ML13037A635
| ML13037A635 | |
| Person / Time | |
|---|---|
| Site: | Surry |
| Issue date: | 12/31/2012 |
| From: | KLD Engineering, PC |
| To: | Office of Nuclear Material Safety and Safeguards, Office of Nuclear Reactor Regulation |
| References | |
| 12-727 KLD TR-528, Rev 1 | |
| Download: ML13037A635 (152) | |
Text
December2012
FinalReport,Rev.1
KLDTR-528
SurryPowerStation
DevelopmentofEvacuationTimeEstimates
WorkperformedforDominion,by:
KLDEngineering,P.C.
43CorporateDrive
Hauppauge,NY11788
mailto:kweinisch@kldcompanies.com
SurryPowerStation
i
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
TableofContents
1
INTRODUCTION..................................................................................................................................11
1.1
OverviewoftheETEProcess......................................................................................................11
1.2
TheSurryPowerStationLocation..............................................................................................13
1.3
PreliminaryActivities.................................................................................................................15
1.4
ComparisonwithPriorETEStudy..............................................................................................19
2
STUDYESTIMATESANDASSUMPTIONS.............................................................................................21
2.1
DataEstimates...........................................................................................................................21
2.2
StudyMethodologicalAssumptions..........................................................................................22
2.3
StudyAssumptions.....................................................................................................................25
3
DEMANDESTIMATION.......................................................................................................................31
3.1
PermanentResidents.................................................................................................................32
3.2
ShadowPopulation....................................................................................................................38
310
3.3
TransientPopulation................................................................................................................311
3.3.1
TransientAttractions.......................................................................................................311
3.3.2
CollegeStudents..............................................................................................................312
3.4
Employees................................................................................................................................316
3.5
MedicalFacilities......................................................................................................................320
3.6
TotalDemandinAdditiontoPermanentPopulation..............................................................320
3.7
SpecialEvent............................................................................................................................321
3.8
SummaryofDemand...............................................................................................................321
4
ESTIMATIONOFHIGHWAYCAPACITY................................................................................................41
4.1
CapacityEstimationsonApproachestoIntersections..............................................................42
4.2
CapacityEstimationalongSectionsofHighway........................................................................44
4.3
ApplicationtotheSPSStudyArea.............................................................................................46
4.3.1
TwoLaneRoads.................................................................................................................46
4.3.2
MultiLaneHighway...........................................................................................................46
4.3.3
Freeways............................................................................................................................47
4.3.4
Intersections......................................................................................................................48
4.4
SimulationandCapacityEstimation..........................................................................................48
5
ESTIMATIONOFTRIPGENERATIONTIME..........................................................................................51
5.1
Background................................................................................................................................51
5.2
FundamentalConsiderations.....................................................................................................53
5.3
EstimatedTimeDistributionsofActivitiesPrecedingEvent5...................................................56
5.4
CalculationofTripGenerationTimeDistribution....................................................................512
5.4.1
StatisticalOutliers............................................................................................................513
5.4.2
StagedEvacuationTripGeneration.................................................................................516
5.4.3
TripGenerationforWaterwaysandRecreationalAreas.................................................518
6
DEMANDESTIMATIONFOREVACUATIONSCENARIOS.....................................................................61
SurryPowerStation
ii
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
7
GENERALPOPULATIONEVACUATIONTIMEESTIMATES(ETE)..........................................................71
7.1
VoluntaryEvacuationandShadowEvacuation.........................................................................71
7.2
StagedEvacuation......................................................................................................................71
7.3
PatternsofTrafficCongestionduringEvacuation.....................................................................72
7.4
EvacuationTimeEstimate(ETE)Results....................................................................................74
7.5
StagedEvacuationResults.........................................................................................................75
7.6
GuidanceonUsingETETables...................................................................................................76
8
TRANSITDEPENDENTANDSPECIALFACILITYEVACUATIONTIMEESTIMATES.................................81
8.1
TransitDependentPeopleDemandEstimate............................................................................82
8.2
SchoolPopulation-TransitDemand.........................................................................................84
8.3
MedicalFacilityDemand............................................................................................................84
8.4
EvacuationTimeEstimatesforTransitDependentPeople.......................................................85
8.5
SpecialNeedsPopulation.........................................................................................................810
8.6
CorrectionalFacilities...............................................................................................................811
9
TRAFFICMANAGEMENTSTRATEGY...................................................................................................91
10
EVACUATIONROUTES..................................................................................................................101
11
SURVEILLANCEOFEVACUATIONOPERATIONS...........................................................................111
12
CONFIRMATIONTIME..................................................................................................................121
13
RECOMMENDATIONS...................................................................................................................131
SurryPowerStation
iii
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
ListofAppendices
A.
GLOSSARYOFTRAFFICENGINEERINGTERMS..................................................................................A1
B.
DYNAMICTRAFFICASSIGNMENTANDDISTRIBUTIONMODEL.........................................................B1
C.
DYNEVTRAFFICSIMULATIONMODEL...............................................................................................C1
C.1
Methodology..............................................................................................................................C5
C.1.1
TheFundamentalDiagram.................................................................................................C5
C.1.2
TheSimulationModel........................................................................................................C5
C.1.3
LaneAssignment..............................................................................................................C12
C.2
Implementation.......................................................................................................................C12
C.2.1
ComputationalProcedure................................................................................................C12
C.2.2
InterfacingwithDynamicTrafficAssignment(DTRAD)...................................................C15
D.
DETAILEDDESCRIPTIONOFSTUDYPROCEDURE..............................................................................D1
E.
SPECIALFACILITYDATA......................................................................................................................E1
F.
TELEPHONESURVEY...........................................................................................................................F1
F.1
Introduction...............................................................................................................................F1
F.2
SurveyInstrumentandSamplingPlan.......................................................................................F2
F.3
SurveyResults............................................................................................................................F3
F.3.1 HouseholdDemographicResults...........................................................................................F3
F.3.2 EvacuationResponse.............................................................................................................F8
F.3.3 TimeDistributionResults.....................................................................................................F11
F.4
Conclusions..............................................................................................................................F14
G.
TRAFFICMANAGEMENTPLAN..........................................................................................................G1
G.1
TrafficControlPoints................................................................................................................G1
G.2
AccessControlPoints................................................................................................................G1
H
EVACUATIONREGIONS.....................................................................................................................H1
J.
REPRESENTATIVEINPUTSTOANDOUTPUTSFROMTHEDYNEVIISYSTEM.....................................J1
K.
EVACUATIONROADWAYNETWORK..................................................................................................K1
L.
PAZBOUNDARIES...............................................................................................................................L1
M.
EVACUATIONSENSITIVITYSTUDIES.............................................................................................M1
M.1
EffectofChangesinTripGenerationTimes............................................................................M1
M.2
EffectofChangesintheNumberofPeopleintheShadowRegionWhoRelocate.................M2
M.3
EffectofChangesinEPZResidentPopulation.........................................................................M3
M.4
EffectofRushHourCongestionPresentattheOnsetoftheEvacuationProcess..................M4
M.5
EffectofaFullClosureonI64WB..........................................................................................M6
N.
ETECRITERIACHECKLIST...................................................................................................................N1
Note:AppendixIintentionallyskipped
SurryPowerStation
iv
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
ListofFigures
Figure11.SPSLocation............................................................................................................................14
Figure12.SPSLinkNodeAnalysisNetwork............................................................................................17
Figure21.VoluntaryEvacuationMethodology.......................................................................................24
Figure31.SPSEPZ....................................................................................................................................33
Figure32.PermanentResidentPopulationbySector.............................................................................36
Figure33.PermanentResidentVehiclesbySector.................................................................................37
Figure34.ShadowPopulationbySector.................................................................................................39
Figure35.ShadowVehiclesbySector...................................................................................................310
Figure36.TransientPopulationbySector.............................................................................................314
Figure37.TransientVehiclesbySector.................................................................................................315
Figure38.EmployeePopulationbySector............................................................................................318
Figure39.EmployeeVehiclesbySector................................................................................................319
Figure41.FundamentalDiagrams............................................................................................................49
Figure51.EventsandActivitiesPrecedingtheEvacuationTrip..............................................................55
Figure52.EvacuationMobilizationActivities........................................................................................511
Figure53.ComparisonofDataDistributionandNormalDistribution.......................................................515
Figure54.ComparisonofTripGenerationDistributions.......................................................................520
Figure55.ComparisonofStagedandUnstagedTripGenerationDistributions
inthe2to5MileRegion..........................................................................................................................522
Figure61.SPSEPZPAZs...........................................................................................................................69
Figure71.VoluntaryEvacuationMethodology.....................................................................................718
Figure72.PLANTShadowRegion..........................................................................................................719
Figure73.CongestionPatternsat30MinutesaftertheAdvisorytoEvacuate....................................720
Figure74.CongestionPatternsat2HoursaftertheAdvisorytoEvacuate..........................................721
Figure75.CongestionPatternsat3HoursaftertheAdvisorytoEvacuate..........................................722
Figure76.CongestionPatternsat4HoursaftertheAdvisorytoEvacuate..........................................723
Figure77.CongestionPatternsat5HoursaftertheAdvisorytoEvacuate..........................................724
Figure78.CongestionPatternsat6Hours,15MinutesaftertheAdvisorytoEvacuate......................725
Figure79.EvacuationTimeEstimatesScenario1forRegionR03......................................................726
Figure710.EvacuationTimeEstimatesScenario2forRegionR03....................................................726
Figure711.EvacuationTimeEstimatesScenario3forRegionR03....................................................727
Figure712.EvacuationTimeEstimatesScenario4forRegionR03....................................................727
Figure713.EvacuationTimeEstimatesScenario5forRegionR03....................................................728
Figure714.EvacuationTimeEstimatesScenario6forRegionR03....................................................728
Figure715.EvacuationTimeEstimatesScenario7forRegionR03....................................................729
Figure716.EvacuationTimeEstimatesScenario8forRegionR03....................................................729
Figure717.EvacuationTimeEstimatesScenario9forRegionR03....................................................730
Figure718.EvacuationTimeEstimatesScenario10forRegionR03..................................................730
Figure719.EvacuationTimeEstimatesScenario11forRegionR03..................................................731
Figure720.EvacuationTimeEstimatesScenario12forRegionR03..................................................731
Figure721.EvacuationTimeEstimatesScenario13forRegionR03..................................................732
Figure722.EvacuationTimeEstimatesScenario14forRegionR03..................................................732
Figure81.ChronologyofTransitEvacuationOperations......................................................................812
Figure82.TransitDependentBusRoutesforIsleofWightCounty......................................................813
SurryPowerStation
v
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure83.TransitDependentBusRoutesforSurryCounty..................................................................814
Figure84.TransitDependentBusRoutesforYorkCounty...................................................................815
Figure85.TransitDependentBusRoutesfortheCityofWilliamsburg................................................816
Figure86.TransitDependentBusRoutesforJamesCityCounty.........................................................817
Figure87.TransitDependentBusRoutes2429fortheCityofNewportNews...................................818
Figure88.TransitDependentBusRoutes3035fortheCityofNewportNews...................................819
Figure89.TransitDependentBusRoutes3643fortheCityofNewportNews...................................820
Figure101.GeneralPopulationEvacuationAssemblyCentersandReceivingSchools........................102
Figure102.EvacuationRouteMap........................................................................................................103
FigureB1.FlowDiagramofSimulationDTRADInterface........................................................................B5
FigureC1.RepresentativeAnalysisNetwork...........................................................................................C4
FigureC2.FundamentalDiagrams...........................................................................................................C6
FigureC3.AUNITProblemConfigurationwitht1>0..............................................................................C6
FigureC4.FlowofSimulationProcessing(SeeGlossary:TableC3)....................................................C14
FigureD1.FlowDiagramofActivities.....................................................................................................D5
FigureE1.SchoolsandDaycareswithintheEPZOverview.................................................................E11
FigureE2.SchoolsandDaycaresNorthernEPZ...................................................................................E12
FigureE3.SchoolsandDaycaresEasternEPZ......................................................................................E13
FigureE4.MedicalFacilitieswithintheEPZ..........................................................................................E14
FigureE5.RecreationalAreaswithintheEPZ........................................................................................E15
FigureE6.LodgingwithintheEPZOverview.......................................................................................E16
FigureE7.LodgingwithintheEPZ-NorthernEPZ................................................................................E17
FigureE8:LodgingwithintheEPZ-NorthernWilliamsburg.................................................................E18
FigureE9.LodgingCentralWilliamsburg.............................................................................................E19
FigureE10.CorrectionalFacilitieswithintheEPZ.................................................................................E20
FigureF1.HouseholdSizeintheEPZ.......................................................................................................F3
FigureF2.HouseholdVehicleAvailability................................................................................................F4
FigureF3.VehicleAvailability1to5PersonHouseholds......................................................................F5
FigureF4.VehicleAvailability6to9+PersonHouseholds....................................................................F5
FigureF5.HouseholdRidesharingPreference.........................................................................................F6
FigureF6.CommutersinHouseholdsintheEPZ.....................................................................................F7
FigureF7.ModesofTravelintheEPZ.....................................................................................................F8
FigureF8.NumberofVehiclesUsedforEvacuation...............................................................................F9
FigureF9.PetOwnership.......................................................................................................................F10
FigureF10.DestinationsHouseholdswithPets....................................................................................F10
FigureF11.TimeRequiredtoPreparetoLeaveWork/School..............................................................F12
FigureF12.WorktoHomeTravelTime.................................................................................................F12
FigureF13.TimetoPrepareHomeforEvacuation................................................................................F13
FigureF14.TimetoClearDrivewayof6"8"ofSnow...........................................................................F14
FigureG1.TrafficandAccessControlPointsfortheSPSSite................................................................G2
FigureH1.RegionR01.............................................................................................................................H4
FigureH2.RegionR02.............................................................................................................................H5
FigureH3.RegionR03.............................................................................................................................H6
FigureH4.RegionR04.............................................................................................................................H7
FigureH5.RegionR05.............................................................................................................................H8
FigureH6.RegionR06.............................................................................................................................H9
FigureH7.RegionR07...........................................................................................................................H10
SurryPowerStation
vi
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
FigureH8.RegionR08...........................................................................................................................H11
FigureH9.RegionR09...........................................................................................................................H12
FigureH10.RegionR10.........................................................................................................................H13
FigureH11RegionR11..........................................................................................................................H14
FigureH12RegionR12..........................................................................................................................H15
FigureH13RegionR13..........................................................................................................................H16
FigureH14RegionR14..........................................................................................................................H17
FigureH15RegionR15..........................................................................................................................H18
FigureH16RegionR16..........................................................................................................................H19
FigureH17RegionR17..........................................................................................................................H20
FigureH18RegionR18..........................................................................................................................H21
FigureH19RegionR19..........................................................................................................................H22
FigureH20RegionR20..........................................................................................................................H23
FigureH21RegionR21..........................................................................................................................H24
FigureH22RegionR22..........................................................................................................................H25
FigureH23RegionR23..........................................................................................................................H26
FigureH24RegionR24..........................................................................................................................H27
FigureH25RegionR25..........................................................................................................................H28
FigureH26RegionR26..........................................................................................................................H29
FigureH27RegionR27..........................................................................................................................H30
FigureH28RegionR28..........................................................................................................................H31
FigureH29RegionR29..........................................................................................................................H32
FigureH30RegionR30..........................................................................................................................H33
FigureH31RegionR31..........................................................................................................................H34
FigureH32RegionR32..........................................................................................................................H35
FigureH33RegionR33..........................................................................................................................H36
FigureH34RegionR34..........................................................................................................................H37
FigureH35RegionR35..........................................................................................................................H38
FigureH36RegionR36..........................................................................................................................H39
FigureH37RegionR37..........................................................................................................................H40
FigureH38RegionR38..........................................................................................................................H41
FigureH39RegionR39..........................................................................................................................H42
FigureH40RegionR40..........................................................................................................................H43
FigureH41RegionR41..........................................................................................................................H44
FigureJ1.ETEandTripGeneration:Summer,Midweek,Midday,GoodWeather(Scenario1)..............J8
FigureJ2.ETEandTripGeneration:Summer,Midweek,Midday,Rain(Scenario2)...............................J8
FigureJ3.ETEandTripGeneration:Summer,Weekend,Midday,GoodWeather(Scenario3)..............J9
FigureJ4.ETEandTripGeneration:Summer,Weekend,Midday,Rain(Scenario4)..............................J9
FigureJ5.ETEandTripGeneration:Summer,Midweek,Weekend,Evening,
GoodWeather(Scenario5).....................................................................................................................J10
FigureJ6.ETEandTripGeneration:Winter,Midweek,Midday,GoodWeather(Scenario6)..............J10
FigureJ7.ETEandTripGeneration:Winter,Midweek,Midday,Rain(Scenario7)...............................J11
FigureJ8.ETEandTripGeneration:Winter,Midweek,Midday,Snow(Scenario8).............................J11
FigureJ9.ETEandTripGeneration:Winter,Weekend,Midday,GoodWeather(Scenario9)..............J12
FigureJ10.ETEandTripGeneration:Winter,Weekend,Midday,Rain(Scenario10)...........................J12
FigureJ11.ETEandTripGeneration:Winter,Weekend,Midday,Snow(Scenario11).........................J13
FigureJ12.ETEandTripGeneration:Winter,Midweek,Weekend,Evening,
SurryPowerStation
vii
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
GoodWeather(Scenario12)...................................................................................................................J13
FigureJ13.ETEandTripGeneration:Summer,Midweek,Midday,
GoodWeather,SpecialEvent(Scenario13)............................................................................................J14
FigureJ14.ETEandTripGeneration:Summer,Midweek,Midday,
GoodWeather,RoadwayImpact(Scenario14)......................................................................................J14
FigureK1.SurryLinkNodeAnalysisNetwork..........................................................................................K2
FigureK2.LinkNodeAnalysisNetwork-Grid1.....................................................................................K3
FigureK3.LinkNodeAnalysisNetwork-Grid2.....................................................................................K4
FigureK4.LinkNodeAnalysisNetwork-Grid3.....................................................................................K5
FigureK5.LinkNodeAnalysisNetwork-Grid4.....................................................................................K6
FigureK6.LinkNodeAnalysisNetwork-Grid5.....................................................................................K7
FigureK7.LinkNodeAnalysisNetwork-Grid6.....................................................................................K8
FigureK8.LinkNodeAnalysisNetwork-Grid7.....................................................................................K9
FigureK9.LinkNodeAnalysisNetwork-Grid8...................................................................................K10
FigureK10.LinkNodeAnalysisNetwork-Grid9.................................................................................K11
FigureK11.LinkNodeAnalysisNetwork-Grid10...............................................................................K12
FigureK12.LinkNodeAnalysisNetwork-Grid11...............................................................................K13
FigureK13.LinkNodeAnalysisNetwork-Grid12...............................................................................K14
FigureK14.LinkNodeAnalysisNetwork-Grid13...............................................................................K15
FigureK15.LinkNodeAnalysisNetwork-Grid14...............................................................................K16
FigureK16.LinkNodeAnalysisNetwork-Grid15...............................................................................K17
FigureK17.LinkNodeAnalysisNetwork-Grid16...............................................................................K18
FigureK18.LinkNodeAnalysisNetwork-Grid17...............................................................................K19
FigureK19.LinkNodeAnalysisNetwork-Grid18...............................................................................K20
FigureK20.LinkNodeAnalysisNetwork-Grid19...............................................................................K21
FigureK21.LinkNodeAnalysisNetwork-Grid20...............................................................................K22
FigureK22.LinkNodeAnalysisNetwork-Grid21...............................................................................K23
FigureK23.LinkNodeAnalysisNetwork-Grid22...............................................................................K24
FigureK24.LinkNodeAnalysisNetwork-Grid23...............................................................................K25
FigureK25.LinkNodeAnalysisNetwork-Grid24...............................................................................K26
FigureK26.LinkNodeAnalysisNetwork-Grid25...............................................................................K27
FigureK27.LinkNodeAnalysisNetwork-Grid26...............................................................................K28
FigureK28.LinkNodeAnalysisNetwork-Grid27...............................................................................K29
FigureK29.LinkNodeAnalysisNetwork-Grid28...............................................................................K30
FigureK30.LinkNodeAnalysisNetwork-Grid29...............................................................................K31
FigureK31.LinkNodeAnalysisNetwork-Grid30...............................................................................K32
FigureK32.LinkNodeAnalysisNetwork-Grid31...............................................................................K33
FigureK33.LinkNodeAnalysisNetwork-Grid32...............................................................................K34
FigureK34.LinkNodeAnalysisNetwork-Grid33...............................................................................K35
FigureK35.LinkNodeAnalysisNetwork-Grid34...............................................................................K36
FigureK36.LinkNodeAnalysisNetwork-Grid35...............................................................................K37
FigureK37.LinkNodeAnalysisNetwork-Grid36...............................................................................K38
FigureK38.LinkNodeAnalysisNetwork-Grid37...............................................................................K39
FigureK39.LinkNodeAnalysisNetwork-Grid38...............................................................................K40
FigureK40.LinkNodeAnalysisNetwork-Grid39...............................................................................K41
FigureK41.LinkNodeAnalysisNetwork-Grid40...............................................................................K42
FigureK42.LinkNodeAnalysisNetwork-Grid41...............................................................................K43
SurryPowerStation
viii
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
FigureK43.LinkNodeAnalysisNetwork-Grid42...............................................................................K44
FigureK44.LinkNodeAnalysisNetwork-Grid43...............................................................................K45
FigureK45.LinkNodeAnalysisNetwork-Grid44...............................................................................K46
FigureK46.LinkNodeAnalysisNetwork-Grid45...............................................................................K47
FigureK47.LinkNodeAnalysisNetwork-Grid46...............................................................................K48
FigureK48.LinkNodeAnalysisNetwork-Grid47...............................................................................K49
FigureK49.LinkNodeAnalysisNetwork-Grid48...............................................................................K50
FigureK50.LinkNodeAnalysisNetwork-Grid49...............................................................................K51
FigureK51.LinkNodeAnalysisNetwork-Grid50...............................................................................K52
FigureK52.LinkNodeAnalysisNetwork-Grid51...............................................................................K53
FigureK53.LinkNodeAnalysisNetwork-Grid52...............................................................................K54
FigureK54.LinkNodeAnalysisNetwork-Grid53...............................................................................K55
FigureK55.LinkNodeAnalysisNetwork-Grid54...............................................................................K56
FigureK56.LinkNodeAnalysisNetwork-Grid55...............................................................................K57
FigureK57.LinkNodeAnalysisNetwork-Grid56...............................................................................K58
FigureK58.LinkNodeAnalysisNetwork-Grid57...............................................................................K59
FigureK59.LinkNodeAnalysisNetwork-Grid58...............................................................................K60
FigureK60.LinkNodeAnalysisNetwork-Grid59...............................................................................K61
FigureM1.CongestionPatternsat0:15aftertheAdvisorytoEvacuate..............................................M5
SurryPowerStation
ix
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
ListofTables
Table11.StakeholderInteraction...........................................................................................................11
Table12.HighwayCharacteristics...........................................................................................................15
Table13.ETEStudyComparisons............................................................................................................19
Table21.EvacuationScenarioDefinitions...............................................................................................23
Table22.ModelAdjustmentforAdverseWeather.................................................................................27
Table31.EPZPermanentResidentPopulation.......................................................................................34
Table32.PermanentResidentPopulationandVehiclesbyPAZ.............................................................35
Table33.ShadowPopulationandVehiclesbySector.............................................................................38
Table34.SummaryofTransientsandTransientVehicles.....................................................................313
Table35.SummaryofNonEPZResidentEmployeesandEmployeeVehicles......................................317
Table36.SPSEPZExternalTraffic..........................................................................................................320
Table37.SummaryofPopulationDemand...........................................................................................322
Table38.SummaryofVehicleDemand.................................................................................................324
Table51.EventSequenceforEvacuationActivities................................................................................53
Table52.TimeDistributionforNotifyingthePublic...............................................................................56
Table53.TimeDistributionforEmployeestoPreparetoLeaveWork...................................................57
Table54.TimeDistributionforCommuterstoTravelHome..................................................................58
Table55.TimeDistributionforPopulationtoPreparetoEvacuate.......................................................59
Table56.TimeDistributionforPopulationtoClear6"8"ofSnow......................................................510
Table57.MappingDistributionstoEvents............................................................................................512
Table58.DescriptionoftheDistributions.............................................................................................513
Table59.TripGenerationHistogramsfortheEPZPopulationforUnstagedEvacuation.....................519
Table510.TripGenerationHistogramsfortheEPZPopulationforStagedEvacuation.......................521
Table61.DescriptionofEvacuationRegions...........................................................................................66
Table62.EvacuationScenarioDefinitions.............................................................................................610
Table63.PercentofPopulationGroupsEvacuatingforVariousScenarios..........................................611
Table64.VehicleEstimatesbyScenario................................................................................................612
Table71.TimetoCleartheIndicatedAreaof90PercentoftheAffectedPopulation...........................79
Table72.TimetoCleartheIndicatedAreaof100PercentoftheAffectedPopulation.......................711
Table73.TimetoClear90Percentofthe2MileAreawithintheIndicatedRegion............................713
Table74.TimetoClear100Percentofthe2MileAreawithintheIndicatedRegion..........................714
Table75.DescriptionofEvacuationRegions.........................................................................................715
Table81.TransitDependentPopulationEstimates..............................................................................821
Table82.SchoolandDaycarePopulationDemandEstimates..............................................................822
Table83.ReceivingSchools...................................................................................................................824
Table84.MedicalFacilityTransitDemand............................................................................................825
Table85.SummaryofTransportationResources..................................................................................826
Table86.BusRouteDescriptions..........................................................................................................827
Table87.SchoolEvacuationTimeEstimatesGoodWeather..............................................................832
Table88.SchoolEvacuationTimeEstimatesRain...............................................................................834
Table89.SchoolEvacuationTimeEstimatesSnow.............................................................................836
Table810.SummaryofTransitDependentBusRoutes........................................................................838
Table811.TransitDependentEvacuationTimeEstimatesGoodWeather........................................840
Table812.TransitDependentEvacuationTimeEstimatesRain.........................................................842
SurryPowerStation
x
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table813.TransitDependentEvacuationTimeEstimatesSnow.......................................................844
Table814.MedicalFacilityEvacuationTimeEstimatesGoodWeather.............................................846
Table815.MedicalFacilityEvacuationTimeEstimates-Rain.............................................................847
Table816.MedicalFacilityEvacuationTimeEstimates-Snow............................................................848
Table817.HomeboundSpecialNeedsPopulationEvacuationTimeEstimates....................................849
Table121.EstimatedNumberofTelephoneCallsRequiredforConfirmationofEvacuation..............122
TableA1.GlossaryofTrafficEngineeringTerms....................................................................................A1
TableC1.SelectedMeasuresofEffectivenessOutputbyDYNEVII........................................................C2
TableC2.InputRequirementsfortheDYNEVIIModel...........................................................................C3
TableC3.Glossary....................................................................................................................................C7
TableE1.SchoolsandDaycareswithintheEPZ.......................................................................................E2
TableE2.MedicalFacilitieswithintheEPZ..............................................................................................E4
TableE3.Parks/RecreationalAttractionswithintheEPZ........................................................................E5
TableE4.LodgingFacilitieswithintheEPZ..............................................................................................E6
TableE5.CorrectionalFacilitieswithintheEPZ.....................................................................................E10
TableF1.SPSTelephoneSurveySamplingPlan.......................................................................................F2
TableH1.PercentofPAZPopulationEvacuatingforEachRegion.........................................................H2
TableJ1.CharacteristicsoftheTenHighestVolumeSignalizedIntersections........................................J2
TableJ2.SampleSimulationModelInput...............................................................................................J3
TableJ3.SelectedModelOutputsfortheEvacuationoftheEntireEPZ(RegionR03)...........................J4
TableJ4.AverageSpeed(mph)andTravelTime(min)for
MajorEvacuationRoutes(RegionR03,Scenario1)..................................................................................J5
TableJ5.SimulationModelOutputsatNetworkExitLinksforRegionR03,Scenario1.........................J6
TableK1.EvacuationRoadwayNetworkCharacteristics......................................................................K62
TableK2.NodesintheLinkNodeAnalysisNetworkwhichareControlled.........................................K154
TableM1.EvacuationTimeEstimatesforTripGenerationSensitivityStudy.......................................M1
TableM2.EvacuationTimeEstimatesforShadowSensitivityStudy....................................................M2
TableM3.ETEVariationwithPopulationChange.................................................................................M4
TableM4.EvacuationTimeEstimatesforRushHourSensitivityStudy................................................M5
TableM5.EvacuationTimeEstimatesforI64WBFullClosureSensitivityStudy................................M6
TableN1.ETEReviewCriteriaChecklist.................................................................................................N1
SurryPowerStation
ES1
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
EXECUTIVE
SUMMARY
Thisreportdescribestheanalysesundertakenandtheresultsobtainedbyastudytodevelop
Evacuation Time Estimates (ETE) for the Surry Power Station (SPS) located in Surry County,
Virginia.ETEarepartoftherequiredplanningbasisandprovideDominionandStateandlocal
governmentswithsitespecificinformationneededforProtectiveActiondecisionmaking.
In the performance of this effort, guidance is provided by documents published by Federal
Governmentalagencies.Mostimportantoftheseare:
x Criteria for Development of Evacuation Time Estimate Studies, NUREG/CR7002,
November2011.
x CriteriaforPreparationandEvaluationofRadiologicalEmergencyResponsePlansand
Preparedness in Support of Nuclear Power Plants, NUREG0654/FEMAREP1, Rev. 1,
November1980.
x DevelopmentofEvacuationTimeEstimatesforNuclearPowerPlants,NUREG/CR6863,
January2005.
x 10CFR50, Appendix E - Emergency Planning and Preparedness for Production and
UtilizationFacilities
OverviewofProjectActivities
ThisprojectbeganinFebruary,2012andextendedoveraperiodof10months.Themajor
activitiesperformedarebrieflydescribedinchronologicalsequence:
x Attended kickoff meetings with Dominion personnel and emergency management
personnelrepresentingstateandcity/countygovernments.
x Accessed U.S. Census Bureau data files for the year 2010. Studied Geographical
InformationSystems(GIS)mapsoftheareainthevicinityoftheSPS,thenconducteda
detailedfieldsurveyofthehighwaynetwork.
x Synthesized this information to create an analysis network representing the highway
system topology and capacities within the Emergency Planning Zone (EPZ), plus a
ShadowRegioncoveringtheregionbetweentheEPZboundaryandapproximately15
milesradiallyfromtheplant.
x Designed and sponsored a telephone survey of residents within the EPZ to gather
focused data needed for this ETE study that were not contained within the census
database.Thesurveyinstrumentwasreviewedandmodifiedbythelicenseeandoffsite
responseorganization(ORO)personnelpriortothesurvey.
x Datacollectionforms(providedtotheOROsatthekickoffmeeting)werereturnedwith
data pertaining to employment, transients, and special facilities in each city/county.
Telephonecallstospecificfacilitiessupplementedthedataprovided.
SurryPowerStation
ES2
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
x The traffic demand and tripgeneration rates of evacuating vehicles were estimated
fromthegathereddata.Thetripgenerationratesreflectedtheestimatedmobilization
time(i.e.,thetimerequiredbyevacueestopreparefortheevacuationtrip)computed
usingtheresultsofthetelephonesurveyofEPZresidents.
x Followingfederalguidelines,theEPZissubdividedinto30PAZs.ThesePAZsarethen
grouped within circular areas or keyhole configurations (circles plus radial sectors)
thatdefineatotalof41EvacuationRegions.
x ThetimevaryingexternalcircumstancesarerepresentedasEvacuationScenarios,each
described in terms of the following factors: (1) Season (Summer, Winter); (2) Day of
Week(Midweek,Weekend);(3)TimeofDay(Midday,Evening);and(4)Weather(Good,
Rain,Snow).OnespecialeventscenarioinvolvingtheNewportNewsFallFestivalof
Folklifewasconsidered.Oneroadwayimpactscenariowasconsideredwhereinasingle
lanewasclosedonInterstate64westboundforthedurationoftheevacuation.
x Staged evacuation was considered for those regions wherein the 2 mile radius and
sectorsdownwindto5mileswereevacuated.
x AsperNUREG/CR7002,thePlanningBasisforthecalculationofETEis:
A rapidly escalating accident at the PLANT that quickly assumes the status of
General Emergency such that the Advisory to Evacuate is virtually coincident
withthesirenalert,andnoearlyprotectiveactionshavebeenimplemented.
Whileanunlikelyaccidentscenario,thisplanningbasiswillyieldETE,measured
astheelapsedtimefromtheAdvisorytoEvacuateuntilthestatedpercentageof
the population exits the impacted Region, that represent upper bound
estimates.ThisconservativePlanningBasisisapplicableforallinitiatingevents.
x Iftheemergencyoccurswhileschoolsareinsession,theETEstudyassumesthatthe
childrenwillbeevacuatedbybusdirectlytoevacuationassemblycentersorreceiving
schoolslocatedoutsidetheEPZ.Parents,relatives,andneighborsareadvisedtonot
pick up their children at school prior to the arrival of the buses dispatched for that
purpose.TheETEforschoolchildrenarecalculatedseparately.
x Evacuees who do not have access to a private vehicle will either rideshare with
relatives,friendsorneighbors,orbeevacuatedbybusesprovidedasspecifiedinthe
city/countyevacuationplans.Thoseinspecialfacilitieswilllikewisebeevacuatedwith
public transit, as needed: bus, van, or ambulance, as required. Separate ETE are
calculated for the transitdependent evacuees, for homebound special needs
population,andforthoseevacuatedfromspecialfacilities.
ComputationofETE
Atotalof574ETEwerecomputedfortheevacuationofthegeneralpublic.EachETEquantifies
theaggregateevacuationtimeestimatedforthepopulationwithinoneofthe41Evacuation
Regions to evacuate from that Region, under the circumstances defined for one of the 14
Evacuation Scenarios (41 x 14 = 574). Separate ETE are calculated for transitdependent
SurryPowerStation
ES3
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
evacuees,includingschoolchildrenforapplicablescenarios.
ExceptforRegionR03,whichistheevacuationoftheentireEPZ,onlyaportionofthepeople
withintheEPZwouldbeadvisedtoevacuate.Thatis,theAdvisorytoEvacuateappliesonlyto
thosepeopleoccupyingthespecifiedimpactedregion.Itisassumedthat100percentofthe
people within the impacted region will evacuate in response to this Advisory. The people
occupying the remainder of the EPZ outside the impacted region may be advised to take
shelter.
ThecomputationofETEassumesthat20%ofthepopulationwithintheEPZbutoutsidethe
impactedregion,willelecttovoluntarilyevacuate.Inaddition,20%ofthepopulationinthe
ShadowRegionwillalsoelecttoevacuate.Thesevoluntaryevacueescouldimpedethosewho
are evacuating from within the impacted region. The impedance that could be caused by
voluntaryevacueesisconsideredinthecomputationofETEfortheimpactedregion.
Staged evacuation is considered wherein those people within the 2mile region evacuate
immediately,whilethosebeyond2miles,butwithintheEPZ,shelterinplace.Once90%ofthe
2mile region is evacuated, those people beyond 2 miles begin to evacuate. As per federal
guidance,20%ofpeoplebeyond2mileswillevacuate(noncompliance)eventhoughtheyare
advisedtoshelterinplace.
Thecomputationalprocedureisoutlinedasfollows:
x A linknode representation of the highway network is coded. Each link represents a
unidirectionallengthofhighway;eachnodeusuallyrepresentsanintersectionormerge
point.Thecapacityofeachlinkisestimatedbasedonthefieldsurveyobservationsand
onestablishedtrafficengineeringprocedures.
x Theevacuationtripsaregeneratedatlocationscalledzonalcentroidslocatedwithin
the EPZ and Shadow Region. The trip generation rates vary over time reflectingthe
mobilization process, and from one location (centroid) to another depending on
populationdensityandonwhetheracentroidiswithin,oroutside,theimpactedarea.
x Theevacuationmodelcomputestheroutingpatternsforevacuatingvehiclesthatare
compliantwithfederalguidelines(outboundrelativetothelocationoftheplant),then
simulate the traffic flow movements over space and time. This simulation process
estimatestheratethattrafficflowexitstheimpactedregion.
TheETEstatisticsprovidetheelapsedtimesfor90percentand100percent,respectively,ofthe
populationwithintheimpactedregion,toevacuatefromwithintheimpactedregion.These
statistics are presented in tabular and graphical formats. The 90th percentile ETE have been
identified as the values that should be considered when making protective action decisions
becausethe100thpercentileETEareprolongedbythoserelativelyfewpeoplewhotakelonger
tomobilize.ThisisreferredtoastheevacuationtailinSection4.0ofNUREG/CR7002.
The use ofa public outreach (information) program to emphasize the need for evacuees to
minimizethetimeneededtopreparetoevacuate(securethehome,assembleneededclothes,
medicines,etc.)shouldalsobeconsidered.
SurryPowerStation
ES4
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
TrafficManagement
This study references the comprehensive traffic management plans provided by James City,
York,IsleofWightandSurryCountiesandtheCitiesofWilliamsburgandNewportNews.No
additionaltrafficoraccesscontrolmeasureshavebeenidentifiedasaresultofthisstudy.
SelectedResults
A compilation of selected information is presented on the following pages in the form of
FiguresandTablesextractedfromthebodyofthereport;thesearedescribedbelow.
x Figure 61 displays a map of the SPS EPZ showing the layout of the 30 PAZs that
comprise,inaggregate,theEPZ.
x Table31presentstheestimatesofpermanentresidentpopulationineachPAZbased
onthe2010Censusdata.
x Table61defineseachofthe41EvacuationRegionsintermsoftheirrespectivegroups
ofPAZ.
x Table62liststheEvacuationScenarios.
x Tables71and72arecompilationsofETE.Thesedataarethetimesneededtoclear
theindicatedregionsof90and100percentofthepopulationoccupyingtheseregions,
respectively. These computed ETE include consideration of mobilization time and of
estimated voluntary evacuations from other regions within the EPZ and from the
ShadowRegion.
x Tables 73 and 74 present ETE for the 2mile region for unstaged and staged
evacuationsforthe90thand100thpercentiles,respectively.
x Table87presentsETEfortheschoolchildreningoodweather.
x Table811presentsETEforthetransitdependentpopulationingoodweather.
x FigureH8presentsanexampleofanEvacuationRegion(RegionR08)tobeevacuated
under the circumstances defined in Table 61. Maps of all regions are provided in
AppendixH.
Conclusions
x General population ETE were computed for 574 unique cases - a combination of 41
uniqueEvacuationRegionsand14uniqueEvacuationScenarios.Table71andTable72
document these ETE for the 90th and 100th percentiles. These ETE range from 1:00
(hr:min)to5:25atthe90thpercentile.
x InspectionofTable71andTable72indicatesthattheETEforthe100thpercentileare
significantlylongerthanthoseforthe90thpercentile.Thisistheresultofthecongestion
within the EPZ. When the system becomes congested, traffic exits the EPZ at rates
somewhatbelowcapacityuntilsomeevacuationrouteshavecleared.Asmoreroutes
clear,theaggregaterateofegressslowssincemanyvehicleshavealreadylefttheEPZ.
Towardstheendoftheprocess,relativelyfewevacuationroutesservicetheremaining
demand.SeeFigures79through722.
x InspectionofTable73andTable74indicatesthatastagedevacuationprovidesno
SurryPowerStation
ES5
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
benefits to evacuees from within the 2 mile region due to the lack of impedance to
trafficevacuatingfromPAZ8.SeeSection7.5foradditionaldiscussion.
x ComparisonofScenarios9(winter,weekend,midday,goodweather)and13(winter,
weekend,midday,goodweather,specialevent)inTable71indicatesthatthespecial
eventincreasesthe90percentileETEforregionsincludingPAZ16inNewportNews.See
Section7.4foradditionaldiscussion.
x ComparisonofScenarios1and14inTable71indicatesthattheroadwayclosure-a
singlelaneonI64westbound-significantlyimpactsthe90thpercentileETEforsome
evacuatingregions,withincreasesofupto1:25..
x The area north of Williamsburg experiences the greatest congestion during an
evacuation.PAZ23isthelastintheEPZtoexhibittrafficcongestion.Althoughmore
heavily populated, the eastern portion of the EPZ benefits from a larger number of
highercapacityroadwaysthanareavailablenorthofWilliamsburg.Theruralportionof
theEPZwhichliessouthofJamesRiverdoesnotdevelopanycongestion.Allcongestion
withintheEPZclearsby6hoursand15minutesaftertheAdvisorytoEvacuate.See
Section7.3andFigures73through78.
x SeparateETEwerecomputedforschools,medicalfacilities,transitdependentpersons
and homebound special needs persons. The average singlewave ETE for schools,
medical facilities and transitdependent persons are within a similar range as the
generalpopulationETEatthe90thpercentile.However,theETEforhomeboundspecial
needsexceedsthegeneralpopulationETEatthe90thpercentile.SeeSection8.
x Table 85 indicates that there are enough buses and wheelchair buses available to
evacuatethetransitdependentpopulationwithintheEPZinasinglewave;however,
there are not enough ambulances to evacuate the bedridden population in a single
wave.SeeSections8.4and8.5.
x ThegeneralpopulationETEatthe90thpercentileisinsensitivetoreductionsinthebase
tripgenerationtimeof43/4hoursduetothetrafficcongestionwithintheEPZ.SeeTable
M1.
x The general population ETE is relatively insensitive to the voluntary evacuation of
vehicles in the Shadow Region (tripling the shadow evacuation percentage only
increases90thpercentileETEby25minutes).SeeTableM2.
x APopulationincreaseof15%resultsinETEchangeswhichmeetthecriteriaforupdating
ETEbetweendecennialcensuses.SeeSectionM.3.
x Additional congestion at the onset of evacuation caused by external (transient) trips
associatedwithpeakcommutinghoursincreasesthe90thpercentileETEforthefullEPZ
by15minutes.SeesectionM.4.
x A full closure of I64 westbound significantly impacts the 90th percentile ETE with
increasesof1:10.SeesectionM.5.
SurryPowerStation
ES6
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure61.SPSEPZPAZs
SurryPowerStation
ES7
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table31.EPZPermanentResidentPopulation
PAZ
2000
Population 2010
Population 1
262
244
2
810
884
3
480
514
4
233
236
5
566
618
6
239
177
7
233
262
8
0
0
9
0
603
10
199
200
11
94
82
12
68
95
13
1,093
1,167
14
5,738
5,914
15
25,625
25,003
16
46,010
45,649
17
1,505
1,974
18A
1,317
1,374
18B
4,094
4,153
18C
3,331
3,960
18D
63
71
19A
4,739
6,214
19B
591
1,033
20A
690
877
20B
1,579
2,521
21
11,885
13,384
22A
965
1,305
22B
2,972
3,460
23
12,351
19,627
24
8,417
11,076
TOTAL
136,149
152,677
EPZPopulation
Growth:
12.14%
SurryPowerStation
ES8
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table61.DescriptionofEvacuationRegions
Reg ion
Desc ription
PAZ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18A
18B
18C
18D
19A
19B
20A
20B
21
22A
22B
23
24
R01
2Mile
Radius
x
R02
5Mile
Radius
x x x
x x
x
x
x
x
x
R03
FullEPZ
x x x x x x x x x x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Evacuate2MileRadiusandDownwindto5Miles
Reg ion
Wind
Direction
Towards
PAZ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18A
18B
18C
18D
19A
19B
20A
20B
21
22A
22B
23
24
R04
NNW,N
x
x
x
x
R05
NNE
x
x
x
x
R06
NE,ENE
x
x
x
x
R07
E
x
x
N/A
ESE
RefertoR01
R08
SE
x x
R09
SSE,S
x
x x
R10
SSW
x x
x x
R11
SW
x x
x
R12
WSW,W
x x
x
R13
WNW
x x
x
x
R14
NW
x
x
x
SurryPowerStation
ES9
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Evacuate5MileRadiusandDownwindto10Miles
Reg ion
Wind
Direction
Towards
PAZ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18A
18B
18C
18D
19A
19B
20A
20B
21
22A
22B
23
24
R15
NNW,N
x x x
x x
x
x
x
x
x
x
x
x
x
x
x
x
R16
NNE
x x x
x x
x
x
x
x
x
x
x
x
x
x
x
x
R17
NE
x x x
x x
x
x
x
x
x
x
x
x
x
x
x
R18
ENE
x x x
x x
x
x
x
x
x
x
x
x
x
R19
E
x x x
x x
x
x
x
x
x
x
x
x
x
x
R20
ESE
x x x
x x
x
x
x
x
x
x
x
x
R21
SE
x x x
x x
x
x
x
x
x
x
x
x
x
R22
SSE
x x x
x x x
x
x
x
x
x
x
x
x
R23
S
x x x x x x x
x
x
x
x
x
x
x
x
R24
SSW
x x x x x x x x
x
x
x
x
x
x
x
x
R25
SW
x x x x x x x x x x
x
x
x
x
x
x
x
R26
WSW
x x x x x x x x x
x
x
x
x
x
R27
W
x x x x x x
x x
x
x
x
x
x
x
R28
WNW
x
x x x
x x
x
x
x
x
x
x
x
R29
NW
x
x x x
x x
x
x
x
x
x
x
x
x
SurryPowerStation
ES10
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
StagedEvacuation2MileRadiusEvacuates,thenEvacuateDownwindto5Miles
Reg ion
Wind
Direction
Towards
PAZ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18A
18B
18C
18D
19A
19B
20A
20B
21
22A
22B
23
24
R30
NNW,N
x
x
x
x
R31
NNE
x
x
x
x
R32
NE,ENE
x
x
x
x
R33
E
x
x
N/A
ESE
RefertoR01
R34
SE
x x
R35
SSE,S
x
x x
R36
SSW
x x
x x
R37
SW
x x
x
R38
WSW,W
x x
x
R39
WNW
x x
x
x
R40
NW
x
x
x
R41
5Mile
Region
x x x
x x
x
x
x
x
x
PAZ(s)ShelterinPlaceuntil90%ETEforR01,
thenEvacuate
PAZ(s)ShelterinPlace
PAZ(s)Evacuate
SurryPowerStation
ES11
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table62.EvacuationScenarioDefinitions
Scenario
Season1
Dayof
Week
Timeof
Day
Weather
Special
1
Summer
Midweek
Midday
Good
None
2
Summer
Midweek
Midday
Rain
None
3
Summer
Weekend
Midday
Good
None
4
Summer
Weekend
Midday
Rain
None
5
Summer
Midweek,
Weekend
Evening
Good
None
6
Winter
Midweek
Midday
Good
None
7
Winter
Midweek
Midday
Rain
None
8
Winter
Midweek
Midday
Snow
None
9
Winter
Weekend
Midday
Good
None
10
Winter
Weekend
Midday
Rain
None
11
Winter
Weekend
Midday
Snow
None
12
Winter
Midweek,
Weekend
Evening
Good
None
13
Winter
Weekend
Midday
Good
NewportNewsFall
FestivalofFolklife
14
Summer
Midweek
Midday
Good
RoadwayImpact-Lane
ClosureonI64WB
1Winterassumesthatschoolisinsession(alsoappliestospringandautumn).Summerassumesthatschoolisnot
insession.
SurryPowerStation
ES12
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table71.TimetoCleartheIndicatedAreaof90PercentoftheAffectedPopulation
Summer
Summer
Summer
Winter
Winter
Winter
Winter
Summer
Midweek
Weekend
Midweek
Weekend
Midweek
Weekend
Midweek
Weekend
Weekend
Midweek
Scenario:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
Region
Midday
Midday
Evening
Midday
Midday
Evening
Midday
Midday
Good
Weather
Rain
Good
Weather
Rain
Good
Weather
Good
Weather
Rain
Snow
Good
Weather
Rain
Snow
Good
Weather
Special
Event
Roadway Impact
Entire2MileRegion,5MileRegion,andEPZ
R01
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R02
2:15
2:15
2:10
2:10 2:05 2:20 2:20 3:05 2:10
2:15 2:55 2:15 2:10 3:05 R03
4:15
4:45
3:50
4:05 3:15 3:40 4:00 4:20 3:10
3:30 3:50 3:05 3:35 5:10 2MileRegionandKeyholeto5Miles
R04
1:55
1:55
1:40
1:50 1:45 2:25 2:25 3:05 2:05
2:05 2:55 2:10 2:05 1:55 R05
2:10
2:15
2:05
2:10 2:00 2:20 2:20 3:00 2:10
2:10 2:50 2:15 2:10 3:15 R06
1:55
2:10
2:05
2:05 1:50 2:15 2:15 2:45 2:05
2:05 2:40 2:10 2:05 3:20 R07
1:10
1:10
1:25
1:25 1:25 1:15 1:15 1:15 1:25
1:25 1:50 1:25 1:25 1:10 R08
2:00
2:00
2:25
2:25 2:25 2:00 2:00 2:40 2:25
2:25 3:10 2:25 2:25 2:00 R09
2:10
2:10
2:25
2:30 2:25 2:10 2:10 2:50 2:25
2:30 3:15 2:25 2:25 2:10 R10
2:25
2:25
2:30
2:30 2:30 2:25 2:25 3:05 2:30
2:30 3:20 2:30 2:30 2:25 R11
2:05
2:05
2:25
2:25 2:25 2:05 2:05 2:45 2:25
2:25 3:15 2:25 2:25 2:05 R12
2:10
2:15
2:20
2:20 2:20 2:10 2:10 2:50 2:20
2:20 3:15 2:20 2:20 2:10 R13
2:25
2:25
2:20
2:20 2:20 2:25 2:25 3:15 2:20
2:25 3:15 2:25 2:20 2:25 R14
2:30
2:30
2:20
2:20 2:25 2:30 2:30 3:20 2:25
2:25 3:15 2:25 2:25 2:30
SurryPowerStation
ES13
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Summer
Summer
Summer
Winter
Winter
Winter
Winter
Summer
Midweek
Weekend
Midweek
Weekend
Midweek
Weekend
Midweek
Weekend
Weekend
Midweek
Scenario:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
Region
Midday
Midday
Evening
Midday
Midday
Evening
Midday
Midday
Good
Weather
Rain
Good
Weather
Rain
Good
Weather
Good
Weather
Rain
Snow
Good
Weather
Rain
Snow
Good
Weather
Special
Event
Roadway Impact
5MileRegionandKeyholetoEPZBoundary
R15
4:25
5:00
4:05
4:20 3:35 4:00 4:15 4:35 3:30
3:40 4:05 3:10 3:30 5:25 R16
3:55
4:15
3:35
3:45 2:55 3:30 3:45 4:00 3:00
3:15 3:40 2:40 3:00 5:05 R17
2:45
3:00
2:40
2:50 2:20 2:40 2:50 3:25 2:35
2:45 3:15 2:20 2:55 3:10 R18
2:40
2:50
2:35
2:35 2:25 2:45 2:50 3:25 2:30
2:35 3:15 2:20 2:55 3:00 R19
3:00
3:20
2:50
3:00 2:45 3:00 3:20 3:45 2:50
3:00 3:30 2:45 3:10 3:10 R20
3:05
3:15
2:50
3:00 2:45 3:00 3:15 3:40 2:50
3:00 3:30 2:50 3:10 3:20 R21
3:05
3:15
2:50
3:00 2:45 3:00 3:15 3:40 2:50
3:00 3:30 2:50 3:10 3:20 R22
2:15
2:15
2:00
2:05 2:10 2:30 2:30 3:15 2:15
2:15 3:05 2:20 2:15 2:15 R23
2:30
2:35
2:25
2:30 2:00 2:25 2:30 3:05 2:20
2:30 3:00 2:10 2:20 2:30 R24
2:30
2:35
2:25
2:30 2:00 2:25 2:30 3:05 2:20
2:30 3:00 2:10 2:20 2:30 R25
2:30
2:35
2:25
2:30 2:00 2:25 2:30 3:05 2:20
2:30 3:00 2:10 2:20 2:30 R26
2:30
2:35
2:25
2:30 2:00 2:25 2:30 3:05 2:20
2:25 3:00 2:10 2:20 2:30 R27
2:30
2:40
2:25
2:35 2:15 2:30 2:35 3:10 2:20
2:30 3:00 2:15 2:25 2:30 R28
3:20
3:35
2:50
3:00 2:45 3:10 3:15 3:45 2:45
2:55 3:25 2:45 2:50 3:20 R29
4:10
4:25
3:40
3:50 3:10 3:45 3:55 4:35 3:20
3:25 3:50 2:55 3:20 4:50 StagedEvacuation2MileRegionandDownwindto5Miles
R30
1:55
1:55
1:40
1:50 1:50 2:25 2:25 3:10 2:05
2:05 2:55 2:10 2:05 2:00 R31
2:05
2:05
1:50
2:00 2:00 2:25 2:25 3:10 2:10
2:10 3:00 2:15 2:10 2:05 R32
1:55
2:00
1:45
2:00 1:50 2:15 2:20 3:00 2:05
2:05 2:50 2:15 2:05 1:55 R33
1:10
1:10
1:25
1:25 1:25 1:15 1:15 1:15 1:25
1:25 1:50 1:25 1:25 1:10 R34
2:00
2:00
2:25
2:25 2:25 2:00 2:00 2:40 2:25
2:25 3:10 2:25 2:25 2:00 R35
2:10
2:10
2:25
2:30 2:25 2:10 2:10 2:50 2:25
2:30 3:15 2:25 2:25 2:10 R36
2:25
2:25
2:25
2:25 2:25 2:25 2:25 3:05 2:25
2:25 3:20 2:25 2:25 2:25 R37
2:05
2:05
2:25
2:25 2:25 2:05 2:05 2:45 2:25
2:25 3:15 2:25 2:25 2:05 R38
2:15
2:15
2:20
2:20 2:20 2:10 2:10 2:55 2:20
2:20 3:15 2:20 2:20 2:15 R39
2:25
2:25
2:20
2:20 2:20 2:25 2:25 3:15 2:25
2:25 3:15 2:25 2:25 2:25 R40
2:30
2:30
2:25
2:25 2:25 2:30 2:30 3:20 2:25
2:25 3:15 2:25 2:25 2:30 R41
2:10
2:10
1:55
2:05 2:05 2:25 2:25 3:10 2:15
2:15 3:00 2:15 2:15 2:10
SurryPowerStation
ES14
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table72.TimetoCleartheIndicatedAreaof100PercentoftheAffectedPopulation
Summer
Summer
Summer
Winter
Winter
Winter
Winter
Summer
Midweek
Weekend
Midweek
Weekend
Midweek
Weekend
Midweek
Weekend
Weekend
Midweek
Scenario:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
Region
Midday
Midday
Evening
Midday
Midday
Evening
Midday
Midday
Good
Weather
Rain
Good
Weather
Rain
Good
Weather
Good
Weather
Rain
Snow
Good
Weather
Rain
Snow
Good
Weather
Special
Event
Roadway Impact
Entire2MileRegion,5MileRegion,andEPZ
R01
1:45
1:45
1:45
1:45 1:45 1:50 1:50 1:50 1:45
1:45 1:45 1:45 1:45 1:45 R02
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R03
6:35
7:15
5:55
6:35 5:00 5:55 6:10 6:55 5:05
5:20 6:55 4:55 5:20 8:05 2MileRegionandKeyholeto5Miles
R04
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R05
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R06
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R07
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R08
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R09
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R10
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R11
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R12
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R13
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R14
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50
SurryPowerStation
ES15
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Summer
Summer
Summer
Winter
Winter
Winter
Winter
Summer
Midweek
Weekend
Midweek
Weekend
Midweek
Weekend
Midweek
Weekend
Weekend
Midweek
Scenario:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
Region
Midday
Midday
Evening
Midday
Midday
Evening
Midday
Midday
Good
Weather
Rain
Good
Weather
Rain
Good
Weather
Good
Weather
Rain
Snow
Good
Weather
Rain
Snow
Good
Weather
Special
Event
Roadway Impact
5MileRegionandKeyholetoEPZBoundary
R15
6:15
7:10
5:45
6:15 5:00 5:45 6:10 6:55 5:00
5:15 6:55 4:55 5:00 7:10 R16
5:50
6:10
5:15
5:25 4:55 5:15 5:50 6:55 4:55
4:55 6:55 4:55 4:55 7:20 R17
4:55
4:55
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 5:50 R18
4:55
4:55
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 5:10 R19
4:55
4:55
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 5:15 R20
4:55
4:55
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 5:00 R21
4:55
4:55
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 5:00 R22
4:55
4:55
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 4:55 R23
4:55
4:55
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 4:55 R24
4:55
4:55
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 4:55 R25
4:55
4:55
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 4:55 R26
4:55
4:55
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 4:55 R27
4:55
4:55
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 4:55 R28
4:55
5:05
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 4:55 R29
5:55
6:20
5:25
5:40 4:55 5:25 5:50 6:55 4:55
4:55 6:55 4:55 4:55 6:45 StagedEvacuation2MileRegionandDownwindto5Miles
R30
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R31
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R32
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R33
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R34
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R35
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R36
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R37
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R38
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R39
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R40
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R41
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50
SurryPowerStation
ES16
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table73.TimetoClear90Percentofthe2MileRegionwithintheIndicatedRegion
Summer
Summer
Summer
Winter
Winter
Winter
Winter
Summer
Midweek
Weekend
Midweek
Weekend Midweek
Weekend
Midweek
Weekend Weekend
Midweek
Scenario:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
Region
Midday
Midday
Evening
Midday
Midday
Evening
Midday
Midday
Good
Weather
Rain
Good
Weather
Rain
Good
Weather Good
Weather Rain
Snow
Good
Weather Rain
Snow
Good
Weather Special
Event Roadway Impact Entire2MileRegion,5MileRegion,andEPZ
R01
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R02
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 2MileRegionandKeyholeto5Miles
R04
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R05
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R06
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R07
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R08
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R09
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R10
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R11
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R12
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R13
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R14
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 StagedEvacuation2MileRegionandDownwindto5Miles
R30
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R31
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R32
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R33
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R34
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R35
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R36
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R37
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R38
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R39
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R40
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R41
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05
SurryPowerStation
ES17
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table74.TimetoClear100Percentofthe2MileRegionwithintheIndicatedRegion
Summer
Summer
Summer
Winter
Winter
Winter
Winter
Summer
Midweek
Weekend
Midweek
Weekend
Midweek
Weekend
Midweek
Weekend
Weekend
Midweek
Scenario:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
Region
Midday
Midday
Evening
Midday
Midday
Evening
Midday
Midday
Good
Weather
Rain
Good
Weather
Rain
Good
Weather
Good
Weather
Rain
Snow
Good
Weather
Rain
Snow
Good
Weather
Special
Event
Roadway Impact
Entire2MileRegion,5MileRegion,andEPZ
R01
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R02
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
2MileRegionandKeyholeto5Miles
R04
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R05
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R06
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R07
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R08
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R09
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R10
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R11
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R12
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R13
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R14
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
StagedEvacuation2MileRegionandDownwindto5Miles
R30
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R31
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R32
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R33
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R34
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R35
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R36
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R37
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R38
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R39
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R40
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R41
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
SurryPowerStation
ES18
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table87.SchoolEvacuationTimeEstimates-GoodWeather
School
City/County
Driver
Mobilization
Time(min)
Loading
Time
(min)
Dist.
ToEPZ
Bdry
(mi)
Average Speed
(mph)
Travel
Timeto
EPZ
Bdry
(min)
ETE
(hr:min)
Dist.
EPZ
Bdryto
R.S.
(mi.)
Travel
Time
from
EPZ
Bdryto
R.S.
(min)
ETEto
R.S.
(hr:min)
ClaraByrdBakerElementarySchool
JamesCity
180
15
6.0
5.6
64
4:20
27.4
36
4:55
DJMontagueElementarySchool
JamesCity
180
15
0.2
2.1
4
3:20
22.9
31
3:50
JamestownHighSchool
JamesCity
180
15
5.6
4.2
79
4:35
1.8
2
4:40
MatoakaElementarySchool
JamesCity
180
15
3.1
2.5
75
4:30
3.4
5
4:35
ProvidenceClassicalSchool
JamesCity
180
15
5.6
6.4
53
4:10
27.4
36
4:45
JamesRiverElementarySchool
JamesCity
180
15
5.6
9.8
34
3:50
1.8
2
3:55
RawlsByrdElementarySchool
JamesCity
180
15
5.3
6.1
52
4:10
9.6
13
4:20
GeneralStanfordElementarySchool
NewportNews
145
15
5.3
9.6
33
3:15
4.5
6
3:20
BCCharlesElementarySchool
NewportNews
145
15
1.5
12.6
7
2:50
7.5
10
3:00
FirstBaptistChurchDenbigh
NewportNews
145
15
0.5
1.1
26
3:10
11.1
15
3:25
JenkinsElementarySchool
NewportNews
145
15
0.8
33.0
1
2:45
7.4
10
2:55
MenchvilleHighSchool
NewportNews
145
15
2.4
12.5
12
2:55
5.9
8
3:00
SanfordElementarySchool
NewportNews
145
15
2.1
17.0
7
2:50
4.1
5
2:55
WarwickRiverChristianSchool
NewportNews
145
15
2.3
4.1
34
3:15
11.1
15
3:30
DavidADutrowElementarySchool
NewportNews
145
15
2.9
4.4
39
3:20
15.1
20
3:40
DavidADutrowElementarySchool
NewportNews
145
15
2.9
4.4
39
3:20
15.1
20
3:40
DenbighHighSchool
NewportNews
145
15
2.8
6.4
26
3:10
9.4
13
3:20
EpesElementarySchool
NewportNews
145
15
2.7
4.0
41
3:25
2.9
4
3:25
GeorgeJMcIntoshElementary
NewportNews
145
15
1.8
9.2
12
2:55
16.3
22
3:15
HolyTabernacleChristianAcademy
NewportNews
145
15
1.9
3.2
37
3:20
10.9
15
3:35
JMDozierMiddleSchool
NewportNews
145
15
5.5
23.4
14
2:55
14.2
19
3:15
LeeHallElementarySchool
NewportNews
145
15
6.3
25.8
15
2:55
5.5
7
3:05
MaryPassageMiddleSchool
NewportNews
145
15
4.1
7.2
34
3:15
7.4
10
3:25
OliverCGreenwoodElementarySchool
NewportNews
145
15
5.8
8.0
43
3:25
3.5
5
3:30
RichneckElementarySchool
NewportNews
145
15
4.6
11.4
24
3:05
3.7
5
3:10
RONelsonElementarySchool
NewportNews
145
15
3.8
7.9
29
3:10
1.7
2
3:15
WoodsideHighSchool
NewportNews
145
15
6.2
8.2
45
3:25
13.0
17
3:45
SurryPowerStation
ES19
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
School
City/County
Driver
Mobilization
Time(min)
Loading
Time
(min)
Dist.
ToEPZ
Bdry
(mi)
Average Speed
(mph)
Travel
Timeto
EPZ
Bdry
(min)
ETE
(hr:min)
Dist.
EPZ
Bdryto
R.S.
(mi.)
Travel
Time
from
EPZ
Bdryto
R.S.
(min)
ETEto
R.S.
(hr:min)
BerkeleyMiddleSchool
Williamsburg
145
15
3.5
2.7
80
4:00
4.3
6
4:10
CollegeofWilliamandMary
Williamsburg
145
15
6.0
5.2
70
3:50
27.4
37
4:30
MatthewWhaleyElementarySchool
Williamsburg
145
15
3.8
3.6
63
3:45
26.9
36
4:20
YorktownMiddleSchool
York
110
15
14.7
9.1
96
3:45
26.9
36
4:20
MagruderElementarySchool
York
110
15
4.0
3.3
72
3:20
26.9
36
3:55
YorkCountyHeadStart
York
110
15
4.0
3.3
72
3:20
26.9
36
3:55
BrutonHighSchool
York
110
15
2.0
4.6
27
2:35
26.9
36
3:10
WallerMillElementarySchool
York
110
15
4.4
4.4
59
3:05
27.0
36
3:40
WilliamsburgHeadStart
York
110
15
4.4
4.4
59
3:05
27.0
36
3:40
QueensLakeMiddleSchool
York
110
15
4.1
4.2
58
3:05
26.9
36
3:40
MaximumforEPZ:
4:35
Maximum:
4:55
AverageforEPZ:
3:25
Average:
3:45
SurryPowerStation
ES20
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table811.TransitDependentEvacuationTimeEstimates-GoodWeather
Route
Number
Bus
Number
OneWave
TwoWave
Mobilization
(min)
Route
Length
(miles)
Speed
(mph)
Route
Travel
Time
(min)
Pickup
Time
(min)
ETE
(hr:min)
Distance
toEAC
(miles)
Travel
Timeto
EAC
(min)
Unload
(min)
Driver
Rest
(min)
Route
Travel
Time
(min)
Pickup
Time
(min)
ETE
(hr:min)
1
1
180
9.1
44.3
12
30
3:45
7.6
10
5
10
34
30
5:15
2
1
180
9.6
44.1
13
30
3:45
8.6
12
5
10
37
30
5:20
3
1
180
17.9
44.8
24
30
3:55
9.4
13
5
10
60
30
5:55
4
1
180
12.3
44.5
17
30
3:50
16.5
22
5
10
55
30
5:55
5
1
180
13.9
41.3
20
30
3:50
16.1
21
5
10
59
30
6:00
6
1
180
24.2
45.0
32
30
4:05
3.4
5
5
10
69
30
6:05
7
1
180
11.7
33.3
21
30
3:55
4.3
6
5
10
42
30
5:30
8
1
180
14.4
45.0
19
30
3:50
2.7
4
5
10
42
30
5:25
9
1
180
19.8
44.0
27
30
4:00
3.4
5
5
10
57
30
5:50
10
13
180
15.4
43.3
21
30
3:55
5.1
7
5
10
49
30
5:40
11
13
180
19.6
43.1
27
30
4:00
5.1
7
5
10
59
30
5:55
12
12
180
10.5
21.6
29
30
4:00
4.8
6
5
10
35
30
5:30
13
13
180
4.1
8.2
30
30
4:00
4.8
6
5
10
19
30
5:15
14
12
180
4.4
4.2
64
30
4:35
27.4
36
5
10
49
30
6:50
15
12
180
3.6
15.8
14
30
3:45
27.3
36
5
10
47
30
5:55
16
12
180
4.2
7.1
35
30
4:05
27.3
36
5
10
48
30
6:15
17
12
180
5.2
7.1
45
30
4:15
27.3
36
5
10
51
30
6:30
18
12
180
6.2
6.7
56
30
4:30
27.3
36
5
10
53
30
6:45
19
14
180
16.5
42.1
24
30
3:55
13.9
19
5
10
63
30
6:05
57
180
16.5
42.1
24
30
3:55
13.9
19
5
10
63
30
6:05
20
14
180
16.1
41.7
23
30
3:55
10.2
14
5
10
57
30
5:55
57
180
16.1
41.7
23
30
3:55
10.2
14
5
10
57
30
5:55
SurryPowerStation
ES21
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Route
Number
Bus
Number
OneWave
TwoWave
Mobilization
(min)
Route
Length
(miles)
Speed
(mph)
Route
Travel
Time
(min)
Pickup
Time
(min)
ETE
(hr:min)
Distance
toEAC
(miles)
Travel
Timeto
EAC
(min)
Unload
(min)
Driver
Rest
(min)
Route
Travel
Time
(min)
Pickup
Time
(min)
ETE
(hr:min)
21
14
180
13.7
43.5
19
30
3:50
13.9
19
5
10
55
30
5:50
57
180
13.7
43.5
19
30
3:50
13.9
19
5
10
55
30
5:50
22
14
180
9.5
36.4
16
30
3:50
13.9
19
5
10
44
30
5:40
57
180
9.5
36.4
16
30
3:50
13.9
19
5
10
44
30
5:40
23
14
180
12.2
39.7
18
30
3:50
13.9
19
5
10
53
30
5:50
57
180
12.2
39.7
18
30
3:50
13.9
19
5
10
53
30
5:50
24
13
180
11.2
43.3
15
30
3:45
10.4
14
5
10
44
30
5:30
25
13
180
10.5
44.6
14
30
3:45
10.4
14
5
10
42
30
5:30
26
13
180
9.6
14.8
39
30
4:10
11.1
15
5
10
40
30
5:50
27
13
180
6.8
16.3
25
30
3:55
12.0
16
5
10
35
30
5:35
28
13
180
5.7
11.1
31
30
4:05
11.1
15
5
10
30
30
5:35
29
13
180
7.8
22.6
21
30
3:55
13.5
18
5
10
40
30
5:40
30
13
180
7.0
20.9
20
30
3:50
11.9
16
5
10
37
30
5:30
31
13
180
11.0
24.0
28
30
4:00
12.6
17
5
10
48
30
5:50
32
13
180
8.8
18.6
28
30
4:00
12.3
16
5
10
40
30
5:45
33
13
180
4.5
10.0
27
30
4:00
11.1
15
5
10
28
30
5:30
34
13
180
7.1
11.4
38
30
4:10
11.1
15
5
10
35
30
5:45
35
13
180
6.1
11.4
32
30
4:05
11.1
15
5
10
32
30
5:40
36
13
180
7.5
12.4
36
30
4:10
11.1
15
5
10
36
30
5:50
37
13
180
3.6
7.3
30
30
4:00
9.9
13
5
10
23
30
5:25
38
13
180
8.5
12.4
41
30
4:15
11.1
15
5
10
38
30
5:55
39
13
180
5.6
20.4
17
30
3:50
9.9
13
5
10
32
30
5:25
40
13
180
3.4
25.8
8
30
3:40
10.6
14
5
10
25
30
5:05
41
13
180
4.9
10.8
27
30
4:00
11.1
15
5
10
30
30
5:30
42
12
180
5.4
11.4
28
30
4:00
11.1
15
5
10
31
30
5:35
43
12
180
4.1
19.2
13
30
3:45
9.8
13
5
10
26
30
5:10
MaximumETE:
4:35
MaximumETE:
6:50
AverageETE:
4:00
AverageETE:
5:45
SurryPowerStation
ES22
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
FigureH8.RegionR08
SurryPowerStation
11
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
1 INTRODUCTION
Thisreportdescribestheanalysesundertakenandtheresultsobtainedbyastudytodevelop
Evacuation Time Estimates (ETE) for the Surry Power Station (SPS), located in Surry County,
Virginia. ETE provide State and local governments with sitespecific information needed for
ProtectiveActiondecisionmaking.
In the performance of this effort, guidance is provided by documents published by Federal
Governmentalagencies.Mostimportantoftheseare:
Criteria for Development of Evacuation Time Estimate Studies, NUREG/CR7002,
November2011.
Criteria for Preparation and Evaluation of Radiological Emergency Response Plans
andPreparednessinSupportofNuclearPowerPlants,NUREG0654/FEMAREP1,
Rev.1,November1980.
Analysis of Techniques for Estimating Evacuation Times for Emergency Planning
Zones,NUREG/CR1745,November1980.
DevelopmentofEvacuationTimeEstimatesforNuclearPowerPlants,NUREG/CR 6863,January2005.
The work effort reported herein was supported and guided by local stakeholders who
contributedsuggestions,critiques,andthelocalknowledgebaserequired.Table11presentsa
summaryofstakeholdersandinteractions.
Table11.StakeholderInteraction
Stakeholder
NatureofStakeholderInteraction
Dominionemergencyplanningpersonnel
Meeting and communications to define data
requirements and set up contacts with local
government agencies and obtain SPS emergency
plan
City/CountyEmergencyManagementAgencies
Meeting and communications to define data
requirementsandobtainfacilitydata
VirginiaDepartmentofEmergencyManagement
Meeting
and
communications
to
obtain
EmergencyPlan,GISfilesandfacilitydata
1.1 OverviewoftheETEProcess
Thefollowingoutlinepresentsabriefdescriptionoftheworkeffortinchronologicalsequence:
- 1. InformationGathering:
- a. DefinedthescopeofworkindiscussionswithrepresentativesfromDominion.
- b. Attended meeting with emergency planners from Isle of Wight, James City,
SurryPowerStation
12
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Surry,NewKentandYorkCounties,andtheCitiesofWilliamsburg,Hamptonand
NewportNewstoidentifyissuestobeaddressedandresourcesavailable.
- c. Conducted a detailed field survey of the highway system and of area traffic
conditionswithintheEmergencyPlanningZone(EPZ)andShadowRegion.
- d. Obtaineddemographicdatafromthe2010censusandVirginiaDepartmentof
EmergencyManagement.
- e. ConductedarandomsampletelephonesurveyofEPZresidents.
- f. Conducted a data collection effort to identify and describe schools, special
facilities, major employers, transportation providers, and other important
information.
- 2. Estimated distributions of Trip Generation times representing the time required by
variouspopulationgroups(permanentresidents,employees,andtransients)toprepare
(mobilize) for the evacuation trip. These estimates are primarily based upon the
randomsampletelephonesurvey.
- 3. DefinedEvacuationScenarios.Thesescenariosreflectthevariationindemand,intrip
generationdistributionandinhighwaycapacities,associatedwithdifferentseasons,day
ofweek,timeofdayandweatherconditions.
- 4. Reviewedtheexistingtrafficmanagementplantobeimplementedbylocalandstate
police in the event of an incident at the plant. Traffic control is applied at specified
TrafficControlPoints(TCP)locatedwithintheEPZ.
- 5. UsedexistingPAZstodefineEvacuationRegions.TheEPZispartitionedinto30PAZs
along jurisdictional and geographic boundaries. Regions are groups of contiguous
PAZs for which ETE are calculated. The configurations of these Regions reflect wind
directionandtheradialextentoftheimpactedarea.EachRegion,otherthanthosethat
approximate circular areas, approximates a keyhole section within the EPZ as
recommendedbyNUREG/CR7002.
- 6. EstimateddemandfortransitservicesforpersonsatSpecialFacilitiesandfortransit dependentpersonsathome.
- 7. PreparedtheinputstreamsfortheDYNEVIIsystem.
- a. Estimated the evacuation traffic demand, based on the available information
derivedfromCensusdata,andfromdataprovidedbylocalandstateagencies,
Dominionandfromthetelephonesurvey.
- b. Appliedtheproceduresspecifiedinthe2010HighwayCapacityManual(HCM1)
to the data acquired during the field survey, to estimate the capacity of all
highwaysegmentscomprisingtheevacuationroutes.
1HighwayCapacityManual(HCM2010),TransportationResearchBoard,NationalResearchCouncil,2010.
SurryPowerStation
13
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
- c. Developed the linknode representation of the evacuation network, which is
usedasthebasisforthecomputeranalysisthatcalculatestheETE.
- d. CalculatedtheevacuatingtrafficdemandforeachRegionandforeachScenario.
- e. Specified selected candidate destinations for each origin (location of each
source where evacuation trips are generated over the mobilization time) to
supportevacuationtravelconsistentwithoutboundmovementrelativetothe
locationoftheSNP.
- 8. ExecutedtheDYNEVIImodeltodetermineoptimalevacuationroutingandcomputeETE
forallresidents,transientsandemployees(generalpopulation)withaccesstoprivate
vehicles.GeneratedacompletesetofETEforallspecifiedRegionsandScenarios.
- 9. DocumentedETEinformatsinaccordancewithNUREG/CR7002.
- 10. CalculatedtheETEforalltransitactivitiesincludingthoseforspecialfacilities(schools,
medicalfacilities,etc.),forthetransitdependentpopulationandforhomeboundspecial
needspopulation.
1.2 TheSurryPowerStationLocation
The SPS is located on the south bank of the James River in Surry County, in southeastern
Virginia. The site is approximately 45 miles northwest of Virginia Beach. The Emergency
PlanningZone(EPZ)consistsofpartsofSurry,IsleofWight,JamesCityandYorkCountiesand
theCitiesofNewportNewsandWilliamsburg.Figure11displaystheareasurroundingtheSPS.
SurryPowerStation
14
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure11.SPSLocation
SurryPowerStation
15
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
1.3 PreliminaryActivities
Theseactivitiesaredescribedbelow.
FieldSurveysoftheHighwayNetwork
KLDpersonneldrovetheentirehighwaysystemwithintheEPZandtheShadowRegionwhich
consistsoftheareabetweentheEPZboundaryandapproximately15milesradiallyfromthe
plant.Thecharacteristicsofeachsectionofhighwaywererecorded.Thesecharacteristicsare
showninTable12:
Table12.HighwayCharacteristics
x Numberoflanes
x Postedspeed
x Lanewidth
x Actualfreespeed
x Shouldertype&width
x Abuttinglanduse
x Interchangegeometries
x Controldevices
x Lanechannelization&queuing
capacity(includingturnbays/lanes)
x Intersectionconfiguration(including
roundaboutswhereapplicable)
x Geometrics:curves,grades(>4%)
x Trafficsignaltype
x Unusualcharacteristics:Narrowbridges,sharpcurves,poorpavement,floodwarning
signs,inadequatedelineations,tollbooths,etc.
Videoandaudiorecordingequipmentwereusedtocaptureapermanentrecordofthehighway
infrastructure.Noattemptwasmadetometiculouslymeasuresuchattributesaslanewidth
andshoulderwidth;estimatesofthesemeasuresbasedonvisualobservationandrecorded
images were considered appropriate for the purpose of estimating the capacity of highway
sections.Forexample,Exhibit157intheHCMindicatesthatareductioninlanewidthfrom12
feet(thebasevalue)to10feetcanreducefreeflowspeed(FFS)by1.1mph-notamaterial
difference-fortwolanehighways.Exhibit1530intheHCMshowslittlesensitivityforthe
estimatesofServiceVolumesatLevelofService(LOS)E(nearcapacity),withrespecttoFFS,for
twolanehighways.
The data from the audio and video recordings were used to create detailed geographical
informationsystems(GIS)shapefilesanddatabasesoftheroadwaycharacteristicsandofthe
trafficcontroldevicesobservedduringtheroadsurvey;thisinformationwasreferencedwhile
preparingtheinputstreamfortheDYNEVIISystem.
Asdocumentedonpage155oftheHCM2010,thecapacityofatwolanehighwayis1700
passengercarsperhourinonedirection.Forfreewaysections,avalueof2250vehiclesper
hourperlaneisassigned,asperExhibit1117oftheHCM2010.Theroadsurveyhasidentified
severalsegmentswhicharecharacterizedbyadversegeometricsontwolanehighwayswhich
arereflectedinreducedvaluesforbothcapacityandspeed.Theseestimatesareconsistent
with the service volumes for LOS E presented in HCM Exhibit 1530. These links may be
SurryPowerStation
16
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
identifiedbyreviewingAppendixK.LinkcapacityisaninputtoDYNEVIIwhichcomputesthe
ETE.FurtherdiscussionofroadwaycapacityisprovidedinSection4ofthisreport.
Trafficsignalsareeitherpretimed(signaltimingsarefixedovertimeanddonotchangewith
thetrafficvolumeoncompetingapproaches),orareactuated(signaltimingsvaryovertime
based on the changing traffic volumes on competing approaches). Actuated signals require
detectorstoprovidethetrafficdatausedbythesignalcontrollertoadjustthesignaltimings.
Thesedetectorsaretypicallymagneticloopsintheroadway,orvideocamerasmountedonthe
signalmastsandpointedtowardtheintersectionapproaches.Ifdetectorswereobservedon
theapproachestoasignalizedintersectionduringtheroadsurvey,detailedsignaltimingswere
not collected as the timings vary with traffic volume. TCPs at locations which have control
devicesarerepresentedasactuatedsignalsintheDYNEVIIsystem.
Ifnodetectorswereobserved,thesignalcontrolattheintersectionwasconsideredpretimed,
anddetailedsignaltimingsweregatheredforseveralsignalcycles.Thesesignaltimingswere
inputtotheDYNEVIIsystemusedtocomputeETE,asperNUREG/CR7002guidance.
Figure 12 presents the linknode analysis network that was constructed to model the
evacuationroadwaynetworkintheEPZandShadowRegion.Thedirectionalarrowsonthelinks
andthenodenumbershavebeenremovedfromFigure12toclarifythefigure.Thedetailed
figuresprovidedinAppendixKdepicttheanalysisnetworkwithdirectionalarrowsshownand
nodenumbersprovided.Theobservationsmadeduringthefieldsurveywereusedtocalibrate
theanalysisnetwork.
TelephoneSurvey
Atelephonesurveywasundertakentogatherinformationneededfortheevacuationstudy.
Appendix F presents the survey instrument, the procedures used and tabulations of data
compiledfromthesurveyreturns.
Thesedatawereutilizedtodevelopestimatesofvehicleoccupancytoestimatethenumberof
evacuatingvehiclesduringanevacuationandtoestimateelementsofthemobilizationprocess.
Thisdatabasewasalsoreferencedtoestimatethenumberoftransitdependentresidents.
ComputingtheEvacuationTimeEstimates
TheoverallstudyprocedureisoutlinedinAppendixD.Demographicdatawereobtainedfrom
severalsources,asdetailedlaterinthisreport.Thesedatawereanalyzedandconvertedinto
vehicledemanddata.Thevehicledemandwasloadedontoappropriatesourcelinksofthe
analysisnetworkusingGISmappingsoftware.TheDYNEVIIsystemwasthenusedtocompute
ETEforallRegionsandScenarios.
AnalyticalTools
The DYNEV II System that was employed for this study is comprised of several integrated
computer models. One of these is the DYNEV (DYnamic Network EVacuation) macroscopic
simulation model, a new version of the IDYNEV model that was developed by KLD under
contractwiththeFederalEmergencyManagementAgency(FEMA).
SurryPowerStation
17
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure12.SPSLinkNodeAnalysisNetwork
SurryPowerStation
18
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
DYNEVIIconsistsoffoursubmodels:
x Amacroscopictrafficsimulationmodel(fordetails,seeAppendixC).
x ATripDistribution(TD),modelthatassignsasetofcandidatedestination(D)nodesfor
each origin (O) located within the analysis network, where evacuation trips are
generatedovertime.ThisestablishesasetofODtables.
x A Dynamic Traffic Assignment (DTA), model which assigns trips to paths of travel
(routes)whichsatisfytheODtables,overtime.TheTDandDTAmodelsareintegrated
toformtheDTRAD(DynamicTrafficAssignmentandDistribution)model,asdescribedin
AppendixB.
x AMyopicTrafficDiversionmodelwhichdivertstraffictoavoidintense,localcongestion,
ifpossible.
Another software product developed by KLD, named UNITES (UNIfied Transportation
EngineeringSystem)wasusedtoexpeditedataentryandtoautomatetheproductionofoutput
tables.
The dynamics of traffic flow over the network are graphically animated using the software
product, EVAN (EVacuation ANimator), developed by KLD. EVAN is GIS based, and displays
statisticssuchasLOS,vehiclesdischarged,averagespeed,andpercentofvehiclesevacuated,
outputbytheDYNEVIISystem.TheuseofaGISframeworkenablestheusertozoominon
areasofcongestionandqueryroadname,townnameandothergeographicalinformation.
TheprocedureforapplyingtheDYNEVIISystemwithintheframeworkofdevelopingETEis
outlinedinAppendixD.AppendixAisaglossaryofterms.
For the reader interested in an evaluation of the original model, IDYNEV, the following
referencesaresuggested:
x NUREG/CR4873 - Benchmark Study of the IDYNEV Evacuation Time Estimate
ComputerCode
x NUREG/CR4874 - The Sensitivity of Evacuation Time Estimates to Changes in Input
ParametersfortheIDYNEVComputerCode
Theevacuationanalysisproceduresarebasedupontheneedto:
x Routetrafficalongpathsoftravelthatwillexpeditetheirtravelfromtheirrespective
pointsoforigintopointsoutsidetheEPZ.
x Restrict movement toward the plant to the extent practicable, and disperse traffic
demandsoastoavoidfocusingdemandonalimitednumberofhighways.
x Movetrafficindirectionsthataregenerallyoutbound,relativetothelocationofthe
SPS.
DYNEVIIprovidesadetaileddescriptionoftrafficoperationsontheevacuationnetwork.This
descriptionenablestheanalysttoidentifybottlenecksandtodevelopcountermeasuresthat
are designed to represent the behavioral responses of evacuees. The effects of these
SurryPowerStation
19
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
countermeasuresmaythenbetestedwiththemodel.
1.4 ComparisonwithPriorETEStudy
Table 13 presents a comparison of the present ETE study with the 2001 study. The major
factorscontributingtothedifferencesbetweentheETEvaluesobtainedinthisstudyandthose
ofthepreviousstudycanbesummarizedasfollows:
x ChangeswhichcontributetoanincreaseintheETE:
o Vehicle occupancy and Tripgeneration rates are based on the results of a
telephonesurveyofEPZresidentswhereasthe2001studyusedaflatrateof2.5
peoplepervehicleandtripgenerationratesbasedondatafromevacuationsin
responsetochemicalspills.
o Voluntaryandshadowevacuationsareconsidered.
o Anincreaseinpermanentresidentpopulationofapproximately12%.
x ChangeswhichcontributetoadecreaseintheETE:
o Thehighwayrepresentationisfarmoredetailedandmorecompletethe2001
study had reduced capacity as only the major evacuation routes outlined in
publicinformationwereutilized.
o ETEaretimesforclearingtheareabeingevacuated;inthe2001studyallETEare
forclearingthe10mileEPZ,regardlessoftheareabeingevacuated.
o Dynamicevacuationmodeling.
o More detailed assessment of transient population numbers percentage of
transientsinEPZestimatedbytimeofday,dayofweekandseason,byattraction
type,inordertominimizedoublecounting.
o Thisstudy distinguishesbetweenresidentandnonEPZemployeesinorderto
minimizedoublecounting.
Table13.ETEStudyComparisons
Topic
PreviousETEStudy
CurrentETEStudy
ResidentPopulation
Basis
2000USCensusData;
Population=137,475
ArcGISSoftwareusing2010US
Censusblocks;arearatiomethod
used.
Population=152,677
ResidentPopulation
VehicleOccupancy
2.5personspervehicle.
2.47persons/household,1.19
evacuatingvehicles/household
yielding:2.08persons/vehicle.
SurryPowerStation
110
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Topic
PreviousETEStudy
CurrentETEStudy
Employee
Population
Employeeestimatesbasedoninformation
providedbyClaritasCorporationandphone
callstofacilities.Didnotconsiderpercent
thatarenotfromtheEPZ.Includedinthe
transienttotal.
2.5employeespervehicle.
Employeeestimatesbasedon
informationprovidedabout
majoremployersinEPZ,
supplementedbyphonecallsto
employer.1.08employeesper
vehiclebasedontelephone
surveyresults.
Employees=18,093
TransitDependent
Population
NoindependentETEfortransitdependents.
EstimatesbaseduponU.S.
Censusdataandtheresultsof
thetelephonesurvey.Atotalof
3,480peoplewhodonothave
accesstoavehicle,requiring122
busestoevacuate.Anadditional
348homeboundspecialneeds
personsneededspecial
transportationtoevacuate(253
requireabus,95requirea
wheelchairaccessiblevehicle).
Transient
Population
Transients=153,123(daytime),including
employees.
Vehicleoccupancy2.5
Transientestimatesbasedupon
informationprovidedabout
transientattractionsinEPZ,
supplementedbyobservations
ofthefacilitiesduringtheroad
surveyandinternetresearch
Transients=69,342
SpecialFacilities
Population
SpecialFacilityPopulation=969
Vehiclesoriginatingatspecialfacilities=0
Specialfacilitypopulationbased
oninformationprovidedbyeach
city/countywithintheEPZ.
Currentcensus=1,588
BusesRequired=24
WheelchairBusRequired=24
AmbulancesRequired=56
SchoolPopulation
Schoolpopulationbasedoninformation
providedbytheStateofVirginiaandcontact
withindividualfacilities.
Schoolenrollment=36,463
Vehiclesoriginatingatschools=0
Schoolpopulationbasedon
informationprovidedbyeach
city/countywithintheEPZ.
Schoolenrollment=31,426
Busesrequired=437
SurryPowerStation
111
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Topic
PreviousETEStudy
CurrentETEStudy
Voluntary
evacuationfrom
withinEPZinareas
outsideregiontobe
evacuated
Notconsidered
20percentofthepopulation
withintheEPZ,butnotwithin
theEvacuationRegion(see
Figure21)
ShadowEvacuation
Notconsidered
20%ofpeopleoutsideoftheEPZ
withintheShadowRegion
(seeFigure72)
NetworkSize
161links
2,157links;1,581nodes
RoadwayGeometric
Data
Fieldsurveysconductedin2001.
Roadcapacitiesbasedon2000HCM.
Fieldsurveysconductedin
February2012.Roadsand
intersectionswerevideo
archived.
Roadcapacitiesbasedon2010
HCM.
SchoolEvacuation
NoseparateETEforschools.
Directevacuationtodesignated
EvacuationAssemblyCenters.
Ridesharing
Assumptionthatthemajorityoftransit dependentpopulationwillevacuatewith
neighborsorfriends.
50percentoftransitdependent
personswillevacuatewitha
neighbororfriend.
TripGenerationfor
Evacuation
TripGenerationcurveadaptedfromdata
fromstudiesofevacuationsinresponseto
largescalechemicalspills.Samemobilization
curveforallpopulationgroups.
Evacueesstarttheirtripbetween15and130
minutesaftertheadvisorytoevacuate.
Basedonresidentialtelephone
surveyofspecificpretrip
mobilizationactivities:
Residentswithcommuters
returningleavebetween30and
285minutes.
Residentswithoutcommuters
returningleavebetween0and
240minutes.
Employeesandtransientsleave
between0and105minutes.
Alltimesmeasuredfromthe
AdvisorytoEvacuate.
Weather
NormalorAdverse(snow/ice).Thecapacity
andfreeflowspeedofalllinksinthenetwork
arereducedby40%inforAdverseweather
conditions.
Normal,Rain,orSnow.The
capacityandfreeflowspeedof
alllinksinthenetworkare
reducedby10%intheeventof
rainand20%forsnow.
Modeling
EvacuationSimulationModel(ESIM)
DYNEVIISystem-Version
4.0.11.0
SurryPowerStation
112
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Topic
PreviousETEStudy
CurrentETEStudy
SpecialEvents
Nospecialeventbutonescenarioconsidered
contraflowonI64
NewportNewsFallFestivalof
Folklife.
SpecialEventPopulation=
26,250additionaltransients
EvacuationCases
7geographicscenarios,2weatherconditions
producing14uniquecases.
41Regions(centralsectorwind
directionandeachadjacent
sectortechniqueused)and14
Scenariosproducing574unique
cases.
EvacuationTime
EstimatesReporting
ETEreportedfor90thpercentileforafullEPZ
(northandsouthofriver),5mileradius,2 mileradius,and4quadrants.
ETEreportedfor90thand100th
percentilepopulation.Results
presentedbyRegionand
Scenario.
EvacuationTime
Estimatesforthe
entireEPZ,90th
percentile
Peakseason,daytime,GoodWeather:8:11
northofJamesRiver;1:01southofJames
River.
WinterWeekdayMidday,
GoodWeather:3:40
SummerWeekend,Midday,
GoodWeather:3:50
SurryPowerStation
21
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
2 STUDYESTIMATESANDASSUMPTIONS
This section presents the estimates and assumptions utilized in the development of the
evacuationtimeestimates.
2.1 DataEstimates
- 1. PopulationestimatesarebaseduponCensus2010data.
- 2. DataobtainedfromtheUSCensusLongitudinalEmployerHouseholdDynamicsfromthe
OnTheMap Census analysis tool1 were used to estimate the number of employees
commuting into the EPZ. The 2010 Workplace Area Characteristic data was also
obtainedfromthiswebsiteandwasusedtodeterminethenumberofemployeesby
CensusBlockwithintheSPSEPZ.
- 3. Populationestimatesatspecialfacilitiesarebasedonavailabledatafromcity/county
emergencymanagementagenciesandfromphonecallstospecificfacilities.
- 4. Roadway capacity estimates are based on field surveys and the application of the
HighwayCapacityManual2010.
- 5. Populationmobilizationtimesarebasedonastatisticalanalysisofdataacquiredfroma
randomsampletelephonesurveyofEPZresidents(seeSection5andAppendixF).
- 6. The relationship between resident population and evacuating vehicles is developed
from the telephone survey. Average values of 2.47 persons per household and 1.19
evacuating vehicles per household are used. The relationship between persons and
vehiclesfortransientsandemployeesisasfollows:
- a. Employees:1.08employeespervehicle(telephonesurveyresults)forallmajor
employers.
- b. Parks:Vehicleoccupancyvariesbasedupondatagatheredfromlocaltransient
facilities.
- c. SpecialEvents:AssumedtransientsattendingtheNewportNewsFallFestivalof
Folklifetravelasfamilies/householdsinasinglevehicle,andusedtheaverage
householdsizeof2.47personstoestimatethenumberofvehicles.
1http://onthemap.ces.census.gov
SurryPowerStation
22
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
2.2 StudyMethodologicalAssumptions
- 1. ETEarepresentedfortheevacuationofthe90thand100thpercentilesofpopulationfor
eachRegionandforeachScenario.ThepercentileETEisdefinedastheelapsedtime
fromtheAdvisorytoEvacuateissuedtoaspecificRegionoftheEPZ,tothetimethat
Regionisclearoftheindicatedpercentileofevacuees.ARegionisdefinedasagroupof
PAZs that is issued an Advisory to Evacuate. A scenario is a combination of
circumstances,includingtimeofday,dayofweek,season,andweatherconditions.
- 2. The ETE are computed and presented in tabular format and graphically, in a format
compliantwithNUREG/CR7002.
- 3. Evacuationmovements(pathsoftravel)aregenerallyoutboundrelativetotheplantto
theextentpermittedbythehighwaynetwork.Allmajorevacuationroutesareusedin
theanalysis.
- 4. Regionsaredefinedbytheunderlyingkeyholeorcircularconfigurationsasspecifiedin
Section1.4ofNUREG/CR7002.TheseRegions,asdefined,displayirregularboundaries
reflectingthegeographyofthePAZsincludedwithintheseunderlyingconfigurations.
- 5. As indicated in Figure 22 of NUREG/CR7002, 100% of people within the impacted
keyhole evacuate. 20% of those people within the EPZ, not within the impacted
keyhole,willvoluntarilyevacuate.20%ofthosepeoplewithintheShadowRegionwill
voluntarilyevacuate.SeeFigure21foragraphicalrepresentationoftheseevacuation
percentages.SensitivitystudiesexploretheeffectonETEofincreasingthepercentage
ofvoluntaryevacueesintheShadowRegion(seeAppendixM).
- 6. A total of 14 Scenarios representing different temporal variations (season, time of
day,dayofweek)andweatherconditionsareconsidered.TheseScenariosareoutlined
inTable21.
- 7. Scenario14considerstheclosureofasinglelanewestboundonInterstate64fromthe
interchange with Jefferson Ave (Exit 24) to the end of the analysisnetwork at the
interchangewithSR607/CroakerRd(Exit231).
- 8. ThemodelsoftheIDYNEVSystemwererecognizedasstateoftheartbytheAtomic
Safety&LicensingBoard(ASLB)inpasthearings.(Sources:AtomicSafety&Licensing
BoardHearingsonSeabrookandShoreham;Urbanik2).Themodelshavecontinuously
beenrefinedandextendedsincethosehearingsandwereindependentlyvalidatedbya
consultant retained by the NRC. The new DYNEV II model incorporates the latest
technology in traffic simulation and in dynamic traffic assignment.. The DYNEV II
SystemisusedtocomputeETEinthisstudy.
2Urbanik,T.,et.al.BenchmarkStudyoftheIDYNEVEvacuationTimeEstimateComputerCode,NUREG/CR4873,
NuclearRegulatoryCommission,June,1988.
SurryPowerStation
23
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table21.EvacuationScenarioDefinitions
Scenario
Season3
Dayof
Week
Timeof
Day
Weather
Special
1
Summer
Midweek
Midday
Good
None
2
Summer
Midweek
Midday
Rain
None
3
Summer
Weekend
Midday
Good
None
4
Summer
Weekend
Midday
Rain
None
5
Summer
Midweek,
Weekend
Evening
Good
None
6
Winter
Midweek
Midday
Good
None
7
Winter
Midweek
Midday
Rain
None
8
Winter
Midweek
Midday
Snow
None
9
Winter
Weekend
Midday
Good
None
10
Winter
Weekend
Midday
Rain
None
11
Winter
Weekend
Midday
Snow
None
12
Winter
Midweek,
Weekend
Evening
Good
None
13
Winter
Weekend
Midday
Good
NewportNewsFall
FestivalofFolklife
14
Summer
Midweek
Midday
Good
RoadwayImpact:WB
LaneClosureonI64
3Winterassumesthatschoolisinsession(alsoappliestospringandautumn).Summerassumesthatschoolisnot
insession.
SurryPowerStation
24
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure21.VoluntaryEvacuationMethodology
SurryPowerStation
25
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
2.3 StudyAssumptions
- 1. ThePlanningBasisAssumptionforthecalculationofETEisarapidlyescalatingaccident
thatrequiresevacuation,andincludesthefollowing:
- a. AdvisorytoEvacuateisannouncedcoincidentwiththesirennotification.
- b. Mobilizationofthegeneralpopulationwillcommencewithin15minutesafter
sirennotification.
- c. ETEaremeasuredrelativetotheAdvisorytoEvacuate.
- 2. ItisassumedthateveryonewithinthegroupofPAZsformingaRegionthatisissuedan
Advisory to Evacuate will, in fact, respond and evacuate in general accord with the
plannedroutes.
- 3. 57percentofthehouseholdsintheEPZhaveatleast1commuter;60percentofthose
householdswithcommuterswillawaitthereturnofacommuterbeforebeginningtheir
evacuationtrip, basedon the telephone survey results. Therefore 34 percent (57% x
60%=34%)ofEPZhouseholdswillawaitthereturnofacommuter,priortobeginning
theirevacuationtrip.
- 4. TheETEwillalsoincludeconsiderationofthrough(ExternalExternal)tripsduringthe
timethatsuchtrafficispermittedtoentertheevacuatedRegion.Normaltrafficflow
isassumedtobepresentwithintheEPZatthestartoftheemergency.
- 5. AccessControlPoints(ACP)willbestaffedwithinapproximately120minutesfollowing
thesirennotifications,todiverttrafficattemptingtoentertheEPZ.Earlieractivationof
ACPlocationscoulddelayreturningcommuters.Itisassumedthatnothroughtrafficwill
entertheEPZafterthis120minutetimeperiod.
- 6. TrafficControlPoints(TCP)withintheEPZwillbestaffedovertime,beginningatthe
Advisory to Evacuate. Their number and location will depend on the Region to be
evacuatedandresourcesavailable.TheobjectivesoftheseTCPare:
- a. Facilitatethemovementsofall(mostlyevacuating)vehiclesatthelocation.
- b. Discourageinadvertentvehiclemovementstowardstheplant.
- c. Provideassuranceandguidancetoanytravelerwhoisunsureoftheappropriate
actionsorrouting.
- d. Actaslocalsurveillanceandcommunicationscenter.
- e. Provideinformationtotheemergencyoperationscenter(EOC)asneeded,based
ondirectobservationoroninformationprovidedbytravelers.
In calculating ETE, it is assumed that evacuees will drive safely, travel in
directionsidentifiedintheplan,andobeyallcontroldevicesandtrafficguides.
SurryPowerStation
26
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
- 7. Buseswillbeusedtotransportthosewithoutaccesstoprivatevehicles:
- a. Ifschoolsareinsession,transport(buses)willevacuatestudentsdirectlytothe
designatedreceivingschools.
- b. It is assumed parents will pick up children at day care centers prior to
evacuation.
- c. Buses, wheelchair vans and ambulances will evacuate patients at medical
facilitiesandatanyseniorfacilitieswithintheEPZ,asneeded.
- d. Transitdependentgeneralpopulationwillbeevacuatedtoassemblycenters.
- e. Schoolchildren, if school is in session, are given priority in assigning transit
vehicles.
- f. BusmobilizationtimeisconsideredinETEcalculations.
- g. Analysisofthenumberofrequiredroundtrips(waves)ofevacuatingtransit
vehiclesispresented.
- h. Transport of transitdependent evacuees from assembly centers to mass care
sheltersisnotconsideredinthisstudy.
- 8. Provisions are made for evacuating the transitdependent portion of the general
populationtoassemblycentersbybus,basedontheassumptionthatsomeofthese
peoplewillridesharewithfamily,neighbors,andfriends,thusreducingthedemandfor
buses. We assume that the percentage of people who rideshare is 50 percent. This
assumptionisbaseduponreportedexperienceforotheremergencies4,andonguidance
inSection2.2ofNUREG/CR7002.
- 9. Two types of adverse weather scenarios are considered. Rain may occur for either
winterorsummerscenarios;snowoccursinwinterscenariosonly.Itisassumedthatthe
rainorsnowbeginsearlierorataboutthesametimetheevacuationadvisoryisissued.
Noweatherrelatedreductioninthenumberoftransientswhomaybepresentinthe
EPZisassumed.Itisassumedthatroadsarepassableandthattheappropriateagencies
areplowingtheroadsastheywouldnormallywhensnowing.
Adverseweatherscenariosaffectroadwaycapacityandthefreeflowhighwayspeeds.
ThefactorsappliedfortheETEstudyarebasedonrecentresearchontheeffectsof
weatheronroadwayoperations5;thefactorsareshowninTable22.
4InstituteforEnvironmentalStudies,UniversityofToronto,THEMISSISSAUGAEVACUATIONFINALREPORT,June
1981.Thereportindicatesthat6,600peopleofatransitdependentpopulationof8,600peoplesharedrideswith
otherresidents;aridesharerateof76%(Page510).
5 Agarwal, M. et. al. Impacts of Weather on Urban Freeway Traffic Flow Characteristics and Facility Capacity,
Proceedings of the 2005 MidContinent Transportation Research Symposium, August, 2005. The results of this
paperareincludedasExhibit1015intheHCM2010.
SurryPowerStation
27
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
- 10. Schoolbusesusedtotransportstudentsareassumedtotransport70studentsperbus
forelementaryschoolsand50studentsperbusformiddleandhighschools,basedon
discussionswithcity/countyofficesofemergencymanagement.Transitbusesusedto
transportthetransitdependentgeneralpopulationareassumedtotransport30people
per bus. Based on information provided by local emergency planners, specialized
wheelchair buses were assumed to carry 20 wheelchair bound persons. Wheelchair
accessiblebuseshavetheabilitytodisplace2regularseatsforspaceforonewheelchair.
Thiscanbedoneforupto4seatsor2wheelchairs.
Table22.ModelAdjustmentforAdverseWeather
Scenario
Highway
Capacity*
FreeFlow
Speed*
MobilizationTimeforGeneralPopulation
Rain
90%
90%
NoEffect
Snow
80%
80%
Cleardrivewaybeforeleavinghome
(SeeFigureF14)
- Adverseweathercapacityandspeedvaluesaregivenasapercentageofgood
weatherconditions.Roadsareassumedtobepassable.
SurryPowerStation
31
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
3 DEMANDESTIMATION
The estimates of demand, expressed in terms of people and vehicles, constitute a critical
elementindevelopinganevacuationplan.Theseestimatesconsistofthreecomponents:
- 1. An estimate of population within the EPZ, stratified into groups (resident, employee,
- 2. An estimate, for each population group, of mean occupancy per evacuating
vehicle.Thisestimateisusedtodeterminethenumberofevacuatingvehicles.
- 3. Anestimateofpotentialdoublecountingofvehicles.
AppendixEpresentsmuchofthesourcematerialforthepopulationestimates.Ourprimary
sourceofpopulationdata,the2010Census,however,isnotadequatefordirectlyestimating
sometransientgroups.
Throughouttheyear,vacationersandtouristsentertheEPZ.Thesenonresidentsmaydwell
withintheEPZforashortperiod(e.g.afewdaysoroneortwoweeks),ormayenterandleave
withinoneday.Estimatesofthesizeofthesepopulationcomponentsmustbeobtained,so
thattheassociatednumberofevacuatingvehiclescanbeascertained.
Thepotentialfordoublecountingpeopleandvehiclesmustbeaddressed.Forexample:
x AresidentwhoworksandshopswithintheEPZcouldbecountedasaresident,againas
anemployeeandonceagainasashopper.
x Avisitorwhostaysatahotelandspendstimeatapark,thengoesshoppingcouldbe
countedthreetimes.
Furthermore,thenumberofvehiclesatalocationdependsontimeofday.Forexample,motel
parkinglotsmaybefullatdawnandemptyatnoon.Similarly,parkinglotsatareaparks,which
arefullatnoon,maybealmostemptyatdawn.Estimatingcountsofvehiclesbysimplyadding
upthecapacitiesofdifferenttypesofparkingfacilitieswilltendtooverestimatethenumberof
transientsandcanleadtoETEthataretooconservative.
AnalysisofthepopulationcharacteristicsoftheSPSEPZindicatestheneedtoidentifythree
distinctgroups:
x PermanentresidentspeoplewhoareyearroundresidentsoftheEPZ.
x Transients people who reside outside of the EPZ who enter the area for a specific
purpose(shopping,recreation)andthenleavethearea.
x EmployeespeoplewhoresideoutsideoftheEPZandcommutetobusinesseswithin
theEPZonadailybasis.
Estimates of the population and number of evacuating vehicles for each of the population
groupsarepresentedforeachPAZandbypolarcoordinaterepresentation(populationrose).
TheSPSEPZissubdividedinto30PAZs.TheEPZisshowninFigure31.
SurryPowerStation
32
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
3.1 PermanentResidents
TheprimarysourceforestimatingpermanentpopulationisthelatestU.S.Censusdata.The
average household size (2.47 persons/household - See Figure F1) and the number of
evacuating vehicles per household (1.19 vehicles/household - See Figure F8) were adapted
fromthetelephonesurveyresults.
PopulationestimatesarebaseduponCensus2010data.Theestimatesarecreatedbycutting
thecensusblockpolygonsbythePAZandEPZboundaries.Aratiooftheoriginalareaofeach
censusblockandtheupdatedarea(aftercutting)ismultipliedbythetotalblockpopulationto
estimatewhatthepopulationiswithintheEPZ.Thismethodologyassumesthatthepopulation
is evenly distributed across a census block. Table 31 provides the permanent resident
populationwithintheEPZ,byPAZbasedonthismethodology.
Theyear2010permanentresidentpopulationisdividedbytheaveragehouseholdsizeand
then multiplied by the average number of evacuating vehicles per household in order to
estimate number of vehicles. Permanent resident population and vehicle estimates are
presentedinTable32.Figure32andFigure33presentthepermanentresidentpopulation
andpermanentresidentvehicleestimatesbysectoranddistancefromSPS.Thisrosewas
constructedusingGISsoftware.
Itcanbearguedthatthisestimateofpermanentresidentsoverstates,somewhat,thenumber
ofevacuatingvehicles,especiallyduringthesummer.Itiscertainlyreasonabletoassertthat
some portion of the population would be on vacation during the summer and would travel
elsewhere.Aroughestimateofthisreductioncanbeobtainedasfollows:
x Assume50percentofallhouseholdsvacationforatwoweekperiodoverthesummer.
x Assumethesevacations,inaggregate,areuniformlydispersedover10weeks,i.e.10
percentofthepopulationisonvacationduringeachtwoweekinterval.
x Assumehalfofthesevacationersleavethearea.
Onthisbasis,thepermanentresidentpopulationwouldbereducedby5percentinthesummer
andbyalesseramountintheoffseason.Giventheuncertaintyinthisestimate,weelectedto
applynoreductionsinpermanentresidentpopulationforthesummerscenariostoaccountfor
residentswhomaybeoutofthearea.
SurryPowerStation
33
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure31.SPSEPZ
SurryPowerStation
34
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table31.EPZPermanentResidentPopulation
PAZ
2000
Population 2010
Population 1
262
244
2
810
884
3
480
514
4
233
236
5
566
618
6
239
177
7
233
262
8
0
0
9
0
603
10
199
200
11
94
82
12
68
95
13
1,093
1,167
14
5,738
5,914
15
25,625
25,003
16
46,010
45,649
17
1,505
1,974
18A
1,317
1,374
18B
4,094
4,153
18C
3,331
3,960
18D
63
71
19A
4,739
6,214
19B
591
1,033
20A
690
877
20B
1,579
2,521
21
11,885
13,384
22A
965
1,305
22B
2,972
3,460
23
12,351
19,627
24
8,417
11,076
TOTAL
136,149
152,677
EPZPopulation
Growth:
12.14%
SurryPowerStation
35
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table32.PermanentResidentPopulationandVehiclesbyPAZ
PAZ
2010
Population
2010
Resident
Vehicles
1
244
115
2
884
424
3
514
244
4
236
113
5
618
297
6
177
85
7
262
126
8
0
0
9
603
287
10
200
94
11
82
37
12
95
44
13
1,167
558
14
5,914
2,745
15
25,003
12,048
16
45,649
21,985
17
1,974
950
18A
1,374
661
18B
4,153
2,000
18C
3,960
1,907
18D
71
34
19A
6,214
2,993
19B
1,033
494
20A
877
421
20B
2,521
1,213
21
13,384
7,034
22A
1,305
627
22B
3,460
1,663
23
19,627
9,450
24
11,076
5,334
TOTAL
152,677
73,983
SurryPowerStation
36
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure32.PermanentResidentPopulationbySector
SurryPowerStation
37
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure33.PermanentResidentVehiclesbySector
SurryPowerStation
38
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
3.2 ShadowPopulation
Aportionofthepopulationlivingoutsidetheevacuationareaextendingto15milesradially
fromtheSPS(intheShadowRegion)mayelecttoevacuatewithouthavingbeeninstructedto
doso.BaseduponNUREG/CR7002guidance,itisassumedthat20percentofthepermanent
resident population, based on U.S. Census Bureau data, in this Shadow Region will elect to
evacuate.
Shadow population characteristics (household size, evacuating vehicles per household,
mobilization time) are assumed to be the same as that for the EPZ permanent resident
population.Table33,Figure34,andFigure35presentestimatesoftheshadowpopulation
andvehicles,bysector.
Table33.ShadowPopulationandVehiclesbySector
Sector
Population
Evacuating
Vehicles
N
2,961
1,424
NNE
1,588
760
NE
6,443
3,100
ENE
7,261
3,497
E
23,238
11,189
ESE
60,115
28,947
SE
3,014
1,452
SSE
10,531
5,071
S
1,372
659
SSW
443
205
SW
483
229
WSW
324
153
W
292
138
WNW
266
124
NW
19
9
NNW
11,165
5,374
TOTAL
129,515
62,331
SurryPowerStation
39
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure34.ShadowPopulationbySector
SurryPowerStation
310
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure35.ShadowVehiclesbySector
SurryPowerStation
311
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
3.3 TransientPopulation
Transientpopulationgroupsaredefinedasthosepeople(whoarenotpermanentresidents,
norcommutingemployees)whoentertheEPZforaspecificpurpose(shopping,recreation).
Transients may spend less than one day or stay overnight at camping facilities, hotels and
motels.
3.3.1 TransientAttractions
TheSPSEPZhasanumberofareasandfacilitiesthatattractanestimated66,367transientsin
26,542vehiclesatpeaktimes.Thesefacilitiesaregroupedintothefollowingcategories:
x Lodgingfacilities
x Marinas
x Campgrounds
x Golfcoursesandcountryclubs
x Historicalsites
x Parksandotherrecreationalattractions
80 lodging facilities were identified within the EPZ, the majority being in The City of
Williamsburg.Dataprovidedbythecities/countiesandVDEM,weresupplementedwithphone
callstoindividualfacilities.Thenumberofrooms,peopleperroom,percentageofoccupied
roomsandvehiclesperroomatpeaktimes,weredeterminedforeachfacility.Thesedatawere
usedtoestimatethenumberoftransientsandevacuatingvehiclesateachofthesefacilities.A
totalof28,202transientsin13,109vehiclesareassignedtolodgingfacilitiesintheEPZ.
OnemarinawasidentifiedinNewportNews.14transientsand14vehicleshavebeenassigned
tothisfacility.
Fromdataprovidedbythecities/countiesandsupplementalphonecalls,itisestimatedthat
464transientsin188vehiclesareincampsitestheEPZatpeaktimes.
ThelargesttransientattractionintheEPZisBuschGardensinJamesCityCountywhichcan
have over 20,000 transients on site on a peak day. Colonial Williamsburg Regional Visitor
Centerhasalargeparkinglotandistheoriginofmosttransientvehicletripsfortransients
visitingColonialWilliamsburg.1,650vehiclesareassignedtothistheVisitorCenterandnone
areassignedtothehistoricalVillageofWilliamsburg,sincethelatterisapedestrianonlyarea.
A total of 30,335 transients and 11,357 vehicles have been assigned to parks and other
recreationalattractions.
There are nine golf courses within the EPZ. Surveys of golf courses were conducted to
determinethenumberofgolfersandvehiclesateachfacilityonatypicalpeakday,andthe
number of golfers that travel from outside the area. A total of 2,803 transients and 1,183
vehiclesareassignedtogolfcourseswithintheEPZ.
ThemajorhistoricalsitesintheEPZareColonialWilliamsburgandtheJamestownSettlement.
Atotalof5,000transientsand900vehicleswereassignedtothesettlement.
AppendixEsummarizesthetransientdatathatwasestimatedfortheEPZ.TableE3presents
SurryPowerStation
312
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
thenumberoftransientsvisitingparksandotherrecreationalareas,whileTableE4presents
thenumberoftransientsatlodgingfacilitieswithintheEPZ.
Table34presentstransientpopulationandtransientvehicleestimatesbyPAZ.Figure36and
Figure37presentthesedatabysectoranddistancefromtheplant.
3.3.2 CollegeStudents
TheCollegeofWilliamandMaryundergraduateenrollmentconsistsof4,428residentstudents
and3,772commutingstudents.
Residentstudentsarecountedinthecensusaspermanentresidentsandareaccountedforin
Table32.55%ofresidentstudentshavevehiclesthereforethenumberofresidentstudents
requiringtransportationinanevacuationisestimatedas(10.55)x4,428x0.5=996.(A50%
ridesharepercentageisappliedforalltransitdependents).Usingabusoccupancyof30,34
buses(68passengercarequivalent)arerequired.TheETEfortransitdependentstudentsis
coveredinSection8.4.
ThecommutingstudentsconsistofthosewhocommutefrominsidetheEPZandthosewho
commutefromoutsidetheEPZ.Theformer,arepartoftheEPZresidentpopulationtotal;the
latter (transient commuters) are considered as a unique population group, using the
transient/employeetripgenerationdistributionbuttheschoolscenariopercentages.Forthese
nonEPZ commuting students, an average vehicle occupancy of 1.08 (obtained from the
telephonesurvey,seeFigureF7)isassumedtotaling2,440/1.08=2,259vehicles.
Collegestudentsareaccountedforinthereporttablesasfollows:
x ThetotalenrollmentnumberforthecollegeisshowninTableE1.
x Thetransientcommuterstudentsandtheirvehiclesareincludedinthetransientstable,
Table34.
x Inthesummarypopulationtable,Table37,theCommuterStudentscolumnshows
thetransientcommuterstudentsonly;thebalanceofthestudentsareincludedunder
Schools.
x Inthevehiclesummarytable,Table38,thetransientcommuterstudentvehiclesare
shownintheCommuterStudentscolumnandtheSchoolscolumnincludesthe68
transitdependentstudentbusesthesebusesarealsoshowninTable82.(EPZresident
studentsvehiclesareincludedintheresidentsvehiclestotal.)
x Inthevehicleestimatesbyscenariotable,Table64,thetransientcommuterstudent
vehiclesareshownintheCommuterStudentscolumnandtheSchoolBusescolumn
includesthetransitdependentstudentbuses.
SurryPowerStation
313
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table34.SummaryofTransientsandTransientVehicles
PAZ
Transients Transient
Vehicles
1
0
0
2
0
0
3
0
0
4
0
0
5
84
34
6
0
0
7
0
0
8
0
0
9
0
0
10
0
0
11
0
0
12
0
0
13
0
0
14
175
112
15
14
14
16
2,002
834
17
0
0
18A
1,272
577
18B
22,915
9,150
18C
0
0
18D
0
0
19A
6,977
2,148
19B
0
0
20A
6,394
3,051
20B
83
35
21
19,162
9,637
22A
400
125
22B
84
39
23
3,174
1,526
24
6,606
1,762
TOTAL
69,342
29,044
SurryPowerStation
314
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure36.TransientPopulationbySector
SurryPowerStation
315
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure37.TransientVehiclesbySector
SurryPowerStation
316
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
3.4 Employees
EmployeeswhoworkwithintheEPZfallintotwocategories:
x ThosewholiveandworkintheEPZ
x ThosewholiveoutsideoftheEPZandcommutetojobswithintheEPZ.
Thoseofthefirstcategoryarealreadycountedaspartofthepermanentresidentpopulation.
Toavoiddoublecounting,wefocusonlyonthoseemployeescommutingfromoutsidetheEPZ
whowillevacuatealongwiththepermanentresidentpopulation.
Data obtained from the US Census Longitudinal EmployerHousehold Dynamics from the
OnTheMapCensusanalysistool1wereusedtoestimatethenumberofemployeescommuting
intotheEPZ.The2010WorkplaceAreaCharacteristicdatawasalsoobtainedfromthiswebsite
andwasusedtodeterminethenumberofemployeesbyCensusBlockwithintheSPSEPZ.
SincenotallemployeesareworkingatfacilitieswithintheEPZatonetime,amaximumshift
reduction was applied. The Work Area Profile Report, also output by the OnTheMap
Application, breaks down jobs within the EPZ by industry sector. Assuming maximum shift
employmentoccursMondaythroughFridaybetween9AMand5PM,thefollowingjobstake
placeoutsidethetypical95workday:
Manufacturing-7.5%ofjobs;takesplaceinshiftsover24hours.
Arts,Entertainment,andRecreation-5.9%ofjobs;takesplaceineveningsandon
weekends.
AccommodationsandFoodServices-17.5%ofjobs;peaksintheevenings.
ThemaximumshiftintheEPZisabout69.1%(100%7.5%5.9%17.5%=69.1%).Thisvalue
wasappliedtothetotalemploymentin2010torepresentthemaximumnumberofemployees
presentintheEPZatanyonetime.TheInflow/OutflowReportfortheSPSEPZwasthenused
tocalculatethepercentofemployeesthatworkwithintheEPZbutliveoutside.Thisvalue,
64.7%,wasappliedtothemaximumshiftemployeevaluestocomputethenumberofpeople
commutingintotheEPZtoworkatpeaktimes.
Table35presentsnonEPZResidentemployeeandvehicleestimatesbyPAZ.TheEmployees
(MaxShift)ismultipliedbythepercentNonEPZfactortodeterminethenumberofemployees
whoarenotresidentsoftheEPZ.Avehicleoccupancyof1.08employeespervehicle,obtained
fromthetelephonesurvey(SeeFigureF7),wasusedtodeterminethenumberofevacuating
employeevehiclesforallmajoremployers.
Figure38andFigure39presentthesedatabysector.
1http://onthemap.ces.census.gov
SurryPowerStation
317
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table35.SummaryofNonEPZResidentEmployeesandEmployeeVehicles
MaxShiftEmploymentusedforIndividualEmployers
Major
Employer
2010
Employment
(50+
Employees)
MaxShift
NonEPZ
Employees (98%)
Employee
Vehicles(1.08
Emp/Veh)
SPS
970
480
470
435
PAZ
2010
Employment
(50+
Employees)
MaxShift
(69.1%)
NonEPZ
Employees
(64.7%)
Employee
Vehicles(1.08
Emp/Veh)
1
135
93
60
56
2
0
0
0
0
3
0
0
0
0
4
0
0
0
0
5
84
58
38
35
6
0
0
0
0
7
0
0
0
0
8
0
0
0
0
9
0
0
0
0
10
0
0
0
0
11
0
0
0
0
12
0
0
0
0
13
0
0
0
0
14
2460
2029
1313
1216
15
2870
1982
1281
1186
16
4129
2853
1847
1708
17
580
400
259
240
18A
167
116
75
69
18B
3585
2478
1605
1486
18C
231
160
103
95
18D
1137
786
508
471
19A
1772
1226
792
733
19B
2918
2395
1550
1435
20A
645
446
290
268
20B
0
0
0
0
21
11107
7672
4966
4595
22A
0
0
0
0
22B
199
138
90
84
23
5737
3965
2566
2378
24
629
434
280
259
TOTAL:
39,355
27,711
18,093
16,749
SurryPowerStation
318
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure38.EmployeePopulationbySector
SurryPowerStation
319
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure39.EmployeeVehiclesbySector
SurryPowerStation
320
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
3.5 MedicalFacilities
Datawereprovidedbythecities/countiesforeachofthemedicalfacilitieswithintheEPZ.Table
E2inAppendixEsummarizesthedatagathered.Section8detailstheevacuationofmedical
facilities and their patients. The number and type of evacuating vehicles that need to be
provideddependonthepatients'stateofhealth.Vehiclecapacitiesareestimatedasfollows:
x Regularbusesupto30ambulatorypeople.
x Wheelchairbuses-upto20wheelchairboundpeople.
x Ambulances,upto2bedriddenpeople.
3.6 TotalDemandinAdditiontoPermanentPopulation
VehicleswillbetravelingonI64throughtheEPZ(externalexternaltrips)atthetimeofan
accident. After the Advisory to Evacuate is announced, these throughtravelers will also
evacuate. It is assumed that this traffic will continue to enter the EPZ during the first 120
minutesfollowingtheAdvisorytoEvacuate.
AverageAnnualDailyTraffic(AADT)datawasobtainedfromFederalHighwayAdministrationto
estimatethenumberofvehiclesperhouronI64.TheAADTwasmultipliedbytheKFactor,
which is the proportion of the AADT on a roadway segment or link during the design hour,
resultinginthedesignhourvolume(DHV).Thedesignhourisusuallythe30thhighesthourly
trafficvolumeoftheyear,measuredinvehiclesperhour(vph).TheDHVisthenmultipliedby
theDFactor,whichistheproportionoftheDHVoccurringinthepeakdirectionoftravel(also
knownasthedirectionalsplit).Theresultingvaluesarethedirectionaldesignhourlyvolumes
(DDHV),andarepresentedinTable36,foreachoftheroutesconsidered.TheDDHVisthen
multipliedby2hours(accesscontrolpoints-ACP-areassumedtobeactivatedat120minutes
aftertheadvisorytoevacuate)toestimatethetotalnumberofexternalvehiclesloadedonthe
analysisnetwork.Asindicated,thereare14,256vehiclesenteringtheEPZasexternalexternal
tripspriortotheactivationoftheACPandthediversionofthistraffic.Thisnumberisreduced
by60%foreveningscenarios(Scenarios5and12)asdiscussedinSection6.
Table36.SPSEPZExternalTraffic
Up
Node
Dn
Node
Road
Name
Direction HPMS1
AADT
K Factor2
D Factor2
Hourly
Volume
External Traffic
8145
144
I64
West
78,326
0.091
0.5
3,564
7,128
8029
1198
I64
East
78,326
0.091
0.5
3,564
7,128
TOTAL:
14,256
1HighwayPerformanceMonitoringSystem(HPMS),FederalHighwayAdministration(FHWA),Washington,D.C.,2012
2HCM2010
SurryPowerStation
321
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
3.7 SpecialEvent
One special event (Scenario 13) is considered for the ETE study - the Newport News Fall
FestivalofFolklife-whichisheldoneweekendeveryyear,inOctober.Informationaboutthis
event was provided by the City of Newport News as well as through researching official
websitesaffiliatedwiththeevent.Thereareanestimated70,000visitorsperyear-35,000per
day,75%ofwhomliveoutsideoftheEPZ.Itisassumedthattheaveragevehicleoccupancyis
equaltotheaveragehouseholdsize(2.47);10,467specialeventvehicletripsweregenerated
utilizingthetransientmobilizationdistribution.
Thereisapublicashuttlebusserviceavailableforthiseventthatgoestosatelliteparkinglots
but should there be an evacuation, the parking fields could easily be walked to within the
mobilizationtimeallowedfortransients.
3.8 SummaryofDemand
A summary of population and vehicle demand is provided in Table 37 and Table 38,
respectively.Thissummaryincludesallpopulationgroupsdescribedinthissection.Additional
populationgroups-transitdependent,specialfacilityandschoolpopulation-aredescribedin
greaterdetailinSection8.Atotalof300,069peopleand147,768vehiclesareconsideredin
thisstudy.
SurryPowerStation
322
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table37.SummaryofPopulationDemand
PAZ
Residents
Transit
Dependent Transients
Employees
Special Facilities Schools
Shadow
Population Total
Commuter
Students
Other
Visitors
1
244
6
0
0
60
0
0
0
310
2
884
20
0
0
0
0
0
0
904
3
514
12
0
0
0
0
0
0
526
4
236
5
0
0
0
0
0
0
241
5
618
14
0
84
38
0
0
0
754
6
177
4
0
0
0
0
0
0
181
7
262
6
0
0
0
0
0
0
268
8
0
0
0
0
470
0
0
0
470
9
603
14
0
0
0
0
0
0
617
10
200
5
0
0
0
0
0
0
205
11
82
2
0
0
0
0
0
0
84
12
95
2
0
0
0
0
0
0
97
13
1,167
27
0
0
0
0
0
0
1,194
14
5,914
135
0
175
1,313
0
575
0
8,112
15
25,003
570
0
14
1,281
0
3,772
0
30,640
16
45,649
1,039
0
2,002
1,847
105
9,952
0
60,594
17
1,974
45
0
0
259
0
621
0
2,899
18A
1,374
31
0
1,272
75
0
0
0
2,752
18B
4,153
95
0
22,915
1,605
80
0
0
28,848
18C
3,960
90
0
0
103
649
15
0
4,817
18D
71
2
0
0
508
0
493
0
1,074
19A
6,214
142
0
6,977
792
0
896
0
15,021
19B
1,033
24
0
0
1,550
0
0
0
2,607
SurryPowerStation
323
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
PAZ
Residents
Transit
Dependent Transients
Employees
Special Facilities Schools
Shadow
Population Total
Commuter
Students
Other
Visitors
20A
877
20
0
6,394
290
0
1,421
0
9,002
20B
2,521
57
0
83
0
0
68
0
2,729
21
13,384
305
2,440
16,722
4,966
287
7,621
0
45,725
22A
1,305
30
0
400
0
0
0
0
1,735
22B
3,460
79
0
84
90
9
461
0
4,183
23
19,627
447
0
3,174
2,566
315
978
0
27,107
24
11,076
252
0
6,606
280
143
2,113
0
20,470
Shadow
0
0
0
0
0
0
0
25,903
25,903
Total
152,677
3,480
2,440
66,902
18,093
1,588
28,986
25,903
300,069
NOTE:ShadowPopulationhasbeenreducedto20%.RefertoFigure21foradditionalinformation.
NOTE:SpecialFacilitiesincludebothmedicalfacilitiesandcorrectionalfacilities.
SurryPowerStation
324
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table38.SummaryofVehicleDemand
PAZ
Residents
Transit
Dependent Transients
Employees Special
Facilities
Schools
Shadow Vehicles
External Traffic
Total
Commuter
Students
Other
Visitors
1
115
18
0
0
56
0
0
0
0
189
2
424
0
0
0
0
0
0
0
424
3
244
0
0
0
0
0
0
0
244
4
113
0
0
0
0
0
0
0
113
5
297
0
34
35
0
0
0
0
366
6
85
0
0
0
0
0
0
0
85
7
126
0
0
0
0
0
0
0
126
8
0
0
0
435
0
0
0
0
435
9
287
0
0
0
0
0
0
0
287
10
94
0
0
0
0
0
0
0
94
11
37
0
0
0
0
0
0
0
37
12
44
0
0
0
0
0
0
0
44
13
558
0
0
0
0
0
0
0
558
14
2,745
8
0
112
1,216
0
18
0
0
4,099
15
12,048
38
0
14
1,186
0
134
0
0
13,420
16
21,985
70
0
834
1,708
14
356
0
0
24,967
17
950
2
0
0
240
0
30
0
0
1,222
18A
661
2
0
577
69
0
0
0
0
1,309
18B
2,000
6
0
9,150
1,486
9
0
0
0
12,651
18C
1,907
6
0
0
95
6
0
0
0
2,014
18D
34
2
0
0
471
0
16
0
0
523
19A
2,993
10
0
2,148
733
0
20
0
0
5,904
19B
494
2
0
0
1,435
0
0
0
0
1,931
SurryPowerStation
325
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
PAZ
Residents
Transit
Dependent Transients
Employees Special
Facilities
Schools
Shadow Vehicles
External Traffic
Total
Commuter
Students
Other
Visitors
20A
421
2
0
3,051
268
0
38
0
0
3,780
20B
1,213
4
0
35
0
0
24
0
0
1,276
21
7,034
20
2259
7,378
4,595
42
116
0
0
21,444
22A
627
2
0
125
0
0
0
0
0
754
22B
1,663
6
0
39
84
5
14
0
0
1,811
23
9,450
30
0
1,526
2,378
40
30
0
0
13,454
24
5,334
16
0
1,762
259
36
78
0
0
7,485
Shadow
0
0
0
0
0
0
0
12,466
14,256
26,722
Total
73,983
244
2,259
26,785
16,749
152
874
12,466
14,256
147,768
NOTE:Busesrepresentedastwopassengervehicles.RefertoSection8foradditionalinformation.
NOTE:Correctionalfacilitysheltersinplace(nobusesrequired).
NOTE:PAZs113contain9transitdependentbusroutesmanyofwhichcrossoverPAZboundaries.Aminimumof1busisassignedtoeachrouteandtheyare
displayedinaggregate.The9buses(18vehicles)servicingPAZs113arecountedinthefirstrowofthetotalscolumn.
SurryPowerStation
41
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
4 ESTIMATIONOFHIGHWAYCAPACITY
Theabilityoftheroadnetworktoservicevehicledemandisamajorfactorindetermininghow
rapidlyanevacuationcanbecompleted.Thecapacityofaroadisdefinedasthemaximum
hourly rate at which persons or vehicles can reasonably be expected to traverse a point or
uniform section of a lane of roadway during a given time period under prevailing roadway,
trafficandcontrolconditions,asstatedinthe2010HighwayCapacityManual(HCM2010).
In discussing capacity, different operating conditions have been assigned alphabetical
designations, A through F, to reflect the range of traffic operational characteristics. These
designations have been termed "Levels of Service" (LOS). For example, LOS A connotes
freeflowandhighspeedoperatingconditions;LOSFrepresentsaforcedflowcondition.LOSE
describestrafficoperatingatornearcapacity.
Anotherconcept,closelyassociatedwithcapacity,isServiceVolume(SV).Servicevolumeis
definedasThemaximumhourlyrateatwhichvehicles,bicyclesorpersonsreasonablycanbe
expectedtotraverseapointoruniformsectionofaroadwayduringanhourunderspecific
assumedconditionswhilemaintainingadesignatedlevelofservice.Thisdefinitionissimilarto
thatforcapacity.ThemajordistinctionisthatvaluesofSVvaryfromoneLOStoanother,while
capacityistheservicevolumeattheupperboundofLOSE,only.
ThisdistinctionisillustratedinExhibit1117oftheHCM2010.Asindicatedthere,theSVvaries
withFreeFlowSpeed(FFS),andLOS.TheSViscalculatedbytheDYNEVIIsimulationmodel,
basedonthespecifiedlinkattributes,FFS,capacity,controldeviceandtrafficdemand.
Otherfactorsalsoinfluencecapacity.Theseinclude,butarenotlimitedto:
x Lanewidth
x Shoulderwidth
x Pavementcondition
x Horizontalandverticalalignment(curvatureandgrade)
x Percenttrucktraffic
x Controldevice(andtiming,ifitisasignal)
x Weatherconditions(rain,snow,fog,windspeed,ice)
Thesefactorsareconsideredduringtheroadsurveyandinthecapacityestimationprocess;
somefactorshavegreaterinfluenceoncapacitythanothers.Forexample,laneandshoulder
widthhaveonlyalimitedinfluenceonBaseFreeFlowSpeed(BFFS1)accordingtoExhibit157
oftheHCM.Consequently,laneandshoulderwidthsatthenarrowestpointswereobserved
duringtheroadsurveyandtheseobservationswererecorded,butnodetailedmeasurements
oflaneorshoulderwidthweretaken.HorizontalandverticalalignmentcaninfluencebothFFS
andcapacity.TheestimatedFFSweremeasuredusingthesurveyvehiclesspeedometerand
observinglocaltraffic,underfreeflowconditions.Capacityisestimatedfromtheproceduresof
1AveryroughestimateofBFFSmightbetakenasthepostedspeedlimitplus10mph(HCM2010Page1515)
SurryPowerStation
42
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
the2010HCM.Forexample,HCMExhibit71(b)showsthesensitivityofServiceVolumeatthe
upperboundofLOSDtograde(capacityistheServiceVolumeattheupperboundofLOSE).
AsdiscussedinSection2.3,itisnecessarytoadjustcapacityfigurestorepresenttheprevailing
conditionsduringinclementweather.Basedonlimitedempiricaldata,weatherconditionssuch
as rain reduce the values of free speed and of highway capacity by approximately 10
percent.Over the lastdecade new studies have been made on theeffects of rain on traffic
capacity. These studiesindicatea range of effects between 5 and 20 percent depending on
windspeedandprecipitationrates.AsindicatedinSection2.3,weemployareductioninfree
speedandinhighwaycapacityof10percentand20percentforrainandsnow,respectively.
Since congestion arising from evacuation may be significant, estimates of roadway capacity
mustbedeterminedwithgreatcare.Becauseofitsimportance,abriefdiscussionofthemajor
factorsthatinfluencehighwaycapacityispresentedinthissection.
Rural highways generally consist of: (1) one or more uniform sections with limited access
(driveways, parking areas) characterized by uninterrupted flow; and (2) approaches to at grade intersections where flow can be interrupted by a control device or by turning or
crossing traffic at the intersection. Due to these differences, separate estimates of capacity
must be made for each section. Often, the approach to the intersection is widened by the
additionofoneormorelanes(turnpocketsorturnbays),tocompensateforthelowercapacity
oftheapproachduetothefactorstherethatcaninterrupttheflowoftraffic.Theseadditional
lanesarerecordedduringthefieldsurveyandlaterenteredasinputtotheDYNEVIIsystem.
4.1 CapacityEstimationsonApproachestoIntersections
Atgradeintersectionsareapttobecomethefirstbottlenecklocationsunderlocalheavytraffic
volumeconditions.Thischaracteristicreflectstheneedtoallocateaccesstimetotherespective
competing traffic streams by exerting some form of control. During evacuation, control at
critical intersections will often be provided by traffic control personnel assigned for that
purpose, whose directions may supersede traffic control devices. The existing traffic
managementplansdocumentedinthecity/countyemergencyplansareextensiveandwere
adoptedwithoutchange.
The perlane capacity of an approach to a signalized intersection can be expressed
(simplistically)inthefollowingform:
where:
Qcap,m
=
Capacity of a single lane of traffic on an approach, which executes
SurryPowerStation
43
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
movement,m,uponenteringtheintersection;vehiclesperhour(vph)
hm
=
Meanqueuedischargeheadwayofvehiclesonthislanethatareexecuting
movement,m;secondspervehicle
G
=
Mean duration of GREEN time servicing vehicles that are executing
movement,m,foreachsignalcycle;seconds
L
=
Mean"losttime"foreachsignalphaseservicingmovement,m;seconds
C
=
Durationofeachsignalcycle;seconds
Pm
=
ProportionofGREENtimeallocatedforvehiclesexecutingmovement,m,
fromthislane.Thisvalueisspecifiedaspartofthecontroltreatment.
m
=
The
movement
executed
by
vehicles
after
they
enter
the
intersection:through,leftturn,rightturn,anddiagonal.
The turnmovementspecific mean discharge headway hm, depends in a complex way upon
manyfactors:roadwaygeometrics,turnpercentages,theextentofconflictingtrafficstreams,
thecontroltreatment,andothers.Aprimaryfactoristhevalueof"saturationqueuedischarge
headway",hsat,whichappliestothroughvehiclesthatarenotimpededbyotherconflicting
traffic streams.This value, itself, depends upon many factors including motorist behavior.
Formally,wecanwrite,
where:
hsat
=
Saturationdischargeheadwayforthroughvehicles;secondspervehicle
F1,F2
=
Thevariousknownfactorsinfluencinghm
fm()
=
Complexfunctionrelatinghmtotheknown(orestimated)valuesofhsat,
F1,F2,
Theestimationofhmforspecifiedvaluesofhsat,F1,F2,...isundertakenwithintheDYNEVII
simulation model by a mathematical model2.The resulting values for hm always satisfy the
condition:
2Lieberman,E.,"DeterminingLateralDeploymentofTrafficonanApproachtoanIntersection",McShane,W.&
Lieberman, E., "Service Rates of Mixed Traffic on the far Left Lane of an Approach". Both papers appear in
TransportationResearchRecord772,1980.Lieberman,E.,Xin,W.,MacroscopicTrafficModelingForLargeScale
EvacuationPlanning,presentedattheTRB2012AnnualMeeting,January2226,2012
SurryPowerStation
44
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Thatis,theturnmovementspecificdischargeheadwaysarealwaysgreaterthan,orequalto
the saturation discharge headway for through vehicles. These headways (or its inverse
equivalent,saturationflowrate),maybedeterminedbyobservationorusingtheprocedures
oftheHCM2010.
TheabovediscussionisnecessarilybriefgiventhescopeofthisETEreportandthecomplexity
ofthesubjectofintersectioncapacity.Infact,Chapters18,19and20intheHCM2010address
thistopic.Thefactors,F1,F2,,influencingsaturationflowrateareidentifiedinequation(185)
oftheHCM2010.
ThetrafficsignalswithintheEPZandShadowRegionaremodeledusingrepresentativephasing
plansandphasedurationsobtainedaspartofthefielddatacollection.Trafficresponsivesignal
installations allow the proportion of green time allocated (Pm) for each approach to each
intersection to be determined by the expected traffic volumes on each approach during
evacuationcircumstances.Theamountofgreentime(G)allocatedissubjecttomaximumand
minimumphasedurationconstraints;2secondsofyellowtimeareindicatedforeachsignal
phaseand1secondofallredtimeisassignedbetweensignalphases,typically.Ifasignalispre timed,theyellowandallredtimesobservedduringtheroadsurveyareused.Alosttime(L)of
2.0secondsisusedforeachsignalphaseintheanalysis.
4.2 CapacityEstimationalongSectionsofHighway
Thecapacityofhighwaysectionsasdistinctfromapproachestointersectionsisafunction
ofroadwaygeometrics,trafficcomposition(e.g.percentheavytrucksandbusesinthetraffic
stream)and,ofcourse,motoristbehavior.Thereisafundamentalrelationshipwhichrelates
servicevolume(i.e.thenumberofvehiclesservicedwithinauniformhighwaysectioninagiven
timeperiod)totrafficdensity.ThetopcurveinFigure41illustratesthisrelationship.
Asindicated,therearetwoflowregimes:(1)FreeFlow(leftsideofcurve);and(2)ForcedFlow
(rightside).IntheFreeFlowregime,thetrafficdemandisfullyserviced;theservicevolume
increasesasdemandvolumeanddensityincrease,untiltheservicevolumeattainsitsmaximum
value,whichisthecapacityofthehighwaysection.Astrafficdemandandtheresultinghighway
densityincreasebeyondthis"critical"value,therateatwhichtrafficcanbeserviced(i.e.the
servicevolume)canactuallydeclinebelowcapacity(capacitydrop).Therefore,inorderto
realistically represent traffic performance during congested conditions (i.e. when demand
exceeds capacity), it is necessary to estimate the service volume, VF, under congested
conditions.
ThevalueofVFcanbeexpressedas:
where:
R
=
Reductionfactorwhichislessthanunity
SurryPowerStation
45
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
WehaveemployedavalueofR=0.90.Theadvisabilityofsuchacapacityreductionfactoris
baseduponempiricalstudiesthatidentifiedafalloffintheserviceflowratewhencongestion
occursatbottlenecksorchokepointsonafreewaysystem.ZhangandLevinson3describea
research program that collected data from a computerbased surveillance system (loop
detectors)installedontheInterstateHighwaySystem,at27activebottlenecksinthetwincities
metro area in Minnesota over a 7week period. When flow breakdown occurs, queues are
formed which discharge at lower flow rates than the maximum capacity prior to observed
breakdown.Thesequeuedischargeflow(QDF)ratesvaryfromonelocationtothenextand
alsovarybydayofweekandtimeofdaybaseduponlocalcircumstances.Thecitedreference
presentsameanQDFof2,016passengercarsperhourperlane(pcphpl).Thisfigurecompares
with the nominal capacity estimate of 2,250 pcphpl estimated for the ETE and indicated in
AppendixKforfreewaylinks.Theratioofthesetwonumbersis0.896whichtranslatesintoa
capacityreductionfactorof0.90.
Sincetheprincipalobjectiveofevacuationtimeestimateanalysesistodeveloparealistic
estimateofevacuationtimes,useoftherepresentativevalueforthiscapacityreductionfactor
(R=0.90)isjustified.Thisfactorisappliedonlywhenflowbreaksdown,asdeterminedbythe
simulationmodel.
Ruralroads,likefreeways,areclassifiedasuninterruptedflowfacilities.(Thisisincontrast
withurbanstreetsystemswhichhavecloselyspacedsignalizedintersectionsandareclassified
asinterruptedflowfacilities.)Assuch,trafficflowalongruralroadsissubjecttothesame
effects as freeways in the event traffic demand exceeds the nominal capacity, resulting in
queuingandlowerQDFrates.Asapracticalmatter,ruralroadsrarelybreakdownatlocations
away from intersections. Any breakdowns on rural roads are generally experienced at
intersectionswhereothermodellogicapplies,oratlanedropswhichreducecapacitythere.
Therefore,theapplicationofafactorof0.90isappropriateonruralroads,butrarely,ifever,
activated.
Theestimatedvalueofcapacityisbasedprimarilyuponthetypeoffacilityandonroadway
geometrics.Sectionsofroadwaywithadversegeometricsarecharacterizedbylowerfreeflow
speeds and lane capacity. Exhibit 1530 in the Highway Capacity Manual was referenced to
estimatesaturationflowrates.Theimpactofnarrowlanesandshouldersonfreeflowspeed
andoncapacityisnotmaterial,particularlywhenflowispredominantlyinonedirectionasis
thecaseduringanevacuation.
Theprocedureusedherewastoestimate"section"capacity,VE,basedonobservationsmade
travelingovereachsectionoftheevacuationnetwork,basedonthepostedspeedlimitsand
travelbehaviorofothermotoristsandbyreferencetothe2010HCM.TheDYNEVIIsimulation
model determines for each highway section, represented as a network link, whether its
capacity would be limited by the "sectionspecific" service volume, VE, or by the
intersectionspecificcapacity.Foreachlink,themodelselectsthelowervalueofcapacity.
3Lei Zhang and David Levinson, Some Properties of Flows at Freeway Bottlenecks, Transportation Research
Record1883,2004.
SurryPowerStation
46
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
4.3 ApplicationtotheSPSStudyArea
Aspartofthedevelopmentofthelinknodeanalysisnetworkforthestudyarea,anestimateof
roadwaycapacityisrequired.Thesourcematerialforthecapacityestimatespresentedherein
iscontainedin:
2010HighwayCapacityManual(HCM)
TransportationResearchBoard
NationalResearchCouncil
Washington,D.C.
Thehighwaysysteminthestudyareaconsistsprimarilyofthreecategoriesofroadsand,of
course,intersections:
x TwoLaneroads:Local,State
x MultiLaneHighways(atgrade)
x Freeways
Eachoftheseclassificationswillbediscussed.
4.3.1 TwoLaneRoads
Ref:HCMChapter15
TwolaneroadscomprisethemajorityofhighwayswithintheEPZ.Theperlanecapacityofa
twolane highway is estimated at 1700 passenger cars per hour (pc/h). This estimate is
essentially independent of the directional distribution of traffic volume except that, for
extendeddistances,thetwowaycapacitywillnotexceed3200pc/h.TheHCMproceduresthen
estimate Level of Service (LOS) and Average Travel Speed. The DYNEV II simulation model
accepts the specified value of capacity as input and computes average speed based on the
timevaryingdemand:capacityrelations.
Based on the field survey and on expected traffic operations associated with evacuation
scenarios:
x MostsectionsoftwolaneroadswithintheEPZareclassifiedasClassI,with"level
terrain";somearerollingterrain.
x ClassIIhighwaysaremostlythosewithinurbanandsuburbancenters.
4.3.2 MultiLaneHighway
Ref:HCMChapter14
Exhibit142oftheHCM2010presentsasetofcurvesthatindicateaperlanecapacityranging
fromapproximately1900to2200pc/h,forfreespeedsof45to60mph,respectively.Basedon
observation,themultilanehighwaysoutsideofurbanareaswithintheEPZservicetrafficwith
freespeedsinthisrange.Theactualtimevaryingspeedscomputedbythesimulationmodel
reflect the demand: capacity relationship and the impact of control at intersections. A
SurryPowerStation
47
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
conservativeestimateofperlanecapacityof1900pc/hisadoptedforthisstudyformultilane
highwaysoutsideofurbanareas,asshowninAppendixK.
4.3.3 Freeways
Ref:HCMChapters10,11,12,13
Chapter 10 of the HCM 2010 describes a procedure for integrating the results obtained in
Chapters11,12and13,whichcomputecapacityandLOSforfreewaycomponents.Chapter10
alsopresentsadiscussionofsimulationmodels.TheDYNEVIIsimulationmodelautomatically
performsthisintegrationprocess.
Chapter11oftheHCM2010presentsproceduresforestimatingcapacityandLOSforBasic
FreewaySegments".Exhibit1117oftheHCM2010presentscapacityvs.freespeedestimates,
whichareprovidedbelow.
FreeSpeed(mph):
55
60
65
70+
PerLaneCapacity(pc/h):
2250
2300
2350
2400
Theinputstothesimulationmodelarehighwaygeometrics,freespeedsandcapacitybasedon
fieldobservations.Thesimulationlogiccalculatesactualtimevaryingspeedsbasedondemand:
capacityrelationships.Aconservativeestimateofperlanecapacityof2250pc/hisadoptedfor
thisstudyforfreeways,asshowninAppendixK.
Chapter12oftheHCM2010presentsproceduresforestimatingcapacity,speed,densityand
LOSforfreewayweavingsections.Thesimulationmodelcontainslogicthatrelatesspeedto
demand volume: capacity ratio. The value of capacity obtained from the computational
procedures detailed in Chapter 12 depends on the "Type" and geometrics of the weaving
segmentandonthe"VolumeRatio"(ratioofweavingvolumetototalvolume).
Chapter13oftheHCM2010presentsproceduresforestimatingcapacitiesoframpsandof
"merge"areas.Therearethreesignificantfactorstothedeterminationofcapacityofaramp freeway junction: The capacity of the freeway immediately downstream of an onramp or
immediatelyupstreamofanofframp;thecapacityoftheramproadway;andthemaximum
flow rate entering the ramp influence area. In most cases, the freeway capacity is the
controllingfactor.ValuesofthismergeareacapacityarepresentedinExhibit138oftheHCM
2010, and depend on the number of freeway lanes and on the freeway free speed. Ramp
capacityispresentedinExhibit1310andisafunctionoftherampfreeflowspeed.TheDYNEV
IIsimulationmodellogicsimulatesthemergingoperationsoftherampandfreewaytrafficin
accord with the procedures in Chapter 13 of the HCM 2010. If congestion results from an
excessofdemandrelativetocapacity,thenthemodelallocatesserviceappropriatelytothe
twoenteringtrafficstreamsandproducesLOSFconditions(TheHCMdoesnotaddressLOSF
explicitly).
SurryPowerStation
48
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
4.3.4 Intersections
Ref:HCMChapters18,19,20,21
ProceduresforestimatingcapacityandLOSforapproachestointersectionsarepresentedin
Chapter18(signalizedintersections),Chapters19,20(unsignalizedintersections)andChapter
21(roundabouts).Thecomplexityofthesecomputationsisindicatedbytheaggregatelength
ofthesechapters.TheDYNEVIIsimulationlogicislikewisecomplex.
Thesimulationmodelexplicitlymodelsintersections:Stop/yieldcontrolledintersections(both
2way and allway) and traffic signal controlled intersections. Where intersections are
controlled by fixed time controllers, traffic signal timings are set to reflect average (non evacuation) traffic conditions. Actuated traffic signal settings respond to the timevarying
demandsofevacuationtraffictoadjusttherelativecapacitiesofthecompetingintersection
approaches.
The model is also capable of modeling the presence of manned traffic control. At specific
locationswhereitisadvisableorwhereexistingplanscallforoverridingexistingtrafficcontrol
to implement manned control, the model will use actuated signal timings that reflect the
presenceoftrafficguides.Atlocationswhereaspecialtrafficcontrolstrategy(continuousleft turns, contraflow lanes) is used, the strategy is modeled explicitly. Where applicable, the
locationandtypeoftrafficcontrolfornodesintheevacuationnetworkarenotedinAppendix
K. The characteristics of the ten highest volume signalized intersections are detailed in
AppendixJ.
4.4 SimulationandCapacityEstimation
Chapter6oftheHCMisentitled,HCMandAlternativeAnalysisTools.Thechapterdiscusses
the use of alternative tools such as simulation modeling to evaluate the operational
performanceofhighwaynetworks.AmongthereasonscitedinChapter6toconsiderusing
simulationasanalternativeanalysistoolis:
The system under study involves a group of different facilities or travel modes with
mutualinteractionsinvokingseveralproceduralchaptersoftheHCM.Alternativetools
areabletoanalyzethesefacilitiesasasinglesystem.
Thisstatementsuccinctlydescribestheanalysesrequiredtodeterminetrafficoperationsacross
anareaencompassinganEPZoperatingunderevacuationconditions.Themodelutilizedfor
this study, DYNEV II, is further described in Appendix C. It is essential to recognize that
simulationmodelsdonotreplicatethemethodologyandproceduresoftheHCM-theyreplace
these procedures by describing the complex interactions of traffic flow and computing
MeasuresofEffectiveness(MOE)detailingtheoperationalperformanceoftrafficovertimeand
bylocation.TheDYNEVIIsimulationmodelincludessomeHCM2010proceduresonlyforthe
purposeofestimatingcapacity.
All simulation models must be calibrated properly with field observations that quantify the
performance parameters applicable to the analysis network. Two of the most important of
SurryPowerStation
49
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
these are: (1) Free flow speed (FFS); and (2) saturation headway, hsat. The first of these is
estimated by direct observation during the road survey; the second is estimated using the
conceptsoftheHCM2010,asdescribedearlier.TheseparametersarelistedinAppendixK,for
eachnetworklink.
Figure41.FundamentalDiagrams
SurryPowerStation
51
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
5 ESTIMATIONOFTRIPGENERATIONTIME
Federal Government guidelines (see NUREG CR7002) specify that the planner estimate the
distributionsofelapsedtimesassociatedwithmobilizationactivitiesundertakenbythepublic
to prepare for the evacuation trip.The elapsed time associated with each activity is
representedasastatisticaldistributionreflectingdifferencesbetweenmembersofthepublic.
The quantification of these activitybased distributions relies largely on the results of the
telephone survey. We define the sum of these distributions of elapsed times as the Trip
GenerationTimeDistribution.
5.1 Background
Ingeneral,anaccidentatanuclearpowerplantischaracterizedbythefollowingEmergency
ClassificationLevels(seeAppendix1ofNUREG0654fordetails):
- 1. UnusualEvent
- 2. Alert
- 3. SiteAreaEmergency
- 4. GeneralEmergency
Ateachlevel,theFederalguidelinesspecifyasetofActionstobeundertakenbytheLicensee,
and by State and Local offsite authorities. As a Planning Basis, we will adopt a conservative
posture,inaccordancewithSection1.2ofNUREG/CR7002,thatarapidlyescalatingaccidentwill
beconsideredincalculatingtheTripGenerationTime.Wewillassume:
- 1. TheAdvisorytoEvacuatewillbeannouncedcoincidentwiththesirennotification.
- 2. Mobilizationofthegeneralpopulationwillcommencewithin15minutesafterthesiren
notification.
- 3. ETEaremeasuredrelativetotheAdvisorytoEvacuate.
Weemphasizethattheadoptionofthisplanningbasisisnotarepresentationthattheseevents
willoccurwithintheindicatedtimeframe.Rather,theseassumptionsarenecessaryinorder
to:
- 1. EstablishatemporalframeworkforestimatingtheTripGenerationdistributioninthe
formatrecommendedinSection2.13ofNUREG/CR6863.
- 2. Identifytemporalpointsofreferencethatuniquelydefine"ClearTime"andETE.
Itislikelythatalongertimewillelapsebetweenthevariousclassesofanemergency.
Forexample,supposeonehourelapsesfromthesirenalerttotheAdvisorytoEvacuate.Inthis
case,itisreasonabletoexpectsomedegreeofspontaneousevacuationbythepublicduring
this onehour period. As a result, the population within the EPZ will be lower when the
AdvisorytoEvacuateisannounced,thanatthetimeofthesirenalert.Inaddition,manywill
engageinpreparationactivitiestoevacuate,inanticipationthatanAdvisorywillbebroadcast.
Thus, the time needed to complete the mobilization activities and the number of people
remainingtoevacuatetheEPZaftertheAdvisorytoEvacuate,willbothbesomewhatlessthan
SurryPowerStation
52
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
the estimates presented in this report. Consequently, the ETE presented in this report are
higherthantheactualevacuationtime,ifthishypotheticalsituationweretotakeplace.
Thenotificationprocessconsistsoftwoevents:
- 1. TransmittinginformationusingthealertnotificationsystemsavailablewithintheEPZ
(e.g.sirens,tonealerts,EASbroadcasts,loudspeakers).
- 2. Receivingandcorrectlyinterpretingtheinformationthatistransmitted.
ThepopulationwithintheEPZisdispersedoveranareaofapproximately280squaremilesand
isengagedinawidevarietyofactivities.Itmustbeanticipatedthatsometimewillelapse
betweenthetransmissionandreceiptoftheinformationadvisingthepublicofanaccident.
Theamountofelapsedtimewillvaryfromoneindividualtothenextdependingonwherethat
personis,whatthatpersonisdoing,andrelatedfactors.Furthermore,somepersonswhowill
be directly involved with the evacuation process may be outside the EPZ at the time the
emergencyisdeclared.Thesepeoplemaybecommuters,shoppersandothertravelerswho
residewithintheEPZandwhowillreturntojointheotherhouseholdmembersuponreceiving
notificationofanemergency.
AsindicatedinSection2.13ofNUREG/CR6863,theestimatedelapsedtimesforthereceiptof
notification can be expressed as a distribution reflecting the different notification times for
differentpeoplewithin,andoutside,theEPZ.Byusingtimedistributions,itisalsopossibleto
distinguish between different population groups and different dayofweek and timeofday
scenarios,sothataccurateETEmaybecomputed.
Forexample,peopleathomeoratworkwithintheEPZwillbenotifiedbysiren,and/ortone
alertand/orradio(ifavailable).ThosewelloutsidetheEPZwillbenotifiedbytelephone,radio,
TVandwordofmouth,withpotentiallylongertimelags.Furthermore,thespatialdistribution
oftheEPZpopulationwilldifferwithtimeofdayfamilieswillbeunitedintheevenings,but
dispersedduringtheday.Inthisrespect,weekendswilldifferfromweekdays.
As indicated in Section 4.1 of NUREG/CR7002, the information required to compute trip
generationtimesistypicallyobtainedfromatelephonesurveyofEPZresidents.Suchasurvey
was conducted in support of this ETE study. Appendix F presents the survey sampling plan,
survey instrument, and raw survey results. The remaining discussion will focus on the
applicationofthetripgenerationdataobtainedfromthetelephonesurveytothedevelopment
oftheETEdocumentedinthisreport.
SurryPowerStation
53
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
5.2 FundamentalConsiderations
Theenvironmentleadinguptothetimethatpeoplebegintheirevacuationtripsconsistsofa
sequenceofeventsandactivities.Eachevent(otherthanthefirst)occursataninstantintime
andistheoutcomeofanactivity.
Activitiesareundertakenoveraperiodoftime.Activitiesmaybein"series"(i.e.toundertake
anactivityimpliesthecompletionofallprecedingevents)ormaybeinparallel(twoormore
activities may take place over the same period of time). Activities conducted in series are
functionallydependentonthecompletionofprioractivities;activitiesconductedinparallelare
functionally independent of one another. The relevant events associated with the public's
preparationforevacuationare:
EventNumber
EventDescription
1
Notification
2
AwarenessofSituation
3
DepartWork
4
ArriveHome
5
DepartonEvacuationTrip
Associatedwitheachsequenceofeventsareoneormoreactivities,asoutlinedbelow:
Table51.EventSequenceforEvacuationActivities
EventSequence
Activity
Distribution
12
ReceiveNotification 1
23
PreparetoLeaveWork 2
2,34
TravelHome 3
2,45
PreparetoLeavetoEvacuate 4
N/A
SnowClearance 5
TheserelationshipsareshowngraphicallyinFigure51.
x AnEventisastatethatexistsatapointintime(e.g.,departwork,arrivehome)
x AnActivityisaprocessthattakesplaceoversomeelapsedtime(e.g.,preparetoleave
work,travelhome)
Assuch,acompletedActivitychangesthestateofanindividual(e.g.theactivity,travelhome
changesthestatefromdepartworktoarrivehome).Therefore,anActivitycanbedescribedas
anEventSequence;theelapsedtimestoperformaneventsequencevaryfromonepersontothe
nextandaredescribedasstatisticaldistributionsonthefollowingpages.
An employee who lives outside the EPZ will follow sequence (c) of Figure 51. A household
SurryPowerStation
54
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
withintheEPZthathasoneormorecommutersatwork,andwillawaittheirreturnbefore
beginningtheevacuationtripwillfollowthefirstsequenceofFigure51(a).Ahouseholdwithin
theEPZthathasnocommutersatwork,orthatwillnotawaitthereturnofanycommuters,will
followthesecondsequenceofFigure51(a),regardlessofdayofweekortimeofday.
Households with no commuters on weekends or in the evening/nighttime, will follow the
applicable sequence in Figure 51(b). Transients will always follow one of the sequences of
Figure51(b).Sometransientsawayfromtheirresidencecouldelecttoevacuateimmediately
withoutreturningtotheresidence,asindicatedinthesecondsequence.
ItisseenfromFigure51,thattheTripGenerationtime(i.e.thetotalelapsedtimefromEvent1
to Event 5) depends on the scenario and will vary from one household to the next.
Furthermore,Event5depends,inacomplicatedway,onthetimedistributionsofallactivities
preceding that event. That is, to estimate the time distribution of Event 5, we must obtain
estimates of the time distributions of all preceding events. For this study, we adopt the
conservativeposturethatallactivitieswilloccurinsequence.
In some cases, assuming certain events occur strictly sequential (for instance, commuter
returning home before beginning preparation to leave, or removing snow only after the
preparationtoleave)canresultinratherconservative(thatis,longer)estimatesofmobilization
times.Itisreasonabletoexpectthatatleastsomepartsoftheseeventswilloverlapformany
households,butthatassumptionisnotmadeinthisstudy.
SurryPowerStation
55
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure51.EventsandActivitiesPrecedingtheEvacuationTrip
Households wait for Commuters1 Residents 1
2
3 4
5 EVENTS
- 1. Notification
- 2. Aware of situation
- 3. Depart work
- 4. Arrive home
- 5. Depart on evacuation trip (a) Accident occurs during midweek, at midday; year round Households without Commuters and households who do not wait for Commuters Residents 1
2
5 Residents, Transients at Residence 1
2
5 (b) Accident occurs during weekend or during the evening2 (c) Employees who live outside the EPZ Residents, Transients away from Residence 1
2
4 5
1
2
3,5 Return to residence, then evacuate Residents at home; transients evacuate directly 1 Applies for evening and weekends also if commuters are at work.
2 Applies throughout the year for transients.
ACTIVITIES 1 2 Receive Notification 2 3 Prepare to Leave Work 2, 3 4 Travel Home 2, 4 5 Prepare to Leave to Evacuate Activities Consume Time
SurryPowerStation
56
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
5.3 EstimatedTimeDistributionsofActivitiesPrecedingEvent5
Thetimedistributionofaneventisobtainedby"summing"thetimedistributionsofallprior
contributingactivities.(This"summing"processisquitedifferentthananalgebraicsumsinceit
isperformedondistributions-notscalarnumbers).
TimeDistributionNo.1,NotificationProcess:Activity1o2
In accordance with the 2012 Federal Emergency Management Agency (FEMA) Radiological
EmergencyPreparednessProgramManual,100%ofthepopulationisnotifiedwithin45minutes.
Itisassumed(basedonthepresenceofsirenswithintheEPZ)that87percentofthosewithinthe
EPZ will be aware of the accident within 30 minutes with the remainder notified within the
following15minutes.Thenotificationdistributionisgivenbelow:
Table52.TimeDistributionforNotifyingthePublic
ElapsedTime
(Minutes)
Percentof
PopulationNotified
0 0%
5 7%
10 13%
15 27%
20 47%
25 66%
30 87%
35 92%
40 97%
45 100%
SurryPowerStation
57
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
DistributionNo.2,PreparetoLeaveWork:Activity2o3
ItisreasonabletoexpectthatthevastmajorityofbusinessenterpriseswithintheEPZwillelect
to
shut
down
following
notification
and
most
employees
would
leave
work
quickly.Commuters,whoworkoutsidetheEPZcould,inallprobability,alsoleavequicklysince
facilitiesoutsidetheEPZwouldremainopenandotherpersonnelwouldremain.Personnelor
farmers responsible for equipment/livestock would require additional time to secure their
facility.ThedistributionofActivity23showninTable53reflectsdataobtainedbythe
telephonesurvey.ThisdistributionisplottedinFigure52.
Table53.TimeDistributionforEmployeestoPreparetoLeaveWork
ElapsedTime
(Minutes)
Cumulative
Percent
Employees
LeavingWork
ElapsedTime
(Minutes)
Cumulative
Percent
Employees
LeavingWork
0
0%
45
92.4%
5
40.9%
50
92.4%
10
57.3%
55
92.7%
15
70.7%
60
99.2%
20
78.3%
75
100.0%
25
79.5%
30
89.4%
35
89.9%
40
90.7%
NOTE:Thesurveydatawasnormalizedtodistributethe"Don'tknow"response.Thatis,thesamplewasreducedin
sizetoincludeonlythosehouseholdswhorespondedtothisquestion.Theunderlyingassumptionisthatthe
distributionofthisactivityfortheDontknowresponders,iftheeventtakesplace,wouldbethesameasthose
responderswhoprovidedestimates.
SurryPowerStation
58
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
DistributionNo.3,TravelHome:Activity3o4
These data are provided directly by those households which responded to the telephone
survey.ThisdistributionisplottedinFigure52andlistedinTable54.
Table54.TimeDistributionforCommuterstoTravelHome
ElapsedTime
(Minutes)
Cumulative
Percent
ReturningHome
ElapsedTime
(Minutes)
Cumulative
Percent
ReturningHome
0
0.0%
40
87.7%
5
7.6%
45
91.8%
10
25.8%
50
93.5%
15
42.4%
55
93.7%
20
64.5%
60
98.3%
25
69.3%
75
99.6%
30
83.1%
90
100.0%
35
85.1%
105
NOTE:Thesurveydatawasnormalizedtodistributethe"Don'tknow"response
SurryPowerStation
59
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
DistributionNo.4,PreparetoLeaveHome: Activity2,4o5
These data are provided directly by those households which responded to the telephone
survey.ThisdistributionisplottedinFigure52andlistedinTable55.
Table55.TimeDistributionforPopulationtoPreparetoEvacuate
ElapsedTime
(Minutes)
Cumulative
PercentReadyto
Evacuate
0
0.0%
15
10.9%
30
43.8%
45
50.0%
60
71.9%
75
82.4%
90
83.7%
105
84.2%
120
89.5%
135
95.3%
150
96.0%
165
96.0%
180
98.0%
195
100.0%
NOTE:Thesurveydatawasnormalizedtodistributethe"Don'tknow"response
SurryPowerStation
510
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
DistributionNo.5,SnowClearanceTimeDistribution
Inclement weather scenarios involving snowfall must address the time lags associated with
snow clearance. It is assumed that snow equipment is mobilized and deployed during the
snowfalltomaintainpassableroads.Thegeneralconsensusisthatthesnowplowingefforts
are generally successful for all but the most extreme blizzards when the rate of snow
accumulationexceedsthatofsnowclearanceoveraperiodofmanyhours.
Consequently,itisreasonabletoassumethatthehighwaysystemwillremainpassable-albeit
atalowercapacity-underthevastmajorityofsnowconditions.Nevertheless,forthevehicles
togainaccesstothehighwaysystem,itmaybenecessaryfordrivewaysandemployeeparking
lots to be cleared to the extent needed to permit vehicles to gain access to the roadways.
Theseclearanceactivitiestaketime;thistimemustbeincorporatedintothetripgeneration
time distributions. These data are provided by those households which responded to the
telephonesurvey.ThisdistributionisplottedinFigure52andlistedinTable56.
Notethatthoserespondents(33.1%)whoansweredthattheywouldnottaketimetoclear
theirdrivewaywereassumedtobereadyimmediatelyatthestartofthisactivity.Essentially
they woulddrive through the snow on the driveway toaccess the roadway and begin their
evacuationtrip.
Table56.TimeDistributionforPopulationtoClear6"8"ofSnow
ElapsedTime
(Minutes)
Cumulative
Percent
Completing
SnowRemoval
ElapsedTime
(Minutes)
Cumulative
Percent
Completing
SnowRemoval
0
33.1%
105
92.5%
15
42.3%
120
94.9%
30
68.9%
135
97.3%
45
73.5%
150
97.3%
60
84.2%
165
97.3%
75
90.8%
180
100.0%
90
92.2%
NOTE:Thesurveydatawasnormalizedtodistributethe"Don'tknow"response
SurryPowerStation
511
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure52.EvacuationMobilizationActivities
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
0 30 60 90 120 150 180 210 240
%CompletingActivity ElapsedTimefromStartofMobilizationActivity(min)
MobilizationActivities Notification PreparetoLeaveWork TravelHome PrepareHome TimetoClearSnow
SurryPowerStation
512
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
5.4 CalculationofTripGenerationTimeDistribution
The time distributions for each of the mobilization activities presented herein must be
combinedtoformtheappropriateTripGenerationDistributions.Asdiscussedabove,thisstudy
assumesthatthestatedeventstakeplaceinsequencesuchthatallprecedingeventsmustbe
completedbeforethecurrenteventcanoccur.Forexample,ifahouseholdawaitsthereturn
ofacommuter,theworktohometrip(Activity3o4)mustprecedeActivity4o5.
Tocalculatethetimedistributionofaneventthatisdependentontwosequentialactivities,itis
necessary to sum the distributions associated with these prior activities. The distribution
summingalgorithmisappliedrepeatedlyasshowntoformtherequireddistribution.Asan
outcomeofthisprocedure,newtimedistributionsareformed;weassignletterdesignations
totheseintermediatedistributionstodescribetheprocedure.Table57presentsthesumming
proceduretoarriveateachdesignateddistribution.
Table57.MappingDistributionstoEvents
ApplySummingAlgorithmTo:
DistributionObtained
EventDefined
Distributions1and2
DistributionA
Event3
DistributionsAand3
DistributionB
Event4
DistributionsBand4
DistributionC
Event5
Distributions1and4
DistributionD
Event5
DistributionsCand5
DistributionE
Event5
DistributionsDand5
DistributionF
Event5
Table58presentsadescriptionofeachofthefinaltripgenerationdistributionsachievedafterthe
summingprocessiscompleted.
SurryPowerStation
513
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table58.DescriptionoftheDistributions
Distribution
Description
A
Timedistributionofcommutersdepartingplaceofwork(Event3).Alsoapplies
to employees who work within the EPZ who live outside, and to Transients
withintheEPZ.
B
Timedistributionofcommutersarrivinghome(Event4).
C
Timedistributionofresidentswithcommuterswhoreturnhome,leavinghome
tobegintheevacuationtrip(Event5).
D
Timedistributionofresidentswithoutcommutersreturninghome,leavinghome
tobegintheevacuationtrip(Event5).
E
Timedistributionofresidentswithcommuterswhoreturnhome,leavinghome
tobegintheevacuationtrip,aftersnowclearanceactivities(Event5).
F
Time distribution of residents with no commuters returning home, leaving to
begintheevacuationtrip,aftersnowclearanceactivities(Event5).
5.4.1 StatisticalOutliers
Asalreadymentioned,someportionofthesurveyrespondentsanswerdontknowtosome
questionsorchoosetonotrespondtoaquestion.Themobilizationactivitydistributionsarebased
upon actual responses. But, it is the nature of surveys that a few numeric responses are
inconsistentwiththeoverallpatternofresults.Anexamplewouldbeacaseinwhichfor500
responses,almostallofthemestimatelessthantwohoursforagivenanswer,but3sayfour
hoursand4saysixormorehours.
Theseoutliersmustbeconsidered:aretheyvalidresponses,orsoatypicalthattheyshouldbe
droppedfromthesample?
Inassessingoutliers,therearethreealternatestoconsider:
1) Some responses with very long times may be valid, but reflect the reality that the
respondentreallyneedstobeclassifiedinadifferentpopulationsubgroup,basedupon
specialneeds;
2)Otherresponsesmaybeunrealistic(6hourstoreturnhomefromcommutingdistance,
or2daystopreparethehomefordeparture);
3)Somehighvaluesarerepresentativeandplausible,andonemustnotcutthemaspart
oftheconsiderationofoutliers.
Theissueofcourseishowtomakethedecisionthatagivenresponseorsetofresponsesaretobe
consideredoutliersforthecomponentmobilizationactivities,usingamethodthatobjectively
quantifiestheprocess.
Thereisconsiderablestatisticalliteratureontheidentificationandtreatmentofoutlierssinglyor
ingroups,muchofwhichassumesthedataisnormallydistributedandsomeofwhichusesnon
SurryPowerStation
514
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
parametricmethodstoavoidthatassumption.Theliteraturecitesthatlimitedworkhasbeen
donedirectlyonoutliersinsamplesurveyresponses.
Inestablishingtheoverallmobilizationtime/tripgenerationdistributions,thefollowingprinciples
areused:
- 1) Itisrecognizedthattheoveralltripgenerationdistributionsareconservativeestimates,
becausetheyassumeahouseholdwilldothemobilizationactivitiessequentially,withno
overlapofactivities;
- 2) Theindividualmobilizationactivities(preparetoleavework,travelhome,preparehome,
clearsnow)arereviewedforoutliers,andthentheoveralltripgenerationdistributionsare
created(seeFigure51,Table57,Table58);
- 3) Outlierscanbeeliminatedeitherbecausetheresponsereflectsaspecialpopulation(e.g.
specialneeds,transitdependent)orlackofrealism,becausethepurposeistoestimatetrip
generationpatternsforpersonalvehicles;
- 4) Toeliminateoutliers,
a) themeanandstandarddeviationofthespecificactivityareestimatedfromthe
responses,
b) themedianofthesamedataisestimated,withitspositionrelativetothemean
noted,
c) thehistogramofthedataisinspected,and
d) allvaluesgreaterthan3.5standarddeviationsareflaggedforattention,taking
special note of whether there are gaps (categories with zero entries) in the
histogramdisplay.
Ingeneral,onlyflaggedvaluesmorethan4standarddeviationsfromthemeanareallowed
tobeconsideredoutliers,withgapsinthehistogramexpected.
Whenflaggedvaluesareclassifiedasoutliersanddropped,stepsatodarerepeated.
SurryPowerStation
515
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
- 5) Asapracticalmatter,evenwithoutlierseliminatedbytheabove,theresultanthistogram,
viewedasacumulativedistribution,isnotanormaldistribution.Atypicalsituationthat
resultsisshownbelowinFigure53.
- 6) Inparticular,thecumulativedistributiondiffersfromthenormaldistributionintwokey
aspects,bothveryimportantinloadinganetworktoestimateevacuationtimes:
3/4 Mostoftherealdataistotheleftofthenormalcurveabove,indicatingthatthe
networkloadsfasterforthefirst8085%ofthevehicles,potentiallycausingmore(and
earlier)congestionthanotherwisemodeled;
3/4 Thelast1015%oftherealdatatailsoffslowerthanthecomparablenormalcurve,
indicatingthatthereissignificanttrafficstillloadingatlatertimes.
Becausethesetwofeaturesareimportanttopreserve,itisthehistogramofthedatathat
isusedtodescribethemobilizationactivities,notanormalcurvefittothedata.One
could consider other distributions, but using the shape of the actual data curve is
unambiguousandpreservestheseimportantfeatures;
- 7) WiththemobilizationactivitieseachmodeledaccordingtoSteps16,includingpreserving
thefeaturescitedinStep6,theoverall(ortotal)mobilizationtimesareconstructed.
Thisisdoneby usingthedata sets anddistributionsunder differentscenarios(e.g. commuter
returning,nocommuterreturning,nosnoworsnowineach).Ingeneral,theseareadditive,using
0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%
100.0%
2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5 57.5 67.5 82.5 97.5 112.5 CumulativePercentage(%)
CenterofInterval(minutes)
CumulativeData CumulativeNormal Figure53.ComparisonofDataDistributionandNormalDistribution
SurryPowerStation
516
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
weighting based upon the probability distributions of each element; Figure 54 presents the
combined trip generation distributions designated A, C, D, E and F. These distributions are
presentedonthesametimescale.(Asdiscussedearlier,theuseofstrictlyadditiveactivitiesisa
conservative approach, because it makes all activities sequential - preparation for departure
followsthereturnofthecommuter;snowclearancefollowsthepreparationfordeparture,andso
forth.Inpractice,itisreasonablethatsomeoftheseactivitiesaredoneinparallel,atleastto
someextent-forinstance,preparationtodepartbeginsbyahouseholdmemberathomewhile
thecommuterisstillontheroad.)
Themobilizationdistributionsthatresultareusedintheirtabular/graphicalformasdirectinputs
tolatercomputationsthatleadtotheETE.
TheDYNEVIIsimulationmodelisdesignedtoacceptvaryingratesofvehicletripgenerationfor
each origin centroid, expressed in the form of histograms. These histograms, which represent
DistributionsA,C,D,EandF,properlydisplacedwithrespecttooneanother,aretabulatedin
Table59(DistributionB,ArriveHome,omittedforclarity).
Thefinaltimeperiod(15)is600minuteslong.Thistimeperiodisaddedtoallowtheanalysis
networktoclear,intheeventcongestionpersistsbeyondthetripgenerationperiod.Notethat
therearenotripsgeneratedduringthisfinaltimeperiod.
5.4.2 StagedEvacuationTripGeneration
AsdefinedinNUREG/CR7002,stagedevacuationconsistsofthefollowing:
- 1. PAZscomprisingthe2mileregionareadvisedtoevacuateimmediately
- 2. PAZscomprisingregionsextendingfrom2to5milesdownwindareadvisedtoshelter
inplacewhilethe2mileregioniscleared
- 3. Asvehiclesevacuatethe2mileregion,shelteredpeoplefrom2to5milesdownwind
continuepreparationforevacuation
- 4. Thepopulationshelteringinthe2to5mileregionareadvisedtobeginevacuatingwhen
approximately90%ofthoseoriginallywithinthe2mileregionevacuateacrossthe2
mileregionboundary
- 5. Noncompliancewiththeshelterrecommendationisthesameastheshadow
evacuationpercentageof20%
Assumptions
- 1. TheEPZpopulationinPAZsbeyond5mileswillreactasdoesthepopulationinthe2to5
mileregion;thatistheywillfirstshelter,thenevacuateafterthe90thpercentileETEfor
the2mileregion
- 2. ThepopulationintheshadowregionbeyondtheEPZboundary,extendingto
approximately15milesradiallyfromtheplant,willreactastheydoforallnonstaged
evacuationscenarios.Thatis20%ofthesehouseholdswillelecttoevacuatewithno
shelterdelay.
SurryPowerStation
517
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
- 3. Thetransientpopulationwillnotbeexpectedtostagetheirevacuationbecauseofthe
limitedshelteringoptionsavailabletopeoplewhomaybeatparks,onabeach,orat
othervenues.Also,notifyingthetransientpopulationofastagedevacuationwould
provedifficult.
- 4. Employeeswillalsobeassumedtoevacuatewithoutfirstsheltering.
Procedure
- 1. Tripgenerationforpopulationgroupsinthe2mileregionwillbeascomputedbased
upontheresultsofthetelephonesurveyandanalysis.
- 2. Tripgenerationforthepopulationsubjecttostagedevacuationwillbeformulatedas
follows:
- a. Identifythe90thpercentileevacuationtimeforthePAZscomprisingthetwomile
region.Thisvalue,TScen
- ,isobtainedfromsimulationresults.Itwillbecomethe
timeatwhichtheregionbeingshelteredwillbetoldtoevacuateforeach
scenario.
- b. Theresultanttripgenerationcurvesforstagingarethenformedasfollows:
- i. Thenonsheltertripgenerationcurveisfolloweduntilamaximumof20%
ofthetotaltripsaregenerated(toaccountforshelternoncompliance).
ii. NoadditionaltripsaregenerateduntiltimeTScen
iii. FollowingtimeTScen
- ,thebalanceoftripsaregenerated:
- 1. bysteppingupandthenfollowingthenonsheltertripgeneration
curve(ifTScen
- is<maxtripgenerationtime)or
- 2. bysteppingupto100%(ifTScen
- is>maxtripgenerationtime)
- c. Note:Thisprocedureimpliesthattheremaybedifferentstagedtripgeneration
distributionsfordifferentscenarios.NUREG/CR7002usesthestatement
approximately90thpercentileasthetimetoendstagingandbeginevacuating.
ThevalueofTScen
- is1:00to1:05forallscenarios..
- 3. Stagedtripgenerationdistributionsarecreatedforthefollowingpopulationgroups:
- a. Residentswithreturningcommuters
- b. Residentswithoutreturningcommuters
- c. Residentswithreturningcommutersandsnowconditions
- d. Residentswithoutreturningcommutersandsnowconditions
Figure55presentsthestagedtripgenerationdistributionsforbothresidentswithandwithout
returningcommuters;the90thpercentiletwomileevacuationtimeis65minutesforweekday
and 60 minutes for weekend scenarios. At the 90th percentile evacuation time, 20% of the
population(whonormallywouldhavecompletedtheirmobilizationactivitiesforanunstaged
evacuation)advisedtoshelterhasneverthelessdepartedthearea.Thesepeopledonotcomply
withtheshelteradvisory.Alsoincludedontheplotarethetripgenerationdistributionsfor
thesegroupsasappliedtotheregionsadvisedtoevacuateimmediately.
Sincethe90thpercentileevacuationtimeoccursbeforetheendofthetripgenerationtime,
aftertheshelteredregionisadvisedtoevacuate,thesheltertripgenerationdistributionrisesto
meet the balance of the nonstaged trip generation distribution. Following time TScen
- , the
SurryPowerStation
518
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
balanceofstagedevacuationtripsthatarereadytodepartarereleasedwithin15minutes.After
TScen
- +15,theremainderofevacuationtripsaregeneratedinaccordancewiththeunstagedtrip
generationdistribution.
Table510providesthetripgenerationhistogramsforstagedevacuation.
5.4.3 TripGenerationforWaterwaysandRecreationalAreas
Asstatedinthecity/countyRERPsifthereisasirenfailureoranareaisoutofrange,route
alertingwillbecarriedout.NotificationbyloudspeakerwillbegivenfromStateGameand
Inland Fisheries boats, National Guard aircraft and State Police vehicles, as required. As
indicatedinTable52,thisstudyassumes100%notificationin45minutes.Table58indicates
thatalltransientswillhavemobilizedwithin1hoursand45minutes.Itisassumedthatthis1
hourand45minutetimeframeissufficienttimeforboaters,campersandothertransientsto
returntotheirvehiclesandbegintheirevacuationtrip.
SurryPowerStation
519
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table59.TripGenerationHistogramsfortheEPZPopulationforUnstagedEvacuation
Time
Period
Duration
(Min)
PercentofTotalTripsGeneratedWithinIndicatedTimePeriod
Employees
(DistributionA)
(DistributionA)
Residentswith
Commuters
(DistributionC)
Residents
Without
Commuters
(DistributionD)
ResidentsWith
Commuters
Snow
(DistributionE)
Residents
Without
CommutersSnow (DistributionF)
1
15 7%
7%
0%
1%
0%
0%
2
15 32%
32%
0%
6%
0%
3%
3
15 36%
36%
2%
19%
1%
7%
4
15 14%
14%
6%
19%
2%
12%
5
15 5%
5%
13%
15%
6%
12%
6
15 5%
5%
14%
15%
9%
13%
7
15 1%
1%
15%
7%
10%
12%
8
15 0%
0%
14%
2%
12%
8%
9
30 0%
0%
15%
8%
20%
12%
10
30 0%
0%
10%
4%
14%
8%
11
60 0%
0%
9%
4%
17%
10%
12
15 0%
0%
1%
0%
2%
1%
13
30 0%
0%
1%
0%
4%
1%
14
120 0%
0%
0%
0%
3%
1%
15
600
0%
0%
0%
0%
0%
0%
NOTE:
x Shadowvehiclesareloadedontotheanalysisnetwork(Figure12)usingDistributionsCandEforgoodweatherandsnow,respectively.
x SpecialeventvehiclesareloadedusingDistributionA.
SurryPowerStation
520
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure54.ComparisonofTripGenerationDistributions
0 20 40 60 80 100 0
60 120 180 240 300 360 420
%ofPopulationEvacuating ElapsedTimefromEvacuatingAdvisory(min)
TripGenerationDistributions Employees/Transients ResidentswithCommuters ResidentswithnoCommuters ReswithCommandSnow ResnoCommwithSnow
SurryPowerStation
521
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table510.TripGenerationHistogramsfortheEPZPopulationforStagedEvacuation
Time
Period
Duration
(Min)
PercentofTotalTripsGeneratedWithinIndicatedTimePeriod*
Residentswith
Commuters
(DistributionC)
Residents
Without
Commuters
(DistributionD)
ResidentsWith
CommutersSnow
(DistributionE)
Residents
Without
CommutersSnow (DistributionF)
1
15
0%
0%
0%
0%
2
15
0%
1%
0%
1%
3
15
0%
4%
0%
1%
4
15
2%
4%
1%
2%
5
15
19%
51%
8%
30%
6
15
14%
15%
9%
13%
7
15
15%
7%
10%
12%
8
15
14%
2%
12%
8%
9
30
15%
8%
20%
12%
10
30
10%
4%
14%
8%
11
60
9%
4%
17%
10%
12
15
1%
0%
2%
1%
13
30
1%
0%
4%
1%
14
120
0%
0%
3%
1%
15
600
0%
0%
0%
0%
- TripGenerationforEmployeesandTransients(seeTable59)isthesameforUnstagedandStagedEvacuation.
SurryPowerStation
522
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure55.ComparisonofStagedandUnstagedTripGenerationDistributionsinthe2to5MileRegion
0 20 40 60 80 100 0
30 60 90 120 150 180 210 240 270 300 330 360 390 420 PercentofPopulationEvacuating ElapsedTimefromEvacuatingAdvisory(min)
StagedandUnstagedEvacuationTripGeneration Employees/Transients ResidentswithCommuters ResidentswithnoCommuters ReswithCommandSnow ResnoCommwithSnow StagedResidentswithCommuters StagedResidentswithnoCommuters StagedResidentswithCommuters(Snow)
StagedResidentswithnoCommuters(Snow)
SurryPowerStation
61
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
6 DEMANDESTIMATIONFOREVACUATIONSCENARIOS
An evacuation case defines a combination of Evacuation Region and Evacuation Scenario.
ThedefinitionsofRegionandScenarioareasfollows:
Region
AgroupingofcontiguousevacuatingPAZsthatformseitherakeyholesector based area, or a circular area within the EPZ, that must be evacuated in
responsetoaradiologicalemergency.
Scenario
Acombinationofcircumstances,includingtimeofday,dayofweek,season,
andweatherconditions.Scenariosdefinethenumberofpeopleineachofthe
affectedpopulationgroupsandtheirrespectivemobilizationtimedistributions.
Adescriptionofeachscenarioisprovidedbelow:
- 1. SummerMidweekMidday(goodweather):Thisscenariorepresentsatypicalgood
weather daytime period when permanent residents are generally dispersed within
the EPZ performing daily activities and major work places are at typical summer
daytime levels. This scenario includes assumptions that permanent residents will
evacuatefromtheirplaceofresidence;summerschoolisinsession;hotelandmotel
facilities are occupied at average summer levels; and recreational facilities are at
averagesummerdaytimelevels.
- 2. Summer Midweek Midday (rain): This scenario represents an adverse weather
(rainy)daytimeperiodwhenpermanentresidentsaregenerallydispersedwithinthe
EPZperformingdailyactivitiesandmajorworkplacesareattypicalsummerdaytime
levels. This scenario includes assumptions that permanent residents will evacuate
from their place of residence; summer schools are in session; hotel and motel
facilities are occupied at average summer levels; and recreational facilities are at
averagesummerdaytimelevels.
- 3. SummerWeekendMidday(goodweather):Thisscenariorepresentsatypicalgood
weatherweekendperiodwhenpermanentresidentsarebothathomeanddispersed
withintheEPZperformingtypicalsummerweekendactivities.Thisscenarioincludes
assumptions that permanent residents will evacuate from their place of residence;
schoolsareclosedandstudentsareathomeorwiththeirfamilies;workplacesare
staffedattypicalweekendlevels;hotelandmotelfacilitiesareoccupiedataverage
summerweekendlevels;andrecreationalfacilitiesareataveragesummerweekend
levels.
- 4. SummerWeekendMidday(rain):Thisscenariorepresentsatypicaladverseweather
(rainy)weekendperiodwhenpermanentresidentsarebothathomeanddispersed
withintheEPZperformingtypicalsummerweekendactivities.Thisscenarioincludes
assumptions that permanent residents will evacuate from their place of residence;
schoolsareclosedandstudentsareathomeorwiththeirfamilies;workplacesare
staffedattypicalweekendlevels;hotelandmotelfacilitiesareoccupiedataverage
summerweekendlevels.
- 5. SummerMidweekandWeekendEvening(good):Thisscenariorepresentsatypical
SurryPowerStation
62
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
good weather midweek or weekend evening period when permanent residents are
generallyathomewithfewerdispersedwithintheEPZperformingeveningactivities.
Thisscenarioincludesassumptionsthatpermanentresidentswillevacuatefromtheir
place of residence; schools are closed and students are at home; work places are
staffed at typical evening levels; hotel and motel facilities are occupied at average
summer evening levels; and recreational facilities are at average summer evening
levels.Externaltrafficisreduced.
- 6. Winter Midweek Midday (good): This scenario represents a typical good weather
weekdayperiodduringthewinterwhenschoolisinsessionandtheworkforceisata
fulldaytimelevel.Thisscenarioincludesassumptionsthatpermanentresidentswill
evacuate from their place of residence; students will evacuate directly from the
schools; work places are fully staffed at typical daytime levels; hotel and motel
facilitiesareoccupiedataveragewinterlevels;andrecreationalfacilitiesareatwinter
daytimelevels.
- 7. WinterMidweekMidday(rain):Thisscenariorepresentsanadverseweather(rainy)
weekdayperiodduringthewinterwhenschoolisinsessionandtheworkforceisata
fulldaytimelevel.Thisscenarioincludesassumptionsthatpermanentresidentswill
evacuate from their place of residence; students will evacuate directly from the
schools; work places are fully staffed at typical daytime levels; hotel and motel
facilitiesareoccupiedataveragewinterlevels;andrecreationalfacilitiesareatwinter
daytimelevels.
- 8. Winter Midweek Midday (snow): This scenario represents an adverse weather
(snowy) weekday period during the winter when school is in session and the work
force is at a full daytime level. This scenario includes assumptions that permanent
residentswillevacuatefromtheirplaceofresidence;studentswillevacuatedirectly
from the schools; work places are fully staffed at typical daytime levels; hotel and
motelfacilitiesareoccupiedataveragewinterlevels;andrecreationalfacilitiesareat
winterdaytimelevels.
- 9. WinterWeekendMidday(good):Thisscenarioreflectsatypicalgoodweatherwinter
weekendperiodwhenpermanentresidentsarebothathomeanddispersedwithin
the EPZ, and the work force is at a winter weekend level. This scenario includes
assumptions that permanent residents will evacuate from their place of residence;
schools are closed and students are at home; work places are staffed at typical
weekend levels; hotel and motel facilities are occupied at average winter weekend
levelsandrecreationalfacilitiesareatwinterweekendlevels.
- 10. Winter Weekend Midday (rain): This scenario reflects an adverse weather (rainy)
winterweekendperiodwhenpermanentresidentsarebothathomeanddispersed
withintheEPZ,andtheworkforceisatawinterweekendlevel.Thisscenarioincludes
assumptions that permanent residents will evacuate from their place of residence;
schools are closed and students are at home; work places are staffed at typical
weekend levels; hotel and motel facilities are occupied at average winter weekend
levelsandrecreationalfacilitiesareatwinterweekendlevels.
- 11. WinterWeekendMidday(snow):Thisscenarioreflectsanadverseweather(snowy)
SurryPowerStation
63
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
winterweekendperiodwhenpermanentresidentsarebothathomeanddispersed
withintheEPZ,andtheworkforceisatawinterweekendlevel.Thisscenarioincludes
assumptions that permanent residents will evacuate from their place of residence;
schools are closed and students are at home; work places are staffed at typical
weekend levels; hotel and motel facilities are occupied at average winter weekend
levelsandrecreationalfacilitiesareatwinterweekendlevels.
- 12. WinterMidweekandWeekendEvening(good):Thisscenarioreflectsatypicalgood
weather,wintermidweekorweekendeveningperiodwhenpermanentresidentsare
homeandtheworkforceisatanighttimelevel.Thisscenarioincludesassumptions
that permanent residents will evacuate from their place of residence; schools are
closedandstudentsareathome;workplacesarestaffedattypicalnighttimelevels;
hotel and motel facilities are occupied at average winter levels; and recreational
facilitiesareatwintereveninglevels.
- 13. SpecialEvents(good):Thisscenarioreflectsamajorevent-theNewportNewsFall
FestivalofFolklifewhentherearepeaktouristpopulationspresentwithintheEPZ.
This is a good winter weather scenario. This scenario includes assumptions that
permanentresidentswillevacuatefromtheirplaceofresidence;schoolsareclosed
andstudentsareathome;workplacesarestaffedattypicalweekendlevels;hoteland
motel facilities are occupied at average winter weekend levels and recreational
facilitiesareatwinterweekendlevels.
- 14. RoadwayImpactMidweekMidday(good):Thisrepresentsasummerscenariowhen
there is a WB lane closure on I64, during a good weather daytime period when
permanentresidentsaregenerallydispersedwithintheEPZperformingdailyactivities
and major work places are at typical daytime levels. This scenario includes
assumptions that permanent residents will evacuate from their place of residence;
summer school is in session; hotel and motel facilities are occupied at average
summerlevels;andrecreationalfacilitiesareataveragesummerdaytimelevels.
A total of 41 Regions were defined which encompass all the groupings of PAZs considered.
TheseRegionsaredefinedinTable61.ThePAZconfigurationsareidentifiedinFigure61.
Eachkeyholesectorbasedareaconsistsofacentralcirclecenteredatthepowerplant,and
three adjoining sectors, each with a central angle of 22.5 degrees, as per NUREG/CR7002
guidance.Thecentralsectorcoincideswiththewinddirection.Thesesectorsextendto5miles
fromtheplant(RegionsR04throughR14)ortotheEPZboundary(RegionsR15throughR29).
RegionsR01,R02andR03representevacuationsofcircularareaswithradiiof2,5and10miles,
respectively. Regions R30 through R41 are identical to Regions R04 through R14 and R02,
respectively;however,thosePAZsbetween2milesand5milesarestageduntil90%ofthe2 mileregion(RegionR01)hasevacuated.
Atotalof14ScenarioswereevaluatedforallRegions.Thus,thereareatotalof41x14=574
evacuation cases. Table 62 is a description of all Scenarios. The Scenarios are designed to
definetheboundingcases.
Eachcombinationofregionandscenarioimpliesaspecificpopulationtobeevacuated.Table
63presentsthepercentageofeachpopulationgroupestimatedtoevacuateforeachscenario.
SurryPowerStation
64
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table64presentsthevehiclecountsforeachscenarioforanevacuationofRegionR03-the
entireEPZ.
ThevehicleestimatespresentedinSection3arepeakvalues.Thesepeakvaluesareadjusted
depending on the scenario and region being considered, using scenario and region specific
percentages, such that the average population is considered for each evacuation case. The
scenariopercentagesarepresentedinTable63,whiletheregionalpercentagesareprovidedin
TableH1.ThepercentagespresentedinTable63weredeterminedasfollows:
Thenumberofresidentswithcommutersduringtheweek(whenworkforceisatitspeak)is
equaltotheproductof57%(thenumberofhouseholdswithatleastonecommuter)and60%
(thenumberofhouseholdswitha commuterthatwouldawaitthereturnofthe commuter
priortoevacuating).Seeassumption3inSection2.3.Itisestimatedforweekendandevening
scenarios that 10% of households with returning commuters will have a commuter at work
duringthosetimes.
Employment is assumed to be at its peak during the winter, midweek, midday scenarios.
Employmentisreducedslightly(96%)forsummer,midweek,middayscenarios.Thisisbasedon
theestimationthat50%oftheemployeescommutingintotheEPZwillbeonvacationfora
weekduringtheapproximate12weeksofsummer.Itisfurtherestimatedthatthosetaking
vacation will be uniformly dispersed throughout the summer with approximately 4% of
employeesvacationingeachweek.Itisfurtherestimatedthatonly10%oftheemployeesare
workingintheeveningsandduringtheweekends.
Transientactivityisestimatedtobeatitspeakduringsummerweekendsandlessduringthe
weekandatitslowestlevelforwintermidweekscenarios.Percentageswereestimatedfor
eachfacilitytype,byseasonandtimeofdayinordertominimizedoublecounting(e.g.tourists
will be in the hotel at night but at the attractions during the day). As a consequence, no
scenariohas100%ofalltransientsconsidered.AsshowninAppendixE,thereisasignificant
amount of lodging offering overnight accommodations in the EPZ; thus, transient activity is
estimatedtoremainhighduringthesummereveninghours-49%.Transientactivityonwinter
weekendsisestimatedtobe29%.
AsnotedintheshadowfootnotetoTable63,theshadowpercentagesarecomputedusinga
baseof20%(seeassumption5inSection2.2);toincludetheemployeeswithintheshadow
region who may choose to evacuate, the voluntary evacuation is multiplied by a scenario specificproportionofemployeestopermanentresidentsintheshadowregion.Forexample,
usingthevaluesprovidedinTable64forScenario1,theshadowpercentageiscomputedas
follows:
Onespecialevent-NewportNewsFallFestivalofFolklife-wasconsideredasScenario13.
Thus,thespecialeventtrafficis100%evacuatedforScenario13,and0%forallotherscenarios.
Itisestimatedthatsummerschoolenrollmentisapproximately10%ofenrollmentduringthe
regularschoolyearforsummer,midweek,middayscenarios.Schoolisnotinsessionduring
SurryPowerStation
65
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
weekends and evenings, thus no buses for school children are needed under those
circumstances. As discussed in Section 7, schools are in session during the winter season,
midweek,middayand100%ofbuseswillbeneededunderthosecircumstances.Transitbuses
forthetransitdependentpopulationaresetto100%forallscenariosasitisassumedthatthe
transitdependentpopulationispresentintheEPZforallscenarios.
Externaltrafficisestimatedtobereducedby60%duringeveningscenariosandis100%forall
otherscenarios.
SurryPowerStation
66
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table61.DescriptionofEvacuationRegions
Reg ion
Desc ription
PAZ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18A
18B
18C
18D
19A
19B
20A
20B
21
22A
22B
23
24
R01
2Mile
Radius
x
R02
5Mile
Radius
x x x
x x
x
x
x
x
x
R03
FullEPZ
x x x x x x x x x x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Evacuate2MileRadiusandDownwindto5Miles
Reg ion
Wind
Direction
Towards
PAZ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18A
18B
18C
18D
19A
19B
20A
20B
21
22A
22B
23
24
R04
NNW,N
x
x
x
x
R05
NNE
x
x
x
x
R06
NE,ENE
x
x
x
x
R07
E
x
x
N/A
ESE
RefertoR01
R08
SE
x x
R09
SSE,S
x
x x
R10
SSW
x x
x x
R11
SW
x x
x
R12
WSW,W
x x
x
R13
WNW
x x
x
x
R14
NW
x
x
x
SurryPowerStation
67
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Evacuate5MileRadiusandDownwindto10Miles
Reg ion
Wind
Direction
Towards
PAZ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18A
18B
18C
18D
19A
19B
20A
20B
21
22A
22B
23
24
R15
NNW,N
x x x
x x
x
x
x
x
x
x
x
x
x
x
x
x
R16
NNE
x x x
x x
x
x
x
x
x
x
x
x
x
x
x
x
R17
NE
x x x
x x
x
x
x
x
x
x
x
x
x
x
x
R18
ENE
x x x
x x
x
x
x
x
x
x
x
x
x
R19
E
x x x
x x
x
x
x
x
x
x
x
x
x
x
R20
ESE
x x x
x x
x
x
x
x
x
x
x
x
R21
SE
x x x
x x
x
x
x
x
x
x
x
x
x
R22
SSE
x x x
x x x
x
x
x
x
x
x
x
x
R23
S
x x x x x x x
x
x
x
x
x
x
x
x
R24
SSW
x x x x x x x x
x
x
x
x
x
x
x
x
R25
SW
x x x x x x x x x x
x
x
x
x
x
x
x
R26
WSW
x x x x x x x x x
x
x
x
x
x
R27
W
x x x x x x
x x
x
x
x
x
x
x
R28
WNW
x
x x x
x x
x
x
x
x
x
x
x
R29
NW
x
x x x
x x
x
x
x
x
x
x
x
x
SurryPowerStation
68
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
StagedEvacuation2MileRadiusEvacuates,thenEvacuateDownwindto5Miles
Reg ion
Wind
Direction
Towards
PAZ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18A
18B
18C
18D
19A
19B
20A
20B
21
22A
22B
23
24
R30
NNW,N
x
x
x
x
R31
NNE
x
x
x
x
R32
NE,ENE
x
x
x
x
R33
E
x
x
N/A
ESE
RefertoR01
R34
SE
x x
R35
SSE,S
x
x x
R36
SSW
x x
x x
R37
SW
x x
x
R38
WSW,W
x x
x
R39
WNW
x x
x
x
R40
NW
x
x
x
R41
5Mile
Region
x x x
x x
x
x
x
x
x
PAZ(s)ShelterinPlaceuntil90%ETEforR01,
thenEvacuate
PAZ(s)ShelterinPlace
PAZ(s)Evacuate
SurryPowerStation
69
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure61.SPSEPZPAZs
SurryPowerStation
610
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table62.EvacuationScenarioDefinitions
Scenario
Season1
Dayof
Week
Timeof
Day
Weather
Special
1
Summer
Midweek
Midday
Good
None
2
Summer
Midweek
Midday
Rain
None
3
Summer
Weekend
Midday
Good
None
4
Summer
Weekend
Midday
Rain
None
5
Summer
Midweek,
Weekend
Evening
Good
None
6
Winter
Midweek
Midday
Good
None
7
Winter
Midweek
Midday
Rain
None
8
Winter
Midweek
Midday
Snow
None
9
Winter
Weekend
Midday
Good
None
10
Winter
Weekend
Midday
Rain
None
11
Winter
Weekend
Midday
Snow
None
12
Winter
Midweek,
Weekend
Evening
Good
None
13
Winter
Weekend
Midday
Good
NewportNewsFall
FestivalofFolklife
14
Summer
Midweek
Midday
Good
RoadwayImpact:WB
LaneClosureonI64
1Wintermeansthatschoolisinsession(alsoappliestospringandautumn).Summermeansthatschoolisnotin
session.
SurryPowerStation
611
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table63.PercentofPopulationGroupsEvacuatingforVariousScenarios
Scenario
Households
With
Returning
Commuters
Households
Without
Returning
Commuters
Employees
Shadow
Special
Event1
Commuter
Students
School
Buses
Transit
Buses
External
Through
Traffic
1
34%
66%
96%
55%
24%
0%
10%
10%
100%
100%
2
34%
66%
96%
55%
24%
0%
10%
10%
100%
100%
3
3%
97%
10%
63%
20%
0%
0%
0%
100%
100%
4
3%
97%
10%
63%
20%
0%
0%
0%
100%
100%
5
3%
97%
10%
49%
20%
0%
0%
0%
100%
40%
6
34%
66%
100%
10%
25%
0%
100%
100%
100%
100%
7
34%
66%
100%
10%
25%
0%
100%
100%
100%
100%
8
34%
66%
100%
10%
25%
0%
100%
100%
100%
100%
9
3%
97%
10%
29%
20%
0%
0%
0%
100%
100%
10
3%
97%
10%
29%
20%
0%
0%
0%
100%
100%
11
3%
97%
10%
29%
20%
0%
0%
0%
100%
100%
12
3%
97%
10%
21%
20%
0%
0%
0%
100%
40%
13
3%
97%
10%
29%
20%
100%
0%
0%
100%
100%
14
34%
66%
96%
55%
24%
0%
10%
10%
100%
100%
ResidentHouseholdswithCommuters.......HouseholdsofEPZresidentswhoawaitthereturnofcommuterspriortobeginningtheevacuationtrip.
ResidentHouseholdswithNoCommuters..HouseholdsofEPZresidentswhodonothavecommutersorwillnotawaitthereturnofcommuterspriortobeginningtheevacuationtrip.
Employees..................................................EPZemployeeswholiveoutsidetheEPZ
Transients..................................................PeoplewhoareintheEPZatthetimeofanaccidentforrecreationalorother(nonemployment)purposes.
Shadow......................................................Residentsandemployeesintheshadowregion(outsideoftheEPZ)whowillspontaneouslydecidetorelocateduringtheevacuation.Thebasisfor
thevaluesshownisa20%relocationofshadowresidentsalongwithaproportionalpercentageofshadowemployees.
SpecialEvents............................................AdditionalvehiclesintheEPZduetotheidentifiedspecialevent.
SchoolandTransitBuses............................Vehicleequivalentspresentontheroadduringevacuationservicingschoolsandtransitdependentpeople(1busisequivalentto2passenger
vehicles).
ExternalThroughTraffic.............................Trafficoninterstates/freewaysandmajorarterialroadsatthestartoftheevacuation.Thistrafficisstoppedbyaccesscontrolapproximately2
hoursaftertheevacuationbegins.
SurryPowerStation
612
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table64.VehicleEstimatesbyScenario
Scenario
Households
With
Returning
Commuters
Households
Without
Returning
Commuters Employees Transients
Shadow Special
Event1
Commu ter
Students School
Buses
Transit
Buses
External
Through
Traffic
Total
Scenario
Vehicles 1
25,300
48,683
16,079
14,732
15,176
226
87
244
14,256
134,783
2
25,300
48,683
16,079
14,732
15,176
226
87
244
14,256
134,783
3
2,530
71,453
1,675
16,875
12,748
244
14,256
119,781
4
2,530
71,453
1,675
16,875
12,748
244
14,256
119,781
5
2,530
71,453
1,675
13,125
12,748
244
5,702
107,477
6
25,300
48,683
16,749
2,679
15,288
2,259
874
244
14,256
126,332
7
25,300
48,683
16,749
2,679
15,288
2,259
874
244
14,256
126,332
8
25,300
48,683
16,749
2,679
15,288
2,259
874
244
14,256
126,332
9
2,530
71,453
1,675
7,768
12,748
244
14,256
110,674
10
2,530
71,453
1,675
7,768
12,748
244
14,256
110,674
11
2,530
71,453
1,675
7,768
12,748
244
14,256
110,674
12
2,530
71,453
1,675
5,625
12,748
244
5,702
99,977
13
2,530
71,453
1,675
7,768
12,748
10,467
244
14,256
121,141
14
25,300
48,683
16,079
14,732
15,176
226
87
244
14,256
134,783
Note:Vehicleestimatesarefor an evacuation of the entire EPZ (RegionR03)
SurryPowerStation
71
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
7 GENERALPOPULATIONEVACUATIONTIMEESTIMATES(ETE)
This section presents the ETE results of the computer analyses using the DYNEV II System
describedinAppendicesB,CandD.Theseresultscover41regionswithintheSPSEPZandthe
14EvacuationScenariosdiscussedinSection6.
TheETEforallEvacuationCasesarepresentedinTable71andTable72.Thesetablespresent
theestimatedtimestocleartheindicatedpopulationpercentagesfromtheEvacuationRegions
forallEvacuationScenarios.TheETEofthe2mileregioninbothstagedandunstagedregions
arepresentedinTable73andTable74.Table75definestheEvacuationRegionsconsidered.
The tabulated values of ETE are obtained from the DYNEV II System outputs which are
generatedat5minuteintervals.
7.1 VoluntaryEvacuationandShadowEvacuation
VoluntaryevacueesarepeoplewithintheEPZinPAZsforwhichanAdvisorytoEvacuatehas
not been issued, yet who elect to evacuate. Shadow evacuation is the voluntary outward
movementofsomepeoplefromtheShadowRegion(outsidetheEPZ)forwhomnoprotective
actionrecommendationhasbeenissued.Bothvoluntaryandshadowevacuationsareassumed
totakeplaceoverthesametimeframeastheevacuationfromwithintheimpactedEvacuation
Region.
TheETEfortheSPSEPZaddressestheissueofvoluntaryevacueesinthemannershownin
Figure71.WithintheEPZ,20percentofpeoplelocatedinPAZsoutsideoftheevacuation
region who are not advised to evacuate, are assumed to elect to evacuate. Similarly, it is
assumedthat20percentofthosepeopleintheShadowRegionwillchoosetoleavethearea.
Figure72presentstheareaidentifiedastheShadowRegion.Thisregionextendsradiallyfrom
the plant to cover a region between the EPZ boundary and approximately 15 miles. The
populationandnumberofevacuatingvehiclesintheShadowRegionwereestimatedusingthe
samemethodologythatwasusedforpermanentresidentswithintheEPZ(seeSection3.1).As
discussedinSection3.2,itisestimatedthatatotalof129,515peopleresideintheShadow
Region; 20 percent of them would evacuate. See Table 64 for the number of evacuating
vehiclesfromtheShadowRegion.
Traffic generated within this Shadow Region, traveling away from the SPS location, has the
potential for impeding evacuating vehicles from within the Evacuation Region. All ETE
calculationsincludethisshadowtrafficmovement.
7.2 StagedEvacuation
AsdefinedinNUREG/CR7002,stagedevacuationconsistsofthefollowing:
- 1. PAZscomprisingthe2mileregionareadvisedtoevacuateimmediately.
- 2. PAZscomprisingregionsextendingfrom2to5milesdownwindareadvisedtoshelter
inplacewhilethetwomileregioniscleared.
SurryPowerStation
72
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
- 3. Asvehiclesevacuatethe2mileregion,peoplefrom2to5milesdownwindcontinue
preparationforevacuationwhiletheyshelter.
- 4. Thepopulationshelteringinthe2to5mileregionisadvisedtoevacuatewhen
approximately90%ofthe2mileregionevacuatingtrafficcrossesthe2mileregion
boundary.
- 5. Noncompliancewiththeshelterrecommendationisthesameastheshadow
evacuationpercentageof20%.
SeeSection5.4.2foradditionalinformationonstagedevacuation.
7.3 PatternsofTrafficCongestionduringEvacuation
Figure73throughFigure78illustratethepatternsoftrafficcongestionthatariseforthecase
whentheentireEPZ(RegionR03)isadvisedtoevacuateduringthesummer,midweek,midday
periodundergoodweatherconditions(Scenario1).
Trafficcongestion,asthetermisusedhere,isdefinedasLevelofService(LOS)F.LOSFis
definedasfollows(HCM2010,page55):
TheHCMusesLOSFtodefineoperationsthathaveeitherbrokendown(i.e.,demand
exceedscapacity)orhaveexceededaspecifiedservicemeasurevalue,orcombination
of service measure values, that most users would consider unsatisfactory. However,
particularly for planning applications where different alternatives may be compared,
analysts may be interested in knowing just how bad the LOS F condition is. Several
measuresareavailabletodescribeindividually,orincombination,theseverityofaLOS
Fcondition:
- Demandtocapacityratiosdescribetheextenttowhichcapacityisexceeded
duringtheanalysisperiod(e.g.,by1%,15%,etc.);
- DurationofLOSFdescribeshowlongtheconditionpersists(e.g.,15min,1h,3
h);and
- SpatialextentmeasuresdescribetheareasaffectedbyLOSFconditions.These
includemeasuressuchasthebackofqueue,andtheidentificationofthespecific
intersectionapproachesorsystemelementsexperiencingLOSFconditions.
Allhighway"links"whichexperienceLOSFaredelineatedinthesefiguresbyathickredline;all
othersarelightlyindicated.Congestiondevelopsrapidlyaroundconcentrationsofpopulation
and traffic bottlenecks. Figure 73 displays the developing congestion within the population
centers of Williamsburg and Newport News, just 30 minutes after the Advisory to Evacuate
(ATE).
At 2 hours after the ATE, Figure 74 displays fullydeveloped congestion within the more
populousportionoftheEPZnorthofJamesRiver.Atthistime,largeportionsoftheresidential
population are mobilizing. Paths which exit the EPZ north of the James River are exhibiting
intensecongestion.TheJohnTylerHwyisoperatingintheLOSD/Erangewhereiscrossesthe
SurryPowerStation
73
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
EPZboundarybecausetrafficisbeingmeteredupstreamatthepointwhereMonticelloAveand
JohnTylerHwymerge.Incontrast,theruralportionofthenetworkwhichliessouthofJames
Riverdoesnotdevelopanycongestion.
At3hours,asshowninFigure75,theintensecongestionpersiststhroughoutthenorthernhalf
of the EPZ and is particularly pronounced in areas near the EPZ boundary. Congestion has
clearedwithinthe5mileradius.CongestionhasclearedonUS60throughthePAZsof18B,18C
and18Dasevacueesprogresstowardsexitpoints.
CongestedconditionsremainnorthoftheCityofWilliamsburgat4hoursaftertheATE(Figure
76).CongestionpersistsintheeastintheportionsoftheCityofNewportNewsandYorktown
which lie within the shadow region. Congestion within the EPZ in the east has reduced
considerably within the past hour, as can be seen by comparing Figure 76 with Figure 75.
Althoughmoreheavilypopulated,theeasternportionoftheEPZbenefitsfromalargernumber
ofhighercapacityroadwaysthanareavailablenorthofWilliamsburg.
Overthenexthour,at5hoursafterATE,congestionhasbeengreatlyalleviatedwithintheCity
of Williamsburg proper, but the surrounding areas to the west and particularly the north
remainheavilycongestedasshowninFigure77.LOSFconditionsremainintheeastbutare
limited to small portions of the Yorktown area stemming from the ramps which access the
GeorgeWashingtonMemorialHwy.
Finally,Figure78displaysanEPZthatisessentiallyclearofcongestion,at6:15aftertheATE,
whichisafterthecompletionofthetripgeneration(mobilization)time.Congestionpersistsin
theshadowregionnorthWilliamsburgonI64anditsfrontageroadsasevacueesarehindered
by a limited number of exit alternatives. These conditions linger until time 7:55 when all
congestionintheshadowregionisdispersed.
Evacuationisacontinuousprocess,asimpliedbyFigure79throughFigure722.Thesefigures
indicatetherateatwhichtrafficflowsoutoftheindicatedareasforthecaseofanevacuation
ofthefullEPZ(RegionR03)undertheindicatedconditions.Onefigureispresentedforeach
scenarioconsidered.
AsindicatedinFigure79,thereistypicallyalong"tail"tothesedistributions.Vehiclesbeginto
evacuateanareaslowlyatfirst,aspeoplerespondtotheATEatdifferentrates.Thentraffic
demandbuildsrapidly(slopesofcurvesincrease).Whenthesystembecomescongested,traffic
exitstheEPZatratessomewhatbelowcapacityuntilsomeevacuationrouteshavecleared.As
moreroutesclear,theaggregaterateofegressslowssincemanyvehicleshavealreadyleftthe
EPZ.Towardstheendoftheprocess,relativelyfewevacuationroutesservicetheremaining
demand.
Thisdeclineinaggregateflowrate,towardstheendoftheprocess,ischaracterizedbythese
curves flattening and gradually becoming horizontal. Ideally, it would be desirable to fully
saturateallevacuationroutesequallysothatallwillservicetrafficnearcapacitylevelsandall
willclearatthesametime.Forthisidealsituation,allcurveswouldretainthesameslopeuntil
the end - thus minimizing evacuation time. In reality, this ideal is generally unattainable
reflectingthespatialvariationinpopulationdensity,mobilizationratesandinhighwaycapacity
SurryPowerStation
74
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
overtheEPZ.
7.4 EvacuationTimeEstimate(ETE)Results
Table 71 and Table 72 present the ETE values for all 41 Evacuation Regions and all 14
EvacuationScenarios.Table73andTable74presenttheETEvaluesforthe2Mileregionfor
bothstagedandunstagedkeyholeregionsdownwindto5miles.Thetablesareorganizedas
follows:
Table
Contents 71
ETE represents the elapsed time required for 90 percent of the
population within a Region, to evacuate from that Region. All
Scenariosareconsidered,aswellasStagedEvacuationscenarios.
72
ETE represents the elapsed time required for 100 percent of the
population within a Region, to evacuate from that Region. All
Scenariosareconsidered,aswellasStagedEvacuationscenarios.
73
ETE represents the elapsed time required for 90 percent of the
populationwithinthe2mileRegion,toevacuatefromthatRegion
withbothConcurrentandStagedEvacuations.
74
ETE represents the elapsed time required for 100 percent of the
populationwithinthe2mileRegion,toevacuatefromthatRegion
withbothConcurrentandStagedEvacuations.
The animation snapshots described above reflect the ETE statistics for the concurrent (un staged)evacuationscenariosandregions,whicharedisplayedinFigure73throughFigure78.
MostofthecongestionislocatedinPAZsbeyondthe5milearea;thisisreflectedintheETE
statistics:
x The100thand90thpercentileETEforRegionR01(2milearea)rangesfrom1:00to1:05
and1:45to1:50,respectively.TheR01ETEareuniqueinthattheyaredictatedbythe
mobilizationcharacteristicsoftheSPSworkforcealone.
x The90thpercentileETEforRegionR02(5milearea)aregenerallybetween2:05(hr:min)
and2:20forgoodweather(nonspecialevent)scenariosandupto3:05forsnow.
x The90thpercentileETEforRegionR03(fullEPZ)isbetween3:05and4:15forgood
weather(nonspecialevent)scenarios.RainincreasestheETEbyupto30minutes.
SnowincreasestheETEby40minutes.
x The90thpercentileETEforRegionsR15-R29(whichextendtotheEPZboundary)vary.
RegionswhichpredominantlyconsistofsuburbanPAZsnorthoftheJamesRiverexhibit
apatternthatresemblesR03.Inparticular,regionsincorporatingbothPAZ21and23
havethelongestETE,duetoprolongedcongestionontheroadwaysin,andnorthof,
Williamsburg.RegionswhichareprincipallycomprisedofruralPAZstothesouthdisplay
SurryPowerStation
75
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
apatternreminiscentofR02.Thoseregionswhichareahybridofthetwoareas
generallyliesomewhereinbetween.
x The100thpercentileETEforsuburbanregionscanexceedthemobilizationtimesbyas
muchas2:25minutesfornonspecialeventscenarios.
ComparisonofScenarios9and13inTable71indicatesthattheSpecialEvent-FallFestivalof
Folklife-hasanimpactontheETEforthe90thpercentileforthoseregionsincludingPAZ16in
NewportNews.TheETEisincreasedby2025minutes.Asdiscussedinchapter6,sincethisisa
winterscenario,thenonspecialeventtransientpopulationisreducedto47%ofpeak(summer
weekend)levels.However,thetotalnumberoftransientsintheEPZisthegreatestforthis
scenarioduetotheadditional10,467vehiclespresentforthespecialevent.Theextravehicles
increasecongestiononthelocalroadsinNewportNewsandontherampstoI64,butI64
eastboundhassufficientcapacitytoaccommodatethem.Thereisnoimpactinthe2and5 MileRegionswhicharedisplacedfromtheevent.The100percentileETEfortheentireEPZ
(RegionR03)increasesby15minutes.
ComparisonofScenarios1and14inTable71indicatesthattheroadwayclosure-asinglelane
onI64westbound-significantlyimpactsthe90thpercentileETEforsomeevacuatingregions
withincreasesofupto1:25.Withonelaneclosed,thecapacityofI64ishalved,increasing
congestionandprolongingETE.Theroadwayclosurehasnoeffectonregionswhichdonot
involvetheevacuationofPAZsinandaroundtheCityofWilliamsburg.Theroadwayimpact
scenarioalsomateriallyimpactsthe100thpercentileETEforsomeregionswithincreasesofup
1hourand30minutes.
7.5 StagedEvacuationResults
Table 73 and Table 74 present a comparison of the ETE compiled for the concurrent (un staged) and staged evacuation studies. Note that Regions R30 through R40 are the same
geographicareasasRegionsR04throughR14,respectivelyandR41isequivalenttoR02.
To determine whether the staged evacuation strategy is worthy of consideration, one must
show that the ETE for the 2 Mile region can be reduced without significantly affecting the
regionbetween2milesand5miles.Inallcases,asshowninthesetables,theETEforthe2mile
regionisunchangedwhenastagedevacuationisimplemented.Thereasonforthisisthatthe
congestionwithinthe5milearealiesacrosstheJamesRiverandisisolatedfromthe2mile
region which is situated south of the river. Consequently, the impedance, due to this
congestionwithinthe5mileareaissequesteredfromthe2mileareaanddoesnotinfluence
the90thpercentileETEforthe2milearea.Therefore,stagingtheevacuationtosharplyreduce
congestion within the 5mile area, provides no benefits to evacuees from within the 2 mile
regionandunnecessarilydelaystheevacuationofthosebeyond2miles.
AcomparisonofR30throughR40withR04throughR14andR41withR02revealsthatstaging
has a negligible impact on the ETE for Scenarios 1 through 13 (see Table 71). The 100th
percentileETEisunchangedforallregionsandscenarios(seeTable72).
SurryPowerStation
76
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
7.6 GuidanceonUsingETETables
TheuserfirstdeterminesthepercentileofpopulationforwhichtheETEissought(TheNRC
guidancecallsforthe90thpercentile).TheapplicablevalueofETEwithinthechosenTablemay
thenbeidentifiedusingthefollowingprocedure:
- 1. IdentifytheapplicableScenario:
- Season
Summer
Winter(alsoAutumnandSpring)
- DayofWeek
Midweek
Weekend
- TimeofDay
Midday
Evening
- WeatherCondition
GoodWeather
Rain
Snow
- SpecialEvent
FallFolklifeFestival
RoadClosure(AlaneonI64WBisclosed)
- EvacuationStaging
No,StagedEvacuationisnotconsidered
Yes,StagedEvacuationisconsidered
WhiletheseScenariosaredesigned,inaggregate,torepresentconditionsthroughouttheyear,
somefurtherclarificationiswarranted:
Theconditionsofasummerevening(eithermidweekorweekend)andrainarenot
explicitlyidentifiedintheTables.Fortheseconditions,Scenarios(2)and(4)apply.
Theconditionsofawinterevening(eithermidweekorweekend)andrainarenot
explicitlyidentifiedintheTables.Fortheseconditions,Scenarios(7)and(10)for
rainapply.
Theconditionsofawinterevening(eithermidweekorweekend)andsnowarenot
explicitlyidentifiedintheTables.Fortheseconditions,Scenarios(8)and(11)for
snowapply.
Theseasonsaredefinedasfollows:
Summerassumesthatpublicschoolsarenotinsession.
Winter(includesSpringandAutumn)considersthatpublicschoolsareinsession.
TimeofDay:Middayimpliesthetimeoverwhichmostcommutersareatworkor
aretravellingto/fromwork.
- 2. With the desired percentile ETE and Scenario identified, now identify the Evacuation
Region:
SurryPowerStation
77
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Determinetheprojectedazimuthdirectionoftheplume(coincidentwiththewind
direction).Thisdirectionisexpressedintermsofcompassorientation:towardsN,
NNE,NE,
Determine the distance that the Evacuation Region will extend from the nuclear
power plant. The applicable distances and their associated candidateRegions are
givenbelow:
2Miles(RegionR01)
To5Miles(RegionR02,R04throughR14)
ToEPZBoundary(RegionsR03,R15throughR29)
EnterTable75andidentifytheapplicablegroupofcandidateRegionsbasedonthe
distance that the selected Region extends from the SPS. Select the Evacuation
Regionidentifierinthatrow,basedontheazimuthdirectionoftheplume,fromthe
firstcolumnoftheTable.
- 3. Determine the ETE Table based on the percentile selected. Then, for the Scenario
identifiedinStep1andtheRegionidentifiedinStep2,proceedasfollows:
The columns of Table 71 are labeled with the Scenario numbers. Identify the
propercolumnintheselectedTableusingtheScenarionumberdefinedinStep1.
IdentifytherowinthistablethatprovidesETEvaluesfortheRegionidentifiedin
Step2.
Theuniquedatacelldefinedbythecolumnandrowso determinedcontainsthe
desiredvalueofETEexpressedinHours:Minutes.
SurryPowerStation
78
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Example
ItisdesiredtoidentifytheETEforthefollowingconditions:
Sunday,August10that4:00AM.
Itisraining.
Winddirectionistowardthenortheast(NE).
Windspeedissuchthatthedistancetobeevacuatedisjudgedtobea5mileradius
anddownwindto10miles(toEPZboundary).
ThedesiredETEisthatvalueneededtoevacuate90percentofthepopulationfrom
withintheimpactedRegion.
Astagedevacuationisnotdesired.
Table71isapplicablebecausethe90thpercentileETEisdesired.Proceedasfollows:
- 1. IdentifytheScenarioassummer,weekend,eveningandraining.EnteringTable71,itis
seen that there is no match for these descriptors. However, the clarification given
aboveassignsthiscombinationofcircumstancestoScenario4.
- 2. Enter Table 75 and locate the Region described as Evacuate 5Mile Radius and
DownwindtotheEPZBoundaryforwinddirectiontowardtheNE(fromtheSW)and
readRegionR17inthefirstcolumnofthatrow.
- 3. EnterTable71tolocatethedatacellcontainingthevalueofETEforScenario4and
RegionR17.Thisdatacellisincolumn(4)andintherowforRegionR17;itcontainsthe
ETEvalueof2:50.
SurryPowerStation
79
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table71.TimetoCleartheIndicatedAreaof90PercentoftheAffectedPopulation
Summer
Summer
Summer
Winter
Winter
Winter
Winter
Summer
Midweek
Weekend
Midweek
Weekend
Midweek
Weekend
Midweek
Weekend
Weekend
Midweek
Scenario:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
Region
Midday
Midday
Evening
Midday
Midday
Evening
Midday
Midday
Good
Weather
Rain
Good
Weather
Rain
Good
Weather
Good
Weather
Rain
Snow
Good
Weather
Rain
Snow
Good
Weather
Special
Event
Roadway Impact
Entire2MileRegion,5MileRegion,andEPZ
R01
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R02
2:15
2:15
2:10
2:10 2:05 2:20 2:20 3:05 2:10
2:15 2:55 2:15 2:10 3:05 R03
4:15
4:45
3:50
4:05 3:15 3:40 4:00 4:20 3:10
3:30 3:50 3:05 3:35 5:10 2MileRegionandKeyholeto5Miles
R04
1:55
1:55
1:40
1:50 1:45 2:25 2:25 3:05 2:05
2:05 2:55 2:10 2:05 1:55 R05
2:10
2:15
2:05
2:10 2:00 2:20 2:20 3:00 2:10
2:10 2:50 2:15 2:10 3:15 R06
1:55
2:10
2:05
2:05 1:50 2:15 2:15 2:45 2:05
2:05 2:40 2:10 2:05 3:20 R07
1:10
1:10
1:25
1:25 1:25 1:15 1:15 1:15 1:25
1:25 1:50 1:25 1:25 1:10 R08
2:00
2:00
2:25
2:25 2:25 2:00 2:00 2:40 2:25
2:25 3:10 2:25 2:25 2:00 R09
2:10
2:10
2:25
2:30 2:25 2:10 2:10 2:50 2:25
2:30 3:15 2:25 2:25 2:10 R10
2:25
2:25
2:30
2:30 2:30 2:25 2:25 3:05 2:30
2:30 3:20 2:30 2:30 2:25 R11
2:05
2:05
2:25
2:25 2:25 2:05 2:05 2:45 2:25
2:25 3:15 2:25 2:25 2:05 R12
2:10
2:15
2:20
2:20 2:20 2:10 2:10 2:50 2:20
2:20 3:15 2:20 2:20 2:10 R13
2:25
2:25
2:20
2:20 2:20 2:25 2:25 3:15 2:20
2:25 3:15 2:25 2:20 2:25 R14
2:30
2:30
2:20
2:20 2:25 2:30 2:30 3:20 2:25
2:25 3:15 2:25 2:25 2:30
SurryPowerStation
710
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Summer
Summer
Summer
Winter
Winter
Winter
Winter
Summer
Midweek
Weekend
Midweek
Weekend
Midweek
Weekend
Midweek
Weekend
Weekend
Midweek
Scenario:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
Region
Midday
Midday
Evening
Midday
Midday
Evening
Midday
Midday
Good
Weather
Rain
Good
Weather
Rain
Good
Weather
Good
Weather
Rain
Snow
Good
Weather
Rain
Snow
Good
Weather
Special
Event
Roadway Impact
5MileRegionandKeyholetoEPZBoundary
R15
4:25
5:00
4:05
4:20 3:35 4:00 4:15 4:35 3:30
3:40 4:05 3:10 3:30 5:25 R16
3:55
4:15
3:35
3:45 2:55 3:30 3:45 4:00 3:00
3:15 3:40 2:40 3:00 5:05 R17
2:45
3:00
2:40
2:50 2:20 2:40 2:50 3:25 2:35
2:45 3:15 2:20 2:55 3:10 R18
2:40
2:50
2:35
2:35 2:25 2:45 2:50 3:25 2:30
2:35 3:15 2:20 2:55 3:00 R19
3:00
3:20
2:50
3:00 2:45 3:00 3:20 3:45 2:50
3:00 3:30 2:45 3:10 3:10 R20
3:05
3:15
2:50
3:00 2:45 3:00 3:15 3:40 2:50
3:00 3:30 2:50 3:10 3:20 R21
3:05
3:15
2:50
3:00 2:45 3:00 3:15 3:40 2:50
3:00 3:30 2:50 3:10 3:20 R22
2:15
2:15
2:00
2:05 2:10 2:30 2:30 3:15 2:15
2:15 3:05 2:20 2:15 2:15 R23
2:30
2:35
2:25
2:30 2:00 2:25 2:30 3:05 2:20
2:30 3:00 2:10 2:20 2:30 R24
2:30
2:35
2:25
2:30 2:00 2:25 2:30 3:05 2:20
2:30 3:00 2:10 2:20 2:30 R25
2:30
2:35
2:25
2:30 2:00 2:25 2:30 3:05 2:20
2:30 3:00 2:10 2:20 2:30 R26
2:30
2:35
2:25
2:30 2:00 2:25 2:30 3:05 2:20
2:25 3:00 2:10 2:20 2:30 R27
2:30
2:40
2:25
2:35 2:15 2:30 2:35 3:10 2:20
2:30 3:00 2:15 2:25 2:30 R28
3:20
3:35
2:50
3:00 2:45 3:10 3:15 3:45 2:45
2:55 3:25 2:45 2:50 3:20 R29
4:10
4:25
3:40
3:50 3:10 3:45 3:55 4:35 3:20
3:25 3:50 2:55 3:20 4:50 StagedEvacuation2MileRegionandDownwindto5Miles
R30
1:55
1:55
1:40
1:50 1:50 2:25 2:25 3:10 2:05
2:05 2:55 2:10 2:05 2:00 R31
2:05
2:05
1:50
2:00 2:00 2:25 2:25 3:10 2:10
2:10 3:00 2:15 2:10 2:05 R32
1:55
2:00
1:45
2:00 1:50 2:15 2:20 3:00 2:05
2:05 2:50 2:15 2:05 1:55 R33
1:10
1:10
1:25
1:25 1:25 1:15 1:15 1:15 1:25
1:25 1:50 1:25 1:25 1:10 R34
2:00
2:00
2:25
2:25 2:25 2:00 2:00 2:40 2:25
2:25 3:10 2:25 2:25 2:00 R35
2:10
2:10
2:25
2:30 2:25 2:10 2:10 2:50 2:25
2:30 3:15 2:25 2:25 2:10 R36
2:25
2:25
2:25
2:25 2:25 2:25 2:25 3:05 2:25
2:25 3:20 2:25 2:25 2:25 R37
2:05
2:05
2:25
2:25 2:25 2:05 2:05 2:45 2:25
2:25 3:15 2:25 2:25 2:05 R38
2:15
2:15
2:20
2:20 2:20 2:10 2:10 2:55 2:20
2:20 3:15 2:20 2:20 2:15 R39
2:25
2:25
2:20
2:20 2:20 2:25 2:25 3:15 2:25
2:25 3:15 2:25 2:25 2:25 R40
2:30
2:30
2:25
2:25 2:25 2:30 2:30 3:20 2:25
2:25 3:15 2:25 2:25 2:30 R41
2:10
2:10
1:55
2:05 2:05 2:25 2:25 3:10 2:15
2:15 3:00 2:15 2:15 2:10
SurryPowerStation
711
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table72.TimetoCleartheIndicatedAreaof100PercentoftheAffectedPopulation
Summer
Summer
Summer
Winter
Winter
Winter
Winter
Summer
Midweek
Weekend
Midweek
Weekend
Midweek
Weekend
Midweek
Weekend
Weekend
Midweek
Scenario:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
Region
Midday
Midday
Evening
Midday
Midday
Evening
Midday
Midday
Good
Weather
Rain
Good
Weather
Rain
Good
Weather
Good
Weather
Rain
Snow
Good
Weather
Rain
Snow
Good
Weather
Special
Event
Roadway Impact
Entire2MileRegion,5MileRegion,andEPZ
R01
1:45
1:45
1:45
1:45 1:45 1:50 1:50 1:50 1:45
1:45 1:45 1:45 1:45 1:45 R02
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R03
6:35
7:15
5:55
6:35 5:00 5:55 6:10 6:55 5:05
5:20 6:55 4:55 5:20 8:05 2MileRegionandKeyholeto5Miles
R04
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R05
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R06
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R07
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R08
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R09
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R10
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R11
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R12
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R13
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R14
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50
SurryPowerStation
712
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Summer
Summer
Summer
Winter
Winter
Winter
Winter
Summer
Midweek
Weekend
Midweek
Weekend
Midweek
Weekend
Midweek
Weekend
Weekend
Midweek
Scenario:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
Region
Midday
Midday
Evening
Midday
Midday
Evening
Midday
Midday
Good
Weather
Rain
Good
Weather
Rain
Good
Weather
Good
Weather
Rain
Snow
Good
Weather
Rain
Snow
Good
Weather
Special
Event
Roadway Impact
5MileRegionandKeyholetoEPZBoundary
R15
6:15
7:10
5:45
6:15 5:00 5:45 6:10 6:55 5:00
5:15 6:55 4:55 5:00 7:10 R16
5:50
6:10
5:15
5:25 4:55 5:15 5:50 6:55 4:55
4:55 6:55 4:55 4:55 7:20 R17
4:55
4:55
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 5:50 R18
4:55
4:55
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 5:10 R19
4:55
4:55
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 5:15 R20
4:55
4:55
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 5:00 R21
4:55
4:55
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 5:00 R22
4:55
4:55
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 4:55 R23
4:55
4:55
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 4:55 R24
4:55
4:55
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 4:55 R25
4:55
4:55
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 4:55 R26
4:55
4:55
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 4:55 R27
4:55
4:55
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 4:55 R28
4:55
5:05
4:55
4:55 4:55 4:55 4:55 6:55 4:55
4:55 6:55 4:55 4:55 4:55 R29
5:55
6:20
5:25
5:40 4:55 5:25 5:50 6:55 4:55
4:55 6:55 4:55 4:55 6:45 StagedEvacuation2MileRegionandDownwindto5Miles
R30
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R31
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R32
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R33
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R34
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R35
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R36
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R37
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R38
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R39
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R40
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50 R41
4:50
4:50
4:50
4:50 4:50 4:50 4:50 6:50 4:50
4:50 6:50 4:50 4:50 4:50
SurryPowerStation
713
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table73.TimetoClear90Percentofthe2MileAreawithintheIndicatedRegion
Summer
Summer
Summer
Winter
Winter
Winter
Winter
Summer
Midweek
Weekend
Midweek
Weekend
Midweek
Weekend
Midweek
Weekend
Weekend
Midweek
Scenario:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
Region
Midday
Midday
Evening
Midday
Midday
Evening
Midday
Midday
Good
Weather
Rain
Good
Weather
Rain
Good
Weather
Good
Weather
Rain
Snow
Good
Weather
Rain
Snow
Good
Weather
Special
Event
Roadway Impact
Entire2MileRegionand5MileRegion
R01
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R02
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 2MileRegionandKeyholeto5Miles
R04
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R05
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R06
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R07
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R08
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R09
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R10
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R11
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R12
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R13
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R14
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 StagedEvacuation2MileRegionandDownwindto5Miles
R30
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R31
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R32
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R33
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R34
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R35
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R36
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R37
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R38
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R39
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R40
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05 R41
1:05
1:05
1:00
1:00 1:00 1:05 1:05 1:05 1:00
1:00 1:00 1:00 1:00 1:05
SurryPowerStation
714
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table74.TimetoClear100Percentofthe2MileAreawithintheIndicatedRegion
Summer
Summer
Summer
Winter
Winter
Winter
Winter
Summer
Midweek
Weekend
Midweek
Weekend
Midweek
Weekend
Midweek
Weekend
Weekend
Midweek
Scenario:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
Region
Midday
Midday
Evening
Midday
Midday
Evening
Midday
Midday
Good
Weather
Rain
Good
Weather
Rain
Good
Weather
Good
Weather
Rain
Snow
Good
Weather
Rain
Snow
Good
Weather
Special
Event
Roadway Impact
Entire2MileRegionand5MileRegion
R01
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R02
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
2MileRegionandKeyholeto5Miles
R04
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R05
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R06
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R07
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R08
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R09
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R10
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R11
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R12
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R13
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R14
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
StagedEvacuation2MileRegionandDownwindto5Miles
R30
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R31
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R32
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R33
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R34
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R35
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R36
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R37
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R38
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R39
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R40
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
R41
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
1:45
SurryPowerStation
715
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Table75.DescriptionofEvacuationRegions
Reg ion
Description
PAZ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18A
18B
18C
18D
19A
19B
20A
20B
21
22A
22B
23
24
R01
2MileRadius
x
R02
5MileRadius
x x x
x x
x
x
x
x
x
R03
FullEPZ
x x x x x x x x x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Evacuate2MileRadiusandDownwindto5Miles
Reg ion
Wind
Direction
Towards
PAZ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18A
18B
18C
18D
19A
19B
20A
20B
21
22A
22B
23
24
R04
NNW,N
x
x
x
x
R05
NNE
x
x
x
x
R06
NE,ENE
x
x
x
x
R07
E
x
x
N/A
ESE
RefertoR01
R08
SE
x x
R09
SSE,S
x
x x
R10
SSW
x x
x x
R11
SW
x x
x
R12
WSW,W
x x
x
R13
WNW
x x
x
x
R14
NW
x
x
x
SurryPowerStation
716
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Evacuate5MileRadiusandDownwindtoEPZBoundary
Reg ion
Wind
Direction
Towards
PAZ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18A
18B
18C
18D
19A
19B
20A
20B
21
22A
22B
23
24
R15
NNW,N
x x x
x x
x
x
x
x
x
x
x
x
x
x
x
x
R16
NNE
x x x
x x
x
x
x
x
x
x
x
x
x
x
x
x
R17
NE
x x x
x x
x
x
x
x
x
x
x
x
x
x
x
R18
ENE
x x x
x x
x
x
x
x
x
x
x
x
x
R19
E
x x x
x x
x
x
x
x
x
x
x
x
x
x
R20
ESE
x x x
x x
x
x
x
x
x
x
x
x
R21
SE
x x x
x x
x
x
x
x
x
x
x
x
x
R22
SSE
x x x
x x
x
x
x
x
x
x
x
x
x
R23
S
x x x x x x
x
x
x
x
x
x
x
x
x
R24
SSW
x x x x x x x
x
x
x
x
x
x
x
x
x
R25
SW
x x x x x x x x x
x
x
x
x
x
x
x
x
R26
WSW
x x x x x x x x x
x
x
x
x
x
R27
W
x x x x x x
x x
x
x
x
x
x
x
R28
WNW
x
x x x
x x
x
x
x
x
x
x
x
R29
NW
x
x x x
x x
x
x
x
x
x
x
x
x
SurryPowerStation
717
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
StagedEvacuation2MileRadiusEvacuates,thenEvacuateDownwindto5Miles
Region
Wind
Direction
Towards
PAZ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18A
18B
18C
18D
19A
19B
20A
20B
21
22A
22B
23
24
R30
NNW,N
x
x
x
x
R31
NNE
x
x
x
x
R32
NE,ENE
x
x
x
x
R33
E
x
x
N/A
ESE
RefertoR01
R34
SE
x x
R35
SSE,S
x
x x
R36
SSW
x x
x x
R37
SW
x x
x
R38
WSW,W
x x
x
R39
WNW
x x
x
x
R40
NW
x
x
x
R41
5MileRegion
x x x
x x
x
x
x
x
x
PAZ(s)ShelterinPlaceuntil90%ETEforR01,then
Evacuate
PAZ(s)ShelterinPlace
PAZ(s)Evacuate
SurryPowerStation
718
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure71.VoluntaryEvacuationMethodology
SurryPowerStation
719
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure72.PLANTShadowRegion
SurryPowerStation
720
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure73.CongestionPatternsat30MinutesaftertheAdvisorytoEvacuate
SurryPowerStation
721
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure74.CongestionPatternsat2HoursaftertheAdvisorytoEvacuate
SurryPowerStation
722
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure75.CongestionPatternsat3HoursaftertheAdvisorytoEvacuate
SurryPowerStation
723
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure76.CongestionPatternsat4HoursaftertheAdvisorytoEvacuate
SurryPowerStation
724
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure77.CongestionPatternsat5HoursaftertheAdvisorytoEvacuate
SurryPowerStation
725
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure78.CongestionPatternsat6Hours,15MinutesaftertheAdvisorytoEvacuate
SurryPowerStation
726
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure79.EvacuationTimeEstimatesScenario1forRegionR03
Figure710.EvacuationTimeEstimatesScenario2forRegionR03
0 20 40 60 80 100 120 140 0
30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 VehiclesEvacuating (Thousands)
ElapsedTimeAfterEvacuationRecommendation(min)
EvacuationTimeEstimates
Summer,Midweek,Midday,Good(Scenario1) 2MileRegion 5MileRegion EntireEPZ 90%
100%
0 20 40 60 80 100 120 140 0
30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 VehiclesEvacuating (Thousands)
ElapsedTimeAfterEvacuationRecommendation(min)
EvacuationTimeEstimates
Summer,Midweek,Midday,Rain(Scenario2) 2MileRegion 5MileRegion EntireEPZ 90%
100%
SurryPowerStation
727
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure711.EvacuationTimeEstimatesScenario3forRegionR03
Figure712.EvacuationTimeEstimatesScenario4forRegionR03
0 20 40 60 80 100 120 140 0
30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 VehiclesEvacuating (Thousands)
ElapsedTimeAfterEvacuationRecommendation(min)
EvacuationTimeEstimates
Summer,Weekend,Midday,Good(Scenario3) 2MileRegion 5MileRegion EntireEPZ 90%
100%
0 20 40 60 80 100 120 140 0
30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 VehiclesEvacuating (Thousands)
ElapsedTimeAfterEvacuationRecommendation(min)
EvacuationTimeEstimates
Summer,Weekend,Midday,Rain(Scenario4) 2MileRegion 5MileRegion EntireEPZ 90%
100%
SurryPowerStation
728
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure713.EvacuationTimeEstimatesScenario5forRegionR03
Figure714.EvacuationTimeEstimatesScenario6forRegionR03
0 20 40 60 80 100 120 140 0
30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 VehiclesEvacuating (Thousands)
ElapsedTimeAfterEvacuationRecommendation(min)
EvacuationTimeEstimates
Summer,Midweek,Weekend,Evening,Good(Scenario5) 2MileRegion 5MileRegion EntireEPZ 90%
100%
0 20 40 60 80 100 120 140 0
30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 VehiclesEvacuating (Thousands)
ElapsedTimeAfterEvacuationRecommendation(min)
EvacuationTimeEstimates
Winter,Midweek,Midday,Good(Scenario6) 2MileRegion 5MileRegion EntireEPZ 90%
100%
SurryPowerStation
729
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure715.EvacuationTimeEstimatesScenario7forRegionR03
Figure716.EvacuationTimeEstimatesScenario8forRegionR03
0 20 40 60 80 100 120 140 0
30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 VehiclesEvacuating (Thousands)
ElapsedTimeAfterEvacuationRecommendation(min)
EvacuationTimeEstimates
Winter,Midweek,Midday,Rain(Scenario7) 2MileRegion 5MileRegion EntireEPZ 90%
100%
0 20 40 60 80 100 120 140 0
30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 VehiclesEvacuating (Thousands)
ElapsedTimeAfterEvacuationRecommendation(min)
EvacuationTimeEstimates
Winter,Midweek,Midday,Snow(Scenario8) 2MileRegion 5MileRegion EntireEPZ 90%
100%
SurryPowerStation
730
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure717.EvacuationTimeEstimatesScenario9forRegionR03
Figure718.EvacuationTimeEstimatesScenario10forRegionR03
0 20 40 60 80 100 120 140 0
30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 VehiclesEvacuating (Thousands)
ElapsedTimeAfterEvacuationRecommendation(min)
EvacuationTimeEstimates
Winter,Weekend,Midday,Good(Scenario9) 2MileRegion 5MileRegion EntireEPZ 90%
100%
0 20 40 60 80 100 120 140 0
30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 VehiclesEvacuating (Thousands)
ElapsedTimeAfterEvacuationRecommendation(min)
EvacuationTimeEstimates
Winter,Weekend,Midday,Rain(Scenario10) 2MileRegion 5MileRegion EntireEPZ 90%
100%
SurryPowerStation
731
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure719.EvacuationTimeEstimatesScenario11forRegionR03
Figure720.EvacuationTimeEstimatesScenario12forRegionR03
0 20 40 60 80 100 120 140 0
30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 VehiclesEvacuating (Thousands)
ElapsedTimeAfterEvacuationRecommendation(min)
EvacuationTimeEstimates
Winter,Weekend,Midday,Snow(Scenario11) 2MileRegion 5MileRegion EntireEPZ 90%
100%
0 20 40 60 80 100 120 140 0
30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 VehiclesEvacuating (Thousands)
ElapsedTimeAfterEvacuationRecommendation(min)
EvacuationTimeEstimates
Winter,Midweek,Weekend,Evening,Good(Scenario12) 2MileRegion 5MileRegion EntireEPZ 90%
100%
SurryPowerStation
732
KLDEngineering,P.C.
EvacuationTimeEstimate
Rev.1
Figure721.EvacuationTimeEstimatesScenario13forRegionR03
Figure722.EvacuationTimeEstimatesScenario14forRegionR03
0 20 40 60 80 100 120 140 0
30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 VehiclesEvacuating (Thousands)
ElapsedTimeAfterEvacuationRecommendation(min)
EvacuationTimeEstimates
Winter,Weekend,Midday,Good,SpecialEvent(Scenario13) 2MileRegion 5MileRegion EntireEPZ 90%
100%
0 20 40 60 80 100 120 140 0
30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 VehiclesEvacuating (Thousands)
ElapsedTimeAfterEvacuationRecommendation(min)
EvacuationTimeEstimates
Summer,Midweek,Midday,Good,RoadwayImpact(Scenario14) 2MileRegion 5MileRegion EntireEPZ 90%
100%