ML082890113

From kanterella
Jump to navigation Jump to search
WCAP-16964-NP, Analysis of Capsule Z from the Southern Nuclear Operating Company Joseph M. Farley Unit 1 Reactor Surveillance Program.
ML082890113
Person / Time
Site: Farley Southern Nuclear icon.png
Issue date: 10/31/2008
From: Conermann J, Hunter M
Westinghouse
To:
Office of Nuclear Reactor Regulation
References
WCAP-16964-NP
Download: ML082890113 (319)


Text

Joseph M. Farley Nuclear Plant - Unit 1 Reactor Vessel Surveillance Capsule Z Results Enclosure WCAP-16964-NP, October 2008, "Analysis of Capsule Z from the Southern Nuclear Operating Company Joseph M. Farley Unit 1 Reactor Vessel Radiation Surveillance Program"

Westinghouse Non-Proprietary Class 3 WCAP-16964-NP October 200 8 Analysis of Capsule Z from the Southern Nuclear Operating Company Joseph M. Farley Unit 1 Reactor Vessel Radiation Surveillance Program Westinghouse

WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-16964-NP J. M. Conermann*

M. A. Hunter*

October 2008 Reviewer: F. C. Gift, Jr.*

Major Reactor Component Design and Analysis - I Approved: P. C. Paesano*, Manager Primary Component Asset Management

  • Electronically approved records are authenticated in the electronic document management system.

Westinghouse Electric Company LLC P.O. Box 355 Pittsburgh, PA 15230-0355

© 2008 Westinghouse Electric Company LLC All Rights Reserved

111 RECORD OF REVISION Revision 0: Original Issue WCAP- 16964-NP October 2008

iv TABLE OF CONTENTS L IS T O F TA B LE S ........................................................................................................................................ v L IS T O F F IG U RE S .................................................................................................................................... v ii EX E C U T IV E SU MMA RY .......................................................................................................................... ix 1 SUM M A RY O F RE SU LT S .......................................................................................................... 1-1 2 IN T RO D U C T ION ....................................... ,................................................................................ 2-1 3 B A CKG RO U N D .......................................................................................................................... 3-1 4 DESCRIPTION OF PROGRAM ............................................................................................. 4-1 5 TESTING OF SPECIMENS FROM CAPSULE Z ................................................................. 5-1 5 .1 O VE RV IEW ................................................................................................................... 5-1 5 .2 RE SU LT S ....................................................................................................................... 5-2 5.3 TEN SILE TEST RE SU LT S ............................................................................................. 5-4 5.4 BEND BAR AND COMPACT TENSION SPECIMEN TESTS .................................... 5-5 6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY ................................................. 6-1 6.1 IN TR O D U C TIO N ..................................................................................................... 6-1 6.2 DISCRETE ORDINATES ANALYSIS ........................................................................... 6-2 6.3 N EUTRON D O SIM ETRY ............................................................................................. 6-4 6.4 CALCULATIONAL UNCERTAINTIES ........................................................................ 6-5 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE ............................................................ 7-1 8 RE FERE N C E S ............................................................................................................................. 8-1 APPENDIX A VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY MEASUREMENTS ................................................. A-1 APPENDIX B LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS ............................... B-1 APPENDIX C CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD ...................................... C-1 APPENDIX D JOSEPH M. FARLEY UNIT I SURVEILLANCE PROGRAM CREDIBILITY EVA LU AT IO N ............................................................................................................... D -1 WCAP- 16964-NP October 2008

V LIST OF TABLES Table 4-1 Chemical Composition (wt %) of the Farley Unit 1 Reactor Vessel Surveillance Materials

......................................................................................................................................... 4 -3 Table 4-2 Heat Treatment of the Farley Unit 1 Reactor Vessel Surveillance Materials ................... 4-3 Table 5-1 Charpy V-notch Data for the Farley Unit 1 Lower Shell Plate B6919-1 Specimens Irradiated to a Fluence of 8.47E+ 19 n/cm 2 (E> 1.0 MeV) (Longitudinal Orientation) ... 5-6 Table 5-2 Charpy V-notch Data for the Farley Unit 1 Lower Shell Plate B6919-1 Specimens Irradiated to a Fluence of 8.47E+19 n/cm 2 (E> 1.0 MeV) (Transverse Orientation) ....... 5-7 Table 5-3 Charpy V-notch Data for the Farley Unit 1 Surveillance Weld Metal Irradiated to a Fluence of 8.47E+19 n/cm 2 (E> 1.0 M eV) ...................................................................... 5-8 Table 5-4 Charpy V-notch Data for the Farley Unit 1 HAZ Material Irradiated to a Fluence of 8.47E+ 19 n/cm 2 (E> 1.0 M eV ) ........................................................................................ 5-9 Table 5-5 Instrumented Charpy Impact Test Results for the Farley Unit 1 Lower Shell Plate B6919-1 Specimens Irradiated to a Fluence of 8.47E+19 n/cm 2 (E> 1.0 MeV) (Longitudinal O rien tatio n) .................................................................................................................... 5 -10 Table 5-6 Instrumented Charpy Impact Test Results for the Farley Unit 1 Lower Shell Plate B6919-1 Specimens Irradiated to a Fluence of 8.47E+19 n/cm 2 (E> 1.0 MeV) (Transverse O rien tatio n) .................................................................................................................... 5 -1 1 Table 5-7 Instrumented Charpy Impact Test Results for the Farley Unit 1 Surveillance Weld Metal Irradiated to a Fluence of 8.47E+19 n/cm 2 (E> 1.0 MeV) ............................................. 5-12 Table 5-8 Instrumented Charpy Impact Test Results for the Farley Unit 1 HAZ Metal Irradiated to a Fluence of 8.47E+19 n/cm 2 (E> 1.0 M eV) .................................................................... 5-13 Table 5-9 Effect of Irradiation to 8.47E+19 n/cm 2 (E> 1.0 MeV) on the'Charpy V-Notch Toughness Properties of the Farley Unit 1 Reactor Vessel Surveillance Capsule Z Materials ........ 5-14 Table 5-10 Comparison of the Farley Unit 1 Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Pred ictio ns ..................................................................................................................... 5 -15 Table 5-11 Tensile Properties of the Farley Unit 1 Capsule Z Reactor Vessel Surveillance Materials Irradiated to 8.47E+19 n/cm 2 (E> 1.0 M eV) ................................................................. 5-16 Table 6-1 Calculated Neutron Exposure Rates and Integrated Exposures at the Surveillance C ap su le C enter ................................................................................................................. 6-7 Table 6-2 Calculated Azimuthal Variation of Maximum Exposure Rates and Integrated Exposures at the Reactor Vessel Clad/Base M etal Interface ............................................................... 6-11 Table 6-3 Calculated Azimuthal Variation of Exposure Rates and Integrated Exposures at the Intermediate Shell Course to Nozzle Shell Course Weld ............................................... 6-15 Table 6-4 Relative Radial Distribution of Neutron Fluence (E > 1.0 MeV) Within the Reactor Vessel Wall ..................................................................................................................... 6 -19 WCAP- 16964-NP October 2008

vi Table 6-5 Relative Radial Distribution of Iron Atom Displacements (dpa) Within the Reactor Vessel Wall ..................................................................................................................... 6 -19 Table 6-6 Calculated Fast Neutron Exposure of Surveillance Capsules Withdrawn from Farley U n it 1 ............................................................................................................................. 6 -2 0 Table 6-7 Calculated Surveillance Capsule Lead Factors .............................................................. 6-20 Table 7-1 Farley Unit 1 Surveillance Capsule Withdrawal History ................................................. 7-1 October 2008 16964-NPP WCAP- 16964-N October 2008

vii LIST OF FIGURES Figure 4-1 Arrangement of Surveillance Capsules in the Farley Unit 1 Reactor Vessel ................... 4-4 Figure 4-2 Capsule Z Diagram Showing the Location of Specimens, Thermal Monitors, and Do sim eters ................................................................................................................ 4 -5 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Longitudinal Orientation) .............................. 5-17 Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for Farley Unit I Reactor Vessel Lower Shell Plate B6919-1 Specimens (Longitudinal Orientation) ................... 5-18 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Longitudinal Orientation) .............................. 5-19 Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Transverse Orientation) ................................. 5-20 Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Transverse Orientation) ...................... 5-21 Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Transverse Orientation) ................................. 5-22 Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for Farley Unit 1 Reactor Vessel Surveillance Weld M etal Specim ens .............................................................................. 5-23 Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for Farley Unit 1 Reactor Vessel Surveillance Weld M etal Specim ens .................................................................. 5-24 Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for Farley Unit 1 Reactor Vessel Surveillance Weld M etal Specim ens .............................................................................. 5-25 Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for Farley Unit 1 Reactor Vessel H eat-A ffected-Zone Specim ens ..................................................................................... 5-26 Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for Farley Unit 1 Reactor Vessel H eat-A ffected-Zone Specim ens .......................................................................... 5-27 Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for Farley Unit 1 Reactor Vessel H eat-A ffected-Zone Specim ens ..................................................................................... 5-28 Figure 5-13 Charpy Impact Specimen Fracture Surfaces for Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Longitudinal Orientation) .............................. 5-29 Figure 5-14 Charpy Impact Specimen Fracture Surfaces for Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Transverse Orientation) ................................. 5-30 Figure 5-15 Charpy Impact Specimen Fracture Surfaces for Farley Unit 1 Reactor Vessel Surveillance Weld M etal Specim ens .............................................................................. 5-31 Figure 5-16 Charpy Impact Specimen Fracture Surfaces for Farley Unit 1 Reactor Vessel H eat-A ffected-Zone Specim ens ..................................................................................... 5-32 WCAP- 16964-NP October 2008

viii LIST OF FIGURES (cont.)

Figure 5-17 Tensile Properties for Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specim ens (Longitudinal Orientation) ........................................................................... 5-33 Figure 5-18 Tensile Properties for Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specim ens (Transverse Orientation) .............................................................................. 5-34 Figure 5-19 Tensile Properties for Farley Unit 1 Reactor Vessel Surveillance Weld Metal S p ecim en s ...................................................................................................................... 5 -3 5 Figure 5-20 Fractured Tensile Specimens from Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Longitudinal Orientation) ................................................... 5-36 Figure 5-21 Fractured Tensile Specimens from Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Transverse Orientation) ...................................................... 5-37 Figure 5-22 Fractured Tensile Specimens from Farley Unit 1 Reactor Vessel Surveillance Weld M etal Specimens .................................................................................................. 5-38 Figure 5-23 Engineering Stress-Strain Curves for the Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Longitudinal Orientation) Tensile Specimens A L -16, A L -17, and A L -18 ............................................................................................. 5-39 Figure 5-24 Engineering Stress-Strain Curves for the Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Transverse Orientation) Tensile Specimens AT- 16, AT- 17, and AT-18 ................................................................................................ 5-40 Figure 5-25 Engineering Stress-Strain Curves for Farley Unit 1 Reactor Vessel Surveillance Weld Metal Specimens AWl 6, AWl 7, and AWl 8 ........................................................ 5-41 Figure 6-1 a Farley Unit 1 r,0 Reactor Geometry with a 150 Neutron Pad at the Core Midplane ..... 6-21 Figure 6-1 b Farley Unit 1 r,0 Reactor Geometry with a 26' Neutron Pad at the Core Midplane ..... 6-22 Figure 6-2 Farley Unit 1 r,z Reactor Geometry with Neutron Pad .................................................. 6-23 WCAP- 16964-NP October 2008

ix EXECUTIVE

SUMMARY

The purpose of this report is to document the results of the testing of Surveillance Capsule Z from the Joseph M. Farley Unit 1 nuclear power plant. Capsule Z was removed at the end of cycle (EOC) 21 and post-irradiation mechanical tests of the Charpy V-notch and tensile specimens were performed. A fluence evaluation utilizing the recently released neutron transport and dosimetry cross-section libraries was derived from the ENDF/B-VI data-base. Capsule Z received a fluence of 8.47E+ 19 n/cm 2 after 24.26 Effective Fuel Power Years (EFPY) of plant operation. The peak clad/base metal interface vessel fluence after 24.26 EFPY of plant operation was 2.78E+19 n/cm 2.

This evaluation concluded the following:

1. The measured 30 ft-lb shift in transition temperature values of the plate material contained in Capsule Z (longitudinal and transverse orientations) are greater than than the Regulatory Guide 1.99, Revision 2, predictions.
2. The measured 30 ft-lb shift in transition temperature value of the weld metal contained in Capsule Z is less than the Regulatory Guide 1.99, Revision 2, Position 1.1 prediction.
3. The measured percent decrease in upper shelf energy (USE) for all the plate and weld surveillance materials in Capsule Z are less than the Regulatory 1.99, Revision 2, predictions.
4. The beltline materials exhibit a more than adequate USE level for continued safe plant operation and are predicted to maintain an upper shelf energy greater than 50 ft-lb throughout the life of the vessel (54 EFPY) as required by 10CFR50, Appendix G. Projected USE levels for up to 72 EFPY are also predicted to remain greater than 50 ft-lb.
5. The surveillance weld data was found to be credible, while the surveillance plate data was found to be not credible. This evaluation can be found in Appendix D.
6. The service period of applicability for the Pressure-Temperature Limit Curves labeled for 31.9 EFPY in WCAP-14689, Revision 4, must be reduced to 22.5 EFPY to account for the updated neutron fluence projections and vessel material chemistry factors calculated as part of the Surveillance Capsule Z analysis. New Pressure-Temperature Limit Curves have been calculated in report ALA-08-68.

Lastly, a brief summary of the Charpy V-notch testing can be found in Section 5.0. All Charpy V-notch data was plotted using a symmetric hyperbolic tangent curve fitting program.

October 2008 WCAP- I16964-NP WCAP- 6964-NP October 2008

1-1 1

SUMMARY

OF RESULTS The analysis of the reactor vessel materials contained in Surveillance Capsule Z, the sixth and final capsule removed and tested from the Joseph M. Farley Unit 1 reactor pressure vessel, led to the following conclusions:

Capsule Z received an average, fast neutron fluence (E> 1.0 MeV) of 8.47E+19 n/cm 2 after 24.26 EFPY of plant operation.

Irradiation of the reactor vessel lower shell plate B6919-1 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction (longitudinal orientation), resulted in an irradiated 30 ft-lb transition temperature of 179.6°F and an irradiated 50 ft-lb transition temperature of 203.6°F. This results in a 30 ft-lb transition temperature increase of 202.2°F and a 50 ft-lb transition temperature increase of 196.3°F for the longitudinal orientation specimens. See Table 5-9.

Irradiation of the reactor vessel lower shell plate B6919-1 Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major working direction (transverse orientation), resulted in an irradiated 30 ft-lb transition temperature of 183.6°F and an irradiated 50 ft-lb transition temperature of 214.717. This results in a 30 ft-lb transition temperature increase of 178.3°F and a 50 ft-lb transition temperature increase of 159.1 'F for the transverse orientation specimens. See Table 5-9.

Irradiation of the surveillance weld metal Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 37.1 °F and an irradiated 50 ft-lb transition temperature of 57.4°F. This results in a 30 ft-lb transition temperature increase of 113.5°F and a 50 ft-lb transition temperature increase of 100.5°F. See Table 5-9.

Irradiation of the weld heat-affected-zone (HAZ) metal Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 10.3°F and an irradiated 50 ft-lb transition temperature of 39.4°F. This results in a 30 ft-lb transition temperature increase of 170.7°F and a 50 ft-lb transition temperature increase of 164.4°F. See Table 5-9.

The average USE of the lower shell plate B6919-1 Charpy specimens (longitudinal orientation) resulted in an average energy decrease of 40.3 ft-lb after irradiation. This results in an irradiated average USE of 96.7 ft-lb for the longitudinal orientation specimens. See Table 5-9.

The average USE of the lower shell plate B6919-1 Charpy specimens (transverse orientation) resulted in an average energy decrease of 21.2 ft-lb after irradiation. This results in an irradiated average USE of 69.5 ft-lb for the transverse orientation specimens. See Table 5-9.

The average USE of the surveillance weld metal Charpy specimens resulted in an average energy decrease of 33.3 ft-lb after irradiation. This results in an irradiated average USE of 101.6 ft-lb for the weld metal specimens. See Table 5-9.

October 2008 WCA-P- 16964-NP WCAP- I 6964-NP October 2008

1-2 The average USE of the weld HAZ metal Charpy specimens resulted in an average energy decrease of 29.4 ft-lb after irradiation. This results in an irradiated average USE of 120.3 ft-lb for the weld HAZ metal. See Table 5-9.

A comparison, as presented in Table 5-10, of the Farley Unit 1 reactor vessel surveillance material test results with the Regulatory Guide 1.99, Revision 2111 predictions led to the following conclusions:

- The measured 30 ft-lb shift in transition temperature values of the lower shell plate B6919-1 specimens contained in Capsule Z (longitudinal and transverse orientations) are greater than the Regulatory Guide 1.99, Revision 2E", predictions.

- The measured 30 ft-lb shift in transition temperature value of the surveillance weld metal specimens contained in Capsule Z is less than the Regulatory Guide 1.99, Revision 2E[1, prediction.

- The measured percent decrease in Upper Shelf Energy (USE) for all the plate and weld surveillance materials in Capsule Z are less than the Regulatory 1.99, Revision 2E[I, predictions.

The calculated end-of-license (54 EFPY) neutron fluence (E> 1.0 MeV) at the core midplane for the Joseph M. Farley Unit 1 reactor vessel using the Regulatory Guide 1.99, Revision 2E13 attenuation formula (i.e., Equation #3 in the guide) are as follows:

Calculated: Vessel inner radius* = 5.93E+19 n/cm2 2

Vessel 1/4 thickness =3.70E+19 n/cm 2

Vessel 3/4 thickness = 1.44E+19 n/cm

  • Clad/base metal interface (From Table 6-2).

All beltline materials are expected to have an USE greater than 50 ft-lb through end of license (EOL, 54 EFPY) as required by 10CFR50, Appendix G . Projected USE levels for up to 72 EFPY are also predicted to remain greater than 50 ft-lb.

The service period of applicability for the Pressure-Temperature Limit Curves labeled for 31.9 EFPY in WCAP-14689, Revision 4[31, must be reduced to 22.5 EFPY to account for the updated neutron fluence projections and vessel material chemistry factors calculated as part of the Surveillance Capsule Z analysis. New Pressure-Temperature Limit Curves have been calculated in report ALA-08-68. [26]

Appendix A of this report provides the validation of the radiation transport models based on the neutron dosimetry measurements. Appendix B provides the load-time records for individual instrumented Charpy specimen tests. Appendix C presents the individual Charpy V-notch plots for each surveillance capsule and the program input data, which were curve-fit using a symmetric hyperbolic tangent curve-fitting program (CVGRAPH, Version 5.3). Appendix D provides the credibility evaluation of the Farley Unit 1 surveillance program.

WCAP-16964-NP October 2008

2-1 2 INTRODUCTION This report presents the results of the examination of Capsule Z, the sixth and final capsule removed from the reactor, as part of Southern Nuclear Operating Company's surveillance program for monitoring the effects of neutron irradiation on the Joseph M. Farley Unit 1 reactor pressure vessel materials under actual operating conditions.

The surveillance program for the Farley Unit 1 Nuclear Plant reactor pressure vessel materials was designed and recommended by the Westinghouse Electric Corporation. A description of the surveillance program and the pre-irradiation mechanical properties of the reactor vessel materials are presented in WCAP-88 10, "Southern Alabama Power Company Joseph M. Farley Nuclear Plant Unit No. 1 Reactor Vessel Radiation Surveillance Program"'E4 . The surveillance program was planned to cover the 40-year design life of the reactor pressure vessel and was based on ASTM E 185-73, "Standard Recommended Practice for Surveillance Tests for Nuclear Reactor Vessels"' 5 . Capsule Z was removed from the reactor after 24.26 EFPY of exposure and shipped to the remote metallographic facility (RMF) at the Westinghouse science and technology department (STD), where the post-irradiation mechanical testing of the Charpy V-notch impact and tensile surveillance specimens was performed.

This report summarizes the testing of and the post-irradiation data obtained from Surveillance Capsule Z removed from the Southern Nuclear Operating Company Farley Unit 1 reactor vessel and discusses the analysis of the data.

October 2008 16964-NP WCAP- 16964-NP October 2008

3-1 3 BACKGROUND The ability of the large steel pressure vessel containing the reactor core and its primary coolant to resist fracture constitutes an important factor in ensuring safety in the nuclear industry. The beltline region of the reactor pressure vessel is the most critical region of the vessel because it is subjected to significant fast neutron bombardment. The overall effects of fast neutron irradiation on the mechanical properties of low alloy, ferritic pressure vessel steels such as SA533 Grade B Class 1 (base material of the Farley Unit 1 reactor pressure vessel beltline) are well documented in the literature. Generally, low alloy ferritic materials show an increase in hardness and tensile properties and a decrease in ductility and toughness during high-energy irradiation.

A method for ensuring the integrity of reactor pressure vessels has been presented in "Fracture Toughness Criteria for Protection Against Failure," Appendix G to Section XI of the ASME Boiler and Pressure Vessel Code[61. The method uses fracture mechanics concepts and is based on the reference nil-ductility transition temperature (RTNDT).

RTNDT is defined as the greater of either the drop weight nil-ductility transition temperature (NDTT per ASTM E20817") or the temperature 607F less than the 50 ft-lb (and 35-mil lateral expansion) temperature as determined from Charpy specimens oriented perpendicular (transverse) to the major working direction of the plate. The RTNDT of a given material is used to index that material to a reference stress intensity factor curve (K1 c curve) which appears in Appendix G to the ASME Code[63. The K1 , curve is a lower bound of static fracture toughness results obtained from several heats of pressure vessel steel. When a given material is indexed to the K1 c curve, allowable stress intensity factors can be obtained for this material as a function of temperature. Allowable operating limits can then be determined using these allowable stress intensity factors.

RTNDT and, in turn, the operating limits of nuclear power plants can be adjusted to account for the effects of radiation on the reactor vessel material properties. The changes in mechanical properties of a given reactor pressure vessel steel, due to irradiation, can be monitored by a reactor vessel surveillance program, such as the Farley Unit 1 reactor vessel radiation surveillance program 4 1, in which a surveillance capsule is periodically removed from the operating nuclear reactor and the encapsulated specimens tested. The increase in the average Charpy V-notch 30 ft-lb temperature (ARTNDT) due to irradiation is added to the initial RTNDT, along with a margin (M) to cover uncertainties, to adjust the RTNDT (ART) for radiation embrittlement. This ART (RTNDT initial + M + ARTNDT) is used to index the material to the K1 c curve and, in turn, to set operating limits for the nuclear power plant that take into account the effects of irradiation on the reactor vessel materials.

October 2008 WCAP- 16964-NP WCAP- 16964-NP October 2008

4-1 4 DESCRIPTION OF PROGRAM Six surveillance capsules for monitoring the effects of neutron exposure on the Farley Unit 1 reactor pressure vessel core region (beltline) materials were inserted in the reactor vessel prior to initial plant start-up. The six capsules were positioned in the reactor vessel between the neutron pads and the vessel wall as shown in Figure 4-1. The vertical center of the capsules is opposite the vertical center of the core.

Capsule Z was removed after 24.26 EFPY of plant operation. This capsule contained Charpy V-notch, tensile, and 1/2T-compact tension (CT) fracture mechanics specimens made from lower shell plate B6919-1 and submerged arc weld metal representative of intermediate shell longitudinal weld seam 19-894 (Heat #33A277). In addition, this capsule contained Charpy V-notch specimens from the weld heat-affected zone (HAZ) metal of lower shell plate B6919-1 and pre-cracked bend bar specimens from lower shell plate B6919-1.

Test material obtained from lower shell plate B6919-1 (after the thermal heat treatment and forming of the plate) was taken at least one plate thickness from the quenched ends of the plate. All test specimens were machined from the 1/44 thickness locations of the plate after performing a simulated post-weld stress-relieving treatment on the test material. Specimens from weld metal and heat-affected-zone metal were machined from a stress-relieved weldment joining lower shell plate B6919-1 and intermediate shell plate B6903-2. All heat-affected-zone specimens were obtained from the weld heat-affected-zone of lower shell plate B6919-1.

Charpy V-notch impact specimens from lower shell plate B6919-1 were machined both in the longitudinal orientation (longitudinal axis of the specimen parallel to the major rolling direction) and transverse orientation (longitudinal axis of the specimen perpendicular to the major rolling direction). The core region weld Charpy impact specimens were machined from the weldment such that the long dimension of each Charpy specimen was perpendicular to the weld direction. The notch of the weld metal Charpy specimens was machined such that the direction of crack propagation in the specimen was in the welding direction.

Tensile specimens from lower shell plate B6919-1 were machined in both the longitudinal and transverse orientation. Tensile specimens from the weld metal were oriented with the long dimension of the specimen perpendicular to the weld direction.

Bend bar specimens from plate B6919-1 were machined with the longitudinal axis of specimens oriented normal to the rolling direction of the plate such that the simulated crack would propagate in the rolling direction of the plate. All specimens were fatigue pre-cracked according to ASTM E3991s1.

Compact tension test specimens from plate B6919-1 were machined in both the longitudinal and transverse orientations. Compact tension test specimens from the weld metal were machined perpendicular to the weld direction with the notch oriented in the direction of the weld. All specimens were fatigue pre-cracked according to ASTM E399[8 ].

The chemical composition measurements and heat treatment of the surveillance material is presented in Tables 4-1 through 4-2. The chemical analysis reported in Table 4-1 was obtained from unirradiated material used in the surveillance program[4 1.

WCAP- 16964-NP October 2008

4-2 Capsule Z contained dosimeter wires of pure copper, iron, nickel, and aluminum-0.15 weight percent cobalt (cadmium-shielded and unshielded). In addition, cadmium-shielded dosimeters of neptunium (Np 237) and uranium (U 238) were placed in the capsule to measure the integrated flux at specific neutron energy levels.

The capsule contained thermal monitors made from two low-melting-point eutectic alloys and sealed in Pyrex tubes. These thermal monitors were used to define the maximum temperature attained by the test specimens during irradiation. The composition of the two eutectic alloys and their melting points are as follows:

2.5% Ag, 97.5% Pb Melting Point: 579°F (304'C) 1.75% Ag, 0.75% Sn, 97.5% Pb Melting Point: 590°F (310°C)

The arrangement of the various mechanical specimens, dosimeters, and thermal monitors contained in Capsule Z is shown in Figure 4-2.

October 2008 16964-NP WCAP- 16964-NP October 2008

4-3 Table 4-1 Chemical Composition (wt %) of the Farley Unit 1 Reactor Vessel Surveillance Materials (Unirradiated)'

Plate B6919-1 Weld Metal Combustion Engineering Element 2 Analysis Westinghouse Analysis Westinghouse Analysis C 0.20 - - 0.13 S 0.015 0.013 0.009 N2 - - 0.003 0.005 Co 0.008 0.016 0.018 Cu 0.14 0.10 0.14 Si 0.18 0.28 0.27 Mo 0.56 0.51 0.50 Ni 0.55 0.56 0.19 Mn 1.39 1.40 1.06 Cr - - 0.13 0.063 V - - <0.001 0.003 P 0.015 0.015 0.016 Sn - - 0.008 0.005 Al 0.025 - - 0.009 Notes: 4

1. This data obtained from WCAP-8810[ 1.
2. All elements not listed are less than 0.0 10 weight %.

Table 4-2 Heat Treatment of the Farley Unit 1 Reactor Vessel Surveillance Materials Material Temperature ('F) Time Coolant Lower Shell Plate Austenitizing: 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> Water-Quenched 1550/1650 +/- 50 B6919-1 Tempered: 1225 +/- 25 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> Air-Cooled Stress Relief: 1150 +/- 25 40 hours4.62963e-4 days <br />0.0111 hours <br />6.613757e-5 weeks <br />1.522e-5 months <br /> Furnace Cooled to 600'F Weldment Stress Relief: 1150 +/- 25 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> Furnace Cooled October 2008 WCAP- I16964-NP 16964-NP October 2008

4-4 0P (3.5) Y -REACTOR VESSEL CORE BARREL NEUTRON PAD

9) V
5) X D. 900

" **

  • U (3.51 W (2.9)

NOTE:

CAPSULE IDENTIFICATIONS HAVE CHANGED FROM THOSE IDENTIFIED IN WCAP-0810 Figure 4-1 Arrangement of Surveillance Capsules in the Farley Unit 1 Reactor Vessel WCAP- 16964-NP October 2008

4-5 LEGEND: AL - LOWER SHELL PLATE B6919-1 (LONGITUDINAL)

AT - LOWER SHELL PLATE B6919-1 (TRANSVERSE) Cu I gAl".'sZCO I- .

AW - WELD METAL .11 AH - HEAT-AFFECTED-ZONE MATERIAL 579'F Bend Tensile Compact Compact Charpy Charpy Charpy Compact Bar AW8 61 w41wT31 90 A7 A i Z 17 A AW22 AW21 AW89 A983 AL24 AL23 16 ~[ j j AW88 AH88 AW85_ AH85 AW82 AH82 TOP OF VESSEL CENTER 237 Np u238 Compact Charpy Charpy Dosimeter Tensile Charpy Charpy AW81 AH81 AW78 AH78 AL18 AT90 AL90 AT87 A87 AL22 AL21 AW80 AH80 AW77 AH77 197 AT89 AL89 AT86 AL86 AW79 AH79 AW76 AH76 AT88 AL88 AT85 AL85 CENTER

  • BOTTOM OF VESSEL C. ~ g A1.l5Kco AT8t AL83 AT80 ALS0 AT24ISICO ACTA Chry Charpy Charpy Compact Compact Tensile AT84 AL84 AT81 AL81 AT7 AL78 AT 18 TT82j ýL82 Figure 4-2 Casl AT9 L79 Z DAgra7 AT76 AL77 AL6AT1 AT24 AT23 AT22 AT2l ATit H Figure 4-2 Capsule Z Diagram Showing the Location of Specimens, Thermal Monitors, and Dosimeters WCAP- 16964-NP October 2008

5-1 5 TESTING OF SPECIMENS FROM CAPSULE Z 5.1 OVERVIEW The post-irradiation mechanical testing of the Charpy V-notch impact specimens and tensile specimens was perforned in the remote metallographic facility (RMF) at the Westinghouse Science and Technology Center.

Upon receipt of the capsule at the laboratory, the capsule was opened per Procedure RMF 880403]. The specimens and spacer blocks were carefully removed, inspected for identification number and checked against the master list in WCAP-88 10, Revision 0143. All items were in their proper locations except that there was no specimen AH81 present and two specimens were identified as AH82. Both specimens identified as AH82 were tested. Additionally, Charpy specimen AT82 was damaged during the capsule opening and could not be used for testing.

Examination of the thermal monitors indicated that none of the monitors melted. Based on this examination, the maximum temperature to which the specimens were exposed was less than 579°F (304°C).

The testing of the Charpy V-notch and tensile specimens was performed in accordance with ASTM Specification E185-82ý10° and Westinghouse Procedures RMF 8402[11] as detailed by Westinghouse Procedures RMF 8102[12] and RMF 8103131.

4 The Charpy impact tests were performed per ASTM Specification E23-06E' ] and Procedure RMF 8103[13]

on a Tinius-Olsen Model 74, 358J machine. The tup (striker) of the Charpy machine is instrumented with an Instron Impulse instrumentation system, feeding information into a computer. With this system, load-time and energy-time signals can be recorded in addition to the standard measurement of Charpy energy (ED). From the load-time curve, the load of general yielding (PGy), the time to general yielding (Tcy), the maximum load (PM), and the time to maximum load (TM) can be determined. Under some test conditions, a sharp drop in load indicative of fast fracture was observed. The load at which fast fracture was initiated is identified as the fast fracture load (PF). If the fast load drop terminates well above zero load, the termination load is identified as the arrest load (PA).

The energy at maximum load (EM) was determined by comparing the energy-time record and the load-time record. The energy at maximum load is approximately equivalent to the energy required to initiate a crack in the specimen. Therefore, the propagation energy for the crack (Ep) is the difference between the total energy to fracture (ED) and the energy at maximum load (EM).

The yield stress (cy) was calculated from the three-point bend formula having the following expression11 51 :

L CY = PGY L (Eq. 5-1)

B(W - a)' C October 2008 16964-NP WCAP- 16964-NP October 2008

5-2 where L = distance between the specimen supports in the impact testing machine; B = the width of the specimen measured parallel to the notch; W = height of the specimen, measured perpendicularly to the notch; a = notch depth. The constant C is dependent on the notch flank angle (y), notch root radius (p),

and the type of loading (i.e., pure bending or three-point bending). In three-point bending, for a Charpy specimen in which q = 450 and p = 0.010 in., Equation 5-1 is valid with C = 1.21.

Therefore, (for L = 4W),

GY B(W - L

= PGY a)' 1.21 3.305 B(W -PGyW a)2 (Eq. 5-2)

For the Charpy specimen, B = 0.394 in., W = 0.394 in., and a = 0.079 in. Equation 5-2 then reduces to:

33 cy = .3 PGy (Eq. 5-3) where aT is in units of psi and PGY is in units of lb. The flow stress was calculated from the average of the yield and maximum loads, also using the three-point bend formula.

Symbol A in columns 4, 5, and 6 of Tables 5-5 through 5-8 is the cross-section area under the notch of the Charpy specimens:

A = B(W - a) = 0.1241 sq. in. (Eq. 5-4)

Percent shear was determined from post-fracture photographs using the ratio-of-areas methods in compliance with ASTM E23-060' 43 and A370-07 1 '63. The lateral expansion was measured using a dial gage rig similar to that shown in the same specifications.

Tensile tests were performed on a 20,000 pound Instron, split console test machine (Model 1115) per ASTM Specification E8-04[t7 ] and E21-051' 83 and Procedure RMF 8102["2]. Extension measurements were made with a linear variable displacement transducer (LVDT) extensometer. The extensometer gage length was 1.00 inch. Elevated test temperatures were obtained with a three-zone electric resistance split-tube furnace with a nine-inch hot zone. All tests were conducted in air.

The yield load, ultimate load, fracture load, total elongation, and uniform elongation were determined directly from the load-extension curve. The yield strength, ultimate strength and fracture strength were calculated using the original cross-sectional area. The final diameter was determined from post-fracture photographs. The fracture area used to calculate the fracture stress (true stress at fracture) and percent reduction in area were computed using the final diameter measurement.

5.2 RESULTS The results of the Charpy V-notch impact tests performed on the various materials contained in Capsule Z, which received a fluence of 8.47E+19 n/cm2 (E> 1.0 MeV) in 24.26 EFPY of operation, are presented in Tables 5-1 through 5-10 and are compared with unirradiated results shown in Figures 5-1 through 5-12.

October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

5-3 The transition temperature increases and USE decreases for the Capsule Z materials are summarized in Table 5-9 and led to the following results:

Irradiation of the reactor vessel lower shell plate B6919-1 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the maj or working direction (longitudinal orientation), resulted in an irradiated 30 ft-lb transition temperature of 179.6°F and an irradiated 50 ft-lb transition temperature of 203.6°F. This results in a 30 ft-lb transition temperature increase of 202.2°F and a 50 ft-lb transition temperature increase of 196.3°F for the longitudinal orientation specimens. See Table 5-9.

Irradiation of the reactor vessel lower shell plate B6919-1 Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major working direction (transverse orientation), resulted in an irradiated 30 ft-lb transition temperature of 183.6°F and an irradiated 50 ft-lb transition temperature of 214.7°F. This results in a 30 ft-lb transition temperature increase of 178.3°F and a 50 ft-lb transition temperature increase of 159. I°F for the transverse orientation specimens. See Table 5-9.

Irradiation of the surveillance weld metal Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 37.1F and an irradiated 50 ft-lb transition temperature of 57.4°F. This results in a 30 ft-lb transition temperature increase of 113.5°F and a 50 ft-lb transition temperature increase of 100.5°F. See Table 5-9.

Irradiation of the weld heat-affected-zone (HAZ) metal Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 10.3°F and an irradiated 50 ft-lb transition temperature of 39.4'F. This results in a 30 ft-lb transition temperature increase of 170.7'F and a 50 ft-lb transition temperature increase of 164.4°F. See Table 5-9.

The average USE of the lower shell plate B6919-1 Charpy specimens (longitudinal orientation) resulted in an average energy decrease of 40.3 ft-lb after irradiation. This results in an irradiated average USE of 96.7 ft-lb for the longitudinal orientation specimens. See Table 5-9.

The average USE of the lower shell plate B6919-1 Charpy specimens (transverse orientation) resulted in an average energy decrease of 21.2 ft-lb after irradiation. This results in an irradiated average USE of 69.5 ft-lb for the transverse orientation specimens. See Table 5-9.

The average USE of the surveillance weld metal Charpy specimens resulted in an average energy decrease of 33.3 ft-lb after irradiation. This results in an irradiated average USE of 101.6 ft-lb for the weld metal specimens. See Table 5-9.

The average USE of the weld HAZ metal Charpy specimens resulted in an average energy decrease of 29.4 ft-lb after irradiation. This results in an irradiated average USE of 120.3 ft-lb for the weld HAZ metal. See Table 5-9.

October 2008 16964-NP WCAP- I16964-NP October 2008

5-4 A comparison, as presented in Table 5-10, of the Farley Unit 1 reactor vessel surveillance material test results with the Regulatory Guide 1.99, Revision 2ý13 predictions led to the following conclusions:

- The measured 30 ft-lb shift in transition temperature values of the lower shell plate B6919-1 specimens contained in Capsule Z (longitudinal and transverse orientations) are greater than the Regulatory Guide 1.99, Revision 2, predictions.

- The measured 30 ft-lb shift in transition temperature value of the surveillance weld metal specimens contained in Capsule Z is less than the Regulatory Guide 1.99, Revision 2Il3, prediction.

- The measured percent decrease in upper shelf energy (USE) for all the plate and weld surveillance materials in Capsule Z are less than the Regulatory 1.99, Revision 2fl],

predictions.

All beltline materials are expected to have an USE greater than 50 ft-lb through end of license (EOL, 54 EFPY) as required by 10CFR50, Appendix Gý23. Projected USE levels for up to 72 EFPY are also predicted to remain greater than 50 ft-lb.

The service period of applicability for the Pressure-Temperature Limit Curves labeled for 31.9 EFPY in WCAP-14689, Revision 4(3], must be reduced to 22.5 EFPY to account for the updated neutron fluence projections and vessel material chemistry factors calculated as part of the Surveillance Capsule Z analysis. New Pressure-Temperature Limit Curves have been calculated in report ALA-08-68. [261 The fracture appearance of each irradiated Charpy specimen from the various surveillance Capsule Z materials is shown in Figures 5-13 through 5-16 and shows an increasingly ductile or tougher appearance with increasing test temperature.

The load-time records for individual instrumented Charpy specimen tests are shown in Appendix B.

Appendix C presents the individual CVGRAPH, Version 5.3, Charpy V-notch plots for each surveillance capsule and the program input data. The credibility evaluation of the Farley Unit 1 surveillance program is presented in Appendix D of this report. The evaluation concluded that the Farley Unit 1 surveillance data is deemed not credible for the plate specimens and credible for the weld specimens.

5.3 TENSILE TEST RESULTS The results of the tensile tests performed on the lower shell plate specimens (longitudinal and transverse orientations) and weld metal contained in Capsule Z irradiated to 8.47E+19 n/cm 2 (E> 1.0 MeV) are presented in Table 5-11 and are compared with unirradiated results[43 as shown in Figures 5-17 through 5-19.

The results of the tensile tests performed on the lower shell plate B6919-1 (longitudinal orientation) specimens at 550'F indicated that irradiation to 8.47E+19 n/cm 2 (E> 1.0 MeV) caused approximately a October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

5-5 25.3 ksi increase in the 0.2 percent offset yield strength and approximately a 20.8 ksi increase in the ultimate tensile strength when compared to unirradiated data 41. See Figure 5-17.

The results of the tensile tests performed on the lower shell plate B6919-1 (transverse orientation) specimens at 550°F indicated that irradiation to 8.47E+19 n/cm 2 (E> 1.0 MeV) caused approximately a 19.7 ksi increase in the 0.2 percent offset yield strength and approximately a 13 ksi increase in the ultimate tensile strength when compared to unirradiated data 41 . See Figure 5-18.

The results of the tensile tests performed on the surveillance weld metal specimens at 550°F indicated that irradiation to 8.47E+19 n/cm 2 (E> 1.0 MeV) caused approximately a 14.7 ksi increase in the 0.2 percent offset yield strength and approximately a 13.1 ksi increase in the ultimate tensile strength when compared to unirradiated data143. See Figure 5-19.

The fractured tensile specimens for the surveillance plate material are shown in Figures 5-20 and 5-2 1, while the fractured tensile specimens for the surveillance weld metal are shown in Figure 5-22. The engineering stress-strain curves for the tensile tests are shown in Figures 5-23 through 5-25.

5.4 BEND BAR AND COMPACT TENSION SPECIMEN TESTS Per the surveillance capsule testing contract with Southern Nuclear Operating Company, the bend bar and 1/2T Compact Tension Specimens were not tested.

October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

5-6 Table 5-1 Charpy V-notch Data for the Farley Unit 1 Lower Shell Plate B6919-1 Specimens Irradiated to a Fluence of 8.47E+19 n/cm 2 (E> 1.0 MeV) (Longitudinal Orientation)

Sample Temperature Impact Energy Lateral Expansion Shear Number OF fC t-lbs Joules mils mm  %

AL82 40 4 2 3 1 0.03 2 AL77 135 57 21 28 18 0.46 10 AL85 150 66 20 27 15 0.38 5 AL84 160 71 33 45 25 0.64 15 AL80 175 79 21 28 18 0.46 25 AL81 180 82 36 49 29 0.74 20 AL83 200 93 15 20 14 0.36 25 AL86 200 93 21 28 20 0.51 25 AL89 205 96 76 103 49 1.24 45 AL78 215 102 67 91 44 1.12 55 AL88 225 107 75 102 51 1.30 65 AL90 250 121 94 127 63 1.60 90 AL79 360 182 102 138 82 2.08 100 AL76 375 191 95 129 70 1.78 100 AL87 385 196 93 126 72 1.83 100 WCAP- 16964-NP October 2008

5-7 Table 5-2 Charpy V-notch Data for the Farley Unit 1 Lower Shell Plate B6919-1 Specimens Irradiated to a Fluence of 8.47E+19 n/cm 2 (E> 1.0 MeV) (Transverse Orientation)

Sample Temperature Impact Energy Lateral Expansion Shear Number OF °C ft-lbs Joules mils mm  %

AT83 50 10 10 14 11 0.28 5 AT76 100 38 12 16 11 0.28 10 AT87 170 77 27 37 26 0.66 20 AT81 180 82 30 41 25 0.64 25 AT85 200 93 26 35 29 0.74 25 AT80 210 99 48 65 42 1.07 35 AT77 220 104 54 73 51 1.30 75 AT78 240 116 68 92 53 1.35 85 AT89 250 121 72 98 55 1.40 95 AT84 300 149 58 79 54 1.37 100 AT86 300 149 73 99 60 1.52 100 AT90 350 177 77 104 55 1.40 100 AT79 375 191 66 89 60 1.52 100 AT88 390 199 71 96 56 1.42 100 WCAP- 16964-NP October 2008

5-8 Table 5-3 Charpy V-notch Data for the Farley Unit 1 Surveillance Weld Metal Irradiated to a Fluence of 8.47E+19 n/cm 2 (E> 1.0 MeV)

Temperature Impact Energy Lateral Expansion Shear Sample Number OF °C ft-lbs Joules mils mm  %

AW76 -30 -34 9 12 9 0.23 10 AW79 25 -4 19 26 16 0.41 20 AW84 30 -1 33 45 24 0.61 25 AW80 35 2 18 24 18 0.46 30 AW77 40 4 25 34 20 0.51 25 AW82 45 7 29 39 29 0.74 45 AW87 50 10 65 88 49 1.24 65 AW90 60 16 52 71 41 1.04 60 AW81 75 24 62 84 42 1.07 65 AW86 100 38 89 121 68 1.73 75 AW85 200 93 95 129 66 1.68 95 AW88 250 121 107 145 76 1.93 100 AW89 280 138 103 140 79 2.01 100 AW78 300 149 101 137 75 1.91 100 AW83 320 160 102 138 75 1.91 100 Note:

1. Data not available.

October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

5-9 Table 5-4 Charpy V-notch Data for the Farley Unit 1 HAZ Material Irradiated to a Fluence of 8.47E+19 n/cm 2 (E> 1.0 MeV)

Impact Energy Lateral Expansion Shear Sample Temperature 0

Number OF C Ft-lbs Joules mils mm  %

AH76 -80 -62 14 19 8 0.20 2 AH82' -20 -29 14 19 10 0.25 5 AH77 0 -18 16 22 12 0.30 15 AH84 20 -7 53 72 30 0.76 20 AH87 25 -4 27 37 16 0.41 30 AH78 30 -1 49 66 27 0.69 35 AH89 35 2 27 37 20 0.51 35 AH88 40 4 57 77 33 0.84 30 AH83 50 10 69 94 44 1.12 55 AH85 80 27 82 111 50 1.27 60 AH821 150 66 104 141 71 1.80 100 AH80 200 93 120 163 67. 1.70 90 AH86 300 149 128 174 78 1.98 100 AH90 320 160 121 164 77 1.96 100 AH79 350 177 128 174 81 2.06 100 Note:

1.Specimen AH81 was missing, and two specimens labeled AH82 were inventoried. Both specimens labeled AH82 were tested.

WCAP- 16964-NP October 2008

5-10 Table 5-5 Instrumented Charpy Impact Test Results for the Farley Unit 1 Lower Shell Plate B6919-1 Specimens Irradiated to a Fluence of 8.47E+19 n/cm 2 (E> 1.0 MeV) (Longitudinal Orientation)

Normalized Energies General Charpy (ft-lb/in 2) Yield Time to Test Energy Load Yield Max. Time to Fract. Arrest Yield Flow Sample Temp. ED Total At PM Prop. PGY tGy Load, PM Load, Load, Stress, Stress No. (OF) (ft-lb) ED/a EM/a Ep/a (lb) (msec) IM (Ib) (msec) PF (lb) PA (lb) (v (ksi) (ksi)

AL82 40 2 16 12 4 3733 0.05 3733 0.05 3733 0 124 124 AL77 135 21 169 135 34 3235 0.06 4442 0.29 4409 0 108 128 AL85 150 20 161 145 16 3149 0.06 4373 0.31 4103 0 105 125 AL84 160 33 266 243 23 3323 0.06 4372 0.50 4372 0 111 128 AL80 175 21 169 129 41 3130 0.05 4135 0.29 4130 0 104 121 AL81 180 36 290 229 61 3417 0.06 4344 0.48 4212 0 114 129 AL83 200 15 121 113 8 3285 0.06 3931 0.19 3931 0 109 120 AL86 200 21 169 135 34 3279 0.06 4100 0.31 4075 0 109 123 AL89 205 76 612 319 293 3443 0.05 4699 0.61 3935 1826 115 136 AL78 215 67 540 311 229 3283 0.05 4591 0.62 4312 2474 109 131 AL88 225 75 604 305 299 3409 0.06 4513 0.61 3759 2597 114 132 AL90 250 94 757 309 449 3274 0.06 4527 0.62 N/A N/A 109 130 AL79 360 102 822 297 525 3150 0.06 4338 0.62 N/A N/A 105 125 AL76 375 (1) (1) () (1(1 (1(1(1() ()() ()

AL87 385 93 749 289 460 3088 0.06 4251 0.62 N/A N/A 103 122 Note:

1. Signal loss, no instrumented data available.

October 2008 16964-NP WCAP- 16964-NP October 2008

5-11 Table 5-6 Instrumented Charpy Impact Test Results for the Farley Unit I Lower Shell Plate B6919-1 Specimens Irradiated to a Fluence of 8.47E+19 n/cm 2 (E> 1.0 MeV) (Transverse Orientation)

Normalized Energies General Charpy (ft-lb/in 2) Yield Time to Test Energy Load Yield Max. Time to Fract. Arrest Yield Flow Sample Temp. ED Total At PM Prop. PGY tGy Load, PM Load, Load, Stress, Stress No. (OF) (ft-lb) ED/A EM/A Ep/A (Ib) (msec) IM (Ib) (msec) PF (lb) PA (Ib) cy (ksi) (ksi)

AT83 50 10 81 67 14 3470 0.05 4022 0.18 4022 0 116 125 AT76 100 12 97 82 15 3275 0.06 3943 0.19 3700 0 109 120 AT87 170 27 218 121 96 3161 0.05 3985 0.29 3893 276 105 119 AT81 180 30 242 126 115 3358 0.05 4152 0.29 3908 683 112 125 AT85 200 26 209 121 88 3088 0.06 3940 0.29 3867 646 103 117 AT80 210 48 387 221 166 3320 0.05 4164 0.47 4164 2163 111 125 AT77 220 54 435 126 309 3319 0.05 4180 0.29 3863 3187 111 125 AT78 240 68 548 222 326 3202 0.05 4252 0.48 4021 3033 107 124 AT89 250 72 580 236 344 3244 0.06 4269 0.50 3586 2851 108 125 AT84 300 58 467 121 346 3229 0.05 3989 0.29 N/A N/A 108 120 AT86 300 73 588 211 377 3207 0.05 3975 0.47 N/A N/A 107 120 AT90 350 77 620 222 399 3114 0.05 4175 0.48 N/A N/A 104 121 AT79 375 66 532 177 355 2839 0.05 3729 0.43 N/A N/A 95 109 AT88 390 71 572 214 358 3005 0.05 4039 0.48 N/A N/A 100 117 October 2008 WCAP-16964-NP October 2008

5-12 2

Table 5-7 Instrumented Charpy Impact Test Results for the Farley Unit 1 Surveillance Weld Metal Irradiated to a Fluence of 8.47E+19 n/cm (E> 1.0 MeV)

Normalized Energies General Charpy (ft-lb/in2) Yield Time to Test Energy Load Yield Max. Time to Fract. Arrest Yield Flow Sample Temp. ED Total At PM Prop. PGY tGy Load, PM Load, Load, Stress, Stress No. (OF) (ft-lb) ED/A EM/A Ep/A (Ib) (msec) PM (lb) (msec) PF (lb) PA (lb) ay (ksi) (ksi)

AW76 -30 9 73 39 33 3945 0.07 4710 0.11 3926 0 131 144 AW79 25 19 153 139 14 3659 0.05 4282 0.29 4245 0 122 132 AW84 30 33 266 220 46 3800 0.06 4540 0.43 4311 637 127 139 AW80 35 18 145 113 32 3487 0.05 4049 0.24 3986 169 116 125 AW77 40 25 201 155 46 3558 0.06 4238 0.29 4231 393 118 130 AW82 45 29 234 165 69 3789 0.06 4302 0.29 4184 429 126 135 AW87 50 65 524 314 210 3567 0.06 4523 0.62 4251 1749 119 135 AW90 60 52 419 311 108 3497 0.06 4451 0.61 4370 1016 116 132 AW81 75 62 500 307 192 3310 0.06 4458 0.62 4079 1879 110 129 AW86 100 89 717 310 407 3330 0.06 4483 0.62 3585 2339 111 130 AW85 200 95 765 285 480 3262 0.06 4204 0.62 3266 2475 109 124 AW88 250 107 862 304 558 3279 0.05 4437 0.62 N/A N/A 109 128 AW89 280 103 830 289 541 3211 0.05 4304 0.61 N/A N/A 107 125 AW78 300 101 814 265 548 3021 0.06 4052 0.61 N/A N/A 101 118 AW83 320 102 822 298 524 2974 0.05 4311 0.62 N/A N/A 99 121 WCAP-16964-NP October 2008

5-13 Table 5-8 Instrumented Charpy Impact Test Results for the Farley Unit 1 HAZ Metal Irradiated to a Fluence of 8.47E+19 n/cm 2 (E> 1.0 MeV)

Normalized Energies General Charpy (ft-lb/in 2 ) Yield Time to Test Energy Load Yield Max. Time to Fract. Arrest Yield Flow Sample Temp. ED Total At PM Prop. PGY tGY Load, PM Load, Load, Stress, Stress No. (OF) (ft-lb) ED/A EM/A Ep/A (lb) (msec) PM (lb) (msec) PF (lb) PA (lb) cY (ksi) (ksi)

AH76 -80 14 113 96 16 4662 0.08 5106 0.21 5106 0 155 163 AH82' -20 14 113 86 27 4189 0.08 4741 0.18 4642 0 139 149 AH77 0 16 129 90 39 4249 0.08 4657 0.19 4591 0 142 148 AH84 20 53 427 347 80 3806 0.06 5044 0.61 4684 0 127 147 AH87 25 27 218 159 59 4095 0.08 4723 0.29 4602 0 136 147 AH78 30 49 395 346 49 4111 0.06 5020 0.61 4806 0 137 152 AH89 35 27 218 158 60 4219 0.06 4685 0.29 4605 466 140 148 AH88 40 57 459 343 117 4040 0.06 5040 0.61 4738 0 135 151 AH83 50 69 556 340 216 4132 0.08 5030 0.61 4479 1730 138 153 AH85 80 82 661 336 325 4018 0;08 4963 0.61 4535 2642 134 150 AH82' 150 104 838 321 517 3833 0.08 4680 0.62 N/A N/A 128 142 AH80 200 120 967 314 653 3810 0.08 4737 0.61 1258 839 127 142 AH86 300 128 1031 315 717 3467 0.05 4649 0.61 N/A N/A 115 135 AH90 320 121 975 321 654 3657 0.06 4739 0.62 N/A N/A 122 140 AH79 350 128 1031 303 728 3341 0.07 4470 0.62 N/A N/A 111 130 Note:

1. Specimen AH81 was missing, and two specimens labeled AH82 were inventoried. Both specimens labeled AH82 were tested.

16964-NP October 2008 WCAP-WCAP- 16964-NP October 2008

5-14 Table 5-9 Effect of Irradiation to 8.47E+19 n/cm2 (E> 1.0 MeV) on the Charpy V-Notch Toughness Properties of the Farley Unit 1 Reactor Vessel Surveillance Capsule Z Materials 1

Average 30 (ft-lb)(1 ) Average 35 mil Lateral(2 ) Average 50 ft-lb(1 ) Average Energy Absorptiont )

Material Transition Temperature (IF) Expansion Temperature (OF) Transition Temperature (CF) at Full Shear (ft-lb)

Unirradiated Irradiated AT Unirradiated Irradiated AT Unirradiated Irradiated AT Unirradiated Irradiated AE Lower Shell B6919-1 -22.6 179.6 202.2 0.4 202.5 202.1 7.3 203.6 196.3 137.0 96.7 40.3 (Longitudinal)

Lower Shell B6919-1 5.3 183.6 178.3 43.3 195.0 151.7 55.6 214.7 159.1 90.7 69.5 21.2 (Transverse)

Surveillance -76.4 37.1 113.5 -48.4 52.2 100.6 -43.1 57.4 100.5 134.9 101.6 33.3 Weld Metal HAZ Metal -160.4 10.3 170.7 -106.6 48.4 155.0 -125.0 39.4 164.4 149.7 120.3 29.4 Notes:

1. "Average" is defined as the value mathematically determined by CVGRAPH from the data points of the Charpy tests (see Figures 5-1, 5-4, 5-7, and 5-10).
2. "Average" is defined as the value mathematically determined by CVGRAPH from the data points of the Charpy tests (see Figures 5-2, 5-5, 5-8, and 5-11).

WCAP- 16964-NP October 2008

5-15 Table 5-10 Comparison of the Farley Unit 1 Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions 30 ft-lb Transition Upper Shelf Energy Fluence Temperature Shift Decrease (X 1019 n/cm 2, Predicted Measured Predicted Measured 2

Material Capsule E > 1.0 MeV) (OF)(') (oF)( ) (%)(1) (%)(3)

Lower Shell Y 0.612 84.3 64.6 21 7 Plate B6919-1 U 1.73 112.5 110.0 27 21 (Longitudinal) X 3.06 126.7 129.2 30 17 W 4.75 136.2 145.7 35 20 V 7.14 143.4 177.7 39 21 Z 8.47 145.9 202.2 40 29 Lower Shell Y 0.612 84.3 70.1 21 1 Plate B6919-1 U 1.73 112.5 100.4 27 9 (Transverse) X 3.06 126.7 110.8 30 12 W 4.75 136.2 150.5 35 17 V 7.14 143.4 161.7 39 21 Z 8.47 145.9 178.3 40 23 Surveillance Y 0.612 67.4 66.9 24 3 Weld Metal U 1.73 89.9 75.1 31 22 X 3.06 101.2 87.4 36 15 W 4.75 108.7 98.3 40 18 V 7.14 114.5 117.5 44 18 Z 8.47 116.5 113.5 46 25 Heat Affected Y 0.612 --- 29.2 --- 7 Zone Material U 1.73 -- - 155.3 - - - 21 X 3.06 -- - 132.9 - - - 15 W 4.75 --- 121.7 --- 11 V 7.14 --- 169.7 --- 20 Z 8.47 --- 170.7 - -- 20 Notes:

1. Based on Regulatory Guide 1.99, Revision 2, methodology using the mean weight percent values of copper and nickel of the surveillance material.
2. Calculated using measured Charpy data plotted using CVGRAPH, Version 5.3 (See Appendix C).
3. Values are based on the definition of upper shelf energy given in ASTM E185-82[101 .

October 2008 WCAP- 16964-NP October 2008

5-16 Table 5-11 Tensile Properties of the Farley Unit 1 Capsule Z Reactor Vessel Surveillance Materials Irradiated to 8.47E+19 n/cm2 (E> 1.0 MeV)

Test 0.2% Yield Ultimate Fracture Fracture Fracture Uniform Total Reduction Sample Temperature Strength Strength Load Stress Strength Elongation Elongation in Area Number Material (OF) (ksi) (ksi) (kip) (ksi) (ksi) (%) (%) (%)

ALl6 Longitudinal 190 89.8 105.9 3.48 179.5 70.8 8.9 20.3 61 AL17 Longitudinal 225 85.1 101.3 3.45 190.1 70.3 9.0 20.6 63 ALl8 Longitudinal 550 80.0 101.3 3.65 181.5 74.4 8.4 18.1 59 AT16 Transverse 190 88.1 103.9 3.80 177.7 77.4 9.0 19.2 56 AT17 Transverse 240 87.1 103.9 3.66 189.1 74.6 9.3 19.1 61 AT18 Transverse 550 79.5 99.3 4.10 166.6 83.5 8.6 15.3 50 AWl6 Weld 70 95.4 107.0 3.38 219.2 68.8 9.6 23.8 69 AW17 Weld 100 93.7 105.4 3.45 224.1 70.3 9.5 22.7 69 AW 18 Weld 550 83.0 100.3 3.63 187.2 73.8 9.5 20.5 61 October 2008 16964-NP WCAP- 16964-NP October 2008

5-17 LOWER SHELL PLATE B6919-1 (LT)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07/17/2008 02:48 PM Data Set(s) Plotted Curve Plant Capsule Material Orl. Heat #

1 arley UNIRRA SA533B1I LT C6940-1 2 arley Y SA533B I LT C6940-1 3 Farey I U SA533B I LT C6940-1 4 Farley I x SA533B I LT C6940-1 5 Farley I W SA533B I LT C6940- I 6 Farley I V SA533BI LT C6940- 1 7 Farey I z SA533B I LT C6940- I 300-250 4200-150 100-50 0-

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Dog F 0 1 02 4 V 5 06

@3 .7 Results Curve Fluence LSE USE d-.US1E T @30 d-T @M30 T @50 d-T @50 1 2.2 137,0 .0 -22.6 .0 7.3 .0 2 2.2 128.0 -9.0 42.0 64.6 84.0 76. 7 3 2. 2 107. 6 -29.4 87.4 110.0 131.8 124.5 4 2.2 114.3 -22.7 106.6 129.2 144.0 136.7 5 2. 2 109.0 -28.0 122. 7 145.3 157.1 149. 8 6 2. 2 108. 7 -28.3 155. I 177.7 194.8 187. 5 7 2.2 96. 7 -40.3 179. 6 202. 2 203.6 196. 3 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Longitudinal Orientation)

WCAP- 16964-NP October 2008

5-18 LOWER SHELL PLATE B6919-1 (LT)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/2812008 11:34 AM Data Set(s) Plotted Curve Plant Capsule Material Ori. Heat #

Farley I UNIRRA SA533B I LT C6940-1 2 arey I Y SA533BI LT C6940-1 3 Farley I U SA533B! LT C6940-1 4 Farley I X SA533BI LT C6940-1 5 Farley I W SA533BI1 LT C6940-1 6 Farley I V SA533B I LT C6940-1 7 Farley I z SA533B1 LT C6940-1 200 150 E

C B. 100 50 0

-300.0 0.0 300.0 600.0 Temperature in Dog F 011 3 a 4 v 5 0 7 Results Cui Fluence LSE USE d-USE T @35 d-T @35 2.2 86. 8 .0 .4 .0 2 2. 2 81. 1 -5.7 75. 7 75 .3 3 2. 2 75. 6 - 11.2 150. 0 149. 6 4 2,2 88. 3 1.5 134. 1 133.7 5 2. 2 85. 2 - .6 148. 2 147.8 6 2. 2 77. 2 -9.6 207. 2 206. 8 7 2. 2 76. 3 -10.5 202. 5 202. I Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Longitudinal Orientation)

October 2008 16964-NP WCAP- 16964-NP October 2008

5-19 LOWER SHELL PLATE B6919-1 (LT)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 11:21 AM Data Set(s) Plotted Curve Plant Capsule Material Orn. Hleat #

1 arley I UNIRRA SA533B 1 LT C6940-1I 2 arley I Y SA533B I LT C6940-1I 3 arley 1 U SA533B I LT C6940-1I 4 Farley I x SA533B I LT C6940-1 5 Farley I W SA533B I LT C6940-1I 6 Farley I V SA533Bi LT C6940-1 7 Farley I z SA533B I LT C6940-1I 125 100 I

U)

I 75-50-I 25 0-

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Dog F 0 1 o2 03 A 4 V 5 0 6 . 7 Results Curve Fluence LSE USE d-USE T @50 d-T @50

.0 100. 0 .0 39.2 .0 2 .0 100. 0 .0 119.2 80. 0 3 .0 100.0 .0 166.9 127. 7 4 .0 100.0 .0 179.5 140. 3 5 .0 100.0 .0 179.3 140. I 100.0 6 .0 .0 192.9 153.7 7 .0 !00,0 .0 213. I 173. 9 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Longitudinal Orientation)

October 2008 WCAP- 16964-NP WCAP- 16964-NP October 2008

5-20 LOWER SHELL PLATE B6919-1 (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 11:54 AM Data Set(s) Plotted Curve Plant Capsule Material Ori. Heat #

1 arley 1 UNIRRA SA533BI TL C6940-1 2 arey I Y SA533B 1 TL C6940-1 3 Farley 1 U SA533B1 TL C6940-1 4 Farley I x SA533BI TL C6940-1 5 Farley 1 W SA533BI TL C6940-1 6 Farley I V SA533BI TL C6940-1 7 Farley I z SA533BI TL C6940- 1 300-250 4200

.5 0

U.

150

,Ii 100-50 0 "

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F 0 1 o 2 0>3 A 4 v 5 06 "7 Results Curve Fluence LSE USE d-USE T @30 d-T @30 T @50 d-T @50

2. 2 90.7 .0 5.3 .0 55.6 .0 2 2.2 90.0 -. 7 75.4 70. 1 129.1 73. 5 3 2. 2 82.2 -8.5 105.7 100.4 159.2 103. 6 4 2.2 79. 8 -10.9 116. 1 110.8 167.9 112.3 5 2. 2 75.6 -15. 1 155.8 150.5 207.9 152. 3 6 2. 2 71.7 -19.0 167.0 161.7 208.2 152. 6 7 2. 2 69.5 -21.2 183.6 178.3 214.7 159. I Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Transverse Orientation)

October 2008 WCAP- 16964-NP October 2008

5-21 LOWER SHELL PLATE B6919-1 (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 12:00 PM Data Set(s) Plotted Curve Plant Capsule Material Orl. Heat #

2 arley UNIRRA SA533BI TL C6940- I arley Y SA533BI TL C6940- I 3 Farley U SA533B I TL C6940- I 4 Farley X SA533B I Th C6940- I 5 Farley W SA533B I TL C6940- 1 6 Faraey V SA533B I TL C6940- 1 7 Farley z SA533BI TL C6940- I 200 150 E

C 1100 50 04-

-300.0 0.0 300.0 600.0 Temperature in Dog F 01 0 2 03 A 4 v 5 0 7 Results Curv- Fluence LSE USE d-USE T @35 d-T @3.5 1 2. 2 74. 8 .0 43.3 .0 2 2.2 65.0 -9.8 99. 0 55.7 3 2. 2 58. 7 -16.2 168. 3 125.0 4 2. 2 67.4 -7.4 136. 3 93.0 5 2.2 71.0 -3.8 192. 3 149.0 6 2. 2 60. I -14.7 215.4 172. 1 7 2. 2 58. 5 -16.4 195.0 151.7 Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Transverse Orientation)

October 2008 16964-NP WCAP- 16964-NP October 2008

5-22 LOWER SHELL PLATE B6919-1 (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 11:57 AM Data Set(s) Plotted Curve Plant Capsule Material Orl. Heat #

1 Farley I UNIRRA SA533B I TL C6940-1I 2 Farley 1 Y SA533BI TL C6940-1I 3 Farley I U SA533BI TL C6940-1 4 Farley I x SA533BI TL C6940-1 5 Farley I W SA533BI TL C6940-1 6 Farley I V SA533B I TL C6940-1 7 Farley I z SA533B I TL C6940-1 125 100 I

(I) 75 50 25:

0-

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F 0 1 03 as24 v 5 06 .7 Results Curve Fluence LSE USE d-US7E T @50 d-T @50 1 .0 100. 0 .0 53.8 .0 2 .0 OOO.0 .0 140.6 86. 8 3 .0 1O0. 0 .0 166.5 112.7 4 .0 1O0. 0 .0 183.0 129. 2 5 .0 100. 0 .0 193.3 139. 5 6 .0 100.0 .0 188. 1 134. 3 7 .0 100.0 .0 210.9 157. 1 Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Transverse Orientation)

WCAP- 16964-NP October 2008

5-23 SURVEILLANCE WELD METAL CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 04:17 PM Data Set(s) Plotted Curve Plant Capsule Material Ori. Heat #

1 arley 1 UNIRRA LINDE 0091 2 1 NA 33A277 FLUX ar ey 1 Y LINDE 0091 NA 33A277 FLUX 3 arley 1 U LINDE 0091 NA 33A277 FLUX 4 Farley 1 X LINDE 0091 NA 33A277 FLUX 5 Farley 1 w LINDE 0091 NA 33A277 FLUX 6 Farley 1 V LINDE 0091 NA 33A277 FLUX 7 Farley z LINDE 0091 NA 33A277 FLUX 300-250 a 200 150-w 100-50-0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Dog F 0 1 0 2 3 A 4 v 5 0 6 m 7 Results Curve Fluence LSE USE d-USE T @30 d-T @30 T @50 d-T @-50 1 2. 2 134. 9 .0 -76.4 .0 -43. 1 .0 2 2. 2 131. 3 -3.6 -9.5 66.9 33.7 76. 8 3 2.2 105. 2 -29.7 -1. 3 75. 1 33.9 77.0 4 2.2 114.7 -20.2 11.0 87.4 43.5 86. 6 5 2. 2 110.4 -24.5 21.9 98.3 46.4 89. 5 6 2. 2 110.3 -24.6 41.1 117.5 71.5 114.6

2. 2 101.6 -33.3 37.1 113.5 57.4 100. 5 Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for Farley Unit 1 Reactor Vessel Surveillance Weld Metal Specimens WCAP- 16964-NP October 2008

5-24 SURVEILLANCE WELD METAL CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 04:19 PM Data Set(s) Plotted Curve Plant Capsule Material Ori. Heat #

1 arley 1 UNIRRA LINDE 0091 NA 33A277 FLUX 2 Faney I Y LINDE 0091 NA 33A277 FLUX 3 Fanley I U LINDE 0091 NA 33A277 FLUX 4 Farley 1 X LINDE 0091 NA 33A277 FLUX 5 Farley 1 w LINDE 0091 NA 33A277 FLUX 6 Fanley I V LINDE 0091 NA 33A277 FLUX 7 Farley I z LINDE 0091 NA 33A277 FLUX 200 150 E

0

. 100 Le 50 0 r_

-300.0 0.0 300.0 600.0 Temperature in Deg F 0 1 13 2 03 4 v 5 0 6 a 7 Results Curve Fluence LSE USE d-USE T @35 d-T @3&

1 2.2 86. 0 .0 -48.4 .0 2 2.2 82. 8 -3.2 22. 8 71.2 3 2.2 78.4 -7.6 46. 4 94.8 4 2. 2 83. 1 -2.9 31. 8 80. 2 5 2.2 78. 0 -8.0 44. 3 92.7 6 2.2 75.8 -10. 1 74. 2 122.6 7 2.2 74.5 -11.5 521 2 100.6 Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for Farley Unit 1 Reactor Vessel Surveillance Weld Metal Specimens WCAP- 16964-NP October 2008

5-25 SURVEILLANCE WELD METAL CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 04: 18 PM Data Set(s) Plotted Curve Plant Capsule Material Orl. Heat #

1 arley I UNIRRA LINDE 0091 NA 33A277 FLUX 2 arley 1 Y LINDE 0091 NA 33A277 FLUX 3 Faney 1 U LINDE 0091 NA 33A277 FLUX 4 Farley 1 X LINDE 0091 NA 33A277 FLUX 5 Farley I w LINDE 0091 NA 33A277 FLUX 6 Farley 1 V LINDE 0091 NA 33A277 FLUX 7 Farley I z LINDE 0091 NA 33A277 FLUX 125 100 W 75 50 25:t

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F 0 1 0 2 A347 5 0 6 s7 Results Curve Fluence LSE USE d-USE T @50 d-T @50

.0 100. 0 .0 -28. 9 .0 2 .0 100. 0 .0 48. 6 77. 5 3 .0 1oo. 0 .0 37. 1 66. 0 4 .0 1OO. 0 .0 66. 1 95. 0 5 .0 100. 0 .0 50.7 79. 6 6 .0 100. 0 .0 79. 9 108. 8 7 .0 100. 0 .0 54.8 83. 7 Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for Farley Unit 1 Reactor Vessel Surveillance Weld Metal Specimens October 2008 WCAP- 16964-NP October 2008

5-26 HEAT AFFECTED ZONE CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07/17/2008 03:03 PM Data Set(s) Plotted Curve Plant Capsule Material Orl. Heat #

1 arey I UNIRRA SA533B1 NA C6940-1 2 arley I Y SA533B1 NA C6940-1 3 Farley I U SA533B I NA C6940-1 4 Farley I X SA533B1 NA C6940-1 5 Farley I W SA533B I NA C6940-1 6 Farley I V SA533B I NA C6940-1 7 Farley I Z SA533BI NA C6940-1 300 250 4200 150 tU 100 50

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F 01 2 3 A 4 v 5 0 A . 7 Results Cur,#e Fluence LSE USE d-USE T @30 d-T @30 T @50 d-T @50 1 2. 2 149. 7 .0 - 160. 4 .0 125.0 .0 2 2. 2 139. 0 -10.7 - 131. 2 29. 2 -73.7 51.3 3 2. 2 118.0 -31.7 -5. 1 155. 3 22. 1 147. 1 4 2.2 126. 5 -23.2 -27. 5 132.9 .3 125. 3 5 2. 2 133. 2 -16.5 -38. 7 121.7 -3.0 122. 0 6 2.2 120. 3 -29.3 9. 3 169.7 68.4 193. 4 7 2.2 120. 3 -29.4 10. 3 170. 7 39.4 164. 4 Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for Farley Unit 1 Reactor Vessel Heat-Affected-Zone Specimens October 2008 16964-NP WCAP- 16964-NP October 2008

5-27 HFAT AFFECTED ZONE CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:50 PM Data Set(s) Plotted Curve Plant Capsule Material Ori. Heat #

1 rley I UNIRRA SA533B1 NA C6940-1 2 rley I Y SA533BI NA C6940-1 3 Farey I U SA533BI NA C6940-1 4 Farney I X SA533B1 NA C6940-1 5 Farney I W SA533B I NA C6940-1 6 Farley I V SA533B1 NA C6940-1 7 Farley I Z SA533B1 NA C6940-1 200 150 1 100 s

5O 0 ..

-300.0 0.0 300.0 600.0 Temperature In Deg F 0 1 0 2 3 4 v 5 06 m 7 Results Curw Fluenme LSE USE d-US.E T @35 d-T @35 2.2 81. 7 .0 - 106. 6 .0 2 2.2 81. 1 - 5 -56. 8 49.8 3 2. 2 67. 3 -14.4 37. 5 144. 1 4 2. 2 79. 9 - 1.8 1. 2 107.8 5 2.2 80. 2 -1.4 14.0 120. 6 6 2. 2 84. I 2.5 96. 4 203.0 7 2.2 76, 3 -5.3 48.4 155. 0 Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for Farley Unit 1 Reactor Vessel Heat-Affected-Zone Specimens October 2008 WCAP- 16964-NP October 2008

5-28 HEAT AFFECTED ZONE CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:45 PM Data Set(s) Plotted Curve Plant Capsule Material Ori. Heat #

2 arleyl UNIRRA SA533BI NA C6940- I aneyl Y SA533BI NA C6940-1 3 Farley I U SA533BI NA C6940-1 4 Farley I X SA533BI NA C6940-1 5 Farley I W SA533BI NA C6940-1 6 Farley I V SA533BI NA C6940-1 7 Farley I Z SA533B I NA C6940-1 125 100 I

U) 75 50 253 01

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Dog F 0 1 0 2 063 & 4 V 5 06 m 7 Results Curv Fluence LSE USE d-USE T @,50 d-T @50 1 .0 100.0 .0 -93.7 .0 2 .0 100.0 .0 20.7 114.4 3 .0 I00.0 .0 9.7 103.4 IO0. 0 4 .0 .0 21.2 114.9 5 .0 100.0 .0 47.4 141. i 6 .0 100.0 .0 83. 1 176. 8 7 .0 100.0 .0 57. 1 150. 8 Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for Farley Unit 1 Reactor Vessel Heat-Affected-Zone Specimens October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

5-29 AL82, 40°F AL77, 135TF AL85, 150°F AL84, 160°F AL80,175°F AL81, 180°F AL83,200°F AL86, 200°F AL89, 205°F AL78, 215T AL88, 225°F AL90, 250°F AL79, 360°F AL76, 375°F AL87, 385°F Figure 5-13 Charpy Impact Specimen Fracture Surfaces for Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Longitudinal Orientation)

October 2008 WCAP- 16964-NP October 2008

5-30 AT83, 50°F AT76, 100°F AT87, 170°F AT81, 180°F AT85, 200°F AT80, 210°F AT77, 220°F AT78, 240°F AT89, 250°F AT84, 300°F AT86, 300°F AT90, 350°F AT79, 375°F AT88, 390°F Figure 5-14 Charpy Impact Specimen Fracture Surfaces for Farley Unit I Reactor Vessel Lower Shell Plate B6919-1 Specimens (Transverse Orientation)

October 2008 WCAP- 16964-NP 16964-NP October 2008

5-31 AW76, -30°F AW79, 25°F AW84, 30°F AW80, 35°F AW77, 40°F AW82, 45°F AW87, 50°F AW90, 60°F AW81, 75°F AW86, 100F AW85, 200°F AW88,250°F AW89, 280°F AW78, 300°F AW83, 320°F Figure 5-15 Charpy Impact Specimen Fracture Surfaces for Farley Unit 1 Reactor Vessel Surveillance Weld Metal Specimens WCAP- 16964-NP October 2008

5-32 AH76, F AH82, -20OF AH77, 00 F AH84, 20°F AH87, 25°F AH78, 30-F AH89, 35 0 F AH88, 40°F AH83, 50°F AH85, 80°F AH82,150°F AH80,200°F AH86, 300°F AH90,320°F AH79, 350°F Figure 5-16 Charpy Impact Specimen Fracture Surfaces for Farley Unit 1 Reactor Vessel Heat-Affected-Zone Specimens October 2008 WCALP- 16964-NP WCAP-16964-NP October 2008

5-33 120.0 100.0 iJ Ultimate Tensile Strength 80.0 k---___ 0.2% Yield Strength 60.0 40.0 20.0 0.0 0 100 200 300 400 500 600 Temperature (*F)

Legend: A and

  • and s are unirradiated A and o and o are irradiated to 8.47E+19 n/cm 2 (E > 1.0 MeV) 80.0 Area Reduction 70.0 60.0 50.0 40.0 30.0 IB----.__Total Elongation 20.0 -

-- '-- Uniform Elongation 10.0 A

,-, 6.

0.0 0 100 200 300 400 500 600 Temperature (*F)

Figure 5-17 Tensile Properties for Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Longitudinal Orientation)

WCAP- 16964-NP October 2008

5-34 120.0 100.0 Ultimate Tensile Strength 80.0 Yield Strength 0.ýO2%

60.0 40.0 20.0 0.0 0 100 200 300 400 500 600 Temperature (*F)

Legend: A and

  • and u are unirradiated A and o and o are irradiated to 8.47E+19 n/cm2 (E > 1.0 MeV) 70.0 Area Reduction 60.0 50.0 40.0 I 30.0

-- TotalElongaion 20.0

-* Uniform Elonoation

.. An IU.U i - -

u.u 0 100 200 300 400 500 600 Temperature (*F)

Figure 5-18 Tensile Properties for Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Transverse Orientation)

WCAP-16964-NP October 2008

5-35 120.0 00 100.0 Ultimate Tensile Strength 80.0 0.2%/, Yield Strength

'A 60.0 I!

40.0 20.0 0.0 0 100 200 300 400 500 600 Temperature (*F)

Legend: A and

  • and u are unirradiated A and o and o are irradiated to 8.47E+19 n/cm 2 (E > 1.0 MeV) 80.0 Area Reduction 70.0 60.0 50.0 40.0 30.0 Total Elongation 20.0 Uniform Elongation 10.0 0.0 0 100 200 300 400 500 600 Temperature (*F)

Figure 5-19 Tensile Properties for Farley Unit 1 Reactor Vessel Surveillance Weld Metal Specimens WCAP- 16964-NP October 2008

5-36 Specimen ALI 6- Tested at 190'F Specimen AL17- Tested at 225°F Specimen ALI 8- Tested at 550'F Figure 5-20 Fractured Tensile Specimens from Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Longitudinal Orientation)

WCAP- I16964-NP October 2008

5-37 Specimen AT 16- Tested at 190'F Specimen AT 17- Tested at 240'F Specimen AT18- Tested at 550'F Figure 5-21 Fractured Tensile Specimens from Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Transverse Orientation)

October 2008 16964-NP WCAP- I16964-NP October 2008

5-38 Specimen AW 16- Tested at 70'F Specimen AWl 7- Tested at 100°F Specimen AWl 8- Tested at 550°F Figure 5-22 Fractured Tensile Specimens from Farley Unit 1 Reactor Vessel Surveillance Weld Metal Specimens WCAP- 16964-NP October 2008

5-39 FARLEY 1 CAPSULE Z 120 100 80 60 40 ALl6 F190"F 20 0

0 0.05 0.1 015 02 0.25 0.3 STRAIN, IN/IN FARLEY I CAPSULE Z 120 100 800 S6o 60 40 ALl7 225=F 20 0

0 0.05 0.1 0.15 02 0.25 03 STRAIN, IN/IN FARLEY 1 CAPSULE Z 120 100 60 uO 60 40 AL18 t550"!F 20 0

0 0.05 0.1 0.15 0.2 0.25 0.3 STRAIN, IN/IN Figure 5-23 Engineering Stress-Strain Curves for the Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Longitudinal Orientation) Tensile Specimens AL-16, AL-17 and AL-18.

WCAP- 16964-NP October 2008

5-40 FARLEY 1 CAPSULE Z 120 100 80 4,

01 60 40 AT16 190=F 20 0]

0 0.05 0.1 0.15 0,2 0.25 03 STRAIN, IN/IN FARLEY 1 CAPSULE Z 120 100 80 60 40 AT17 240'F 20 0.05 0.1 0.15 0.2 0.25 0.3 STRAIN, IN/IN FARLEY 1 CAPSULE Z 120 100 80 0 60 40 ATI8 550"F 20 0

0 0.05 0.1 0.15 0.2 0.25 0,3 STRAIN. IN/IN Figure 5-24 Engineering Stress-Strain Curves for the Farley Unit 1 Reactor Vessel Lower Shell Plate B6919-1 Specimens (Transverse Orientation) Tensile Specimens AT-16, AT-17 and AT-18.

WCAP-16964-NP October 2008

5-41 FARLEY 1 CAPSULE Z 120 100 80 6 60 40 20 0.05 0.1 0.15 0.2 0.25 0.3 STRAIN, IN/IN FARLEY 1 CAPSULE Z 120 100 80 6 60 40 20 0

0.05 0.1 0.15 0.2 0.25 0.3 STRAIN, IN/IN FARLEY 1 CAPSULE Z 120 100 80

  • 60 40 AWl8 550TF 20 0.05 0.1 0.15 0.2 0.25 0.3 STRAIN, IN/IN Figure 5-25 Engineering Stress-Strain Curves for Farley Unit 1 Reactor Vessel Surveillance Weld Metal Specimens AW-16, AW-17, and AW-18.

October 2008 16964-NP WCAP- I16964-NP October 2008

6-1 6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY

6.1 INTRODUCTION

This section describes a discrete ordinates Sn transport analysis performed for the Farley Unit 1 reactor to determine the neutron radiation environment within the reactor pressure vessel and surveillance capsules.

In this analysis, fast neutron exposure parameters in terms of fast neutron fluence (E > 1.0 MeV) and iron atom displacements (dpa) were established on a plant and fuel cycle specific basis. An evaluation of the most recent dosimetry sensor set from Capsule Z, withdrawn at the end of the twenty-first plant operating cycle, is provided. In addition, to provide an up-to-date data base applicable to the Farley Unit 1 reactor, sensor sets from previously withdrawn capsules (Y, U, X, W and V) are presented in Appendix A of this report. Comparisons of the results from these dosimetry evaluations with the analytical predictions served to validate the plant-specific neutron transport calculations. These validated calculations subsequently formed the basis for providing projections of the neutron exposure of the reactor pressure vessel for operating periods extending to 60 Effective Full Power Years (EFPY).

The use of fast neutron fluence (E > 1.0 MeV) to correlate measured material property changes to the neutron exposure of the material has traditionally been accepted for the development of damage trend curves as well as for the implementationof trend curve data to assess the condition of the vessel. In recent years, however, it has been suggested that an exposure model that accounts for differences in neutron energy spectra between surveillance capsule locations and positions within the vessel wall could lead to an improvement in the uncertainties associated with damage trend curves and improved accuracy in the evaluation of damage gradients through the reactor vessel wall.

Because of this potential shift away from a threshold fluence toward an energy dependent damage function for data correlation, ASTM Standard Practice E853, "Analysis and Interpretation of Light-Water Reactor Surveillance Results,"'[9] recommends reporting displacements per iron atom (dpa) along with fluence (E > 1.0 MeV) to provide a database for future reference. The energy-dependent dpa function to be used for this evaluation is specified in ASTM Standard Practice E693, "Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements per Atom. ,[20] The application of the dpa parameter to the assessment of embrittlement gradients through the thickness of the reactor vessel wall has already been promulgated in Revision 2 to Regulatory Guide 1.99, "Radiation Embrittlement of Reactor Vessel Materials."

All of the calculations and dosimetry evaluations described in this section and in Appendix A were based on the latest available nuclear cross-section data derived from ENDF/B-VI and made use of the latest available calculational tools. Furthermore, the neutron transport and dosimetry evaluation methodologies follow the guidance and meet the requirements of Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence."[ 211 Additionally, the methods used to develop the calculated pressure vessel fluence are consistent with the NRC approved methodology described in WCAP-14040-NP-A, Revision 4, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves," May 2004[22].

October 2008 16964-NP WCAP- 16964-NP October 2008

6-2 6.2 DISCRETE ORDINATES ANALYSIS A plan view of the Farley Unit 1 reactor geometry at the core midplane is shown in Figure 6-1. Six irradiation capsules attached to the neutron pad are included in the reactor design that constitutes the reactor vessel surveillance program. The capsules are located at azimuthal angles of 107', 287', 3430 (170 from the core cardinal axes) and 1100, 290', 340' (20' from the core cardinal axes). The stainless steel specimen containers are 1.182-inch by 1-inch and are approximately 56 inches in height. The containers are positioned axially such that the test specimens are centered on the core midplane, thus spanning the central 5 feet of the 12-foot high reactor core.

From a neutronic standpoint, the surveillance capsules and associated support structures are significant.

The presence of these materials has a marked effect on both the spatial distribution of neutron flux and the neutron energy spectrum in the water annulus between the neutron pads and the reactor vessel. In order to determine the neutron environment at the test specimen location, the capsules themselves must be included in the analytical model.

In performing the fast neutron exposure evaluations for the Farley Unit 1 reactor vessel and surveillance capsules, a series of fuel cycle specific forward transport calculations were carried out using the following three-dimensional flux synthesis technique:

4(r, 0, z) = 0(r, 0)

  • _(rz)

¢(r) where 4(rO,z) is the synthesized three-dimensional neutron flux distribution, 0(rO) is the transport solution in r,O geometry, 0(r,z) is the two-dimensional solution for a cylindrical reactor model using the actual axial core power distribution, and 0(r) is the one-dimensional solution for a cylindrical reactor model using the same source per unit height as that used in the rO two-dimensional calculation. This synthesis procedure was carried out for each operating cycle at Farley Unit 1.

For the Farley Unit 1 transport calculations, two octant-symmetric r,0 models were developed and are depicted in Figure 6-1. The first model contained the extended neutron pad (260 span) including the surveillance capsules, while the second contained the shortened neutron pad (150 span) with no surveillance capsules. The former model was used to perform surveillance capsule dosimetry evaluations and subsequent comparisons with calculated results, while the latter model was used to generate the maximum fluence at the pressure vessel wall. In developing these analytical models, nominal design dimensions were employed for the various structural components. Likewise, water temperatures, and hence, coolant densities in the reactor core and downcomer regions of the reactor were taken to be representative of full power operating conditions. The coolant densities were treated on a fuel cycle specific basis. The reactor core itself was treated as a homogeneous mixture of fuel, cladding, water, and miscellaneous core structures such as fuel assembly grids, guide tubes, et cetera. The geometric mesh description of the r,0 reactor models consisted of 185 radial by 92 azimuthal intervals. Mesh sizes were chosen to assure that proper convergence of the inner iterations was achieved on a point-wise basis. The point-wise inner iteration flux convergence criterion utilized in the r,0 calculations was set at a value of 0.001.

October 2008 WCAP- 116964-NP 6964-NP October 2008

6-3 The rz model used for the Farley Unit 1 calculations is shown in Figure 6-2 and extends radially from the centerline of the reactor core out to a location interior to the primary biological shield and over an axial span from an elevation 1-foot below the active fuel to approximately 1-foot above the active fuel. As in the case of the rO models, nominal design dimensions and full power coolant densities were employed in the calculations. In this case, the homogenous core region was treated as an equivalent cylinder with a volume equal to that of the active core zone. The stainless steel former plates located between the core baffle and core barrel regions were also explicitly included in the model. The r,z geometric mesh description of these reactor models consisted of 149 radial by 178 axial intervals. As in the case of the rO calculations, mesh sizes were chosen to assure that proper convergence of the inner iterations was achieved on a point-wise basis. The point-wise inner iteration flux convergence criterion utilized in the r,z calculations was also set at a value of 0.001.

The one-dimensional radial models used in the synthesis procedure consisted of the same 149 radial mesh intervals included in the r,z models. Thus, radial synthesis factors could be determined on a mesh-wise basis throughout the entire geometry.

The core power distributions used in the plant-specific transport analysis were taken from the appropriate Farley Unit 1 fuel cycle design reports. The data extracted from the design reports represented cycle-dependent fuel assembly enrichments, bum-ups, and axial power distributions. This information was used to develop spatial and energy dependent core source distributions averaged over each individual fuel cycle. Therefore, the results from the neutron transport calculations provided data in terms of fuel cycle averaged neutron flux, which when multiplied by the appropriate fuel cycle length, generated the incremental fast neutron exposure for each fuel cycle. In constructing these core source distributions, the energy distribution of the source was based on an appropriate fission split for uranium and plutonium isotopes based on the initial enrichment and bum-up history of individual fuel assemblies. From these assembly-dependent fission splits, composite values of energy release per fission, neutron yield per fission, and fission spectrum were determined.

The transport calculations supporting this analysis were carried out using the DORT discreteordinates code Version 3.2[23] and the BUGLE-96 cross-section library.[2 4] The BUGLE-96 library provides a 67 group coupled neutron-gamma ray cross-section data set produced specifically for light water reactor (LWR) applications. In these analyses, anisotropic scattering was treated with a P5 legendre expansion, and angular discretization was modeled with an S 16 order of angular quadrature. Energy and space dependent core power distributions, as well as system operating temperatures, were treated on a fuel cycle specific basis.

Selected results from the neutron transport analyses are provided in Tables 6-1 through 6-7. In Table 6-1, the calculated exposure rates and integrated exposures, expressed in terms of both neutron fluence (E > 1.0 MeV) and dpa, are given at the radial and azimuthal center of the two azimuthally symmetric surveillance capsule positions (17' and 20'). These results, representative of the axial midplane of the active core, establish the calculated exposure of the surveillance capsules withdrawn to date as well as projected into the future. Similar information is provided in Tables 6-2 and 6-3 for the reactor vessel inner radius. The vessel data given in Table 6-2 are representative of the axial location of the maximum neutron exposure at each of the four azimuthal locations, while Table 6-3 provides neutron exposure data for the intermediate shell course to nozzle shell course weld. It is also important to note that the data for October 2008 16964-NP WCAP- 16964-NP October 2008

6-4 the vessel inner radius were taken at the clad/base metal interface, and thus, represent the maximum calculated exposure levels of the vessel plates and welds.

Both calculated fluence (E > 1.0 MeV) and dpa data are provided in Tables 6-1 through 6-3. These data tabulations include both plant and fuel cycle specific calculated neutron exposures at the end of the twenty-first operating fuel cycle as well as future projections to 30, 34, 38, 42, 48, 54, and 60 EFPY. The projections were based on the assumption that the core power distributions and associated plant operating characteristics from Cycle 21 were representative of future plant operation. The future projections are also based on the current reactor power level of 2775 MWt.

Radial gradient information applicable to fast (E > 1.0 MeV) neutron fluence and dpa are given in Tables 6-4 and 6-5, respectively. The data, based on the cumulative integrated exposures from Cycles 1 through 21, are presented on a relative basis for each exposure parameter at several azimuthal locations.

Exposure distributions through the vessel wall may be obtained by multiplying the calculated exposure at the vessel inner radius by the gradient data listed in Tables 6-4 and 6-5.

The calculated fast neutron exposures for the six surveillance capsules withdrawn from the Farley Unit 1 reactor are provided in Table 6-6. These assigned neutron exposure levels are based on the plant and fuel cycle specific neutron transport calculations performed for the Farley Unit 1 reactor.

Updated lead factors for the Farley Unit 1 surveillance capsules are provided in Table 6-7. The capsule lead factor is defined as the ratio of the calculated fluence (E > 1.0 MeV) at the geometric center of the surveillance capsule to the corresponding maximum calculated fluence at the pressure vessel clad/base metal interface. In Table 6-7, the lead factors for capsules that have been withdrawn from the reactor (Y, U, X, W, V, and Z) were based on the calculated fluence values for the irradiation period corresponding to the time of withdrawal for the individual capsules.

6.3 NEUTRON DOSIMETRY The validity of the calculated neutron exposures previously reported in Section 6.2 is demonstrated by a direct comparison against the measured sensor reaction rates and via a least squares evaluation performed for each of the capsule dosimetry sets. However, since the neutron dosimetry measurement data merely serves to validate the calculated results, only the direct comparison of measured-to-calculated results for the most recent surveillance capsule removed from service is provided in this section of the report. For completeness, the assessment of all measured dosimetry removed to date, based on both direct and least squares evaluation comparisons, is documented in Appendix A.

The direct comparison of measured versus calculated fast neutron threshold reaction rates for the sensors from Capsule Z, withdrawn from Farley Unit 1 at the end of the 21 st fuel cycle, is summarized below.

October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

6-5 Reaction Rates (rps/atom)

Reaction Measured Calculated M/C Ratio 63 Cu(n, t) 60 Co 5.38E- 17 5.56E- 17 0.97 54 54 Fe(n,p) Mn 5.07E- 15 6.30E- 15 0.80 58 Ni(n,p) 58Co 7.27E- 15 8.86E- 15 0.82 238 37 U(np)1 Cs (Cd) 3.03E-14 3.44E-14 0.88 237 Np(n,f) 137 Cs (Cd) 2.93E-13 3.50E-13 0.84 Average: 0.86

% Standard Deviation: 7.6 The measured-to-calculated (M/C) reaction rate ratios for the Capsule Z threshold reactions range from 0.80 to 0.97, and the average M/C ratio is 0.86 +/- 7.6 (lcy). This direct comparison falls well within the

+/- 20% criterion specified in Regulatory Guide 1.190; furthermore, it is consistent with the full set of comparisons given in Appendix A for all measured dosimetry removed to date from the Farley Unit 1 reactor. These comparisons validate the current analytical results described in Section 6.2; therefore, the calculations are deemed applicable for Farley Unit 1.

6.4 CALCULATIONAL UNCERTAINTIES The uncertainty associated with the calculated neutron exposure of the Farley Unit 1 surveillance capsule and reactor pressure vessel is based on the recommended approach provided in Regulatory Guide 1.190.[21] In particular, the qualification of the methodology was carried out in the following four stages:

1. Comparison of calculations with benchmark measurements from the pool critical assembly (PCA) simulator at the Oak Ridge National Laboratory (ORNL).
2. Comparisons of calculations with surveillance capsule and reactor cavity measurements from the H. B. Robinson power reactor benchmark experiment.
3. An analytical sensitivity study addressing the uncertainty components resulting from important input parameters applicable to the plant specific transport calculations used in the neutron exposure assessments.
4. Comparisons of the plant specific calculations with all available dosimetry results from the Farley Unit 1 surveillance program.

The first phase of the methods qualification (PCA comparisons) addressed the adequacy of basic transport calculation and dosimetry evaluation techniques and associated cross-sections. This phase, however, did not test the accuracy of commercial core neutron source calculations nor did it address uncertainties in operational or geometric variables that impact power reactor calculations. The second phase of the qualification (H. B. Robinson comparisons) addressed uncertainties in these additional areas that are WCAP- 16964-NP October 2008

6-6 primarily methods related and would tend to apply generically to all fast neutron exposure evaluations.

The third phase of the qualification (analytical sensitivity study) identified the potential uncertainties introduced into the overall evaluation due to calculational methods approximations as well as to a lack of knowledge relative to various plant specific input parameters. The overall calculational uncertainty applicable to the Farley Unit 1 analysis was established from results of these three phases of the methods qualification.

The fourth phase of the uncertainty assessment (comparisons with Farley Unit 1 measurements) was used solely to demonstrate the validity of the transport calculations and to confirm the uncertainty estimates associated with the analytical results. The comparison was used only as a check and was not used in any way to modify the calculated surveillance capsule and pressure vessel neutron exposures previously described in Section 6.2. As such, the validation of the Farley Unit 1 analytical model based on the measured plant dosimetry is completely described in Appendix A.

The following summarizes the uncertainties developed from the first three phases of the methodology qualification. Additional information pertinent to these evaluations is provided in Reference 22.

Capsule Vessel IR PCA Comparisons 3% 3%

H. B. Robinson Comparisons 3% 3%

Analytical Sensitivity Studies 10% 11%

Additional Uncertainty for Factors not Explicitly Evaluated 5% 5%

Net Calculational Uncertainty 12% 13%

The net calculational uncertainty was determined by combining the individual components in quadrature.

Therefore, the resultant uncertainty was random and no systematic bias was applied to the analytical results.

The plant specific measurement comparisons described in Appendix A support these uncertainty assessments for Farley Unit 1.

October 2008 WCAP- 16964-NP WCAP- 16964-NP October 2008

6-7 Table 6-1 Calculated Neutron Exposure Rates and Integrated Exposures at the Surveillance Capsule Center Neutrons (E > 1.0 MeV)

Cumulative Cumulative Neutron Flux (E > 1.0 MeV)

Cycle Irradiation Irradiation (n/cm 2_s)

Length Time Time Cycle (EFPS) (EFPS) (EFPY) 170 :200 1 3.638E+07 3.638E+07 1.15 1.68E+11 1.45E+1 1 2 2.391E+07 6.028E+07 1.91 1.79E+1 1 1.54E+11 3 1.216E+07 7.244E+07 2.30 1.65E+11 1.42E+ 11 4 2.490E+07 9.734E+07 3.08 1.96E+11 1.63E+11 5 2.603E+07 1.234E+08 3.91 1.42E+11 1.25E+ 11 6 2.882E+07 1.522E+08 4.82 1.31E++/- 1 1.14E+ 11 7 4.061E+07 1.928E+08 6.11 1.43E+11 1.25E+11 8 3.830E+07 2.311E+08 7.32 1.22E+1 1 1.06E+11 9 4.141E+07 2.725E+08 8.64 1.32E+11 1.19E+ 11 10 4.010E+07 3.126E+08 9.91 1.27E+11 1.07E+ 11 11 4.149E+07 3.541E+08 11.22 1.16E+ 11 1.02E+ 11 12 3.803E+07 3.92 1E+08 12.43 1.11 E+ 11 9.45E+10 13 4.221E+07 4.343E+08 13.76 1.09E+1 1 9.13E+10 14 4.165E+07 4.760E+08 15.08 1.02E+1I 9.17E+10 15 4.070E+07 5.167E+08 16.37 1.18E+1l 1.03E+ 11 16 3.527E+07 5.520E+08 17.49 1.14E+ 11 9.70E+10 17 4.216E+07 5.94 1E+08 18.83 1.18E+1 1.05E+I1 18 4.215E+07 6.363E+08 20.16 1.16E+ 11 9.99E+10 19 4.425E+07 6.805E+08 21.56 1.22E+ 11 1.03E+1I 20 4.301E+07 7.235E+08 22.93 1.2 1E+1l 1.04E+1I 21 4.208E+07 7.656E+08 24.26 1.17E+ 11 1.02E+ 11 Future 1.8 11E+08 9.467E+08 30.00 1.17E+ 11 1.02E+ 11 Future 1.262E+08 1.073E+09 34.00 1.17E+ 11 1.02E+1I Future 1.262E+08 1. 199E+09 38.00 1.17E+ 11 1.02E+ 11 Future 1.262E+08 1.325E+09 42.00 1.17E++/- 1 1.02E+1I Future 1.893E+08 1.515E+09 48.00 1.17E+ 11 1.02E+1 1 Future 1.893E+08 1.704E+09 54.00 1.17E+ 11 1.02E+ 11 Future 1.893E+08 1.893E+09 60.00 1.17E+l 1 1.02E+1I October 2008 WCAP- 16964-NP WCAP- 16964-NP October 2008

6-8 Table 6-1 Calculated Neutron Exposure Rates and Integrated Exposures at the Surveillance (cont.) Capsule Center Neutrons (E > 1.0 MeV)

Cumulative Cumulative Neutron Fluence (E > 1.0 MeV)

Cycle Irradiation Irradiation (n/cm 2)

Length Time Time Cycle (EFPS) (EFPS) (EFPY) 170 200 1 3.638E+07 3.638E+07 1.15 6.12E+ 18 5.29E+18 2 2.391E+07 6.028E+07 1.91 1.04E+19 8.96E+ 18 3 1.216E+07 7.244E+07 2.30 1.24E+19 1.07E+19 4 2.490E+07 9.734E+07 3.08 1.73E+19 1.47E+19 5 2.603E+07 1.234E+08 3.91 2.10E+19 1.80E+19 6 2.882E+07 1.522E+08 4.82 2.48E+19 2.13E+19 7 4.061E+07 1.928E+08 6.11 3.06E+19 2.64E+19 8 3.830E+07 2.31 1E+08 7.32 3.53E+19 3.04E+ 19 9 4.141E+07 2.725E+08 8.64 4.07E+19 3.53E+19 10 4.010E+07 3.126E+08 9.91 4.58E+19 3.96E+19 11 4.149E+07 3.541E+08 11.22 5.06E+19 4.39E+19 12 3.803E+07 3.921E+08 12.43 5.48E+19 4.75E+19 13 4.22 1E+07 4.343E+08 13.76 5.94E+19 5.13E+19 14 4.165E+07 4.760E+08 15.08 6.36E+19 5.51E+19 15 4.070E+07 5.167E+08 16.37 6.84E+ 19 5.93E+19 16 3.527E+07 5.520E+08 17.49 7.24E+19 6.27E+19 17 4.216E+07 5.941E+08 18.83 7.74E+19 6.72E+19 18 4.215E+07 6.363E+08 20.16 8.23E+19 7.14E+19 19 4.425E+07 6.805E+08 21.56 8.78E+19 7.59E+19 20 4.301E+07 7.235E+08 22.93 9.29E+19 8.04E+19 21 4.208E+07 7.656E+08 24.26 9.78E+19 8.47E+19 Future 1.811E+08 9.467E+08 30.00 1.19E+20 1.03E+20 Future 1.262E+08 1.073E+09 34.00 1.34E+20 1.16E+20 Future 1.262E+08 1. 199E+09 38.00 1.49E+20 1.29E+20 Future 1.262E+08 1.325E+09 42.00 1.63E+20 1.42E+20 Future 1.893E+08 1.515E+09 48.00 1.86E+20 1.61E+20 Future 1.893E+08 1.704E+09 54.00 2.08E+20 1.80E+20 Future 1.893E+08 1.893E+09 60.00 2.30E+20 1.99E+20

+/- £ I WCAP- 16964-NP October 2009

6-9 Table 6-1 Calculated Neutron Exposure Rates and Integrated Exposures at the Surveillance (cont.) Capsule Center Iron Atom Displacements Cumulative Cumulative Displacement Rate Cycle Irradiation Irradiation (dpa/s)

Length Time Time Cycle (EFPS) (EFPS) (EFPY) 170 1 3.638E+07 3.638E+07 1.15 3.46E-10 2.92E-10 2 2.391E+07 6.028E+07 1.91 3.69E-10 3.09E-10 3 1.216E+07 7.244E+07 2.30 3.39E-10 2.86E-10 4 2.490E+07 9.734E+07 3.08 4.07E-10 3.29E-10 5 2.603E+07 1.234E+08 3.91 2.88E-10 2.48E-10 6 2.882E+07 1.522E+08 4.82 2.68E-10 2.27E-10 7 4.061E+07 1.928E+08 6.11 2.92E-10 2.50E-10 8 3.830E+07 2.311E+08 7.32 2.49E-10 2.1 E-10 9 4.141E+07 2.725E+08 8.64 2.67E-10 2.36E-10 10 4.010E+07 3.126E+08 9.91 2.58E-10 2.15E-10 11 4.149E+07 3.541E+08 11.22 2.34E-10 2.03E-10 12 3.803E+07 3.9211E+08 12.43 2.25E-10 1.88E-10 13 4.221E+07 4.343E+08 13.76 2.20E-10 1.82E-10 14 4.165E+07 4.760E+08 15.08 2.05E-10 1.81E-10 15 4.070E+07 5.167E+08 16.37 2.39E-10 2.05E-10 16 3.527E+07 5.520E+08 17.49 2.31E-10 1.93E-10 17 4.216E+07 5.941E+08 18.83 2.39E-10 2.08E-10 18 4.215E+07 6.363E+08 20.16 2.35E-10 1.99E-10 19 4.425E+07 6.805E+08 21.56 2.48E-10 2.06E-10 20 4.301E+07 7.235E+08 22.93 2.46E-10 2.07E-10 21 4.208E+07 7.656E+08 24.26 2.38E-10 2.02E-10 Future 1.811E+08 9.467E+08 30.00 2.38E-10 2.02E-10 Future 1.262E+08 1.073E+09 34.00 2.38E-10 2.02E-10 Future 1.262E+08 1.199E+09 38.00 2.38E-10 2.02E-10 Future 1.262E+08 1.325E+09 42.00 2.38E-10 2.02E-10 Future 1.893E+08 1.515E+09 48.00 2.38E-10 2.02E-10 Future 1.893E+08 1.704E+09 54.00 2.38E-10 2.02E-10 Future 1.893E+08 1.893E+09 60.00 2.38E-10 2.02E-10 WCAP- 16964-NP October 2008

6-10 Table 6-1 Calculated Neutron Exposure Rates and Integrated Exposures at the Surveillance (cont.) Capsule Center Iron Atom Displacements Cumulative Cumulative Displacement Rate Cycle Irradiation Irradiation (dpa)

Length Time Time Cycle (EFPS) (EFPS) (EFPY) 170 200 1 3.638E+07 3.638E+07 1.15 1.26E-02 1.06E-02 2 2.391E+07 6.028E+07 1.91 2.14E-02 1.80E-02 3 1.216E+07 7.244E+07 2.30 2.55E-02 2.15E-02 4 2.490E+07 9.734E+07 3.08 3.56E-02 2.97E-02 5 2.603E+07 1.234E+08 3.91 4.31E-02 3.62E-02 6 2.882E+07 1.522E+08 4.82 5.09E-02 4.27E-02 7 4.061E+07 1.928E+08 6.11 6.27E-02 5.29E-02 8 3.830E+07 2.311E+08 7.32 7.23E-02 6.09E-02 9 4.141E+07 2.725E+08 8.64 8.33E-02 7.07E-02 10 4.010E+07 3.126E+08 9.91 9.37E-02 7.93E-02 11 4.149E+07 3.541E+08 11.22 1.03E-01 8.77E-02 12 3.803E+07 3.921E+08 12.43 1.122E-01 9.49E-02 13 4.221E+07 4.343E+08 13.76 1.21E-01 1.03E-01 14 4.165E+07 4.760E+08 15.08 1.30E-01 1.1OE-01 15 4.070E+07 5.167E+08 16.37 1.40E-01 1.18E-01 16 3.527E+07 5.520E+08 17.49 1.48E-01 1.25E-01 17 4.216E+07 5.941E+08 18.83 1.58E-01 1.34E-01 18 4.215E+07 6.363E+08 20.16 1.68E-01 1.42E-01 19 4.425E+07 6.805E+08 21.56 1.79E-01 1.52E-01 20 4.301E+07 7.235E+08 22.93 1.89E-01 1.60E-01 21 4.208E+07 7.656E+08 24.26 1.99E-01 1.69E-01 Future 1.811E+08 9.467E+08 30.00 2.42E-0 1 2.06E-01 Future 1.262E+08 1.073E+09 34.00 2.72E-01 2.3 1E-01 Future 1.262E+08 1.199E+09 38.00 3.02E-01 2.57E-01 Future 1.262E+08 1.325E+09 42.00 3.32E-01 2.82E-01 Future 1.893E+08 1.515E+09 48.00 3.77E-01 3.20E-01 Future 1.893E+08 1.704E+09 54.00 4.22E-0 1 3.59E-01 Future 1.893E+08 1.893E+09 60.00 4.67E-01 3.97E-01 Note:Neutron exposure values reported for the surveillance capsules are centered at the core midplane WCAP-16964-NP October 2008

6-11 Table 6-2 Calculated Azimuthal Variation of Maximum Exposure Rates and Integrated Exposures at the Reactor Vessel Clad/Base Metal Interface Cumulative Cumulative Neutron Flux (E > 1.0 MeV)

Cycle Irradiation Irradiation (n/cm 2-s)

Length Time Time Cycle (EFPS) (EFPS) (EFPY) 00 150 300 450 1 3.638E+07 3.638E+07 1.15 5.19E+10 2.88E+10 2.13E+10 1.46E+10 2 2.391E+07 6.028E+07 1.91 5.69E+10 3.15E+10 2.31E+10 1.56E+10 3 1.216E+07 7.244E+07 2.30 4.88E+10 2.74E+ 10 2.01E+10 1.37E+10 4 2.490E+07 9.734E+07 3.08 5.80E+10 3.29E+10 2.18E+10 1.41E+10 5 2.603E+07 1.234E+08 3.91 4.32E+10 2.38E+10 1.70E+10 1.08E+10 6 2.882E+07 1.522E+08 4.82 3.76E+10 2.19E+10 1.58E+10 1.11 E+ 10 7 4.061 E+07 1.928E+08 6.11 4.29E+10 2.41E+10 1.76E+10 1.23E+10 8 3.830E+07 2.311 E+08 7.32 3.57E+10 2.08E+10 1.52E+10 1.06E+10 9 4.14 1E+07 2.725E+08 8.64 3.28E+10 2.19E+10 1.65E+10 1.05E+10 10 4.01 OE+07 3.126E+08 9.91 3.56E+10 2.13E+10 1.45E+10 9.67E+09 11 4.149E+07 3.541E+08 11.22 3.14E+ 10 1.93E+10 1.51E+10 1.10E+10 12 3.803E+07 3.921E+08 12.43 3.14E+ 10 1.86E+10 1.30E+10 9.62E+09 13 4.221E+07 4.343E+08 13.76 3.11 E+10 1.82E+10 1.18E+10 8.89E+09 14 4.165E+07 4.760E+08 15.08 2.80E+10 1.70E+10 1.35E+10 9.40E+09 15 4.070E+07 5.167E+08 16.37 3.26E+10 1.97E+10 1.52E+10 1.12E+10 16 3.527E+07 5.520E+08 17.49 3.52E+10 1.91E+10 1.34E+10 9.93E+09 17 4.216E+07 5.941E+08 18.83 3.03E+10 1.95E+10 1.58E+10 1.20E+10 18 4.215E+07 6.363E+08 20.16 3.33E+10 1.93E+10 1.46E+10 1.16E+ 10 19 4.425E+07 6.805E+08 21.56 3.50E+10 2.03E+10 1.43E+10 1.04E+10 20 4.30 1E+07 7.2355E+08 22.93 3.49E+10 2.02E+10 1.43E+10 9.92E+09 21 4.208E+07 7.656E+08 24.26 3.36E+10 1.95E+10 1.44E+10 1.05E+10 Future 1.81 1E+08 9.467E+08 30.00 3.36E+10 1.95E+10 1.44E+10 1.05E+10 Future 1.262E+08 1.073E+09 34.00 3.36E+10 1.95E+10 1.44E+ 10 1.05E+10 Future 1.262E+08 1.199E+09 38.00 3.36E+10 1.95E+10 1.44E+10 1.05E+10 Future 1.262E+08 1.325E+09 42.00 3.36E+10 1.95E+10 1.44E+10 1.05E+10 Future 1.893E+08 1.515E+09 48.00 3.36E+10 1.95E+10 1.44E+10 1.05E+10 Future 1.893E+08 1.704E+09 54.00 3.36E+10 1.95E+10 1.44E+10 1.05E+10 Future 1.893E+08 1.893E+09 60.00 3.36E+10 1.95E+10 1.44E+10 1.05E+10 October 2008 WCAP- 16964-NP WCAP- I16964-NP October 2008

6-12 Table 6-2 Calculated Azimuthal Variation of Maximum Exposure Rates and Integrated Exposures at (cont.) the Reactor Vessel Clad/Base Metal Interface Cumulative Cumulative Neutron Fluence (E > 1.0 MeV)

Cycle Irradiation Irradiation (n/cm 2)

Length Time Time 1 Cycle (EFPS) (EFPS) (EFPY) 0° 150 300 450 1 3.638E+07 3.638E+07 1.15 1.89E+18 1.05E+18 7.75E+17 5.29E+17 2 2.391E+07 6.028E+07 1.91 3.14E+18 1.74E+18 1.28E+18 8.72E+17 3 1.216E+07 7.244E+07 2.30 3.73E+18 2.07E+18 1.53E+18 1.04E+17 4 2.490E+07 9.734E+07 3.08 5.17E+18 2.89E+18 2.07E+18 1.39E+18 5 2.603E+07 1.234E+08 3.91 6.29E+18 3.51E+18 2.51E+18 1.67E+18 6 2.882E+07 1.522E+08 4.82 7.38E+18 4.14E+18 2.96E+18 1.99E+18 7 4.061E+07 1.928E+08 6.11 9.12E+18 5.12E+18 3.68E+18 2.49E+18 8 3.830E+07 2.311E+08 7.32 1.05E+19 5.92E+18 4.26E+18 2.89E+18 9 4.141E+07 2.725E+08 8.64 *1.18E+19 6.82E+18 4.95E+18 3.33E+18 10 4.010E+07 3.126E+08 9.91 1.33E+19 7.68E+18 5.53E+18 3.72E+18 11 4.149E+07 3.541E+08 11.22 1.46E+19 8.48E+18 6.15E+18 4.17E+18 12 3.803E+07 3.921E+08 12.43 1.58E+19 9.18E+18 6.64E+18 4.54E+18 13 4.221E+07 4.343E+08 13.76 1.71E+19 9.94E+18 7.14E+18 4.91E+18 14 4.165E+07 4.760E+08 15.08 1.82E+19 1.07E+19 7.70E+18 5.30E+18 15 4.070E+07 5.167E+08 16.37 1.96E+19 1.15E+19 8.32E+18 5.76E+18 16 3.527E+07 5.520E+08 17.49 2.08E+19 1.21E+19 8.79E+18 6.11E+18 17 4.216E+07 5.941E+08 18.83 2.21E+19 1.30E+19 9.46E+18 6.61E+18 18 4.215E+07 6.363E+08 20.16 2.35E+19 1.38E+19 1.01E+19 7.10E+18 19 4.425E+07 6.805E+08 21.56 2.50E+19 1.46E+19 1.07E+19 7.55E+18 20 4.301E+07 7.235E+08 22.93 2.65E+19 1.55E+19 1.13E+19 7.97E+18 21 4.208E+07 7.656E+08 24.26 2.78E+19 1.63E+19 1.19E+19 8.40E+18 Future 1.811E+08 9.467E+08 30.00 3.39E+ 19 1.98E+19 1.45E+19 1.03E+19 Future 1.262E+08 1.073E+09 34.00 3.81E+19 2.23E+19 1.63E+19 1.16E+19 Future 1.262E+08 1.199E+09 38.00 4.24E+19 2.47E+19 1.81E+19 1.30E+19 Future 1.262E+08 1.325E+09 42.00 4.66E+19 2.72E+19 1.99E+19 1.43E+19 Future 1.893E+08 1.515E+09 48.00 5.30E+19 3.08E+19 2.27E+19 1.63E+19 Future 1.893E+08 1.704E+09 54.00 5.93E+19 3.45E+19 2.54E+19 1.83E+19 Future 1.893E+08 1.893E+09 60.00 6.57E+19 3.82E+19 2.81E+19 2.03E+19 October 2008 16964-NP WCAP- 16964-NP October 2008

6-13 Table 6-2 Calculated Azimuthal Variation of Maximum Exposure Rates and Integrated Exposures at (cont.) the Reactor Vessel Clad/Base Metal Interface Cumulative Cumulative Iron Atom Displacement Rate Cycle Irradiation Irradiation (dpa/s)

Cycle (EFPS) (EFPS) (EFPY) I I I 1 3.638E+07 3.638E+07 1.15 8.24E-1 1 4.54E-1 1 3.26E-11 2.25E-1 1 2 2.391E+07 6.028E+07 1.91 9.03E- 1I 4.96E- 11 3.54E-11 2.42E- 11 3 1.216E+07 7.244E+07 2.30 7.74E- 11 4.3 1E-11 3.09E-11 2.1 1E-1 1 4 2.490E+07 9.734E+07 3.08 9.21E-1 1 5.19E-11 3.34E-11 2.18E-11 5 2.603E+07 1.234E+08 3.91 6.84E-1 1 3.74E-11 2.60E-1 1 1.67E- I1 6 2.882E+07 1,522E+08 4.82 5.96E- 11 3.44E- 1I 2.43E-1 1 1.72E-1 1 7 4.061E+07 1.928E+08 6.11 6.81E-1 1 3.79E-1 1 2.71E-1 1 1.89E-1 1 8 3.830E+07 2.311E+08 7.32 5.67E-11 3.27E- 1I 2.34E-1 1 1.64E-11 9 4.14 1E+07 2.725E+08 8.64 5.2 1E-1I 3.43E-1 1 2.53E-1 1 1.63E-1 1 10 4.01 OE+07 3.126E+08 9.91 5.65E-1 1 3.35E-11 2.23E- 11 1.50E-1 1 11 4.149E+07 3.541E+08 11.22 4.98E-1 1 3.03E-1 1 2.32E- 11 1.71E-1I 12 3.803E+07 3.92 1E+08 12.43 4.99E-1 1 2.92E- 11 2.OOE-1 1 1.49E- 11 13 4.221E+07 4.343E+08 13.76 4.94E- 11 2.86E- 11 1.82E-11 1.38E-1 1 14 4.165E+07 4.760E+08 15.08 4.43E- I1 2.67E- 11 2.07E- 11 1.46E-11 15 4.070E+07 5.167E+08 16.37 5.18E-11 3.1 OE- 11 2.33E-1 1 1.73E-1 1 16 3.527E+07 5.520E+08 17.49 5.58E- 11 3.01E-1I 2.06E-11 1.54E-11 17 4.216E+07 5.941E+08 18.83 4.81E-1 1 3.06E-11 2.43E-1 1 1.85E-11 18 4.215E+07 6.363E+08 20.16 5.29E-1 1 3.03E-11 2.25E-1 1 1.80E-I I 19 4.425E+07 6.805E+08 21.56 5.55E-1 1 3.19E-11 2.20E-1 1 1.62E- 11 20 4.30 1E+07 7.235E+08 22.93 5.54E- 11 3.18E-1 1 2.20E-1 1 1.54E- 11 21 4.208E+07 7.656E+08 24.26 5.33E-I 1 3.06E-11 2.22E-11 1.63E-1 1 Future 1.81 1E+08 9.467E+08 30.00 5.33E-1 1 3.06E-1 1 2.22E-1 1 1.63E-1 1 Future 1.262E+08 1.073E+09 34.00 5.33E-1 1 3.06E-1 1 2.22E-1 1 1.63E- I1 Future 1.262E+08 1.199E+09 38.00 5.33E-1 1 3.06E-11 2.22E-1 1 1.63E- 11 Future 1.262E+08 1.325E+09 42.00 5.33E-1 1 3.06E-1 1 2.22E-1 1 1.63E-1 1 Future 1.893E+08 1.515E+09 48.00 5.33E-1 1 3.06E-1 1 2.22E-11 1.63E-1 1 Future 1.893E+08 1.704E+09 54.00 5.33E- I1 3.06E-11 2.22E-1 1 1.63E-11 Future 1.893E+08 1.893E+09 60.00 5.33E-1 1 3.06E-11 2.22E-1 1 1.63E-11 WCAP- 16964-NP October 2008

6-14 Table 6-2 Calculated Azimuthal Variation of Maximum Exposure Rates and Integrated Exposures at (cont.) the Reactor Vessel Clad/Base Metal Interface Cumulative Cumulative Iron Atom Displacement Rate Cycle Irradiation Irradiation (dpa)

Length Time Time 00 Cycle (EFPS) (EFPS) (EFPY) 0 1 150 300 450 1 3.638E+07 3.638E+07 1.15 3.OOE-03 1.65E-03 1.19E-03 8.17E-04 2 2.39 1E+07 6.028E+07 1.91 4.98E-03 2.74E-03 1.96E-03 1.35E-03 3 1.216E+07 7.244E+07 2.30 5.92E-03 3.26E-03 2.34E-03 1.61E-03 4 2.490E+07 9.734E+07 3.08 8.21E-03 4.55E-03 3.17E-03 2.15E-03 5 2.603E+07 1.234E+08 3.91 9.99E-03 5.53E-03 3.85E-03 2.58E-03 6 2.882E+07 1.522E+08 4.82 1.17E-02 6.52E-03 4.55E-03 3.08E-03 7 4.061E+07 1.928E+08 6.11 1.45E-02 8.06E-03 5.65E-03 3.84E-03 8 3.830E+07 2.311E+08 7.32 1.66E-02 9.3 1E-03 6.54E-03 4.47E-03 9 4.14 1E+07 2.725E+08 8.64 1.88E-02 1.07E-02 7.59E-03 5.15E-03 10 4.010E+07 3.126E+08 9.91 2.11 E-02 1.2 1E-02 8.49E-03 5.75E-03 11 4.149E+07 3.541E+08 11.22 2.3 1E-02 1.33E-02 9.45E-03 6.46E-03 12 3.803E+07 3.921E+08 12.43 2.50E-02 1.44E-02 1.02E-02 7.02E-03 13 4.221E+07 4.343E+08 13.76 2.71E-02 1.56E-02 1.1OE-02 7.60E-03 14 4.165E+07 4.760E+08 15.08 2.89E-02 1.67E-02 1.18E-02 8.20E-03 15 4.070E+07 5.167E+08 16.37 3.10E-02 1.80E-02 1.28E-02 8.90E-03 16 3.527E+07 5.520E+08 17.49 3.30E-02 1.91E-02 1.35E-02 9.45E-03 17 4.216E+07 5.94 1E+08 18.83 3.50E-02 2.04E-02 1.45E-02 1.02E-02 18 4.215E+07 6.363E+08 20.16 3.72E-02 2.16E-02 1.55E-02 1.1 OE-02 19 4.425E+07 6.805E+08 21.56 3.97E-02 2.30E-02 1.64E-02 1.17E-02 20 4.301E+07 7.235E+08 22.93 4.20E-02 2.44E-02 1.74E-02 1.23E-02 21 4.208E+07 7.656E+08 24.26 4.42E-02 2.56E-02 1.83E-02 1.30E-02 Future 1.8 11E+08 9.467E+08 30.00 5.38E-02 3.11E-02 2.23E-02 1.59E-02 Future 1.262E+08 1.073E+09 34.00 6.05E-02 3.50E-02 2.51E-02 1.80E-02 Future 1.262E+08 1.199E+09 38.00 6.72E-02 3.88E-02 2.79E-02 2.01E-02 Future 1.262E+08 1.325E+09 42.00 7.39E-02 4.27E-02 3.07E-02 2.21E-02 Future 1.893E+08 1.515E+09 48.00 8.40E-02 4.85E-02 3.49E-02 2.52E-02 Future 1.893E+08 1.704E+09 54.00 9.41E-02 5.43E-02 3.91E-02 2.83E-02 Future 1.893E+08 1.893E+09 60.00 1.04E-01 6.01E-02 4.33E-02 3.14E-02 WCAP- 16964-NP October 2008

6-15 Table 6-3 Calculated Azimuthal Variation of Exposure Rates and Integrated Exposures at the Intermediate Shell Course to Nozzle Shell Course Weld Cumulative Cumulative Neutron Flux (E > 1.0 MeV)

Cycle Irradiation Irradiation (n/cm 2 -s)

Length Time Time Cycle (EFPS) (EFPS) (EFPY) 00 150 300 450 1 3.638E+07 3.638E+07 1.15 5.66E+09 3.15E+09 2.33E+09 1.59E+09 2 2.391E+07 6.028E+07 1.91 1.09E+10 6.02E+09 4.41E+09 2.99E+09 3 1.216E+07 7.244E+07 2.30 6.36E+09 3.57E+09 2.62E+09 1.78E+09 4 2.490E+07 9.734E+07 3.08 7.49E+09 4.25E+09 2.8 1E+09 1.82E+09 5 2.603E+07 1.234E+08 3.91 5.26E+09 2.91E+09 2.07E+09 1.31E+09 6 2.882E+07 1.522E+08 4.82 5.64E+09 3.29E+09 2.37E+09 1.66E+09 7 4.061E+07 1.928E+08 6.11 6.09E+09 3.42E+09 2.50E+09 1.74E+09 8 3.830E+07 2.311E+08 7.32 4.62E+09 2.69E+09 1.97E+09 1.37E+09 9 4.141E+07 2.725E+08 8.64 5.09E+09 3.40E+09 2.56E+09 1.64E+09 10 4.010E+07 3.126E+08 9.91 5.6 1E+09 3.36E+09 2.29E+09 1.53E+09 11 4.149E+07 3.541E+08 11.22 4.67E+09 2.87E+09 2.25E+09 1.65E+09 12 3.803E+07 3.921E+08 12.43 5.5 1E+09 3.26E+09 2.28E+09 1.69E+09 13 4.221 E+07 4.343E+08 13.76 5.28E+09 3.09E+09 2.01E+09 1.51E+09 14 4.165E+07 4.760E+08 15.08 4.78E+09 2.91E+09 2.30E+09 1.61E+09 15 4.070E+07 5.167E+08 16.37 5.7 1E+09 3.44E+09 2.65E+09 1.95E+09 16 3.527E+07 5.520E+08 17.49 5.56E+09 3.02E+09 2.12E+09 1.57E+09 17 4.216E+07 5.941E+08 18.83 4.88E+09 3.14E+09 2.55E+09 1.93E+09 18 4.215E+07 6.363E+08 20.16 5.39E+09 3.12E+09 2.36E+09 1.88E+09 19 4.425E+07 6.805E+08 21.56 5.8 1E+09 3.36E+09 2.37E+09 1.73E+09 20 4.30 1E+07 7.235E+08 22.93 6.12E+09 3.54E+09 2.5 1E+09 1.74E+09 21 4.208E+07 7.656E+08 24.26 5.92E+09 3.43E+09 2.54E+09 1.86E+09 Future 1.81 1E+08 9.467E+08 30.00 5.92E+09 3.43E+09 2.54E+09 1.86E+09 Future 1.262E+08 1.073E+09 34.00 5.92E+09 3.43E+09 2.54E+09 1.86E+09 Future 1.262E+08 1.199E+09 38.00 5.92E+09 3.43E+09 2.54E+09 1.86E+09 Future 1.262E+08 1.325E+09 42.00 5.92E+09 3.43E+09 2.54E+09 1.86E+09 Future 1.893E+08 1.515E+09 48.00 5.92E+09 3.43E+09 2.54E+09 1.86E+09 Future 1.893E+08 1.704E+09 54.00 5.92E+09 3.43E+09 2.54E+09 1.86E+09 Future 1.893E+08 1.893E+09 60.00 5.92E+09 3.43E+09 2.54E+09 1.86E+09 October 2008 WCAP-16964-NP October 2008

6-16 Table 6-3 Calculated Azimuthal Variation of Exposure Rates and Integrated Exposures at the (cont.) Intermediate Shell Course to Nozzle Shell Course Weld Cumulative Cumulative Neutron Fluence (E > 1.0 MeV)

Cycle Irradiation Irradiation (n/cm 2 )

Length Time Time Cycle (EFPS) (EFPS) (EFPY) 00 150 300 450 1 3.638E+07 3.638E+07 1.15 2.06E+17 1.15E+17 8.46E+16 5.78E+16 2 2.39 1E+07 6.028E+07 1.91 4.66E+17 2.59E+17 1.90E+17 1.29E+17 3 1.216E+07 7.244E+07 2.30 5.44E+ 17 3.02E+17 2.22E+17 1.51E+17 4 2.490E+07 9.734E+07 3.08 7.30E+17 4.08E+17 2.92E+17 1.96E+17 5 2.603E+07 1.234E+08 3.91 8.67E+17 4.84E+17 3.46E+17 2.30E+17 6 2.882E+07 1.522E+08 4.82 1.03E+18 5.78E+17 4.14E+ 17 2.78E+17 7 4.061E+07 1.928E+08 6.11 1.28E+18 7.17E+ 17 5.16E+17 3.49E+17 8 3.830E+07 2.311 E+08 7.32 1.45E+18 8.20E+17 5.91E+17 4.01E+17 9 4.14 1E+07 2.725E+08 8.64 1.66E+18 9.61 E+ 17 6.97E+17 4.69E+17 10 4.010E+07 3.126E+08 9.91 1.89E+18 1.10E+18 7.89E+17 5.30E+17 11 4.149E+07 3.541E+08 11.22 2.08E+ 18 1.22E+18 8.82E+17 5.99E+17 12 3.803E+07 3.921E+08 12.43 2.29E+ 18 1.34E+18 9.69E+ 17 6.63E+17 13 4.221E+07 4.343E+08 13.76 2.52E+18 1.47E+18 1.05E+18 7.26E+17 14 4.165E+07 4.760E+08 15.08 2.71E+18 1.59E+18 1.15E+18 7.93E+17 15 4.070E+07 5.167E+08 16.37 2.95E+18 1.73E+18 1.26E+18 8.73E+17 16 3.527E+07 5.520E+08 17.49 3.14E+ 18 1.84E+18 1.33E+18 9.28E+17 17 4.216E+07 5.941E+08 18.83 3.35E+18 1.97E+18 1.44E+18 1.01E+18 18 4.215E+07 6.363E+08 20.16 3.58E+18 2.10E+18 1.54E+18 1.09E+18 19 4.425E+07 6.805E+08 21.56 3.83E+18 2.25E+18 1.64E+18 1.17E+18 20 4.301E+07 7.235E+08 22.93 4.10E+18 2.40E+18 1.75E+18 1.24E+18 21 4.208E+07 7.656E+08 24.26 4.35E+18 2.55E+18 1.86E+18 1.32E+18 Future 1.81 1E+08 9.467E+08 30.00 5.42E+ 18 3.17E+ 18 2.32E+18 1.65E+18 Future 1.262E+08 1.073E+09 34.00 6.17E+18 3.60E+18 2.64E+ 18 1.89E+18 Future 1.262E+08 1.199E+09 38.00 6.91E+18 4.03E+18 2.96E+18 2.12E+18 Future 1.262E+08 1.325E+09 42.00 7.66E+ 18 4.47E+18 3.28E+18 2.36E+18 Future 1.893E+08 1.515E+09 48.00 8.78E+18 5.12E+ 18 3.76E+18 2.71E+18 Future 1.893E+08 1.704E+09 54.00 9.90E+18 5.77E+18 4.24E+ 18 3.06E+18 Future 1.893E+08 1.893E+09 60.00 1.10E+19 6.42E+ 18 4.73E+18 3.41E+18 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

6-17 Table 6-3 Calculated Azimuthal Variation of Exposure Rates and Integrated Exposures at the (cont.) Intermediate Shell Course to Nozzle Shell Course Weld Cumulative Cumulative Iron Atom Displacement Rate Cycle Irradiation Irradiation (dpa/s)

Length Time Time Cycle (EFPS) (EFPS) (EFPY) 00 150 300 450 1 3.638E+07 3.638E+07 1.15 8.83E-12 4.86E-12 3.50E-12 2.41E-12 2 2.391E+07 6.028E+07 1.91 1.69E-1 1 9.28E-12 6.62E-12 4.53E-12 3 1.216E+07 7.244E+07 2.30 9.91E-12 5.52E-12 3.95E-12 2.71E-12 4 2.490E+07 9.734E+07 3.08 1.17E-1 1 6.58E-12 4.24E-12 2.77E-12 5 2.603E+07 1.234E+08 3.91 8.20E-12 4.49E-12 3.12E-12 2.OOE-12 6 2.882E+07 1.522E+08 4.82 8.78E-12 5.06E-12 3.57E-12 2.52E-12 7 4.061E+07 1.928E+08 6.11 9.47E-12 5.27E-12 3.77E-12 2.63E-12 8 3.830E+07 2.31 1E+08 7.32 7.20E-12 4.15E-12 2.97E-12 2.08E-12 9 4.14 1E+07 2.725E+08 8.64 7.93E-12 5.22E-12 3.86E-12 2.49E- 12 10 4.010E+07 3.126E+08 9.91 8.73E-12 5.18E-12 3.45E-12 2.32E-12 11 4.149E+07 3.541E+08 11.22 7.27E-12 4.42E-12 3.38E-12 2.49E-12 12 3.803E+07 3.921E+08 12.43 8.56E-12 5.02E- 12 3.43E-12 2.56E-12 13 4.221E+07 4.343E+08 13.76 8.20E-12 4.75E-12 3.03E-12 2.28E-12 14 4.165E+07 4.760E+08 15.08 7.42E-12 4.47E-12 3.46E-12 2.44E-12 15 4.070E+07 5.167E+08 16.37 8.86E-12 5.30E-12 3.99E-12 2.95E-12 16 3.527E+07 5.520E+08 17.49 8.64E-12 4.65E-12 3.19E-12 2.38E-12 17 4.216E+07 5.941E+08 18.83 7.60E-12 4.82E-12 3.84E-12 2.92E-12 18 4.215E+07 6.363E+08 20.16 8.38E-12 4.81E-12 3.56E-12 2.85E-12 19 4.425E+07 6.805E+08 21.56 9.03E-12 5.18E-12 3.58E-12 2.63E-12 20 4.30 1E+07 7.235E+08 22.93 9.51E-12 5.45E-12 3.78E-12 2.64E-12 21 4.208E+07 7.656E+08 24.26 9.19E-12 5.28E-12 3.83E-12 2.81E-12 Future 1.811E+08 9.467E+08 30.00 9.19E-12 5.28E-12 3.83E-12 2.81E-12 Future 1.262E+08 1.073E+09 34.00 9.19E-12 5.28E-12 3.83E-12 2.81E-12 Future 1.262E+08 1.199E+09 38.00 9.19E-12 5.28E-12 3.83E-12 2.81E-12 Future 1.262E+08 1.325E+09 42.00 9.19E-12 5.28E-12 3.83E-12 2.81E-12 Future 1.893E+08 1.515E+09 48.00 9.19E-12 5.28E-12 3.83E-12 2.81E-12 Future 1.893E+08 1.704E+09 54.00 9.19E-12 5.28E-12 3.83E-12 2.81E-12 Future 1.893E+08 1.893E+09 60.00 9.19E-12 5.28E-12 3.83E-12 2.81E-12 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

6-18 Table 6-3 Calculated Azimuthal Variation of Exposure Rates and Integrated Exposures at the (cont.) Intermediate Shell Course to Nozzle Shell Course Weld Cumulative Cumulative Iron Atom Displacement Rate Cycle Irradiation Irradiation (dpa)

Length Time Time Cycle (EFPS) (EFPS) (EFPY) 00 150 300 450 1 3.638E+07 3.638E+07 1.15 3.2 1E-04 1.77E-04 1.27E-04 8.76E-05 2 2.391E+07 6.028E+07 1.91 7.25E-04 3.99E-04 2.86E-04 1.96E-04 3 1.216E+07 7.244E+07 2.30 8.46E-04 4.66E-04 3.34E-04 2.29E-04 4 2.490E+07 9.734E+07 3.08 1.14E-03 6.30E-04 4.39E-04 2.98E-04 5 2.603E+07 1.234E+08 3.91 1.35E-03 7.47E-04 5.20E-04 3.50E-04 6 2.882E+07 1.522E+08 4.82 1.60E-03 8.92E-04 6.23E-04 4.22E-04 7 4.061E+07 1.928E+08 6.11 1.99E-03 1.11E-03 7.76E-04 5.29E-04 8 3.830E+07 2.311E+08 7.32 2.26E-03 1.27E-03 8.90E-04 6.09E-04 9 4.14 1E+07 2.725E+08 8.64 2.59E-03 1.48E-03 1.05E-03 7.12E-04 10 4.01 OE+07 3.126E+08 9.91 2.94E-03 1.69E-03 1.19E-03 8.05E-04 11 4.149E+07 3.541E+08 11.22 3.24E-03 1.87E-03 1.33E-03 9.08E-04 12 3.803E+07 3.921E+08 12.43 3.57E-03 2.06E-03 1.46E-03 1.01E-03 13 4.22 1E+07 4.343E+08 13.76 3.9 1E-03 2.26E-03 1.59E-03 1.1OE-03 14 4.165E+07 4.760E+08 15.08 4.22E-03 2.45E-03 1.73E-03 1.20E-03 15 4.070E+07 5.167E+08 16.37 4.58E-03 2.67E-03 1.89E-03 1.32E-03 16 3.527E+07 5.520E+08 17.49 4.89E-03 2.83E-03 2.01E-03 1.41E-03 17 4.216E+07 5.941E+08 18.83 5.2 1E-03 3.03E-03 2.17E-03 1.53E-03 18 4.215E+07 6.363E+08 20.16 5.56E-03 3.24E-03 2.32E-03 1.65E-03 19 4.425E+07 6.805E+08 21.56 5.96E-03 3.46E-03 2.48E-03 1.77E-03 20 4.301E+07 7.235E+08 22.93 6.37E-03 3.70E-03 2.64E-03 1.88E-03 21 4.208E+07 7.656E+08 24.26 6.76E-03 3.92E-03 2.80E-03 2.OOE-03 Future 1.811E+08 9.467E+08 30.00 8.42E-03 4.88E-03 3.49E-03 2.51E-03 Future 1.262E+08 1.073E+09 34.00 9.58E-03 5.55E-03 3.98E-03 2.86E-03 Future 1.262E+08 1.199E+09 38.00 1.07E-02 6.2 1E-03 4.46E-03 3.22E-03 Future 1.262E+08 1.325E+09 42.00 1.19E-02 6.88E-03 4.94E-03 3.57E-03 Future 1.893E+08 1.515E+09 48.00 1.36E-02 7.88E-03 5.67E-03 4.11E-03 Future 1.893E+08 1.704E+09 54.00 1.54E-02 8.88E-03 6.39E-03 4.64E-03 Future 1.893E+08 1.893E+09 60.00 1.71E-02 9.88E-03 7.12E-03 5.17E-03 WCAP- 16964-NP October 2008

6-19 Table 6-4 Relative Radial Distribution of Neutron Fluence (E > 1.0 MeV) Within the Reactor Vessel Wall Radius Azimuthal Angle (cm) 00 150 300 450 199.79 1.000 1.000 1.000 1.000 204.79 0.586 0.600 0.600 0.603 209.79 0.301 0.316 0.314 0.318 214.79 0.148 0.159 0.158 0.161 219.79 0.068 0.079 0.078 0.082 Note: Base Metal Inner Radius = 199.79 cm Base Metal 1/4T = 204.79 cm Base Metal 1/2T = 209.79 cm Base Metal 3/4T = 214.79 cm Base Metal Outer Radius = 219.79 cm Table 6-5 Relative Radial Distribution of Iron Atom Displacements (dpa) Within the Reactor Vessel Wall AZIMUTHAL ANGLE RADIUS (cm) 00 150 300 450 199.79 1.000 1.000 1.000 1.000 204.79 0.666 0.680 0.665 0.668 209.79 0.416 0.435 0.415 0.420 214.79 0.254 0.273 0.256 0.262 219.79 0.140 0.163 0.153 0.164 Note: Base Metal Inner Radius = 199.79 cm Base Metal 1/4T = 204.79 cm Base Metal 1/2T = 209.79 cm Base Metal 3/4T = 214.79 cm Base Metal Outer Radius = 219.79 cm October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

6-20 Table 6-6 Calculated Fast Neutron Exposure of Surveillance Capsules Withdrawn from Farley Unit 1 Irradiation Time Fluence (E > 1.0 MeV) Iron Displacements Capsule (EFPY) (n/cm 2) (dpa)

Y 1.15 6.12E+18 1.26E-02 U 3.08 1.73E+19 3.56E-02 X 6.11 3.06E+19 6.27E-02 W 12.43 4.75E+19 9.49E-02 V 20.16 7.14E+ 19 1.42E-01 Z 24.26 8.47E+19 1.69E-01 Table 6-7 Calculated Surveillance Capsule Lead Factors Capsule ID And Location Status Lead Factor Y (170) Withdrawn EOC 1 3.24 U (170) Withdrawn EOC 4 3.34 X (17°) Withdrawn EOC 7 3.35 W (20°) Withdrawn EOC 12 3.01 V (20°) Withdrawn EOC 18 3.04 Z (20-) Withdrawn EOC 21 3.04 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

6-21 J. M. Farley Unit 1 Reactor R,T Model MWhes: 185R. 928

= umb mwý

-a.-WN

-t* -h

=soft so ik jE U..-

1-3:

.4-HE I:

  • 1~

Pd-Figure 6-1a Farley Unit 1 rO Reactor Geometry with a 15° Neutron Pad at the Core Midplane WCAP- 16964-NP October 2008

6-22 J.. M. Farley Un~f 1 Reactor R,T Model Washes., 185R. 928~

q~mj. ~mu~

dfr jE I.-

.4-IE7 Figure 6-1b Farley Unit 1 rO Reactor Geometry with a 260 Neutron Pad at the Core Midplane October 2008 WCAP-WCAP- 16964-NP October 2008

6-23 J. M. Farley Unit 1 Reactor R,Z Model Meshes: 149X,178Y

-Care Wa - -mrt

- Da'eooomw Rsgtm m n~o -SI*kuu Siwi Air - V - Cgboni Stilul - Flowr -L~pr Pw u.U 41. 290.0 X

[cm]

Figure 6-2 Farley Unit 1 rz Reactor Geometry with Neutron Pad WCAP- 16964-NP October 2008

7-1 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE The following surveillance capsule removal history meets the requirements of ASTM E185-821'0 l. The withdrawal schedule for Capsules V and Z was reviewed and approved in NUREG-18251251, and is consistent with the withdrawal EFPY documented in Table 7-1.

Table 7-1 Farley Unit 1 Surveillance Capsule Withdrawal History Capsule Fluence Capsule Location Lead Factort 1 ) Withdrawal EFPY(2) (n/cm 2, E > 1.0 MeV)(1)

Y 3430 3.24 1.15 6.12E+18 U 1070 3.34 3.08 1.73E+19 X 2870 3.35 6.11 3.06E+19 W 1100 3.01 12.43 4.75E+19 V 2900 3.04 20.16 7.14E+19 Z 3400 3.04 24.26 8.47E+19 Notes:

1. Updated in Capsule Z dosimetry analysis (see Section 6).
2. EFPY from plant startup.

October 2008 WCAP- 16964-NP WCAP- 16964-NP October 2008

8-1 8 REFERENCES

1. Regulatory Guide 1.99, Revision 2, Radiation Embrittlement ofReactor Vessel Materials, U.S. Nuclear Regulatory Commission, May 1988.
2. Code of Federal Regulations, 10CFR50, Appendix G,Fracture Toughness Requirements, and Appendix H, Reactor Vessel MaterialSurveillanceProgramRequirements, U.S. Nuclear Regulatory Commission, Washington, D.C.
3. WCAP-14689, Revision 4, "Farley Units 1 and 2 Heatup and Cooldown Limit Curves for Normal Operation and PTLR Support Documentation," April 1998.
4. WCAP-88 10, Revision 0, "Southern Alabama Power Company, Joseph M. Farley Nuclear Plant Unit No. 1 Reactor Vessel Radiation Surveillance Program," December 1976.
5. ASTM El185-73, StandardPracticefor ConductingSurveillance Testsfor Light-Water Cooled Nuclear PowerReactor Vessels, American Society for Testing and Materials.
6.Section XI of the ASME Boiler and Pressure Vessel Code, Appendix G, FractureToughness Criteriafor ProtectionAgainst Failure.
7. ASTM E208, StandardTest Methodfor ConductingDrop-Weight Test to Determine Nil-Ductility Transition Temperature ofFerriticSteels, American Society for Testing and Materials.
8. ASTM E399, Test Methodfor Plane-StrainFractureToughness of Metallic Materials,American Society for Testing and Materials.
9. Westinghouse Science and Technology Department Procedure RMF 8804, "Opening of Westinghouse Surveillance Capsules," Revision 2, August 1, 2004.
10. ASTM E 185-82, StandardPracticefor Conducting Surveillance Testsfor Light- Water Cooled NuclearPowerReactor Vessels, E706 (IF), American Society for Testing and Materials.
11. Westinghouse Science and Technology Department Procedure RMF 8402, "Surveillance Capsule Testing Program," Revision 3, June 6, 2005.
12. Westinghouse Science and Technology Department Procedure RMF 8102, "Tensile Testing,"

Revision 3, March 1, 1999.

13. Westinghouse Science and Technology Department Procedure RMF 8103, "Charpy Impact Testing," Revision 2, August 1, 1998.
14. ASTM E23-06, StandardTest Methodfor Notched Bar Impact Testing of Metallic Materials, American Society for Testing and Materials.

October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

8-2

15. W. L. Server, "General Yielding of Charpy V-Notch and Precracked Charpy Specimens," Journal of Engineering Materials and Technology, Vol. 100, April 1978, pp. 183-188.
16. ASTM A370-07, StandardTest Methods andDefinitionsfor Mechanical Testing of Steel Products,American Society for Testing and Materials.
17. ASTM E8-04, StandardTest Methods for Tension Testing of Metallic Materials,American Society for Testing and Materials.
18. ASTM E21-05, StandardTest Methodsfor Elevated Temperature Tension Tests of Metallic Materials,American Society for Testing and Materials.
19. ASTM E853-01, StandardPracticefor Analysis andInterpretationof Light-Water Reactor Surveillance Results, E706(IA), American Society for Testing and Materials.
20. ASTM E693-01, StandardPracticefor CharacterizingNeutron Exposures in Iron and Low Alloy Steels in Terms of DisplacementsPerAtom (DPA), E706(ID), American Society for Testing and Materials.
21. Regulatory Guide 1.190, Calculationaland Dosimetry Methodsfor Determining Pressure Vessel Neutron Fluence, U.S. Nuclear Regulatory Commission, March 2001.
22. WCAP-14040-NP-A, Revision 4, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves," May 2004.
23. RSICC Computer Code Collection CCC-650, DOORS 3.2, One-, Two-, and Three-Dimensional Discrete Ordinates Neutron/Photon Transport Code System, April 1998.
24. RSIC Data Library Collection DLC-185, BUGLE-96, Coupled47Neutron,20 Gamma-Ray Group Cross Section LibraryDerivedfrom ENDF/B-Vfor L WR Shielding and Pressure Vessel Dosimetry Applications, March 1996.
25. NUREG- 1825, Safety EvaluationReport Related to the License Renewal of the Joseph M Farley Nuclear Plant, Units 1 and 2, Docket Nos. 50-348 and 50-364, Southern Nuclear Operating Company, Inc., U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation, May 2005.
26. G. Gontis, ALA-08-68, Farley Unit 1 Heatup / Cooldown Pressure-TemperatureLimit Curves to 30 EFPY, October 2008.

WCAP- 16964-NP October 2008

A-1 APPENDIX A VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY MEASUREMENTS A.1 NEUTRON DOSIMETRY Comparisons of measured dosimetry results to both the calculated and least squares adjusted values for all surveillance capsules withdrawn from service to date at Farley Unit 1 are described herein. The sensor sets from these capsules have been analyzed in accordance with the current dosimetry evaluation methodology described in Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence" [a-]. One of the main purposes for presenting this material is to demonstrate that the overall measurements agree with the calculated and least squares adjusted values to within +/- 20% as specified by Regulatory Guide 1.190, thus serving to validate the calculated neutron exposures previously reported in Section 6.2 of this report. This information may also be useful in the future, in particular, as least squares adjustment techniques become accepted in the regulatory environment.

A.1.1 Sensor Reaction Rate Determinations In this section, the results of the evaluations of the six neutron sensor sets withdrawn to date as part of the Farley Unit 1 Reactor Vessel Materials Surveillance Program[A-2 1 are presented. The capsule designation, location within the reactor, and time of withdrawal of each of these dosimetry sets were as follows:

Capsule ID Azimuthal Location Withdrawal Time Irradiation Time (EFPY)

Y 170 End of Cycle 1 1.15 U 170 End of Cycle 4 3.08 X 170 End of Cycle 7 6.11 W 200 End of Cycle 12 12.43 V 200 End of Cycle 18 20.16 Z 200 End of Cycle 21 24.26 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

A-2 The passive neutron sensors included in the evaluations of Surveillance Capsules Y, U, X, W, V, and Z are summarized as follows.

Reaction of Capsule Sensor Material Interest Y U X W V Z 63 60 Copper Cu(nL) Co '1 '1 Iron 54 Fe(n,p) 54Mn -1 -1 Nickel 58Ni(n,p) 58Co '- -1 Uranium-238. 238 U(n,f) 137Cs Neptunium-237 237 Np(n,f) 137 Cs '1 59 Cobalt-Aluminum(l) Co(n,7) 60Co 4 4(2) 4 Note:

I. The cobalt-aluminum measurements include both bare and cadmium-covered sensors.

2. The bare cobalt-aluminum wires for this capsule were not recovered.

Since all the dosimetry monitors were accommodated within the dosimeter block centered at the radial, azimuthal, and axial center of the material test specimen array, gradient corrections were not required for these reaction rates. Pertinent physical and nuclear characteristics of the passive neutron sensors are listed in Table A- I.

The use of passive monitors such as those listed above do not yield a direct measure of the energy dependent neutron flux at the point of interest. Rather, the activation or fission process is a measure of the integrated effect that the time and energydependent neutron flux has on the target material over the course of the irradiation period. An accurate assessment of the average neutron flux level incident on the various monitors may be derived from the activation measurements only if the irradiation parameters are well known. In particular, the following variables are of interest:

  • The measured specific activity of each monitor
  • The physical characteristics of each monitor 0 The operating history of the reactor
  • The energy response of each monitor 0 The neutron energy spectrum at the monitor location Results from the radiometric counting of the neutron sensors from Capsules Y, U, X, W, and V are documented in References A-3 through A-7, respectively. The radiometric counting of the sensors from Capsule Z was carried out by Pace Analytical Services, Inc., located at the Westinghouse Waltz Mill Site.

In all cases, the radiometric counting followed established ASTM procedures. Following sample preparation and weighing, the specific activity of each sensor was determined by means of a high-resolution gamma spectrometer. For the copper, iron, nickel and cobalt-aluminum sensors, analyses were perforned by direct counting of each of the individual samples. In the case of the uranium and October 2008 16964-NP WCAP- 16964-NP October 2008

A-3 neptunium fission sensors, the analyses were carried out by direct counting preceded by dissolution and chemical separation of cesium from the sensor material.

The irradiation history of the reactor over the irradiation periods experienced by Capsules Y, U, X, W, V, and Z was based on the reported monthly power generation of Farley Unit 1 for Cycles 1 through 21. For the sensor sets utilized in the surveillance capsules, the half-lives of the product isotopes are long enough that a monthly histogram describing reactor operation has proven to be an adequate representation for use in radioactive decay corrections for the reactions of interest in the exposure evaluations. The irradiation history applicable to Capsules Y, U, X, W, V, and Z is given in Table A-2.

Having the measured specific activities, the physical characteristics of the sensors, and the operating history of the reactor, reaction rates referenced to full-power operation were determined from the following equation:

A R=

No F Y ZPj Cj [1 - e-'tJ] [eC-td]

Pref where:

R = Reaction rate averaged over the irradiation period and referenced to operation at a core power level of Pref (rps/nucleus)

A = Measured specific activity (dps/gm)

No = Number of target element atoms per gram of sensor F = Atom fraction of the target isotope in the target element Y = Number of product atoms produced per reaction Pj = Average core power level during irradiation period j (MWt)

Pref = Maximum or reference power level of the reactor (MWt)

Cj = Calculated ratio of O(E > 1.0 MeV) during irradiation periodj to the time weighted average O(E > 1.0 MeV) over the entire irradiation period.

X = Decay constant of the product isotope (1/sec) tj = Length of irradiation period j (sec) td = Decay time following irradiation period j (sec)

WCAP- 16964-NP October 2008

A-4 and the summation is carried out over the total number of monthly intervals comprising the irradiation period.

In the equation describing the reaction rate calculation, the ratio [Pj]/[Pref] accounts for month-by-month variation of reactor core power level within any given fuel cycle as well as over multiple fuel cycles. The ratio Cj, which was calculated for each fuel cycle using the transport methodology discussed in Section 6.2, accounts for the change in sensor reaction rates caused by variations in flux level induced by changes in core spatial power distributions from fuel cycle to fuel cycle. For a single-cycle irradiation, Cj is normally taken to be 1.0. However, for multiple-cycle irradiations, particularly those employing low leakage fuel management, the additional Cj term should be employed. The impact of changing flux levels for constant power operation can be quite significant for sensor sets that have been irradiated for many cycles in a reactor that has transitioned from non-low leakage to low leakage fuel management or for sensor sets contained in surveillance capsules that have been moved from one capsule location to another.

The fuel cycle specific neutron flux values along with the computed values for Cj are listed in Table A-3.

These flux values represent the cycle dependent results at the radial and azimuthal center of the respective capsules at the axial elevation of the active fuel midplane.

Prior to using the measured reaction rates in the least-squares evaluations of the dosimetry sensor sets, additional corrections were made to the 238U and 237Np measurements to account for the presence of 235U impurities in the sensors as well as to adjust for the build-in of plutonium isotopes over the course of the irradiation. Corrections were also made to the 238U sensor reaction rates to account for gamma ray induced fission reactions that occurred over the course of the capsule irradiations. The correction factors applied to the Farley Unit 1 fission sensor reaction rates are summarized as follows:

Capsule Correction Y U X W V Z 235 U Impurity/Pu Build-in 0.861 0.818 0.774 0.719 0.654 0.623 238 0.978 0.978 0.978 Photo-fission, U(M,f) 0.976 0.976 0.976 23 0.756 0.704 0.640 0.610 Net 8U Correction 0.840 0.798 Photo-fission, 237 Np(y,f) 0.994 0.994 0.994 0.994 0.994 0.994 These factors were applied in a multiplicative fashion to the decay-corrected uranium fission sensor reaction rates.

Results of the sensor reaction rate determinations for Capsules Y, U, X, W, V, and Z are given in Tables A-4a through A-4f, respectively. The measured specific activities, decay-corrected saturated specific activities, and computed reaction rates for each sensor indexed to the radial center of the capsule are listed in these tables. The fission sensor reaction rates are listed both with and without the applied corrections for 238U impurities, plutonium build-in, and gamma-ray induced fission effects.

A.1.2 Least Squares Evaluation of Sensor Sets Least squares adjustment methods provide the capability of combining the measurement data with the corresponding neutron transport calculations resulting in a Best Estimate neutron energy spectrum with WCAP-16964-NP October 2008

A-5 associated uncertainties. Best Estimates for key exposure parameters such as 4b(E > 1.0 MeV) or dpa/s along with their uncertainties are then easily obtained from the adjusted spectrum. In general, the least squares methods, as applied to surveillance capsule dosimetry evaluations, act to reconcile the measured sensor reaction rate data, dosimetry reaction cross-sections, and the calculated neutron energy spectrum within their respective uncertainties. For example, Rj +/--Rj= (Zig - 6g)(lg g +64) g relates a set of measured reaction rates, Ri, to a single neutron spectrum, +g,through the multigroup dosimeter reaction cross-section, GYig, each with an uncertainty 6. The primary objective of the least squares evaluation is to produce unbiased estimates of the neutron exposure parameters at the location of the measurement.

8 For the least squares evaluation of the Farley Unit 1 surveillance capsule dosimetry, the FERRET code[A ]

was employed to combine the results of the plant specific neutron transport calculations and sensor set reaction rate measurements to determine best-estimate values of exposure parameters (+(E > 1.0 MeV) and dpa) along with associated uncertainties for the six in-vessel capsules withdrawn to date.

The application of the least squares methodology requires the following input:

1. The calculated neutron energy spectrum and associated uncertainties at the measurement location
2. The measured reaction rates and associated uncertainty for each sensor contained in the multiple foil set
3. The energy dependent dosimetry reaction cross-sections and associated uncertainties for each sensor contained in the multiple foil sensor set For the Farley Unit 1 application, the calculated neutron spectrum was obtained from the results of plant-specific neutron transport calculations described in Section 6.2 of this report. The sensor reaction rates were derived from the measured specific activities using the procedures described in Section A. 1.1. The dosimetry reaction cross-sections and uncertainties were obtained from the SNLRML dosimetry cross-section libraryEA-91. The SNLRML library is an evaluated dosimetry reaction cross-section compilation recommended for use in LWR evaluations by ASTM Standard E1018, "Application of ASTM Evaluated Cross-Section Data File, Matrix E 706 (IIB)."

The uncertainties associated with the measured reaction rates, dosimetry cross-sections, and calculated neutron spectra were input to the least squares procedure in the form of variances and covariances. The assignment of the input uncertainties followed the guidance provided in ASTM Standard E 944, "Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance."

The following provides a summary of the uncertainties associated with the least squares evaluation of the Farley Unit 1 surveillance capsule sensor sets.

October 2008 WCAP- 16964-NP October 2008

A-6 Reaction Rate Uncertainties The overall uncertainty associated with the measured reaction rates includes components due to the basic measurement process, irradiation history corrections, and corrections for competing reactions. A high level of accuracy in the reaction rate determinations is assured by utilizing laboratory procedures that conform to the ASTM National Consensus Standards for reaction rate determinations for each sensor type.

After combining all of these uncertainty components, the sensor reaction rates derived from the counting and data evaluation procedures were assigned the following net uncertainties for input to the least squares evaluation:

Reaction Uncertainty 63 Cu(n,ct) 6 0 Co 5%

54 Fe(n,p) 54 Mn 5%

58 SSNi(n,p) Co 5%

238 U(n,f) 137Cs 10%

237 Np(n,f) 137 Cs 10%

59 Co(n,y) 6°Co 5%

These uncertainties are given at the l level.

Dosimetry Cross-Section Uncertainties The reaction rate cross-sections used in the least squares evaluations were taken from the SNLRML library. This data library provides reaction cross-sections and associated uncertainties, including covariances, for 66 dosimetry sensors in common use. Both cross-sections and uncertainties are provided in a fine multi-group structure for use in least squares adjustment applications. These cross-sections were compiled from the most recent cross-section evaluations and they have been tested with respect to their accuracy and consistency for least squares evaluations. Further, the library has been empirically tested for use in fission spectra determination as well as in the fluence and energy characterization of 14 MeV neutron sources.

For sensors included in the Farley Unit 1 surveillance program, the following uncertainties in the fission spectrum averaged cross-sections are provided in the SNLRML documentation package.

WCAP- 16964-NP October 2008

A-7 Reaction Uncertainty 63 Cu(nQ) 60 C0 4.08-4.16%

54 Fe(n,p)54 Mn 3.05-3.11%

58 Ni(n,p)58Co 4.49-4.56%

238U (n,f) 137Cs0.54-0.64%

237 Np(n,f) 137Cs 10.32-10.97%

59 Co(n,y) 60Co 0.79-3.59%

These tabulated ranges provide an indication of the dosimetry cross-section uncertainties associated with the sensor sets used in Light Water Reactor (LWR) irradiations.

Calculated Neutron Spectrum The neutron spectra input to the least squares adjustment procedure were obtained directly from the results of plant specific transport calculations for each surveillance capsule irradiation period and location. The spectrum for each capsule was input in an absolute sense (rather than as simply a relative spectral shape). Therefore, within the constraints of the assigned uncertainties, the calculated data were treated equally with the measurements.

While the uncertainties associated with the reaction rates were obtained from the measurement procedures and counting benchmarks and the dosimetry cross-section uncertainties were supplied directly with the SNLRML library, the uncertainty matrix for the calculated spectrum was constructed from the following relationship:

Mgg, =R2 +Rg *Rg, *Pgg, where Rn specifies an overall fractional normalization uncertainty and the fractional uncertainties Rg and Rg, specify additional random group-wise uncertainties that are correlated with a correlation matrix given by:

Pgg, = 1- 016 gg, + 0 e-H where:

2

_g,)

H- (g 2y2 The first term in the correlation matrix equation specifies purely random uncertainties, while the second term describes the short-range correlations over a group range y (0 specifies the strength of the latter term). The value of 6 is 1.0 when g = g', and is 0.0 otherwise.

WCAP- 16964-NP October 2008

A-8 The set of parameters defining the input covariance matrix for the Farley Unit 1 calculated spectra was as follows:

Flux Normalization Uncertainty (Rn) 15%

Flux Group Uncertainties (Rg, Rg,)

(E > 0.0055 MeV) 15%

(0.68 eV < E < 0.0055 MeV) 25%

(E < 0.68 eV) 50%

Short Range Correlation (0)

(E > 0.0055 MeV) 0.9 (0.68 eV < E < 0.0055 MeV) 0.5 (E < 0.68 eV) 0.5 Flux Group Correlation Range (y)

(E > 0.0055 MeV) 6 (0.68 eV < E < 0.0055 MeV) 3 (E < 0.68 eV) 2 A.1.3 Comparisons of Measurements and Calculations Results of the least squares evaluations of the dosimetry from the Farley Unit 1 surveillance capsules withdrawn to date are provided in Tables A-5 and A-6. In Table A-5, measured, calculated, and best-estimate values for sensor reaction rates are given for each capsule. Also provided in this tabulation are ratios of the measured reaction rates to both the calculated and least squares adjusted reaction rates.

These ratios of measured-to-calculated (M/C) and measured-to-best-estimate (M/BE) reaction rates illustrate the consistency of the fit of the calculated neutron energy spectra to the measured reaction rates both before and after adjustment. In Table A-6, comparison of the calculated and best estimate values of neutron flux (E > 1.0 MeV) and iron atom displacement rate are tabulated along with the best-estimate-to-calculated (BE/C) ratios observed for each of the capsules.

A distinction should be made between the BE/C ratios and the M/C ratios. In this case, Best Estimate values refer to the combination of calculation and measurement via a least squares adjustment procedure to arrive at the best estimate of the neutron flux (E > 1.0 MeV) with an associated uncertainty. The least squares procedure provides a weighting of calculated and measured input based on the energy response and uncertainty associated with each input parameter. The BE/C ratios, therefore, represent a comparison of the results of the least squares adjustment with the analytical prediction of the neutron flux (E > 1.0 MeV). The M/C ratios, on the other hand, provide a direct comparison of actual calculated and measured individual foil reaction rates. Using the M/C data, a direct comparison of calculated and measured neutron flux (E > 1.0 MeV) can not be made without a suitable weighting of the individual foil results.

WCAP- 16964-NP October 2008

A-9 The data comparisons provided in Tables A-5 and A-6 show that the adjustments to the calculated spectra are relatively small and well within the assigned uncertainties for the calculated spectra, measured sensor reaction rates, and dosimetry reaction cross-sections. Further, these results indicate that the use of the least squares evaluation results in a reduction in the uncertainties associated with the exposure of the surveillance capsules. From Section 6.4 of this report, it may be noted that the uncertainty associated with the unadjusted calculation of neutron fluence (E > 1.0 MeV) and iron atom displacements at the surveillance capsule locations is specified as 12 percent at the lcy level. From Table A-6, it is noted that the corresponding uncertainties associated with the least squares adjusted exposure parameters have been reduced to 6 percent to 8 percent for neutron flux (E > 1.0 MeV) and 8 percent to 10 percent for iron atom displacement rate. Again, the uncertainties from the least squares evaluation are at the 1ca level.

The data comparisons provided in Tables A-5 and A-6 show that the adjustments to the calculated spectra are relatively small and well within the assigned uncertainties for the calculated spectra, measured sensor reaction rates, and dosimetry reaction cross-sections. Further, these results indicate that the use of the least squares evaluation results in a reduction in the uncertainties associated with the exposure of the surveillance capsules. From Section 6.4 of this report, it may be noted that the uncertainty associated with the unadjusted calculation of neutron fluence (E > 1.0 MeV) and iron atom displacements at the surveillance capsule locations is specified as 12% at the la level. From Table A-6, it is noted that the corresponding uncertainties associated with the least squares adjusted exposure parameters have been reduced to 6% for neutron flux (E > 1.0 MeV) and 8% for iron atom displacement rate. Again, the uncertainties from the least squares evaluation are at the 1ca level.

Further comparisons of the measurement results with calculations are given in Tables A-7 and A-8. These comparisons are given on two levels. In Table A-7, calculations of individual threshold sensor reaction rates are compared directly with the corresponding measurements. These threshold reaction rate comparisons provide a good evaluation of the accuracy of the fast neutron portion of the calculated energy spectra. In Table A-8, calculations of fast neutron exposure rates in terms of ý(E > 1.0 MeV) and dpa/s are compared with the best estimate results obtained from the least squares evaluation of the capsule dosimetry results. These two levels of comparison yield consistent and similar results with all measurement-to-calculation comparisons falling well within the 20% limits specified as the acceptance criteria in Regulatory Guide 1.190.

In the case of the direct comparison of measured and calculated sensor reaction rates, the M/C comparisons for fast neutron reactions range from 0.80 to 1.08 for the thirty samples included in the data set. The overall average M/C ratio for the entire set of Farley Unit 1 data is 0.92 with an associated standard deviation of 9.9%.

In the comparisons of best estimate and calculated fast neutron exposure parameters, the corresponding BE/C comparisons for the capsule data sets range from 0.81 to 0.97 for neutron flux (E > 1.0 MeV), and from 0.84 to 1.00 for iron atom displacement rate. The overall average BE/C ratios for neutron flux (E > 1.0 MeV) and iron atom displacement rate are 0.89 with a standard deviation of 7.1% and 0.92 with a standard deviation of 6.7%, respectively.

Based on these comparisons, it is concluded that the calculated fast neutron exposures provided in Section 6.2 of this report are validated for use in the assessment of the condition of the materials comprising the beltline region of the Farley Unit 1 reactor pressure vessel.

WCAP- 16964-NP October 2008

A-10 Table A-1 Nuclear Parameters Used in the Evaluation of Neutron Sensors Product Reaction of Target Atom 90% Response Half-life Fission Monitor Material Interest Fraction Range (MeV) (days) Yield (%)

63 Copper Cu (n,a) 0.6917 5.0- 11.9 1925.5 54 Iron Fe (n,p) 0.0585 2.1 - 8.5 312.3 58 70.82 Nickel Ni (n,p) 0.6808 1.5 - 8.3 238 6.02 Uranium-238 U (n,f) 1.0000 1.3 - 6.9 10983.3 237 Neptunium-237 Np (n,f) 1.0000 0.3 - 3.8 10983.3 6.17 59 Cobalt-Aluminum Co (n,y) 0.0015 non-threshold 1925.5 Note:

The 90% response range is defined such that, in the neutron spectrum characteristic of the Farley Unit 1 surveillance capsules, approximately 90% of the sensor response is due to neutrons in the energy range specified with approximately 5% of the total response due to neutrons with energies below the lower limit and 5% of the total response due to neutrons with energies above the upper limit.

October 2008 16964-NP WCAP- I16964-NP October 2008

A-11 Table A-2 Monthly Thermal Generation, Cycles 1 through 4 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Thermal Thermal Thermal Thermal Generation Generation Generation Generation Month IMW-Hr] Month IMW-HrI Month IMW-Hr , Month IMW-Hr]

Aug-77 67513 Apr-79 0 Dec-80 0 Oct-81 0 Sep-77 864971 May-79 0 Jan-81 0 Nov-81 0 Oct-77 355140 Jun-79 0 Feb-81 0 Dec-81 0 Nov-77 1131938 Jul-79 0 Mar-81 0 Jan-82 0 Dec-77 1304003 Aug-79 0 Apr-81 1134435 Feb-82 0 Jan-78 1354896 Sep-79 0 May-81 1639348 Mar-82 1254038 Feb-78 1426824 Oct-79 0 Jun-81 1836579 Apr-82 1523773 Mar-78 1884641 Nov-79 457481 Jul-81 1889655 May-82 1955244 Apr-78 1662759 Dec-79 1760937 Aug-81 1902225 Jun-82 1875911 May-78 1650988 Jan-80 1721418 Sep-81 552776 Jul-82 1968060 Jun-78 1784321 Feb-80 639186 Aug-82 1679390 Jul-78 1830416 Mar-80 1800910 Sep-82 1812488 Aug-78 1797336 Apr-80 1870270 Oct-82 1710147 Sep-78 941142 May-80 1927148 Nov-82 1909130 Oct-78 1501768 Jun-80 822411 Dec-82 1856957 Nov-78 1896861 Jul-80 1201139 Jan-83 794698 Dec-78 1787293 Aug-80 1694628 Jan-79 1558383 Sep-80 1398265 Feb-79 1616052 Oct-80 1933931 Mar-79 381913 Nov-80 382570 October 2008 WCAP- 16964-NP 16964-NP October 2008

A-12 Table A-2 Monthly Thermal Generation, Cycles 5 through 8 (continued)

Cycle 5 Cycle 6 Cycle 7 Cycle 8 Thermal Thermal Thermal Thermal Generation Generation Generation Generation Month IMW-HrI Month IMW-Hr] Month IMW-Hr] Month IMW-Hr]

Feb-83 0 Mar-84 0 May-85 85286 Nov-86 0 Mar-83 33094 Apr-84 124058 Jun-85 1655389 Dec-86 1716656 Apr-83 1489953 May-84 1807741 Jul-85 1844333 Jan-87 1751070 May-83 1956770 Jun-84 1908735 Aug-85 1958242 Feb-87 1768852 Jun-83 1810449 Jul-84 1973062 Sep-85 1871312 Mar-87 1955044 Jul-83 1973088 Aug-84 1973088 Oct-85 1954081 Apr-87 1216358 Aug-83 1971688 Sep-84 1904651 Nov-85 1865690 May-87 1906563 Sep-83 1909440 Oct-84 1949788 Dec-85 1943431 Jun-87 1909366 Oct-83 1789981 Nov-84 1898355 Jan-86 1877709 Jul-87 1973035 Nov-83 1909228 Dec-84 1898787 Feb-86 1741224 Aug-87 1748771 Dec-83 1973088 Jan-85 1973088 Mar-86 1812234 Sep-87 1909437 Jan-84 1729356 Feb-85 1782144 Apr-86 1872495 Oct-87 1812021 Feb-84 631428 Mar-85 1708471 May-86 1853814 Nov-87 1909437 Apr-85 329500 Jun-86 1888407 Dec-87 1235697 Jul-86 1846629 Jan-88 1973088 Aug-86 1775600 Feb-88 1845755 Sep-86 1890035 Mar-88 1581648 Oct-86 181323 October 2008 WCA-P- 16964-NP WCAP- 16964-NP October 2008

A-13 Table A-2 Monthly Thermal Generation, Cycles 9 through 12 (continued)

Cycle 9 Cycle 10 Cycle 11 Cycle 12 Thermal Thermal Thermal Thermal Generation Generation Generation Generation Month IMW-Hr] Month IMW-Hr] Month IMW-Hrj Month [MW-Hrj Apr-88 0 Oct-89 0 Apr-91 0 Oct-92 0 May-88 388449 Nov-89 855994 May-91 467378 Nov-92 257 Jun-88 1773947 Dec-89 1968102 Jun-91 1777930 Dec-92 1560307 Jul-88 1973088 Jan-90 1970192 Jul-91 1919659 Jan-93 1928568 Aug-88 1970025 Feb-90 1652567 Aug-91 1725229 Feb-93 1775604 Sep-88 1909440 Mar-90 1962103 Sep-91 1890966 Mar-93 1293224 Oct-88 1884883 Apr-90 1906730 Oct-91 1879448 Apr-93 1905594 Nov-88 1908164 May-90 1846696 Nov-91 1909440 May-93 1971444 Dec-88 1951416 Jun-90 1758695 Dec-91 1961350 Jun-93 1908087 Jan-89 1964305 Jul-90 1690942 Jan-92 1971348 Jul-93 1972236 Feb-89 1757472 Aug-90 1971720 Feb-92 1844169 Aug-93 1972212 Mar-89 1932709 Sep-90 1867822 Mar-92 1972001 Sep-93 1907885 Apr-89 1892334 Oct-90 1974496 Apr-92 1860541 Oct-93 1975209 May-89 1973088 Nov-90 1906403 May-92 1971974 Nov-93 1909034 Jun-89 1906099 Dec-90 1971698 Jun-92 1907928 Dec-93 1972228 Jul-89 1967625 Jan-91 1970245 Jul-92 1971762 Jan-94 1969966 Aug-89 1969301 Feb-91 1780012 Aug-92 1971823 Feb-94 1763942 Sep-89 1383665 Mar-91 488986 Sep-92 1564342 Mar-94 227593 October 2008 WCAP-1 6964-NP WCAP-16964-NP October 2008

A-14 Table A-2 Monthly Thermal Generation, Cycles 13 through 16 (continued)

Cycle 13 Cycle 14 Cycle 15 Cycle 16 Thermal Thermal Thermal Thermal Generation Generation Generation Generation Month [MW-Hrj Month IMW-Hr] Month [MW-Hr] Month IMW-Hrl Apr-94 275479 Oct-95 0 Apr-97 0 Nov-98 0 May-94 1840449 Nov-95 1237397 May-97 0 Dec-98 87524 Jun-94 1887519 Dec-95 1971468 Jun-97 1466264 Jan-99 2011070 Jul-94 1946860 Jan-96 1973107 Jul-97 1938745 Feb-99 1864800 Aug-94 1972995 Feb-96 1745785 Aug-97 1973088 Mar-99 1956375 Sep-94 1909440 Mar-96 1973088 Sep-97 1908697 Apr-99 1995225 Oct-94 1966909 Apr-96 1906788 Oct-97 1975740 May-99 1838715 Nov-94 1909440 May-96 1798799 Nov-97 1909440 Jun-99 1996712 Dec-94 1972720 Jun-96 1897153 Dec-97 1882761 Jul-99 2064580 Jan-95 1668639 Jul-96 1930947 Jan-98 1973008 Aug-99 2063601 Feb-95 1772517 Aug-96 1972107 Feb-98 1764296 Sep-99 1998000 Mar-95 1971635 Sep-96 1909440 Mar-98 1972425 Oct-99 2067375 Apr-95 1904131 Oct-96 1975740 Apr-98 1892971 Nov-99 1960982 May-95 1969707 Nov-96 1908591 May-98 1966882 Dec-99 2038432 Jun-95 1432290 Dec-96 1973088 Jun-98 1908432 Jan-00 1909754 Jul-95 1972982 Jan-97 1841734 Jul-98 1932875 Feb-00 1214534 Aug-95 1926386 Feb-97 1782144 Aug-98 1018288 Mar-00 118437 Sep-95 791505 Mar-97 887754 Sep-98 1485916 Oct-98 1012640 October 2008 WCAP- 16964-NP 16964-NP October 2008

A-15 Table A-2 Monthly Thermal Generation, Cycles 17 through 20 (continued)

Cycle 17 Cycle 18 Cycle 19 Cycle 20 Thermal Thermal Thermal Thermal Generation Generation Generation Generation Month [MW-Hrj Month IMW-Hr] Month IMW-HrJ Month IMW-Hri Apr-00 0 Nov-01 840437 Apr-03 0 Nov-04 779553 May-00 125347 Dec-01 1932288 May-03 1732488 Dec-04 2064378 Jun-00 1863884 Jan-02 2064600 Jun-03 1997917 Jan-05 2063518 Jul-00 2047728 Feb-02 1863579 Jul-03 2063906 Feb-05 1864772 Aug-00 2040180 Mar-02 2063629 Aug-03 2064600 Mar-05 2064600 Sep-00 1997889 Apr-02 1995197 Sep-03 1998000 Apr-05 1968974 Oct-00 1989203 May-02 1922145 Oct-03 2066598 May-05 1958484 Nov-00 1998000 Jun-02 1998000 Nov-03 1997806 Jun-05 1808190 Dec-00 2058800 Jul-02 2064600 Dec-03 2064545 Jul-05 2064600 Jan-01 2064600 Aug-02 2063657 Jan-04 2063823 Aug-05 2058995 Feb-01 1824868 Sep-02 1997556 Feb-04 1931400 Sep-05 1998000 Mar-01 2064544 Oct-02 1950242 Mar-04 1933315 Oct-05 2067375 Apr-01 1995225 Nov-02 1998000 Apr-04 1994504 Nov-05 1998000 May-01 2063740 Dec-02 1958762 May-04 2049948 Dec-05 2063851 Jun-01 1940780 Jan-03 2064461 Jun-04 1998000 Jan-06 2064406 Jul-01 2064717 Feb-03 1864800 Jul-04 2062935 Feb-06 1864717 Aug-01 2064600 Mar-03 1848289 Aug-04 2064600 Mar-06 1981433 Sep-01 1991229 Sep-04 1971471 Apr-06 417665 Oct-01 304001 Oct-04 56582 October 2008 16964-NP WCAP- I16964-NP October 2008

A-16 Table A-2 Monthly Thermal Generation, Continued Cycle 21 Cycle 21 Thermal Generation Month IMW-Hr]

May-06 379010 Jun-06 1969140 Jul-06 1923269 Aug-06 2064489 Sep-06 1998000 Oct-06 2065405 Nov-06 1998000 Dec-06 2064600 Jan-07 2060826 Feb-07 1864800 Mar-07 2061215 Apr-07 1962147 May-07 2064600 Jun-07 1998000 Jul-07 2063351 Aug-07 2046507 Sep-07 1857058 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

A-17 Table A-3 Calculated Ce Factors at the Surveillance Capsule Center, Core Midplane Elevation Fuel 4(E > 1.0 MeV) (n/cm 2-s)

Cycle EFPY Capsule Y Capsule U Capsule X Capsule W Capsule V Capsule 1 1.15 1.68E+11 1.68E+11 1.68E+ 11 1.45E+11 1.45E+11 1.45E+11 2 0.76 1.79E+11 1.79E+ 11 1.54E+ 11 1.54E+11 1.54E+11 3 0.39 1.65E+11 1.65E+11 1.42E+11 1.42E+11 1.42E+11 4 0.79 1.96E+11 1.96E+11 1.63E+l1 1.63E+11 1.63E+11 5 0.82 1.42E+ 11 1.25E+11 1.25E+11 1.25E+11 6 0.91 1.31E+l 1 1.14E+1 I 1.14E+1 1 1.14E+I 1 7 1.29 1.43E+11 1.25E+l1 1.25E+l I 1.25E+ 11 8 1.21 1.06E+l 1 1.06E+ 11 1.06E+ 11 9 1.31 1.19E+1 1 1.19E+l1 1.19E+ll 10 1.27 1.07E+1I 1.07E+ 1I 1.07E+1I 11 1.31 1.02E+11 1.02E+1I1 1.02E+1 1 12 1.21 9.45E+10 9.45E+10 9.45E+10 13 1.34 9.13E+10 9.13E+10 14 1.32 9.17E+10 9.17E+10 15 1.29 1.03E+11 1.03E+I 1 16 1.12 9.70E+10 9.70E+10 17 1.34 1.05E+11 1.05E+1 1 18 1.34 9.99E+10 9.99E+10 19 1.40 1.03E+l 1 20 1.36 1.04E+1 1 21 1.33 1.02E+ 1I Average 1.68E+11 1.78E+11 1.59E+11 1.21E+11 1.12E+11 1.11E+11 Fuel EFPYC Cycle Capsule U Capsule W Capsule X Capsule Z Capsule Y Capsule V 1 1.15 1.000 0.947 1.060 1.202 1.296 1.314 2 0.76 1.007 1.127 1.269 1.370 1.389 3 0.39 0.929 1.040 1.176 1.269 1.286 4 0.79 1.106 1.238 1.343 1.449 1.469 5 0.82 0.894 1.029 1.110 1.126 6 0.91 0.828 0.940 1.015 1.029 7 1.29 0.903 1.036 1.117 1.133 8 1.21 0.874 0.942 0.956 9 1.31 0.983 1.060 1.075 10 1.27 0.888 0.958 0.971 11 1.31 0.842 0.909 0.921 12 1.21 0.781 0.843 0.854 13 1.34 0.814 0.825 14 1.32 0.817 0.829 15 1.29 0.918 0.931 16 1.12 0.865 0.877 17 1.34 0.934 0.947 18 1.34 0.891 0.903 19 1.40 0.934 20 1.36 0.940 21 1.33 0.920 Average 1.000 1.000 1.000 1.000 1.000 1.000 October 2008 16964-NP WCAP- I16964-NP October 2008

A-18 Table A-4a Measured Sensor Activities And Reaction Rates Surveillance Capsule Y Radially Radially Measured Saturated Adjusted Adjusted Activity Activity Saturated Activity Reaction Rate Reaction Location (dps/g) (dps/g) (dps/g) (rps/atom)

Top 6.59E+04 5.1OE+05 5.1OE+05 7.78E-17 63 Middle 6.28E+04 4.86E+05 4.86E+05 7.41E-17 Cu (n,c') 6 0Co (Cd)

Bottom 6.81E+04 5.27E+05 5.27E+05 8.04E- 17 Average 7.74E-17 Top 1.95E+06 5.33E+06 5.33E+06 8.44E-15 Middle 1.90E+06 5.19E+06 5.19E+06 8.23E-15 54Fe (n,p) 54 Mn Bottom 1.99E+06 5.44E+06 5.44E+06 8.62E-15 Average 8.43E-15 Top 1.OE+07 8.04E+07 8.04E+07 1.15E- 14 Middle 9.63E+06 7.66E+07 7.66E+07 1.1OE-14 58Ni (n,p) 58Co Bottom 1.04E+07 8.28E+07 8.28E+07 1.19E-14 Average 1.14E-14 137 Middle 2.59E+05 1.OOE+07 1.00E+07 6.58E-14 238U (n,f) Cs (Cd) 239 Including 23SU Pu, and y,fission corrections: 5.53E-14 2 (nf 137 CS (Cd) Middle 1.82E+06 [ 7.05E+07 7.05E+07 4.49E-13 235 239 Including U, Pu, and y,fission corrections: 4.47E-13 Top 1.44E+07 1.11E+08 1.11E+08 7.27E-12 59 Middle 1.50E+07 1.16E+08 1.16E+08 7.57E-12 Co (n,7) 60 Co Bottom 1.46E+07 1.13E+08 1.13E+08 7.37E-12 Average 7.40E-12 Top 8.11E+06 6.27E+07 6.27E+07 4.09E-12 59 Middle 8.22E+06 6.36E+07 6.36E+07 4.15E-12 Co (n,y) 6°Co (Cd)

Bottom 8.14E+06 6.30E+07 6.30E+07 4.11E-12 Average 4.12E-12 Notes:

I. Measured specific activities are indexed to a counting date of September 18, 1979.

2. The average 238U (n,f) reaction rate of 5.53E-14 includes a correction factor of 0.861 to account for plutonium build-in and an additional factor of 0.976 to account for photo-fission effects in the sensor.
3. The average 237Np (n,f) reaction rate of 4.47E-13 includes a correction factor of 0.994 to account for photo-fission effects in the sensor.

WCAP- 16964-NP October 2008

A-19 Table A-4b Measured Sensor Activities And Reaction Rates Surveillance Capsule U Radially Radially Measured Saturated Adjusted Adjusted Activity Activity Saturated Activity Reaction Rate Reaction Location (dps/g) (dps/g) (dps/g) (rps/atom)

Top 1.35E+05 5.08E+05 5.08E+05 7.75E-17 63 60 Middle 1.34E+05 5.05E+05 5.05E+05 7.70E-17 Cu (n,ci) Co (Cd)

Bottom 1.42E+05 5.35E+05 5.35E+05 8.16E-17 Average 7.87E-17 Top 1.88E+06 5.39E+06 5.39E+06 8.54E-15 54 54 Middle 1.86E+06 5.33E+06 5.33E+06 8.45E-15 Fe (n,p) Mn Bottom 1.94E+06 5.56E+06 5.56E+06 8.81E-15 Average 8.60E-15 Top 4.16E+06 8.59E+07 8.59E+07 1.23E-14 5

8Ni (n,p) 58Co Middle 4.03E+06 8.33E+07 8.33E+07 1.19E-14 Bottom 4.33E+06 8.95E+07 8.95E+07 1.28E-14 Average 1.23E-14 238 Middle 7.OOE+05 1.06E+07 1.06E+07 6.99E-14 U (n,f) 137 Cs (Cd) Including 235 U, 239 Pu, and y,fission corrections: 5.58E-14 23 7 Np (n,f) 13 7 CS (Cd) Middle I 6.05E+06 I 9.20E+07 I 9.20E+07 5.87E-13 235 239 Including U, Pu, and 7,fission corrections: 5.83E-13 Top 3.56E+07 1.34E+08 1.34E+08 8.74E-12 59 Middle 3.57E+07 1.34E+08 1.34E+08 8.77E-12 Co (n,7) 6 0Co Bottom 3.60E+07 1.36E+08 1.36E+08 8.84E-12 Average 8.78E-12 Top 1.92E+07 7.23E+07 7.23E+07 4.72E-12 59 Co (n,A) 6°Co (Cd)

Average 4.72E-12 Notes:

1. Measured specific activities are indexed to a counting date of November 11, 1983.
2. The average 238U (n,f) reaction rate of 5.58E-14 includes a correction factor of 0.818 to account for plutonium build-in and an additional factor of 0.976 to account for photo-fission effects in the sensor.
3. The average 237Np (n,f) reaction rate of 5.83E- 13 includes a correction factor of 0.994 to account for photo-fission effects in the sensor.

WCAP-16964-NP October 2008

A-20 Table A-4c Measured Sensor Activities And Reaction Rates Surveillance Capsule X Radially Radially Measured Saturated Adjusted Adjusted Activity Activity Saturated Activity Reaction Rate Reaction Location (dps/g) (dps/g) (dps/g) (rps/atom)

Top 2.13E+05 4.74E+05 4.74E+05 7.23E-17 63 60 Middle 2.12E+05 4.71E+05 4.71E+05 7.19E-17 CU (n,'a) Co (Cd)

Bottom 2.22E+05 4.94E+05 4.94E+05 7.53E-17 Average 7.32E-17 Top 2.27E+06 4.61E+06 4.61E+06 7.31E-15 4 Middle 2.24E+06 4.55E+06 4.55E+06 7.21E-15 1 Fe (n,p) 54 Mn Bottom 2.40E+06 4.87E+06 4.87E+06 7.73E-15 Average 7.41E-15 Top 7.83E+06 7.33E+07 7.33E+07 1.05E-14 5 Middle 7.55E+06 7.07E+07 7.07E+07 1.O1E-14 8Ni (n,p) 58 CO Bottom 8.05E+06 7.54E+07 7.54E+07 1.08E-14 Average 1.05E-14 238 137 Middle 1.28E+06 1.02E+07 1.02E+07 6.67E-14 U (n,f) Cs (Cd) 235 239 Including U, Pu, and y,fission corrections: 5.04E-14 137 Middle 9.88E+06 7.84E+07 7.84E+07 5.OOE-13 23Np (n,f) Cs (Cd) 23 239 Including 1U, Pu, and "y,fission corrections: 4.97E-13 Top 5.11E+07 1.14E+08 1.14E+08 7.41E-12 Middle 5.24E+07 1.17E+08 1.17E+08 7.60E- 12 59 60 Co (nY) Co Bottom 4.76E+07 1.06E+08 1.06E+08 6.91E- 12 Average 7.31E-12 Top 2.84E+07 6.32E+07 6.32E+07 4.12E-12 59 60 Co (nY) Co (Cd) Bottom 2.64E+07 5.87E+07 5.87E+07 3.83E-12 Average 3.98E-12 Notes:

I. Measured specific activities are indexed to a counting date of May 4, 1987.

2. The average 238U (n,f) reaction rate of 5.04E-14 includes a correction factor of 0.774 to account for plutonium build-in and an additional factor of 0.976 to account for photo-fission effects in the sensor.
3. The average 237 Np (n,f) reaction rate of 4.97E-13 includes a correction factor of 0.994 to account for photo-fission effects in the sensor.

WCAP- 16964-NP October 2008

A-21 Table A-4d Measured Sensor Activities and Reaction Rates Surveillance Capsule W Radially Radially Measured Saturated Adjusted Adjusted Activity Activity Saturated Activity Reaction Rate Reaction Location (dps/g) (dps/g) (dps/g) (rps/atom)

Top 2.36E+05 3.74E+05 3.74E+05 5.71E-17 63 60 Middle 2.35E+05 3.73E+05 3.73E+05 5.69E-17 CU (n,CC) Co (Cd)

Bottom 2.49E+05 3.95E+05 3.95E+05 6.02E-17 Average 5.81E-17 Top 1.73E+06 3.43E+06 3.43E+06 5.43E-15 54 54 Middle 1.70E+06 3.37E+06 3.37E+06 5.34E-15 Fe (n,p) Mn Bottom 1.84E+06 3.64E+06 3.64E+06 5.78E-15 Average 5.51E-15 Top 8.46E+06 5.59E+07 5.59E+07 8.OOE-15 8Ni (n,p) 5 8Co Middle 8.08E+06 5.34E+07 5.34E+07 7.64E-15 Bottom 8.79E+06 5.81E+07 5.81E+07 8.32E415 Average 7.99E-15 238U (n,f) 137Cs (Cd) Middle 1.54E+06 6.52E+06 6.52E+06 4.28E-14 23 5 239 Including U, Pu, and y,fission corrections: 3.01E-14 2 7 1 Np (nf) 1 7 CS (Cd) Middle 1 1.15E+07 I 4.87E+07 I 4.87E+07 3.11 E-13 23 5 239 Including U, Pu, and y,fission corrections: 3.09E-13 Top 4.15E+07 6.58E+07 6.58E+07 4.29E-12 Middle 4.12E+07 6.53E+07 6.53E+07 4.26E-12 59 Co (n Y) 6 0Co (Cd)

Bottom 4.15E+07 6.58E+07 6.58E+07 4.29E-12 Average 4.28E-12 Notes:

1. Measured specific activities are indexed to a counting date of August 17, 1994.
2. The average 238U (n,f) reaction rate of 3.01E-14 includes a correction factor of 0.719 to account for plutonium build-in and an additional factor of 0.978 to account for photo-fission effects in the sensor.
3. The average 237Np (n,f) reaction rate of 3.09E-13 includes a correction factor of 0.994 to account for photo-fission effects in the sensor.

October 2008 WCAP- 16964-NP October 2008

A-22 Table A-4e Measured Sensor Activities and Reaction Rates Surveillance Capsule V Radially Radially Measured Saturated Adjusted Adjusted Activity Activity Saturated Activity Reaction Rate Reaction Location (dps/g) (dps/g) (dps/g) (rps/atom)

Top 2.49E+05 3.90E+05 3.90E+05 5.95E-17 63 60 Middle 2.48E+05 3.89E+05 3.89E+05 5.93E-17 Cu (n,ot) Co (Cd)

Bottom 2.61E+05 4.09E+05 4.09E+05 6.24E-17 Average 6.04E-17 Top 1.84E+06 3.50E+06 3.50E+06 5.54E-15 Middle 1.81E+06 3.44E+06 3.44E+06 5.45E-15 Bottom 1.88E+06 3.57E+06 3.57E+06 5.66E-15 Average 5.55E-15 Top 6.05E+06 5.50E+07 5.50E+07 7.88E-15 Middle 5.82E+06 5.29E+07 5.29E+07 7.58E-15 Bottom 6.18E+06 5.62E+07 5.62E+07 8.04E-15 Average 7.83E-15 23U (n,f) 17s(Cd) Middle 2.42E+06 7.46E+06 7.46E+06 4.90E-14 235 239 Including U, Pu, and 'y,fission corrections: 3.14E-14 23Np (n,f) 37 1 Cs (Cd) Middle 1.71E+07 5.27E+07 5.27E+07 3.36E-13 Including 235U, 239Pu, and y,fission corrections: 3.34E-13 Top 4.56E+07 7.14E+07 7.14E+07 4.66E-12 Middle 4.55E+07 7.13E+07 7.13E+07 4.65E-12 59 60 Co (nY) Co Bottom 4.24E+07 6.64E+07 6.64E+07 4.33E-12 Average 4.55E-12 Top 2.48E+07 3.89E+07 3.89E+07 2.53E-12 59 60 Co (nY) Co (Cd)

Average 2.53E-12 Notes:

1. Measured specific activities are indexed to a counting date of October 30, 2003.
2. The average 238 U (n,f) reaction rate of 3.14E-14 includes a correction factor of 0.654 to account for plutonium build-in and an additional factor of 0.978 to account for photo-fission effects in the sensor.
3. The average 237Np (n,f) reaction rate of 3.34E-13 includes a correction factor of 0.994 to account for photo-fission effects in the sensor.

October 2008 16964-NP WCAP- I16964-NP October 2008

A-23 Table A-4f Measured Sensor Activities and Reaction Rates Surveillance Capsule Z Radially Radially Adjusted Adjusted Measured Saturated Saturated Reaction Activity Activity Activity Rate Reaction Location (dps/g) (dps/g) (dps/g) (rps/atom)

Top 2.65E+05 3.57E+05 3.57E+05 5.44E-17 63 Middle 2.54E+05 3.42E+05 3.42E+05 5.21E-17 Cu (nci) 60Co (Cd)

Bottom 2.68E+05 3.61E+05 3.61E+05 5.50E-17 Average 5.38E-17 Top 1.62E+06 3.22E+06 3.22E+06 5.10E-15 SaFe (n,p) 54M~n Middle 1.57E+06 3.12E+06 3.12E+06 4.94E-15 Bottom 1.64E+06 3.26E+06 3.26E+06 5.16E-15 Average 5.07E-15 Top 3.76E+06 5.18E+07 5.18E+07 7.42E- 15 5

8Ni (n~p) 58 Co Middle 3.5 1E+06 4.84E+07 4.84E+07 6.92E- 15 Bottom 3.79E+06 5.22E+07 5.22E+07 7.48E-15 Average 7.27E-15 23 8 Middle 3.01E+06 7.56E+06 7.56E+06 4.97E-14 U (n,f) 13 7 Cs (Cd) 23 5 239 Including U, Pu, and y,fission corrections: 3.03E-14 237 13 7 Np (n,f) CS (Cd) Middle 1.84E+07 1 4.62E+07 4.62E+07 2.95E-13 235 239 Including U, pu, and y,fission corrections: 2.93E-13 Top 3.72E+07 5.O1E+07 5.OlE+07 3.27E-12 Middle 3.85E+07 5.18E+07 5.18E+07 3.38E-12 59 60 Co (nY) Co Bottom 3.64E+07 4.90E+07 4.90E+07 3.20E-12 Average 3.28E-12 Top 2.29E+07 3.08E+07 3.08E+07 2.01E-12 59 60 Co (nY) CO (Cd) Bottom 2.08E+07 2.80E+07 2.80E+07 1.83E-12 Average 1.92E-12 Notes:

1. Measured specific activities are indexed to a counting date of June 16, 2008.
2. The average 238U (n,f) reaction rate of 3.03E-14 includes a correction factor of 0.623 to account for plutonium build-in and an additional factor of 0.978 to account for photo-fission effects in the sensor.
3. The average 237Np (n,f) reaction rate of 3.34E-13 includes a correction factor of 0.994 to account for photo-fission effects in the sensor.

October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

A-24 Table A-5 Comparison of Measured, Calculated, and Best Estimate Reaction Rates at the Surveillance Capsule Center Reaction Rate (rps/atom)

Reaction Measured Calculated Best Estimate M/C M/BE Capsule Y 63 Cu(not) 60 Co 7.74E- 17 7.32E-17 7.53E-17 1.06 1.03 54 Fe(n,p) 54Mn 8.43E-15 8.86E-15 8.55E-15 0.95 0.99 58 Ni(n,p) 58Co 1.14E-14 1.26E-14 1.19E-14 0.90 0.96 23 8 137 U (n,f) Cs (Cd) 5.53E-14 5.10E-14 4.83E-14 1.08 1.14 237 137 Np (n,f) Cs (Cd) 4.46E-13 5.49E- 13 4.81E-13 0.81 0.93 59 60 Co (n,y) Co 7.40E-12 5.42E-12 7.18E-12 1.37 1.03 59 60 Co (nY) Co (Cd) 4.12E-12 4.18E-12 4.20E-12 0.99 0.98 Capsule U 63 60 CCu(n,() CO 7.87E-17 7.66E-17 7.68E-17 1.03 1.02 54 Fe(nP) 54 Mn 8.60E-15 9.31E-15 8.87E-15 0.92 0.97 58 Ni(n,p)58Co 1.23E-14 1.33E-14 1.26E-14 0.92 0.98 23 8 37 U (n,f) 1 Cs (Cd) 5.58E-14 5.38E-14 5.18E-14 1.04 1.08 37 237Np (n,f) 1 Cs (Cd) 5.83E-13 5.81E-13 5.79E-13 1.00 1.01 59 60 Co (nY) Co 8.78E-12 5.76E-12 8.50E-12 1.52 1.03 59 60 Co (ny) CO (Cd) 4.72E- 12 4.45E-12 4.81E-12 1.06 0.98 Capsule X 63 Cu(nU) 60 Co 7.32E-17 7.04E- 17 7.02E-17 1.04 1.04 54 54 Fe(n,p) Mn 7.41E-15 8.44E- 15 7.74E- 15 0.88 0.96 58 58 Ni(n,p) Co 1.05E-14 1.20E-14 1.09E-14 0.88 0.96 23 37 8U (n,f) 1 Cs (Cd) 5.04E-14 4.82E- 14 4.47E- 14 1.05 1.13 37 237Np (n,f) 1 Cs (Cd) 5.OOE-13 5.17E-13 4.96E-13 0.97 1.01 59 60 Co (nY) Co 7.31E-12 5.06E-12 7.08E-12 1.44 1.03 59 60 Co (n,y) Co (Cd) 3.97E-12 3.90E-12 4.05E-12 1.02 0.98 October 2008 WCAP- 16964-NP October 2008

A-25 Table A-5 Comparison of Measured, Calculated, and Best Estimate Reaction Rates at the (continued) Surveillance Capsule Center Reaction Rate (rps/atom)

Reaction Measured Calculated Best Estimate M/C M/BE Capsule W 63 60 Cu(n,a) Co 5.81E-17 5.95E- 17 5.58E-17 0.98 1.04 54 Fe(n,p) 54Mn 5.51E-15 6.82E- 15 5.73E-15 0.81 0.96 58 Ni(n,p) 58Co 7.99E- 15 9.62E- 15 8.08E-15 0.83 0.99 238 37 U (n,f) 1 Cs (Cd) 3.01E-14 3.75E-14 3.07E-14 0.80 0.98 23 7 Np (n,f) 13 7 Cs (Cd) 3.09E-13 3.84E-13 3.14E-13 0.80 0.98 59 60 Co (n,Y) Co (Cd) 4.28E-12 2.71E-12 4.21E-12 1.58 1.02 Capsule V 63 Cu(nC) 60 Co 6.04E-17 5.61E-17 5.73E-17 1.08 1.05 54 Fe(n,p) 54Mn 5.55E-15 6.37E-15 5.78E-15 0.87 0.96 5 58 "Ni(n,p) Co 7.83E-15 8.97E- 15 8.08E-15 0.87 0.97 238 U (n,f) 137Cs (Cd) 3.14E-14 3.49E-14 3.1OE-14 0.90 1.01 237 37 Np (n,f) 1 Cs (Cd) 3.34E-13 3.55E-13 3.27E-13 0.94 1.02 59 60 Co (nY) Co 4.55E-12 3.21E-12 4.40E-12 1.42 1.03 59 60 Co (nY) Co (Cd) 2.53E-12 2.49E-12 2.59E-12 1.02 0.98 Capsule Z 63 60 Cu(n,cL) Co 5.38E-17 5.56E-17 5.16E-17 0.97 1.04 54 Fe(n,p) 54Mn 5.07E-15 6.30E-15 5.3 0E- 15 0.80 0.96 5 58 "Ni(n,p) Co 7.27E-15 8.86E- 15 7.45E-15 0.82 0.98 238 137 U (n,f) CS (Cd) 3.03E-14 3.44E-14 2.87E-14 0.88 1.06 237 Np (n,f) 137Cs (Cd) 2.93E-13 3.50E-13 2.94E-13 0.84 1.00 60 59Co (nY) Co 3.28E-12 3.16E- 12 3.20E-12 1.04 1.03 59 Co (n,7) 60Co (Cd) 1.92E-12 2.45E-12 1.96E-12 0.78 0.98 WCAP- 16964-NP October 2008

A-26 Table A-6 Comparison of Calculated and Best Estimate Exposure Rates at the Surveillance Capsule Center 40 (E > 1.0 MeV) (n/cm2-s)

Uncertainty (%)

Capsule ID Calculated Best Estimate (la) BE/C Y 1.68E+11 1.58E+11 6% 0.94 U 1.78E+ 11 1.73E+11 6% 0.98 X 1.59E+ 11 1.49E+11 6% 0.94 W 1.21E+I1 9.87E+10 6% 0.82 V 1.12E+ 1 9.97E+10 6% 0.89 Z 1.11E+I1 9.23E+10 6% 0.83 Iron Atom Displacement Rate (dpa/s)

Capsule IDUnetiy(%

Calculated Best Estimate Uncertainty BE/C (la)

Y 3.46E-10 3.24E-10 8% 0.94 U 3.66E-10 3.64E-10 8% 0.99 X 3.25E-10 3.13E-10 8% 0.96 W 2.42E-10 2.03E-10 8% 0.84 V 2.24E-10 2.05E-10 8% 0.91 Z 2.21E-10 1.88E-10 8% 0.85 WCAP- 16964-NP October 2008

A-27 Table A-7 Comparison of Measured/Calculated (M/C) Sensor Reaction Rate Ratios Including All Fast Neutron Threshold Reactions M/C Ratio std dev Capsule Cu-63(n,ct) Fe-54(n,p) Ni-58(n,p) U-238(n,f) Np-237(n,f) Average (%)

Y 1.06 0.95 0.90 1.08 0.81 0.96 11.6 U 1.03 0.92 0.92 1.04 1.00 0.98 5.6 X 1.04 0.88 0.88 1.05 0.97 0.96 8.7 w 0.98 0.81 0.83 0.80 0.80 0.84 8.8 V 1.08 0.87 0.87 0.90 0.94 0.93 9.2 Z 0.97 0.80 0.82 0.88 0.84 0.86 7.7 I

Table A-8 Comparison of Best Estimate/Calculated (BE/C) Exposure Rate Ratios BE/C Ratio Capsule ID 0D (E > 1.0 MeV) dpa/s Y 0.94 0.94 U 0.97 1.00 X 0.93 0.97 W 0.81 0.84 V 0.88 0.92 Z 0.83 0.86 Average 0.89 0.92

% Standard Deviation 7.1 6.7 October 2008 16964-NP WCAP- 16964-NP October 2008

A-28 A.2 REFERENCES A-i Regulatory Guide RG- 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence," U. S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, March 2001.

A-2 WCAP-88 10, "Southern Alabama Power Company Joseph M. Farley Nuclear Plant Unit No. 1 Reactor Vessel Radiation Surveillance Program," J. A. Davidson, et al., December 1976.

A-3 WCAP-97 17, "Analysis of Capsule Y from the Alabama Power Company Farley Unit 1 Reactor Vessel Radiation Surveillance Program," June 1980.

A-4 WCAP-10474, "Analysis of Capsule U from the Alabama Power Company Joseph M. Farley Unit 1 Reactor Vessel Radiation Surveillance Program," February 1984.

A-5 WCAP-1 1563, Revision 1, "Analysis of Capsule X from the Alabama Power Company Joseph M.

Farley Unit 1 Reactor Vessel Radiation Surveillance Program," September 1987.

A-6 WCAP-14196, "Analysis of Capsule W from the Alabama Power Company Farley Unit 1 Reactor Vessel Radiation Surveillance Program," February 1995.

A-7 WCAP-16221-NP, "Analysis of Capsule V from the Southern Nuclear Operating Company, Joseph M. Farley Unit 1 Reactor Vessel Radiation Surveillance Program," March 2004.

A-8 A. Schmittroth, FERRETDataAnalysis Core, HEDL-TME 79-40, Hanford Engineering Development Laboratory, Richland, WA, September 1979.

A-9 RSIC Data Library Collection DLC- 178, "SNLRML Recommended Dosimetry Cross-Section Compendium," July 1994.

October 2008 WCAP- 16964-NP October 2008

B-1 APPENDIX B LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS

  • Specimen prefix "AL" denotes Lower Shell Plate B6919-1, longitudinal orientation 0 Specimen prefix "AT" denotes Lower Shell Plate B6919-1, transverse orientation
  • Specimen prefix "AW" denotes surveillance weld material 0 Specimen prefix "AH" denotes heat-affected zone material October 2008 WCAP- 6964-NP WCAP-116964-NP October 2008

B-2 5000.00 4000.00-

.7 a 3000.00 0

2000.00 1000.00 nnn II..~

Allhl ý A~ I I& i A,6A itPýA.

Ag ANI I

--. AL I. .A.A.

L1 . . jA A i.l kA.A. A.

I.-..W.A--

. . I .A A A kA. .

0.00 1.00 200 3.00 4.00 5.00 6,00 T~ne-1 (rms)

AL82, 40°F 5000.00 4000.00 30 3000,00

-J 2000.00 1000.001 f LlI ý .d)W 0.00 100 A. JLALAA -

2.00 6- WLAtA).tL&mAA-.

300 4.00 5.00

.&i.A 6.00 T-ne-I (imS)

AL77, 135°F WCAP- 16964-NP October 2008

B-3 5000.00 4000.00 3000.00

-J 2000.00 100000 WOO

ý6 ýIJLAý.h .6AI di.A..AiN AtiA~k.A fA0%AAL A ~ P*AuA .4AA AM.-~A1& A 0.00 1,00 2.00 3.00 4.00 5.00 6.00 Time-1 (ms)

AL85, 150°F 5O000.00' 4O0

.000 300 0.00.

200

.000r 100 00cM Ai fo.L . zmJ~4M n,- k.A-AwL6 A x-.

0.00 1.00 2.00 3.00 4.00 5.00 6.00 Tkne-I (ms)

AL84, 160°F WCAP- 16964-NP October 2008

B-4 sm.0GO.

4000.(GO-00.

3000( Go.

0ý 00.

00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Time-i (ms)

AL80, 175°F 5M.0DO 4000 00

.73000. DO 0.00 1.00 200 3.00 400 5.00 6.00 Tirmo-(me)

AL81, 180-F WCAP- 16964-NP October 2008

B-5 5000.00-4000.00-3000,00 2000.00 1000.00 0.00 1.00 2.00 3.00 4.00 5-00 6.00 Tmle-1 (ims)

AL83, 200°F 5000.00 40O0.00 3000.00 2000.00 1000.00 0.00 .A. A AA, A.hA A- L LAh& . L A ~A 0.00 1,00 200 3.00 4.00 5.00 6.00 Tne-i1 (ms)

AL86, 200OF October 2008 16964-NP WCAP- 16964-NP October 2008

B-6 5000100 4000.00 3000.00 U

0

-J 2000.00 t000.00 0.00 1.00 2,00 3.00 400 5.00 6.00 Trie-1 (ms)

AL89, 205°F 5000.00 4000.00 3000.00 2000.00 1000.00 3.00 6.00 Tbe-I (Qns)

AL78, 215°F October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

B-7 5000.00 4000.O0 3000.00 0 GD0 2000.00 1000.40 O0 0.00 1.00 200 300 4.00 5.00 6.00 T"*re-1 (ma)

AL88, 225-F 5000.00 4000.00 3000.00 2000.00 1000.00 0.00 1.00 2.00 3,00 4.00 5.00 6.00 Time-I (ma)

AL90, 250°F WCAP- 16964-NP October 2008

B-8 0.00 1.00 2.00 3.00 4.00 5.00 6.00 lime-I (ms)

AL79, 360°F 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Time-I (ms)

AL87, 385°F WCAP- 16964-NP October 2008

B-9 5000.00 4000.00 3000.00 200000 1000.00' WVV I IW ýj kJ 9161A, hM AmLA AA.. L,,L . LAk. A ..iA & .hd,.iI A x . &A.ý

. k -

0.00 100 2.00 3.00 400 5.00 6.00 T8m-1 (ms)

AT83, 50°F 5000.0100 4000.100i~

3000.0 00 2000.1 1000. 10 0.1 0 0.00

- 6~ A 4

ý hg M 100 a ILAi MNAowiM 2-00 t ~AMib.jA ~AtAifi&

3.00 NJ. f Aý. A1 a- L. A.-.AhA..A 4.00 5.00 6.00 Time-1 (mA)

AT76, 100°F October 2008 WCAP-WCAP- 16964-NP October 2008

B- 10 50C 0.00

'000

-j 30C .000

.000 20C

ý0.00 00 4LM0nfl~%4AA&Ad AA.m j-0.00 1.00 2.00 3.00 4.00 5.00 6.00 Tmne-1 (ms)

AT87, 170 0 F 5000.00 4000.00 3000.00,

-J 2000.00 1000.0 n nn

ýAL AA AI. K.. N.A "U'M J . A.AiL AA I.LAmik 6 f. .A-A -, P6~ m. A 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Tune-1 (rm)

AT81, 180°F October 2008 WCAP- 16964-NP I6964-NP October 2008

B-11 5000.00 400000 3000.00 2000.00 100000-0.00 0.

Vrmie-1(nel)

AT85, 200-F 5000.00 4000400 3000.00 2000.00 1000.00 0.00 1.00 2.00 3.00 4,00 5.00 6.00 Time-i (ms)

AT80, 210 0 F October 2008 WCAP- 16964-NP October 2008

B- 12 5000.00 4000.00 "7 3000.00 2000.00 1000.00

£~' ih~

0.00 1.00 2.00 3.00 4.00 5.00 6.00 Tmae-1 (ma)

AT77, 220-F 50(10.00 40( .000 7, 30( .000 20CW.000

.00.

0.00 1.00 2.00 300 4.00 5.00 6.00 T,,e- 1 (ma)

AT78, 240°F October 2008 16964-NP WCAP- I16964-NP October 2008

B-13 Time-1 (ms)

AT89, 250°F 5M0000 4000.00 3000.00 2000.00 1000.00 0.00 1.00 200 300 4.00 5.00 6.00 Time-i (me)

AT84, 300°F October 2008 WCAP- 16964-NP WCAP- 16964-NP October 2008

B-14 3000.00 2000.00 1000.00 0.00 0.0 1.00 2.00 3.00 4.00 5.00 6.00 Time-I (ms)

AT86, 300°F 5000.00 4000.00 3000.00 m

0 2000.00 1000.00 0.00 0.0 '0 1.00 2.00 3.00 4.00 5.00 6.00 Time-I (ms)

AT90, 350°F October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

B-15 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Time-1 (ms)

AT79, 375°F 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Time-1 (ms)

AT88, 390-F WCAP- 16964-NP October 2008

B- 16 5000.00 4000.00 3000.00 2000.00 1000M00 n nn I lj~ji ý L AifALh AAA d aiAA kh~a.A UuA.AA.m A&A Lj PL A&, YA JAt, A& A A 00 1.00 200 3.00 4.00 5.00 6.00 Tfme-1 (ns)

AW76, -30°F 5000.00 400000 3000.00 2000.00 1000.00

0. VV j hýA fihAd., LA A..A~A.A A W A,AM.AAI. D%AJ a A m d- A PL 000 1.00 2.00 3.00 4.00 5.00 600 Time-1 (mns)

AW79, 25 0 F WCAP- 16964-NP October 2008

B-17 5M00000 4000M00 200000 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Time-1 (ms)

AW84, 30 0 F 5000.00 4000.00 3000.00 2000.00 0.00 1.00 200 3.00 4.00 5.00 6.00 Time-i1 (ins)

AW80, 35°F October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

B-18 5000.00 4000.00 2M-00 1000.00 0.00

~~MAAA.A & &JLAA-iIkLLSA AAjL..LakA 1.00 2.00 3.00 Tnie-1 (n*)

LAAAAta&AaA#Af~t.

4.00 Jih. &tAt.-A ..

5,00 6 L0 6,

AW77, 40°F 5000.00 4000.00 3000.00 N

20010M0 1000O.00I k¶wIhA4 MAA.U Ah I ,. 1 g&.A.i A..

00 4-A.

L . . 14 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Tume-1 (ma)

AW82, 450 F October 2008 16964-NP WCAP- 16964-NP October 2008

B-19 5000.00 4000.00 3000.00 U

2000.00 1000.00 0 00 1 d4.A AI. ~

0,00 1.00 200 3.00 4.00 5.00 6.00 Time-1 (ns)

AW87, 50°F 5000.00+

~.DO 4M 30K 0.DO 2(K .000J 10t .001 n~ ~~~~AJ

~ .4b AAk Alb AAllA MA ma-h(&," " AiL - % k-.hý.I..

0.00 1.00 2.00 3.00 4.00 5.00 6.00 Time-1 (ms)

AW90, 60°F WCAP- 16964-NP October 2008

B-20 500000 300M.00 2000.00 n

1000.00-0.0 0.00 1.00 2400 3.G0 4.00 5.00 6.00 Trime-1 (ms)

AW81, 75°F 2000.00 100000 2000400 1000M0 0.00 0.00 1,00 2.00 3-00 4.00 5.00 6.00 Time-1 (me)

AW86, 100°F WCAP- 16964-NP October 2008

B-21 5000.

4000.

.0

'7 3000.

2M.

0.00 1.00 2.00 3.00 4.00 5.00 6.00 Time-1 (mm)

AW85, 200°F 5000.00 4000.00

.0 3000.00 tU 0

-J 2000.00 1000.00 3.00 6.00 Tie,-1 ("m)

AW88, 250°F October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

B-22 5000.00 ............ ....... ...... ....... ..........................

4000.00 ................ . ... . . . .

3000.00 2000.00 . .. .. .. . .. .. . .. . ... . .. .. .. . .. .. .

1000.00.

0.00 0.0 0 1.00 2.00 3-00 4.00 5.00 6.00 fims-1 (ms)

AW89, 280°F 5000.00 4000.00 ........ ..... ............. .... ....... ...... ... ..........

3000.00 2000.00 1000.00 0.00 0.0 0 1.00 2.00 3.00 4.00 5.00 6.00 Time-1 (ms)

AW78, 260°F WCAP-16964-NP October 2008

B-23 5000.00 4000.00

4. .

3000.00 2000.00 1000.00 0.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Time-i (ns)

AW83, 320°F 5000.00 4000.00 3000.00 2000.00 1000.00 0.00 1.00 2.00 3.00 4.00 5-00 6.00 Time-I (ms)

AH76, -80F October 2008 WCAP-16964-NP WCAP- 16964-NP October 2008

B-24 5000.00 4000.00

.0

  • 0 300.00 0

-J 2000.00 1000.00W nnn.-J~A4~iAJhJAA~ AAM.

y&A JM 'MAAb,hAA.,A .,,.A AlLI, Ah 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Tine-i (n*n)

AH82, -20°F 500{0.00G 400 -000 300 000 200 .000 100 .000 000 L

0.00

- 1 i 1 kMw 4 2.00 1.00 4A~I~LKMLLAA? h-o&)A.M kAA 3.00 4.00 66AA A~jIA i. A.

5,00 6.00 Time-1 (is)

AH77, 0-F October 2008 16964-NP WCAP- 16964-NP October 2008

B-25 5000.00 4000.00 n

3000.00 200000 100000 0T00 100 2.00 3.00 4.00 5.00 6.00 Twne-1 (ms)

AH84, 20°F 5000.00 400000 3000.00 2000.00 000M 0.00 1-00 200 3.00 4.00 5.00 6.00 T'me-1 (ims)

AH87, 25 0 F October 2008 WCAP- 16964-NP October 2008

B-26 0.00 40( 0.00 30( 0.00

-J 20C 0.00 10( p.00) nwl , k i A-L01nf.. .% .&s m aA-wmj . ,A 0.00 1.00 200 3,00 4.00 5.00 6.00 Time-I (ms)

AH78, 30 0 F 500 0.Go-4000.00 300V.00 200 0.00

}000:

100 .00 0.00 100 2.00 3.00 4.00 5.00 6.00 Tinm-l (me)

AH89, 35°F October 2008 WCAP-WCAP- 16964-NP October 2008

B-27 5000. 00 4000. 00D 3000. 00 200.

00 1000.

00A Q J k 6 , WA a A.J S -AJ'kA.^ A A Pm

- A.-AA & & A A 0.00 &

0.00 1.00 200 3.00 4.00 5.00 6.00 lime-i1 (ms)

AH88, 40°F 5000.00 4000.00 23000.00 0

2000.00-1000.00-n 4-4 -----------

ANA ~M .- AR, A -# A. -- LA 0.00 1.00 2.00 3100 4.00 5.00 6.00 Tmie-1 (me)

AH83, 50-F October 2008 WCAP- 16964-NP October 2008

B-28 0.00 1.00 2,00 3.00 4.00 5.00 6.00 T'ie-1 (Ms)

AH85, 80°F 5000.00 4000.00 3000.00 2000.00 1000.00 3.00 6.00 Tiffne-1 (ms)

AH82, 150°F WCAP- 16964-NP October 2008

B-29 5M0.

4000,00-3000.00-200D.00 1000.00.

TAHe8 (2is)

AH80, 200OF 4000.t

.73000.,

2 2000,.

0.00 1.00 2.00 3.00 4.00 5.00 6.00 Tume-t (nis)

AH86, 300OF October 2008 WCAP- 16964-NP 16964-NP October 2008

B-30 a

5000.00-4000.00-3000.00-C. ... ............. .....

(~J 0

-j

... .. . .. .. .A 2000.00-1000.00-nnn~ .

0.00 1.00 2.00 3.00 4.00 5.00 6.00 Time-1 (ms)

AH90, 320°F a

0

-J 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Time-1 (ms)Y AH79, 350-F WCAP- 16964-NP October 2008

C-1 APPENDIX C CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD Contained in Table C-I are the USE values used as input for the generation of the Charpy V-notch plots using CVGRAPH, Version 5.3. The definition for USE is given in ASTM E185-82[cI], Section 4.18, and reads as follows:

"upper shelf energy level - the average energy value for all Charpy specimens (normally three) whose test temperature is above the upper end of the transition region. For specimens tested in sets of three at each test temperature, the set having the highest average may be regarded as defining the upper shelf energy."

If there are. specimens tested in sets of three at each temperature, Westinghouse reports the set having the highest average energy as the USE (usually unirradiated material). These values have been recalculated and may vary from previously reported data of the irradiated and unirradiated USE data.

The lower shelf energy values were fixed at 2.2 ft-lb for all cases.

Table C-I Upper Shelf Energy Values Fixed in CVGRAPH (ft-lb)

Material Initial Y U X W V Z Lower Shell B6919-1 (LT) 137.0 128.0 107.6 114.3 109.0 108.7 96.7 Lower Shell B6919-1 (TL) 90.7 90.0 82.2 79.8 75.6 71.7 69.5 Surveillance Weld Metal 134.9 131.3 105.2 114.7 110.4 110.3 101.6 HAZ Material 149.7 139.0 118.0 126.5 133.2 120.3 120.3 CVGRAPH v5. 3 plots of all surveillance data are provided in this appendix, on the pages following the reference list.

C.1 REFERENCES C- 1 ASTM E 185-82, StandardPracticefor Conducting Surveillance Tests for Light- Water Cooled Nuclear Power Reactor Vessels.

WCAP- 16964-NP October 2008

C-2 UNIRRADIATED (LT)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 11:14 AM Page I Coefficients of Curve 1 A = 69.6 B = 67.4 C = 79.93 rip = 31.18 1) = 0.00E+00 Equation is A + B * [Tanh((T-To)/(C+DT))]

Upper Shelf Energy= I37.0(Fixed) Lower Shelf Energy=2.2(Fixed)

Temp@30 ft-lbs=-22.6 Deg F Temp@50 ft-lbs=7.3 Deg F Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: LT Capsule: UNIRRA Fluence: n/cm^2 300 250 4 200 0

IL En150 a'-

z

> 100 50 0 . ii i4-

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential

-50. 00 12. 00 17. 83 -5. 83

- 50. 00 II. 00 17. 83 - 6. 83

- 50. 00 26, 00 17. 83 8. 17

.00 56. 00 44. 57 11. 43 00 59. 00 44. 57 14. 43

.00 48. 00 44. 57 3. 43

40. 00 80. 00 77 .01 2. 99
40. 00 52.00 77. 01 -25. 01
40. 00 68. 00 77. 01 - 9. 01 October 2008 16964-NP WCAP- 16964-NP October 2008

C-3 UNIRRADIATED (LT)

Page 2 Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: LT Capsule: UNIRRA Fluence: rn/cmA2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential

80. 00 107. 00 106.31 69
80. 00 100. 00 106.31 -6. 3 1
80. 00 106. 00 106.31 -. 31 130. 00 145. 00 126. 51 18. 49 130. 00 135. 00 126.51 8.49 1 30. 00 140. 00 1 26. 5 1 13. 49 210. 00 129. 00 135. 48 - 6. 48 210. 00 142. 00 135. 48 6. 52 210. 00 131. 00 135. 48 -4. 48 Correlation Coefficient = .973 WCAP- 16964-NP October 2008

C-4 CAPSULE Y (LT)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 11:14 AM Page I Coefficients of Curve 2 A = 65.1 B = 62.9 C = 109.17 TO = 110.72 D = 0.00E+00 Equation is A + B * [Tanh((T-ToV(C+DT))]

Upper Shelf Energy=1 28.0(Fixed) Lower Shelf Energy=2.2(FixedW TempQ630 ft-lbs*=42.0 Deg F Temp@50 ft-lbs=84.0 Deg F Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: LT Capsule: Y Fluence: n/cm^2 300 250 200 150 100 S//

o/

a.o 50 0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data k

Temperature Input CVN Conmuted CVN Differential 00 22 00 16 82 5. 18

25. 00 13. 00 23. 86 - 10. 86
50. 00 27. 00 33. 32 -6. 32
50. 00 25. 00 33. 32 .8. 32
75. 00 64. 00 45. 22 18. 78 2.
79. 00 50. 00 47. 32 68
99. 00 59. 00 58. 37 63 100. 00 65. 00 58. 94 6. 06 125. 00 83. 00 73. 28 9. 72 October 2008 WCAP- 16964-NP WCAP- 16964-NP October 2008

C-5 CAPSULE Y (LT)

Page 2 Plant: Farley I Material: SA533B1 Heat: C6940-1 Orientation: LT Capsule: Y Fluence: n/cniA2 Charpy V-Notch Data Temperatlre Input CVN Computed CVN Differential 125. 00 53, 00 73. 28 -20.28 174. 00 99. 00 97. 96 1. 04 175. 00 98. 00 98. 38 - .38 224. 00 110.00 113.97 - 3. 97 300. 00 127. 00 124. 19 2.81 350. 00 129.00 126. 45 2.55 Correlation Coefficient = .971 WCAP- 16964-NP October 2008

C-6 CAPSULE U (LT)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 11:15 AM Page I Coefficients of Curve 3 A = 54.9 B = 52.7 C = 105.76 TO = 141.63 D = 4.00)E+00 Equation is A + B * [Tanh((T-To/(C+DT))]

Upper Shelf Energy= 107.6(Fixed) Lower Shelf Energy=2.2(Fixed)

Temp@30 ft-lbs=87.4 Deg F Temp@50 ft-lbs=1 31.8 Deg F Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: LT Capsule: U Fluence: n/cm^2 300 250 + 4 4 4- 4- 4 4 4200 + 4 4 4- + 4- 4 4 150 Lu 0

100 00 50 ni

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Dog F Charpy V-Notch Data Temperature Input CVN Compute CVN Differential

50. 00 I1.00 18.03 - 7. 0 3
75. 00 39.00 25. 49 13. 5 1
75. 00 35.00 25. 49 9. 51 100. 00 33.00 35. 16 -2. 16 t00.,00 .34.00 35. 16 - I. 16 125.00 50,00 46.68 3. 32 125.00 40. 00 46. 68 -6 68 150. 00 53.00 59.06 -6, 06 150. 00 59.00 59.06 06 October 2008 16964-NP WCAP- I16964-NP October 2008

C-7 CAPSULE U (LT)

Page 2 Plant: Farley I Material: SA533BI Hleat: C6940-1 Orientation: LT Capsule: U Fluence: n/cmA2 Charpy V-Notch Data Temperature Input CVN Conmput ed CVN Differential 200. 00 68. 00 81 .35 - 13. 35 225. 00 94. 00 89 .55 4.45 250. 00 108. 00 95 .57 1 2. 43 300. 00 110. 00 102 .58 7.42 350. 00 120. 00 105 .59 14.41 400. 00 106. 00 106 81 -. 8 1 Correlation Coefficient = .972 October 2008 WCAP- 16964-NP WCAP- October 2008

C-8 CAPSULE X (LT)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 11:15 AM Page I Coefficients of Curve 4 A = 58.26 B = 56.06 C = 92.16 TO = 157.67 D = 0.OOE+00 Equation is A + B * [Tanh(JT-Tol/(C+DT))l Upper Shelf Energy=! 14.3(Fixed) Lower Shelf Energy=2.2(Fixed)

Temp@30 ft-lbs=106.6 Deg F Temp@50 ft-lbs= 144.0 Deg F Plant: Farley I Material: SA533BI teat C6940-1 Orientation: LT Capsule: X Fluence: n/cm^2 300 250 4 200 150 IL w

z 100 50 0------F--- -- ~Z .- N i + 4-

-300.0 -200.0 -100.0 0.0 100.0 200.0 30 0.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input CVN Conmputed CVN Differential

25. 00 5. 00 8. 17 -3. 17
76. 00 24. 00 18.49 5.51
76. 00 29. 00 18.49 10 51 100. 00 23. 00 27. 14 -4. 14 100. 00 39. 00 27. 14 1 1.86 125. 00 34. 00 39. 18 -5. 18 I 25. 00 29. 00 39. 18 -10. 18 150. 00 69. 00 53.61 15. 39 150. 00 47. 00 53.61 - 6. 61 WCAP- 16964-NP October 2008

C-9 CAPSULE X (LT)

Page 2 Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: LT Capsule: X Fluence: n/cmA2 Charpy V-Notch Data Tempemture Input CVN Computed CVN Differential 175. 00 60. 00 68. 69 -8. 69 200. 00 65. 00 82. 35 - 17. 35 225. 00 103.00 93. 22 9.78 250. 00 120.00 101.01 18. 99 300. 00 115. 00 109.44 5. 56 400. 00 108. 00 113.75 -5. 75 Correlation Coelficient = .959 October 2008 16964-NP WCAP- I16964-NP October 2008

C-1O CAPSULE W (LT)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07/17/2008 02:45 PM Page I Coefficients of Curve 5 A = 55.6 B = 53.4 C = 82.5 TO = 165.7 D = O.00E+00 Equation is A + B * [Tanh{(T-To)/tC+DT))]

Upper Shelf Energy=IO9.0(Fixed) Lower Shelf Energy=2.2(Fixed)

Temp@30 ft-lbs= 122.7 Deg F Temp@50 ft-lbs= 157.1 Deg F Plant Farley I Material: SA533B1 Heat C6940-1 Orientation: LT Capsule: W Fluence: n/crnA2 300 250 4200 150 z V 100 V

50

........... ......... .... 7" "V-V~-

V 0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Dog F Charpy V-Notch Data Temperature Input CVN Comnputed CVN Differential

25. 00 4. 00 5.61 - 1.6 1
75. 00 24. 00 12.87 11.13 100. 00 27. 00 20. 25 6.75 110. 00 14. 00 24. 18 .10. 18 125. 00 31. 00 31.20 -. 20 140. 00 20. 00 39. 48 -19.48 150. 00 77.00 45. 56 3 1 . 44 175. 00 48. 00 61. 59 -13.59 200. 00 53.00 76. 60 - 23. 60 WCAP- 16964-NP October 2008

C-11 CAPSULE W (LT)

Page 2 Plant: Farley I Material: SA533B I Heat: C6940-1 Orientation: LT Capsule: W Fluence: n/criA2 Charpy V-Notch Data Temperature Input C'N Computed CVN Differential 207. 00 98. 00 80. 30 17. 70 225. 00 95. 00 88. 50 6. 50 250. 00 99. 00 96. 75 2. 25 275. 00 106.00 101. 95 4. 05 300. 00 103.00 105. 03 2. 03 350. 00 117.00 107. 79 9. 21 Correlation Coefficient =.933 October 2008 16964-NP WCAP- 16964-NP October 2008

C-12 CAPSULE V (LT)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 11:16 AM Page I Coefficients of Curve 6 A = 55.44 B = 53.24 C = 94.9 TO = 204.44 1) = O.OOE+fN)

Equation is A + B * [Tanh((T-ToA(C+DTtI]

Upper Shelf Energy=-I 08.7(Fixed) Lower Shelf Energy=2.2tFixed)

Temp@ 30 ft-lbs= 155.1 Deg F Tempr 50 ft-lbs= 194.8 Deg F Plant: Farley I Material: SA533B I Heat: C6940-I Orientation: LT Capsule: V Fluence: nrcm^2 300 250 4200 150 W

100 q/e 50 0

.300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Teemrature Input CVN Comnputed CVN Differential

25. 00 6. 00 4.57 I .43
50. 00 4. 00 6. 16 -2. 16
75. 00 16. 00 8. 73 7. 27 100.00 II . 00 12.81 - I .8 1 125.00 23.00 19.01 3. 99 140.00 26. 00 23. 98 2. 02 1 50. 00 34. 00 27.85 6. 15 175.00 28. 00 39. 43 - I1. 43 190. 00 48. 00 47.39 61 October 2008 16964-NP WCAP- I16964-NP October 2008

C- 13 CAPSULE V (LT)

Page 2 Plant: Farley I Material: SA533B I Heat: C6940- I Orientation: LT Capsule: V Fluence: nicm^`2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential 200. 00 58. 00 52. 94 5.06 250. 00 65. 00 79. 19 -14. 19 275. 00 86. 00 89. 04 -3.04 300. 00 107. 00 96. 13 10.87 325. 00 106. 00 100. 89 5. 11 325. 00 113. 00 100. 89 12 . 1 1 Correlation Coefficient =.982 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-14 CAPSULE Z (LT)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 11:16 AM Page I Coefficients of Curve 7 A = 49.44 B = 47.24 C = 53.51 TO = 202.91 D = O.OOE+00 Equation is A + B * [Tanh((T-To)/(C+DT))]

Upper Shelf Energy=96.7(Fixed) Lower Shelf Energy=2.2(Fixedl Temp@30 ft-lbs=179.6 Deg F Temp@50 ft-lb2s=03.6 Deg F Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: LT Capsule: Z Fluence: n/cm^2 300 250 4 200 LL 150 ul z

100 50 0 ...

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input CVN Conputed CVN Differential

40. 00 2. 00 2.41 -. 41 135. 00 2 1. 00 9. 12 11.88 150. 00 20. 00 13.69 6.31 160. 00 33. 00 18.02 14. 98 175. 00 21. 00 26. 81 -5. 81 180. 00 36. 00 30.36 5. 64 200. 00 15.00 46. 87 -31 .87 200. 00 2 1 . 00 46. 87 -25. 87 205. 00 76. 00 51.28 24. 72 October 2008 WCAP- 16964-NP I6964-NP October 2008

C-i15 CAPSULE Z (LT)

Page 2 Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: LT Capsule: Z Fluence: n/cmA2 Charpy V-Notch Data Tempemaire Input CVN Computed CVN Differential 215.00 67. 00 59. 93 7. 07 225. 00 75.00 67. 90 7. 10 250. 00 94.00 82. 80 11. 20 360. 00 102.00 96. 40 5. 60 385. 00 93.00 96. 57 -3. 57 375. 00 95. 00 96. 52 52 Conelation Coefficient = .911 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-16 UNIRRADIATED (LT)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 11:32 AM Page I Coefficients of Curve I A = 44.5 B = 42.3 C = 77.67 TO = 18.07 1) = (.OOE+00 Equation is A + B * [Tanh((T-To)I(C+DT))]

Upper Shelf L.E.=86.8 Lower Shelf LE.=2.2(Fixed)

Temp. @L.E. 35 mils.4 Deg F Plant: Farley I Material: SA533BI Heat: C6940-I Orientation: LT Capsule: UNIRRA Fluence: n/cm^2 200 150 E

100 50

/0 II 0

-3100.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input L.E. Computed L.E. Differential

-50. 00 8.00 14.70 -6. 70

-50. 00 8. 00 14. 70 -6. 70

- 50. 00 18.00 14.70 3.30 00 38. 00 34. 84 3. 16 00 44. 00 34. 84 9. 16 00 37.00 34. 84 2. 16

40. 00 62. 00 56. 14 5.86
40. 00 44. 00 56. 14 - 12. 14
40. 00 53.00 56. 14 -3.14 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-17 UNIRRADIATED (LT)

Page 2 Plant: Farley I Material: SA533B I Heat: C6940-1 Orientation: LT Capsule: UNIRRA Fluence: rdcmn^2 Charpy V-Niitcli MINa Temperature Input L.E. Computed L.E. Differential

80. 00 70.00 72. 53 -2.53
80. 00 73.00 72. 53 .47
80. 00 7 1. 00 72. 53 -I.53 130. 00 88. 00 82. 32 5. 68 130. 00 so. 00 82. 32 -2.32 130. 00 90. 00 82. 32 7. 68 o10. 00 85. 00 86. 2 1 -3.21 210. 00 85. 00 86. 21 -1.21 210. 00 83. 00 86. 2 1 -3.21 Correlation Coefficient =.980 October 2008 16964-NP WCAP- 16964-NP October 2008

C-18 CAPSULE Y (LT)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 11:32 AM Page I Coefficients of Curve 2 A = 41.66 B = 39.46 C = 94.58 TO = 91.71 D = O.OOE+OO Equation is A + B * [Tanh((T-To/(C+DT))]

Upper Shelf L.E.=8 I.1 Lower Shelf LE.=2.2(Fixed)

Temp.@LE. 35 mils=75.7 Deg F Plant: Farley I Material: SA533B I Heat: C6940-1 Orientation: LT Capsule: Y Fluence: n/cm^2 200 150 E

.2 I& 100 50

/b 0

-3E00.0 0.0 300.0 600.0 Temperature in Dog F Charpy V-Notch Data Temp~erature Input L.E. Computed L.E. Differential 00 21.50 12. 12 9.38

25. 00 10. 50 17. 68 -7. 18
50. 00 21. 00 25. 30 4. 30
50. 00 21 . 00 25. 30 -4.30
75. 00 40. 50 34. 76 5.74
79. 00 44. 50 36. 39 8. 11
99. 00 42. 50 44. 69 -2.19 100. 00 46. 50 45. 11 1.39 125. 00 61. 00 55. 00 6. 00 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-19 CAPSULE Y (LT)

Page 2 Plant: Farley I Material: SA533BI Heat: C6940-I Orientation: LT Capsule.: Y Fluence: n/cm^A2 Charpy V-Notch D)ata Temperature Input L.E. Computed L.E. Diffe*ential 125. 00 40. 00 55. 00 15. 00 174. 00 69. 50 69.33 .17 175. 00 74.00 69. 54 4.46 224. 00 79. 00 76. 58 2.42 300. 00 79. 00 80. 16 - 1.16 350. 00 79. 00 80. 78 -1.78 Correlation Coefficient =.963 October 2008 WCAP- 16964-NP WCAP- October 2008

C-20 CAPSULE U (LT)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 11:32 AM Page I Coefficients of Curve 3 A = 38.89 B = 36.69 C = 97.71 TO = 160.35 ID= O.0OE+OO Equation is A + B * [Tanh((T-ToA{C+DT)o]

Upper Shelf LE.=75.6 Lower Shelf LE.=2.2(Fixed)

Temp.@L.E. 35 mils-l50.0 Deg F Plant: Farney I Material: SA533B! Heat: C6940-1 Orientation: LT Capsule: U Fluence: n/cm^2 200 150 1 100 0

0 550 8$,

.. .... ... ..... _..............._ _.......... ... 60 0

-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch D)ata Temperature Input L.E. Computed L.E. Differential

50. 00 2. 00 9. 14 -7. 14
75. 00 22. 00 13, 09 8. 91
75. 00 18.00 13. 09 4.91 100. 00 17,00 18.73 -1 73 100. 00 20. 00 18.73 1 27 125. 00 29. 00 26. 16 2. 84 125. 00 26. 00 26. 16 -. 16 I50. 00 32.00 35. 02 -3. 02 150. 00 3 1. 00 35. 02 - 4. 02 WCAP- 16964-NP October 2008

C-2 1 CAPSULE U (LT)

Page 2 Plant: Farley I Material: SA533B I Heat: C6940-1 Orientation: LT Capsule: U Fluence: tn/cmA2 Charpy V-Notch Data Temperature Input L.E. Computed L.E. Differential 200. 00 43. 00 53.01 10. 01 225. 00 69. 00 60. 15 8. 85 250, 00 7 t. 00 65. 47 5. 53 300. 00 74. 00 71.59 2. 41 350. 00 76. 00 74. 09 -8. 91 400. 00 67. 00 75. 03 03 CorvIation Cowfficient = .972 WCAP-16964-NP October 2008

C-22 CAPSULE X (LT)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 11:33 AM Page 1 Coefficients of Curve 4 A = 45.26 B=43.06C= 116.54 TO= 162.34 D= O.00E+O0 Equation is A + B * [Tanh((T-Tol/(C+DT)t]

Upper Shelf L.E.=88.3 Lower Shelf LE.=2.2(Fixed)

Temp.@L.E. 35 miis=134.I Deg F Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: LT Capsule: X Fluence: n/cmA2 200 150 E

9 100 tA A" 50 0

-300.0 0.0 300.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input L.E. Computed L.E. Differential

25. 00 6. 00 9. 65 -3.65
76. 00 23. 00 18. 14 4. 86
76. 00 23.00 IM. 14 4.86 100. 00 23. 50 24. 19 - . 69 100. 00 28. 00 24. 19 3.81 125. 00 30. 00 31.91 - 1.91 125. 00 28. 00 31.91 .3.91 150. 00 45. 00 40. 7 1 4. 29 150. 00 40. 00 40. 71 -. 7 1 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-23 CAPSULE X (LT)

Page 2 Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: LT Capsule: X Fluence: n/cm^2 Charpy V-Notch Data Temperature Input L.E. Computed L.E. Differential 175. 00 45.00 49.91 -4.91 200. 00 45. 50 58.70 -13.20 225. 00 73. 00 66. 40 6. 60 250. 00 83.00 72. 66 10. 34 300. 00 83. 00 80. 90 2. 10 400. 00 81 . 00 86. 88 -5.88 Correlation Coefficient =. 971 October 2008 WCAP- I16964-NP 16964-NP October 2008

C-24 CAPSULE W (LT)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2(0)8 11:33 AM Page 1 Coefficients of Curve 5 A = 43.7 B = 41.5 C = 94.26 TO = 168.25 D = O.OOE-4O)

Equation is A + B

  • fTanhotT-Tot/AC+DT)i]

Upper Shelf L.E=85.2 Lower Shelf LE.=2.2(Fixed)

Temp.VL.E. 35 mils=148.2 Deg F Plant Farley I Material: SA533BI Heat: C6940-1 Orientation: LT Capsule: W Fluence: n/cmA2 200 150 i i E

C I .10 i 20 50 2v n r-

-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input L.E. Computed L.E. Differential

25. 00 2. 00 5. 99 -3.99
75. 00 20. 00 12.28 7.72 100. 00 23. 00 17. 99 5.01 110.00 II . 00 20. 89 -9. 89 125. 00 23.00 25. 89 -2.89 140. 00 22. 00 31.62 -9. 62 150. 00 58.00 35. 76 22. 24 175. 00 38. 00 46. 67 - 8. 67 200. 00 41. 00 57. 17 - 16. 17 WCAP-16964-NP October 2008

C-25 CAPSULE W (LT)

Page 2 Plant: Farley I Material: SA533B I Heat: C6940-I Orientation: LT Capsule: W Fluence: n/cI^A2 Charpy V-Notch [)ata Temnperature. Input L.E. Computed L.E. Differential 207. 00 72.00 59. 86 12. 14 225. 00 72.00 66. 05 5.95 250. 00 73. 00 72. 75 .25 275. 00 78. 00 77. 39 -. 39 300. 00 80. 42 -2. 42 350. 00 84. 00 83. 48 .52 Correlation Coafficient = .939 October 2008 WCAP- 16964-NP WCAP- 16964-NP October 2008

C-26 CAPSULE V (LT)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 11:33 AM Page I Coefficients of Curve 6 A = 39.72 B = 37.52 C = 88.65 TO = 218.35 D = 0.OOE+0O Equation is A + B * [Tanh((T-ToW(C+DT))]

Upper Shelf L.E.=77.2 Lower Shelf LE.=2.2(Fixed)

Temp.WL.E. 35 mil=207.2 Deg F Plant Farley I Material: SA533B I Heat: C6940-I Orientation: LT Capsule: V Fluence: n/cm^2 200 150 E

1. 100

~.*0 50 A 0

'I

.70 ni0

-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input L.E Computed L.E. Diffe rential

25. 00 00 3. 14 3. 14
50. 00 2.00 3. 84 -1.84
75. 00 5. 00 5. 04 04 t00. 00 3. 00 7. 06 -4.06 125. 00 !0, 00 10.34 34 140. 00 14. 00 13. 14 .86 150. 00 20. 00 15.42 4.58 175. 00 13.00 22.71 -9. 71 190. 00 3 1. 00 28. 11 2.89 October 2008 WCAP- 16964-NP October 2008

C-27 CAPSULE V (LT)

Page 2 Plant: Farley I Material: SA533BI Heat: C6940-I Orientation: LT Capsule: V Fluence: n/cmA2 Charpy V-Notch Data Tenmpemre Input L.E. Computed L.E. Difterential 200. 00 41. 00 32. 06 8. 94 250. 00 45. 00 52. 57 -7. 57 275.00 59. 00 60. 89 - 4. 89 300. 00 75. 00 66. 97 8. 03 325. 00 67. 00 71. 03 - 4. 03 325.00 72. 00 71. 03 97 Correlation Coefficient = .982 October 2008 WCAP- 16964-NP WCAP- 16964-NP October 2008

C-28 CAPSULE Z (LT)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/2812008 11:34 AM Page I Coefficients of Curve 7 A = 39.26 B = 37.06 C = 72.16 TO = 210.73 D = O.00E+00 Equation is A + B * [Tanh((T-ToV(C+DT))I Upper Shelf L.E.=76.3 Lower Shelf LE.=2.2(Fixed)

Temp. @L.E. 35 mils=202.5 Deg F Plant: Farley I Material: SA533B I Heat: C6940-1 Orientation: LT Capsule: Z Fluence: n/cmA2 200 150 E

._o

& 100 U

q 50 -'I

/

/

U

-- F-.

nl

-300.0 0

0.0 300.0 600.0 Temperature in Dog F Charpy V-Notch Data Temperature Input L.E. Computed L.E. Differential

40. 00 I. 00 2. 85 -1.85 135.00 18. 00 10. 29 7.71 150.00 15. 00 13.81 1.19 160.00 25. 00 16.79 8.21 175.00 18. 00 22. 28 -4.28 180. 00 29. 00 24. 37 4. 63 200. 00 14. 00 33. 79 -19.79 200. 00 20. 00 33. 79 -13.79 205. 00 49. 00 36. 32 12.68 October 2008 WCAP- 16964-NP October 2008

C-29 CAPSULE Z (LT)

Page 2 Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: LT Capsule: Z Fluence: n/cmA2 Cliarpy V-Notch Data Temperature Input L.E. Computed L.E. Diffevential 215. 00 44. 00 41. 45 2.55 225. 00 51. 00 46. 49 4.51 250. 00 63 00 57. 64 5.36 360. 00 82. 00 75. 15 6. 85 385. 00 72. 00 75. 73 -3.73 375. 00 70 011 75. 54 -5. 54 Correlation Coefficient = .939 October 2008 16964-NP WCAP- 16964-NP October 2008

C-30 UNIRRADIATED (LT)

CVGRAPH 5.3 Hyperlbolic Tangent Curve Printed on 05/28/2008 11:18 AM Page I Coefficients of Curve I A = 50. B = 50. C = 68.6 TO = 39.15 1) = (001E+00 Equation is A + B * [Tanh((T-To)/(C+DT))]

Temperature at 50% Shear= 39.2 Plant: Farley I Material: SA533B1 Heat. C6940-1 Orientation: LT Capsule: UNIRRA Fluence: nk/m^2 125 100 75 a,

0. 50 25

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch [)ata Temperature Input Percent Shear Computed Percent Shear Differential

- 50. 00 10.00 6. 92 3. 08

- 50. 00 14.00 6. 92 7. 08

- 50. 00 14.00 6, 92 7. 08

  • 00 27. 00 24. 21 2. 79 00 30. 00 24. 21 5. 79 00 27. 00 24. 21 2. 79
40. 00 50. 00 50. 62 - . 62
40. 00 35. 00 50. 62 -15. 62
40. 00 42. 00 50. 62 -8. 62 October 2008 16964-NP WCAP- I16964-NP October 2008

C-3 1 UNIRRADIATED (LT)

Page 2 Plant: Farley I Material: SA533B I Heat: C6940-i Orientation: LT Capsule: UNIRRA Fluence: riicm^A2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

80. 00 80. 00 76. 69 3. 31
80. 00 80. 00 76. 69 3. 3 1
80. 00 80. 00 76. 69 3. 31 130. 00 100. 00 93. 39 6. 61 130. 00 10. 00 93. 39 6. 61 130. 00 O0. 00 93.39 6. 61 210. 00 100.00 99. 32 68 210. 00 100. 00 99. 32 68 210. 00 100.00 99. 32 68 Correlation Coefficient = .987 October 2008 16964-NP WCAP- 16964-NP October 2008

C-32 CAPSULE Y (LT)

CVGRAPH 5,3 Hyperbolic Tangent Curve Printed on 05/28/2008 11:19 AM Page 1 Coefficients of Curve 2 A = 50. B = 50. C = 92.55 TO= 119.2 D O.O0E+00 =

Equation is A + B * [Tanh((T-To)I(C+DT))I Temperature at 50% Shear = 119.2 Plant Farley I Material: SA533BI Heat C6940-1 Orientation: LT Capsule: Y Fluence: t/cm^2 125 100 I 75

/

/3 50 0]

/ [

25

-4 0

0i 0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input Pereent Shear Computed Percent Shear Differential 00 5. 00 7. 07 -2.07 25 00 5. 00 11.55 -6. 55

50. 00 20. 00 18.31 1. 69
50. 00 15.00 18.31 -3. 31
75. 00 40. 00 27. 79 12. 21 79, 00 30. 00 29. 55 .45
99. 00 40. 00 39. 26 74 100. 00 45. 00 39. 78 5.22 125. 00 55. 00 53. 13 1.87 October 2008 WCAP- 16964-NP October 2008

C-33 CAPSULE Y (LT)

Page 2 Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: LT Capsule: Y Fluence: nIcm^2 Charpy V-Notch )ata Temperature Input Percent Shear Computed Percent Shear Differential 125.00 35. 00 53. 13 - i8. 13 174.00 70. 00 76. 57 -6. 57 175.00 90. 00 76. 96 13.04 224. 00 90. 00 90. 59 - .59 300. 00 100. 00 98. 03 1.97 350. 00 100. O0 99.32 .68 Correlation Coefficient = .975 October 2008 16964-NP WCAP- 16964-NP October 2008

C-34 CAPSULE U (LT)

CVGRAPH 53 Hyperbolic Tangent Curve Printed on 05/28/2(X)8 11:19 AM Page I Coefficients of Curve 3 A = 50. B = 50. C = 76.78 TO = 166.87 D =O.OOEE+O Equation is A + B * [TanhI(T-To)/AC+DT))]

Temperature at 50% Shear = 166.9 Plant Farley I Material: SA533BI Heat C6940-1 Orientation: LT Capsule: U Fluence: ntcm^2 125 100 75 0

'U ____ _ ____ __

50 25 0

-300.0 .200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

50. 00 5. 00 4. 55 .45
75. 00 27. 00 8. 37 18.63
75. 00 13. 00 8. 37 4. 63 100.00 18. 00 14. 91 3. 09 100.00 15. 00 14. 91 .09 125.00 29. 00 25. Is 3.85 125.00 20. 00 25. Is -5.15 150. 00 28. 00 39. 19 -1. 19 150. 00 40. 00 39. 19 .81 October 2008 WCAP- 16964-NP October 2008

C-35 CAPSULE U (LT)

Page 2 Plant: Farley I Material: SA533B1 Heat: C6940-1 Orientation: LT Capsule: U Fluence: n/ernA2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 200. 00 55. 00 70. 33 15.33 225. 00 100.00 81. 97 18. 03 250. 00 100.00 89. 71 10. 29 300. 00 100.00 96. 98 3.02 350. 00 100. 00 99. 16 .84 400. 00 100.00 99. 77 .23 Correlation Coefficient = .972 October 2008 WCAP- 16964-NP October 2008

C-36 CAPSULE X (LT)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 11:20 AM Page I Coefficients of Curve 4 A = 50. B = 50. C = 75.95 TO = 179.49 1) = 0.OE+4J(0 Equation is A + B * [Tanh((T-To)/(C+DTU)]

Temperature at 50% Shear = 179.5 Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: LT Capsule: X Fluence: n/cm^2 125 100 75 CT A 3 50 'A 25 0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

25. 00 2. 00 S.68 132
76. 00 10.00 6. 15 3. 85
76. 00 10.00 6. 15 3. 85 too. 00 10. 00 10.98 .98 100. 00 15.00 10.98 4. 02 125. 00 20. 00 19. 23 77 t25. 00 15.00 19.23 -4 23 150. 00 40. 00 31.50 8. 50 150. 00 35.00 31.50 3.50 October 2008 WCAP- 16964-NP WCAP- I16964-NP October 2008

C-37 CAPSULE X (LT)

Page 2 Plant: Farley I Material: SA533BI Heal: C6940-1 Orientation: LT Capsule: X Fluence: n/cm^i2 Charpy V-Notch Diata Temperature input Percent Shear Computed Percent Shear Differential 175.00 40. 00 47. 05 -7.05 200. 00 45. 00 63. 18 - 8. 1.8 225. 00 85. 00 76. 82 8.1.8 250. 00 100. 00 86. 49 13.511 300. 00 100. 00 95. 98 4.02 400). 00 100. 00 99. 70 .30 Correlation Coefficient =.979 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-38 CAPSULE W (LT)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 11:20 AM Page I Coefficients of Curve 5 A = 50. B = 50. C = 62.05 TO = 179.26 1) = O.OOE+OO Equation is A + B * [Tanh((T-To)/(C+DT))]

Temperature at 50% Shear = 179.3 Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: LT Capsule: W Fluence: n/cmnW2 125 100 V -

I U,

75 VF 50 0.

V Y 25 0

-300.0 -200.0 .100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

25. 00 I. 00 .69 .31
75. 00 5. 00 3.36 1 .64 100.00 8. 00 7.21 79 110 00 15.00 9. 69 5. 31 125. 00 15.00 14. 82 .18 140. 00 20. 01) 22. 00 - 2. 00 150.00 45. 00 28. 03 16.97 175.00 25. 00 46, 57 -21.57 200. 00 60. 00 66. 11 - 6. 11 October 2008 16964-NP WCAP- I16964-NP October 2008

C-39 CAPSULE W (LT)

Page 2 PRamn: Farley I Material: SA533BI Heat: C6940-1 Orientation: LT Capsule: W Fluence: n/cm"2 Chairpy V7-Notch D~ata Temperature Input Percent Shear Computed Percent Shear Differential 207. 00 75. 00 70. 97 4. 03 225. 00 95. 00 81. 37 13.63 250. 00 90. 00 90.72 -. 72 275. 00 too. O0 95. 63 4.37 300. 00 100. O0 98. 00 2.00 350. 00 100. O0 99. 59 .41 Correlation Coefficient =.976 October 2008 WCAP- I16964-NP WCAP- 6964-NP October 2008

C-40 CAPSULE V (LT)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 11:20 AM Page I Coefficients of Curve 6 A = 50. B = 50. C = 82.63 TO = 192.87 D =0.00E+00 Equation is A + B * [Tanh(iT-To)/(C+DT))]

Temperature at 50% Shear = 192.9 Plant Farley I Material: SA533BI Heat: C6940-1 Orientation: LT Capsule: V Fluence: n/cm^2 125 100 I

(0 75 IS 50 ,00

/

/.

25 -- - ---- /o -

0 0

-300.0 -200.0 -100.0 0.C 0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

25. 00 2. 00 1.69 .31
50. 00 5. 00 3. 05 1 .95
75. 00 10. 00 5. 45 4. 55 100. 00 15. 00 9.55 5.45 125. 00 20. 00 16. 21 3. 79 140. 00 20. 00 21.76 1 76 150. 00 25. 00 26. 16 -1 16 175. 00 30. 00 39. 35 -9. 35 190. 00 40. 00 48. 26 -8. 26 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-41 CAPSULE V (LT)

Page 2 Plant: Farley I Material: SA533BlI Heat: C6940-1 Orientation: LT Capsule: V Fluence: n/cmn^2 Charpy V-Notch D)ata Temperature Input Percent Shear Computed Percent Shear Differential 200. 00 70. 00 54. 30 15. 70 250. 00 75. 00 79. 94 -4. 94 275. 00 85. 00 87. 95 -2. 95 300. 00 100. 00 93. 04 6. 96 325. 00 100. 00 96. 08 3. 92 325. 00 100. 00 96. 08 3. 92 Correlation Coefficient = .986 WCAP- 16964-NP October 2008

C-42 CAPSUJLE Z (LT)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 11:21 AM Page I Coefficients of Curve 7 A=50. B=50. C=44.77 TO0=2131.1 1)=0.00E+00J Equation is A + B * [Tanht(T-To)/(C+DT)I]

Temperature at 50% Shear = 213.1 Plant: Farley I Material: SA533BI Heat C694,0-1 Orientation: LT Capsule: Z Fluence: W/cm^2 125

-UG 100

/

U,

/ _______ _______

I(0 75 d

/-

50 -!

Y 25 U,,

U ,1 0

0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Dog F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

40. 00 2. 00 04 I. 96 135. 00 10. 00 2. 97 7. 03 150. 00 5. 00 5. 65 -. 65 160.00 15.00 8. 56 6. 44 175.00 25. 00 15. 47 9.53 180.00 20. 00 18. 62 1.38 200. 00 25. 00 35. 87 -10. 87 200. 00 25. 00 35. 87 110. 87 205. 00 45. 00 41. 15 3. 85 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-43 CAPSULE Z (LT)

Page 2 Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: LT Capsule: Z Fluence: n/cm^2 Charpy V-Notch Data Tem-perature Input Percent Shear Computed Peroent Shear Differential 215. 00 55.00 52. 22 2.78 225. 00 65. 00 63. 08 1.92 250. 00 90. 00 83. 93 6. 07 360. 00 100.00 99. 86 .14 385. 00 100.00 99. 95 .05 375. 00 100. 00 99. 93 07 Correlation Coefficient = .988 October 2008 WCAP- 16964-NP WCAP- October 2008

C-44 UNIRRADIATED (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 11:52 AM Page I Coefficients of Curve I A = 46.44 B = 44.24 C = 106.72 TO = 46.93 D = 0.00E+00 Equation is A + B * [Tanh((T-To)/(C+DT))i Upper Shelf Energy=90. 7(Fixed) Lower Shell' Energy=2.2(Fixed)

Temnp@30 ft-lbý--5.3 Deg F Temp@50 ft-lbs=55.6 Deg F Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: TL Capsule: UNIRRA Ftuence: n/cm^2 300 250

" 200 0

I,.

150 LU z

> 100 50 0 "'i ' -- - i i i'1.

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential

-40. 00 25. 00 16.70 8.30

-40. 00 29. 00 16.70 12. 30

- 40. 00 12.00 16.70 -4.70 00 27. 00 28. 14 - I.14 00 35. 00 28. 14 6. 86 00 30. 00 28. 14 1.86

40. 00 26.00 43. 56 - 17. 56
40. 00 37. 00 43. 56 - 6. 56
40. 00 44. 00 43. 56 .44 WCAP-16964-NP October 2008

C-45 UNIRRADIATED (TL)

Page 2 Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: TL Capsule: UNIRRA Fluence: n/cmA^2 Charpy V-Notch l)ala Temperature Input CVN Computed CVN Differential

72. 00 53.00 56. 64 -3. 64
72. 00 53. 00 56. 64 -3. 64
72. 00 60. 00 56. 64 3.36 110. 00 80. 00 69.91 10.09 110. 00 69. 00 69.91 -. 91 110. 00 75.00 69.91 5.09 210. 00 89. 00 86. 69 2. 3 1 210. 00 91. 00 86. 69 4.31 210. 00 92. 00 86. 69 5.31 Correlation Coefficient = .963 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-46 CAPSULE Y (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 11:52 AM Page I Coefficients of Curve 2 A = 46.1 B = 43.9 C = 113.21 TO = 118.93 1) = O.(X)E+(M)

Equation is A + B * [Tanh(0T-To)/C+DT))]

Upper Shelf Energy=90.O(Fixed) Lower Shell Energy=2.2(Fixed)

Temp@030 ft-lbs=75.4 Deg F Ternp450 ft-lbs= 129. I Deg F Plant Farley I Material: SA533BI Heat: C6940-1 Orientation: TL Capsule: Y Fluenme: n/cm^2 300 250 4200 150 gl 100 50

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy, V-Notch D~ata Temnperature Input CVN Computed CVN Differential

25. 00 10. 00 16.23 6. 23
50. 00 23. 00 22. 25 .75
50. 00 15.00 22. 25 -7.25
75. 00 41. 00 29. 87 I1I. 1 3
79. 00 34. 00 31. 23 2.77 I00. 00 46. 00 38. 83 7. 17 125. 00 49. 00 48. 45 .55 126. 00 40. 00 48. 84 -8. 84 149. 00 56. 00 57. 50 -1.50 WCAP- 16964-NP October 2008

C-47 CAPSULE Y (TL)

Page 2 Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: TL Capsule: Y Fluence: n/cn^A2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential 174. 00 58.00 65. 92 -7.92 175.00 70. 00 66. 23 3.77 225.00 77. 00 78. 32 - I .32 249. 00 88. 00 81.98 6. 02 301.00 87. 00 86. 62 .38 350. 00 95. 00 88. 54 6.46 Correlation Coe fficient =.975 WCAP- 16964-NP October 2008

C-48 CAPSULE U (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 11:53 AM Page 1 Coefficients of Curve 3 A = 42.2 B = 40. C = 104.29 TO = 138.51 D = .OOE+f00 Equation is A + B * [Tanh((T-Toh/(C+DT))]

Upper Shelf Energy=82.2(Fixed) Lower Shelf Energy=2.2(Fixed)

Temp@P 30 ft-lbs= 105.7 Deg F Temp@50 ft-ibs=159.2 Deg F Plant Farley I Material: SA533BI Heat: C6940-1 Orientation: TL Capsule: U Fluence: n/cm^2 300 250 4 200 15 150 w

100 00 . .....

50

.01-0 .....-..... - 4 - 4

-300.0 .200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Tenperature Input CVN Computed CVN Differential

25. 00 6. 00 10.35 -4. 35
50. 00 24. 00 14. 58 9. 42
75. 00 32. 00 20. 46 II. 54
75. 00 27. 00 20. 46 6. 54 100. 00 25. 00 28. 07 - 3. 07 100. 00 25. 00 28. 07 -3. 07 125. 00 31 . 00 37. 05 -6. 05 125. 00 33. 00 37. 05 -4. 05 150. 00 40. 00 46. 59 -6. 59 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-49 CAPSULE U (TL)

Page 2 Plant: Farley I Material: SA533B I Heat: C6940-1 Orientation: TL Capsule: U Fluence: n/cm^2 Charpy V-Notch Dalta Temperature Input CVN Computed CVN Differntial 200. 00 55. 00 63.38 -8.38 225. 00 82. 00 69. 40 12. 60 250. 00 86. 00 73. 76 12.24 300. 00 79. 00 78. 74 .26 350. 00 88. 00 80. 84 7.16 400. 00 76. 00 81.67 -5. 67 Correlalion Coefficient = .960 WCAP- 16964-NP October 2008

C-50 CAPSULE X (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 11:53 AM Page I Coelficients of Curve 4 A = 40.97 B = 38.78 C = 98.05 TO = 144.59 D = O.AOE+-J0 Equation is A + B * [TanhU(T-ToI(C+DT))I Upper Shelf Energy=79.8(Fixed) Lower Shelf Energy=-22(Fixed)

Temp@ 30 ft-lbsIN16.1 Deg F Temp@ 50 ft-lbs= 167.9 Deg F Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: TL Capsule: X Fluene: n/cm^2 300 250 4 4 4 4 4 4 r 200 150 w

100 A .~A 50 A

ni -

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential

- 25. 00 2. 00 4. 56 -2. 56

25. 00 13. 00 8. 42 4.58
76. 00 19. 00 17 55 1.45 100. 00 25. 00 24. 46 54 110.00 32. 00 27. 84 4. 16 125. 00 29. 00 33. 33 -4.33 125. 00 34. 00 33. 33 .67 150. 00 49. 00 43. I1 5. 89 150. 00 .3. O0 43. II -I0. 11 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-51 CAPSULE X (TL)

Page 2 Plant: Farley I Material: SA533BI -leat: C6940-1 Orientation: TL Capsule: X Fluence: n/cm^2 Charpy V-Notch Data TemperaLure Input CVN Comput ed CVN Differential 175.00 55. 00 52 63 2 37 200. 00 55. 00 60 82 -5. 82 250. 00 79. 00 71 66 7. 34 300. 00 83. 00 76 62 6. 38 350. 00 80. 00 78 59 1. 41 400. 00 77. 00 79 33 -2. 33 Correlation Coefficient = .983 October 2008 WCAP- 16964-NP October 2008

C-52 CAPSULE W (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on (15/28/2008 12:12 PM Page I Coefficients of Curve 5 A = 38.9 B = 36.7 C = 93.19 TO = 178.77 D = O.t0E+O0 Equation is A + B

  • ITanh(tT-To)/'C+DT))]

Upper Shelf Energy=-75.6(Fixed) Lower Shell Energy=2.2(Fixed)

Temp@30 ft-lbs-! 55.8 Deg F Temp@ 50 ft-lbs=207.9 Deg F Plant: Farley I Material: SA533B1I Heat: C6940-1 Orientation: TL Capsule: W Fluence: n/eniA2 300 250 4200 tL 150 w

z 100 V VV ........

V. -- ° 50 0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Dog F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential 75.00 14. 00 9. 35 4. 65 100.00 17.00 13. 63 3.37 125.00 29. 00 19. 80 9. 20 1 50. 00 28. 00 27. 92 .08 160. 00 34. 00 31. 61 2.39 175. 00 36. 00 37. 42 -1.42 175.00 24. 00 37. 42 -13.42 185.00 45. 00 41. 35 3. 65 200. 00 40. 00 47. 12 -7.12 October 2008 WCAP- 16964-NP I16964-NP October 2008

C-53 CAPSULE W (TL)

Page 2 Plant: Farley I Material: SA533BI Heat: C6940- I Orientation: TL Capsule: W Fluence: n/cinm2 Charpy V-Notch D)ata Temperature Input CVN Computed CVN Differential 225. 00 50.00 55. 75 -5. 75 250. 00 68. 00 62. 52 5.48 275. 00 78. 00 67.34 10.66 300. 00 75. 00 70. 53 4.47 325. 00 78. 00 72. 55 5.45 350. 00 79. 00 73. 79 5.21 Correlation Coelficient = .963 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-54 CAPSULE V (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/0212008 11:54 AM Page I Coefficients of Curve 6 A = 36.94 B = 34.74 C = 68.75 TO = 180.91 1)= O.0.E+4O0 Equation is A + B * [Tanh((T-To)/(C+DT))]

Upper Shelf Energy=7 1.7(Faxed) Lower Shelf Energy=2.2(Fixed)

Temp@30 ft-lbs=167.0 Deg F Tempr50 ft-lbs=208.2 Deg F Plant: Farley I Material: SA533B I Heat: C6940-I Orientation: TIL Capsule: V Fluence: k/cmA2 300 250 4200 0

IU.

150 z

100 50

  • II.~~~~... ....

.. .. I..-ll ;-' ......

0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential

25. 00 4. 00 2. 94 1. 06
75. 00 7 00 5. 25 1. 75 100. 00 15. 00 8. 23 6. 77 125. 00 15. 00 13. 61 1.39 150. 00 27. 00 22. 29 4.71 150. 00 26. 00 22. 29 3.71 160. 00 31 00 26. 69 4.31 175. 00 27. 00 33. 96 - 6. 96 175. 00 17. 00 33. 96 -16.96 October 2008 WCAP- 16964-NP October 2008

C-55 CAPSULE V (TL)

Page 2 Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: TL Capsule: V Fluence: n/cn^A2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential 200. 00 49. 00 46. 34 2. 66 225. 00 68. 00 56. 59 11. 41 250. 00 5 8. 00 63. 46 -5. 46 275. 00 74. 00 67. 45 6. 55 275. 00 65. 00 67. 45 -2. 45 300. 00 76.00 69. 56 6. 44 Correlation Coefficient = .961 October 2008 WCAP- 16964-NP I 6964-NP October 2008

C-56 CAPSULE Z (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/2812(X)8 12:14 PM Page I Coefficients of Curve 7 A =B 3. 33.65 C = 49.79 TO = 192.34 1) = O.IN)E+00 Equation is A + B * [TanhjtT-ToA/C+DT)h]

Upper Shelf Energ'=69.5(Fixed) Lower Shelf Energy=2.2(Fixed)

Temp@30 ft-lbs=183.6 Deg F Temp050 ft-lbs=214.7 Deg F Plant: Farley I Material: SA533BI Heat: C69410-1 Orientation: TL Capsule: Z Fluence: n/cmA2 300 250 200 U.

150 I

z 100 50 el n

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Dog F Charpy V-Notch Data Tenperature Input CVN Computed CVN Diffwrntial

50. 00 10. 00 2. 42 7.58 100. 00 12. 00 3. 81 8. 19 170. 00 27. 00 21 . 69 5.31 180. 00 30. 00 27. 67 2.33 200. 00 26. 00 40. 98 - 14. 98 210. 00 48. 00 47.31 .69 220. 00 54. 00 52. 83 1.17 240. 00 68. 00 60. 85 7. 15 250. 00 72. 00 63. 46 8. 54 October 2008 16964-NP WCAP- I16964-NP October 2008

C-57 CAPSULE Z (TL)

Page 2 Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: TL Capsule: Z Fluence: n/crn2 Charpy V-Notch i)ata T30perature Input CAN Computed CVN Differential 300. 00 58. 00 68. 62 - 10.62 300. 00 73. 00 68. 62 4.38 350. 00 77.00 69. 38 7. 62 375. 00 66. 00 69. 46 -3.46 390. 00 71. 00 69. 48 1.52 Correlation Cofficient .957 October 2008 WCAP- 16964-NP I 6964-NP October 2008

C-58 UNIRRADIATED (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 11:58 AM Page I Coefficients of Curve I A = 38.52 B = 36.32 C = 115.33 TI0 = 54.43 D = 0.00E+00 Equation is A + B * [Tanh((T-To)/(C+DT))]

Upper Shelf L.E.=74.8 Lower Shelf LE.=2.2(Fixed)

Temp.@L.E. 35 mi1:43.3 Deg F Plant: Farley I Material: SA533B I Heat: C6940-1 Orientation: TL Capsule: UNIRRA Fluence: n/cm^2 200 150 E

C r..

100 50 0

-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input L.E. Computed L.E. Diflejential

- 40. 00 17. 00 14.03 2.97

-40. 00 1 S. 00 14.03 3. 97

- 40. 00 7. 00 14. 03 -7. 03

.00 24. 00 22. 55 1.45

.00 26. 00 22. 55 3.45

.00 21. 00 22. 55 -1.55

40. 00 26. 00 34. 00 -8. 00
40. 00 30. 00 34. 00 -4. 00
40. 00 37. 00 34. 00 3.00 October 2008 16964-NP WCAP- 16964-NP October 2008

C-59 UNIRRADIATED (TL)

Page 2 Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: TL Capsule: UNIRRA Fluence: rIcmA2 Charpy V-Notch 11a11.

Temperature Input L.E. Computed L.E. Differential

72. 00 45. 00 44.01 .99
72. 00 46. 00 44.01 1.99
72. 00 50. 00 44.01 5.99 110. 00 52. 00 54. 77 -2.77 1 10.00 53.00 54. 77 -1.77 1 10.00 56. 00 54. 77 1.23 210. 00 68. 00 70. 25 210. 00 72. 00 70. 25 1.75 210. 00 7 1 . 00 70. 25 .75 Correlation Coefficient =.982 WCAP-16964-NP October 2008

C-60 CAPSULE Y (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2(X)8 11:58 AM Page I Coefficients of Curve 2 A = 33.6 B = 31.4 C = 101.75 To = 94.42 1) = 0.UOE+O0 Equation is A + B * [Tanh(T-ToA/(C+DT))]

Upper Shelf L.E.=65.0 Lower Shelf LE.=2.2(Fixed Temp.@LE. 35 mils=99.0 Deg F Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: TL Capsule: Y Fluence: n/cm^2 200 150 E

C IL 100 5o 0

-300.0 0.0 300.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input L.E. Computed L.E. Differential

25. 00 19.00 14. 98 4. 02
50. 00 23. 00 20. 70 2.30
50. 00 13.00 20. 70 -7.70
75. 00 29. 50 27. 68 1.82
79. 00 30. 50 28. 87 1. 63 100. 00 36. 00 35.32 68 125. 00 40. 50 42. 76 -2. 26 126. 00 46. 00 43. 04 2. 96 149. 00 43. 50 48. 99 -5.49 WCAP- 16964-NP October 2008

C-61 CAPSULE Y (TL)

Page 2 Plant: Farley I Material: SA533B I Heat: C6940-1 Orientation: TL Capsule: Y Fluence: n/cn^A2 Charpy V-Notch Data Tempeature Input L.E. Computed L.E. Differential 174. 00 48. 50 54. 13 - 5. 63 175.00 58. 00 54. 30 3. 70 225. 00 68. 50 60. 5 1 7. 99 249. 00 64. 00 62. 12 1.88 301.00 69. 00 63. 93 5.07 350. 00 54.50 64. 58 10.08 Correlation Coefficient = .957 October 2008 WCAP- 16964-NP WCAP-1I6964-NP October 2008

C-62 CAPSULE U (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 11:58 AM Page I Coefficients of Curve 3 A = 30.44 B = 28.24 C = 86.93 TO = 154.04 D = O.OOE+00 Equation is A + B * [Tanh(IT-To)AC+DT))I Upper Shelf L.E.=58.7 Lower Shelf LE.=2.2(Fixed)

Temp.@L.E. 35 mils 168.3 Deg F Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: TL Capsule: U Fluence: a/cm^2 200 150 E

C

.9

& 100 0 0 50 0

____ ____ 6 ____ __0 fl -

-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input LE. Computed L.E. Differential

25. 00 2. 00 4. 96 -2. 96
50. 00 It. 00 6. 92 4. 08
75. 00 18.00 10. 08 7 92
75. 00 12.00 10. 08 1 92 100. 00 15.00 14. 84 16 100. 00 15. 00 14. 84 16 125. 00 18. 00 21. 34 -3. 34 125. 00 20. 00 21. 34 -I .34 I 50. 00 25. 00 29. 13 -4. 13 WCAP-16964-NP October 2008

C-63 CAPSULE U (TL)

Page 2 Plant: Farley I Material: SA533B1 Heat: C6940-1 Orientation: TL Capsule: U Fluence: n/cmA2 Charpy V-Notch Datt Temperature Input L.E. Computed L.E. Differential 200. 00 38. 00 44. 12 -6. 12 225. 00 61 . 00 49. 45 1 .55 250. 00 57. 00 53. 08 3. 92 300. 00 55.00 56. 78 -1 .78 350. 00 56. 00 58. 06 -2. 06 400. 00 55. 50 58. 48 -2. 98 Correlation Coefficient = .973 WCAP- 16964-NP October 2008

C-64 CAPSULE X (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 11:59 AM Page I Coefficients of Curve 4 A = 34.8 B = 32.6 C = 119.65 TO = 135.49 1) = O.OOE+00 Equation is A + B * [Tanhi(T-To)/(C+DT))]

Upper Shelf L.E.=67.4 Lower Shelf LE.=2.2(Fixed)

Temp. @L.E. 35 mils=1*36.3 Deg F Plant: Farley I Material: SA533B! Heat: C6940-1 Orientation: TL Capsule: X Fluence: nfcm^2 200 150 E

C

&100 5O 0 0.0

-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input L.E. Computed L.E. Differential

- 25. 00 2.50 6. 37 -3.87

25. 00 12. 00 I1. 08 92
76. 00 19.50 19. 81 -. 31 100. 00 23. 50 25. 41 -1.91 110. 00 31. 00 27. 96 3.04 125. 00 28. 50 31. 95 -3.45 125. 00 35.00 31. 95 3. 05 150. 00 43. 00 38. 74 4. 26 150. 00 38.00 38. 74 - .74 October 2008 WCAP- 16964-NP October 2008

C-65 CAPSULE X (TL)

Page 2 Plant: Farley I Material: SA533B1 Heat: C6940-1 Orientation: TL Capsule: X Fluence: n/cm^2 Charpy V-Notch Data Temperature Input LE. Computed L.E. Difflrential 175.00 46. 50 45. 19 I.3 1 200. 00 43. 00 50. 85 -7. 85 250. 00 60. 50 59. 02 1.48 300. 00 65. 00 63. 48 1.52 350. 00 70. 00 65. 64 4.36 400. 00 62. 50 66. 63 -4. 13 Correlation Coefficient = .985 October 2008 WCAP- 16964-NP 16964-NP October 2008

C-66 CAPSULE W (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:21 PM Page I Coefficients of Curve 5 A = 36.61 B = 34.41 C = 116.1 TO = 197.64 D = O.OE+0U Equation is A + B * [TanhttT-ToJ/tC+DT))I Upper Shelf L.E=7 1.0 Low-er Shelf LE.=2.2(FLed)

Temp. ,L.E. 35 mils=192.3 Deg F Plant: Farley I Material: SA533BI Heat: C6940-I Orientation: TL Capsule: W Fluence: npcmW2 200 150 I +

E

.2 1 100 V

50 V V

IN P+

-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input L.E. Computed L.E. Differential

75. 00 I1. 00 9. 62 1.38 100. 00 14. 00 12. 99 1.01 125.00 26. 00 17. 51 8.49 150. 00 22. 00 23. 23 - 1 .23 160.00 26. 00 25. 83 .17 175.00 29. 00 29. 98 98 175.00 24. 00 29. 98 -5.98 185.00 29. 00 32. 88 -3.88 200. 00 35. 00 37. 3 1 -2.31 October 2008 WCAP-. 16964-NP WCAP-16964-NP October 2008

C-67 CAPSULE W (TL)

Page 2 Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: TL Capsule: W Fluence: n/cmA2 Charpy V-Notch Data Temperature Input L.E. Computed L.E. Differential 225. 00 44. 00 44. 57 - .57 250. 00 57. 00 51. 15 5.85 275. 00 65. 00 56. 65 8.35 300. 00 60. 00 60. 94 94 325. 00 56. 00 64. 11 -8.11 350, 00 68. 00 66. 37 I 63 Correlation Coefficient = .969 October 2008 WCAP-1 6964-NP WCAP-16964-NP October 2008

C-68 CAPSULE V (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 I 1:59 AM Page I Coefficients of Curve 6 A = 31.17 B = 28.97 C = 80.8 TO = 204.63 1) = O.XOE+O0 Equation is A + B * [Tanh((T-ToA(C+DT))]

Upper Shelf L.E.=60.1 Lower Shelf LE.=2.2(Fixed)

Temp.W(,L.E. 35 mils=215.4 Deg F Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: TI. Capsule: V Fluence: nfcm^2 200 S150 ISO C

.2

a. 100 50 50 /

/

0

-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input L.E Computed L.E. Diflerential

25. 00 3. 00 2. 87 I13
75. 00 4.00 4. 45 -. 45 100.00 5. 00 6. 24 1.24 125. 00 8. 00 9. 29 -1.29 150. 00 16.00 14. 11 1.89 150. 00 20. 00 14 , 1 1 5.89 160.00 21. 00 16.62 4.38 175.00 21. 00 21.00 .00 175.00 13.00 21. 00 -8. 00 October 2008 WCAP- 16964-NP WCAP- 16964-NP October 2008

C-69 CAPSULE V (TL)

Page 2 Plant: Farley I Material: SA533Bi Heat: C6940-1 Orientation: TL Capsule: V Fluence: n/crnA2 Charpy V-Notch blata Temperature Input L.E. Computed L.E. Difkrential 200. 00 21. 00 29. 5 1 225. 00 49. 00 38. .32 10.68 250. 00 45. 00 45. 92 -. 92 275. 00 5 1. 00 51.50 -. 50 275. 00 49. 00 51.50 -2. 50 300. 00 56.00 55. 15 .85 ColTelation Coelficient =-.968 October 2008 16964-NP WCAP- 16964-NP October 2008

C-70 CAPSULE Z (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:22 PM Page I Coefficients of Curve 7 A = 30.33 B = 2A13 C = 61.64 TO = 184.64 D = O.Q0E+00 Equation is A + B * [Tanhu(T-ToA(C+DT)(]

Upper Shelf L.E.=58.5 Lower Shelf LE.=2.2(Fixed)

Temp.@L.E. 35 mils=195.0 Deg F Plant Farley I Material: SA533BI Heal C6940-1 Orientation: TL Capsule: Z Fluence: n/cm^2 200 150 E

C a 100 50 -a- -__________

ig

/

U .7 nl 0

-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input L.E Computed L.E. Difleremial

50. 00 II1 00 2. 90 8.10 100. 00 I 1. 00 5.59 5.41 170.00 26. 00 23. 78 2. 22 180.00 25. 00 28. 22 -3. 22 200. 00 29. 00 37. 20 -8. 20 210.00 42. 00 41.30 .70 220. 00 5 1. 00 44.91 6. 09 240. 00 53. 00 50. 46 2. 54 250. 00 55. 00 52. 44 2. 56 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-71 CAPSULE Z (TL)

Page 2 Plant: Farley I Material: SA533B I Heat: C6940- I Orientation: TL Capsule: Z Fluence: n/cmA2 Charpy V-Notch D)ata Temperature Input L.E. Computed L.E. Differential 300. 00 54. 00 57. 17 .3. 17 300. 00 60. 00 57. 17 2. 83 350. 00 55.00 58.21 3. 2 1 375. 00 60. 00 58.35 1. 65 390. 00 56. 00 58. 40 -2.40 Correlation Coefficient =.974 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-72 UNIRRADIATED (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 11:55 AM Page 1 Coefficients of Curve I A = 50. B = 50. C = 91.6 TIO = 53.76 D = 0.001,"+00 Equation is A + B * [Tanh((T-To)/(C+DT))I Temperature at 50% Shear= 53.8 Plant: Farley I Material: SA533B] Heat: C6940-1 Ofientation: TL Capsule: UNIRRA Fluence: n/cm^2 125 100 0

S..

'U 75 at (I) 50 0/

a.

0 0

25 0

0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Perownt Shear Differential

- 40. 00 14.00 It. 43 2. 57

-40. 00 20. 00 11 43 8. 57

- 40. 00 14. 00 1I1 43 2. 57 00 25. 00 23 62 1 38 00 25. 00 23. 62 1 38 00 25. 00 23. 62 1 38

40. 00 37. 00 42. 55 - 55
40. 00 29. 00 42. 55 -13. 55
40. 00 52. 00 42. 55 9.45 WCAP- 16964-NP October 2008

C-73 UNIRRADIATED (TL)

Page 2 Plant: Farley I Material: SA533B I Heat: C6940-1 Orientation: TL Capsule: UNIRRA Fluence: n/cm^2 Charpy V-Notch Data Ternperaturxe Input Percent Shear Computed Percent Shear Differential

72. 00 64. 00 59. 83 4. 17
72. 00 50. 00 59. 83 -9. 83
72. 00 55.00 59. 83 -4. 83 110.00 90. 00 77. 35 12.65 110.00 79. 00 77. 35 1.65 110.00 77. 00 77. 35 -. 35 210. 00 100. 00 96. 81 3. 19 210. 00 100. 00 96.81 3. 19 210. 00 100. 00 96.81 3. 19 Correlation Coefficient = .979 WCAP- 16964-NP October 2008

C-74 CAPSULE Y (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 11:55 AM Page I Coefficients of Curve 2 A = 50. B = 50. , = 120.14 TO = 140.57 1) = O.IOOE+O0)

Equation is A + B * [TanhI(T-ToV(C+DT)t]

Temperature at 50% Shear = 140.6 Plant: Farley I Material: SA533BI Heal: C6940-1 Orientation: TL Capsuke: Y Fluence: n/cm^2 125 100 0 75

/ /

Iff /

50

/

25 /

0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Dog F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

25. 00 5. 00 12. 74 74
50. 00 15.00 18. 13 -3. 13
50. 00 15. 00 18. 13 - 3. 13
75. 00 35.00 25. 13 9. 87
79. 00 35.00 26. 41 8. 59 100. 00 40. 00 33. 73 6. 27 125. 00 50. 00 43. 56 6. 44 126. 00 40. 00 43. 97 -3. 97 149. 00 40. 00 53. 50 - 3ý 50 October 2008 WCAP- 1I 6964-NP October 2008

C-75 CAPSULE Y (TL)

Page 2 Plant: Farley I Material: SA533B1! Heat: C6940-1 Orientation: TL Capsule: Y Fluence: n/cmA2 Chtirpy V-Noteh IDatak Temperature Input Percent Shear Computed Percent Shear Differential 174. 00 60. 00 63. 57 -3.57 175. 00 60. 00 63. 95 -3.95 225. 00 75. 00 80. 31 -5.31 249. 00 100. 00 85. 88 14. 1 2 301. 00 100. 00 93. 53 6. 47 350. 00 100. 00 97. 03 2.97 Correlation Coefficient =.970 October 2008 16964-NP WCAP- I16964-NP October 2008

C-76 CAPSULE U (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on t0/02/2008 11:55 AM Page I Coefficients of Curve 3 A = 50. B = 50. C = 77.17 TO = 166.42 D = O.OOE4-OO Equation is A + B * [Tanh((T-To)/(C+DTOI)

Temperature at 50% Shear = 166.5 Plant: Farley I Material: SA533B! Heat: C6940-1 Orientation: TL Capsule: U Fluence: nacm^2 125 100 I

U) 75 0 ... O . -

50 25 0

0

-300.0 -200.0 .100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Dog F Charpy V-Notch lData Temperature Input Percent Shear Computed Percent Shear Differential

25. 00 5. 00 2. 50 2.50
50. 00 11. 00 4. 67 6.33
75. 00 17. 00 8.55 8.45
75. 00 14. 00 8.55 5.45 100. 00 14. 00 15. 17 -1.17 100. 00 21. 00 15. 17 5.83 125. 00 25. 00 25. 47 -. 47 125. 00 26. 00 25. 47 .53 150. 00 29. 00 39. 52 - 10. 52 WCAP- 16964-NP October 2008

C-77 CAPSULE U (TL)

Page 2 Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: TL Capsule: U Fluence: Vcrnm^2 Charpy V-Notch Data Temperature Inpul Percent Shear Computed Percent Shear Differential 200. 00 55.00 70. 48 - 15. 48 225. 00 100. 00 82. 03 17. 97 250. 00 100. 00 89. 72 10. 28 300. 00 100.00 96. 96 3. 04 350. 00 100.00 99. 15 85 400. 00 100. 00 99. 77 23 Cofrlalion Coefficient =.980 WCAP- 16964-NP October 2008

C-78 CAPSULE X (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 11:56 AM Page 1 Coefficients of Curve 4 A = 50. B = 50. C = 80.87 TO = 182.94 D = 0.OOE+4Oi Equation is A + B * [Tanhf(T-ToA/(C+DT))I Temperature at 50% Shear = 183.0 Plant: Farley I Material: SA533BI Heat C6940-I Orientation: TL Capsule: X Fluence: n/cmA2 125 100 I

a, 75 50 25 A'

0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Tenperature Input Percent Shear Computed Percent Shear Differential

- 25. 00 .00 .58 -. 58

25. 00 5, 00 1.97 3. 03
76. 00 10.00 6. 63 3. 37 100. 00 15.00 11.39 3.61 110.00 20, 00 14. 14 5 81 125. 00 20. 00 19. 27 73 125. 00 20. 00 19. 27 73 150. 00 35.00 30. 69 4.31 150. 00 25. 00 30. 69 - 5. 69 WCAP- 16964-NP October 2008

C-79 CAPSULE X (TL)

Page 2 Plant: Farley I Material: SA533B1 Heat: C6940-1 Orientation: TL Capsule: X Fluence: n/cmA2 Chajrpy V-Nolkh Mifita Temperature Input Percent Shear Computed Percnt Shear Differential 175, 00 45.00 45. 11 -. 11 200. 00 45.00 60. 40 15.40 250. 00 100.00 84. 00 16. 00 300. 00 100.00 94.76 5. 24 350. 00 100.00 98. 42 1.58 400. 00 I00.00 99. 54 .46 Coralltion Coefficient = .985 October 2008 16964-NP WCAP- 16964-NP October 2008

C-80 CAPSULE W (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/20)8 12:18 PM Page I Coefficients of Curve 5 A = 50. B = 501. C = 47.15 TO = 193.23 1) = 0.00E448)

Equation is A + B * [Tanht(T-To)/tC+DT))i Temperature at 50% Shear = 193.3 Plant Farley I Material: SA533BI Heat C694{0-1 Orientation: TL Capsule: W Fluence: n/cnr2 125 100 -Y-Y~ ~-

V.,

I (0

75 50 25 V -,

n lo

.300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Dog F Charpy V-Notch D)ata Temperature Input Percent Shear Computed Percent Shear Diflerential

75. 00 5. 00 66 4.34 I00. 00 10.00 188 8. 12 125.00 15.00 5. 24 9.76 150.00 15.00 13. 78 1.22 160.00 25.00 19. 63 5.37 175.00 25. 00 31. 58 -6. 58 175.00 40. 00 31. 58 8.42 185.00 35. 00 41. 36 -6. 36 200. 00 45. 00 57. 13 -12. 13 October 2008 WCAP- 16964-NP WCAP- October 2008

C-81 CAPSULE W (TL)

Page 2 Plant: Farley I Material: SA533B I Heat: C6940-1 Orientation: TL Capsule: W Fluence: rtfcmA2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 225. 00 90. 00 79.37 10.63 250. 00 100. 00 91.74 8. 26 275. 00 100.00 96. 98 3.02 300. 00 100.00 98. 93 1 07 325. 00 100. 00 99. 63 37 350.00 100.00 99. 87 .13 Correlation Coefficient = .986 October 2008 WCAP- 16964-NP October 2008

C-82 CAPSULE V (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 11:56 AM Page I Coefficients of Curve 6 A = 50. B = 50. C = 69.89 TO = 188.05 1) = I).tOE+ONO Equation is A + B * [TanhttT-To)IC+DT))]

Temperature at 50% Shear = 188.1 Plant Farley I Material: SA533BI Heat: C6940-1 Orientation: TL Capsule: V Fluence: n/cmA2 125 100 S

o/

]

/

i! 75 I-

/,

50 25 *i S

oi-~ I -

0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch I)ata Temperature Input Percent Shear Computed Percent Shear Differential

25. 00 5. 00 .93 4. 07
75. 00 10. 00 3. 79 6.21 100. 00 10. 00 7. 45 2.55 125. 00 30. 00 14. 13 15.87 150. 00 25. 00 25. 19 -. 19 150. 00 30. 00 25. 19 4.81 160. 00 25. 00 30. 95 -5.95 175. 00 30. 00 40. 77 - 10. 77 175. 00 35. 00 40. 77 -5.77 WCAP- 16964-NP October 2008

C-83 CAPSULE V (TL)

Page 2 Plant: Farley I Material: SA533B I Heat: C6940-1 Orientation: TL Capsule: V Fluence: nIcrnA2 Charpy V-Notch Data Temnerature Input Percent Shear Computed Percent Shear Differential 200. 00 60. 00 58. 47 I. 53 225. 00 80. 00 74. 22 5. 78 250. 00 80. 00 85. 48 -5. 48 275. 00 100. 00 92. 33 7. 67 275. 00 100.00 92.33 7. 67 300. 00 100. 00 96. 10 3. 90 Correalion Ccefficient =.981 October 2008 WCAP- 16964-NP WCAP- I16964-NP October 2008

C-84 CAPSULE Z (TL)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 0-528/2008 12:19 PM Page 1 Coefficients of Curve 7 A = 50. B = 50.(k = 35.6 TO = 210.88 I) = 0.AOE+O(N Equation is A + B * [Tanht(T-ToWtC+DT))]

Temperature at 509* Shear = 210.9 Plant Farley I Material: SA533BI Heat: C6940-1 Orientation: TL Capsule: Z Fluence: Wlcm^2 125 100 *ur' I

I (0

75 U

50 U;

U!

25 0

-300.0 .200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Dog F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

50. 00 5. 00 01 4.99 100. 00 10. 00 20 9. 80 170. 00 20. 00 9. 14 10.86 180.00 25. 00 14.99 10.01 200. 00 25. 00 35. 17 -10. 17 210.00 35. 00 48. 76 13. 76 220. 00 75 00 62. 53 12.47 240. 00 85. 00 83. 70 1.30 250. 00 95. 00 90. 00 5. 00 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-85 CAPSULE Z (TL)

Page 2-Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: TL Capsule: Z Fluence: n/tcm^2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 300. 00 100. 00 99.34 66 300. 00 100.00 99. 34 66 350. 00 100.00 99. 96 .04 375. 00 100. 00 99. 99 .01 390. 00 100.00 100.00 .00 Correlation Coelficient = .983 October 2008 16964-NP WCAP- I16964-NP October 2008

C-86 UNIRRADIATED (WELD)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 12:35 PM Page I Coefficients of Curve I A = 68.54 B = 66.35 C = 88.54 TO = -17.71 I) = 0.t00+-0411)

Equation is A + B * [Tanh((T-To)/(C+DT))]

Upper Shelf Energy= I34.9(Fixed) Lower Shelf Energy=2.2(Fixed)

Temp@30 ft-lbs-76.4 Deg F Temp@50 i't-lbs-43.1 Deg F Plant: Failey I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: UNIRRA Fluence: tkem"2 300 250

. 200 0

IL LM150 z

100 50 0 "ma P-4---- - I - - 1 -

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Teniperature Input CVN Computed CVN Difl'erential

- 100. 00 18.00 20. 09 -2. 09

- 100. 00 14. 00 20. 09 -6. 09

- 100. 00 5.00 20. 09 -15. 09

- 40. 00 75. 00 52. 18 22 82

-40. 00 53. 00 52. 18 82

-40. 00 60. 00 52. 18 7. 82 10.00 86. 00 88. 65 -2. 65 10.00 80. 00 88. 65 -8. 65 10.00 79.00 88. 65 -9. 65 October 2008 WCAP- 16964-NP WCAP- 16964-NP October 2008

C-87 UNIRRADIATED (WELD)

Page 2 Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: UNIRRA Fluence: n/CcmA2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential

72. 00 117. 00 119.44 -2. 44 72 ,00 113. 00 119.44 -6. 44
72. 00 123 .00 119.44 3. 56 150. 00 118. 00 131.95 - 13.95 150. 00 144. 00 131.95 12. 05 150. 00 151. 00 131.95 19. 05 210.00 159. 00 134. 12 24.88 210. 00 138. 00 134. 12 3. 88 210. 00 151 .00 134. 12 16.88 Correlation Coefficient = .971 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-88 CAPSULE Y (WELD)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 12:36 PM Page I Coefficients of Curve 2 A= 66.76 B = 64.57 C = 113.58 TO = 63.88 D = O.OOE+O0 Equation is A + B * [Tanh(IT-To)/(C+DT))]

Upper Shelf Energy=l 31 .3(Fixed) Lower Shelf Energy=2.2(Fixed)

Temp@30 ft-lbs;=-9.5 Deg F Temp@W50 ft-lbs=33.7 Deg F Plant Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: Y Fluence: n/cnm2 300 250 4200 tL 150 a

100

/

0'

/El 1

50 0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch D~atat Temperature Input CVN Computed CVN Differential

- 26. 00 9. 00 24. 20 -15.

- I . 20 00 32.00 33. 85 85 00 26. 00 33. 85 -7, 85

25. 00 47. 00 45. 49 I. 51
25. 00 55. 00 45. 49 9. 51
50. 00 61. 00 58. 91 2. 09
79. 00 85. 00 75. 31 9. 69 124. 00 117.00 98. 07 18. 93 125. 00 85. 00 98. 50 -13. 50 WCAP- 16964-NP October 2008

C-89 CAPSULE Y (WELD)

Page 2 Plant Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: Y Fluence: n/cm^n2 Cha rpy V-Notch Data Temperature Input CVN Computed CVN Differential 174. 00 100. 00 115.09 -15. 09 209. 00 116. 00 122. 02 -6. 02 226. 00 113.00 124. 30 -II . 30 251. 00 133.00 126. 71 6. 29 299. 00 124.00 129.31 -5. 31 350. 00 137.00 1 30. 50 6. 50 Correlation Coefficient =.969 October 2008 WCAP-1 6964-NP WCAP-16964-NP October 2008

C-.90 CAPSULE U (WELD)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:28 PM Page I Coefficients of Curve 3 A = 53.7 B = 51.5 C = 82.68 TO = 39.84 1) = O.(AiE+IMJ Equation is A + B * [Tanh((T-To)/(C+DT))]

Upper Shelf Energy=I 05.2(Fixed) Lower Shelf Energy=2.2(Fixed)

Temp@30 ft-lbs- 1.3 Deg F Temp@150 fi-lhs=33.9 Deg F Plant Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: U Fluence: n/cm2 300 250 4 200 150 W

100 A00 01 y.e 50 .>

~ -~ - - ~ --..-

0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Dog F Charpy V-Notch Data Temperature Input CVN Computed C VN Differential

-50. 00 5.00 12. 73 -7. 73

-25. 00 26. 00 19.96 6. 04 00 32.00 30. 64 1.36 00 3 1. 00 30. 64 36

25. 00 48. 00 44. 56 3.44
25. 00 38. 00 44. 56 -6. 56
50. 00 60. 00 60. 00 .00
75. 00 72. 00 74. 37 -2. 37
75. 00 &1- 00 74. 37 6. 63 WCAP- 16964-NP October 2008

C-91 CAPSULE U (WELD)

Page 2 Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: U Fluence: n/crni2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential I00.00 82. 00 85. 72 -3.72 150. 00 96. 00 98. 50 -2. 50 200. 00 108. 00 103. 10 4. 90 250. 00 102.00 104. 57 -2.57 300. 00 106.00 105. 01 .99 350. 00 114.00 105. 14 8.86 Correlation Coefficient =.991 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-92 CAPSULE X (WELD)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 12:36 PM Page I Coefficients of Curve 4 A = 58.44 B = 5624 C = 81.27 TO = 55.63 1) = O.00E+O0 Equation is A + B

  • ITanh(oT-ToA/(C+DT))]

Upper Shelf Energy= I 14.7(Fixed) Lower Shelf Energy=2.2(Fixed)

Temp@30 ft-lbs=l 1.0 Deg F Temp@50 ft-lbs=43.5 Deg F Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: X Fluence: n/cjrt'2 300 250 4200 150 Lu w

100 A A 50 0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Tenmerature Input CVN Computed CVN Differential

- 25. 00 12.00 15. 50 -3. 50

.00 43. 00 24. 70 18. 30

25. 00 30. 00 37. 96 -7. 96
25. 00 18. 00 37. 96 -19. 96
35. 00 45. 00 44. 29 .7 1
35. 00 53. 00 44. 29 8. 71
50. 00 67. 00 54. 50 12. 50
50. 00 43. 00 54. 50 - I . 50
76. 00 67. 00 72. 41 -5 41 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-93 CAPSULE X (WELD)

Page 2 Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: X Fluence: fVcm^2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential

76. 00 85. 00 72. 41 12.59 125. 00 89. 00 97. 71 -8.71 150. 00 113. 00 104. 89 8. I1 200. 00 104. 00 1II. 67 -7. 67 300. 00 125. 00 114. 42 10. 58 400. 00 115.00 114. 65 . 35 Correlation COeffiient = .954 WCAP- 16964-NP October 2008

C-94 CAPSULE W (WELD)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:29 PM Page 1 Coefficients of Curve 5 A = 56.3 B = 54.1 C = 59.09 TO = 53.21 D = O.OOE+O0N Equation is A + B * [TanhtiT-ToA'*C+DT))]

Upper Shelf Energy=l l0.4(Fixed) Lower Shelf Energy=2.2(Fixed)

Temp@30 ft-lbs=21.9 Deg F Temp@50 ft-lbs=46.4 Deg F Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: W Fluenoe: nentro2 300 250 r 200 150 w

z 100 VS V 5o V.

0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential

-25. 00 3. 00 9.36 -6.36

.00 12. 00 17. 53 -5. 53

.00 8. 00 17. 5.3 -9. 53 10.00 26. 00 22. 55 3.45

25. 00 17.00 32. 27 -15. 27
25. 00 42. 00 32. 27 9. 73
35. 00 48, 00 40. 13 7. 87
50. 00 64. 00 53. 36 10.64 1OO. 00 83. 00 91.97 -8.97 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-95 CAPSULE W (WELD)

Page 2 Plant Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: W Fluence: n/cm^2 Charpy V-Notch Datai Temperature Input CVN Conputed CVN Differential 150. 00 97.00 106. 46 -9. 46 200. 00 101. 00 109. 65 -8. 65 225. 00 115.00 110. 08 4. 92 250. 00 118.00 110. 26 7. 74 300. 00 113.00 10 37 2. 63 350. 00 105.00 110. 40 -5. 40 Correlation Coefficient =.981 October 2008 WCAP- 16964-NP October 2008

C-96 CAPSULE V (WELD)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/282.008 12:29 PM Page I Coefficients of Curve 6 A = 56.22 B = 54.03 C = 73.4 TO = 79.91 D = 0.OOE+00 Equation is A + B

  • ITanh((T-ToA(C+DT))]

Upper Shelf Energy=l I0.3(Fixed) Lower Shelf Energy=2.2(Fixed)

Temp@.30 ft-lbs=41.1 Deg F Temp@50 ft-lbs=71.5 Deg F Plant Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: V Fluence: n/rnA2 300 250 4200 150 z

1O0 50

/~

fi 0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential

-50. 00 3. 00 5.25 -2. 25

-25. 00 13.00 8. 06 4. 94

.00 8. 00 13.20 -5. 20

25. 00 24. 00 21.97 2. 03
40. 00 20. 00 29. 44 -9.44
50. 00 42. 00 35.35 6. 65
60. 00 52.00 41.92 10.08
75. 00 46. 00 52. 62 - 6. 62 100.00 69. 00 70, 65 - I. 65 WCAP- 16964-NP October 2008

C-97 CAPSULE V (WELD)

Page 2 Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: V Fluence: n/cmn^2 Charpy V-Notcht Data Temperature Input CVN Computed CVN Differential 125.00 88. 00 85.79 2.21 150. 00 89. 00 96.31 -7. 31 175.00 105.00 102. 72 ,2. 28 200.00 114. 00 106. 30 7.70 225. 00 109.00 108.22 .78 250. 00 113.00 109.21 3. 79 Correlation Coefficient = .990 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-98 CAPSULE Z (WELD)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 0512812008 12:29 PM Page I Coefficients of Curve 7 A = 51.9 B = 49.7 C = 46.71 TO = 59.18 D = O.(ME+OO Equation is A + B * [Tanh((T-ToA/(C+DT)I]

Upper Shelf Energy=l 01 .6(Fixed) Lower Shelf Energy=2.2(Fixed)

Temp(930 ft-lbs=37. ! Deg F Temp450 ft-lbs=57.4 Deg F Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: Z Fluence: n/crt2 300 250 ____ + 4 4 4 4 4 ____

4200 -r t i 1 1 -t 150 uj 100

/

/

50 T-nI

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential

-30. 00 9. 00 4.34 4. 66

25. 00 19.00 20. 88 -1.88
30. 00 33. 00 24. 35 8. 65
35. 00 18.00 28. 25 - 10. 25
40. 00 25. 00 32. 57 -7.57
45. 00 29. 00 37. 26 - 8. 26
50. 00 65. 00 42. 26 22. 74
60. 00 52.00 52. 78 - .78
75. 00 62. 00 68. 12 -6. 12 October 2008 WCAP- 16964-NP October 2008

C-99 CAPSULE Z (WELD)

Page' 2 Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule; Z Fluence: n/cm^2 Charpy V-Notch Data Tenperature Input CVN Computed CVN Differential 100. 00 89 00 86. 86 2. 14 200. 00 95 00 101.36 -6. 36 250. 00 107 00 101.57 ,5. 43 280. 00 103 00 101.59 1.41 300. 00 101 00 101.60 -. 60 320. 00 102. 00 101.60 .40 Correlation Coefficient = .974 WCAP- 16964-NP October 2008

C-100 UNIRRADIATED (WELD)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 12:40 PM Page 1 Coefficients of Curve I A = 44.09 B = 41.89 C = 78.8 TO = -31.03 1) = 0.00E+O0 Equation is A + B * [Tanh((T-To)/(C+DT))]

Upper Shelf L.E.=86.0 Lower Shelf LE.=2.2(Fixed)

Temp.@L.E. 35 mils--48.4 Deg F Plant: Fa'ley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: UNIRRA Fluence: n/cm^2 200 150 4 4 E

._o 100 0

0 /8 50 A'

-300.0 0.0 300.0 600.0

. Temperature in Deg F Charpy V-Notch Data Temperature Input L.E. Computed L.E. Differential

-100. 00 11. 00 14. 60 -3. 60

-100. 00 II . 00 14. 60 -3.60

-100. 00 I.00 14. 60 -13.60

-40. 00 55. 00 39. 34 15.66

-40. 00 43. 00 39. 34 3. 66

-40. 00 44. 00 39. 34 4. 66 10.00 63. 00 64. 13 -1.13

10. 00 58. 00 64. 13 - 6. 13
10. 00 54. 00 64. 13 -10.13 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-101 UNIRRADIATED (WELD)

Page 2 Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: UNIRRA Fluence: I/cmnA2 Charpy V-Notch Data Temperature Input LE. Computed L.E. Differential

72. 00 82. 00 80. 27 1.73
72. 00 79. 00 80. 27 -1.27
72. 00 80. 00 80. 27 -. 27 1 50. 00 81. 00 85. 14 -4. 14 150. 00 89. 00 85. 14 3. 86 1 50. 00 90. 00 85. 14 4. 86 210.00 85. 00 85. 80 -. 80 210.00 88. 00 85. 80 2.20 210.00 85. 00 85. 80 -. 80 Correlation Coefficient =.976 WCAP- 16964-NP October 2008

C-102 CAPSULE Y (WELD)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 12:40 PM Page I Coefficients of Curve 2 A = 42.52 B = 40.32 C = 62.51 TO = 34.55 1) = O.00E+4-)

Equation is A + B * [Tanh((T-To/(C+DT))]

Upper Shelf L.E.=82.8 Lower Shelf LE.=2.2(Fixed)

Temp. @LE. 35 mils=22.8 Deg F Plant Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: Y Fluence: n/cmA2 200 150 C

& 100

/

5o I

0

-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input L.E. Computed L.E. Differential

- 26. 00 5. 50 12.36 -6. 86 00 24. 00 22. 26 1.74 00 25. 00 22. 26 2.74

25. 00 35. 50 36. 40 - . 90
25. 00 41. 00 36. 40 4. 60
50. 00 47. 00 52. 28 -5.28
79. 00 68. 50 67. 16 1. 34 124. 00 81 00 78. 47 2.53 125. 00 78. 00 78. 60 - . 60 October 2008 16964-NP WCAP- 16964-NP October 2008

C-103 CAPSULE Y (WELD)

Page 2 Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: Y Fluence: n/cink42 Charpy V-Notch Data Temperature Input L.E. Computed L.E. Diffirential 174.00 77. 00 81.91 -4.91 209. 00 84. 50 82. 53 1. 97 226. 00 79. 00 82. 66 -3. 66 251.00 87.00 82. 75 4.25 299. 00 82. 00 82.81 -67 350. 00 84. 50 82. 83 1. 67 Correlation Coefficient =. 992 October 2008 WCAP.- 16964-NP WCAP- October 2008

C-104 CAPSULE U (WELD)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:35 PM Page I Coefficients of Curve 3 A = 40.29 B = 38.09 C = 83.22 TO = 58.01 1) = O.00E+00 Equation is A + B * [Tanh0(T-ToVAC+DT))]

Upper Shelf L.E.=78.4 Lower Shelf LE.=2.2(Fixed)

Temp. @'LE. 35 mils=46.4 Deg F Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: U Fluence: n/cm'2 200 150 E

C 3100

.O0 50

~~

.... ~ ... o 0

-300.0 0.0 300.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input LE. Computed L.E. Dift'rential

- 50, 00 I. 00 7. 49 -6 49

- 25. 00 13.00 11.,32 1. 68 00 18.00 17. 34 66 00 17.00 17. 34 -. 34

25. 00 29. 00 25. 93 3. 07
25. 00 23. 00 25. 93 -2. 93
50. 00 35. 00 36. 63 I. 63
75. 00 46. 00 47. 96 - I.96
75. 00 56. 00 47. 96 8. 04 October 2008 WCAP- 16964-NP October 2008

C-105 CAPSULE U (WELD)

Page 2 Plant Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: U Fluence: tn/cmA2 Charpy V-Notch Data Teimperalure. Input L.E. Computed L.E. Differential 100. 00 55. 00 58. 03 -3. 03 150. 00 68. 00 70. 85 -2. 85 200. 00 74. 00 75. 95 - I. 95 250. 00 79. 00 77. 63 I. 37 300. 00 76. 00 78. 15 15 350. 00 83. 00 78. 31 4. 69 Correlation Coefficient =.991 October 2008 16964-NP WCAP- 16964-NP October 2008

C-106 CAPSULE X (WELD)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 12:40 PM Page I Coefficients of Curve 4 A = 4Z63 B = 4M.43 C = 86.84 TO = 48.29 1) = O.OOE+400 Equation is A + B * [Tanht(T-ToAC+DT))]

Upper Shelf L.E.=83. I Lower Shelf LE.=2.2{Fixed)

Temp. @LE. 35 mils=31.8 Deg F Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: X Fluence: n/cmW2 200 150 E

C

.2 I. 100 A, -- - -- -;- - -- - - - -

I5 50 AA 0

-300.0 0.0 300.0 600.0 Temperature In Deg F Charpy V-Notch Data Tenperature Input L.E Computd L.E. Differential

- 25. 00 12.50 14. 82 -2.32 00 35. 00 22.21 12.79

25. 00 27. 00 32. 04 -5. 04
25. 00 20, 50 32. 04 -I1. 54
35. 00 36. 50 36. 49 01
35. 00 42. 00 36. 49 5.51
50. 00 48. 50 43. 43 5.07
50. 00 39. 50 43. 43 -3.93
76. 00 48. 50 55. 11 -6. 61 WCAP- 16964-NP October 2008

C-107 CAPSULE X (WELD)

Page 2 Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: X Fluence: n/cmA2 Chairpy V-Notch Data Temperatule Input L.E. Computed L.E. Differential

76. 00 62. 00 55. 11 6. 89 125. 00 67. 50 71. 26 -3. 76 150. 00 83. 50 75. 97 7. 53 200. 00 78. 50 80. 67 -2. 17 300. 00 87. 00 82.81 4. 19 400. 00 77. 50 83. 03 -5. 53 Correlation Coefficient = .960 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-108 CAPSULE W (WELD)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:35 PM Page 1 Coefficients of Curve 5 A = 40.11 B = 37.91 C = 61.49 TO = 52.57 1) = OAN)E+JO Equation is A + B * [Tanh((T-To/(C+DT))]

Upper Shelf LE.=78.0 Lower Shelf LE.=2.2(Fixed)

Temp.@LE. 35 miI-44.3 Deg F Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: W Fluence: r/cmA2 200 150 4 4

&100 I -- V V

50 V

-300.0 0.0 300.0 600.0 Temperature in Dog F Charpy V-Notch Data Temperature Input L.E. Computed L.E. Difterential

- 25. 00 I. 00 7. 83 - 6. 83 00 9. 00 13. 81 -4. 81 00 10. 00 13. 81 -3. 81

10. 00 20. 00 17. 38 2. 62
25. 00 14. 00 24. 17 17
25. 00 30. 00 24. 17 5. 83
35. 00 37. 00 29. 56 7. 44
50. 00 45. 00 38. 53 6. 47 100. 00 57. 00 64. 67 -7. 67 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-109 CAPSULE W (WELD)

Page 2 Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: W Fluence: ncm^2 Charpy V-Notch Data Temperature Input L.E. Computed L.E. Differential 150. 00 7 1. 00 74. 97 -3.97 200. 00 77. 00 77.41 .41 225. 00 76.00 77.75 -1.75 250. 00 82. 00 77.91 4. 09 300. 00 83 . 00 78.01 4.99 350. 00 78. 00 78. 02 - . 02 Correlation Coefficient = .983 October 2008 16964-NP WCAP- 16964-NP October 2008

C-110 CAPSULE V (WELD)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:36 PM Page I Coefficients of Curve 6 A = 39.02 B = 36.82 C = 77.01 TO = 82.62 1) = O.OOE+4K)

Equation is A + B * [Tanh('T-To/(C+DT)h]

Upper Shelf L.E.=75.8 Lower Shelf LE.=2.2(Fixed)

Temp.@LE. 35 mi1s=74.2 Deg F Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: V Fluence: n/lcnA2 200 150 E

C

.2

3. 100

.7-5O / S

.1

  • 9r0

/

'0 n "

-300.0 0.0 300.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input L.E. Computed L.E. Differential

- 50. 00 00 4. 48 -4. 48

- 25. 00 2.00 6. 44 -4. 44

.00 7. 00 9.91 -2 91

25. 00 25. 00 15.67 9. 33
40. 00 13.00 20. 49 -7. 49
50. 00 27. 00 24. 29 2 71
60. 00 37. 00 28. 50 8, 50
75. 00 28. 00 35. 39 -7. 39 100. 00 46. 00 47. 19 -1 19 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-111 CAPSULE V (WELD)

Page 2 Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: V Fluence: en'cm^2 Charpy V-Notch Data~

Temperature Input L.E. Computed L.E. Differential 125.00 62. 00 57. 46 4. 54 150. 00 57. 00 64. 93 -7.93 175.00 72.00 69. 71 2.29 200. 00 79.00 72. 50 6. 50 225. 00 73.00 74. 06 -1. 06 250. 00 72.00 74. 90 -2. 90 Correlation Coefficient =.979 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-112 CAPSULE Z (WELD)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/281-008 12:37 PM Page I Coefficients of Curve 7 A = 38.3; B = 36.15 C = 50.77 T0) = 56.89 D= O=(N)E+N)

Equation is A + B * [Tanh(IT-To)j/C+DT))]

Upper Shelf L.E.=74.5 Lower Shelf L.E.=2.2(Fixed)

Temp.@L.E. 35 mils=52.2 Deg F Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: Z Fluence: n/cn 2 200 150 E

C

.2 R1o

...... .. *U L O0 50 /-ga d1,.

n

-300.0 0.0 300.0 600.0 Temperature In Dog F Charpy V-Notch Data Tenmerature Input L.E. Computed L.E. Differential

-30. 00 9. 00 4. 48 4.52

25. 00 16. 00 18. 22 -2. 22
30. 00 24. 00 20. 82 3. 18
35. 00 18. 00 23. 66 -5. 66 40, 00 20. 00 26. 75 -6. 75
45. 00 29. 00 30. 04 -I . 04
50. 00 49. 00 33. 48 15.52
60. 00 41. 00 40.56 .44
75. 00 42. 00 50.72 - 8.72 October 2008 16964-NP WCAP- 16964-NP October 2008

C-113 CAPSULE Z (WELD)

Page 2 Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: Z Fluence: n/cnra2 Charpy V-Notch Data Temperature Input L.E. Computed L.E. Diflirential 100.00 68. 00 63.31 4. 69 200. 00 66. 00 74. 24 -8. 24 250. 00 76. 00 74. 46 1.54 280. 00 79.00 74. 49 4. 51 300. 00 75. 00 74. 49 51 320. 00 75. 00 74. 50 50 Cotelation Coefficient =.970 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-114 UNIRRADIATED (WELD)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 12:,37 PM Page I Coefficients of Curve I A = 50. B = 541.C = 84.1 TO = -28.9 D O.OOE+O0 Equation is A + B * [Tanh((T-To)/(C+DT))]

Temperature at 50% Shear = -28.9 Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: UNIRRA Fluence: nIcmA2 125 100 S..

0) 75 0

50 0

25 0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch D)ata Temperature Input Percent Shear Computed Percent Shear Differential

-100.00 20. 00 15. 57 4. 43

-100.00 25. 00 15. 57 9. 43

-100.00 15.00 15. 57 57

-40.00 50. 00 43. 44 6. 56

-40. 00 43. 00 43. 44 44

-40. 00 32. 00 43. 44 I1. 44 10.00 73.00 71. 61 39 10.00 65.00 71. 61 -6. 61 10.00 65. 00 71. 61 -6. 61 WCAP-16964-NP October 2008

C-115 UNIRRADIATED (WELD)

Page 2 Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: UNIRRA Fluence: IVncm^2 Charpy V-Notch Dalta Temperature Input Percent Shear Computed Percent Shear Differential

72. 00 100.00 91.68 8.32
72. 00 100.00 91.68 8.32
72. 00 100.00 91.68 8.32 150. 00 100.00 98. 60 1. 40 150. 00 100.00 98. 60 1.40 150. 00 100.00 98. 60 1.40 210. 00 100.00 99. 66 34 210. 00 100.00 99. 66 .34 210. 00 100.00 99. 66 .34 Correlation Coefficient = .985 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-116 CAPSULE Y (WELD)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 12:38 PM Page I Coefficients of Curve 2 A = 50. B = 50. C = 133.05 TO = 4854 1) = 0.00E+O0 Equation is A + B

  • jTanh(uT-Toil(C+DT))]

Temperature at 50% Shear= 48.6 Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: Y Fluence: n/cm^2 125 100 0 D L

75 a

/

50 /

0 25 /

a/

0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

- 26. 00 10. 00 24. 59 - 14. 59 00 40. 00 32. 53 7. 47 00 35. 00 32. 53 2. 47

25. 00 35. 00 41. 24 - 6. 24
25. 00 40. 00 41. 24 -I .24
50. 00 60. 00 50. 55 9.45
79. 00 65. 00 61. 25 3. 75 124. 00 85. 00 75. 66 9. 34 125. 00 70. 00 75. 94 -5. 94 October 2008 16964-NP WCAP- I16964-NP October 2008

C-117 CAPSULE Y (WELD)

Page 2 Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: Y Fluence: nIcmA2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 174. 00 go. 00 86. 83 -6. 83 209. 00 85. 00 91.77 -6. 77 226. 00 85. 00 93. 51 -8.51 251. 00 100.00 95. 45 4.55 299. 00 100.00 97. 74 2. 26 350. 00 100.00 98. 94 1. 06 Correlation Coefficient = .967 October 2008 WCAP- I16964-NP 16964-NP October 2008

C-118 CAPSULE U (WELD)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:31 PM Page I Coefficients of Curve 3 A = 50. B = 50. C= 87.14 TO = 37.04 D = .OOE+OO Equation is A + B * [Tanh((T-To)/(C+DT))]

Temperature at 50% Shear= 37.1 Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: U Fluence: n/cmA2 125 100 I

o'I 75 I

50 25 04 0

0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

- 50. 00 13.00 1 1. 94 I. 06

- 25. 00 14. 00 19.41 -5. 41 00 28. 00 29. 94 -I . 94 00 37. 00 29. 94 7. 06

25. 00 50. 00 43. 14 6. 86
25. 00 37. 00 43. 14 -6. 14
50. 00 58. 00 57. 38 .62 75, 00 63. 00 70. 50 -7.50
75. 00 76. 00 70. 50 5. 50 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-119 CAPSULE U (WELD)

Page 2 Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: U Fluence: n/cinA2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percm Shear Differential 100.00 76, 00 80. 92 -4,92 150. 00 100, 00 93. 04 6. 96 200. 00 100. 00 97. 68 2.32 250. 00 100.00 99. 25 .75 300. 00 100.00 99. 76 .24 350. 00 100.00 99. 92 08 Correlation Coefficient =.989 WCAP- 16964-NP October, 2008

C-120 CAPSULE X (WELD)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 06/02/2008 12:38 PM Page I Coefficients of Curve 4 A = 50. B = 50. C = 73.26 TO = 66.05 1)= .O00E+00 Equation is A + B * [Tanh((T-To)/(C+DT))!

Temperature at 50% Shear = 66.1 Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: X Fluence: n/cnm2 125 100 I 75 A

50 25 d% 6 U

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

- 25. 00 5. 00 7. 69 -2. 69

.00 20. 00 14. 15 5.85

25. 00 25. 00 24. 59 .4 1
25. 00 20. 00 24. 59 -4.59
35. 00 30. 00 29. 99 .01
35. 00 35. 00 29. 99 5.01
50. 00 45. 00 39. 22 5.78
50. 00 35. 00 39. 22 -4. 22
76. 00 45. 00 56. 75 . 11.75 October 2008 16964-NP WCAP- 16964-NP October 2008

C-121 CAPSULE X (WELD)

Page 2 Plant Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: X Fluence: ric^nA2 Charpy V-Notch [)ata Temperature Input Percent Shear Computed Percent Shear Differential

76. 00 60. 00 56. 75 3.25 125. 00 90. 00 83. 33 6. 67 1 50. 00 90. 00 90. 82 - .82 200. 00 100. 00 97. 48 2.52 300. 00 100. 00 99. 83 .17 400. 00 100. o0 99. 99 .01 Correlation Coefficient = .989 October 2008 WCAP- 16964-NP October 2008

C-122 CAPSULE W (WELD)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:32 PM Page I Coefficients of Curve 5 A = 50. B = 50). C = 58.08 TO = 50.65 D = 0.00E+00 Equation is A + B * [Tanh(IT-ToW(C+DT))]

Temperature at 50% Shear= 50.7 Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: W Fluence: ntcm^2 125 100 7 V L. 75 V.

v/1 50 9,

25 0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Tmperature Input Petrent Shear Computed Percent Shear Differential

- 25. 00 10. 00 6. 88 3. 12 00 15. 00 14. 88 .12 0t) 15.00 14. 88 .12 10.00 20, 00 19. 79 .2 1

25. 00 25. 00 29. 25 4. 25
25. 00 25.00 29. 25 -4.25
35. 00 30. 00 36. 85 -6. 85
50. 00 65.00 49. 44 15.56 100.00 80. 00 84, 55 -4.55 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-123 CAPSULE W (WELD)

Page 2 Plant Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: W Fluence: tr/cmA2 Charpy V-Notch D)ata Temperature Input Percent Shear Computed Percent Shear Differential 150. 00 90. 00 96. 84 - 6. 84 200. 00 100. 00 99. 42 58 225. 00 100. 00 99. 75 .25 250. 00 100. 00 99. 90 .10 300. 00 100. 00 99. 98 02 350. 00 100. 00 100. 00 00 Correlation Coefficient =. 990 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-124 CAPSULE V (WELD)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28P2008 12:32 PM Page 1 Coefficients of Curve 6 A = 50. B =50. C = 65.07 TO = 79.86 1) = 0.tMIE+O0 Equation is A + B * [Tanh{(T-To)/(C+DT))]

Temperature at 50% Shear = 79.9 Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: V Fluence: n/cmr 2 125 100 7%

Si.

I 0

75 I

50 I

25 /

S n 1 0~~*'

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Dog F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-50. 00 5.00 I. &I 3.1I9

-25. 00 10. 00 3, g3 6. 17

. 00 10. 00 7.91 2. 09

25. 00 20. 00 15.63 4.37
40. 00 20. 00 22. 70 -2. 70
50. 00 25. 00 28. 54 -3. 54
60. 00 30. 00 35.20 -5. 20
75. 00 50. 00 46. 27 3. 73 100.00 65. 00 65. 00 . 00 WCAP-16964-NP October 2008

C-125 CAPSULE V (WELD)

Page 2 Plant Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: V Fluence: ni/cnA2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Diffetential 125. 00 85. 00 80. 02 4. 98 150. 00 85. 00 89. 62 -4. 62 175. 00 95.00 94. 90 10 200. 00 100.00 97. 57 2 43 225. 00 100.00 98. 86 I 14 250. 00 100.00 99. 47 53 Correlation Coefficient = .996 October 2008 WCAP- 16964-NP October 2008

C-126 CAPSULE Z (WELD)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:32 PM Page I Coefficients of Curve 7 A = 50. B = 5k. C = 56.22 TO = 54.76 1)= (I.00E+O0 Equation is A + B * [Tanh((T-To9/(C+DT))]

Temperature at 50% Shear= 54.8 Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: Z Fluence: n/cnm2 125 100 If- I-

/

I Col 75 50

/

25 0

-300.0 -200.0 -100.0 0.10 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Dog F Charpy V-Notch Data Tenperature Input Perent Shear Computed Percent Shear Differential

- .30. 00 10.00 4. 68 5.32

25. 00 20. 00 25. 76 -5.76
30. 00 25. 00 29.30 -4.30
35. 00 30. 00 33. 12 -3. 12
40. 00 25. 00 37. 17 -12. 17
45. 00 45. 00 41.41 3. 59
50. 00 65. 00 45. 78 19.22
60. 00 60. 00 54. 65 5.35
75. 00 65. 00 67. 26 -2. 26 October 2008 WCAP- 16964-NP WCAP- October 2008

C-127 CAPSULE Z (WELD)

Page 2 Plant: Farley I Material: LINDE 0091 Heat: 33A277 FLUX Orientation: NA Capsule: Z Fluence: ntcrnA2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differenjial 100. 00 75. 00 83.33 -8. 33 200. 00 95. 00 99. 43 -4.43 250. 00 100. 00 99. 90 .10 280. 00 100. 00 99. 97 03 300. 00 100. 00 99. 98 02 320. 00 100. 00 99. 99 .01 Correlation Coefficient = .976 October 2008 WCAP- 16964-NP 16964-NP October 2008

C-128 UNIRRADIATED (HAZ)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:40 PM Page I Coefficients of Curve I A = 75.93 B = 73.74 C = 97.75 TO = -89.1 1) = 0.00E+010 Equation is A + B * [Tanh((T-To)/(C+DT))]

Upper Shellf Energy=-149.7(Fixed) Lower Shelf Energy=-2.2(Fixed)

Temp@30 ft-lbs-160.4 Deg F Temp@50 ft-lbs-125.0 Deg F Plant: Farley I Material: SA533B1 Heat: C6940-1 Orientation: NA Capsule: UNIRRA Fluence: nicm^2 300 250 4 200 0

IL 0 0

Lm150 0

LUI z 0

> 100 0 0

50 0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch I)ata Temperature Input CVN Computed CVN Differential 150. 00 I1 . 00 35. 14 .24. 14 150. 00 58. 00 35. 14 22. 86 150. 00 15.00 35. 14 -20. 14 100. 00 67. 00 67. 74 74 100. 00 33. 00 67. 74 -34. 74 100. 00 103. 00 67. 74 35. 26

-75. 00 110.00 86. 49 23. 51

-75. 00 101. 00 86. 49 14. 51

-20. 00 122. 00 120. 82 1I. 1 8 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-129 UNIRRADIATED (HAZ)

Page 2 Plant: Farley I Material: SA533B I Heat: C6940- I Orientalion: NA Capsule: UNIRRA Fluence: n/cmA2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential

-20. 00 84. 00 120. 82 -36. 82

-20. 00 120.00 120. 82 -. 82

50. 00 141 .00 141.57 -. 57
50. 00 142.00 141.57 .4 3
75. 00 150.00 144.71 5. 29 210. 00 132.00 149.35 .17. 35 210. 00 170.00 149. 35 20. 65 2 10. 00 163.00 149.35 13.65 Conrelation Coefficient = .908 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-130 CAPSULE Y (HAZ)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/22008 12:41 PM Page 1 Coefficients of Curve 2 A = 70.6 B = 68.4 C = 154.62 TO = -25.65 1) = O.OOEi-+4 Equation is A + B * [Tanh((T-To)/C+DT))]

Upper Shelf Energy=I 39.0(Fixed) Lower Shelf Energy=2.2(Fixed Temp4 30 ft-lbs=-131.2 Deg F Ternmp50 fi-lbs=-73.7 Deg F Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: NA Capsule: Y Fluence: n/cm^2 300 250 4200 150 W

z 100 50 0 i ---

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential

-1 10.00 20. 00 36. 59 -16.59

- 108. 00 27. 00 37. 26 -10. 26

- 75. 00 36. 00 49. 48 S13. 48

- 50. 00 83. 00 59. 91 23. 09

- 25. 00 74. 00 70. 89 3. 11

- 25. 00 59. 00 70. 89 -11. 89

.00 124. 00 81 . 84 42. 16

.00 86. 00 81. 84 4. 16

25. 00 95. 00 92. 24 2. 76 October 2008 16964-NP WCAP- I16964-NP October 2008

C-131 CAPSULE Y (HAZ)

Page 2 Plant: Farley I Material: SA533B1I Heat: C6940-1 Orientation: NA Capsule: Y Fluence: cncm^2 Charpy V-Notch D)ata Temperature Input CVN Computed CVN Differential

79. 00 50. 00 110.92 -60.92
80. 00 127. 00 111. 20 15. 80 100.00 123. 00 116.50 6. 50 151. 00 112.00 126.36 - 14. 36 199. 00 141 . 00 131. 90 9. 10 250. 00 137. 00 135.24 1.76 Correlation Coefficient =. 829 WCAP-16964-NP October 2008

C-132 CAPSULE U (HAZ)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 07/17/2008 03:03 PM Page I Coefficients of Curve 3 A = 60.1 B = 57.9 C = 68.07 TO = 34.06 D = O.JNIE+)

Equation is A + B * [Tanh((T-ToA(C+DT))]

Upper Shelf Energy=1 18.0(Fixed) Lower Shelf Energy=2.2(Fixed)

Temp@30 ft-lbs=-5.1 Deg F Temp@'50 ft-lbs=22.1 Deg F Plant: Farley I Material: SA533B1 Heat C6940-1 Orientation: NA Capsule: U Fluence: nr/na2 300 250 r 200 U.

150 100 50 .......

....... * ...... f.....

0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential

- 100. 00 3.00 4.41 -1. 41

- 50. 00 30. 00 11. 23 18. 77

- 50. 00 20. 00 1I. 23 8. 77

- 25. 00 15.00 19.56 -4. 56

  • 00 19. 00 33. 33 - 14 33 00 30. 00 33. 33 - 3. 33
25. 00 5 1. 00 52. 44 - 1.44
50. 00 84. 00 73. 41 10. 59
75. 00 92. 00 91. 25 .75 WCAP- 16964-NP October 2008

C-133 CAPSULE U (HAZ)

Page 2 Plant: Farley I Material: SA533B I Heat: C6940-1 Orientation: NA Capsule: U Fluence: n/cn1A2 Charpy VmNof cli D~ata Tempemature Input CVN Computed CVN Differentiil 100.00 126.00 103.41 22.59 100.00 84. 00 103.41 -19.41 150. 00 96. 00 114. 28 -18.28 200. 00 122.00 117. 12 4.88 300. 00 104.00 117.95 -13.95 350. 00 120.00 117.99 2.01 Correlation Coefficient = .960 October 2008 WCAP-WCAP-16964-NP 16964-NP October 2008

C-134 CAPSULE X (HAZ)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28r2008 12:41 PM Page I Coefficients of Curve 4 A=64.35 B=62.15C=71.92 TO= 17.17 D=0i.OOE+U0 Equation is A + B * [Tanh((T-To)IC+DT))I Upper Shelf Energy=l126.5(Fixed) Lower Shelf Energy=2.2(Fixed)

Temp@30 ft-lbs=-27.5 Deg F Temp(@50 fl-lbs=.3 Deg F Plant Farley I Material: SA533BI Heat: C6940-1 Orientation: NA Capsule: X Fluence: n/cm^A2 300 250 + + 4 4 4 + 4 4 4 200 0

II.

150 A,

100 5o  %

.4, n "

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential 100. 00 20. 00 6. 80 13.20

-50. 00 24. 00 18. 83 5. 17

-50. 00 55, 00 18. 83 36. 17

-25. 00 33. 00 31. 58 1.42

25. 00 31. 00 31. 58 - .58 00 28. o00 49. 78 -21.78 00 43. 00 49. 78 - 6. 78
25. 00 32. 00 71. 09 -39. 09
25. 00 85. 00 71. 09 13. 9 1 October 2008 16964-NP WCAP- I16964-NP October 2008

C-135 CAPSULE X (HAZ)

Page 2 Plant: Farley I Material: SA533B I Heat: C6940- I Orientation: NA Capsule: X Fluence: n/cii"2 Charpy V-Notch Data Temperature Input CVN Computed CVN Diffeivential

50. 00 118.00 90. 90 27. 10
76. 00 119.00 106. 23 12. 77 150.00 139. 00 123. 48 15. 52 200. 00 110.00 125.73 -15. 73 300. 00 132. 00 126. 45 5. 55 400. 00 125. 00 126. 50 -I 50 Correlation Coefficient =.912 WCAP- 16964-NP October 2008

C-136 CAPSULE W (HAZ)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 0-5/28/2008 12:41 PM Page I Coefficients of Curve 5 A = 67.7 B = 65.5 C = 94.23 TO = 23.08 i1)= O.(N)E+IKI Equation is A + B

  • ITanh(IT-To)/(C+DT)I]

Upper Shelf Energy=- 33.2(Fixed) Lower Shelf Energy=2.2(Fixed)

Temp4130 ft-lbs=-38.7 Deg F Temp(50 ft-lbs=-3.0 Deg F Plant: Farley I Material: SA533Bl Heat: C6940-1 Orientation: NA Capsule: W Fluence: n/cmn"2 300 250 4200 150 "

Z 00 I 50 0 ' - .....- - -.- 41 - i

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F

('harpy V-Notch Data Temper ature Input CVN Conmputd CVN Differential

-75 .00 21.00 16.73 4.27

-50 .00 25.00 25.12 -. 12

-40 .00 23. 00 29. 41 - 6. 41

- 25 .00 32.00 36.91 -4.91

-25 00 50. 00 36. 91 13. 09 00 55.0 0 51. 97 3. 03 25 .00 65.00 69.03 -4.03 50 00 82. 00 85. 92 - 3. 92 I00 00 101. 00 11 1. 7x - 10. 78 October 2008 WCAP- 16964-NP October 2008

C-137 CAPSULE W (HAZ)

Page 2 Plant: Farley I Material: SA533B! Heat: C6940-1 Orientation: NA Capsule: W Fluence: rncmn2 Charpy V-Notch D)ata Temperature Input CVN Computed CVN Differernlia 125.00 126. 00 119. 69 6. 3 1 150.00 143. 00 124. 90 18. 10 175.00 130. 00 128. 19 1.81 200. 00 130. 00 130. 20 -. 20 250. 00 135. 00 132. 15 2.85 300. 00 128. 00 132. 83 -4.83 Con'elation Coefficient = .987 October 2008 16964-NP WCAP- I16964-NP October 2008

C-138 CAPSULE V (HAZ)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:42 PM Page I Coefficients of Curve 6 A = 61.26 B = 59.06 C = 149.17 TO = 97.16 D = O.OOE+OO Equation is A + B * [Tanh((T-Tol(C+DT))!

Upper Shelf Energy=- 20.3(Fixed) Lower Shelf Energy=2.2(Fixed)

Temp@30 ft-lbs=9.3 Deg F Temp@50 ft-lbs=68.4 Deg F Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: NA Capsule: V Fluence: n/cm`A2 300 250 r 200 150 z ................................ .*.

100

-0/--"

50 0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential

- 75. 00 17. 00 12.88 4. 12

- 50. 00 5. 00 16.62 - II. 62

- 50. 00 49. 00 16.62 32. 38

- 25. 00 18. 00 21.43 -3.43

.00 63. 00 27. 45 35. 55

.00 13. 00 27. 45 - 14. 45

25. 00 34. 00 34.73 - .73
50. 00 31. 00 43. 19 - 12. 19
75. 00 3 1. 00 52. 56 221. 56 October 2008 WCAP- 16964-NP October 2008

C-139 CAPSULE V (HAZ)

Page 2 Plant: Farley I Material: SA533B I Heat: C6940- I Orientation: NA Capsule: V Fluence: n/cmA2 Charpy V-Notch Data Temperature Input CVN Computed CVN Differential 100. 00 69. 00 62.39 6.61 1 50. 00 74. 00 81.35 -7. 35 200. 00 92. 00 96. 56 -4. 56 225. 00 103. 00 102. 30 70 250. 00 107. 00 106. 85 15 275. 00 151 00 1 10. 36 40. 64 Correlation Coefficient = .896 October 2008 WCAP- 16964-NP WCAP- I16964-NP October 2008

C-140 CAPSULE Z (HAZ)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:42 PM Page I Coefficients of Curve 7 A = 61.22 B = 59.03 C = 73.31 TO = 53.44 D = 0t.0E+O0 Equation is A + B * [Tanh(uT-ToJ(C+DT)I]

Upper Shelf Energy=- 20.3(Fixed) Lower Shelf Energy=2.2(Fixed)

Temp@30 ft-lbs= 10.3 Deg F Temp@50 ft-ibs=39.4 Deg F Plant: Farkey I Material: SA533BI Heat: C6940-1 Orientation: NA Capsule: Z Fluence: n/cm^2 300 250 200 150 Lu 100 t,'/w 50 U/

0

-300.0 -200.0 .100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input CVN Computed CVN Differential

-80. 00 14. 00 5.22 8.78

-20. 00 14. 00 16.23 -2. 23

.00 16. 00 24. 49 .8.49

20. 00 53. 00 36. 03 16.97
25. 00 27. 00 39.41 12.41
30. 00 49. 00 42. 97 6. 03
35. 00 27 00 46, 68 -19.68
40. 00 57. 00 50.52 6. 48
50. 00 69. 00 58. 46 10. 54 October 2008 WCAP- 16964-NP October 2008

C-141 CAPSULE Z (HAZ)

Page 2 Plant: Farley I Material: SA533B I Heat: C6940- 1 Orientation: NA Capsule: Z Fluence: IV'cmA2 Charpy V-Notch Data TemperatureC Input CVN Computed CVN Differential

80. 00 82. 00 81.72 . 28 150. 00 104. 00 112.35 -8 .35 200. 00 120. 00 118. 12
  • 88 300. 00 128. 00 120. 11 7. 89 320. 00 12.1. 00 120. 17 .83 350. 00 128. 00 1 20. 2)1 7. 79 Correlation Coefficient = .975 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-142 UNIRRADIATED (HAZ)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:47 PM Page I Coefficients of Curve I A = 41.93 B = 39.73 C= 76.11 TO = -93.23 I) = 0.00E+OO Equation is A + B * [Tanh((T-To)/(C+DT))]

Upper Shelf L.E.=81.7 Lower Shelf L.E.=2.2(Fixed)

Temp.@L.E. 35 mil*-106.6 Deg F Plant Farley I Material: SA533BI Heat: C6940-1 Orientation: NA Capsule: UNIRRA Fluence: n/cmA2 200 150 E

C

.o C

a100 50 0 4--=

-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch D)ata Tempemtire Input L.E. Computed L.E. Differential 150. 00 6. 00 16.80 -10.80 150. 00 29. 00 16.80 12. 20 150.00 7. 00 16.80 -9. 80 100. 00 40. 00 38.41 1.59 t00. 00 19.00 38.41 -19. 41 100. 00 54. 00 38.41 15 59

-75.00 57.00 51.27 5.73

-75. 00 62. 00 51.27 10.73

-20. 00 72. 00 71.54 .46 October 2008 16964-NP WCAP- I16964-NP October 2008

C-143 UNIRRADIATED (HAZ)

Page 2 Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: NA Capsule: UNIRRA Fluence: n/cnv^2 Charpy V-Notch Data Temperature Input L.E. Computed L.E. Differential

-20. 00 52. 00 71.54 -19.54

-20. 00 7 1. 00 71.54 - . 54 50ý 00 83.00 79. 86 3. 14

50. 00 85. 00 79. 86 5. 14
75. 00 74. 00 80. 72 -6. 72 210.00 85. 00 81.64 3. 36 210.00 83.00 81 .64 1.36 210.00 85. 00 81 .64 3.36 Correlation Coefficient = .931 October 2008 WCAP- 16964-NP October 2008

C-144 CAPSULE Y (HAZ)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:48 PM Page I Coefficients of Curve 2 A = 41.66 B = 39.46 C = 89.6 TO = -41.63 1) = O.OOE+O0 Equation is A + B * [Tanh((T-To)/(C+DT)I]

Upper Shelf L.E.=8 1.1 Lower Shelf LE.=2.2(Fixed)

Temp.@)LE 35 mils=-56.8 Deg F Plant Farley I Material: SA533BI Heat C6940-1 Orientation: NA Capsule: Y Fluence: n/cmA2 200 150 i +

E 3100 0

0o '0 C) nfl

-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input L.E. Computed L.E. Differential

- 10.00 13. 00 16. 29 3. 29

-108.00 16. 50 16. 82 -. 32

75. 00 23. 50 27.61 -4. 11

-50. 00 54. 00 37. 98 16.02

-25. 00 42. 50 48. 90 - 6. 40

-25. 00 36. 00 48. 90 -12.90

  • 00 67. 00 58. 77 8.23 00 68. 50 58. 77 9. 73
25. 00 57. 00 66. 57 -9.57 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-145 CAPSULE Y (HAZ)

Page 2 Plant: Farley I Material: SA533B1 Heat: C6940-1 Orientation: NA Capsule: Y Fluence: /cm^nA2 Charpy V-Notch Data Tenperature Input L.E. Computed L.E. Differential

79. 00 69. 50 76. 11 .6. 61
80. 00 80. 00 76. 21 3.79 100. 00 82. 00 77.91 4. 09 151 . 00 73. 00 80. 06 7. 06 199. 00 83. 50 80. 75 2.75 250. 00 85. 00 81. 00 4. 00 Conelation Coefficient =.947 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-146 CAPSULE U (HAZ)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28P2008 12:48 PM Page I Coefficients of Curve 3 A = 34.74 B = 32.54 C = 63.02 TO = 36.91 1) = O.0OE+00 Equation is A + B

  • ITanh((T-ToI(C+DT))]

Upper Shelf L.E.=67.3 Lower Shelf LE.=2.2(Fixed)

Temp.WLE. 35 mil*37.5 Deg F Plant: Farley I Material: SA533BI Heat C6940-1 Orientation: NA Capsule: U Fluence: nln^-2 200 150 i i E

I.9 B. 100 0

'0 50 n i-

-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input L.E. Computed L.E. Differential

-100.00 .00 3. 03 -3. 03

- 50. 00 I 1. 00 6. 08 4. 92

-50. 00 7.00 6. 08 .92

-25. 00 6. 00 10. 20 -4. 20 00 15.00 17. 60 -2. 60 00 18.00 17. 60 40

25. 00 29. 00 28. 66 34
50. 00 47,00 41 41 5.59
75. 00 47.00 52. 32 -5. 32 October 2008 WCAP-WCAP- 16964-NP October 2008

C-147 CAPSULE U (HAZ)

Page 2 Plant: Farley I Material: SA533B I Heat: C6940-i Orientation: NA Capsule: U Fluence: n/crnA2 Charpy V-Notch D)ata Temnerature Input L.E. Computed LE. Differential 100. 00 72. 00 59.54 12.46 100.00 49. 00 59 54 -10.54 150. 00 60, 50 65. 53 - 5.03 200. 00 69. 00 66. 92 2. 08 300. 00 69. 00 67. 27 1 . 73 350. 00 68. 00 67. 28 .72 Correlation Coefficient = .979 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-148 CAPSULE X (HAZ)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 0528r2008 12:48 PM Page 1 Coefficients of Curve 4 A = 41.03 B = 38.83 C = 87.69 TO = 14.91 1) = O.OOE+O0 Equation is A + B * [Tanh((T-To)/tC+DT))]

Upper Shelf L.E.=79.9 Lower Shelf LE.=2.2(Fixed)

Temp.C@L.E. 35 mils=l.2 Deg F Plant. Farley I Material: SA533B1 Heal: C6940-1 Orientation: NA Capsule: X Fluence: n/cke2 200

_.5150 E

100O

-A 50 4 01

-30 0.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input L.E. Computed L.E. Differential

- 100. 00 17.50 7. 47 10. 03

- 50. 00 18. 50 16.60 1 .90

-50. 00 34. 50 16.60 17 90

-25. 00 22. 00 24. 48 -2. 48

-25. 00 22. 00 24. 48 -2. 48 00 21.50 34. 49 12. 99 00 31 . 00 34. 49 -3. 49

25. 00 27. 00 45. 48 -18. 48
25. 00 51.50 45. 48 6. 02 WCAP- 16964-NP October 2008

C-149 CAPSULE X (HAZ)

Page 2 Plant: Farley I Material: SA533B1 Heat: C6940-I Orientation: NA Capsule: X Fluence: n/cmn^2 Charpy V-Notch Data Temperature Input L.E. Computed LIE. Differential

50. 00 69. 50 55. 7.9 13.71
76. 00 73.50 64.41 9. 09 150. 00 81.50 76. 45 5. 05 200. 00 69. 50 78. 74 -9.24 300. 00 86. 00 79. 74 6. 26 400. 00 72. 00 79. 5 -7. 85 Coirelation Coefficient =.921 October 2008 WCAP- 16964-NP October 2008

C-150 CAPSULE W (HAZ)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:48 PM Page I Coefficients of Curve 5 A = 41.21 B = 39.01 C = 96.37 TO = 29.44 D = O.OOE+OO Equation is A + B * [Tanh((T-ToA(C+DT))I Upper Shelf L.E.=80.2 Lower Shelf LE.=2.2(Fixed)

Temp.@L.E. 35 mils= 14.0 Deg F Plant Farley I Material: SA533BI Heat: C6940-1 Orientation: NA Capsule: W Fluenoe: Wcm^2 200 150 4E

3. 100 4 ,~v '~,

V 5o V.

AJ

-300.0 0.0 300.0 600.0 Temperature In Deg F Charpy V-Notch Data Temperature Input L.E. Computed L.E. DiflfereMial

-75. 00 13. 00 10.21 2.79

-50. 00 16. 00 14. 78 1.22

-40. 00 18. 00 17. 13 .87

-25. 00 17. 00 21. 25 -4.25

-25. 00 27. 00 21. 25 5.75 00 25. 00 29. 65 -4.65

25. 00 36. 00 39. 42 -3.42
50. 00 53. 00 49. 41 3. 59 i00. 00 65. 00 65. 57 -. 57 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-151 CAPSULE W (HAZ)

Page 2 Plant: Farley I Material: SA533B I Heat: C6940-1 Orientation: NA Capsule: W FRuence: n/cmA2 Charpy V-Notch Datat Temperature Input L.E. Computed L.E. Diffelrential 125. 00, 75. 00 70.78 4. 22 150. 00 74. 00 74.32 32 175.00 77.. 00 76. 60 40 200. 00 76. 00 78. 02 02. 02 250. 00 68. 00 79. 43 43 300. 00 90. 00 79. 94 06 Correlation Coefficient = .983 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-152 CAPSULE V (HAZ)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:49 PM Page I Coefficients of Curve 6 A = 43.16 B = 4.L96 C = 136.3 TO = 123.83 1) = O.10E+0O Equation is A + B * [Tanh((T-To,(C+DT))]

Upper Shelf L.E.=84. I Lower Shelf LE.=2.2(Fixed)

Temp.(OLE. 35 mil-96.4 Deg F Plant Farley I Material: SA533Bl Heat: C6940-I Orientation: NA Capsule: V Fluence: n/cm^2 200 150 E

I. 100 S .t1 50 7.

7$/

.. .... ... .0 ° 0

-300.0 0.0 300.0 600.0 Temperature in Dog F Charpy V-Notch Data Tenperature Input L.E. Computed L.E. Differenial

-75. 00 4. 00 6. 40 -2. 40

- 50. 00 .00 8. 13 -8. 13

- 50. 00 26. 00 8. 13 17.87

- 25. 00 8. 00 10. 49 -2.49 00 30. 00 13.65 16.35 00 7. 00 13.65 - 6. 65

25. 00 15.00 17. 76 -2.76
50. 00 16. 00 22.91 -6. 91
75. 00 25. 00 29. 08 -4. 08 WCAP- 16964-NP October 2008

C-153 CAPSULE V (HAZ)

Page 2 Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: NA Capsule: V Fluence: n/cm^2 Chlarpy V-Notch Data Temperture Input L.E. Computed L.E. Differential 100.00 38. 00 36. 07 1 93 150. 00 50. 00 50. 93 -. 93 200. 00 75. 00 63. 93 1 . 07 225. 00 62. 00 68. 98 - 6. 98 250. 00 73.00 73. 00 .00 275. 00 75.00 76. 08 - I. O0 Correlation Coefficient = .952 WCAP- 16964-NP October 2008

C-154 CAPSULE Z (HAZ)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:50 PM Page I Coefficients of Curve 7 A = 39.27 B = 37.07 C = 72.68 TO = 56.77 D = O.O0E+OM)

Equation is A + B * [TanhtT-ToI(C+DT))]

Upper Shelf L.E.=76.3 Lower Shelf LE.=2.2(Fixed)

Temp. @L.E. 35 mil1=48.4 Deg F Plant: Farley I Material: SA533Bi Heat C6940-1 Orientation: NA Capsule: Z Fluence: n/cmW2 200 150 E

t.-

C

/.m"

°-

15

/w

=,*'

50

.2 U*=

U . '

0

-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input L.E. Computed L.E. Differential

- 80. 00 8. 00 3. 88 4. 12

- 20. 00 10.00 10. 20 -. 20 00 12. 00 15.05 -3. 0)5

20. 00 30. 00 21.96 8. 04
25. 00 16. 00 24. 02 -8. 02
30. 00 27. 00 26. 20 .80
35. 00 20. 00 28. 48 -8.48 40, 00 33. 00 30. 86 2. 14
50. 00 44. 00 35. 82 8. 18 WCAP- 16964-NP October 2008

C-155 CAPSULE Z (HAZ)

Page 2 Plaht: Farley I Material: SA533B I Heat: C6940- I Orientation: NA Capsule: Z Fluence: n/cmA2 Charpy V-Notch Data Temperature Input L.E. Computed L.E. Diflerential

80. 00 50. 00 50. 72 -. 72 150. 00 7 1. 00 71. 04 -. 04 200. 00 67.00 74. 92 -7.92 300. 00 78. 00 76. 24 1.76 320. 00 77. 00 76. 28 .72 350. 00 81. 00 76. 31 4. 69 Correlation Coefficient =.981 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-156 UNIRRADIATED (HAZ)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:43 PM Page I Coefficients of Curve I A = 50. B = 511. C = 106.98 TO = -93.72 1) = 0.00E+00 Equation is A + B * [Tanh((T-To)/(C+DT))]

Temperature at 50% Shear = -93.7 Plant: Farley I Material: SA533Bi Heat: C6940-1 Orientation: NA Capsule: UNIRRA Fluence: nIcriA2 125 100 1..

(U 75 a) a) 50 0.

25

-300.0 -200.0 -100.0 0.0 100.0 200.0 3( )0.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch D~ata Tenperature Input Peicent Shear Computed Percent Shear Differential

-150.00 18.00 25. 88 -7.88

-150. 00 45. 00 25. 88 19. 12

-150. 00 18.00 25. 88 -7.88

-100. 00 45. 00 47. 07 -2. 07

-100. 00 32. 00 47. 07 -15.07

-100. 00 55. 00 47. 07 7.93

.75. 00 65.00 58. 66 6. 34

-75. 00 65. 00 58. 66 6. 34

-20. 00 80. 00 79. 87 .13 October 2008 WCAP- 16964-NP October 2008

C-157 UNIRRADIATED (HAZ)

Page. 2 Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: NA Capsule: UNIRRA Fluence: nI/c^A2 Charpy V-Notch I)ala Temperature Input Percent Shear Computed Percent Shear Differential

- 20. 00 65. 00 79. 87 - 14. 87

- 20. 00 80. 00 79. 87 .1 3

50. 00 100. 00 93. 62 6. 38
50. 00 100. 00 93. 62 6. 38
75. 00 100. 00 95. 91 4. 09 210. 00 100. 00 99. 66 34 210. 00 '100. 00 99. 66 34 210. 00 100. 00 99. 66 34 Correlation Coefficient =.957 October 2008 16964-NP WCAP- I16964-NP October 2008

C-158 CAPSULE Y (HAZ)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:43 PM Page I Coefficients of Curve 2 A = 50. B = 5k. C = 150.92 TO = 20.61 1) = ().O0E+4N Equation is A + B * [TanhuT-To)/(C+DT))]

Temperature at 50% Shear = 20.7 Plant Farley I Material: SA533BI Heat C6940-1 Orientation: NA Capsule: Y Fluence: n/cmr2 125 100 I

0 75 50 25 0 rF,- a - - -

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Dog F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-110. 00 10. 00 15.05 -5. 05

- 1O8. 00 20. 00 15.39 4.61

-75. 00 25. 00 21.98 3. 02

-5o. 00 40. 00 28. 18 1 182

-25. 00 35. 00 35. 33 33

-25. 00 25. 00 35. 33 - 10. 33 00 45. 00 43.21 1 .79 00 35. 00 43. 2 1 -8. 21

25. 00 55. 00 51.45 3 55 October 2008 WCAP- 16964-NP October 2008

C-159 CAPSULE Y (HAZ)

Page 2 Plant: Farley I Material: SA533B I Heat: C6940- I Orientation: NA Capsule: Y Fluence: n/cm^A2 Charpy V-Notch Dahi Temperature Input Percent Shear Computed Percent Shear Differenitial

79. 00 60. 00 68. 43 -8.43
80. 00 75.00 68. 72 6. 28 100. 00 80. 00 74. 12 5.88 151. 00 75. 00 84.91 -9.91 199. 00 100. 00 91 . 40 8. 60 250. 00 100. 00 95. 43 4. 57 Correlation Coefficient = .968 October 2008 WCAP- 16964-NP October 2008

C-160 CAPSULE U (HAZ)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:44 PM Page I Coefficients of Curve 3 A = 50. B = 50. C = 83.27 TO = 9.63 1) = O.OOE+4M)

Equation is A + B * [Tanh((T-To)/(C+DT)I]

Temperature at 50% Shear = 9.7 Plant Farley I Material: SA533B! Heat C6940-1 Orientation: NA Capsule: U Fluence: n/cma2 125 100 0:"

I U) 75 I

50 0"

25 0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Dog F Charpy V-Notch Data Temperature Input Perent Shear Computed Percent Shear Differential

- 100. 00 5. 00 6. 70 - .70

- 50. 00 2 1. 00 19. 28 1.72

- 50. 00 1I1. 00 19.28 -8. 28

.25. 00 26. 00 30. 33 .4.33 00 48. 00 44. 24 3. 76 00 51. 00 44. 24 6. 76

25. 00 49. 00 59. 12 - 10. 12
50. 00 95. 00 72. 50 22. 50
75. 00 75. 00 82. 78 -7. 78 WCAP- 16964-NP October 2008

C-161 CAPSULE U (HAZ)

Page 2 Plant: Farley I Material: SA533B I Heat: C6940- I Orientation: NA Capsule: U Fluence: n/CrA^2 Charpy V-Notch Data Temperature Input Peicent Shear Computed Percent Shear Differential 100. 00 100. 00 89.76 10. 24 100. 00 67. 00 89.76 -22. 76 150. 00 86. 00 96. 68 -10.68 200. 00 100. 00 98. 98 1.02 300. 00 100. 00 99.91 09 350. 00 100. 00 99. 97 03 Correlation Coefficient = .954 October 2008 16964-NP WCAP- 16964-NP October 2008

C-162 CAPSULE X (HAZ)

CV GRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2.008 12:44 PM Page I Coefficients of Curve 4 A = 50. B = 50. C = 80.41 TO = 21.16 1) = 0.00)E+00 Equation is A + B * [Tanh((T-To)/(C+DT))]

Temperature at 50% Shear= 21.2 Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: NA Capsule: X Fluence: n/crn2 125 100 I

(D 75 0

50

& A 25 ~ -~ -~/

0 0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-100. 00 10. 00 4. 68 5.32

- 50t 00 15.00 14. 56 .44

-50. 00 35. 00 14. 56 21). 44

-25. 00 20. 00 24. 08 - 4. 08

-25. 00 20. 00 24. 08 -4. 08 00 25. 00 37. 14 - 12. 14 00 35. 01 37. 14 -2. 14

25. 00 50. 00 52. 39 -2.39
25. 00 55. 00 52. 39 2.61 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-163 CAPSULE X (HAZ)

Page 2 Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: NA Capsule: X Fluence: nt/cmnA2 Cha~rpy V-Notch Da~ta Temperature Input Percent Shear Computed Percent Shear Differential

50. 00 75. 00 67. 20 7. 80
76. 00 80. 00 79. 64 .36 150. 00 100. 00 96. 1O 3. 90 200. 00 100. 00 98. 84 1 16 300. 00 100. 0) 99. 90 .10 400. 00 100. 00 99. 99 01 Correlation Coefficient = .979 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-164 CAPSULE W (HAZ)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:44 PM Page 1 Coefficients of Curve 5 A = 50. B = 50. C = 84.57 TO = 47.33 D = O.OOE+i4 Equation is A + B * [Tanh((T-To)/tC+DT))]

Temperature at 50% Shear= 47.4 Plant: Farley I Material: SA533B! Heat C6940-1 Orientation: NA Capsule: W Fluence: nWcm^2 125 100 -* .,_.-. -*

W 75 V

50 Vi 25 0

0

-300.0 .200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Dog F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-75. 00 5. 00 5. 25 -. 25

-50. 00 10. 00 9. 1() 90

.40. 00 15. 00 II. 25 3.75

-25. 00 15 00 15.31 -. 3 1

-25. 00 25. 00 15.31 9. 69 00 25. 00 24.61 39

25. 00 40. o0 37. 09 2.91
50. 00 35. 00 51.58 - 16. 58 100. 00 80. 00 77. 65 2.35 October 2008 WCAP- 16964-NP WCAP- October 2008

C-165 CAPSULE W (HAZ)

Page 2 Plant: Farley I Material: SA533BI Heat: C6940- I Orientation: NA Capsule: W Fluence: rn'cmA2 Charpy V-NotdhiI~l Temperature Input Percent Shear Coinpated Percent Shear Differential 125.00 90. 00 86. 26 3. 74 150. 00 100.00 91. 89 8 . 11 175.00 100.00 95. 34 4. 66 200. 00 100.00 97. 37 2. 63 250. 00 100. 00 99. 18 82 300. 00 100.00 99. 75 .25 Correlation Coefficient = .989 October 2008 16964-NP WCAP- 16964-NP October 2008

C-166 CAPSULE V (HAZ)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28P2008 12:44 PM Page I Coefficients of Curve 6 A = 50. B = 50. C = 120.07 TO = K3.03 1)= 0.IN)E+4M)

Equation is A + B

  • iTanh((T-To)/(C+DT))I Temperature at 50% Shear= 83.1 Plant: Farley I Material: SA533BI Heat: C6940- I Orientation: NA Capsule: V Fluence: n/crt2 125 100 * -.. .... ... ...

0/

I

'I) 75

/

50 I

25

-- 0 nl 0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-75. 00 to. 00 6. 71 3. 29

-50. 00 5.00 9.83 -4. 83

-50. 00 20. 00 9. 83 10. 17

-25. 00 15. 00 14. 19 .81 00 30. 00 20. 05 9.95 00 20. 00 20. 05 - . 05

25. 00 25.00 27. 56 -2, 5
50. 00 35.00 36. 58 -1.58
75. 00 40. 00 46. 66 -6. 66 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

C-167 CAPSULE V (HAZ)

Page 2 Plant: Farley I Material: SA533B! Heat: C6940-I Orientation: NA Capsule: V Fluence: IVCcmA2 Charpy V-Notch Data Tenperature Input Percent Shear Computed Percent Shear Differential 100. 00 50. 00 57. 02 -7. 02 150. 00 80. 00 75.31 4. 69 200. 00 90. 00 87. 53 2.47 225. 00 95. 00 91.41 3. 59 250. 00 100. 00 94. 16 5. 84 275. 00 100. 00 96. 07 3. 93 Correlation Coefficient = .989 WCAP- 16964-NP October 2008

C-168 CAPSULE Z (HAZ)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 05/28/2008 12:44 PM Page I Coefficients of Curve 7 A = 50. B = 50. C= 66.23 TO = 57.05 1) = 0.00)E+00 Equation is A + B * [Tanh((T-To)/(C+DT))]

Temperature at 50%Ž Shear = 57. 1 Plant: Farley I Material: SA533B I Heat: C6940-1 Orientation: NA Capsule: Z Fluence: n/cmA2 125 100

/

P I

U) 75 U!

I 50

/i 25 0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature In Dog F Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

- 80. 00 2. 00 1.57 43 5.00 8. 89 -3*. 89

- 20. 00

.00 15.00 15. 15 15

20. 00 20. 00 24. 62 -4. 62
25. 00 30. 00 27. 53 2. 47
30. 00 35. 00 30. 64 4. 36
35. 00 35. 00 33. 94 I. 06
40. 00 30. 00 37. 40 -7. 40
50. 00 55. 00 44. 69 10. 31 WCAP- 16964-NP October 2008

C-169 CAPSULE Z (HAZ)

Page 2 Plant: Farley I Material: SA533BI Heat: C6940-1 Orientation: NA Capsule: Z Fluence: n/cr^A2

(:harpy VTNotch D~ata Tenperatuue Input Percent Shear Computed Percent Shear Differential

80. 00 60. 00 66. 66 -6. 66 150. 00 100. 00 94. 30 5. 70 200. 00 90. 00 98. 68 -8. 68 300. 00 100. 00 99* 93 07 320. 00 100. 00 99. 96 04 350. 00 100. 00 99. 99 01 Correlation Coefficient =.990 October 2008 WCAP- 16964-NP WCAP-16964-NP October 2008

D-1 APPENDIX D JOSEPH M. FARLEY UNIT 1 SURVEILLANCE PROGRAM CREDIBILITY EVALUATION D.1 INTRODUCTION Regulatory Guide 1.99, Revision 2 [Reference D-1] describes general procedures acceptable to the NRC staff for calculating the effects of neutron radiation embrittlement of the low-alloy steels currently used for light-water-cooled reactor vessels. Positions 2.1 and 2.2 of Regulatory Guide 1.99, Revision 2, describe the method for calculating the adjusted reference temperature and Charpy USE of reactor vessel beltline materials using surveillance capsule data. The methods of Positions 2.1 and 2.2 can only be applied when two or more credible surveillance data sets become available from the reactor in question.

To date there have been six surveillance capsules removed from the Farley Unit 1 reactor vessel. To use these surveillance data sets without additional margin, they must be shown to be credible. In accordance with the discussion of Regulatory Guide 1.99, Revision 2, there are five requirements that must be met for the surveillance data to be judged credible.

The purpose of this evaluation is to apply the credibility requirements of Regulatory Guide 1.99, Revision 2, to the Farley Unit 1 reactor vessel surveillance data and determine if that surveillance data is credible.

D.2 EVALUATION Criterion 1 Materials in the capsules should be those judged most likely to be controlling with regard to radiation embrittlement.

The beltline region of the reactor vessel is defined in Appendix G to 10 CFR Part 50, "Fracture Toughness Requirements,'[D-2] as follows:

"the reactorvessel (shell material including welds, heat affected zones, andplates orforgings) that directly surroundsthe effective height of the active core and adjacent regions of the reactor vessel that are predictedto experience sufficient neutron radiationdamage to be considered in the selection of the most limiting materialwith regardto radiationdamage."

The original Farley Unit 1 reactor vessel radiation surveillance program deemed the following as beltline materials:

  • Intermediate Shell Plates B6903-2 and B6903-3
  • Lower Shell Plates B6919-1 and B6919-2
  • Intermediate to Lower Shell Circumferential Weld Seam 11-894 (Heat #6329637)
  • Intermediate Shell Axial Weld Seams 19-894A and 19-894B (both Heat #33A277)

WCAP- 16964-NP October 2008

D-2 e Lower Shell Axial Seams 20-894A and 20-894B (both Heat #90099)

The Farley Unit 1 surveillance program utilizes longitudinal and transverse test specimens from lower shell plate B6919-1. The surveillance weld metal was fabricated with weld wire heat # 33A277.

Per Reference D-3, the Farley Unit 1 surveillance program was based on ASTM E185-73, "Standard Recommended Practice for Surveillance Tests for Nuclear Reactor Vessels" [Ref. D-4]. Per Section 4.1 of ASTM E 185-73, "The base metal and weld metal to be included in the program should represent the material that may limit the operation of the reactor during its lifetime. The test material should be selected on the basis of initial transition temperature, upper shelf energy level and estimated increase in transition temperature considering chemical composition (copper (Cu) and phosphorus (P)) and neutron fluence." At the time when the Farley Unit 1 surveillance program material was developed, lower shell plate B6919-1 was judged to be the most limiting and was therefore utilized in the surveillance program.

This plate had a combination of the highest copper content, highest initial RTNDT, and lowest USE of the vessel plate materials. The Farley Unit 1 surveillance program weld was fabricated in a manner similar to that used to fabricate middle shell axial seams 19-894A and B (heat # 33A277), and represents the vessel beltline weld heat with the highest copper content.

Based upon its selection of the limiting vessel materials in the original reactor vessel beltline, the Farley Unit 1 surveillance program meets this criterion.

Criterion 2 Scatter in the plots of Charpy energy versus temperature for the irradiated and unirradiated conditions should be small enough to permit the determination of the 30 ft-lb temperature and USE unambiguously.

All of the Farley Unit 1 Charpy energy versus temperature surveillance program data can be found in Appendix C, including data for the unirradiated material. Charpy V-Notch test data for the Farley Unit 1 Surveillance Capsule Z specimens is tabulated in Tables 5-1 through 5-4, with scatter that falls within the expected variance of test results for these materials. Based on engineering judgment, the scatter in the data presented in these plots is small enough to permit the determination of the 30 ft-lb temperature and the USE of the Farley Unit 1 surveillance materials unambiguously. Hence, the Farley Unit 1 surveillance program meets this criterion.

Criterion 3 When there are two or more sets of surveillance data from one reactor, the scatter of ARTNDT values about a best-fit line drawn as described in Regulatory Position 2.1 normally should be less than 281F for welds and 17°F for base metal. Even if the fluence range is large (two or more orders of magnitude), the scatter should not exceed twice those values. Even if the data fail this criterion for use in shift calculations, they may be credible for determining decrease in USE if the upper shelf can be clearly determined, following the definition given in ASTM E1 8 5 -8 2ID-4.

October 2008 WCAP- 16964-NP WCAP- I16964-NP October 2008

D-3 The functional form of the least squares method as described in Regulatory Position 2.1 is utilized to determine a best-fit line for this data and to determine if the scatter of these ARTNDT values about this line is less than 28°F for welds and less than 17°F for the plate.

Credibility Assessment Since all surveillance data is from one vessel (Farley Unit 1), the measured ARTNDT and fluence factor (FF) should be used to calculate the chemistry factor to determine if the surveillance material test results are credible.

The chemistry factors for the Farley Unit 1 surveillance plate and weld material contained in the surveillance program were calculated per Regulatory Guide 1.99, Revision 2, Position 2.1. These chemistry factor calculations, used to calculate ARTNDT scatter between the measured and predicted values, are provided in Table D-1. The credibility calculations are presented in Table D-2.

Plate Evaluation Table D-2 indicates that 7 of 12 data points fall outside the +/- lIc of 17'F scatter band for the lower shell plate B6919-1 surveillance data. Therefore, the surveillance plate data is deemed "not credible".

Weld Evaluation Table D-2 indicates that no data points fall outside the +/- I a of 28°F scatter band for the surveillance weld data. Therefore, the weld data is deemed credible per the third criterion.

WCAP- 16964-NP October 2008

D-4 Table D-I Farley Unit I Surveillance Data Chemistry Factor Calculation for Credibility Material Capsule Caps. f FF ARTNDT FF*ARTNDT FF2 Lower Shell Plate Y 0.612 0.862 64.6 55.7 0.744 B6919-1 (Longitudinal) U 1.73 1.151 110.0 126.6 1.324 X 3.06 1.295 129.2 167.1 1.678 W 4.75 1.392 145.3 202.3 1.938 V 7.14 1.466 177.7 260.5 2.149 Z 8.47 1.492 202.2 301.6 2.225 Lower Shell Plate Y 0.612 0.862 70.1 60.5 0.744 B6919-1 U 1.73 1.151 100.4 115.5 1.324 (Transverse)

X 3.06 1.295 110.8 143.5 1.678 W 4.75 1.392 150.5 209.5 1.938 V 7.14 1.466 161.7 237.1 2.149 Z 8.47 1.492 178.3 266.0 2.225 SUM: 2146.20 20.118 CFB69 19-1 = Y(FF

  • RTNDT) + Y(FF2 ) = (2146.20) + (20.118) = 106.7 0 F Surveillance Weld Y 0.612 0.862 66.9 57.7 0.744 Material U 1.73 1.151 75.1 86.4 1.324 X 3.06 1.295 87.4 113.2 1.678 W 4.75 1.392 98.3 136.8 1.938 V 7.14 1.466 117.5 172.3 2.149 Z 8.47 1.492 113.5 169.3 2.225 SUM: 735.57 10.059 CF Su*v. Weld = Y(FF
  • RTNDT) +- (FF 2) = (735.57) + (10.059) = 73.1-F WCAP- 16964-NP October 2008

D-5 Table D-2 Farley Unit I Surveillance Capsule Data Scatter about the Best-Fit Line Measured Predicted Scatter CF ARTNDT ARTNDT ARTNDT <170Fl) 2 Material Caps. (Slopebest it) FF (OF) (OF) (OF) <280F( )

Lower Shell Y 106.7 0.862 64.6 .92.0 27.4 NO PlateB6919-1 U 106.7 1.151 110.0 122.8 12.8 YES (Longitudinal)

X 106.7 1.298 129.2 138.2 9.0 YES W 106.7 1.392 145.3 148.5 3.2 YES V 106.7 1.466 177.7 156.4 21.3 NO Z 106.7 1.492 202.2 159.1 43.1 NO Lower Shell Y 106.7 0.862 70.1 92.0 21.9 NO Plate B6919-1 (Transverse) U 106.7 1.151 100.4 122.8 22.4 NO X 106.7 1.298 110.8 138.2 27.4 NO W 106.7 1.392 150.5 148.5 2.0 YES V 106.7 1.466 161.7 156.4 5.3 YES Z 106.7 1.492 178.3 159.1 19.2 NO Surveillance Y 73.1 .0.862 66.9 63.1 3.8 YES Weld Metal U 73.1 1.151 75.1 84.3 9.1 YES X 73.1 1.298 87.4 94.6 7.4 YES W 73.1 1.392 98.3 101.9 3.5 YES V 73.1 1.466 117.5 107.3 10.3 YES Z 73.1 1.492 113.5' 109.2 4.4 YES Notes:

1. <17TF applies to the plate specimens and a "Yes" indicates it is credible.
2. <28°F applies to the surveillance weld specimens and a "Yes" indicates it is credible.

October 2008 WCAP- 16964-NP WCAP- 16964-NP October 2008

D-6 Criterion 4 The irradiation temperature of the Charpy specimens in the capsule should match the vessel wall temperature at the cladding/base metal interface within +/- 2501.

The capsule specimens are located in the reactor between the neutron pad and the vessel wall and are positioned opposite the center of the core. The test capsules are in baskets attached to the neutron pad.

The location of the specimens with respect to the reactor vessel beltline provides assurance that the reactor vessel wall and the specimens experience equivalent operating conditions such that the temperatures will not differ by more than 257F. Hence, this criterion is met.

Criterion 5 The surveillance data for the correlation monitor material in the capsule should fall within the scatter band of the database for that material.

The Farley Unit 1 surveillance program does not contain correlation monitor material. Therefore, this criterion is not applicable to the Farley Unit 1 surveillance program.

D.3 CONCLUSION Based on the preceding responses to all five criteria of Regulatory Guide 1.99, Revision 2, Section B, the Farley Unit 1 surveillance data is deemed non-credible for the plate specimens and credible for the weld specimens. Credibility of surveillance data is used to determine the appropriate margin term for calculation of adjusted reference temperature in accordance with Reference D-1.

D.4 REFERENCES D-1 Regulatory Guide 1.99, Revision 2, RadiationEmbrittlement of Reactor Vessel Materials, U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, May 1998.

D-2 Code of Federal Regulations, 10CFR50, Appendix G, FractureToughness Requirements, and Appendix H, Reactor Vessel Material Surveillance ProgramRequirements, U.S. Nuclear Regulatory Commission, Washington, D.C.

D-3 WCAP-8810, Revision 0, "Southern Alabama Power Company, Joseph M. Farley Nuclear Plant Unit No. 1 Reactor Vessel Radiation Surveillance Program," December 1976.

D-4 ' ASTM El185-82, StandardPracticeforConductingSurveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels, American Society for Testing and Materials.

October 2008 WCAP- 16964-NP WCAP- I16964-NP October 2008