AECM-81-353, Forwards Responses to Hydrogen Action Items,Committed to in

From kanterella
Jump to navigation Jump to search
Forwards Responses to Hydrogen Action Items,Committed to in
ML20005B884
Person / Time
Site: Grand Gulf  Entergy icon.png
Issue date: 09/11/1981
From: Dale L
MISSISSIPPI POWER & LIGHT CO.
To: Harold Denton
Office of Nuclear Reactor Regulation
References
AECM-81-353, NUDOCS 8109160069
Download: ML20005B884 (71)


Text

{{#Wiki_filter:, MISSISSIPPI POWER & LIGHT COMPANY Helping Build Mississippi P. O. B O X 164 0, J AC K S O N, MIS SIS SIP PI 3 9 2 0 5 September 11, 1981 NUCLEAR r'RoOUCTioN DEPARTMENT U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Washington, D.C. 20555 Atto: tion: M:. Harold R. Denton, Director

Dear h. Denton:

SUBJECT:

Grand Gulf Nuclear Station Units 1 and 2 Docket Nos. 50-416 and 50-417 File 0260/L-860.0 Hydrogen Action Items AECM-81/353 Attached are the responses to the hydrogen it-ms which were scheduled for submittal in September, 1981 in our letter AECM-81/298, dated August 18, 1981. This submittal reflects efforts to expedite the schedule for submittal of hydrogen action items as committed to in letter AECM-81/336 of August 31, 1981. Yours trul! L. F. Dale Manager of Nuclear Services RMS/SHH/JDR:Im Attachments cc: Mr. N. L. Stampley y 3 l'. h(L g) Mr. G. B. Taylor s Mr. R. B. McGehee 8gy*$'1 Mr. T. B. Coe.ner 15 0 Mr. Victor Stello, Jr., Director p' @ Office of Inspection & Enforcement U.S. Nuclear Regulatory Commission g/ j Washington, 3.C. 20555 0{ 0 k iI p 8109160069 810911 A DR ADOCK 05000416 PDR AE3H1 Member Middle South Utilities System

k The following responses to the hydrogen action items listed in AECM-81/298 are provided as attachments: ~ Attachment Action items 1 1.1 1 2 1.2 3 1.3 4 1.4 i S 1.5 i 6 1.6 7 1.7 8 1.8 1 9 1.9 10 1.10 11 3.1 l 12 3.2 13 3.3 14 4.5 15 6.1 16 7.1 17 8.1 18 9.1 19 10.1 1 i f f 1 l 1 I j j i i ~.- _.,____.-....,

Attachm. int 1 to AECM-81/353 Page 1 of 6 1.1 Clarify Igniter Locations (centerline)

RESPONSE

Table 2-1 (originally submitted in AECM-81/221, June 19, 1981) has been revised to clarify actual igniter elevations and dimensions to center i of containment. See also Figures 1.1-1 through 1.1-8 and Figures 6.1-1 through 6.1-6. i i i e l 1 l I t i 5 ) ] 4 - = _,,.. -. ,,-..,._,,,....--..-,,,m.....,._,,.e...-..,,-wm,--.,_ to AECM-81/353 GGNS Page 2 of 6 TABLE 2-1 HYDROCEN IGNITER LOCATIONS (SEE NOTE 1) s Dimensions to Floor Azimuth Center of Supporting Igniter Equipment Elevation (degrees) Containment Member Elevation Number 100'-9" 0 27 '-7 " W10x15 11 3 '-6 D100 100'-9" 60 20'-0" W10x15 113'-6 D101 100'-9" 125 30'-2" W10x15 113'-6 D102 100'-9" 180 23'-6" W10x15 113'-6 D103 100'-9" 240 25 '-9" C10x15.3 113'-6" D104 100'-9" 310 29'-10" W10x15 113'-6 D105 120'-10" 20 51'-9" Conc. Slab (B.O. Conc / Deck) D124 136'-0" 120'-10" 47 53'-0" W27x114 132'10" D125 I 120'-10" 75 51'-9" Conc. Slab (B.O. Conc / Deck) D126 132'-10" 120'-10" 107 51'-9" Cone. Slab (B.O. Conc / Deck) D127 132'-10" 120'-10" 135 51'-9" W30x116 132'-10" D128 120'-10" 165 51'-9" W30x116 132'-10" D129 120'-10" 195 51'-9" W30x116 132'-10" D130 120'-10" 220 60"~0" C10x15.3 145'-7" D131 120'-10" 253 51'-9" Conc. Slab (B.O. Conc / Deck) D132 134'-4" 120'-10" 285 51'-9" Con.Clab (B.O. Cone / Deck) D133 134'-4" 120'-10" 317 52'-8" W12x27 134'-4" D134 120'-10" 349 51 ' -9 " Conc. Slab (B.O. Conc / Deck) D135 136'-0" 114'-6" 0 22'-10" W12x19 146'-3" D106 l l l Sheet 1 of 5 l 9/81 .,. ~..,

.., to AECM-81/353 GGNS Page 3 of 6 TABLE 2-1 HYDROGEN IGNITER LOCATIONS Dimensions to Floor Azimuth Center of Supporting Igniter Equipment Elevation (degrees) Containment Member Elevation Number i 114'-6" 63 29'-3" SG-13 145'-7" D107 114'-6" 120 29'-8" W14x30 146'-2" D108 114'-6" 180 26'-3" W6x12 147'-1" D109 114'-6" 240 29'-2" W24x100 145'-7" D110 114'-6" 313 25'-2" NG-6 145'-7" D111 j 135'-4" 16 51'-9" Conc. Slab (B.O. Conc / Deck) D136 166'-0" 135'-4" 36 53'-6" W18x50 160*-4" D137 135'-4" 70 51'-9" Copnc. Slab (B.O. Conc / Deck) D138 157'-10" 135'-4" 100 51'-9" Conc. Slab (B.O. Conc / Deck) D139 157'-10" 135'-4" 135 51'-2" W18x40 160'-4" D140 135'-4" 164 51'-9" Cone. Slab (B.O. Conc / Deck) D141 155'-10" 135'-4" 196 51'-9" Conc. Slab (B.O. Conc / Deck) D142 155'10" 135'-4" 226 61'-4" C10x25 165'-0" D143 135'-4" 260 54 ' -2 " W6.x50 160'-4" D144 135'-4" 285 51'-5" W30x108 159'-4" D145 135'-4" 321 51'-5" W30x108 159'-4" D146 135-4" 344 51'-9" Conc. Slab (B.O. Conc / Deck) D147 166'-0" 147'-7" 0 27'-4" W14x38 160'-6" D112 9/81 Sheet 2 of 5

Attcchment 1 to AECM-81/353 Paga 4 of 6 GGNS TABLE 2-1 HYDROGEN IGNITER LOCATIONS Dimensions to Floor Aiimuth Center of_ Supporting Igniter Equipment Elevation (degrees) Containment Member Elevation Nember 147'-7" 60 29'-9" W10x29 160'-6" D113 147'-7" 135 27'-0 3/8" W18x50 160'-6" D114 147'-7" 180 26'-10" W10x19 160'-6" D115 147'-7" 232 26'-1" W18x50 160'-6" D116 147'-7" 324 26'-4 5/8" W16x40 160'-6" D117 161'-10" 0 26'-4" W14x78 179'-0" D118 161'-10" 65 26'-4" W14x78 17 9 '-0" D119 161'-10" 125 26'-4" W14x78 179'-0" D120 161'-10" 185 26'-4" W14x78 179'-0" D121 161'-10" 245 26'-4" W14x78 179'-0" D122 161'-10" 305 26 '-4" W14x78 179'-0" D123 161'-10" 30 61'-0" W18x96 182'-9" D148 161'-10" 41 49'-0" Wall 167'-8" D149 161'-10" 70 46'-2" Wall 168'-10"/ D150/D152 178'-10" 161'-10" 109 51'-5" Wall 178'-10"/ D153/D151 168'-10" 161'-10" 136 51'-9" W27x145 182'-4" D154 161'-10" 254 55'-9" W24x66 182'-4" D155 151'-10" 278 47'-7" W12x27 183'-4" D156 161'-10" 293 58'-11" W24x130 182'-4" D15'i 2o1'-10" 320 53'-2" W12x50 183'-4" D158 Sheet 3 of 5 9/81

-. to AECM-81/353 CGHS Paga 5 of 6 TABLE 2-1 i HYDROGEN 1GNITER LOCATIONS Dimensions to Floor Azimuth Center of Supporting Igniter Equipment Elevation (degrees) Containment Member Elevation Number 184'-6" 21 50'-4" Wall 202'-0" D159 184'-6" 32 42'-0" Wall 202'-0" D160 184'-6" 59 44'-0" W12x27 207 '-9" D161 184'-6" 74 55'-8" Wa11 202'-0" D162 184'-6" 88 48'-0" Wall 202'-0" D163 184'-6" 90 22'-0" Wall 202'-0" D169 184'-6" 90 34'-0" Vall 202'-0" D168 194'-6" 90 37 '-0" Wall 202'-0" D167 184'-6" 90 45'-0" Wall 202'-0" D166 184'-6" 92 48'-0" Wall 202'-0" D164 184'-6" 106 55'-8" Wall 202'-0" D165 184'-6" 135 55'-8" W14x61 207'-7" D170 184'-6" 210 49'-6" C8x11.5 208'-4" D171 184'-6" 242 26'-8" W36x300 204'-11" D172

84'-6" 256 53'-8" W36x300 204'-4" D173 184'-6" 284 53'-8" W36x300 204'-11" D174 184'-5" 298 26'-8" W36x300 204'-11" D175 18 4 ' -6'-

310 56'-6" W12x27 107'-9" D176 184'-6" 341 55'-0" Wall 202'-0" D177 Sheet 4 of 5 4 9/81

Attechment 1 to AECM-81/353 Page 6 of 6 GGNS TABLE 2-1 HYDROGEN IGNITER LOCATIONS ABOVE EL. 208'-10" e' Igniter Azimuth Hanger Support Equipment Elevation (degrees) Member Nurber 262'-0" 6 QlE12G018C34 D178 283'-10" 34 QlE12G017C18 D187 262'-0" 48 Q1E12G018C36 D179 283'-10" 81 QlE12G017C20 D188 262'-0" 91 Q1E12G018C38 D180 133'-10" 127 Q1E12G017C23 D189 262'-0" 140 Q1E12G018C42 D181 283'-10" 152 QlE12G017C24 D190 295'-0" 158 QlE12G017C06 D195 262'-0" 183 QlE12G018C44 D182 283'-10" 199 QlE12G017C26 D191 262'-09" 225 QlE12G018C46 D183 283'-10" 242 Q1E12G017C28 D192 262'-0" 268 Q1E12G018C48 D184 283'-10" 286 QlE12G017C13 D193 262'-0" 333 Q1E12G018C32 D185 295'-0" 349 QlE12G017C01 D194 283'-10" 349 QlE12GO 7C16 D186 Note 1) Igniter locations shown in table may vary up to + 2 feet in any direction to accomodate actual field conditions and igniter support design. Final field locations will be provided prior to fuel load. Sheet 5 of 5 9/81

a & ge w.'. &.. &.Ga p %10td Mk.M".40UlPCCNT UST iam o 4 'T, a f

d. he i, au.a rA F'6" i

b. r..-....:... 4 s,.. ) v . s., .r.,. _. gg 3,. .s_..< (3 3 o. !,)__g..y Y T e' . C.. ..v. euuilNG u.-

2..v

.evy _

  • T 29

-- oeo.to% _ _ l , l .u 1 + ,jI,T 1 -o-m a: a.y l:.e , gig e ,p.- .-.e j r qQ..p, 3 9+c .~. ,. e g-% _ ab;v Mi ,t......... N'f.g$g6 h, i ..7. m 1 .k.... _ li W' N fi.' QT-jYt R b. .. y a f e.- e,'1 a E =::: =: w <.e. o s . b =. - -. pr.~1,_s 7 m-. 3 6 ., t. g, s -+x ,&."<. m. ,r W l l1 ,g. .~., __m,. _m:.. - -l, y, 3.3 g m,.~ < ,: - a. L i 1 cc. mo; l.... we j w w. w 1 p. %a,.p-n..p ... e.]mi

m. m

. t .e

q.r n. s g,

eW aJ i gj: r"'.'W..,g. 3. c.I+y., W-4 ! j ;. .ym { .. W.t.. : - - j'- p I'. ,,, i.h,.. g f a -. = = 1m +-~ d e* I E U "" %,O 4 g f y q.- -4s F g*,,,, l } ,, l::

==

{_ m nw r 7' + '3.r-m';;-n. [M.-1-'. l.".... ":r..:- O * ' 4.. L. ? L.:.,. 2 eL/ .....,c '/ 2 n. m.. .. *. n.o 2 I 3 I diU/MM.J I 0 ".T. '.f. '. 'A '\\ - / f *1* / /h, . ~.. m N i . e'A lt"' 6 1

l -.m.

l .4-y f A' ,7 ....+J;;h-w.ppi 1im.i._, %u.m.. cd .s .r. )Qt / - s; f(. 3 r e e,,.. af ,<l', 4-+

c. -

, s 4a. 4 s 1 +'.m o.:p,j .g M / 4~ ..r oae 7 j g.c.r

  • e.

,.,q I g' N u, ? ,Y .gM f *>', ..tn g / -g ,,,,y E Ge M w h D, Q 6 M,, M p a... t ,, -o u, a L_. -[l ,( T. i'!_m.g '._*.=. w ... rr ._.4,,', e.9 i m, e. %.

t. c..

u-.

r\\

r. w. \\es &s. s/ x

l......

w.a : i i ,np% w e-i 7 E, R. -\\b'..gt'Y.# v',W, f.U,n:p.4. W>s .>p 3 i . +' ,L ..aa.ias d,. \\,<;g,% & d'J' s y es y X.f. '..,,%.i _ v 4..G.. ~1 A M< H o w.:'g

d. \\

,,.&. 1r Q. g 1 ,[ %p. g\\ f-c. L- .y a, p 5 4 N _c, s, u. c.s,.. f... s c,.,n.e. iu,..,.,.,... -..... ~... x .~ r,o ,.....m 2e . J p. 'r = ,t t_ __ f.y p iN u.u, >4 C "" R ~ '*

"~ir.

, 1"i W %p7 l 4-7 _(l .u-1 -.... w - . = -~. .. *nT pF.i L. _ - g ? A~.T-. .~.m, . L ,...,.,m n, tj... @",,.., ,I l ipdd. ~4i.. u.. .w.. m ,~ - ; w.t 2 .w i -j ~,f. 4 ../ w Q.,&, a.+ r# g.4e i .t. i s.,,

  • g

.l _or. -1 3 Q .M.. ,.S..- L. g s.,! 1_'- pJ<. er y a 4 \\,l, l, y.4/ p.u"rtb: O'*... w._ g l m "=='Mv-M.,.' f,l. 9 ,.x....., l . y - f] ~ p h.,J 1 _ _.L9 a ..n.. u .,.gg;

  • y.q( gy. '.rq.,., {}.7.&, 76*

/..,,.. 4 .v =.. j

. t,::":

=!=*: 4 -,__.; y. ;; , t g o,.

.s
x. v s.

/ ar J s ,,m . - a.~, <- s J-c.s.,,,,,, '. m .. v u. . J, J,. p w. .. U::::::

.r.n:

{ ,, p......,M..:.:..:.:.:,',:.: iq f c ___,"_"'g,ag....m,_s.,I g; 2: y 1 .4 4- %.g q a i _,,. I p s h_,e.;w.a y 1 -,{ p-.g _ . j.. n a r..:. _.--.-r- .-.-...d + { s,o.c s e .,C-i -l , j< ' i .m m.m..... )

  • i. suc -

i :, v, E

==* ..'.%.E,..,.<.ee. ..,. d a M. C g; l 2 n.. s .e ,9 y .ro s-p ~. - + bn ~/ w t v A b r I i 8 7 l 6 l 5 l4

1 l . ~.. qh <*.rd. rc. N m*3-I 1 r m. \\ ........ - ~:n,sa j s ~57# i n ~ ' ' ~ ~ ' ' ' ! ~- (9 e, a _ . g .J l g., ..v n. h$, i j@ ,,,,,,f M* ger ue. m&-

i i

l63 hI mr i.:;.'.t..,c'.l5 c i-.; @ 4- @. WM. -n ay#.,y ~

m..a

.*l N t, i t' w.... 1 %',ff3 'L, GQ :y G4;

4, L _ e_

i.........,,... -J.,1+, x m. y 4*P' N s t y *L e si

  • g

c t 1: m 3.,Y sM I 4 i

  • * ~

r hss ,eI q -w[,, - 4 .u e> c. u c i .p. q,_._m p g, y. >g4 EQUIPMENT LIST - o. 3 Wa f,I m E.1 .. n

g mm

%,.1,-u{; a ..u..,.. 9d.i h 4_ (qm 7 i..-_.. . i... m n-. __1

  1. - n w%:.

s 4.h, I._m. _. i %'.1.45%f-" n ~ 7 e e.

h. -..====

l. C a'E! N _'N ,, c __.. ? C l \\g\\ vv.u il v a a. e c. -e g i ~.a m..=. c -A j... 4 . w. - 3, a .=a.

  • =e-

=m.. t we m. s.mo.as e.ame.s. 74 \\ ,s.p, C. ,,,,,g J. ~ = ~~~~-a _,,,T,..m. v[ ~ -.*P%

  • d T Ra*Os AW w

I e p t.au.sser.' g g '4 y y .. " = Hg I .wwo.c %. E to.sm oc*om enn A \\ u

  • Ig

-wa -. . = * *. l III I O O g-g W .c. 4 NOTES d-_2 ?. w" 4?tMR1 *'f *' I?"_ _ A. 6,is siLJ ART-a.A.L D*NG,~e.qTf ens AL upt.kS fR A y' u v-v a. A.= **=T oooms otsisNaTEo av aro r, l p g &CA CESrGNATES CONT AOLLED A ESS l .'j.c. I sA.. i ah .e#DaC AT",. 3 AE P.0va st manLLS FOR ./Q. [.. i. l s em>+ar s,a6tmT oM

a. Movat -.

FOa Comes aC ? TON OF'E nn AND BLOCM , f 's', f WALL DEST., 6ft ARCH G A-6eOO ,g ( \\ ^ _ _, &.a& is.DiC ATE b F.RE.eO SYaTmDed .,--w ee g Y[ ,G & M ee serDC ATES em,E g I ^[ b 7 aLL INST AvMENT CMS weseCo. AME &*90WN l ,g Osa T.e*S C# AW' mar a GMOF FasmeCAf f D. ,(4 l Hi r* .adST 'MG MT RAC seg $EE FO.A.AD.DITIOMA l g 4 oA. 3s ,,, c p y/ e ,s-o.. os g,, 3 y. q+ 3-C l n o. #,so,, a .i. M.m

,1 n-.-

e su awir. no 3 a.. a e .. o. u u.. .... a C.T.. A.s.T., 1 - - - 1 l*),,gl - u,.. - H,g) s.. u n s s L. n - w s e.os man, asar. s k M-4 Q. a, i". f* '*5 c' 'q N t m., ~' +m w = q 3 9' 7;,hJf. .g c....

  • r,. g a C ~... _

[t o rn. ~ u e e i.- 1,? 3fMl.p i = mme o-c~ m . ~.. e,. q n:T&gw g@ a ._. t o,,,,,_,,, b c~ Rt /gle*?*b,'An W l lj I y '~l (.. U.- t 0..e e n .m..,,, ' 5 4 I t, ; P-1_o)... S _. s. Q l MISSISSIPPI POWER & LIGHT COMPANY + - " r E C' d GRAND GULF NUCLEAR STATION (!$ ,..d. UNITS 1 & 2 l l n..- i... HYDRGGEN IGNITER SYSTEM 4,h . Ti fi i HYDROGEN IGNITER LOCATIONS STUDY f {*C EL 93'-O & 100'-9 ,i I .a. UNIT 1 1 \\ l FIGURE 1.1-1 J 4 1 3 l 2 1 1 8**" 'S

l %f - 2 Ell-W-Ns l ' ON bWl -M/ EQUIPMENT UST )

w..c.

x p-. .. W% F-* g s.. T e , =. =. =....

= -

m p V.. Mk=.::::==: i25? r _ -Ii,.....' @r,,. 9; ...,. @..w\\ f) @1 ~ x n.. momo .u u ..,,,m-. _.d, i. --s l <=n a o a +e

2. m,,.u e.ae,,m..

-y,u .m f-,-...m a

' r.

W ~. <j " O.. 'i:11*. eg# M -

s. ': t.r ;"'g..y.h

~%.1 3&r u, ",' 7'

    • '"*"**? C .. Ma.
  • '*".U,**.

,. 4 r 32, ikl i F-J _+p zo \\ h / r-s. .=

w. co,.n. e

} w.. mM_sg s ..,o -) ... _ i, pr-A., t y 9 + p - [ _j,,, $,(,. g,%,,,,6 q 9 e u..

2. ro w we
i. l 5 3

l .,os.o l is +., {,.s - cw ts -o.- 4 m a= p. i m ms. n.m a ' c "*a*3-,, ,r-- l j ~~1 2 ..,g jj. .=s.u.m 2..e }[ --

-,_,}sH i a i1

- u". ..c e ..s... 5 \\ w f I - J "* P l ', ef p i yl - i.=. COf.TR1 $2 [1 '9 ;

  • '9l p

-. ;tip((g g,h'D r.D4 a e Q".*c t [ s BUILDING 2y. + .tr+, f. I 7 p. ] 'a* M -e .{ m o.,c.s..c.. i.._....... ' m,.. m "6av ~J2..R" 1 w*,.. t a s .wlmh hif,...y,.by%r"g&c. y m" y { ? ~:K.~2._2. Q h. + .t. 9,,, t, s<, y.= Mg 7,,.7 _ g i

"= ::n.

, J.'t. at g g n ;,;i7g,,,,, . no.... l 4gpllc I,- d N,' gg.g l ~._d M e' m i J ap* ", typ <m p see n

  • 1

.a c 3 g.....c.... } n, [ m,,,,, u.-.... y,. g: g ,g, o.w ..,,s.. W E p %,, ,3 ~ 1 ~.. ".~,t / ~. _ g.. g O,,. ;,/

3...

a/ ga a ~ n 94 !g.y j 7 ys,,v n< = 3.* ? a................. e ] J u.m,, /g,g L_. Q,!p,,g ut p-s 1 M ~' ' r~y g. g 1 j h4 e. _. x, 9 y i i sl. 3jga,.; , y bg, if 3, gg:. - ~. =. 2

r[,n,,./.; \\

9 xy /. j .;.. \\e*M y h f i / . oo u., o-3 3% i g 3 7.g 2 "l2'.Q.. .. L 07% jg.,;. ca V d g 4( m j L s L- -t .h....

  • Ns %.A..C W,,,

e f. } = ~,ma 1 s = } _=. [i' } y se.. 5 6.. e H ..,/ w w. e., x Q, ~. p, a m-m -- p9 s e.. a -I 1 ( ----- '*F, - 'p hg 1 A h[ uc -u....... M'.: L. n tI.,t ~.npMr$ ,lI g. -. w. -,....+, %,! , o' t,..,s.

1
= -

-+1 - 24 w s. n.a. a. eu r. g 6 e e. %_ m_._J. 6,Lu m_an_ u_ ..,~.,2 p j -l H Au 45 ,q J ~,..n.e;.. p 7m n_,.m. ._.o.. '{ ) . tar. '; :m" g.yy y I --n m %.,p,-_M,mF. mlL,. m._ + / l...~

x. LJh.-N x_ h, ;.~...

/;;s o i q .i -.2 I .. p l

1

~g t-- r ... _ ~... e. l a h n9.O* i,. ll 4 / i [ 3 4 1 i

n. _ _ _ -.

_.. c._ m -._ {

i.,,. ia m.:..
e
  • 'N:..

r _,u l t .+' J l 4'

.' _'.m N'

L.. L,- ) ) 6 l 5 lf l 8 j 7

t t. ere . ~. - \\... w .Jy!.'.T \\ > d etosa es..r,m? 4 %y *p. 21.% +S

  • ~

r - : : w..,;,.. ' vA" f,. h .,'E' 'is..slig. f y .i: A R g e = w+w..,4 s . :v.%. to~ s'* ylL. w,.d,:.. eo s .;. g.>.ga ;- l _esw ______.a ~ ' y , 3, ' h,n w r.,$d. 'x. .w a t. h.h h: n _,...t, l l y .h 3 A 1 q %.~~ 2g q A e.,Q [ _LO ! 11l La..m w-

  • -$th a;_},

gc { - -.= 7 _ ;r u e is we %y c li ym.m .e u nee -L . )r l .i. . ; f.,,. w 2 u;U.i., -

  • G p... - [..I ',!

w-a -i.e I

h.. o,r+.

a 4 .a r q,., q-4 J .L,i. d _.#f.s S t'L l .g,, Lag g.-.,r...... y t 1. mt-7 3

  • F h

wg '+-t

1.,g__..

g F ~' u -Li l.. p,. _M,, .o e ,, d;yC ) w_q . i. ., ed F i y k % t y..... 4..< p. " * -l @ su_- - L .1 T 7 x g iac 4,ad. k. 7, y,32.C1/ I e.,.

  • .c==. r i al j

N.g. _(.l.) l' .'. p ~,...s t i ,~mm u s. u.. l 1 f.% g -m,,.:A:?- - -- O 9 L Wg2 ,.,.g . 3 : *.'1 m ..l ). - ? 1 hA.,,y--iK,4. L,41-4002; - -l $ e 1.m. -.o u .41 i i e.a,, u.- .m....+ f n o. 7 _]..,,, I 1.. jj a cx-1-e o. smo w. l r~D ** ~ nu. m,~?-J&w-l t a womrew.wsms l i y l4 f._.r_[_ e ~~ ~ ~~- .m W- .Qr / ; a 4 i lL c-I c v ym 2 . 4 3_L,- i a W.N % lf f- -b p $rN_,,,, ols, IP9 NOTES: . w.a e e .T .9 N' t-a.., '" :'O! ", 'isl'?- .-u.'-m =m y ) gL_- l -- @~ .l L'MOJ ?

    1. 4...

'M~,,,..'o'.*Jn!.u.m

.j l

l q? i c I 'g 4g __ _ _ i _ _._. y _ _. __._ l 4 1 h L...% m l n. = 1 's.g,y m i I. r.p- _ _ . _ _ j.g i p ) -.. s ' ( - 'i .] JI a 4l..o + i I L i ] ..oa t d h_I_.___ b "i -s -j MISSISSIPPI POWER & LIGHT COMPANY q ~ ]- '-- ' -4; _ _- -- 9 ',, (R) GRAND GULF NUCLEAR STATION UNITS 1 & 2 ~ ~ ~ ~ ' - ~ ~ ~ ~ HYDROGEN IGNITER SYSTEM \\ i~h U s7 L.,. HYDROGEN IGNITER LOCATIONS STUDY I EL.120'-10" & 114'-6" .m, UNIT 1 I e FIGURE 1.1-2 4 j 3 l 2 l vn

/ EllW;G l ON 7dN ) I g-l " w B I "> ",,. o. / EQUIPMEN T UST g ..u.=.i

a....

r ,3 i< m .s .v .,s ....v G Z L _.1 -,.w.@ ~

::=

= : -.a . -. = =. ., - m. TUR8:N.,E, BufLCING .so.m,,, e .f m.m.. ,s. .i...u ..m.a u m L 'a a. I +., h a-m -- = 7

4. 4 Ali 3

C.~.= " ':::

  • /=:

.~ / .l . - b: y . = ~ ~ .a '"*"l."l".*'." l _w _L i - M' y 1 -** j + - - Yn jf 4 ji

t.. %4.I.....

.r -e.".i.r.'t'.'.AJ. x# ,.,. L. y-L oAl7y =~--a

,=.

i ~ N..h. lI 3 'm'*- ~.s.<.r*.* . o u .a.-.. '.e g.., ?' +& . nf u-- ..r ~t"-< o. /l*g*'g.- yg l p', -. F..k. r y ..N q %.r...e s .o.c .....r.;. i .[ , f J p x ~~ m g-j p

  • d r

g 1. i.

, n 2

' ~ c -.I' p G. .,A. r ..=e.. CCNTR,OL BULDiNG s.! s_ e.,. e.......u unn. g N i(. .q ; l',' + .u Q. ajnl u 1 bm-bib,m, { 2 =.:..:.5- ..t _as 6 a,,, "*" ^ i .r* -an f ; ,r o. agtm.tn,,, .~..s. i -. ji e.w m, gij. g.7.;l = Li y - h rp.,, t w. r*, '- -. _ _ "} i{Mj J ~. " t,1,Q, g, -., E J.q e [" a FM,,,n.Q. r A g a m..

:: =.. _.._ _..

==t - g .,,.g, c' pr i .. m. ,%'A ,3 i [ ...U Q w- % Q.. N h '* D,'",, $ y' M .! k ti' ] t[,M j 'I' 1 1 p *- -- h' 1 A ry7q-f6thi.A.,M f { CO*' .:=. { l 3 . ~... .F .I,'a.. =,a - n~ ..e s r-a. v . ga q, g t - 4 ii - . %\\,. a. t,- g,.-.= @k g w e s i j s. <.,. < -. N.,,., - d 's t k" p - r ] r w } ,o.% s 4 y b.WW.- "p'

p 1

l-

== =:::: ~8L- = s . 'i y i

==

= u ""."' ' W ..e,...._, ._"=. a. . _4 .,tb; g6 '.o f' s h .c,.- Or 3 a t m.. g. l .[ ~e p... s. t c.

7:r.~.;;

... ~., i p ":n 4 w ...,. y p. s ,/ n j,,.,

  • x ').

,a c . a q4 ' ai. 4l(g.pt..,.. ,g e,.., %g m, ....e .x. q

= ;a;

*T/.

! s. ~ '

    • >W " "

MJJ; _u "'f":~ r7..'*~'."" !.yl ffy p\\,. p . p,. Y <<..".y 1n.. m m.t.. p. i n f ... ~ , y1 y g .,t s f r ,m vm ) .o.- [m u'o.,... L.. .a.

s. k

' 4 ,c .r .wn. . w., j 1 A, p c..,.. Q,,. [i.. - s s gt _ q.... .ui u \\ p,. N w ... ~..cs. g. e 4 s + 1 y. t 3.J. .v s .p:. . g;,, / ' g f 3 g ,.., 1 b g.,.$ c.. e 1 .g.., 4. 3~ ',f ( \\ x ' }h pl m. 4,'$ m'..c m... g<f",';ys. g%. . k-D. yy.,$Ml1L, @\\ \\g%, l ..v no... Q %v 2"= =/.. s ' =.,.. -J g,J -. 1 c a c .e a J A 1,5. n.. 4*/n.3. k ] I'".."m=.' 4pf,/ q pw.. m ;m :.,,# 4' " g h-1 I = = =::.~. w

:==.=.. ~

=:, b,, " Opd.< 6 *[r2' c m.m. A: w+s x w. r' Q9 n. n. .. c. x',, g-i .g37,y%,.c - %p_,.",.4,, w_i 1 J .~.-....- ., dJ2 _g a- ,I m _,4 N w.%~. m. _.a 7. Lr ).o l \\ 1 / R '" ~"" b*'..: (_' Q*g.. i.. T. . 4.. m$_g ~. -. ....u... g n.., w - -. ~ =.~..:. T..*.=.l. "" .=*

: a."M% i

,[ (g . > &4."l' WET"1 ~ p, _ 3 p.~s.c...... -- - m,.[.y.it' p-s*d,,,a i /.,.-

n..i

".y. n m.,,, i,. s Av.i., 4 ..,.s,.s~ - - 4,4.;

4.,c

[. 3, a a. _g.f-4, p,,,, mJ.fc.)y pwp\\ <nk o / l; %y =;:w.w:- : l - 4 ~ a.3. f. 4 r W' pV s -q~ ^ _ m .n... -, . l c. -o..-.' U,,... J . D. l-m e h,, - '-Q a3 a i. i m s, i 4;.N = -~.nm .~ , u.,. , - fc _. -N' {n J o..e l j, I.,n { i m i ..:..~ .m. .t ' m +M e _ z. { ..c z a. u.- 1 I!l

  1. [}

-W- ~... w." - ~h i [d,,, ' '1 a J - ~ ~-"- ~~~. I E'",'*F', **::*.A @ \\., o *. l i g g 2.c, au< !gg y i we _ l _., .s q l V '. ' y. h ..,X 0 3 .m I f * *""'* 015EL GENEP M.h BU. IL.or.NG DI lA 8 l 7 6 5

\\ 'C' ? pc .t '2) r\\ S '* n _ > L-M -- e o- -_ ....,3.,....., s... > 7 q i

.... m 1m
7M. -

gm,

k. o. 7 L.... _, ~..~e.:~e., w

.H ~.y 3 Aa M ?h., r. /M, / "q.1 4,%,,::a...... ' 3 '- -y,b? ~ /.i t.. } 5 - S e t h u p_Q k,,, l'{*'.;e. ,oW.( #:rc[,i u'i c..... i 1 e-m + =....=:.=,, .s .e. q w,,b e n; t '/- .h j._ , l.t-u... ;;NFY.- l u t . ~.4 &@. ;t -Y, o i F 3 =,w_'%r3 .1-Q b i :n.:~r,+ 4,g 1 ,v .;. t' 3;r r s J w* > - - - g@ e 7, y ps <N p~ ....,-o, g;M\\n T =-d I. l t. E,w J< a {, n..sgg\\,y Q~'" l-@ .31.,. -. e 'j ',, ,gdb. e7 a t ~Qf p v e-h, S ] i

n. Jg,F ageg9m.. m

. -a;h::: we y + , < \\.t w, wp a ca ~ s l j Q ,.s 3 ma - > m - L g$ ir.. l l-@ + m aw.a.-- m a o c.. s.- co.w -e..~ gl .. ~ o r ...-...a.. w c.. =

a-

..y

-e

<t[ % =;'t m s,- Ns-f,, g_ & f.., 3 .......m,,., i 2; ' W.-l '.. Yl.',;;,9 M L ' n. .-- J =, - - -H.m . m :,r.1,: -.. _ m.. .m_.. tg y + m .....- r.. u.-...: cur ::::.::n., - c .y_- e.n gd es w_y q_ _ _ p'a 1 i

.4 *,C L, !,[-s_ -n.r...s
n~..

W I? ? I g L.. 4 9.,1 v: c..m. ' ' r- , iij ^ p-W q &j g14Q-) W.c-,..__ ,-Q v } 'i ' 4...u ...m ~ y' i j j, {j] '**$".'"" [ l . D' n. \\ d J i!. _1 <.cn n.u. * .~. MISSISSIPPI POWER 6 LIGHT COMPANY "'"" 1 , __ ___ r' d=t L@ -io n GRAND GULF NUCLEAR STATION

    • J UNITS 1 & 2

..ee.... s. HYDROGEN IGNITER SYSTEM --*i ' ' = __;tv _ e ee 9 HYDROGEN IGNITER LOCATIONS STUDY L.. EL.135'-4" & 147'-7" UNIT 1 d FIGURE 1.1-3 4 6 3 l 2 I w.* r ws ~

r NLt Wm i DN hWl b t.u souncar ust i l t } F~ F~' 3..,.;,.;,;.,..... < - . y; p.,. ___p..,,,...._ a... ...,,c.. g k TUA81NE d a.o. h h..g. h. ,g. i..-.

o...

(( i _.._. e.. h)

, r sa -~ <-

euitoiNG d w.- ...'i.- i r a g .s. .,a 2 ....m.. ~ Z s, K-m='. ~ s 2 *--** 1 LA1 c

=.

T..... ~. - n. j [ } r.--. t u_1_;-_r.g A <.1. m m ~ ..e. -......-.. n. t e., t' a m. . s. ~.~. ---.1 1 ~.x:: v::;n m.v. N -. e,i } ..G , a

.,, n ;a,,2 _...,. M

~ q c._.._ > b q.;u-. 1 -_t Ll. -~ - L!! E,9 u m +:: ,,; g.,.1,_,,,,,,,f,1 y; J &',h+ x :::. l v. - e n con wot 1 7-4. , myI,: g a; a...:. ?: ~t ( m BU.IL.D.I N. G ..~..c y_, _ / n v.i ;p V>_. _ i -.... ~ t_c,,.n .m. ,a 4 %L ). p-.. -.., e .i 4 t i e.- ' I, wg 6*.- y.. ~., JQN 4 q'}. b[, -'-y{h1 J sto.our s.e r i f, ..,.2 i .m y m - E ',-[..*..".. t.. -[ r 4 N i.. i s.1.. mp-2 ,k...w,..m ~, g,\\ $ e ] n. a.:g-, ;,...,..( m + s 9 3 /,. g < m % u W/ 4x\\ r.<--- e! } t' ,,,,.n. m ,n,.....,s.. a> sp c,. .~. 1 ,.x,...., o b,. -. 3... s, 4 e. as m. g., -.-~,c.

m....

.,h s ._.m. \\h.q. gJ gh g p\\pw. o .-- b,! g $m r a JN .~ " " '~' M M, yg .. m. ,.y., {_ _ . g@s gA y,e Q,; _. g f. 03..'.-' ..s,.. W,,ei s%- \\\\ $ s f d ' N i A. L.x, i si 1, 1 w ~ '" 2. _1:..-. c.,s . m, %g\\ \\. f %y% r. "s.". J.,,.,Q s. e m s 9 I = ml s @ay - x> c,

q.g p{ s\\g \\

.,,.w -. g;g ' , a .} '.__' _' u ! s.e y.4 vs b -v i e . g\\- 1 l' I ,$,\\ .s eW \\ \\\\ f.:l gh%..N M@. i s g. - J' . ? wt r.tr'r / ..a s i 4 \\' q3,t ' l l, %;] = -ln [ s ~. g . o, -. p,s f, ,.s ,3....n..... . m.. g. .ya. pJ .g i m 3 j a.,., o .,~ e 4 4 . ~,. } .~. s yg t_..r t_ m.u. c'~'-[jb-dr - { m.=.=. = n: -3 6,t6-1 19.,, g 3 m .p.:s..J f. 4.~-- ..a, _fr- ~ s -~-..,u .,;.p y.yl yu,. w.g,s.,.,,,,,,,. p.,., ... ~ f ~ %g,. y

=

J r a g4 J i j i r-, gM m '..:* m....... l I ij ,i v L'. .,./-.... h.?d. i r 4 ~q i i l r i....... .t ~~ _ jk .,g l i j ........ n.o [ -- 1, ( u[., M. 4 j-- - = s 3 .e 4 i o, ~.. _J4. + .m u.., p t-j 4 e as a. Lo.. p p t h { 8, f. l i .6a.s.e, .f, pg g a 1 .....m... j .f si Y, ' -A---+ l l l L._ t

m. y l

+- I j g,,,__ %.m.. n citset cescut + J n u... ea,. t stetc Nc . c u. ..u. _. -C _ f.A L- J.? 7- .4 66. . 36 8 e w 8.' al l h .e a.h.. .J v f 84 C .. r,- a HOLD u g s A b. ( 34 8.-,0 20 8 1 7 l 6 { 5 (4

r l l N D.,. lee G

  • ~1 w'.,.,.,.,.,_ M'L _]

l ^g ~ _ .f.e _o_. c.2, l d ) Y. -o U u..- ____ _ ( y_ _. ___ _ i I ,,,,,,, 7 I I l g ___ _ { i I-.. .i... .i ",l . y.

._--~;.-

. o. .,,m j j-E l. a e a.. ~ .2.._/ .s [ w.. ',.j ' ~.

  • s
m. p. u,T,,

.1 .,0 4) tt ..s. ="'=~* u t 3 ,3 n.im IAI r di 6 l 1"; - y EwvENT UST ~ } .... u..,. 6 a 0.. "y 7, y,, ;. 1oi

."'.yt

.u. e ac u. 4 cou...e o !.. f: p. mw: g s L,; L+t;,.. t . ~.... i .1 -,

f. - -t.-

a .?. , i, ee i, .t ~.. ___ g - t b._-- ,.g 21' %i 80)l .s i l l o s .-u t .....A 6(s. ,o ,,./ 3 ?? ~ <L i@ l

34.. :$ -

I 1, m%i,.pl .s t t l g

g l f- 'T

.c 2Q d. i p .. _l. p[l s, g.p,..o_.. u_,m -" aircm..g- ..m 7; ,. s>=i i..

  • .b. 4,o f

f u ' J.,, t.1 [ 4 ._~. rr, y .? , =. g,,n.,... .a<...... 3 .x..... .x i w -. -1 i ,a .N e.. -.. <... - y', spa ~ ,:. : a.- t f O

h. 'e 9

(( t. _, m s n. .sg. a Tr *. f. O a* s 6 .aa , g*,lger - E s% o n.. c.ca= : f,y, g. ' y v ...{.-"q [i_- 7 g n.=......, i c '*4 [p] m.'.] ! W.V ? Q.,. W t ut J '.0 T E S C s,a.L i . i ,i,. 4 v m~,u...s ..s m m... ,,3.. +- %,.r m _,,,) .. __ ______ _imm =-.4., g'

s. w a r v
m.,,
s. w

.w ..<3 g-i r .., utd... a _1-i s m., a ma _m Esp.I a. A:._.3_, (r, L y . c.. u.. s.. -...., ne '.L-L---}g.w___.,. gf .-d,I .a*.~.....--. n_ n. g, ~,.. , (0) ---l -+ po.v.f 9a l s, yt n g . tw 1 ) 1 o ~ f. h._' @_._.2 _.g.,,. f.M. d.u MISSISSIPPI POWER & LIGHT COMPANY m. -.j r . = - - - r t _ g _. - -! 1 I f GRAND GULF NUCLEAR STATION UNITS 1 & 2 a t.*. - t?. HYDROGEN IGNITER SYSTEM _D 9 QSi j HYDROGEN IGNITER LOCATIONS STUDY l EL.161*-10" & 166*-0" j 'c" UNIT 1 I FIGURE 1.1-4 4 l 3 4 7 M*"

E I. t. CN bW j ~ ~ W-M l

f.

Eguerestn uts F' f .A f y,;

m. e m.

mv <. a._...a g u amm 1

a. p s.....
3. 4

.,. ~.. ... r g K. F) (n 9 i ..~ 1 __ m e ,s n . n-n- A.L O "' ' 1"" ','t". "" It' ". e --- nv ~. g o. . m., n ce l TLMAE I. .,. ~. Bu'L.DA, / ~ l r............ s...... . ]. m. ..._.c.. a.e ...s t t.m_ a._su.s e_m. _..we,... j; 8 t.

m.,.. p

< 2 : c.. ~. n.e.v. .t v ny.. , i n-l r........ I ,f cl { e . /. gr_.m cc,et r s.t e m.. {3_,r p.m. J .i i T(L_+1, a r..x ,0 s, m.. s y z n v-L.-.+.: o .~ .m . p. s i I r-~, . e, _gg m 1 o .g~ y;y I ~ m.s m o, o i 1 q v.m.,, w_q.m, ~ r i n. e,. g..........-.. z s# n... w..s ] .+.._e,... n_ 4 .r. =., ,s .s a -y. x v 4,w~ y

}

~. _.. _jfp%x..&,.,s. / wf v ~, .4 . i. s m ,..l 1 o =,. a ,,...., ~.. y._.a, _ ! x.p.,u-u.N, ,{m-.r.m.......,.. ... ~. ~,. .... ~.. 1 1 m.,. ....s.. n.-] \\ O ((D 2-..' [ d { .x eww.f .g. 3 jp }. i; i w p.' _. gf .7 n..,.-.a.. g.i ~;.;;pl; ~ .m.. M.> t.,, . w p 4,y ws h. m m..r q ,, p. w g s 4,4 }\\ "gg6tg~d _d [gg ' m. j 0.;?'--- ~- ~~ h "i Q(k j 'd j~, \\ & ',,' f) l+ ) [.

g.,

) . 7,. 'e s. p,._y5_. - }g,,,, m, y _ _ y q.. .., 3 .__j. - \\ g

  1. g

} . _.. Lj i. i 9 j - ___,,.... j m \\-- x u. . i.u 6.~y, / q.,",,..."._'r; , A,,, ) W;, a, m.,_3 g i f f.. s v.. i =., { u ~. .m i.. I,,.<vi... 1 g-o.m.

s. c. m

-. (s,,. u. i s,,. ,., ) .n f..e (i e s , Q' p__,~.~.m.. I q,. ;.f r.6.,-_) 3._y g. y .Q ....a..~ ...v.. 4 y.7. g, ._e g\\- P ' ' ',, -f,x.:_ q p O - -m...=y. j i. ..e s. A p '.'d #g.3 i gs y j rd, ; p4 pe p. j 3 y,.,., .w..., a. -./ y-J L <.a w a }1,,, -p+- +I. y y-4.)s.w....v a -Q '.a.,. } -1 .c n.. i -L. t I f -d- :- 4 m ~ ....'i Ml p. - p-,+.,* 5y I I ,e v.~- g j -.+.a, 6 'O fi,'Y'y h.m,.v. A 'tq t. a- -e > pA. g y p ----- r i i n.. -, l, ga; e ---g' <._.s-l g~ _,. 7 _. g g _ 7 f. -. g< . - r --- - - - a=' k+ m --C - 3 g r w m,.,. s. ' 'l i ..f.i.t 1 a ~ .h7-. - s.1.,.s s. e.s % j i. e g .ph -. u _. ..<,...s_.~- 1' i c.,~.. .s, i er v2.uso -4 .., ~ j l i ,y40 - j, - -- p --,. 'p . : l, l . _ %' A G r i .t% d a is l j e... ..s a U I, .,.e,_. 1.Iy. .. H; ( wM j I s w_. ,,e %u ~.. r_ i s f -....m ai.6 l .e f.a bee..... l .'.4'. [ l .....e 4 .v i, .,->m c.s. II 7..ed-. . -N .g d " 'g r.c m a s s. -v jM '***- - - _,)' D I L, l e 2. r :.- ~. l 2 . m n. w o,. ( y ~. _... [ 7_ 1.g_.____ - y.3. r - h...e.s.r t a f l f.. - l a. { c.. l

..a. < r <r2 7

a _v- .>c .n. S.) '2 y t- -, A' 8 ..m l i 5 l4 6 ~" 8 7

E ~ . \\. pe N m'M& \\. ~' 9 ~ 9 _ po ,p ^ m.- / ne... --~" .a m e.

  • e T

jj d'

7
ig 6

y '. v l L, g a ,fC%,

  • J l

l--h s -!d,b. [),,3_', i =*c,= t EE T P_ a, l %' ,It l t l b i.p_'>- +- --+

e t

f, '%*.I.T d 'p- -.Nl I 7 as-a y -a ca 2,._. 0 - @ p [=ruq k r,_ > t .O g i

q.. - '{N y

\\ s & C. l ~ I g-. 7 .O L 4 y=- e " g 1 b al,y- - + y# Q v .E. I l v.~.. f g.---[- p e 7; I 1.+- { - 'l-g f**Q-

- h l

[ } l 4-D.. q ;I _p_..-w w.,.. _, _, l@ - m, A __ $I, % i l _L.. -47[ . f U',J. s - . L 6 a l r n- ,e r f li 'e ma ri r..- 2

l

.D. e f, %.y. -,, l 'D. l. e.,-- ue r . ~N , Mi s 1 7 Jp n_- IW j D i.g g -Qa.,,Q:.: f L ( --L O9 o .- - G. [c4 f ~~a a ~ _g.., w n m of rj l ~ < l $ rs e I . 5: -- [L { (3 h ~ .a 4 I g 1~ AT EL.1914 & l3*i-6" faRil1L PLA*d l w;. l l i*b o h3. ) %TES: w -t F@. m,, n.y ~ ...~,,,s..:...._ c .L , ::2..... <ets., ~.- @jb s,G! Ij 'A; T,h R.'.';;'2 ' A " ". 3. ;~..L"

=,.

y. g-.;p

m. w i -

@M,]J d ' :ij!Jj'7 J i ' ", w=.15':r.',';;:. M 2 \\--- 5 :; - * ,l C_. y.. E,$ v' -~** '- l4c) h r. f,, T.,,',t"s-iN 'i'd ' }jh..e 4 o 5 . j D* Yr3 10 'l g TJISSISSIPPI POWER & LIGHT COMPANY .hik,j]f .*jpt_ t_g. f. - J i ) l GRAND GULF NUCLEAR STATION _.,9 ,.. i y UNITS 1 & 2 .,\\ I \\ -."'~ HYDROGEN IGNITER SYSTEM a c, arm '.d**'*:...",". O cweecr on s.wo neo* i f.^ l 1-O HYDROGEN IGNITER LOCATIONS STUDY g 'g, y a go #<,oreo,c * ' EL.184'-6" & 1:s5*.0" n co eceo = =>-s.w r UNIT 1 r FIGURE 1.15 i ~ 3 l n

9izi-W d UN thad g t0Ulvent881 L.ssT ) ...s. om.,...... m. .B

  • essess e,e sa. m.s A
r..

.r.a.e.oo. .s _{a.,.o<as.5, e w ,m... as. w. TURB M Q ?I* BUIL DING ,y __I _ a.. ),. .. q,. ..._,.,,_l. g. 33 acer i i


i----- ---- -

r---------.......,.---------- up.l.g. .i it 90 *.-. e.....-.. b.r..=_ m-, _.i,.., t. i .m a 12 1,,_ y,Jc: wL @ ':w::.".::.::r ~ -_F ..u... i

~;.";*
,:...

l y i i i 4 -, q v - .i e,. i

== c.m: =i,.-.-,, n -r ---l f' s ?---a-. s-n l{ o m ....o.... l 'T".'..'"... ,w. m. 1 - I N' *v 'j.' ~ -. t. g >= ;. ,c s . ~.., _..., . t t -f. 4 ' x ~ '7. : a: ca; c' u, ...m. /m cr .y n

w

,e e . q-3.m J-f y -=. .1 8 -..., u..., n,,, 4,,. y.,.,., s,W 5s -2*.. 4 d'. LAW ,...,n.. r w i;~.an';T \\,, // 1- .F T"a 'N, - .s l-n. i s A.,. yc.,'6 .. s - + 3 1 ni ~c

d},

s ,,.y W. _m.....

\\\\

l =.w. 7 y y a 1 1.y p' unc* rue r=%wc. y,,. ajm:.o. [. s. %. i ~- i I d, ~ l 7

== *E. ) V,,. 'y -.a..u-. a,..,.-. h g'1 \\, [.,',d.N E "*imiU'Q ? ...u-. .r ' r f.-. w_._.d '.,,,~,.,, ce

m. 4.

. # M. ;'. E-d g -- p g=',,,a r.,: W- .c, h. r <. + i ,r s . e. si .,.m,....v.s % sv se .6.u., s..,_ s. 7.

  • ~~

e O. e u. ', e c. gi{y' g *./' " y_ 7 m -->.,3 c. F.i N {3. u m ,f s o o.oa..nY ' Q '. h G..s P.'.*ls - ~ . x. N. m .s. <* 7 s ..,st **/ \\ s 3 - 4 \\

  • " y "rs v.w o /N,'t

] f *m i-M ..,.t j - p !1 f."L" f'.".' ". 'h \\ , T L*\\ q3 g-

  • u'.<A

.'/ =aa }y O W j (: - 7 ",,o.., 1 e w . uo u t,,. ..= a. fv m.'. AN.. \\ ra. N

  • t -.

t. aata p.-,e., .;_2 4 F ) +B..

  • C,

N --d*gg. d-gg4, w

  • l>

c-g T .-=. = a*as.s a 'p. .,m,.. _'# a ),,,,,.., n;p

y,;,7*,.,., c.r, _- ; g-_ " a,. ' _

.u.... E Q--._M f-- * - . 4-.i w-f --- .L m l 1 f-.

1., 111 i P 11

'_lw l - m y ( e On, %.)m r >[ d L ...T Tf? i u iii - '.""f2. " j a / + . ~, _.=. _.,'L_ _s 4,. :gg,:**g. e'..m d'w ..~'t,**. -t_./ 1 . m i.. v p r a u p, j =* u=.w,c . _.__xm_q t____ Lg-gi. f-e i l }' ._ e ---- m,=&sr.ama p' i_'= '. T' . ~ _ r s--- "'s./ h / j g ! eL.'E. j s - ~, ~ ' ~ sl E.! ' [ ' 7

  • z T,1*'."/.T.E s h..

e p: y [~ 7d{f..,~ ~ ,3 ' s, l mp s, b .j [ y _;-L ._ ~ % \\ d i q. ea--c. ~' L.S 4,.,.i,; 67 e ~ u,J. l '-'.~r' 1 g %e 4 1. Q' 7 I n ap. - u l . /. .s ~..- ~.. * - .i . er : g ,.n..: -)- 3 q, w O w'_.,.*, De \\ r' AU ~' '.E W x, @c;;;,..- y e-- - W'==+ = -.- j

  • &g ;._.. c..m,: r' I &.n v. _' _ e
,2 i

r x w __ ., +. _ ' {.. l B -C .d...m l =can no=,~t.d.,,

  • +

usa (**=. w T is.,a k) i > *n,. s (- ,g5" 9 j PARTIAL PL AN *A-A' pig M,e, tag,o. ncon l ,o.._. ' W W MN y E L. 24 5' O' I l \\ Lg ..L, s- \\ { 5 l4 8 i 7 l 6

w r T......... d .l u u / r7 r1, Cp j .q. 1 s {y] i 's t...

r~

G .,... g., j t...o m :;= n,1 -'a,_-_.g wx-g m.. : l- - 3 -';r 1 nrn. .t. n.. p-i E' _.Lf e - h,_,,,r

  • q l

l l#'>f 2 s.a "'Ng-.._~,..._._9,__.________ g F { el -y .e*- l...*.. , *. l j. ,,t

  • c f; '" &"'"Q.(, V l.,

i ~ 9 4 I L ^ w- ..Q) .%n _Iw. , < s.a.me.u, e-4 ww. i 9.1<A~.g W,;? t M'\\/v 5 l ; [__- g r d -

, L_;

i pM/ t t ... c,.c. u. , n,, -1 es =.s e zse y-e gr i -.'s."

  • i i

? R F^--' ' IJ l .t. W}Ae l rI1l' i ji ,y~. -oi.iuva.. g ___ _. _j .n, .rn. 7 bL--0 l "?.. M' '.Q..:}:, ". i '~N..$. 'f .N h t ... ~. -s .f Ig pW lx ..u,.~.... .fa j '.q,;d... ;.,.......

6. r N

q .. J;..,. 7 .5C.l./r?.% l ..,e.d '.JN+t -' "~N o d+'- U M-.> M -rt u ?..-- .M - ~.%*.:.!*.R;;? c: 3,,,.~. 4 ii .e ?, p- .b ' b., i ' i. i _,,m'], r m ws ~ ar.,' * * ** ( ~' o 1- %,,, o,,.- rmw, it l L 7 p* ..,0 - g 1 i I" _i i_ gg n m e set a r ue:ma on sou g ..4 y 3,. y /..) .- I.(',) : I h, tJ .ic.o. u aos.e Gk W ~f1[.ur %sh [P) M-c . - -.=4[Ja_Jl 4 N L 9 wm tp,. __J. f s }~,-

n 7

'f".D A*.'J.' f

/,

] 0

  • c.'. t-3
f-.h.Q,, 3 c /.U '.L..,f.,
.- ^W

..'y i....- ~...<.,o... " ' - ~ * * " 4;3

c.,,-

X M j j "' Dh dDJj i i * ' P.;'J.M"' o }r]* b,ii (TTP3 i b. -...J ] M.g _J..-}...

  • :ISSISSIPPI POWEP *t LIGHT COMPANY i

/' _ S v. GRAND GULF NUCLEAR STATION =1. r_.}i 'd UNITS 1 & 2 __n.- .t.. JL.; HYDROGEN IGNITER SYSTEM b hb HYDROGEN IGNITER LOCATIONS STUDY f c-EL. 208'-10" UNIT 1 FIGURE 1.1-6 4 l-a l z i 3 v== < e. nn n-usl - mwl .u ) .f. *..'&.... b,. w .e t.. F L.j-i h____.._____.____.__. _ l._ N.ma s m o* a s Nw * * - x w x , /,~' ~ e.n.,,w ~., _~ J / + / / / i g n w a* /o m ww , vers r, a....., >., , ~.. j m.. = L I i s4

y. n i

j j,,_._..._. x wm m. . - u - m ..,.m.._,_. Sl I

7) y ~s

,.. _...--.u...- 3 >u g-e -.m... ] / r,,... \\ v.

y fjJ:' F ~+ ' 26.j =..-

m i sh.y. m ;.i1;_'Id a /t~n m _t:9 sr_ I Q j a :2ca m

emMn
=~ ***;.am, al; q/, -

I

N- ~

a,,,.,. .... r,, e.- m,h ...s _ m, o , u_. p.. L. ~.. n n i o... __ _ _ _a s .i 'r-e

s.. wi

_b e,..... ...m.- i..- _[ .E ' e[ s4 - - 7.wc,4..ilN,,...,.s i _PI ' 9.L! k.I ,, %., u _. 3 <u..- wl yb _j r. IkWh [ --%p{ C:-- - - s r min..ar- ?? G ATWefn -. mH;-, m_', m.QNdriff*' AL' n.;f">-?4' ?&mwawe .d . l -r

! v>, L...,,.,

1 w p ll,:m da J h,,.g .:n,q![ . pj dy q e o t-. -j. +lp.p,r,r,._3. s.g ----_ J

.r* P*

--. bt2 w ;ur w re n,,t-- s. ~.-.... E .n a q- - au s. ~ J~: ~.lia 2.-- ' a g 1 ~x...., y - ~i x d _ i " O C 2.2 "~~ O w ~ l- -..,,M L:.w: & m%.~^},i @P+t hdM c r 1, J. i - } w - - __/./ p[4,[ A re.eTOrgs a z r f p /. t ..;<-L., ....m. 1 -.- r v .,s n _ g,.; h. M t ) q s ....,o. y,e,u,g. n m q age-i 69, ' ^]E a, f.g.. M$ _G...,_ g,,, j m T\\ ) ~' "*7A,t- [' _' ~,". "m.., j i,J m M --. g.:. z,;,, L.,,a .e sI; (,t .. m _, e. -.,m-m r.. ,l,g

  • I

~e e., m ....e i 2 1,1Iv. i I /,i __au gnrn v i .,,4-i .<, t. u., g s 1 a 'i,. 'I' ht. L O s f A l ii ,.a O G O f secrm y.v m.- 4 Y s e'g. 8 l >l l 7 6 ij 5

~ Di h -, 4e i ( A F.f W .' M- } _ -.. y ![ != e uosv a m,.co w. a N's [ t. -ee~.'t9V. ps t t n ....,,..o- -4,. . 'f.FI -t,+-t----+--,-]. / \\ J '" . ~~ s _e s o - _t s ), .2L_.,,..=. y _ _/s.

p. a fr

!,.x.MLL ch %_ ----- >- t O3 y . <>u... g .,,, o,-( n,n -. g..,:.- E g 7 4.i es m er .,. N. l

2. : '

a. eva s .aa ssra r_ g ".. s a

      • R***

,. +.i y va..w.. ' 4- - 2, o a -- l.. wit _I t,L. p. N t 1 t' n= 1l _ _I ll .w [ l 1 4 [ 1 j '.. -. l P_ wa.a.a'. o 3.,, e,= : = : - - - - + + l 54t7%'! , M. 3 [^^ \\ G

l

,iu y H ] i !ru,wl < >l i ^.., m-- ' l ~ t o'l~~1 i i.- .n,c :. 3. [f. I ' =- *:- - e s,3. o-MR ~ i m .a,. <,r. e.c o,n se e e ~. i i i A sx, j l,.;,2 i

=. n O u3 u.x i< ne -.

.4 . os, y, c.. m, r-i.. w ..~~..u..o,,. ' y, ~

  • l l

j ...a a u. c 'l w ' ". ' rw ..,.o-a n,-aorao av,n, -~~ {;I l Q c-s - o.. m,,0,,,,,.,,,,, U; r;; ? ~- L_ ; l! ' y u., -i l<- l t 1 i )s tc. { q.<. I o p( -l 3:ta. __ i l l _1_9_1..l .6 et 33 0-b,.'c] M, l .l. g i

    • -+8
li ~ -'l j

!I: i l l

  • ;i! '

MISSISSIPPI POWER & LIGHT COMPANY l ^7 ' E GRAND GULF NUCLEAR STATION t-UNITS 1 & 2 j HYDROGEN IGNITER SYSTEM 3,L t$ (9) S + ~ l HYDROGEN IGNITER LOCATIONS STUDY SECTION B". "B" UNIT 1 l FIGURE 1.1-7 l. 6 3 2 i - -- i

4.. w... a m. y; ) s.- s s/* ? Ql t,;, p; i .S i. l + 8 ueu st.e.., 2 .,sm v.. ,._-_---._e } -f N - i j tA%( i ~ i s gJ& u g e,.P T..' ' ( i i ha:,me l s e, :-:.. Le I ...m. n .f .s f.a 1 i F* a i II. .. -- u n... ......e. ...u--i~......~. j -g r.-..,,.-.... i = 0

  • ) -

i.- ) g,____ t g_ g. y. g " O a o= he rm..e %. 2j a_=_.__.- E2:.J._e', i m_J . g '--_,.; y _ -(.12 g. 1 c .c a. .. =:. ~ .. n.- con ;lY,, g c,, p t % r* V

&l%s

\\ l1 l-1.e,.. / ) . r ' t'-cc L J_. a, g _p,_ - --4 i f + nM..t._ l f[.Y, ',*., g . 4 - =~. j - y,' j YM d' tW ,) _.s ac e--- gnIT'*- 'p s ' - hp/i.T t

  • '***'b 1

N P K'.,D~ r O [~. lu,o,_a. .3.

6.., :

{ f 7.,,,,.. Se j ~...y.s u... g 4.r.. 3 . - r#%_ u m........., s g;,De t ;i h e .n N,,. -. n l. pt-I as. m. f s., w' \\ , j

l a.n_

Q. ]' . '.a r- ' ~ on ] 4 :,,.,,, ) L,/-j..C 7Ts w.. [- l. ./ . c o{ g m . =.. ~u %.,,:. ;:=s =.y 3a m.. %,y y F... A. v + )1 ,..... d i o. 3 ... r..e. t. j 3 y p e6.is l gar -r%,' l y/ l*l s m 0 \\ O ,'. 4 .--_t _..-.L, ue4 T* m e 4 m e- :-) u L:,?l. Ca. .I ,r . m. %.. u.,r,.. -,

e.,g.

c g ,, J -.,,1. 9 L e e tI ~;.::: :.- =- e6 9 7< f. Da'- n w,, l, ..:.~;.2, _- ur-t. .. u:.&h e' q9, ... m-i,,8 3 ~ w.

  • recaw a 6

,i t eso. '75 e t.00-4 ir / t ,e( pn L = m.t l J. .j g f e ~ -/ g w' s'

9...,

t L ] P [ {'.,;.. .3......- e,. J ' L ( u.a.

3..s ee g

r. Sp 1'., I 4, ,i e .I. 8 l l (. (. 9 G CL4 tg wr M cTio9 (T _ r u:< v ra. 2 Y:p,- t' ' N e l 7 { o i 5. lq ..w._,.

u, s ,...J y !st,. ^k. r .n s' l Im nt___q G i! i

y. i cc
1m aos i

!i ( \\ 'l 4 \\ l. 1.,,. l l>. f'I r _,m . ; ga. im A, ..,i . _1. ;....,.,,,, 5.. -.. i.., .e...a,O. b '*i o.,.,..e-E et in . 7+ %.. T'[ -..or. .oa pd 8 ... e s..a - ni, i <-.. :.. [... e.. . 7h ll l .h'.{' Q,1,J j v tq l I I * ..t.s e, e., a., - L_ . _ =:e b. Mr + o ' er frl l j A..u.. m. a gy 1,/ I - 'd 'qvs *

o.<

I ,( of l Alf g....e-ls! 't 1-~;. L p1, o.x. -.c s D .,p:,. .. m a %/ u.At :.ron ,9 i P P. ij _._< v., <me ..o,.- _ m _. <<'sa-twoTES. ~73 a.D". e~.e.s..I...,.. --w--c.ea en s 6 -i t '- i." e ew.,.,..sO*f $ Sif C.4Aw.e4 es ' .N f S 46 a a4 r oa=.oca n+ we et .a. -.-em y >..e, l i . -., m v.e. e a .,.n-nt. - _ _J. m o., e C .i a (m u. v[ '., l .e Ne de.r FA cas d *S,-og J, .6 e ~..o. ~. c. , C(me.com r_ _ _ - - 3 1 ', M. a'., h,.*'s eav ~ ec % -3 si ,t [ g, g y.g. j a. .c. -- - ...... l. 4,..J 4 .g i d I 8 MISSISSIPPI POWER & LIGHT COMPANY GRAND GULF NUCLEAR STATION i i UNITS 1 & 2 i (& (e, (; HYDROGEN IGNITER SYSTEM a J ' HYDROGEN IGNITER LOCATIONS STUDY SECTION E". "E" UNIT 1 A FIGURE 1.1-8 j l 2 l t a.- v sh 4 l 3

Attechment 2 to AECM-81/353 Page 1 of 2 1.2 Provide a list of all compartments which have dual igniters. RESP 6NSE Table 1.2-1 is a listing of compartments provided with dual igniters. Each igniter is powered from a separate divisional power . supply. See also Figures 1.1-1 through 1.1-8 and 6.1-1 through

  • 6.1-6.

i i 1 i s 1 --

Table 1.2-1 Floor Elevation Ceiling Elevation Compartment Igniters of Room of Room Igniter Elevation Main Steam Pipe Tun'el D136/0137 140'-10" 166'-0" 166'-0:/165'-0" (IA310) RWCU Pump Room (IA419) (See Note 1) 161'-10" 171'-4" RWCU Backwash Tank D150/D151 161'-10" 171'-4 " 168'-10"/168'-10" Room (IA421) RWCU Heat Exchanger (See Note 2) 170'-0" Room (IA414) Valve Access Area D152/D153 173'-2" 180'-6" 178'-10"/178'-10" (IA443) Sample Area (IA514) D168/D169 184'-6" 204'-10" 202'-0"/202'-0" Pump Area (IA515 D16o/D167 184'-6" 204'-10" 202'-0"/202'-0" Filter Demineralizer D102/D163 184'-6" 204'-10" 202'-0"/202'-0" Area (IA516) Filter Demineralizer D164/D165 184'-6" 204'-10" 202'-0"/202'-0" 2% Area (IA517) %E 206'-0" 202'-0"/202'-0" s2 Er RWCU Heat Exchanger D159/D177 Area (IA507) oR mg Notes: 1. The RWCU Pump Room (IA419) is located between the RWCU Backwash Tank Room sa (IA421) and an open area of contcinment. Adequate communication exists between n the Pump Room and each of these two areas to prevent significant pocketing of hydrogen. $i 9 2. The RWCU Heat Exchanger Room (IA414) and the RWCU lleat Exchanger Area (I A507) E are one compartment. t[$ w

Attcchment 3 to AECM-81/353 Page 1 of 2 1.3 Igniter Identification: a) Vendor b) Model c) Qualification Program d) Design Criteri.

RESPONSE

The response to part? a, b, and e is provided in respouse to aydrogen Action Item 1.10. Design, materials, manufacture, examination, testing, inspection certification, shipping and documentation will conform to applicable portions of the following standards: IEEE 323-1974 General Guide for Qualifying Class I Electrical Equipment for Nuclear Power Generating Stations IEEE 344-1975 Seismic Qualifications for Class I Electric Equipment for Nuclear Power Generating Stations ASME Boiler and Pressure Code, 1980 Edition thru Winter 1980 Addenda Section VIII, Pressure Vessels (Welding Only) Section V, Nondestructive Examinations Section IX, Welding Qualifications ANSI N45.2.2-1972 Packaging, Shipping, Receiving Storage and Handling of Items for Nuclear Power Plants ANSI N101.4 Protective Coatings (Paints) for Light Water Nuclear Reactor Containment Facilities ANSI N45.2-1971 Requirements for Quality Assurance Program for Nuclear Power Plants ICEA Publication No. S-19-81 NUREG 0588 Int erim Staff Position on Environmenta) Qualification of Safety Related Electrical Equipment IEEE 383-1974 Standard for Type Test of Class I Electri-cal Cables, Field Splices and Cainections f or Nuclear Power Station

Attechment 3 to AECM-81/353 P gs 2 of 2 In addition, the igniter assemblies will be qualified to be capable of operation during and af ter loadings which occur due to seismic forces and other dynamic loads. Specifically, in addition to normal operating loads, the igniters will be qualified to be able to withstand the absolute sum (by frequency) of the inertial loads (SSE + LOCA + SRVA). Qualification will be demonstrated either by test or analysis. Qualification of the HIS for the environmental conditions resulting from successive hydrogen burns and the simultaneous operation of containment sprays will be demonstrated by test and/or analysis. See the responses to Hydrogen Action Items 3.3, 8.1 and 9.1. t S

-- to AECM-81/353 Pcge 1 of 1 1.4 Discuss design adequacy of assembly for pool swell, drywell negative pressure transient, etc. l

RESPONSE

Igniter asemblies located within the pool swell and drywell negative pressure (DNv) region will be protected / supported to withstand the fortes caused by these events. Drywell igniters D100 through D105 are the only igniters located within the drywell negative pressure region. Depending on final field locations of these igniter assemblies, flow diverters / deflectors may be installed to protect there igniters from the impact loads associated with a DNP jet front. Submergence of these igniters may result from: a) the flow of water from a drywell break and; b) The sloshing of water over the weir wall due to pressure differentials during burns and potential DNP effects. However, since this region will be ficoded with water, the pocket $ng of hydrogen will no longer be of concern, and operation of these igniters will not be required. The effect of subme ging these igniters on the overall systen operation is being evalu.ted. Wetwell igniters D124 through D135 are the only igniters located within the pool swell region. Flow diverters / deflectors will be installed, as necessary, to protect these igniter assemblies from the impact, drag and fallback loads associated with a pool swell event. As discussed in the response to Hydrogen Action Item 3.1, immersion testing of the igniter assemblies will be performed to demonstrate igniter operability for expected pool swell conditions. ~e ..,-.--m,, ,-e-n. -.--,---w --,n-as u.,-v-

Attcchment 5 to AECM-81/353 Pega 1 cf 1 1.5 Discussion of the vperation of the HIS under moist wetwell environments.

RESPONSE

As discussed in the response to Hydrcgen Action Item 9.1, industry . testing has demonstrated that ignition will take place at steam concentrations up to 50 volume percent. The peak wetwell steam concentrations in the six cases analyzed and submitted by letter AECM-81/336 on August 31, 1981 are: Peak Wetwell Case Steam Concentration 1 36% 2 47% 3 42% 48% 5 32% 6 33% These peak concentrations are of short duration and occur during the hydrogen burns. Even if combustion quenching due to the presence of steam occurred, the concentration of steam reduces rapidly following a burn so that further ignition would occur shortly thereafter. Furthermore, Case 5 analyzed the situation where wetwell ignition was suppressed and demonstrated thtt containment integrity is not threatened due to overpressure resultine from global burns. In addition, the proposed test discussed in Section IV.1 of the response to Hydrogen Action Item 9.1, if conducted (depending on the advice of MP&L consultants), will provide further assurance of the ability of the HIS to function under moist wetwell conditions. _ _ _. _ _ _, _ _ - _ _ ~ _ _

J Attcchment 6 to AECM-81/353 P ge 1 of 1 1.6 Discuss the impingement of break spray (or of SRV discharge) on igniters.

RESPONSE

The igniter assemblies will be incorporated into the jet , impingement and pipe break evaluation program. This program is ' described in FSAR Section 3.6A. All igniters found to be affected by these events will be protected, if required, to insure that operation is not degraded. Based on actual phenomena observed at the Kuosheng nuclear plant, the water leg caused by SRV actuation at operating conditions will not impact the lowest level of igniters in the wetwell region. i

Attcchtsnt 7 to AECM-81/353 Paga 1 of 1 1.7 Evaluate whether the sheet-flow into the wetwell impinges on the igniters directly.

RESPONSE

, The wetwell igniter locations have been reviewed for the possibility of " sheet" spray flow impacting the igniter assemblies. The results indicate that none of the assemblies located in this area are impacted by the flow. Prior to system operation, all igniter assemblies in the containment will be reviewed for the impact of sheet-flow. Should this condition be determined to exist for any assembly, appropriate action will be taken to alleviate it. Preliminary plans call for either a flow diverter to be installed or the assembly supports to be modified to relocate the assembly so that it is no longer 4 affected. The actual.ethod to be used will be dependent upon field conditions. l -r ---.-,om.--- .,rr.--- w---. -n--. ,,--,,,-r -y- .p.+ ,r yv

Attcchment 8 to AECM-81/353 Peg 2 1 of 1 1.8 Evaluate raising igniter surface temperature

RESPONSE

The design of the igniter assembly is such that the igniter is connected to the 12 VAC secondary side of the transformer. The ,, primary power supply to the transformer is 120 VAC 1 10% max. Therefore, this voltage may vary between 108 and 132 VAC. The voltage to the igniter from the secondary side of the transformer may vary between 10.8 and 13.2 VAC. The results of prototype tests performed by the igniter assembly manufacturer indicate that: a) At 10.8 VAC, the igniter surface temperature ranges between 1500*F and 1700*F. b) At 12 VAC, the igniter will operate for 15 days. Hence, the criteria for minimum surface temperature and operating time, as stated in the June 19, 1981 submittal, have been satisfied. However, in respon.n to an informal request from the Containment Systems Branch to raise the minimum igniter surface temperature to approximately 1700*F, we are pursuing the testing of igniters at 14 VAC to determine their operating characteristics. While it is expected that 14 VAC 1 10% supplied to the igniter will result in a minimum igniter surface temperature of 1700*F, preliminary results indicate that the igniter life is reduced. If the results of this operability testing indicate that a 7 day minimum operating time can be achieved without adversely affecting the glow plug or assembly, each igniter will be conneted to the 14 VAC secondary side tap of the transformer. A final decision will be made prior to fuel load.

Attcchment 9 to AECM-81/353 Pcg2 1 of 1 1.9 Evaluation of seven day operability as a design basis.

RESPONSE

The HIS is designed to be continuously operable for seven

consecutive days following actuation of the system. The limiting component is the igniter itself.

Seven days was selected as a design basis for the following reasons: 1. Even for degraded core scenarios which develop slowly (e.g., stuck open relief valve or small drywell break), the hydrogen generation resulting from a 75% metal water reaction concludes in less than two hours. 2. The longest duration scenario for hydrogen burns is the extended drywell break case analyzed in Case 4 of the submittal made by letter AECM-81/336 on August 31, 1981. The hydrogen burns for this case are complete in less than five hours. 3. Even for scenarios which developed more slowly than these, seven days allows adequate time for a detailed operational assessment and for equipment and personnel to be provided from offsite as needed to restore core cooling and recover from the conditions which resulted in a degraded core. 4. In the one actual event which provides information on degraded core scenarios, the incident at Unit 2 of Three Mile Island, a single hydrogen burn took place inside the containment at 10 hours into the event due to ignition from a random source (indicating that the release of substantial amounts of hydrogen had occurred earlier than 10 hours). The fact that only a single burn took place further indicates that the release of hydrogen was substantially complete earlier than 10 hours. In addition, within 24 hours of the initiating event, the incident was under control. Furthermore, it was amply demonstrated that seven days was more than adequate time to mobilize substantial technical and material resources to aid in mitigating the consequences of the accident and in assuring that long term conditions in the plr.nt were stabilized. Based on the above considerations, it has been demonstrated that seven day operability is an appropriately conservative design criteria.

Attcchment 10 to AECM-81/353 Pega 1 of 4 1.10 Provide a more detailed description of the HIS and its power supplies.

RESPONSE

The Hydroger. Igniter System (HIS), which consists of 96 igniter . assemblies distributed throughout the containment and drywell, is designed to ignite hydrogen in the unlikely occurence of an event which results __ :he generation of excessive quantities of hydrogen from a large metal-water reaction in the reactor pressure vessel. The HIS is designed to burn hydrogen at low concentrations, thereby maintaining the concentration of hydrogen below its detonable limit and preventing containment overpressure failure. The potential for significant pocketing of hydrogen will be precluded by: a. Utilization of distributed ignition sources; b. Simultaneous operation of containment sprays; c. Mixing caused by turbulence resulting from localized burns. The HIS is designed with suitable redundancy such that no single active component failure, including power supplies will prevent functioning of the system. The HIS is designed as a safety grade system capable of operating for a minimum of 168 hours after initiation in an accident condition. Igniter Assembly The igniter assemblies used in the HIS are divided into two components: a. The igniter enclosure which partially encloses the igniter and contains the terminal block, transformer, and associated electrical wiring and; b. The junction box which contains the cable termination. The assembly is depicted in Figure 1.10-1. The approximate weight of each assembly is 30 pounds. A hooded spray shield is provided for protectica against the containment sprays. The igniter enclosure, junction box, and spray shield are constructed of stainless steel. The enclosure is 1/8" thick, the junction box is 14 gauge. Gasketing material and sealant is provided to ensure leal"ightness of the igniter enclosure and junction box. Access to the enclosure interior is through a removable plate on one side. The igniter chosen for the HIS is a General Motors AC Diviaion Model 7G glow plug, which is identical to those used at the Sequoyah and McGuire nuclear plants. See Figure 1.10-2. The transformer is a Dongan Model 52-20-472Q. (200 VA for 120 VAC, 60 Hz (110%), primary and multiple secondary taps at 6,8,10,12,14,16 and 18 VAC). The igniter assembly is manufactured by Power Systems Division of Morrison Knudsen.

Attcchment 10 to AECM-81/353 Pega 2 of 4 Power Supply The hydrogen igniters are powe'.a? off of 120 VAC, 60 Hz, class IE power panels. Thece power pp~ els receive their power from class a IE, 30 KVA transforvars, rated 480/208-120 VAC, 60 Hz, 3%, with grounded neutrals. Each transformer is fed from a class IE MCC breaker, on a c;4ss IE bus powered from one of the standby diesel generators. Power 1: applied to the igniter assemblies via qualified local contactors in NEMA 12 enclosures, located in the auxiliary building, and operated by means of a handswitch in the control room. The ninety-six igniterc are divided into four approximately equal groups, two groups in Division I and two groups in Divicion II. Each group is powered from a separate power panel breaker through a separate contactor. The power panel breakers are normally closed, so that the igniters can be energized by simply operating the control switches. There are two control switches in the control room (to be located on the Auxiliary Control Benchboard P870), one for the two Division I groups and one for the two Division Il groups. 120 VAC power from the power panels through the contactors is brought into containment through penetrations and brought to terminal boxes, where power is distributed to the individual igniters. The connections between the igniter assembly power leads and the field cable will be by bolted lug-to-lug connections covered with heat shrink. This connection is made inside the junction box attached to the igniter nuclosure. A grounding stud is provided on each igniter assembly for the attachment of a field ground strap. 1 1 0 to AECM-81/353 Figure 1.10-1 Page 3 of 4 General Assembly Hydrogen Igniter B 9 % -. Y,. u, _= \\ l O 4 C i f gN 4_.. _ _ _ _ _4_ _ _ _ _ _ _4_ </ r.i A,w e==-_ _u2===r2 .r.., r i il y = '4.i .i

4 Q- - - --- ----- ---:;

gg g gn ,i -l, g' 8 ii l, ,3 4 9 g I 81 i g +i1

e..,

l p. ; pe.< - = be= .i ) i,- 4 ,!,,i Ii i i i i +!l ll+ l i i i l 3 i by .d. 4% s 4 ...g e i I L....,_ T N i p g d ._4 60TTom + h FliOUT 13 ) 3,} I 1l e. I $I g N 7...____ g.______...____, i =.. l i-i i g=[ i e - j. r=-- *il T g gi LMI a rt <g .J..e M 0 C 7 __ _ __.., a + _ _, ,9: a l 4 l i l l g fre 34ma-p1 Ig,.. _ _,... _ _. 3, i 3 a & l b _ ene e m eme.J l C N i - u __. _...__._ ~. I 1r 4 I>

.s O Figure 1.10-2 GMAC Model 7G Glow Plug e 3/8 IIEX WRENCll FLATS HEATER ELEMENT SilEATil [ CONDUCTOR (INCONEL 601) (IIOSKINS 875) i

  • 5 t,

j B g-{ f} 'f^* b = j V 7 7 x >. a V W en n O O Q O O o o O o,0 0 0 O l IItb bd~d bbdb'b O O b'd ~ ?j'jffff]MtrOf"~ ~ M E ~~ 9 IGNITION TERMINAL oo R g w Mg0 PAG INSULATOR 10 Fff x 1.0101 SAE (Magm -f um I SPARK PLUG TilREAD bxide)

Attcchment 11 to AECM-81/353 Page 1 of 1 3.1 Evaluation of operation of igniter during pool swell events and the need for testing.

RESPONSE

~ To futher determine the effects of complete submergence on the

operation of the igniter assembly, a water submersion test of an igniter assembly will be performed to include the following

Complete subestgence of an assembly while the igniter is not a. energized. Upon completion of the test, the glow plug will be energized and checked to verify the glow plug surface temperature. b. Complete submergence of an assembly while the igniter is operating. The glow plug surface temperat ;re will be checked prior to and upon completion of tbs test. Submergence of the assembly in each test will be for a minimum of 10 seconds. The expected duration of the pool swell event is less than 5 seconds. Therefore, the ten second submersion time is conservative. l I

Attcchment 12 to AECM-81/353 P:ga 1 of 2 3.2 Define an igniter selection program; i.e., how will actual igniters to be installed be selected?

Response

Each flow plug igniter utilized in the HIS will undergo a preconditioning procedure prior to installation in the assemblies. The objective of the preconditioning is to insure that premature failures of the igniters will not occur and to eliminate the need for a " warm-up" procedure prior to operation of the HIS. The preconditioning procedure is based upor results of trial procedures conducted by the igniter assembly manufacturer and supported by test results which showed no failures whet, operating the igniters at 12 VAC for 15 days (360 hours). The procedure calls for ten igniters connected in series to be preconditioned at one time. The procedure sequence is as follow: (1) Apply 30 VAC to the igniters for 2 hours (3 VAC per igniter). (2) Increase voltage to 60 VAC and maintain for 2 hours (6 VAC per igniter). (3) Increase voltage to 90 VAC and maintain for 2 hours (9 VAC per igniter). (4) Increase voltage to 120 VAC and maintain for 2 hours (12 VAC per igniter). The voltage and the amperage will be checked for each igniter every h-hour and the data will be compared against the AC volts vs. amps curve shown in Figure 3.2-1. (This curve was derived from previous vendor shop tests). Sh;ald the measured data deviate by more than 5% from the curve, the igniter will be rejected. At the final reading for each applied voltage, the igniter surface temperature will be checked. Igniters which do not operate at a minimum temperature of 1700*F when supplied with 12 VAC will be rejected. At the conclusion of preconditioning, the igniters will be visually inspected for any sign of deformation.

' - 2 to AECM-81/353 Pege 2 of 2 i i.i i i ! l ! r i i l i I 'O 1 i e t I t t } I l } 3 I 3 ' I i n l 1 t Ja c va t I m _' N L. A MV L i 1 i i i i i - e 1 ,, ) ! t ! I GrP41 M IL FF4%E I i i g l I ] i j 1 t ! I ' 3 3 I i I l i

===t4. e { l 6 i i ! I I i i i ! 3 i i t i t I l' i } i i . I i t e 9 g i j i i i t i i $ 9 l f n 2 f a 4 l i e j i j l } I t I 3 i ! i i e i !i i t t 6 i i i i i i e i i i i'. i i 2 ! i 1 i i l. ? 4 ' E i i i i i i t 3 I i i. . t. I l l I . t ! ..

  • I

! I f f 3 . 1 ' 4 f i f i ! I i ! I l ? i i t i t t

  • I 3 !

id i i I '. 8 8 3 i 1 3 i f ! !I ~3 I } f 1 I i 1

  • i.

. 3 ! I i. e i ! i. i ' t i. 3 i i i

  • i t

! i 3 i ! ? I I I I ? } i 8 i ! 3 t i ! l t f i i i i i e i. l i i e i i I . I i i i 6 - t4 + i t a . i e ] I17 I ! i i t 8 i i 6 i 3 i i i i e 4 8 a l i l i. . i I i i i i I j i i j 1 ! r i a 6 e l y . i i 1 *

  • i t
  • 2 i r i i

te e i .. I { l lb i ! i i i e i i j i i i i i i 6 i.., i i i 1 e i I i 3 i i f ' i I. i i i 3 3 i 1 9 e e i i e i ! j i e i i lg i 4 I. 3 lI e i j i 3 j i I I f f i d f 2 i i e I t i I e i e, i i I i a p i . 4Y i i t I t _a a i i i j i 3 i,' i i a i i. i p i i e i i i e r, i i Q t 1 i 9 3 i t t JE I 1 i _ pg i i i i,. e f= i I E f 8 6 . I / f I [ I I g a . i i f. 6 Af W / f f 3 1 ! I t 8 i. g a { 9 i t } 8 I i i. i jr 6 i i i 5 4 .. / i I i i i i i i . t sr i i a i i i ' s i 1 1 / I i i i i i i i i i e i. i i d 1 i 1 i i i i .. p i i. . i f i i f 6 i 9 . => l ' e i + 1 1 i i I i.. i i f i e i i . i i, . sr, i l i i 4.

r i

i i .g i i / , i e e !d . /* i i i r . i i i 1. i / 3. i JF 8 ' i t j g I 8 3 iA i i # i 4 i + 1 I ? I i 1 i t i i i i 6 i r f I .v i i . g i i i i e ! i 2* i e i 1 i i + ., e i i,p-i + i e i i 1 i i e s' i 1 i . l i .. 6 1 e i i ; 1 s i . i 1 f i i i e i f !# i e i i t ! I i f f ' i 1 ! t .F i i e i 3 i i e . 4 g e 3 i f 6 9 I i i ! t i E i..i i i 1 i i i i i. e e . i i ! t e I ' I f t i i I f f I 8 i 3 i.. 6 . i i, i i i r6 a . r i 8 i e I I 1 i r 3 i i, i I i i j e 6 i i i, i i. e I i 1 i

  • f ! I f

i ! i ! 3 i i , In . i i v, i i. e 1 a i e i .i 8 i i ! i i i i i _i I i i i i i .. i 4 i i i w [ . i i f 3 l 9 I ' A J i i i i i / 1 i i6 i,t -eD i a m. i 1 i

  • r 1

e . i,- l i' ,i i I i i i I e I VQI_y C e i i i I i i Figure 3.2-1 Igniter Preconditioning Curve

Attcchment 13 to AECM-81/353 P:g2 1 of 1 3.3 Provide a detailed description of the igniter test program (including seven day operability and immersion testing).

RESPONSE

In addition to the tests planned as described in the responses to ,Mydrogen Action Items 1.8 and 3.1, qualification testing will be performed, as necessary, to demonstrate conformance to the standards listed in the response to Hydrogen Action Item 1.3. Hydrogen burn testing will be performed to further establish the qualification of the igniter assembly for environmental conditions resulting from successive hydrogen burns. The Hydrogen Igniter Assembly shall be placed in an open ended test chamber. With the igniter energized, hydrogen and air of known voluaes (2 to 12% by Volume H,) shall be introduced into the chamber. The flame l l temperature F ow P ug temperature, assembly temperature and percent by volume of hydrogen and air shall be measured and recorded. The test sample will be subjected to approximately 55 burr jcles. Multiple burns will be on a best ef fort basis. The anticipated completion date of the above tests is March 1981.

Attcchment 14 to AECM-81/353 Pag 2 1 of 3 4.5 Describe the operation of the Combustible cas Control System (CGCS) during burns (including a discussion of the logic for the purge compressors and vacuum breakers).

RESPONSE

The system logic and automatic operation of the CGCS drywell purge compressors and vacuum breakers is discussed in FSAR subsection 7.3.1.1.5.

The conditions required for automatic initiation of the drywell purge compressors are summarized below: (a) a LOCA signal (consisting of a coincident low reactor water level and high drywell pressure, 2 psi greater than contain-ment pressure) followed by (b) a 30 second time delay followed by (c) a drywell pressure no more than 1 psi greater than containment pressure. Valves in series with the vacuum breakers are opened on the same conditions as automatic initiation of the purge compressors eAcept that drf.aeil pressure must drop below containment pressure. Thus the vacuum breakers are enabled. Manual initiat!.on at a system level is enabled by a LOCA signal followed by the 30 second time delay. Manual initiation of the system at a component level can be accomplished from the control room with no LOCA signal. However, the system will then trip upon receipt of a LOCA signal. Following the 30 second time delay the system may be re-initiated by: (a) automatic actuation due to drywell pressure no more than 1 psi greater than containment pressure, or (b) manual actuation at a system level, or (c) manual actuation at a component level. So long as the LOCA signal is not reset, further pressure differences have no effect on system operation other than opening and closing of the vacuum breaker check valves and motor operated block valves as designed. The possible effects of hydrogen burns on operation of the CGCS drywell purge compressors and vacuum breakers are postulated as follows: (1) A hydrogen burn in the drywell could cause drywell pressure to exceed containment pressure by 2 psi or more coincident with a low reactor water level and generate a LOCA signal (if no LOCA signal was already present). This would cause a trip of component level initiation of the drywell purge compressors and vacuum breakers. This is an adverse effect which would require operator action.

Attcchment 14 to AECM-81/353 Pag 2 2 of 3 (2) A hydrogen burn in the vetwell or containment could cause t i containment pressure to be no more than 1 psi less than drywell pressure for the first time after a LOCA signal and 30 second time delay bringing about automatic initiation of the purge compressors and vacuum breakers if they had not already ~, been initiated manually. This has no effect on desired operation of the system. In fact, pressure changes for reasons other than hydrogen burns (e.g., steam condensation, operation of the purge compressor, heating or cooling effects, etc.) could have the same postulated effects as pressure changes due to hydrogen burns, f l To evaluate these effects, drywell and containment pressures were compared to determine when the conditions would occur for the cases analyzed. These results are summarized on Table 4.5-1. Based on this evaluation, if there was no operator action to restore the CGCS to operation following receipt of a LOCA signal, the maximum length of time the purge compressors and vacuum breakers would be out of operation is approximately 900 seconds of Case 5. This does not represent a hazard to the safety of the plant. P -,. - -,. -...,., ~, en,. n ,.,-,.,.--,,,,.-..,,w,,.--,---.,

Attcchment 14 to AECM-81/353 Page 3 of 3 IABLE 4.5-1 1) CGCS Outage LOCA Signal Auto CGCS Duration With Case (1st Occurrence) Initiation No Operation Action a 1 and / See Note 2 See Note 2 0 2 7000 sec 7000 negligible 3 7000 7000 negligible 5 5600 6500 900 sec 6 5100 5200 100 sec Notes: 1. It is assumed that after low water level first occurs, the only signal needed for a LOCA is drywell pressure greater than 2 poi above containment pressure. 7n fact, if water level is restored before the pressure difference occurs, no LOCA signal trill be generated. 2. For the drywell break case analyzed, drywell pressure is more than 2 psi above containment pressure very early in the scenario so that the LOCA signal is generated when low water level first occurs. For the duration of the scenario, drywell pressure remains greater than 1 psi above containment p ressure. I l [

Attcchment 15 to AECM-81/353 Pagt 1 of 1 6.1 Provide additional information on containment cross-sectional flow area: a) Overall b) Gratings, solid floor

RESPONSE

Figures 6.1-1 throvgh 6.1-6 are provided to further illustrate the c.ross-sectional flow areas in the containment, i 1 ,,,-,o,--.w ge,.. ,-,m---w.,, e, - -..,. =,e4y... -.m._4.-- .-,nea -e, ,e-m me-- ~.. ,,-.rv-,-+-- r-- +- -

r a r z , n - \\j i I ~ g ei ~xoo - x i . DIOr 1 Nr ' $:l2, k fl ~ / s e,. i -t O [\\ 1 j N %D ;,.. j. eS',', if59'C 101 \\ i - y l

y

\\ T ./ ,u n o,- - + -


.+.-a 1

>- -h 1 - --. u- - - - - -- --- - + z <w 4 , q o '., - 1 .v's !/ My, / i / i, Dk%p" n. / 'f.,_\\g / .g,., l: -l \\. y. \\ Mr .6 b' \\, \\ D101 g-j T> l C h 1 / 4, i f A2 iso' L J L A t t O N;c., L i M -*-. H. I L' ' 'N T, -- - t A N D E!_.10 0 -9,, E L ci 0 FIGURE 6.1 - 1

7.. 7 m - c. A Z O' , nig 0 ^'; ~ 9\\2. } D\\M ' 3 .D .e: 9 g G;l ~_i f/N p 4p'g; L5 =$g s y,)- \\ v%,' s f oDIOG s b'D 'II ty/ oh. Di' - .\\

j us-d.s xs -sv

_. _.q __._b.3. P P V p - '.. II W.., ' Az 9 0

41. l i

Azzao~ ^ 7_ 3; .\\,*/,9 - k,f 1 l l // l' ' x-2 \\&" $d', ' ed3 Dlo b i \\ 1 - Q ~ -lgi2a .7:,/ w., fa,..

&c ~

s ono - ein o+ / e rh. / /qE ff Dl97 4 g <:a e,/ \\ts t%ots a m p v,s -1 Vi j ,9 D131 [rf 19'1 -0' 01 a roi30 i i j Az mo H g is!xuTE R LO C.1T ION _, CTMT EL. l 2.0' 10" AND EL. l l4 6" FIGURE 6.1-2

F m

A 2. 0

., ~.,. e k:,2~ _m-,. .5,\\ s. ' c'$. '),5 /. 1, s J. [h ~ x om1 ; om.e. s g n%' -t k 1,['[ q*\\ A 3, rt ,a,,,- (- 'y pas v m p, w ;,.'.;- 4,, r,,, +..;,- p ....s m.;, my%a t' #~y 1 .s - e.s 2 s e j ' 4, jY l .-i /. c-i> -g/.f N 7 ys 4.en; fX ~ u 'x %,r, w,A oin %. 1 /.N e Q; Pit %@ f q% \\ ' ; f/, y g)9% # y

. QQ Vs [/, k
/, W ons

+ ' V e;m A ( . + c:,. a m' ao '..,a2._ _~ d%gt n A t s s s'w'- A2 9 0" r l / / RP V \\ \\. \\.

i. w a -

m -, -- n - + ~ 1) -- - ~ l ! l 'd ,,, ;.y D NM r s /* Jr ~me w U. S.. V, n% y . p -- g4 n . s Sgt ; 9y Qirgj! r- %~$., g, 7-ef p c-t ~ e,., .c 7. ...r. .., f., u. j s t ' g.. $ u' n a, a'. sse. s ,j s. .g a - N\\.; _.'Jhh DI j s x .. ~sv pg/

en-m.c4, 9

2 g.

x. s m.

s s s , N $. ,s s s s s s 3,, ' ., {t ri x ums - e 4 oth, 29 .n y v 1 s x

a. t.).

9, e; u ~j 's m .a t t as, pty'4. o, Dt.Q q',' x-s ^s N n g 'N O .a n- ~. 1 I' U;/~[.")A1.] Im :3 t t-n; i b i m "i t n'T 1 * * ?'f 5 g } m qc_ p d, f.I A N D F L. lE. 7 -T ~ * * [ g ^ M i' .m Q7 p,% 7 / 2 O t - Oft. f t' I ')P ) j (; J' g 3 ~ P 3. t,,.,, n - ~ sv 4' , A b k Yx,). f( y j 3 a' r~ l f i / _,: Euy e i 4 s { e-

y, m. .- _ _ Z AZ O ' m% Qs.,s, ,./ u g% g_ 7 w D, c+y..g, n g$j,/;'g \\b.s t s ..t s - h j N s s m - ..m sNs s u s-p x. s. w- -.y y.y.... .s x -.3., a,. - s.c ~. m. x s. ,.-s f s 1 y,7 g _U;9-;,f %. q~, m., O.,q' \\ .4 'x 9 .4 s'.y"i g s 3 y- -w.- d.:.4 9,,. o x 4 ,- 3s s

s.,

A T. pg; - Q. ST / ~ NIN sg. j/,- ~g. s 4 o s s,7 v s,

  • 6
r. bil5

,NO p.p%. m, TV 's J-t m%@~ MEL. Wc' ) '(4Q,g'N,% e, v. s. ~. D19 7 *% - D i '< 3 +/ Uf5~YDfE ? W A Y D152CEL.178'to') W 9' 4,3 Dl h,, b 47. 2 h : -/-, t @y9, eg k-4, + s .me y 3 ;;t s, ,s (- t s.q 3 +-- L. s, "C - D10 ,.3,y p st 2; s ra / i. -ts r ~ d'.N' L+RPVb i h.;hh; h - / f'l A Z 170' ' i A Z 90 ~ z1 o u, 4 2 4\\ A s' (f l.. u,/,, s z" p, N.- ..s i 4;. \\ i s s .3 m. y s.=w ,x s g*; ; .o 9;, ~'\\ f,, 3 , %.,-, m.. y..- f

\\,

s s 7 3 y' ; As. fg.~;ko - i s3; QR n - 4 /

.;o

.s t a go-M' w gd1 Y O1Q' s s N ' p. e " 1,()D12.1 <Q. [ DtQt(EL 160 O") 4 s' ' " ' 1 g \\si,. -.s s s ,.g s.W L 8s 0153 (EL.. IM' lo") 2 3 (N?oQ ,g,E x A.0.'3, ..sy s . s ,5,'- \\ ft. .a nm..f c. -N s. / w 8 u ' < '- c. we s s er m.. s u m s s s ,,r ..a.:, a '?/n W % M 's N' g-w- ,;, ;.. - y_ ,s z y ~p, .c ;W 7s x,

x n.

, e .g 'Vl ,2 D N [3s N v ' 's A Z.1 S O' 1 pi,, ; u,. \\, ' i t _ ", _- s' 'u A,. __ C ",. ,_. I. - '.. .r7., .s 1 _,-'m if E L.161 - h3 ,_. t, / t i _q. ,g 33 g. t p i s 4 i i. ; t _t i i -.e n ;, - s y, o.:: 3 + FIGURE 6;l-4 ~ > q /- d t ai DEL J 1 N L + - 1r i; , rty -.si

p # gn g m

3 s

.m i g jf9 - _

b, s

y( oJ.j n-- / L .4% A Z. 0, V gj _., br?N F Y' 5 = N 'NA i s e p p w ~. &l *. ., ft% Ngn n pecy 4)x's ,N %.~ .+.up.. : ng e Js sN -.

s')
  1. g s;k's rg#)

s xm . c R's\\Rx(K sN 'x' 3- +J N NN;' de 2 y ./ 4'g f "V (x 4 > yv ~4 s [ % - ~,xxtt e 2 c en,A,sN s c49 t b m l DR'tW ELL.N i A7_.90" A7 270*;m. %hh70 , b g g y rtis j .o 4k,. l g'x.;tif 0: >' j Q H E hD. y y i.' ~ \\ ' i -Q[ M. g ,/ g Qq g Wib s-b, q '"/ rp? sqq, t 4 v Qpp [nt x p.We L %d t,x'4.q@w, i s 1

x % u.

.x, q j;4.c \\o- . t, y/s s. 4x' "c W'> c'> 'Ngm,o. .f r ',x' 'x A. 4 mag 4..N

  1. PDThde&sh @9W NNN

',x-oni 4 MWf;f N N gig ( w -,. m.. g:ggm x ap: n n.s -cg ,e s x a,

a. _ m, w

an.an;a

. 'g~

f4y ;g44 n fute #dxM hk,.+- 4

- 0

%nyJSESO;v'

AZ.180' l

IG NIT E R LOC AT1O NS, CTMT. H 2 i E L. 18 4 - L,,, CTmT. m No LU G At.E A. G 2 G 5 JI FC' No f o re m u m m T, m ME/-. ; i,50 - F 'A 9.. n o, G - E /~ 19 0 9 M. F T ('ll N OP E M) ~w E n i /N Ju_ A. 's. 100 0 l8 FT' RGURE G. P 5 y t: n,oc m e.,try n o_tuntmyn Hu, gnat.LtoucTro

W v 'A-7 A Z. O N

  • , ',w, ?. %,W99. m

m ,(p' ' xl}.JQ, y-w.w.. -y% F:, '. g :y. _ L x n /,s x / '[ky- [Q. /. - ?lj[g%)' Q'< k Ne . x s u. / l. A l.r[t f! g &m;:A g L l

sfhW s

v.s x y ~, 'x .i x s . y c - a xs xg .j. N, % .W .; f6Q.g p+ 3 Ng '\\

/;

y a ;, :n %; %W ; . s @xss.x $. \\ g s ,,i._, *c 1 /, / ,.,I '.As ..m[, a N [ ...,.4 I ,;g p- } t-p3 7 ,, g 'g p _,4 --.'y,' - ' QQ , ; s. J yy a .n-e-~ 7, . <-?., f en.;. .e. iq

  • y

\\ s x ,ve.. ~# f, t s h MN i A2.90 l i da.w. w.!,a M,M_ M..m Q-, M,O.M W Fin..isa_ 5 c h o g y v. 3 g y- ,7 L. . > V. Q f,,p C %g> .. -. - u;;; 7, ", %y] ~f,,h k.. n ~ ..,,.,t~ Gr f /g.,"JL[.. Ji !. \\l#,W = ly,QQ1[ ~ y}'h} 8,. = 9 me / wy s \\ \\; \\, '\\ 'yh&&* llQ%{}}', f hl 0. ' " A &S p g $% * ( $f. 1 '/ ,/. s./ .27 .v 1.. wt..

ouwa x

t.__ g. _ m __*,.. . v D/ r x 's D ; ;, *,,, s . x. <P,.o t s,- N

  • .. ~-

.- x.- e. s g, ~4 . I ar f. - ' e3 \\ 8 w.s. ~i

  • q.'w u

' 'A \\ '( j ,ij su 8 w % _oisz.... AZ.lBO m2 I GNIT E R LOC ATiONS, CTMT. e E L. 2 0 8,- \\ 0,, en f. = r._ f

F,-

f} ~ .1 } l* t%...im t. L f i.- w e e \\ ,s 'q lr ~\\. o k t me '\\ ( [,, L-L- (/r[} I kh - 4. -) D '$ 1' ~ f. I j.i, FL - 11 Ct 'r. ' T i > ; '*I 't'. f E 6 ) b EI' J CII'b',

.... _ = u Attechment 16 to AECM-81/353 Pagt 1 of 1 7.1 Provide further information on strengthening upper containment personnel airlock.

RESPONSE

~ Response to this Hydrogen Action Item was provided in response to ,an informal question from the Structural Engineering Branch in ' AECM-81/312, dated August 21, 1981. i 4 l 8

AttEchment 17 to AECM-81/353 Paga 1 of 1 8.1 Provide a description of the Grand Gulf equipment survivability program.

Response

Section 4 of the August 31, 1981 " Report on the Grand' Gulf Nuclear Station Hydrogen Ignition System" has been rewritten to incorporate imore detail on the equipment survivability program and is included as Attachment 1 to this action ita;m. In addition, Attachment 2 is a survivabilitv analysis of the igniter assembly, the first piece of equipment to be analyzed. 4 ,,--.,,--_,-c -.~..w.,-- -..,,-.,,,._,..,,.,,-,-n.,

Attachment I to Hydrogen Action Item 8.1 Revised Section 4 Equf.pment Survivability O

GCNS 4.0 Equipment Survivability The burning of hydrogen in the CGNS conta'.nment would ~ result in large temperature spikes of shert duration. An 4 analysis of the ability of essential egr.ipment to sarvive this environment is underway. The anticipated completion date of this evaluation is December 1981. An example of the methods to be used in the survivability program is provided as an evaluation of the igniter assembly included as an attachment. 4.1 Criteria for Equipment Selection Section 4.2 provides a list of systems and equipment which may be required to function post-accident following a hydrogen burn. All systems in the containment and drywell were considered; those chosen as necessary were selected based on the following criteria: a. Systems which must function to recover the core, maintain the containment pressure boundary, and mitigate the consequences of the event; b. Systems or components whose function should not be negatively affected; Systems whose function might be desirable (e.g., to c. monitor the course of the event). 4.2 Summary Equipment List The following is a list of systems and equipment which may be required to function after a hydrogen burn and will be included in the GCNS equipment survivability program: 1. Containment isolation valves, penetrations, locks and hatches 2. Hydrogen igniter system 3. Hydrogen recor.oiners and associated hydrogen control comper.crt-4. Con tainment spray (CS) system 5. Safety relief valves 6. LPCS, LPCl and RHR systems 4-1 9/81

7. Reactor level and pressure instruments 8. Hydrogen analyzers 9. Cantainment pressure and high-range ra.diation instruments 10. Containment and suppression pool teaserature instru-ments 11. Drywell pressure instruments 12. Associated instruments and controls 13. Associated power and control cables 14. LPCS, LPCI, RHR, CS and containment isolation valve position indications 4.3 Description of Program The following is an outline of major milestones included in the GGNS equipment survivability program: a. Generate Survivability Environments 1. Profiles for numerous transient conditions and assumptions have been developed. The bounding transient is selected to analyze specific components. Methods and analytical tools for modelling the equipment and heat transport has also been developed. An example of this methodology is included in the igniter assembly thermal evaluation. b. Identify Essential Equipment Parameters 1. Determine external geometry, casing composition, and surface emissivities 2. Determine equipment temperature qualification 3. Identify equipment's internal composition and material properties 4. If necessary, determine equipment locations and existing thermal shielding 5. If necessary, identify vital or limiting compo-nent and thermal failure mechanism. c. Use analytical methods to determine thermal response of essential equipment to successive hydr 6 gen burns. d. Evaluate survivability based on the following criteria: 4-2 9/81

1. Surface temperature response below qualification temperature 2. Temperature response of vital or limiting component below qualification temperature 3. Temperature response of vital or, limiting component below thermal failure threshold 4. Communications with vendors J 5. Test evaluations if warranted, e. Propose and evaluate modifications to enhance equipment survivability 1. Modification to equipment surfaces 2. Addition of thermal shielding 3. Relocation of equipment 4. Replacement of equipment f. Benchmark analytical method against components subjected to actual hydrogen burns. i 4-3 9/81

t to Hydrcgen Action Item 8.1 SURVIVABILITY ANALYSIS OF IGNITER ASSEMBLY 9 O

I. Introduction The primary purpose of previous hydrogen burning analyses have been directed towards establishing the ability of the containment building to m'aintain its integrity after being subjected to the pressures generated by repeated hydrogen burns. Attention is now being focused on the survivability of essential equipment subjected to multiple hydrogen burns. For this first evaluation, a hydrogen ignitor assembly is chosen. The assembly is an essential piece of equipment which must survive the effects of repeated hydrogen burns and still remain operational. Based on discussions with the assembly manufacturer the limiting component of assembly which must survive this transient is the igniter transformer. II. Evaluation Basis The burn transient selected for the evaluation of the survivability of the ignitor assembly is a stuck open SRV with no core cooling prior to core slump. The SRV is selected because it is: 1 1. a relatively high probability event 2. results in an upper bound hydrogen release (a large break results in steam starvation, limiting hydrogen generation) 3. consistent with the plant procedures which will result in the minimum of 7 SRV's opened by the operators during a loss of core cooling transient 4. consistent with the assumption of recovery of core cooling prior to core slump The case selected models an 85% complete burn of 8% hydrogen (8-85). This is selected as it is a best estimate of the upper limit of 1NUREG/CR-1659, Vol. 4, SAND 80-897/4, Reactor Safety Study Method-ology Application Program (RSSMAP), Grand Gulf Power Plant - S. W. Hatch.

Pagn 2 hydrogen ignition as ghown in glow plug experim2nts.2 If the hydrogen were to ignite at a lower concentration (possibly as a result of induced turbulence) a less severe temperature transient would result. The temperatures in the wetwell region were used for this evaluation. The wetwell region is defined as the volume above bhe supression pool and below the HCU floor. For the stuck open SRV', the hydrogen is burned in this region. And hence, the wetwell experiences the severest temperatures. OPS has calculated the wetwell temperature transient for a SRV, 8-85 burn with and without containment sprays. These results are included as Case 3 and 6 in the 11P&L Company Report on the Grand Gulf Nuclear Station Hydrogen Ignition System. These results are used as the basis for determining the thermal response of the igniter assembly box. To be consistent with the assumption or no ECCS until just prior to core slump (slump occurs at approximately 6300 seconds after the initiation of this event), no sprays will be assumed until core recovery begins. III. Modelling of the Ignitor Assembly The ignitor box is a 8"X8"X6" stainless steel box with a removable cover. This sealed box houses the transformer and terminal strip mounted on a stainless steel plate. The glow plug extends out through the removable cover. It is insulated from the box by its 1" stainless steel mount. A diagram of the igniter assembly is shown in Figure 1. A two dimensional model of the igniter box was used to determine the temperature distribution inside the box which would result from the burn environment. The glow plug was not modelled as the box is protected from it by the 1" stainless steel mounting. The terminal ctrip, bolts and wiring were not modelled in l 2Fenwal Report No. PSR 918, December 3, 1980, PSR 914, November 10, 1980 LLNL Report UCRL-84167 Rev. 1, January 1981. 3Docket #50-416, 50-417, August 31, 1978.

Pega 3 this thermal analysis of the box, as they would not significantly alter the thermal response of the model. The 2D model, however, includes the transformer. This 2D model is shown in Figure 2. The box is modelled as mounted on a 1" carbon steel plate. The exterior surfaces are exposed to the hydrogen burn environment as the igniter box is hermetically sealed. Heat transfer to the exterior surfaces is by radiation and natural convection. Across the air gap inside the box the mode of heat transfer is radiation and natural convection. All solid materials transfer heat by conduction. The box and its internal components are assumed to be at a steady state temperature of 135 F (wetwell operating temperature) when the first hydrogen burn occurs. IV. Modes of Heat Transfer Heat transfer is modelled by conduction, convection and radiation. Natural convective heat transfer is calculated using the relation: h = hc OsT)he

where, AT - temperature difference between the surface and the ambient atmosphere he and he - are, respectively, the coefficient and exponent for the natural convection term The prcduct of the Grashof number, Gr, and the Prandtl number, Pr, indicated that the flow is turbulent. The following correlation for free convection in air, with turbulent flow is used:

h =.22 (AT) l/3 Btu /hr-ft - F p, - -- - -.,. - - -., 9,,,.,.., _ -. _. - -. - -.,,,,,,, - - _., _,... -.. _ _ w,

Pr.ge 4 Radiative heat transfer from the burn environment to the assembly box is modelled utilizing the methods suggested by Hottel, wherc: E +1 4 4 U- (E T T 9" 2 g atmos g surface 0-Stefan Boltzmann Constant E emissivity of the outside surface s Eg,a are the emissivity and absorptivity of the steam / air environment T burn temperatures atmos T box outside surface temperatures surface For radiative heat transfer across the air gap inside the box, the the stainless steel is a gray surface and the transformer is modelled as being a black body because of the insulation coating. For radiative heat transfer between two paral.lel plates with different materials on each plate, the heat transfer rate is given by: 1 c-(T -T I 9* 1 +1 -1 y 2 E E y 2

where, E

respective surface emissivities c-Stefan Boltzmann T respective plate surface temperatures Hottel, H. C. and Egbert, R. B., " Radiant Heat Transmission from Water Vapor," AIChE Trans., Vol. 38, 1942. i

Ptgn 5 Thermal contact resistance between the stainless steel box and the interior mounting plate, and the interior mounting plate and the t'ransformer mounting is also modelled. 6 V. Modelling of the Hydrogen Burns The temperature effects of repeated hydrogen burns on the box and its components are calculated using a revised version of the 5 HEATING-3 heat transfer program. The code has been modified to model the thermal response of the igniter box to successive hydrogen burns. The modifications which are incorporated to allow the code to simulate radiative heat transfer from and to an emitting absorbing atmosphere are outlined in Section IV.- The code has also been modified to use a time dependent function of atmospheric temperature. This is used to simulate the successive hydrogen burns shown in Figures 3 and 4. As previously stated,this evaluation assumes that containment sprays become availabl at the beginning of core reflood. Figures 3 and 4 show tee wetwell temperatures for spray and no spray transients. A composite of these transients is utilized for this evaluation. This composite is shown as Figure 5. The composite burn transient models 68 burns. Based on the fine detail of these burns obtained from OPS, enveloping burn profiles have been developed. The first 5 burns are modelled with a peak at 1300 F exponentially decaying down to 200 F in 88 seconds. From Figure 3, a total of 19 burns occur before sprays are assumed to become available at approximately 6300 seconds into the transient. Hehce 14 more nonspray burns are modelled beginning 440 seconds after the first burn. These 14 burns are modelled as successive, each exponentially decaying from 1500 F to 460 F in 28 seconds. 'sORNL-TM-3208, W. D. Turner and Simantov, February 1971. 6Runsenow and Hartnett, Handbook of Heat Transfer, McGraw Hill 1973, pgs. 3-15 and 3-16.

Pcga 6 After these burns,the sprays are assumed to be available. The remaining 49 burns are modelled as occurring every 30 seconds. These sprayed burns are modelled as ramping to 800 F in 3 seconds and back down to 200 F in 4 seconds. These burn profiles provide an upp'er bound estimate of thermal response of the igniter assembly. VI. Results Figure 2 shows the thermal response of an igniter assembly, located in the wetwell, subjected to a stuck open SRV transient which results in large hydrogen releases. Based on this evaluation, the transformer never exceeds its qualification temperature of 400 F. Hence the igniter assembly can be assumed to be capable of surviving this transient. As shown in Figure 2 the outside surface of the assembly, the stainless steel box, gets very hot, however, the limiting internal electrical components are still functional. .m.-

Figure 1 e General Assembly Hydrogen Igniter B se % u sy,. l l \\ I_ O b t T. e,,y+... _ _ _ _ _4_ _ _ _. _ _4 y, g y%,_._ s.s a a c:. y..:.t ~ l ,':4 l y q4., ii pp p pp ,3e 4,. + .i i l . *=

+l'j!.

!!+ j l F.e it. I,, i is ll i + ' :l i i, l+ l l i. l >... _,....... _ _ _ m ,.,,es....__.+ ss x I h D tetton i P R O UT 13 ) 8 5) l I e i, a I l i 7..._. ..p y e n.l l p** ' t s e ..i,l' t e t - q { fi $awg .'3 L Jj 3, o I 0g F ' c ., m.,,.! l: t------ i a k l h %.e p e

  • ss s';sa,:

l 1,.......s t' C l N ....__......_ ~. 4 i l

ll o n x r o o g B rm

r z

l mo e erf t eos a n on tf n ll s io S sa eP I ,i - ti nr e o ct sat t g o sea sr S n evi eT ,p i g cnd l rant z aoa n,eG on u, f cr i np b u ,i r eoprro l,o ul pn t roiaM ,i saao SI CAC r gi n ru t 1 o ot rc 1', ,t m o r i aie 0 e rnav ,7 1 s 6 ii D z f e n 5 t.n. y n xnh c s 16 92 s t,eo 1 l w o a eot l 8 1 G ] s o p i, d N p r i l a ss s e . N T l t sa i nnnnn u h l asr r ooooo o o 4 s i m" t aiou e iiiii r o 3 a d rt t ggggg f e p 2 g o i o e oa ca a eeeee 8 s yr H TrAn Mrrrrr u d <f l <f i$b r t t s e n g o u .i t c o l ry* n ! t.b ,i a y l ty o l s sb dyh s sg 4!D

i w

e d E_j. v! 3y a g o! , m4 ly-f e uy e 3 T s c w ','ii Oyl ) e 7 l s. 7 t s 8 s = f t! 3 , i - y d l r Je U e l 8 p 4 NN )l.yr n t - ' i fye o o o l l 'ya o c o e i N u,' k@ 3' q S g t ( oll <4, 6 l / " i i Ny e n hti r o u J N B i o t s e li o s 7 s i ', z r 3 i g i t. a s F 2 b r e y ' r o e r t g1 N u 1 n f i 'i i, o A F so e m i l T l l e l d os o Me I o d o o s o g i N s l yf l l l o g a nn Ao N i N. i 4 l o l t e c aa d 4 l s mc c e M ro 4 3 0 eL j u h -i h s T i r g e n t l i' o i s 4 n e i g g l f,..- I e l j w ._g-N D l Z l i j.l l l l 3 I, 3 jnI l e l s I d i G h , i gi O n o ) o UE M o usu*wE0P Q g t e c mm o 7 v

Figure 3 2C00.0 \\ s l a j 1000.0 a h l s I l o.0 l 3.0 5.0 7.o Time (seconds) x1000 GGNS SRV Burn 8%7. at 8v/o Hydrogen - No Spray ... - -.. _ _. _. _ _., - - _ _ ~. -... - _.,... -. _.. - _

Figure 4 1100.0 l 2000.0 l 900.0 'l C 800.0 i J I 3 700.0 ii !I i 600. IE E Ij'1 M ll Elll IIF1 }500.0 l ~ y l i 3400.0 [ ---- l 300.0 l l 200.0 o-l} \\ 100.0 3.0 5.0 7.0 Time (Seconds) 11000 GCNS CASE 3 WETWELL TEMPERATURE SRV Burn 85% at 8 v/o Hydrogen wit's sprays t i .- ---...... =--

i Figure 5 0-840 m2. 2000.0 l l l ~ zg,oo l Q g F 64 j I DSoo 4 P _s w, n. f ~ 5 2 2 1000.0 ad 800 fI 4 'j! [ if 'l coo I 200

M i

j 0.0 3.0 5.0 7.0 TIME (SECONDS) 11000 2 1232 Sprays begin to operate

Attachacnt 18 to AECM-81/353 Psg2 1 of 7 9.1 Review other testing programs and recommend a testing program to support Grand Gulf in those areas where currently complete or "in progress" tests are not adequate.

RESPONSE

,. Previous to the work perfote d on the Grand Gulf Hydrogen Ignition System (HIS), tests were undertaken by several laboratories to determine the effectiveness of thermal glow plugs as hydrogen igniters. These tests, conducted by Fenwal, Inc., Lawrence Livermore National Laboratory (LLNL) and Tennessee Valley Authority's (TVA) Singleton Laboratory were in support of the Interim Distributed Ignition System (IDIS) installed in TVA's Sequoyah Nuclear Plant and later in Duke's McGuire Nuclear Station. The proposed Grand Gulf HIS is similar to the IDIS, and must of the supporting evidence gained from those treating programs can be applied to the HIS. The following sections summarize the results of the three test programs. In addition, two additional areas have been identified which are unique to the Mark III Containment and which may require tests. These areas are discussed in Section IV of the following material. I. Fenwal A series of tests to determine the ignition performance characteristics of glow plug hydrogen igniters were conducted by Fenval, Inc. for Tennessee Valley Authority (TVA), Duke Power CompanyandAmericanElectricPowerCo3poration(AEP). The tests were conducted in a 1000 gallon (133Ft ) spherical pressure vessel constructed of carbon steel and lined with stainless steel. The test program was divided into two phases. Phase 1 testing used a hydrogen igniter assembly identical to those in the Sequoah Nuclear Plant Unit I to determine if hydrogen would burn at volumet ic concentrations of 8, 10 and 12 percent for various environmental conditions of pressure, temperature, humidity and air flow across the igniter. The specifics of this phase of the experimental program are contained in Fenwal raport No. PSR-914, dated November 10, 1980. Phase 2 testing examined the effects of environmental conditions expected in post-LOCA containments. In addition to determining the effectiveness of glow plugs to ignite low t concentration hydrogen-steam-air mixtures, phase 2 examined the ( i niter performance under the conditions of continuous hydrogen i injection and the effect of water spray on igniter performance at hydrogen concentrations of 6 and 10 volume percent. The Sequoyah igniter assembly was then replaced with an assembly identical to that used at the McGuire Nuclear Station Unit 1 to determine the i effect of a single hydrogen burn on equipment typical of that Jocated inside containment. The specifics of this phase of the test program are contained in Fenwal Report No. PSR-918, dated December 3, 1980. l

Attcchment 18 to AECM-81/353 Pegn 2 of 7 i-I l Much of the information obtained from the Fenwal tests is applicable to the Grand Gulf HIS and the ability of the system to j mitigate the consequences of an accident which leads to the generation of significant quantities of hydrogen. The Grand Gulf igniter assembly, as described in section 2.2 of Reference 1, is I c very similar to the Sequoyah and McGuire assemblies. All assemblies use the GMAC Model 7G glow plug with a 15v source and an enclosed step down transformer. Phase 1 of the Fenwal tests showed that initial pressure, temperature, and humidity have little or no effect on the glow plug's ability to successfully ignite hydrogen-steam-air mixtures with hydrogen concentrations in the 8 to 12 percent range. In i particular, it was found that 8 volume percent hydrogen is the concentration at which there is a steep transition to more' complete burning. This agrees with previous test data (Ref. 2, 3) on the existence of a transition zone in 8 to 9 volume percent range. It was also found that steam concentrations up to and including 40 4 volume percent have no effect on the ability of the glow plug to initiate combustion. However, at steam fractions greater than 40 volume percent, the steam has a dampening effect in that it reduces i the peak burn pressures. The steam frac 'on at which the mixture-j became inerted was not determined. Phase 2 of the testing program indicated that atmospheric mixing, induced by fans or sprays, increases the ability of.the igniter to burn greater percentages of hydrogen at lower concentrations. 'In one test, the igniter box was inverted to allow spray water to fall directly on the glow plug. This orientation had no effect on the ability of the glow plug to initiate a nearly complete burn at 10%. Continuous injection of a hydrogen / steam mixture resulted in l multiple burns and continuous low concentration burns. The operation of sprays during continuous injection of hydrogen again had the effect of increasing the burn efficiency at low hydrogen i concentrations. Some typical equipment, including a pressure transmitter and a solenoid valve / limit switch,~were subjected to a single 12 volume percent hydrogen burn. The resulting temperature l response of the equipment was on the order of 100*F increase.in the l surface temperature. The addition of a layer of aluminum foil around the components served to limit -the heat-up of the equipment. Finally, reduction in igniter voltage from 12 volts to 10 volts did i not hinder the glow plugs ability to ignite a 10% hydrogen-air-steam mixture. i t I L . ~... - _, _. _ _ _. _

46techment 18 to AECM-Sl/353 Pag 2 3 of 7 The major implication of the Fenwal test data is that thermal glow plugs of the type proposed for the Grand Gulf HIS are capable of igniting hydrogen-steam-air mixtures at various hydrogen concentrations near the lower flammability limit. The effect of sprays and fans is to induce turbulence which results in a more ' complete hydrogen combustion in the 6 to 8 volume percent range. The Grand Gulf HIS is intended to burn low volumetric concentrations of hydrogen before detonable mixtures are evolved, and this capability is supported by the Fenwal program. II. Lawrence Livermore Tests sponsored by the USNRC to determine the functionability of glow plugs in hydrogen-air-steam environments have been conducted by the Lawrence Livermore National Laboratory (LLNL). The experiments were performed in a 10.6 cu. ft. cylindrical pressura vessel mounted on its side. The glow plug, a GMAC Model 7G, was attached to a vessel penetrating support tube. The remaining igniter assembly (transformers, terminal blocks) was located outside of the vessel itself. A more specific description of the testing procedures and set up can be found in UCRL-84167, Rev. 1, dated January, 1981. The program was specifically designed to assess the capability of the glow plug used by TVA in the Sequoyah Nuclear Plant to initiate combustion in mixtures ranging from 6% to 16% dry hydrogen and 30%, 40% and 50% steam fractions each with 8%, 10% and 12% hydrogen. All burn tests were performed in a quiescent manner as dynamic hydrogen or steam injections were not modelled. As with the Fenwal tests, much of the information resulting from the LLNL test program can be used to support the operation of the Grand Gulf HIS. A significant result of the LL2L program has been the determination that no combustion could be initiated with a glow plug at a concentration above 50 volume percent. This result agrees with previous data (Ref. 3,4), which sets the steam inerting fraction between 50 and 60 volume percent. Consistent with other experit ental data, a distinct transition to complete combustion between 8 and 9 volume percent hydrogen was noted. Although mixing by a fan was not intentionally tested during hydrogen burns, a mixing plan was activated approximately thirty seconds after the glow plug had been de-energized. This caused a hydrogen concentration less than six volume percent ' ignite. This ignition of a very low concentration of hydro an can be attributed s to the Can induced turbulence. Steam concentrations up to 40 volume percent did not affect the ability of the glow plug to initiate combustion of 8 to 9 volume percent hydrogen concentrations. The presence of steam did limit complete combustion at low concentrations and also suppressed the peak burn pressure. Flame speeds were estimated from the time to peak pressure and temperature histories at different locations inside

_= .-~ At.cchman' 58 to AECM-81/353 Psge 4 l, ' J the vessel. The results indicate that relatively low flame front i eelocities of 1 to 3 ft./sec. are obtained for hydrogen concentrations in the 6 to 8 volume percent range. Also, the retults indicate that the presence of steam tends to reduce flame l front velocities. Throughout the program, the glow plug's dynamic j i characteristics (voltage, current) were monitored. No degradation i of the glow plug's performance was found. As with the Fenwal tests, the LLNL program indicates that thermal igniters, of the type proposed for use in the Grand Gulf HIS, are capable of igniting hydrogen-air-steam mixtures with hydrogen concentrations as low as 6 volume percent and with steam concentrations up to 50 volume percent. Atmospheric mixing increases the percentage of hydrogen which burns at lower concentrations. The presence of steam suppresses peak burn pressures and limits complete combustion. Finally, the results show that the GMAC Model 7G glow plug is capable of withstanding a series of hydrogen burns without performance degradation. III. Singleton i To determine which brands of commercially available glow plugs were capable of performing for the IDIS TVA's Singleton Laboratory tested three diesel glow plugs; GMAC Model 7G, 12 volt, BCSCH 10.5 volt and ISUSI 10.5 volt. The purpose of the tests were to detarmine if the plugs could reach and maintain the required temperature of 1500'F, withstand the effect of overvoltage and temperature and operate for extended periods of time at high temperatures. Specifics of the program can be found in Reference 5 I The GMAC P-del 7G plug was operated at 12, 14 and 16 volts AC producting surface temperatures of 1480*F,1550*F and 1650"F. The BOSCH plug produced a surface temperature of 1700*F at 13 volts AC. i These results indicate that the diesel glow plugs are capable of producing the required surface temperature. The voltage tests on several GMAC plugs gave reliable performance at 14 volts but failure for some at 16 volts AC after a few minutes. BOSCH and ISUSI plugs tended to fail at 14 volts AC after only a few minutes. Both the GMAC and BOSCH plugs were tested for 148 hours and 90 i hours respectively without failure. From these results, it was determined that the GMAC Model 7G glow plug produces adequate surface temperatures, is the least sensitive to overvoltages and is l capable of extended performance.

Attcchment 18 to AECM-81/353 Paga 5 of 7 IV. Further Testing Although most of all of the data from the Fenwal, LLNL and Singleton test programs is directly applicable to the HIS, there are characteristics of a Mark III containment which are sufficiently different from an ice condenser containment to warrant further testing. The specific characteristics of the Mark III containmsnt HIS which may need further evaluation are the effects of the suppression pool on the HIS and the potential for oxygen limited burning in a hydrogen rich drywell. The need for tests to confirm the performance of the HIS under these conditions unique to a Mark III containment are being further evaluated by Drs. Lewis and Karlovitz of Combustion and Explosives Research Inc. (COMBEX). If concurrence is received from them on the necessity of such tests, MP&L will arrange for the conduct of the tests described below. IV.1 Suppression Pool Eff ects The base case scenario, analyzed in Reference 1, assumes a stuck open relief valve (SORV) which results in the release of all the primary fluids into the suppression pool. The design of the HIS is to locate igniters above the suppression pool so as to ignite hydrogen in the "wetwell region" above the pool. The hot gases then exhaust into the large volume of the upper containment reducing the pressure increase from the burn. The phenomenon of burning hydrogen as it evolves from a water pool may have unknown effects on the ability of glow plugs to ignite hydrogen at low concentrations. This situation may need to be modelled experimentally. Some possible phenomenon are moisture entrainment, steam inerting, and pool slosh. The form of tne test would be to bubble a hydrogen / steam source through a p.1 of water in the bottom of a pressure vessel. An igniter located at various distances above the pool surface could determine the effects of the pool on the functionability of the igniter. The effects, if any, of varied hydrogen / steam source flow rates could alao be evaluated. IV.2 Oxygen Limited Burning in the Drywell For a primary coolant rupture in the drywell volume, most or all of the air in the drywell is driven out through the submerged vents in the drywell wall, through the suppression pool, and into the containment. This restics in a drywell atmosphere composed almost entirely of steam. If hydrogen is then generated due to a postulated degraded core and vents into the drywell, it cannot ignite due to the lack of oxygen and the high concentration of steam. As the steam condenses, the resulting drywell pressure drop opens the drywell vacuum relief system which allows air from the containment to be drawn !nto the drywell. At this time, the concentration of hydrogen in the drywell may be well above the

Attcchment 18 to AECM-81/353 Peg 2 6 cf 7 limits intended for opera

  • on of the HIS. However, the combustion process will be limited by the concentration of oxygen as it enters through the vacuum relief lines. The efiect of the HIS operation in a humid hydrogen rich, oxygen lean atmosphere has not yet been determined by experiment although it is believed that there would be a continuous burn in the form of an inverted flame. A suitable g test program would again use a pressure vessel with a variably locatable igniter assembly. The vessel would need to be purged of air with steam. Various amounts of hydrogen would th-en be added to adjust the steam / hydrogen concentration. Air would be allowed to enter the test vessel at a controlled rate. The effects of igniter position, steam concentration, and air flow rate could then be determined for the hydrogen rich atmosphere.

Attcchment 18 to AECM-81/353 Page 7 of 7 REFERENCES s 1. Grand Gulf Nuclear Station, Hydrogen Control ~ Docket Nos 50-416 and 50-417 File 0262/0755/L-860.0 .. AECM-81/336, August 31, 1981 2. Carlson, L.W., R.M. Knight and J.O. Henric. " Flame and Det onate Initiation and Propagation in Various Hydrogen-Air Mixtures" Al-73-29, May 1973 3. Coward H.F., and G. W. Jones " Limits of Flammability of Gases and Vapors" Bureau of Mines Bulletin 503 4. McClain, Howard A. " Potential Metal-Water Reactions in Light-Water-Cooled Power Reactors" ORNC-NSIC-23 August 1968 5. Tennessee Valley Authority, Sequoyah Nuclear Plant Core Degradation Program, Volume 11 Report on the Safety Evaluation of the IDIS December 15, 1980. i

Attcchment 19 to AECM-81/353 Pcg2 1 of 2 10.1 Evaluate the possibility and effects of secondary fires.

Response

Fire hazards in' the containment are enumerated on FSAR Table 9A-2, sheets 40-46. There are three kinds of combustible material listed g there: 1. Electrical cable is present in many areas in the containment. Based on industry testing (e.g., that described in the June 2, 1981 letter from L. M. Mills, Manager of Nuclear Regulation and Safety at the Tennessee Valley Authority to E. Adensam of the NRC regarding the " Resolution of Equipment Survivability Issues for The Sequoyah Nuclear Plant."). It is not believed that electrical cable is likely to ignite and.ontribute to a secondary fire. Even if there is ignition in isolated cases, such fire-are not self-sustaining and would not pose a threat to safety lunctions of the plant. More detailed evaluations of the potential for secondary electrical cable fires is being carried out for GGNS. 2. Lubricating oil is present in four places inside containment. Reactor Recirculation Pump Motors. As discussed in subsection 7.2.3.2 of FSAR Appendix 9A, the lubricating ox1 used in the Reactor Recirculation Pump Motors is fully enclosed in a non-pressurized system. The likelihood of the lubricating oil in a fully enclosed system igniting from a passing flame front is small. Even if ignition occurs, the tact that the oil is fully enclosed in a non-pressurized system minimizes the likelihood of enhancing sprays of burning oil. Such a fire, if it occurred at all, would be confined to the immediate vicinity of atmospheric vents, drains, fill connections and level monitoring connections and would pose no hazard to adjacent safety-related equipment. Standby Liquid Control System Pumps. The Standby Liquid Control Pumps contain only 9 quarts of lubricating oil. Such a small quantity of oil, even if ignited would have no affect on safety related equipment. This is discussed in subsection 7.2.3.17 of FSAR Appendix 9A. Drywell Purge Compressors. The drywell purge compressccs each contain 55 galloas of oil. In the event of an oil spill and fire, a 4 inch curb will confine the extent of a fire and preven' an" affect on adjacent safety related equipment. This is discussed in subsection 7.2.3.17 of FSAR Appendix 9A. Containment Polar Crane. There are approximately 175 gallons of lubricating oil located throughout the polar crane with no more than 55 gallons stored in any one container. This lubricating oil is fully enclosed, and it is unlikely that ignition would occur due to a passing flame front. A secondary fire, if ignited, would be confined to the enclosed

Attcchment 19 to AECM-81/353 Page 2 of 2 system and would not threaten safety related equipment. This is discussed in subsection 7.2.3.24 of FSAR Appendix 9A. 3. Charcoal is located in the containment cooling system charcoal filter trains. It is completely enclosed and is not likely to 3 ignite due to a passing flame front. A secondary fire, if it did occur would be limited to the enclosed area and would pose no hazard to safety related equipment. i 4 4 1 ) e .~----------,v, n-, -m~ g y.,.,.-. --..---..-,e ,e,w- -s e ,r,,wn-,.y,- s-e, ,*-e ~~ --g -m q - - er v,,,--en,


e---

-e +--- m}}