ML13037A635

From kanterella
Jump to navigation Jump to search
Kld TR-528, Final Report, Rev. 1, Development of Evacuation Time Estimates, Cover Through Chapter 7, General Population Evaluation Times Estimates (ETE) Page 7-32
ML13037A635
Person / Time
Site: Surry  Dominion icon.png
Issue date: 12/31/2012
From:
KLD Engineering, PC
To:
Office of Nuclear Material Safety and Safeguards, Office of Nuclear Reactor Regulation
References
12-727 KLD TR-528, Rev 1
Download: ML13037A635 (152)


Text

SurryPowerStation



DevelopmentofEvacuationTimeEstimates









WorkperformedforDominion,by:

 

KLDEngineering,P.C.

43CorporateDrive

Hauppauge,NY11788

mailto:kweinisch@kldcompanies.com

December2012 FinalReport,Rev.1 KLDTR-528

TableofContents



1 INTRODUCTION..................................................................................................................................11

1.1 OverviewoftheETEProcess......................................................................................................11

1.2 TheSurryPowerStationLocation..............................................................................................13

1.3 PreliminaryActivities.................................................................................................................15

1.4 ComparisonwithPriorETEStudy..............................................................................................19

2 STUDYESTIMATESANDASSUMPTIONS.............................................................................................21

2.1 DataEstimates...........................................................................................................................21

2.2 StudyMethodologicalAssumptions..........................................................................................22

2.3 StudyAssumptions.....................................................................................................................25

3 DEMANDESTIMATION.......................................................................................................................31

3.1 PermanentResidents.................................................................................................................32

3.2 ShadowPopulation....................................................................................................................38

 310

3.3 TransientPopulation................................................................................................................311

3.3.1 TransientAttractions.......................................................................................................311

3.3.2 CollegeStudents..............................................................................................................312

3.4 Employees................................................................................................................................316

3.5 MedicalFacilities......................................................................................................................320

3.6 TotalDemandinAdditiontoPermanentPopulation..............................................................320

3.7 SpecialEvent............................................................................................................................321

3.8 SummaryofDemand...............................................................................................................321

4 ESTIMATIONOFHIGHWAYCAPACITY................................................................................................41

4.1 CapacityEstimationsonApproachestoIntersections..............................................................42

4.2 CapacityEstimationalongSectionsofHighway........................................................................44

4.3 ApplicationtotheSPSStudyArea.............................................................................................46

4.3.1 TwoLaneRoads.................................................................................................................46

4.3.2 MultiLaneHighway...........................................................................................................46

4.3.3 Freeways............................................................................................................................47

4.3.4 Intersections......................................................................................................................48

4.4 SimulationandCapacityEstimation..........................................................................................48

5 ESTIMATIONOFTRIPGENERATIONTIME..........................................................................................51

5.1 Background................................................................................................................................51

5.2 FundamentalConsiderations.....................................................................................................53

5.3 EstimatedTimeDistributionsofActivitiesPrecedingEvent5...................................................56

5.4 CalculationofTripGenerationTimeDistribution....................................................................512

5.4.1 StatisticalOutliers............................................................................................................513

5.4.2 StagedEvacuationTripGeneration.................................................................................516

5.4.3 TripGenerationforWaterwaysandRecreationalAreas.................................................518

6 DEMANDESTIMATIONFOREVACUATIONSCENARIOS.....................................................................61



SurryPowerStation i KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



7 GENERALPOPULATIONEVACUATIONTIMEESTIMATES(ETE)..........................................................71

7.1 VoluntaryEvacuationandShadowEvacuation.........................................................................71

7.2 StagedEvacuation......................................................................................................................71

7.3 PatternsofTrafficCongestionduringEvacuation.....................................................................72

7.4 EvacuationTimeEstimate(ETE)Results....................................................................................74

7.5 StagedEvacuationResults.........................................................................................................75

7.6 GuidanceonUsingETETables...................................................................................................76

8 TRANSITDEPENDENTANDSPECIALFACILITYEVACUATIONTIMEESTIMATES.................................81

8.1 TransitDependentPeopleDemandEstimate............................................................................82

8.2 SchoolPopulation-TransitDemand.........................................................................................84

8.3 MedicalFacilityDemand............................................................................................................84

8.4 EvacuationTimeEstimatesforTransitDependentPeople.......................................................85

8.5 SpecialNeedsPopulation.........................................................................................................810

8.6 CorrectionalFacilities...............................................................................................................811

9 TRAFFICMANAGEMENTSTRATEGY...................................................................................................91

10 EVACUATIONROUTES..................................................................................................................101

11 SURVEILLANCEOFEVACUATIONOPERATIONS...........................................................................111

12 CONFIRMATIONTIME..................................................................................................................121

13 RECOMMENDATIONS...................................................................................................................131

 



SurryPowerStation ii KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



ListofAppendices



A. GLOSSARYOFTRAFFICENGINEERINGTERMS..................................................................................A1

B. DYNAMICTRAFFICASSIGNMENTANDDISTRIBUTIONMODEL.........................................................B1

C. DYNEVTRAFFICSIMULATIONMODEL...............................................................................................C1

C.1 Methodology..............................................................................................................................C5

C.1.1 TheFundamentalDiagram.................................................................................................C5

C.1.2 TheSimulationModel........................................................................................................C5

C.1.3 LaneAssignment..............................................................................................................C12

C.2 Implementation.......................................................................................................................C12

C.2.1 ComputationalProcedure................................................................................................C12

C.2.2 InterfacingwithDynamicTrafficAssignment(DTRAD)...................................................C15

D. DETAILEDDESCRIPTIONOFSTUDYPROCEDURE..............................................................................D1

E. SPECIALFACILITYDATA......................................................................................................................E1

F. TELEPHONESURVEY...........................................................................................................................F1

F.1 Introduction...............................................................................................................................F1

F.2 SurveyInstrumentandSamplingPlan.......................................................................................F2

F.3 SurveyResults............................................................................................................................F3

F.3.1 HouseholdDemographicResults...........................................................................................F3

F.3.2 EvacuationResponse.............................................................................................................F8

F.3.3 TimeDistributionResults.....................................................................................................F11

F.4 Conclusions..............................................................................................................................F14

G. TRAFFICMANAGEMENTPLAN..........................................................................................................G1

G.1 TrafficControlPoints................................................................................................................G1

G.2 AccessControlPoints................................................................................................................G1

H EVACUATIONREGIONS.....................................................................................................................H1

J. REPRESENTATIVEINPUTSTOANDOUTPUTSFROMTHEDYNEVIISYSTEM.....................................J1

K. EVACUATIONROADWAYNETWORK..................................................................................................K1

L. PAZBOUNDARIES...............................................................................................................................L1

M. EVACUATIONSENSITIVITYSTUDIES.............................................................................................M1

M.1 EffectofChangesinTripGenerationTimes............................................................................M1

M.2 EffectofChangesintheNumberofPeopleintheShadowRegionWhoRelocate.................M2

M.3 EffectofChangesinEPZResidentPopulation.........................................................................M3

M.4 EffectofRushHourCongestionPresentattheOnsetoftheEvacuationProcess..................M4

M.5 EffectofaFullClosureonI64WB..........................................................................................M6

N. ETECRITERIACHECKLIST...................................................................................................................N1



Note:AppendixIintentionallyskipped 



SurryPowerStation iii KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



ListofFigures



Figure11.SPSLocation............................................................................................................................14

Figure12.SPSLinkNodeAnalysisNetwork............................................................................................17

Figure21.VoluntaryEvacuationMethodology.......................................................................................24

Figure31.SPSEPZ....................................................................................................................................33

Figure32.PermanentResidentPopulationbySector.............................................................................36

Figure33.PermanentResidentVehiclesbySector.................................................................................37

Figure34.ShadowPopulationbySector.................................................................................................39

Figure35.ShadowVehiclesbySector...................................................................................................310

Figure36.TransientPopulationbySector.............................................................................................314

Figure37.TransientVehiclesbySector.................................................................................................315

Figure38.EmployeePopulationbySector............................................................................................318

Figure39.EmployeeVehiclesbySector................................................................................................319

Figure41.FundamentalDiagrams............................................................................................................49

Figure51.EventsandActivitiesPrecedingtheEvacuationTrip..............................................................55

Figure52.EvacuationMobilizationActivities........................................................................................511

Figure53.ComparisonofDataDistributionandNormalDistribution.......................................................515

Figure54.ComparisonofTripGenerationDistributions.......................................................................520

Figure55.ComparisonofStagedandUnstagedTripGenerationDistributions

inthe2to5MileRegion..........................................................................................................................522

Figure61.SPSEPZPAZs...........................................................................................................................69

Figure71.VoluntaryEvacuationMethodology.....................................................................................718

Figure72.PLANTShadowRegion..........................................................................................................719

Figure73.CongestionPatternsat30MinutesaftertheAdvisorytoEvacuate....................................720

Figure74.CongestionPatternsat2HoursaftertheAdvisorytoEvacuate..........................................721

Figure75.CongestionPatternsat3HoursaftertheAdvisorytoEvacuate..........................................722

Figure76.CongestionPatternsat4HoursaftertheAdvisorytoEvacuate..........................................723

Figure77.CongestionPatternsat5HoursaftertheAdvisorytoEvacuate..........................................724

Figure78.CongestionPatternsat6Hours,15MinutesaftertheAdvisorytoEvacuate......................725

Figure79.EvacuationTimeEstimatesScenario1forRegionR03......................................................726

Figure710.EvacuationTimeEstimatesScenario2forRegionR03....................................................726

Figure711.EvacuationTimeEstimatesScenario3forRegionR03....................................................727

Figure712.EvacuationTimeEstimatesScenario4forRegionR03....................................................727

Figure713.EvacuationTimeEstimatesScenario5forRegionR03....................................................728

Figure714.EvacuationTimeEstimatesScenario6forRegionR03....................................................728

Figure715.EvacuationTimeEstimatesScenario7forRegionR03....................................................729

Figure716.EvacuationTimeEstimatesScenario8forRegionR03....................................................729

Figure717.EvacuationTimeEstimatesScenario9forRegionR03....................................................730

Figure718.EvacuationTimeEstimatesScenario10forRegionR03..................................................730

Figure719.EvacuationTimeEstimatesScenario11forRegionR03..................................................731

Figure720.EvacuationTimeEstimatesScenario12forRegionR03..................................................731

Figure721.EvacuationTimeEstimatesScenario13forRegionR03..................................................732

Figure722.EvacuationTimeEstimatesScenario14forRegionR03..................................................732

Figure81.ChronologyofTransitEvacuationOperations......................................................................812

Figure82.TransitDependentBusRoutesforIsleofWightCounty......................................................813



SurryPowerStation iv KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure83.TransitDependentBusRoutesforSurryCounty..................................................................814

Figure84.TransitDependentBusRoutesforYorkCounty...................................................................815

Figure85.TransitDependentBusRoutesfortheCityofWilliamsburg................................................816

Figure86.TransitDependentBusRoutesforJamesCityCounty.........................................................817

Figure87.TransitDependentBusRoutes2429fortheCityofNewportNews...................................818

Figure88.TransitDependentBusRoutes3035fortheCityofNewportNews...................................819

Figure89.TransitDependentBusRoutes3643fortheCityofNewportNews...................................820

Figure101.GeneralPopulationEvacuationAssemblyCentersandReceivingSchools........................102

Figure102.EvacuationRouteMap........................................................................................................103

FigureB1.FlowDiagramofSimulationDTRADInterface........................................................................B5

FigureC1.RepresentativeAnalysisNetwork...........................................................................................C4

FigureC2.FundamentalDiagrams...........................................................................................................C6

FigureC3.AUNITProblemConfigurationwitht1>0..............................................................................C6

FigureC4.FlowofSimulationProcessing(SeeGlossary:TableC3)....................................................C14

FigureD1.FlowDiagramofActivities.....................................................................................................D5

FigureE1.SchoolsandDaycareswithintheEPZOverview.................................................................E11

FigureE2.SchoolsandDaycaresNorthernEPZ...................................................................................E12

FigureE3.SchoolsandDaycaresEasternEPZ......................................................................................E13

FigureE4.MedicalFacilitieswithintheEPZ..........................................................................................E14

FigureE5.RecreationalAreaswithintheEPZ........................................................................................E15

FigureE6.LodgingwithintheEPZOverview.......................................................................................E16

FigureE7.LodgingwithintheEPZ-NorthernEPZ................................................................................E17

FigureE8:LodgingwithintheEPZ-NorthernWilliamsburg.................................................................E18

FigureE9.LodgingCentralWilliamsburg.............................................................................................E19

FigureE10.CorrectionalFacilitieswithintheEPZ.................................................................................E20

FigureF1.HouseholdSizeintheEPZ.......................................................................................................F3

FigureF2.HouseholdVehicleAvailability................................................................................................F4

FigureF3.VehicleAvailability1to5PersonHouseholds......................................................................F5

FigureF4.VehicleAvailability6to9+PersonHouseholds....................................................................F5

FigureF5.HouseholdRidesharingPreference.........................................................................................F6

FigureF6.CommutersinHouseholdsintheEPZ.....................................................................................F7

FigureF7.ModesofTravelintheEPZ.....................................................................................................F8

FigureF8.NumberofVehiclesUsedforEvacuation...............................................................................F9

FigureF9.PetOwnership.......................................................................................................................F10

FigureF10.DestinationsHouseholdswithPets....................................................................................F10

FigureF11.TimeRequiredtoPreparetoLeaveWork/School..............................................................F12

FigureF12.WorktoHomeTravelTime.................................................................................................F12

FigureF13.TimetoPrepareHomeforEvacuation................................................................................F13

FigureF14.TimetoClearDrivewayof6"8"ofSnow...........................................................................F14

FigureG1.TrafficandAccessControlPointsfortheSPSSite................................................................G2

FigureH1.RegionR01.............................................................................................................................H4

FigureH2.RegionR02.............................................................................................................................H5

FigureH3.RegionR03.............................................................................................................................H6

FigureH4.RegionR04.............................................................................................................................H7

FigureH5.RegionR05.............................................................................................................................H8

FigureH6.RegionR06.............................................................................................................................H9

FigureH7.RegionR07...........................................................................................................................H10



SurryPowerStation v KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



FigureH8.RegionR08...........................................................................................................................H11

FigureH9.RegionR09...........................................................................................................................H12

FigureH10.RegionR10.........................................................................................................................H13

FigureH11RegionR11..........................................................................................................................H14

FigureH12RegionR12..........................................................................................................................H15

FigureH13RegionR13..........................................................................................................................H16

FigureH14RegionR14..........................................................................................................................H17

FigureH15RegionR15..........................................................................................................................H18

FigureH16RegionR16..........................................................................................................................H19

FigureH17RegionR17..........................................................................................................................H20

FigureH18RegionR18..........................................................................................................................H21

FigureH19RegionR19..........................................................................................................................H22

FigureH20RegionR20..........................................................................................................................H23

FigureH21RegionR21..........................................................................................................................H24

FigureH22RegionR22..........................................................................................................................H25

FigureH23RegionR23..........................................................................................................................H26

FigureH24RegionR24..........................................................................................................................H27

FigureH25RegionR25..........................................................................................................................H28

FigureH26RegionR26..........................................................................................................................H29

FigureH27RegionR27..........................................................................................................................H30

FigureH28RegionR28..........................................................................................................................H31

FigureH29RegionR29..........................................................................................................................H32

FigureH30RegionR30..........................................................................................................................H33

FigureH31RegionR31..........................................................................................................................H34

FigureH32RegionR32..........................................................................................................................H35

FigureH33RegionR33..........................................................................................................................H36

FigureH34RegionR34..........................................................................................................................H37

FigureH35RegionR35..........................................................................................................................H38

FigureH36RegionR36..........................................................................................................................H39

FigureH37RegionR37..........................................................................................................................H40

FigureH38RegionR38..........................................................................................................................H41

FigureH39RegionR39..........................................................................................................................H42

FigureH40RegionR40..........................................................................................................................H43

FigureH41RegionR41..........................................................................................................................H44

FigureJ1.ETEandTripGeneration:Summer,Midweek,Midday,GoodWeather(Scenario1)..............J8

FigureJ2.ETEandTripGeneration:Summer,Midweek,Midday,Rain(Scenario2)...............................J8

FigureJ3.ETEandTripGeneration:Summer,Weekend,Midday,GoodWeather(Scenario3)..............J9

FigureJ4.ETEandTripGeneration:Summer,Weekend,Midday,Rain(Scenario4)..............................J9

FigureJ5.ETEandTripGeneration:Summer,Midweek,Weekend,Evening,

GoodWeather(Scenario5).....................................................................................................................J10

FigureJ6.ETEandTripGeneration:Winter,Midweek,Midday,GoodWeather(Scenario6)..............J10

FigureJ7.ETEandTripGeneration:Winter,Midweek,Midday,Rain(Scenario7)...............................J11

FigureJ8.ETEandTripGeneration:Winter,Midweek,Midday,Snow(Scenario8).............................J11

FigureJ9.ETEandTripGeneration:Winter,Weekend,Midday,GoodWeather(Scenario9)..............J12

FigureJ10.ETEandTripGeneration:Winter,Weekend,Midday,Rain(Scenario10)...........................J12

FigureJ11.ETEandTripGeneration:Winter,Weekend,Midday,Snow(Scenario11).........................J13

FigureJ12.ETEandTripGeneration:Winter,Midweek,Weekend,Evening,



SurryPowerStation vi KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



GoodWeather(Scenario12)...................................................................................................................J13

FigureJ13.ETEandTripGeneration:Summer,Midweek,Midday,

GoodWeather,SpecialEvent(Scenario13)............................................................................................J14

FigureJ14.ETEandTripGeneration:Summer,Midweek,Midday,

GoodWeather,RoadwayImpact(Scenario14)......................................................................................J14

FigureK1.SurryLinkNodeAnalysisNetwork..........................................................................................K2

FigureK2.LinkNodeAnalysisNetwork-Grid1.....................................................................................K3

FigureK3.LinkNodeAnalysisNetwork-Grid2.....................................................................................K4

FigureK4.LinkNodeAnalysisNetwork-Grid3.....................................................................................K5

FigureK5.LinkNodeAnalysisNetwork-Grid4.....................................................................................K6

FigureK6.LinkNodeAnalysisNetwork-Grid5.....................................................................................K7

FigureK7.LinkNodeAnalysisNetwork-Grid6.....................................................................................K8

FigureK8.LinkNodeAnalysisNetwork-Grid7.....................................................................................K9

FigureK9.LinkNodeAnalysisNetwork-Grid8...................................................................................K10

FigureK10.LinkNodeAnalysisNetwork-Grid9.................................................................................K11

FigureK11.LinkNodeAnalysisNetwork-Grid10...............................................................................K12

FigureK12.LinkNodeAnalysisNetwork-Grid11...............................................................................K13

FigureK13.LinkNodeAnalysisNetwork-Grid12...............................................................................K14

FigureK14.LinkNodeAnalysisNetwork-Grid13...............................................................................K15

FigureK15.LinkNodeAnalysisNetwork-Grid14...............................................................................K16

FigureK16.LinkNodeAnalysisNetwork-Grid15...............................................................................K17

FigureK17.LinkNodeAnalysisNetwork-Grid16...............................................................................K18

FigureK18.LinkNodeAnalysisNetwork-Grid17...............................................................................K19

FigureK19.LinkNodeAnalysisNetwork-Grid18...............................................................................K20

FigureK20.LinkNodeAnalysisNetwork-Grid19...............................................................................K21

FigureK21.LinkNodeAnalysisNetwork-Grid20...............................................................................K22

FigureK22.LinkNodeAnalysisNetwork-Grid21...............................................................................K23

FigureK23.LinkNodeAnalysisNetwork-Grid22...............................................................................K24

FigureK24.LinkNodeAnalysisNetwork-Grid23...............................................................................K25

FigureK25.LinkNodeAnalysisNetwork-Grid24...............................................................................K26

FigureK26.LinkNodeAnalysisNetwork-Grid25...............................................................................K27

FigureK27.LinkNodeAnalysisNetwork-Grid26...............................................................................K28

FigureK28.LinkNodeAnalysisNetwork-Grid27...............................................................................K29

FigureK29.LinkNodeAnalysisNetwork-Grid28...............................................................................K30

FigureK30.LinkNodeAnalysisNetwork-Grid29...............................................................................K31

FigureK31.LinkNodeAnalysisNetwork-Grid30...............................................................................K32

FigureK32.LinkNodeAnalysisNetwork-Grid31...............................................................................K33

FigureK33.LinkNodeAnalysisNetwork-Grid32...............................................................................K34

FigureK34.LinkNodeAnalysisNetwork-Grid33...............................................................................K35

FigureK35.LinkNodeAnalysisNetwork-Grid34...............................................................................K36

FigureK36.LinkNodeAnalysisNetwork-Grid35...............................................................................K37

FigureK37.LinkNodeAnalysisNetwork-Grid36...............................................................................K38

FigureK38.LinkNodeAnalysisNetwork-Grid37...............................................................................K39

FigureK39.LinkNodeAnalysisNetwork-Grid38...............................................................................K40

FigureK40.LinkNodeAnalysisNetwork-Grid39...............................................................................K41

FigureK41.LinkNodeAnalysisNetwork-Grid40...............................................................................K42

FigureK42.LinkNodeAnalysisNetwork-Grid41...............................................................................K43



SurryPowerStation vii KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



FigureK43.LinkNodeAnalysisNetwork-Grid42...............................................................................K44

FigureK44.LinkNodeAnalysisNetwork-Grid43...............................................................................K45

FigureK45.LinkNodeAnalysisNetwork-Grid44...............................................................................K46

FigureK46.LinkNodeAnalysisNetwork-Grid45...............................................................................K47

FigureK47.LinkNodeAnalysisNetwork-Grid46...............................................................................K48

FigureK48.LinkNodeAnalysisNetwork-Grid47...............................................................................K49

FigureK49.LinkNodeAnalysisNetwork-Grid48...............................................................................K50

FigureK50.LinkNodeAnalysisNetwork-Grid49...............................................................................K51

FigureK51.LinkNodeAnalysisNetwork-Grid50...............................................................................K52

FigureK52.LinkNodeAnalysisNetwork-Grid51...............................................................................K53

FigureK53.LinkNodeAnalysisNetwork-Grid52...............................................................................K54

FigureK54.LinkNodeAnalysisNetwork-Grid53...............................................................................K55

FigureK55.LinkNodeAnalysisNetwork-Grid54...............................................................................K56

FigureK56.LinkNodeAnalysisNetwork-Grid55...............................................................................K57

FigureK57.LinkNodeAnalysisNetwork-Grid56...............................................................................K58

FigureK58.LinkNodeAnalysisNetwork-Grid57...............................................................................K59

FigureK59.LinkNodeAnalysisNetwork-Grid58...............................................................................K60

FigureK60.LinkNodeAnalysisNetwork-Grid59...............................................................................K61

FigureM1.CongestionPatternsat0:15aftertheAdvisorytoEvacuate..............................................M5





 



SurryPowerStation viii KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



ListofTables



Table11.StakeholderInteraction...........................................................................................................11

Table12.HighwayCharacteristics...........................................................................................................15

Table13.ETEStudyComparisons............................................................................................................19

Table21.EvacuationScenarioDefinitions...............................................................................................23

Table22.ModelAdjustmentforAdverseWeather.................................................................................27

Table31.EPZPermanentResidentPopulation.......................................................................................34

Table32.PermanentResidentPopulationandVehiclesbyPAZ.............................................................35

Table33.ShadowPopulationandVehiclesbySector.............................................................................38

Table34.SummaryofTransientsandTransientVehicles.....................................................................313

Table35.SummaryofNonEPZResidentEmployeesandEmployeeVehicles......................................317

Table36.SPSEPZExternalTraffic..........................................................................................................320

Table37.SummaryofPopulationDemand...........................................................................................322

Table38.SummaryofVehicleDemand.................................................................................................324

Table51.EventSequenceforEvacuationActivities................................................................................53

Table52.TimeDistributionforNotifyingthePublic...............................................................................56

Table53.TimeDistributionforEmployeestoPreparetoLeaveWork...................................................57

Table54.TimeDistributionforCommuterstoTravelHome..................................................................58

Table55.TimeDistributionforPopulationtoPreparetoEvacuate.......................................................59

Table56.TimeDistributionforPopulationtoClear6"8"ofSnow......................................................510

Table57.MappingDistributionstoEvents............................................................................................512

Table58.DescriptionoftheDistributions.............................................................................................513

Table59.TripGenerationHistogramsfortheEPZPopulationforUnstagedEvacuation.....................519

Table510.TripGenerationHistogramsfortheEPZPopulationforStagedEvacuation.......................521

Table61.DescriptionofEvacuationRegions...........................................................................................66

Table62.EvacuationScenarioDefinitions.............................................................................................610

Table63.PercentofPopulationGroupsEvacuatingforVariousScenarios..........................................611

Table64.VehicleEstimatesbyScenario................................................................................................612

Table71.TimetoCleartheIndicatedAreaof90PercentoftheAffectedPopulation...........................79

Table72.TimetoCleartheIndicatedAreaof100PercentoftheAffectedPopulation.......................711

Table73.TimetoClear90Percentofthe2MileAreawithintheIndicatedRegion............................713

Table74.TimetoClear100Percentofthe2MileAreawithintheIndicatedRegion..........................714

Table75.DescriptionofEvacuationRegions.........................................................................................715

Table81.TransitDependentPopulationEstimates..............................................................................821

Table82.SchoolandDaycarePopulationDemandEstimates..............................................................822

Table83.ReceivingSchools...................................................................................................................824

Table84.MedicalFacilityTransitDemand............................................................................................825

Table85.SummaryofTransportationResources..................................................................................826

Table86.BusRouteDescriptions..........................................................................................................827

Table87.SchoolEvacuationTimeEstimatesGoodWeather..............................................................832

Table88.SchoolEvacuationTimeEstimatesRain...............................................................................834

Table89.SchoolEvacuationTimeEstimatesSnow.............................................................................836

Table810.SummaryofTransitDependentBusRoutes........................................................................838

Table811.TransitDependentEvacuationTimeEstimatesGoodWeather........................................840

Table812.TransitDependentEvacuationTimeEstimatesRain.........................................................842



SurryPowerStation ix KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Table813.TransitDependentEvacuationTimeEstimatesSnow.......................................................844

Table814.MedicalFacilityEvacuationTimeEstimatesGoodWeather.............................................846

Table815.MedicalFacilityEvacuationTimeEstimates-Rain.............................................................847

Table816.MedicalFacilityEvacuationTimeEstimates-Snow............................................................848

Table817.HomeboundSpecialNeedsPopulationEvacuationTimeEstimates....................................849

Table121.EstimatedNumberofTelephoneCallsRequiredforConfirmationofEvacuation..............122

TableA1.GlossaryofTrafficEngineeringTerms....................................................................................A1

TableC1.SelectedMeasuresofEffectivenessOutputbyDYNEVII........................................................C2

TableC2.InputRequirementsfortheDYNEVIIModel...........................................................................C3

TableC3.Glossary....................................................................................................................................C7

TableE1.SchoolsandDaycareswithintheEPZ.......................................................................................E2

TableE2.MedicalFacilitieswithintheEPZ..............................................................................................E4

TableE3.Parks/RecreationalAttractionswithintheEPZ........................................................................E5

TableE4.LodgingFacilitieswithintheEPZ..............................................................................................E6

TableE5.CorrectionalFacilitieswithintheEPZ.....................................................................................E10

TableF1.SPSTelephoneSurveySamplingPlan.......................................................................................F2

TableH1.PercentofPAZPopulationEvacuatingforEachRegion.........................................................H2

TableJ1.CharacteristicsoftheTenHighestVolumeSignalizedIntersections........................................J2

TableJ2.SampleSimulationModelInput...............................................................................................J3

TableJ3.SelectedModelOutputsfortheEvacuationoftheEntireEPZ(RegionR03)...........................J4

TableJ4.AverageSpeed(mph)andTravelTime(min)for

MajorEvacuationRoutes(RegionR03,Scenario1)..................................................................................J5

TableJ5.SimulationModelOutputsatNetworkExitLinksforRegionR03,Scenario1.........................J6

TableK1.EvacuationRoadwayNetworkCharacteristics......................................................................K62

TableK2.NodesintheLinkNodeAnalysisNetworkwhichareControlled.........................................K154

TableM1.EvacuationTimeEstimatesforTripGenerationSensitivityStudy.......................................M1

TableM2.EvacuationTimeEstimatesforShadowSensitivityStudy....................................................M2

TableM3.ETEVariationwithPopulationChange.................................................................................M4

TableM4.EvacuationTimeEstimatesforRushHourSensitivityStudy................................................M5

TableM5.EvacuationTimeEstimatesforI64WBFullClosureSensitivityStudy................................M6

TableN1.ETEReviewCriteriaChecklist.................................................................................................N1













SurryPowerStation x KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



EXECUTIVE

SUMMARY



Thisreportdescribestheanalysesundertakenandtheresultsobtainedbyastudytodevelop

Evacuation Time Estimates (ETE) for the Surry Power Station (SPS) located in Surry County,

Virginia.ETEarepartoftherequiredplanningbasisandprovideDominionandStateandlocal

governmentswithsitespecificinformationneededforProtectiveActiondecisionmaking.

In the performance of this effort, guidance is provided by documents published by Federal

Governmentalagencies.Mostimportantoftheseare:

x Criteria for Development of Evacuation Time Estimate Studies, NUREG/CR7002,

November2011.

x Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and

Preparedness in Support of Nuclear Power Plants, NUREG0654/FEMAREP1, Rev. 1,

November1980.

x DevelopmentofEvacuationTimeEstimatesforNuclearPowerPlants,NUREG/CR6863,

January2005.

x 10CFR50, Appendix E - Emergency Planning and Preparedness for Production and

UtilizationFacilities



OverviewofProjectActivities

This project began in February, 2012 and extended over a period of 10 months.  The major

activitiesperformedarebrieflydescribedinchronologicalsequence:

x Attended kickoff meetings with Dominion personnel and emergency management

personnelrepresentingstateandcity/countygovernments.

x Accessed U.S. Census Bureau data files for the year 2010.  Studied Geographical

InformationSystems(GIS)mapsoftheareainthevicinityoftheSPS,thenconducteda

detailedfieldsurveyofthehighwaynetwork.

x Synthesized this information to create an analysis network representing the highway

system topology and capacities within the Emergency Planning Zone (EPZ), plus a

Shadow Region covering the region between the EPZ boundary and approximately 15

milesradiallyfromtheplant.

x Designed and sponsored a telephone survey of residents within the EPZ to gather

focused data needed for this ETE study that were not contained within the census

database.Thesurveyinstrumentwasreviewedandmodifiedbythelicenseeandoffsite

responseorganization(ORO)personnelpriortothesurvey.

x Datacollectionforms(providedtotheOROsatthekickoffmeeting)werereturnedwith

data pertaining to employment, transients, and special facilities in each city/county.

Telephonecallstospecificfacilitiessupplementedthedataprovided.



SurryPowerStation ES1 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

x The traffic demand and tripgeneration rates of evacuating vehicles were estimated

fromthegathereddata.Thetripgenerationratesreflectedtheestimatedmobilization

time(i.e.,thetimerequiredbyevacueestopreparefortheevacuationtrip)computed

usingtheresultsofthetelephonesurveyofEPZresidents.

x Followingfederalguidelines,theEPZissubdividedinto30PAZs.ThesePAZsarethen

grouped within circular areas or keyhole configurations (circles plus radial sectors)

thatdefineatotalof41EvacuationRegions.

x ThetimevaryingexternalcircumstancesarerepresentedasEvacuationScenarios,each

described in terms of the following factors: (1) Season (Summer, Winter); (2) Day of

Week(Midweek,Weekend);(3)TimeofDay(Midday,Evening);and(4)Weather(Good,

Rain, Snow).  One special event scenario involving the Newport News Fall Festival of

Folklifewasconsidered.Oneroadwayimpactscenariowasconsideredwhereinasingle

lanewasclosedonInterstate64westboundforthedurationoftheevacuation.

x Staged evacuation was considered for those regions wherein the 2 mile radius and

sectorsdownwindto5mileswereevacuated.

x AsperNUREG/CR7002,thePlanningBasisforthecalculationofETEis:

A rapidly escalating accident at the PLANT that quickly assumes the status of

General Emergency such that the Advisory to Evacuate is virtually coincident

withthesirenalert,andnoearlyprotectiveactionshavebeenimplemented.

Whileanunlikelyaccidentscenario,thisplanningbasiswillyieldETE,measured

astheelapsedtimefromtheAdvisorytoEvacuateuntilthestatedpercentageof

the population exits the impacted Region, that represent upper bound

estimates.ThisconservativePlanningBasisisapplicableforallinitiatingevents.

x If the emergency occurs while schools are in session, the ETE study assumes that the

childrenwillbeevacuatedbybusdirectlytoevacuationassemblycentersorreceiving

schools located outside the EPZ.  Parents, relatives, and neighbors are advised to not

pick up their children at school prior to the arrival of the buses dispatched for that

purpose.TheETEforschoolchildrenarecalculatedseparately.

x Evacuees who do not have access to a private vehicle will either rideshare with

relatives, friends or neighbors, or be evacuated by buses provided as specified in the

city/countyevacuationplans.Thoseinspecialfacilitieswilllikewisebeevacuatedwith

public transit, as needed: bus, van, or ambulance, as required.  Separate ETE are

calculated for the transitdependent evacuees, for homebound special needs

population,andforthoseevacuatedfromspecialfacilities.

ComputationofETE

Atotalof574ETEwerecomputedfortheevacuationofthegeneralpublic.EachETEquantifies

the aggregate evacuation time estimated for the population within one of the 41 Evacuation

Regions to evacuate from that Region, under the circumstances defined for one of the 14

Evacuation Scenarios (41 x 14 = 574).  Separate ETE are calculated for transitdependent



SurryPowerStation ES2 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

evacuees,includingschoolchildrenforapplicablescenarios.

ExceptforRegionR03,whichistheevacuationoftheentireEPZ,onlyaportionofthepeople

withintheEPZwouldbeadvisedtoevacuate.Thatis,theAdvisorytoEvacuateappliesonlyto

thosepeopleoccupyingthespecifiedimpactedregion.Itisassumedthat100percentofthe

people within the impacted region will evacuate in response to this Advisory.  The people

occupying the remainder of the EPZ outside the impacted region may be advised to take

shelter.

The computation of ETE assumes that 20% of the population within the EPZ but outside the

impactedregion,willelecttovoluntarilyevacuate.Inaddition,20%ofthepopulationinthe

ShadowRegionwillalsoelecttoevacuate.Thesevoluntaryevacueescouldimpedethosewho

are evacuating from within the impacted region.  The impedance that could be caused by

voluntaryevacueesisconsideredinthecomputationofETEfortheimpactedregion.

Staged evacuation is considered wherein those people within the 2mile region evacuate

immediately,whilethosebeyond2miles,butwithintheEPZ,shelterinplace.Once90%ofthe

2mile region is evacuated, those people beyond 2 miles begin to evacuate. As per federal

guidance,20%ofpeoplebeyond2mileswillevacuate(noncompliance)eventhoughtheyare

advisedtoshelterinplace.

Thecomputationalprocedureisoutlinedasfollows:

x A linknode representation of the highway network is coded.  Each link represents a

unidirectionallengthofhighway;eachnodeusuallyrepresentsanintersectionormerge

point.Thecapacityofeachlinkisestimatedbasedonthefieldsurveyobservationsand

onestablishedtrafficengineeringprocedures.

x Theevacuationtripsaregeneratedatlocationscalledzonalcentroidslocatedwithin

the EPZ and Shadow Region.  The trip generation rates vary over time reflecting the

mobilization process, and from one location (centroid) to another depending on

populationdensityandonwhetheracentroidiswithin,oroutside,theimpactedarea.

x The evacuation model computes the routing patterns for evacuating vehicles that are

compliantwithfederalguidelines(outboundrelativetothelocationoftheplant),then

simulate the traffic flow movements over space and time. This simulation process

estimatestheratethattrafficflowexitstheimpactedregion.



TheETEstatisticsprovidetheelapsedtimesfor90percentand100percent,respectively,ofthe

population within the impacted region, to evacuate from within the impacted region.  These

statistics are presented in tabular and graphical formats. The 90th percentile ETE have been

identified as the values that should be considered when making protective action decisions

becausethe100thpercentileETEareprolongedbythoserelativelyfewpeoplewhotakelonger

tomobilize.ThisisreferredtoastheevacuationtailinSection4.0ofNUREG/CR7002.

The use of a public outreach (information) program to emphasize the need for evacuees to

minimizethetimeneededtopreparetoevacuate(securethehome,assembleneededclothes,

medicines,etc.)shouldalsobeconsidered.



SurryPowerStation ES3 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

TrafficManagement

This study references the comprehensive traffic management plans provided by James City,

York,IsleofWightandSurryCountiesandtheCitiesofWilliamsburgandNewportNews.No

additionaltrafficoraccesscontrolmeasureshavebeenidentifiedasaresultofthisstudy.

SelectedResults

A compilation of selected information is presented on the following pages in the form of

FiguresandTablesextractedfromthebodyofthereport;thesearedescribedbelow.

x Figure 61 displays a map of the SPS EPZ showing the layout of the 30 PAZs that

comprise,inaggregate,theEPZ.

x Table31presentstheestimatesofpermanentresidentpopulationineachPAZbased

onthe2010Censusdata.

x Table61defineseachofthe41EvacuationRegionsintermsoftheirrespectivegroups

ofPAZ.

x Table62liststheEvacuationScenarios.

x Tables71and72arecompilationsofETE.Thesedataarethetimesneededtoclear

theindicatedregionsof90and100percentofthepopulationoccupyingtheseregions,

respectively.  These computed ETE include consideration of mobilization time and of

estimated voluntary evacuations from other regions within the EPZ and from the

ShadowRegion.

x Tables 73 and 74 present ETE for the 2mile region for unstaged and staged

evacuationsforthe90thand100thpercentiles,respectively.

x Table87presentsETEfortheschoolchildreningoodweather.

x Table811presentsETEforthetransitdependentpopulationingoodweather.

x FigureH8presentsanexampleofanEvacuationRegion(RegionR08)tobeevacuated

under the circumstances defined in Table 61.  Maps of all regions are provided in

AppendixH.



Conclusions

x General population ETE were computed for 574 unique cases - a combination of 41

uniqueEvacuationRegionsand14uniqueEvacuationScenarios.Table71andTable72

document these ETE for the 90th and 100th percentiles. These ETE range from 1:00

(hr:min)to5:25atthe90thpercentile.

x InspectionofTable71andTable72indicatesthattheETEforthe100thpercentileare

significantlylongerthanthoseforthe90thpercentile.Thisistheresultofthecongestion

within the EPZ. When the system becomes congested, traffic exits the EPZ at rates

somewhatbelowcapacityuntilsomeevacuationrouteshavecleared.Asmoreroutes

clear,theaggregaterateofegressslowssincemanyvehicleshavealreadylefttheEPZ.

Towardstheendoftheprocess,relativelyfewevacuationroutesservicetheremaining

demand.SeeFigures79through722.

x Inspection of Table 73 and Table 74 indicates that a staged evacuation provides no



SurryPowerStation ES4 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

benefits to evacuees from within the 2 mile region due to the lack of impedance to

trafficevacuatingfromPAZ8.SeeSection7.5foradditionaldiscussion.

x Comparison of Scenarios 9 (winter, weekend, midday, good weather) and 13 (winter,

weekend, midday, good weather, specialevent) in Table 71 indicatesthat the special

eventincreasesthe90percentileETEforregionsincludingPAZ16inNewportNews.See

Section7.4foradditionaldiscussion.

x Comparison of Scenarios 1 and 14 in Table 71 indicates that the roadway closure - a

singlelaneonI64westbound-significantlyimpactsthe90thpercentileETEforsome

evacuatingregions,withincreasesofupto1:25..

x The area north of Williamsburg experiences the greatest congestion during an

evacuation. PAZ 23 is the last in the EPZ to exhibit traffic congestion.  Although more

heavily populated, the eastern portion of the EPZ benefits from a larger number of

highercapacityroadwaysthanareavailablenorthofWilliamsburg.Theruralportionof

theEPZwhichliessouthofJamesRiverdoesnotdevelopanycongestion.Allcongestion

within the EPZ clears by 6 hours and 15 minutes after the Advisory to Evacuate. See

Section7.3andFigures73through78.

x SeparateETEwerecomputedforschools,medicalfacilities,transitdependentpersons

and homebound special needs persons. The average singlewave ETE for schools,

medical facilities and transitdependent persons are within a similar range as the

generalpopulationETEatthe90thpercentile.However,theETEforhomeboundspecial

needsexceedsthegeneralpopulationETEatthe90thpercentile.SeeSection8.

x Table 85 indicates that there are enough buses and wheelchair buses available to

evacuate the transitdependent population within the EPZ in a single wave; however,

there are not enough ambulances to evacuate the bedridden population in a single

wave.SeeSections8.4and8.5.

x ThegeneralpopulationETEatthe90thpercentileisinsensitivetoreductionsinthebase

tripgenerationtimeof43/4hoursduetothetrafficcongestionwithintheEPZ.SeeTable

M1.

x The general population ETE is relatively insensitive to the voluntary evacuation of

vehicles in the Shadow Region (tripling the shadow evacuation percentage only

increases90thpercentileETEby25minutes).SeeTableM2.

x APopulationincreaseof15%resultsinETEchangeswhichmeetthecriteriaforupdating

ETEbetweendecennialcensuses.SeeSectionM.3.

x Additional congestion at the onset of evacuation caused by external (transient) trips

associatedwithpeakcommutinghoursincreasesthe90thpercentileETEforthefullEPZ

by15minutes.SeesectionM.4.

x A full closure of I64 westbound significantly impacts the 90th percentile ETE with

increasesof1:10.SeesectionM.5.







SurryPowerStation ES5 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure61.SPSEPZPAZs



SurryPowerStation ES6 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table31.EPZPermanentResidentPopulation

2000 2010

PAZ

Population Population 1 262 244

2 810 884

3 480 514

4 233 236

5 566 618

6 239 177

7 233 262

8 0 0

9 0 603

10 199 200

11 94 82

12 68 95

13 1,093 1,167

14 5,738 5,914

15 25,625 25,003

16 46,010 45,649

17 1,505 1,974

18A 1,317 1,374

18B 4,094 4,153

18C 3,331 3,960

18D 63 71

19A 4,739 6,214

19B 591 1,033

20A 690 877

20B 1,579 2,521

21 11,885 13,384

22A 965 1,305

22B 2,972 3,460

23 12,351 19,627

24 8,417 11,076

TOTAL 136,149 152,677

EPZPopulation

12.14%

Growth:





SurryPowerStation ES7 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table61.DescriptionofEvacuationRegions

Reg Desc PAZ

ion ription 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18A 18B 18C 18D 19A 19B 20A 20B 21 22A 22B 23 24

2Mile

R01        x                      

Radius

5Mile

R02    x x x  x x          x x x      x x  

Radius

R03 FullEPZ x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

Evacuate2MileRadiusandDownwindto5Miles

Wind

Reg Direction PAZ

ion Towards 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18A 18B 18C 18D 19A 19B 20A 20B 21 22A 22B 23 24

R04 NNW,N        x           x        x x  

R05 NNE        x           x x        x  

R06 NE,ENE        x           x x x         

R07 E        x             x         

N/A ESE RefertoR01

R08 SE        x x                     

R09 SSE,S      x  x x                     

R10 SSW     x x  x x                     

R11 SW     x x  x                      

R12 WSW,W    x x   x                      

R13 WNW    x x   x                   x   

R14 NW        x                   x x  





SurryPowerStation ES8 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Evacuate5MileRadiusandDownwindto10Miles

Wind

Reg Direction PAZ

ion Towards 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18A 18B 18C 18D 19A 19B 20A 20B 21 22A 22B 23 24

R15 NNW,N    x x x  x x         x x x x x  x x x x x x x

R16 NNE    x x x  x x         x x x x x x x x x x x x 

R17 NE    x x x  x x       x x x x x x x x  x  x x  

R18 ENE    x x x  x x     x  x x  x x x  x    x x  

R19 E    x x x  x x     x x x x  x x x  x    x x  

R20 ESE    x x x  x x     x x x   x x x      x x  

R21 SE    x x x  x x    x x x x   x x x      x x  

R22 SSE    x x x  x x x x x x      x x x      x x  

R23 S    x x x x x x x x x x      x x x      x x  

R24 SSW   x x x x x x x x x x x      x x x      x x  

R25 SW x x x x x x x x x x x x       x x x      x x  

R26 WSW x x x x x x x x x          x x x      x x  

R27 W x x x x x x  x x          x x x      x x  x

R28 WNW  x  x x x  x x          x x x      x x x x

R29 NW  x  x x x  x x          x x x     x x x x x





SurryPowerStation ES9 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



StagedEvacuation2MileRadiusEvacuates,thenEvacuateDownwindto5Miles

Wind

Reg Direction PAZ

ion Towards 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18A 18B 18C 18D 19A 19B 20A 20B 21 22A 22B 23 24

R30 NNW,N        x           x        x x  

R31 NNE        x           x x        x  

R32 NE,ENE        x           x x x         

R33 E        x             x         

N/A ESE RefertoR01

R34 SE        x x                     

R35 SSE,S      x  x x                     

R36 SSW     x x  x x                     

R37 SW     x x  x                      

R38 WSW,W    x x   x                      

R39 WNW    x x   x                   x   

R40 NW        x                   x x  

5Mile

R41    x x x  x x          x x x      x x  

Region

PAZ(s)ShelterinPlaceuntil90%ETEforR01,

PAZ(s)ShelterinPlace PAZ(s)Evacuate

thenEvacuate





SurryPowerStation ES10 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Table62.EvacuationScenarioDefinitions

Dayof Timeof

Scenario Season  1 Week Day Weather Special

1 Summer Midweek Midday Good None

2 Summer Midweek Midday Rain None

3 Summer Weekend Midday Good None

4 Summer Weekend Midday Rain None

Midweek,

5 Summer Weekend Evening Good None

6 Winter Midweek Midday Good None

7 Winter Midweek Midday Rain None

8 Winter Midweek Midday Snow None

9 Winter Weekend Midday Good None

10 Winter Weekend Midday Rain None

11 Winter Weekend Midday Snow None

Midweek,

12 Winter Weekend Evening Good None

NewportNewsFall

13 Winter Weekend Midday Good FestivalofFolklife

RoadwayImpact-Lane

14 Summer Midweek Midday Good ClosureonI64WB



1

Winterassumesthatschoolisinsession(alsoappliestospringandautumn).Summerassumesthatschoolisnot

insession.





SurryPowerStation ES11 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table71.TimetoCleartheIndicatedAreaof90PercentoftheAffectedPopulation

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Weekend Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway Rain Rain Rain Snow Rain Snow

Weather Weather Weather Weather Weather Weather Event Impact

Entire2MileRegion,5MileRegion,andEPZ

R01 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R02 2:15 2:15 2:10 2:10 2:05 2:20 2:20 3:05 2:10 2:15 2:55 2:15 2:10 3:05 R03 4:15 4:45 3:50 4:05 3:15 3:40 4:00 4:20 3:10 3:30 3:50 3:05 3:35 5:10 2MileRegionandKeyholeto5Miles

R04 1:55 1:55 1:40 1:50 1:45 2:25 2:25 3:05 2:05 2:05 2:55 2:10 2:05 1:55 R05 2:10 2:15 2:05 2:10 2:00 2:20 2:20 3:00 2:10 2:10 2:50 2:15 2:10 3:15 R06 1:55 2:10 2:05 2:05 1:50 2:15 2:15 2:45 2:05 2:05 2:40 2:10 2:05 3:20 R07 1:10 1:10 1:25 1:25 1:25 1:15 1:15 1:15 1:25 1:25 1:50 1:25 1:25 1:10 R08 2:00 2:00 2:25 2:25 2:25 2:00 2:00 2:40 2:25 2:25 3:10 2:25 2:25 2:00 R09 2:10 2:10 2:25 2:30 2:25 2:10 2:10 2:50 2:25 2:30 3:15 2:25 2:25 2:10 R10 2:25 2:25 2:30 2:30 2:30 2:25 2:25 3:05 2:30 2:30 3:20 2:30 2:30 2:25 R11 2:05 2:05 2:25 2:25 2:25 2:05 2:05 2:45 2:25 2:25 3:15 2:25 2:25 2:05 R12 2:10 2:15 2:20 2:20 2:20 2:10 2:10 2:50 2:20 2:20 3:15 2:20 2:20 2:10 R13 2:25 2:25 2:20 2:20 2:20 2:25 2:25 3:15 2:20 2:25 3:15 2:25 2:20 2:25 R14 2:30 2:30 2:20 2:20 2:25 2:30 2:30 3:20 2:25 2:25 3:15 2:25 2:25 2:30

 



SurryPowerStation ES12 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Weekend Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway Rain Rain Rain Snow Rain Snow

Weather Weather Weather Weather Weather Weather Event Impact

5MileRegionandKeyholetoEPZBoundary

R15 4:25 5:00 4:05 4:20 3:35 4:00 4:15 4:35 3:30 3:40 4:05 3:10 3:30 5:25 R16 3:55 4:15 3:35 3:45 2:55 3:30 3:45 4:00 3:00 3:15 3:40 2:40 3:00 5:05 R17 2:45 3:00 2:40 2:50 2:20 2:40 2:50 3:25 2:35 2:45 3:15 2:20 2:55 3:10 R18 2:40 2:50 2:35 2:35 2:25 2:45 2:50 3:25 2:30 2:35 3:15 2:20 2:55 3:00 R19 3:00 3:20 2:50 3:00 2:45 3:00 3:20 3:45 2:50 3:00 3:30 2:45 3:10 3:10 R20 3:05 3:15 2:50 3:00 2:45 3:00 3:15 3:40 2:50 3:00 3:30 2:50 3:10 3:20 R21 3:05 3:15 2:50 3:00 2:45 3:00 3:15 3:40 2:50 3:00 3:30 2:50 3:10 3:20 R22 2:15 2:15 2:00 2:05 2:10 2:30 2:30 3:15 2:15 2:15 3:05 2:20 2:15 2:15 R23 2:30 2:35 2:25 2:30 2:00 2:25 2:30 3:05 2:20 2:30 3:00 2:10 2:20 2:30 R24 2:30 2:35 2:25 2:30 2:00 2:25 2:30 3:05 2:20 2:30 3:00 2:10 2:20 2:30 R25 2:30 2:35 2:25 2:30 2:00 2:25 2:30 3:05 2:20 2:30 3:00 2:10 2:20 2:30 R26 2:30 2:35 2:25 2:30 2:00 2:25 2:30 3:05 2:20 2:25 3:00 2:10 2:20 2:30 R27 2:30 2:40 2:25 2:35 2:15 2:30 2:35 3:10 2:20 2:30 3:00 2:15 2:25 2:30 R28 3:20 3:35 2:50 3:00 2:45 3:10 3:15 3:45 2:45 2:55 3:25 2:45 2:50 3:20 R29 4:10 4:25 3:40 3:50 3:10 3:45 3:55 4:35 3:20 3:25 3:50 2:55 3:20 4:50 StagedEvacuation2MileRegionandDownwindto5Miles

R30 1:55 1:55 1:40 1:50 1:50 2:25 2:25 3:10 2:05 2:05 2:55 2:10 2:05 2:00 R31 2:05 2:05 1:50 2:00 2:00 2:25 2:25 3:10 2:10 2:10 3:00 2:15 2:10 2:05 R32 1:55 2:00 1:45 2:00 1:50 2:15 2:20 3:00 2:05 2:05 2:50 2:15 2:05 1:55 R33 1:10 1:10 1:25 1:25 1:25 1:15 1:15 1:15 1:25 1:25 1:50 1:25 1:25 1:10 R34 2:00 2:00 2:25 2:25 2:25 2:00 2:00 2:40 2:25 2:25 3:10 2:25 2:25 2:00 R35 2:10 2:10 2:25 2:30 2:25 2:10 2:10 2:50 2:25 2:30 3:15 2:25 2:25 2:10 R36 2:25 2:25 2:25 2:25 2:25 2:25 2:25 3:05 2:25 2:25 3:20 2:25 2:25 2:25 R37 2:05 2:05 2:25 2:25 2:25 2:05 2:05 2:45 2:25 2:25 3:15 2:25 2:25 2:05 R38 2:15 2:15 2:20 2:20 2:20 2:10 2:10 2:55 2:20 2:20 3:15 2:20 2:20 2:15 R39 2:25 2:25 2:20 2:20 2:20 2:25 2:25 3:15 2:25 2:25 3:15 2:25 2:25 2:25 R40 2:30 2:30 2:25 2:25 2:25 2:30 2:30 3:20 2:25 2:25 3:15 2:25 2:25 2:30 R41 2:10 2:10 1:55 2:05 2:05 2:25 2:25 3:10 2:15 2:15 3:00 2:15 2:15 2:10



SurryPowerStation ES13 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Table72.TimetoCleartheIndicatedAreaof100PercentoftheAffectedPopulation

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Weekend Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway Rain Rain Rain Snow Rain Snow

Weather Weather Weather Weather Weather Weather Event Impact

Entire2MileRegion,5MileRegion,andEPZ

R01 1:45 1:45 1:45 1:45 1:45 1:50 1:50 1:50 1:45 1:45 1:45 1:45 1:45 1:45 R02 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R03 6:35 7:15 5:55 6:35 5:00 5:55 6:10 6:55 5:05 5:20 6:55 4:55 5:20 8:05 2MileRegionandKeyholeto5Miles

R04 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R05 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R06 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R07 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R08 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R09 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R10 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R11 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R12 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R13 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R14 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50

 



SurryPowerStation ES14 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Weekend Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway Rain Rain Rain Snow Rain Snow

Weather Weather Weather Weather Weather Weather Event Impact

5MileRegionandKeyholetoEPZBoundary

R15 6:15 7:10 5:45 6:15 5:00 5:45 6:10 6:55 5:00 5:15 6:55 4:55 5:00 7:10 R16 5:50 6:10 5:15 5:25 4:55 5:15 5:50 6:55 4:55 4:55 6:55 4:55 4:55 7:20 R17 4:55 4:55 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 5:50 R18 4:55 4:55 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 5:10 R19 4:55 4:55 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 5:15 R20 4:55 4:55 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 5:00 R21 4:55 4:55 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 5:00 R22 4:55 4:55 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 4:55 R23 4:55 4:55 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 4:55 R24 4:55 4:55 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 4:55 R25 4:55 4:55 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 4:55 R26 4:55 4:55 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 4:55 R27 4:55 4:55 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 4:55 R28 4:55 5:05 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 4:55 R29 5:55 6:20 5:25 5:40 4:55 5:25 5:50 6:55 4:55 4:55 6:55 4:55 4:55 6:45 StagedEvacuation2MileRegionandDownwindto5Miles

R30 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R31 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R32 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R33 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R34 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R35 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R36 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R37 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R38 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R39 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R40 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R41 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50



SurryPowerStation ES15 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table73.TimetoClear90Percentofthe2MileRegionwithintheIndicatedRegion

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Weekend Midweek

Weekend Weekend Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway Rain Rain Rain Snow Rain Snow

Weather Weather Weather Weather Weather Weather Event Impact Entire2MileRegion,5MileRegion,andEPZ

R01 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R02 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 2MileRegionandKeyholeto5Miles

R04 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R05 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R06 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R07 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R08 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R09 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R10 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R11 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R12 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R13 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R14 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 StagedEvacuation2MileRegionandDownwindto5Miles

R30 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R31 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R32 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R33 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R34 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R35 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R36 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R37 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R38 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R39 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R40 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R41 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05



SurryPowerStation ES16 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table74.TimetoClear100Percentofthe2MileRegionwithintheIndicatedRegion

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Weekend Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway Rain Rain Rain Snow Rain Snow

Weather Weather Weather Weather Weather Weather Event Impact

Entire2MileRegion,5MileRegion,andEPZ

R01 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R02 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

2MileRegionandKeyholeto5Miles

R04 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R05 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R06 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R07 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R08 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R09 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R10 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R11 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R12 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R13 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R14 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

StagedEvacuation2MileRegionandDownwindto5Miles

R30 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R31 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R32 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R33 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R34 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R35 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R36 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R37 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R38 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R39 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R40 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R41 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45



SurryPowerStation ES17 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table87.SchoolEvacuationTimeEstimates-GoodWeather

Travel

Time

Travel Dist. from

Dist. Timeto EPZ EPZ

Driver Loading ToEPZ Average EPZ Bdryto Bdryto ETEto

Mobilization Time Bdry Speed Bdry ETE R.S. R.S. R.S.

School City/County Time(min) (min) (mi) (mph) (min) (hr:min) (mi.) (min) (hr:min)

ClaraByrdBakerElementarySchool JamesCity 180 15 6.0 5.6 64 4:20 27.4 36 4:55

DJMontagueElementarySchool JamesCity 180 15 0.2 2.1 4 3:20 22.9 31 3:50

JamestownHighSchool JamesCity 180 15 5.6 4.2 79 4:35 1.8 2 4:40

MatoakaElementarySchool JamesCity 180 15 3.1 2.5 75 4:30 3.4 5 4:35

ProvidenceClassicalSchool JamesCity 180 15 5.6 6.4 53 4:10 27.4 36 4:45

JamesRiverElementarySchool JamesCity 180 15 5.6 9.8 34 3:50 1.8 2 3:55

RawlsByrdElementarySchool JamesCity 180 15 5.3 6.1 52 4:10 9.6 13 4:20

GeneralStanfordElementarySchool NewportNews 145 15 5.3 9.6 33 3:15 4.5 6 3:20

BCCharlesElementarySchool NewportNews 145 15 1.5 12.6 7 2:50 7.5 10 3:00

FirstBaptistChurchDenbigh NewportNews 145 15 0.5 1.1 26 3:10 11.1 15 3:25

JenkinsElementarySchool NewportNews 145 15 0.8 33.0 1 2:45 7.4 10 2:55

MenchvilleHighSchool NewportNews 145 15 2.4 12.5 12 2:55 5.9 8 3:00

SanfordElementarySchool NewportNews 145 15 2.1 17.0 7 2:50 4.1 5 2:55

WarwickRiverChristianSchool NewportNews 145 15 2.3 4.1 34 3:15 11.1 15 3:30

DavidADutrowElementarySchool NewportNews 145 15 2.9 4.4 39 3:20 15.1 20 3:40

DavidADutrowElementarySchool NewportNews 145 15 2.9 4.4 39 3:20 15.1 20 3:40

DenbighHighSchool NewportNews 145 15 2.8 6.4 26 3:10 9.4 13 3:20

EpesElementarySchool NewportNews 145 15 2.7 4.0 41 3:25 2.9 4 3:25

GeorgeJMcIntoshElementary NewportNews 145 15 1.8 9.2 12 2:55 16.3 22 3:15

HolyTabernacleChristianAcademy NewportNews 145 15 1.9 3.2 37 3:20 10.9 15 3:35

JMDozierMiddleSchool NewportNews 145 15 5.5 23.4 14 2:55 14.2 19 3:15

LeeHallElementarySchool NewportNews 145 15 6.3 25.8 15 2:55 5.5 7 3:05

MaryPassageMiddleSchool NewportNews 145 15 4.1 7.2 34 3:15 7.4 10 3:25

OliverCGreenwoodElementarySchool NewportNews 145 15 5.8 8.0 43 3:25 3.5 5 3:30

RichneckElementarySchool NewportNews 145 15 4.6 11.4 24 3:05 3.7 5 3:10

RONelsonElementarySchool NewportNews 145 15 3.8 7.9 29 3:10 1.7 2 3:15

WoodsideHighSchool NewportNews 145 15 6.2 8.2 45 3:25 13.0 17 3:45



SurryPowerStation ES18 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Travel

Time

Travel Dist. from

Dist. Timeto EPZ EPZ

Driver Loading ToEPZ Average EPZ Bdryto Bdryto ETEto

Mobilization Time Bdry Speed Bdry ETE R.S. R.S. R.S.

School City/County Time(min) (min) (mi) (mph) (min) (hr:min) (mi.) (min) (hr:min)

BerkeleyMiddleSchool Williamsburg 145 15 3.5 2.7 80 4:00 4.3 6 4:10

CollegeofWilliamandMary Williamsburg 145 15 6.0 5.2 70 3:50 27.4 37 4:30

MatthewWhaleyElementarySchool Williamsburg 145 15 3.8 3.6 63 3:45 26.9 36 4:20

YorktownMiddleSchool York 110 15 14.7 9.1 96 3:45 26.9 36 4:20

MagruderElementarySchool York 110 15 4.0 3.3 72 3:20 26.9 36 3:55

YorkCountyHeadStart York 110 15 4.0 3.3 72 3:20 26.9 36 3:55

BrutonHighSchool York 110 15 2.0 4.6 27 2:35 26.9 36 3:10

WallerMillElementarySchool York 110 15 4.4 4.4 59 3:05 27.0 36 3:40

WilliamsburgHeadStart York 110 15 4.4 4.4 59 3:05 27.0 36 3:40

QueensLakeMiddleSchool York 110 15 4.1 4.2 58 3:05 26.9 36 3:40

MaximumforEPZ: 4:35 Maximum: 4:55

AverageforEPZ: 3:25 Average: 3:45



 



SurryPowerStation ES19 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table811.TransitDependentEvacuationTimeEstimates-GoodWeather

OneWave TwoWave

Route Travel Route

Route Travel Pickup Distance Timeto Driver Travel Pickup

Route Bus Mobilization Length Speed Time Time ETE toEAC EAC Unload Rest Time Time ETE

Number Number (min) (miles) (mph) (min) (min) (hr:min) (miles) (min) (min) (min) (min) (min) (hr:min)

1 1 180 9.1 44.3 12 30 3:45 7.6 10 5 10 34 30 5:15

2 1 180 9.6 44.1 13 30 3:45 8.6 12 5 10 37 30 5:20

3 1 180 17.9 44.8 24 30 3:55 9.4 13 5 10 60 30 5:55

4 1 180 12.3 44.5 17 30 3:50 16.5 22 5 10 55 30 5:55

5 1 180 13.9 41.3 20 30 3:50 16.1 21 5 10 59 30 6:00

6 1 180 24.2 45.0 32 30 4:05 3.4 5 5 10 69 30 6:05

7 1 180 11.7 33.3 21 30 3:55 4.3 6 5 10 42 30 5:30

8 1 180 14.4 45.0 19 30 3:50 2.7 4 5 10 42 30 5:25

9 1 180 19.8 44.0 27 30 4:00 3.4 5 5 10 57 30 5:50

10 13 180 15.4 43.3 21 30 3:55 5.1 7 5 10 49 30 5:40

11 13 180 19.6 43.1 27 30 4:00 5.1 7 5 10 59 30 5:55

12 12 180 10.5 21.6 29 30 4:00 4.8 6 5 10 35 30 5:30

13 13 180 4.1 8.2 30 30 4:00 4.8 6 5 10 19 30 5:15

14 12 180 4.4 4.2 64 30 4:35 27.4 36 5 10 49 30 6:50

15 12 180 3.6 15.8 14 30 3:45 27.3 36 5 10 47 30 5:55

16 12 180 4.2 7.1 35 30 4:05 27.3 36 5 10 48 30 6:15

17 12 180 5.2 7.1 45 30 4:15 27.3 36 5 10 51 30 6:30

18 12 180 6.2 6.7 56 30 4:30 27.3 36 5 10 53 30 6:45

14 180 16.5 42.1 24 30 3:55 13.9 19 5 10 63 30 6:05

19

57 180 16.5 42.1 24 30 3:55 13.9 19 5 10 63 30 6:05

14 180 16.1 41.7 23 30 3:55 10.2 14 5 10 57 30 5:55

20

57 180 16.1 41.7 23 30 3:55 10.2 14 5 10 57 30 5:55



 



SurryPowerStation ES20 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



OneWave TwoWave

Route Travel Route

Route Travel Pickup Distance Timeto Driver Travel Pickup

Route Bus Mobilization Length Speed Time Time ETE toEAC EAC Unload Rest Time Time ETE

Number Number (min) (miles) (mph) (min) (min) (hr:min) (miles) (min) (min) (min) (min) (min) (hr:min)

14 180 13.7 43.5 19 30 3:50 13.9 19 5 10 55 30 5:50

21

57 180 13.7 43.5 19 30 3:50 13.9 19 5 10 55 30 5:50

14 180 9.5 36.4 16 30 3:50 13.9 19 5 10 44 30 5:40

22

57 180 9.5 36.4 16 30 3:50 13.9 19 5 10 44 30 5:40

14 180 12.2 39.7 18 30 3:50 13.9 19 5 10 53 30 5:50

23

57 180 12.2 39.7 18 30 3:50 13.9 19 5 10 53 30 5:50

24 13 180 11.2 43.3 15 30 3:45 10.4 14 5 10 44 30 5:30

25 13 180 10.5 44.6 14 30 3:45 10.4 14 5 10 42 30 5:30

26 13 180 9.6 14.8 39 30 4:10 11.1 15 5 10 40 30 5:50

27 13 180 6.8 16.3 25 30 3:55 12.0 16 5 10 35 30 5:35

28 13 180 5.7 11.1 31 30 4:05 11.1 15 5 10 30 30 5:35

29 13 180 7.8 22.6 21 30 3:55 13.5 18 5 10 40 30 5:40

30 13 180 7.0 20.9 20 30 3:50 11.9 16 5 10 37 30 5:30

31 13 180 11.0 24.0 28 30 4:00 12.6 17 5 10 48 30 5:50

32 13 180 8.8 18.6 28 30 4:00 12.3 16 5 10 40 30 5:45

33 13 180 4.5 10.0 27 30 4:00 11.1 15 5 10 28 30 5:30

34 13 180 7.1 11.4 38 30 4:10 11.1 15 5 10 35 30 5:45

35 13 180 6.1 11.4 32 30 4:05 11.1 15 5 10 32 30 5:40

36 13 180 7.5 12.4 36 30 4:10 11.1 15 5 10 36 30 5:50

37 13 180 3.6 7.3 30 30 4:00 9.9 13 5 10 23 30 5:25

38 13 180 8.5 12.4 41 30 4:15 11.1 15 5 10 38 30 5:55

39 13 180 5.6 20.4 17 30 3:50 9.9 13 5 10 32 30 5:25

40 13 180 3.4 25.8 8 30 3:40 10.6 14 5 10 25 30 5:05

41 13 180 4.9 10.8 27 30 4:00 11.1 15 5 10 30 30 5:30

42 12 180 5.4 11.4 28 30 4:00 11.1 15 5 10 31 30 5:35

43 12 180 4.1 19.2 13 30 3:45 9.8 13 5 10 26 30 5:10

MaximumETE: 4:35 MaximumETE: 6:50

AverageETE: 4:00 AverageETE: 5:45



SurryPowerStation ES21 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



FigureH8.RegionR08



SurryPowerStation ES22 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

1 INTRODUCTION

Thisreportdescribestheanalysesundertakenandtheresultsobtainedbyastudytodevelop

Evacuation Time Estimates (ETE) for the Surry Power Station (SPS), located in Surry County,

Virginia.  ETE provide State and local governments with sitespecific information needed for

ProtectiveActiondecisionmaking.

In the performance of this effort, guidance is provided by documents published by Federal

Governmentalagencies.Mostimportantoftheseare:

  • Criteria for Development of Evacuation Time Estimate Studies, NUREG/CR7002,

November2011.

  • Criteria for Preparation and Evaluation of Radiological Emergency Response Plans

and Preparedness in Support of Nuclear Power Plants, NUREG 0654/FEMA REP 1,

Rev.1,November1980. 

  • Analysis of Techniques for Estimating Evacuation Times for Emergency Planning

Zones,NUREG/CR1745,November1980.

  • Development of Evacuation Time Estimates for Nuclear Power Plants, NUREG/CR 6863,January2005.

The work effort reported herein was supported and guided by local stakeholders who

contributedsuggestions,critiques,andthelocalknowledgebaserequired.Table11presentsa

summaryofstakeholdersandinteractions.

Table11.StakeholderInteraction

Stakeholder NatureofStakeholderInteraction

Meeting and communications to define data

requirements and set up contacts with local

Dominionemergencyplanningpersonnel

government agencies and obtain SPS emergency

plan

Meeting and communications to define data

City/CountyEmergencyManagementAgencies

requirementsandobtainfacilitydata

Meeting and communications to obtain

VirginiaDepartmentofEmergencyManagement

EmergencyPlan,GISfilesandfacilitydata



1.1 OverviewoftheETEProcess

Thefollowingoutlinepresentsabriefdescriptionoftheworkeffortinchronologicalsequence:

1. InformationGathering:
a. DefinedthescopeofworkindiscussionswithrepresentativesfromDominion.
b. Attended meeting with emergency planners from Isle of Wight, James City,



SurryPowerStation 11 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Surry,NewKentandYorkCounties,andtheCitiesofWilliamsburg,Hamptonand

NewportNewstoidentifyissuestobeaddressedandresourcesavailable.

c. Conducted a detailed field survey of the highway system and of area traffic

conditionswithintheEmergencyPlanningZone(EPZ)andShadowRegion.

d. Obtained demographic data from the 2010 census and Virginia Department of

EmergencyManagement.

e. ConductedarandomsampletelephonesurveyofEPZresidents.
f. Conducted a data collection effort to identify and describe schools, special

facilities, major employers, transportation providers, and other important

information.

2. Estimated distributions of Trip Generation times representing the time required by

variouspopulationgroups(permanentresidents,employees,andtransients)toprepare

(mobilize) for the evacuation trip.  These estimates are primarily based upon the

randomsampletelephonesurvey.

3. DefinedEvacuationScenarios.Thesescenariosreflectthevariationindemand,intrip

generationdistributionandinhighwaycapacities,associatedwithdifferentseasons,day

ofweek,timeofdayandweatherconditions.

4. Reviewed the existing traffic management plan to be implemented by local and state

police in the event of an incident at the plant. Traffic control is applied at specified

TrafficControlPoints(TCP)locatedwithintheEPZ.

5. Used existing PAZs to define Evacuation Regions. The EPZ is partitioned into 30 PAZs

along jurisdictional and geographic boundaries.  Regions are groups of contiguous

PAZs for which ETE are calculated.  The configurations of these Regions reflect wind

directionandtheradialextentoftheimpactedarea.EachRegion,otherthanthosethat

approximate circular areas, approximates a keyhole section within the EPZ as

recommendedbyNUREG/CR7002.

6. EstimateddemandfortransitservicesforpersonsatSpecialFacilitiesandfortransit dependentpersonsathome.
7. PreparedtheinputstreamsfortheDYNEVIIsystem.
a. Estimated the evacuation traffic demand, based on the available information

derivedfromCensusdata,andfromdataprovidedbylocalandstateagencies,

Dominionandfromthetelephonesurvey.

b. Appliedtheproceduresspecifiedinthe2010HighwayCapacityManual(HCM1)

to the data acquired during the field survey, to estimate the capacity of all

highwaysegmentscomprisingtheevacuationroutes.



1

HighwayCapacityManual(HCM2010),TransportationResearchBoard,NationalResearchCouncil,2010.



SurryPowerStation 12 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

c. Developed the linknode representation of the evacuation network, which is

usedasthebasisforthecomputeranalysisthatcalculatestheETE.

d. CalculatedtheevacuatingtrafficdemandforeachRegionandforeachScenario.
e. Specified selected candidate destinations for each origin (location of each

source where evacuation trips are generated over the mobilization time) to

support evacuation travel consistent with outbound movement relative to the

locationoftheSNP.

8. ExecutedtheDYNEVIImodeltodetermineoptimalevacuationroutingandcomputeETE

forallresidents,transientsandemployees(generalpopulation)withaccesstoprivate

vehicles.GeneratedacompletesetofETEforallspecifiedRegionsandScenarios.

9. DocumentedETEinformatsinaccordancewithNUREG/CR7002.
10. CalculatedtheETEforalltransitactivitiesincludingthoseforspecialfacilities(schools,

medicalfacilities,etc.),forthetransitdependentpopulationandforhomeboundspecial

needspopulation.

1.2 TheSurryPowerStationLocation

The SPS is located on the south bank of the James River in Surry County, in southeastern

Virginia. The site is approximately 45 miles northwest of Virginia Beach. The Emergency

PlanningZone(EPZ)consistsofpartsofSurry,IsleofWight,JamesCityandYorkCountiesand

theCitiesofNewportNewsandWilliamsburg.Figure11displaystheareasurroundingtheSPS.





SurryPowerStation 13 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure11.SPSLocation



SurryPowerStation 14 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

1.3 PreliminaryActivities

Theseactivitiesaredescribedbelow.

FieldSurveysoftheHighwayNetwork

KLDpersonneldrovetheentirehighwaysystemwithintheEPZandtheShadowRegionwhich

consists of the area between the EPZ boundary and approximately 15 milesradially from the

plant.Thecharacteristicsofeachsectionofhighwaywererecorded.Thesecharacteristicsare

showninTable12:



Table12.HighwayCharacteristics

x Numberoflanes x Postedspeed

x Lanewidth x Actualfreespeed

x Shouldertype&width x Abuttinglanduse

x Interchangegeometries x Controldevices

x Lanechannelization&queuing x Intersectionconfiguration(including

capacity(includingturnbays/lanes) roundaboutswhereapplicable)

x Geometrics:curves,grades(>4%) x Trafficsignaltype

x Unusualcharacteristics:Narrowbridges,sharpcurves,poorpavement,floodwarning

signs,inadequatedelineations,tollbooths,etc.



Videoandaudiorecordingequipmentwereusedtocaptureapermanentrecordofthehighway

infrastructure. No attempt was made to meticulously measure such attributes as lane width

and shoulder width; estimates of these measures based on visual observation and recorded

images were considered appropriate for the purpose of estimating the capacity of highway

sections.Forexample,Exhibit157intheHCMindicatesthatareductioninlanewidthfrom12

feet(thebasevalue)to10feetcanreducefreeflowspeed(FFS)by1.1mph-notamaterial

difference - for twolane highways. Exhibit 1530 in the HCM shows little sensitivity for the

estimatesofServiceVolumesatLevelofService(LOS)E(nearcapacity),withrespecttoFFS,for

twolanehighways.

The data from the audio and video recordings were used to create detailed geographical

information systems (GIS) shapefiles and databases of the roadway characteristics and of the

trafficcontroldevicesobservedduringtheroadsurvey;thisinformationwasreferencedwhile

preparingtheinputstreamfortheDYNEVIISystem.

As documented on page 155 of the HCM 2010, the capacity of a twolane highway is 1700

passenger cars per hour in one direction.  For freeway sections, a value of 2250 vehicles per

hourperlaneisassigned,asperExhibit1117oftheHCM2010.Theroadsurveyhasidentified

severalsegmentswhicharecharacterizedbyadversegeometricsontwolanehighwayswhich

are reflected in reduced values for both capacity and speed. These estimates are consistent

with the service volumes for LOS E presented in HCM Exhibit 1530.  These links may be



SurryPowerStation 15 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

identifiedbyreviewingAppendixK.LinkcapacityisaninputtoDYNEVIIwhichcomputesthe

ETE.FurtherdiscussionofroadwaycapacityisprovidedinSection4ofthisreport.

Trafficsignalsareeitherpretimed(signaltimingsarefixedovertimeanddonotchangewith

the traffic volume on competing approaches), or are actuated (signal timings vary over time

based on the changing traffic volumes on competing approaches). Actuated signals require

detectorstoprovidethetrafficdatausedbythesignalcontrollertoadjustthesignaltimings.

Thesedetectorsaretypicallymagneticloopsintheroadway,orvideocamerasmountedonthe

signal masts and pointed toward the intersection approaches. If detectors were observed on

theapproachestoasignalizedintersectionduringtheroadsurvey,detailedsignaltimingswere

not collected as the timings vary with traffic volume. TCPs at locations which have control

devicesarerepresentedasactuatedsignalsintheDYNEVIIsystem.

Ifnodetectorswereobserved,thesignalcontrolattheintersectionwasconsideredpretimed,

and detailed signal timings were gathered for several signal cycles. These signal timings were

inputtotheDYNEVIIsystemusedtocomputeETE,asperNUREG/CR7002guidance.

Figure 12 presents the linknode analysis network that was constructed to model the

evacuationroadwaynetworkintheEPZandShadowRegion.Thedirectionalarrowsonthelinks

andthenodenumbershavebeenremovedfromFigure12toclarifythefigure.Thedetailed

figuresprovidedinAppendixKdepicttheanalysisnetworkwithdirectionalarrowsshownand

nodenumbersprovided.Theobservationsmadeduringthefieldsurveywereusedtocalibrate

theanalysisnetwork.

TelephoneSurvey

A telephone survey was undertaken to gather information needed for the evacuation study.

Appendix F presents the survey instrument, the procedures used and tabulations of data

compiledfromthesurveyreturns.

Thesedatawereutilizedtodevelopestimatesofvehicleoccupancytoestimatethenumberof

evacuatingvehiclesduringanevacuationandtoestimateelementsofthemobilizationprocess.

Thisdatabasewasalsoreferencedtoestimatethenumberoftransitdependentresidents.

ComputingtheEvacuationTimeEstimates

TheoverallstudyprocedureisoutlinedinAppendixD.Demographicdatawereobtainedfrom

severalsources,asdetailedlaterinthisreport.Thesedatawereanalyzedandconvertedinto

vehicle demand data. The vehicle demand was loaded onto appropriate source links of the

analysisnetworkusingGISmappingsoftware.TheDYNEVIIsystemwasthenusedtocompute

ETEforallRegionsandScenarios.

AnalyticalTools

The DYNEV II System that was employed for this study is comprised of several integrated

computer models. One of these is the DYNEV (DYnamic Network EVacuation) macroscopic

simulation model, a new version of the IDYNEV model that was developed by KLD under

contractwiththeFederalEmergencyManagementAgency(FEMA).



SurryPowerStation 16 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure12.SPSLinkNodeAnalysisNetwork



SurryPowerStation 17 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

DYNEVIIconsistsoffoursubmodels:

x Amacroscopictrafficsimulationmodel(fordetails,seeAppendixC).

x ATripDistribution(TD),modelthatassignsasetofcandidatedestination(D)nodesfor

each origin (O) located within the analysis network, where evacuation trips are

generatedovertime.ThisestablishesasetofODtables.

x A Dynamic Traffic Assignment (DTA), model which assigns trips to paths of travel

(routes)whichsatisfytheODtables,overtime.TheTDandDTAmodelsareintegrated

toformtheDTRAD(DynamicTrafficAssignmentandDistribution)model,asdescribedin

AppendixB.

x AMyopicTrafficDiversionmodelwhichdivertstraffictoavoidintense,localcongestion,

ifpossible.

Another software product developed by KLD, named UNITES (UNIfied Transportation

EngineeringSystem)wasusedtoexpeditedataentryandtoautomatetheproductionofoutput

tables.

The dynamics of traffic flow over the network are graphically animated using the software

product, EVAN (EVacuation ANimator), developed by KLD. EVAN is GIS based, and displays

statisticssuchasLOS,vehiclesdischarged,averagespeed,andpercentofvehiclesevacuated,

output by the DYNEV II System. The use of a GIS framework enables the user to zoom in on

areasofcongestionandqueryroadname,townnameandothergeographicalinformation.

The procedure for applying the DYNEV II System within the framework of developing ETE is

outlinedinAppendixD.AppendixAisaglossaryofterms.

For the reader interested in an evaluation of the original model, IDYNEV, the following

referencesaresuggested:

x NUREG/CR4873 - Benchmark Study of the IDYNEV Evacuation Time Estimate

ComputerCode

x NUREG/CR4874 - The Sensitivity of Evacuation Time Estimates to Changes in Input

ParametersfortheIDYNEVComputerCode

Theevacuationanalysisproceduresarebasedupontheneedto:

x Route traffic along paths of travel that will expedite their travel from their respective

pointsoforigintopointsoutsidetheEPZ.

x Restrict movement toward the plant to the extent practicable, and disperse traffic

demandsoastoavoidfocusingdemandonalimitednumberofhighways.

x Move traffic in directions that are generally outbound, relative to the location of the

SPS.

DYNEVIIprovidesadetaileddescriptionoftrafficoperationsontheevacuationnetwork.This

description enables the analyst to identify bottlenecks and to develop countermeasures that

are designed to represent the behavioral responses of evacuees.  The effects of these



SurryPowerStation 18 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

countermeasuresmaythenbetestedwiththemodel.

1.4 ComparisonwithPriorETEStudy

Table 13 presents a comparison of the present ETE study with the 2001 study. The major

factorscontributingtothedifferencesbetweentheETEvaluesobtainedinthisstudyandthose

ofthepreviousstudycanbesummarizedasfollows:

x ChangeswhichcontributetoanincreaseintheETE:

o Vehicle occupancy and Tripgeneration rates are based on the results of a

telephonesurveyofEPZresidentswhereasthe2001studyusedaflatrateof2.5

peoplepervehicleandtripgenerationratesbasedondatafromevacuationsin

responsetochemicalspills.

o Voluntaryandshadowevacuationsareconsidered.

o Anincreaseinpermanentresidentpopulationofapproximately12%.

x ChangeswhichcontributetoadecreaseintheETE:

o Thehighwayrepresentationisfarmoredetailedandmorecompletethe2001

study had reduced capacity as only the major evacuation routes outlined in

publicinformationwereutilized.

o ETEaretimesforclearingtheareabeingevacuated;inthe2001studyallETEare

forclearingthe10mileEPZ,regardlessoftheareabeingevacuated.

o Dynamicevacuationmodeling.

o More detailed assessment of transient population numbers  percentage of

transientsinEPZestimatedbytimeofday,dayofweekandseason,byattraction

type,inordertominimizedoublecounting.

o This study distinguishes between resident and nonEPZ employees in order to

minimizedoublecounting.



Table13.ETEStudyComparisons

Topic PreviousETEStudy CurrentETEStudy

ArcGISSoftwareusing2010US

ResidentPopulation 2000USCensusData; Censusblocks;arearatiomethod

Basis Population=137,475 used.

Population=152,677

2.47persons/household,1.19

ResidentPopulation

2.5personspervehicle. evacuatingvehicles/household

VehicleOccupancy

yielding:2.08persons/vehicle.



SurryPowerStation 19 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Topic PreviousETEStudy CurrentETEStudy

Employeeestimatesbasedon

Employeeestimatesbasedoninformation informationprovidedabout

providedbyClaritasCorporationandphone majoremployersinEPZ,

Employee callstofacilities.Didnotconsiderpercent supplementedbyphonecallsto

Population thatarenotfromtheEPZ.Includedinthe employer.1.08employeesper

transienttotal. vehiclebasedontelephone

2.5employeespervehicle. surveyresults.

Employees=18,093

EstimatesbaseduponU.S.

Censusdataandtheresultsof

thetelephonesurvey.Atotalof

3,480peoplewhodonothave

accesstoavehicle,requiring122

TransitDependent

NoindependentETEfortransitdependents. busestoevacuate.Anadditional

Population

348homeboundspecialneeds

personsneededspecial

transportationtoevacuate(253

requireabus,95requirea

wheelchairaccessiblevehicle).

Transientestimatesbasedupon

informationprovidedabout

Transients=153,123(daytime),including transientattractionsinEPZ,

Transient employees. supplementedbyobservations

Population ofthefacilitiesduringtheroad

Vehicleoccupancy2.5

surveyandinternetresearch

Transients=69,342

Specialfacilitypopulationbased

oninformationprovidedbyeach

city/countywithintheEPZ.

SpecialFacilities SpecialFacilityPopulation=969 Currentcensus=1,588

Population Vehiclesoriginatingatspecialfacilities=0 BusesRequired=24

WheelchairBusRequired=24

AmbulancesRequired=56

Schoolpopulationbasedoninformation Schoolpopulationbasedon

providedbytheStateofVirginiaandcontact informationprovidedbyeach

SchoolPopulation withindividualfacilities. city/countywithintheEPZ.

Schoolenrollment=36,463 Schoolenrollment=31,426

Vehiclesoriginatingatschools=0 Busesrequired=437



SurryPowerStation 110 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Topic PreviousETEStudy CurrentETEStudy

Voluntary

20percentofthepopulation

evacuationfrom

withintheEPZ,butnotwithin

withinEPZinareas Notconsidered

theEvacuationRegion(see

outsideregiontobe

Figure21)

evacuated

20%ofpeopleoutsideoftheEPZ

ShadowEvacuation Notconsidered withintheShadowRegion

(seeFigure72)

NetworkSize 161links 2,157links;1,581nodes

Fieldsurveysconductedin

February2012.Roadsand

RoadwayGeometric Fieldsurveysconductedin2001. intersectionswerevideo

Data Roadcapacitiesbasedon2000HCM. archived.

Roadcapacitiesbasedon2010

HCM.

Directevacuationtodesignated

SchoolEvacuation NoseparateETEforschools.

EvacuationAssemblyCenters.

Assumptionthatthemajorityoftransit 50percentoftransitdependent

Ridesharing dependentpopulationwillevacuatewith personswillevacuatewitha

neighborsorfriends. neighbororfriend.

Basedonresidentialtelephone

surveyofspecificpretrip

mobilizationactivities:

TripGenerationcurveadaptedfromdata Residentswithcommuters

fromstudiesofevacuationsinresponseto returningleavebetween30and

largescalechemicalspills.Samemobilization 285minutes.

TripGenerationfor curveforallpopulationgroups. Residentswithoutcommuters

Evacuation

Evacueesstarttheirtripbetween15and130 returningleavebetween0and

minutesaftertheadvisorytoevacuate. 240minutes.

 Employeesandtransientsleave

between0and105minutes.

Alltimesmeasuredfromthe

AdvisorytoEvacuate.

Normal,Rain,orSnow.The

NormalorAdverse(snow/ice).Thecapacity

capacityandfreeflowspeedof

andfreeflowspeedofalllinksinthenetwork

Weather alllinksinthenetworkare

arereducedby40%inforAdverseweather

reducedby10%intheeventof

conditions.

rainand20%forsnow.

DYNEVIISystem-Version

Modeling EvacuationSimulationModel(ESIM)

4.0.11.0



SurryPowerStation 111 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Topic PreviousETEStudy CurrentETEStudy

NewportNewsFallFestivalof

Nospecialeventbutonescenarioconsidered Folklife.

SpecialEvents

contraflowonI64 SpecialEventPopulation=

26,250additionaltransients

41Regions(centralsectorwind

directionandeachadjacent

7geographicscenarios,2weatherconditions

EvacuationCases sectortechniqueused)and14

producing14uniquecases.

Scenariosproducing574unique

cases.

ETEreportedfor90thand100th

ETEreportedfor90thpercentileforafullEPZ

EvacuationTime percentilepopulation.Results

(northandsouthofriver),5mileradius,2 EstimatesReporting presentedbyRegionand

mileradius,and4quadrants.

Scenario.

WinterWeekdayMidday,

EvacuationTime Peakseason,daytime,GoodWeather:8:11 GoodWeather:3:40

Estimatesforthe northofJamesRiver;1:01southofJames



entireEPZ,90th River.

percentile  SummerWeekend,Midday,

GoodWeather:3:50





SurryPowerStation 112 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

2 STUDYESTIMATESANDASSUMPTIONS

This section presents the estimates and assumptions utilized in the development of the

evacuationtimeestimates.

2.1 DataEstimates

1. PopulationestimatesarebaseduponCensus2010data.
2. DataobtainedfromtheUSCensusLongitudinalEmployerHouseholdDynamicsfromthe

OnTheMap Census analysis tool1 were used to estimate the number of employees

commuting into the EPZ.  The 2010 Workplace Area Characteristic data was also

obtained from this website and was used to determine the number of employees by

CensusBlockwithintheSPSEPZ.

3. Population estimates at special facilities are based on available data from city/county

emergencymanagementagenciesandfromphonecallstospecificfacilities.

4. Roadway capacity estimates are based on field surveys and the application of the

HighwayCapacityManual2010.

5. Populationmobilizationtimesarebasedonastatisticalanalysisofdataacquiredfroma

randomsampletelephonesurveyofEPZresidents(seeSection5andAppendixF).

6. The relationship between resident population and evacuating vehicles is developed

from the telephone survey. Average values of 2.47 persons per household and 1.19

evacuating vehicles per household are used.  The relationship between persons and

vehiclesfortransientsandemployeesisasfollows:

a. Employees:1.08employeespervehicle(telephonesurveyresults)forallmajor

employers.

b. Parks: Vehicle occupancy varies based upon data gathered from local transient

facilities.

c. SpecialEvents:AssumedtransientsattendingtheNewportNewsFallFestivalof

Folklife travel as families/households in a single vehicle, and used the average

householdsizeof2.47personstoestimatethenumberofvehicles.





1

http://onthemap.ces.census.gov



SurryPowerStation 21 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

2.2 StudyMethodologicalAssumptions

1. ETEarepresentedfortheevacuationofthe90thand100thpercentilesofpopulationfor

each Region and for each Scenario. The percentile ETE is defined as the elapsed time

fromtheAdvisorytoEvacuateissuedtoa specificRegionoftheEPZ,tothetimethat

Regionisclearoftheindicatedpercentileofevacuees.ARegionisdefinedasagroupof

PAZs that is issued an Advisory to Evacuate.  A scenario is a combination of

circumstances,includingtimeofday,dayofweek,season,andweatherconditions.

2. The ETE are computed and presented in tabular format and graphically, in a format

compliantwithNUREG/CR7002.

3. Evacuationmovements(pathsoftravel)aregenerallyoutboundrelativetotheplantto

theextentpermittedbythehighwaynetwork.Allmajorevacuationroutesareusedin

theanalysis.

4. Regionsaredefinedbytheunderlyingkeyholeorcircularconfigurationsasspecifiedin

Section1.4ofNUREG/CR7002.TheseRegions,asdefined,displayirregularboundaries

reflectingthegeographyofthePAZsincludedwithintheseunderlyingconfigurations.

5. As indicated in Figure 22 of NUREG/CR7002, 100% of people within the impacted

keyhole evacuate. 20% of those people within the EPZ, not within the impacted

keyhole,willvoluntarilyevacuate.20%ofthosepeoplewithintheShadowRegionwill

voluntarilyevacuate.SeeFigure21foragraphicalrepresentationoftheseevacuation

percentages.SensitivitystudiesexploretheeffectonETEofincreasingthepercentage

ofvoluntaryevacueesintheShadowRegion(seeAppendixM).

6. A total of 14 Scenarios representing different temporal variations (season, time of

day,dayofweek)andweatherconditionsareconsidered.TheseScenariosareoutlined

inTable21.

7. Scenario14considerstheclosureofasinglelanewestboundonInterstate64fromthe

interchange with Jefferson Ave (Exit 24) to the end of the analysisnetwork at the

interchangewithSR607/CroakerRd(Exit231).

8. The models of the IDYNEV System were recognized as state of the art by the Atomic

Safety & Licensing Board (ASLB) in past hearings. (Sources: Atomic Safety & Licensing

Board Hearings on Seabrook and Shoreham; Urbanik2). The models have continuously

beenrefinedandextendedsincethosehearingsandwereindependentlyvalidatedbya

consultant retained by the NRC.  The new DYNEV II model incorporates the latest

technology in traffic simulation and in dynamic traffic assignment. .  The DYNEV II

SystemisusedtocomputeETEinthisstudy.



 



2

Urbanik,T.,et.al.BenchmarkStudyoftheIDYNEVEvacuationTimeEstimateComputerCode,NUREG/CR4873,

NuclearRegulatoryCommission,June,1988.



SurryPowerStation 22 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table21.EvacuationScenarioDefinitions

Dayof Timeof

Scenario Season3 Week Day Weather Special

1 Summer Midweek Midday Good None

2 Summer Midweek Midday Rain None

3 Summer Weekend Midday Good None

4 Summer Weekend Midday Rain None

Midweek,

5 Summer Evening Good None

Weekend

6 Winter Midweek Midday Good None

7 Winter Midweek Midday Rain None

8 Winter Midweek Midday Snow None

9 Winter Weekend Midday Good None

10 Winter Weekend Midday Rain None

11 Winter Weekend Midday Snow None

Midweek,

12 Winter Evening Good None

Weekend

13 NewportNewsFall

Winter Weekend Midday Good

FestivalofFolklife

14 RoadwayImpact:WB

Summer Midweek Midday Good

LaneClosureonI64







3

Winterassumesthatschoolisinsession(alsoappliestospringandautumn).Summerassumesthatschoolisnot

insession.





SurryPowerStation 23 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure21.VoluntaryEvacuationMethodology



SurryPowerStation 24 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

2.3 StudyAssumptions

1. ThePlanningBasisAssumptionforthecalculationofETEisarapidlyescalatingaccident

thatrequiresevacuation,andincludesthefollowing:

a. AdvisorytoEvacuateisannouncedcoincidentwiththesirennotification.
b. Mobilization of the general population will commence within 15 minutes after

sirennotification.

c. ETEaremeasuredrelativetotheAdvisorytoEvacuate.
2. ItisassumedthateveryonewithinthegroupofPAZsformingaRegionthatisissuedan

Advisory to Evacuate will, in fact, respond and evacuate in general accord with the

plannedroutes.

3. 57percentofthehouseholdsintheEPZhaveatleast1commuter;60percentofthose

householdswithcommuterswillawaitthereturnofacommuterbeforebeginningtheir

evacuation trip, based on the telephone survey results. Therefore 34 percent (57% x

60%=34%)ofEPZhouseholdswillawaitthereturnofacommuter,priortobeginning

theirevacuationtrip.

4. TheETEwillalsoincludeconsiderationofthrough(ExternalExternal)tripsduringthe

timethatsuchtrafficispermittedtoentertheevacuatedRegion.Normaltrafficflow

isassumedtobepresentwithintheEPZatthestartoftheemergency.

5. AccessControlPoints(ACP)willbestaffedwithinapproximately120minutesfollowing

thesirennotifications,todiverttrafficattemptingtoentertheEPZ.Earlieractivationof

ACPlocationscoulddelayreturningcommuters.Itisassumedthatnothroughtrafficwill

entertheEPZafterthis120minutetimeperiod.

6. Traffic Control Points (TCP) within the EPZ will be staffed over time, beginning at the

Advisory to Evacuate.  Their number and location will depend on the Region to be

evacuatedandresourcesavailable.TheobjectivesoftheseTCPare:

a. Facilitatethemovementsofall(mostlyevacuating)vehiclesatthelocation.
b. Discourageinadvertentvehiclemovementstowardstheplant.
c. Provideassuranceandguidancetoanytravelerwhoisunsureoftheappropriate

actionsorrouting.

d. Actaslocalsurveillanceandcommunicationscenter.
e. Provideinformationtotheemergencyoperationscenter(EOC)asneeded,based

ondirectobservationoroninformationprovidedbytravelers.



In calculating ETE, it is assumed that evacuees will drive safely, travel in

directionsidentifiedintheplan,andobeyallcontroldevicesandtrafficguides.

 



SurryPowerStation 25 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

7. Buseswillbeusedtotransportthosewithoutaccesstoprivatevehicles:
a. Ifschoolsareinsession,transport(buses)willevacuatestudentsdirectlytothe

designatedreceivingschools.

b. It is assumed parents will pick up children at day care centers prior to

evacuation.

c. Buses, wheelchair vans and ambulances will evacuate patients at medical

facilitiesandatanyseniorfacilitieswithintheEPZ,asneeded.

d. Transitdependentgeneralpopulationwillbeevacuatedtoassemblycenters.
e. Schoolchildren, if school is in session, are given priority in assigning transit

vehicles.

f. BusmobilizationtimeisconsideredinETEcalculations.
g. Analysis of the number of required roundtrips (waves) of evacuating transit

vehiclesispresented.

h. Transport of transitdependent evacuees from assembly centers to mass care

sheltersisnotconsideredinthisstudy.

8. Provisions are made for evacuating the transitdependent portion of the general

population to assembly centers by bus, based on the assumption that some of these

peoplewillridesharewithfamily,neighbors,andfriends,thusreducingthedemandfor

buses. We assume that the percentage of people who rideshare is 50 percent. This

assumptionisbaseduponreportedexperienceforotheremergencies4,andonguidance

inSection2.2ofNUREG/CR7002.

9. Two types of adverse weather scenarios are considered. Rain may occur for either

winterorsummerscenarios;snowoccursinwinterscenariosonly.Itisassumedthatthe

rainorsnowbeginsearlierorataboutthesametimetheevacuationadvisoryisissued.

No weatherrelated reduction in the number of transients who may be present in the

EPZisassumed.Itisassumedthatroadsarepassableandthattheappropriateagencies

areplowingtheroadsastheywouldnormallywhensnowing.

Adverseweatherscenariosaffectroadwaycapacityandthefreeflowhighwayspeeds.

The factors applied for the ETE study are based on recent research on the effects of

weatheronroadwayoperations5;thefactorsareshowninTable22.







 



4

InstituteforEnvironmentalStudies,UniversityofToronto,THEMISSISSAUGAEVACUATIONFINALREPORT,June

1981.Thereportindicatesthat6,600peopleofatransitdependentpopulationof8,600peoplesharedrideswith

otherresidents;aridesharerateof76%(Page510).

5

 Agarwal, M. et. al. Impacts of Weather on Urban Freeway Traffic Flow Characteristics and Facility Capacity,

Proceedings of the 2005 MidContinent Transportation Research Symposium, August, 2005. The results of this

paperareincludedasExhibit1015intheHCM2010.



SurryPowerStation 26 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



10. Schoolbusesusedtotransportstudentsareassumedtotransport70studentsperbus

forelementaryschoolsand50studentsperbusformiddleandhighschools,basedon

discussionswithcity/countyofficesofemergencymanagement.Transitbusesusedto

transportthetransitdependentgeneralpopulationareassumedtotransport30people

per bus. Based on information provided by local emergency planners, specialized

wheelchair buses were assumed to carry 20 wheelchair bound persons. Wheelchair

accessiblebuseshavetheabilitytodisplace2regularseatsforspaceforonewheelchair.

Thiscanbedoneforupto4seatsor2wheelchairs.





Table22.ModelAdjustmentforAdverseWeather

Highway FreeFlow

Scenario Capacity* Speed* MobilizationTimeforGeneralPopulation

Rain 90% 90% NoEffect

Cleardrivewaybeforeleavinghome

Snow 80% 80%

(SeeFigureF14)

  • Adverseweathercapacityandspeedvaluesaregivenasapercentageofgood

weatherconditions.Roadsareassumedtobepassable.





























SurryPowerStation 27 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

3 DEMANDESTIMATION

The estimates of demand, expressed in terms of people and vehicles, constitute a critical

elementindevelopinganevacuationplan.Theseestimatesconsistofthreecomponents:

1. An estimate of population within the EPZ, stratified into groups (resident, employee,

transient).

2. An estimate, for each population group, of mean occupancy per evacuating

vehicle.Thisestimateisusedtodeterminethenumberofevacuatingvehicles.

3. Anestimateofpotentialdoublecountingofvehicles.

Appendix E presents much of the source material for the population estimates. Our primary

source of population data, the 2010 Census, however, is not adequate for directly estimating

sometransientgroups.

Throughout the year, vacationers and tourists enter the EPZ. These nonresidents may dwell

withintheEPZforashortperiod(e.g.afewdaysoroneortwoweeks),ormayenterandleave

within one day. Estimates of the size of these population components must be obtained, so

thattheassociatednumberofevacuatingvehiclescanbeascertained.

Thepotentialfordoublecountingpeopleandvehiclesmustbeaddressed.Forexample:

x AresidentwhoworksandshopswithintheEPZcouldbecountedasaresident,againas

anemployeeandonceagainasashopper.

x Avisitorwhostaysatahotelandspendstimeatapark,thengoesshoppingcouldbe

countedthreetimes.

Furthermore,thenumberofvehiclesatalocationdependsontimeofday.Forexample,motel

parkinglotsmaybefullatdawnandemptyatnoon.Similarly,parkinglotsatareaparks,which

arefullatnoon,maybealmostemptyatdawn.Estimatingcountsofvehiclesbysimplyadding

upthecapacitiesofdifferenttypesofparkingfacilitieswilltendtooverestimatethenumberof

transientsandcanleadtoETEthataretooconservative.

Analysis of the population characteristics of the SPS EPZ indicates the need to identify three

distinctgroups:

x PermanentresidentspeoplewhoareyearroundresidentsoftheEPZ.

x Transients  people who reside outside of the EPZ who enter the area for a specific

purpose(shopping,recreation)andthenleavethearea.

x Employees  people who reside outside of the EPZ and commute to businesses within

theEPZonadailybasis.

Estimates of the population and number of evacuating vehicles for each of the population

groupsarepresentedforeachPAZandbypolarcoordinaterepresentation(populationrose).

TheSPSEPZissubdividedinto30PAZs.TheEPZisshowninFigure31.



SurryPowerStation 31 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

3.1 PermanentResidents

The primary source for estimating permanent population is the latest U.S. Census data. The

average household size (2.47 persons/household - See Figure F1) and the number of

evacuating vehicles per household (1.19 vehicles/household - See Figure F8) were adapted

fromthetelephonesurveyresults.

PopulationestimatesarebaseduponCensus2010data.Theestimatesarecreatedbycutting

thecensusblockpolygonsbythePAZandEPZboundaries.Aratiooftheoriginalareaofeach

censusblockandtheupdatedarea(aftercutting)ismultipliedbythetotalblockpopulationto

estimatewhatthepopulationiswithintheEPZ.Thismethodologyassumesthatthepopulation

is evenly distributed across a census block. Table 31 provides the permanent resident

populationwithintheEPZ,byPAZbasedonthismethodology.

The year 2010 permanent resident population is divided by the average household size and

then multiplied by the average number of evacuating vehicles per household in order to

estimate number of vehicles. Permanent resident population and vehicle estimates are

presentedinTable32.Figure32andFigure33presentthepermanentresidentpopulation

and permanent resident vehicle estimates by sector and distance from SPS. This rose was

constructedusingGISsoftware.

Itcanbearguedthatthisestimateofpermanentresidentsoverstates,somewhat,thenumber

of evacuating vehicles, especially during the summer. It is certainly reasonable to assert that

some portion of the population would be on vacation during the summer and would travel

elsewhere.Aroughestimateofthisreductioncanbeobtainedasfollows:

x Assume50percentofallhouseholdsvacationforatwoweekperiodoverthesummer.

x Assume these vacations, in aggregate, are uniformly dispersed over 10 weeks, i.e. 10

percentofthepopulationisonvacationduringeachtwoweekinterval.

x Assumehalfofthesevacationersleavethearea.

Onthisbasis,thepermanentresidentpopulationwouldbereducedby5percentinthesummer

andbyalesseramountintheoffseason.Giventheuncertaintyinthisestimate,weelectedto

applynoreductionsinpermanentresidentpopulationforthesummerscenariostoaccountfor

residentswhomaybeoutofthearea.



SurryPowerStation 32 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure31.SPSEPZ



SurryPowerStation 33 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table31.EPZPermanentResidentPopulation

2000 2010

PAZ

Population Population 1 262 244

2 810 884

3 480 514

4 233 236

5 566 618

6 239 177

7 233 262

8 0 0

9 0 603

10 199 200

11 94 82

12 68 95

13 1,093 1,167

14 5,738 5,914

15 25,625 25,003

16 46,010 45,649

17 1,505 1,974

18A 1,317 1,374

18B 4,094 4,153

18C 3,331 3,960

18D 63 71

19A 4,739 6,214

19B 591 1,033

20A 690 877

20B 1,579 2,521

21 11,885 13,384

22A 965 1,305

22B 2,972 3,460

23 12,351 19,627

24 8,417 11,076

TOTAL 136,149 152,677

EPZPopulation

12.14%

Growth:

 



SurryPowerStation 34 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Table32.PermanentResidentPopulationandVehiclesbyPAZ

2010

2010 Resident

PAZ Population Vehicles

1 244 115

2 884 424

3 514 244

4 236 113

5 618 297

6 177 85

7 262 126

8 0 0

9 603 287

10 200 94

11 82 37

12 95 44

13 1,167 558

14 5,914 2,745

15 25,003 12,048

16 45,649 21,985

17 1,974 950

18A 1,374 661

18B 4,153 2,000

18C 3,960 1,907

18D 71 34

19A 6,214 2,993

19B 1,033 494

20A 877 421

20B 2,521 1,213

21 13,384 7,034

22A 1,305 627

22B 3,460 1,663

23 19,627 9,450

24 11,076 5,334

TOTAL 152,677 73,983





SurryPowerStation 35 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure32.PermanentResidentPopulationbySector



SurryPowerStation 36 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure33.PermanentResidentVehiclesbySector 



SurryPowerStation 37 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

3.2 ShadowPopulation

A portion of the population living outside the evacuation area extending to 15 miles radially

fromtheSPS(intheShadowRegion)mayelecttoevacuatewithouthavingbeeninstructedto

doso.BaseduponNUREG/CR7002guidance,itisassumedthat20percentofthepermanent

resident population, based on U.S. Census Bureau data, in this Shadow Region will elect to

evacuate.

Shadow population characteristics (household size, evacuating vehicles per household,

mobilization time) are assumed to be the same as that for the EPZ permanent resident

population.Table33,Figure34,andFigure35presentestimatesoftheshadowpopulation

andvehicles,bysector.

Table33.ShadowPopulationandVehiclesbySector

Evacuating

Sector Population

Vehicles

N 2,961 1,424

NNE 1,588 760

NE 6,443 3,100

ENE 7,261 3,497

E 23,238 11,189

ESE 60,115 28,947

SE 3,014 1,452

SSE 10,531 5,071

S 1,372 659

SSW 443 205

SW 483 229

WSW 324 153

W 292 138

WNW 266 124

NW 19 9

NNW 11,165 5,374

TOTAL 129,515 62,331



 



SurryPowerStation 38 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure34.ShadowPopulationbySector



SurryPowerStation 39 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure35.ShadowVehiclesbySector



SurryPowerStation 310 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

3.3 TransientPopulation

Transient population groups are defined as those people (who are not permanent residents,

nor commuting employees) who enter the EPZ for a specific purpose (shopping, recreation).

Transients may spend less than one day or stay overnight at camping facilities, hotels and

motels.

3.3.1 TransientAttractions

TheSPSEPZhasanumberofareasandfacilitiesthatattractanestimated66,367transientsin

26,542vehiclesatpeaktimes.Thesefacilitiesaregroupedintothefollowingcategories:

x Lodgingfacilities

x Marinas

x Campgrounds

x Golfcoursesandcountryclubs

x Historicalsites

x Parksandotherrecreationalattractions

80 lodging facilities were identified within the EPZ, the majority being in The City of

Williamsburg.Dataprovidedbythecities/countiesandVDEM,weresupplementedwithphone

calls to individual facilities. The number of rooms, people per room, percentage of occupied

roomsandvehiclesperroomatpeaktimes,weredeterminedforeachfacility.Thesedatawere

usedtoestimatethenumberoftransientsandevacuatingvehiclesateachofthesefacilities.A

totalof28,202transientsin13,109vehiclesareassignedtolodgingfacilitiesintheEPZ.

OnemarinawasidentifiedinNewportNews.14transientsand14vehicleshavebeenassigned

tothisfacility.

From data provided by the cities/counties and supplemental phone calls, it is estimated that

464transientsin188vehiclesareincampsitestheEPZatpeaktimes.

The largest transient attraction in the EPZ is Busch Gardens in James City County which can

have over 20,000 transients on site on a peak day.  Colonial Williamsburg Regional Visitor

Center has a large parking lot and is the origin of most transient vehicle trips for transients

visitingColonialWilliamsburg.1,650vehiclesareassignedtothistheVisitorCenterandnone

areassignedtothehistoricalVillageofWilliamsburg,sincethelatterisapedestrianonlyarea.

A total of 30,335 transients and 11,357 vehicles have been assigned to parks and other

recreationalattractions.

There are nine golf courses within the EPZ.  Surveys of golf courses were conducted to

determine the number of golfers and vehicles at each facility on a typical peak day, and the

number of golfers that travel from outside the area.  A total of 2,803 transients and 1,183

vehiclesareassignedtogolfcourseswithintheEPZ.

ThemajorhistoricalsitesintheEPZareColonialWilliamsburgandtheJamestownSettlement.

Atotalof5,000transientsand900vehicleswereassignedtothesettlement.

AppendixEsummarizesthetransientdatathatwasestimatedfortheEPZ.TableE3presents



SurryPowerStation 311 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

thenumberoftransientsvisitingparksandotherrecreationalareas,whileTableE4presents

thenumberoftransientsatlodgingfacilitieswithintheEPZ.

Table34presentstransientpopulationandtransientvehicleestimatesbyPAZ.Figure36and

Figure37presentthesedatabysectoranddistancefromtheplant.

3.3.2 CollegeStudents

TheCollegeofWilliamandMaryundergraduateenrollmentconsistsof4,428residentstudents

and3,772commutingstudents.

Residentstudentsarecountedinthecensusaspermanentresidentsandareaccountedforin

Table32.55%ofresidentstudentshavevehiclesthereforethenumberofresidentstudents

requiringtransportationinanevacuationisestimatedas(10.55)x4,428x0.5=996.(A50%

rideshare percentage is applied for all transit dependents).  Using a bus occupancy of 30, 34

buses (68 passenger car equivalent) are required.  The ETE for transit dependent students is

coveredinSection8.4.

The commuting students consist of those who commute from inside the EPZ and those who

commutefromoutsidetheEPZ.Theformer,arepartoftheEPZresidentpopulationtotal;the

latter (transient commuters) are considered as a unique population group, using the

transient/employeetripgenerationdistributionbuttheschoolscenariopercentages.Forthese

nonEPZ commuting students, an average vehicle occupancy of 1.08 (obtained from the

telephonesurvey,seeFigureF7)isassumedtotaling2,440/1.08=2,259vehicles.

Collegestudentsareaccountedforinthereporttablesasfollows:

x ThetotalenrollmentnumberforthecollegeisshowninTableE1.

x Thetransientcommuterstudentsandtheirvehiclesareincludedinthetransientstable,

Table34.

x In the summary population table, Table 37, the Commuter Students column shows

thetransientcommuterstudentsonly;thebalanceofthestudentsareincludedunder

Schools.

x In the vehicle summary table, Table 38, the transient commuter student vehicles are

shownintheCommuterStudentscolumnandtheSchoolscolumnincludesthe68

transitdependentstudentbusesthesebusesarealsoshowninTable82.(EPZresident

studentsvehiclesareincludedintheresidentsvehiclestotal.)

x In the vehicle estimates by scenario table, Table 64, the transient commuter student

vehiclesareshownintheCommuterStudentscolumnandtheSchoolBusescolumn

includesthetransitdependentstudentbuses.





 



SurryPowerStation 312 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table34.SummaryofTransientsandTransientVehicles

Transient

PAZ Transients Vehicles

1 0 0

2 0 0

3 0 0

4 0 0

5 84 34

6 0 0

7 0 0

8 0 0

9 0 0

10 0 0

11 0 0

12 0 0

13 0 0

14 175 112

15 14 14

16 2,002 834

17 0 0

18A 1,272 577

18B 22,915 9,150

18C 0 0

18D 0 0

19A 6,977 2,148

19B 0 0

20A 6,394 3,051

20B 83 35

21 19,162 9,637

22A 400 125

22B 84 39

23 3,174 1,526

24 6,606 1,762

TOTAL 69,342 29,044



 



SurryPowerStation 313 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure36.TransientPopulationbySector 



SurryPowerStation 314 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure37.TransientVehiclesbySector 



SurryPowerStation 315 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

3.4 Employees

EmployeeswhoworkwithintheEPZfallintotwocategories:

x ThosewholiveandworkintheEPZ

x ThosewholiveoutsideoftheEPZandcommutetojobswithintheEPZ.

Thoseofthefirstcategoryarealreadycountedaspartofthepermanentresidentpopulation.

Toavoiddoublecounting,wefocusonlyonthoseemployeescommutingfromoutsidetheEPZ

whowillevacuatealongwiththepermanentresidentpopulation.

Data obtained from the US Census Longitudinal EmployerHousehold Dynamics from the

OnTheMapCensusanalysistool1wereusedtoestimatethenumberofemployeescommuting

intotheEPZ.The2010WorkplaceAreaCharacteristicdatawasalsoobtainedfromthiswebsite

andwasusedtodeterminethenumberofemployeesbyCensusBlockwithintheSPSEPZ.

SincenotallemployeesareworkingatfacilitieswithintheEPZatonetime,amaximumshift

reduction was applied.  The Work Area Profile Report, also output by the OnTheMap

Application, breaks down jobs within the EPZ by industry sector.  Assuming maximum shift

employmentoccursMondaythroughFridaybetween9AMand5PM,thefollowingjobstake

placeoutsidethetypical95workday:

  • Manufacturing-7.5%ofjobs;takesplaceinshiftsover24hours.
  • Arts,Entertainment,andRecreation-5.9%ofjobs;takesplaceineveningsandon

weekends.

  • AccommodationsandFoodServices-17.5%ofjobs;peaksintheevenings.

ThemaximumshiftintheEPZisabout69.1%(100%7.5%5.9%17.5%=69.1%).Thisvalue

wasappliedtothetotalemploymentin2010torepresentthemaximumnumberofemployees

presentintheEPZatanyonetime.TheInflow/OutflowReportfortheSPSEPZwasthenused

to calculate the percent of employees that work within the EPZ but live outside.  This value,

64.7%,wasappliedtothemaximumshiftemployeevaluestocomputethenumberofpeople

commutingintotheEPZtoworkatpeaktimes.

Table35presentsnonEPZResidentemployeeandvehicleestimatesbyPAZ.TheEmployees

(MaxShift)ismultipliedbythepercentNonEPZfactortodeterminethenumberofemployees

whoarenotresidentsoftheEPZ.Avehicleoccupancyof1.08employeespervehicle,obtained

fromthetelephonesurvey(SeeFigureF7),wasusedtodeterminethenumberofevacuating

employeevehiclesforallmajoremployers.

Figure38andFigure39presentthesedatabysector. 



1

http://onthemap.ces.census.gov



SurryPowerStation 316 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table35.SummaryofNonEPZResidentEmployeesandEmployeeVehicles

MaxShiftEmploymentusedforIndividualEmployers

2010

NonEPZ Employee

Major Employment

MaxShift Employees Vehicles(1.08

Employer (50+

(98%) Emp/Veh)

Employees)

SPS 970 480 470 435

2010

NonEPZ Employee

Employment MaxShift

PAZ Employees Vehicles(1.08

(50+ (69.1%)

(64.7%) Emp/Veh)

Employees)

1 135 93 60 56

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 84 58 38 35

6 0 0 0 0

7 0 0 0 0

8 0 0 0 0

9 0 0 0 0

10 0 0 0 0

11 0 0 0 0

12 0 0 0 0

13 0 0 0 0

14 2460 2029 1313 1216

15 2870 1982 1281 1186

16 4129 2853 1847 1708

17 580 400 259 240

18A 167 116 75 69

18B 3585 2478 1605 1486

18C 231 160 103 95

18D 1137 786 508 471

19A 1772 1226 792 733

19B 2918 2395 1550 1435

20A 645 446 290 268

20B 0 0 0 0

21 11107 7672 4966 4595

22A 0 0 0 0

22B 199 138 90 84

23 5737 3965 2566 2378

24 629 434 280 259

TOTAL: 39,355 27,711 18,093 16,749



SurryPowerStation 317 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure38.EmployeePopulationbySector 



SurryPowerStation 318 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure39.EmployeeVehiclesbySector 



SurryPowerStation 319 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

3.5 MedicalFacilities

Datawereprovidedbythecities/countiesforeachofthemedicalfacilitieswithintheEPZ.Table

E2 in Appendix E summarizes the data gathered. Section 8 details the evacuation of medical

facilities and their patients. The number and type of evacuating vehicles that need to be

provideddependonthepatients'stateofhealth.Vehiclecapacitiesareestimatedasfollows:

x Regularbusesupto30ambulatorypeople.

x Wheelchairbuses-upto20wheelchairboundpeople.

x Ambulances,upto2bedriddenpeople.

3.6 TotalDemandinAdditiontoPermanentPopulation

Vehicles will be traveling on I64 through the EPZ (externalexternal trips) at the time of an

accident.  After the Advisory to Evacuate is announced, these throughtravelers will also

evacuate. It is assumed that this traffic will continue to enter the EPZ during the first 120

minutesfollowingtheAdvisorytoEvacuate.

AverageAnnualDailyTraffic(AADT)datawasobtainedfromFederalHighwayAdministrationto

estimatethenumberofvehiclesperhouronI64.TheAADTwasmultipliedbytheKFactor,

which is the proportion of the AADT on a roadway segment or link during the design hour,

resultinginthedesignhourvolume(DHV).Thedesignhourisusuallythe30thhighesthourly

trafficvolumeoftheyear,measuredinvehiclesperhour(vph).TheDHVisthenmultipliedby

theDFactor,whichistheproportionoftheDHVoccurringinthepeakdirectionoftravel(also

knownasthedirectionalsplit).Theresultingvaluesarethedirectionaldesignhourlyvolumes

(DDHV),andarepresentedinTable36,foreachoftheroutesconsidered.TheDDHVisthen

multipliedby2hours(accesscontrolpoints-ACP-areassumedtobeactivatedat120minutes

aftertheadvisorytoevacuate)toestimatethetotalnumberofexternalvehiclesloadedonthe

analysisnetwork.Asindicated,thereare14,256vehiclesenteringtheEPZasexternalexternal

tripspriortotheactivationoftheACPandthediversionofthistraffic.Thisnumberisreduced

by60%foreveningscenarios(Scenarios5and12)asdiscussedinSection6.

Table36.SPSEPZExternalTraffic

Up Dn Road HPMS1 K D Hourly External Direction Node Node Name AADT Factor2 Factor2 Volume Traffic

8145 144 I64 West 78,326 0.091 0.5 3,564 7,128

8029 1198 I64 East 78,326 0.091 0.5 3,564 7,128

TOTAL: 14,256



1 HighwayPerformanceMonitoringSystem(HPMS),FederalHighwayAdministration(FHWA),Washington,D.C.,2012

2 HCM2010







SurryPowerStation 320 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

3.7 SpecialEvent

One special event (Scenario 13) is considered for the ETE study - the Newport News Fall

FestivalofFolklife-whichisheldoneweekendeveryyear,inOctober.Informationaboutthis

event was provided by the City of Newport News as well as through researching official

websitesaffiliatedwiththeevent.Thereareanestimated70,000visitorsperyear-35,000per

day,75%ofwhomliveoutsideoftheEPZ.Itisassumedthattheaveragevehicleoccupancyis

equaltotheaveragehouseholdsize(2.47);10,467specialeventvehicletripsweregenerated

utilizingthetransientmobilizationdistribution.

Thereisapublicashuttlebusserviceavailableforthiseventthatgoestosatelliteparkinglots

but should there be an evacuation, the parking fields could easily be walked to within the

mobilizationtimeallowedfortransients.

3.8 SummaryofDemand

A summary of population and vehicle demand is provided in Table 37 and Table 38,

respectively.Thissummaryincludesallpopulationgroupsdescribedinthissection.Additional

populationgroups-transitdependent,specialfacilityandschoolpopulation-aredescribedin

greaterdetailinSection8.Atotalof300,069peopleand147,768vehiclesareconsideredin

thisstudy.







SurryPowerStation 321 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table37.SummaryofPopulationDemand

Transients

Transit Special Shadow

PAZ Residents Commuter Other Employees Schools Total

Dependent Facilities Population Students Visitors

1 244 6 0 0 60 0 0 0 310

2 884 20 0 0 0 0 0 0 904

3 514 12 0 0 0 0 0 0 526

4 236 5 0 0 0 0 0 0 241

5 618 14 0 84 38 0 0 0 754

6 177 4 0 0 0 0 0 0 181

7 262 6 0 0 0 0 0 0 268

8 0 0 0 0 470 0 0 0 470

9 603 14 0 0 0 0 0 0 617

10 200 5 0 0 0 0 0 0 205

11 82 2 0 0 0 0 0 0 84

12 95 2 0 0 0 0 0 0 97

13 1,167 27 0 0 0 0 0 0 1,194

14 5,914 135 0 175 1,313 0 575 0 8,112

15 25,003 570 0 14 1,281 0 3,772 0 30,640

16 45,649 1,039 0 2,002 1,847 105 9,952 0 60,594

17 1,974 45 0 0 259 0 621 0 2,899

18A 1,374 31 0 1,272 75 0 0 0 2,752

18B 4,153 95 0 22,915 1,605 80 0 0 28,848

18C 3,960 90 0 0 103 649 15 0 4,817

18D 71 2 0 0 508 0 493 0 1,074

19A 6,214 142 0 6,977 792 0 896 0 15,021

19B 1,033 24 0 0 1,550 0 0 0 2,607





SurryPowerStation 322 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Transients

Transit Special Shadow

PAZ Residents Commuter Other Employees Schools Total

Dependent Facilities Population Students Visitors

20A 877 20 0 6,394 290 0 1,421 0 9,002

20B 2,521 57 0 83 0 0 68 0 2,729

21 13,384 305 2,440 16,722 4,966 287 7,621 0 45,725

22A 1,305 30 0 400 0 0 0 0 1,735

22B 3,460 79 0 84 90 9 461 0 4,183

23 19,627 447 0 3,174 2,566 315 978 0 27,107

24 11,076 252 0 6,606 280 143 2,113 0 20,470

Shadow 0 0 0 0 0 0 0 25,903 25,903

Total 152,677 3,480 2,440 66,902 18,093 1,588 28,986 25,903 300,069



NOTE:ShadowPopulationhasbeenreducedto20%.RefertoFigure21foradditionalinformation.

NOTE:SpecialFacilitiesincludebothmedicalfacilitiesandcorrectionalfacilities.



 



SurryPowerStation 323 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table38.SummaryofVehicleDemand

Transients

Transit Commuter Other Special Shadow External PAZ Residents Dependent Students Visitors Employees Facilities Schools Vehicles Traffic Total

1 115 0 0 56 0 0 0 0 189

2 424 0 0 0 0 0 0 0 424

3 244 0 0 0 0 0 0 0 244

4 113 0 0 0 0 0 0 0 113

5 297 0 34 35 0 0 0 0 366

6 85 0 0 0 0 0 0 0 85

7 126 18 0 0 0 0 0 0 0 126

8 0 0 0 435 0 0 0 0 435

9 287 0 0 0 0 0 0 0 287

10 94 0 0 0 0 0 0 0 94

11 37 0 0 0 0 0 0 0 37

12 44 0 0 0 0 0 0 0 44

13 558 0 0 0 0 0 0 0 558

14 2,745 8 0 112 1,216 0 18 0 0 4,099

15 12,048 38 0 14 1,186 0 134 0 0 13,420

16 21,985 70 0 834 1,708 14 356 0 0 24,967

17 950 2 0 0 240 0 30 0 0 1,222

18A 661 2 0 577 69 0 0 0 0 1,309

18B 2,000 6 0 9,150 1,486 9 0 0 0 12,651

18C 1,907 6 0 0 95 6 0 0 0 2,014

18D 34 2 0 0 471 0 16 0 0 523

19A 2,993 10 0 2,148 733 0 20 0 0 5,904

19B 494 2 0 0 1,435 0 0 0 0 1,931



SurryPowerStation 324 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Transients

Transit Commuter Other Special Shadow External PAZ Residents Dependent Students Visitors Employees Facilities Schools Vehicles Traffic Total

20A 421 2 0 3,051 268 0 38 0 0 3,780

20B 1,213 4 0 35 0 0 24 0 0 1,276

21 7,034 20 2259 7,378 4,595 42 116 0 0 21,444

22A 627 2 0 125 0 0 0 0 0 754

22B 1,663 6 0 39 84 5 14 0 0 1,811

23 9,450 30 0 1,526 2,378 40 30 0 0 13,454

24 5,334 16 0 1,762 259 36 78 0 0 7,485

Shadow 0 0 0 0 0 0 0 12,466 14,256 26,722

Total 73,983 244 2,259 26,785 16,749 152 874 12,466 14,256 147,768



NOTE:Busesrepresentedastwopassengervehicles.RefertoSection8foradditionalinformation.

NOTE:Correctionalfacilitysheltersinplace(nobusesrequired).

NOTE:PAZs113contain9transitdependentbusroutesmanyofwhichcrossoverPAZboundaries.Aminimumof1busisassignedtoeachrouteandtheyare

displayedinaggregate.The9buses(18vehicles)servicingPAZs113arecountedinthefirstrowofthetotalscolumn.





SurryPowerStation 325 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

4 ESTIMATIONOFHIGHWAYCAPACITY

Theabilityoftheroadnetworktoservicevehicledemandisamajorfactorindetermininghow

rapidly an evacuation can be completed. The capacity of a road is defined as the maximum

hourly rate at which persons or vehicles can reasonably be expected to traverse a point or

uniform section of a lane of roadway during a given time period under prevailing roadway,

trafficandcontrolconditions,asstatedinthe2010HighwayCapacityManual(HCM2010).

In discussing capacity, different operating conditions have been assigned alphabetical

designations, A through F, to reflect the range of traffic operational characteristics. These

designations have been termed "Levels of Service" (LOS). For example, LOS A connotes

freeflowandhighspeedoperatingconditions;LOSFrepresentsaforcedflowcondition.LOSE

describestrafficoperatingatornearcapacity.

Anotherconcept,closelyassociatedwithcapacity,isServiceVolume(SV).Servicevolumeis

definedasThemaximumhourlyrateatwhichvehicles,bicyclesorpersonsreasonablycanbe

expected to traverse a point or uniform section of a roadway during an hour under specific

assumedconditionswhilemaintainingadesignatedlevelofservice.Thisdefinitionissimilarto

thatforcapacity.ThemajordistinctionisthatvaluesofSVvaryfromoneLOStoanother,while

capacityistheservicevolumeattheupperboundofLOSE,only.

ThisdistinctionisillustratedinExhibit1117oftheHCM2010.Asindicatedthere,theSVvaries

with Free Flow Speed (FFS), and LOS. The SV is calculated by the DYNEV II simulation model,

basedonthespecifiedlinkattributes,FFS,capacity,controldeviceandtrafficdemand.

Otherfactorsalsoinfluencecapacity.Theseinclude,butarenotlimitedto:

x Lanewidth

x Shoulderwidth

x Pavementcondition

x Horizontalandverticalalignment(curvatureandgrade)

x Percenttrucktraffic

x Controldevice(andtiming,ifitisasignal)

x Weatherconditions(rain,snow,fog,windspeed,ice)

These factors are considered during the road survey and in the capacity estimation process;

some factors have greater influence on capacity than others. For example, laneand shoulder

widthhaveonlyalimitedinfluenceonBaseFreeFlowSpeed(BFFS1)accordingtoExhibit157

of the HCM. Consequently, lane and shoulder widths at the narrowest points were observed

duringtheroadsurveyandtheseobservationswererecorded,butnodetailedmeasurements

oflaneorshoulderwidthweretaken.HorizontalandverticalalignmentcaninfluencebothFFS

andcapacity.TheestimatedFFSweremeasuredusingthesurveyvehiclesspeedometerand

observinglocaltraffic,underfreeflowconditions.Capacityisestimatedfromtheproceduresof



1

AveryroughestimateofBFFSmightbetakenasthepostedspeedlimitplus10mph(HCM2010Page1515)



SurryPowerStation 41 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

the2010HCM.Forexample,HCMExhibit71(b)showsthesensitivityofServiceVolumeatthe

upperboundofLOSDtograde(capacityistheServiceVolumeattheupperboundofLOSE).

AsdiscussedinSection2.3,itisnecessarytoadjustcapacityfigurestorepresenttheprevailing

conditionsduringinclementweather.Basedonlimitedempiricaldata,weatherconditionssuch

as rain reduce the values of free speed and of highway capacity by approximately 10

percent.Over the last decade new studies have been made on the effects of rain on traffic

capacity. These studies indicate a range of effects between 5 and 20 percent depending on

windspeedandprecipitationrates.AsindicatedinSection2.3,weemployareductioninfree

speedandinhighwaycapacityof10percentand20percentforrainandsnow,respectively.

Since congestion arising from evacuation may be significant, estimates of roadway capacity

mustbedeterminedwithgreatcare.Becauseofitsimportance,abriefdiscussionofthemajor

factorsthatinfluencehighwaycapacityispresentedinthissection.

Rural highways generally consist of: (1) one or more uniform sections with limited access

(driveways, parking areas) characterized by uninterrupted flow; and (2) approaches to at grade intersections where flow can be interrupted by a control device or by turning or

crossing traffic at the intersection. Due to these differences, separate estimates of capacity

must be made for each section. Often, the approach to the intersection is widened by the

additionofoneormorelanes(turnpocketsorturnbays),tocompensateforthelowercapacity

oftheapproachduetothefactorstherethatcaninterrupttheflowoftraffic.Theseadditional

lanesarerecordedduringthefieldsurveyandlaterenteredasinputtotheDYNEVIIsystem.

4.1 CapacityEstimationsonApproachestoIntersections

Atgradeintersectionsareapttobecomethefirstbottlenecklocationsunderlocalheavytraffic

volumeconditions.Thischaracteristicreflectstheneedtoallocateaccesstimetotherespective

competing traffic streams by exerting some form of control. During evacuation, control at

critical intersections will often be provided by traffic control personnel assigned for that

purpose, whose directions may supersede traffic control devices. The existing traffic

management plans documented in the city/county emergency plans are extensive and were

adoptedwithoutchange.

The perlane capacity of an approach to a signalized intersection can be expressed

(simplistically)inthefollowingform:







where:



Qcap,m = Capacity of a single lane of  traffic on an approach, which executes



SurryPowerStation 42 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

movement,m,uponenteringtheintersection;vehiclesperhour(vph)

hm = Meanqueuedischargeheadwayofvehiclesonthislanethatareexecuting

movement,m;secondspervehicle

G = Mean duration of GREEN time servicing vehicles that are executing

movement,m,foreachsignalcycle;seconds

L = Mean"losttime"foreachsignalphaseservicingmovement,m;seconds

C = Durationofeachsignalcycle;seconds

Pm = ProportionofGREENtimeallocatedforvehiclesexecutingmovement,m,

fromthislane.Thisvalueisspecifiedaspartofthecontroltreatment.

m = The movement executed by vehicles after they enter the

intersection:through,leftturn,rightturn,anddiagonal.



The turnmovementspecific mean discharge headway hm, depends in a complex way upon

manyfactors:roadwaygeometrics,turnpercentages,theextentofconflictingtrafficstreams,

thecontroltreatment,andothers.Aprimaryfactoristhevalueof"saturationqueuedischarge

headway", hsat, which applies to through vehicles that are not impeded by other conflicting

traffic streams.This value, itself, depends upon many factors including motorist behavior.

Formally,wecanwrite,







where:

hsat = Saturationdischargeheadwayforthroughvehicles;secondspervehicle

F1,F2 = Thevariousknownfactorsinfluencinghm

fm() = Complexfunctionrelatinghmtotheknown(orestimated)valuesofhsat,

F1,F2,

Theestimationofhmforspecifiedvaluesofhsat,F1,F2,...isundertakenwithintheDYNEVII

simulation model by a mathematical model2.The resulting values for hm always satisfy the

condition:







2 Lieberman,E., "DeterminingLateral Deployment of Traffic on an Approachto an Intersection", McShane,W. &

Lieberman, E., "Service Rates of Mixed Traffic on the far Left Lane of an Approach". Both papers appear in

TransportationResearchRecord772,1980.Lieberman,E.,Xin,W.,MacroscopicTrafficModelingForLargeScale

EvacuationPlanning,presentedattheTRB2012AnnualMeeting,January2226,2012





SurryPowerStation 43 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

That is, the turnmovementspecific discharge headways are always greater than, or equal to

the saturation discharge headway for through vehicles.  These headways (or its inverse

equivalent,saturationflowrate),maybedeterminedbyobservationorusingtheprocedures

oftheHCM2010.

TheabovediscussionisnecessarilybriefgiventhescopeofthisETEreportandthecomplexity

ofthesubjectofintersectioncapacity.Infact,Chapters18,19and20intheHCM2010address

thistopic.Thefactors,F1,F2,,influencingsaturationflowrateareidentifiedinequation(185)

oftheHCM2010.



ThetrafficsignalswithintheEPZandShadowRegionaremodeledusingrepresentativephasing

plansandphasedurationsobtainedaspartofthefielddatacollection.Trafficresponsivesignal

installations allow the proportion of green time allocated (Pm) for each approach to each

intersection to be determined by the expected traffic volumes on each approach during

evacuationcircumstances.Theamountofgreentime(G)allocatedissubjecttomaximumand

minimum phase duration constraints; 2 seconds of yellow time are indicated for each signal

phaseand1secondofallredtimeisassignedbetweensignalphases,typically.Ifasignalispre timed,theyellowandallredtimesobservedduringtheroadsurveyareused.Alosttime(L)of

2.0secondsisusedforeachsignalphaseintheanalysis.

4.2 CapacityEstimationalongSectionsofHighway

Thecapacityofhighwaysectionsasdistinctfromapproachestointersectionsisafunction

ofroadwaygeometrics,trafficcomposition(e.g.percentheavytrucksandbusesinthetraffic

stream) and, of course, motorist behavior. There is a fundamental relationship which relates

servicevolume(i.e.thenumberofvehiclesservicedwithinauniformhighwaysectioninagiven

timeperiod)totrafficdensity.ThetopcurveinFigure41illustratesthisrelationship.

Asindicated,therearetwoflowregimes:(1)FreeFlow(leftsideofcurve);and(2)ForcedFlow

(right side). In the Free Flow regime, the traffic demandis fully serviced; the service volume

increasesasdemandvolumeanddensityincrease,untiltheservicevolumeattainsitsmaximum

value,whichisthecapacityofthehighwaysection.Astrafficdemandandtheresultinghighway

densityincreasebeyondthis"critical"value,therateatwhichtrafficcanbeserviced(i.e.the

service volume) can actually decline below capacity (capacity drop). Therefore, in order to

realistically represent traffic performance during congested conditions (i.e. when demand

exceeds capacity), it is necessary to estimate the service volume, VF, under congested

conditions.

ThevalueofVFcanbeexpressedas:



where:

R = Reductionfactorwhichislessthanunity



SurryPowerStation 44 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

We have employed a value of R=0.90.The advisability of such a capacity reduction factor is

baseduponempiricalstudiesthatidentifiedafalloffintheserviceflowratewhencongestion

occursatbottlenecksorchokepointsonafreewaysystem.ZhangandLevinson3describea

research program that collected data from a computerbased surveillance system (loop

detectors)installedontheInterstateHighwaySystem,at27activebottlenecksinthetwincities

metro area in Minnesota over a 7week period.  When flow breakdown occurs, queues are

formed which discharge at lower flow rates than the maximum capacity prior to observed

breakdown.  These queue discharge flow (QDF) rates vary from one location to the next and

alsovarybydayofweekandtimeofdaybaseduponlocalcircumstances.Thecitedreference

presentsameanQDFof2,016passengercarsperhourperlane(pcphpl).Thisfigurecompares

with the nominal capacity estimate of 2,250 pcphpl estimated for the ETE and indicated in

AppendixKforfreewaylinks.Theratioofthesetwonumbersis0.896whichtranslatesintoa

capacityreductionfactorof0.90.

Since the principal objective of evacuation time estimate analyses is to develop a realistic

estimateofevacuationtimes,useoftherepresentativevalueforthiscapacityreductionfactor

(R=0.90)isjustified.Thisfactorisappliedonlywhenflowbreaksdown,asdeterminedbythe

simulationmodel.

Ruralroads,likefreeways,areclassifiedasuninterruptedflowfacilities.(Thisisincontrast

withurbanstreetsystemswhichhavecloselyspacedsignalizedintersectionsandareclassified

as interrupted flow facilities.) Assuch, traffic flow along rural roads is subject to the same

effects as freeways in the event traffic demand exceeds the nominal capacity, resulting in

queuingandlowerQDFrates.Asapracticalmatter,ruralroadsrarelybreakdownatlocations

away from intersections.  Any breakdowns on rural roads are generally experienced at

intersections where other model logic applies, or at lane drops which reduce capacity there.

Therefore,theapplicationofafactorof0.90isappropriateonruralroads,butrarely,ifever,

activated.

The estimated value of capacity is based primarily upon the type of facility and on roadway

geometrics.Sectionsofroadwaywithadversegeometricsarecharacterizedbylowerfreeflow

speeds and lane capacity. Exhibit 1530 in the Highway Capacity Manual was referenced to

estimatesaturationflowrates.Theimpactofnarrowlanesandshouldersonfreeflowspeed

andoncapacityisnotmaterial,particularlywhenflowispredominantlyinonedirectionasis

thecaseduringanevacuation.

Theprocedureusedherewastoestimate"section"capacity,VE,basedonobservationsmade

traveling over each section of the evacuation network, based on the posted speed limits and

travelbehaviorofothermotoristsandbyreferencetothe2010HCM.TheDYNEVIIsimulation

model determines for each highway section, represented as a network link, whether its

capacity would be limited by the "sectionspecific" service volume, VE, or by the

intersectionspecificcapacity.Foreachlink,themodelselectsthelowervalueofcapacity.



3 Lei Zhang and David Levinson, Some Properties of Flows at Freeway Bottlenecks, Transportation Research

Record1883,2004.



SurryPowerStation 45 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

4.3 ApplicationtotheSPSStudyArea

Aspartofthedevelopmentofthelinknodeanalysisnetworkforthestudyarea,anestimateof

roadwaycapacityisrequired.Thesourcematerialforthecapacityestimatespresentedherein

iscontainedin:

2010HighwayCapacityManual(HCM)

TransportationResearchBoard

NationalResearchCouncil

Washington,D.C.

The highway system in the study area consists primarily of three categories of roads and, of

course,intersections:

x TwoLaneroads:Local,State

x MultiLaneHighways(atgrade)

x Freeways

Eachoftheseclassificationswillbediscussed.

4.3.1 TwoLaneRoads

Ref:HCMChapter15

Two lane roads comprise the majority of highways within the EPZ. The perlanecapacity of a

twolane highway is estimated at 1700 passenger cars per hour (pc/h).  This estimate is

essentially independent of the directional distribution of traffic volume except that, for

extendeddistances,thetwowaycapacitywillnotexceed3200pc/h.TheHCMproceduresthen

estimate Level of Service (LOS) and Average Travel Speed.  The DYNEV II simulation model

accepts the specified value of capacity as input and computes average speed based on the

timevaryingdemand:capacityrelations.

Based on the field survey and on expected traffic operations associated with evacuation

scenarios:

x Most sections of twolane roads within the EPZ are classified as Class I, with "level

terrain";somearerollingterrain.

x ClassIIhighwaysaremostlythosewithinurbanandsuburbancenters.

4.3.2 MultiLaneHighway

Ref:HCMChapter14

Exhibit142oftheHCM2010presentsasetofcurvesthatindicateaperlanecapacityranging

fromapproximately1900to2200pc/h,forfreespeedsof45to60mph,respectively.Basedon

observation,themultilanehighwaysoutsideofurbanareaswithintheEPZservicetrafficwith

freespeedsinthisrange.Theactualtimevaryingspeedscomputedbythesimulationmodel

reflect the demand: capacity relationship and the impact of control at intersections.  A



SurryPowerStation 46 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

conservativeestimateofperlanecapacityof1900pc/hisadoptedforthisstudyformultilane

highwaysoutsideofurbanareas,asshowninAppendixK.

4.3.3 Freeways

Ref:HCMChapters10,11,12,13

Chapter 10 of the HCM 2010 describes a procedure for integrating the results obtained in

Chapters11,12and13,whichcomputecapacityandLOSforfreewaycomponents.Chapter10

alsopresentsadiscussionofsimulationmodels.TheDYNEVIIsimulationmodelautomatically

performsthisintegrationprocess.

Chapter 11 of the HCM 2010 presents procedures for estimating capacity and LOS for Basic

FreewaySegments".Exhibit1117oftheHCM2010presentscapacityvs.freespeedestimates,

whichareprovidedbelow.



FreeSpeed(mph): 55 60 65 70+

PerLaneCapacity(pc/h): 2250 2300 2350 2400



Theinputstothesimulationmodelarehighwaygeometrics,freespeedsandcapacitybasedon

fieldobservations.Thesimulationlogiccalculatesactualtimevaryingspeedsbasedondemand:

capacityrelationships.Aconservativeestimateofperlanecapacityof2250pc/hisadoptedfor

thisstudyforfreeways,asshowninAppendixK.

Chapter12oftheHCM2010presentsproceduresforestimatingcapacity,speed,densityand

LOS for freeway weaving sections.  The simulation model contains logic that relates speed to

demand volume: capacity ratio.  The value of capacity obtained from the computational

procedures detailed in Chapter 12 depends on the "Type" and geometrics of the weaving

segmentandonthe"VolumeRatio"(ratioofweavingvolumetototalvolume).

Chapter 13 of the HCM 2010 presents procedures for estimating capacities of ramps and of

"merge"areas.Therearethreesignificantfactorstothedeterminationofcapacityofaramp freeway junction:  The capacity of the freeway immediately downstream of an onramp or

immediately upstream of an offramp; the capacity of the ramp roadway; and the maximum

flow rate entering the ramp influence area.  In most cases, the freeway capacity is the

controllingfactor.ValuesofthismergeareacapacityarepresentedinExhibit138oftheHCM

2010, and depend on the number of freeway lanes and on the freeway free speed.  Ramp

capacityispresentedinExhibit1310andisafunctionoftherampfreeflowspeed.TheDYNEV

IIsimulationmodellogicsimulatesthemergingoperationsoftherampandfreewaytrafficin

accord with the procedures in Chapter 13 of the HCM 2010.  If congestion results from an

excess of demand relative to capacity, then the model allocates service appropriately to the

twoenteringtrafficstreamsandproducesLOSFconditions(TheHCMdoesnotaddressLOSF

explicitly).

 



SurryPowerStation 47 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

4.3.4 Intersections

Ref:HCMChapters18,19,20,21

Procedures for estimating capacity and LOS for approaches to intersections are presented in

Chapter18(signalizedintersections),Chapters19,20(unsignalizedintersections)andChapter

21(roundabouts).Thecomplexityofthesecomputationsisindicatedbytheaggregatelength

ofthesechapters.TheDYNEVIIsimulationlogicislikewisecomplex.

Thesimulationmodelexplicitlymodelsintersections:Stop/yieldcontrolledintersections(both

2way and allway) and traffic signal controlled intersections. Where intersections are

controlled by fixed time controllers, traffic signal timings are set to reflect average (non evacuation) traffic conditions. Actuated traffic signal settings respond to the timevarying

demands of evacuation traffic to adjust the relative capacities of the competing intersection

approaches.

The model is also capable of modeling the presence of manned traffic control. At specific

locationswhereitisadvisableorwhereexistingplanscallforoverridingexistingtrafficcontrol

to implement manned control, the model will use actuated signal timings that reflect the

presenceoftrafficguides.Atlocationswhereaspecialtrafficcontrolstrategy(continuousleft turns, contraflow lanes) is used, the strategy is modeled explicitly. Where applicable, the

locationandtypeoftrafficcontrolfornodesintheevacuationnetworkarenotedinAppendix

K.  The characteristics of the ten highest volume signalized intersections are detailed in

AppendixJ.

4.4 SimulationandCapacityEstimation

Chapter6oftheHCMisentitled,HCMandAlternativeAnalysisTools.Thechapterdiscusses

the use of alternative tools such as simulation modeling to evaluate the operational

performance of highway networks.  Among the reasons cited in Chapter 6 to consider using

simulationasanalternativeanalysistoolis:

The system under study involves a group of different facilities or travel modes with

mutualinteractionsinvokingseveralproceduralchaptersoftheHCM.Alternativetools

areabletoanalyzethesefacilitiesasasinglesystem.

Thisstatementsuccinctlydescribestheanalysesrequiredtodeterminetrafficoperationsacross

an area encompassing an EPZ operating under evacuation conditions.  The model utilized for

this study, DYNEV II, is further described in Appendix C. It is essential to recognize that

simulationmodelsdonotreplicatethemethodologyandproceduresoftheHCM-theyreplace

these procedures by describing the complex interactions of traffic flow and computing

MeasuresofEffectiveness(MOE)detailingtheoperationalperformanceoftrafficovertimeand

bylocation.TheDYNEVIIsimulationmodelincludessomeHCM2010proceduresonlyforthe

purposeofestimatingcapacity.

All simulation models must be calibrated properly with field observations that quantify the

performance parameters applicable to the analysis network. Two of the most important of



SurryPowerStation 48 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

these are: (1) Free flow speed (FFS); and (2) saturation headway, hsat. The first of these is

estimated by direct observation during the road survey; the second is estimated using the

conceptsoftheHCM2010,asdescribedearlier.TheseparametersarelistedinAppendixK,for

eachnetworklink.

 

 











 





 



 



Figure41.FundamentalDiagrams





SurryPowerStation 49 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

5 ESTIMATIONOFTRIPGENERATIONTIME

Federal Government guidelines (see NUREG CR7002) specify that the planner estimate the

distributionsofelapsedtimesassociatedwithmobilizationactivitiesundertakenbythepublic

to prepare for the evacuation trip.The elapsed time associated with each activity is

representedasastatisticaldistributionreflectingdifferencesbetweenmembersofthepublic.

The quantification of these activitybased distributions relies largely on the results of the

telephone survey. We define the sum of these distributions of elapsed times as the Trip

GenerationTimeDistribution.

5.1 Background

In general, an accident at a nuclear power plant is characterized by the following Emergency

ClassificationLevels(seeAppendix1ofNUREG0654fordetails):

1. UnusualEvent
2. Alert
3. SiteAreaEmergency
4. GeneralEmergency

Ateachlevel,theFederalguidelinesspecifyasetofActionstobeundertakenbytheLicensee,

and by State and Local offsite authorities. As a Planning Basis, we will adopt a conservative

posture,inaccordancewithSection1.2ofNUREG/CR7002,thatarapidlyescalatingaccidentwill

beconsideredincalculatingtheTripGenerationTime.Wewillassume:

1. TheAdvisorytoEvacuatewillbeannouncedcoincidentwiththesirennotification.
2. Mobilizationofthegeneralpopulationwillcommencewithin15minutesafterthesiren

notification.

3. ETEaremeasuredrelativetotheAdvisorytoEvacuate.

Weemphasizethattheadoptionofthisplanningbasisisnotarepresentationthattheseevents

willoccurwithintheindicatedtimeframe.Rather,theseassumptionsarenecessaryinorder

to:

1. Establish a temporal framework for estimating the Trip Generation distribution in the

formatrecommendedinSection2.13ofNUREG/CR6863.

2. Identifytemporalpointsofreferencethatuniquelydefine"ClearTime"andETE.

Itislikelythatalongertimewillelapsebetweenthevariousclassesofanemergency.

Forexample,supposeonehourelapsesfromthesirenalerttotheAdvisorytoEvacuate.Inthis

case, it is reasonable to expect some degree of spontaneous evacuation by the public during

this onehour period. As a result, the population within the EPZ will be lower when the

AdvisorytoEvacuateisannounced,thanatthetimeofthesirenalert.Inaddition,manywill

engageinpreparationactivitiestoevacuate,inanticipationthatanAdvisorywillbebroadcast.

Thus, the time needed to complete the mobilization activities and the number of people

remainingtoevacuatetheEPZaftertheAdvisorytoEvacuate,willbothbesomewhatlessthan



SurryPowerStation 51 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

the estimates presented in this report.  Consequently, the ETE presented in this report are

higherthantheactualevacuationtime,ifthishypotheticalsituationweretotakeplace.

Thenotificationprocessconsistsoftwoevents:

1. Transmitting information using the alert notification systems available within the EPZ

(e.g.sirens,tonealerts,EASbroadcasts,loudspeakers).

2. Receivingandcorrectlyinterpretingtheinformationthatistransmitted.

ThepopulationwithintheEPZisdispersedoveranareaofapproximately280squaremilesand

is engaged in a wide variety of activities. It must be anticipated that some time will elapse

betweenthetransmissionandreceiptoftheinformationadvisingthepublicofanaccident.

Theamountofelapsedtimewillvaryfromoneindividualtothenextdependingonwherethat

personis,whatthatpersonisdoing,andrelatedfactors.Furthermore,somepersonswhowill

be directly involved with the evacuation process may be outside the EPZ at the time the

emergency is declared. These people may be commuters, shoppers and other travelers who

residewithintheEPZandwhowillreturntojointheotherhouseholdmembersuponreceiving

notificationofanemergency.

AsindicatedinSection2.13ofNUREG/CR6863,theestimatedelapsedtimesforthereceiptof

notification can be expressed as a distribution reflecting the different notification times for

differentpeoplewithin,andoutside,theEPZ.Byusingtimedistributions,itisalsopossibleto

distinguish between different population groups and different dayofweek and timeofday

scenarios,sothataccurateETEmaybecomputed.

Forexample,peopleathomeoratworkwithintheEPZwillbenotifiedbysiren,and/ortone

alertand/orradio(ifavailable).ThosewelloutsidetheEPZwillbenotifiedbytelephone,radio,

TVandwordofmouth,withpotentiallylongertimelags.Furthermore,thespatialdistribution

oftheEPZpopulationwilldifferwithtimeofdayfamilieswillbeunitedintheevenings,but

dispersedduringtheday.Inthisrespect,weekendswilldifferfromweekdays.

As indicated in Section 4.1 of NUREG/CR7002, the information required to compute trip

generationtimesistypicallyobtainedfromatelephonesurveyofEPZresidents.Suchasurvey

was conducted in support of this ETE study. Appendix F presents the survey sampling plan,

survey instrument, and raw survey results.  The remaining discussion will focus on the

applicationofthetripgenerationdataobtainedfromthetelephonesurveytothedevelopment

oftheETEdocumentedinthisreport.

 



SurryPowerStation 52 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

5.2 FundamentalConsiderations

Theenvironmentleadinguptothetimethatpeoplebegintheirevacuationtripsconsistsofa

sequenceofeventsandactivities.Eachevent(otherthanthefirst)occursataninstantintime

andistheoutcomeofanactivity.

Activitiesareundertakenoveraperiodoftime.Activitiesmaybein"series"(i.e.toundertake

anactivityimpliesthecompletionofallprecedingevents)ormaybeinparallel(twoormore

activities may take place over the same period of time). Activities conducted in series are

functionallydependentonthecompletionofprioractivities;activitiesconductedinparallelare

functionally independent of one another. The relevant events associated with the public's

preparationforevacuationare:



EventNumber EventDescription

1 Notification

2 AwarenessofSituation

3 DepartWork

4 ArriveHome

5 DepartonEvacuationTrip



Associatedwitheachsequenceofeventsareoneormoreactivities,asoutlinedbelow:



Table51.EventSequenceforEvacuationActivities

EventSequence Activity Distribution

12 ReceiveNotification 1

23 PreparetoLeaveWork 2

2,34 TravelHome 3

2,45 PreparetoLeavetoEvacuate 4

N/A SnowClearance 5



TheserelationshipsareshowngraphicallyinFigure51.

x AnEventisastatethatexistsatapointintime(e.g.,departwork,arrivehome)

x AnActivityisaprocessthattakesplaceoversomeelapsedtime(e.g.,preparetoleave

work,travelhome)

Assuch,acompletedActivitychangesthestateofanindividual(e.g.theactivity,travelhome

changesthestatefromdepartworktoarrivehome).Therefore,anActivitycanbedescribedas

anEventSequence;theelapsedtimestoperformaneventsequencevaryfromonepersontothe

nextandaredescribedasstatisticaldistributionsonthefollowingpages.

An employee who lives outside the EPZ will follow sequence (c) of Figure 51. A household



SurryPowerStation 53 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

within the EPZ that has one or more commuters at work, and will await their return before

beginningtheevacuationtripwillfollowthefirstsequenceofFigure51(a).Ahouseholdwithin

theEPZthathasnocommutersatwork,orthatwillnotawaitthereturnofanycommuters,will

followthesecondsequenceofFigure51(a),regardlessofdayofweekortimeofday.

Households with no commuters on weekends or in the evening/nighttime, will follow the

applicable sequence in Figure 51(b). Transients will always follow one of the sequences of

Figure51(b).Sometransientsawayfromtheirresidencecouldelecttoevacuateimmediately

withoutreturningtotheresidence,asindicatedinthesecondsequence.

ItisseenfromFigure51,thattheTripGenerationtime(i.e.thetotalelapsedtimefromEvent1

to Event 5) depends on the scenario and will vary from one household to the next.

Furthermore,Event5depends,inacomplicatedway,onthetimedistributionsofallactivities

preceding that event. That is, to estimate the time distribution of Event 5, we must obtain

estimates of the time distributions of all preceding events. For this study, we adopt the

conservativeposturethatallactivitieswilloccurinsequence.

In some cases, assuming certain events occur strictly sequential (for instance, commuter

returning home before beginning preparation to leave, or removing snow only after the

preparationtoleave)canresultinratherconservative(thatis,longer)estimatesofmobilization

times.Itisreasonabletoexpectthatatleastsomepartsoftheseeventswilloverlapformany

households,butthatassumptionisnotmadeinthisstudy.



SurryPowerStation 54 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



1 2 3 4 5 Residents Households wait 1

for Commuters Households without Residents 1 2 5 Commuters and households who do not wait for Commuters (a) Accident occurs during midweek, at midday; year round Residents, Transients 1 2 4 5 Return to residence, away from then evacuate Residence Residents, 1 2 5 Residents at home; Transients at transients evacuate directly Residence (b) Accident occurs during weekend or during the evening2 1 2 3,5 (c) Employees who live outside the EPZ ACTIVITIES EVENTS 1 2 Receive Notification 1. Notification 2 3 Prepare to Leave Work 2. Aware of situation 2, 3 4 Travel Home 3. Depart work 2, 4 5 Prepare to Leave to Evacuate 4. Arrive home

5. Depart on evacuation trip Activities Consume Time 1

Applies for evening and weekends also if commuters are at work.

2 Applies throughout the year for transients.



Figure51.EventsandActivitiesPrecedingtheEvacuationTrip

 



SurryPowerStation 55 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

5.3 EstimatedTimeDistributionsofActivitiesPrecedingEvent5

Thetimedistributionofaneventisobtainedby"summing"thetimedistributionsofallprior

contributingactivities.(This"summing"processisquitedifferentthananalgebraicsumsinceit

isperformedondistributions-notscalarnumbers).

TimeDistributionNo.1,NotificationProcess:Activity1o2

In accordance with the 2012 Federal Emergency Management Agency (FEMA) Radiological

EmergencyPreparednessProgramManual,100%ofthepopulationisnotifiedwithin45minutes.

Itisassumed(basedonthepresenceofsirenswithintheEPZ)that87percentofthosewithinthe

EPZ will be aware of the accident within 30 minutes with the remainder notified within the

following15minutes.Thenotificationdistributionisgivenbelow:



Table52.TimeDistributionforNotifyingthePublic

ElapsedTime Percentof

(Minutes) PopulationNotified

0 0%

5 7%

10 13%

15 27%

20 47%

25 66%

30 87%

35 92%

40 97%

45 100%



 



SurryPowerStation 56 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

DistributionNo.2,PreparetoLeaveWork:Activity2o3

ItisreasonabletoexpectthatthevastmajorityofbusinessenterpriseswithintheEPZwillelect

to shut down following notification and most employees would leave work

quickly.Commuters,whoworkoutsidetheEPZcould,inallprobability,alsoleavequicklysince

facilitiesoutsidetheEPZwouldremainopenandotherpersonnelwouldremain.Personnelor

farmers responsible for equipment/livestock would require additional time to secure their

facility. The distribution of Activity 2  3 shown in Table 53 reflects data obtained by the

telephonesurvey.ThisdistributionisplottedinFigure52.



Table53.TimeDistributionforEmployeestoPreparetoLeaveWork

Cumulative Cumulative

Percent Percent

ElapsedTime Employees ElapsedTime Employees

(Minutes) LeavingWork (Minutes) LeavingWork

0 0% 45 92.4%

5 40.9% 50 92.4%

10 57.3% 55 92.7%

15 70.7% 60 99.2%

20 78.3% 75 100.0%

25 79.5%  

30 89.4%  

35 89.9%  

40 90.7%  



NOTE:Thesurveydatawasnormalizedtodistributethe"Don'tknow"response.Thatis,thesamplewasreducedin

size to include only those households who responded to this question.  The underlying assumption is that the

distributionofthisactivityfortheDontknowresponders,iftheeventtakesplace,wouldbethesameasthose

responderswhoprovidedestimates.

 



SurryPowerStation 57 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

DistributionNo.3,TravelHome:Activity3o4

These data are provided directly by those households which responded to the telephone

survey.ThisdistributionisplottedinFigure52andlistedinTable54.



Table54.TimeDistributionforCommuterstoTravelHome

Cumulative Cumulative

ElapsedTime Percent ElapsedTime Percent

(Minutes) ReturningHome (Minutes) ReturningHome

0 0.0% 40 87.7%

5 7.6% 45 91.8%

10 25.8% 50 93.5%

15 42.4% 55 93.7%

20 64.5% 60 98.3%

25 69.3% 75 99.6%

30 83.1% 90 100.0%

35 85.1% 105 



NOTE:Thesurveydatawasnormalizedtodistributethe"Don'tknow"response





 



SurryPowerStation 58 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

DistributionNo.4,PreparetoLeaveHome: Activity2,4o5

These data are provided directly by those households which responded to the telephone

survey.ThisdistributionisplottedinFigure52andlistedinTable55.



Table55.TimeDistributionforPopulationtoPreparetoEvacuate

Cumulative

ElapsedTime PercentReadyto

(Minutes) Evacuate

0 0.0%

15 10.9%

30 43.8%

45 50.0%

60 71.9%

75 82.4%

90 83.7%

105 84.2%

120 89.5%

135 95.3%

150 96.0%

165 96.0%

180 98.0%

195 100.0%



NOTE:Thesurveydatawasnormalizedtodistributethe"Don'tknow"response

 



SurryPowerStation 59 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

DistributionNo.5,SnowClearanceTimeDistribution

Inclement weather scenarios involving snowfall must address the time lags associated with

snow clearance.  It is assumed that snow equipment is mobilized and deployed during the

snowfall to maintain passable roads.  The general consensus is that the snowplowing efforts

are generally successful for all but the most extreme blizzards when the rate of snow

accumulationexceedsthatofsnowclearanceoveraperiodofmanyhours.

Consequently,itisreasonabletoassumethatthehighwaysystemwillremainpassable-albeit

atalowercapacity-underthevastmajorityofsnowconditions.Nevertheless,forthevehicles

togainaccesstothehighwaysystem,itmaybenecessaryfordrivewaysandemployeeparking

lots to be cleared to the extent needed to permit vehicles to gain access to the roadways.

These clearance activities take time; this time must be incorporated into the trip generation

time distributions.  These data are provided by those households which responded to the

telephonesurvey.ThisdistributionisplottedinFigure52andlistedinTable56.

Note that those respondents (33.1%) who answered that they would not take time to clear

their driveway were assumed to be ready immediately at the start of this activity. Essentially

they would drive through the snow on the driveway to access the roadway and begin their

evacuationtrip.



Table56.TimeDistributionforPopulationtoClear6"8"ofSnow

Cumulative Cumulative

Percent Percent

ElapsedTime Completing ElapsedTime Completing

(Minutes) SnowRemoval (Minutes) SnowRemoval

0 33.1% 105 92.5%

15 42.3% 120 94.9%

30 68.9% 135 97.3%

45 73.5% 150 97.3%

60 84.2% 165 97.3%

75 90.8% 180 100.0%

90 92.2%  



NOTE:Thesurveydatawasnormalizedtodistributethe"Don'tknow"response





SurryPowerStation 510 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



MobilizationActivities 100%

90%

80%

70%

60%

Notification 50% PreparetoLeaveWork TravelHome 40%

PrepareHome

%CompletingActivity 30% TimetoClearSnow 20%

10%

0%

0 30 60 90 120 150 180 210 240 ElapsedTimefromStartofMobilizationActivity(min)



Figure52.EvacuationMobilizationActivities



SurryPowerStation 511 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

5.4 CalculationofTripGenerationTimeDistribution

The time distributions for each of the mobilization activities presented herein must be

combinedtoformtheappropriateTripGenerationDistributions.Asdiscussedabove,thisstudy

assumesthatthestatedeventstakeplaceinsequencesuchthatallprecedingeventsmustbe

completedbeforethecurrenteventcanoccur.Forexample,ifahouseholdawaitsthereturn

ofacommuter,theworktohometrip(Activity3o4)mustprecedeActivity4o5.

Tocalculatethetimedistributionofaneventthatisdependentontwosequentialactivities,itis

necessary to sum the distributions associated with these prior activities. The distribution

summing algorithm is applied repeatedly as shown to form the required distribution.  As an

outcomeofthisprocedure,newtimedistributionsareformed;weassignletterdesignations

to these intermediate distributions to describe the procedure. Table 57 presents the summing

proceduretoarriveateachdesignateddistribution.

Table57.MappingDistributionstoEvents

ApplySummingAlgorithmTo: DistributionObtained EventDefined

Distributions1and2 DistributionA Event3

DistributionsAand3 DistributionB Event4

DistributionsBand4 DistributionC Event5

Distributions1and4 DistributionD Event5

DistributionsCand5 DistributionE Event5

DistributionsDand5 DistributionF Event5



Table58presentsadescriptionofeachofthefinaltripgenerationdistributionsachievedafterthe

summingprocessiscompleted.

 



SurryPowerStation 512 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table58.DescriptionoftheDistributions

Distribution Description

Timedistributionofcommutersdepartingplaceofwork(Event3).Alsoapplies

A to employees who work within the EPZ who live outside, and to Transients

withintheEPZ.

B Timedistributionofcommutersarrivinghome(Event4).

Timedistributionofresidentswithcommuterswhoreturnhome,leavinghome

C

tobegintheevacuationtrip(Event5).

Timedistributionofresidentswithoutcommutersreturninghome,leavinghome

D

tobegintheevacuationtrip(Event5).

Timedistributionofresidentswithcommuterswhoreturnhome,leavinghome

E

tobegintheevacuationtrip,aftersnowclearanceactivities(Event5).

Time distribution of residents with no commuters returning home, leaving to

F

begintheevacuationtrip,aftersnowclearanceactivities(Event5).



5.4.1 StatisticalOutliers

As already mentioned, some portion of the survey respondents answer dont know to some

questionsorchoosetonotrespondtoaquestion.Themobilizationactivitydistributionsarebased

upon actual responses.  But, it is the nature of surveys that a few numeric responses are

inconsistent with the overall pattern of results.  An example would be a case in which for 500

responses, almost all of them estimate less than two hours for a given answer, but 3 say four

hoursand4saysixormorehours.

Theseoutliersmustbeconsidered:aretheyvalidresponses,orsoatypicalthattheyshouldbe

droppedfromthesample?

Inassessingoutliers,therearethreealternatestoconsider:

1) Some responses with very long times may be valid, but reflect the reality that the

respondent really needs to be classified in a different population subgroup, based upon

specialneeds;

2)Otherresponsesmaybeunrealistic(6hourstoreturnhomefromcommutingdistance,

or2daystopreparethehomefordeparture);

3)Somehighvaluesarerepresentativeandplausible,andonemustnotcutthemaspart

oftheconsiderationofoutliers.

Theissueofcourseishowtomakethedecisionthatagivenresponseorsetofresponsesaretobe

considered outliers for the component mobilization activities, using a method that objectively

quantifiestheprocess.

Thereisconsiderablestatisticalliteratureontheidentificationandtreatmentofoutlierssinglyor

ingroups,muchofwhichassumesthedataisnormallydistributedandsomeofwhichusesnon



SurryPowerStation 513 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

parametric methods to avoid that assumption.  The literature cites that limited work has been

donedirectlyonoutliersinsamplesurveyresponses.

Inestablishingtheoverallmobilizationtime/tripgenerationdistributions,thefollowingprinciples

areused:

1) It is recognized that the overall trip generation distributions are conservative estimates,

becausetheyassumeahouseholdwilldothemobilizationactivitiessequentially,withno

overlapofactivities;



2) Theindividualmobilizationactivities(preparetoleavework,travelhome,preparehome,

clearsnow)arereviewedforoutliers,andthentheoveralltripgenerationdistributionsare

created(seeFigure51,Table57,Table58);



3) Outlierscanbeeliminatedeitherbecausetheresponsereflectsaspecialpopulation(e.g.

specialneeds,transitdependent)orlackofrealism,becausethepurposeistoestimatetrip

generationpatternsforpersonalvehicles;



4) Toeliminateoutliers,

a) themeanandstandarddeviationofthespecificactivityareestimatedfromthe

responses,

b) themedianofthesamedataisestimated,withitspositionrelativetothemean

noted,

c) thehistogramofthedataisinspected,and

d) allvaluesgreaterthan3.5standarddeviationsareflaggedforattention,taking

special note of whether there are gaps (categories with zero entries) in the

histogramdisplay.

Ingeneral,onlyflaggedvaluesmorethan4standarddeviationsfromthemeanareallowed

tobeconsideredoutliers,withgapsinthehistogramexpected.

Whenflaggedvaluesareclassifiedasoutliersanddropped,stepsatodarerepeated.



 



SurryPowerStation 514 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

5) Asapracticalmatter,evenwithoutlierseliminatedbytheabove,theresultanthistogram,

viewedasacumulativedistribution,isnotanormaldistribution.Atypicalsituationthat

resultsisshownbelowinFigure53.

100.0%

90.0%

80.0%

CumulativePercentage(%)

70.0%

60.0%

50.0%

40.0%

30.0%

20.0%

10.0%

0.0%

112.5 2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5 57.5 67.5 82.5 97.5 CenterofInterval(minutes)

CumulativeData CumulativeNormal





Figure53.ComparisonofDataDistributionandNormalDistribution



6) In particular, the cumulative distribution differs from the normal distribution in two key

aspects,bothveryimportantinloadinganetworktoestimateevacuationtimes:



3/4 Most of the real data is to the left of the normal curve above, indicating that the

networkloadsfasterforthefirst8085%ofthevehicles,potentiallycausingmore(and

earlier)congestionthanotherwisemodeled;

3/4 Thelast1015%oftherealdatatailsoffslowerthanthecomparablenormalcurve,

indicatingthatthereissignificanttrafficstillloadingatlatertimes.

Becausethesetwofeaturesareimportanttopreserve,itisthehistogramofthedatathat

isusedtodescribethemobilizationactivities,notanormalcurvefittothedata.One

could consider other distributions, but using the shape of the actual data curve is

unambiguousandpreservestheseimportantfeatures;



7) WiththemobilizationactivitieseachmodeledaccordingtoSteps16,includingpreserving

thefeaturescitedinStep6,theoverall(ortotal)mobilizationtimesareconstructed.

This is done by using the data sets and distributions under different scenarios (e.g. commuter

returning,nocommuterreturning,nosnoworsnowineach).Ingeneral,theseareadditive,using



SurryPowerStation 515 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

weighting based upon the probability distributions of each element; Figure 54 presents the

combined trip generation distributions designated A, C, D, E and F. These distributions are

presentedonthesametimescale.(Asdiscussedearlier,theuseofstrictlyadditiveactivitiesisa

conservative approach, because it makes all activities sequential - preparation for departure

followsthereturnofthecommuter;snowclearancefollowsthepreparationfordeparture,andso

forth.  In practice, it is reasonable that some of these activities are done in parallel, at least to

someextent-forinstance,preparationtodepartbeginsbyahouseholdmemberathomewhile

thecommuterisstillontheroad.)

Themobilizationdistributionsthatresultareusedintheirtabular/graphicalformasdirectinputs

tolatercomputationsthatleadtotheETE.

TheDYNEVIIsimulationmodelisdesignedtoacceptvaryingratesofvehicletripgenerationfor

each origin centroid, expressed in the form of histograms. These histograms, which represent

Distributions A, C, D, E and F, properly displaced with respect to one another, are tabulated in

Table59(DistributionB,ArriveHome,omittedforclarity).

The final time period (15) is 600 minutes long.  This time period is added to allow the analysis

networktoclear,intheeventcongestionpersistsbeyondthetripgenerationperiod.Notethat

therearenotripsgeneratedduringthisfinaltimeperiod.

5.4.2 StagedEvacuationTripGeneration

AsdefinedinNUREG/CR7002,stagedevacuationconsistsofthefollowing:

1. PAZscomprisingthe2mileregionareadvisedtoevacuateimmediately
2. PAZscomprisingregionsextendingfrom2to5milesdownwindareadvisedtoshelter

inplacewhilethe2mileregioniscleared

3. Asvehiclesevacuatethe2mileregion,shelteredpeoplefrom2to5milesdownwind

continuepreparationforevacuation

4. Thepopulationshelteringinthe2to5mileregionareadvisedtobeginevacuatingwhen

approximately90%ofthoseoriginallywithinthe2mileregionevacuateacrossthe2

mileregionboundary

5. Noncompliancewiththeshelterrecommendationisthesameastheshadow

evacuationpercentageof20%

Assumptions

1. TheEPZpopulationinPAZsbeyond5mileswillreactasdoesthepopulationinthe2to5

mileregion;thatistheywillfirstshelter,thenevacuateafterthe90thpercentileETEfor

the2mileregion

2. ThepopulationintheshadowregionbeyondtheEPZboundary,extendingto

approximately15milesradiallyfromtheplant,willreactastheydoforallnonstaged

evacuationscenarios.Thatis20%ofthesehouseholdswillelecttoevacuatewithno

shelterdelay.



SurryPowerStation 516 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

3. Thetransientpopulationwillnotbeexpectedtostagetheirevacuationbecauseofthe

limitedshelteringoptionsavailabletopeoplewhomaybeatparks,onabeach,orat

othervenues.Also,notifyingthetransientpopulationofastagedevacuationwould

provedifficult.

4. Employeeswillalsobeassumedtoevacuatewithoutfirstsheltering.

Procedure

1. Tripgenerationforpopulationgroupsinthe2mileregionwillbeascomputedbased

upontheresultsofthetelephonesurveyandanalysis.

2. Tripgenerationforthepopulationsubjecttostagedevacuationwillbeformulatedas

follows:

a. Identifythe90thpercentileevacuationtimeforthePAZscomprisingthetwomile

region.Thisvalue,TScen*,isobtainedfromsimulationresults.Itwillbecomethe

timeatwhichtheregionbeingshelteredwillbetoldtoevacuateforeach

scenario.

b. Theresultanttripgenerationcurvesforstagingarethenformedasfollows:
i. Thenonsheltertripgenerationcurveisfolloweduntilamaximumof20%

ofthetotaltripsaregenerated(toaccountforshelternoncompliance).

ii. NoadditionaltripsaregenerateduntiltimeTScen*

iii. FollowingtimeTScen*,thebalanceoftripsaregenerated:

1. bysteppingupandthenfollowingthenonsheltertripgeneration

curve(ifTScen*is<maxtripgenerationtime)or

2. bysteppingupto100%(ifTScen*is>maxtripgenerationtime)
c. Note:Thisprocedureimpliesthattheremaybedifferentstagedtripgeneration

distributionsfordifferentscenarios.NUREG/CR7002usesthestatement

approximately90thpercentileasthetimetoendstagingandbeginevacuating.

ThevalueofTScen*is1:00to1:05forallscenarios..

3. Stagedtripgenerationdistributionsarecreatedforthefollowingpopulationgroups:
a. Residentswithreturningcommuters
b. Residentswithoutreturningcommuters
c. Residentswithreturningcommutersandsnowconditions
d. Residentswithoutreturningcommutersandsnowconditions

Figure55presentsthestagedtripgenerationdistributionsforbothresidentswithandwithout

returningcommuters;the90thpercentiletwomileevacuationtimeis65minutesforweekday

and 60 minutes for weekend scenarios. At the 90th percentile evacuation time, 20% of the

population(whonormallywouldhavecompletedtheirmobilizationactivitiesforanunstaged

evacuation)advisedtoshelterhasneverthelessdepartedthearea.Thesepeopledonotcomply

with the shelter advisory. Also included on the plot are the trip generation distributions for

thesegroupsasappliedtotheregionsadvisedtoevacuateimmediately.

Since the 90th percentile evacuation time occurs before the end of the trip generation time,

aftertheshelteredregionisadvisedtoevacuate,thesheltertripgenerationdistributionrisesto

meet the balance of the nonstaged trip generation distribution. Following time TScen*, the



SurryPowerStation 517 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

balanceofstagedevacuationtripsthatarereadytodepartarereleasedwithin15minutes.After

TScen*+15,theremainderofevacuationtripsaregeneratedinaccordancewiththeunstagedtrip

generationdistribution.

Table510providesthetripgenerationhistogramsforstagedevacuation.

5.4.3 TripGenerationforWaterwaysandRecreationalAreas

As stated in the city/county RERPs if there is a siren failure or an area is out of range, route

alerting will be carried out.  Notification by loudspeaker will be given from State Game and

Inland Fisheries boats, National Guard aircraft and State Police vehicles, as required.  As

indicatedinTable52,thisstudyassumes100%notificationin45minutes.Table58indicates

thatalltransientswillhavemobilizedwithin1hoursand45minutes.Itisassumedthatthis1

hourand45minutetimeframeissufficienttimeforboaters,campersandothertransientsto

returntotheirvehiclesandbegintheirevacuationtrip.





SurryPowerStation 518 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table59.TripGenerationHistogramsfortheEPZPopulationforUnstagedEvacuation

PercentofTotalTripsGeneratedWithinIndicatedTimePeriod

Residents ResidentsWith Residents

Residentswith Without Commuters Without

Time Duration Employees Transients Commuters Commuters Snow CommutersSnow Period (Min) (DistributionA) (DistributionA) (DistributionC) (DistributionD) (DistributionE) (DistributionF)

1 15 7% 7% 0% 1% 0% 0%

2 15 32% 32% 0% 6% 0% 3%

3 15 36% 36% 2% 19% 1% 7%

4 15 14% 14% 6% 19% 2% 12%

5 15 5% 5% 13% 15% 6% 12%

6 15 5% 5% 14% 15% 9% 13%

7 15 1% 1% 15% 7% 10% 12%

8 15 0% 0% 14% 2% 12% 8%

9 30 0% 0% 15% 8% 20% 12%

10 30 0% 0% 10% 4% 14% 8%

11 60 0% 0% 9% 4% 17% 10%

12 15 0% 0% 1% 0% 2% 1%

13 30 0% 0% 1% 0% 4% 1%

14 120 0% 0% 0% 0% 3% 1%

15 600 0% 0% 0% 0% 0% 0%

NOTE:

x Shadowvehiclesareloadedontotheanalysisnetwork(Figure12)usingDistributionsCandEforgoodweatherandsnow,respectively.

x SpecialeventvehiclesareloadedusingDistributionA.





SurryPowerStation 519 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



TripGenerationDistributions Employees/Transients ResidentswithCommuters ResidentswithnoCommuters ReswithCommandSnow ResnoCommwithSnow 100 80 60

%ofPopulationEvacuating 40 20 0

0 60 120 180 240 300 360 420 ElapsedTimefromEvacuatingAdvisory(min)



Figure54.ComparisonofTripGenerationDistributions

 



SurryPowerStation 520 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table510.TripGenerationHistogramsfortheEPZPopulationforStagedEvacuation

PercentofTotalTripsGeneratedWithinIndicatedTimePeriod*

Residents Residents

Residentswith Without ResidentsWith Without

Time Duration Commuters Commuters CommutersSnow CommutersSnow Period (Min) (DistributionC) (DistributionD) (DistributionE) (DistributionF)

1 15 0% 0% 0% 0%

2 15 0% 1% 0% 1%

3 15 0% 4% 0% 1%

4 15 2% 4% 1% 2%

5 15 19% 51% 8% 30%

6 15 14% 15% 9% 13%

7 15 15% 7% 10% 12%

8 15 14% 2% 12% 8%

9 30 15% 8% 20% 12%

10 30 10% 4% 14% 8%

11 60 9% 4% 17% 10%

12 15 1% 0% 2% 1%

13 30 1% 0% 4% 1%

14 120 0% 0% 3% 1%

15 600 0% 0% 0% 0%

  • TripGenerationforEmployeesandTransients(seeTable59)isthesameforUnstagedandStagedEvacuation.





SurryPowerStation 521 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



StagedandUnstagedEvacuationTripGeneration Employees/Transients ResidentswithCommuters ResidentswithnoCommuters ReswithCommandSnow ResnoCommwithSnow StagedResidentswithCommuters StagedResidentswithnoCommuters StagedResidentswithCommuters(Snow)

StagedResidentswithnoCommuters(Snow) 100 80 60 40 PercentofPopulationEvacuating 20 0

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 ElapsedTimefromEvacuatingAdvisory(min)

 

Figure55.ComparisonofStagedandUnstagedTripGenerationDistributionsinthe2to5MileRegion



SurryPowerStation 522 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

6 DEMANDESTIMATIONFOREVACUATIONSCENARIOS

An evacuation case defines a combination of Evacuation Region and Evacuation Scenario.

ThedefinitionsofRegionandScenarioareasfollows:

Region AgroupingofcontiguousevacuatingPAZsthatformseitherakeyholesector based area, or a circular area within the EPZ, that must be evacuated in

responsetoaradiologicalemergency.

Scenario A combination of circumstances, including time of day, day of week, season,

andweatherconditions.Scenariosdefinethenumberofpeopleineachofthe

affectedpopulationgroupsandtheirrespectivemobilizationtimedistributions.

Adescriptionofeachscenarioisprovidedbelow:

1. SummerMidweekMidday(goodweather):Thisscenariorepresentsatypicalgood

weather daytime period when permanent residents are generally dispersed within

the EPZ performing daily activities and major work places are at typical summer

daytime levels. This scenario includes assumptions that permanent residents will

evacuatefromtheirplaceofresidence;summerschoolisinsession;hotelandmotel

facilities are occupied at average summer levels; and recreational facilities are at

averagesummerdaytimelevels.

2. Summer Midweek Midday (rain): This scenario represents an adverse weather

(rainy)daytimeperiodwhenpermanentresidentsaregenerallydispersedwithinthe

EPZperformingdailyactivitiesandmajorworkplacesareattypicalsummerdaytime

levels. This scenario includes assumptions that permanent residents will evacuate

from their place of residence; summer schools are in session; hotel and motel

facilities are occupied at average summer levels; and recreational facilities are at

averagesummerdaytimelevels.

3. Summer Weekend Midday (good weather): This scenario representsa typical good

weatherweekendperiodwhenpermanentresidentsarebothathomeanddispersed

within theEPZ performing typical summer weekend activities. This scenario includes

assumptions that permanent residents will evacuate from their place of residence;

schools are closed and students are at home or with their families; work places are

staffed at typical weekend levels; hotel and motel facilities are occupied at average

summer weekend levels; and recreational facilities are at average summer weekend

levels.

4. SummerWeekendMidday(rain):Thisscenariorepresentsatypicaladverseweather

(rainy) weekend period when permanent residents are both at home and dispersed

within theEPZ performing typical summer weekend activities. This scenario includes

assumptions that permanent residents will evacuate from their place of residence;

schools are closed and students are at home or with their families; work places are

staffed at typical weekend levels; hotel and motel facilities are occupied at average

summerweekendlevels.

5. Summer Midweek and Weekend Evening (good): This scenario represents a typical



SurryPowerStation 61 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

good weather midweek or weekend evening period when permanent residents are

generallyathomewithfewerdispersedwithintheEPZperformingeveningactivities.

Thisscenarioincludesassumptionsthatpermanentresidentswillevacuatefromtheir

place of residence; schools are closed and students are at home; work places are

staffed at typical evening levels; hotel and motel facilities are occupied at average

summer evening levels; and recreational facilities are at average summer evening

levels.Externaltrafficisreduced.

6. Winter Midweek Midday (good): This scenario represents a typical good weather

weekdayperiodduringthewinterwhenschoolisinsessionandtheworkforceisata

full daytime level. This scenario includes assumptions that permanent residents will

evacuate from their place of residence; students will evacuate directly from the

schools; work places are fully staffed at typical daytime levels; hotel and motel

facilitiesareoccupiedataveragewinterlevels;andrecreationalfacilitiesareatwinter

daytimelevels.

7. WinterMidweekMidday(rain):Thisscenariorepresentsanadverseweather(rainy)

weekdayperiodduringthewinterwhenschoolisinsessionandtheworkforceisata

full daytime level. This scenario includes assumptions that permanent residents will

evacuate from their place of residence; students will evacuate directly from the

schools; work places are fully staffed at typical daytime levels; hotel and motel

facilitiesareoccupiedataveragewinterlevels;andrecreationalfacilitiesareatwinter

daytimelevels.

8. Winter Midweek Midday (snow): This scenario represents an adverse weather

(snowy) weekday period during the winter when school is in session and the work

force is at a full daytime level. This scenario includes assumptions that permanent

residents will evacuate from their place of residence; students will evacuate directly

from the schools; work places are fully staffed at typical daytime levels; hotel and

motelfacilitiesareoccupiedataveragewinterlevels;andrecreationalfacilitiesareat

winterdaytimelevels.

9. WinterWeekendMidday(good):Thisscenarioreflectsatypicalgoodweatherwinter

weekend period when permanent residents are both at home and dispersed within

the EPZ, and the work force is at a winter weekend level. This scenario includes

assumptions that permanent residents will evacuate from their place of residence;

schools are closed and students are at home; work places are staffed at typical

weekend levels; hotel and motel facilities are occupied at average winter weekend

levelsandrecreationalfacilitiesareatwinterweekendlevels.

10. Winter Weekend Midday (rain): This scenario reflects an adverse weather (rainy)

winter weekend period when permanent residents are both at home and dispersed

withintheEPZ,andtheworkforceisatawinterweekendlevel.Thisscenarioincludes

assumptions that permanent residents will evacuate from their place of residence;

schools are closed and students are at home; work places are staffed at typical

weekend levels; hotel and motel facilities are occupied at average winter weekend

levelsandrecreationalfacilitiesareatwinterweekendlevels.

11. WinterWeekendMidday(snow):Thisscenarioreflectsanadverseweather(snowy)



SurryPowerStation 62 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

winter weekend period when permanent residents are both at home and dispersed

withintheEPZ,andtheworkforceisatawinterweekendlevel.Thisscenarioincludes

assumptions that permanent residents will evacuate from their place of residence;

schools are closed and students are at home; work places are staffed at typical

weekend levels; hotel and motel facilities are occupied at average winter weekend

levelsandrecreationalfacilitiesareatwinterweekendlevels.

12. WinterMidweekandWeekendEvening(good):Thisscenarioreflectsatypicalgood

weather,wintermidweekorweekendeveningperiodwhenpermanentresidentsare

home and the work force is at a nighttime level. This scenario includes assumptions

that permanent residents will evacuate from their place of residence; schools are

closedandstudentsareathome;workplacesarestaffedattypicalnighttimelevels;

hotel and motel facilities are occupied at average winter levels; and recreational

facilitiesareatwintereveninglevels.

13. SpecialEvents(good): Thisscenarioreflectsamajorevent-theNewportNewsFall

FestivalofFolklifewhentherearepeaktouristpopulationspresentwithintheEPZ.

This is a good winter weather scenario. This scenario includes assumptions that

permanent residents will evacuate from their place of residence; schools are closed

andstudentsareathome;workplacesarestaffedattypicalweekendlevels;hoteland

motel facilities are occupied at average winter weekend levels and recreational

facilitiesareatwinterweekendlevels.

14. RoadwayImpactMidweekMidday(good):Thisrepresentsasummerscenariowhen

there is a WB lane closure on I64, during a good weather daytime period when

permanentresidentsaregenerallydispersedwithintheEPZperformingdailyactivities

and major work places are at typical daytime levels. This scenario includes

assumptions that permanent residents will evacuate from their place of residence;

summer school is in session; hotel and motel facilities are occupied at average

summerlevels;andrecreationalfacilitiesareataveragesummerdaytimelevels.

A total of 41 Regions were defined which encompass all the groupings of PAZs considered.

These Regions are defined in Table 61.  The PAZ configurations are identified in Figure 61.

Each keyhole sectorbased area consists of a central circle centered at the power plant, and

three adjoining sectors, each with a central angle of 22.5 degrees, as per NUREG/CR7002

guidance.Thecentralsectorcoincideswiththewinddirection.Thesesectorsextendto5miles

fromtheplant(RegionsR04throughR14)ortotheEPZboundary(RegionsR15throughR29).

RegionsR01,R02andR03representevacuationsofcircularareaswithradiiof2,5and10miles,

respectively. Regions R30 through R41 are identical to Regions R04 through R14 and R02,

respectively;however,thosePAZsbetween2milesand5milesarestageduntil90%ofthe2 mileregion(RegionR01)hasevacuated.

A total of 14 Scenarios were evaluated for all Regions. Thus, there are a total of 41x14=574

evacuation cases.  Table 62 is a description of all Scenarios. The Scenarios are designed to

definetheboundingcases.

Eachcombinationofregionandscenarioimpliesaspecificpopulationtobeevacuated.Table

63presentsthepercentageofeachpopulationgroupestimatedtoevacuateforeachscenario.



SurryPowerStation 63 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table64presentsthevehiclecountsforeachscenarioforanevacuationofRegionR03-the

entireEPZ.

ThevehicleestimatespresentedinSection3arepeakvalues.Thesepeakvaluesareadjusted

depending on the scenario and region being considered, using scenario and region specific

percentages, such that the average population is considered for each evacuation case. The

scenariopercentagesarepresentedinTable63,whiletheregionalpercentagesareprovidedin

TableH1.ThepercentagespresentedinTable63weredeterminedasfollows:

The number of residents with commuters during the week (when workforce is at its peak) is

equaltotheproductof57%(thenumberofhouseholdswithatleastonecommuter)and60%

(the number of households with a commuter that would await the return of the commuter

priortoevacuating).Seeassumption3inSection2.3.Itisestimatedforweekendandevening

scenarios that 10% of households with returning commuters will have a commuter at work

duringthosetimes.

Employment is assumed to be at its peak during the winter, midweek, midday scenarios.

Employmentisreducedslightly(96%)forsummer,midweek,middayscenarios.Thisisbasedon

the estimation that 50% of the employees commuting into the EPZ will be on vacation for a

week during the approximate 12 weeks of summer. It is further estimated that those taking

vacation will be uniformly dispersed throughout the summer with approximately 4% of

employeesvacationingeachweek.Itisfurtherestimatedthatonly10%oftheemployeesare

workingintheeveningsandduringtheweekends.

Transientactivityisestimatedtobeatitspeakduringsummerweekendsandlessduringthe

week and at its lowest level for winter midweek scenarios.  Percentages were estimated for

eachfacilitytype,byseasonandtimeofdayinordertominimizedoublecounting(e.g.tourists

will be in the hotel at night but at the attractions during the day).  As a consequence, no

scenariohas100%ofalltransientsconsidered.AsshowninAppendixE,thereisasignificant

amount of lodging offering overnight accommodations in the EPZ; thus, transient activity is

estimatedtoremainhighduringthesummereveninghours-49%.Transientactivityonwinter

weekendsisestimatedtobe29%.

AsnotedintheshadowfootnotetoTable63,theshadowpercentagesarecomputedusinga

base of 20% (see assumption 5 in Section 2.2); to include the employees within the shadow

region who may choose to evacuate, the voluntary evacuation is multiplied by a scenario specific proportion of employees to permanent residents in the shadow region. For example,

usingthevaluesprovidedinTable64forScenario1,theshadowpercentageiscomputedas

follows:



One special event - Newport News Fall Festival of Folklife - was considered as Scenario 13.

Thus,thespecialeventtrafficis100%evacuatedforScenario13,and0%forallotherscenarios.

Itisestimatedthatsummerschoolenrollmentisapproximately10%ofenrollmentduringthe

regular school year for summer, midweek, midday scenarios. School is not in session during



SurryPowerStation 64 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

weekends and evenings, thus no buses for school children are needed under those

circumstances. As discussed in Section 7, schools are in session during the winter season,

midweek,middayand100%ofbuseswillbeneededunderthosecircumstances.Transitbuses

forthetransitdependentpopulationaresetto100%forallscenariosasitisassumedthatthe

transitdependentpopulationispresentintheEPZforallscenarios.

Externaltrafficisestimatedtobereducedby60%duringeveningscenariosandis100%forall

otherscenarios.



SurryPowerStation 65 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table61.DescriptionofEvacuationRegions

Reg Desc PAZ

ion ription 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18A 18B 18C 18D 19A 19B 20A 20B 21 22A 22B 23 24

2Mile

R01        x                      

Radius

5Mile

R02    x x x  x x          x x x      x x  

Radius

R03 FullEPZ x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

Evacuate2MileRadiusandDownwindto5Miles

Wind

Reg Direction PAZ

ion Towards 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18A 18B 18C 18D 19A 19B 20A 20B 21 22A 22B 23 24

R04 NNW,N        x           x        x x  

R05 NNE        x           x x        x  

R06 NE,ENE        x           x x x         

R07 E        x             x         

N/A ESE RefertoR01

R08 SE        x x                     

R09 SSE,S      x  x x                     

R10 SSW     x x  x x                     

R11 SW     x x  x                      

R12 WSW,W    x x   x                      

R13 WNW    x x   x                   x   

R14 NW        x                   x x  







SurryPowerStation 66 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Evacuate5MileRadiusandDownwindto10Miles

Wind

Reg Direction PAZ

ion Towards 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18A 18B 18C 18D 19A 19B 20A 20B 21 22A 22B 23 24

R15 NNW,N    x x x  x x         x x x x x  x x x x x x x

R16 NNE    x x x  x x         x x x x x x x x x x x x 

R17 NE    x x x  x x       x x x x x x x x  x  x x  

R18 ENE    x x x  x x     x  x x  x x x  x    x x  

R19 E    x x x  x x     x x x x  x x x  x    x x  

R20 ESE    x x x  x x     x x x   x x x      x x  

R21 SE    x x x  x x    x x x x   x x x      x x  

R22 SSE    x x x  x x x x x x      x x x      x x  

R23 S    x x x x x x x x x x      x x x      x x  

R24 SSW   x x x x x x x x x x x      x x x      x x  

R25 SW x x x x x x x x x x x x       x x x      x x  

R26 WSW x x x x x x x x x          x x x      x x  

R27 W x x x x x x  x x          x x x      x x  x

R28 WNW  x  x x x  x x          x x x      x x x x

R29 NW  x  x x x  x x          x x x     x x x x x



















SurryPowerStation 67 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



StagedEvacuation2MileRadiusEvacuates,thenEvacuateDownwindto5Miles

Wind

Reg Direction PAZ

ion Towards 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18A 18B 18C 18D 19A 19B 20A 20B 21 22A 22B 23 24

R30 NNW,N        x           x        x x  

R31 NNE        x           x x        x  

R32 NE,ENE        x           x x x         

R33 E        x             x         

N/A ESE RefertoR01

R34 SE        x x                     

R35 SSE,S      x  x x                     

R36 SSW     x x  x x                     

R37 SW     x x  x                      

R38 WSW,W    x x   x                      

R39 WNW    x x   x                   x   

R40 NW        x                   x x  

5Mile

R41    x x x  x x          x x x      x x  

Region

PAZ(s)ShelterinPlaceuntil90%ETEforR01,

PAZ(s)ShelterinPlace PAZ(s)Evacuate

thenEvacuate



SurryPowerStation 68 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure61.SPSEPZPAZs



SurryPowerStation 69 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table62.EvacuationScenarioDefinitions

Dayof Timeof

Scenario Season1 Week Day Weather Special

1 Summer Midweek Midday Good None

2 Summer Midweek Midday Rain None

3 Summer Weekend Midday Good None

4 Summer Weekend Midday Rain None

Midweek,

5 Summer Weekend Evening Good None

6 Winter Midweek Midday Good None

7 Winter Midweek Midday Rain None

8 Winter Midweek Midday Snow None

9 Winter Weekend Midday Good None

10 Winter Weekend Midday Rain None

11 Winter Weekend Midday Snow None

Midweek,

12 Winter Weekend Evening Good None

NewportNewsFall

13 Winter Weekend Midday Good FestivalofFolklife

RoadwayImpact:WB

14 Summer Midweek Midday Good LaneClosureonI64





1

 Wintermeansthatschoolisinsession(alsoappliestospringandautumn).Summermeansthatschoolisnotin

session.





SurryPowerStation 610 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table63.PercentofPopulationGroupsEvacuatingforVariousScenarios

Households Households

With Without External

Returning Returning Special Commuter School Transit Through

Scenario Commuters Commuters Employees Transients Shadow Event1 Students Buses Buses Traffic

1 34% 66% 96% 55% 24% 0% 10% 10% 100% 100%

2 34% 66% 96% 55% 24% 0% 10% 10% 100% 100%

3 3% 97% 10% 63% 20% 0% 0% 0% 100% 100%

4 3% 97% 10% 63% 20% 0% 0% 0% 100% 100%

5 3% 97% 10% 49% 20% 0% 0% 0% 100% 40%

6 34% 66% 100% 10% 25% 0% 100% 100% 100% 100%

7 34% 66% 100% 10% 25% 0% 100% 100% 100% 100%

8 34% 66% 100% 10% 25% 0% 100% 100% 100% 100%

9 3% 97% 10% 29% 20% 0% 0% 0% 100% 100%

10 3% 97% 10% 29% 20% 0% 0% 0% 100% 100%

11 3% 97% 10% 29% 20% 0% 0% 0% 100% 100%

12 3% 97% 10% 21% 20% 0% 0% 0% 100% 40%

13 3% 97% 10% 29% 20% 100% 0% 0% 100% 100%

14 34% 66% 96% 55% 24% 0% 10% 10% 100% 100%



ResidentHouseholdswithCommuters.......HouseholdsofEPZresidentswhoawaitthereturnofcommuterspriortobeginningtheevacuationtrip.

ResidentHouseholdswithNoCommuters..HouseholdsofEPZresidentswhodonothavecommutersorwillnotawaitthereturnofcommuterspriortobeginningtheevacuationtrip.

Employees..................................................EPZemployeeswholiveoutsidetheEPZ

Transients..................................................PeoplewhoareintheEPZatthetimeofanaccidentforrecreationalorother(nonemployment)purposes.

Shadow......................................................Residentsandemployeesintheshadowregion(outsideoftheEPZ)whowillspontaneouslydecidetorelocateduringtheevacuation.Thebasisfor

thevaluesshownisa20%relocationofshadowresidentsalongwithaproportionalpercentageofshadowemployees.

SpecialEvents............................................AdditionalvehiclesintheEPZduetotheidentifiedspecialevent.

SchoolandTransitBuses............................Vehicleequivalentspresentontheroadduringevacuationservicingschoolsandtransitdependentpeople(1busisequivalentto2passenger

vehicles).

ExternalThroughTraffic.............................Trafficoninterstates/freewaysandmajorarterialroadsatthestartoftheevacuation.Thistrafficisstoppedbyaccesscontrolapproximately2

hoursaftertheevacuationbegins.



SurryPowerStation 611 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table64.VehicleEstimatesbyScenario

Households Households

With Without Commu External Total

Returning Returning Special ter School Transit Through Scenario

Scenario Commuters Commuters Employees Transients Shadow Event1 Students Buses Buses Traffic Vehicles 1 25,300 48,683 16,079 14,732 15,176  226 87 244 14,256 134,783

2 25,300 48,683 16,079 14,732 15,176  226 87 244 14,256 134,783

3 2,530 71,453 1,675 16,875 12,748    244 14,256 119,781

4 2,530 71,453 1,675 16,875 12,748    244 14,256 119,781

5 2,530 71,453 1,675 13,125 12,748    244 5,702 107,477

6 25,300 48,683 16,749 2,679 15,288  2,259 874 244 14,256 126,332

7 25,300 48,683 16,749 2,679 15,288  2,259 874 244 14,256 126,332

8 25,300 48,683 16,749 2,679 15,288  2,259 874 244 14,256 126,332

9 2,530 71,453 1,675 7,768 12,748    244 14,256 110,674

10 2,530 71,453 1,675 7,768 12,748    244 14,256 110,674

11 2,530 71,453 1,675 7,768 12,748    244 14,256 110,674

12 2,530 71,453 1,675 5,625 12,748    244 5,702 99,977

13 2,530 71,453 1,675 7,768 12,748 10,467   244 14,256 121,141

14 25,300 48,683 16,079 14,732 15,176  226 87 244 14,256 134,783

 Note:Vehicleestimatesarefor an evacuation of the entire EPZ (RegionR03)





SurryPowerStation 612 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

7 GENERALPOPULATIONEVACUATIONTIMEESTIMATES(ETE)

This section presents the ETE results of the computer analyses using the DYNEV II System

describedinAppendicesB,CandD.Theseresultscover41regionswithintheSPSEPZandthe

14EvacuationScenariosdiscussedinSection6.

TheETEforallEvacuationCasesarepresentedinTable71andTable72.Thesetablespresent

theestimatedtimestocleartheindicatedpopulationpercentagesfromtheEvacuationRegions

forallEvacuationScenarios.TheETEofthe2mileregioninbothstagedandunstagedregions

arepresentedinTable73andTable74.Table75definestheEvacuationRegionsconsidered.

The tabulated values of ETE are obtained from the DYNEV II System outputs which are

generatedat5minuteintervals.

7.1 VoluntaryEvacuationandShadowEvacuation

VoluntaryevacueesarepeoplewithintheEPZinPAZsforwhichanAdvisorytoEvacuatehas

not been issued, yet who elect to evacuate. Shadow evacuation is the voluntary outward

movementofsomepeoplefromtheShadowRegion(outsidetheEPZ)forwhomnoprotective

actionrecommendationhasbeenissued.Bothvoluntaryandshadowevacuationsareassumed

totakeplaceoverthesametimeframeastheevacuationfromwithintheimpactedEvacuation

Region.

The ETE for the SPS EPZ addresses the issue of voluntary evacuees in the manner shown in

Figure 71.  Within the EPZ, 20 percent of people located in PAZs outside of the evacuation

region who are not advised to evacuate, are assumed to elect to evacuate. Similarly, it is

assumedthat20percentofthosepeopleintheShadowRegionwillchoosetoleavethearea.

Figure72presentstheareaidentifiedastheShadowRegion.Thisregionextendsradiallyfrom

the plant to cover a region between the EPZ boundary and approximately 15 miles.  The

populationandnumberofevacuatingvehiclesintheShadowRegionwereestimatedusingthe

samemethodologythatwasusedforpermanentresidentswithintheEPZ(seeSection3.1).As

discussed in Section 3.2, it is estimated that a total of 129,515 people reside in the Shadow

Region; 20 percent of them would evacuate.  See Table 64 for the number of evacuating

vehiclesfromtheShadowRegion.

Traffic generated within this Shadow Region, traveling away from the SPS location, has the

potential for impeding evacuating vehicles from within the Evacuation Region.  All ETE

calculationsincludethisshadowtrafficmovement.

7.2 StagedEvacuation

AsdefinedinNUREG/CR7002,stagedevacuationconsistsofthefollowing:

1. PAZscomprisingthe2mileregionareadvisedtoevacuateimmediately.
2. PAZscomprisingregionsextendingfrom2to5milesdownwindareadvisedtoshelter

inplacewhilethetwomileregioniscleared.



SurryPowerStation 71 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

3. Asvehiclesevacuatethe2mileregion,peoplefrom2to5milesdownwindcontinue

preparationforevacuationwhiletheyshelter.

4. Thepopulationshelteringinthe2to5mileregionisadvisedtoevacuatewhen

approximately90%ofthe2mileregionevacuatingtrafficcrossesthe2mileregion

boundary.

5. Noncompliancewiththeshelterrecommendationisthesameastheshadow

evacuationpercentageof20%.

SeeSection5.4.2foradditionalinformationonstagedevacuation.

7.3 PatternsofTrafficCongestionduringEvacuation

Figure73throughFigure78illustratethepatternsoftrafficcongestionthatariseforthecase

whentheentireEPZ(RegionR03)isadvisedtoevacuateduringthesummer,midweek,midday

periodundergoodweatherconditions(Scenario1).

Traffic congestion, as the term is used here, is defined as Level of Service (LOS) F.  LOS F is

definedasfollows(HCM2010,page55):

TheHCMusesLOSFtodefineoperationsthathaveeitherbrokendown(i.e.,demand

exceedscapacity)orhaveexceededaspecifiedservicemeasurevalue,orcombination

of service measure values, that most users would consider unsatisfactory. However,

particularly for planning applications where different alternatives may be compared,

analysts may be interested in knowing just how bad the LOS F condition is. Several

measuresareavailabletodescribeindividually,orincombination,theseverityofaLOS

Fcondition:

  •  Demandtocapacity ratios describe the extent to which capacity is exceeded

duringtheanalysisperiod(e.g.,by1%,15%,etc.);

  • DurationofLOSFdescribeshowlongtheconditionpersists(e.g.,15min,1h,3

h);and

  • SpatialextentmeasuresdescribetheareasaffectedbyLOSFconditions.These

includemeasuressuchasthebackofqueue,andtheidentificationofthespecific

intersectionapproachesorsystemelementsexperiencingLOSFconditions.

Allhighway"links"whichexperienceLOSFaredelineatedinthesefiguresbyathickredline;all

othersarelightlyindicated.Congestiondevelopsrapidlyaroundconcentrationsof population

and traffic bottlenecks. Figure 73 displays the developing congestion within the population

centers of Williamsburg and Newport News, just 30 minutes after the Advisory to Evacuate

(ATE).

At 2 hours after the ATE, Figure 74 displays fullydeveloped congestion within the more

populousportionoftheEPZnorthofJamesRiver.Atthistime,largeportionsoftheresidential

population are mobilizing. Paths which exit the EPZ north of the James River are exhibiting

intensecongestion.TheJohnTylerHwyisoperatingintheLOSD/Erangewhereiscrossesthe



SurryPowerStation 72 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

EPZboundarybecausetrafficisbeingmeteredupstreamatthepointwhereMonticelloAveand

JohnTylerHwymerge.Incontrast,theruralportionofthenetworkwhichliessouthofJames

Riverdoesnotdevelopanycongestion.

At3hours,asshowninFigure75,theintensecongestionpersiststhroughoutthenorthernhalf

of the EPZ and is particularly pronounced in areas near the EPZ boundary. Congestion has

clearedwithinthe5mileradius.CongestionhasclearedonUS60throughthePAZsof18B,18C

and18Dasevacueesprogresstowardsexitpoints.

CongestedconditionsremainnorthoftheCityofWilliamsburgat4hoursaftertheATE(Figure

76).CongestionpersistsintheeastintheportionsoftheCityofNewportNewsandYorktown

which lie within the shadow region. Congestion within the EPZ in the east has reduced

considerably within the past hour, as can be seen by comparing Figure 76 with Figure 75.

Althoughmoreheavilypopulated,theeasternportionoftheEPZbenefitsfromalargernumber

ofhighercapacityroadwaysthanareavailablenorthofWilliamsburg.

Overthenexthour,at5hoursafterATE,congestionhasbeengreatlyalleviatedwithintheCity

of Williamsburg proper, but the surrounding areas to the west and particularly the north

remainheavilycongestedasshowninFigure77.LOSFconditionsremainintheeastbutare

limited to small portions of the Yorktown area stemming from the ramps which access the

GeorgeWashingtonMemorialHwy.

Finally,Figure78displaysanEPZthatisessentiallyclearofcongestion,at6:15aftertheATE,

whichisafterthecompletionofthetripgeneration(mobilization)time.Congestionpersistsin

theshadowregionnorthWilliamsburgonI64anditsfrontageroadsasevacueesarehindered

by a limited number of exit alternatives.  These conditions linger until time 7:55 when all

congestionintheshadowregionisdispersed.

Evacuationisacontinuousprocess,asimpliedbyFigure79throughFigure722.Thesefigures

indicatetherateatwhichtrafficflowsoutoftheindicatedareasforthecaseofanevacuation

of the full EPZ (Region R03) under the indicated conditions. One figure is presented for each

scenarioconsidered.

AsindicatedinFigure79,thereistypicallyalong"tail"tothesedistributions.Vehiclesbeginto

evacuate an area slowly at first, as people respond to the ATE at different rates. Then traffic

demandbuildsrapidly(slopesofcurvesincrease).Whenthesystembecomescongested,traffic

exitstheEPZatratessomewhatbelowcapacityuntilsomeevacuationrouteshavecleared.As

moreroutesclear,theaggregaterateofegressslowssincemanyvehicleshavealreadyleftthe

EPZ.  Towards the end of the process, relatively few evacuation routes service the remaining

demand.

Thisdeclineinaggregateflowrate,towardstheendoftheprocess,ischaracterizedbythese

curves flattening and gradually becoming horizontal. Ideally, it would be desirable to fully

saturateallevacuationroutesequallysothatallwillservicetrafficnearcapacitylevelsandall

willclearatthesametime.Forthisidealsituation,allcurveswouldretainthesameslopeuntil

the end - thus minimizing evacuation time.  In reality, this ideal is generally unattainable

reflectingthespatialvariationinpopulationdensity,mobilizationratesandinhighwaycapacity



SurryPowerStation 73 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

overtheEPZ.

7.4 EvacuationTimeEstimate(ETE)Results

Table 71 and Table 72 present the ETE values for all 41 Evacuation Regions and all 14

EvacuationScenarios.Table73andTable74presenttheETEvaluesforthe2Mileregionfor

bothstagedandunstagedkeyholeregionsdownwindto5miles.Thetablesareorganizedas

follows:



Table Contents ETE represents the elapsed time required for 90 percent of the

71 population within a Region, to evacuate from that Region. All

Scenariosareconsidered,aswellasStagedEvacuationscenarios.

ETE represents the elapsed time required for 100 percent of the

72 population within a Region, to evacuate from that Region.  All

Scenariosareconsidered,aswellasStagedEvacuationscenarios.

ETE represents the elapsed time required for 90 percent of the

73 population within the 2mile Region, to evacuate from that Region

withbothConcurrentandStagedEvacuations.

ETE represents the elapsed time required for 100 percent of the

74 population within the 2mile Region, to evacuate from that Region

withbothConcurrentandStagedEvacuations.



The animation snapshots described above reflect the ETE statistics for the concurrent (un staged)evacuationscenariosandregions,whicharedisplayedinFigure73throughFigure78.

MostofthecongestionislocatedinPAZsbeyondthe5milearea;thisisreflectedintheETE

statistics:



x The100thand90thpercentileETEforRegionR01(2milearea)rangesfrom1:00to1:05

and1:45to1:50,respectively.TheR01ETEareuniqueinthattheyaredictatedbythe

mobilizationcharacteristicsoftheSPSworkforcealone.

x The90thpercentileETEforRegionR02(5milearea)aregenerallybetween2:05(hr:min)

and2:20forgoodweather(nonspecialevent)scenariosandupto3:05forsnow.

x The90thpercentileETEforRegionR03(fullEPZ)isbetween3:05and4:15forgood

weather(nonspecialevent)scenarios.RainincreasestheETEbyupto30minutes.

SnowincreasestheETEby40minutes.

x The90thpercentileETEforRegionsR15-R29(whichextendtotheEPZboundary)vary.

RegionswhichpredominantlyconsistofsuburbanPAZsnorthoftheJamesRiverexhibit

apatternthatresemblesR03.Inparticular,regionsincorporatingbothPAZ21and23

havethelongestETE,duetoprolongedcongestionontheroadwaysin,andnorthof,

Williamsburg.RegionswhichareprincipallycomprisedofruralPAZstothesouthdisplay



SurryPowerStation 74 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

apatternreminiscentofR02.Thoseregionswhichareahybridofthetwoareas

generallyliesomewhereinbetween.

x The100thpercentileETEforsuburbanregionscanexceedthemobilizationtimesbyas

muchas2:25minutesfornonspecialeventscenarios.

ComparisonofScenarios9and13inTable71indicatesthattheSpecialEvent-FallFestivalof

Folklife-hasanimpactontheETEforthe90thpercentileforthoseregionsincludingPAZ16in

NewportNews.TheETEisincreasedby2025minutes.Asdiscussedinchapter6,sincethisisa

winterscenario,thenonspecialeventtransientpopulationisreducedto47%ofpeak(summer

weekend) levels. However, the total number of transients in the EPZ is the greatest for this

scenarioduetotheadditional10,467vehiclespresentforthespecialevent.Theextravehicles

increase congestion on the local roads in Newport News and on the ramps to I64, but I64

eastbound has sufficient capacityto accommodate them. There is no impact in the 2 and 5 Mile Regions which are displaced from the event. The 100 percentile ETE for the entire EPZ

(RegionR03)increasesby15minutes.

ComparisonofScenarios1and14inTable71indicatesthattheroadwayclosure-asinglelane

onI64westbound-significantlyimpactsthe90thpercentileETEforsomeevacuatingregions

with increases of up to 1:25.  With one lane closed, the capacity of I64 is halved, increasing

congestion and prolonging ETE.  The roadway closure has no effect on regions which do not

involve the evacuation of PAZs in and around the City of Williamsburg.  The roadway impact

scenarioalsomateriallyimpactsthe100thpercentileETEforsomeregionswithincreasesofup

1hourand30minutes.

7.5 StagedEvacuationResults

Table 73 and Table 74 present a comparison of the ETE compiled for the concurrent (un staged) and staged evacuation studies. Note that Regions R30 through R40 are the same

geographicareasasRegionsR04throughR14,respectivelyandR41isequivalenttoR02.

To determine whether the staged evacuation strategy is worthy of consideration, one must

show that the ETE for the 2 Mile region can be reduced without significantly affecting the

regionbetween2milesand5miles.Inallcases,asshowninthesetables,theETEforthe2mile

regionisunchangedwhenastagedevacuationisimplemented.Thereasonforthisisthatthe

congestion within the 5mile area lies across the James River and is isolated from the 2 mile

region which is situated south of the river.  Consequently, the impedance, due to this

congestionwithinthe5mileareaissequesteredfromthe2mileareaanddoesnotinfluence

the90thpercentileETEforthe2milearea.Therefore,stagingtheevacuationtosharplyreduce

congestion within the 5mile area, provides no benefits to evacuees from within the 2 mile

regionandunnecessarilydelaystheevacuationofthosebeyond2miles.

AcomparisonofR30throughR40withR04throughR14andR41withR02revealsthatstaging

has a negligible impact on the ETE for Scenarios 1 through 13 (see Table 71). The 100th

percentileETEisunchangedforallregionsandscenarios(seeTable72).





SurryPowerStation 75 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

7.6 GuidanceonUsingETETables

The user first determines the percentile of population for which the ETE is sought (The NRC

guidancecallsforthe90thpercentile).TheapplicablevalueofETEwithinthechosenTablemay

thenbeidentifiedusingthefollowingprocedure:

1. IdentifytheapplicableScenario:
  • Season 

Summer

Winter(alsoAutumnandSpring)

  • DayofWeek

Midweek

Weekend

  • TimeofDay

Midday

Evening

  • WeatherCondition

GoodWeather

Rain

Snow

  • SpecialEvent

FallFolklifeFestival

RoadClosure(AlaneonI64WBisclosed)

  • EvacuationStaging

No,StagedEvacuationisnotconsidered

Yes,StagedEvacuationisconsidered

WhiletheseScenariosaredesigned,inaggregate,torepresentconditionsthroughouttheyear,

somefurtherclarificationiswarranted:

  • Theconditionsofasummerevening(eithermidweekorweekend)andrainarenot

explicitlyidentifiedintheTables.Fortheseconditions,Scenarios(2)and(4)apply.

  • The conditions of a winter evening (either midweek or weekend) and rain are not

explicitly identified in the Tables.  For these conditions, Scenarios (7) and (10) for

rainapply.

  • Theconditionsofawinterevening(eithermidweekorweekend)andsnowarenot

explicitly identified in the Tables.  For these conditions, Scenarios (8) and (11) for

snowapply.

  • Theseasonsaredefinedasfollows:

Summerassumesthatpublicschoolsarenotinsession.

Winter(includesSpringandAutumn)considersthatpublicschoolsareinsession.

  • Time of Day: Midday implies the time over which most commuters are at work or

aretravellingto/fromwork.

2. With the desired percentile ETE and Scenario identified, now identify the Evacuation

Region:



SurryPowerStation 76 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

  • Determinetheprojectedazimuthdirectionoftheplume(coincidentwiththewind

direction).Thisdirectionisexpressedintermsofcompassorientation:towardsN,

NNE,NE,

  • Determine the distance that the Evacuation Region will extend from the nuclear

power plant. The applicable distances and their associated candidate Regions are

givenbelow:

2Miles(RegionR01)

To5Miles(RegionR02,R04throughR14)

ToEPZBoundary(RegionsR03,R15throughR29)

  • EnterTable75andidentifytheapplicablegroupofcandidateRegionsbasedonthe

distance that the selected Region extends from the SPS.  Select the Evacuation

Regionidentifierinthatrow,basedontheazimuthdirectionoftheplume,fromthe

firstcolumnoftheTable.

3. Determine the ETE Table based on the percentile selected.  Then, for the Scenario

identifiedinStep1andtheRegionidentifiedinStep2,proceedasfollows:

  • The columns of Table 71 are labeled with the Scenario numbers.  Identify the

propercolumnintheselectedTableusingtheScenarionumberdefinedinStep1.

  • Identify the row in this table that provides ETE values for the Region identified in

Step2.

  • The unique data cell defined by the column and row so determined contains the

desiredvalueofETEexpressedinHours:Minutes.

 



SurryPowerStation 77 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Example

ItisdesiredtoidentifytheETEforthefollowingconditions:

  • Sunday,August10that4:00AM.
  • Itisraining.
  • Winddirectionistowardthenortheast(NE).
  • Windspeedissuchthatthedistancetobeevacuatedisjudgedtobea5mileradius

anddownwindto10miles(toEPZboundary).

  • ThedesiredETEisthatvalueneededtoevacuate90percentofthepopulationfrom

withintheimpactedRegion.

  • Astagedevacuationisnotdesired.

Table71isapplicablebecausethe90thpercentileETEisdesired.Proceedasfollows:

1. IdentifytheScenarioassummer,weekend,eveningandraining.EnteringTable71,itis

seen that there is no match for these descriptors.  However, the clarification given

aboveassignsthiscombinationofcircumstancestoScenario4.

2. Enter Table 75 and locate the Region described as Evacuate 5Mile Radius and

DownwindtotheEPZBoundaryforwinddirectiontowardtheNE(fromtheSW)and

readRegionR17inthefirstcolumnofthatrow.

3. Enter Table 71 to locate the data cell containing the value of ETE for Scenario 4 and

RegionR17.Thisdatacellisincolumn(4)andintherowforRegionR17;itcontainsthe

ETEvalueof2:50.



SurryPowerStation 78 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table71.TimetoCleartheIndicatedAreaof90PercentoftheAffectedPopulation

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Weekend Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway Rain Rain Rain Snow Rain Snow

Weather Weather Weather Weather Weather Weather Event Impact

Entire2MileRegion,5MileRegion,andEPZ

R01 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R02 2:15 2:15 2:10 2:10 2:05 2:20 2:20 3:05 2:10 2:15 2:55 2:15 2:10 3:05 R03 4:15 4:45 3:50 4:05 3:15 3:40 4:00 4:20 3:10 3:30 3:50 3:05 3:35 5:10 2MileRegionandKeyholeto5Miles

R04 1:55 1:55 1:40 1:50 1:45 2:25 2:25 3:05 2:05 2:05 2:55 2:10 2:05 1:55 R05 2:10 2:15 2:05 2:10 2:00 2:20 2:20 3:00 2:10 2:10 2:50 2:15 2:10 3:15 R06 1:55 2:10 2:05 2:05 1:50 2:15 2:15 2:45 2:05 2:05 2:40 2:10 2:05 3:20 R07 1:10 1:10 1:25 1:25 1:25 1:15 1:15 1:15 1:25 1:25 1:50 1:25 1:25 1:10 R08 2:00 2:00 2:25 2:25 2:25 2:00 2:00 2:40 2:25 2:25 3:10 2:25 2:25 2:00 R09 2:10 2:10 2:25 2:30 2:25 2:10 2:10 2:50 2:25 2:30 3:15 2:25 2:25 2:10 R10 2:25 2:25 2:30 2:30 2:30 2:25 2:25 3:05 2:30 2:30 3:20 2:30 2:30 2:25 R11 2:05 2:05 2:25 2:25 2:25 2:05 2:05 2:45 2:25 2:25 3:15 2:25 2:25 2:05 R12 2:10 2:15 2:20 2:20 2:20 2:10 2:10 2:50 2:20 2:20 3:15 2:20 2:20 2:10 R13 2:25 2:25 2:20 2:20 2:20 2:25 2:25 3:15 2:20 2:25 3:15 2:25 2:20 2:25 R14 2:30 2:30 2:20 2:20 2:25 2:30 2:30 3:20 2:25 2:25 3:15 2:25 2:25 2:30

 



SurryPowerStation 79 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Weekend Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway Rain Rain Rain Snow Rain Snow

Weather Weather Weather Weather Weather Weather Event Impact

5MileRegionandKeyholetoEPZBoundary

R15 4:25 5:00 4:05 4:20 3:35 4:00 4:15 4:35 3:30 3:40 4:05 3:10 3:30 5:25 R16 3:55 4:15 3:35 3:45 2:55 3:30 3:45 4:00 3:00 3:15 3:40 2:40 3:00 5:05 R17 2:45 3:00 2:40 2:50 2:20 2:40 2:50 3:25 2:35 2:45 3:15 2:20 2:55 3:10 R18 2:40 2:50 2:35 2:35 2:25 2:45 2:50 3:25 2:30 2:35 3:15 2:20 2:55 3:00 R19 3:00 3:20 2:50 3:00 2:45 3:00 3:20 3:45 2:50 3:00 3:30 2:45 3:10 3:10 R20 3:05 3:15 2:50 3:00 2:45 3:00 3:15 3:40 2:50 3:00 3:30 2:50 3:10 3:20 R21 3:05 3:15 2:50 3:00 2:45 3:00 3:15 3:40 2:50 3:00 3:30 2:50 3:10 3:20 R22 2:15 2:15 2:00 2:05 2:10 2:30 2:30 3:15 2:15 2:15 3:05 2:20 2:15 2:15 R23 2:30 2:35 2:25 2:30 2:00 2:25 2:30 3:05 2:20 2:30 3:00 2:10 2:20 2:30 R24 2:30 2:35 2:25 2:30 2:00 2:25 2:30 3:05 2:20 2:30 3:00 2:10 2:20 2:30 R25 2:30 2:35 2:25 2:30 2:00 2:25 2:30 3:05 2:20 2:30 3:00 2:10 2:20 2:30 R26 2:30 2:35 2:25 2:30 2:00 2:25 2:30 3:05 2:20 2:25 3:00 2:10 2:20 2:30 R27 2:30 2:40 2:25 2:35 2:15 2:30 2:35 3:10 2:20 2:30 3:00 2:15 2:25 2:30 R28 3:20 3:35 2:50 3:00 2:45 3:10 3:15 3:45 2:45 2:55 3:25 2:45 2:50 3:20 R29 4:10 4:25 3:40 3:50 3:10 3:45 3:55 4:35 3:20 3:25 3:50 2:55 3:20 4:50 StagedEvacuation2MileRegionandDownwindto5Miles

R30 1:55 1:55 1:40 1:50 1:50 2:25 2:25 3:10 2:05 2:05 2:55 2:10 2:05 2:00 R31 2:05 2:05 1:50 2:00 2:00 2:25 2:25 3:10 2:10 2:10 3:00 2:15 2:10 2:05 R32 1:55 2:00 1:45 2:00 1:50 2:15 2:20 3:00 2:05 2:05 2:50 2:15 2:05 1:55 R33 1:10 1:10 1:25 1:25 1:25 1:15 1:15 1:15 1:25 1:25 1:50 1:25 1:25 1:10 R34 2:00 2:00 2:25 2:25 2:25 2:00 2:00 2:40 2:25 2:25 3:10 2:25 2:25 2:00 R35 2:10 2:10 2:25 2:30 2:25 2:10 2:10 2:50 2:25 2:30 3:15 2:25 2:25 2:10 R36 2:25 2:25 2:25 2:25 2:25 2:25 2:25 3:05 2:25 2:25 3:20 2:25 2:25 2:25 R37 2:05 2:05 2:25 2:25 2:25 2:05 2:05 2:45 2:25 2:25 3:15 2:25 2:25 2:05 R38 2:15 2:15 2:20 2:20 2:20 2:10 2:10 2:55 2:20 2:20 3:15 2:20 2:20 2:15 R39 2:25 2:25 2:20 2:20 2:20 2:25 2:25 3:15 2:25 2:25 3:15 2:25 2:25 2:25 R40 2:30 2:30 2:25 2:25 2:25 2:30 2:30 3:20 2:25 2:25 3:15 2:25 2:25 2:30 R41 2:10 2:10 1:55 2:05 2:05 2:25 2:25 3:10 2:15 2:15 3:00 2:15 2:15 2:10



SurryPowerStation 710 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table72.TimetoCleartheIndicatedAreaof100PercentoftheAffectedPopulation

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Weekend Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway Rain Rain Rain Snow Rain Snow

Weather Weather Weather Weather Weather Weather Event Impact

Entire2MileRegion,5MileRegion,andEPZ

R01 1:45 1:45 1:45 1:45 1:45 1:50 1:50 1:50 1:45 1:45 1:45 1:45 1:45 1:45 R02 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R03 6:35 7:15 5:55 6:35 5:00 5:55 6:10 6:55 5:05 5:20 6:55 4:55 5:20 8:05 2MileRegionandKeyholeto5Miles

R04 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R05 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R06 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R07 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R08 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R09 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R10 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R11 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R12 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R13 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R14 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50



 



SurryPowerStation 711 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Weekend Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway Rain Rain Rain Snow Rain Snow

Weather Weather Weather Weather Weather Weather Event Impact

5MileRegionandKeyholetoEPZBoundary

R15 6:15 7:10 5:45 6:15 5:00 5:45 6:10 6:55 5:00 5:15 6:55 4:55 5:00 7:10 R16 5:50 6:10 5:15 5:25 4:55 5:15 5:50 6:55 4:55 4:55 6:55 4:55 4:55 7:20 R17 4:55 4:55 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 5:50 R18 4:55 4:55 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 5:10 R19 4:55 4:55 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 5:15 R20 4:55 4:55 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 5:00 R21 4:55 4:55 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 5:00 R22 4:55 4:55 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 4:55 R23 4:55 4:55 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 4:55 R24 4:55 4:55 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 4:55 R25 4:55 4:55 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 4:55 R26 4:55 4:55 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 4:55 R27 4:55 4:55 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 4:55 R28 4:55 5:05 4:55 4:55 4:55 4:55 4:55 6:55 4:55 4:55 6:55 4:55 4:55 4:55 R29 5:55 6:20 5:25 5:40 4:55 5:25 5:50 6:55 4:55 4:55 6:55 4:55 4:55 6:45 StagedEvacuation2MileRegionandDownwindto5Miles

R30 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R31 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R32 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R33 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R34 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R35 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R36 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R37 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R38 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R39 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R40 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50 R41 4:50 4:50 4:50 4:50 4:50 4:50 4:50 6:50 4:50 4:50 6:50 4:50 4:50 4:50



SurryPowerStation 712 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table73.TimetoClear90Percentofthe2MileAreawithintheIndicatedRegion

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Weekend Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway Rain Rain Rain Snow Rain Snow

Weather Weather Weather Weather Weather Weather Event Impact

Entire2MileRegionand5MileRegion

R01 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R02 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 2MileRegionandKeyholeto5Miles

R04 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R05 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R06 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R07 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R08 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R09 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R10 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R11 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R12 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R13 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R14 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 StagedEvacuation2MileRegionandDownwindto5Miles

R30 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R31 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R32 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R33 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R34 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R35 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R36 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R37 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R38 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R39 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R40 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05 R41 1:05 1:05 1:00 1:00 1:00 1:05 1:05 1:05 1:00 1:00 1:00 1:00 1:00 1:05



SurryPowerStation 713 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table74.TimetoClear100Percentofthe2MileAreawithintheIndicatedRegion

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Weekend Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway Rain Rain Rain Snow Rain Snow

Weather Weather Weather Weather Weather Weather Event Impact

Entire2MileRegionand5MileRegion

R01 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R02 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

2MileRegionandKeyholeto5Miles

R04 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R05 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R06 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R07 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R08 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R09 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R10 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R11 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R12 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R13 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R14 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

StagedEvacuation2MileRegionandDownwindto5Miles

R30 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R31 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R32 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R33 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R34 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R35 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R36 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R37 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R38 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R39 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R40 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45

R41 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45 1:45



SurryPowerStation 714 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

Table75.DescriptionofEvacuationRegions

Reg PAZ

ion Description 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18A 18B 18C 18D 19A 19B 20A 20B 21 22A 22B 23 24

R01 2MileRadius        x 

R02 5MileRadius    x x x  x x x x x x x 

R03 FullEPZ x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

Evacuate2MileRadiusandDownwindto5Miles

Wind PAZ

Reg Direction

ion Towards 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18A 18B 18C 18D 19A 19B 20A 20B 21 22A 22B 23 24

R04 NNW,N        x           x        x x  

R05 NNE        x           x x        x  

R06 NE,ENE        x           x x x         

R07 E        x             x         

N/A ESE RefertoR01

R08 SE        x x                     

R09 SSE,S      x  x x                     

R10 SSW     x x  x x                     

R11 SW     x x  x                      

R12 WSW,W    x x   x                      

R13 WNW    x x   x                   x   

R14 NW        x                   x x  





SurryPowerStation 715 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Evacuate5MileRadiusandDownwindtoEPZBoundary

Wind

Reg Direction PAZ

ion Towards 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18A 18B 18C 18D 19A 19B 20A 20B 21 22A 22B 23 24

R15 NNW,N    x x x  x x         x x x x x  x x x x x x x

R16 NNE    x x x  x x         x x x x x x x x x x x x 

R17 NE    x x x  x x       x x x x x x x x  x  x x  

R18 ENE    x x x  x x     x  x x  x x x  x    x x  

R19 E    x x x  x x     x x x x  x x x  x    x x  

R20 ESE    x x x  x x     x x x   x x x      x x  

R21 SE    x x x  x x    x x x x   x x x      x x  

R22 SSE    x x x  x x x x x x      x x x      x x  

R23 S    x x x x x x x x x x      x x x      x x  

R24 SSW   x x x x x x x x x x x      x x x      x x  

R25 SW x x x x x x x x x x x x       x x x      x x  

R26 WSW x x x x x x x x x          x x x      x x  

R27 W x x x x x x  x x          x x x      x x  x

R28 WNW  x  x x x  x x          x x x      x x x x

R29 NW  x  x x x  x x          x x x     x x x x x







SurryPowerStation 716 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



StagedEvacuation2MileRadiusEvacuates,thenEvacuateDownwindto5Miles

Wind

Direction PAZ

Region Towards 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18A 18B 18C 18D 19A 19B 20A 20B 21 22A 22B 23 24

R30 NNW,N        x           x        x x  

R31 NNE        x           x x        x  

R32 NE,ENE        x           x x x         

R33 E        x             x         

N/A ESE RefertoR01

R34 SE        x x                     

R35 SSE,S      x  x x                     

R36 SSW     x x  x x                     

R37 SW     x x  x                      

R38 WSW,W    x x   x                      

R39 WNW    x x   x                   x   

R40 NW        x                   x x  

R41 5MileRegion    x x x  x x          x x x      x x  

PAZ(s)ShelterinPlaceuntil90%ETEforR01,then

PAZ(s)ShelterinPlace PAZ(s)Evacuate

Evacuate





SurryPowerStation 717 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure71.VoluntaryEvacuationMethodology



SurryPowerStation 718 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure72.PLANTShadowRegion 



SurryPowerStation 719 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure73.CongestionPatternsat30MinutesaftertheAdvisorytoEvacuate



SurryPowerStation 720 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure74.CongestionPatternsat2HoursaftertheAdvisorytoEvacuate



SurryPowerStation 721 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure75.CongestionPatternsat3HoursaftertheAdvisorytoEvacuate



SurryPowerStation 722 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure76.CongestionPatternsat4HoursaftertheAdvisorytoEvacuate



SurryPowerStation 723 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure77.CongestionPatternsat5HoursaftertheAdvisorytoEvacuate



SurryPowerStation 724 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1



Figure78.CongestionPatternsat6Hours,15MinutesaftertheAdvisorytoEvacuate



SurryPowerStation 725 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

EvacuationTimeEstimates

Summer,Midweek,Midday,Good(Scenario1) 2MileRegion 5MileRegion EntireEPZ 90% 100%

140 120 VehiclesEvacuating 100 80 60 (Thousands) 40 20 0

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 ElapsedTimeAfterEvacuationRecommendation(min)



Figure79.EvacuationTimeEstimatesScenario1forRegionR03





EvacuationTimeEstimates

Summer,Midweek,Midday,Rain(Scenario2) 2MileRegion 5MileRegion EntireEPZ 90% 100%

140 120 VehiclesEvacuating 100 80 60 (Thousands) 40 20 0

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 ElapsedTimeAfterEvacuationRecommendation(min)



Figure710.EvacuationTimeEstimatesScenario2forRegionR03



SurryPowerStation 726 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

EvacuationTimeEstimates

Summer,Weekend,Midday,Good(Scenario3) 2MileRegion 5MileRegion EntireEPZ 90% 100%

140 120 VehiclesEvacuating 100 80 60 (Thousands) 40 20 0

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 ElapsedTimeAfterEvacuationRecommendation(min)



Figure711.EvacuationTimeEstimatesScenario3forRegionR03





EvacuationTimeEstimates

Summer,Weekend,Midday,Rain(Scenario4) 2MileRegion 5MileRegion EntireEPZ 90% 100%

140 120 VehiclesEvacuating 100 80 60 (Thousands) 40 20 0

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 ElapsedTimeAfterEvacuationRecommendation(min)



Figure712.EvacuationTimeEstimatesScenario4forRegionR03



SurryPowerStation 727 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

EvacuationTimeEstimates

Summer,Midweek,Weekend,Evening,Good(Scenario5) 2MileRegion 5MileRegion EntireEPZ 90% 100%

140 120 VehiclesEvacuating 100 80 60 (Thousands) 40 20 0

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 ElapsedTimeAfterEvacuationRecommendation(min)



Figure713.EvacuationTimeEstimatesScenario5forRegionR03





EvacuationTimeEstimates

Winter,Midweek,Midday,Good(Scenario6) 2MileRegion 5MileRegion EntireEPZ 90% 100%

140 120 VehiclesEvacuating 100 80 60 (Thousands) 40 20 0

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 ElapsedTimeAfterEvacuationRecommendation(min)



Figure714.EvacuationTimeEstimatesScenario6forRegionR03



SurryPowerStation 728 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

EvacuationTimeEstimates

Winter,Midweek,Midday,Rain(Scenario7) 2MileRegion 5MileRegion EntireEPZ 90% 100%

140 120 VehiclesEvacuating 100 80 60 (Thousands) 40 20 0

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 ElapsedTimeAfterEvacuationRecommendation(min)



Figure715.EvacuationTimeEstimatesScenario7forRegionR03





EvacuationTimeEstimates

Winter,Midweek,Midday,Snow(Scenario8) 2MileRegion 5MileRegion EntireEPZ 90% 100%

140 120 VehiclesEvacuating 100 80 60 (Thousands) 40 20 0

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 ElapsedTimeAfterEvacuationRecommendation(min)



Figure716.EvacuationTimeEstimatesScenario8forRegionR03



SurryPowerStation 729 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

EvacuationTimeEstimates

Winter,Weekend,Midday,Good(Scenario9) 2MileRegion 5MileRegion EntireEPZ 90% 100%

140 120 VehiclesEvacuating 100 80 60 (Thousands) 40 20 0

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 ElapsedTimeAfterEvacuationRecommendation(min)



Figure717.EvacuationTimeEstimatesScenario9forRegionR03





EvacuationTimeEstimates

Winter,Weekend,Midday,Rain(Scenario10) 2MileRegion 5MileRegion EntireEPZ 90% 100%

140 120 VehiclesEvacuating 100 80 60 (Thousands) 40 20 0

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 ElapsedTimeAfterEvacuationRecommendation(min)



Figure718.EvacuationTimeEstimatesScenario10forRegionR03



SurryPowerStation 730 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

EvacuationTimeEstimates

Winter,Weekend,Midday,Snow(Scenario11) 2MileRegion 5MileRegion EntireEPZ 90% 100%

140 120 VehiclesEvacuating 100 80 60 (Thousands) 40 20 0

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 ElapsedTimeAfterEvacuationRecommendation(min)



Figure719.EvacuationTimeEstimatesScenario11forRegionR03





EvacuationTimeEstimates

Winter,Midweek,Weekend,Evening,Good(Scenario12) 2MileRegion 5MileRegion EntireEPZ 90% 100%

140 120 VehiclesEvacuating 100 80 60 (Thousands) 40 20 0

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 ElapsedTimeAfterEvacuationRecommendation(min)



Figure720.EvacuationTimeEstimatesScenario12forRegionR03



SurryPowerStation 731 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1

EvacuationTimeEstimates

Winter,Weekend,Midday,Good,SpecialEvent(Scenario13) 2MileRegion 5MileRegion EntireEPZ 90% 100%

140 120 VehiclesEvacuating 100 80 60 (Thousands) 40 20 0

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 ElapsedTimeAfterEvacuationRecommendation(min)



Figure721.EvacuationTimeEstimatesScenario13forRegionR03





EvacuationTimeEstimates

Summer,Midweek,Midday,Good,RoadwayImpact(Scenario14) 2MileRegion 5MileRegion EntireEPZ 90% 100%

140 120 VehiclesEvacuating 100 80 60 (Thousands) 40 20 0

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 ElapsedTimeAfterEvacuationRecommendation(min)



Figure722.EvacuationTimeEstimatesScenario14forRegionR03



SurryPowerStation 732 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.1