ML18023B080
ML18023B080 | |
Person / Time | |
---|---|
Site: | Susquehanna |
Issue date: | 11/30/1972 |
From: | Pennsylvania Power & Light Co |
To: | Office of Nuclear Reactor Regulation |
References | |
Download: ML18023B080 (126) | |
Text
SSESTABLEOFCONTENTS1.01~11.22~02~12.22.32'2'2.62~73'3.13'3.33'3'3'3.73'4.04.14'4'4~45.05.15~25'5.4FORWARDSUMMARYNTRODUCTION DESCRXPTXON OFPLANTANDSITETHENEEDFORPOWERTHESITELOCXONOFTHEPLANTHUACTIVXTES INTHEENVRIONSHISTORCANDCULTURALSIGNXFICANCE GEOLOGYtMINERALRESOURCES ANDSOILSHYDROLOGMETEOROLOG ANDCLIMATEBIOTATHEPLANTEXTERNALAPPEAEOFTHEPLANTTRANSMISSION LINEREACTORANDSTEAMECTRICSYSTEMWATERUSEHEATDXSSXPATXON SYSTgTHERADXOACTIVE WASTESYSTEMSCHEMICALANDSANITARYWASESRECREATION ANDCONSERVATIO ENVIRONMENTAL EFFECTSOFSITEPREPATIONANDPLANTCONSTRUCTION PLANS~SCHEDULES, ANDMANPOWERREQUIREMENT SEFFECTONHUMANACTIVITIES EFFECTONTERRAIN,VEGETATION~
ANDWILDLIFEEFFECTSONADJACENTWATERSANDAQUATICLIFEENVIRONMENTAL EFFECTSOFPLANTOPERATION EFFECTSOFRELEASEDHEATEFFECTSOFRELEASEDRADIOACTIVE MATERIALS EFFECTSOFRELEASEDCHEMICALANDSANITARYWASTESFUELTRANSPORTATION
SSES5.56.06~16.26.36'6.57.08.08~18.28'8.08.58'8.79.010.011.0ASSESSMENT OFENVIRONMENTAL EFFECTSOFPLANTOPERATION NRADIOLOGICAL ENVIRONMENTAL IMPACTOFTHEPLANTRADXOLOGICAL ACCIDENTCLASSXFICATION METHODSOFDETERMINING RADIOLOGICAL IMPACTTRANSXENT ANDACCIDENTOCCURENCES ENVIRONMENTAL XMPACTANALYSXSPROBABXLITY INPERSPECTIVE ANYADVERSEENVXRONMENTAL EFFECTSWHXCHOTBEAVOIDEDSHOULDTHEPROPALEXMPLEMENTED ALTERNATIVES ANDCOST-BENEFXT INTRODUCTIONSOURCESOFPOWERALTERNATE SITESANDSITESELECTION ALTERNATE HEATDXSSIPATXON METHODSALTERNATE RADWASTESYSTEMSALTERNATE TRANSMISSXON LINEROUTESANDDESIGNCONSIDERATIONS COST-BENEFIT ANALYSISTHERELATXONSHIP BETWEENLOCALSHORT-TERM OFMANSENVIRONMENT ANDTHMAINTENANCE ANDENHANCEMENT OFLONG-PRODUCTIVITY ANYIRREVERSIBLE ANDIRRETRXEVABLE MMXTMENTS OFRESOURCEWHIHWOULDBEINVOLVEDXNTHEPROPOSEDACTIONHOULDITBEXMPLEMENTED ENVIRONMENTAL APPROVALS ANDCONSULATXON SSESLISTOFTABLESTable1.2.1Table1.2.2Table1.2.3Table2.2.1Table2.2.2Projected PP&LSystemLoadsAndCapacityPP&LServiceRegionsGenerating StationCapacityAsOf5/1/72Communities Within5MilesOfTheSiteWith1,000OrMorePopulation In1970LandUseOfCountiesWithin20,MilesOfTheSiteTable2.2.3Proportion OfGrossSalesForAgricultural AndLivestock Products-1968Table2.2.4Table2.2.5Table2.5.1Table2.5.2Distribution OfLabor,ForceSusquehanna RiverWaterUse-Municipal, Industrial AndPublic-Susquehanna SESSiteToHavre-De-Grace, MarylandChemicalAnalysesOfTheNorthBranchSusquehanna RiverAttheSite-April1968ThroughAugust1970Radiostrontium Concentrations InSusquehanna River-AverageConcentration, Picocuries/
LiterTable2.6.1Table2.6.2Table2.6.3Table2.6.4WindFrequency Distribution InPercentByWindDirection VersusWindSpeedClassesForPasquillStability Class-A,C,E,&GAnnualAverageRelativeConcentration (Dilution Factor)AtTheRestricted AreaBoundaryCumulative Percentage
-Frequency Distribution OfPl'umeLengthPerWindDirection SectorCumulative Percentage
-Frequency Distribution OfPlumeLengthPerWindDirection Sector I>>o~hti0l,l0 SSESTable3.2.1LandUse-Susquehanna SESToLackawanna 500-kVLineTable3.2.2Population Distribution
-Susquehanna SESToLackawanna
-500-kVLineTable3.2.3LandUse-Susquehanna SESToFrackville 500-kVLineTable3.2.4Population Distribution
-Susquehanna SESToFrackville
-500-kVLineTable3.4.1Table5.2.1ChemicalAnalysisOfTheNorthBranchSusquehanna RiverAtTheSite-April1968ThroughAugust1970ExpectedRadionuclides ReleasedToSusquehanna RiverTable5.2.2ExpectedGaseousEmissions ToTheAtmosphere Table5.2.3Table5.2.4Population Dose(Man-Rem)
FromGaseousEmissions
-NormalReleasesDuringFullPowerOperation Population Dose(Man-Rem)
FromGaseousEmission-Intermittent ReleasesFromVacuumPumpOperation Table5.2.5Table5.2.6Table5.4.1Table6.2.1Table6.3.1Table6.5.1Table8.2.1DoseFromDrinkingWaterAndEatingFishSummaryOfTheDoseCalculations Container DesignRequirements SummaryOfPopulation ExposureFromNaturalAndMan-MadeBackground ComparedWithNuclearRadiological EffectsSummaryOfPopulation ExposureFromNaturalAndMan-MadeBackground ComparedWithNuclearRadiological EffectsTableOfEventProbabilities DollarCosts-NuclearVersusFossilFuelTwo1100MWUnits fI SSESLISTOFFIGURESFigure1.0.1Figure1.1.1Figure1.1.2Figure1.2.1Figure1.2.2Figure2.2.1Figure2.2.2SiteVicinityMapSiteAerialViewFacilities PlanPJMBulkPowerSystemPlannedBy1981PPGLServiceAreaDensityofPopulation (1970)Sh.1SiteVicinityMapShowingPresentAndFuturePopulation Distribution, 0To10MilesFigure2.2.2Sh.2SiteVicinityMapShowingPresentAndFuturePopulation Distribution, 0To10MilesFigure2.2.3Sh.1RegionalMapShowingPresentAndFuturePopulation Density,0To50MilesFigure2.2.3Sh.2RegionalMapShowingPresentAnd-FuturePopulation Density,0To50MilesFigure2.2.4Figure2.2.5Figure2.5.1Figure2.6.1PublicGroundWaterSuppliesWellLocations LowFlowFrequency AndFlowDurationAnnualAndInversion WindRose1960To1964Figure2.6.2Figure2.6.3Precipitation-Wind Distribution AsPercentofTotalWindObservations, 1960To1964Technique ForComputation ofCoolingTowerPlume-Lengths SSESTURBINE-GENERATORS Length300feetTRANSFORMERS CapacityVoltageStep-upCooling1,280,000kilovolt-amperes Unit¹1-230F000voltsUnit,¹2-500,000voltsOil'EACTORSTypeCoolantModerator CoreCoolantFlnrRateFeedwater InletTemp.SteamOutletTemperature CoolantPressureSteamCapacityHeatOutputBoilingwater,directcycleWaterWater450,000gallonsperminute380degreesFahrenheit 545degreesFahrenheit 1,020poundspersquareinch13,432,000 poundsperhour11200i000000BritishthermalunitsperhourFUELCORESPelletsMaterialEnrichment LengthDiameterNumberTotalweight,UO2RodsMaterialCladdingThickness OutsideDiameterLengthNumberUraniumdioxide(UO2)2to3percent0.5inches0.487inches11million190tonsZircaloy-20.032inches0.563inches13.33feet37'36 tl'41 SSESsewage.Thisbuildingwillbeapproximately 40feetlong,30feetwide,and15feetabovegrade.1TheServiceandAdministration OfficeBuildingwillbeapproximately 200feetsquare,withaheightof70feetabovegrade.Itwillcontainofficesandmeetingrooms,afirstaidroom,storerooms,amachineshopandlockerfacilities.
TheEngineered Safeguards ServiceWaterPumphouse willcontaintheresidualheatremovalservicewaterpumpsandemergency servicewaterpumpstosupplywaterforshutdowncoolingandforemergency corecooling.Itwillbe86feetlong;36feetwide,and31feetabovegrade.Inadditiontothebuildings, twohyperbolic coolingtowersgandanintakestructure andpumphouse ontheSusquehanna Riverwillbelocatedonthesite.Thecoolingtowerswillbereinforced concretestructures about500feethighandabout500feetindiameterattheirbase.A300footmeteorological towerwaserectedcontaining instruments tomonitormeterological data.Asmallbuilding,,located atthebaseofthetower,housessomeadditional instrumentation.
Theintakestructure andpumphouse islocatedonthefloodplain attheedgeofthesiteandprovidesmakeupwaterfortheclosedcoolingsystem.11-4 f,il*~
1ggruOvER,ZSGLLEZAlETSO:'ICOSI/OOO 4'r)l<(JjtR!RIDGEVHLLSIL~TZSI.SCILInEVEATED
~DS-TLIPEnIISVLIIAII14-EDDRDI441E-~.
Z.ELEVATIon DATVm15mEAnSEALEI/EL.7JPMREERED5/t/EEIISERVILEVATERPDVPII/NloREER:ATIon
/AJJLIVVER/LOSER/ILLit/t7v/IIIITRATIonOLXiNvCrESTREAT8ETEOROLOGILALTOvEROtIIGooLInGTovERLILoRIooxn Ev.pvmvIIovsr, JvzE/L.TREArner h~IIIGTV'ESELG67ER/troR EDDE/IIGIvvERtI.SELOXLRVROLOaaITZTELRDLDE/
TDRIRLALI'II/AIn/tILLDIlNMLl'0vATERELITE!tPENNSYLVANIA POWERSLLIGHTCOMPANYSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2APPLICANT'S ENVIRONMENTAL REPORTLylILlf0'IIi-SVOZTVRE AnD~WCLISEE/Sg/ARGE LIIIE~IILlDISLII/tRGE TOAVERIFacilities PlanFIGUREl.l.2 J'
SSES22HUMANACTIVITIES INTHEENVIRONS2.2.1.1'resetPoulatonTheareaaroundtheSusquehanna siteissparselypopulated, exceptforsmalltowns.Fewdwellings arefoundinthehills,andtherearealmostnoneinthemountains.
Population datafortownswithinfivemilesofthesitearefoundinTable2.2.1.SalemTownshiphasapopulation densityclassedas"100to300personspersquaremile,<rankingitamongoneofthelowestdensitytownships inthecounty(Ref.2-1).Thepopulation ofSalemTownshipis3890people.The1970BureauofCensusdataplacesthepopulation ofLuzerneCountyat339,446.TheLuzerneCountyPlanningCommission projectsanincreaseto536,210by2000.Mostofthepopulation iscenteredinthemetropolitan Wilkes-Barre area,approximately 20milesnortheast cfthesite.Secondary population centersarePittstcn(25milesnortheast) andHazleton(15milessouthwest)
.Thereareafewsmallertowns,buttheremainder ofthecountyisgenerally sparselypopulated.
Thepopulation densityofLuzerneCountyisshowninFigure2.2.1.221.2tePoat'onItisanticipated that,asmanyas2,500workerswillbeemployedduringpeakconstruction activity(1975to1977)Some-oftheseworkmenwillbepermanent localresidents andotherswilltemporarily moveintotheareaduringconstruction.
PPSL'sconstruction experience showsthatmostworkers.commutemorethan30mileswhenmajorhighwaysarepresent.Mostworkersareexpectedtobetravelers, thatis,workerstraveling morethan30milesfromtheplanteachday.Thenumberofworkers(peakmanpower) thatwillbeonthesitebyyearare:1973-300.1976-25001979-8001974-18001977'-24001980-2501975-23001978-15001981-100Theestimated population andpopulation densities fortheyear2020withina10-mileand50-mileradiusofthesiteareshownonFigures2.2.2(Sheets1and2)and2.2.3(Sheets1and2).Twomethodswereusedtoarriveattheseestimates.
FortheLuzerneCountyareawithin10milesofthesite(over80percentofthetotalareaina10-mile2%21
'L~4,E SSESTherearetwomilitarydefensefacilities withinfiftymilesofthesite.ThenearestistheTobyhanna facilitylocatedabout38milestotheeast.TheEdwardMartinMilitaryReservation, atIndiantown Gap,isapproximately 50milessouthwest ofthesite.Nonuclearfacilities arelocatedwithina50-mileradiusofthesite.Theclosestnuclearfacilityisscheduled tobetheLimerickStation,70milestothesouthsoutheast, beingdeveloped bythePhiladelphia ElectricCompany.Therearenoschoolswithin2milesofthesite.TheclosesthospitaltothesiteisBerwickHospitalwith195beds.22.21icultureaz-Approximately 23$ofthe891squaremilesinLuzerneCountyareutilizedforfarmingbyabout800farms..Farmrevenuein1965amountedtoabout$9,500,000.
In1970,0.69%ofthetotalwork'forceinthecountywasemployedinagriculatural activities (Ref.2-11).Thecountyisagricultural salesarebrokendownasinTables2.2.3(Ref.2-3).Theamountoftillablelandonthesiteisabout300acresandincludesbothfloodplain anduplandareas.Theonlycurrentfarmingonthesiteisbyatenantfarmerworkingabout175acresoffloodplain land.Allofthetillablelandisscheduled toberemovedfromagricultural production astheresultofthedevelopment ofalargerecreation areaonthefloodplain andtheconstruction andoperation ofpowerplantstructures andtransmission facilities.
Inthepast,thefloodplain landhasproducedcropsoftomatoes,
- potatoes, squashandcorn~butithasbeensomeyearssincemostorallofthelandwassimultaneously farmed.Sincethereare85,000-acresoflandclassified asagricultural inLuzerneCounty(Ref.2-11)theremovalofsome300acresfromproduction isnotexpectedtoresultinasignificant adverseenvircnmental impact.Quitethecontrary, infact,formorethan175acresofthistillablelandwillbedeveloped asapicnicandcampingareaforgeneralpublicuse.ThisplanisdetailedinAppendixC~Itcanreasonably beexpectedthatthisdevelopment willhaveabeneficial environmental impact.2.2.2.2CommerceLaborandIndustrur Therehasbeenlimitedcommercial development.
inLuzerneCountylargelybecauseoftheruggedtopography, and'consequently much'fthecountyremainsessentially undeveloped.
2m23
SSESwaterwithinthebasinisexpectedtoincreasetomorethan31milliongallonsperdayby1980.ThecitiesofChester,Pennsylvania, andBaltimore,
- Maryland, bothoutsidetheSusquehanna Riverbasin,areusing80milliongallonsofSusquehanna Riverwatereachdaytosatisfymunicipal andindustrial needs.Aboutone-third ofthisisdivertedviaChestertotheDelwareRiverdrainageregionandtheothertwo-thirds totheChesapeake Bayarea,bywayofBaltimore.
By2020,anestimated threemillionresidents outsidethebasinwillbedependent onthissourceformorethan800milliongallonsperdayformuncipalandindustrial supplies.
Thosemunicipal, private,andindustrial watersystems.downstream fromthesitewhichdonottapgroundwater andminortributaries areexpectedtorelymereontheSusquehanna Riverinthefuture,asthecapacities oftheothersourcesareexceeded.
Presentwaterusebydownstream municipalities andindustries isshowninTable2.2.5.Mostoftheindustries contacted indicated nowaterusagefromtheSusquehanna River.Groundwateristhemajorsourceofindustrial watersupply.The,plantCirculaing WaterandnormalServiceWaterSystemswillbeclosedloopsystemsusinghyperbolic naturaldraftcoolingtowersastheirheatsink.Whenthetwogenerating unitsareoperating atmaximumcapacity, anaverageofabout50cfs(22,000gpm)andapeakof62cfs(27,800gpm)willberequiredfromtheexternalwatersupplytoreplacewaterlostbyevaporation inthecoolingtowers.Thedetailsofthesesystemsarediscussed inSubsection 3.5.Duringshutdownthemaximumquantityofwatertakenfromtheriverwillbesignificantly lessthanthatrequiredfornormaloperation.
Recreational WaterUseWaterways ofthe"Susquehanna Riverbasinareusedforalltypesofrecreation; theseusesareexpectedtoplaceaneverincreasing demandontheresource.
Recreational useoftheSusquehanna Rivernowtotalsalmost37millionuser-days peryear.By2020,recreational useshouldincreasetoover203millionuser-days peryearwithanestimated 23millionannualfishingdays,assumingnorestrictions duetopoorwaterquality.2~27
SSESTABLE2.2.1COMMUNITIES WITHIN5MILESOFTHESITEWITH1,000ORMOREPOPULATION IN1970CommunitMocanagua Shickshinny Nescopeck EastBerwickBerwickWapwallopen SalemTwp.1950196014962156190710771104184519341258N.A.N.A.3124-14010133531970N.A.16481875N.A.121422503890DistanceandDirection FromSite3-N4-N4.5-WSW4.5-Wsw5-WSW1-ESEN.A.-NotAvailable Source:U.S.CensusofPopulation
-1950,1960and1970(Preliminary)
I0 SUSQUEHANNA RIVERWATERUSEMUNICIPAL, INDUSTRIAL ANDPUBLICSUSQUEHANNA SESSITETOHAVRE-DE-GRACE, MARYLANDTABLE2.2.5UserName1.BerwickWaterCo.Location-RiverMiles,Berwick-8.0QuantityUseClass(NcNd)MSb.NoneCommentForemergency useonly.Notusedfor8years.Pumpremoved.Servesabout20-25thousandpersons2.Blocmsburg WaterCo.3.Campbell.
SoupCo.4.DanvilleBoroughBloomsburg
-19.4Bloomsburg
-19.4Danville-27.45.MerckaCo.Danville-27.46.DanvilleStateHospitalDanville-27.47.SunburyMun.Auth.Sunbury-38.5IPr1.0Mgd35.0MgdPuPrMPrNA4.0MgdMSbNAINoneNoneMPr2.0MgdNouseofriverwaterWillexpanduse.Servesabout8,000personsServesabout500persons.Largequantityforcooling,smallforprocess.Servesabout4,000personsFoursummermonthsonly.PlumCreeksuppliesremainder.
Servesabout15,000persons.Allocated 4.0Mgd8.CelotexCorp.9.PP&L(SES)10.ShamokinDamMunicipal Auth.Sunbury-38.5Sunbury-38.5Shamokin-44.4INoneNoneIPr245MgdMPrNAServesabout2,000personsll.Millersburg WaterCo.12.Harrisburg Mun.Auth.13.International PaperCo.14.'Bethlenem SteelCo.15.BoroughofSteeltonWaterCo.16.Bethlehem SteelCo.17.Metropolitan Edison(SES)Millersburg
-69.4Harrisburg
-91.0Harrisburg
-91.0.Harrisburg
-91.0Steelton-93.4Steelton-
-93.4Middletown
-100.2MSbNAMSbNAINANACoolingIPr1.3Mgd'ooling IPr245MgdINANAMPr1.7MgdAllocated 5.0Mgd rN TABLE2.2.5CONT'DUserNameLocation-RiverMilesQuantityUseClass(MGD)Comment18.Metropolitan Edison(HES)Yorkhaven
-105.2Pr11,782Mgd19.PP&L(SES)20.Wrightsville WaterCo.21.ColumbiaWaterCo.22.Lancaster WaterAuth.23.YorkWaterCo.24.SafeHarborWaterPowerCorp.(HES)25.PP&L(SES)26.PP&L(HES)27.Phila.Electric(PS)28.Phila.Elec.(NS)29.Phila.Elec.&-Susque-hannaPowerCo.(HES)30.ChesterWaterAuth.31.Baltimore WaterAuth.BrunnerIsland-108.0IWrightsville
-119.0MColumbia-119.0MLancaster-PrPrPrPr745MgdNA1.8Mgd8.0MgdHoltwood-137.9IPrHoltwood-137.9IPrMuddyRun-140.4IPrPeachbottom
-143.0INAConowingo
-154.3IPr65Mgd21,337Mgd12,931Mgd0.03Mgd53,018MgdChester-*MSbNABaltimore, Md.-*MSbNAYork-*MSbNASafeHarbor-129.7MPr79,527MgdBasedonolddate.Allocated 24.0Mgd*NotonRiver~NotonRiver*NotonRiver*NotonRiver32.Havre-de-Grace Municipal Auth.Havre-de-Grace, Md.-MPr162.01.4MgdNote:RiverNA(SES)(HES)(PS)(NS)IMPuPrSbMgdmilesarefromSusquehanna LEGENDL888EhNDNoteavailable SteamElectricStaticnHydroelectric StationPumpingStationNuclearStationIndustrial Municipal PublicPrimaryStandbyMilliongallonsperdaySESsite SSES23TheNationalRegisterofHistoricPlacesliststheDennision House,35Dennision Street:,FortyFort,Pennsyvlania approximately 21milesnortheast ofthesite,asthenearesthistorical place.Therearethreeareasofculturalinterestwithinthesitelocale:theNorthBranchCanal,CouncilCupandalocalcemetery.
TheNorthBranchCanalislocatedbetweentheriverandU.S.Route11.Atthepresentthecanalisindisrepair.
TheSusquehanna SESsitehasbeencloselytiedtotheearlyeconomicdevelopment oftheNorthBranchValleysinceitwasfirsttraversed bytheNorthBranchCanal,animportant linkintheSusquehanna CanalSystem.TheNorthBranchCanalprovidedanewwaterrouteforthetransport ofanthracite minedintheWilkes-Barre areaandthuscontributed heavilytothevalley'sprosperity byopeningupnewmarketsforcoalallalongthefar-flung Pennsylvania CanalSystem.TheNorthBranchexperienced itsgreatestbusinessgrowthintheyearsbeforeandduringtheCivilWar.Withthecomingoftherailroads, however,itdeclinedinimportance asdidothercanalsandcanalsystems.Partofthecanal,including thatpartwhichcutsacrosstheSusquehanna SESsite,continued inbusinessuntiltheearly1900s.CouncilCuphasbeenusedasanIndianmeetingsiteandislocatedontheeastsideoftheriveratahighpointwheresurveillance oftherivervalleyisquiteadvantageous.
Thisareahasculturalinterestbecauseithasbeendocumented asthesiteofacouncilmeetingin1793tosettlealanddisputebetweenIndiansandsettlers.
According tolocallegend,itisalsothesiteofmeetingsamongIndiannations.Archeologists havereportedthatthesiteisnotlikelytoproducesignificant artifacts becausethereisnoevidenceofapermanent encampment onthebluff.Asmallcemeteryislocatedinthenorthernpartofthesite.Itisoutsidetheexclusion area.Accesstothecemeteryisviaapublicroad,andnotthroughthesiteproperty.
Thecemeterywillnotbedisturbed inanywayduring'onstruction oroperation ofthefacility.
TheUnionReformedandLutheranChurchinWapwallopen isthefirstoftheselandmarks.
On-siteinspection hasestablished thatthehousesandotherbuildings surrounding thechurchwillhidethepowerlinestructures andconductors fromview.2%31 SSES(seeFigure2.2.5)theriverisshallow;itslowflowdepthwasaboutfivefeet.NearMapwallopen thedepthsincreasetomorethansevenfeetandthebottomcontourisgenerally moreuniformexceptforashallowrockledgeatBellBend.AtWapwallopen theriverchangescourseabruptly, witha'0oturntothewest.Thispoolarea,calledBellBend,isuptofourteenfeetdeep.Atitsmouth,Wapwallopen Creekhasalargedeltaofrockandgravel.Belowthispoint,theriverwidensto500yardsandbecomeshallower.
Downstream fromBeachHaven,aflatbedrockareaextendstothemouthofNescopeck Creek;alargeriffleareagiveswaytoadeeppoolbelowthispoint.WaterqualityattheSusquehanna SESsitehasbeenmonitored byPPSLmonthlysince1968.Themaximumtotaldissolved solidsofrecordis389partspermillion(ppm),andthelowestofrecordis80ppm.Hardnesshasrangedfrom248ppmto52ppm,andtherecordedwatertemperature hasrangedfrom85OZto34oF.Averagewaterquality,basedonthesamplescollected, ispresented inTable2.5.1.Thedatacollected byPPSLisgenerally compatible withwaterqualityrecordscollected bytheU.S.Geological SurveyfortheSusquehanna RiveratDanville, approximately 30rivermilesdownsteam fromthesite(1964through1967).Pumpingofacidwaterfromdeepmineshascausedsignificant fishkillsinthepast.In1961,amajorfishkillwascausedbyacidminewaterwhenthepHatBerwickdroppedfrom7.0to3.5andthetotalironincreased from5ppmto40ppm(Ref.2-5).PPSLrecordsfrom1968to1970showthatthepHhasonlyvariedfrom6.5to7.4andisconsidered acceptable forfreshwater aquaticlife.Waterusesandwaterqualitycriteriahavebeendesignated fortheNorthBranchoftheSusquehanna River,fromtheLackawanna Rivertoitsconfluence.
Theseusesandcriteriaareprescribed byChapter93,WaterQualityCriteriaoftheseRulesandRegulations ofthePennsylvania Department ofEnvironmental Resources.
Verylittledataareavailable onbackground radiation levelsoftheriver.Thequalityofariverreflects, inpart,thecondition ofitswatershed.
'Theamountofsedimentinthewaterisanindexofthesoil,thedensityandkindofvegetation, andtheintensity andamountofrainfallontheriver~swatershed.
Similarly, theamountofdissolved solidsinthewaterisanotherindexofthewatershed.
Theradiological burdenofariverisgovernedbythesesamefactors.25-3 t~.
SSESprojectwillbeontheorderof200gpm.Groundwaterhydrology ofthesiteindicates that,ifwellsaretobeused,theneededquantityofwaterprobablycouldbedeveloped fromwellslocatedontheflocdplainadjacenttotheriver.Suchwellsprobablywouldinducerechargefromtheriver,theregylimitingtheextentoftheconeofdepression surrounding thewells.Althoughwaterlevelswouldbeloweredasaresultofpumpagefromwells,thiseffectwouldnotbeexpectedtoextendbeyondthepropertyownedbyPPSLandwouldlastonlyaslongasthewellsarepumped.Near-term pumpingtestswillbeconducted toestablish thedistances involved.
Therewouldprobablybenoadverseeffectontheotherwellsinthevalleyfromawellorwellsproducing 200gpm.Thegroundwatertableintheareaisasubduedreplicaofthesurfacetopography.
Atthesitethewatertableisfoundgenerally within35feetofthegroundsurface,usuallyjustbelowthebedrocksurfacebutsometimes withintheoverburden soils.Groundwatercontoursconstructed fromwaterlevelmeasurements indrillholesshowthatthegroundwateratthesitemoveseastwardfromtheelevatedsitetotheadjacentriverfloodplain.Permeability testsoftheglacialmaterials andtheunderlying bedrockshowthattherateofmovementofthegroundwaterisslow.*Thesetestsindicatethatthe'ermeability oftheglacialmaterials variesfrom2.2x10-~Cm/Secto4.5x10-~Cm/Secvertically, and2x10-~Cm/Sechorizontally.
Permeability oftherockvariesfrom3x10-4Cm/Secto4x10-~oCm/Sec.25-5 SSESTABLE2.5.1CHEMICALANALYSESOFTHENORTHBRANCHQUNAIATHESTEAPRIL68THROUGHAUGUST1970*MinimumMaximumA~veraeSilica(Si02)Iron(Fe)Aluminum(Al)Manganese (Mn)Calcium(Ca)Magnesium (Mg)Sodium(Na)6Potassium (asBicarbonate (HC03)Sulfate(SO~)Chloride(CX)Nitrate(N03)Phosphate**
Dissolved SolidsHardnessasCaC03Dissolved OxygenBiochemical OxygenDemand(5dayBOD)Temperature F.pHColorNa)0.090.020.000.0012.63.40.00~25.612.83.60.50.0079.651.57.80.8346.55.55.11.720.560.9565.221.89.481.815518.24.00.4388.8248.014.26.6857.4111.03.40.400.100.1132.99.62.755.260.010.81.70.21206.8125.010.62.96338.8Allvaluesinpartspermillion(ppm),exceptthosefortemperature, pHandcolor.*PP6LRecords-Biweeklysamples**Basedononlythreesamples IIIA SSES(22.5oacrsorsectors)usingthefollowing techniques:
350o~360o~10o204'04404~50o60o,70o80o;90o~100otosector1(N),tosector2(NNE),tosector3(NE),tosector4(ENE),tosector5(E),etc.20Theotheradjustment consisted ofincluding the"calm"windobservations inthelowestspeed(2-3mph)range.Thiswasdoneforeachlapse-rate classbydistributing thenumberofcalmwindoccurrences overthe16sectorsinproportion tothefrequency distribution ofthelowestspeedrange.Theeightsetsofwindrosedataarereproduced inTable2.6.1.Annualaveragerelativeconcentration (dilution factors)attherestricted areaboundarywerecomputedfromthestandardformula(Ref.2-9)foracontinuous-ground levelsource:I20.0lf=0.02032f(sm).-"./-)<zXwhereo~isobtainedfromthePasquill-Gifford curves(Ref.2-10)foradistancexbetweensourceandtherestricted areaboundary.
Thewindspeeduisspecified asameanforeachspeedrange,e.g.,8-12mphistakenas10mphor4.47m/s;fisthefrequency ofoccurence
(%)ofthewindforagivensector.Thefactor2mx/nisthearclengthofeachsector'overwhichlong-term horizontal dispersion isassumeduniform.Theminimumdistancefromsourcetotherestricted areaboundaryforn=16sectorsisindicated inTable2.6.2.Thecomputation ofrelativeconcentraticn X/Qwasaccomplished bydigitalcomputer.
Resultswereobtainedforthesevenmainlapse-rate (orstability) classes,forfivewindspeedrangesandthenaddedtogivetheannualaverageX/Qvaluesforeachofthe16windsectors.TheseareshowninTable2.6.2.Specialconsideration wasgiventothestabilitv class"G~~forwhichthelapse-rate isgreaterthan4DC/100m/
sincenoezcurvesexistforthiscase.Here,o~valuesforClassF,scaledbythefactor(2.5)-/a, wereused.26-4 k
SSESTherearenoknowntallstructures inthearea,eitherexistingorproposed, whichwouldbeofsufficient heighttointersect theplume.Therefore, thewettingoricingproblemassociated withtheplumedoesnotappeartobesignificant.
Itisnotlikelythattheplumewouldaffecttheflightofaircraftovertheplant.Theclosestairportisapproximately 4milessouthwest oftheplantandwillnotbesignificantly affectedbytheoperation ofthecoolingtowers.Itisarelatively smallairfieldwithagrassrunwayandisusedbylightaircraft.
Conditions thatproducelongplumesareoftenaccompanied byfog,rainorlowclouds;thatis,conditions whichwouldthemselves normallyrestrictlightaircraftoperations.
Immediately overthecoolingtowers,lightaircraftwouldprobablyexperience mildtomoderateturbulence duetotheheatintheplume.Anon-visible plume,or<train~~containing watervapor,heatandsuspended saltswillexistintheatmosphere forsomedistancebeyondthevisibleplume.Thelengthofthisidentifiable trainwilldependontherateofmixingwiththeambientairanduponvariations intheseparameters causedbyotherphysicalfeatures.
Theamountofwatervaporinjectedintotheatmoshphere bythecoolingtowersatmaximumloadwillvarybetweenapproximately 40cfs(18,000gpm)and62cfs(27,800gpm)depending onambientairconditions.
Thisamountofmoisturehasbeencomparedtothatwhichwouldbeputintotheatmosphere byevapotranspiration ifapproximately 10squaremilesofbuildings andpavementinacitywerereplacedwithvegetation.
Sinceplumeswillusuallyriseseveralthousandfeet,theheatandremaining moisturewillbedissipated atthisaltitude.
Depending uponambienttemperature conditions, thetemperature ofplumesleavingthetowerwillvarybetweenapproximately 50OFand110oF.~~Suspended salts~~areimpurities, particulates, anddissolved solidsthatwillbepresentintheintakeriverwater,whichwillbeaddedasmake-uptotheCirculating WaterSystem.Aswatersplashesoverthebafflesofthecoolingtower,saltssmallenoughtobecomesuspended intheairflowandcarriedupandoutofthetowerwillbecomepartoftheplume.Thequantityofsaltsandthechemicalcontentoftheplumewilldependlargelyonthechemicalqualityoftheservicewater.Itisestimated thataservicewaterimpuritycontentof770pramwillresultintheconcentration oflessthan62ppmintheplume.Therewill26-6
SSESbe110poundsperacreperyeardeposited intheimmediate vicinityofthecoolingtowers.Theseairbornesaltswillsettletothegroundinapatterndetermined byprevailing meteorological conditions.
Xngeneral,saltdeposition willbethegreatestnearthecoolingtowersandwilldecreaseinconcentration withdistanceawayfromthetowers.Thedistribution ofthesaltdeposition willbecommensurate withthearealcoverageofthevisibleplume.Sincethesaltsarewatersoluble,mostofthesedepositswillberedissolved byprecipitation andwillflowbacktotheSusquehanna River.Theimpactofthesesaltsbothon/andoff-sitewillbeinsignificant.
2.6-7
SSESSusueannaSES-Frackville 500-kvLine-PPSLproposestoemploythesamecriteriaandotherconsiderations indesigning thislineaspreviously detailedfortheSusquehanna SES-Lackawanna 500-kvline.Theprimarystructure typewillbetheself-supporting, latticesteel,single-circuit structure asshowninFigure3.2.3.Allrelatedfoundations, conductor hardwareconfigurations, andcolorcombinations areidentical.
Itisestimated thatapproximately 125structures willberequiredtocompletetheSusquehanna SES-Frackville 500-kvline.Thesinglemajordifference betweentheselineshowever,,is thattubularsteelH-framestructures willbeusedforthefirsttwoandone-halfmilesofthelinefromtheSusquehanna SES500/230-kv Substation toapointbeyondtheSusquehanna Rivercrossing.
Thereasonsforthisdecisionareasfollows:Theproximity ofthisportionofthelinetothesitevicinity.
2~Tostandardize, insofaraspracticable, theappearance ofallstructues crossingtheSusquehanna Riverinthevicinityoftheplantsite.Toachieveadegreeofcompatibility betweentheappearance ofthelineandexistingandexpecteddevelopment patternsalongU.S.Route11andinthe,vicinitoftheBorouhofBeachHaven.3~Yg3.2.2.3RadioandTelevision Interference/Audible NoiseThegeneration ofradiofrequency noisesignalsunderbothfairandfoulweatherconditions willbeminimized bytheselection ofoptimumconductor sizes,phasebundleconfigurations, andphasespacings.
Nostructures willbelocatednearanycommercial radio,television ormicrowave transmitting facilities.
Nolinelocationisplannedwhichwouldparallelanyexistingtelephone, telegraph, orothercommunication facilitytoanextentthatinductive interferenc'e totheoperation ofsuchfacilitywouldresult.'oise intheaudiblefrequency rangeisaphenomenon whichispresentonallelectrical transmissionn lines.At230-kv,thenoiseisusuallyinaudible.
At500-kv,however,thenoiseamplitude thatisanimportant designconsideration.
Atwo-conductor bundleconfiguration willbeusedforthe500-kvtransmission lines.Thisdesignhasprovensuccessful inreducingaudiblenoiseonexistingPPSL500-kvlinesandisgenerallyused byotherutilities aswell.Inaddition, widthsoftheplannedrights-of-way should3~27 SSESTABLE3.2.2POPULATION DISTRIBUTION SUSQUEHANNA SESTOLACKAWANNA 500-KVLINECountyTownship/Borough/Ci tyPercentCensusYearsChange19701960~TownshiLuzerneLackawanna SalemUnionHunlockPlymouthKingstonExeterRansom+24.5+63.2-18.26.1+13.7+42.84.43890'31241253768.168220572614278361965450186913091196.1251LuzerneLackawanna BoroucOhShickshinny PlymouthLarksville Edwardsville Swoyersville WestWyomingKingstonExeterDicksonCityBlakely8.68.3-10.31.4+0.5+15.69.61.60.5+0.316859536393756336786365918325467076986391184310401439057116751316620261474777386374LuzerneLackawanna
~CitWilkes-Barre Scranton7.1.103564111443 SSES3~4MATERUSEFigure3.4.1presentstheSusquehanna SESwateruse'iagram.
Thediagramdepicts,indetail,theflow',paths toandfromthevariousplantwatersystems.Theriverintakewillwithdrawanaverageof32,000gpmfromtheriverflowforthemakeupofevaporation lossfromthecoolingtowers,blowdownlosses,anddomesticuses.Thisamountstolessthan15%oftheminimumdesignriverflow(540cfs)
.Thisusewillnotappreciably influence thedownstream riverlevel.Theintakestructure willbe'designed toensureminimaldestruction oftheaquaticbiota.Thiswillbedonebydesigning astructure havinglowwatervelocities (notgreaterthan0.75fps)throughtheintakeentranceandwithfeatures, whichdiscourage fishentrapment andprovideforfishescape.ThequalityofwaterintheSusquehanna Riverforatwo-yearperiodfrom1968to1970asmeasuredbyPPSLispresented inTable3.4.1.Detailsofwater'andwastetreatment arediscussed inSubsections 3.7.1and3.7.2.34-1 IIlII4C'!41FII SSESgpmfor2units,thepondholdupcapacitywillbeslightlygreaterthanthe24hourholdupneededtoensureafairlyconstantriverdischarge temperature, i.e.,fluctuations inblowdownwatertemperature willnotappreciably affectthetemperature ofoutflowfromthepond.Theoutflowqualitywillbemonitored anddischarged totheriver.Duringanormalshutdown, thespraysystemswillbeoperative.
Approximately 900,2~~hollowconespraynozzleslocatedabovethepondsurfacewilleffecttherequiredcooling.Thespraypondwillalsofunctionasaheatsinkduringemergency shutdownconditions.
Underthismodeofoperation, makeupwaterneednotbeaddedtothepondtoachieveitssafetyfunction.
Waterwillbecirculated throughthespraysystem,asbefore,toeffecttherequiredcooling.3.5.26IntakeandDischarcae Structures Boththemake-upwaterintakestructure andthedischarge arrangement willbelocatedontheSusquehanna River.Theintakewilldrawascreenedwatersupplyof32,000gpm(designyearlyaverage)forthemake-upofwaterlossesfromevaporation inthecoolingtowers,blowdownfromcoolingtowerbasins,anddomesticusage.Thedischarge arrangement will'erve todisposeofblowdown, effluentfromtheradwastesystem,andsewagetreatment effluentintotheriver.Preliminary studieshaveindicated thataconventional typeintakecomprised ofacombinedreinforced concreteriverintakeandpumphouse structure withtrashracksandtraveling screenswillbefeasible.
Theintakestructure wouldcontainfourpumpseachratedat13,500gpm.Watervelocitythroughthebarrackswould'belimitedto0.75fpsinordertoallowmobileorganisms toescapefromwithintheinfluence zoneoftheintake.Sideopeningswouldalsobeprovidedtopermittheescapeoflessmobileorganisms beforebeingdrawnontothetraveling screens.Duetothelowminimumwaterlevel,aconventional typedesignwillrequireadredgedchannelwhichwillneedsomemaintenance.
Trainingwallsorfenderpilesmayalsoberequiredtoprotectthestructure fromdebrisduringfloods.Thedischarge arrangement willbecomposedofaburiedpipeleadingtoasubmerged outletintheriverabout600feetdownstream oftheintakestructure.
Aninvestigation ispresently beingmadeconcerning adiffusion arrangement thatmaybeincorporated forefficient mixingofeffluentandriverwater.3.5-5
.a SSES36THERADTOACTTVE WASTESYSTEMS361GeneralTheRadioactive WasteSystemsaredesignedtoprovidecontrolled handlinganddisposalofliquid,gaseous,andsolidwastes.Thesewasteswillberoutedfromeachunittoacommonradwastebuildingforprocessing forre-useordisposal.
Mostoftheliquidradioactive wasteswillbeprocessed andre-usedintheplant,whileonlyasmallfractionoflow-level wastemaybedischarged totheSusquehanna River.Gaseousradioactive wasteswillbeprocessed byseparation, removal,andretention ofradioactive gasesandparticulates priortoreleaseofthedecontaminated gases.Theliquidandgaseouseffluents willbecontinuously monitored.
Thedischarge willbeautomatically stoppediftheeffluentconcentrations exceedapplicable regulatory limits.Solidradioactive wastesfromplantoperations willbepackagedinDepartment ofTransportation approvedcontainers priortoshipmentoff-siteforpermanent disposal.
Thedesignobjective oftheLiquidandGaseousRadwasteSystemsistoreducetheactivityintheliquidandgaseouswastestomeetthecriteriatonumerical doselimitsofAppendixIofl0CFRpart50.ThesolidRadwasteSystemisnotexpectedtocontribute significantly eithertothedischarge ofradioactive effluents ortotheoff-siteradiation dose.3.6.2LiuidWastesTheLiquidRadwasteSystemcollects,
- monitors, treatsandpreparesradioactive liquidsothatmostofitcanbereusedintheplant.ThissystemwillbecommontobothUnits1and2.TheLiquidRadwasteSystemconsistsoffourbasicsubsystems:
equipment drains,floordrains,chemicaldrainsandlaundrydrainsasshowninFigure3.6.1.Equipment, willbeselected, arrangedandshieldedtopermitoperation, inspection, andmaintenance withinregulatory limitsforpersonnel exposures.
Clean-upequipment willincludefilters,demineralizers, andwasteevaporators.
Crossconnections betweenthesubsystems willprovideadditional flexibility forthebatchprocessing ofthewastesbyalternate methodsusingthevariousclean-upequipment.
Theequipment drainshavethehighestconcentration ofradioactive inpurities (approximately
<10-~uCi/ml).
Aclosedcollection systemcollectsequipment leakagefrom3.6-1
SSESeachunitandroutesittotheRadwasteBuilding.
Afterprocessing byfiltration andionexchangethewaterflowstotheequipment drainsampletankswhereitissampled.Ifthewaterissatisfactory forre-useitisreturnedtothecondensate storagetank.Ifthesamplerevealshighconductivity (approximately
>1umho/cm)orhighradioactivity (approximately
>10-~)thewaterisreturnedtothesystemforreprocessing.
Filtermediaandion-exchange resinsusedforthisprocessing whenexhausted areprocessed withintheSolidRadwasteSystemforoff-siteshipment.
3.6.2.2FloorDrainsThefloordrainsgenerally containalowconcentration ofradioactive impurities (approximately
<10-~uCi/ml) andsomedissolved andsuspended solids(200ppm).Thesedrainsincludecoolerdrains,areadrains,baseplatedrains,andothermiscellaneous lowactivitydrains.Theprocessing anddisposition ofthiswasteissimilartothatoftheequipment drains.Ifchemicalanalysisindicates thattheprocessed drainagemeetscondensate storagetankwaterqualityrequirements, thebatchisdischarged tothecondensate storagetank.3.6.2.3ChemicalDrainsThechemicaldrainsalsohavelowconcentrations ofradioactive impurities (approximately
<10-~uCi/ml)
.Theliquids,whichconsistoflaboratory drains,decontamination solutions, andwastewater,areprocessed bywasteevaporators toconcentrate thevolumeofradioactive wasteandtoallowre-useordischarge ofthepurifieddistillate.
Treatment byfiltration andionexchangeisnotsuitableduetothechemicalcompositions ofthesedrains.Theevaporator concentrates areprocessed withintheSolidRadwasteSystemforoff-siteshipment.
Thedistillate issampledpriortoreturntothecondensate storagetankorpriortodischarge todetermine theneccesity offurtherprocessing.
362.4~LaundrDrainsThelaundrydrainshavethelowestconcentration ofradioactive impurities
(<10-5uCi/m1)
.Thesewastesarefromdecontamination ofequipment, personnel decontamination showers,andlaundrywastewater.Becauseofatendencytofoulionexchangeresinsincreasing carryover inevaporators, thesewastesarekeptseparatefromotherliquidwastes.Theyareprocessed byfiltration andthensampledpriortobeingdischarged.
3.6.2.5SstemDesin36-2
SSESTheLiquidRadwasteSystemdesignissuchthatwastesresulting fromnormalplantoperations areaccommodated andprocessed asdescribed above.Thesystemdesignalsoprovidesforhandlingofthelargevolumesofwasteexpectedtoresultfromrefueling andmaintenance activities.
Thesystemdesignwillalsohandlemalfunctions ofashortte'rmnaturesuchasincreased valvesealand/orpumpsealleakage.Experience fromoperating stationshasbeenfactoredintotheradwastedesign.Normaloperating practices aretoprocessthewastesthroughthesubsystems provided.
Batchsamplingofthewastesisdonetoensurethateachbatchmeetsspecified waterqualityandradioactivity requirements.
Wastesnotmeetingthese,requirements arerecycledforreprocessing oraresenttoasurgetankifprocessing capacityisnotimmediately available.
TheLiquidRadwasteSystemisarrangedbelowgradeintheradwastebuilding.
Thebasementcanbelikenedtoabathtubsothatleakageand/orspillageisretainedbyconcretecompartments.
TheseliquidsarereturnedtotheLiquidRadwasteSystemthroughtheradwastedrainsystem.Protection againstaccidental discharge willbeprovidedby'esignredundancy, instrumentation forradiation detection,-
andalarmsystemswhichdetectabnormaloperational conditions.
Theradwastefacilityarrangement andthemethodsofwasteprocessing provideasubstantial degreeofconfinement ofthewasteswithintheplant.Thisassuresthatinthe'eventofafailureoftheLiquidRadwasteSystemorerrorsintheoperation ofthesystem,potential forinadvertent releaseofliquidsisminimized.
Theliquideffluents willbedischarged atarateof10to50gpmintotheretention pond.Thiswillprovidedilutionandadequatemixingpriortodischarge
'intotheSusquehanna River.Table5.2.1insubsection 5.2.1itemizestheexpectedannualdischarge ofradioactive materials fromtheLiquidRadwasteSystems.3.63GaseousWastesTheGaseousRadwasteSystemwillmonitor,process,andcontrolthereleasesofradioactive gasesfromthefacility.
Thedesignwillprovideadequatetimetotakecorrective action,ifnecessary,-to controlandlimittheactivityreleaserates.Gaseouswastesoriginating inthereactcrtravelwiththemainsteamthroughthepowerconversion systems.TheGaseousRadwasteSystemcollectsthegasesfromthemaincondenser.
Thesewastesincludeactivation gases(N-13,N-16and0-19)arisingduringnormalplantoperations, fission36-3 0
SSES3~73.7.1~ChemicalWashes3.7.1.1RawWaterTreatment SystemWasteSusquehanna Riverwaterwillbetreatedforuseasmakeuptothereactor.Treatment willconsistofclarifying therawriverwaterbyadditions ofacoagulant (alum),coagulant aid,alkaliforpHadjustment, andsodiumhypochlorite.
Theclarified waterwillbefilteredanddemineralized.
Thedemineralizer willthenconsistofcation,anion,andmixedbedion-exchangers.
Theclarifier willproduceasludgewhichwillconsistbasically ofriverwaterwiththesuspended solidsoftheriverconcentrated toapproximately 0.5-3%solidsbyweight.Inadditiontherewillbeasmallamountofaluminum, sulfate,andpolyelectrolyte mixedin.Theaverageyearlyflowofthesludgeblow-offisexpectedtobe1.5gpm,whichisquitesmallwhencomparedtotheflowof10,000gpmreturning fromthepondtotheriver.Themakeupsystemfilterswillbebackwashed periodically andthisbackwasheffluentwillbebasically riverwater.Thisbackwashwaterwillbemixedwiththedischarge waterfromthepond.Themakeupdemineralizers willbeperiodically regenerated withsulfuricacidandsodiumhydroxide solutions.
Theregenerant wastewillbecollected inaneutralization basinortankwherethepHwillbeadjusted.
Thiswaterwillthenbeslowlymixedwiththepond.Approximatley 15,800gallonsperday(11gpm)ofregenerant wastewillbeproduced.
Theregenerant wastewillberiverwaterconcentrated approximately 6times,withtheadditionofapproximately 1,700ppmofsodiumsulfate.Thetotaldissolved solidsconcentration willbeintheneighborhood of3,000ppm.Theneutralized demineralizer waste,whenmixedwiththedischarge fromthespraypond,willresultinanincreaseof3to5ppmtotaldissolved solidsoftheretention ponddischarge.
Itisexpectedthattheregenerant wasteneutralization tankwillbeemptiedin0hours.Therateofdischarge willthenbeapproximately 66gpmandresultinanincreaseof23ppmdissolved solidsintheponddischarge.
3~71
SSES3.7.1.3Circulatin Water-BowdownpromCaulis~Tower Makeupwatertothecirculating watersystemisSusquehanna Riverwater.Thiswaterwillconcentrate approximately 3.7timesinthesystemduetoevaporation inthecoolingtower.Thecyclesofconcentrations willbecontrolled byblowingdowntothepondattheapproximate rateof5,000gpmpercoolingtower.Sulfuricacidwillbeaddedcontinuously tothecirculating watertopreventscalingandtomaintainapHbetween7.2and7.6.Thesulfuricacidisconsumedinthisprocesswitharesultant increaseinsulfatesandaproportional decreaseinalkalinity.
Chlorinewillbeaddedintermittently tothecirculating watertopreventslimebuildupinthecondenser tubes.Thechlorineresidualatthecoolingtowerbasinwillbelessthan1ppm.Thischlorineresidualiscompletely consumedinthepond.Further,onlyoneunitwillbechlorinated atatime.Thedischarged waterfromthepondtotheSusquehanna Riverwillhaveachlorineresidualofzero.Studiesshallbecarriedouttodetermine whatwastestreammonitoring willberequired.
3.7.2DomesticandSanitarWater~SstemsThedomesticwatersystemwillprovidewaterforthepotablewatersupplyandtheSewageTreatment Systemnecessary fornormalplantoperations andshutdownperiods.Domesticwaterwill'besuppliedfromtheriverviatheMakeupWaterTreatment System.Approximately 30gpmwillbeprocessed bymeansofaclarifier, filter,andchlorinator locatedinthecirculating waterpumphouse.
Astoragetankwillprovideforshortdurationdraw-offs ofupto100gpm.Thedomesticwatersystemwillbeindependent fromthefireprotection systemexceptduringconstruction.
Asupplyforthecombineddomesticandfiresystemduringtheconstruction periodwillbepumpedfromwellssunkonthefloodplainbelowtheplant.Itislikelythatonlyaminimumamountoftreatment intheformofchlorination willberequiredforwaterfromthewells.Theplantwillbeservedbyadualaerationsewagetreatment system.Bothunitswillberequiredfortheapproximate eight-year construction period.Thereafter, theplantfacilities canbehandledbyoneofthetwounits.Theplantsewagedisposalsystemwillnotreceiveradioactive laundryordecontamination solutions.
Thevisitorssewagedisposalfacilities willbeindependent oftheplantsystem.3e72
SSES4'EFFECTSONHUMANACTIVITIES AplantProjectcommittee willserveasameanstoassesstheneedsandproblemsassociated withtheproject.Typically, thecommittee iscomposedofsixlocalresidents andtworepresentatives ofPPGL.Theprimarypurposeofthecommittee istofosteranunderstanding betweenthecompanyandthearearesidents ofeachother'sgoals,andtocooperate inachieving thesegoalsinordertodevelopthearea'seconomyandresources.
Thecommittee willenablelocalresidents toserveasasoundingboardbetweenthecompanyandthecommunity, andprovidelocalpeoplewithameansofchannelling suggestions'r askingquestions concerning theconstruction projects.
Similarcommittees havebeenformedatotherPPGLfacilities andhavebeenquitesuccessful.
Duringthepeakconstruction period,theworkforcewillincreasetoapproximately 2,500men(seeSubsection 2.2.1.2).DatafromanotherPPSLconstruction projectinasimilarrurallocationindicatethat10%oftheworkerstravellessthan15miles,54%travelbetween15and40miles,and36%travelmorethan40miles(distances areforone-waytrips).Manyoftheseworkerswillalreadybeinthearea.Therefore, nosignificant adverseeffectonthecommunity (suchasadditional services) isexpected.
Thetotalmonthlypayrollduringtheperiodofpeakactivity(1975-1977) willbeapproximately
$4,000,000.
Thiswillhaveapositiveeconomiceffectontheregion.Theadditionof2,500jobstothelocalpayrollwillincreasetheeconomicbaseofthearea.Siteactivityisplannedtocommenceinearly1973andwillrunthrough1981'hetotalmonthlypayrollduringtheperiodofpeakactivity(1975<<1977) willbeapproximately
$4,000,000.
Thelocalcommunity maybefacedwithproviding additional
- services, suchassewagefacilities orschoolfacilities, butexpenditures byconstruction workersforhousing,food,clothingandotheritemswilloffsetthecostofcommunity services.
Overall,theimpactispositiveratherthannegative, andineithercaseisrelatively short-lived.
Thesewagetreatment systemdescribed inSubsection 3.7.2willhandlesanitarywaterduringtheconstruction phaseaswellastheoperational phaseoftheSusquehanna SES.Allremovalandultimatedisposalofsanitarywasteswillbeinaccordance withstandards ofthePennsylvania Department ofEnvironmental Resources.
Thehandlingofsanitarywastesattheplantsitewillbeconsidered oneofthefirstpriorities atthestartofconstruction.
Thestorage,handlinganddisposalofcleaningmaterials, oils,oilywastes,etc.,willbeincompliance withtheapplicable regulations.
4.2-1 W
SSESDuringconstruction, chippingmachineswillbeusedtodisposeofsmalltreesduringclearingoperations andtheutilization ofclosedincinerator burningoftrashanddebrisispresently beingreviewedandevaluated.
Inaddition, afireprotection systemwillbeestablished.
Somecombustion productswillbereleasedtotheatmosphere asaresultofoperating diesel-powered machinery.
Theseitemsshouldhavenosignificant effectupontheenvironment.
Duringthesitepreparation phaseofconstruction, dustcontrolmeasureswillbeusedtoreducedustlevels.Thesemeasureswillconsistprimarily ofsprinkling andwillcontinueasrequiredthroughout theconstruction program.Tofurtherreducetheamountofdustgenerated, roadsandparkinglotswillbesurfacedassoonaspractical.
Incertainareasoftheconstruction site,including roadsandparkingareas,untiltheyarepavedirainswilltendtowashloosesoiloffthesite.Inordertoreducemudrunoff,thedrainagewillbechannelled intothesettingbasinsandonlyafterclearingwillthewaterbeallowedtodrainoff.Construction activities willcreatesomeunavoidable noise.Theactivities whichcreatethemostnoisewillbescheduled tobestreducetheoff-siteimpact(i.e.blasting, etc.,willbedoneduringday-light hoursandnotatnight).Theremaybetrafficcongestion enteringandleavingthejobsite,partidularly atstartingandquittingtime.Ifmultipleshiftsarenecessary, therewillbeasmoothandorderlytransition betweenshiftstoreducethelikelihood oftrafficcongestion.
Discussions arepresently underwaywiththe'ennsylvania Department ofTransportation (PennDOT) concerning waystokeeptrafficcongestion toaminimum.Severaltransmission linecorridors willbeselectively clearedinaccordance withtheprovisions andspecifications ofPPEL'sVegetation Management Program.Theseprocedures involvemaximumretention ofexistinglowgroundcoverintheright-ofmay area,preservation ofexistingtreegrowthinravinesandgullieswhereadequateclearence tolineconductors canbeobtained, andthe"tailoring" ofexistingtreegrowthalongimprovedroadscrossedbytheselinestoretainanaturalscreenbetweenroadtrafficandtheclearedright-of-way strip.Whereexistingtreegrowthadjacenttoimprovedroadscannotberetainedbecauseofinterference withlinereliability, selectedvarieties oflowgrowingtreesandshrubswillbeplantedtoprovideapermanent screenbetweentheclearedright-of~ay androadtraffic.ItisthepolicyofPPGLtotakeallstepsreasonable tominimizetheimpactoftheSusquehanna SESonthefloraandfaunaofthearea.4'-2
'II SSES5.0uz*5.1EFFECTSOFRELEASEHEAT51.1ThermalD'schareThermaldischarge fromtheSusquehanna SESwillconsistprimarily ofheatrejectedtotheatmosphere bythecoolingtowers.Eachof'thetwocoolingtowers.willhave,adesignheatloadof8x10~BTU/hr.Anadditional thermaldischarge takesplaceinthecontinuous blowdownofwaterfromthepond.Overflowfromthepondwillbedischarged intotheSusquehanna Rivertogetherwithwaterfromtheradwasteanddomesticwatertreatment systems.Studiesareunderwaytodetermine theoptimumdischarge arrangement.
Theblowdownfromthecooling.towersisexpectedtobe10,000gpm(22.3cfs).Theestimated temperature ofthisblowdownis93~Fand74.2<FforAugustandDecemberrespectively.
Towerblowdownwillbedischarged directlyintothepond.Thecapacityofthepondwillensureaminimumretention periodof24hours.Theblowdownwaterwillflowthroughthepondandwilllosesomeofitsheatbysurfaceheat,transferpriortodischarge.
Ithasbeendetermined thatthemaximumblowdowntemperature afterleavingthepondwillbe89.50Fand63oFforAugustandDecemberconditions respectively.
The.heatintheblowdownflowwillbedispersed intotheSusquehanna Riverfromwhichitwilleventually bedissipated totheatmosphere bysurfaceheattransfer.
Tentatively, theoutflowfromthepondwillbedischarged intotheSusquehanna Riverbymeansofadiffuserlocatedattheriverbottomatthelowestelevation ofabout480ft.MSL.Discharge fromthediffuserwouldtakeplacethroughaseriesofsmallportsabout4inchesindiameterdischarging theflowata45~anglewiththehorizontal inthedirection oftheriverflowwithanestimated velocityof6feetpersecond,asshowninFig.5.1.1Theorientation oftheportsareselectedsothatjetactionwillnotcausescouringoftheriverbedandtoincreasetherateofdilutionfromtheambientriverwater.Theoutflowfromthepondwillresultinincreased rivertemperatures inthedownstream vicinityoftheproposeddiffuser.
Theextent'andthemagnitude ofthisaffectedzonedependsprimarily upontherateofdischarge, thetemperature oftheblowdownovertheambientrivertemperatu're, thevelocityofdischarge, thediffuserportsizeandthemagnitude oftheriverflow.Apreliminary studyhasbeenmadeinordertopredictthecharacteristics ofthermalisotherms intheSusquehanna 51-1 SSESatthedownstream endoftheelemental volumearray.Itisassumedthemomentumoftheoutfallhasbeendissipated atthispoint.Thesolutionofthedispersion modelwasobtainedbyusingthefollowing hydraulic data:Crosssectionsfromthe1966surveywereusedtoobtaincharacteristic valuesofaveragevelocities, shearvelocities, andhydraulic radiiforflowconditions analyzed.
20Lateralandverticaldispersion coefficients wereevaluated fromthe'sectional dataandthesemi-empirically deriveddispersion coefficient equations.
ItwasfoundthatforAugustclimaticconditions, withariverflowof1000cfs,the2oF(riseinrivertemperature aboveambient)isothermextendsabout20feetfromthediffuser.
Thecalculated isotherms areshowninFigures5.1.2and5.1.3.Withthesameclimaticconditions andamedianflowof3400cfsthe2oFisothermwouldprobablynotreachthesurface,asshowninFigure5.1.4.ForDecemberclimaticconditions, withariverflowof2600cfs,the2OFisothermextendsabout750feetdownstream fromthediffuser.
Thes'eisotherms areshowninFigures5.1.5and5.1.6.Analysisofthecondition atariverflowof12,800cfsshowedthatthe2OFisothermwouldnotreachthesurface,asshowninFigure5.1.7.Forthecasesanalyzed, themaximumwidthofthe2OFisothermislessthan100feet.Thereduction intheplumelengthbetweenDecemberandAugustismainlyduetothereduction intheestimated temperature difference betweentheblowdownandtherivertemperature.
Itisseenthattheheatedwaterdischarge fromSusquehanna SESwillnotexceedthetemperature limitsofthePennsylvania PowerWaterQualityStandards underbothcriticalandaverageriverflowconditions outsideasmall(lessthan100foot)mixingzone.Waterqualitystandards including thermalstandards fortheCommonwealth ofPennsylvania arepresented insubsection 2.5.1.51.2EffectsonBiotaDuringtheoperation oftheSusquehanna SEStherewillbeessentially noeffectonaquaticorganisms fromthethermaldischarge asdiscussed insubsection 5.1.1.Periphyton whichmovewiththewatercurrentsmaybeeffectedintheareaofthethermalplumebutthiswillhavealimited5.1-3 I
SSES5.2.1'GaseousfuetsThedesignofthecryogenic OffgasSystem,coupledwithdesignfuelcladdingperformance, providesfordelayandretention sufficent toreducethe.expectedannualaveragereleaserateto9.3pCi/sec.Thisreleaserateisbasedonaninputtotheoffgassystemof100,000pCi/secdesignbasisofa30minuteoldmixtureofnoblegases.Theexpectedinputanddischarge are1/4theseamounts.TheGaseousRadwasteSystemisdescribed inSection3.6.Thesystemisexpectedtoremoveessentially alloftheiodineandparticulate radioactivity intheprocessed gases.Theannualaverageemissionratesandisotopiccompositon ofgasreleasedbytheoff-gastreatment isincludedinTable5'.2.Inadditontotheessentially continuous releaseshowninTable5.2.2intermittent releasefromthemechanical vacuumpumpdischarge occursapproximately 40hourseachyear.Thisgasisdischarged totheatmosphere viatheturbinebuildingexhaustandconsistsofapproximately 5760curiesperyearofXe-133andapproximately 860curiesperyearofXe-135.5.2.1.3Sol'dEffluents Thesolidradwastesystemisnotexpectedtoreleaseradioactive materialtotheenvironment.
Solidradwastes arepackagedinsealedcontainers priortoshipment.
Weareallexposedtoradiation invaryingdegreesfromtheground,sky,andairaroundusaswellasfromthefoodweeat.Thedegreeofexposuredependsonwherewelive,thetypeofhousewelivein,andtypeoffoodweeat.Theaveragenaturalradiation dosetopersonslvinginthhUnitedStatesisestimated tobeabout0.125remperyear.Forsomeindividuals, thedosefromnaturalbackground radiation ismorethantwicethisaverage.Thesourcesofthisdosearecosmicraysandnaturally occurring radioactive elementsintheearth,thefoodweeat,thewaterwedrink,-andtheairwebreathe.Theexposuretocosmicradiation increases withelevation abovesealevel.Wereceiveradiation directlyfrommanymineralscontaining uraniumandthoriumisotopesinthegroundorintheconstruction materials inourhomes.Aradioisotope ofpotassium isthemostsignificant radioactive substance inourfood.Anadditonal smallamountofdoseisreceivedthorughradioactive materials inwaterandair.Thedosetopersonslivingneartheplant,inadditon-to thatreceivedfiomnaturalbackground, hasbeencalculated 52-2
/1 SSESforeachtypeofreleaseandeach~~pathway toman."Theseverylowlevelsofdosearenotexpectedtoproduceanymeasurable effectsinanindividual.
Whenlargenumbersofpersonsareexposedtotheselowlevelsofradiation, effectsonpersonsinthegroup(somaticeffects)ordescendents ofthegroup(geneticeffects)couldpossiblyoccur.Forthisreason,itisappropriate tocomparethedosetoalargepopulation groupfromoperation oftheplantwiththedosethatgroupreceivesfromnaturalbackground.
Onemeasureofthepopulation doseistoaddalltheradiation dosesreceivedbyallindividuals inthepopulation group.Thisresulting quantityisreferredtoasman-rem.Thenaturalbackground dosewithina50mileradiusofthissiteiscomputedtoabout2,000,000 man-rembasedonthepopulation in1970and3,000,000 man-.rembasedontheprojected population intheyear2020.Thewholebodygammadosesshouldbecomparedtothebackground dose.Theexternalbodybetadoseaffectsonlytheexternalpartsofthebody(e.g.skin)whicharelesssensitive toradiation thanotherpartsofthebody.Theiodinedoseslistedaffectprimarily thethyroidgland,whichagainislesssensitive toradiation thanotherpartsofthebody.Formanyyearsstandards committees andscientists haveexertedconsiderable efforttodetermine theeffectofradiation onman.Asaresult,asetofguidelines hasbeendeveloped todefinemaximumlevelsofradiation dosewhichareacceptable foranyindividual andforlargepopulation groups.Therecommended annuallimitsfornon-occupational exposureare0.5remforanindividual and0.17rem/person foralargepopulation group.Themostsignificant dosecomesfromgaseousemmisions totheatmosphere (directradiation-submersion dose).Theaquaticpathwaysareofsecondary importance.
Althoughtritiumisreleasedtotheatmosphere alongwithnoblegases,thebetaradiation energyfromtritiumistoolowto~represent anexternal(tothebody)radiation hazard.Furthermore thedilutioncapacityofmoistureintheairissogreatthatuptakeoftritiumintothebodyandthesubsequent radioactivity areremovedprior.torelease;therefore, theonlysignificant exposurefromatmospheric releasesisfromnoblegases,isotopesofkryptonandxenon.Emissions totheatmosphere duringnormalfull-power operations areshowninTable5.2.3.Atmosphereic submersion, whereoneiscompletely surrounded bythecloudofradioactive gas,willbetheprimarysourceofexternalexposurefromthesegaseousemissions.
Thebasicequation52-3 SSESusedtocalculate submersion doseisD~0.25EXwhereDisrad/sec,EisaverageMEV/disintergration andXiscuries/m~.
Thisbasicequationwaschangedtorem/year=7.88x10~EQX/Q.ValuesforEandQ(curies/sec) weredetermined fromistopicdistribution of,gaseousemissions asshowninTable5.2.2.ThevalueofEincludes.
betaalthoughsomeofthebetaradiation doesnotrepresent wholebody(somatic) orgeneticdose.ValuesforX/Qwerebasedonannualaveragemeteorology.
Themaximumannualaveragesubmersion doserateatthesiteboundaryoftheplanthasbeenestimated fornormalfullpoweroperation basedonanticipated meteorology tobe0.48mrem/year withoutanycorrection foroccupancy andshielding.
Consideration ofoccupancy andshielding willreducethedosetoanindividual byatleastafactoroftwosothatthemaximumindividual dosewillbe0.24mrem/year fromnormalfullpoweroperation.
Toestimatepopulation dose(man-rem),
meteorological dilutionfactorsandsubmersion doserateswereestimated forthemid-point ofeachofthepopulation sectorsindicated bythedistances anddirections giveninTable5.2.3inman-remperyearandwascalculated bymultiplying
'thesectormid-point doserateinrem/yearbythepopulation ineachsector.Thesevaluesaresummarized inTable5.2.3.Thetotalpopulation dosewascalculated bysummingtheman-remvaluesineachsectoroutto50miles.Thetotalpopulation dosethusdetermined is1.44man-rem/year vithoutanycorrection foroccupancy orshielding.
Thisisapproximately 5x10-~%ofthedosetothesamepopulation groupfromnaturalbackground radiation.
Inadditiontonormalreleasesduringfullpoweroperation, Xe-133andXe-135willbereleasedonanintermittent basisfromoperation ofthemechanical vacummpump.Annualaveragemeteorology cannotbeusedinthiscasebecausethereleaseoccursforashortperiodoftimefollowing ashut-downandduringsubsequent start-upofthereactor.Totaltimeinvolvedinthistypeofreleaseisexpectedtobe40hours/year.
Themaximumannualaverageconcentration atthesiteperimeter, basedon40hourPasquillFmetrorology, villbe1~1x10-8pCi/ccforXe-133and1.64x10-~pCi/ccforXe-135.UsingtheInternation Commission onRadiation Protection (ICRP)methodofdosecalculation (Ref.5-2),theseconcentrations willrepresent annualdosesof0.0185remfromXe-133and0.0082remfromXe-135.However,,
mostofthisisskindoseAnindependent calculation ofthewholebody,skin,andlungdosehasbeenmadeusingreferences 5-3,5-4gand5-5.Thesecalculations over-estimate theskindosebecausesomeofthebetaparticles, internalconversion electrons, andAugerelectrons willnotpenetrate deeplyenoughtoexposeradiation sensitive tissue.However,the,energyfromtheseradiations areassumedtobeabsorbed52-4 0
SSESEXHIBITADOSETOMANFROMACLOUDOFXeANDXeGiven:Acloudofl.lxl0pCi/ccXeandl.64xl0pCi/ccXe,133-9~135averagedoveroneyear.Dataforcalculations ofZedose.138Radiation BlB2KIC(Fromyl)LIC(Fromyl)MIC(Fromyl)KIC(Fromy2)LIC(Fromy2)MIC(Fromy2)LXrayAugerKLLKLXKXYLMMMXYMe'an'o.Disxntegratxon
.007.993.0023.0015.0005.4724.0787.0984.073780358.0157~0026.4381.13MeV.0753.1006.0436.0742.0786.450.0757.0800r.0043.0254.0297.0340.0033.0010~radgCi-h.0011.2132.0002.0002.0001.0454.0127.0168.0007.0019.0010.0002.0031.0024TotalNon-penetrating Radiation
.2990g-radpCi-hyly2XraysKaKBKBKB.0023.3499.004.2297.1173.0633.0134.0796.0810.1605.031.030.035.036.004.605.0001.0152.0077.0047.0010TotalPenetrating Radiation
,.0896'-rad
~Cx-h SSES133XeLungdosefromAssumedvolumeof3500ml,weightof1000g..3xl.lxl0 Thenlungconcentration
=3'.'5x'10'0
=3.85xl0gCilunggmTheabsorbedfractionforlungforasourcedistributed inlungis=.09fortheaveragephotonenergy.Thelungdoseis(0.299=(.09x0.861) 3.85x10x365x241.04104radI.1mradinternal"
=3.4mradtotal5.2-10
SSESDataforXedose135Radiation Mean'.No.D'is'integration
."feVBlB2kICL,M,.....IC
.97.03.049.01.3.183.214.620.012.022ylY2y3.91.009.03,25.36.61.485.007.039.531-9Conc.1.64xl0~Ci/ccl.64x~.0pCi/gm1.293l.268xlOpCi/gmSkindosefromZe135(.654=.531)x1.268xlO x365x24=1.32x10rads/yr=13.2mrads/yr4WTotalbodydosefromXe135.53lxl.llxlO
+5.9mrads/yr4'iYTotalbody=2.95mrads/yr25.2-11
SSESLungdosefromXe135Absorbedfractionforaveragephotonenergyis=.05.39Lungconcentration
=3.5x10xl.64x10'0
=5.74xlO+CilunggmLungdoseis(.654=.05z531)x5.74xlO x365x24-53.4xlOrads.034mradsinternal=2.98mradstotal3.3mrem/year Summaryofdosetoman133XWholeBodySkinLung14.3mrem/year 3.4mrem/year 135XWholeBodySkinLung3.0mrem/year 6.6mrem/year 3.0mrem/year C.ThestandardAECcalculation (10CFR20AppendixB,Table2,Column1=500mrem/year) yieldsthefollowing doseassumedtobetothewholebody:(1)Xe=18.5mrem/year 133(2)Xe=8.2mrem/year 1355.2-12 B0J SSESTABLE5;2.6SUMMARYOFTHEDOSECALCULATIONS SourceIndividual Dose(mrem)Population Dose(man-rem)
W~BSkin~LunT~hroiBBoneWholeBodorGeneticDirectRadiation fromGaseousEmissionGDesignFuelLeakage(a)FullPowerOperation Intermittent VacuumPumpDischarge AquaticPathwaysNaturalBackground 024**3.2150.0811403.20.0660.090l.447.5Negligible 280,000*WB=WholeBodyGl=Gastrointestinal tract**Skindosewasnotcalculated separatefornormalfullpowerisincludedinthevalvefor-wholebody.
IC SSES5'EFFECTSOFRELEASEDCHEMICALANDSANITARYWASTESNeitheraquaticandterrestrial inhabitants oftheSusquehanna SESsiteandSusquehanna Riverwillbeharmedfromchemicals releasedwithwaterdischarged
.totheriver.Lessthan0.1mg/1(ppm)offreechlorineisexpectedtobedischarged intotheriverattheSite.Theminuteamountsofchloramines discharged intotheriverwillhavenoharmfuleffect,onorganisms present.Theamountofironreleasedisdependent onqualityoftheriverwater.Duringcertainpartsoftheyearasmuch1.72mg/1(ppm)ofironhasbeenobservedtobepresent.Operation oftheSusquehanna SESwillnotaddadditional irontotheriver.Commonwealth standards statethattheamountofirondischarged shouldnotexceed1.5mg/1(ppm).Sincethereisalreadyaconcentration ofironPPSLdoesnotexpectaharmfuleffectonaquaticorganisms toresultfromthedischarge.
Adjustment byadditionofsodiumhydroxide, andsulfuricacidtothechemicalandsanitarysystemswillkeepdischarged waterwithinapplicable limits.Alldischarges fromtheplantwillmeetallrequirements ofthePennsylvania Department ofEnvironmental Resources.
53-1" SSESreactorirradiation.
This,coupledwiththehighmeltingpointofthefuelpelletsassuresthatduringashippingcaskaccident, thereisverylittlepotential foranyradioactivity otherthanthenoblegasesbeingreleasedintothecaskcavity.Mechanical properties oftheirradiated reacttosubstantially mitigatetheconsequences ofanaccidentbytightlybindingthefissionproductswithinthebasicfuelassembly.
Thereareseveralfeatureswhicharetypicalofallshippingcasks,suchasheavystainless steelshellsontheinsideandoutsideseparated bydenseshielding
- material, suchasdepleteduranium.Additionally, thecaskhasextendedsurfaceareafordissipation ofdecayheatandwillbeequippedwithanenergyabsorbing impactstructure toabsorbtheenergyofthe30-ftfreefallandtolimittheforcesimposedonthecaskandcontents.
Thecaskalsocontainsabasketwhichisprovidedtosupportthefuelduringtransport.
Additionally, forhighexposurefuelprovisions willbemadeforahydrogenous materialsuchaswatertoprovideforabsorption ofthefastneutronsgenerated throughspontaneous fissionandalpha-nreactions ofthetransuranium isotopes.
5.4.1.2oralShimentRadioloicalResultsTheprincipal environmental effectfromtheseshipments wouldbethedirectradiation dosefromtheshipments astheymovefromthereactortothereprocessing plant.Inthisregard,ithasbeenassumedthattheshipments aremadeatthemaximumpermitted levelof0.01remperhouratsixfeetfromthenearestaccessible surface.Basedonthisandwiththenearestpersonassumedtobe100feetfromthecenterline ofthetracks,(assuming transportat'ion isbyrail)-itisestimated thatthedoserateatthatpointwouldbe0.0002remperhour.Thiswouldfalloffto0.00001remperhouratabout300feetbeyondwhichtheradiation exposurereceivedbythepopulation
.isnegligible.
EventPobab'tConsiderati nsSpentfuelshipments areplanned,scheduled, anddeliberate, andtherefore fallinthe"normal"probability categorybydefinition (seesubsection 6.5).54-2
- Ilh, SSES5.4.'}.3AccidentOccurrences RadioloicalResultsAprincipal environmental effectfromanaccidentwouldbewholebodyradiation duetotheincreased radiation levelsfromthereleaseofnoblegases.Considering thedoseattenuation effectswithdistanceitcanbeconcluded thatthedirectradiation doseeffectstothegeneralpopulation willbenegligible.
Calculations indicatethatwithoutasubstantial quantityofdecayheatintheshippingcaskplustheadditionofexternalheat,suchasfromafire,therewouldbenoreleaseofthefissiongases.However,thisaccidentisevaluated according to10CPR71criteriawhichconsiders that1000Ciofgaseousactivityisreleasedtotheenvironment.
Onthisbasisandconsidering apopulation densityof334peoplepersquaremile,thepopulation exposureasshowninTable6.1isordersofmagnitude belownormalbackground.
Similarcalculations weredonefortheiodinetodetermine thedosetothethyroid.Resultsofthiscalculation indicatethatthetotalthyroidexposureisalsoorders'fmagnitude belowbackground.
Itcantherefore beconcluded thatthisaccidentwillhavenegligible effectsonthetotalenvironment.
Eventprobabilit Considerations Thisisatransportation accidentinvolving eithertruckorrailshipments.
Theprobability isafunctionofthemannerofshipment(truckorrail),thedistanceshipped,theaccidentrateasafunctionofdistance, andtheprobability ofarelease,givenanaccident.
Thecaskisdesignedtowithstand theimpactofa30footfreefallontoanon-yielding surface,sotheprobability ofrupturing thecask,giventheaccident, isextremely low.Thedistancetravelled isavariabledepending onthelocationofthefuelreprocessing planttowhichshipment" ismade.Theprobability ofanaccidentpermiletravelled isprobablyaboutthesamefortruckandrailshipments, butmoretruckshipments arerequiredduetothesmallersizeofcasksusedontrucks.Theeffectofvariousotherspecialprecautions suchasroutingspeedlimitations, andexpertdrivingare-factorsthatneedtobeconsidered.
Basedonthesefactors,theprobability ofthespentfuelcasktransportation accidentisatthelowerendoftheemergency condition orthehigherendofthefaultcondition, withthehighervaluesassociated withtruckshipment.
5.4-3 II' SSESIntheaquaticpartoftheprogram,samplingwillincludesurfacewatersamplesfromtheSusquehanna River,-Nescopeck Creek,theSalemReservoir, LilyLake,sitepondsandtheswampsadjacenttotheplant.Tritiumanalyseswillbeperformed.
Samplesofwellwaterwillbecollected fromabouteightlocations inthearea.Theaquaticfoodchainconstituents willincludethecollection ofbottomsediments andfish.Bottomsediments fromtheSusquehanna Riverwillbecollected upstreamanddownstream fromtheplantsiteandfromNescopeck andSalemCreeks.FishwillbeobtainedfromtheSusquehanna River,Nescopeck CreekandLilyLake.Analyseswillbeperformed forStrontium
-90inthebonematterandgammascanningalsowillbeperformed.
Theoverallmonitoring programsamplingfrequencies willdependupontypeofsamplesbeingcollected.
Air-borne particulates, wellwaters,surfacewaters,rainfall, slime,bottomsediments, andmilkwillbecollected andanalyzedmonthlyorquarterly.
Mostvegetative typeswillbecollected threetimesperyearduringthegrowingseasons,whilesoilsampleswillbecollected semi-annually.
5.5.4Appropriate physicalandchemicalparameters oftheintakewater,pondwatersandwateratthedischarge pointwillbecontinuously monitored.
Suchfactorsastemperature, dissolved oxygen,chlorides,
- sulfates, radiation andtotaldissolved solidswillbemeasuredasnecessary.
55~55~55~1AuaticBiolo~Beginning inthefallof1970,studieswereinitiated offishesandbottomdwellingorganisms inthesitearea.Emphasiswillbeplacedonthespawninggrowthandmovementoffishesthroughthearea.Anestimateofthenatureandextentofthesportfisherywillbeobtained.
Surfacedrift,whichcanbe.important, willalsobesampledwithinthegeneralarea.Thewaterwillalsobelookedatfromthestandpoint offloatingplanktonic organisms.
Aquaticplantswillbemappedandidentified.
Specimens willbecollected andmadeavailable tofirmswhowillperformradioactivity background studies.Itisplannedtotakewatertemperature, oxygenandpHreadingswithregularcollections offishesandotherorganisms.
5.5.5.2Tezr~estr'al Abiological studywillbeinitiated atleastfouryearspriortoUnit1fuelloading.Awildlifeinventory willbeperformed.
Speciespopulation, diversification, 55-4
SSESreproduction ratesandhabitatassociations willbestudied.Particular emphasiswillbeplacedonthewetlandareainthesouthernportionofthesite.Astudyandmonitoring programwillbeconducted foratleasttwoyearsafterUnit2isinoperation.
Thisprogramwillevaluatetheeffectoftheconstruction andoperationa oftheplantontheterrestrial biota.Thesestudieswillincludethetaggingoforganisms inordertoevaluatethereproduction, growthratesandfoodchainoftestspecies,inventories andobservations oftypicalfaunaandflora,andacomparison ofconditions priortoconstruction withthoseafteroperation.
Monitoring willbecoordinated withtheradiological monitoring program.Information anddatadeveloped duringthesestudieswillbeusedtodevelopmanagement programsdesignedtoenhancethesiteenvironment.
5.5.6I!.HAspartofPPSLconcernwiththeenvironment, anoisecontrolprogramisbeingdeveloped toavoidmajornoiseproblemsassociated withthe,operation oftheplant.55-5
'~Ih
~SSESDuetothelimitedmobilityoftheparticulate fissionproductstheyexistinlesserquantities ineffluents andsotheircontribution totheoverallenvironmental effectsisnegligible andtherefore neglected inthisanalysis.
Depending onthetypeofleak(i.e.,steamorliquid)thepotential fornoblegasreleasemayormaynotexist.Iftheleakwerebetweenthemainsteamlineisolation valveandturbineonecouldexpectareleaseofnoblegasactivity; whereasiftheleakwereliquid,duetotherelativeinsolubility ofnoblegasesinwater,onewouldexpectnogaseouscontribution fromthissource.Fortheiodineactivitytheenvironmental effectsweredetermined bycomparing theaverageannualconcentrations atvariousradialdistances in16sectors(22.5O/sector) totheMaximumPermissible Concentration inAir(MPC~)assetforthin10CFR20AppendixBtable2column2.O~yWhereDThyroidDfThyroiddose(rem/yr)X.Doseconversion factor(i.e.,Q,-
1.5r/yr.),
otherparameters asipreviously defined.ThethyroiddoseequationappliestothedoseinagivensectorataradialdistanceR.Therefore, todetermine theintegrated population exposureitisnecessary tomultiplythisthyroiddoseequationbythepopulation distribution inagivensectorandatthegivendistanceRandsumthisproductforallsectorsanddistances to50miles.Concerning thewholebodydoseeffectsfromthereleaseofnoblegasactivity, thesteamandhenceactivityreleaserate,isbasedonanequivalent 7gpmwaterleak.Thecloudgammaexposures arebasedonthosemathematical modelspresented inreference 6-2andarepresented inTable6.3.1.Thecummulative 50milethyroidexposuretothegeneralpopulation is18man-rem.Theallowable thyroidexposureisordersofmagnitude abovetypicalwholebodydoseeffectsbecauseofthelimitedbiological effectsonthethyroidgland.However,forthepurposeofthisevaluation thethyroidexposureiscomparedonthesamelevelasthewhole6~3-2 SSESXJWhereXJAverageannualisotopicairborneconcen-trationofthei"isotope(pCi/cc)Accumulative frequency forwindspeed,stability andsector(dimensionless) thPlantreleaserateoftheiisotope(uCi/sec)
Horizontal andverticaldiffusion coefficients (cm)Windspeed(cm/sec)YiZHorizontal andverticaldistances fromplumecenterline (cm)Sectorangleoverwhichplumeisaveraged(radians)
Distancefromreleasepointtodetectorposition(cm)6.3.5.1.2RadioloicalResultsTheintegrated man-remexposureforthisaccidentisbetween10-~and10-~ofthoseexposures recievedfromnormalradiation background.
Itcan,therefore, beconcluded thatthiseventisnegligible withregardtotheenvironmental effects.6.3.5.1.3EventProbabilit Considerations Spentfuelistransferred fromthereactortothefuelpoolbymeansoftherefueling hoist.Eachfuelbundle,to beremovedisgrappledinthereactor,liftedvertically untilthebottomofthefueltransferchannelisclearedandthentransported acrossthefuelpoolbutalwaysunderwater.Abrakeisprovidedtopreventexcessive dropvelocity.
Alimitswitchisprovidedtopreventexcessive liftingvelocity.
Theaccidentpostulated assumesthataspentfuelbundledropsfromthemaximumheightabovethecore,fallsthrough63-9 l
SSESD.ThroidInhalation Dose8hrs.-30das)whereD.inhInhalation dosereceivedbetween8hrs.and30days(rem)6.3.7.1.2 adioloicalResul'tsTheresulting environmental effectsforthisaccidentarepresented inTable6.3.1.Asnotedtheeffectsareordersofmagnitude.
belowtheseresulting fromnormalbackground.
Itcantherefore beconcluded thattheenvrionmental effectsasaconsequence ofthisaccidentarenegligible.
6.3.7.1.3EventProbabilit Considerations Theprobability ofalargebreakseverance shouldfallwithintherangeofanEmergency Condition basedonestimates ofpipefailureratescontained intheliterature andonthenumberofpipesthatsatisfytheconditions foralargebreakdesignbasisaccident.
Theprobability thatanLPCIinjection valvewillbeunabletoopenwhendesiredshouldalsofallwithintherangeofanemergency condition basedonananalysisusingfailureratesfromreference 22,23,and24considering anticipated downtimeandtheintervalbetweeninjection valvetests.Sinceeachprobability islowandtheoutcomesarenotcritically interdependent, thejointprobability ofpipebreakandinjection valvefailureisexpectedtobeextremely lowplacingthiseventinthefaultcondition.
6.3.7.2SteamLineBreakAccidentThepostulated accidentisasudden,completeseverance ofonemainsteamlineoutsidethedrywellwithsubsequent releaseofsteamandwatercontaining radioactive productstothepipetunnelandtheturbinebuilding.
Sincethisaccidentdoesnotresultinanyfueldamage,theenvironmental effectsarelimitedtothoseradiological doseswhichmaybereceivedasaconsequence ofexposuretotheactivityassociated withtheprimarycoolant.63-15 t
SSESreactorisatfullpower,themaximumrodworthisapproximately 1$,resulting intheperforation oflessthan10rods,butwithahighprobability thatnonewillactuallyfail.6.3.7.3.1Calculation ofSourcesandDosesInadditiontotheassumedfailureof10rods,theradiological effectsarealsobasedonaratedsteamandrecirculation flow,aniodinecarry-over fractionof1%,andamainsteamlineisolation valveclosuretimeof4seconds.Inadditiontoisolating themainsteamline(MSL)theMSLradiation monitorsalsoisolatethenormaloff-gassystemtherebybottlingtheactivitybetweentheMSLisolation valvesandtheoffgasisolation valves.Theprimarysourceofleakagefromthesystemwilltherefore beviatheturbineglandsealsandwillbeduetochangesinenvironmental pressurewithrespecttotheturbinecondenser.
Theairborneactivityinthecondenser isafunctionofthepartition factor,volumeofairandwater,andchemicalspeciesofthefissionproductactivity.
Thevaluesassociated withtheseparameters are:apartition factorof10oforiodine,acondenser plusturbinefreevolumeof2.1x10~ft~andacondensate volumeof1.2x104ft~.6.3.7.3.2RadiolicalResultsAsnotedintable6..3.1,theradiological exposures forthisaccidentareordersofmagnitude belowthoseeffectsreceivedfromnormalbackground.
Itcantherefore beconcluded thatenvironmental effectsfromthisaccidentarenegligible.
6.3.7.3.3EventProbabilit Considerations Inorderforarodtodropfromthecore,itmustfirstbecomedetachedfromthedrive,remainlodgedinpositionwhilethedriveiswithdrawn fromthecore,andthen,whilethedrive'sstillwithdrawn, becomedislodged andfallfreely.Thisisacomplexseriesofevents,therebeingmanypossibleactions(orinactions) thatareinterrelated, butthisisoffsetbythemanyannunciators andprocedures thataremeanttoavoidsuchanevent.Therodsaretesteddailyproviding manyopportunities fortherodtobecomeuncoupled, andmanyopportunities fordetection aswell.Actualexperience hasbeengood.However,conservative judgement indicates thatthiseventshouldbeassignedasanemergency condition.
63-17 SSEStheman-remcomparisons aremadeforthepopulation withina50mileradius.Ifthereareonemillionpeoplelivingwithina50mileradius,thenaturalradiation background willresultinabout14Q,QOOman-remperyear.Table6.2.1listsman-rem/year fromnaturalbackground forthisplantlocation.
6.4.2Man-MadeRadiation BackroundManhasaddedtohisradiation exposurefromnatureinanumberofways.Thelargestcontribution byfarhasbeenfrommedicalexposure.
Ithasbeenestimated (Ref.6-7)that94percentofman-madeexposureisfromthisradiation andofthis,90percentisattributed todiagonistic X-rays.Typically, anaverageof55mremperyear(30)isreceivedbytheaverageUnitedStatescitizen.Morerecentreportsseentoindicatethat35.5mremperyearisamoreappropriate average.Specificexampleofaverageexposures perX-raytoanindividual are25-50mremfromanaveragechestX-ray,200mremfromanaveragegastro-intestinal tractexamination andarangeof5<<200mremforafluoroscopic examination (Ref.6-8).Additionally smalllevelsofradiation canbereceivedfromluminouswatchdials(about2mrem/year) andtelevision viewing(1to10mrem/year)
.Therefore, theresultant man-.maderadiation receivedbytheaveragecitizenrangesbetween50to100mremperyear.Man-RemFromMan-MadeRadiation Totalpopulation exposurefromman-madesourcesismoredifficult toevaluatesincetherecanbeanindividual choicemadeastowhethersuchradiation isreceived.
However,reasonable assumptions canbemadeinordertomakeestimates ofman-remperyearsinceit,isnotfeasibletomonitorthepopulation dosebymeasuring thedosetotheindividuals.
Thepopulation doseasaresultofviewingtelevision toasamplemillionpeoplecanbeestimated.
Typically anindividual wouldreceiveabout1-10mrem/year fromwatchingTV.Assumingtheaveragedosereceivedis5mrem/year, thenthisresultsin5000man-rem/year.
Lookingatthissamepopulation onecandetermine theman-remasaresultofexposurefromluminous-dial watches.Ifonly10percentofthisexamplepopulation areexposedto2mrem/year, thentheresultant population doseis200man-rem/year.
Ithasbeenestimated (Ref.6-29)thatmedicalexposureaccountsfor94percent,ofthetotalgenetically significant dose(GSD)fromman-madesources,andofthis,90percentisattributed todiagnostic x-rays.Theestimated meanannual64 SSES8.2SOURCESOFPOWER8.2.1Introduction Anumberofalternative methodsofproviding powertomeetPPSL'sincreasing loadrequirements havepreviously beenexamined.
Ithasbeendetermined thattheonlypractical alternative whichcanprovidetheneededlong-term baseloadpowerforPPSL'sserviceareaistheconstruction ofnuclearand/orfossilefuelplants.TheadditionoftheSusquehanna SESnuclearunitsisthechoiceforthe1979-1981 period.Nuclearfacilities aremorepractical, giventhetimeconstraints imposedonPPELbyincreasing consumerdemands.Purchaseofpowerfromotherutilities intheqnatities requiredisgenerally unfeasible fromseveralstandpoints.
Theentirequestionofalternative sourcesof,powerisdiscussed inthefollowing sections.
8.2.2,Alternative ofNotProvidinPowerOnealternative oftheSusquehanna SESisthatofnotbuildingagenerating'station atall.Intoday'ssociety,adequateelectricserviceisconsidered essential tothecontinued well-being ofthepublic.Section401ofthePennsylvania PublicUtilityimposesanobligation onelectricutilities tofurnishandmaintainreliable,
- adequate, efficient,
'safeandreasonable serviceandfacilities.
Thisserviceshallbereliableandwithoutunreasonable interuptions ordelays.Atthepresenttimeloadcurtailment arrangements havebeenmadewithlargerindustrial customers whoareabletoreducetheiroperations forashorttimeduringpoweremergencies.
Othercustomers willgenerally toleratevoltagereductions andorloadcurtailment underabnormaloremergency conditions.
Theywouldfindfrequentnon<<emergency curtailments ofserviceunacceptable.
Large-scale, long-:duration, customerinterruptions canhaveanadverseeffectonthepublic.Forinstance, theabsenceoflightsendangers publichealth,safety,andsecurity, foodspoilsintheabsenceofrefrigeration, and,lackoftransportation incertainareascanleavepeoplestrandedinvulmerable situations~
etc.Ifsuch-loadcurtailment wereintendedtobean.alternative tosupplying thecustomer's demandisomeonewouldbeforcedtomakedifficult decisions aboutwhoshouldgetpowerandwhoshouldnot.Theeffectonthepublicofdenyingservicetowholeblocksofcustomers asan-alternative tobuidlinganewplantcannotbeestimated.
Loadgrowthforecasts, indicatethatifnewgenerating capacityisnotaddedonthePPELsystemintheyears1979-1981someloadcurtailment maybenecessary andwillbea82-1 SSESTheuseofeithercombustion turbinesordie'selsincontinuous operation (necessary for,providing base-load powe'r)isnotonlyexpensive intermsoffuelconsumption butalsoresultsinhighermaintenance costs,sincetheseunitsarenotdesignedfor24-hour-a-day operation.
Delaysinbringinglargebaseloadgenerating unitsintoservicehavebeenmetonthePJMmembersystemsextensively bytheinstallation ofcombustion turbines.
Theircontinued large-scale installation asasubstitute forbaseloadgeneration isnot.desirable eithertechnically oreconomically forthereasonsstated.Suchcapacityalreadyinstalled andscheduled onPJMwillrepresent 21%ofthetotalinstalled capacitybythesummerof1973.Combustion turbineunitsinconjunction withsmallsteamturbinesformacombined-cycle unit.Whilethese"packaged" unitsareconsiderably moreefficient thanconventional combustion turbinesandrangeinsizefrom200MWe-350MWe,they,too,cannotbeconsidered analternative toalargebase-load steamunit,sincetheyburnthesameexpensive fuelsasdoconventional combust'ion turbinesanddieselunits(typically naturalgasor,,No.2fueloil).Wheneconomical meansaredevisedtopermittheseunitstoburnresidualorcrude.oil, asinlargepowerboilers,thencombinedcycleunitscouldbereconsidered byPPSL.Depending onthecircumstances thistypeofgenerating capacitymightthenbejustified.
8.2~4.3Hdroelectric Generation Therapidresponsecapabilities ofbothconventional andpumpedstoragehydroelectric facilities makethemdesirable forpeakingrequirements.
Conventional hydroelectric plantsmightbeusedforbase-load generation buttheirpotential capacities inthePennsylvania areaarefarsmallerthanthatrequiredbyPPGL.Pumpedstorageisbecominganimportant sourceofpowergeneration intheNortheast U.S.,butmainlyasasourceof,peakingpower.Pumpedstoragefacilities, bytheirnature/arealimitedenergysourcecapableofoperating inthegenerating modeonlypart-time.
Also,considering variations ofcustomerdemandduringadayorweek,pumpedstorageistypically limitedtoabout20%oftheoutputofacontinuously operatedplantatmaximumcapacity.
Thus,pumpedstorageisnotafeasiblealternative toa.base-load steamplant.8'-4 8NuclearVersusFossilFuelInthisanalysisthecompeting alternatives aretwo1100mwnuclearorfossilunitsscheduled forcommercial operation in1979and1981.Oilwithlessthan1%sulfurcontentandcoalwithlessthan2.5%sulfurcontentareconsidered asalternatives.
Bothsystemandmine-mouth coalplantslocatedinPennsylvania areconsidered.
Thepredicted unavailability ofnaturalgasasafuelsupplyeliminates gas-fired plantsasapractical alternative.
Bothdomesticandforeignlowsulfurcontentoilreserves, inthequantities necessary forthenext30yearsforaplantofthissiie,areexpectedtobeunreliable.
Toassurereliability ofacoalsupply,PPSLshouldbeabletocontrolblocksofcoaleachcontaining notlessthan30milliontonsofeconomically,coverable ofcoal.Suchblocks-arerelatively scarceinPennsylvania.
CoalfromlargeblocksoutsidePennsylvania wouldbemorecostlybecauseofthehighertransportation costs.4Unlikecoalandoil,uraniumiseconomically available inthequantities neededforthe30yearperiod.Forthisreasonuraniumhasbeenselectedasthefuelsourcefortheseunits.8.2.5.1EconomicCostsAdollarcostcomparison ofvariouspowergenerating facilities isshowninTable8.2.1.Thefacilities considered include:Susquehanna SESasplanned;acoalplant;anoilplant;andamine-mouth plant..Allunitsareassumedtohaveelectrostatic precipitators whereapplicable andclosed-loop coolingtowers.Oilisassumedtohaveasulfurcontentwhichwouldnotrequirefacilities forSO<removal.Costofthesefacilities, including costofoperation, hasbeenincludedforfossilstations.
Anaverage70$-capacity factorwasassumedforallfacilities, alongwitha30-yearlifetime.
Theaddedtransmission linedistanceforthemine<<mouth plantwasassumedtobe270miles,whilethepipelinenecessary tobringoilfromanearbyporttoatypicalsitewasestimated tobe80miles.Allfuelcostshavebeenescalated to1980fromabaseyearwhenestimates wereavailable.
Thebaseyearestimates andratesareshownasfollows:8.2-5 I1N' SSESannualplantloadfactor,evaporation amountstoabout23,500acrefeetperyear.Tomaintaintheproperwaterquality,blowdownwillrequireanadditional 10,400acrefeetperyear.8.4.2.1NaturalDraftTowersThedevelopment ofanoptimumdesignedheatcycleissocomplexthatitcanonlybedonereasonably bytheuseofcomputers.
Towerperformance anditseffectonplantoutputmustbeevaluated onthebasisofhoursperyearpredicted forvariousambienttemperatures, theresultant generation capability, andthevalueoftheenergygenerated atthetime.Asnaturaldrafttowersareplannedforthisplant,acomprehensive computeroptimization studyhasbeenperformed.
Typically, therewillbeatriplepressurecondenser designedforatotalwaterflowof450,000gpmperunitandatemperature riseof33.4PatdesignturbineunitAtanominalmaximumsummerambienttemperature of754Fwetbulband90<Fdrybulb,theoptimized naturaldrafttowerisrequiredtocoolthewaterto88.94P.Withafullplantloadandatthenominalmaximumwetbulbof75~F,41milltioncubicfeetperminute(cfm)ofairwillbedischarged fromeachtoweratavelocityof900feetperminute(fpm)(10mph)andatemperature of109~P.Underaextremewintercondition ofOoF,airflowwouldincreaseto66millioncfmand1450fpm(16.5mph),andbedischarged atatemperature of62~P.Testsconducted bytheEnvironmental SystemCorporation, anddemonstrated underthesponsorship oftheEnvironmental Protection Agencyincooperation withtheAtomicEnergyCommission onSeptember 28,1971,atOakRidge,Tennessee indicates thatdriftlossfromcoolingtowersistypically ontheorderof0.005%ofthecirculating waterrateforeithermechanical ornaturaldrafttowers.Testsconducted bytwomajortowermanufacturers confirmthisfigure.WithanassumedTDSof770ppminthecirculating water,andtakingintoconsideration anticipated annualloadfactor,thetotalsolidscarryover thatwouldbedischarged fromthetwounitswouldbeontheorderof280lbs.perday.Thenaturaldrafttowersystemwillbeconsidered asthebasesystem,andcapitalandoperational costsofotherschemeswillbecomparedtothissystem.8.422Mechanical DraftTowersTheoptimization studyontheplant-mechanical drafttowersystemresultedinadesignwaterflowandcondenser temperature risesufficiently closetothatofthenaturaldrafttowertopermitcomparison ofthetwosystemswiththe84-2 SSESyear.Thisdoesnotincludetheeffectsofpotential smalldifference inpumpcostduetothedifferent fillheightsforthetypesoftowersnortheincreased maintenance requiredwiththeactivetypetower(mechanical draft)anditsappurtenances ascomparedwiththepassivetype(naturaldrafttower).Onbalancethenitcanbestatedthatingeneralthecostsforthetwosystemsareequivalent andthatnomajoreconomicadvantage wouldbegainedbytheuseofmechanical drafttowers.Theblowdownfromthissystemwillduplicate thatofthenaturaldraftsystem.Driftandsolidscarryover willalsoapproximate thevaluessuggested inthenaturaldrafttowersection.Sincethemechanical drafttowerdischarges atalowerelevation, thefalloutpatternfromdrift,fog,.andwintericeformation fromthemechanical draftsystemwouldbesubstantially different fromthenaturaldraftsystem.Thepotential envt.ronmental impactofthesedischarges willbediscussed laterinthissection.8.4.2.3CoolinondsThecreationofalargecoolingpondorartificial lakeasameansofdissipating condenser heathasbeenconsidered.
Toproperlyutilizethissystem,anumberofspecificsitecharacteristics shouldbepresent.Tominimizepumpingcoststheremustbeavailable closetosubstantial propertywhichisfairlyflatandlendsitselfwelltopondconstruction.
Nominally thepondareaisaboutoneacrepermegawatt; Onthisbasis,thetwounitsatSusquehanna wouldrequireatleast2200acres(3.5sq.mi.).Reducingpondsizemuchbelowthisfigurewouldnecessitate areduction inplantoutput'ecause ofbackpressurelimitations ontheturbineifanextendedperiodofhotweatherweretooccur.Topography ofthesurrounding plantareasuggeststhatthesiteisnotsuitedforacoolingpond.Thetotalplantpropertyabovethefloodplainis490acres,andthustheareaavailable forcoolingisinadequate Theplantareadoesnotlenditselfwelltopondconstruction, noristhereanypropertyneartheplantthatissuitableforthispurpose.Contourmapsshowsubstantial variations inelevation inadditiontoageneral200'levation dropfromthewesternplantboundarytotheU.S.11.highway.
Porthesereasons,acoolingpondisnotconsidered aviablealternative, andadetailedcostanalysiswasnotperformed.
8'-4 I
SSES8.43.6~No'se~Neitherthenoisefromfallingwaterinthenaturaldraftwettowers,northefanorothernoisesfrommechanical drafttowers(eitherwetordrytypes)shouldnotbeobjectionable attheplantboundary.
Thesenoiselevelsshouldbelowerfornaturaldrafttowersthanmechanical drafttowers.8~4o3o7~S~rAreviewoftheTable.8.4.1indicates thatforthetechnological reasonspreviously stated,thefollowing systemsmustbeconsidered asbeingunsuitable forapplication totheSusquehanna SES.CoolingpondsSpraypondsSpraycanalsNaturaldraftdrycoolingtowersMechanical draft,drycoolingtowersOncethroughcoolingPPSListhusleftwiththe'alternative ofeitherwetmechanical draftorwetnaturaldraftcoolingtowers.Becuaseoftheconcernforgroundfoggingandsolidscarryover, thechoiceofanaturaldrafttowerismorefavorable.
Despitetheslightlylargerinvestment
- required, theselection ofthenaturaldrafttowerclearlywillreduceimpactontheenvironment andmustbeconsidered thepreferred heatdissipation system.84-9 I'IChl SSES85ALTRADSESSTS851Itroduct'onNuclearpowerstationsproduceradioactive materials thatarethewasteproductsofanoperating reactor.Onlyasmallamountoftheseresidualmaterials areeverdischarged tothebiosphere.
Thequantityandqualityof-wastesdischarged varydepending ontheengineering designandwastemanagement practices used.TheSusquehanna SESwillutilizeaRadioactive Waste.Processing Systemwhichisdesignedtopiovidethetreatment andcontrolled releaseofradioactive liquid,gaseousandsolidwatertoassurecompliance withthe:numerical doselimitsofAppendixI10CFR508.5.2Thesystemdesignobjective shallbetoprocessradioactive liquidwastessuchthattheaverageannualreleaseofradioactive materialintheliqhideffluentfromtheplant'illmeettoassurecompliance withthenumerical limitsofAppendixI10CFR50.8.53GaseousadwasteSstemTheGaseousRadwasteSystemshallbedesignedtoprocessgaseouswastessuchthattheaverageannualreleaseofradioactive materials inthegaseouseffluentfromtheplantwillmeetwiththenumerical limitsofAppendixI10CFR50.8.54BIL-"TheSolidRadwasteSystemshallbedesignedtofacilitate thepackaging ofallpotentially radioactive solidwastesforstorageandoffsiteshipmentanddisposalinaccordance withapplicable published regulations.
8~55IntheSusquehanna SESseclected liquidwasteprocessing system,theliquidradwastewillbetreatedwithacombination offiltration, evaporation anddemineralization asshown.inFigure3.6.1.Withinterconnections asproposed, anywastecanbetreatedwithanyoneorallofthesemethods.Thisprovidesasmuchtreatment capacityasiscurrently available (i.e.,state-of-the-art technology) andreducesradioactivity to.levels whichassurecompliance withnumerical doselimitsofAppendixIto10CFR50.Furtherconsideration ofalternate
.liquidradwastesystemsistherefore notnecessary.
85-1 SSESelevation.
Thisalternative willmovethelinefurtherawayfromtheSugarloaf GolfCourseandalsolowerthelineasviewedfromtheGolfCourse.Alternative 55.BetweenBearRunJunctionandFrackville Substation, thelinewasreroutedslightly.
Thisalternative servedtwopurposes:
Itlocatedthelinealongapropertylineinanindustrial areaalongLR-53035andprovidedamoredesirable crossing-of Pa.Route61.8~6.2Alternate Structures Twotypesof500kvstructures areplannedfortheuseonthelonglines;latticetypeandtubularpole"H"frame.Tubularpole"Y",orslingshot typeareavailable, butwererejectedbecausetheyaremoredifficult toerect,morecostlyandwouldrequireextensive foundations.
Guyedlatticestructures aiealsoavailable, butwererejectedinfavorofthemorereliableself-supporting typetower.Laminated woodpolestructures werenotconsidered becauseofshortspansrequiredandbecausetheextremely longonepiecepoleswouldbedifficult tohandle.Theshort230kvlinesareallintheimmediate vicinityoftheplantwheremediumgreenpaintedsteelpoleswillbeusedinsteadoflatticetypesteeltowersbecausetheywillblend.inwellwiththeirsurroundings.
Woodpolestructures werenotconsidered becauseoftheheavyloadsandresultant shortspanconstruction.
8.6.3Alternate MethodsofTransmission Consideration wasgiventounderground construction ofboth500-kvtransmission linesfromSusquehanna SEStoLackawahna andto'rackville, andalsothethree230kvlinesinthevicinityoftheSusquehanna SES.Afeasibility studyandcostcomparison studyweremade.Thepresentstateoftheartindicates thatpipecableistheonlyfeasiblemethodforunderground transmission atthe230-500kvlevel.Severalothermethodsarecurrently understudy.Theyincludecableinsulated withextrudeddielectrics, eitherconventional orcross-linked polyethylene cableusinggas(SF)asamajorinsulation, cryogenic cablesystemsandsuperconducting cablesystems.However,230kvpipecablehasbeeninstalled commercially 8~6-3 II SSESeconomicbenefitsdiscussed here,however,represent onlythequantifiable partsofthepicture.Anumberofintangible benefitsexistwhicharedifficult eventoidentify.
Asanexample,forsomeyearstherehasbeenanetout-migration ofyoungpeoplefromBerwickandthesurrounding area,'asistrueofothersmallertownsinthispartofthe'country.
TheSusquehanna SESwillhelpcreateaneconomicandsocialatmosphere whichmaytendtoslowthisprocessandhelpthesesmallercommunities stabilize theirdownwardpopulation trends.'.7.3 CostsofSusuehannaSESTheprovision oflowcost.electrical powertomeetincreasing consumerdemandsisnotwithoutitsenvironmental costs(economic costshavebeendiscussed inSection8.2).Aswithotherlarge-scale
- projects, theconstruction andoperation oftheSusquehanna SESwillresultincertainchangesintheenvironment.
'Thisincreased concernforenvironmental protection hasbeenmatchedbyanincreased demandforelectrical power.Thereis,therefoxe, asetof'competing priorities associated withthecostsandbenefitsofconstructing andoperating anyelectrical powergenerating facility.
Theenvironmental costsoftheproposedprojecthavebeenquantified tothedegreepossibleandareshowninTable8.7.2.Adiscussion ofthesecostsispresented below.1.,HeatDischareintoRiver2~Approximately 70cfs(32,000gpm)willbedrawnfromtheriverasmakeupcoolantwater.Ofthis,approximately 22cfswillbereturnedtotheriver.Thisvolumerepresents about2.9gand1.7%ofthe7-daylowriverflowfor20-yearandtwo-yearrecurrances, respectively.
Thetemperature increasewillprobablybeundetectable afewhundredyardsdownstream.
Themagnitude ofchange,evenundertheworstconditions oflowflowandhighambienttemperatures, couldnotbeexpectedtohaveanydeleterious effectontheriverintermsofprimaryproducers andconsumers andfishlife.DecreaseinCoolinCaacitofRiverAsmalldecreaseincoolingcapacityoftherivercouldbeexpected'o resultfromthesmalladditionofheatandtheevaporative lossofapproximatelg 50'fsofriverwater'rom thecoolingtowers.Theformercouldincreasetheaveragewatertemperature by0.15oFforashort8~7-7 SSESC~Reintroduction ofchemicals fromorganisms killedwithinthecoolingsystem.Theneteffectoftheseconcentrations, plustheslightwarmingofthewater,willprobablybetoincreasebiological growthforashortdistancedownstream.
Butthiseffectisexpectedtobenegligible whenviewedoverasigni,ficantly largeareaoftheview.5.6~QlayA50-70%increaseinthetotalamountofdissolved solidsoccurring inasmallportion(9g)ofthelowwaterflow(10-yearrecurrance) isexpectedtobebarelydetectable within1/4miledownstream.
Noeffect,canbeexpectedonrecreation orondownstream waterusersbecauseoftherelatively smallchangesinchemicalcomposition.
ConsumtionofWater7~Apotential lossofuptoapproximately 50cfstodownstream domesticoragricultural waterusersispossible.
SaltsDischaredfromCoolinTowers8.WiththeassumedTDSof770ppmtheexpectedsaltdischarge fromthecoolingtowerswillbe62ppm.ChemicalDischaretoAmbient.Air9~Nochemicals aredischarged toambientair.ChemicalContamination ofGroundWaterTherewillbenochemicalcontamination ofgroundwater.10.-12~Radionuclear DischarestoWaterBodentAranContamnatonoGroundWaterTheproposedmethodofradwastetreatment isoneofthebestthatcurrenttechnology isabletoprovide.Dosetopeoplewillbeextremely lowandwithinnumerical limitsinAppendixI10CPR50.Alternate methodsofradwastetreatment wereconsidered inselecting theproposedsystem.Theyhavebeendiscussed inSubsection 8.5.8~7-9 I~'tt,IIIIIItI SSESFoinandIcinTherewillbenofoggingandicingduetotheoperation ofthecoolingtowersattheSusquehanna SES.Raisin/LowerinofGroundWaterLevelsGroundwaterlevelswillnotberaisedorlowered.LandUsePresently, thelandwithinatleastatwo-mileradiusfromthesiteisamixtureofsmallwoodedareas,fields,andfarms.Thesitewillremoveordisrupt,about237acresorlessofsimilarterrain,approximately halfofwhichisnowwooded.Majorgamespeciesintheareaaredeer,pheasant, rabbit,grouse,dove,woodcockandsquirrel.
Norareorendangered speciesarepresent.Biologists familiarwiththeSusquehanna Riverintheareaofthesiteconsideritpresently underfished.
Nosignificant lossoffishisexpectedtoresultfromconstruction oroperation oftheplant,thoughanetincreaseinfishingactivitycanbeexpectedtoresultfromtheattraction ofpeopletotheplannedparkareaalongtheriver.AmbientNoiseOtherthanfromcoolingtowers,therewillbenoambientnoiseassociated withtheplant.Aesthetics Theplantisdesignedtoblendwiththeenvironment andbeasthetically compatible.
DeradationofFloodControlandErosionTheplantsiteissuchthatitwillhavenoimpactonfloodcontrolanderosion.8~7-10 Ch SSESTABLE8.7-2ENVIRONMENTAL COSTSOFGENERATION ATPROPOSEDSITEGenerating CostPrimarImactPopulation orResourceAffectedDescription ofEffectAlternate PlantDesing1a41.HeatDischarge toRiver1.1PrimaryProducers Limitedtoareaveryclosetodiffuserlittltonoeffect22cfs1.2FishNoeffectnone2.DecreaseinCool-ingCapacityofRiver2.1ThermalCapacityThermalincreaselossofwatertoevap.slightwithmixingoflowflowrivervolumeandnoheatlosstoair8nincreaseof0.15Fwouldresult.Lossofabout5.9%oflowflowcoolingcap-acity3.Mechanical, Thermal3.1PrimaryProducers Chemicalgffectsof6Consumers Entrainment onPop-ulationsofRiver3.2FishLossofallplanktonenteringtheintakeAlllostwhicharenonscreenable (1-14")Atlowflowmaximumlossofplanktonandfloatinginsectsandsomelocalgainofdetritusfeeders.4.Synergistic Effects4.1PrimaryProducers ofChemicalconcen-&Consumers trationsandThermalAdditions onRiver4.2FishChangeinProduction orSurvivalChangeinProductio'n orSurvivalLossofaportionofyoungfishlivingwithinafewhundredyardradiusofintake.Neteffectonsystemsmall.~Possiblesmalleffectfor100-yds.Onlyeffectinminuteareaneardiffuserparts;5Formore.
J, SSESTABLE8.7.2(Cont'd)PrimarImact15.LandUsePopulation orResourceAffected15.1Agricultural 15.2Forestry15.3Plants&Animals15.4Recreational Description ofEffectRemovalfromProduction RemovalfromProduction LossofHabitatDisturbance toParks,Lakes,HistoricSitesAlternate PlaneDesin41&4125acresonplateau175acresonfloodplain50acresorlessofdeciduous woodlotsmayberemoved.100acresorlessoffield&woodlotsinanareaofsimilarhabitatatleast100.timesaslarge.None15.5FishingLossofFishingPotential Noloss;probablyanincreaseinfishingpressureduetoestab-lishmentofparkareaaroundstream.16.AmbientNoise15.-;6Industrial 16.1PeopleUnavailable toDevelopment Unusually LoudNoneDuringconstruction
&operation OSHAstand-ardswillbefollowednoiseproblemsasso-ciatedwithnaturaldrafttowers.17-Aesthetics 17.1PeopleInTermsofSight,Sound,OdorVisualimpactoftowersandplumesNone18.Degradation ofFlood18.1People&Control&ErosionPropertyRisktoHealthandSafety 0
~5OOOqPlv1.BL.OWOOWN ivlAKF-LIP16,000C,PQ4u)EVAPORATiOv LINIT2II,9OOQPIv).30OOOCiPM.FROMSERVICEWATERSY57EQ+48o,ooocpg.UNITIFROhhGERV.WTRS5BLOeOOWH'70SERVWTR.SYSIiIiz$>yISPRA(POhlD3O,OOOCjpg.TOSERVICEWITE'RS'fSTMAINCOHDEWSERS MeiNCONDENSERS IvlAKE-uWATF8DOSlhlQpCHLORIHEH2SO+Oo5ING8lGPMRAWWATERTREATMENT MAKE-LIPDEMISERAL1ZEPOTABLE$DOMESTICKAERSEWAGETREATMENT PLANTg.50QpgREACTORLiguleRADKASTETR'EATMEHT CHLORINATE (50CiPMCI-ILORINECONTACTTANKE~G.~AFEGuARDSHEATEXCHAhlCER5 5CPMNEUTRAL-)ZATIOHTAQKIIGPQNOTE:uNIT(FLOWRATESARETHES~NFASLINIT2,IO,OOOC,PIVIPLlklPHOLISCB2,000CIPlvl.GLjSQUKHAhJQA=;
.RIVERPENNSYLVANIA POWER&LIGHTCOMPANYSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2APPLICANT'S ENVIRONMENTAL REPORTWaterUseDiagramFIGURE3.4.1
tEGENDRAllROADU.S.KI6KWAYSECONDARY ROADPERMANENT STIKAIIINTERMITTENT STREAMPROPERTYLIHE100METERS1000FEET55COPENNSYLVANIA POWER5LIGHTCOMPANYSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2APPLICANT'S ENVIRONMENTAL REPORTGeographical FeaturesIntheStudyArea,1971-1972 FIGUREA.18
SSESOpDOpFOquagaandLordstown verystonysiltloam,8-25percentslopes.OquagaandLordstown verystonysiltloam,25-80percentslopes.PAPAKATING SERIES-Papakating aredeep,verypoorlydrainedsoilsofthefloodplains.
Theyhavedeveloped inloamysediments washedfrommixedgreyandredglaciated uplands.Thesesoilshaveamoderately slowlypermeable subsoil.Thewatertableisnormallyatthesurfaceduringmostoftheyear.Theyareacidandcontainfewstonefragments.
Mostuseproblemsarerelatedtothehighwatertableandtofrequentflooding.
Mainunit:Papakating siltloam.REDHOOKSERIES-RedHookaredeep,somewhatpoorlytopoorlydrainedsoilsoftheglaciated uplandsandvalleys.Theyhavedeveloped inloamy,water-worked glacialoutwashsediments frommixedgrayandredshaleandsandstone bedrock.These,soilshaveamoderately slowlypermeable subsoil.Thewatertablenormallyrisestowithinafewinchesofthesurfaceduringpartsofthewinterandspringmonths.RedHooksoilsareacidandmaycontainstratified sandandgravelinthesubsoil.Mostuseproblemsarerelatedtotheseasonalhighwatertableandtothemoderately slowlypermeable subsoil.Mapg~inunit:RdBRedHookloam,3-8percentslopes.TIOGASERIES-Tiogasoilsaredeep,welldrainedsoilsoffloodplains.
Theyhavedeveloped indarkbrowntoreddishbrown,loamy,floodplain sediments washedfrommixedgreyandredglaciated uplands.Thesesoilsarenearlyleveltogentlyslopingwithamoderatepermeability inthesubsoil.Theyareacidandcontainafewstonefragments.
Mostuseproblemsarerelatedtotheoccasional floodinghazard.Thesoilnamesassignedtothesoilsoftheareaaretentative subjecttoafinalcorrelation priortothepublication ofthecounty-wide soilsreport.Achangeinthesoilname,however,willnotchange'thesoilproperty.
~Ma~inunitTBbTiogasoilsaB-3
SSESproductive deerareaeventhoughthenumbersaresufficient toattractsomehunters.Ofthefivesitesconsidered, thegeneralareaaroundtheMcElhatten siteisconsidered thesecondmostabundantinmigratory waterfowl.
The-overall terrestrial environment isnotconsidered tobeuniqueorhaveasignificantly greaterorlesservaluethantheothersites.TheWestBranchoftheSusquehanna River,becauseofminewastes,ishighlyacidicupstreamandsupportsasparsefishpopulation.
Althoughthewaterqualityisimprovedinthesitearea,fishlifeismorelimitedherethanfurtherdownstream.
Themajorspeciesoffishinthisareaaresmallmouth bass,catfish,andfallfish.
Therearenowalleyeandfewmuskellunge.
Withinatenmileradiusofthesitethereisonemajorwarmwaterfishingstreamandfourtroutstreams.WaterUse:Theestimated coolingwaterrequirements wouldconsume30.8%ofthe25year'recurrence intervalsevendaylowflowpastthesite,assuminga70cfsmakeupwaterrequirement fortwo1,100mwunitswithcoolingtowers.~Industrial useupstreamofthesiteismainlyconfinedtothreechemicalplants,aslaughter'house, apapermillanda'~hollldJLdeal.f)J.dliCLdca.VLge>opulation=
Theassumed1,~~0footexclusion zoneofthesitewouldnotrequiretherelocation ofanyexistingresidents.
Duetotheruggedterrainandthelimitedagricultural use,theestimated 1970population densitywithinthetenmileradiusis93personspersquaremile.LockHaven,located5mileswestofthesitewithanurbanpopulation of23,603,JerseyShore,located5mileseastwithanurbanpopulation of10,626andWilliamsport, 15mileseastwithandurbanpopulation of89,449,arethemajorpopulation centerswithin30milesofthesite.Aesthetics:
Thesiteislocatedinaruralsetting.Mostofthelandisforestedandthereisalittleagriculture.
Aswithanylargefacilitytherewouldbeanunavoidable visualimpactuponthearea.Thesettingoftheimmediate areawouldbechangedfromawilderness toanindustrial scene.23BrunnerIslandSiteThissiteislocatedonaformerislandintheSusquehanna Riverwhichisnowonlypartially separated fromthemainland.
Thesiteisapproximately sevenmilesdownstream
SSESconstruction attheMcElhatten orSusquehanna sitesandprobablylessthantheothertwosites.Majorspeciesoffishintheareaaresaallmouth bass,muskellunge, walleye,rockbass,crappie,catfishandsuckers.Thissectionoftheriverisconsidered agoodproducerofmuskellunge andafairproducerofwalleyeandrockbassandisahighlyfishedarea.Withinatenmileradiusofthesite(inYorkCounty)therearetwowarmwaterfishingstreamsandonetroutstream.WaterUse:WaterfromtheSusquehanna Riverwouldbeusedascoolingwaterforboththeexistingfossilfuelplantandanyproposednuclearplant.Theexistingplantusesapproximately 1,200cpsofriverwater.About62cfs,orabout1.5-2.5%ofthesevendaylowflowwith20yearrecurrence
- interval, isestimated toberequiredforcoolingtwo1,100megawattunitsutilizing coolingtowers.Asidefromtheexistingfossilplant,theriverisusedbytheYorkhaven Hydrofacility, 1.5milesupstream.
Assumingan1800footexclusion zonenoresidence wouldhavetobemoved.The1970population densitywithinanareatenmilesfromthesiteis391personspersquaremile.Listedbelowarethemajorcitieswithin30milesofthesite:Population Center,DistanceUrbanAreaPopulation fromSite~~1970Harrisburg, 15milesNWLancaster, 20milesELebanon,22milesNEYork,25milesSW172'9059s40740~00072'71Aesthetics:
Theregionalsettingoftheareasurrounding thesiteisofaruralnat'ure.Thesiteiscurrently occupiedbyafossilplant,however,andtherefore presentsanindustrialized appearance.
Thevisualimpactofplacinganuclearfacilityandcoolingtowerswouldmerelyaddtotheindustrialized appearance.
2.4Su~nburSiteTheSunburysiteislocatedinthenortheast cornerofSnyderCounty,Pennsylvania.
ThesiteisonthewestbankoftheSusquehanna River,3.5milesdownstream fromtheD-7 SSESincludetheShamokinCreekWatershed Association andvariousfoodprocessing, paperandsteelplants.Ninetyresidences fromthetownofHummelsWharfwouldhavetoberelocated fromanassumed1,800footexclusion radius.Thepopulation densitywithintenmilesis166personspersquaremile.Thefollowing citiesarewithin30milesofthesite:Population Center,DistanceUrbanAreaPopulation fromSiteLewisburg/Milton, 12milesShamokin, 13milesEBloomsburg, 21milesNEWilliamsport, 28milesNWSunburyN34~00032~00031~49489i44916t691Aesthetics:
Becausethereisanexistingfossilfuelplantonthesite,thevisualimpactofaddinganuclearfacilitytotheexistingscenewouldbetoincreasetheindustrial appearance.
2.5MartinsCreekSiteTheMartinsCreeksiteisintheeastcentralpartoftheNorthampton County,Pennsylvania.
Thissiteisbesideanexistingfossilstationupstreamoftheconfluence oftheDelawareRiverwithMartinsCreek,about23milesNEofEaston,Pa.Therelatively broadvalleyoftheDelawareRiverissouthoftheplantsite.Thevalleyatthesitevariesinwidthfrom300to500feet,three-quarters ofamileupstream, tonearly1,000feetwideatthesite.Maximumandminimumelevations withintheassumedexclusion arearangefrom200to420feetmslwithtwo-'hirds ofthesitelyingatbetween200and240feetmsl.TheDelawareRivernearthesiteisapproximately 500feetwide.U.S.Highway611passesneartheplant.ThereisarailroadspurfromthePennCentralRailroadintotheexistingfossilplant.PhysicalSitingFactors~Geolog:Ontheportionofthesitecontaining theexistingfacilities, bedrockaverages35feetbelowthesurface.
4 SSESBiol~op:Largergamespeciesofthegeneralareaareconsidered sparse.Doveandpheasantareabundant.
Theareaisnot'sedasamajormigration routeforbirds,butsmallpopulations ofducks.(primarily mallards) mayremainyearround.Muchofthehabitatconsistsoffarmedlandwithscattered treestandsgenerally neartheriver,butalsooccurring inland.Aboutonemilenorthofthesiteisafairlylargewoodedarea.Inthe'immediate areaofthefossilplant,thelandislargelyopenfieldwithabout10to15%intrees.Therearenoknownrareorendangered specieswithinthe'area.Construction onthissitewouldremovesomewildlifehabitat,however,themixofopenfarmlandandwoodlotsisnotuniquetothearea.TheDelawareRiverinthegeneralvicinityofthesiteisconsidered tohavegoodwaterqualityandisagoodproduceroffishlife.Forty-four speciesoffishwerecollected in1956-1959 surveysintheareaaroundMartinsCreek.Theeel,Americanshadandstrippedbassareimportant speciesandareallpresentintheareaaroundMartinsCreek.WaterUseThepresentfossilfuelplantusesapproximately 270cfsofcoolantwater.Anuclearfacilityisestimated touse9.9%ofthesevendaylowflow,(20yearrecurrence interval)
.Thepresentfossilfuelunitsproduce320mwtwonewfossilunitswithacombinedoutputof1,600mwarepresently underconstruction andareplannedforoperation in1975and1977.Afossil'fuelplantislocatedabout10milesnorthnearPortland, Pennsylvania.
Inadditiona2,400mwnuclearfacilityhasalsobeenproposednearthatsite.~Poulatian:Noresidences wouldhavetoberelocated fromwithinthe1,800footexclusion zoneoftheplant.Thepopulation densityoftheareaencompassed by'theten-mileradiusis355personspersquaremile.Allentown, 20milessouthwest, withapopulation of108,926,andEaston,23mileswithanurbanareapopulation of180,394,Easton,7milessouthwest
'ithanurbanareapopulation of77,594,andBethlehem, 14milessouthwest withanurban,areapopulation 105,620arethethreemajorurbanareaswithin30milesofthesite.Aesthetics:
Theareasurrounding thesiteisofruralsetting.Becauseoftheexistingfossilplant,however,theimmediate sitehasanindustrialized appearance.
Anuclearfacilitywould 4r'ISI TABLED-1(Continued)
Page5.PHYSICALSITINGFACTORSPACTORDESCRIPTION oWaterUsersSUSQUEHANNA SITEoCoalPlant9Mi.Upstream; AcidMineDrainage&Municipal SewageFromUpstream.
StreamMayTurnOrangeinSummer(reasonsun-defined)butpHatSiteWithinNormalLimits.MCELHATTENSITEoUpstream0HeavilyPol-lutedbyAcidMineDrainage.
UpstreamTribu-taryHas3ChemicalPlants,2Slaughter Houses,PaperPlantandSmallAirplaneFactory.BRUNNERISLANDSITECoalPlantonSite(once-throughcool-ing)1~200cfs,T=27FMax,840MWeNuclearFacility3.5Mi.Upstream, SafeHarborHydroFa-cility20Mi.Downstream andYorkHavenHydroFacility1.5Mi.Upstream.
OtherIndustries inGeneralArea.SomeIndication ofInsecticide Pollution.
SUNBURYSITEoCoalPlantonSite(once-throughcooling)450cfog,T=20FMax,483MWe.SewagefromShamakinCrk.Watershed Association.
Paper,FoodProcessing, SteelPlantsWithin16Mi.Upstream.
MARTINSCREEKSITEoCoalPlantatSite(once-throughcooling)270cfs,T=27oFMax,Two1,200MWeNuclearPlantsProposedforDeleware.
Population 4oEstimated NumberofResidences WithinAs-sumedEx-clusionZoneoNoneoNoneoNoneo90oNoneoTotalPopulation DensityWithin10-MileRadiuso167Persons/Sq.Mi.o93Persons/Sq.Mi.o391Persons/Sq.Mi.o166Persons/o355Persons/Sq.Mi.Sq.Mi.oTotalPopu-o53,000lationWithin10MilesofSiteoTotalPopu-o265,354lationWithin20MilesofSiteoTotalPopu-o465,000lationWithin30MilesofSiteo36,000o105,000o140,000o123,000o598,000o758,600o60,009o189,413o289,000o140,781o363,517o500,389Aesthetics oExistingSceneAtSiteoRuraloRuraloIndustrial oIndustrial oIndustrial 4Population DataBasedon1970Figures.DensityNumbersincludeTownshipAreasandPersonsEitherWhollyorAtLeast50%WithinTen-MileRadiusofSite.
/Ij