ML20003C620

From kanterella
Revision as of 23:41, 17 February 2020 by StriderTol (talk | contribs) (StriderTol Bot change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Ro:On 810217,discovered That Activation of Electrical Connections for Two Panel Lights Prevented Console Switch from Disconnecting Power from Control Rods.Caused by Faulty Installation.Lights Were Reconnected to Separate Power
ML20003C620
Person / Time
Site: Pennsylvania State University
Issue date: 02/27/1981
From: Levine S
PENNSYLVANIA STATE UNIV., UNIVERSITY PARK, PA
To: John Miller
Office of Nuclear Reactor Regulation
References
NUDOCS 8103060609
Download: ML20003C620 (45)


Text

/

s y

THE PENNSYLVANI A ST ATE U NIVERSITY A 16802 LNIVERSITY PARK.\\.

PEW ~ I College of Engineering /'. N' Area cae m Breneale Nuclear Reactor =65-6351 February 27, 1981

/e:%

9fhv Q

+ w b

~

Q -

k

% 5 Mr. James R. Miller Standardization and Special 4 Projects Branch Division of Licensing Nuclear Regulatory Commission Washington, D.C. 20555 Docket No.: 50-5 NRC License: R-2

Subject:

Initial problem when electric lights were substituted for a " tag-out" system on control panel

Dear Mr. Miller:

On February 17, 1981, 11:30 a.m., it was discovered that the electrical connections to four new panel lights, when activated, prevented the con-sole switch from disconnecting power from the control rods. These new panel lights were connected the afternoon of February 16, 1981 and were installed to replace a " tag-out" system on the console control panel.

The safety circuits and scrams were not affected by the panel light connections and all other aspects of the control system were operating normally.

Safety is of prime importance to the reactor operating staff of the Breaceale Nuclear Reactor, and our overall operational procedures are continually being reviewed and modifications made to improve the opera-tional Jafety of the facility. On February 16, 1981 we had completed an additional safety modification to our facility which should not have involved any of our control or safety instrumentation. Four push button panel lights were installed at the console to inform the operator when

1) the core screen for the reactor was removed, 2) when source is removed from the core, 3) when the beam port plug is removed and 4) when a person is on the roof of the reactor facility. It was initially decided to have the panel lights turned on or off by the console power switch. The electronics technician studied the schematic diagram for the console and N determinea that a transformer supplying power to the reactor enunciator 3 lights would not affect the operation of the control system, if the new panel lights were also connected to this transformer. After installing the system, it was checked and appeared to work satisfactorily. /[

The reactor was shut down before the panel light installation was completed on February 16, 1981 and not operated until the next morning. On February 17, 1981, af ter the morning operation was completed, the reactor operator turned the key switch to the off position and alertly noted that the pulse rod air power supply did not shut off. After notifying reactor management, the panel light wiring connections were studied. It was then determined 5 8nsoeoec t .

s

- s..

Mr. James R. Miller Page 2 that the lights were actually connected across the key switch thus by-

- passing the switch through the light bulbs. _ However, when the power switch to the console was turned off, all control rods would be scrammed and the system could not operate until the console key switch was used again to reset the scram systems. At no time was'the system left unattended with the key switch in the off position and the console power on. It is standard procedure to turn the power to the console off when the console 4

switch is turned off.

The panel lights are now connected'to a. separate power supply and the system checked to operate satisfactorily.

Sincerely,

,s a, <.

~~ m ._ _ u o

'S. H. Levine, Director Breazeale Nuclear Reactor Professor of Nuclear Engineering

.SHL:r cc: R. G. Cunningham I. B.-McMaster N. J. Palladino F. J. Remick W. F. Witzig r

I' l 1

e

.4 Card groups 7 and 8 are self-explanatory. Ihe average boron micro-scopic cross sections for the fast, epithermal, and thermal groups are-specified in card group 9. These cross-sections were'obtained for a typical-TRICA flux spectrum.

' Card group 10 gives the moderator (water) density in gm/cc. Card group-

-11 consist of ten cards because ten burnup steps are analyzed. Since the TRICA reactor does not use soluble boron posion, the entries are all zero.

In the more general case where burnable boron is in the core, the equivalent soluble boron (poison) is placed in the moderator (water). The volume fractions of water in the various regions are specified in card group 12 to handle the more general case. In -the example for the TRICA core it is zero everywhere.

Card groups 13 and 14 are optional and need to be included only if these options are use*. In this case the poison search option is not used, and the card group 14 " 'ot included. Immediately after card group 13, the ADD decks from MUGDET, & ositioned followed by a card with /*.

8.2 Analysing a PWR (TMI-1)

The Three Mile-Island U; nit 1 (TMI-1) reactor has been selected for analysis.

It is probably one of the more difficult PWR cores to analyze because the reactor operates with control rods fully and partially inserted into the core, and the_ initial core incorporates burnable boron. The TMI-1, is a 2535 MWt YWR operating on the east shore of the Susquehanna River in Dauphin County, Pennsylvani (near Harrisburg, Pa.).

The TMI-l fuel assemblies consist of a 15 x 15 array of pins occupying an area 8.52 in. x 8.52 in. Of the 225 pins, 208 are fuel rods, the central pin is for a neutron sensitive instrument, and the other 16 pins are for control or lef t unused to be filled with the reactor coolant water. The fuel assemblies themselve,s are spaced on a pitch of 8.587 in. having a thin slab of water surrounding each fuel assembly. Eight grid plates per fuel assembly are used to hold the pins in position and they are spaced vertically every 16 inches. A top view of a fuel assembly is shown schematically in Fig. 8-4. The dimensions and material compositions of each of the different cell types are given in Fig. 8-5. The core thermal hydraulic design data are given in Table 8-4.

At startup, the cycle 1 core consists of 177 assemblies of which 56 are 2.06 w/o, 60 are 3.05 w/o, and 61 are 2.74 w/o enriched. Several of the 2.747 and 3.05 w/o assemblies are provided with burnable posion pins in the f o rm o f4B C in A1 03 to control the cycle 1 excess reactivity and flatten the power distribution. Figure 8-6 gives a 1/8 core map showing the cycle 1 loading pattern. Fully inserted coatrol rods are in assemblies in positions 1 and 20, and partial height control rods are inserted in position 18. The type of fuel assembly in each location is as indicated in Fig. 8-6.

8.2.1 Sample Problem for a LEOPARD Calculation Generate group constants with the LEOPARD code for the TMI-l fuel '

assemblies 337

c

- s. , ,

a t

f i:

+

k i

f f

i l l l 4 Extraneous Moderator e e  : Fuel Cell e e

- Control Cell

e e 1 e W" .

C" Instru=ent Cell j

. . .. I j.

1 I II i l  ! l l l.! l

. l .. I i

, I I i P f I

i h B.52 in, d i

+

1 l

.': 8.587 in, q' t

Figure 8-4 Assembly Map Showing Locations of Cell +

Types, b*ater Cap, and Dimensions 338 s - ,. , , - , , - - -

o.

_g'. 's" C

Key m A = Moderator B . Cladding

,, C = Void

. f .

0.568 D = Fuel 0.37. 0. t. 30 E - Guide Tube A I D 1 I. y ,= Control Rod g' C = Instru:nents

- + All Dimensions Are In Inches

a. Fuel Cell J

B A

' ~

N\\'N, , ..

4 N +  : _

0.36 0'

.h

. . \

tb a' Bt>

s.

o >>

b. Cdntrol Cell
\ "

A .,

0.493 0,55 G

I

  • 0.568 O.498
c. Instru=ent Cell 4

Figure 8-5 Cell Types 139

) d Sk.- = - ak e L haS A d

~

6 s'

Table 8-4. Core Design,-Thermal, and Hydraulic Data

-1 Reactor-De51gn Heat Output, MWt 2,535 Vessel ~ Coolant Inlet Temperature, F _554

) Vessel Coolant Outlet Temperature, F 603.8 4 Core Outlet Temperature, F- 606.2  ;

Core Operating Pressure .psig . - 2,185  ;

Core and Fuel ' Assemblies Total No.'of Fuel-Assemblies in Core' '177 No. of ' Fuel Rods - per Fuel Assembly _

208 ,

No. of Control Rod Guide Tubes per-Assembly 16 No.'of In-Core Instr.-Positions per Fuel Assembly 1 ,

Fuel Rod Outside Diameter, in. 0.430 Cladding Thickness, in. 0.0265

' Fuel Rod Pitch, in. _

-0.568 [

Fuel Assembly Pitch Spacing, in. 8.587 F j- Unit Cell Metal / Water Ratio (Volume Basis) 0.82

Cladding Material Zircaloy-4 (Cold Worked)

}

Fuel-Material U0,

{. Form Dished-End, Cylindrical. Pellets Pellet Dia=eter, in. 0.370-Active Length, in. '

144 Density, % of theoretical 92.5 i

Heat Transfer and Fluid Flow at Design Power 2

49,734 Total Heat Transfer Surface in Core, ft Average Heat Flux, Bru/h-ft 2

171,470 '

Maximum Heat Flux, Btu /h-ft 534,440

-Average Power Density in Core, kW/1 83.39

'.. Average Thermal Cutput, kW/ft of Fuel Rod 5.66

! Maximum Thermal Cutput, kW/ft of Fuel Rod 17.63 -

>bximum Cladding Surface Temperature, F 654 Average Core Fuel Temperature, F 1,280  !

Maximum Fuel Central Temperature at Hot Spot, F 4,220 Total Reactor Coolant. Flow, lb/h 131.32 x 10 6  !

Core Flow Area (Effective for Heat Transfer), ,

, ft' 49.19 i Core Coolant Average Velocity, fps 15.73 )

Coolant Outlet Temperature at Hot Channel, F 647.1 ,

Power Distribution [

i Maximum / Average Power Ratio, Radial x Local (Fah I j Nuclear) 1.78 i Maximum / Average Power Ratio, Axial (F

  • Nuclear) 1.70 Overall Power Ratio (F Nuclear) 3.03 Power Generated in Fue3 and Cladding, % 97.3 l

1=

l 340 d -- , , ,, , -,m,r r w -*~-wr ee r www. m v- o -e- e*-9 '% -e v m<-vy.- -*r- ---*y -m

. .. i Nuclear Design Data

,1 Fuel Assembly Volume Fractions -

Fuel' 0.303 Moderator- 0.580  ;

_Zircaloy 0.102 -!

Stainless Steel 0.003 i Void 0.012  ;

1.000 ,  !

Total UO2 (BOL, First' Core) '

l i'

Metric Tons 93.1 i

Core Dimensions,~in. .j

._ Equivalent. Diameter 128.9 Active Height 144.0

.l Unit Cell'H,0/U. Atomic Ratio (Fuel Asse=bly)  !

Cold- 2.88 '!

Hot 2.06 r i

! Full-Power Lifetime, days First Cycle 460  :

Each Succeeding Cycle 310 [

Fuel Irradiation, mwd /MTU l First Cycle' Average 14,400 I Succeeding Cycle Average 9,700 l 4 .-

Fuel Loading, we % 235U Core Average Firs" c.rcle 2.62 C

Control Data Control Rod Material Ag-In-Cd f No. of Full-Length CRA's 61 I No. of APSR's 8 Worth of 61 Full-Length CRA's (Ak/k)% 11.1  !

Control Rod Cladding Material SS 304 e

j 2

f r

a i i i

I i

341

. . - - - . _. _ _ . - . . _ ___ . _.. . . ~ - . _ . . . . .-e .. . . _ _ _ , _ . .. _ ,

q

, 1 2 3 4 5 6 7 8 B E A D A D G. G 9 10 11 12 13 ' 14 15

, A E A D A E- G l

16 17 18 19 - 20 21 A C I D 11 G 22 23 24 25.

+~

w A C A C 26 27 28 A F G y W: Position 29 X: Assembly Type E = 2.747 w/o; 0.062 gas Baron /in '

X-A = 2.06 w/o G F.= 3.05 w/o; 0.054 gms-Boron /in B - 2.747 w/o; Fully inserted control rod C = 3.05 w/o ,

C=2.747 w/o; 0.047 gms Boron /In 11 = 3.05 w/o; Fully inserted control.

D = 2.747 w/o; . 0.054 gms Baron /in rod I = 2.06 w/o; Partial control rod <

Figure 8-6 One-Eighth Core Map Showing TMI Cycle 1 at BOC

-.+, a.-w- .- --.-- e- -

-e ,w, s v m er r -- ww w w w n------ -- - . .-e.- s

~

s; a) 2.747 w/o U-235 with 500 ppm soluble boron b) 2.06 w/o U-235 with 500 ppm soluble' boron, and 1

c) pure water _with 500 ppm soluble boron '

The sample input data for a) and c) are given in Table 8-5; sample problem.

b) is identical to a), except in the seventh card the 0.02747 should be replaced '

by 0.0206. Referring'to the code manual for LEOPARD input instructions,.we' note that the-first card is a title card and the second is one for options. The ,

third set of, cards contain the composition description _ cards. LEOPARD assumes .

that a fuel cell consists of four regions as shown below. ,

g A: extra region c 3 B: moderator ,

D C: clad i D: fuel I

In .the composition description cards the volu=etric composition for  !

each of the regions is specified. For the dimension of a fuel cell as shown in Fig. 8-Sa, the calculation of volume fraction for the pellet, clad, and  ;

moderator region of the fuel cell is straight-forward, but the extra region includes the non-lattice part of the assembly. For example, the control cells, instrucent cell, and extraneous moderator as shown in Fig. 8-4 and its'volu=etric  !

composition is calculated in the following manner:  ;

i' j Extra Region Volumetric Comcosition Total assembly area,T = (8.587)2 '

= 73.74 in Unit fuel cell area,U = 0.568 x 0.568 [

= 0.3226 in Non-lattice area,NLV = T-(208 x U) 2 i

= 6.631 in ,

Non-lattice fraction,NLF = NLV/T r

= 0.0899  !

k'ater area in the extraneous moderator region = T-(225 x U)

= 1.1462 As given in Fig. 8-5b and 8-5c the composition of the instrument cell and the control cell is as follows.

i  !

I'

TABLE 8-5 1 2 3 4 5 6 7 123456789012345678901234567890123456789012345678901234567890123456789012 LEOPARD SAMPLE PROBLEM 2.747W/0 TMI FUEL ASSEMBLY

' 1 0 1 0 0 1 ' 1 1 0 0 0 0 1 00 00 00 1 99 1.0 0.0 0. 0 0. 0

. 3 0.0 0.891 0.0 0.07455 100 0.0 0.0 1. 0 0.90421 777 18 -0.027470 29 500.

777 1280. 1280. 650. 580. 0.000275 1.0

.185 .215 .568 1.0 1.0 .0899 2200. 0.0 0.925 O. O. 0.625 LEOPARD SAMPLE PROBLEM PURE WATER 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 0 100 1.0 1.0 1. 0 777 29 500.

777 580. 580. 580. 580. 0.000275 3.185 0.215 0.568 1. 0 1.0 0.0 2200. 0.0 0.0 0. 0 0. 0 0.625 344

o Instrument cell:

CCentralvoidarea=f(0.441) 2

= 0.1528 in 2

B Cladding (Zr-4) = 0.03814 in 2

E Cuide tube (Zr-4) = 0.0428 in A Wat'er = 0.08893 in Control cell:

2 F Central region area = 0.09079 in C Void = 0.010995 in B Cladding = 0.04343 in E Cuide tube (Zr-4) = 0.02584 in 9

A Water = 0.15257 in' In the absence of control rods the regions F, C, and B are filled with water moderator. Thus the composition of the extra region is Zr - 4 = 16 x 0.02584 + 0.0428 + 0.03814,

= 0.49438 in ,

2 Void = 0.15274 in ,

Water = 16 x 0.29778 + 0.08893 + 1.1462,

= 5.9996 in .

The extra region volume fractions are, therefore, Zr-4 = 0.07455, Void = 0.02303, Water = 0.9024 Thus the volumetric composition data for the TMI fuel assembly are 345

P I

a. Pellet 100 % UO 2 ,
b. Clad & Void 89.1% Zr-4, 10.9% void ,

i

c. Moderator 100% H O -

2

d. Extra 90.241% H2 0, 7.455% Zr-4, 2.3% Void- .

The next set of cards specifies the trace element compositions. In the  !

given problem the trace elements are U-235 and boron-10. Since U-235 is 2.747 w/o t enriched, the enrichment is given as -0.02747. This set of cards i,s followed by ,

the design parameters of the reactor core. All the design data need'd e for the .

problem are tabulated in Table 3-4. The buckling of the core is obtained as follows:

Buckling The reactor core is considered as a cylinder of 1

equivalent diameter D = 128.9 inch  !

height H = 12 feet It is further assumed that the reactor has 6 reflector savings in the axial direction and similar reflector savings in the radial direction. The i buckling is then given by  ;

  • i B = (H+26 ) + (2.405)'

R+6- ' '

where R is the equivalent radius of the core and 6 is the reflector savings.

For a typical PWR core, 6 is nearly 5 cm. Thus B = 0.000275 cm -2 ,

The last set of cards in LEOPARD is for the burnout calculation which 4

is not needed for this problem because no depletion analysis is required.

8.2.2 Sample Problem Using the FOG Code  !

The FOG code is used to analyze a cylindrical core having the same number i of fuel assemblies, 177, as the TMI-l core. Only two different types of fuel assemblies make up the core - the 2.06 w/o U-235 fuel and the 2.747 w/o U-235 fuel. The inner part of the core contains the equivalent of 89 fuel assemblies 2.06 w/o and the outer core contains the equivalent of 88 fuel assemblies  !

2.747 w/o. The core is surrounded with 30 cm of water reflector as shown in  !

Fig. 8-7.

346  ;

1 b

- -__ __:_ _ _ _ _ , _e. . . . - -. ..

m l 2 3 4 5

/  !

f P

i I: 2.06 w/o Fuel Assemblies (45)

, . 2 : 2.06 w/o Fuel Assemblies (44)

3 : 2.747 w/o Fuel Assemblies (44) l l

4 : 2.747 w/o Fuel Assemblies (44) '

l 5 : Woter ,

I L l

t Fig. 8-7 Cylindrical Core for FOG Calculation l- M7 i

The core can be considered to be a cylindrical two fuel region core of-the TMI-l design. The purpose of the analysis.is to obtain the core k and the' normalized power for four regions of the core; the first innerregY$nhas

~

fuel assemblies, and the three other regions each have 44 fuel assemblies as shown in Fig. 8-7. Group constants found in Section 8.2.1 are used as input for the FOG problem as shown in Table 8-6. Again one should refer to the F0G code manual to understand and follow the data in Table 8-6.

The first card.is a. title catd and the next five cards make up the option set of cards. The third card set consists of the' floating point data which includes the design parameters and the macroscopic cross-sections. The first card in this set is the flux convergence criterion chosen. The second:and third c'ard gives the region widths which are obtained as follows: ,

~Each fuel assembly area A = 8.587 x 8.587

= 73.736 in' Region 1 area = 45A

= 3318.14 in 2 Equivalent Region 1 radius = 82.569 cn, which is the width of inner region 1. Similarly the widths ~for the regions 2, 3, and 4 are obtained which are 33.55 cm, 25.23 cm, and 21.78 cm, respectively.

A width of 30 cm is used for the water reflector, region 5.

~

The axial buckling is B  ; the initial source

= (H+25) = .0000699 cm guess, and the values of X for the fast and thermal group are specified in the next three cards.

Tha last se' of cards input the macroscopic cross sections as obtained from the LEOPARD runs.

8.2.3 Sample Problem Using the EXTERMINATOR-2 Code The EXT-2 computer code is used to analyse the simple core configuration of Fig. 8-8. Figure 8-8 is a " square" core contiguration (1/4 core) image of the cylindricized core analyzed in Section 8.2.2. In this case, the X-Y geometry option of EXT-2 is used to analyze the four region core of Fig. 3-8. Figure.8-8 also shows the mesh intervals used in the sample problem. The input data.used to solve this problem with the EXT-2 computer code are given in Table 8-7.

Again one must refer to the EXT-2 code manual for the detailed input instruction:

The first card is the title card and the second card is the option card. The third card is the specification card and the inputs for this card are self-explanatory. It is assu=ed that all the neutrons are born in the fast group.

Thus the input in column 1-8 of the fission spectrum card 9 is 1.0. The fifth card set inputs the buckling. For this problem, buckling is assumed group independent, therefore, there is only one entry. The calculation of buckling 348 b

i.

TABLE 8-6 ,

1 2 3 4 5 6 7  !

123456789012345678901234567890123456 ;' E 9012345678901234567890123456789012 t

1 ***** FOG SAMPLE PROBLEM 1 2 2 0 0 1 7 5 30 20 20 20 12 10 .

'63 2 1 150 100 1 0.0001 1 7 0. 0 82.569 33.55 25.83 21 76  :

12 30.0 =!

50 .00004238 t 90 1.0 1.0 1.0 1.0 0.0 395 1.0 0.0 '

600.1705102E-01.1705102E-01.1636849E-01.163684 9E-01 348 3288E-01 ,

800. 5133592 E-02. 5133592 E-02. 6023671 E-02. 6023671 E-02 0.0 l 840. 9646618 E 41. 9646618E-01.1236645 E -00.1236645 E-00 0.0  !

1000,8520111E-02.8520111E 'd.8939676E-02.8939676E-02.7916659E-03 1040. 6694 7 70E-01. 6694 770E % . 795 4031E-01. 7954031 E-01.192 5360E-01 i 1200 1.4566450 1.4566450 1.4501448 1.4501448 1.8578272  !

1 1240 .3890600 .3890KO .3885857 .3885857 .2804990 [

I 4

s i

1 t

i I

i r

i 4

i s

T f 5 I 349

-.w, - - - - . , - - , . -- ---- --- , , , , . , , , ,

?

t.

t t

TABLE 8-7  ;

1 2 3 4 5 6 7 .

i 123456739012345678901234567890123456789012345678901234567890123456789012  ;

I EXTERMINATOR SAMPLE PROBLEM 111111 2 300 26 26 2 3 3 1 11 . 0001 1.0E12-1.0 0.0 - ,

1

.0000424 - -

7.7005 11 7.432 15 7.63 18 6.44 21 6.0 26 l l 7.7005 11 7 432 15 7.63 18 6.44 21 6.0 26  ;

3 1 26 1 26 2 1 21 1 21 1 1 15 1 15  ;

1. 11.4566441 0.01705102 .00852011 .00513359  ;

0.0 1.0  !

1 2 .38905996 0.0 . 06694770 .09646618  !

0.0 0.0 2 11.4501448 .01636849 00893968 .00602367 0.0 1.0 -

i 2 2 .3885857 00 . 07954031 .1236645  !

0.0 0.0 1 3 11.8578272 .03483288 .00079167 0.0  ;

0.0 1.0 e 3 2 .2504990 0.0 . 01925360 0.0  ;

i 0.0 0.0 t

t I

t I

I f

I I

i l

350

-g --., *--y r y -ar -+t -9  !,.,.


.g-m9y--mp--.--y-y i N --.F-gm. . - ----wg ,emy --

pp, w. .

w-w-- ,wwy,rv- aw-g- y

ZCB

73.155 = + 29.73 - ~22.89 + +19.32 + ~ 30 =

2.06 w/o 45 Fuel Assemblies Region l 2.06 w/o 44 Fuel Assemblies Region 2 2.747 w/o 44 Fuel Assemblies Region 3 ZFB

/

2.747 w/o 44 Fuel Assemblies Region 4 WATER-REFLECTOR Region 5 1 1 1 I I I I I I

+ ZCB \ B 7.7005 7.432 7.63 6.44 6.0 ZFB = Zero Flux Boundory ZCB = Zero Current Boundory Fig. 8-8 Sample Problem with Square Core 351

( . .

I i

i is shown in problem 8.2.2 (above).

The next set of cards is'the mesh specification >

cards. In quarter core symmetry, the ZCB (sce Fig. 8-8) at the center is a  :

l half mesh vidth outside of the core boundary. To account for this, the mesh width for region 1 is found as follows-

{

Region i width'= 73.155 cm J

l Mesh intevals in Region 1 = 9.5 ,

1 Mesh width for Region 1 *

= 73.155 9.5 ,

t

= 7.7005 cm ,

l r

The composition specification is given in card group 7. The last set of I cards contains the macroscopic data cards. The macroscopic cross-sec; ions are

- obtained from the LEOPARD runs of problem 8.2.1 (above).

2 8.2.4 Sample Problem Using the PFMP In this problem the TMI-l core is depleted with the PFMP following the actual core operational history. At the beginning of the first reactor cycle.

- the core requires 10 separate LEOPARD runs to describe the different regions in the core as shown in Fig. S-6 and presented in Tabla 8-8. A fully inserted j control rod is initially in core position 20 (actually a bank of 8 control rods).

j At a BU of 7931 mwd /MTU, th se rods are withdrawn from the core and control l rods are inserted into core positions 7 and 26. At a BU of 13,360 mwd /MTU all ,

centrol rods are fully withdrawn from the core. The control rod schedule is given in Table 8-9. A special partial height control rod for controlling the f

axial power dirtrih2 tion is inserted into core position 18 and remains in the core.for the full reactor cycle.

The first task is to generate group constants as a function of exposure or ,

burnup for each of the 10 different core regions using the boron let down schedule given in Fig. 8-9. The three control rod changes made during the first reactor cycle requires a three step process for generating group constants for those fuel regions in which the control rods were moved *. Table 8-10 through 8-19 lists the input data for all 10 different regions. As explained in Section 4, the PSU LEOPARD input sightly modifies the standard LEOPARD input. In column  ;

66 of the second card, there is a 4 which is a flag that PSU LEOPARD is being  ;

7 activated. All curve fitting will be performed with a polynomial of degree four

unless the number of steps justifies automatic lowering of this number. The i analysis of the 3 steps of the 1st cycle is given below.

I- .

L Step 1, Cycle 1 (f rom BOC (O mwd /MTU) to 7931 mwd /MTU). '

From .the core map of Cycle 1 (Fig. 8-6), note that nine (9) dif ferent

, types of fuel assemblies _ are used in che core. In addition, the core is t- i A new improved model of the PFMP does not require the three step process.

i The new model was not completed in time to be included as part of this chapter. i 352

..,_q._, mi--, .e__ - . . . . , _ _ - s - - -.-- y. , - - , . - . . . m y. . ~ ,,.,.,,.v,. . . , , , . ,w. - . . ,, . , _.,--

Table 8-8. Composition of the Various Core Regions.

ADD ID Description 550 Water-reflector 551 2.06 w/o fuel assembly 553 2.747 w/o; 0.047 gms baron /in 554 2.747 w/o; 0.054 gms boron /in 555 2.747 w/o; 0.062 gas boron /in 556 3.0.t w/o fuel assembly 557 3.05 w/o; 0.054 gms boron /in 561 2.06 w/o; partial control rod 562 2.747 w/o; fully inserted control rod 566 3.05 w/o; fully inserted control rod 353

T Table 8-9. Burnable Boron Depletion Data

.062 gm/in .054 gm/in .047 gm/in Step Length Step # . Burnable Boron Burnable Soron Burnable Boron

( d/MTU) (pp3) (ppg) (ppg) 1 1 25 1195 1101 1007 2- 25 1191 1098 1006 I

3 25 1188 1096 1005

, 4 25 1186 1093 1004 5 .01 1182 1089 1002 6 100 1182 1089 1002 7 15'O 1170 1082 983 8 150 1160 1080 970 9 .01 1140 1 058 960 J

10 500 1140 1058 960 11 1000 '1100 1005 908 12- 2000 995 900 810 13 2000 780 678 506 14 2000 570 481 440

15 2000- 421 360 309 4

j 16 2000 306 260 206

_ 17 2400 202 170 111

! 18 2000 106 101 40 j 19 2000 60 60 30 4

20 .01 50 50 20 G

l i

i 354 1

1

, 1,400 -

CYCLE I

~

3

n. -

E z l.2OO k 9 -

s -

m Q I,000 -

w o

z -

O 800 -

z I CONTROL ROD INTERCHANGE o

4 m 600 -

w d

o

_J o

m 400 -

i FULL CONTROL p -

RODS REMOVED U

i b 200 -

C O

i i i i i e i I I i e e i e i i e o 4,000 8,000 12,000 16,000 BURNUP MWD /MTU Fig. 8-9 Boron Let Down Schedule for TI-Unit 1, Cycle 1

surrounded with'a water reflector. In order to represent all of these ,

different materials in the core, PSU-LEOPARD is run for each of them and ADDS defining their cross-sections with burnup are obtained. Table 8-8 con-tains the description of each of these materials and the ADD numbers used ,

for them.

As discussed in Chapter 4, section 3, in PSU-LEOPARD the control rods and burnable boron are simulated as ppm boron concentration in the moderator based on the equations derived in-Section 4.3. Given below is the calculation for 0.047 gms/in burnable boron.

0.047 gm/in - Burnable Boron For 44 = &g Eq.-(4-191) reduces to y H, B ce11 ,

M *

' BW*

(vy 4+vy) i l 16g NB ^p vy i

- I where e BC Y" _ ,

"M L  ;

I

= .968 .

i Substituting in Eq. (4-192B) yields h

16 g N ^

Bp 6 PPMBB = y ,

.W B* *

., W H O ,y a 2

for 0.047 gs/in burnable boron, i g = 0.58, N

  • r B"
  • Cm 3

t W

. B " Ib*011' 2

A = 0.585754 cm , ,

-2 p 2

Vg = 247.4 cm , ,

0 PPMBB = 16(.58)(1.75994 x 1021)(0.585754)(.968)(10.811)(10 ) '

(247.4)(.667)(.6023 x 1024)

. = 1007.  !

356

Similarly for 0.054 gms/in and 0.062 gms/in the equivalent soluble boron in ppm is, respectively, 1101 and 1195.

Full control rod = 3000 ppm Partial Control rod = 700 ppm 0.047 gms Boron /in = 1007 ppm 0.054 gms. Boron /in = 1101 ppm 0.062 gms Boron /in = 1195 ppa Further since the burnable boron depletes with burnup, a depletion calcu-lation as discussed in Chapter 4 needs to be made. Table 8-9 gives such depletion data.

Table 8-10 through 8-19 list the input for PSU-LEOPARD to obtain the ADDS listed in Table 8-8. Once all the ADDS are obtained, SCAR for the step 1 of cycle 1 can now be run. Table 8-20 lists the input for PSU-SCAR for step 1.

To prepare the input cards for PSU-SCAR, one must refer to the PFMP manual.

The first card is the title card. The second card (AL) is the allocate data card. The next set of data classes can be entered in any order. In Table 8-20, in the third card (ST), depletion step lengths are input. The fourth card (BL) inputs the boron letdown schedule and the fifth lists the printing optiens. The next two cards (MA) input the material composition identification by ADD numbers.

The actual burnups of the asgeablies at the beginning of step 1 are input in card (CB). The axial buckling B ' is input in the next card identified as BU. The axial buckling is obtained 5s follows: .

B

= (H 26) '

where H is the height of the core including the reflector savings in the axial direction.

H = height of the core

= 12 ft

= 365.76 cm 6 = reflector saving

= 5 cm H+26 = 365.76 + 10

= 375.76 cm B

-5 -2

= (H 26) = 6.99 x 10 357

TABLE'8-10 1 2 3 4 5 6 7 123456789012345678901234567890123456789012345678901234567890123456789012 TMI WATER REFLECTOR ADD 550 1 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 4 100 .70 .70 .70 304 -

.30 .30 .30

. 777 29 1490.

777 554. 554. 554. 554. 0.000279 1.00 0.185 0.215 1.136 0.0 2199.7 0.925

1. 80.2 1 0. 1490. -550 2 0. 1350.

3 0. 1200.

4 0.- 1100.

5 0. 1000.

6 0. 900.

7 0. 800.

8 0. 700.

9 0. 600.

10 0. 500.

11 0. 400.

12 0. 300.

13 0. 200.

14 0. 100.

15 0. O.

777 s

358

. +

l 7

t f

TABLE 8-11 1- 2 3 4 5 6 7 r 123456789012345678901234567890123456789012345678901234567890123456789012 2.06 W/0 FUEL ASSEMBLY ADD 551 1 0'1 0 0 1 1 0 l) 0 0 0 1 1 0 0 4 099 1. ~

003 .891 .07455 100 1. .90421 777 i 18 .0206

  • 29 1490.

777 .

1280. 1280. 650. 580. .000279 1.00  ;

.185 .215 .568 1. 1. .08992 2200. O. 925 .925 .925 .625 -

1. 82.2 l 1 -25. 1490. -551 1 2 -25. 1400.

3 -25. 1310.

4 -25. 1220.

5 .01 1210.  ;

6 -100. 1210. 2 i 7 -150. 1200. '

8 -150. 1190.

  • 9 .01 1180.

10 -500. 1180. 3  ;

11 -1000. 1170. l 12 -2000. 1060. t 13 -2000. 1050.

, 14 -2000. 930.

15 -2000. 710.

16 -2000. 500. l l

l 17 -2400. 325.

1 18 -2000. 200.

4 19 -2000. 100.

20 .01 50.

j 777  ;

i I

1 1

1 359

  • A k

TABLE 8-12 1 2 3 4 5 6 7 123456789012345678901234567890123456789012345678901234567890123456789012 2.747 W/0 0.047 GMS BORON /IN ADD 553  :

1 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 4 i 99 -

1.0 3 .891 .1794 100 1.0 .5520 9 .1498 '

4 .001202 l 2 .01344 777 18 .02747 ,

'29 2497.

777 1280. 1280. 650. 580. .000279 1.00 .

.185 .215 .568 1. 1. .08992 2200. O. .925 .925 .925 .625

1. . 82.2 1 -25. 1490. 1007. -553 2 -25. 1400. 1006.

3 -25. 1310. 1005.

4 -25. 1220. 1004.

5 .01 1210. 1002.

6 -100. 1210. 1002. 2 7 -150. 1200. 983.

8 -150. 1190. 970.

9 .01 1180. 960.

10 -500. 1180. 960. 3 11 -1000. 1170. 908.

12 -2000. 1060. 310.

13 -2000. 1050. 606.

14 -2000. 930. 440.

15 -2000. 710. 309.

16 -2000. 500. 206.

17 -2400. 325. 111.

18 -2000. 200. 40.

19 -2000. 100. 30.

20 .01 50. 20.

777 360 l

l w

TABLE 8-13 1- 2 3 4 5 6 7 123456789012345678901234567890123456789012345678901234567890123456789012 2.747 W/0 0.054 CMS BORON /IN ADD 554 1 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 4 99 1.0 3 .891 .1794 100 1.0 .5520 9 .1494 4 .001374 2 .01341 777 18 .02747 29 2591.

777 1280. 1280. 650. 580. .000279 1.00

.185 .215 .568 1. 1. .08992 2200. O. .925 .925 .925 .625

1. 82.2 1 -25 1490. 1101. -554 2 -25. 1400. 1098.

3 -25. 1310. 1096.

4 -25. 1220. 1093.

5 .01 1210. 1089.

6 -100. 1210. 1089. 2 7 -150. 1200. 1080.

8 -150. 1190. 1072.

9 .01 1180. 1058.

10 -500. 1180. 1058. 3 11 -1000. 1170. 1005.

12 -2000. 1060. 900.

13 -2000. 1050. 678.

14 -2000. 930. 481.

15 -2000. 710. 360.

16 -2000. 500. 260.

17 -2400. 325. 170.

18 -2000. 200. 101.

19 -2000. 100. 60.

20 .01 50. 50.

777 l

361 t

I$ .

l .- ,

TABLE 8-14 i

1 2 3 4 5 6 7 123456789012345678901234567890123456789012345678901234567890123456789012 f

2.747 W/0' O.062 CMS 30RON/IN ADD 555

, 1 0 1 0 0. I 1 0 0 0 0 0 1 1 0 0 4 99 1.0 3 .891 .1794 '

100 1.0 .5520 9 .1491 4 .001579 2 .01338 777 18 .02747 29 2685.

777 -

1280. 1280. 650. 580. .000279 1.00

.185 .215 .568 1. 1. .08992 2200. D. .925 .925 .925 .625 ,.

~

1. 82.2 1 -25. 1490. 1195. -555 2 -25. 1400. 1191.

3 -25. 1310. 1188.

4 -25. 1220. 1186.

5 .01 1210. 1182.

6 -100. 1210. 1182. 2 7 -150. 1200. 1170. '

8 -150. 1190. 1160.

9 .01 1180. 1140.

10 -500. 1180. 1140. 3 11 -1000. 1170. 1100.  ;

12 -2000. 1060. 995.

13 -2000. 1050. 780. I 4

14 -2000. 930. 570.

15 -2000. 710. 421.

16 -2000. 500. 306.

17 -2400. 325. 202. '

i 18 -2000. 200. 106.

19 -2000. 100. 60.

20 .01 50. 50.

777 >

b e

I f

[

I l

\

J 362

TABLE 8-15 4

1 2 3 4 5 6 7 123456789012345678901234567890123456789012345678901234567890123456789012 3.05 W/0 FUEL ASSEMBLY ADD 556 1- 0 1 0 0 1 1 0 0 0 0 0. I 1 0 0 4 099 1. -

003 .891 .07455 100 1. . .90421 777 -

18 .0305 29 1490.

777

1280. 1280. 550. 580. .000279 1.00

.185 .215 .568 1. 1 .08992 2200. O. .925 .925 .925 .625

1. 82 2 4

1 -25. 1490. -556 2 -25. 1400.

3 -25. 1310. .

4 -25. 1220.

5 .01 1210.

6 -100. 1210. 2 7 -150. 1200.

8 -150. 1190.

9 .01 1180.

10 -500. 1180. 3

11 -1000. 1170.

12 -2000. 1060.

13 -2000. 1050.

14 -2000. 930.

15 -2000. 710.

16 -2000. 500.

17 -2400. 325.

18 -2000. 200.

19 -2000. 100.

20 .01 50.

777 i

e 4

4 4

363

.s ,

TABLE 8-16 1 2 3 4 5 6 7 123456789012345678901234567890123456789012345678901234567890123456789012 3.05 W/0 0.054 GMS/IN BORON ADD 557 1 0 1 0 01 1 0 0 0 0 0 1 1 0 0 4 99 10 3 .891 .1794 100 1.0 .5520 9 .1494 4 .001374 2 .01341 777 18 .0305

. 29 2591. '

I 777 1 1280. 1280. 650. 580. .000279 1.00

.185 .215 .568 1. 1. .08992

! 2200. O. .925 .925 925 .625

1. 82.2 1 -25. 1490. 1101. -557 2 -25. 1400. 1098.

3 -25. 1310. 1096.

4 -25. 1220. 1093.

5 .01 1210. 1089.

6 -100. 1210. 1089. 2 7 -150. 1200. 1080.

8 -150. 1190. 1072.

9 .01 1180. 1058.

10 -500. 1180. 1058. 3 11 -1000. 1170. 1005.

12 -2000. 1060. 900.

13 -2000. 1050. 678.

14 -2000. 930. 481.

15 -2000. 710. 360.

16 -2000. 500. 260.

17 -2400. 325. 170.

18 -2000. 200. 101.

19 -2000. 100. 60.

20 .01 50. 50.

777 364

+

TABLE 8-17 1 2 3 4 5 6 7 123456789012345678901234567890123456789012345678901234567890123456789012 2.06 W/0 PARTIAL CONTROL ROD ADD 561 L 1 01 0.01 1 0 0 0 0 0 1 1 0 0 4  :

099 1. (

003 .891 .07455 . l 100 1. .90421 777-  !

18 .0206 29 2190.

777 1280. 1280. 650. 580. .000279 1.00 i

.185 .215 .568 *

1. 1. .08992 2200. O. .925 . 925 925 .625 i
1. 82.2 t 1 -25. 1490. 700. -561 .

2 -25. 1400. 700. I 3 -25. 1310. 700.

4 -25. 1220. 700.

~5 .01 1210. 700. i 6 -100. 1210. 700. 2 7 -150. 1200. 700. t 8 -150. 1190. 700.

9 .01 1180. 700.

10 -500. 1180. 700. 3 L 11 -1000. 1170. 700.  !

12 -2000. 1060. 700. l 13 -2000. 1050. 700.

14 -2000. 930. 700.

15 -2000. 710. 700.

16 -2000. 500. 700. a 17 -2400. 325. 700. i 18 -2000. 200. 700.  !

19 -2000. 100. 700. '

20 .01 50. 700.

i 777 7 i

f i

i i

1 365

1 i

l TABLE 8-18 +

1 2 3 4 5 6 7 171456789012345678901234567890123456789012345678901234567890123456789012 4

'2.747 W/0 FULL CONTROL ROD ADD 562 1 0  !. 0 0 1 1 0 0 0 0 0 1 1 0 0 4 099 1.

003- .891 .2936 100 1.- .5520 -

304 .1048 777 I 18 .02747 29 4490. .

777 1280. .

1280. 650. 580. .000279 1.00 *

.185 .215 .568

  • 1. 1. .08392 '

2200. O. 925 .915 .925 .625

1. 82.2 1 -25. 1490. 3000. -562  :

2 .-25. 1400. 3000.  !

3 -25. 1310. 3000. '

4 -25. 1220. 3000.

5 .01 1210. 3000.  ;

4 6 -100. 1210. 3000. 2 7 -150. 1200. 3000.

8 -150. 1190. 3000. r 9 .01 1180. 3000. i 10 -500. 1180. 3000. 3 11 -1000. 1170. 3000. ,

12 -2000. 1060. 3000.

13 -2000. 1050. 3000. ,

14 -2000. 930. 3000.  ;

15 -2000. 710. 3000.

. 16 -2000. 500. 3000. i 17 -2400. 325. 3000.

18 -2000. 200.- 3000. .

19 -2000. 100. 3000. '

20 .01 50. 3000.

777 j

]

l 5  !

l 366 ,

- _ - , - - - , , - - - - - - - ,-,,- e

e- .

TABLE 8-19 1 2 3 4 5 6 7 123456789012345678901234567890123456789012345678901234567890123456789012 3.05 W/0 FULL CONTROL ROD ADD 566 1 0 1 0 0 1 1 00 0 0 0 1 1 0 0 4 099 1. -

003 .891 .2936 ,

100 - 1. .5520 304 1048 777 18 .0305 29 4490.

777 1280. 1280. 650. 580. .000279 1.00 ,

.185 .215 .568 .1. 1. .08992 i 2200. O. .925 .925 .925 .625

1. 82.2 1 -25. 1490. 3000. -566 2 -25, 1400. 3000. ,

3 -25. 1310. 3000.

4 -25. 1220. 3000.

5 .01 1210. 3000.

6 -100. 1210. 3000. 2 7 -150.- 1200. 3000.

8 -150. 1190. 3000.

9 .01 1180. 3000.

10 -500. 1180. 3000. 3 11 -1000. 1170. 3000.

12 -2000. 1060. 3000.

13 -2000. 1050. 3000.

14 -2000. 930. 3000.

15 -2000. 710. 3000.

16 -2000. 500. 3000.

17 -2400. 325. 3000.

18 -2000. 200. 3000.

19 -2000. 100. 3000.

20 .01 50. 3000.

777 4

4 36-

A B

TABLE 8-20 4 1 .. 2 3 4 5 6 7 r

~ 123456789012345678901234567890123456789012345678901234567890123456789012 {

THREE MILE ISLAND FIRST CYCLE STEP 1 Ir AL 9 30 30 32 0 0-

- ST 100. 518. 618.'926. 1100. 1371 1545 1753. .01  !

BL 1490. 1215 1190. 1185 1156. 1127 990. 854. 695. f PR 10*-1 t KA 562 555 551 554 551 554 556 556 551 555 551 554 551 555 556 551 553  ;

MA $61 554 566 556 551 553 551 556 551 557 556 556 550 550 550 r CB 32

  • 0.  !

BU 2

  • 7.1E-3
  • DX 3*4.362196 26*7.2703267 [

DY 3*4.362196 26*7 2703267 l

, OV 30 1 30 1 30 11414 2 1 4.4 7 314710 4141013  !

OV 5 1 4 13 16 6 1 4 16 19 7 1 4 19 22 8 1 4 22 25 24714 -i OV94747 10 4 7 7 10 11 4 7 10 13 12 4 7 13 16 13 4 7 16 19  !

10 7 10 4 7 16 7 10 7 10.

OV 14 4 7 19 22 15 4 7 22 25 371014  !

- 0V 17 7 10 10 13 18 7 10 13 16 19 7 10 16 19 20 7 10 19 22 i OV 21 7 10 22 25 4 10.13 1 4 11 10 13 4 7 17 10 13 7 10 '

OV 22 10 13 10 13 23 10 13 13 16 24 10 13 16 19 25 10 13 19 22 ,

OV 5 13 16 1 4 12 13 16 4 7 18 13 16 7.10 23 13 16 10 13  ;

OV 26 13 16 13 16 27 13 16 16 19 28 13 16 19 22 6161914 OV 13 16 19 4 7 19 1C 19 7 10 24 16 19 10 13 27 16 19 13 16 -

, OV 29 16 19 16 19 7 19 22 1 4 14 19 22 4 7 20 19 22 7 10 f OV 25 19 22 10 13 28 19.22 13 16 8 22 25 1 4 15 22 25 4 7 f OV 21 22 25 7 10 31 22 25 10 16 31 10 16 22 25 OV 32 16 19 19 22 32 19 22 16 19 t AD l

ADD DECKS s

e t

4 n

P e

368

.. . .- . _ . - . - . . .. . ~ . - . _ . .

The last set of cards needed for this problem is the mesh width description cards DX and DY and the mesh point composition overlay cards (OV). For.this problem a 4 x 4 mesh point configuration is used for the assemblies. The mesh j ' diagram-for quarter core is shown below ZCB I g 21.811cm 4- --

2.5 mesh spaces

' =

4 , . . . .

. . . . 3.0 mesh spaces 1 8 I

l 2.5 l 3.0 l mesh mesh ,

. spaces spaces Partial Quarter Core '

1 4

For the central assembly, the mesh widths are j

Ax = 21.811 [

2 x 2.5 i = 4.3622 cm.  ;

1 For all other assemblies the mesh vidths are

, i ax = 21.811 3

= 7.2703 cm.

Step 2, Cycle 1 (From 7931 Wd/MTU to 13,360 Wd/MTU)

New ADDS for assemblies in positions 20, 7 and 26 are needed because the control rods are interchanged in these positions. Since the burnup for these assemblies at the core average burnup of 7931 Wd/MTU is not known i i beforehand, the data obtained in scar of step 1 are consulted and exact i burnup for these assemblies can now be found; they are for positons 20, 7, l

', and 26, 5341 Wd/MTU, 9870 Wd/MTU, and 7393 Wd/MTU, respectively. The control rods can now be simulated for the assemblies at position 7 and 26 starting at their actual burnup corresponding to core average burnup of 7931 Wd/MTU.

Table 3-21 lists the new ADDS needed for step 2 and Table 8-22 through l S-24 list the input for PSU-LEOPARD.

1 i

369

'l

_h . + - . m_ , . _ . , , , , , , , , , ,m e, ,,.,..,,,.,.,,,_._.,.-,------+-,,,er.-,-,-,v,- .

.o:  ;

e Table 8-21. . ADDS Needed for Step 2 ADD ID Description at Core BU=7931 mwd /MTU 570* 3.05 w/o, Full control rod ~ simulation from 9870

, mwd /MTU

-571* 2.06 w/o, Full control rod simulation from 7393 mwd /MTU 572* 3.05 w/o, Full control rod removed at 5,3,41 mwd /MTU With the new ADDS 570, 571, and 572,tSCAR can now be run for step 2 of cycle 1. Table 8-25 lists the step 2 SCAR input.

Step 3, Cycle 1 (from 13,360 mwd /MTU to 14,400 mwd /MTU)

Following the procedure of step 2, new ADDS for asse=blies in positions 1, 7, and 26 are needed because at core average burnup of 13,360 mwd /MTU, the control rods are removed from these positions.

Table 8-26 lists the ID for new ADDS used in step 3 and Table 3-27 through S-29 lists their PSU-LEOPARD input.

Table 8-26. New ADDS Used in Step 3 ADD ID Description at Core BU=13,363 MWD /MTU 57)* 2.747 w/o Full control rod withdrawn at 12,655 mwd /MTU 574* 2.06 w/o Full control rod simulation from 7393 - 10,730 575* 3.05 w/o Full control rod simulation from 9870 - 14,400 mwd /MTU Table 8-30 lists the SCAR input for step 3 of Cycle 1.

8.3 Sample Problem for the MIT FLARE The Oyster Creek Nuclear Reactor, a 1600 MWt, 3WR, is analyzed with the MIT FLARE. The Oyster Creek core is composed of 560 fuel assemblies each containing 49 fuel rods in a square array (Fig. 8-10). Each fuel rod consists l

of a zircaloy tubular cladding, in which sintered UO2 pellets are stacked to a

  • Note that the burnups can be obtained from the corresponding LEOPARD input by summing the individual burnup steps.

370

TD'.PDF.ARY C0!CROL CURTAINS FOR INITIAL CORE IN COP 2

, FLUX MONITOR

- 8.50

~= *

.g - e 0.312" C-~

+ 0 . 3 7 5 "---* .-

O

^'@O000@@ ,'0 0 0 0 0 0 @'

0000000 ,

0000000

, 0000000 0000000 Q 0000000 0000000

^

OOOOOGO 0000000

@OOOO@@ 00@O00@

qD DD D DO D, g,

@(DQ G D @+ @9

/ - )

"- l 4.875" 4

f 4.875" -

CONTROL 31.ADE CF.ANNF.L ASSD'.3LY NOTE: SPECIAL CORRECTED CORNER RODS ILWE DIFFER-DC DiRICICiENT THAN ,

STANDARD RODS (1) INTERMEDIATE ENRICH-MDC (2) LOW DiRICHME!C ) ( j e

Figure 8-10 Core Lattice Unite ,

371

. . _ _ . - . = . . ._ ._- - .

L r

4 i

TABLE 8-22 .

1 2 3 4 5 6 7 ,

123456789012345678901234567890123456789012345678901234567890123456789012 >

3 05 W/0 FULL ROD FROM 7931 M*a'D/MT'J AVE ADD 570 f

~1 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 4 099 1. i

- 003 .891 .2936  !

100 1. .5520 . r 304 .1048 t 777 I 18 .0305 i

, 29 1490.

777 f i 1280. 1280. 650. SSO. .000279 1.00 I

.185 .215 .568 ~1. 1 .08992 i

2200. O. .925 925 .925 .625 [
1. 82.2  :

1 -25. '

1490. -556 [

i 2 -25. 1400.

3 -25. 1310.

4 -25. 1220.

5 .01 1210. [

6 -100. 1210. .

7 -150. 1200. t 8 -150. 1190.

9 .01 1180.  !

10 -500. 1180.  ;

11 -1000. 1170.

12 -2000. 1060.  ;

i 13 -2000. 1050.

14 -2000. 930.  !

j 15 -1870. 710.

16 .01 520. F 17 -130. 520. 3000. -570. r 18 -2000. 500. 3000. >

19 -2400. 325. 3000. I 20 -2000. 200. 3000. l 21 -2000. 100. 3000. t i 22 .01 50. 3000. 6 777

  • L b

4 1 ,

i s

372

+ _ ._ .- . - . . . - - . _ . _ _ _ - - - . . . . - - - - - _ , . -..

s- ,

j i

TABLE 8-23 9

i 2 4 5 1 3 6 7 123456789012345678901234567890123456789012345678901234567890123456789012 2.06 W/0 FULL ROD FROM 7931 MWD /MTU AVE ADD 571

1 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 4 099 1.

003 .891 .2936 j 100 1. .5520 304 .1048 777

, 18 .0206 29 1490.

, 777 ,

650. 580. .000279 1.00 i 1280. 1280.

.185 .215 .568 -1. 1. .08992 2200. O. .925 .925 925 .625  ;

+

1. 82.2 1 -25. 1490. -551 2 -25. 1400.

3 -25. 1310.

4 -25. 1220.

5 .01 1210.

6 -100. 1210.

7 -150. 1200.

8 -150. 1190.

9 .01 1180.

10 -500. 1180.

11 -1000. 1170.

12 -2000. 1060.

13 -2000. 1050.

14 -1393. 930.

15 .01 780.

1 16 -7. 780. 3000. -571 17 -600. 715. 3000.

18 -2000. 710. 3000.

19 .01 710. 3000.

20 -2000. 500. 3000. 2 21 -2400. 325. 3000.

22 -2000. 200. 3000.

23 -2000. 100. 3000.

24 .01 50. 3000.

777 i

l l

1 373

i

=0 TABLE 8-24 4

i 1 2 3 4 5 6 7 123456789012345678901234567890123456789012345678901234567890123456789012 3.05 W/0 FULL ROD REMOVED AT 7931 MWD /MTU AVE ADD 572 <

1 0 1 0 0 1' 1 0 0 0 0 0 1 1 0 0 4 099 1.

003 .891 .07455 .

100 . 1. .90421 777 18 .0305 29 4490.

777

1280. 1280. 650. 580. .000279 1.00

.185 .215 .568 1. 1. .08992 2200. O. .925 .925 925 .625

1. 82.2 1 -25. 1490. 3000. -566 2 -25. 1400. 3000.

3 -25. 1310. 3000.

4 -25. 1220. 3000.

. 5 .01 1210. 3000.

6 -100. 1210. 3000.

7 -150. 1200. 3000.

8 -150. 1190. 3000.

9 .01 1180. 3000.

10 -500. 1180. 3000.

11 -1000. 1170. 3000.

12 -2000. 1060. 3000.

I 13 -1341. 1050. 3000.

14 .01 1000. 3000. '

15 -9.0 1000. -572 16 -650. 997.

17 -2000. 930.

18 .01 710.

19 -2000. 710. 2 20 -2000. 500.

21 -2400. 325.

22 -2000. 200.

, 23 -2000. 100.

24 .01 50.

777 e

l i

i H

3 374

9 TABLE 8-25 1 2 3 4 5 6 7 123456789012345678901234567890123456789012345678901234567890123456789012 TIIREE MILE ISLAND FIRST CYCLE STEP 2 AL 4 30 30 32 0 0 ST 1328. 1851 2253. 01 BL 700. 565 380. 165.

PR 10*-1 CB 8033. 10182. 9890. 11198 9487 10053 9870. 6590. 9588. 11186. 9694.

CB 10244. 8244. 7542. 5617. 9795.10617. 7962. 7924. 5341 3635 8908.

CB 9173 6808. 5568 7393 6934. 4134. 4737. O. O. O.

. :1A 562 555 551 554 551554 570 556 551 555 551 554 551 555 556 551 553 MA 561 554 572 556 551 553 551 556 571 557 556 556 550 550 550 BU 2

  • 7.1E-5
  • DX 3*4.362196 26*7.2703267 DY 344.362196 26*7 2703267 OV 30 1 30 1 30 11414 21447 3 1 4 7 10 4 1 4 10 13 OV 5 1 4 13 16 6 1 4 16 19 7 1 4 19 22 8 1 4 22 25 24714 OV94747 1047710 11471013 12 4 7 13 16 13 4 7 16 19 OV 14 4 7 19 22 15 4 7 22 25 371014 1071047 16710710 OV 17 7 10 10 13 18 7 10 13 16 197101619 20 7 10 19 22 OV 21 7 10 22 25 4 10 13 1 4 11 10 13 4 7 17 10 13 7 10 OV 22 10 13 10 13 23 10 13 13 16 24 10 13 16 19 25 10 13 19 22 OV 5 13 16 1 4 12 13 16 4 7 18 13 16 7 10 23 13 16 10 13 OV 26 13 16 13 16 27 13 16 16.19 28 13 16 19 22 6 16 19 1 4 OV 13 16 19 4 7 19 16 19 7 10 24 16 19 10 13 27 16 19 13 16 OV 29 16 19 16 19 7-19 22 1 4 14 19 22 4 7 20 19 22 7 10 OV 25 19 22 10 13 23 19 22 13 16 8 22 25 1 4 15222547 OV 21 22 25 7 10 31 22 25 10 16 31 10 16 22 25 OV 32 16 19 19 22 32 19 22 16 19 AD AD ADD DECKS 375 i

O. s TABLE 8-27 i

1 2 3 4 5 6 7 123456/89012345678901234567890123456789012345678901234567890123456789012 2.747 W/0 FULL ROD RDt0VED AT 1336 MWD /MrU AVE ADD 573 1 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 4 003 .891 .07455 099 1.

100 1 .90421 '

777 18 .02747 29 4490.

777 1280. 1280. 650. 580. .000279 1 00

.185 .215 .568 1 1. .08992 2200. O. 925 .925 925 .625

1. 82.2 1 -25. 1490. 3000. -562 2 -25. 1400. 3000.

3 -25. 1310. 3000.

4 -25. 1220. 3000.

5 .01 1210. 3000.

6 -100. 1210. 3000.

7 -150. 1200. 3000.

8 -150. 1190. 3000.

d 9 .01 1180. 3000.

10 -500. 1180. 3000.

11 -1000. 1170. 3000.

12 -2000. 1060. 3000.

13 -2000. 1050. 3000.

14 -2000. 930. 3000.

15 -2000. 710. 3000.

16 -2000. 500. 3000.

17 -655. 325. 3000.

18 .01 280. 3000.

19 -45. 280. -573 20 -300. 275.

21 -1400. 250.

22 -2000. 200.

23 -2000. 100.

24 .01 50.

777 376

TABLE 8-28 1 2 3 4 5 6 7 123456789012345678901234567890123456789012345678901234567890123456789012 2.06 W/0 FULL ROD SIMULATION FROM 7931-13363 MWD /MTU AVE ADD 574 1 0 1 00 1 1 0 0 0 0 0 1 1 0 0 4 099 1.

003 .891 .07455 100 1. .90421 777 18 .0206 29 1490.

777 1280. 1280. 650. 580. .000279 1.00 ,

.185 .215 .568 1. 1. .08992 2200. O. .925 925 925 .625

1. 82.2 1 -25. 1490. -551 2 -25. 1400.

3 -25. 1310.

4 -25. 1220.

5 .01 1210.

6 -100. 1210.

7 -150. 1200.

8 -150. 1190.

9 .01 .1180.

10 -500. 1180.

11 -1000. 1170.

12 -2000. 1060.

13 -2000. 1050.

14 -1393. 930. '

15 .01 780.

16 -7. 780. 3000. -571 ,

17 -600. 715. 3000.

18 -2000. 710. 3000.

19 -730. 500. 3000.

20 .01 425. 3000.

- 21 -70. 425. -574 '

22 -200. 410.

23 -1000. 400.

24 -2500. 325.

25 -2000. 200.

26 -2000. 100.

27 .01 50.  !

777

, b i

i I

?.7 7 '

.______m_

  • ~

e TABLE 8-29 1- 2 3 4 5 6 7 123456789012345678901234567890123456789012345678901234567890123456789012

-3.05 W/0 FULL ROD SIMULATION FROM 7931-13363 MWD /MTU AVE ADD 575 1 0 1 0 01 1 0 0 0 0 0 1 1 0 0 4 099 1.

003 .891 .07455

. 100 1. .90421 777 18 .0305 29 1490.

777 1280. 1280.' 650. 530. .000279 1.00

.185 .215 .568 1. 1. .08992 2200. O. 925 .925 925 .625

1. 82 2 1 -25. 1490. -556 2 -25. 1400.

3 -25. 1310.

4- -25. 1220.

5 .01 1210.

< 6 -100. 1210.

7 -150. 1200.

8 -150. 1190.

9 .01 1180.

10 -500. 1180.

11 -1000. 1170.

12 -2000. 1060.

13 -2000. 1050.

14 -2000. 930.

15 -1870. 710.

16 .01 520.

17 -130. 520. 3000. -570.

18 -2000. 500. 3000.

19 -2400. 325. 3000.

20 .01 200. 3000.

21 -100. 200. -575 22 -900. 190.

23 -1000. 150.

24 -2000. 100.

25 .01 50.

777 I

i l

i 378 l

l

4 o

TABLE 8-30 1- 2 3 4 5 6 7 123456789012345678901234567890123456789012345678901234567890123456789012 THREE MILE ISLAND FIRST CYCLE STEP 3 AL 2 30 30 32 0 0 ST 1052. 01 BL 310. 200.

PR 10*-1 CB 12656. 15921. 15314. 17585. 15143. 16088. 14439. 10724. 14861. 17454. '

CB 15231. 16703 13986. 13479. 10237. 15266. 16869. 13264. 14717. 12523.

CB 7990. 14094. 14737. 12102. 11264. 10734. 11620. 7744. 8136. O. O. O.

HA 573 555 551 554 551 554 575 556 551 555 551 554 551 555 556 551 553 MA 561 554 572 556 551 553 551 556 574 557 556 556 550 550 550 BU 2

  • 7.1E-5 DX 3*4.362196 26*7.2703267 DY 3*4.362196 26*7 2703267 OV 30 1 30 1 30 11414 21447 3 1 4 7 10 4141013 OV 5 1 4 13 16 6 1 4 16 19 7 1 4 19 22 8 1 4 22 25 24714 OV94747 1047710 11471013 12 4 7 13 16 13 4 7 16 19 OV 14 4 7 19 22 15 4 7 22 25 3 7 10 1 4 1071047 16 7 10 7 10 OV 17 7 10 10 13 18 7 10 13 16 19 7 10 16 19 20 7 10 19 22 OV 21 7 10 22 25 4 10 13 1 4 11 10 13 4 7 171013710 OV 22 10 13 10 13 23 10 13 13 16 24 10 13 16 19 25 10 13 19 22 OV 5 13 16.1 4 12131647 18 13 16 7 10 23 13 16 10 13 OV 26 13 16 13 16 27 13 16 16 19 28 13 16 19 22 6161914 OV 13 16 19 4 7 19 16 19 7 10 24 16 19 10 13 27 16 19 13 16 OV 29 16 19 16 19 7 19 22 1 4 14 19 22 4 7 20 19 22 7 10 ,

OV 25 19 22 10 13 28 19 22 13 16 8 22 25 1 4 15 22 25 4 7 OV 21 22 25 7 10 31 22 25 10 16 31 10 16 22 25 OV 32 16 19 19 22 32 19 22 16 19 AD ADD DECKS 5

s 379