ML020850488

From kanterella
Jump to navigation Jump to search
Generator (SG) 90-Day Report for Voltage-Based Alternate Repair Criteria (ARC)
ML020850488
Person / Time
Site: Sequoyah Tennessee Valley Authority icon.png
Issue date: 02/11/2002
From: Salas P
Tennessee Valley Authority
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
GL-95-005
Download: ML020850488 (69)


Text

February 11, 2002 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555 Gentlemen:

In the Matter of

)

Docket No. 50-327 Tennessee Valley Authority

)

SEQUOYAH NUCLEAR PLANT (SQN) - STEAM GENERATOR (SG) 90-DAY REPORT FOR VOLTAGE-BASED ALTERNATE REPAIR CRITERIA (ARC)

Enclosed is the SQN Unit 1 90-Day SG Report that supports continued implementation of the voltage-based ARC.

The ARC has been utilized on SQN Unit 1 SGs for operational Cycles 8 through 11. The enclosed report provides a condition monitoring assessment that demonstrates that the NRC Generic Letter (GL) 95-05 acceptance criteria are satisfied at the end of operational Cycle 11 and an operational assessment that demonstrates that the GL 95-05 acceptance criteria will continue to be satisfied throughout operational Cycle 12.

This report is submitted to you in accordance with SQN Unit 1 License Condition 2.C.(9)(d). This letter is being provided in accordance with NRC RIS 2001-05.

Please direct questions concerning this issue to me at (423) 843-7170 or J. D. Smith at (423) 843-6672.

Sincerely, Original signed by Pedro Salas Licensing and Industry Affairs Manager

Enclosure

E1 ENCLOSURE TENNESSEE VALLEY AUTHORITY SEQUOYAH NUCLEAR PLANT (SQN)

UNIT 1 UNIT 1 CYCLE 11 STEAM GENERATOR (SG) 90-DAY REPORT FOR VOLTAGE-BASED ALTERNATE REPAIR CRITERIA (ARC)

E2 Table of Contents 0.0 Glossary of Acronyms...3 1.0 Introduction..4 2.0 Summary and Conclusions..4 3.0 EOC-11 Inspection Results...6 3.1 Voltage Distributions at EOC-11 3.2 Voltage Growth Rates for Cycle 11 4.0 Comparison of Predicted and Measured Voltage Distributions at EOC-11..14 4.1 Comparison of Voltage distributions 4.2 Comparison of Voltage Growth Distributions 5.0 Analysis Methods and Data Base for ARC Correlations22 5.1 Tube Material Properties 5.2 Burst Correlation 5.3 Leak rate Correlation 5.4 Probability of Leak Correlation 5.5 NDE Uncertainties 6.0 Condition Monitoring: Tube Leak Rate and Burst Probabilities at EOC-11.26 6.1 Analysis Approach 6.2 EOC-11 Burst Probabilities and Leak Rates 6.3 Comparison with Acceptance Criteria 7.0 Operational Assessment: Tube Leak Rates and Burst Probabilities at EOC-12.28 7.1 Analysis Approach 7.2 BOC Voltage Distribution 7.2.1 POD 7.2.2 Tube Repairs 7.3 Voltage Growth Rates for Cycle 12 7.4 Prediction of Voltage Distributions at EOC-12 7.5 Prediction of Tube Leak Rates and Burst Probabilities at EOC-12 7.6 Comparison with Acceptance Criteria 8.0 References..37

E3 Appendix A Indication List Appendix B Voltage Growth vs BOC Voltage 0.0 Glossary of Acronyms ARC Alternate repair criteria BOC Beginning of operation cycle. The current inspection is just prior to BOC-12.

EOC End of operation cycle. The current inspection is at EOC-11. The prior inspection results are from EOC-10. The end of the next cycle is EOC-12 POB Probability of burst POD Probability of detection. This value is set equal to 0.60 for the GL-95-05 predictive analysis for the condition of the steam generators at the end of the next cycle.

EFPD Effective full power days ODSCC Outside diameter stress corrosion cracking SG Steam generator - specifically SG 1, SG 2, SG 3 and SG 4.

TSP Tube support plate. The Generic letter 95-05 Alternate Repair Criterion applies to ODSCC in the tubes at the TSPs EFPY Effective full power year RPC Rotating pancake coil NDE Nondestructive examination

E4 1.0 Introduction Sequoyah Unit 1 completed the 11th cycle of operation and subsequent steam generator tube inspection in October and November, 2001. Axial ODSCC has been confirmed within the TSP regions of the steam generators and is a current degradation mechanism at Sequoyah Unit 1. The alternate repair criterion (ARC) defined in NRC Generic Letter 95-05 (Reference 1) has been implemented at Sequoyah Unit 1 for several operational cycles (References 2,3,4,5,6). This report provides a condition monitoring assessment that demonstrates that the GL-95-05 acceptance criteria are satisfied at the end of operational cycle 11 (EOC-11), and an operational assessment that demonstrates that the GL-95-05 acceptance criteria will continue to be satisfied throughout operational cycle 12.

The operation cycle just completed, cycle 11, was 526.9 EFPD. The next cycle, cycle 12, is estimated to be 466.4 EFPD.

2.0 Summary and Conclusions Bobbin voltage indications of ODSCC at the tube support plates were detected and measured in all four steam generators. Based on this voltage distribution, using the methodology of References 1 and 7, a Condition Monitoring evaluation including the computation of the probability of tube burst (POB) and the amount of leakage predicted for steam line break conditions at EOC-11 was performed. The results indicated that the previous predictions for EOC-11, Reference 5, were conservative for POB and leakage for all four steam generators. The acceptance criteria on POB and leakage are satisfied with significant margin.

The number of indications identified at EOC-11 was greater than the number identified at EOC-10, but was significantly less than predicted in Reference 5. This is due to several phenomena. First, during the EOC-10 inspection, many low voltage indications were conservatively called. The occurrence of these low voltage indications can be observed in the voltage distribution plots in Reference 5. Second, during the EOC-11 inspection many more intersections were inspected by plus point probe due to concern about inside diameter flaws in dents. Bobbin signals indicative of ODSCC which were not confirmed by plus point were included in the indication list at EOC-11. Lastly, the voltage growth rate observed in cycles 10 and 11 is very small indicating that growth to detectable levels would be slow, and therefore the large number of indications predicted in Reference 6 based the conservative POD value of 0.6 is too great.

E5 The change in voltage from the previous inspection was determined by historical review for each indication detected. The apparent voltage growth rate per EFPY in cycle 11 was essentially the same for each of the steam generators, and was slightly higher than the apparent voltage growth during cycle 10. Therefore a bound to the cycle 11 voltage growth rate, which also bounds the cycle 10 voltage growth rate, was used for the Operational Assessment prediction for EOC-12. The prediction of the POB and leakage at steam line break conditions at EOC-12 was performed. The results indicate that the acceptance criteria on POB and leakage at EOC-12 are satisfied with significant margin. Therefore, the Reference 1 acceptance criteria will be satisfied throughout cycle 12.

E6 3.0 EOC-11 Inspection Results 3.1 Voltage Distributions at EOC-11 A summary of eddy current signal voltage distributions at the drilled support plates for all steam generators is shown in Tables 3.1 through 3.4 for steam generators 1 through 4 respectively. The detailed indication list is presented in Appendix A.

Tables 3.1 through 3.4 show the number of indications in each voltage range detected at EOC-11, and the number of indications removed from service due to tube repairs for any reason. The number of indications that remain in service for Cycle 12 is the difference between the number detected and the ones removed from service. No tubes were unplugged with the intent to return them to service after inspection. The number of indications confirmed by RPC or not inspected is also given in Tables 3.1 through 3.4. Appendix A shows for each indication if it was confirmed or not tested.

The summary of all four-steam generators shows the following:

  • A total of 830 bobbin signals were identified as ODSCC TSP indications during the inspection.
  • Of the 830 indications, none were above 2 volts.
  • No indications were plugged due to ODSCC TSP indications
  • 38 indications were removed from service for reasons other than ODSCC at the support plates.

E7 Table 3.1 Inspection Results for SG 1 CY 11 Confirmed or Indications Returned to Service Voltage Bin Inservice not tested Repaired CY 12 0.1 1

1 1

0.2 20 20 20 0.3 38 36 1

37 0.4 42 40 42 0.5 43 40 43 0.6 15 14 2

13 0.7 13 12 13 0.8 13 12 13 0.9 7

7 1

6 1

11 11 1

10 1.1 9

8 1

8 1.2 7

7 7

1.3 5

4 5

1.4 2

2 2

1.5 4

4 4

1.6 3

3 3

1.7 2

2 2

1.8 1

1 1

1.9 2

2.1 2.2 2.3 2.4 2.5 TOTAL 236 224 6

230 Figure 3.1

E8 Table 3.2 Inspection Results for SG 2 CY 11 Confirmed or Indications Returned to Service Voltage Bin Inservice not tested Repaired CY 12 0.1 0

0 0

0.2 16 16 16 0.3 32 31 32 0.4 66 66 1

65 0.5 36 35 2

34 0.6 20 19 1

19 0.7 24 24 1

23 0.8 8

8 1

7 0.9 9

9 1

8 1

8 8

8 1.1 12 12 2

10 1.2 4

4 4

1.3 0

0 0

1.4 1

0 1

1.5 2

2 2

1.6 2

2 1

1 1.7 1

1 1

1.8 1

1 1

1.9 1

1 1

2 0

0 0

2.1 0

0 0

2.2 0

0 0

2.3 0

0 0

2.4 0

0 0

2.5 0

0 0

TOTAL 243 239 10 233 S G 1 R e p a i r e d I n d i c a t i o n s E O C 1 1 0

1 2

3 0. 1 0.2 0.3 0. 4 0. 5 0.6 0. 7 0. 8 0.9 1.0 1. 1 1. 2 1.3 1. 4 1. 5 1.6 1.7 1. 8 1. 9 2.0 V o l t a g e N u m b e r o f I n d i c a t i o n s R e p a i r e d

E9 Figure 3.2 Table 3.3 Inspection Results for SG 3 CY 11 Confirmed or Indications Returned to Service Voltage Bin Inservice not tested Repaired CY 12 0.1 0

0 0

0.2 9

9 9

0.3 15 14 1

14 0.4 20 20 20 0.5 22 21 2

20 0.6 32 31 32 0.7 31 31 3

28 0.8 19 19 1

18 0.9 17 17 2

15 1

12 12 12 1.1 10 10 3

7 1.2 5

5 5

1.3 3

3 3

1.4 4

3 1

3 1.5 4

4 1

3 1.6 5

5 2

3 1.7 2

2 2

1.8 0

0 0

1.9 0

0 0

2 2

2 2

2.1 0

0 0

2.2 0

0 0

2.3 0

0 0

2.4 0

0 0

S G 2 R e p a i r e d I n d i c a t i o n s E O C 1 1 0

1 2

3 0. 1 0. 2 0. 3 0.4 0. 5 0. 6 0.7 0.8 0. 9 1. 0 1.1 1. 2 1. 3 1.4 1.5 1. 6 1. 7 1.8 1. 9 2. 0 V o l t a g e N u m b e r o f I n d i c a t i o n s R e p a i r e d

E10 2.5 0

0 0

2.6 0

0 0

2.7 0

0 0

TOTAL 212 208 16 196 Figure 3.3 Table 3.4 Inspection Results for SG 4 CY 11 Confirmed or Indications Returned to Service Voltage Bin Inservice not tested Repaired CY 12 0.1 0

0 0

0.2 10 9

10 0.3 15 15 1

14 0.4 19 17 1

18 0.5 14 12 14 0.6 13 12 13 0.7 18 17 1

17 0.8 7

7 7

0.9 10 10 10 1

8 7

1 7

1.1 5

4 1

4 1.2 1

0 1

1.3 7

6 7

1.4 2

1 2

1.5 2

2 2

1.6 2

2 2

1.7 5

5 1

4 1.8 0

0 0

1.9 1

1 1

2 0

0 0

2.1 0

0 0

2.2 0

0 0

2.3 0

0 0

S G 3 R e p a i r e d I n d i c a t i o n s E O C 1 1 0

1 2

3 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0 1. 1 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 8 1. 9 2. 0 V o l t a g e N u m b e r o f I n d i c a t i o n s R e p a i r e d

E11 2.4 0

0 0

2.5 0

0 0

TOTAL 139 127 6

133 Figure 3.4 3.2 Voltage Growth Rates for Cycle 11 The voltage growth for each indication detected at EOC-11 was determined by identifying the corresponding voltage at the previous inspection, EOC-10. The following process was used to determine the EOC-10 voltage:

  • If the indication was reported in Reference 6 at EOC-10, then the reported voltage is used.
  • If the indication was not reported in Reference 6 at EOC-10, then a re-evaluation of the historical data of the corresponding EOC-10 inspection result was made.

The voltage at EOC-10 is provided for each indication detected at EOC-11 in Appendix A. The procedure for computing the voltage change and binning the values is described in Reference 11. The distribution of voltage differences over the entire cycle is shown in Table 3.5 for all four steam generators. A comparison of the growth rates for each steam generator on an EFPY basis is determined by dividing by the EFPY of Cycle 11. This comparison is shown in Figure 3.5 S G 4 R e p a i r e d I n d i c a t i o n s E O C 1 1 0

1 2

3 0. 1 0. 2 0. 3 0.4 0. 5 0. 6 0.7 0.8 0. 9 1. 0 1.1 1. 2 1. 3 1.4 1.5 1. 6 1. 7 1.8 1. 9 2. 0 V o l t a g e N u m b e r o f I n d i c a t i o n s R e p a i r e d

E12 Table 3.5 Voltage Changes from EOC-10 to EOC-11 Number of Indications Voltage Bin SG 1 SG 2 SG 3 SG 4

-1.2 2

-1.1 1

0

-1.0 0

1 1

-0.9 0

0 0

-0.8 0

0 1

0

-0.7 0

1 0

1

-0.6 1

0 1

2

-0.5 3

0 2

0

-0.4 2

1 0

2

-0.3 3

8 2

5

-0.2 7

4 5

7

-0.1 18 16 21 9

0 66 55 46 29 0.1 76 85 65 37 0.2 32 46 34 21 0.3 13 14 22 12 0.4 11 5

5 5

0.5 0

3 1

6 0.6 1

0 2

1 0.7 0

1 2

1 0.8 1

0 1

0.9 1

0 1

1 0

0

E13 1.1 0

0 1.2 1

1 Table 3.6 Cumulative Voltage Growth per EFPY from EOC-10 to EOC-11 Cumulative Number of Indications Volts / EFPY SG 1 SG 2 SG 3 SG 4

0. or less 101 88 78 56 0.0693 76 85 65 37 0.1385 32 46 34 21 0.2078 13 14 22 12 0.2771 11 5

5 5

0.3464 0

3 1

6 0.4157 1

0 2

1 0.4850 0

1 2

1 0.5543 1

0 1

0.6236 1

0 1

0.6927 0

0.7620 0

0.8312 1

1 Figure 3.5 The voltage growth rates in volts per EFPY for all of the steam generators is shown in Table 3.6 and Table 3.7.

Cycle 11 Growth in all SGs 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Growth, Volts / EFPY CDF SG 1 SG 2 SG 3 SG 4

E14 Table 3.7 Average and 95 th Percentile Cycle 11 Growth Rates per EFPY Steam Generator Average Voltage Growth per EFPY in Cycle 11 95 th Percentile Growth per EFPY in Cycle 11 1

.016 0.229 2

.020 0.180 3

.042 0.264 4

.020 0.291 The cycle 11 growth rate for each steam generator is essentially the same and is very small. The very low average growth and the symmetry about the median volts on Figure 3.5 indicates that the apparent growth measured is predominately NDE uncertainty.

4.0 Comparison of Predicted and Measured Voltage Distributions at EOC-11 4.1 Comparison of Voltage Distributions The voltage distribution measured at EOC-11 is compared to the voltage distribution predicted in Reference 4 for each steam generator in Figures 4.1 through 4.4. In all steam generators there are fewer indications than predicted, and the indications have lower voltage. This is at least partially due to the constant POD for all voltages assumed in the predictive analysis, and the very small voltage growth measured.

Figure 4.1

E15 Figure 4.2 EOC-11 Voltage Distribution SG 1 0

10 20 30 40 50 60 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 Volts Number of Indications Prediction Measured

E16 EOC-11 Voltage Distribution SG 2 0

10 20 30 40 50 60 70 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 Volts Number of Indications Prediction Measured

E17 Figure 4.3 Figure 4.4 EOC-11 Voltage Distribution SG 3 0

5 10 15 20 25 30 35 40 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 Volts Number of Indications Prediction Measured

E18 EOC-11 Voltage Distribution SG 4 0

5 10 15 20 25 30 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 Volts Number of Indications Prediction Measured

E19 4.2 Comparison of Voltage Growth Distributions The voltage growth distributions developed in Section 3.2 for Cycle 11, are compared with the corresponding growth distribution of Cycle 10 and Cycle 9.

Figures 4.5 through 4.8 show the comparisons for SG1 through SG4, respectively.

Figure 4.5 Sequoyah Unit 1 SG 1 Voltage Growth Comparison for Cycles 9,10 and 11 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Voltage Growth, Volts per EFPY Cumulative Distribution Cycle 9 Cycle 10 Cycle 11

E20 Figure 4.6 Sequoyah Unit 1 SG 2 Voltage Growth Comparison for Cycles 9,10 and 11 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Voltage Growth, Volts per EFPY Cumulative Distribution Cycle 9 Cycle 10 Cycle 11

E21 Figure 4.7 Sequoyah Unit 1 SG 3 Voltage Growth Comparison for Cycles 9,10 and 11 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Voltage Growth, Volts per EFPY Cumulative Distribution Cycle 9 Cycle 10 Cycle 11

E22 Figure 4.8 The growth rates of cycle 11 are slightly greater than the corresponding rates of cycle 10. Therefore it is appropriate to use a bound to the cycle 11 growth rates in the prediction for the end of cycle 12.

Sequoyah Unit 1 SG 4 Voltage Growth Comparison for Cycles 9,10and 11 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Voltage Growth, Volts per EFPY Cumulative Distribution Cycle 9 Cycle 10 Cycle 11

E23 5.0 Analysis Methods and Data Base for ARC Correlations Westinghouse has developed a Monte Carlo based computer program to perform the calculations prescribed in GL 95-05 (Reference 1). The methodology for predicting the EOC voltage distribution and computing the probability of burst and leakage at accident conditions is based on the Westinghouse Topical Report, WCAP-14277, Revision 1 (Reference 7). The specific computer program employed is described and verified in Reference 8.

The predictions for EOC-11 recorded in Reference 5 used the tube burst and leakage correlations of Addendum 3 to EPRI Report NP-7480-L (Reference 9).

Recently, additional data has been added to the database that slightly affects the burst correlation. The new data is included in Addendum 4 to EPRI Report NP-7480-L (Reference 10). The new Addendum 4 database results in a slightly lower best fit burst correlation, and a slightly lower standard error. This results in a lower probability of burst for cases where the probability of burst is very low because of the reduced uncertainty in the correlation. The probability of leak correlation is slightly affected.

In order to maintain continuity in the analysis results, the condition monitoring assessment will be performed using the Addendum 3 database to be consistent with the basis for the EOC-11 prediction. The Operational Assessment of the predicted EOC-12 voltage distribution will be performed using the Addendum 4 database. The specific parameters used in the correlations are provided in Sections 5.1 through 5.4.

5.1 Tube Material Properties The tube material properties are provided in Reference 7 for 7/8 inch diameter tubes at 650F. The parameters used in the analysis are the flow stress mean of 68.78 Ksi and the flow stress standard deviation of 3.1725 Ksi.

E24 5.2 Burst Correlation The burst pressure, Pb, is normalized to a material with a flow stress of 68.78 ksi that is the mean of the 7/8 inch tube data appropriate for Sequoyah Unit 1.

Pb = a0 + a1 Log(Volts)

Parameter Addendum 3 Database Addendum 4 Database a0 7.57661 Ksi 7.55943 Ksi a1

-2.39816

-2.37763 Standard error 0.823889 0.81919 Number of data points 91 93 Reference Flow Stress 68.78 Ksi 68.78 Ksi Covariance Coefficient V11

.0087443

.00830788 Covariance Coefficient V12

-.00422648

-.00381259 Covariance Coefficient V22

.0139006

.0133098

E25 5.3 Leak Rate Correlation The leak rate criterion is given in terms of gallons per minute condensed at room temperature. The correlation formula provides leak rate in liter per hour at a pressure of 2560psi. In order to obtain gallons per minute condensed at room temperature, the leak rate Q in the correlation equation must be multiplied by the conversion factor 0.004403. Addendum 4 did not change the leak rate correlation.

Log(Q) = b3 + b4 Log(Volts)

Parameter Addendum 2, 3 & 4 Database b3

-0.526882 b4 0.987179 Standard error 0.808109 Number of data points 29 Covariance Coefficient V11 0.385504 Covariance Coefficient V12

-0.314445 Covariance Coefficient V22 0.272396

E26 5.4 Probability of Leak Correlation The probability of leak as a function of indication voltage is revised in Reference 10.

In the Monte Carlo analysis leakage is quantified only if the indication is computed be a leaker, based on the probability of leak correlation.

Pr(Leak) = 1/{1+ e^[b1 + b2 Log(Volts)]}

Parameter Addendum 3 Database Addendum 4 Database b1

-4.31326

-4.31823 b2 4.21125 4.21652 Number of data points 137 139 Covariance Coefficient V11

.67152

.66934 Covariance Coefficient V12

-.59145

-.58947 Covariance Coefficient V22

.59172

.58997 5.5 NDE Uncertainties The NDE uncertainties applied for the EOC-11 and EOC-12 voltage projections are the same as given in the prior Sequoyah Unit 1 90 Day reports, References 2 through 5. The probe wear uncertainty has a standard deviation of 7% about a mean of zero and has a cutoff at 15% based on implementation of the probe wear standard. The analyst variability uncertainty has a standard deviation of 10.3%

about a mean of zero with no cutoff. These NDE uncertainty distributions are used in the Monte Carlo analysis to predict the burst probabilities and accident leak rates

E27 at EOC-11, and EOC-12. The voltages reported were adjusted to account for differences between the laboratory standard and the standard used in the field.

E28 6.0 Condition Monitoring:

Tube Leak Rate and Burst Probabilities at EOC-11 6.1 Analysis Approach The measured EOC-11 voltage distributions of Table 3.1 through 3.4 for each steam generator are used as the basis for the leak rate and burst probability predictions for EOC-11. The voltage distributions developed for the computation of POB and leakage consider NDE uncertainty on the measured values, but consider no voltage growth. For a direct comparison with the previous predictions for EOC-11 (Reference 5), the burst and leak correlations used (Reference 9) were the same as those used in Reference 5.

6.2 EOC-11 Burst Probabilities and Leak Rates The predicted results from Reference 5 for each of the steam generators at EOC-11 are shown in Table 6.1. The leakage rate is the 95 th percentile evaluated at 95%

confidence. The burst probability is 95% confidence based on the number of trials.

Table 6.1 EOC-11 Predicted Results, Reference 5 SG Number of Monte Carlo Trials Number of Indications Number of Bursts in 1,000,000 Trials Max Volts*

Burst Probability 95% conf.

95/95 SLB Leak Rate, gpm 1

1,000,000 388.67 17 2.7 2.6 x 10^-5 0.5112 2

1,000,000 376.00 13 2.6 2.1 x 10^-5 0.3923 3

1,000,000 324.00 21 3.1 2 x 10^-5 0.5055 4

1,000,000 212.67 10 2.6 1.7 x 10^-5 0.2617 Note. The maximum voltage is defined as the voltage where the integration of the voltage distribution from the tail reaches 0.3 of an indication

E29 The Monte Carlo analysis results for each of the steam generators based on the measured voltage distribution at EOC-11 are shown in Table 6.2. The analysis program inputs and outputs are detailed in Reference 11. One Million Monte Carlo trials were performed for each steam generator. The leakage rate is the 95 th percentile evaluated at 95% confidence. The burst probability is 95% confidence based on the number of trials.

Table 6.2 Analysis Results for Measured EOC-11 Voltage Distributions SG Number of Monte Carlo Trials Number of Indications Number of Bursts in 1,000,000 Trials Max Volts, Measured Burst Probability 95% conf.

95/95 SLB Leak Rate, gpm 1

1,000,000 236 5

1.75 1.1 x 10^-5 0.1982 2

1,000,000 243 7

1.88 1.3 x 10^-5 0.1739 3

1,000,000 212 12 1.96 2.8 x 10^-5 0.2475 4

1,000,000 139 7

1.90 1.3 x 10^-5 0.1494 6.3 Comparison with Acceptance Criteria The results indicate that the previous predictions for EOC-11 were conservative for POB and leakage for all four steam generators. All steam generators are well below the burst acceptance criterion of 1.0 x 10^-2, and the Sequoyah Unit 1 leakage criterion of 8.2 gpm. The acceptance criteria on POB and leakage are satisfied with significant margin.

E30 7.0 Operational Assessment:

Tube Leak Rate and Burst Probabilities at EOC-12 7.1 Analysis Approach The BOC-12 voltage distribution is developed from the measured distribution by considering the POD and the indications that are removed from service. The EOC-12 voltage distribution is developed considering the NDE uncertainties and voltage growth during the cycle. The latest burst and leakage correlations, Reference 10, will be used for the EOC-12 predictions. The burst probabilities and leak rates are computed using the computed EOC-12 voltage predictions to address the acceptance criteria at the end of the cycle.

7.2 BOC Voltage Distribution The BOC-12 voltage distribution for each steam generator is determined from the measured EOC-11 voltage distribution. First, the number of indications potentially missed during the inspection and the number of new indications initiating during the Cycle 12, is considered by dividing the measured number of indications in each voltage range by the assumed POD. From this number of indications in each voltage range is subtracted the number of indications removed from service for any reason. This then gives the BOC-12 voltage distribution.

7.2.1 POD The POD used is the NRC accepted value of 0.6 for all voltages (Reference 1).

7.2.2 Tube Repairs Considering the repaired tubes and the POD, the BOC-12 voltage distribution for each SG is given in Table 7.1

E31 Table 7.1 BOC-12 Voltage Distributions for all SGs SG 1 SG 2 SG 3 SG 4 Voltage Bin 0.1 1.67 0

0 0

0.2 33.33 26.67 15.00 16.67 0.3 62.33 53.33 24.00 24.00 0.4 70.00 109.00 33.33 30.67 0.5 71.67 58.00 34.67 23.33 0.6 23.00 32.33 53.33 21.67 0.7 21.67 39.00 48.67 29.00 0.8 21.67 12.33 30.67 11.67 0.9 10.67 14.00 26.33 16.67 1

17.33 13.33 20.00 12.33 1.1 14.00 18.00 13.67 7.33 1.2 11.67 6.67 8.33 1.67 1.3 8.33 0

5.00 11.67 1.4 3.33 1.67 5.67 3.33 1.5 6.67 3.33 5.67 3.33 1.6 5.00 2.33 6.33 3.33 1.7 3.33 1.67 3.33 7.33 1.8 1.67 1.67 0

0 1.9 0

1.67 0

1.67 2

0 0

3.33 0

2.1 0

0 0

0 2.2 0

0 0

0 2.3 0

0 0

0 2.4 0

0 0

0 2.5 0

0 0

0 2.6 0

0 0

0 2.7 0

0 0

TOTAL 387.33 395.00 337.33 225.67

E32 7.3 Voltage Growth Rates for Cycle 12 The voltage growth rates for cycles 9, 10 and 11 were compared in Section 4. The growth rates of cycle 11 are slightly greater than the corresponding rates of cycle

10. Therefore, it is appropriate to use a bound to the cycle 11 growth rates in the prediction for the end of cycle 12. Because the growth rate cumulative distribution is essentially the same for all four steam generators, a distribution which bounds the cumulative distribution of all of the steam generators was used. This results in a conservative, but not excessively conservative growth rate for use in the EOC-12 prediction for all SGs. The bounding growth distribution in terms of volt change per EFPY is shown in Figure 7.1, and listed in Table 7.2.

Figure 7.1

E33 Table 7.2 Cumulative Distribution of Bounding Voltage Growth per EFPY for EOC-12 Predictions Voltage Growth per EFPY Cumulation 0

0.35 0.025 0.47 0.050 0.58 0.075 0.68 0.10 0.74 0.125 0.79 0.15 0.83 0.20 0.90 Cycle 11 Growth in all SGs with Bounding Growth Curve 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Growth, Volts / EFPY CDF SG 1 SG 2 SG 3 SG 4 Bound

E34 0.25 0.93 0.30 0.95 0.40 0.97 0.50 0.987 0.60 0.99 0.80 0.99 0.90 1

7.4 Prediction of Voltage Distributions at EOC-11 Using the number of BOC indications from Table 7.1 and the growth distribution from Table 7.2, the prediction of the EOC-12 voltage distribution is made for each steam generator. These distributions are shown for each steam generator in Figures 7.2 through 7.5. The analysis inputs and outputs are detailed in Reference 11.

Figure 7.2

E35 Figure 7.3 EOC-12 Voltage Distribution SG 1 0

10 20 30 40 50 60 70 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 Volts Number of Indications Prediction for EOC 12 In Service BOC 12

E36 Figure 7.4 EOC-12 Voltage Distribution SG 2 0

10 20 30 40 50 60 70 80 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 Volts Number of Indications Prediction for EOC 12 In Service BOC 12

E37 Figure 7.5 EOC-12 Voltage Distribution SG 3 0

5 10 15 20 25 30 35 40 45 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Volts Number of Indications Prediction for EOC 12 In Service BOC 12

E38 7.5 Prediction of Tube Leak Rates and Burst Probabilities at EOC-12 EOC-12 Voltage Distribution SG 4 0

5 10 15 20 25 30 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Volts Number of Indications Prediction for EOC 12 In Service BOC 12

E39 The Monte Carlo analysis results for predicted EOC-12 voltage distributions are shown in Table 7.3. One million Monte Carlo trials were performed for each steam generator in this operational assessment. The leakage rate is the 95 th percentile evaluated at 95% confidence. The burst probability is 95% confidence based on the number of trials.

Table 7.3 EOC-12 Predicted Results, One Million Trials SG Number of Monte Carlo Trials Number of Indications Number of Bursts in 1,000,000 Trials Max Volts Burst Probability 95% conf.

95/95 SLB Leak Rate, gpm 1

1,000,000 387.33 21 2.6 3.0 x 10^-5 0.4661 2

1,000,000 395.00 17 2.6 2.6 x 10^-5 0.4108 3

1,000,000 337.33 19 2.8 2.8 X 10^-5 0.5166 4

1,000,000 225.67 16 2.7 2.4 x 10^-5 0.3319 Note. The maximum voltage is defined as the voltage where the integration of the voltage distribution from the tail reaches 0.3 of an indication.

7.6 Comparison with Acceptance Criteria All steam generators are well below the burst acceptance criterion of 1.0 x 10^-2, and the Sequoyah Unit 1 leakage criterion of 8.2 gpm.

E40 8.0 References

1. NRC Generic Letter 95-05. Voltage-Based Repair Criteria for Westinghouse Steam Generator Tubes Affected by Outside Diameter Stress Corrosion Cracking, USNRC Office of Nuclear Reactor Regulation, August 3, 1995.
2. SG-96-01-007, Revision 1, Sequoyah Unit-1 Cycle 8 Alternate Plugging Criteria 90-Day Report, Westinghouse Nuclear Services Division, February 1996.
3. SG-97-07-006, Sequoyah Unit-1 Cycle 9 Alternate Plugging Criteria 90-Day Report, Westinghouse Nuclear Services Division, July 1997.
4. SG-98-12-001, Sequoyah Unit-1 Cycle 10 Voltage-Based Repair Criteria 90-Day Report, Westinghouse Nuclear Services Division, December 1998.
5. 00-TR-FSW-016, Rev 00, Condition Monitoring and Operational Assessment:

GL-95-05 Alternate Repair Criterion 90 Day Report, End of Cycle 10 for Sequoyah Unit 1, Westinghouse Electric Company, May 10, 2000.

6. 00-TR-FSW-018, Rev 00, Indication Tables for the Condition Monitoring and Operational Assessment: GL-95-05 Alternate Repair Criterion 90 Day Report, End of Cycle 10 for Sequoyah Unit 1, Westinghouse Electric Company, May 10, 2000.
7. WCAP-14277, Revision 1, SLB Leak Rate and Tube Burst Probability Analysis Methods for ODSCC at TSP Intersections, Westinghouse Nuclear Services Division, December 1996.
8. ABB CENP Report, 00-TR-FSW-006, Rev. 0, GL 95-05 Analysis Methods for Sequoyah Unit 1, February 22, 2000.
9. EPRI Report NP-7480-L, Addendum 3, 1999 Database Update, Steam Generator Outside Diameter Stress Corrosion Cracking at Tube Support Plates - Database for Alternate Repair Criteria, May 1999.

10.EPRI Report NP-7480-L, Addendum 4, 2001 Database Update, Steam Generator Outside Diameter Stress Corrosion Cracking at Tube Support Plates - Database for Alternate Repair Criteria, March 2001.

11.Westinghouse Calculation CN-SGDA-01-144, Rev. 0, Calculation Details for GL 95-05 Analyses for Sequoyah Unit 1 End of Cycle 11, December 2001.

E41 Appendix A Indication List Sequoyah Unit 1 GL-95-05 End of Cycle 11 Steam Generator 1 Cycle 11 Cycle 10 Cycle 11 Cycle 10 Confirmed, C or not tested, N Row Col Supt Volts Volts Ref.

Ref.

Plug?

1 94 H01 0.58 0.36 1

H 11H010Z N

Yes 2

41 H03 0.28 0.78 1

H 11H008Z N

2 45 H05 0.15 0.22 1

H 11H008Z N

2 46 H01 0.8 0.67 2

H 11H008Z N

2 47 H03 0.41 0.28 1

H 11H008Z N

2 85 H01 0.33 0.31 1

H 11H009Z N

2 85 H02 1.58 1.19 1

H 11H009Z C

2 87 H01 0.26 0.31 1

H 11H009Z N

2 89 H02 0.22 0.35 1

H 11H009Z N

2 91 H01 0.95 0.96 1

H 11H009Z C

3 23 H02 0.28 0.36 3

H 11H062Z N

3 43 H01 0.13 0.01 1

H LOOKB N

3 58 C03 0.44 0.4 64 C

10C065Z N

3 89 H01 0.47 0.54 2

H 11H010Z 4

39 H01 0.35 0.26 1

H 11H008Z N

4 47 H04 0.28 0.25 1

H 11H008Z N

4 56 H02 0.54 0.47 95 H

11C086Z N

4 60 H07 0.32 0.3 95 H

11C086Z N

4 70 H06 0.29 0.27 4

H 11H011Z N

4 86 H02 1.07 1.02 1

H 11H009Z N

4 87 H01 0.45 0.33 1

H 11H009Z N

5 1

C07 0.25 0.21 63 C

10C063Z N

5 51 C06 0.27 0.28 63 C

10C065Z N

5 55 H01 1.44 1.19 94 H

11C087Z N

5 55 H04 0.31 1.46 94 H

11C087Z N

5 57 H01 0.58 0.74 94 H

11C087Z N

5 67 H03 0.44 0.3 3

H LOOKB N

5 84 H01 0.42 0.31 2

H 11H010Z N

6 1

H02 0.48 0.44 95 H

11C086Z N

6 19 H05 0.2 0.21 3

H LOOKB N

6 27 H01 0.95 0.95 3

H 11H063Z N

6 31 H02 0.74 0.66 3

H 11H008Z N

6 41 C01 0.23 0.11 13 C

10C001Z N

6 46 H01 0.47 0.41 2

H 11H008Z N

6 50 H02 0.48 0.34 95 H

LOOKB N

E42 6

55 C04 0.38 0.44 62 C

10C072Z N

6 57 H01 0.72 0.63 95 H

11C086Z 6

84 H01 0.9 0.56 1

H 11H009Z N

6 86 H02 0.2 0.24 1

H 11H009Z N

6 86 H04 0.27 0.27 1

H 11H009Z N

7 16 H01 0.57 0.45 4

H 11H012Z N

7 16 H02 0.45 0.36 4

H 11H012Z N

7 27 C03 0.16 0.23 14 C

10C010Z N

7 29 H01 1.45 1.5 3

H LOOKB C

7 43 H01 0.26 0.26 1

H LOOKB C

7 54 H01 0.58 0.44 94 H

11C087Z C

7 65 H01 0.83 1.47 3

H 11C087Z N

7 65 H02 1.2 1.24 3

H 11C087Z N

7 66 H02 1.27 1.29 4

H LOOKB 7

92 H02 1.56 1.48 2

H 11H010Z C

7 92 H03 0.32 0.33 2

H 11H010Z N

7 94 H01 0.66 0.55 1

H 11H010Z N

7 94 H02 1.18 0.35 1

H 11H010Z C

8 26 H01 1.09 1.28 4

H 11H063Z C

8 46 H07 0.78 0.78 2

H 11H008Z N

8 63 H01 1.15 0.91 95 H

11C086Z N

8 65 H01 1.53 1.26 3

H 11C086Z N

8 65 H02 1.24 1.13 3

H 11C086Z N

8 66 H01 0.59 0.76 4

H 11H011Z N

8 66 H02 0.96 0.91 4

H 11H011Z N

9 11 H02 0.32 0.53 56 C

10C051Z N

9 26 H07 0.23 0.4 44 C

10C043Z N

9 39 C07 0.19 0.26 17 C

10C012Z N

9 44 H03 0.33 0.18 44 C

LOOKB N

9 61 H07 0.23 0.31 59 C

10C060Z N

9 66 H01 1.46 1.54 40 C

10C018Z N

9 66 H02 0.96 0.86 40 C

10C018Z N

9 69 C07 0.17 0.23 40 C

10C017Z N

9 70 C07 0.24 0.27 40 C

LOOKB N

10 24 H07 0.65 0.64 21 C

10C042Z N

10 48 H01 0.31 0.23 56 C

LOOKB N

10 49 H01 0.3 0.19 56 C

10C060Z N

10 51 H01 0.7 0.58 58 C

10C060Z N

10 53 H01 1.63 1.63 69 C

10C060Z N

10 66 H01 0.94 0.82 41 C

10C017Z C

10 66 H05 0.25 0.3 41 C

LOOKB 10 76 H06 0.19 0.24 41 C

LOOKB N

10 78 C01 0.21 0.17 41 C

LOOKB 10 87 H04 1.3 0.95 15 C

10C013Z N

10 91 H01 0.55 0.64 15 C

10C013Z

E43 10 91 H02 0.47 0.16 15 C

LOOKB 10 91 H03 0.86 0.49 15 C

10C013Z C

10 92 H01 0.84 0.67 15 C

10C013Z C

11 20 H01 0.36 0.62 20 C

10C043Z N

11 34 H01 1.75 1.68 44 C

LOOKB C

11 77 H03 0.49 0.26 40 C

LOOKB N

11 77 H04 0.49 0.22 40 C

LOOKB N

11 84 H01 0.56 0.63 15 C

10C014Z N

11 91 H02 1.36 1.67 47 C

10C014Z N

11 91 H03 0.39 0.35 47 C

10C014Z N

11 91 H04 0.36 0.29 47 C

10C014Z N

11 93 H01 0.69 0.93 15 C

10C014Z C

11 93 H02 0.75 0.95 15 C

10C014Z N

12 65 H01 0.75 0.82 41 C

LOOKB C

13 73 H07 0.61 0.9 40 C

10C018Z 15 61 H03 0.87 0.89 58 C

10C060Z N

Yes 15 79 H01 0.58 0.5 43 C

10C018Z N

15 84 H01 0.73 0.97 15 C

10C014Z C

16 24 H02 0.43 0.28 21 C

LOOKB N

16 74 H02 0.4 0.19 41 C

LOOKB N

16 78 C05 0.32 0.4 43 C

10C017Z N

16 89 H04 0.45 0.25 15 C

10C013Z N

17 10 H07 0.3 0.27 57 C

LOOKB N

17 26 C06 0.43 0.4 27 C

10C041Z N

17 59 H01 0.34 0.41 36 C

10C027Z C

17 78 H01 0.5 0.93 34 C

10C020Z N

17 80 H01 0.82 0.74 32 C

10C016Z C

17 81 H01 0.32 0.32 32 C

LOOKB N

17 85 H01 1.48 1.47 16 C

10C016Z C

17 90 H01 0.33 0.3 15 C

10C016Z N

18 10 H04 0.39 0.4 56 C

10C050Z N

18 11 H01 1.23 0.9 57 C

10C050Z N

18 59 H01 1.02 0.63 36 C

10C026Z Yes 18 66 H01 1.19 0.82 39 C

10C019Z C

18 71 H06 0.12 0.12 35 C

10C019Z N

19 9

H03 0.25 0.21 57 C

10C050Z N

19 38 H01 0.46 0.35 25 C

LOOKB C

19 46 H01 0.23 0.16 21 C

LOOKB N

19 67 H01 1.01 1.03 38 C

10C020Z C

19 79 H01 0.95 0.9 34 C

LOOKB C

19 82 H01 0.62 0.56 33 C

10C016Z N

20 6

H03 0.33 0.29 56 C

LOOKB N

20 28 H05 0.33 0.28 26 C

10C039Z N

20 29 C05 0.27 0.27 26 C

10C039Z N

20 34 H01 0.3 0.34 26 C

10C028Z N

E44 20 37 H01 0.35 0.34 24 C

10C030Z N

20 68 H01 1.64 1.28 39 C

10C019Z C

20 70 H01 1.16 1.17 35 C

10C019Z N

21 29 H07 0.59 0.55 27 C

10C041Z N

21 50 H01 0.43 0.43 39 C

10C027Z N

21 54 H01 1.2 1.14 32 C

10C027Z N

21 76 H01 0.93 0.96 35 C

10C020Z N

21 81 H01 0.72 0.71 34 C

10C015Z N

21 86 H01 0.79 0.61 15 C

10C016Z N

21 87 H01 0.89 0.71 16 C

LOOKB N

21 87 H02 0.38 0.26 16 C

10C015Z N

21 88 H01 0.49 0.44 15 C

10C016Z N

21 88 H03 0.34 0.25 15 C

LOOKB N

21 89 H01 1.01 0.74 16 C

10C015Z N

22 7

H03 0.3 0.23 57 C

10C050Z N

22 7

H04 0.3 0.28 57 C

10C050Z N

22 15 H01 0.37 0.48 31 C

10C050Z N

22 26 C06 0.25 0.3 28 C

10C039Z N

22 29 C05 0.32 0.33 26 C

10C039Z N

22 40 H05 0.17 0.21 24 C

10C030Z N

22 61 H03 0.41 0.61 36 C

10C026Z N

22 65 H01 1.01 1.19 38 C

10C028Z N

22 86 H02 0.65 0.38 16 C

10C015Z N

22 88 H02 0.95 0.7 16 C

LOOKB C

24 60 H01 0.48 0.47 36 C

LOOKB N

24 67 H01 0.47 0.24 39 C

LOOKB N

24 67 H04 0.24 0.22 39 C

LOOKB N

24 82 H01 0.42 0.3 32 C

10C015Z N

24 85 H01 0.42 0.25 15 C

10C015Z N

24 86 H01 0.53 0.53 16 C

LOOKB N

25 14 H07 0.31 0.38 31 C

10C050Z 25 43 H01 0.51 0.48 23 C

10C031Z N

25 52 H01 0.41 0.31 30 C

LOOKB N

25 52 H02 0.38 0.36 30 C

LOOKB N

25 67 H01 0.67 1.1 38 C

10C020Z N

25 74 H01 1.16 1.35 34 C

10C020Z N

26 45 H01 0.45 0.37 21 C

10C030Z N

26 86 H04 0.23 0.14 16 C

10C015Z N

27 16 H04 0.62 0.23 31 C

10C039Z N

27 39 H01 1.05 0.89 25 C

LOOKB C

28 46 H01 0.32 0.48 22 C

10C030Z N

29 11 H01 0.46 0.48 56 C

10C050Z N

29 11 H05 0.34 0.32 56 C

LOOKB N

29 13 H01 0.45 0.44 31 C

10C050Z N

29 13 H06 0.63 0.57 31 C

10C050Z N

E45 29 46 H01 0.53 0.29 21 C

LOOKB C

29 52 H01 0.3 0.31 30 C

10C027Z N

29 61 H06 0.35 0.31 37 C

10C027Z N

29 66 H01 0.47 1.01 38 C

10C020Z 29 75 H03 0.42 0.61 34 C

10C020Z N

29 77 H02 0.92 1.07 34 C

10C020Z N

29 78 H01 0.94 0.99 34 C

10C020Z N

29 81 H01 1.09 1.06 34 C

10C015Z C

30 14 H06 0.2 0.19 30 C

10C050Z N

30 77 H02 0.35 0.35 35 C

10C019Z N

30 81 H01 0.31 0.46 35 C

10C016Z 30 81 H03 0.39 0.55 35 C

10C016Z N

31 14 H06 0.23 0.39 31 C

10C050Z N

Yes 31 40 H02 0.3 0.3 25 C

LOOKB N

32 17 H05 0.5 0.42 31 C

LOOKB N

32 38 H02 0.47 0.37 24 C

10C030Z N

32 62 H01 0.5 0.41 37 C

LOOKB N

32 74 C07 0.2 0.15 35 C

10C019Z N

32 75 H01 0.62 0.43 35 C

10C019Z N

32 77 H02 1

0.49 35 C

LOOKB N

Yes 33 17 H05 1.27 0.48 30 C

10C032Z N

33 17 H06 0.42 0.45 30 C

10C032Z N

33 18 H03 0.55 0.35 29 C

LOOKB C

33 19 H02 0.75 0.88 28 C

10C032Z N

33 19 H06 0.17 0.51 28 C

10C032Z N

33 20 H02 0.2 0.12 44 C

LOOKB N

33 23 H02 0.32 0.33 28 C

10C032Z N

33 29 H01 0.24 0.29 27 C

10C034Z N

33 65 H01 0.33 0.15 39 C

10C021Z N

33 65 H07 0.14 0.18 39 C

LOOKB N

33 74 H01 0.19 0.24 34 C

10C022Z N

34 16 H04 0.6 0.54 31 C

10C032Z N

Yes 34 72 H01 0.43 0.44 34 C

10C021Z N

34 74 H01 0.24 0.17 35 C

10C021Z N

35 64 H01 0.12 0.21 36 C

LOOKB N

35 78 H02 0.33 0.4 35 C

10C021Z N

36 47 H03 0.3 0.29 21 C

10C032Z N

36 68 H02 0.48 0.48 39 C

LOOKB N

36 69 H03 0.38 0.48 36 C

10C022Z N

36 70 H01 0.67 0.58 34 C

LOOKB C

36 73 H02 0.37 0.47 34 C

10C022Z N

37 69 H02 0.28 0.32 37 C

10C021Z N

37 69 H06 0.18 0.06 37 C

LOOKB N

38 30 H01 0.36 0.34 27 C

10C030Z N

38 69 H01 0.68 0.59 36 C

10C022Z N

E46 38 74 C04 0.09 0.1 35 C

10C021Z N

39 62 H02 0.38 0.35 36 C

LOOKB N

39 64 H02 0.23 0.26 36 C

LOOKB N

39 72 H03 0.45 0.42 35 C

10C022Z N

40 69 H01 0.8 1.16 36 C

10C022Z C

42 40 H02 0.24 0.2 25 C

10C030Z N

42 48 H02 0.78 0.44 38 C

LOOKB C

42 60 H02 0.45 0.52 36 C

10C021Z N

42 66 H01 0.43 0.39 39 C

10C021Z N

43 48 H02 0.26 0.14 39 C

LOOKB N

43 49 H04 0.2 0.16 39 C

10C024Z N

43 59 H01 0.5 0.57 37 C

10C021Z N

43 59 H03 0.15 0.31 37 C

10C021Z N

43 61 H02 1.02 1.56 36 C

10C022Z C

43 62 H01 0.37 0.24 36 C

LOOKB N

43 63 H02 1.33 1.08 37 C

10C021Z N

44 61 H05 0.47 0.48 37 C

10C021Z N

45 37 H02 0.47 0.44 24 C

LOOKB N

45 49 H01 0.76 0.73 39 C

10C024Z N

45 50 H03 0.39 0.29 30 C

10C052Z N

46 48 H03 0.25 0.24 38 C

10C023Z N

E47 Steam Generator 2 Cycle 11 Cycle 10 Cycle11 Cycle 10 Confirmed, C or not tested, N Row Col Supt Volts Volts Ref.

Ref.

Plug?

1 80 H06 0.26 0.31 6

H 21H004Z N

2 31 H02 0.46 0.43 3

H 21H001Z N

2 43 H01 0.31 0.3 3

H 21H001Z N

2 49 H01 0.7 0.53 83 H 21H070Z N

2 88 H04 0.38 0.33 2

H 21H003Z N

3 1

C06 0.4 0.39 70 C 20C058Z N

3 13 H01 0.6 0.5 4

H 21H071Z N

3 13 H03 0.39 0.33 4

H LOOKB N

3 28 H01 1.02 1.01 4

H LOOKB C

3 41 H01 1.2 1.12 2

H 21H002Z N

3 81 H06 0.63 0.45 6

H 21H004Z N

4 2

H05 0.58 0.45 83 H 21H070Z N

4 6

H01 1.1 0.89 83 H 21H070Z N

4 9

H01 0.73 0.59 83 H LOOKB N

4 13 H01 0.41 0.35 3

H 21H070Z N

4 17 H01 0.48 0.49 3

H 21H005Z N

Yes 4

29 H01 0.21 0.14 3

H LOOKB N

4 30 H01 0.67 0.76 3

H 21H001Z C

4 37 H01 0.36 0.32 1

H 21H001Z N

4 47 H01 0.33 0.27 3

H 21H001Z N

4 83 C03 0.2 0.17 8

C 20C005Z N

5 39 H01 0.4 0.33 2

H 21H002Z N

5 52 H01 0.31 0.23 84 H 21H071Z N

6 34 H01 0.54 0.51 2

H 21H001Z N

6 34 H04 0.34 0.31 2

H 21H001Z N

6 43 H01 0.92 0.74 3

H 21H001Z N

6 47 H01 0.26 0.33 3

H 21H001Z N

6 63 H05 0.42 0.31 83 H 21H069Z N

6 65 H01 0.2 0.22 5

H LOOKB N

7 24 H01 0.84 1

4 H 21H006Z Yes 7

53 H01 0.57 0.27 94 H 21H071Z N

7 66 H01 0.61 0.44 6

H 21H006Z N

7 70 H01 1.52 1.05 6

H 21H006Z C

7 87 H04 0.24 0.14 1

H LOOKB N

7 94 H01 0.39 0.33 1

H 21H004Z N

8 36 H01 0.75 0.88 2

H 21H001Z N

9 15 H01 0.35 0.29 20 C 20C047Z N

9 21 H01 0.39 0.36 20 C LOOKB C

9 30 H04 0.57 0.39 22 C 20C011Z N

Yes 9

47 H01 0.35 0.24 20 C 20C011Z N

9 55 H01 0.85 0.49 63 C 20C055Z N

E48 9

59 H03 0.47 0.68 63 C 20C055Z N

9 66 H01 0.64 0.7 16 C 20C015Z N

10 4

H01 0.74 0.66 65 C 20C047Z N

Yes 10 15 H02 0.89 0.77 47 C 20C047Z C

10 30 H01 1

0.68 25 C 20C009Z C

10 49 H01 0.55 0.6 62 C 20C055Z C

10 65 H01 0.19 0.13 15 C LOOKB C

11 34 H01 1.88 0.75 17 C 20C011Z C

11 60 H01 0.86 1.16 63 C LOOKB C

12 6

H01 0.65 0.78 65 C 20C047Z C

12 10 H01 0.4 0.38 64 C 20C047Z N

12 90 C05 0.32 0.32 13 C 20C012Z N

13 4

C06 0.65 0.68 64 C 20C047Z N

13 4

H02 1.37 1.17 64 C 20C047Z C

13 4

H03 0.32 0.35 64 C 20C047Z N

13 4

H05 0.47 0.57 64 C 20C047Z N

13 5

H01 0.92 0.79 65 C 20C047Z N

13 5

H03 0.53 0.44 65 C 20C047Z N

13 7

H01 0.3 0.22 65 C 20C047Z N

13 60 H01 0.58 0.43 63 C 20C055Z N

13 62 H01 0.35 0.35 62 C LOOKB C

13 82 C03 0.2 0.18 16 C 20C013Z N

14 6

H01 0.5 0.43 65 C 20C047Z N

14 6

H05 0.22 0.26 65 C 20C047Z N

14 9

H01 0.67 0.36 65 C 20C047Z N

14 14 H01 0.31 0.34 47 C 20C047Z N

14 37 H01 1.53 1.64 19 C 20C009Z N

Yes 15 3

H03 0.29 0.21 65 C 20C047Z N

15 6

H02 0.46 0.55 64 C 20C047Z N

15 11 H01 1.04 0.95 65 C 20C047Z N

15 12 H01 1.08 1.12 47 C 20C047Z C

15 21 H01 0.62 0.01 20 C LOOKB N

15 37 H01 0.47 0.4 17 C 20C011Z N

15 40 H01 0.83 0.76 19 C 20C011Z C

15 82 H07 0.63 0.71 16 C 20C013Z N

15 89 C05 0.35 0.37 13 C 20C013Z N

16 10 H01 0.63 0.59 64 C 20C047Z C

16 10 H03 0.51 0.54 64 C 20C047Z N

16 17 H01 0.78 0.84 47 C 20C037Z C

16 24 H01 0.53 0.42 25 C 20C037Z N

16 24 H07 0.35 0.37 25 C 20C037Z N

16 31 H01 0.36 0.33 25 C 20C009Z N

16 44 H01 1.08 0.98 19 C 20C009Z N

Yes 16 83 H07 0.25 0.21 15 C 20C012Z N

17 15 H01 0.74 0.53 25 C 20C046Z C

E49 17 18 H01 0.9 0.86 26 C LOOKB C

17 25 H05 0.34 0.3 26 C LOOKB C

17 35 H01 1.14 1.12 30 C LOOKB C

17 35 H02 1.2 1.06 30 C 20C028Z C

17 36 H01 0.59 0.33 30 C 20C028Z N

17 50 H01 0.34 0.25 36 C 20C049Z N

17 60 H01 0.69 0.74 39 C 20C026Z N

17 60 H02 0.21 0.18 39 C 20C026Z N

17 64 H01 1.06 0.56 41 C 20C028Z N

Yes 17 70 H01 0.33 0.23 43 C LOOKB N

17 87 C05 0.34 0.25 13 C LOOKB N

18 11 H01 0.46 0.31 64 C 20C046Z N

18 79 C06 0.19 0.09 44 C LOOKB N

18 85 H02 0.33 0.37 13 C 20C012Z N

19 38 H01 0.33 0.28 30 C LOOKB N

19 75 H06 0.44 0.25 44 C 20C020Z N

19 78 H02 0.47 0.46 46 C 20C020Z N

19 88 C05 0.4 0.4 14 C 20C013Z N

20 17 H03 0.99 0.98 26 C LOOKB C

20 31 H01 0.44 0.45 47 C LOOKB C

20 31 H05 0.7 1.09 47 C LOOKB N

20 53 H01 0.4 0.29 38 C 20C025Z N

20 54 H01 1.03 1.16 38 C 20C025Z N

20 54 H03 0.31 0.36 38 C LOOKB N

20 55 H01 1.76 1.54 39 C 20C025Z N

21 25 H01 0.55 0.37 26 C 20C036Z C

21 44 H01 0.49 0.47 32 C 20C030Z N

21 49 H01 0.6 0.53 36 C 20C049Z N

21 76 H02 0.32 1.58 46 C 20C020Z N

21 80 H06 0.64 0.57 46 C 20C013Z N

22 12 H01 0.38 0.26 25 C 20C046Z N

22 48 H01 0.43 0.58 37 C 20C049Z 22 57 H01 1.12 0.99 39 C 20C025Z N

22 65 H01 0.36 0.17 41 C LOOKB C

22 76 H06 0.23 0.07 44 C LOOKB N

22 80 H05 0.21 0.19 44 C LOOKB N

22 80 H06 0.37 0.28 44 C 20C012Z N

22 86 C06 0.41 0.4 13 C 20C012Z N

22 86 H07 0.28 0.35 13 C 20C012Z N

23 34 H01 0.45 0.25 30 C LOOKB C

24 12 H01 0.65 0.39 25 C 20C046Z N

24 44 H04 0.3 0.32 33 C 20C029Z N

25 28 H01 0.42 0.31 47 C 20C036Z N

25 35 H01 0.32 0.37 30 C 20C028Z N

Yes 25 35 H02 0.64 0.27 30 C LOOKB N

Yes

E50 25 83 H07 0.33 0.33 46 C 20C013Z N

25 87 H01 0.2 0.01 13 C LOOKB N

26 9

H01 0.54 0.92 65 C 20C046Z N

26 51 H01 1.03 0.96 36 C 20C049Z N

26 53 H01 0.63 0.64 36 C 20C025Z N

26 59 H01 0.99 0.75 39 C 20C025Z N

26 78 H01 0.45 1.15 44 C LOOKB C

27 16 H07 0.39 0.33 22 C 20C036Z N

27 23 H01 0.27 0.25 27 C 20C036Z N

27 34 H01 0.21 0.16 30 C 20C028Z N

27 37 H01 0.47 0.31 31 C LOOKB C

27 60 H01 0.48 0.3 39 C 20C028Z N

27 63 H01 0.41 0.24 40 C 20C028Z N

27 73 H02 0.39 0.13 44 C LOOKB N

27 76 H02 0.17 1.43 46 C 20C020Z N

27 76 H04 0.17 0.18 46 C LOOKB N

27 76 H05 0.32 0.17 46 C 20C020Z N

28 11 H01 0.89 1.01 64 C 20C046Z N

28 19 H01 1.05 1.09 26 C 20C035Z N

28 70 H01 0.4 0.84 42 C 20C019Z N

29 13 H01 1.09 1.03 25 C 20C046Z C

29 17 H01 0.36 0.27 27 C 20C036Z N

29 28 H01 0.98 0.76 47 C 20C036Z C

29 30 H01 1.01 0.54 47 C 20C028Z N

29 45 H01 0.6 0.58 32 C 20C030Z N

30 23 H02 1.65 1.63 26 C 20C035Z C

30 27 H01 0.21 0.13 47 C LOOKB N

30 34 H01 0.66 0.7 31 C 20C027Z C

30 69 C06 0.4 0.43 43 C 20C019Z N

30 77 H02 0.2 0.1 44 C LOOKB N

31 14 H01 1.01 1.19 25 C LOOKB C

31 14 H02 0.3 0.34 25 C 20C046Z N

31 22 H01 0.46 0.25 26 C 20C036Z N

31 35 H01 0.58 0.56 30 C LOOKB C

31 45 C05 0.25 0.29 32 C 20C030Z N

31 52 H01 0.36 0.37 36 C LOOKB N

31 57 H01 0.42 0.29 38 C 20C026Z N

31 67 H07 0.19 0.39 41 C 20C020Z N

32 52 H05 0.49 0.33 36 C 20C025Z N

32 54 H02 0.36 0.69 38 C 20C025Z N

33 38 H01 0.38 0.36 30 C LOOKB N

33 40 H06 0.22 0.16 30 C 20C032Z N

33 47 H01 0.4 0.4 32 C LOOKB N

33 49 H01 0.47 0.44 36 C 20C024Z N

Yes 33 77 H03 0.18 0.19 46 C 20C022Z N

E51 34 44 H01 0.58 0.7 33 C 20C033Z N

34 44 H02 0.32 0.16 33 C 20C033Z N

34 44 H03 0.43 0.58 33 C 20C033Z N

34 46 H01 0.61 0.87 33 C 20C034Z N

34 47 H01 0.34 0.25 33 C 20C034Z C

34 48 H01 0.28 1.34 37 C 20C023Z N

34 51 H01 0.22 0.28 74 C LOOKB N

34 64 H01 0.75 0.64 40 C 20C023Z N

34 76 H01 0.42 0.35 44 C 20C021Z N

34 77 C05 0.18 0.16 44 C LOOKB N

34 78 H04 0.41 0.24 44 C 20C021Z N

34 79 H01 0.8 1.06 44 C 20C021Z N

34 79 H04 0.37 0.75 44 C 20C021Z N

35 18 H01 1.44 1.2 26 C 20C034Z C

35 18 H02 0.22 0.18 26 C 20C034Z N

35 20 C06 0.13 0.21 26 C 20C034Z N

35 20 H01 0.23 0.22 26 C 20C034Z N

35 37 H01 0.99 0.84 31 C 20C031Z N

35 72 H07 0.57 0.41 43 C 20C022Z N

35 78 H03 0.46 0.54 44 C 20C021Z N

35 78 H04 0.35 0.46 44 C 20C021Z N

36 19 H01 1.42 1.1 26 C 20C034Z C

36 25 H02 0.64 0.58 27 C LOOKB N

36 32 C06 0.35 0.33 29 C 20C031Z N

36 44 H01 0.69 0.51 33 C 20C033Z N

36 46 H01 0.55 0.43 33 C 20C034Z N

36 61 H04 0.17 0.49 40 C 20C023Z N

36 67 H03 0.38 0.23 40 C 20C021Z N

36 73 H07 0.39 0.27 43 C 20C022Z N

37 26 C06 0.3 0.27 47 C 20C034Z N

37 26 H06 0.38 0.39 47 C LOOKB N

37 40 H01 0.4 0.43 30 C LOOKB N

37 41 H02 0.87 0.73 32 C 20C032Z N

37 74 H03 0.19 0.24 46 C 20C022Z N

38 24 H01 0.44 0.39 27 C LOOKB N

38 34 H01 0.99 1.1 31 C 20C031Z N

38 34 H03 0.35 0.3 31 C 20C031Z N

38 72 H05 0.23 0.57 42 C 20C021Z N

39 22 H01 0.37 0.3 27 C 20C033Z N

39 38 H01 0.68 0.43 30 C LOOKB C

39 65 H02 0.25 0.25 40 C 20C023Z N

39 69 H02 0.32 0.24 42 C LOOKB N

39 69 H03 0.34 0.23 42 C LOOKB N

39 72 H01 0.45 0.31 43 C 20C021Z N

40 39 H01 0.71 0.53 30 C 20C032Z N

E52 41 47 H01 0.41 0.43 32 C 20C033Z N

41 52 H03 0.24 0.2 37 C 20C024Z N

43 30 H04 0.68 0.67 29 C 20C031Z N

43 30 H05 0.46 0.37 29 C 20C031Z N

43 30 H06 0.39 0.39 29 C 20C031Z N

43 52 H03 0.42 0.37 37 C 20C024Z N

43 57 H05 0.29 0.3 38 C 20C023Z N

44 33 H03 0.27 0.28 29 C 20C031Z N

44 34 H03 0.66 0.71 31 C 20C031Z N

44 34 H04 0.35 0.35 31 C 20C031Z N

44 34 H05 0.33 0.47 31 C 20C031Z N

44 36 H01 0.6 0.54 31 C LOOKB C

44 36 H02 0.85 0.63 31 C 20C031Z N

44 36 H05 0.14 0.23 31 C 20C031Z N

44 43 H07 0.32 0.33 33 C 20C033Z N

44 54 H02 0.33 0.2 38 C LOOKB N

44 54 H06 0.4 0.51 38 C 20C023Z N

45 41 H06 0.22 0.31 32 C 20C031Z N

45 53 H04 0.37 0.31 36 C LOOKB N

45 54 H04 0.48 0.25 39 C 20C024Z N

45 55 H04 0.23 0.6 38 C LOOKB N

46 49 H06 0.25 0.35 37 C 20C024Z N

E53 Steam Generator 3 Cycle 11 Cycle 10 Cycle11 Cycle 10 Confirmed, C or not tested, N

Row Col Supt Volts Volts Ref.

Ref.

Plug?

1 34 H02 1.7 0.51 1

H 31H002Z N

1 70 H01 0.6 0.51 5

H LOOKB N

2 65 H01 0.71 0.72 5

H 31H130Z N

Yes 2

67 H02 0.65 0.7 5

H 30C007Z N

2 73 H01 0.36 0.28 5

H LOOKB N

2 76 H01 0.56 0.47 6

H LOOKB C

2 80 H01 0.32 0.43 6

H 31H005Z N

2 80 H02 0.64 0.55 6

H 31H005Z N

2 86 H01 0.17 0.2 2

H 31H005Z N

2 92 H02 0.76 0.6 2

H 31H005Z N

3 21 H05 0.3 0.33 3

H LOOKB C

3 60 H01 0.2 0.15 127 H 31H133Z N

3 66 H01 0.85 0.83 5

H LOOKB N

Yes 4

28 H02 0.87 0.88 4

H 30C007Z N

Yes 4

42 H04 1.03 1.15 2

H 31H001Z N

Yes 4

83 H01 0.66 0.63 5

H LOOKB C

4 84 H03 0.43 0.46 1

H LOOKB Yes 4

87 H01 0.48 0.42 1

H 31H005Z N

4 88 H01 0.6 0.61 1

H LOOKB C

4 88 H02 0.51 0.43 1

H 31H005Z C

4 88 H05 0.65 0.64 1

H LOOKB C

5 3

H03 0.35 0.23 126 H LOOKB N

5 6

H02 1.35 1.06 126 H 31H133Z N

5 29 H01 1.05 0.79 3

H 31H008Z N

5 34 H01 1.92 1.53 1

H 31H002Z C

5 44 H01 0.58 0.35 2

H 31H002Z N

5 50 H02 0.99 0.77 127 H 31H133Z N

5 51 H01 0.64 0.63 127 H 31H133Z C

5 51 H05 0.53 0.48 127 H LOOKB C

5 60 H01 0.19 0.44 127 H LOOKB N

5 72 H03 0.98 1.09 5

H 31H008Z C

5 86 H01 1.56 0.95 1

H 31H006Z N

Yes 5

87 H01 1.35 1.88 2

H 31H006Z Yes 6

21 H01 1.01 0.97 4

H 30C007Z N

6 26 H01 1.14 1.16 4

H 30C007Z N

6 27 H01 0.73 0.63 4

H 30C007Z N

6 41 H01 0.97 0.99 2

H 31H001Z C

6 62 H01 1.43 1.26 126 H 31H130Z C

6 62 H04 0.66 0.4 126 H LOOKB C

6 83 H01 0.27 0.13 5

H 31H005Z N

E54 7

42 H01 1.67 0.97 1

H 31H002Z C

7 47 H02 0.23 0.42 1

H 31H002Z N

7 65 H01 0.49 0.47 6

H 31H133Z N

7 86 H01 0.46 0.48 1

H LOOKB C

7 88 H01 0.25 0.29 2

H LOOKB C

7 89 H01 0.77 0.68 2

H 31H006Z C

7 89 H04 0.77 0.72 2

H 31H006Z C

7 91 H02 0.9 1.08 1

H 31H006Z N

8 9

H01 0.48 0.42 127 H 31H130Z N

8 30 H01 1.55 1.41 3

H 31H001Z N

Yes 8

30 H04 0.26 0.26 3

H LOOKB N

Yes 8

37 H01 1.16 1.08 2

H 31H001Z C

8 40 H01 0.86 0.75 1

H 31H001Z N

8 53 H01 0.32 0.14 126 H LOOKB N

8 56 H02 0.96 1.34 126 H LOOKB C

8 77 H01 0.8 0.65 5

H 30C007Z N

8 90 H06 0.63 0.64 2

H 31H005Z N

9 31 H01 0.47 0.34 14 C 30C014Z N

9 51 H01 0.85 0.69 52 C 30C058Z N

9 55 H01 0.69 0.76 52 C LOOKB N

9 62 H06 0.61 0.7 52 C LOOKB N

9 64 H03 0.49 0.43 13 C LOOKB N

Yes 9

72 H03 0.64 0.67 13 C LOOKB N

9 93 H01 0.58 0.7 9

C 30C019Z N

10 27 H01 1.56 1.61 13 C 30C040Z N

10 27 H03 0.58 0.78 13 C LOOKB N

10 42 H01 1.39 0.56 11 C 30C015Z N

10 87 H01 0.79 0.77 9

C 30C018Z C

10 93 H01 1.46 1.09 10 C 30C018Z N

Yes 11 7

H04 0.92 0.69 49 C LOOKB C

11 12 H01 0.37 0.52 13 C LOOKB C

11 12 H02 0.8 0.72 13 C 30C060Z N

11 12 H06 0.91 1.05 13 C LOOKB C

11 20 H01 0.37 0.36 14 C 30C041Z C

11 24 H01 0.71 0.74 13 C 30C041Z C

11 33 H03 0.73 0.54 10 C LOOKB C

11 35 H04 0.29 0.23 12 C LOOKB C

11 52 H03 0.4 0.26 52 C 30C058Z N

11 53 H01 0.88 0.92 52 C LOOKB N

11 86 H01 0.32 0.3 10 C LOOKB C

11 91 H01 0.66 0.79 10 C 30C019Z C

11 91 H04 0.59 0.52 10 C LOOKB N

12 4

H02 0.64 0.65 49 C 30C059Z C

12 7

H03 0.61 0.46 50 C LOOKB C

12 10 H01 0.22 0.15 50 C LOOKB C

E55 12 19 H02 0.92 0.75 13 C 30C040Z N

12 28 H01 1.02 0.93 13 C 30C040Z C

12 31 H02 0.55 0.68 13 C LOOKB C

12 35 H04 0.21 0.2 11 C LOOKB N

12 37 H01 0.58 0.54 11 C 30C015Z N

12 53 C07 0.56 0.51 51 C LOOKB N

12 62 H01 1.11 0.97 51 C LOOKB C

12 75 H01 0.32 0.28 16 C 30C020Z N

12 92 H02 1.2 0.93 10 C 30C018Z C

13 14 H04 0.46 0.62 14 C 30C060Z N

13 15 C04 0.18 0.34 14 C 30C060Z N

13 22 H01 0.39 0.43 14 C 30C041Z N

13 28 H01 0.6 0.41 14 C 30C041Z N

13 31 H01 0.47 0.6 14 C 30C014Z N

13 32 H04 0.65 0.75 9

C LOOKB C

13 35 H07 0.11 0.07 12 C LOOKB N

13 49 H01 0.79 0.77 50 C 30C058Z C

13 50 H03 0.61 0.36 49 C 30C058Z N

13 52 H01 0.73 0.64 52 C 30C058Z C

13 54 H06 0.39 0.44 51 C 30C058Z N

13 55 H01 0.56 0.45 52 C 30C058Z N

13 57 H03 0.54 0.49 52 C 30C058Z N

13 57 H04 0.62 0.75 52 C 30C058Z N

13 71 H03 0.67 0.4 13 C 30C021Z N

14 10 H02 0.87 0.97 50 C 30C059Z C

14 13 H04 1.37 1.29 13 C LOOKB N

14 35 H01 0.48 0.46 11 C LOOKB C

14 36 H02 0.7 0.74 11 C 30C015Z C

14 38 H03 0.48 0.44 11 C LOOKB C

14 44 H01 1.1 1.14 11 C 30C015Z N

14 54 H01 0.87 0.75 52 C 30C057Z C

14 69 H01 0.94 0.7 14 C LOOKB C

14 92 H02 0.34 0.17 10 C LOOKB C

15 18 H03 0.52 0.5 13 C LOOKB C

15 29 H03 0.64 0.63 14 C 30C041Z N

15 34 H01 0.91 0.96 11 C LOOKB C

15 54 H02 0.61 0.46 51 C 30C058Z N

15 54 H05 0.52 0.54 51 C 30C058Z N

15 87 H01 1.07 1.02 10 C 30C019Z N

16 21 H03 0.71 0.62 13 C LOOKB N

16 30 H02 0.69 0.43 14 C LOOKB N

16 57 H01 0.69 0.75 51 C 30C057Z C

16 57 H07 0.98 1.86 51 C LOOKB C

16 61 H01 0.57 0.51 51 C 30C057Z N

16 71 H02 0.41 0.33 14 C 30C020Z N

E56 16 77 H01 0.2 0.08 16 C LOOKB N

17 23 H01 0.28 0.23 26 C 30C039Z 17 28 H01 0.67 0.5 29 C 30C041Z C

17 44 H01 0.64 0.62 32 C 30C033Z C

17 65 H01 0.67 0.52 21 C LOOKB N

Yes 18 12 H02 0.26 0.38 24 C 30C059Z N

18 21 H02 0.2 0.31 26 C 30C038Z N

18 29 H03 0.31 0.23 28 C LOOKB C

18 30 H01 0.42 0.37 28 C LOOKB C

18 53 H04 0.67 0.64 18 C LOOKB N

Yes 18 73 H01 0.5 0.44 22 C LOOKB C

19 29 H01 0.79 0.58 29 C LOOKB N

19 29 H02 0.18 0.26 29 C 30C041Z C

19 31 H01 0.52 0.38 28 C 30C054Z 19 38 H03 1.42 1.17 31 C 30C033Z C

19 73 H01 0.87 0.91 23 C 30C023Z N

19 85 H01 0.5 0.4 9

C 30C019Z N

19 85 H06 0.5 0.59 9

C 30C019Z N

19 89 H01 0.86 0.7 10 C LOOKB C

20 28 H06 0.32 0.33 28 C LOOKB C

20 48 H01 0.32 0.4 15 C LOOKB C

20 51 H01 0.6 0.66 15 C 30C029Z N

20 52 H02 1.16 1.66 16 C LOOKB C

20 85 H01 0.81 0.41 10 C 30C018Z N

20 85 H03 0.58 0.52 10 C LOOKB C

20 88 H01 1.29 1.01 9

C 30C018Z N

21 26 H01 0.54 0.32 29 C 30C041Z N

21 26 H04 1.04 0.54 29 C 30C041Z C

21 31 H04 0.92 0.79 28 C 30C030Z C

21 35 H01 0.92 0.78 31 C 30C033Z C

21 41 H01 0.65 0.53 33 C 30C033Z N

21 48 H05 0.85 0.75 16 C LOOKB N

21 52 H01 0.79 0.81 15 C 30C028Z N

21 70 H03 1.05 1.14 20 C LOOKB N

Yes 21 78 H01 0.24 0.88 22 C 30C023Z N

21 84 H01 0.47 0.55 9

C 30C019Z N

21 88 H01 1.52 0.95 10 C 30C019Z C

21 89 H01 0.87 0.47 10 C LOOKB C

22 26 H01 0.83 0.68 28 C LOOKB C

22 35 H01 0.67 0.59 30 C LOOKB C

22 44 H01 0.77 0.61 32 C LOOKB C

23 83 H02 0.55 0.45 22 C 30C019Z N

24 66 H04 0.85 0.89 21 C 30C022Z N

24 72 H04 0.45 0.47 23 C LOOKB N

26 66 H02 1.58 1.24 21 C 30C022Z C

E57 27 64 H02 1.21 0.94 20 C LOOKB C

27 84 H01 0.26 0.41 9

C LOOKB C

28 24 C05 0.21 0.21 26 C 30C040Z N

28 65 H01 0.57 0.37 20 C 30C029Z C

29 24 H07 0.16 0.29 27 C 30C041Z N

29 60 H01 0.62 0.57 20 C LOOKB N

Yes 29 75 H01 0.37 0.38 23 C LOOKB C

30 80 H01 0.57 0.77 23 C 30C018Z C

30 82 H02 0.43 0.76 23 C LOOKB C

31 35 C06 0.3 0.25 31 C 30C033Z N

31 65 H01 1.05 0.76 21 C 30C028Z N

32 66 H02 0.4 0.44 21 C 30C022Z N

33 19 H04 0.27 0.25 24 C LOOKB N

33 66 H01 0.6 0.3 20 C 30C024Z C

34 35 H02 0.73 0.46 30 C 30C035Z N

36 62 H01 0.55 0.6 21 C 30C026Z C

36 69 H01 0.49 0.27 20 C LOOKB N

36 70 H01 0.89 0.88 21 C 30C024Z N

36 70 H02 1.44 0.73 21 C 30C024Z C

36 73 H02 1.96 1.74 67 C 30C025Z C

37 21 H06 0.31 0.48 27 C 30C036Z N

37 34 H02 0.9 0.98 31 C 30C034Z N

37 48 H01 0.35 0.29 16 C LOOKB N

37 53 H04 0.79 0.58 19 C LOOKB C

37 75 H01 0.48 0.41 23 C 30C024Z N

38 41 H01 0.42 0.63 32 C LOOKB N

38 52 H02 0.6 0.5 16 C 30C024Z C

38 56 H01 1.02 0.46 18 C LOOKB N

Yes 39 48 H02 0.68 0.62 16 C 30C025Z N

39 63 H01 1.25 1.11 21 C LOOKB C

41 50 H07 0.55 0.43 16 C 30C025Z N

42 58 H01 0.69 0.78 18 C 30C027Z N

43 65 H06 0.52 0.43 21 C LOOKB N

44 41 H01 0.58 0.78 32 C LOOKB C

44 59 H01 0.79 0.63 19 C 30C027Z N

44 59 H02 0.31 0.32 19 C 30C027Z N

45 59 C01 0.55 0.58 18 C 30C026Z N

E58 Steam Generator 4 Cycle 11 Cycle 10 Cycle11 Cycle 10 Confirmed, C or not tested, N Row Col Supt Volts Volts Ref.

Ref.

Plug?

1 83 H05 0.14 0.44 5

H 41H004Z N

2 12 H01 0.73 0.75 3

H 41H132Z N

2 16 H02 1.65 1.16 3

H LOOKB C

3 5

H01 0.43 0.01 142 H

LOOKB C

3 11 H01 0.93 1.23 141 H

41H133Z N

3 70 H07 0.33 0.8 6

H 41H008Z N

4 9

H01 1.24 1.25 141 H

41H132Z N

4 69 H01 0.91 0.76 5

H 41H007Z Yes 4

92 H01 0.95 0.45 1

H LOOKB C

4 92 H03 0.47 0.44 1

H LOOKB N

5 2

H01 1.9 1.74 153 H

41H133Z C

5 4

H01 0.31 0.2 141 H

LOOKB N

5 5

H01 0.78 0.48 142 H

41H133Z C

5 24 H01 0.93 0.75 3

H 41H008Z C

5 31 H01 1.67 1.81 3

H LOOKB C

5 31 H02 0.28 0.23 3

H 41H002Z N

5 32 H01 1.28 1.45 2

H 41H002Z 5

32 H04 1.19 0.83 2

H LOOKB 5

71 H01 0.87 0.55 6

H 41H006Z C

5 71 H02 0.86 0.98 6

H 41H006Z C

5 90 H02 0.31 0.33 2

H 41H004Z N

6 23 H01 1.3 1.49 3

H LOOKB C

6 72 H01 0.38 0.4 5

H 41H005Z N

6 73 H01 1.06 1.67 5

H LOOKB C

Yes 6

90 H02 0.67 0.68 1

H LOOKB C

7 41 H02 0.96 0.86 2

H LOOKB N

7 57 H01 0.71 0.52 141 H

41H133Z C

7 69 H02 0.3 0.23 6

H 41H008Z N

8 4

H01 0.55 0.61 141 H

41H132Z N

8 7

H05 0.39 0.24 141 H

LOOKB N

8 72 H01 0.8 0.69 5

H 41H005Z N

8 77 H01 0.87 0.67 5

H LOOKB C

9 5

H01 0.58 0.52 58 C

40C042Z N

9 49 H01 1.3 1.04 57 C

LOOKB C

9 53 H01 0.46 0.73 59 C

LOOKB C

9 64 H05 0.32 0.6 14 C

40C051Z 9

84 H03 1.09 0.69 12 C

40C012Z 10 5

H01 0.48 0.43 58 C

40C042Z N

10 15 H05 0.86 0.78 14 C

LOOKB C

10 16 H02 0.23 0.15 14 C

40C032Z N

10 34 H01 1.59 1.27 12 C

40C007Z C

E59 10 34 H02 0.45 0.35 12 C

LOOKB 10 37 H05 0.49 0.28 11 C

LOOKB C

10 51 H06 0.17 0.17 57 C

40C051Z N

10 68 H01 0.56 1.3 13 C

LOOKB C

10 69 H01 0.5 0.78 13 C

40C015Z C

10 70 H01 0.47 0.49 13 C

40C015Z C

10 92 H03 0.35 0.27 11 C

LOOKB N

11 53 H03 0.28 0.37 59 C

LOOKB C

11 58 H01 1.25 0.98 60 C

40C051Z C

11 59 H02 0.16 0.19 59 C

40C051Z N

11 62 H01 1.7 1.63 60 C

41H0163Z C

12 9

H01 1.25 1.24 57 C

40C042Z N

12 25 H05 0.39 0.29 13 C

LOOKB C

Yes 13 6

H01 0.77 0.79 58 C

40C042Z N

13 34 H05 0.61 1.7 12 C

LOOKB C

Yes 14 4

H01 0.67 0.65 58 C

40C042Z 14 59 H03 1.45 1.35 59 C

LOOKB N

15 19 H01 0.28 0.37 13 C

LOOKB C

15 69 H01 0.41 0.55 14 C

40C017Z N

15 76 H01 0.28 0.3 16 C

40C017Z N

15 88 H02 1.04 1.03 12 C

LOOKB C

16 9

H02 0.48 0.44 57 C

LOOKB C

16 60 H02 0.31 0.39 59 C

LOOKB N

16 65 H01 0.98 1.35 13 C

LOOKB C

16 66 H01 0.49 0.35 13 C

LOOKB N

16 67 H01 0.89 0.91 13 C

40C015Z N

17 26 H02 0.56 0.53 30 C

40C033Z N

17 48 H03 1.59 1.39 153 H

40C023Z C

18 9

H01 0.53 0.3 57 C

40C038Z C

18 11 H01 0.71 0.9 58 C

40C038Z N

18 57 H02 0.63 0.58 22 C

40C024Z N

18 57 H03 0.84 1.13 22 C

LOOKB C

19 7

H01 0.69 0.67 57 C

40C041Z C

19 12 H01 0.68 0.82 28 C

40C038Z N

19 15 C01 0.23 0.24 29 C

40C038Z N

19 86 H01 0.85 0.78 11 C

40C014Z N

20 58 H01 0.72 0.55 22 C

40C024Z N

20 59 H01 0.98 0.9 23 C

40C024Z C

20 59 H02 0.61 0.62 23 C

40C024Z N

20 64 H01 0.33 0.39 22 C

LOOKB N

20 85 H03 1.01 0.83 11 C

LOOKB C

21 47 H01 0.82 0.57 34 C

40C027Z N

21 63 H01 0.56 0.45 22 C

40C025Z N

22 16 H03 0.66 0.6 29 C

LOOKB N

22 18 H04 0.11 0.12 29 C

LOOKB

E60 22 25 H05 0.3 0.33 31 C

40C032Z 22 34 H05 0.52 0.36 33 C

40C026Z 22 56 H01 0.59 0.46 22 C

40C024Z C

22 79 H02 0.64 0.52 26 C

40C018Z N

22 86 H02 0.57 0.47 12 C

40C013Z N

23 11 H01 1.44 1.05 57 C

40C038Z C

23 24 H01 0.82 1.1 30 C

40C033Z C

23 84 H03 0.66 0.21 12 C

LOOKB N

24 10 H02 1.3 1.02 57 C

40C038Z 24 13 H02 0.41 0.4 29 C

LOOKB N

24 46 H02 0.69 0.41 34 C

40C026Z N

24 47 H02 0.64 0.22 35 C

40C026Z N

25 61 H01 1.39 0.72 23 C

40C025Z C

25 70 H06 0.19 0.18 24 C

40C017Z N

25 86 H01 0.65 0.47 11 C

40C014Z N

29 75 H01 0.39 0.37 26 C

40C019Z N

29 80 H03 0.19 0.13 27 C

LOOKB N

29 84 H01 1.34 1.12 11 C

LOOKB N

29 84 H02 0.69 0.7 11 C

40C013Z N

29 84 H07 0.28 0.24 11 C

40C013Z N

30 44 H01 0.57 0.35 34 C

40C026Z N

30 51 H01 0.44 0.38 15 C

LOOKB N

30 54 H03 0.96 1.22 17 C

LOOKB C

30 72 C05 0.4 0.31 24 C

40C018Z N

31 16 H03 0.38 0.35 29 C

40C031Z N

31 19 H01 0.65 0.73 29 C

40C031Z N

31 20 H01 1.65 1.44 29 C

40C031Z C

Yes 31 37 H03 0.29 0.37 33 C

40C027Z N

31 39 H02 1.65 1.1 32 C

40C027Z N

31 39 H03 0.58 0.91 32 C

40C027Z N

31 62 H06 0.34 0.43 22 C

40C025Z N

32 34 H02 0.47 1.14 33 C

LOOKB 32 45 H02 0.7 0.55 35 C

40C026Z N

33 37 H02 0.52 0.53 33 C

40C028Z N

33 55 H07 0.21 0.23 19 C

40C022Z N

33 69 H02 0.7 0.22 25 C

LOOKB C

34 21 H04 0.38 0.49 28 C

40C030Z C

34 75 H03 0.39 0.1 27 C

LOOKB N

35 51 H06 0.17 0.26 16 C

40C023Z C

35 61 H02 0.35 0.34 23 C

LOOKB N

36 56 H02 0.66 0.52 22 C

LOOKB N

36 68 H02 0.87 0.78 24 C

40C020Z C

36 77 H05 0.28 0.59 26 C

40C020Z N

Yes 37 22 H02 0.22 0.13 29 C

LOOKB N

37 30 H03 0.19 0.25 30 C

40C029Z N

E61 37 61 H02 0.56 0.66 23 C

LOOKB C

38 63 H03 0.37 0.24 23 C

LOOKB N

39 23 H01 0.2 0.15 28 C

40C030Z N

39 67 H03 0.28 0.72 25 C

40C021Z C

41 42 H04 0.21 0.18 34 C

40C029Z N

42 55 H01 1.03 1.05 21 C

LOOKB C

42 55 H02 0.36 0.23 21 C

LOOKB N

45 52 H06 0.18 0.47 16 C

40C023Z N

E62 Appendix B Voltage Growth vs BOC Voltage Sequoyah Unit 1 GL-95-05 End of Cycle 11 SG 1 Growth per EFPY

-1

-0.8

-0.6

-0.4

-0.2 0

0.2 0.4 0.6 0.8 0

0.5 1

1.5 2

BOC Volts Growth, Volts / EFPY

E63 SG 2 Growth per EFPY

-1

-0.8

-0.6

-0.4

-0.2 0

0.2 0.4 0.6 0.8 1

0 0.5 1

1.5 2

BOC Volts Growth, Volts / EFPY

E64 SG 3 Growth per EFPY

-0.8

-0.6

-0.4

-0.2 0

0.2 0.4 0.6 0.8 1

0 0.5 1

1.5 2

BOC Volts Growth, Volts / EFPY

E65 SG 4 Growth per EFPY

-1

-0.8

-0.6

-0.4

-0.2 0

0.2 0.4 0.6 0

0.5 1

1.5 2

BOC Volts Growth, Volts / EFPY

E66

E67