CNRO-2003-00035, Arkansas, Unit 2 - Response to Request for Additional Information Pertaining to Relaxation Request to NRC Order EA-03-009 for In-Core Instrumentation Nozzles
| ML032681163 | |
| Person / Time | |
|---|---|
| Site: | Arkansas Nuclear |
| Issue date: | 09/03/2003 |
| From: | Krupa M Entergy Operations |
| To: | Document Control Desk, Office of Nuclear Reactor Regulation |
| References | |
| CNRO-2003-00035, EA-03-009 | |
| Download: ML032681163 (252) | |
Text
{{#Wiki_filter:; . Entergy
. Operations, Inc.
1340 Echelon Parkway Tel 601 368 5758 Michael A. Krupa Director Nuclear Safety &Licensing CNRO-2003-00035 September 3, 2003 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001
SUBJECT:
Entergy Operations, Inc. Response to Request for Additional Information Pertaining to Relaxation Request to NRC Order EA-03-009 for In-Core Instrumentation Nozzles Arkansas Nuclear One, Unit 2 Docket No. 50-368 License No. NPF-29
REFERENCE:
- 1. NRC Order EA-03-009, "Issuance of Order Establishing Interim Inspection Requirements for Reactor Pressure Vessel Heads at Pressurized Water Reactors," dated February 11, 2003
- 2. Entergy Operations, Inc. Letter CNRO-2003-00033 to the NRC, Relaxation Request to NRC Order EA 03-009," dated August 27, 2003 Pursuant to Section IV.F of NRC Order EA-03-009, (Reference #1), Entergy Operations, Inc.
(Entergy) requests relaxation from Section IV.C(1)(b) of the Order for Arkansas Nuclear One, Unit 2 (ANO-2). Specifically, Section IV.C(1)(b) of the Order requires either an ultrasonic test (UT) or a wetted surface examination using eddy current testing (ECT) or dye penetrant testing (PT) be performed on the total population of reactor pressure vessel (RPV) head penetration nozzles. Compliance with Section IV.C(1)(b) does not allow the use of a combination of inspection techniques; therefore, Entergy Is requesting that a combination of techniques and supplementary analysis be allowed for determining the condition of the In-Core Instrumentation (ICI) nozzles at ANO-2. Enclosure 1 of this letter contains the relaxation request for ANO-2. Enclosure 2 contains a copy of the fracture mechanics analysis report (Engineering Report M-EP-2003-003, Rev. 0) that supports this request. Engineering Report M-EP-2003-003, Rev. 0 utilizes information pertaining to material properties and analytical methods provided by Dominion Engineering, Inc. via Dominion letter L-4162-00-1, wMaterial Properties and Modeling Methods Used in ANO Unit 2 Welding Residual Stress Analysis." Entergy provided this letter to the NRC staff via Reference #2. This letter contains new commitments as identified in Enclosure 3.
\401
CNRO-2003-00035 Page 2 of 2 Should you have any questions, please contact Guy Davant at (601) 368-5756. Sincerely, M. A. Krupa Director, Nuclear Safety & Licensing MAKIGHD/bal
Enclosure:
- 1. Relaxation Request #3 for Arkansas Nuclear One, Unit 2
- 2. Engineering Report M-EP-2003-003, Rev. 1
- 3. Licensee-identified Commitments cc: Mr. C. G. Anderson (ANO)
Mr. W. A. Eaton (ECH) Mr. G. A. Williams (ECH) Mr. T. W. Alexion, NRR Project Manager (ANO-2) Mr. R. L. Bywater, NRC Senior Resident Inspector (ANO) Mr. T. P. Gwynn, NRC Region IV Regional Administrator
ENCLOSUREI CNRO-2003-00035 ARKANSAS NUCLEAR ONE, UNIT 2 RELAXATION REQUEST #3
ENTERGY OPERATIONS, INC. ARKANSAS NUCLEAR ONE, UNIT 2 RELAXATION REQUEST #3 TO NRC ORDER EA-03-009 ASME COMPONENTS AFFECTED Arkansas Nuclear One, Unit 2 (ANO-2) has ninety (90) ASME Class 1 reactor pressure vessel (RPV) head penetration nozzles comprised of eighty-one (81) Control Element Drive Mechanism (CEDM) nozzles, eight (8) In-Core Instrument (ICI) nozzles, and one (1) vent line nozzle. This request pertains to the ICI nozzles only. The locations of RPV head penetrations are provided in Figure 1. I1. REQUIREMENTS The NRC issued Order EA-03-009 (the Order) that modified the current licenses at nuclear facilities utilizing pressurized water reactors (PWRs), which includes ANO-2. The NRC Order establishes inspection requirements for RPV head penetration nozzles. In accordance with Section IV.A of NRC Order EA-03-009, the ANO-2 susceptibility category is Ohigh" based on a calculated value of 12.4 effective degradation years (EDY) at the beginning of the upcoming fall refueling outage. Section IV.C of the Order states in part: nAII Licensees shall perform inspections of the RPV head using the following techniques and frequencies: (1) For those plants in the High category, RPV head and head penetration nozzle inspections shall be performed using the following techniques every refueling outage. (a) Bare metal visual examination of 100% of the RPV head surface (including 3600 around each RPV head penetration nozzle), AND (b) Either: (i) Ultrasonic testing of each RPV head penetration nozzle (i.e., nozzle base material) from two (2) inches above the J-groove weld to the bottom of the nozzle and an assessment to determine if leakage has occurred into the interference fit zone, OR (ii) Eddy current testing or dye penetrant testing of the wetted surface of each J-groove weld and RPV head penetration nozzle base material to at least two (2) inches above the J-groove weld." Entergy is performing a bare metal visual examination of the ICI nozzles in accordance with Section IV.C(1)(a) of the Order. Page 1 of 19
Ill. REASON FOR REdUEST Section IV.F of the Order states:
"Licensees proposing to deviate from the requirements of this Order shall seek relaxation of this Order pursuant to the procedure specified below. The Director, Office of Nuclear Reactor Regulation, may, in writing, relax or rescind any of the above conditions upon demonstration by the Licensee of good cause. A request for relaxation regarding inspection of specific nozzles shall also address the following criteria:
(1) The proposed alternative(s) for inspection of specific nozzles will provide an acceptable level of quality and safety, or (2) Compliance with this Order for specific nozzles would result in hardship or unusual difficulty without a compensating increase in the level of quality and safety.
"Requests for relaxation associated with specific penetration nozzles will be evaluated by the NRC staff using its procedure for evaluating proposed alternatives to the ASME Code in accordance with 10 CFR 50.55a(a)(3)."
Pursuant to Section IV.F(1) of the Order, Entergy Operations, Inc. (Entergy) requests relaxation from the requirements of Section IV.C(1)(b). Entergy plans to inspect RPV head ICI penetration nozzles at ANO-2 using the ultrasonic testing (UT) method in accordance with Section IV.C(1)(b)(i) of the Order to the maximum extent possible. However, limitations due to nozzle configuration cause reduced UT inspection coverage of each nozzle. These are discussed below. A. Counterbore Blind Zone ICI nozzles are manufactured with a counterbore as shown in Figure 2. Due to lift-off of the UT transducers at the counterbore, a UT blind zone exists at the upper hillside location (1800 azimuth) of each ICI nozzle. Measuring approximately 0.88 inches in axial length, the bottom of the blind zone is located 1.080 inches above the top of the J-groove weld. Centered at the upper hillside location of each nozzle, the counterbore blind zone has a circumferential extent of 820. See Figure 6 for additional details. It should also be noted that the blind zone associated with the counter bore does not exist at any other azimuthal locations along the circumference of the ICI nozzle. Due to the RPV head angle at the ICI locations, the counterbore is significantly closer to the J-groove weld on the upper hillside of the nozzle than on the lower hillside. Specifically, the distance from the top of the J-groove weld to the bottom of the counterbore blind zone on the lower hillside of the ICI nozzle is 9.96 inches as shown in Figures 6 and 7. At the 900 and 2700 azimuthal locations, the counter bore is approximately 4.64 inches above the top of the J-groove weld. See Figure 8 for additional details. Page 2 of 19
B. Blind Zone at 1`o2zle Bottom A blind zone exists along the bottom of each ICI nozzle and varies from approximately 0.2 inch to 0.5 inch. This blind zone occurs due to loss of couplant as the transducers traverse across the bottom end of the nozzle. This problem is further compounded by the configuration of the ICI nozzle bottom which is cut to match the contour of the RPV head. See Figures 3, 4, and 5 for additional information. IV. PROPOSED ALTERNATIVE AND BASIS FOR USE Paragraph IV.C(1)(b)(i) of the Order requires that the UT inspection of each RPV head penetration nozzle encompass 'from two (2) inches above the J-groove weld to the bottom of the nozzle." Due to the reasons stated above, Entergy requests relaxation from this requirement for ANO-2 ICI nozzles and proposes a three-step alternative, which involves the use of analysis, UT examination, and surface examination techniques, as described below. A. Proposed Alternative
- 1. Analysis An analysis has been performed to ensure that an unidentified surface crack in the counterbore blind zone will extend along the length, into an inspectable region, at least one operating cycle prior to growing through the thickness. The analysis, based on design information and actual UT data obtained during the previous refueling outage, is discussed in further detail in Section IV.B.1 below and is fully documented in Engineering Report M-EP-2003-003, Rev. 0 (Enclosure 2). Based on this analysis, no examination of the counterbore region is required.
- 2. UT Examination The ID of each ICI nozzle (i.e., nozzle base material) shall be ultrasonically examined in accordance with Section IV.C(1 )(b)(i) except as follows:
a) For the area of the counterbore blind zone that falls within two (2) inches above the J-groove weld on the upper hillside; and b) For the area of the nozzle end blind zone. In addition to the UT examination, an assessment to determine if leakage has occurred into the interference fit zone will be performed, as currently specified in Section IV.C(1 )(b)(i) of the Order.
- 3. Augmented Inspection Plan Because meaningful UT data cannot be collected at the bottom of the ICI nozzle, Entergy will augment the UT inspection with a surface examination of the nozzle ID, OD, and J-groove weld area that falls within the blind zone at the nozzle end. As previously mentioned, the nozzle end blind zone varies in length from 0.2 inch to 0.5 inch Page 3 of 19
depending bri probe location (see Figures 3, 4 and 5). This augmented inspection plan will be performed on a sample of the ICI nozzle population. The examination methods and sampling plan are described below. a) Examination Method The augmented inspections will be performed using the manual PT examination method as the primary technique. Because the PT examination method cannot distinguish acceptable fabrication discontinuities from primary water stress corrosion cracking (PWSCC), PT indications are conservatively assumed to be PWSCC. Under these conditions, PT indications will be investigated by either. (i) Supplemental inspection using the ECT examination method; or (ii) Grinding followed by additional PT examinations. b) Sampling Plan Entergy will select two (2) of the eight ICI nozzles for augmented inspection. The size of the sampling population may increase based on the following criteria: (i) If PWSCC is identified in any ICI nozzle during the performance of the UT inspections, that nozzle will be included in the augmented inspection scope. (ii) If PWSCC is confirmed in an ICI nozzle during the performance of the augmented inspections, the remaining ICI nozzles will be added to the augmented inspection scope. Entergy will provide in the 60-day report for ANO-2, as required by the Order, specific inspection information including the type, extent, and results of inspections and results of inspections performed on the ICI nozzles. B. Basis for Use
- 1. Analysis The extent of the proposed alternative is established by an engineering evaluation comprised of a finite element stress analysis and fracture mechanics model of the ICI nozzle counterbore blind zone. The purpose of this engineering evaluation is to ensure that an unidentified surface crack in the counterbore blind zone will extend along the length, into an inspectable region, at least one operating cycle prior to growing through the thickness.
Only an ID fracture mechanic analysis is required for this justification. This Is due to the fact that the OD surface of the nozzle is not in a reactor coolant environment which promotes PWSCC. The UT exam discussed in Section IV.A.1 confirms there is no OD crack on the nozzle creating a leak path, and the triple point examination confirms there is no leak path though the weld. Page 4 of 19
Additionally the leak assessment examination above the weld confirms there is no leak through the weld butter. Hence, PWSCC can only be initiated on the ID surface of the counterbore blind zone. Both circumferential and axial cracks were evaluated; however, detailed fracture mechanics of the circumferential crack was not required because the ID and % thickness axial stress is predominately compressive in the 820 arc being evaluated. The finite element-based stress analysis and the fracture mechanics evaluation are described below. For additional details pertaining to the engineering evaluation and its conclusions, see Engineering Report M-EP-2003-003, Rev. 0 (Enclosure 2). a) Stress Analysis A finite element-based stress analysis representing the eight (8)ANO-2 ICI nozzle penetrations was performed by Dominion Engineering, Inc. (DEI) using best estimates of as-built geometries based on previous UT and available design information, and the material yield strength of the eight nozzles from the same heat number. General dimensions for reactor head and ICI nozzles were obtained from Westinghouse/Combustion Engineering (CE) design drawings and documents. To accommodate a potentially longer downhill side fillet weld as shown in the UT data, the fillet weld dimension in the model was increased from 3/16 inch to 7/16 inch. The counterbore was not explicitly modeled; rather, the elements were angled and tapered to transition from the 4.750-inch ID below the counterbore to the 4.625-inch ID above the counterbore. The actual counterbore is 0.25 inch high with a 1-to-4 (depth-to-length) taper; this transition precludes the need to evaluate stress concentrations such as required per ASME Section 11I, Subsection NB-3680 for transitions with less than a 1-to-3 transition. Consideration of a Circumferential Crack in the Counterbore Blind Zone Entergy considered a circumferential crack located on the ID surface, spanning the full 820 circumferential extent of the blind zone (see Figure 6). A circumferential crack, if propagated through-wall, could potentially lead to ejection of the associated nozzle. For this circumferential crack growth to occur, both the PWSCC environment and a conducive tensile axial stress field must exist. The DEl axial stress finite element analysis data were reviewed for locations at the upper hillside and those angles spanning 450 on either side of the 1800 azimuth (1350 and 157.50) that would encompass the circumferential extent of the counterbore blind zone. From previous fracture mechanics evaluations for the CEDM nozzles, it was shown that no crack growth will occur for an applied hoop stress of 10 ksi; that is, the resulting applied stress intensity factor is below the threshold value of 8.19 ksi 4G needed for crack growth. The stresses at the ID and at the 25% through-wall location, covering a 900 circumferential span around the ICI nozzle, are predominantly compressive. Hence, the initiation of a circumferential crack in the Page 5 of 19
counterbore blind zone is precluded and presents no safety significance by not inspecting this region. b) Fracture Mechanics Evaluation Safety analyses performed by the EPRI Materials Reliability Program (MRP) have demonstrated that axial cracks in the nozzle tube material do not pose a challenge to the structural integrity of the nozzle. Axial cracks, if allowed to exist undetected for sufficient periods of time can produce a primary boundary leak that can cause damage to the reactor vessel head (carbon steel) and create a conducive environment for initiating and propagating OD circumferential cracks. These conditions challenge the pressure boundary; hence, critical importance is paid to proper periodic inspection and to the disposition of cracks that may be discovered. Therefore, proper analyses are essential to ascertain the nature of axial crack growth such that appropriate determination can be accomplished. Several crack sizes were evaluated in the counterbore blind zone on the upper hillside. Crack aspect ratios typical of ASME Section Xl (6-to-1 and 10-to-1 length-to-depth) and another aspect ratio emphasizing deep flaws (4-to-1) were evaluated to maximize through-wall growth while accommodating growth along the length of the ICI nozzle. These evaluations also considered a case in which the half-length of the crack was less than the remaining length needed to grow to the end of the blind zone. Summaries of crack depths and lengths used to evaluate the counterbore blind zone are presented in the table below. Crack Desr iption Crack::, Crack. i::Case IDi:.-::i;;:. Depth.. Length
- 5; t .:;:f :. i. l!:';i V(inch) (Inch)
I Aspect ratio of 6-to-1 with depth initially 25% through- 0.1 .06 wall 2 Aspect ratio of 10-to-1 with an initial length of 0.4 inch 0.04 0.4 3 Aspect ratio of 4-to1 with depth Initially 25% through- 0.1 0.4 wall 4 Aspect ratio of 6-to-I with the crack spanning the length 0.147 0.88 of the blind zone In the PWSCC crack growth evaluation, the acceptability of the crack is determined by its extension outside the counterbore blind zone to a detectable length in greater than one operating cycle prior to growing through-wall. The minimum detectable crack was assumed to be 0.04 inch (2 mm) based on EPRI demonstrations. For conservatism, the detectability threshold was set at 0.16 inch. That is, a crack contained within the Page 6 of 19
counterbore blind zone must propagate along the length of the nozzle a distance measured from the tip of the crack to the edge of the blind zone plus an axial distance of 0.16 inch to ensure proper detection. The results of the crack growth evaluations are presented in the table below. iCrack Propagation Length Time to Reach Time to Grow Case ID (~inch) Prpgton'Length Through-Wall (years) (years) 1 0.3 10.94 13.74 2 0.4 >40 >40 3 0.4 20.98 23.34 4 0.16 3.83 6.99 A review of the stress output shows the through thickness and axial distribution of hoop stresses on the lower hillside (00 azimuth) of the nozzle to be higher than that of the upper hillside for the same relative distance above the J-groove weld. That is, for the length of the nozzle 1.08 inches above the top of the weld on the lower hillside, plus a region 0.88 inch beyond that (equivalent to the span of the counterbore blind zone on the upper hillside), the stress distribution was generally higher. However, the counterbore blind zone on the lower hillside is 9.96 inches above the top of the J-groove weld and is, therefore, not subject to the requirements of the Order. Because of the higher stress field, it is reasonable to presume that under equivalent conditions, a crack could initiate in this equivalent lower hillside area more readily than on the upper hillside. However, this region is inspectable via UT; thus, the most susceptible location based on stresses is addressed by the current inspection coverage. c) Conclusions The engineering evaluation supports the following conclusions: (i) The upper hillside (1800 azimuth) of the ICI nozzle above the top of the J-groove weld possesses the highest hoop stresses in the vicinity of the counterbore for which a UT blind zone exists. (ii) The conservatisms used in the analysis (pressure applied to crack faces and high crack length-to-depth aspect ratio) provide assurance that an undetected crack in the counterbore blind zone on the upper hillside will not grow through-wall prior to extending out of the blind zone into an inspectable region in less than one operating cycle. Page 7 of 19
(iii) The area above the J-groove weld on the lower hillside of the ICI nozzle is in a higher stress field than the area on the upper hillside. Because of this, the lower hillside area is more susceptible to crack initiation than the upper hillside. However, this area is inspected by UT. (iv) The ID surface crack on the upper hillside either did not show any potential for crack growth, or the growth in the axial direction reached a detectable area of the nozzle in at least one operating cycle prior to the crack growing through-wall. Hence, an ID surface crack in a region above the J-groove weld on the upper hillside is not significant in that it does not affect nozzle integrity. (v) No potential exists for an ID circumferential crack to be located in the counterbore blind zone due to the predominant compressive axial stress field spanning 450 on either side of the upper hillside of the ICI nozzle. This analysis incorporates a crack-growth formula different from that described in Footnote 1 of the Order, as provided in EPRI Report MRP-55. Entergy is aware that the NRC staff has not yet completed a final assessment regarding the acceptability of the EPRI report. If the NRC staff finds that the crack-growth formula in MRP-55 is unacceptable, Entergy shall revise its analysis that justifies relaxation of the Order within 30 days after the NRC informs Entergy of an NRC-approved crack-growth formula. If Entergy's revised analysis shows that the crack growth acceptance criteria are exceeded prior to the end of Operating Cycle 17 (following the upcoming refueling outage), Entergy will, within 72 hours, submit to the NRC written justification for continued operation. If the revised analysis shows that the crack growth acceptance criteria are exceeded during the subsequent operating cycle, Entergy shall, within 30 days, submit the revised analysis for NRC review. If the revised analysis shows that the crack growth acceptance criteria are not exceeded during either Operating Cycle 17 or the subsequent operating cycle, Entergy shall, within 30 days, submit a letter to the NRC confirming that its analysis has been revised. Any future crack-growth analyses performed for Operating Cycle 17 and future cycles for RPV head penetrations will be based on an NRC-acceptable crack growth rate formula.
- 2. UT Examination The UT inspection probe to be used to inspect the ANO-2 ICI nozzles consists of seven (7) individual transducers. The configuration of the probe has been optimized for maximum coverage. UT inspection of ICI nozzles will be performed using a combination of time-of-flight diffraction (TOFD) and standard 00 pulse-echo techniques. The TOFD approach utilizes two pairs of 0.250-inch diameter, 550 refracted-longitudinal wave transducers aimed at each other.
One of the transducers transmits sound Into the inspection volume while the other receives the reflected and diffracted signals as they interact with the material. There will be one TOFD pair scanning in the axial direction of the penetration nozzle tube and one TOFD pair scanning in the circumferential Page 8 of 19
direction of the tube. The TOFD technique is primarily used to detect and characterize planar-type defects within the full volume of the tube. The standard 0° pulse-echo ultrasonic approach utilizes one 0.250-inch diameter straight beam transducer. The 0° technique is used to:
- Plot the penetration nozzle OD location and J-groove weld location,
- Locate and size any laminar-type defects that may be encountered, and Monitor the back-wall signal response to detect leakage that may occur in the interference regions of the RPV head penetration.
The UT inspection procedures and techniques to be utilized at ANO-2 have been satisfactorily demonstrated under the EPRI Materials Reliability Program (MRP) Inspection Demonstration Program.
- 3. Auwmented Inspection Plan Augmenting UT examination of the nozzle base material with surface examination ensures the ICI nozzle is adequately examined to determine its condition. The augmented inspection plan will only be used for those portions of the nozzles that could not be inspected by UT or excluded by analysis. The bases for the examination method and sampling plan are described below.
a) Examination Method The augmented inspections will be performed using the PT examination method as the primary technique. Entergy believes the use of PT to augment UT is acceptable for ensuring that the required areas not excluded by analysis are inspected. The Order recognizes and allows the use of PT as acceptable for evaluating the condition of nozzle surfaces. Augmenting the UT examination of the nozzle base material with PT ensures the nozzle is adequately examined to determine its condition. As discussed in Section IV.A.3.a), above, Entergy may use ECT to investigate indications identified by PT. ECT is also an acceptable technique for evaluating such indications. As with PT, the Order recognizes and allows the use of ECT as acceptable for evaluating the condition of nozzles and associated J-groove welds. b) Sampling Plan Entergy believes that to require examination of every ICI nozzle rather than inspecting in accordance with the sampling plan would impose hardships without a compensating increase in the level of quality and safety. The basis for this position is summarized below-(i) Low Probability of PWSCC The likelihood of finding a PWSCC crack in an ANO-2 ICI nozzle is low based on available industry data. Specifically: Page 9 of 19
(1) Each ICI nozzle at ANO-2 was manufactured by Huntington Alloy using heat number NX2696 of SB-166, N06600. For this particular heat of material, there is no known industry history of PWSCC. (2) High yield strength materials are more susceptible to PWSCC. The lowest yield strength for nozzle material known to have cracked is 37 ksi. The yield strength of the ANO-2 ICI nozzles is 31.5 ksi, which is significantly lower. (3) While the industry has identified PWSCC in control element drive mechanism (CEDM) nozzles, there is no industry history of PWSCC in ICI nozzles. (ii) High Personnel Dose As stated above, augmented inspections will be performed using the PT examination method. Entergy estimates personnel performing PT on all eight ICI nozzles would receive a radiation dose ranging between 2.4 and 4.5 man-REM. The preferred method of investigating rounded PT indications in weld metal is supplemental inspection using the ECT examination method. The ECT equipment that would be used to perform these supplemental inspections is being developed and has not been field proven. However, based on similar Inspections, Entergy estimates performing supplemental ECT on all eight ICI nozzles will involve a radiation exposure of approximately I man-REM. The dose estimate for performing PT with supplemental ECT on all eight nozzles would be approximately 3.4 to 5.5 man-REM. Entergy has not estimated the radiation dose associated with grinding activities to investigate rounded indications. However, we expect the dose to be higher than that estimated for performing PT with supplemental ECT because of extended personnel stay-time under the RPV head involved with grinding activities. (iii) Adverse Impact to Nozzle Base Material As discussed above, the PT examination method cannot distinguish acceptable rounded indications from the surface extension of a PWSCC crack on a weld. Therefore, PT indications may be explored by grinding if the ECT process is not available. Because grinding of the weld metal and/or nozzle base material causes localized work-hardening, ground areas of the nozzle and weld will experience an increased susceptibility to PWSCC. In summary, there is no industry history of PWSCC in ICI nozzles. Furthermore, UT inspections of nozzle regions with the higher stresses, which are believed to be more susceptible to PWSCC, are being inspected volumetrically. UT inspection of the more susceptible regions combined with the surface examinations of the nozzle end blind zone, no industry Page 10 of 19
experience of PWSCC, and the low susceptible ICI material properties provides assurance that the proposed sample plan will provide an acceptable level of quality and safety. V. CONCLUSION Section IV.F of NRC Order EA-03-009 states: uLicensees proposing to deviate from the requirements of this Order shall seek relaxation of this Order pursuant to the procedure specified below. The Director, Office of Nuclear Reactor Regulation, may, in writing, relax or rescind any of the above conditions upon demonstration by the Licensee of good cause. A request for relaxation regarding inspection of specific nozzles shall also address the following criteria: (1) The proposed altemative(s) for inspection of specific nozzles will provide an acceptable level of quality and safety, or (2) Compliance with this Order for specific nozzles would result in hardship or unusual difficulty without a compensating increase in the level of quality and safety." Section IV.C(1)(b) of the Order establishes a minimum set of RPV head penetration nozzle inspection requirements to identify the presence of cracks in penetration nozzles that could lead to leakage of reactor coolant and wastage of RPV head material. Entergy believes the proposed altemative, described in Section IV, provides an acceptable level of quality and safety by utilizing inspections and supplemental analysis to determine the condition of the ANO-2 ICI nozzles. The technical basis for the supplemental analysis of the proposed alternative is documented in Engineering Report M-EP-2003-003, Rev. 0, which is contained in Enclosure 2 of this letter. Therefore, Entergy requests that the proposed alternative be authorized pursuant to Section IV.F of the Order. Page 11 of 19
900 1 9 9 j j 9 Q) va (D CJ@ S G a
\a 3S 8/^lea@
\VentV )i i 9 00 FIGURE 1 PENETRATION LOCATIONS IN THE ANO-2 RPV HEAD Page 12 of 19
ICl Nozzle Z/~ terbore RPV Head J-Groove Weld FIGURE 2 ICI NOZZLE CONFIGURATION Page 13 of 19
The blind zone for the arc-shooting transducers begins at 0.200" above the radius at the IDof the nozzle. VIEW: Looking radially outward from the ID of the tube. The distance betvveen the UT centerline and theetop of the ID tip radius, at the C0° lower hillside point of the nozzlel would be 0.200'. This woul Idbe the UT blind zone at that Doint. FIGURE 3 UT INSPECTION PROBE END OF NOZZLE - LOWER HILLSIDE POSITION Page 14 of 19
The blind zone for the circ-shooting transducers begins at 0.200' above the radius at the ID of the nozzle, at this point. VIEW: Looking radially outward from the ID of the tube, at the high hillside point
\ The distance byetween the UT centerline Eand the top of the ID tip radiu s, at the 1800 upper hillside rpoint of the nozzle would ble 0.200". This would be the UIT blind zone at that point.
FIGURE 4 UT INSPECTION PROBE END OF NOZZLE- UPPER HILLSIDE POSITION Page 15 of 19
VIEW: Looking radially outward from the ID of the tube, at the 900 or 2700 side hillside point The distance between the UT centerline and the nearest ID tip radius, at the
-iiiIIjA
/~~ ~~~~~OOno -- A 7nO I
flu-
=Wsu-ulu o 111 0llbU:
points of the nozzle would be 0.480'. This would be the UT blind zone at that point FIGURE 5 UT INSPECTION PROBE END OF NOZZLE - SIDE VIEW @ 900 and 2700 Page 16 of 19
The distance between the point of UT probe lift off from the nozzle wall and the point at which the probe can ride smoothly above the counterbore can be as long as 0.880. 0 I: The distance between where the UT transducers lift off from the nozzle wall and the 0 top of the J-groove weld can be as short as 1.080' at the upper hillside. I The counterbore limits the ability to ultrasonically scan 2 inches above the J-weld for a circumferential distance of as much as 820 on the ICI nozzles. FIGURE 6 COUNTERBORE - UPPER HILLSIDE POSITION Page 17 of 19
The distance between the point of UT probe lift off from the nozzle wall and the point at which the probe can ride smoothly above the counterbore can be as long as 0.8801. The distance between the point of UT transducer lift-off from the nozzle wall and the top of the J-groove weld can be as short as 9.960W at the lower r hillside. Thus, the counterbore does not interfere with the UT probe In this location.
/ -L FIGURE 7 COUNTERBORE - LOWER HILLSIDE POSITION Page 18 of 19
-7 The distance between the point of UT probe I .
lift-off and the point at which the probe can ride smoothly above the I counterbore can be as long as 0.880". j 3 The distance between UT probe lift-off and the top of the J-groove weld can be as short as 4.640" at the 900 and 2700 positions. Thus, the counterbore does not interfere with the UT probe In these locations. FIGURE 8 COUNTERBORE @ 90° AND 2700 POSITIONS Page 19 of 19
ENCLOSURE 2 CNRO-2003-00035 ENGINEERING REPORT M-EP-2003-003, REV. 0 FRACTURE MECHANICS ANALYSIS FOR THE ASSESSMENT OF THE POTENTIAL FOR PRIMARY WATER STRESS CORROSION CRACK (PWSCC) GROWTH IN THE UNINSPECTED REGIONS OF THE IN-CORE INSTRUMENTATION (ICI) NOZZLES AT ARKANSAS NUCLEAR ONE UNIT 2
Engineering Report No. M-EP-2003-003 Rev. 00 Page 1 of 35
~Entergy ENTERGY NUCLEAR SOUTH Engineering Report Coversheet Fracture Mechanics Analysis for the Assessment of the Potential for Primary Water Stress Corrosion Crack (PWSCC) Growth in the Un-Inspected Regions of the In-Core Instrumentation (ICI) Nozzles at Arkansas Nuclear One Unit 2 Engineering Report Type:
New 0 Revision 0 Deleted El Superceded El Applicable Site(s) ANO 0R Echelon 0 GGNS El RBS E WF3 Report Origin: 0 ENS Safety-Related: 0 Yes El Vendor El No Vendor Document No. Comments: Attached: Prepared by: D Yes Dae1 1 Date: -Ls31~/O2 El Yes Responsible Eng eer 0 No l No Verified/ Reviewed by: Date: 11VVI ._ 13 Yes E Yes E No g No Approved by: Date: z/4*i. El Yes E Yes Responsible Supervisor or Ego [ No Responsible Central Engineering Manager (for multiple site reports only)
Enginecring Report M-EP-2003-003 Rev. 00 Page 2 of 35 RECOMMENDATION FOR APPROVAL FORM Comments: Attached:
, C" Date: OL/31/3 E Yes El Yes nudby
?/3/43 -- Responsible Enoeer El No E No Concurrence: Date: .42/I 2*Yes r El Yes Responsil fgint'ng Manager, ANO Ea No Not Applicable Concurrence: Date: El Yes El Yes Responsible Engineering Manager, GGNS El No El No Not Applicable Concurrence: Date: _E Yes a Yes Responsible Engineering Manager, RBS El No a No Not Applicable Concurrence: -
Date: a_ Yes El Yes Responsible Engineering Manager, WF3 D No a No
Engineering Report M-EP-2003-003 Rev. 00 Page 3 of 35 Table of Contents Section Title Page Number Table of Conents 3 List of Attachments 4 List of Tables 4 List of Figures 5 1.0 PURPOSE 6 2.0 GIVEN CONDITIONS AND KNOWN VALUES 8 2.1 ICI Nozzle Material, Operating Conditions, and Geometry 8 2.2 Dimensions of the Welds and Counterbore Areas 9 2.3 Orientation and Dimensions of UT Blind Zone on the ICI 10 Nozzles 3.0 METHOD OF ANALYSIS 11 3.1 Finite Element Stress Analysis of ANO-2 ICI Nozzles Ii 3.2 ID Surface Flaw Fracture Mechanics Model 15 3.3 PWSCC Growth Model 17 3.4 Iterative Mathcad Model for Stress Curve-Fitting and Flaw 18 Growth Evaluation 3.5 Consideration of a Circumferential Flaw in the Un-Inspectable 23 Region 4.0 DISCUSSION AND RESULTS 25 4.1 Discussion 25 4.2 Results of the ID Surface Flaw Evaluation 26
5.0 CONCLUSION
S 33
6.0 REFERENCES
34
Engineering Report M-EP-2003-003 Rev. 00 Page 4 of 35 List of Attachments Attachment Content of Attachment Number of Number Pages 1 Design Input Record from ANO-2 for the ICI Nozzles 4 2 NDE Limitations for ICI Nozzles 2 3 Dominion Engineering Inc. Nodal Stress and Coordinate Data 18 (Including Transmittal E-mails) 4 Mathcad Worksheet for Flaw Case 1: 25% Through-wall Flaw 42 with an Initial Aspect Ratio of 6-to-I (Length-to-Depth) Centered in the Blind zone 5 Mathcad Worksheet for Flaw Case 2: 0.4 Inch Long with an 42 Initial Aspect Ratio of 1O-to-I (Length-to-Depth) Centered in the Blind zone 6 Mathcad Worksheet for Flaw Case 3: 25% Through-wall Flaw 42 with a Initial Aspect Ratio of 4-to- I (Length-to-Depth) Centered in the Blind zone 7 Mathcad Worksheet for Flaw Case 4: A Flaw Spanning the Entire 42 0.88-Inch Length of the Blind zone with an Initial 6-to- I Aspect Ratio (Length-to-Depth) Total Pages of Attachments: 192 List of Tables --Table Number Title Page Number I Dimensions from Tangent Line Datum Plane to specified 9 locations on the ICI Nozzle 2 Summary of flaw depths and lengths used to evaluate 26 the blind zone on the uphill side above the top of the weld (Blind zone begins a distance 1.08 inches above the top of the weld and extends 0.88 inch) 3 Results of PWSCC flaw growth evaluations in the 27 length and depth directions
Engineering Report M-EP-2003-003 Rev. 00 Page 5 of 35 List of Figures Figure Title Page Number Number I ANO-2 ICI Geometry from the Bottom of the Nozzle 8 2 Measured ICI Nozzle Locations from Tangent Line Datum 9 3 Counterbore at the Uphill Side (1800) Position 0 4 Hoop stress contours for the ICI nozzle. High tensile stresses occur 13 in the weld and adjacent tube material 5 Hoop stress contours in the upper portion (closer to the intersection 13 with the reactor head) of the ICI nozzle 6 Close-up of the uphill side (1800 azimuth) hoop stress in the vicinity 14 of the J-groove weld and counterbore region 7 SICF shown as a function of normalized crack depth for the "a-tip" 16 (left figure) and the "c-tip" (right figure) 8 ID Axial Stress Distribution Spanning 450 on Either Side (900 Total) 23 of Uphill 9 25% Through-Wall Position Axial Stress Distribution Spanning 450 24 on Either Side (900 Total) of Uphill 10 Flaw Case I-Depth Growth (top) and Length Growth (bottom) 28 versus number of operating years 11 Flaw Case 2-Depth Growth (top) and Length Growth (bottom) 29 versus number of operating years 12 Flaw Case 3-Depth Growth (top) and Length Growth (bottom) 30 versus number of operating years 13 Flaw Case 4-Depth Growth (top) and Length Growth (bottom) 31 versus number of operating years
Engineering Report M-EP-2003-003 Rev. 00 Page 6 of 35 1.0 PURPOSE The US Nuclear Regulatory Commission (NRC) issued Order EA-03-009 [Ref. 1], which modified licenses, requiring inspection of all Control Element Drive Mechanism (CEDM), In-Core Instrumentation (ICI), and vent penetration nozzles in the reactor vessel head. Paragraph IV.C. l.b of the Order requires the inspection to cover a region from the bottom of the nozzle to two (2.0) inches above the J-groove weld. The Combustion Engineering (CE) design for the ICI nozzles consists of a 5.563-inch outside diameter (OD) nozzle, inserted into the reactor vessel head at a 56.2833° angle with the horizontal, with the portion of the nozzle extending below the inside surface of the vessel cut to the same angle. The inside diameter (ID) of the ICI nozzle is counter-bored from a diameter of 4.625 inches to 4.750 inches at a height of 1.377 inches above the top of the J-groove weld on the uphill side (180°azimuth), and approximately 10.092 inches from top of the J-groove weld on the downhill side (0° azimuth), based on design drawings. (These dimensions are taken from Attachment I and shown in Figures I and 2.) This counterbore region of the nozzle above the J-groove weld represents a challenge to interrogate the nozzle with Ultrasonic Testing (UT). Figures I and 2 show the typical layout and geometry of the ICI nozzle, while Figure 3 schematically depicts the un-inspectable regions with UT due to the configuration of the counterbore. This un-inspectable region, measuring 0.88 inch in axial length and extending circumferentially around the ID for 820, above the top of the J-weld on the uphill side (as shown in Figure 3), is defined as the UT Blind zone (hereafter referred to as the blind zone). Due to the offset distance between the low hill side (00 azimuth) and high hillside (180°) of the nozzle at the attachment J-groove weld, the blind zone is closer to weld at the high hillside than it is on the low hillside. On the high (or uphill) side, the distance from the top of the J-groove weld to the bottom of the blind zone is 1.08 inches (Figure 3), whereas the same measurement on the downhill and mid-plane locations are 9.96 inches and 4.06 inches, respectively, a distance outside the requirements of the Order. Thus, only a small arc length of the nozzle (820, from Attachment 2 and Figure 3) above the top of the weld on the uphill side cannot be examined with UT The unexamined region of the ICI nozzles in the counterbore region above the J-weld provides a location for surface flaws to exist with the potential to grow through the thickness of the nozzle prior to extending beyond the limits of the blind zone, into a detectable region. This is especially a concern on the uphill side of the nozzle, where the blind zone is only 1.08 inches from the top of the weld and in an area subject to the accompanying high stress field of the J-weld. An ID surface flaw could exist in this 0.88 inch-long blind zone. In order to exclude the blind zone areas above the weld in the counterbore region from the inspection campaign, a relaxation of the Order is required pursuant to the requirements prescribed in Section IV.F and footnote 2 of the order [Ref. I].
Engineering Report M-EP-2003-003 Rev. 00 Page 7of 35 The purpose of this engineering report is to ensure that an unidentified surface flaw in the blind zone will extend along the length, into an inspectable region, at least one operating cycle prior to growing through the thickness. Only an ID fracture mechanic analysis is required for this justification. This is due to the fact that the OD surface of the nozzle is not in a reactor coolant environment which promotes PWSCC. The UT exam confirms there is no OD flaw on the nozzle creating a leak path, and the triple point examination confirms there is no leak path though the weld. Additionally the leak assessment examination above the weld confirms there is no leak through the butter. Hence, PWSCC can only be initiated on the ID surface of the blind zone. ID surface axial and circumferential flaws will be considered in the analysis.
Engineering Report M-EP-2003-003 Rev. 00 Page 8 of 35 2.0 GIVEN CONDITIONS AND KNOWN VALUES 2.1 ICI Nozzle Material, Operating Conditions, and Geometry: Pipe Material: SB-167, Gr. 70 [Ref. 2a] Pipe Outside Diameter: Do = 5.563 in. +0.000/-0.001 in. [Ref. 2a] Pipe Inside Diameter, above counterbore: Di, = 4.625 in. +/- 0.01 in. [Ref. 2b] Pipe Inside Diameter, below counterbore: Di2 = 4.750 in. +/- 0.01 in. [Ref. 2b] Operating Pressure = 2235 psi [Ref. 3] Operating Temperature = 604'F. Reference 4 gives a value of 594.80 F, but 604'F will conservatively be used. Figure 1: ANO-2 ICI Geometry from the Bottom of the Nozzle (from Ref. 2a) w X~ ~~ /aII LzTZ POW f
%41SM!W - iQS
Engineering Report M-EP-2003-003 Rev. 00 Page 9 of 35 2.2 Dimensions of the Welds and Counterbore Areas: The elevations and heights of the ICI nozzles and weld positions were obtained from design drawings and transmitted in a Design Input Record from ANO (shown Attachment 1). The figure and table below provide a summary of these inputs: Figure 2: Measured ICI Nozzle Locations from Tangent Line Datum Top of counter bore J Bottom of counter bore W Top of J-weld at 180 deqrees C - Claddlinci at 180 Nozzle bottom at OD at 180 Nozzle bottom at IDat 180 _ NoZ bot at ID at 0 4 F~~~~~~~~I-
. o . OK ~~~~~Noz bot OD at 0e3 I
-Caadding at 0 deg e-~
Top J-weld at 0 deg -3 Tangent line dadum plane - Table 1: Dimensions from Tangent Line Datum Plane to specified locations on the ICI Nozzle Dimension from the tangent line datum plane to: ANO-2 W-3 (inches) (inches) Top of counter bore transition 48.625 55.094 Bottom of counter bore transition 48.375 54.844 Top of J-weld at the 180 degree (high hill side)azimuth location 46.998 53.440 Intersection of the projected cladding surface and the nozzle OD 46.211 52.655 at the 180 degree (high hill side) azimuth location Bottom (sharp comer) of the nozzle at the OD surface at the 180 44.211 50.618 degree (high hill side) azimuth location Bottom (sharp comer) of the nozzle at the ID surface at the 180 43.602 50.031 degree (high hill side) azimuth location Top of J-weld at the 0 degree (low hill side)azimuth location 38.283 45.008 Intersection of the projected cladding surface and the nozzle OD 37.875 44.589 at the 0 degree (low hill side) azimuth location Bottom (sharp comer) of the nozzle at the ID surface at the 0 36A84 43.180 degree (low hill side) azimuth location Bottom (sharp corner) of the nozzle at the OD surface at the 0 35.875 42.594 degree (low hill side) azimuth location
Engineering Report M-EP-2003-003 Rev. 00 Page lO of 35 2.3 Orientation and Dimensions of UT Blind Zone on the ICI Nozzles Figure 3: Counterbore at the Uphill Side (1800) Position-the UT Blind zone starting point is 1.080 inches above the top of weld. The Axial length of the UT Blind zone is 0.880 inch. The arc length of limitation for 2" scanning above the weld is 820 [shown in Attachment 2J The distance between the point at which the sled starts to lift off and the point at which it can ride smoothly above the counterbore can be as long as 0.880 in. The distance between where the UT transducers lift-off and can no longer communicate and the top of the j-weld can be as short as 1.080 in. at the high hillside of the ICI nozzles.
.~.......
Counterborz fth[ l The counterbore limits the ability to ultrasonically scan 2.0 inches above the J-weld for a circumferential distance of as much as 820on the ICI nozzles.
Engineering Report M-EP-2003-003 Rev. 00 Page II of 35 3.0 METHOD OF ANALYSIS The analysis used to determine the impact of not examining the blind zone of the ICI nozzle above the top of the weld in the counterbore region on the uphill side consists of a detailed finite element stress analysis combined with an ID surface flaw fracture mechanics model. The fracture mechanics model evaluates an ID-initiated part through-wall axial crack in a cylinder, located in the 0.88-inch blind zone region above the top of the weld on the uphill side of the ICI nozzle. Additional consideration of an ID circumferential surface flaw is provided in Section 3.5 The following sections provide details of the finite element stress analysis and the accompanying fracture mechanics evaluation. 3.1 Finite Element Stress Analysis of ANO-2 ICI Nozzles A finite element-based stress analysis representing the eight (8) ANO-2 ICI penetrations was performed by Dominion Engineering Inc. (DEI) using best estimates of as-built geometries based on previous UT and available design information, and the material yield strength of the eight nozzles from the same heat number. General dimensions for reactor head and ICI nozzles were obtained from Westinghouse/CE design drawings and documents. To accommodate a potentially longer downhill side fillet weld as shown in the UT data, the fillet weld dimension in the model was increased from 3/16 inch to 7/16 inch. The counterbore was not explicitly modeled due to computational resource restraints and modeling simplifications; rather, the elements were angled and tapered to transition from the 4.750-inch ID below the counterbore to the 4.625-inch ID above the counterbore. The actual counterbore is 0.25 inch high with a 1-to-4 (depth-to-length) taper; this transition precludes the need to evaluate stress concentrations such as required per ASME Section 111, subsection NB-3680 [Ref. 5] for transitions with less than a 1-to-3 transition. The finite element analysis (FEA) modeling steps using the above geometry data and assumptions to obtain the necessary stress (residual+operating) distribution in the ICI nozzle followed the process and methodology described in Reference 6a. The modeling steps were as follows: 1.) The finite element mesh consisted of 3-dimensional solid (brick) elements. Four elements were used to model the tube wall and similar refinement was carried to the attaching J-weld. As referenced above, one row of angled elements represented the transition from the 4.750-inch ID below the counterbore to the 4.625-inch ID above the counterbore. 2.) The ICI nozzle material, possessing the same yield strength for all nozzles, resulting from a single heat of material, was modeled with a monotonic stress-strain curve. The yield strength of the nozzles was referenced to the room temperature yield strength of the stress strain curve described in Reference 6a. Temperature-dependent stress-strain curves needed to model the nonlinear
Engineering Report M-EP-2003-003 Rev. 00 Page 12 of 35 welding process were obtained by indexing the temperature-dependent drop of the yield strength. 3.) The weld material was modeled as elastic-perfectly plastic for the weld simulation. This approximation is considered reasonable since most of the plastic strain in the weld metal occurs at high temperatures where metals do not work-harden significantly [Ref. 6b]. The temperature in the weld is always high during the welding process, and once the weld begins to cool, the temperatures in the weld at which strain hardening would persist are of limited duration [Ref. 6b]. This was borne out by the comparison between the analysis-based residual stress distribution and that obtained from experiments [Ref. 6c]. 4.) The weld is simulated by two passes based on studies presented in Reference 6a. 5.) After completing the weld, a simulated hydro-test load step is applied to the model. The hydro-test step followed the fabrication practice. 6.) The model is then subjected to a normal operating schedule of normal heat up to steady state conditions at operating pressure. The residual plus operating stresses, once steady state has been achieved, are obtained for further analysis. The nodal stresses of interest are stored in an output file. These stresses are then transferred to an Excel spreadsheet for use in fracture mechanics analysis. The stress contours for the ICI nozzle obtained from the finite element analysis are presented in Figures 4 through 6. The hoop stress contour color scheme is as follows: Dark Navy blue-+ from Minimum (Compression) to -10 ksi Royal blue -+ from -10 to 0 ksi Light blue -e from 0 to 10 ksi Light green -+ from 10 to 20 ksi Green -4 from 20 to 30 ksi Yellow green -e from 30 to 40 ksi
- from 40 to 50 ksi Red - from 50 to 100 ksi
Engineering Report M-EP-2003-003 Rev. 00 Page 13 of 35 Figure 4: Hoop stress contours for the ICI nozzle. High tensile stresses occur in the weld and adjacent tube material. Figure 5: Hoop stress contours in the upper portion (closer to the intersection with the reactor head) of the ICI nozzle
Engineering Report M-EP-2003-003 Rev. 00 Page 14of 35 Figure 6: Close-up of the uphill side (180° azimuth) hoop stress in the vicinity of the J-groove weld and counterbore region Row of transition elements simulating the counterbore Red Lines indicate the span of the 0.88-inch Blind zone The nodal stresses for locations of interest were provided by DEI and were tabulated in Reference 6d. (This data is also shown in Attachment 3.) The location of the weld bottom at each azimuth was maintained at the node row ending with "601", while the top of the weld at each azimuth was the node row ending with " 1301". The blind zone is shown on Figure 6 as an overlay to the stress contours. From the stress data in Attachment 3, the uphill side (the 80000 series nodes from the stress data) hoop stresses are the second highest in the ICI nozzle above the weld; the downhill side above the weld has higher hoop stresses, and these will be addressed in Section 4.2. Additionally, axial stresses used to evaluate circumferentially flaws were tabulated in Reference 6e and contained in Attachment
- 3. These stresses and the potential of circumferential flaws in the blind zone will be discussed in more detail in Section 3.5.
The nodal stress data from the DEI analyses are imported into the respective Mathcad worksheet (discussed later) for further processing to obtain the pertinent stress distributions required for the fracture mechanics analysis described in Section 3.2. Additional processing of the nodal stress data is described in Section 3.4.2.
Engineering Report M-EP-2003-003 Rev. 00 Page 15 of 35 3.2 ID Surface Flaw Fracture Mechanics Model The model used to evaluate an ID surface flaw contained in the 0.88-inch Blind zone above the top of the weld is described in detail in Reference 7, and was originally presented in a NASA Publication, Reference 8. This model evaluates an axial, part through-wall flaw on the ID surface of a cylinder, subject to an arbitrary stress distribution (up to a cubic polynomial fit). This model is valid for a ratio of mean radius (Rmean)-to-thickness (t) between 1.0 and 300. Since the ICI nozzle has Rm/t equal to 6.4, this model is considered applicable. The fracture mechanics model [Ref. 8] gives the equation for the stress intensity factor (SIF) for both deepest point of the crack and the tip of the flaw along the surface, as follows: K =( a)
- C yiGD for the SIF at the deepest point of the flaw K, = ( C) * (afG ) for the SIF at the tip of the flaw on the surface where:
K1 is the applied Stress Intensity Factor, or SIF { ksi,%/-Y } Q = Crack shape factor; defined as 1.65 Q =1+1.464. a when a/c < 1.0 and, Q = 1+1.464 - ( when a/c > 1.0 a = Crack depth {inch} c = Crack half flaw length {inch}
40 > 40 3 0.4 20.98 23.34 4 0.16 3.83 6.99 These results suggest that a sufficiently deep flaw in the 0.88-inch blind zone above the top of the weld on the uphill side (1800 azimuth) would grow to a detectable length at least one fuel cycle (1.5 years) prior to growing through-wall. Graphical details of the depth and length flaw growth are shown in Figures 10 through 13.
Engineering Report M-EP-2003-003 Rev. 00 Page 28 of 35 Figure 10: Flaw Case 1-Depth Growth (top) and Length Growth (bottom) versus number of operating years. For Flaw Case 1, the growth through-wall occurs in 13.74 years. The length growth into an inspectable region occurs in 10.94 years. Flaw Growth in Depth Direction II I I I I .III 0.61 13-74 0.51 0.4017 z 0.4 S.. 0.3 1 2 0.21 0.1 "U 0 2 4 6 8 10 12 14 16 IS 20 Operating Time (years) 1. 14.94 _h EL 0 0.3 I-
$s9 31 0
____I I_________ ___ I _1 0 2 4 6 8 10 12 14 16 18 20 Operating Time tyears)
Engineering Report M-EP-2003-003 Rev. 00 Page 29 of 35 Figure 11: Flaw Case 2-Depth Growth (top) and Length Growth (bottom) versus number of operating years. For Flaw Case 2, no growth in either the depth or length direction occurs within 40 years. Flaw Growth in Depth Direction I I I I I I I 0.6 0.401 8 0-4 ------------------------------------ I-i 0.2 _ 39 0 5 10 15 20 25 30 35 40 Operating Time (years) II I I I I I_ 2, s C 0.4 0 U.~
'I I III I I I 0 s 10 15 20 25 30 35 40 Operating Time {years)
Engineering Report M-EP-2003-003 Rev. 00 Page 30 of 35 Figure 12: Flaw Case 3-Depth Growth (top) and Length Growth (bottom) versus number of operating years. For Flaw Case 3, the growth through-wall occurs in 23.34 years. The length growth into an inspectable region occurs in 20.98 years. Flaw Growth in Depth Direction s'
.4 0.
s~ I SI: Operating Time (years) Th L.I
-l 0 5 10 15 20 25 30 Operating Time {years)
Engineering Report M-EP-2003-003 Rev. 00 Page 31 of 35 Figure 13: Flaw Case 4-Depth Growth (top) and Length Growth (bottom) versus number of operating years. For Flaw Case 4, the growth through-wall occurs in 6.99 years. The length growth into an inspectable region occurs in 3.83 years. Flaw Growth in Depth Direction I I ~~~~II 0.6 6,99 0.4 0-4 __________________________- 0.3 0.2 0.1 l l l I 0 2 4 6 8 to 12 14 Operating Time (years) 2 1 3:83 I._C C:------ ;------------------------------------____ l 2 4I I I 0 I I 0 46_ 10 12 14S Operating Time (years)
Engineering Report M-EP-2003-003 Rev. 00 Page 32 of 35 A review of DEI's FEA stress output shows the through thickness and axial distribution of hoop stresses on the downhill side (00 azimuth) of the nozzle to be higher than that for the uphill side for the same relative distance above the weld. That is, for the length of the nozzle 1.08 inches above the top of the weld on the downhill side, plus a region 0.88 inch beyond that (equivalent to the span of the blind zone on the uphill side), the stress distribution was similar in through-wall behavior but generally higher in magnitude. The counterbore region on the downhill side, however, is 9.96 inches above the top of the weld and not subject to the requirements of the Order. Because of the higher stress field, it is reasonable to presume that under equivalent conditions, a flaw could initiate in this equivalent downhill side area more readily than on the uphill side. However, this region is inspected via UT; thus, the most susceptible location based on stresses is addressed by the current inspection coverage.
Engineering Report M-EP-2003-003 Rev. 00 Page 33 of 35
5.0 CONCLUSION
S The evaluation performed and presented in the preceding sections support the following conclusions: I) The uphill side (1800 azimuth) of the ICI nozzle above the top of the weld possesses the highest (hoop) stresses in the vicinity of the counterbore for which a UT blind zone exists.
- 2) The developed fracture mechanics model, incorporating a method to account for applied stress distribution variation along the ICI nozzle length, has been shown to be a reasonably realistic yet conservative representation of the expected crack growth and morphology.
- 3) The conservatisms used in the analysis (pressure applied to crack faces and high flaw length-to-depth aspect ratio) provide assurance that an undetected crack in the 0.88-inch Blind zone region above the top of the weld on the uphill side (1800 azimuth) will extend out of the blind zone and into an inspectable region at least one operating cycle prior to growth through the thickness.
- 4) Though the downhill side (00 azimuth) of the ICI nozzle at an equivalent distance above the top of the weld is in a higher stress field and more susceptible to crack initiation, it is inspected by UT.
- 5) The ID surface crack on the uphill side either did not show any potential for crack growth, or the crack growth in the axial direction reached a detectable area at least one operating cycle prior to the crack growing through-wall. Hence, an ID surface crack in a region above the weld on the uphill side is not significant.
- 6) No potential exists for an ID circumferential crack to be located in the 820 circumferential extent of the blind zone due to the predominant compressive axial stress field spanning 450 on either side of the uphill side (1800 azimuth) of the ICI nozzle.
Engineering Report M-EP-2003-003 Rev. 00 Page 34 of 35
6.0 REFERENCES
- 1) NRC Order; Issued by letter EA-03-009 addressed to "Holders of Licenses for Operating Pressurized Water Reactors"; dated February 11, 2003.
- 2) a.) ANO Drawing No. M-2001 -C2-24 (DRN 03-1315), "Closure Head Instrument Nozzle Details b.) ANO Drawing No. M-2001-C2-107-3, "Closure Head Nozzle Requirements"
- 3) ANO Calculation No. 86-E-0036-39 "Analytical Report for Arkansas Nuclear One -
Unit 2 Reactor Vessel"; prepared by Combustion Engineering, Inc.; dated August 1974.
- 4) ANO Calculation No. 02-E-0003-0 1, Rev. 0, "Time at Temperature Assessment for ANO-2 RV Head Nozzles Revised for Power Uprate"; dated 2/28/02.
- 5) ASME Boiler and Pressure Vessel Code, Section III NB, 1992 Edition.
- 6) a) "PWSCC of Alloy 600 Materials in PWR Primary System Penetrations"; EPRI TR- 103696; Electric Power Research Institute, Palo Alto, CA; July 1994.
b) "BWR Vessel and Internals Project - Evaluation of crack growth in BWR Stainless Steel RPV Internals (BWRVIP-14)"; EPRI TR-105873; Electric Power Research Institute, Palo Alto, CA; March 1996. c) "BWR Vessel and Internals Project - Evaluation of crack growth in BWR Nickel Base Austenitic Alloys in RPV Internals (BWRVIP-59)"; EPRI TR-108710; Electric Power Research Institute, Palo Alto, CA; December 1998. d) Dominion Engineering Inc. e-mails E4162-00-4, E4162-00-5, and E-4162-00-6 containing the nodal stress and coordinate data for ANO-2 ICI Analysis; J. Broussard and S. Ahnert (DE[) to B. Gray (Entergy); dated August 25 & 26, 2003. e) Dominion Engineering Inc. e-mail E4162-00-9 containing axial stress and elevation data for all node locations above the top of the weld; J. Broussard (DEI) to B. Gray (Entergy); dated September 3, 2003.
- 7) Entergy Nuclear South/Central Engineering Programs Engineering Report No. M-EP-2003-002, Rev. 01, "Fracture Mechanics Analysis for the Assessment of the Potential for Primary Water Stress Corrosion Crack (PWSCC) Growth in the Un-Insepcted Regions of the Control Element Drive Mechanism (CEDM) Nozzles at Arkansas Nuclear One Unit 2"; dated August 26, 2003. [Previously sent to the NRC Under Relaxation Request transmittal CNRO-2003-00033, dated August 25, 2003.]
- 8) "Stress Intensity Factors for Part-Through Surface Cracks in Hollow Cylinders": S. R.
Mettu et al; NASA TM- 111707; Prepared by Lockheed Engineering & Science Services; Houston, Texas; July 1992.
- 9) "Materials reliability Program (MRP) Crack Growth Rates for Evaluating Primary Water Stress Corrosion cracking (PWSCC) of Thick Wall Alloy 600 Material": MRP-55, Revision 1; Electric Power Research Institute (EPRI); dated November 13, 2002.
Engineering Report M-EP-2003-003 Rev. 00 Page 35 of 35
- 10) Mathcad - 11; Data Analysis Products Division; Mathsoft Inc.; Seattle WA; November 2002.
- 11) EPRI NDE Demonstration Report; "MRP Inspection Demonstration Program -
Wesdyne Qualification": Transmitted by e-mail from B. Rassler (EPRI) to K. C. Panther (Entergy); Dated 3/27/2003.
Attachment I to Eng- Report No. M-EP-2003-0003, Rev. 01 Page I of 4 Page 1 of I Design Input Revision 0 DESIGN INPUT RECORD Document Type: Document Number. Document Revision: Design Objective: (Attach additional sheets as required) The purpose of this Design Input Record is to establish the applicable design inputs associated with the In-Core Instrument (ICI) nozzle configurations at ANO-2 and Waterford-3. This information will be used as input to fracture mechanics evaluations being prepared in accordance with ASME Section Xl, part IWB-3600 to evaluate flaw propagation associated with potential future nozzle repairs due to PWSCC cracking in Alloy 600 material. Design Inputs: (Identify requirement and how it is applied. Ref. DC-141, Sec. 5.1.2) See attached sheets Contributing Disciplines: NOTE I Mechanical I&C Electfical civil Piping Structures Engineering programs Other NOTE 1: The contributing discipline engineer shall provide his/her name beside the appropriate block. -Lead Discipline Mechanical -Prepared by (DA) Jamie GoBell , Date 07121/03 Lead Design/Responsible Engineer I 3 , OR/RIA SA 1P Date Lead Discipline Reviewer Nara Ray N:tED.A Ear Dae 7- 403 -Lead Discipline Supervisor William Sims lcl-,> Date 7_3Q3
Attachment I to Eng. Report No. M-EP-2003-0003, Rev. 01 Page 2 of 4 The NDE limitations for the ICI nozzles are provided relative to the point at which the blend radius begins on the inside surface of the bottom of the nozzle. The dimensions provided for the head cladding surface to the bottom of the ICI nozzle are provided relative to the "sharp corner" points before the points are blended to a 1/16 inch radius. To define the NDE limitations, the vertical distance from the "sharp corner" points up to the tangent point of the blend radius with the vertical face of the nozzle have to be considered. The sketch below shows those dimensions for the zero and 180 degree azimuth positions on the nozzle. At the 90 and 270 degree azimuth positions, the dimension is 1/16 inch. The calculations of the values in the figure below are shown on the following page. It should be noted that on the low hill side, the smaller cutoff angle from the Waterford 3 ICI nozzle configuration was more conservative and was used, and on the upper hill side, the larger cutoff angle from the ANO-2 ICI nozzle configuration was more conservative and was used. 0.206 inches from sharp comer to radius tangent
Attachment I to Eng. Report No. M-EP-2003-0003, Rev. 01 Page 3 of 4 xrcr donztcfr
~/ts el b4 pM4irrht#
A ji so-0-633.7167 ' c-BO;2"F0.02SC.s 4= i1 4S fz.O042 Sw Sj:.O3147 At: rc/, =0 .17o1G'
.~re + r O 0t6 2 X:4,O4oS" 7- 1,30' X=OO/ Is "
Attachment I to Eng. Report No. M-EP-2003-0003, Rev. 01 Page 4 of 4 The dimensions of the ICI nozzles relative to the J-groove welds and cladding surface inside the head were calculated relative to the "tangent line" that defines the radius of curvature of the head. These dimensional references are depicted in the sketch below. Top of counter bore Bottom of counter bore - Top of J-weld at 180 deqrees - Claddinq at 180 D Nozzle bottom at OD at 180 - Nozzle bottom at IDat 180 - F-Noz bot at IDat00 xKNoz bat OD at 0 --3
-Cladding at 0 deg e-)
Top J-weld at 0 deg -D Tangent line datum plane - Because there is a slight variation in the location of the ICI nozzles at Waterford 3 relative to the centerline of the head, there is a very slight variation in the values calculated from nozzle to nozzle. Because the variation is very small, only one set of values is reported in the tabulated data. If desired, the specific values for a specific nozzle can be extracted from the Excel spreadsheet that calculated the values. The values for ANO-2 and Waterford 3 were calculated using Excel spreadsheets, and the results are summarized in the table below. Dimension from the tangent line datum plane to: ANO-2 W-3 (inches) (inches) Top of counter bore transition 48.625 55.094 Bottom of counter bore transition 48.375 54.844 Top of J-weld at the 180 degree (high hill side)azimuth location 46.998 53.440 Intersection of the projected cladding surface and the nozzle OD 46.211 52.655 at the 180 degree (high hill side) azimuth location Bottom (sharp corner) of the nozzle at the OD surface at the 180 44.211 50.618 degree (high hill side) azimuth location Bottom (sharp corner) of the nozzle at the ID surface at the 180 43.602 50.031 degree (high hill side) azimuth location Top of J-weld at the 0 degree (low hill side)azimuth location 38.283 45.008 Intersection of the projected cladding surface and the nozzle OD 37.875 44.589 at the 0 degree (low hill side) azimuth location Bottom (sharp corner) of the nozzle at the ID surface at the 0 36.484 43.180 degree (low hill side) azimuth location Bottom (sharp corner) of the nozzle at the OD surface at the 0 35.875 42.594 degree (low hill side) azimuth location
Attachment 2 to Eng. Report No. M-EP-2003-0003, Rev. 01 Page 1 of 2 Page 1 of 2. Design Input Revision 0 DESIGN INPUT RECORD Document Type: N/A Document Number. N/A Document Revision: N/A Design Objective: (Attach additional sheets as required) The following dimensions of the ultrasonic (UT) examination blind zone associated with the counterbore region at the 1800 high hillside location of the incore instrumentation (ICI) nozzles at ANO-2 were obtained based on a review of UT data obtained during 2R1 5 for 7 of 8 ICI nozzles. These dimensions represent worst case measurements. Dimension from Top of J-weld to Bottom of Counterbore Blind Zone: 1.080" Axial Length of UT Blind Zone: 0.880" Arc Length or Circumferential Extent of Counterbore Blind Zone: 820 Attached to this coversheet is a sketch which identifies the UT "blind zone" of the counterbore region at the 180° high hillside location of the ICI nozzles at ANO-2. The sketch provided is only meant to aid in visualizing the location of the blind zone, and is not meant to be taken as an accurate depiction of the nozzle configuration. The sketch is not to scale. Design Inputs: (Identify requirement and how it is applied. Ref. DC-141, Sec. 5.1.2) (See attached sheets, drawings, and photographs) Contributing Disciplines: NOTE 1 Mechanical N/A N/A 1&C N/A N/A Electrical N/A N/A Civil N/A N/A Piping N/A N/A Structures N/A N/A Engineering programs N/A N/A Other N/A N/A NOTE 1: The contributing discipline engineer shall provide his/her name beside the appropriate block. -Lead Discipline Mechanical . i A -Prepared by (DA) Ronnie Swain (Entergy Level l1l) 11 d A4 Date yr,/-o zoS~~nse ol!lfl2 Lead Design/Responsible Engineer N/Y Date N/A Lead Discipline Reviewer N/A Date N/A -Lead Discipline Supervisor N/A Date N/A
Attachment 2 to Eng. Report No. M-EP-2003-0003, Rev. 01 Page 2 of 2 COUNTERBORE AT HIGH HILLSIDE POSITION UT blind zone starting point = 1.080" above top of weld Axial length of UT blind zone = 0.880" Arc length of limitation for 2" scanning above the weld = 82 degrees The counterbore limits our ability to ultrasonically scan 2" above the j-weld for a circumferencial distance of as much as 82 degrees on the ICI nozzles.
Attachment 3 to Eng. Report No. M-EP-2003-0003, Rev. 01 GRAY, BRIAN C Page I of 18 From: Stephen Ahnert [sahnert~domeng.com] Sent: Monday, August 25, 2003 1:18 PM To: GRAY, BRIAN C
Subject:
E-4162-00-4 ANO2 ICI Results Above Weld AN02ICIC.ICIdata Ia Uphill Hoop post.results.t... Stress Plot.pd... Bri an - Attached are the AN02 ICI hoop stress results, reported in the nozzle coordinate system, for the uphill half of the nozzle (40,000's - 80,000's planes) above the top of the weld. The axial heights shown in the attachment are measured from the lowest point on the tube at the node's circumferential plane (e.g. node 71403's axial height is measured from node 70001). Since the ICI nozzle model includes an ID counterbore, the wall thickness is not constant along the nozzle axis. Furthermore, because of the angle of the element mesh, the ID transition does not occur between the same two nodes at every circumferential plane. For the 5 planes included in this transmittal, the ID transition occurs between the following nodes. 40,000's plane 41901 - 42001 50,000's plane 51801 - 51901 60,000's plane 61701 - 61801 70,000's plane 71601 - 71701 80,000's plane 81601 - 81701 Below the transition, the inner radius is 2.375", while above the transition, the radius shrinks to 2.3125". Between the nodes, the radius shrinks linearly. I've also attached a plot focusing on the uphill portion of the nozzle above the weld. If you have any questions or comments, please do not hesitate to contact me or John at 703-437-1155. Sincerely, Stephen Ahnert I
Attachment 3 to Eng. Report No. M-EP-2003-0003, Rev. 01 Page 2 of 18 AN02ICIC 40000's Plane (90 degrees from downhill) Hoop Stresses % Through Wall NODE ID 25 50 75 OD 41401. 16446. 15541. 13421. 12339. 12594. 41501. 14314. 13452. 11688. 10418. 10601. 41601. 8445. 9350. 9998. 11033. 13072. 41701. 1075. 5098. 8684. 12018. 14641. 41801. 1335. 5111. 9178. 12550. 14555. 41901. 3151. 6164. 9256. 12135. 13611. 42001. 1484. 5279. 8515. 11674. 14273. 42101. 3802. 6228. 8417. 10542. 12607. 42201. 13096. 12072. 11966. 11842. 11007. ANO2ICIC 50000's Plane (112.5 degrees from downhill) Hoop Stresses % Through Wall NODE ID 25 50 75 OD 51401. 13439. 11150. 11288. 12991. 19269. 51501. 12560. 10399. 9501. 9540. 9172. 51601. 6466. 7661. 9531. 11608. 13143. 51701. 866. 4582. 8870. 12570. 14646. 51801. 906. 5050. 9540. 13377. 15336. 51901. 2748. 6200. 9745. 13166. 15292. 52001. 3543. 6551. 9276. 12078. 14330. 52101. 7325. 8780. 10127. 11427. 12628. 52201. 13142. 11794. 11231. 10665. 9629. AN02ICIC 60000's Plane (135 degrees from downhill) Hoop Stresses % Through Wall NODE ID 25 50 75 OD 61401. 15760. 12973. 11684. 10977. 12678. 61501. 12143. 11320. 11164. 11425. 12767. 61601. 5816. 7062. 8246. 9521. 10482. 61701. 6278. 8097. 10246. 11831. 12131. 61801. 8396. 9921. 11212. 12104. 12473. 61901. 8947. 9990. 10471. 11176. 11617. 62001. 10693. 10537. 10595. 10597. 10475. 62101. 11570. 11146. 10777. 10457. 10165. 62201. 12332. 11207. 10505. 9847. 9088. ANO2ICIC 70000's Plane (157.5 degrees from downhill) Hoop Stresses % Through Wall NODE ID 25 50 75 OD 71401. 21920. 18904. 16819. 15479. 10386. 71501. 17603. 15506. 13062. 9850. 8222. 71601. 12704. 12514. 11586. 8619. 5497. 71701. 13761. 13841. 13644. 10194. 6625. 71801. 15399. 15288. 13268. 9179. 5658. 71901. 15955. 15242. 11918. 8363. 5274.
Attachment 3 to Eng. Report No. M-EP-2003-0003, Rev. 01 Page 3 of 18 72001. 15901. 13994. 11179. 8633. 6165. 72101. 14346. 12527. 10824. 9449. 8173. 72201. 11030. 10495. 10124. 9793. 9527. AN02ICIC 80000's Plane (180 degrees from downhill) Hoop Stresses % Through Wall NODE ID 25 50 75 OD 81401. 23147. 2155S 19292. 16085. 9729. 81501. 19425. 1818EB. 15780. 11381. 8207. 81601. 15065. 1458) 13132. 6189. -109. 81701. 16707. 161755. 15560. 8890. 2754. 81801. 17399. 1717i 15044. 8136. 2316. 81901. 17412. 1748X7. 12883. 7180. 2298. 82001. 17115. 15799L. 11377. 7821. 4387. 82101. 15304. 13024V. 10766. 9067. 7453. 82201. 10308. 11ol 9. 10032. 9951. 9936. AN02ICIC Node Locations W Through Wall NODE ID 25 50 75 OD 41401. 3.8310 3.83).0 3.8310 3.8310 3.8310 41501. 4.3383 4.33E13 4.3383 4.3383 4.3383 41601. 5.0383 5. 03E33 5.0383 5.0383 5.0383 41701. 6.0041 6 . 004L1 6.0041 6.0041 6.0041 41801. 7. 3368 7.33668 7.3368 7.3368 7.3368 41901. 8.6238 8 .761.8 8.8998 9.0378 9.1757 42001. 11.7131 11.71331 11.7131 11.7131 11.7131 42101. 15.2141 15.2141 15.2141 15.2141 15.2141 42201. 21.2702 21.27C02 21.2702 21.2702 21.2702 51401. 4.0867 4 . 08667 4.0867 4.0867 4.0867 51501. 4.5620 4 .56220 4.5620 4.5620 4.5620 51601. 5.2230 5 .22330 5.2230 5.2230 5.2230 51701. 6.1423 6.27228 6.4034 6.5339 6.6645 51801. 7.3069 7.33E54 7.3638 7.3923 7.4208 51901. 9.1989 9. 19E39 9.1989 9.1989 9.1989 52001. 11.6719 11.673.9 11.6719 11.6719 11.6719 52101. 15.1113 15. 11113 15.1113 15.1113 15.1113 52201. 19.9532 19.95332 19.9532 19.9532 19.9532 61401. 4.2688 4.26E38 4.2688 4.2688 4.2688 61501. 4.7171 4. 71,71 4.7171 4.7171 4.7171 61601. 5.3452 5.39E59 5.4466 5.4973 5.5480 61701. 6.1904 6. 19S92 6.2079 6.2167 6.2255 61801. 7.4589 7.45E39 7.4589 7.4589 7.4589 61901. 9. 1874 9. 18174 9.1874 9. 1874 9. 1874 62001. 11. 6096 11.60S96 11.6096 11.6096 11.6096 62101. 15.0039 15.00339 15.0039 15.0039 15. 0039 62201. 18.8368 18. 83( 68 18.8368 18.8368 18.8368 71401. 4.3860 4. 38(60 4.3860 4.3860 4.3860 71501. 4.8127 4. 81C)0 4.8074 4.8047 4.8020 71601. 5.4444 5.43, 70 5.4297 5.4223 5.4149 71701. 6.2649 6.269L9 6.2649 6.2649 6.2649
Attachment 3 to Eng. Report No. M-EP-2003-0003, Rev. 01 Page 4 of 18 71801. 7.4647 7.4647 7.4647 7.4647 7.4647 71901. 9.1581 9.1581 9.1581 9.1581 9.1581 72001. 11.5484 11.5484 11.5484 11.5484 11.5484 72101. 14.9222 14.9222 14.9222 14.9222 14.9222 72201. 18.0908 18.0908 18.0908 18.0908 18.0908 81401. 4.4536 4.4536 4.4536 4.4536 4.4536 81501. 4.8639 4.8639 4.8639 4.8639 4.8639 81601. 5.1825 5.2486 5.3148 5.3810 5.4472 81701. 6.2761 6.2761 6.2761 6.2761 6.2761 81801. 7.4543 7.4543 7.4543 7.4543 7.4543 81901. 9.1289 9.1289 9.1289 9.1289 9.1289 82001. 11.5090 11.5090 11.5090 11.5090 11.5090 82101. 14.8917 14.8917 14.8917 14.8917 14.8917 82201. 17.8288 17.8288 17.8288 17.8288 17.8288
Attachment 3 to Eng. Report No. M-EP-2003-0003, Rev. 01 GRAY, BRIAN C Page 5 of 18 From: Stephen Ahnert [sahnert~domeng.com] Sent: Monday, August 25, 2003 1:58 PM To: GRAY, BRIAN C
Subject:
E-4162-00-5 AN02 ICI Results up to Weld Top ANO2IcC.nodeloc. AN02ICIC.datapos results.bct (... results.t ... Brian-Here is the data for the ICI nozzle up to the weld top. This info was previously sent to Jai, which is why I thought you might have it already. I've also included the detailed node locations for the nozzle below the bottom of the weld, where the element mesh is not straight across the wall of the nozzle. Stephen 1
Attachment 3 to Eng. Report No. M-EP-2003-0003, Rev. 01 Page 6 of 18 AN02ICIC Node Locations Below Weld Bottom
- Through Wall NODE ID 25 50 75 OD
- 1. 0.6979 0.5235 0.3490 0.1745 0.0000 101. 0.8029 0.7201 0.6372 0.5543 0.4715 201. 0.8633 0.8330 0.8028 0.7726 0.7423 301. 0.8979 0.8979 0.8979 0.8979 0.8979 10001. 0.6448 0.4836 0.3224 0.1612 0.0000 10101. 0.8557 0.7791 0.7026 0.6260 0.5494 10201. 0.9768 0.9489 0.9209 0.8930 0.8651 10301. 1.0464 1.0464 1.0464 1.0464 1.0464 20001. 0.4935 0.3701 0.2468 0.1234 0.0000 20101. 0.8988 0.8402 0.7816 0.7231 0.6645 20201. 1.1317 1.1103 1.0889 1.0675 1.0462 20301. 1.2654 1.2654 1.2654 1.2654 1.2654 30001. 0.2671 0.2003 0.1335 0.0668 0.0000 30101. 0.9090 0.8773 0.8456 0.8139 0.7821 30201. 1.2777 1.2662 1.2546 1.2430 1.2315 30301. 1.4896 1.4896 1.4896 1.4896 1.4896 40001. 0.0000 0.0000 0.0000 0.0000 0.0000 40101. 0.8726 0.8726 0.8726 0.8726 0.8726 40201. 1.3739 1.3739 1.3739 1.3739 1.3739 40301. 1.6618 1.6618 1.6618 1.6618 1.6618 50001. 0.0000 0.0668 0.1335 0.2003 0.2671 50101. 1.0655 1.0972 1.1289 1.1606 1.1923 50201. 1.6776 1.6891 1.7007 1.7123 1.7239 50301. 2.0292 2.0292 2.0292 2.0292 2.0292 60001. 0.0000 0.1234 0.2468 0.3701 0.4935 60101. 1.2091 1.2677 1.3263 1.3848 1.4434 60201. 1.9036 1.9250 1.9464 1.9678 1.9891 60301. 2.3026 2.3026 2.3026 2.3026 2.3026 70001. 0.0000 0.1612 0.3224 0.4836 0.6448 70101. 1.3062 1.3828 1.4593 1.5359 1.6124 70201. 2.0566 2.0845 2.1124 2.1404 2.1683 70301. 2.4876 2.4876 2.4876 2.4876 2.4876 80001. 0.0000 0.1745 0.3490 0.5235 0.6979 80101. 1.3646 1.4475 1.5303 1.6132 1.6961 80201. 2.1485 2.1787 2.2090 2.2392 2.2695 80301. 2.5988 2.5988 2.5988 2.5988 2.5988
Attachment 3 to Eng. Report No. M-EP-2003-0003, Rev. 01 Page 7 of 18 AN02ICIC O's Plane (0 degrees from downhill)
% Through Wall NODE HEIGHT ID 25 50 75 OD
- 1. 0.3490 330. -16634 -22706. -21399. -19763.
101. 0.6372 15313. -4281 -17786. -14429. -10809. 201. 0.8028 26820. 187693. -3643. -5548. 397. 301. 0.8979 27575. 27463 11589. 12114. 23130. 401. 1. 1242 26017. 27633 24092. 27004. 45053. 501. 1.3505 28242. 28868 30962. 40738. 54823. 601. 1. 5768 20921. 27864 35821. 45523. 53450. 701. 1.8031 11964. 23787 33856. 42567. 51113. 801. 2.0295 9687. 17779 27821. 30215. 40313. 901. 2.2558 19668. 19737 25207. 27694. 34390. 1001. 2.4821 37434. 31888 27565. 24410. 27638. 1101. 2.7084 43325. 40161 32465. 26020. 30372. 1201. 2.9347 40046. 40036 37953. 30641. 32887. 1301. 3.1610 35368. 35925 38751. 36110. 38087. AN02ICIC 10000's I?lane (22.5 degrees from downhill)
% Through Wall NODE HEIGHT ID 25 50 75 OD 10001. 0.3224 11817. -300( D. -15292. -17046. -14741.
10101. 0.7026 23129. 894( P. -4634. -7335. -4914. 10201. 0. 9209 26611. 198144. 8851. 6956. 15400. 10301. 1.0464 25592. 221931. 16673. 20834. 32108. 10401. 1.2671 23008. 214759. 22537. 28149. 43356. 10501. 1.4878 14243. 1818XF. 24429. 31101. 45101. 10601. 1.7085 5755. 145922. 23974. 31574. 40756. 10701. 1.9292 984. 12514 L. 24300. 33893. 38241. 10801. 2.1499 5267. 13512 21660. 26329. 31416. 10901. 2.3706 16884. 18312 19651. 22167. 28262. 11001. 2.5913 26961. 2284E6. 19899. 18757. 23492. 11101. 2.8120 32152. 2908E6. 25470. 21444. 27068. 11201. 3.0327 32793. 33052 30915. 26565. 30561. 11301. 3.2534 31892. 3213CD. 31968. 28400. 35085. ANO2ICIC 20000's Plane (45 degrees from downhill)
% Through Wall NODE HEIGHT ID 25 50 75 OD 20001. 0.2468 20018. 12176,. 2142. -4565. -4829.
20101. 0.7816 17823. 13195,. 8703. 7199. 11360. 20201. 1.0889 13018. 983CI. 11177. 16535. 29313. 20301. 1.2654 8173. 7762 11434. 21752. 29049. 20401. 1.4771 2810. 643E3. 11829. 18313. 24836. 20501. 1.6888 -2122. 3625i. 11444. 19199. 25718. 20601. 1.9005 -6511. -383 9736. 18601. 26353. 20701. 2.1122 -7277. -1422 7250. 16568. 19341. 20801. 2.3239 -1618. 3555;. 9846. 16479. 19018. 20901. 2.5356 5060. 8571 11061. 13316. 13608. 21001. 2.7474 10775. 113533. 11467. 13710. 15707. 21101. 2.9591 17210. 16185;. 13444. 12720. 18141.
Attachment 3 to Eng. Report No. M-EP-2003-0003, Rev. 01 Page 8 of 18 21201. 3.1708 22055. 21876. 19604. 17419. 19194. 21301. 3.3825 22420. 22298. 20957. 19614. 22892. ANO2ICIC 30000's Plane (67.5 degrees from downhill)
% Through Wall NODE HEIGHT ID 25 50 75 OD 30001. 0.1335 8133. 7529. 8405. 8807. 9444.
30101. 0.8456 2509. 4841. 8075. 13153. 14854. 30201. 1.2546 -3159. 185. 6565. 15336. 19781. 30301. 1.4896 -8698. -3807. 4486. 15633. 21762. 30401. 1.6905 -10607. -5127. 4368. 16593. 23105. 30501. 1.8915 -11697. -6146. 3629. 14221. 21065. 30601. 2.0924 -12130. -5767. 3348. 11915. 24052. 30701. 2.2934 -10623. -4097. 2790. 9076. 14421. 30801. 2.4943 -6605. -1271. 4055. 10985. 18666. 30901. 2.6953 -846. 1412. 5279. 8673. 12195. 31001. 2.8963 5966. 4457. 6294. 8822. 10450. 31101. 3.0972 12453. 8583. 8083. 7942. 9098. 31201. 3.2982 17413. 13069. 11816. 9951. 7765. 31301. 3.4991 19608. 16481. 14640. 15484. 12007. AN02ICIC 40000's Plane (90 degrees from downhill)
% Through Wall NODE HEIGHT ID 25 50 75 OD 40001. 0.0000 5256. 624' 9996. 13433. 14867.
40101. 0.8726 -3168. 110: 7186. 13071. 17896. 40201. 1.3739 -10727. -380(6. 6415. 17046. 27965. 40301. 1.6618 -15878. -731,7. 4861. 18322. 29000. 40401. 1.8519 -16192. -73141. 4927. 19781. 31004. 40501. 2.0421 -15973. -698E6. 3677. 16010. 23384. 40601. 2.2322 -15040. -618'3. 2945. 11781. 22918. 40701. 2.4223 -12838. -554' 3656. 10925. 15784. 40801. 2.6124 -9517. -579E8. 1581. 9281. 16033. 40901. 2.8026 -4550. -403( 1975. 7726. 11560. 41001. 2.9927 1807. -21lF. 3770. 8108. 7520. 41101. 3.1828 6378. 3653L. 5439. 8875. 4032. 41201. 3.3729 10031. 675)L. 6671. 6664. 1885. 41301. 3.5631 13966. 1249EB. 11967. 14062. 6061. ANO2ICIC 50000's Plane (112.5 degrees from downhill)
% Through Wall NODE HEIGHT ID 25 50 75 OD 50001. 0.1335 1855. 4938. 9186. 12671. 15099.
50101. 1.1289 -3205. 1648. 8628. 15241. 19737. 50201. 1.7007 -10751. -4274. 5271. 16542. 24718. 50301. 2.0292 -15595. -6154. 6009. 20523. 29654. 50401. 2.2096 -17582. -8682. 3168. 15984. 27678. 50501. 2.3900 -16129. -8492. 3069. 14915. 22125. 50601. 2.5704 -14648. -7789. 3245. 13265. 20801. 50701. 2.7508 -13026. -7342. 3631. 13180. 19786. 50801. 2.9312 -11837. -6347. 2955. 12010. 19650. 50901. 3.1116 -10397. -4769. 2256. 10236. 16691.
Attachment 3 to Eng. Report No. M-EP-2003-0003, Rev. 01 Page 9 of 18 51001. 3.2920 -7427. -2667. 3304. 7906. 12458. 51101. 3.4724 -2850. 583. 4589. 10291. 8319. 51201. 3.6528 2957. 3567. 5248. 8049. 4998. 51301. 3.8332 9365. 8955. 10723. 13578. 7031. ANO2ICIC 60000's 1?lane (135 degrees from downhill)
% Through Wall NODE HEIGHT ID 25 50 75 OD 60001. 0.2468 7021. 5842. 5526. 6093. 7368.
60101. 1.3263 3640. 3465. 5318. 7600. 11311. 60201. 1.9464 -905. 1001. 5440. 12219. 21693. 60301. 2.3026 -3267. 2518. 8632. 17598. 31596. 60401. 2.4751 -6647. 884. 9919. 20233. 34996. 60501. 2.6476 -5744. 986. 10615. 22120. 33405. 60601. 2.8200 -5329. 2056. 10825. 22691. 31650. 60701. 2. 9925 -4932. 2805. 11187. 22210. 31425. 60801. 3.1650 -4264. 3369. 11827. 19607. 30392. 60901. 3.3374 -2796. 4582. 11807. 20853. 29935. 61001. 3.5099 30. 5642. 12469. 18196. 26233. 61101. 3.6824 4197. 7650. 12858. 18879. 21916. 61201. 3.8549 9685. 10612. 13445. 16308. 19536. 61301. 4.0273 14607. 13634. 15404. 17649. 19056. ANO2ICIC 70000's IPlane (157.5 degrees from downhill)
% Through Wall NODE HEIGHT ID 25 50 75 OD 70001. 0.3224 1473. -3036. -6641. -12104. -17020.
70101. 1.4593 20460. 16006. 11035. 2785. -6169. 70201. 2.1124 21212. 17465. 16798. 18497. 17342. 70301. 2.4876 22297. 22154. 23184. 29005. 38650. 70401. 2.6542 21709. 23715. 25857. 31252. 45358. 70501. 2.8208 20455. 24110. 27879. 33527. 45849. 70601. 2.9874 19387. 24320. 28835. 34759. 46036. 70701. 3.1541 18829. 24621. 28661. 36197. 47360. 70801. 3.3207 18551. 24450. 28707. 32753. 47292. 70901. 3.4873 18254. 23886. 28207. 33211. 44358. 71001. 3.6539 18196. 23178. 27689. 31919. 41466. 71101. 3.8205 19769. 23334. 27730. 34376. 41884. 71201. 3.9871 22441. 23108. 26486. 30105. 41124. 71301. 4. 1537 23836. 22198. 21340. 20204. 32077. ANO2ICIC 80000's Plane (180 degrees from downhill)
% Through Wall NODE HEIGHT ID 25 50 75 OD 80001. 0.3490 -11742. -11463 -12940. -22469. -28317.
80101. 1.5303 32201. 29001 20291. 4279. -13369. 80201. 2.2090 30297. 28052 24882. 23328. 16928. 80301. 2.5988 32705. 32454 32437. 35963. 40476. 80401. 2.7617 35478. 35651 35700. 37186. 47454. 80501. 2.9246 35664. 35774 37391. 40265. 51097. 80601. 3.0875 35636. 36135i. 38433. 41721. 53338. 80701. 3.2503 35307. 366751. 38189. 44045. 56253.
Attachment 3 to Eng. Report No. M-EP-2003-0003, Rev. 01 Page 10 of 18 80801. 3.4132 34605. 35864. 37199. 40276. 55808. 80901. 3.5761 33503. 34531. 36673. 40156. 51744. 81001. 3.7390 32045. 32671. 34572. 38781. 48869. 81101. 3.9018 30301. 31492. 34115. 41212. 53934. 81201. 4.0647 28270. 28386. 32739. 36470. 51629. 81301. 4.2276 26390. 25687. 24607. 22680. 44523.
Attachment 3 to Eng. Report No. M-EP-2003-0003, Rev. 01 GRAY, BRIAN C Page 11 of 18 From: Stephen Ahnert [sahnert@domeng.com] Sent: Tuesday, August 26, 2003 1:34 PM To: GRAY, BRIAN C
Subject:
E-4162-00-6 ANO2 ICI Results Above Weld (Downhill Plane) AN02ICIC.ICIdata post2.results.... Brian-Attached are the hoop stress results and node locations for the ICI nozzle at the downhill (0's) plane above the top of the weld . The axial heights shown in the attachment are measured from the lowest point on the tube at the node's circumferential plane (node 5 for the downhill plane). The ID counterbore transition occurs between nodes 2001 and 2101. Stephen I
Attachment 3 to Eng. Report No. M-EP-2003-0003, Rev. 01 Page 12 of 18 AN02ICIC O's Plane (0 degrees from downhill) Hoop Stresses % Through Wall NODE ID 25 50 75 OD 1401. 31359. 2990EB. 29337. 29599. 28489. 1501. 26330. 2378e5. 21351. 19924. 17183. 1601. 22264. 20265 17426. 11969. -417. 1701. 17018. 1532S 12768. 6665. -2122. 1801. 15282. 1489( 13020. 9080. 4869. 1901. 16043. 154959. 13486. 9127. 5185. 2001. 16153. 1478E3. 10629. 6368. 2547. 2101. 14853. 10204I. 5245. 1131. -2825. 2201. 13403. 128959. 12285. 11712. 11405. ANO2ICIC Node Locations
% Through Wall NODE ID 25 50 75 OD 1401. 3.4831 3.48331 3.4831 3.4831 3.4831 1501. 4. 1328 4. 132 28 4.1328 4.1328 4.1328 1601. 4. 9976 4. 99776 4.9976 4.9976 4.9976 1701. 6. 1486 6.14836 6.1486 6.1486 6.1486 1801. 7.6805 7.68C15 7.6805 7.6805 7.6805 1901. 9.7195 9.715'5 9.7195 9.7195 9.7195 2001. 12.7631 12.60225 12.4419 12.2813 12.1207 2101. 16. 0453 16.045,3 16.0453 16.0453 16.0453 2201. 25.4095 25.40935 25.4095 25.4095 25.4095
Attachment 3 to Eng. Report No. M-EP-2003-0003, Rev. 01 GRAY, BRIAN C Page 13 of 18 From: John Broussard [jbroussard@domeng.comJ Sent: Wednesday, September 03, 2003 11:00 AM To: GRAY, BRIAN C
Subject:
E-4162-00-9, Axial Stresses in the ICI nozzle at and above the weld ANO2ICIC.axial.res ults.txd (13... Brian, Per our conversation, attached is a text file containing through-wall axial stresses (cylindrical coordinate system centered on the nozzle) and node elevations (relative to the lowest point on the nozzle) for every circumferential plane around the nozzle. If you have any questions or require further information, do not hesitate to call or e-mail. John Broussard, P.E. Dominion Engineering, Inc. E-mail: jbroussardsdomeng.com Phone : 703-437-7826 x236 Fax : 703-437-0780 1
Attachment 3 to Eng. Report No. M-EP-2003-0003, Rev. 01 Page 14 of 18 ANO2ICIC - Stresses Above the Weld O's Plane (0 degrees from downhill) Axial Stresses % Through Wall NODE ID 25 50 75 OD 1301. 19134. 19841. 23185. 23594. 23602. 1401. 21283. 22477. 23786. 24530. 26400. 1501. 24244. 23406. 22564. 19655. 15696. 1601. 21617. 21652. 21873. 20331. 10326. 1701. 15755. 17788. 20296. 20152. 14481. 1801. 14607. 16765. 19586. 19917. 19366. 1901. 13693. 15556. 17456. 17722. 17673. 2001. 11799. 12422. 12271. 12235. 12122. 2101. 9528. 8143. 6757. 5463. 4009. 2201. 7582. 6930. 5926. 4908. 4268. ANO2ICIC - Stresses Above the Weld 10000's Plane (22.5 degrees from downhill) Axial Stresses % Through Wall NODE ID 25 50 75 OD 11301. 22586. 22533. 23312. 23359. 25490. 11401. 23861. 23539. 24158. 26607. 33571. 11501. 23450. 22379. 21257. 19017. 16595. 11601. 21170. 20405. 20232. 18786. 12381. 11701. 16771. 17940. 19555. 19168. 15399. 11801. 15537. 17110. 19041. 19315. 18815. 11901. 14317. 15543. 16831. 17585. 17957. 12001. 11514. 11890. 11821. 11647. 11801. 12101. 8776. 7616. 6655. 5694. 4550. 12201. 6698. 6114. 5295. 4480. 3935. ANO2ICIC - Stresses Above the Weld 20000's Plane (45 degrees from downhill) Axial Stresses % Through Wall NODE ID 25 50 75 OD 21301. 32078. 30339. 27899. 25016. 23002. 21401. 32246. 29745. 27938. 28428. 31653. 21501. 28287. 26285. 24046. 22044. 21592. 21601. 21901. 20929. 19971. 18562. 16355. 21701. 17934. 18215. 18706. 17913. 16267. 21801. 15767. 16723. 17588. 17926. 17999. 21901. 13734. 14661. 15815. 16924. 18084. 22001. 10646. 10362. 10036. 9985. 10015. 22101. 5882. 5455. 5297. 5132. 4810. 22201. 5389. 5108. 4877. 4619. 4334. ANO2ICIC - Stresses Above the Weld 30000's Plane (67.5 degrees from downhill) Axial Stresses % Through Wall NODE ID 25 50 75 OD 31301. 33568. 30437. 28273. 26492. 21121. 31401. 32613. 29501. 25741. 23410. 20830. 31501. 27804. 26658. 25076. 23609. 24053.
Attachment 3 to Eng. Report No. M-EP-2003-0003, Rev. 01 Page 15 of 18 31601. 20992. 20323. 19276. 18062. 16687. 31701. 14110. 14247. 14670. 14920. 14942. 31801. 10324. 11615. 13167. 14307. 15302. 31901. 9890. 10413. 11095. 11524. 11672. 32001. 7802. 8304. 8650. 8901. 9102. 32101. 3146. 3772. 4392. 4997. 5563. 32201. 4854. 4611. 4694. 4781. 4601. ANO2ICIC - Stresses Above the Weld 40000's Plane (90 degrees from downhill) Axial Stresses % Through Wall NODE ID 25 50 75 OD 41301. 27693. 26366. 24818. 23340. 16693. 41401. 27076. 25745. 22225. 20007. 19364. 41501. 21642. 20426. 18131. 16185. 16290. 41601. 15264. 15112. 14377. 13926. 14193. 41701. 5004. 6885. 8509. 10424. 12026. 41801. 4640. 6420. 8493. 10387. 11537. 41901. 6519. 7330. 8271. 9065. 9330. 42001. 4302. 5572. 6738. 7940. 8892. 42101. 2449. 3416. 4343. 5245. 6088. 42201. 5189. 4721. 4770. 4821. 4469. ANO2ICIC - Stresses Above the Weld 50000's Plane (112.5 degrees from downhill) Axial Stresses % Through Wall NODE ID 25 50 75 OD 51301. 16932. 15839. 16310. 16729. 13390. 51401. 17627. 14595. 12835. 12324. 17720. 51501. 13191. 10239. 7842. 6261. 5158. 51601. 5842. 6039. 6398. 6923. 7504. 51701. -27. 1914. 4198. 6352. 7716. 51801. 1264. 2980. 4949. 6577. 7463. 51901. 3160. 4250. 5485. 6675. 7363. 52001. 2524. 3586. 4636. 5927. 6956. 52101. 3505. 4084. 4668. 5242. 5741. 52201. 5464. 4957. 4932. 4859. 4472. ANO2ICIC - Stresses Above the Weld 60000's Plane (135 degrees from downhill) Axial Stresses % Through Wall NODE ID 25 50 75 OD 61301. 3896. 2573. 4347. 6737. 10416. 61401. 4814. 1456. -147. -1041. -1614. 61501. 1261. 65. -337. -772. -206. 61601. -4868. -4016. -3343. -2306. -1074. 61701. -3529. -2279. -543. 975. 1729. 61801. 245. 1119. 2071. 2887. 3455. 61901. 2525. 3025. 3391. 3945. 4307. 62001. 4204. 4306. 4570. 4750. 4811. 62101. 4855. 4863. 4957. 5065. 5104. 62201. 5488. 5162. 5144. 5053. 4823. ANO2ICIC - Stresses Above the Weld 70000's Plane (157.5 degrees from downhill)
Attachment 3 to Eng. Report No. M-EP-2003-0003, Rev. 01 Page 16 of 18 Axial Stresses % Through Wall NODE ID 25 50 75 OD 71301. 454. -2163. -4850. -6703. 7792. 71401. 1834. -2115. -5846. -9511. -16830. 71501. -421. -3135. -6430. -9855. -11198. 71601. -2819. -3261. -4224. -5131. -5407. 71701. -456. -938. -1350. -1472. -1504. 71801. 2658. 1946. 1324. 405. -449. 71901. 4736. 4256. 3468. 2646. 1820. 72001. 5760. 5395. 4874. 4328. 3705. 72101. 5827. 5450. 5223. 5032. 4769. 72201. 5466. 5304. 5258. 5137. 5049. ANO2ICIC - Stresses Above the Weld 80000's Plane (180 degrees from downhill) Axial Stresses % Through Wa:Ll NODE ID 25 50 75 OD 81301. 238. -3173. -8173. -11550. 15902. 81401. 2159. -1729. -7605. -15001. -24613. 81501. -662. -3054. -7027. -11418. -13552. 81601. -1163. -2032. -4603. -6545. -7444. 81701. 1946. 456. -1865. -3592. -4364. 81801. 4652. 3396. 1590. - 159. -1737. 81901. 6022. 5282. 3800. 2360. 1009. 82001. 6542. 6050. 5056. 4230. 3328. 82101. 6161. 5674. 5320. 5006. 4621. 82201. 5431. 5323. 5257. 5112. 5062. AN02ICIC Node Elevations Above the Weld
% Through Wall NODE ID 25 50 75 OD 1301. 3.1610 3.16) LO 3.1610 3.1610 3.1610 1401. 3.4831 3. 48 31 3.4831 3.4831 3.4831 1501. 4.1328 4. 13 28 4.1328 4.1328 4.1328 1601. 4. 9976 4. 99, 76 4.9976 4. 9976 4. 9976 1701. 6.1486 6. 14E16 6.1486 6.1486 6.1486 1801. 7.6805 7. 68()5 7.6805 7.6805 7.6805 1901. 9.7195 9. 71 95 9.7195 9.7195 9.7195 2001. 12.7631 12.60225 12.4419 12.2813 12.1207 2101. 16.0453 16. 04!i3 16.0453 16.0453 16.0453 2201. 25.4095 25 .40595 25.4095 25.4095 25.4095 11301. 3.2534 3.25314 3.2534 3.2534 3.2534 11401. 3.5665 3. 56665 3.5665 3.5665 3.5665 11501. 4.1839 4. 18319 4.1839 4.1839 4.1839 11601. 5.0137 5.01: 37 5.0137 5.0137 5.0137 11701. 6.1290 6. 125)0 6.1290 6.1290 6.1290 11801. 7.6279 7.62979 7.6279 7.6279 7.6279 11901. 9.6425 9.64225 9.6425 9.6425 9.6425 12001. 12.3503 12.21411 12.0780 11. 9418 11.8056 12101. 15.9895 15. 985 95 15.9895 15.9895 15.9895 12201. 25. 0944 25.094 ~4 25.0944 25.0944 25.0944
Attachment 3 to Eng. Report No. M-EP-2003-0003, Rev. 01 Page 17 of 18 21301. 3.3825 3.3825 3.3825 3.3825 3.3825 21401. 3.6821 3.6821 3.6821 3.6821 3.6821 21501. 4.2630 4.2630 4.2630 4.2630 4.2630 21601. 5.0509 5.0509 5.0509 5.0509 5.0509 21701. 6.1198 6.1198 6.1198 6.1198 6.1198 21801. 7.5697 7.5697 7.5697 7.5697 7.5697 21901. 9.5365 9.5365 9.5365 9.5365 9.5365 22001. 12.2045 11.8805 11.5564 11.2324 10.9084 22101. 15.8235 15.8235 15.8235 15.8235 15.8235 22201. 24.1971 24.1971 24.1971 24.1971 24.1971 31301. 3.4991 3.4991 3.4991 3.4991 3.4991 31401. 3.7829 3.7829 3.7829 3.7829 3.7829 31501. 4.3262 4.3262 4.3262 4.3262 4.3262 31601. 5.0695 5.0695 5.0695 5.0695 5.0695 31701. 6.0867 6.0867 6.0867 6.0867 6.0867 31801. 7.4786 7.4786 7.4786 7.4786 7.4786 31901. 9.3834 9.4289 9.4744 9.5199 9.5655 32001. 11.9898 11.9898 11.9898 11.9898 11.9898 32101. 15.5564 15.5564 15.5564 15.5564 15.5564 32201. 22.8542 22.8542 22.8542 22.8542 22.8542 41301. 3.5631 3.5631 3.5631 3.5631 3.5631 41401. 3.8310 3.8310 3.8310 3.8310 3.8310 41501. 4.3383 4.3383 4.3383 4.3383 4.3383 41601. 5.0383 5.0383 5.0383 5.0383 5.0383 41701. 6.0041 6.0041 6.0041 6.0041 6.0041 41801. 7.3368 7.3368 7.3368 7.3368 7.3368 41901. 8.6238 8.7618 8.8998 9.0378 9.1757 42001. 11.7131 11.7131 11.7131 11.7131 11.7131 42101. 15.2141 15.2141 15.2141 15.2141 15.2141 42201. 21.2702 21.2702 21.2702 21.2702 21.2702 51301. 3.8332 3.8332 3.8332 3.8332 3.8332 51401. 4.0867 4.0867 4.0867 4.0867 4.0867 51501. 4.5620 4.5620 4.5620 4.5620 4.5620 51601. 5.2230 5.2230 5.2230 5.2230 5.2230 51701. 6.1423 6.2728 6.4034 6.5339 6.6645 51801. 7.3069 7.3354 7.3638 7.3923 7.4208 51901. 9.1989 9.1989 9.1989 9.1989 9.1989 52001. 11.6719 11.6719 11.6719 11.6719 11.6719 52101. 15.1113 15.1113 15.1113 15.1113 15.1113 52201. 19.9532 19.9532 19.9532 19.9532 19.9532 61301. 4.0273 4.0273 4.0273 4.0273 4.0273 61401. 4.2688 4.2688 4.2688 4.2688 4.2688 61501. 4.7171 4.7171 4.7171 4.7171 4.7171 61601. 5.3452 5.3959 5.4466 5.4973 5.5480 61701. 6.1904 6.1992 6.2079 6.2167 6.2255 61801. 7.4589 7.4589 7.4589 7.4589 7.4589 61901. 9.1874 9.1874 9.1874 9.1874 9.1874 62001. 11.6096 11.6096 11.6096 11.6096 11.6096 62101. 15.0039 15.0039 15.0039 15.0039 15.0039 62201. 18.8368 18.8368 18.8368 18.8368 18.8368 71301. 4.1537 4.1537 4.1537 4.1537 4.1537 71401. 4.3860 4.3860 4.3860 4.3860 4.3860 71501. 4.8127 4.8100 4.8074 4.8047 4.8020 71601. 5.4444 5.4370 5.4297 5.4223 5.4149 71701. 6.2649 6.2649 6.2649 6.2649 6.2649 71801. 7.4647 7.4647 7.4647 7.4647 7.4647
Attachment 3 to Eng. Report No. M-EP-2003-0003, Rev. 01 Page 18 of 18 71901. 9.1581 9.1581 9.1581 9.1581 9.1581 72001. 11.5484 11.5484 11.5484 11.5484 11.5484 72101. 14.9222 14.9222 14.9222 14.9222 14.9222 72201. 18.0908 18.0908 18.0908 18.0908 18.0908 81301. 4.2276 4.2276 4.2276 4.2276 4.2276 81401. 4.4536 4.4536 4.4536 4.4536 4.4536 81501. 4.8639 4.8639 4.8639 4.8639 4.8639 81601. 5.1825 5.2486 5.3148 5.3810 5.4472 81701. 6.2761 6.2761 6.2761 6.2761 6.2761 81801. 7.4543 7.4543 7.4543 7.4543 7.4543 81901. 9.1289 9.1289 9.1289 9.1289 9.1289 82001. 11.5090 11.5090 11.5090 11.5090 11.5090 82101. 14.8917 14.8917 14.8917 14.8917 14.8917 82201. 17.8288 17.8288 17.8288 17.8288 17.8288
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 1 of 42 Arkansas Nuclear One Unit 2 Primary Water Stress Corrosion Crack Growth Analysis for an ICI ID Surface Flaw Uphill (1800), in the Blind Zone above the Top of the J-Groove Weld Developed by CentralEngineering Programs, Entergy Operations Inc. Flaw Case 1: 25% Through-Wall Flaw with a 6-to-1 Flaw Length-to-Depth Aspect Ratio, Located at the Center of the Blind Zone Calculation Basis: MRP 75 th Percentile and Flaw Face Pressurized Mean Radius -tog Thickness Ratio:- "Rmlt" - between 1.0 and 300.0 Note: The Metric fonn of the equation from EPRI MRP was used 55-Rev. I . A correction factor is applied in the determination of the crack extension to convert the units of meters per second to the ID Surface Flaw value in inches per hour. User Input: The Dominion Engineering Inc. (DEI) finite element model nodal elevations and hoop stresses for the uphill side (1800 azimuth) of the ICI nozzle are brought into the Mathcad worksheet from data supplied in Reference 6d. The data are composed of the nodal elevations (in inches), along with the ID, 25% through-wall (tw), 50% tw, 75% tw, and OD hoop stresses, beginning at the top of the weld (nodal line 81301) and extending to the top of the nozzle in the FEA model, which is at the point where the nozzle intersects the reactor vessel head. The DEI FEA data has elevation referenced from the bottom of the ICI nozzle. The elevations of the node points in the DEI FEA model, beginning at the top of the weld (nodal line 81301), are as follows: i := 0..9 Nodelinei := IDelev feai := QTelev-feai := MD-elev-feai TQ elev-feai := ODelevfeai := 81301 4.2276 4.2276 4.2276 4.2276 4.2276 81401 4.4536 4.4536 4.4536 4.4536 4.4536 81501 4.8639 4.8639 4.8639 4.8639 4.8639 81601 5.1825 5.2486 5.3148 5.3810 5.4472 81701 6.2761 6.2761 6.2761 6.2761 6.2761 81801 7.4543 7.4543 7.4543 7.4543 7.4543 81901 9.1289 9.1289 9.1289 9.1289 9.1289 82001 11.5090 11.5090 11.5090 11.5090 11.5090 82101 14.8917 14.8917 14.8917 14.8917 14.8917 82201 17.8288 17.8288 17.8288 17.8288 178288
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 2 of 42 The corresponding stresses at these nodes are IDstress feai := QTstress-fea1 := MDstressfeai := TQ_stressfea := ODstressfeai := 26.390 25.687 24.607 22.680 44.523 23.147 21.559 19.292 16.085 9.729 19.425 18.188 15.780 11.381 8.207 15.065 14.581 13.132 6.189 -0.109 16.707 16.175 15.560 8.890 2.74 17.399 17.177 15.044 8.136 2.316 17.412 17.487 12.883 7.180 2.298 17.115 15.794 11.377 7.821 4.387 15.304 13.024 10.766 9.067 7.453 10.308 10. 119 10.032 9.951 9.936 Blind Zone and Counterbore Reference dimensions: From design drawings (Ref 2a and 2b) and the design input of Attachment 1, the following dimensions are used to locate the counterbore bottom and blind zone locations (bottom, top, and middle) as referenced from the nodal coordinates of the DEI FEA model. Actualcborebottomelev := IDelev feao + 1.377 Actual cbore bottom elev = 5.6046 topweld-to bottom BZ := 1.08 BZ_length:= 0.88 elev_tomidBZ := IDelev feaO + topweldtobottomBZ + BZ length elevtomidBZ = 5.7476 bottomof BZ := ID_elev_feao + topweldtobottomBZ bottomof BZ = 5.3076
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 3 of 42 topof BZ := IDelev-feao + topweldtobottomBZ + BZlength top_of BZ = 6.1876 For stress averaging and fracture mechanics purposes, the reference coordinate system--with a "0" elevation at the bottom of the nozzle, at the ID corner--must be converted into a new coordinate system with the top of the nozzle (nodal line 82201) as the new "0" elevation.. The positive direction along this new coordinate system will be towards nodal line 81301, which is the top of the weld. This modification facilitates a fracture mechanics model more ammenable to the surface flaw loop structure previously developed in Reference 7. The following iterative loops convert the five (5) through-wall stress components--ID, 25% tw (QT), 50% tw (MD), 75% tw (TQ), and OD--and the associated elevations, initially given in the DEI FEA model, into the "new" coordinate system, referenced from the top of the nozzle where it meets the reactor vessel head. IDconv Top e- ID_elevfea9 while j 2 0 IDelevconvi v- Top - ID-elev-feaj ID stressi v- ID_stress feaj output(j, 0) v- IDelevyconvi output(i, I) - IDstressi i(- i+ I output ID elev ID convy) IDstress := ID conv(y
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 4 of 42 QT-conv := Top +- QTelev-fea 9 j<-9 i*-o while j 2 0 QT_elev-conv; +- Top - QT-elev-feaj QTstressi - QT-stressjfeaj output(i, 0) - QT_elev-convi output(i, I) - QTstress; j*-j-I i-- i+I output QTelev := QTconv(°) QT stress := QT conv~ ) MDconv := Top <- MDelev-feag while j 2 o MDelevconv; +- Top - MD-elev-feaj MDstress; <- MD stress feaj outputi, 0) - MD elevconvi output(i, 1) - MD-stressi j*-j-I ioui+t output MDelev:= MD convy() MDstress := MD conv(y)
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 5 of 42 TQ~conv : Top v- TQ0elev-fea 9 while j 2 0 TQelev convi v- Top - TQelev feaj TQstressi - TQstressjfeaj output(i, 0) v- TQelev-convi output~j, I) <- TQstressi i*- i+ I output TQelev := TQ_conv(o) TQ-stress := TQ-conv(1) OD_conv := Top v- OD_elevfeag while j 2 0 OD_elevconvi +- Top - OD-elev-feaj ODstressi - OD stress fea-output(i, 0) +- OD elevconvi output(i, I) - OD-stressi j*-j-1 i<- i+I output OD_elev := ODconv(o) OD_stress := OD conv(l)
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 6 of 42 ID-elevi = QT_elevi = MDelevi = TQelevi = OD-elevi 0 0 0 0 0 2.9371 2.9371 2.9371 2.9371 2.9371 6.3198 6.3198 6.3198 6.3198 6.3198 8.6999 8.6999 8.6999 8.6999 8.6999 10.3745 10.3745 10.3745 10.3745 10.3745 11.5527 11.5527 11.5527 11.5527 11.5527 12.6463 12.5802 12.514 12.4478 12.3816 12.9649 12.9649 12.9649 12.9649 12.9649 13.3752 13.3752 13.3752 13.3752 13.3752 13.6012 13.6012 13.6012 13.6012 13.6012 IDstressi QTstressi MDstressi TQstressi OD-stressi 10.308 10.119 10.032 9.951 9.936 15.304 13.024 10.766 9.067 7.453 17.115 15.794 11.377 7.821 4.387 17.412 17.487 12.883 7.18 2.298 17.399 17.177 15.044 8.136 2.316 16.707 16.175 15.56 8.89 2.74 15.065 14.581 13.132 6.189 -0.109 19.425 18.188 15.78 11.381 8.207 23.147 21.559 19.292 16.085 9.729 26.39 25.687 24.607 22.68 44.523 The two sets of five arrays given above are the elevations measured from the top of the ICI nozzle from the FEA model down to the top of the J-weld and the corresponding hoop stresses in the modified coordinate system (MCS).
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 7 of 42 Additional Geometry in Modified Coordinate System The top of the J-groove weld in the MCS is equal to the last entry in the IDelev array: Top Jweld := ID-elevg Top Jweld = 13.6012 The location of the top of the UT blind zone (BZ) in the MCS (as measured from the ID surface) is BZtop := Top_Jweld - (topweld tobottomBZ + BZlength) BZ-top = 11.6412 The midpoint of the BZ in the MCS is BZ mid:= BZ top + BZilength 2 BZ mid = 12.0812 The bottom of the BZ in the MCS is BZbottom := BZ top + BZ-length BZbottom = 12.5212 The location of the actual counterbore (from design drawings) in the MCS: cbore elev := Top Jweld - 1.377 cboreelev = 12.2242
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 8 of 42 From the MCS, the stress distribution from elevation 0 (the top of the ICI nozzle where it intersects the RV head) to the top of the weld is graphically shown below. Stress Distribution to Top of Weld
- )
C._ 0 0 Ir
-10 '
0 2 4 6 8 10 12 14 Dist. from Top of nozzle to top weld-in.
- ID stress
----- 25% tw stress
---- 50% tw stress 75% tw stress
- OD stress For the ID surface flaw model, the reference point is the location along the axis of the nozzle used to locate the flaw. For this analysis, the reference point is considered at the mid-height of the blind zone.
Refpoint := BZ mid c.OCG
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 9 of 42 To place the flaw with respect to the reference point, the flaw tips and center can be located as follows:
- 1) The Upper "c- tip" located at the reference point (Enter 1)
- 2) The Center of the flaw at the reference point (Enter 2)
- 3) The lower "c- tip" located at the reference point (Enter 3).
Val := 2 The Input Below is the point below the blind zone region where stresses will be considered for curve-fitting. This point is taken as the top of the weld, since the stress distribution changes drastically within the weld region Enter this dimension or variable below. EleVStrs.Dist := Top Jweld The elevation to the point of maximum stress to consider (Axial distance from elevation 0 in the MCS). ICI Nozzle Geometry Input Data: od := 5.563 - 0.001 Tube OD, in inches (The value from Ref. 2a, is 5.563" +0.00/-0.001) idI := 4.625 + 0.01 Maximum Tube ID above counterbore, in inches (The value from Ref. 2b is 4.625" +/- 0.010") id2 := 4.750 + 0.01 Maximum Tube ID below counterbore, in inches (The value from Ref. 2b is 4.750" +1- 0.0 10") tI _ (od - idl) 2 Minmum wall thickness above the counterbore, in inches tl = 0.4635 Q := (od - id2) t2~~ Minimum wall thickness below the counterbore, in inches t2 = 0.401 R od Ro = 2.781 id 1 idl Rid I := 2 Ridl = 2.3175
Attachment 4 to Eng. Report No. M-EP-2003-003. Rev. 0 Page 10 of 42 id2 Rid2 = 2 Rid2 = 2.38 ti Rmi := Ridl + -2 Rmi = 2.54925 Rm2 := Rid2 + 2 Rm2 = 2.5805 Rm2 Rt := Rt = 6.43516 t2 Ro
= 6.93516 Q
Flaw Geometry Input Data: A postulated flaw could exist in the 0.88" UT Blindzone that occurs 1.08" above the top of the J-weld at the uphill (1800) location. The flaw length (c) and depth (a) constitute the input parameters. This flaw represents an internal surface crack in a cylinder, as described in Reference 8. ARO := 6 The flaw length-to-depth aspect ratio. This is a ratio common to ASME Section XI, and one sufficient to promote flaw growth through the thickness. t2-.25 = 0.10025 a = 0.1 Initial Flaw Depth of the ID surface flaw in the blind zone above the top of the weld on the uphill side. The minimum detectable depth of a surface flaw from UT demonstrations [Ref. 11] was 8% throughwall. Conservatively, a 25% throughwall flaw is assumed. This flaw is sufficiently deep to see the stress field developed through the thickness. L.= aO-AR 0 Initial Flaw Length of an ID surface flaw in the counterbore region, in inches. The length was determined by assuming a 6-to-I flaw length-to-depth aspect ratio. Half the flaw length (0.3 inch) was placed the below the mid-height of L = 0.6 the blind zone, while the other half was placed above the mid-height. L co := 2 The half flaw length used in the fracture mechanics model
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 11 of 42 Additional Input Data: Pint := 2.235 Design Operating Pressure (internal) [Ref. 3] Years := 40 Number of Operating Years Ilim = 8000 Iteration limit for Crack Growth loop IL:= 604 Conservative Operating Temperature for the head, in degrees F. Ref. 4 gives a value of 594.8 deg. F following power uprate. aoc := 2.67 12 Constant in MRP-55 PWSCC Model for 1-600 Wrought @ 617 deg. F [Ref. 9] Qg = 31.0 Thermal activation Energy for Crack Growth {MRP) [Ref. 9] Tref := 617 Reference Temperature for normalizing Data deg. F [Ref. 9] Timopr:= 365.2422-24-Years Numer of operating hours in a year CFinhr := 1.417- 105 Correction factor to convert meters per second to inches per hour Timop Cblk: -oIimpr Calculation block size for the crack growth iteration loop
=4im Chlk =43.82906
_ = lim Prntblk :=50
-Qg co 1 :=e1103*10 3T
( 7 re T.~+596) Temperature Correction for Coefficient Alpha from EPRI MRP-55, Revision 1 [Ref. 9] Co:= 1.0col 75 th percentile from MRP-55 Revision I [Ref. 9]
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 12 of 42 The flaw model used for a postulated flaw within the counterbore region on the uphill side of the ICI nozzle is an internal surface flaw in a cylinder, subject to an arbitrary stress distribution. To allow for a "moving average" of through-thickness stress values as the flaw extends along the length of the ICI ID surface, the length from the bottom tip of the of the initial flaw in the blind zone to the stress distribution upper limit--Elevstrs.Dit--is broken into 20 equal segments. Note that due to the MCS used, with a 0 elevation occurring at the TOP of the nozzle, the term "UTip" (implying the upper tip of the flaw) is actually the physical bottom tip of the flaw, closer to the top of the weld. UTip is the term used in Reference 7 for the CEDM nozzles, and thus it will continue to be used in the ICI nozzle evaluation. FLCntr = Refpo int c0 if Val = I Flaw center Location at the mid-point of Refpoint if Val = 2 the blind zone region Refp0 int + c 0 otherwise UTip := FLCntr + CO UTip = 12.3812 ElevStrs.Dist - UTip Strs.avg := 20 IncStrs.avg = 0.061 No User Input is required beyond this Point
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 13 of 42 Regression of Through-Thickness Stresses as a Function of Axial Elevation Because of the minor variation in stresses occuring at the top of the nozzle where it intersects the reactor head and the need to accurately curve fit stresses in the region of interest in the BZ, the entire range of stresses is not appropriate to curve fit. To accomodate an area below and above the BZ region, the first two data points in each of the elevation and stress arrays were removed from consideration in the curve fitting equations. This is a reasonable assumption, given that in the completely through-wall tensile stress field that exists in the nozzle above the top of the J-weld, a flaw centered in the BZ region is likely to grow through the thickness entirely (in addition to growth along the surface of the nozzle) rather than grow very long into an area close to the top of the head or below the top of the J-weld (i.e., elevation ranges not included in the stress polynomial curve fit). Initially, a fourth (4th) order polynomial was chosen for axial stress regression. After regression, the stress at the mid-height of the blind zone (12.0812 inches in the MCS) is checked. Regression for ID stresses: k := O.. 6 8.6999 17.412) 10.3745 17.399 11.5527 16.707 IDelevcf := 12.6463 IDstresscf := 15.065 12.9649 19.425 13.3752 23.147 13.6012) 26.39 ) IDelevi = ID_stressi 3 0 10.308 3 2.9371 15.304 RID := regress(IDelevcf,IDstresscf,4) 4 6.3198 17.115 2920.01158 8.6999 17.412 RID = 10.3745 17.399
-1120.32621 11.5527 16.707 161.1276 12.6463 15.065 ZID := 8.6999,8.701 .. Top Jweld -10.23275 12.9649 19.425 0.24206 ) ~~13.3752 23.147 13.6012 26.39 bD(zllD) := interp(RID, ID elevcf, ID_stress cf,ZID)
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 14 of 42 28 26 24 22 flD(ZID) IDstresscf Oef3 20 18 - 16 14 L 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 zID, IDelevcf fID(12.0812) = 15.66367 Regression for 25% throughwall stresses: 8.6999 ) 17.487) 10.3745 17.177 11.5527 16.175 QTrelev-cf : 12.5802 QTstresscf := 14.581 12.9649 18.188 13.3752 21.559 13.6012) 25.687)
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 15 of 42 QT_elevi QTstressi = ( 3 0 10.119 3 2.9371 13.024 RQT := regress(QT_elevcf,QTstresscf,4) 4 6.3198 15.794 3362.70255 8.6999 17.487 RQT = 10.3745 17.177 ZQT := 8.6999,8.701 .. TopJweld -1281.45936 11.5527 16.175 182.93207 12.5802 14.581
-11.53275 12.9649 18.188 0.27085 ) 13.3752 21.559 13.6012 25.687 fQT( ZQT) := interp( RQT, QTelevcf, QT_stress_cf, zQT) 26 24 22 fQT(ZQT) 20 QTstresscf oeee 18 -
16 14 _ 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 ZQT, QTelevcf fT( 12.0812) = 15.09487
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 16 of 42 Regression for 50% throughwall stresses: 8.6999 ) 12.883) 10.3745 15.044 11.5527 15.56 MDelev cf := 12.514 MDstresscf := 13.132 12.9649 15.78 13.3752 19.292 y13.6012) 24.607) MD-elevi MDstressi = 3 0 10.032 3 2.9371 10.766 RMD := regress(MDelevcf , MDstresscf, 4) 4 6.3198 11.377 6270.57353 8.6999 12.883 RMD = 10.3745 15.044 ZMD := 8.6999,8.701 .. Top Jweld -2357.44561 11.5527 15.56 330.23769 12.514 13.132
-20.39106 12.9649 15.78
\1 0.46849 ) 13.3752 19.292 13.6012 24.607 fMD(ZMD) := interp(RMD,MD elevcf,MD stress_cf,zMD)
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 17 of 42 26 fMD(ZMD) MDstresscf oee
-8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 ZMD, MDelevcf fMD(1 2 .0812) = 14.11569 Regression for 75% throughwall stresses:
I/ 8.6999 ) 7.18 ) 10.3745 8.136 11.5527 8.89 TQelev-cf := 12.4478 TQ_stresscf := 6.189 12.9649 11.381 13.3752 16.085 13.6012) 22.68 )
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 18 of 42 TQelevi TQstressi = 3 0 9.951 3 2.9371 9.067 RTQ := regress(TQelev cf, TQstresscf , 4) 4 6.3198 7.821 6772.44513 8.6999 7.18 RTQ = 10.3745 8.136 ZTQ := 8.6999,8.701 .. TopJweld -2552.34739 11.5527 8.89 358.42617 12.4478 6.189
-22.21167 12.9649 11.381 0.51271 ) 13.3752 16.085 13.6012 22.68 fTQ(zTQ) := interp( RTQ, TQelev cf, TQstress cf, ZTQ) 25 22.5 20 17.5 fTQ(ZTQ) 15 TQstress cf eee 12.5 -
10 _ 7.5 < 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 ZTQ, TQ_elevcf fTQ(12.08 12) = 7.37343
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 19 of 42 Regression for OD stresses: kk := o.. 5 r 10.3745") 2.316 ) 11.5527 2.74 12.3816 -0.109 ODelev cf := ODstresscf := 12.9649 8.207 13.3752 9.729 Y13.6012) 44.523 ) I- OD-elevi OD-stressi = 3 0 9.936 3 2.9371 7.453 4 4.387 ROD := regress(ODelevcf, ODstress_cf,4 6.3198 1.83727x 105 8.6999 2.298 10.3745 2.316 ZOD := 10.3745,10.376.. Top_Jweld ROD = -62394.03658 11.5527 2.74 7925.4618 12.3816 -0.109
-446.31291 12.9649 8.207 9.40247 ) 13.3752 9.729 13.6012 44.523 fOD(zOD) := interp(ROD,OD elevcf,ODstress-cf ,zOD)
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 20 of 42 50 40 30 fOD(ZOD) 20 ODstresscf 6Eee 10 0-
-10 _
10 10.5 11 11.5 12 12.5 13 13.5 14 ZOD, OD elev cf foD(12 .0 8 1 2 ) = 5.39079
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 21 of 42 Calculation to develop Stress Profiles for Analvsis This analysis for the axial stress regression and the through-wall stress regression is the same as that used for the CEDM Nozzles (in Ref. 7) with the exception that the axial stresses are fit with a fourth-order polynomial, rather than a third-order polynomial, to accomodate greater precision. X:iv= 20 Number of locations for stress profiles Loco := FLCntr - L FLCntr = 12.0812 L = 0.6
,:= 1.. N + 3 Incri := co if i < 4 lneStrs.avg otherwise Loci := Loci-, + Incri SID; = RID 3 + RID 4 -Loci + RID .(Loci) 2 + RID 6 (Loci) + RID *(Loc;)4 SQT; := RQT3 + RQT4 LoCi + RQT5 .(Loc1 ) 2 + RQT 6(Locj) 3 + RQT (Loci) 4 SMDi:= RMD + RMD 4Loci + RMDS (Loci) + RMD .(Loc;) 3 + RMD .(Loc;) 4 STQi := RTQ3 + RTQ4 -LOCi + RTQ .(Loci) 2 + RTQ (Loc1 )3 + RTQ. (Loci) 4 SOD; = ROD3 + ROD4 Loci + ROD .(Loci) + ROD *(Loc;)3 + ROD .(Loc;) 4 j := I..N SIDj + SIDj+j + SIDj+2 if j = SQTJ + SQTj+l + SQTj+2 if; =
Sidj = Sqt. :
.. I 3 3 Sid (j + 1) + SIDj+2 Sq ,(j+ 1)+ SQTj+2 J2 otherwise I qtj+21 otherwise j+2
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 22 of 42 SMDj + SMDj+l + SMDj+2 if j= 1 5 tqj. STQj + STQj+j + STQj+ 2 5 md.," if j = I J 3 3 Smd *(j + I) + SMDj+2 Stq. (j + I) + STQj+2 otherwise I otherwise j+2 j+2 SODj + SODj+1 + SODj+.1) Sod - if j = I odJ' 3 Sod *(j + 1) + SODj+2 otherwise j+2
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 23 of 42 Through-Wall Stress Distribution for ID Flaws (i.e. ID to OD Stress distribution) U0 := °.000 u 1 := 0.25 u 2 := 0.50 U3 := 0.75 u 4 = 1.00 Y := stack(uO, u I ,u2 ,u3 ,u 4 ) SIG1 := stack(Sid, sqt1 Smd, 1 Stq1 Sod1 ) SIG 2 := stack (Sid2j 5Sqt q Smd2 Stq2 Sod2) SIG 3 = stack(Sid3 , Sqt 1Smd3 Stq3 ' Sod 3 ) SIG 4 = stack( Sid4 ' Sqt 4 , Smd4'Stq4,Sod4) SIG 5 = stack(Sid 5Sqt 5 lSmd5 'Stq5 Sod5) SIG 6 = stack(Sid 6 Sqt6 Smd6'Stq6 Sod6) SIG 7 = stack(Sid7'Sqty Smd 7 9Stq 7 ' Sod7 ) SIG8 := stack( Sid88Sqt8 9Smd 8 IStq8 'Sod 8 ) SIG 9 := stack(Sid9 . Sqt9 .smd, Stq9 ' Sod9 ) SIGo := stack(Sid 'Sqt 10 S'md 10 w Stq10 tSod10 ) SIG II1 := stack ( Sid 11 Sqtl 1 Smdl11' Stq11,l od 11) SIG 1 2 = stack(Sid 12 sqt12 'Smd 12 stq12 'Sod 12 ) SIG 13 = stack( Sid, Sqt13 ' Smd 13 ' Stq13 ' Sod ) SIG 1 4 := stack (Sid 14 sqt14 Smd14 Stq 14 Sod14 ) 13 SIG 15 = stack( Sid 1'Sqt' 5 'Smd 'Stq15, Sod 15) SIG 16 = stack (Sid 16 'Sqt16 'Smd 16 'tq 16 ' od 16) SIG 17 = stack( Sid17'Sqt 17 , Smd17'Stq17' Sod17) SG 18 := stack (S id 1 8 'Sqt 1 8 ' Smd '5 tql 'Sod18 ) SIG 19 := stack( Sid ,9Sqt 9Smd ' tq 19q Sod1 9) SIG 2 0 := stack (Sid 2 0 ' Sqt 0' Smd2 0 ' tq 2 0 Sod2 0 )
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 24 of 42 Regression of Through-Wall Stress distribution to Obtain Stress Coefficients Using a Third Order Polynomial IDRGI regress(Y, SIG , 3) IDRG 2 regress(Y, SIG 2 ,3) IDRG 3 regress(Y, SIG 3 , 3) IDRG4 regress(Y,SIG 4 ,3) IDRG5 regress(Y, SIG5 , 3) IDRG6 regress(Y,SIG 6 ,3) IDRG 7 regress(Y,SIG 7 ,3) IDRG 8 regress(Y,SIG 8 ,3) IDRG9 regress(Y,SIG 9 ,3) IDRGo: regress(Y,SIG 1 0 ,3) IDRG I regress(Y, SIG I1 , 3) IDRG1 2 regress(Y,SIG 1 2 ,3) IDRG1 3 regress(Y,SIG 1 3 ,3) IDRG 14 regress(YSIG 14 ,3) IDRG 1 5 regress( Y, SIG 15 ,3) IDRG1 6 := regress(Y,SIG 1 6 ,3) IDRG 1 7 regress(Y,SIG 17 ,3) IDRG1 8 : regress(Y,SIG 1 8 ,3) IDRG 1 : regress(Y,SIG 1 9 ,3) IDRG 2 0 := regress(YSIG 2 0 ,3) Stress Distribution in the tube. Stress influence coefficients obtainedfrom thrid-orderpolynomial curvefit to the through/wallstress distribution
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 25 of 42 Data Files for Flaw Shape Factors from NASA SCO4 Model [Ref. 8] {NO INPUT Required) Mettu Raju Newman Sivakumar Forman Solution of ID Part throughwall Flaw in Cyinder Jsb := 0 1 2 0 1.000 0.200 0.000 1 1.000 0.200 0.200 2 1.000 0.200 0.500 3 1.000 0.200 0.800 4 1.000 0.200 1.000 5 1.000 0.400 0.000 6 1.000 0.400 0.200 7 1.000 0.400 0.500 8 1.000 0.400 0.800 9 1.000 0.400 1.000 10 1.000 1.000 0.000 11 1.000 1.000 0.200 12 1.000 1.000 0.500 13 1.000 1.000 0.800 14 1.000 1.000 1.000 15 2.000 0.200 0.000 15 2.000 0.200 0.200 17 2.000 0.200 0.500 18 2.000 0.200 0.800 19 2.000 0.200 1.000 20 2.000 0.400 0.000 21 2.000 0.400 0.200 22 2.000 0.400 0.500 23 2.000 0.400 0.800 24 2.000 0.400 1.000 25 2.000 1.000 0.000 26 2.000 1.000 0.200 27 2.000 1.000 0.500 28 2.000 1.000 0.800 29 2.000 1.000 1.000 30 4.000 0.200 0.000 31 4.000 0.200 0.200 33 32 4.000 0.200 0.500 0.800 33 4.000 0.200 0.800
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 26 of 42 34 4.000 0.200 1.000 35 4.000 0.400 0.000 36 4.000 0.400 0.200 37 4.000 0.400 0.500 38 4.000 0.400 0.800 39 4.000 0.400 1.000 40 4.000 1.000 0.000 41 4.000 1.000 0.200 2 4.000 1.000 0.500 43 4.000 1.000 0.800 44 4.000 1.000 1.000 45 10.000 0.200 0.000 410.000 0.200 0.200 47 10.000 0.200 0.500 86 10.000 0.200 0.800 49 10.000 0.200 1.000 48 10.000 0.400 0.000 I 10.000 0.400 0.200 2 10.000 0.400 0.500 3 10.000 0.400 0.800 10.000 0.400 1.000 5 10.000 1.000 0.000 10.000 1.000 0.200 55 10.000 1.000 0.500 I 10.000 1.000 0.800 57 10.000 1.000 1.000 1300.000 0.200 0.000 1300.000 0.200 0.200 62 300.000 0.200 0.500 63 300.000 0.200 0.800 42 300.000 0.200 1.000 63 300.000 0.400 0.000 6 300.000 0.400 0.200 75 300.000 0.400 0.500 8 300.000 0.400 0.800 69 300.000 0.400 1.000 70 300.000 1.000 0.000 71 300.000 1.000 0.200 72 300.000 1.000 0.500 73 300.000 1.000 0.800 7-4 300.000 1.000 1.000
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 27 of 42 Sambi := 0 1 2 3 4 5 6 7 0 1.076 0.693 0.531 0.434 0.608 0.083 0.023 0.009 1 1.056 0.647 0.495 0.408 0.615 0.085 0.027 0.013 2 1.395 0.767 0.557 0.446 0.871 0.171 0.069 0.038 3 2.53 1.174 0.772 0.58 1.554 0.363 0.155 0.085 4 3.846 1.615 0.995 0.716 2.277 0.544 0.233 0.127 5 1.051 0.689 0.536 0.444 0.74 0.112 0.035 0.015 6 1.011 0.646 0.504 0.421 0.745 0.119 0.041 0.02 7 1.149 0.694 0.529 0.435 0.916 0.181 0.073 0.04 8 1.6 0.889 0.642 0.51 1.334 0.307 0.132 0.073 9 2.087 1.093 0.761 0.589 1.752 0.421 0.183 0.101 10 0.992 0.704 0.534 0.506 1.044 0.169 0.064 0.032
.11 0.987 0.701 0.554 0.491 1.08 0.182 0.067 0.034 12 1.01 0.709 0.577 0.493 1.116 0.2 0.078 0.041 13 1.07 0.73 0.623 0.523 1.132 0.218 0.095 0.051 14 1.128 0.75 0.675 0.556 1.131 0.229 0.11 0.06 15 1.049 0.673 0.519 0.427 0.6 0.078 0.021 0.008 16 1.091 0.661 0.502 0.413 0.614 0.083 0.025 0.012 17 1.384 0.764 0.556 0.446 0.817 0.15 0.058 0.031 18 2.059 1.033 0.708 0.545 1.3 0.291 0.123 0.067 19 2.739 1.301 0.858 0.643 1.783 0.421 0.18 0.099 20 1.075 0.674 0.527 0.436 0.73 0.072 0.044 0.021 1 1.045 0.659 0.511 0.425 0.76 0.122 0.043 0.021 22 1.16 0.71 0.536 0.441 0.919 0.197 0.064 0.034 23 1.51 0.854 0.623 0.498 1.231 0.271 0.114 0.062 24 1.876 0.995 0.71 0.555 1.519 0.317 0.161 0.089 25 1.037 0.732 0.594 0.505 1.132 0.192 0.07 0.035 26 1.003 0.707 0.577 0.493 1.113 0.19 0.071 0.036 27 1.023 0.714 0.58 0.495 1.155 0.207 0.08 0.042 28 1.129 0.774 0.619 0.521 1.286 0.247 0.098 0.052 29 1.242 0.84 0.661 0.549 1.416 0.285 0.115 0.061 30 1.003 0.649 0.511 0.43 0.577 0.07 0.015 0.005 31 1.097 0.666 0.511 0.426 0.606 0.079 0.023 0.01 32 1.405 0.776 0.567 0.46 0.797 0.141 0.054 0.028 33 1.959 0.996 0.692 0.542 1.201 0.262 0.108 0.059 34 2.461 1.197 0.808 0.619 1.586 0.37 0.154 0.085 35 1.024 0.668 0.528 0.451 0.737 0.11 0.033 0.015 36* 1.057 0.666 0.52 0.439 0.77 0.123 0.042 0.021 37 1.193 0.715 0.545 0.454 0.924 0.174 0.068 0.036 38 1.443 0.828 0.614 0.509 1.219 0.263 0.109 0.059 39 1.665 0.934 0.681 0.565 1.487 0.339 0.143 0.078 Ml 1 nn I n 7 n a.7 1 sl1a 110 n1 I n nRA n naA
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 28 of 42 41 1.009 0.713 0.588 0.511 1.128 0.194 0.072 0.037 42 1.041 0.726 0.594 0.515 1.191 0.214 0.082 0.043 43 1.105 0.768 0.623 0.536 1.316 0.248 0.097 0.05 44 1.162 0.81 0.653 0.558 1.428 0.277 0.109 0.055 45 0.973 0.635 0.499 0.446 0.579 0.07 0.016 0.005 46 1.115 0.673 0.514 0.438 0.607 0.079 0.023 0.01 47 1.427 0.783 0.571 0.462 0.791 0.138 0.052 0.027 48 1.872 0.96 0.671 0.529 1.179 0.253 0.104 0.056 49 2.23 1.108 0.757 0.594 1.548 0.356 0.149 0.081 0 0.992 0.656 0.52 0.443 0.733 0.109 0.032 0.014 1 1.072 0.672 0.523 0.441 0.777 0.125 0.043 0.021 52 1.217 0.723 0.549 0.456 0.936 0.176 0.069 0.036 53 1.393 0.806 0.601 0.493 1.219 0.259 0.106 0.056 54 1.521 0.875 0.647 0.528 1.469 0.328 0.135 0.071 55 0.994 0.715 0.59 0.518 1.114 0.187 0.068 0.035 56 1.015 0.715 0.588 0.512 1.14 0.197 0.074 0.038 57 1.05 0.729 0.596 0.515 1.219 0.221 0.085 0.044 8 1.09 0.76 0.618 0.532 1.348 0.255 0.099 0.051 59 1.118 0.788 0.639 0.55 1.456 0.282 0.109 0.056 60 0.936 0.62 0.486 0.405 0.582 0.068 0.015 0.005 1 1.145 0.681 0.514 0.42 0.613 0.081 0.024 0.011 62 1.459 0.79 0.569 0.454 0.79 0.138 0.051 0.026 63 1.774 0.917 0.641 0.501 1.148 0.239 0.096 0.051 64 1.974 1.008 0.696 0.537 1.482 0.328 0.134 0.07 5 0.982 0.651 0.512 0.427 0.721 0.103 0.031 0.013 66 1.095 0.677 0.52 0.431 0.782 0.127 0.045 0.022 67 1.244 0.727 0.546 0.446 0.946 0.18 0.071 0.037 68 1.37 0.791 0.585 0.473 1.201 0.253 0.102 0.054 69 1.438 0.838 0.618 0.496 1.413 0.31 0.126 0.066 A:= Jsb(o) X := Jsb(l) Y := Jsb(2) aU := Sambi(O) aL := Sambi aQ := Sambi(2) ac := Sambi(3) Cu := Sambi(4) CL := Sambi(5) cQ := Sambi(6) CC := Sambi(7)
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 29 of 42 n := 3 if Rt < 4.0 2 otherwise "a-Tip" Uniform Term MaU := augment(W, X, Y) VaU := aU RaU := regress(MauVaU,n) XY):=interp RaU, MaU, VaU{ xI1 faU(W faU(WXY)~,Y) faU(4,.4,.S) = 1.7089 Check Calculation Linear Term MaL := augment(W,X,Y) VaL := aL RaL := regress( MaL, VaL, n) faL(W, X,Y) : IKY)] faL(4,.4,.8) = 0.93393 Check Calculation Quadratic Term MaQ:= augment(W,X,Y) VaQ := aQ RaQ := regress(MaQ,VaQ,n)
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 30 of 42
'W)-
faQ(W, X, Y) := interp ,MaQ, VaQy X I MY) faQ(4,.4,.S) = 0.67668 Check Calculation Cubic Term MaC := augment(W, X, Y) VaC := aC RaC := regress( MaC , VaC, n) _a(,X, )itrlRCM~KVC ! faC (Ws,XY) := interp RaC, MaC VaC, X I faC(4,.4,.8) = 0.54151 Check Calculation "C" Tip Coefficients Uniform Term MCU := augment(W, X, Y) VCU := CU RcU :=regress( McU, VcU, n) fcU(W XY):=interp RcU, Mcu, VCU!x I1 f~~u~~w~~xY) ) fcu(4,.4,.8) = 1.31015 Check Calculation Linear Term McL := augment(W, X, Y) VCL := CL RCL := regress( McL, VcL, n)
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 31 of 42 fcLW,~y):=interp{RcLMcLVcL{ xI1
~~zL(WXY)y )
fCL(2,.4,.8) = 0.28509 Check Calculation Quadratic Term McQ := augment(W,X,Y) VCQ := CQ RCQ := regress(McQVCQ,n)
'WY fcQ(WX,Y) := interp MCQ, c X CY) fCQ(4,.4,.8) = 0.11797 Check Calculation Cubic Term MCC := augment(W, X, Y) R~CC= regress( M~C. VCn) fcC(W, X, Y) := interp{RCC. McC, VcC, X I L ' Y)_
fcc(4,.4,-8) = 0.06384 Check Calculation Calculations: Recursive calculations to estimate flaw growth
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 32 of 42 Recursive Loop for Calculation of PWSCC Crack Growth CGRsam bi : j-O o ao -ao aO CO co - Co t*-t2 NCBo - Cblk while j < 'Jim a0o- IDRG3 if cj < CO IDRG2 if co < cj < co + InCStrs.avg IDRG 3 3 if C 0+IlnCstis.avg < Cj < CO+ 2InCS trs.avg IDRG4 if Co + 2IflCstrs avg < Cj < Co + 3 1nc,Strs.avg IDRG53 if co + 3 Incstrs.avg < Cj < Co + 4 Inc'Strs.avg IDRG6 33 if c 0+ 4 Incstrs.avg < Cj < co + s Inc Strs.avg IDRG7 3 if C0 + 4flncstrs.avg < Cj < c 0 + 6 1nc'Strs.avg IDRG 8 3 if CO + 6-lnCstrs.avg < Cj < Co + 7 Inc 'Strs.avg IDRG9 3 if Co + 7 Incstrs.avg < Cj < Co + 8 Inc'Strs.avg IDRG1 0 if Co + 8 InCStrs.avg < Cj _ co +91I 1Cstrs.avg IDRGI3 if Co+9 IncStrs.avg < Cj _ co+ °-lnCstrs.avg IDRGI 2 if co+ 10 lncStrs.avg < Cj _co+ 1 *InCstrs.avg 3 [DRG 1 3 if CO+ lfl nCstrs.avg < Cj < Co+ 122InCStrs.avg 3 IDRG 14 3if Co+ 12 InCStrs.avg < Cj _ co+ 133-InCStrs.avg IDRG 15 if CO+ l3 InCstrs.avg < Cj _ Co+ 144-InCStrs.avg
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 33 of 42 IDRG 16 3 if co+ 14- Incstrs.avg < Cj < C + 15- IncStrs.avg IDRG 17 3 if Co+ l5-lnCStrs.avg < cj < Co + 16- lncSfts avg IDRG 18 3 if CO + 16- lncstrs.avg < Cj < Co + 17- IncStrs avg IDRG 19 if Co+ l7- ICStrs.avg < cj < co+ 18 InSltrs.avg IDRG 2 0 otherwise 3 1 F IDRG 4 if cj < co IDRG 2 if co < Cj < co + InSltrs.avg IDRG 3 if co + Incstrs avg < Cj < Co + 2-InCStrs.avg IDRG4 if Co + 2-Incstrs.avg < Cj < Co + 3 IfnCStrs.avg IDRG 5 if Ce + 3 Ilncstrs.avg < Cj < co + 4-InCStrs.avg IDRG 6 if Co + 4-Ilncstrs.avg < Cj < C0 + 5-InCStrs.avg IDRG 7 if CO + 5- Ilncstrs.avg < Cj < c 0 + 6-IncSrs.avg IDRG 8 if CO + 6- InCStrs.avg < cj < C0 + 7 InCStrs.avg IDRG 9 if co + 7-Inestrs.avg < Cj < c 0 + 8 fCStrs.avg IDRG 10 4 if Co+8.InCStrs.avg < cj < Co + 9-ICStrs.avg IDRG 1 14 if c 0 + 9flncStrs.avg < cj < co + I IlnCStrs.avg IDRG 1 2 if cO + 10 Incstrs.avg < cj < CO + I-lncstrs.avg IDRG 1 3 if co + I I-l CStrs.avg < Cj < co+ 12 InCStrs.avg IDRG 1 4 if cO + 12 IfncStrs.avg < Cj < co + 13 IfnCStrs.avg IDRG 15 if cO+ 13- InCStrs avg < cj < co + 14- Ilnstrs.avg IDRG 16 4 if CO+ 14 IncStrs.avg < Cj < co+ 15I lnCStrs.avg
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 34 of 42 IIJKU 1 7 it Co + l5-lnCstrs.avg < Cj < Co + 16 lncStrs.avg IDRG1 84 if CO + 16 lncStrs avg < Cj < Co + 17 IlncStrs avg IDRG 19 4 ifCo+ 7-lnCStrs.avg < cj < Co+ 18- lncStrs avg IDRG 2 0 otherwise 4 02<- IDRG I if Cj <CO IDRG 2 ifco < cj < co + InCStrs.avg IDRG 3 if co + Incstrs.avg < Cj < Co + 21Incstrs.avg IDRG 4 if CO + 2-InCstrs.avg < cj < Co + 3-IfCStrs.avg IDRG 5 if CO + 3flncStrs.avg < cj 5 Co + 4fIncStrs.avg IDRG 6 if CO + 4- IncStrs.avg < Cj < co+ 5lncstrs.avg IDRG 7 if c 0 + 5 lncstrs.avg < Cj < co+ 61Incstrs.avg IDRG 8 if Co + 6flncstrs.avg < cj < C0 + 7flncStrs.avg IDRG 9 if co + 7fInCStrs.avg < Cj < CO + 8IflCStrs.avg IDRG1 0 if CO + 8 lnfstrs.avg < cj < Co + 9llncStrs.avg IDRGI 1 5 if CO + 9Ilncstrs.avg < cj < cO + 10-IncStrs avg IDRG 12 5 if cO + 10o InCstrs.avg < cj < co + II-Incstrs.avg IDRG 13 5 ifco+ IllnCStrs.avg < Cj < Co+ 12'IfncStrs avg IDRG 14 5 ifco + 12-Incsttrs.avg < cj < co + 13.Ilncstrs.avg IDRG 1 5 5 if co + 13. 1fnstrs.avg < cj co C + 14IncStrs avg IDRG 1 6 5 if cO + 14 InCStrs.avg < Cj < Co + 15-IncStrs avg IDRG 1 7 if co+ 15 Incstrs.avg < c< co + 16 1fncStrs.avg IDRG 1 x if cO + 16- Incetr, n,<e < cj c + 17- InfCStrz nv
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 35 of 42 IDRG 19 5 if Co+ 17dlncstrs.avg < Cj < Co+ 18 lncStrs.avg IDRG 20 otherwise 5 IDRGI if Cj < Co IDRG 2 if co < Cj < co + InCStrs.avg IDRG 3 if CO + InCStrs.avg < cj < Co + 2 InCStrs avg IDRG 4 if Co + 2 IncstrS.avg < Cj < Co + 3I lCStrs.avg IDRG 5 if Co + 3dcStrs.avg < Cji Co + 4InCStrs.avg 6 IDRG 6 6 if Co+ 4dcStrs.avg < Cj - Co+ 5dfICStrs.avg IDRG76 if CO + 5flncStrs.avg < Cj < co+ 6-InCStrs.avg IDRG 8 6 if co + 6 InCStrs.avg < Cj < co + 7.flCStrs avg IDRG 9 6 if Co + 7- fCStrs.avg < Cj < co + SlfCStrs.avg IDRG 10 6 if co + 8.lcStrs.avg < Cji co + 9dflcStrs.avg IDRG1 16 if Co + 9. lCStrs.avg < Cj < Co + OtlnCStrs.avg IDRG 12 6 if co+ 10 InCStrs.avg < ej < co + Ill nCStrs.avg IDRG 1 3 6 if co+ II IncStrs.avg <cj co+ 12 InCStrs.avg IDRG 1 4 6 if co+ 12 InlCStrs.avg < cj < Co+ 3- lncStrs.avg IDRG1 5 6 if co+ 13lncStrs.avg < cj < co + l4 Incstrs.avg IDRG 1 6 6 if co + l4 lncStrs.avg < Cj < co + 1S-lncStrs.avg IDRG1 7 6 if co+ 15sInCStrs.avg < Cj < C + 16 InCStrs.avg IDRG 1 8 6 if co+ 16 lStrs.avg < Cj _ co+ 17olCStrs.avg IDRG19 6 if Co+ 17 IncStrs.avg < Cj < co + I8 IncStrs.avg
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 36 of 42 IIDRG2 0 otherwise 40o- GO 41 +-Go+ CTI - 0.25-3j) + 0 2 ~0.25*aj>) 2 + 0 O.25 aj'3 t ) 42 + F C 027 .5 j2
+j.i 3 +- CFO + icy I - 0.75 -aj )
+ 02- 0.75- aj)2 + 03{ 0.75.aj)'
t ) t ) 0.0.o-ajA ( l~o-aj)2 1.0-aj)3
~4 <-- GO ICI t )+ C2' t ) +YY t J X +- 0.25 x2 0 0.5 x3 - 0.75 X*+ stack(x 0 xI x2 ,x 3 ,x 4 )
ST +- stack(40,t l 42 ^43 '4) RG *- regress(X, ST, 3) OO +- RG3 + PInt 10- RG4 0y20 <- RG5 030 <- RG 6 ARj _- cj aj AT- + J (GX_ +-f 1 R. AR; .AT;+
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 37 of 42
-auj a -X--R-J Gal <- faL(RtARjATj)
Gaqj - faQ (Rt, ARj, ATj) Gacj fac(RtARjATJ) G.cu - fcU (RtARj, ATj) GC1 <i*-fcL(Rt, ARjATj) Gcq +- fcQ(Rt ARj,ATj) G cci - fcC(Rt, ARj,ATj) Q - I II+1.464{ (t~~~16 if cjaj I + 1.464{2 1.5otherwise Kaj (t OOGauj + O'Galj + 20 Gaqj + (Y30OGacj) K*Ci +-- *( 00 Gcuj + a O1G0cl + 0 2 0*Gcqj + 030aGcci)
'l K*a Kaj l.099 K Kc; 1Yj1.099 K a <- 9.0 if Ka < 9.0 Ka otherwise KY - 9.o if KY < 9.0 Ky l otherwise Daj Co(Kai 9.0)1.16 T11 -. In p.CF. r. ;f k '- enn
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 38 of 42 agj I-a i-inhr -blk
- jv~
14-10 *CFinhr-Cblk otherwise Dc;i <-- Co0 (K Yj 9.0)1.16 Dcgj 4- DCCFiinhrdCblk if K < 80.0 l4 CFilnhr-Cblk otherwise Output(j,o) <- j output(j, 1) - aj OUtPUt(j , 2) *- Cj - CO OUtPUt(j, 3) 4- Dagj OUtPUt(j,4) - Dcgj OUtPUt(j, 5) 4- Ka. OUtPUt(j, 6) - KC NCBj OUtPUt(j 7)4- 365-24 OUtPUt(j, 8) 4- Gau output~j, 9) <- Gal output~j, 10) +- Gaqj output~j, II) <- Gacj outPUt(j, 12) <- Gcuj OUtPUt(j, 13) Gcl. OUtPUt(j, 14)4- Gcqj OUtPUt(j, 15) < Gcc Oj tP-tjy+I)4 a; 4- ai- 1 + Dac0
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 39 of 42 cj v-- cj_. + Dcg.j_ aj*- t if ajŽt aj otherwise NCBj v- NCBj-j + Cblk output O.. Ilim The curve below shows the flaw growth through-wall and the operating time (in years) it takes to go through-wall. Flaw Growth in Depth Direction II I I I I IlI 0.6 131.74 . 0.5 _
'&0.401
. 0.4 g 0.3 - 0 0
.~0.2 0.1 0 2 4 6 8 10 12 14 16 18 20 Operating Time {years}
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 40 of 42 The propagation length for the ICI nozzles is defined as the length for which the initial flaw in the blind zone would extend out of the blind zone and grow to a detectable flaw. Reference 11 gives the minimum detectable flaw size of 4 mm (0.16) in length; thus, 0.16 inch was considered as this minimum detectable flaw length. This dimension is added to the end of the blind zone. BZ length PropLength := - Co + 0.16 2 PropLength = 0.3 This implies that a flaw initially within the blindzone must grow 0.3 inch to become detectable via UT. The curve below shows the flaw growth along the length of the ICI nozzle and the operating time (in years) it takes to reach the Prop Length value defined above. 1.5 0.5 5-
-0.5
-I -
0 2 4 6 8 10 12 14 16 18 20 Operating Time {years}
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 41 of 42 Stress Intensity Factors 100 80 0 C) 60 Ws usd 40 a 20 - 0 2 4 6 8 10 12 14 16 18 20 Operating Time {years}
- Depth Point Surface Point
Attachment 4 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 42 of 42 Influence Coefficients - Flaw 3 2.5 2 E 1.5 0 0.5~~~~~~~~~ ~~~~~~ O __________- - ~-- _ __ ___ _-----___ __ 0 2 4 6 8 10 12 14 16 18 20 Operating time {years}
"a" - Tip -- Uniform
----- "a" - Tip -- Linear
- a" - Tip -- Quadratic
-- - '"a" - Tip -- Cubic
-c" - Tip -- Uniform
'---'"c'
- Tip -- Linear
-- "c" - Tip -- Quadratic
-"c" - Tip -- Cubic c-2
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 1 of 42 Arkansas Nuclear One Unit 2 Primary Water Stress Corrosion Crack Growth Analysis for an ICI ID Surface Flaw Uphill (1800), in the Blind Zone above the Top of the J-Groove Weld Developed by Central Engineering Programs, Entergy Operations Inc. Flaw Case 2: 0.4-inch Long Flaw with a 10-to-1 Flaw Length-to-Depth Aspect Ratio, Located at the Center of the Blind Zone Calculation Basis: MRP 75 th Percentile and Flaw Face Pressurized Mean Radius -to- Thickness Ratio:- "Rmtt" - between 1.0 and 300.0 Note: The Metric form of the equation from EPRI MRP was used 55-Rev. I . A correction factor is applied in the determination of the crack extension to convert the units of meters per second to the ID Surface Flaw value in inches per hour. User Input: The Dominion Engineering Inc. (DEI) finite element model nodal elevations and hoop stresses for the uphill side (1800 azimuth) of the ICI nozzle are brought into the Mathcad worksheet from data supplied in Reference 6d. The data are composed of the nodal elevations (in inches), along with the ID, 25% through-wall (tw), 50% tw, 75% tw, and OD hoop stresses, beginning at the top of the weld (nodal line 81301) and extending to the top of the nozzle in the FEA model, which is at the point where the nozzle intersects the reactor vessel head. The DEI FEA data has elevation referenced from the bottom of the ICI nozzle. The elevations of the node points in the DEI FEA model, beginning at the top of the weld (nodal line 81301), are as follows: i := O.. 9 Nodelinei := ID-elev-feai := QT_elev feai := MDelev feai := TQelev-feai := ODelevfea: 81301 4.2276 4.2276 4.2276 4.2276 4.2276 81401 4.4536 4.4536 4.4536 4.4536 4.4536 81501 4.8639 4.8639 4.8639 4.8639 4.8639 81601 5.1825 5.2486 5.3148 5.3810 5.4472 81701 6.2761 6.2761 6.2761 6.2761 6.2761 81801 7.4543 7.4543 7.4543 7.4543 7.4543 81901 9.1289 9.1289 9.1289 9.1289 9.1289 82001 11.5090 11.5090 11.5090 11.5090 11.5090 82101 14.8917 14.8917 14.8917 14.8917 14.8917 82201 17.8288 17.8288 17.8288 17.8288 17.8288
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 2 of 42 The corresponding stresses at these nodes are IDstress feai := QTstress-feai := MDstress feat := TQ_stressfeai := ODstressfea- := 26.390 25.687 24.607 22.680 44.523 23.147 21.559 19.292 16.085 9.729 19.425 18.188 15.780 11.381 8.207 15.065 14.581 13.132 6.189 -0.109 16.707 16.175 15.560 8.890 2.74 17.399 17.177 15.044 8.136 2.316 17.412 17.487 12.883 7.180 2.298 17.115 15.794 11.377 7.821 4.387 15.304 13.024 10.766 9.067 7.453 10.308 10.119 10.032 9.951 9.936 Blind Zone and Counterbore Reference dimensions: From design drawings (Ref. 2a and 2b) and the design input of Attachment 1, the following dimensions are used to locate the counterbore bottom and blind zone locations (bottom, top, and middle) as referenced from the nodal coordinates of the DEI FEA model. Actual cborebottomelev := IDelevfeao + 1.377 Actualcbore bottom elev = 5.6046 topweldtobottom BZ := 1.08 BZ_length := 0.88 elevtomidBZ := IDelev feao + topweld to bottomBZ + -BZlength elevto midBZ = 5.7476 bottomof BZ := IDelevfeao + topweldtobottomBZ bottomof BZ = 5.3076
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 3 of 42 topof BZ := IDelev feao + topweldtobottom_BZ + BZlength top_of BZ = 6.1876 For stress averaging and fracture mechanics purposes, the reference coordinate system--with a "0" elevation at the bottom of the nozzle, at the ID corner--must be converted into a new coordinate system with the top of the nozzle (nodal line 82201) as the new "0" elevation.. The positive direction along this new coordinate system will be towards nodal line 81301, which is the top of the weld. This modification facilitates a fracture mechanics model more ammenable to the surface flaw loop structure previously developed in Reference 7. The following iterative loops convert the five (5) through-wall stress components--ID, 25% tw (QT), 50% tw (MD), 75% tw (TQ), and OD-and the associated elevations, initially given in the DEI FEA model, into the "new" coordinate system, referenced from the top of the nozzle where it meets the reactor vessel head. IDconv := Top 4- IDelevfeag il-o while j > 0 IDelevconvi v- Top - ID-elev-feaj ID-stressi +- IDstressjfeaj output(^0) 4- IDelev-convi output(i, I) - IDstressi j4-j-I i+- i+ I output IDelev := ID convy" IDstress := ID conv(y
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 4 of 42 QT-conv := Top *- QT elev-feag i*-0 while j 2 o QT-elev-convi - Top - QT-elev-feaj QT_stressi <- QTstressjfeaj output(i, 0) - QT elevconvi output(i, 1) <- QTstressi j*-j-I i*- i+ 1 output QT-elev := QTconvy°) QT-stress := QT-conv() MDconv := Top *- MD-elev-feag i*-0 while j 2 0 MDelev convi *- Top - MDelevfeaj MDstressi - MDstressfeaj output(i, 0)
- MD elevconvi output(i, I) <- MD-stressi j<-j-i*- i+
output MDelev:= MDconv(°) MDstress:= MD conv( )
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 5 of 42 TQ conv := Top <- TQelevfeag j<-9 i*-o while j 2 0 TQ-elevconvi <- Top - TQelev-feaj TQstressi *- TQstressfeaj output(i, 0) <- TQelev_convi output(i, 1) <- TQstressi i i+I output TQ elev := TQ_ con() TQstress := TQ convI) OD conv := Top - OD-elevfea9 j*-9 i- 0 while j 2 0 OD_elev convi *- Top - OD elev feaj OD_stress; <- OD_stressfeaj output(i, 0) <- OD_elev_convi output(i, I) - OD_stressi J B J -I i*- i+ 1 output OD_elev := OD conv(y) OD_stress := OD conv(y)
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 6 of 42 IDelevi = QT_elevi = MDelevi = TQelevi = OD-elevi 0 0 0 0 0 2.9371 2.9371 2.9371 2.9371 2.9371 6.3198 6.3198 6.3198 6.3198 6.3198 8.6999 8.6999 8.6999 8.6999 8.6999 10.3745 10.3745 10.3745 10.3745 10.3745 11.5527 11.5527 11.5527 11.5527 11.5527 12.6463 12.5802 12.514 12.4478 12.3816 12.9649 12.9649 12.9649 12.9649 12.9649 13.3752 13.3752 13.3752 13.3752 13.3752 13.6012 13.6012 13.6012 13.6012 13.6012 IDstressi QTstressi MDstressi TQstressi OD-stressi 10.308 10.119 10.032 9.951 9.936 15.304 13.024 10.766 9.067 7.453 17.115 15.794 11.377 7.821 4.387 17.412 17.487 12.883 7.18 2.298 17.399 17.177 15.044 8.136 2.316 16.707 16.175 15.56 8.89 2.74 15.065 14.581 13.132 6.189 -0.109 19.425 18.188 15.78 11.381 8.207 23.147 21.559 19.292 16.085 9.729 26.39 25.687 24.607 22.68 44.523 The two sets of five arrays given above are the elevations measured from the top of the ICI nozzle from the FEA model down to the top of the J-weld and the corresponding hoop stresses in the modified coordinate system (MCS).
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 7 of 42 Additional Geometry in Modified Coordinate System The top of the J-groove weld in the MCS is equal to the last entry in the IDelev array: Top Jweld := ID-elevg Topjweld = 13.6012 The location of the top of the UT blind zone (BZ) in the MCS (as measured from the ID surface) is BZ top := Top_Jweld - (topweld to bottomBZ + BZ_length) BZ top = 11.6412 The midpoint of the BZ in the MCS is BZ length BZ mid := BZtop + - 2 BZ mid = 12.0812 The bottom of the BZ in the MCS is BZbottom := BZ top + BZ length BZbottom = 12.5212 The location of the actual counterbore (from design drawings) in the MCS: cbore elev := Top Jweld - 1.377 cboreelev = 12.2242
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 8 of 42 From the MCS, the stress distribution from elevation 0 (the top of the ICI nozzle where it intersects the RV head) to the top of the weld is graphically shown below. Stress Distribution to Top of Weld 40 30
- Z~ 20
=0 10 0
-10 0 2 4 6 8 10 12 14 Dist. from Top of nozzle to top weld-in.
- ID stress
----- 25% tw stress
---- 50% tw stress 75% tw stress
- OD stress For the ID surface flaw model, the reference point is the location along the axis of the nozzle used to locate the flaw. For this analysis, the reference point is considered at the mid-height of the blind zone.
Refpoint := BZ-mid Coto
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 9 of 42 To place the flaw with respect to the reference point, the flaw tips and center can be located as follows:
- 1) The Upper "c- tip" located at the reference point (Enter 1)
- 2) The Center of the flaw at the reference point (Enter 2)
- 3) The lower "c- tip" located at the reference point (Enter 3).
Val := 2 The Input Below is the point below the blind zone region where stresses will be considered for curve-fitting. This point is taken as the top of the weld, since the stress distribution changes drastically within the weld region Enter this dimension or variable below. ElevStrs.Dist := TopJweld The elevation to the point of maximum stress to consider (Axial distance from elevation 0 in the MCS). ICI Nozzle Geometry Input Data: od := 5.563 - 0.001 Tube OD, in inches (The value from Ref. 2a, is 5.563" +0.00/-0.001) idI := 4.625 + 0.01 Maximum Tube ID above counterbore, in inches (The value from Ref. 2b is 4.625" +/- 0.0 10") id2 := 4.750 + 0.01 Maximum Tube ID below counterbore, in inches (The value from Ref. 2b is 4.750" +/- 0.0 10") tl (od - idI) 2 Minmum wall thickness above the counterbore, in inches tI = 0.4635 t2 (od - id2) 2 Minimum wall thickness below the counterbore, in inches t2 = 0.401 __od RoO*:= 2d 2 Ro = 2.781 idl Ridl := 2 Ridl = 2.3175
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 10 of 42 id2 Rid2 = 2 Rid2 = 2.38 Rml := Rdl + Rmi = 2.54925 Rm2 Rid2 +2 Rm2 = 2.5805 Rm2 Rt := Rt = 6.43516 Ro
- 6.93516 t2 Flaw Geometrv Input Data:
A postulated flaw could exist in the 0.88" UT Blindzone that occurs 1.08" above the top of the J-weld at the uphill (1 800) location. The flaw length (c) and depth (a) constitute the input parameters. This flaw represents an internal surface crack in a cylinder, as described in Reference 8. ARO:= 10 The flaw length-to-depth aspect ratio. This is a ratio common to ASME Section XI, and one sufficient to promote flaw growth through the thickness. t2*.1i = 0.0401 I.^:= 0.4 Initial Flaw Length of an ID surface flaw in the counterbore region, in inches. The length was based on a sufficiently long flaw (10-to-I aspect ratio) with enough depth into the thickness (10%) to precipitate growth in both the depth and length directions. Half the flaw length (0.2 inch) was placed the below the mid-height of the blind zone, while the other half was placed above the mid-height. 0.4 Initial Flaw Depth of the ID surface flaw in the blind zone above the top of the a0 :=-
°ARO weld on the uphill side. The minimum detectable depth of a surface flaw from UT demonstrations [Ref. 11] was 8% throughwall. This flaw is 10%
ao = 0.04 throughwall. L c 0 := - The half flaw length used in the fracture mechanics model
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 11 of 42 Additional Input Data: PInt = 2.235 Design Operating Pressure (internal) [Ref. 3] Years := 40 Number of Operating Years Ilim = 8000 Iteration limit for Crack Growth loop L,:= 604 Conservative Operating Temperature for the head, in degrees F. Ref. 4 gives a value of 594.8 deg. F following power uprate. aOC := 2.67. 10- 12 Constant in MRP-55 PWSCC Model for 1-600 Wrought @ 617 deg. F [Ref. 9] Qg 31.0 Thermal activation Energy for Crack Growth {MRP) [Ref. 9] Tref := 617 Reference Temperature for normalizing Data deg. F [Ref. 9] Timopr 365.2422 Years Numer of operating hours in a year CFinhr 1.417- 105 Correction factor to convert meters per second to inches per hour Timop Cblk opr Calculation block size for the crack growth iteration loop h4im Cblk = 43.82906 Prntblk lm 0= e _Qg ( i 1I Temperature Correction for Coefficient Alpha C.103 10 3 T+459.67 Tref+459.67)j from EPRI MRP-55, Revision I [Ref. 9]
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 12 of 42 Co 1.0Lco I 75 t percentile from MRP-55 Revision 1 [Ref. 9] The flaw model used for a postulated flaw within the counterbore region on the uphill side of the ICI nozzle is an internal surface flaw in a cylinder, subject to an arbitrary stress distribution. To allow for a "moving average" of through-thickness stress values as the flaw extends along the length of the ICI ID surface, the length from the bottom tip of the of the initial flaw in the blind zone to the stress distribution upper limit--Elevstrs.Dist--is broken into 20 equal segments. Note that due to the MCS used, with a 0 elevation occurring at the TOP of the nozzle, the term "UTip" (implying the upper tip of the flaw) is actually the physical bottom tip of the flaw, closer to the top of the weld. UTip is the term used in Reference 7 for the CEDM nozzles, and thus it will continue to be used in the ICI nozzle evaluation. FLCntr = Refp 0 i t - c 0 if Val = Flaw center Location at the mid-point of RefPoint if Val = 2 the blind zone region
+ c 0 otherwise UTip := FLCntr + c0 UTip = 12.2812 ElevStrs.Dist - UTip lctrs.avg :-20 Incstr.avg =0.066 No User Input is required beyond this Point
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 13 of 42 Regression of Throul!h-Thickness Stresses as a Function of Axial Elevation Because of the minor variation in stresses occuring at the top of the nozzle where it intersects the reactor head and the need to accurately curve fit stresses in the region of interest in the BZ, the entire range of stresses is not appropriate to curve fit. To accomodate an area below and above the BZ region, the first two data points in each of the elevation and stress arrays were removed from consideration in the curve fitting equations. This is a reasonable assumption, given that in the completely through-wall tensile stress field that exists in the nozzle above the top of the J-weld, a flaw centered in the BZ region is likely to grow through the thickness entirely (in addition to growth along the surface of the nozzle) rather than grow very long into an area close to the top of the head or below the top of the J-weld (i.e., elevation ranges not included in the stress polynomial curve fit). Initially, a fourth (4th) order polynomial was chosen for axial stress regression. After regression, the stress at the mid-height of the blind zone (12.0812 inches in the MCS) is checked. Regression for ID stresses: k := O.. 6 8.6999 ) (17.412) 10.3745 17.399 11.5527 16.707 ID_elevcf := 12.6463 IDstress cf := 15.065 12.9649 19.425 13.3752 23.147 13.6012) Y 26.39 ) IDelevi = IDstressi = 3 0 10.308 3 2.9371 15.304 RID := regress(IDelevcf,IDstresscf,4) 4 6.3198 17.115 2920.01158 8.6999 17.412 RID = 10.3745 17.399
-1120.32621 11.5527 16.707 161.1276 12.6463 15.065 ZID := 8.6999,8.701..Top Jweld -10.23275 12.9649 19.425 0.24206 ) 13.3752 23.147 13.6012 26.39 fID(zID) := interp(RID,ID elevcf, IDstress cf ,zID)
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 14 of 42 28 26 24 22 fID(ZID) ID stresscf 6E~e 20 18 - 16 14 _ 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 ZID, ID elevcf flD(12.0812) = 15.66367 Regression for 25% throughwall stresses: 8.6999 ) 17.487) 10.3745 17.177 11.5527 16.175 QTelev-cf : 12.5802 QTstresscf := 14.581 12.9649 18.188 13.3752 21.559 13.6012) 25.687)
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 15 of 42 QT-elevi QTstressi = 3 0 10.119 3 2.9371 13.024 RQT := regress(QT_elevcf, QTstresscf, 4) 4 6.3198 15.794 3362.70255 8.6999 17.487 RQT = 10.3745 17.177 ZQT := 8.6999,8.701.. Top_Jweld -1281.45936 11.5527 16.175 182.93207 12.5802 14.581
-11.53275 12.9649 18.188 0.27085 ) 13.3752 21.559 13.6012 25.687 fQT(ZQT) := interp(RQT, QT_elevcf, QTstresscf,zQT) 26 24 22 fQT(ZQT) 20 QTstresscf oeee 18 -
16 14 - 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 ZQT* QTelevcf fQT(12.0812) = 15.09487
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 16 of 42 Regression for 50% throughwall stresses: 8.6999 ) 12.883) 10.3745 15.044 11.5527 15.56 MDelev cf := 12.514 MDstresscf := 13.132 12.9649 15.78 13.3752 19.292 13.6012) 24.607) MD-elevi MDstressi = 3 0 10.032 3 2.9371 10.766 RMD := regress(MDelevcf, MDstresscf,4) 4 6.3198 11.377 6270.57353 8.6999 12.883 RMD = 10.3745 15.044 zMD := 8.6999,8.701 .. Top Jweld -2357.44561 11.5527 15.56 330.23769 12.514 13.132
-20.39106 12.9649 15.78 0.46849 ) 13.3752 19.292 13.6012 24.607 fMD (ZMD) := interp(RMD, MDelevcf, MDstresscf , ZMD)
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 17 of 42 26 24 22 20 fMD(ZMD) 18 MDstresscf oeE 16 14 - 12 - 10 .- 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 ZMD , MD-elev-cf fMD(12.0812) = 14.11569 Repression for 75% throughwaI stresses: 8.6999 ) 7.18 ) 10.3745 8.136 11.5527 8.89 TQ__0ev-cf 12.4478 TQ~stress-cf : 6.189 12.9649 11.381 13.3752 16.085 13.6012) 22.68 )
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 18 of 42 I-TQelevi TQstressi = 3 0 9.951 3 2.9371 9.067 RTQ := regress(TQelev cf, TQstresscf, 4) 4 6.3198 7.821 6772.44513 8.6999 7.18 RTQ = 10.3745 8.136 ZTQ := 8.6999,8.701 .. Top Jweld -2552.34739 11.5527 8.89 358.42617 12.4478 6.189
-22.21167 12.9649 11.381 0.51271 ) 13.3752 16.085 13.6012 22.68 fTQ(zTQ) := interp(RTQ, TQelev cf, TQstress cf,zTQ) 25 22.5 20 17.5 fTQ (ZTQ) 15 TQ stresscf oee 12.5 10 -
7.5 - 5 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 ZTQ .TQelevcf fTQ(12.0 8 12 ) = 7.37343
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 19 of 42 Regression for OD stresses: kk := o.. 5 10.3745) 2.316 ) 11.5527 2.74 12.3816 -0.109 OD elev cf := ODstresscf := _ _ 12.9649 8.207 13.3752 9.729 13.6012) 44.523 ) OD-elevi ODstressi = (' 3 0 9.936 3 2.9371 7.453 4 4.387 ROD := regress(ODelevcf ,OD_stressCf, 4 6.3198 1.83727X 10l 8.6999 2.298 ROD = 10.3745 2.316 ZOD := 10.3745,10.376.. Top Jweld -62394.03658 11.5527 2.74 7925.4618 12.3816 -0.109
-446.31291 12.9649 8.207 9.40247 ) 13.3752 9.729 13.6012 44.523 fOD(zOD) := interp(ROD,OD elevcf,ODstress cfzoD)
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 20 of 42 50 40 30 foD(ZOD) 20 OD stresscf oeE)6 10 0 -
-10 _
10 10.5 11 11.5 12 12.5 13 13.5 14 ZOD, OD-elev-cf foD(1 2 .0 8 12) = 539079
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 21 of 42 Calculation to develop Stress Profiles for Analysis This analysis for the axial stress regression and the through-wall stress regression is the same as that used for the CEDM Nozzles (in Ref. 7) with the exception that the axial stresses are fit with a fourth-order polynomial, rather than a third-order polynomial, to accomodate greater precision.
,.:= 20 Number of locations for stress profiles Loco := FLCntr - L FLCntr = 12.0812 L = 0.4
,,:= 1..N+3 Incr; := co if i < 4 IncStrs.avg otherwise Loci := Loci-, + Incri SID; = RID3 + RID4Loci + RID .(Loci) 2 + RID *(Loc) 3 + RID *(Loc;)4 SQT; RQT3 + RQT4 Loci + RQT .(Loci) 2 + RQT *(Loci)3 + RQT. (Loci)4 3
SMD := RMD3+ RMD4Loci + RMD .(Loci) 2 + RMD *(Loc;) + RMD *(Loc;)4 STQ; = RTQ3 + RTQ4- Loci + RTQ5 .(Loc1 ) 2 + RTQ *(Loci)3 + RTQ7*(Loc;) 4 SOD; = ROD + ROD4Loci + ROD .(Loci) 2 + ROD *(Loc;)3 + ROD *(Loc;)4 j:= i..N SIDj + S+Dj+D+ SIDj+2 if . _ SQTj + SQTj+ 1 + SQTj+2 if j = 1 Sid . = 3 ifJ-= I Sqtj : dJ3 3 Sid *(j + I) + SIDj+2 sqt ( ij + 1) + SQTj+2 J l otherwise otherwise j+2 j+2
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 22 of 42 Smd = SMDj + SMDj+l + SMDj+2 if j = I St~i = STQj + STQj+1 + STQj+2 if j = I J ~~~~~3 tqj 3 Smd I(j + i) + SMDj+ 2 Stq.] 4(j + 1) + STQj+2 ji otherwise i-I ~otherwise j+2 j+2 5 od SODj + SODj+l + SODj+ 2
- if j = I 3
Sod *(j + 1)+ SODj+2 otherwise j+2
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 23 of 42 Through-Wall Stress Distribution for ID Flaws (i.e. ID to OD Stress distribution) U0 := 0.000 U := 0.25 u 2 := 0.50 U3 := 0.75 U4 = 1.00 Y := stack(uIuiu 2 ,u 3 ,u 4 ) SIGI stack(Sid, Sqt 19Smd1 . Stq1 9Sod1) SIG 2 stack( Sid2 , Sqty Smd2, Stq2, Sod2) SIG 3 stack( Sid3 Sqty Smd 3 Stq 3 ' Sod 3 ) SIG 4 stack( Sid 4 , Sqt4 , Smd 4 , Stq 4 , Sod 4 ) SIG5 stack(Sid5 Sqt5 smd 5 Stq5 S od 5 ) SIG 6 stack (Sid6 Sqt6 Smd6 Stq 6 ' Sod6) SIG 7 = stack( 7dSqt7y Smd7' SStq7 sSod 7 ) SIG8 := stack (Sid 8 'Sqt8 'Smd 8 'Stq 8 'Sod ) 8 SIG 9 := stack(Sid 9 Sqt9 ' Smd9 9Stq 9 -Sod 9 ) SIG 10 = stack(Sidlo* sqtl0 S'mdl0 Stq I Sod 0) SIG II := stack(Sid l, Sqtl'l Smd , ' Stq,,'Sod ) SIG 1 2 := stack(Sid1 2 ' Sqt1 2 ' Smd1 2 ' 5 tq[ 2 ' od 12) 11 SIG 13 = stack(Sid, Sqt 13 ' Smd 13 ' Stq13 ' Sod13 ) SIG 14 := stack(Sid14 ' Sqt14 'Smd1 4 'Stq14 Sod14 ) SIG 15 := stack(Sid 5 Sqtj 5 ISmd 15 ' Stq1I, Sod 15 ) SIG 1 6 := stack (Sid1 6 Sqt 6'Smd1 6 'tq 16 'Sod 16 ) SIG 1 7 = stack(Sid 7'Sqt7'Smd 7'Stq[ 'od ) SIG 1 8 = stack(Sid18 ' Sqt1 ' Smdl tq 18 Sod18 ) 17 SIGI9 := stack(Sid ,9Sqt,XSmd 9 Stql 9 sod19) SIG 2 0 := stack(Sid2 0 ' Sqt2 0 Smd 2 0 ' Stq 2 0 'Sod 2 0 )
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 24 of 42 Regression of Through-Wall Stress distribution to Obtain Stress Coefficients Using a Third Order Polynomial IDRG I regress(Y, SIG 1 , 3) IDRG2 regress(Y,SIG 2 ,3) IDRG 3 regress(Y, SIG 3 ,3) IDRG 4 regress(Y, SIG 4 ,3) IDRG 5 regress(Y,SIG 5 ,3) IDRG 6 regress(Y,SIG 6 ,3) IDRG 7 regress(Y,SIG 7 ,3) IDRG 8 regress(Y,SIG 8 ,3) IDRG 9 regress(Y, SIG 9 , 3) IDRGio regress(Y,SIG 1 0 ,3) IDRG 1 regress(Y,SIGI 1,3) IDRG 12 regress( Y, SIG 1 2 ,3) IDRG 1 3 regress(Y,SIG 1 3 ,3) IDRG 1 4 regress(YSIG14,3) IDRG 1 5 regress(Y,SIG 1 5 ,3) IDRG1 6 regress(Y,SIGI 6 ,3) IDRG17 regress(Y,SIG 1 7 ,3) IDRG 1 8 regress(Y,SIG 1 8 ,3) IDRG1 9 regress(Y,SIG 1 9 ,3) IDRG 2 0 regress(Y, SIG 2 0,3) Stress Distribution in the tube. Stress influence coefficients obtainedfrom thrid-orderpolynomial curvefit to the throughwallstress distribution
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 25 of 42 Data Files for Flaw Shape Factors from NASA SC04 Model [Ref. 8] (NO INPUT Required) Mettu Raju Newman Sivakumar Forman Solution of ID Part throughwall Flaw in Cyinder Jsb := 0 n1 2 0 1.000 0.200 0.000 1 1.000 0.200 0.200 2 1.000 0.200 0.500 _ 1.000 0.200 0.800 4 1.000 0.200 1.000 5 1.000 0.400 0.000 6 1.000 0.400 0.200 7_ 1.000 0.400 0.500 8 1.000 0.400 0.800 18 1.000 0.400 1.000 9 TWO0 1.000 0.000 [11 1.000 1.000 0.200 12 1.000 1.000 0.500 3 1.000 1.000 0.800 [4 1.000 1.000 1.000 is 2.000 0.200 0.000 16 2.000 0.200 0.200 17 2.000 0.200 0.500 18l 2.000 0.200 0.800 _19 2.000 0.200 1.000 01 2.000 0.400 0.000 121 2.000 0.400 0.200 12 2.000 0.400 0.500 21 2.000 0.400 0.800 22 2.000 0.400 1.000 2.000 1.000 0.000 2.000 1.000 0.200 127 2.000 1.000 0.500 826 2.000 1.000 0.800
!27 2.000 1.000 1.000 30 4.000 0.200 0.000 31 4.000 0.200 0.200 32 4.000 0.200 0.500 C33- 4.000 0.200 0.800
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 26 of 42 34 4.000 0.200 1.000 35 4.000 0.400 0.000 36 4.000 0.400 0.200 37 4.000 0.400 0.500 37 4.000 0.400 0.800 39 4.000 0.400 1.000 30 4.000 1.000 0.000 41 4.000 1.000 0.200 41 4.000 1.000 0.500 32 4.000 1.000 0.800 44 4.000 1.000 1.000 45 10.000 0.200 0.000 46 10.000 0.200 0.200 47 10.000 0.200 0.500 48 10.000 0.200 0.800 49 10.000 0.200 1.000 50 10.000 0.400 0.000 51 10.000 0.400 0.200 52 10.000 0.400 0.500 63 10.000 0.400 0.800 54 10.000 0.400 1.000 55 10.000 1.000 0.000 56 10.000 1.000 0.200 57 10.000 1.000 0.500 58 10.000 1.000 0.800 59 10.000 1.000 1.000 60 300.000 0.200 0.000 61 300.000 0.200 0.200 21 300.000 0.200 0.500 32 300.000 0.200 0.800 64 300.000 0.200 1.000 65 300.000 0.400 0.000 6 300.000 0.400 0.200 67 300.000 0.400 0.500 68 300.000 0.400 0.800 69 300.000 0.400 1.000 70 300.000 1.000 0.000 71 300.000 1.000 0.200 72 300.000 1.000 0.500 73 300.000 1.000 0.800 _7 300.000 1.000 1.000
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 27 of 42 Sambi := 0 1 2 3 4 5 6 7 0 1.076 0.693 0.531 0.434 0.608 0.083 0.023 0.009 1 1.056 0.647 0.495 0.408 0.615 0.085 0.027 0.013 2 1.395 0.767 0.557 0.446 0.871 0.171 0.069 0.038 3 2.53 1.174 0.772 0.58 1.554 0.363 0.155 0.085 4 3.846 1.615 0.995 0.716 2.277 0.544 0.233 0.127 5 1.051 0.689 0.536 0.444 0.74 0.112 0.035 0.015 6 1.011 0.646 0.504 0.421 0.745 0.119 0.041 0.02 7 1.149 0.694 0.529 0.435 0.916 0.181 0.073 0.04 8 1.6 0.889 0.642 0.51 1.334 0.307 0.132 0.073 9 2.087 1.093 0.761 0.589 1.752 0.421 0.183 0.101 10 0.992 0.704 0.534 0.506 1.044 0.169 0.064 0.032 11 0.987 0.701 0.554 0.491 1.08 0.182 0.067 0.034 12 1.01 0.709 0.577 0.493 1.116 0.2 0.078 0.041 13 1.07 0.73 0.623 0.523 1.132 0.218 0.095 0.051 14 1.128 0.75 0.675 0.556 1.131 0.229 0.11 0.06 15 1.049 0.673 0.519 0.427 0.6 0.078 0.021 0.008 16 1.091 0.661 0.502 0.413 0.614 0.083 0.025 0.012 17 1.384 0.764 0.556 0.446 0.817 0.15 0.058 0.031 18 2.059 1.033 0.708 0.545 1.3 0.291 0.123 0.067 19 2.739 1.301 0.858 0.643 1.783 0.421 0.18 0.099 20 1.075 0.674 0.527 0.436 0.73 0.072 0.044 0.021 21 1.045 0.659 0.511 0.425 0.76 0.122 0.043 0.021 22 1.16 0.71 0.536 0.441 0.919 0.197 0.064 0.034 23 1.51 0.854 0.623 0.498 1.231 0.271 0.114 0.062 24 1.876 0.995 0.71 0.555 1.519 0.317 0.161 0.089 25 1.037 0.732 0.594 0.505 1.132 0.192 0.07 0.035 26 1.003 0.707 0.577 0.493 1.113 0.19 0.071 0.036 27 1.023 0.714 0.58 0.495 1.155 0.207 0.08 0.042 28 1.129 0.774 0.619 0.521 1.286 0.247 0.098 0.052 29 1.242 0.84 0.661 0.549 1.416 0.285 0.115 0.061 30 1.003 0.649 0.511 0.43 0.577 0.07 0.015 0.005 31 1.097 0.666 0.511 0.426 0.606 0.079 0.023 0.01 32 1.405 0.776 0.567 0.46 0.797 0.141 0.054 0.028 33 0 1.959 0.996 0.692 0.542 1.201 0.262 0.108 0.059 34 2.461 1.197 0.808 0.619 1.586 0.37 0.154 0.085 35 1.024 0.668 0.528 0.451 0.737 0.11 0.033 0.015 36 1.057 0.666 0.52 0.439 0.77 0.123 0.042 0.021 37 1.193 0.715 0.545 0.454 0.924 0.174 0.068 0.036 38 1.443 0.828 0.614 0.509 1.219 0.263 0.109 0.059 39 1.665 0.934 0.681 0.565 1.487 0.339 0.143 0.078 1 nnn A79 nro7 n n1Q 1110a n 1RP n nlAR nunqA
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 28 of 42
}>41* 1.009 0.713 0.588 0.511 1.128 0.194 0.072 0.037 42 1.041 0.726 0.594 0.515 1.191 0.214 0.082 0.043 3 1.105 0.768 0.623 0.536 1.316 0.248 0.097 0.05 1.162 0.81 0.653 0.558 1.428 0.277 0.109 0.055 5 0.973 0.635 0.499 0.446 0.579 0.07 0.016 0.005 6 1.115 0.673 0.514 0.438 0.607 0.079 0.023 0.01 7 1.427 0.783 0.571 0.462 0.791 0.138 0.052 0.027 8 1.872 0.96 0.671 0.529 1.179 0.253 0.104 0.056 49 2.23 1.108 0.757 0.594 1.548 0.356 0.149 0.081 50 0.992 0.656 0.52 0.443 0.733 0.109 0.032 0.014 51 1.072 0.672 0.523 0.441 0.777 0.125 0.043 0.021 52 1.217 0.723 0.549 0.456 0.936 0.176 0.069 0.036 53 1.393 0.806 0.601 0.493 1.219 0.259 0.106 0.056 54 1.521 0.875 0.647 0.528 1.469 0.328 0.135 0.071 55 0.994 0.715 0.59 0.518 1.114 0.187 0.068 0.035 6 1.015 0.715 0.588 0.512 1.14 0.197 0.074 0.038 57 1.05 0.729 0.596 0.515 1.219 0.221 0.085 0.044 58 1.09 0.76 0.618 0.532 1.348 0.255 0.099 0.051
;59 1.118 0.788 0.639 0.55 1.456 0.282 0.109 0.056 60 0.936 0.62 0.486 0.405 0.582 0.068 0.015 0.005 61 1.145 0.681 0.514 0.42 0.613 0.081 0.024 0.011
'62 1.459 0.79 0.569 0.454 0.79 0.138 0.051 0.026 63 1.774 0.917 0.641 0.501 1.148 0.239 0.096 0.051 64 1.974 1.008 0.696 0.537 1.482 0.328 0.134 0.07 65 0.982 0.651 0.512 0.427 0.721 0.103 0.031 0.013 1.095 I66 0.677 0.52 0.431 0.782 0.127 0.045 0.022 7 1.244 0.727 0.546 0.446 0.946 0.18 0.071 0.037 68 1.37 0.791 0.585 0.473 1.201 0.253 0.102 0.054 69 1.438 0.838 0.618 0.496 1.413 0.31 0.126 0.066 aQ := (2) (2) tW:= Jsb(0) X := Jsb'l) au := Sambi(0) aL := Sambi6 ' aQ := Sambi 2) ac := Sambi(3)
CU := Sambi(4) CL := Sambi(5) cQ := Sambi(6) cc := Sambi(7)
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 29 of 42 n:= 3 if Rt<4.0 2 otherwise "a-Tip" Uniform Term MaU := augment(W, X, Y) VaU := aU RaU := regress(Mau XVaU, n) faU(WXY):= interp[RaU ,MaJ, VaU{ xI] faU(4,.4,'8) = 1.7089 Check Calculation Linear Term MaL := augment(W,X,Y) VaL := aL RaL := regress( MaL VaL, n) faL(W, X, Y) := interp{RaL, MaL , VaL, X I1 faL(4,.4,.8) = 0.93393 Check Calculation Quadratic Term MaQ := augment(W, X, Y) VaQ := aQ RaQ := regress(MaQ, VaQ, n)
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 30 of 42
'W)-
faQ(WX,Y) := interp IMaQ, VaQ, X CaY)c faQ(4,.4,.8) = 0.67668 Check Calcul/ation Cubic Term MaC := augment(W, X, Y) VaC := aC RaC :=regress( MaC,VaC,n) (W)- faC(W, X, Y) := interp MaCVaCsX I faC(4,.4,-8) = 0.54151 Check Calculation
'IC" Tip Coefficients Uniform Term MCU := augment(W,X,Y) VCU := CU RcU :=regress( Mcu,Vcu,n)
~~u(WXY)~~W) fcu(4,.4,.8) = 1.31015 Check Calculation Linear Term M& := augment(W, X, Y) VCL := CL RcL := regress(McLVcLn)
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 31 of 42 YW)- fcL(W, X, Y) := interF RcL , McL , VcL , X I
- ~~~y )
fCL( 2 ,.4,.8) = 0.28509 Check Calculation Quadratic Term McQ := augment(W, X, Y) VCQ := CQ RcQ := regress( MCQ. VCQ. n) W)- fcQ(WX,Y) := interp McQI VCQ X I Y)h fCQ(4,.4,.8) = 0.11797 Check Calculation Cubic Term M~c := augment(W, X, Y) R~c := regress( Mcc, VcC, n) KWY fcC(WXY) := interp RcCMCCVCC, x I
- y )-
Check Calculation
=0.06384 fCC(4,.4,.8)
Calculations : Recursive calculations to estimate flaw growth
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 32 of 42 Recursive Loop for Calculation of PWSCC Crack Growth CGRsam bi: j* o ao - ao CO +- CO t *- t2 NCBo +- Cblk while j < Ilim 0 o - IDRG 1 if cj < co IDRG 2 if co < cj < co + InCStrs.avg IDRG 3 3 if cO + Incstrs.avg < cj < Co + 2-IncS trs.avg IDRG 4 3 if Co + 2 Incstrs.avg < cj < Co + 3 Inc'Strs.avg IDRG5 3 if Co + 3 Incstrs.avg < cj < Co + 4 Inc'Strs.avg IDRG6 if co + 4 InCstrs.avg < Cj _ co + 5-l( 'Strs.avg IDRG 7 33 if CO + 5 IflCstrs avg < Cj < co + 6 Inc'Strs.avg IDRG 8 if cO + 6 InCstrs.avg < cj < cO + 7 Inc'Strs.avg 3 IDRG 9 if C 0 + 7-Incstrs.avg < cj < co + 8fIn( 'Strs.avg 3 IDRGIO if co + 8 InCStrs.avg < cj _ co +91 IcStrs.avg IDRG 1 1 if co + 9dfCStis.avg < Cj _ co +i1 InlcStrs.avg 3 IDRG 12 if Co+ 10 InCStrs.avg < Cj _Co+1 *Iftrst.avg IDRG 1 3 if co+ 12 Incstrs avg < cj co + 1 *IflcStrs.avg IDRG 1 4 if co + l2iflCStrs.avg < cj _co +l *IflcStrs.avg IDRG15 if Co+ 13 flCStrs.avg < cj _ c o + 14IflcStrs.avg 3
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 33 of 42 IDRG 163if C0 + 4f InCstrs.avg < cj < C0 + 15-Incstrs.avg IDRG 17 3if CO+ l5d fCStrs avg < cj < C + 16 IncStrs avg IDRG 18 if co+ 16- IncStrsavg < cj < CO+ 17-Incstrs.avg IDRG 19 if Co+ l7-lncStrs.avg < cj < co+ i8flncStrs.avg IDRG 2 0 otherwise 3 IDRG4 if Cj < Co IDRG 2 if co < cj < co + InCStrs.avg IDRG 3 if co + Incstrs.avg < cj < CO + 2-lnCStrs.avg IDRG 4 if CO + 2 lnCStrs.avg < Cj < Co + 3 InCStrs.avg IDRG 5 if co + 3 InCstrs.avg < Cj < C0 + 4 1lCStrs.avg IDRG 6 4 if CO + 4- lCStrs.avg < Cj < Co + 5- lCStrs.avg IDRG 7 if CO + 5s lCStrs.avg < Cj < CO + 6 InCStrs.avg IDRG 84 if Co+ 6 IfnCStrs.avg < Cji Co+ 7-I°cStrs.avg IDRG 9 if CO + 7-lnCStrs.avg < cj < co + 8lflCStrs.avg IDRG10 4 if co + 8 IncStrs.avg <Cj < CO + 9 lncStrs.avg IDRG 14 if co + 9IlncStrs.avg < cj < co + 10IlnCStrs.avg IDRG 12 if CO + 10 lnCStrs.avg < cj < co + IIl nCStrs.avg 4 IDRG 13 if Co+ I- InCStrs.avg < Cj _ Co+ 12dflCStrs.avg IDRG 14 if co + 12 lncStrs.avg < Cj < co + 13 IlncStrs.avg IDRG 15 4if cO + 13 IlncStrs.avg < cj < Co + 14 lncStrs.avg IDRG 16 if co + 14 Incstrs.avg < cj < Co + 15 InCStrs.avg 4_.^
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 34 of 42 IL)KU 1 7 it CO+ 5 -lnCstrs.avg < cj < CO+ 16 InCsttrs.avg IDRG 184 ifCO + l6-lnCStrs.avg < Cj < Co + 17- InCStrs avg IDRG 1 4 if Co + 17-lncstrs.avg < cj < co + I llncStrs.avg IDRG 2 0 otherwise 4 02 +- IDRG1 if cj < cO IDRG2 ifco < Cj < co + InCStrs.avg IDRG 3 ifCo+ InCStrs.avg < Cj < Co + 2InCStrs.avg IDRG 4 ifCo + 2-InCStrs.avg < cj _ co + 3 IlncStrs.avg IDRG 5 ifCO + 3flncstrs.avg < Cj _ Co + 4-lncstrs.avg IDRG 6 5 ifC + 4lnCStrs.avg < Cj < Co+ 5- lncStrs.avg IDRG 7 if co+ 5Incstrs.avg < cj < co + 6flCStrs.avg IDRG 8 if Co + 6-Incstrs.avg < cj < Co+ 7-Incstrs.avg IDRG 9 ifCo+ 7-lncStrs.avg < cj < Co + 8-lCStrs.avg ID RG10 ifco + 8-lneStrs~avg < cj < co + 9.ncStrs.avg IDRG 1 0 if cO+ 9lncStrs.avg < Cj < co+ 9°IncStrsavg IDRG 125 if co+ 9O-IncStrs.avg < Cj < co + lIIlnCStrs.avg ID RG 13 5if co + II-lncStrs~avg < cj _ co + 12 lncStrs~avg IDRG 145 if co+ 12.lncStrsavg < Cj < co+ 13IncStrs.avg IDRG 155 if co + 3I-lncStrsavg < Cj < Co+ 4- Incstrs.avg IDRG 1 6 if co+ 14-IlncStrsavg < cj 5 co+ 153 IncStrs.avg IDRG 1 7 if co+ 14 InlCStrs avg < Cj < c + 6lSIncStrs.avg IDRG 1 7 if co+ 16-Ilncss avg < cj co + 17-Incqstravg
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 35 of 42 IDRG 19 5 if co + 17 IlnCStrs.avg < cj < co + 18 lnCStrs avg IDRG 2 0 otherwise 5 IDRG 1 if Cj < Co IDRG 2 if co < cj < co + InCStrs.avg IDRG 3 if co + Incstrs avg < cj < Co + 2-lCStrs.avg IDRG4 6 if Co + 2 IlnCStrs.avg < Cj < Co + 3 IfncStrs avg IDRG 5 if Co + 3flncstrs.avg < cj < Co + 4 InCStrs.avg IDRG 6 6 if Co 4 InCStrs.avg < Cj C0 + 5-I°cStrs.avg IDRG 7 if co + s lncstrs.avg < Cj < co + 6 lnCStrs.avg IDRG 8 if CO + 6-Incstrs.avg < cj < Co + 7-lncstrs.avg IDRG 9 if Co + 7-lnCstrS.avg < Cj < co + 8. lCStrs.avg 6 IDRG 10 6 if CO + 8 lnCStrs.avg < Cj < co + 9 flncStrs.avg IDRG 116 if co+ 9llncStrs.avg < cj < co + 10dflCStrs.avg IDRG 12 6 if co + II lnCStrs.avg < Cj < Co+ 11 lnCStrs.avg IDRG 1 3 if Co+ ll-lncsttrs.avg < ej < Co+ 12 IlncStrs.avg IDRG14 6 if Co+ 12 IncStrs.avg <cj* Co+ 1_ 3 IncStrs.avg 1DRG 1 56 if co + 13 Ilncstrs avg < Cj < co + l4flnCstrs.avg IDRG 1 6 6 if Co+ 14 lnCStrs.avg < Cj < Co + 15 InlCStrs.avg IDRG 1 7 if Co + 15 lnCStrs avg < Cj < C + 16 InCStrs.avg IDRG 186 if CO+ 16 IncStrs.avg < Cj < Co+ 17 InCStrs.avg IDRG 19 6 if Co+ 17 lncStrs.avg < ej < CO + sf Incstrs.avg
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 36 of 42 I IDRG 2 0 otherwise 40 (-- Go 2 0.25taj)3 4*- Go-+0 I{Oy .ai 1 + 02 (0.25- aj) Kt ) (o5aj2 (o.5saj>) 3 42- G0+ Gy ++02.(7 +03- t ) 2 + CTT 0.75*aj 3
&3<- 00 + Cy I ai" + 02.(0.75 aj' 00<- C I1()
(o+ C2 - + 0 3.y X0 0.0 xi 0.25 X2 0.5 X3 0.75 X4 <- 1.0 X - stack(xx, x2 ,x 3 , x4 ) ST- stack(40 I 2 3' 4) RG v regress(X, ST, 3) 000 v RG3 + PInt O104v RG 4 020* RG5 0Y30 RG6 aj ARj aj Cj aj t
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 37 of 42
-auj a x J Gal IE faL(RtARjATj)
Gaq & faQ(Rt ARj, ATj) Gacj < faC (Rt, ARj, ATj) Gcuj fcU (Rt, ARj, ATJ) GC1j fcL(RtARjATj) Gcq j fCQ(Rt, ARj, ATj) GCC; < fcc(Rt, ARj, ATJ) Qj l- Il+ 1.464-{2) if cj 2 aj 1 + 11.464-K1.65 otherwise 0.5 Kaj F (J O 00-Gaui + a 10-Gal + (y20-Gaqj + F303Gacj) KC - -_ .(O0Gcuj + CY IOGCli + 020oGcqj + 30 Gcc3 Ka <--Kaj 1.099 i i K yj <- K Ci- 1.099
- ai l9o if Ka01 < 9-0 Ka K otherwise K* y 9.0o if K , < 9.0 K otherwise 6
Da;j CO(Ka _9.0) n d- In .rP. . . ... if kC - Qen A
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 38 of 42 agj I a ` inhr -blk " *jX 4-1o-1°CFinhr-Cblk otherwise Dc - Co.(KY _9.0)11 6 DC j - Dc.-CFinhr.Cblk if K , < 80.0 4 - 10 CFinhr Cblk otherwise output(j,O) - j outpukj, 1) aj OUtPUt(j, 2 ) Cj -CO OUtpUt(j, 3 ) Dag. OUtPUtkj,4)- Dcgj output(j,5) Kaj OUtpUt(j, 6) - KC NCBj OUtpUt(j 7)4- 365-24 OUtpUt(j, 8) - Gau oUtput(j, 9) - Gal output(j, 10) 4 Gaqj output(j, 11)4- Gac. OUtpUt(j, 12) - Gcu OUtpUt(j, 13)4- GOi OUtpUt(j, 14) 4- Gcqj j4-j+l a; - aj 1 + DI,
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 39 of 42 I I "rj-l Cj + Cjd_ + Dcg._j aj E- lt if aj Ž t aj otherwise NCBj +- NCBj-j + CbIk output KI:= O.. hjim The curve below shows the flaw growth through-wall and the operating time (in years) it takes to go through-wall. Flaw Growth in Depth Direction 0.6 - 0.5 - 0 0.401 0.4 _ -C a 0.3 - 2 cD 3 9 0.2 - 0.1 - I I I I I I I 0 0 5 10 15 20 25 30 35 40 Operating Time {years}
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 40 of 42 The propagation length for the ICI nozzles is defined as the length for which the initial flaw in the blind zone would extend out of the blind zone and grow to a detectable flaw. Reference 11 gives the minimum detectable flaw size of 4 mm (0.16) in length; thus, 0.16 inch was considered as this minimum detectable flaw length. This dimension is added to the end of the blind zone. BZ length PropLength := 2 - co + 0.16 2 PropLength = 0.4 This implies that a flaw initially within the blindzone must grow 0.4 inch to become detectable via UT. The curve below shows the flaw growth along the length of the ICI nozzle and the operating time (in years) it takes to reach the PropLength value defined above. 2 1.5 I-,- 0 C S r_ 0 _j 0.5 1 2 0 0 fi.
-0.5
-1 0 5 10 15 20 25 30 35 40 Operating Time {years}
Thus, a flaw initially 0.4-inch in length, and 0.04-inch in depth (10% through-wall) will not grow in a 40 year operating period.
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 41 of 42 Stress Intensity Factors 100 I I I I I 801 0 U-0 I._ 60 _ N-0 c6 va U. 40 _ 20 _ l l l l l A. 0 5 10 15 20 25 30 35 40 Operating Time {years}
- Depth Point Surface Point
Attachment 5 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 42 of 42 Influence Coefficients - Flaw 0.9 0.8 0.7 I 0 0.6 ~.) 0 0.5 r-) .U E.) 0.4 U 0.3 0.2 0.1 0 0 5 I0 15 20 25 30 35 40 Operating time {years}
"a" - Tip -- Uniform
- Tipa -- Linear
- "a" - Tip -- Quadratic
-- - "a" - Tip -- Cubic "c" - Tip -- Uniform
----- "c' - Tip -- Linear
- - tic" - Tip -- Quadratic
-- - "c" - Tip -- Cubic
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 1 of 42 Arkansas Nuclear One Unit 2 Primary Water Stress Corrosion Crack Growth Analysis for an ICI ID Surface Flaw Uphill (1800), in the Blind Zone above the Top of the J-Groove Weld Developed by Central Engineering Programs, Entergy Operations Inc. Flaw Case 3: 25% Through-Wall Flaw with a 4-to-1 Flaw Length-to-Depth Aspect Ratio, Located at the Center of the Blind Zone Calculation Basis: MRP 75 th Percentile and Flaw Face Pressurized Mean Radius -to- Thickness Ratio:- "Rlt"- between 1.0 and 300.0 Note: The Metric forn of the equation from EPRI MRP was used 55-Rev. 1 . A correction factor is applied in the determination of the crack extension to convert the units of meters per second to the ID Surface Flaw value in inches per hour. User Input: The Dominion Engineering Inc. (DEI) finite element model nodal elevations and hoop stresses for the uphill side (1800 azimuth) of the ICI nozzle are brought into the Mathcad worksheet from data supplied in Reference 6d. The data are composed of the nodal elevations (in inches), along with the ID, 25% through-wall (tw), 50% tw, 75% tw, and OD hoop stresses, beginning at the top of the weld (nodal line 8130 1) and extending to the top of the nozzle in the FEA model, which is at the point where the nozzle intersects the reactor vessel head. The DEI FEA data has elevation referenced from the bottom of the ICI nozzle. The elevations of the node points in the DEI FEA model, beginning at the top of the weld (nodal line 8130 1), are as follows: i := 0.. 9 Nodelinei := ID-elev-feai := QT_elevyfeai := MD elev feai := TQelev-feai := ODelevfeai 81301 4.2276 4.2276 4.2276 . 4.2276 4.2276 81401 4.4536 4.4536 4.4536 4.4536 4.4536 81501 4.8639 4.8639 4.8639 4.8639 4.8639 81601 5.1825 5.2486 5.3148 5.3810 5.4472 81701 6.2761 6.2761 6.2761 6.2761 6.2761 81801 7.4543 7.4543 7.4543 7.4543 7.4543 81901 9.1289 9.1289 9.1289 9.1289 9.1289 82001 11.5090 11.5090 11.5090 11.5090 11.5090 82101 14.8917 14.8917 14.8917 14.8917 14.8917 82201 17.8288 17.8288 17.8288 17.8288 17.8288
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 2 of 42 The corresponding stresses at these nodes are IDstress feai := QTstress-feai := MDstressfeai := TQstressfea1 OD-stress-feai 26.390 25.687 24.607 22.680 44.523 23.147 21.559 19.292 16.085 9.729 19.425 18.188 15.780 11.381 8.207 15.065 14.581 13.132 6.189 -0.109 16.707 16.175 15.560 8.890 2.74 17.399 17.177 15.044 8.136 2.316 17.412 17.487 12.883 7.180 2.298 17.115 15.794 11.377 7.821 4.387 15.304 13.024 10.766 9.067 7.453 10.308 10.119 10.032 9.951 9.936 Blind Zone and Counterbore Reference dimensions: From design drawings (Ref. 2a and 2b) and the design input of Attachment 1, the following dimensions are used to locate the counterbore bottom and blind zone locations (bottom, top, and middle) as referenced from the nodal coordinates of the DEI FEA model. Actualcbore bottom elev := ID-elev feao + 1.377 Actualcborebottomelev = 5.6046 topweldtobottomBZ := 1.08 BZ_length := 0.88 elevtomidBZ := IDelev feaO + topweld to bottomBZ + BZ ength 2 elev_tomid_BZ = 5.7476 bottom-of BZ := IDelevfeaO + topweldtobottomBZ bottomof BZ = 5.3076
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 3 of 42 topof BZ := IDelevfeao + topweldtobottom_BZ + BZ-length top_of BZ = 6.1876 For stress averaging and fracture mechanics purposes, the reference coordinate system--with a "0" elevation at the bottom of the nozzle, at the ID corner--must be converted into a new coordinate system with the top of the nozzle (nodal line 82201) as the new "0" elevation.. The positive direction along this new coordinate system will be towards nodal line 81301, which is the top of the weld. This modification facilitates a fracture mechanics model more ammenable to the surface flaw loop structure previously developed in Reference 7. The following iterative loops convert the five (5) through-wall stress components--ID, 25% tw (QT), 50% tw (MD), 75% tw (TQ), and OD--and the associated elevations, initially given in the DEI FEA model, into the "new" coordinate system, referenced from the top of the nozzle where it meets the reactor vessel head. IDconv := Top v- ID_elevfea 9 i*-o while j 2 0 IDelevconvi +- Top - ID-elev-feaj ID stressi v- IDstress feaj output(i, 0) v- IDelev-convi output(i, 1) v- IDstressi j*-j-1 i- i+1 output IDelev IDconv(°) IDstress := ID convy0
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 4 of 42 QTconv := Top *- QT-elev-fea 9 j4-9 while j 2 0 QTelev conv; < Top - QTelev fea-QTstressi - QT_stressjfeaj output(i, 0) QTelev-conv; output(i, I) <- QTstressi pj-l-i- i+I output QT elev := QTconv(°) QT-stress := QTconv MDconv := Top ÷- MDelev-fea 9 while j 2 0 MDelevconvi +- Top - MD-elev-feaj MD stress; <- MD stress feaj output( i, 0) - MDelevyconv outpuk i, 1) *- MDstress; pj-l-i+- i+I output MDelev:= MD conv(°) MDstress := MD conv(y)
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 5 of 42 TQ-conv := Top <- TQ-elev fea9 while j 2 0 TQelev-conv; *- Top - TQelev-feaj TQstress; <- TQstress_feaj output(i,O) <- TQ elev convi output(i, 1) <- TQstressi j-j-I i i+l output TQ-elev := TQconv(°) TQstress := TQ_conv(y) OD_conv := Top <- ODelev-fea9 j-9 1*- 0 while j 2 0 OD_elev convi - Top - OD elevfeaj OD_stressi <- OD stress feaj output(i, O) <- OD_elevConvi output(i, I) *- ODstress; j -j-j i- i+ 1 output OD_elev := OD conv(°) OD_stress := ODconvy )
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 6 of 42 IDelevi = QTelevi = MDelevi = TQelevi = OD-elevi 0 0 0 0 0 2.9371 2.9371 2.9371 2.9371 2.9371 6.3198 6.3198 6.3198 6.3198 6.3198 8.6999 8.6999 8.6999 8.6999 8.6999 10.3745 10.3745 10.3745 10.3745 10.3745 11.5527 11.5527 11.5527 11.5527 11.5527 12.6463 12.5802 12.514 12.4478 12.3816 12.9649 12.9649 12.9649 12.9649 12.9649 13.3752 13.3752 13.3752 13.3752 13.3752 13.6012 13.6012 13.6012 13.6012 13.6012 ID-stressi QT stress; MDstressi TQstressi OD-stressi 10.308 10.119 10.032 9.951 9.936 15.304 13.024 10.766 9.067 7.453 17.115 15.794 11.377 7.821 4.387 17.412 17.487 12.883 7.18 2.298 17.399 17.177 15.044 8.136 2.316 16.707 16.175 15.56 8.89 2.74 15.065 14.581 13.132 6.189 -0.109 19.425 18.188 15.78 11.381 8.207 23.147 21.559 19.292 16.085 9.729 26.39 25.687 24.607 22.68 44.523 The two sets of five arrays given above are the elevations measured from the top of the ICI nozzle from the FEA model down to the top of the J-weld and the corresponding hoop stresses in the modified coordinate system (MCS).
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 7 of 42 Additional Geometry in Modified Coordinate System The top of the J-groove weld in the MCS is equal to the last entry in the IDelev array: Top Jweld := ID-elevg Top Jweld = 13.6012 The location of the top of the UT blind zone (BZ) in the MCS (as measured from the ID surface) is BZtop := Top_Jweld - (topweld tobottomBZ + BZ length) BZ-top = 11.6412 The midpoint of the BZ in the MCS is BZ mid:= BZ top-l- BZ length BZ mid = 12.0812 The bottom of the BZ in the MCS is BZ bottom := BZ top + BZilength BZbottom = 12.5212 The location of the actual counterbore (from design drawings) in the MCS: cboreelev := Top Jweld - 1.377 cboreelev = 12.2242
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 8 of 42 From the MCS, the stress distribution from elevation 0 (the top of the ICI nozzle where it intersects the RV head) to the top of the weld is graphically shown below. Stress Distribution to Top of Weld 40 30 20 0 0. 10 0
-10 _
0 2 4 6 8 10 12 14 Dist. from Top of nozzle to top weld-in.
- ID stress
.-... 25% tw stress
---- 50% tw stress 75% tw stress
- OD stress For the ID surface flaw model, the reference point is the location along the axis of the nozzle used to locate the flaw. For this analysis, the reference point is considered at the mid-height of the blind zone.
Refpojnt := BZ-mid cIo
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 9 of 42 To place the flaw with respect to the reference point, the flaw tips and center can be located as follows:
- 1) The Upper "c- tip" located at the reference point (Enter 1)
- 2) The Center of the flaw at the reference point (Enter 2)
- 3) The lower "c- tip" located at the reference point (Enter 3).
Val := 2 The Input Below is the point below the blind zone region where stresses will be considered for curve-fitting. This point is taken as the top of the weld, since the stress distribution changes drastically within the weld region Enter this dimension or variable below. EleVStrs.Dist := Top_Jweld The elevation to the point of maximum stress to consider (Axial distance from elevation 0 in the MCS). ICI Nozzle Geometrv Input Data: od := 5.563 - 0.001 Tube OD, in inches (The value from Ref. 2a, is 5.563" +0.00/-0.001) idI := 4.625 + 0.01 Maximum Tube ID above counterbore, in inches (The value from Ref. 2b is 4.625" +/- 0.010") id2 := 4.750 + 0.01 Maximum Tube ID below counterbore, in inches (The value from Ref. 2b is 4.750" +/- 0.010") tI := (od - idI) 2 Minmnum wall thickness above the counterbore, in inches tl = 0.4635 Q := (od - id2) t2~~~ Minimum wall thickness below the counterbore, in inches t2 = 0.401 __od Ro := 2 o= 2.781 idl Ridl := 2 Ridl = 2.3175
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 10 of 42 Rjd := id2 Rid2 = 2.38 Rid2 R :=R ml idi +- 2 Rmi = 2.54925 R m2~ *-R id2 + t2 Rm2 = 2.5805 Rt : Rt = 6.43516 Ro
-= 6.93516 t2 Flaw Geometry Input Data:
A postulated flaw could exist in the 0.88" UT Blindzone that occurs 1.08" above the top of the J-weld at the uphill (1800) location. The flaw length (c) and depth (a) constitute the input parameters. This flaw represents an internal surface crack in a cylinder, as described in Reference 8. ARO := 4 The flaw length-to-depth aspect ratio. This ratio (4-to-I) is potentially more conducive for through-wall growth than the 6-to-I ratio used in ASME Section t2 .25 = 0.10025 XI, and one sufficient to promote flaw growth through the thickness. ao = 0.1 Initial Flaw Depth of the ID surface flaw in the blind zone above the top of the weld on the uphill side. The minimum detectable depth of a surface flaw from UT demonstrations [Ref. I1] was 8% throughwall. Conservatively, a 25% throughwall flaw is assumed. This flaw is sufficiently deep to see the stress field developed through the thickness. L:= aO-ARO Initial Flaw Length of an ID surface flaw in the counterbore region, in inches. The length was determined by assuming a 4-to-I flaw length-to-depth aspect ratio. Half the flaw length (0.2 inch) was placed the below the mid-height of L = 0.4 the blind zone, while the other half was placed above the mid-height. L Co := 2 The half flaw length used in the fracture mechanics model
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 11 of 42 Additional Input Data: PInt = 2.235 Design Operating Pressure (internal) [Ref. 3] Years := 40 Number of Operating Years Ilim g00 0= Iteration limit for Crack Growth loop L^:= 604 Conservative Operating Temperature for the head, in degrees F. Ref. 4 gives a value of 594.8 deg. F following power uprate. a0C := 2.67-*l- 12 Constant in MRP-55 PWSCC Model for 1-600 Wrought @ 617 deg. F [Ref. 9] Qg = 31.0 Thermal activation Energy for Crack Growth {MRP) [Ref. 9] Tref := 617 Reference Temperature for normalizing Data deg. F [Ref. 9] Timopr 365.2422-24-Years Numer of operating hours in a year CFinhr := 1.417- 105 Correction factor to convert meters per second to inches per hour Timopr Cblk:= Calculation block size for the crack growth iteration loop hlim Cblk = 43.82906 I lim Pmtblk = 50 Temperature Correction for Coefficient Alpha C0 ~T+459.67 e1.103* Io0~~-3re+496j from EPRI MRP-55, Revision I [Ref. 9] co:= Locol 75 th percentile from MRP-55 Revision I [Ref. 9]
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 12 of 42 The flaw model used for a postulated flaw within the counterbore region on the uphill side of the ICI nozzle is an internal surface flaw in a cylinder, subject to an arbitrary stress distribution. To allow for a "moving average" of through-thickness stress values as the flaw extends along the length of the ICI ID surface, the length from the bottom tip of the of the initial flaw in the blind zone to the stress distribution upper limit--Elevsts.Dist--is broken into 20 equal segments. Note that due to the MCS used, with a 0 elevation occurring at the TOP of the nozzle, the term "UTip" (implying the upper tip of the flaw) is actually the physical bottom tip of the flaw, closer to the top of the weld. UTjp is the term used in Reference 7 for the CEDM nozzles, and thus it will continue to be used in the ICI nozzle evaluation. FLCntr :=-fon c 0 if Val 1 FL~ntr Refp 0 int
- = -co if Val= i Flaw center Location at the mid-point of Refpoint if Val = 2 the blind zone region Refpoint + c 0 otherwise UTip := FLCntr + co UTip 12.2812 EleVStrs.Dist - UTip IncStrs.avg= 20 lcStrs.avg = 0.066 No User Input is required beyond this Point
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 13 of 42 Regression of Through-Thickness Stresses as a Function of Axial Elevation Because of the minor variation in stresses occuring at the top of the nozzle where it intersects the reactor head and the need to accurately curve fit stresses in the region of interest in the BZ, the entire range of stresses is not appropriate to curve fit. To accomodate an area below and above the BZ region, the first two data points in each of the elevation and stress arrays were removed from consideration in the curve fitting equations. This is a reasonable assumption, given that in the completely through-wall tensile stress field that exists in the nozzle above the top of the J-weld, a flaw centered in the BZ region is likely to grow through the thickness entirely (in addition to growth along the surface of the nozzle) rather than grow very long into an area close to the top of the head or below the top of the J-weld (i.e., elevation ranges not included in the stress polynomial curve fit). Initially, a fourth (4th) order polynomial was chosen for axial stress regression. After regression, the stress at the mid-height of the blind zone (12.0812 inches in the MCS) is checked. Regression for ID stresses: k := O.. 6 (8.6999 A 17.412) 10.3745 17.399 11.5527 16.707 ID_elevcf := 12.6463 IDstresscf := 15.065 12.9649 19.425 13.3752 23.147 K13.6012) 26.39 ) IDelevi = ID stressi = 3 0 10.308 3 2.9371 15.304 RID := regress(ID elevcf,ID_stresscf,4) 4 6.3198 17.115 2920.01158 8.6999 17.412 RID = 10.3745 17.399
-1120.32621 11.5527 16.707 161.1276 12.6463 15.065 ZlD := 8.6999,8.701 .. Top Jweld -10.23275 12.9649 19.425 0.24206 ) 13.3752 23.147 13.6012 26.39 flDD(zlD) := interp(RID,ID elevcf,IDstress cf,zID)
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 14 of 42 fID(ZID) IDstresscf e~e 14 ! I I l I_ 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 zID, ID-elevcf fID(2.0812 ) = 15.66367 Regression for 25% throughwall stresses: 17.487' 17.177 16.175 QTelev-cf : QTstresscf := 14.581 18.188 21.559 25.687)
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 15 of 42 QTelevi QTstressi = 3 0 10.119 3 2.9371 13.024 RQT := regress(QT_elevcf,QTstresscf,4) 4 6.3198 15.794 3362.70255 8.6999 17.487 RQT = 10.3745 17.177 ZQT := 8.6999,8.701.. TopJweld -1281.45936 11.5527 16.175 182.93207 12.5802 14.581
-11.53275 12.9649 18.188 k 0.27085 ) 13.3752 21.559 13.6012 25.687 fQT(zQT) := interp( RQT, QT_elev cf, QTstresscf, zQT) 26 -
24 22 _ fQT(ZQT) 20 _ QTstresscf oee 18 _ 16 14 5 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 7ZQT, QTelevcf fQT(12.0812) = 15.09487
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 16 of 42 Regression for 50% throughwall stresses: I-'8.6999 ) 12.883) 10.3745 15.044 11.5527 15.56 MDelev cf := 12.514 MDstresscf := 13.132 12.9649 15.78 13.3752 19.292 13.6012) 24.607) MD-elevi MDstressi = 3 0 10.032 3 2.9371 10.766 RMD := regress(MDelevcf,MDstresscf, 4) 4 6.3198 11.377 6270.57353 8.6999 12.883 RMD = 10.3745 15.044 zMD := 8.6999,8.701.. Top Jweld -2357.44561 11.5527 15.56 330.23769 12.514 13.132
-20.39106 12.9649 15.78 0.46849 ) 13.3752 19.292 13.6012 24.607 fMD(ZMD) := interp(RMD,MDelevcfMDstresscf, ZMD)
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 17 of 42 26 12.0812 24 22 _ _ _ 20 fMD(ZMD) 18 MDstresscf eEe 16 _ _ 12 _ _ _ _ _ _ _ _ _ 10~ 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 ZMD, MD-elev-cf fMD(12.O812) = 14.11569 Regression for 75% throughwall stresses: 8.6999 ) 7.18 ) 10.3745 8.136 11.5527 8.89 TQjelev-cf : 12.4478 TQ_stresscf := 6.189 12.9649 11.381 13.3752 16.085 13.6012) 22.68 )
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 18 of42 TQelevi TQstressi = 3" 0 9.951 3 2.9371 9.067 RTQ := regress(TQelev cf, TQ_stress cf, 4) 4 6.3198 7.821 6772.44513 8.6999 7.18 RTQ = 10.3745 8.136 ZTQ := 8.6999,8.701 .. Top Jweld -2552.34739 11.5527 8.89 358.42617 12.4478 6.189
-22.21167 12.9649 11.381 0.51271 ) 13.3752 16.085 13.6012 22.68 fTQ(zTQ) := interp(RTQ,TQelev-cf,TQstress cf,zTQ) 25 -
22.5 20 _ 17.5 fTQ(ZTQ) 15 _ TQstresscf eee 12.5 _ 10 - 7.5 _ 5-8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 ZTQ, TQ_elevcf fTQ(1 2 .0812) = 7.37343
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 19 of 42 Regression for OD stresses: kk := o.. s (10.3745) 2.316 ) 11.5527 2.74 12.3816 -0.109 OD_elevcf :f OD_stresscf := 12.9649 8.207 13.3752 9.729 t 13.6012) 44.523 ) OD-elevi OD_stressi = ( 3 NI 0 9.936 3 2.9371 7.453 4 ROD := regress(ODelevcf,OD_stress_cf,4 6.3198 4.387 1.83727X 105 8.6999 2.298 ROD = 10.3745 2.316 ZOD := 10.3745,10.376.. TopJweld -62394.03658 11.5527 2.74 7925.4618 12.3816 -0.109
-446.31291 12.9649 8.207 9.40247 ) 13.3752 9.729 13.6012 44.523 fOD(zOD) := interp(ROD, ODelevcf, OD_stresscf, ZOD)
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 20 of 42 50 40 30 fOD(ZOD) 20 OD stress_cf ee6 10 0
-10 10 10.5 I1 11.5 12 12.5 13 13.5 14 ZOD, OD-elev-cf fOD(12.081 2 ) = 5.39079
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 21 of 42 Calculation to develop Stress Profiles for Analysis This analysis for the axial stress regression and the through-wall stress regression is the same as that used for the CEDM Nozzles (in Ref. 7) with the exception that the axial stresses are fit with a fourth-order polynomial, rather than a third-order polynomial, to accomodate greater precision.
,:= 20 Number of locations for stress profiles Loco:= FLCntr - L FLCntr = 12.0812 L = 0.4 i:= 1..N +3 Incr; := co if i < 4 IncStrs.avg otherwise Loc;:= Loci- 1 + Incr; 2 D *(L) + RID *(Loc;)4 SID; := RID3 + RID4Loci + RID ' +
SQT; = RQT3 + RQT 4-Loci + RQT .(Loci) + RQT .(Loci) 3 + RQT. (Loci) 4 SMD; = RMD + RMD4Loci + RMD .(Loc,) + RMD *(Loc;)3 + RMD *(Loc;)4 STQ := RTQ + RTQ4-Loci + RTQ .(Loci) 2 + RTQ *(Loci)3 + RTQ *(Loci)4 SOD := ROD + ROD4 Loci + ROD .(Loci) 2 + ROD *(Loci) 3 + ROD *(Loc;)4 j:= i..N S. t= SQTJ+SQTj+j+ SQTj+2 if j 1 Siddj. = SIDj + SIDj+ 3 + SlDj+2 if j qtj ~~~~3 Sid . (j+ l) + SIDj+2 Sqt(. )(j + 1)+ SQTj+2 J otherwise j+_2) otherwise j+2 j +2
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 22 of 42 STQj + STQj+l + STQj+2 if j = 1 Smd SMDj + SMDj+l + SMDj+2 if j = I Stqj . mj :=3 3 Smd U(j + 1) + SMDj+2 stq. (j + 1)+ STQj+2 JI otherwise 1 otherwise j+2 j+2 SODj + SODj+i + SODj+2 Sod - if j = I J 3 5odj.- Uj + 1)+ SODj+2
)therwise j+2 I
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 23 of 42 Through-Wall Stress Distribution for ID Flaws (i.e. ID to OD Stress distribution) U0 := 0.000 Ui := 0.25 U2 := 0.50 U3 := 0.75 U4 = 1.00 Y := stack(u 0 ,u 1 "u2 ,u 3 ,u 4 ) SIG1 = stack(Sid, sqt 1Smd, IStq 1 Sod1) SIG2 = stack(Sid 2 9Sqy Smd2 ' tq 2 ' Sod 2 ) SIG 3 = stack(Sid3 Sqty smd3 Stq 3 ' Sod3 ) SIG 4 = stack (Sid4'Sqt4 Smd4Stq4 Sod 4 ) SIG 5 = stack(Sid 5 Sqt 5 smd5' Stq 5 ' Sod 5 ) SIG 6 = stack(Sid 6 , Sqt 6 ,Smd 6 'Stq6'Sod 6 ) SIG7 = stack( Sid 7 'Sqt 7 , Smd7 ' Stq 7 ' Sod 7 ) SIG 8 = stack Sid8, Sqt8 , Smd 8 ' Stq8 'Sod 8 ) SIG 9 := stack( Sid9 ' sqt9 , Smd9 ' Stq9 ' Sod 9 ) SIG 10 = stack(Sidio Sqt1 0 's md10 ' Stq1 0 Sod1 0 ) SIG 1 1 := stack (Sid 1, Sqt , Smd 1 Stq 1 Sod11 ) SIG12 = stack(Sid12S qt1 2 ' Smd2 Stq 'od12) SIG 13 = stack(Sid13' Sqt 13 ' Smd113 Stq 3' Sod 13 ) SIG 1 4 = stack (Sid 14 ' Sqt14 'Smd14 'Stq14 'Sod1 4 ) SIG 15 = stack(Sid 5 'Sqt 1'Smd' 5 Stq 'Sod 5) SIG 1 6 = stack(Sid 16 'Sqt16 'Smd16 ' Stq 16 'Sod16 ) SIG 1 7 = stack( Sid 1'Sqt17' Smd17 '5 tq SIG 1 8 := stack (Sid 1 8 ' qt 8' Smd g8 Stq18 ' Sod, ) 7 'Sod17 ) 8 SIG, := stack(Sid '9Sqt 9'Smd 19Stq qSod19) SIG 2 0 := stack (Sid 2 0 ' Sqt'Smd20' tq 20 Sod2 0 )
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 24 of 42 Regression of Through-Wall Stress distribution to Obtain Stress Coefficients Using a Third Order Polynomial IDRGI regress(Y,SIGI ,3) IDRG2 regress(Y, SIG 2 ,3) IDRG 3 regress(Y, SIG 3 ,3) IDRG 4 regress(Y, SIG 4 ,3) IDRG 5 regress(Y,SIG 5 ,3) IDRG 6 regress( Y,SIG6 ,3) IDRG7 regress(Y,SIG 7 ,3) IDRG 8 regress( Y,SIG8,3) IDRG9 regress(Y,SIG 9 ,3) IDRG 10 regress(Y, SIG 1 0 , 3) IDRG1 I1 :=regress(Y, SIG 1 1 , 3) IDRG 12 regress(Y,SIG 12 ,3) IDRG1 3 regress( Y,SIG 13 ,3) IDRG 1 4 regress(YSIG14 ,3) IDRG1 5 regress(Y,SIG 5 , 3) IDRG 1 6 regress(Y,SIG 1 6 ,3) IDRG 1 7 regress(YSIG 1 7 ,3) IDRG1 8 regress(YSIG1 8 ,3) IDRG 1 9 regress(Y, SIG 19 , 3) IDRG 2 0 regress(YSIG 2 0 ,3) Stress Distribution in the tube. Stress influence coefficients obtainedfrom thrid-orderpolynomial curvefit to the throughwallstress distribution
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 25 of 42 Data Files for Flaw Shape Factors from NASA SC04 Model [Ref. 8] (NO INPUT Required) Mettu Raju Newman Sivakumar Forman Solution of ID Part throughwall Flaw in Cyinder Jsb := 0 1 2 0 1.000 0.200 0.000 1 1.000 0.200 0.200 2 ; 1.000 0.200 0.500 3 1.000 0.200 0.800 4 1.000 0.200 1.000 5 1.000 0.400 0.000 6 1.000 0.400 0.200 7- 1.000 0.400 0.500 8 1.000 0.400 0.800 9 1.000 0.400 1.000 lb 1.000 1.000 0.000 11 1.000 1.000 0.200 12 1.000 1.000 0.500 I3 1.000 1.000 0.800 i4 1.000 1.000 1.000 15 2.000 0.200 0.000 16 2.000 0.200 0.200 17 2.000 0.200 0.500 18- 2.000 0.200 0.800 19 2.000 0.200 1.000 20 2.000 0.400 0.000 21 2.000 0.400 0.200 22 2.000 0.400 0.500 23 2.000 0.400 0.800 24 2.000 0.400 1.000 25 2.000 1.000 0.000 26 2.000 1.000 0.200 27 2.000 1.000 0.500 28 2.000 1.000 0.800 29 2.000 1.000 1.000 30 4.000 0.200 0.000 31 4.000 0.200 0.200 32 4.000 0.200 0.500 33 4.000 0.200 0.8001
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 26 of 42 34 4.000 0.200 1.000 35 4.000 0.400 0.000 36 4.000 0.400 0.200 3 4.000 0.400 0.500 38 4.000 0.400 0.800 39 4.000 0.400 1.000 40 4.000 1.000 0.000 41 4.000 1.000 0.200 42 4.000 1.000 0.500 43 4.000 1.000 0.800 44 4.000 1.000 1.000 45 10.000 0.200 0.000 6 10.000 0.200 0.200 47d10.000 0.200 0.500 8 10.000 0.200 0.800 49 10.000 0.200 1.000 10.000 0.400 0.000 50 10.000 0.400 0.200 52 10.000 0.400 0.500 53 10.000 0.400 0.800 54 10.000 0.400 1.000 5 10.000 1.000 0.000 65 10.000 1.000 0.200 57 10.000 1.000 0.500 8 10.000 1.000 0.800 98 10.000 1.000 1.000 1300.000 0.200 0.000 61 300.000 0.200 0.200 62 300.000 0.200 0.500 63 300.000 0.200 0.800 64 300.000 0.200 1.000 64 300.000 0.400 0.000 65 300.000 0.400 0.200 7 300.000 0.400 0.500 68 300.000 0.400 0.800 69 300.000 0.400 1.000 76 300.000 1.000 0.000 71 300.000 1.000 0.200 72 300.000 1.000 0.500 73 300.000 1.000 0.800 7 300.000 1.000 1.000
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 27 of 42 Sambi := 0 I 2 3 4 5 6 7 O 1.076 0.693 0.531 0.434 0.608 0.083 0.023 0.009 1 1.056 0.647 0.495 0.408 0.615 0.085 0.027 0.013 2 1.395 0.767 0.557 0.446 0.871 0.171 0.069 0.038 3 2.53 1.174 0.772 0.58 1.554 0.363 0.155 0.085 4 3.846 1.615 0.995 0.716 2.277 0.544 0.233 0.127 5 1.051 0.689 0.536 0.444 0.74 0.112 0.035 0.015 6 1.011 0.646 0.504 0.421 0.745 0.119 0.041 0.02 7 1.149 0.694 0.529 0.435 0.916 0.181 0.073 0.04 8 1.6 0.889 0.642 0.51 1.334 0.307 0.132 0.073 9 2.087 1.093 0.761 0.589 1.752 0.421 0.183 0.101 10 0.992 0.704 0.534 0.506 1.044 0.169 0.064 0.032 11 0.987 0.701 0.554 0.491 1.08 0.182 0.067 0.034 12 1.01 0.709 0.577 0.493 1.116 0.2 0.078 0.041 13 1.07 0.73 0.623 0.523 1.132 0.218 0.095 0.051 14 1.128 0.75 0.675 0.556 1.131 0.229 0.11 0.06 15 1.049 0.673 0.519 0.427 0.6 0.078 0.021 0.008 16 1.091 0.661 0.502 0.413 0.614 0.083 0.025 0.012 17 1.384 0.764 0.556 0.446 0.817 0.15 0.058 0.031 18 2.059 1.033 0.708 0.545 1.3 0.291 0.123 0.067 19 2.739 1.301 0.858 0.643 1.783 0.421 0.18 0.099 20 1.075 0.674 0.527 0.436 0.73 0.072 0.044 0.021 21 1.045 0.659 0.511 0.425 0.76 0.122 0.043 0.021 22 1.16 0.71 0.536 0.441 0.919 0.197 0.064 0.034 23 1.51 0.854 0.623 0.498 1.231 0.271 0.114 0.062 24 1.876 0.995 0.71 0.555 1.519 0.317 0.161 0.089 5 1.037 0.732 0.594 0.505 1.132 0.192 0.07 0.035 2-6 1.003 0.707 0.577 0.493 1.113 0.19 0.071 0.036 7 1.023 0.714 0.58 0.495 1.155 0.207 0.08 0.042 28 1.129 0.774 0.619 0.521 1.286 0.247 0.098 0.052 29 1.242 0.84 0.661 0.549 1.416 0.285 0.115 0.061 30 1.003 0.649 0.511 0.43 0.577 0.07 0.015 0.005 31 1.097 0.666 0.511 0.426 0.606 0.079 0.023 0.01 32 1.405 0.776 0.567 0.46 0.797 0.141 0.054 0.028 33 1.959 0.996 0.692 0.542 1.201 0.262 0.108 0.059 34 2.461 1.197 0.808 0.619 1.586 0.37 0.154 0.085 35 1.024 0.668 0.528 0.451 0.737 0.11 0.033 0.015 36 1.057 0.666 0.52 0.439 0.77 0.123 0.042 0.021 37 1.193 0.715 0.545 0.454 0.924 0.174 0.068 0.036 8 1.443 0.828 0.614 0.509 1.219 0.263 0.109 0.059 9 1.665 0.934 0.681 0.565 1.487 0.339 0.143 0.078 1 nnr, n 7,) A n rA ia n1 1P It n1nnaI n nA
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 28 of 42 ov .vJ J.D U.% - I. V- .- J.*U V. .- V V.- 41 1.009 0.713 0.588 0.511 1.128 0.194 0.072 0.037 42 1.041 0.726 0.594 0.515 1.191 0.214 0.082 0.043 43 1.105 0.768 0.623 0.536 1.316 0.248 0.097 0.05 4¢4 1.162 0.81 0.653 0.558 1.428 0.277 0.109 0.055 45 0.973 0.635 0.499 0.446 0.579 0.07 0.016 0.005 46 1.115 0.673 0.514 0.438 0.607 0.079 0.023 0.01 47 1.427 0.783 0.571 0.462 0.791 0.138 0.052 0.027 48 1.872 0.96 0.671 0.529 1.179 0.253 0.104 0.056 9 2.23 1.108 0.757 0.594 1.548 0.356 0.149 0.081 50 0.992 0.656 0.52 0.443 0.733 0.109 0.032 0.014 51 1.072 0.672 0.523 0.441 0.777 0.125 0.043 0.021 52 1.217 0.723 0.549 0.456 0.936 0.176 0.069 0.036 53 1.393 0.806 0.601 0.493 1.219 0.259 0.106 0.056 M4 1.521 0.875 0.647 0.528 1.469 0.328 0.135 0.071 i5 0.994 0.715 0.59 0.518 1.114 0.187 0.068 0.035 56 1.015 0.715 0.588 0.512 1.14 0.197 0.074 0.038 57 1.05 0.729 0.596 0.515 1.219 0.221 0.085 0.044 58 1.09 0.76 0.618 0.532 1.348 0.255 0.099 0.051 59 1.118 0.788 0.639 0.55 1.456 0.282 0.109 0.056 60 0.936 0.62 0.486 0.405 0.582 0.068 0.015 0.005 1 1.145 0.681 0.514 0.42 0.613 0.081 0.024 0.011 62 1.459 0.79 0.569 0.454 0.79 0.138 0.051 0.026 63 1.774 0.917 0.641 0.501 1.148 0.239 0.096 0.051 1.974 1.008 0.696 0.537 1.482 0.328 0.134 0.07 65 0.982 0.651 0.512 0.427 0.721 0.103 0.031 0.013 66 1.095 0.677 0.52 0.431 0.782 0.127 0.045 0.022 67 1.244 0.727 0.546 0.446 0.946 0.18 0.071 0.037 68 1.37 0.791 0.585 0.473 1.201 0.253 0.102 0.054 69 1.438 0.838 0.618 0.496 1.413 0.31 0.126 0.066 WA:= MOb() X := Jsb(I) Y : Jsb"L aU := Sambi(0) aL := Sambi(l) aQ := Sambi(2) ac := Sambi(3) CU := Sambi(4) CL := Sambi(5) CQ := Sambi(6) CC := Sambi(7)
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 29 of 42 n:= 3 if Rt<4.0 2 otherwise "a-Tip" Uniform Term MaU := augment(W,X,Y) VaU := aU RaU := regress(Mau, VaU, n) eWY faU(W,XY) , interp RaU MaU , VaU, XI1 ChcClultY)o faU(4, 4,.8) = 1.7089 Check Calculation Linear Term MaL := augment(W,X,Y) VaL := aL RaL := regress(MaL, VaL, n) faL(W, X, Y) := interp RaL MaL, VaL, X I _ k)- faL(4,4,.8) = 0.93393 Check Calculation Quadratic Term MaQ := augment(W, X, Y) VaQ := aQ RaQ := regress(MaQ,VaQ,n)
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 30 of 42 QW) faQ(WXY) :=interp faQ (4,.4,.8) = 0.67668 Check Calculation Cubic Term MaC := augment(W,X,Y) VaC := aC RaC := regress(Mac ,VaC ,n) Kwy faC (W, X, Y) := interp RaC, MaC, VaC, X I
- ,y )-
faC(4,.4,.8) = 0.54151 Check Calculation "C" Tip Coefficients Uniform Term MCU := augment(W,X,Y) VCU := CU RcU :=regress( MCU,VcU,n) fcU(WXY) = nterp RCU, MCU, VCU{XI] f~~u~~w~~xY) ) fcu(4,.4,.8) = 1.31015 Check Calculation Linear Term MCL := augment(W, X, Y) VCL := CL RCL := regress(McLVcLn)
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 31 of 42 YW[ fcL (W. X, Y) := interp RcL sMcL MVcL, x I
- ~y )-
fcL(2,.4,.8) = 0.28509 Check Calculation Quadratic Term McQ := augment(W,X,Y) VCQ .- CQ RcQ := regress(McQgVcQn) W8-fcQ(W XY) := interpl !McQ'VCQ X I CY)a fCQ(4,.4,.8) = 0.11797 Check Calculation Cubic Term MCC := augment(W, X, Y) R~c := regress( McCVCCn) fCC~X, Y) = inter{RCC cc,,x I fcc(4,.4,.8) = 0.06384 Check Calculation Calculations : Recursive calculations to estimate flaw growth
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 32 of 42 Recursive Loop for Calculation of PWSCC Crack Growth CGRsambi: j -0 aO - aO CO 4- CO t<- t2 NCBo- Cblk while j < Ilim 00o- IDRG1 if cj < CO IDRG2 if co < cj < co + InCStrs.avg IDRG 3 if co + IncStrs avg < cj S CO + 2- Incstrs.avg IDRG 4 if CO + 2-Instrs.avg < cj < Co + 3-lncsttrs.avg IDRG 5 if C0 + 3-Incstrs.avg < cj < CO+ 4-lncstrs.avg IDRG 6 3 if CO + 4 flCStrs.avg < Cj < co+ 5InCStrs avg IDRG 7 if c 0 + 5-lnCsttrs.avg < Cj < co+ 6fInCstrsavg IDRG8 if cO + 6- ncstrs.avg < cj < C0 + 7-lncstrs.avg IDRG 9 if c 0 + 7-lncstrs.avg < cj < co + 8fInCstrs.avg 10RIO3 if co + 8-Inc Strs avg < cj <~ co+ 9-ncStrs~avg IR 113 if co + 9- IncStrs avg < cj < co+ 10-IncStrs.avg IDRG 123 if cO+ If lnCStrs.avg < Cj < co + IlncStrs.avg IDRG 13 if cO+ lII-ncStrs.avg < Cj < C0 + l12flncStrs.avg IDRG 1 43 if co+ 12.lncStrs.avg < cj < co + 13IlnCStrs.avg IDRG 1 5 if co+ 13 IncStrs avg < cj < cO + 14 IlncStrs.avg
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 33 of 42 IDRG 1 6 3 if Co + 14-flCStrs.avg < cj < Co + 15 Incstrs.avg IDRG 1 7 3 if Co + 15 Ifncstrs.avg < cj < CO + 16- IncStrs avg IDRG 1 8 if CO+ 16-InCStrs avg < cj < Co+ 17- IlncStrs.avg IDRG 1 9 if Co + 17- Ilncstrs.avg < cj < co + 18 flncStrs.avg IDRG 20 otherwise 3 0 c I v- IDRG 4 if cj < co IDRG 2 if co < cj < co + InCStrs.avg IDRG 3 if co + Incstrs.avg < cj < C0 + 2 lncstrs.avg IDRG 4 if Co + 2-lncstrs.avg < cj < Co + 3-InCStrs.avg IDRG 5 if co + 3-lncStrs.avg < Cj < C0 + 4 lncStrs.avg IDRG 6 if Co + 4-Incstrs.avg < cj < co + 5 lnCStrs.avg IDRG 7 if Co + 5-IlnCStrs.avg < cj < co + 6fnCStrs.avg IDRG 8 if co + 6-Incstrs.avg < cj < C0 + 7 lncStrs.avg IDRG 9 if C0 + 7-lncstrs.avg < Cj < co + 8- fCStrs.avg IDRGIO4 if co + 8.IncStrs.avg < cj < co + 9 IlncStrs.avg IDRGI 14 if cO + 9-IncStrs.avg < cj < co + l olncStrs.avg IDRG124 if co + IOlncStrs.avg < cj < co + 11 I-lCStrs.avg IDRG 13 4 if co + 11 I-lncStrs.avg < cj < C0 + 12 lncStrsavg IDRG 1 4 if cO + 12 lncStrs.avg < Cj < co + 13I lncStrs.avg IDRG 15 4 if co + 13 -lncStrs.avg < Cj < co + 14 lncStrs.avg IDRG 1 6 if c 0 + 14 IlncStrs.avg < cj < co + 15 InCStrs.avg 4
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 34 of 42 Il)KU 1 7 it Co+ 15 flncstrs.avg < Cj < Co+ 16lnCStrs.avg IDRG 1 8 ifCo+ 16 IncStrs avg < Cj < Co+ 17 4lCStrs.avg IDRG1 94 ifCo+ 17-IlncStrsavg < Cj < Co+ 18lncStrs.avg IDRG 2 0 otherwise IDRG 1 if Cj < Co IDRG 2 ifco < cj < co + InCStrs.avg IDRG 3 ifCO + Ilncstrs.avg < Cj < Co + 2 lnCStrs.avg IDRG 4 if Co + 2flncstrs.avg < Cj < co + 3llncStrs.avg IDRG 5 ifCO + 3flncstrs.avg < Cj < Co+ 4flncStrs.avg 5 IDRG 6 if c 0 + 4flncstrs.avg < cj < co+ 5lfncStrs.avg IDRG 7 if Co + 5IlnCstrs.avg < Cj < Co + 6-IfCStrs.avg IDRG 8 ifCo + 6flncstrs.avg < cj < CO + 7lncStrs.avg IDRG 9 if co + 7-Incstrs.avg < cj < co+ 8 Incstr.avg IDRG 10 ifco + 8flncstrs.avg < cj < co + 9flncStrs.avg IDRGI15 ifco+ 9lncStrs.avg < cj < CO + 10IflnCStrs.avg IDRG 1 2 5 if co + 10 IlncStrs.avg < cj < co + lllncStrs avg IDRG1 3 5 if co+ IIIncStrs.avg < cj < Co + 12 IlncStrs.avg IDRG 14 5 if co + l2IncStrs.avg < cj < cO + 13lncstrs.avg IDRG 1 5 if co+ 13IncStrs avg < Cj < Co+ 14flCStrs.avg IDRG1 6 5 if CO+ 14-lncStrs.avg < Cj < cO+ 15-IncStrs avg IDRG1 7 if co+ 15 Incstrs.avg < cj < co + 16Incstrs.avg IDRGIR ifco+ 16-I1nCtrq v < Cj < Co+ 17fnCRtrz vo
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 35 of 42 IDRG 19 if Co + 17 InCstrs.avg < Cj < co + 18- IncStrs.avg IDRG 2 0 otherwise 5 03
- IDRGI if Cj < Co IDRG 2 6 if eo < Cj < c 0 + IflCstrs.avg 6
IDRG 3 if C0 + IflCstrs avg < Cj < C0 + 2*InCStrs.avg IDRG 4 6 if co + 2-IncStrs.avg < Cj < CO + 3 InCStrs avg IDRG 5 if co+ 3 IncStrs.avg < cj < Co + 4 Infcstrs avg IDRG66 if Co + 4 InCStrs avg < Cj < Co + 5-InCStrs avg IDRG 7 if co + 5 IfCStrs.avg < Cj < co + 6 1lCStrs.avg IDRG 8 6 if co + 6 IncStrs.avg < cj < Co + 7 Incstrs avg IDRG 9 if co + 7 lncStrs avg < Cj < Co + 8 InCStrs avg 6g IDRG 1 0 if cO+ 8 lnCStrs.avg < Cj < co + 9 lncStrs.avg IDRG I I if co + 9Ifncstrs avg < Cj < co + i olnCStrs.avg IDRG 1 2 if co + 1.Incstrs.avg I < cj < co + llInclCstrs.avg IDRG 1 3 if co+ II lncstrs.avg < cj < co+ 12 lncStrs.avg DRG 1 4 6 if CO+ 12 IfncStrs.avg < Cj < c 0 + 13 lncStrs.avg IDRG 1 5 if c 0 + 13 1ncstrs.avg < Cj < co + 14 InCstrs.avg 6 IDRG 1 6 if co+ 14 Incstrs.avg < Cj < co+ 15dlCStrs avg IDRG 17 if Co+ 15lInCStrs.avg < Cj < co+ 16 lncStrs.avg IDRG 18 if CO + 16 IfncStrs.avg < Cj < C0 + 17 IlnCStrs.avg 6 IDRG 1 9 if co + 17dfncStrs.avg < cj
- co + l8 AflcStrs. avg 6
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 36 of 42 IIDRG 2 0 otherwise to- Go t.25-aj) (0.25-aj)3 a1+-CO+( t) t) I).5-aj) 0.5-aj)3 42 (-- G~O+ cYI' + 02{)+ + t ) t ) O.5aJ>F2 {t) + 3 43 (--YO+GI ~44(- G0+ CFI'( I1_0__j _ 2_ ( 1.0-aj '3 X0 0.0 x- 0.25 x2 0.5 X3 - 0.75 X+- stack(xO,xI,x 2 ,x 3 x 4 ) STY stack(40,412,43,4) RG regress(X, ST, 3) o0 0- RG3 + PInt 010<- RG4 020--RG5 o 3 0 <- RG6 ARj v-Cj aj t G+ -f 1 1 ,(R..AR;.AT;A
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 37 of 42 -au. - Gal - faL(Rt, ARj, ATj) j Gaq & faQ(RtARj ,ATj) Gacj. faC(RtARjATJ) GCUj fcU(RtARj,ATj) Gcl- fcL(RtARjATj) Gcq v fcQ(RtARiATj) GCCj fCC(Rt, ARj ,ATj) I +1.464{2aj) 1.65 if cj 2 aj I + 1.464 C1 otherwise Kaj < (0 O .- O0Gaui +0ciOs Galij+ ay 2O.Gaqj + cy3O-Gacj) KcCi (r Qj ) -(OOGcuj+ alOGclj+020 Gcqj + 30 Gccj Ka + Ka; 1.099 KyYJ i K~C*'1.099 Ka 9.o if Ka < 9.0 Ka otherwise J KTi Ky otherwise Da + Co.(Ka 9.0) 6 n Z In (CF. . ... if k- .- enn
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 38 of 42 Iaa "aj minhr -blk " " X 4- 10 - CFin Chblk otherwise D~j +-Co (Kj-9.0) 1.16 DCgi - Dcj CFinhr.Cblk if K < 80.0 4 10-CF ~inhr -Cblk otherwise output(j, o) - j output(j,i ) - aj outputj ,2) - Cj - CO OUtpUt(j, 3) & Dagj OUtPUt(j, 4) & Dcg. OUtpUt(j, 5) & Ka output(j, 6) - KC NCBj Outpukjs7) v -365.24 outpukj, 8) & Gau output(j, 9) Gai output(j, 10) < Gaq. output(j, I1)& Gac outpukj, 12) < GCuj OUtPUt(j, 13) - Gcl OUtpUt(j, 14) 4- GCqj output(j, 15) - Gcc j4-j+1 aj - aj.. + DI0
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 39 of 42
' bj-l Cj E CjI_ + Dcg._j aj - It if aj Ž t aj otherwise NCBj -- NCBjj + Cblk output o.. hrim The curve below shows the flaw growth through-wall and the operating time (in years) it takes to go through-wall.
Flaw Growth in Depth Direction 0.6 23.34 0.5 Cs ................................ 0.401 ' 0.4 0.3 0.2 0.1 0 I I I I 0 5 10 15 20 25 30 Operating Time {years}
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 40 of 42 The propagation length for the ICI nozzles is defined as the length for which the initial flaw in the blind zone would extend out of the blind zone and grow to a detectable flaw. Reference 11 gives the minimum detectable flaw size of 4 mm (0.16) in length; thus, 0.16 inch was considered as this minimum detectable flaw length. This dimension is added to the end of the blind zone. BZ length PropLength = 2 Co + 016 PropLength = 0.4 This implies that a flaw initially within the blindzone must grow 0.4 inch to become detectable via UT. The curve below shows the flaw growth along the length of the ICI nozzle and the operating time (in years) it takes to reach the PropLength value defined above. 2 20.98 1.5 0.5 0.4-0
-0.5
-1 0 5 10 15 20 25 30 Operating Time {years}
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 41 of 42 Stress Intensity Factors 100 80 0 60 (n cn C 40 U. 20 0 5 10 15 20 25 30 Operating Time {years}
- Depth Point Surface Point
Attachment 6 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 42 of 42 Influence Coefficients - Flaw 3 2.5 2 C: E 0.L) / 0L) E 1.5 .U E.) U 0) C: -
-~~~~~~~~~~~~~~~~ - -
~~~~-- - -- - - - - - -
0.5 _ ~ ~ ~ - - - - - - - 0 0 5 10 15 20 25 30 Operating time {years}
"a" - Tip -- Uniform
----- "a" - Tip -- Linear
- - "a" - Tip -- Quadratic
-- - "a" - Tip -- Cubic "c" - Tip -- Uniform
----- "c'- Tip -- Linear
- - "c" - Tip -- Quadratic
-- - "c" - Tip -- Cubic
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 1 of 42 Arkansas Nuclear One Unit 2 Primary Water Stress Corrosion Crack Growth Analysis for an ICI ID Surface Flaw Uphill (1800), in the Blind Zone above the Top of the J-Groove Weld Developed by Central Engineering Programs, Entergy Operations Inc. Flaw Case 4: Flaw Spanning the Full Length of the Blind Zone (0.88 Inch) with a 6-to-1 Aspect Ratio Calculation Basis: MRP 75 th Percentile and Flaw Face Pressurized Mean Radius -to- Thickness Ratio:- "Rm/t" - between 1.0 and 300.0 Note: The Metric form of the equation from EPRI MRP was used 55-Rev. I . A correction factor is applied in the determination of the crack extension to convert the units of meters per second to the ID Surface Flaw value in inches per hour. User Input: The Dominion Engineering Inc. (DEI) finite element model nodal elevations and hoop stresses for the uphill side (1800 azimuth) of the ICI nozzle are brought into the Mathcad worksheet from data supplied in Reference 6d. The data are composed of the nodal elevations (in inches), along with the ID, 25% through-wall (tw), 50% tw, 75% tw, and OD hoop stresses, beginning at the top of the weld (nodal line 81301) and extending to the top of the nozzle in the FEA model, which is at the point where the nozzle intersects the reactor vessel head. The DEl FEA data has elevation referenced from the bottom of the ICI nozzle. The elevations of the node points in the DEI FEA model, beginning at the top of the weld (nodal line 81301), are as follows: i := O.. 9 Nodelinei ID elev-feai QTelevfeai := MDelev feai := TQelevfeai := ODelev_feai 81301 4.2276 4.2276 4.2276 4.2276 4.2276 81401 4.4536 4.4536 4.4536 4.4536 4.4536 81501 4.8639 4.8639 4.8639 4.8639 4.8639 81601 5.1825 5.2486 5.3148 5.3810 5.4472 81701 6.2761 6.2761 6.2761 6.2761 6.2761 81801 7.4543 7.4543 7.4543 7.4543 7.4543 81901 9.1289 9.1289 9.1289 9.1289 9.1289 82001 11.5090 11.5090 11.5090 11.5090 11.5090 82101 14.89 17 14.8917 14.8917 14.8917 14.8917 82201 17.8288 17.8288 17.8288 17.8288 17.8288
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 2 of 42 The corresponding stresses at these nodes are IDstress-feai := QTstress-feai := MDstressfeai TQstressfeai ODstressfeai := 26.390 25.687 24.607 22.680 44.523 23.147 21.559 19.292 16.085 9.729 19.425 18.188 15.780 11.381 8.207 15.065 14.581 13.132 6.189 -0.109 16.707 16.175 15.560 8.890 2.74 17.399 17.177 15.044 8.136 2.316 17.412 17.487 12.883 7.180 2.298 17.115 15.794 11.377 7.821 4.387 15.304 13.024 10.766 9.067 7.453 10.308 10.119 10.032 9.95 1 9.936 Blind Zone and Counterbore Reference dimensions: From design drawings (Ref. 2a and 2b) and the design input of Attachment 1, the following dimensions are used to locate the counterbore bottom and blind zone locations (bottom, top, and middle) as referenced from the nodal coordinates of the DEI FEA model. Actualcborebottomelev := IDelev feao + 1.377 Actual cbore bottom elev = 5.6046 topweldto bottom BZ :=1.08 BZ_length := 0.88 elevtomidBZ := IDelev feaO + topweld to bottomBZ + BZ length 2 elevtomidBZ = 5.7476 bottomof BZ := ID elev feaO + topweld to bottomBZ bottomof BZ = 5.3076
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 3 of 42 topof BZ := IDelev feao + topweldtobottomBZ + BZ-length topof BZ = 6.1876 For stress averaging and fracture mechanics purposes, the reference coordinate system--with a "0" elevation at the bottom of the nozzle, at the ID corner--must be converted into a new coordinate system with the top of the nozzle (nodal line 82201) as the new "0" elevation.. The positive direction along this new coordinate system will be towards nodal line 81301, which is the top of the weld. This modification facilitates a fracture mechanics model more ammenable to the surface flaw loop structure previously developed in Reference 7. The following iterative loops convert the five (5) through-wall stress components--ID, 25% tw (QT), 50% tw (MD), 75% tw (TQ), and OD--and the associated elevations, initially given in the DEI FEA model, into the "new" coordinate system, referenced from the top of the nozzle where it meets the reactor vessel head. IDconv := Top - ID_elevfeag while j > 0 IDelevconvi v- Top - ID-elev-feaj ID stressi v- IDstress feaJ output(i, 0) v- IDelev-convi output(i, 1) v- IDstressi j*-j-1 i- i+l output IDelev =IDconvo°) IDstress := ID convy)
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 4 of 42 QTconv := Top <- QTelev-fea9 j*-9 while j 2 0 QTelev convi +- Top - QT elev fea-QTstress;i QTstressjfeaj output( , 0) - QTelev-conv; outputki, 1) QTstress;
-ij-I i- i+
output QTelev := QTconv(°) QTstress := QTconv(') MDconv := Top +- MDelev-fea 9 j*-9 while j > 0 MDelevconv; +- Top - MD-elev-feaj MDstress; <- MD stress feaj output(iO) < MD_elev-conv; outputk, I) E- MDstress; i<-- i+l output MDelev:= MD conv(o) MDstress:= MD convy)
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 5 of 42 TQconv := Top *- TQelevfea9 while j > o TQelev-conv; <- Top - TQelev-feaj TQstress; i- TQstressjfeaj output( i 0) <- TQ elevConv; output(i, I) <- TQstressi i-- i+ 1 output TQ elev := TQ conv(°) TQstress := TQconvy) ODconv := Top <- OD-elevfeag j*-9 1i<- 0 while j > 0 OD_elev-convi <- Top - ODelevfeaj ODstressi <- OD_stressfeaj output(i, 0) <- OD elev conv; output(i, 1) <- ODstress; j j-i- i*-~i+ output ODelev := OD-convo) OD stress := OD convy )
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 6 of 42 IDelevi = QT~e~evi = MDelevi = TQelevi = OD-elevi 0 0 0 0 2.9371 2.9371 2.9371 2.9371 6.3198 6.3198 6.3198 6.3198 8.6999 8.6999 8.6999 8.6999 10.3745 10.3745 10.3745 10.3745 11.5527 11.5527 11.5527 11.5527 12.6463 12.514 12.4478 12.3816 12.9649 12.9649 12.9649 12.9649 13.3752 13.3752 13.3752 13.3752 13.6012 13.6012 13.6012 13.6012 IDstressi QTstressi MDstressi TQstressi OD stress; 10.308 10.119 10.032 9.951 9.936 15.304 13.024 10.766 9.067 7.453 17.115 15.794 11.377 7.821 4.387 17.412 17.487 12.883 7.18 2.298 17.399 17.177 15.044 8.136 2.316 16.707 16.175 15.56 8.89 2.74 15.065 14.581 13.132 6.189 -0.109 19.425 18.188 15.78 11.381 8.207 23.147 21.559 19.292 16.085 9.729 26.39 25.687 24.607 22.68 44.523 The two sets of five arrays given above are the elevations measured from the top of the ICI nozzle from the FEA model down to the top of the J-weld and the corresponding hoop stresses in the modified coordinate system (MCS).
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 7 of 42 Additional Geometry in Modified Coordinate System The top of the J-groove weld in the MCS is equal to the last entry in the IDelev array: TopJweld := ID elevg Top jweld = 13.6012 The location of the top of the UT blind zone (BZ) in the MCS (as measured from the ID surface) is BZtop := Top_Jweld - (topweld tobottomBZ + BZ length) BZ-top = 11.6412 The midpoint of the BZ in the MCS is BZmid := BZ top + BZ length 2 BZ mid = 12.0812 The bottom of the BZ in the MCS is BZbottom := BZ-top + BZilength BZbottom = 12.5212 The location of the actual counterbore (from design drawings) in the MCS: cboreelev := Top Jweld - 1.377 cboreelev = 12.2242
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 8 of 42 From the MCS, the stress distribution from elevation 0 (the top of the ICI nozzle where it intersects the RV head) to the top of the weld is graphically shown below. Stress Distribution to Top of Weld 40 30 L... 20 0. 0
=
10 0
-10 0 2 4 6 8 10 12 14 Dist. from Top of nozzle to top weld-in.
- ID stress
----- 25% tw stress
---- 50% tw stress 75% tw stress
- OD stress For the ID surface flaw model, the reference point is the location along the axis of the nozzle used to locate the flaw. For this analysis, the reference point is considered at the mid-height of the blind zone.
Refpoint := BZ-mid C1Z
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 9 of 42 To place the flaw with respect to the reference point, the flaw tips and center can be located as follows:
- 1) The Upper "c- tip" located at the reference point (Enter 1)
- 2) The Center of the flaw at the reference point (Enter 2)
- 3) The lower "c- tip" located at the reference point (Enter 3).
Val := 2 The Input Below is the point below the blind zone region where stresses will be considered for curve-fitting. This point is taken as the top of the weld, since the stress distribution changes drastically within the weld region Enter this dimension or variable below. ElevStrsDist := Top Jweld The elevation to the point of maximum stress to consider (Axial distance from elevation 0 in the MCS). ICI Nozzle Geometry Input Data: od := 5.563 - 0.001 Tube OD, in inches (The value from Ref. 2a, is 5.563" +0.00/-0.001) idI := 4.625 + 0.01 Maximum Tube ID above counterbore, in inches (The value from Ref. 2b is 4.625" +/- 0.010") id2 := 4.750 + 0.01 Maximum Tube ID below counterbore, in inches (The value from Ref. 2b is 4.750" +/- 0.010") tl :(od - idi) 2 Minmum wall thickness above the counterbore, in inches tl = 0.4635 Q :=(od - id2) t2~~~ Minimum wall thickness below the counterbore, in inches a = 0.401 od Ro = 2.781 id 1 Ridi :=2 Ridl = 2.3175
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 10 of 42 id2 Rid2 = 2 Rid2 = 2.38 RmlR:= R + ~~ti2
- =Rdl Rmi = 2.54925 R m2 *- R id2 + 22 Rm2 = 2.5805 Rm2 Rt := Rt = 6.43516 Ro
= 6.93516 t2 Flaw Geometry Input Data:
A postulated flaw could exist in the 0.88" UT Blindzone that occurs 1.08" above the top of the J-weld at the uphill (1800) location. The flaw length (c) and depth (a) constitute the input parameters. This flaw represents an internal surface crack in a cylinder, as described in Reference 8. ARij:= 6 The flaw length-to-depth aspect ratio. This is a ratio common to ASME Section XI, and one sufficient to promote flaw growth through the thickness. I.:= BZiength Initial Flaw Length of an ID surface flaw in the counterbore region, in inches. The length was set equal to the full length of the UT blind zone (0.88 inch). Flaw depth was based on a common length-to-depth aspect ratio of 6-to-1. Half the flaw length (0.44 inch) was placed the below the mid-height of the L = 0.88 blind zone, while the other half was placed above the mid-height. L a( := - Initial Flaw Depth of the ID surface flaw in the blind zone above the top of the AR0 weld on the uphill side. The minimum detectable depth of a surface flaw from UT demonstrations [Ref. I 1] was 8% throughwall. This flaw equates to ao = 0.14667 36.58% through-wall. This flaw is sufficiently deep to see the stress field developed through the thickness. t2-.36575 = 0.14667
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 11 of 42 Co := 2 The half flaw length used in the fracture mechanics model Additional Input Data: PInt := 2.235 Design Operating Pressure (internal) [Ref. 3] Years := 40 Number of Operating Years Ilim = 8000 Iteration limit for Crack Growth loop IL:= 604 Conservative Operating Temperature for the head, in degrees F. Ref. 4 gives a value of 594.8 deg. F following power uprate. a0c := 2.67 12 Constant in MRP-55 PWSCC Model for 1-600 Wrought @ 617 deg. F [Ref. 9] Qg := 31.0 Thermal activation Energy for Crack Growth {MRP) [Ref. 9] Tref := 617 Reference Temperature for normalizing Data deg. F [Ref. 9] Timopr:= 365.2422-24-Years Numer of operating hours in a year CFinhr := 1.417-105 Correction factor to convert meters per second to inches per hour Timopr Cblk:= - Iim Calculation block size for the crack growth iteration loop
=4im Chik = 43.82906
'urn Prntblk := 50 Col :
11Qg _ - re 1
.O3 101 3T+459.67 Tref+459.67)J Temperature Correction for Coefficient Alpha from EPRI MRP-55, Revision I [Ref. 9]
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 12 of 42 C0 := Loc 1 75 t percentile from MRP-55 Revision I [Ref. 9] The flaw model used for a postulated flaw within the counterbore region on the uphill side of the ICI nozzle is an internal surface flaw in a cylinder, subject to an arbitrary stress distribution. To allow for a "moving average" of through-thickness stress values as the flaw extends along the length of the ICI ID surface, the length from the bottom tip of the of the initial flaw in the blind zone to the stress distribution upper limit--Elevsts.Dit--is broken into 20 equal segments. Note that due to the MCS used, with a 0 elevation occurring at the TOP of the nozzle, the term "UTip" (implying the upper tip of the flaw) is actually the physical bottom tip of the flaw, closer to the top of the weld. UTip is the term used in Reference 7 for the CEDM nozzles, and thus it will continue to be used in the ICI nozzle evaluation. FLCntr =-e~on c 0 if ValiX FL~ntr Refp 0 int
- = -co if Val Flaw center Location at the mid-point of Refpoint if Val = 2 the blind zone region Refpoint + c 0 otherwise UTip := FLCntr +co UTip 12.5212 ElevStrs.Dist - UTip ncStrs.avg 20 IncStrs.avg = 0.054 No User Input is required beyond this Point
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 13 of 42 Regression of Through-Thickness Stresses as a Function of Axial Elevation Because of the minor variation in stresses occuring at the top of the nozzle where it intersects the reactor head and the need to accurately curve fit stresses in the region of interest in the BZ, the entire range of stresses is not appropriate to curve fit. To accomodate an area below and above the BZ region, the first two data points in each of the elevation and stress arrays were removed from consideration in the curve fitting equations. This is a reasonable assumption, given that in the completely through-wall tensile stress field that exists in the nozzle above the top of the J-weld, a flaw centered in the BZ region is likely to grow through the thickness entirely (in addition to growth along the surface of the nozzle) rather than grow very long into an area close to the top of the head or below the top of the J-weld (i.e., elevation ranges not included in the stress polynomial curve fit). Initially, a fourth (4th) order polynomial was chosen for axial stress regression. After regression, the stress at the mid-height of the blind zone (12.0812 inches in the MCS) is checked. Regression for ID stresses: k := O.. 6 8.6999 ) 17.412) 10.3745 17.399 11.5527 16.707 IDelev cf := 12.6463 IDstresscf := 15.065 12.9649 19.425 13.3752 23.147 13.6012) 26.39 ) IDelevi = ID-stressi = 3 0 10.308 3 2.9371 15.304 RID := regress(IDelevcf, ID_stresscf, 4) 4 6.3198 17.115 2920.01158 8.6999 17.412 RID = 10.3745 17.399
-1120.32621 11.5527 16.707 161.1276 12.6463 15.065 ZID := 8.6999,8.701.. Top Jweld -10.23275 12.9649 19.425 0.24206 ) 13.3752 23.147 13.6012 26.39 flD(zID) := interp(RID,ID elevcf, IDstresscf,zID)
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 14 of 42 fID(ZID) IDstresscf E3e 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 ZID, ID elev-cf frD(1 2 .0812) = 15.66367 Regression for 25% throughwall stresses: 8.6999 ) 17.487) 10.3745 17.177 11.5527 16.175 QTelev-cf := 12.5802 QT~stress-df 14.581 12.9649 18.188 13.3752 21.559 13.6012) 25.687)
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 15 of 42 QTstressi =
- 3 10.119 3
13.024 RQT := regress(QT_elevcfQTstress-cf,4) 4 15.794 3362.70255 17.487 RQT = 17.177 ZQT := 8.6999,8.701.. Top_Jweld -1281.45936 16.175 182.93207 14.581
-11.53275 18.188 0.27085 ) 21.559 25.687 fQT(zQT) := interp(RQT,QT elevcf,QT stresscf,zQT) 26 fQT(ZQT)
QTstresscf eee 14 .5 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 zQT, QT_elevcf fQT(02.0812 ) = 15.09487
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 16 of 42 Regression for 50% throuahwall stresses: 8.6999 ) 12.883) 10.3745 15.044 11.5527 15.56 MDelev cf := 12.514 MDstresscf := 13.132 12.9649 15.78 13.3752 19.292 13.6012) 24.607) MD-elevi MDstressi =
' 3 0 10.032 3
2.9371 10.766 RMD := regress(MDelevcf, MDstresscf, 4) 4 6.3198 11.377 6270.57353 8.6999 12.883 RMD = 10.3745 15.044 zMD := 8.6999,8.701.. Top Jweld -2357.44561 11.5527 15.56 330.23769 12.514 13.132
-20.39106 12.9649 15.78 0.46849 ) 13.3752 19.292 13.6012 24.607 fMD(zMD) := interp(RMD,MDelevcf ,MDstress_cf ,zMD)
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 17 of 42 fMD(ZMD) MDstresscf oeee 10 - .L. 1 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 ZMD, MD-elev-cf fMD(12.0812) = 14.11569 Regression for 75% throuahwall stresses: 8.6999 ) 7.18 ) 10.3745 8.136 11.5527 8.89 TQjelev-cf : 12.4478 TQstresscf := 6.189 12.9649 11.381 13.3752 16.085 13.6012) 22.68 )
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 18 of 42 TQelevi TQstressi = 3 0 9.951 3 2.9371 9.067 RTQ := regress(TQelev-cf,TQ~stresscf, 4) 4 6.3198 7.821 6772.44513 8.6999 7.18 RTQ = 10.3745 8.136 zTQ := 8.6999,8.701 .. Top Jweld -2552.34739 11.5527 8.89 358.42617 12.4478 6.189
-22.21167 12.9649 11.381 0.51271 -) 13.3752 16.085 13.6012 22.68 fTQ(zTQ) := interp(RTQ, TQelev cf, TQstresscf, zTQ) 25 22.5 20 17.5 fTQ (ZTQ) 15 TQstresscf oee 12.5 -
10 7.5 _ 5-8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 ZTQ, TQelevcf fTQ(12.0812) = 7.37343
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 19 of 42 Regression for OD stresses: kk := o.. 5 10.3745) 2.316 ) 11.5527 2.74 12.3816 -0.109 ODelev cf := ODstress_cf := 12.9649 8.207 13.3752 9.729 13.6012) 44.523 ) OD-elevi OD_stressi = 3 0 9.936 3 2.9371 7.453 4 6.3198 4.387 ROD := regress(ODelevcfODstress_cf,4 1.83727X 105 8.6999 2.298 ROD = 10.3745 2.316 ZOD := 10.3745,10.376.. TopJweld -62394.03658 11.5527 2.74 7925.4618 12.3816 -0.109
-446.31291 12.9649 8.207 9.40247 ) 13.3752 9.729 13.6012 44.523 foD(zoD) := interp(ROD,OD elevcf, OD stresscf,ZOD)
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 20 of 42 fOD(ZOD) ODstresscf 6Eee _10 , _ I,_II 1o 10.5 11 11.5 12 12.5 13 13.5 14 ZOD, OD elevcf foD(12.0812) = 5.39079
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 21 of 42 Calculation to develop Stress Profiles for Analysis This analysis for the axial stress regression and the through-wall stress regression is the same as that used for the CEDM Nozzles (in Ref. 7) with the exception that the axial stresses are fit with a fourth-order polynomial, rather than a third-order polynomial, to accomodate greater precision.
,,:= 20 Number of locations for stress profiles Loco:= FLCntr - L FLCntr = 12.0812 L = 0.88 i:= i..N+3 Incr := lco if i < 4 Incstrs.avg otherwise Loci := Loci-, + Incri SIDi = RID3 + RID 4 -Loci + RID .(Loci) + RID 6(Loci) 3 + RID *(Loc;)4 SQTJ = RQT3 + RQT 4-Loci + RQT 5(Locj) 2 + RQT *(Loc;) + RQT *(Loc;)4 SMD := RMD3+ RMD 4Loci + RMD5 (Loci) 2 + RMD *(Loci)3 + RMD *(Loc;)4 STQ; = RTQ3 + RTQ4 -Loci + RTQ5 (Loci) 2 + RTQ .(Loc;) 3 + RTQ. (Loci) 4 SODi = ROD + ROD *Loci + ROD *(Loci) + ROD6 (Locj) 3 + ROD (Loc;) 4 3 4 5.6N j:=1.. N SIDj + SlDj+j + SIDj+2 S ;= SQTJ + SQTj+1 + SQTj+2 if j =
Sid. =3if J=I qt= 3 j ~~~~~3 Sid *(j + I) + SIDj+2 Sqt (j + 1) + SQTj+2 (J_1) otherwise J ~ ~ otherwise j+2 j+2
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 22 of 42 SMDj + SMDj+l + SMDj+2 if j = 1 STQj + STQj+l + STQj+2 S md- :- Stqj = if j = I J 3 3 Smd *(j + I) + SMDj+2 stq G(j + 1) + STQj+2 j-l otherwise otherwise j+2 j+2 SODj + SODj+j + SODj+ .) Sod. = I if j=I J 3 Sod *(j + I) + SODj+2 otherwise j+2
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 23 of 42 Through-Wall Stress Distribution for ID Flaws (i.e. ID to OD Stress distribution) U0 :=0.000 u1 := 0.25 u 2 := 0.50 u3 := 0.75 u 4 = 1.00 Y := stack(u 0 u 1 ,u 2 ,u 3 ,u ) 4 SIG 1 = stack(Sid[,Sqt CSmd, Stq, sod ) SIG2 = stack(Sid 2 sqt2 9Smd 2 Stq2 Sod2 ) SIG 3 = stack( Sid3, Sqt 3 Smd3 'Stq 3 ' Sod 3) SIG 4 = stack( Sid 4 9Sqt 4 Smd4 9Stq 4 Sod4) SIG 5 := stack(Sid 5 Sqt 5 Smd59Stq 5 9Sod5 ) SIG 6 = stack (Sid 6 9Sqt 6 9Smd 6 9 tq6 od 6 ) SIG 7 := stack(Sid7Sqt7 lSmd 9 Stq ' Sod ) SIG8 = stack (Sidg SqtsSmd,9StqSod8) 7 7 7 SIGg := stack( Sid' Sqtq9 Smd 9 'Stq9 'sod ) SIG, := stack (Sid1 0 sqt1 0 Smd10 Stq sod10) 9 0 SIG 1, 1 := stack(Sid 1'Sqtl ,Smdl 1Stq11 sSod
- 1) (
SIG 12 = stack Sid 2 ' Sqt12 ' Smd12 , Stq12 ' Sod12) SIG 1 3 := stack(Sid1 Ssqt1 Smd 3 3 13 'Stq1 3 Sod13 ) ( SIG 14 = stack Sid 4 ' Sqt 14 ' Smd 4 ' Stq 4 ' Sod14) SIG 1 5 := stack(Sid, 9Sqt 5'Smd SIG16 = stack(Sid6Sqt61Smd'6' 5 Stq15 Sod, 5 ) 6tq16 '6 od16) SIG 17 = stack(Sid17 ' Sqt17 ' Smd17 'Stq17' Sod1 ) 7 ( SIG 1 8 := stack Sid18' Sqt, 8 ' Smd S'tq I,,od 18 18) SIGIg := stack(Sid , Sqt19 Smd 19 Stqj99 Sod19) SIG 2 0 := stack( Sid20 Sqt20 'Smd2O 'tq2O od20)
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 24 of 42 Regression of Through-Wall Stress distribution to Obtain Stress Coefficients Using a Third Order Polynomial IDRG 1 regress(Y,SIG 1 , 3) IDRG 2 regress(Y, SIG 2 ,3) IDRG 3 regress(Y, SIG3 , 3) IDRG4 regress(YSIG 4 ,3) IDRG 5 regress( Y, SIG 5 ,3) IDRG6 regress(Y, SIG 6 ,3) IDRG7 regress(YSIG 7 ,3) IDRG8 regress(Y,SIG 8 ,3) IDRG9 := regress(YSIG 9 ,3) IDRGIO:= regress(Y,SIG 1 0 ,3) IDRG I I regress(Y, SIG I 1, 3) IDRG 1 2 regress(Y,SIG 1 2 ,3) IDRG1 3 regress(YSIG13 ,3) IDRG 1 4 regress(YSIG1 4 ,3) IDRG 1 5 regress(Y,SIG 15 ,3) IDRG 1 6 regress(Y,SIG 1 6 ,3) IDRG1 7 regress(Y,SIG 1 7 ,3) IDRG1 8 regress(Y,SIG18 ,3) IDRG 19 regress( Y, SIG 19 , 3) IDRG 2 0 regress(YSIG 2 0 ,3) Stress Distribution in the tube. Stress influence coefficients obtainedfrom thrid-orderpolynonmal curvefit to the throughwall stress distribution
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 25 of 42 Data Files for Flaw Shape Factors from NASA SC04 Model [Ref. 8] (NO INPUT Required) Mettu Raju Newman Sivakumar Forman Solution of ID Part throughwall Flaw in Cyinder Jsb := - . 0 1 2 0 1.000 0.200 0.000 1 1.000 0.200 0.200 2 1.000 0.200 0.500 3 1.000 0.200 0.800 4 1.000 0.200 1.000 5 1.000 0.400 0.000 6 1.000 0.400 0.200 7 1.000 0.400 0.500 8 1.000 0.400 0.800 9 1.000 0.400 1.000 70 1.000 1.000 0.000 11 1.000 1.000 0.200 12 1.000 1.000 0.500 13 1.000 1.000 0.800 14 1.000 1.000 1.000 15 2.000 0.200 0.000 16 2.000 0.200 0.200 17 2.000 0.200 0.500 18 2.000 0.200 0.800 19 2.000 0.200 1.000 20 2.000 0.400 0.000 21 2.000 0.400 0.200 22 2.000 0.400 0.500 23 2.000 0.400 0.800 24 2.000 0.400 1.000 25_ 2.000 1.000 0.000 26 2.000 1.000 0.200 22 2.000 1.000 0.500 28 2.000 1.000 0.800 29 2.000 1.000 1.000 30 4.000 0.200 0.000 31 4.000 0.200 0.200 32 31 4.000 0.200 0.500 0.800 33~ 4.000 0.200 0.800
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 26 of 42 34 4.000 0.200 1.000 35 4.000 0.400 0.000 36 4.000 0.400 0.200 37 4.000 0.400 0.500 38 4.000 0.400 0.800 39 4.000 0.400 1.000 40_ 4.000 1.000 0.000 41 4.000 1.000 0.200 42 4.000 1.000 0.500 42 4.000 1.000 0.800 44 4.000 1.000 1.000 45 10.000 0.200 0.000 46_ 10.000 0.200 0.200 47 10.000 0.200 0.500 48 10.000 0.200 0.800 49 10.000 0.200 1.000 .5 10.000 0.400 0.000 51 10.000 0.400 0.200 52 10.000 0.400 0.500 53 10.000 0.400 0.800 541 10.00 0.400 1.00 _5 10.000 1.000 0. 56 10.000 1.000 0.200 57 10.000 1.000 0.500 58 10.000 1.000 0.800 59 10.000 1.000 1.000 60 10300.000 0.000 61 300.000 0.200 0.200 62 300.000 0.200 0.500 63 300.000 0.200 0.800 4 300.000 0.200 1.000 5 300.000 0.400 0.000 66 300.000 0.400 0.200 72 300.000 0.400 0.500 N 300.000 0.400 0.800 9 300.000 0.400 1.000 70 300.000 0.400 0.000 71 300.000 1.000 0.200 72 300.000 1.000 0.500 73 300.000 1.000 0.800 74 300.000 1.000 1.000
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 27 of 42 Sambi := 0 1 2 3 4 5 6 7 O 1.076 0.693 0.531 0.434 0.608 0.083 0.023 0.009 1 1.056 0.647 0.495 0.408 0.615 0.085 0.027 0.013
.2 1.395 0.767 0.557 0.446 0.871 0.171 0.069 0.038 3 2.53 1.174 0.772 0.58 1.554 0.363 0.155 0.085 4 3.846 1.615 0.995 0.716 2.277 0.544 0.233 0.127 5 1.051 0.689 0.536 0.444 0.74 0.112 0.035 0.015 6 1.011 0.646 0.504 0.421 0.745 0.119 0.041 0.02 7 1.149 0.694 0.529 0.435 0.916 0.181 0.073 0.04 8 1.6 0.889 0.642 0.51 1.334 0.307 0.132 0.073 9 2.087 1.093 0.761 0.589 1.752 0.421 0.183 0.101 10 0.992 0.704 0.534 0.506 1.044 0.169 0.064 0.032 11 0.987 0.701 0.554 0.491 1.08 0.182 0.067 0.034 12 1.01 0.709 0.577 0.493 1.116 0.2 0.078 0.041 13 1.07 0.73 0.623 0.523 1.132 0.218 0.095 0.051 14 1.128 0.75 0.675 0.556 1.131 0.229 0.11 0.06 15 1.049 0.673 0.519 0.427 0.6 0.078 0.021 0.008 16 1.091 0.661 0.502 0.413 0.614 0.083 0.025 0.012 17 1.384 0.764 0.556 0.446 0.817 0.15 0.058 0.031 18 2.059 1.033 0.708 0.545 1.3 0.291 0.123 0.067 19 2.739 1.301 0.858 0.643 1.783 0.421 0.18 0.099 20 1.075 0.674 0.527 0.436 0.73 0.072 0.044 0.021 1 1.045 0.659 0.511 0.425 0.76 0.122 0.043 0.021 2 1.16 0.71 0.536 0.441 0.919 0.197 0.064 0.034 3 1.51 0.854 0.623 0.498 1.231 0.271 0.114 0.062 4 1.876 0.995 0.71 0.555 1.519 0.317 0.161 0.089 25 1.037 0.732 0.594 0.505 1.132 0.192 0.07 0.035 26 1.003 0.707 0.577 0.493 1.113 0.19 0.071 0.036 27 1.023 0.714 0.58 0.495 1.155 0.207 0.08 0.042 28 1.129 0.774 0.619 0.521 1.286 0.247 0.098 0.052 29 1.242 0.84 0.661 0.549 1.416 0.285 0.115 0.061 30 1.003 0.649 0.511 0.43 0.577 0.07 0.015 0.005 31 1.097 0.666 0.511 0.426 0.606 0.079 0.023 0.01 32 1.405 0.776 0.567 0.46 0.797 0.141 0.054 0.028 33 1.959 0.996 0.692 0.542 1.201 0.262 0.108 0.059 34 2.461 1.197 0.808 0.619 1.586 0.37 0.154 0.085 3 1.024 0.668 0.528 0.451 0.737 0.11 0.033 0.015 6 1.057 0.666 0.52 0.439 0.77 0.123 0.042 0.021 7 1.193 0.715 0.545 0.454 0.924 0.174 0.068 0.036 8 1.443 0.828 0.614 0.509 1.219 0.263 0.109 0.059 39 1.665 0.934 0.681 0.565 1.487 0.339 0.143 0.078 UFl 1flA, n7) n r07 n riA 1110l 1l PAAR ffMA
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 28 of 42
.41 1.009 0.713 0.588 0.511 1.128 0.194 0.072 0.037 42 1.041 0.726 0.594 0.515 1.191 0.214 0.082 0.043 43 1.105 0.768 0.623 0.536 1.316 0.248 0.097 0.05 44 1.162 0.81 0.653 0.558 1.428 0.277 0.109 0.055 45 0.973 0.635 0.499 0.446 0.579 0.07 0.016 0.005 46 1.115 0.673 0.514 0.438 0.607 0.079 0.023 0.01 47 1.427 0.783 0.571 0.462 0.791 0.138 0.052 0.027 48 1.872 0.96 0.671 0.529 1.179 0.253 0.104 0.056 49 2.23 1.108 0.757 0.594 1.548 0.356 0.149 0.081 50 0.992 0.656 0.52 0.443 0.733 0.109 0.032 0.014 51 1.072 0.672 0.523 0.441 0.777 0.125 0.043 0.021 52 1.217 0.723 0.549 0.456 0.936 0.176 0.069 0.036 3 1.393 0.806 0.601 0.493 1.219 0.259 0.106 0.056 1.521 0.875 0.647 0.528 1.469 0.328 0.135 0.071
;5 0.994 0.715 0.59 0.518 1.114 0.187 0.068 0.035 6 1.015 0.715 0.588 0.512 1.14 0.197 0.074 0.038 57 1.05 0.729 0.596 0.515 1.219 0.221 0.085 0.044 58 1.09 0.76 0.618 0.532 1.348 0.255 0.099 0.051 59 1.118 0.788 0.639 0.55 1.456 0.282 0.109 0.056 30 0.936 0.62 0.486 0.405 0.582 0.068 0.015 0.005 1 1.145 0.681 0.514 0.42 0.613 0.081 0.024 0.011
;2 1.459 0.79 0.569 0.454 0.79 0.138 0.051 0.026
;3 1.774 0.917 0.641 0.501 1.148 0.239 0.096 0.051 1.974 1.008 0.696 0.537 1.482 0.328 0.134 0.07
;5 0.982 0.651 0.512 0.427 0.721 0.103 0.031 0.013 6 1.095 0.677 0.52 0.431 0.782 0.127 0.045 0.022
;7 1.244 0.727 0.546 0.446 0.946 0.18 0.071 0.037 1.37 0.791 0.585 0.473 1.201 0.253 0.102 0.054 69 1.438 0.838 0.618 0.496 1.413 0.31 0.126 0.066 A := JsbMO X := Jsbi(I) Y := Jsb(2) au := Sambi(°) aL := Sambie ) aQ := Sambi(2) aC := Sambi(3)
CU := Sambi(4) CL := Sambi(5) CQ := Sambi(6) CC := Sambi(7)
Attachment 7 to Eng- Report No. M-EP-2003-003, Rev. 0 Page 29 of 42 n:= 3 if Rt< 4.0 2 otherwise "a-Tip" Uniform Term MaU := augment(W,X,Y) VaU := aU RaU := regress( MaUtVaUn)
~~u~~xY intrl{aU aU VaU{XI faU(4,.4,.8) = 1.7089 Check Calculation Linear Term MaL := augment(W, X, Y) VaL := aL RaL := regress( MaL, VaL, n)
W] faL (W, X,Y) : x I faL(4,.4,.8) = 0.93393 Check Calculation Quadratic Term MaQ := augment(W,X,Y) VaQ := aQ RaQ := regress(MaQ, VaQ, n)
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 30 of 42 faQ (W,XY):=interp[RaQ, MaQ9VaQ{x I1 faQ(4,.4,.8) = 0.67668 Check Calculation Cubic Term MaC := augment(W, X, Y) VaC := aC RaC := regress( MaC, VaC, in) _nte a , VaC, (W)I faC (Wx,XY) := interp RaC, MaC, VaC, X I _ KY)- faC(4,.4,.8) = 0.54151 Check Calculation
'C" Tip Coefficients Uniform Term McU := augment(W,X,Y) VC=Cu RcU := regress(McU, VcU, n)
XY):=interp RcU, McuVCU, x I] fcU(W f~~u~~wXY)y ) fCU(4, 4,-8) = 1.31015 Check Calculation Linear Term M& := augment(W, X, Y) V& := CL RCL := regress(McLVcLn)
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 31 of 42 rcL(WXY)L W' fcL(W, X, Y) := interp RcL sMcL , VcL, x I _ 'Y)_ fcL(2,.4,.8) = 0.28509 Check Calculation Quadratic Term McQ := augment(W, X, Y) VCQ .=CQ RcQ := regress( McQ, VCQ ,n) _ ~~~W)- fcQ(W, X, Y) := interp RcQ, McQ, VcQ{X I f MyD) fCQ (4,.4,.S) = 0. 11797 Check Calculation Cubic Term MCC := augment(W, X, Y) R~c := regress(Mcc, VcC, n) fC (, ,Y):=inter{ RcCC M~CCC, xI1 fcc(4,4,.8) = 0.06384 Check Calculation Calculations: Recursive calculations to estimate flaw growth
Attachment 7 to Eng. Report No. M-EP-2003-003. Rev. 0 Page 32 of 42 Recursive Loop for Calculation of PWSCC Crack Growth CGRsambi:"- j*-0 ao *aO co *- Co t - t2 NCBo - Cblk while j < Ilim o- IDRG 3 if cj < cO IDRG 2 if CO < cj < CO + InCStrs.avg 3 IDRG3 if co + IncStrs.avg < Cj < CO + 2 IncStrs.avg IDRG 4 if co + 2 IflCstrs avg < Cj < CO + 3 IflCstrs avg 43 IDRG5 if CO + 3 InCstrs.avg < Cj < CO + 4 InCStrs.avg IDRG 6 if CO + 4' Incstrs.avg < cj < co + 5lfnCStrs avg 3 IDRG 7 if Co + 5slCStrs.avg < Cj < C0 + 6I fCStrs.avg IDRG 8 3 if co + 6-InCStrs.avg < Cj < co + 7-InCStrs avg IDRG9 if CO + 7-lncStrs.avg < Cj < CO + 8 InCStrs.avg IDRG1 0 3 if co + 8 InCStrs avg < Cj < CO + 9 IlncStrs.avg 3 IDRG I I if CO + 9- IncStrs avg < Cj < co + i° IncStrs.avg IDRG 1 2 if co+ If lnCStrs.avg < Cj < CO + I IOlCStrs.avg IDRG 1 33 if cO+ 1Ifl CStrs.avg < Cj < Co+ 12 InCStrs.avg IDRG 143 if Co+ 12iIncStrs.avg < Cj < Co+ 13 InCStrs.avg IDRG 1 5 if co+ 13 InfcStrs avg < C; < CO + 14-lncstrs.avg
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 33 of 42 IDRG 16 if Co+ 14 InCStrs avg < Cj < Co+ 15IflCStrs.avg IDRG 17 if Co+ 15-InCStrs avg < Cj < Co+ l6I lCStrs.avg IDRG 183 if Co+ 16- InCStrs avg < Cj < Co + l7 lncStrs avg IDRG 193 ifCo + 17- Incstrsavg < cj < co + l8-Incstrs.avg IDRG 2 0 otherwise a1*- IDRG 1 if cj < co IDRG 2 if co < Cj < Co + InCStrs.avg IDRG34 if Co + InCStrs.avg < Cj < Co + 2 InCStrs avg IDRG44 if Co + 2-InCStrs.avg < cj < Co + 3IInCstrs.avg IDRG 5 if Co + 3-Incstrs.avg < Cj < Co + 4 InCStrs.avg IDRG64 if Co + 4- InCStrs.avg < Cj < Co + 5-InCStrs avg IDRG 7 if Co + 5-lncstrs.avg < Cj < CO + 6 InCStrs.avg IDRG 8 4 if Co + 6-lfCStrs.avg < Cj < Co + 7IInCStrs.avg IDRG 9 4 if CO + 7flncStrs.avg < Cj < co + 8- lCStrs avg IDRG 1 0 if co + 8-IncStrs.avg < Cj < co +9 fInCStrs.avg IDRGI 14 ifco + 9-InCstrs.avg < Cj < Co + lO lncStrs.avg IDRG 1 24 if co+ 10 IlncStrs avg < Cj < CO+ IIflnCStrs.avg IDRG 1 3 4 if CO+ 11 lnCStrs.avg < Cj < Co+ 12 InCStrS avg IDRG144 if co+ 12- lnCStrs avg < Cj C0 + 13 IncStrs avg IDRG1 5 if Co + 13- Ilncstrs.avg < Cj < Co + 14 lncStrs.avg IDRG 16 4 if Co+ 14 lncStrs.avg < Cj < Co+ I5 IlncStrs.avg 4 ^
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 34 of 42 II)KUj17 it Co+ 15 ifnCstrs.avg < Cj S Co+ 16d fCStrs.avg IDRG 18 4 if cO+ 16* IncStrs.avg < Cj < Co+ 17 InCStrs.avg IDRG1 4 if Co + 17-lncStrs avg < Cj < CO + 18 4ncStrs.avg IDRG 2 0 otherwise 4 Y2*- IDRG 1 if cj < co IDRG 2 if co < Cj < Co + InCStrs.avg IDRG 3 if co + InCStrs.avg < cj < C0 + 2 lCStrs.avg IDRG 4 if CO + 2 InCstrs.avg < Cj < Co + 3Ilncstrs.avg IDRGs 5 if CO + 3IlnCstrs.avg < cj < C0 + 4-InCStrs avg IDRG65 if CO + 4 InCStrs.avg < cj < C0 + 5 InCStrs.avg IDRG 7 if C0 + 5 InCStrs.avg < cj < co + 6 InCStrs.avg IDRG8 if CO + 6-Incstrs.avg < Cj < Co + 7-Incstrs.avg IDRG9 if Co + 7-IlncStrs.avg < Cj < Co + 8-fCStrs.avg IDRGIO if co + 8 Incstrs.avg < cj < co + 9 InCStrs.avg 15 if co+9 1DG Strs.avg < < o+io
°j Strs.avg IDRG1 25 if co + If lnCStrs.avg < cj < CO + 1 lncStrs.avg IDRG1 32 if co + 1 If-ncstrs.avg < cj < co + 121fncstrs avg IDRG1 4 if Co+ 11 InCStrs.avg <iCj ° 13-lcStrs.avg co+
IDRG 1 55 if cO+ 13 IlncStrs.avg <cj < CO+ 14-Incstrs.avg IDRG 1 65 if co+ 14 IlnCStrs.avg < Cj < co + i5 IlnCStrs.avg IDRG I75 1 if CO + ls IncStrs.avg < Cj < CO + 16 InlCStrs avg IDRGlI R if co+ 16 lncStrq v < cj < CO+ 17 1fncStrc.vq,
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 35 of 42 IDRG19-5 if co + 17-IncStrs avg < cj < co + 18 -1CStrs.avg IDRG 2 0 otherwise 5 T3 - IDRG 1 if cj < co IDRG 2 if cO < cj < co + InCStrs.avg IDRG 3 if co + InCStrs.avg < cj < Co + 2 lnCStrs avg IDRG 4 6 if co + 2 Incstrs.avg < Cj < co + 3 IncStrs avg IDRG 5 6 if cO + 3flncstrs.avg < cj < Co + 4 InCStrs.avg IDRG 6 6 if C0 + 4 lncStrs.avg < cj < Co + 5 IlncStrs avg IDRG 7 if Co + 5-flCStrs.avg < cj < Co + 6- fCStrs.avg IDRG 8 if C0 + 6-Incstrs.avg < cj < Co + 7-lncstrs.avg IDRG 9 if Co + 7-Incstrs.avg < cj < Co + 8-IncStrs.avg IDRG 1 6 if Co + 8IncStrs.avg < Cji co + 9lflcStrs.avg IDRG 1I if CO + 9flncstrs.avg < cj < co + lOflncStrs.avg IDRG 12 6 if co+ I lnCStrs.avg < Cj < co + IlI lnCStrs.avg IDRG 13 6 if co + 1 - cstrs.avg < cj _ c o + 12 flCStrs.avg IDRG14 6 if co+ 12 IfnCStrs.avg < cj _ co + 13 -lncStrs.avg IDRG 1 5 6 if co+ 13 lncStrs.avg < cj < co+ 14 IlncStrs.avg IDG6 6 ifco+ 14 Strs.avg < -j co+ 15 IStrs.avg IDRG 17 6 if CO + l4 lnCStrs.avg < cj < co+ 16lIncStrs.avg IDRG18 6 if co+ 16 IlncStrs.avg < Cj < co+ I7 lncStrs.avg IDRG19 6 if co+ I7TlncStrs.avg < cj < co + 18 lncStrs.avg
Attachment 7 to Eng. Report No. M-EP-2003-003. Rev. 0 Page 36 of 42 IIDRG 20 otherwise 40 0C 2 (0.25s aj') 2 + 03. ~0.25.aj)V
~~ I <-(To+s Gy ~ + 02 - )
2 0.5-aj)' 2 <-- 00 + (3I - + 02- + (YY t )
- 02. 0.75. aj) 2 43- 00+0~ I 75ai- + +3 0.75.aj)V t )
~44 - 0+r10aj + 02. 2.O+aC'F3 (.O. aj 'V
*0<- 0.0 xi - 0.25 x2 0.5 X3 0.75 X v stack(x , x 2 , x 3 , X4 )
ST*- stack(4O 1,42,43't4) RG*- regress(X, ST, 3) (000- RG 3 + Plnt 0o10- RG4 o2 0 - RG5 030*- RG6 ARj - aj Cj ATJ v- aj t G-- <- f . .(R..AR;..AT;\
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 37 of 42
-auj-a xs J Gal i faL(Rt, ARj,ATj)
Gaq < faQ(RtARj, ATj) Gacj faC(Rt1,ARjATJ) GcI < fcL(Rt, ARj, ATj) Gcq j fcQ(Rt,ARj ATj) GCC v fcC (Rt, ARj, ATJ) Qj v- 1+ 1.464-(-) if cj 2 aj 1+ 1.464-K1.65 otherwise 0.5 Kaj ( )
- 0OOauj + (aI O Gal + CY20-Gaqj + (Y30Gacj)
K*C < (O
.('I0 0 Gcuj + 10 ,Gcl1 +a 2 0 .Gcqj + 30-Gccj)
- " <--Kaj 1.099 i i KYJ - Kci- 1.099 Ka v 9.0 if Ka < 9.0 Ka otherwise Ky - 9.o if Kr < 9.0 Ky, otherwise Da + CO K 90) n InT rr C . .. . if K- nn
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 38 of 42 g I- a ' intirblk
- _
l 4 0 -CFinhr-Cblk otherwise DC *<-co.(Ky -_ 9.0) 1.16 Dcgj
- lDcj CFinrh.Cblk if K < 80.0 l4-lo--CFinhr -Cblk otherwise output(j,o) (- j output~j, I) <- aj OUtpUt(j, 2 ) - Cj - CO output(j , 3) + Dagj OUtpUt(j, 4) *- Dcg.
outpUt(j, 5) ( Kaj OUtpUt(j, 6) - KC NCBj OUtpUt(j 7) 365.24 outpUt(j, 8) F Gau. output(j, 9) E Gal output(j, 10) v Gaq output(j, II) 4 Gac OUtpUt(j, 12) + Gcq output~j, 13) <- Gclj outPUt(j, 14)
- Gcq.
a; - aj I1 +
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 39 of 42
. v 6~_j_I CjiCji-+Dcg._-
aj - It if aj Ž t aj otherwise NCBj v- NCBj.. + Cblk output O.. him The curve below shows the flaw growth through-wall and the operating time (in years) it takes to go through-wall. Flaw Growth in Depth Direction 0.6 6.99
*~0.5 0.401 3 0.4 0.3 0.2 0.1 I I I I I I 0 2 4 6 8 10 12 14 Operating Time {years}
Attachment 7 to Eng Report No. M-EP-2003-003, Rev. 0 Page 40 of 42 The propagation length for the ICI nozzles is defined as the length for which the initial flaw in the blind zone would extend out of the blind zone and grow to a detectable flaw. Reference I I gives the minimum detectable flaw size of 4 mm (0.16) in length; thus, 0.16 inch was considered as this minimum detectable flaw length. This dimension is added to the end of the blind zone. Prop.Length BZ=ength - C + 0.16 PropLength = 0.16 This implies that a flaw initially spanning the length of the blindzone must grow 0.16 inch to become detectable via UT. The curve below shows the flaw growth along the length of the ICI nozzle and the operating time (in years) it takes to reach the Prop Length value defined above. 2 3,,83/ 1.5 C
- 0.5 5 ~~~~~~~~~~~~~~~~~~~~~~~~
0
-0.5 0 2 4 6 8 10 12 14
- Operating Time {years}
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 41 of 42 Stress Intensity Factors 100 80 rA~~~~~~~~~~~~~~~~~~~~~~~' .~60 00 20 20 0 2 4 6 8 10 12 14 Operating Time {years}
- Depth Point Surface Point
Attachment 7 to Eng. Report No. M-EP-2003-003, Rev. 0 Page 42 of 42 Influence Coefficients - Flaw 3 2.5 2 E 1.5 0 _____- _ -~~~~--------- 0 O~~~~~~~~~~ -________________-- - -- - --
- 0. _ 11 11 -a 0 2 4 6 8 10 12 14 Operating time {years}
-I"a" - Tip -- Uniforrn
----- Ia" - Tip Linear Ia" - *Tip-- Quadratic "a" - Tip Cubic
- "c" - T
""- Tip Uniform
-- Quadratic ip --
-~~~~"c'
- Tip -- Linear
-- - "c" - Tip -- Quadratic "c" -Tip--Cubic
ENCLOSURE 3 CNRO-2003-00035 LICENSEE-IDENTIFIED COMMITMENTS
LICENSEE-IDENTIFIED COMMITMENTS TYPE (Check one) SCHEDULED ONE-TIME CONTINUING COMPLETION COMMITMENT ACTION COMPLIANCE DATE
- 1. Entergy will provide in the 60-day report 60 days after for ANO-2, as required by the Order, startup from the specific inspection information; i.e., extent next refueling of inspections and results of those outage inspections.
- 2. If the NRC staff finds that the crack-growth 1 Within 30 days after formula In MRP-55 is unacceptable, the NRC informs Entergy shall revise its analysis that Entergy of an NRC-justifies relaxation of the Order within 30 approved crack-days after the NRC informs Entergy of an growth formula.
NRC-approved crack-growth formula.
- 3. If Entergy's revised analysis (#2, above) I Within 72 hours shows that the crack growth acceptance from completing the criteria are exceeded prior to the end of revised analysis in Operating Cycle 17 (following the #2, above.
upcoming refueling outage), Entergy will, within 72 hours, submit to the NRC written justification for continued operation.
- 4. If the revised analysis (#2, above) shows Within 30 days from that the crack growth acceptance criteria completing the are exceeded during the subsequent revised analysis in operating cycle, Entergy shall, within 30 #2, above.
days, submit the revised analysis for NRC review.
- 5. If the revised analysis (#2, above) shows I Within 30 days from that the crack growth acceptance criteria completing the are not exceeded during either Operating revised analysis in Cycle 17 or the subsequent operating #2, above.
cycle, Entergy shall, within 30 days, submit a letter to the NRC confirming that is analysis has been revised.
- 6. Any future crack-growth analyses N/A performed for Operating Cycle 17 and future cycles for RPV head penetrations will be based on an acceptable crack growth rate formula.
Page 1 of 1}}