L-2007-121, Cycle 21 Startup Physics Testing Report

From kanterella
Jump to navigation Jump to search
Cycle 21 Startup Physics Testing Report
ML072330093
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 08/09/2007
From: Johnston G
Florida Power & Light Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
L-2007-121
Download: ML072330093 (28)


Text

I Florida Power & Light Company, 6501 S. Ocean Drive, Jensen Beach, FL 34957 August 9, 2007 IFPL L-2007-121 10 CFR 50.36 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555 Re: St. Lucie Unit I Docket No. 50-335 Cycle 21 Startup Report Pursuant to St. Lucie Unit 1 Technical Specification (TS) 6.9.1.1, Florida Power & Light Company (FPL) is submitting the Cycle 21 Startup Report. This report is required due to the replacement of an excore detector and, the implementation of Startup Test Activity Reduction (STAR).

Please contact us if there are any questions regarding this submittal.

Very truly yours, GLJ/KWF Attachment an FPL Group company

I L-2007-121 Attachment Page 1 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report

I L-2007-121 Attachment Page 2 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report Table of Contents Section Title Parse Page Section I Introduction 4 II Cycle 21 Fuel Design 5 III CEA Drop Time Testing 6 IV Approach to Criticality 7 V Zero Power Physics Testing 8 VI Power Ascension Program 9 VII Summary 10 VIII References 11 List of Appendices Appendix Title Page A Summary of Implementation on the First Application of STAR for St. Lucie Unit 1, Cycle 21 19 List of Figures Figure Title Page 1 Cycle 21 Core Loading Pattern 12 2 Inverse Count Ratio Plot- Channel B 13 3 Inverse Count Ratio Plot- Channel D 13 4 Power Distribution Comparison with Design - 30% Power 14 5 Power Distribution Comparison with Design - 45% Power 15 6 Power Distribution Comparison with Design - 98% Power 16 2

I L-2007-121 Attachment Page 3 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report Table of Contents (cont)

List of Tables Table Title Page I Cycle 21 Reload Sub-Batch ID 17 2 Approach to Criticality 18 3 Key Parameters from PSL-1 Cycle 20 20 4 Summary of Tests Performed for Cycle 21 21 3

I L-2007-121 Attachment Page 4 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report I. Introduction The purpose of this report is to provide a description of the fuel design and core load, and to summarize the startup testing performed at St. Lucie Unit 1 following the Cycle 21 refueling.

The startup testing verifies that key core and plant parameters are as predicted. The major parts of this testing program include:

1) Initial criticality following refueling,
2) Zero power physics testing, and
3) Power ascension testing.

This Cycle 21 Startup Report is being submitted in accordance with Technical Specification 6.9.1.1 due to:

1. Replacement of an excore detector and,
2. Implementation of Startup Test Activity Reduction [STAR].

The test data satisfied acceptance criteria, or was satisfactorily dispositioned in accordance with the corrective action program, and demonstrated general conformance to predicted performance.

4

L-2007-121 Attachment Page 5 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report II. Cycle 21 Fuel Design The Cycle 21 reload consists entirely of fuel manufactured by AREVA-NP, Inc (AREVA). The primary design change to the core for Cycle 21 is the replacement of 73 irradiated fuel assemblies with 72 fresh Region CC fuel assemblies and I irradiated fuel assembly (Region S) currently residing in the spent fuel pool. All assemblies in the Cycle 21 reload core are of the debris resistant design. The fuel assembly design of Region CC fuel is the same as that of the previous cycle Region BB fuel design. This fuel design includes the use of high thermal performance (HTP) spacer grids and the use of FuelGuard lower tie plate. The fuel assembly design for Region CC fuel utilizes radial enrichment zoning similar to that used in Region BB fuel. A new 20 Gad pattern is used in Sub-region CC5 (4 assemblies).

The safety analysis for Cycle 21 reload design was performed by AREVA-NP and by FPL using NRC approved methodology. The analyses for Cycle 21 reload support a Departure from Nucleate Boiling Ratio (DNBR) limit at the 95/95 probability/confidence level, consistent with the applicable DNB correlation previously approved by the NRC. The linear heat rate (LHR) corresponding to the fuel centerline melt limit for Cycle 21 is 23.67 kW/ft. All analyses in support of this EP were performed with the assumption of steam generator tube plugging level not to exceed 15% average, with a maximum asymmetry of+/- 7% about the average. It has been determined that the design and operation of the Cycle 21 reload core will meet the 10 CFR 50.59 (c)(2) criteria.

The Cycle 21 core map is represented in Figure 1. The assembly serial numbers and control element assembly (CEA) serial numbers are given for each core location.

5

L-2007-121 Attachment Page 6 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report III. CEA Drop Time Testing Following the core reload and prior to the approach to criticality, CEA drop time testing was performed. The objective of this test is to measure the time of insertion from the fully withdrawn position (upper electrical limit) to the 90% inserted position under hot, full flow conditions. The average CEA drop time was found to be 2.38 seconds with maximum and minimum times of 2.46 seconds and 2.24 seconds, respectively (Reference 7). All drop times were within the 3.1 second requirement of Technical Specification 3.1.3.4 and within the safety analysis requirements supporting the reload PC/M 06162 requirements (Reference 6).

6

L-2007-121 Attachment Page 7 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report IV. Approach to Criticality The approach to criticality involved diluting from a non-critical boron concentration of 1762 ppm to a predicted critical boron concentration of 1537 ppm. Inverse Count Rate Ratio (ICRR) plots were maintained during the dilution process using wide range channels B and D. Refer to Figures 2 and 3 for ICRR information. Table 2 summarizes the dilution rates and times, as well as beginning and ending boron concentrations.

Initial criticality for St. Lucie Unit 1, Cycle 21, was achieved on May 26, 2007 at 9:17 with CEA group 7 at 120 inches withdrawn and all other CEAs at the all-rods-out (ARO) position. The actual critical concentration was measured to be 1552 ppm (Reference 1).

7

L-2007-121 Attachment Page 8 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report V. Zero Power Physics Testing To ensure that the operating characteristics of the Cycle 21 core were consistent with the design predictions, the following tests were performed:

1) Reactivity Computer Checkout;
2) All Rods Out Critical Boron Concentration; and,
3) Isothermal Temperature Coefficient Measurement.

Proper operation of the reactivity computer is ensured by performing the "Reactivity Computer Checkout." This part of the testing determines the appropriate testing range and checks that reactivity changes are being correctly calculated by the reactivity computer's internal algorithms.

The testing range is selected such that the signal to noise ratio is maximized and that testing is performed below the point of adding nuclear heat. The reactivity calculation is checked by performing a positive and negative reactor period test through respective introduction of a known amount of positive and negative reactivity. The results of the reactivity computer checkout were compared to the appropriate predictions supplied in the reload PC/M 06162 (Reference 6). Satisfactory agreement was obtained.

The measurement of the all-rods-out (ARO) critical boron concentration was performed. The measured value was 1545 ppm which compared favorably with the design value of 1544 ppm (Reference 2). This was within the acceptance limits of+ 50 PPM.

The measurement of the isothermal temperature coefficient was performed and the resulting moderator temperature coefficient (MTC) was derived. The MTC was determined to be 1.558 pcm/IF which fell well within the acceptance criteria of+ 2.0 pcm/IF of the design MTC of 1.856 pcm/IF. This complies with Unit I Technical Specification 3.1.1.4 requirements that the maximum upper limit shall be +7 pcm/°F at <70% of RATED THERMAL POWER.

Rod worth measurements were not performed due to the implementation of the STAR program (Reference 9). Appendix A contains further information on the implementation of STAR for Unit 1 Cycle 21.

All acceptance criteria were met.

8

L-2007-121 Attachment Page 9 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report VI. Power Ascension Program During power ascension, the fixed incore detector system is utilized to verify that the core is loaded properly and there are no abnormalities occurring in various core parameters (core peaking factors, linear heat rate, and tilt) for power plateaus at 30%, 45%, and greater than 98%

rated thermal power. The incore detectors and thimble tubes were replaced for Cycle 21 due to the elongation of the previous thimbles. Both the replacement incore detectors and thimbles are of a shorter design that restored the incore detector elevations to their height prior to Cycle 19.

A shape annealing factor (SAF) (Reference 5) test was performed in conjunction with the power ascension (Reference 3). This test was required due to the replacement of the "D" Linear Range nuclear instrument channel detector. The replaced excore detector for channel D was of the same shorter length detector design as was used in Unit 2 in Cycle 15. The SAF measurement data for all the replaced excore detectors showed a good statistical correlation coefficient and agreement with the trend of the other RPS channels indicating that the calculated SAFs are valid and acceptable for use.

The measured SAFs for all the excore detectors and the control channels met all acceptance criteria limits.

A summary of the flux maps at the 30%, 45% and 98% power levels is provided in Figures 4, 5, and 6. These flux maps are used for comparing the measured power distribution with the predicted power distribution. For the purposes of power ascension, the acceptance criteria require the root mean square (RMS) value of the power deviation to be less than or equal to 5%.

The individual assembly powers should be within 10% of the predicted power for assembly powers greater than or equal to 0.9 (30% and 98% plateaus). In addition, for the 30% plateau the relative power density (RPD) should be within 0.1 RPD units of predicted for assembly powers less than or equal to 0.9. These criteria were satisfied.

Additionally, calorimetric, nuclear, and delta T power calibrations were performed at each power plateau prior to advancing reactor power to the next higher level specified by procedure.

A determination of RCS flow by calorimetric parameters (Reference 8) was performed and the measured result of 410,922 gpm met the minimum acceptance criteria of 379,945 gpm (Technical Specification required flow of 365,000 gpm + uncertainties).

9

L-2007-121 Attachment Page 10 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report VII. Summary Compliance with the applicable Unit 1 Technical Specifications was satisfactory. The acceptance criteria for all the startup testing parameters were met.

10

L-2007-121 Attachment Page 11 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report VIII. References

1) "Unit I Initial CriticalityFollowing Refueling, " Pre-Operational Procedure 1-3200088, Rev.

28B.

2) "ReloadStartup Physics Testing," Pre-Operational Procedure 3200091, Rev. 26
3) "Reactor Engineering Power Ascension Program," Pre-Operational Procedure 3200092, Rev. 30.
4) St. Lucie Unit 1 Technical Specifications, Amendment 200.
5) "Shape Annealing FactorTest," Pre-Operational Test Procedure 3200093, Rev. 13B.
6) St. Lucie Unit 1 Cycle 21 Reload PC/M #06162, Rev 1.
7) "Periodic Rod Drop Time and CEA Position Functional Test, " Operating Procedure 1-0110054, Rev. 36C.
8) "RCS Flow Determinationby Calorimetric,"Operating Procedure 1-0120051, Rev. 22A.
9) WCAP- 16011-P-A, Rev. 0, "Startup Test Activity Reduction Program," February 2005.

11

L-2007-121 Attachment Page 12 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report FIGURE 1 CYCLE 21 CORE LOADING PATTERN P M K H Y x w V T S R N L J G F E D C B A I I I I II I I I I I

, 1...i .. ;  : .. ... ...; * - 21 AA52 AA471 BB611 CC7 1 BB4 1CC10 AA601 1BB471 AA541 AA491 I I I AA401 20 1 [ýM I AA451 1 411 1 1 454 I I I AA68 AA13 CC12 CC35 BB CC69 B5201 138 AA1 IC 62 1CC431CC11 -J-.

19 144 425 307 443 432 AA651 CC1I CC461 BB19 1 B361 BB461 BB521j BB391 BB22183111 CC56 CC2 IAA76 -. 18 1210 14471 429 I 419 434 I 211 AA35 AA12 CC57 BB25 BB55 CC34 AA66 CC65 AA63 CC38 BB48 BB30 CC51 AAII A3 17 44 451 145 428 AA56 CC19 8836 BB38 CC52 AA15 CC22 BB27 CC24 AA2 CC48 BB67 BB19 CC6 AA31 16 146 405 435 147 BB40 CC9 BB21 CC42 AA8 AA20 AA27 CC45 AA21 AA19 AA14 CC33 8833 CC 8862 15 AA59 40 453 422 456 433 438 421 AA37 8843 AA71 CC25 AA24 CC30 BB51 CC31 AA22 CC21 AA70 8853 BB10 CC8 14

-, 13 AA46 148 449 1- 413 436 402 427 AA29 1332 CC70 BB58 CC41 BB31 CC40 BB63 S51 BB45 CC62 BB24 CC60 BB44 CC71 12 13 -. 11 AA39 306 448 LI 416 308 10 CC1 85 BB54 AA75 CC32 AA23 CC23 BB68 CC28 AA28 CC29 AA64 BB37 BB17 CC16 --. 9 446 404 424 406 417 431 8

BB41 CC54 8B23 CC68 AA5 AA18 AA25 CC53 AA26 AA17 AA7 CC50 8B26 CC59 8B60 fAA581

-. 7 439 F01 450 445 409 430 423 AA32 CC13 8B14 BB42 CC39 AA9 CC26 BB28 CC27 AAIO CC64 BB66 88131CC14 AA55 -- 6 414 426 403 149 AA5O AM4 CC37BB35 BB65 CC44 AA73 CC58 AA61 CC47 B856 BB341CC6I AA16 AA41 5

452410 420 442 BB 2 29 AA72 CC3 CC63 1 BB 1BB641 BB57 BB501 BB321 BB181 CC67 CC4 AA74 212 412 415 150 441 213 4

~4-I- 4- 41414 I 4 AA69 AA6 CC9 CC36 BB151 CC72 BB161 CC66 CCl 1l AA3 AA67 408 401 309 407 418

- I -4 I 4 I 4 "1 4 I - I-AA51 AA38 BB591 CC5 8 BBI CC171BB49 AA33 AA44


2 455 437

- ** - * ~****~~*& . -... ,-~ . -*- I ~4 - I -

I Assembly Seral #-.

Insert Serial #- l* #J 12

L-2007-121 Attachment Page 13 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report Figure 2. Wide Range Channel B Boron Dilution 109H 0.8 0.6 05-

- 0.4 - 1 0.3 0.2 0.1 0.0 0 1000 2000 3000 4000 5000 6000 7000 8000 Gallons Diluted Figure 3. Wide Range Channel D Boron Dilution 1.0 0.9 0.7 -- -- ----

0 . .5 0.4 0.3 0.2 0.1 0.0 0 1000 2000 3000 4000 5000 6000 7000 8000 Gallons Diluted 13

L-2007-121 Attachment Page 14 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report Figure 4 POWER DISTRIBUTION COMPARISON WITH DESIGN - 30% POWER Measured: BEACON Design:

Peo P -e Levi 30.

00>

Isourte 012707!?21121 PCIM06162Fig 3.3.132:.

30.0%'**..: /

Elposo.o

...... OEFPO. a *...

Own onoc. 1439.1 27. R P 6 0 4 I~~ I 207 62 20 d24_

V

,.0.200 WD _

'0 10.400 2

0l.00 o

Ito7" J3.190 1

m3.

0.020 L1I1.260 121.

0.00o t0.030 4-06 0 00200 200 10 2- I I .2170 2 0000 12.a o" oM 10.610 0L70 0020 1206 - 0200 0.410 020O0 0000 12 0.200 0.600 0'`on,

, 2.4.... _ _ 16 21. U 2.3 00 I. I00 202 1200 290 00 21m i

or 096 019 0.300 0.090 10.280 1.310 3 .300 0-303 0-390 0-300 1,0 0.'1.0 0I.300 0.10 S 10.200 1,200 0.360 I.30 1.6 0.290 2.260 0,.180 oooo 0000 1o 0.00 0000 0030 0000 0030 020 '002 0000 Orn X 192 092 t91 090

11. 089 I 1n 080 002 024 0.0 082 080 0.300 0.I80 L.010 0.020 0.300 1.260 1.210 0.260 0,3860 0310 1,010 0.050 9280 630 0., 1.060 ,.380 0.210 0.250 1,200 0.210 0.290 0.300 0.060 0.0e0 0.3120 0.80 0.000 0.000 0.020 0.000 0000 0000 0.010 '00 '0000 0000 0.00 0.o

..0 0.9 0.9o I.5 0 00 0. 0 0 I0.0 0.8 a-o 09 00 019 o 18 011r13 16 15 01"4 172 071 170 069 60 1 16 0200 0.m90 .01.0 1200 1.280 0.280 0.9-0 1200 0.940 1.280 0.2 0220 0.060 0.50 1200 I200 0.58 0.060 022. 1.270 10.2 1 020 0.910 1.200 10l.1. 1'2.0 22 0.060 w 02=

0 0 j,-af. a , `L o I.0 o.0 0 0 o,9 P . 1.7 ao . t ) 39,,,o 59,..,In. -

00. 04 6306 062 060 09 10 057 15, 05" 000 05M 092 '90 0210 '.280 1220 0.20 0.260 0.000 3.110 .210 0N20 0.200 1.270 0.210 0.200 .2 0.100

.40 0260 02010 0.210 0.260 Lo.00 0200 0220 0200 0.330 n 0.260 0.210 0200 0.260 005 0.0 '.020 0 o 00o '000 .0.020 .0020 6-0.0 000 '0020

-.. '0.00 00 '0 00.0 000o 0.4 1.6 0.9 .0 00 -..0.0 3.o .22 2.0 . 0 0 0 0L0 039 040 031 246 035 004 000 000 030t 00 009 000 001 036 0.030 0220 0200 0.20 0.0 010 0060 0.00 0.870 0I80 0.000 0.210 0.200 0.08; 1600

.7900 0 10290 1.280 0.010 0900 0-90 L.270 0980 0.00 i.000 0.rn 0.200 0.207 0100 0200 1.400 0.260 0.9a 2.320 00170 0.260 0.100 0 0.- 0.300 0.900 020 0206 0.200 2 0010 3.4 1

'2

'.9 0o0.060 30a0m.0

- .3 -. 4 03

-00 0

52 00

4. 41

-r 6'"

.0 n 2 6-020 '0.0'0 1 032 ..3 0000 137 I'so 000 009 003 003 002 100 000 000 100 000 007 in 005 000 002 0310 0.010 0220 0260 0.200 0.20 01 0.000 3.19 0.08 0.060 0.200 0.220 05.2o 032.2 0.05 0 1310 1.6 6-rn

  • . ..0000 0.00 .. 020 0.03 ... 00 ..00*70 ".0.00 ... 000 .... 2000 .00 6-rn 0.020 0.020*-"

t4Jo *.o " t t0.2*00 ys '* 4 " - 1*.5 6.2 204*'7 5. 5'6

.3 -2.5 0.0 2.5 " 0.1/ 000 101 0 000 6-0 0 000 0 2000  : 202 . 0  : 0 00 2010.0 1 00 . 0 0 4 6- n 60 0 60 0 , 7 370 00 000 10260 090 0 060 0.280 00 010 060 032 0 .50 03 MM 06 0.3600 0.3 6-901 1 0200" 1 000-3 300 0.010 022 0900 0.350 092500 0. 0260 6 0.210 00 58 .12 .0 , - 14 5.6 201 9.8"2 '.0 2.4 2.6 0 61 6 61205 -3 962 9 54a 150 82 00 001 19 *10 7 16 19 14 13 12 10 10 69 60 6-rn

'0820 0200 0.300 0,.200 0.000 '010 '010 0.060 08.90 6-860o .rno 0.270 0.200 0280 020 2 0005 01790 0.200 0.200 0.200 2.030 6-rn0 6-n .06900 .* o .rno 0.ri ,2.20 0.200 100 L a--

amoo O.L .0L0 AMOL OOL O.OLO 47O aOl -"Ol 1 O OOO a-Ol u~~

O".OL

'40 0.28 0300 0.2 0.260 0.000 1 . 022 .100. 0 0.-0 0.20 0 0 0.2 10 '02 o..~

0,400 0.26,0 22200 0.20 0.260 0000 020*0 0.220 050 0.000 2.260 0.210 0280 0.260 L,rl 2.4 0.6 00 6-0 12.0 6-0 0.2" -92 -. ,1 -2.0

,0 .-.- 002 `4 08 52O *.90 00 4915 2078 41, 20 40a o.4/ 3327 32]7 40,. i0l0 05O L2 I-200 0 0.010 0.250 0.200 0.20 090 0200 6-920 2.210 0.210 0.2.0 0.012 '00 610 00 21 09 0 0 10 00 1. Us,8 a.0 .0 . 09:0. i.1 0 09 228 I 2t 7n 0 I7 211,320 I1.200 7.20 10,260 17.2 10300 Z

2221 0.326 0,10 121.060 1L.28 2 IO.0,0 O.060 ,0..3o I,0 1.20o i.,40 10 0 1,.290 0300 0,160 2 .040 0.300 00 . .9 0 0 .o0 o0.02 0 lo o OO .. o 6-rnI-2 I 6-0 I 000 . I0202 I 6-- Hoa-0 0,02 6r 00 '00 6r 09s 41 oo . 2 2*0 2 1.9 11*i .o 06 o 1,17 ,1 12. 29 3.0 2.9 3,o 22 2.9 0.0 13 0200 02 10.00 01 0.820 0o 0200 91:710 802001 6-82O 6 6-400 5 0.2.0 I 0200 0.w00 0190 0.0 40 0,00 04. -200°

.~:4 .,7 ý3.1 *.4 -, 3.7 L, 4 100100 1.2.0 02"0 020 RMS Deviation: 2.51%

t The incore detec ion system is operable per Appndix A RMS deviation should be less than or equal to 5.0% and meet the requirefoents of 4.7.1 if perfon at the 30 aecl 98 percent power test plateaus drinng the power ascensiou test program.

Key:1 Ki 14

L-2007-121 Attachment Page 15 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report Figure 5 POWER DISTRIBUTION COMPARISON WITH DESIGN - 45% POWER Measured:

Source ~62e12-e0t BEACON ilo4C2 Design:

PtM 06162 Fig 3.3.13:

Poer Leoi 42.1%tt :.

Eposor. 5.2EFP.I, CEAPos-tio .123 Boron Co. 1342.2 1212"' "a... I I L - K o*2 j

-1*0 °'& o.* )370i o.2 0300

ý290 0370 0.E 120

. ... . aa- I.- _ o, v 2.21 0 1.240 1.2as  : 0.422 032.1$

0210 0,410 0.020

]

1220 0.420 0.790 2.200 1,1 2.20 0.bO O790J. 0.410 I2003210 o.0o0 D 01010 0.000 0.220 a030 0.020 ).1200 01021 0

a. 20 .5 23 I.6 2.0 2.5 J a I o i t04 21,10 2,302 0090o 0010 1

1501 I 02o 002 I.9O

,22O 2.250 0020 1202

.300 2.200

.... 0020 120 2.070 1,390

.... 0.

299 2390 1270 JIM 2,370 23.0 I295 2.20l 020 an 00 2370 2390

.0 0.590 0.300 015o 02 0.0`

1294 1030 03

,.v 293 122 292 90 2-9 Jr. I.. 2ts 23 254 [2" 2m2 261

~2*

ý11 X

1.0 1.040 2.290 1.20 2.290 2.24o 21240 2.230 2.20 2.290 12.20 2.040 0.000 0.0% 0050o 0.020 I 0.020 0.0% 0020 1.H 00 0010 00 0010 00 00%* 6 0.020 I a.90`020 2.0 0.020 ao- O`0%

00 2.9 2.7 00 06 26 279 276 2"7 .70 275 174 253 172 271 270 219 204 127 12..

03l2 0.59 1.270 :234 I.9 1.9.10

,2"3o 2366 0.940 I.2O 2370 l.2l0 1.120 Sow 0n20 0320 0.,-6 L.1*2 23.0 `270 236 So0 0.990 1-230I 11270 2.290

`.240 00% 0220 O020 a0o 00.0 0-

.02 o0% o%

a- .0020l. a-0020 .O o10* 0oo 0020 0020 o0o

.2 .7 L.7 06o 00 00-O .ii I. 70 ,0 00 09 ,7 0.0 220 204 203 204 20 220 29 29 257 29 29 254 2:3 2w04 151 0420 2370 2.10 1230 .232 2.030 2 20.20 330 L2390 1.200 2.90 2.200 0420 0420 .230 1230 2390 .270 2.0 2390 S 240 2390 2.-o 1: 270 L,270  :.209 ,230 0420 0o. 00o0 0020 00% .O0O - o 020 -005 40205 .0.2o .-ono .0o 0020 000% 0020 0`.

I0 1.6 06 0o 06 70 . -.2 I. ,2.9 .3. .. 6 0

-. 00 as 00 250 249 246 247 40 145 204 243 242 242 m3 240 L,39 237 230 05210 2I00 i.0 1230 2.0 .0-0 0 ,Jo0 1.1 90 So 1.050 1o270 ,o06 2.290 00 0790. 230

.920 290"230 23 .040 0.0 0920 .920 1.0% L.o0- 2.20 2.0 0:790 00, 0 0OLO .000 - .

-020 030 "-o Wo .00 -030 -000 o.0220 0o020 0-020 0lO 9 0. 0 '0 . 3.22.

.. .0 .5-0 3,,4

- o.05 06 23s I 234 243 232 202 230 229 226 227 1204 225 224 1224 222 222 220 229 02Z9 i2390 2.300 1.290 0990~u 2330 0.090 1.260 1.200 12390 0.070 23]20 2 900 2340 23.40 2.270 00o 0030 .00% 00% 1-0020 2l2° 02 0 112. i.040% - a.o009 O-SII Ji.0040 O00O 2.03.I0 .0020 00%] m 0.020 0200 2.3 72 0LO3O.4 0 29-. 3.2 .3 33.4 3 2.2 0 07 .6 227 220 225 224 223 222 222, 220 205 200 207 200 205 204 203 22 00I3S0" a'.

"'7v.a.0 1.120 I.220 1.300 1.270an, -, 2300 20 2 , a-1340 3 2./20.20 -20 . 2i.190 12320 03

.n. 2,I30 1.230 3.3

- - 0 04 O4

,15 1.130

.0 .

I4"o000`

1.1291 2320 000°0

'1.32 I2I0 23m ., -,. ,,

t,0

o. 1.4

.2,02

-o02 12300 2 1+ , ,

0020.i 1,1,40 0.030 0.20O 0030 0020 O8.010 02 31.4 7.3 06 .s '. .. .5 2.*

I9 2.4 .2.9 0 .2. on 7 .u 9 00% I7 03 23 90 2.30 61230

2 o%:1 .... . .

90 1.5o 0 o`

7 .2 1.290 702 ., 3 35o .

2 30 74f ..

73 .

1.320 72 :o..

0930 5 1.24.

700 1.2.. oz 1020 1.

2 0 10 0 2 7o -

a', 1. 1. -V 112 a 2..-0 aBS 000 -020 020 .000 111000 92-. 00 ,4 009 ,.9 41 1.1 *.4.0.030 400O1.2 012000 020 02 1.6 I5 06 114 1.2

. - -5,3

.2% 02 '2300 239 230 2 00% 09 2.1 oo29090 0,70 0.% 2.l2 . I,270 1:236

.. 2%

.0120 *.0020 0020 0-020 a_ 0 0_0 070230 0020 230 00% 230000% 2.0% n0

.03a 0.920 .0.030 0.920 .0200 12320 4030 00% 40000 0.920 20 0 t020 D I' 2.0% 2.290 12366 7.190 0 Ali '.3

-.. 00 00 -'. -0.4 -4 -. 9 .41 .2.4 -9.0 ..6 o.0 .6 9

.2370 2300 5 923 230 o 2.0% 1.23 23 123 0 .2 2o 2. 0.420 042 290 12390 .270 2.040 2.390 .240s230 239012.70 2.0% 1270 2290 2.295 0420 0420 20 2.0% 0.02 2.0%

0.2 00 0020O o0% 3.020 a.00 3.020 .o0o -. 005 400o -0020 4.%

.5 II 1.-6 -2.0 -1.9 -2.3 -23 -0.0 -2,0 o3.5 0 0. 0.o I1 52 90 79 46n 47 40 415 2 43 40 42 so 39 In 0.560 2.2 340 2370 23 0 99 23 0.040 o.2-0 1270 2 090 O.22 0 02 002U 0 0.20 060 2.20 U234 2370 2360 0.950 1 .230 00 00%a 00% ý002 0.00 0.0%

0.0 0.0 1.7 0020 9 0020 0000% 0.0 00% 06 000 I .000% 1.020

0. a

.It2. .0120

... 00.0% 1.0 0.0 10.9 1,7 0.0 0300 0 17 12.30 1 2 12 .I02o 2390 2.27o 1.0 0300 0300 .00 an.1900 2 1 9 1240 12.240 l.250 2390 2.200 2.0% 0.300 2.0% 0020 a o00 o20 o 0020a02 O00 0020 2o 00 5 00 I.o 22.7 22. lo 26 20 206 00 0 ,5 26 o0% 00

,.v 124 20300 oO  %

031 10.0 0020 22 1.270 1.000 22 12.0 0030 0'O 1.390 100 29 2390 1so 26 12.0 I 0 27 120.

1. 200 20 0.20 29 039O 0020i 24 1.2.0 o0 030 1~~

o 117 12.6 2.5 2.2 2 23 100o .9 2.0 L., 00 10 I_ _ 17.1 0320 23:ý 0320o

.410 22 O.420 oa-m aoo 020 0.790 111 oao-12390 20 12320 91

,190 2.1200 t,250 61 L.2.0 oao-0620 3070 anzo~~

oam aý.11.6 0420 0420 oo*

5 020O 0.220 RMS Deviation: 1.82%

t A adiARMS deviation should be lessthnoeqltn50ad

i. perwtheede at=iV0 Krn 0 soeal whe ret oirowtin hico he~~~~~~~t deeao y ofstem and 98 percent power test plateaus d te power ascension uosing st prgr .

K-15

L-2007-121 Attachment Page 16 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report Figure 6 POWER DISTRIBUTION COMPARISON WITH DESIGN- 98% POWER Measured: BEACON Design:

Source

= " 1 0l29071025 PMM06102Fi'3.3:1.5 Poer Level W%.4 . 98.0%. . '

Exposur 25.0 E"PP EFPH" ' N CEAPosition 122 137 .

,xton*Coc. 1107.0 11.41.t." . R P N iM L J 2

V 213 i T 21,2 1t..

0i2 o ix to n t

20...

o2%

.20 29 20 li 1140 , .210 1,t20 1o21.

!:4t0 0.I90 0t210 22tO 0.430 0.690 .230 3.11t 1.240 2.21t 090 004.0 1o9 1 0 oo n-1220 0.9 .0 0.00 .090 0.09o 10000 I T 202 200 202 o01 290 59 tO tOO 09 1005 X 03 t3t0 r 13t0 300 I.070 o0090 3.090 1

1,t60 1000 t,2.0 190 I.030 10t0 I250 2o9 3.20 0.OtO t.3o

.330 30 1,20 o.0ut

.200 300 0.W 3.2.40 202 1.290 O.Oto 305

.,00 2.205

.230 204 2.00 0590 10,3 1,.250 o0110 L 02

-. o 0 1

~I1 e 3t10 .00 1.250 1.2770 2 .10 1.4 . 1200 1.200 1.10 11090 11000 11900 11030 o0.0 o..1t o1109 11902 #0ooo 11o 11020 OnoL 1 o0o2 1.0 179 :78 177 r6 :375 14 073 172 271 :70 t69 300 00 22 1.200 11600 3.200 2 0200 29 ,2.2 0900 3.20 11900 2.23 0.200 1.230 2.050 0.230 03tl 11590 31.10 3.230 02-0 2"t 0900 3.250 11960 12.20 0.20 0 .230 3.t50 0.590 0330 5 .000 .010+/-. O..

OlO .000... 0 0. 00 o "0o 0. ~ 0co. 'oo o.0o o50 0. o 00 o o.0 200 204 t3 262 t6t 00r 5e 350 057 50 35 054 200 050 tSt O.OO

&(noO OO omo o~o am ý.~a.Ol Ol aoeamOl a" mea oaoo

-o oe O.OL Im.ow aom 11420 3*40 2.2805 ,200 3.200 204 1.3430 3.2,0 1390 1.040 3.200 t.200 L2.2 .240 2.430 11030 11030 0007 0 #1.

0 11906 20 000

.001-0 1.000 -11020 11020 11900 11W, 11000 11030 1.1001 0.4 0.0 0.0 00 .o t.o -l.5 0l.0 -. 5 -0.0 1.0 0.0 0s 00s toO 350 345 040 040 246 040 344 000 342 042 290 039 030 230 2306 y 1130 3.200 0.030 0 1200 L0.10 05920 10090 1.220 10090 11510 0.040 0.200 2.200 0.200 0.090 110509 3.200 0.200 0.200 2.090 0090 10090 2.290 10940 10.90 0.050 03080 2.200 0.300 #.090 110t0 0.000 #0300 11We *.0031 .00 II* 0.0001l 1 96.20 .0.20z .. 020 110200 11000 11131 11030 0.W 03 110 110 10 1.011 - - .3.6 -.I.I2-.00 .o 1 0 0.0 0 133 232 133 030 20 29 000 020 225 324 023 222 022 0 30 11 090

.200 0350 0.5*.05*20 # . 0330 3.1i0 0.320 1 340w10 11050 3.040 230 3.240 a- 1.290 11320 0.330 11100 132411 11010 0000 6.0.0 0300 11600 11000

" 4.000 .o 2.3511 41.0002 0.290 4.026 0.350 0.00 10.20 .000 2300 41.020 .out0O 0.290 110021o 1 011900 0390 1U 0 0.230 11000 10

..5. o 3.. 0.3 0. .5 2. -03 -2. -0.5 0.1 0.0 0.0 0.0 026 015 1t4 223 022 00 0 200 1 102 001 09710 3 I000M330 10 1

.0-40 330 0.2020 0.250 0240 2.230 1.10 1130 0.300 .2320 0.230 1.2.0 0330 330 3.020 0.000 0.20 1240 10.25402 2290 11900 0.090 2.290 0.296 0.250 039.0 0.23 20 1 11 W 211100 0 1100 .3. 09 2 11000 4 410 4 412 11W21 1. 3 41. 1 212 0 -1100 - 0.02 11100 10.00 o11W .1000 -.1102 41.020 41.000 41*.000 4.020 .0,029 -0000 11000 101W 0.030

'.6 1.5 0.5

  • 0 .0 .0 11 0I.0 03 -.0 -0.6 1I.6 413 41.0 110 119 29 to, oý. 0]0 50o 00o .96o 0 04 93 00o 00 5 50 00 130' IM .7.

oaro 0300 0350 33540 11W. 133 110000 .000".. -0.300 23.2 0 1 390 . 1155 0 & as.230a339 1250 0 3.230 033 0 2390 .0 fi#900 33 .00 11 *000 1*0350 2 6.290 3350 119403 3j*0*030 11900 -0340 O 0390 0.340 11 9,4 I.5 00 00 .0 ~ 0 05 -.

- 23*5.2 -0 -I.0 0 981. I0 03.O 02 00 05 00 00 06 05 04 03 02 00 00 60 00 119 1 ,030 333 0.230 .290 0000 #520 3.220 11 110000 .1 0.300 3.200 2.30 # 400 oon) 0.720 3350 i220 0.23 0.00 115o 1153 2.2o 11530 1109 2.o50 3.23 0390 3w.20 10 11

.3olo 4.140 1 ....W 02.. 11200 0.0 41.200

-2W -11100 #W00 #030 03

- .000

,6 1110o 0.j

  1. 030 00o o.o..

i ~ I.j .2. .Ij.6 U.....

?J . I..9 .. -'1.. 1,0 090 13 0.420 66 00 64 3 6 635 0 54 50 50 o6 5174

. 4 11640 2 30 M. 2.20 0260 2.0 230 3.240 1.3I0 2.5 1;2 3,270 2.3M0 0420 140 0 3.30 .O 0.20 . 2.0 oo 0 .30 3.20 23 2. S0 0.2*00 3370 2.330 o.o4o 1.0 1 11000 I. 11W W 11W. -o.030 2 4.000 .1.0 4.0 1.000 o 03 11o #030 11030 114 0.0 1 10 0 0- 1o 10 0 10

. 41.0 -35 .0 1.0 4.3 1.1 110 0.4 4 103.0 .0. 10 10 11112

]IN 1 00 41. :10 110 117 130 0.0t 0.2o 1. 10.1300 0.0 630 0 0.23 100 0.250 .1W 2.290 3300 0.230 0.350 0.0 0.220 0.220 0.510 1 0. 0 0.230 2300 an.033 11W 0.200 233 0.350 3.20 0. 230 0320 a.5mO 1 11 11W. La09 0.0 00 INW 2000 11W 0 1#0 0W 00 M0 3 5l 1 3 32 33 310 ,0 ,20 20 120 6330 I.W* 3.050 1`2.20 3300 3.240 1.240 33240 0.200 0.200 0.350 1,.W 0,330 0.ooo W 11020.L 0000 11030 0.000 11030 11Wc #000 11000 0.030 1020L 0.oo

.1 63030 1169 334 0.20 0.36 0.290 23.30 13.200 10.260 11110 O-1032 o1W 09 0. 000 iI10 000 58 1020 11001W . #00 " M 103 10 11090 00. . 1100 01rn

  1. 027 I -:,111 62 11429 11W 0350 0.330 3350 o.W 11420 03210 6010 11410 1090 2.440 0.300 0.30 0.090 11400 0210 1tW 0900 11000 000 0.1o 1112 0020 11330 11000

________ ~ ~ .- t----- ---- 6~ 6 ________ 36________

4 3 2: I RMS Deviation: 1.15%

rhe incoxe detetion system is operable per Ap dix A RMS deviation should be less than or equal to 5.0% and oelt the requireooents of 4.7.1 if pertonmed at 30 and 98 percent power test plateaus during tile power asoension Key:

et pogram.

16

L-2007-121 Attachment Page 17 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report Table 1 Cycle 21 Reload Sub-Batch LD*

Sub-Batch Number of Assemblies S4 1 AAl 20 AA2 8 AA3 32 AA4 16 BB1 4.

BB2 16 BB3 16 BB4 32 CC1 4 CC2 16 CC3 12 CC4 36 CC5 4

  • Reference 6 17

L-2007-121 Attachment Page 18 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report Table 2 Approach to Criticality Dilution Rate Initial Boron Final Boron Approximate Dilution Concentration (ppm) Concentration (ppm) Time (minutes) 132 gpm 1762 1687 21 88 gpm 1687 1587 64 44 gpm 1587 1562 110 18

L-2007-121 Attachment Page 19 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report

Background

The St. Lucie Unit 1, Cycle 21 startup from refueling successfully utilized the Startup Test Activity Reduction (STAR) Program in accordance with Westinghouse Topical Report, WCAP-16011-P-A, Rev. 0 (Reference A-1). This was the first application of the STAR Program at St.

Lucie Unit 1. The current implementation eliminates the CEA worth measurement only and there is no change to the MTC testing requirements. The conditions and limitations of the NRC safety evaluation for the STAR Program topical report (Reference A-i) requires that "each licensee using STAR to submit a summary report following the first application, either successful or not, of STAR to its plant. The report should (a) identify the core design method used, (b) compare the measured and calculated values and the differences between these values to the corresponding core design method uncertainties and (c) show compliance with the STAR applicability requirements. If the application of STAR is unsuccessful, identify the reasons why the STAR application failed."

This summary report provides the NRC with the required information specified in the Conditions and Limitations section of the NRC safety evaluation for the STAR topical report.

Core Design Method Used The core design method used for St. Lucie Unit 1 Cycle 21 reload core was the PHOENIX-P/ANC code design package described in Reference A-2. The PRISM code described in Reference A-3 was used for the alternate method calculations.

Cycle 21 STAR Program Test Results (Comparison of Measured and Calculated Values)

A comparison of the last measured cycle values (Cycle 20) and the corresponding calculated values for the key physics parameters is provided in Table 3 along with the design method/analysis uncertainties.

19

L-2007-121 Attachment Page 20 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report Table 3: Key Parameters from PSL-1 Cycle 20 Parameter Measured Predicted Safety Analysis / Within Criteria?

Design Method Uncertainty BOC HZP CBC 1449.7 ppm 1456.0 ppm >100 ppm Yes BOC HZP CEA WORTH 394.25 pcm 419.00 pcm 15% Yes (Bank B)

BOC HZP CEA WORTH 543.26 pcm 512.00 pcm 15% Yes (Bank 3)

BOC HZP CEA WORTH 543.26 pcm 522.00 pcm 15% Yes (Bank 7)

BOC HZP CEA WORTH 597.70 pcm 608.00 pcm 15% Yes (Bank 5/6)

BOC HZP CEA WORTH 716.28 pcm 733.00 pcm 15% Yes (Bank 2)

BOC HZP CEA WORTH 760.82 pcm 740.00 pcm 15% Yes (Bank 4)

BOC HZP CEA WORTH 754.56 pcm 762.00 pcm 15% Yes (Bank 1)

BOC HZP CEA WORTH 896.36 pcm 925.00 pcm 15% Yes (Bank A)

BOC HZP CEA WORTH 5206.50 pcm 5221.00 pcm 10% Yes (Total)

BOC HZP ITC 0.538 pcm/0 F 0.628 pcm/°F 1.8 pcm/IF Yes Power Distribution (RMS, 0.80% +/-5.00%

  • Yes 30%)

Power Distribution (RMS, 1.12% +/-5.00%

  • Yes 45%)

Power Distribution (RMS, 1.09% +/-5.00%

  • Yes 98%) 1
  • Procedural limit based on guidance in ANSI Standard 19.6.1 - 1997.

The measured to predicted values for Cycle 20 were all within the acceptance criteria and design method/safety analysis uncertainties. This demonstrates compliance with Applicability Requirements of Table 3.4 for "Core Design", Items I and 2 in the STAR Topical.

Table 4 provides a summary of tests performed during the startup of the current Cycle 21.

20

L-2007-121 Attachment Page 21 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report Table 4: Summary of Tests Performed for Cycle 21 Within Test Locatio. .Criteria CEA Drop Time Shutdown . Test results located in Section III of this document. YES CEA Drop Characteristics. Shutdown CEA coupling verified by CEA drop characteristics YES

.*.C. IHZP Test results located in Sections IV and V of this document. YES ITC ,HZ.P Test results located in Section V of this document. YES lMiTC Surveillancew . HZP Test results located in Section V of this document. YES Incore Flux Symmetry Low (30"o) Test results located in Section VI and Figure 4 of this document. YES I(c're Power Distribution Intermediate'

(. Test results located in Section VI and Figure 5 of this document. YES Incore (98%) Test results located in Section VI and Figure 6 of this document. YES ACBC HZPr.sHFP HF 98 The difference in boron concentration was within 3.5 ppm of prediction. YES p .. .

21

L-2007-121 Attachment Page 22 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report Compliance with STAR Applicability Requirements STAR Applicability Requirements are conditions that must be satisfied to use the STAR Program. The STAR Applicability Requirements are provided in Table 3-4 of Reference A-I and provide assurance that the core can be operated as designed when used in conjunction with the proposed tests. The STAR Applicability Requirements involve the following areas:

S Core Design 0 Fabrication 0 Refueling 0 Startup Testing 0 CEA Lifetime Conformance with the STAR Applicability Requirements is documented in accordance with plant processes and procedures. Demonstration of compliance with each of the STAR applicability requirements was documented in STAR Cycle Specific Startup Test Checklists that were completed during the core design and startup testing for Cycle 21. Attachment A-I contains STAR Cycle Specific Startup Test Checklists that verify the applicability requirements of Reference A-I are satisfied.

References A-1. WCAP- 16011-P-A, Rev. 0, "Startup Test Activity Reduction Program," February 2005.

A-2. WCAP-1 1596-P-A, "Qualification of the PHOENIX-P/ANC Nuclear Design System for Pressurized Water Reactor Cores," June 1988.

A-3. SIEMENS EMF-96-029 (P)(A) "Reactor Analysis System for PWRs," 1/8/97.

Core Design Applicability Requirements 22

L-2007-121 Attachment Page 23 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report The core design for Cycle 21 (cycle for STAR implementation) consists of the following:

  • A cycle length of 16.8 EFPM
  • An average enrichment of 4.08 w/o U-235
  • A maximum enrichment of 4.3 w/o U-235
  • A reload of 72 fresh assemblies
  • A burnable absorber type of Gd 2 03
  • A CEA absorber type of B4 C
  • A low leakage fuel management scheme Requirements from Table 3.4, "Core Design" section (Pages 3-9 and 3-10) in WCAP-16011-P-A STAR Topical Requiremen Applicability Requirement t Satisfied Requirement Yes / No Core Design Item 1 See Table 3 YES Core Design Item 2 See Table 3 YES Core Design Item 3 Cycle Length (first bullet) YES Core Design Item 3 Average Enrichment (second bullet) YES Core Design Item 3 Maximum Enrichment YES (second bullet)

Core Design Item 3 Fraction of Core Reloaded YES (third bullet)

Core Design Item 3 FuelType (fourth bullet) YES Core Design Item 3 Burnable Absorber Type YES (fifth bullet)

Core Design Item 3 CEA Absorber Type YES (sixth bullet)

Core Design Item 3 Fuel Management YES (seventh bullet)

Core Design Item 4 CEA Worth Reconciliation YES -

(first bullet) Within 5%

23

L-2007-121 Attachment Page 24 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report CEA Lifetime Applicability Requirements Requirements from Table 3.4, "CEA Lifetime" section (Page 3-11) in WCAP-16011-P-A STAR Topical Requirement Applicability Requirement Satisfied Requirement Yes / No CEA Lifetime CEA lifetime requirements consistent with the St. Lucie Unit which YES 2, 3 1 CEA lifetime adheres to the STAR Topical program/evaluation, management criteria on CEA Lifetime?

24

A.

L-2007-121 Attachment Page 25 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report Fabrication Applicability Requirements Requirements from Table 3.4, "Fabrication" section (Page 3-11) in WCAP-16011-P-A STAR Topical Requirement Satisfied Applicability Requirement Yes / No Requirement Fabrication Item FPL final core design/burnable absorber letter in agreement with La the final manufacturing document to ensure STAR Topical YES Applicability Requirements Fabrication Item l.a.

Fabrication Item The STAR Topical Applicability Requirements Fabrication L

.b, 1.c Items L .b and 1.c are consistent between FPL final core design/burnable absorber letter and the final manufacturing document (for each rod type).

Fabrication Item STAR Topical Fabrication Item I.c (2) is consistent with the 1.c (2) fuel design requirements (fuel assembly orientation)? YES Fabrication Item The STAR Topical Applicability Requirements Fabrication Item Ld 1.d for each fuel assembly is correct per the requirements of the YES FPL final core design/burnable absorber letter.

Fabrication Items For new CEAs, is the final manufacturing document is 2.a, 2.b, 2.c, 2.d consistent N/A - No new CEAs for with the design specifications for STAR Topical Applicability Cycle 21 Requirements Fabrication Items 2.a, 2.b, 2.c, and 2.d.

25

L-2007-121 Attachment Page 26 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report Refueling Applicability Requirements Requirements from Table 3.4, "Refueling" section (Page 3-11) in WCAP-16011-P-A STAR Topical Requirement Requirement Applicability Satisfied Requirement Yes / No Refueling Item 1 Core verification YES Refueling Item 2 CEA coupling YES 26

' I.

L-2007-121 Attachment Page 27 of 27 St. Lucie Unit 1, Cycle 21 Startup Physics Testing Report Startup Testing Applicability Requirements Requirements from Table 3.4, "Startup Testing" section (Page 3-11) in WCAP-16011-P-A The measured to predicted value for the ARO HZP CBC difference was 1.0 ppm for Cycle 21.

STAR Topical Requirement Requirement Satisfied Applicability Yes / No Requirement Startup Testing Item 1 Measured to Predicted ARO HZP CBC YES 27