ML18023B080
ML18023B080 | |
Person / Time | |
---|---|
Site: | Susquehanna |
Issue date: | 11/30/1972 |
From: | Pennsylvania Power & Light Co |
To: | Office of Nuclear Reactor Regulation |
References | |
Download: ML18023B080 (126) | |
Text
SSESTABLEOFCONTENTS1.01~11.22~02~12.22.32'2'2.62~73'3.13'3.33'3'3'3.73'4.04.14'4'4~45.05.15~25'5.4FORWARDSUMMARYNTRODUCTIONDESCRXPTXONOFPLANTANDSITETHENEEDFORPOWERTHESITELOCXONOFTHEPLANTHUACTIVXTESINTHEENVRIONSHISTORCANDCULTURALSIGNXFICANCEGEOLOGYtMINERALRESOURCESANDSOILSHYDROLOGMETEOROLOGANDCLIMATEBIOTATHEPLANTEXTERNALAPPEAEOFTHEPLANTTRANSMISSIONLINEREACTORANDSTEAMECTRICSYSTEMWATERUSEHEATDXSSXPATXONSYSTgTHERADXOACTIVEWASTESYSTEMSCHEMICALANDSANITARYWASESRECREATIONANDCONSERVATIOENVIRONMENTALEFFECTSOFSITEPREPATIONANDPLANTCONSTRUCTIONPLANS~SCHEDULES,ANDMANPOWERREQUIREMENTSEFFECTONHUMANACTIVITIESEFFECTONTERRAIN,VEGETATION~ANDWILDLIFEEFFECTSONADJACENTWATERSANDAQUATICLIFEENVIRONMENTALEFFECTSOFPLANTOPERATIONEFFECTSOFRELEASEDHEATEFFECTSOFRELEASEDRADIOACTIVEMATERIALSEFFECTSOFRELEASEDCHEMICALANDSANITARYWASTESFUELTRANSPORTATION
SSES5.56.06~16.26.36'6.57.08.08~18.28'8.08.58'8.79.010.011.0ASSESSMENTOFENVIRONMENTALEFFECTSOFPLANTOPERATIONNRADIOLOGICALENVIRONMENTALIMPACTOFTHEPLANTRADXOLOGICALACCIDENTCLASSXFICATIONMETHODSOFDETERMININGRADIOLOGICALIMPACTTRANSXENTANDACCIDENTOCCURENCESENVIRONMENTALXMPACTANALYSXSPROBABXLITYINPERSPECTIVEANYADVERSEENVXRONMENTALEFFECTSWHXCHOTBEAVOIDEDSHOULDTHEPROPALEXMPLEMENTEDALTERNATIVESANDCOST-BENEFXTINTRODUCTIONSOURCESOFPOWERALTERNATESITESANDSITESELECTIONALTERNATEHEATDXSSIPATXONMETHODSALTERNATERADWASTESYSTEMSALTERNATETRANSMISSXONLINEROUTESANDDESIGNCONSIDERATIONSCOST-BENEFITANALYSISTHERELATXONSHIPBETWEENLOCALSHORT-TERMOFMANSENVIRONMENTANDTHMAINTENANCEANDENHANCEMENTOFLONG-PRODUCTIVITYANYIRREVERSIBLEANDIRRETRXEVABLEMMXTMENTSOFRESOURCEWHIHWOULDBEINVOLVEDXNTHEPROPOSEDACTIONHOULDITBEXMPLEMENTEDENVIRONMENTALAPPROVALSANDCONSULATXON SSESLISTOFTABLESTable1.2.1Table1.2.2Table1.2.3Table2.2.1Table2.2.2ProjectedPP&LSystemLoadsAndCapacityPP&LServiceRegionsGeneratingStationCapacityAsOf5/1/72CommunitiesWithin5MilesOfTheSiteWith1,000OrMorePopulationIn1970LandUseOfCountiesWithin20,MilesOfTheSiteTable2.2.3ProportionOfGrossSalesForAgriculturalAndLivestockProducts-1968Table2.2.4Table2.2.5Table2.5.1Table2.5.2DistributionOfLabor,ForceSusquehannaRiverWaterUse-Municipal,IndustrialAndPublic-SusquehannaSESSiteToHavre-De-Grace,MarylandChemicalAnalysesOfTheNorthBranchSusquehannaRiverAttheSite-April1968ThroughAugust1970RadiostrontiumConcentrationsInSusquehannaRiver-AverageConcentration,Picocuries/LiterTable2.6.1Table2.6.2Table2.6.3Table2.6.4WindFrequencyDistributionInPercentByWindDirectionVersusWindSpeedClassesForPasquillStabilityClass-A,C,E,&GAnnualAverageRelativeConcentration(DilutionFactor)AtTheRestrictedAreaBoundaryCumulativePercentage-FrequencyDistributionOfPl'umeLengthPerWindDirectionSectorCumulativePercentage-FrequencyDistributionOfPlumeLengthPerWindDirectionSector I>>o~hti0l,l0 SSESTable3.2.1LandUse-SusquehannaSESToLackawanna500-kVLineTable3.2.2PopulationDistribution-SusquehannaSESToLackawanna-500-kVLineTable3.2.3LandUse-SusquehannaSESToFrackville500-kVLineTable3.2.4PopulationDistribution-SusquehannaSESToFrackville-500-kVLineTable3.4.1Table5.2.1ChemicalAnalysisOfTheNorthBranchSusquehannaRiverAtTheSite-April1968ThroughAugust1970ExpectedRadionuclidesReleasedToSusquehannaRiverTable5.2.2ExpectedGaseousEmissionsToTheAtmosphereTable5.2.3Table5.2.4PopulationDose(Man-Rem)FromGaseousEmissions-NormalReleasesDuringFullPowerOperationPopulationDose(Man-Rem)FromGaseousEmission-IntermittentReleasesFromVacuumPumpOperationTable5.2.5Table5.2.6Table5.4.1Table6.2.1Table6.3.1Table6.5.1Table8.2.1DoseFromDrinkingWaterAndEatingFishSummaryOfTheDoseCalculationsContainerDesignRequirementsSummaryOfPopulationExposureFromNaturalAndMan-MadeBackgroundComparedWithNuclearRadiologicalEffectsSummaryOfPopulationExposureFromNaturalAndMan-MadeBackgroundComparedWithNuclearRadiologicalEffectsTableOfEventProbabilitiesDollarCosts-NuclearVersusFossilFuelTwo1100MWUnits fI SSESLISTOFFIGURESFigure1.0.1Figure1.1.1Figure1.1.2Figure1.2.1Figure1.2.2Figure2.2.1Figure2.2.2SiteVicinityMapSiteAerialViewFacilitiesPlanPJMBulkPowerSystemPlannedBy1981PPGLServiceAreaDensityofPopulation(1970)Sh.1SiteVicinityMapShowingPresentAndFuturePopulationDistribution,0To10MilesFigure2.2.2Sh.2SiteVicinityMapShowingPresentAndFuturePopulationDistribution,0To10MilesFigure2.2.3Sh.1RegionalMapShowingPresentAndFuturePopulationDensity,0To50MilesFigure2.2.3Sh.2RegionalMapShowingPresentAnd-FuturePopulationDensity,0To50MilesFigure2.2.4Figure2.2.5Figure2.5.1Figure2.6.1PublicGroundWaterSuppliesWellLocationsLowFlowFrequencyAndFlowDurationAnnualAndInversionWindRose1960To1964Figure2.6.2Figure2.6.3Precipitation-WindDistributionAsPercentofTotalWindObservations,1960To1964TechniqueForComputationofCoolingTowerPlume-Lengths SSESTURBINE-GENERATORSLength300feetTRANSFORMERSCapacityVoltageStep-upCooling1,280,000kilovolt-amperesUnit¹1-230F000voltsUnit,¹2-500,000voltsOil'EACTORSTypeCoolantModeratorCoreCoolantFlnrRateFeedwaterInletTemp.SteamOutletTemperatureCoolantPressureSteamCapacityHeatOutputBoilingwater,directcycleWaterWater450,000gallonsperminute380degreesFahrenheit545degreesFahrenheit1,020poundspersquareinch13,432,000poundsperhour11200i000000BritishthermalunitsperhourFUELCORESPelletsMaterialEnrichmentLengthDiameterNumberTotalweight,UO2RodsMaterialCladdingThicknessOutsideDiameterLengthNumberUraniumdioxide(UO2)2to3percent0.5inches0.487inches11million190tonsZircaloy-20.032inches0.563inches13.33feet37'36 tl'41 SSESsewage.Thisbuildingwillbeapproximately40feetlong,30feetwide,and15feetabovegrade.1TheServiceandAdministrationOfficeBuildingwillbeapproximately200feetsquare,withaheightof70feetabovegrade.Itwillcontainofficesandmeetingrooms,afirstaidroom,storerooms,amachineshopandlockerfacilities.TheEngineeredSafeguardsServiceWaterPumphousewillcontaintheresidualheatremovalservicewaterpumpsandemergencyservicewaterpumpstosupplywaterforshutdowncoolingandforemergencycorecooling.Itwillbe86feetlong;36feetwide,and31feetabovegrade.Inadditiontothebuildings,twohyperboliccoolingtowersgandanintakestructureandpumphouseontheSusquehannaRiverwillbelocatedonthesite.Thecoolingtowerswillbereinforcedconcretestructuresabout500feethighandabout500feetindiameterattheirbase.A300footmeteorologicaltowerwaserectedcontaininginstrumentstomonitormeterologicaldata.Asmallbuilding,,locatedatthebaseofthetower,housessomeadditionalinstrumentation.Theintakestructureandpumphouseislocatedonthefloodplainattheedgeofthesiteandprovidesmakeupwaterfortheclosedcoolingsystem.11-4 f,il*~
1ggruOvER,ZSGLLEZAlETSO:'ICOSI/OOO4'r)l<(JjtR!RIDGEVHLLSIL~TZSI.SCILInEVEATED~DS-TLIPEnIISVLIIAII14-EDDRDI441E-~.Z.ELEVATIonDATVm15mEAnSEALEI/EL.7JPMREERED5/t/EEIISERVILEVATERPDVPII/NloREER:ATIon/AJJLIVVER/LOSER/ILLit/t7v/IIIITRATIonOLXiNvCrESTREAT8ETEOROLOGILALTOvEROtIIGooLInGTovERLILoRIooxnEv.pvmvIIovsr,JvzE/L.TREArnerh~IIIGTV'ESELG67ER/troREDDE/IIGIvvERtI.SELOXLRVROLOaaITZTELRDLDE/TDRIRLALI'II/AIn/tILLDIlNMLl'0vATERELITE!tPENNSYLVANIAPOWERSLLIGHTCOMPANYSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2APPLICANT'SENVIRONMENTALREPORTLylILlf0'IIi-SVOZTVREAnD~WCLISEE/Sg/ARGELIIIE~IILlDISLII/tRGETOAVERIFacilitiesPlanFIGUREl.l.2 J'
SSES22HUMANACTIVITIESINTHEENVIRONS2.2.1.1'resetPoulatonTheareaaroundtheSusquehannasiteissparselypopulated,exceptforsmalltowns.Fewdwellingsarefoundinthehills,andtherearealmostnoneinthemountains.PopulationdatafortownswithinfivemilesofthesitearefoundinTable2.2.1.SalemTownshiphasapopulationdensityclassedas"100to300personspersquaremile,<rankingitamongoneofthelowestdensitytownshipsinthecounty(Ref.2-1).ThepopulationofSalemTownshipis3890people.The1970BureauofCensusdataplacesthepopulationofLuzerneCountyat339,446.TheLuzerneCountyPlanningCommissionprojectsanincreaseto536,210by2000.MostofthepopulationiscenteredinthemetropolitanWilkes-Barrearea,approximately20milesnortheastcfthesite.SecondarypopulationcentersarePittstcn(25milesnortheast)andHazleton(15milessouthwest).Thereareafewsmallertowns,buttheremainderofthecountyisgenerallysparselypopulated.ThepopulationdensityofLuzerneCountyisshowninFigure2.2.1.221.2tePoat'onItisanticipatedthat,asmanyas2,500workerswillbeemployedduringpeakconstructionactivity(1975to1977)Some-oftheseworkmenwillbepermanentlocalresidentsandotherswilltemporarilymoveintotheareaduringconstruction.PPSL'sconstructionexperienceshowsthatmostworkers.commutemorethan30mileswhenmajorhighwaysarepresent.Mostworkersareexpectedtobetravelers,thatis,workerstravelingmorethan30milesfromtheplanteachday.Thenumberofworkers(peakmanpower)thatwillbeonthesitebyyearare:1973-300.1976-25001979-8001974-18001977'-24001980-2501975-23001978-15001981-100Theestimatedpopulationandpopulationdensitiesfortheyear2020withina10-mileand50-mileradiusofthesiteareshownonFigures2.2.2(Sheets1and2)and2.2.3(Sheets1and2).Twomethodswereusedtoarriveattheseestimates.FortheLuzerneCountyareawithin10milesofthesite(over80percentofthetotalareaina10-mile2%21
'L~4,E SSESTherearetwomilitarydefensefacilitieswithinfiftymilesofthesite.ThenearestistheTobyhannafacilitylocatedabout38milestotheeast.TheEdwardMartinMilitaryReservation,atIndiantownGap,isapproximately50milessouthwestofthesite.Nonuclearfacilitiesarelocatedwithina50-mileradiusofthesite.TheclosestnuclearfacilityisscheduledtobetheLimerickStation,70milestothesouthsoutheast,beingdevelopedbythePhiladelphiaElectricCompany.Therearenoschoolswithin2milesofthesite.TheclosesthospitaltothesiteisBerwickHospitalwith195beds.22.21icultureaz-Approximately23$ofthe891squaremilesinLuzerneCountyareutilizedforfarmingbyabout800farms..Farmrevenuein1965amountedtoabout$9,500,000.In1970,0.69%ofthetotalwork'forceinthecountywasemployedinagriculaturalactivities(Ref.2-11).ThecountyisagriculturalsalesarebrokendownasinTables2.2.3(Ref.2-3).Theamountoftillablelandonthesiteisabout300acresandincludesbothfloodplainanduplandareas.Theonlycurrentfarmingonthesiteisbyatenantfarmerworkingabout175acresoffloodplainland.Allofthetillablelandisscheduledtoberemovedfromagriculturalproductionastheresultofthedevelopmentofalargerecreationareaonthefloodplainandtheconstructionandoperationofpowerplantstructuresandtransmissionfacilities.Inthepast,thefloodplainlandhasproducedcropsoftomatoes,potatoes,squashandcorn~butithasbeensomeyearssincemostorallofthelandwassimultaneouslyfarmed.Sincethereare85,000-acresoflandclassifiedasagriculturalinLuzerneCounty(Ref.2-11)theremovalofsome300acresfromproductionisnotexpectedtoresultinasignificantadverseenvircnmentalimpact.Quitethecontrary,infact,formorethan175acresofthistillablelandwillbedevelopedasapicnicandcampingareaforgeneralpublicuse.ThisplanisdetailedinAppendixC~Itcanreasonablybeexpectedthatthisdevelopmentwillhaveabeneficialenvironmentalimpact.2.2.2.2CommerceLaborandIndustrurTherehasbeenlimitedcommercialdevelopment.inLuzerneCountylargelybecauseoftheruggedtopography,and'consequentlymuch'fthecountyremainsessentiallyundeveloped.2m23
SSESwaterwithinthebasinisexpectedtoincreasetomorethan31milliongallonsperdayby1980.ThecitiesofChester,Pennsylvania,andBaltimore,Maryland,bothoutsidetheSusquehannaRiverbasin,areusing80milliongallonsofSusquehannaRiverwatereachdaytosatisfymunicipalandindustrialneeds.Aboutone-thirdofthisisdivertedviaChestertotheDelwareRiverdrainageregionandtheothertwo-thirdstotheChesapeakeBayarea,bywayofBaltimore.By2020,anestimatedthreemillionresidentsoutsidethebasinwillbedependentonthissourceformorethan800milliongallonsperdayformuncipalandindustrialsupplies.Thosemunicipal,private,andindustrialwatersystems.downstreamfromthesitewhichdonottapgroundwaterandminortributariesareexpectedtorelymereontheSusquehannaRiverinthefuture,asthecapacitiesoftheothersourcesareexceeded.PresentwaterusebydownstreammunicipalitiesandindustriesisshowninTable2.2.5.MostoftheindustriescontactedindicatednowaterusagefromtheSusquehannaRiver.Groundwateristhemajorsourceofindustrialwatersupply.The,plantCirculaingWaterandnormalServiceWaterSystemswillbeclosedloopsystemsusinghyperbolicnaturaldraftcoolingtowersastheirheatsink.Whenthetwogeneratingunitsareoperatingatmaximumcapacity,anaverageofabout50cfs(22,000gpm)andapeakof62cfs(27,800gpm)willberequiredfromtheexternalwatersupplytoreplacewaterlostbyevaporationinthecoolingtowers.ThedetailsofthesesystemsarediscussedinSubsection3.5.Duringshutdownthemaximumquantityofwatertakenfromtheriverwillbesignificantlylessthanthatrequiredfornormaloperation.RecreationalWaterUseWaterwaysofthe"SusquehannaRiverbasinareusedforalltypesofrecreation;theseusesareexpectedtoplaceaneverincreasingdemandontheresource.RecreationaluseoftheSusquehannaRivernowtotalsalmost37millionuser-daysperyear.By2020,recreationaluseshouldincreasetoover203millionuser-daysperyearwithanestimated23millionannualfishingdays,assumingnorestrictionsduetopoorwaterquality.2~27
SSESTABLE2.2.1COMMUNITIESWITHIN5MILESOFTHESITEWITH1,000ORMOREPOPULATIONIN1970CommunitMocanaguaShickshinnyNescopeckEastBerwickBerwickWapwallopenSalemTwp.1950196014962156190710771104184519341258N.A.N.A.3124-14010133531970N.A.16481875N.A.121422503890DistanceandDirectionFromSite3-N4-N4.5-WSW4.5-Wsw5-WSW1-ESEN.A.-NotAvailableSource:U.S.CensusofPopulation-1950,1960and1970(Preliminary)
I0 SUSQUEHANNARIVERWATERUSEMUNICIPAL,INDUSTRIALANDPUBLICSUSQUEHANNASESSITETOHAVRE-DE-GRACE,MARYLANDTABLE2.2.5UserName1.BerwickWaterCo.Location-RiverMiles,Berwick-8.0QuantityUseClass(NcNd)MSb.NoneCommentForemergencyuseonly.Notusedfor8years.Pumpremoved.Servesabout20-25thousandpersons2.BlocmsburgWaterCo.3.Campbell.SoupCo.4.DanvilleBoroughBloomsburg-19.4Bloomsburg-19.4Danville-27.45.MerckaCo.Danville-27.46.DanvilleStateHospitalDanville-27.47.SunburyMun.Auth.Sunbury-38.5IPr1.0Mgd35.0MgdPuPrMPrNA4.0MgdMSbNAINoneNoneMPr2.0MgdNouseofriverwaterWillexpanduse.Servesabout8,000personsServesabout500persons.Largequantityforcooling,smallforprocess.Servesabout4,000personsFoursummermonthsonly.PlumCreeksuppliesremainder.Servesabout15,000persons.Allocated4.0Mgd8.CelotexCorp.9.PP&L(SES)10.ShamokinDamMunicipalAuth.Sunbury-38.5Sunbury-38.5Shamokin-44.4INoneNoneIPr245MgdMPrNAServesabout2,000personsll.MillersburgWaterCo.12.HarrisburgMun.Auth.13.InternationalPaperCo.14.'BethlenemSteelCo.15.BoroughofSteeltonWaterCo.16.BethlehemSteelCo.17.MetropolitanEdison(SES)Millersburg-69.4Harrisburg-91.0Harrisburg-91.0.Harrisburg-91.0Steelton-93.4Steelton--93.4Middletown-100.2MSbNAMSbNAINANACoolingIPr1.3Mgd'oolingIPr245MgdINANAMPr1.7MgdAllocated5.0Mgd rN TABLE2.2.5CONT'DUserNameLocation-RiverMilesQuantityUseClass(MGD)Comment18.MetropolitanEdison(HES)Yorkhaven-105.2Pr11,782Mgd19.PP&L(SES)20.WrightsvilleWaterCo.21.ColumbiaWaterCo.22.LancasterWaterAuth.23.YorkWaterCo.24.SafeHarborWaterPowerCorp.(HES)25.PP&L(SES)26.PP&L(HES)27.Phila.Electric(PS)28.Phila.Elec.(NS)29.Phila.Elec.&-Susque-hannaPowerCo.(HES)30.ChesterWaterAuth.31.BaltimoreWaterAuth.BrunnerIsland-108.0IWrightsville-119.0MColumbia-119.0MLancaster-PrPrPrPr745MgdNA1.8Mgd8.0MgdHoltwood-137.9IPrHoltwood-137.9IPrMuddyRun-140.4IPrPeachbottom-143.0INAConowingo-154.3IPr65Mgd21,337Mgd12,931Mgd0.03Mgd53,018MgdChester-*MSbNABaltimore,Md.-*MSbNAYork-*MSbNASafeHarbor-129.7MPr79,527MgdBasedonolddate.Allocated24.0Mgd*NotonRiver~NotonRiver*NotonRiver*NotonRiver32.Havre-de-GraceMunicipalAuth.Havre-de-Grace,Md.-MPr162.01.4MgdNote:RiverNA(SES)(HES)(PS)(NS)IMPuPrSbMgdmilesarefromSusquehannaLEGENDL888EhNDNoteavailableSteamElectricStaticnHydroelectricStationPumpingStationNuclearStationIndustrialMunicipalPublicPrimaryStandbyMilliongallonsperdaySESsite SSES23TheNationalRegisterofHistoricPlacesliststheDennisionHouse,35DennisionStreet:,FortyFort,Pennsyvlaniaapproximately21milesnortheastofthesite,asthenearesthistoricalplace.Therearethreeareasofculturalinterestwithinthesitelocale:theNorthBranchCanal,CouncilCupandalocalcemetery.TheNorthBranchCanalislocatedbetweentheriverandU.S.Route11.Atthepresentthecanalisindisrepair.TheSusquehannaSESsitehasbeencloselytiedtotheearlyeconomicdevelopmentoftheNorthBranchValleysinceitwasfirsttraversedbytheNorthBranchCanal,animportantlinkintheSusquehannaCanalSystem.TheNorthBranchCanalprovidedanewwaterrouteforthetransportofanthraciteminedintheWilkes-Barreareaandthuscontributedheavilytothevalley'sprosperitybyopeningupnewmarketsforcoalallalongthefar-flungPennsylvaniaCanalSystem.TheNorthBranchexperienceditsgreatestbusinessgrowthintheyearsbeforeandduringtheCivilWar.Withthecomingoftherailroads,however,itdeclinedinimportanceasdidothercanalsandcanalsystems.Partofthecanal,includingthatpartwhichcutsacrosstheSusquehannaSESsite,continuedinbusinessuntiltheearly1900s.CouncilCuphasbeenusedasanIndianmeetingsiteandislocatedontheeastsideoftheriveratahighpointwheresurveillanceoftherivervalleyisquiteadvantageous.Thisareahasculturalinterestbecauseithasbeendocumentedasthesiteofacouncilmeetingin1793tosettlealanddisputebetweenIndiansandsettlers.Accordingtolocallegend,itisalsothesiteofmeetingsamongIndiannations.Archeologistshavereportedthatthesiteisnotlikelytoproducesignificantartifactsbecausethereisnoevidenceofapermanentencampmentonthebluff.Asmallcemeteryislocatedinthenorthernpartofthesite.Itisoutsidetheexclusionarea.Accesstothecemeteryisviaapublicroad,andnotthroughthesiteproperty.Thecemeterywillnotbedisturbedinanywayduring'onstructionoroperationofthefacility.TheUnionReformedandLutheranChurchinWapwallopenisthefirstoftheselandmarks.On-siteinspectionhasestablishedthatthehousesandotherbuildingssurroundingthechurchwillhidethepowerlinestructuresandconductorsfromview.2%31 SSES(seeFigure2.2.5)theriverisshallow;itslowflowdepthwasaboutfivefeet.NearMapwallopenthedepthsincreasetomorethansevenfeetandthebottomcontourisgenerallymoreuniformexceptforashallowrockledgeatBellBend.AtWapwallopentheriverchangescourseabruptly,witha'0oturntothewest.Thispoolarea,calledBellBend,isuptofourteenfeetdeep.Atitsmouth,WapwallopenCreekhasalargedeltaofrockandgravel.Belowthispoint,theriverwidensto500yardsandbecomeshallower.DownstreamfromBeachHaven,aflatbedrockareaextendstothemouthofNescopeckCreek;alargeriffleareagiveswaytoadeeppoolbelowthispoint.WaterqualityattheSusquehannaSESsitehasbeenmonitoredbyPPSLmonthlysince1968.Themaximumtotaldissolvedsolidsofrecordis389partspermillion(ppm),andthelowestofrecordis80ppm.Hardnesshasrangedfrom248ppmto52ppm,andtherecordedwatertemperaturehasrangedfrom85OZto34oF.Averagewaterquality,basedonthesamplescollected,ispresentedinTable2.5.1.ThedatacollectedbyPPSLisgenerallycompatiblewithwaterqualityrecordscollectedbytheU.S.GeologicalSurveyfortheSusquehannaRiveratDanville,approximately30rivermilesdownsteamfromthesite(1964through1967).Pumpingofacidwaterfromdeepmineshascausedsignificantfishkillsinthepast.In1961,amajorfishkillwascausedbyacidminewaterwhenthepHatBerwickdroppedfrom7.0to3.5andthetotalironincreasedfrom5ppmto40ppm(Ref.2-5).PPSLrecordsfrom1968to1970showthatthepHhasonlyvariedfrom6.5to7.4andisconsideredacceptableforfreshwateraquaticlife.WaterusesandwaterqualitycriteriahavebeendesignatedfortheNorthBranchoftheSusquehannaRiver,fromtheLackawannaRivertoitsconfluence.TheseusesandcriteriaareprescribedbyChapter93,WaterQualityCriteriaoftheseRulesandRegulationsofthePennsylvaniaDepartmentofEnvironmentalResources.Verylittledataareavailableonbackgroundradiationlevelsoftheriver.Thequalityofariverreflects,inpart,theconditionofitswatershed.'Theamountofsedimentinthewaterisanindexofthesoil,thedensityandkindofvegetation,andtheintensityandamountofrainfallontheriver~swatershed.Similarly,theamountofdissolvedsolidsinthewaterisanotherindexofthewatershed.Theradiologicalburdenofariverisgovernedbythesesamefactors.25-3 t~.
SSESprojectwillbeontheorderof200gpm.Groundwaterhydrologyofthesiteindicatesthat,ifwellsaretobeused,theneededquantityofwaterprobablycouldbedevelopedfromwellslocatedontheflocdplainadjacenttotheriver.Suchwellsprobablywouldinducerechargefromtheriver,theregylimitingtheextentoftheconeofdepressionsurroundingthewells.Althoughwaterlevelswouldbeloweredasaresultofpumpagefromwells,thiseffectwouldnotbeexpectedtoextendbeyondthepropertyownedbyPPSLandwouldlastonlyaslongasthewellsarepumped.Near-termpumpingtestswillbeconductedtoestablishthedistancesinvolved.Therewouldprobablybenoadverseeffectontheotherwellsinthevalleyfromawellorwellsproducing200gpm.Thegroundwatertableintheareaisasubduedreplicaofthesurfacetopography.Atthesitethewatertableisfoundgenerallywithin35feetofthegroundsurface,usuallyjustbelowthebedrocksurfacebutsometimeswithintheoverburdensoils.Groundwatercontoursconstructedfromwaterlevelmeasurementsindrillholesshowthatthegroundwateratthesitemoveseastwardfromtheelevatedsitetotheadjacentriverfloodplain.Permeabilitytestsoftheglacialmaterialsandtheunderlyingbedrockshowthattherateofmovementofthegroundwaterisslow.*Thesetestsindicatethatthe'ermeabilityoftheglacialmaterialsvariesfrom2.2x10-~Cm/Secto4.5x10-~Cm/Secvertically,and2x10-~Cm/Sechorizontally.Permeabilityoftherockvariesfrom3x10-4Cm/Secto4x10-~oCm/Sec.25-5 SSESTABLE2.5.1CHEMICALANALYSESOFTHENORTHBRANCHQUNAIATHESTEAPRIL68THROUGHAUGUST1970*MinimumMaximumA~veraeSilica(Si02)Iron(Fe)Aluminum(Al)Manganese(Mn)Calcium(Ca)Magnesium(Mg)Sodium(Na)6Potassium(asBicarbonate(HC03)Sulfate(SO~)Chloride(CX)Nitrate(N03)Phosphate**DissolvedSolidsHardnessasCaC03DissolvedOxygenBiochemicalOxygenDemand(5dayBOD)TemperatureF.pHColorNa)0.090.020.000.0012.63.40.00~25.612.83.60.50.0079.651.57.80.8346.55.55.11.720.560.9565.221.89.481.815518.24.00.4388.8248.014.26.6857.4111.03.40.400.100.1132.99.62.755.260.010.81.70.21206.8125.010.62.96338.8Allvaluesinpartspermillion(ppm),exceptthosefortemperature,pHandcolor.*PP6LRecords-Biweeklysamples**Basedononlythreesamples IIIA SSES(22.5oacrsorsectors)usingthefollowingtechniques:350o~360o~10o204'04404~50o60o,70o80o;90o~100otosector1(N),tosector2(NNE),tosector3(NE),tosector4(ENE),tosector5(E),etc.20Theotheradjustmentconsistedofincludingthe"calm"windobservationsinthelowestspeed(2-3mph)range.Thiswasdoneforeachlapse-rateclassbydistributingthenumberofcalmwindoccurrencesoverthe16sectorsinproportiontothefrequencydistributionofthelowestspeedrange.TheeightsetsofwindrosedataarereproducedinTable2.6.1.Annualaveragerelativeconcentration(dilutionfactors)attherestrictedareaboundarywerecomputedfromthestandardformula(Ref.2-9)foracontinuous-groundlevelsource:I20.0lf=0.02032f(sm).-"./-)<zXwhereo~isobtainedfromthePasquill-Giffordcurves(Ref.2-10)foradistancexbetweensourceandtherestrictedareaboundary.Thewindspeeduisspecifiedasameanforeachspeedrange,e.g.,8-12mphistakenas10mphor4.47m/s;fisthefrequencyofoccurence(%)ofthewindforagivensector.Thefactor2mx/nisthearclengthofeachsector'overwhichlong-termhorizontaldispersionisassumeduniform.Theminimumdistancefromsourcetotherestrictedareaboundaryforn=16sectorsisindicatedinTable2.6.2.ThecomputationofrelativeconcentraticnX/Qwasaccomplishedbydigitalcomputer.Resultswereobtainedforthesevenmainlapse-rate(orstability)classes,forfivewindspeedrangesandthenaddedtogivetheannualaverageX/Qvaluesforeachofthe16windsectors.TheseareshowninTable2.6.2.Specialconsiderationwasgiventothestabilitvclass"G~~forwhichthelapse-rateisgreaterthan4DC/100m/sincenoezcurvesexistforthiscase.Here,o~valuesforClassF,scaledbythefactor(2.5)-/a,wereused.26-4 k
SSESTherearenoknowntallstructuresinthearea,eitherexistingorproposed,whichwouldbeofsufficientheighttointersecttheplume.Therefore,thewettingoricingproblemassociatedwiththeplumedoesnotappeartobesignificant.Itisnotlikelythattheplumewouldaffecttheflightofaircraftovertheplant.Theclosestairportisapproximately4milessouthwestoftheplantandwillnotbesignificantlyaffectedbytheoperationofthecoolingtowers.Itisarelativelysmallairfieldwithagrassrunwayandisusedbylightaircraft.Conditionsthatproducelongplumesareoftenaccompaniedbyfog,rainorlowclouds;thatis,conditionswhichwouldthemselvesnormallyrestrictlightaircraftoperations.Immediatelyoverthecoolingtowers,lightaircraftwouldprobablyexperiencemildtomoderateturbulenceduetotheheatintheplume.Anon-visibleplume,or<train~~containingwatervapor,heatandsuspendedsaltswillexistintheatmosphereforsomedistancebeyondthevisibleplume.Thelengthofthisidentifiabletrainwilldependontherateofmixingwiththeambientairanduponvariationsintheseparameterscausedbyotherphysicalfeatures.Theamountofwatervaporinjectedintotheatmoshpherebythecoolingtowersatmaximumloadwillvarybetweenapproximately40cfs(18,000gpm)and62cfs(27,800gpm)dependingonambientairconditions.Thisamountofmoisturehasbeencomparedtothatwhichwouldbeputintotheatmospherebyevapotranspirationifapproximately10squaremilesofbuildingsandpavementinacitywerereplacedwithvegetation.Sinceplumeswillusuallyriseseveralthousandfeet,theheatandremainingmoisturewillbedissipatedatthisaltitude.Dependinguponambienttemperatureconditions,thetemperatureofplumesleavingthetowerwillvarybetweenapproximately50OFand110oF.~~Suspendedsalts~~areimpurities,particulates,anddissolvedsolidsthatwillbepresentintheintakeriverwater,whichwillbeaddedasmake-uptotheCirculatingWaterSystem.Aswatersplashesoverthebafflesofthecoolingtower,saltssmallenoughtobecomesuspendedintheairflowandcarriedupandoutofthetowerwillbecomepartoftheplume.Thequantityofsaltsandthechemicalcontentoftheplumewilldependlargelyonthechemicalqualityoftheservicewater.Itisestimatedthataservicewaterimpuritycontentof770pramwillresultintheconcentrationoflessthan62ppmintheplume.Therewill26-6
SSESbe110poundsperacreperyeardepositedintheimmediatevicinityofthecoolingtowers.Theseairbornesaltswillsettletothegroundinapatterndeterminedbyprevailingmeteorologicalconditions.Xngeneral,saltdepositionwillbethegreatestnearthecoolingtowersandwilldecreaseinconcentrationwithdistanceawayfromthetowers.Thedistributionofthesaltdepositionwillbecommensuratewiththearealcoverageofthevisibleplume.Sincethesaltsarewatersoluble,mostofthesedepositswillberedissolvedbyprecipitationandwillflowbacktotheSusquehannaRiver.Theimpactofthesesaltsbothon/andoff-sitewillbeinsignificant.2.6-7
SSESSusueannaSES-Frackville500-kvLine-PPSLproposestoemploythesamecriteriaandotherconsiderationsindesigningthislineaspreviouslydetailedfortheSusquehannaSES-Lackawanna500-kvline.Theprimarystructuretypewillbetheself-supporting,latticesteel,single-circuitstructureasshowninFigure3.2.3.Allrelatedfoundations,conductorhardwareconfigurations,andcolorcombinationsareidentical.Itisestimatedthatapproximately125structureswillberequiredtocompletetheSusquehannaSES-Frackville500-kvline.Thesinglemajordifferencebetweentheselineshowever,,isthattubularsteelH-framestructureswillbeusedforthefirsttwoandone-halfmilesofthelinefromtheSusquehannaSES500/230-kvSubstationtoapointbeyondtheSusquehannaRivercrossing.Thereasonsforthisdecisionareasfollows:Theproximityofthisportionofthelinetothesitevicinity.2~Tostandardize,insofaraspracticable,theappearanceofallstructuescrossingtheSusquehannaRiverinthevicinityoftheplantsite.ToachieveadegreeofcompatibilitybetweentheappearanceofthelineandexistingandexpecteddevelopmentpatternsalongU.S.Route11andinthe,vicinitoftheBorouhofBeachHaven.3~Yg3.2.2.3RadioandTelevisionInterference/AudibleNoiseThegenerationofradiofrequencynoisesignalsunderbothfairandfoulweatherconditionswillbeminimizedbytheselectionofoptimumconductorsizes,phasebundleconfigurations,andphasespacings.Nostructureswillbelocatednearanycommercialradio,televisionormicrowavetransmittingfacilities.Nolinelocationisplannedwhichwouldparallelanyexistingtelephone,telegraph,orothercommunicationfacilitytoanextentthatinductiveinterferenc'etotheoperationofsuchfacilitywouldresult.'oiseintheaudiblefrequencyrangeisaphenomenonwhichispresentonallelectricaltransmissionnlines.At230-kv,thenoiseisusuallyinaudible.At500-kv,however,thenoiseamplitudethatisanimportantdesignconsideration.Atwo-conductorbundleconfigurationwillbeusedforthe500-kvtransmissionlines.ThisdesignhasprovensuccessfulinreducingaudiblenoiseonexistingPPSL500-kvlinesandisgenerallyusedbyotherutilitiesaswell.Inaddition,widthsoftheplannedrights-of-wayshould3~27 SSESTABLE3.2.2POPULATIONDISTRIBUTIONSUSQUEHANNASESTOLACKAWANNA500-KVLINECountyTownship/Borough/CityPercentCensusYearsChange19701960~TownshiLuzerneLackawannaSalemUnionHunlockPlymouthKingstonExeterRansom+24.5+63.2-18.26.1+13.7+42.84.43890'31241253768.168220572614278361965450186913091196.1251LuzerneLackawannaBoroucOhShickshinnyPlymouthLarksvilleEdwardsvilleSwoyersvilleWestWyomingKingstonExeterDicksonCityBlakely8.68.3-10.31.4+0.5+15.69.61.60.5+0.316859536393756336786365918325467076986391184310401439057116751316620261474777386374LuzerneLackawanna~CitWilkes-BarreScranton7.1.103564111443 SSES3~4MATERUSEFigure3.4.1presentstheSusquehannaSESwateruse'iagram.Thediagramdepicts,indetail,theflow',pathstoandfromthevariousplantwatersystems.Theriverintakewillwithdrawanaverageof32,000gpmfromtheriverflowforthemakeupofevaporationlossfromthecoolingtowers,blowdownlosses,anddomesticuses.Thisamountstolessthan15%oftheminimumdesignriverflow(540cfs).Thisusewillnotappreciablyinfluencethedownstreamriverlevel.Theintakestructurewillbe'designedtoensureminimaldestructionoftheaquaticbiota.Thiswillbedonebydesigningastructurehavinglowwatervelocities(notgreaterthan0.75fps)throughtheintakeentranceandwithfeatures,whichdiscouragefishentrapmentandprovideforfishescape.ThequalityofwaterintheSusquehannaRiverforatwo-yearperiodfrom1968to1970asmeasuredbyPPSLispresentedinTable3.4.1.Detailsofwater'andwastetreatmentarediscussedinSubsections3.7.1and3.7.2.34-1 IIlII4C'!41FII SSESgpmfor2units,thepondholdupcapacitywillbeslightlygreaterthanthe24hourholdupneededtoensureafairlyconstantriverdischargetemperature,i.e.,fluctuationsinblowdownwatertemperaturewillnotappreciablyaffectthetemperatureofoutflowfromthepond.Theoutflowqualitywillbemonitoredanddischargedtotheriver.Duringanormalshutdown,thespraysystemswillbeoperative.Approximately900,2~~hollowconespraynozzleslocatedabovethepondsurfacewilleffecttherequiredcooling.Thespraypondwillalsofunctionasaheatsinkduringemergencyshutdownconditions.Underthismodeofoperation,makeupwaterneednotbeaddedtothepondtoachieveitssafetyfunction.Waterwillbecirculatedthroughthespraysystem,asbefore,toeffecttherequiredcooling.3.5.26IntakeandDischarcaeStructuresBoththemake-upwaterintakestructureandthedischargearrangementwillbelocatedontheSusquehannaRiver.Theintakewilldrawascreenedwatersupplyof32,000gpm(designyearlyaverage)forthemake-upofwaterlossesfromevaporationinthecoolingtowers,blowdownfromcoolingtowerbasins,anddomesticusage.Thedischargearrangementwill'ervetodisposeofblowdown,effluentfromtheradwastesystem,andsewagetreatmenteffluentintotheriver.Preliminarystudieshaveindicatedthataconventionaltypeintakecomprisedofacombinedreinforcedconcreteriverintakeandpumphousestructurewithtrashracksandtravelingscreenswillbefeasible.Theintakestructurewouldcontainfourpumpseachratedat13,500gpm.Watervelocitythroughthebarrackswould'belimitedto0.75fpsinordertoallowmobileorganismstoescapefromwithintheinfluencezoneoftheintake.Sideopeningswouldalsobeprovidedtopermittheescapeoflessmobileorganismsbeforebeingdrawnontothetravelingscreens.Duetothelowminimumwaterlevel,aconventionaltypedesignwillrequireadredgedchannelwhichwillneedsomemaintenance.Trainingwallsorfenderpilesmayalsoberequiredtoprotectthestructurefromdebrisduringfloods.Thedischargearrangementwillbecomposedofaburiedpipeleadingtoasubmergedoutletintheriverabout600feetdownstreamoftheintakestructure.Aninvestigationispresentlybeingmadeconcerningadiffusionarrangementthatmaybeincorporatedforefficientmixingofeffluentandriverwater.3.5-5
.a SSES36THERADTOACTTVEWASTESYSTEMS361GeneralTheRadioactiveWasteSystemsaredesignedtoprovidecontrolledhandlinganddisposalofliquid,gaseous,andsolidwastes.Thesewasteswillberoutedfromeachunittoacommonradwastebuildingforprocessingforre-useordisposal.Mostoftheliquidradioactivewasteswillbeprocessedandre-usedintheplant,whileonlyasmallfractionoflow-levelwastemaybedischargedtotheSusquehannaRiver.Gaseousradioactivewasteswillbeprocessedbyseparation,removal,andretentionofradioactivegasesandparticulatespriortoreleaseofthedecontaminatedgases.Theliquidandgaseouseffluentswillbecontinuouslymonitored.Thedischargewillbeautomaticallystoppediftheeffluentconcentrationsexceedapplicableregulatorylimits.SolidradioactivewastesfromplantoperationswillbepackagedinDepartmentofTransportationapprovedcontainerspriortoshipmentoff-siteforpermanentdisposal.ThedesignobjectiveoftheLiquidandGaseousRadwasteSystemsistoreducetheactivityintheliquidandgaseouswastestomeetthecriteriatonumericaldoselimitsofAppendixIofl0CFRpart50.ThesolidRadwasteSystemisnotexpectedtocontributesignificantlyeithertothedischargeofradioactiveeffluentsortotheoff-siteradiationdose.3.6.2LiuidWastesTheLiquidRadwasteSystemcollects,monitors,treatsandpreparesradioactiveliquidsothatmostofitcanbereusedintheplant.ThissystemwillbecommontobothUnits1and2.TheLiquidRadwasteSystemconsistsoffourbasicsubsystems:equipmentdrains,floordrains,chemicaldrainsandlaundrydrainsasshowninFigure3.6.1.Equipment,willbeselected,arrangedandshieldedtopermitoperation,inspection,andmaintenancewithinregulatorylimitsforpersonnelexposures.Clean-upequipmentwillincludefilters,demineralizers,andwasteevaporators.Crossconnectionsbetweenthesubsystemswillprovideadditionalflexibilityforthebatchprocessingofthewastesbyalternatemethodsusingthevariousclean-upequipment.Theequipmentdrainshavethehighestconcentrationofradioactiveinpurities(approximately<10-~uCi/ml).Aclosedcollectionsystemcollectsequipmentleakagefrom3.6-1
SSESeachunitandroutesittotheRadwasteBuilding.Afterprocessingbyfiltrationandionexchangethewaterflowstotheequipmentdrainsampletankswhereitissampled.Ifthewaterissatisfactoryforre-useitisreturnedtothecondensatestoragetank.Ifthesamplerevealshighconductivity(approximately>1umho/cm)orhighradioactivity(approximately>10-~)thewaterisreturnedtothesystemforreprocessing.Filtermediaandion-exchangeresinsusedforthisprocessingwhenexhaustedareprocessedwithintheSolidRadwasteSystemforoff-siteshipment.3.6.2.2FloorDrainsThefloordrainsgenerallycontainalowconcentrationofradioactiveimpurities(approximately<10-~uCi/ml)andsomedissolvedandsuspendedsolids(200ppm).Thesedrainsincludecoolerdrains,areadrains,baseplatedrains,andothermiscellaneouslowactivitydrains.Theprocessinganddispositionofthiswasteissimilartothatoftheequipmentdrains.Ifchemicalanalysisindicatesthattheprocesseddrainagemeetscondensatestoragetankwaterqualityrequirements,thebatchisdischargedtothecondensatestoragetank.3.6.2.3ChemicalDrainsThechemicaldrainsalsohavelowconcentrationsofradioactiveimpurities(approximately<10-~uCi/ml).Theliquids,whichconsistoflaboratorydrains,decontaminationsolutions,andwastewater,areprocessedbywasteevaporatorstoconcentratethevolumeofradioactivewasteandtoallowre-useordischargeofthepurifieddistillate.Treatmentbyfiltrationandionexchangeisnotsuitableduetothechemicalcompositionsofthesedrains.TheevaporatorconcentratesareprocessedwithintheSolidRadwasteSystemforoff-siteshipment.Thedistillateissampledpriortoreturntothecondensatestoragetankorpriortodischargetodeterminetheneccesityoffurtherprocessing.362.4~LaundrDrainsThelaundrydrainshavethelowestconcentrationofradioactiveimpurities(<10-5uCi/m1).Thesewastesarefromdecontaminationofequipment,personneldecontaminationshowers,andlaundrywastewater.Becauseofatendencytofoulionexchangeresinsincreasingcarryoverinevaporators,thesewastesarekeptseparatefromotherliquidwastes.Theyareprocessedbyfiltrationandthensampledpriortobeingdischarged.3.6.2.5SstemDesin36-2
SSESTheLiquidRadwasteSystemdesignissuchthatwastesresultingfromnormalplantoperationsareaccommodatedandprocessedasdescribedabove.Thesystemdesignalsoprovidesforhandlingofthelargevolumesofwasteexpectedtoresultfromrefuelingandmaintenanceactivities.Thesystemdesignwillalsohandlemalfunctionsofashortte'rmnaturesuchasincreasedvalvesealand/orpumpsealleakage.Experiencefromoperatingstationshasbeenfactoredintotheradwastedesign.Normaloperatingpracticesaretoprocessthewastesthroughthesubsystemsprovided.Batchsamplingofthewastesisdonetoensurethateachbatchmeetsspecifiedwaterqualityandradioactivityrequirements.Wastesnotmeetingthese,requirementsarerecycledforreprocessingoraresenttoasurgetankifprocessingcapacityisnotimmediatelyavailable.TheLiquidRadwasteSystemisarrangedbelowgradeintheradwastebuilding.Thebasementcanbelikenedtoabathtubsothatleakageand/orspillageisretainedbyconcretecompartments.TheseliquidsarereturnedtotheLiquidRadwasteSystemthroughtheradwastedrainsystem.Protectionagainstaccidentaldischargewillbeprovidedby'esignredundancy,instrumentationforradiationdetection,-andalarmsystemswhichdetectabnormaloperationalconditions.Theradwastefacilityarrangementandthemethodsofwasteprocessingprovideasubstantialdegreeofconfinementofthewasteswithintheplant.Thisassuresthatinthe'eventofafailureoftheLiquidRadwasteSystemorerrorsintheoperationofthesystem,potentialforinadvertentreleaseofliquidsisminimized.Theliquideffluentswillbedischargedatarateof10to50gpmintotheretentionpond.Thiswillprovidedilutionandadequatemixingpriortodischarge'intotheSusquehannaRiver.Table5.2.1insubsection5.2.1itemizestheexpectedannualdischargeofradioactivematerialsfromtheLiquidRadwasteSystems.3.63GaseousWastesTheGaseousRadwasteSystemwillmonitor,process,andcontrolthereleasesofradioactivegasesfromthefacility.Thedesignwillprovideadequatetimetotakecorrectiveaction,ifnecessary,-tocontrolandlimittheactivityreleaserates.Gaseouswastesoriginatinginthereactcrtravelwiththemainsteamthroughthepowerconversionsystems.TheGaseousRadwasteSystemcollectsthegasesfromthemaincondenser.Thesewastesincludeactivationgases(N-13,N-16and0-19)arisingduringnormalplantoperations,fission36-3 0
SSES3~73.7.1~ChemicalWashes3.7.1.1RawWaterTreatmentSystemWasteSusquehannaRiverwaterwillbetreatedforuseasmakeuptothereactor.Treatmentwillconsistofclarifyingtherawriverwaterbyadditionsofacoagulant(alum),coagulantaid,alkaliforpHadjustment,andsodiumhypochlorite.Theclarifiedwaterwillbefilteredanddemineralized.Thedemineralizerwillthenconsistofcation,anion,andmixedbedion-exchangers.Theclarifierwillproduceasludgewhichwillconsistbasicallyofriverwaterwiththesuspendedsolidsoftheriverconcentratedtoapproximately0.5-3%solidsbyweight.Inadditiontherewillbeasmallamountofaluminum,sulfate,andpolyelectrolytemixedin.Theaverageyearlyflowofthesludgeblow-offisexpectedtobe1.5gpm,whichisquitesmallwhencomparedtotheflowof10,000gpmreturningfromthepondtotheriver.Themakeupsystemfilterswillbebackwashedperiodicallyandthisbackwasheffluentwillbebasicallyriverwater.Thisbackwashwaterwillbemixedwiththedischargewaterfromthepond.Themakeupdemineralizerswillbeperiodicallyregeneratedwithsulfuricacidandsodiumhydroxidesolutions.TheregenerantwastewillbecollectedinaneutralizationbasinortankwherethepHwillbeadjusted.Thiswaterwillthenbeslowlymixedwiththepond.Approximatley15,800gallonsperday(11gpm)ofregenerantwastewillbeproduced.Theregenerantwastewillberiverwaterconcentratedapproximately6times,withtheadditionofapproximately1,700ppmofsodiumsulfate.Thetotaldissolvedsolidsconcentrationwillbeintheneighborhoodof3,000ppm.Theneutralizeddemineralizerwaste,whenmixedwiththedischargefromthespraypond,willresultinanincreaseof3to5ppmtotaldissolvedsolidsoftheretentionponddischarge.Itisexpectedthattheregenerantwasteneutralizationtankwillbeemptiedin0hours.Therateofdischargewillthenbeapproximately66gpmandresultinanincreaseof23ppmdissolvedsolidsintheponddischarge.3~71
SSES3.7.1.3CirculatinWater-BowdownpromCaulis~TowerMakeupwatertothecirculatingwatersystemisSusquehannaRiverwater.Thiswaterwillconcentrateapproximately3.7timesinthesystemduetoevaporationinthecoolingtower.Thecyclesofconcentrationswillbecontrolledbyblowingdowntothepondattheapproximaterateof5,000gpmpercoolingtower.SulfuricacidwillbeaddedcontinuouslytothecirculatingwatertopreventscalingandtomaintainapHbetween7.2and7.6.Thesulfuricacidisconsumedinthisprocesswitharesultantincreaseinsulfatesandaproportionaldecreaseinalkalinity.Chlorinewillbeaddedintermittentlytothecirculatingwatertopreventslimebuildupinthecondensertubes.Thechlorineresidualatthecoolingtowerbasinwillbelessthan1ppm.Thischlorineresidualiscompletelyconsumedinthepond.Further,onlyoneunitwillbechlorinatedatatime.ThedischargedwaterfromthepondtotheSusquehannaRiverwillhaveachlorineresidualofzero.Studiesshallbecarriedouttodeterminewhatwastestreammonitoringwillberequired.3.7.2DomesticandSanitarWater~SstemsThedomesticwatersystemwillprovidewaterforthepotablewatersupplyandtheSewageTreatmentSystemnecessaryfornormalplantoperationsandshutdownperiods.Domesticwaterwill'besuppliedfromtheriverviatheMakeupWaterTreatmentSystem.Approximately30gpmwillbeprocessedbymeansofaclarifier,filter,andchlorinatorlocatedinthecirculatingwaterpumphouse.Astoragetankwillprovideforshortdurationdraw-offsofupto100gpm.Thedomesticwatersystemwillbeindependentfromthefireprotectionsystemexceptduringconstruction.Asupplyforthecombineddomesticandfiresystemduringtheconstructionperiodwillbepumpedfromwellssunkonthefloodplainbelowtheplant.Itislikelythatonlyaminimumamountoftreatmentintheformofchlorinationwillberequiredforwaterfromthewells.Theplantwillbeservedbyadualaerationsewagetreatmentsystem.Bothunitswillberequiredfortheapproximateeight-yearconstructionperiod.Thereafter,theplantfacilitiescanbehandledbyoneofthetwounits.Theplantsewagedisposalsystemwillnotreceiveradioactivelaundryordecontaminationsolutions.Thevisitorssewagedisposalfacilitieswillbeindependentoftheplantsystem.3e72
SSES4'EFFECTSONHUMANACTIVITIESAplantProjectcommitteewillserveasameanstoassesstheneedsandproblemsassociatedwiththeproject.Typically,thecommitteeiscomposedofsixlocalresidentsandtworepresentativesofPPGL.Theprimarypurposeofthecommitteeistofosteranunderstandingbetweenthecompanyandthearearesidentsofeachother'sgoals,andtocooperateinachievingthesegoalsinordertodevelopthearea'seconomyandresources.Thecommitteewillenablelocalresidentstoserveasasoundingboardbetweenthecompanyandthecommunity,andprovidelocalpeoplewithameansofchannellingsuggestions'raskingquestionsconcerningtheconstructionprojects.SimilarcommitteeshavebeenformedatotherPPGLfacilitiesandhavebeenquitesuccessful.Duringthepeakconstructionperiod,theworkforcewillincreasetoapproximately2,500men(seeSubsection2.2.1.2).DatafromanotherPPSLconstructionprojectinasimilarrurallocationindicatethat10%oftheworkerstravellessthan15miles,54%travelbetween15and40miles,and36%travelmorethan40miles(distancesareforone-waytrips).Manyoftheseworkerswillalreadybeinthearea.Therefore,nosignificantadverseeffectonthecommunity(suchasadditionalservices)isexpected.Thetotalmonthlypayrollduringtheperiodofpeakactivity(1975-1977)willbeapproximately$4,000,000.Thiswillhaveapositiveeconomiceffectontheregion.Theadditionof2,500jobstothelocalpayrollwillincreasetheeconomicbaseofthearea.Siteactivityisplannedtocommenceinearly1973andwillrunthrough1981'hetotalmonthlypayrollduringtheperiodofpeakactivity(1975<<1977)willbeapproximately$4,000,000.Thelocalcommunitymaybefacedwithprovidingadditionalservices,suchassewagefacilitiesorschoolfacilities,butexpendituresbyconstructionworkersforhousing,food,clothingandotheritemswilloffsetthecostofcommunityservices.Overall,theimpactispositiveratherthannegative,andineithercaseisrelativelyshort-lived.ThesewagetreatmentsystemdescribedinSubsection3.7.2willhandlesanitarywaterduringtheconstructionphaseaswellastheoperationalphaseoftheSusquehannaSES.AllremovalandultimatedisposalofsanitarywasteswillbeinaccordancewithstandardsofthePennsylvaniaDepartmentofEnvironmentalResources.Thehandlingofsanitarywastesattheplantsitewillbeconsideredoneofthefirstprioritiesatthestartofconstruction.Thestorage,handlinganddisposalofcleaningmaterials,oils,oilywastes,etc.,willbeincompliancewiththeapplicableregulations.4.2-1 W
SSESDuringconstruction,chippingmachineswillbeusedtodisposeofsmalltreesduringclearingoperationsandtheutilizationofclosedincineratorburningoftrashanddebrisispresentlybeingreviewedandevaluated.Inaddition,afireprotectionsystemwillbeestablished.Somecombustionproductswillbereleasedtotheatmosphereasaresultofoperatingdiesel-poweredmachinery.Theseitemsshouldhavenosignificanteffectupontheenvironment.Duringthesitepreparationphaseofconstruction,dustcontrolmeasureswillbeusedtoreducedustlevels.Thesemeasureswillconsistprimarilyofsprinklingandwillcontinueasrequiredthroughouttheconstructionprogram.Tofurtherreducetheamountofdustgenerated,roadsandparkinglotswillbesurfacedassoonaspractical.Incertainareasoftheconstructionsite,includingroadsandparkingareas,untiltheyarepavedirainswilltendtowashloosesoiloffthesite.Inordertoreducemudrunoff,thedrainagewillbechannelledintothesettingbasinsandonlyafterclearingwillthewaterbeallowedtodrainoff.Constructionactivitieswillcreatesomeunavoidablenoise.Theactivitieswhichcreatethemostnoisewillbescheduledtobestreducetheoff-siteimpact(i.e.blasting,etc.,willbedoneduringday-lighthoursandnotatnight).Theremaybetrafficcongestionenteringandleavingthejobsite,partidularlyatstartingandquittingtime.Ifmultipleshiftsarenecessary,therewillbeasmoothandorderlytransitionbetweenshiftstoreducethelikelihoodoftrafficcongestion.Discussionsarepresentlyunderwaywiththe'ennsylvaniaDepartmentofTransportation(PennDOT)concerningwaystokeeptrafficcongestiontoaminimum.SeveraltransmissionlinecorridorswillbeselectivelyclearedinaccordancewiththeprovisionsandspecificationsofPPEL'sVegetationManagementProgram.Theseproceduresinvolvemaximumretentionofexistinglowgroundcoverintheright-ofmayarea,preservationofexistingtreegrowthinravinesandgullieswhereadequateclearencetolineconductorscanbeobtained,andthe"tailoring"ofexistingtreegrowthalongimprovedroadscrossedbytheselinestoretainanaturalscreenbetweenroadtrafficandtheclearedright-of-waystrip.Whereexistingtreegrowthadjacenttoimprovedroadscannotberetainedbecauseofinterferencewithlinereliability,selectedvarietiesoflowgrowingtreesandshrubswillbeplantedtoprovideapermanentscreenbetweentheclearedright-of~ayandroadtraffic.ItisthepolicyofPPGLtotakeallstepsreasonabletominimizetheimpactoftheSusquehannaSESonthefloraandfaunaofthearea.4'-2
'II SSES5.0uz*5.1EFFECTSOFRELEASEHEAT51.1ThermalD'schareThermaldischargefromtheSusquehannaSESwillconsistprimarilyofheatrejectedtotheatmospherebythecoolingtowers.Eachof'thetwocoolingtowers.willhave,adesignheatloadof8x10~BTU/hr.Anadditionalthermaldischargetakesplaceinthecontinuousblowdownofwaterfromthepond.OverflowfromthepondwillbedischargedintotheSusquehannaRivertogetherwithwaterfromtheradwasteanddomesticwatertreatmentsystems.Studiesareunderwaytodeterminetheoptimumdischargearrangement.Theblowdownfromthecooling.towersisexpectedtobe10,000gpm(22.3cfs).Theestimatedtemperatureofthisblowdownis93~Fand74.2<FforAugustandDecemberrespectively.Towerblowdownwillbedischargeddirectlyintothepond.Thecapacityofthepondwillensureaminimumretentionperiodof24hours.Theblowdownwaterwillflowthroughthepondandwilllosesomeofitsheatbysurfaceheat,transferpriortodischarge.Ithasbeendeterminedthatthemaximumblowdowntemperatureafterleavingthepondwillbe89.50Fand63oFforAugustandDecemberconditionsrespectively.The.heatintheblowdownflowwillbedispersedintotheSusquehannaRiverfromwhichitwilleventuallybedissipatedtotheatmospherebysurfaceheattransfer.Tentatively,theoutflowfromthepondwillbedischargedintotheSusquehannaRiverbymeansofadiffuserlocatedattheriverbottomatthelowestelevationofabout480ft.MSL.Dischargefromthediffuserwouldtakeplacethroughaseriesofsmallportsabout4inchesindiameterdischargingtheflowata45~anglewiththehorizontalinthedirectionoftheriverflowwithanestimatedvelocityof6feetpersecond,asshowninFig.5.1.1Theorientationoftheportsareselectedsothatjetactionwillnotcausescouringoftheriverbedandtoincreasetherateofdilutionfromtheambientriverwater.Theoutflowfromthepondwillresultinincreasedrivertemperaturesinthedownstreamvicinityoftheproposeddiffuser.Theextent'andthemagnitudeofthisaffectedzonedependsprimarilyupontherateofdischarge,thetemperatureoftheblowdownovertheambientrivertemperatu're,thevelocityofdischarge,thediffuserportsizeandthemagnitudeoftheriverflow.ApreliminarystudyhasbeenmadeinordertopredictthecharacteristicsofthermalisothermsintheSusquehanna51-1 SSESatthedownstreamendoftheelementalvolumearray.Itisassumedthemomentumoftheoutfallhasbeendissipatedatthispoint.Thesolutionofthedispersionmodelwasobtainedbyusingthefollowinghydraulicdata:Crosssectionsfromthe1966surveywereusedtoobtaincharacteristicvaluesofaveragevelocities,shearvelocities,andhydraulicradiiforflowconditionsanalyzed.20Lateralandverticaldispersioncoefficientswereevaluatedfromthe'sectionaldataandthesemi-empiricallyderiveddispersioncoefficientequations.ItwasfoundthatforAugustclimaticconditions,withariverflowof1000cfs,the2oF(riseinrivertemperatureaboveambient)isothermextendsabout20feetfromthediffuser.ThecalculatedisothermsareshowninFigures5.1.2and5.1.3.Withthesameclimaticconditionsandamedianflowof3400cfsthe2oFisothermwouldprobablynotreachthesurface,asshowninFigure5.1.4.ForDecemberclimaticconditions,withariverflowof2600cfs,the2OFisothermextendsabout750feetdownstreamfromthediffuser.Thes'eisothermsareshowninFigures5.1.5and5.1.6.Analysisoftheconditionatariverflowof12,800cfsshowedthatthe2OFisothermwouldnotreachthesurface,asshowninFigure5.1.7.Forthecasesanalyzed,themaximumwidthofthe2OFisothermislessthan100feet.ThereductionintheplumelengthbetweenDecemberandAugustismainlyduetothereductionintheestimatedtemperaturedifferencebetweentheblowdownandtherivertemperature.ItisseenthattheheatedwaterdischargefromSusquehannaSESwillnotexceedthetemperaturelimitsofthePennsylvaniaPowerWaterQualityStandardsunderbothcriticalandaverageriverflowconditionsoutsideasmall(lessthan100foot)mixingzone.WaterqualitystandardsincludingthermalstandardsfortheCommonwealthofPennsylvaniaarepresentedinsubsection2.5.1.51.2EffectsonBiotaDuringtheoperationoftheSusquehannaSEStherewillbeessentiallynoeffectonaquaticorganismsfromthethermaldischargeasdiscussedinsubsection5.1.1.Periphytonwhichmovewiththewatercurrentsmaybeeffectedintheareaofthethermalplumebutthiswillhavealimited5.1-3 I
SSES5.2.1'GaseousfuetsThedesignofthecryogenicOffgasSystem,coupledwithdesignfuelcladdingperformance,providesfordelayandretentionsufficenttoreducethe.expectedannualaveragereleaserateto9.3pCi/sec.Thisreleaserateisbasedonaninputtotheoffgassystemof100,000pCi/secdesignbasisofa30minuteoldmixtureofnoblegases.Theexpectedinputanddischargeare1/4theseamounts.TheGaseousRadwasteSystemisdescribedinSection3.6.Thesystemisexpectedtoremoveessentiallyalloftheiodineandparticulateradioactivityintheprocessedgases.Theannualaverageemissionratesandisotopiccompositonofgasreleasedbytheoff-gastreatmentisincludedinTable5'.2.InadditontotheessentiallycontinuousreleaseshowninTable5.2.2intermittentreleasefromthemechanicalvacuumpumpdischargeoccursapproximately40hourseachyear.Thisgasisdischargedtotheatmosphereviatheturbinebuildingexhaustandconsistsofapproximately5760curiesperyearofXe-133andapproximately860curiesperyearofXe-135.5.2.1.3Sol'dEffluentsThesolidradwastesystemisnotexpectedtoreleaseradioactivematerialtotheenvironment.Solidradwastesarepackagedinsealedcontainerspriortoshipment.Weareallexposedtoradiationinvaryingdegreesfromtheground,sky,andairaroundusaswellasfromthefoodweeat.Thedegreeofexposuredependsonwherewelive,thetypeofhousewelivein,andtypeoffoodweeat.TheaveragenaturalradiationdosetopersonslvinginthhUnitedStatesisestimatedtobeabout0.125remperyear.Forsomeindividuals,thedosefromnaturalbackgroundradiationismorethantwicethisaverage.Thesourcesofthisdosearecosmicraysandnaturallyoccurringradioactiveelementsintheearth,thefoodweeat,thewaterwedrink,-andtheairwebreathe.Theexposuretocosmicradiationincreaseswithelevationabovesealevel.Wereceiveradiationdirectlyfrommanymineralscontaininguraniumandthoriumisotopesinthegroundorintheconstructionmaterialsinourhomes.Aradioisotopeofpotassiumisthemostsignificantradioactivesubstanceinourfood.Anadditonalsmallamountofdoseisreceivedthorughradioactivematerialsinwaterandair.Thedosetopersonslivingneartheplant,inadditon-tothatreceivedfiomnaturalbackground,hasbeencalculated52-2
/1 SSESforeachtypeofreleaseandeach~~pathwaytoman."Theseverylowlevelsofdosearenotexpectedtoproduceanymeasurableeffectsinanindividual.Whenlargenumbersofpersonsareexposedtotheselowlevelsofradiation,effectsonpersonsinthegroup(somaticeffects)ordescendentsofthegroup(geneticeffects)couldpossiblyoccur.Forthisreason,itisappropriatetocomparethedosetoalargepopulationgroupfromoperationoftheplantwiththedosethatgroupreceivesfromnaturalbackground.Onemeasureofthepopulationdoseistoaddalltheradiationdosesreceivedbyallindividualsinthepopulationgroup.Thisresultingquantityisreferredtoasman-rem.Thenaturalbackgrounddosewithina50mileradiusofthissiteiscomputedtoabout2,000,000man-rembasedonthepopulationin1970and3,000,000man-.rembasedontheprojectedpopulationintheyear2020.Thewholebodygammadosesshouldbecomparedtothebackgrounddose.Theexternalbodybetadoseaffectsonlytheexternalpartsofthebody(e.g.skin)whicharelesssensitivetoradiationthanotherpartsofthebody.Theiodinedoseslistedaffectprimarilythethyroidgland,whichagainislesssensitivetoradiationthanotherpartsofthebody.Formanyyearsstandardscommitteesandscientistshaveexertedconsiderableefforttodeterminetheeffectofradiationonman.Asaresult,asetofguidelineshasbeendevelopedtodefinemaximumlevelsofradiationdosewhichareacceptableforanyindividualandforlargepopulationgroups.Therecommendedannuallimitsfornon-occupationalexposureare0.5remforanindividualand0.17rem/personforalargepopulationgroup.Themostsignificantdosecomesfromgaseousemmisionstotheatmosphere(directradiation-submersiondose).Theaquaticpathwaysareofsecondaryimportance.Althoughtritiumisreleasedtotheatmospherealongwithnoblegases,thebetaradiationenergyfromtritiumistoolowto~representanexternal(tothebody)radiationhazard.Furthermorethedilutioncapacityofmoistureintheairissogreatthatuptakeoftritiumintothebodyandthesubsequentradioactivityareremovedprior.torelease;therefore,theonlysignificantexposurefromatmosphericreleasesisfromnoblegases,isotopesofkryptonandxenon.Emissionstotheatmosphereduringnormalfull-poweroperationsareshowninTable5.2.3.Atmosphereicsubmersion,whereoneiscompletelysurroundedbythecloudofradioactivegas,willbetheprimarysourceofexternalexposurefromthesegaseousemissions.Thebasicequation52-3 SSESusedtocalculatesubmersiondoseisD~0.25EXwhereDisrad/sec,EisaverageMEV/disintergrationandXiscuries/m~.Thisbasicequationwaschangedtorem/year=7.88x10~EQX/Q.ValuesforEandQ(curies/sec)weredeterminedfromistopicdistributionof,gaseousemissionsasshowninTable5.2.2.ThevalueofEincludes.betaalthoughsomeofthebetaradiationdoesnotrepresentwholebody(somatic)orgeneticdose.ValuesforX/Qwerebasedonannualaveragemeteorology.Themaximumannualaveragesubmersiondoserateatthesiteboundaryoftheplanthasbeenestimatedfornormalfullpoweroperationbasedonanticipatedmeteorologytobe0.48mrem/yearwithoutanycorrectionforoccupancyandshielding.Considerationofoccupancyandshieldingwillreducethedosetoanindividualbyatleastafactoroftwosothatthemaximumindividualdosewillbe0.24mrem/yearfromnormalfullpoweroperation.Toestimatepopulationdose(man-rem),meteorologicaldilutionfactorsandsubmersiondoserateswereestimatedforthemid-pointofeachofthepopulationsectorsindicatedbythedistancesanddirectionsgiveninTable5.2.3inman-remperyearandwascalculatedbymultiplying'thesectormid-pointdoserateinrem/yearbythepopulationineachsector.ThesevaluesaresummarizedinTable5.2.3.Thetotalpopulationdosewascalculatedbysummingtheman-remvaluesineachsectoroutto50miles.Thetotalpopulationdosethusdeterminedis1.44man-rem/yearvithoutanycorrectionforoccupancyorshielding.Thisisapproximately5x10-~%ofthedosetothesamepopulationgroupfromnaturalbackgroundradiation.Inadditiontonormalreleasesduringfullpoweroperation,Xe-133andXe-135willbereleasedonanintermittentbasisfromoperationofthemechanicalvacummpump.Annualaveragemeteorologycannotbeusedinthiscasebecausethereleaseoccursforashortperiodoftimefollowingashut-downandduringsubsequentstart-upofthereactor.Totaltimeinvolvedinthistypeofreleaseisexpectedtobe40hours/year.Themaximumannualaverageconcentrationatthesiteperimeter,basedon40hourPasquillFmetrorology,villbe1~1x10-8pCi/ccforXe-133and1.64x10-~pCi/ccforXe-135.UsingtheInternationCommissiononRadiationProtection(ICRP)methodofdosecalculation(Ref.5-2),theseconcentrationswillrepresentannualdosesof0.0185remfromXe-133and0.0082remfromXe-135.However,,mostofthisisskindoseAnindependentcalculationofthewholebody,skin,andlungdosehasbeenmadeusingreferences5-3,5-4gand5-5.Thesecalculationsover-estimatetheskindosebecausesomeofthebetaparticles,internalconversionelectrons,andAugerelectronswillnotpenetratedeeplyenoughtoexposeradiationsensitivetissue.However,the,energyfromtheseradiationsareassumedtobeabsorbed52-4 0
SSESEXHIBITADOSETOMANFROMACLOUDOFXeANDXeGiven:Acloudofl.lxl0pCi/ccXeandl.64xl0pCi/ccXe,133-9~135averagedoveroneyear.DataforcalculationsofZedose.138RadiationBlB2KIC(Fromyl)LIC(Fromyl)MIC(Fromyl)KIC(Fromy2)LIC(Fromy2)MIC(Fromy2)LXrayAugerKLLKLXKXYLMMMXYMe'an'o.Disxntegratxon.007.993.0023.0015.0005.4724.0787.0984.073780358.0157~0026.4381.13MeV.0753.1006.0436.0742.0786.450.0757.0800r.0043.0254.0297.0340.0033.0010~radgCi-h.0011.2132.0002.0002.0001.0454.0127.0168.0007.0019.0010.0002.0031.0024TotalNon-penetratingRadiation.2990g-radpCi-hyly2XraysKaKBKBKB.0023.3499.004.2297.1173.0633.0134.0796.0810.1605.031.030.035.036.004.605.0001.0152.0077.0047.0010TotalPenetratingRadiation,.0896'-rad~Cx-h SSES133XeLungdosefromAssumedvolumeof3500ml,weightof1000g..3xl.lxl0Thenlungconcentration=3'.'5x'10'0=3.85xl0gCilunggmTheabsorbedfractionforlungforasourcedistributedinlungis=.09fortheaveragephotonenergy.Thelungdoseis(0.299=(.09x0.861)3.85x10x365x241.04104radI.1mradinternal"=3.4mradtotal5.2-10
SSESDataforXedose135RadiationMean'.No.D'is'integration."feVBlB2kICL,M,.....IC.97.03.049.01.3.183.214.620.012.022ylY2y3.91.009.03,25.36.61.485.007.039.531-9Conc.1.64xl0~Ci/ccl.64x~.0pCi/gm1.293l.268xlOpCi/gmSkindosefromZe135(.654=.531)x1.268xlOx365x24=1.32x10rads/yr=13.2mrads/yr4WTotalbodydosefromXe135.53lxl.llxlO+5.9mrads/yr4'iYTotalbody=2.95mrads/yr25.2-11
SSESLungdosefromXe135Absorbedfractionforaveragephotonenergyis=.05.39Lungconcentration=3.5x10xl.64x10'0=5.74xlO+CilunggmLungdoseis(.654=.05z531)x5.74xlOx365x24-53.4xlOrads.034mradsinternal=2.98mradstotal3.3mrem/yearSummaryofdosetoman133XWholeBodySkinLung14.3mrem/year3.4mrem/year135XWholeBodySkinLung3.0mrem/year6.6mrem/year3.0mrem/yearC.ThestandardAECcalculation(10CFR20AppendixB,Table2,Column1=500mrem/year)yieldsthefollowingdoseassumedtobetothewholebody:(1)Xe=18.5mrem/year133(2)Xe=8.2mrem/year1355.2-12 B0J SSESTABLE5;2.6SUMMARYOFTHEDOSECALCULATIONSSourceIndividualDose(mrem)PopulationDose(man-rem)W~BSkin~LunT~hroiBBoneWholeBodorGeneticDirectRadiationfromGaseousEmissionGDesignFuelLeakage(a)FullPowerOperationIntermittentVacuumPumpDischargeAquaticPathwaysNaturalBackground024**3.2150.0811403.20.0660.090l.447.5Negligible280,000*WB=WholeBodyGl=Gastrointestinaltract**Skindosewasnotcalculatedseparatefornormalfullpowerisincludedinthevalvefor-wholebody.
IC SSES5'EFFECTSOFRELEASEDCHEMICALANDSANITARYWASTESNeitheraquaticandterrestrialinhabitantsoftheSusquehannaSESsiteandSusquehannaRiverwillbeharmedfromchemicalsreleasedwithwaterdischarged.totheriver.Lessthan0.1mg/1(ppm)offreechlorineisexpectedtobedischargedintotheriverattheSite.Theminuteamountsofchloraminesdischargedintotheriverwillhavenoharmfuleffect,onorganismspresent.Theamountofironreleasedisdependentonqualityoftheriverwater.Duringcertainpartsoftheyearasmuch1.72mg/1(ppm)ofironhasbeenobservedtobepresent.OperationoftheSusquehannaSESwillnotaddadditionalirontotheriver.Commonwealthstandardsstatethattheamountofirondischargedshouldnotexceed1.5mg/1(ppm).SincethereisalreadyaconcentrationofironPPSLdoesnotexpectaharmfuleffectonaquaticorganismstoresultfromthedischarge.Adjustmentbyadditionofsodiumhydroxide,andsulfuricacidtothechemicalandsanitarysystemswillkeepdischargedwaterwithinapplicablelimits.AlldischargesfromtheplantwillmeetallrequirementsofthePennsylvaniaDepartmentofEnvironmentalResources.53-1" SSESreactorirradiation.This,coupledwiththehighmeltingpointofthefuelpelletsassuresthatduringashippingcaskaccident,thereisverylittlepotentialforanyradioactivityotherthanthenoblegasesbeingreleasedintothecaskcavity.Mechanicalpropertiesoftheirradiatedreacttosubstantiallymitigatetheconsequencesofanaccidentbytightlybindingthefissionproductswithinthebasicfuelassembly.Thereareseveralfeatureswhicharetypicalofallshippingcasks,suchasheavystainlesssteelshellsontheinsideandoutsideseparatedbydenseshieldingmaterial,suchasdepleteduranium.Additionally,thecaskhasextendedsurfaceareafordissipationofdecayheatandwillbeequippedwithanenergyabsorbingimpactstructuretoabsorbtheenergyofthe30-ftfreefallandtolimittheforcesimposedonthecaskandcontents.Thecaskalsocontainsabasketwhichisprovidedtosupportthefuelduringtransport.Additionally,forhighexposurefuelprovisionswillbemadeforahydrogenousmaterialsuchaswatertoprovideforabsorptionofthefastneutronsgeneratedthroughspontaneousfissionandalpha-nreactionsofthetransuraniumisotopes.5.4.1.2oralShimentRadioloicalResultsTheprincipalenvironmentaleffectfromtheseshipmentswouldbethedirectradiationdosefromtheshipmentsastheymovefromthereactortothereprocessingplant.Inthisregard,ithasbeenassumedthattheshipmentsaremadeatthemaximumpermittedlevelof0.01remperhouratsixfeetfromthenearestaccessiblesurface.Basedonthisandwiththenearestpersonassumedtobe100feetfromthecenterlineofthetracks,(assumingtransportat'ionisbyrail)-itisestimatedthatthedoserateatthatpointwouldbe0.0002remperhour.Thiswouldfalloffto0.00001remperhouratabout300feetbeyondwhichtheradiationexposurereceivedbythepopulation.isnegligible.EventPobab'tConsideratinsSpentfuelshipmentsareplanned,scheduled,anddeliberate,andthereforefallinthe"normal"probabilitycategorybydefinition(seesubsection6.5).54-2 Ilh, SSES5.4.'}.3AccidentOccurrencesRadioloicalResultsAprincipalenvironmentaleffectfromanaccidentwouldbewholebodyradiationduetotheincreasedradiationlevelsfromthereleaseofnoblegases.Consideringthedoseattenuationeffectswithdistanceitcanbeconcludedthatthedirectradiationdoseeffectstothegeneralpopulationwillbenegligible.Calculationsindicatethatwithoutasubstantialquantityofdecayheatintheshippingcaskplustheadditionofexternalheat,suchasfromafire,therewouldbenoreleaseofthefissiongases.However,thisaccidentisevaluatedaccordingto10CPR71criteriawhichconsidersthat1000Ciofgaseousactivityisreleasedtotheenvironment.Onthisbasisandconsideringapopulationdensityof334peoplepersquaremile,thepopulationexposureasshowninTable6.1isordersofmagnitudebelownormalbackground.Similarcalculationsweredonefortheiodinetodeterminethedosetothethyroid.Resultsofthiscalculationindicatethatthetotalthyroidexposureisalsoorders'fmagnitudebelowbackground.Itcanthereforebeconcludedthatthisaccidentwillhavenegligibleeffectsonthetotalenvironment.EventprobabilitConsiderationsThisisatransportationaccidentinvolvingeithertruckorrailshipments.Theprobabilityisafunctionofthemannerofshipment(truckorrail),thedistanceshipped,theaccidentrateasafunctionofdistance,andtheprobabilityofarelease,givenanaccident.Thecaskisdesignedtowithstandtheimpactofa30footfreefallontoanon-yieldingsurface,sotheprobabilityofrupturingthecask,giventheaccident,isextremelylow.Thedistancetravelledisavariabledependingonthelocationofthefuelreprocessingplanttowhichshipment"ismade.Theprobabilityofanaccidentpermiletravelledisprobablyaboutthesamefortruckandrailshipments,butmoretruckshipmentsarerequiredduetothesmallersizeofcasksusedontrucks.Theeffectofvariousotherspecialprecautionssuchasroutingspeedlimitations,andexpertdrivingare-factorsthatneedtobeconsidered.Basedonthesefactors,theprobabilityofthespentfuelcasktransportationaccidentisatthelowerendoftheemergencyconditionorthehigherendofthefaultcondition,withthehighervaluesassociatedwithtruckshipment.5.4-3 II' SSESIntheaquaticpartoftheprogram,samplingwillincludesurfacewatersamplesfromtheSusquehannaRiver,-NescopeckCreek,theSalemReservoir,LilyLake,sitepondsandtheswampsadjacenttotheplant.Tritiumanalyseswillbeperformed.Samplesofwellwaterwillbecollectedfromabouteightlocationsinthearea.Theaquaticfoodchainconstituentswillincludethecollectionofbottomsedimentsandfish.BottomsedimentsfromtheSusquehannaRiverwillbecollectedupstreamanddownstreamfromtheplantsiteandfromNescopeckandSalemCreeks.FishwillbeobtainedfromtheSusquehannaRiver,NescopeckCreekandLilyLake.AnalyseswillbeperformedforStrontium-90inthebonematterandgammascanningalsowillbeperformed.Theoverallmonitoringprogramsamplingfrequencieswilldependupontypeofsamplesbeingcollected.Air-borneparticulates,wellwaters,surfacewaters,rainfall,slime,bottomsediments,andmilkwillbecollectedandanalyzedmonthlyorquarterly.Mostvegetativetypeswillbecollectedthreetimesperyearduringthegrowingseasons,whilesoilsampleswillbecollectedsemi-annually.5.5.4Appropriatephysicalandchemicalparametersoftheintakewater,pondwatersandwateratthedischargepointwillbecontinuouslymonitored.Suchfactorsastemperature,dissolvedoxygen,chlorides,sulfates,radiationandtotaldissolvedsolidswillbemeasuredasnecessary.55~55~55~1AuaticBiolo~Beginninginthefallof1970,studieswereinitiatedoffishesandbottomdwellingorganismsinthesitearea.Emphasiswillbeplacedonthespawninggrowthandmovementoffishesthroughthearea.Anestimateofthenatureandextentofthesportfisherywillbeobtained.Surfacedrift,whichcanbe.important,willalsobesampledwithinthegeneralarea.Thewaterwillalsobelookedatfromthestandpointoffloatingplanktonicorganisms.Aquaticplantswillbemappedandidentified.Specimenswillbecollectedandmadeavailabletofirmswhowillperformradioactivitybackgroundstudies.Itisplannedtotakewatertemperature,oxygenandpHreadingswithregularcollectionsoffishesandotherorganisms.5.5.5.2Tezr~estr'alAbiologicalstudywillbeinitiatedatleastfouryearspriortoUnit1fuelloading.Awildlifeinventorywillbeperformed.Speciespopulation,diversification,55-4
SSESreproductionratesandhabitatassociationswillbestudied.Particularemphasiswillbeplacedonthewetlandareainthesouthernportionofthesite.AstudyandmonitoringprogramwillbeconductedforatleasttwoyearsafterUnit2isinoperation.Thisprogramwillevaluatetheeffectoftheconstructionandoperationaoftheplantontheterrestrialbiota.Thesestudieswillincludethetaggingoforganismsinordertoevaluatethereproduction,growthratesandfoodchainoftestspecies,inventoriesandobservationsoftypicalfaunaandflora,andacomparisonofconditionspriortoconstructionwiththoseafteroperation.Monitoringwillbecoordinatedwiththeradiologicalmonitoringprogram.Informationanddatadevelopedduringthesestudieswillbeusedtodevelopmanagementprogramsdesignedtoenhancethesiteenvironment.5.5.6I!.HAspartofPPSLconcernwiththeenvironment,anoisecontrolprogramisbeingdevelopedtoavoidmajornoiseproblemsassociatedwiththe,operationoftheplant.55-5
'~Ih
~SSESDuetothelimitedmobilityoftheparticulatefissionproductstheyexistinlesserquantitiesineffluentsandsotheircontributiontotheoverallenvironmentaleffectsisnegligibleandthereforeneglectedinthisanalysis.Dependingonthetypeofleak(i.e.,steamorliquid)thepotentialfornoblegasreleasemayormaynotexist.Iftheleakwerebetweenthemainsteamlineisolationvalveandturbineonecouldexpectareleaseofnoblegasactivity;whereasiftheleakwereliquid,duetotherelativeinsolubilityofnoblegasesinwater,onewouldexpectnogaseouscontributionfromthissource.Fortheiodineactivitytheenvironmentaleffectsweredeterminedbycomparingtheaverageannualconcentrationsatvariousradialdistancesin16sectors(22.5O/sector)totheMaximumPermissibleConcentrationinAir(MPC~)assetforthin10CFR20AppendixBtable2column2.O~yWhereDThyroidDfThyroiddose(rem/yr)X.Doseconversionfactor(i.e.,Q,-1.5r/yr.),otherparametersasipreviouslydefined.ThethyroiddoseequationappliestothedoseinagivensectorataradialdistanceR.Therefore,todeterminetheintegratedpopulationexposureitisnecessarytomultiplythisthyroiddoseequationbythepopulationdistributioninagivensectorandatthegivendistanceRandsumthisproductforallsectorsanddistancesto50miles.Concerningthewholebodydoseeffectsfromthereleaseofnoblegasactivity,thesteamandhenceactivityreleaserate,isbasedonanequivalent7gpmwaterleak.Thecloudgammaexposuresarebasedonthosemathematicalmodelspresentedinreference6-2andarepresentedinTable6.3.1.Thecummulative50milethyroidexposuretothegeneralpopulationis18man-rem.Theallowablethyroidexposureisordersofmagnitudeabovetypicalwholebodydoseeffectsbecauseofthelimitedbiologicaleffectsonthethyroidgland.However,forthepurposeofthisevaluationthethyroidexposureiscomparedonthesamelevelasthewhole6~3-2 SSESXJWhereXJAverageannualisotopicairborneconcen-trationofthei"isotope(pCi/cc)Accumulativefrequencyforwindspeed,stabilityandsector(dimensionless)thPlantreleaserateoftheiisotope(uCi/sec)Horizontalandverticaldiffusioncoefficients(cm)Windspeed(cm/sec)YiZHorizontalandverticaldistancesfromplumecenterline(cm)Sectorangleoverwhichplumeisaveraged(radians)Distancefromreleasepointtodetectorposition(cm)6.3.5.1.2RadioloicalResultsTheintegratedman-remexposureforthisaccidentisbetween10-~and10-~ofthoseexposuresrecievedfromnormalradiationbackground.Itcan,therefore,beconcludedthatthiseventisnegligiblewithregardtotheenvironmentaleffects.6.3.5.1.3EventProbabilitConsiderationsSpentfuelistransferredfromthereactortothefuelpoolbymeansoftherefuelinghoist.Eachfuelbundle,toberemovedisgrappledinthereactor,liftedverticallyuntilthebottomofthefueltransferchannelisclearedandthentransportedacrossthefuelpoolbutalwaysunderwater.Abrakeisprovidedtopreventexcessivedropvelocity.Alimitswitchisprovidedtopreventexcessiveliftingvelocity.Theaccidentpostulatedassumesthataspentfuelbundledropsfromthemaximumheightabovethecore,fallsthrough63-9 l
SSESD.ThroidInhalationDose8hrs.-30das)whereD.inhInhalationdosereceivedbetween8hrs.and30days(rem)6.3.7.1.2adioloicalResul'tsTheresultingenvironmentaleffectsforthisaccidentarepresentedinTable6.3.1.Asnotedtheeffectsareordersofmagnitude.belowtheseresultingfromnormalbackground.Itcanthereforebeconcludedthattheenvrionmentaleffectsasaconsequenceofthisaccidentarenegligible.6.3.7.1.3EventProbabilitConsiderationsTheprobabilityofalargebreakseveranceshouldfallwithintherangeofanEmergencyConditionbasedonestimatesofpipefailureratescontainedintheliteratureandonthenumberofpipesthatsatisfytheconditionsforalargebreakdesignbasisaccident.TheprobabilitythatanLPCIinjectionvalvewillbeunabletoopenwhendesiredshouldalsofallwithintherangeofanemergencyconditionbasedonananalysisusingfailureratesfromreference22,23,and24consideringanticipateddowntimeandtheintervalbetweeninjectionvalvetests.Sinceeachprobabilityislowandtheoutcomesarenotcriticallyinterdependent,thejointprobabilityofpipebreakandinjectionvalvefailureisexpectedtobeextremelylowplacingthiseventinthefaultcondition.6.3.7.2SteamLineBreakAccidentThepostulatedaccidentisasudden,completeseveranceofonemainsteamlineoutsidethedrywellwithsubsequentreleaseofsteamandwatercontainingradioactiveproductstothepipetunnelandtheturbinebuilding.Sincethisaccidentdoesnotresultinanyfueldamage,theenvironmentaleffectsarelimitedtothoseradiologicaldoseswhichmaybereceivedasaconsequenceofexposuretotheactivityassociatedwiththeprimarycoolant.63-15 t
SSESreactorisatfullpower,themaximumrodworthisapproximately1$,resultingintheperforationoflessthan10rods,butwithahighprobabilitythatnonewillactuallyfail.6.3.7.3.1CalculationofSourcesandDosesInadditiontotheassumedfailureof10rods,theradiologicaleffectsarealsobasedonaratedsteamandrecirculationflow,aniodinecarry-overfractionof1%,andamainsteamlineisolationvalveclosuretimeof4seconds.Inadditiontoisolatingthemainsteamline(MSL)theMSLradiationmonitorsalsoisolatethenormaloff-gassystemtherebybottlingtheactivitybetweentheMSLisolationvalvesandtheoffgasisolationvalves.Theprimarysourceofleakagefromthesystemwillthereforebeviatheturbineglandsealsandwillbeduetochangesinenvironmentalpressurewithrespecttotheturbinecondenser.Theairborneactivityinthecondenserisafunctionofthepartitionfactor,volumeofairandwater,andchemicalspeciesofthefissionproductactivity.Thevaluesassociatedwiththeseparametersare:apartitionfactorof10oforiodine,acondenserplusturbinefreevolumeof2.1x10~ft~andacondensatevolumeof1.2x104ft~.6.3.7.3.2RadiolicalResultsAsnotedintable6..3.1,theradiologicalexposuresforthisaccidentareordersofmagnitudebelowthoseeffectsreceivedfromnormalbackground.Itcanthereforebeconcludedthatenvironmentaleffectsfromthisaccidentarenegligible.6.3.7.3.3EventProbabilitConsiderationsInorderforarodtodropfromthecore,itmustfirstbecomedetachedfromthedrive,remainlodgedinpositionwhilethedriveiswithdrawnfromthecore,andthen,whilethedrive'sstillwithdrawn,becomedislodgedandfallfreely.Thisisacomplexseriesofevents,therebeingmanypossibleactions(orinactions)thatareinterrelated,butthisisoffsetbythemanyannunciatorsandproceduresthataremeanttoavoidsuchanevent.Therodsaretesteddailyprovidingmanyopportunitiesfortherodtobecomeuncoupled,andmanyopportunitiesfordetectionaswell.Actualexperiencehasbeengood.However,conservativejudgementindicatesthatthiseventshouldbeassignedasanemergencycondition.63-17 SSEStheman-remcomparisonsaremadeforthepopulationwithina50mileradius.Ifthereareonemillionpeoplelivingwithina50mileradius,thenaturalradiationbackgroundwillresultinabout14Q,QOOman-remperyear.Table6.2.1listsman-rem/yearfromnaturalbackgroundforthisplantlocation.6.4.2Man-MadeRadiationBackroundManhasaddedtohisradiationexposurefromnatureinanumberofways.Thelargestcontributionbyfarhasbeenfrommedicalexposure.Ithasbeenestimated(Ref.6-7)that94percentofman-madeexposureisfromthisradiationandofthis,90percentisattributedtodiagonisticX-rays.Typically,anaverageof55mremperyear(30)isreceivedbytheaverageUnitedStatescitizen.Morerecentreportsseentoindicatethat35.5mremperyearisamoreappropriateaverage.SpecificexampleofaverageexposuresperX-raytoanindividualare25-50mremfromanaveragechestX-ray,200mremfromanaveragegastro-intestinaltractexaminationandarangeof5<<200mremforafluoroscopicexamination(Ref.6-8).Additionallysmalllevelsofradiationcanbereceivedfromluminouswatchdials(about2mrem/year)andtelevisionviewing(1to10mrem/year).Therefore,theresultantman-.maderadiationreceivedbytheaveragecitizenrangesbetween50to100mremperyear.Man-RemFromMan-MadeRadiationTotalpopulationexposurefromman-madesourcesismoredifficulttoevaluatesincetherecanbeanindividualchoicemadeastowhethersuchradiationisreceived.However,reasonableassumptionscanbemadeinordertomakeestimatesofman-remperyearsinceit,isnotfeasibletomonitorthepopulationdosebymeasuringthedosetotheindividuals.Thepopulationdoseasaresultofviewingtelevisiontoasamplemillionpeoplecanbeestimated.Typicallyanindividualwouldreceiveabout1-10mrem/yearfromwatchingTV.Assumingtheaveragedosereceivedis5mrem/year,thenthisresultsin5000man-rem/year.Lookingatthissamepopulationonecandeterminetheman-remasaresultofexposurefromluminous-dialwatches.Ifonly10percentofthisexamplepopulationareexposedto2mrem/year,thentheresultantpopulationdoseis200man-rem/year.Ithasbeenestimated(Ref.6-29)thatmedicalexposureaccountsfor94percent,ofthetotalgeneticallysignificantdose(GSD)fromman-madesources,andofthis,90percentisattributedtodiagnosticx-rays.Theestimatedmeanannual64 SSES8.2SOURCESOFPOWER8.2.1IntroductionAnumberofalternativemethodsofprovidingpowertomeetPPSL'sincreasingloadrequirementshavepreviouslybeenexamined.Ithasbeendeterminedthattheonlypracticalalternativewhichcanprovidetheneededlong-termbaseloadpowerforPPSL'sserviceareaistheconstructionofnuclearand/orfossilefuelplants.TheadditionoftheSusquehannaSESnuclearunitsisthechoiceforthe1979-1981period.Nuclearfacilitiesaremorepractical,giventhetimeconstraintsimposedonPPELbyincreasingconsumerdemands.Purchaseofpowerfromotherutilitiesintheqnatitiesrequiredisgenerallyunfeasiblefromseveralstandpoints.Theentirequestionofalternativesourcesof,powerisdiscussedinthefollowingsections.8.2.2,AlternativeofNotProvidinPowerOnealternativeoftheSusquehannaSESisthatofnotbuildingagenerating'stationatall.Intoday'ssociety,adequateelectricserviceisconsideredessentialtothecontinuedwell-beingofthepublic.Section401ofthePennsylvaniaPublicUtilityimposesanobligationonelectricutilitiestofurnishandmaintainreliable,adequate,efficient,'safeandreasonableserviceandfacilities.Thisserviceshallbereliableandwithoutunreasonableinteruptionsordelays.Atthepresenttimeloadcurtailmentarrangementshavebeenmadewithlargerindustrialcustomerswhoareabletoreducetheiroperationsforashorttimeduringpoweremergencies.Othercustomerswillgenerallytoleratevoltagereductionsandorloadcurtailmentunderabnormaloremergencyconditions.Theywouldfindfrequentnon<<emergencycurtailmentsofserviceunacceptable.Large-scale,long-:duration,customerinterruptionscanhaveanadverseeffectonthepublic.Forinstance,theabsenceoflightsendangerspublichealth,safety,andsecurity,foodspoilsintheabsenceofrefrigeration,and,lackoftransportationincertainareascanleavepeoplestrandedinvulmerablesituations~etc.Ifsuch-loadcurtailmentwereintendedtobean.alternativetosupplyingthecustomer'sdemandisomeonewouldbeforcedtomakedifficultdecisionsaboutwhoshouldgetpowerandwhoshouldnot.Theeffectonthepublicofdenyingservicetowholeblocksofcustomersasan-alternativetobuidlinganewplantcannotbeestimated.Loadgrowthforecasts,indicatethatifnewgeneratingcapacityisnotaddedonthePPELsystemintheyears1979-1981someloadcurtailmentmaybenecessaryandwillbea82-1 SSESTheuseofeithercombustionturbinesordie'selsincontinuousoperation(necessaryfor,providingbase-loadpowe'r)isnotonlyexpensiveintermsoffuelconsumptionbutalsoresultsinhighermaintenancecosts,sincetheseunitsarenotdesignedfor24-hour-a-dayoperation.DelaysinbringinglargebaseloadgeneratingunitsintoservicehavebeenmetonthePJMmembersystemsextensivelybytheinstallationofcombustionturbines.Theircontinuedlarge-scaleinstallationasasubstituteforbaseloadgenerationisnot.desirableeithertechnicallyoreconomicallyforthereasonsstated.SuchcapacityalreadyinstalledandscheduledonPJMwillrepresent21%ofthetotalinstalledcapacitybythesummerof1973.Combustionturbineunitsinconjunctionwithsmallsteamturbinesformacombined-cycleunit.Whilethese"packaged"unitsareconsiderablymoreefficientthanconventionalcombustionturbinesandrangeinsizefrom200MWe-350MWe,they,too,cannotbeconsideredanalternativetoalargebase-loadsteamunit,sincetheyburnthesameexpensivefuelsasdoconventionalcombust'ionturbinesanddieselunits(typicallynaturalgasor,,No.2fueloil).Wheneconomicalmeansaredevisedtopermittheseunitstoburnresidualorcrude.oil,asinlargepowerboilers,thencombinedcycleunitscouldbereconsideredbyPPSL.Dependingonthecircumstancesthistypeofgeneratingcapacitymightthenbejustified.8.2~4.3HdroelectricGenerationTherapidresponsecapabilitiesofbothconventionalandpumpedstoragehydroelectricfacilitiesmakethemdesirableforpeakingrequirements.Conventionalhydroelectricplantsmightbeusedforbase-loadgenerationbuttheirpotentialcapacitiesinthePennsylvaniaareaarefarsmallerthanthatrequiredbyPPGL.PumpedstorageisbecominganimportantsourceofpowergenerationintheNortheastU.S.,butmainlyasasourceof,peakingpower.Pumpedstoragefacilities,bytheirnature/arealimitedenergysourcecapableofoperatinginthegeneratingmodeonlypart-time.Also,consideringvariationsofcustomerdemandduringadayorweek,pumpedstorageistypicallylimitedtoabout20%oftheoutputofacontinuouslyoperatedplantatmaximumcapacity.Thus,pumpedstorageisnotafeasiblealternativetoa.base-loadsteamplant.8'-4 8NuclearVersusFossilFuelInthisanalysisthecompetingalternativesaretwo1100mwnuclearorfossilunitsscheduledforcommercialoperationin1979and1981.Oilwithlessthan1%sulfurcontentandcoalwithlessthan2.5%sulfurcontentareconsideredasalternatives.Bothsystemandmine-mouthcoalplantslocatedinPennsylvaniaareconsidered.Thepredictedunavailabilityofnaturalgasasafuelsupplyeliminatesgas-firedplantsasapracticalalternative.Bothdomesticandforeignlowsulfurcontentoilreserves,inthequantitiesnecessaryforthenext30yearsforaplantofthissiie,areexpectedtobeunreliable.Toassurereliabilityofacoalsupply,PPSLshouldbeabletocontrolblocksofcoaleachcontainingnotlessthan30milliontonsofeconomically,coverableofcoal.Suchblocks-arerelativelyscarceinPennsylvania.CoalfromlargeblocksoutsidePennsylvaniawouldbemorecostlybecauseofthehighertransportationcosts.4Unlikecoalandoil,uraniumiseconomicallyavailableinthequantitiesneededforthe30yearperiod.Forthisreasonuraniumhasbeenselectedasthefuelsourcefortheseunits.8.2.5.1EconomicCostsAdollarcostcomparisonofvariouspowergeneratingfacilitiesisshowninTable8.2.1.Thefacilitiesconsideredinclude:SusquehannaSESasplanned;acoalplant;anoilplant;andamine-mouthplant..Allunitsareassumedtohaveelectrostaticprecipitatorswhereapplicableandclosed-loopcoolingtowers.OilisassumedtohaveasulfurcontentwhichwouldnotrequirefacilitiesforSO<removal.Costofthesefacilities,includingcostofoperation,hasbeenincludedforfossilstations.Anaverage70$-capacityfactorwasassumedforallfacilities,alongwitha30-yearlifetime.Theaddedtransmissionlinedistanceforthemine<<mouthplantwasassumedtobe270miles,whilethepipelinenecessarytobringoilfromanearbyporttoatypicalsitewasestimatedtobe80miles.Allfuelcostshavebeenescalatedto1980fromabaseyearwhenestimateswereavailable.Thebaseyearestimatesandratesareshownasfollows:8.2-5 I1N' SSESannualplantloadfactor,evaporationamountstoabout23,500acrefeetperyear.Tomaintaintheproperwaterquality,blowdownwillrequireanadditional10,400acrefeetperyear.8.4.2.1NaturalDraftTowersThedevelopmentofanoptimumdesignedheatcycleissocomplexthatitcanonlybedonereasonablybytheuseofcomputers.Towerperformanceanditseffectonplantoutputmustbeevaluatedonthebasisofhoursperyearpredictedforvariousambienttemperatures,theresultantgenerationcapability,andthevalueoftheenergygeneratedatthetime.Asnaturaldrafttowersareplannedforthisplant,acomprehensivecomputeroptimizationstudyhasbeenperformed.Typically,therewillbeatriplepressurecondenserdesignedforatotalwaterflowof450,000gpmperunitandatemperatureriseof33.4PatdesignturbineunitAtanominalmaximumsummerambienttemperatureof754Fwetbulband90<Fdrybulb,theoptimizednaturaldrafttowerisrequiredtocoolthewaterto88.94P.Withafullplantloadandatthenominalmaximumwetbulbof75~F,41milltioncubicfeetperminute(cfm)ofairwillbedischargedfromeachtoweratavelocityof900feetperminute(fpm)(10mph)andatemperatureof109~P.UnderaextremewinterconditionofOoF,airflowwouldincreaseto66millioncfmand1450fpm(16.5mph),andbedischargedatatemperatureof62~P.TestsconductedbytheEnvironmentalSystemCorporation,anddemonstratedunderthesponsorshipoftheEnvironmentalProtectionAgencyincooperationwiththeAtomicEnergyCommissiononSeptember28,1971,atOakRidge,Tennesseeindicatesthatdriftlossfromcoolingtowersistypicallyontheorderof0.005%ofthecirculatingwaterrateforeithermechanicalornaturaldrafttowers.Testsconductedbytwomajortowermanufacturersconfirmthisfigure.WithanassumedTDSof770ppminthecirculatingwater,andtakingintoconsiderationanticipatedannualloadfactor,thetotalsolidscarryoverthatwouldbedischargedfromthetwounitswouldbeontheorderof280lbs.perday.Thenaturaldrafttowersystemwillbeconsideredasthebasesystem,andcapitalandoperationalcostsofotherschemeswillbecomparedtothissystem.8.422MechanicalDraftTowersTheoptimizationstudyontheplant-mechanicaldrafttowersystemresultedinadesignwaterflowandcondensertemperaturerisesufficientlyclosetothatofthenaturaldrafttowertopermitcomparisonofthetwosystemswiththe84-2 SSESyear.Thisdoesnotincludetheeffectsofpotentialsmalldifferenceinpumpcostduetothedifferentfillheightsforthetypesoftowersnortheincreasedmaintenancerequiredwiththeactivetypetower(mechanicaldraft)anditsappurtenancesascomparedwiththepassivetype(naturaldrafttower).Onbalancethenitcanbestatedthatingeneralthecostsforthetwosystemsareequivalentandthatnomajoreconomicadvantagewouldbegainedbytheuseofmechanicaldrafttowers.Theblowdownfromthissystemwillduplicatethatofthenaturaldraftsystem.Driftandsolidscarryoverwillalsoapproximatethevaluessuggestedinthenaturaldrafttowersection.Sincethemechanicaldrafttowerdischargesatalowerelevation,thefalloutpatternfromdrift,fog,.andwintericeformationfromthemechanicaldraftsystemwouldbesubstantiallydifferentfromthenaturaldraftsystem.Thepotentialenvt.ronmentalimpactofthesedischargeswillbediscussedlaterinthissection.8.4.2.3CoolinondsThecreationofalargecoolingpondorartificiallakeasameansofdissipatingcondenserheathasbeenconsidered.Toproperlyutilizethissystem,anumberofspecificsitecharacteristicsshouldbepresent.Tominimizepumpingcoststheremustbeavailableclosetosubstantialpropertywhichisfairlyflatandlendsitselfwelltopondconstruction.Nominallythepondareaisaboutoneacrepermegawatt;Onthisbasis,thetwounitsatSusquehannawouldrequireatleast2200acres(3.5sq.mi.).Reducingpondsizemuchbelowthisfigurewouldnecessitateareductioninplantoutput'ecauseofbackpressurelimitationsontheturbineifanextendedperiodofhotweatherweretooccur.Topographyofthesurroundingplantareasuggeststhatthesiteisnotsuitedforacoolingpond.Thetotalplantpropertyabovethefloodplainis490acres,andthustheareaavailableforcoolingisinadequateTheplantareadoesnotlenditselfwelltopondconstruction,noristhereanypropertyneartheplantthatissuitableforthispurpose.Contourmapsshowsubstantialvariationsinelevationinadditiontoageneral200'levationdropfromthewesternplantboundarytotheU.S.11.highway.Porthesereasons,acoolingpondisnotconsideredaviablealternative,andadetailedcostanalysiswasnotperformed.8'-4 I
SSES8.43.6~No'se~Neitherthenoisefromfallingwaterinthenaturaldraftwettowers,northefanorothernoisesfrommechanicaldrafttowers(eitherwetordrytypes)shouldnotbeobjectionableattheplantboundary.Thesenoiselevelsshouldbelowerfornaturaldrafttowersthanmechanicaldrafttowers.8~4o3o7~S~rAreviewoftheTable.8.4.1indicatesthatforthetechnologicalreasonspreviouslystated,thefollowingsystemsmustbeconsideredasbeingunsuitableforapplicationtotheSusquehannaSES.CoolingpondsSpraypondsSpraycanalsNaturaldraftdrycoolingtowersMechanicaldraft,drycoolingtowersOncethroughcoolingPPSListhusleftwiththe'alternativeofeitherwetmechanicaldraftorwetnaturaldraftcoolingtowers.Becuaseoftheconcernforgroundfoggingandsolidscarryover,thechoiceofanaturaldrafttowerismorefavorable.Despitetheslightlylargerinvestmentrequired,theselectionofthenaturaldrafttowerclearlywillreduceimpactontheenvironmentandmustbeconsideredthepreferredheatdissipationsystem.84-9 I'IChl SSES85ALTRADSESSTS851Itroduct'onNuclearpowerstationsproduceradioactivematerialsthatarethewasteproductsofanoperatingreactor.Onlyasmallamountoftheseresidualmaterialsareeverdischargedtothebiosphere.Thequantityandqualityof-wastesdischargedvarydependingontheengineeringdesignandwastemanagementpracticesused.TheSusquehannaSESwillutilizeaRadioactiveWaste.ProcessingSystemwhichisdesignedtopiovidethetreatmentandcontrolledreleaseofradioactiveliquid,gaseousandsolidwatertoassurecompliancewiththe:numericaldoselimitsofAppendixI10CFR508.5.2Thesystemdesignobjectiveshallbetoprocessradioactiveliquidwastessuchthattheaverageannualreleaseofradioactivematerialintheliqhideffluentfromtheplant'illmeettoassurecompliancewiththenumericallimitsofAppendixI10CFR50.8.53GaseousadwasteSstemTheGaseousRadwasteSystemshallbedesignedtoprocessgaseouswastessuchthattheaverageannualreleaseofradioactivematerialsinthegaseouseffluentfromtheplantwillmeetwiththenumericallimitsofAppendixI10CFR50.8.54BIL-"TheSolidRadwasteSystemshallbedesignedtofacilitatethepackagingofallpotentiallyradioactivesolidwastesforstorageandoffsiteshipmentanddisposalinaccordancewithapplicablepublishedregulations.8~55IntheSusquehannaSESseclectedliquidwasteprocessingsystem,theliquidradwastewillbetreatedwithacombinationoffiltration,evaporationanddemineralizationasshown.inFigure3.6.1.Withinterconnectionsasproposed,anywastecanbetreatedwithanyoneorallofthesemethods.Thisprovidesasmuchtreatmentcapacityasiscurrentlyavailable(i.e.,state-of-the-arttechnology)andreducesradioactivityto.levelswhichassurecompliancewithnumericaldoselimitsofAppendixIto10CFR50.Furtherconsiderationofalternate.liquidradwastesystemsisthereforenotnecessary.85-1 SSESelevation.ThisalternativewillmovethelinefurtherawayfromtheSugarloafGolfCourseandalsolowerthelineasviewedfromtheGolfCourse.Alternative55.BetweenBearRunJunctionandFrackvilleSubstation,thelinewasreroutedslightly.Thisalternativeservedtwopurposes:ItlocatedthelinealongapropertylineinanindustrialareaalongLR-53035andprovidedamoredesirablecrossing-ofPa.Route61.8~6.2AlternateStructuresTwotypesof500kvstructuresareplannedfortheuseonthelonglines;latticetypeandtubularpole"H"frame.Tubularpole"Y",orslingshottypeareavailable,butwererejectedbecausetheyaremoredifficulttoerect,morecostlyandwouldrequireextensivefoundations.Guyedlatticestructuresaiealsoavailable,butwererejectedinfavorofthemorereliableself-supportingtypetower.Laminatedwoodpolestructureswerenotconsideredbecauseofshortspansrequiredandbecausetheextremelylongonepiecepoleswouldbedifficulttohandle.Theshort230kvlinesareallintheimmediatevicinityoftheplantwheremediumgreenpaintedsteelpoleswillbeusedinsteadoflatticetypesteeltowersbecausetheywillblend.inwellwiththeirsurroundings.Woodpolestructureswerenotconsideredbecauseoftheheavyloadsandresultantshortspanconstruction.8.6.3AlternateMethodsofTransmissionConsiderationwasgiventoundergroundconstructionofboth500-kvtransmissionlinesfromSusquehannaSEStoLackawahnaandto'rackville,andalsothethree230kvlinesinthevicinityoftheSusquehannaSES.Afeasibilitystudyandcostcomparisonstudyweremade.Thepresentstateoftheartindicatesthatpipecableistheonlyfeasiblemethodforundergroundtransmissionatthe230-500kvlevel.Severalothermethodsarecurrentlyunderstudy.Theyincludecableinsulatedwithextrudeddielectrics,eitherconventionalorcross-linkedpolyethylenecableusinggas(SF)asamajorinsulation,cryogeniccablesystemsandsuperconductingcablesystems.However,230kvpipecablehasbeeninstalledcommercially8~6-3 II SSESeconomicbenefitsdiscussedhere,however,representonlythequantifiablepartsofthepicture.Anumberofintangiblebenefitsexistwhicharedifficulteventoidentify.Asanexample,forsomeyearstherehasbeenanetout-migrationofyoungpeoplefromBerwickandthesurroundingarea,'asistrueofothersmallertownsinthispartofthe'country.TheSusquehannaSESwillhelpcreateaneconomicandsocialatmospherewhichmaytendtoslowthisprocessandhelpthesesmallercommunitiesstabilizetheirdownwardpopulationtrends.'.7.3CostsofSusuehannaSESTheprovisionoflowcost.electricalpowertomeetincreasingconsumerdemandsisnotwithoutitsenvironmentalcosts(economiccostshavebeendiscussedinSection8.2).Aswithotherlarge-scaleprojects,theconstructionandoperationoftheSusquehannaSESwillresultincertainchangesintheenvironment.'Thisincreasedconcernforenvironmentalprotectionhasbeenmatchedbyanincreaseddemandforelectricalpower.Thereis,therefoxe,asetof'competingprioritiesassociatedwiththecostsandbenefitsofconstructingandoperatinganyelectricalpowergeneratingfacility.TheenvironmentalcostsoftheproposedprojecthavebeenquantifiedtothedegreepossibleandareshowninTable8.7.2.Adiscussionofthesecostsispresentedbelow.1.,HeatDischareintoRiver2~Approximately70cfs(32,000gpm)willbedrawnfromtheriverasmakeupcoolantwater.Ofthis,approximately22cfswillbereturnedtotheriver.Thisvolumerepresentsabout2.9gand1.7%ofthe7-daylowriverflowfor20-yearandtwo-yearrecurrances,respectively.Thetemperatureincreasewillprobablybeundetectableafewhundredyardsdownstream.Themagnitudeofchange,evenundertheworstconditionsoflowflowandhighambienttemperatures,couldnotbeexpectedtohaveanydeleteriouseffectontheriverintermsofprimaryproducersandconsumersandfishlife.DecreaseinCoolinCaacitofRiverAsmalldecreaseincoolingcapacityoftherivercouldbeexpected'oresultfromthesmalladditionofheatandtheevaporativelossofapproximatelg50'fsofriverwater'romthecoolingtowers.Theformercouldincreasetheaveragewatertemperatureby0.15oFforashort8~7-7 SSESC~Reintroductionofchemicalsfromorganismskilledwithinthecoolingsystem.Theneteffectoftheseconcentrations,plustheslightwarmingofthewater,willprobablybetoincreasebiologicalgrowthforashortdistancedownstream.Butthiseffectisexpectedtobenegligiblewhenviewedoverasigni,ficantlylargeareaoftheview.5.6~QlayA50-70%increaseinthetotalamountofdissolvedsolidsoccurringinasmallportion(9g)ofthelowwaterflow(10-yearrecurrance)isexpectedtobebarelydetectablewithin1/4miledownstream.Noeffect,canbeexpectedonrecreationorondownstreamwaterusersbecauseoftherelativelysmallchangesinchemicalcomposition.ConsumtionofWater7~Apotentiallossofuptoapproximately50cfstodownstreamdomesticoragriculturalwaterusersispossible.SaltsDischaredfromCoolinTowers8.WiththeassumedTDSof770ppmtheexpectedsaltdischargefromthecoolingtowerswillbe62ppm.ChemicalDischaretoAmbient.Air9~Nochemicalsaredischargedtoambientair.ChemicalContaminationofGroundWaterTherewillbenochemicalcontaminationofgroundwater.10.-12~RadionuclearDischarestoWaterBodentAranContamnatonoGroundWaterTheproposedmethodofradwastetreatmentisoneofthebestthatcurrenttechnologyisabletoprovide.DosetopeoplewillbeextremelylowandwithinnumericallimitsinAppendixI10CPR50.Alternatemethodsofradwastetreatmentwereconsideredinselectingtheproposedsystem.TheyhavebeendiscussedinSubsection8.5.8~7-9 I~'tt,IIIIIItI SSESFoinandIcinTherewillbenofoggingandicingduetotheoperationofthecoolingtowersattheSusquehannaSES.Raisin/LowerinofGroundWaterLevelsGroundwaterlevelswillnotberaisedorlowered.LandUsePresently,thelandwithinatleastatwo-mileradiusfromthesiteisamixtureofsmallwoodedareas,fields,andfarms.Thesitewillremoveordisrupt,about237acresorlessofsimilarterrain,approximatelyhalfofwhichisnowwooded.Majorgamespeciesintheareaaredeer,pheasant,rabbit,grouse,dove,woodcockandsquirrel.Norareorendangeredspeciesarepresent.BiologistsfamiliarwiththeSusquehannaRiverintheareaofthesiteconsideritpresentlyunderfished.Nosignificantlossoffishisexpectedtoresultfromconstructionoroperationoftheplant,thoughanetincreaseinfishingactivitycanbeexpectedtoresultfromtheattractionofpeopletotheplannedparkareaalongtheriver.AmbientNoiseOtherthanfromcoolingtowers,therewillbenoambientnoiseassociatedwiththeplant.AestheticsTheplantisdesignedtoblendwiththeenvironmentandbeastheticallycompatible.DeradationofFloodControlandErosionTheplantsiteissuchthatitwillhavenoimpactonfloodcontrolanderosion.8~7-10 Ch SSESTABLE8.7-2ENVIRONMENTALCOSTSOFGENERATIONATPROPOSEDSITEGeneratingCostPrimarImactPopulationorResourceAffectedDescriptionofEffectAlternatePlantDesing1a41.HeatDischargetoRiver1.1PrimaryProducersLimitedtoareaveryclosetodiffuserlittltonoeffect22cfs1.2FishNoeffectnone2.DecreaseinCool-ingCapacityofRiver2.1ThermalCapacityThermalincreaselossofwatertoevap.slightwithmixingoflowflowrivervolumeandnoheatlosstoair8nincreaseof0.15Fwouldresult.Lossofabout5.9%oflowflowcoolingcap-acity3.Mechanical,Thermal3.1PrimaryProducersChemicalgffectsof6ConsumersEntrainmentonPop-ulationsofRiver3.2FishLossofallplanktonenteringtheintakeAlllostwhicharenonscreenable(1-14")Atlowflowmaximumlossofplanktonandfloatinginsectsandsomelocalgainofdetritusfeeders.4.SynergisticEffects4.1PrimaryProducersofChemicalconcen-&ConsumerstrationsandThermalAdditionsonRiver4.2FishChangeinProductionorSurvivalChangeinProductio'norSurvivalLossofaportionofyoungfishlivingwithinafewhundredyardradiusofintake.Neteffectonsystemsmall.~Possiblesmalleffectfor100-yds.Onlyeffectinminuteareaneardiffuserparts;5Formore.
J, SSESTABLE8.7.2(Cont'd)PrimarImact15.LandUsePopulationorResourceAffected15.1Agricultural15.2Forestry15.3Plants&Animals15.4RecreationalDescriptionofEffectRemovalfromProductionRemovalfromProductionLossofHabitatDisturbancetoParks,Lakes,HistoricSitesAlternatePlaneDesin41&4125acresonplateau175acresonfloodplain50acresorlessofdeciduouswoodlotsmayberemoved.100acresorlessoffield&woodlotsinanareaofsimilarhabitatatleast100.timesaslarge.None15.5FishingLossofFishingPotentialNoloss;probablyanincreaseinfishingpressureduetoestab-lishmentofparkareaaroundstream.16.AmbientNoise15.-;6Industrial16.1PeopleUnavailabletoDevelopmentUnusuallyLoudNoneDuringconstruction&operationOSHAstand-ardswillbefollowednoiseproblemsasso-ciatedwithnaturaldrafttowers.17-Aesthetics17.1PeopleInTermsofSight,Sound,OdorVisualimpactoftowersandplumesNone18.DegradationofFlood18.1People&Control&ErosionPropertyRisktoHealthandSafety 0
~5OOOqPlv1.BL.OWOOWNivlAKF-LIP16,000C,PQ4u)EVAPORATiOvLINIT2II,9OOQPIv).30OOOCiPM.FROMSERVICEWATERSY57EQ+48o,ooocpg.UNITIFROhhGERV.WTRS5BLOeOOWH'70SERVWTR.SYSIiIiz$>yISPRA(POhlD3O,OOOCjpg.TOSERVICEWITE'RS'fSTMAINCOHDEWSERSMeiNCONDENSERSIvlAKE-uWATF8DOSlhlQpCHLORIHEH2SO+Oo5ING8lGPMRAWWATERTREATMENTMAKE-LIPDEMISERAL1ZEPOTABLE$DOMESTICKAERSEWAGETREATMENTPLANTg.50QpgREACTORLiguleRADKASTETR'EATMEHTCHLORINATE(50CiPMCI-ILORINECONTACTTANKE~G.~AFEGuARDSHEATEXCHAhlCER55CPMNEUTRAL-)ZATIOHTAQKIIGPQNOTE:uNIT(FLOWRATESARETHES~NFASLINIT2,IO,OOOC,PIVIPLlklPHOLISCB2,000CIPlvl.GLjSQUKHAhJQA=;.RIVERPENNSYLVANIAPOWER&LIGHTCOMPANYSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2APPLICANT'SENVIRONMENTALREPORTWaterUseDiagramFIGURE3.4.1
tEGENDRAllROADU.S.KI6KWAYSECONDARYROADPERMANENTSTIKAIIINTERMITTENTSTREAMPROPERTYLIHE100METERS1000FEET55COPENNSYLVANIAPOWER5LIGHTCOMPANYSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2APPLICANT'SENVIRONMENTALREPORTGeographicalFeaturesIntheStudyArea,1971-1972FIGUREA.18
SSESOpDOpFOquagaandLordstownverystonysiltloam,8-25percentslopes.OquagaandLordstownverystonysiltloam,25-80percentslopes.PAPAKATINGSERIES-Papakatingaredeep,verypoorlydrainedsoilsofthefloodplains.Theyhavedevelopedinloamysedimentswashedfrommixedgreyandredglaciateduplands.Thesesoilshaveamoderatelyslowlypermeablesubsoil.Thewatertableisnormallyatthesurfaceduringmostoftheyear.Theyareacidandcontainfewstonefragments.Mostuseproblemsarerelatedtothehighwatertableandtofrequentflooding.Mainunit:Papakatingsiltloam.REDHOOKSERIES-RedHookaredeep,somewhatpoorlytopoorlydrainedsoilsoftheglaciateduplandsandvalleys.Theyhavedevelopedinloamy,water-workedglacialoutwashsedimentsfrommixedgrayandredshaleandsandstonebedrock.These,soilshaveamoderatelyslowlypermeablesubsoil.Thewatertablenormallyrisestowithinafewinchesofthesurfaceduringpartsofthewinterandspringmonths.RedHooksoilsareacidandmaycontainstratifiedsandandgravelinthesubsoil.Mostuseproblemsarerelatedtotheseasonalhighwatertableandtothemoderatelyslowlypermeablesubsoil.Mapg~inunit:RdBRedHookloam,3-8percentslopes.TIOGASERIES-Tiogasoilsaredeep,welldrainedsoilsoffloodplains.Theyhavedevelopedindarkbrowntoreddishbrown,loamy,floodplainsedimentswashedfrommixedgreyandredglaciateduplands.Thesesoilsarenearlyleveltogentlyslopingwithamoderatepermeabilityinthesubsoil.Theyareacidandcontainafewstonefragments.Mostuseproblemsarerelatedtotheoccasionalfloodinghazard.Thesoilnamesassignedtothesoilsoftheareaaretentativesubjecttoafinalcorrelationpriortothepublicationofthecounty-widesoilsreport.Achangeinthesoilname,however,willnotchange'thesoilproperty.~Ma~inunitTBbTiogasoilsaB-3
SSESproductivedeerareaeventhoughthenumbersaresufficienttoattractsomehunters.Ofthefivesitesconsidered,thegeneralareaaroundtheMcElhattensiteisconsideredthesecondmostabundantinmigratorywaterfowl.The-overallterrestrialenvironmentisnotconsideredtobeuniqueorhaveasignificantlygreaterorlesservaluethantheothersites.TheWestBranchoftheSusquehannaRiver,becauseofminewastes,ishighlyacidicupstreamandsupportsasparsefishpopulation.Althoughthewaterqualityisimprovedinthesitearea,fishlifeismorelimitedherethanfurtherdownstream.Themajorspeciesoffishinthisareaaresmallmouthbass,catfish,andfallfish.Therearenowalleyeandfewmuskellunge.Withinatenmileradiusofthesitethereisonemajorwarmwaterfishingstreamandfourtroutstreams.WaterUse:Theestimatedcoolingwaterrequirementswouldconsume30.8%ofthe25year'recurrenceintervalsevendaylowflowpastthesite,assuminga70cfsmakeupwaterrequirementfortwo1,100mwunitswithcoolingtowers.~Industrialuseupstreamofthesiteismainlyconfinedtothreechemicalplants,aslaughter'house,apapermillanda'~hollldJLdeal.f)J.dliCLdca.VLge>opulation=Theassumed1,~~0footexclusionzoneofthesitewouldnotrequiretherelocationofanyexistingresidents.Duetotheruggedterrainandthelimitedagriculturaluse,theestimated1970populationdensitywithinthetenmileradiusis93personspersquaremile.LockHaven,located5mileswestofthesitewithanurbanpopulationof23,603,JerseyShore,located5mileseastwithanurbanpopulationof10,626andWilliamsport,15mileseastwithandurbanpopulationof89,449,arethemajorpopulationcenterswithin30milesofthesite.Aesthetics:Thesiteislocatedinaruralsetting.Mostofthelandisforestedandthereisalittleagriculture.Aswithanylargefacilitytherewouldbeanunavoidablevisualimpactuponthearea.Thesettingoftheimmediateareawouldbechangedfromawildernesstoanindustrialscene.23BrunnerIslandSiteThissiteislocatedonaformerislandintheSusquehannaRiverwhichisnowonlypartiallyseparatedfromthemainland.Thesiteisapproximatelysevenmilesdownstream
SSESconstructionattheMcElhattenorSusquehannasitesandprobablylessthantheothertwosites.Majorspeciesoffishintheareaaresaallmouthbass,muskellunge,walleye,rockbass,crappie,catfishandsuckers.Thissectionoftheriverisconsideredagoodproducerofmuskellungeandafairproducerofwalleyeandrockbassandisahighlyfishedarea.Withinatenmileradiusofthesite(inYorkCounty)therearetwowarmwaterfishingstreamsandonetroutstream.WaterUse:WaterfromtheSusquehannaRiverwouldbeusedascoolingwaterforboththeexistingfossilfuelplantandanyproposednuclearplant.Theexistingplantusesapproximately1,200cpsofriverwater.About62cfs,orabout1.5-2.5%ofthesevendaylowflowwith20yearrecurrenceinterval,isestimatedtoberequiredforcoolingtwo1,100megawattunitsutilizingcoolingtowers.Asidefromtheexistingfossilplant,theriverisusedbytheYorkhavenHydrofacility,1.5milesupstream.Assumingan1800footexclusionzonenoresidencewouldhavetobemoved.The1970populationdensitywithinanareatenmilesfromthesiteis391personspersquaremile.Listedbelowarethemajorcitieswithin30milesofthesite:PopulationCenter,DistanceUrbanAreaPopulationfromSite~~1970Harrisburg,15milesNWLancaster,20milesELebanon,22milesNEYork,25milesSW172'9059s40740~00072'71Aesthetics:Theregionalsettingoftheareasurroundingthesiteisofaruralnat'ure.Thesiteiscurrentlyoccupiedbyafossilplant,however,andthereforepresentsanindustrializedappearance.Thevisualimpactofplacinganuclearfacilityandcoolingtowerswouldmerelyaddtotheindustrializedappearance.2.4Su~nburSiteTheSunburysiteislocatedinthenortheastcornerofSnyderCounty,Pennsylvania.ThesiteisonthewestbankoftheSusquehannaRiver,3.5milesdownstreamfromtheD-7 SSESincludetheShamokinCreekWatershedAssociationandvariousfoodprocessing,paperandsteelplants.NinetyresidencesfromthetownofHummelsWharfwouldhavetoberelocatedfromanassumed1,800footexclusionradius.Thepopulationdensitywithintenmilesis166personspersquaremile.Thefollowingcitiesarewithin30milesofthesite:PopulationCenter,DistanceUrbanAreaPopulationfromSiteLewisburg/Milton,12milesShamokin,13milesEBloomsburg,21milesNEWilliamsport,28milesNWSunburyN34~00032~00031~49489i44916t691Aesthetics:Becausethereisanexistingfossilfuelplantonthesite,thevisualimpactofaddinganuclearfacilitytotheexistingscenewouldbetoincreasetheindustrialappearance.2.5MartinsCreekSiteTheMartinsCreeksiteisintheeastcentralpartoftheNorthamptonCounty,Pennsylvania.ThissiteisbesideanexistingfossilstationupstreamoftheconfluenceoftheDelawareRiverwithMartinsCreek,about23milesNEofEaston,Pa.TherelativelybroadvalleyoftheDelawareRiverissouthoftheplantsite.Thevalleyatthesitevariesinwidthfrom300to500feet,three-quartersofamileupstream,tonearly1,000feetwideatthesite.Maximumandminimumelevationswithintheassumedexclusionarearangefrom200to420feetmslwithtwo-'hirdsofthesitelyingatbetween200and240feetmsl.TheDelawareRivernearthesiteisapproximately500feetwide.U.S.Highway611passesneartheplant.ThereisarailroadspurfromthePennCentralRailroadintotheexistingfossilplant.PhysicalSitingFactors~Geolog:Ontheportionofthesitecontainingtheexistingfacilities,bedrockaverages35feetbelowthesurface.
4 SSESBiol~op:Largergamespeciesofthegeneralareaareconsideredsparse.Doveandpheasantareabundant.Theareaisnot'sedasamajormigrationrouteforbirds,butsmallpopulationsofducks.(primarilymallards)mayremainyearround.Muchofthehabitatconsistsoffarmedlandwithscatteredtreestandsgenerallyneartheriver,butalsooccurringinland.Aboutonemilenorthofthesiteisafairlylargewoodedarea.Inthe'immediateareaofthefossilplant,thelandislargelyopenfieldwithabout10to15%intrees.Therearenoknownrareorendangeredspecieswithinthe'area.Constructiononthissitewouldremovesomewildlifehabitat,however,themixofopenfarmlandandwoodlotsisnotuniquetothearea.TheDelawareRiverinthegeneralvicinityofthesiteisconsideredtohavegoodwaterqualityandisagoodproduceroffishlife.Forty-fourspeciesoffishwerecollectedin1956-1959surveysintheareaaroundMartinsCreek.Theeel,AmericanshadandstrippedbassareimportantspeciesandareallpresentintheareaaroundMartinsCreek.WaterUseThepresentfossilfuelplantusesapproximately270cfsofcoolantwater.Anuclearfacilityisestimatedtouse9.9%ofthesevendaylowflow,(20yearrecurrenceinterval).Thepresentfossilfuelunitsproduce320mwtwonewfossilunitswithacombinedoutputof1,600mwarepresentlyunderconstructionandareplannedforoperationin1975and1977.Afossil'fuelplantislocatedabout10milesnorthnearPortland,Pennsylvania.Inadditiona2,400mwnuclearfacilityhasalsobeenproposednearthatsite.~Poulatian:Noresidenceswouldhavetoberelocatedfromwithinthe1,800footexclusionzoneoftheplant.Thepopulationdensityoftheareaencompassedby'theten-mileradiusis355personspersquaremile.Allentown,20milessouthwest,withapopulationof108,926,andEaston,23mileswithanurbanareapopulationof180,394,Easton,7milessouthwest'ithanurbanareapopulationof77,594,andBethlehem,14milessouthwestwithanurban,areapopulation105,620arethethreemajorurbanareaswithin30milesofthesite.Aesthetics:Theareasurroundingthesiteisofruralsetting.Becauseoftheexistingfossilplant,however,theimmediatesitehasanindustrializedappearance.Anuclearfacilitywould 4r'ISI TABLED-1(Continued)Page5.PHYSICALSITINGFACTORSPACTORDESCRIPTIONoWaterUsersSUSQUEHANNASITEoCoalPlant9Mi.Upstream;AcidMineDrainage&MunicipalSewageFromUpstream.StreamMayTurnOrangeinSummer(reasonsun-defined)butpHatSiteWithinNormalLimits.MCELHATTENSITEoUpstream0HeavilyPol-lutedbyAcidMineDrainage.UpstreamTribu-taryHas3ChemicalPlants,2SlaughterHouses,PaperPlantandSmallAirplaneFactory.BRUNNERISLANDSITECoalPlantonSite(once-throughcool-ing)1~200cfs,T=27FMax,840MWeNuclearFacility3.5Mi.Upstream,SafeHarborHydroFa-cility20Mi.DownstreamandYorkHavenHydroFacility1.5Mi.Upstream.OtherIndustriesinGeneralArea.SomeIndicationofInsecticidePollution.SUNBURYSITEoCoalPlantonSite(once-throughcooling)450cfog,T=20FMax,483MWe.SewagefromShamakinCrk.WatershedAssociation.Paper,FoodProcessing,SteelPlantsWithin16Mi.Upstream.MARTINSCREEKSITEoCoalPlantatSite(once-throughcooling)270cfs,T=27oFMax,Two1,200MWeNuclearPlantsProposedforDeleware.Population4oEstimatedNumberofResidencesWithinAs-sumedEx-clusionZoneoNoneoNoneoNoneo90oNoneoTotalPopulationDensityWithin10-MileRadiuso167Persons/Sq.Mi.o93Persons/Sq.Mi.o391Persons/Sq.Mi.o166Persons/o355Persons/Sq.Mi.Sq.Mi.oTotalPopu-o53,000lationWithin10MilesofSiteoTotalPopu-o265,354lationWithin20MilesofSiteoTotalPopu-o465,000lationWithin30MilesofSiteo36,000o105,000o140,000o123,000o598,000o758,600o60,009o189,413o289,000o140,781o363,517o500,389AestheticsoExistingSceneAtSiteoRuraloRuraloIndustrialoIndustrialoIndustrial4PopulationDataBasedon1970Figures.DensityNumbersincludeTownshipAreasandPersonsEitherWhollyorAtLeast50%WithinTen-MileRadiusofSite.
/Ij