L-2012-166, Inservice Inspection Plan Third Ten-Year Interval Unit 2 Relief Request No. 13, Revision 01

From kanterella
(Redirected from ML12172A142)
Jump to navigation Jump to search

Inservice Inspection Plan Third Ten-Year Interval Unit 2 Relief Request No. 13, Revision 01
ML12172A142
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 06/11/2012
From: Katzman E
Florida Power & Light Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
L-2012-166
Download: ML12172A142 (19)


Text

0 FPL.

Florida Power & Light Company, 6501 South Ocean Drive, Jensen Beach, FL 34957 June 11, 2012 L-2012-166 10 CFR 50.4 10 CFR 50.55a U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555 Re:

St. Lucie Unit 2 Docket No. 50-389 Inservice Inspection Plan Third Ten-Year Interval Unit 2 Relief Request No. 13, Revision 01 Pursuant to 10 CFR 50.55a(a)(3)(ii), Florida Power & Light (FPL) requests relief from the IOCFR50.55a(g)(6)(ii)(F)(4) exception to ASME Code Case N-770-1 that essentially 100%

coverage be achieved for the baseline required volumetric examinations. The details and justification for this request are provided in the attachment to this letter.

FPL requests approval of this relief request to support the upcoming Unit 2 SL2-20 Spring /

Summer 2012 refueling outage.

Please contact Ken Frehafer at (772) 467-7748 if there are any questions about this submittal.

Sincerely, Eric S. Katzman Licensing Manager St. Lucie Plant Attachment ESK/KWF 4g7 an FPL Group company

L-2012-166 1 of 18 St. Lucie Unit 2 THIRD INSPECTION INTERVAL RELIEF REQUEST NUMBER 13, REVISION 1 Relief Request In Accordance with 10 CFR50.55a(a)(3)(ii)

--Hardship or Unusual Difficulty without Compensating Increase in Level of Quality or Safety--

1.

ASME Code Component(s) Affected Class 1 pressure retaining dissimilar metal piping welds containing Alloy 82/182.

American Society of Mechanical Engineers (ASME) Code Case N-770-1, Table 1, Examination Categories, Inspection Item B - Unmitigated butt weld at cold leg operating temperature.

2.

Applicable Code Edition and Addenda

The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Rules for Inservice Inspection of Nuclear Power Plant Components,Section XI, 1998 Edition with Addenda through 2000 [1] as amended by 10CFR50.55a,[21 is the code of record for the St. Lucie Unit 2, 3 rd 10-year interval.

10CFR50.55a(g)(6)(ii)(F)(1), effective date August 22, 2011, requires "licensees of existing, operating pressurized water reactors as of July 21, 2011, shall implement the requirements of ASME Code Case N-770-1, subject to the conditions specified in paragraphs (g)(6)(ii)(F)(2) through (g)(6)(ii)(F)(10) of this section, by the first refueling outage after August 22, 2011."

Additionally, 10CFR50.55a(g)(6)(ii)(F)(3) states that the baseline examinations for welds in Code Case N-770-1, Table 1, Inspection Item B, "shall be completed by the end of the next refueling outage after January 20, 2012. Previous examinations of these welds can be credited for baseline examinations if they were performed within the re-inspection period for the weld item in Table 1 using Section X1, Appendix VIII requirements and met the Code required examination volume of essentially 100 percent. Other previous examinations that do not meet these requirements can be used to meet the baseline examination requirement, provided NRC approval of alternative inspection requirements in accordance with paragraphs (a)(3)(i) or (a)(3)(ii) of this section is granted prior to the end of the next refueling outage after January 20, 2012."

L-2012-166 2 of 18 St. Lucie Unit 2 THIRD INSPECTION INTERVAL RELIEF REQUEST NUMBER 13, REVISION I

3.

Applicable Code Requirement

ASME Code Case N-770-1 as Amended by I0CFR50.55a(g)(6)(ii)(F)(4)

CLASS 1 PWR Pressure Retaining Dissimilar Metal Piping and Vessel Nozzle Butt Welds Containing Alloy 82/182 Insp Parts Examined Item Extent and Frequency of Examination Bare metal visual examination once per interval Unmitigated butt weld at Cold Leg Essentially 100% volumetric examination for axial and operating B

circumferential flaws in accordance with the applicable temperature (-2410) requirements of ASME Section XI, Appendix VIII, every

> 525°F (274°C) and second inspection period not to exceed 7 years. Baseline

< 580'F (304°C) examinations shall be completed by the end of the next refueling outage after January 20, 2012.

As defined by ASME Code Case N-460,i33 essentially 100% means greater than 90% of the examination volume of each weld where reduction in coverage is due to interference by another component or part geometry.

ASME Section Xl, Appendix VIII, Supplement 10, "Qualification Requirements for Dissimilar Metal Piping Welds" is applicable to dissimilar metal welds without cast materials.

ASME Section Xl, Appendix VIII, states that the supplement for the examination of cast stainless steel is "in the course of preparation".

4.

Reason for Request

Florida Power and Light is requesting permission to utilize the Ultrasonic examinations performed in accordance with MRP-139 141 during the 2011 (SL2-119) outage to satisfy the baseline examination requirements of 10CFR50.55a(g)(6)(ii)(F)(3). However, the welds listed within this request did not satisfy the required ASME Code Case N-770-1, as amended by 10CFR50.55a(g)(6)(ii)(F)(3), volume coverage due to their configuration.

The scanning limitations prohibited essentially 100% ultrasonic examination coverage of the required examination volume.

10CFR50.55a(g)(6)(ii)(F)(4) provides the following exception to ASME Code Case N-770-1, "the axial examination coverage requirements of -2500(c) may not be considered to be satisfied unless essentially 100 percent coverage is achieved."

Relief is requested from the 10CFR50.55a(g)(6)(ii)(F)(4) exception to ASME Code Case N-770-1 that essentially 100% coverage be achieved for the baseline volumetric examinations.

L-2012-166 3 of 18 St. Lucie Unit 2 THIRD INSPECTION INTERVAL RELIEF REQUEST NUMBER 13, REVISION 1

5.

Proposed Alternative and Basis for Use Proposed Alternative

1) Periodic system pressure tests in accordance with ASME Section XI Category B-P, Table IWB-2500-1.
2) Ultrasonic examinations conducted to the maximum extent possible.
3) During refueling outages, system engineers walkdown Class 1 systems inside containment. This walkdown was performed to look for system anomalies that could affect plant performance. These examinations identified no evidence of leakage for these components.
4) Bare metal visual examinations of the Inspection Item B welds in accordance with ASME Code Case N-722-1. Those examinations identified no evidence of leakage for these components. The combination of these examinations provides confidence that an acceptable level of quality and safety has been maintained.

Basis FPL's, St. Lucie unit 2 contains a thirty (30) inch I.D. inlet and a thirty (30) inch I.D. outlet weld connected to each of the four (4) reactor coolant pumps (RCPs). Each weld joins mill-clad SA-516, Grade 70 carbon steel pipe with SA-240-304L stainless steel cladding to a SA-351, Grade CF8M cast stainless steel safe end.

All of the welds covered by this relief request are found in cold leg temperature (TO,1d) regions of the system. This means there is a lower probability of crack initiation, and a slower crack growth rate. These welds are also very highly flaw tolerant, as demonstrated in the MRP-109 report.151 No service-induced flaws have been found in these large diameter pipes, even though most of the plants of interest have been in service for over 25 years. [6,7]

During the 2011 (SL2-19) outage, examinations were performed of the eight (8) reactor coolant pump inlet/outlet dissimilar metal welds utilizing a manual non-encoded phased array Ultrasonic (UT) technique.

In all cases, examination was performed from the carbon steel side of the weld. The equipment, procedure, and personnel utilized for the performance of the examinations were qualified in accordance with the requirements of ASME Section XI, Appendix VIII, Supplement 10, as implemented through the Performance Demonstration Initiative (PDI) program.

Prior to the issuance of the revised final rule 10CFR50.55a (effective date August 22, 2011) that includes the requirement to implement the requirements of ASME Code Case N-770-1 as amended, the Materials Reliability Program issued "Primary System Piping Butt Weld Inspection and Evaluation Guidelines (MRP-139)" that included mandatory elements per the implementation protocol of the Nuclear Energy Institute (NEI) 03-08 initiative. The guideline provided a strategy to manage degradation of butt welds with

L-2012-166 4 of 18 St. Lucie Unit 2 THIRD INSPECTION INTERVAL RELIEF REQUEST NUMBER 13, REVISION 1 alloy 82/182 in primary system piping that are 1" NPS or greater and exposed to temperatures greater than or equal to cold leg temperature. The guideline was structured to categorize weld inspections to acknowledge mitigation, temperature, safety significance of flaw orientation, and inspection capabilities.

The guideline defined examination locations on the piping, examination requirements for various weld categories, and extent of examination for each location. Finally, the guideline provided evaluation procedures to determine acceptance of flaws, justification for mitigation actions, and changing examination categories.

MRP-139 delineated acceptable coverage of the required examination volume to be calculated separately for axial and circumferential flaw orientations using the actual weld configuration and the procedure's essential variables, if needed. Coverage calculations could be made by manual plotting or by using computer-aided design (CAD) or other software that models the procedure's beam angles and scan plans.

The inspection was considered complete when, using the qualified procedure and personnel, the coverage for both axial and circumferential flaws was greater than 90% of the required examination volume.

" If >90% coverage for circumferential or axial flaws was not attained then the following independent actions were required:

- If greater than 90% coverage for circumferential flaws could not be met (using qualified personnel and procedures), then specific actions described within the document were required.

- If greater than 90% coverage for axial flaws could not be met, but greater than 90%

coverage was obtained for circumferential flaws (using qualified personnel and procedures), then the examination for axial flaws would be completed to achieve the maximum coverage possible with limitations noted in the examination report.

The UT techniques proposed for each weld were reviewed to determine the amount of examination coverage that could be achieved.

Extensive surface conditioning was performed to obtain the maximum amount of coverage. As a result, essentially 100% of the susceptible material in all 8 welds was examined for circumferential flaws.

However, due to the weld taper and no access for examination from the cast CF8M safe-end side of the welds, limited examination volume coverage was noted for axial flaws.

Therefore, FPL satisfied the examination volume coverage requirements identified in MRP-139.

The amount of coverage that could be credited was determined in accordance with the qualified examination procedure utilizing field obtained contours. Qualification for the UT examination of the cast material is "in the course of preparation." No coverage is claimed in the cast material for the MRP-139 or ASME Code Case N-770-1 exam volume in Table 1, since access for scanning was not available from the cast side of the weld, and the qualified procedure specifically excludes cast materials in the coverage calculation.

However, as shown in the figures, the theoretical beam path extends into the cast

L-2012-166 5 of 18 St. Lucie Unit 2 THIRD INSPECTION INTERVAL RELIEF REQUEST NUMBER 13, REVISION I material for the examinations performed from the carbon steel side of the weld. While the coverage is not included in the Table, UT examinations conducted using Appendix VIII qualified procedures also provide reasonable assurance for the detection of flaws on the cast side of dissimilar metal welds, even though there is presently no standardized process to qualify them.

For the MRP-139 axial and circumferential flaw examination volume coverage achieved, the calculation includes the carbon steel base material and susceptible material. For the ASME Code Case N-770-1 axial and circumferential flaw examination volume coverage achieved, the calculation includes the volume identified in Figure 1 of the code case which, in the case of St. Lucie unit 2, includes cast stainless steel.

Table 1 provides the percent of coverage credited for MRP-1 39, Code Case N-770-1 (as described above), and references specific figures that illustrate the extent of coverage for each weld. The angles, ultrasonic wave modes (Shear-S or Longitudinal-L) that were employed for the manual non-encoded phased array examinations, and limitations encountered are listed for each weld.

Arrows and lines on the figures illustrate the phased array search unit beam direction and extent of the area examined.

The examination volume coverage for MRP-139 included the carbon steel base material and susceptible material.

As shown in Table 1, essentially 100% of the examination volume coverage for the safety significant circumferential flaw in the carbon steel base material and susceptible material was achieved during the MRP-139 examinations.

However, the MRP-139 axial flaw examination volume coverage did not satisfy the essentially 100% requirement. As identified in MRP-109 [5], the axial flaw(s) that could result from a primary water stress corrosion cracking (PWSCC) mechanism in the susceptible alloy 82/182 butt weld are not safety significant. The axial critical flaw length for an RCP inlet and outlet alloy 82/182 butt weld is 38.2" (MRP-109 Table 5-2) which exceeds the width of the St. Lucie Unit 2 RCP inlet and outlet alloy 82/182 butt weld material width of 1.75"-2.5". Therefore a critical axial flaw in an RCP inlet or outlet alloy 82/182 butt resulting from a PWSCC mechanism is not credible and improving the exam axial flaw examination volume coverage would not result in an increase in safety. During the St. Lucie Unit 2 2011 refueling outage, examination volume coverage for the RCP inlet and outlet welds was extensively improved by grinding and contouring to meet the ASME Section XI, Appendix VIII, Supplement 10 qualified procedure scanning requirements for the search units. Further contouring is limited by design minimum wall calculations for the piping. To obtain acceptable surface contour conditions for axial flaw examinations, weld build up of the DM weld, additional contouring, and a Construction Code RT examination would be required. This additional effort to improve axial flaw coverage would be a hardship that would not result in an increase of health and safety to the public.

As stated above, the initiation or growth of a safety significant flaw in a cold leg alloy 82/182 DM butt weld is extremely unlikely. However, as an added measure of safety, the industry imposed an NEI-03-08 "needed" requirement, to improve their RCS leak detection capability in part due to the concern with PWSCC.

St. Lucie Unit 2 has adopted the standardized approach to measuring RCS leak rate in WCAP-16423 [8] and

L-2012-166 6 of 18 St. Lucie Unit 2 THIRD INSPECTION INTERVAL RELIEF REQUEST NUMBER 13, REVISION I has proceduralized the action levels in WCAP-16456.[91 The enhanced leak rate monitoring and detection procedure monitors specific values of unidentified leakage, seven day rolling average, and baseline means. Action levels are initiated as low as when the unidentified leak rate exceeds 0.1 gpm.

The enhanced leak detection capability provides an increased level of safety that if a flaw were to grow through wall, although unlikely, that is would be detected prior to it growing to a safety significant size.

Therefore, examination coverage meeting the MRP-139 volume, which includes essentially 100% of the susceptible material for the safety significant circumferential flaw and a significant percentage of the susceptible material for the non safety significant axial flaw (Attachment 1) combined with the periodic system pressure tests and outage system walk downs, provides an acceptable level of qualify and safety for identifying degradation from PWSCC prior to a safety significant flaw developing.

6.

Duration of Proposed Alternative This relief request is applicable to the St. Lucie unit 2 Third Inservice Inspection Interval which began August 8, 2003 and ends August 7, 2013.

7.

References

1. ASME Section XI, "Rules For Inservice Inspection of Nuclear Power Plant Components,"

1998 Edition with Addenda through 2000.

2. Nuclear Regulatory Commission Federal Register part II, Vol. 76, No. 119, effective date August 22, 2011, 10 CFR part 50 Industry Codes and Standards; Amended Requirements; Final Rule.
3. ASME Section X1, Division 1, Code Case N-460, "Alternative Examination Coverage for Class 1 and Class 2 Welds, Section Xl, Division 1."
4. Material Reliability Program: Primary System Piping Butt Weld Inspection and Evaluation Guideline (MRP-139, Revision 1), EPRI, Palo Alto, CA: 2008. 1015009.
5. Material Reliability Program, Alloy 82/182 Pipe Butt Weld Safety Assessment for US PWR Plant Designs (MRP-109): Westinghouse and CE Design Plants, EPRI, Palo Alto, CA: 2005. 1009804.
6. "Changing Frequency of Inspections for PWSCC Susceptible Welds at Cold Leg Temperatures", in Proceedings of 2011 ASME Pressure Vessels and Piping Conference, July 17-21, 2011, Baltimore, Maryland, USA.
7. "Technical Basis for a Flaw tolerance Option for Code Case N-770-1 for Large Diameter Cold Leg Piping to Main Coolant Pump Welds, with Obstructions", in Proceedings of 2010 ASME Pressure Vessels and Piping Division Conference, July 2010, Bellevue, WA, USA.

L-2012-166 7 of 18 St. Lucie Unit 2 THIRD INSPECTION INTERVAL RELIEF REQUEST NUMBER 13, REVISION I

8. WCAP-16423-NP, Rev. 0, "Pressurized Water Reactor Owners Group Standard Process and Methods for Calculating RCS Leak Rate for Pressurized Water Reactors,"

Westinghouse Electric Co., September 2006.

9. WCAP-16456-NP, Rev. 0, "Pressurized Water Reactor Owners Group Standard RCS Leakage Action Levels and Response Guidelines for Pressurized Water Reactors,"

Westinghouse Electric Co., September 2006.

L-2012-166 8 of 18 St. Lucie Unit 2 THIRD INSPECTION INTERVAL RELIEF REQUEST NUMBER 13, REVISION 1 Table 1 MRP-1391" N-770-1 (Z Nozz Insp.

Volume Volume Angle/

Component ID Location Size Item Coverage Coverage Wave Fig.

Comments/Limitation Cat.

Axial Circ Axial Circ Mode Flaw Flaw Flaw Flaw RCP 2A1 Inlet 25-70L RC-112-1501-771-C Elbow(CS) to Safe-end 30 B

69%

100%

50%

73%

35-65S 1

Cast SS, Weld Taper (Cast SS)

RC-112-1066-771 RCP 2A1 Outlet Safe-end 25-70L (Cast SS) to Pipe(CS) 30 B

66%

100%

49%

74%

35-65S 2

Cast SS, Weld Taper RCP 2A2 Inlet 25-70L RC-115-1501-771-A Elbow(CS) to Safe-end 30 B

64%

100%

52%

82%

35-65S 3

Cast SS, Weld Taper (Cast SS)

RCP 2A2 Outlet 25-70L RC-115-701-771 Safe-end (Cast SS) to 30 B

68%

97%

49%

71%

35-65S 4

Cast SS, Weld Taper Pipe (CS)

I RCP 281 Inlet 25-70L RC-121-1501-771-B Elbow (CS) to Safe-end 30 B

66%

99%

52%

78%

35-65S 5

Cast SS, Weld Taper (Cast SS)

RCP 2B1 Outlet 25-70L Cast SS, Weld Taper, Spray RC-121-901-771 Safe-end (Cast SS) to 30 B

64%

99.4%

51%

77.9%

35-65S 6,7 CsSSWe Pp(C)35-65S Nozzle Pipe (CS)

RCP 282 Inlet 25-70L RC-124-1501-771-D Elbow (CS) to Safe-end 30 B

67%

100%

49%

72%

35-65S 8

Cast SS, Weld Taper (Cast SS)

I RCP 282 Outlet 25-70L 9,

Cast SS, Weld Taper, Spray RC-124-1301-771 Safe-end (Cast SS) to 30 B

66%

99.1%

50%

77%

35-65S 10 C

Nozzle Pipe (CS)

S 1

Nzl Note 1-F-or the M1-RP--139 axial and circumferential flaw examination volume coverage aclieved, the calculation base material and susceptible material.

includes the carbon steel Note 2-For the ASME Code Case N-770-1 axial and circumferential flaw examination volume coverage achieved, the calculation includes the volume identified in Figure 1 of the code case.

L-2012-166 9 of 18 St. Lucie Unit 2 THIRD INSPECTION INTERVAL RELIEF REQUEST NUMBER 13, REVISION 1 OM Cast SST Weld Safe End Cs Elbow J

MIRP-139 tnqxeclJ" Cast SST Iecti Excmrnabon Volume (1.98 sq. in.)

Examination Volume

. 73 sq. in.)

ASPAE Secijon Xl lnspec!lon Exanination Volume ICasl SST - MRP.139)

(2.71 sq. in.)

360-151-057 360-151-07 25"-70 TRL 25I-70 TRL 151-05 35-TRS 35-W TRS 5t70 TRL r6-TRS "K

    • ~ ~~~

~~

'__*_*I Axial Scans (Circumferential Flaws)

MRP-139 Inspection Exarlnation Volumwe Lftimaton 100% Coverage -MRP-139 Exam Volume (Per EPRI-OMW-PA-1 exam volume can be daimed up 73% Coverage-ASME Exam Volume ((2.71-.73)/2.71*100) to weld centerline) (.02 sq. in,)

(Cast SS exam volume excluded)

Circ Scans (Axial Flaws) 69% Coverage-MRP-139 Volume ((1.98-62)11.98'100) 50% Coverage-ASME Exam Volume (2.71-.62-.73)12.71"100)

(cast SS exam volume excluded; exams not conducted on weld due to taper)

Figure 1 2A1 RCP Inlet (RC-1 12-1501-771-C)

L-2012-166 10 of 18 St. Lucie Unit 2 THIRD INSPECTION INTERVAL RELIEF REQUEST NUMBER 13, REVISION 1

~DM Yftl C.1t SST SPp Cast SST Inspection_

Examnination Volume (0.64 sq In.)

ASME Section XA Inspection Examination Volume (Cast SST - MRP-1 39)

(2.42 sq. In.)

L URP-139 Inspection Examination Volume (1.78 sq. in.)

Ali tour contours allow the transducer to be

=casnd ove IaR of the weld; thus hepingernent of the MRP examInaon notmn with bows angles between 40- and 50-dagroes Is prcIcall wvfth no Itmitation.

MRP-139 Itmpectin Examination Volutm Limitation (per EPRI4)MW-PA-1 exam volume can be tlaimed up to weldc ontetine) (0.60 sq. In.)

A.iat Scans (Cirovmfreatiat Flaws) 100% Coverage. MRP-139 Exam Volnne 74% Coverage - ASME Exam Volume ((2-42 -0.64F2.42 1tO0)

(cast SS exam volume excluded)

Circumferential Scans (Axial Plaws) 66% Coverage -URP-139 Exam Volume ((1.T-0460)II.78" 100) 4*%

Covoanr, - ASME Exam Volumao (42.40.64-0.60112,42 100)

(casm SS exam volume excluded, exams not conducted on weld due to taper)

Figure 2 2A1 Outlet (RC-112-1066-771)

L-2012-166 11 of 18 St. Lucie Unit 2 THIRD INSPECTION INTERVAL RELIEF REQUEST NUMBER 13, REVISION 1 0.25.-j L-0.25 DM Cast S Weld Safe E CS Elbow MRP-139 Inspection

\\

'-Cm Examination Volume (2.65 sq. in.)

Exa

\\

(6 ST End it SST Inspection mination Volume rq. in.)

ASME Section XI Inspection Examsination Volume (Cast SST + MRP-139)

(3.25 sq. in.)

Axial Scans (Circumferential Flaws) 100% Coverage -MRP-139 Exam Volume 82% Coveraqe-ASME Exam Volume ((3.25-.60)/3.25"100)

(Cast SS exam volume excluded)

- MRP-139 Inspection Examination Volume I-mitalior (per EPRt-OMW-PA-1 exam volume can be claimed up to wehl contertine)(.9 6 so in.)

Circ Scans (Axial Flaws) 64% Coveraqe-MRP-139 Volume ((2.65-.961/2.65°1 00) 52% Coverage-ASME Exam Volume (3.25-.96-.60)13.25"100)

(cast SS exam volume excluded: exams not conducted on weld due to taper)

Figure 3 D2025 S

11 CastSST OM C s Sae End 1*d Pipe

L-2012-166 12 of 18 St. Lucie Unit 2 THIRD INSPECTION INTERVAL RELIEF REQUEST NUMBER 13, REVISION I URP-l blpseciiEobamlmat Volume Ibohilum (fl30 sq.b PAdal Scans (Orcumfererntal Flaws) 97 % Coveraae -MR P-139 Exam \\,blume ((1.63-D48)/1.O31 00) 71% Coverage-ASME Exam~olume ((2.29-f48-h1y229l100)

(Cast S S eam %olume excluded)

MRP-139 Ispection Eaninabon \\,vlurne Uitnatons 9

(per EPRý.DMW PA-I enm iolume can be daimed up to weld centerline)(.53 sq. in.)

Citc Scans (Axiai Flaws) 6% CoveraAe-MRP-139 Volume ((1.53-53)/1.83 M 100) 49% Coverage-ASME Exam Volume (2.24-.53-.01)/2-.24100)

(oastSS examvolume excluded: exams not conducted on smeld duetotaper)

Figure 4 2A2 Outlet (RC-115-701-771)

L-2012-166 13 of 18 St. Lucie Unit 2 THIRD INSPECTION INTERVAL RELIEF REQUEST NUMBER 13, REVISION 1 0.25H H-

ý- 025 DIM CastSST Weld Safe End Cs Elbow MRP-139 Inspection

\\

C' Cast SST Inspection Examination Volume (1.94 sq. in.)

Examination Volume

\\

(53sq. m.)

ASI*E Section Xl Inspection Examination Volume (Cast SST - MRP-139)

(2.47 sq. In.)

I A-o TRL I 5.70. TRL TRS T R

\\\\

  • -.L o

\\

\\,/-.MIRIP-1 39 Inspec~lion Exa~minatio

~\\ >

\\

Volume imiltallon Axial Scans (Circumferential Flaws)

MRP-139 Inspection Examination Volume Limtation 99% Coverage -MRP-l139 Exam Volume ((1.94-.01)/1.94'100)

(per EPRI.D14W.PA-1 exam volume can be claimed up 78% Coveraae-ASME Exam Volume ((2.47-.53-.01)2.47"100) to weld centerline)(.65 sq. in.)

(Cast SS exam volume excluded)

Circ Scans (Axial Flaws) 66% Coveraae-MRP-139 Volume(O.94-.65Y1.94100) 52% Coveraae-ASME Exam Volume(

2.

4 7-.

6 5-. 53) 12.71"100)

(cast SS exam volume excluded; exams not conducted on weld due to taper)

Figure 5 2B1 Inlet (RC-121-1501-771-B)

L-2012-166 14 of 18 St. Lucie Unit 2 THIRD INSPECTION INTERVAL RELIEF REQUEST NUMBER 13, REVISION 1 0.25

- 0.25 CS Pipe Cast SST Inspection Exomination Volume

(.54 sq. in.)

MRP-t39 Inspection Examination Volume (1.97 sq. In )

ASME Section XI Inspection Examinetion Volume (Cast SST + MRP-139)

(2.51 sq. in.)

All four contours allow the transducer to be scanned over part of the weld thus impingement of the MRP examination volume with beam angles between 40 and 50 degrees is prclical with no limitation.

Axial Scans (Circumferenbal Flaws) 99.4% Coverage-MRP-139 Exam Volume (see detailed evaluaion) 77.9% Coverage-ASME Exam Volume((2,51-.

54 J

2 51-100-(100-99 4.))

(cas SS exam volume excluded)

MRP-139 examination volume coverage over total OD circumference with no obsturctions=91 5-1.97 sq.

in.= 180.3 cu. in.

% of total MRP-139 examination volume oJtside of obstructed areas= 180 3!191.5*100=94 2%

% MRP-139 examiantion volume coveraoe around Sorav Nozzle = 4.95"2=9.9 cu in: 9.9i191 5"100=5.2%

% fARP-i 39 examination volume coverage in obsturcted area =5.2%

Total % Examination Coverage of MRP-139 Examination Volume=94% 5 2%=99.4%

L-MRP.139 Inspecton Examination Volume Limitation (per EPRI-OMW-PA-1 exam volume can be claimed up to weld centedine) ( 70 so in.)

Circ Scans (Axial Flaws) 64% Coverage-MRP-139 Volume((1.97-.70)/i.97*100) 51% Coveraqe-ASME Exam Volume(2.51-.54-.70D)2.51 100)

(cast SS exam volume excluded; exams not conducted on weld due to taper)

Figure 6 281 Outlet (RC-121-901-771)

L-2012-166 15 of 18 St. Lucie Unit 2 THIRD INSPECTION INTERVAL RELIEF REQUEST NUMBER 13, REVISION I Figure 7 2B1 Outlet (RC-121-901-771)

L-2012-166 16 of 18 St. Lucie Unit 2 THIRD INSPECTION INTERVAL RELIEF REQUEST NUMBER 13, REVISION 1 0.25-f- --

ll, 0o25

'DM Weld Cast SST C S Safe End Elbow 1AFI-1391nspeclon SS nedn Examation Volume (1.66 sq. in.)

Examination Volime

(.63.s1. in.)

ASME Section XI Inspection Examinaion Voltume (Cast SST + MRP-139)

(229 sq-in.)

380-151-057 60-151-057 1

25

"-70 "

TRL 25*-701 TRL 35O*O*

°T RS 35*-**

TRS

-\\ --

-MRP-139 Inspection Examination Volume Limitatr (per EPRJ-DMW-PA-1 exam volume can be claim Axial Scans (Circumferential Flaws) to weld centerline) (.54 so in 100%Coveraoe -MRP-139 Exam Volume Circ Scans (Ax ial Flaws 72% Coverage-ASME Exam Volume((2. 2 9-.63)/22 9 "100) 67% Coverage-MRP-139 Volume ((1.66-.54)'1.66-100)

(Cast SS exam volume excluded) 49% Coveraoe-ASME Exam Volume (2.29-.54-.63)!2.29-100)

(cast SS exam volume excluded: exams not conducted on weld due to taper)

Figure 8 2B2 Inlet (RC-124-1501-771-D)

L-2012-166 17 of 18 St. Lucie Unit 2 THIRD INSPECTION INTERVAL RELIEF REQUEST NUMBER 13, REVISION 1 Caut SST CS PIpe

/ /

Examlnutole Volume (0.64 q. i.)

ASMM Section X] Irlnpect Exaamnation Volume (Cast SST x MRP.139)

(2.62 Iq. inj NIro.139 Intpeciion Examnatoln Volume (1.98 q. In.)

A li fOL tour notow tW bansducer to to Scaned o-er pilt or i

weld; thus Imprelemelen of fiI. MRP examlotme etian oe erlrhee antgles between 40- and 50-dngrees Is practical with no limitation.

Axial Scans (Cictumferotial FLaws) 99.1 % Coserage - MRP-139 Exam Volume (aea detailed ealuationi 77% Cowrtua - ASKE Exam Volume (11462.0.64I2.62 100 -1100 - 9.9.1 )

(cast SS o*,i volum exclude'd)

MRP-139 examination volume coverage over Iotal OD circumference with no obstructions = 90.4" 1.98 sq. in. =179 c

% of total MRP-139 examination volume outside of obstructed areas = 179/189.3 ' 100 = 94.6%

% MRP-139 examination volume coverage around Spray Nozzle = 4.25" 2 = 8.5 cu in; 8.51189.3 100 = 4.5%

% MRP-139 examination volume coveraoe in obstructed areas = 4.5%

Total % Examination Coverage of MRP-139 Examination Volume = 94.6% + 4.5% =99.1%

MRP-38 i ectia Examnation Volume Umitation (per EPRI-OMW-PA-1 exam notmno Can DO etaMnO up W meld cenerltlm) (0.68 sit. In.)

Circumferental Scan, (Axial Flaws) 68% Cocruge - MRP-139 Exam Volume ((1.94.1111.8a 100I 50% Co-ere -ASME Exam Volure (2.62-0.64-0.68112.62

  • 1001 (caWt 8, euxam v m oxclhamd a.ssums only par*ial sar.ms on weldt Figure 9 2B2 Outlet (RC-124-1301-771)

L-2012-166 18 of 18 St. Lucie Unit 2 THIRD INSPECTION INTERVAL RELIEF REQUEST NUMBER 13, REVISION I Figure 10 2B2 Outlet (RC-124-1301-771)