L-88-190, Rev 1 to Turkey Point Plant Unit 3 Cycle XI Startup Rept

From kanterella
Jump to navigation Jump to search
Rev 1 to Turkey Point Plant Unit 3 Cycle XI Startup Rept
ML17345A137
Person / Time
Site: Turkey Point NextEra Energy icon.png
Issue date: 05/09/1988
From: Conway W, Hendrickson J, Marsh G
FLORIDA POWER & LIGHT CO.
To:
NRC OFFICE OF ADMINISTRATION & RESOURCES MANAGEMENT (ARM)
References
L-88-190, NUDOCS 8805160145
Download: ML17345A137 (50)


Text

0 N

ACCELERATED DISQBUTlON DEMONSTR'ION SYSTEM REGULATORY INFORMATION DISTRIBUTION SYSTEM (RIDS)

ACCESSION NBR:8805160145 DOC.DATE: 88/05/09 NOTARIZED: NO DOCKET FACIL:50-250 Turkey Point Plant, Unit 3, Florida Power and Light C 05000250 AUTH.NAME AUTHOR AFFILIATION HENDRICKSON,J.

Florida Power

& Light Co.

MARSH,G.L.

Florida Power

& Light Co.

CONWAY,W F.

Florida Power

& Light Co.

RECIP.NAME RECIPIENT AFFILIATION

SUBJECT:

Rev 1 to "Turkey Point Plant Unit 3 Cucle XI Startup Rept."

DISTRIBUTION CODE:

IE26D COPIES RECEIVED:LTR

( ENCL 1

SIZE:( r $ 2-TITLE: Startup Report/Refueling Report (per TecE Specs)

NOTES RECIPIENT ID CODE/NAME PD2-2 LA EDISON,G INTERNAL: ARM TECH ADV

/~S LRB12 G

02 RGN2 FILE 01 EXTERNAL: LPDR NSIC COPIES LTTR ENCL 1

0 2

2 1

1 1

1 1

1 1

1 1

1 1

1 RECIPIENT ID CODE/NAME PD2-2 PD NRR CHATTERTON NUDOCS-ABSTRACT RES/DRPS DEPY RGN2/DRSS/EPRPB NRC PDR COPIES LTTR ENCL 1

1 1

1 1

1 1

1 1

1 1

1 A

D R

A TOTAL NUMBER OF COPIES REQUIRED:

LTTR 15 ENCL 14

P. O. BOX 14000, JUNO BEACH, l'L 33408 0420 MAY 0 9 1988 L-88-190 U. S. Nuclear Regulatory Commission Attn:

Document Control Desk Washington, D.

C.

20555 Gentlemen:

Re:

Turkey Point Unit 3 Docket No. 50-250 Startu Ph sics Re ort In accordance with Technical Specification 6.9.1.a, attached is the remaining portion of the start-up physics test report.

The Unit 3 Cycle XI Start-Up Report documents the first time use of Hafnium Vessel Flux Depression Assemblies and their effect on core physics.

The other portion of this report was submitted by our letter, L-87-500, dated December 7,

1987.

Should you have any questions, please contact us.

Very truly yours, W. F.

Conwa Acting Group Vice President Nuclear Energy WFC/SDF/gp Attachment cc:

Dr. J. Nelson Grace, Regional Administrator, Region II, USNRC Senior Resident Inspector, USNRC, Turkey Point Plant SDF/008.SPR an FPL Group company

FLORIDAPOWER ANDLIGHTCOMPANY TURKEYPOINT PLANT UNIT3 CYCLE XI STARTUP REPORT REV. 1 8805160145 880509 PDR ADOCK 05000250 P

DCD

~

INTRODUCTION ~

This report contains the official summary of the Startup Physics Tests performed on Turkey Point Unit 3 at the beginning of Cycle XI. The testing program was conducted in accordance with Operating Procedure 0204.3, Initial Criticality After Refueling, and Operating Procedure 0204.5, Nuclear Design Check Tests During Startup Sequence AfterRefueling, and meets the minimum requirements ofANSVANS 19.6.1, Revision 0 (12-13-85), Startup Physics Tests for Pressurized Water Reactors.

Testing commenced on September 4, 1987, at 0750 and was completed on March 11, 1988 at 1400.

The Westinghouse Nuclear Design Report for Unit 3, Cycle XI, (WCAP-11454) is the design data from which deviations were measured for the purpose of verifying that acceptance criteria were met. The acceptance criteria stated are the more conservative ofANSVANS 19.6.1, Revision 0 or Operating Procedure 0204.5.

Allofthe tests included in this report meet their acceptance criteria.

The contents of this report provide the documentation required by Technical Specification 6.9.l.a.

Author:

J.P. Hendrickson Reactor Engineer Reviewed by:

G. L. Marsh Reactor Engineer Reviewed by:

J. L. Perr an actor Sup or Superviso Approved by:

VitoA. Kaminskas Reactor Supervisor PTN

~

TABLEOP CONTENTS ~

Acknowledgements Introduction Table ofContents 1.0 Unit3 Cycle XICore 1.1 Loading Pattern 1.2 Rod Pattern 1.3 Rod Drop Times 2.0 InitialCriticality 2.1 ICRR Vs. Dilution 3.0 Summary ofTests 3.1 Nuclear Heating 3.2 Reactivity Vs. Period 3.3 Boron Endpoint, Most Reactive Bank 3.4 Rod Worth (PPM), Most Reactive Bank 3.5 Rod Worth (PCM) 3.6 Temperature Coefficient 3.7 HZP Differential Boron Worth 4.0 Shutdown Margin 5.0 Power Distribution Maps 5.1 29% Flux Map 5.2 74% Flux Map 5.3 100% Flux Map 6.0 Critical Boron Concentration PAGE ii (Rev. I) iii (Rev. 1) 5 (Rev. 1) 10 (Rev. 1) 11 (Rev. 1) 11 (Rev. 1) 14 (Rev. 1) 15 16 17 (Rev. 1) 18 (Rev. 1) 19 (Rev. 1) 20 (Rev. 1)

  • Rl:1-md

~ ~ ~

-lll-(Rev. 1)

1.0 UNIT3 CYCLE XICORE This section presents the as-loaded core configuration (Figure 1); the Control and Shutdown Rod pattern (Figure 2); and the Rod Drop Times for all rods as measured in Procedure 3-PMI-028,3 RPI Hot Calibration, CRDM Stepping Test, and Rod Drop Test (Figure 3).

Allrods met the drop time limitof2.4 seconds as per Technical Specification 3.2.3.

  • Rl:1-md

0

DATE

~i -

.~ I REACTOR FUEL LOCATION TIMEYPOINT PLANT UNIT II.

3 CYCLE NO. XI FIGURE 1 Assy.

ID Insert IO Legend XX XX ZZ ZZZZ 15 14 13 12 11 10 6

5 4

3 2

1 AA-34 215Z AA-41 100Z CC-31 221Z CC"53 AA-45 202Z R-21 CC-02 BP17 NZ AA-36 CC"11 149Z R-10 AA-40 CC-28 88"32 106Z 227Z 153Z BB"27 CC"50 SB-23 114Z 226Z R-11 AA-28 HF-12 CC"16 185Z 88"56 R-17 192Z 88"16 R"12 AA-31 HF-25 N-27 CC-35 220Z AA-51 R-100 88-19 112Z 88-13 R"25 cc-a4 8P18 1HZ AA-23 HF-1T CC"18 CC-27 200Z 8"39 88-26 88-52 R"35 145Z CC-40 N"02 209Z 8"40 AA-37 CC-10 AA-56 193 Z 111Z CC-52 88"37 AA-44 223Z 182Z 107Z AA-33 CC-54 CC-12 R"20 186Z 214Z AA-53 105Z CC-22 R-33 N-30 147Z M-21 R-38 CC-05 BP17 9IQ 155Z 161Z R-42 88-48 AA-16 160Z 151Z CC-06 SP18 0Mz M-24 M-38 R"08 152Z CC-23 R-97 AA-24 Hf-24 AA-18 HF-04 CC-19 N"52 30 88-43 R-05 CC-36 SS-1 CC"46 M"11 BS-51 179 Z 8"35 208Z AA-46 BS-01 88-46 8-37 137Z R>>16 CC"47 188Z 88-07 109Z 88-17 222Z N-17 R-09 CC"34 88-55 2072 125Z 88"12 N"31 158Z R-26 88-a4 cc-48 Ba-sa R-22 219Z R-46 M-15 AA-50 CC-43 211 2 R-14 146Z CC-20 AA-26 J

212Z Hf-18 N"37 AA-17 H

26 HF-21 AA-05 Hf-08 CC-15 224Z 88"39 R-15 CC-44 Sa"06 190Z R-07 Ba-4s S

184Z CC-41 175Z 88-14 195Z CC"42 88-34 201 Z 108Z 88-09 CC-37 88-29 8-02 203Z R-43 CC-17 AA-04 0

1942 HF-19 CC"09 R"19 SB-42 14BZ 88-10 R-24 CC"07 8818 3QZ 110Z 113Z R-05 N-35 AA-30 159Z 154Z CC-01 SP18 2MZ M-20 88-41 8-44 156Z 8-18 AA-52 204Z CC-14 228Z CC-55 AA-47 216Z 8-04 cc-aa BP17 TQZ 88-03 8"32 88-18 101Z 88-08 R-29 CC-03 BP17 NZ AA-35 CC"49 CC-13 8"03 225Z 229Z AA-54 150Z AA-39 103Z 88-33 CC-56 M-22 205Z 199 Z 8-28 AA-42 CC-30 88-54 115Z 191Z 157Z AA-55 CC-25 197Z R-10 CC-39 17BZ 88-53 R-27 CC-32 217Z AA-11 AA-49 R-96 CC-45 213Z N-41 52 AA-06 CC-33 BH5 218Z R<1 N-44 88-36 8-45 105Z CC-24 CC-21 189Z R-41 AA-03 CC-51 M-47 AA-43 180Z 149Z 104Z CC-29 AA-48 205Z 102Z 177Z Verified by Date 4)

I I<

g-

.~ I-8 l Hf-26 HF-14 HF"03 (disc: 8-1)

C~NTItOL ftOD DhNK LOCATION TUMY POINT PLANT UNIT NO. ~

CYCLE NO. XI.

FIGURE 2 15 14 13 12 11 10 9

8 7

6 5

4 3

2 1

A

'A C

0

'B S

S B

'A

'A S

0 S

0

'A

'A S

S S

0 Absorber Naterial Ag-In-Cd 4

A

'A FUNCTION Control Bank D

Control Bank C

Control Bank B

Control Bank A

Control Bank SB Control Bank SA 0 OF CLUSTERS

ROD DROP TIMES TUBY POINT PLANT UNIT NO.

CYCLE NO. XI FIGURE 3 15 14 13 12 11 10 9

8 7

6 5

4 3

2 1

R

l. 32
2. 02
1. 28
1. 92
1. 30
1. 90 1,28
1. 90
1. 27-1..93-1,28
1. 88...-
1. 30.,
1. 90
1. 92
1. 28
1. 88
1. 33
1. 92
1. 32 1,97
1. 32
1. 92
1. 30 1,92
1. 32 1,92
1. 35
1. 92
1. 35
1. 98 1,35
1. 9S
1. 28
1. 81
1. 33
1. 92
1. 28
1. 93
1. 33 1,98 1,27 1,93
1. 30
1. 93
1. 53
1. 93
1. 28
1. 93
1. 32
1. 92
1. 28
1. 87
1. 28
1. 88
1. 30
1. 95
1. 30
1. 92
1. 30
1. 92
1. 28
1. 88
1. 30 1,9S
1. 32
1. 90

H

. J..32

1. 93
1. 35
1. 97 1,32
1. 95
1. 32
1. 92
1. 30
1. 87
1. 31
2. 01
1. 30
1. 90
1. 27
1. 92
1. 32
1. 95
1. 40
2. 08
1. 30
1. 95 (Rt:1 ND)

LEGENO Time to Oashpot Time to 8ottom

2.0 INITIALCRITICALITY The approach to criticality began September 4, 1987, at 0750 hours0.00868 days <br />0.208 hours <br />0.00124 weeks <br />2.85375e-4 months <br /> in accordance with Operating Procedure 0204.3, InitialCriticalityAfterRefueling. Criticalitywas achieved September 5, 1987, at 0215 hours0.00249 days <br />0.0597 hours <br />3.554894e-4 weeks <br />8.18075e-5 months <br /> by withdrawing control rods to 160 steps on Bank D and diluting the RCS with 11,000 gallons ofwater.

Upon attaining criticality the fluxlevel was increased to approximately 1 x 10-S amps on the intermediate-range to obtain critical data.

Tavg

~

- ControlBankD Boron Flux 5470F 117 Steps 1710 ppm 1 x 10-8 amps TABLE2.1 FLUX Picoammeter

-- 1-x 10-8 amps N-35 EOOS N-36 1.5 x 10-8 amps The followinggraph (Figure 4) is a plot ofthe ICRR during the approach to criticality. (Rev. 1)

JP11/md*R1:1

jt5I2 Alll N~~ 0 I

l

~s I ~ ~ 1((f

~ (((1(L(f 11 1 ~

ss ss s s'iss

~ ~ w sa

~

ICRR VS. DILUT OP 0204 ION H2O 3

46 15!<

I)U E

)

I Unit 3 Cycle Xl

.9

.8

.7

.6

.4

.3

~ 2

(

s

, f.

1;i

'i'.

li!

11 1;

I ij s

, ~

. ~

i i!I':

I.
:i

'I':

ijt,l j(i'.1

i:!

1'i ls I

I '.

i.(l

~ 1 s.

ljj

Ii

-j!

(, ~

. I

1 (sf.

(i..

flf(

!If 1

I','.I:

'"t "li s..

1:1

'jl:

(

i[

I!

~ (

'.1 s (

~ 1 jl,:

.('!

tii(

"II

ill,

,ifi

. I.

(

~

s I

~

I'(

it I;'" 'I ll.j i.I!

!!l,:,

.'f!'!i!

s fs s"'

js 1

1

,:it

~ - ~

j'I; ill'bi!

si,:

s silt's

',1

}

~

'(

~i!

,".: l

';}; I I~

sl sl i's:

i.I i:'s(

, I':

I'I I

',1 1'

~ I 1

s I:

s ss Ii i 1;

I~-i fi

.:I;i.

' !. s::,

1( ~

:I:

,:I fi"

(

1..

I sit I

is s

I."

-.:(j

'1'I 1',;I::

ii; Ijts

li; (I;!

ss!,i' I;

s s

'lfs I'l I,

1 I.

lh

',!I::

,;I.

.'1.

~jl:is:

,Il

.':I iil!

!!: (II iil (jf(

,I

'i ":i

.ii;:1!,

s

!!~

1 11

'j;1 I:11 l":il'!::

iljl ji]i

!ijiilI!

i'l:f

-'l.

'll'I;

.11 I(.

1.'.

(s is s

I-j sift 1
. I
. ~ 1 si s,

'I

'}'l'::IjI:i!(i I

i.:.!I.

!fl s

si s

'1:

ll j.s'll

'j' 1'

1.

1

,s!
1 '.:

1'

~ s

(,"if;i!

':i'litt

}I!'::

.1 'I~

')':i 111

'.I::.'lj:

j:-

". I!i" ji::

i l.

s li "-

I l

1 i,

il If!:

I.

iiil i: 1 I

~ 1

~ (

i.li 1,

ifi
i!I(
If I:

s 1,ll.

!;If

'I I'

.1

.il I

1,II Ii ss)

,,:::::},'

..: ~, If

~ '

'1 I.:ii

'l 1 s(

ill 1':

.fi:

l:i' llji

s(l ijij s ~

lfs s

~~

s (s

s1s ss

'ifj sf

i" 1!I(

I:jl

',Il}

f!!I

~ I i!'

f!

sl '

i.ll

!I[i iil; s,'j!

!':i

.,! I

,.I I

I

'. I s(s iI)

!I (I:

,.1 1 I ilj sit

'.il

.J!

I.

I!)i I

2 I

6 ffO (C I!~)X I

ll 12

3.0 Summar ofTests This section provides a summary of the results of the low power physics tests along with the Westinghouse design data.

This report compares design and measured data using difference'nd percent difference2.

For each test, the acceptance criteria is listed at the bottom ofthe table.

'The difference = predicted - measured.

2For calculating the percent difference, the equation is:

Predicted Value.y Measured Value X 100% *R1:l-md

3.1 Nuclear Heatin The point of adding Nuclear Heat was determined in accordance with Operating Procedure 0204.3, Initial CriticalityAfter Refueling, Step 8.15 and Appendix A. This is performed by establishing a small positive startup rate and measuring the point (fluxlevel) at which Tzpg departs from its established, steady value.

Nuclear Heating was measured to firstoccur at:

TABLE3.1.1 FLUXLEVEL(AMPS)

Picoammeter 4.32 x 10-7 N-36 6.69 x 10-7 All'physics tests were conducted at or below 1.0 x 10-7 amps on the picoammeter connected to N-44 to assure Nuclear Heating did not occur.

  • Rl:I-md

3.2 Reactivit Vs. Period Reactivity Computer checkout was done in accordance with Operating Procedure 0204.3, Initial CriticalityAfter Refueling, Step 8.17 and Appendix B. This checkout is performed by inserting small ((60 pcm) positive and negative reactivities using rod motion, measuring the period generated and the indicated worth, and then comparing design worths to measured worths for the given period.

TABLE3.2.1 Period sec -239

+232

-288

+ 157 Reactivit cm

-36.0

+ 27.0

-29.0

+38.5 R~ii d

-36.7

+27.0

-29.5

+38.5 D~iff 9o 1.9 0.0 1.7 0.0 Acceptance Criteria is +I-10.0%.

3.3 Boron End pints PPM The Boron Endpoints noted below are determined as per Operating Procedure 0204.5, Appendix A. A just-critical condition is established as near as practicable to the required rod configuration (i.e., ARO).

The RCS boron concentration is determined and is then a@usted analytically for the ppm worth of the reactivity (measured in pcm) by which the actual critical state deviated from the design condition.

TABLE3.3.1 BORON ENDPOINTS (PPM)

ARO Measured 1711 Westin house 1744 Com arison 33 PPM Acceptance Criteria is +/- 50 ppm (Rev. 1)

3.4 ROD WORTH Rod worths were measured as per Operating Procedure 0204.5, Appendices D and F. The Reference Bank (highest predicted worth) was diluted into the core.

The boron concentration prior to and subsequent to this insertion was determined and the difference in the two boron concentrations is defined as the boron (Rod) worth of the Bank (Table 3.4). The differential and integral worth of control bank C was measured and plotted (Figure 5). Additionally, the integral worth ofbanks C and D in overlap was measured and plotted (Figure 6).

TABLE3.4 CBC ROD WORTH (PPM),

Measured 175 Westin house 152 3.5 ROD WORTH PCM The remaining rod bank worths were measured using the rod swap technique, "swapping" negative reactivity insertions on the bank being measured with positive reactivity insertions from the Reference Bank.

TABLE3.5.1 ROD WORTH (PCM)

M d

~Wdi d

~INfd PCM)

% Diff CBD CBC'BB CBA SBB SBA Total 682 1325 621 1089 1107 1051 5875 718 1311 579 1107 1137 1014 5866 36

-14

-42 18 30

-37

-9

+5.28

-1.06

-6.76

+ 1.65

+ 2.71

-3.52

-.15 The acceptance criteria for rod worth measurements are:

(1)

Reference bank within +/- 10% ofdesign, and (2)

Individual banks within +/- 15% or +/- 100 pcm ofdesign whichever is greater, and (3)

Sum ofall measured banks within +/- 10% ofdesign.

  • R1:1-md (Rev. 1)

HOT ZERO POWER DIFFERENTIALAND INTEGRALBANKWORTH VS.

BANK POSITION 16 12 O

g lo 0

p i

fbQ 1600 1000 1200 1000 800 600 UNIT 3

CYCLE XI EXPOSURE 0.0 BANK CBC BANKPOSITIONS OUT IN SBA

~X SBB X

CBA

~X CBB X

CBC CBD X

TEST METHOD DILUTION X

BORATION MWD/MTU MOVING LJ CV X

000

~

~

I

~ l 0

'eo 0

20

.J.

I l ~

~ [

~

(j!i 60 80 100 120 100 160 180 200 220 228 ROD BANKPOSITION (STEPS) i 200 0

Control Bank 108

'C'ositio 128 n

10 168 INTEGRALROD WORTH IN OVERLAP: BOL, HZP, NO-XE 188 208 228 Unit 3 -Cycle XI 07-0S-87 Section II Figure 6 3PH 16 IS 10 13 12 3

'. ll i10 9

k

)

8 I

7 0

I e

6 0

3 2

1

~

~

4 ~

",I II!

a I'le II L

II II Ii i! f I jl ii

~~>>j I ii:I

~ijj a

jill l II Il I

e t!

I>>

'I

~ I

~ I a II '

I I

I II aaI:

I

~

\\ ~ <<

a ja II

~ (I I,I I"

I Llf I

Ilj I

,I!'.

~ ~

~

lil',

Ilj ji!

>> I jlI

'I

.I Ill Ijjl

!41 I!!

a

~

~ \\

l,ii, I!I 4

!ji!

Jji

~ 4

~ ~

~ a a ~ I

}

'jl'j

~ ~ ~

Illl ila

<<le

~ ~ ~

~ ~

i(II a ~

<<a ~ ~

II 4

<< ~ e(

~ a I ~I'

~

~ (

~ ~ ~

~ a

.I (a

':ii

.:Il lili ae f!'.;

a af

!ii

!!il Il a!

~

~

~

~

~ ~

~

~

a I'!

<< I jl'(

a ili'.

I

~ ~

~!II

!ill lii all j jl>>

ljgj lii

ji}
i(j

! I I '.

( I a!.

j::Il I II.

ji I!

~

I

li lllal (I

i 4

a

~ I a*

a

-ae

>>I!

I << II

'j 4

I I

la

<<ala>>

I! I' I

<<e

~

'I 4

la}

'<<e I ~ la \\

a

\\

Ie

~ ~ ~

I<<

a

~

~

~

~

~

I

}

~

ea e ~

~ ~ ~

4 a ~

'll I

..r

~

~

aa

~ I Ija>>4 eI:I

',(I!

'(!,I jI II I-'ija!

( ~ I

~

.!. Ij:

J

~

II ~

',ll:

ij!i

}!

~ lal.

\\ ~ 4 ~

I

~ ~

iiij I

I.IJ I,I,

'Iji

(

16 15 10 13 12 10 4

3 2

0 20 00 60 80 100 120 100 160 180 Control Bank 'D'osition 200 220

3.6 TEMPERATURE COEFFICIENT The isothermal and moderator temperature coeQicients were determined using Appendix B in Operating Procedure 0204.5, Nuclear Design Check Tests During Startup AfterRefueling.

r The values determined for this testing sequence (in pcm/OF) are:

TABLE3.6.1 ISOTHERMALTEMPERATURE COEFICIENT (PCM/oF)

Rods D/215 Measuredl

+.96 Design Westin house

+ 1.1 Diff

.14 Acceptance Criteria is +/- 2 pcm/OF (design, minus measured)

TABLE3.6.2 MODERATORTEMPERATURE COEFFICIENT (PCM/<F)

Rods D/215 Measuredl

+2.86 Design>

Westin house

+2.76 Diff Acceptance Criteria on measured value is (+ 5 pcm/0F.

IThis is the average ofone heat up and one cool down measurement.

2This value has been a@usted forboron and temperature sensitivity. (Rev. 1)

  • Rl:1-md

3.7.

HZP DIFFERENTIALBORON WORTH The Hot Zero Power (HZP) Differential Boron worth was measured using Control Bank C, which had a bank worth of1325 pcm. The value obtained for this test was:

TABLE3.7.1 HZP DIFFERENTIALBORON WORTH (PCM/PPM)

Measured 7.57 Westin house 8.44

% Diff 11.49 Acceptance criteria is ( +/- 15%. *R1:l-md

4.0 SHUTDOWN MARGIN The Shutdown Margin was calculated prior to power escalation to verifyadequate shutdown capability. For this calculation, design rod worths were reduced by 10%,

and the results show adequate shutdown margin at BOC and EOC. The followingis a summary ofthe results:

Control Rod Worth %4

~Cele XI BOC ROC AllRods Inserted Less Worst Stuck Rod (l) Less 10%

6.41 6.50 5.77 5.85 Control Rod Re uirements

%h Reactivity Defects (Doppler, T~<,

Void, Redistribution)

Rod Insertion Allowance (2) Total Requirements Shutdown Margin (l)- (2) %b,p Required Shutdown Margin (%b,p) 1.69 2.89 1.35 0.50 3.04 3.39 2.73 2.46 1.00 1.77 Source: WCAP 11454

FLORIDA POWER AND LIGHTCOMPANY t

TURKEY POINT PLANTU~ 3 OPERATING

SUMMARY

15 14 13 12

.11 10 9

8 7

6 5

4 3

2 1

j Oof6$

le 2/6

'M o03o0 o ~ ~ ~ ~ ~

10166

'41 i:PI kjib 1 lg Jo230 osb el Oe 4JO Oo6

~ ~ e ~ ~

0 ~ 05 0 9(jI

~ ~ ~ o ~ ~

le228 lo)8$

~ ~ ~ ~ ~ ~

0'45 0'3)

':8

~ ~ ~ ~ ~ o Oo234l 0'3))

0 Sgj CIHj

~ ~ ~ ~ ~ ~

Hl 0 )09j ROD POSITION Oo443

-:IIIj

-I!Ij 1.1[Ij o.PI UIIl

'~II leOQ 00 63

~ ~ ~ ~ ~ o Oo22)

~3'

~ ~ ~ o ~

10125 lo171

~3o9 le 082

'-R

$ 00)3 k g oslo 4

~ ~ ~ ~ o lellb le 125

~Oo8 Oo 90 Oo398 0'30

~ ~ ~ ~ o ~

1o195 1 ~ )9$

I:.jilj i:p[

kN lt'.gi BPg

!-'IIII k)H lo295 lo)90 OoN

~ ~ ~ ~ ~ ~

0 ~ 913 1 ~ 026 oslloO

~ ~ ~ ~ ~ ~

'-:)IiI

'3'.Il

'Nk loO[1 e90e L DPI HII)p:pi

$el01

~$ 9IN

$eOg 0 ~ 5 lol/5 lo159 le)2) o ~ ~ ~ ~

00242 0'35 208

'N3

<eb fo200 Ool o ~ ~ ~ ~ o le235 lo)3$

]+055 2e8

~ ~ ~ ~ ~

0 ~ )90

~ ~ ~ ~ ~

0 ~ 933 0'24 1 ~ 0 lo175 lo/4$

0o9$ 0 hah 0 9g O.Pf

':III Q3 3e3

~ ~ os ~

0 jsj

~ ~ ~ ~ ~

lo194 lo)4$

~ ~ ~ ~ ~

o.gf

~ ~ o o ~

Oe 258 P3 Oo23

~ ~ ~ e ~

1ol60 1 ~ 171 000 ~ 9

~ ~ ~ o ~

lo094 le/2) 1 I)9

$ oO)3

$ C3o 1 1II

~ ~ o ~ ~

1e012

$4$

kN lolg

~ 1

$:hko

$ o2)4 lo169 lo)2)

$ol)0 0'

Oo240 Oo235 2'

~ ~ ~ ~ ~

Oo404 0'30 cobol

~ ~ ~ ~ ~

lo212 le )9$

1 )ZI

$oOg le 058 1 ~ 04$

~ ~ ~ ~ o lo04Z

'4%I l:N lolg lo)08

'-'OM oe o ~ ~

10283 Oe)30 OOO

~ ~ ~ ~ o o

~ ~ o ~ ~

Oo979 1 ~ 026 0040 5 lo179

'-P$

J o130

~89 le 2/$

~ ~ ~ ~ ~

lol41 1 ~ 08(

Jo204

~09) k:g 1000

$ e438

~)93

~ ~ o ~ ~

1 ~ 232 10200 207

~ ~ o ~ ~

1 ~ 261 10/34 cel 03(

~ ~ ~ ~ ~ ~

H D

~ ~ ~ ~ ~

OoC36 00)6)

Ot)5I k:jII

~ ~ o ~ o ~

1 282k lo18$ )

o,.')g I)III

$eCCf Oob o ~ o ~ ~

lo015 10016 Wol

~ o ~ o ~

Oo458 Oe461 N)eb

~ o ~ ~ ~ ~

0 IiO k:8$

k 9$

Oele9 o ~ o ~ ~ ~

le 160 le 2)4 5I

$ e308

~0o2 Oe46

~ ~ ~ ~ ~ ~

EASURE Nr'-!0 0 F DELTA H D F DELTA H NCE

~ os ~ ~ ~

Oe251 Oe 23)

~ ~ ~ ~ ~

Oe 264 OOPC II BII Oe2

~ ~ ~ ~ ~ ~

fe4$ 0

~$ o 7 fe04$

Oo7

~ ~ o ~ ~

lo235 10 )89 le 003 0 ~ $3$

l:Ph 0)f Qo)35

~Owl

~ ~ ~ ~ ~ ~

Bank Location

~in Ste 0

Classification INCORE TILT N

SBA SBB CBA CBB CBC 228 228 228 228 228 Map No. FM3XI2 Power % 28.89 AxialOffset 1.08 MaxF N 5 H 10659 0.9712 1.0013 0.9890 1.0385 CBD 135 MaxF N Q 1.930 (Rev. I)

  • Rl:I-md

15 14

$3 12 FLORIDA POWER AND LIGHTQjgHPANY TURKEY POINT PLANTU~ 3 OPERATING

SUMMARY

10 9

8 7

6 5.

4 3

2 1

o.'Bo

~ ~ ~ ~ ~

Oo 263 Qej6(

~ ~ ~ ~ ~

0'39 Oo240

<<0' 3~tH, j jII jsPf j!Ii~t UR jI'f

~ ~ ~ ~ ~

0 ~ 405 Qe41(

~ ~ ~ ~ ~

Oo[33

~ ~ ~ ~ ~

0'38 Oe922 le8

~ ~ ~ ~ ~

lo116 lo122

<<0 ~ 5

~ ~ ~ ~ ~

0'58 Oo966

<<0'

~ ~ ~ ~ ~

Oo 414 Oe41(

~ e ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~

Oof)f

~ o ~ ~ ~

lo271 1 ~ )1$

j:III

~ ~ ~ ~ ~

igsj

~ ~ ~ ~ ~

Oo965 Oo 96tt

~ ~ ~ ~ ~

lo23k Oe6

~ ~ ~ ~ ~

i:16) le306 lgo1)

Oog5

~ 1

~ ~ ~ ~ ~

~ ~ ~ ~ ~

Oo413

<<Co2

~ ~ ~ ~ ~

igys j:Isj

~ ~ ~ ~ e 1 ~ 060 lo)9$

Jo085

-'V.o

~ ~ ~ ~ ~

le 043 le 05)

Jo/03 lo096 1o9I l:los 1:Pk

~ ~ ~ ~ ~

Oo C20 Oe 41]

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~

Oo917 Oo959

<<4o3

~ ~ ~ ~ ~

1gss l:B$

1+289 lgo55 3:4k

~ ~ ~ ~ ~

i:js)

~ ~ ~ ~ ~

lo184 le (0)

Io166

~ ~ ~ ~ ~

Ogo93

~ ~ ~ ~ ~

lo352 i NII Oo3 I72

~ ~ ~ ~ ~

Oo976 Oe (5sI

~ ~ ~ ~ ~

~ ~ ~ ~ ~

0'34 4 ~ )39 j s$ 2 4'j j.:III j:sjs

~ 096 j:jss jul)

)

~ J(O

~ 147

~ 9

~ ~ ~ e ~

0 ~ 241 00239 0'

~ ~ ~ ~ ~

0 ~ 254

'-'HII

~ ~ ~ ~ ~

Oo906 0 ~ 91/

J ~ )90

'Qk

<<2e6

~ ~ ~ ~ ~

1e02C

'P$

l:Mk

~ ~ ~ ~ ~

i:)ss

~ ~

~ ~

1 ~ 110 lelO) i:IO6

~ ~ ~ ~ ~

~ ~ ~ ~ ~

1 ~ 068

~ ~ ~ ~ ~

Oo93I%

le 56

~ ~ ~ ~ ~

0'57 0 ~ )16

~ ~ ~ ~ ~

0 ~ 266 0 ~ 258 F 1

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~

0 ~ 234 Oe 23$

~ ~ ~ ~ ~

lol13

<<2 ~ 4

~ ~ ~ ~ ~

~ ~ ~ ~ ~

lo079 lo/1) l:lB

~ ~ ~ ~ ~

~ ~ ~ ~ ~

le 135 lo)0) fo291 lol)2

~ ~ ~ ~ ~

lo140 le)1)

~ ~ ~ ~ ~

lo)3$

~ ~ ~ ~ ~

le 173 lo)15

~ o ~ ~ ~

0 ~ 250 0'39 Co9

~ ~ ~ ~ ~ ~

Oo9)7 1 ~ 34 l:Hf

~ ~ ~ ~ e le 318 lo)5$

o)P j:pI

~ ~ ~ ~ ~

1 ~ 261 lo)0$

(+201 2o9

~ ~ ~ ~ ~

3:@II

~ ~ ~ ~ ~

1 ~ 381 loP5 j:Ims

~ ~ e ~ ~

lo193 le 160 2'

~ ~ ~ ~ ~

0'81 0'59 2'

~ ~ ~ ~ ~ ~

M E

0 OoCQ J

~ J66

<<0' l:Nk

<<1 el

~ ~ ~ ~ ~

lo081 lo09$

~ ~ ~ ~ ~

1 ~ 083

'-'V.$

~ ~ ~ ~ ~

lo071 lo05(

~ ~ ~ ~ ~

lo140 1 ~ 108 2e9 i:pI

~ ~ ~ ~ ~

le108 lo(9$

~ ~ ~ ~ ~

i 302 3'

~ ~ ~ ~ ~

lo193

'lH

~ ~ ~ ~ ~

0'12 0 ~ 41)

EASURE XPECTE 1FFERE

~ ~ ~ ~ ~

Oe44 s.'P/

~ ~ ~ ~ ~

le 311 i+el) jgsIt

I::It

~ ~ ~ ~ ~ ~

Oo986 Oo)60

~ ~ ~ ~ ~ ~

1 ~ 278 lo235 3'

~ ~ ~ ~ ~

lofif7

~ ~ ~ ~ ~

lo337 le/i)

~ ~ ~ ~ ~

Oo965 Oo)46 Oo)49 le3 3:N3

~ ~ ~ ~ ~ ~

lo163 11V 0 ~ 2 l:IZ7

~ ~ ~ ~ ~ ~

1 ~ 272 lo)95

~ ~ e ~ ~ ~

lot69 2o8

~ ~ ~ ~ ~ ~

le209 le /8%I

~ ~ ~ ~ ~

tto)49

~ ~ ~ ~ ~ ~

D F DELTA H D

F OELTA H

NCE

~ ~ ~ ~ ~ ~

0'03 OoflII 0'6$

j72

~ ~ ~ ~ ~ ~

Oe987

~ ~ ~ ~ ~ ~

le 194 leP2

~ ~ ~ ~ ~ ~

1o001 Oo96)

~ ~ ~ ~ ~

0 ~ 430 Oe f1)

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

Oo267 OePO

~ ~ ~ ~ ~ ~

0'89 0'60

~ ~ ~ ~ ~

0.261t Oe240I 8e7

~ ~ ~ ~ ~ ~

ROD POSITION INCORE TILT Bank Location

~is Ste Classification N

SBA SBB CBA CBB CBC 22S 228 228 22S 228 Map No. FM3XI3 Power 96 V3.90 Axial Off'set 4s62 Maxp N 4H 1.513 0.9746 1.0040 0.9930 1.0284 CBD 1VS Maxp N Q 1.835 (Rev. I)

  • Rl:1-md

FLORIDA POWER AND LIGHT COMPANY TURKEY POINT PLANT~ 3 OPERATING

SUMMARY

0 ~ ~ ~ 0

~ ~ ~ ~ ~

0'S?

0' C

Qs 0 ~ 7 1 ~ 5 0 ~ ~ 1 ~

,,0 ~ 0 0 ~ ~

l 0 ~ ~ ~ ~

<<3'

~ 1 ~ ~ 1

~ ~ 0 ~ 1 1 ~ 093 1 ~ 1 IiaM 0 ~ 1

~ ~ 0

.'Skh

!4 4%+0 Itgto~

tt

~ ~ ~ ~ ~ ~

0.4 0

+pj

~ ~ 0 ~ ~

~ ~ ~ ~ ~

1 ~ 095 la056 3 '

1 ~ ~ 0 ~

14

~ ~ 4 ~

3O5 Vou
4$

~ ~ ~ ~

~ 4JQ

~ 433 1 ~ s

~ 4 ~ ~ ~ ~

jj~og

~ ~ ~ ~ ~

1 ~

6

~ 1 ~ 0 0 14101 kQk:

Hkgi'3 i io5

<<01 la>

kk I 0401 ~

~

9 1 ~ 0

~ 4 ~ ~ ~ ~

a.'4H 1 ol@C 4 3g) ool 3:h5 lob

~ ~ ~ ~ ~

14151 10141 1 ~ 0

~ ~ ~ ~ ~ ~

~ 1 ~ ~ ~

~ 1 ~ ~ ~

0'05

,$ ~ g g+

0.)4 h

lol 142

~ ~ 11 ~

<<?j ~

~oa ~ 1 0

~

10 00 ~ ~

~ 10 ~ 1 1 1.~ 0 ~

~ 0 i40$ 1 i:Ihj

~ ~ 0 ~ ~ ~ 0 ~ ~ 4 4 ~

lolli'.lGoi.4(I

""t'35I

<<oC 2

hatt l:)Qlt:>l~l 4 oat 3 ~ 4I

~ ~ ~ ~ ~ ~ ~ ~ ~ 0 0 ~

t.'hid(o.'i."-i

)

~ 4 ~ ~ ~ 0 ~ ~ ~ ~ ~ ~

3.'o5()

~ ~ ~ ~ ~ ~

Goals(

00403)

~

~ 0

~ ~ ~ 04 ~

"'X4

<<2 ~ 4

<<3 ~

~ ~ ~ ~ 0 G ~

<<4 '

~ $ 11 ~

~ ~ ~ ~ ~

0'24

~ So ~ 1

~ 139

,1 1,+ ~ ~

'14'

~ ~ 1 ~ ~

~ 0 ~ 0 ~ 110 ~ ~ 1

~

t 143 147

~ 3 LE 8 i:k 2 i'ilk 24000 ioi12 i'254

~ ~ ~ ~ ~

~ 0 8

<<0 ~

0 ~

,$ 0.0 1 Ool

~ 1 ~ 1 ~

10245 48

~ ~ ~ 0 ~

~ 0

~ oioo oyi~ ~ of~0~

~ 0 00 ~

~ ~ ~ 1 ~

~ 0 ~ 0 ~

I ~ 057

~ ~ ~ 0 ~

1 ~ 289 0 ~ 0 ~ 0 10071

~ ~ ~ 0) 0'60 0'22 1

2'

~ 0!

~ 1 ~ ~ ~

I 144

~ 1 ~ 0 ~

0 ~ 23 fog

~

~

1 ~ 329 0

~ 0$ / ~,

1 ~ 0 ~

~ ~ ~ ~ 0

~ 0 ~ ~ ~

1 9

fkik4

~ 0 ~ ~ ~

0 k3i IS5 5

~ 0

~

51 0

~ 3 loO

~ ~ ~ 0 ~ 0

~ a

~ ~ ~ 0 ~

~ 1 1 ~ of 0 ~91/

t~,' t; Ct

~

., N,e<<o

~ ~ ~ ~ ~

0 ~ 397

,.=~~i 5'0)

~ ~ ~ ~ 0 ~

~ 0 ~ ~

1 ~ ~

~

~ ~ 0 ~

1 ~ 1 8

lf

~ ~ 1 ~, ~

l ~

~ ~ ~ ~ ~

1 ~ 137 11 EBLIS

-F.'f

~ ~ ~ ~ ~

1 ~ 334 lop

~ 6

~ 1i

~l

~ ~ ~ 0 ~ ~ 0 ~ ~ ~

~ ~ ~ 0 ~

0 14283 la066

~j

~ 0

~ ~ ~ 1 ~

~ ~ ~ ~ ~

~her

'oo~oIl:k5 Hij+

DQ 40 FlIkP:s

~ 4 ~ ~ ~

~ ~ ~

l:IZ89 5:1

~ ~ ~ ~ ~ ~ 1429

~ ~ ~ ~ 1 O'.$ 37

~ ~ ~ ~ ~

F 138 lf+

~ ~ ~ ~

~ 404 1.40$

1 ~ ~ ~ ~ ~

hikII lyte 3'

~ ~ ~ ~ ~

i:hss 4 ~ 7

~ ~ ~ ~ ~

0'39 00234 Qe.P) 1, i

tt

, i l ~ 'r

~ 1

~ ~ ~ 0 ~

lkia904

~ ~ ~ ~ ~

O S ?03 04256

~ o>

tv

~ ~ ~ ~ 0 00701 140

~ ~ ~ ~ 0 ~

t.A~4ttc.

XVEC7V.

irrr.nL,

~ 4 ~ ~ ~

0 ~ $20

~ ~ 1 ~ ~ ~

~0

~ ~ ~ ~ ~

0'26 QS920 G ~ 7 loo 2 ~ i.

~ ~ ~ ~ ~

C ~

41 0 ~ 234

..047

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

u 0

t <<t tA h 0

8 btllA h hl. t Col

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4 ~ ~ ~

15 14 13 12 ll 10 9

tt 7

6 w

8 1

ROD POSITION Location

~in Ste Classification INCORE TILT N

SBA CBA CBB CBC 228 228 228 228 228 Map No. FM3XI6 Power % 100.45 AxialOffset 4.18 Maxp N AH 1.45Z 0.9823 1.0001 0.9981 1.0196 CBD 228 Maxp N Q 14Z69 (Rev. 1)

  • R1:1-md

6.0 CRITICALBORON CONCENTRATION Unit3C cleXI The critical boron concentration was calculated by adjusting a measured. boron concentration to the equilibrium hot fullpower, all rods out condition. For Unit3 Cycle XIthis calculation was performed at 950 MWD/T.

The followingis a summary ofthe results in PPM:

MEASURED BOL 1215 WESTINGHOUSE 1237 DIFF 22 PPM Acceptance Criteria is +/- 50 ppm (Rev. 1)

  • R1:I-md

>>1