L-96-265, Startup Physics Testing Rept

From kanterella
Jump to navigation Jump to search
Startup Physics Testing Rept
ML17229A086
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 10/18/1996
From: Klein R, Mead W, Ofarrill C
FLORIDA POWER & LIGHT CO.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
L-96-265, NUDOCS 9610240215
Download: ML17229A086 (23)


Text

CATEGORY 1 REGULAT INFORMATION DISTRIBUTIONtSTEM (RIDE)

V ACCESSION NBR:9610240215 DOC.DATE: 96/10/18 NOTARIZED:

NO FACIL:50-335 St. Lucie Plant, Unit 1, Florida Power 6 Light Co.

AUTH.NAME AUTHOR AFFILIATION MEAD,W.D.

Florida Power 6 Light Co.

KLEIN,R.M; Florida Power

& Light Co.

O'FARRILL,C.G.

Florida Power 6 Light Co.

RECIP.NAME RECIPIENT AFFILIATION DOCKET t 05000335

SUBJECT:

"Startup Physics Testing Rept." W/961018 ltr.

DISTRIBUTION CODE:

A001D COPIES RECEIVED:LTR ENCL SIZE:

TITLE: OR Submittal: General Distribution NOTES:

RECIPIENT ID CODE/NAME PD2-3 LA WIENSFL.

COPIES LTTR ENCL 1

1 1

1 RECIPIENT ID CODE/NAME PD2-3 PD COPIES LTTR ENCL 1

1 E

0 INTERNAL: ACRS NRR/DE/EMCB NRP/DSSA/SPLB NUDOCS-ABSTRACT EXTERNAL: NOAC 1

1 1

1 1

1 1

1 1

1 FILE CENTER~

RR/DRCH/QIC NRR/DSSA/SRXB OGC/HDS3 NRC PDR 1

1 1

1 1

1 1

0 1

1 D

NOTE TO ALL "RZDS" RECIPIENTS:

PLEASE HELP US TO REDUCE WASTE. TO HAVE YOUR NAME OR ORGANIZATION REMOVED FROM DISTRIBUTION LISTS OR REDUCE THE NUMBER OF COPIES RECEIVED BY YOU OR YOUR ORGANIZATION, CONTACT THE DOCUMENT CONTROL DESK (DCD)

ON EXTENSION 415-2083 TOTAL NUMBER OF COPIES REQUIRED:

LTTR 13 ENCL 12

y ~

~ S

pp Florida Power &Light Company, P.O. Box 128, Fort Pierce, FL 34954-0128 October 18, 1996 L-96-265 10 CFR 50.36 U.

S. Nuclear Regulatory Commission Attn:

Document Control Desk Washington, DC 20555 Re:

St. Lucie Unit 1 Docket 50-335 Pursuant to St. Lucie Unit 1.Technical Specification 6.9.1.1, the enclosed summary report of Cycle 14 plant startup and power escalation testing 'is hereby submitted.

Should you have any questions, please contact us.

Very truly yours, J.

A. Stall Vice President St. Lucie Plant JAS/RLD

Enclosure:

St. Lucie Unit 1, Cycle 14, Startup Physics Testing Report (Approved October 16, 1996) cc:

Stewart D. Ebneter, Regional Administrator, Region II, USNRC Senior Resident Inspector, USNRC, St. Lucie Plant 96f0240215

'rr61018 I

,PDR 'i ADDCK 05000335 P

PDR an FPL Group company

ST. LVCIEUNIT 1, CYCLE 14 STARTUP PHYSICS TESTING REPORT

~

~

St. Lucie Unit 1, Cycle 14 Startup Physics Testing Report Author Walter D. Mead, Jr.

Reactor Engineering, St. Lucie Plant Date Reviewed Ray M.

ein Reactor Engineering, St. Lucie Plant Date 0 /4 Approved Carl G. O'Farrill Reactor Engineering Supervisor St. Lucie Plant

~ ~

D P

'I h~

4 I

,l f

t

~,

~

~

St. Lucie Unit 1, Cycle 14 Startup Physics Testing Report Ta leof n ents

~Secti n

P~ae I

II III IV V

VI VII VIII Introduction Cycle 14 Fuel Design CEA Drop Time Testing Approach to Criticality Zero Power Physics Testing Power Ascension Program Summary References Li fFi ure F~i

~

1 2

3 4

5 6

9 10 11 12 13 14 Cycle 14 Core Loading Pattern Inverse Count Ratio Plot-Channel B Inverse Count Ratio Plot-Channel D Power Distribution - 25% Power Power Distribution - 50% Power Power Distribution - 98% Power 15 16 16 Cycle 14 Reload Sub-Batch ID Approach to Criticality CEA Group Worth Summary

St. Lucie Unit 1, Cycle 14 Startup Physics Testing Report I.

Introduction The purpose ofthis report is to provide a description ofthe fuel design and core load and to summarize the startup physics testing performed at St. Lucie Unit 1 followingthe cycle 14 refueling outage.

The Startup physics testing verifies that key core parameters are as predicted.

The major parts ofthis testing program include:

1) Initial criticalityfollowingrefueling,
2) Zero power physics testing, and
3) Power ascension testing.

This Cycle 14 Startup Report is being submitted in accordance with Technical Specification 6.9.1.1 because the significant number ofsteam generator tubes plugged during the refueling outage may have significantly altered the nuclear, thermal, or hydraulic performance ofthe unit.

However, the test data collected during startup and summarized in this report indicates that although key thermal-hydraulic parameters exhibited some changes there was no significant impact to the nuclear, thermal, or hydraulic performance ofthe unit.

II.

cle 4FuelDe i n The cycle 14 reload consists entirely offuel manufactured by Siemens Power Corporation (SPC).

The 217 assemblies ofthe cycle 14 core are comprised offuel from three batches.

Ofthese, 88 are fresh assemblies (batch T), 84 are once-burned assemblies (batch S) consisting of76 natural uranium blanket assemblies and 8 Vessel Fluence Reduction Assemblies (VFRAs), and 45 are twice-burned assemblies from batch R. Table 1 provides enrichment information for the cycle 14 reload sub-batches.

The entire cycle 14 fuel load, batches R, S, and T, consist ofthe debris resistant fuel assembly design. This design has long fuel rod lower end caps which provides protection against debris induced fretting in the lower end-fitting region.

The cycle 14 core map is represented in Figure 1. The assembly serial numbers and control element assembly (CEA) serial numbers are given for each core location. The fuel is arranged in a low leakage pattern with no significant differences from the cycle 13 loading pattern. Twenty four twice-irradiated batch R assemblies were placed on the core periphery with the VFRAs occupying the the corner positions ofeach dog-ear.

The remaining irradiated and fresh fuel was loaded inboard.

St. Lucie Unit 1, Cycle 14 Startup Physics Testing Report III.

EA Dro Time Testin Following the core reload and prior to the approach to criticality, CEA drop time testing was performed. The objective ofthis test is to measure the time ofinsertion from the fullywithdrawn position (upper electrical limit)to the 90% inserted position under hot, fullflowconditions. The average CEA drop time was found to be 2.21 seconds with maximum and minimum times of 2.39 seconds and 2.1 seconds, respectively. Alldrop times were within the requirements of technical specification 3.1.3.4 and the reload PC/M 054-196 (Reference 5).

IV. A roach to riticali The approach to criticalityinvolved diluting from a non-critical boron concentration of 1820 ppm to a predicted critical boron concentration of 1503 ppm. Inverse countrate ratio (ICRR) plots were maintained during the dilution process using wide range channels B and D. Refer to Figures 2 and 3 for ICRR information. Table 2 summarizes the dilution rates and times, as well as beginning and ending boron concentrations.

Initialcriticalityfor St. Lucie Unit 1, Cycle 14, was achieved on July 23, 1996 at 1722 with CEA group 7 at 60 inches withdrawn and all other CEAs at the all-rods-out (ARO) position. The actual critical concentration was observed to be 1476 ppm. A calculation ofpost-criticality conditions variance showed the actual critical conditions to be within 224 pcm ofpredicted.

This satisfied the criteria that predicted conditions should be within 1000 pcm ofthe observed condition.

V.

Zero P wer Ph ic Te tin To ensure that the operating charateristics ofthe cycle 14 core were consistent with the design predictions, the followingtests were performed:

1) Reactivity Computer Checkout,
2) Dual CEDM Symmetry Test,
3) AllRods Out Critical Boron Concentration,

St. Lucie Unit 1, Cycle 14 Startup Physics Testing Report and

4) Isothermal Temperature Coefficient Measurement,
5) CEA Group Rod Worth Measurements.

Proper operation of the reactivity computer was verified through the performance oftwo tests.

In the first, reactor power was elevated sufficiently high to ensure maximum sensitivity ofthe reactivity measuring system and at the same time preserve adequate margin to the point ofadding heat. The second test ascertains the response to a known value ofpositive or negative reactivity by measuring the values ofpositive or negative reactor periods that result. The results ofthe reactivity computer checkout were compared to the appropriate predictions supplied in the reload PC/M 056-194 (Reference 5). Satisfactory agreement was obtained.

Verification ofproper CEA latching is confirmed throught the use ofa CEA symmetry test for those groups which contain dual CEAs (shutdown banks AHAB). The prescribed acceptance criteria is that the reactivity measured for each dual CEA shall be within+15.0 pcm ofthe average reactivity measured for the entire group. There were no unlatched CEAs for either group.

The measurement ofthe all-rods-out (ARO) critical boron concentration was performed. The measured value was 1519 ppm which compared favorably with the design value of 1545 ppm.

This was within the acceptance limits of+ 100 ppm.

The measurement ofthe isothermal temperature coefficient was performed and the resulting moderator temperature coefficient (MTC) was obtained.

The MTC was determined to be 2.458 pcm/'F which fell well within the acceptance criteria of+ 2.0 pcm/'F ofthe design MTC of 2.716 pcm/'F (corrected).

This satisfies the Unit 1 Technical Specification which states that the MTC shall be less positive than 5.0 pcm/'F.

The final section ofinterest for zero power physics testing is in the measurement ofCEA group worths. Rod worth measurements were performed using the rod swap methodology.

This method involves exchanging the reference group, which is measured by the boration dilution technique, with each ofthe remaining test groups. A comparison ofthe measured and design CEA reactivity worths is provided in Table 3. The following acceptance criteria applies to the measurements made:

1) The measured value ofeach test group, or Supergroup measured, is within+15% or

+100 pcm ofits corresponding design CEA worths, whichever is greater;

and,
2) The measure worth ofthe reference group and the total worth for all the CEA groups measured is within+ 10% ofthe total design worth.

St. Lucie Unit 1, Cycle 14 Startup Physics Testing Report Allacceptance criteria were met.

VI. P wer A cen ion Pro ram During power ascension, the fixed incore detector system is utilized to verify that the core is loaded properly and that there are no abnormalities occuring in various core parameters (core peaking factors, linear heat rate, and tilt)for power plateaus at 25%, 50%, and greater than 98%

rated thermal power. A shape annealing factor (SAF) test was performed in conjunction with the power ascension.

This test was necessitated by the replacement ofthe "B"Linear Range nuclear instrument channel detector.

A summary ofthe fluxmaps at the 25%, 45% and 98% power levels is provided in Figures 4, 5 Ec 6. These fluxmaps are used for comparing the measured power distribution with the predicted power distribution. For the purposes ofthe power ascension, the acceptance criteria requires the RMS value ofthe power deviation be less than or equal to 5%. In addition, for the 25% and 98%

plateaus, the individual assembly powers should be within 10% ofthe predicted power (both) and the relative power density (RPD) should be within 0.1 RPD units ofpredicted for the 25%

power case. These criteria were satisfied.

When the unit reached 98% power, a calorimetric was performed in accordance with reference 6 for the purpose ofcalculating the RCS flowrate. The RCS flowrate was determined to have been reduced from 394,420 gpm (measured in cycle 13) to 374,674 gpm in cycle 14. This value of flowremains above the Technical Specification minimum of345,000 gpm.

Within seven effective fullpower days ofattaining the equilibrium value of 100% power, a hot fullpower (HFP) MTC test was performed by maintaining power constant and varying temperature.

The center CEA (7-1) was operated to permit compensation ofthe resulting reactivity changes.

The HFP MTC was measured to be -7.364 pcm/'F which was withinthe

+2.0 pcm/'F ofthe design value of-7.293 pcm/'F (corrected).

This test also verified compliance with Technical Specification 3.1.1.4 which requires the measured MTC be less negative than

-28.0 pcm/'F and less positive than+2.0 pcm/'F while thermal power is greater than 70%. The power coefficient was not measured.

VII. $ummary The test data collected during startup and summarized in this report indicates that although key thermal-hydraulic parameters exhibited some changes there was no significant impact to the

St. Lucio Unit 1, Cycle 14 Startup Physics Testing Report nuclear, thermal, or hydraulic performance ofthe unit. Compliance with the applicable Unit 1 Technical Specifications was satisfactory and all acceptance criteria were met.

VIII.References 1)

"InitialCriticality," Pre-Operational Procedure 1-3200088, Revision 9.

2)

"Reload Startup Physics Testing, " Pre-Operational Procedure 3200091, Revision 6.

3)

"Reactor Engineering Power Ascension Program,"

Pre-Operational Procedure 3200092, Revisions 9%10.

4)

St. Lucie Unit 1 Technical Specifications.

5)

St. Lucie Unit 1, Cycle 14 Fuel Reload PC/M 054-196.

6)

"RCS Flow Determination By Calorimetric Procedure, " St. Lucie Unit 1 Operating Procedure 1-0120051, Revision 16.

I St. Lucie Unit 1 Figure 1 Cycle 14 Core Loading Pattern T

S R

P N

M L

K J

H e

I I

I I

I I

I I

FR14 R46 R47 FR10 F

E a

b c

d a

b C

21 R30 S04 T16 102 S10 T18 105 T24 802 R37 20 R18 T02 137 T59 T30 92 S29 S12 302 832 T32 136 T67 T04 82 R20 G

19 R22 T25 201 S24 S47 139 S72 T70 107 S37 T80 93 S75 S46 138 S21 T10 204 R23 e

16 R40 T05 81 S23 R34 T81 T46 94 R14 T33 R15 T48 96 T58 R36 S17 T06 142 R32 S05 T89 S44 141 T62 S55 123 857 T75 R02 T76 S50 S54 127 841 140 T73 S08 16 see T38 143 S74 T49 84 852 S25 114 S63 T54 103 862 S28 113 860 T55 97 S69 T39 79 T12 FR16 a

b G

d R42 R43 T21 89 S13 T19 120 S34 S15 305 S31 T66 88 S40 T86 119 R08 T69 T29 R12 R03 T84 S65 T45 109 861 T57 99 R07 T78 F02 R10 R25 135 R09 T79 132 R06 T92 87 S67 T56 104 S64 T65 R04 R11 T40 T77 R05 T64 91 S39 T74 122 S35 S16 303 S30 T22 90 S14 T20 121 FR12 a

b C

CI R44 R41 12 11 10 FR11 a

b G

d T15 T31 83 S70 T47 131 S59 S27 100 S66 T52 110 S68 S26 98 S51 T53 112 S73 T36 80 T17 FR15 a

b C

S07 T83 S45 128 T63 S53 95 S49 T88 R01 T61 S58 S56 85 T68 S48 126 T82 S06 R31 T07 125 S18 R35 T71 T50 115 R16 T37 R13 T51 116 T85 R33 S20 T01 124 R39 R24 T09 203 S22 S42 130 S76 T87 106 838 T91 118 S71 843 129 S19 T23 205 R21 R19 T08 134 T60 T34 117 836 S11 304 S33 T35 133 T90 T03 101 R17 R38 801 T14 T13 108 S09 T27 111 T26 803 R29 FR09 R48 a

b C

R45 FR13 a

b C

d R38

~

A66eeee5y ¹ 102 m

In@eeet ¹

nverse Count Ratio Plot - Channel B Figure 2 1.0 Cb+ 150 Nlode 2 88 Qpm Cb+ 50 44 ~pm Cb 50 SeenfO dilutlen 1.0-0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 ~

0.2 0.2 0.1 0.1 0.0 0

1500 3000 4500 6000 7500 9000 10500 12000 13500 15000 16500 0.0 Page 10

nverse Cou atio Plot-Chan el D Figure 3 1.0 Cb+ t50 Mode 2 88 gpm I

Cb+ 50 44 Itpm Cb I

Cb 50 eecuf0 dilution 1.0 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 ~

0.2 0.2 0.1 0.1 0.0 0

1500

~3000

~4500

~6000

~7500 9000

~10500 12000 13500 15000 16500 ottone Diluted 0.0 Page 11

w

~

~

Flguro:

4 ST. LUCIE UNIT1, CYCLE 14 Startup Physics Testing Report Figure 4 Power Distribution - 25%

Page.

12 unl)

LSQ Moaourod:

tBEACON)

Source SPDQSOUT Power Locol 2$7 Exooouro 1.7 CEA Poeirlon I122 Boron Cone.

7480 Design:

P'C/)1454-'196 257+

5 122 147$

R

~

I 217 N80 0085 OAX6 SA R

II I

I

)IC rk300 a)97 aoo)

I.o k

K I

I

)Is 03 lk297 0.003 III 4

H I

114 OA8 OAOS DANS SA

)I3 IVI IVIS

.IA 212 2II OAT 09$

067$

0983 440$

4.7 4J ll0 I.)2 I.Ill ILT 20$

I.I2 I.lI)

NNT 207 099 0984 OAN6 OA 206 ik61 IL675 0.00$

0.7

)OS IVI IUI4 Akool

.IJ ISO 0)i 0314

~L)

X 193 OAl OA)3 4.00) 4.7 l79 IAO IS)8 4.00$

ALT 204 OA)

OA)3 ALOD) 4.1 l9l I,I I.IOSaais IA ITS I.IS I.)86 203 IAN I.o)6 4.006 aC

'9)

I.IS I.IS) lll 092 Lt)4 4ANI 202 ISC IA6$

LOO) 0.2 l90 I.I5 I.IS OAI I76 I.I6 I.I6 OAKN 00 lol IJS IJ4$

OAN) 0.2 I89 I.I6 I.I68 490$

4.7 Ils IJ6 IJ62 AklXQ 4.2 I.I9 I.)9 OAKN 0.0 ISS I.2 I.I93 NNT OA

)74 L96 0969 4AX8 4.9 l99 IJS IJ69 LOll 0.9 IST IJl IJ16 4ANC 4S ll)

IJl IJ)2 4402 4.2 l98 1.19 I.)9 OANO l86 IJ 1.193 NNT OA Ill lk96 a968 4AKO Itl IJC IJ49 aol I 0.9 ISSI.ll I.I69 OSOI O.l Ill IJC IJCI 4,00I l96 I96 I959 LOOI 0.1 I)4 I,IS I.ISI 4J ITO I.I6 I.IC) 4J l95 IA8 IAOS OAN)

IL2 l)3 I.I9 1.186 OAXN l69 at) 0924 4.004 l94 OA)

OA)l 4AN)

-O.T IS)

I.ll I.)0$

OSI)

I.I I44 I.I9 I.lo)

OAKVI 0

I ISI OA)

OA23 ALT l67 IA8 IAN6 0001 L4 l46 IVI IVI5 490$

~IA 8

IIS 0.297 aoo)

III IOI IU Ll97 LOO) 84 IU8 IUNS aoos

<<.6 l65 OAT 0475 4AN$

ALT 133 I.l)

I.ll) 0.017 IS II6 ISI L98$

Iko)S

)S 99I.I4 I.II2 092$

)S 82ISI 0983 0027 1.7 67 Ikl L67S ao)s 3.6

$2 a)2 IVI5 Leos IA l64 ISS 1459 4.009 Akt I49 IJS IJ49 LOOI Ll l)2 I.I9 I.I9 0.000 0.0 IIS IJ9 IJ69

00) I IA 98 IJl 1.19 OS)0 I.7 Sl IJS 1.24$Nul 66 IS9 IASSLLI) 2.9 5l I.I3 ISSCaoN 3.9

)7 OA4 OAllLoll L9 IC)

I.IS I.IS4

-OJ 14$

l.l6 I.169 AL08 I)I IJ I.)93 OANT 114 IJ) 1.2 I6 ALOOC 4S tlIJ 1.193 OANT OA

$0I.I8 I.l(4 LOI2 III I.ll I.IS I.T

$0 IJl I.IS) 0.031

)AI I.IS I.IOS IL042 3.7 24 OA4 OA13 ILOI1 L9 l62 I.ll I.IC)

SANT OA 147 IJT IJCI LOOC OS IL1 IJl IJ22 ALOI2 Lo 96 L96 0969 4AN9 Akt T9 IJT IJ62 OAKN OA I.IS I.I6 l.l 49 IL94 0924 0.016 I.T 3$

IJ2 1.186 IULN 23 1.13 ISIS OANl 3.7 l3 IU2 IUI4 aooC I.9 l4l I.IS I.ISS 4AN$

4,4 146 IJl IJ2 )

4AII)

Akt 129 1.16 1,114 4AII4

~1.2 Ill IS)

I4544.0)l

~)J 9SI.I6 I.lit44lt

.IA TS IJI l.2)I44 II 4.9 63 I.I9 I.ISS 0.00$

48 LI8 I.IC)

O.oil IA 34l.l)

I.ISI 1.2 22 I.I IS59 O.OII L7 ll 0.7 OA15 092$

3A l60 I.lI 1.22l ALOII Akt I45 IJ)

IJ42 ALOI)

Akt 12$

IJ IJ24 Ako)4

.)AI III IJ)

IJC) 4433

-2.1 94I.I9 IJ24 4434

.2.9 71 IJ)

IJ42 4.021

.I.T 62 IJl IJ1 14SI I 47 IJS IJCI OAII6 IJ 33I!9 I.169Loll IS 1)

IJt IJ49 094l L2 IIIS) 0984 0.036

)S IS9 I.I6 I.I79 4AII9

.IA l44 IJ IJ)4 4424

.1AI l27 I.II IJSI4S) I

~lS IIO 094 Loll4S) I JJ 93I.II I.I41 4431

.14 76 1.19 1.224 4431

~2.9 61 I,IC I.1 74 4414

.1.2 46 L96 096$

4AOS

)2I.lI LI93 O.0 IT IA 20 IJl I.I9'o)0 Io I.I6 I.II) 0.047

~.I IS)

IAU I 0$ 4 4.024

.14 143 IJ4 IJC) 4.013

.I.t l26 094 09TI ALO)I JJ l09 LTC 0.794 4.0N AS 91 093 OSTI4SII 1$IJ)

IJC) 4AN3 J.5 60ISl ISSI 4S)4 45 IJ)

IJ)2 4AII2

-IAI

)I I.22 IJI6 OAOI OJ ltIJ IJ69 Lo)I

)A 9

IAI) 0985 ao)s

)A Isl I.I6 I.I74 4414

-I.2 Ill I,I9 IJ)4

-29 I)S I.II I.I4)49) I

-2S IOS L94 097l4S)I JJ 9lLI 1.141 4441 J.T 74 I.IS l.124

&044 J.T

$9 I.IS I.179 44 09$

IL969 4.019

-)AI 30IJ l.l93 OANT IS IJI I.lt Ikolo I.T 8

I.IS I.II2'o)$

3S ls6 IJ IJ1 I, 4.01l

~IS l41 IJ)

IJ41

~1.7 l)4 I I9 IJ14 4434

~2.9 Iol IJ)

IJ63 4433

.2.7 90 I.)9 IJ24 4ALI4

.2.9 73 IJl IJ41

~OAO)

~)A 5$IJ IJll 492)

~IS 43 IJS IJC)4SI)

~IS 29l,ll I.I68 NN2 0.2 IT IJT IJ4$

)Loll I.T 7

IAII ik9$3 0.0)7 2.7 lssI.ll I.ISS 4SIS

~IJ 140 IJ IJl I49) I

.IS 123 I.IC I.)7949 I9

.IA 106 IS)

IAISI 4424

.1J

$9 I.IC I.174 ALOI~

.1.2 72 I.2 I.2)l 4.01 I

.IS

$7I.ll I.ISS Akols

~IJ 42 I.I6 IJ6 os 28 I.IS I.ls 0.000 os IC ISO IASS L012 lAI 6

OA9 LCTS 091$

L2 l$4 I.16 l.l6 OAXN 0.0 l)t IJC IJ61 4.2 lll 09$

0969 4SI9

-2.0 IOS I.ll IJ12 4AII) ll IJ6 IJ64

~0.004 4J I.I4 I.IC) 41 0.91 IL924 4ANI 27 I.I9 I.IS) 0007 OA IS I.II ISSC OAI14 2.2 5

OJl OSIS aoos I.6 lsl 1.15 1.15 NXN l38 I.I6 I.ICS 4ANS ALT Ill l,lt I.I93 4J lol IJl IJI6 4ANC 87I.lt 1.193 70 1.17 I.)69'oo) 0.1 55 I,IS I.ISI 40IJ I,186 O.OI4 l.l 26I,ll I.IOS OS I)

I.l ll 0.43 OAll OANT IA Is)

ISC I.OSS 0.001 0.2 I37 IJC IJ48 0.012 l20 I.I9 I.I9 OAXN OAI le)

IJS IJ69 OAIII 0.9 l.l9 I.lt OAXN 0.0 69 IJC IJ49 OS)I 0.9

$4 IAVI 1459Loll I.I ISOS 0.012 I.l Ls OA)

OA)3 0.407 IA ISI O.CS OA75 0.005 0.7 I)6 099 0983 OSOT ILT II9 I.ll I.Ill 0.00$

0.1 lol 099 atss LOIN OS SSI.I)

I.IL1Loll IS 68 099 0984 0406 OA

$3 OAS 067$

NK6 0.7 38 OJ2 Llll OAN6 1.9 134 488 LOSS 0.00$

5A I~

83 009 Iko!6 aoos 06 Ill 0.001 N

IAI leo OJ L)97 0003 RMS Oevlation:

1.84%

2 I

0)I OJI IU8 OJ97 L297 OAOS 0.013 OS 1 3 NNS 4.2 4J 12 Koln OK uellerre Orrllo Dona 9 Dirk

Figuro:

4 ST. LUCIE UNIT 1, CYCLE 14 Startup Physics Testing Roport Figure 5 Power Distribution - 45%

Pago:

unu Measured:

i BEACON Source IISPDQS.OUT Power Level t4$)4 Exposure Id.)3 CEA Position i122 eoron Conc.

1374 DesIgn:

',PC/M454.1 S6 Sore

'10

!122

~1N6 R

I R

II I

I L

K I

I

)

H I

217 0090 ROSS LOOI 4A 116 MS IN R)00 IU 0)8 a)02 IUO) 0AN6 4.002 4AN)

L004 ALT ALT IA f

6

)D Odl 092 4910 J.2 212 IL67 OAI7$

4ANS

.Id ill IL9$

IL97$

OAN) lk2 210 I.I 1.104 AL4 209 tk9$

0941 4ANI 4.1 I.l 1.10$

207 lk97 097$

206 lk67

~1.2 20$

IUI IU19

.2.9 2N OA)

OAST ALOOT

~1.1 20$

IAN IAN),

102 ISS 195$

201 Id4 Id)9 LOSI 0.1 100 I.IS I.ISI 4.001 ak) 199 Id6 Id)6 OAN4 198 197 I.ld Id4 I.ldl Id4 4ANI 'ANO 4,1 oa 196 195 IANC aS 195 IAN IAN44ON 194 OA2 OA2$

4.00$

~1.9 0

I t 135 OAI9 OAN6 IA IIS 031 odo)

OAKN

)S 1 0 1 031 0902 OANS 1S N

OA8 OAN6 LON IA Iso Odl 0919

.2.9 16$

OST lk67$

AkOOS

~1.2 150 09S 097$

OAN) 0.2 1$3 1.12 1.10$

OAIIS Id 116 I

0.981 OAI19 1.9 1.14 1.104 OAOC 3.2

$2 IAI2 0978 OAN) 4.1 67 iLT LCTS IL022 11 52 Od) 0.010

)0 193 OA2 OA2$

4ANS

~I.'

119 197 1984 4914

~rd 164 195 1956

-06 149 Id4 Idr OAKN 0.0 l)1 I.IS I.I8I 4ANI 4.1 11$

1.2S Id)4 0.024 I.9 98Id I.1dl 0919 IS

$ 1 1.21 1.2)9 OAI)I 2A 66 IA8 IA65 La)$

22 51 1.12 IAN) 0.0)7 39

)7 OA4 OA)1 LOI) 191 I.l 1.10$

L01$

IA Ild 1.11 I.1d) 4AI12

-IAI 163 1.14 1.1$ 1 4AIII

~ 1.0 14) 1.16 1.166 I)I 1.19 1.19 OAKN OAI II~

Idl Idl)

AL002 AL2 91ld 1,19 0.010 SO I.IS 1.165 ROIS Id 65 I.IT 1.147 0.023 2.0

$0Idl 1.119 LO)I

)S 1.14 I.IOS O.L)5 21 24 OA4 OA2S OAI12 2.1 191 1.17 I,ITS Akim@

Ill 092 092$

4.00S 4.9 162 I.IT 1.164 OAN6 0.$

141 IdC Id4$

4AKk) 4.2 130 096 R97$

ALOI5

~IS 113 1.22 1.226 ALOOC 96 096 09764916

~1.1 IdS 1.261 4ANI ALI I.ll 1.161 OAN9 OA 49 094 092$

OAII2 2$

3$

1,22 Iddl OALIS 21 2)

I.I2 IAN4 LO)6 I)lU) 0919 OANI

)9 190 1.14 I.)47 176 1.16 1.161 Akool ALI 161 1.1$

1.186 4S 144 ldl ldll 4.011 4.9 129 I.IT 1.179 112 IAN 1.0614 022

.21 95 1.16 1.184 4024

.2.1 7$ldl ldll 4.011 4.9 63 I.ld 1.186 4906 4$

I.ld 1,164 O.OIC

'A

$4 I,IS 1.151 lk029 21 IA8 1866 OA)4

)A 12 0.7 OATS Le)2 21 IS9 1.16 1.16$

Akeo) 175 1dS 1.261 4ANI ALI 160 Idl Id11 4.011 AL9 14$

)93 194249I) 4.9 12d ld Id)S III Id4 Id69

.29 Nld ld294 029

.)A 77Id) 1941 4022

~ 1,1 42Idl Id21 4911 jk9 47 IdT Id61 OAKYI 0.6 33 I.D 1.166 0.01 ~

1.2 21 Idd 1.24

).I II I92 IL978 0.011 4.1 1$$

1,19 1.19 LANO 09 174 096 0976 4916

.I.T 1$9 Idl I.IN 4814

~ 1.2 144 Id)

Id)949)9

.IS 121 I.l) 1.1$ 1 4821

~19 II0 0.9S 09S5 4ALIS J.l 9) 1.12 1.151 4)k) I 76 1.19 1.228 Ake)8 J.2 61 1.16 1.179 ALOI9

~IS 46 091 097S 4.00S 32ldl 1,19Leis 1.7 20Idl I.ldl 0929 IA Ie I.IS I.IOS 004$

).9 1$1 1.21 22)2 4.002 AL2 173 Id) 1d26 at006 as 154 IAN

!AN) ate)2

-2.1 143 Id)

Id69 4919

.IS 126 L94 0985 ALOIS 109 0.7$

OAI) 4933 41 92 095 0945 4lk)S J.T 7$Id)

Id49 4AL8 40 IAQ IAKI) 4ALI)

J.l ISldl IdlC48)6

~ld 3) ld2 Id12 O.OOS 0.1 19 Id9 Id5$

LO)2 25 9

281 lk981 0.019 1.9 1$6 1.19 1.19 L000 172 096 0975 4015

.IS 1STI.ll 1.179 142 ld Id)$

492$

.29 l)S 1.13 I.I5I4 01)

~1.9 108 0.9S L985 Aka)5 J.T 91 1.12 I,ISI 4.031

-28 14 1,19 1.229 ALL)9 J.3

$9 I.IS I.IN 44 096 0976 Ak016

~1.1 30ld 1,19 LOIO os ldIdl I.IS I OAI)9 8

I.)4 I.IOI

).2 ISS 1.16 1.166 ITI IdC Id6$

4AKkl 4.1 156 ldl ldll 4.011 4.9 141 Id) 1942 4922

.I.T 124 Id Id 29 Ake)9

.2A 107 Idd Id69 4929

.'29 1.19 I.'22$

J.2 7$Idl 194248)2

-TA ldld)l 4821

~IA 43 ldS Id61 4ANI 4.1 19 I ll

).16$

0.00$

L4 ITIdl Id)909)l 24 1ISI R97$

OAI)2

).2 1$ 4 1.14 1,15140) I ITO I.IC 1,144 ad 15$I.ll

).116 4916

.IA 140 Idl ldll4 el I Ake ID I.IT I.IN 401 ~

~1.2 106 IAN 1962 4.022

.1.1 1.16 1,179 4.019

~IS 72Idldll 4.021

.I.d 51I.'ll 1.1$ 64 016

.IA 42 1,16 1.161 ALOOI 4.1 2$

1,16 1,147 L013 1.1 16 IAN 1955 OAI)5 Id 6

O.T oSTS LO)1

).I 1$3 I.IS 1.1$ 2 ALOO) 4.2 169 092 IL928 4.00$

4.9 154 196 1.141 4.001 4.1 l)9 Id6 Id61 4ANI AkI 122 096 0976 4.016 I.T IOS Id)

Id 26 4ANC 0.96 0975 4.015

.IS 1)

IdC Id63 4AN) 4.2 56I.ll 1.164 OANC os 41 IL93 lk9)S 0802 0.2 27ld 1.179LOll I.T IS I.II IAN) 0.021

)A 5Lll L)1 ROIO 20 1$2 I.lI 1,105 ROOS 16$

I.IS 1.179 OANI OA 153 I.IS 1.141 LOO)

I)$

I.IC 1.16S aA 121 Id 1.19 lkele ILS 104 Idl Idl)4)N)

$7 1.19 1.19'OOO Le 1.16 1.166 55 I.IS 1.151 4ANI ALI 40Id 1.1$ 1 0.01$

IS I.D I.IOS OAVl) 1.2 14 OA)

OA21 0.00$

ILT 1$ 1 OA)

OA27

~1.1 167 IA8 IAN) 0007 0.6 152 IA6 136$

0.00S 0.5 1$ 7 IdS ld)9 0.011 lk9 110 1.19 I.ldl OAK8 103 1.21 Ide6 0914 I.I 1.19 I.IS!

OAN9 OS 69 IdS id) 0.010 OA

$4 IAIT ISSC OSI ~

Id 39I.l IAN4 OAII6 IS 2$

OA)

OA)$

OAN) os 166 odl 092 0.000 0.0 151 06$

0.67$

0.002 lk) 1$6 L99 IL97$

OAI12 1.2 119 1.12 1.104 OAN6 IA 102 099 0981M8 lke 1$

1.12 I,IOS O.0 IS Id 097S 0 012 1.2 S)

OS9 067$

LOI)

I.T

)8 Odl 0919 OANI Od 1$4 OAI9 0986 OAKN 4A Ill od 0902 0901 n

ALT 100 IU 0902 4AN)

ALT

$3 0)8 I

2086 0.004 IA RMS Deviation:

1.83%

4

)

OA8, IUI LOSS 0302 O.NN OAKN 4A 1IUI 0302 OANS

)S I

OA8 LOSS OAKN 4A 13 Key:

ox llwweea Oeetea Delta S Duk

Figuro:

4 ST. LUCIE UNIT 1, CYCLE 14 Startup Physics Testing Report Flguro 6 Power Distribution -98%

Pago:

unit p1~

Measured:

BEACON Source

',U1072888 0213 08%pie Power Lovel Exposure Ill CEA Poolrlon l138 Boron Cene.

~8102 Design:

PC/M4$4288 j100%

IAOIO 75

'1103 R

~

I R

IO I

I L

K I

I 217 O.I>>0 al>>0 NNO 00 216 115 214 0300 0300 OANI 0314 0314 IU>>

ALOI4 4314 aoeo A.T 4.7 0JI e

180 IV)0 IU26 Akeos

.13 193 OA)0 OA)7 4.007

.IA IT9 IA60 I)X'3 4JI 201 OA)0 OA)7 4.007

.IA 192 IA>>0

!.101 ALOII

~IN 178 1.170 1374 213 0320 0327

.2.2 IIO IAKN IA)67 4ANT ALT 191 1.110 1.111 4ANI ALI 177 09)0 a941 4AIII

~1.2 212 OA10 OATS ALOCS AKT 202 I)NO IAOTaoo 03 190 1.140 1,142 AL002 Ak)

IT6 I.I)0 1.161 0.009 o.s 111 a950 0357 4.007 ALT 201 1.210 1d II ukool AI 1$9 1.160 1.159 ILOOI 0.1 11$

IJTO 1356 OAII4 I.l 210 IAOO IAO6 4AN6 200 I.I40 I.IT 4AII0 4.9 ISS 1.190 1.185 OAN5 174 0990 a99 OANO OAI

?I8 a960 a98 4320

.1.1 199 1,240 1.159 4.019

.IS 1$1 ldoo 1,212 Akoll

.Ill 173 IJ)0 1.229 OANI 0.1 20$

1360 IANT 4A)7

~kS 198 I.1 40 1.17 4AOO

-)A 186 1.170 1,185 43 IS

.13 111 a910 IL989 4319

-1AI 207 a9)0 0951 4.021

.2.9 197 1,180 1312 uke)2

-2.7 185 1.130 1.16

-2.7 171 1340 1357 ukoI7

~IA 206 0350 lk676 Ako)6 196 IN0 IAO9 Ako)9

-23 184 IDIO 1.145 403$

3.2 170 1340 1.163

-2A) 205 IL)le IV)6 4316 195 1.040 IA6$

Ake)$

.1.7 Icl 1.140 1374 169 IL920 0.941 4.01) 194 OA20 OAlT 4AII7 AAI 182 IANO I.I0I uko)I

.1.9 16$

1.160 I 171 4311 4.9 0

I j ISI OA)0 OA)1 4.007

.IA 16T IAKN IAI67 4ANT ALT 166 0320 0317 4ANT

-2.2 165 lk670 OA76 AL006 4.9 164 IAOO IAO9 4AK>>

4.9 16) 1.140 1.145 Akoos 4A 162 1.170 1,16) 0.007 OA 161 IJOO 1.195'ces OA 160 Id)0 ldll 4.002 AL2 159 1.190 1.194 4.004 43 158 151 IA>>0 1.180 IA>>9 1.189 4.009 156 Idle IJ)1 4022

~13 155 1.110 1.195 4AO5

.2.1 ISI 1.150 1.161 ALOII

.IAl IS) 1.130 1.142 4.011

~1.1 151 IAOO IAOT aoos 03 151 a6$ 0 0.6TS 0.00$

a7 I)5 OA>>0 OAI9 0.000 Iko IIS IU20 IU14 OAN6 1.9 I0I 0320 0314 OAN6 18

$4 0.100 OA>>

OAI0 IILO 150 0960 0957aoo 0.3 l)l 1.100 IA07 O.OU 1.2 116 IA>>0 IL9S 0.010 2.0 99I.l)0 IAN6 OAOI k9 82 IAKKI 0357 OAO) 43 67 0.710 OATS NOS 48 52 0340 0321Ikel) 149 Idle ldll 4AN)

-0.2 132 1.170 1.17'ceo 00 11$

1310 1359 0.01 I a9 1.190 I.IT 1.7

$ 1 1340 id)I 0AO9

)8 66 IAOI IAOT OAO) 4AI 51 1.110 1367 0AO)

)1 OA50 OA)7 IL01) 28 14$

1.160 1.16 M00 O.o ISI 1.190 1.18$

aoos OA 114 Idle ldll4AN) 4.2 97 Idoe 1.18$

OA IS 1.2 80 1380 1.159Ikoll IJl 65 1,110 1.142 NQS

$0 IJIO 1.111 NO9 L2 36 1.140 1,101 rkal9

)A 24 aoso OA31aokl ke 141 1370 IJSTaol3 IAl 130 a980 a989 4.9 I IS Id)0 1319 OANI O.I 96 a980 099 ALOIO

.IAI T9 IJTO 1356aol ~

Ll 64 1.1$0 1.161 0.019 IJI 49 a950 a941 a009 0.9

)5 1.210 1.174 0.036 SAI I.II0 IA68 aoo)

IS IU40 0326 OAI14 146 Id)0 Id)1 Akoo) 4.2 119 1.190 1.189'col O.I 112 I)NO 4019

~13 9$

1.180 1.194 4314

.1.2 7$Id)0 Id)24AI)

.I)I 6) idee 1.195 OANS 48 1.190 1.163 OAOT

)4 1.180 1.145 OAOS 11 IA>>0 IA>>9 OA51

~.7 12 0.710 OA76 OAO4 145 1350 1352 4.002 4.1 12$

Id)0 1343 4313

.'l.l III 1340 137$

4318

.IA 94 1320 1343 4023

~18 TT 1330 1351 4AI12

.1.7 61 1320 ld)2 4AII2

~IAI 47 1310 1357 0313 IAI 3)

I 180 LI6 1.7 11 1360 ldllaoo II IAKN lk9$1aoo 43 144 Id)0 134)431)

~I.I 121 1.140 1.11)401)

.1.1 I IO IAllo 4029

.2.9 93 1.150 1.113 Ako)3 16 I3 10 1341

.2.7 61 1.180 1.189 46 a9$ 0 0.989 4AKI9

)2 1.210 1.1$ $

OAOS 1.1 20 ldoe I.IT O.olo 25 10I.l)0 1387 OAO) 14)

IJTO 1.178 Akoos 4.6 126 IAX>>

IAI9 4319

.1.9 109 0340 0349 Ako)9 92 Ik990 IAII9 4AI29

~2.9 7$

IJso IJTS 432$

~2.2 60 IA50 IA179 4AI29 4$

1320 Id)9 4AN9

-a7

)I 1320 IJll OANS ILT 19 1.290 1359 NOI 2A 9

Let o a98 O.IOO 3AI 141 1320 134)

.1.9 11$

I.lso 1.11) 4AI)3 10$

IAI19

.2.9 91Llso I.IT)

Ako)3 74I3 10 Ido)

Ako)3

.2.7 59 1.170 1.194 Ake)4

.2.1 44 0980 OPI 4.010

.IJl 1,200 1.1$5 a015 1.2 1$

1.190 1.11 0.020 1.7 8

I.)20 IA>>6 OAO4 3AI 141 13)0 13524)ro

~I.T 124 1320 1341 4323

.ID 107 IJ40 137$43I 8

.IA 90 I3 10 1341 4AIO

.2.7 7) 1320 13$ 1 4AO)

-kc 5$Idio Id)1 4022

.IJI 4) 1360 1356NNI I.ITO 1.159aoll 0.9 11 1340 ldlI 0.029 23 1

a990 a9$ 1 ao)3 140 I3 10 IJ)1 4022

~13 12) 1.180 1,194 4AI14

.1.2 106 IAKN IAI79 4019

.13 89Lllo I.'189 11 IDIO Id)2 Ako)2 MLS 57 1.180 1.19$

ALOIS 43 41 1.160 1.161 Akeo) ao 28 1.150 1.141 OA0$

0.7 16 IAI70 IAO7 OAOl kl 6

0.700 a67s ao)$

139 Idso 1356 uk006 4,5 121 IL980 039 uke le

~1.0 10$

IJ)0 IJ19 OANI 0.1 Tl 1.240 1351 aNO 0.2 56 1.110 1.16) 41 0940 a94I 4ANI ALI 21 1.190 I.IT I 0019 IA IS IA>>0 IANT ao)3 kl 5

IU)0 IU11 O.OIO 0.9 I)8 1.150 1.1$9 4AX>>

43 121 1.190 1.185 OAX5 OA 104 I3 10 IJll 4.'2 81 1.190 1.1$ $

OLO5 OA 70 1.160 1.16 0.000 0.0 55 I.Iso 134$

aoos OA 40 1,190 1.174aol6 ID 26 1,120 I.lol 0.019 I.T I~

OA40 OA)1 NXO 0.7 137 1320 ldllae>>

O.T 120 1.170 111 ao 10) 1370 1359 0.011 a9

'6 1,180 I.'11 OAI0 03 69IJ30 IdI1 0.018 Ls 54 1.060 IAO9 OAQI

)9 IA>>0 1368 0022 ke 25 OA40 OA)1 OAKO 0.7 136 Ik970 Ik9S7 0.01) 13 119 1.100 IA>>6 0.014 13 102 a990 a98 0.010 IAI 8$

1.100 IANT a013 1.2

$)

OA90 OA76 aol4

)AI IL3)0 IU)6 OANI 1.2 I)4 OA>>0 OA>>

OANO OO I~

Ol 117 0310 0314 4ANI O

~13 100 0310 IO 0314 4ANI 4

-13 RMS Deviation:

1.96%

0300 IV10 009 0314 0AII0 0.006 10.0 1.9 2

IU20 Lll4 0.006 1.9 I

0.090 0.09 OANO 0.0 14 Key.

x uiawie cence eeffo S Oxk

St. Lucie Unit 1, Cycle 14 Startup Physics Testing Report Table 1 Cycle 14 Reload Sub-Batch ID Sub-Batch Rl Sl S2 S3 S4 SS S6 S7 T3 T4 Number ofAssemblics 16 20 16 12 12 16 12 20 12 12 Enrichment 3.9 3.88 3.81 3.9 3.88 3.81 3.78 3.79 3.76 0.30 4.45 4.45 4.45 4.45 T5 36 4.45 15

St. Lucie Unit 1, Cycle 14 Startup Physics Testing Report Table 2 Approach to Critcality Dilution Rate 132 gpm 88 gpm 44 gpm InitialBoron Concentration NA 1818 1553 Final Boron Concentration 1553 1476 DilutionTime (minutes) 3 pumps not used 177 247 Table 3 CEA Group Worth Summary CKAGroup Reference Group A Measured Worth (pcm) 928.94 595.11 658.78 649.75 Design *Worth (pcm) 896.00 584.00 633.00 650.00 Percent Difference 3.55 1.87 3.91

-0.04 761.36 779.00

-2.32 B&6 749.00 788.00

-5.21 5&3 Total 859.30 5202.24 868.00 5198.00

-1.01 0.08

  • Reference 5.

Percent difference = (Measured-Design)/(Measured)

  • 100 16

F