ML17347A647

From kanterella
Revision as of 23:06, 3 February 2020 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Florida Power & Light Co Turkey Point Plant Unit 3 Cycle XI Startup Rept.
ML17347A647
Person / Time
Site: Turkey Point NextEra Energy icon.png
Issue date: 12/07/1987
From: Hendrickson J, Marsh G, Perryman J
FLORIDA POWER & LIGHT CO.
To:
Shared Package
ML17347A646 List:
References
NUDOCS 8712110249
Download: ML17347A647 (22)


Text

FLORIDA POWER AND LIGHT COMPANY TURKEY POINT PLANT UNIT 3 CYCLE XI STARTUP REPORT 8712110248 871207 PDR ADOCK 05000250 P

Introduction This report contains the oEicial summary of the Startup Physics Tests performed on Turkey Point Unit 3 at the beginning of Cycle XI. The testing program was conducted in accordance with Operating Procedure 0204.3, Initial Criticality After Refueling, and Operating Procedure 0204.5, Nuclear Design Check Tests During Startup Sequence After Refueling, and meets the minimum requirements of ANSVANS 19.6.1, Revision 0 (12-13-85), Startup Physics Tests for Pressurized Water Reactors. Testing commenced on September 4, 1987, at 0750 and was completed on September 6, 1987, at 0300.

The Westinghouse Nuclear Design Report for Unit 3, Cycle XI, (WCAP-11454) is the design data from which deviations were measured for the purpose of verifying that acceptance criteria were met. The acceptance criteria stated are the more conservative of ANSVANS 19.6.1, Revision 0 or Operating Procedure 0204.5.

Allof the tests included in this report meet their acceptance criteria.

The contents of this report provide the documentation required by Technical Specification 6.9.1.a.

Author:

J. P. Hendrickson Reactor Engineer Reviewed by:

G. L. Marsh Reactor Engineer Reviewed by:

J. L. Perryman Reactor Support Supervisor Approved by:

Vito A. Kaminskas Reactor Supervisor PTN

-ll-

~ ~

0 TABLE'OF CONTENTS '

PAGE Acknowledgements Introductio n 1.0 Unit 3 Cycle XI Core 1.1 Loading Pattern 1.2 Rod Pattern 1.3 Rod Drop Times 2.0 Initial Criticality 2.1 ICRR Vs. Dilution "

3.0 Summary of Tests 3.1 Nuclear Heating 3.2 Reactivity Vs. Period 3.3 Boron Endpoint, Most Reactive Bank 3.4 Rod Worth (PPM), Most Reactive Bank 3.5 Rod Worth (PCM) 3.6 Temperature Coefficient 14 3.7 HZP Differential Boron Worth 15 4.0 Shutdown Margin 16 5.0 Power Distribution Maps 5.1 29 lo Flux Map

-nl-

~ ~ ~

A This section presents the as-loaded core configuration (Figure 1); the Control and Shutdovrn Rod pattern (Figure 2); and the Rod Drop Times for all rods as measured in Procedure 3-PMI-028.3 RPI Hot Calibration, CRDM Stepping Test, and Rod Drop Test (Figure 3).

Allrods met the drop time limitof 2.4 seconds as per Technical Specification 3.2.3.

  • R l:1-md

gPEACTOR FUEL LOCATI(g Legend DATE TURKEY POINT PLANT UNIT NO. 3 Assy. ID XX"XX ZZ Insert XD ZZZZ NO. Xl 'YCLE FIGURE I lS 14 13 12 ll 10 9 4 3 2 1 AA-20 AA-31 AA-23 HF-12 Hf-25 Hf"17 AA-36 CC-11 CC-16 8-27 CC-10 CC"27 AA-37 1492 8-10 18sz 46 20oz 8-39 1QBZ AA"40 CC-20 00-32 88"56 CC"35 BB"26 BB-52 CC-10 AA-56 106Z 2272 1532 R-17 220Z 8-36 1462 1932 1112 AA-41 08-27 CC"50 88-23 CC-38 AA-51 CC-40 88-02 CC-52 68-37 AA-44 100Z 1142 2262 R-11 192Z R"100 209Z R-40 2232 1822 107Z AA-34 CC-31 CC-53 AA-45 CC-02 08-16 60-19 88-13 CC-04 AA-33 CC-54 CC-12 AA-53 0152 221Z 2022 R-21 BP17 SVZ R-12 '1122 R-25 BP10 8-20 L

1NZ 106Z 2142 1052 CC-22 88-21 CC-05 AA-02 88-40 88-49 BS-40 AA-16 CC-06 88-24 86-30 CC-23 R-33 8-38 BP17 SP10 K QMZ 1552 161Z 8-42 160Z 1512 avz R"00 152Z 8-97 RA"24 Hf-24 CC-19 1032 88-43 8-06 CC"46 1792 88-11 R-35 88-51 208Z CC-47 106Z 88-17 222Z CC-34 2072 88-55 1252 88-04 R-22 CC-48 2192 80-50 CC-20 2122 AA-26 Hf-10 J

AA-10 HF-04 H"52 30 CC"36 SS-1 8-37 88-01 137Z 88"46 8-16 86-07 109Z, H-17 R-09 88-12 1502 88-31 R-26 88" 15 2112 AA-50 8-14 CC-43 146Z H"37 26 AA-17 HF-21 H

AA-05 CC-15 BS"39 CC-44 88-06 88-45 CC-41 BS-14 CC-42 88-34 SB-09 CC-37 00-29 CC-17 AA"04 HF-00 2242 R" 15 1902 R-07 104Z 175Z 195Z 201Z 1002 R-02 2032 8-43 1942 HF-19 CC-09 88-42 88-10 CC-07 68-28 88-25 88-35 AA-30 CC-01 88"20 86-41 CC"26 BP18 BP10 8-19 148Z R-24 3MZ 1102 113Z R-05 159Z 154Z 2MZ 1562 R"18 AA-52 CC-14 CC-55 AA"47 cc-a0 88-03 88-10 88-00 CC-03 AA-35 CC-49 CC-13 AA-54 6P17 BP17 2042 2262 2162 8-04 7HZ 8"32 101Z R-29 612 R-03 2252 229Z 1502 AA"39 60-33 CC-56 88-22 CC-39 AA-49 CC-33 BBM CC-51 86-47 AA-43 0

1032 2052 1992 1702 R-96 210Z R-01 160Z 149Z 104Z AA-42 CC-30 88-54 88-53 CC-45 88-44 88-36 CC"29 AA"40 115Z 1912 8-27 2132 8-45 105Z 206Z .102Z AA"55 CC"25 CC-32 H-41 CC-24 CC-21 AA-38 197Z 8-10 2172 52 1692 R-41. 177Z AA-11 AA-06 AA-03 Hf-26 HF"14 HF-03 Verified by Date (disc: 8-1)...

Om'aOr. Igloo nmX I.OCaxrOV T EY POINT PLANT UNIT NO.

CYCLE NO. XI FIGURE 2 15 14 13 12 11 '

10 . 9 8 7 6 5 4 3 2 A A 0

S S S

'A 0 S 0 0 A A A

S S

0 Absorber Naterial

'A A Ag-In-Cd FUNCTION 4 OF CLUSTERS Control Bank D 5 Control Bank C 8 Control Bank 8 8 Control Bank A 8 Control Bank SB &

Control Bank SA 8

ROD DROP TIMES TUOkX POINT PLANT UNIT NO. 0 CXCLE NO. XI FIGURE 3 15 14 13 12 ll 10 9 8 7 6 5 4 3 2 1 R

1. 32 l. 27 1,97 1,93
1. 32 l. 28 1,92 1. 93
1. 32 1,35 1. 30
1. 92 1,98 1. 93
1. 30 1,35 1. 33 1. 28 1,92 1. 92 1,98 1. 93
1. 32 1. 27 l. 35 l. 28 1. 30
3. 02 1. 93 l. 9S 1,88 1,95 1,30 1. 28 *1,32 1. 30
1. 90 1,88 1. 92 1. 92
l. 28
1. 88
1. 30
1. 92
1. 28
1. 81
1. 53
1. 93
1. 30 1,95 H
1. 28 1. 33 1. 28 1. 28
1. 90 1,92 1,87 1,88 1,28 1,30 1,33 1,30 l. 32
1. 92 1,90 l. 92 1,92 1. 90
1. 32 1. 32 1. 30 1. 30
l. 93 1,92 1. 90 1. 95
1. 35 1. 31 1,32
1. 97 2. 01 1. 95
1. 30 1. 27 1,87 1. 92
1. 32 1. 40
1. 95 2. 08 LEGEND Time to Oashpot (R1:1 tl0)

Time to Bottom

2.0 INITIALCRITICALITY The approach to criticality began September 4, 1987, at 0750 hours0.00868 days <br />0.208 hours <br />0.00124 weeks <br />2.85375e-4 months <br /> in accordance with Operating Procedure 0204.3, Initial Criticality After Refueling. Criticality was achieved 1

September 5, 1987, at 0215 hours0.00249 days <br />0.0597 hours <br />3.554894e-4 weeks <br />8.18075e-5 months <br /> by withdrawing control rods to 160 steps on Bank D and diluting the RCS with 11,000 gallons of water.

Upon attaining criticality the flux level was increased to 1 x 10-8 amps on the intermediate range to obtain critical data.

Tavg 5470F Control Bank D 117 Steps Boron 1710 ppm Flux 1 x 10-8 amps TABLE 2.1 FLUX Picoammeter N-35 N-36 1 x 10-8 amps ZOOS 1.5 x 10-8 amps The following graph (Figure 4) is a plot of the ICRR during the approach to criticality.

  • Rl:l-md

~S ls ~ ffff

~ 1 f1lffff ~ \ s ~

46 !5I(

~ ~ A ~ s~ ~ ~

n'Zg ICR R VS. DILUTION H20 it 3 ycle XI OP 02 04. Date:

.ii sll, s

its AU 2l

I" 1

'"'.f "t

I I s

1:lf .Il jsj: l I:ll: ~

! Is 1 :1jf 'I f~

fli: I;I';1"

'"I;fs

!i

sf' I,. I ". I
)',I 1'

I ts I' .. '1 I!is I. s

' I:  ::I :I:I fs  :!

l;;

1

~

I 1 ts j.'1

'll II!;

. I 1:

1'",' sf'I' I'  !' ff 's li I .", I s

'iI ~s Sl fs

'":11' II 11 s

. 1'.

I .!i lj I..'; ;!:;

ls s s ,.st I"  !'i', ,!. :.j! l'j sl f.

' ~, 'l l s

ss "1 i'l i:.Ij ~

V'iIl 11

.,s, t  !.".'j,'.s  : I. I fs s

'1

.9

'I; 1st 1,. I; ;t:i s 1

'1 I  !

~

1; I '.1! 's !it Ij" ;s 'f

~ 'I" jl::

1 1 fs.s s

s

', 1 ~

~

! ~ 11 .. lli:

ls ;f1

.8 's s'

II I j.:1 "ifs I li l

~ ~,',s l I::  :.I ':It

f. sj 1" l  : I

" ';": 1 I ts s

'1! ll s'I'. I Ss

Itl
I ~ ' .'I>>  ;;If

~ i !l sfs':

'I 'i lf >>I :tls ,'1 sr,'l, I ls I  : lt iill

.'f.

s s

I ': l l  : I:I . I. >>1 \

s 1 ~

' i s I:

!I ij I ;l,';"::

-'I ."1 1;,

f.j It 1

'i I:sl

.5 I!jl sf Ill ii!I ~ 1 ll.

Is

. tst'.

Ill I i'its s",!I till sti!

j!I l '

l l1 'i! st I!

i)! 1 'sit ': ..I. I fs'

.4 !i il I

.t l.s

~1 1:I s"'il, , 's

I

!C I. sl .

sf 1

~

II '.'.

l.

s fjjll f s ljli s'.'..

its

.2 j1li >>I I

2 4 10 l2 II~0 (Gallons) X l000

3.0 Summar of Tests This section provides a summary of the results of the low power physics tests along with the Westinghouse design data. This report compares design and measured data using difference'nd percent difference2. For each test, the acceptance criteria is listed at the bottom of the table.

'The difference = predicted - measured.

2For calculating the percent difference, the equation is:

Predicted Value . y X 10096 Measured Value 3.1 Nuclear Heatin The point of adding Nuclear Heat was determined in accordance with Operating Procedure 0204.3, Initial Criticality After Refueling, Step 8.15 and Appendix A. This is performed by establishing a small positive startup rate and measuring the point (flux level) at which T<<g departs from its established, steady value.

Nuclear Heating was measured to first occur at:

TABLE 3.1.1 FLUX LEVEL(AMPS)

Picoammeter N-36 4.32 x 10-7 6.69 x 10-7 All physics tests were conducted at or below 1.0 x 10-7 amps on the picoammeter connected to N-44 to assure Nuclear Heating did not occur.

  • R1:1-md

3.2 Reactivit Vs. Period Reactivity Computer checkout was done in accordance with Operating Procedure 0204.3, Initial Criticality After Refueling, Step 8.17 and Appendix B. This checkout is performed by inserting small (<60 pcm) positive and negative reactivities using rod motion, measuring the period generated and the indicated worth, and then comparing design worths to measured worths for the given period.

TABLE 3.2.1 Period sec Reactivit cm Reactivit desi Diff /o

-239 -36.0 -36.7 1.9

+232 +27.0 +27.0 0.0

-288 -29.0 -29.5 1.7

+ 157 +38.5 +38.5 0.0 Acceptance Criteria is +/- 10.0 lo.

  • Rl:l-md

3.3 Boron End pints PPM The Boron Endpoints noted below are determined as per Operating Procedure 0204.5, Appendix A. A just-critical condition is established as near as practicable to the required rod configuration (i.e., ARO). The RCS boron concentration is determined and is then adjusted analytically for the ppm worth of the reactivity (measured in pcm) by which the actual critical state deviated from the design condition.

TABLE 3.3.1 BORON ENDPOINTS (PPM)

Measured Westin house Com arison iARO 1711 33 PPM 2CBC In 1536 1592 3.65%

Acceptance Criteria is +/- 50 ppm 2Acceptance Criteria is +/- 10%

3.4 ROD WORTH .

Rod worths were measured. as per Operating Procedure 0204.5, Appendices D and F.

The Reference Bank (highest predicted worth) was diluted into the core. The boron concentration prior to and subsequent to this insertion was determined and the difference in the two boron concentrations is defined as the boron (Rod) worth of the .

Bank (Table 3.4). The differential and integral worth of control bank C was measured and plotted (Figure 5). Additionally, the integral worth of banks C and D in overlap was measured and plotted (Figure 6).

TABLE 3.4 ROD WORTH (PPM)

Measured Westin house CBC 175 152 3.5 ROD WORTH PCM)

The remaining rod bank worths were measured using the rod swap technique, "swapping" negative reactivity'nsertions on the bank being measured with positive reactivity insertions from the Reference Bank.

TABLE 3.5.1 ROD WORTH (PCM)

Measured i~i'18 ~iiiff PCMi  % Diff CBD 682 + 5.28 1325 1811 -14 -1.06 CBC'BB 621 579 -42 -6.76 CBA 1089 1107 18 + 1.65 SBB 1107 1137 30 + 2.71 SBA 1051 1014 -37 -3.52 Total 5875 5866 -9 -.15 The acceptance criteria for rod worth measurements are:

(1) Reference bank within +/- 10% of design, and (2) Individual banks within +/- 15% or +/- 100 pcm of design whichever is greater, and (3) Sum of all measured banks within +/- 10% of design.

  • Rl:1-md

HOT ZERO POWER DIFFERENTIAL AND INTEGRAL BANK WORTH VS.

BANK POSITION 16 Iy ~ 1600 UNIT 3 CYCLE XI EXPOSURE 0.0 Nl WD/N(TU BANK CBC LLL l000 BANK POSITIONS RtQ OUT IN MD~V SBA ~X 12 1200 R S88 ~X 0 0 z CBA X LJ 10 1000 C88 0 0 . ~X CV I

C8C X l4 zrQ 8 4 800 U CBD X

~ I rQ zg y

, f4 TEST METHOD H DILUTION 600 ~X I i' ill ill BOR ATION i 'jl

'il  !

j.

ll(.

! '.l hj

~

~ ~ I 000 i.".!

I~ ~

'!!:t ., j!l

~

l! I 'li

~ ~

io l~

Il(

!I i j j

~ 200

~ ~

I 'jlI lw i,jl Ll::Ill al ji ~ ',jl

~ pe lfi"..

~ ~

~ ~

j j!

Ij I!

j ~! j

~ ~ ~

I i .!o

'jV i,j

.; ilI! ',!I i

~ ~

~

I

'l t

I ',, ji :;I

!-'i II

,'.l! I 'r!(

~ ~

~ ~

~

i

~ I~ ill I

.'ill 0 I~ I '"lI

~

j ~

I!

J.'0 iL' i I,': 0 0 20 00 100 120 100 160 180 200 220 228 R OD BANK POSITION (STEPS)

Cont ro I Bank 'C' 05 ition , INTEG RAL ROD WORT H IN OVERLAP: BOL, HZP, NO- XE Uni 3 Cycl XI 0 7- 05-87 1 08 128 IO8 168 18 8 208 228 ct Ion II F lgUr 6 JPH I- )S ' I aT "a )aj; s

)I t, .i}

~

I))

~ ~

l )I. I,

'I apl i el }el

~

~

I !e a ~  :.t: I~ . e ~ s I - i I

~  ; ". f

.',}'i '

I l) e a

i

~

)  ; ~ t')i .}le

~ ~

~ ~

~ ~ ~

i:}I sj

-f j

}I sile

~ ~ ~

I ~ ~- )sll

'l!

s ~~ ~

.) j I!I .I I

s'! il i)jj ),:!t le I'jl! i'i~ ~

i- ~

I ~

I i j )! II ".i

~ Ie ~

I 'I Il I! I

,:if; a I I

~T')!I jj:l i'j I

il if i !J

'J jill j!jj )j Ijl f!II :.} Ill ii ia 16 i.:I ~ ~ ~

Tf st I

' IIij 'tI) Il I ji 'ji lt I lij }

ip!I I ~ a I ~ j!'; I II i'i tf

! I 15 I

'f:'. I!II I Je I lt 15 i :I if t)li sf }I

!!j

i Jl ILLs

!jl  ! I

':I! .I .'ll

! )il  !

13

~ a ~

I i 'l I 13

.I iij Il'),

illl li jil ljlil I 12

-Il r

Ifi} '!

ii) ti)

~

Ij: ifl;I ti.l

~

as

!il I'

I ~

!ij I" It lil

~ as

'Ri I' \

ItI jifj l)

I ij !f if il 10

Ij Ill 'I jl Jl! 10

)}t! !I ) Ill) II I

'I I I 9 ~

}:ji

~4 sl I e ~e 9 ~

I jtf! if ill I

~

I! sj j I!

s!t I IIil jil! I j I I

li

! I!I I I tJJ I

lil I 6 I 1

)I t!l III jf I a iij if'lI jv: ll ~ ~

ill jtfl s

I 05

!If 'll I ;i! I!

!jil !Ill

!IIt '.'I lite I)

Isa J!I ,'i.'I ilij I tl lIi it !!

t) I ijI es

~ ~ ~

'.;,:'I s)i, .Isl I 3 jljj ~ ~ el ~ ~ a  ! I!I I ls I

li le ~ I ~ I I t)el 3

-'ta'.

)ijl ) jj  !;!l I~ ~ , I l.,s II tjtl Ii;':I:  !!!j I I j

!I fa

~ I "i')I lj:,:

~

!sjj  :,):

Is' jf)) ijij ill) s,i)

~ ~

I)i .'I;l

~

) III Il e*t I

~

ll jj :I

)~

,lj fji tt li.:) I ~ ~

li' :.-'! I e ,Ite tis 'ei ,'I,:

Ie Ill!

I~ ~ ~ ~ il; ~

~ ~

~

'e e sljl ~ I  :!': ~

'.Ii

~

iji I,'.! I ;ji '.ll; i!I j,l )}j,l jjl ))

I tiij s

alt; l-i! ~

I,"I

~ I '-jll ifil as

.ij Il'hi I)i  !}! ~ t )

~ ~

j il'l l l~ I

~

s ~

s ii

~

I ill JL) ~

I! el ~

I! l) la

~

J 0 20 00 60 80 100 1 20 100 160 180 200 220 Control Bank 'D ) p osl tlon

3.6 TEMPERATURE COEFFICIENT

'h.

isothermal and moderator temperature coefficients were determined using Appendix 8 in Operating Procedure 0204.5, Nuclear Design Check Tests During Startup After Refueling.

The values determined for this testing sequence (in pcm/OF) are:

TABLE 3.6.1 ISOTHERMALTEMPERATURE COEFICIENT (PCM/oF)

Design Rods Measured l Westin house Diff D/215 +.96 + 1.1 .14 Acceptance Criteria is +/- 2 pcm/OF of design.

TABLE 3.6.2 MODERATOR TEMPERATURE COEFFICIENT (PCM/oF)

Design>

Rods Measured I Westin house Diff D/215 + 2.86 +2.76 Acceptance Criteria is <+ 5 pcm/OF.

IThis is the average of one heat up and one cool down measurement.

2This value has been adjusted for boron and temperature sensitivity.

  • Rl:1-md

3.7. HZP DIFFERENTIALBORON WORTH The Hot Zero Pow'er (HZP) Differential Boron worth was measured using Control Bank C, which had a bank worth of 1325 pcm. The value obtained for this test was:

TABLE 3.7.1 HZP DIFFERENTIALBORON WORTH (PCM/PPM)

Measured Westin house 9o Diff 7.57 8.44 11.49 Acceptance criteria is < +/- 15%.

4.0 SHUTDOWN MARGIN The Shutdown. Margin was calculated prior to power escalation to verify adequate shutdown capability. For this calculation, design rod worths were reduced by 10%,

and the results show adequate shutdown margin at BOC and EOC. The following is a summary of the results:

~Cele Xl BOC ROC Control Rod Worth %A AllRods Inserted Less Worst Stuck Rod 6.41 6.50 (l) Less 10% 5.77 5.85 Control Rod Re uirements %A Reactivity Defects (Doppler, T~g, Void, Redistribution) 1.69 2.89 Rod Insertion Allowance 1.35 0.50 (2) Total Requirements 3.04 3.39 Shutdown Margin (l) - (2) %b, p 2.73 2.46 Required Shutdown Margin (%b,p) 1.00 1.77 Source: WCAP 11454 FLORIDA POWER AND LIGHT OMPANY TURKEY POINT PLANT T3 OPERATING SUM1HA 15 lh 13 12 Xl 10 8 - 7 6 5 ~ C 3 Z 1

~~0 ~~~~ 0 ~ ~ ~ ~ ~ ~0 ~ ~ ~

5 ~ 23klQ Po 0 P3f 0 ~0 ~0 ~ ~~00 ~ 0~~0 ~0 ~ ~ ~~~~ ~~ ~~ ~~0 ~ ~~~ ~ ~~ ~ ~~ ~

003981 0o 913 1012510 ~ 933 10160 0 ~ 979 00COC 0 '30j <<11001 ~ 026 10171IO

<<309

~ 92h 101T1 1 ~ 026 0 100 <<0 ' <<ho 5 <<601

'30

~ ~ ~ ~ ~ 0 ~ 0 0 ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ 0 ~ ~ ~ ~ ~ 000 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ 0 ~ 0 ~ ~

00CC3 10195I 10082llol75 1009C 10179 lo 212 00C36

'-'3'.II lo)9$ ) 10)2({10$ $ 10)2) '-Pf 0 ~~~ ~~

10

)9f 0

'6) le130i

'39l k: jII '!'.Il':I'.II'I1 )00( ':O'.Il '-:IIIt j56 6

3 3B ~

~~~~~

6 0 j05l2 ~ 2$ 6l 3)3f P k:)Ig k,'N$ $ 00)3IOo9$ $ oO)3 3jIIj Oii9l k:jhj 390 Ooh)0 pe W~

07

~ ~ ~ ~~ ~ ~ ~~~ ~~ ~ ~ ~ ~~ ~

k:$ 9 ijS!3'Nk k:N i:l'os ICE'o ::.IIIj cpIji:Pal k:h$ j:ii4jf

~ ~ ~ ~ ~~ ~ ~ ~ ~ ~~ ~ ~~ ~~ ~ ~~~~~ ~~ ~ ~ ~ ~0 0 '3C "'ift lo0$ 1 1 11) 5 lti lolhlt 058$ 10282I 1 169l Io235 Oo251 0 '3) 1 j5$ ll $ ~4fl 9gl1 1~

1~

08/{ 100C)j 10183) 80C lo)89 23) 00

~~ ~ ~ ~~~ ~~~ ~ 0~ ~~ ~~~

002)9 0 945ll Oe990 Oe83h lo012 020C o.'aii 1 2$ le 003

<<109 Paf 5:IIiIjI'83fk P9) $ ~ 09) j 4I 0 ~ (3%I

~ ~~~ ~ ~ ~~ ~ ~~ ~

ljPlk:jag':PilkjIIfHIII!f i:II! i:pp:pi hp)

~ ~~ ~ ~ 0~~ ~ ~ ~~ ~ ~~ 0~~~~~ ~~~

i:g i:pJ I:,.iIjj 0 ~0~ 0~

Hfdf39$ 002

':Pi ':!9l4!jl!-:P/1 ':III 151 1 Pjll 16] 6".Pl ':I!II':Nl':III h04jl k:INIf'N3 Oo)0990 fe230f foh38 44/i $ o308 Oo)35

$ oO)f Oe)Q $ 0))0 k:I4f

<<601 <<60lt <<006 0' 303 5' 302 <<002 <<001

~ ~ ~~ ~ ~ ~~~ ~ 0~ ~ ~~~~~ ~ ~ ~ 0 ~~ ~ ~ ~ ~ ~ ~ 0 ~0 ~ ~ ~ 0~~~~~

Oe $ (0 006 0200 H4kkl $ 001 1 1P3 5 !PJ 1V3l i leh081 10015 00C6) 1 ~ hl) 10016 j <<001 <<006

~ ~ ~ ~~~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~0 ~ ~ ~0 ~ ~ ~ ~ ~ ~ ~~ ~ ~~

Ooh63l le 295I 1 0235 10159 1019C 10169 1 ~ 261 10283 00C58 00C6~{ le)90) 1 ~ I%3) '323 'Vk '32) 10)3h 1 ~ $ 90 00C61 0 ~6 o055 1 Hll'P)' ~ ~ ~0 ~0 1 0032 9 1 ~ 026 006

)30l

~~~~~~~~~~~0 ~0 ~ ~~ ~ ~ ~~ ~ ~

Oezhzt00258l002CO H D F DCLTA 3.') '35 H

0 '35)0 2.8) '50)0 z.c 8

D OFF'HI NCE D P DELTA H ROD POSITION INCORE TII T Location

~in Ste Classification N 228 M2P NO. PM3X12 SBB 228 Power % 28.89 0.9712 0.9890 CBA 228 Axial Offset 1.08 1.0013 1.0385 CBB 228 Maxp N 68 14659 CBC 228 Maxp N CBD 135 Q 1.930

  • Rl:I-md