ML11132A183

From kanterella
Jump to navigation Jump to search
Calculation 32-9156231-000, CCNPP-1 Pzr Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for Idtb Repair - Non-Proprietary, Attachment 6
ML11132A183
Person / Time
Site: Calvert Cliffs Constellation icon.png
Issue date: 05/11/2011
From: Cheng P
AREVA NP
To:
Office of Nuclear Reactor Regulation
References
32-9156231-000
Download: ML11132A183 (77)


Text

ATTACHMENT (6)

UNIT 1 PRESSURIZER HEATER SLEEVE AS-LEFT J-GROOVE WELD FLAW EVALUATION FOR IDTB REPAIR - NON-PROPRIETARY Calvert Cliffs Nuclear Power Plant, LLC May 11, 2011

Controlled Document0402-01-FOl (20697) (Rev. 015, 10/18/2010)

A CALCULATION

SUMMARY

SHEET (CSS)

ARE VA Document No.

32 9156231 000 Safety Related: 0 Yes L] No Title CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair PURPOSE AND

SUMMARY

OF RESULTS:

Purpose The purpose of the present analysis is to determine from a fracture mechanics viewpoint the suitability of leaving:

degraded J-groove weld material in the Calvert Cliffs Unit 1 pressurizer (PZR) vessel head following the repair of a heater sleeve by the ID temper bead weld (IDTB) procedure. It'is postulated that a small flaw in the head would combine with a large stress corrosion crack in the weld and cladding to form a radial corner flaw that would propagate into the low alloy steel head by fatigue crack growth under cyclic loading conditions.

This document provides a non-propriety version of AREVA NP INC document 32-9116467-003.

Summary of Results Based on a combination of linear-elastic and elastic-plastic fracture mechanics (LEFM and EPFM) analysis of a postulated remaining flaw in the original Alloy 82/182 J-groove weld and cladding material, the Calvert Cliffs Unit 1 PZR lower head is considered to be acceptable for at least { } years of operation from the time the postulated flaw formed in the low alloy steel PZR lower head. The controlling loading condition was determined to be the insurge transient: Insurgel, for which it was shown that with safety factors of 3 on primary loads and 1.5 on:,

secondary loads that the applied tearing modulus (9.36 for uphill side, and 7.046 for downhill side) was still less than the tearing modulus of the low alloy steel head material (9.38 for uphill side, and 45.736 for downhill side).

THE DOCUMENT CONTAINS ASSUMPTIONS THAT SHALL BE THE. FOLLOWING COMPUTER' CODES' HAVE BEEN USED IN THIS DOCUMENT:

VERIFIED PRIOR TO USE CODENERSION/REV CODENERSION/REV F---

E I

Z YES ANSYS/1 2/0

[*NO Page 1 of 76

Controlled Document A

0402-01-FOI (20697) (Rev. 015, 10/1812010)

AR EVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Review Method: [

Design Review (Detailed Check)

- Alternate Calculation Signature Block PIR/A Name and Title and Pages/Sections (printed or typed)

Signature LPILR Date Prepared/ReviewedlApproved Pei-Yuan Cheng P

All Engineer III Heqin Xu l

R All Principal Engineer T. M. Wiger A

All Unit Manager Note: P/RJA designates Preparer (P), Reviewer (R), Approver (A);

LP/LR designates Lead Preparer (LP), Lead Reviewer (LR)

Project Manager Approval of Customer References (N/A if not applicable)

Name Title (printed or typed)

(printed or typed)

Signature Date N/A Mentoring Information (not required per 0402-01)

Name Title Mentor to:

(printed or typed)

(printed or typed)

(P/R)

Signature Date N/R N/R L

Page 2

A AR EVA Controlled Document 0402-01-FOl (20697) (Rev. 015, 10/18/2010):

Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Record of Revision Revision Pages/Sections/

No.

Date Paragraphs Changed Brief Description I Change Authorization 000 03/2011 All Original release Page 3

Controlled Document A

AR EVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Table of Contents Page SIG NATURE BLO CK..............................................................................................................................

2 RECO RD O F REVISIO N...................................................

3 LIST O F TABLES..................................................................................................................................

6 LIST O F FIG URES.................................

................................................................................... 7

.1.0 INTRO DUCTIO N.........................................................................................................................

8 2.0 ANALYTICAL M ETHO DO LO GY...........................................................................................

11 2.1 Stress Intensity Factor Solution.......................

14 2.1.1 Finite Element Crack Models.......................................

14 2.1.2 Stress Mapping............................................................................................................

14 2.2 Crack Growth Considerations................................................................................................

17 2.2.1 Plastic Zone Correction............................................................................................

17 2.3 Linear-Elastic Fracture Mechanics........................................................................................

18 2.4 Elastic-Plastic Fracture Mechanics.......................................................................................

18 2.4.1 Screening Criteria...................................................................................................

18 2.4.2 Flaw Stability and Crack Driving Force.....................................................................

18 3.0 ASSUMPTIONS....................................

....................... 21 3.1 Unverified Assum ptions 21 3.2 Justified Assumptions................................................................................................................

21 3.3 Modeling Sim plifications........................................................................................................

21

.4.0 DESIG N INPUTS.....................................................................................

22 4.1 M a te ria ls...................................................................................................................................

2 2 4.1.1 Mechanical and Properties.....................................................................................

22 4.1.2 Reference Temperature..........................................................................................

24 4.1.3 Fracture Toughness...............................................................................................

24 4.1.4 J-integral Resistance Curve.....................................................................................

24 4.1.5 Fatigue Crack Growth Rate.....................................................................................

26 4.2 Basic Geometry.........................................................................................................................

27 4.3 Operating Transients.................................................................................................................

27 4.4 Applied Stresses................................................................................

................ 28 Page 4

Controlled Document A

AR EVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Table of Contents (continued) 4.4.1 Residual Stresses...............................

............................ 28 4.4.2 Operational Stresses.............................................

,29 5.0 CALCULATIONS......................................................................................................................

30 5.1 Stress Intensity Factor Calculations.......................................................................................

30 5.2 Fatigue Crack Growth................................................................................................................

31 5.3 LEFM Evaluation.......................................................................................................................

34 5.4 Screening Criteria for Flaw Evaluation 37 5.5 Uphill EPFM Flaw Evaluations..............................................................................................

39 5.6 Downhill EPFM Flaw Evaluations..........................................................................................

44 6.0 SUM MARY OF RESULTS AND CONCLUSIONS...................................................................

49 6.1 Summary of Results..........................................................................................................

49 6.2 C o n c lu sio n................................................................................................................................

4 9

7.0 REFERENCES

50 APPENDIX A :

VERIFICATION OF COMPUTER CODE ANSYS...................................................................

51 APPENDIX B :

COMPUTER USAGE.............................................................................................................

52 APPENDIX C :

FINITE ELEMENT CRACK MODEL...................................................................................

55 APPENDIX D :

STRESS INTENSITY FACTOR DUE TO PRESSURE.......................................................

60 APPENDIX E:

DETAILED CRACK GROW TH CALCULATIONS...............................................................

63 Page 5

Controlled Document A

AR EVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair List of Tables Page Table 1-1: Safety Factors for Flaw Acceptance.........................................

..... 9 Table 4-1: Material Properties-for Low Alloy Steel PZR Head............................................................

22 "Table 4-2: Material Properties-for Cladding, Weld Filler, Existing Heater'Sleeve...............................

23 Table 4-3: Operating Conditions Transients........

27 Table 5-1: Listing of Selected Stress Intensity Factors Used for Fatigue Crack Growth.............. 31 Table 5-2: Contribution of Crack Growth from Individual Transients 34 Table 5-3: Uphill LEFM Flaw Evaluation.........................................................................................

35 Table 5-4: Dow nhill LEFM Flaw Evaluation....................................................................................

36 Table 5-5: U phill Screening C riteria................................................................................................

37 Table 5-6: Dow nhill Screening C riteria.................................................................................................

38 Table 5-7: Uphill EPFM Flaw Evaluation..............

40 Table 5-8: Detailed EPFM Evaluation for Transient Insurgel Load Step 5 (Uphill).............

42 Table 5-9: Downhill EPFM Flaw Evaluation........................................................................................

45 Table 5-10: Detailed EPFM Evaluation for Transient Insurgel Load Step 5 (Downhill)...................

47 Table 6-1: S um m ary of Results......................................................................................................

49 Table D-1: Downhill Stress Intensity Factors for Design Case Pressure........................................

61 Table D-2: Uphill Stress Intensity Factors for Design Case Pressure.............................................

62 T able E-1: Uphill Detailed C rack G rowth..............................................

t...........

................................. 63 Table E-2: Downhill Detailed Crack G rowth....................................................................................

70 Page 6

A AR EVA Controlled Document Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Figure 1-1:

Figure: 2-1:

Figure 2-2:

Figure 2-3:

Figure 2-4:

Figure 4-1:

Figure 4-2:

Figure 5-1:

Figure 5-2:

Figure 5-3:

Figure 5-4:

Figure C-1:

Figure C-2:

Figure C-3:

List of Figures Page ID Temper Bead Weld Repair..,.............................................

10 Downhill Side Postulated Radial Flaw............................................................................

12 Uphill Side Postulated Radial Flaw...................................................................................

13 Downhill Side Finite Element Crack Model.......................................................................

15 Uphill Side Finite Element Crack Model.........................................................................

16 Correlation of Coefficient, C, of Power Law with Charpy V-Notch Upper Shelf Energy...... 25 Correlation of Exponent, m, of Power Law with Coefficient, C, and Flow Stress, a........... 25 Uphill Side Fatigue Crack Growth.................................................................................

32 Downhill Side Fatigue Crack Growth..............................................................................

33 J-T Diagram for Transient Insurgel Load Step 5 (Uphill)..........................

43 J-T Diagram for Transient Insurgel Load Step 5 (Downhill)..........................................

48 Overall Model of PZR Lower Head Penetration............................................................

56 Development of Crack Model.......................................................................................

58 Final Finite Elem ent C rack M odels....................................................................................

59 Page 7

Controlled Document A

AR EVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

1.0 INTRODUCTION

Small diameter Alloy 600 nozzles, such as Pressurizer (PZR) heater sleeves, have experienced leaks as a result of primary water stress corrosion cracking (PWSCC) at Calvert Cliffs Unit 1. AREVA will perform the modification and associated engineering analyses required for several PZR heater penetrations at Calvert Cliffs Unit 1 (CCNPP-1) as repair or mitigation [1]. AREVA will utilize the half-nozzle approach to modify the PZR heater sleeves. As shown in Figure 1-1, a portion of the existing heater sleeve will be removed, the outer portion of the penetration will be bored out larger than the Original diameter to accept the replacement sleeve and accommodate the inside diameter temper bead (IIDTB) weld head. The new stainless -steel lower sleeve will be inserted into the penetration.

The ambient temperature temper bead welding technique, using the gas tungsten arc welding (GTAW) process With stainless steel filler metal, will attach the new sleeve to the bore ID, establishing a new pressure boundary weld. The IDTB weld is disassociated from the original heater sleeve. The repair is more fully described by the design specification [1] and the design drawing [2]. Although the remnant J-groove weld would no longer be associated with the primary pressure boundary, a defect in the weld could grow into the low ahloy steel PZR lower head and thereby impact the structural integrity of the remaining pressure boundary. Since a potential, or even detected, flaw in the J-groove weld can not be sized by currently available non-destructive examination techniques, it is assumed that the "as-left" condition of the remnant J-groove weld includes degraded or cracked weld material extending through the J-groove weld and the entire cladding thickness in the vicinity of the nozzle penetration.

It is postulated that a radial crack in the Alloy 82/182 weld metal would propagate by PWSCC, through the weld and cladding, to the interface between the cladding and the head material, where it is fully expected that such a crack would then blunt, or arrest, as discussed in Reference [3] for interfaces with low alloy steels. Although primary water stress corrosion cracking would not extend into the head, it is further postulated that a small fatigue initiated flaw forms in the low alloy steel head and combines with the stress corrosion crack in the weld and cladding to form a large radial flaw that would propagate into the head by fatigue crack growth under cyclic loading conditions. Linear-elastic (LEFM) and elastic-plastic (EPFM) fracture mechanics procedures are utilized to evaluate this worst case flaw.

Key features of the fracture mechanics analysis are, This analysis applies specifically to the PZR heater sleeve penetrations in the Calvert Cliff Unit 1 PZR lower head. A J-integral resistance curve is developed based on estimates of the Charpy V-notch upper-shelf energy for the PZR head.

Flaw growth is calculated for a 40-year period of operation. However, the remaining life of the component will be estimated based on the flaw evaluation procedures performed in this document.

Flaw acceptance is based on the available fracture toughness and ductile tearing resistance of the PZR lower head material considering the safety factors listed in Table 1-1.

Page 8

A AREVA Controlled Document Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Table 1-1: Safety Factors for Flaw Acceptance Operating Condition Normal/Upset Emergency/Faulted Linear-Elastic Fracture Mechanics Evaluation Method Fracture Toughness/ K I

Kla fracture toughness q10 = 3.16 Kic fracture toughness q2 = 1.41 Elastic-Plastic Fracture Mechanics Evaluation Method Primary Secondary J/T based flaw stability 3.0 1.5 J0.1 limited flaw extension 1.5 1.0 J/T based flaw stability 1.5 1.0 J0.1 limited flaw extension 1.5 1.0 Operating Condition Normal/Upset NormalVUpset Emergency/Faulted Emergency/Faulted Page 9

A AR EVA Controlled Document Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Figure 1-1: ID Temper Bead Weld Repair Cladding Low Alloy steel head IDTB repair Replacement heater sleeve Page 10

A AR EVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair 2.0 ANALYTICAL METHODOLOGY A radial flaw at the inside corner of non-radial head penetration is evaluated based on a combination of linear-elastic fracture mechanics (LEFM) and elastic-plastic fracture mechanics (EPFM), as outlined below.

1. Postulate a radial flaw in the J-groove weld, extending from the inside comer of the penetration to the interface between the cladding and low alloy steel head, as shown in Figure 2-1 and Figure 2-2 for both the downhill and uphill sides of the heater sleeve penetration.
2. Develop two three-dimensional finite element crack models, one for the uphill side crack, and the other for the downhill side crack, of the PZR heater sleeve penetration in the vicinity of the outermost nozzle penetration. Crack tip elements are modeled in the cladding and along the interface between the cladding and the low alloy steel base metal. This crack model will be used to obtain stress intensity factors at various positions along the crack front for combined stresses due to the welding processes and transient loading conditions.
3. Develop a mapping procedure to transfer stresses from uncracked finite element stress analysis models (for residual and operational stresses) to the crack face of the crack model. This will enable stress intensity factors to be calculated for arbitrary stress distributions over the crack face utilizing the principle of superposition.
4. Calculate fatigue crack growth for cyclic loading conditions using combined residual and operational stresses from pressure and thermal loads. It is noted that the only effect of residual stress on fatigue crack growth is in the calculation of the R ratio, or KinlKax, which is the ratio of the minimum and maximum stress intensity factors for a pair of stress states. Starting from the stress intensity factor calculated by the finite element crack model for the initial flaw size, stress intensity factors are updated for each increment of crack growth by the square root of the ratio of the flaw sizes over the increment.
5. Utilize the screening criteria of ASME Code Section XI, Appendix C to determine the failure mode and appropriate method of analysis (LEFM or EPFM) for flaws in ferritic materials, considering the applied stress, temperature, and material toughness.

For LEFM flaw evaluations, compare the stress intensity factor at the final flaw size to the available fracture toughness, with appropriate safety factors, as discussed in Section 2.3. When the material is more ductile and EPFM is the appropriate analysis method, evaluate flaw stability and crack driving force as described in Section 2.4.

Page 11

A AR EVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Figure 2-1: Downhill Side Postulated Radial Flaw Page 12

A AREVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Figure 2-2: Uphill Side Postulated Radial Flaw Page 13

A AR EVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair 2.1 Stress Intensity Factor Solution Stress intensity factors for comer flaws at a non-radial nozzle penetration are best determined by finite element analysis using three-dimensional models with crack tip elements along the crack front.

Although loads can be applied to finite element crack models like any other structural model, the crack models were developed to serve as a flaw evaluation tool that could accept stresses from separate stress analyses. This strategy makes it possible, for example, to obtain pressure and thermal stresses from an independent thermal/structural analysis and then transfer these stresses to a crack model for flaw evaluations. Using the principle of superposition common to fracture mechanics analysis, the only stresses that need be considered for these flaw evaluations are the stresses on the crack face. A mapping procedure is developed to transfer stresses from a separate stress analysis to the crack face of the crack models.

2.1.1 Finite Element Crack Models Two three-dimensional finite element models are developed for the PZR lower head in the vicinity of the outermost heat sleeve penetration, by modeling a portion of the head, cladding, and the remnant nozzle with the ANSYS finite element computer program [4]. Since stresses increase with penetration angle, it is conservative to base the model on the outermost nozzle penetration. Details of the finite element crack models are presented in Appendix C.

The three-dimensional finite element models are first constructed to represent an unflawed non-radial nozzle penetration in the PZR lower head using the ANSYS SOLID186 20-node structural element.

Elements along the crack front are then replaced by a sub-model of crack tip elements in the cladding and along the interface between the cladding and the low alloy steel head. These elements consist of 20-node isoparametric elements that are collapsed to form a wedge with the appropriate mid-side nodes shifted to quarter-point locations to simulate a singularity at the crack tip. The final crack models are shown in Figure 2-3 and Figure 2-4 for the downhill and uphill sides of the PZR heater sleeve penetration, respectively. Linear contact elements were used to bond various parts of the model to simplify meshing.

Stress intensity factors are obtained using the DH_KIKcalc.mac and UH_K1Kcalc.mac files, which contain a set of ANSYS parametric design language instructions which implements similar theory to the ANSYS KCALC routine. The DHKIKcalc.mac and UH_K1Kcalc.mac ANSYS command sets files were verified against the ANSYS KCALC routine in Appendix A. SIF values are calculated at each crack tip node position along the crack front, as indicated in Figure 2-3 and Figure 2-4. For both the downhill and uphill sides, Position I is located on the cladding surface and the last position is along the remnant nozzle inner surface.

2.1.2 Stress Mapping Residual and operational stresses, obtained from separate finite element models, are mapped onto the crack face of the finite element crack model shown in Figure 2-3 and Figure 2-4 to calculate the individual contributions to the stress intensity factors. A set of ANSYS parametric design language instructions has been written based on the *MOPER, MAP command to transfer stresses by nodal interpolation from a dissimilar finite element model (e.g., residual stresses and operating stresses) to the crack model.

Page 14

A AR EVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Figure 2-3: Downhill Side Finite Element Crack Model Page 15

A AR EVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Figure 2-4: Uphill Side Finite Element Crack Model Page 16

A AREVA Controlled Document Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair 2.2 Crack Growth Considerations The fundamental expression for the crack tip stress intensity factor is KI= aý7r Since the crack model is developed for a single flaw size, stress intensity factors are updated, at each increment of crack growth by the square root of the flaw size; i.e.,

Kj(ai+1) = K1(a) ra.

where a = flaw size i = increment of crack growth.

Since the stress intensity factor is directly proportional to the magnitude of the stress and both residual and operating stresses decrease in the direction of crack growth, this procedure produces conservative estimates of stress intensity factor as the crack extends into the head and stresses diminish over the

,expanding crack face.

2.2.1 Plastic Zone Correction The Irwin plasticity correction is used to account for a moderate amount of yielding at the crack tip. For plane strain conditions, this correction is

/

2 I I K=(a) 1 ry K, (a

[ Ref. [5], Eqn. (2.63)]

where K,(a) = stress intensity factor based on the actual crack size, a cy

= material yield strength.

A stress intensity factor., Ki(ae), is then calculated for an effective crack size,

a. =a+ry, based on the same scaling technique utilized for crack growth; i.e.,

K,(a.) = K, (a)F-a-.

Page 17

Contr A

ARE VA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair 2.3 Linear-Elastic Fracture Mechanics Article IWB-3612 of Section XI [7] requires that the applied stress intensity factor, K1, at the final flaw size be less than the available fracture toughness at the crack tip temperature, with appropriate safety factors, as outlined below.

Normal and upset conditions:

K, < Kin / -A Emergency and faulted conditions:

K, <Kzc /52 where KI, is the fracture toughness based on crack initiation.

2.4 Elastic-Plastic Fracture Mechanics Elastic-plastic fracture mechanics (EPFM),will be used as alternative acceptance criteria when the flaw related failure mechanism is unstable ductile tearing. This type of failure falls between rapid, non-ductile crack extension and plastic collapse. Linear-elastic fracture mechanics (LEFM) would be used to assess the potential for non-ductile failure, whereas limit load analysis may be used to check for plastic collapse.

2.4.1 Screening Criteria Screening criteria for determining failure modes in ferritic materials may be found in Appendix C of Section X1. Although Appendix C, Article C-4200 [7] contains specific rules for evaluating flaws in Class 1 ferritic piping, its screening criteria may be adapted to other ferritic components, such as the PZR head, as follows:

Let, K,'

Kiapp / KI.

Sr' c0 max / af Then the appropriate method of analysis is determined by the following limits:

LEFM Regime:

Kr'/ Sr' -> 1.8 EPFM Regime:

1.8 >

Kr' / Sr' > 0.2 Limit Load Regime:

0.2 > K,' / Sr' 2.4.2 Flaw Stability and Crack Driving Force BElastic-plastic fracture mechanics analysis will be performed using a J-integral/tearing modulus (J-T) diagram to evaluate flaw stability under ductile tearing, where J is either the applied (Japp) or the material (Jmat) J-integral, and T is the tearing modulus, defined as (E/af2)(dJ/da). The crack driving force, as measured by Japp, is also checked against the J-R curve at a crack extension of 0.1 inch (Jo. 1).

Consistent with industry practice for the evaluation of flaws in partial penetration welded nozzles, different safety factors will be utilized for primary and secondary loads. Flaw stability assessments for normal and upset conditions will consider a safety factor of 3 on the stress intensity factor due to Page 18

Controlled Document A.

AREVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair primary (pressure) stresses and a safety factor of 1.5 for secondary (residual plus thermal) stresses.

The crack driving force will be calculated using safety factors of 1.5 and 1 for primary and secondary stresses, respectively. For EPFM analysis of faulted conditions, safety factors of 1.5 and 1 will be used for flaw stability assessments and 1.5 and 1 for evaluations of crack driving force.

The general methodology for performing an EPFM analysis is outlined below.

Let E' = Ei(1-v 2)

Final flaw:depth = a Total applied Ki = Klapp Ki due to pressure (primary) = Kip (from Appendix D)

K, due to residual plus thermal (secondary) = Kis = Klapp - Kip Safety factor on primary loads = SFp Safety factor on secondary loads = SFr For small scale yielding at the crack tip, a plastic zone correction is used to calculate an effective flaw depth based on

a. = a + [1 /(67r)] [ (Kip + Ki,) / y2, which is used to update the stress intensity factors based on

= K aPFa and K',s KIS aF The applied J-integral is then calculated using the relationship Japp = (SFp*K'l, + SFý*K'I,)2/E'.

The final parameter needed to construct the J-T diagram is the tearing modulus. The applied tearing modulus, Tapp, is calculated by numerical differentiation for small increments of crack size (da) about the final crack size (a), according to E FJapp(a+da)-Japp(a-da)2 Tapp = CT 2

I.a Of I I(a Page 19

Controlled Document A

AR EVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Using the power law expression for the J-R curve, Jmat = C(Aa)m.

the material tearing modulus, Tmat, can be expressed as Tmat = (E/of2)Cm(Aa)m-1.

Constructing the J-T diagram, Unstable Region Tapp Tmat Applied Instability Point

~Material Stable Region*Tapp

< Tmat T

flaw stability is demonstrated at an: applied J-integral when the applied tearing modulus is less than the material tearing modulus. Alternately, the applied J-integral is less than the J-integral at the point of instability.

To complete the EPFM analysis, it must be shown that the applied J-integral is less than Jo.1, demonstrating that the crack driving force falls below the J-R curve at a crack extension of 0.1 inch.

Page 20

Controlled Document A

AR EVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair 3.0 ASSUMPTIONS This section discusses assumptions and modeling simplifications applicable to the present evaluation Of the CCNPP-1 PZR heater sleeve J-groove weld remnant flaw.

3.1 Unverified Assumptions This document contains no assumptions that must be verified prior to use on safety-related work.

3.2 Justified Assumptions It is conservatively assumed that the postulated flaw extends through the entire J-groove weld and adjacent cladding material. The extent of radial flaw size was limited in the radial direction since the residual and operational stresses diminish away from the J-groove weld. The RTNDT is assumed to be 60 OF which is conservative since the RTNDT value for the CCNPP-1 pressurized lower head is 48 OF per reference [6].

The Charpy Upper Shelf Energy value of 70 ft-lbs is assumed. This is conservative since the Charpy Upper Shelf Energy value for the CCNPP-1 pressurized lower head is 85 ft-lbs per reference [6].

3.3 Modeling Simplifications The following modeling simplifications were used.

1. The finite element model with crack tip elements does not include the ID temper bead repair weld. This is deemed to be an appropriate modeling simplification since the IDTB material does not have any effects to the as-left J-groove weld analysis.
2.

Since the J-groove weld partially penetrates the cladding and both materials have similar properties, the J-groove weld boundary is not specifically included in the finite element model With crack tip elements. This is deemed to be an appropriate modeling simplification and will not have -any impact on the results.

Page 21

Controlled Document A

AREVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair 4.0 DESIGN INPUTS This section provides basic input data needed to perform a fatigue crack growth analysis and flaw evaluation of the final flaw size.

4.1 Materials 4.1.1 Mechanical and Properties Table 4-1 and Table 4-2 list the temperature dependent values of modulus of elasticity (E) and Poisson's ratio (v).

These properties are obtained from Reference [9].

Yield, ultimate, and flow strengths for the low alloy steel head are also provided in Table 4-1, where the flow stress is the average of the yield and ultimate strengths.

Component Material PZR bottom head Cladding J-groove weld filler Existing lower level heater sleeve SA-533 Grade B Class. 1 [1]

Ni-Cr-Fe (use Alloy 600) [1]

Alloy 82/182 (use Alloy 600) [1]

SB-166, Alloy 600 [1]

Table 4-1: Material Properties for Low Alloy Steel PZR Head Component Head Material SA-533 Grade B Class 1 Temperature E (106 psi) v ayy (ksi) a, (ksi) crf (ksi) 70 27.90 0.3 50.00 80.0 65.00 100 27.85 0.3 50.00 80.0 65.00 200 27.70 0.3 47.15 80.0 63.58 300 27.40 0.3 45.25 80.0 62.63 400 27.00 0.3 44.50 80.0 62.25 500 26.40 0.3 43.20 80.0 61.60 600 25.70 0.3 42.00 80.0 61.00 650 25.25 0.3 41.40 80.0 60.70 700 24.80 0.3 40.60 80.0 60.30 Page 22

Controlled Document A

AREVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Table 4-2: Material Properties for Cladding, Weld Filler, Existing Heater Sleeve Component Cladding, Weld Filler, Existing Heater Sleeve Material Use Alloy 600 (SB-166)

Temperature E (106 psi)

-v 70 31.70 0.3 100 31.52 0.3 200 30.90 0.3 300 30.50 0.3 400 30.00 0.3 500 29.60 0.3 600 29.20 0.3 650 28.90 0.3 700 28.60 0.3 Page 23

Controlled Document AREVA Document No. 3279156231 -000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair 4.1.2 Reference Temperature Per Reference [6], the RTNDT value for the CCNPP-1 pressurized lower head material is { } OF, an RTNDT value of { } OF is conservatively used in this document.

4.1.3 Fracture Toughness From Article A-4200 of Section XI [7], the lower bound K12 fracture toughness for crack arrest can be expressed as Kla = 26.8 + 12.445 exp [ 0.0145 (T - RTNDT)],

where T is the crack tip temperature, RTNDT is the reference nil-ductility temperature of the material, Kia is in units of ksiqin, and T and RTNDT are in units of OF. In the present flaw evaluations, K1a is limited to a maximum value of 200 ksi'Iin (upper-shelf fracture toughness). Using the above equation with an RTNDT of {

} OF, Kla equals 200 ksi-Iin at a crack tip temperature of {

} OF.

A higher measure of fracture toughness is provided by the KI, fracture toughness for crack initiation, approximated in Article A-4200 of Section XI [7] by K1, = 33.2 + 20.734 exp [ 0.02 (T - RTNDT)].

4.1.4 J-integral Resistance Curve The J-integral resistance (J-R) curve, needed for the EPFM method of analysis, is obtained from the following power law expression for nuclear reactor pressure vessel steels [8],

JR = C(Aa) m, where the coefficient, C, and exponent, m, depend on the Charpy V-notch upper-shelf energy, CVN, and the flow stress, ao or af, as shown in Figure 4-1 and Figure 4-2.

Per reference [6] the Charpy V-notch upper-shelf energy for the CCNPP-1 pressurized lower head material is { } ft-lbs.

However, Charpy V-notch upper-shelf value of { } ft-lbs is used in this document. For an upper-shelf value of { } ft-lbs, the coefficients of the power law are found to be:

c}

m = {

}, based on the flow stress of { } ksi at room temperature Page 24

A AR EVA Controlled Document Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Figure 4-1: Correlation of Coefficient, C, of Power Law with Charpy V-Notch Upper Shelf Energy 15 10 C

I I I I

I I

I I/

I TESTED AT l.6T-CT IT-CT (OC) 120 0

V 130 S150 S170 0

200 0

0 go 0

0O I0 0

00 090 5

0 0.0 0.4 0.8 1.2 1.6 2.0 CVN/i00 Figure 4-2: Correlation of Exponent, m, of Power Law with Coefficient, C, and Flow Stress, ao m

0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

0 2

4 6

8 10 x =

.5(

-1 12 14 16 Page 25

Controlled Document A

AR EVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair 4.1.5 Fatigue Crack Growth Rate Flaw growth due to cyclic loading is calculated using the fatigue crack growth rate model from Article A-4300 of Section Xl [7],

da d- = Co(AK,)n, dN where AK, is the stress intensity factor range in ksi*/in and da/dN is in inches/cycle. The crack growth rates for a surface flaw will be used for the evaluation of the corner crack since it is assumed that the degraded condition of the J-groove weld and cladding exposes the low alloy steel head material to the primary water environment.

The following equations from Section XI [7] are used to model fatigue crack growth.

AKI = Klmax -

Klmin R = Klrin / KImax 0 < R*< 0.25:

AK, < 17.74, n = 5.95 C, = 1.02x10-12xS S= 1.0 AKI Ž 17.74, n = 1.95 Co = 1.01 X10-xS S= 1.0 0.25 _ R <0.65:

AK1 < 1:7.74 [(3.75R + 0.06) (26.9R - 5.725) ]o.25, n = 5.95' Co = 1.02x10-12xS S = 26.9R - 5.725 AKI _ 17.74 [ (3.75R + 0.06) / (26.9R - 5.725) ]0.21, n = 1.95 Co = 1.01 x10-7 xS S = 3.75R + 0.06 0.65*< R < 1.0:

AKI < 12.04, n = 5.95 Co = 1.02x10-12 xS S = 11.76 AKI Ž 12.04, n= 1.95 C " = 1.01 X10-7X S

,S = 2.5 Page 26

Controlled Document A

AREVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair 4.2 Basic Geometry The PZR lower head and heater sleeve penetration are described by the following key dimensions:

Radius to base metal

= {

} in. [2]

Head thickness (minimum)

=

{

}'in. [2]

Cladding thickness (nominal)

=

{

} in. [2]

Penetration bore

= {

} in. [2]

Penetration to PZR center

= {

) in. [2]

Initial Flaw depth

=

{

}in

}

Details of the PZR heater sleeve penetration are provided in the description of the finite element crack model in Appendix C.

4.3 Operating Transients The operating conditions (temperature and pressure) transients for the PZR heater sleeve are summarized in Reference [9]. Table 4-3 lists the heater sleeve operating conditions transients and the number of cycles for 40 years of operation.

Table 4-3: Operating Conditions Transients Condition Transient Description Cycle Name 1A 1B 2A Normal 2B PL PU Test Leak Test Upset LL Insurges Insurgel Insurge2 Insurge3 Page 27

A AREVA Controlled Document Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Condition Transient Description Cycle Name Insurge4 Insurge5 Insurge6 lnsurge7 Insurge8 Insurge9 Insurgel 0 Insurgel 1 Insurgel 2 Insurgel 3 Insurge14 For fatigue flaw growth calculation, the most limiting transient of 1A and 1B will Similarly, the most limiting transient of 2A and 2B will be considered.

be considered.

Since the safety factors on fracture toughness are higher for normal/upset conditions, than for emergency/faulted conditions (Table 1-1), it follows that the present flaw evaluations for normal/upset conditions also serve as a bounding analysis for emergency and faulted conditions.

No further consideration of the emergency and faulted transients is therefore warranted.

4.4 Applied Stresses Two sources of applied stress are considered for the present flaw evaluations, residual stresses from welding and stresses that occur during normal operation.

4.4.1 Residual Stresses Residual stresses are obtained from a three-dimensional elastic-plastic finite element stress analysis performed in Reference [10].

Hoop stresses on the radial plane through the J-groove weld and cladding are then mapped to the three-dimensional finite element crack model described in Section 2.1.1. Hoop stresses are used since these stresses are perpendicular to the crack face and therefore open the crack.

Reference [10] simulated welding of the J-groove partial penetration weld at the outmost heater sleeve penetration, hydrostatic testing, operation at steady state temperature and pressure conditions, return to zero load conditions, welding of the IDTB repair, and a second application of steady state loads.

Page 28

Controlled Document A

ARE VA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair 4.4.2 Operational Stresses Operational stresses are obtained by linear-elastic stress analysis performed in Reference [11] using three-dimensional finite element analysis.

Hoop stresses on a radial plane through the crack are provided by Reference [11] to facilitate the calculation of stress intensity factors along the entire crack front.

Stresses are developed for the transients discussed in Section 4.3 using the thermal and structural finite element models [12]. The thermal phase of the solution is driven by wetted surface loads developed from time-dependent bulk fluid temperatures and convective heat transfer (film) coefficients. The structural model is then loaded by intemal pressure (surface load) and nodal temperatures (body force loads from the thermal solution) to determine stresses at various times.

Stresses are provided for all the transients listed in Table 4-3 and for a design case pressure that was simulated at {

} F and {

} psig in Reference [11].

The critical time points are selected only after calculating stress intensity factors for each set of stresses output from the stress analysis solution. This process serves to maximize the stress intensity factors used in the fatigue crack growth analysis and the final flaw evaluations.

Page 29

Controlled Document A

AR EVA Document No. 32-9156231-000 COCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair 5.0 CALCULATIONS Propagation of an initial flaw, postulated in the cladding and ýalong the cladding low alloy steel interface, is calculated to determine the final flaw size after a 40-year service interval. Flaw evaluations are then performed to determine the final flaw size and the remaining life.

5.1 Stress Intensity Factor Calculations The stress intensity factors were calculated using the three-dimensional finite element. analysis method for the postulated flaws in both the uphill and downhill sides of the PZR heater sleeve penetration. SIF values were calculated for every crack tip location at every transient time point provided in Reference

[11]. The stresses that contributed to the crack driving force are weld residual stresses, operational stresses, and crack face pressure. The stress intensity factors were summarized in files DH_Kl.out and UH_Kl.out that are archived in the AREVA NP COLDStor repository, as described in Appendix B.

Table 5-1 lists the stress intensity selected for every transient that result in maximum crack growth for both uphill and downhill sides. From the results tabulated in Table 5-1, it is shown that transients 1B and 2B have the highest AK for the heatup and cooldown transients. Thus, transients 1A and 2A will not be used for crack growth. However, transients 1A and 2A will be considered during flaw evaluation.

Page 30

A AREVA Controlled Document Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Table 5-1: Listing of Selected Stress Intensity Factors Used for Fatigue Crack Growth Uphill Side Downhill Side Transient Kmax Kmin AK Kmax Kmin AK (psiqin)

(psi4in)

(psi4in)

(psiin)

(psi'in)

(psilin) 1A 17042.0 3835.8 13206.2 15683.7 1135.5 14548.2 1B 17042.4 3060.4 13982.0 15684.6 49.2 15635.4 2A 18344.3 8452.0 9892.3 16828.0 5240.0 11588.0 2B 18203.3 8256.9 9946.4 16104.0 4180.2 11923.8 PL 23685.8 21736.7 1949.1 17162.1 15548.0 1614.1 PU 23965.5 21801.3 2164.2 17420.4 15380.1 2040.3 Leak Test 19200.4 7034.7 12165.7 18534.1 3214.2 15319.9 LLA 24586.0 18691.3 5894.7 16644.9 11986.2 4658.7 Insurgel 62775.1 22122.3 40652.8 46620.1 15942.8 30677.3 Insurge2 43880.4 10956.3 32924.1 27245.5 1918.8 25326.7 Insurge3 57621.9 22122.3 35499.6 42567.2 15887.1 26680.1 Insurge4 41603.4 10956.3 30647.1 25347.3 191.8.8 23428.5 Insurge5 40477.4 10932.5 29544.9 24648.5 1901.0 22747.5 Insurge6 39218.3 10956.3 28262.0 23642.2 1918.8 21723.4 Insurge7 51499.3 22122.3 29377.0 37955.4 15869.3 22086.1 Insurge8 37569.2 10956.3 26612.9 22410.5 1918.8 20491.7 Insurge9 36294.4 10956.3 25338.1 21557.7 1918.8 19638.9 InsurgelO 47450.7 22016.8 25433.9 34904.9 15942.8 18962.1 Insurgel1 45275.0 21915.5 23359.5 334591 15869.3 17589.8 lnsurgel2 30902.1 10956.3 19945.8 17440.0 1918.8 15521.2 Insurge13 33848.6 21716.4 12132.2 24754.4 15829.7 8924.7 lnsurge14 21169.6 10956.3 10213.3 9820.6 1918.8 7901.8 5.2 Fatigue Crack Growth Although it is believed that a PWSCC flaw would be confined to the J-groove weld and cladding, it is postulated that a fatigue flaw would initiate in the low alloy steel head, combine with the PWSCC flaw, and propagate farther into the head under cyclic loads. Fatigue crack growth is calculated from stress intensity factors derived from a finite element crack model using residual stresses from Reference [10]

and operational stresses from Reference [11].

The SIF values used for fatigue crack growth are tabulated in Table 5-1.

Figure 5-1 and Figure 5-2 show the crack depth as a function of operating 'years for both the uphill and downhill sides, respectively. Table 5-2 shows the contribution of crack growth from each transient for both the uphill and the downhill sides. It should be noted that the crack in the uphill side was limited to

{ } years based on the flaw evaluation results described in Sections 5.3 and 5.5.

Details of the crack growth evaluation are shown in Appendix E.

Page 31

Controlled Document A

AR EVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Figure 5-1: Uphill Side Fatigue Crack Growth Page 32

Controlled Document A

AR EVA Document No. 32-9156231-000.

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Figure 5-2: Downhill Side, Fatigue Crack Growth Page 33

A AREVA Controlled Document Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Table 5-2: Contribution of Crack Growth from Individual Transients Uphill Downhill Crack Crack Transient Growth Percentage Growth Percentage in in 1B 2B PL PU LeakTest LLA Insurgel Insurge2 Insurge3 Insurge4 Insurge5 Insurge6 Insurge7 Insurge8 Insurge9 Insurgel 0 Insurgel 1 Insurgel12 Insurgel 3 Insurge14 Total Crack

} in

{ } Years

} in 40 Years Growth 5.3 LEFM Evaluation The LEFM evaluation was performed to determine LEFM safety margins.

criteria listed in Section 2.3, for normal and upset conditions, the applied greater than '410.

According to the LEFM safety margin should be K < Ki/

10 The LEFM margins were calculated for all load steps. Table 5-3 lists only the time points that violated the LEFM criteria after { } years of plant operation for the uphill side. It is seen that for the uphill side transients 1A and 2A have the minimum LEFM safety margin of 1.2.

Table 5-4 lists the downhill LEFM evaluation, based on 40 year life. It is seen from Table 5-4 that the minimum LEFM margin of 2.6 occurs for transients 1A, 2A and Insurgel.

Page 34

Controlled Document A

ARE VA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Table 5-3: Uphill ILEFM Flaw Evaluation Number of application years{

}

Crackdepth{

}in Plasticity Transient Load Temperature Gy K initial K final, Kf Correction aeff Kle*f Kla LEFM Step KI (K1l<a/ao) rp=(1/67T)(K/ay )2 a-+ro (Kf/aefWaf)

Margin (F)

(ksi)

(ks[i-in)

(ksi iin)

(in)

(in)

(ksiqin)

(ksi/in)

KIa/Kleff 1A 1

70 50.0 16.7 34.6 0.0254 34.9 41.3 1.2 IB 1

70 50.0 14.5 30.2 0.0193 30.4 41.3 1.4 2A 17 70 50.0 16.7 34.6 0.0254 34.9 41.3 1.2 2B 27 70 50.0 14.6 30.2 0.0193 30.4 41.3 1.4 LeakTest 7

103 49.9 15.0 31.0 0.0205 31.2 50.2 1.6 Insrgl 5

628 41.7 55.7 115.5 0.4080 129.3 200.0 1.5 lnsrg2 7

380 44.7 37.2 77.2 0.1585 80.9 200.0 2.5 Insrg3 9

633 41.6 51.0 105.7 0.3427 116.4 200.0 1.7 Insrg4 4

383 44.6 35.2 73.0 0.1419 76.1 200.0 2.6 Insrg5 5

382 44.6 34.2 71.0 0.1342 73.9 200.0 2.7 lnsrg6 5

383 44.6 33.1 68.7 0.1257 71.3 200.0 2.8 Insrg7 7

636 41.6 45.4 94.1 0.2721 101.7 200.0 2.0 Insrg8 5

384 44.6 31.7 65.7 0.1150 68.0 200.0 2.9 Insrg9 5

383 44.6 30.6 63.4 0.1071 65.5 200.0 3.1 lnsrglO 5

638 41.5 41.7 86.4 0.2297 92.4 200.0 2.2 Insrgl1 7

637 41.6 39.7 82.4 0.2086 87.6 200.0 2.3 Kla = 26.8 + 12.445 exp [0.0145 (T - RTNDT) ]

KIc = 33.2 + 20.734 exp [0.02 (T'- RTNDT) ]

Page 35

A AR EVA Controlled Document Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Table 5-4: Downhill LEFM Flaw Evaluation Number of application years 40 Crack depth {

} in Plasticity Transient Load Temperature cGy K initial K final, Kf Correction aeff Kleff Kla LEFM Step KI (Kl-q'afao) rp=(1/6n)(Kfly) 2 af+rp (Kf*aef,/af)

Margin (F)

(ksi)

(ksi'Iin)

(ksiin)

(in)

(in)

(ksi'/in)

(ksi'1in)

Kla/Kleff 1A 1

70 50.0 10.2 15.8 0.0053 15.8 41.3 2.6 1B 1

70 50.0 7.1 11.0 0.0026 11.0 41.3 3.8 2A 17 70 50.0 10.2 15.8 0.0053 15.8 41.3 2.6 2B 27 70 50.0 7.1 11.0 0.0026 11.0 41.3 3.8 LeakTest 7

103 49.9 8.2 12.7 0.0034 12.7 50.3 3.9 Insurgel 5

605 41.9 46.6 72.2 0.1573 78.3 200.0 2.6 Insurge2 7

361 44.8 27.2 42.2 0.0471 43.3 200.0 4.6 Insurge3 9

614 41.8 42.6 65.9 0.1318 70.6 200.0 2.8 Insurge4 4

367 44.8 25.3 39.3 0.0408 40.1 200.0 5.0 Insurge5 5

365 44.8 24.6 38.2 0.0386 39.0 200.0 5.1 Insurge6 5

367 44.7 23.6 36.6 0.0355 37.3 200.0 5.4 lnsurge7 7

620 41.8 38.0 58.8 0.1052 62.1 200.0 3.2 Insurge8 5

369 44.7 22.4 34.7 0.0320 35.3 200.0

5.7 Insurge9 5

368 44.7 21.6 33.4 0.0296 33.9 200.0 5.9 InsurgelO0 5

625 41.7 34.9 54.1 0.0892 56.7 200.0 3.5 Insurgelil 7

623 41.7 33.5 5.1.8 0.0819 54.1 200.0

'3.7 Kla = 26.8 + 12.445 exp [ 0.0145 (T - RTNDT)

KIc = 33.2 + 20.734 exp [0.02 (T - RTNDT) I Page 36

A, AREVA Controlled Document Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair 5.4 Screening Criteria for Flaw Evaluation The screening criteria described in Section 2.4.1 was evaluated to determine the appropriated evaluation procedures for all the time points that was shown not to pass the LEFM criteria as shown in Table 5-3 and Table 5-4. Table 5-5 shows the results of evaluating the screening criteria for the uphill side. Based on the results shown in Table 5-5, the elastic-plastic fracture mechanics (EPFM) is the appropriated evaluation procedures for the flaw postulated in the uphill side,.

Table 5-6 shows the results of evaluating the screening criteria for the downhill side. It is seen from the results summarized in Table 5-6 that a limit load analysis (LL) is appropriate for evaluating the flaw postulated in the downhill side. Since the limit load analysis is typically done for piping components which is different than the geometry of the component being analyzed, the elastic-plastic fracture mechanics (EPFM) flaw evaluation procedure will conservatively be used for evaluating the postulated downhill flaw.

Table 5-5: Uphill Screening Criteria Number of application years{ }

Crack depth {

} in' Transient Load af Kleff KIc Kr' Omax sr' Kr'/Sr' Appropriate Step (Kf*aeft/ai)

Criteria (ksi)

(ksi~in)

(ksi*in)

Kleff/Klc (ksi)

Grnayjm 1A 1

65.0 34.9 58.5 0.596 51.1 0.787 0.76 EPFM 1B 1

65.0 30.4 58.5 0.519 49.1 0.755 0.69 EPFM 2A 17 65.0 34.9 58.5 0.596 51.1 0.787 0.76 EPFM 2B 27 65.0 30.4 58.6 0.519 49.1 0.755 0.69 EPFM LeakTest 7

65.0 31.2 82.2 0.380 49.1 0.757 0.50 EPFM Insurgel 5

60.8 129.3 200.0 0.646 129.4 2.128 0.30 EPFM Insurge2 7

62.3 80.9 200.0 0.404 101.3 1.626 0.25 EPFM Insurge3 9

60.8 116.4 200.0 0.582, 118.3 1.946 0.30 EPFM Insurge4 4

62.3, 76.1 200.0 0.381 97.5 1.565 0.24 EPFM Insurge5 5

62.3 73.9 200.0 0.369 94.9 1.,523 0.24 EPFM Insurge6 5

62.3 71.3 200.0 0.357 92.8 1.490 0.24 EPFM Insurge7 7

60.8 101.7 200.0 0.509 105.1 1.729 0.29 EPFM Insurge8 5

62.3 68.0 200.0 0.340 89.6 1.437 0.24 EPFM Insurge9 5

62.3 65.5 200.0 0.327 86,9 1.395 0.23 EPFM Insurgel0 5

60.8 92.4 200.0 0.462 96.3 1.585 0.29 EPFM Insurgel 1 7

60.8 87.6 200.0 0.438 91.6 1.507 0.29 EPFM KIc = 33.2 + 20.734 exp [ 0.02 (T - RTNDT) ]

Page 37

A AREVA Controlled Document Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Table 5-6: Downhill Screening Criteria Number of application years 40 Crack depth

}in Transient Load r

Kleff KIc Kr '

max sr' Kr'/Sr' Appropriate Step (Kf/aeff/ai)

Criteria (ksi)

(ksiqlin)

(ksibin)

Kleff/KIc (ksi)

Gmax/'f 1A 1

65.0 15.8 58.5 0.270 47.7 0.735 0.37 EPFM 1B 1

65.0 11.0 58.5 0.188 46.4 0.714 0.26 EPFM 2A 17 65.0 15.8 58.5 0.270 47.7 0.735 0.37 EPFM 2B 27 65.0 11.0 58.6 0.188 46.4 0.715 0.26 EPFM LeakTest 7

65.0 12.7 82.4 0.155 46.4 0.715 0.22 EPFM Insurgel 5

61.0 78.3 200.0 0.391 224.3 3.679 0.11 LL, Insurge2 7

62.4 43.3 200.0 0.216 155.9 2.499 0.09 LL Insurge3 9

60.9 70.6 200.0 0.353 200.9 3.298 0.11 LL Insurge4 4

62.4 40.1 200.0 0.201 145.1 2.327 0.09 LL Insurge5 5

62.4 39.0 200.0 0.1.95 139.0 2.228 0.09 LL Insurge6 5

62.4 37.3 200.0 0.187 133.2 2.135 0.09 LL Insurge7 7

60.9 62.1 200.0 0.311 173.1 2.843 0.11 LL Insurge8 5

62.4 35.3 200.0 0.177 124.8 2.001 0.09 LL Insurge9 5

62.4 33.9 200.0 0.170 118.3 1.897 0.09 LL InsurgelO 5

60.9 56.7 200.0 0.283 154.7 2.542 0.11 LL Insurgell 7

60.9 54.1 200.0 0.271 144.6 2.377 0.11 LL KIc = 33.2 + 20.734 exp [ 0.02 (T - RTNDT) I Page 38

Controlled Document A

AREVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair 5.5 Uphill EPFM Flaw Evaluations Based on the results provided in Section 5.4, the elastic-plastic fracture mechanics (EPFM) procedure described in Section 2.4 is used to evaluate the final size of the postulated flaw after fatigue crack growth. Theý EPFM results for the uphill flaw are shown in Table 5-7. The first part of Table 5-7 shows the applied J integral and Tearing modulus using a factor of safety of 3 on pressure stress and 1.5 on thermal and residual stress. The second part of Table 5-7 shows the J integral and Tearing modulus at the instability point. The instability point is found by iteratively changing the safety margin until the applied Tearing modulus and J integral are equal to the material Tearing modulus and J integral. Also, the second part of Table 5-7 shows the crack driving force evaluation where the applied J integral is evaluated using a factor of safety of 1.5 on pressure stress and 1.0 on thermal and residual stress.

This value of applied J integral should remain below the material J integral at 0.1 in of stable crack extension. Based on the data reported in Table 5-7, the uphill flaw meets the EPFM evaluation criteria for { } years. The lowest margin (predicted by JinstabilitylJapplied) occurs for transient Insurgel at load step 5. Detailed EPFM evaluation for this condition is shown in Table 5-8. Figure 5-3 shows the J-T diagram for this condition.

Page 39

A AR EVA Controlled Document Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Table 5-7: Uphill EPFM Flaw Evaluation Number of application years { }

Crack depth, af = {

} in Transient Load Pressure,P E'

KIP KIs Japp Tap Tmat Step KIrKlI (psi)

(ksi)

(ksi-/in)

(ksNin)

(kip/in) 1A 1

485 30659 6.9 27.7 0.128 0.525 1380.266 1B 1

85 30659 1.2 29.0 0.073 0.300 3728.151 2A 17 485 30659 6.9 27.7 0.128 0.525 1380.266 2B 27 85 30659 1.2 29.0 0.073 0.300 3726.325 LeakTest 7

345 30599 4.9 26.1 0.096 0.394 2296.337 Insurgel 5

2250 27961 32.1 83.4 2.198 9.360 9.384 lnsurge2 7

247 29759 3.5 73.7 0.541 2.335 118.489 lnsurge3 9

2250 279113 32.1 73.6 1.858 7.904 12.721 lnsurge4 4

247 29744 3.5 69.5 0.482 2.080 145.853, Insurge5 5

247 29750 3.5 67.5 0.455 1.964 161,793 Insurge6 5

247 29746 3.5 65.2 0.425 1.835 182.700 Insurge7 7

2250 27884 32.1 62.0 1.503 6.394 18.665 Insurge8 5

247 29742 3.5 62.2 0.388 1.676 215.041 Insurge9 5

247 29747 3.5 59.9 0.361 1.560 244.708 Insurgel0 5

2250 27863 32.1 54.3 1.297 5.515 24.384 Insurgell 7

2250 27877 32.1 50.3 1.196 5.085 28.270 c={

KIf=KI x *f(af / ao) where af is the final flaw size and ao is the initial flaw size KIP= (P/Pd)KlpoV (af / ao) where Pd = 2485 psi and KlIP is from Appendix D.

ae = af + (1 / 6T) * ((KIP + Kis) ý' ay)2 KIpeff = KIp x *(ae a)

Klseff = KIs x 1 (ae / a)

Japp = (SFp x Klpeff + SF, x KlSeff) 2 /E' where SFp=3 and SFs = 1.5 T~p= (E/of) ( Japp(a+.Ol) - J,pp(a-.01 ))/.02 Tmat = (E//cy)

Cm (Aa)m-1 where Aa=(J/C)l/m Page 40

Controlled Document A

AREVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Table 5-7: Uphill EPFM Flaw Evaluation (Continued)

Instability Crack Driving Force Transient Load Jnstability Tilnstability m

Tmat Japp Jo.1 Step SFp=SFs C(0.1)m (kip/in)

(kip/in)

(kip/in) 1A 1

7.461 2.206 9.019 9.019 0.048 1.167 1B 1

8.562 2.206 9.019 9.019 0.031 1.167 2A 17 7.461 2.206 9.019 9.019 0.048 1.167 2B 27 8.561 2.206 9.019 9.019 0.031 1.167 LeakTest 7

8.315 2.206 9.013 9.013 0.037 1.167 Insurgel 5

1.918 2.200 9.368 9.368 0.776 1.182 Insurge2 7

3.165 2.202 9.506 9.506 0.230 1.177 Insurge3 9

2.129 2.200 9.361 9.361 0.644 1.182 Insurge4 4

3.361 2.202 9.505 9.505 0.204 1.177 Insurge5 5

.3.464 2.202 9.506 9.506 0.193 1.177 lnsurge6 5

3.589 2.202 9.506 9.506 0.180 1.177 lnsurge7 7

2.434 2.200 9.356 9.356 0.509 1.182 Insurge8 5

3.764 2.202 9.505 9.505 0.164 1.177 Insurge9 5

3.909 2.202 9.506 9,506 0.152 1.177 InsurgelO 5

2.680 2.200 9.353 9.353 0.431 1.182 Insurgel1 7

2.828 2.200 9.355 9.355 0.393 1.182 C={

}

ae = af + (1 / 6) x ((Klp + K1s) / oy)2 Klpeff = Kip x 4(ae/ a)

KlSeff = KIs x 4 (ae / a)

Japp = (SFp x Klpff + SF, x Klseff) 2 /E' where SFp= 1.5 and SF, = 1.0 Tpp = (E/af2) ( J8pp(a+.01 ) - Japp(a-.01 ))/.02 Tmat = (E/af2) Cm (Aa)m1 where Aa=(J/C)l/m Page 41

A AREVA Controlled Document Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Table 5-8: Detailed EPFM Evaluation for Transient Insurgel Load Step 5 (Uphill)

EPFM Equations:

Jmat = C(Aa)m Tmat = (E/cTf2)*Cm(Aa)m-1 Japp = (SFp*K'lp+SF,*K'is) 2/E" Tapp = (E/aff2)*(dJapp/da)

}

Ductile Crack Growth Stability Criterion:

At instability:

Tapp < Tmat Tapp = Tmat Safety Factors SF*K'1 p SF*K'tI Japp Tapp Stable?

Primary Secondary (ksiin)

(ksi'/in)

(kips/in) 1.00.

1.00 35.972 93.325 0.598 2.546 Yes 2.00 1.00 71.945 93.325 0.977 4.160 Yes

.3.00 1.50 107.917 139.988 2.198 9.360 Yes 5.00 1.00 179.862 93.325 2.669 11.367 NO 7.00 1.00 251.807 93.325 4.260 18.142 NO Iterate on safety factor until Tapp = Trat to determine Jinstability:

J 1.9182 1.9182 69.001 179.013 at Jmat=

2.198 kips/in, Tmat Applied J-Integral Criterion:

Japp < Jo,1 instability Tapp Tmat 2.200 9.368 9.368 9.383

where, Jo.i = Jmat at Aa = 0.1 in.

Safety Factors Primary Secondary SF*K'l (ksNin)

SF*K'is Japp JO.0 (ksNin)

(kips/in)

(kips/in)

OK?

1.50 1.00 53.959 93.325 0.776 1.182 Yes Page 42

Controlled Document A

AREVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Figure 5-3: J-T Diagram for Transient Insurgel Load Step 5 (Uphill) 8 1 1

1 1

1 1

1 1

6 5

F 3

2 0

0 5

10 15 20 25' 30 35 40 45

,50 Tearing Modulus Page 43

Controlled Document A

AR EVA Document No. 32.-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair 5.6 Downhill EPFM Flaw Evaluations Based on the discussion provided in 5.4, elastic-plastic fracture mechanics (EPFM) procedure described in Section 2.4 is conservatively used to evaluate the final size of the postulated downhill flaw after fatigue crack growth. The EPFM results for the downhill flaw are shown in Table 5-9. The first part of Table 5-9 shows the applied J integral and Tearing modulus using a factor of safety of 3 on pressure stress and 1.5 on thermal and residual stress. The second part of Table 5-9 shows the J integral and Tearing modulus at the instability point.

The instability point is found by iteratively changing the safety margin until the applied Tearing modulus and J integral are equal to the material.

Tearing modulus and J integral.

Also, the second part of Table 5-9 shows the crack driving force evaluation where the applied J integral is evaluated using a factor of safety of 1.5 on pressure stress and 1.0 on thermal and residual stress. This value of applied J integral should remain below the material J integral at 0.1 in of stable crack extension. Based on the data reported in Table 5-9, the downhill flaw meets the EPFM evaluation criteria for 40 years.

The lowest margin (predicted by Jinstability/Japplied) occurs for transient Insurgel at load step 5. Detailed EPFM evaluation for this condition is shown in Table 5-10. Figure 5-4 shows the J-T diagram for this condition.

Page 44

A AREVA Controlled Document Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Table 5-9: Downhill EPFM Flaw Evaluation Number of application years 40 Crack depth {

} in Transient Load Pressure,P El KIP KIs Japp Tapp Tmat Step Kit-Kip (psi)

(ksi)

(ksi'iin) (ksilin)

(kip/in) 1A 1

485 30659 5.8 10.0 0.034 0.251 14308.913 1B 1

85 30659 1.0 10.0 0.011 0.078 113893.316 2A 17 485 30659 5.8 10.0 0.034 0.251 14308.913 2B 27 85 30659 1.0 10.0 0.011 0.078 113844.487 LeakTest 7

345 30599 4.1 8.6 0.021 0.153 34355.462 Insurgel 5

2250 28193 26.8 45.4 0.919 7.046 45.736 Insurge2 7

247 29842 2.9 39.3 0.162 1.253 1036.254 Insurge3 9

2250 28108 26.8 39.2 0.789 6.042 60.234 Insurge4 4

247 29817 2.9 36.3 0.141 1.089 1334.363 Insurge5 5

247 29824 2.9 35.2 0.133 1:.031 1471.652 insurge6 5!

247 2981:5 2.9 33.7 0.123 0.952 1-700.247 Insurge7 7

2250 28043 26.8 32.0 0.656 5.020 84.053 Insurge8 5

247 29808 2.9 31.8 0.111 0.859 2044.163 Insurge9 5

247 29813 2.9 30.5 0.103 0.797 2335.356 InsurgelO 5

2250 27999 26.8 27.3 0.577 4.414 105.988 Insurgel1 7

2250 28011 26.8 25.1 0.542 4.141 119.041 c={

I Klf=KI x qI(af / ao) where af is the final flaw size and ao is the initial flaw size Kip= (P/Pd)Klpo\\/ (af / ao) where Pd = 2485 psi and KlP0 is from Appendix D.

a. = af + (1 / 67c) * ((KIP + KIs) / ay)2 Klpeff = Kipx '(ae a)

Klsefr = KIs x q (a /a)

Japp = (SFp x KIpeff + SF, x KlSeff) 2 /E' where SFp= 3.0 and SF, = 1.5 Tapp = (E/af 2) ( Jap(a+.01) - Japp(a-.01 ))/.02 Tra.t= (E/af 2) Cm (Aa) m1l where Aa=(J/C)r"m Page 45

A AREVA Controlled Document Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Table 5-9: Downhill EPFM Flaw Evaluation (Continued)

Instability Crack Driving Force Transient Load JInstability Tinstability m

Tmat Japp JO.1 Step SFp=SFs C(0.1 )m (kip/in)

(kip/in) kip/in 1A 1

14.796 1.786 13.103 13.103 0.011 1.167 1B 1

21.257 1.786 13.103 13.103 0.004 1.167 2A 17 14.796 1.786 13.103 13.103 0.011 1.167 2B 27 21.254 1.786 13.103 13.103 0.004 1.167 LeakTest 7

18.343 1.786 13.096 13.096 0.007 1.167 Insurgel 5

2.867 1.787 13.704 13.704 0.305 1.182 Insurge2 7

5.333 1.787 13.847 13.847 0.067 1.176 Insurge3 9

3.174 1.787 13.686 13.686 0.257 1.182 Insurge4 4

5.749 1.787 13.845 13.845 0.058 1.176 Insurge5 5

5.919 1.787 13.845 13.845 0.055 1.176 Insurge6 5

6.181 1.787 13.844 13.844 0.051 1.176 Insurge7 7

3.603 1.787 13.672 13.672 0.208 1.182 Insurge8 5

6.532 1.787 13.844 13.844 0.045 1.176 Insurge9 5

6.800 1.787 13.844 13.844 0.042 1.176 InsurgelO 5

3.946 1.787 13.663 13.663 0.179 1.182 Insurgel1 7

4.133 1.787 13.666 13.666 0.166 1.182 C={

I ae = af + (1 / 6n) x ((Klp + KIs) / ay) 2 Klpeff = Klp x(ae/ a)

KlSeff = KIs x (ae, a)

Jopp = (SFp x Klpeff + SFx KlSeff) 2 /E' where SFp=

1.5 and SF,= 1.0 Tapp = (E/af2) (,Japp(a+.01)

- Jpp(a-.01 ))/.02 Trat = (ElP2) Cm (Aa)mrl where Aa=(J/C)l/m Page 46

A AR EVA Controlled Document Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Table 5-10: Detailed EPFM Evaluation for Transient Insurgel Load Step 5 (Downhill)

EPFM Equations:

Jmat = C(Aa) m Tmat = (E/cy2)*Cm(Aa)m-'

}

Japp =

Tapp =

Ductile Crack Growth Stability Criterion:

At instability:

2, (SFp*K'ip+SFs*K'is) /E' (E/CT 1 2)*(dJapp/da)

Tapp < Tmat T'app = Tmat Safety Factors SF*K'ip SF*K'ia Japp Tapp Stable?

Primary Secondary (ksNin)

(ksi'lin)

(kips/in) 1.00 1.00 29.021 49.261 0.217 1.667 Yes 2.00 1.00 58.042 49.261 0.408 3.132 Yes 3.00 1.50 87.063 73.892 0.919 7.046 Yes 5.00 1.00 145.106 49.261 1.340 10.275 Yes 7.00 1.00 203.148 49.261 2.260 17.328 NO Iterate on safety factor until T app = T mat to determine Jinstability:

Jinstability 2.8674 2.8674 83.215 141.252 1.787 Tapp 13.704 Tmat 13.704 at Jmat =

0.919 kips/in, Applied J-Integral Criterion:

Tmat =

45.736 Japp < Jo.0

where, Jo.1 =, Jmat at £Xa = 0.1 in.

Safety Factors SF*K1lp Primary Secondary (ksNin)

SF-K'15 (ksrlin)

Japp Jo.1 OK?

(kips/in)

(kips/in) 1.50 1.00 43.532 49.261 0.305 1.182 Yes Page 47 Page 47

Controlled Document A

AREVA Document No.32-915,6231-000 COCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Figure 5-4: J-T Diagram for Transient Insurgel Load Step 5 (Downhill) 8 7

1 1

1 7

6 5

.4 3

2 0

0 5

10 15 20 25 -

30 Tearing Modulus 35 40 45 50 Page 48

Controlled Document A,

AR EVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair 6.0

SUMMARY

OF RESULTS AND CONCLUSIONS Elastic-plastic fracture mechanics has been used to evaluate a postulated radial flaw in the J-groove weld and cladding of an outermost PZR heater sleeve penetration. The final flaw size was determined by linear-elastic fracture mechanics for { } years of fatigue crack growth.

6.1 Summary of Results A summary of the results is provided in Table 6-1.

Table 6-1: Summary of Results Uphill Flaw Downhill Flaw Initial flaw -size

{

.}

Time of fatigue crack growth

{ }

( 4 40

{

}

{

}

in year in in Final flaw size, af Crack Growth Safety factors (primary/secondary)

Material tearing modulus Applied tearing modulus (< Tmat)

Safety factors.(primary/secondary)

{

}

{

}

{

}

(

}

{

].

(

}

SF 3 / 1.5 S

}

{

,}

SF= 1.5 /1 Material J-integral, J0.1 Applied J-integral (< J0.1) t(

}

{

}

kips/in kips/in 6.2 Conclusion Based on a combination of linear-elastic and elastic-plastic fracture mechanics analysis of a postulated remaining flaw in the original Alloy 82/182 J-groove weld and cladding, a remnant flaw in the CCNPP-1 heater sleeve penetration is considered to be acceptable for at least { } years of operation from the time the postulated flaw formed in the low alloy steel PZR lower head.

Page 49

Controlled Document A,

AREVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

7.0 REFERENCES

1.

AREVA NP Document, 08-9112221-002, Design Specification for Calvert Cliffs Unit 1, Pressurizer Heater Sleeve and Lower Instrumentation Nozzle Modification, September, 2009.

2.

AREVA NP Drawing 02-9116243D-007, "Calvert Cliffs Pressurizer Heater:Sleeve Nozzle Modification."

3.

AREVA NP Document 51-5012047-00,, "Stress Corrosion Cracking of Low Alloy Steel," March 2001.

4.

ANSYS Finite Element Computer Code, Version 12.0, ANSYS Inc., Canonsburg, PA.

5.

T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, CRC Press, 1991.

6.

AREVA Document 38-2200661-005, "Project Specification for a Pressurizer Assembly for Calvert Cliffs Units 1 & 2," VENDRPT# 20101112-00001.

7.

ASME Boiler and Pressure Vessel Code,Section XI, Rules for Inservice Inspection of Nuclear Power Plant Components, 2004 Edition with no Addenda.

8.

NUREG-0744, Vol. 2, Rev. 1, "Resolution of the Task A-1 1 Reactor Vessel Materials Toughness Safety Issue," Appendix D, Materials Toughness Properties, Division of Safety Technology, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington, D.C. 20555, October 1982.

9.

AREVA NP Document 32-9126631-000, "Material and Transient Data for Pressurizer Heater Sleeve Repair Stress Analysis."

10.

AREVA NP Document 32-9116466-003, "CCNPP-1 PZR Heater Sleeve & Plug Weld Residual Stress Analysis."

11.

AREVA NP Document 32-9132487-005, "Calvert Cliffs Unit 1, Pressurizer Heater Sleeve/Plugged Sleeve Repair Structural Analysis."

Page 50

Controlled Document A

AtRE VA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair APPENDIX A: VERIFICATION OF COMPUTER CODE ANSYS The ANSYS finite element computer program [4] is verified for use in the present flaw evaluation by executing a test case from the ANSYS set of verification problems that utilize the SOLID186 structural 20-node 3-D rsolid elements.

Test case VM256 determines stress intensity factors using ANSYS commands KCALC and CINT, for a crack in a plate using both 2D and 3D models. All test models executed properly, as demonstrated below for SOLID186 structural 3-D solid model. Also, a modified version of VM256 (VM256_Kcalc) was executed to verify that the UH_K1KCALC.mac and DH_

K1 KCALC files calculate the SIF similar to ANSYS KCALC routine. Results of verification test are listed below:

Verification Problem VM256 Fracture Mechanics Stress Intensity Calculation for a Semi Circular Surface Crack in a 3D Plate File: vm256.vrt VM256 RESULTS COMPARISON---------------

TARGET I

ANSYS I

RATIO USING PLANE 183 ELEMENT (2-D ANALYSIS)

KI 1.0249 1.0038 0.979 PRINTOUT RESUMED BY /GOP USING SOLID 185 ELEMENT (3-D ANALYSIS)

KI 1.0249 1.0383 1.013 PRINTOUT RESUMED BY /GOP USING SOLID 186 ELEMENT -

SURFACE CRACK (3-D ANALYSIS)

KI 1.4000 1.4132 1.009 Verification Problem VM256_Kcalc VM256 Kcalc RESULTS COMPARISON---------------

I TARGET I

ANSYS I

RATIO I

Ansys Kcalc I KlKcalc ver.mac PRINTOUT RESUMED BY /GOP USING SOLID 186 ELEMENT -

SURFACE CRACK (3-D ANALYSIS)

K1 314.7 312.9 0.99 Page 51

A AR EVA Controlled Document Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair APPENDIX B: COMPUTER USAGE B.1 Software/Hardware ANSYS Version 12.0 is used in this calculation. The hardware platform is Dell Precision PWS690, Intel Xeon CPU, 5160 @ 3.33GHz, 2.99GHz, 32.0 GB of RAM, Serial No. 9BHGZCI, and the Operating System is Microsoft Windows XP Professional x64 Edition Version 2003 Service Pack 1.

B.2 Computer Files All ANSYS input/output files are collected as listed as follows. ANSYS verification input/output files are also listed. The computer files listed below have been placed in the AREVA NP COLDStor repository in the directory "\\cold\\41304\\32-9116467-002\\official". All files were installed on 1/20/2010.

For ANSYS 12.0, test case vm256 is run to, verify that the answers are correct. The files vm256.vrt contains output from the test case., Review of the output shows that the test case is run successfully.

ANSYS 12.0 analysis and verification files were run on Dell Precision PWS690, Tag# 9BHGZC1.

1.

Computer program tested: ANSYS 12.0

2.

Computer hardware used: Intel Xeon CPU, 5160 @ 3.33GHz, 2.99GHz Tag# 9BHGZC1

3.

Name of person running test: Samer Mahmoud

4.

Date of test: 06-15-2010

5.

Results and acceptability: The results of test case vm256.vrt as listed in Appendix A are acceptable.

ANSYS Models File Name Description Modified Checksum Date CCPZRHSFMUhill.db Crack model for uphill side 06/07/2010 30821 CCPZRHSFMDhill.db Crack model for downhill side 06/04/2010 19091 Page 52

Controlled Document A

ARE VA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Files for Downhill Side Crack File Name Description Modified Checksum Date DH_K1.out Output file contains SIF (Downhill) 06/11/2010 15952 DH_KI_DC.out Output file contains SIF (Downhill Design Case) 06/11/2010 31810 DHK1Kcalc.mac ANSYS command sets to calculate SIF 06/10/2010 12601 RUN_DH.inp ANSYS command sets to run analysis results 06/10/2010 1333 (Downhill)

RUN_DH.out ANSYS output file (Downhill) 06/11/2010 35329 RUN DH DC.inp ANSYS command sets to run analysis results 06/10/2010 10766 (Downhill Design Case)

RUNDHDC.out ANSYS output file (Downhill Design Case) 06/11/2010 26263 SummerizeResults.mac ANSYS command sets to summarize results 06/04/2010.

37552 (Downhill)

SummerizeResultsDC.mac ANSYS command sets to summarize results 06/08/2010 38405 (Downhill Design Case) sfmap_Prep.mac ANSYS command sets to map stress 06/07/2010 18442 Files for Uphill Side Crack File Name Description Modified Checksum Date UH_K1.out Output file contains SIF (Uphill) 06/10/2010 51213 DCUHK1.out Output file contains SIF (Uphill Design Case) 06/10/2010 21425 UH_K1Kcalc.mac ANSYS command sets to calculate SIF 06/10/2010 8841 RUN_UH.inp ANSYS command sets to run analysis (Uphill) 06/10/2010 52746 RUNUH.out ANSYS output file (Uphill) 06/10/2010 56757 RUNUH DC.inp ANSYS command sets to run analysis results 06/10/2010 10603 (Uphill Design Case)

RUNUHDC.out ANSYS output file (Uphill Design Case) 06/10/2010 50226 UHSummerizeResults.macý ANSYS command sets to summarize results 06/07/2010 811 (Uphill)

DCUHSummerizeResults.mac ANSYS command sets to summarize results (Uphill' Design Case) sfmapPrep.mac ANSYS command sets to map stress 06/07/2010 18442 Page 53,

Controlled Document A

AR EVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair ANSYS Verification File Name Description Modified Checksum Date VM256.inp Input for verification problem for SIF calculation 06-15-10 11797 with SOLID 86

.vm256.vrt Results for verification problem for SIF calculation 49343 with SOLID 86 Vm256.out Output for verification problem for SIF calculation 06-15-10 29168 with SOLID 86 VM256_Kcalc.inp Input for modified verification problem for 06-15-10 11000 K1 Kcalc.mac ANSYS command sets VM256_Kcalc.vrt Output for modified verification problem for 06-15-10 42538 K1 Kcalc.mac ANSYS command sets VM256 Kcalc.out Results for modified verification problem for 06-15-10 3483 K1Kcalc.mac.ANSYS command sets KIKcalcver.mac ANSYS command sets to calculate SIF for 06-15-10 61227 verification case Excel Sheet Calculations File Name Description Modified Checksum Date UH_KI.xls Crack growth, LEFM, and EPFM evaluations for 09/17/2010 36837 uphill side DH_K1.xls Crack growth, LEFM, and EPFM evaluations for 09/17/2010 63707 downhill side Page 54

A AREVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair APPENDIX C: FINITE ELEMENT CRACK MODEL C.1 Introduction A non-radial partial penetration nozzle in a spherically shaped pressure vessel presents a challenging set of geometric constraints for both stress analysis and fracture mechanics analysis of flaws, especially in the J-groove weld. Since there are no closed-form solutions available to calculate stress intensity factors for such flaws, a three-dimensional finite element crack model is developed in this appendix for use in evaluating the postulated flaws in the area of the partial penetration attachment weld.

The three-dimensional finite element model is constructed using crack tip elements along the entire postulated crack fronts, extending from the inside surface of the cladding to the interface between the cladding and the low alloy steel lower head. An uncracked model of the, remnant heater sleeve, a portion of the PZR lower head and cladding is first created using the ANSYS finite element computer program [4]. After removing a block of elements around the crack front and inserting a sub-model of crack tip elements, stress intensity factors can be obtained via the program's KCALC routine or similar procedures. The crack tip sub-model consists of 20-node isoparametric elements that are collapsed to form wedges, with the appropriate mid-side nodes shifted to quarter-point locations to create a l/r singularity in strain at the crack tip.

Page 55

A AREVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair C.2 Base Finite Element Model A three-dimensional finite element model is constructed to represent an uncracked non-radial nozzle penetration in a hemi-spherical shaped head. This model utilizes the ANSYS SOLID186 3-D 20-node structural solid element, so that a portion of the model can be readily removed and replaced with a crack tip sub-model.

C.2.1 Geometry As shown in Figure C-1, the model is a 180-degree segment of the head, cladding, and remnant heater sleeve.

Figure C-1: Overall Model of PZR Lower Head Penetration Cladding Remnant Heater Sleeve Low Alloy Steel Head Page 56

A AREVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Key dimensions are:

Radius to base metal Head thickness (minimum)

Cladding thickness (nominal)

Penetration bore Penetration to PZR center Initial flaw depth

=in. [2]

=

{

} in. [2]

= {

} in. [2]

= {

} in. [2]

= {

}in.

[2]

-- {

} in (equals to cladding thickness)

C.2.2 Materials Component Material PZR bottom head Cladding J-groove weld filler Existing Lower Level Heater Sleeve SA-533 Grade B Class 1 [1]

Ni-Cr-Fe (use Alloy 600) [1]

Alloy 82/182 (use Alloy 600) [1]

SB-66, Alloy 600 [1]

The mechanical properties for these materials are provided in Section 4.1.1.

C.2.3 Boundary Conditions The model includes a 180-degree segment of the PZR heater sleeve and portions of the head. The vertical plane containing the vertical axes of the PZR and the outermost heater sleeve penetration forms a plane of symmetry for the model. The displacements normal to this plane of symmetry are fixed (in the global Z-direction).

Displacement constraints are also applied to the outer peripheral boundary of the spherical segment to simulate a state of membrane stress. By specifying meridional displacements to be zero in a spherical coordinate system, the head can only displace along a spherical radius parallel to this boundary.

C.3 Finite Element Crack Models The three-dimensional finite element crack model is developed by removing a portion of the head cladding and inserting a sub-model of crack tip elements, as illustrated in Figure C-2. Displacement constraints are also removed along the plane of symmetry for nodes on the crack face. Figure C-3 shows the final crack models for both downhill and uphill sides used to analyze a postulated flaw in the PZR lower head.

Page 57

A AREVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Figure C-2: Development of Crack Model Downhill Crack Page 58

A AREVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Figure C-3: Final Finite Element Crack Models Downhill Crack Uohill Crack Page 59

A ARE VA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair APPENDIX D: STRESS INTENSITY FACTOR DUE TO PRESSURE The elastic-plastic fracture flaw evaluations of Section 2.4 utilize different safety factors for primary (pressure) and secondary stress (residual and thermal) intensity factors.

In order to isolate the pressure term, Kip, stress intensity factors are developed for the design case conditions (pressure load of {

} psig at {

} OF) where the uncracked stress values are obtained from Reference [11]. Table D-1 and Table D-2 presents stress intensity factors at all crack front positions defined in Figure 2-3 and Figure 2-4 for both downhill and uphill postulated cracks. Since these values were determined for the initial crack size, they are adjusted by the square root of the crack size, considering the final crack size after crack growth, in the same fashion as described in Section 2.2.

The Kip pressure terms used in the EPFM flaw evaluations of Section 5.5 are derived below.

Let, K,P(a,P) = Kp(ao,Po) aXfP P

P00

a. P.

Temperature, T={

=

F

Pressure, P={

} psig Initial flaw size, ao = {

} in.

From Table D-1, the downhill pressure stress intensity factor is evaluated at crack tip 15 to be {

psi 'din which is the highest pressure stress intensity factor in the low alloy head.

From Table D-2, the uphill pressure stress intensity factor is evaluated at crack tip 13 to be {

} psi 4/in which is the highest pressure stress intensity factor in the low alloy head.

Page 60

A AR EVA Controlled Document Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Table Q-1: Downhill Stress Intensity Factors for Design Case Pressure Insied Surface Bore Surface Nozzle ID Position 2

3 4

5 6

7 8

11 12 13 14 1t5 16 17 SIF (psN in) 45878.1 28322.6 24322.0 21765.6 20045.1 18195.0 16118.9 13640.3 3078.3 10325.1 11683.3 13008.3 15182.7 17664.2 19088.3 18270.1 37552.8 50000 40000 30000 20000 10000 0

Crack tips in low

-alloy steel head 1

3 5

7 9

11 13 Position 15 17 Page 61

Controlled Document A

ARE VA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Table D-2: Uphill Stress Intensity Factors for Design Case Pressure Temperature =

Pressure =

Flaw size =

Insied Surface Bore Surface Nozzle ID

{

Position 2

3 4

5 6

7 8

9 10 11 12 13 14 15 16 17 18 I

F psig in SIF (psiN in) 2880.1 6621.0 8519.0 9964.7 11101.0 12013.4 12626.8 12974.0 12980.9 15803.6 14823.3 1,6054.8 17106.3 16944.6 15037.5 15619.9 9552.1 6518.6 20000 17500 15000 12500 00 10000 -

7500 5000

/

2500-0--

1 3

5 7

9 Position 11 13 15 17 Page 62

Controlled Document A

AREVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair APPENDIX E: DETAILED CRACK GROWTH CALCULATIONS Table E-1: Uphill Detailed Crack Growth FATIGUE CRACK GROWTH FATIGUE CRACK GROWTH FATIGUE CRACK GROWTH aO aO=

i af=

I

,n 500.000 cycles Aý,N 12.500 cycles/year Transient 1B a0=

r n

af=

n 40 years 500.000 cycles AN 12.500 cycles/year Transient 2B aol=

,a

{

=-I 40 years 15000 000 cycles AN 375.000 cycles/year 40 years Position 13 Year of Kmin Kmax Operation a

Kl(a)

Kl(a)

Aa (in.)

(ksiqin)

(ksi4in)

(in.)

Position 13 Position 10 Year of Kmin Kmax Year of Kmin Kmax Operation a

Kl(a)

Kl(a)

, a 1, Operation a

KI(a)

KI(a) ia (in.)

(kshfin)

(ksi'vin).

(in.)

I in.)

(ks~in) ksi',in) in.)

I 3.1 3.1 3.2 3.3 3.3 3.4 3.5 3.5 3.6 3.7 3.8 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.6 4.7 4.8 4.9 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 6.0 6.1 6.2 8.3 8.4 8.6 8.8 9.0 9.2 9.4 9.5 9.8 10.0 10.2 10.4 10.6 10.8 11.1 11.3 11.5 11.8 12.0 12.3 12.5 12.8 13.1 13.4 13.6 13.9 14.2 14.5 14.8 15.1 15.5 15.8 16.1 16.4 16.8 18.2 18.6 19.0 19.4 19.8 20.2 20.6 21.1 21.5 22.0 22.4 22.9 23.4 23.9 24.4 24.9 25.4 26.0 26:5 27.1 27.7 28.2 28.8 29.4 30.1 30.7 31.3 32.0 32.7 33.4 34.1 34.8 35.5 36.3 370 I

21.7 22.2 22.7 23.1 23.6 24.1 24.6 25.1 25.7 26.2 26.8 27.3 27.9 28.5 29.1 29.8 30.4 31.0 31.7 32.4 33.0 33.7 34.4 352 35.9 36.7 37A 38.2 39.0 39.9 40.7 41.5 42.4 43.3 44.2 23.7 24.2 24.7 25.2 25.7 26.3 26.8 27.4 28.0 28.6 29.2 29.8 30.4 31.1 31.7 32.4 33.1 33.8 34.5 35.3 36.0 36.8 37.5 38.3 39.1 40.0 40.8 41.7 42.5 43.4 44.3 45.3 46.2 47.2 48.2

.~.)Page 63

Controlled Document 2

A AREVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair FATIGUE CRACK GROWTH FATIGUE CRACK GROWTH FATIGUE CRACK GROWTH af=

{

On 15000.000 cycles AN 375.000 cycles/year Transient PU 40 years a0=

{

-- in af' f In 320.000 cycles

,1N 8.000 cycles/year Transient LeakTest 40 years

- -- in af=-

f

-ln 480.000 cycles AN 12.000 cycles/year Transient LLA 40 years Position 10 Year of Kmin Kmax Operation a

KI(a)

KI(a) 8a (in.)

(ksiqin)

(ksi\\2in)

(in.)

21.8

.24.0 22.3 24.5 22.7 25.0 i

23.2 25.5 23.7 26.0 24.2 26.6 24.7 27.1 25.2 27.7 25.8

,28.3 26.3 28.9

)

26.9 29.5 27.4 30.2 1

28.0 30.8 28.6 31.4 1

29.2 32.1 29.8 32.8 1

30.5 33.5 1

31.1

.34.2 31.8 34.9 1

32.4 35.7 33.1 36.4 33.8 37.2 34.6 38.0 35.3 38.8 t

36.0 39.6 36.8 40.4 37.6 41.3 1

38.3 42.2 39.1 43.0 40.0 43.9 1

40.8 44.9 1

41.7 45.8 1

42.5 46.8 1

43.4 47.7 44.3 48.7 Position 13 Year of Kmin Kmax Operation a

Kl(a)

Ki(a)

Aa (in.)

(ksi'in)

(ksi',in)

(in.)

Position 10 Year of Kmin Kmax Operation a

KI(a)

Kl(a)

Aa (in.)

(ksifin)

(ksiqin)

(in.)

I I 7.0 7.2 7.3 7.5 7.6 7.8 8.0 8.1 8.3 8.5 8.7 8.9 9.0 9.2 9.4 9.6 9.8 10.0 10.3 10.5 10.7 10.9 11.1 11.4 11.6 11.9 12.1 12.4 12.6 12.9 13.2 11.4 13.7 14.0 14.3 19.2 19.6 20.0 20.4 20.9 21.3 21.7 22.2 22.7 23.2 23.7 24.2 24.7 25.2 25.7 26.3 26.8 27.4 28.0 28.6 29.2 29.8 30.4 31.1 31.7 32.4 33.1 33.8 34.5 35.2 35.9 36.7 37.5 38.2 39.0 18.7 19.1 19.5 19.9 20.3 20:7 21.2 21.6 22.1 22.6 23.0 23.5 24.0 24.5 25.1 25.6 26.1 26.7 27.2 27.8 28.4 29.0 29.6 30.3 30.9 31.5 32.2 32.9 33.6 34.3 35.0 35.7 36.5 37.2 38.0 24.6 25.1 25.6 26.2 26.7 27.3 27.9 28.4 29.0 29.7 30.3 30.9 31.6 32.3 33.0 33.7 34.4 35.1 35.8 36.6 37.4 38.2 39.0 39.8 40.6 41.5 42.4 43.3 44.2 45.1 46.0 47.0 48.0 49.0 50.0 Page 64

A AREVA Controlled Document Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair FATIGUE CRACK GROWTH FATIGUE CRACK GROWTH FATIGUE CRACK-GROWTH a0=

{

60.000 cycles AN 1.500 cycles/year Transient Insurgel 40 years 70.000 cycles AN 1.750 cycles/year Transient lnsurge2 aO=

f in af=

1 in 130.000 cycles AýN 3.250 cycles/year 40 years 40 years Position 10 Year of Kmin Kmax Operation a

KI(a)

Kl(a)

Aa (in.)

(ksi4in)

(ksNin)

(in.)

Position 10 Year of Kmin Kmax Operation a

Kl(a)

Ki(a)

Aa (in.)

(ksikin)

(ksivin)

(in.)

22.1 22.6 23.1 23.5 24.0 24.5 25.1 25.6 26.1 26.7 27.3 27.8 28.4 29.0 29.7 30.3 30.9 31.6 32.3 32.9 33.6 34.3 35.1 35.8 36.6 37.3 38.1 38.9 39.7 40.6 41.4 42.3 43.2 44.1 45.0 62.8 64.1 65.4 66.8 68.2 69.7 71.1 72.6 74.2 75.7 77.4 79.0 80.7 82.4 64.2 85.9 87.8 89.6 91.5 93.5 95.4 97.5 99.51 101.6 103.7 105.9 108.2 110.4 112.8 115.1 117.5 120.0 122.5 125.1 127.7 11.0 11.2 11.4 11.7 11.91 12.2 12.4 12.7 12.9 13.2 13.5 13.8 14.1 14.4 14.7 15.0 15.3 15.6 16.0 16.3 16.7 17.0 17.4 17.7 18.1 18.5 18.9 19.3 19.7 20.1 20.5 21.0 21.4 21.8 22.3 43.9 44.8 45.8 46.7 47.7 48.7 49.7 50.8 51.9 53.0 54.1 55.2 56.4 57.6 58.6 60.1 61.4 62.7 64.0 65.4 66.7 68.1 69.6 71.1 72.5 74.1 75.6 77.2 78.8 80.5 82.2 83.9 85.7 87:5 89.3 Transient lnsurge3 Position 10 Year of Kmin Kmax Operation a

KI(a)

KI(a) a (in.)

(ks~in) ksin)

(in.)

22.1 57:7 22.6 58.9 23.1 60.1 23.6 61.4 24.1 62.7 24.6 64.0 25.1 65.3 25.6 66.7 26.2 68.1 26.7 69.6 27.3 71.0 27.9 72.6 28.4 74.1 29.1 75.7 29.7 77.3 30.3 7&9 S30.9 80.6/

31.6 82.3 32.3 84.1 1 33.0 85.8 33.7 87.7 34.4 89.5 35.1 91.4 35.8 93.3 36.6 95.3 37.4 97.3 38.1 99.3 38.9 101.4 39.8 103.6 40.6 105.7 41.4 108.0 42.3 110.2 43.2 112.5 44.1 114.9 45.0 117.3

Page 65

A ARE VA

-Cantrofle Document Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair FATIGUE CRACK GROWTH FATIGUE CRACK GROWTH FATIGUE CRACK GROWTH ao=

530.000 cycles AN 13.250 cycles/year Transient Insurne4 40 years 30=

120.000 cycles

,AN 3.000 cycles/year Transient Insurge5 40 years aO=

af=

I

ý 1010.000 cycles AN 25.250 cycles/year Transient Insurge6 40 years Position 10 Year of Kmin Kmax Operation a

KI(a)

KI(a)

Aa (in.)

(ksi'in)

(ksilin)

(in.)

11.0 41.7 11.2 42.5 11.4 43.4 11.7 44.3 11.9 45.3 12.2 46.2 12.4 47.2 12,7 48.2 13.0 49.2 13.2 50.3 13.5 51.3 13.8 52.4 14.1 53.5 14.4 54.7 14.7 55.8 15.0 57.0 15.3 58.2 15.7 59.5 16.0 60.7 16.3 62.0 16.7 63.3 17.0.

64.7 17:4 66.0 17.8 67.4 18.1 68.8 18.5 70.3 18.9 71.8 19.3 73.3 19.7 74.8 20.1 76:4 20.5 78.0 21.0 79:6 21.4 81.3 21.9 83.0 1,_

22.3 84.7 Position 10 Year of Kmin Kmax Operation a

KI(a)

KI(a)

Aa (in)

(kshfin)

(ksiNin)

(in.)

Position 10 Year of Kmin Kmax Operation a

KI(a)

KI(a)

.a (in.)

(ksiin)

(ksiin)

(in.)

f 11.0 11.2 11.4 11.7 11.9 12.2 12.4 12.7 13.0 13.2 13.5 13.8 14.1 14.4 14.7 15.0 15.3 15.7 16.0 16.3 16.7 17.0 17.4 17.7 18.1 18.5 18.9 19.3 19.7 20.1 20.5 21.0 21.4 21.8 22.3 40.6 41.5 42.3 43.2 44.1 45.0 46.0 47.0 48.0 49.0 50.0 51.1 52.2 53.3 54.4 55.6 56.7 57.9 59.2 60.4 61.7 63.0 64.3 65.7 67.1 68.5 69.9 71.4 72.9 74.4 76.0 77.6 79:2 80.9 82.6 f

11.0 11.2 11.5 11.7 11.9 12.2 12.5 12.7 13.0 13.3 13.5 13.8 14.1 14.4 14.7 15.0 15.4 15.7 16.0 16.4 16.7 17:1 17.4 17.8 18.2 18.5 18.9 19.3 19.7 20.2 20.6 21.0 21.4 21.9 22.4 39.4 40.2 41.0 41.9 42.8 43.7 44.6 45.5 46.5 47.5 48.5 49.5 50.6 51.6 52.7 53.9 55.0 56.2ý 57.4 58.6 59.8 61.1 62.4 63.7 65.0 66.4 67.8 69.2 70.7 72.1 73.7 75.2 76.8 78.4 80.0 I

Page 66

Controlled Document A

AREVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair FATIGUE CRACK GROWTH FATIGUE CRACK GROWTH FATIGUE CRACK GROWTH a0=

- -'in af=-

I

In 320.000 cycles AN 8.000 cycles/year Transient Insurqe7 40 years aO=

{

60.000 cycles AN 1.500 cycles/year 40 years a0=

af=

f 1210.000 cycles, AN 30.250 cycles/year 40 years Transient 22.3 37.8.11

.0..

3 Position 10 Position 10 Position 10 Operation a

KI(a).

KI(a)

A-a Operation a

KI(a)

KI(a) za Operation a

KI(a)

KI(a)

Aa (in.)

(ksa'in)

(ksi*in)

(in.)

(in.)'

(ksi'in)

(ksi',in)

(in.)

(in.)

(ksikin)

(ksi'tin)

(in.)

213

.22.7 23.2 23.7 24.2 24.7 25-2 25.7 26.3 26.8 27.4 28.0 28.6 29.2 29.8 30.5 31.1 31.8 32.4 33.1 33.8 34.5 35.3 36.0 36.8 37.5 38.3 39.1 40.0 40.8 41.6 42.5 43.4 44.3 45.2 51.8 f

52.9 54.0 55.1 56.3 57.5 58.7 59.9 61.2 62.5 63.8 65.2 66.6 68.0 69.4 70.9 72.4 75.5 77.1 78.7 80.4 82.1 83.8 85.6 87.4 89.2 91.1 93.0 95.0 97.0 99.0 101.1 103.2 105.3

[

k 11.0 11,3 11.5 11.7 12.0 12.2 12.5 12.8 13.0 13.3 13.6 13.9 14.2 14.5 14.8 15.1 15.4 15.7 16.1 16.4 16.8 17;1 17ý5 17.9 18.2 18.6 i ý.,o 19.4 19.8 M.2 20.7 21.1 21.5 22.0 22.4, 37.8 38-6 39.4 40.3 41.1 42.0 42.9 43.8 44.7 45.6 46.6 47.6 4&6 49.7 50.7 51.8 52.9 54.0 55.1 56.3 57.5 58.7 60.0 61.2 62.5 63.8 65.2 6645 67.9 69.4 70.8 72.3 73.8 75A 76.9 11.0 36.6 11.3 "37.3:

11.5 38.1 11.7 38.9 12.0 39.7 212.2 40.6 12.5 41.4 12.8 42.3 13.0 43.2 13.3 44.1 13.6 45.0 13.9 46.0 14.2 47.0 14.5 48.0 14.8 49.0 15.1 50.0 15.4 51.1 15.8 52.2 16.1 53:3 16.4 54.4 16.8 55.6 17.1 56.7 17.5 57.9 17.9 59.2 18.2 60.4 18.6 61.7 19.0 63.0 19.4 64.3 19.8 65.6 20.2 67.0 20.7 68.4 21.1 69.9 21.5 71.3 22.0 72.8 22.4 74.3

~Pag6e67-.2,.

A AREVA Controlled: Document Document No. 32-9156231-000 CCN PP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair FATIGUE CRACK GROWTH FATIGUE CRACK GROWTH FATIGUE CRACK GROWTH af;a=

in...

170.000 cycles AN 4.250 cycles/year Transient Insurgell0 aO=

--- in af-An 40 years 1910.000 cycles AN 47.750 cycles/year Transient Insurcell aO=

af=

n 40 years 350.000 cycles AN 8.750 cycles/year Transient lnsurae12 40 years Position 10 Year of Kmin Kmax Operation a

Kl(a)

KI(a)

Aa (in.)

(ksiqin)

(ksi'in)

(in.)

22.2 47.9 I 22.7 48.9 23.2 50.0 23.7 51.0 24.2 521 24.7 53.2 25.2 54.3 25.7 55.4 26.3 56.6 26.8 57.8

.27.4 59.0 28.0 60.3 28.6 61.6 29.2 62.9 29.8 64.2 30.4 65.6

,31.1 67.0 31.7 68.4 32.4 69.8 33.1 71.3 33.8 72.8 34.5 74.4 35.2 75.9 36.0 77.5 36.7 79.'2 37.5 80.8 38.3 82.5 39.1 84.3 39.9 86.0 40.8 87.8 41.6 89.7 42.5 91.6 43.4 93.5 44.3 95.4 45.2 97.4 Position 10 Year of Kmin Kmax Operation a

Kl(a)

Kl(a)

A (in.)

(ksiqin)

(ksihin)

(in.)

22.1 45:8 22.6 46.7 23.1 47.7 23.6 48.7 24.1 49.7 24.6 50.8 25.1 51.8 25.6 52.9 26.2 54.0 26.7 55.2 27.3 56.4 27.9 57.6 28.5 58.8 29.1 60.0 29.7 61.3 30.3 62.6 31.0 63.9 31.6 65.3 32.3 66.7 33.0 68.1 33.7 69.5 34.4 71.0 35.1 72.5 35.8 74.0 38.6 75.6 37.4 77.2 38.1 78.8 38.9 80.5 39.8 82.1 40.6 83.9 41.4 85.6 42.3 87.4 43.2 89.2 44.1 91.1 45.0 93.0 Position 10 Year of Krnin Kmax Operation a

KI(a)

KI(a)

Aa (in.)

(ksiklin)

(ksi An)

.(in.)

11.1 31.4 11.4 32.1 11.6 32.7 11.8 33.4 12.1 34.1 12.4 34.8 12.6 35.6 12.9 36.3 13.1 37.1 13.4 37.9 13.7 38.7 14.0 39.5 14.3 40.3 14.6 41..2 14.9 42.1 15.2 43:0 15.6 43.9 15.9 44.8 16.2 45.8 16.6 46.7 16.9 47.7 17.3 48.7 17.6 49:8 18.0 50.8 18.4 51.9 18.8 53.0 19.2 54.1 19.6 55.2 20.0 56.4 20.4 57.6 20.8 58.8 21.3 60:0 21.7 61.2 22.2 62.5 22.6 63:8 Page 68

A AREVA Controlled Document Document No. 32-9156231-000 CCNPP-1 PZR Heater' Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair FATIGUE CRACK GROWTH FATIGUE CRACK GROWTH ao=

af-="

n 3360.000 cycles

_--N 84.000 cycles/year Transient Insurge13 40 years ao-in 820.000 cycles AN 20.500 cycles/year Transient Insurne14 40 years Position 10 IPosition 10 Year of Kmin Kmax Year of Kmin Kmax Operation a

Kl(a)

Kl(a)

A-a Operatoion a

Kl(a)

Kl(a)

Aa (in.)

(ksi"Vin)

(ks iin)

(in.)

-in (ksilin)

(ksihin)

(in.)ý I

(

22.1 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.1 26.6 27.2 27.8 28.4 29.0 29.6 30.2 30.9 31.5 32.2 32.9 33.6 34.3 35.0 35.7 36.5 37.2 38.0 38.8 39.6 40.5 41.3 42.2 43.1 44.0 44.9 3'4.4 35A*

35.9

,36.6119 2.

37.4 38.2 39.0 39.8 40.6 41.5 42.4

  • 43.3 44.2 45.2 46.1 47.1 48.1 49.11 50.2 51.2 52.3 53.4 54.5 55.7 56.8 58.0 59.3 60.5 61.8 63.1 64.4 65.7 67.1 68.5 70.0 2

V 11.2 11.4 11.7 11.9 12.1 12.4 12.7 12.9 13.2 13.5 13.8 14.1 14.4 14.7 15.0 15.3 15.6 16.0 16.3 16.6 17.0 17.3 17.7 18.1 18.5 18.9 19.2 19.7 20.1 20.5 20.9 21.4 21.8 22ý3 22.7 21.6 22A1 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.1 26.6 27.2 27.8 28.3 28.9 29.6 30.2 30.8 31.5 32.1 32.8 33.5 34.2 34.9 35.7 36.4 37.2 38.0 38.8 39.6 40.4 41.3 42.1 43.0 43.9 I

Page 69

Controlled Document AR EVA Document No. 32-9156231-000 CCN PP-i PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair Table E-2: Downhill Detailed Crack Growth aO=

J{ n*

a0=

c l 500.000 cycles IGUE CRACK GROWTH 40 years FATIGUE CRACK GROWTH FAIGUE CRACK GROWTH af=

at=-

500.000 cycles 40 years at 1

cye. s 40nyea cycles 40 years AN =

12.500 cycles/year Transient 1B AN =

12.500 cycles/year Transient 2B ANN= 375.000 cycles/year Transient PL Position 15 Year of Kmin Kmax Operation a

KI(a)

KI(a)

Aa (in.)

o (ksr in)

(ksiin)

(in.)a 1

2 3

4 5

6 7

8 0

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 215 27 28 29 30 31 32 33 34 35 36 3i 39 40 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 15.7 15.8 16.0 16.2 16.3 16.5 16.7 16.8 17.0 17.2 17.4 17.5 17.7 17.9 18.1 18.3 18.5 18.7 18.9 19.1 19.3 19.5 19.8 20.0 20.2 20.4 20.7 20.9 21.1 21.4 21.6 21.9 22.1 22.4 22.7 22.9 23.2 23.5 23.7 24.0 I

Year of Operation a

(in.)

1 2

3 4

5 6

7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 4 ~-

Position 15 Kmin Kmax Kl(a)

KI(a)

Aa iksi,.in) tksi'in!

lin "

{

\\.......

i Year of Operation a

(in.)

1.-.

1 I

4.2 4.2 4.3 4.3 4.4 4.4 4.4 4.5 4.5 4.6 4.6 4.7 4.7 4.8 4.8 4.9 4.9 5.0 5.0 5.1 5.2 5.2 5.3 5.3 5.4 5.4 5.5 5.6 5.6 5.7 5.8 5.8 5.9 6.0 6.0 6.1 6.2 6.3 6.3 6.4 16.1 16.3 16.4 16.6 16.8 16.9 17.1 17.3 17.5 17.6 17.8 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4 19.6 19.68 20.1 20.3 20.5 20.7 21.0 21.2 21.5 21.7 22.0 22.2 22.5 22.7 23.0 23.3 23.6 23:8 24.1 24.4 24.7 I

t L

1 2

3 4

5 6

7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Position 15 Kmin Kmax KIM(a)

K(a)

Aa (ksiA'in)

(ksi*in)

(in.)

15.6 17.2 15.7 17.3 15.9 17.5 16.0 17.7 16.2 17.9 16.4 18.0 16.5 18.2 16.7 18.4 16.9 18.6 17.0 18.8 17.2 19.0 17.4 19.2 17.6 19.4 17.8 19.6 18.0 19.8 18.1 20.0 18.3 20.2 18.5 20.5 18.7 20.7 19.0 20.9 19.2 21.2 19.4 21.4 19.6 21.6 19.8 21.9 20.0 22.1 20.3 22.4 20.5 22.6

.20.7 22.9 21.0 23.1 21.2 23.4 21.5 23.7

21.7 24.0 22.0 24.2 22.2 24.5 22.5 24.8 22.7 25.1

.23.0 25.4 23.3 25.7 23.5 26.0 23.8 26.3 Page 70

A AREVA Controlled Document, Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair FATIGUE CRACK GROWTH aO=

--- )n 15000.000 cycles rGUE CRACK GROWTH a0=

af=

40 years 320.000 cycles 4

000 cycles IGUE CRACK GROWTH 40

years, 40 years AN = 375.000 cycles/year Transient PU AN =

8.000 cycles/year Transient LeakTest Year of Operation a

Position 15 Kmin Kmax KlI(a KI(a)

Aa (ksi'4int (ksi',"in t (in Year of Operation a

(in.l Position 15 Kmin Krnax Kl(a)

KI(a)

Aa lksi'ýin)

(ksaiin)

(in.)

[Ul I lks

'r...

(

ks ln

\\..

t""n I

.II 1

2 3

4 5

6 7

8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 15.4 15.5 15.7 15.9 16.0 16.2 16.3 16.5 16.7 16.9 17.0 17.2 17.4 17.6 17.8 18.0 18.1 18.3 18.5 18.7 19.0 19.2 19.4 19.6 19.8 20.0 20.3 20.5 20.7 21.0 21.2 21.5 21.7 22.0 22.2 22.5 22.8 23.0 23.3 23.6 17.4 17.6 17.8 180 18.1 18.3 18.5 18.7 18.9 19.1 19.3 19.5 19.7 19.9 20.1 20.3 20.6 20.8 21.0 21.2 21.5 21.7 21.9 22.2 22.4 22.7 23:0 23.2 23.5 23.8 24.0 24.3 24.6 24.9 25.2 25.5 25.8 26.1 26.4 26.7 2

3 4

5 6

7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27-28 29 30 31 32 33 34 35 36 37 38 39 40 3.2 3.2 3.3 3.3 3.3 3.4 3.4 3.4 3.5 3.5 3.6 3.6 3.6 3.7 3.7 3.8 3.8 3.8 3.9 3.9 4.0 4.0 4.0 4.1 4.1 4.2 4.2 4.3 4.3 4.4 4A 4.5 4.5 4.6 4.6 4.7 4.8 4.8 4.9 4.9 18.5 18.7 18.9 19:1 19.3 19.5 19.7 19.9 20.1 20.3 20.5 20.7 21.0 21.2 21.4 21.6 21.9 22.1 22.3 22.6 22.8 23.1 23.4 23.6 23.9 24.2 24.4 24.7 25.0 25.3 25.6 25.9 26.2 26.5 26.8 27.1 27.4 27.7 28.1 28.4 AN =

12.000 cycles/year Transient LLA Position 15 Year of Kmin Kmax Operation a

KI(a)

KI(a)

Aa,.

(in.)

(ksiin)

(ksi,in)

(in.)

1 12.0 16.7 2

12.1 16.8 3

12.2 17.0 4

12.4 17.2 5

12.5 17.3 6

12.6 17:5 7

12.7 17.7 8

12.9 17.9 9

13.0 18.1 10 13.1 18.2 11 13.3 18.4 12 13.4 18.6 13 13.6 18.8 14 13.7 19.0 15 13.8 19.2 16 14.0 19.4 17 14.1 19.6 18 14.3

.19.9 19 14.5 20.1 20 14.6 20.3 21 14.8 20.5 22 14.9 20.7 23 15.1 21.0 24 15.3 21.2 25 15.4 21.5 26 15.6 21.7 27 15.8 21.9 28 16.0 22.2 29 16.2 22.5 30 16.4 22.7 31 16.5 23.0 32 16.7 23.3 33 16.9 23.5 34 17.1 23.8 35 17.3 24.1 36 17.5 24.4 37 17.7 24.6 38 17.9 24:9 39 18.2 25.2 40 18.4 25.5 Page 71

A AREVA QontroIled Document Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair a0=

~

-- jin af=

, n 60.000 cycles IGUE CRACK GROWTH 40 years a0=

in}

af=

in 70.000 cycles IGUE CRACK GROWTH 40 years a3=

cycein 130.000 cycles IGUE CRACK GROWTH 40 years AN =

1.500 cycles/year Transient Insurael AN =

1.750 cycles/year Transient lnsuroe2 AN =

3.250 cycles/year Transient lnsurae3 Year of Operation a

(in.)

Position 15 Kmin Kmax Ki(a)

Kl(a)

Aa (ksi~inI fksiklin) iin.)

Year of Operation a

(in.1 Position 15 Kmin Kmax Ki(a)

KI(a)

Aa (ksNin)

(ksihin)

(in.)

Year of Operation a

(in.)

Position 15 Kmin Kmax KI(a)

KIl(a)

Aa (ksiqin)

(kskiin) fin-)

1 2

3 4

5 6

7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40 15:9 16.1 16.3 16.4 16.6 16.8 16.9 17.1 17.3 17.5 17.7 17.8 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4 19.7 19.9 20.1 20.3 20.5 20.8 21.0 21.3 21.5 21.8 22.0 22.3 22.5 22.8 23.1 23.3 23.6 23.9 24.2 24 4 46.6 47.1 47.6 48.1 48.5 49.0 49.5 50.0 50.6 51.1 51.6 52.2 52.7 53.3 53.9 54.4 55.0 55.6 56.2 56.8 57.5 58.1 58.8 59.4 60.11 60.8 61.5 62.2 62.9 63.6 64.4 65.1 65.9 66:7 67.4 68.2 69.0 69.8 70.6 71.4 2

3 4

5 6

7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 1.9 1.9 2.0 2.0 2.0 2.0 2.0 2.1 2.1 2.1 2.1 2.1 2.2 2.2 2.2 2.2 2.3 2.3 2.3 2.3 2.4 2.4 2.4 2A 2.5 2.5 2.5 2.6 2.6 2.6 2.6 2.7 2.7 2.7 2.8 2.8 2.8 2.9 2.9 2.9 27.3 27.5 27.8 28.1 28.4 28.7 29.0 29.3 29.6 29.9 30.2 30.5 30.8 31.1 31.5 31.8 32.2 32.5 32.9 33.2 33.6 34.0 34.3 34.7 35.1 35.5 35.9 36.3 36.8 37.2 37.6 38.1 38.5 39.0 39.4 39.9 40.3 40.8 41.3 41.8 1

2 3

4 5

6 7

8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 15.9 16.1 16.2 16.4 16.5 16.7 16.9 17.1 17.2 17.4 17,6 17.8 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0 20.3 20.5 20.7 21.0 21.2 21.4 21.7 21.9 22.2 22.5 22.7 23.0 23.3 23.5 23.8 24.1 24.4 42.6 43.0 43.5 43.9 44.3 44.8 45.2 45.7 46.2 46.7 47.2 47.6 48.2 48.7 49.2 49.7 50.3 50.8 51.4 51.9 52.5 53.1 53.7 54.3 54.9 55.5 56.1 56.8 57.4 58.1 58.8 59.5 60.2 60.9 61.6 62.3 63.0 63.8 64.5 65.3 244 Page 72

Controlled Document AR A AREVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair FATIGUE CRACK GROWTH FATIGUE CRACK GROWTH.

FATIGUE CRACK -GROWTH a7O2 5

cy000 cles

ýN=

13.250 cycles/year Transient lnsurqe4 40 years af=

I in 120.000 cycles

,N =

3.000 cycles/year Transient lnsuhqe5 40 years 1010.000 cycles

  • ,N =

25.250 cycles/year Transient Insurqe6 40 years Position 15 Position 15 Year of Kmin Kmax Year of Kmin Kmax Operation a

Kl(a)

KI(a)

Aa Operation a

Kl(a)

KI(a)

,.a (in.)

(ksi*,,in)

(ksihlin)

(in.)

(in.)

(ksiJn)

(ksiin)

(in.)

1 1,9 25.4 1

1.9 24.7 2

1.9 25.6 2

1.9 24.9 3

2.0 25.9 3

1.9 25.2 4

2.0 26.1 4

2.0 25.4 5

2.0 26.4 5

2.0 25.7 6

2.0 26.7 6

2.0 26.0 7

2.0 27.0 7

2.0 26.2 8

2.1 27.2 8

2.0 26.5 9

2.1 27.5 9

2.1 26.8 10 2.1 27.8 10 2.1 27.1 11 2.1 28.1 11 2.1 27.3 12 2.1 28.4 12 2.1 27.6 13 2.2 28.7 13 2.2 27.9 14 2.2 29.0 14 2.2 28.2 15 2.2 29.3 15 2.2 28.5 16 2.2 29.6 16 2.2 28.8 17 2.3 29.9 17 2.2 29.1 18 2.3 30.3 18 2.3 29.5 19 2.3 30.6 19 2.3 29.8 20 2.3 30.9 20 2.3 30.1 21 2.4 31.3 21 2.3 30.4 22 2.4 31.6 22 2.4 30.8 23 2.4 32.0 23 2.4 31.1 24 2.4 32.3 24 2.4 31.5 25 2.5 32.7 25 2.5 31.8 26 2.5 33.1 26 2.5 32.2 27 2.5 33.4 27 2.5 32.5 28 2.6 33.8 28 2.5 32.9 29 2.6 34.2 29 2.6 33.3 30 2.6 34.6 30 2.6 33.7 31 2.7 35.0 31 2.6 34.1 32 2.7 35.4 32 2.7 34.5 33 2.7 35.8 33 2.7 34.9 34 2.7 36.3 34 2.7 35.3 35 2.8 36.7 35 2.8 35.7 36 2.8 37.1 36 2.8 36.1 37 2.8 37.5 37 2.8 36.5 38 2.9 38.0 38 2.9 37.0 39 2.9 38.4 39 2.9 37.4 40 2.9 38.9 1

40 2.9 37.8 Position 15 Year of Kmin Kmax Operation a

KI(a)

Kl(a)

Aa.

(in.)

(ksi'*Iin)

(ksiAn)

(in.)

1 1.9 23:7 2

1.9 23:9 3

2.0 24:2 4

2.0 24.4 5

2.0 24.7 6

2.0 24.9 7

2.0 25.2 8

2.1 25.4, 9

2.1 25.7 10 2.1 26.0 11 2.1 26.2 12 2.2 26:5 13 2.2 26.8 14 2.2 27.1 15 2.2 27.4 16 2.2 27.7 17 2.3 28.0 18 2.3 28.3 19 2.3 28.6 20 2.3 28.9 21

.2.4 29:2 22 2.4 29:5 23 2.4 29.8 24 2.4 30.2 25 2.5 30.5 26 2.5 30.9 27 2.5 31.2 28 2.6 31.6 29 2.6

.32.0 30 2.6 3213 31 2.7 32.7 32 2.7 33:1 33 2.7 33.5 34 2.7 33.9 35 2.8 34.3 36 2.8 34:7 37 2.8 35.1 38 2.9 35.5 39 2.9 35.9 40 2.9 36.3 Page 73

Controlled Document AREVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair a0=

- --,in af=

n 321.000 cycles IGUE CRACK GROWTH 40 years a0=

{

a6=

cln 60.000 cycles iGUE CRACK GROWTH 40 years a0=

af0 1

n 121.000 cycles IGUE CRACK GROWTH 40 years AN =

8.000 cycles/year Transient Insurge7

,NN =

1.500 cycles/year Transient lnsurge8 Position 15 Position 15 Year of Kmin Kmax Year of Kmin Kmax Operation a

Ki(a)

Ki(a)

Aa Operation a

KI(a)

KI(a)

Aa (in.)

(ksih.in)

(ksifin)

(in.)

(in.)

(ksiHin)

(ksNin)

(in.)

1 15.9 38.1 1

1.9 22.5 2

16.1 38.5 2

1.9 22.7 3

16.2 38.9 3

2.0 23.0 4

16.4 39.2 4

2.0 23.2 5

16.6 39.6 5

2.0 23.4 6

16.7 40.0 6

2.0 23.7 7

16.9 40.5 7

2.0 23.9 8

17.1 40.9 8

2.1 24.1 9

17.3 41.3 9

2.1 24.4 10 17.4 41.7 10 2.1 24.7 11 17.6 42.2 11 2.1 24.9 12 17.8 42.6 12 2.2 25.2 13 18.0 43.1 13 2.2 25.4 14 18.2 43.5 14 2.2 25.7 15 18.4 44.0 15 2.2 26.0 16 18.6 44.5 16 2.2 26.3 17 18.8 44.9 17 2.3 26.5 18 19:0 45.4 18 2.3 26.8 19 19.2 45.9 19 2.3 27.1 20 19.4 46.4 20 2.3 27.4 21 19.6 46.9 21 2.4 27.7 22 19:8 47.5 22 2.4 28.0 23 20.1 48.0 23 2.4 28.4 24 20.3 48.5 24 2.5 28.7 25 20.5 49.1 25 2.5 29.0 26 20.7 49.6 26 2.5 29.3 27 21.0 50.2 27 2.5 29.7 28 21.2 50.8 28 2.6 30.0 29 21.5 51.4 29 2.6 30.3 30

,21.7 52.0 30 2.6 30.7 31 22.0 52.6 31 2.7 31.1 32 22.2 53.2 32 2.7 31.4 33 22.5 53.8 33 2.7 31.8 34 22.8 54.4 34 2.8 32.2 35 23.0 55.1 35 2.8 32.5 36 23.3 55.7 36 2.8 32.9 37 23.6 56.4 37 2.9 33.3 38 23.8 57.0 38 2.9 33.7 39 24.1 57.7 39 2.9 34.1 40 24.4 58.3 40 3.0 34.5 AN =

30.250 cycles/year Transient Insurqe9 Position 15 Year of Kmin Kmax Operation a

KI(a)

KJ(a)

Aa (in.)

(ksihin)

(ksii'1n)

(in.)

1 1.9 21.7 2

1.9 21.9 3

2.0 22.1 4

2.0 22.3 5

2.0 22.5 6

2.0 22.8 7

2.0 23.0 8

2.1 232 9

2.1 23.5 10 2.1 23.7 11 2.1 24.0 12 2.2 24.2 13 2.2 24.5 14 2.2 24.7 15 2.2 25.0 16 2.2 25.3 17 2.3 25.5 18 2.3 25.8 19 2.3 26.1 20 2.3 26.4 21 2.4 26.7 22 2.4

.27.0 23 2.4 27.3 24 2.5 27.6 25 2.5 27.9 26 2.5 28.2 27 2.5 28.5 28 2.6 28.9 29 2.6 29.2 30 2.6 29.5 31 2.7 29.9 32 2.7 30.2 33 2.7 30.6 34 2.8 30.9 35 2.8 31.3 36 2.8 31.7 37 2.9 32.0 38 2.9 32.4 39 2.9 32.8 40 3.0 33.2 Page 74

Controlled Document A

AREVA Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair af 100 n

170.000 cycles IGUE CRACK GROWTH 40 years FATIGUE CRACK GROWTH a--0

}n a0=

f

-'ii af=

Ir n 350.000 cycles IGUE CRACK GROWTH 40 years 1910.000 cycles AN =

47.750 cycles/year Transient lnsurgel1 40 years AN =

4.250 cycles/year Transient Insurgel0 Position 15 Year of Kmin Kmax Operation a

KI(a)

KI(a)

.a (in.)

(ksihlin)

(ksiin)

(in.)

1 16.0 35.1 2

16.2 35.5 3

16.4 35.8 4

16.5 36.2 5

16.7 36.5 6

16.9 36.9 7

170 37.3 8

17.2 37.7 9

17.4 38.1 10 17.6 38.5 11 17.7 38.9 12 17.9 39.3 13 181 39.7 14 18.3 40.1 15 18.5 40.5

16.

18.7 41.0 17 18.9 41.4 18 19.1 41.9 19 19.3 42.3 20 19.5 42.8 21 19.8 43.3 22 20.0 43.7 23 20.2 44.2 24 20.4 44.7 25 20.7 45.2 26 20.9 45.7 27 21.1 46.3 28 21.4 46.8 29 21.6 47.3 30 21.9 47.9 31 22.1 48.4 32 22.4 49.0 33 22.6 49.6 34 22.9 50.2 35 23.2 50.7 36 23.4 51.3 37 23.7 51.9 38 24.0 52.5 39 24.3 53.2 40 24.6 53.8 AN =

8.750.

cycleslyear Transient Insurge12.

Position 15 Position 15 Year of Kmin Kmax Year of Kmin Kmax Operation a

Kl(i)

Kl(a)

(a Op. r (tion a

KI(a)

Kl(a)

,(a (in.)

(ksi~in)

(kiin

i.

(in.)

(ksilin)

(ksh,*n)

(in.)

1 2

3 4

5 6

7 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 16.0 16.1 16.3 16.4 16.6 16.8 17.0 17.1 17.3 17.5 17.7 17.9 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.5 19.7 19.9 20.1 20.3 20.6 20.8 21.0 21.3 21.5 21.8 22.0 22.3 22.5 22.8 23.1 23.3 23.6 23.9 24.2 24.5 33.7 34.0 34.3 34.7 35.0 35.4 35.8 36.1 36.5 36.9 37.3 37.6 38.0 38.5 38.9 39.3 39.7 40.1 40.6 41.0 41.5 41.9 42.4 42.9 43.4 43.9 44.4 44.9 45.4 45.9 46.5 47.0 47.5 48.1 48.7 49.2 49.8 50.4 51.0 51.6 1.9 2.0 2.0 2.0 2.0 2.0 2.1 2.1 2.1 2.1 2.1 2.2 2.2 2.2 2.2 2.3 2.3 2.3 2.3 2.4 2.4 2.4 2.4 2.5 2.5 2.5 2.6 2.6 2.6 2.6 2.7 2.7 2.7 2.8 2.8 2.8 2.9 2.9 2.9 3.0 t7.6 17.8 18.0 18.1 18.3 18.5 18.7 18.9 19.1 19.3 19.5 19.7 19.9 20.1 20.3 20.5 20.8 21.0 21.2 21.4 21.7 21.9 22.2 22.4.

22.7 22.9 23.2 23.5 23.7 24.0 24.3 24.6 24.9 25A1 25.4 25.7 26.0 26.6 27.0

-'~Page 75

AR A

AR EVA

Contro d.-

Document Document No. 32-9156231-000 CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair a0=

f

-- In af=

. n 3360.000 cycles, IGUE CRACK GROWTH 40 years aO=

n 820.000 cycles IGUE CRACK GROWTH 40 years AN =

84000 cycles/year Transient Insurge13

,IN = 20.500 cycles/year Transient lnsurqel4 Position 15 Year of Kmin Kmax Operation a

Kl(a)

KI(a)

Aa (in, (ksiqin)

(ksi4n)

(inI Position 15 Year of Kmin Kmax Operation a

Kl(a)

Kl(a) x a

(in.

(ksi'in)

(ksi'in)

(in.)

1 2

3 4

5 6

7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 16.0 16.1 163 16.5 16-6 168 17.0 17.1 17.3 17.5 17.7 17.9 18.1 18.3 18.4 18.6 188 19.1 19.3 19.5 19.7 19.9 20.1 20.4 20.6 20.8 21.1 21.3 21.5 21.8 22.1 22.3 22.6 22.8 23.1 23.4 23.6 23.9 24.2 24.5 25.0 25.2 25.5 25.7 26.0 26.3 26.5 26.8 27.1 27.4 27.7 27.9 28.2 28.5 28.9 29.2 29.5 29.8 30.1 30.5 30.8 31.1 31.5 31 8 32.2 32.6 32.9 33 3 33.7 34.1 34.5 34.9 35.3 35.7 36.1 36.5 37.0 37.4 37.8 38.3 10 2

3 4

5 6

7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 9.9 10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.8 10.9 11.0 11.1 112 11.3 11.5 11.6 11.7 11.8 12.0 12.1 12.2 12.4 12.5 12.6 12.8 12.9 13.1 13.2 13.4 13.5 13.7 13.9 14.0 14.2 14.4 14.5 14.7 14.9 15.0 15.2 Page 76