ML052220097
| ML052220097 | |
| Person / Time | |
|---|---|
| Site: | Vermont Yankee File:NorthStar Vermont Yankee icon.png |
| Issue date: | 08/02/2005 |
| From: | Gucwa L Entergy Nuclear Northeast |
| To: | Richard Ennis Office of Nuclear Reactor Regulation |
| References | |
| Download: ML052220097 (46) | |
Text
Rick Ennis - BVY 05-072 Exhibit SPSB-C-52-3
-Page D1 From:
"Gucwa, Len" <LGUCW90@entergy.com>
To:
"Rick Ennis" <RXE@nrc.gov>
Date:
8/2/05 2:18PM
Subject:
BVY 05-072 Exhibit SPSB-C-52-3
<<BVY 05-072 Ex. SPSB-C-52-3.pdf>>
Len T. Gucwa, P.E.
VY Licensing Igucw90@entergy.com 8021451-3193 CC:
<Douglas.Rosinski@pillsburylaw.com>
i O:temrAGWI00001.TMP Page 1 1 cAtem\\GWOOOO1.TMP Paae I Mail Envelope Properties (42EFB8EA.A04: 14: 2564)
Subject:
Creation Date:
From:
Created By:
BVY 05-072 Exhibit SPSB-C-52-3 8/2/05 2:11 PM "Gucwa, Len" <LGUCW90(entergy.com>
LGUCW90@entergy.com Recipients nrc.gov owf4_po.OWFNDO RXE (Rick Ennis) pillsburylaw.com Douglas.Rosinski CC Post Office owf4po.OWFNDO Files Size MESSAGE 105 TEXT.htm 1196 BVY 05-072 Ex. SPSB-C-52-3.pdf Mime.822 6960093 Route nrc.gov pillsburylaw.com Date & Time 08/02/05 02:1 PM 5083648 Options Expiration Date:
Priority:
Reply Requested:
Return Notification:
Concealed
Subject:
Security:
None Standard No None No Standard
BVY 05-072 Docket No. 50-271 Exhibit SPSB-C-52-3 Vermont Yankee Nuclear Power Station Proposed Technical Specification Change No. 263 - Supplement No. 30 Extended Power Uprate Response to Request for Additional Information Calculation VYC-1 502, Rev.0 I Total number of pages in this Exhibit I (excludina this cover sheet) is 43.
l
.:1,
- i.
ORIGINAL:
.c...R V
if
. C * *..EV. 1:
- REV.
2:
.REV.
3:
.QA ECORD?-
- IMS N(
YES REcORD T
.O
.*W.OJP.O.
N(
PAGE 1 OF LYQPAGES PAGE I bOF z iAGBS PAGE X :OF
- PXGS PAGE I OFPPAGES.*
O. M.0tOI1.04;:'
E 13.C16.036, "I 40
- 2.
'.4
- 3 L.%.1fr. 4 I
- 4.
"-2
jt*
-..,%'N$3/4t-.N.; rfi'1!E C -CoiltroiR k
YANKEE NUCLARzt SERtVICES -DIISION Ccur Nij ANAL~iYSiS 'FOR v..
it.,'
4.'
-A t
.4' 4.Y2..
- 4.
vi.r
-BA
- 44
~
-Conttol RlO
.H ai-6 i
VY-152Rv
.TA-3LE.OFCONTMliS L*
3 20-]..
.M.......
3.'
2...a...............s 5.
.-R21ieL f Resblts
.5
-7 I
.C
, Ass=-Mpt 21,
-I-; S E
A'.
.0 s' -,7cn WI'RO M g
3g4
~
i tu tgai an-4 A. r Test GOTHIC 4
e dC onHLe69ata.o*.,.*
7
-a"-
T' 2:
X-11 e
Control goam Heatup due to Loss of HVAC; WC-1502 Rev. 0 Pageg 1.0 Objective The objective of this cnl6ulaton is to determine the tempersi ire of the control room as a
- fnctiop of time as aiit of ailoss of ventilation of the control room due to an Appendix R fire scehtio. The'succeSs criteria fxr this analysis is to have the control room maintained in
.a habitble'condition and one which ensures equipment operability. Based on published uidelijies, both are satiffied by maiainirg' conirol room temperature at or below 120°F [1]
2.0 Method
. -.The coptroirom is an'enclosed room with concrete galls, floor and roof. The roof; north
-ad, ea$t wall are
-ipose,to the ooddoor environment wilethe vwest wall is a common wall wit t
- e anion wall with the reactor building..
Th, ere+sa
, & ili8 below thL',control ro'm'roof abive which ventilation ductng is ro...:,wuted.
andlghnanels are hid' by'the suspended ceiling.striuture.
he contro e my i
o l panels andcabinets with a variety of o.elgectn¢al c
p such as relss indicating lits, pof-supplies and control 'systdes.
T
,.,hese.e.c i
,co,oents, as Well as othWe rdan ties (computers, refriterator, copy..
m fXachin e
_stpuce heat ThisOheat is norn.aly removed by an HVAC syste.
But itzs o
.indsc.
ievent
.m' specific locations may render the HVAC
-system
.inoperable resultig :in a hatup of the control room.
- an We.n
- t.
i T.hbhipoanencl ose rooma c
eofkey parameters. 'The first ke e I einu timto the room.
s Thuis inpsut must be removed by convection,-
eouck.n of r iiias&
'f Give'n' a loss ofy,*enEtlatioh' transfr is not availle to
-I."- ukd tbmoa-thi hitnthrb.
e
'.id coduction rhe r
t o
ove the heat throuhi.'.,
<2-;
~~~~~~~~.1
- ," r&~fn, -. t.e o,,vironi ent.
& kinceMi-, tv xoi~t onvn.............
amconductioh are pouhyyp il t tle teperature difference across the wall$ given a f
l ctsid~c~
the iigh) heat injit he.higher the inside air temperature.
, m xeilosda c th no ven on is
-emoved tho uue outsidc.nr in ie rate of-he ien~oval is depdein on the thermal conductivity of tii& wcll -mWn c con tiond i frm the air i 6the rom tohe inside wall
-surace an romie wadewall su rfaceo toi e iutiideirr.' Mthecs three facors inAl ujp the
.-:trai reti csif
- .thc 'walL This thbm'cil r. ststanic is thsecond key parameter and.thE hier the
-Es iaice, the highi the rqired diffeti al temperature bteen the
- oitaide airiid the iiide air.
The third ke zteir is miterrialthermil conductors and affects only the transient heap of an ecloslido firstmwo parnetemina r diennal resistance, can be used to
' '. -"edictthie steadY.;...........
Estae, tm ein tlie rioom since in itedy state heat input equals heat......................
t,,.
r,moval,,. Howeverluztemna
.,?mmna con bictois, cani serv eX t6chae te tnsienttem erature, th-t i.;.:'
4' '
N t d,
e e
- f.
,,t r'r'i.
,W.
.',M W
hang e
,h';trm'.,x.
^
.::-'t...pS't-u-
L
.A Contrbl Room Heatup duc t2 Loss of HVAC; VYC-1502 Rev. 0 Page Y response by acting as a heat sink (as t! c room heats up, some of the heat is absorbed by the intenisl conductor as ft heats up) or a heat source (if the heat sink started out hotter than the surrojmdiug air, t wi11 give up its beat to the surroundings.)
In this problem, I thre key parameters need to be determinc! in order to solve the transient ed hau of the. c roo fo1Jowi g a loss of venilation. Thesc parameters were determined t
rwm c l
fim dra.ings and Eallows f6r determining the heat removal t.due convection cidond ution. The inteml co-nfiwiton of the room with respect to inteml-heat sources sna sin kis more:problematic aid'thc nietbod of determining these two, eeris explainedn the subsequent secticis.
.The t~nsient cojntrol room heatup wil be calcted using the GOTHIC computer code t2].
.'A botnding sce.io
'sHete ined in orer o jirovide consevaive int for the code.'. In
- addiinconservative ~ounwday awd initisi conditions 'are choen. The GOTHIC code
- r. ;. es¢ a curve of contr6l room tempature vrsus time which can then be used in assessi;g any neces opperator t nin Cawse of foss of vendlation, t the control room.
.he
- GOTTHIC r.,"code i aable of solMg genral thermo-hydraulic problems and has y
.iif Sls(i aI conductrs, heat sources, conirol mechanisms, air properties.as a no.p dnrefandtemperaturej:
d).
GOTHC has been validated for this typ of W.
~~appictidoti2. -............
2.21 Ht Sourcesis roorn The; hct soce ineontrol roor can be classified as follows:
- s o
e duo i? losses in eectxidal equpment. A variety of electrical
.:e.ipenit is cAntain
-thei cont-61 room (comnputers, monitors, relays, ambient lighting,
- A corls and ndictihsconvcznences such as refrigettrs,.cpymaehines,riicrowave.ovens, g.:
.~etc-);-.
A.bient - if ietht us i r
perature is 1:igher than the inside air temperature, beat is s.j~
-aidconivf init6*,he..room.
- -1.
- .0 and athe 4he Personel -
opl t heat and that heat u given off to the surroundings. The total heat
..'r...peop i on the inmber ofjeole in theicontrol room at any one time ed.je tpe-of etinY.fbing pdrfo ed (the more strenuous -the activity, the greater the hat i
~Y.*
.Y 7Ie ateltr two hb s cn batldulated and/or ettedto a fair degree of accuracy..
The formr ismuc more problmatic in that n6 complete invitoy of electrical beat sources
- has ben compiled viw of HVAC documnts r iv at least one source of inforaton
~~cM tX;..........
.j'HVAC.....
d.'t"
.'a^'
f.. 'nfr.mili'n.b.........._'tw.£Eg
t cwomm.m
.I 4.P
. I
. I. - :...
. ;7;, -
4 ?,, ': '.,.
i
. I III
-.1. V...
I.
._. I -
, -tl
.. " 11 %. I
o -
COxtro EooM Hc iUpil L46ss of HVAC; VYC-1502 Rev. 0 hinfee d eatnetoa-to t,
total.heat generaion in th control room This data cousi of'.-dgit16iotn the e VAC y n 'adin -cstew nan l
andti ntenfl se.
i
..diPnoa j
e of kiiich =
the sir flow t rogh the control room
- a i
le ltir ipet Thiisdit can be used to calculate the total beat rate tin obf tes dat d A nd analy deqae heat source can be determined
'; f h e a i i~
mp calulaStions.
5,5 cwi tlk heato r
er tfi m the inisde-Ar to the outside ambient air.. Te Z.covibiatidatturcc be determined by a biomfrmtiiiniformation on draw gs. lowe.
-r:
'c ti
,e i~
- t room A do o t s
- h~ t ih~ ar 1D rc~ I d te nie. tThi~W ig
_R M
a-in-many-o r is u ta c i tr l ~ a el,
o r i l c a r, t b e s, m nis cca i c u c ab ets. e tc.
.1I
~
s l ~ i t a i t r i i g th e
~~ Ths at
>allow sition of dat th can be.
.w i so
-an, o
1 ieii butaoutioof the`
VAC-lh : N _*itro o -w as w ordsi -iW Sseveii:.................................
- r.
-g i
-i
- s.
1fti o
~uvaln hea.' si, ' *no*deI*was
- n@iV o W~~o the-tt test, resuled in* th X................................
~. 1 sin
.jJ
¶..
A fhES SW contol n mod l Df examininjjg lh e
- ~ ~
.. t n s ~ r j c n f r t ~ o o l i ~ ~ T ~, T ~ f ~ r g v e 7 ' o e r m n i t a c o d t o n s.
./.
9 in-,g-
.. 3qu a n I.
O C C U e i n p e f o ri n g M~i a i l t b L T e i s o e e d t qi.e0oiil'ot-mea heat sik.TeSecb"id uio ase;dtecnrol oomTh' 5'X h o rs af er di 1 ~ s ~ ~ h V A - y e st r ~ t o ~ 1 ~ T e ui e oI w e s u f ic t a c u ti c.
Urnalt h em v l o t e c usi ies al w al r e I
h6 iM6 c
.5..
5 9t5-i
- -a-'5.
0 :IF.4d ii
N 111MEMMM-1 I -.1 -:..
--, -- 'I-, __
I k..
i.I.
41-V..
I.
'91;.,
1:
I I"
...e...
1, lx-
--, I...
-I -,.-.. I.V 7,-
.. ::.-.
toeiLoss of HVAC; VYC-1 502 Rev. 0 r~o~l~ille -)Q tis e4ected that U IM xcee120 0F*
actbioncian ensurq that th~ ifotrol i
- fii~~oiiihour~Two ffective ;iietiabajb:f nftigat orblow120F 0 :j~dj~clontra O n~kroom!
om I
shortly afte four nm. It was found ftat ni long-tesrm
.f a beat lod.w) It wisa.
a ontroiroom lieat ong-terrn e.,t; cent to accotmC for sd byj i0pcrtnto --
is
.nhs;.cal,.. olLn Thvseiclude:
'fiate dernirie byiest: is incrsd iby.10 pen at heat sink.,c...,..
b.-
t..t.
der
-is decrea i
utinto the coiflrol room (as detcm~iud b~oul bds Awjc~iln paeN asOppose i the'odbtrol opsac)
- 7.
thay-.tdq e
~resu~ing n a ower nterAleartbperature) n.y
- 1 7..,...,
.,z
` " -
, ?
", 'L,.,
L, --. m, -,
A
-iM-I Cobtr'o Room Heatu dUe -;C L= of HVAC; VYC-1502 Rev. 0 Page 3.0, hput"d Assumptiora The iiput rmd asmpos dsed for the GOTHIC model %dIl be addressed step by step based upon GOTHICin ut tables. This section wVil:.describe and address the physical cngato i :of.
oi room urodl. Sion4 virill add iess how the model was used and possily any nmdib& ins to-tih modl t w&ni de in 6ider to address specific variations
- or kons
t-.purpose ofcal g the trinient control room heat up. For instance, duplicate he ~o l room heatup.test will have specific initial
,-'co iienkm n
ea mrtuwint A
i Ve lbf~
X oion..As s~tion describes the M A mo
0.sel A li stigf
{fe: G IC input tables for the control arbiom-l; Gt m (II incleudeas Appendix A. The input tables for the control room' Sqtieo tiz isT hclude as Ap di B.
.~t
-,s
- n.
R riguF er tCi3JI8 ;rvzdesa scI ticplanview;of the control room envelope.
3.1,Generc Contol.Rwom GOTHIC Modile
.The onirol Room is ino o as a two iuxo-paranetcr volumes. The GOTHIC modet is chow'se
.cllyinFi6^gtur 2. While th'e riil Room hAs a more complicatedthr.;
onsbfit0I,-
-,'F,.s: ;! i.2 ;:
--WMI lie.'hreri:-
n nl geo;y, allowed by.two lumped-pa-rneer volcums, some variations on L~ii btaker2Iitod &zot Fromigur the6 sd plan dimensions iie: 80.063 fe (eastlwest walls) x 48.573 f..:f't.6soiowever,.'Co l Sm:fv~e mpaze, smaller-rooms along
- h~
rioxiit was fond thatithe dbrs to ies rooms arenomally open- :ib iu t
6sassurn u
that eoors rbotom open2 u
vol
'. : lioi m
Xup ithe'saisme as the zsi of tbe Control Room. Thus; w
s :
tm
-eoside
-insons fi and t iroof elevation is 290.0 fIl[3]..
.j sf for a4.tal inside-hi! ht of 15.833'. However, 1he Conrl;.
ce
-4 ilig gcomey du^>
to z-inste drp ceiling. Po p ceig...rbz-g
. ish&e p
ceilings ie fainly fficienit in preventng comminging dp; f cedig. with arir abov the dop cciling;. Trefore, the air space b
rp in te rwof wvil rben ml as ;a e lumped p8
-vohinic. +'
oisi c
g f 38 is
-a34 ftx 321fl (8 x7 Patli).ed ceiliog
&-prTi.
stofthe
=eli
[7].t The second.r.
d is in a;'cfing1evel -of 10 ft lovethe iontrol om foor Rd represen. h e ble 4eto 6l evwel. -I lie five ofIliliDty spas op
.NI ig.
t
r I
[: A:i
- SSos H~
d='
Lo o HVAC-VYC-1502 Re. 0
.S.
.E-e~A n
29 i~as 2 tacUqh 2.f dik a
-1 6ik FA
'063.i J!
js
- driin
6, RoaV.Ei 6Wf.20.Z Souh V*
545*4 c
i hA 36I.,7-,t
~~~~~ th t"It
~CU~Beas ~y gA 1cc tie!acs.i
~v uhmio~
4:Y4.
5
~~*'s~'~---
fo2.4.
ayedfiCCDtdtewnig
of HVAC VYC-1502:Rcv. O
'4,."4-.3
- t.
-- 'C 14-
?
F r
-, 1 '. :..
I E-v k
-~e >.;>
,4Is
. C~$-
-)..,..-
l.,
,^ ;.
r.4..o,4 I
I
-K t
-.~
J-
,R,,\\-
,'<'S'-,.<@-i;:-'.-'
777i 77' z,.
4,'
I.1..
Controi Room Heaiip due I t.- lss of HVAC; VYC-1502 Rev. 0.
Page It sheld be notd ;hAt the control roon. hs.jarge arrays of cabinets and Control panels. Most romIf o Medicc: :f6p4he
-i~aids Pi ihtey. cotrol aiskta eecoed ti
-f thecjabinets. ak-backed.bid..nsot fiilly enclo.
Thus the free volume of the co.trol
- ro sno q-r-th Aiii Fo~otro' cAsi that are enlbd tis co iie~
.t o
thea ager p
room that the cabinets do not reduce the feeair
-pace snce th hegt load i c
l oireiin-general, contaified within the
,,,, j, linets... e.,,,,:.......:i Thehyldraulk.dia&ne.i Was Z
p 0.063
!j4)73)/
(2 80.063. : 2 t
48.573) = 60.46 ft T~hevolume ave ce 1
ings can b~e found bc dcizla i~g the total volume of ths
- Eiiqose byf i
th
~
v~afls ind subtrci vojunie below the drop ceilin, caulraxed
- IeA aA ie 1 -Above
-C' 80.063'* 4835T.
3 1533.75 ft 20267A ft3 Do,.g
- co
_;o*
i5*l*
,4@
- he'el on,
n o~f die-d n.vo.umtis..e C of the ceiling in The control oom.
do elin nv e isth di nce bIwee te ceiling eleation (f
,;4
_.tt.i,>- r_1;;#;thic v -s1 and the drove;.
n voum
- v*
o_.
ij.;lh; 90;.0-f
- 1.
ft-282.5
-i 5.833ft
- Thehydru.
Yols-the hydraic a o
controt on, rtdh e
plan diii.nss.
. I-'
t6 d coddcnsation or cvaporatio
- pi x
liE(the hn h iini qat l
of wqueirnor~isea b te e iidthe teiie ni di;;thisv i is 1e t o1 F U t s leRc.o.dle'ct.a v\\alue cal]culaea bythe a arcin iins ed mmiodd:.
They arepressure bounty iprSSU
`n ordiir to mintin the ctntr ol room Snd d ceiling hei,.. esr eanibaent conditzons 14.7 psn and 90OF in c c
wih
.i' I
- ,~
- . + v -
1isrs
,tCon I Room Heasp du to Loss of HVAC; VYC.1502 Rev. 0 Page Jl It isleiqiect-d t control romomodel Mlhundero only heating, no cooling, and will try to ptsuizB as ltl Since theubun'mx6y condiilon is set to maintain a constant pressure, nias~
I fl iie control oom to the'budar*o,:ition to maintain the constant
-r S be no _flow fiom the biiodar condition, the temperature of the
.boundary coiditon s of no conscquene.:
Ffwrats Tale
.1 ldr~
ou W.
'ar s-pec jOU..pFahse sp--ified in the modei Two of th=eseflow paths connect the control 4roomni
-o&ilm olurnes to irrespectiVe fluid'bouidary condition and the other.two W: c ri tipS;v Yolmne-*ih.the Coni.TOODNb r
ie.
r A
tk the e-oidAryi t uconditions, the connection t
fiev6esIipifiea The connection ight is set MU[.
e a bivtiyt,2f- --Tefl ari s set to a sufficien y lage area to ensure that u; :-
.Iez d
io'iirii des riot occu.
-Lse, th hydraulic sAm eier, inertia
- n
-=
xno
,prqswrizatkon.
hne loss coefficidt II,
- 5. 9, ae. t to; m
pro etoilos b sifficientto prsuriz the model volumes.
Thg'i.:-:-
theo room volume sind;t
-dop ceiling volume amodeled.
I '..d eiling~
g 0i ei.
gw circulation wiih tbe pd.;
ce g
voel.
4 Ath eipenits as it allows btire'cir.
MM=1 flOHIIos mdrt flow
.j.,
- 'unon
- m.
S it L.
ntrooo u in tihe cootrol Si1fCdwbie D~ltY: 01heu orei w
Conti 1
.-. toomVo
- opemn-p g=els 1i~
1 bL the lot air.to re A;nd the nonally cooler air in the droji ei
.id
- d.
end4co-mne onsr
'art leytions soandheights to allow tp
.if4 hcf6n itfhleOM volume to:co W
dicate VIth th bbttom of the drop ceiling
<.;voluaie:. j:,4....... X...............*
.V6iK.
£Iev2
.82; t; :Heiglt
- 0. OIft S
I
-0.01.
-ix
-gh e flowrea isn 40ut iO sr and the panels are an t-ijere of'2ft x 4
- .The hydraulic diaased on the individuil 2 ift x 4 ft opening:
t Whle fit dep ce~P e4it tly 1Se two voliwn ihii r4b otlw duso c 04uc*oatk m
WUI be
- p.
- y*
w 1
loeh to low
'Izl a be8i ee die cloI ad die t
3er VW ft.'
PCZFq ftnma f
b-
- s-drop'
- celfl, Tbr' lowpbukse bkia QUb ot
'kdu' h:i7 w
d
-'aco;:
'i.i
P__
V 1 f-h..
I I
VS I-83-ft 1-=
.9-f Theinetialenth sIkentoi-ll `bethe etica disftan-c etienS thle, ceutr ofte otolro
'F o92fi
- ,lc`.Uj 6i i-D
,,p3 eathsloss$
..co n a Ss, Cgden 0521 A
- -' ~
yq ume coftroco oom volume -
-i~.
~roomyvlo e
4.~..
rpresns~li~iorih.
voumP
~fprset te vo~f te drop celn volumce,
- 8. tc~,r~sc'n th ozhwlIo-h j,
-i -
-..
I -
. . __.
-...
I
-1 I -
I m z,. -
.. oU'IRtoon Hcw=~ dae to Loss of HVAC; VYC-1502 Rev. 0 pupeI
~0 rpie~nb ~the nint wAl of the drop ceilig Voimu=,
rcprcsesft tberof df the -onfri-
~r~oo voluine; iiesizagt intf mal romheat sins.
4rae ara iared roomte
- l:1~3 as/Wet ll
.80.063
.6ft J.if'= 800.63 ft2
- 2& Norb/dutWal:
.48&73 ft O:.f
'S73 fe
- 5,6 11 Fioor-Ceilfing Uke Root.5 ft8003 ft =3888.9 PI~
4.
F 33 A.
46
- 7.0 R
The ~% or he bst~ctntenaIroo bet siikis sedas a vimr le to match tbe testdta
.4
I p
- 4.
CoZtrol IWom Haip duc to.Loss of HVAC; VYC-1502 Rev. 0 Page I/9 The xo eior swfe.(Volume A connet dons for thermal conductors #1 - 45 & #7 - #11) use an assdmed na**wai conv.&tion lieatransfi coeffcient r tive of their orientation e with a specifd.temperatue b6 c1ondtion i
on the expected temperatmes of the bdoining spaces 1 llSeythe zeictbr:buildng,1irbine building or outside air.
3The spcifip v.luese-u for theheaietfanf oceifficients are ixplained further in the next sectiony I
.4.,..............,-.
S.
Hensfhr-dentsd, 2 & 3 rethe naia1 convectioncorrelation coefficients
.cp ding io a vto tiai1, face upr'f o
vely. Thee we used wit
- no.'
,1.cateoi.
.:K re, S&nerl nt ural colvection ht tansrcoefficents.
Th e *o
- etswe i
s n
u eiion of Uieoutside su face heat atisfer coefficients jre.i L
mc does not allow one to corre 011-en tmpertursin.
of these.
whn g:pnfi oekh&i W=-s:ii bdsd o J
a gnesa 10F1pr'dferen ce betw~n -the ~~All surface O btt of interest are given by [10].:
, (for vrtica plates in-the turbulint r<nge, h!= 0
- t
- f. Bhorizoiftal, pltess faciDg upward nn L h
eis in o
t 2'A~
-0; -p>a
'p haidl WO2h-001BUhen2-F, 2
r when i'
1 nd e heated in the
.,w....,
,..b.;.nt range
~ -1~1~e tTas in uriits f' 1-and L is in -units of -feet.
- 1.
< ^
r
-X A~
hjiornnti W;pI A htefadigu~d h7 = O.'07 IBTU/hr-fe-.oF
'Di
~i
~
Uhcns filie concrete wi trcurs the hftwtransfr coefficiefiti chsen bve M2 Im 1-'
66
- Ai t*6 Ilg o
.exposur mnb
-ttemptre r coe
.In.
a
\\-
Uuai oftOE~f So a~botkao+/-Toloc1
Conto Rain ka!jp due to Loss of IIVAC;-VYC-1502 -Rev. 0 Pg ~
71~ omlary660O~nsfortheouL ind;-Iblaid.floor) surfaces consist of-specified bc~trnfe~d'fiiet wt coaftant
~tt ra
.For those wail vithaon gu~~r~~aer, wa1' o n:ba,4 -on the SOLAIR method'of tad intoaccu'a,
,1 icaingof't' 1
di a
io t
1 f n uruni 1106]
wh ohVall and loof, v ce cal-.
ieio~y4 l]. :abe.IO h~?I~o~ innicit SOLAJI temperaturefr tl~- sraes1e1I fi ntkeencrtr c.6iwiin is the averge tmperatue.
Tabl 1 24 Hur QL Twp eAFTs
_A.
1 r i Thl84._
18 J20 0..4.,
4.8
'7O
~
'6 8
~~73
,~~d?
7 6
.76-
.76,..
"93 ON J 5i..r
\\2.>~
~
.,r.
J07
'Apposc lef daA ura1
),
~'
I dw1Wvtccauil bldl ha
-CO HSr!
~
4~~*,
liud 4a Tb Z lxzidbg iiii*~riiiinjis
~
jf d~~ dc coto lG~g.
i ce I rbau
=oftcpmwk ow& b e~d ~~~'
-WV.3.
hffl.
6 wm toWcud.
th sotte eggs i
bhl cnsrvtf. s% wilmh luba ft)*
ico Iu o m tmabge~
wxr otoWOau
.eF6 w Mie
ININNW.;
. 1
- 7.
... t..
I "
- . I Z L.,
.1 I
i
- I!.1 Contiol Room Hemp due to Loss of HVAC; VYC-1502 Rev. 0
'r Xe of Day Sonib al East WaU Roof Temp.
'I xp Temp.
,:.P*-.
11200
.84.48.
84.48
.*.2023 13Q0 f36 87.36.
2012 o0
- 92S
-89.
.191.
a**
- 11ergc
,..;;76.49:.
922
.14.i.
.mperatureeiwas',
t i"~ t he transient temperature for case of The tbt an yss..Di.t hickcre (lowt conduii nly) or te walls and roof the effet r,*4-4 a$¶wA
&.t1'it danurped 'that th icontrol room space is, in essence, seeing the.ffe-ts. of anaverage temperat.r The.;st:.f-t.ecnt.:c rolm is. adacnito the turbine building. From the FSAR, th; n.;llmxiasii of the i.tbnW b1:ildin1is.1O5oF. However, the hallway ftel;:O. idelconnol ioon is offie way fnd as suchvwil rnot be suljet to
- mpcratras.
theurbinc decs fiat eoi Sm.e hallay otsi the contiol room -iseiu
.imIO:
gb l hwaIoses ~tionat he-.M time as 'e controao and b p in a rinnem rtoth c)
This niinixiiiei loss;frbi" the control room resulting in a conseA4a-veos a kuintlon-3',*
'5
'K-
,Control room -is, Adj 46 rea l
. Frm tbe FS he inxn,-;;g8 r
i r.buiiding is }0.
-Thus, the tempriae.
boni-i etta r.c,.
1 i
-10 e f. 8 Section 1012.3].
eotcT'ordty f.oom.
ITe air tempii e mn th~edaBd,:s bYa flie
-a VC~se a h oto ro.TuWe then-th con* olroom As awih the tubbne bii lie assbitiMon is that the abeC vtaul Ae: tid lo hea h sane rate as hie 'con roomit.
f4 5-.'
-Mul-h e *dV~h
- w,,
2r if Z
- e sthenigal conuctor types required f,..r tiis model
- 1.
i ft thick o sab (North &VWest wilis nd.Moor)
- 2. 2 ft thick co-crslab (Est Wall)
.3.
.S667 ft Atick conrete slab (Roof)
-¢ v
.Sh 5
4
-gr<
CoaIol Room Hesmp dum to Loss of HVAC; VYC-1502 Rev..
Page 2.
- 4. '. 4 fibkick-ncete slab (South Wall) 5~.
i518niik gtle..
&i; l,2gajste tor abstract -iternal hermal conductor It.1 C t tk oiroutine is descnibd in the GOTIC User Manual. It ne a
uhiiies 6d aittive assessmenis of the slab
.iA r
.nts..
F&
slib'sid Wflitative assesment of Fc sleai co. IOCes VERY LOW. Each r-yis d1ded ihto 10 subregions.
--I Th t
lt bohi ihe Iotrol oom south wall, 2 feet thick M and the adjacent x.acto2:
buildies in a total thickness of 4 fe&..
t ~~~~~~~~~~~---
b.T....-C.. ie oc dd:. -conecre acoustc tile and absts hr i.*'..................
T e
r n thae GOTcCaod e concrtepaosic roperties and for the "Z
C k~~~ag
.*ip*nie (65°F to. <200°};3lixs is a go-assmptionL. :...................
g~~~~t.
- '7hi22:.
5.N.a 13]; Table 44.
.13] Table 4.3 e;.25
!,ec;*
- t Spei~iic I~a ~ 0i1 jBTJ6m-F W :
.C oh
,0,29,
. TU F_,
- 1 e
S.-.A
I i
I I
Contiol Room Hcatup ducto Loss of HVAC; VYC1502 Rev. 0 Absa Thermal Conductor is Matral Type 3 (steel was used as the basis for this thermal conductor since a visual inspection of the cntrol room gives the impresion that the majority of thE internal -ondtitr is scel in the *fnt of thick cabinets.)
[13, pg 6-1 SItel'-AISI C1020]
D 490.1 'l Then.i C6nhiCoiyb 27 BTU/hr-ft-F'F Spcc Heat O.l 0 BTU/Ibm-°F
-Two dfferent beaters are modeled. lhese are
- 1.
zie&
Lo ad
.2.
1 -33 BTU/sc.
Th....' c ricl oheald is detmi nd ji3tidlMd in Section 4.2.
t..
.det::
4 hr nf':
n:.fribdai in th Coiitiol room d inthe transient in question is
'..:.:to l
oad pe'persn is taken -as 550 BTLT/hr.
JE',
"heat Ioi'. -`,'-. -
i
\\.A voi&uetc f-ancompont is inclded in the nibdel.: this faii component does nt rre.
aiM.uM.i:
sfed fS d1S used io simulate the affec of the Wo tors removing he ceiling fI-vsle in & d io:iitoie x Withte air in the baiindeof th ::.o ;s :uch the input values mi the volumetmic fr tables are ch6' ibt i but wth ;.fient -ir fowtoi eCsure t
.al r
in th two voianes is mixed tiroiigWy.
- r. ; lves ar in nthe model. They are -snd to model the opening of the celing.
er"'
"ii are uscd to controlh Vii thais occurs. When tie cilink te.
.s d tolc8ov -th qick open vales ar opeed to allow thc excange of
.Z RY,¢V
.s I
4:..
1*
in I
I P
Cntl Room HeihT ddto Loss of HVAC; WC1502 Rev. 0 Pagej Oner V4 co type, is includ d to prevent mov. Than one pressure boundary co'baiofii, b&Dgwtive 8+/- any ontme..Wbent.lle flow paths between the control room C.ii.i-idiheciijii tle ohine are
-n tflhe o A to one of the boundai
.s-.
prevAWc o
ie C;
- ton, om intting.
No m any. oftheilves is iwiuded as -ihe redlosses are included in the flow paths.
- rOge so as no more a-nopening cI~
- ii ibl.
55 it rO~uilnyiw:uFuC hl Inc......
vsa0socimcwlww lL.
-:..Trips alrte i&
ves and h ieuwutrc fan.-It. is postubted giL t the opratoris w:tion to open the ceilinf tiles viA he ontrool iom tepeUr reaches IIOOF.
O funcon t
olvable into a form which can be used as
... cn.. ;;oforoecomponents-deso e previously.
_-!fiii
"'brXe
-d -l vardiale is use to et the cinl rom temperare so that it can be paeeto used as a frig fuitiion for the components debed proiily; W.^,..
-i L.; -
A CC arst'F initilly bit can b nodiflid bood upon the given socario
.. quree Thh unu snt oe oave aysiicant -effect but iS set to the 2~~~eig'au of5%Uj.
.g Secion 10.12.3]......................... :.-.;-
F-our tide teAre'Wiiflned. Te' first 'tie
- -i terMal is "Vey short with*respect to the st c:.
of t e
diudtos il te file in the therial conductrs-By setn h
TRtQ a~ aue (I0 ) h odcineuto s sovedlotoonvergence.
witina vryal~itilh&with repetotothe taniet.
- i
~*.a,:......r.;
S ~
~
~
~
~
~
~
-.. '...A
C I Room HeaV t
io Loss of HVAC; VYC-1502 Rev. 0 page T:
md iiilid time intas de ine the tansiedtperiod for detemining the tpwfie in; Ioom.
Tey were chosew t.bound the period of interest (the firs u
of saos.
74.tiK~
lral is uSeldto datemiiie'a psudo eady.-state tempeatre for the
- c ; t s
e e TRio to drive thec.uion equations to conmene and a
'..on ihe iows tbe bydominc e iois trea&h equliibrium soomer. While
~'...-. tais ii d.o timae dmin, it rsults m a steidy-
- .St Se.
reasonable ca] ~uainime.:
J-..
17 siii
.4.e :
Z Z.
I:
.n,. ; t......
ConrrollRoom Heatip d&e to Loss of HVAC; VYC-1502 Rmv. 0 Page ?-
32
'Assuwvflons 2:'lhes mO onusidn.this aculation are prsented in se;iarate sections as ihee are some aphcx and itplicit;.snpions thIt apply to the GOThC model and those that apply to the test a interpretations and calculalions associated with the test data.
g 32.1jormc Moade Assurnjtion dexsibipg the basic control roam mod GOTlWC input several explicit assmptions were made. tey aristed here for reference.
he hllay o'U'Uide the control room and the c;:ble vault/battery roam lose HVAC at
.e same m, as-.the control room.ad e ene the same temperature transient as tne control room,
- 2. ' -
en h p:,ie
.the coiitrol room'Yreaches 110 F the operators have removed
,UuL3M f :,.;iuC&uesm the eilig hiuch itt tbe two model volumes are now the pui :r e.mvolume.
W o
-~~
- l;;- '*',
":3 ';Coutrto RoomWHeat Load.Cia cuatio ;Assumptions
'> ~ ~
~~~~0-X X x tio'ofitb T60iirii r
-iod that follos themesv 5everal explicit anid' j
1
~.t t1onh ;
ihe uctg ne gigie o r
g?;
his a onl ncc d.y
!thela f infDofrhMtn availale t assss th.-
- degree of~in~i~ii~ ~xC ltratiov or ducti4losses.
ri filtration is co eed
- -yste.m-tu _
+c dcsittd to be le.to provide a
- --toqate Ventijattion during vanous acczcwnt conditinn hre excesscv infltilon:
w*;
lea t. exesv mjdiiaio doi~s to the oeraos Sincetihc rths for f
t aotlhc m
s thepa9 for.infli ationand iidiltraion is assUMed to b;e -
ih;same on Us.n.Inc, fr efro.
)uctingbeat losses are
.. igndd
.i.I air he ducts a thc extea a dunn".Jg testi ~
ow.
~
t
However, a:10 t-inc e in 'controt n ohat load will be taken to accunt for.
cyo':.n-consovazs preseit duet astot mption. [14]
2 V nthet ebe in hecontrol.room-r ls 10F,ffie operators take action to r,,ovc s Qe H
outic ceilIng til8 (10 irnrnoreis assumed ir thin calu on) to '
-Aq**
l~w air -in
-Veiijpcet i wihte'ot~io W:,,,,
,~.,
~.,,;
4
.~.*
.(
~.
1~:C~::rJ?
't+/-yz.~4-4
- 1-
!,F
- ~t t
3
!t fibo t
odVie i
L HAC; WC-02v.
V. 3.n t H*ap due:b L oss ofsfA CI VYC 7 1i.on is taken to mitigate the temperatue rise.
iTwopep d
b-iigs 6600 c-of outsid air,*,
iebporarvtitioni s p rovidedth gs inbat n
east 6600 cs of idd air 1 ;(90 01) hd hsa load finX mnth oir m is riue by 52 j.ree-t k
.irn ontrol r oom t or..
my-
-At
- 30.
0
- c.
- i-e
.X
- t, ie-
-h ar'4'.
.,g 4
4 2:S
- r.
444
- ~~4
/4.
Controi Room fiewup due to Loss of HVAC; VYC-1502 Rev. 0 Page Z3 4.0 ICacuthtion The cilculaion is divided into seveal sections. The object ive of the calculation is to C calc:lte the 1ior trrsien a
tepetureafllowing a loss of ventilaton due to an A'
R evedi t.
The'. physicI cs-nfion and nmidel of the contol room has been describd in S
'6tj6 n,31; Tw-o btt p
ofic rm on axe required to complete the 4
mnodel~ l ont
-room i~t load and conol :toomintEI~ beat sink characterization. Tests were Wonduci o
iHVAC sysem and tfe that was tiken can be used to characierize both..
4e huE& 16 the inttrwal heat wiaks
.:sciiol 4l.give5a; s.dacription of the data used to calculate the contol room heat
- and the idi l ulatiion of that ieat 10
'.SBODn ;4.2 uses the heamload information P:
.aswv1 as iomm TCII odelulstdhao clize the control room i
h-tt o
n 4.3 uses;bthjices oo n
to assess the control room:
fm>
etiii6iisigan a loss of iion due io ah Appendix R event. Sietion 4.4 dsj.
givie po edlon-termcor arective toiniga the. f
- 41 IContrl.Ro n st Lod C.lclation Two - Independent te
- conduth obtained data thai can be used to chateriie controlgroo
,a-
.al i
}htei s
k rnninrhekd 5 at the iWet an ote of..
tc r
room i d* int airflow mcs&riie i the HVAC d&ctwork
'-s f4r-poD can m
t ikx. "a1 CO, l Ed rine load i
Neifthe tiising i
ts iciiion4program nor were they pf.-Mg AitrpedyI.ste; ovvU iv
.tey were perfiomee by
,V.
qualidcdomel stanrdinents* In ad-tlo. they werm performed compleleiyin-pciidentyIn cofinbindtion, they provide
&a sizfii basis for judgg the' 4s.1.1 toi.Ie mssityA.
the beat lod and od
- 'iics oof htdn roo m141. Data w w takeiwiitie controlom HVAC ji-:::o:
The ali fow measurcmett was ten on the inlet side of tl coiu.r-'
y.uw e
re te uainfe hrefs Wr iis sor i
zuCu, Ston~ 5 j Will..
to he' a
0
Cootrol Hcatp dudzto Loss of HVAC; VYC-1 502Rev~
g.Uit-6b an &lfrairl Wiogth..nrlmm The fol~oip~n othohth nlrom Air Flo,
- S57f41, SWpily Terkratn. ' 5 0 dl Rttrn Te itux;- 73 op F
.dA S.-.
- -~oVentently outlined ne S A~i etl.if The
~ezbtr room is givenbyhi) beat inpqbfromrhea-1i~ cthalfof~oistair t pont BTU/b dry air was ~a 0
H(rmts iA),te entha]Pies regiven by:
pw
-~
v-.
O621982!-
-i V".4 W
'4--
U*
io...d Ab n a k
£
Contw!~Romn Heatup guiet w Loss or HvAC; VYCi5o2 Re. 0 For i
4~ =0.60 P,, =.6.0217 psia (at:= 73 7)
.=
i3021a I
p =14.7-.P I w 0.6219gs, 0.010=
,14.7-0.241302' h
2 i
.u'-
lttvaaor i
qid on the'confrol room is negligible.
T; stream Foiis t so lhe-humiidity raio wouild be conta~ an h, can1ke clied.
W01038-h= 0.240S.O.0 i
- jid6640.444-55)
- sw- '
'~
teeir i
ie sqc inthe conrol room is given by:
- 'm,8(h5-
- kj);.X- '
- e
"'4-,-
tR....-.
.:,;:.',,w-,
7, I
4'
.,.1
..:.1 I.
Xk.
'2.
j q
L~
.87~244 7
)
=2916.
BT
/rildn or'I75,000J BTUjhr.
or 48.61 M
YlJse bT i va u&o h
Q t
o o
m b
a o
d~i W
co..b t
e t
+
100% based on
.t16 6 er ai t
4.
-i*
3/4 J
.n
.1.
C Room lvca*p due to Loss of HVAC; VYC-1S02 Rev. 0 Page Z -
4.1.2 Huet Loiad Teo 22 To h confirin te heat load that was calculated in ite previous section the control room heat l.! is cm data ituluded in a ".menoidMur that reported a control room habiq li~ty.'stu,[l5]. Aitamt S of The reference mcludes daia tkn on the l Hte.s eizcle in.
ixC.:
V A iem is more cmplexth the data taken for and used in the Kr3TM pr sii o
xlaion 6ftL contro omHVAC system is in order.
4.
Fi ur isi aemt vew o
t ntro)l u IAC.
system g
.2 16]
t The daltm.
VAC-ibib stud gives enough x
tio deinm condidons ofthe iar aroind the sySstem and to determine the heat load..
bauniiC gure 10.12-23 E
I o
m t
b;i~
73,,_S.6° E -
M~itheontreol room..
t v.,*I.
.A88
.SI RWir
.lw
.~.68.fi -
-;}agi'88>
g~~~~a *.r.
- ggT5
-IW;
.ei r--
34 OF M,r. '.. "l'
. p 6
- 4. ;*. *.
,r.
Thi~
feltrie rom t~iis mnformmion. First, calculate the.
ffT c
-. *4io heat load.- cai
.V
.V bday air V6
~-668.85 lb -dryalmme 534275
- ~,
Control Room Hcari~p ducto Loss of HVAC-VYC-1S02 Rev. (3ag Z
E
-L 034' rc
/Vir
.W
~Figicj.. ontol~
4m093ACSchMQtic
~~modyn inihla
- b.
-nwr The
.1 7- -~
~ ;;~&" c~errnne he~th~Ipis and hmidityr~iio f ThJ Nedgndlangir
Control rom Hcahipd6 Icw.os of ItVAC VYC-M5~ Rev. 0 Pg specifically, at th6 ifflet:
- t.=
-54.4?
W~0.0081374 10.93-0.444t-t*:
.1093
- O.444-54.'-%,-51.6:
=7.8533 10-3
=
.Oi 0.4.4444S.4 64 0.54A
16 04~44 M
DM7BTJb i air anid at, theODtlet:.
(1093-~0.55660.3) O.~2097-0.4:C73.1 -60.3)
'10934 4.444!73.I ;-60.3
- h6 mO.0240s'+:W(1061o.+O444 44 I1~
II d-i~~
0.4*31825*0-.16.A43 2652B~hTh dy ai
i:
Contro4Room =Heanip due to Loss of HVAC; VYC-1502 Rev. 0 Page Zf and the total heat addition to the air stream from the control loom is:
,.,*,.A mn(h6-Jr) m.a 668.85b dry airlmae h6.= 26.582BT7/lb dry air h3 =-21578B'VIlb dy air Dq g
1668.s5s6s82-21s78) 3346.9 BD
/min o 200,815 BTU/hr or 55.78 TUlsec Th.
l e rtaimines in this.alue of control room heat load are not entirely known since
.ur
.ty v e 'are not direty attributable to the instruments used.
.14.3 Detenninatio of Limitig Control Room Heat Load T.
for cntrol oom beat load have heen calculated using independent mefhiods, nstum o ::id personnel. The ialues obtained are: 175,000 BTU/hr and 206,815 iB.U value, ws' determiWned with data taken on a warm day in mid-
.fr
.was obtained 6) a coold4yin te May. Variations in solar heat loklcniclJo pcjancy an ntuent accuracy can account for this differenc.
Each d
Mwte e-inclues I
at load fm coriductior into or out of the control room thiough the contrl room wiis' cupaQcy.nvoct.
Thus, were is an inherent conservatism in thew enh- *fG I
- 't t&* ;-inodeli wvill be as electrical 6ads (conduction and
.~
be,.ing exqpicilf
-puts in ttc GOTSIC model input.)
Th x;fore, to ensure a bunding value for control room beat load is used, the average of the twvle 10%'.WwiIeth control romheat load used for determnining, the, control room o a loss of HVAC due to 'an Appendix R fire event. Wtsn go:.,.",o nbqig d'on the information received regarding the potential electrical 1oids W
uin the control room: {14..
7(175000 + 2aois.5 2
I 1.-
206,70o BTU r Ssec
I1 L
Control Room Henup due to Loss of HVAC; VYC-1502 Rev. 0 Page co 42 Characterization of Abstract Heat Conductor As ntioned previously, e transient temperature of the control room due to a loss of VA de ontwoimportantsctors: the heat load in the control roorm and the internal h-beat aisorbing structres. This section attempts to characterize the internal beat absorbing r
as a &OTHIChcat conductor using test data obtained during a control room heatup test:
In a hdated room, the tiansient temperature rise is predicated on two major factors: the heat load and the heat abs bing structures. For The control room, the previous sections have i.xdentifed.te heat load. IThus, to be able to predict tb~t ansient temperature profile, the heat absorig strtre must be able to be modelkd& However, the control room has a very t.;compl array of heat absorbing structures (cabinets, pauels, etc.) nakiang it difficult to model with,accuracy. Ibus, a test was performed to gather data (temperature rise versus time and hat Io#) ihat can bl u.ed to characterize the he& absorbing t
.In the prious sections, he control room heat load during the test is characterized. Given
.;-hi1hi load and kiiown arnbient co niitions, itis possible to modify the GOTHIC model
-develWd previcuasWto attempt to M ode tihe te onditikns. An abstract internal beat confiuctor ific e inthe GOTHIC noel of the test By varying the surface area of
- the absitratheat con dr it is possible to math the tiniient test data and thus have a fdiry
- god* rep-tttVe in conductor model hfr use in iater control room heatup analyses.
date 'tlt 1-is a'seriessbf tem
,tues at differert locations within the control room taken poB6d of aboi6t-35Sinutes.: Becau sthe M
mtrol room s a threedimensional structure WI -air curre.san do heat sources.(ights, relays,4power supplies, etc.) but the
'GOTiIC irepsntatic6-fothe control room is one dinensional.(a lumped parameter volume)
C
..t. it is not e ht h
dl match theltest ts exactly. However, to adeu cha r i bae ii
-internal hcatcoductrs, matching the slope of the temperate
.risc will be sufivieLi tvas foun thiat the slope of the temperature rise was fairly constant A.over ih different lo'htion3 of the temperature radirngs. In fact, it was much more constant than the absolute temperaiures betwecnlocations.
.7he -
- i t
iniud -in:.Appendix D. The test data is plotted in Figure 4, Figure 5 and
- Fgtue 6 long wihincs Showing the least squarem linear data fit for each of the data sets.-
- The following equions rused to obtain the lea t squares fit Note that since the slope is theihc oy vaiiibie of ion'cef, only the slope is calc dated.
A.
~
.r.~O
- t P
X 4...3.O
.- ~
71 0
20
- 30.
40 a-?
~
7 7*,..
.P t.f*
V
'CA
=
I..
le e,
~ij:,T-est---
a I.I
-I I:..I If a 9 I
474 v-Air E 72. -
0 -
A:
a F
74 o
l..
73
- 1 72
.10 20 30 40 Time.' inute pi;.
.I
.: %r,
U-1I I
.I I..
l i-.
,.4 rs*,
79.1 D73 I-0 T"1 4k' 1U
'I I'
2 0
- Ii 5
.10.:1 11 *.,
.1,,
l ~ N, -\\,:.. --'.*,'*.,A,,1ad*
Tie (inul I
. -1 I
I I
I I
I
-N I
.1,
.. - I
- 1.
I I
-s20) tes) 25 30 f r,.
-@o Control j.Room Hcaup due to Loss of HVAC; VYC-1502 Rev. 0 Page 3Y y= mx+b NE Xly, -j~,~
Where m =
N£x-j Sxj S
i~~.
,,(H J(.1 4
I. 1 J N.S Xi XI XI'l Putti.
the data for the first data set in the equation for m gives:
.;.OKK.
.V 0
0 2
5 25 368 3
0
,3
.7,,.
100 752
-754
- 15.
-. 8 225 1137 5
20-2 76.2 400 1524 25 76.4 625 1910 r 7 301.
76.9 900 2307
-8
- 3 77.2 1225 2702 Sms
- 0.
603.4 3500 10700
' 810700 Fm n -140 F 603.4min 8-350ndin-(l4Omin) 0.1338'F7min W.
ControllRoom Hfatwp due to Loss of HVAC; VYC-W502 Rev. 0 Page3 nhe blance of the data can be similarly manipulated and the results arm:
Data Sit Slope l
0.1338.F/niin 2
0.1317.F/hrin 3
0.08262 1F/min 4
0.1057°F/min 5
0.1114°F/mini 6
l 0.1264F iin 7
1 0.1414.°F/min 8
0.1314cMFabin 9
O..1350;bFinin Eachsldpe represents rate of temperature incras in a Jocal region in the control room. As such, it. s detemind: in part by the heat load and the intnal heat conductors in that local
.egion.
Since otfietest
-data has given the average beat load in the control room during the
...test (Stion.l.),: h verage of these slopes ivll Ifive a representation of the combined aveage ~fect of sll1thiaeti condtictors in the control room.
iS.J:
I"
'f
- 'm-in.,'
AMfagei
.F..nslope 2in This,.the6 nis the targetjl6pe of the transient temperature curve for the GOTHIC model. The
- .modificatosfi
- ki to the iibil input model are:
Te* IConductors - #12 abstract-heat sin:: Area 25,000 f g.+/-:
r:n.'C-a iduclom -all initil temperaturts at 73.16 OF 6
,.o lefflcknts - all temperature boundajy conditions set to 70°F to tre lyconditions ieo adjacent to the control room and i w ' hri ooor airp rature (pidy cloudy.'day based o h
etdt.
C ot Her #l :(electrical lod) set to 48-61 BTU/sec based on results fr..mSCaon 4.-1.
eatcr.#2 (occupants) set to 3.25 BTU/seo based on 30 seated
-ts antG at 390 BT(J/hr [1;4][10].
Vou1etric Fan-Ontrip set to 106 seconds, off trip set to O seconds (no opening of p -. q
- ceylugtiles;):
- i Vilves DO
-ObO trip sit to 10' seconds, off trip set to O seconds (no opening of
-><~~ ;-
- ceilinig tiles;)
Volume Iiial Conditions - Volume I (Coi.trol Room) set to 73.16 IF 6, Volume 2 (Dp C eiing S
) set to 72.1 °F to match Time 0 test data.
A:' 'ctW Tbne 0 Sir.r m ft 'A
'AL i
'Thi aocde wifn r
Dw Untle tcca on heC cAluidn of rfmt mt _erw'+/-ur wih att nientof oy an bs. Ibe o
.only ilfta ozi m
vldc h atd h
on the hW t n
ptole plmugh Lbae wAlt whId would Mid fte ail bea"^hiblng
< th.c bisid
..)ar ksy0
' mr othwVll profa ft could be polsuid g'ev ihe tes
- 'z' t
t o
~.*.
'o n
4c
'-W
- _-o.way*
- ',
Control foom Heatup duc toLoss of IIVAC; VYC-1502 Rev. 0 Page
!Run Control Paiameters - the tes. lasted for.35 minutes; the GOTIlC problem wil
- .'mfor 60 minii io be lie'lo covetr he".
G~tpeid ad see anyr shadt tm-r trends.
The GOTHC ini ab!s for thiis r.odei areirinclided in Appendix A. The GOTHIC output results 4e In.*
fiiename"COlTOL.SOl:.
t F*'*e 8. -th tmiFipera.u-e plot hows an.
xiitielieaa'siincreaseun^
floived byA shallower but sly increase. The initial
-tem-iperatu n
e is -t dita but can be exlained by.the bft:-I i~-fbi"'lie-
~6d-..naly-the ifrnil*eie~tr ai~i't-. er i oeffidi'i i he A'de I~Sile clena t~
aios adlaou.niayers-on Ial
.the' het condts vermil..This.-eads lo a very small h -.t derlco~dld i
(tich isth o
nalt e (te correlton heat>
P4
-S..ira e
from the vaporpbis i the.
mode r.-
- l.
Ths.tbiiixil~etis~veiyxmzato a~aiabaiciaup of ulie rom:
. :ionbe.heda&nidutoru es inasa inS d
ane-of ffie heat
-s, J. "tq
.6mhera.
tas,4.p c~w eat~trans ek6cfflm int-hte,61onit t
d A
r.i
,phe~nom,,enia and, miti:t~te.,.c6bntro
,roomi temperature sE ` Te, f
s oe o is onlrllc tanesatrc se s a4ulatcd fronil GOThIC output information*.-
IWIM..1 At it s
-At 3Wnds T
conr855FA36 T..,
e' lO..
67 F
- 2.
)11 05,sec). 60. dx.,.
0.1231 0F.mi; Compared; st s
.0.12216'.F/n lie,
, 're;wrs wthi'm 1%of the de':red s-ob,.
U
~
Tus;-An1 iv abs uintar 1tcnuctorw an~ exoed are o 25,000 ft oti si wl X -
- s........
moel hatconucor.hn.he..econtrol room;: Ho. ve for u~sftu~ae tdued by10% (S 250 6
o use-in sgubse~qzenta yses..
> ~~~~~~~-
' *-s,,'--,.
- * *. 4 s-iJ N
4 4%4
- *E n'
_S:,.
Control Pkoam Hcaftp due to Loss o! VAC; VYC.15O? Rev. 0 page?
IC"W Frlo=~ Hisa4 TWs Moded
'TV To 2 DOI xx I.3 IT'-~**
2213 h
Figure
.Control Room I-Heatp Test ModelVolume Vapor II.,
12.1
.A 3.
R~itoom66 Heiiup -etMd1-Selected Wl CSfile;t
Controj Room Heatup due to Loss of HVAC; VYC-1502 Rev. 0 Pagc 39 43 Control Room lteatup During App. R Event Given t!he irdbomation available from ths test data, it is now possible to adequately model the contro room d aing 8i&S of HVA.- followiig an-Appendix R event The generic control room IOTHIC input model descrit-ed previously is used with modifications to the model made dn the bsis of the test results descnibed in previous sections.
The rncdiications and additions to the initial input model am:
pelma1 Condiictors - #12 abstract ha sink: Area = 2500 flt
- dLil ~
s - all initlem al 78 °F M*
Peat icien ts - f' orl exosed to outside conditions, the temperature
- .ounohs set todreAve average SOLAIR temperatures ole r #l 6tical ioad set to 57.42 BTU/sec based on results fronm Sio4.113 t.ricFn-O itrip set to l0°.F control mom teipee in accordance with VWW-'i re
^ i'spushgdc-Va.,.
&,- t.
40 tit to 1 10p conhol room temperatue in accordance uith
- t. e assumptonpvIously.
Icixssed..
m i.
lumes I aijld 2 are-set tb 78 °F;
.l~uri con s
ter - T HIC problem will rim for a four hour transient 1~..1= A The O
iput.blesfor this odl are inclmled in Appendix B. The GO C outut gm..---
sults arp inclu ODmiCrofiche Unde the fiiwe~"flEATtP.SOr.
N The.irr r'st
.;j sown on Figuic 9. The rists clearly show that the control
, temetur pn 120 F duihe eniepeid of the transient. It -is daso 6er.ht 2
Fwid~~xeded I if iknbeyn.4 1our -
bich would tcsst~
-thifi:-
6detj2
°E.uI cfan t
n inclu in t odeC The i of t openMg of ihe ceilingiles ca n ciearly be i.-
- cen as tlcontrolrooIi temperge rniches 10 0F. Ti ie dpeilmg space rternaLn cooler t;h'nthi rik *th ctr rm since the-hea sou rces aeMn om6t control rom-I r -;..s:.:ited npecte that the tempeatr seen by the operators and equipment h
wfd is ta thy te iei"uts d th Comnon crn-'
- .e~
aowi t
Hiaiheris a notkable differen e in ie temr t foor levelaa&d the tcmp.i.ture at ceiling-level in a heated room.
z: -*
>:-f~~~J:
Conir4 Room Heatup duito Loes of HVAC; VYC-1502 Rev. 0 page S,
- ~~tI ocn ~L~sofHAC 2
C~~ntro Room~ Heakip. Loss of HVAC Tri V2 Art.-A 3~1~.
(*3 I
i....
, ~
.~:;..............1 U
`36:;7210.8
.1 4.4 In Tme sc)X10e3 GdOTHC'S.000-c0826MS133:3" F-ue Cont6Ro~q~m HiAup, ULoi of -HVAC Teitpertitfi Transient q7,~
Contro1 Room Heatup due to Loss of HVAC; VYC-1502 Rev. 0 Page __
4.4 Control Room Heatup Mitig *ion Options As seen by the results in Section 43, during the first four hours of the control room loss of HVAb transient tie'i-tperature h the control room stays under 120 IF. However, due to the beat !oad in the room and the insul ating effect of the thick concrete walls, the steady state
'temp is ex to be weir above 120 'F. To mitigate this temperature rise, two possible options arek lored. Any option chosen will have to do one of two things, either singl$ or in combiton. Either the heat load will have to be reduced or some alternate ntilao/cooling wili have to be prov ded.
The first optioii exjpord was to provide a means of alternate ventilation. Given some teni4rary~ventlaiionii~smg outside air the control ro imtemperature can be maintained at or beloi 120 0F.:-A: GOTIC model was used to detemine the amount of air flow reqired.
Thi s ond opton was'to reduce the heat lo'ad and proyide some means of altermate
.veltilzitio (at some reduced level from the first optiorL)
The i G C o om mdl &veloped previously was used with some minor
- o..
di1tcahions. A ischamtic of the iew GOTH1C mdel is shown in Figure 10. As seen on the aheihiatic-an itoni1 floW.bound condition iid a flow path to that boundary r.-.
conidition we ided. D ils oft idificaons are outlined below for each optioi.
-.ptio:i-einut.t.
.bles for this option are included as Appendix E. TMe output for this
- m'is ixicdided onrniciofiche underthe flnamneY'OPTIONLSMT.
- ,*Otioit2 -
input;ibles for isoption are indcluded as Apendi F. The output for this n is1 inctu on-B ki fiche under the fileiamt "OPTIoN2.SOT".
Fluid kentions
- a flow boundaiy condition was added to simulate a i -coi:sta.it cot bon air flow; in this case, the flowwas set to a function which had
.:6flow.ut&J4400 seconds (four lours) and 110 *f (6600 cfin for 00tion 1) or 50 cfs (3000cf for Option 2) Ethefer (the flow isactually negative, into the b6oundaij dito allowing the cotirol roomrsu boundary condition to provide "r
~'. '
1he 6e.ir:t^
£ -
.Paths
- ailow path was modeled connecting the new flmid boundary condition wit the It m;
e flow pathis hot inienddi to model any particular
.venilaiinecton and for SimpliCit was et o the same parameters as the other control xi ny condidon coneing flouipe pt; Coole dH a forcing function was assigned to the electrical heat lead; for Option i, tliii ing function was unityr (no chane in heat load) but for Option 2, this forcing fun~iion was set to 0.48 it four bours to represent a reduction in heatload The temperature trnsiiit results of thtse models wre shown in Figure II and Figure 12.
- 73"
~
r
-. .- i 3,-
I,.I. '..... I '- '., ! 11W -: r. Z ":'
." 1. -
I I. -! '. -.., -...
'. I.
. 1
Conwml 0oorn caic dueio, Lsf HVAC: VYC-1502 Rev. 0 COwfrO Room fieat Ls HVAC. QtOii 1 yerson 5.1Q)C-4119 Page YA ii I
i
. I
.1.
t
.I pCllgspace.
-A
-=
-:[2p i 2 Modclis d.'-.
I
.t..
- %. 1. ".
I, *vt-,'..
.1
&l *Scematic
^ *for
&5Opti Pl ooti-a
Control RomHclp u "oLoss of HVAC; VYC-J 502 Rey. 0Pae!-
~
f~
MtW AWP410 V~d
)Om Hiozup. Lons d HVAC, Opdon t T*
1N2 i
i t
I I
i
.4 -
t-F i g u r I I o n t r l R o m I l a t u p R e s u l ts, O t o
- ~
~
2 Cor4ioI Flino W a4.iu.Lta
- f. r HVAC, Opt~on 2
- 109
-r~ftrI`
R I
t___
2_
Dom ewpLs
.s 1 F i u r 1
C nt O l I R o o H a t u pn Ra mustO pLo n
d
- t.
I~...
j Countr ioom Heij du o Los of HVAC VYC-1502 Rev. 0 Page 5.0 ~Cnchzsius It ha beii shownb ifor the fit four hours after a control room loss of HVAC transient, wv,,in-
.4ol iodm JlovCXC&120 Y gven operator acdon to'emove
-tempeerature readieeventF fzkxs:i ~rh~'.1°-.
.tooi thie control room, J
x fig
- l120tfo oussom ionisrequiredto mitigate the
- s.
o bit he beb iei which ensc Contl] room zbl
- -bi"d#,##
120 0F in. a long tem tranient en.
ventiaton pidiiig:at least"600 dfmi bf outside air, or
.l yts loAa by at 3000 cfm of ouftside
'a l-'
z,, t.Nv-sI.. ~ '-
.1..
.4 S
-U
','-mS'
?V n-.'.
-i La..
.*~C