ML061520336
ML061520336 | |
Person / Time | |
---|---|
Site: | Seabrook |
Issue date: | 04/30/2006 |
From: | Jirawongkraisorn S, Ching Ng, Swamy S Westinghouse |
To: | Office of Nuclear Reactor Regulation |
References | |
EA-03-009 WCAP-16550-NP, Rev 0 | |
Download: ML061520336 (107) | |
Text
Attachment 4 to SBK-L-06119 Westinghouse Non-Proprietary Class 3 WCAP-1I6550-NP April 2006 Revision 0 Structural Integrity Evaluation of Reactor Vessel Upper Head Penetrations to Support Continued Operation:
Seabrook Station
[*)We~R ...ous' SO*:
I WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-16550-NP Revision 0 Structural Integrity Evaluation of Reactor Vessel Upper Head Penetrations to Support Continued Operation: Seabrook Station S. Jirawongkraisorn April 2006 Verifier: i Piping Analys/ & Fracture Mechanics Approved:
Piping Analysis & Fracture Mechanics Westinghouse Electric Company LLC P.O. Box 355 Pittsburgh, PA 15230-0355 0 2006 Westinghouse Electric Company LLC All Rights Reserved
TABLE OF CONTENTS LIST O F TA B LES ........................................................................................................................................ v LIST OF FIGU RES ..................................................................................................................................... vi I INTRODUCTION ........................................................................................................................ 1-I 2 HISTORY OF CRACKING IN HEAD PENETRATIONS .......................................................... 2-1 3 OVERALL TECHNICAL APPROACH ................................................................................. 3-1 3.1 PENETRATION STRESS ANALYSIS .................................................................... 3-1 3.2 FLAW TOLERANCE APPROACH ................................................................................ 3-1 4 MATERIAL PROPERTIES, FABRICATION HISTORY AND CRACK GROWTH PRED ICTIO N .................................................................................................................. 4-1 4.1 MATERIALS AND FABRICATION .......................................................................... 4-1 4.2 CRACK GROWTH PREDICTION ......................................................................... 4-1 5 STRESS ANALYSIS .................................................................................................................... 5-1 5.1 OBJECTIVES OF THE ANALYSIS ......................................................................... 5-1 5.2 M O D EL ........................................................................................................................... 5-1 5.3 STRESS ANALYSIS RESULTS - OUTERMOST CRDM PENETRATION (48.70)
.*.. o,...*..*... * *,.. . *. ***. *.** * . *.** 5-1
.o................................................................
5.4 STRESS ANALYSIS RESULTS - INTERMEDIATE CRDM PENETRATIONS ......... 5-2 5.5 STRESS ANALYSIS RESULTS - CENTER CRDM PENETRATION ......................... 5-2 5.6 STRESS ANALYSIS RESULTS - HEAD VENT ........................................................... 5-2 6 FLAW TOLERANCE CHARTS ................................................................................................. 6-1
6.1 INTRODUCTION
.......................................................................................................... 6-1 6.2 OVERALLAPPROACH .......................................................................................... 6-I 6.3 AXIAL FLAW PROPAGATION ....................... ... ................................... 6-3 6.4 CIRCUMFERENTIAL FLAW PROPAGATION ...................................................... 6-4 6.5 FLAW ACCEPTANCE CRITERIA ................................................................................ 6-5 7
SUMMARY
AND EXAMPLE PROBLEMS ........................................................................ 7-I April 2006 WCAP-16550-NP Rev. 0
iv 7.1 SAFETY ASSESSMENT .......................................................................................... 7-1 7.2 EXAMPLE PROBLEMS ................................................................................................ 7-2 8 REFERENCES ............................................................................................................................. 8-1 APPENDIX A CRDM HOOP STRESS DISTRIBUTIONS BELOW THE WELD .............................. A-I April 2006 WCAP-16550-NP Rev. 0
V LIST OF TABLES Table 1-1 Seabrook Head Penetration Nozzles with Intersection Angles Identified .............................. 1-2 Table 4-1 Seabrook Reactor Vessel Head Adapter Material Information ............................................... 4-7 Table 6-1 Summary of Reactor Vessel Head Penetration Flaw Acceptance Criteria ............................. 6-8 Table 6-2 Seabrook Head Penetration Geometries ................................................................................. 6-8 Table 7-1 Example Problem Inputs: Initial Flaw Sizes and Locations .................................................. 7-5 Table A-I Distance Below Toe of Downhill Side J-Weld Where Hoop Stress is less than 20 ksi ........ A-3 April 2006 WCAP-16550-NP Rev. 0
vi LIST OF FIGURES Figure 1-1 Typical Reactor Vessel Control Rod Drive Mechanism (CRDM) Penetration ................ 1-3 Figure 1-2 Location of Head Penetrations for Seabrook ................................................................... 1-4 Figure 2-1 EDF Plant RNV Closure Head CRDM Penetrations - Penetrations with Cracking ......... 2-5 Figure 3-1 Schematic of a Head Penetration Flaw Growth Chart for Part-Through Flaws .............. 3-3 Figure 4-1 Yield Strength of the Various Heats of Alloy 600 Used in Fabricating the Seabrook and French H ead Penetrations ............................................................................................... 4-8 Figure 4-2 Carbon Content of the Various Heats of Alloy 600 Used in Fabricating the Seabrook and French H ead Penetration ................................................................................................. 4-9 Figure 4-3 Screened Laboratory Data for Alloy 600 with the MRP Recommended Curve (Note that the Modified Scott Model is also Shown) ...................................................................... 4-10 Figure 4-4 Model for PWSCC Growth Rates in Alloy 600 in Primary Water Environments (3251C),
With Supporting Data from Standard Steel, Huntington, and Sandvik Materials .......... 4-11 Figure 4-5 Summary of Temperature Effects on PWSCC Growth Rates for Alloy 600 in Primary Water .............................................................................................................................. 4-12 Figure 5-1 Finite Element Model of CRDM Penetration .................................................................. 5-3 Figure 5-2 Vent Pipe Finite Element Model ...................................................................................... 5-4 Figure 5-3 Stress Distribution at Steady State Conditions: Outermost CRDM Penetration Nozzle (48.7 Degrees) (Hoop Stress is the Top Figure, Axial Stress is the Bottom Figure) ........ 5-5 Figure 5-4 Stress Distribution at Steady State Conditions for the 45.4 Degrees CRDM Penetration (Hoop Stress is the Top Figure; Axial Stress is the Bottom Figure) ................................ 5-6 Figure 5-5 Stress Distribution at Steady State Conditions for the 44.3 Degrees CRDM Penetration (Hoop Stress is the Top Figure; Axial Stress is the Bottom Figure) ................................ 5-7 Figure 5-6 Stress Distribution at Steady State Conditions for the 26.2 Degrees CRDM Penetration (Hoop Stress is the Top Figure; Axial Stress is the Bottom Figure) ................................ 5-8 Figure 5-7 Stress Distribution at Steady State Conditions for the Center CRDM Penetration (Hoop Stress is the Top Figure; Axial Stress is the Bottom Figure) ............................................ 5-9 Figure 5-8 Stress Contours in the Head Vent Nozzle as a Result of Residual Stresses and Operating Pressure (Hoop Stress is the Top Figure; Axial Stress is the Bottom Figure) ................ 5-10 Figure 5-9 Axial Stress Distribution at Steady State Conditions for the Outermost CRDM Penetration (48.7 Degrees), Along a Plane Oriented Parallel to, and Just Above, the Attachm ent Weld ...................................................................................................... 5-11 Figure 6-1 Stress Intensity Factor for a Through-Wall Circumferential Flaw in a Head Penetration ....................................................................................................................... 6-9 April 2006 WCAP-16550-NP Rev. 0
vii Figure 6-2 Inside, Longitudinal Surface Flaws, .5" Below the Attachment Weld, Nozzle Uphill Side -
Crack Growth Predictions for Seabrook ........................................................................ 6-10 Figure 6-3 Inside, Longitudinal Surface Flaws, .5" Below the Attachment Weld, Nozzle Downhill Side - Crack Growth Predictions for Seabrook ......................................................... 6-11 Figure 6-4 Inside, Longitudinal Surface Flaws, At the Attachment Weld, Nozzle Uphill Side - Crack Growth Predictions for Seabrook ................................................................................... 6-12 Figure 6-5 Inside, Longitudinal Surface Flaws, At the Attachment Weld, Nozzle Downhill Side -
Crack Growth Predictions for Seabrook ........................................................................ 6-13 Figure 6-6 Inside, Longitudinal Surface Flaws, .5" Above the Attachment Weld, Nozzle Uphill Side -
Crack Growth Predictions for Seabrook ...................................................................... 6-14 Figure 6-7 Inside, Longitudinal Surface Flaws, .5" Above the Attachment Weld, Nozzle Downhill Side - Crack Growth Predictions for Seabrook............................................................. 6-15 Figure 6-8 Inside, Longitudinal Surface Flaws, At the Attachment Weld, Head Vent- Crack Growth Predictions for Seabrook ................................................................................................ 6-16 Figure 6-9 Outside, Longitudinal Surface Flaws, Below the Attachment Weld, Nozzle Uphill Side -
Crack Growth Predictions for Seabrook ........................................................................ 6-17 Figure 6-10 Outside, Longitudinal Surface Flaws, Below the Attachment Weld, Nozzle Downhill Side
- Crack Growth Predictions for Seabrook ...................................................................... 6-18 Figure 6-11 Outside, Circumferential Surface Flaws, Along the Top of the Attachment Weld - Crack Growth Predictions for Seabrook (MRP Factor of 2.0 Included) .................................. 6-19 Figure 6-12 Through-Wall Longitudinal Flaws Located in the Center CRDM (0.0 Degrees)
Penetration - Crack Growth Predictions for Seabrook ................................................... 6-20 Figure 6-13 Through-Wall Longitudinal Flaws Located in the 26.2 Degrees CRDM Row of Penetrations, Downhill Side - Crack Growth Predictions for Seabrook ........................ 6-21 Figure 6-14 Through-Wall Longitudinal Flaws Located in the 44.3 Degrees CRDM Row of Penetrations, Downhill Side - Crack Growth Predictions for Seabrook ........................ 6-22 Figure 6-15 Through-Wall Longitudinal Flaws Located in the 45.4 Degrees CRDM Row of Penetrations, Downhill Side - Crack Growth Predictions for Seabrook ........................ 6-23 Figure 6-16 Through-Wall Longitudinal Flaws Located in the 48.7 Degrees CRDM Row of Penetrations, Downhill Side - Crack Growth Predictions for Seabrook ........................ 6-24 Figure 6-17 Through-Wall Circumferential Flaws Near the Top of the Attachment Weld for CRDM Nozzles - Crack Growth Predictions for Seabrook (MRP Factor of 2.0 Included) ........ 6-25 Figure 6-18 ASME Section XI Flaw Proximity Rules for Surface Flaws (Figure IWA-3400-1) ...... 6-26 Figure 6-19 Definition of "Circumferential" .................................................................................... 6-27 Figure 6-20 Schematic of Head Penetration Geometry ..................................................................... 6-28 Figure 7-1 Example Problem I .......................................................................................................... 7-6 April 2006 WCAP-16550-NP Rev. 0
viii Figure 7-2 Exam ple Problem 2 .......................................................................................................... 7-7 Figure 7-3 Example Problem 3 .......................................................................................................... 7-8 Figure 7-4a Example Problem 4 (See also Figure 7-4b) ............................................................... 7-9 Figure 7-4b Example Problem 4 (See also Figure 7-4a) ................................................................... 7-10 Figure 7-5 Example Problem S 5 ............................................... .................................................... 7-11 Figure A-I Hoop Stress Distribution Uphill and Downhill Side (00 CRDM Penetration Nozzle) ... A-4 Figure A-2 Hoop Stress Distribution Uphill Side (26.20 CRDM Penetration Nozzle) ................ A-5 Figure A-3 Hoop Stress Distribution Downhill Side (262.2 CRDM Penetration Nozzle) ................ A-6 Figure A-4 Hoop Stress Distribution Uphill Side (44.30 CRDM Penetration Nozzle) ..................... A-7 Figure A-5 Hoop Stress Distribution Downhill Side (44.30 CRDM Penetration Nozzle) ........... A-8 Figure A-6 Hoop Stress Distribution Uphill Side (45.40 CRDM Penetration Nozzle) ..................... A-9 Figure A-7 Hoop Stress Distribution Downhill Side (45.40 CRDM Penetration Nozzle) ...... A-10 Figure A-8 Hoop Stress Distribution Uphill Side (48.70 CRDM Penetration Nozzle) .............. A- 1I Figure A-9 Hoop Stress Distribution Downhill Side (48.70 CRDM Penetration Nozzle) .............. A-12 April 2006 WCAP-16550-NP Rev. 0
INTRODUCTION In September of 1991, a leak was discovered in the Reactor Vessel Control Rod Drive Mechanism (CRDM) head penetration region of an operating plant. This has led to the question of whether such a leak could occur at the CRDM or head vent nozzle penetrations of Seabrook Station. It shall be noted that the term "CRDM" is used generically in this report for any of the reactor vessel upper head penetrations which includes the control rod mechanism, instrumentation penetrations, and spare penetrations as applicable. The typical geometry of interest for a CRDM penetration nozzle is shown in Figure 1-1. Throughout this report, the penetration rows have been identified by their angle of intersection with the head. The locations of the head penetrations for Seabrook are shown in Figure 1-2 [IA] and the angles for each penetration are identified in Table 1-1 [IB, IC].
The CRDM leak resulted from cracking in Alloy 600 base metal, which occurred in the penetrations of a number of operating plants as discussed in Section 2. The outermost CRDM location, as well as a number of intermediate CRDM locations, and the head vent nozzle were chosen for fracture mechanics analyses to support continued safe operation of Seabrook if such cracking were to be found. The dimensions of all the CRDM penetrations are identical, with a 4.00 inch Outside Diameter (OD) and a wall thickness of 0.625 inches [ID]. For the head vent, the OD is 1.315 inches and the wall thickness is 0.250 inches [IE]. All of these dimensions are summarized in Table 6-2.
The basis of the analysis was a detailed three-dimensional elastic-plastic finite element stress analysis of several penetration locations, as described in detail in Section 5, and a fracture analysis, as described in Section 6. The fracture analysis was carried out using crack growth rates recommended by the EPRI Materials Reliability Program (MRP). These rates are consistent with service experience. The results are presented in the form of flaw tolerance charts. If indications are found, the charts will determine the allowable service life of safe operation. The service life calculated in the flaw tolerance charts are all in Effective Full Power Years (EFPYs).
Note that there are several locations in this report where proprietary information has been bracketed and deleted. For each of the bracketed locations, reasons for proprietary classifications are given using a standardized system. The proprietary brackets are labeled with three different letters to provide this information. The explanation for each letter is given below:
- a. The information reveals the distinguishing aspects of a process or component, structure, tool, method, etc., and the prevention of its use by Westinghouse's competitors, without license from Westinghouse, gives Westinghouse a competitive economic advantage.
- c. The information, if used by a competitor, would reduce the competitor's expenditure of resources or improve the competitor's advantage in the design, manufacture, shipment, installation, assurance of quality, or licensing of a similar product.
- e. The information reveals aspects of past, present, or future Westinghouse or customer funded development plans and programs of potential commercial value to Westinghouse.
Introduction April 2006 WCAP-16550-NP Rev. 0
1-2 Table 1-1 Seabrook llead Penetration Nozzles with Intersection Angles Identified [IB, IC]
Angle Angle Angle Nozzle No. Nozzle No. Nozzle No. (Degrees)
(Degrees) (Degrees) 1 0.0 27 26.2 53 36.3 2 11.4 28 26.2 54 38.6 3 11.4 29 26.2 55 38.6 4 11.4 30 30.2 56 38.6 5 11.4 31 30.2 57 38.6 6 16.2 32 30.2 58 38.6 7 16.2 33 30.2 59 38.6 8 16.2 34 30.2 60 38.6 9 16.2 35 30.2 61 38.6 10 18.2 36 30.2 62 44.3 11 18.2 37 30.2 63 44.3 12 18.2 38 33.9 64 44.3 13 18.2 39 33.9 65 44.3 14 23.3 40 33.9 66 45.4 15 23.3 41 33.9 67 45.4 16 23.3 42 35.1 68 45.4 17 23.3 43 35.1 69 45.4 18 24.8 44 35.1 70 45.4 19 24.8 45 35.1 71 45.4 20 24.8 46 35.1 72 45.4 21 24.8 47 35.1 73 45.4 22 26.2 48 35.1 74 48.7 23 26.2 49 35.1 75 48.7 24 26.2 50 36.3 76 48.7 25 26.2 51 36.3 77 48.7 26 26.2 52 36.3 78 48.7 April 2006 Introduction Introduction April 2006 WCAP-16550-NP Rev. 0
1-3 CF;
":""',* * :* >4.:F'""A""
(1800)*i:."
(,.
PY. .
Side1
.. ,i&
I'isI A,...'. " z '
0 Angle of Intersection I-- ',: .":'.P :,">:/' - : 4 .*.3/4 : C;!' :" '
Cladding Tangent Line Figure 1-1 Typical Reactor Vessel Control Rod Drive Mechanism (CRDM) Penetration Introduction April 2006 WCAP-16550-NP Rev. 0
1-4 Figure 1-2 Location of Head Penetrations for Seabrook 11A]
Introduction April 2006 WCAP-16550-NP Rev. 0
2-1 2 HISTORY OF CRACKING IN HEAD PENETRATIONS In September of 1991, leakage was reported from the reactor vessel CRDM head penetration region of a French plant, Bugey Unit 3. Bugey 3 is a 920 megawatt three-loop Pressurized Water Reactor (PWR) plant which had just completed its tenth fuel cycle. The leak occurred during a post ten year hydrotest conducted at a pressure of approximately 3000 psi (204 bar) and a temperature of 194 0 F (90'C). The leak rate was estimated to be approximately 0.7 liter/hour.
The location of the leak was subsequently established on a peripheral penetration with an active control rod (H-54), as seen in Figure 2-1.
The control rod drive mechanism and thermal sleeve were removed from this location to allow further examination. A study of the head penetration revealed the presence of longitudinal cracks near the head penetration attachment weld. Penetrant and ultrasonic testing confirmed the cracks.
The cracked penetration was fabricated from Alloy 600 bar stock (SB-166), and has an outside diameter of 4 inches (10.16 cm) and an inside diameter of 2.75 inches (7.0 cm).
As a result of this finding, all of the control rod drive mechanisms and thermal sleeves at Bugey 3 were removed for inspection of the head penetrations. Only two penetrations were found to have cracks, as shown in Figure 2-1.
An inspection of a sample of penetrations at three additional plants were planned and conducted during the winter of 1991-92. These plants were Bugey4, Fessenheim 1, and Paluel 3. The three outermost rows of penetrations at each of these plants were examined, and further cracking was found in two of the three plants.
At Bugey 4, eight of the 64 penetrations examined were found to contain axial cracks, while only one of the 26 penetrations examined at Fessenheim I was cracked. The locations of all the cracked penetrations are shown in Figure 2-1. At the time, none of the 17 CRDM penetrations inspected at Paluel 3 showed indications of cracking, however subsequent inspections of the French plants have confirmed at least one crack in each operating plant.
Thus far, the cracking in reactor vessel heads not designed by Babcock and Wilcox (B&W) has been consistent in both its location and extent. All cracks discovered by nondestructive examination have been oriented axially, and have been located in the bottom portion of the penetration in the vicinity of the partial penetration attachment weld to the vessel head as shown schematically in Figure 1-1.
One small, outside diameter initiated, circumferential flaw was found during destructive examination at Bugey 3. The flaw was found to have resulted from Primary Water Stress Corrosion Cracking (PWSCC) as a consequence of leakage of the PWR water from an axial through-wall crack into the annulus between the penetration and head.
Leaks were also discovered at seven Babcock & Wilcox designed plants:
- Oconee I (I leaking nozzle)
- Oconee 2 (4 leaking nozzles)
History of Cracking in Head Penetrations April 2006 WCAP-16550-NP Rev. 0
2-2 0 Oconee 3 (9 leaking nozzles) 0 ANO-I (I leaking nozzle) 0 Crystal River Unit 3 (1 leaking nozzle) 0 Three Mile Island 1 (5 leaking nozzles)
- Davis-Besse (8 leaking nozzles)
In addition, five of the eight smaller diameter thermocouple nozzles at Oconee 1, and all eight at Three Mile Island 1, were discovered to have leaks. All of these leaks were first detected during visual inspections of the top surface of the vessel heads for boric acid crystal deposits. In all cases, except Davis-Besse, the quantity of boric acid crystals at each nozzle location was small
(41.-1 44 811III 1II 1-14.- 44I,4.-I A--
l III I'lL
.1--
1 L
41 -.
1 .14
....L.....
X T', loli lll oI Illll
+i-.,
..L: "L -l I+.-<-4--1:144,Hl1+-11-1-1..
1.111.11 loll 11..... IM IM UU I.LL.IU iU U ill U U~l U UII IL LULi iii UU li L ULULI 1JLL 14
... MI.
)Lii LUJ Liiit A UIJ LiiILUJIAULLit 0.8 li lt lm1111 U I III
...... li t ItVi 1;.. ....
V 4 . L~~~~~~
le A ngle 4:4 ..de...............
26.deg2
~ ~ ~ 1111 I
Nozzle Angle:LW6.441WW T
+1 fill
&11Z
+41 Xi 4+
44W4 44 1t7I Li11t.
1+ 87d g~
- WW nfTI1 iT,TI ]* i tTi
' i'i itit Ti* iiT fi liiii, UU irii II UT li', i 0.7 ri liii rm ni rI IiNo zl A nge 2 nn TTin u0.6
- E III$ til
,I jIUL
,/ UL III irTIi IIIi ~nn~~
LI'IIJU i-i
-II IIII LI IIIU IT-i I :4.:.I4IJ niii IJ i)LIIIIJIJ in -iUI IJ 4L UV.IJ.j in i n /ri i.
LL ri rn i UI irin
-2LI r:in. TOT I11n li ~ii II1Lt I I fi LL
~~ LL 0.5 nri-In 1ti-. ni0n nit nn TI ii* nn Mi n n qirnn rnrnn innn ir" i *lnnTol*r**1n -Ir: II n rn n1-i" i5 1444 T 4 r i nn IT,¢ 2'l T-'l'nn 4 ,T1 "1innTTiruIT r rt.1n r1, nit inr rir 1'7,.1n4 n "
,-IrTin r, , renr
'i*
I i ll tiU Lii I I UL U UII Ui Ui 1 JUIIit iJU L iI IL:LULi 14:1
'IT iiýi #W- I r TiiJ iI/I -JU NILLLTllT~IT-UU fil fill filfllTDLT--- 1l J#i .ilII ll{ 4.14I-lI 1+14 -iN +1+ i-IN 1 4+ + 44 1+-1*4 1*1 + 14 1 I . 44I1 i-iNl-4+-41,1 1414
.T1 11 1 11 n-i TTi Im I nMM tI i JLIi
- 'IT AiiL
~
,: U U T,T,3 .., LIII i.111 JU 7T UU
,* U
.iT ILI, U, ,T". , ;',T 1 :_ ", ', 1 ,1 J 4:1 11 ,, 1,1 .1, , 1 1.: :i11,",
- 1. i;',
LU.U U I lii, ,X11 UU ,
LUAU 11 UU I1UU t 0.4
.. 1
..t..i, ."iTITin nI ... ..
- i. Li i-Tl,-i 1, Noz T*:, ,Trtin1-UI le n leJ n, U VJl in, JI iJ L ntis-f 1. ,,Im.nnL'JU, ,,nn i-IT iQ iNorzzdo 14 M1.
2 l iie Angle:
li
.I-QJQL ii li i nn
.III1 I 1 T , .. iii il.
T':, ,T'",n r:,III n,r ":,
LiJi UUto ýil ,
'I ' in,in*,,
jL'l 0.3 1 Ui~i 14 * ~~* f.*~ ...~Ir
- ~
IJl1
,.11, III ULU i-1 Olini-1r-1I 4i-H i~l JU l,'~,'T
,_.,I,,1, 1- r L F ,:~~!X*
I.III1I_,_
r1-471 14 LI
.: U IIIIIj 1JIl'J , 14 "4 1-1
, IIII t __ 14III , III L LI1II _2 fill*-*
IIiI
,*,,i,:::1,,,r,:*-,,I'*,,'nrr,:r
_1 , loll.,_
III III , 111I 1__
L1iU 'LIiUU
_ ,_11 I.' 1nI1 14 JI 1 IINozzLL 1 llos An',,n*
Tel',l*::
71.
ie n*;,,,,
. 14I 1'ii r'i,,,
1 17-1 li LI - ,1l IIIIlII41 il 4 fllII 1n4 fillHII U fill LIiiII 11l7n 1414 II
'JU I IIII7-II ...
lJI,41- l 1 II UL'L fi ll4 I I M11 III l t- ill - - - 111. 11 fuU lilt f ll I fi . fll 11 II 11 M1 lIIt it 0.2 0.1 l4. ilL 1- .4W 4.14L 14 4 *.1421.
JUL 14.U JUL U.II JUl i I.1 JUL 1.14. UU .1111 JUL U Li. j,21. UU JUL
.1111 111.
IIII LII JUL I~lls UU 1: 14 lilt IJI L UtL 1lU JUL 1UL
,Ti loll Vi! '1.1 U1 JUL lIII U U liii mrl ULi uIII Seabrook..
,TT lil fill IIIIT ",n, .. ..
- 1721 "mi ' 11 TiTI*
fill n r InT ITiT -lnlr fll lITIT IIII lITI"
- nn Iiii mln iriiTTiltnn ri-I 4 nr nil I nr i till TiT nn rim 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 Time (Effective Full Power Years)
Figure 6-6 Inside, Longitudinal Surface Flaws, .5" Above the Attachment Weld, Nozzle Uphill Side - Crack Growth Predictions for Seabrook Flaw Tolerance Charts April 2006 WCAP-16550-NP Rev. 0
6-15 1.0 _ L__
_ III 4+/-
1 LL. _ _ _-
_ _ T-.
14 .4
!-t-ri-L l I.
J J.LL rL *, rI
,,--r--
I1-14. LLILI.J L I.
14 LLLI_
-1 JILL I - ,i 1 6444 IJ L- I---
LLI
- 1 J L yr 4 I - 6 I!i J1_LL J.J.I.I. Li
- -i- I 4LLL, I
.l L- --
41.
LiJ L gill III 1 D l ii . - llt 1r 1 1 T -111 111 i Ilit I T r r I gl 2_ r ;11III 0.9 ......... ILI ....ILL .... 44 ....
4LiI 4LL. Nozzle Angle: r- - .... ... n "i
,_L4 nII 4iLL' J.L IJIi lIL 444 LL_' J.L '44 n LL_'. 48I1.deg Ir- J/.---
' i-s-III -- 11 II I L-' IJJI rl~~l rr~l-rl~i- rtnI rrr rrr L:-rr JI-1 -:-:Jr -t' rrr i- rr Itt r n , r 1 I rI--:r I~ m
. LL ? LL 4 LLLII L 4 L4J LLI LL.4de LL L 44 ILL I ..1 4 0.8 r rrI re-II I-e
- rrr l1 I i-r - T I-iT re I -Iee -l I T Tr e- i rI r nI- -1 r e I -I I -I-I re II I I 1 J*.
l
........ .... .... T_. . .T". . . 1. . . . . .... ......
LLL J I -i--
11-I4 L r- JILL 4 J'-1 LL -- J- o LLL I L 1 4jj LLII L L I I I A 1LLLL TPI "
I II JI'IT I
I iI i I I I I -1 - -:_ I I 1 1 1111 1I 11
,-rrTr--C I - fi IIILU--I II Ir II1 ozr fl *n iiri- I ,, I- - I r-i,- irr1'
, i-i reiW11
--- --- of-- - i 1 ~ de l r - r e iT e 0.7 n i m - I -1f-1i I i 4 or -I-iIl or-i - I-I-I-4-I-I-I 644- 1-1r-i r4-Li--4 r 444- -144-I- 4IiI I in-I I-Tr 4rinT r---Ir-III i4ii-i- -i -I -1I-I- 4--IIi I-.-
I T r 11.-... . ... j, .... i 11 4 . de,-,-g" -,,, r 1 r' I, I- ,
4,, el-I-I rrel-i-ni -Tr I-in ~ ~ ~~
LLLIrrrrI-I--I-LLIL T ~ iL
- ~ LL r ~ L-Itii T ~ ~l .LLILiL-I ~
r' ~
L4rr-Ir ~
i 1 f IL I/L TC Ir. lI I4I I - 1? rC LLL t lT LI I r i Li. -r
, Li lilT
.y 0.6 141 6- 1 4111 1-:-:1 11 111 111 111 411 111 11 1 1 1
.441 I44 111 1 1 4. . 641-I 111 i-1 1 h1 1 1 1 1 1 I I . /i11 I I
- I / 11 11 II 4 III IIII 1111 I I rit:: "1"11 r -ii Trr -I-IT I
'---1=11" Trrl Nozzl An le or or:-I- 2-l or~iI-= r r LIi4J. LLLI L-4 1 44 LLLI J iLL 1.14J4I4 1.1.1 .1 11 r -. II LLL. I 4.1-JL 4. 41 -L I L-I - .4 1 1 -'441 I 1.11III 0.5 l l fi li l - ft 1111 I I I . II I-I I -I-ll fI " I -
1 111, U :f11 f4-I--I-I ill II-I -i--III-I--1-11 1 1 . 44-I-- - -'1 @ -I I i-, I- - - I- iI-I-I 4-L .. II .... .... I IP - *1 -11, I -
nI11 rre!.LL 4 Jr lr I ,1 114 J i1li L L'I JJ LL ,l14J rel~T I
~i nAr
- ~ I 11 I el ... 4. T-LL m -41 C i11 1 .L m I J ir L ozzie IAngle: - [- I JJJ dege11ICT fi- TT
-II -rrI -n-n I IIi1 1r lI 4+ rr n 44 1 414al 41 Cr
- T iiII CL 4444 1-14 &r -ii 4m . r. ,i- r- r T r1r 4 6 -4 41 4, 1 i-- T r-6.2 deg1'" iI I r r -11 tlIl-M -1 1 1-121 111 1 11 4 4 444 4 4 1 1 1 1 11 1 I If o-1 1 I ll 1-f-11 11 11
.I-hI fill fill J1loll 11 L LLI L1 JI - L rL IiJJ -11 1 I
J 41 . I 4
1 LLI 1
L I 1
.LL4 1 4 J 111 L L I
- 0.4 r I I T r '-'
I I 1--r r -
I I I Ir o
I I' rT--* 11 l
" r r-1 1 rrr-i 4 1--44 .---1 ý ý- 1-1-i -44 + f- -11 ,i-i- -- 4 ý -:--- f:4 4 :i 44-1 --- 14 +#1--1-14 4 0, 1-1- 4 + ý 1- A 4 U- II L-JJI LL-:-II L-.IJ JI L L:.J.. I LL -:-JJI
- JI r-JJ L I.* LLI_ J/ A ::
,l:-J t: A L - l. j fillT f Il 1-- f I TI ""-"144 l - -I - r fill -I rill - T T11 I -I -II - I I-i 11- T F Li 1111 "1--14 0.3 16LL I111 I 1÷-
I11I 1I 1111 i-i-i-I-I1ll I I r - I mill 1111 -
i-144 - ~LI. 1- I ,. I A. I -JILL
- Li i 4 L LLL 44.I4- I i-14.-
,111J I - IiiL l~i44 - L LI.. @ 1-1"1
£LU. 14 JLL 1r . SiLU. JILL 441TL 11
'l-l* -4 r rI-r-Iillr TIi - L LLL--uTr rerro
~ 1111 CIil - r cii I II I 1111 1II1 1111 g1Ill 1111 6TF4 IJ "r i-i-'
I
-1I L. I I T rr IIil IT 0.2 L I- I-I- -4 ' Nozzle Angle:
-I- -X 44-I-I- L LLL. II Xlii - JILL SJILL .L LIJ.
0111 I LLI- 4jI - I-I.I-I-L L LI.-
I61I I I I i-ri1c III1 S....44 4-Li-I j I
-1Tr IL
+41 0deg -" I-i-I-I-
-1JLL Ill II r II-I- .ILLL T 11 1611 ",111 I I I -II -"
441" li11 - i- r ,-
IIII -111TLr - -I-iT r 1-I111' r rrl-l 1I tr C" - T r -Ii T fr-ilren 17CC I ,. 4Trore -fl' -17 - renl- i-1re 0.1 L.III414 i --. - 44J 1 .LLL; JILL il L JLLL. 4 L JILL J4J4 LL4J JILL44
, ,,I ill6 1111 ,'1 ,1 ", ;TT11 , ',1 pilll ,- oll- t f I illI Seabrook I1I-1 11 1 '-: -11 T" 11-
"". ." 1111
. . .l. 11
... . 11 . . T..1 -I ... 1 1 1
. 111 1r- 1 11 1 1- 11 I- I-
. .. 161 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Time (Effective Full Power Years)
Figure 6-7 Inside, Longitudinal Surface Flaws, .5" Above the Attachment Weld, Nozzle Downhill Side - Crack Growth Predictions for Seabrook Flaw Tolerance Charts April 2006 WCAP-16550-NP Rev. 0
6-16 1.0 LL........................L
_ _ _t__I _ _ _I J . . . . . _ _ _ _ _ _ _ _I_ - IJ .
. .I-- . L . . J - . 9- . . . J _ I _ _L I. . . J _ L _II I I I I I I I I I -I I I- ~ I
* ~ I I - I -- I --- I
-- I I I t I I I I I I I
-I- - Ij I L I I I I I J *L L 0.9 I I II I LI I I I - -I - I I I ii I I I I I I I I I I I I I I I I I L I I I L - I
-i- --T- - - -- - r - - - -~~~"
T r - - - - - -- - -i-Tr-- -
0.8 ----- --- -- . . .---------- ---- ... .:--- - *-- ----
4.---- 4I-- - --- - - ~- t~~
I 7 - - - -- -r- - -- ----
- I L -- - - - - J. L, I T 0.7 .. .. I I Il _ ..
l* - - - - -- ... - - __ __ .... .. .. i.._._*....I I L - - - - Head
- _ _ ._ _
- _* _
- I I L IL - - - - .. _ent... -. I . I *. .
.2 0.6
-- -------------------- ---- -- -- G---- - -- -- -- ----- ---- -- ---- 4---- -- -- *-- -*--
__ J . . J._. I. L_ -. ..- . L_ L - J-- - 1 LL - -.. - ...-- .. ..
"-'l'-'l*r . -* - ...... . .... * ' .... n. i'* - -.- -- - --- - r-r C) 0.5 I . I - - - - - I I T I
.. .. - - - ' . . ...... 7-- -. -L.... . . . * ' L Head Vent " . ... - r . . .--. .-- . --I . I- -. . ... .
0.4
'-I- - 4-- 4-- -, '- - - -- --- ' T- -- '- - -T -- - --- .. . .. . - T - --- ... --¢4
'--'---- ---- --- --- I----*---- ----- . .I-- -- -- T -- = ' ' I ' '- - ' -- -* -- - =- -- ? -- -- I. . - * - - I -
0.3 i - - L - - - - - I - - - i - - L * ! X L I - IL IT - -r J - - .1 - L I - - -I, - I - I I I. I I i I 1
.-----.-- . .'- J--- - --- -----. J ------.---.- --------- L . . . . .-- . . . .
0.2 J. 1I L - - - - - L I I I j-I IL -L IL J IL J -L I 0.1 -,- - "i" - 3 - r" . . - -.-.-
- -ir - - - -- - - - -- - - - -- e br o
. .... . . ... . .... . . . . . . ... . . . . .. . . . . .. . .. i - r -..
Sebro 0.0 ---- --- -- ------- --
-- -- - -- -- - - -- r - - --- - -- -- -- --- ---
0 I 2 3 4 5 6 7 Time (Effective Full Power Years)
Figure 6-8 Inside, Longitudinal Surface Flaws, At the Attachment Weld, Head Vent- Crack Growth Predictions for Seabrook Flav Tolerance Charts April 2006 WCAP-16550-NP Rev. 0
6-17 1.0 a-- J I L J L
- J ,J-L- -: -J -I . , J -lJ-,
I , L -* -. - L --- L -- J A L J z L -1o - -, , - _
" 1 rI" - - - " r- i I" Ir - - -rm r r r ' r- r- - - - r -- l - ,- - - N l A e 0.9 J. I
-I , I
-I I I26 2 e i I i I 4 I i i i i I T - I , r ,TN T I io r Nozzle An:e: zze g- :7t:
0.8 ! I L J - L -1 -1 L -: 1 A S. _.. .-.-
J. I iLJ -1
.e .
i i i i 0
4 J-4 L j L -L ~ . 4.~ 4-1j4 IL J&
r, T T -- -- -i -1 T - -1,i 1-,' T -7 T "
0.7 IT-r- - -- r-r -'-i- r---I -r i -- r - -r-i-- r-i-'l-a -- i- N-T- o-zzle-n-I e: 4--r--I---I--
i i r - - -I T- r n - r -r aT r - - I- T - Ir - - Tii -i r -I T r - T I l
. 0.6 "1' TI' I T" -i - -i - - -i -j -i -I - TT -I T -i - -I - - T -i- -I - T I I I-- -- -"1-I -- - r'-r- - -1,.. r' l- -1 -iT--n--- -r- - -I -t r -r - 1"r I-"1"'I'" ' -i- -- T -- rf - -- n -- r -- r- -j- r*-t - - i- r -r --
LI J I - I .
I 0.5 "--i-~~~ -I--I- "4- I y-"-"?" T- " -T r" - -1 r -r" i r-i- -- -i--- T -r -- i - T -- T -r -i
._l-- . -- J.. _-L . .I- . . I. . -I- I.. - - -
L-I. _ LJ -- .J* . _J4.-4 CL -, - , _L .L I . I 7-r; .-f
-t .L.1 I-L_ -L _ l L j -I I I j _ " I t I - - tI ] 1 11 N ozzle Angle:
3 0.4 . . . . . .4 I I II I I
-I
-. -JNg. .1- -
-I- I- 1 4-
-1
. .. . 44. de U-
-'-** "~ --1 1'. . . N ozzle Angle: _ __ _ ... . . -
-'"J-' J-*... *. . - 2.2deg*
.... _ __________*... I l _ l ,._ . .. _________... -L I-_, , j _ -.__J ___.....
1 I I __ L _ -I __ J __ _______.__*...
I-I _ *_,_,__
0.3 J ------ T',-
-,- I- T- r - i- r-r -- " -r-l-rn "; T-'-- --- *-------*-
i r- ----T--, ,- "7/-r r .l* 1 T "-r -r-rI 45.4deg - -
0.2 _,. _j_ _j,_ _ ... _ _L..L, _ L -_ -_-_,_-_. . ;J-_ .............
-*-!' -;-' I- -T I. -
-i-q- T -r-
-,-1 r r - q-
- - --
- r !-- r- - - -T1
-,--'--":- T -. _,.l _T-. . .
71-_--,_. -_._
i-T-
- -- ; ozzle Angle:
7 7 7-T- -'
_T, T
0.1 +.+
0.0 0 1 2 3 4 5 6 7 8 9 10 11 Time (Effective Full Power Years)
Figure 6-9 Outside, Longitudinal Surface Flaws, Below the Attachment Weld, Nozzle Uphill Side - Crack Growth Predictions for Seabrook Flaw Tolerance Charts April 2006 WCAP-16550-NP Rev. 0
6-18 1.0 L. .A4J..L. .. J. LJ.L. L ... L_ .- LJ .L
.J .L . L . .
I -L ... L., j ..
-..L.a_4
. _.L.L
-1 t -1
.L -,-
L J, " L-7 - -t
- -a- a- T-'---------- r------
-!--r I- -- - - --- ra I" I'--- - - ---- T 0.9
-,a rrH - -r , -- _I I r I-i-n T -,- T-r aI L..-- - --.J... r -, -- 1 -,r*
a-I 4...L..J.L L..t ... -r'L...
I I a a,' .a I- "
I a
.a J.1L.J. . L.LJ.. .LI4I. . .I4L ....a a L..J..L. a a a
_,J _.L-', --_-.-- L,-, --, I.-. -, _. I,L_ I . .. J-L __,,, -L.. ' . N . .,l _,, ,_e, _ _,_- - -a -J-L --- -: a, L/. - . ..-. a - - - -
0.8 La----'------ -- S---------
4 . d i -- ----- --- r----
-a-----~ ~-a-
-- -- -- ------- - -- ----- a--a-
-.- ----- -a a-a-0.7 _I__ L..L .L+/-...
_Ji_ L +/-..+/-. L I +/-...J....j-..-
_LL- I _I I . _I.. J- J.~._.. _ 4a4dag _ ,_______ . . . _L . I. .J. J.. J~ L _J i. l_
" - r-T r' -1" 1"'
- - - -r' 4- T-I-T
" -i' l r' r "i-: " - -rI "or- "r T TI-I -- '- ' " - - "
. . . . . . . . . . . . . . . . Nozzle Angle:A- 4 a- -- - - - - "--- - - .-
u 0.6 a a L- ai L a .1a -- a :- a -- L -a -a Ia Ji L L IJ. -I-a -- --. - I 0.5 ,a ,L, T JL, aa, ,-,- i ,L _ .-. dIr .
-T
- "1-r' 4-,.3T '- - 'T- 1 e a.a.
' -,- .a- -r .-. ,J..4+/-g.__-
- rr - - ..
r-r-- r - . I .a. -r.a I 1 T -i i - r - i T T I T -i I I I I r I- I Ii I
- = 0.4 U.
-n -r-r a~~~~~
.- : N-o-z: r-r aAngaaale:aaAnl: -- -I-I I I I I II I Il*
-- ----- =-i - -------- - -i- --
aozl
--- -------------------------------------------------------- ,--------,---------i
-l-e - - -k- ------------
aIt_.J_. L.L .._J_.... al_ : L- _,:.*_
_.L~al_4.l_ .__ _L4z. d...J _J _ . _n7deg
_L __JLL J _L . 4 -a-a-t-
.L._J_,Nozle_
- . _eg. ngI -a-e:
f___J rr ,_ NozzleAngie:
__J J_ _ _L -,._-a L I
,i.J _- a-a----r1
-, -t-I r t J_ .
-r--'-r- ;I .I- J - J, i
.1
- - . . 7' I
- - - L 7I I r -
-aL-r-- - -.
I -L-- a---1 -- ,--,-a-r--r J*---
.. - J I
.- - - -I - .I-- L. . - J -- L.
-- ,-r I 0.3 oz-I--LeA NzlAi 2ge Ji
~a- ~ ..n e:
L
. . A- , 4 -- I-
- ~ ~ ~ ~
}h-r ~ ~ a- aa ~ - a---a----.:--a.;. '-------------------- -- aa
,.... ....aJ~L-...-";. ...L.a . ..... .. .a...
T - a4 r7Lde L r--ra L--.-
- -T 4-- 4- -- 142- --
,.-. --, .. -, .. r ....
. .. , --. -, r J. - -- J.- - T.- - .j~L i......4 No zl deAnr---1
..- . . . 7.. . . .7 .7 ......... @a----- I L
. . 7.
L I I *"*-I- - -
1.7.. .- _< . .. ........" : : r. .. .e:
"1- -I
'-- n: -',T
- .-7.1
.T-.L a-a-- T-r-a----a--
- r---a- T' 'aI , ,-
0.2 0.1 ..
- .1--,--,, -*'4
___ 4- ___
. -_r---
t -:-'-'-:-
T+:I 1 r :
t .u ..2.,- - - - ,
r-,-,-7 I:,:
-- t -.
I--- ..-- k---- --.. k b
0.0 0 1 2 3 4 5 6 7 8 9 10 11 Time (Effective Full Power Years)
Figure 6-10 Outside, Longitudinal Surface Flaws, Below the Attachment Weld, Nozzle Downhill Side - Crack Growth Predictions for Seabrook Flaw Tolerance Charts April 2006 WCAP-16550-NP Rev. 0
6-19 1.0 LL L 1 4.4 A L L.L. L I.A J 'AI..L L L 1 .14 4 '. I L L L I
.L j - -:-:-LL L L. J. 1 J 'A.I-I-t-I-I I -I J J - - -1 I I J J T
7IT I -1 I JII- - - -
rrr T ,T*I -i-rii-i'- rrr 71,1 rrrr TI I - -1,J i-i- r r r -IT 1 I--i-I- I- r r T r-rrr 77,-1 0.9 LLL4 A44J .l t - L. j 4 4*4 - 1- 1- 1,LL 44
. 114'
i L r . T-r_ . - .. r - irT - .... -----,-
-r I i--i-'- -,-,- i-ri,-i', rI 0.8 r r 4 T1 gi.l J-g ._
-,-,-,-,--rrr-r I I n
-i-
..... . r r n n!
i i rrr . ,-r-r-IJJ rJ r r I .. ..-,-,,- .....
-r -i-i-I-- I.-! 1 rrT 77.1-1
-I ..-i-i-i-i
.... - rr riii
_.4 !,
rrrT
,LLL+/- 1 ii44-1 .. : L r rLLLLL T-i i i r r y- .4-LL L L-,- -, - ' ,-r -44r-, LLI -?- r 1,- ,-,-,--,----r-rr 44--.r...L..LLLL ----
0.7 1- i I44t+ l
- 1 -1 L - t I. +/-1
.... A*..
~~ .... ..........*:,.... .,-,- . ....
1
- 1. 4. -
4 4 .4 ...... . L N o.e.n.e. ! .i l" 1-11L-.. +/-#
Ille gLg gi gL .iI I LN I il g
..... I..... .... 45 0.6 1 ' J ' J-II. , deg .... J - - -
.1.4. -- J ..
L . ... 4 LLLL--
I I I I st nozzle I I I I I-r-r I I I I I II I II angl e-s1- I-(ener)an I--- - - - - - -
26 - -IAII T2I Nl ozI IT
. I I I I l- i
.L L l ,1~ l _1 Ill~~~L.
~
AjJ l
LJ4J 4LJJ I - - . . .
l Ill Ill-~t I.l I I, 4J- -,-i -- i-i-i--r
-A-1.-I-I
-AL ri-- r I -
.C II I11i-if l1in l -:-;-r44.3l degl I ,
-r rii-r- T+I -I i -- 1 i--i-i- 1
-r---rrr . 1 rI irirITiI i gl --l g--r l 0.5 rT i - -- nnn-.i-- r.r ,-i1 1ri-i-,T n.4-i-i-i-rr-l r r r-i
- 1- -i, 1
x fi l l *I i * . I1 I0 l l l I I I I I I I I I U-
.2 0.4 "a ,1l L 1L1 1 1J~ L_ . 1. 1 J J I. _I L L1. J J __ L. .lll~
Il TI11-11 Il l l I ' ,-1 1 1 1 llll 1I I r'l 11l ll 1,I'-f4' are les tha 9.0
- r1 a rt b u
- 1-llr te s
'T-1 ll 'lrrl 4 ,
s fl is c In adi , a.f1actor -o2.0 h JJJ I* .I.T.-,1__1 rIrb r aliedto rise the -CG per -Rr-r Irecommendation.l rT4T{4 4 44 A ', -ff-, L1 4-I-Iii--1-l-
- 441[1rTT-&
ll - l I ISII -to 14 .44[1 - f II 4 0.3 ,L L I I JJ Jll lll
- L- L t*ii IJJJ 11 AJ. -- L L LI_ I 1 1--LJI._ L 4 JJJA A 1-I_- _ -I_1---rr L LL L IAJJ 4 I Ill Lll jl -I L1 l l -L l l LL I l l ll I l The stress JA.. . intensi. . . .
fa .. or LL 4 e cic-reta 1 1- i- +-4 4- -l Ao fLa of noz anAe 1- "-1 1 . .
Lufc 0° (C ntr and 2.2°& A J -......... . . . . . . ----
L rLes I. tha M~~qLL m) be us J Iil h stes 1co i- .acoJ....pesie -L LIn addison L- JJj1 a I$-I of 2.0 iI~ -- . LL 0.2
, ,Lt.
, , , ,. . . . . . . . . . . .... .. it l. t, o l,. .If l.fl 0.1 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Time (Effective Full Power Years)
Figure 6-11 Outside, Circumferential Surface Flaws, Along the Top of the Attachment Weld - Crack Growth Predictions for Seabrook (MRP Factor of 2.0 Included)
Flaw Tolerance Charts April 2006 WCAP-16550-NP Rev. 0
6-20 2.0
. ..it sl ..t sits. sits .sits I I I ! O I I I r1-i I I i--4-- I l
.isis.
l l r) -- r T-,r . .sts -i l . .. . . . . s l . .si.ts..
trr-i I I -- r - Il I I1-tI I.rTII I-rri .. . . . .i.. .
-f r -s-l Iri---tII -- n- ir .1 S-t - r'-i- r -rT-r-i- r i-- -- -- - -r r-rT ,-r -i- ri-i-4 4 r--rl-r -r-Tr -
'i r I- i-i- r r- r,1-r t
~'--- ' ------ 55 --t--t 4 ---------- --- -- t----- -t--i- t....i. t-s- ----~----s--.ss I I I I I I I I Il l I I l I I I I I I I I I l I II I I . I I I I . II I I d1.5-I l I II . . . I . . . . . . . . . . . . . . I . . . . . . . . I . . . I I I l I I I I l I I ! I I l l I
-a I L L/
.l . l .i . . .
L J _L I I JI I
I, I
L
. . . i I
- I II I l i. i.
II I
I J1 L
L I
I-I JI L
L IL I
.i . i .
I L I I I
I I L
I
. . . . ! . . . i . . . . i. . i . .
L I L I L 11 J -L I I I I I L L JI. J. ! !1 .1 L Ij~
0 E
o 1.0 J L.L... .. L. L+/-..L.. i..L~. . L.L. . 5L . ... +/- L4 5~.. .4i.. .. L.. i..+/- ... s. L A,L..s. ', , , t...J....tJ ,,I 0
m I I! II I I I l !I II II II III l I I I I I I ! t I I l I Il I I I I I I I E
0 isis... . .sits.is . . . . J.s.sits.j.isi . J. . . . .L -1 .. .L sits.isis
. . . . . . . isis ... sits..I. .I-I . . .I i. i. . is.iss I .II.. . I . isis...
I
. . . si. t".I a.
.... .- ..... ..-1 a-,a , . a , , T ICRDM . T, , -1Nozzle I T , * - Weld .r T , rRegion .-
T r'- .
.I -
I:: . -.i .:... a T' -I-- - r T- a -r - .I a -.' ....r.a-1 -a - T. -I : T -1
- -I r T 0.5 .... ...-..... ..-.- *-L----* ' /. ItIl
- .1 1 ' .,'1 1 ..1 1 lis. .1 isis . ... sits sli
[
! Ir. -1 I T I . . I I . . I I I I I I I I. 1 1 1 1 1 1 1 1 U
2
--- a" - t1 s " 'i i C.
CL r" Cliri lT-i-r" T
'* i: " - :: i : -T-i--T - 7l Ils
',rr "srl st r
sIl ts-I ut" ' a T' slIItII 0.0 I I I I I I I I I I I I
,*- -i- r - r'i4 sits ills sill I I I I I I I I I- T r- ~ r r
- s ri -I - r i -i- --- r -r 7 nrr --- r "1s i n-r T~
- i ir I -T isis liii I, Ir r 4i I -r I I I
-i-r TI I I I I r I I I I 0
I.- -t.IsIsI r - -1 r -r T-r - -s-ri-i-
- r r, - i4ri - -r -r -rr, -i-r i-i-I I I I Isis Ilil slit
-rI-I- " T-- -r _r -r 4i-r 4- -r--rT- 2.55 4, r 4- -"44r-ri-ri- 7-
-r ,r-
- i s ri sill
-I-I"141 I I I 1 -'Ii-Isis ri-t-i
! Iii IsillII I I rrr *i s ri - - r- -r- T -r- ,T s 'i -ills"I- -r ir 7 s Its , l lli [-1-i is ills I I I I sIllI I I Ii I I I I o -0.5
- i-ir -
liii Isis liii sill isis Isis Isis *~5 5. *~5 - Isis ills is's sill sill
-s-s. s-s- - 9* ~5~5~ 5- - -r t -i-s. -i-i- -s-s- - f-i-i-f - 5- 5 -~1~t~f - f4i- 4 -
ills ills ills Its' ills list sits liii sill is's i5 4 4 -t - - -
ills is's till 'sit l's' ills Isis sill sill sits isis
.4 15- -s 5- .4 5- 4-i-i- .51- 4 4 1- 4- 4 - - - -. 4 '-.4- - 5.4-1 itsI list 5555 slit sits isis Isis list ills iii I
- 5- .4 5-- .4..l.-4 1-4 5- 5-4 - -1.4-I- 4 liii slit is's slit liii Ii's ills sits
-1.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Time (Effective Full Power Years)
Figure 6-12 Through-Wall Longitudinal Flaws Located in the Center CRDM (0.0 Degrees) Penetration - Crack Growth Predictions for Seabrook Flaw Tolerance Charts April 2006 WCAP-16550-NP Rev. 0
6-21 li li t li i li i li i li t li i li i iis u gI "r g .1I ~4 ~ ~ ~ ~ ~ ~r-
~g l Il -I -t- Ig rI -i-il gi 4T--
Ig l 4 lii--I I 4 1, I - -4! l I I ! - 'r- - -T g I II r T- lI T l I r Ii I l
r-I i I r---T-wI l I --
t il rTi -/i Ii Io r
- r- "4 -I r I*-1 I--T---1 - i I? I I 4" I -"- -4 --. r t--r* -I "- ? - t--- 4 -'r 41 1 r' - i rT1- -r -I-1- -1 1 - - t - f 4 i i l I
gi lI I l g Is I It I i I I II I I II II I I I I Ili l t I Ii Ii gi s i g illII I g gI I s I g ll I gI I uI I I II I I I II I I l gI I l i s I tII I Is l s Is mI II I I i
.1 -.. - . . .. . .. . . . .. .. .. .
0 I-- i I- I liii 1 1 -11 1 11 11 1i1* iii ti I I I -I I t I I II I I II II A-I1111 LJ I I I I I I 111 Jil i I
-ll 1 I I I 1-1.1 A-1 9i L Jil L I I:
-11 111 liii .11 ii im .i J...LJ .i L I.I I .. I .I I .I I.. I IL .. IL I.I I. I I .I I .I I I I I I I .I I ... I .. I L I I I. II.I .I IL I fl L+/-.t. L . ' ... ...gi l Ill
...lI-' ...
-i - -11i-l -I- l lI- 1- -1. -g I :I Ii-L ... '. I .
I- - i- i i- t 2_i i l l i i I .' ...... .L ~.. i..... . . . . . ... Ii . .
I _
J 11 L 1
_I_
i IL l I_ L 1_I_
i 1
III
_l -L J i i J t J _L l II
-I lil i 1 _ .-
l I
-i +
t_ L LgIl -I I I L _1-I-~ t J1 I-- -. 1 L. iI - ~l J -1 i
- f-1 1 J L_ it_1 _ L .
0 . f .. l I I I I lf I I i I 7 ll. 7 -II - -1 i - - CRDMNozzleWeldR.... gion I I 1I IL
... I I I I I I I I I I I-I I I I Lr_l r_ -I -.- 1r_ -I- -J-I - -_I _-I - -I_-I -Lr -I r - _ .
_ Lr J -_t I- _ r I-- I- T J _- - - -- -----
r 1_IL r J*_L L l
- i-L j .I I Lur L Jv L.
r =-1-J7 iTL i_- I -I --I -I - -r I_-- 1TJr
- I I I I I I I I.. I I I I I I I I I I I I I I I I I. ! ! I I I I I I
.- I I r-I r-i I T r 1- 1-r -- i- - 1 t-1 -1F -I I ,-r1-- ,-.r -r - , - I T- -I -1 r
-4 Ir -
r - - - r r I T ') - r ' r T -I TI r -, r 4! I r -1 Ir r I T I CL
-0 5 1-,-;' uirt T"- ;-'i -r,- " -r-T 4-r-, '--,r- 11r12a--
I 4
111~r~s r
r 1 4 r, r 1 r 1I
' 7--n,', Jt ' iT~
-IrIr I
IITt r~~rsl r
I r -
r
-,I-
-r
,r. - T 2,
,r I
,' g~rg 2, -.-
,' 4 4
4, 4
1 I -I r4 - - r rI r -r II III 4- r n -I
-i Ir II I I I I - - 1 Ir r
-:-r 4 - - 'r 4 - III -r I 1 1, 1, 4 4 - I'r, r' n' -If
- 6. . . . . . 8* 9" 10 7 1"231 "
- 0. . . 1',-3
. . . . . . .. . 4 . . . . . .
0r 1r 27 3 4 5 1 6' 7 8: 9' 01 11 12 13-11 14-Time (Effective Full Power Years)
Figure 6-13 Through-Wall Longitudinal Flaws Located in the 26.2 Degrees CRDM Row of Penetrations, Downhill Side - Crack Growth Predictions for Seabrook Flaw Tolerance Charts April 2006 WCAP-16550-NP Rev. 0
6-22 2.0 -rr --. 44 -'2 rr - r I--- n n -- ITTr r rr- -I -I - n 1- 1 - r1 rr1 *-l
-- *rrT-r-r- -. -I" Ilii J ii l iii ll III Jili Ili lII II ilIII l lll, i lilt l i l
l gill I
i I
l ii lii i l i II' li l
Jll lii, il lt l
lilt ii l ti iii l ll iii Iiflllll Jiii Miii
' I l i lii I iil g i l oll II1 loll_ 11 1 1 11-l4lrll n 4 r 11' ', 4 lr 4'1 r111'r11 l-l -:ll4 -111 ol IllS -rr11. 015 1 li r i lrll i ll i li t lilt til l fi ll il li $I ll lfi ll ill lil t lo l i ii t fillJ I g ll lol l ISill lilt .I I III Jlii 1 1 J~
lit il Jlii lill Ilii Il l III Ilii lili lJili Ili I511 liii lIIII I I lili 10 ' lt IIII d 1.5 l- l t l -i' l l I I ' l 1 1 1 1 11 .
l illS it ll II II t i ll III II Illl I I ,ill gill lIIIIii i iiii ii liii liiii liii Ifi ii fill fiii V
I 1 piiitliiSIll 11 ISIS
$iit l III IIII IIII I III lli l IIII l ill Si ll li, 01 IIiI I -:l J J IA11 ll L 111 illl ;I Ill I I I 11 1 1III l IlL I':_ ,111 IIII 1til lilt 1111i1 llI 1, llli 0
E o 1.0 IIII LLI_.I___J..14 lilt 440.0 " f I1 LLLL I1 LI.I_.II -. JJJ.44-4+/-4 11 1ill li .4 ll -LLL I iaIII ll li lt 4444J ill
.LLL.LLI.LJ..I J i l II 44IJ I Jlill 4J. lilt LLLL. LI.._..i._IJ..4I l4.a ll 1l1 L.LLL..LLI..I_,l IIII LLL1_JJ . 4 *41 LLLL LLII JJ J I4I LLLLL-II_ . JJ44 ILLL.LLL I.I 4 J444JJ. LLLL L i L.LLLLI_.1 4
0 m IIII LL lilt lilt 4I..
IIII LL IL III Ii 444 ii 111 4+/-+/-LLLLL i{ii tli 1 ?0 444 I
+/--L II I1 ll L.LLi...........i..
IIII III, 444+/-
Illi ILL III IIII IllS 4111 loll LLLLL...
IIII E .... . iii . l ii.. lii lii . j.. .LC.DM No zzle Weld Region/ .. .... ... ... iiiI - ,-. .... .... .... ....
LLL.i.- iI,11. 441 +/- LLLLLL-I---I.AJl -- I L LL i.LLiL.. lt-tJ. J a-'+/- L L U-L lj-'JJJ 41+/-1 LLLL-Lii-.
ld ;e io
.......,... ...,..., .........,!!i ili!!fil~i:... ............
ill 'lJoli1e¶.' .iii CRDill" i t l fii-
.L..
-- ,0i J1. Sill 11... LL.........
I 1117 1 -- T
, .... .L ..
--- ,01 II"l,- ,'
J4Lj. 11 1 it liii 'i-l III IIII 11 111L
" l TT 111 L.L.L.L........
IIII
'III Illi
, 'i-,
0.5 U
fill"rF -I- li ,-,, lt..ill 33 T T "TrF I'll r ---IllS' -1lilt 3 -TTOl,li fl r;,i-i- lt-,l - -I -I I -I TTTgF F . ,
I--I- I I l]ilt I T 7li[l Zr r ,oI. -- '--3. . 7 ' ....r ---I- . "
i C,
till Jill 1551 100 lill J
Jl Ii liii~~~
l li I
lii l
lt l/ll lill loI/
li 01 loll 0110Jl I
0111 I I loll i
l-j loll l lIii I li lt l - iii i lt Ti lI 1 Iii ll:
iii 11I I Ill-ij1:::
11 11 110111 11111 I1 II l
i Ili ll lii J l I lii lii i
Ill 11 i' i 111 ll ll 1
i l
j -
11IJII loll $
I I 1l ,
i--
lot I Ilii l--
ll.0
-l-j Ii I l
lii III III ll II1-
.111 I - , l II ii1 III lilt i fil li lil-- liii I-- i .iii 1iiiii iTTTirrr i-i---- TTir-r sol l Tii l ri li* lii 1' 1lT ii *l--i 0
i 0.5 lii li-" 111 "lii ii * '-- liiil ii ...... "-'-"'111 .... - ....i 11.... liii l"i-ii.... I"1 .... "-"'
.....l i i llS Sllt ll ll f1i1ll lilt sell1 loll fi ll lilt lfil fill lilt fl l 1lii li lt 4-. II II Ji l rrrr Cl glII ' ' 'T -rII I oolI III T I rrrI Iafl 11II iII I I I I I i I I :- 1:44 4- 1 I4II 'r rIII [ IIII - -111r Ir ii II- -III111 1II II 1 11 lIII 4III 4ii 1l 41 o -0.5 1 1 11$ l 1 fIII I1 ll1 1 IIII Sill ill Il II I II [1111 IIII lll fl lilt lit ill t il liltl III Il l$ III II III0 110 l IIII SI lJ Jll II'I J ill l ll llS SJll SlO liii OS il 1i ll il tl
, l 0 l 0 I I5I 1110 ISIS IS 1 I5 5555I 115 .S. ll I1 i 111 illS Sill
.... .... 0 1 illS
.... .... .. 100 1...
... 1 0 1.. IllS. l i gill... i. ...... S.....
Sil i lSI I 1501 1III 1151 lOSS 0II lilt iSIS i5ll SIlII lSJ IiSi 0550 11 ISIS 0101 0 I ,1151 0,I.
IJ~i loll 5ilt liltS Il 1155 I S~l li illS ill. Sfil lilt l l I5illill 5 i5 l li S lt111iiO lI 1015
-1.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Time (Effective Full Power Years)
Figure 6-14 Through-Wall Longitudinal Flaws Located in the 44.3 Degrees CRDM Row of Penetrations, Downhill Side - Crack Growth Predictions for Seabrook Flaw Tolerance Charts April 2006 WCAP-16550-NP Rev. 0
6-23 2.0-',rrr I ii li ii li i ii li rr -- iitl' rrr li 1 l ii lii rr l i!i I I11111111 I I ii I I i i IgitI I ou I use I I iI i g ll i ii I iiti i t ll I I i I I II I II 1 1 11 i rTiT --
l I-1---iorr-i" III l I IiI 11 I -i--r I I t- l rI r9 rr-r T ItI T 11 "1-1-1---r I I I I
' r i1- -i-i-Ir-I - I11I 1I I r r1v I
l--i-i I l Or-n-i-i--
I I I1
-- r-i-[
I Ii i rrr Ii l I
-r Iii r
r
-r-1
-- i-r-rr-
.I.i 1
't-Tin 11 44I I 1 lilt..
-r
_ _I 1 11 r r 1
1
-1i
- 1. -
CItt I lSt U I m 1
ll I1I i I lt I I IIII i i I
l II i
I i i
Ii i
1 III 1
9 1
I 1 i
1 I' i
I ...
Il l
i II i
IIII IS I i I i
Ii l
IIII l I l
Ii II S IlIi I 111ii lI I I I ......-
i S i 111 l
f I I i
I i'
.i ll*
I
....1
_ gil till li 119 S.i 111441--9 11 11 lii 11 lii li li 111 lii '1L. 1.
4.4 oE1.0 4
...L . L.... J.L .L.L]. . .. . . . .
- 1
-- i-ll J. -- l--L L.L..
. 2... .. L 1.L2
- I9I I4 I
IlI4-1.
.4..L L .L..L I
J....LL ..L -..
1.1. 1 o 4.1.
lol E1111 i
... til. l lilt4.LLL. i l1... 1I it14I
.i.. ll. ......
.t I 1 1 I.
..... 1 li LL. . 44...........
fill loli i ll i 1
. ...lt1 .l . i .....L ll.1
. . ...... L. 1 1
.. l i..L i L.... .. LLL .i.....i .. . ...... 3.. i.... Li lt I I I 1 1 I I I I I I I II I I I 1 ti lt lIoI9Ili gi l I I i I I I IiI II 111I I I J....l . ..
II
.... ...Ii. .. ... ... Ji..i...i ... L - I II I I I LI I1 I 11 11 IJ--i...
II I 2
l i i1 1 o fi l i 1 1i 1 9 1 l i i 1L 1 L.. i 11l t l i l t1 I i I1 l i .1 1l l:1
- lii,. j11 1 ...
1 ; . 1. , Liii : CRDM Nozzle Weld Region I J. I ,
- 1 ..... ll-,-L-,,i: .......
0 .5...
ii Il Ir ii li i!li , I,, -,, l , ,-i l *li-1,f , * , , ii 11 9 li. i 1.li . . . . . . . . .1. 1. 1 . . li . 1 .l1 . - '
T-i Tif LI, 1J, irT : : i ::uu -
l~i -,'- ii s,-rii r T i--- hi-,,- rTiu "-,-i- irrr liTi,-,- ,'r i i- . -ri Ti -,-h- r TT1~-rrrr - -,ru i -,-,-,--rrr
-I~ ~r rT Ti'r -,-,,-,
- L ri77i
'T-TI I Ii-I 7 T1 r II i rrI T11fl IiT -r
-- I iic-rr I ----- ------- r 1 --- I I -rFrr Ti~~rr i Ir~ -I rrrr I I ~
ii, -i-rrr ~t-1 i-i--r il r IT'i-..
tlorr . Irrloi T T I I Ti I I -I_-i lilr - ~ ti~rr ---- ll I-i-- ri-ii ki I -iI- -i I 1, -- ri--oI I-IIl--l.I i -II
-.. -1rrr r.
r T 4- or or or or or T r T -ii- r I T I I TimI (ft Full r or or r I Pow - is- I I-r r I -I Ir.- "Ie r rYr n I I
' I* ~ ~ -r 1 ,--11 r- ,? l--I-TT -rr ,T----- -- I--:-rr 4 "TTII--f- -:-r or "-----ITI-r r. ' r*--p *--"I- -:-r r " I--I-r r T? I-I'4.4 ll .L 4 4 ~ L i 4.l.. .44 iL- 14..i.1J 44.~ .14 4 4..... .. 44. .ILL. 44.... ~ 4 .l~.
0 1 21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Pr d i ci o for Se br oo V - 11 II .1 I':I I -1 IL 1 -. I I1- 'I t 1 L L. IL . I I I IL 11 I'l _:", 1 11 I It L 1 1 - 1 1 I I I "II ,: 11 IIII 11 Figure 6-5ThoghWll il longtudinal filaw locate inl the 45.4 lDegree CRMlowl ofl Penetrtions Dowhll Side tiraklrot 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Time (Effective Full Power Years)
Figure 6-15 Through-Wall Longitudinal Flaws Located in the 45.4 Degrees CRDM Row of Penetrations, Downhill Side - Crack Growth Predictions for Seabrook Flaw Tolerance Charts April 2006 WCAP-16550-NP Rev. 0
6-24 2.0
- r r .rr . rr -rtr rr- 1-1-1rr --r --- -rrr- n rrl 1r~ 14- 4 -rrrrr -* -r-44 4 rtrrr1 71 7
-rrrr -rrrrf---rrrr i r-:-g-----uu---iuui----i-----iiiu-rf 7 1~ 77i 77 loll tillf $ IIII ltll gill ills 16 g.II t.gI fill gill gigt lilt till .i ii l l. gIll 1.5 - .- -- . IA - ~~~--- f l * - - II- -- -* I- - .----*-I -414* -I I - - - I - -I I I -- II - I 4-4 I It-.
.. LL..
.LL.
L L
L...
~ ....
.4.44 1 .-4 - ... 4444 ... 4444 ... - .......
.4444- . ..
4 4.444 l.... 4 4 4 ......
4.
0 E
o 1.0 gIll lilt II I I liI ;iI f i l l I 0 LLLL LLL LLLL L L LLL-LLLL t LLUL .. LI CRD4oz'ýel-elo i .. .. 444"' 4 44444 4.4 . J.. 444-4 I 4444 1 .III.... 4 I144 I4 44J - / 444
.. 144
.4 .4 .4 141 . 1 1.
m IIII IIIIII LII I- LLL - - . L - I I II ILJ II III ti I 1I .I £ +/- I£ 41Z1 +/-1 . .1 L . I .III I I iI i II I I 1 l E -LLLL .LLLL_-LLLL__II III_.I l 1 1 I I 1-11 I IIIII~
JJ
-J -JJ I I ItI J
l i J
t 1 1 J
1 1I J
I1I1I J
I I1 1 J J J 1 1 I1I J 4 1 I1 1
.£ 1
1 0
4-Il II I I II;II II IIII i II il il l l II II Il l Illt 444I 444444I 4444I4414141111 i 0.5 lilt - - - - - - - - - - - - - - - ....- . - .. ... - - - .... - --...... -.. ii 14 i '4 I"III
. .. . .. .. ] . . . ... ..].I.
~ ~ ~ ' ~ ~ ~' ~' ~ 'j'~' ...~' ~' ~ ,, --
~~ ~ ....- I I Ij Ij I
j,_,
I I I I
,j ItI
,j ,J, j jj j jj j
- I I I
M C,.
n **"". .. . .. . . ...
-1 i i I=-I-I I III lIl I III I I I Ii I l I IlIll i Io I IoIoII tII I l l l l~~ l l l l l l l l l
- Ill l
I l l l~ III tI I I I I l I I I~ I I I I IIi I
II Il II I I I I I
I I I I 4, 0.0 I I I I itt 91 ii 9911 lit tilt tilt liii l177 IIII till -I-i-i-i--i-i-i-i- loll iiii" i'm'"
tilll 711 liii 9199 till tilt 0 lii lit lii liii iii liii 4III It- "rrrr "rrrr "-i-Ii - iiii - iiil '"'- 1'. -I'- - till _
-f--"
litl iii itt lit itt itt I iii ii i'"' tilt '7777 I I I "rrrr -rrrr "- cr -c" it it itt gilt iiiT i-i-i- -i-i-i-i- -I-I-i-i- -I-i-i-i- III I i-inn -
'-l IIII "lmm. mmm~1 m~1*7~~ 7777-I I I Ilili 1II9 U) itt iii iii it iii iii -- I-I-I-- liii 99 it itt it it T III Irrrr -rrrr -rrrr 'inn- ii"' Illl III
-i-i-i-i- -i-i-i-i- -i-i-i-i- 1~1~)m* -I' 1111~ ITITIT I I I I I I It lit itt itt till 1191 itt ill IIII itt itt liii o -0.5 lilt iii iltt gill Illt Ililt gill it i itt liii gill liii liii liii gill
-rrrr rrrr -rrrr r r er' ~rrrr -i-i-i-i-- -i-I-in- ~innn- n-v -Inn' -t-t-t1~ fit, 7777 lit itt 1199 gill lit ii gilt ill I lilt 4I- 'lll 4 4 l111 I-I I lIit -rrr I I II rrrr -i-rn- -i- '-1-i,- -9"'-
till
-i-i"- "'-I- '-i-i-I.
1911 1111 7771
-rrrr iiiI
-FFFF tI l- l liii lilt -i-i-i-t- 1911 1199
-i-i-i-t-1111 gill
-9,,,- '-7,-i-1911 liii lilt I-i-i--9-9,,.
1911 fill till glll III1 gill 7711 liiii gill gill gilt ill I gill gill gill gill gill lilt
- i-i-i-g- -I-9-9 -9-9,,- 7111 llt lilt it ii liii gilt gill till 9911 liii l11 gill
-1.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Time (Effective Full Power Years)
Figure 6-16 Through-Wall Longitudinal Flaws Located in the 48.7 Degrees CRDM Row of Penetrations, Downhill Side - Crack Growth Predictions for Seabrook Flaw Tolerance Charts April 2006 WCAP-1I6550-NP Rev. 0
6-25 180
-~~~~~~~~~~ *~ - - -r- r T - --- - - -r--i 4--T 150 I r r -1 T - - - - 1- 4 - - - ~ I I a i ri- .
'I r r IIt T J. - Ir - - T - - - - -- - -
I I I I I I 120
- I 9 I I I I a
- I I I I I 9 9 I I 9 2 a I I I I I I I a a I I I I a I a CRDMR I ", a I I I 9 a 9 9 a a a a a 9 I I a i a I I I I I I I I I I I I 9 I I I I I I I I I I a I I I a i a 9o I 9 i i i i I 9 I I 9 9 9 I J- i L 9
I 9
9 I
I I
- - -*--7:--
- - - ] I I
I I
I I
I I L J-I L
I I J91.
I L
- i i i
-J J L ------- 1...... /" I _ _J _I _ I_ J .
I I I I 9 I I
-I-i
- 1_ - .I. . L . 1- I I i 9I
_ 60) 9 9 I I I I I I I I I L ------- I- _. _L J- L J L L I I 9 9
---L.......J. ------- L.L------L ... j L L L,. j .. L J ._JL-------L J L _ _ I 9 I I I 9 I 9 9II L.+/-~ L .. J_ I... L------L - i-J.. L ~
-LJ L ----- L.-.-L-.-.i..L 30 9 ~~~~~~ I I-9 I ~ 9 ~ ~. R9 9 Fatr 9
- 2. Included 0
0 10 20 30 40 50 60 70 Time (Effective Full Power Years)
Figure 6-17 Through-Wall Circumferential Flaws Near the Top of the Attachment Weld for CRDM Nozzles - Crack Growth Predictions for Seabrook (MRP Factor of 2.0 Included)
Flaw Tolerance Charts April 2006 WCAP-16550-NP Rev. 0
6-26 (a) Single Linear Flaw (b) Single Curvilinear Flaw S 1a**n dn 'n"
$<- 1 (d) :Nonoverlpping Flaws (c0 Aligned Linear Flaws
- . >92*
$S4 1/2 in.
S -41/2in.
SS 4 1/2 in.
(e) Overlapping Parallel Flaws If) Overlapping Flaws (S P l F 1/2win.
S112 in. -
(g) Nonaligned Parallel Flaws h) .Multiple Parallel Flaws R1>
Figure 6-18 ASME Section X! Flaw Proximity Rules for Surface Flaws (Figure IWA-3400-1)
Flaw Tolerance Charts April 2006 WCAP-16550-NP Rev. 0
6-27 I
Figure 6-19 Definition of "Circumferential" Flaw Tolerance Charts April 2006 WCAP-16550-NP Rev. 0
BOTTOM OF WELD Figure 6-20 Schematic of Head Penetration Geometry Flaw Tolerance Charts April 2006 WCAP-16550-NP Rev. 0
7-1 7
SUMMARY
AND EXAMPLE PROBLEMS An extensive evaluation has been carried out to characterize the loadings and stresses, which exist in the Seabrook reactor vessel head penetrations. Three-dimensional finite element models were constructed [3], and all pertinent loadings on the penetrations were analyzed. These loadings included internal pressure and thermal expansion effects typical of steady state operation. In addition, residual stresses due to the welding of the penetrations to the vessel head were considered.
Results of the analyses reported here are consistent with the axial orientation and location of flaws which have been found in service in a number of plants and the largest stress component is the hoop stress, and the maximum stresses were found to exist at the attachment weld. The most important loading conditions were found to be those which exist on the penetration for the majority of the time, which are the steady state loading and the residual stresses.
These stresses are important because the cracking observed to date in operating plants has been determined to result from PWSCC. These stresses were used in the fracture calculations to predict the future growth of flaws postulated to exist in the head penetrations. A crack growth rate was calculated specifically for the operating temperature of the reactor vessel head at Seabrook based on the EPRI recommendation, which is consistent with laboratory data as well as crack growth results for operating plants.
The crack growth predictions contained in Section 6 show that the future growth of cracks that might be found in the penetrations will be typically moderate, however, a number of EFPYs would be required for any significant extensions. The propagation of circumferential flaws is much slower than that of axial flaws since the stresses responsible for cracking in the circumferential direction (axial stresses) are relatively small compare to the hoop stresses responsible for cracking in the axial direction.
7.1 SAFETY ASSESSMENT It is appropriate to examine the safety consequences of an indication that might be found. The indication, even if it were to propagate through the penetration nozzle wall, would have only minor consequences, since the pressure boundary would not be broken, unless it were to propagate above the weld.
Further propagation of the indication would not change-its orientation, since the hoop stresses in the penetration nozzle are much larger than the axial stresses. Therefore, it is extremely unlikely that the head penetration would be severed.
If the indication were to propagate to a position above the weld, a leak could result, but the magnitude of such a leak would be very small, because the crack could not open significantly due to the tight fit between the penetration nozzle and the vessel head. Such a leak would have no immediate impact on the structural integrity of the system, but could lead to wastage in the ferritic steel of the vessel head, as the borated primary water concentrates due to evaporation.
Davis-Besse has demonstrated the consequence of ignoring such leaks.
Summary and Example Problems April 2006 WCAP-16550-NP Rev. 0
7-2 Any indication is unlikely to propagate very far up the penetration nozzle above the weld, because the hoop stresses decrease in this direction, and this will cause it to slow down, and to stop before it reaches the outside surface of the head.
The high likelihood that the indication will not propagate up the penetration nozzle beyond the vessel head ensures that no catastrophic failure of the head penetration will occur, since the indication will be enveloped in the vessel head itself, which precludes the opening of the crack and limits leakage.
It should be noted that the objective of the acceptance criteria shown in Table 6-1 is to prevent leakage. Therefore, even though a small leak may have no immediate impact on the structural integrity of the system, it is not acceptable to the NRC and nozzle repair is required.
7.2 EXAMPLE PROBLEMS The flaw tolerance charts in Figures 6-2 through 6-17 can be used with the acceptance criteria of Section 6.5 to determine the available service life in EFPYs for Seabrook. In this section, a few examples will be presented to illustrate the use of these figures. The example cases are listed in Table 7-I.
Example 1. Determine the service life of an axially oriented inside surface flaw whose upper extremity is located 1.25" below the weld on the uphill side of penetration no. 22. First, the penetration locality angle is obtained from Table 1-1 and, in this case, the locality angle is 26.2 degrees. The initial flaw depth, ainitia1, is 0.078" and the initial flaw length, 2Cinitia, iS 0.195".
Assuming that the initial aspect ratio of 2.5:1 (i.e., 0.195"/0.078") is maintained throughout the time that the inside surface flaw becomes a through-wall flaw, the final length of the flaw (2 cfn",)
will be the CRDM wall thickness (0.625") multiplied by the aspect ratio (2.5) = 1.563". The upper extremity of the flaw is now located 1.25" - (1.563" - 0.195") /2 = 0.566" below the weld and validates the use of a single crack growth curve, which is applicable to flaws located 0.5 inch or more below the attachment weld. The crack growth curve for the 26.2 degrees nozzle angle of Figure 6-2 is applicable and Figure 6-2 has been reproduced as Figure 7-1. The flaw is initially 12.5 percent of the wall thickness, and a straight line is drawn horizontally at a/t = 0.125 that intersects the crack growth curve. Using the acceptance criteria in Table 6-1, the service life can then be determined as the remaining time for this flaw to grow to the limit of 100 percent of the wall thickness or approximately 11.8 EFPYs (labeled as "Service Life" in Figure 7-1).
Example 2. In this case, the flaw is identical in size to that used in Example 1, but located on the outside surface and on the downhill side of penetration no. 22. This flaw, just as the flaw in Example I, will not propagate within 0.5 inch below the bottom of the weld region. The applicable curve to use is Figure 6-10. The ratio alt and initial reference time are likewise found using the same approach as used in Example 1. Using the acceptance criteria in Table 6-1, the determination of service life is illustrated in Figure 7-2, where we can see that the result is approximately 5.9 EFPYs.
Example 3. An axial inside surface flaw is located at the weld and on the downhill/uphill side of penetration no. 1. The initial length of the flaw is 0.250" and the initial depth is 0.05". From Summary and Example Problems April 2006 WCAP-16550-NP Rev. 0
SP. -,7-3 Table I-I, the angle of this penetration nozzle is 0 degrees. The applicable curve is Figure 6-5 and is reproduced here as Figure 7-3. In this case, the initial flaw depth is 8.0 percent of the wall thickness. The initial reference time can be found by drawing a horizontal line at a/t = 0.08.
Since the as-found flaw depth is less than the initial flaw depth shown in Figure 6-5, the initial flaw depth shown is conservatively used. As a result, the initial reference time is set at 0 EFPY as shown in Figure 7-3. Using the acceptance criteria in Table 6-1, the allowable service life can then be determined as the time for the flaw to reach a depth of 75 percent of the wall thickness.
The final reference time is found through a horizontal line drawn at a/t = 0.75. The service life can be determined through the intersection points of these lines and the crack growth curve. The resulting service life is approximately 18.0 EFPYs, as shown in Figure 7-3.
Example 4. In this case, we have postulated an axial inside surface flaw with an upper extremity located 1.0 inch below the attachment weld on the uphill side of penetration no. 74 (48.7 degrees). The flaw has an initial depth of 0.079" and an initial length of 0.395". Assuming that the initial aspect ratio of 0.395" / 0.079" or 5:1 is maintained as the flaw propagates into the nozzle wall, the final length of a through-wall flaw would be 0.625" x 5 = 3.125" long. The location of the upper extremity of this flaw would have reached within 0.5 inch below the weld as it propagates into the nozzle wall (1.0" - ((3.125" / 2) - (0.395" / 2)) = -0.365"). Therefore the evaluation will require the use of two flaw charts. The first step is to estimate the time required for the initial flaw to grow to within 0.5 inch from the weld. This can be accomplished with the use of Figure 6-2 and is reproduced here as Figure 7-4a. The upper extremity is 1 inch below the weld and is assumed to grow until the extremity is 0.5 inches below the weld. The final half-length of the flaw when it reaches 0.5 inches below the weld will be the sum of the initial half-length and the 0.5 inches it has grown or 0.395" / 2 + 0.5" = 0.698". Multiplying this by two and then dividing by the aspect ratio, 5, gives the flaw depth when the upper extremity is 0.5 inches below the weld: 2 x 0.698" / 5.0 = 0.279". Figure 7-4a can be used to find the time it takes to grow from 12.6% through-wall (a/t = 0.079" / 0.625" 0.126) to 44.6% through-wall (a/t =
0.279" /0.625" = 0.446). The time is estimated as 5.5 EFPYs. Using the flaw depth calculated previously (a/t = 0.446) as the initial flaw depth, the curves in Figure 6-4 reproduced here as Figure 7-4b for inside surface flaws at the weld can be used to determine the remaining service time. Using the acceptance criteria in Table 6-1, Figure 7-4b shows an additional 1.6 EFPYs of service life for a total of 7.1 EFPYs before the flaw depth reaches the allowable flaw size (a/t =
0.75).
As shown above, flaws whose upper extremities grow within 0.5 inch below the weld require the use of both the "0.5 inch below the attachment weld" and "at the attachment weld" flaw tolerance charts. To avoid the use of these two charts, the "at the attachment weld" chart may solely be used in determining the service life. This shall provide a conservative estimate of the crack growth due to the higher stress field.
Example 5. This case is an axial through-wall flaw with its upper extremity located 0.35 inches below the weld region of penetration no. 22. Similarly, this would be the case where inspection can only be performed from 2 inch above the J-weld to only 0.35 inches below the weld on the downhill side. The objective is to determine the remaining service life for a flaw in the region not being inspected below the weld to reach the bottom of the J-weld. The angle of the penetration nozzle is 26.2 degrees as shown in Table 1-1. The crack growth curve of Figure 6-13 is Summary and Example Problems April 2006 WCAP-16550-NP Rev. 0
7-4 applicable and has been reproduced as Figure 7-5. The initial reference time is found by drawing a horizontal line 0.35 inches below the line representing the bottom of the weld, then dropping a vertical line to the horizontal axis. The final reference time is found by drawing a vertical line where the crack growth curve intersects the bottom of the weld horizontal line. If inspection can only be performed from 2 inch above the J-weld to only 0.35 inches below the weld, it would take approximately 5.0 EFPYs for a flaw in the region not being inspected below the weld to reach the weld bottom.
Additional Guidelines Several additional guidelines are provided below to facilitate the use of these flaw tolerance charts.
- 1. If a flaw is found in a penetration nozzle for which no specific analysis was performed and there is a uniform trend in the crack growth as a function of penetration nozzle angle, interpolation between penetration nozzles is the best approach.
- 2. If a flaw is found in a penetration nozzle for which no specific analysis was performed and there is no apparent trend in the crack growth as a function of penetration nozzle angle, the result for the penetration nozzle with the closest angle should be used.
- 3. If a flaw is found which has a depth smaller than any depth shown for the penetration nozzle angle of interest, the initial flaw depth should be assumed to be the same as the smallest depth analyzed for that particular penetration nozzle.
- 4. The flaw evaluation charts are applicable for aspect ratio of 6 or less. Consult with Westinghouse if the as-found flaw has an aspect ratio larger than 6.0.
- 5. All references to service life are in EFPYs.
- 6. Results are only provided for the uphill and downhill sides of the selected penetration nozzles.
If flaws are found in locations between the uphill and downhill side, use the results for either the uphill or downhill location, whichever is closer.
- 7. As shown in Example 4, flaws whose upper extremities grow within 0.5 inch below the weld can use both the "0.5 inch below the attachment weld" and "at the attachment weld" flaw tolerance charts. To avoid the use of these two charts, the "at the attachment weld" charts may solely be used in determining the service life. This shall provide a conservative estimate of the crack growth due to a larger stress field.
Summary and Example Problems April 2006 WCAP-16550-NP Rev. 0
- 7-5 Table 7-1 Example Problem Inputs: Initial Flaw Sizes and Locations Example Vertical Circumferential Penetration Penetration Source No. Orientation Location Location Row Length Depth No. Figure I Axial - Inside 1.25" Uphill 26.20 0.195" 0.078" 22 6-2 Surface Below Weld 2 Axial - Outside 1.25" Downhill 26.20 0.195" 0.078" 22 6-10 Surface Below Weld 3 Axial - Inside At Weld Downhill/Uphill 00 0.250" 0.05" 1 6-5 Surface 4 Axial - Inside 1.00" Uphill 48.70 0.395" 0.079" 74 6-2, 6-4 Surface Below Weld 5 Axial 0.35" Downhill 2620 - - 22 6-13 Through-Wall Below Weld Summary and Example Problems April 2006 WCAP-16550-NP Rev. 0
7-6 Example CrackTip Circumferential Penetration Length Depth Wall Penetration Source No. Orientation Location Location Row (2c) (a) Thickness alt No. Figure Axial - 1.25" Inside Below Uphill 26.20 0.195" 0.078" 0.625" 0.125 22 6-2 Surface Weld A
1.
i~T iri rTTi-T i-irI r r:- rI- :- T'-I ri,r -o'rr , ri, rT, i-l r-I ri-- rI i-Ir ,i - Tl I In-rrg ri-n il~~~~~~i i-In r oriIi-I r., ri- n inI, r-T l on-r, n orir rr T rIn r~ri I, r rr ITi -T -i iT T -i- 7 rIT T T'
- r;-1r-ri l, T Locality Angle from Table I-1: iTr -,~, Il-~, iiI iI 1-~I I iI ?~- -T T-l HT
- 0. 8 4 . " r .0 o4 I . 14.i
.r i n .. 4T44r:. 7" 4 4 14-ii ri- 1 Tr 41in or 14 - 1i _IT4r14&-
n4 1-1 1 4 To 1, 41- 4U Ui -r~r4 1i 4 144 in T r 4r ' -inr 1-4 Nozzle No. Angle 411'- in 1-4 i11. 1- i-I. T .1 r .1- L 1-r 41t-4t444 Ir Ton4-41i rI11-4. r n L41-I4 -In 14441-i 41"- Ti I, -in 4444
- 0. 9 1itj ii1i4 il Li-4i L4-J4 1111.41114 4 1LLJ h ~ l 4i 4- ~i~~i+/-4 22 26.20 7ozl Angle +
n'
.I1 Li.
JJ Li.
LIJ I LIJ I .PiL LIJ AILl LIJi I-I Li L 1-1 L /11I' JLIJ 14L! / .:11
,1J+/- L L A, 4 Li 'I: ;
J1. L - LIJ J, Lii Q~LN IJJ1 J Lii
.IJ Li.
14Lii1 I LIi 0.6 34 LI.
IJ Ll. [IJ I.
.I LI LiJ.
.- LI LJ l 1ILl t
LIJI LIJ -j Nozzle Angle:
JJ LJLIJ IJ LIJ LI a LiI L I IJ
- J.4. L
.UIL Ijl I,Of
.11 IJ I L
- -JI it 1/ý -PL II I "
LLIJI iJ VULI, I,, .J, LI.
LL I II L LI i I I I I*IIT [111 i TT" 71 X -
.....I I I 1 I-I
[
-1 45.4 deg l I/jLj ý-j LIJ iL-1 '-I- !. I I. I-,-!
o.-'
QJL1- 7I-s -I ",-i r' I - -
", F:,, -1 - .
I-Ii 1-11Lý IM' -ill L:-! Nozzle Angle:
QJ I 1U. Ll- ViiI " ;'I 1,-, 1 ,,'I l-I I I 1 19 I i 1 1i i i -- iii: 1, 1T1 111411 Ilii III I441 liil III1I -, 1 -,- Ji Loi1ii 44 i~jli I I II 111 NMI . . I~ .... 0 deg LII.
0.5 IIJlI . IlII I
Ililllllllillll
. I I Liii 444 I .
44!L414141
. I I I I Ill I . .
I I I I*
.*I*.
I* J 11 I
liil I"
- t I Ill
. I I I I I I 1 I I I *
-- 'I II I I I I I I I i ri-i T *I-I i-i I II I I I I I I I i i r r-i "fiiT-- Iii - - -- I T I , *rcT r Xii 'ro7 r Ir,: -IF: "'
-Irii Tr-, T -i T r": i i-i- "l' Tr 7 oiri " r" I' T fl I
"'i rr" *r '"IT Nozzle Angle: -1T *rii ri* r
- rrr r -inI nTmr nI-I
.-ITi-rI "1" rI- T riI " i'l Tri T ri 7 0.4 i" rl- I-, i-a *riT 1-1 T r 7 rili T rlT 14 i-rnr I....- TI,7 48.7 deg "I' ri-
"1"1r," *IT r i mr r IT,, /.4 n1 ri-I I; ;I 4 r; k T rl n I,i 7ni, TI r"1
'n~ Ti- Trl "I T on o'n "1 TI,' r-It- -Tr I rT, riTr Trl, r r,, "I-I TI-
",,r' r" "I rr Tr-IT Tr'TT "r'i 'In Ti-TT r- -I ri-l *In~T r" i 7 rri irl T
'1"1 Ti-" 7 riT "in Tr" Tit on, rT -I :inT r TInT-7ri-ITr rl-I irl Tri T -I T r: TIr r,i-i-I T-T rTI r4oI, 7ri-i T riT 0.3 I q:
1,7:':f 0.2 +l~
. . ]1-1+, .
.....1-1-I 4-1-1 +
l-I4 -1... -14.
..r:
...~.... ,* .... +
- , ,i... Mn-s
. I l
+*1Ann ' .I4 t `-*
.I .4 - .I .J *-. *
.41 ,141 k- L on-I IIJ .- I4I LIJ L. J L .IJ . 11I ,4 J 41-J I .J l o-14 II4 I I :J 11 4++ 1-1.1 -J ll
. .. .. . ..... ,I-L .. .4 1 4. I 1-
,,,I
... L.1-I I- . A. .W . j , I.A. LJ I-.I
- I4 IJ 4 J .I 0.1 S a ro 1- ,LJ/LJIl U~
1 1JtL
~ L L
J L.
lF ~ O.. . I
~ A ,
~= V.
~ J 4,I/L JLIJ
~~~JI iI 1-11 L'J LJ J L k '
.I/
I /L:J
/L IJ
.J
. IJ
.U bri 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time (Effective Full Power Years)
Figure 7-1 Example Problem 1 Summary and Example Problems April 2006 WCAP-16550-NP Rev. 0
7-7 EapeOrientation Example Location Crack Tip Circumferential Penetration Length Depth Wall a/t Penetration Source No. Axial- L (d) Location Row (2c) (a) Thickness No. Figure Axial - 1.25" 2 Outside Below Downhill 26.20 0.195" 0.078" 0.625" 0.125 22 6-10 Surface Weld I I I I I I I I _ j q + - -
11
- ri r T r- - r n- r n - r7-I I -r,- rr - *rI-I--r-r I r-I- r - ---
-- ir-n_ -r 5 1--r - i--gi--sr
.r ri -. - r --
r-s-
-- r rf"jf r -A ti- r r,r i--f
-I- -s-'i'i-A-i-tit'1i
- ,I:-r - r
- - irr-1 - l i--- - r -- T 1 r]-9--,-r,-j-
"1 ' ?-r- -Ii- r*ý Locality Angle from Table 1-1: -Iri rI -
I -i- v-I
- v 1-i-- s-ir-I-i -hI-I- -I- r-I -r- i--s--i - I- t -s-/t I/
0.9 4.i .
Nozzle No. Angle 0.8 , : : -: ~Nozzle Angle:--,
- 22 26.20 lJ L. i.+/-J.-4L4J1.:: 45.4 deg +/-i .1- L L~ : j: JL.L
. -LJ.t L,
- .L..L~h. _.L.I _tL 4 _..J,..L_J-. .LJ.
S1..
Lsia J -_LLJ.J _.L~
_...L.... - , ... .. . ejI-L. _ I. ' IA L _LJLJ 4-- . LI,-1..!1:J.'..
- .- J-. .L+/- .L -L 5 I - L J LJ- _ j I .Ll L . _ i _ l t_ I'I'-I.'J_.I'J.
- - - I - I -.RouteI
... -I -- ngle I+/- I I -
0.7-
.......- I j - -' -" -
- - - -r - . -- - -- -
o e Nozzle I : Rot A 0.6- ---.- -s-IgI
- - ----- - - i - - Ode - g-t
-J-r i-c.*-i i--i-v -ri -rI - i-rr
- 4 .. .. 1- . T.. - i-u . -r r n- .'r . i-I. . .-'
r r/ I 0.5- "-i i -
-r-1 "-- -
-- T 1 -r- s-, - ' - Ii - 1-* -- - I l rIf-- -* - j-r .. --
1 1 1 ~ ~. 7/// T. n- r.-
I]
"-n-ri-r -,T r-lrn-rn-l'- it-r -, -, - r-,- r n-r i- T r r-I r -- -'- n- ri
-Wt . ., '1/4 1 r-i -r r-l- r r' -l- '-- r-r -i--- -- r r -i l-r---I
- r r
'V 1
~3/4Z~ -~ ~- - . . . A 0.-
S0.4- -I r
"' -il- - r -r
- Nozzle
-o-n'- -
Angle:
.1 r- _r-I- i
- Nozzle Angle:
K' ~"A.9$4'~. ] . -- _. - .- - 48.7 deg Odeg 0.
.S V ~' j 4
I .L
........ '4.I.
L4 4 '4. J L J A
.L LI 4 j 4 ~ i .i. L .L
_.'... 62 I-
~ L:
J:Lit: J L4 5 J_ L-L
. J- ~- ~ '-I-.
_I_
rL L I
I! rL J-
-L5
-L J -L j J 1 - Je..- - J-S 5 55 6.JegI I I _ 'L L. J_
I~ T I-T-- L* -r L J I I 0.1 F 2c 1 I
I 0.0 0 1
-L-T 2
T- --
3
- -T, 4 5 6 Ue= .9 EFPYs 7 8 9 "T
LI 10
-I- L;2 2- .2 L.-
11 Time (Effective Full Power Years)
Figure 7-2 Example Problem 2 Summary and Example Problems April 2006 WCAP-16550-NP Rev. 0
7-8 ExapleOrientation Example Locationat Crack Tip Circumferential Penetration Length Depth Wall Penetration Source No. Axitalo Location Row (2c) (a) Thickness aIt No. Figure Axial -
3 Inside At Weld Downhill 0 0.250" 0.05" 0.625" 0.08 1 6-5 Surface I I 1.0 rIrf-;n-'Ir'-:4- ;44I-4 -n ' ; ' r irrnrnrr- r 17r -IT I~r T fr i 1rr n r ri rr r rr 9:n i*u1-1"1. : fir ntr r r11-- lI*'T-I-iiri~ -:rr-r n rr nh"I"""iu r r-i-ur r-i T rrr n i lrr--rr,,rr-lirr-li1rrr*rr-i-Trr r rrn Orr n ri-i Orr, r T I Tr:: Ir iTr:-r ,n ri-j1
-I 1 r 71r rr-i
-n -i rl -r rt1-1rr -i rr1-1-r Locality Angle from Table I-1:
0.9
- l-i{
Iltl "I-i"1-u r
r_-
n-I-iir i
i*-I-i -
b1.-i-i,-
,l-9-J
-9
-i -ri r
ini r-i-r r1-1 I
i-ir
-- -i7r t
9.i-i1-I-i.l 1-f9.i i-*9.4l*-9.i- .i-Itr
-I trir
-9 i~i- I rIn i-in
-it t i-tl r
l
-riT r rn o enNozzleAngle:
r rr nnr
-1 i7rr
.* j 7]I r i I t
-hi.,
r-r I
r n
-*t-r 1 1 T r rr-liI 1- i"i1it i-i
-I Tr T rr-
-rI
-r I- /+r r lnrr r:-i ri-i -1 i-i rr:-i Orr i-i-t-i itri-
-irrl-I
-1""
r I-f t r r-i--
rl-9.
i.t-i-t Nozzle No. Angle 0.8- _.4**-I4I 14-9. 1- *=9-1=.4 1 .- +=I- + 1- 44 .3d- _ .+ .. 9-=4+1= 9
+1 1-1-j + -= 4 .- i 49 1- -i.
i 1 0.00 i.. 4.I 4~,
.I* ld &Ii*4i
.. 1 ... ....
- I i ......
-4
--I .I- I - -,
.... .. .L -1 -. ,. @ .... ....
.1-I.114
- 1 49-9
- i* ,,4 4-I-0.7
_*ý 4 J. .4J4 L. .944 4. 9IJ4. .944 L.I 4 .4.9.- 4 J.1I..
. 41. .J J L. .J A, L
.4J I L ,A.9 1. L *44 '.4/ 4 ,4.4.9- L LI:- 4 L. Li.
L:I. - 4,4..9L-1 4.L. 449/./ J 4.L.9
_Ij. L .IJ 4 4. 4 4. 4.9. I L 1-JJ I.L dJ-1 /ILL J 4 LI_ iLI-: SL L.t. LLI
.I4J44
.144II I I I I IJ 4 L. .14 4.
L J 4 L .J .L L.
Nozzle Angle: de IL "iLL L- i-, LL JILLt dv/ t:- 4J£.9.
!I LI I 0.6 4e. deg
.J_144L . 4I L.
.944I .Wl L .IJ I L
- J 1 L .J .I L J.I L
- 9J I L J, /_ JILL JIL L 4 J'f +/- LI.
.9. JiLL J.
J I.
4J+/- LI.
4.'
4IL9* ~ILLi-J t LI . L L_ I LLI.
L'. ILLI9 ILLI_ I LL'.
- 144 £ .341_.
IJ'4 £
.IJ I I IJ .L .tJ- -1 L
+/-t1
- 94L +/- -" "II-:""I- - ," "It. JILl JILl.
,Ii LL -- ,.' . ., .1+/- LL. t"+/-4,' 44.L' 4 IL ILL'- ILL' ILL' 0.5 ' -J'--- i i J-- I LL'L i i i i '*T '" I I 1 I I II ,I
.... I , L" Nozzle AngL de-0.4 Oil!. . I99 1 . 99 9 9 9 9 9 9 9 9 9 9 9I99 9 L 9 9 9 IIII "1
rKi;lt i 9il9T IIlilt .9 9j
- 1 fjiT ". r- T, 991 rr --' "r1 Nozzle 48.7 Angle: deg 99ir .r TiiTrr I:rr 'rIr iTr T
111~ ri~ - 01deg -rrrr I,-,T r,'. r -,-14 irrr-lr lTri lTr ' TrI Tir rij i r irnr 0.3
":11-r r, -n- rr -17 r-' ,r l "I r IT ':
I I-1"I T -in7 r "i-19 r -v17r .1rr -1 T r ýilr;- n4-,rr% 17 Orr r Nq T r:1I1 T r,"-I T r:.
T rr: rirl r: 7"rrr" i-rc*In- rq
.I-- 1r -:n,7r -tT r -'1 T r ,-nr "1 rr "i-n" r ;,T r -if irrr 7rr-rr 9-
'inn r 9i7Tr "i-i7 r "1-1T Or 1",7 r lI`7 r -I TTr ;ý 'r
'¶irrI tir *7 TT r1
,,,, ,, 1 ,, ,, ,, ,,I`
n r Ti, irrl7
-i17 r ,-,rrj n rr OrTrr- r9-1" 0.2 1 T rr L i rI-Tl--i- t-Iit I-Ilrt r i-e r 4rr-Oirr i yrr-Oirr "4 r i-it ... Seabrook
-I9r -
it1i"9 0.1
- 41*- 9.141-.. .. ; ; i- Se en LceUfe= 18.0EFPYs
+
'- 4i-i 4 - +I-i 4+41- ti-I 4I . -i 7- 41- 49'.1-i n00 1-I- 9- I-I--1-,9 +-I ,1' II 44-I v.v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Time (Effective Full Power Years)
Figure 7-3 Example Problem 3 Example Problems and Example April 2006 Summaxy and Summary Problems April 2006 WCAP-16550-NP Rev. 0
7-9 Example Crack Tip Circumferential Penetration Length Depth Wall Penetration Source No. Orientation Location Location Row (2c) (a) Thickness a1It No. Figure Axial - 1.00" 6-2, 4 Inside Below Uphill 48.70 0.395" 0.079" 0.625" 0.126 74 6-4 Surface Weld I I I I II 6-4__
girl rl'" P gr irgrr-,
"irl r:,"r:,irir rIt"1 r T
g--r-r, F-g-I igI"4Ir rl Ti gil-TIrt rrg "t1ri ri1- Ig T I ri-n rl ri l-riri rtiir I ir r 1-Tr rI -I II g gir: r:i r ir, TO rI mi r-It FI t n it *r 4
TI iT I;I n~ rý r r--grr,
'I T nit r igr" r i rigi rlrITI-I rg 1-i.1 I
I I-fr -gir-I r nTI-V ngTrirg r TI, TI r rri1 Fr1 irr i rt r r r-ri IT T I glIrI g '- rl 7rir-- iF1, "
Locality Angle from Table 1-1:
0.9 -11 ri -ln -' iT n rii
-ri, r 1-- i-i -I '-IfTYn r itn 1 rl iTi rit r-inr f-`I t i-1T1 gl-rl- rgu-,rri i-v- gi ti -rlT
-ir -It 44 d~ rgir in Il t-i i-t n iri rritrl- rltr-i r-t- I-tT I Nozzle No. I Angle I gIrt ri-grt-I-I 1-0.8 r- ri 0.8 - I I-I-,n.- r-ITri
-r-Tn
-I I-11
-in I-
-ii girl~~~~~~~~~~~~~~~~girt-ri- It
--g igr ..-i 44.3, deg
-g-
-, n-ri-l trg I--g- r ir n- r
-ii-rI Ig,-,r r-,
nI, n-r r-rrg I-v-r--I 7 ...
Tlt igirl rg I n n-ti-l ri g -ITg Igi Ig-rg
. . I.-In-ir ri
-i ,_...
irt li giTr grt
-irt rv Inr-grn mri g-g- rii g in rr1-I-nit n Mi-I, i-
, rng r-I nI n -?li-Pg -iigIr -gr In g-I- i~--Ii-g1 iT."
1 74 1 48 :
-4g 0'1grgI-,-ln, r, 1, 0-1gi-I-g-li 4-i ~
I Ii I t1'4 ii' gn rIT-gi I-l gII- -- i-~ -rggg gr 0 .7 ; I t I In: ITl_ 1O_ 14 : .:I i... . ; :ri; 1-;- 1 ):- T
- I - - Ii
- :::~:~
0.6 :::: N_oz de1g 1 1.1-g g1g-I t-1 '-It ;:gigl-I-I -
- 14 I-I, t .4 1I -- t 14" , + 411 .1 4-1
-11 1-1 t n t 0.4 E. i E , `" `- .. - - -.. -ozl . . .Ang1e . . .. ,.., . .,INozl . . .
n ...e ...
I48.deg HOdeg I. LLL1 ILIA 41' l 114 LL
.l* -51+tAJI- U-I il LUL de-gg L1-1 .1--1.1-+* 1Ai 1-14 4I.-LU II14 I IAlL-L 0.2 4. . ... .u*4 1-14 14 4 1-1 - uI 1... z eA.e . . . . INo
~f
'1 3 1.1. 141 L LJ LJ. JLL L 1-.
LII, II 0-144u LI ~ JI*i +/-I
--OwI4iLt4 L 4+1- 4 gi. i ... .U. 1- i 4 LI . t1 4. 11 II 1U , 1-1 1-.141 I4 l.
U.'U 1..LI"_ 4 "L J"41 4'4 ..41 4. 1 "4 1.t 1 I4 g g 0Igd l4 LJ
.,L.4Lt 1L146L LJ.A .4262deg 1 W, 4I 4 L & - 4 I ;
0.4.
0 .. 14 2 34 L
5 68. c L
9 1-LJ 104.1 11-W 12 13 14 15J16 4 .- JL4 17 18 LL 19 A U,.1- IALJI--
20 21 J
22 ,j
.:J 2
0.1 Let-el . 4 4L A. I IJ e e4 " I u
"' : U4 4IIL: I;j
... Ie- l /l: U UA lf A Jli ,rIf 1.L t. .1LI.fL -1J .U.U U. LAI' A. Lt 4.1 87dg LIJ LI L A L4 4 LlUtow e 4L L, L ýj L W L IL .AIJL.:./ IJ t &11111 U Lý -4L4L4ý4 .J.11L.&-
.-L. *, LIJ ,,J I1.ltLI LA LO' L JI J I ! LI U4A I JL LU 11
,u,-,-,.... .... .... .- ...... .. I J i-I7I OO 'IJ Lt L J l Il !ý 1 LI _I.I I I I I J IL ILI A I I I I:A . L:. L: J I IUIJ UA I I JI '
I7.
ALt 2~ 3 L6 L4ALt 5U PI L2 I4 10 1_1 I2362e 13 15 16 17 18 19 20 2 Tie (EIctv F lI e Io Yearn) II 1L . I IJ..'ll Ol Figure 7-4a Example Problem 4 (See also Figure 7-4b)
Summary and Example Problems April 2006 WCAP-16550-NP Rev. 0
7-10 Example Crack Tip Circumferential Penetration Length Depth Wall Penetration Source No. Orientation (d)
Location Location Row (2c) (a) Thickness ait No. Figure Axial - 1.00" 6-2, 4 Inside Below Uphill 48.70 0.395" 0.079" 0.625" 0.126 74 6-4 Surface Weld 6I_
IU r --- ,,,r-i ,,,, -iyiiirr4rr-!iT -rrr-
-ni-l -iri' - :i-i tir "lh r -ii T 7r-rr, I"1" T " n-i, rr.i- n l:ý T rr -"'Tr, i'n r-1Il r l r rn 7irrl _I 1 rr I T rr r ri:
T rri- . i-n i-r-,1 r
! i-n r, 4 ri- r ri ri/n I T rr- ,1 r r- ri-n iri-i rrniJ rri-Locality Angle from Table 1-1: *riiv fi-n" "i-' r n r-ii- T-i-r-i1 I 1 r n - -I r-lr Nozzle Angle: 1,1rr t-rori- rni rinl-Airi-0.9
-i-I--i-wv 1
- fi-i- 1- $1 - -
nr r-i-,rr 44.3 deg -it- -i/fr
.-ri t....
I rti--l r.ir i.-ri ti-i-Ij t
i-ict i 4 t 4 4..
ri lrrini-i
-i-i r 4 r-/-q ..i-ri, ri..
-i-i-i -i-i 1-*- I-*,i-., i- *-, i--i P-I +-i.tni-i 4-i-i-i l -i-i i-Nozzle No. Angle
-i- i-- t-r
-,v-I-ti-ridt-r--ipi ti*- i-i 7i-. T -j i- ti-i-i t.ii.ili-i-.- litii i-i-I ri-i-74 48.70 0.8
(/: :
/.-i- _. J--i1.: "A1-
-4 -ii 4.4 :---4/ -:-i44
-/
I 0.7
ý_ ý,- I "11 441..i 4 1- 44.4.- +4.:.I 444.
=14 I~+/- 4-f 4
-1: "4I-1 ~1.-i-(44I-
-1 "1-4 .1I -1 -4 -4 4 1 -44' -
.44. 4
-iIA L* -:A 4 NozeAgle: 4 4. i_- 4. Li. A -- :A_1 1,~-I 1:44.J 11-. 41.,l 1.111 1.1--1.
- 1 4 L -:4 4 U. -:iJ 4 L A4 i. .4 4. tl- A 1-.1-1. .41L"i I LIA &
41LI ".A 144L11J4 4L14 4 1 A A 1 I.
+,-.-...,.., t :.,-, . -i-,'..,
- u. 06 .i:A :,AJA L 4 1 -44 I L A A L.)
i ALLI-I, LI-JJ L.i ::.."LIJ '* .:*
.1-14.1, Lo-.I
.IJ A L -.IJ 3 L _IJ A L .1J1LILJJI1.L4JJ-1LL4J1L L44-.L LJ-.ALLJ. Li ((J L.;4J/L4L.i4AJi~JL44 L:Li L I.IJ. L -I J1 L. _lJ4 L 056
.1444J J14 1.-:11 L I Lt- A L Li. iLL J [Lii AL LL IL L LL JL LL4J 4 t
.144k .IJ .AL ki
.IJ 1[L -:41 L 1iLj~JiL.itLL4ILL ILLA.LLLJ/L/JL JLLI LI L4 I~
4 lL4j~~ I Lý Li IJJ / _l11 L .ii 1 L -IJIL 44 LL4 JLL 4.1 ILL J 1 LI.L JLLI: .1LUi. I LL-i - LLIJ
.44 4 L IJI L It Li. t LU. I\tLIJ 1LX4.4LiJ.14 LLIJ LLi4
' ......... I- 444k J- I I -'-71 L 7141_iIJ L JILL
-I I Jii/
41/j:
ji_ it, 1711L I LU- I L:.. +/-Jt,..
£ LiI. 1 L'.I LtLI. LL.4 1
LLQ*
",, L .4-i~i LiII /i-i 5IT CL'i. /II.. l-II
'I'll NozleAngle: I &it. 411-Si
-i -,
i ". LL-,
Tgigs Nozzle Angle:
JL _
i*L, liTii, "o7" -.
gig, liii; "i i i i
,_I T ;
148.7 degI I I L t iTi," gill I l ,liii tool-,I liL II I 0 deg L o-12 fill ill$ I Lt,'-
1617 i - -1 1 AT" logo LQ t ii ll i ii 7 , L,-,
0.3-fill -t,* Il l T~ ",J 6116. r,1rl, 1r1. toll* Ir, *t * .. . .... .. .,-. ... 7 t*T .....r -
I It I III I II I III I I I " I * *i 1 I I I T I -fl I I l I I I fil I N o zlf f ll
- iI IIII IIII I11 fill I rrl2rl-i L-T Lr! -- 2 if r~ ll r i "1"(1 e IrTIT111. 1l Im 1 ýl rI62 1r7 1.n 1ra 1 r11.
1 S0.2 1:1 T -$-1. ' . . . . f I l.1 I . . ..- 1 ... ' 1'T. . . . . . . . . .
fi
- "'"T*'~~~~~
l l-"tir SeIeie= 6 F~ *r,-:*
r':dwT'~ ..... ~ ~~ It *it,i 1, 1r/1r'lr* 1ebro1 3 00 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Time (Effective Full Power Years)
/"' -"',.. .... . ;. ..* ..;:' . .I.,*,.
i* *: : " .. -::; ' C .....': ,
.;)-,:,.:;:'.* .: '.L.?
Figure 7-4b Example Problem 4 (See also Figure 7-4a)
April 2006 Summary and Example Problems and Example Problems April 2006 WCAP-1I6550-NP Rev. 0
7-11 Example Crack Tip Circumferential Penetration Length Depth Wall Penetration Source No. Oet Location Row (2c) (a) Thickness No. Figure Axial - 0.35" 5 Through- Below Downhill 26.20 N/A N/A 0.625" N/A 22 6-13 Wall Weld I I I iI i l I$i I l1 1 Si lll l11151]l ii l l l l l l 1 1 1 l I15ll l I l ll 2L0 I I I . J L I1 - J i i Li L L J I . 1
[ i Ll L ii i i- 1L I 1 1i .1 .J iii 1 jIJ Locality Angle from 'Table1-1: LJ LLLIJ....L .j.... . l..-.LL ....... * ... .. L......... .. ...... j ..... .
-I*II- IT 1 I- IT I- I IT Ir I- I I JI I I I I 4 I I 'II 1I t rl 1I Ir I I ,J I1 Ir 1 TI I, I Nozzle No. Angle t1.I
.... . I .. 1 1 .1.1 111.. 1.. .111 1 .1 11.. . .1.
- o. ... . . . . . . .I . . .I .I .I I
-.1 I
I I J.. . ..I . I I, ..-l I. . J... J. I.. . . J 1 .. . I [ J... I . LI . Ii IJ1"
___________________________________ o 1.0 ~------ 1141 1 1 1 1 1 111 i-~~
-i-r r4 T I I11
-I 1111
-~--~
IrII r i i--~
-i-i- -
r ri--I 1
.7-1 I1, ri IrI
- -:- -I--
-11 1
i 1 1 11 r r4--.l T.-I ~.-i .~--1 1 1 1
-L .4 1L LI._LL J.-I- , _IA-L L L 1-L AJ i.J.L--LL 4 - -.L L1-L J . ... LLJ .J JA- L I .L L- L I J J -1 i 0.5 i i ii i i i i CRM Nozzle Weld Region j i 11i iii iii 'i i iii i ii
. L J.
0 L.5..L J.I.I.L. .11 .. .L .. '..Il. JJ... LL .. L. . JJ..' .L.LJJ. . I_.L J. . . ... I II
.~ ~ ...- ~, ~
- ~, ~. ;7.:~ . ... .=-:.. .: .;. . . . . ._. .
I.. f..-iL MLoz le lon .
1
.. LRD .LLJJ L- L LJ .. "' L" .. I.....L
.. . . .J. .L i!
E* . }* -* : --.- tt *..*
-, l * . ,-.,.* .. I., I I I l I l I I I I I II lI I l I I I I I I I I I I I I l I I I I I I I I I I I I 0 rr-I-I1.0 1 ,r-rl-rrT2 -,-,-,-r T- 4 -, "" 'l1 r "',, ,,-,,,
8 ,r ,, ,.T ,,,, ---
' i,,,, ,, -i' ,, ....
I l 11 1**2-r T 13 to f I I II I I I I I IIII I III I II I I II. II II I I III I I I I t I I
- -; , *.. i -Y " - -- it' rT L I;-,-,-r-'T -- ,I 'rIf,--rTIr
- T- rr- I 'I- I,','r I I-,--,- r -iIr',- .TI -*--,-r T'1 - *.'.;~~~~~~~- "J.*
- ""L'J -'I'" -I L "" --. - -:-'. I.I.L . J -. l_ ,L I J, -_!:-.LL . -- L J JI
'~~~~~~ 4 4-4 Service Life -5.0 EFPYs -4I,,'......'......
I-: --1-*. .1 Z" ..:...' -," '*, ', 0-" 1 2 3 4 5 6 7 8 9 10 11 12 13 1,4 Sumar,:; Prblm
- P'*" and! ""Exml I ::*Time
"" " :: "; ":k;*l *': *:" :' (Effective Full Power J Years) IL LJJ LAJJ-LLIJ-1:Apri 2006 Figure 7-5 Example Problem 5 Summary and Example Problems April 2006 WCAP-16550-NP Rev. 0
.1- 1-1. 8-1 8 REFERENCES
- 1. Combustion Engineering Drawings for Seabrook (Proprietary to Westinghouse):
A. CE Drawing No. E-10873-101-005, Revision 1, "Closure Head Assembly Westinghouse Electric Corp. 173" I.D. P.W.R.".
B. CE Drawing No. D-10873-102-001, Revision 2, "Closure Head Dome Westinghouse Electric Corp. 173" I.D. P.W.R.".
C. CE Drawing No. E-10873-101-002, Revision 0, "Closure Head Penetrations Machining &
Cladding Westinghouse Electric Corp. 173" I.D. P.W.R.".
D. CE Drawing No. E-10873-112-002, Revision 4, "Control Rod Mechanism Housing Details Westinghouse Electric Corp. 173" I.D. P.W.R.".
E. CE Drawing No. C-10873-107-001, Revision 1, "Vent Pipe Westinghouse Electric Corp.
173" I.D. P.W.R.".
- 2. "PWR Reactor Pressure Vessel (RPV) Upper Head Penetrations Inspection Plan (MRP-75)":
Revision 1, EPRI, Palo Alto, CA: 2002. 1007337. (Proprietary to EPRI)
- 3. Dominion Engineering Inc. Calculation No. C-8728-00-01, "Seabrook CRDM and Head Vent Nozzle Stress Analysis," Revision 0, February 24, 2006.
- 4. Westinghouse Report WCAP-13493, "Reactor Vessel Closure Head Penetration Key Parameters Comparison," September 1992. (Proprietary Class 2)
- 5. Scott, P. M., "An Analysis of Primary Water Stress Corrosion Cracking in PWR Steam Generators," in Proceedings, Specialists Meeting on Operating Experience With Steam Generators, Brussels Belgium, Sept. 1991, pages 5-6.
- 6. Mcllree, A. R., Rebak, R. B., Smialowska, S., "Relationship of Stress Intensity to Crack Growth Rate ofAlloy 600 in Primary Water," Proceedings International Symposium Fontevraud II, Vol, 1,
- p. 258-267, September 10-14, 1990.
- 7. Cassagne, T., Gelpi, A., "Measurements of Crack Propagation Rates on Alloy 600 Tubes in PWR Primary Water, in Proceedings of the 50' International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors," August 25-29, 1991, Monterey, California.
- 8. "Materials Reliability Program (MRP) Crack Growth Rates for Evaluating Primary Water Stress Corrosion Cracking (PWSCC) of Thick Wall Alloy 600 Material (MRP-55) Revision I," EPRI, Palo Alto, CA: November 2002. 1006695. (Proprietary to EPRI)
- 9. Crack Growth and Microstructural Characterization of Alloy 600 PWR Vessel Head Penetration Materials, EPRI, Palo Alto, CA. 1997. TR-109136.
- 10. Vaillant, F. and C. Amzallag. "Crack Growth Rates of Alloy 600 in Primary Water," Presentation to the EPRI-MRP Crack Growth Rate (CGR) Review Team, Lake Tahoe, NV, presented August 10, 2001, and revised October 11, 2001.
References April 2006 WCAP-16550-NP Rev. 0
8-2
- 11. Vaillant, F. and S. Le Hong. Crack Growth Rate Measurements in Primary Water of Pressure Vessel Penetrations in Alloy 600 and Weld Metal 182, EDF, April 1997. HT-44/96/024/A.
- 12. Franmatome laboratory data provided by C. Amzallag (EDF) to MRP Crack Growth Rate Review Team, October 4, 2001 (Proprietary to EDF).
- 13. Cassagne, T., D. Caron, J. Daret, and Y. Lefevre. "Stress Corrosion Crack Growth Rate Measurements in Alloys 600 and 182 in Primary Water Loops Under Constant Load," Ninth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors (Newport Beach, CA, August 1-5, 1999), Edited by F. P. Ford, S. M. Bruemmer, and G S. Was, The Minerals, Metals & Materials Society (TMS), Warrendale, PA, 1999.
- 14. Studsvik laboratory data provided by Anders Jenssen (Studsvik) to MRP Crack Growth Rate Review Team, October 3, 2001 (Proprietary to Studsvik).
- 15. "Crack Growth Rate Tests of Alloy 600 in Primary PWR Conditions," Communication from M.
L. Castafio (CIEMAT) to J. Hickling (EPRI), March 25,2002.
- 16. G6mez-Bricefio, D., J. Lapefia, and F. Bldzquez. "Crack Growth Rates in Vessel Head Penetration Materials," Proceedings of the International Symposium Fontevraud III: Contribution of Materials Investigation to the Resolution of Problems Encountered in Pressurized Water Reactors (Chinton, France, September 12-16, 1994), French Nuclear Energy Society, Paris, 1994, pp.
209-214.
- 17. G6mez-Bricefio, D. and J. Lapefia. "Crack Growth Rates in Vessel Head Penetration Materials,"
Proceedings: 1994 EPRI Workshop on PWSCC of Alloy 600 in PWRs (Tampa, FL, November 15-17, 1994), EPRI, Palo Alto, CA, TR-105406, August 1995, pp. E4-1 through E4-15.
- 18. G6mez-Bricefio, D., et al. "Crack Propagation in Inconel 600 Vessel Head Penetrations,"
Eurocorr 96, Nice, France, September 24-26, 1996.
- 19. Castafio, M. L., D. G6mez-Bricefio, M. Alvarez-de-Lara, F. Blizquez, M. S. Garcia, F.
Hernrindez, and A. Largares. "Effect of Cationic Resin Intrusions on IGAISCC of Alloy 600 Under Primary Water Conditions," Proceedings of the International Symposium Fontevraud IV:
Contribution of Materials Investigation to the Resolution of Problems Encountered in Pressurized Water Reactors (France, September 14-18, 1998), French Nuclear Energy Society, Paris, 1998, Volume 2, pp. 925-937.
- 20. Bamford, W. H., "D. C. Cook Unit 2 Upper Head Penetration Crack Growth Determined from Inspection Data," Westinghouse Electric Report LTR-SMT-01-72, November 2001. (Proprietary Class 2)
- 21. Westinghouse Report WCAP-16255-P Revision 1, "Seabrook Station Stretch Power Uprate Project NSSS Engineering Report," January 2005. (Proprietary Class 2)
- 22. Newman, J. C. and Raju, I. S., "Stress Intensity Factor Influence Coefficients for Internal and External Surface Cracks in Cylindrical Vessels," in Aspects of Fracture Mechanics in Pressure Vessels and Piping, PVP Vol. 58, ASME, 1982, pp. 37-48.
- 23. Mettu, S. R., Raju, 1. S., and Forman, R. G, NASA Lyndon B. Johnson Space Center report no.
NASA-TM-I11707, "Stress Intensity Factors for Part-though Surface Cracks in Hollow Cylinders," in Structures and Mechanics Division, July 1992.
References April 2006 WCAP-16550-NP Rev. 0
.. .-* 8-3
- 24. "The Stress Analysis of Cracks Handbook", Hiroshi Tada, 2 nd Edition.
- 25. Hiser, Allen, "Deterministic and Probabilistic Assessments," presentation at NRC/Industry/ACRS meeting, November 8, 2001.
- 26. "Effect of Strain Rate on SCC in High Temperature Primary Water, Comparison between Alloys 690 and 600", ANS I IP Environmental Degradation Meeting, August 2003, K. M. Boursier, et al (EDF).
- 27. "Materials Reliability Program: Generic Evaluation of Examination Coverage Requirements for Reactor Pressure Vessel Head Penetration Nozzles (MRP-95)," EPRI, Palo Alto, CA: 2003.
1009129. (Proprietary to EPRI)
- 28. USNRC Letter, R. Barrett to A. Marion (NEI), "Flaw Evaluation Guidelines," April Il, 2003.
- 29. USNRC Letter, W. T. Russell to NV. Raisin (NUMARC), "Safety Evaluation for Potential Reactor Vessel Head Adapter Tube Cracking," November 19, 1993.
- 30. USNRC Letter, A. G. Hansen to R. E. Link (Wisconsin Electric Power Company), "Acceptance Criteria for Control Rod Drive Mechanism Penetrations at Point Beach Nuclear Plant, Unit I,"
March 9, 1994.
- 31. ASME Code Section XI 2004 Edition, "Rules for Inservice Inspection of Nuclear Power Plant Components," The American Society of Mechanical Engineers, New York, New York, USA.
References April 2006 WCAP-16550-NP Rev. 0
A-1 APPENDIX A CRDM HOOP STRESS DISTRIBUTIONS BELOW THE WELD Appendix A April 2006 WCAP-16550-NP Rev. 0
A-2 In this Appendix, the CRDM hoop stress distributions below the weld are plotted for the center penetration (0.00), 26.20, 44.3%, 45.4', and 48.70 penetration rows on both the downhill and uphill sides.
The information presented in this Appendix can be used to determine the extent of inspection coverage needed in order to meet the NRC Order EA-03-009 requirements or facilitate the submittal of relaxation requests in the event that the NRC order requirements cannot be met.
The hoop stress distributions on the downhill and uphill sides along the length of the analyzed penetration nozzles below the toe of the J-groove weld are plotted in Figures A-i to A-9. The stress distributions shown are for the inside and outside surfaces of the reactor vessel upper head penetrations. These stress distributions are typical of those observed in the upper head penetration nozzles for other nuclear power plants. The stresses are highest in the vicinity of the J-groove weld and decrease rapidly as the distance below the toe of the J-groove weld increases.
In accordance with the NRC order, the head penetration shall be inspected from 2 inch above the highest point of the root of the J-groove weld (uphill side) to I inch below the lowest point at the toe of the J-groove weld (downhill side) and including the region beyond I inch where the operating stress level is higher than 20 ksi. A minimum of I inch below the lowest point at the toe of the J-groove weld (downhill side) is required if the stress level for the region beyond I inch is less than 20 ksi. For those penetrations where the required inspection coverage can be achieved below the toe of the J-groove weld on the downhill side, no relaxation request is needed for both the uphill and downhill side. This can be demonstrated by reviewing the drawings [I] to obtain the expected inspection coverage on the uphill side based on the inspection coverage that can be achieved below the toe of the J-groove weld on the downhill side. The inspection coverage on the uphill side is expected to be more due to the elevation differential between the toe of the J-groove weld on the downhill and uphill side, except for the center penetration.
Based on a review of the drawings on this elevation differential and the hoop stress distribution curves, it can be concluded that the hoop stress distribution curve on the downhill side is more limiting in determining the extent of the required inspection coverage. Therefore, no relaxation request is needed for the uphill side if the required inspection coverage below the toe of the J-groove weld on the downhill side can be achieved.
Five rows of penetration nozzles were analyzed in this report. The required inspection coverage for those penetration nozzles not being analyzed can be determined using the bounding results from those analyzed penetrations with bounding nozzle angles. The applicable downhill hoop stress distribution curves for all the penetration nozzles are summarized in Table A-I.
As shown in Figures A-I to A-9, the magnitude of the hoop stress at a distance of I inch or more below the toe of the downhill side J-groove weld is less than 20 ksi for all the analyzed penetration nozzles except for the center penetration. An inspection coverage of more than 1 inch is required for the center penetration. Therefore, the inspection requirements given in NRC Order EA-03-009 are satisfied provided inspection coverage of at least 1.02 inch below the toe of the downhill side J-groove weld (Figure A-I) can be achieved for Penetration Nozzle No. I to 21 and a minimum inspection coverage of 1.0 inch can be achieved for the remaining penetration nozzles. The distance from below the toe of the downhill side J-groove weld to where both the inside and outside surface hoop stress drops below 20 ksi is summarize in Table A-I below for all the penetration nozzles:
Appendix A April 2006 WCAP-16550-NP Rev. 0
A-3 Table A-I Distance Below Toe of Downhill Side J-Weld Where Hoop Stress is less than 20 ksi Distance Below Toe of Downhill Side J-Weld where Source Hoop Stre <20 wsi Penetration Nozzle No. Hoop Stress < 20 ksi (inch) 1-21 Figure A-I 1.02 22-61 Figure A-3 0.41 62-65 Figure A-5 0.32 66-73 Figure A-7 0.31 74-78 Figure A-9 0.30 For those penetrations on the downhill side where inspection coverage does not meet the requirements of the NRC order, the crack growth curves provided for the downhill side in Figures 6-12 to 6-16 of the report can be used to determine the minimum required inspection coverage in order to meet the intent of the requirements in the NRC order. The submittal of a relaxation request to the NRC is required in this case. Based on the through-wall crack growth curves shown in Figures 6-12 to 6-16, the locations of the upper crack tips postulated vary from 0.15 inch to 0.50 inch below'the J-groove weld. It should be noted that the locations of the upper crack tips were selected such that the resulting stress intensity factor at the crack tip exceeded the PWSCC stress intensity factor threshold of 9 MPa-im. The service life required for any of the upper crack tips to reach the toe of the J-groove weld all exceeded 6 EFPYs as shown in Figures 6-12 to 6-16. The time duration between inspection cycles is 4 fuel cycles, i.e. 6 years, for Seabrook in accordance with the NRC Order for Low Category plants. As a screening rule, if an inspection coverage of 0.50 inch is achieved below the J-groove weld on the downhill side of all the head penetration nozzles, the upper crack tip of any undetected axial through-wall flaw in the region not being inspected will not reach the toe of the J-groove weld in less than 6 EFPYs. Therefore, the intent of the requirements in the NRC Order is met.
Appendix A April 2006 WCAP-! 6550-NP Rev. 0
A-4 Figure A-I Hoop Stress Distribution Uphill and Downhill Side (00 CRDM Penetration Nozzle) 70.000 I I a I I I I S I I I I I I I I I I I I 60.000 _ _I
_ I -- I
I ---------I I I I I I I I I I I !I I I 50.000 I ------- I --------- I II--------- I1----------
I I I I I I I II I I I I 40,000 . -.-1-.. - -.
. - . -I-- . -- - . . . . . . . . . . r I I I I I IIII I U) 30.000 I I I I 0
X0 20.000 I I I
. ... . . . . . . . . . . . - .-. . . . . . . . .- --I - -- -. . . . . . . .
-- -- - - - - - - - - - - - - I - - - II - - - - - -
10.000 0-
-10.000
- 0. 0 0.5 1.0 1.5 2.0 2.5 3.0 Distance from Bottom of Weld (in)
Inside -U- Outside]
Appendix A April 2006 WCAP-16550-NP Rev. 0
A-5 Figure A-2 Hoop Stress Distribution Uphill Side (26.20 CRDM Penetration Nozzle) 70,000
- - - - - - - - - - - - - -- - - L - - - - -
60,000 50,000 40,000 CL 30,000 0.
- - -- - - - - -I -- -- - - I. - - - - -
20,000 0.
10,000 0
-10,000
-20,000 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Distance from Bottom of Weld (in)
Inside -a-Outside April 2006 Appendix AA April 2006 WCAP-16550-NP Rev. 0
A-6 Figure A-3 Hoop Stress Distribution Downhill Side (26.20 CRDM Penetration Nozzle) 70.000 60,000 -- -
50,000 -- - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - -
40,000 5000--------
0 0 - - -I I -I - - - - -
30,000 -- - -- - - - .--.. -.
10.000 ................... . - - - - - . .
0.0 0.5 1.0 1.5 2.0 2.5 3.0 Distance from Bottom of Weld (in) 1--o-Inside -IOutside J Appendix A April 2006 WCAP-16550-NP Rev. 0
A-7 Figure A-4 Hoop Stress Distribution Uphill Side (44.30 CRDM Penetration Nozzle) 50,000 - -.---- ---- - - - - - - - - - -
40.000----------------- ------------- ---------------- ---
30.000 -- ------ - - - - ----- - ---- -
0* 1 - - - - L -I -- L S20,000--- -- - -- -
410,000 .. . . . . . .. . . . . ."t . . - - ..-- - .. ..- . . .
10,0001- -----I ----. J L -. -- L.....4---- I ----
- __30,000 . ..- - ...- - ,.- -, . .. , . . - -- I, -- ... --- - ...- - ... ...
II I I I I I I I I I I I I I I I I I I I I
-20.000 I - I i---- I I I I I I 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 Distance from Bottom of Weld (in) iInside -* -outside Appendix A April 2006 WCAP-16550-NP Rev. 0
A-8 Figure A-5 Hoop Stress Distribution Downhill Side (44.30 CRDM Penetration Nozzle) 80,000 I I I 70,000 - ,-
i
- - - rI TI I I i
- Ii 60,000-
- IIi i " Ii 50.000 - - - . .. .I- I Ii i
- I '
II I II
. 40,000 ---------- *I
- ------------ I I
- II I
( n . . . In. . .. .I..
I . . . . , . ., . . . . .
II I I ii I I I 030,000-----------------------------------------I-------------
I I i o 0,000 ----- ----- *-
I
-L I
iI--j----------L-------
i I I I I i II I i I I i i I I i
- , I I I i I I I 0, 0------------- --------- ----------- ------
I I
-20,000 -
0.0 0.5 1.0 1.5 2.0 2.5 3.0 Distance from Bottom of Weld (in)
-- inside --- Outside Appendix A April 2006 WCAP-16550-NP Rev. 0
A-9 Figure A-6 Hoop Stress Distribution Uphill Side (45.40 CRDM Penetration Nozzle) 60.000 50,000 40,000-30,000 20,000-U)
J L - - - J - I - - - - I
_10,000 J L J - - - - L - - - j e-
-20.000 i- - - - - 7 - - - -
-30.000 AM.--'
W 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 Distance from Bottom of Weld (in)
[--o-Inside --*-Outside Appendix A April 2006 WCAP-! 6550-NP Rev. 0
A-10 Figure A-7 Hoop Stress Distribution Downhill Side (45.40 CRDM Penetration Nozzle) 70.000
- - - - - - - - - - - - - - -L - - - - - I - - - - - - - - - - - -
- I- 1 60,000 - - - - - - - - - - - - - - - - - - - - - - - - - - -
50,000 40,000 0.000, -- - ------------------------------ +/- ------ 4-----
20.000
--- 4------------4 10.000 0
-10,000
-20,000
-30.000 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Distance from Bottom of Weld (In)
-.- Inside -- Outsidel Appendix A April 2006 WCAP-16550-NP Rev. 0
A-Il Figure A-8 Hoop Stress Distribution Uphill Side (48.70 CRDM Penetration Nozzle) 60.000 50,000 40,000 30,000 I i I iI I I I I I I I S20,000 10,000
- ... ~ j----... -- -- ------ ---- °.4 . . ---- I A----- .. -------
0 0
- - - -- - - - - - -- - - - - - - . - -I r - - I ....
-10,000
-20,000
-30,000
ýtV.U 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 Distance from Bottom of Weld (In)
I-- Inside -Outside Appendix A April 2006 WCAP-16550-NP Rev. 0
A-12 Figure A-9 Hoop Stress Distribution Downhill Side (48.70 CRDM Penetration Nozzle) 80,000 A-12 70,000 -- -- -- --- -----------------------------........................
- -- --------- 4 ----- ------------
I 60,000 . . .. . . . .
-II--- - - --- --- -- -- ------
50,000 I I 40,000 S- -------------------------------------------
-- I------
30,000 CL 20,000 0.
0 X
10,000. --
- I 0 ý
-10,000.
-20,000
-30,000 0.0 0.5 1.0 1.5 2.0 2.5 Distance from Bottom of Weld (in)
Inside --- Outside Appendix A April 2006 WCAP-16550-NP Rev. 0 to SBK-L-06119 Weastinghouse" Westinghouse Electric Company NuclearServices P.O.Box355 Pittsburgh. Pennsylvania 15230-0355 USA U.S. Nuclear Regulatory Commission Directtel: (412) 374-4419 Document Control Desk Direct fax: (412) 374-4011 Washington, DC 20555-0001 e-mail: maurerbfiwestinghouse.com Ourref CAW-06-2134 April 27, 2006 APPLICATION FOR WITHHOLDING PROPRIETARY INFORMATION FROM PUBLIC DISCLOSURE
Subject:
WCAP-16550-P, Revision 0, "Structural Integrity Evaluation of Reactor Vessel Upper Head Penetrations to Support Continued Operation: Seabrook Station," April 2006 (Proprietary)
The proprietary information for which withholding is being requested in the above-referenced report is further identified in Affidavit CAW-06-2134 signed by the owner of the proprietary information, Westinghouse Electric Company LLC. The affidavit, which accompanies this letter, sets forth the basis on which the information may be withheld from public disclosure by the Commission and addresses with specificity the considerations listed in paragraph (bX4) of 10 CFR Section 2.390 of the Commission's regulations.
Accordingly, this letter authorizes the utilization of the accompanying affidavit by FPL Energy.
Correspondence with respect to the proprietary aspects of the application for withholding or the Westinghouse affidavit should reference this letter, CAW-06-2134, and should be addressed to B. F. Maurer, Acting Manager, Regulatory Compliance and Plant Licensing, Westinghouse Electric Company LLC, P.O. Box 355, Pittsburgh, Pennsylvania 15230-0355.
Very truly yours, B. F. Maurer, Acting Manager Regulatory Compliance and Plant Licensing Enclosures cc: B. Benney, NRC L. Feizollahi, NRC A BNFL Group company
- CAW-06-2134 bec: B. F. Maurer (ECE 4-7A) IL R. Bastien, 1L (Nivelles, Belgium)
C. Brinkman, 1L (Westinghouse Electric Co., 12300 Twinbrook Parkway, Suite 330, Rockville, MD 20852)
RCPL Administrative Aide (ECE 4-7A) 1L, IA etter and aflidavit only)
C. K. Ng (Waltz Mill)
A BNFL Group company
',CAW-o6-2134 AFFIDAVIT COMMONWEALTH OF PENNSYLVANIA:
ss COUNTY OF ALLEGHENY:
Before me, the undersigned authority, personally appeared B. F. Maurer, who, being by me duly sworn according to law, deposes and says that he is authorized to execute this Affidavit on behalf of Westinghouse Electric Company LLC (Westinghouse), and that the averments of fact set forth in this Affidavit are true and correct to the best of his knowledge, information, and belief:
B. F. Maurer, Acting Manager Regulatory Compliance and Plant Licensing Sworn to and subscribed
.,before me this ... *a
- i. Of. - . . ." "
Notary Public NotarilSeal Sharon L Flod, Notaiy'PL0 .....
Monroeve Boro, AhJer County MyeCamer, Ps EA nia issoaJ29. 2007 Memftr. Pennsylvania Association Of Notaries
2 CAW-06-2134' (1) 1 am Acting Manager, Regulatory Compliance and Plant Licensing, in Nuclear Services, Westinghouse Electric Company LLC (Westinghouse), and as sucb, I have been specifically delegated the function of reviewing the proprietary information sought to be withheld from public disclosure in connection with nuclear power plant licensing and rule making proceedings, and am authorized to apply for its withholding on behalf of Westinghouse.
(2) 1 am making this Affidavit in conformance with the provisions of 10 CFR Section 2.390 of the Commission's regulations and in conjunction with the Westinghouse "Application for Withholding" accompanying this Affidavit.
(3) 1 have personal knowledge of the criteria and procedures utilized by Westinghouse in designating information as a trade secret, privileged or as confidential commercial or financial information.
(4) Pursuant to the provisions of paragraph (bX4) of Section 2.390 of the Commission's regulations, the following is furnished for consideration by the Commission in determining whether the information sought to be withheld from public disclosure should be withheld.
(i) The information sought to be withheld from public disclosure is owned and has been held in confidence by Westinghouse.
(ii) The information is of a type customarily held in confidence by Westinghouse and not customarily disclosed to the public. Westinghouse has a rational basis for determining the types of information customarily held in confidence by it and, in that connection, utilizes a system to determine when and whether to hold certain types of information in confidence. The application of that system and the substance of that system constitutes Westinghouse policy and provides the rational basis required.
Under that system, information is held in confidence if it falls in one or more of several types, the release of which might result in the loss of an existing or potential competitive advantage, as follows:
(a) The information reveals the distinguishing aspects of a process (or component, structure, tool, method, etc.) where prevention of its use by any of
3 CAW-0&-2134' Westinghouse's competitors without license from Westinghouse constitutes a competitive economic advantage over other companies.
(b) It consists of supporting data, including test data, elative to a process (or component, structure, tool, method, etc.), the application of which data secures a competitive economic advantage, e.g., by optimization or improved marketability.
(c) Its use by a competitor would reduce his expenditure of resources or improve his competitive position in the design, manufacture, shipment, installation, assurance of quality, or licensing a similar product.
(d) It reveals cost or price information, production capacities, budget levels, or commercial strategies of Westinghouse, its customers or suppliers.
(e) It reveals aspects of past, present, or future Westinghouse or customer funded development plans and programs of potential commercial value to Westinghouse.
(f) It contains patentable ideas, for which patent protection may be desirable.
There are sound policy reasons behind the Westinghouse system which include the following-(a) The use of such information by Westinghouse gives Westinghouse a competitive advantage over its competitors. It is, therefore, withheld from disclosure to protect the Westinghouse competitive position.
(b) It is information that is marketable in many ways. The extent to which such information is available to competitors diminishes the Westinghouse ability to sell products and services involving the use of the information.
(c) Use by our competitor would put Westinghouse at a competitive disadvantage by reducing his expenditure of resources at our expense.
14- *, :'7;, '* ,*CAW-06-1134 (d) Each component of proprietary information pertinent to a particular competitive advantage is potentially as valuable as the total competitive advantage. If competitors acquire components of proprietary information, any one component may be the key to the entire puzzle, thereby depriving Westinghouse of a competitive advantage.
(e) Unrestricted disclosure would jeopardize the position of prominence of Westinghouse in the world market, and thereby give a market advantage to the competition of those countries.
(f) The Westinghouse capacity to invest corporate assets in research and development depends upon the success in obtaining and maintaining a competitive advantage.
(iii) The information is being transmitted to the Commission in confidence and, under the provisions of 10 CFR Section 2.390, it is to be received in confidence by the Commission.
(iv) The information sought to be protected is not available in public sources or available information has not been previously employed in the same original manner or method to the best of our knowledge and belief.
(v) The proprietary information sought to be withheld in this submittal is that which is appropriately marked in WCAP-16550-P, Revision 0, "Structural Integrity Evaluation of Reactor Vessel Upper Head Penetrations to Support Continued Operation: Seabrook Station," April 2006 (Proprietary) being transmitted by the FPL Energy letter and Application for Withholding Proprietary Information from Public Disclosure, to the Document Control Desk. The proprietary information as submitted for use by Westinghouse for Seabrook Station is expected to be applicable for other licensee submittals in response to certain NRC requirements forjustification of the use of fracture mechanics analyses to support continued safe operation of Seabrook Station with the presence of a crack in a control rod drive head penetration.
This information is part of that which will enable Westinghouse to:
CAW-06ý2134 (a) Determine the allowable time of safe operation if cracks are found.
(b) Assist the customer to obtain NRC approval.
Further this information has substantial commercial value as follows:
(a) Westinghouse plans to sell the use of similar information to its customers for purposes of meeting NRC requirements for licensing documentation.
(b) Westinghouse can sell support and defense of continued safe operation with the presence of cracks in a control rod drive head penetration.
Public disclosure of this proprietary information is likely to cause substantial harm to the competitive position of Westinghouse because it would enhance the ability of competitors to provide similar support documentation and licensing defense services for commercial power reactors without commensurate expenses. Also, public disclosure of the information would enable others to use the information to meet NRC requirements for licensing documentation without purchasing the right to use the information.
The development of the technology described in part by the information is the result of applying the results of many years of experience in an intensive Westinghouse effort and the expenditure of a considerable sum of money.
In order for competitors of Westinghouse to duplicate this information, similar technical programs would have to be performed and a significant manpower effort, having the requisite talent and experience, would have to be expended.
Further the deponent sayeth not.
PROPRIETARY INFORMATION NOTICE Transmitted herewith are proprietary and/or non-proprietary versions of documents furnished to the NRC in connection with requests for generic and/or plant-specific review and approval.
In order to conform to the requirements of 10 CFR 2.390 ofthe Commission's regulations concerning the protection of proprietary information so submitted to the NRC, the information which is proprietary in the proprietary versions is contained within brackets, and where the proprietary information has been deleted in the non-proprietary versions, only the brackets remain (the information that was contained within the brackets in the proprietary versions havingbeen deleted). The justification for claiming the information so designated as proprietary is indicated in both versions by means of lower case letters (a) through (f) located as a superscript immediately following the brackets enclosing each item of information being identified as proprietary or in the margin opposite such information. These lower case letters refer to the types of information Westinghouse customarily holds in confidence identified in Sections (4Xii)(a) through (4XiiXt) of the affidavit accompanying this transmittal pursuant to 10 CFR 2390(bX I).
COPYRIGHT NOTICE The reports transmitted herewith each bear a Westinghouse copyright notice. The NRC is permitted to make the number of copies of the information contained in these reports which are necessary for its internal use in connection with generic and plant-specific reviews and approvals as well as the issuance, denial, amendment, transfer, renewal, modification, suspension, revocation, or violation of a license, permit, order, or regulation subject to the requirements of 10 CFR 2390 regarding restrictions on public disclosure to the extent such information has been identified as proprietary by Westinghouse, copyright protection notwithstanding. With respect to the non-proprietary versions of these reports, the NRC is permitted to make the number of copies beyond those necessary for its internal use which are necessary in order to have one copy available for public viewing in the appropriate docket files in the public document room in Washington, DC and in local public document rooms as may be required by NRC regulations if the number of copies submitted is insufficient for this purpose. Copies made by the NRC must include the copyright notice in all instances and the proprietary notice ifthe original was identified as proprietary.