 Equation is A + B * [Tanh((T-Toy(C+DT))]
Upper Shelf LE.=73.3 Lower Shelf L.E.=l.O(Fixed)
Temp.@LE. 35 mils=l.5 Deg F Plant: South Texas 2 Material: SA533B 1 Heat: NR 62 067-1 Orientation: NA Capsule: W Fluence: n/cm^2 200 150 0
00 0
so 0
0 ni 0 __ _ _ _ _ __ _ _ _ _
-300.0 0.0 300.0 - 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input L E. .. Computed LBE Differential
- 150. 00 2. 00 3.07 II. 2. 07
-90. 00 00 8.37 63
-70. 0 19. 00 11. 92 7. 08
-60. 00 .3. 00 14. 18 -Ll. Is
-,50. 00 19. 00 16. 77 2. 23
-20. 00 25. 00 26. 59 - l. 59 00 22. 00 34.41 -12. 41 00 7.
- 73. 00
- 42. 34. 41 "26. 59
- 30. 00 00 46. 39 61 October2012 WCAP- 17636-NP WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-121 Capsule W (Heat Affected Zone)
Page 2 Plant: South Texas 2 Material: SA533BI Heat: NR 62 067-1 Orientation: NA Capsule: W Fluence: n/cmnA2 Charpy V-Notch Data Temperature Input L.E. Computed L.E Differential
- 50. 00 24. 00 53. 47 - 29. 47
- 70. 00 52. 00 59. 27 -7. 27
- 72. 00 77. 00 59. 77 17. 23 130. 00 66, 00 69, 08 - 3. 08 200. 00 79. 00 72 42 6. 58 250. 00 69. 00 73. 04 -4. 04 Correlation Coefficient = .884 WCAP-17636-NP October 2012 Revision 0
Enclosure
,NOC-AE-13002957 C-122 Westinghouse Non-Proprietary Class 3 Capsule W (Heat Affected Zone)
CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07/0912012 12:41 PM Page 1 Coefficients of Curve 1 A = 5Ck B = 50. C = 76.34 TO = 9.44 I) = 0,0E+00 Equation is A + B
- ITanh((T-ToY(C+DT))]
Temperature at 50% Shear= 9.5 Plant: South Texas 2 Material: SA533B1 Heat: NR 62 067-1 Orientation: NA Capsule: W Fluence: n/cm^2 125 100 75 U) 50 25 0 i-2 -10
-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F
- Charpy V-Notch Data Temperatue Input Percent Shear Computed Percent Shear Differential
- 150. 00 .00 1.51 1.51
-90. 00 10. 00 6. 88 3 12
-70. 00 15. 00 11. 09 3.91
-60. 00 I5. 00 13 95 1. 05
-50, 00 20. 00 17. 40 2. 60
-20. 00 25. 00 31. 62 -6. 62 00 35. 00 43. 85 -8. 85 00 50. 00 43. 85 6. 15
- 30. 00 80. 00 63. 15 16.85 October 2012 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 C-123 Capsule W (Heat Affected Zone)
Page 2 Plant: South Texas 2 Material: SA533B! Heat: NR 62 067-1 Orientation: NA Capsule: W Fluence n:cmA2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
- 50. 00 45. 00 74. 32 -29. 32
- 70. 00 95. 00 83. 01 11. 99
- 72. 00 90. 00 83. 74 6. 26 130. 00 100. 00 95. 92 4. 08 200. 00 100. 00 99. 33 67 250. 00 100. 00 99. 82 .18 Correlation Coefficient = .962 WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 D-1 APPENDIX D SOUTH TEXAS UNIT 2 SURVEILLANCE PROGRAM CREDIBILITY EVALUATION D.1 INTRODUCTION Regulatory Guide 1.99, Revision 2 [Ref. D-1] describes general procedures acceptable to the NRC staff for calculating the effects of neutron radiation embrittlement of the low-alloy steels currently used for light-water-cooled reactor vessels. Positions 2.1 and 2.2 of Regulatory Guide 1.99, Revision 2, describe the method for calculating the adjusted reference temperature and Charpy upper-shelf energy of reactor vessel beltline materials using surveillance capsule data. The methods of Positions 2.1 and 2.2 can only be applied when two or more credible surveillance data sets become available from the reactor in question.
To date there have been four surveillance capsules removed and tested from the South Texas Unit 2 reactor vessel. To use these surveillance data sets, they must be shown to be credible. In accordance with Regulatory Guide 1.99, Revision 2, the credibility of the surveillance data will be judged based on five criteria.
The purpose of this evaluation is to apply the credibility requirements of Regulatory Guide 1.99, Revision 2, to the South Texas Unit 2 reactor vessel surveillance data and determine if that surveillance data is credible.
D.2 EVALUATION Criterion 1: Materials in the capsules should be those judged most likely to be controlling with regard to radiation embrittlement.
The beltline region of the reactor vessel is defined in Appendix G to 10 CFR Part 50, "Fracture Toughness Requirements" [Ref. D-2], as follows:
"the region of the reactor vessel (shell material including welds, heat affected zones, and'plates orforgings) that directly surrounds the effective height of the active core and adjacent regions of the reactor vessel that are predicted to experience sufficient neutron radiation damage to be consideredin the selection of the most limiting materialwith regardto radiationdamage."
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 D-2 Westinghouse Non-Proprietary Class 3 The South Texas Unit 2 reactor vessel consists of the following beltline region materials:
Intermediate Shell Plates R2507-1, R2507-2, and R2507-3 (Heat # NR 62 067-1, NR 62 230-1, and NR 62 248-1)
Lower Shell Plates R3022-1, R3022-2, and R3022-3 (Heat # NR 64 647-1, NR 64 627-1, and NR 64 445-1)
Intermediate Shell Longitudinal Weld Seams 101-124A, B, C (Heat # 90209, Linde 0091 flux type, lot # 1054)
Lower Shell Longitudinal Weld Seams 101-142A, B, C & Intermediate to Lower Shell Circumferential Weld Seam 101-171 (Heat # 90209, Linde 124 flux type, lot # 1061)
The South Texas Unit 2 surveillance program utilizes longitudinal and transverse test specimens from Intermediate Shell Plate R2507-1. The surveillance weld metal was fabricated with weld wire Heat #
90209, Linde 12"4 flux, lot # 1061.
At the time when the South Texas Unit 2 surveillance program material was selected, initial RTNDT and initial USE were considered important parameters in selection of surveillance materials. The Intermediate
-Shell Plate R2507-1 had the highest initial RTNDT and the lowest USE values of all plate materials in the beltline region. In addition, the Intermediate Shell Plate R2507-1 had approximately the same copper and phosphorus content as the other beltline plate materials. Therefore, based on the highest initial RTNDT and the lowest USE values, the Intermediate Shell Plate R2507-1 was chosen for the surveillance program.
The weld material in the South Texas Unit 2 surveillance program was made of the same wire as all the reactor vessel beltline welds, thus it was chosen as the surveillance weld material.
Based on the above discussion and the methodology in use at the time the program was developed, the South Texas Unit 2 surveillance material meets the intent of Criterion 1.
Criterion 2: Scatter in the plots of Charpy energy versus temperature for the irradiated and unirradiated conditions should be small enough to permit the determination of the 30 ft-lb temperature and upper-shelf energy unambiguously.
Based on engineering judgment, the scatter in the data presented in these plots is small enough to permit the determination of the 30 ft-lb temperature and the USE of the South Texas Unit 2 surveillance materials unambiguously. Hence, the South Texas Unit 2 surveillance program meets this criterion.
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Prdprietary Class .3 D-3 Criterion 3: When there are two or more sets of surveillance data from one reactor, the scatter of ARTNDT values about a best-fit line drawn as described in Regulatory Position 2.1 should normally be less than 28°F for welds and 17'F for base metal. Even if the fluence range is large (two or more orders of magnitude), the scatter should not exceed twice those values. Even if the data fail this criterion for use in shift calculations, they may be credible for determining decrease in USE if the upper shelf can be clearly determined, following the definition given in ASTM E 185-82 [Ref. D-3].
The functional form of the least-squares method as described in Regulatory Position 2.1 -will be utilized to determine a best-fit line for this data and to determine if the scatter of these ARTNDT values about this line is less than 28°F for welds and less than 17'F for the plate.
The South Texas Unit 2 Intermediate Shell Plate R2507-1 and surveillance weld material will be evaluated for credibility. The weld is made from weld wire Heat # 90209; South Texas Unit 2 does not have a sister plant that shares the same weld wire heat and thus does not utilize data from other surveillance programs. Therefore, the method of Regulatory Guide 1.99, Revision 2 will be followed for determining credibility of the weld as well as the plate material.
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 D-4 Westinghouse Non-Proprietary Class 3 Credibility Assessment:
Since all surveillance data is from one vessel (South Texas Unit 2), the measured ARTNIT and fluence factor (FF) should be used to calculate the chemistry factors to determine if the South Texas Unit 2 surveillance material test results are credible.
The chemistry factors for the South Texas Unit 2 surveillance plate and weld material contained in the surveillance program were calculated in accordance with Regulatory Guide 1.99, Revision 2, Position 2.1 and are presented in Table D- 1. The scatter of ARTNDT values about the functional form of a best-fit line drawn as described in Regulatory Position 2.1 is presented in Table D-2.
Table D-1 Calculation of Interim Chemistry Factors for the Credibility Evaluation using South Texas Unit 2 Surveillance Capsule Data V 0.2448 0.619 16.5 10.21 0.383 Intermediate Shell Y 1.248 1.062 34.3 36.42 1.127 Plate R2507-1 (Longitudinal) U 2.493 1.245 28.9 35.99 1.551 W 4.201 1.367 35.3 48.25 1.868 V 0.2448 0.619 12.2 7.55 0.383 Intermediate Shell Y 1.248 1.062 36.0 38.22 1.127 Plate R2507-1 (Transverse) U 2.493 1.245 40.5 50.44 1.551 W 4.201 1.367 74.9 102.37 1.868 SUM: 329.45 9.859 CF 2507-1 = Y(FF
- ARTNDT) + E(FF 2) = (329.45) + (9.859) = 33.4*F V 0.2448 0.619 -8.3 -5.14 0.383 Surveillance Weld y 1.248 1.062 3.6 3.82 1.127 Material (Heat # 90209) U 2.493 1.245 20.4 25.41 1.551 W 4.201 1.367 26.4 36.08 1.868 SUM: 60.18 4.929 CF Sur.. Weld = X(FF
- ARTNDT) + Y(FF 2 )= (60.18)+ (4.929)= 12.2'F WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-113002957 Westinghouse Non-Proprietary Class 3 D-5 Table D-2 South Texas Unit 2 Surveillance Capsule Data Scatter about the Best-Fit Line V 33.4 0.2448 0.619 16.5' 20.7 4.2 Yes Intermediate Shell Y 33.4 1.248 1.062 34.3 35.5 1.2 Yes Plate R2507-1 U 33.4 2.493 1.245j 28.9 41.6 12.7 Yes (Longitudinal)
W 33.4 4.201 1.367 35.3 '45.6 10.3 Yes V 33.4 0.2448 0.619 12.2 20.7 8.5 Yes Intermediate Shell Y 33.4 1.248 1.062 36.0. 35.5 0.5 Yes Plate R2507-1 U 33.4 2.493 1.245. 40.5 41.6 1.1 Yes (Transverse).
W 33.4 4.201 1.367 74.9 45.6 29.3 No V 12.2- 0.2448 0.619 -8.3 7.5 15.8 Yes Surveillance*
Weld Y 12.2 1.248. 1.062 3.6 13.0 9.4 Yes Material U 12.2 2.493 1.245 20.4 15.2 5.2 Yes (Heat # 90209)
W 12.2. 4.201 1.367 26.4 16.7- 9.7 Yes From a statistical point of view, +/- 1 would be expected to encompass 68% of the data. Table D-2 indicates that seven of the eight surveillance data points fall inside the +/- Icy of 17'F scatter band for surveillance base metals; therefore, the"plate data is deemed "credible" per the third criterion.
Table D-2 indicates that all four surveillance data points fall inside the +/- 1cy of 28°F scatter band for surveillance weld materials; therefore, the surveillance weld data is deemed "credible" per the third criterion.
October 2012 WCAP-17636-NP WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 D-6 Westinghouse Non-Proprietary Class 3 Criterion 4: The irradiation temperature of the Charpy specimens in the capsule should match the vessel wall temperature at the cladding/base metal interface within +/- 25 0 F.
The capsule specimens are located in the reactor between the core barrel and the ,vessel wall and are positioned opposite the center of the core. The test capsules are in baskets attached to the neutron pads.
The location of the specimens with respect to the reactor vessel beltline provides assurance that the reactor vessel wall and the specimens experience equivalent operating conditions such that the temperatures will not differ by more than 25°F. Hence, this criterion is met.
Criterion 5: The surveillance data for the correlation monitor material in the capsule should fall within the scatter band of the database for that material.
The South Texas Unit 2 surveillance program does not contain correlation monitor material. Therefore, this criterion is not applicable to the South Texas Unit 2 surveillance program.
D.3 CONCLUSION Based on the preceding responses to all five criteria of Regulatory Guide 1.99, Revision 2, Section B, the South Texas Unit 2 surveillance plate and weld data are deemed credible.
D.4 REFERENCES D-1 Regulatory Guide 1.99, Revision2, Radiation Embrittlement of Reactor Vessel Materials, U.S. Nuclear Regulatory Commission, May 1998.
D-2 10 CFR 50, Appendix G, Fracture Toughness Requirements, Federal Register, Volume 60, No. 243, December 19, 1995.
D-3 ASTM E185-82, Standard Practicefor Conducting Surveillance Tests for Light-Water Cooled Nuclear PowerReactor Vessels, E706(IF), ASTM, 1982.
WCAP- 17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 Westinghouse Non-Proprietary Class 3 E-1 APPENDIX E SOUTH TEXAS UNIT 2 UPPER-SHELF ENERGY EVALUATION Per Regulatory Guide 1.99, Revision 2 [Ref. E-1], the Charpy upper-shelf energy (USE) is assumed to decrease as a function of fluence and copper content as indicated in Figure 2 of the Guide (Figure E-1 of this appendix) when surveillance data is not used. Linear interpolation is permitted. In addition, if surveillance data is to be used, the decrease in upper-shelf energy may be obtained by plotting the reduced plant surveillance data on Figure 2 of the Guide (Figure E-1 of this appendix) and fitting the data with a line drawn parallel to the existing lines as the upper bound of all the data. This line should be used in preference to the existing graph.
The 34 EFPY (end-of-license) and 54 EFPY (end-of-license renewal) upper-shelf energy of the vessel materials can be predicted using the corresponding 1/4T fluence projection, the copper content of the beltline materials and/or the results of the capsules tested to date using Figure 2 in Regulatory Guide 1.99, Revision 2. The maximum vessel clad/base metal interface fluence value was used to determine the corresponding 1/4T fluence value at 34 and 54 EFPY.
The South Texas Unit 2 reactor vessel beltline region minimum thickness is 8.63 inches. Calculation of the 1/4T vessel surface fluence values at 34 and 54 EFPY for the beltline materials is shown as follows:
Maximum Vessel Fluence @ 34 EFPY = 2.50 x 10' 9 n/cm2 (E > 1.0 MeV)
/4T Fluence @ 34 EFPY = (2.50 x 1019 n/cm2)
- e(424 *(8.63/4))
= 1.49 x 10 19 nrcm2 (E > 1.0 MeV) 2 Maximum Vessel Fluence @ 54 EFPY = 3.91 x 1019 n/Cm (E > 1.0 MeV) 1/4T Fluence @ 54 EFPY (3.91 x 1019 n/cm 2 )
- e(-'24 *(8.63/4))
= 2.33 x 1019 n/cm 2 (E > 1.0 MeV)
The following pages present the South Texas Unit 2 upper-shelf energy evaluation. Figure E-i, as indicated above, is used in making predictions in accordance with Regulatory Guide 1.99, Revision 2.
Table E-1 provides the predicted upper-shelf energy values for 34 EFPY (end-of-license). Table E-2 provides the predicted upper-shelf energy values for 5,4 EFPY (end-of-license renewal).
October 2012 WCAP-17636-NP WCAP-17636-NP October 2012 Revision 0
E-2 Westinghouse Non-Proprietary Class 3 E-2 Westinghouse Non-Proprietary Class 3 NSurveillance Material: Intermediate Shell Plate R2507-1 ASurveillance Material: Weld Heat# 90209 100 w
06 0
10 weld line
[plate line 5~4F 1T Flue-]
=.3 x 10O lQm I i-1.00E+17 1.00E+18 1.00E+19 1.00E+20 z
Neutron Fluence, n/cm 2 (E > I MeV) 0 00 Figure E-1 Regulatory Guide 1.99, Revision 2 Predicted Decrease in Upper-Shelf Energy as a Function of Copper and Fluence (0
0'-
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 E-3 Table E-1 Predicted Positions 1.2 and 2.2 Upper-Shelf Energy Values at 34 EFPY Material Position 1.2 Intermediate Shell Plate R2507-1 0.04 1.49 109 21 86 Intermediate Shell Plate R2507-2 0.05 1.49 129 21 102 Intermediate Shell Plate R2507-3 0.05 1.49 122 21 96 Lower Shell Plate R3022-1 0.03 1.49 124 21 98 Lower Shell Plate R3022-2 0.04 1.49 118 21 93 Lower Shell Plate R3022-3 0.04 1.49 123 21 97 Intermediate Shell Longitudinal 0.044 1 146 21 115 Weld Seams 101-124A, B, C Lower Shell Longitudinal Weld Seams 101-142A, B, C 0.044 101 21 80 Intermediate to Lower Shell 0.044 1.49 101 21 80 Circumferential Weld Seam 101-171 .
Position 2.2(c)
Intermediate Shell Plate R2507-1 0.04 1.49 109 4.8 104 Intermediate Shell Longitudinal 0.044 146 6.2, 137 Weld Seams 101-124A, B, C, 0.044 1.49___ 146 6.2, 137 Lower Shell Longitudinal Weld Seams 101-142A, B,C 0.044 1 .4 9 (b) 101 6.2 95 Intermediate to Lower Shell Circumferential Weld Seam 101-171 0.044 1.49 101 6.2 95 Notes:
(a) For the plates, a conservative copper percent value of 0.10 was used rather than extrapolation to lesser values. For the weld seams, a conservative copper percent value of 0.05 was used rather than extrapolation to 0.044.
(b) The fluence values listed for the intermediate and lower shell longitudinal welds conservatively pertain to the maximum vessel fluence value, though the welds vary in location.
(c) Calculated using surveillance capsule measured percent decrease in USE from Table 5-10 and Regulatory Guide 1.99, Revision 2, Position 2.2; see Figure E-1.
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-13002957 E-4 Westinghouse Non-Proprietary Class 3 Table E-2 Predicted Positions 1.2 and 2.2 Upper-Shelf Energy Values at 54 EFPY 1/4WE~IR Uirrdiatd Pojeted P.rojected aleialW~eightt L EFOuenc of C01a -11W n/c ,erease Position 1.2 Intermediate Shell Plate R2507-1 0.04 2.33 109 24 83 Intermediate Shell Plate R2507-2. 0.05 2.33 129 24 98 Intermediate Shell Plate R2507-3 0.05 2.33 122 24 93 Lower Shell Plate R3022-1 0.03 2.33 124 24 94 Lower Shell Plate R3022-2 0.04 2.33 118 24. 90 Lower Shell Plate R3022-3 0.04 2.33 123 24 93 Intermediate Shell Longitudinal . 146 24 111 Weld Seams 101-124A, B, C 0.044 Lower Shell Longitudinal Weld 0 Seams 101-142A, B, C 0.044 2.33<b 101 24 77 Intermediate to Lower Shell Circumferential Weld Seam 101-171 0.044 2.33 101 24 77 Position 2.2(c)
Intermediate Shell Plate R2507-1 0.04 2.33 109 5.4 103 Intermediate Shell Longitudinal 0.044 2.33(b 146 7.0 136 Weld Seams 101-124A, B, C 0.044 2.3b_4__._3 Lower Shell Longitudinal Weld 0.044 2.33)101 7.0 94 Seams 101-142A, B, C 0.04_017._9 Intermediate to Lower Shell Circumferential Weld Seam 101-171 .0.044 2.33 101 7.0 94 Notes:
(a) For the plates, a conservative copper percent value of 0.10 was used rather than extrapolation to lesser values. For the weld seams, a conservative copper percent value of 0.05 was used rather than extrapolation to 0.044.
(b) The fluence values listed for the intermediate and lower shell longitudinal welds conservatively pertain to the maximum vessel fluence value, though the welds vary in location.
(c) Calculated using surveillance capsule measured percent decrease in USE from Table 5-10 and Regulatory Guide 1.99, Revision 2,'Position 2.2; see Figure E-1.
WCAP-17636-NP October 2012 Revision 0
Enclosure NOC-AE-1 3002957 Westinghouse Non-Proprietary Class 3 E-5 USE Conclusion All of the beltline materials in the South Texas Unit 2 reactor vessel are projected to remain above the USE screening criterion value of 50 ft-lb (per 10 CFR 50, Appendix G) at 34 and 54 EFPY.
E.1 REFERENCES E-1 Regulatory Guide 1.99, Revision 2, Radiation Embrittlement of Reactor Vessel Materials, U.S. Nuclear Regulatory Commission, May 1998.
WCAP-17636-NP October 2012 Revision 0