L-99-059, Cycle 11 Reactor Startup Physics Testing Rept. with

From kanterella
Jump to navigation Jump to search
Cycle 11 Reactor Startup Physics Testing Rept. with
ML17229B044
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 03/02/1999
From: Klein R, Stall J
FLORIDA POWER & LIGHT CO.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
L-99-059, L-99-59, NUDOCS 9903110413
Download: ML17229B044 (28)


Text

CATEGORY 1 y.

REGULATORY INFORMATION DISTRIBUTION SYSTEM (RIDS)

ACCESSION NBR:9903110413 DOC.DATE: 99/03/02 NOTARIZED: NO FACIL:50-389 St. Lucie Plant, Unit 2, Florida Power

& Light Co.

AUTH.NAY&.

AUTHOR AFFILIATION KLEIN,R.M.

Florida Power

& Light Co.

STALL,J'.A.

Florida Power

& Light Co.

RECIP.NAME RECIPIENT AFFILIATION DOCKET I 05000389

SUBJECT:

"St Lucie,Unit 2,Cycle 11 Reactor Startup Physics Testing Rept." With 990304 ltr.

DISTRIBUTION CODE:

IE26D COPIES RECEIVED:LTR 2 ENCL

[

SIEE: Z I TITLE: Startup Report/Refueling Report (per Tech Specs)

NOTES:

RECIPIENT ID, CODE/NAME PD2-3 PD INTERNAL: ACRS NRR/DSSA/SRXB/B EXTERNAL: NOAC COPIES LTTR ENCL 1

1 1

1 1

1 1

1 RECIPIENT ID CODE/NAME GLEAVES,W CSEE RGN2 FILE 01 NRC PDR COPIES LTTR ENCL 1

1 1.

1 1

1 1

1 NOTE TO ALL "RIDS" RECIPIENTS:

PLEASE HELP US TO REDUCE WASTE. TO HAVE YOUR NAME OR ORGANIZATION REMOVED FROM DISTRIBUTION LISTS OR REDUCE THE NUMBER OF COPIES RECEIVED BY YOU OR YOUR ORGANIZATION, CONTACT THE DOCUMENT CONTROI DESK (DCD)

ON EXTENSION 415-2083 TOTAL NUMBER OF COPIES REQUIRED:

LTTR 8

ENCL 8

Florida Power St Light Company,6351 S. Ocean Drive, Jensen Beach, FL 34957

@PI March 4, 1999 L-99-059 10 CFR 50.36 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555 Re:

St. Lucie Unit 2 Docket 50-389 P

i in R Pursuant to St. Lucie Unit 2 Technical Specification 6.9.1.1, the enclosed summary report ofplant startup and power escalation testing for Cycle 11 is hereby submitted.

Should you have any questions, please contact us.

Very truly yours, J. A. Stall Vice President St. Lucie Plant JAS/RLD II

Enclosure:

St. Lucie Unit 2, Cycle 11 Reactor Startup Physics Testing Report; March 2, 1999 CC:

Regional Administrator, Region II, USNRC Senior Resident Inspector, USNRC, St. Lucie Plant 9903ii0413 990302 PDR ADOCK 05000389' PDR an FPL Group company

~hurtle S'T<ARg'UgrP> XE'S'f"RE~Og<RX'

ST. LUCIE UNIT2, CYCLE 11 REACTOR STARTUP PHYSICS TESTING REPORT Author Ray M.

React ngineering, S

. Lucie Plant Date.2 z Reviewed Walter D. Mead Jr.

Reactor Engineering, St. Lucie Plant Date Reviewed Approved Carl G. O'Farrill S

ervisor ofP Fu Engineering C. Ashton Pell Reactor Engineering Supervisor, St. Lucie Plant Date

St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report Table ofContents Section Title Pa e

I II III IV V

VI VII VIII Introduction Cycle 11 Fuel Design CEA Drop Time Testing Approach to Criticality Zero Power Physics Testing Power Ascension Program Summary References 4

5 7

8 9

10 11 12 List ofFi ures Fi ure Title Pa e

Cycle 11 Core Loading Pattern Inverse Count Ratio Plot-Channel B Inverse Count Ratio Plot-Channel D Power Distribution - 25% Power Power Distribution - 50% Power Power Distribution - 98% Power 13 14 14 15 16 17

0 St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report Table ofContents cont List ofTables Table Title Pa e

1 2

Approach to Criticality CEA Group'Worth Summary 18 19

11

St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report I.

Introduction The purpose of this report is to provide a description of the fuel design and core load, and to summarize the startup testing performed at St. Lucie Unit 2 following the Cycle 11 refueling.

The Startup testing verifies key core and plant parameters are as predicted.

The major parts of this testing program include:

1)

Initial criticalityfollowingrefueling, 2)

Zero power physics testing, and 3)

Power ascension testing.

This Cycle 11 Startup Report is being submitted in accordance with Technical Specification 6.9.1.1 because:

A.

Fuel design changes were made, introducing the "Value Added" pellet, the Guardian Grid and consequently eliminating long lower end-caps The test data satisfied all acceptance criteria and demonstrated general conformance to predicted performance..

St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report II.

cle 11 Fuel Desi n The Cycle 11 reload consists entirely offuel manufactured by Asea Brown Boveri Combustion Engineering (ABB-CE). The 217 assemblies of the Cycle 11 core are comprised of fuel from four batches.

Ofthese, 64 are fresh batch N assemblies, 64 are once-burned batch M assemblies, 84 are twice-burned batch L assemblies and 5 are )hrice-burned batch K assemblies.

The Region N assemblies consist ofnon-gadolinia fuel rods (4.1 to 4.45 w/o UQ35 enriched) and Gadolinia (UOz -GDg 03 )'bearing fuel rods (Gadolinia burnable absorber fuel rods, 4 or 8 w/o gadolinia homogeneously dispersed in a 2.2 to 2.55 w/o UQ35 enriched carrier).

The mechanical design ofthe Region N fuel assemblies differs from Regions M, L and K in the followingways:

1) The bottom grid is the laser welded "Guardian" grid. The Guardian grid incorporates debris stopping features. The other fuel batches employ TIG welded lower grids.
2) The fuel rod lower endcaps were changed from the long lower endcap design to a shorter design which works with the new Guardian grid. This effectively shifted the active fuel 1.14 inches down relative to the other fuel assembly regions.
3) The upper pellet stack spacer disc which separates the top fuel pellet &om the upper plenum spring was deleted.
4) The Plenum spring design was modified to accommodate the longer plenum size.
5) The fuel rod pellet diameter was increased by 0.0005 inches, pellet dish volume decreased by 69%, and the pellet theoretical density was.increased

&om 95.25% to 95.4%.

6) The top spacer grid incorporates backup arches in all interior cells as opposed to only the peripheral cells ofprevious fuel assembly designs.
7) The upper end fitting flow and hold-down plates were slightly thickened'. The spring force was increased for the fuel assembly upper end fittingsprings PC/M 98016 adressed the mechanical, thermal hydraulic and neutronic impact of the region N fuel design changes.

Evaluations performed by FPL and ABB-CE found the operational impact of the fuel design changes to be acceptable.

There was no safety impact due to the fuel design changes.

Subsequent Low Power Physics, Power Ascension and Shape Annealing Factor (SAF) testing substantiated the conclusions ofthe evaluations.

St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report II.

cle 11 Fuel Desi n continued No fuel handling issues were noted due to the Region N fuel assembly upper end fitting changes mentioned above. The impact of the upper end fitting changes had been evaluated by FPL prior to the fuel receipt. This was accomplished by field testing an available Region N design upper end fittingwith a PSL 2 new fuel grapple.

The entire Cycle 11 core consists of debris resistant fuel (long lower end-cap or Guardian grid).

The Cycle 11 loading pattern is similar to Cycle 10.

Cycle 11 employs a low-leakage fuel management scheme'and is 90 degrees rotationally symmetric.

h The Cycle 11 core map is represented in Figure 1.

The assembly serial numbers and control element assembly (CEA) serial numbers are given for each core location.

St. Lucie Unit 2, Cycle 11 Startup Physics Testing Repor't III. CEA Dro Time Testin Following the core reload and prior to the approach to criticality, CEA drop time testing was performed.

The objective ofthis test is to measure the time ofinsertion from the fullywithdrawn position (upper electrical limit)to the 90% inserted position under hot, full flow conditions.

The average CEA drop time was found to be 2.29 seconds with maximum and minimum times of 2.92 seconds and 0.90

seconds, respectively. All drop times were within the 3.1 second maximum requirement of Technical Specification 3.1.3.4.

'In addition the CEA drop time distribution requirements for scram shape (average drop time <2.77 seconds and maximum drop time <3.07 seconds) specified in the reload PC/M 98016 (Reference 6) were satisfied.

St. Lucie Vnit2, Cycle 11 Startup Physics Testing Report IV. A roach to Criticali The approach to criticalityinvolved diluting from a sub-critical boron concentration of 1660 ppm to a predicted critical boron concentration of 1441 ppm.

Inverse Count Rate ratio (ICRR) plots were maintained during the dilution process using wide range channels B and D.

Refer to Figures 2 and 3 for ICRR information. Table 1 summarizes the dilution rates and times, as well as beginning and ending boron concentrations.

'nitial criticality for St. Lucie Unit 2, Cycle 11, was achieved on December 12, 1998 at 06:29 with CEA group 5 at 60 inches withdrawn and all other CEAs at the all-rods-out (ARO) position.

The actual critical concentration was observed to be 1473 ppm.

St.t ucie Unit 2, Cycle 11 Startup Physics Testing Report V.

Zero Power Ph sics Testin To ensure that the operating characteristics of the Cycle 11 core were consistent with the design predictions, the followingtests were performed:

1) Reactivity Computer Checkout;
2) AllRods Out Critical Boron Concentration;
3) Isothermal Temperature Coefficient Measurement; and
4) CEA Group Rod Worth Measurements.

Proper operation of the reactivity computer is ensured by performing the "Reactivity Computer Checkout". This part of the testing determines the appropriate testing range and checks that reactivity changes are being correctly calculated by the reactivity computer's internal algorithms.

The testing range is selected such that the signal to noise ratio is maximized and that testing is performed below the point of adding nuclear heat. The reactivity calculation is. checked by'erforming a positive and negative reactor period test through respective introduction ofa known amount ofpositive and negative reactivity. The results ofthe reactivity computer checkout were compared to the appropriate predictions supplied in the reload PC/M 98016 (Reference 6).

Satisfactory agreement was obtained.

The measurement of the all-rods-out (ARO) critical boron concentration was performed.

The measured value was 1524.9 ppm which compared favorably with the design value of 1491 ppm (Reference 2). This was within the acceptance limits of+ 100 PPM.

The measurement of the isothermal temperature coefficient was performed and the resulting moderator temperature coefficient (MTC) was derived.

The MTC was determined to be -1.630 pcm/'F which fell well within the acceptance criteria of + 2.0 pcm/'F. of the design MTC of

-1.938 pcm/'F (corrected).

This satisfies Unit 2 Technical Specification 3.1.1.4 which states that the MTC shall be less positive than 5.0 pcm/;F when reactor power is less than or equal to 70%

rated thermal power.

Rod worth measurements were performed using the rod swap methodology.

This method involves exchanging a reference group, which is.measured by the boration dilution technique, with each of the remaining test groups.

A comparison of the measured and design CEA reactivity worths is provided in Table 2.

The following acceptance criteria apply to the measurements made:

1)

The measured value of each test group, or supergroup measured, is within+15% or+100 pcm ofits corresponding design CEA worths, whichever is greater and, 2)

The measure worth of the reference group and the total worth for all the CEA groups measured is within+ 10% ofthe total design worth.

Allacceptance criteria were met.

0

St. I ucie Unit 2, ~cle 11 Startup Physics Testing Report VI. Power Ascension Pro ram During power ascension, the fixed incore detector system is utilized to verify that the core is loaded properly and there are no abnormalities occurring in various core parameters (core peaking factors, linear heat rate, and tilt) for power plateaus at 25%, 50%, and greater than 98%

rated thermal power.

A summary ofthe fluxmaps at the 25%, 50% and 98% power levels is provided in figures 4, 5 8c 6.

These flux maps are used for comparing the measured power distribution with the predicted power distribution. For the purposes of the power ascension, the acceptance criteria requires the RMS value ofthe power deviation be less than or equal to 5%. In addition, for the 25% and 98%

plateaus, the individual assembly powers should be within 10% of the predicted power (both) and the relative power density (RPD) should be within 0.1 RPD units of predicted for the 25%

power case. These criteria were satisfied.

A Shape Annealing Factor (reference

5) test was performed in conjunction with the power ascension (reference 3). This test was necessitated by the replacement of the Reactor Protection System Channel "D" the Linear Power Range Detector and the change in the active fuel stack height introduced with the Region N fuel. The measured Shape Annealing Factors were installed in the Linear Power Range Detector instrument circuits as required by the reload PC/M 98016 (Reference 6).

Additionally, calorimetric, nuclear, and delta T power calibrations were performed at each power plateau prior to advancing reactor power to the next higher level specified by procedure.

10

0 St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report VII. Summaru Compliance with the applicable Unit 2 Technical Specifications was satisfactory and all acceptance criteria were met.

11

St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report VIII.References 1)

"InitialCriticality," Pre-Operational Procedure 2-3200088 2)

"Reload Startup Physics Testing, " Pre-Operational Procedure 3200091 3)

"Reactor Engineering Power Ascension Program,"

Pre-Operational Procedure 3200092 4)

St. Lucie Unit 2 Technical Specifications.

5)

"Shape Annealing Factor Test," Pre-Operational Test Procedure 3200093 6)

St. Lucie Urit2 Cycle 11 Reload PC/M 898016 12

St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report FIGURE 1 CYCLE 11 CORE LOADINGPATTERN Y

X I

i M11 I

M27 N28 L74 101 M49 L95 N23 L42 63 M22 I

I I

I I

L66 M04 L65 N27 43 M52 N52 17 L07 M38 205 L02 N39 122 L86 N20 M45 55 N29 L59 N02 201 111 L91 N09 L50 73 NOS L78 N49 112 19 L20 M33

'M69 105 N45 L25 N62 32 75 L12 MOT K79 67 N43 L30 N55 63 18 L35 M60 M56 110 W

V

~

T S

I I

I I

I I

P M

K H

I I

I I

I I

I I

I I

I I

I L41 L97 L76 L47

-21 I

I I

I I

I I

I I

I I

-'r'-'-i-'-'-18 I

I h

I M24 M48 N18 M26 M10 L84 10 N15 28 L62 L04 N35 23 M35 L06 N40 M54 N26 200 34 15 L11 N48 L22 N04 L93 4

78 N42 114 N30 L88 202 I

I

'- 17 I

I- ~ - ~- 16 I

I M62 118 L61 N14 L68 8

M06 L27 M32 L80 N10 29 119 107 N54 113 M58 K78 N56 M68 N34 L52 51 5

N06 M44 M01 115 L55 M39 203 N57 L73 M41 M55 M59 33 204 104 L34 N36 M21 100 15

-'-'-14

-'13

-'-'-12

-'1

-'-'-10

-'-'-'- 8' L43 L71 M81 21 M63 M83 L57 N63 L31 6

N16 25 N46 L01 1

L94 N53 30 M66 L13 M37 M50 206 K73 M65 N64 K80 M08 70 44 60 L75 N44 L08 N24 72 13 M64 M82 L70 N60 L24 109 116 L72 M42 207 N61 L54 M40 M70 M34 52 208 108 L21 N41 hl28 121 F

E 0

C 'B A

M02 N07 L53 N33 71 16 M67 N58 14 K77 N59 M57 N47 L79 64 9

N01 M51 M12 12

-'"'-'- 6 L69 N21 120 L60 N11 L81 20 M31 102 M05 L28 M61 L51 31 103 N12 41 L90 N22 L83 7

-'-'-'- 5 L89 N31 209 L92 N08 76 L23 N38 27 L10 N37 L33 N03 L58 22 117 N32 L64 4

210 L63 N17 M53 3

L85 M09 N51 74 M25 L05 N13 69 M36 L03 N50 M46 N19 211 79 M47 N25 M23 M03 L67 26 L87 3

L46 L77 L96 L40 Assembly Serial ¹ XXX Insert Serial ¹

¹¹ 13

St. Lucie Unit 2, Cycle il Startup Physics Testing Report FIGLRE2. WIDERANGE CHANNELB BORON DILUTION 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

1000 2000 3000 4000 5000,

6000 7000 8000 OAu.OII$ DILUTCD FIGURE3. WIDERANGECHAN%LD BORON DILUTION 0.9 0.8 0.7 0.6 K 0.5 5

0.4 0.3 0.2 0.1

.0 1000 2000 3000 4000 5000 8000 7000 8000 OALLONS OILUTKD 14

0

St. Lucie Unit 2, Cycle 11, Startup Physics Testing Report Figure 4 POWER DISTRIBUTIONCOMPARISON WITHDESIGN -25% POWER Uhg

$400$ urtd:

$)CACOIC OODTD

)O 7)DSNJkM I PDWW LDTO

$471 CCACDTOon,7$ $,=,'.!.

Jxtonto LAlttH'";',]

eorm Conc. !Till0

$)cslgn:

~

0 p

I t

J 0

4 l)T 1$

11$

IM

~SN DSN DSID MN

~SN OSU 0JIC tSIT AN$

44ll 4)to 4117 7

I IQ

)$ 10 LIN 4451 IQ 410 4$ 1ANT IND IAN 4105

)I

$$0 JS7 4 Alt I

)SN 1$)t~41$

10

)$00

)SQ 4170 JN 1410 IJM44)l IN 1170 LMD44)t 1410 ISQ IN 1$ 'N 1411 4417 Nl

~JN

~AQ 4141 MT ISN ISQ 4411 OAN

~DN 4NC A

IM Uft 140$414t 17$

I.QD Llol44Q ltf OID O$

441$

Itl IJTD 1$)l4Jkl ltl LIOI Un 4451 MD Ult

)SIC 4JDC Nt 141 ~

Ult44Q 1450 IJOS 441$

Mllln IAN44Q NI IJID ISOI 441$

MS 14)0 11104Nt

)M IJSD ISO44Q IQ IJ50 IJ7A4NA IQ

)JIO

)SN44N Ml ATD ASS 4)OS AN4 I'8 LQD L)Q44Q ln UTD LITC4450 Itt IJN 1$1T 4477

)$$

SNN44N

)n

)$00

)SN4DN IM IDN IIIO4N$

ln IUD IAIDMN 171 IJCD IDM 41OI ln)lit LMC 441$

IN SN4AN Mt IJln Ult41)1 LMO Un44Q MT

)$50 Llll 4JQ MC MS 47D AID 4110 SM

)ND LDN4DN MS ISN ISN44N 0ND Ml U)4 UNONI M4 USD L)N

~DQ LOJN JIC

~DIC

)$7 INO

)$ 71

~ADI QCU>>

LL!l ODN QS ISN IJot

~lnl IQ 1410

)NI

~Aol I

~DN 7

I Ml

)AN UOD OJIO MI LQO INC

~DM MI LQD LLTC

~1Q MS Uto LN7

~41$

t 001$

11$

1510 1$)tMIS Mi

$50

~1Q Ml Uto INT

~11$

la IJN LQS

~JQ Qt IJN UDI

~All Loni LNt

~All QT ISN ISQ ONI I

~JQ 17MN IQ IJN ISQ 0DIS IQ USD 1417 Ql IJN 1404 ONA Qt

)NC Llol DJM Qt l&0 1$n

~1Q Ql ND

~JQ QT IND UOT

~41$

QS IND 1417

~4)$

I

~41$

IQ Uto 1$ Tl

~Alt Qi IDN IDDS

~41$

Ql UOS

~AOS Ilt ISN

)SN

~Nl 11$

0411 l)$

LIN

LINMN, Ill Ult

)IN LNO 11$

LIN LIN 44N IQ JIC OAM Ill ISN 1517

~AQ IN LAN

~4M Nl IJN Stl

~NO NT 1410 Ult

~11$

NS UN IJN

~4N loo LIN IN)

~JN Nl IJnl IJN

~4$0 0Jl'I

)SN INC ON)

Nt OJQ ISIO UM NOC ISSD Lilt ONI 7

IND ISI5 OA)$

INC INt OJQ IJN UDS 01)5 Tl LMD LQC ONI JSD

$$t

~AQ 77 IND IDI7 CAN OJQ ISN UII

~JQ I

IJN litt 7I JID

$11

~NS Tl 1410 lANtMN ISN UnMN n

LIN LINMN IIOI INI

~1M

)SN UDI 0400

)AID INO

~JN 1450 IN7 DNS 7

ISN IS)$

0417 410 DQ ONT SN 17 IUKO I

AC4 477 0AQ LMD 1ltl OAM ISIO

)JNMM JN JN 04)0 ISN IJOlt 0411 I 15D

)JN 0JQ I

ISN Un ODIO

$ 70 OAIC 1$'N Ull 4401 Lilt LQt

~)KO ISLD ISN

~NI USD 1471 OAN ION INT DACI

$)

L)IO LMI44N 1)N lln 4141 IJN 1$1'I CDQ JN

~100 I

1110 UIC 0401 IDN INI 040$

1410 110$

~D05 JN4DN I

IJN 1$ )744lt LMD LQO41M

)JN IJCS AJQ 41)0 ISN ISN 441$

)JID IJTO 411C ION

)AN41N IS%I ONI I)4N UN4)N ISIC ISIS 4145 INO LNt 440$

ISN IJIC44M 17 IJSC LITI4N) ll LQD Ull 4NC AN AQ44Q Lilt IJCT4NS I

1410 UQ 411$

ISN

IJM44M, 17 1410 ISlt ll 1470 IDN41M 1$

L)OI 1$ $)44Q 4Jlt 4110 Q

JTD ACO44N Q

JQ 411$

IJNtin)

I 4407 4$ 1 4417 I

17 4407 0JIC 440I CADI RMS Deviation: 1.63/

lh0 07cof0 IMItcoDhCVMCOIN opof4140 Pcf Appcholf ~, WNo otvINNO chDIDo Pt Iccc PNO of DOPN ct OJTN Oho ONC\\ OW fttnNCITICTIN CA 0d,) 4 ptntflht0 NON $$ NIOOl pCTCCIO pDWCfIC51 )DNCNIS ONllgOIC pOWCf 0CC tfNIDCI IC51 PftgfNTL El 15

St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report Figure 5 POWER DISTRIBUTIONCOMPARISON WITHDESIGN 50% POWER

$4080IDOATI ddACOIC

$>>tft>>

t>>$ IQO~

Den>>I LIT>>l At>>7 I"It h>> 05 dlrlnConc 1st "tti Osffttl

',ttt,~(I

',]let Power SSISCITKNon Comptftson tthh 270$ 25$ 1 8

~

8 5

8

~

8 C

117 ll 11$

8$ 10 MCO Cl'5 MQ 40>>

4110 40>>

ll CQD CQI 40CI f

I 41Q IQAlt AQ4NI Q

JID 45l 4010 N

IJOD UQ 4010 UN 1$1$

4015 KIT

~NO

~JQ 4D12

~450

~ACC4JN CSIO Ott>>

ODIS ASO ISN KISS40>>

102 INO 4ACS I

ISN ISIC Ult IJ II 4011 50 IJN Ull41ll QC ID>>

14Q 4021

~$1 4DIT I

4017 QI ISIO 241240ll 51 LQO LQIDNI QD ISN ISQ 425$

Qt INO IDI>>4NA ltt IJIO IN54NS QT ID>>

UTT OACI QC IND lÃl 4NC Ql INO UN 400C Ql ISN ISN 4AIN LI>>

UQ 402$

IQ LQD Ul14NI Ill ATD 0$14DN 17$

LQD 1$ $$

415K 178 1$>>

IJQ40Q 177 1400 1407 4011 15 1210 Uls

~NI Ill 1010 UOTMQ I'5 L170 1$>>MN 171 IAN I>>7

~ACI Ill LIIO LNT

~DCI 170

$10 JID Nt IJ>>

1$07 4AOt Qt LQD Llll4NI 1stisa ISIS4NS IC5 4$0 All 4AQC lll IAI'Io ID>>40Q Nl IAID INC 400C Ql 70 70 0150 ill ISIO IJOI OAKI QO USD IJll

~157 Qt IS>>

1$ 7t

~Ahl IN 0TC CDN 1$ T 1$>>

ISKI

~110 QC Litt LIQ

~DIK 155 ISN IJth OADI ISA J70 Slt 0D01 Ql 1000 IDI~

~DKI 1$ 1 AIO AQ 4001 QOJa 40Q la UN UIO

~010 1>>

1070 14SCOlol Ilt LQD LNT SNS IAC ISCO sill 8010 l>>

IJIO 1001

~AN

~417 l>>

ISN 1$ltIltlt la 0$2

~All ill 10>>

UCI

~DI~

Ia 1$>>

Lla>>57 Qt IJN Ull

~41l QT ISN IJIC

~Dll Ql 1$>>

INS

~11$

IQ SN Slt 0DII Ql LQD 141>>

~1N Ql IJCO IJTCONl 110 IS>>

1077 OJQ Qt IAOD IDDT

~01$

Qt IJID 1220 DNO IQ 170 JN OAQ QO

~Jlt Ql IJCO ISQ

~JQ Qt 14>>

1020tlhl IN Ltlo 101$

~11$

Ql IJN Uls

~1Q

~Nl QS 14>>

I>>8

~AQ 85 ID>>

IDIS

~01$

IDT ISQ

~J15 IQ 1$5 Olh1 IOC

$70 47C>>IN Ql IDN UOT 801$

5$

Uls UQ

~DQ Qt Uls Ill1

~Alt 10$

Uls

'IJQ

~NS I'5 UN 1411 OAQ 0411 QT 70 8000 1$>>

ISQ

~Nl N

Q 415$

Ult Ul1 CQS I

Ua01ll I

ISN ISQ 10>>

ICIA 011C IDN IDDT

~Alit Tt LNC00ll 70LI>>

1.1>>

ONT JN 0$1

~Jlt 77Ule IIOI t018 Mlt IND UQ

~1Q 7$

ISN 1$$$

~N5 I

10>>

INS

~JQ 0007 12>>

~1N 72 1$$0 UQ OAK5 IAN U57

~DIS 71UN LNT

~DQ 10I>>0 INC MDI ISN IJIA

~11$

ISN ISN

~NO 1$>>

ISQ

~115 Ja JQ 4AM 4NS IllD All4NI UN U'I~

OAOI ISID IJQ OAKYI t

OAOI 1510 tJltONI I

21>>

1$>>l

~DN I

ISN04N JN

~'5 MIN ISN IJlt

~Al'I ua Lia40>>

t 1510 IJ>>ONI 1$8l 1$1$

400$

I>>0 ID>>

4151 Iu>>

12SS 401$

ISN illI 4011 ISN IJDT 4157 14 10 1407

~AK5 IJN INT ODCI 1270 UQ

~DN UN IN7

~00$

Llls LIN 400C Sle 1st 4215 I

LNI 1407 4017 I.QD LIQ4DQ tIS>>

127040Q 1270 1412 4011 INO IACC4NS IS>>0 IJN OAOI I

10>>

INT

~ACI 1$>>

uls

~NS Uls INl 4AOI ISN INS40Q I

U>>0 Ul14NI ll LQD Ull4NI I4007 IIN LQC4NC Q

10>>

4251 I

1$>>

141040N ISN sill4NC It LQD LIQ4DQ 5ISN Q4NI ltIJIO ISIC4NC ls 1$

IJ>>

LQO

'170 ISS$

4010 4NS ll

~70 5

AN 4010 Q

050 Jll40Q 70tMsl INO 1210MCI 470lll4NI RMS DdVldtlOn: 1.J9k I

Sh 4AK5 40>>

NK5 4AK5 She OICof0 nlilCDon 07>>SIem N ODCfNKO hef DAIDCIKJKI,hhm oct>>noh shot45 50 Ns0 5>>n of0otla to DDNDno IIWOIha fcot>> emems IÃ0 f,l8 peftollne5 N CN 40 >>VIMpetelm powtfIDQpnht>>10 oofKlgIhe powef KICeh>>on test prottfsnc 16

St. Iucie Unit 2, Cycle 11 Startup Physics Testing Report Figure 6 POWER DISTRIBUTIONCOMPARISON WITHDESIGN -98% POWER Una nkasarcd:

DCJCDN Secrcc N).ttt) 1100 Smenec 40445tltyi; ',

Sccsncsnc DUS~"'c'esign:

1st t)tt 1)OOU; et)SAAA1I'"Le power DIN)ttn4)oh colllpNtlonyhal DeNtpt n

4 a

I n

4 IIt ll US M)4 OSN 0410

~SN 4STC MTS 4AN 4AN 4DN N

M)I 4ANI 5

t I4DII Als ACI4AU 1$1 IJN IJDD 4)NO lt1 ISN Ucl44U IACD UNI44) I U

Act4llt I

ISN 44m Nt IAN ICU 4411 N

LUO IJTC 4404 c

ISN LIU44n IN ISN IJN4ml SCD All 4ANI Lite LISI 4DU Ut IDN lect

~ANI Lite IJDI 4411 IN ISN ISN 4ACC c

UC ISN IJU 4AN4 101

~Jcs

~JS)44U

)St IS' ISN44N US IAN IDU44U

~A50

~N) 44U IN 1450 IANS 441S IN ISN 1 Ale4JN

)05 MSO

~stt OJN IU U)0 IJII44N I44)I Ul LIN 1)0044N Ul ACI44U In IJN

)ill44N 111 ISN 44m 151Jis Ti 4AIN ln IJN

)Sic

~A4C

)TC ION

)ANMll US UN Lli)

~ADI ln

)DN ims

~Ael In ISN Lilt 4ADC itssn sn4DU Nt IJN 4JU lcl LUD Llcl44U lit IS)0 U)A44N IU IS)I

)SIC 4ANC lll 1$ 14 L)ll4)NI ND ISN L)$5

~AU LN JN

~Jl I Ut ISN ISU

~41$

USills u1 I 4DO)

UI ISle ISU4DN 151

)Am

)ACI4ml l)l Ael

~Dtl IN UOD

)DU ODOT Ict LIN LIN

~mc ics LUO USC

~AN NS UN LIU

~AU Nl IDIOI OAU N)

UN LNI

~Alt N)

INN MU ill LUD UNaln

)CO UCO LUT MCI Ut IUD LIN

~ANC UT ISN

~JN UC JC1 M45 lt IJ01

~40$

Ut UN IJU 0DU Ul IANO JU

~All UI UN)

IDUMl1 UC Leis utlMU US UN Ilnl

~415 I

4DDS Ul Ule

)lt)

~41$

Ul

)AN ISU

~ln Ul IJai UN

~AN IN ISN LU)

~Jlt lit UN LIN 44M UT

)N IMU Ul LND IDTSaml UI LU4 unSJU 04)I Ul ISN INI

~Alt IN lsn 1451

~DU JlAlt OOU SN IDN 1451

~lot NC Jleltl

~AII NS Llm un

~JU let UDO Isn't

~AU 10$

Lln L15)

F411 1st I

ODtt

)lie ISN 44N 5IJN IJ)C

~AN IDN ID)IMl)

ION All

~Alt IJN IDCS 4SIT Nce 1451Mst I

ION IDC)

~ANT lme IJN

~4U ISN LUC

~lit UN IN)

~405 JSD NI NNS I

IJIO IJN UN ID)I ONO Mst it LIN LIN MDC Lln 11$ 1MU TT ISN ISUMU

~DN IC SN Jtl

~Ant n

LUI SINMIC 1450 ISN

~ANC J14 Jn

~Am I

~ACI 1

ACI ODN LND uc1 DANI ISN UU 44CI L)14 u1 )

4ANI Uls USC

~Aet I

LXO lit)

OD0$

lie Att

~All IJDD ISN

~AOS 1

IDIO u1 I 4ANI IJN LIN4lal Isle I st4AN ILIN LUC44N I)lit LIlc440I IAN IDU

~DU ula unMN IAN IAN

~ACI Llle UN4mt ACO JTI4ln I

LNO 4JU lln LIN44ll IS)0 IJle44N um'JIC 4)IN IJlt IDU4AU I

IACI 141$Msl

)Jlt ISN44N lt lms Lml 4401 1see IJU 4AIU I

UU4ml 5

ATOI44U ASD AC) 4411 UIlls LUS4DU IDN UNS

. 4415 IISN IJN4llc LIN l)N 44DC lt Lite LIU4)m U

IJN

)ST) 4ANS lt ISN IJN44)0 IC I)CD IACI44) I 1$UN Lml4ml N

44U U

JDI 4514JU N

LUD IJll 4411 Scs JU4)NI t

IJN Jcs IJN Jct

44N, 4401 4$0 ACD4JN RMS Devlatlon:

1.25'A

$10 JN IT J'n 4401 MN I

slell 4NC 4DN tna mcor0 oetecaon system N onerame oer Dooencsx t, nato aevuaon snoam os Ns 0 man or cham Io as@, ana meet me reqeremems a DA I 4 snntormea a me sa ena os per ceca power tnt pcmewe meme me power acean smn test pmefmh, 17

0 I

St. Iucie Unit 2, Cycle 11 Startup Physics Testing Report Table 1 Approach.to Criticality DilutionRate 132 gpm 88 gpm 44 gpm Initial Boron Concentration 1660 1591 1491 Final Boron Concentration 1591 1491 1473 DilutionTime (minutes)

~ 21 70 75 18

0 0

St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report Table 2 CEA Group Worth Summary CEA Group Reference Group B 1&2 3,4&5 Total Measured Worth (pcm) 2140.69

~

1427.65 1724.48 1762 7054.84 Design

  • Worth (pcm) 2070.00 1417 1691 1712 6890 Percent Difference

-3.30

-0.75

-1.94

-2.84

-2.34

  • Reference 2 Percent difference = (Design-Measured)/(Measured)
  • 100 19

0 a,

}

l