ML073200244

From kanterella
Jump to navigation Jump to search
WCAP-16760-NP, Rev. 0, Analysis of Capsule Z from the Tennessee Valley Authority, Watts Bar Unit 1 Reactor Vessel Radiation Surveillance Program.
ML073200244
Person / Time
Site: Watts Bar Tennessee Valley Authority icon.png
Issue date: 11/30/2007
From: Acosta C, Conermann J, Gift F, Heinecke C
Westinghouse
To:
Office of Nuclear Reactor Regulation
References
WCAP-16760-NP, Rev 0
Download: ML073200244 (255)


Text

Westinghouse Non-Proprietary Class 3 WCAP-16760-NP November 200 7 Revision 0 Analysis of Capsule Z from the Tennessee Valley Authority, Watts Bar Unit I Reactor Vessel Radiation Surveillance Program Westinghouse

WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-16760-NP Revision 0 Analysis of Capsule Z from the Tennessee Valley Authority, Watts Bar Unit 1 Reactor Vessel Radiation Surveillance Program F. Gift Jr.

C. Heinecke J. Conermann C. Acosta November 2007 Reviewer: N. R. Jurcevich*

Primary Component Asset Management Approved: J. S. Carlson*, Manager Primary Component Asset Management

  • Electronically approved records are authenticated in the electronic document management system.

Westinghouse Electric Company LLC P.O. Box 355 Pittsburgh, PA 15230-0355

© 2007 Westinghouse Electric Company LLC All Rights Reserved

TABLE OF CONTENTS LIST O F TA B LES ........................................................................................................................................ v LIST O F FIG UR ES .................................................................................................................................... v ii EXECUTIVE

SUMMARY

.......................................................................................................................... ix I

SUMMARY

OF RESULTS .......................................................................................................... 1-1 2 INTRO D U CTION ........................................................................................................................ 2-1 3 BA CK G ROU N D .......................................................................................................................... 3-1 4 DESCRIPTION OF PROGRAM .............................................................................................. 4-1 5 TESTING OF SPECIMENS FROM CAPSULE Z ...................................................................... 5-1 5.1 O V ERV IEW .................................................................................................................... 5-1 5.2 RE SULT S ........................................................................................................................ 5-2 5.3 TENSILE TEST RESULTS ............................................................................................. 5-5 5.4 I/2T COMPACT TENSION SPECIMEN TESTS ........................................................... 5-5 6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY ................................................. 6-1 6.1 INTRODU CTION ........................................................................................................... 6-1 6.2 DISCRETE ORDINATES ANALYSIS ...................................................................... 6-1 6.3 NEUTRON DOSIMETRY .............................................................................................. 6-4 6.4 CALCULATIONAL UNCERTAINTIES ........................................................................ 6-5 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE ............................................................ 7-1 8 REFERENCES ............................................................................................................................. 8-I APPENDIX A VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY MEASUREMENTS ................................................. A-1 APPENDIX B LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS ................................ B-I APPENDIX C CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD ....................................... C-I APPENDIX D WATTS BAR UNIT 1 SURVEILLANCE PROGRAM CREDIBILITY EVALUATION ......................................................................................................... D- 1 WCAP-16760-NP November 2007 Revision 0

v LIST OF TABLES Table 4-1 Chemical Composition (wt%) of the Watts Bar Unit I Reactor Vessel Surveillance M aterials (Unirradiated)(a) ........................................................................................... 4-3 Table 4-2 Heat Treatment History of the Watts Bar Unit 1 Reactor Vessel Surveillance M aterials(a) ....................................................................................................................... 4-3 Table 5-1 Charpy V-notch Data for the Watts Bar Unit I Intermediate Shell Forging 05 Irradiated to a Fluence of 2.40 x 1019n/cm 2 (E> 1.0 MeV) (Tangential Orientation) ........................... 5-6 Table 5-2 Charpy V-notch Data for the Watts Bar Unit I Intermediate Shell Forging 05 Irradiated to a Fluence of 2.40 x 10t 9n/cm 2 (E> 1.0 MeV) (Axial Orientation) .................................. 5-7 Table 5-3 Charpy V-notch Data for the Watts Bar Unit 1 Surveillance Weld Metal Irradiated to a Fluence of 2.40 x 10' 9n/cm2 (E> 1.0 M eV) ..................................................................... 5-8 Table 5-4 Charpy V-notch Data for the Watts Bar Unit I Heat-Affected-Zone (HAZ) Material Irradiated to a Fluence of 2.40 x 10' 9n/cm 2 (E> 1.0 MeV) .............................................. 5-9 Table 5-5 Instrumented Charpy Impact Test Results for the Watts Bar Unit 1 Intermediate Shell 9 2 Forging 05 Irradiated to a Fluence of 2.40 x 101 n/cm (E>l.0 MeV) (Tangential O rientation) .................................................................................................................... 5-10 Table 5-6 Instrumented Charpy Impact Test Results for the Watts Bar Unit I Intermediate Shell 9 2 Forging 05 Irradiated to a Fluence of 2.40 x 101 n/cm (E>1.0 MeV) (Axial O rientation) .................................................................................................................... 5-11 Table 5-7 Instrumented Charpy Impact Test Results for the Watts Bar Unit I Surveillance Weld Metal Irradiated to a Fluence of 2.40 x 10' 9n/cm2 (E>l.0 MeV) ................................... 5-12 Table 5-8 Instrumented Charpy Impact Test Results for the Watts Bar Unit I Heat-Affected-Zone 9 2 (HAZ) Metal Irradiated to a Fluence of 2.40 x 10' n/cm (E>1.0 MeV) ....................... 5-13 Table 5-9 Effect of Irradiation to 2.40 x 10' 9n/cm 2 (E>1.0 MeV) on the Capsule V Notch Toughness Properties of the Watts Bar Unit I Reactor Vessel Surveillance Capsule Z Materials...5-14 Table 5-10 Comparison of the Watts Bar Unit I Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions .................................................................................................. 5-15 Table 5-11 Tensile Properties of the Watts Bar Unit I Capsule Z Reactor Vessel Surveillance Materials Irradiated to 2.40 x 10' 9 n/cm 2 (E > 1.0 MeV) .............................................. 5-16 Table 6-1 Calculated Neutron Exposure Rates and Integrated Exposures at the Surveillance C apsule C enter ................................................................................................................. 6-7 Table 6-2 Calculated Azimuthal Variation of Maximum Exposure Rates and Integrated Exposures at the Reactor Vessel Clad/Base M etal Interface ........................................................... 6-11 Table 6-3 Relative Radial Distribution of Neutron Fluence (E > 1.0 MeV) Within the Reactor Vessel W all ..................................................................................................................... 6-15 WCAP-16760-NP November 2007 Revision 0

vi Table 6-4 Relative Radial Distribution of Iron Atom Displacements (dpa) Within the Reactor Vessel Wall ..................................................................................................................... 6-16 Table 6-5 Calculated Fast Neutron Exposure of Surveillance Capsules Withdrawn from Watts B ar .................................................................................................................................. 6-17 Table 6-6 Calculated Surveillance Capsule Lead Factors .............................................................. 6-17 Table 7-1 Recommended Surveillance Capsule Withdrawal Schedule ............................................ 7-1 Table A-1 Nuclear Parameters Used in the Evaluation Of Neutron Sensors ........................... A-10 Table A-2 Monthly Thermal Generation During Cycles 6 and 7 of the Watts Bar Reactor .......... A-13 Table A-3 Calculated Cj Factors at the Surveillance Capsule Center Core Midplane Elevation ...A- 15 Table A-4 Measured Sensor Activities and Reaction Rates ........................................................... A-16 Table A-5 Comparison of Measured, Calculated, and Best Estimate Reaction Rates at the Surveillance Capsule Center ......................................................................................... A -20 Table A-6 Comparison of Calculated and Best Estimate Exposure Rates at the Surveillance Capsule C enter ............................................................................................................................ A -22 Table A-7 Comparison of Measured/Calculated (M/C) Sensor Reaction Rate Ratios Including all Fast Neutron Threshold Reactions ................................................................................ A-23 Table A-8 Comparison of Best Estimate/Calculated (BE/C) Exposure Rate Ratios ..................... A-23 Table C-I Upper Shelf Energy Values Fixed in CVGRAPH [ft-lb] ................................................ C-I Table D-I Calculation of Chemistry Factors using Watts Bar Unit 1 Surveillance Capsule Data...D-3 Table D-2 Watts Bar Unit I Surveillance Capsule Data Scatter about the Best-Fit Line ................ D-4 WCAP-16760-NP November 2007 WCAP- 16760-NP-I 10107 Revision 0

vii LIST OF FIGURES Figure 4-1 Arrangement of Surveillance Capsules in the Watts Bar Unit I Reactor Vessel .............. 4-4 Figure 4-2 Capsule Z Diagram Showing the Location of Specimens, Thermal Monitors, and D osim eters ................................................................................................................ 4-5 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for Watts Bar Unit 1 Reactor Vessel Intermediate Shell Forging 05 (Tangential Orientation) ................................................ 5-17 Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for Watts Bar Unit I Reactor Vessel Intermediate Shell Forging 05 (Tangential Orientation) ................................................ 5-18 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for Watts Bar Unit I Reactor Vessel Intermediate Shell Forging 05 (Tangential Orientation) ................................................ 5-19 Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for Watts Bar Unit I Reactor Vessel Intermediate Shell Forging 05 (Axial Orientation) ........................................................ 5-20 Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for Watts Bar Unit I Reactor Vessel Intermediate Shell Forging 05 (Axial Orientation) ........................................................ 5-21 Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for Watts Bar Unit I Reactor Vessel Intermediate Shell Forging 05 (Axial Orientation) ........................................................ 5-22 Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for Watts Bar Unit 1 Reactor Vessel Weld M etal ..................................................................................................................... 5-23 Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for Watts Bar Unit I Reactor Vessel Weld M etal ..................................................................................................................... 5-24 Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for Watts Bar Unit 1 Reactor Vessel Weld M etal .............................................................................................................................. 5-25 Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for Watts Bar Unit I Reactor Vessel Heat-Affected-Zone M aterial ......................................................................................... 5-26 Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for Watts Bar Unit I Reactor Vessel Heat-Affected-Zone M aterial ......................................................................................... 5-27 Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for Watts Bar Unit I Reactor Vessel Heat-Affected-Zone M aterial ......................................................................................... 5-28 Figure 5-13 Charpy Impact Specimen Fracture Surfaces for Watts Bar Unit I Reactor Vessel Intermediate Shell Forging (Tangential Orientation) ..................................................... 5-29 Figure 5-14 Charpy Impact Specimen Fracture Surfaces for Watts Bar Unit I Reactor Vessel Intermediate Shell Forging 05 (Axial Orientation) ........................................................ 5-30 Figure 5-15 Charpy Impact Specimen Fracture Surfaces for Watts Bar Unit I Reactor Vessel Weld M etal .............................................................................................................................. 5-3 1 Figure 5-16 Charpy Impact Specimen Fracture Surfaces for Watts Bar Unit I Reactor Vessel Heat-Affected-Zone M etal ............................................................................................. 5-32 WCAP-16760-NP November 2007 Revision 0

viii Figure 5-17 Tensile Properties for Watts Bar Unit I Reactor Vessel Intermediate Shell Forging 05 (Tangential O rientation) ................................................................................................. 5-33 Figure 5-18 Tensile Properties for Watts Bar Unit 1 Reactor Vessel Intermediate Shell Forging 05 (A xial O rientation) ......................................................................................................... 5-34 Figure 5-19 Tensile Properties for Watts Bar Unit 1 Reactor Vessel Weld Metal ............................. 5-35 Figure 5-20 Fractured Tensile Specimens from Watts Bar Unit 1 Reactor Vessel Intermediate Shell Forging 05 (Tangential Orientation) .............................................................................. 5-36 Figure 5-21 Fractured Tensile Specimens from Watts Bar Unit I Reactor Vessel Intermediate Shell Forging 05 (Axial O rientation) ...................................................................................... 5-37 Figure 5-22 Fractured Tensile Specimens from Watts Bar Unit I Reactor Vessel Weld Metal ......... 5-38 Figure 5-23 Engineering Stress-Strain Curves for Watts Bar Unit 1 Intermediate Shell Forging 05 Tensile Specimens WL-16, WL-17 and WL-18 (Tangential Orientation) ..................... 5-39 Figure 5-24 Engineering Stress-Strain Curves for Watts Bar Unit 1 Intermediate Shell Forging 05 Tensile Specimens WT-16, WT-17 and WT-18 (Axial Orientation) .............................. 5-40 Figure 5-25 Engineering Stress-Strain Curves for Weld Metal Tensile Specimens WW-16, WW-17 and W W-18 .................................................................................................................... 5-4 1 Figure 6-1 Watts Bar r,0 Reactor Geometry with a Single Capsule Neutron Pad Span at the C ore M idplane ............................................................................................................... 6-18 Figure 6-2 Watts Bar rO Reactor Geometry with a Dual Capsule Neutron Pad Span at the C ore M idplane ............................................................................................................... 6-19 Figure 6-3 Watts Bar rz Reactor Geometry with Neutron Pad ....................................................... 6-20 WCAP- 16760-N P November 2007 Revision 0

ix EXECUTIVE

SUMMARY

The purpose of this report is to document the results of the testing of Surveillance Capsule Z from Watts Bar Unit 1. Capsule Z was removed at the end of Cycle 7 and post irradiation mechanical tests of the Charpy V-notch and tensile specimens were performed. A fluence evaluation utilizing the recently released neutron transport and dosimetry cross-section libraries was derived from the ENDF/B-VI 9 2 data-base. Capsule Z received a fluence of 2.40 x 10' n/cm after irradiation to 9.37 EFPY. The peak 8 2 clad/base metal interface vessel fluence after 9.37 EFPY of plant operation was 4.74 x 10' n/cm .

This evaluation lead to the following conclusions: 1) The measured 30 ft-lb shift in transition temperature values of the Intermediate Shell Forging 05 contained in Capsule Z (Tangential & Axial) is less than the Regulatory Guide 1.99, Revision 2113, predictions. 2) The measured 30 ft-lb shift in transition temperature values of the weld metal contained in Capsule Z is less than the Regulatory Guide 1.99, Revision 2, predictions. 3) The measured percent decrease in upper shelf energy for all the surveillance materials of Capsule Z contained in the Watts Bar Unit I surveillance program are less than the Regulatory 1.99, Revision 2 predictions. 4) The lower shell forging and the intermediate shell to lower shell girth weld materials exhibit a more than adequate upper shelf energy level for continued safe plant operation and are predicted to maintain an upper shelf energy greater than 50 ft-lb throughout the life of the vessel 21 (32 EFPY) as required by 10 CFR 50, Appendix G1 . 5) The intermediate shell forging 05 is predicted to drop below 50 ft-lbs by 32 EFPY, however, it still remains above the 43 ft-lb lower bound as determined in WCAP-13587, Rev. 1E33.6) The Watts Bar Unit 1 surveillance weld data was found to be credible, while the surveillance forging 05 material was found to be not-credible. This evaluation can be found in Appendix D.

Lastly, a brief summary of the Charpy V-notch testing can be found in Section 1. All Charpy V-notch data was plotted using a symmetric hyperbolic tangent curve fitting program.

November 2007 I6760-Nl~

WCAP- 16760-NP November 2007 Revision 0

l-1 1

SUMMARY

OF RESULTS The analysis of the reactor vessel materials contained in Surveillance Capsule Z, the fourth capsule removed and tested from the Watts Bar Unit 1 reactor pressure vessel, led to the following conclusions:

  • Charpy V-notch test data were plotted using symmetric hyperbolic tangent curve-fitting program.

Appendix C presents the CVGRAPH, Version 5.0.2, Charpy V-notch plots for Capsule Z and previous capsules, along with the program input data.

9 2 Capsule Z received an average fast neutron fluence (E> 1.0 MeV) of 2.40 x 101 n/cm after 9.37 effective full power years (EFPY) of plant operation.

Irradiation of the reactor vessel Intermediate Shell Forging 05 (heat number 527536) Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction (tangential orientation), resulted in an irradiated 30 ft-lb transition temperature of 87.4°F and an irradiated 50 ft-lb transition temperature of 137.9°F. This results in a 30 ft-lb transition temperature increase of 145°F and a 50 ft-lb transition temperature increase of 153°F for the tangential orientation specimens. See Table 5-9.

Irradiation of the reactor vessel Intermediate Shell Forging 05 (heat number 527536) Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major working direction (axial orientation), resulted in an irradiated 30 ft-lb transition temperature of 150.1°F and an irradiated 50 ft-lb transition temperature of 225.6F. This results in a 30 ft-lb transition temperature increase of 105'F and a 50 ft-lb transition temperature increase of I I IF for the axial orientation specimens. See Table 5-9.

Irradiation of the weld metal (heat number 895075) Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of -17.3°F and an irradiated 50 ft-lb transition temperature of 28.0°F. This results in a 30 ft-lb transition temperature increase of 14'F and a 50 ft-lb transition temperature increase of 34F. See Table 5-9.

Irradiation of the weld Heat-Affected-Zone (HAZ) metal Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 1 1.5'F and an irradiated 50 ft-lb transition temperature of 74.9°F. This results in a 30 ft-lb transition temperature increase of 68°F and a 50 ft-lb transition temperature increase of 84F. See Table 5-9.

The average upper shelf energy of the Intermediate Shell Forging 05 (tangential orientation) resulted in an average energy decrease of 31 ft-lb after irradiation. This results in an irradiated average upper shelf energy of 101 ft-lb for the tangential orientation specimens. See Table 5-9.

The average upper shelf energy of the Intermediate Shell Forging 05 (axial orientation) resulted in no energy decrease after irradiation. This results in an irradiated average upper shelf energy of 62 ft-lb for the axial orientation specimens. See Table 5-9.

The average upper shelf energy of the weld metal Charpy specimens resulted in no energy decrease after irradiation, rather the irradiated weld USE was measured to be 14 ft-lb higher than WCAP- 16760-NP November 2007 Revision 0

1-2 the unirradiated material test results. This results in an irradiated average upper shelf energy of 145 ft-lb for the weld metal specimens. See Table 5-9.

The average upper shelf energy of the weld HAZ metal Charpy specimens resulted in an average energy decrease of 10 ft-lb after irradiation. This results in an irradiated average upper shelf energy of 79 ft-lb for the weld HAZ metal. See Table 5-9.

A comparison, as presented in Table 5-10, of the Watts Bar Unit I reactor vessel surveillance material test results with the Regulatory Guide 1.99, Revision 21'1 predictions led to the following conclusions:

- The measured 30 ft-lb shift in transition temperature values of the Intermediate Shell Forging 05 contained in Capsule Z (longitudinal & transverse) are less than the Regulatory Guide 1.99, Revision 2, predictions.

- The measured 30 ft-lb shift in transition temperature value of the weld metal contained in Capsule Z is less than the Regulatory Guide 1.99, Revision 2, predictions.

- The measured percent decrease in upper shelf energy for all the surveillance materials of Capsules Z contained in the Watts Bar Unit 1 surveillance program are less than the Regulatory Guide 1.99, Revision 2 predictions.

The calculated end-of-license (32 EFPY) neutron fluence (E> 1.0 MeV) at the core midplane for the Watts Bar Unit 1 reactor vessel using the Regulatory Guide 1.99, Revision 21 Iattenuation formula (i.e., Equation #3 in the guide) are as follows:

2 Calculated: Vessel inner radius* = 1.75 x 10' 9n/cm 9 2 Vessel 1/4 thickness = 1.05 x 101 n/cm Vessel 3/4 thickness = 3.81 x 10 "n/cm 2

  • Clad/base metal interface. (From Table 6-2)

All beltline materials, with exception to the intermediate shell forging 05, are expected to have an upper shelf energy (USE) greater than 50 ft-lb through end of license (EOL, 32 EFPY) as required by 10 CFR 50, Appendix G121.

In September of 1993, Westinghouse completed an evaluation to demonstrate that all Westinghouse Owners Group (WOG) Plant reactor vessels have a margin of safety, relative to 141 USE, equivalent to that required byAppendix G of the ASME Code . This was accomplished by 15 performing generic bounding evaluations per the proposed ASME Section XI, Appendix X 3.

This evaluation is documented in WCAP-13587, Revision I131, "Reactor Vessel Upper Shelf Energy Bounding Evaluation for Westinghouse Pressurized Water Reactors" and provides the minimum USE for a four loop Westinghouse NSSS plant. The minimum acceptable USE for a 4 loop plant is 43 ft-lb. The projected minimum EOL USE for the Watts Bar Unit I intermediate shell forging 05 is greater than 43 ft-lb. Hence, the bounding WOG evaluation shows that the Watts Bar Unit I intermediate shell forging 05 will maintain an equivalent margin, with respect to WCAP-16760-NP November 2007 Revision 0

1-3 USE per the requirements of 10 CFR Part 50, Appendix G, through EOL (i.e., Maintain this margin through EOL).

In addition, Westinghouse completed an evaluation of Watts Bar Unit 1 Capsule X compact tension specimens (of intermediate shell forging 05) to demonstrate that plant-specific J-R curves 5

met the requirements for ductile tearing as presented in ASME Section XI, Appendix XV 3. This 61 evaluation, contained in WCAP-16333-NPl , indicates that the Watts Bar Unit 1 test data from Capsule X maintained sufficient fracture toughness to meet the requirements for plant service conditions. It should also be noted that the results of Capsule Z testing indicate that the measured EOL USE for the axially-oriented Charpy specimens for intermediate shell forging 05 (which is the limiting orientation for unirradiated USE in this surveillance material) showed no decrease in USE.

The credibility evaluation of the Watts Bar Unit I surveillance program is presented in Appendix D of this report. The evaluation concluded that the Watts Bar Unit 1 surveillance data is deemed credible for the weld specimens and non-credible for the forging specimens.

WCAP-16760-NP November 2007 Revision 0

2-1 2 INTRODUCTION This report presents the results of the examination of Capsule Z, the fourth capsule removed from the reactor in the continuing surveillance program which monitors the effects of neutron irradiation on the Watts Bar Unit 1 reactor pressure vessel materials under actual operating conditions.

The surveillance program for the Watts Bar Unit I reactor pressure vessel materials was designed and recommended by the Westinghouse Electric Corporation. A description of the surveillance program and the pre-irradiation mechanical properties of the reactor vessel materials are presented in WCAP-9298, 71 "Tennessee Valley Authority Watts Bar Unit No. I Reactor Vessel Radiation Surveillance Program"' .

The surveillance program was planned to cover the 40-year design life of the reactor pressure vessel and was based on ASTM E 185-731' 1, "Standard Recommended Practice Surveillance Tests for Nuclear Reactor Vessels." Capsule Z was removed from the reactor after 9.37 EFPY of exposure and shipped to the Westinghouse Science and Technology Department Hot Cell Facility, where the post-irradiation mechanical testing of the Charpy V-notch impact and tensile surveillance specimens was performed.

This report summarizes the testing of and the post-irradiation data obtained from Surveillance Capsule Z removed from the Watts Bar Unit I reactor vessel and discusses the analysis of the data.

WCAP-16760-NP November 2007 Revision 0

3-1 3 BACKGROUND The ability of the large steel pressure vessel containing the reactor core and its primary coolant to resist fracture constitutes an important factor in ensuring safety in the nuclear industry. The beltline region of the reactor pressure vessel is the most critical region of the vessel because it is subjected to significant fast neutron bombardment. The overall effects of fast neutron irradiation on the mechanical properties of low alloy, ferritic pressure vessel steels such as A508 Class 2 Forging (base material of the Watts Bar Unit I reactor pressure vessel beltline) are well documented in the literature. Generally, low alloy ferritic materials show an increase in hardness and tensile properties and a decrease in ductility and toughness during high-energy irradiation.

A method for ensuring the integrity of reactor pressure vessels has been presented in "Fracture Toughness Criteria for Protection Against Failure," Appendix G to Section XI of the ASME Boiler and Pressure Vessel Codet4]. The method uses fracture mechanics concepts and is based on the reference nil-ductility transition temperature (RTNDT).

RTNDT is defined as the greater of either the drop weight nil-ductility transition temperature (NDTT per ASTM E208'9") or the temperature 60'F less than the 50 ft-lb (and 35-mil lateral expansion) temperature as determined from Charpy specimens oriented perpendicular (transverse) to the major working direction of the plate. The RTNDT of a given material is used to index that material to a reference stress intensity factor curve (KI, curve) which appears in Appendix G to the ASME Code141. The Kic curve is a lower bound of static fracture toughness results obtained from several heats of pressure vessel steel. When a given material is indexed to the K1 , curve, allowable stress intensity factors can be obtained for this material as a function of temperature. Allowable operating limits can then be determined using these allowable stress intensity factors.

RTNDT and, in turn, the operating limits of nuclear power plants can be adjusted to account for the effects of radiation on the reactor vessel material properties. The changes in mechanical properties of a given reactor pressure vessel steel, due to irradiation, can be monitored by a reactor vessel surveillance program, such as the Watts Bar Unit 1 reactor vessel radiation surveillance program71 , in which a surveillance capsule is periodically removed from the operating nuclear reactor and the encapsulated specimens tested. The increase in the average Charpy V-notch 30 ft-lb temperature (ARTNDT) due to irradiation is added to the initial RTNDT, along with a margin (M) to cover uncertainties, to adjust the RTNDT (ART) for radiation embrittlement. This ART (RTNDT initial + M + ARTNDT) is used to index the material to the K1, curve and, in turn, to set operating limits for the nuclear power plant that take into account the effects of irradiation on the reactor vessel materials.

WCAP- 16760-NP November 2007 Revision 0

4-1 4 DESCRIPTION OF PROGRAM Six surveillance capsules for monitoring the effects of neutron exposure on the Watts Bar Unit I reactor pressure vessel core region (beltline) materials were inserted in the reactor vessel prior to initial plant start-up. The six capsules were positioned in the reactor vessel between the neutron pads and the vessel wall as shown in Figure 4-1. The vertical center of the capsules is opposite the vertical center of the core.

Capsule Z was removed after 9.37 effective full power years (EFPY) of plant operation. This capsule contained Charpy V-notch and tensile specimens made from intermediate shell forging 05 (heat number 527536) and submerged arc weld metal identical to the reactor vessel beltline region weld. In addition, this capsule contained Charpy V-notch specimens from the weld Heat-Affected-Zone (HAZ) metal of intermediate shell forging 05.

Test material obtained from the intermediate shell forging 05 (after thermal heat treatment and forming of the plate) was taken at least one plate thickness from the quenched edges of the plate. All test specimens were machined from the 1/4 thickness location of the plate after performing a simulated post-weld stress-relieved weldment joining intermediate shell forging 05 and adjacent lower shell forging 04. All heat-affected-zone specimens were obtained from the weld heat-affected-zone of the intermediate shell forging 05.

Charpy V-notch impact specimens from intermediate shell forging 05 were machined in the tangential orientation (longitudinal axis of the specimen parallel to the major working direction) and also in the axial orientation (longitudinal axis of the specimen perpendicular to the major working direction). The core region weld Charpy impact specimens were machined from the weldment such that the long dimension of each Charpy specimen was perpendicular to the weld direction. The notch of the weld metal Charpy specimens was machined such that the direction of crack propagation in the specimen was in the welding direction.

Tensile specimens from the intermediate shell forging 05 were machined in both the tangential and axial orientations. Tensile specimens from the weld metal were oriented with the long dimension of the specimen perpendicular to the weld direction.

Bend bar specimens were machined from the intermediate shell forging 05 with the longitudinal axis of the specimen oriented in the rolling direction of the forging such that the simulated crack would propagate in a direction normal to the rolling direction of the forging. Compact tension test specimens from intermediate shell forging 05 were machined in the tangential and axial orientations. Compact tension test specimens from the weld metal were machined perpendicular to the weld direction with the notch oriented in the direction of welding. These specimens should be fatigue pre-cracked in accordance with 10 ASTM E399E ' .

Initial chemical composition data and heat treatment of the unirradiated surveillance materials are presented in Tables 4-1 and 4-2, respectively. The data in Tables 4-1 and 4-2 was obtained from the unirradiated surveillance program report, WCAP-9298, Rev. 3, Appendix A17I.

Capsule Z contained dosimeter wires of pure iron, copper, nickel, and aluminum 0.15 weight percent cobalt (cadmium-shielded and unshielded). In addition, cadmium shielded dosimeters of neptunium WCAP-16760-NP November 2007 Revision 0

4-2 (Np237) and uranium (U 238) were placed in the capsule to measure the integrated flux at specific neutron energy levels.

The capsule contained thermal monitors made from two low-melting-point eutectic alloys and sealed in Pyrex tubes. These thermal monitors were used to define the maximum temperature attained by the test specimens during irradiation. The composition of the two eutectic alloys and their melting points are as follows:

2.5% Ag, 97.5% Pb Melting Point: 579°F (304'C) 1.75% Ag, 0.75% Sn, 97.5% Pb Melting Point: 590'F (31 0°C)

The arrangement of the various mechanical specimens, dosimeters and thermal monitors contained in Capsule Z is shown in Figure 4-2.

WCAP-16760-NPI November 2007 Revision 0

4-3 Table 4-1 Chemical Composition (til%) of the Watts Bar Unit I Reactor Vesscl Surveillance Materials (Unirradiated)('a)

Element Intermediate Shcll Forging 05(a"&) Weld Metal(b& c)

C 0.20 0.21 0.080 0.069 S 0.016 0.014 0.007 0.010 N 0.009 --- 0.019 ---

Co <0.01 0.012 0.007 ---

Cu 0.17 0.14 0.031 0.05 Si 0.25 0.25 0.27 0.22 Mo 0.57 0.61 0.54 0.56 Ni 0.80 0.79 0.75 0.70 Mn 0.73 0.68 1.94 1.97 Cr 0.32 0.34 0.023 0.05 V <0.01 <0.02 0.001 ---

P 0.012 0.013 0.015 0.010 Al <0.0 19 0.049 0.019 ---

Sn 0.010 --- 0.003 Notes:

a. All analysis except for N and Sn were conducted by Rotterdam Dockyard Company/Krupp ladle analysis; N and Sn analysis were performed by Westinghouse.
b. The surveillance weldment is identical to the closing girth seam weldment between forging 04 and 05. The closing seam used weld wire heat number 895075 with Grau L.O. (LW320) flux, lot P46, except for the I-inch root pass at the ID of the vessel. This root pass used weld wire heat number 899680 with type Grau L.O. (LW320) flux, lot P23, with an as-deposited copper and phosphorus content of 0.03 and 0.009, respectively. The surveillance weldment specimens were not removed from this root area.
c. The left column results were obtained from Westinghouse analyses, while the results in the right column results were obtained from analyses conducted by Rotterdam Dockyard Company.

Table 4-2 Heat Treatment History of the Watts Bar Unit I Reactor Vessel Surveillance Materialsts)

Material Temperature (*F) Time (hr) Coolant Intermediate Shell Forging 05 1675 - 1700 3 V2 Water-quenched 1230 - 1240 6 Air Cooled 1140 +/-25 21 Furnace Cooled Weldment 1140+/-25 14 hr., 56 min Furnace Cooled Note:

a. T'his table was taken from WCAP-9298, Rev. 3E.

WCAP- 16760-NP November 2007 Revision 0

4-4 REACTOR: VESSEL 180° Figure 4-1 Arrangement of Surveillance Capsules in the Watts Bar Unit I Reactor Vessel WCAP-16760-NP November 2007 Revision 0

4-5 CU-LEGEND: WL - INTERMEDIATE SHELL FORGING 05, HEAT NO. 527536 (TANGENTIAL) . ...

WT - INTERMEDIATE SHELL FORGING 05, HEAT NO. 527536 (AXIAL)

WW - WELD METAL (HEAT # 895075)

WH - HEAT AFFECTED ZONE MATERIAL Bend Bar Tensile Compact WW18 WWT E E4 WL23 WWII TOP OF VESSEL 4 CENTER Compact Charpy WT87 1WL87 L22TL21 WT861I WL86 WBT8O OWLS5 BOTTIOM OF VESSEL CENTER CU ..... 'Al 7?

'. iSC.

... P.

F.I ....................

Fe . . ...

MON 501F77=i 81 f"

-sITO I X

... ~g

..... .. . d qKNZ . . . ...........

Charpy Charpy WT84 WL8441 IWT WL81 WT83 WL3 IWT8o IWL8O0 WT82 WL82 ]WT79

[WL79 Figure 4-2 Capsule Z Diagram Showing the Location of Specimens, Thermal Monitors, and Dosimeters WCAP-16760-NP November 2007 Revision 0

5-1 5 TESTING OF SPECIMENS FROM CAPSULE Z 5.1 OVERVIEW The post-irradiation mechanical testing of the Charpy V-notch impact specimens and tensile specimens was performed in the Remote Metallographic Facility (RMF) at the Westinghouse Science and Technology Center.

Upon receipt of the capsule at the laboratory, the capsule was opened per Procedure RMF 8804111. The specimens and spacer blocks were carefully removed, inspected for identification number and checked against the master list in WCAP-9298, Revision 317].

All items were in their proper locations. Examination of the thermal monitors indicated that none of the melting point monitors melted. Based on this examination, the maximum temperature to which the specimens were exposed was less than 579°F (304'C).

The testing of the Charpy V-notch and tensile specimens was performed in accordance with ASTM Specification E185-821' 2 1and Westinghouse Procedures RMF 84021131 as detailed by Westinghouse Procedures RMF 81021141 and RMF 81031151.

The Charpy impact tests were performed per ASTM Specification E23-061' 61and Procedure RMF 81031151 on a Tinius-Olsen Model 74, 358J machine. The tup (striker) of the Charpy machine is instrumented with an Instron Impulse instrumentation system, feeding information into a computer. With this system, load-time and energy-time signals can be recorded in addition to the standard measurement of Charpy energy (ED). From the load-time curve, the load of general yielding (PGY), the time to general yielding (T0 y), the maximum load (Pm), and the time to maximum load (Tjt) can be determined. Under some test conditions, a sharp drop in load indicative of fast fracture was observed. The load at which fast fracture was initiated is identified as the fast fracture load (PF). If the fast load drop terminates well above zero load, the termination load is identified as the arrest load (PA).

The energy at maximum load (Em) was determined by comparing the energy-time record and the load-time record. The energy at maximum load is approximately equivalent to the energy required to initiate a crack in the specimen. Therefore, the propagation energy for the crack (Ep) is the difference between the total energy to fracture (ED) and the energy at maximum load (E3). 1 The yield stress (ay) was calculated from the three-point bend formula having the following 71 expressiont[ :

L (1)

Cy = PGY B(W-a)' C where L = distance between the specimen supports in the impact testing machine; B = the width of the specimen measured parallel to the notch; W = height of the specimen, measured perpendicularly to the notch; a = notch depth. The constant C is dependent on the notch flank angle (Qp), notch root radius (p)

WCAP-16760-NP November 2007 Revision 0

5-2 and the type of loading (i.e., pure bending or three-point bending). In three-point bending, for a Charpy specimen in which (p= 450 and p = 0.010 in., Equation 1 is valid with C = 1.21.

Therefore, (for L = 4W),

y=PGY L 3.305 PGYW2 (2) 2 B(W-a)

B(W-a) 1.21 For the Charpy specimen, B = 0.394 in., W = 0.394 in., and a = 0.079 in. Equation 2 then reduces to:

cry = 3 3 .3 PGY (3) where ay is in units of psi and PGY is in units of lb. The flow stress was calculated from the average of the yield and maximum loads, also using the three-point bend formula.

Symbol A in columns 4, 5, and 6 of Tables 5-5 through 5-8 is the cross-section area under the notch of the Charpy specimens:

A = B(W-a)- 0.1241 sq.in. (4)

Percent shear was determined from post-fracture photographs using the ratio-of-areas methods in t1 compliance with ASTM E23-0611 61 and A370-07 "). The lateral expansion was measured using a dial gage rig similar to that shown in the same specifications.

Tensile tests were performed on a 20,000 pound Instron, split console test machine (Model 1115) per ASTM Specification E8-041191 and E21-051 20 1 and Procedure RMF 8102[141. Extension measurements were made with a linear variable displacement transducer (LVDT) extensometer. The extensometer gage length was 1.00 inch. Elevated test temperatures were obtained with a three-zone electric resistance split-tube furnace with a 9-inch hot zone. All tests were conducted in air.

The yield load, ultimate load, fracture load, total elongation and uniform elongation were determined directly from the load-extension curve. The yield strength, ultimate strength and fracture strength were calculated using the original cross-sectional area. The final diameter was determined from post-fracture photographs. The fracture area used to calculate the fracture stress (true stress at fracture) and percent reduction in area were computed using the final diameter measurement.

5.2 RESULTS The results of the Charpy V-notch impact tests performed on the various materials contained in 9 2 Capsule Z, which received a fluence of 2.40 x 101 n/cm (E> 1.0 MeV) in 9.37 EFPY of operation, are presented in Tables 5-1 through 5-10 and are compared with unirradiated results shown in Figures 5-1 through 5-12.

WCAP-1 6760-NP November 2007 Revision 0

5-3 The transition temperature increases and upper shelf energy decreases for the Capsule Z materials are summarized in Table 5-9 and led to the following results:

Irradiation of the reactor vessel Intermediate Shell Forging 05 (heat number 527536) Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction (tangential orientation), resulted in an irradiated 30 ft-lb transition temperature of 87.4'F and an irradiated 50 ft-lb transition temperature of 137.9°F. This results in a 30 ft-lb transition temperature increase of 145'F and a 50 ft-lb transition temperature increase of 153'F for the tangential orientation specimens. See Table 5-9.

Irradiation of the reactor vessel Intermediate Shell Forging 05 (heat number 527536) Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major working direction (axial orientation), resulted in an irradiated 30 ft-lb transition temperature of 150XF and an irradiated 50 ft-lb transition temperature of 225.6°F. This results in a 30 ft-lb transition temperature increase of 105'F and a 50 ft-lb transition temperature increase of II PF for the axial orientation specimens. See Table 5-9.

Irradiation of the weld metal (heat number 895075) Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of -17.3'F and an irradiated 50 ft-lb transition temperature of 28.0F. This results in a 30 ft-lb transition temperature increase of 14TF and a 50 ft-lb transition temperature increase of 34°F. See Table 5-9.

  • Irradiation of the weld Heat-Affected-Zone (HAZ) metal Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 11.5°F and an irradiated 50 ft-lb transition temperature of 74.9°F. This results in a 30 ft-lb transition temperature increase of 68'F and a 50 ft-lb transition temperature increase of 84F. See Table 5-9.

The average upper shelf energy of the Intermediate Shell Forging 05 (tangential orientation) resulted in an average energy decrease of 31 ft-lb after irradiation. This results in an irradiated average upper shelf energy of 101 ft-lb for the tangential orientation specimens. See Table 5-9.

The average upper shelf energy of the Intermediate Shell Forging 05 (axial orientation) resulted in no energy decrease after irradiation. This results in an irradiated average upper shelf energy of 62 ft-lb for the axial orientation specimens. See Table 5-9.

The average upper shelf energy of the weld metal Charpy specimens resulted in no energy decrease after irradiation, rather the irradiated weld USE was measured to be 14 ft-lb higher than the unirradiated material test results. This results in an irradiated average upper shelf energy of 145 ft-lb for the weld metal specimens. See Table 5-9.

The average upper shelf energy of the weld HAZ metal Charpy specimens resulted in an average energy decrease of 10 ft-lb after irradiation. This results in an irradiated average upper shelf energy of 79 ft-lb for the weld HAZ metal. See Table 5-9.

WCAP-16760-NP November 2007 Revision 0

5-4 A comparison, as presented in Table 5-10, of the Watts Bar Unit 1 reactor vessel surveillance material test results with the Regulatory Guide 1.99, Revision 21'1 predictions led to the following conclusions:

- The measured 30 ft-lb shift in transition temperature values of the Intermediate Shell Forging 05 contained in Capsule Z (longitudinal & transverse) are less than the Regulatory Guide 1.99, Revision 2, predictions.

- The measured 30 ft-lb shift in transition temperature value of the weld metal contained in Capsule Z is less than the Regulatory Guide 1.99, Revision 2, predictions.

- The measured percent decrease in upper shelf energy for all the surveillance materials of Capsules Z contained in the Watts Bar Unit 1 surveillance program are less than the Regulatory Guide 1.99, Revision 2 predictions.

All beltline materials, with exception to the intermediate shell forging 05, are expected to have an upper shelf energy (USE) greater than 50 ft-lb through end of license (EOL, 32 EFPY) as required by 10 CFR 50, Appendix G[21.

In September of 1993, Westinghouse completed an evaluation to demonstrate that all Westinghouse Owners Group (WOG) Plant reactor vessels have a margin of safety, relative to USE, equivalent to that required by Appendix G of the ASME Code. This was accomplished by performing generic bounding evaluations per the proposed ASME Section XI, Appendix X. This evaluation is documented in WCAP- 13587, Revision 1[3, "Reactor Vessel Upper Shelf Energy Bounding Evaluation for Westinghouse Pressurized Water Reactors" and provides the minimum USE for a four loop Westinghouse NSSS plant.

The minimum acceptable USE for a 4 loop plant is 43 ft-lb. The projected minimum EOL USE for the Watts Bar Unit I intermediate shell forging 05 is greater than 43 ft-lb. Hence, the bounding WOG evaluation shows that the Watts Bar Unit I intermediate shell forging 05 will maintain an equivalent margin, with respect to USE per the requirements of 10 CFR Part 50, Appendix G , through EOL (i.e., Maintain this margin through EOL).

In addition, Westinghouse completed an evaluation of Watts Bar Unit I Capsule X compact tension specimens (of intermediate shell forging 05) to demonstrate that plant-specific J-R curves met the requirements for ductile tearing as presented in ASME Section XI, Appendix X151. This evaluation, contained in WCAP-16333-NP[ 61, indicates that the Watts Bar Unit 1 test data from Capsule X maintained sufficient fracture toughness to meet the requirements for plant service conditions. It should also be noted that the results of Capsule Z testing indicate that the measured EOL USE for the axially-oriented Charpy specimens for intermediate shell forging 05 (which is the limiting orientation for unirradiated USE in this surveillance material) showed no decrease in USE.

The fracture appearance of each irradiated Charpy specimen from the various surveillance Capsule Z materials is shown in Figures 5-13 through 5-16 and shows an increasingly ductile or tougher appearance with increasing test temperature.

WCAP-16760-NP November 2007 Revision 0

5-5 The load-time records for individual instrumented Charpy specimen tests are shown in Appendix B.

Appendix C presents the individual CVGRAPH, Version 5.0.2, Charpy V-notch plots for each surveillance capsule and the program input data.

5.3 TENSILE TEST RESULTS The results of the tensile tests performed on the various materials contained in Capsule Z irradiated to resultst7]

2.40 x 10g9 n/cm 2 (E> 1.0 MeV) are presented in Table 5-11 and are compared with unirradiated as shown in Figures 5-17 through 5-19.

The results of the tensile tests performed on the Intermediate Shell Forging 05 (tangential orientation) at 550'F indicated that irradiation to 2.40 x 10'9 n/cm 2 (E> 1.0 MeV) caused approximately a 13 ksi increase in the 0.2 percent offset yield strength and approximately a 10 ksi increase in the ultimate tensile strength when compared to unirradiated datat73. See Figure 5-17.

The results of the tensile tests performed on the Intermediate Shell Forging 05 (axial orientation) at 550'F indicated that irradiation to 2.40 x 10' 9n/cm 2 (E> 1.0 MeV) caused approximately a 9 ksi increase in the 0.2 percent offset yield strength and approximately a 9 ksi increase in the ultimate tensile strength when compared to unirradiated data[7 1. See Figure 5-18.

The results of the tensile tests performed on the surveillance weld metal at 550'F indicated that irradiation to 2.40 x 10' 9n/cm2 (E> 1.0 MeV) caused approximately a 5 ksi increase in the 0.2 percent offset yield strength and approximately a 5 ksi increase in the ultimate tensile strength when compared to unirradiated data[41. See Figure 5-19.

The fractured tensile specimens for the Intermediate Shell Forging 05 material are shown in Figures 5-20 and 5-2 1, while the fractured tensile specimens for the surveillance weld metal are shown in Figure 5-22.

The engineering stress-strain curves for the tensile tests are shown in Figures 5-23 through 5-25.

5.4 1/2T COMPACT TENSION SPECIMEN TESTS Per the surveillance capsule testing contract with the Tennessee Valley Authority Nuclear Power Group, the 1/2T specimens were not tested. These specimens are stored at Westinghouse's Science and Technology Center.

WCAP-! 6760-NPl November 2007 Revision 0

5-6 Table 5-1 Charpy V-notch Data for the Watts Bar Unit I Intermediate Shell Forging 05 Irradiated to a Fluence of 2.40 x 10'9 n/cm' (E> 1.0 MeV) (Tangential Orientation)

Sample Temperature Impact Energy Lateral Expansion Shear 0 ft-lbs Joules mils mm  %

Number OF C WL90 -100 -73 6 8 9 0.23 0 WL83 25 -4 15 20 15 0.38 2 WL84 60 16 21 28 15 0.38 10 WL87 75 24 27 37 23 0.58 25 WL80 80 27 25 34 22 0.56 20 WL79 85 29 16 22 17 0.43 40 WL77 95 35 32 43 30 0.76 40 WL85 100 38 45 61 36 0.91 45 WL88 125 52 53 72 41 1.04 45 WL76 150 66 60 81 44 1.12 65 WL81 175 79 56 76 50 1.27 55 WL78 200 93 70 95 50 1.27 80 WL82 300 149 104 141 77 1.96 100 WL86 350 177 101 137 76 1.93 100 WL89 375 191 97 132 71 1.80 100 WCAP-16760-NP November 2007 Revision 0

5-7 Table 5-2 Charpy Vr-notch Data for the Watts Bar Unit I Intermediate Shell Forging 05 Irradiated to 2

a Fluence of 2.40 x 1019n/cm (E> 1.0 McV) (Axial Orientation)

Sample Temperature Impact Energy Lateral Expansion Shear 0 Joules mils mm  %

Number OF C ft-lbs WT82 -50 -46 7 9 6 0.15 2 WT89 75 24 18 24 19 0.48 20 WT86 100 38 24 33 36 0.91 25 WT85 125 52 18 24 25 0.64 20 WT88 140 60 27 37 32 0.81 40 WT77 150 66 28 38 31 0.79 40 WT83 165 74 33 45 35 0.89 45 WT79 175 79 35 47 34 0.86 50 WT81 190 88 36 49 42 1.07 50 WT76 200 93 35 47 38 0.97 60 WT90 210 99 58 79 60 1.52 95 WT78 225 107 55 75 50 1.27 100 WT84 300 149 66 89 56 1.42 100 WT87 350 177 69 94 57 1.45 100 WT80 375 191 64 87 52 1.32 100 WCAP-16760-NP November 2007 Revision 0

5-8 Table 5-3 Charpy V-notch Data for the Watts Bar Unit I Surveillance Weld Metal Irradiated to a Fluence of 2.40 x 10' 9n/cm2 (E> 1.0 McV)

Sample Temperature Impact Energy Lateral Expansion Shear 0 Joules mils mm  %

Number OF C ft-lbs WW89 -100 -73 4 5 4 0.10 10 WW83 -25 -32 27 37 24 0.61 20 WW86 -15 -26 37 50 33 0.84 30 WW78 0 -18 31 42 30 0.76 25 WW90 15 -9 27 37 30 0.76 35 WW87 25 -4 51 69 42 1.07 50 WW82 40 4 64 87 48 1.22 55 WW85 50 10 72 98 59 1.50 50 WW80 75 24 77 104 56 1.42 50 WW84 100 38 97 132 71 1.80 70 WW88 125 52 100 136 76 1.93 80 WW81 150 66 101 137 85 2.16 85 WW79 300 149 151 205 94 2.39 100 WW77 350 177 148 201 91 2.31 100 WW76 375 191 136 184 92 .2.34 100 WCAP-16760-NP November 2007 Revision 0

5-9 Table 5-4 Charpy V'-notch Data for the Watts Bar Unit I Ileat-Affected-Zone (IIAZ) Material Irradiated to a Fluence of 2.40 x 1019n/cm 2 (E> 1.0 McV)

Sample Temperature Impact Energy Lateral Expansion Shear Number OF 0C Ft-lbs Joules mils mm  %

WH79 -100 -73 9 12 6 0.15 2 WH83 -25 -32 22 30 16 0.41 15 WH85 0 -18 34 46 24 0.61 15 WH76 15 -9 27 37 23 0.58 40 WH78 25 -4 31 42 26 0.66 40 WH88 40 4 30 41 27 0.69 60 WH80 50 10 40 54 33 0.84 50 WH86 60 16 46 62 36 0.91 70 WH82 75 24 62 84 40 1.02 80 WH89 125 52 62 84 56 1.42 85 WH87 175 79 69 94 54 1.37 100 WH77 300 149 68 92 46 1.17 100 WH90 325 163 83 113 75 1.91 100 WH84 350 177 80 108 55 1.40 100 WH81 375 191 96 130 75 1.91 100 WCAP- 16760-NP November 2007 Revision 0

5-10 Table 5-5 Instrumented Charpy Impact Test Results for the Watts Bar Unit I Intermediate Shell Forging 05 Irradiated to a Fluence of 2.40 x 10'9 n/cm 2 (E>1.0 MeV) (Tangential Orientation)

Charpy Normalized (ft2lb/in)Energies Yield Time to Time to Fast Test Energy ( Load Yield Max. Max. Fract. Arrest Yield Flow Sample Temp. E11 Charpy Max. Prop. PGY tGy Load t.,% Load Load Stress Stress No. (OF) (ft-lb) EW/A E51, /A Ep/A (lb) (mscc) P 1%(lb) (msec) Pr (Ib) PA (Ib) cy (ksi) (ksi)

WL90 -100 6 48 27 22 2964 0.13 3042 0.14 3042 0 99 100 WL83 25 15 121 71 50 3436 0.15 4270 0.23 4250 0 114 128 WL84 60 21 169 123 46 2962 0.14 4225 0.33 4061 0 99 120 WL87 75 27 218 162 55 3258 0.15 4630 0.39 4630 0 109 131 WLS0 80 25 201 150 52 3045 0.14 4339 0.38 4258 0 101 123 WL79 85 16 129 56 73 2794 0.13 3799 0.21 3786 115 93 110 WL77 95 32 258 198 60 3090 0.14 4419 0.47 4406 0 103 125 WL85 100 45 363 243 120 3336 0.16 4583 0.54 4461 0 111 132 WL88 125 53 427 230 197 3221 0.15 4514 0.52 4214 0 107 129 WL76 150 60 483 226 257 2928 0.14 4347 0.53 4044 433 97 121 WL81 175 56 451 293 158 2989 0.14 4316 0.67 4110 580 100 122 WL78 200 70 564 290 274 2800 0.14 4299 0.67 4086 1827 93 118 WL82 300 104 838 221 617 2588 0.13 4293 0.55 n/a n/a 86 115 WL86 350 101 814 294 520 2949 0.15 4269 0.67 n/a n/a 98 120 WL89 375 97 782 209 573 3239 0.17 4310 0.53 n/a n/a 108 126 November 2007 WCAP- 116760-NP 6760-N1~ November 2007 Revision 0

5-11 Table 5-6 Instrumented Charpy Impact Test Results for the Watts Bar Unit 1 Intermediate Shell Forging 05 Irradiated to a Fluence of 2.40 x 1019n/cm2 (E>1.0 McV) (Axial Orientation)

Normalized Energies Charpy (ft2lb/in2 Yield Time to Tinic to Fast Test Energy Load Yield Max. Max. Fract. Arrest Yield Flow Sample Temp. ED Charpy Max. Prop. PGY tGy Load t,% Load Load Stress Stress No. (OF) (ft-lb) ED/A E51/A Ep/A (lb) (msec) P11 (ib) (msec) PF (lb) PA (lb) cr (ksi) (ksi)

WT82 -50 7 56 36 21 3245 0.19 3245 0.19 3245 0 108 108 WT89 75 18 145 71 74 3254 0.14 4109 0.23 4052 0 108 123 WT86 100 24 193 126 68 2999 0.14 4216 0.34 4216 0 100 120 WT85 125 18 145 49 96 3326 0.15 3788 0.19 3780 584 111 118 WT88 140 27 218 120 97 3096 0.14 3967 0.34 3967 593 103 118 WT77 150 28 226 99 127 2708 0.13 3996 0.30 3991 1003 90 112 WT83 165 33 266 139 127 3110 0.13 4152 0.36 4144 1006 104 121 WT79 175 35 282 146 136 2883 0.14 4200 0.39 4189 788 96 118 WT81 190 36 290 148 142 2935 0.14 4134 0.39 4134 1222 98 118 WT76 200 35 282 129 153 2961 0.15 4058 0.36 4016 1596 99 117 WT90 210 58 467 184 283 2985 0.14 4247 0.45 2670 1822 99 120 WT78 225 55 443 145 298 3001 0.14 4191 0.38 n/a n/a 100 120 WT84 300 66 532 197 335 2863 0.15 4308 0.48 n/a n/a 95 119 WT87 350 69 556 222 334 2490 0.17 4175 0.58 n/a n/a 83 111 WT80 375 64 516 176 340 2996 0.16 4054 0.45 n/a n/a 100 117 WCAP-16760-NP November 2007 Revision 0

5-12 Table 5-7 Instrumented Charpy Impact Test Results for the Watts Bar Unit I Surveillance Weld Metal Irradiated to a Fluence of 2.40 x 10"'n/cm 2 (E>I.0 MeV)

Normalizcd Encrgies Charpy Norma 2) Yield Time to Time to Fast Test Energy (ft-lb/in) Load Yield Max. Max. Fract. Arrest Yield Flow Sample Temp. Et Charpy Max. Prop. PGY tGY Load t,% Load Load Stress Stress No. (OF) (ft-lb) ED/A E 1I/A Ep/A (Ib) (msec) PM (Ib) (msec) Pv(lb) PA (lb) 0y (ksi) (ksi)

WW89 -100 4 32 11 21 1211 0.09 1346 0.11 1336 0 40 43 WW83 -25 27 218 148 69 3144 0.14 4207 0.38 4186 355 105 122 WW86 -15 37 298 181 117 3102 0.14 4301 0.45 4257 1430 103 123 WW78 0 31 250 157 93 2862 0.13 4122 0.41 4117 1210 95 116 WW90 15 27 218 117 100 3021 0.14 3816 0.33 3813 1218 101 114 WW87 25 51 411 224 187 3050 0.15 4210 0.54 4106 1794 102 121 WW82 40 64 516 301 214 2959 0.14 4272 0.68 4085 1223 99 120 WW85 50 72 580 299 281 2822 0.14 4219 0.69 3853 1664 94 117 WW80 75 77 620 311 309 3197 0.15 4376 0.69 3986 1427 106 126 WW84 100 97 782 295 487 2969 0.14 4150 0.69 3376 889 99 119 WW88 125 100 806 291 515 2738 0.14 4106 0.70 3000 1971 91 114 WW81 150 101 814 283 531 2781 0.15 4011 0.69 1308 585 93 113 WW79 300 151 1217 266 951 2509 0.15 3851 0.68 n/a n/a 84 106 WW77 350 148 1192 266 926 2565 0.14 3825 0.68 n/a n/a 85 106 WW76 375 136 1096 255 840 2340 0.14 3667 0.69 n/a n/a 78 100 WCAP- 16760-NP November 2007 Revision 0

5-13 Table 5-8 Instrumented Charpy Impact Test Results for the Watts Bar Unit I llcat-Affected-Zone (IIAZ) Metal Irradiated to a Fluence of 2.40 x 10' 9n/cmz (E>I.0 McV)

Charpy Normalized Energis Yield Time to Time to Fast Test Energy (ft-lb/in') Load Yield Max. Max. Fract. Arrest Yicld Flow Sample Temp. ED Charpy Max. Prop. PGY tGY Load t.% Load PF Load Stress ay Stress No. (OF) (ft-lb) EW/A E,.I/A Ep/A (Ib) (msec) Prj (Ib) (msec) (Ib) PA (Ib) (ksi) (ksi)

W1179 -100 9 73 44 28 4116 0.16 4200 0.17 4200 0 137 138 WH83 -25 22 177 74 104 3286 0.13 4487 0.22 4484 489 109 129 WH85 0 34 274 187 87 3239 0.15 4610 0.44 4545 395 108 131 WH76 15 27 218 126 92 3179 0.14 4358 0.33 4358 543 106 126 WH78 25 31 250 162 88 3425 0.15 4410 0.39 4397 278 114 130 WH88 40 30 242 74 168 3347 0.14 4137 0.23 4108 1113 111 125 WH80 50 40 322 165 157 3335 0.15 4369 0.40 4317 1567 111 128 WH86 60 46 371 194 177 3199 0.14 4314 0.46 4275 2350 107 125 W1182 75 62 500 237 263 3116 0.14 4624 0.52 4593 2750 104 129 WH89 125 62 500 199 300 3000 0.14 4275 0.48 3256 1574 100 121 WH87 175 69 556 214 342 3049 0.15 4196 0.52 n/a n/a 102 121 WH77 300 68 548 207 341 2808 0.14 4102 0.52 n/a n/a 94 115 WH90 325 83 669 198 470 2813 0.14 3886 0.51 n/a n/a 94 112 W1184 350 80 645 208 436 2727 0.14 4073 0.52 n/a n/a 91 113 WH81 375 96 774 283 490 2950 0.16 4047 0.68 n/a n/a 98 117 WCAP-16760-NP November 2007 Revision 0

5-14 Table 5-9 Effect of Irradiation to 2.40 x I0'9 n/cm 2 (E>1.0 MeV) on the Capsule V Notch Toughness Properties of the Watts Bar Unit I Reactor Vessel Surveillance Capsule Z Materials Average 30 (ft-lb)t(* Average 35 ril Lateralib) Average 50 ft-lb('a Average Energy Absorption(A)

Material Transition Temnpcrature (0 F) Expansion Tcmpcrature (0F) Transition Temperature (0 F) at Full Shear (ft-lb)

Unirradiated Irradiated AT Unirradialed Irradiated AT Unirradiated Irradiated AT Unirradiated Irradiated AE Intermediate Shell Forging 05 -57.1 87.4 145 -9.4 121.2 131 -15.4 137.9 153 132 101 -31 (Tang.)

Intermediate Shell Forging 05 45.2 150.1 105 84.6 150.0 65 114.2 225.6 111 62 62 0 (Axial) I Weld Mctal

( deat -31.2 -17.3 14 -9.9 8.9 19 -5.9 28.0 34 131 145 14

( Ilte at # 8 95 0 7 5 ) 11 111 11 1 HAZ Metal -56.2 11.5 68 -0.6 56.9 58 -8.6 74.9 84 89 79 -10 Notes:

a. "Average" is defined as the value derived from the curve fit through the data points of the Charpy tests (see Figures 5-1, 5-4, 5-7 and 5-10).
b. "Average" is defined as the value derived from the curve fit through the data points of the Charpy tests (see Figures 5-2, 5-5, 5-8 and 5-11).

WCAP- 16760-NP November 2007 Revision 0

5-15 Table 5-10 Comparison of the Watts Bar Unit I Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions 30 ft-lb Transition Temperature Shift Upper Shelf Energy Decrease Fluence(d)

(x 10' 9n/cm 2 , Predicted Measured Predicted Material Capsule E > 1.0 Me'V) (OF) (a) (oF) (b) (%) (a) Measured (%)(c)

U 0.447 95.4 98.3 21 19 Intermediate W 1.08 125.6 111.4 26 26 Shell Forging 05 X 1.71 141.2 94.7 29 20 (Tangential)

Z 2.40 152.0 144.5 31 23 U 0.447 95.4 28.7 21 --

Intermediate W 1.08 125.6 79.0 26 3.2 Shell Forging 05 X 1.71 141.2 115.9 29 --

(Axial)

Z 2.40 152.0 104.9 31 0 U 0.447 31.8 0.0(e) 16 - -

Surveillance W 1.08 41.9 30.5 19 15 Program Weld Metal X 1.71 47.1 25.8 22 - -

Z 2.40 50.7 13.9 23 - -

U 0.447 --- 50.9 --- 11 Heat Affected W 1.08 --- 48.8 --- 13 Zone Material X 1.71 --- 74.5 - - - 7.9 Z 2.40 --- 67.7 --- 11 Notes:

a. Based on Regulatory Guide 1.99, Revision 2, methodology using the mean weight percent values of copper and nickel of the surveillance material.
b. Calculated using measured Charpy data plotted using CVGRAPH, Version 5.0.2 (See Appendix C)
c. Values are based on the definition of upper shelf energy given in ASTM E185-82.
d. The fluence values presented here are the "calculated" values.
e. Due to the scatter in the Capsule U Weld Charpy test results, a true Hyperbolic Tangent Curve fit resulted in AT30 values of -6.4°F when compared to unirradiated Charpy test data. A conservative value of 0°F was used in RTNr, calculations.

WCAP-1 6760-NiP November 2007 Revision 0

5-16 9 2 Table 5-11 Tensile Properties of the Watts Bar Unit I Capsule Z Reactor Vessel Surveillance Materials Irradiated to 2.40 x 10' n/cm (E > 1.0 MeV) 0.2%

Test Yield Ultimate Fracture Fracture Fracture Uniform Total Reduction Sample Temp. Strength Strength Load Stress Strength Elongation Elongation in Area Material Number (OF) (ksi) (ksi) (kip) (ksi) (ksi) M% M% (M)

Intermediate Shell WL16 125 86.1 104.4 3.45 187.6 70.3 10.5 23.4 63 Forging 05 (Tang.) WL17 325 80.0 99.3 3.30 184.3 67.2 10.5 22.7 64 WL18 550 79.5 100.8 3.53 175.3 71.8 9.8 20.7 59 Intermediate Shell WTI6 170 85.1 102.9 3.90 167.8 79.5 10.5 20.7 53 Forging 05 (Axial) WTI7 325 80.5 98.8 3.60 129.7 73.3 10.2 17.9 43 WTI8 550 76.4 100.3 4.15 129.5 84.5 9.8 17.4 35 Weld Metal WW16 70 77.1 91.7 2.80 198.5 57.0 12.0 28.2 71 WWI7 325 70.3 82.5 2.50 182.7 50.9 11.6 24.8 72 WW18 550 65.2 85.1 2.70 165.8 55.0 10.5 22.7 67 Novcmbcr 2007 WCAP- 16760-NP WCAP- 16760oNP November 2007 Revision 0

5-17 INTERMEDIATE SHELL 05 (TANGENTIAL)

CN'GRAP1H 5.0.2 Hypcabolic Tangent Curve Printed on 07/12/2007 03:34 PM Data Set(s) Plotted Curve Plant Capsule Material Ori.

If. HeatIt 1 WATTS BAR I UNIRR SA508CL2 527536 WATTS BAR I 3 SASOSCL2 LT 527536 3 WAITS BAR I1 W SA508CL2 LT 527536 4 WAITS BAR I x SA5S08CL2 LT 527536 5 WATrS BAR I z SA508CL2 LT 527536 0

'U

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F " Sets o Set Set2

  • St3  % Set4 Curve F ILI~C IS. USE d-USE T @30 d.T(*30 T C150 d-T @W0 I 2.2 132.0 .0 -57.1 .0 ,15.4 .0 2.2 107.0 -25.0 41.2 98.3 86.4 101. S 98.0 .34.0o 54.3 111.4 95.0 110.4 3

4 2.2 106.0 -26.0 37.6 94.7 87.2 102.6 5 101.0 -31.0 87.4 144.5 137.9 153.3 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for Watts Bar Unit 1 Reactor Vessel Intermediate Shell Forging 05 (Tangential Orientation)

WCAP'-1676~0-NP1 November 2007 Revision 0

5-18 INTERMEDIATE SHELL 05 (TANGENTIAL)

CVGRAPIH 5.02 IypcrbolicTangen1 Curve Printed on 07/12/2007 03:54 PM Data Set(s) Plotted Curve Plant Capsule Material Ori. Ifeat #

WATTS BAR I UNIRR SA.508CL- LT 527536 WATTS BAR I U SA508CL2 LT 527536 3 WATTS lIAR I W SA508CL2 LT 527536 4 WATTS BAR 1 x SASOSC12 LT 527536 5 WATI'S BAR I z SA508CL2 LT 527536 200 0

aZ 0 , -

-300 0 300 600 Temperature In Deg F a Set1 a Set2 o Set3  %. Set4 Set5 RI-suls CNIrve Fluence LSE USE d-USE T C35 d-T 0 35 1 .0 80.5 .0 -9.4 .0 91.0 100.4 2 .0 76. 9 -3.6

.0 82.6 2.1 94.3 93.7 3

,0 83. 1 2.6 106. 6 116.0 4

.0 77.9 -2.6 121.2 130.6 5

Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for Watts Bar Unit 1 Reactor Vessel Intermediate Shell Forging 05 (Tangential Orientation)

WCAI'-16I/OU-NI' November 2007 Revision 0

5419 INTERMEDIATE SHELL 05 (TANGENTIAL)

CVGRAPH 5.0.2 1[yperbolic Tangent Curve Printed on 07112/2007 03:44 PM Data Set(s) Molted Curve Plant Capsule Material Ori. ileat #

WAITS BAR I UNIRR SA5S08CL2 LT 527536 WATTS BAR I U SA508CL2 LT 527536 3 WATFS BAR I w SAS0SC12 LT 527536 4 WATI'S BAR I x SA508CL2 LT 527536 5 WATrS BAR I Z SAS08CL2 LT 527536 125 100 A-0 a.

o -*-.

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F 0 Set 1 Set 2 0 Set 3 & Set 4 Set 5 Results Fluence iSE USE d-USIE T 050 d-T 050

.0 100.0 .0 34.g .0

.0 100.0 .0 126.6 91.8 3 .0 t00.0 .0 102.3 67.5 4 .0 100.0 .0 116.6 81.8 5 .0 100.0 .0 131.2 96.4 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for Watts Bar Unit 1 Reactor Vessel Intermediate Shell Forging 05 (Tangential Orientation)

WCAP- 16760-NP November 2007 Revision 0

5-20 INTERMEDIATE SIIEIAL 05 (AXIAL)

CVGRAPII 5.0.2 l)Tpcbclic Tangent Curve Printed on 07113)2007 08:3E AM Data Sel(s) Plotted Curve Plant Capsule Material Ori. Hcat #

1 WATTS BAR I UNIRR SA5080.2 TL 527536 WAITS BAR I U SA508CL21 TL 527536 3 WAITS BAR I W SAiOSCI2 TL 527536 4 WAiTS BAR I X SA5 08CL2 TL 527536 5 WATTS BAR I z 5A508CL2 I'L 527536 300 250 200 150 z 100 50 0 ---

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F 0 Set I Sett2 0 Set3 & Set4 Set5 Result~s Curve Flurtwe LSE USE d-USE T 0.30 d-lT 30 T @50 d" @50 2.2 62.0 .0 43.2 .0 114.2 .0 10.0 28.7 148.7 34. 5 2.2 72.0 3 2.2 60, 0 -2.0 124.2 79.0 206.2 92.0 4.0 115.9 218.3 104. I 4 2.2 66 0

.0 )(A. 1 5 2.2 62.0 104.9 225.6 111.4 Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for Watts Bar Unit 1 Reactor Vlessel Intermediate Shell Forging 05 (Axial Orientation)

WCAP-16760-NP November 2007 Revision 0

5-21 INTERMEDIATE SHELL 05 (AXIAL)

CVGRAPH 5.0.2. iypx:rbolic Tangeni Curv*e Printed on 07/1312007 08:54 AM Data Set(s) PIo:ted Curve Plant Capsule 'Mantcrild Ori. lctt #

WATTS BAR 1 UINIRR &4608CL2 TL 527536 2 WAITS BAR I Ii SA5OSCL2 TL 527536 43 WATT'S BAR I NV SA508CL2 TL 527536 WATTS BAR I X. SA50SCL-) 7I. 527536 5 WATTS BAR I z SA50SCI.:2 11. 527536 200 150 E

2100 so 0 4-

-300 0 300 600 Temperature In Deg F 0 Set 1 a Set 2 t Set3St4 Set5 IlesilIts Curve fluence Ist. USE d-.US T P35 d.T(l35

.0 58. 3 10 84, 1 .0 2 .0 57. 3 51. .

3.5 13S, I 3 .0 61.8 4 .0 68. 1 9-8 201. 6, 117.0

.0 58. 8 .4 150.0 65.4 5

Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for Watts Bar Unit I Reactor Vessel Intermediate Shell Forging 05 (Axial Orientation) vtIlI' A rl I £7dA/ *ttl l- 1V/ IUU-P.*

,t1k.,F November 2007 Revision 0

5-22

. ~~~~. INTERMEDIATE SHELL .. .. 05.. . .(AXIAL)

CVGRAPH 5.0.2 Hp.rbolicTangcnt CuMvc Printcd on'07113/2(hX7 08:45 AM:

-::::::Data Set(s) Plo0utd Plant i: K:Cltlls:le

.::- ..Material . -Ori..., H.eat #

.SA50S0L2 TL . 527536 WATTS BAR1 UNIRR 527536 WAITS BAR - U SA5OSCL2- fl

2. SA508CL2... TL 527536 3 WA'TS BAR I w WATTS BAR I X SA5OSCL2 TL 127536.

.4 BARI . SA50SC[2 TL 527536

......... WATTS
2: :: " 1225

'0 w I _ _A' 75:

..... .. .. W .

...... ....  :... 501..... T .

..... ....... " " ' " " "1"" ' 'k.."

IL;

" " "' ' " ' ' " " ' ' O ' : ", ' ':. . ." ' ' " " " ' :

5 ..

U4 . .. ' .. .. ... .  :...

iii~~::::'~ii:::~ii::~iii~~ii}: i~:Tem perature in Dog F . .. "" "' '::"

'i':::i::~i:i'::

.~~~......

. . . . 4. .

... . . . .... .....! .i'.:Set4 . .. ..:..:.Set 5

. . .. . . . . . S ,. . et..@. .5. .. .::. . . .

.Set . .2 :0!:!:!:i!

ii:::!i~ : : . ....

0 *S. ,~~ etl 4 00:::::::

.... ,....:: ./ .....:::::i:

2 ...;......1, .::::ý .4. .

. ./.. 0 ::: 00 : .ý0 . 0 ::::: 500::::. . ..

. .3

. .. . . .. . . . . . . . . ........ , ... . . . . ... 3 . .. . ..

3 ~~~ ~ . . ..~:::; ~ ~:0 ~ =...======== ~ ~ ~ -.~. 0 .::::::::

.. . . .. ....6-..

. ........ ..4. ..

.. .. . . . . . . . . . .. . . . i i i : ii i iii ::: ~i :  ::: iiii ~ ii ii ~ii ..... i~ i :.:i.. ..: i:  : ii

,))...'

......... -+

. ' ....... , .X ' ....... ) : : X ' ' + ') . , + X X ) X I X : .

.... ~..X:,

. .X +

  • X. . . . . . . .. + ,..: : .. . .  :. ........ . .' - -... .. -. :..... , - ' . . ,.',.

- ,,i ,,,. "+

.. ., I ..........

Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for Watts Bar Unit I Reactor Vessel Intermediate Shell Forging 05 (Axial Orientation)

WCAP- 16760-NP November 2007 Revision 0

5-23 SURVEILLANCE PROGRAM WELD CVGRAPH 5.0.2 Hyperbolic Tangent Curvm Printed on 07/13/2007 09:43 AM Data Sct(s) Plot:ed Curve Plant Capsule M~aterial Ort. Heal #

1 WATTS BAR I LJNIRR SAWV NA 895075 2 WAiTS BAR I U1 SAWV NA 895075 3 WATIS LIAR I W SAWV NA 895075 4 WATIS BAR I x SAW NA 895075 5 WATTS BAR 1 z SAWV NA 895075 300 ---

250 20 150

> 1O0 o>100 :-

50 0 4-

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F 0 Set I Set2 0 Set3 A Set4 "; Sot5 Curve Fltence LSE USE d-t~lSE- T 030 d-T rq"30 T 650 d.T 050

,0 -31.2 2.2 131.0 .0 -5.9 .0 143.0 12.0t .37.6 -6.4 6. 3 12.2 2.2 3 112.0 - 19. C- -. 7 30.5 39.4 45.3 2.2 4 2.2 134.0 3.0 .5.4 25. a 37.9 43.8 5 2.2 145.0 14.0 -17.3 13.9 28.0 33.9 Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for Watts Bar Unit 1 Reactor Vessel Weld Metal WCAP-16760-NP November 2007 Revision 0

5-24 SURVEILLANCE PROGRAM WELD CVGRAPI 1 5.0.2 Hyperbolic Tangent Curve Printed on 07/1312007 09:57 AM Data Set(s) Plotted Plant Capsule Material Ori. llea(#

WAITS BAR I UNIRR SAW NA 895075 WATTS BAR I U SAW NA 895075 WAITS BAR I W SAW NA 895075 4 WAITS BAR I x SAW NA $95075 5 WATTS BAR I z SAW NA 895075 200 150 C

0.

ao0 E

'I 50 0

-300 0 300 600 Temperature In Deg F o Set I Set2

  • Set3 a Set4 1, Set 5 Results Curve Flucnce LSE5 USE d.USE 1' C35 d-r (05

.0 V7, 8 .0 -9.9 .0

.0 76.9 -10.9 7.4 17.3 3 .0 SQ. 2 1,4 21.9 31.8 4 .0 95.0 -2.8 35.9 45.8 5 .0 93.0 5.2 8.9 18.8 Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for Watts Bar Unit 1 Reactor Vessel Weld Metal WCAP-16760-NP November 2007 Revision 0

5-25 SURVEILLANCE PROGRAM WELD CVGRAPII 5.0.2 H)perbolic Tangent Curve Printed on 07/13/2007 09:51 AM Data Set(s) Plotted Curve Plant Capsule Material Or!. lleatN WATTS BAR I UJNIRR SAW NA 895075 WATTS BAR 1 U SAW NA 895075 WVAITS BAR I W SAW NA 895075 4 WAITS BAR I xZ SAW NA 895075 5 WATrS. BAR I SAW NA 895075 125 100 75

(/1 I,

U V 50 C-25 0 1-

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F 0 Set I a Set2

  • Set3 t, Set4 Set5 tSUuIL.;

curve tluence LSE d.USE T @50 d-T O50 1 .0 100.0 .0 -1.2 .0 2 .0 100.0 .0 9.6 10. 8 3 .0 100.0 .0 19.9 21.1 4 .0 100.0 .0 70,9 72.1 5 .0 I00.0 .0 47.5 48.7 Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for Watts Bar Unit I Reactor Vessel Weld Metal WCAPI-16760-NP November 2007 Revision 0

5-26 HEAT AFFECTED ZONE CVGRAPU 5.0.2 Hyperbolic Tangent Curve Printed on 07/13/2007 01:44 PM Data Set(s) Plotted Plant Capsule Material Ori. Ilea( #

Curve 527536 WATTS BAR I UNIRR SA503CL2 NA I U SA508CL2 NA 527536 2 WATfS BAR 527536 3 WAITS BAR I w SA508CL2 NA 4 WAITS BAR I x SA~508CL- NA 527536 WAITS BAR I z SA508CL2 NA 527536 5

3001 250 200 0

15o 150 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F 0 Set I a Sot2

  • Set3 A Set4 Sets Results Fluence MsE USE d-USE T @30 d-T @30 T @50 d-T @50 Curve 2.2 $9.0 .0 -56.2 .0 -8.6 .0 2.2 79.0 -10.0 -5.3 50.9 43.7 52.3

-7.4 48.8 53.6 62.2 3 2.2 77.0 -12.0 4 2.2 £2.0 -7.0 18.3 74.5 63,7 72.3 5 2.2 79.0 .10.0 11.5 67.7 74.9 83.5 Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for Watts Bar Unit 1 Reactor Vessel H1eat-Affected-Zone Material Novcmbcr 2007

~VLA1'- I bibU-NI' WCAP'-16760-NPl November 2007 Revision 0

5-27 HEAT AFFECTED ZONE CVGRAPII 5.0.2 1ylvrblyolic Tangcnt Curvc Printcd on 07113/2007 11:00 AM Data Scts) Plotted curve Plant Capsule M~aterial Ori. Ileat#

1 WATTS BAR I UNIRR SA508C12 NA 527536 2 WATTS BAR I U SASOEC12 NA 527536 3 WATTS BAR I W SA508CL2 NA 527536 4 WATT1S HAR I X SA508=12 NA 527536 5 WATI'S BAR 1 Z SA50SCL-2 NA 527536 200 150 E

S100 so 50 0o-0

-300 0 300 600 Temperature In Deg F 0 Set1 a Set2 0 Set3 & Set4 Set5 Fluence ISE USE d-USE T"@35 d.,r @35

.0 66. 3 .0 .0

.0 54A4 -11.9 51.2 51.9

.0 63.6 -2.7 4is.0 48.6 3

4 .0 56.3 -10.0 72.6 73.12

.0 63.6 -2.7 56. 9 57.5 5

Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for Watts Bar Unit I Reactor Vessel Heat-Affected-Zone Material O-WIAP l0U-NI" November 2007 Revision 0

5-28 HEAT AFFECTED ZONE CVGRAPH 5.0.2 Hypetbolic Tangent Curve Printcd on 07/13/2007 10:54 AM Data Sct(s) Plotted Curve Plant Capsule Material On. Hleat#

WATTS BAR I UNTRR SA508CL2- NA 527536 2 WAI*S BAR I U 'SA508CL2 NA 527536 3 WATTS BAR I xv SA5O8CL2 NA 527536 4 WAI'S BAR I xz SA508CL2 SA508CL2 NA NA 527536 527536 5 WATIS BAR I 125 100 75 V) 50 25 o4-

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Deg F 0 Set I a Set2

  • Set3 t- Set4 Set5 Results Curve Fluence lSE USE d-USE T 050 d.T 55*

.0 100.0 .0 -22.2 .0

.0 100.0 .0 85. 1 110. 3 3 .0 100.0 .0 39.6 61.8

.0 100.0 .0 64.7 86.9 4

.0 100.0 .0 37.0 59.2 5

Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for Watts Bar Unit 1 Reactor Vessel Heat-Affected-Zone Material WCAP- 16760-NII November 2007 Revision 0

5-29 WL90, -100-F WL83, 25 0 F WL84, 600 F WL87, 75 0 F WL80, 800 F WL79, 85 0 F WL77, 950 F WL85, 100lF WL88,125 0 F WL76,150°F WLSI, 175 0 F WL78, 200°F WL82, 300°F WL86, 350 0 F WL89,375°F Figure 5-13 Charpy Impact Specimen Fracture Surfaces for Watts Bar Unit I Reactor Vessel Intermediate Shell Forging (Tangential Orientation)

WCAP-16760-NP November 2007 Revision 0

5-30 WT82, -50 0F WT89, 750 F WT86, 100-F WT85, 125TF WT88, 140TF WT77, 1500F WT83, 165 0F WT79, 175°F WT81, 190° WT76, 200°F WT90,210F WT78, 225°F WT84, 300°F WT87, 350T WVT80, 375 0F Figure 5-14 Charpy Impact Specimen Fracture Surfaces for Watts Bar Unit I Reactor Vessel Intermediate Shell Forging 05 (Axial Orientation)

WCAP-1 6760-NP November 2007 Revision 0

5-31 0

WW89, -100-F WW83, -25 0 F WW86, -15°F WW78, O F WW90, 15°F WW87, 25 0 F WW82, 40°F WW85, 50 0 F WW80, 75°F WW84, 100°F WW88,125 0 F WW81, 150°F WW79, 300°F WW77, 350 0 F WW76,3750 F Figure 5-15 Charpy Impact Specimen Fracture Surfaces for Watts Bar Unit 1 Reactor Vessel Weld Metal November 2007 WCA P-I 6760-NP WCAP-16760-NP November 2007 Revision 0

5-32 WH79, -100°F WH83, F W1185, OTF WH76, 15°F WH78,25°F WH88, 400F WH8O, 50 0F WH86, 600 F WH82, 750 WH89, 125TF WH87, 175 0 F WH77, 300TF WH90,325°F W1184, 350°F W1i81,375TF Figure 5-16 Charpy Impact Specimen Fracture Surfaces for Watts Bar Unit I Reactor Vessel Heat-Affected-Zone Metal WCAP-16760-NP November 2007 Revision 0

5-33 120.0 Ultimate Tensile Strength 100.0 80.0 x

In 60.0 0.2% Yield Strength 40.0 20.0 0.0 0 100 200 300 400 500 600 Temperature (F)

Legend: A and o and o arc unirradiated Aand

  • and . are irradiated to 2.40 x 10' 9n/cm2 (E > 1.0 MeV) 80.0 Reduction In Area 70.0 60.0 50.0 40.0 U

Total Elongation 30.0

'ýn n 10.0 Uniform Elongation 0.0 0 100 200 300 400 500 600 Temperature (F)

Figure 5-17 Tensile Properties for Watts Bar Unit I Reactor Vessel Intermediate Shell Forging 05 (Tangential Orientation)

WCAP-16760-NP November 2007 Revision 0

5-34 120.0 Ultimate Tensile Strength 100.0 80.0 Ce) 0.2% Yield Strength Ce ^

60.nI -t Ce 40.0 20.0 0.0 0 100 200 300 400 500 600 Temperature (F)

Legend: A and o and o are unirradiated A and

  • and I are irradiated to 2.40 x 1O09 n/cm2 (E > 1.0 MeV) 70.0 Reduction In Area 60.0 50.0 -

40.0 30.0 Total Elongation 20.0 20.0 ,-

10.0 Uniform Elongation 0.0 0 100 200 300 400 500 600 Temperature (F)

Figure 5-18 Tensile Properties for Watts Bar Unit I Reactor Vessel Intermediate Shell Forging 05 (Axial Orientation)

WCAP-16760-NP November 2007 Revision 0

5-35 100.0 Ultimate Tensile Strength 80.0 -

70.0 -

60.0 o 0.2% Yield Strength

  • a' 50.0-40.0 30.0 20.0 10.0-0.0 0 100 200 300 400 500 600 Temperature (F)

Legend: A and o and o are unirradiated Aand

  • and . are irradiated to 2.40 x 10t'n/cm2 (E > 1.0 McV) 80.0 70.0-Reduction In Area 60.0 50.0

= 40.0 U

30.0-'

30.0 *Total Elongation 20.0-10.0-Uniform Elongation 0.0 0 100 200 300 400 500 600 Temperature (F)

Figure 5-19 Tensile Properties for WVatts Bar Unit I Reactor Vessel WVeld Metal WCAP-16760-NP November 2007 Revision 0

5-36 Specimen WLI6- Tested at 125 0F Specimen WLI7- Tested at 325'F Specimen WL18- Tested at 550°F Figure 5-20 Fractured Tensile Specimens from Watts Bar Unit I Reactor Vessel Intermediate Shell Forging 05 (Tangential Orientation)

WCAP-16760-NP November 2007 Revision 0

5-37

sPecime-n WT 6- Tsed a .t.170^F.
Spec'imen Wrl 8- Tested at 550^TF Figure 5-21 Fractured Tensile Specimens from Watts Bar Unit 1 Reactor Vessel Intermediate Shell Forging 05 (Axial Orientation)

WCAP-16760-NP November 2007 Revision 0

5-38

.:~~. . ..... . . . . . . . . ...... . . . .. . . . ... ..

0

....... .... "W"16 Specimen T"sted7'" " . .. F. .............. .........

S imen WW 17- Tested at 325CF Specineti **" 1 S- Tested at 550CF:

Figure 5-22 Fractured Tensile Specimens from Watts Bar Unit I Reactor Vessel Weld Metal WCAP-16760-N P November 2007 Revision 0

5-39 WATTS BAR # I CAPSULE Z 100 0o S60 12S*F 40 20 0

0 0.05 0.1 0.15 02 0.25 0.3 STRAIN. INfIN WATTS BAR X I CAPSULE Z so

  • 60 40 WL17 325F 20 0.05 0.1 0.15 0.2 0.25 0.3 STRAIN. INIIN WATTS BAR # 1 CAPSULE Z 100 80 u0 60 u

40 WLIS 550"F 20 0.05 0.1 0.15 02 0.25 0.3 STRAIN. 0W/IN Figure 5-23 Engineering Stress-Strain Curves for Watts Bar Unit I Intermediate Shell Forging 05 Tensile Specimens WL-16, WVL-17 and WL-18 (Tangential Orientation)

November 2007

~VCAP-l6760-NP WCAP-16760-NP November 2007 Revision 0

5-40 WATTS BAR # I CAPSULE Z 100 00 60 40 17IS 170*F 20 0.05 0.1 0.15 0.2 0.25 03 STRPN INuN WATrS BAR #X1 CAPSULE Z 100 80 r,66 40 40- WTt7 325"F 20~

0 0 0.05 0.1 0.15 02 0.25 0.3 STRAIR ION WATTS BAR # 1 CAPSULE Z 100 80 060 40 WT18 550F 20 0

0.05 0.1 0.15 0.25 0.3 STRAIR INN Figure 5-24 Engineering Stress-Strain Curves for Watts Bar Unit I Intermediate Shell Forging 05 Tensile Specimens WT-16, WT-17 and WT-18 (Axial Orientation)

WCAP-16760-NP November 2007 Revision 0

5-41 WATTS BAR# 1 CAPSULE Z 100 60 40 WW16 70*F 20 0

0 0.05 0.1 0.15 0.2 0.25 0.3 STRAIN. IN/IN WATTS BAR #1 CAPSULEZ 680 40 20 0.05 0.1 0.15 02 0-25 0.3 STRAIN. IN/IN WATTS BAR # 1 CAPSULE Z 100 80 03 80 40 WW18 550'F 20 0

0 0.05 0.1 0.15 0.2 025 0.3 STRAIN. IN/IN Figure 5-25 Engineering Stress-Strain Curves for Weld Metal Tensile Specimens W-16, VWW-17 and NVW-18 WCAP- 16760-NP November 2007 Revision 0

6-1 6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY

6.1 INTRODUCTION

This section describes a discrete ordinates Sn transport analysis performed for the Watts Bar reactor to determine the neutron radiation environment within the reactor pressure vessel and surveillance capsules.

In this analysis, fast neutron exposure parameters in terms of fast neutron fluence (E > 1.0 MeV) and iron atom displacements (dpa) were established on a plant and fuel cycle specific basis. An evaluation of the most recent dosimetry sensor set from Capsule Z, withdrawn at the end of the seventh plant operating cycle, is provided. Comparisons of the results from these dosimetry evaluations with the analytical predictions served to validate the plant specific neutron transport calculations. These validated calculations subsequently formed the basis for providing projections of the neutron exposure of the reactor pressure vessel for operating periods extending to 60 Effective Full Power Years (EFPY).

The use of fast neutron fluence (E > 1.0 MeV) to correlate measured material property changes to the neutron exposure of the material has traditionally been accepted for the development of damage trend curves as well as for the implementation of trend curve data to assess the condition of the vessel. In recent years, however, it has been suggested that an exposure model that accounts for differences in neutron energy spectra between surveillance capsule locations and positions within the vessel wall could lead to an improvement in the uncertainties associated with damage trend curves and improved accuracy in the evaluation of damage gradients through the reactor vessel wall.

Because of this potential shift away from a threshold fluence toward an energy dependent damage function for data correlation, ASTM Standard Practice E853, "Analysis and Interpretation of Light-Water Reactor Surveillance Results,"[ 221 recommends reporting displacements per iron atom (dpa) along with fluence (E > 1.0 MeV) to provide a database for future reference. The energy dependent dpa function to be used for this evaluation is specified in ASTM Standard Practice E693, "Characterizing Neutron 23 1 Exposures in Iron and Low Alloy Steels in Terms of Displacements perAtom."" The application of the dpa parameter to the assessment of embrittlement gradients through the thickness of the reactor vessel wall has already been promulgated in Revision 2 to Regulatory Guide 1.99, "Radiation Embrittlement of Reactor Vessel Materials." [I]

All of the calculations and dosimetry evaluations described in this section and in Appendix A were based on the latest available nuclear cross-section data derived from ENDF/B-VI and made use of the latest available calculational tools. Furthermore, the neutron transport and dosimctry evaluation methodologies follow the guidance of Regulatory Guide 1.190, "Calculational and Dosimctry Methods for Determining Pressure Vessel Neutron Flucnce."'351 Additionally, the methods used to develop the calculated pressure vessel fluence are consistent with the NRC approved methodology described in WCAP-14040-NP-A, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves," May 2004.124]

6.2 DISCRETE ORDINATES ANALYSIS From a neutronic standpoint, the surveillance capsules and associated support structures are significant.

The presence of these materials has a marked effect on both the spatial distribution of neutron flux and the neutron energy spectrum in the water annulus between the neutron pads and the reactor vessel. In order WCAP- 16760-NP November 2007 Revision 0

6-2 to determine the neutron environment at the test specimen location, the capsules themselves must be included in the analytical model.

In performing the fast neutron exposure evaluations for the Watts Bar reactor vessel and surveillance capsules, a series of fuel cycle specific forward transport calculations were carried out using the following three-dimensional flux synthesis technique:

q,(r,0, z) = (p(r,0)* p(r,z)

(P(r) where 4(rO,z) is the synthesized three-dimensional neutron flux distribution, 4(rO) is the transport solution in r,0 geometry, 4(rz) is the two-dimensional solution for a cylindrical reactor model using the actual axial core power distribution, and ý(r) is the one-dimensional solution for a cylindrical reactor model using the same source per unit height as that used in the r,0 two-dimensional calculation. This synthesis procedure was carried out for each operating cycle at Watts Bar.

For the Watts Bar transport calculations, the re models depicted in Figures 6-1 and 6-2 were utilized since, with the exception of the neutron pads, the reactor is octant symmetric. These rO models include the core, the reactor internals, the neutron pads - including explicit representations of octants not containing surveillance capsules and octants with surveillance capsules at 31.5' and 340, the pressure vessel cladding and vessel wall, the insulation external to the pressure vessel, and the primary biological shield wall. These models formed the basis for the calculated results and enabled making comparisons to the surveillance capsule dosimetry evaluations. In developing these analytical models, nominal design dimensions were employed for the various structural components. Likewise, water temperatures, and hence, coolant densities in the reactor core and downcomer regions of the reactor were taken to be representative of full power operating conditions. The coolant densities were treated on a fuel cycle specific basis. The reactor core itself was treated as a homogeneous mixture of fuel, cladding, water, and miscellaneous core structures such as fuel assembly grids, guide tubes, et cetera. The geometric mesh description of the r,0 reactor models consisted of 170 radial by 98 azimuthal intervals. Mesh sizes were chosen to assure that proper convergence of the inner iterations was achieved on a pointwise basis. The pointwise inner iteration flux convergence criterion utilized in the r,0 calculations was set at a value of 0.001.

The rz model used for the Watts Bar calculations is shown in Figure 6-3. As in the case of the r,0 models, nominal design dimensions and full power coolant densities were employed in the calculations. In this case, the homogenous core region was treated as an equivalent cylinder with a volume equal to that of the active core zone. The stainless steel former plates located between the core baffle and core barrel regions were also explicitly included in the model. The rz geometric mesh description of these reactor models consisted of 153 radial by 90 axial intervals. As in the case of the rO calculations, mesh sizes were chosen to assure that proper convergence of the inner iterations was achieved on a pointwise basis. The pointwise inner iteration flux convergence criterion utilized in the rz calculations was also set at a value of 0.001.

The one-dimensional radial model used in the synthesis procedure consisted of the same 153 radial mesh intervals included in the rz model. Thus, radial synthesis factors could be determined on a meshwise basis throughout the entire geometry.

WCAP- 16760-NP November 2007 Revision 0

6-3 The core power distributions used in the plant specific transport analysis were taken from References 25 through 32 for each of the first eight fuel cycles at Watts Bar. Specifically, the data utilized included cycle dependent fuel assembly initial enrichments, bumups, and axial power distributions. This information was used to develop spatial and energy dependent core source distributions averaged over each individual fuel cycle. Therefore, the results from the neutron transport calculations provided data in terms of fuel cycle averaged neutron flux, which when multiplied by the appropriate fuel cycle length, generated the incremental fast neutron exposure for each fuel cycle. In constructing these core source distributions, the energy distribution of the source was based on an appropriate fission split for uranium and plutonium isotopes based on the initial enrichment and bumup history of individual fuel assemblies.

From these assembly-dependent fission splits, composite values of energy release per fission, neutron yield per fission, and fission spectrum were determined.

All of the transport calculations supporting this analysis were carried out using the DORT discrete ordinates code Version 3.21333 and the BUGLE-96 cross-section library.J341 The BUGLE-96 library provides a 67 group coupled neutron-gamma ray cross-section data set produced specifically for light water reactor (LWR) applications. In these analyses, anisotropic scattering was treated with a P5 legendre expansion and angular discretization was modeled with an S 16 order of angular quadrature. Energy and space dependent core power distributions, as well as system operating temperatures, were treated on a fuel cycle specific basis.

Selected results from the neutron transport analyses are provided in Tables 6-1 through 6-6. In Table 6-1, the calculated exposure rates and integrated exposures, expressed in terms of both neutron fluence (E > 1.0 MeV) and dpa, are given at the radial and azimuthal center of the octant symmetric surveillance capsule positions. These results, representative of the axial midplane of the active core, establish the calculated exposure of the surveillance capsules withdrawn to date as well as projected into the future.

Similar information is provided in Table 6-2 for the reactor vessel inner radius at four azimuthal locations.

The vessel data given in Table 6-2 were taken at the clad/base metal interface, and thus, represent maximum calculated exposure levels on the vessel.

Both calculated fluence (E > 1.0 MeV) and dpa data are provided in Table 6-1 and Table 6-2. These data tabulations include both plant and fuel cycle specific calculated neutron exposures at the end of the eighth fuel cycle as well as future projections to 15, 20, 25, 32, 36, 48, 54, and 60 EFPY. The projections were based on the assumption that the relative spatial core power distributions and associated plant operating characteristics from Cycles 6-8 were representative of future plant operation. The peripheral assembly powers in the representative model were then modified to include the effects of the tritium producing burnable absorbing rods (TPBARs) to be utilized in future cycles.

Radial gradient information applicable to fast (E > 1.0 MeV) neutron fluence and dpa are given in Tables 6-3 and 6-4, respectively. The data, based on the cumulative integrated exposures from Cycles I through 8, are presented on a relative basis for each exposure parameter at several azimuthal locations.

Exposure distributions through the vessel wall may be obtained by multiplying the calculated exposure at the vessel inner radius by the gradient data listed in Tables 6-3 and 6-4.

The calculated fast neutron exposures for the surveillance capsules withdrawn from the Watts Bar reactor are provided in Table 6-5. These assigned neutron exposure levels are based on the plant and fuel cycle specific neutron transport calculations performed for the Watts Bar reactor.

WCAP- 16760-NP November 2007 Revision 0

6-4 From the data provided in Table 6-5 it is noted that Capsule Z received a fluence (E > 1.0 MeV) of 2.40 x 1019 n/cm 2 after exposure through the end of the seventh fuel cycle (i.e., after 9.37 EFPY of plant operation).

Updated lead factors for the Watts Bar surveillance capsules are provided in Table 6-6. The capsule lead factor is defined as the ratio of the calculated fluence (E > 1.0 MeV) at the geometric center of the surveillance capsule to the corresponding maximum calculated fluence at the pressure vessel clad/base metal interface. In Table 6-6, the lead factors for capsules that have been withdrawn from the reactor (U, W, X, and Z) were based on the calculated fluence values for the irradiation period corresponding to the time of withdrawal for the individual capsules. The remaining capsules V and Y are standby capsules.

6.3 NEUTRON DOSIMETRY The validity of the calculated neutron exposures previously reported in Section 6.2 is demonstrated by a direct comparison against the measured sensor reaction rates and via a least squares evaluation performed for each of the capsule dosimetry sets. However, since the neutron dosimetry measurement data merely serves to validate the calculated results, only the direct comparison of measured-to-calculated results for the most recent surveillance capsule removed from service is provided in this section of the report. For completeness, the assessment of all measured dosimetry removed to date, based on both direct and least squares evaluation comparisons, is documented in Appendix A.

The direct comparison of measured versus calculated fast neutron threshold reaction rates for the sensors from Capsule Z, that was withdrawn from Watts Bar at the end of the seventh fuel cycle, is summarized below.

Reaction Rates Measured Calculated Best Est. M/C Cu-63(n,a)Co-60 Cd 4.15E-17 3.95E-1 7 4.06E-1 7 1.05 Fe-54(n,p)Mn-54 4.20E-15 4.51E-I5 4.26E-15 0.93 Ni-58(n,p)Co-58 Cd 5.78E-15 6.38E-15 5.95E-15 0.91 U-238(n,f)Cs-137 Cd 2.55E-14 2.52E-14 2.34E-14 1.01 Np-237(n,f)Cs- 137 Cd 2.40E-13 2.62E-13 2.42E-13 0.92 Co-59(n,g)Co-60 3.49E- 12 3.47E- 12 3.47E- 12 1.01 Co-59(n,g)CO-60 Cd 1.94E-12 2.52E-12 2.52E-12 0.77 Threshold Foil Average 0.96

% std dev 6.68 The measured-to-calculated (M/C) reaction rate ratios for the Capsule Z threshold reactions range from 0.91 to 1.05, and the average M/C ratio is 1.96 +/- 6.68% (lcr). This direct comparison falls within the

+/- 20% criterion specified in Regulatory Guide 1.190; furthermore, it is consistent with the full set of comparisons given in Appendix A for all measured dosimetry removed to date from the Watts Bar reactor.

WCAP- 16760-NP November 2007 Revision 0

6-5 These comparisons validate the current analytical results described in Section 6.2; therefore, the calculations are deemed applicable for Watts Bar.

6.4 CALCULATIONAL UNCERTAINTIES The uncertainty associated with the calculated neutron exposure of the Watts Bar surveillance capsule and reactor pressure vessel is based on the recommended approach provided in Regulatory Guide 1.190. In particular, the qualification of the methodology was carried out in the following four stages:

1. Comparison of calculations with benchmark measurements from the Pool Critical Assembly (PCA) simulator at the Oak Ridge National Laboratory (ORNL).
2. Comparisons of calculations with surveillance capsule and reactor cavity measurements from the H. B. Robinson power reactor benchmark experiment.
3. An analytical sensitivity study addressing the uncertainty components resulting from important input parameters applicable to the plant specific transport calculations used in the neutron exposure assessments.
4. Comparisons of the plant specific calculations with all available dosimetry results from the Watts Bar surveillance program.

The first phase of the methods qualification (PCA comparisons) addressed the adequacy of basic transport calculation and dosimetry evaluation techniques and associated cross-sections. This phase, however, did not test the accuracy of commercial core neutron source calculations nor did it address uncertainties in operational or geometric variables that impact power reactor calculations. The second phase of the qualification (H. B. Robinson comparisons) addressed uncertainties in these additional areas that are primarily methods related and would tend to apply generically to all fast neutron exposure evaluations.

The third phase of the qualification (analytical sensitivity study) identified the potential uncertainties introduced into the overall evaluation due to calculational methods approximations as well as to a lack of knowledge relative to various plant specific input parameters. The overall calculational uncertainty applicable to the Watts Bar analysis was established from results of these three phases of the methods qualification.

The fourth phase of the uncertainty assessment (comparisons with Watts Bar measurements) was used solely to demonstrate the validity of the transport calculations and to confirm the uncertainty estimates associated with the analytical results. The comparison was used only as a check and was not used in any way to modify the calculated surveillance capsule and pressure vessel neutron exposures previously described in Section 6.2. As such, the validation of the Watts Bar analytical model based on the measured plant dosimetry is completely described in Appendix A.

WCAP-1 6760-NP November 2007 Revision 0

6-6 The following summarizes the uncertainties developed from the first three phases of the methodology qualification. Additional information pertinent to these evaluations is provided in Reference 2.

Capsule Vessel IR PCA Comparisons 3% 3%

I-I. B. Robinson Comparisons 3% 3%

Analytical Sensitivity Studies 10% 11%

Additional Uncertainty for Factors not Explicitly Evaluated 5% 5%

Net Calculational Uncertainty 12% 13%

The net calculational uncertainty was determined by combining the individual components in quadrature.

Therefore, the resultant uncertainty was treated as random and no systematic bias was applied to the analytical results.

The plant specific measurement comparisons described in Appendix A support these uncertainty assessments for Watts Bar.

WCAP-16760-NP November 2007 Revision 0

6-7 Table 6-1 Calculated Neutron Exposure Rates and Integrated Exposures at the Surveillance Capsule Center Fast Neutron Flux (E > 1.0 McV) (n/cmA2-s)

Cycle Length Cumulative Cumulative Single Dual Dual Cycle EFPS EFPS EFPY 34 degrees 31.5 degrees 34 degrees I 3.80E+07 3.80E+07 1.20 1.19E+ I I 9.97E+10 1.18E+l 1 2 4.07E+07 7.87E+07 2.49 7.44E+10 6.40E+10 7.34E+10 3 4.36E+07 1.22E+08 3.88 7.39E+10 6.34E+10 7.28E+10 4 4.22E+07 1.64E+08 5.21 8.48E+10 7.28E+10 8.36E+10 5 4.46E+07 2.09E+08 6.63 6.61E+10 5.63E+10 6.52E+10 6 4.59E+07 2.55E+08 8.08 7.15E+10 5.99E+10 7.05E+10 7 4.07E+07 2.96E+08 9.37 8.37E+10 7.07E410 8.25E+10 8 4.07E+07 3.36E+08 10.66 7.56E+10 6.35E+10 7.45E+10 9* 1.37E+08 4.73E+08 15.00 9.22E+10 7.71E+10 9.08E+10 10* 1.58E+08 6.31E+08 20.00 9.22E+10 7.71E+10 9.08E+10 1l* 1.58E+08 7.89E+08 25.00 9.22E+10 7.71E+10 9.08E+10 12* 2.21E+08 1.01E+09 32.00 9.22E+10 7.71E+10 9.08E+10 13* 1.26E+08 1.14E+09 36.00 9.22E+10 7.71EE+ 10 9.08E+10 14* 1.26E+08 1.26E+09 40.00 9.22E+10 7.71E+10 9.08E+10 15* 2.52E+08 1.5 1E+09 48.00 9.22E+ 10 7.71E+10 9.08E+10 16* 1.89E+08 1.70E+09 54.00 9.22E+10 7.71E+10 9.08E+10 17* 1.89E+08 1.89E+09 60.00 9.22E+10 7.71E+10 9.08E+10 Notes:

1. Neutron exposure values reported for the surveillance capsules are centered at the core midplane.
2. Future projections assume use of TPBARs.
  • Indicates a projected cycle WCAP-1 6760-NP November 2007 Revision 0

6-8 Table 6-1 Calculated Neutron Exposure Rates and Integrated Exposures at the Surveillance (cont.) Capsule Center Cumulative Fast Neutron Fluence (E > 1.0 MeVl) (n/cmA2)

Cycle Length Cumulative Cumulative Single Dual Dual Cycle EFPS EFPS EFPY 34 degrees 31.5 degrees 34 degrees I 3.80E+07 3.80E+07 1.20 4.54E+18 3.79E+18 4.47E+18 2 4.07E+07 7.87E+07 2.49 7.57E+18 6.40E+18 7.46E+18 3 4.36E+07 1.22E+08 3.88 1.08E+19 9.16E+18 1.06E+19 4 4.22E+07 1.64E+08 5.21 1.44E+19 1.22E+19 1.42E+19 5 4.46E+07 2.09E+08 6.63 1.73E+19 1.47E+19 1.71E+19 6 4.59E+07 2.55E+08 8.08 2.06E+19 1.75E+19 2.03E+19 7 4.07E+07 2.96E+08 9.37 2.40E+19 2.04E+19 2.37E+19 8 4.07E+07 3.36E+08 10.66 2.71E+19 2.30E+19 2.67E+19 9* 1.37E+08 4.73E+08 15.00 3.97E+19 3.35E+19 3.91E+19 10* 1.58E+08 6.31E+08 20.00 5.43E+19 4.57E+19 5.35E+19 11* 1.58E+08 7.89E+08 25.00 6.88E+19 5.79E+19 6.78E+19 12* 2.21E+08 1.01E+09 32.00 8.92E+ 19 7.49E+19 8.79E+19 13* 1.26E+08 1.14E+09 36.00 1.01E+20 8.46E+19 9.93E+19 14* 1.26E+08 1.26E+09 40.00 1.12E+20 9.44E+19 1.1 IE+20 15* 2.52E+08 1.51E+09 48.00 1.36E+20 1.14E+20 1.34E+20 16* 1.89E+08 1.70E+09 54.00 1.53E+20 1.29E+20 1.51 E+20 17* 1.89E+08 1.89E+09 60.00 1.71E+20 1.43E+20 1.68E+20 Notes:

1. Neutron exposure values reported for the surveillance capsules are centered at the core midplane.
2. Future projections assume use of TPBARs.
  • Indicates a projected cycle November 2007 WCA P-I 6760-NP WCAP-16760-NP November 2007 Revision 0

6-9 Table 6-1 Calculated Neutron Exposure Rates and Integrated Exposures at the Surveillance (cont.) Capsule Center Iron Atom Displacement Rate (dpa/s)

Cycle Length Cumulative Cumulative Single Dual Dual Cycle EFPS EFPS EFPY 34 degrees 31.5 degrees 34 degrees I 3.80E+07 3.80E+07 1.20 2.44E-10 1.96E-10 2.36E-10 2 4.07E+07 7.87E+07 2.49 1.50E-10 1.25E-10 1.45E-10 3 4.36E+07 1.22E+08 3.88 1.49E-10 1.23E-10 1.44E-10 4 4.22E+07 1.64E+08 5.21 1.71E-10 1.42E-10 1.65E-10 5 4.46E+07 2.09E+08 6.63 1.33E-10  !.10E-10 1.29E-10 6 4.59E+07 2.55E+08 8.08 1.45E-10 1.17E-10 1.40E-10 7 4.07E+07 2.96E+08 9.37 1.69E-10 1.38E-10 1.64E-10 8 4.07E+07 3.36E+08 10.66 1.53E-10 1.24E-10 1.48E-10 9* 1.37E+08 4.73E+08 15.00 1.87E-10 1.51E-10 1.81E-10 10* 1.58E+08 6.31E+08 20.00 1.87E-10 1.51E-10 1.81E-10 11"* .58E+08 7.89E+08 25.00 1.87E-10 1.51E-10 1.81E-10 12* 2.21E+08 1.01E+09 32.00 1.87E-10 1.51E-10 1.81E-10 13* 1.26E+08 1.14E+09 36.00 1.87E-10 1.51E-10 1.81E-10 14* 1.26E+08 1.26E+09 40.00 1.87E-10 1.51E-10 1.81E-10 15* 2.52E+08 1.51E+09 48.00 1.87E-10 1.51E-10 1.81E-10 16* 1.89E+08 1.70E+09 54.00 1.87E-10 1.51E-10 1.81E-10 17" 1.89E+08 1.89E+09 60.00 1.87E-10 1.51E-10 1.81E-10 Notes:

.Neutron exposure values reported for the surveillance capsules are centered at the core midplane.

2. Future projections assume use of TPBARs.
  • Indicates a projected cycle WCAP-16760-NP November 2007 Revision 0

6-10 Table 6-1 Calculated Neutron Exposure Rates and Integrated Exposures at the Surveillance (cont.) Capsule Center Cumulative Iron Atom Displacements (dpa)

Cycle Length Cumulative Cumulative Single Dual Dual Cycle EFPS EFPS EFPY 34 degrees 31.5 degrees 34 degrees I 3.80E+07 3.80E+07 1.20 9.26E-03 7.46E-03 8.95E-03 2 4.07E+07 7.87E+07 2.49 1.54E-02 i.26E-02 1.49E-02 3 4.36E+07 1.22E+08 3.88 2.19E-02 1.79E-02 2.11 E-02 4 4.22E+07 1.64E+08 5.21 2.91E-02 2.39E-02 2.8 1 E-02 5 4.46E+07 2.09E+08 6.63 3.51E-02 2.88E-02 3.39E-02 6 4.59E+07 2.55E+08 8.08 4.17E-02 3.42E-02 4.03E-02 7 4.07E+07 2.96E+08 9.37 4.86E-02 3.98E-02 4.69E-02 8 4.07E+07 3.36E+08 10.66 5.48E-02 4.48E-02 5.29E-02 9* 1.37E+08 4.73E+08 15.00 8.04E-02 6.55E-02 7.77E-02 10* 1.58E+08 6.31E+08 20.00 1.10E-01 8.94E-02 1.06E-01 11* 1.58E+08 7.89E+08 25.00 1.40E-01 1.13E-0I 1.35E-01 12* 2.21E+08 1.01E+09 32.00 1.811E-01 1.47E-01 1.75E-01 13* 1.26E+08 1.14E+09 36.00 2.04E-0I 1.66E-01 1.98E-01 14* 1.26E+08 1.26E+09 40.00 2.28E-01 1.85E-01 2.20E-01 15* 2.52E+08 1.51E+09 48.00 2.75E-01 2.23E-01 2.66E-01 16* 1.89E+08 1.70E+09 54.00 3.1 IE-01 2.52E-01 3.OOE-01 17* 1.89E+08 1.89E+09 60.00 3.46E-01 2.80E-01 3.34E-0I Notes:

Neutron exposure values reported for the surveillance capsules are centered at the core midplane.

2. Future projections assume use of TPBARs.
  • Indicates a projected cycle WCAP- 16760-NP November 2007 Revision 0

6-11 Table 6-2 Calculated Azimuthal Variation of Maximum Exposure Rates and Integrated Exposures at the Reactor Vessel Clad/Base Metal Interface Maximum Fast Neutron Flux (n/cmA2-s)

Cycle EFPY EFPS Total EFPY 0 deg 15 deg 30 deg 45 deg 1 1.20 3.80E+07 1.20 1.26E+10 1.92E+10 1.90E+10 2.35E+10 2 1.29 4.07E+07 2.49 8.17E+09 1.27E+10 1.32E+10 1.52E+10 3 1.38 4.36E+07 3.88 9.1OE+09 1.25E+10 1.28E+10 1.49E+i0 4 1.34 4.22E+07 5.21 8.54E+09 1.26E+10 1.39E+10 1.63E+10 5 1.41 4.46E+07 6.63 7.94E+09 1.06E+10 1.09E+10 1.32E+10 6 1.46 4.59E+07 8.08 7.61E+09 L.IOE+l0 1.15E+10 1.46E+10 7 1.29 4.07E+07 9.37 7.84E+09 1.24E+10 1.38E+10 1.67E+10 8 1.29 4.07E+07 10.66 7.34E+09 1.14E+10 1.21E+10 1.52E+10 9* 4.34 1.37E+08 15.00 9.91E+09 1.47E+10 1.46E+10 1.81E+10 10* 5.00 1.58E+08 20.00 9.91E+09 1.47E+10 1.46E+10 1.81E+10 11* 5.00 1.58E+08 25.00 9.91E+09 1.47E+ 10 1.46E+10 1.81E+10 12* 7.00 2.21E+08 32.00 9.91E+09 1.47E+10 1.46E+10 1.81E+10 13* 4.00 1.26E+08 36.00 9.91E+09 1.47E+10 1.46E+10 1.81E+10 14* 4.00 1.26E+08 40.00 9.91E+09 1.47E+10 1.46E+10 1.81E+10 15* 8.00 2.52E+08 48.00 9.91E+09 1.47E+10 1.46E+10 1.81E+10 16* 6.00 1.89E+08 54.00 9.91E+09 1.47E+ 10 1.46E+10 1.81E+10 17* 6.00 1.89E+08 60.00 9.91E+09 1.47E+10 1.46E+10 I .81E+10 Notes:

1. Neutron exposure values reported for the pressure vessel are indexed to the axial location of the maximum exposure at each azimuthal angle.
2. Future projections assume use of TPBARs.
  • Indicates a projected cycle WCAP- 16760-NP November 2007 Revision 0

6-12 Table 6-2 Calculated Azimuthal Variation of Maximum Exposure Rates and Integrated Exposures (cont.) at the Reactor Vessel Clad/Base Metal Interface Maximum Cumulative Fast Neutron Fluence (n/cm^2)

Cycle EFPY EFPS Total EFPY 0 deg 15 deg 30 deg 45 deg 1 1.20 3.80E+07 1.20 4.79E+17 7.28E+17 7.23E+17 8.94E+17 2 1.29 4.07E+07 2.49 7.96E+ 17 1.22E+18 l.24E+18 1.49E+18 3 1.38 4.36E+07 3.88 1.19E+18 1.77E+18 l.79E+18 2.14E+18 4 1.34 4.22E+07 5.21 1.55E+18 2.29E+18 2.37E+18 2.81E+18 5 1.41 4.46E+07 6.63 1.90E+18 2.76E+18 2.85E+18 3.39E+18 6 1.46 4.59E+07 8.08 2.25E+18 3.26E+18 3.38E+18 4.06E+18 7 1.29 4.07E+07 9.37 2.57E+18 3.77E+18 3.94E+18 4.74E+ 18 8 1.29 4.07E+07 10.66 2.85E+18 4.22E+18 4.41E+18 5.34E+18 9* 4.34 1.37E+08 15.00 4.19E+18 6.20E+18 6.38E+18 7.79E+18 10* 5.00 1.58E+08 20.00 5.74E+18 8.51E+18 8.67E+18 1.06E+19 11* 5.00 1.58E+08 25.00 7.31E+18 1.08E+19 L.IOE+19 1.35E+19 12* 7.00 2.21E+08 32.00 9.49E+18 1.41E+19 1.42E+19 1.75E+19 13* 4.00 1.26E+08 36.00 1.07E+19 1.60E+19 1.60E+19 1.98E+19 14* 4.00 1.26E+08 40.00 1.20E+19 1.78E+19 1.79E+19 2.21E+19 15* 8.00 2.52E+08 48.00 1.45E+19 2.15E+19 2.16E+19 2.66E+19 16* 6.00 1.89E+08 54.00 1.64E+19 2.43E+19 2.43E+19 3.01E+19 17* 6.00 1.89E+08 60.00 1.83E+19 2.71E+19 2.71E+19 3.35E+19 Notes:

1. Neutron exposure values reported for the pressure vessel are indexed to the axial location of the maximum exposure at each azimuthal angle.
2. Future projections assume use of TPBARs.
  • Indicates a projected cycle WCAP-16760-NP November 2007 Revision 0

6-13 Table 6-2 Calculated Azimuthal Variation of Maximum Exposure Rates and Integrated Exposures (cont.) at the Reactor Vessel Clad/Base Metal Interface Maximum Iron Atom Displacement Rate (dpa/s)

Cycle EFPY EFPS Total EFPY 0 deg 15 deg 30 deg 45 deg 1 1.20 3.80E+07 1.20 1.95E-11 2.95E-11 2.97E-11 3.73E- 11 2 1.29 4.07E+07 2.49 1.27E-11 1.96E-1I 2.05E-11 2.41E-1 1 3 1.38 4.36E+07 3.88 1.41E-1I1  !.93E-11 1.99E-11 2.36E-11 4 1.34 4.22E+07 5.21 1.33E-11 1.95E-1 I 2.16E-I 1 2.57E- 11 5 1.41 4.46E+07 6.63 1.23E-11 1.64E-I I 1.70E-1I 2.09E-11 6 1.46 4.59E+07 8.08 1.18E-1I 1.69E-1 I 1.80E-1 1 2.3 IE-1 1 7 1.29 4.07E+07 9.37 1.22E-1 1 1.9 IE- I 2.14E-11 2.64E-11 8 1.29 4.07E+07 10.66 1.14E-I1 1.76E- I1  !.89E-11 2.40E- 1I 9* 4.34 1.37E+08 15.00 1.54E-11 2.27E-11 2.28E-11 2.87E-1I 10* 5.00 1.58E+08 20.00 1.54E-11 2.27E-11 2.28E-I1 2.87E-11 11* 5.00 1.58E+08 25.00 1.54E-11 2.27E-11 2.28E-11 2.87E- 11 12* 7.00 2.21E+08 32.00 1.54E-11 2.27E-l 1 2.28E-11 2.87E-11 13* 4.00 1.26E+08 36.00 1.54E-11 2.27E-11 2.28E-11 2.87E-11 14* 4.00 1.26E+08 40.00 1.54E-11 2.27E-1I 2.28E-11 2.87E-11 15* 8.00 2.52E+08 48.00 1.54E-11 2.27E-1I 2.28E-11 2.87E-11 16* 6.00 1.89E+08 54.00 1.54E-11 2.27E-I1 2.28E-11 2.87E-11 17* 6.00 1.89E+08 60.00 1.54E-11 2.27E-l1 2.28E-11 2.87E-11 Notes:

1. Neutron exposure values reported for the pressure vessel are indexed to the axial location of the maximum exposure at each azimuthal angle.
2. Future projections assume use of TPBARs.
  • Indicates a projected cycle WCAP- 16760-NP November 2007 Revision 0

6-14 Table 6-2 Calculated Azimuthal Variation of Maximum Exposure Rates and Integrated Exposures (cont.) at the Reactor Vessel Clad/Base Metal Interface Maximum Cumulative Iron Atom Displacements (dpa)

Cycle EFPY EFPS Total EFPY 0 deg 15 deg 30 deg 45 deg 1 1.20 3.80E+07 1.20 7.43E-04 l. 12E-03 1.13E-03 1.42E-03 2 1.29 4.07E+07 2.49 1.24E-03 1.88E-03 1.93E-03 2.35E-03 3 1.38 4.36E+07 3.88 1.85E-03 2.72E-03 2.79E-03 3.38E-03 4 1.34 4.22E+07 5.21 2.40E-03 3.53E-03 3.69E-03 4.45E-03 5 1.41 4.46E+07 6.63 2.94E-03 4.25E-03 4.44E-03 5.37E-03 6 1.46 4.59E+07 8.08 3.49E-03 5.03E-03 5.26E-03 6.43E-03 7 1.29 4.07E+07 9.37 3.98E-03 5.80E-03 6.14E-03 7.51E-03 8 1.29 4.07E+07 10.66 4.43E-03 6.49E-03 6.88E-03 8.45E-03 9* 4.34 1.37E+08 15.00 6.5 1E-03 9.56E-03 9.96E-03 1.23E-02 10* 5.00 1.58E+08 20.00 8.92E-03 1.31E-02 1.35E-02 1.68E-02 11* 5.00 1.58E+08 25.00 1.14E-02 1.67E-02 1.71E-02 2.13E-02 12* 7.00 2.21E+08 32.00 1.48E-02 2.17E-02 2.22E-02 2.77E-02 13* 4.00 1.26E+08 36.00 1.67E-02 2.46E-02 2.50E-02 3.13E-02 14* 4.00 1.26E+08 40.00 1.86E-02 2.74E-02 2.79E-02 3.49E-02 15* 8.00 2.52E+08 48.00 2.25E-02 3.31E-02 3.36E-02 4.22E-02 16* 6.00 1.89E+08 54.00 2.54E-02 3.74E-02 3.80E-02 4.76E-02 17* 6.00 1.89E+08 60.00 2.83E-02 4.17E-02 4.23E-02 5.30E-02 Notes:

1. Neutron exposure values reported for the pressure vessel are indexed to the axial location of the maximum exposure at each azimuthal angle.
2. Future projections assume use of TPBARs.
  • Indicates a projected cycle WCAP-1 6760-NP November 2007 Revision 0

6-15 Table 6-3 Relative Radial Distribution of Neutron Fluence (E > 1.0 McV') Within the Reactor Vessel W~all RADIUS AZIMUTHAL ANGLE (cm) 00 150 300 450 220.35 1.000 1.000 1.000 1.000 225.87 0.561 0.557 0.558 0.547 231.39 0.275 0.271 0.273 0.262 236.90 0.129 0.126 0.128 0.119 242.42 0.059 0.056 0.058 0.051 Base Metal Inner Radius = 220.35 cm Base Metal I4T = 225.87 cm Base Metal 1/2T = 231.39 cm Base Metal 3/4T = 236.90 cm Base Metal Outer Radius = 242.42 cm WCAP- 16760-NP November 2007 Revision 0

6-16 Table 6-4 Relative Radial Distribution of Iron Atom Displacements (dpa) Within the Reactor Vessel W\'all RADIUS AZIMUTHAL ANGLE (cm) 00 150 300 450 220.35 1.000 1.000 1.000 1.000 225.87 0.634 0.630 0.645 0.637 231.39 0.381 0.377 0.396 0.384 236.90 0.226 0.223 0.240 0.225 242.42 0.127 0.124 0.137 0.117 Base Metal Inner Radius = 220.35 cm Base Metal 1/4T = 225.87 cm Base Metal 1/2T = 231.39 cm Base Metal 3/4T = 236.90 cm Base Metal Outer Radius = 242.42 cm WCAP- 16760-NP November 2007 Revision 0

6-17 Table 6-5 Calculated Fast Neutron Exposure of Surveillance Capsules Withdrawn from Watts Bar Irradiation Time Fluence (E > 1.0 MeV) Iron Displacements Capsule IEFPYI In/cm^21 Idpal U 1.20 4.47E+18 8.95E-03 W 3.88 1.08E+19 2.19E-02 X 6.63 1.71E+19 3.39E-02 Z 9.37 2.40E+19 4.86E-02 Table 6-6 Calculated Surveillance Capsule Lead Factors Capsule ID And Location Status Lead Factor U (340 Dual) Withdrawn EOC 1 5.00 W (340 Single) Withdrawn EOC 3 5.05 X (34' Dual) Withdrawn EOC 5 5.03 Z (340 Single) Withdrawn EOC 7 5.06 V (31.50 Dual) Standby 4.31 Y (31.50 Dual) Standby 4.31 November 2007 WCAP-I 6760-NP WCAP-16760-NP November 2007 Revision 0

6-18 250 .........

. ..... .... ....... ... I.......

2 0 0 : ....

I

.I .... ....

...I......

15..0... ..... . .. ....

I..

1 0 0 : ......................... .......... .. ..... .....

..::5

..... 0 ... ........ ..... ....

.... I....

..... . ... .. . . .. .. q .. . . ....

0 : ........... .. ....... ...

.... .. . ...... 0 0 .... .......

F igu eý re 6-1 Watts Bar rO Reactor Geometry with a Single Capsule Neutron Pad Span at the Core Midplane WCAP-16760-NP November 2007 Revision 0

6-19 25&

........... ... ...I 2 0 0 . .......... . . . . . . .

... ....... .........I ....... . ... .. . . .

I...

.....I. .. ..... .......... ...

1... 5..0....' .. ..I.. . . ..

. ..I... ... .. . .. . . . .. .. ... .

......I......

... I ..........

....I..

.-m I.... .

10... 0 ..  ::.::::

... ...I.. .. .. ..... . ..... .. .. . .

... ..I.....

.I..

.I..

........I I..

.... ..........1.1.... ......

0 ......... .........

Figure 6-2 Watts Bar rO Reactor Geometry with a Dual Capsule Neutron Pad Span at the Core Midplane WCAP-16760-NP November 2007 Revision 0

6-20 200i [i

....... ..... - ...... .I ... ..........

0

.......I ...... ....

.................. ........ .....- .1 .............

.............I ..... ...I ...... ........

................... .I........

...... ............I

... ......I

......................I

............I

..........I

.........I

. .....I i~-i I >:

-200 ..

.. I I .........

)!i............................. ..... .

. ...00'

l ......

.. ... ... 2....

. 0. 0... ...,.*....,..,,,,,,,,,,,,.3

. .. ................. 0.0..

Figure 6-3 Watts Bar rz Reactor Geometry with Neutron Pad WCAP- 16760-NP November 2007 Revision 0

7-1 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE The following surveillance capsule removal schedule meets the requirements ofASTM E185-82 [12] and is recommended for future capsules to be removed from the Watts Bar Unit I reactor vessel. This recommended removal schedule is applicable to 32 EFPY of operation.

Table 7-1 Recommended Surveillance Capsule Withdrawal Schedule 2

Lead Factor(a) Withdrawal EFPY(b) Fluence (nlcm )(a)

Capsule Capsule Location 560 5.00 1.20 4.47 x 1018(c)

U W 1240 5.05 3.88 1.08 x 10'9'e)

X 2360 5.03 6.63 1.71 x 10'9'c)

Z 3040 5.06 9.37 2.40 x 1019(c)

V 58.50 4.31 (d) Standby Y 238.50 4.31 (d) Standby Notes:

a. Updated in Capsule Z dosimetry analysis.
b. Effective Full Power Years (EFPY) from plant startup.
c. Plant specific evaluation.
d. Section XL.M3 1, "Reactor Vessel Surveillance," of NUREG-18012!] states that any surveillance capsules that are left in the reactor vessel should provide meaningful metallurgical data. The NRC specifically states that anything beyond 60 years of exposure is not meaningful metallurgical data. Capsules "V" and "Y" can be removed after 12.1 EFPY 9 2 (Capsule exposure equivalent to 1 times the projected 48 EFPY Peak Vessel Fluencc of 2.66 x 10' n/cm , E > 1.0 MeV).

It is recommended that these capsules be removed after approximately 15 EFPY of operation, with one capsule being tested to satisfy the requirements of the fourth capsule (in a four-capsule withdrawal schedule) for extended operating life, while the other should be placed in storage pending regulatory guidance for capsule reinsertion.

WCAP-1 6760-NP November 2007 Revision 0

8-1 8 REFERENCES

1. Regulatory Guide 1.99, Revision 2, RadiationEynbrittlement of Reactor Vessel Materials, U.S. Nuclear Regulatory Commission, May, 1988.
2. Code of Federal Regulations, 10 CFR 50, Appendix G Fracture Toughness Requirements, and Appendix H, Reactor Vessel MaterialSurveillance PrograinRequirements, U.S. Nuclear Regulatory Commission, Washington, D.C.
3. WCAP-13587, Rev. 1, Reactor Vessel UpperShelfEnergy Bounding EvaluationFor Westinghouse PressurizedWater Reactors, M. J. Malone, et. al., September 1993.
4.Section XI of the ASME Boiler and Pressure Vessel Code, Appendix G, FractureToughness Criteriafor ProtectionAgainst Failure.
5. ASME Boiler and Pressure Vessel Code,Section XI, Appendix X, July 1989.
6. WCAP- 16333-NP, FractureToughness Testing of Compact Tension Specimens fiom Watts Bar Unit I Surveillance CapsuleX, Randy Lott, August 2004.
7. WCAP-9298 Rev. 3, "Tennessee Valley Authority Watts Bar Unit No. 1 Reactor Vessel Radiation Surveillance Program" Westinghouse Electric Corporation, Parker, P.A., August 1995.
8. ASTM E 185-73, StandardPracticefor Conducting Surveillance Testsfor Light-Water Cooled Nuclear PowerReactor Vessels, American Society for Testing Materials.
9. ASTM E208, StandardTest Methodfor ConductingDrop-Weight Test to DetermineNil-Ductility Transition Temperatureof FerriticSteels, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA.
10. ASTM E399, Test Methodfor Plane-StrainFractureToughness ofMetallic Materials,American Society for Testing Materials.
11. Westinghouse Science and Technology Department Procedure RMF 8804, "Opening of Westinghouse Surveillance Capsules", Revision 2, August 1, 2004.
12. ASTM E185-82, StandardPracticefor ConductingSurveillance Tests for Light-1Vater Cooled Nuclear PowerReactor Vessels, E706 (IF), ASTM 1982.
13. Westinghouse Science and Technology Department Procedure RMF 8402, Surveillance Capsule Testing Program,Revision 3, June 6, 2005.
14. Westinghouse Science and Technology Department Procedure RMF 8102, Tensile Testing, Revision 3, March 1, 1999.

WCAP-16760-NP November 2007 Revision 0

8-2

15. Westinghouse Science and Technology Department Procedure RMF 8103, ChaipyInpact Testing, Revision 2, August 1, 1998.
16. ASTM E23-06, StandardTest Methodfor Notched Bar hnpact Testing of Metallic Materials, ASTM, 2006.
17. NV. L. Server and D. R. Ireland, GeneralYielding of Notched Three-Point Bend Specimens, Dynatup Technical Report TR-72-19, Effects Technology, Inc., Santa Barbara, CA, 1972.
18. ASTM A370-07, Standard Test Methods andDefinitionsfor Mechanical Testing ofSteel Products,ASTM, 2007.
19. ASTM E8-04, StandardTest Methods for Tension Testing of Metallic Materials,ASTM, 2004.
20. ASTM E21-05, StandardTest Methodsfor Elevated Temperature Tension Tests of Metallic Materials,ASTM, 2005.
21. NUREG- 1801, Vol. 2, Rev. 1, GenericAging Lessons Learned(GALL) Report, U.S. Nuclear Regulatory Commission, Sept. 2005.
22. ASTM E853-0 1, StandardPracticefor Analysis andInterpretationofLight-JWater Reactor SurveillanceResults, E706(IA), ASTM, 2001.
23. ASTM E693-0 1, StandardPracticefor CharacterizingNeutron Exposures in Iron andLow Alloy Steels in Tenns ofDisplacementsPer A tomn (DPA), E706(ID), ASTM, 2001.
24. WCAP- 14040-NP-A, Revision 4, Methodology Used to Develop Cold OverpressureMitigating System Setpoints andRCS Heatup and Cooldown Linit Curves, May 2004.
25. WCAP- 13444, Rev. 1, NuclearParametersand Operationpackagefor Watts Bar Unit 1, Cycle 1, March 1993.
26. WCAP- 14960, Rev. 1, NuclearParametersand Operationpackagefor Watts Bar Unit 1, Cycle 2", October 1997.
27. WCAP- 15181, Rev. 0, NuclearParametersand Operationpackagefor Watts Bar Unit 1, Cycle 3, March 1999.
28. WCAP- 15562, Rev. 0, NuclearParametersand Operationpackagefor Jfatts Bar Unit 1, Cycle 4, September 2000.
29. WCAP-15796, Rev. 0, Nuclear Parametersand Operationpackagefor Matts Bar Unit 1, Cycle 5, March 2002.
30. WCAP- 16134, Rev. 0, Nuclear Parametersand Operationpackagefor Watts Bar Unit 1, Cycle 6, TPC Design, October 2003.

WCAP-16760-NP November 2007 Revision 0

8-3

31. WCAP- 16398-P, Rev. 1, Nuclear Parametersand Operationpackagefor Watts Bar Unit 1, Cycle 7, March 2005.
32. WCAP- 16662-P, Rev. 1, Nuclear Parametersand Operationpackagefor Watts Bar Unit 1, Cycle 8, November 2006.
33. RSICC Computer Code Collection CCC-650, DOORS 3.2, One, Two- and Three-Dinensional Discrete OrdinatesNeutron/PhotonTransport Code System, April 1998.
34. RSIC Data Library Collection DLC-185, BUGLE-96, Coupled47 Neutron, 20 Gamma-Ray Group Cross Section LibraryDerivedfrom ENDFIB-VIfor LWR Shielding and PressureVessel DosinetryApplications, March 1996.
35. Regulatory Guide RG-I .190, Calculationaland Doshnetry Methodsfor Determining Pressure Vessel Neutron Fluence,U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, March 2001.

WCAP-i 6760-NIP November 2007 Revision 0

A-I APPENDIX A VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY MEASUREMENTS A.1 NEUTRON DOSIMETRY Comparisons of measured dosimetry results to both the calculated and least squares adjusted values for all surveillance capsules withdrawn from service to date at Watts Bar are described herein. The sensor sets from these capsules have been analyzed in accordance with the current dosimetry evaluation methodology described in Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence.IA'l One of the main purposes for presenting this material is to demonstrate that the overall measurements agree with the calculated and least squares adjusted values to within +/- 20% as specified by Regulatory Guide 1.190, thus serving to validate the calculated neutron exposures previously reported in Section 6.2 of this report.

A.1.1 Sensor Reaction Rate Determinations In this section, the results of the evaluations of the four neutron sensor sets analyzed to date as part of the Watts Bar Reactor Vessel Materials Surveillance Program are presented. The capsule designation, location within the reactor, and time of withdrawal of each of these dosimetry sets were as follows:

Azimuthal Withdrawal Irradiation Capsule ID Location Time Time [EFPYI U 340 Dual End of Cycle 1 1.20 W 340 Single End of Cycle 3 3.88 X 340 Dual End of Cycle 5 6.63 Z 340 Single End of Cycle 7 9.37 The azimuthal locations included in the above tabulation represent the first octant equivalent azimuthal angle of the geometric center of the respective surveillance capsules.

WCAP- 16760-NP November 2007 Revision 0

A-2 The passive neutron sensors included in the evaluations of Surveillance Capsules U, X, NV, and Z are summarized as follows:

Since all of the dosimetry monitors were located at the radial center of the material test specimen array, gradient corrections were not required for these reaction rates. Pertinent physical and nuclear characteristics of the passive neutron sensors are listed in Table A-I.

The use of passive monitors such as those listed above does not yield a direct measure of the energy dependent neutron flux at the point of interest. Rather, the activation or fission process is a measure of the integrated effect that the time and energy dependent neutron flux has on the target material over the course of the irradiation period. An accurate assessment of the average neutron flux level incident on the various monitors may be derived from the activation measurements only if the irradiation parameters are well known. In particular, the following variables are of interest:

0 the measured specific activity of each monitor,

  • the physical characteristics of each monitor, 0 the operating history of the reactor, 0 the energy response of each monitor, and
  • the neutron energy spectrum at the monitor location.

Results from the radiometric counting of the neutron sensors from Capsules U, X, and W are documented in References A-2, A-3, and A-4, respectively. The radiometric counting of the sensors from Capsule Z was carried out by Pace Analytical Services, Inc., located at the Westinghouse Waltz Mill Site. In all cases, the radiometric counting followed established ASTM procedures. Following sample preparation and weighing, the specific activity of each sensor was determined by means of a high-resolution gamma spectrometer. For the copper, iron, nickel, and cobalt-aluminum sensors, these analyses were performed by direct counting of each of the individual samples. In the case of the uranium and neptunium fission sensors, the analyses were carried out by direct counting preceded by dissolution and chemical separation of cesium from the sensor material.

November 2007 WCAP-16760-NP WCAP- 16760-N P November 2007 Revision 0

A-3 The irradiation history of the reactor over the irradiation periods experienced by Capsules U, W, X, and Z was based on the monthly power generation of Watts Bar from initial reactor criticality through the end of the dosimetry evaluation period. For the sensor sets utilized in the surveillance capsules, the half-lives of the product isotopes are long enough that a monthly histogram describing reactor operation has proven to be an adequate representation for use in radioactive decay corrections for the reactions of interest in the exposure evaluations. The irradiation history applicable to Capsule Z is given in Table A-2.

Having the measured specific activities, the physical characteristics of the sensors, and the operating history of the reactor, reaction rates referenced to full-power operation were determined from the following equation:

A No F Y J Cj [Ie- tj] [e-Xtd]

Pref where:

R = Reaction rate averaged over the irradiation period and referenced to operation at a core power level of Pf (rps/nucleus).

A = Measured specific activity (dps/gm).

No = Number of target element atoms per gram of sensor.

F = Atom fraction of the target isotope in the target element.

Y = Number of product atoms produced per reaction.

Pj = Average core power level during irradiation period j (MW).

P = Maximum or reference power level of the reactor (MW).

=ýf Cj = Calculated ratio of c(E > 1.0 MeV) during irradiation period j to the time weighted average 4(E > 1.0 MeV) over the entire irradiation period.

X = Decay constant of the product isotope (1/sec).

tj = Length of irradiation period j (see).

td = Decay time following irradiation periodj (see).

and the summation is carried out over the total number of monthly intervals comprising the irradiation period.

WCAP-16760-NP November 2007 Revision 0

A-4 In the equation describing the reaction rate calculation, the ratio [Pj]/[Pf] accounts for month-by-month variation of reactor core power level within any given fuel cycle as well as over multiple fuel cycles. The ratio Cj, which was calculated for each fuel cycle using the transport methodology discussed in Section 6.2, accounts for the change in sensor reaction rates caused by variations in flux level induced by changes in core spatial power distributions from fuel cycle to fuel cycle. For a single-cycle irradiation, Cj is normally taken to be 1.0. However, for multiple-cycle irradiations, particularly those employing low leakage fuel management, the additional Cj term should be employed. The impact of changing flux levels for constant power operation can be quite significant for sensor sets that have been irradiated for many cycles in a reactor that has transitioned from non-low leakage to low leakage fuel management or for sensor sets contained in surveillance capsules that have been moved from one capsule location to another.

The fuel cycle specific neutron flux values along with the computed values for Cj are listed in Table A-3.

These flux values represent the cycle dependent results at the radial and azimuthal center of the respective capsules at the axial elevation of the active fuel midplane.

Prior to using the measured reaction rates in the least-squares evaluations of the dosimetry sensor sets, 235 additional corrections were made to the 239U measurements to account for the presence of U impurities in the sensors as well as to adjust for the build-in of plutonium isotopes over the course of the irradiation.

Corrections were also made to the 238 U and 237Np sensor reaction rates to account for gamma ray induced fission reactions that occurred over the course of the capsule irradiations. The correction factors applied to the Watts Bar fission sensor reaction rates are summarized as follows:

Correction Capsule U Capsule WV Capsule X Capsule Z 235U Impurity/Pu Build-in 0.867 0.843 0.819 0.796 23 8 u(y,f) 0.964 0.964 0.964 0.966 Net 238U Correction 0.836 0.813 0.789 0.769 237 1 Np(y,f) 0.990 0.990 0.990 0.990 These factors were applied in a multiplicative fashion to the decay corrected uranium and neptunium fission sensor reaction rates.

Results of the sensor reaction rate determinations for Capsules U, W, X, and Z are given in Table A-4. In Table A-4, the measured specific activities, decay corrected saturated specific activities, and computed reaction rates for each sensor indexed to the radial center of the capsule are listed. The fission sensor 238 reaction rates are listed both with and without the applied corrections for U impurities, plutonium build-in, and gamma ray induced fission effects.

A.1.2 Least Squares Evaluation of Sensor Sets Least squares adjustment methods provide the capability of combining the measurement data with the corresponding neutron transport calculations resulting in a Best Estimate neutron energy spectrum with associated uncertainties. Best Estimates for key exposure parameters such as c#(E > 1.0 MeV) or dpa/s along with their uncertainties are then easily obtained from the adjusted spectrum. In general, the least squares methods, as applied to surveillance capsule dosimetry evaluations, act to reconcile the measured WCAP-16760-NP November 2007 Revision 0

A-5 sensor reaction rate data, dosimetry reaction cross-sections, and the calculated neutron energy spectrum within their respective uncertainties. For example, Ri ++/- Ri (Oig _ a8ig )((pg ++/- gg) g relates a set of measured reaction rates, Ri, to a single neutron spectrum, ýg, through the multigroup dosimeter reaction cross-section, aig, each with an uncertainty 5. The primary objective of the least squares evaluation is to produce unbiased estimates of the neutron exposure parameters at the location of the measurement.

5 For the least squares evaluation of the Watts Bar surveillance capsule dosimetry, the FERRET code[A-was employed to combine the results of the plant specific neutron transport calculations and sensor set reaction rate measurements to determine best-estimate values of exposure parameters (4(E > 1.0 MeV) and dpa) along with associated uncertainties for the three in-vessel capsules analyzed to date.

The application of the least squares methodology requires the following input:

1. The calculated neutron energy spectrum and associated uncertainties at the measurement location.
2. The measured reaction rates and associated uncertainty for each sensor contained in the multiple foil set.
3. The energy dependent dosimetry reaction cross-sections and associated uncertainties for each sensor contained in the multiple foil sensor set.

For the Watts Bar application, the calculated neutron spectrum was obtained from the results of plant specific neutron transport calculations described in Section 6.2 of this report. The sensor reaction rates were derived from the measured specific activities using the procedures described in Section A. 1.1. The dosimetry reaction cross-sections and uncertainties were obtained from the SNLRML dosimetry cross-section libraryA-61. The SNLRML library is an evaluated dosimetry reaction cross-section compilation recommended for use in LWR evaluations byASTM Standard El018, "Application of ASTM Evaluated Cross-Section Data File, Matrix E 706 (IIB)". (A-7]

The uncertainties associated with the measured reaction rates, dosimetry cross-sections, and calculated neutron spectrum were input to the least squares procedure in the form of variances and covariances. The assignment of the input uncertainties followed the guidance provided in ASTM Standard E944, "Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance." [A-81 The following provides a summary of the uncertainties associated with the least squares evaluation of the Watts Bar surveillance capsule sensor sets.

Reaction Rate Uncertainties The overall uncertainty associated with the measured reaction rates includes components due to the basic measurement process, irradiation history corrections, and corrections for competing reactions. A high WCAP-16760-NP November 2007 Revision 0

A-6 level of accuracy in the reaction rate determinations is assured by utilizing laboratory procedures that conform to the ASTM National Consensus Standards for reaction rate determinations for each sensor type.

After combining all of these uncertainty components, the sensor reaction rates derived from the counting and data evaluation procedures were assigned the following net uncertainties for input to the least squares evaluation:

Reaction Uncertainty 63 Cu(n,a)6°Co 5%

54 Fe(n,p) 54 Mn 5%

5 58 5%

"Ni(n,p) Co 238 U(n,f) 137Cs 10%

237Np(n,f)' 37Cs 10%

' 9Co(ny)6Co 5%

These uncertainties are given at the la level.

Dosimetry Cross-Section Uncertainties The reaction rate cross-sections used in the least squares evaluations were taken from the SNLRML library. This data library provides reaction cross-sections and associated uncertainties, including covariances, for 66 dosimetry sensors in common use. Both cross-sections and uncertainties are provided in a fine multigroup structure for use in least squares adjustment applications. These cross-sections were compiled from the most recent cross-section evaluations and they have been tested with respect to their accuracy and consistency for least squares evaluations. Further, the library has been empirically tested for use in fission spectra determination as well as in the fluence and energy characterization of 14 MeV neutron sources.

For sensors included in the Watts Bar surveillance program, the following uncertainties in the fission spectrum averaged cross-sections are provided in the SNLRML documentation package.

Reaction Uncertainty 63 Cu(n,ct)6°Co 4.08-4.16%

54 54 Fe(n,p) Mn 3.05-3.11%

"Ni(n,p) 5"Co 5 4.49-4.56%

23 RU(n,f)13 7 Cs 0.54-0.64%

237 1 37 Np(n,f) Cs 10.32-10.97%

59 Co(n,-) 6°Co 0.79-3.59%

WCAP-16760-NP November 2007 Revision 0

A-7 These tabulated ranges provide an indication of the dosimetry cross-section uncertainties associated with the sensor sets used in LWR irradiations.

Calculated Neutron Spectrum The neutron spectra input to the least squares adjustment procedure were obtained directly from the results of plant specific transport calculations for each surveillance capsule irradiation period and location. The spectrum for each capsule was input in an absolute sense (rather than as simply a relative spectral shape). Therefore, within the constraints of the assigned uncertainties, the calculated data were treated equally with the measurements.

While the uncertainties associated with the reaction rates were obtained from the measurement procedures and counting benchmarks and the dosimetry cross-section uncertainties were supplied directly with the SNLRML library, the uncertainty matrix for the calculated spectrum was constructed from the following relationship:

Mgg =R2 +Rg*Rg*Pgg, where Rn specifies an overall fractional normalization uncertainty and the fractional uncertainties R. and Re specify additional random groupwise uncertainties that are correlated with a correlation matrix given by:

0 Pggo= [1 - ]5gge + 0e-H where:

2 H (g - g,)

2 2y The first term in the correlation matrix equation specifies purely random uncertainties, while the second term describes the short-range correlations over a group range y (0 specifies the strength of the latter term). The value of 5 is 1.0 when g = g', and is 0.0 otherwise.

The set of parameters defining the input covariance matrix for the Watts Bar calculated spectra was as follows:

Flux Normalization Uncertainty (Rn) 15%

Flux Group Uncertainties (R., Rg)

(E > 0.0055 MeV) 15%

(0.68 eV < E < 0.0055 MeV) 29%

(E < 0.68 eV) 52%

WCAP-16760-NP November 2007 Revision 0

A-8 Short Range Correlation (0)

(E > 0.0055 MeV) 0.9 (0.68 eV < E < 0.0055 McV) 0.5 (E < 0.68 cV) 0.5 Flux Group Correlation Range (y)

(E > 0.0055 MeV) 6 (0.68 eV < E < 0.0055 MeV) 3 (E < 0.68 eV) 2 A.1.3 Comparisons of Measurements and Calculations Results of the least squares evaluations of the dosimetry from the Watts Bar surveillance capsules withdrawn to date are provided in Tables A-5 and A-6. In Table A-5, measured, calculated, and best-estimate values for sensor reaction rates are given for each capsule. Also provided in this tabulation are ratios of the measured reaction rates to both the calculated and least squares adjusted reaction rates.

These ratios of MIC and M/BE illustrate the consistency of the fit of the calculated neutron energy spectra to the measured reaction rates both before and after adjustment. In Table A-6, comparison of the calculated and best estimate values of neutron flux (E > 1.0 MeV) and iron atom displacement rate are tabulated along with the BE/C ratios observed for each of the capsules.

The data comparisons provided in Tables A-5 and A-6 show that the adjustments to the calculated spectra are relatively small and well within the assigned uncertainties for the calculated spectra, measured sensor reaction rates, and dosimetry reaction cross-sections. Further, these results indicate that the use of the least squares evaluation results in a reduction in the uncertainties associated with the exposure of the surveillance capsules. From Section 6.4 of this report, it may be noted that the uncertainty associated with the unadjusted calculation of neutron fluence (E > 1.0 MeV) and iron atom displacements at the surveillance capsule locations is specified as 12% at the la level. From Table A-6, it is noted that the corresponding uncertainties associated with the least squares adjusted exposure parameters have been reduced to 6% for neutron flux (E > 1.0 MeV) and 7-8% for iron atom displacement rate. Again, the uncertainties from the least squares evaluation are at the 1a level.

Further comparisons of the measurement results (from Tables A-5 and A-6) with calculations are given in Tables A-7 and A-8. These comparisons are given on two levels. In Table A-7, calculations of individual threshold sensor reaction rates are compared directly with the corresponding measurements. These threshold reaction rate comparisons provide a good evaluation of the accuracy of the fast neutron portion of the calculated energy spectra. In Table A-8, calculations of fast neutron exposure rates in terms of 4(E > 1.0 MeV) and dpa/s are compared with the best estimate results obtained from the least squares evaluation of the capsule dosimetry results. These two levels of comparison yield consistent and similar results with all measurement-to-calculation comparisons falling well within the 20% limits specified as the acceptance criteria in Regulatory Guide 1.190.

WCAP-1 6760-NP November 2007 Revision 0

A-9 In the case of the direct comparison of measured and calculated sensor reaction rates, the M/C comparisons for fast neutron reactions range from 0.92 to 1.29 for the 20 samples included in the data set.

The overall average M/C ratio for the entire set of Watts Bar data is 1.05 with an associated standard deviation of 11.65%.

In the comparisons of best estimate and calculated fast neutron exposure parameters, the corresponding BE/C comparisons for the capsule data sets range from 0.92 to 1.15 for neutron flux (E > 1.0 MeV) and from 0.94 to 1.18 for iron atom displacement rate. The overall average BE/C ratios for neutron flux (E > 1.0 MeV) and iron atom displacement rate are 1.03 with a standard deviation of 9.82% and 1.06 with a standard deviation of 10.52%, respectively.

Based on these comparisons, it is concluded that the calculated fast neutron exposures provided in Section 6.2 of this report arc validated for use in the assessment of the condition of the materials comprising the beltline region of the Watts Bar reactor pressure vessel.

WCAP-16760-NP November 2007 Revision 0

A-10 Table A-I Nuclear Parameters Used in the Evaluation Of Neutron Sensors Target 90% Response Reaction of Atom Range Product Fission Monitor Material Interest Fraction (Me'V) Half-life Yield (%)

63 5.271 y Copper Cu (n,a) 0.6917 4.9-11.9 54 312.1 d Iron Fe (n,p) 0.0585 2.1-8.5 58 70.82 d Nickel Ni (n,p) 0.6808 1.5-8.3 23 1.3-6.9 30.07 y 6.02 Uranium-238 RU (n,f) 1.0000 237 0.3-3.8 30.07 y 6.17 Neptunium-237 Np (n,f) 1.0000 59 5.271 y Cobalt-Aluminum Co (ny) 0.0015 non-threshold Note:

The 90% response range is defined such that, in the neutron spectrum characteristic of the Watts Bar surveillance capsules, approximately 90% of the sensor response is due to neutrons in the energy range specified with approximately 5% of the total response due to neutrons with energies below the lower limit and 5% of the total response due to neutrons with energies above the upper limit.

WCAP-16760-NP November 2007 Revision 0

A-Il Table A-2 Monthly Thermal Generation During Cycles 6 and 7 of the Watts Bar Reactor Cycle I Cycle 2 Cycle 3 Thermal Thermal Thermal Generation Generation Generation Month [MW-Hr] Month [iMW-Hr] Month [MW-Hr]

Jan-96 9519 Oct-97 709914 Apr-99 1068631 Feb-96 49773 Nov-97 2449654 May-99 2454763 Mar-96 475248 Dec-97 2527971 Jun-99 2454685 Apr-96 999029 Jan-98 2523492 Jul-99 2536887 May-96 1713718 Feb-98 2142012 Aug-99 2526645 Jun-96 2348718 Mar-98 2180599 Sep-99 2455157 Jul-96 2523691 Apr-98 2370444 Oct-99 2540350 Aug-96 2525629 May-98 2535488 Nov-99 2454874 Sep-96 2184725 Jun-98 2445551 Dec-99 2536956 Oct-96 1114619 Jul-98 2531951 Jan-00 2536601 Nov-96 2202224 Aug-98 2486237 Feb-00 2373327 Dec-96 2523130 Sep-98 2429447 Mar-00 2536915 Jan-97 1956638 Oct-98 2470835 Apr-00 2451520 Feb-97 2147746 Nov-98 2452741 May-00 2536436 Mar-97 1645462 Dec-98 2535907 Jun-00 2455171 Apr-97 2236507 Jan-99 2280206 Jul-00 2534880 May-97 2519097 Feb-99 1519605 Aug-00 2279989 Jun-97 2237128 Mar-99 0 Sep-00 570521 Jul-97 2399891 Aug-97 1934439 Sep-97 262258 Total 36009189 Total 38592054 Total 41304308

[EFPS] 3.800E+07 [EFPS] 4.073E+07 [EFPS] 4.359E+07

[EFPY] 1.204 [EFPY] 1.291 [EFPY] 1.381 To Date To Date To Date

[EFPS] 3.800E+07 [EFPS] 7.873E+07 [EFPS] 1.223E+08

[EFPY] 1.204 [EFPY] 2.495 [EFPY] 3.876 WCAP-16760-NP November 2007 Revision 0

A-12 Table A-2 Monthly Thermal Generation During Cycles 6 and 7 of the Watts Bar Reactor (cont.)

Cycle 4 Cycle 5 Thermal Thermal Generation Generation Month [MW-Hr] Month [MW-Hr]

Oct-00 1906668 Mar-02 759955 Nov-00 2455222 Apr-02 2486032 Dec-00 2536907 May-02 2041632 Jan-01 2539043 Jun-02 2489640 Feb-01 2323719 Jul-02 2440231 Mar-01 2571100 Aug-02 2572406 Apr-01 2486145 Sep-02 2489113 May-01 2572676 Oct-02 2573865 Jun-01 2384162 Nov-02 2489493 Jul-01 1723109 Dec-02 2547822 Aug-01 2572727 Jan-03 2572408 Sep-01 2298210 Feb-03 2322599 Oct-01 2576028 Mar-03 2052502 Nov-01 2489629 Apr-03 2485939 Dec-01 2423020 May-03 2572277 Jan-02 2572218 Jun-03 2487655 Feb-02 1970262 Jul-03 2570050 Aug-03 2409124 Sep-03 485359 Total 40400845 Total 42848102

[EFPS] 4.217E+07 [EFPS] 4.459E+07

[EFPY] 1.336 [EFPY] 1.413 To Date To Date

[EFPS] 1.645E+08 [EFPS] 2.091 E+08

[EFPY] 5.213 [EFPY] 6.626 WCAP- 16760-NP November 2007 Revision 0

A- 13 Table A-2 Monthly Thermal Generation During Cycles 6 and 7 of the Watts Bar Reactor (cont.)

Date MW-Thermal Sep-2003 0 Note September 2003 for cycle 6 was zero.

Oct-2003 797,571 Nov-2003 2,489,411 Dec-2003 2,572,114 Jan-2004 2,356,325 Feb-2004 2,406,294 Mar-2004 2,572,166 Apr-2004 2,483,973 May-2004 2,568,656 Jun-2004 2,489,087 Jul-2004 2,571,263 Aug-2004 2,571,859 Sep-2004 2,198,177 Oct-2004 2,575,547 Nov-2004 2,489,216 Dec-2004 2,571,088 Jan-2005 2,572,113 Monthly Sum EOC Report Feb-2005 1,731,861 40,016,721 40,007,084 CYCLE 6 ABOVE Note Round-off error is the difference between these two numbers.

Mar-2005 3,388 Apr-2005 2,375,517 May-2005 2,571,958 Jun-2005 2,488,183 Jul-2005 2,572,181 Aug-2005 2,572,139 Sep-2005 2,361,712 Oct-2005 2,575,678 Nov-2005 2,489,136 Dec-2005 2,572,013 Jan-2006 2,570,408 Feb-2006 2,147,690 WCAP-16760-NP November 2007 Revision 0

A-14 Table A-2 Monthly Thermal Generation During Cycles 6 and 7 of the Watts Bar Reactor (cont.)

Date MW-Thermal Mar-2006 2,517,604 Apr-2006 2,485,651 May-2006 2,465,114 Jun-2006 394,229 Jul-2006 2,508,244 Aug-2006 2,184,917 Monthly Sum EOC Report Sep-2006 809,562 40,665,324 40,655,860 CYCLE 7 ABOVE Note Round-off error is the difference between these two numbers.

WCAP-1 6760-NP November 2007 Revision 0

A-15 Table A-3 Calculated Cj Factors at the Surveillance Capsule Center Core Midplane Elevation Cycle Length Fast Neutron Flux (E > 1.0 Me'V)

Cycle EFPS Capsule U Capsule W Capsule X Capsule Z 1 3.80E+07 1.18E+I I 1.19E+l 1 1.18E+I 1 1.19E+I1 2 4.07E+07 7.44E+10 7.34E+10 7.44E+10 3 4.36E+07 7.39E+10 7.28E+10 7.39E+ 10 4 4.22E+07 8.36E+10 8.48E+10 5 4.46E+07 6.52E+10 6.61E+10 6 4.59E+07 7.15E+10 7 4.07E+07 8.37E+10 Average 1.18E+l I 8.92E+10 8.25E+10 8.20E+10 Cycle Length C_

Cycle EFPS Capsule U Capsule W Capsule X Capsule Z I 3.80E+07 1.00 1.34 1.42 1.46 2 4.07E+07 0.83 0.89 0.91 3 4.36E+07 0.83 0.88 0.90 4 4.22E+07 1.01 1.03 5 4.46E+07 0.79 0.81 6 4.59E+07 0.87 7 4.07E+07 1.02 Average 1.00 1.00 1.00 1.00 WCAP-1 6760-NP November 2007 Revision 0

A-16 Table A-4 Measured Sensor Activities and Reaction Rates Surveillance Capsule Z Capsule Z -34 Degrees - Single Capsule Pad Segment - EOC 7 Corrected Average Average Measured Saturated Reaction Reaction Reaction Target Product Activity Activity Rate Rate Rate Sample Location Isotope Isotope Idps/gl Idps/gl Irps/atoml frps/atoml [rps/atom]

Cu Top Cu-63 Co-60 1.62E+05 2.70E+05 4.11E-17 Cu Middle Cu-63 Co-60 1.67E+05 2.78E+05 4.24E-17 Cu Bottom Cu-63 Co-60 1.61E+05 2.68E+05 4.09E-17 4.15E-17 4.148E-17 Iron Top Fe-54 Mn-54 1.35E+06 2.63E+06 4.17E-15 Iron Middle Fc-54 Mn-54 1.38E+06 2.69E+06 4.27E-15 Iron Bottom Fe-54 Mn-54 1.35E+06 2.63E+06 4.17E-15 4.20E-15 4.203E-15 Ni Top Ni-58 Co-58 3.14E+06 4.05E+07 5.80E-15 Ni Middle Ni-58 Co-58 3.17E+06 4.09E+07 5.85E-15 Ni Bottom Ni-58 Co-58 3.09E+06 3.99E+07 5.70E-15 5.78E-15 5.784E-15 U-238 (Cd) Middle U-238 (Cd) Cs-137 9.49E+05 5.04E+06 3.31E-14 3.31E-14 2.467E-14 Np-237 (Cd) Middle Np-237 (Cd) Cs-137 7.14E+06 3.80E+07 2.42E-13 2.42E-13 2.397E-13 Bare Co Top Co-59 Co-60 3.60E+07 5.99E+07 3.91 E-12 Bare Co Top Co-59 Co-60 2.99E+07 4.98E+07 3.25E-12 Bare Co Middle Co-59 Co-60 2.92E+07 4.86E+07 3.17E-12 Bare Co Middle Co-59 Co-60 3.28E+07 5.46E+07 3.56E-12 Bare Co Bottom Co-59 Co-60 3.02E+07 5.03E+07 3.28E-12 Bare Co Bottom Co-59 Co-60 3.47E+07 5.78E+07 3.77E-12 3.49E-12 3.490E-12 Co (Cd) Top Co-59 (Cd) Co-60 1.84E+07 3.06E+07 2.OOE-12 Co (Cd) Middle Co-59 (Cd) Co-60 1.75E+07 2.9 1E+07 1.90E-12 Co (Cd) Bottom Co-59 (Cd) Co-60 1.78E+07 2.96E+07 1.93E-12 1.94E-12 1.944E-12 Notes: 1) Measured specific activities are indexed to a counting date of January 30, 1998.

2) The average U-238 (n,f) reaction rate includes a correction factor of 0.796 to account for plutonium build-in and an additional factor of 0.966 to account for photo-fission effects in the sensor
3) The average N-237 (n,f) reaction rate includes a correction factor of 0.990 to account for photo-fission effects in the sensor.

WCAP-1 6760-NIP November 2007 Revision 0

A-17 Table A-4 Measured Sensor Activities and Reaction Rates Surveillance Capsule U (cont.)

Corrected Averaged Averaged Measured Saturated Reaction Reaction Reaction Target Product Actitivy Actitivy Rate Rate Rate Location Isotope Isotope (dpslq) (dpsiq) (rpstatom) (rpslatom) (rpslatom)

Top Cu-63 Co-60 5.05E+04 3.684E+05 5.620E-17 Middle Cu-63 Co-60 5.34E+04 3.895E+05 5.942E-17 Bottom Cu-63 Co-60 5.25E+04 3.829E+05 5.842E-17 5.801E-17 5.801E-17 Top Fe-54 Mn-54 1.62E+06 3.855E+06 6.111 E--i 5 Middle Fe-54 Mn-54 1.71E+06 4.069E+06 6.450E--15 Bottom Fe-54 Mn-54 1.71E+06 4.069E+06 6.450E-15 6.337E-15 6.337E-15 Top Ni-58 Co-5B 1.20E+07 5.968E+07 8.544E-15 Middle Ni-58 Co-58 1.25E+07 6.217E+07 8.900E-15 Bottom Ni-58 Co-58 1.26E+D7 6.267E+07 8.971E-15 B.805E-15 8.805E-15 Top Co-59 Co-60 1.55E+07 1.131E+08 7.376E-12 Top Co-59 Co-60 1.28E+D7 9.337E+07 6.091E-12 Middle Co-59 Co-60 1A3E+D7 1.043E+08 6.605E-12 MKddle Co-59 Co-60 1.19E+07 8.680E+07 5.663E-12 Bottom Co-59 Co-60 1.41E+07 1.028E+08 6.710E-12 Bottom Co-59 Co-60 1.22E+07 B.899E+07 5.806E-12 6.409E-12 6.409E-12 Top Co-59 Cd Co-60 7.59E+06 5.536E+07 3.612E-12 Middle Co-59 Cd Co-60 7.06E+06 5.150E+07 3.360E-12 Bottom Co-59 Cd Co-60 7.10E+06 5.179E+07 3.379E-12 3.450E-12 3.450E-12 U-238 Cs-137 2.34E+05 8.647E+06 5.678E-14 5.678E-14 4.744E-14 Np-237 Cs-137 1.94E+06 7.169E+07 4.574E-13 4.574E-13 4.528E-13 Notes: 1) Measured specific activities are indexed to a counting date of January 30, 1998.

2) The average 2EU (n,f) reaction rate of 4.744E-14 includes a correction factor of 0.867 to accotrt for plutoniutm build-in and an additional factor of 0.964 to accoumt for photo-fission effects in the sensor.
3) The average 237Np (n,f) reaction rate of 4.52SE-13 includes a correction factor of 0.990 to account for photo-fission effects in die sensor.

WCAP-16760-NP November 2007 Revision 0

A-18 Table A-4 Measured Sensor Activities and Reaction Rates Surveillance Capsule U (cont.)

Corrected Averaged Averaged Measured Measured Saturated Reaction Reaction Reaction Target Product Actitivy Actitivy Actitivy Rate Rate Rate Location Isotope Isotope (micro.CIlg) (dpslg) (dpslg) (rps/atom) (rpstatom) (rpslatom)

Top Cu-63 Co-60 4.975 1.84E+05 4.874E+05 5.143E-17 Middle Cu-63 Co-60 5.265 1.95E+05 5.166E+05 5.451E-A 7 Bottom Cu-63 Co-60 5.232 1.9-4E+05 5.139E+05 5.423E-17 5.339E-17 5.339E-17 Top Fe-54 Mn-54 1251 4.63E+07 5.950E+07 5.519E-15 Middle Fe-54 Mn-54 1308 4.84E+07 6.220E+07 5.769E-15 Bottom Fe-54 Mn-54 1269 4.70E+07 6.040E+07 5.602E-,15 5.630E--15 5.630E-15 Top Ni-58 Co-58 '1664 6.16E+07 7.787E+07 7.592E-15 Middle Ni-58 Co-58 1713 6.34E+07 8.015E+07 7.814E-15 Bottom Ni-58 Co-58 1665 6.16E+07 7.787E+07 7.592E-15 7.666E-15 7.666E-15 Top Co-59 Co-60 5.483E+05 2.03E+10 5.378E+10 5.262E-12 Top Co-59 Co-60 4.803E+05 1.78E+10 4.715E+10 4.614E-12 Middle Co-59 Co-60 5.070E+05 1.88E+10 4.980E+10 4.874E-12 Middle Co-59 Co-60 4.191E+05 1.55E+10 4.106E+10 4.018E-12 Bottom Co-59 Co-60 5.247E+05 1.94E+ 10 5.139E+10 5.029E-12 Bottom Co-59 Co-60 4A32E+05 1.*A1E+ 10 4.344E+10 4.251 E-i 2 4.675E-12 4.675E-12 Top Co-59 Cd Co-60 2.740E+05 1.0,IE+10 2.676E+10 2.618E-12 Middle Co-59 Cd Co-60 2.616E+05 9.68E+09 2.564E+10 2.509E-12 Bottom Co-59 Cd Co-60 2.690E+05 9.95E+09 2.636E+10 2.579E-12 2.569E-12 2.569E-12 U-238 Cs-137 9.13 3.97E+05 4.694E+06 3.082E-14 3.082E-14 2.504E-14 Np-237 Cs-137 124.8 4.62E+06 5.462E+07 3.485E-'13 3.485E-13 3.450E-13 Notes: 1) Meastured specific activities are indexed to a counting date of September 10. 2000.

2) The average 23SU (n,f) reaction rate of 2.504E-14 includes a correction factor of 0.843 to account for plutonium build-iii and an additional factor of 0.964 to accowit for photo-fission effects in the sensor.
3) The average 237Nq (nf) reaction rate of 3.450E-13 includes a conrection factor of 0.990 to accoutt for photo-fission effects in the sensor WCAP-16760-NP November 2007 Revision 0

A-19 Table A-4 Measured Sensor Activities and Reaction Rates Surveillance Capsule U (cont.)

Corrected Averaged Averaged Measured Saturated Reaction Reaction Reaction Target Product Actitivy Actitivy Rate Rate Rate Location Isotope Isotope (dpslg) (dpslq) (rpslatom) (rpslatom) (rpslatom)

Top Cu-63 Co-60 1.52E+D5 2.889E405 4.408E-17 Middle Cu-63 Co-60 1.55E+05 2.946E+05 4.495E-17 Bottom Cu-63 Co-60 1.56E+05 2.965E405 4.524E-17 4A76E-17 4.476E-17 Top Fe-54 Mn-54 1.84E+06 2.723E406 4.316E-15 Middle Fe-54 Mn-54 1.95E+06 2.900E406 4.597E-15 Bottom Fe-54 Mn-54 1.90E+06 2.811E+06 4.456E-15 4.456E-15 4456E-15 Top Ni-58 Co-58 1.59E+07 4.495E+07 6.436E-15 Middle Ni-58 Co-58 1.66E+07 4.750E407 6.800E-15 Bottom Ni-58 Co-58 1.69E+07 4.778E407 6.840E-15 6.692E-15 6.692E-15 Top Co-59 Co-60 3.13E+07 5.950E407 3.882E-12 Top Co-59 Co-60 3.54E+07 6.729E+07 4.390E-12 Middle Co-59 Co-60 3.35E+07 6.748E407 4.403E-12 Middle Co-59 Co-60 2.75E+07 5.228E+07 3.411E-12 Bottom Co-59 Co-60 2.93E+07 5.570E+07 3.634E-12 Bottom Co-59 Co-60 3.41E+07 6.482E407 4.229E-12 3.991E-12 3.991E-12 Top Co-59 Cd Co-60 1.87E+07 3.555E407 2.319E-12 Middle Co-59 Cd Co-60 1.79E+07 3.403E+07 2.220E-12 2.270E-12 2.270E-12 Bottom Co-59 Cd Co-60 --

U-238 Cs-137 6.61E+05 4.759E406 3.125E-14 3.125E-14 2.467E-14 Np-237 Cs-137 5.82E+06 4.190E407 2.673E-13 2.673E-13 2.646E-13 Notes: 1) Meastured specific activities ire ildexed to a co uting date of November 26, 2003.

2) The average 231U (nLf) reaction rate of 2.467E-14 includes a correction factor of 0.519 to account for plutorimn buikd-in and an additional factor of 0.964 to account for photo-fission effects in the sensor.
3) The average 2 "3;Np(n,f) reaction rate of 2.646E-13 includes a correction factor of 0.990 to account for photo-fission effects in the sensor.

WCAP-1 6760-NP November 2007 Revision 0

A-20 Table A-5 Comparison of Measured, Calculated, and Best Estimate Reaction Rates at the Surveillance Capsule Center Capsule U Reaction Rate [iv0s :toinl ___________

Best Reaction 7 .1. ....i...i:Measuiired. Calcutlated Estimate. MC M .. M/BE 63 5.80E-17 5.,l5E-17 5.65E-17 1.06 1.03 Cu(n.ct)OCo 4Fe(niip)' 45 Mn 6.34E-15 6.48E-15 6.50E-15 0.98 0.97

-SNi(np) SCo S.SIE-15 9.18E-15 9.24E-15 0.96 0.95 3 t 7 4.74E-1 4 3.66E-14 3.99E-14 1.29 1.19 2 8U(I.f) j Cs (Cd)

-3*Np(n. f)3 7 Cs (Cd) 4.53E-13 3.76E-13 4.49E-13 1.20 1.01 9 6.41E-12 5.58E-12 6.3SE-12 1.15 1.00 gCo(n.y)-Co 59Co(n.'A*Co (Cd) 3.45E-12 3.90E-12 3.47E-12 0.89 1.00 Note:

See Section A. 1.2 for details describing the Best Estimate (BE) reaction rates.

Capsule W Reaction Rat trp~s/ toffl Best Reaction Measured Calculated Estimate \MC . .. E

  • Ow)0.0 5.34E-17 4.20E-17 5.28E-17 1.27 1.01 Fe(n,p) 5Mn 5.63E-15 4.86E-15 5.54E-1S 1.16 1.02 "Ni(n,p)-*Co 7.67E-15 6.8SE-15 7.70E-15 1.12 1.00 U(n.)"'Cs (Cd) 2.50E-14 2.73E-14 2.90E-14 0.92 0.86 23 Np(n.f)O7Cs (Cd) 3.45E-13 2.85E-13 3.24E-13 1.21 1.06 5
  • 'Co(n,,Y)"OCo 4.67E-12 3.80E-12 4.65E-12 1.23 1.01 "Cofr.,b!Co (Cd) 2.57E-12 2.75E-12 2.58E-12 0.93 0.99 Note:

See Section A.I1.2 for details describing the Best Estimate (BE) reaction rates.

November 2007 WCAP-WCAP- 16760-NP November 2007 Revision 0

A-2I Table A-5 Comparison of Measured, Calculated, and Best Estimate Reaction Rates at the (cont.) Surveillance Capsule Center Capsule X Reaction Rates [rps/atom]

Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 Cd 4.48E-17 4.07E-17 4.41E-17 1.10 1.02 Fe-54(n,p)Mn-54 4A6E-15 4.65E-15 4.61E-15 0.96 0.97 Ni-58(n,p)Co-58 Cd 6.69E-15 6.55E-15 6.58E-15 1.02 1.02 U-238(n,f)Cs-137 Cd 2.47E-14 2.57E-14 2.50E-14 0.96 0.99 Np-237(n,f)Cs-137 Cd 2.65E-13 2.59E-13 2.60E-13 1.02 1.02 Co-59(n,g)Co-60 3.99E-12 3.77E-12 3.98E-12 1.06 1.00 Co-59(n,g)CO-60 Cd 2.27E-12 2.63E-12 2.28E-12 0.86 1.00 Note:

See Section A.1.2 for details describing the Best Estimate (BE) reaction rates.

Capsule Z Reaction Rates Measured Calculated Best Est. M/C BE/M BE/C Cu-63(n,a)Co-60 Cd 4.15E-17 3.95E-17 4.06E-17 1.05 0.98 1.03 Fe-54(n,p)Mn-54 4.20E-15 4.51E-15 4.26E-15 0.93 1.01 0.94 Ni-58(n,p)Co-58 Cd 5.78E-15 6.38E-15 5.95E-15 0.91 1.03 0.93 U-238(n,f)Cs-137 Cd 2.55E-14 2.52E-14 2.34E-14 1.01 0.92 0.93 Np-237(n,f)Cs-137 Cd 2.40E-13 2.62E-13 2.42E-1 3 0.92 1.01 0.92 Co-59(n,g)Co-60 3.49E-12 3.47E-12 3.47E-12 1.01 0.99 1.00 Co-59(n,g)CO-60 Cd 1.94E-12 2.52E-12 1.95E-12 0.77 1.01 0.77 WCAP-16760-NP November 2007 Revision 0

A-22 Table A-6 Comparison of Calculated and Best Estimate Exposure Rates at the Surveillance Capsule Center

  • (E > 1.0 McV) Inlcm 2-sI Uncertainty Capsule ID Calculated Best Estimate (I F) BE/C U 1.08E+11 1.35E+11 7% 1.15 W 8.82E+10 9.35E+10 7% 1.06 X 8.16E+10 8.02E+10 7% 0.98 Z 8.19E+10 7.57E+10 7% 0.92 Note:

Calculated results are based on the synthesized transport calculations taken at the core midplane following the completion of each respective capsules irradiation period and are the average neutron exposure over the irradiation period for each capsule.

See Section A.1.2 for details describing the Best Estimate (BE) exposure rates.

Iron Atom Displacement Rate Idpa/sl Uncertainty Capsule ID Calculated Best Estimate (lo) BE/C U 2.35E-10 2.78E-10 11% 1.18 W 1.79E-10 1.96E-10 11% 1.10 X 1.62E-10 1.62E-10 11% 1.00 Z 1.64E-10 1.54E-10 11% 0.94 Note:

Calculated results are based on the synthesized transport calculations taken at the core midplane following the completion of each respective capsules irradiation period and are the average neutron exposure over the irradiation period for each capsule.

See Section A. 1.2 for details describing the Best Estimate (BE) exposure rates.

WCAP-16760-NP November 2007 Revision 0

A-23 Table A-7 Comparison of Measured/Calculated (NI/C) Sensor Reaction Rate Ratios Including all Fast Neutron Threshold Reactions NT/C Ratio Capsule U Capsule W Capsule X Capsule Z Cu-63(n,a)Co-60 Cd 1.06 1.27 1.10 1.05 Fe-54(n,p)Mn-54 0.98 1.16 0.96 0.93 Ni-58(n,p)Co-58 Cd 0.96 1.12 1.02 0.91 U-238(n,OCs- 137 Cd 1.29 0.92 0.92 1.01 Np-237(n,f)Cs-137 Cd 1.20 1.21 1.02 0.92 Average 1.10 1.14 1.00 0.96

% Standard Deviation 14.29 13.32 6.84 6.68 Note:

The overall average M/C ratio for the set of 20 sensor measurements is 1.050 with an associated standard deviation of 11.65%.

Table A-8 Comparison of Best Estimate/Calculated (BE/C) Exposure Rate Ratios BE/C Ratios Capsule Flux Dpa/s U 1.15 1.18 W 1.06 1.10 X 0.98 1.00 Z 0.92 0.94 Average 1.03 1.06

% Standard Deviation 9.82 10.52 WCAP-16760-NP November 2007 Revision 0

A-24 A.2 REFERENCES A-1. Regulatory Guide RG-1.190, Calculationaland Dosimetry Methods for DeterminingPressure Vessel Neutron Fluence,U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, March 2001.

A-2. WCAP- 15046, Revision 0, Analysis of Capsule Ufrom the Tennessee Valley Authority Watts Bar Unit I Reactor Vessel RadiationSurveillance Prograin,June 1998.

A-3. WCAP- 16245-NP, Revision 0, Analysis of CapsuleXfivom the Tennessee Valley Authority Watts Bar Unit I Reactor Vessel Radiation SurveillancePrograin,April 2004.

A-4. BWXT Report, Analysis of Capsule W from Tennessee Valley Authority Watts Bar Unit I Reactor Vessel Radiation Surveillance Program, W.A. Pavinich, dated 9/10/0 1.

A-5. A. Schmittroth, FERRET DataAnalysis Core, HEDL-TME 79-40, Hanford Engineering Development Laboratory, Richland, WA, September 1979.

A-6. RSIC Data Library Collection DLC-178, SNLRML RecommnendedDoshnetry Cross-Section Compendium, July 1994.

A-7. ASTM El 018, Application ofASTM Evaluated Cross-Section Data File, Matrix E 706 (11B),

American Society for Testing and Materials.

A-8. ASTM E944, Application of Neutron Spectrum Adjustment Methods in ReactorSurveillance, American Society for Testing and Materials.

November 2007 WCAP-l 6760-NI' WCAP-1!6760-NP' November 2007 Revision 0

B-I APPENDIX B LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS 0 Specimen prefix "WL" denotes Intermediate Shell Forging 05, Tangential Orientation 0 Specimen prefix "WT" denotes Intermediate Shell Forging 05, Axial Orientation S Specimen prefix "WW" denotes Weld Material Specimen prefix "WH" denotes Heat-Affected Zone material Load (1) is in units of lbs 0 Time (1) is in units of milliseconds November 2007 I6760-NI' WCAP- 16760-NPl WCAP- November 2007 Revision 0

B-2 WL90, -100F WVL83, 25-F

. .. . i . .. .. ... . .

. . . . . .. . . . .. . . . . . . . . .. . . . . ..... . . . . . .. . I . .. . . . ...... ......

fica co Jx 0t o ...... ........ .........I . .- -'---.. '. ; ...........

2)^C ce rcc J . . . . . . . .. . . .

.................... .'.: .: .: : :::: 3 co

.................. 'Cc ... :4 cc

... ........... ..... :e cc NNIL84, 60OF WCAP-16760-NP November 2007 Revision 0

B-3

- 'a'e WL87, 75 0 F WVL8O, 8OJ coýc cal.

.. .. . . I . . . . . . ... . . . ... . . . , .. . . .. ..... ..... . .. . . . .

...... .. .. ...... .... .. ... . . . .. . .a.. ..... . . .. . . . ... . .. ..... . . % ................ . .... . . . ..:..  : . .: .

.::.p. . .. . . . .

. .. . . . . .w. . . ...... . ... ... . . . . . .. . .. ..... ........ ..

2.3., 3 C: CC T ...... ......... ......

WL79,85-F WCAP-16760-NIP November 2007 Revision 0

B-4 WL77, 95-F

: - . N.C."D

. . .. . . . . .. . 1.0C '2ZC 3.C: 4 CO .' : :.....

... e.:o :..

T.*.i (fft, NNIL85, 100-F

.... ..I... ...... .. ...... ..... .........

N-53 53 . . . . . . .. . . . . . .. . .

00. 2 tO 1 a, WL88,125-F WCAP-1 6760-NP Novembcr 2007 Revision 0

B-5 NVL76, 150OF WL81, 175 0 F

.... ........a . ......................

,. , . I . ......... ....... ..... . ..... .

.... .... ... ...I . . ... . ....

Inan : -:- - ý- - - ........... -. - . .- I. I....

I.- . ..... . ..... ..

1.1.1.1.1.1.1.1.1. .1.1...1ý..........

r_3.c .... .......... ..... a..........

.....03

A 00

. .. .ZCO S,2ý 3.03

..... . . . . wne l 1" ) ..

NN'L78, 200-F WCAP- 16760-NP November 2007 Revision 0

B3-6 I j c

Im ý2,CO 2 CO 4 CO ZU)

WL82, 300 0F WVL86, 350WF

.......... . . . .. . . . . .. .......... ..... . I . . .. . . . . .. . . . . . . . . .. .. . . . . .. . . . . . . .

. . . . .... ....... ....... ............ .q. . . . ........ .. '. . ... ............ . ......

.... .s.1.

I..ý.1. . . . .

. . .. I...,

.I.,. .

s * . . .

..... . . ...a ..

.1ý :

............. . . ý . . ..

. . . .. ......... . . . " I %.-+ý , %,:... .:: .: . . , . , , . , .., %.. I -

. . . . . . . . . .. . ': . .....:.... : .m. . . . ..% ..

... . . I . . I . . . ..... . . .. . . . . . . ..

0+0 i ] I I I I . . .

52 A 03 .: ::::::, -, ..... ...

... ... ......... . . .. . . . . .. . . . I .. . . . . . .

WVL89, 375OF WCAP-16760-NP November 2007 Revision 0

B-7 M.. I..

.0'

.103....0 .. ..

......0 . . .. . .. . . . . . . . .

  • * *:*:*:* 403*::<:: *~00. e ^.

~ ~~ ~

... .I...... .. .. 4..

WT82,-50 0 F

... . .. :OMN

..O.V e.1o

.Tum. I

... 40 ....... ......

WT89,75-F

. ..........I

.... ... .. ... 1. 1. .1. .,: .' . . . . - ... I.. .. .- - - '.'.

. . .... .....I .. .... .. ..  : . . . . .. .. .. .. . . .. . .... .. . . . . . .. ... .. .. ..

. . .. . . . .. . . ...... . ... ....... ...... ..........I ..

Doc M 2 CO la ... ... 55" l

Tý . . . . . . . . .. . . . ..... . . . . .. . . . .. . . . .

NNIT86, 100-F WCAP-16760-NP November 2007 Revision 0

B-8 43^0a

. *~ ~~~~~

. .. . .... . , ... . , , . ~~~..

i..i.i C+ A o *. .? . i!5'i:..

.. *. i i *... . . ..

.3 .. ..

.0'

~

  • .:.:i~...*o . T j ~. ~~..... .:  :::?...-:'..*

.. II .

.: 111: .. .

I v  :- c ::::: :: :2 oa0 -2 o en

. .. . .. .. . . .- T r.1 t t WT85, 125WF WT88, 140WF

..... ....... .I.... ... . ... . . . . ... .. ....... . ... ...... . . . . . . . .. . . . . .. . . .. . . . . . .

noa OD

. . .. . . . . .. . . .I..  ! ,.: ....: .. ..

.. .. ... . . . .. . I . .

... . . . .ýý:

.:ý -:a:-:ý:-,:::--:::-,::

.:. :. .. I .. .... .. .1..

1 : .1 ..': 1.1.-..:. .: ý:.,- ,ý*.- ....

2n 3 53 . . . .. .I ... .... .. . ....... ., ., . .::: . .. !: .,ý .'... , . .

. ..... . .. .. .3 .C,. ..... ..... .... .. . ... . .. . . . . . . . . .. . .853 .. .

. . . .. . . . . . .. . . Tý it" i . . . . .. . . . .. . . . . . .. . . . . . . .

WT77, 150°F WCAP-16760-NP November 2007 Revision 0

B-9

.ii.

NNIT83, 165 0 F WT79,175 0 F I . . . . . . . . . . . . . . . . .............. ....

0' I..

'c'~rj

~ 0~ .. . ..... ...... ..

10~,

.. ,.000 100 M 3,Cp, a v, AN'T81, 190-F WCAP-16760-NP November 2007 Revision 0

B-10 WT76, 200NF WVT90, 210OF

., . .- .- ..- .- . M. .. .. .

X .. . . . . . .. . . . .. . . . . . . .

.. . ..... .... . .-V ..- *.:. .. ...- ..... . .ý.

............ .... ...... -ý:.. ý ý..

go : : :.:. ... :l:3.00 CDC ..

.. ... .. SIC.:

............. ...... ....... ..... ... ..... .. I..........

MIT78, 2250F WCAP- 16760-NP November 2007 Revision 0

B1-II

£.::i*

WT84, 3000 F

. o~ 3.. . . . .

..C ¶ . . .. .. . . .

- 0:0 .2c j,' I i L 1. .1.~

.co: .: .:: . . ... T.-1C NN'T87, 350OF

.I....... ...

.. .... ...%. .. . .....I......

... .. ....................................... ..I.......

., I., ......

IM ZO

-000 .. . . . . .. .1 cc . . . .. . . . .2 CO...... ........ . .. . . . . . . .. . .. .. . . .... . . . . .. .... . . .. . .

. . . .. . . . . .. . . I . .. . . . . . .. . . . . .. . . ..

. . .. . . ... .I.. . . . .. . . . . . .. .... TdrL l NNIT80,375-F November 2007 WCAP-I WCA 6760-NPP P- 16760-N November 2007 Revision 0

B-12

  • <. . * ... , .>> ....2c > .*

> ...< >L.*~

./.¢.. / 3 .. > .'1> i> .< * .

.<. .i..ii. .i

. .i ". . .> . .. >. . > ..

/. . > >. > '. . >

... . >. . .. ....... .. ...*. . . . . i ** I * >>< . . . . *

=::.- * .* ; .,' ~..: .*.. <.

...:.:.. :..... <.. .* i : - . . . .., : .: . : * .: ;  : . .: . . : . .

.. > ' i. .............. .... .. .. . .... ...............

WrW86, -I15°F WCAP-! ....... .. Novembe 7

........... 0

B-13 42N'8 OT2 0~ co. 4~ .*...........*:

F ~~..... ....

.0i. . . . . .. . . . . . . . . ........ . . . . . . .. . . .

. .2 ...... . . . .. . ... . .. . . . . .

........ . . . .........I........ . . . . . . . . . ... ............ ..... ..... . . . .....

k: ... . . . . . ... . .. . . ... ..... . .. . . . . ..

2 0.. .. . . . . . . . . . . . . .......:..

10 202

....... .. ý:Z*.:- ..

. . . .. . . . . I .

1. - , .., -..:. ....

. . . .... . ..... .... ..... . X...... ....

X 4 ....................... ...................

. . . . .. . . . . .. . . . . . .. . . . . . . . I .. . . . .. . . . . . . . . .

i .¢, .:  : : : : : : : : : : .-.-

.i i i iie * . . ..

10: M i 1' i -i iIii -,i- 5 Oc .- Boo WW87, 25 0 F WCAP- !6760-NPI November 2007 Revision 0

B-14 e.**!

WW82, 40 0 F X.

.O. .. ..

.o-2 30 3 to Cot  ::I WW85,50OF

... .. I.... ...........

....I.

..I ..

..... ...... ...I.. ... ..... ....... . ........

4-5.00 . . .. . . . .....

q 05 ... . ..... . .. . . . .......... ... . . . .....

Doc 2 to ý'Cz X icýý

. . . . . . . .. . . . . . . . . .. . . . . . .at.. . . . .. . . :3.

Tý I fm .. . . . . .. . . . .. . . .. . . .

NNINN'80,75OF Novcmbcr 2007 WCAP-I 6760-NPP WCAP-1!6760-N November 2007 Revision 0

B-15

.. .. .. : . .. . .  : -

  • I , . . . .. . . . . .. . . . .

N CO ....... ..........

"OtoCc ...... . ..... . .

... ...........I..... ..... .. . ..... . .......................

. .l .ec o c c

... ............... .. . . . . . . . . . . . . ..........I.. . . . . .

cCG :I.CO: .2 CC . .: .... . .... 3 CO "'.` A CC .... .M

. .....................I ........ .........

WVW84, 1000F WW88, 125 0F

.a 2 ca. . -. . . . 400C WVW81, 150 0F WCAP-1I676O-NIP November 2007 Revision 0

B-16 I q Ig

-IC'a 'a .... ..... . . .. . . . . .. . .. . . . . . . . . ....

'CCO 1.00 2 CO cc 400 C.'a NNIW79,300OF

....I

.. ...I...... .......

............... .I.....

nxm IFsk . . . . . .. . . . . . . . . . .. . . . . . . .. . . z- . .. . . . . . . .. .. ..... .....

. . . q. . . m. . . .. .

. ........... ................. ... . . ... .............:.. - . . . .,. .... . . . .-. . . .-.-. .-!ý . . . . . . . . ... . . . . . .. . . .

C.C0 . . . .. . . . ... . .

2V Ice 'Acc tO NN'W77,350OF w...... .. .....

...... . w ......

W.. . .  : . ... ............ww.'.

.... . . . ....... .. w W.......

w...... ......

.w........

4C.-O.V: . ... . . . ............ . . .... . . . ............... . . ........

. .. . .... ... .. ..'.. .....w.. . . . .w. .w

. . . . .... , . . ...... ..... . .. . .w. .. . ....... ... .. ... . ...... ... . . . ..

. . . . . . ... .. ... . w . . .. . . .... .... . .............. . .. . . .... . ... .. . ..

--: . .. : f . : '. , . , ., .. . L. .

. 1.

. . -. : " . . . .. . . : -'I : -W, I' -W,I

. . . . . .. . . ;....... .... w .. . . ...... . ..... . .. . . . . ..... .......

0 3. a . . . .. .. .... . .. . . . .. .

. ..... . .....w.-.. .-. . ....... ..

. . . ..... ace ..... -I I.cc

' -'.-'.-I.. 2 CS . . . . .. . . .3 CCw-: -: ww. .. . . j.CS .. . . . . .. .5 ca . .. . . . . .. .j 03 Tww i fmi : : , -, -, . . -. .-.-. . .. .

- ..w .

WNN'76,375-F WCAP-16760-NP November 2007 Revision 0

B-17

.c. ..... . . ..... . ...

.2 2. .. ...

22..22..2.. ....... .. .. . ...

.02...2.. . .......... . . .. .. ...... .. . . . . .. . . .

.0 . .222 C ... .

......  :..* .* 2 . ... c .. .. .:..: .2 WH79, -100 0 F 30^ CD .. . ...........

20 Call .......... ... ... .... ..... ........ ...

. ..... ... ............. . ......: I--. .:

In c 00 ... 1........ ý.:I..ý....ý.-, I . I - 1:11: ., . I

. .... ... . ... . .. --\

X : D" 2AC 3 CO

................... ........ ................. .... 0. 2 ....  : .. . . . .

WH83,-25OF

........ ... -:-:A :,: X ........................... .... .. . ........... .... . ...... ......

..... . . ................ ....... . ... ............. ...I.. .................................

-:AV C.-O -- - - -- ". - . , . '. '.., . '.., .'.., . .. : . .:. - .; .. . 4ý-, . . - . .'. . . ... I. -. .. ... .. ...:.. '!

...-... ...f ... ..,. .. ...... ... ... ,.. '.. '.

. .. .. . . . . . . . . ........ . . . . . . . . . . . . . q . . . . . . . . . . . . . . . . ....... . . . . . . . . . . . . . . . .

201 . .,.,

... .0 .......... .... ........ ........ . ... .....

w

.. .....................I 2 CL .............. ... ....

WH85, OOF WCAP- 16760-NP November 2007 Revision 0

B-18 WH76, 15F

.. . .. . 1

........... :r.. . .. . . . . .. ..

-ý r

. I .... ... ....

0 2 .. ... ......... .

.o .:.:.

..:. .:.:.: .:. . ... 2.0.: ..

.I  :

WNH78, 25°F

.. .. ......... . ~i i i~:! !::!i :::ii .':!.".i:

. . . ... . . . ... . . . . .-.1 .' . '. . '. '.'. '. '. . . ' . . . . .- . . . .' . . . .'.'.' . .'.'.'.' ...:~~i~

."i..::..".'.

i i~.:!. !. !:  :..i.i~

..: ~.'.'.'.

..i~~..

.. ........... .. =============

.::: ::>==

.. .... .... ...i )i

  • .::.:::::::::i.::::::.~ii~~ii.ii.:i~~ii.i::;i~~

i!!ii iI~ i~

!ii!ii~i ......

~ ~i iiiiii

  • ." ." ' ' ' ' * { . .'..- ' ' ' ......

'- "! 0 , ' ". . . .' ' '.. . - .' -'.. '.."..g* .' . . .' ' . k? ' ' '. . . ' ' }* .

.. ma." '. I I I ' 7I.'. I I......

I* : : : : : .: .'I: *. '

............. H 88 ..

WCAP-1 6760-NP November 2007 Revision 0

B-19 WH80, 50OF TLc". .. . . . . . . . . ...

m m I . ..I , . . . . . . . . .. .. % . . . .. .

. . . . . .. . . . . . .I . .. .. . . . . . . . . . ..

.. . . . .. . . . . I .... I . . . . . . .. . . . . . . . . . - - , - - - , - , : ... . . - - - -, ., . . ... . . . . . . .

.... . .. . . . ........ 4 cc 5ý00 e...

. .. . . . .. . . . . .. . . . .. . . . . . .. .. . . . . . .. . ... Y.M. i . . . . .. . . .

WH86,60-F 4ca v .. - . .".. .

.. I .. .. , . .. ... .. ..:...  :. ..

.. .. . . :  :. ýr .. .:... . ..:. Im. . : ... ... .'. . . . . . . .. .... . ...

... . .. . . . . .... . . . . .... ........... . . .. .a...... . .. ... . . . . . . . . . .. . .

N'2.03 . . . .. . . . .. .. . . . .... .... . ..

.. . ..,.. .. '. .. . . : ...... . . . .. . . . .. .I . ... . I . ...... ......... . ... ..........

2003 03  :.,.:..,:..-..l '. .5. .. . .: .. .C.,  ;'-ý: ..!. . . , .. , .. , . . .

.... ... . .I...

. . .. . . . . .. . On

........... 60 .. . 3.cý cc '4 Oc: .-. 803 WH82, 75 0 F WCAP-16760-NP November 2007 Revision 0

B-20 WH89, 125 0F,

. .. . . a . a. . . . .. . . .. . . . .

I

..... ... .. . . . .  !, .. I. .1. .... ......

.3.Cc ISO 4-10 S Oc a a WH87,175-F Doc ACO .2 c D UO 4M.'

WH77, 300OF November 2007 WCAP-I 6760-NP WCAP-16760-NP November 2007 Revision 0

B-21

  • ~.  :.. . .. . . . .. .

.. .. . .. ..... ..e .. .. . C .

Aco -,.cl I WVH90, 3250 F

...1 .. . ..

4c:

i .. . .. . ....

NAVH84, 350rF

... . .j0,3.t,

.... Tie.....

WH81,3750 F WCAP-16760-NP November 2007 Revision 0

C-I APPENDIX C CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD Contained in Table C-I are the upper shelf energy values used as input for the generation of the Charpy V-notch plots using CVGRAPH, Version 5.0.2. The definition for Upper Shelf Energy (USE) is given in ASTM E185-82 [C-I], Section 4.18, and reads as follows:

"upper shelf energv level- the average energy value for all Charpy specimens (normally three) whose test temperature is above the upper end of the transition region. For specimens tested in sets of three at each test temperature, the set having the highest average may be regarded as defining the upper shelf energy."

If there are specimens tested in sets of three at each temperature, Westinghouse reports the set having the highest average energy as the USE (usually unirradiated material). If the specimens were not tested in sets of three at each temperature, Westinghouse reports the average of all Charpy data (> 95% shear) as the USE. Hence, the USE values reported in Table C-1, which were used to generate the Charpy V-notch curves, were determined utilizing this methodology.

The lower shelf energy values were fixed at 2.2 ft-lb for all cases.

Table C-I Upper Shelf Energy Values Fixed in CVGRAPII Ift-lbi Material Unirradiated Capsule U Capsule W Capsule X Capsule Z Intermediate Shell Forging 05 - 132 107 98 106 101 Tangential Orientation Intermediate Shell Forging 05 - 62 72 60 66 62 Axial Orientation Weld Metal (Heat # 895075) 131 143 112 134 145 IIAZ Material 89(a) 79 77 8 2 (b) 79 Notes:

a. Re-tabulated CVN data using CVGRAPH v5.0.2 in the Capsule X analysis (WCAP-16245-NP [C-2]) utilized an USE value for the unirradiated HAZ of 89 ft-lbs, which incorporates a 91% shear test value from the unirradiated test data in the USE determination.
b. The USE value tabulated for the Capsule X HAZ in WCAP-16245-NP is 80 fl-lbs. If all Charpy V-Notch data with greater than or equal to 95% shear from Table 5-4 of WCAP-16245-NP were used in the determination of USE, the value should be 82 ft-lb instead of 80 fl-lb. Specimen WVH48 was not incorporated in the previous calculation; however, HAZ materials are not utilized in the evaluation of surveillance data credibility or in the projection of USE decreases for vessel materials; therefore, this change has no impact on reactor vessel integrity analyses previously performed for Watts Bar Unit 1.

CVGRAPH v5.0.2 plots of all surveillance data are provided in this appendix, on the pages following the reference list.

WCAP-16760-NP November 2007 Revision 0

C-2 C.1 REFERENCES C-1 ASTM E 185-82, StandardPracticefor ConductingSurveillance Testsfor Light- Water Cooled NuclearPower Reactor Vessels.

C-2 WCAP-16245-NP, Revision 0, "Analysis of Capsule X from the Tennessee Valley Authority, Watts Bar Unit I Reactor Vessel Radiation Surveillance Program," T. J. Laubbam, April 2004.

WCAP-16760-NP November 2007 Revision 0

C-3 UNIRRADIATED INTERMEDIATE SHELL 05 (TANGENTIAL)

CVGRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 07112/2007 03:24 PM Page 1 Coefficients orCurve j A = 67.1 B = 64.9 C = 109.84 TO = 14.2 1) = 0.00E+00 Equntion is A + B

  • ITardh(CT-ToY(C+DT))l Upper Shelf Energy= 132.0(rixcd) Lower Shelf Encrgy=2.2(Fixed)

Temp@30 ft.lbs=-57.1 Deg F Temp@50 ft-lbs=-15.4 DegF Plant: WATTS DAR I Material; SA508C1.2 Ifeat: 527536 Orienwtinn: LT' Capsule: UNIRR Flueuce: n/cm^2 300

__ _ __ __ __ I 250 1

.~~~1~~____1~~~ -J S200 I 150 ,-a I,U w Io -

~100 4--.

U 1I *.---.-.---- I I 0 50 "

0L - F

-300 -2' O0 -100 0 100 200 300 400 500 600 Temperature In Deg F Charpy V-Notch Data Tempea*fatu lnput C\N Cornpu:edCVN

-125.00 1.50 11.74 - 10. 24

.60.00 41.00 28.90 12. to

-60.00 17,00 28.90 -11.90

- 20. 00 46.00 47.52 - I.52

-20. 00 61.50 47. 52 13.98

.00 46.00 58.75 - 12.75

15. 00 71.00 67,57 3.43
32. 00 73. 00 77,52 -4.52 32.00 96.00 77. 52 16. 48 WCAP-16760-NiP November 2007 Revision 0

C-4 UNIRRADIATED INTERMEDIATE SHELL 05 (TANGENTIAL)

Page 2 Plant: WATIS BAR I Ma:erial: SASOSCL2 Het: 527536 Orientation: LT Capsule: UINIRR Fluence: n/cm'12 Charpy V-Notch Data Tcmniturc InputCVN Computed CVN Differcr.tiaf 68.00 93. 0 96.57 -3.07

68. 00 90. 00 96. 57 -6.57
95. 00 120.00 107.76 12.24
95. 00 79. DO 107. 76 -2S. 76 92.00 107. 76 -15.76
95. 00 125. 00 123. 00 116.76 fl. 24 125. 00 144.00 116.76 27.24 210. D0 130. 00 128. 43 1.57 210. 00 129. 00 t2P. 43 .57 Correlition Coeffici" = .941 WLAP-16760/-NP1 November 2007 Revision 0

C-5 CAPSULE U INTERMEDIATE SHELL 05 (TANGENTIAL)

CVYGAPII 5.0.2 H)pjwbolic Tangent Curve Printed on 07/12/2007 03:24 PM Page 1 Coefficients of Curve 2 A = 54.6 B = 52.4 C = 107.38 TO = 95.83 1) = 0.OOE+00 Equation is A + B * [Tanh((T.To)t(C+Dr))]

Uppcr Shelf Energy=- 07.0(Fixed L.ower Shelf Encrgy=2.2(Fixcd)

Tcmp@30 ft-lbs=41.2 Deg F Temp@S0 ft-lbs=86.4 Deg F Plant: WAI'TS BAR I Material: SASOSCL2 Ifewt: 527536 Orier.tation: LT Capsule: U Fluence: n/cmA2 300 250 200 0

150 LU 100 5o o -O

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F Charpy V-Notch Data Tempcratujw Input C*'vN Computed CVN

- 105.00 8.00 4.63 3. 37 9.00 12. 19 -33 19

-25.00

.00 25.00 17. 26 7.74 10.00 32. 00 19. 83 12. 17 25.00 28.00 24.31 3.69

50. 00 47.00 33.50 13.50
70. 00 38. 00 42.23 -4. 23 13.00 44.56 -31 56
75. 00 100. 00 60.00 5 (. (14 3. 36 WCAIP-1 6760-NP November 2007 Revision 0

C-6 CAPSULE U INTERMEDIATE SHELL 05 (TANGENTIAL)

Page 2 Plant: WATTS BAR I Material: SA503CL2 Heat: 527536 Orientation: LT Capsulce U Fluence: rdcm^2 Charpy V-Notch Data Tcmperaure Input CVN Computcd CVN Diftential 68.50 -2.50 125.00 66.00 6. 00 ISO. 00 85.00 79.00

7. 17 200.00 101.00 93.83 9.62 250.00 111.00 101.38 -2. 71 300. 00 102.00 104.71 106,0g 5.91 350. 00 112.00 Correl3tion Cuefficient = .959 WCAP-1 6760-NP November 2007 Revision 0

C-7 CAPSULE W INTERMEDIATE SHELL 05 (TANGENTIAL)

CVGRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 07/12/2007 03:24 PM Page 1 Coefficients of Curve 3 A = 50.1 B = 47.9 C = 91.41 TO = 95.16 D = 0.00E+00 Equation Is A + B *ITar~h(rT-'ro):(C'+DT3)I Upper ShelfEnergy--98.0(Fixed) Lower Shelf Energy=2.2(Fixed)

Ternp@30 ft.lbs=54.3 Deg 1 Ternmp@50 ft-Itis=95.0 Deg F Plant: WATTS BAR I Material: SAS0CL2 Il ea:: 527536 Orienta.tion: LT Capsule: W Fluence: n/cn12 Juu 250 200 0

150 C5

~100 50 0 4-=

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F Charpy A'-Notch Data Tem'platurc Ihput CNN Computcd CVN Diff1rentia!

40. 00 15.00 24, 26 -9.26 50.00 22.00 28. 19 -6. 19
60. 00 37.50 32. 53 4.97 60.00 49.50 32. 53 16.97 70.00 39.50 37. 24 2.26 100.00 47. 50 52.63 5. 13 125. 00 57. 00 65.20 -8. 20 140. 00 70. 50 71.88 -1.38 150.00 76.50 75. 82 .68 WCSAP-I 6-/O-NPl November 2007 Revision 0

C-8 CAPSULE AV INTERMEDIATE SHELL 05 (TANGENTIAL)

Page 2 Plant: WATTS BAR 1 Material: SA5S08CL2 Heat: 527536 Orientation: LT Capsule: W Fluence: nfcmA2 Charpy V-Notch Data Input CVN Computed CVN Differential.

200.00 97. 00 H9. 22 7. 78 250.00 102.50 94. 87 7.63 350.00 93.50 97. 64 -4.14 Cornlation Coefficient -*.964 WCAP-16760-NP November 2007 Revision 0

C-9 CAPSULE X INTERMEDIATE SHELL 05 (TANGENTIAL)

CVGRAPH 5.0.21 lyperbolic Tangent Curve Printed on 07112/2007 03:25 IM Page 1 Coefficients or Curve 4 A = 54.1 B = 51.9 C = 117.15 TO = 96A2 D = 0.OOE+Q0 Equation is A 4-B [Tanh((T-Tob)(C+DT))]

Upper Shelf Erergy=106.0(Fixed) Lower Shelf l nergy=2.2(Pixed)

'remp@30 ft-lbs=37.6 Deg F Tcrmp050 fi-lbs=87.2 Deg F Plant: WATTS BAR I Material: SA5OSCL. Heat: 5275-'6 Orien:ation: LT Capsule: X Fluenec: u1czW2 300 250

$ 200o0 150 w

z 100 so 0 !---

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F Charpy V,-Notch Data Teiperaturc Input CVN Computed CVN Dir*rcltal

- 75. 00 10.00 7. 48 2.52

-50. 00 9.00 10.08 -2.08

  • 25.00 13. 80 2.20

.00 25.00 1i. 98 6.02

25. 00 22.00 25. 87 -3.87
40. 00 29. 00 30. 87 - 1. 87
50. 00 42. 00 34. 55 7.45
75. 00 31,00 44..71 - 13.71 100.00 63.00 55. 69 7.31 WCAP-16760-NP November 2007 Revision 0

C-10 CAPSULE X INTERMEDULTE SHELL 05 (TANGENTIAL)

Page 2 Plant: WATTS BAR 1 Materia: SA50SCL2 Heat: 527536 Orientation: LT Capsule: X Fluencc: ircm12 Charpy V-Notch Data Tcempraturc Input CVN Computed CVN Differe*niat 125.00 64.00 66.52 -2.52 160. 00 75.00 79. 79 -4.79 IE0, 00 79.00 85.91 -6.91 225.00 107.00 95. 60 1 1.40 250. 00 101.00 98.97 2.03 250.00 111.00 98. 97 12.03 Corrcatiko Coctficient = .979 WLAI'-IO/OU-.N1" November 2007 Revision 0

C-II CAPSULE Z INTERMEDIATE SHELL 05 (TANGENTIAL)

CVGRAPI[ 5.0.2 Hyperbolic Tangent Curve Printed on 07112/2007 03:25 PM Page I Coefficients ofCurve 5 A = 51.6 B = 49.4 C = 115.79 TO = 141.59 D = 0.00E-400 Equation is A + B

  • ITanh((T.Toy(C+DT))I Upper Shelf Energy=101..0(Fixcd) Lower Shelf En'rgy=2.2(Fixod)

Temp@30 ft-lbs=87A Deg F Temp@50 ft.lbs-137.9 Deg F Plant: WATTS BAR 1 Matcrial: SA508C.2 Heat: 527536 Orientation: LT Capsule: Z Fluence: rncmA2 300 250 S200 0

0 ILl z

100 50 0.l-

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F Charpy V-Notch Data Temperature 1h1put CNZ Cmrputerd CVN D ierotial

- 100.00 6. 00 3.70 2.30

13. 84 1.16 25.00 15.00
60. 0o 21.00 21 . 60 60
75. 00 27.00 25.96 1. 04 80.00 25.00 27.55 -2. 55
85. 00 16.00 29. 21 -13.21 95.00 32. 00 32.73 -. 73 100.00 45. 00 34.58 10. 42 125. 00 53.00 44.57 8.43 WCAP- 16760-NP November 2007 Revision 0

C-12 CAPSULE Z INTERMEDIATE SHELL 05 (TANGENTIAL)

Page 2 Plant: WAITS BAR 1 Material: SA508CL2 Hcat: 527536 Orientation: L' Capsule: Z Flucnce: nrcm"2 Charpy V-Notch Data Ipiut CVN Co'npucd CON Differential Temperturc 150.00 60.00 55.1I 4.82 175.00 56.00 65.47 .9.47 200. 00 70.00 74.60 .4.60 300. 00 104.00 94.99 9.01 350. 00 101.00 98.37 2.63 375.00 07.00 99.2S -2.2S Cofclation Cocfficient .980 AIM A D IerA Cr

"-v I.[%V -INL" November 2007 Revision 0

C- 13 UNIRRADIATED INTERMEDIATE SI IELL 05 (TANGENTIAL)

CVGRAPII 5.0.2 Hyperbolic Tangent Curve Printed on 07/12120(X7 03:53 PM Page 1 Coffcicnts of Curve I A = 40.26 t = 40.26 C = 87.82 TO = 2.05 D = 0.00E+00 Equation is A + B * 'Ianh((T-oT(C, DT)))

Upp*r Shelf L.E.=805 Lowr Shclf L.E.=.0(Fixed)

Temp.@LE. 35 mils=-9.4 Deg F Plmai: WATIS BAR I Matctial: SA508CL2 Ilect: 527536 Orientation: IT. Capsule: rNIRR Fluence: rlcmkr2 200 150

  • .1o

,li so 50 o04-

-300 0 300 600 Temperature in Deg F Charpy V-Notch Data Tcwjpicrlutu Input I.E. Computed L.E flifferential

-125.00 .00 4.23 -4. 23

-60.00 25.00 15. 76 9. 24

-60.00 4.00 15. 76 II .76

-20.00 28.00 30. 35 - 2.35

-20.00 40.00 30.35 9.65

,00 36.00 39.31 -3. 31 15.00 4A. 00 46. 15 -2. 15 32.00 50.00 53.47 -3.47 32.00 61.00 53.47 7. 53 WCAI'-10760-NI' November 2007 Revision 0

C-14 UNIRRADIATED INTERMEDIATE SHELL 05 (TANGENTIAL)

Page 2 Plant: WATTS BAR 1 Matcrial: SA508CL2 Heat; 527536 Orientation: LT Capsule: UNIRR Fluence: nlcm'2 Charpy V-Notch Data Tcmpcn*r.tre input L.E. Computcd LI'. Differential

68. 00 65. 00 65.85 85
68. 00 66. 00 65. 85 15
95. 00 78.00 71.86 6. 14
95. 00 54.00 71.86 -17.t6 95.00 69. 00 71. 86 .2. b6 125. 00 o0.00 75. 89 4. 1 1 125. 00 88.00 75. 89 12. 11

-2.81 210. 00 77.00 79. 81

-SI O. 00 79. 00 79. 1 Correlation Coefficicrt -. 959 WCAP-16760-NP November 2007 Revision 0

C-15 CAPSULE U INTE RMEDIATE SHELL 05 (TANG ENTIAL)

CVGRAP11 5.0.2 lyperbolic Tangent Curve Prnted on 07/12/2007 03:53 PM Page 1 Coefficients of Curve 2 A = 38.44 11 = 38.44 C = 103,11 TO = 100.22 D = O.00E+O0 Equation is A + B

  • MTh((T-To)/(C-tDT))J Upper Shelf L.E.=76.9 Lower Shelf L.E.=.O(Fixed)

T'ernpcL.E. 35 milys91.0 Deg F Plant: WATTS BAR I Material: SASORCL2 I1at: 527536 Orientation: LT1 Capsule: 11 Fluence: n!Cm^2 200 150

_2 E

0-E.1o0 50 0 -*-

-300 o 300 600 Temperature In DMg F Charpy V-Notch Data Tempcrature Input L.F- Cor.putcdLE. Differential

,105.00 2.00 1.41 59

-25.00 4.00 6. 23 -2.23

.00 15.00 9.63 5. 37 10.00 17.00 11.36 5.62 25.00 19.00 14.50 4.50 50.00 29.00 21.07 7.93 70.00 25.00 27.49 -2.49 75.00 6.00 29.22 -23. 22 100.00 44. 00 38.36 5.64 WCAP1-1b6760-NIP November 2007 Revision 0

C-16 CAPSULE U INTERMEDIATE SHELL 05 (TANGENTIAL)

Page 2 Plant: WATI'S BAR I Material: SA508CL2 Heat: 527536 Orientation: LT Capsule: U Flucnce: nMICA2 Charpy V-Notch Data Input I.E. Computed L.E. DiffcnMial Temperaitur 47.50 1.50 125. 00 49. 00 1.32

57. 00 55.68

[50. 00 67. 18 4. 82 200.0 72. 00 3. 11 76.00 72. 89 250. 00 75.31 -2.31 300. 00 73.00

76. 28 .4.28 350. 00 72.00 Corrclafinn Cocfricient = .962 WCAP-16760-NP November 2007 Revision 0

C-17 CAPSULE W INTERMEDIATE SHELL 05 (TANGENTIAL)

CVGRAPH 5.0.2 Hlyperbolic Tangent Curve Printed on 07/12/2007 03:53 PM Page I Coefficients of Curve 3 A = 41.32 B = 41.32 C = 99.72 TO = 99.66 D = O.OOFO0I Equation is A 11 * [Tanh((T-'roY(C.+DTJ)I Upper Shelf L.E.=82.6 Lower Shelf L.1L=.0(Fixed)

Temp.@Li.F 35 mils--84.3 Deg F Plant; WATTS BAR 1 Materiaht SA508CL2 Heat: 527536 Orientation: LT Capsule: W Fluence: u/cmA2 200 150

.2 a10D

,o r ,4 50 i 0 03 0

-300 0 300 600 Temperature in Deg F Charpy V-Notch Data Tcmperature Input I-E. Compuied I..E. Differentiit

40. 00 13. 00 19. 18 -6. 18 50.00 17. 00 22.29 -5. 29
60. 00 30. 00 25.70 4.30
60. 00 37. 00 25.70 It. 30
70. 00 32. 00 29. 38 2.62 100.00 36. 00 A41.46 -5.46 125.00 4 .00 51.60 -3.f0 140.00 53.00 57. 18 -4. 18 150.00 65. 00 60.58 4. 42 November 2007

~V(..AI'-1 67(A)-Nt' WCAP-16760-NP November 2007 Revision 0

C-18 CAPSULE W INTERMEDIATE SHELL 05 (TANGENTIAL)

Pag~e 2 Plartc: WATTS BAR I Material: SA508CL2 I Iat: 527536 Oricntation: LT Cnipsule: W I:Iluncc: n/cmA2 Charpy V-Notch Data Temper3Iure Inpia L.F- Computced LE. Di ffi-"vcntia!

200. 00 76.00 72. 90 3. 10 250. 00 82.00 79. 78 3.22 350. 00 78.00 82. 11 -4.11 Corrclation Coefficient = .972 Novcmbcr 2007

~VLAk'-1b/bU-Ni' WCAIP-I b70-NPl November 2007 Revision 0

C-19 CAPSULE X INTERMEDIATE SHELL 05 (TANGENTIAL)

CVGRAPII 5.0.2 Hyperbolic Tangent Curve Printed on 07/12/2007 03:53 PM Page I Coefficients ofCurvc 4 A = 41.57 B = 41.57 C = 138.42 Tr = 128-58 D = O.OOE+O0 Equation is A + B * [Tanh((T-ToY(C.*DT))1 Uppcr Shelf L.E.=83. 1 Lower Shelf I-E.=.0(Fixcd) e'¢m?.@LE. 35 mils= 106.6 Deg F Plant: WATTS BAR I Materia: SASO8CLZ2 lleat: 527536 Orientation: LIT Capsule: X Fluence: n/czru2 200 150 I 2 t.

Ii 12 9

3 rSo Ju

-a 9.

A,.-

A, I.

0 9.-

-300 0 300 600 Temperature in Deg F Charpy V-Notch Data Tcrnpeturur Input L.E. Computed LE. Differential

-75.00 4.00 4. 17 - .17

-50. 00 00 5.85 -5. 5 S2,5. t)0 14. 00 8.135 2.00o o 13.00 11.22 1.78

25. 00 11.00 15.21 -4.21 16.00 18.09 -2.09
40. 00
50. 00 25.00 20.22 4.7R
75. 00 19.00 26.24 -7.24 100. 00 40.00 33.10 6.90 November 2007 WCAP-16760-NP WCAP- 16760-N P November 2007 Revision 0

C-20 CAPSULE X INTERMEDIATE SHELL 05 (TANGENTIAL)

Page 2 Plant: WATTS BAR I Matcriah; SA50SCL2 Iliet: 527536 Oricn:ation. LT Capsulc: X Fluence: nlcm 12 Charpy V-Notch Data TeMNeraturc tnput LE. Coirputed LX. Difrerential 125. 00 44. 00 A0. 49 3.51 160.00 48.00 50. 84 -2.84 180. 0(1 5 1. 00 56.33 -5. 33 225. 00 72. 00 66. 60 5. 40 250. 00 69. 00 70. 87 -1. 87 250. 00 71.00 70. 87 .13 Correlation Codfticient =.983 November 2007 16760-NPP WCAP- 16760-N November 2007 Revision 0

C-21 CAPSULE Z INTERMEDIATE SHELL 05 (TANGENTIAL)

CVGRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 07/12/2007 03:54 PM Page 1 Coefficients of Curve 5 A = 38.97 B = 38.97 C = 138.47 TO = 13534 D = O.OOE+00 Eq=ation is A + 13* ITarh((T-Toy(C4DT))j Upper Shelf L.1.=77.9 Lower Shelf L.E.=.0(Fixed)

Temnp.@LE. 35 inits=12i.2 Deg F PlanLt WATIS BAR 1 Ma,-rial: SASO58C2 lient: 527536 Orientation: LT Capsule: Z Fluencc: rJcmA2 200 150 C

U, ,, I

  • E.100 3 50 I

0

-300 0 300 600 Temperature In Deg F Charpy V-Notch Data rcmperatmrc Input LE. Corapuied L.E. Differential

- 100. 00 9.00 2. 52 6.48 25.00 15.00 13. 16 1.84

60. 00 15 00 19. 64 -4.64
75. 00 23. 00 22. 99 .01
80. 00 22 .00 24. 17 -2. 17
85. 00 17. 00 25.39 - S.39 95.00 30.00 27.93 2.07 100.00 36. 00 29. 23 6. 77 125. 00 41. 00 36. 06 4.94 November 2007 WLAI'- 1b760-N I' WCSAP'-16760-N P November 2007 Revision 0

C-22 CAPSULE Z INTERMEDIATE SttELL 05 (TANGENTIAL)

Page 2 Plant: WATIS BAR I Material: SA50SCL2 Ilcat: 527536 Oricntation: LT Capsule: Z Fluence: n/em^2 Charpy V-Notch Data Temperaiure IniutLE. Compued L.E. DiftrcntiAl 150. 00 44. 00 43.06 .92 175. 00 50. 00 49. 83 .17 200. 00 50.00 55.9.5 -5,95 5.618 300. 00 77, 00 71,32 350.00 76.00 74, 56 1.42 375. 00 71. 00 75. 56 -4. 56 Cocaclarion Cocflicint=.979 Novembcr 2007 WCAP-16760-NP WCA P- 16760 -N P November 2007 Revision 0

C-23 UNIRRADIATED INTEILMEDIATE SHELL 05 (TANGENTIAL)

CVGRAPII 5.0.2 Hyperbolic Tangent Curve Printed on 07/12/2007 03142 PM Page I Cmefficiens of Curvc I A = 50. B = 50. C = 94.86 TO = 34.78 D = O.00E+00 Fquation is A + B *ITanh(fl-To)(C0D-T};)]

Tcniperaure at 50% Shear - 34.8 Pl1ane WVATIS BAR I Material: SA508CL2 Mrat: 527536 Orientation: LT Capsule: UNIRR Fluence: nkm"A2 125 100 I-C, 75 U,

U I-V 50 C-25 o0 -

500 600

-300 -200 -100 0 100 200 300 400 Temperature In Deg F Charpy V-Notch I)ata Tcnpcrawrc Input P-rcent Shear Coriput,,d Pe'cent Shear Differential

-125.00 .00 3.33 -3.33

-60.00 37.00 11.94 25.06 9.00 11.94 -2.94

- 60. 00 20.00 23.96 -3.96

-20.00 25.00 23. 96 1.04

- 20.00 - 18.45

,00 14.00 32. 45 15.00 's. 00 39.72 -1. 72 32.00 56.00 48.53 7. 47 59.00 4F. 53 10. 47 32.00 A fl

  • r-.,r. ~yn fl~fl VY CAPl-1 6 / 6U-IN P" November 2007 Revision 0

C-24 UNIRRADIATED INTERMEDIATE SHELL 05 (TANGENTIAL)

Page 2 Plant: WATITS BAR I Material: SA5S08CL2 Heat: 527536 Orientation: LT Capsule: UNIRR Pluence: nrcm^A2 Charpy V-Notch Data Tcirpctatjre Input Percert She2r Computed Percent Shear Difrercillia£ 68.00 61. 00 66. 83 66.00 66. 83 83 6B. 00 77.00 78. 07 1. 07

95. 00
95. 00 70.00 78, 07 8. 07 95, 00 68.00 7E. 07 - 10.07 100. 00 87.01 12.99 125. on 100. 00 87.01 12.99 125.00 210.00 100.00 97. 57 2.43 100.00 97. 57 2.43 2!0.00 Coireltion Coeffieicn = .953 WCAP'-16760-NP' November 2007 Revision 0

C-25 CAPSULE U INTERMEDIATE SHELL 05 (TANGENTIAL)

CVGRAPH 5.0.2 H)yprbolic Tangent Curve Printed on 07112/2007 03:43 PM Page I Coefficients of Curve 2 A = 50. B = 50. C = 63.23 TO = 126.56 D = 0.00E+00 TEquation is A + B

  • ITanh((T-To)/(C+D'r))]

Teinperaturc aE 50% Shear = 126.6 Plant: WATTS lIAR I Material: SA50CI..2 lieat: 527536 Orientation: LT Crpsulc: U Fluccc: I/c^nA2 125 100 a-0 75 V

Co V

2 so 0.

25 0 --

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Dog F Charpy V-Notch Data Tempt-atuurc Input P'eccrct Shear xo~mputed Pcrcent Shear Differential

- 105.00 2.00 07 1. 93

-25. 00 5.00 4.1I

.00 10.00 1.79 t.21 10.00 15.00 2.44 12.56 25.00 15.00 3. 87 11.13 50.00 20. 00 8. 15 11. 85 70.00 20.00 14.32 5.68 5.00 16.37 -I1.37 75.00 -5.15 100.00 25. 00 30. 15 WCt.AP1- 16760-NP[ November 2007 Revision 0

C-26 CAPSULE U INTERMEDIATE SHELL 05 (TANGENTIAL)

Page 2 Plant: WAITS BAR I Ma:erial: SA508CL2 H~eat: 527536 Oricntation: LT Capsule: U Flucnce: nkcmA2 Charpy V-Notch Data Input 1ercent Sheat Compuvtd Prcent Shea Differential Temperaturc

40. 00 49. 77 -S.77 125. 00 7. 27 150.00 75. 00 67. 73 100.00 91. 0$ 8. 92 200.00 10o. 00 98. 02 1.98 250. 00 .4A 300. 00 100.00 99, 59

]CO, 00 99.91 .09 350. 00 Corrdxkmiu CoLxficicni = .984 WCAI'- 1 /OU-NI" November 2007 Revision 0

C-27 CAPSULE W INTERMEDIATE SHELL 05 (TANGENTIAL)

CVGRAPH 5.0.2 l1ypcrbolic Tangent Curve Printed on 0711212007 03:43 PM Page I Coefficients of Curve 3 A = 50. B = 5O. C = 75.89 TO = 102.25 D = 0.00E+00 Equation is A + 134 [Tanh((T'.To)J(C-IrT))]

Tcmpemirture at50%Shear = 102.3 Plant: WAITS BAR I Material: SA508C0.2 -icat: 527536 Orientation: LT Capsule: W Flucncc: n/c.'nV2 125 100 0, 75 o0 50 25 o-30

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Deg F Charpy V-Notch Data Input Perccnt Shear Cornpxed Percent Shear Differential Ternparu~ure 40.00 10. 00 16. 24 -6. 24

20. 15 -. 15
50. OD 20. 00
60. 00 25. 00 24.73 27 60.00 40. 00 24,73 15.27
70. 00 30. 00 29,95 05 100.00 40. 00 413.SZ -8.52
60. 00 64.56 -4.56 125.00 140.00 70.00 73.01 -3. 01 150.00 85.00 77, 88 7. 12 WCSAP-16760-NP November 2007 Revision 0

C-28 CAPSULE W INTERMEDIATE SHELL 05 (TANGENTIAL)

Page 2 Plant: WATrS BAR I Material: SA50SCL2 fleat: 527536 Orientation: LT Capsule: W Fluence: n/cm.'2 Charpy V-Notch Data Input Percent Shcar Cornputcd PercenttShear Differential Termprature 100.00 92.93 7.07 200. 00 2. 00 250. 00 100.00 98.00 100.00 99.85 .15 350. 00 Correlation Coefficient = M91I 10 IOU-iNr November 2007 Revision 0

C-29 CAPSULE X INTERMEDIATE SHELL 05 (TANGENTIAL)

CVGILAPi 5.0.2 Hyperbolic Tangent Curve Printed on 07/112=007 03:43 PM Page I Coefficients of Cun'e 4 A =S0. B = 50. C = 78A TO = 116.58 D = 0.00E+00 Equation is A + B [Tanh((T-Toy(C+DT))]

j Temperuture at 50% Shea. = 116.6 Plant: WAITS BAR I Material: SA5S08CL2 Heat: 527536 Orientation: LT Capsule: X Fluence: n/m^2 125 100 I-to 75 V

C, C, 50 25 304-

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Deg F Charpy V-Notch Data Tcmpcrai we Prcet0 She0r Inp2a0 Computed Prcent Shear Diflerential

.75 1.25

-75.00 2.00 1.41 .59

- 50.00 2.00 2.63 2.37

- 25.00 5.00 4.86 14

,00 50.00 1.13 25,00 10.00 8. 82

40. 00 12.42 -2,42 10.00 4.53 50.00 20.00 15.47 25.72 -5.72 75.00 20. 00 .42 100.00 40.O00 39. 5t 1XIOAD lr-7jcAkm VV *.,l$1 " l U / UU-I*II- November 2007 Revision 0

C-30 CAPSULE X INTERMEDIATE SHELL 05 (TANGENTIAL)

Page 2 Plant: WATTS BAR I Material: SA50SCL2 fHear: 527536 Orientation: LT Capsule: X Fluence: rJcm"2 Charpy V-Notch Data Input Percent Shear CAinputed Pcrccn¢ Shear Diffcrential Temnpcrattzre 60t 00 55. 35 4.65 125. 00 75.00 75. 17 -. 17 160. 00 9.45 180.00 75.00 93. 45 O0. 00 94, 08 5.92 225.00 3.22 250. 00 100.00 96.78 100.00 96.78 3. 22 250.00 Correlation CoeQficnt w.995 WC'AF 1ADi 'j November 2007 vv *.,z I., -,I u I U't,./-LNI.

Revision 0

C-31 CAPSULE Z INTERMEDIATE SHELL 05 (TANGENTIAL)

CVGRAPH 5.0.2 hIytbolic Tar.gent Curve Printed on 07/12/2007 03:43 PM Page I Coefficients of Curve 5 A = 50. II = 5o. C = 103.54 TO = 131.16 D = 0.001400 Equation is A - B

  • ITznh((T-ToY(C+DI'))I Temperature at 50% Shear = 131.2 Plant WAITS BAR I Material: SAS08CL2 Hteat: 527536 Orientation: LT Capsule:Z Fluercc: n/cm^2 125 100 L.

0 75 (0

V 2V so 0.

25 o -

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F Charpy V-Notch Data Temperature Input Pe:nt0Shear Computed Percent Shear DitferentiAi

.100.00 .00 1. 14 -1. 14 25.00 2.00 11. 40 -9.40 ID. 00 20. 19 - 10. 19 60,00

75. 00 25. 00 25.26 -. 726
27. 13 - 7. 13 o0.00 20.00 40.00 29. 05 10.92 85.00 95.00 40.00 33.22 6. 78 45.00 35.39 9.61 100.00 -2. 03 125.00 45.00 47. 03 WCAII-16760-NP November 2007 Revision 0

C-32 r-3 CAPSULE Z INTERMEDIATE SHELL 05 (TANGENTIAL)

Page 2 Plant: WAITS BAR I Material: SA50SCL2 ltcat: 527536 Orientation: I.T Capsule: Z Fluence: ncma2 Charpy ST-Notch Data I cnicrature Inplat Pecer.t Shear Computed Percent She~r Dif'ferential 150. 00 65. 00 59.00 6.00 175.00 55. 00 69.99 - 14. 99 200. 00 80.00 79. 08 . 92 300. 00 100. DO 96. 31 3. 69 350. 00 100 .00 98.56 1.44 375. 00 100, 00 99.11 . 89

(.rrcizxion Coefficient - .977 W tAI'-16760-N1' November 2007 Revision 0

C-33 UNIRRADIATED INTERMEDIATE SHELL 05 (AXIAL)

CVGRAPH 5.0.2 Hylvrboxilic Tan ent Curve Printed on 07/1312007 08:35 AM Page 1 Coefficients or Curve I A = 32.1 11=29.9 C = 90.57 TO = 51.57 D = 0.OOE4.0 Equation is A + l " [I'unh((T-To/(C+DT))]

Upper Shelf Energy-=62.0(Fixed) Lower Shelf Energy=-2.2(Fixed)

Temp#c30 ft-lbs=45.2 Deg F "rcnp@50 f-1-l=1 14.2 Deg F Plant: WATTS BAR I Mateuiahl SASOCL.2 Heat: 527536 Orienlation: Tn Capsule: UNIRR Fluence: n/CMA2

_____77__

300 250 200 T______

150 LU z8100 ______ ______ ______ ______ ______

Rn 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F Charpy V-Notch Data Tenpcmarz lnput CVN Computed CVN Differential

.100.00 5.50 4. 23 1.27

.100.00 5.00 4.23 ,77

2. 27

-100.00 6.50 4. 23

- 35. 00 13.00 9. 90 3. 10

.00 17.00 16.70 30

.00 17.00 16.70 .30

27. 65 -315 38.00 24.C0 38.00 30.00 27. 65 2. 35 38.00 24.00 27. 65 3. 65 WCAP-16760-NP November 2007 Revision 0

C-34 UNIRRADIATED INTERMEDIATE SHELL 05 (AXIAL)

Page 2 Plant: WATI'S BAR I Material: SA50SCL2 Heat: 527536 Orientation: TL Copqule: UNIRR Fluence: n/cm^2 Charpy V-Notch Data Temperawure Inpig CVN Compu'cd CVN Difurentiat

60. 00 41.00 34. 89 6.12
34. 88 -I.S
60. 00 33. 00 34.00 39. 67 -5. 67 75.00 125.00 57.00 52. 13 4.87 210.00 62.00 60. 24 1.76 210.00 62. 00 60. 24 1. 76 210.00 60. 00 60.24 -. 24 300.00 60.00 61.75 - 1. 75 300.00 64.00 61.75 2.25 Correlation Cofficient =,991 November 2007 WCA P-I 6760-NP WCAP-! November 2007 Revision 0

C-35 CAPSULE U INTERMEDIATE SHELL 05 (AXIAL)

CVGRAPH 5.0.2 1lyperbolic Tangcnt Curve Printed on 07/13/2007 08:35 AM Page I Coefficients or Curve 2 A = 37.1 11 = 34.9 C= 125.83 TO = 99.81 D = 0.00E+00 Equation is A + B [(Tanh((T-Toy(C+DT}Vj Upper Shelf F'ncrgff--72.0(Tixed) Lower Shelf Energy=2.2(Fixed)

Temp@30 ft-lbs=73.9 Dog F Temp@50 ft-lbs=148.7 Deg F Plant: WATTS BAR I Material: SA508CL2 Ileat: 527536 Orientanion: T1. Ciapsule: U 1luence: nem^A2 300 250 200 0

U.,

50 o0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Deg F Charpy V-Notch Data 7emperature InputCzC'N Cimputed MN Tifferential

4. 00 5. 00 - 1. 00

- IO0. 00 11. 25

-20. 00 S. 00 - 3. 25

10. 00 9.00 15.71 -6. 71
50. 00 23. 00 23. 96 -. 96
75. 00 33.00 30. 31 2.69
75. 00 56, 00 30. 31 25. 69 100. 00 30. 00 37. 15 .7.15 125. 00 38. 00 43. 99 -5.99 150. 00 38. 00 50.33 -12. 33 WCAP-16760-NP November 2007 Revision 0

C-36 CAPSULE U INTERMEDIATE ShIELL 05 (AXIAL)

Pae 2 Plant: WATTS BAR I Material: SA5O8CL2 Hcat: 527536 Orientation: 1.1 Capsule: U Fluence: rJcm'2 Charpy V-Notch Data Tcmpcrature lnput CVN Computed CVN Differential 47.00 55.78 -gS. 7g 175.00 225.00 80.00 63. 60 16. 40 250.00 71. 00 66. 1 4. 87 300.00 73.00 69,22 3.78 350.00 76.00 70.72 5.28 400.00 61. 00 71.41 -10.41 Corrd1.usioa C ticicnt = .917 Novernbcr 2007 WCAP- 16760-NP November 2007 Revision 0

C-37 CAPSULE W INTERMEDIATE SHELL 05 (AXIAL)

CVGRAPI1 5.0.2 H)Terbolic Tangcnt Curve Printed on 07/1312007 05:35 AM Page 1 Coefficients of Curve 3 A =31.1 B = 28.9 C = 99.99 TO =127.92 D = (.OOE+00 Ecquation is A -- B Iawih(tT.Toy(CAIY1))]

Upper Shelf "Energy=60.0(Fixcd) lcwff Shelf Energy=2.2(Fixed)

Trmp@30 fltbs=124.2 Deg F Temp@50 1I.Ibs=206.2 Deg F Plant: WATTS BAR I Material; SA)508CI2 I eat: 527536 Orientation: TL C-pMwle: W FIence: n/cm^2 300 250 200 14-L 150 Lu z

> 100 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Deg F Charpy V-Notch Data Tmpcmiure Input CVN COmputed CVN Differential 40.00 J0. 00 10. 69 -. 69 70.00 Is.50 16.01 2.49 20.50 I1(I, 01 4.49

70. 00 10o. 00 23.50 23. 23 .27 125. 00 30.30 30. 26 .24 150.00 29,50 37. 38 -7.88 165.00 39.00 41. 35 -2.35 175.00 39.50 4.3. 78 -4.28 185.00 48. 50 46.01 2.49 WCAP-1 6760-NP November 2007 Revision 0

C-38 CAPSULE W INTERMEDIATE SHELL 05 (AXIAL)

Page 2 Plant: WATTS BAR I Material: SA508CL2 Heat: 527536 Orientation: TL Capsule: W Fluence: rJcmA2 Charpy V-Notch D)a(a Tempe'r.rar Input CVN Computed CVN Differen~inl 200.00 54. 50 48. 95 5.55s 250.00 63. 50 55.37 S. 13 350. 00 62. 50 59. "3 3. 17 Correlation Cozfficicnt=9 WCAP'- 10/6-NPl November 2007 Revision 0

C-39 CAPSULE X INTERM EDIATE SIHELL 05 (AXIAL)

CVGRAPII 5.0.2 Hyperbolic Tangent Curve Printed on 07/13/2-007 08,35 AM Page 1 Coefficienis of Curve 4 A =34.1 1i-31.9C=84.5 TO= 172. D=0.0OE+00 Equation is A -t 13* rIanh(CT-ToY(CDT)]

Upper Shelf Encrgy=66,0(Fixed) Lower Shelf Eaergy=12(Fixed)

Tcmp@30 ft.lbs=161.1 )eg F Temp@50 ft-lbs=218.3 Deg F 1'1ant: WAITS BAR I Material. SA50CI,2 Heat: 527536 Orientation: TI. Capsule: N Fluenc: rJcnm2 r r 30U 250"

- ............ __....-...- - -..... . .I 200 S _ -.-....------ -----.-

0 150-UIl 100 50- i i

4=

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Deg F Charpy V-Notch Data I'mnwaiturc h1iput CVN CcIopuled CVN

.00 4. 00 3. 27 .73

50. O0 12. 00 5.57 6.43 100.00 13.00 12. 02 .98 125.00 28, 00 17.99 10. 01 125.00 16.00 17. 99 -1. 99 150.00 27. 00 25.98 1. 02 175.00 30.00 35. 23 -5.23 200.00 36. 00 44.30 -6.30 210M00 38. 00 47. 55 -9.55 WCAP-16760-NP November 2007 Revision 0

C-40 CAPSULE X INTERMEDIATE SHELL 05 (AXIAL)

Pngce 2 Plant: WAMT BAR I Material: SA5OSCL2 ltca.: 527536 Orientation:T1. Catpsule: X Fluence: n/cm^2 Churpy VI-Notch Dat a lemper3mrc InFut CVN Cwnputd CVN Difecrwixl 225. 00 52. 00 51. 84 . 16 250. 00 66. 00 57. 30 8.70 250.00 64. 00 57. 30 6.70 275.00 73.00 60. 87 12. 13 275, 00 63.00 60. 87 2.. 13 300. 00 64. 00 63.06 .94 Correlaton Coefficictt - .961 WCAP-16760-NP November 2007 Revision 0

C-41 CAPSULE Z INTEMEDIATE SHELL 05 (AXIAL)

CVGRAPH 5.0.2 1lyplbolie Tangent Curve Printed on 07/13/2007 08:35 AM Page I Cocfficients of Curve 5 A = 32.1 B = 29.9 C = 99.14 TO = 156.99 D = (I.0OF410 Equation is A - B1 ITauhli(*rr.o(C+DT))j Upper Shelf Encrgy=62.0(Fixed) Lower Shelf Energy=2,2(Fixed)

Temp@30 Mhs=lS0.1 Dujg F Tealp 050 ft-lh=225.6 Deg F Plant: WATrS BAR I Marerid: SA5-OSC12 Heat: 527536 Orientation: T.. Capsule; Z Fluence: n!cmA2 300 250 200 150 100 so.

0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Deg F Charpy V-Notch Data Tcrpca:-Ur Input CVN Conputed CVN Differential

50. 00 7. 00 3. t0 3.90
75. 00 38.00 11.30 6.20 100. 00 24.00 16.58 7.42 125.00 1 8.00 22.77 .4.77 140.00 27. 00 27. 02 -. 02 150.00 28.00 29. 99 -1.99

-1.51 165.00 33.00 34.51 175.00 35.00 37. 47 .2.47 190.00 36. 00 41.70 -5.70 WCAP-16760-NP November 2007 Revision 0

C-42 CAPSULE Z INTEMEDIATE SHELL 05 (AXIAL)

Page 2 Plant: WAYrS BAR I Material: SA508CL2 11eat: 527536 Orientatn: T1 Cap;ule: Z Fluence: nlcrn^2 Charpy V-Notch Duta Tcmpcza=rc Input CNN Comrnputcd CVN Diffcremial 200.00 35.00 44.31 -9.31 210. 00 58.00 46. 72 1 1.28 225. 00 55.00 49. 90 5. 10 300.00 66.00 56. 84 7. 16 350.00 69.00 60. 81 8. 19 375, 00 64.00 61. 27 2.73 CAiR~d1aiiui COC~I~iilk = .W3 November 2007 WCAP-l 6760-NP WCAP-!16760-NP November 2007 Revision 0

C-43 UNIRRADIATED INTERMEDIATE SHELL 05 (AXIAL)

CVGRAPII 5.0.2 1lyperbolicTangent Curve Printed on 07/1332P007 08:52 AM Pagc 1 Coefficients of Curve I A = 29.17 11 = 29.17 C = 101.37 TO = 63.98 D = O.OO+0O Equation is A -113* [Tanh((ToToy(C+IYr))]

Uppcr Shelf LE.=58.3 Lower Shelf ILE.=,0(Fi'cd)

Temp.(..E 35 mils=84.6 Deg F Plant: WAVIIS BAR I MŽatrial: SAS08C.2 Heat: 527536 Orientation: Ti. Capsule: UNIRR Fluence: n/cmA2 200 -.-.-.---------

150 C

oe.

100 50 0--

-300 0 300 600 Temperature In Deg F Charpy V-Notch Data Temperature Inpit LEi. Conipttdl . Differcntial

- 100.00 2.00 2.21 -. 21

- 100.00 1,00 2.21 1. 21

-100. 00 3. 00 2.21 .79

- 35. 00 13,00 7. 2.5 5.75 11.00 12. 87 1. 87

,00

,00 10,00 12. 87 -2.87 38.00 21.00 21.85 -,85 38.00 21.00 21. 85 .I85 38.00 20. 00 21.85 WCAP-16760-NP November 2007 Revision 0

C-44 UNIRRADIATEI) INTERM EDIATE SHELL 05 (AXIAL)

Page 2 Plant: WATTS BAR I Material: SAS08CL2 Heat: 527536 Orientation: Ti1 Capsulc: UNIRR Fluenc: n/cmA2 Charpy V-Notch Data Input L.E. Cornjpucd L,.r. Differential Temperature

,I0. 00 28. 03 11. 97

60. 00
60. 00 30. 00 28.03 1. 97
75. 00 22. 00 32. 33 10.33
44. 00 44. 88 -. 88 125. 00 210.0 5s. 00 55.24 2.76
59. 00 55.24 3.76 210.00 .. 24 210. 00 55.00 55. 24 300. 00 55.00 57. 79 -2.79 300.00 56.00 57. 79 - I. 79 Correltion Cocftlicicnt - 977 November 2007

~VCAP-l 6760-NP WCAP-16760-NP November 2007 Revision 0

C-45 CAPSULE U INTERMEDIATE SHELL 05 (AXIAL)

CVGRAPII 5.0.2 1lyperbolic Tangent Curve Printed on 07/13/2007 08:52 AM Page 1 Coefficients of Curve 2 A = 28.65 B = 28.65 C = 111.9 TO = 88.09 D =0.00E-+00 Equation is A + B 6 1Tauh((YToY(C+D'))1 Upjwr Shelf L.E,--57.3 Lower Shelf ..E.=.0(Pixed)

'renip.@-L.E. 35 mils=I 13.4 D IF Plant: WATTS BAR I Material: SASOSCI n Ilea:: 527536 Orientation: TI. Capsule: U FILence: nircm^2 200 150 E

.2 E 100 50 0 -

-300 0 300 600 Temperature in Dog F Chiarpy V-Notch Data TefLeratute Input L.E. Computcd Lc. Diferentudl

- 100.00 2.00 I. 92 .08

-20.00 2.00 7.25 5.25 10.00 4.00 11.37 -7.37 50.00 1S.00 19,26 -1.26 75.00 25.00 25.32 -. 32 75.00 49. 00 25.32 23. 68 100.00 26. 00 31.69 -5.69 125.00 33. 00 37.77 -4.77

34. 00 43.06 -9. 06 150.00 WCiAP1- 167/0U-INP November 2007 Revision 0

C-46 CAPSULE U INTERMEDIATE SIIELL 05 (AXIAL)

Page 2 P~lant: WATTS BAK I .Matcriatl: SA508CI2 I leat: 527536 Oricrination: T1, Cnpsule: U' FluenciŽ: nfcrn'2 Charpy V-Notch D)atai Temperature hnput I-L. (Thiywed L.E. DiffcecnLt]

175. 00 46,00 47. 30 -1.30 225.00 60. 00 52. 74 7.26 250. 00 5 6. 00 54. 30 1.70 300. 00 56. 00 56.03 -. 03 350.00 60.00 56, 78 3.22 400. 00 52.00 S7. 09 -5.09 Cordrelaion CuellDiegn = ,929 November 2007 WC.AP1-1'- 10/00-NI' W(..A 10/0U-NP1 November 2007 Revision 0

C-47 CAPSULE W INTERMEI)IATE SHELL 05 (AXIAL)

CVGRAPH 5.0.2 Hyperb-olic Tangc.n* Curve Prinled an 07/13/2007 08:53 AM Page I Coefficients of Curve 3 A = 30.92) B = 30.92 C = 108.86 TO = 123.59 1) = 0.00,.'4.00 Equation is A + B * [Tar.hf(-To4+(C-tDT')]

Upper Shelf L.E.--6 1.8 Lower Shelf I ..E.=.0tFixed)

Tenp.0tLE. 35 mils=13S.1 Dz:- F Plant: WAVIS BAR I Matcria: SASOSCL2 Heat: 527536 Orientation: IL CapsuI,: W Fluence: ,Wrm^2 200 150 t- - -

E C

0 100 ------

a CI 50-n 0

-300 0 300 600 Temperature in Dog F Charpy V'-Notch Data Temnqeaturc ltyut L.E. Cumputcd LU. Differential 40, 00 I0. 00 10.96 -. 96

70. 00 20. 00 16. 82 3. 18 70.00 19.00 16. 82 2. 18 iO0. 00 25. 00 2 4. 32 68 125.00 30.00 31.32 -1.32 150.00 32. 00 38.28 -6.28 165.00 41. 00 42. 15 - 1.15 175.00 42. 00 44.53 -2. 53 185.00 49. 00 46.72 2 28 Novcmbcr 2007 WLAI'- I 0100-NI' WCSAP'-16760-NP1 November 2007 Revision 0

C-48 CAPSULE W INTERMEDIATE SH ELL 05 (AXIAL)

Pa-c 2 Phint:W~ATUS BARI. NlalciiaI: SAOSCL.2 I cat: 527536 Otientatioii: TL CapSulc: WV lluence: n/cm^2 Cliarpy V-Notch Data Input LE Co~npatcdI.,E. DiM.-tcntial Temperature

,00. 00 53.00 49. 65 3.35 250.00 (4. 00 56.32 7.68 55.00 60. 89 -5. S9 350.00 CQxrelation Codftici*rt = .971 Novcmbcr 2007 WLAI'-l0/bU-NI' WCAP'-16760-NP[ November 2007 Revision 0

C-49 CAPSULE X INTERMEDIATE SHELL 05 (AXIAL)

CVGRAP11 5.0.2 1y,r~bolicTangent Curve Printed on 0711312007 08:53 AM PaieL I Coefficients of Curve 4 A = 34.17 B = 34,07 C = 129.63 T0 = 197.99 1) = O.0E-00 quatlion Ls A 41B I jTenth((T-TI)!(C4DT))]

Upper Shclf L.F.=NS.I Lowrr Shelf L.E.=.O(Fixcd)

"lenl=p,alI.E. 35 llil:;="l."O1.DO,; F Plantt: WATTS BAR 1 Itlaerzal: SASOSCT.2 Hm-t: 5275.6 Orieniation: TL Czpsule: X Fluence. n/cmr2 200-150 In E

2-.

a.

0.... .- - -------

-300 300 600 Temperature in Dog F Charpy V-Notch Data Temperaturc Input L.E. Computrd LE. Differential

.00 .: 00 3. 07 -3.07 50.00 7, 00 6. 30 .70 100.00 13. 00 12. 31 .69 125.00 22.00 16.69 5.31 125.00 14. 00 16.69 -2.69 150.00 24. 00 22. 00 2.00 175.00 26. 00 28. 09 -2. 09 200.00 30.00 34. 60 -4.60 210.00 33,00 37.22 -4.22 WCAP- 16760-NP November 2007 Revision 0

C-50 CAPSULE X INTERMEDIATE SHELL., 05 (AXIAL)

I1iec 2 Plant: WATTS BAR I Materhia: SA50SCL2 I kai:i 527536 Orientation: T1. CIIPSOIO. K Thl~ecc: n/CMA2)

Charpy V-Notch D~ata ItVut L.E. C&',nullcd L.". Differcntial Tcmnprature 225, 00 44. 00 41.07 2.93

50. 10 47.05 2.95 250. 00 52 00 J 7. 05 4.95 250.00 53 .00 52. 22 .78 275.00 275. 00 49. 00 52, 22 -3.22
55. 00 56. 44 - I ,44 300. 00 Corrclatin Qwfciicnt =.9,34 November 2007 WCAP-I 6760-NP WCAP-!16760-NP November 2007 Revision 0

C-51I CAPSULE Z INTERMEDIATE SHELL 05 (AXIAL)

CVGRAPII 5.0.2 Hyperbolic Tangent Curve Printed on 07/13/2007 08:53 AM PNoe I CoefficiCnts of Curve 5 A = 29.38 B = 29.38 C = 146.82 TO = 121.47 1) = 0.0OE÷00 Equutica is A 4 B

  • rvnb((r-Tt-)(C-DT))]

Upper Shelf 1..E.=58.8 Lower Shelf L.FP=.0(Fixcd)

Tcmp.@L.E. 35 miljk= 150.0 D.*y F Plant: WATIS BAR I Nalrdla: SA5SOCI.2 Hew: 527536 C-51 Orientation: TL Capsule: Z Fhuenic: nfcm^2 200 -

150 M

.2 100 s o 4 - -------

0 -

-300 0 300 600 Temperature in Deg F Charpy V-Notch Data nrut L.E. Computed LE. Differential

.50.00 6. 00 5. Is .82 75.00 19, 00 20. 38 -1. 38 100.00 36. 00 25, If 10. S9

25. 00 30. 08 -5.08 125.00 -1.06 140.00 32.00 3.3 06 150.00 31. 00 35.01 -4.01 165.00 35. 00 37. 84 -2. 84 175.00 34, 00 39. 63 -5.63 190.00 42, 00 42. 17 -. 17 November 2007

~VCAP- I b760-NP WCAP-16760-NP November 2007 Revision 0

C-52 CAPSULE Z INTERMEDIATE SHELL 05 (AXIAL)

Pa-c 2 Plant: WVATTS BAR I IMatericil: *SA50SCI2 1lat 527536 Orientation: TL. Capsule- Z Yhiencc: n/cm Al Charpy V-Notch Dnat Teriperaiurm ['ptut L.E. C01piinar I-E.L Diffoiential 3, . 00 43, 74 - 5.74 200. 00 0'0. 00 210.00 14. 79 47.2 2.76 225.00 50. 00 300.00 56. 0o 54. 0o 1.99 350, 00 57.00 56.25 .75

-4.95 375.00 52.00 56. 95 Correlation Co~effjicint = .920 Novcmbcr 2007 WLJW-IO/OU-NL' W%-AI'- I /OU-iNrI November 2007 Revision 0

C-53 UNIRRADIATE'ED INTERMEDIATE SHELL 05 (AXIAL)

CVGRAPH 5.0.2 1lIetrbolic Tangent Curve Printed on 07/13/2007 08:44 AM Pace I Coefficicnts of Curvc I A = 50. B - 50. C = 95.2 T0 = 54.88 1) = 0.OOE+00 Equation is A -t l. jTanh((T-To)/(C+DT))]

Temperature at 50% Shear = 54.9 Fllmi: WA'I'S BAR 1 Material: SA50SCL2 leat; 527536 Orientation: TL Capstile: UNIRR Fluence: ttfcm^2 125 100 75 U) 50 25 04-

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F Charpy V'-Notch Data Tcmptmuwurc Input Perccni Shear Computed Percent Shear Diffetential

- 100.00 2.00 3.72 - 1.72

- 100. n0 2.00 3. 72 - 1 72

-100.00 2. 00 3.72 -1. 72

.35. 00 15.00 13. 14 1.86 00 30.00 23.99 6.01 00 28.00 23.99 4.01

38. 00 45. 00 41.22 3.78
38. 00 43.00 4 1.22 1.78
40. 00 h1. 22 -1.22
38. 00 Novcmbcr 2007 WCA I'- 16160-NI'P WCSAP1-16760-N November 2007 Revision 0

C-54 UNIRRADIATED INTERMEDIATE SHELL 05 (AXIAL)

Page 2 Plant: WATI'S BAR I Material: SA508CL2 Heat: 527536 Orientaiinn: Ti. Capsule: UNIRR Fluence: n/mra2 Charpy V-Notch Data Temperarre Input Percent Shear Computed I'crcent S-ear Diffcrcnte'aI

60. 00 30. 00 52. 68 -2. 68
60. 00 43. 00 52. 68 -9.68
75. 00 54. 00 60. 41 -6. 41 125. 00 90. 00 81.35 8. 65 210. 00 100.00 96. 30 3.70 210. 00 100.00 96. 30 3.70 210. 00 100.00 96. 30 3.70 300. 00 100.00 99. 42 .58 300. 00 100. 00 99. 42 58 Corrcl~tion COxfwcr~t -. 993 WCAP-16760-NIP November 2007 Revision 0

C-55 CAPSULE U INTERMEDIATE SHELL 05 (AXIAL)

CVGRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 07/13/2007 08:44 AM Page 1 Coefficients of Curvc 2 A=50. B =$0. C= 108.6 TO= 144.29 D=0.00E+00 Equation is A + B

  • ITazh(r-To)/(C+Dr))1 "remperatare at 50% Shear = 144.3 I'lant: WATIrS 13AR 1 Maleriah: SA50,CI.2 Beat: 527536 Oricntation: TL Capsule: 11 Flacrnce. nfcm^2 125 100 L

go 75 a)

V 2 50 4,

0~

25

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Dog F Charpy V-Notch 1)ata T"inerau re Input Percent Shear Computed Perccnt Shear Differential

- 100.00 2. 00 1.10 90

-20. 00 5.00 4.63 37 7, 78 2. 22

10. 00 10.00 s0. 00 20. 00 14.98 5.02
75. 00 20. 00 21. 82 -1. 62
75. 00 60.00 21. F 2 38. is 100. 00 2O. 00 30. 67 -10. 67 125. 00 30.00 41.21 -II.21 150. 00 30.00 52. 63 -22.63 WCAP-16760-NP November 2007 Revision 0

C-56 CAPSULE U INTERMEDIATE SHELL 05 (AXIAL)

Page 2 Plant: WAV S BAR 1 M ateria1: SA50SC32 IHeat: 527536 Orientation: TL Capsu1c: U Fluence: rJcm^2 Charpy V-Notch Data Tcm-,erature Input PecentSihcar Cowttulci PIaIent Shcaf DifTctenial 63.77 -3. 77 175.00 60. 00 225. 00 100. 0o 81.55 18. 45 250. 00 100.00 87. 51 12.49 300.00 100.00 94. 62 5.38 350, 00 100.00 97. 79 2.21 400. 00 IGO. 00 99,1 1 .89 Corrdition Cc-:frwicw ý.937 WCAP'-1 6760-NI' November 2007 Revision 0

C-57 CAPSULE W INTERMEDIATE SHELL 05 (AXIAL)

CVGRAPII 5.0.2 Hyperbolic Tangen:. Cirve Prited on 07/13/2007 08:44 AM Page I Coefficients of Curve 3 A = 50. B = 50. C = 66.93 0 = 149.07 i) = 0.OOE+00 Equation is A + B * [Tanh((lT-o)(C.*DT))i Teniperja:u at 50% Shear = 149.1 Plant: WVATTS BAR 1 Matleri: SA5OSC1,2 Heat:527536 Oriontalivi: T11. Capsule: W 1lu1ener: rdcrnA2 125 100 75 C/

2 50 25 0 -

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F Charpy V-Notch Data Tcuipcratar. Input Percent Shcar Computed Percent Shear Differ~ential 40.00 .00 3.70 -3.70

70. 00 15.00 8.60 6.40
70. 00 15.00 8.60 6. 40 100. 00 25.00 Is.75 6.25 125.00 35. 00 32.75 2. 25 150.00 40.00 50.69 -10.69 165.00 55. 00 61.68 -6.68 175.00 55. 00 68. 45 -13.45 185. 00 85. 00 74.53 10.47 November 2007 WCAP-l 6760-NPP WCA P- 16760-N November 2007 Revision 0

C-58 CAPSULE, W INTERMEDIATE SHELL 05 (AXIAL)

Page' I Plant: WArrs BAR I Mawicrial: SA50SCL2- I lear: 527536 Qricnration: TL Capsui: NX Fluence: n/cnl^2 Clumpy Y'-Notch Diat Input 1Antent Stcur Conji-x.-td Potcnin Shczr Differential Teriperature

!o0. 00 82. 08 17. 92 200. 00 4. 67 250. 00 100.00 95. 33 100.00 99. 75 .25 350. 00 Co.,rclat'n.Coe ficient = .969 WCAP- 16760-NP November 2007 Revision 0

C-59 CAPSULE X INTERMEI)ATE SIELL 05 (AXIAL)

CVGRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 0711312007 08:44 AM Page 1 Coefficicnts of Curwe 4 A =50. It = 50. C = 63,84 TO = 187.25 1)= 0.00E-iO0 Dluation is A I- 3 * [Tiah(qr-To)!(C+DT))j "crlv/-azrire at 50% Shear = 187.3 Plant: WATTS BAR I h.riijh: SA40SCI2 11cat: 527536 Orientation: T. Capsule: X I:luence: nfcm^2 125 100 75 C0 0

20 50 0~

25 o0-

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Deg F Charpy V-Notch Data Tcrnperature hoput Pcrcent Shear Ctinrutcd PcrccntShear Diferenthal 2.00 128 I,72

.00 50.00 5.00 1. 34 3.66 t00, 00 Ie. 00 6.10 9.90 125.00 20.00 12.45 7.55

20. 00 12. 45 7.55 125.00 150.00 25, 00 23. 74 1.26 175. 00 40. 00 40.52 -. 52 200. 00 40. 00 59. 86 -19. 86 210.00 60. 00 67. 10 -7. 10 WCAP-16760-NP November 2007 Revision 0

C-60 CAPSULE X INTEIREDIATE SHELL 05 (AXIAL)

Pa1e 2 Plant: WATTS BAR I Mateiiah: SA5JSCI.2 11=41: 527536 Oricntation: TL Capsule: X Fluence: nrcm^2 Charpy V-Notch Data Tcrpctatuir Input Percent Shbr I)iffe.entWL 225.00 9O0. 00 76. 54 3.46 250.00 100.00 $7. 72 12. 29 250. 00 100.00 S7, 72 12. 25 275.00 100.00 93.99 6.01 275. 00 100. 00 93.99 6. 01

07. 16 2I. 84 300. 00 100.00 Correation Coefticient - .979 WCAP- 16760-NP November 2007 Revision 0

C-61 CAPSULE Z INTERMEI)IATE SHELL 05 (AXIAL)

CVGRAPH 5.0.2 H.pctbolic Tangent Cutvc Printed on 0711312007 08:44 AM Page 1 Cocfficients of Curve 5 A = 50. I1= $0. C = 77.78 TO = 165.42 D = 0.OOE400 Equaior is A + B * [3Tanh'((T-ToY(C+DT))I Temperature at 50 Shear - 165.5 Plant: WATt'S BAR I N13wriad: SA50SC12 Heat: 527536 Orientation: TL Capsule: Z Fluence: n/cmn'2 125 100 S'

75 0

a CL 2- 50 25

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F Chharpy V-Notch Data TemprAtuire Inlut Percent Shear Computed 'ercent Shear Diffrential

-50.00 2.00 .39 1. 61 75.00 20. 00 S. 91 11.09 100.00 25. 00 15. 60 9.32 125.00 20. 00 26. 13 -6.13 140. 00 40. 00 34. 22 5. 78 150.00 40. 00 40. 22 -. 22 165.00 45, n0 49.73 -4.73 175.00 50. 00 56. 13 -6. 13 190.00 30, 00 65. 29 - 15. 29 WC*AP-I O/OU-NP' November 2007 Revision 0

C-62 CAPSULE Z INTERMEIEDIATE SHELL 05 (AXIAL) 1Pa2ti2 Plant: WATT' BAR 1. M1alciia. SA509CL21 Heat: 527536 Oricinarion: TL Capsule: Z Flu ence: rJcMA^2 Cliarpy V-Notcli Data Tempcr3ture hiplat Fercent Shear Comiipiiied PawseiiSlicar Di1feraltial 200. 00 60. 00 '70. 87 - 10. 87 210. 00 95.00 75. 8S 19. 12 225.00 o100.00 S2. 23 17.77 300. 00 100. 00 96. 95 3.05 350.00 100. O0 99. 141 .86

.45 100.00 99. 55 375. 00 Correl.aitin Cmffikient = .958 WCAI--16760-NP November 2007 Revision 0

C-63 UNIRRADIATED SURVEILLANCE PROGRAM WELD CVGRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 0711312007 09:16 AM Page I Cocfficients of Curve I A = 66.6 1 = 64.4 C = 66.29 1I0 = 11.54 1)= 0.00E+00 Equatim is A + B

  • 1Tinh((T-ToV(C+DTI)I Upper Shelf Einergy= 131.0(Fixed) Lower Shclf Energy=2.2(Fixed)

Tcinp@30 ft-lbs=-31.2 Deg F Teinp@50 fi-lbsu-3.9 Deg F Plant: WAITS BAR I Material: SAW Heat: 895075 Orientxiono: NA Caps*tle: IJNIRR Flumnce: rJci^A2 300 0

UL w

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Deg F Clharpl V-Notch Df:ii TI pcrature InpW CVX Confuted CV.N Dirff ntial

-125.00 6,00 4.26 1. 74 5.00 4. 26 .74

-125.00

-75.00 9.50

-40. 00 20. 00 24.66 .4.66

-40. 00 43,00 18.34

-20. 00 ;0.on 38. oS S8.08

-7.00 50.00 49. 04 .96

-7.00 54.00 49. 04 4.96

-7.00 55.00 49. 04 5. 96 November 2007 WCAP- 16760-NP 16760-NP November 2007 Revision 0

C-64 UNIRRADIATED SURVEILLANCE PROGRAM WELD Page 2 Plant: WNATS BAR I Material: SAW Ileat: 895075 Orientation: NA Capsule: UNIRR Fluenee: n.cm'12 Charpy V-Notch Ihatn "e'melrature Input CVN Cw' ov;,; ( :%'. Ififtrcntial

32. 00 71.00 85. 87 - 14. S7
32. 00 (12.00 85. 87 -23. 87
50. 00 117.00 100. 26, 16. 74
68. D0 117.00 111. 1l 5. 84
73. D0 131. 00 113.56 17. 44 I10. 00 123.50 124. 72 - 1. 22 210. 00 130. 00 130. 6S -. 68 210.00 127. 00 130. 68 -3.68 275, 00 142. 00 130. 9 5 11. 05 Correlation CocfQdicnt = .975 November 2007 6760-NI'

~VCAP-l 6760-NP)

WCAP-! November 2007 Revision 0

C-65 CAPSULE U SURVEILLANCE PROGRAM WELl)

CVGRAPJ 15.0.2 1lyierbolic Tangent Curve Printed on 0711312007 09:16 AM Page I Coefficients of Curve 2 A = 72.6 1B= 70.4 C = 119.21 TO = 45.94 D = 0.0OE+00 liqu:atioa is A -1B * [Tl'nh((TCr-ToY(CDT))]

Upper Shelf Encrg-=143.0(Fixed) l.otxer Shelf Energy=2.2(Fixed)

Tcmp@30 1f-lbs=-37.6 Dcg F "ir'p E-150 -lis=6. Dg F Plant: WATTS BAR I M.tcrial: SAW Ileat: &95075 Orientation: NA Czpsulc: U Fltenm.: WckmA2 300-250 200 o 0

0 LA. 13 Ci 150 .

- .~....-..

-.. ci .- - - --. -- -- --- ---- - ---- ---_--- -

ILu 100

  • OF 50-a'I

~-- a

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Dog F ChArpy V-Notch Data Tempc-al ur nput C Conpulcd CVN Di(Tercnrial 7.00 13.4i* -6.40

-100. 00

-50.00 17.00 25, , S.3.66 25.00 3,, 10.04

-25. 00 36.00 46. 7= 10.74

20. 00 65.00 ;7. i2 7.48 35.00 75,00 66.16 S. 84
50. 00 7;( 00 75. 00 1.00 75.00 127.00 i9.43 37.57 75.00 91.00 89.43 1.57 WCAP-16760-NP November 2007 Revision 0

C-66 CAPSULE U SURVEILLANCE PROGRAM WETLD lfagc 2 Plant: WA'1iS BAR I Matekal: SAW Il~ealt 895075 Orientatioa: NA Capsule: U Flucrice: n/cMA2 Charpy V-Notcli Datat Temrtrature D'Iffeculcial 100.00 95. 00 102. S,() -7.50 125. 00 93.00 1 13, 41 -20. 47 150.00 99. 00 -23. 0 250.00 145.00 6. 44 300. 00 13S,00 141. 04 -3.04 147.00 142. 15 4. FS 350.00 CuirrcI,1ik4 Qwfficictal -. 949 November 2007 WCAP-l 6760-NP WCAP-16760-NP November 2007 Revision 0

C-67 CAPSULE W SURVIELLANCE PROGRAM WELD CVGRAPII 5.0.2 Hyperbolic Tangent Cure Printed on 0711312007 09:41 AM Page I Coefficients of Curve 3 A = 57.1 B = S4.9 C = 97.49 TO = 52.01 D = 0.00F+O0 Equaiorn is A + B 1 II'anh((T-ToY(C-tDT))I Upper Shelf Energ)--I12.0(Fixed) loAwer Shelf Energy=2.2(Fixed) remp(30 ft-lbs=-.7 Deg F Temp@50 fl-lbs=39.4 Deg F Plant.: WATTS BAR. I Material: SAW 11cat; 895075 Orientation: NA Capsule: W Fluence: ttIcm^2 300 250 I____-___

I.

TI I 200 U- 10 _________---- ___ -_____

III

  • ..--.-.-.---- I-------

ISO z

100 I,

I _ _ __ _ __ _

50 nl

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F Charpy '-Notch Data Tcmpcraturc IngutCVN Camputc CVN Differectial

-50.00 13.00 14,26 - I. 26

-20.00 20. 00 22. 61 -2. 61 10.00 32. 00 34. 81 .2. 81

25. 00 41.50 42.27 77 40.00 56. 00 50. 37 5. 63
55. 00 61.50 58.79 2.71 70.00 71.50 67. 12 4. 38 100.00 75. 00 82. 14 -7. 14 125.00 87. 50 9.. 93 -4, 43 November 2007 WCAP- 16760-NP 16760-NP November 2007 Revision 0

C-68 CAPSULE W SURVIELLANCE PROGRAM WELD Page 2 Plant: WATTS BAR 1 Material: SAW 1kat: S95075 Orientation: NA Capsule: W Fluencet We/cnA12 Charpy V-Notch Data Tcripcatuve Input CVN Computed CVN Dijfieintih1 150. 00 9S. 50 99.03 -. 51 200. 00 113.00 106. 97 6. 03 350. 00 123.50 Ill. 76 11- 74 Corrctlion Ccxffkicnt - .990 November 2007 WCAP-I 6760-NPP WCAP-1!6760-N November 2007 Revision 0

C-69 CAPSULE X SURVEILLANCE PROGRAM WELl)

CVGRAPII 5.0.2 Hyperbolic Tangent Curve Printed on 07/I 312007 09:41 AM Page 1 Coefficicncs of Curve 4 A =68.1 B =65.9 C = 114.7 TO = 70.21,) =O.GOE+00 Equation is A + B

  • Il'anh(0T-Tlo(C+DT)]j Uppcr Shelf Energ- 134.0(Fixed) Lower Shelf Energp)2.2(Fixcd)

Temp@30 ft-lbs=-5.4 Deg F Temp@50 fl-lbs=37.9 Deg F" Plant: WATTS BAR I Material: SAW Heat: 895075 Orientation: NA Capsule: X ilucnce: n/cin^2 A*A 3oo 250 200 0

L 150 cJ Icl z

> 100 5o 0 "i:ý

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Deg F Charpy V-Notch Data Tcrperatrc Input 0"N Computed CVN Differential

-100. 00 5.00 8.64 - 3. 04

-75.00 14. 00 11.91 2.09

.50. 00 23.00 16.63 6.37

-25. 00 21. 00 23.25 .2.25

10. 00 5 1. 00 36. 37 14.63
25. 00 26. 00 43.39 - 17. 39
50. 00 49. 00 56.61 -7.61
75. 00 91. 00 70. 85 20. 15 100.00 78. 00 84. 84 -6.84 WCAP- 16760-NP November 2007 Revision 0

C-70 CAPSULE X SURVEILLANCE PROGRAM WELD Page 2 Plant: WATTS BAR I Material: SAW Heat: 895075 Orientation: NA Capsule: X Flucnce: n/crnA2 Charpy V-Notch Data TcmPCrturt Input CVN Computed CVN Differential 125. 00 94.00 97. 39 -3, 39 100.00 115.74 -15. 74 175.00 125.00 121.58 3. 42 200.00 139.00 125. 69 12. 31 225.00 225.00 130.00 125. 69 4. 31 143.00 130. 39 12. 61 275. 00 roffelatin!iCoefficient=~.975 November 2007 6760-NP WCAP-!16760-NP WCAP-1 November 2007 Revision 0

C-71 CAPSULE Z SURVEILLANCE PROGRAM WELl)

CVGRAPH 5.0.2 1-e.rbolic Tangent Curve Prnted on 07113/2007 09:41 AM Page 1 Coefficients of Curvc 5 A = 73.6 B = 71A C = 12-.68 TO = 70.47 D = O.OOE+00 Equation is A 4- B * [Tanh!,(T-ToytC+DT))]

Uppcr Shelf Energy=145.0(Fixed) Lower Shelf Energ)-2.2(Fixed)

Tcnip@30 ft-lbs=-17.3 Dleg F Teirp(,V50 ft-lhb.-28.O Deg F Plant: WATIS BAR I Material: SAW Rea:: 895075 Oricntatiom: NA Capsule: Z Fluence: n~cmA2 300 250

.200 0

It.

S150 o

C,U

> 100 50 04 :-

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F Charpy V-Notch Data Tempertoure Input CVN Compited CVN Differential

- 100. 00 4.00 10.73 -6.73

-25. 00 27. 00 27.33 -. 33

-15.00 37.00 30. 86 6. 14 00 31.00 36. 82 -5, 82 1.5. 00 27.00 43.57 -16. 57 25,00 51.00 4ý. 47 2.53

40. 00 64. 00 56. 36 7.64
50. 00 72. 00 61.89 10. 11
75. 00 77. 00 76.21 .79 WCAP-16760-NP November 2007 Revision 0

C-72 CAPSULE Z SURVEILLANCE PROGRAM WELD Page 2 Plant: WATTS BAR 1 Matcrial: SAW Ifcat: 895075 Orientation: NA Capsule: Z Fluence: n/cmA2 Charpy V-Notch Data Tempeuaumr triput CVN Cuin puw*d CVN Diff¢ ' liii 100. 00 97. 00 90. 33 6.67 125. 00 100. 00 1 03. 19 -3. 19 150. 00 101.00 1 14. OS - I3.ri 300. 00 151. 00 14 1. 59 9.43 350. 00 148. 00 14 3. 46 ,1.54 375. 00 136. 00 I1 3. 97 -7 97 a-arclaticn Coefficient = .934 WCAP-16760-NP November 2007 Revision 0

C-73 UNIRRADIATED SURVEILLANCE PROGRAM WELD CVGRAPH 5.0.2 Hyperbolic Targent Curve Printed on 07/13/2007 09:56 AM Page I Coefficicnts of Curve I A = 43.89 B = 43.89 C = 65.14 TO = 3.4 D = O.OOE+00 Fquation is A + B * [Tanh((T-To)/(C,+DT))I Upper Shclf L..r=87.8 Lower Shelf l.F,.=.O(Fixed)

Tenp.@L.E. 35 niils=-9.9 Deg F Plant: WATTS BAR I Matcrial: SAW lleat: 895075 Orientation: NA Capsule: UNIRR Fluciene: nkmA'.2 200 150 E

C U-,

100 b

50 04-

-300 0 300 600 Temperature in Deg F Charpy V-Notch Data Tcmpcratirc InpLt LE. Computed L.-i. DI3ffential

- 125. 00 1.00 1.67 67

- 125.00 1.00 1.67 -. 67

. 75. 00 4.00 7.25 -3.25

-40.00 13.00 18.32 -5. 32

-40. 00 32. 00 18.32 13.68

26. 00 28. 77 -2. 77

-20, 00

-7. 00 37.00 36. 94 .06

-7.00 37.00 36. 94 .06

-7.00 4 1. 00 36. 94 4. 06 WCAP-16760-NP November 2007 Revision 0

C-74 UNIRRADIATED SURVEILLANCE PROGRAM WELD Pagc 2 Plznt: WATTS BAR I 'Matcrial: SAW 11cat: 895075 Orientation: NA Capsule: UNIRR Ilucncc: n/cmA2 Charpy V-Notch Data Input L.X. :ompatcd L.E. D)ifterenfial TeirpatJir 53., 00 62. D1 -9.01

32. 00 - 14.01
32. 00 48. 00 62. 01
84. 00 70. 84 13. 16
50. 00 2. 84
68. 00 80. 00 77. 16
90. 00 78.52 It . 48
73. 00
80. 00 84. 58 -4. 58 110.00 1. 37
89. 00 87.63 210. 00 -10.63 210.00 77, 00 87. 63 92.00 87. 76 4. 24 275. 00 Correlalioa Cceflcient = .972 WCAP-16760-NP November 2007 Revision 0

C-75 CAPSULE U SURVEILLANCE PROGRAM WELD CVGRAPH 5.0.2 1typerbolic Tangent Curve Printed on 07/1312007 09:56 AM Page 1 Coefficients of Curve 2 A = 38.43 B = 38.43 C = 65.63 TO = 13.24 1) = 0.O0E4-10 Equation is A +B

  • JTanh((T-To)/(C+D'T))J Upper Shelf ILF_=76.9 Lower Sheflr-=.0(Fixed)

Temp. Q LL 35 nils=7.4 Deg F Plant WATTS BAR I Maerial: SAW Heat: 895075 Orientatioi: NA Capsule: U Fluenice: n/cm^2 200 150

_l s 50 0o4--

-300 0 300 600 Temperature in Deg F Charpy V-Notch Data Tcmpraw.uT. Input L.E. Computed I..fl. Diffcrcrial

- 100.00 3.00 2,36 .64

.50. 00 [1. 00 9.77 1.23

-25. 00 19. 00 18.27 .73

,00 25. 00 30. 78 -5.78

20. 00 50. 00 42. 38 7. 62 35.00 49. 00 50. 73 .1. 73 50.00 5S. 00 57. 96 -6. 96 75, 00 87. 00 66. 71 20. 29
75. 00 58. 00 66. 71 - 8.71 WCAP-16760-NP November 2007 Revision 0

C-76 CAPSULE U SURVEILLANCE PROGRAM WELD Pag~e 2 Plant: WATSB~AR I Matcrial: SAW Heat: 895075 Orientation, NNA Caipsulc: U Flucnc: rl!cmA2 Charpy V-Notch Data Tcmpcnature Inpul L.F- Computcd LT.. Diffacntial 100. 00 67. 00 71. 76 -4. 76 125. 0o 71 00 74. 39 -3.39

73. 00 75. 69 -2. 69 150. 00 2u0. 00 84. 00 76. $1 7. 19 300. 00 84. 00 76. 85 7. 15 76 86 -9.86 350. 00 67. 00 COT-rcI:Iion Curickint = .9$7 WCAP- 16760-N P November 2007 Revision 0

C-77 CAPSULE W SURVEILLANCE PROGRAM WELD CVGRAPH 5.0.2 1lypcrbolic Tangent Curve Printed on 07/1312007 09:56 AM Page I Coefficients of Curve 3 A = 4458 B = 44.45 C = 95.29 T0 = 42.68 D = O.OE+-00 Equa:ion is A -+B * [Tanh((T-To)t(C+DT))]

Upper Shelf L.E.=89.2 Lovkcr Shelf L.-.=.0(Fixed)

Ternp.*L.E. 35 hils=21.9 Deg F PI~rl: WAITS BAR I M'aterial: SAW Heat: 895075 Orientatton: NA Capsule: W Fluence: nlcm^2 200 150 0

ailoo 3

5o 0

-300 0 300 600 Temperature In Deg F Charpy V-Notch Data Tcmpctawit Inpul L.fE. Computcd L..E Differenfial

-50.00 10.00 11.15 -1 15 19.00 18.86 .14

-20. 00 .2,6

10. 00 27. 00 29. 86 35.00 36.40 -1. 40
25. 00
40. 00 49.00 43. 32 5.68
35. n0 54. 00 50.31 3.69
70. 00 55. o0 57. 02 .2.02 100. 00 64. 00 68. 57 -4.57 125. 00 74.00 75. 70 -I. 70 November 2007 WCAP-1 6760-NP WCAP-16760-NP November 2007 Revision 0

C-.78 CAPSULE W SURVEILLANCE PROGRAM WELD Page 2 Plant: WATTS BAR I Material: SAW Hcat; 895075 Orientation: NA Capsule: W Fluence: n/rCMA2 Charpy V-Notch Data Tcmperaturc Isr~u:I-f. Computed LE- Diffrcrcnial 150. 00 $2. 00 S0. 67 1.33

90. 00 85. 99 4.01 200. 00 350. 00 E7. 00 89. 01 -2.01 CazTebatior Coefficient .993 WCAP-16760-NP November 2007 Revision 0

C-79 CAPSULE X SURVEILLANCE PROGIRM WELD CVGRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 07/13/2007 09:56 AM Page 1 Cocfficients of Curve 4 A = 42.49 B = 42.49 C = 109.65 TO = 55.42 D = 0.00E+00 Equation is A + B * [Tanh((T-Tvy(CtDT))]

Upper Sh-lf L.F=85.0 Lowvr Shelf L.E.=O(Fixed)

Temp.@,.E. 35 mils=35.9 Deg F Plant: WA"FS BAR I Material: SAW Ih-at: 895075 Orientation: NA Capsule: X Fluence: n/cmA2 200 150 E

a 100 50

-300 0 300 600 Temperature In Deg F Charpy V-Notch Data Tcm.,pravjrc Input LL. Computed L.E. Diferential 100. 00 1. 00 4.71 -3.71 7.21 1.79

-75. 00 9.00

- 50. 00 13.00 10. 84 2. 16

- 25. 00 14. 00 15.93 -1.93

10. 00 37. 00 25.83 11. 17
25. 00 1I.00 31. 00 -13.00
50. 00 37. 00 40. 39 -3.39
75. 00 60.00 50. 00 10.00 100. 00 55. 00 58. 87 -3. 87 WCAP-16760-NIP November 2007 Revision 0

C-80 CAPSULE X SURVEILLANCE PROGIRM WELD Page 2 Plant: WATTS BAR I Material: SAW lleat: 895075 Orientation: NA Capsule: X Flucnee: rcm^2 Charpy V-Notch Data Input LE. Corpuwed LE. Di-ffrntia!

Temwaiarc

66. 34 1. 66 125.00 68. 00
71. 00 76. 36 -5.36 175. 00 79.31 5. 69 200. 00 FS. 00
78. 00 8 1. 29 -3. 29 225. 00 8 1. 29 -1.29 225.00 80. 00 83.46 2. 54 275. 00 86. 00 Carr~etAor. Cadfticicra = .980 WCAI--16760-NP November 2007 Revision 0

C-81 CAPSULE Z SURVEILLANCE PROGRAM WELD CVGRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 071J3/2007 09:56 AM Page I Coefficients of Curve 5 A = 46.49 B = 46A9 C = 111.11 TO = 36.88 D = O.O0E+O0 Equation is A + B

  • ITanh((T-To)/(C+DT))]

Upper Shelf L.E.=93.0 Lower Shelf L.E.=.0(Fixcd)

Tcmp.@LE. 35 mils=8.9 Deg F Plant: WAKIS BAR I Material: SAW Heat: 8950"75 Orientation: NA Capsule: Z Fluence: a/kmA 2 200 150 E

so 50 004-

-300 0 300 600 Temperature In Deg F Charpy V-Notch Data Ternim.nture Input I.E. Computed LF. Differential

- 100. 00 4.00 7.29 -3.29

.25.00 24.00 22.98 1. 02

-15.00 33.00 26. 24 6.76

.00 30,00 31.60 -1.60 15.00 30.00 37.45 -7.45 25.00 42. 00 41.54 .46

40. 00 48.00 47. 80 .20 so. O0 59.00 51.96 7. 04
75. 00 56.00 61.85 -5.85 WCAP- 16760-NP November 2007 Revision 0

C-82 CAPSULE Z SURVEILLANCE PROGRAM WELD Page 2 Plant: WAYJS BAR I Material: SAW Heat: 895075 Orientation: NA Capsule: Z Fluence: n/emA2 Charpy V-Notch Data Tcmperature Input LE. Co)mputed LE. Differential 100. 00 71.00 70.39 .61 125.00 76.00 77. 19 -1.19 150.00 85. 00 82.25 2. 75 300.00 94.00 92. i8 1.82 91.00 92.66 -1. 66 350.00 92.00 92.78 -. 78 375.00 Ckrwelation Coefficient =.990 November 2007 WCAP-16760-NP November 2007 Revision 0

C-83 UNIRRADIATED SURVEILLANCE PROGRAM WELD CVGRAPII 5.0.2 Hyperbolic Tangent Curvc Printed on 07/1312007 09:49 AM Page 1 Coefficients or Curve I A =50. B = 50. C = 91.87 TO1= .128 D = OOOE÷00 Equaion is A + B *'ranh((T-ToY(c+/-÷DI))J Temperature at 50% Shear= -1.2 Plant: WATTS BAR 1 Material: SAW fewa.: 895075 Oirentatio,: KA Capsule: UNIRR Fluencc: nlcm^2 125 100 75 V 50 C-25 0 .--.---- -

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F Charpy V-Notch Data Temlpersure lnpu Pe*rent Shear Computtd PerCent Sh.aar Differential

-125.00 5. 00 6. 34 -1. 34

- 125.00 5. 00 6.34 -1. 34

-75.00 20.00 16. 7A 3.27

-40.00 30. 00 30. 09 . 09

-40.00 41. 00 30. 09 10.91

-20.00 41. 00 39.95 1.05

-7.00 46. 00 46. 89 .89

-7. 00 40.00 46. 89 .6.89

.7. 00 46.00 46. 89 -*89 WCAP-1 6760-NP November 2007 Revision 0

C-84 UNIRRADIATED SURVEILLANCE PROGRAM WELl)

Page 2 Plant: WATTS BAR I Material: SAW Heat: 895075 Orientation: NA C(.tpsulc: UNIRR Fluence: n/cmm^2 Charpy V-Notch Data Input Pcrent Shcar Coinputed Pecrcent Shear Diffeitntial

32. 00 61.00 67. 36 -6. 36
57. 00 67. 36 - 10. 36
32. 00
50. 00 78. 00 75. 33 2.67
92. 00 81, 88 .12
68. 00 100.00 83.44 16. 56 73, 00 95.00 91.85 3. 15 110. 00 100.00 99.00 1. 00 210. 00
95. 00 99. 00 -4.00 210. 00 00 100. 00 99.76 .24 275.

Coteltor. Coefficient .982 WCAP-1 6760-NP November 2007 Revision 0

C-85 CAPSULE U SURVEILLANCE PROGRAM WELD CVGRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 07113/2007 09:50 AM Page 1 Coefficients of Curve 2 A=S0. B=50. C=52.19 TO=9.58 DI=0.01W400 Fiquation is A + B1 [T-Inh((T-ToY(C+D'T)]

Temperature at 50% Shcar = 9.6 Plant: WAITS BAR I Material: SAW Heat: 895075 Orientation: NA Capsule: U Fluence: n/crn^2 125 100 75 R

A.

2 50 25 0-

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F Charpy V-Notch Data Tcm'pcrature hryut Nie*cni Shear Computrd Pcrecr*t Shcar Differcntial 1.48 3. 52

- 100. 00 5. 00

-50.00 10.00 9.25 .75

-25. 00 25. 00 20.99 4.01 00 25. 00 40.92 - 15. 92

20. 0 70. 00 59. 85 10. 15 33.00 so. 00 72. 59 7.41
50. 00 80. 00 82.47 -2.47 75.00 95. 00 92.46 2. 54
75. 00 90.00 92.46 -2.4(

November 2007 WCAP-I 6760-NI~

WCAP-16760-NP November 2007 Revision 0

C-86 CAPSULE U SURVEILLANCE PROGRAM WELD Page 2 Plant: WATTS BAR I Material: SAW Ileat: 895075 Orientation: NA Capsule: U Fluer.ce: n/cmA2 Charpy V-Notch Data Tenmperawre Input 11-rccni Shcur Compured Ptrcictt Shear Differential 90.00 96.97 -6. 97 100. f0 125. 00 90. O0 98. 81 150.00 85. 00 99.54 -14. 54 250. 00 100. O0 99.99 .01 300.00 100,00 i0o. 00 .00 350.00 100.00 100.00 .00 Cortclatior. Ccftkicim .972 WCAP- 16760-NP November 2007 Revision 0

C-87 CAPSULEXW SURVEILLANCE PROGRAM WELD CVGRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 0711312007 09:50 AM Page I Co.fficients of Curve 3 A --50. 11=50. C= 88.62 TO = 19.9 D= 0.00F0+0 Equation is A + u * ['unh((T-To)/(C+DT))]

Temperature at 50% Shmr = 19.9 Plant: WATiS BAR I Material: SAW Hea: 895075 Orientation: NA Cursule: w Fluence: n/cn^A2 125 100 75 En 0

U) 50 at.

0 2

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F Charpy V-Notch Data Te'mpenture Input P'rcent Shear Coenpmcd Percent Shear Differential

- 5O.00 .00 17. 15 - 17. 15

- 20. 00 30. 00 2.94 1,06

10. 00 55.00 44.49 10.51
25. 00 60.00 52.93 7. 07
40. 00 65.00 6 1. 20 3. 80 65.00 68. 88 3.88 55, 00
70. 00 70.00 75. 64 -5. 64 100.00 75.00 85.94 - 10.94 125. 00 90. 00 91.48 1.48 November 2007 WCAI'-1 6760-NP WCAP-16760-NP November 2007 Revision 0

C-88 CAPSULE W SURVEILLANCE PROGRAM WELD Page 2 Plant: WATTS BAR I Material: SAW Heat: 895075 Oricn~ation: NA Capsule: W Fluence: n/cmA2 Charpy V-Notch Data Temperature lnpl* Percent 5hear Gumpuled Perent Shear Difucruifial 150. 00 100.00 94. 97 5S.03 200. 00 100. 00 9. 32 1. 69 350. 00 100. 00 99. 94 .06 Cofilat4-m Cuefficikrt = .967 WCAP- 16760-NIP November 2007 Revision 0

C-89 CAPSULE X SURVEILLANCE PROGRAM WELD CVGRAP[I 5.0.2 Hyperbolic Tangen Curve Printed an 07/13/2007 09:50 AM Page 1 Coefficients of Curve 4 A = 50. B = 50. C = 120.09 TO = 70.86 D = 0.001.,"O0 Equation is A + B I [Tanh((T-ToY(C+DT))]

Tempeature at 50% Shear = 70.9 Plant WATTS BARI MaIterial: SAW lieat: 895075 Orientation: NA Capsule: X ucence: nrr^ni2 125 100 S.-

75 U,

0 U

0 50 0.

25 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F Churl)y' V-Notch Data Input Pcr~cat Shear Computed Percent Shear Difforelial Tempcm:+/-

5.49 4.51

-100. 00 10.00 15.00 8. 10 6.90

- 75. 00 3.21

-50. 00 15.00 11.79

25. O0 16. 85 S. 15

- 25. 00 -6.63

10. 00 20.00 26, 63
31. 7S 1.78
25. 00 30.00 -16.40
50. 00 25.00 41. 40 65.00 51.72 13.28
75. 00 - 1.90 100.00 60.00 61. 90 WCAP-16760-NP November 2007 Revision 0

C-90 CAPSULE X SURVEILLANCE PROGRAM WELD Paie 2 Plant: WAT'S BAR I Material: SAW Hcat: 895075 Orientation: NA Capsule: X Filence: n/cmn^2 Charpy V'-Notch Data Tempifitur, Input Pcrcnt Shear Ckuiputed Pcrtcnt SIr-r Diffarcnial 75.00 71.13 3. 87 125.00 -15.00 175.00 70.00 85. 00 100.00 89. 57 10. 43 200.00 2.13 225.00 95.00 92. 87 100.00 92. 87 7. 13 225.00 3.23 275. 00 100.00 96. 77 Comiielion Cocfficicnt = .970 WCAP- 16760-NP November 2007 Revision 0

C-91 CAPSULE Z SURVEILLANCE PROGRAM WELl)

CVGRAPH 5.0,2 Hyperbolic Tangent Curve Printed on 07/1312007 09:50 AM Page 1 Coefficients of Curve 5 A = 50. 1- 50. C = 124.26 TO = 47.49 1) = 0.OOE+00 Equation is A + 11* rranh(fT-To)Y(C÷DI))j Temperature at 50% Shtnar = 47.5 Plant: WATTS BAR I Material: SAW Hent: 895075 Orierution- NA Capule: 7 Fluence: n/cMA2 125 100 S..

75 0

2 C) 50 25 0*--

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Deg F Charpy V-Notch Data ernrcraturc Input Percent Shear Cumputcd Pecxnt Shc*r D'Sfrential 10.00 8.52 1.48

-100. 00

-25.00 20.00 23.74 .3. 74

- 15. 00 30.00 26.78 3.22

.00 25.00 31.77 -6. 77 15.00 35.00 37,21 -2.21 25.00 50.00 41, 05 S. 95

40. 00 55. 00 46. 99 - .. 01
50. 00 50, 00 51.01 75.00 50, 00 60. 89 -10. 89 WCAP-16760-NP November 2007 Revision 0

C-92 CAPSULE Z SURVEILLANCE PROGRAM WELD Page 2 Plant: WAITS BAR 1 Material. SAW lleat: 895075 Orientation: NA Capsule: Z Fluence: n/cmA2 Charpy V-Notch Data Tcmnpm.Ttluc iniit Prrccnt Slicar Cinmputcd Pumcat Shr Diffcrcntial 100. 00 70. 00 69. 95 . 05 1 25. 00 80.00 77. 69 2.31 150. 90 85.00 83. 89 1.69 300.O0 100.00 98.31 350.00 100.00 99. 24 .76 375.00 100. 00 99. 49 .51 Co'rclatiua Cefficieknc =.986 WCAP-16760-NP November 2007 Revision 0

C-93 UNIRRADIATED HEAT AFFICTED ZONE CVGRAPIH 5.0.2 Hyperolic Tangrent Curve Prinecd on 0711312007 01:21 PM Page 1 Cocfficients of Curve I A = 45.6 Ii = 43.4 C = 99.6050 = .18.8 I) = 0.00E+00 Equation is A + B I [Tanh((T-Toy(C+DT))]

Upper Shelf Energy-S9.0(Fixed) Lower Shelf Energy=2.2(Fixed)

Temnp@30 ft-lbs=-56.2 Dcs F Terp @50 ft-lbs=-8.6 Dcg F Plant: WATI'S BAR I Material: SASOC1.2 Ileat: 527536 Orientatior: NA Capsule: UNIRR Fluencc: nktn'2 300 250 200 0

0 IL 150 z

> 100 50

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Deg F Charpy V-Notch Data Tcmperature ]npu! CVN Compwmd CVN Dilycttendal I225. 00 3.00 3.56 * .56

-225.0oo 3.00 3. 56 - .56

  • 150. 00 7.00 8.02 -!.02 1lC0. 00 30. 00 16. 42 13.58

. 67. 00 17.00 26. 10 -9. 10

- (7. 00 23. 50 26. 10 -2.60

-40. 00 37.50 36.50 1. 00 36.00 45.08 -9.08

-20.00

-7. 00 71. 00 50.71 20.29 WCAIP-16760-NP November 2007 Revision 0

C-94 UNIRRADIATED HEAT AFFECTED ZONE Page 2 Plant: WATTS BAR I Malerial: SA50SCL2 Heat: 527536 Orientation: NA Capsule: UNIRR [luence: nrcm^2 Charpy V-Notch Data "J'rnpcmtaure Input CYN Computed CVN

-7.00 45.50 50.71 5. 21

-7.00 60.00 50. 71 9. 29

20. 00 43.00 61. 69 -18.69
20. 00 59.50 61.69 -2. 19
40. 00 73.00 68. 60 4.40 73.50 76. 06 2. 56
68. 00 100.00 80. 00
  • 1. 68 -1.68 150. (0 108. 00 86.16 21. 84 210.00 94. 00 88.13 5. 97 Cofreta'ion Coetficient =.949 WCAP-16760-NP November 2007 Revision 0

C-95 CAPSULE U HEAT AFFECTEi) ZONE CVGRAPH 5.0.2 II)Werbolic Tangent Curve Printed on 0711312007 01:21 PM Page I Coefficients of Curve 2 A = 40.6 B = 38.4 C = 91.79 TO = 20.6" 1 = 0.00E+0O Equation is A + B* [Tanh((T-ToY)(C+DT)))

Uppcr Shelf Fnergy=-79.0(Fixed) lower Shelf Encrg*-2.2(Fixed)

Temp@30t-lbs=-5.3 DegF Tcuip@50 fi-lbst43.7 Deg F Plant: WATTS BAR I Material: SA50SCL2 Heat: 527536 Orientation: NA Czpsulc: U Fluenctc n/cnri2 300 250 U3

. 200 0

150 LIJ 100 5o 0 - 10 1 00 1-2

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Deg F Charpy V-Notch Data Tempcratwrc Input CVN ConpU'cd CVN Differential

- 175. 00 3.00 3.27 -. 27

- 100. 00 8.00 7. 37 .63

-25. 00 26. 00 22.93 3.07

.00 37. 00 32.09 4.91

25. 00 55.00 42.4 1 12.59
40. 00 36.00 48.56 -12.56
50. 00 39.00 52.46 -13.46
60. 00 36.00 56. 11 -20. 11
70. 00 79.00 59.45 19. 55 WCAP-16760-NP November 2007 Revision 0

C-96 CAPSULE U HEAT AFFECTED ZONE Page 2 Plant: WAT'S BAR I Material: SA50SC12 Heat: 527536 Orientation: NA Capsule: U Fluence: rIcm^2 Charpy V-Notch Data Tcrpcraturc Input CVN Comnputed CVN Difrum.':ntia!l 61.00 34. 00

75. 00 95.00
75. 00 15.00 61. 00 -46.00 100. 00 99.00 67.42 31.58 150.00 68.00 74.67 -6.67 250.00 86.00 78.48 7. 52 300.00 :3.00 78. 83 4. 17 CozrTcation Coerfikkrt = .780 November 2007

~VCAP-I6760-NP WCAP-16760-NP November 2007 Revision 0

C-97 CAPSULE W HEAT AFFECTED ZONE CVGRAPH 5.0.2 ylyperbolic Tangent Curve Printed on 07/13/2007 01:21 PM Pagc 1 Coefficicnts of Curve 3 A = 39.6 B = 37.4 C = 111.37 TO = 21.74 D =0.O0E+0O Equation is A + B * [Tanh((T-ToY(C+DT))]

UppeŽr Shelf Energy=77.C(Fi.cd) L.owe r Shelf Energy=2.2(Fixed)

TeinpC3O ft-lbs=-7.4 Deg F Teinp,C50 ft-lbs=5_3.6 Deg r Plant: WATTS BAR I Matctial: SA508Cl2 Heat: 527536 Orientation: NA Capsule: W Flueuce: rJcn^A2 300 250

.200 150 100 50 0 ........

-a *- I - -" i*----

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Deg F Charpy V-Notch Data Tempcraturc Input CVN Comnpuled CVN Diffeluntial

- 50. o0 15.00 18.37 -3.37

- 30. 00 37.50 23.38 14. 12

-20. 00 26.50 26.20 .30 Ia. n0 33.00 55. 67 -2.67

40. 00 37. 00 45.68 -8. 68 70.00 5s. 00 54.86 2. 14 85.00 4..50 58. 82 - 14.32 1 0. 00 69. 00 62.27 6. 73 150.00 806.50 70. 20 16. 30 WCAP-16760-NP November 2007 Revision 0

C-98 CAPSULE W HEAT AFFECTED ZONE Page 2 Plant: WATTS BAR I Material: SA508CI2 Heat: 527536 Orientation: NA Capsule: W Fluence: nlcm^2 Charpy V-Notch Data 1UI)L-t CVN Cta'.pu:cd CVN DifkzcntiJ 2060. 00 79. 50 74.07 5.43 300.00 ;t. 00 76. 50 4.50 350.00 60.50 76.79 -16.29 Correlation Coefficient =.902 November 2007 WCAP-16760-NP November 2007 Revision 0

C-99 CAPSULE X HEAT AFFECTED ZONE CVGRAPH 5.0.2 Hyperbolic Tangent Cume Printed ort 07/13/2007 01:22 PM Page I Coefficients of Curve 4 A=42.1 B&=39.9C=88.37 TO=45.95 D= 0.00E+00 Fiuatioan is A + 11 * [Taah((T-To)y(C*DT)]

Upper Shelf E-nergy=82.0(Fixcd) Lower Shelf -ne.gy-2.2(Fixed)

T"emp@30 fE-lbs=18.3 Deg F Temp%50 ft-lb----3.7 Deg F Plant: WAMrS BAR I Material: SA508CL2 Hl*z: 527536 Orientation: NA Capsule: X Fluence: n/cin"2 300 250 200 10 ISO W

> 100 50 0 "

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Deg F Charpy V-Notch Data Tcmpcaature Input CvN Computed CVN Differential

-75.00 9. 00 7. 05 .95

-50.00 16.00 10. 37 5. 63

.00 22. 00 23. 04 - 1.04

29. 00 32. 81 -3. 91
25. 00 50.00 42. 00 43.93 - 1. 93 75.00 59.00 -94.76 4. 24 100,00 75.00 61. 86 11.14 125. 00 58.00 70. 57 -12.57 150.00 58.00 75.08 -17.08 November 2007 W(.A1'-I h7bU-NI' WC:AP'-16760-NPl November 2007 Revision 0

C-I00 CAPSULE X HEAT AFFECTED ZONE Page 2 Plant: WATTS BAR I Material: SA50SC12 Ueat: 527536 Orientation: NA Capsule: X Fluence: n/cmA2 Churpy V-Notch Data Temiprature Input CVN Computed CVN Diterential 200.00 87.00 79.63 7.37 200.00 97.00 79.63 17,37 225.00 96. 00 80.64 15.36 250. 00 92.00 81. 22 10,78 275, 00 69. 00 81.56 - 12. 56 300. 00 79, 00 81, 75 -2.75 Correlation Cceffcient = .939 WCSAP- 16760-N P November 2007 Revision 0

C-101 CAPSULE Z HEAT AFFECTED ZONE CVGRAPII 5.0.2 Hyperbolic Tangent Curve Printed on 07/13/2007 01:22 PM Page 1 Coefficients of Curve 5 A -= 40.6 B = 38.4 C = 118.89 TO = 45.11 D = .OOEE+00 Equation is A + It

  • ITanh((T-To)I(C+DT))]

Upper Shelf Energy=-79.0(Fixed) Lower ShclfEncrgy=2.2(Fixed)

Tcmp@30 Wt-lbs=l L.5 Deg F Ternp@50 ft-lbs=74.9 Deg F Plant: WATTS BAR I Material, SA50SCL2 He=t: 527536 Orientation: NA Capsule- Z Fluence: n/cmA2 300 250 200 150 z

100 50 0 k- I-4

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F Charpy V-Notch Data 7empcerature Inlut CVN Comnuted CVN Di/felentmla 100. 00 8.35 .65 9.00

-25. 00 22.00 20. 26 1.74 00 34.00 26. 69 7. 31

15. 00 27.00 31.08 -4. 08
25. 00 31.00 34. 17 -3. 17

-0. 00 30.00 38.95 S. 95

50. 00 40.00 42. 19 .2.18
60. 00 46.00 45- 38 .62
75. 00 62.00 50. 06 11.94 WCAP-1 6760-NP November 2007 Revision 0

C-102 CAPSULE Z HEAT AFFECTED ZONE Page 2 Plant: WATTS BAR I Material: SA508CL2 Hcut: 527536 Oricntation: NA Capsulc: Z Fluence: nucmA2 Charpy V-Notch Data lInpt CVN CoLmputed CVN Differcmtia Ternperalure 63.11 -1. 11 125. 00 62.00 69.00 71.23 -2.23 175. 00 68.00 77.96 -9.96 300.00 4.69 325, 00 83.00 78.31

90. 00 78.55 1. 45 350.00 17.30 375. 00 96. 00 7R. 70 C'orreliion Cocfficieni =.960 U~C' A fl
  • f-Itt.

Wvv.CAP-IIOUU-IN" November 2007 Revision 0

C-103 UNIRRADIATED HEAT AFFECTED ZONE CVGRAP11 5.0.2 Iypcrbolic Tangent Curve Printed on 0711312007 10:58 AM Page 1 Coefficients of Curve I A = 33.16 B = 33.16 C = 114.43 TO = -7. D = 0.0OE+00 Equaion is A + 1H* Ilanh((T-ToY(CD'dYl)j Upper Shelf L.E.=66.3 Lower Shelf L.E.-.O(Fikd)

Temp.*L.L L. 35 mils=-.6 Deg F Plant: WATTS BAR 1 Materialh SA50SCL2 Heat: 527536 Orientation: NA Capsule: UNIRR Fluence: nIcmA2 200 150

.2 E I- - _ __ _ _ _

100 1 ~0 -

czn 10 c

0 0

00 0

-300 ) 300 600 Temperature In Deg F Charpy V-Notch Data Termperatur" Input LE. (,nmputed I E.. Differential

-225.00 1.00 1.44 -. 44

.225.00 1.00 1.44 ,44

- 150.00 4.00 5. 03 -!. 03

. 100.00 18.00 10.91 7.09

-67.00 10.00 17. 21 -7.21

.67, 00 13.00 .17. 21 .4. 21

-40. 00 2g. 00 23. 65 4. 15

-20. 00 25.00 29. 41 -4.41

-7. 00 41.00 33. 16 7. 84 WCAP- 16760-NP November 2007 Revision 0

C-104 UNIRRADIATED HEAT AFFECTED ZONE Page 2 Plant: WATTS BAR I Material: SA50SCL2 Heat: 527536 Orientation: NA Capsule: UNIRR Fluence: n/crma2 Charpy V-Notch Data Temperature Input I4-. Computod LF- DiTreptiol

-7.00 31. 00 33. 16 -2. 16

40. 00 33. 16 6. 84

-7.00

33. 00 40. 84 -7. 84 20.00
20. 0o 41.00 40. 84 . 16
40. 00 49.00 46. 06 2.94 50.00 52. 24 -2.24 bB. 00 51.00 57.46 -6.46 100.00 150. 00 76.00 62. 31 13. 69 SB. 00 64.86 -6.86 210. 00 Correlatkin Cocificient , .959 IM,

¥ .t*-i f)

-1 Ir Ic 1U -1N[" November 2007 Revision 0

C-105 CAPSULE U HEAT AFFECTED ZONE CVGRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 07/13/2007 10:59 AM Page 1 Coefficients of Curve 2 A = 27.21 B = 27.21 C = 80.96 r0 = 27.31 D = 0.001F+10 Equation is A + B * (Tanh((T-To);(C-eDT))j Upper Shelf L.E.=54.4 Lower Shelf L.E,=.0(Fixcd)

Temp.CsLE. 35 mils--5 1.2 Deg F Plant: WATI'S BAR ] Material: SA5SOCI2 Heat: 527536 Orientation: NA Capsule: U Fluence: n/cn^A2 200 150 E

0 1.3

2. 100 50 /d Mo

'si f0

-300 0

0 300 600 Temperature in Deg F Churpy V-Notch D)ata Tempecature Input LE. Computed LE. Differential

  • 175. 00 2.00 .37 1.63

- 100. 00 I. 00 2. 25 -1.25

-25. 00 10.00 11.73 S1.73

.00 21. 00 IS. 37 2.63

25. 00 40.00 26. 44 13.56
40. 00 25, 00 31.,44 -6. 44
50. 00 27. 00 34.65 -7.65
60. 00 27. 00 37.64 - 10. 64 70.00 58.00 40. 37 17. 63 WCAl'-16760-NIP November 2007 Revision 0

C-106 CAPSULE U HEAT AFFECTED ZONE PaSe 2 Plant:WVATS BAR I Material: SAS08CL2 I Icat: 527536 Orientntion: NA Capsule: U Flucr.ce: n/cmA2 Charpy V-Notch Data Tenmcrarure Input L.E. Cornputd I.E. Dilfeffntial

75. 00 56. 00 41.62 14. 39
75. 00 5.00 41.62 36. 62 100.0 68. 00 46. 68 21. 32 150. 00 52.00 51.92 .08 250. 00 50.00 54. 21 -4.21 300. 00 53. 00 54. 36 -1. 36 Coirclation COxfficiernt .782 Novembcr 2007 WCAP- 16760-NP WCAP-16760-NP November 2007 Revision 0

C-107 CAPSULE HEAT AFFECTED ZONE H

CVGRAPID 5.0.2 Hyperbolic Tangent Curve Printed on 07/13/2007 10:59 AM Page 1 Coefficients of Curve 3 A = 31.8 1I = 31.8 C = 108.76 TO = 36.94 D = 0.00E+00 qtuatfon is A + B * ['anh((T-Toy(C+D'))]

Upper Shelf L E.=63,6 Lowe. Shelf L.E.=.0(Fixed)

Temp.0L.E. 35 mils=49.0 Deg F I;Iant: WATTS lIAR 1 Material: SAS0SCI,2 tieat: 527536 Orientation: NA Capsule: W Fluenlce: n/fem-2 200 150 M

Em R 100 50 O0.-

.300 0 300 600 Temperature In Deg F Clarpy V-Notch Data

'TeiNpeaate [npul LE. Cornpu:cd L.E. Differcntial 10.70 - I. 70

-50. 00 9. 00

-30. 00 22. 00 14. 37 7.63

-20.00 17.00 16.52 .48

10. 00 25. 00 24. 08 . 92
40. 00 29.00 32.70 -3,70
41. 18 -I. IS 70, 00 40. 00
85. 00 34.00 45. 00 100.00 52.00 48.42 3.58 150. n0 70.00 56.53 13. 47 WCA 1"- 107OU-NP Novembcr 2007 Revision 0

C-108 CAPSULE W HEAT AFFECTED ZONE Page 2 Plant: WATTS BAR I Material: SA508CL2 1 cat: 527536 Orientation: NA Capsule: W Fluencc: nfcmt2 Charpy V-Notch Data T00peri0ure Input L.E. Compuctd L.f. DifrCrential 200.00 63.00 60. 59 2. 42 63.00 63. 10 -10 300.00 350. 00 55.00 63.40 - E~. 40 Coirclatken Coefficient = .947 WCAP-16760-NP November 2007 Revision 0

C-109 CAPSULE X HEAT AFFECTED ZONE CVGRAPH 5.0.2 y.perbolic Tangent Curve Printed on 07/13/2007 10:59 AM Page 1 Coefficients of Curve 4 A = 28.15 B =28.15 C =79.27 10 = 52.89 D = 0.0(E+00 Equation is A + 11* jTanh((T-To)1(C+DT))]

Upper Shelf L.E.=56.3 Lower Shelf l.,E=.0(Fixed Temp.@L.E. 35 mils=72.6 Dzg F Plant: WATTS BAR I Material: SA508CI.2 Heat: 527536 Orientation: NA Capsule: X fluence: nler'12 200 150

1. .......... ..... .........

50 0

-300 0 300 600 Temperature in Deg F Charpy V-Notch Data rTealpr.! atuw Irput LE. Computed Lr- Diffcrcatdal

-75. 00 .00 2.15 -2. 15

-50. 00 4.00 3.91 .09

.00 10.00 11. 74 -1.74

25. 00 IS. 00 18.64 -. 64
50. 00 29. 00 27. 13 1.57
75. 00 36. 00 35. 81 .19 100. 00 54. 00 43. 16 10. 54 125. 00 34. 00 48. 45 -14.45 150. 00 42. 00 51.53 -9. 53 November 2007 WCAP-I 6760-NPP WCA P-1!6760-N November 2007 Revision 0

C-I10 CAPSULE X HEAT AFFECTED ZONE Page 2 Plant: WATTS BAR 1 Materia!: SA50SCL2 Hcat: 527536 Orientation: NA Capsule: X Fluence: rJcm^2 Charpy V-Notch Data Tempcrawre Input L.E. CAimputed LE. Diffncrnial 200. 00 66.00 54.96 LI. 04 200. 00 58.00 54.96 3.04 225. 00 70. 00 55. 5S 14. 42 250. 00 65.00 55.92 9. 08 275. 00 41.00 56. 10 -15. 10 300. 00 47.00 56. 19 -9.19 Cotrelation Coefficient = .915 WCAP-16760-NiP November 2007 Revision 0

C-Ill CAPSULE Z HEAT AFFECTED ZONE CVGRAPII 5.0.2 Hlypcrbolic Tangent Curve Printed on 07/13/2007 10:59 AM Page 1 Coefficients of Curve 5 A = 31.82 B =31.82 C = 124.1 TO = 44.39 D= 0.OOE+OO, Equation is A + B I[Tanh((T-To)/(C+DT))1 Upper Shelf LE.,63.6 Lower Shelf L.E.=.0(Fixed)

Tenp.@L.E. 35 mils=56.9 Deg F Plant: WATTS LIAR I Material: SAS08CL2 Ilent: 527536 Orientation: NA Capsule: Z Fluence: nicne'2 200 150 E

100 0o 9

50 S4-

-300 0 300 600 Temperature in Deg F Charpy V-Notch Data Tcmpcrt-,uri- Input L . Computed L,l.r. Differential

- 100.0(0 6. 00 5.66 34

-25. 00 16.00 15.668 32

.00 24.100 20.90 3.10 15.000 23.00 24.42 - 1.42 25.00 26.00 26. 89 -. 39

40. 00 27. 00 30.70 -3.70 50.00 33. 00 33. 26 -. 26 60.00 36. 00 35.o80 .20 75.00 40.00 39. 52 .48 WCAP-16760-NP November 2007 Revision 0

C-112 CAPSULE Z HEAT AFFECTED ZONE Page 2 Plant: WATT'S BAR I Matcrial: SA50SCI- Heat: 527536 n/erA^2 Orientation: NA Capsule: Z Fluence:

Charpy V-Notch Data Input LE. Comparcd L.E. Diffcrential Teiperature 125. 00 56.00 50. n0 6. 00 175. 00 54,00 56. 73 -2.73 300.00 46. 00 62. 63 -16. 63 325.00 75. 00 62. 96 12. 04 350. 00 55, 00 63. 19 - a. 19 375. 00 75. 00 63.34 11. 66 Corrclaion Coefficient = .939 WCAP-16760-NP November 2007 Revision 0

C-1 13 UNIRRADIATED) BEAT AFFECTED ZONE CVGRAPH 5.0,2 Ilyperbolic Tangent Curve Printed on 07113!2007 10:53 AM Page 1 Coefficients of Cur-ve I A = 50. B = 50. C = 94.74 TO = .22.26 D =0.OGE+00 Equation is A + 11 -[Tanh((T-To)(C+DT)Ij Temperature at 50% Shear = -22.2 Plant: WATIS 13AR 1 Material: SA5S08CL2 Heat: 527536 Orientution: NA Capsule: UNIRR Fluence: n/cin2 125 100 I-4, 75 C,,

4, 4.)

I-0 50 0~

25 0 -- ,

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F Charpy V-Notch Data Tern pcrwturr InpUt Peicent Shear Comepuerd Percent Shear Differential

- 225. 00 .00 1 37 - . 37

-225. 00 . 00 1.37 -1.37

- 150. 00 ,00 6.32 -6. 32

- 100.00 20. 00 16.23 3. 77

- 67. 00 is. 00 25.00 -10. 00

-67. 00 33.00 28.00 5. 00

- 40. 00 35.00 40. 75 -5.75

- 20. 00 55. 00 51. 19 3. 51

-7. 00 79.00 57. 99 21.01 November 2007 WCAP- 16760-NP WCAP-16760-NP November 2007 Revision 0

C-114

'UNIRRADIATED HEAT AFFECTED ZONE Page 2 Plant: WA1TS BAR I Marteial SA5OSCI2 He-at: 527536 Orientation: NA Capsule: UNIRR Fluence: r/crn^2 Charpy V-Notch Data Tempeaplure input Percent S:.car Compiled Percent Shea. Differential 56.00 57. 99 -i. 99

-7.00 74.00 57. 99 16.01

-7.00 50.00 70. 93. -20.93 20.00 -24. 93

20. 00 46.00 70. 93
40. 00 84. 00 78, 82 5. 18
68. 00 100.00 87. 05 12.95 100. 00 91. 00 92.96 - 1.96 1 50.00 100.00 97.43 2. 57 210.00 100.00 99. 26 - 74 Currclxion Coefficient - .94S WC.,AI'- 0/0U-NI" November 2007 Revision 0

C-1 15 CAPSULE U HEAT AFFECTED ZONE CVGRAPI! 5.0.2 l)rpcrbolic Tangent Curve 'rint:ed cn 07/13/2(MY710.53 AM Page I Coefficients of Curve 2 A =50. B =50. C =37.41 TO =88.1 D =0.OOE+00 Equation is A + It I'Ianh((T-TOy(C4DT))j]

rTeinpcraturc at 501,' Shear = 89!

Plant: WATIrS BAR I Material: SAS0SCL2 Heat: 527536 Orientation: NA Capsule: U Fluence: n/cm't2 125 100 I- 75 cia 50 25

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F Charpy V-Notch Ositta "rlmpet-ature Input Percent Shear Comr.uted Pcrcczt Shear Differential

- 175.O00 .00 .0O .00

-100.00 5.00 .00 5.00

-25.00 10.00 .24 9.76

.$89 14. 11

.00 15.00 25.00 15. 00 3.31 11. 69 40.00 20.00 7. 10 12.90

50. 00 20.00 11.54 8. 46 (0.,00 20.00 1E. 21 1. 79
70. 00 5.00 27.54 -22. 54 Novembcr 2007 WCAI'- 10

~VLAt'- fOCi-IN 1' 1600-N 1" November 2007 Revision 0

C-i 16 CAPSULE U HEAT AFFECTED ZONE Page 2 Plant: WAMrS BAR 1 Material: SA5S08CL2 lleat: 527536 Orientation: NA Capsule: U Ilucnuc: n/cm"n2 Charpy V-Notch Data Temperararc Input Peroen Shear Computed Pcrcent S1ear Dirferemial

.8. 18

75. 00 25.00 33. 18
33. 18 6. 82
75. 00 40. 00 to0. 00 75. 00 65. 39 9.61 ISO0. 00 100.00 96. 48 3.52 250. 00 100.00 99. 98 02 300. 00 100.00 100. 00 .00 Correlatitin Coefflient =.970 WLCAi'- 1b760-NIP November 2007 Revision 0

C-1 17 CAPSULEW IHEAT AFFECTED ZONE CVGRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 07/130(007 10:.4 AM Page I Coefficicits of Curvc 3 A = 50. t = 50. C = 99.03 TO = 3958 D =0.0OE+00 Equation is A + B

  • ITanh((T-'o)/(C-+DT))I Temperature at 5OS Shear = 39.6 Plant: WAAT'S BAR I Material: SASOBCL2 Heat: 527536 Orientation: NA Capsule: W Fluence: tilcmA2 125 100 I. 75 0
0. 50 25 04---

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F Charpy V-Notch Data Terarmature Input Percent Shear Computcd Percent Shear Differential

-50, 00 . 00 14. 07 -14,07 19.70 5, 30

-30. 00 25.00

-20.00 30. 00 23.09 6.91

10. 00 45. 00 35.49 9. 51
40. 00 50. 00 50. 21 .21
70. 00 50.00 64. 89 - 14. 89
85. 00 60. 00 71.45 -II 45 M00.00 90. 00 77.21 12.79 150.00 100.00 90.29 9 71 November 2007 WCAP- 16760-NP XVCAP- 16760-NP November 2007 Revision 0

C-118 CAPSULE W HEAT AFFECTED ZONE Pagc 2 Plant: WATTS BAR I Matcrial: SA508CL2 Heat: 527536 Orientation: NA Cepsulc: W Fluence: n/cn^A2 Charpy V-Notch Data Tccmcrtture Input Percent She omputlcd Perccni Shear Di'fcrntial I 00. 00 96. 23 3.77 200. 00 100.00 300. 00 99.48 .52 350. 00 100.00 99. 81 , 19 Conelalion Cefficint -63 November 2007 WtJAI'-I t/bU-NI' WC.AP'-16760-NP November 2007 Revision 0

C-119 CAPSULE X HEAT AFFECTED ZONE CVGRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 07/13/2007 10:54 AM Page 1 Coefficients of Curve 4 A = 50. B = 50. C = 117.85 TO = 64.64 1) = O.OOE+00 Equation is A 4 13' ITanh((T-ToY(C4i}T))

Tempcrature at 50% Sh*ar -64.7 Plant: WATTS BAR I Miterial: SA508CL2 Heat: 527536 Orientalion: NA Capslec: X Fluence: rJcm^2 125 100

-A 75 CA a-9L CI 0.

50 -- - A' I

  • I _

25 ___ __ __ _ _

0 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F Charpy V-Notch Data Ycirpvrawrur Inpu*Percent Shear Computed Percent Shear Differcnlial

-75. 00 5. 00 8.55 -3.55

-50. 00 10.00 12.50 -2.50

'00 25. 00 25. 03 - . 03 33.79 - 3. 79

25. 00 30.00
50. 00 50.00 43.82 6. 18
75. 00 45.00 54.38 .9.38 100. 00 90.00 64. 57 25.43 125. 00 70. 00 73.58 -3.58 150.00 60.00 80, 98 -20.98 Novcmbcr 2007 WCAI'-IOIbU-NI' WIJAI- 16760-NP1 November 2007 Revision 0

C-120 CAPSULE X IIEAT AFFECTED ZONE Page I Plant: WA1TS BIAR I Material: SA508CL2 Heat: 527536 Oricntaition: NA Cipsule: X Fluence: nIcmA2 Charpy V-Notch Data Temperature lnpu,. Pcwer.1 Stcvr CAmiputed Pcnvcnt Shar lDiffa~cniial 200. 00 95. 00 90. 86 4. 14

90. 86 :86 200. 00 90. 00 225.00 90.00 93. 83 -3 83 250. 00 100.00 95. 87 4. 13 275. 00 100.00 97. 26 2. 74 300. 00 100.00 98. 19 1 81 Cc~r-cla-iun Cociftrient c.960 WCAP'-16760-NP November 2007 Revision 0

C-121 CAPSULE Z HEAT AFFECTED ZONE CVGRAPH 5.0.2 IypTe-bolic Taigcnt Curve Printed on 07/13/2007 10:54 AM Page 1 Coerficients ofCur',c 5 A = 50. B = 50. C = 65.72 T0 = 36.9 1) = O.00EL400 Fquation is A + B 4 tTanh((T-ToY(C+DT))1 Tcrnpezature at 50%, Shear = 37.0 Plant WATfS BAR I Maierial: SASOSCL.2 Heat: 527536 Oricntation: NA Capsule: Z Fhuence: r/cm"2 125 100 75 9o C

50 25

-300 -200 -100 0 100 200 300 400 500 600 Temperature In Deg F Charpy V-Notch Dala Tempcraturc Input rcrucutt Shcar Compuitcd Perccnt Shcar Dirrferntnial

- 100. 00 2. 00 1.53 .47

-25.00 15.00 13.20 I. s0

.00 15, 00 24. 55 -9.55 15.00 40.00 33.93 6.07

25. 00 40.00 41, 04 S!. 04
40. 00 60. 00 52. 35 7. 65
50. 0o 50.00 59. S3 -9. 83 6~o. 00 70.00 66. 88 3, 12
75. 00 80.00 76. 12 3.88 Novembcr 2007

~VLA1'-10 IOU-Ni' NWLAr-1676OU-N 1' November 2007 Revision 0

C-122 CAPSULE Z HEAT AFFECTED ZONE Page 2 Plant: WATfS BAR I Material: SA5OSCI2 Heat: 527536 Orientation: NA Capsu!e: Z Flucnce: n/cmr'ý2 Charpy V-Notch Data Temperatture Input Pera! Shear Computed PcIrcei: Shear Diffurenwl 125.00 85.00 93. 59 -. 59 175. 00 100.00 98.53 1.47 300. 00 100. 0O 99.97 .03 325. 00 100.00 99.98 .02 350. 00 100.00 99.99 .01 375. 00 100.00 100.00 .00 Co-drcatinn Coefficient = .9S9

~v ~~tu--L

~1If' A fl I U IUU-JNt~

£'7LA ~

November 2007

%VCAP'-1 6 1U-Nr" Revision 0

D-1 APPENDIX D WATTS BAR UNIT 1 SURVEILLANCE PROGRAM CREDIBILITY EVALUATION D.1 INTRODUCTION Regulatory Guide 1.99, Revision 2 [Reference D-1 ] describes general procedures acceptable to the NRC staff for calculating the effects of neutron radiation embrittlement of the low-alloy steels currently used for light-water-cooled reactor vessels. Position C.2 of Regulatory Guide 1.99, Revision 2, describes the method for calculating the adjusted reference temperature and Charpy upper-shelf energy of reactor vessel beltline materials using surveillance capsule data. The methods of Position C.2 can only be applied when two or more credible surveillance data sets become available from the reactor in question.

To date there have been four surveillance capsules removed from the Watts Bar Unit I reactor vessel. To use these surveillance data sets, they must be shown to be credible. In accordance with the discussion of Regulatory Guide 1.99, Revision 2, there are five requirements that must be met for the surveillance data to be judged credible.

The purpose of this evaluation is to apply the credibility requirements of Regulatory Guide 1.99, Revision 2, to the Watts Bar Unit I reactor vessel surveillance data and determine if that surveillance data is credible.

D.2 EVALUATION Criterion 1: Materials in the capsules should be those judged most likely to be controlling with regard to radiation embrittlement.

The beltline region of the reactor vessel is defined in Appendix G to 10 CFR Part 50, "Fracture Toughness Requirements" [Reference D-2], as follows:

"the reactorvessel (shell materialincluding welds, heat affected zones, andplates orforgings) that directly surrounds the effective height of the active core and adjacentregions of the reactor vessel that are predictedto experience sufficient neutron radiationdamage to be consideredin the selection of the most limiting materialwith regardto radiationdamage."

The Watts Bar Unit I reactor vessel consists of the following beltline region materials:

  • Intermediate Shell Forging 05
  • Lower Shell Forging 04
  • Intermediate to Lower Shell Circumferential Weld Seam (Heat # 895075)

The vessel forging material selected for inclusion in the surveillance program was Intermediate Shell Forging 05, which had the highest initial RTNDT (Initial RTNDT = 47°F per Appendix B of Reference D-3, and lowest initial USE (which was below the 75 ft-lbs limit from 10 CFR 50 Appendix G). Thus, it was selected as the surveillance base metal.

WCAP-16760-NP November 2007 Revision 0

D-2 The weld material in the Watts Bar Unit I surveillance program was made of the same wire as the reactor vessel beltline circumferential weld, thus it was chosen as the surveillance weld material. Hence, Criterion 1 is met for the Watts Bar Unit 1 reactor vessel.

Criterion 2: Scatter in the plots of Charpy energy versus temperature for the irradiated and unirradiated conditions should be small enough to permit the determination of the 30 ft-lb temperature and upper shelf energy unambiguously.

Based on engineering judgment, the scatter in the data presented in these plots is small enough to permit the determination of the 30 ft-lb temperature and the upper shelf energy of the Watts Bar Unit 1 surveillance materials unambiguously. Hence, the Watts Bar Unit 1 surveillance program meets this criterion.

Criterion 3: When there are two or more sets of surveillance data from one reactor, the scatter of ARTNDT values about a best-fit line drawn as described in Regulatory Position 2.1 normally should be less than 28°F for welds and 17'F for base metal. Even if the fluence range is large (two or more orders of magnitude), the scatter should not exceed twice those values. Even if the data fail this criterion for use in shift calculations, they may be credible for determining decrease in upper shelf energy if the upper shelf can be clearly determined, following the definition given in ASTM E185-82 [Reference D-4].

The functional form of the least squares method as described in Regulatory Position 2.1 will be utilized to determine a best-fit line for this data and to determine if the scatter of these ARTNDT values about this line is less than 28*F for welds and less than 17'F for the forging.

The Watts Bar intermediate to lower circumferential weld will be evaluated for credibility. This weld is made from weld wire heat 895075. This weld metal is also contained in the Catawba Unit 1 and McGuire Unit 2 surveillance programs. Since the welds in question utilize data from other surveillance programs, the recommended NRC methods for determining credibility will be followed. The NRC methods for credibility determination were presented to industry at a meeting held by the NRC on February 12 and 13, 1998. At these meetings the NRC presented five cases. Of the five cases, Case 4 most closely represents the situation listed above for Watts Bar Unit I surveillance weld metal. Note, for the forging material, the straightforward method of Regulatory Guide 1.99, Revision 2 will be followed.

The Watts Bar intermediate to lower circumferential weld is made from weld wire heat 895075. This weld metal is also contained in the Catawba Unit 1 and McGuire Unit 2 surveillance programs. It should be noted that a credibility evaluation for this weld heat has already been performed for Catawba in Appendix D of WCAP-15117 [Reference D-5]. This evaluation is adapting the information provided in Appendix C of WCAP-16339-NP [Reference D-6], which was based upon the Reference D-5 credibility evaluation, to include the additional Watts Bar Unit 1 surveillance data from Capsule Z.

Credibility assessment - Watts Bar Data Only Since all data is from one source (Watts Bar Unit 1), the measured ARTNDT and fluence factor (FF) should be used to calculate the chemistry factor to determine if the Watts Bar Unit 1 surveillance material test results are credible.

WCAP-16760-NP November 2007 Revision 0

D-3 Table D-I contains the calculation of chemistry factors for the Watts Bar Unit I surveillance forging and weld material contained in the surveillance program. These chemistry factors are calculated per Regulatory Guide 1.99, Revision 2, Position 2.1. [Note that when evaluating surveillance weld data, an adjustment called the "Ratio Procedure" is applied. This "Ratio" is not required when determining the credibility of the surveillance weld data.]

Table D-1 Calculation of Chemistry Factors using Watts Bar Unit I Surveillance Capsule Data Material Capsule Capsule f FF ARTNDT FF*ARTNDT FF2 U 0.447 0.776 98.3 76.28 0.602 Inter. Shell W 1.08 1.022 111.4 113.80 1.044 Forging 05 (Tangential) X 1.71 1.148 94.7 108.68 1.317 Z 2.40 1.236 144.5 178.60 1.528 U 0.447 0.776 28.7 22.27 0.602 Inter. Shell W 1.08 1.022 79.0 80.70 1.044 Forging 05 (Axial) X 1.71 1.148 115.9 133.01 1.317 Z 2.40 1.236 104.9 129.65 1.528 SUM: 842.99 8.982 2

CF05 = Z(FF

  • ARTNDT) + X(FF ) = (842.99) + (8.982) = 93.91F U 0.447 0.776 0(a) 0 0.602 Surveillance W 1.08 1.022 30.5 31.16 1.044 Weld X 1.71 1.148 25.8 29.61 1.317 Z 2.40 1.236 13.9 17.18 1.528 SUM: 77.95 4.491 CF Surv. Weld = Z2(FF
  • ARTNDt) - E(FF2) = (77.95) + (4.490) = 1 7.41F Note:

A. Actual value is -6.4°F, but for conservatism a value of zero is used.

The scatter of ARTNDT values about the functional form of a best-fit line drawn as described in Regulatory Position 2.1 is presented in Table D-2. Table D-2 indicates that three of the eight surveillance data points fall outside the +/- la of 17'F scatter band for surveillance forging materials, therefore the forging data is deemed "not credible" per the third criterion. Table D-2 indicates that all of the four surveillance data points are within the +/- Io of 28'F scatter band for surveillance weld materials, therefore the surveillance weld data is deemed "credible" per the third criterion.

WCAP- 16760-N P November 2007 Revision 0

D-4 Table D-2 Watts Bar Unit I Surveillance Capsule Data Scatter about the Best-Fit Line CF <17 0F (Slope best Measured Predicted Scatter (Base Metal)

Material Capsule fit) FF ARTNDT ARTrDr ARTNDT <281F (Weld) 0 0 0 U 93.9 0F 0.7760 98.3 F 72.9 F 25.4 F NO Inter. Shell W 93.9 0F 1.0215 11 1.40 F 95.9 0 F 15.5 0 F YES Forging 05 (Tangential) X 93.9 0F 1.1477 94.7 0F 107.8 0 F 13.1 0F YES Z 93.9 0F 1.2360 144.5 0 F 116.1 0 F 28.40 F NO U 93.9 0F 0.7760 28.7 0F 72.9 0F 44.20 F NO 0 0 0 YES Inter. Shell W 93.9 F 1.0215 79.0°F 95.9 F 16.9 F Forging 05 (Axial) X 93.9 0 F 1.1477 115.9 0F 107.8 0 F 8.1 0 F YES 0 0 0 0 Z 93.9 F 1.2360 104.9 F 116.1 F 11.2 F YES U 17.4 0F 0.7760 -6.4 0 F 13.5 0 F 19.9 0F YES 0

Girth Seam W 17.4 0 F 1.0215 30.5 0 F 17.8 0 F 12.8 F YES Surveillance Weld X 17.4 0 F 1.1477 25.8°F 20.O°F 5.80 F YES Z 17.4 0 F 1.2360 13.9 0F 21.5°F 7.6 0 F YES Since surveillance data were used in determining the chemistry factor in Section 6 for calculating the shift in RTNDT, and presumably for calculating pressurized thermal shock reference temperatures in the future, the credibility assessments of the surveillance data from Catawba Unit 1 and McGuire Unit 2 should be consulted. Appendix D of WCAP-15117 [Reference D-5] indicates that the Catawba Unit I surveillance data is credible. WCAP-14799 [Reference D-7] failed to include a credibility evaluation of the McGuire surveillance data.

Criterion 4: The irradiation temperature of the Charpy specimens in the capsule should match the vessel wall temperature at the cladding/base metal interface within +/- 25°F.

The capsule specimens are located in the reactor between the neutron pad and the vessel wall and are positioned opposite the center of the core. The test capsules are in baskets attached to the neutron pad.

The location of the specimens with respect to the reactor vessel beltline provides assurance that the reactor vessel wall and the specimens experience equivalent operating conditions such that the temperatures will not differ by more than 25'F. Hence, this criterion is met.

Criterion 5: The surveillance data for the correlation monitor material in the capsule should fall within the scatter band of the database for that material.

The Watts Bar Unit 1 surveillance program does not contain correlation monitor material. Therefore, this criterion is not applicable to the Watts Bar surveillance program.

WCAP- 16760-NP November 2007 Revision 0

D-5 D.3 CONCLUSION Based on the preceding responses to all five criteria of Regulatory Guide 1.99, Revision 2, Section B, the Watts Bar Unit I surveillance data is deemed credible for the weld specimens and non-credible for the forging specimens. Credibility of surveillance data is used to determine the appropriate margin term for calculation of adjusted reference temperature in accordance with Reference D-1. Credible forging and weld surveillance data have reduced FAterms of 8.5°F and 14°F, respectively, in calculation of the margin term for determining the respective vessel materials' Position 2.1 adjusted reference temperatures.

D.4 REFERENCES D-1 Regulatory Guide 1.99, Revision 2, RadiationEinbrittlement ofReactor Vessel Materials, U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, May 1998.

D-2 Code of Federal Regulations, 10 CFR 50, Appendix G FractureToughness Requirements, and Appendix H, Reactor Vessel MaterialSurveillanceProgramRequirements, U.S. Nuclear Regulatory Commission, Washington, D.C.

D-3 WCAP-9298, Revision 3, Tennessee Valley Authority Watts Bar Unit No. I Reactor Vessel Radiation SurveillanceProgram, P. A. Peter, August 1995.

D-4 ASTM E185-82, StandardPracticefor Conducting Surveillance Testsfor Light-Water Cooled Nuclear PowerReactor Vessels, American Society for Testing and Materials.

D-5 WCAP- 15117, Revision 0, Analysis of Capsule V and the Dositneterfroin Capsule U andXFroin the Catawba Unit I Reactor Vessel Radiation SurveillanceProgram, E. Terek, et. al., October 1998.

D-6 WCAP- 16333-NP, Revision 0, FractureToughness Testing of Compact Tension Specinensfrom Watts Bar Unit 1 Surveillance CapsuleX, Randy Lott, August 2004.

D-7 WCAP- 14799, Revision 0, Analysis of Capsule Wfivm the Duke Power Company McGuire Unit 2 Reactor Vessel RadiationSurveillanceProgram,E. Terek, et. al., March 1997.

WCAP-1 6760-NP November 2007 Revision 0