ML040630112

From kanterella
Jump to navigation Jump to search
Cycle 11 90-Day Steam Generator Report for Voltage Based Alternate Repair Criteria
ML040630112
Person / Time
Site: Sequoyah Tennessee Valley Authority icon.png
Issue date: 07/29/2002
From: Salas P
Tennessee Valley Authority
To:
Document Control Desk, Office of Nuclear Reactor Regulation
Marshall M, NRR/DLPM/301- 415-2734
References
Download: ML040630112 (73)


Text

July 29, 2002 U.S. Nuclear Regulatory Comnission ATTN: Document Control Deek Washington, D.C. 20555 Gentlemens Sn the Matter of ) Docket Do.30-328 Tennessee Valley Authority SzQuoyaN NUCLEAR PLANT (BgC) - DNST 2 - UNIT 2 CTCLE 11 (U2C11) 90-DAY STZ&X C 1TSOR RZPORT FOR VOLTXGE-BASED ALTERNATZ REPAIR CRITERIA In accordance with SQN Unit 2 License Condition 2.C. (8)Ib). end MRCGeneric Letter (GL) 95-05. Attachment

1. Section 6.b, TVA is providing the 90-day steam generator report. The report contains results of voltage-based repair criteria that vas applied during the U2Cll refueling outage steam generator inspecticns (end of cycle 11 operation). The voltage based repair criteria is for axial outside diameter stress corrosion cracking (ODSCC) at tube support plate intersections.

TVA pulled a steam generator tube during the U2C22 refueling outage. Westinghouse Electric company is continuing to perform the metallurgical examinations of this tube. The final report from the metallurgical examinations is not yet complete. In accordance with GL 95-05 Attachment 1, Section 6.b. (a). TVA is providing the preliminary results of the metallurgical examination (Enclosure 2) for the tube burst test, leakage test, and morphology conclusions. When it becomes available, TVA will provide the final report in a follow up to this letter. A teleconference wae held on July 27 to notify NxC staff regarding the preliminary results of the tube pull analysis.

As requested during the SQN mid-outage telephone calls with NRC staff, TVA is providing the method TVA utilizes for cold leg thinning identification versus axial CDSCC at cold leg tube support plate intersections (Enclosure 3).

U. S. Nuclear Regulatory Cormmission Page 2 July 29, 2002 The subject report is provided in Enclosure 1. The preliminary metallurgical report is provided in Enclosure 2 The U.S. information requested during the mid-cycle phone calls in provided in Enclosure 3.

The alternate repair criteria for primary water stress corrosion cracking was not implemented during the U2C11 steam generator inspection. Primary water stress corrosion cracking was detected in two tubes which were plugged following the inspection. Accordingly, the alternate repair was not implemented during the U2Cll steam generator inspection and no reports are required.

This letter Is being submitted to you in accordance with VRC RIS 2001-05. if you have any questions, please call me at (423) 843-7170 or Jim Smith at (423) 843-6672.

Sincerely, GrlgInal 5sgned by Pedro Salas Licensing and industry Affairs Manager Enclosures

ENCLOSURE 1 SEQUOYAH NUCLEAR PLANT UNIT 2 CYCLE 11 REFUEL OUTAGE CONDITION MONITORING AND OPERATIONAL ASSESSMENT

  • GL 95-05 VOLTAGE BASED ALTERNATE REPAIR CRITERIA END OF CYCLE 11 90 DAY REPORT

SG-SGDA-02-15, Rev. 0 Page 1 of 65 Tennessee Valley Authority Condition Monitoring and Operational Assessment:

GL-95-05 Alternate Repair Criterion End of Cycle 11 90 Day Report Sequoyah Unit 2 Report Number SG-SGDA-02-15 FINAL REPORT July, 2002 Authors Names Signature /Date For Pages D.J. Ayres All Verifier's Name Signature / Date For Pages V. Srinivas All Manager Name Signature / Date RJ. Sterdis

SG-SGDA.02-15, Rev. 0 Page 2 of 65 Table of Contents 0.0 Glossary of Acronyms ....................................... . 3 1.0 Introduction ....... *..4 2.0 Summary and Conclusions...........................................................4 3.0 EOC-11 Inspection Results....................;...................................... 5 3.1 Voltage Distributions at EOC-11 3.2 Voltage Growth Rates for Cycle 11 4.0 Comparison of Predicted and Measured Voltage Distributions at EO C-1 1...... ................... ... ............................... a....... 17 4.1 Comparison of Voltage Distributions 4.2 Comparison of Voltage Growth Distributions 5.0 Analysis Methods and Data Base for ARC Correlations ...................25 5.1 Tube Material Properties 5.2 Burst Correlation 5.3 Leak Rate Correlation 5.4 Probability of Leak Correlation 5.5 NDE Uncertainty 5.6 Upper Voltage Repair Limit 6.0 Condition Monitoring: Tube Leak Rate and Burst Probabilities at EOC-1 I ........................................... ..31 6.1 Analysis Approach 6.2 Burst Probabilities and Leak Rates at EOC-11 6.3 Comparison with Prediction and Acceptance Criteria 7.0 Operational Assessment: Tube Leak Rates and Burst Probabilities at , r EOC-12 .................................................................... 33-.

7.1 Analysis Approach 7.2 BOC Voltage Distribution 7.2.1 POD 7.2.2 Tube Repairs 7.3 Voltage Growth Rates for Cycle 12 7.4 Prediction of Voltage Distributions at EOC-12 7.5 Prediction of Tube Leak Rates and Burst Probabilities at EOC-12 7.6 Comparison with Acceptance Criteria 8.0 References.............. ...... 2.....42 APPENDIX A. Indication Lists

SG-SGDA-02-15, Rev. 0 Page 3 of 65 0.0 Glossary of Acronyms BOC Beginning of operation cycle. The current inspection is just prior to BOC-12.

EOC End of operation cycle. The current inspection is at EOC-1 1. The prior inspection results are from EOC-10. The end of the next cycle is EOC-12 POD Probability of detection. This value is set equal to 0.60 for the GL-95-05 predictive analysis for the condition of the steam generators at the end of the next cycle.

ODSCC Outside diameter stress corrosion cracking SG Steam Generator identifier. Specifically SG 1, SG 2, SG 3 and SG 4.

TSP Tube support plate. The Generic letter 95-05 Alternate Repair Criterion applies to ODSCC in the tubes at the TSPs

SG-SGDA-02-15, Rev. 0 Page 4 of 65 1.0 Introduction Sequoyah Unit 2 completed the eleventh cycle of operation and subsequent steam generator tube inspection in April, 2002. Axial ODSCC has been confirmed within the TSP regions of the steam generators and is a current degradation mechanism at Sequoyah Unit 2. The alternate repair criterion (ARC) defined in NRC Generic Letter 95-05 (Reference 1) has been implemented at Sequoyah Unit 2 for several operational cycles (References 2,3,4,5).

This report provides a condition monitoring assessment that demonstrates that the GL 95-05 acceptance criteria are satisfied at the end of operational cycle 11 (EOC-1 1), and an operational assessment that demonstrates that the GL-95-05 acceptance criteria is expected to continue to be satisfied throughout operational cycle 12.

The operation cycle just completed, cycle 11, was 510.35 Effective Full Power Days (EFPD). -'The next cycle, cycle 12, is estimated to be 515.00 EFPD.

2.0 Summary and Conclusions Bobbin voltage indications of ODSCC at the tube support plates were detected and measured in all four steam generators. Based on this voltage distribution, using the methodology of References 1 and 6, a condition monitoring evaluation including the computation of the probability of tube burst (POB) and the amount of leakage predicted for steam line break conditions at EOC-1 1 was performed. The acceptance criteria on POB and leakage are satisfied with significant margin. The predictions for leakage were recalculated based on the most recent data (Reference 7 amended by Reference 8) 7 which results in prortirinr of loakagthat are approximatey 2 times greater than the previous prP~itinn. but still well within the GL 95-05 limits. The results indicated that the predictions for EOC-1-1, Reference 5, were reasonable and conservative for POB s and the recalculated leakage prediction for all four steam generators with one I. -

exception. That exception is that one indication in SG 4 was measured at 3.35 vdlts which is greater than the predicted maximum voltage value and results in a probability of burst greater than predicted, but still well within GL 95-05 limits. The tube containing the 3.35 volt indication has been pulled for laboratory analysis. l '

For each indication detected, the chanae in voltage from the previous inspection was determined bv historical review. The apparent growth rate per EFPY was determined for each steam generator, and was not significantly different from the apparent growth during cycle 10 except for the long tail caused by the growth of the 3.35 volt indication.

Although there were not significant differences in the voltage growth rates among the steam generators, a bounding growth rate that was selected for each SG which enveloped the growth used for the predictions for cycle 11 and the bounding growth measured in cycle 11 was used for the operational assessment prediction for EOC-12.

SG-SGDA-02-15, Rev. 0 Page 5 of 65 The prediction of the POB and leakage at steam line break conditions at EOC-1 2 was performed. The results indicate that the acceptance criteria on POB and leakage at EOC-12 are satisfied with significant margin. Therefore the Reference 1 acceptance criteria are expected to be satisfied throughout cycle 12.

3.0 EOC-11 Inspection Results 3.1 Voltage Distributions at EOC-11 A summary of eddy current signal voltage distributions at the drilled support plates for all steam generators is shown in Tables 3.1 through 3.4 for steam generators 1 through 4 respectively. These tables show the number of indications in each voltage range detected at EOC-1 1, and the number of indications removed from service due to tube repairs for any reason. The number of indications that remain in service for cycle 12 is the difference between the number detected and the ones removed from service. No tubes were unplugged with the intent to return them to service after inspection.

The summary of all four-steam generators shows the following:

e A total of 1045 bobbin signals were identified as TSP indications during the inspection which were called DSMs.

  • Of the 1045 DSIs, two were equal to or greater than 2 volts.

The two tubes with indications greater than 2 volts were plugged due to ODSCC at the support plates.

  • 13 indications were plugged for reasons other than ODSCC at the support plates.

Figures 3.1 through 3.5 also show the voltage distribution of indications returned to service and those repaired. i

SG-SGDA-02-15, Rev. 0 Page 6 of 85 Table 3.1 Inspection Results for SG 1 Cyll Indications Returned to Service Voltage Bin Inservice Repaired CY12 0.1 0 0 0.2 7 7 0.3 25 25 0.4 17 17 0.5 26 26 0.6 13 13 0.7 12 12 0.8 10 10 0.9 8 8 1 7 7 1.1 2 2 1.2 1 1 1.3 0 0 1.4 1 1 1.5 0 0 1.6 0 0 1.7 1 1 1.8 0 0 1.9 0 0 2 0 0 2.1 0 0 2.2 0 0 2.3 0 0 2.4 0 0 2.5 0 0 L.;

TOTAL 130 0 130

SG-SGDA-02-15, Rev. 0 Page 7 of 65 Table 3.2 Inspection Results for SG 2 Cyll Indications Returned to Service Voltage Bin Inservice Repaired CY12 0.1 0 0 0.2 3 3 0.3 17 1 16 0.4 28 28 0.5 23 23 0.6 17 1 16 0.7 14 14 0.8 12 12 1.

0.9 10 9

. 1 4 4 1.1 3 3 1.2 4 4 1.3 2 2 1.4 0. 0 1.5 0 0 1.6 0 0 1.7 1 1 1.8 0 0 1.9 0 0 2 0. 0 2.1 0 0 2.2 0 0 2.3 0 0 2.4 0 0 2.5 0 0 TOTAL 138 3 135

SG-SGDA-02-15, Rev. 0 Page 8 of 65 Table 3.3 Inspection Results for SG 3 Cyll Indications Returned to Service Voltage Bin Inservice Repaired CY 12 0.1 0 0 0.2 3 3 0.3 8 8 0.4 17 17 0.5 31 31 0.6 25 25 0.7 13 13 0.8 14 14 0.9 8 8 1 6 6 1.1 9 9 1.2 5 5 1.3 5 5 1.4 3 3 1.5 3 3 1.6 1 1 1.7 1 1 1.8 0 0 1.9 0 0

  • 2 3 3 2.1 0 0 2.2 0 0 2.3 1 1 0 2.4 0 0 2.5 0 0 .. I .

TOTAL 156 1 155

SG-SGDA-02-15, Rev. 0 Page 9 of 63 Table 3.4 Inspection Results for SG 4 CY 11 Indications Returned to Service Voltage Bin Inservice Repaired CY 12 0.1 1 1 0.2 19 19 0.3 69 1 68 0.4 114 1 113 0.5 108 2 106 0.6 69 69 0.7 81 3 78 0.8 49 49 0.9 45 . 1 44 1 23 1

  • 22 1.1 14 14 1.2 12 12 1.3 4 4 1.4 5 1 4 1.5 4 4 1.6 1 1 1.7 1 1 1.8 0 0 1.9 0 0 2 1 1 0 0 0 0 0 0 3.4 1 1 0 TOTAL 621 11 610 i.

SG-SGDA-02-15, Rev. 0 Page 10 of 65 Figure 3.1 BOC-12 Indications Returned to Service Voltage Distribution, SG 1 30 25 cIn 20 C

U C

15 oft 1..

Ecz 10 5

0 al I Mian1 X a3 CL4 1MO 11 as3 a0 a as ME el9I L IR - 12 3 1;

1.4 S 1 A

71.7 1.a 2 1t 22 23 24 2.5 6 27 8 29 i

Voltage I..

SG-SGDA-02-15, Rev. 0 Page 11 of 65 Figure 3.2 BOC-12 Indications Returned to Service Voltage Distribution, SG 2 30 25 0

U, C, 20 i

co C

.2 15 0)

.0 E 10 z

5 0 .~ ..I 0.1 0.2 0.3 0 0

~ ~

0.6 0.7 0.8 0.9 J . . .

1 11 12 13 14 15 16 17 la 19 II. . . . . . . .

2 2.1 22 2.3 2A 25 2 7 2.3 2.9 Volts

, S I.

SG-SGDA-02-15, Rev. 0 Page 12 of 65 Figure 3.3 BOC-12 Indications Returned to Service Voltage Distribution, SG 3 35 30 (n

C a0_

25 C

20 i.-

0 15 E 10 z 5 0 o.10.2 03 0.4 0.5 0.6 0.7 0C 0.9 Lo 11 12 U 14 1t5 L 7 1e8 L9 2.0 2.1 2.2 2.3 242.5 2.6 2.7 2.8 2.9 3D 3.1 3.2 33 Volts vL >

SG-SGDA-02-15, Rev. 0 Page 13 of 65 Figure 3.4 BOC-12 Indications Returned to Service Voltage Distribution, SG 4 120 I 100 0e 0

' 80 C

E0 C 6

~40 S

20 0 D9 2 2t 22 2_t 22.52 2 2J29 3 23 . 32 3.1 34 3Z 36 3. 38 3.9 4 Volts  ;

SG-SGDA-02-15, Rev. 0 Page 14 of 65 Figure 3.5 EOC-1 1 Plugged Indications Voltage Distribution, All SGs 4

0 U,

a- 3 0

SO E SG1 a-E SG2

'I-2

!) *SG3 9 SG4

.E 1 0 .

.1 2 A .5 6 .

A

. . . . . . I. .

.9 U 11 12 13 14 15 16 l 7 i 19 2D 2. 22 23 2. 23 21622 2J 2932 3.132 33 .4 MS Volts

SG-SGDA-02-15, Rev. 0 Page 15 of 65 3.2 Voltage Growth Rates for Cycle 11 The voltage growth for each indication detected at EOC-1 1 was determined by identifying the corresponding voltage at the previous inspection, EOC-1 0. The following process was used to determine the EOC-1 0 voltage:

  • Ifthe indication was called a DSI at EOC-10, then the reported voltage is used.
  • If the indication was not called a DSI at EOC-10, then a re-evaluation of the historical data of the corresponding EOC-1 0 inspection result was made.

The distribution of voltage differences over the entire cycle is shown in Table 3.5 for all four steam generators. A comparison of the growth rates for each steam generator on an EFPY basis is determined by dividing by the EFPY of Cycle 11.

This comparison is shown in Figure 3.6. Also shown in Figure 3.6 is the Cycle 11 bounding curve, which bounds the growth for all four steam generators.

Table 3.5 Voltage Changes from EOC-1 0 to EOC-11 Number of Indications VoltageBin SG 1 SG2 SG3 SG 4

-0.5 1 2 1

-0.4 3 0 1

-0.3 5 3 2

-0.2 2 2 8 8

-0.1 13 16 13 26 0 36 36 37 173 0.1 43 52 44 220 0.2 16 15 30 113 0.3 . 12 5 10 46 0.4 4 2 5 20-.

0.5 2 0 3 8 0.6 2 0 0 1 0.7 1 0 0 0.8 1 1 0.9 0 1 0 1.1 0 1.2 0 1.3 0 1.4 0 1.5 0 1.6 0 1.7 1

SG-SGDA-02-15, Rev. 0 Page 16 of 65 Figure 3.6 Growth per EFPY During Cycle 11

1. --i§IFr 0.8 0.7 - ----

-- SGI1 0.6 - -SG 0.5--

(3 0.4 ll _-_ _lo 0.3 -I Bo 0.2 - - -- -- - - - -

0.1 -____ ________ _

-0.6 -0.5 -OA -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.S 0.8 0.7 0.S 0.9 1 Growth, Volts per EFPY The voltage growth rates in volts per EFPY for all of the steam generators are shown in.Table 3.6. The one high voltage growth (change from 1.73 volts to 3.35 volts) indication in SG 4 results in an extended tail to the growth data. This will be addressed in Section 4.

Table 3.6 /

verage and 9S5t Percentile

. A..

Cycle 11 Growth Rates per EFPY Steam Average Voltage l BOC Average 95'rPercentile Generator Growth per EFPY voltage Percent Voltage Growth per' in Cycle 11 averag growth EFPY in Cycle 11 IIe lper EFPY ll 1 0.042 e 0.426 9.9% 0.241 2 -0.001 10.560 0% l0.152 3 0.026 0.666 4.0% 0.231 4 0.048 0.502 9.5% 0.214 TOTAL l 0.037 0.525 7.0%

CYll 1- I I 0.242 Bound j________ __l___l

SG-SGDA-02-15, Rev. 0 Page 17 of 65 4.0 Comparison of Predicted and Measured Voltage Distributions at EOC-1 1 4.1 Comparison of Voltage Distributions The voltage distribution measured at EOC-11 is compared to the voltage distribution predicted in Reference 5 for each steam generator in Figures 4.1 through 4.4. In all steam generators there are fewer indications than predicted.

In all steam generators except SG 4, the maximum measured voltage is lower than the prediction.

Figure 4.1 EOC-1 1 Voltage Distribution, SG 1 35 -

30-

~25-n20- 0 Prediction' 015 _____________________________ Measured

°0 __-____

1 -Ukfl 0.1 0.2 0.3 .4 0.5 0. 0.7 0.8 0a 1 1.1 12 1. 1.4 1.5 1.6 1.71.5 1.9 2 1 22 232.4 2.52.5 Z7 a ZS Volts

. I -So ' & L / , ;. - )

.D _-I r+ It -

' 3 3 r 4 -l 27 o - 1 ) I, '1'

. .3OS I Id -,< .0 lo I I W.)

{--qr e zo I # ( ): -

I I. --3 1.65 SG-SGDA-02-15, Rev. 0 Page 18 of 65 Figure 4.2 O.4' -- 0 O'D -o 1%

C93-1 6.2.2.

0 SG-SGDA-02-15, Rev.

SG-SGDA-02-15, Rev. 0 Page 19 of 65 Figure 4.3

SG-SGDA-02-15, Rev. 0 Page 20 of 65 Figure 4.4

SG-SGDA-02-15, Rev. 0 Page 21 of 65 4.2 Comparison of Voltage Growth Distributions The voltage growth distributions developed in Section 3.2 for Cycle 11, are compared with the corresponding growth distribution of Cycle 10 (Reference 5).

Figures 4.5 through 4.8 show the comparisons of the steam generator specific and bounding growth for cycle 11 and the growth curve selected for use with that SG for the predictions of Reference 5.

Figure 4.5 Sequoyah Unit 2 SG 1 Voltage Growth Comparison for Cycles 10 and 11 0.9-0 C 0.6 - = ====CY900mp -

0.3 - - C

- 0.4-==CY 11 Bound, 0 0.2 I-0.1 --- =--

0*-.

.0.5 -0.4 .0.3 .0.2 -0.1 0 0.1 0.2 0: 0.4 0.5 0.6 0o Vot~pi+n t~n fpiak tI. it V s: vJ^v IFF w.

VV&IU1h v WlhxAyd;- %aasWV Ml1, V wae 1tjcl *r V S For steam generator 1, the cycle 11 bounding curve greater than 0.1 volt per EFPY and the CY 9 comp curve (used in Reference 5) for less than 0.1 volt per EFPY will be used as a bounding curve. The long tail caused by the one large voltage grdwth indication of SG 4 will be included in the growth curves for all SGs.

SG-SGDA-02-15, Rev. 0 Page 22 of 65 Figure 4.6 Sequoyah Unit 2 SG 2 Voltage Growth Comparison for Cycles 10 and 11 0.9 o 0.8 0.7-0.6 0.- - e Cycle 03-0.4 - _

-____- - - -- CYll Y11_Bound

~0.3 02 _ _ < X _____

0O2 __

0.

-0S -0.4 03 .02 .0.1 0 0l. 02 0.3 OA 0.5 Voltage Growth, Volts per EFPY For steam generator 2, the cycle 10 curve (used in Reference 5) for less than 0.6 .volt per EFPY and the CY 11 bound curve for more than 0.6 volt per EFPY will be used as a bounding curve.

SG-SGDA-02-15, Rev. 0 Page 23 of 65 Figure 4.7 Sequoyah Unit 2 SG 3 Voltage Growth Comparison for Cycles 10 and 11 1

0.9 C 0.8 0 0.7 0.6 - Cycle 10 0

0.5 - CYl1 1..

M 0.4 ---CY11 Bound S

0.3 0.2 0

0.1

  • 0 5

.0.5 -0X -0.3 .02 .0.1 0 0.1 02 0.3 0.4 0.5 Voltage Growth, Volts per EFPY

.I For steam generator 3, the cycle 10 curve (used in Reference 5) for less than 0.5 volt per EFPY and the CY 11 bound curve for more than 0.5 volt per EFPY will be used as a bounding curve.

. SG-SGDA-02-15, Rev. 0 Page 24 of 65 Figure 4.8 Sequoyah Unit 2 SG 4 Voltage Growth Comparison for Cycles 10 and 11 0.9 - .

0 0.8 - I 0.7 0.6 -- - -*-Cycle 9

- -0. 1 1-k-C C le Ca E 0.4

= 1CY g1111 11 Bon 02o - - -l__

0C. -OA -0.3 -2 -0.1 0 0.1 0 .203 OA O.S 0.6 07 0.8 0.9 1 Voltage Growth, Volts per EFPY For steam generator 4, the cycle 11 bounding curve greater than 0.1 volt per EFPY-anid the CY 9 curve (used in Reference 5) for less than 0.1 volt per EFPY will be used-at a bounding curve.

SG-SGDA-02-15, Rev. 0 Page 25 of 65 5.0 Analysis Methods and Data Base for ARC Correlations A Monte Carlo based computer program was used to perform the calculations prescribed in GL 95-05 (Reference 1). The methodology for predicting the EOC voltage distribution and computing the probability of burst and leakage at accident conditions is based on the Westinghouse Topical Report, WCAP-1 4277, Revision 1 (Reference 6), supplemented by recent changes in the leakage computation process, discussed in Reference 7as amended in Reference 8. The EOC voltage distribution, probability of burst'and the leakage are computed using the CYCLESIM program, Reference 9, which has been recently revised to incorporate the changes recommended by Reference 7 for 7/8 inch tubes (Reference 10).

The predictions for EOC-1 1 recorded in Reference 5 used the tube burst and leakage correlations of Addendum 3 to EPRI Report NP-7480-L.

Both the condition monitoring assessment for EOC-1 1, and the operational assessment predicting the EOC-12 voltage distribution are performed using the Addendum 4 database (Reference 11) as modified by the recent data, Reference 7 and 8. The specific parameters used in the correlations are provided in Sections 5.1 through 5.4.

5.1 Tube Material Properties The tube material properties are provided in Reference 6 for 7/8 inch diameter tubes at 650F. The parameters used inthe analysis are the flow stress mean of 68.78 Ksi and the flow stress standard deviation of 3.1725 Ksi.

SG-SGDA-02-15, Rev. 0 Page 26 of 65 5.2 Burst Correlation The burst pressure, Pb, is normalized to a material with a flow stress of 68.78 ksi that is the mean of the 7/8 inch tube data appropriate for Sequoyah Unit 2. The Addendum 4 with additional data (Reference 7) as shown in Table 5.1 will be used for condition monitoring and operational assessment calculations.

Table 5.1 Effect of Beaver Valley 1 Data on the 7/8" Tube Burst Pressure vs. Bobbin Amplitude Correlation PB= aq+al og(Volts)

Parameter Addendum 4 Database with New / Old Database Additional Data Ratio Intercept, a. 7.55943 7.55184 0.999 Slope, a, -2.37763 -2.39285 1.006 82.4% 82.0% 0.995 Std. Dev., aiErmr 0.81919 0.82802 1.011 Mean Log(l') 0.28645 0.28921 SS of Log(V) 50.4190 50.6409 N (data pairs) 93 95 ..

Structural Limit (2560 psi) 9.09 V 8.78 V 0.965 Structural Limit (2405 psi) 11.40 V 11.00 0.966 p Value for a1, 2.4-10.36 1.1i10 3 0.473 Reference at 68.78 ksi 3 l Notes: (1) Values reported correspond applying a safety factor of 1.4 on the differential pressure associated with a postulated SLB event.

(2) Numerical values are reported only to demonstrate value relative to 0.05.

(3) This is the flow stress value to which all data was normalized prior tQ performing the regression analysis.

SG-SGDA-02-15, Rev. 0 Page 27 of 65 5.3 Leak Rate Correlation The leak rate criterion is given in terms of gallons per minute condensed at room temperature. The correlation formula provides leak rate in liter per hour at a pressure of 2560psi. In order to obtain gallons per minute condensed at room temperature the leak rate Q in the correlation equation must be multiplied by the conversion factor 0.004403. The additional data of Reference 7 results in a change in the way the correlation is applied. The process is explained in Reference 7, but it essentially results in the following implementation: 67 Step 1: Simulate the leakage in a given Monte Carlo trial using the new correlation with additional data of Table 5.2 Step 2: If in the above simulation, the slope of the correlation (with uncertainty) is less than or equal to zero, then the regression should proceed as if no i7 correlation.between voltage and leak rate exists. Specifically, using a zero i slope, and the mean value and the standard deviation of the population of leak rates given in Table 5.2.

SG-SGDA-02-15, Rev. 0 Page 28 of 65 Table 5.2 Effect of Beaver Valley 1 Data on the 7/8" Tubes Leak Rate vs. Bobbin Amplitude Correlation (2560 psi)

Q = 10 [b3+b4 1o0g(Volts)]

Parameter Addendum 4 Database with Effect Database Value BV 1 Data Ratio Intercept, b3 -0.526882 -0.214066 (1) 0.406 Slope, b4 0.987179 0.754874 0.765 Index of Deter., r2 11.7% 7.0% 0.599 Residuals, Error (bs) 0.808109 0.834438 1.033 Data Pairs, N 29 30 Mean of Log(Q) 0.61268 0.64651 1.055 Std. Dev. of Log(Q) 0.84449 0.85023 1.007 Mean of Log(V) 1.15437 1.14003 SS of Log(V) 2.39739 2.57620

  • _. :_. _-

p Value for b4 3.5% 7.9% 2.273 Notes: (1) Inis value was reported incorrectly In 1elerence 7 ano is corrected in Reference 8 .

SG-SGDA-02-15, Rev. 0 Page 29 of 65 5.4 Probability of Leak Correlation The probability of leak as a function of indication voltage is revised in Reference

7. The parameters of addendum 4 with additional data as shown in Table 5.3 will be used for condition monitoring and operational assessment calculations. Inthe Monte Carlo analysis leakage is quantified only if the indication is computed be a leaker, based on the probability of leak correlation.

'Table 5.3: Effect of Beaver Valley 1 Data on the Probability of Leak Correlation Pr(Leak) = e=bl+b2 1g(Vofrs)]

.."1+e-b b o(0r)

Parameter Addendum 4 Database with New / Old Database Beaver Valley 1 Ratio Intercept, 1 -4.31823 -4.15642 0.963 Slope, 02 4.21652 4.11275 0.975 V11 0.66934 0.59110 0.883 VI2 -0.58947 -0.52488 0.890 V20.58997 0.53648 0.909 Do 139 141 Deviance 78.83 81.83 1.038 MSE 0.575 0.589 1.003 Pearson SD 74.5% I 74.7% 1.023 Notes: (1) Parameters Vy are elements of the covariance matrix of the I.0 (1) coefficients, f3, of the regression equation.

(2) Degrees of freedom.

SG-SGDA-02-15, Rev. 0 Page 30 of 65 5.5 NDE Uncertainties The NDE uncertainties applied for the EOC-1 1 and EOC-12 voltage projections are the same as given in the prior Sequoyah Unit 2 90 Day reports, References 2 through 5. The probe wear uncertainty has a standard deviation of 7% about mean of zero and has a cutoff at 15% based on implementation of the probe wear standard. The analyst variability uncertainty has a standard deviation f 10.3% about a mean of zero with no cutoff. These NDE uncertainty distributions are used in the Monte Carlo analysis to predict the burst probabilities and accident leak rates at EOC-1 1, and EOC-12. The voltages reported were adjusted to account for differences between the laboratory standard and the standard used in the field.

5.6 Upper Voltage Repair Limit The upper voltage repair limit is based on the structural limit in Table 5.1 of 8.78 volts for accident pressure of 2560 psi. It must be reduced by considering the projected voltage growth during the next cycle and NDE uncertainty. The average percentage growth rate per EFPY is seen from Table 3.6 to be below 10% per EFPY. According to Reference 1, the minimum growth adjustment is 30% per EFPY (42.3% per cycle for the anticipated 515 EFPD cycle 12), and 20% for NDE uncertainty. This results in an upper voltage repair limit of 8.78/ ( 1. + 0.423 + 0.20) = 5.41 volts. No indications equal to or greater than this voltage were detected in the current inspection.

SG-SGDA-02-15, Rev. 0 Page 31 of 65 6.0 Condition Monitoring:

Tube Leak Rate and Burst Probabilities at EOC-11 6.1 Analysis Approach The measured EOC-1 1 voltage distributions of Table 3.1 through 3.4 for each steam generator are used as the basis for the leak rate and burst probability predictions for EOC-1 1. The voltage distributions predicted consider NDE uncertainty on the measured values, but consider no voltage growth. The burst and leak correlations of Reference 7 amended by Reference 8 are used.

Calculation details are documented in Reference 12.

6.2 EOC-11 Burst Probabilities and Leak Rates The predicted results from Reference 5 for each of the steam generators at EOC-11 are shown in Table 6.1; Also shown is a predicted leakage computed using the revised data and method of Reference 7 and 8 and the CYCLESIM computer program. The leakage rate is the 95t percentile evaluated at 95% confidence.

The burst probability is the probability of burst of one or more tubes at 95%

confidence based on the number of trials.

Table 6.1 Predicted Results from Reference 5: (1,000,000 Monte Carlo Trials)

Reference 7&8 Data: (50,000 Monte Carlo Trials)

Steam Number of Max Burst SLB Leak SLB Leak Generator Indications Volts, Probability, Rate, gpm Rate, gpm Ref. 5 Ref. 5 Ref. 5 Ref. 7&8 1 179.67 21 1.05x 10A-5 0.127 0.345 .i 2 214.00 2.4 1.69x 1OA-5 0.250 0.634 3 237.33 j 2.7 3.S1x 10A-5 0.361 0.900 4 899.0 2.3 l1.82x 10A-5 0.957 2.52

SG-SGDA-02-15, Rev. 0 Page 32 of 65 The Monte Carlo analysis results for each of the steam generators based on the measured voltage distribution at EOC-1 1 are shown in Table 6.2. Two hundred and fifty thousand Monte Carlo trials were performed for the burst and leakage predictions for each steam generator. The leakage rate is the 9 5 th percentile evaluated at 95% confidence. The burst probability is the probability of burst of one or more tubes at 95% confidence based on the number of trials.

Table 6.2 Monte Carlo Analysis Results for Measured EOC-1 1 Voltage Distributions Steam Number of Number of Max Volts Number Burst SLB Leak Gen. Trials Indications Measured of Probability Rate, bursts 95% Conf. 95pm

_ ___ _ ____ ___ ___ 9 5 ,9 5 1 250,000 130 1.61 0 1.2 x 10-5 0.160 2 250,000 138l 1.69 0 1.2 x10A-5 0.197 3 250,000 156 2.26 3 3.1 x 10-A5 0.404 4 250,000 621 3.35 Ji9 6.3 x 10-A5 1.29 6.3 Comparison with Acceptance Criteria The results indicate that the predictions for EOC-1 1 were conservative for POB for all but SG 4, and conservative for the recalculated leakage for all four steam generators. The computed POB for SG 4 is higher than the prediction because the maximum voltage indication measured was greater than the maximum : I predicted: The tube containing the 3.35 volt indication was pulled for laboratory analysis. All steam generators are well below the burst acceptance criterion of

  • 1.0 x 10-2, and the Sequoyah Unit 2 leakage criterion of 8.2 gpm. Therefore the acceptance criteria on POB and leakage are satisfied with significant margin.

SG-SGDA-02-15, Rev. 0 Page 33 of 65 7.0 Operational Assessment:

Tube Leak Rate and Burst Probabilities at EOC-12 7.1 Analysis Approach The BOC-12 voltage distribution is developed from the measured distribution by considering the POD and the indications that are removed from service. The EOC-12 voltage distribution is developed considering the NDE uncertainties and voltage growth during the cycle. The latest burst and leakage correlations, Reference 7, are used for the EOC-12 predictions. The burst probabilities and leak rates are computed using the computed EOC-12 voltage predictions to address the acceptance criteria at the end of the cycle. Calculation details are documented in Reference 12.

7.2 BOC Voltage Distribution The BOC-12 voltage distribution for each steam generator is determined from the measured EOC-11 voltage distribution. First, the number of indications potentially missed during the inspection and the number of new indications initiating during the Cycle 12, are considered by dividing the measured number of indications in each voltage range by the assumed POD. From this number of indications in each voltage range is subtracted the number of indications removed from service for any reason. This then gives the BOC-1 2 voltage distribution. AIc ICbscr - 4-6d = -W 7.2.1 POD The POD used is the NRC accepted value of 0.6 for all voltages (Reference 1).

7.2.2 Tube Repairs Considering the repaired tubes and the POD, the BOC-12 voltage distribution for each SG is given in Table 7.1

SG-SGDA-02-15, Rev. 0 Page 34 of 65 Table 7.1 BOC-12 Voltage Distributions for all SGs SG 1 SG2 SG 3 SG4 Voltage Bin 0.1 0 0 0 1.67 0.2 11.67 5.00 5.00 31.67 0.3 41.67 27.33 13.33 114.00 0.4 28.33 46.67 28.33 189.00 0.5 43.33 38.33 51.67 178.00 0.6 21.67 27.33 41.67 115.00 0.7 20.00 23.33 21.67 132.00 0.8 16.67 20.00 23.33 81.67 0.9 13.33 . 15.67 13.33 74.00 1 11.67 6.67 10.00 37.33 1.1 3.33 5.00 15.00 23.33 1.2 1.67 6.67 8.33 20.00 1.3 0 3.33 8.33 6.67 1.4 1.67 0 5.00 7.33 1.5 0 0 5.00 6.67 1.6 0 0 1.67 1.67 1.7 1.67 1.67 1.67 1.67 1.8 0 0 1.9 0 0 2 5.00 1.67 2.1 0 0 2.2 0 0 2.3 0.67 0 2.4 0 2.5 0 2.6 0 2.7 0 2.8 0 2.9 0 3.0 0 3.1 0 3.2 0 3.3 0 3.4 0.67 3.5 TOTAL 216.57 227.00 259.00 1024.00

SG-SGDA-02-15, Rev. 0 Page 35 of 65 7.3 Voltage Growth Rates for Cycle 12 The voltage growth rates for cycles 10 and 11 were compared in Section 4 and a bounding rate was chosen for each steam generator. The voltage growth rate cumulative distribution used for the EOC 12 predictions for each steam generator is taken as the bounding envelope of the cycle 10 specific curve or the cycle 11 bounding curve. The growth values chosen are listed in Table 7.2.

Table 7.2 Cumulative Distribution of Selected Voltage Growth per EFPY for EOC-12 Predictions SG 1 SG1 Cumulation SG 2 SG2 Cumulation Voltage Voltage Growth per . Growth per EFPY_ EFPY 0 0.238 0 0.310 0.1 0.752 0.1 0.711 0.2 0.920 0.2 0.882 0.3 0.972 0.3 0.955 0.4 0.988 0.4 0.987 0.5 0.992 0.5 0.992 0.6 0.998 0.6 0.992 1.2 1.0 l 1.2 1.0 SG 3 SG3 Cumulation SG 4 SG 4 Cumulation Voltage Voltage Growth per Growth per EFPY EFPY 0 0.3217 0 0.2138 0.1 0.673 0.1 0.754 0.2 0.898 0.2 0.920 0.3 0.959 0.3 0.971 0.4 0.979 0.4 0.989 0.5 0.993 1 0.5 0.993 0.6 0.998 1 0.6 1 0.998 1.2 1 1.0 J 1.2 1.0

SG-SGDA-02-15, Rev. 0 Page 36 of 65 7.4 Prediction of Voltage Distributions at EOC-1 2 Using the number of indications from Table 7.1, the growth distribution from Table 7.2, and the proposed cycle length of 515 EFPD; the prediction of the EOC-12.voltage distribution is made for each steam generator. The EOC-12 predicted voltage distributions for each steam generator are listed in Table 7.3 and shown in Figures 7.1 through 7.4. Calculation details are documented in Reference 12.

Table 7.3 EOC-12 Predicted Voltage Distributions for all SGs Volt Bin SG 1 SG2 SG3 SG4 0.1 0.14 0.08 0.08 0.72 0.2 3.33 2.15 1.79 9.33 0.3 12.33 9.8 5.78 37.27 0.4 23.25 20.42 13.64 84.47 0.5* 29.15 28.43 24.04 128.75 0.6 31.16 30.96 30.72 145.81 0.7 27.56 29.09 32.04 136.12 0.8 22.78 25.48 29.2 119.84 0.9 18.72 21.36 24.05 99.73 1 14.98 16.84 19.29 77.92 1.1 11.35 12.58 15.81 57.36 1.2 7.83 9.14 13.22 40.5 1.3 4.98 6.5 11.01 27.87 1.4 3.03 4.45 8.96 18.8 1.5 1.83 2.9 7.04 12.65 1.6 1.18 1.84 5.36 8.48 1.7 0.83 1.16 4.01 5.6 1.8 0.6 0.75 2.99 3.65 1.9 0.46 0.55 2.28 2.41 2 0.16 0.55 1.8 1.74 2.1 0 0.53 1.48 1.32 2.2 0.7 0.42 1.22 0.95 .,;

2.3 0 0.03 0.94 0.66 2.4 0.3 0 0.71 0.48 2.5 0 0.7 0.51 0.33 2.6 0 0.06 0.22 2.7 0.3 0 0.03 2.8 0 0.7 0 2.9 0.3 0 3 0 0 3.1 - 0.7 3.7 0.3 3.8 0 Total 216.67 227.00 259.00 1024.00

SG-SGDA-02-15, Rev. 0 Page 37 of 65 Figure 7.1 EOC-12 Predicted Voltage Distribution, SG 1 35 c130 I3o

,: 25 c! 20 0 15 L.

E0 10 E

z 5 0 a 0] G02 05 W Oh M 9 1 I 11 13 tU 6 U 1E 16 1 2 21 22 23 24 25 26 27 26 29 Voltage

SG-SGDA-02-15, Rev. 0 Page 38 of 65 Figure 7.2 EOC-12 Predicted Voltage Distribution, SG 2 35 30 25 gi C

20

.0 15 E

z 10 0

102ZC04 0.5 07 0.a9 1 11 1213 U 15 16 17 18 19 2 2122232A2.5 2627289 3 Volts I.

SG-SGDA-02-15, Rev. 0 Page 39 of 65 Figure 7.3 EOC-12 Predicted Voltage Distribution, SG 3 35 30 0

,o 25 m20 a-a so C

0 15 L.-

a)

E 10 5

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 I 12 U U 1. 31 17 IB 19 2.0 2.1 2.2 2.3 2.4 2.5 26 2.7 2.8 2.9 3.0 3.1 3.2 33 Volts

SG-SGDA.02.15, Rev. 0 Page 40 of 65 Figure 7.4 EOCu12 Predicted Voltage Distribution, SG 4 160 140 0

120 11 T 100 0

0

'4-0 80 ' I-"i'll1 60 -- . - l E

.., .Sl_-_D I. -- . i- - __

'z I

20

  • 0 .

.~. . .

OJ6C OJ 0.9 0.10I 03 04 CZ I

. I II . . . . . . . .

U U UIA15 17 U 19 2 2122 23 2 2A22 2J2.9 3 3.1 32 33 3A 3U 3133.9 4 Volts

SG-SGDA-02-15, Rev. 0 Page 41 of 65 7.5 Prediction of Tube Leak Rates and Burst Probabilities at EOC-12 The POB and leakage analysis results for predicted EOC-1 2 voltage distributions are shown in Table 7.3. Two hundred and fifty thousand Monte Carlo trials were performed for the burst and leakage prediction for each steam generator. The leakage rate is the 95t percentile evaluated at 95% confidence. The burst probability is the probability of burst of one or more tubes at 95% confidence based on the number of trials. Calculation details are documented in Reference 12.

Table 7.3 EOC-12 Predicted Results Steam Number of Number of. Max Number Burst 95195 SLB Gen. Trials Indications Volts* of bursts Probability Leak Rate, 95% conf. gpm 1 250,000 216.67 2.4 0 1.2 x 1OA-5 0.519 2 250,000 227.00 2.7 5 4.2 x 10A-5 0.634 3 250,000 259.00 2.9 8 5.8 x 10A-5 1.05 4 250,000 1024.00 3.7 j 1 7.3 x 10^-5 3.40

  • Note. The maximum voltage is defined as the voltage where the integration of the voltage distribution from the tail reaches 0.3 of an indication 7.6 Comparison with Acceptance Criteria All steam generators are predicted to remain well below the burst acceptance criterion of 1.0.x 10AX2, and the Sequoyah Unit 2 leakage criterion of 8.2 gpm throughout operating cycle 12.

SG-SGDA-02-15, Rev. 0 Page 42 of 65 8.0 References

1. NRC Generic Letter 95-05. "Voltage-Based Repair Criteria for Westinghouse Steam Generator Tubes Affected by Outside -Diameter Stress Corrosion Cracking", USNRC Office of Nuclear Reactor Regulation, August 3, 1995.

2 SG-96-08-01 0, "Sequoyah Unit-2 Cycle 8 Alternate Plugging Criteria 90-Day Report,"-Westinghouse Nuclear Services Division, August 1996.

3 SG-98-01-002, "Sequoyah Unit-2 Cycle 9 Altemate Plugging Criteria 90-Day Report," Westinghouse Nuclear Services Division, January 1998.

4 SG-99-07-009, uSequoyah Unit-2 Cycle 10 Voltage-Based Repair Criteria 90-Day Report," Westinghouse Nuclear Services Division, July 1999.

5 01 -TR-FSW-002, Rev. 0, " Sequoyah Unit 2 End of Cycle 10 Condition Monitoring and Operational Assessment 90 Day Report GL 95-05 Alternate repair Criterion", Westinghouse Electric Company, January 2001

6. WCAP-14277, Revision 1, USLB Leak Rate and Tube Burst Probability Analysis Methods for ODSCC at TSP Intersections," Westinghouse Nuclear Services Division, December 1996.
7. Letter from G. Srikantiah of EPRI to J. Riley of NEI, uBeaver Valley Data Report", March 28, 2002
8. E-Mail from R. F. Keating of Westinghouse to G. Srikantiah of EPRI, 'Error in updated ODSCC J.R correlation", April 22, 2002
9. Westinghouse Calculation Note SM-98-24, "Verification of CycleSim Computer Code", R. Keating, Westinghouse Nuclear Services Division, March, 1998
10. E-Mail from R. F. Keating of Westinghouse to D. J. Ayres, Cyclesim3",

U May 16, 2002

11. EPRI Report NP-7480-L, Addendum 4, 2001 Database Update, "Steam Generator Tubing Outside Diameter Stress Corrosion Cracking at Tube Support Plates - Database for Alternate Repair Criteria," March 2001
12. Westinghouse Report, CN-SGDA-02-1 11, Rev. 0, " Computation Details of GL 95-05 Analysis for Sequoyah Unit 2 EOC-1 1", July, 2002

SG-SGDA-02-15, Rev. 0 Page 43 of 65 Appendix A Indication List Sequoyah Unit 2 GL-95-05 End of Cycle 11 Steam Generator 1 SG 1 EOC-1 1 EOC-10 Confirmed, C EOC 11 Not Confirmed, NC Row Col Supt Volts Volts Cal or Not Tested, Blank Plugged?

2 10 HOI 0.32 0.26 49H 2 12 H02 0.4 ,0.32 5H 3 16 HO1 0.6 0.69 49H 3 16 H02 0.93 0.61 49H 3 20 H02 0.38 0.23 6H 3 34 H01 0.61 OA2 EX NC 3 46 H01 0.99 0.87 4H 3 46 H02 0.43 0.18 4H 3 47 H02 0.3 0.21 4H 4 6 H02 0.8 0.82 49H 4 11 HO 0.51 0.48 49H 4 15 H01 0.8 0.31 5H 5 7 HO0 0.38 0.41 50H 5 11 H01 0.33 0.33 50H 5 13 H02 0.73 0.19 6H 5 26 H02 0.34 0.34 6H 5 46 Hol 0.63 0.7 4H 5 72 H02 1.05 0.55 1H C 6 2 H03 0.52 0.68 49H 6 4 H01 0.45 0.25 49H 6 15 H02 0.36 0.38 5H C 6 21 H01 0.58 0.48 5H C 6 35 H01 0.25 0.16 3H 6 38 H01 0.11 0.07 3H 6 91 H02 0.81 0.86 2H C 8 3 H02 0.87 0.77 49H 8 33 H01 0.27 0.28 3H 9 25 H02 0.32 0.26 10C 9 34 H04 0.48 0.36 10C 9 39 H01 0.7 0.6 10C 9 92 HO 0.83 0.91 13C C 10 36 H01 0.43 0.38 11C 10 77 H02 0.34 0.25 140 C 10 77 H04 1.04 1.09 14C C

SG-SGDA-02-15, Rev. 0 Page 44 of 65 11 61 H02 0.51 0.43 36C 12 46 H02 0.5 0.5 ,11C 13 62 H05 0.2 0.35 36C 14 4 H01 0.26 0.33 36C 14 11 H03 0.21 0.2 35C 15 18 H01 0.82 1.03 10C C 15 31 H01 0.89 0.83 10C 16 29 H02 1 0.44 11C 16 30 H01 0.23 0.23 11C 16 86 H04 0.59 0.61 12C 17 4 H01 0.7 0.8 37C 17 4 H03 0.72 0.9 37C 17 4 H04 0.24 0.35 37C 17 33 H02 0.88 0.95 28C 17 82 H05 0.26 0.25 15C 18 82 H02 0.25 0.25 14C 19 66 H01 0.63 0.49 25C 19 74 H02 0.22 0.25 17C 19 77 H03 0.38 0.31 15C 20 58 HO 0.21 0.28 20C 20 65 H02 0.66 0.81 25C 21 7 H01 0.5 0.5 36C 21 8 H01 0.56 0.55 36C 21 78 H02 0.47 0.5 14C 22 31 H01 0.19 0.24 28C 22 33 H02 0.47 0.43 29C 22 46 H04 0.23 0.16 27C 22 48 H01 0.75 0.48 17C C 22 o8 H02 0.16 0.23 24C 23 7 H01 0.98 0.77 37C 23 20 H02 0.44 0.45 32C 23 32 H04 0.32 0.18 28C 24 21 102 0.91 0.67 330C 25 8 H01 0.52 0.39 37C 25 25 H01 0.29 0.43 30C 25 37 H01 0.51 0.38 29C 27 48 H01 0.41 0.35 16C 27 48 H102 0.77 0.58 16c 27 52 H01 0.83 0.6 19C 28 11 H01 0.57 0.28 35C 28 26 H02 0.21 0.35 31 C 28 28 - H04 0.64 0.35 31 C 28 28 H06 0.19 0.14 31 C 28 31 H02 0.3 0.45 28C 28 43 H02 1.61 1.58 27C 28 45 H02 0.8 0.87 27C 28 46 H02 0.34 0.29 27C 28 77 H02 0.34 0.31 14C

SG-SGDA-02-15, Rev. 0 Page 45 of 65 29 52 H02 1.4 1.45 19C 30 41 H02 0.62 0.58 27C 30 82 H01 0.43 0.4 15C 30 82 H02 0.74 0.91 15C 31 64 H03 0.2 0.18 25C 32 31 H05 0.22 0.41 28C 32 42 H02 0.5 0.32 27C 32 49 H01 0.42 0.23 EX NO 32 53 H01 0.66 0.33 19C 32 68- HO0 0.7 0.47 24C 32 73 H02 0.48 0.4 16C 33 27 H04 0.74 0.8 31C 33 50 H02 0.81 1.03 17C 33 72 H02 0.33 0.39 16C 33 75 HOS 0.42 0.47 17C 34 28 HO 0.31 0.24 31C 35 22 H03 0.76 0.7 31C 35 23 HOl 0.56 0.54 30C 35 30 H01 0.67 0.42 28C 35 30 H02 0.64 0.27 28C 35 30 H03 0.28 0.13 28C 35 32 H01 0.3 0.4 28C 35 33 H02 0.49 0.52 28C 35 42 H02 0.94 0.81 260 C 35 47 H02 0.28 0.31 26C 36 35 H04 0.33 0.11 29C 36 39 H02 1.18 0.85 28C 36 42 H02 0.3 0.21 27C 36 54 H02 0.3 0.44 18C 36 62 H02 0.45 0.37 24C 36 62 H03 0.43 0.35 24C 37 60 H05 0.25 0.23 25C 37 61 H02 0.98 0.77 25C 37 61 H03 0.26 0.28 25C 38 51 H02 0.2 0.12 17C 38 63 H02 0.57 0.43 25C C 39 30 H05 0.35 0.3 28C 40 24 H01 0.48 0.49 31C 40 24 H02 0.54 0.54 31C C 40 26 H01 0.29 0.25 31 C 40 26 H05 0.44 0.26 31 C 42 40 H02 0.43 0.44 27C 42 40 H07 0.47 0.44 27C 44 40 H02 0.42 0.32 27C 44 42 H02 0.48 0.54 27C 45 47 H04 0.5 0.41 26C 45 49 H02 0.24 0.21 17C 46 41 H03 0.43 0.18 27C

SG-SGDA-02-15, Rev. 0 Page 46 of 65 Steam Generator 2 SG2 EOC-1 1 EOC-I0 Confirmed, C EOC-1 Not Confirmed, NC Row Col Supt Volts Volts Cal or Not Tested, Blank PMugged?

2 22 H02 0.24 0.25 4H 2 48 H01 0.35 0.27 58H 2 55 H02 0.53 0.46 58H 2 58 H01 0.91 0.85 58H C 2 58 H02 1.02 0.97 58H 2 73 H01 0.57 0.44 1H 2 73 H02 0.37 0.36 1H 2 76 H02 0.72 0.54 2H 2 77 H01 0.3 0.36 2H C 2 83 H01 0.62 '0.58 1H 2 84 HO0 0.41 0.5 1H 2 85 H01 0.78 0.68 1H 2 85 H02 0.51 0.91 1H 2 87 HO0 0.7 0.74 1H C 2 94 H02 0.76 0.71 1H 3 5 H02 0.39 0.33 59 H 3 42 H02 1.69 1.01 6H C 3 49 H02 0.29 0.3 59H 3 51 H02 0.97 0.68 59 H 3 72 HOI 0.46 0.46 1H 3 76 H02 0.57 1.07 1H 4 22 H02 0.22 0.25 4H 4 26 H02 0.69 0.68 4H 4 36 H01 0.47 0.77 7H C 4 47 H01 0.33 0.5 7H 4 50 H01 0.46 0.45 58H C 4 56 H02 0.83 0.92 58 H 4 92 H03 0.4 0.36 1H 5 92 HO0 0.37 0.36 2H 5 93 H01 0.45 0.8 2H 5 94 H01 0.68 0.44 2H C 6 13 H04 0.22 0.15 4H 6 16 H02 0.25 0.29 4H C 6 40 Hol 0.33 0.38 7H 6 41 H04 0.12 0.17 7H 6 43 _ H02 1.13 0.99 7H C 6 68 H06 0.19 0.1 2H 6 70 H02 0.21 0.31 2H 6 94 H01 0.46 0.39 1H 7 4 H01 0.49 0.47 59H 7 4 H02 0.8 0.96 59H 8 11 H02 0.23 0.17 58H

SG-SGDA-02-15, Rev. 0 Page 47 of 65 8 13 H02 0.23 0.18 4H 8 42 H02 0.39 0.58 7H 8 44 HO0 0.82 0.87 7H C 8 47 H02 0.45 0.29 7H 8 51 H02 0.29 0.23 58H 8 61 H02 0.53 0.68 58H 8 70 H03 0.31 0.28 2H C 8 90 H02 0.42 0.4 1H 8 91 H01 0.35 0.36 1H C 8 92 H01 0.84 0.86 1H 9 33 HO0 0.86 0.93 15C 9 57 H02 0.33 0.57 40C 9 72 H02 0.79 0.76 11C 10 4 H02 0.4 0.33 41C 10 39 H01 0.84 0.63 14C Plugged 11 65 H02 0.49 0.8 12C

12. 44 H02 0.58 0.58 15C C 13 21 H02 0.36 0.31 15C 14 48 H01 0.82 1.19 40C 14 48 H02 0.92 0.97 40C 14 84 HO0 0.69 0.69 11C 14 90 H01 0.34 0.36 13C 15 49 H02 0.55 0.81 40C 15 54 H02 0.82 1.18 40C 15 87 H02 0.32 0.24 11C 15 89 H01 1.15 1.19 11C 16 33 H03 0.48 0.31 14C 17 77 C04 0.36 0.36 RX NC 20 49 H01 0.45 0.4 29C 20 49 H02 0.63 0.47 29C 20 56 H02 0.41 0.51 30C 20 58 H01 0.51 0.39- 30C 20 62 H01 0.38 0.23 32C .J 22 34 H01 0.4 0.33 20C 23 17 H02 0.46 0.4 17C 23 22 H02 0.43 0.48 17C 23 44 H01 0.69 1.12 26C 23 44 H05 0.36 0.33 26C 23 49 H01 1.07 1.06 300 23 55 H01 0.32 0.31 30C 24 37 H02 0.71 0.66 22C 24 87 -H01 0.5 0.65 10C 25 22 H02 0.33 0.4 17C 25 72 H02 0.5 0.42 33C 26 59 H01 0.69 0.34 29C 27 53 H02 0.56 0.73 30C C 27 68 H02 0.4 0.4 33C 27 84 H01 0.9 0.81 10C

SG-SGDA-02-15, Rev. 0 Page 48 of 65 28 17 H02 0.62 0.69 28C 28 30 H05 0.17 0.12 19C 28 66 H03 0.53 0.47 32C 28 69 H02 0.46 0.46 33C 28 79 H02 0.37 0.4 35C 29 16 H01 0.75 0.46 28C 29 16 H02 0.71 0.6 28C 29 20 H02 0.62 0.59 17C 29 21 H02 0.6 0.35 17C 30 55 H01 1.07 0.91 29C 30 55 HOS 0.38 0.34 29C 30 68 H02 1.22 1.36 34C C 30 70 H01 0.21 0.32 34C 30 74 H02 1.23 1.69 34C 30 77 H02 0.46 0.33 35C 30 79 H02 0.52 0.6 35C C 30 81 Hol 0.8 0.81 35C 30 81 H04 0.6 0.59 35C 30 82 H02 0.48 0.53 35C 31 37 H01 0.72 0.68 22C 31 38 H04 0.33 0.27 23C 31 70 Hol 0.9 0.8 33C 32 20 H01 1.16 0.81 28C 32 20 H02 0.72 0.77 28C 35 45 H02 0.35 0.31 26C 35 55 H02 0.94 0.96 30C 36 64 HO0 0.85 0.84 32C 36 71 HO 0.63 0.8 34C 36 74 H02 0.63 0.79 34C 36 77 H02 0.59 0.53 36C Plugged 37 20 H01 0.58 0.46 27C 38 45 H02 0.79 0.98 25C 38 45 H03 0.52 - 0.63 25C 38 49 H02 0.68 0.6 29C 39 55 H02 0.63 0.7 30C 39 58 H04 0.41 0.28 29C 39 59 H02 0.31 0.29 30C 41 50 Hol 0.47 0.3 29C 41 54 H03 0.27 0.28 30C 41 55 H03 0.48 0.38 30C 42 43 H03 0.3 0.37 22C 42 50 - H02 0.23 0.16 30C 42 61 H01 0.27 0.38 32C 43 38 H02 0.53 0.56 23C 43 50 H02 0.29 0.18 29C 44 34 H03 0.29 0.4 21 C Plugged 44 52 H02 1.17 1.13 29C 45 52 H02 0.32 0.26 30C

SG-SGDA-02-15, Rev. 0 Page 49 of 65 Steam Generator 3 SG3 EOC-1 1 EOC-10 Confirmed, C EOC-1 1 Not Confirmed, NC Row Col Supt Volts Volts Cal or Not Tested, Blank Plugged?

1 74C01 1.96 2.14 RX NC 2 16H01 0.54 0.47 3H 2 31H03 0.5 0.45 4H 2 38H02 0.24 0.23 4H 2 39H02 0.63 0.66 4H 3 2H01 0.31 0.33 54H 3 5H01 0.76 0.75 56H 3 10HOl 1.22 .1.16 56H C 3 29H01 0.84 0.68 4H C 3 51H02 0.51 0.71 56H 4 55H02 0.56 0.43 54H C 5 1H02 0.84 0.91 56H 5 4H01 0.52 0.5 56H 5 19H01 1.59 1.64 4H 5 22 H01 0.5 0.59 4H 6 10HO0 0.55 0.51 54H 6 38H01 0.73 0.85 4H 6 38H03 0.63 0.67 4H 6 48H01 1.24 0.84 54H 6 50H01 0.24 0.27 54 H 7 14H01 0.52 0.64 4H 7 14H02 0.23 0.21 4H 7 42H04 0.23 0.24 3H 7 60H01 0.7 0.74 56H 7 64H01 0.78 0.72 1H 7 71H02 1.26 0.99 1H 7 71H03 0.43 0.72 1H 7 72H02 0.94 0.8 1H 7 91H02 0.45 0.33 1H  ;;I 7 92H03 0.84 0.61 1H C 7 93H02 0.97 0.8 EX NC 8 15H02 0.41 0.36 3H C 8 56H01 1.95 1.93 54H 8 57H04 0.31 0.3 54H 8 58H01 1.98 1.5 '54H 8 63H01 0.49 0.44 54H 8 64H01 0.46 0.5 1H 8 69 H01 0.73 0.58 2H C 8 70H05 0.18 0.19 2H 9 2H01 0.59 0.34 46C 9 4H01 0.58 0.51 46C 9 5H01 0.77 0.74 46C 9 8H01 0.48 0.34 46C 9 11H01 0.55 1.08 46C

SG-SGDA-02-15, Rev. 0 Page 50 of 65 9 13H02 0.31 0.2 20C 9 41 H01 0.69 0.55 32H 9 48H01 1.15 1.17 54H 9 48H02 0.36 0.38 54 H 9 50HOl 0.5 0.57 54H 9 51H01 1.29 1.21 54H 10 5HO1 1.41 0.63 47C 11 6H01 0.71 0.44 47C 11 16H06 0.18 0.18 20C 11 37H01 0.85 0.83 20C 12 12H01 0.81 0.51 22C 12 27H01 0.33 0.38 22C 12 35H03 0.5 0.58 19C C 13 3H01 0.5 0.28 46C 13 3H02 0.46 0.39 46C 13 7H01 0.32 0.32 46C 13 10H02 0.44 0.34 46C 13 36H01 0.56 0.81 18C 13 54H01 0.31 0.29 48C 14 4H01 0.58 0.59 46C 14 39H01 1.04 1.14 22C 15 3H01 1.06 0.86 47C 15 3H02 0.92 0.73 47C 15 6H01 0.77 0.47 47C 15 6H02 0.52 0.55 47C 15 7H02 0.52 0.38 46C 15 15H01 0.61 0.99 20C 15 37H01 0.25 0.41 20C 16 4H01 0.8 0.97 46C 16 4H02 0.56 0.39 46C 16 5H04 0.41 0.23 47C 16 41H01 0.58 0.75 220C 16 54H01 0.48 0.83 49C L.

17 6H02 0.66 0.64 47C 17 47H01 0.67 0.7 42C 18 18H01 0.66 0.67 37C 18 21H01 0.45 0.37 37C 18 35H01 0.93 1.04 43C 18 38H01 1.2 0.95 43C 18 49H01 1.33 1.28 24C C 19 lOHOl 0.63 0.53 46C 19 13H01 0.77 0.32 37C 20 12H01 0.61 0.52 37C 20 29H01 1.07 0.95 41C 20 30H01 1.1 0.9 41 C 20 31 HO 0.78 0.63 40C 20 32H01 1.35 1.03 41C 20 35H03 0.44 0.39 43C

SG-SGDA-02-15, Rev. 0 Page 51 of 65 20 39 HO1 0.73 0.79 42C 20 801H03 0.48 0.49 33C 21 24HO1 1.17 1.06 40C 21 81 H02 0.82 0.78 33C 21 84H04 0.48 0.51 17C 22 21 HO1 0.58 0.44 37C 23 44HO1 0.46 0.33 42C 24 12H01 0.72 0.81 37C 24 16HO1 1.35 1.2 37C 24 24H01 1.09 0.8 41 C 24 25H01 0.44 0.27 40C 24 29H01 1 0.91 41 C 24 35HO1 1.12 0.62 43C 25 18H01 1.1 1.01 36C 25 24H01 0.3 0.57 40C 25 49 HO1 0.44 0.41 23C 26 9 HO1 0.87 0.56 47C C 26 23H01 0.57 1.15 36C 26 35H01 1.1 0.98 41C 27 15HO1 0.36 0.58 37C 27 26 H02 1.04 1.1 40C 27 30 H02 0.85 0.63 40C C 27 351H01 0.64 0.47 40C 27 67H02 0.45 0.39 30C 27 681H02 0.48 0.51 30C 27 79H02 0.47 0.74 EX NC 28 84 H01 0.49 0.35 16C 30 23H01 1.11 1.27 36C 30 41 H02 0.49 0.5 43C 30 42H02 0.37 0.36 43C 30 50 H01 0.65 0.94 24C C 31 65HO2 0.42 0.25 29C*

31 761H02 0.54 0.39 EX NC 32 20H01 0.39 0.34 37C 32 23H01 1.63 1.91 36C 32 42H02 0.53 0.49 43C 33 251H04 0.57 0.73 40C 33 27H01 0.57 0.76 41 C 33 49H03 0.66 0.S4 230 33 67H04 0.36 0.27 30C 34 19H02 0.44 0.46 36C 34 25HO1 0.36 0.35 41 C 34 32H01 2.26 1.89 41 C C Plugged 34 51H02 0.45 0.64 24C 34 72H02 0.79 0.73 31 C 35 21 HO1 0.73 0.59 36C 35 47 H03 0.36 0.46 42C 36 401H04 0.4 0.4 43C

SG-SGDA-02-15, Rev. 0 Page 52 of 65 37 67H02 0.29 0.32 30C 38 22H01 0.95 0.95 37C 38 40H03 0.55 0.46 43C 38 58H02 1.43 1.29 25C 39 68H04 0.38 0.33 30C 40 24H02 0.6 0.6 41 C 40 41 H03 0.25 0.17 43C 40 43H02 0.54 0.22 EX NC 40 69H02 0.36 0.32 30C 41 36H04 0.49 0.58 42C 42 33H01 0.19 0.19 41C 43 44H04 0.39 0.37 42C 43 59H01 0.6 0.57 25C 44 33H01 1.41 1.74 41C C.

44 52H02 1.23 1.08 24C 44 58H01 .1.09 1.14 25C Steam Generator 4 SG 4 EOC-1 1 EOC-1 0 Confirmed, C EOC-1 1 Not Confirmed, NC Row Col Supt Volts Volts Cal or Not Tested, Blank Plugged?

1 82H01 0.93 0.63 EX NC 2 15H02 0.31 0.24 6H 2 15H03 0.37 0.43 6H 2 25H01 0.56 0.62 6H 2 37H01 0.4 0.31 6H Plugged 2 37H02 0.69 0.60 6H Plugged 2 38H02 0.45 0.34 6H C 2 38H03 0.49 0.43 6H 2 40H01 1.38 1.23 6H Plugged 2 53H01 0.61 0.55 51H 2 55H01 1.11 1.01 51H 2 67H01 0.99 0.9 2H 2 72H02 0.41 0.36 1H 2 73 H01 0.82 0.8 1H 2 75H01 0.39 0.34 1H 2 76H01 1.15 0.95 1H 2 84H01 0.28 0.18 1H 2 86H02 0.6 0.61 1H C 2 90H01 0.49 0.59 2H C 2 94H01 0.31 0.54 2H C

SG-SGDA-02-15, Rev. 0 Page 53 of 65 3 18H02 0.69 0.61 5H 3 25H01 0.8 0.58 5H 3 25H02 0.7 0.54 5H 3 25H03 0.47 0.38 5H 3 34H02 0.33 0.28 5H 3 43H01 0.63 0.63 5H 3 71H01 0.71 1.17 2H 3 72H01 0.97 1.07 2H 3 88H01 0.52 0.41 1H C 3 88H02 0.38 0.32 1H 4 8H06 0.34 0.33 52H 4 12H02 0.31 0.32 6H 4 14H06 0.43 0.42 6H 4 19H02 0.43 0.42 6H 4 23H01 0.62 0.48 6H 4 25H01 0.44 0.36 6H 4 27H01 0.42 0.38 6H 4 28H01 0.32 0.31 6H 4 40H01 0.74 0.57 6H 4 43H01 0.39 0.42 6H 4 74H03 0.68 0.6 1H 4 77H01 0.42 0.41 1H 4 78H01 0.42 0.47 3H 4 78H02 0.3 0.21 3H 4 80H04 0.35 0.34 EX NC 4 82H01 0.79 0.58 3H 4 82H02 0.44 0.28 3H C 4 84H02 0.51 0.52 1H 4 86H03 0.75 0.62 1H C 4 87H01 0.76 0.68 1H C 4 87H03 0.o 0.63 1H 4 89H03 0.83 0.77 1H 4 90H01 1.04 1 2H 4 90H02 0.58 0.57 2H .4 4 91H01 0.68 0.45 1H 4 92H03 0.88 0.91 2H C 4 93H02 0.32 0.34 t1H 4 94H01 0.86 0.95 2H C 5 1HO0 0.14 0.34 47C 5 6H02 0.22 0.22 51H 5 26H01 0.42 0.37 5H 5 28H01 1.09 I 5H C 5 30H01 0.81 0.86 5H C 5 33H01 0.69 0.73 5H C 5 34H01 0.65 0.73 5H 5 35H01 0.61 0.56 5H 5 38H01 0.73 0.69 5H C 5 39H01 1.02 0.98 5H C

SG-SGDA-02-15, Rev. 0 Page 54 of 65 5 42H01 1 1.03 5H 5 431H01 0.63 0.5 5H C 5 441H01 0.53 0.53 5H 5 461H01 0.39 0.35 5H C 5 47H01 0.75 0.81 51H C 5 711H01 0.74 0.69 1H 5 74H01 0.61 0.57 2H 5 76H01 0.45 0.32 2H 5 791H01 0.56 0.56 4H 5 80H01 1.17 1.06 4H C 5 82H01 0.65 0.77 4H C 5 831H01 0.87 0.83 4H 5 89H01 0.89 0.79 1H 5 911H01 0.88 0.78 11H 5 92 H01 0.66 0.78 2H 5 93H01 . 0.88 0.89 11H 6 23H02 0.64 0.6 6H 6 25H02 0.5 0.4 61H 6 281H01 0.57 0.39 6H 6 321H02 0.23 0.38 6H 6 341H01 0.96 0.76 6H 6 34H02 0.55 0.44 61H 6 36 H0l 0.84 0.91 6H Plugged 6 43H01 1.18 0.68 61H 6 43H02 0.32 0.25 6H 6 45H01 0.37 0.21 6H 6 461H01 0.55 0.58 6H 6 601H01 0.63 0.59 51 H C Plugged 6 661H01 0.64 0.52 21H 6 72H01 0.44 0.51 1H 6 73H01 0.36 0.27 1H C 6 74H01 0.81 0.71 1H 6 751H01 0.59 0.55 1H C a 6 761H01 0.42 0.24 1H; 6 781H01 0.35 0.35 3H C 6 80H01 0.33 0.5 3H 6 81 H02 0.29 0.26 3H C 6 84 H01 0.36 0.5 1H 6 87H02 0.66 0.67 11H 6 87H03 0.25 0.25 1H 6 88H01 0.99 0.65 2H C 6 89H02 0.27 0.16 1H 6 891H03 0.62 0.71 1H 6 901H01 0.59 0.79 2H C 6 90 H02 0.48 0.46 2H C 6 91 H01 0.7 0.76 1H C 6 92 H01 0.47 0.47 2H 6 94H03 0.18 0.21 21H C

SG-SGDA-02-15, Rev. 0 Page 55 of 65 7 18H02 0.53 0.44 5H 7 46H01 0.47 , 0.4 5H 7 48 H01 1.56 1.58 561H 7 51 H01 1.22 0.86 52H 7 56H01 0.43 0.46 52H 7 59 H01 0.79 0.68 52H 7 641H01 0.33 0.43 1H 8 3H03 0.64 0.46 52H 8 3 f04 0.21 0.19 521H 8 8H02 0.27 0.26 52H 8 121H01 0.39 0.3 6H 8 17H02 0.97 0.79 6H 8 25 H01 0.66 0.45 6H 8 27 H01 0.35 0.55 6H 8 27H03 0.61 0.49 6H 8 28 H01 0.5 0.48 6H 8 29 H01 0.33 0.23 6H 8 30HO0 0.63 0.59 61H 8 31 H0l 0.71 0.72 6H 8 32 H01 0.83 0.76 6H 8 33 H01 0.48 0.43 6H 8 34H01 1.42 1.42 6H 8 35 H01 0.51 0.5 6H 8 36 H01 0.76 0.77 6H 8 37 H01 1.65 1.37 6H C 8 38 H01 0.55 0.53 6H C 8 39 H01 0.45 0.41 6H 8 39 H03 0.26 0.28 6H 8 401H01 0.43 0.46 6H 8 41 H01 0.71 0.66 6H 8 421H01 0.7 0.52 61H 8 44 H02 0.33 0.14 6H 8 45 H01 0.32 0.33 6H 8 52H01 1.08 0.97 51 H 8 531H01 0.92 0.73 51 H 8 55 H01 0.68 0.53 51 H 8 59H01 0.51 0.35 51 H 8 601H01 1.3 1 51 t 8 71 H01 0.76 0.61 2H 8 731H03 0.62 0.63 1H 8 78 H01 0.67 0.46 3H C 8 78 H03 0.48 0.32 3H 8 80 H01 0.92 0.64 3H C 8 80 H02 0.66 0.63 3H 8 81 H01 0.25 0.4 3H C 8 81 H02 0.34 0.35 EX NC 8 82 H01 0.6 0.37 51 H 8 83H01 0.89 0.93 53 H

SG-SGDA-02-15, Rev. 0 Page 56 of 65 8 85H01 0.75 0.69 1H 8 85H02 0.89 0.86 1H C 8 86H01 0.34 0.41 1H 8 89H01 0.81 0.91 1H 8 89H02 0.48 0.5 1H C 8 91H03 0.61 0.66 1H 8 92H01 1.36 1.32 2H 8 92H02 1.29 0.96 2H 9 11HO0 0.39 0.36 45C 9 12H01 0.29 0.3 15C 9 18H02 0.28 0.42 15C 9 21H02 0.61 0.46 150 9 22H02 0.8 0.69 14C 9 23H01 0.48 0.46 31 H 9 24H01 0.91 0.72 14C C 9 25H01 0.42 0.3 31H 9 28H02 0.54 0.32 14C C 9 29H01 0.7 0.57 14C C 9 30H01 0.82 0.5 14C 9 31H01 0.35 0.24 14C C 9 33H01 0.54 0.51 12C 9 35H01 0.4 0.64 12C 9 37H01 0.58 0.6 12C 9 38H01 1.18 1.12 12C 9 39H01 0.54 0.35 12C 9 40H02 0.27 0.28 EX NC 9 42H01 1.04 0.96 14C C 9 43H01 1.06 0.56 14C C 9 44H01 1.05 0.66 14C C 9 46H01 0.87 0.58 14C C 9 47H01 0.42 0.35 14C 9 48H01 0.7 0.7 43C 9 53H01 0.54 0.55 43C 9 61 H01 0.35 0.29 44C 9 70Ho1 0.46 0.4 13C 9 74H04 0.36 0.34 13C 10 3H02 0.47 0.34 45C 10 35H01 0.37 0.51 13C 11 42H01 0.29 0.31 15C 11 68H07 0.39 0.41 120 11 69H03 0.07 0.1 13C 12- 15H04 0.36 0.26 14C 12 18H02 1.01 0.79 14C C 12 21H01 0.6 0.72 14C 12 21H02 0.75 0.61 14C C 12 23H01 0.71 0.62 14C 12 24H01 1.02 0.89 14C 12 24H02 0.42 0.54 14C

SG-SGDA-02-15, Rev. 0 Page 57 of 65 12 26H01 0.31 0.22 15C 12 26H02 0.38 0.27 15C 12 27H01 0.44 0.3 15C 12 31 H03 0.46 0.41 15C 12 32H01 0.64 0.62 13C 12 35H01 0.46 0.39 13C 12 36H01 0.6 0.65 13C 12 38H01 0.31 0.33 13C 12 39H01 0.4 0.4 13C 12 40H01 0.48 0.4 13C 12 41 H01 0.79 0.6 12C 12 43H01 1.37 0.6 14C 12 44H01 0.82 0.99 15C 12 45H01 3.35 1.73 15C C Plugged 12 45H02 0.95 0.93 15C C Plugged 12 45H03 0.44 0.45 15C C Plugged 12 45H04 0.63 0.4 EX NO Plugged 12 59H01 0.54 0.42 44C 12 59H05 0.27 0.27 44C 12 61 HO 0.73 0.69 44C 12 63H01 0.7 0.55 45C 12 65H02 0.3 0.21 12C 12 71H01 0.56 0.7 12C 12 72H01 1.95 1.53 50C 12 74H01 0.5 0.54 12C 12 74H02 0.16 0.15 12C 12 76H01 0.85 0.87 12C 12 83H01 0.91 0.83 13C 13 29H02 0.58 0.43 14C 13 32H02 0.43 0.31 120 13 33Ho1 0.32 0.4 120 13 34H01 0.8 0.77 12C 13 39H02 0.33 0.2 12C 13 41H03 0.34 0.37 13C 13 42H01 0.78 0.76 15C 13 43H03 0.32 0.25 15C 13 44H01 0.77 0.33 14C 13 A5H01 0.92 0.82 14C 13 46H01 0.36 0.57 14C 13 47H01 0.89 0.57 14C 13 48H01 1.01 1.03 430 13 49H01 0.47 0.4 43C 13 52H01 0.46 0.49 43C 13 53H01 0.85 0.94 43C 13 54 H01 0.64 0.59 430 13 68H02 0.24 0.26 12C 13 77H01 0.43 0.56 13C 14 22H01 0.87 0.63 14C

SG-SGDA-02-15, Rev. 0 Page 58 of 65 14 57H01 1.11 0.9 44C 14 59HO1 0.5 0.43 44C 14 77HO1 0.67 0.48 12C 14 77HQ2 0.26 0.3 12C 14 81H02 0.32 0.28 13C 14 83HO1 0.4 0.28 13C 14 88H01 0.68 0.65 11C C 14 89H01 0.95 0.74 10C 14 90H01 0.81 0.58 100 14 90H02 0.44 0.45 10C 14 92HO1 0.96 0.97 13C C 15 48H01 0.81 0.84 43C 15 49HO1 0.37 0.33 43C 15 50HOl 0.7 0.71 43C 15 50HO2 0.46 0.47 43C 15 51HO1 0.7 0.74 43C 15 52H01 0.81 0.84 43C 15 53HO1I 0.84 0.82 43C 15 54H01 0.41 0.41 43C 15 62H01 0.57 0.57 440C 15 63H01 0.39 0.39 44C 15 64H01 0.56 0.57 12C 15 65H01 0.43 0.39 12C 15 66HO1 , 0.2 0.23 13C 15 67 H01 0.46 0.47 13C 16 35HO1 0.37 0.42 13C 16 43H01 0.3 0.36 15C 16 45HO1 0.4 0.28 15C 16 59H01 0.61 0.55 E X 17 13H02 0.69 0.51 32C 17 20HO1 0.75 0.68 32C 17 20H02 0.9 0.91 32C 17 21H04 0.49 0.26 350C 17 27H01 0.56 0.44 39C 17 29H01 0.25 0.15 39C 17 31 H04 0.64 0.51 39C 17 55H01 0.34 0.56 23C 17 56H01 0.71 0.71 25C 17 56 H02 0.3 0.38 25C 17 57H01 0.41 0.45 25C 17 58 H03 0.29 0.22 25C 17 62 H01 0.4 0.27 25C 17 80 H01 0.37 0.4 28C 17 82H01 0.65 0.6 28C 17 87HO1 1.43 1.48 11C 17 91 H01 0.45 0.37 11C 18 11H04 0.18 0.21 45C 18 21 H01 0.56 0.23 34C

SG-SGDA-02-15, Rev. 0 Page 59 of 65 18 21H02 0.59 0.26 34C 18 32H03 0.38 0.41 38C 18 33H05 0.32 0.64 38C 18 36H03 0.33 0.24 38C 18 38H03 0.31 0.39 44C 18 40H05 0.2 0.25 40C 18 42H04 0.18 0.21 40C 18 51H05 0.38 0.35 20C 18 57H01 0.43 0.44 25C 18 58H01 0.84 0.6 24C 18 61H01 0.72 0.4 25C 18 64H01 0.36 0.27 27C 18 67H01 0.7 0.41 27C C 18 69H02 0.24 0.17 26C 19 26H01 0.21 0.18 35C

  • Plugged 19 35H01 0.34 0 0.38 39C 19 43H02 0.29 0.33 40C 19 51-H01 0.59 0.43 21C 19 53H04 0.33 0.3 20C 19 63H01 0.48 0.44 27C 19 71H01 0.46 0.42 26C 19 76H02 0.39 0.22 26C 19 84H01 0.86 0.55 10C 19 87H03 0.13 0.18 11C 20 20H04 0.28 0.22 31C 20 25H01 0.43 0.26 34C 20 25H02 0.44 0.17 34C 20 26H02 0.8 0.55 34C 20 32H01 0.41 0.45 38C 20 33H01 0.66 0.59 38C 20 33HOa 0.31 0.37 38C 20 34H02 0.78 0.53 38C 20 39H01 0.76 0.38 41 C 20 39H03 0.21 0.25 41 C 20 40H01 0.23 0.17 40C 20 42H01 0.36 0.31 40C 20 44H02 0.4 0.41 40C 20 44H03 0.54 0.29 40C 20 45H01 0.44 0.35 42C Plugged 20 46H01 0.59 0.54 42C 20 46H02 0.96 0.83 42C 20 46H03 0.46 0.42 42C 20 46H06 0.29 0.34 42C 20 47H01 0.4 0.42 42C 20 47H02 0.56 0.36 42C 20 48H01 1.2 1.08 18C 20 49H01 0.26 0.28 20C 20 50H01 0.93 0.81 20C

SG-SGDA-02*15, Rev. 0 Page 60 of 65 20 51 H01 0.8 0.66 20C 20 52H01 0.98 0.55 20C 20 54H01 0.65 0.7 21 C 20 56H01 0.44 0.56 25C 20 57H01 0.3 0.26 25C C 20 58H01 0.53 0.51 24C 20 59H01 0.64 0.53 24C 20 60H01 1.08 0.85 24C 20 61 H01 0.47 0.47 25 C 20 62H01 0.41 0.38 24C 20 63 H01 0.72 0.6 26 C 20 64HOl 0.35 0.28 27 C 20 64H02 0.58 0.41 27C C 20 65H01 0.52 0.33 26C 20 66H02 0.3 0.24 27C 20 68 H01 0.5 0.29 27 C 20 69H01 1.39 1.17 26C 20 70H02 0.68 0.61 27C C 21 15HO6 0.39 0.33 32C 21 44H01 0.22 0.15 41 C 21 48H01 0.3 0.18 19C 21 88H01 0.58 0.64 10C 22 25H02 0.65 0.47 34C 22 25H03 0.53 0.55 34C 22 33H02 1.1 0.88 38C 22 35C04 0.57 0.3 RSMX C 22 . 41 H01 0.75 0.6 41 C 22 46H01 0.28 0.4 42C 22 46 H02 0.49 0.57 42 C 22 46H03 0.48 0.37 42C 22 47H02 1.24 1.21 42 C 22 59H01 0.85 0.7 24C 22 59H02 0.34 0.14 24C 22 70H01 1.14 0.65 27C 22 70H02 0.34 0.3 27 C 23 44H03 0.29 0.3 41 C 23 60H01 0.55 0.63 25C 23 61 H02 0.55 0.57 240 23 63H01 0.5 1.01 27 C 23 64 HO 0.78 0.65 26 C 23 65 H02 0.31 0.33 27C 23 66H01 0.67 0.5 260 23 66H02 0.61 0.45 26C 23 67H02 0.55 0.33 26C 23 68H01 0.48 0.55 26C C 23 69H01 0.7 0.44 27C 23 69H02 0.72 0.52 27C 23 70H01 1.19 0.92 26C

SG-SGDA-02-15, Rev. 0 Page 61 of 65 23 71H01 1.03 0.52 26C 23, 71 H02 0.4 0.3 26C 23 72H01 0.77 0.62 26C C 23 73H02 0.81 0.82 27C 23 73 H06 0.23 0.25 27C 23 74HOl 0.95 0.52 26C 23 75H01 0.96 0.59 27C C 23 86H01 0.6 0.6 10C 23 86H03 0.24 0.25 10C 23 87H01 0.63 0.72 11C 24 15C05 0.43 0.31 RX NC 24 46H01 0.48 0.49 42C 24 52 H02 0.62 0.56 20C 25 40H01 0.84 0.84 41 C 25 41 HO 0.86 0.51 40C 25 42H01 0.61 0.39 41 C 25 43H01 0.33 0.29 40C 25 47H05 0.15 0.13 43C 25 SOH01 0.26 0.16 21C 25 53H01 0.93 0.76 21 C 25 53H02 0.23 0.24 21 C 25 58 HO 0.52 0.41 25C 25 60H02 0.2 0.27 25C 25 67H04 0.27 0.36 26C 25 80H02 0.65 0.28 28C 25 83H01 0.51 0.62 28C 26 14H03 0.79 0.52 31C 26 19H02 0.73 0.58 32C 26 19H03 0.31 0.17 32C 26 20H02 0.42 0.36 31 C 26 27H03 0.5 0.31 39C 26 27H06 0.3 0.23 39C 26 29H02 0.33 0.36 380C 26 31 H06 0.25 0.32 390C 26 33H02 0.71 0.25 38C 26 35H01 0.62 0.53 38C 26 62H01 0.46 0.34 24C 26 64H01 0.39 0.41 27C 26 68H01 1.13 1.16 27C 26 69H01 0.66 0.53 26C C 26 71 HOI 0.46 0.25 27C 26 73H02 0.62 0.55 26C 26 85H01 0.32 0.35 11C 27 15H02 0.84 0.45 32C 27 20H01 0.23 0.15 32C 27 22H04 0.21 0.13 35C 27 45H01 0.63 0.59 43C 27 62H01 0.67 0.5 25C

SG-SGDA-02-15, Rev. 0 Page 62 of 65 27 63H01 0.65 0.59 27C 27 63H02 0.56 0.41 27C 27 65H02 0.59 0.56 27C 27 65H03 0.29 0.23 27C 27 66H02 0.34 0.22 26C 27 66H04 0.31 0.21 26C 27 67 H02 0.36 0.41 26C 27 69H01 0.69 0.63 27C 27 70H01 1.41 1.14 26C 27 71H01 1.31 0.99 260 27 72H02 0.48 0.57 26C 27 72H03 0.45 0.46 26C 27 73H02 0.91 0.92 27C 27 73H03 0.33 0.4 27C 27 74H01 0.85 0.59 26C 27 74H02 0.47 0.54 26C C 27 75H01 1.15 0.85 27C 27 75H02 0.75 0.76 27C 27 76H02 0.17 0.14 28C 27 77H01 0.7 0.62 28C 27 77H02 0.65 0.61 28C 27 77H03 0.85 0.81 28C 27 78H01 0.54 0.65 28C 27 78H02 0.79 0.86 28C 27 79H02 0.77 0.69 28C 27 80H02 0.46 0.41 28C 27 80H03 0.61 0.55 28C C 27 81 H03 0.5 0.53 29C 27 82H03 0.88 0.89 28c 27 83H03 0.45 0.31 28C 27 83H04 0.24 0.2 28C 27 84H01 0.17 0.15 100 27 84H02 0.72 0.55 10C 28 20H01 0.42 0.32 31 0 28 28H04 0.13 0.25 38C 28 29Ho6 0.21 0.18 38C 28 34fHO1 0.19 0.19 38C 28 35H02 0.36 0.26 38C 28 40H02 0.42 0.39 40C 28 45H01 0.52 0.53 42C 28 48H01 0.63 0.64 18C 28 62H02 0.36 0.25 24C 28 64H02 0.57 0.39 26C 28 65H01 0.83 0.62 26C 28 66H02 0.85 0.59 27C C 28 66H03 0.54 0.39 27C 28 67H01 1.49 1.17 27C 28 68H01 0.65 0.62 27C

SG-SGDA-02-15, Rev. 0 Page 63 of 65 28 68H02 0.33 0.24 27C 28 68H05 0.41 0.26 27C 28 70HOl 0.43 0.35 27C 28 70H02 0.94 0.81 27C 28 71 H01 0.84 0.75 27C C 28 72H01 0.78 0.77 27C 28 72H02 0.84 0.77 27C 28 72H03 0.56 0.59 27C C 28 74 H02 0.32 0.26 27C 28 74H03 1.2 0.87 27C 28 74H05 0.44 0.46 27C 28 75H01 0.48 0.83 26C 28 75H02 0.55 0.74 26C 28 76 HO 0.26 0.3 29C 28 76 H02 0.35 0.32 29C 28 77H01 0.65 0.47 29C 28 78H01 0.71 0.66 29C 28 79 H03 0.37 0.45 290 28 80H03 0.42 0.45 29C 28 81 H01 0.32 0.31 28C 28 81H02 0.49 0.44 28C 28 81 H03 0.61 0.64 28C 28 82H02 0.82 0.67 29C 29 14H01 0.28 0.29 32C 29 18H07 0.74 0.55 32C 29 -19H06 0.65 0.63 31C 29 27H02 0.37 0.34 38C 29 27H07 0.2 0.14 38C 29 38 H01 - 0.36 0.34 41 C 29 43H01 0.32 0.28 40C 29 47H01 0.5 0.44 43C 29 48H01 0.65 0.65 19C 29 51H01 0.53 0.41 210C 29 59H06 0.31 0.31 24C 30 14C01 0.42 0.33 RX NC 30 15C01 0.45 0.35 RX NC 30 21 H02 0.45 0.34 34C 30 28H04 0.15 0.22 38C 30 54 H01 0.31 0.27 21 C 31 39H01 0.41 0.32 40C 31 40H02 0.39 0.51 41 C 31 54H01 0.55 0.29 20C C 31 55H02 0.56 0.44 25C 31 581H02 0.3 0.28 25C 31 71 H01 0.69 0.58 26C 31 71H02 1.04 0.64 26C C 31 71 H03 0.7 0.53 26C 31 72H01 0.67 0.58 26C

SG-SGDA-02-15, Rev. 0 Page 64 of 65 32 20H02 0.26 0.22 31C 32 44H04 0.33 0.35 40C 32 49H01 0.49 0.39 20C 32 62H02 0.61 0.58 25C 32 64H01 0.55 0.47 26C 32 64H02 0.6 0.61 26C 32 65H01 0.34 0.36 26C 32 65H02 0.41 0.3 26C 32 67H02 0.83 0.6 27C 32 67H03 0.49 0.45 27C 32 68H02 0.5 0.4 27C 32 69H01 0.66 0.73 26C 32 70H02 0.8 0.73 27C 32 70H03 0.26 0.27 27C 32 74H01 0.49 0.4 27C 33 51H02 0.45 0.41 21C 33 54H01 0.27 0.2 20C 33 67H02 0.28 0.29 26C 33 68H01 0.21 0.31 26C 33 75H05 0.3 0.35 270 34 25H02 0.78 0.49 34C 34 30H02 0.44 0.52 38C 34 47H01 0.56 0.46 42C 34 50H03 0.38 0.38 20C 34 58H02 0.44 0.39 24C 34 65H01 0.5 0.56 260 34 65H02 0.55 0.52 26C 34 69H02 0.28 0.24 26C 34 71H02 0.82 0.51 27C 34 72H01 0.69 0.71 27C 35 33H03 0.2 0.21 39C 35 38H03 0.3 0.39 41 C 35 46H06 0.28 0.36 43C 35 62H02 0.3 0.26 24C 35 69H01 0.26 0.17 27C 36 47H01 0.32 0.27 42C 36 48H02 0.33 0.22 18C 36 54H04 0.28 0.21 21C 36 56H02 0.38 0.35 25C 36 57H02 0.4 0.38 25C 36 57H03 0.31 0.38 25C 36 62H02 0.79 0.69 25C 36 64H02 0.81 0.58 26C 36 65H01 0.76 0.57 26C 36 67H06 0.25 0.18 27C 36 68H02 0.51 0.31 27C 36 72H01 0.37 0.31 270 37 62H04 0.31 0.19 24C

SG-SGDA-02-15, Rev. 0 Page 65 of 65 37 63H01 0.31 0.51 270 37 72H01 0.56 0.42 26C 38 24H03 0.39 0.31 34C 38 26H02 0.41 0.41 36C 38 26 H04 0.16 0.15 36C 38 30H02 0.39 0.52 38C 38 34H02 0.42 0.42 38C 38 72H02 0.57 0.52 27C 38 74H03 0.31 0.24 27C 39 27H03 0.32 0.32 36C 39 37H03 0.45 0.3 38C 39 38C05 0.35 0.32 RX NC 39 42H03 0.48 0.24 41C 39 42H04 0.33 0.26 41 C 39 45H03 0.17 0.12 43C 39 . 49 -02 0.51 0.43 21C 39 50H02 0.31 0.26 21C 39 66H01 0.25 0.25 26C 39 70H03 0.56 0.64 26C 40 57H01 0.43 0.26 25C 40 67H01 0.27 0.17 27C 42 38H02 0.42 0.44 40C 43 44C05 0.3 0.27 RX NC 43 65H01 0.28 0.27 27C 45 51H04 0.31 0.28 21C I

ENCLOSURE 2 SEQUOYAH NUCLEAR PLANT UNIT 2 CYCLE 11 REFUEL OUTAGE PRELIMINARY RESULTS OF METALLURGICAL EXAMINATIONS FROM REMOVED TUBES

ENCLOSURE 2 PRELIMINARY RESULTS OF METALLURGICAL EXAMINATION During the SQN Unit 2 Cycle 11 Refuel Outage, a tube was removed from the hot leg side of Steam Generator 4, Row 12 Column 45. The portion of tube removed included the hot leg tube end through the hot leg third tube support plate intersection.

BURST TESTING RESULTS The Table below summarizes the results of the burst tests.

Location Bobbin Coil Burst Pressure Estimated Max. Depth Preliminary Characterization Amplitude (psi) (.)

(Volts)

HTS NIA 11453 40 . 0.2 - 0.3 inch wide band of

. IGA/Cellular H01 3.35 5391 100 Mostly axial, some shallow cellular H02 0.95 6579 95 Mostly axial, some shallow cellular H03 0.44 8237 80 Deep short axial cracks, shallow cellular, two scratch cracks Freespan N/A 11809 0 None Definitions HTS Hot Leg Top of Tube Sheet H01 Hot Leg First Tube Support Plate Intersection H02 Hot Leg Second Tube Support Plate Intersection H03 Hot Leg Third Tube Support Plate Intersection LEAK TESTING RESULTS No leakage was observed from locations 1102 or 1103. Leak test results for location H01 are plotted below in Figure 1.

Figure I Sequoyah R12-C45 Pco.3B Leak Rate 0.1800 0.1600 4 0.1400 p

0.1200 7 0.1000 a

In 0

'~0.0800 0.0600 0.0400 0.0200-

  • 4 AA&

uoUUXI I 1200 1400 1600 1600 2000 2200 2400 2600 2800 Average Delta P (pslQ

ENCLOSURE 3 SEQUOYAH NUCLEAR PLANT UNIT 2 CYCLE 11 REFUEL OUTAGE TVA METHODOLOGY FOR DIFFERENIATING COLD LEG THINNING FROM AXIAL ODSCC

ENCLOSURE 3 COLD LEG THINNING AT SEQUOYAH UNIT 2 The SQN Unit 2 steam generators are model 51 Westinghouse units which are affected by cold leg thinning. This damage mechanism occurs primarily at the lower supports near the periphery of the tube bundle. TVA uses bobbin coil ETSS 96001.1 to detect and size these indications. Distorted indications, which may or may not indicate the presence of a flaw, are tested with MRPC (plus point). Those indications which are confirmed by the MRPC test typically show round shaped flaws confined within the tube support. For cold leg thinning, the plus point coil produces a bi-polar signal response (i.e. both plus point coils respond) which is typical for a volumetric flaw. This is distinctly different from ODSCC which produces a response only on the plus point coil sensitive to axial flaws.

Bobbin indications which are not distorted and yield depth estimates of less than 40% remain inservice.

To date, no ODSCC has been confirmed at cold leg tube supports at SQN Unit 2. Because it is possible, although unlikely, ihat bobbin signals which do not confirn as a flaw are low level cracks, they are conservatively treated as ODSCC in that their bobbin voltages are included in the Generic Letter 95-OS Condition Monitoring and Operational Assessment.

The table below describes the population of cold leg support indications detected during the EOC-11 examination.

Number of Indications SG 1 SG 2 SG 3 SG 4 Total

< 20% 10 14 9 17 49 20-39% 9 31 13 25 78

> 40% 1 0 2 0 3 Unconfirmed DSI's 0 1 1 5 7 Confirmed DSl's 0 3 0. 2 5