ML18023B080: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 15: Line 15:


=Text=
=Text=
{{#Wiki_filter:SSESTABLEOFCONTENTS1.01~11.22~02~12.22.32'2'2.62~73'3.13'3.33'3'3'3.73'4.04.14'4'4~45.05.15~25'5.4FORWARDSUMMARYNTRODUCTIONDESCRXPTXONOFPLANTANDSITETHENEEDFORPOWERTHESITELOCXONOFTHEPLANTHUACTIVXTESINTHEENVRIONSHISTORCANDCULTURALSIGNXFICANCEGEOLOGYtMINERALRESOURCESANDSOILSHYDROLOGMETEOROLOGANDCLIMATEBIOTATHEPLANTEXTERNALAPPEAEOFTHEPLANTTRANSMISSIONLINEREACTORANDSTEAMECTRICSYSTEMWATERUSEHEATDXSSXPATXONSYSTgTHERADXOACTIVEWASTESYSTEMSCHEMICALANDSANITARYWASESRECREATIONANDCONSERVATIOENVIRONMENTALEFFECTSOFSITEPREPATIONANDPLANTCONSTRUCTIONPLANS~SCHEDULES,ANDMANPOWERREQUIREMENTSEFFECTONHUMANACTIVITIESEFFECTONTERRAIN,VEGETATION~ANDWILDLIFEEFFECTSONADJACENTWATERSANDAQUATICLIFEENVIRONMENTALEFFECTSOFPLANTOPERATIONEFFECTSOFRELEASEDHEATEFFECTSOFRELEASEDRADIOACTIVEMATERIALSEFFECTSOFRELEASEDCHEMICALANDSANITARYWASTESFUELTRANSPORTATION
{{#Wiki_filter:SSESTABLEOFCONTENTS1.01~11.22~02~12.22.32'2'2.62~73'3.13'3.33'3'3'3.73'4.04.14'4'4~45.05.15~25'5.4FORWARDSUMMARYNTRODUCTION DESCRXPTXON OFPLANTANDSITETHENEEDFORPOWERTHESITELOCXONOFTHEPLANTHUACTIVXTES INTHEENVRIONSHISTORCANDCULTURALSIGNXFICANCE GEOLOGYtMINERALRESOURCES ANDSOILSHYDROLOGMETEOROLOG ANDCLIMATEBIOTATHEPLANTEXTERNALAPPEAEOFTHEPLANTTRANSMISSION LINEREACTORANDSTEAMECTRICSYSTEMWATERUSEHEATDXSSXPATXON SYSTgTHERADXOACTIVE WASTESYSTEMSCHEMICALANDSANITARYWASESRECREATION ANDCONSERVATIO ENVIRONMENTAL EFFECTSOFSITEPREPATIONANDPLANTCONSTRUCTION PLANS~SCHEDULES, ANDMANPOWERREQUIREMENT SEFFECTONHUMANACTIVITIES EFFECTONTERRAIN,VEGETATION~
ANDWILDLIFEEFFECTSONADJACENTWATERSANDAQUATICLIFEENVIRONMENTAL EFFECTSOFPLANTOPERATION EFFECTSOFRELEASEDHEATEFFECTSOFRELEASEDRADIOACTIVE MATERIALS EFFECTSOFRELEASEDCHEMICALANDSANITARYWASTESFUELTRANSPORTATION


SSES5.56.06~16.26.36'6.57.08.08~18.28'8.08.58'8.79.010.011.0ASSESSMENTOFENVIRONMENTALEFFECTSOFPLANTOPERATIONNRADIOLOGICALENVIRONMENTALIMPACTOFTHEPLANTRADXOLOGICALACCIDENTCLASSXFICATIONMETHODSOFDETERMININGRADIOLOGICALIMPACTTRANSXENTANDACCIDENTOCCURENCESENVIRONMENTALXMPACTANALYSXSPROBABXLITYINPERSPECTIVEANYADVERSEENVXRONMENTALEFFECTSWHXCHOTBEAVOIDEDSHOULDTHEPROPALEXMPLEMENTEDALTERNATIVESANDCOST-BENEFXTINTRODUCTIONSOURCESOFPOWERALTERNATESITESANDSITESELECTIONALTERNATEHEATDXSSIPATXONMETHODSALTERNATERADWASTESYSTEMSALTERNATETRANSMISSXONLINEROUTESANDDESIGNCONSIDERATIONSCOST-BENEFITANALYSISTHERELATXONSHIPBETWEENLOCALSHORT-TERMOFMANSENVIRONMENTANDTHMAINTENANCEANDENHANCEMENTOFLONG-PRODUCTIVITYANYIRREVERSIBLEANDIRRETRXEVABLEMMXTMENTSOFRESOURCEWHIHWOULDBEINVOLVEDXNTHEPROPOSEDACTIONHOULDITBEXMPLEMENTEDENVIRONMENTALAPPROVALSANDCONSULATXON SSESLISTOFTABLESTable1.2.1Table1.2.2Table1.2.3Table2.2.1Table2.2.2ProjectedPP&LSystemLoadsAndCapacityPP&LServiceRegionsGeneratingStationCapacityAsOf5/1/72CommunitiesWithin5MilesOfTheSiteWith1,000OrMorePopulationIn1970LandUseOfCountiesWithin20,MilesOfTheSiteTable2.2.3ProportionOfGrossSalesForAgriculturalAndLivestockProducts-1968Table2.2.4Table2.2.5Table2.5.1Table2.5.2DistributionOfLabor,ForceSusquehannaRiverWaterUse-Municipal,IndustrialAndPublic-SusquehannaSESSiteToHavre-De-Grace,MarylandChemicalAnalysesOfTheNorthBranchSusquehannaRiverAttheSite-April1968ThroughAugust1970RadiostrontiumConcentrationsInSusquehannaRiver-AverageConcentration,Picocuries/LiterTable2.6.1Table2.6.2Table2.6.3Table2.6.4WindFrequencyDistributionInPercentByWindDirectionVersusWindSpeedClassesForPasquillStabilityClass-A,C,E,&GAnnualAverageRelativeConcentration(DilutionFactor)AtTheRestrictedAreaBoundaryCumulativePercentage-FrequencyDistributionOfPl'umeLengthPerWindDirectionSectorCumulativePercentage-FrequencyDistributionOfPlumeLengthPerWindDirectionSector I>>o~hti0l,l0 SSESTable3.2.1LandUse-SusquehannaSESToLackawanna500-kVLineTable3.2.2PopulationDistribution-SusquehannaSESToLackawanna-500-kVLineTable3.2.3LandUse-SusquehannaSESToFrackville500-kVLineTable3.2.4PopulationDistribution-SusquehannaSESToFrackville-500-kVLineTable3.4.1Table5.2.1ChemicalAnalysisOfTheNorthBranchSusquehannaRiverAtTheSite-April1968ThroughAugust1970ExpectedRadionuclidesReleasedToSusquehannaRiverTable5.2.2ExpectedGaseousEmissionsToTheAtmosphereTable5.2.3Table5.2.4PopulationDose(Man-Rem)FromGaseousEmissions-NormalReleasesDuringFullPowerOperationPopulationDose(Man-Rem)FromGaseousEmission-IntermittentReleasesFromVacuumPumpOperationTable5.2.5Table5.2.6Table5.4.1Table6.2.1Table6.3.1Table6.5.1Table8.2.1DoseFromDrinkingWaterAndEatingFishSummaryOfTheDoseCalculationsContainerDesignRequirementsSummaryOfPopulationExposureFromNaturalAndMan-MadeBackgroundComparedWithNuclearRadiologicalEffectsSummaryOfPopulationExposureFromNaturalAndMan-MadeBackgroundComparedWithNuclearRadiologicalEffectsTableOfEventProbabilitiesDollarCosts-NuclearVersusFossilFuelTwo1100MWUnits fI SSESLISTOFFIGURESFigure1.0.1Figure1.1.1Figure1.1.2Figure1.2.1Figure1.2.2Figure2.2.1Figure2.2.2SiteVicinityMapSiteAerialViewFacilitiesPlanPJMBulkPowerSystemPlannedBy1981PPGLServiceAreaDensityofPopulation(1970)Sh.1SiteVicinityMapShowingPresentAndFuturePopulationDistribution,0To10MilesFigure2.2.2Sh.2SiteVicinityMapShowingPresentAndFuturePopulationDistribution,0To10MilesFigure2.2.3Sh.1RegionalMapShowingPresentAndFuturePopulationDensity,0To50MilesFigure2.2.3Sh.2RegionalMapShowingPresentAnd-FuturePopulationDensity,0To50MilesFigure2.2.4Figure2.2.5Figure2.5.1Figure2.6.1PublicGroundWaterSuppliesWellLocationsLowFlowFrequencyAndFlowDurationAnnualAndInversionWindRose1960To1964Figure2.6.2Figure2.6.3Precipitation-WindDistributionAsPercentofTotalWindObservations,1960To1964TechniqueForComputationofCoolingTowerPlume-Lengths SSESTURBINE-GENERATORSLength300feetTRANSFORMERSCapacityVoltageStep-upCooling1,280,000kilovolt-amperesUnit¹1-230F000voltsUnit,¹2-500,000voltsOil'EACTORSTypeCoolantModeratorCoreCoolantFlnrRateFeedwaterInletTemp.SteamOutletTemperatureCoolantPressureSteamCapacityHeatOutputBoilingwater,directcycleWaterWater450,000gallonsperminute380degreesFahrenheit545degreesFahrenheit1,020poundspersquareinch13,432,000poundsperhour11200i000000BritishthermalunitsperhourFUELCORESPelletsMaterialEnrichmentLengthDiameterNumberTotalweight,UO2RodsMaterialCladdingThicknessOutsideDiameterLengthNumberUraniumdioxide(UO2)2to3percent0.5inches0.487inches11million190tonsZircaloy-20.032inches0.563inches13.33feet37'36 tl'41 SSESsewage.Thisbuildingwillbeapproximately40feetlong,30feetwide,and15feetabovegrade.1TheServiceandAdministrationOfficeBuildingwillbeapproximately200feetsquare,withaheightof70feetabovegrade.Itwillcontainofficesandmeetingrooms,afirstaidroom,storerooms,amachineshopandlockerfacilities.TheEngineeredSafeguardsServiceWaterPumphousewillcontaintheresidualheatremovalservicewaterpumpsandemergencyservicewaterpumpstosupplywaterforshutdowncoolingandforemergencycorecooling.Itwillbe86feetlong;36feetwide,and31feetabovegrade.Inadditiontothebuildings,twohyperboliccoolingtowersgandanintakestructureandpumphouseontheSusquehannaRiverwillbelocatedonthesite.Thecoolingtowerswillbereinforcedconcretestructuresabout500feethighandabout500feetindiameterattheirbase.A300footmeteorologicaltowerwaserectedcontaininginstrumentstomonitormeterologicaldata.Asmallbuilding,,locatedatthebaseofthetower,housessomeadditionalinstrumentation.Theintakestructureandpumphouseislocatedonthefloodplainattheedgeofthesiteandprovidesmakeupwaterfortheclosedcoolingsystem.11-4 f,il*~
SSES5.56.06~16.26.36'6.57.08.08~18.28'8.08.58'8.79.010.011.0ASSESSMENT OFENVIRONMENTAL EFFECTSOFPLANTOPERATION NRADIOLOGICAL ENVIRONMENTAL IMPACTOFTHEPLANTRADXOLOGICAL ACCIDENTCLASSXFICATION METHODSOFDETERMINING RADIOLOGICAL IMPACTTRANSXENT ANDACCIDENTOCCURENCES ENVIRONMENTAL XMPACTANALYSXSPROBABXLITY INPERSPECTIVE ANYADVERSEENVXRONMENTAL EFFECTSWHXCHOTBEAVOIDEDSHOULDTHEPROPALEXMPLEMENTED ALTERNATIVES ANDCOST-BENEFXT INTRODUCTIONSOURCESOFPOWERALTERNATE SITESANDSITESELECTION ALTERNATE HEATDXSSIPATXON METHODSALTERNATE RADWASTESYSTEMSALTERNATE TRANSMISSXON LINEROUTESANDDESIGNCONSIDERATIONS COST-BENEFIT ANALYSISTHERELATXONSHIP BETWEENLOCALSHORT-TERM OFMANSENVIRONMENT ANDTHMAINTENANCE ANDENHANCEMENT OFLONG-PRODUCTIVITY ANYIRREVERSIBLE ANDIRRETRXEVABLE MMXTMENTS OFRESOURCEWHIHWOULDBEINVOLVEDXNTHEPROPOSEDACTIONHOULDITBEXMPLEMENTED ENVIRONMENTAL APPROVALS ANDCONSULATXON SSESLISTOFTABLESTable1.2.1Table1.2.2Table1.2.3Table2.2.1Table2.2.2Projected PP&LSystemLoadsAndCapacityPP&LServiceRegionsGenerating StationCapacityAsOf5/1/72Communities Within5MilesOfTheSiteWith1,000OrMorePopulation In1970LandUseOfCountiesWithin20,MilesOfTheSiteTable2.2.3Proportion OfGrossSalesForAgricultural AndLivestock Products-1968Table2.2.4Table2.2.5Table2.5.1Table2.5.2Distribution OfLabor,ForceSusquehanna RiverWaterUse-Municipal, Industrial AndPublic-Susquehanna SESSiteToHavre-De-Grace, MarylandChemicalAnalysesOfTheNorthBranchSusquehanna RiverAttheSite-April1968ThroughAugust1970Radiostrontium Concentrations InSusquehanna River-AverageConcentration, Picocuries/
1ggruOvER,ZSGLLEZAlETSO:'ICOSI/OOO4'r)l<(JjtR!RIDGEVHLLSIL~TZSI.SCILInEVEATED~DS-TLIPEnIISVLIIAII14-EDDRDI441E-~.Z.ELEVATIonDATVm15mEAnSEALEI/EL.7JPMREERED5/t/EEIISERVILEVATERPDVPII/NloREER:ATIon/AJJLIVVER/LOSER/ILLit/t7v/IIIITRATIonOLXiNvCrESTREAT8ETEOROLOGILALTOvEROtIIGooLInGTovERLILoRIooxnEv.pvmvIIovsr,JvzE/L.TREArnerh~IIIGTV'ESELG67ER/troREDDE/IIGIvvERtI.SELOXLRVROLOaaITZTELRDLDE/TDRIRLALI'II/AIn/tILLDIlNMLl'0vATERELITE!tPENNSYLVANIAPOWERSLLIGHTCOMPANYSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2APPLICANT'SENVIRONMENTALREPORTLylILlf0'IIi-SVOZTVREAnD~WCLISEE/Sg/ARGELIIIE~IILlDISLII/tRGETOAVERIFacilitiesPlanFIGUREl.l.2 J'
LiterTable2.6.1Table2.6.2Table2.6.3Table2.6.4WindFrequency Distribution InPercentByWindDirection VersusWindSpeedClassesForPasquillStability Class-A,C,E,&GAnnualAverageRelativeConcentration (Dilution Factor)AtTheRestricted AreaBoundaryCumulative Percentage
SSES22HUMANACTIVITIESINTHEENVIRONS2.2.1.1'resetPoulatonTheareaaroundtheSusquehannasiteissparselypopulated,exceptforsmalltowns.Fewdwellingsarefoundinthehills,andtherearealmostnoneinthemountains.PopulationdatafortownswithinfivemilesofthesitearefoundinTable2.2.1.SalemTownshiphasapopulationdensityclassedas"100to300personspersquaremile,<rankingitamongoneofthelowestdensitytownshipsinthecounty(Ref.2-1).ThepopulationofSalemTownshipis3890people.The1970BureauofCensusdataplacesthepopulationofLuzerneCountyat339,446.TheLuzerneCountyPlanningCommissionprojectsanincreaseto536,210by2000.MostofthepopulationiscenteredinthemetropolitanWilkes-Barrearea,approximately20milesnortheastcfthesite.SecondarypopulationcentersarePittstcn(25milesnortheast)andHazleton(15milessouthwest).Thereareafewsmallertowns,buttheremainderofthecountyisgenerallysparselypopulated.ThepopulationdensityofLuzerneCountyisshowninFigure2.2.1.221.2tePoat'onItisanticipatedthat,asmanyas2,500workerswillbeemployedduringpeakconstructionactivity(1975to1977)Some-oftheseworkmenwillbepermanentlocalresidentsandotherswilltemporarilymoveintotheareaduringconstruction.PPSL'sconstructionexperienceshowsthatmostworkers.commutemorethan30mileswhenmajorhighwaysarepresent.Mostworkersareexpectedtobetravelers,thatis,workerstravelingmorethan30milesfromtheplanteachday.Thenumberofworkers(peakmanpower)thatwillbeonthesitebyyearare:1973-300.1976-25001979-8001974-18001977'-24001980-2501975-23001978-15001981-100Theestimatedpopulationandpopulationdensitiesfortheyear2020withina10-mileand50-mileradiusofthesiteareshownonFigures2.2.2(Sheets1and2)and2.2.3(Sheets1and2).Twomethodswereusedtoarriveattheseestimates.FortheLuzerneCountyareawithin10milesofthesite(over80percentofthetotalareaina10-mile2%21  
-Frequency Distribution OfPl'umeLengthPerWindDirection SectorCumulative Percentage
'L~4,E SSESTherearetwomilitarydefensefacilitieswithinfiftymilesofthesite.ThenearestistheTobyhannafacilitylocatedabout38milestotheeast.TheEdwardMartinMilitaryReservation,atIndiantownGap,isapproximately50milessouthwestofthesite.Nonuclearfacilitiesarelocatedwithina50-mileradiusofthesite.TheclosestnuclearfacilityisscheduledtobetheLimerickStation,70milestothesouthsoutheast,beingdevelopedbythePhiladelphiaElectricCompany.Therearenoschoolswithin2milesofthesite.TheclosesthospitaltothesiteisBerwickHospitalwith195beds.22.21icultureaz-Approximately23$ofthe891squaremilesinLuzerneCountyareutilizedforfarmingbyabout800farms..Farmrevenuein1965amountedtoabout$9,500,000.In1970,0.69%ofthetotalwork'forceinthecountywasemployedinagriculaturalactivities(Ref.2-11).ThecountyisagriculturalsalesarebrokendownasinTables2.2.3(Ref.2-3).Theamountoftillablelandonthesiteisabout300acresandincludesbothfloodplainanduplandareas.Theonlycurrentfarmingonthesiteisbyatenantfarmerworkingabout175acresoffloodplainland.Allofthetillablelandisscheduledtoberemovedfromagriculturalproductionastheresultofthedevelopmentofalargerecreationareaonthefloodplainandtheconstructionandoperationofpowerplantstructuresandtransmissionfacilities.Inthepast,thefloodplainlandhasproducedcropsoftomatoes,potatoes,squashandcorn~butithasbeensomeyearssincemostorallofthelandwassimultaneouslyfarmed.Sincethereare85,000-acresoflandclassifiedasagriculturalinLuzerneCounty(Ref.2-11)theremovalofsome300acresfromproductionisnotexpectedtoresultinasignificantadverseenvircnmentalimpact.Quitethecontrary,infact,formorethan175acresofthistillablelandwillbedevelopedasapicnicandcampingareaforgeneralpublicuse.ThisplanisdetailedinAppendixC~Itcanreasonablybeexpectedthatthisdevelopmentwillhaveabeneficialenvironmentalimpact.2.2.2.2CommerceLaborandIndustrurTherehasbeenlimitedcommercialdevelopment.inLuzerneCountylargelybecauseoftheruggedtopography,and'consequentlymuch'fthecountyremainsessentiallyundeveloped.2m23  
-Frequency Distribution OfPlumeLengthPerWindDirection Sector I>>o~hti0l,l0 SSESTable3.2.1LandUse-Susquehanna SESToLackawanna 500-kVLineTable3.2.2Population Distribution
-Susquehanna SESToLackawanna
-500-kVLineTable3.2.3LandUse-Susquehanna SESToFrackville 500-kVLineTable3.2.4Population Distribution
-Susquehanna SESToFrackville
-500-kVLineTable3.4.1Table5.2.1ChemicalAnalysisOfTheNorthBranchSusquehanna RiverAtTheSite-April1968ThroughAugust1970ExpectedRadionuclides ReleasedToSusquehanna RiverTable5.2.2ExpectedGaseousEmissions ToTheAtmosphere Table5.2.3Table5.2.4Population Dose(Man-Rem)
FromGaseousEmissions
-NormalReleasesDuringFullPowerOperation Population Dose(Man-Rem)
FromGaseousEmission-Intermittent ReleasesFromVacuumPumpOperation Table5.2.5Table5.2.6Table5.4.1Table6.2.1Table6.3.1Table6.5.1Table8.2.1DoseFromDrinkingWaterAndEatingFishSummaryOfTheDoseCalculations Container DesignRequirements SummaryOfPopulation ExposureFromNaturalAndMan-MadeBackground ComparedWithNuclearRadiological EffectsSummaryOfPopulation ExposureFromNaturalAndMan-MadeBackground ComparedWithNuclearRadiological EffectsTableOfEventProbabilities DollarCosts-NuclearVersusFossilFuelTwo1100MWUnits fI SSESLISTOFFIGURESFigure1.0.1Figure1.1.1Figure1.1.2Figure1.2.1Figure1.2.2Figure2.2.1Figure2.2.2SiteVicinityMapSiteAerialViewFacilities PlanPJMBulkPowerSystemPlannedBy1981PPGLServiceAreaDensityofPopulation (1970)Sh.1SiteVicinityMapShowingPresentAndFuturePopulation Distribution, 0To10MilesFigure2.2.2Sh.2SiteVicinityMapShowingPresentAndFuturePopulation Distribution, 0To10MilesFigure2.2.3Sh.1RegionalMapShowingPresentAndFuturePopulation Density,0To50MilesFigure2.2.3Sh.2RegionalMapShowingPresentAnd-FuturePopulation Density,0To50MilesFigure2.2.4Figure2.2.5Figure2.5.1Figure2.6.1PublicGroundWaterSuppliesWellLocations LowFlowFrequency AndFlowDurationAnnualAndInversion WindRose1960To1964Figure2.6.2Figure2.6.3Precipitation-Wind Distribution AsPercentofTotalWindObservations, 1960To1964Technique ForComputation ofCoolingTowerPlume-Lengths SSESTURBINE-GENERATORS Length300feetTRANSFORMERS CapacityVoltageStep-upCooling1,280,000kilovolt-amperes Unit&#xb9;1-230F000voltsUnit,&#xb9;2-500,000voltsOil'EACTORSTypeCoolantModerator CoreCoolantFlnrRateFeedwater InletTemp.SteamOutletTemperature CoolantPressureSteamCapacityHeatOutputBoilingwater,directcycleWaterWater450,000gallonsperminute380degreesFahrenheit 545degreesFahrenheit 1,020poundspersquareinch13,432,000 poundsperhour11200i000000BritishthermalunitsperhourFUELCORESPelletsMaterialEnrichment LengthDiameterNumberTotalweight,UO2RodsMaterialCladdingThickness OutsideDiameterLengthNumberUraniumdioxide(UO2)2to3percent0.5inches0.487inches11million190tonsZircaloy-20.032inches0.563inches13.33feet37'36 tl'41 SSESsewage.Thisbuildingwillbeapproximately 40feetlong,30feetwide,and15feetabovegrade.1TheServiceandAdministration OfficeBuildingwillbeapproximately 200feetsquare,withaheightof70feetabovegrade.Itwillcontainofficesandmeetingrooms,afirstaidroom,storerooms,amachineshopandlockerfacilities.
TheEngineered Safeguards ServiceWaterPumphouse willcontaintheresidualheatremovalservicewaterpumpsandemergency servicewaterpumpstosupplywaterforshutdowncoolingandforemergency corecooling.Itwillbe86feetlong;36feetwide,and31feetabovegrade.Inadditiontothebuildings, twohyperbolic coolingtowersgandanintakestructure andpumphouse ontheSusquehanna Riverwillbelocatedonthesite.Thecoolingtowerswillbereinforced concretestructures about500feethighandabout500feetindiameterattheirbase.A300footmeteorological towerwaserectedcontaining instruments tomonitormeterological data.Asmallbuilding,,located atthebaseofthetower,housessomeadditional instrumentation.
Theintakestructure andpumphouse islocatedonthefloodplain attheedgeofthesiteandprovidesmakeupwaterfortheclosedcoolingsystem.11-4 f,il*~
1ggruOvER,ZSGLLEZAlETSO:'ICOSI/OOO 4'r)l<(JjtR!RIDGEVHLLSIL~TZSI.SCILInEVEATED
~DS-TLIPEnIISVLIIAII14-EDDRDI441E-~.
Z.ELEVATIon DATVm15mEAnSEALEI/EL.7JPMREERED5/t/EEIISERVILEVATERPDVPII/NloREER:ATIon
/AJJLIVVER/LOSER/ILLit/t7v/IIIITRATIonOLXiNvCrESTREAT8ETEOROLOGILALTOvEROtIIGooLInGTovERLILoRIooxn Ev.pvmvIIovsr, JvzE/L.TREArner h~IIIGTV'ESELG67ER/troR EDDE/IIGIvvERtI.SELOXLRVROLOaaITZTELRDLDE/
TDRIRLALI'II/AIn/tILLDIlNMLl'0vATERELITE!tPENNSYLVANIA POWERSLLIGHTCOMPANYSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2APPLICANT'S ENVIRONMENTAL REPORTLylILlf0'IIi-SVOZTVRE AnD~WCLISEE/Sg/ARGE LIIIE~IILlDISLII/tRGE TOAVERIFacilities PlanFIGUREl.l.2 J'
SSES22HUMANACTIVITIES INTHEENVIRONS2.2.1.1'resetPoulatonTheareaaroundtheSusquehanna siteissparselypopulated, exceptforsmalltowns.Fewdwellings arefoundinthehills,andtherearealmostnoneinthemountains.
Population datafortownswithinfivemilesofthesitearefoundinTable2.2.1.SalemTownshiphasapopulation densityclassedas"100to300personspersquaremile,<rankingitamongoneofthelowestdensitytownships inthecounty(Ref.2-1).Thepopulation ofSalemTownshipis3890people.The1970BureauofCensusdataplacesthepopulation ofLuzerneCountyat339,446.TheLuzerneCountyPlanningCommission projectsanincreaseto536,210by2000.Mostofthepopulation iscenteredinthemetropolitan Wilkes-Barre area,approximately 20milesnortheast cfthesite.Secondary population centersarePittstcn(25milesnortheast) andHazleton(15milessouthwest)
.Thereareafewsmallertowns,buttheremainder ofthecountyisgenerally sparselypopulated.
Thepopulation densityofLuzerneCountyisshowninFigure2.2.1.221.2tePoat'onItisanticipated that,asmanyas2,500workerswillbeemployedduringpeakconstruction activity(1975to1977)Some-oftheseworkmenwillbepermanent localresidents andotherswilltemporarily moveintotheareaduringconstruction.
PPSL'sconstruction experience showsthatmostworkers.commutemorethan30mileswhenmajorhighwaysarepresent.Mostworkersareexpectedtobetravelers, thatis,workerstraveling morethan30milesfromtheplanteachday.Thenumberofworkers(peakmanpower) thatwillbeonthesitebyyearare:1973-300.1976-25001979-8001974-18001977'-24001980-2501975-23001978-15001981-100Theestimated population andpopulation densities fortheyear2020withina10-mileand50-mileradiusofthesiteareshownonFigures2.2.2(Sheets1and2)and2.2.3(Sheets1and2).Twomethodswereusedtoarriveattheseestimates.
FortheLuzerneCountyareawithin10milesofthesite(over80percentofthetotalareaina10-mile2%21  
'L~4,E SSESTherearetwomilitarydefensefacilities withinfiftymilesofthesite.ThenearestistheTobyhanna facilitylocatedabout38milestotheeast.TheEdwardMartinMilitaryReservation, atIndiantown Gap,isapproximately 50milessouthwest ofthesite.Nonuclearfacilities arelocatedwithina50-mileradiusofthesite.Theclosestnuclearfacilityisscheduled tobetheLimerickStation,70milestothesouthsoutheast, beingdeveloped bythePhiladelphia ElectricCompany.Therearenoschoolswithin2milesofthesite.TheclosesthospitaltothesiteisBerwickHospitalwith195beds.22.21icultureaz-Approximately 23$ofthe891squaremilesinLuzerneCountyareutilizedforfarmingbyabout800farms..Farmrevenuein1965amountedtoabout$9,500,000.
In1970,0.69%ofthetotalwork'forceinthecountywasemployedinagriculatural activities (Ref.2-11).Thecountyisagricultural salesarebrokendownasinTables2.2.3(Ref.2-3).Theamountoftillablelandonthesiteisabout300acresandincludesbothfloodplain anduplandareas.Theonlycurrentfarmingonthesiteisbyatenantfarmerworkingabout175acresoffloodplain land.Allofthetillablelandisscheduled toberemovedfromagricultural production astheresultofthedevelopment ofalargerecreation areaonthefloodplain andtheconstruction andoperation ofpowerplantstructures andtransmission facilities.
Inthepast,thefloodplain landhasproducedcropsoftomatoes,
: potatoes, squashandcorn~butithasbeensomeyearssincemostorallofthelandwassimultaneously farmed.Sincethereare85,000-acresoflandclassified asagricultural inLuzerneCounty(Ref.2-11)theremovalofsome300acresfromproduction isnotexpectedtoresultinasignificant adverseenvircnmental impact.Quitethecontrary, infact,formorethan175acresofthistillablelandwillbedeveloped asapicnicandcampingareaforgeneralpublicuse.ThisplanisdetailedinAppendixC~Itcanreasonably beexpectedthatthisdevelopment willhaveabeneficial environmental impact.2.2.2.2CommerceLaborandIndustrur Therehasbeenlimitedcommercial development.
inLuzerneCountylargelybecauseoftheruggedtopography, and'consequently much'fthecountyremainsessentially undeveloped.
2m23  


SSESwaterwithinthebasinisexpectedtoincreasetomorethan31milliongallonsperdayby1980.ThecitiesofChester,Pennsylvania,andBaltimore,Maryland,bothoutsidetheSusquehannaRiverbasin,areusing80milliongallonsofSusquehannaRiverwatereachdaytosatisfymunicipalandindustrialneeds.Aboutone-thirdofthisisdivertedviaChestertotheDelwareRiverdrainageregionandtheothertwo-thirdstotheChesapeakeBayarea,bywayofBaltimore.By2020,anestimatedthreemillionresidentsoutsidethebasinwillbedependentonthissourceformorethan800milliongallonsperdayformuncipalandindustrialsupplies.Thosemunicipal,private,andindustrialwatersystems.downstreamfromthesitewhichdonottapgroundwaterandminortributariesareexpectedtorelymereontheSusquehannaRiverinthefuture,asthecapacitiesoftheothersourcesareexceeded.PresentwaterusebydownstreammunicipalitiesandindustriesisshowninTable2.2.5.MostoftheindustriescontactedindicatednowaterusagefromtheSusquehannaRiver.Groundwateristhemajorsourceofindustrialwatersupply.The,plantCirculaingWaterandnormalServiceWaterSystemswillbeclosedloopsystemsusinghyperbolicnaturaldraftcoolingtowersastheirheatsink.Whenthetwogeneratingunitsareoperatingatmaximumcapacity,anaverageofabout50cfs(22,000gpm)andapeakof62cfs(27,800gpm)willberequiredfromtheexternalwatersupplytoreplacewaterlostbyevaporationinthecoolingtowers.ThedetailsofthesesystemsarediscussedinSubsection3.5.Duringshutdownthemaximumquantityofwatertakenfromtheriverwillbesignificantlylessthanthatrequiredfornormaloperation.RecreationalWaterUseWaterwaysofthe"SusquehannaRiverbasinareusedforalltypesofrecreation;theseusesareexpectedtoplaceaneverincreasingdemandontheresource.RecreationaluseoftheSusquehannaRivernowtotalsalmost37millionuser-daysperyear.By2020,recreationaluseshouldincreasetoover203millionuser-daysperyearwithanestimated23millionannualfishingdays,assumingnorestrictionsduetopoorwaterquality.2~27  
SSESwaterwithinthebasinisexpectedtoincreasetomorethan31milliongallonsperdayby1980.ThecitiesofChester,Pennsylvania, andBaltimore,
: Maryland, bothoutsidetheSusquehanna Riverbasin,areusing80milliongallonsofSusquehanna Riverwatereachdaytosatisfymunicipal andindustrial needs.Aboutone-third ofthisisdivertedviaChestertotheDelwareRiverdrainageregionandtheothertwo-thirds totheChesapeake Bayarea,bywayofBaltimore.
By2020,anestimated threemillionresidents outsidethebasinwillbedependent onthissourceformorethan800milliongallonsperdayformuncipalandindustrial supplies.
Thosemunicipal, private,andindustrial watersystems.downstream fromthesitewhichdonottapgroundwater andminortributaries areexpectedtorelymereontheSusquehanna Riverinthefuture,asthecapacities oftheothersourcesareexceeded.
Presentwaterusebydownstream municipalities andindustries isshowninTable2.2.5.Mostoftheindustries contacted indicated nowaterusagefromtheSusquehanna River.Groundwateristhemajorsourceofindustrial watersupply.The,plantCirculaing WaterandnormalServiceWaterSystemswillbeclosedloopsystemsusinghyperbolic naturaldraftcoolingtowersastheirheatsink.Whenthetwogenerating unitsareoperating atmaximumcapacity, anaverageofabout50cfs(22,000gpm)andapeakof62cfs(27,800gpm)willberequiredfromtheexternalwatersupplytoreplacewaterlostbyevaporation inthecoolingtowers.Thedetailsofthesesystemsarediscussed inSubsection 3.5.Duringshutdownthemaximumquantityofwatertakenfromtheriverwillbesignificantly lessthanthatrequiredfornormaloperation.
Recreational WaterUseWaterways ofthe"Susquehanna Riverbasinareusedforalltypesofrecreation; theseusesareexpectedtoplaceaneverincreasing demandontheresource.
Recreational useoftheSusquehanna Rivernowtotalsalmost37millionuser-days peryear.By2020,recreational useshouldincreasetoover203millionuser-days peryearwithanestimated 23millionannualfishingdays,assumingnorestrictions duetopoorwaterquality.2~27  


SSESTABLE2.2.1COMMUNITIESWITHIN5MILESOFTHESITEWITH1,000ORMOREPOPULATIONIN1970CommunitMocanaguaShickshinnyNescopeckEastBerwickBerwickWapwallopenSalemTwp.1950196014962156190710771104184519341258N.A.N.A.3124-14010133531970N.A.16481875N.A.121422503890DistanceandDirectionFromSite3-N4-N4.5-WSW4.5-Wsw5-WSW1-ESEN.A.-NotAvailableSource:U.S.CensusofPopulation-1950,1960and1970(Preliminary)
SSESTABLE2.2.1COMMUNITIES WITHIN5MILESOFTHESITEWITH1,000ORMOREPOPULATION IN1970CommunitMocanagua Shickshinny Nescopeck EastBerwickBerwickWapwallopen SalemTwp.1950196014962156190710771104184519341258N.A.N.A.3124-14010133531970N.A.16481875N.A.121422503890DistanceandDirection FromSite3-N4-N4.5-WSW4.5-Wsw5-WSW1-ESEN.A.-NotAvailable Source:U.S.CensusofPopulation
I0 SUSQUEHANNARIVERWATERUSEMUNICIPAL,INDUSTRIALANDPUBLICSUSQUEHANNASESSITETOHAVRE-DE-GRACE,MARYLANDTABLE2.2.5UserName1.BerwickWaterCo.Location-RiverMiles,Berwick-8.0QuantityUseClass(NcNd)MSb.NoneCommentForemergencyuseonly.Notusedfor8years.Pumpremoved.Servesabout20-25thousandpersons2.BlocmsburgWaterCo.3.Campbell.SoupCo.4.DanvilleBoroughBloomsburg-19.4Bloomsburg-19.4Danville-27.45.MerckaCo.Danville-27.46.DanvilleStateHospitalDanville-27.47.SunburyMun.Auth.Sunbury-38.5IPr1.0Mgd35.0MgdPuPrMPrNA4.0MgdMSbNAINoneNoneMPr2.0MgdNouseofriverwaterWillexpanduse.Servesabout8,000personsServesabout500persons.Largequantityforcooling,smallforprocess.Servesabout4,000personsFoursummermonthsonly.PlumCreeksuppliesremainder.Servesabout15,000persons.Allocated4.0Mgd8.CelotexCorp.9.PP&L(SES)10.ShamokinDamMunicipalAuth.Sunbury-38.5Sunbury-38.5Shamokin-44.4INoneNoneIPr245MgdMPrNAServesabout2,000personsll.MillersburgWaterCo.12.HarrisburgMun.Auth.13.InternationalPaperCo.14.'BethlenemSteelCo.15.BoroughofSteeltonWaterCo.16.BethlehemSteelCo.17.MetropolitanEdison(SES)Millersburg-69.4Harrisburg-91.0Harrisburg-91.0.Harrisburg-91.0Steelton-93.4Steelton--93.4Middletown-100.2MSbNAMSbNAINANACoolingIPr1.3Mgd'oolingIPr245MgdINANAMPr1.7MgdAllocated5.0Mgd rN TABLE2.2.5CONT'DUserNameLocation-RiverMilesQuantityUseClass(MGD)Comment18.MetropolitanEdison(HES)Yorkhaven-105.2Pr11,782Mgd19.PP&L(SES)20.WrightsvilleWaterCo.21.ColumbiaWaterCo.22.LancasterWaterAuth.23.YorkWaterCo.24.SafeHarborWaterPowerCorp.(HES)25.PP&L(SES)26.PP&L(HES)27.Phila.Electric(PS)28.Phila.Elec.(NS)29.Phila.Elec.&-Susque-hannaPowerCo.(HES)30.ChesterWaterAuth.31.BaltimoreWaterAuth.BrunnerIsland-108.0IWrightsville-119.0MColumbia-119.0MLancaster-PrPrPrPr745MgdNA1.8Mgd8.0MgdHoltwood-137.9IPrHoltwood-137.9IPrMuddyRun-140.4IPrPeachbottom-143.0INAConowingo-154.3IPr65Mgd21,337Mgd12,931Mgd0.03Mgd53,018MgdChester-*MSbNABaltimore,Md.-*MSbNAYork-*MSbNASafeHarbor-129.7MPr79,527MgdBasedonolddate.Allocated24.0Mgd*NotonRiver~NotonRiver*NotonRiver*NotonRiver32.Havre-de-GraceMunicipalAuth.Havre-de-Grace,Md.-MPr162.01.4MgdNote:RiverNA(SES)(HES)(PS)(NS)IMPuPrSbMgdmilesarefromSusquehannaLEGENDL888EhNDNoteavailableSteamElectricStaticnHydroelectricStationPumpingStationNuclearStationIndustrialMunicipalPublicPrimaryStandbyMilliongallonsperdaySESsite SSES23TheNationalRegisterofHistoricPlacesliststheDennisionHouse,35DennisionStreet:,FortyFort,Pennsyvlaniaapproximately21milesnortheastofthesite,asthenearesthistoricalplace.Therearethreeareasofculturalinterestwithinthesitelocale:theNorthBranchCanal,CouncilCupandalocalcemetery.TheNorthBranchCanalislocatedbetweentheriverandU.S.Route11.Atthepresentthecanalisindisrepair.TheSusquehannaSESsitehasbeencloselytiedtotheearlyeconomicdevelopmentoftheNorthBranchValleysinceitwasfirsttraversedbytheNorthBranchCanal,animportantlinkintheSusquehannaCanalSystem.TheNorthBranchCanalprovidedanewwaterrouteforthetransportofanthraciteminedintheWilkes-Barreareaandthuscontributedheavilytothevalley'sprosperitybyopeningupnewmarketsforcoalallalongthefar-flungPennsylvaniaCanalSystem.TheNorthBranchexperienceditsgreatestbusinessgrowthintheyearsbeforeandduringtheCivilWar.Withthecomingoftherailroads,however,itdeclinedinimportanceasdidothercanalsandcanalsystems.Partofthecanal,includingthatpartwhichcutsacrosstheSusquehannaSESsite,continuedinbusinessuntiltheearly1900s.CouncilCuphasbeenusedasanIndianmeetingsiteandislocatedontheeastsideoftheriveratahighpointwheresurveillanceoftherivervalleyisquiteadvantageous.Thisareahasculturalinterestbecauseithasbeendocumentedasthesiteofacouncilmeetingin1793tosettlealanddisputebetweenIndiansandsettlers.Accordingtolocallegend,itisalsothesiteofmeetingsamongIndiannations.Archeologistshavereportedthatthesiteisnotlikelytoproducesignificantartifactsbecausethereisnoevidenceofapermanentencampmentonthebluff.Asmallcemeteryislocatedinthenorthernpartofthesite.Itisoutsidetheexclusionarea.Accesstothecemeteryisviaapublicroad,andnotthroughthesiteproperty.Thecemeterywillnotbedisturbedinanywayduring'onstructionoroperationofthefacility.TheUnionReformedandLutheranChurchinWapwallopenisthefirstoftheselandmarks.On-siteinspectionhasestablishedthatthehousesandotherbuildingssurroundingthechurchwillhidethepowerlinestructuresandconductorsfromview.2%31 SSES(seeFigure2.2.5)theriverisshallow;itslowflowdepthwasaboutfivefeet.NearMapwallopenthedepthsincreasetomorethansevenfeetandthebottomcontourisgenerallymoreuniformexceptforashallowrockledgeatBellBend.AtWapwallopentheriverchangescourseabruptly,witha'0oturntothewest.Thispoolarea,calledBellBend,isuptofourteenfeetdeep.Atitsmouth,WapwallopenCreekhasalargedeltaofrockandgravel.Belowthispoint,theriverwidensto500yardsandbecomeshallower.DownstreamfromBeachHaven,aflatbedrockareaextendstothemouthofNescopeckCreek;alargeriffleareagiveswaytoadeeppoolbelowthispoint.WaterqualityattheSusquehannaSESsitehasbeenmonitoredbyPPSLmonthlysince1968.Themaximumtotaldissolvedsolidsofrecordis389partspermillion(ppm),andthelowestofrecordis80ppm.Hardnesshasrangedfrom248ppmto52ppm,andtherecordedwatertemperaturehasrangedfrom85OZto34oF.Averagewaterquality,basedonthesamplescollected,ispresentedinTable2.5.1.ThedatacollectedbyPPSLisgenerallycompatiblewithwaterqualityrecordscollectedbytheU.S.GeologicalSurveyfortheSusquehannaRiveratDanville,approximately30rivermilesdownsteamfromthesite(1964through1967).Pumpingofacidwaterfromdeepmineshascausedsignificantfishkillsinthepast.In1961,amajorfishkillwascausedbyacidminewaterwhenthepHatBerwickdroppedfrom7.0to3.5andthetotalironincreasedfrom5ppmto40ppm(Ref.2-5).PPSLrecordsfrom1968to1970showthatthepHhasonlyvariedfrom6.5to7.4andisconsideredacceptableforfreshwateraquaticlife.WaterusesandwaterqualitycriteriahavebeendesignatedfortheNorthBranchoftheSusquehannaRiver,fromtheLackawannaRivertoitsconfluence.TheseusesandcriteriaareprescribedbyChapter93,WaterQualityCriteriaoftheseRulesandRegulationsofthePennsylvaniaDepartmentofEnvironmentalResources.Verylittledataareavailableonbackgroundradiationlevelsoftheriver.Thequalityofariverreflects,inpart,theconditionofitswatershed.'Theamountofsedimentinthewaterisanindexofthesoil,thedensityandkindofvegetation,andtheintensityandamountofrainfallontheriver~swatershed.Similarly,theamountofdissolvedsolidsinthewaterisanotherindexofthewatershed.Theradiologicalburdenofariverisgovernedbythesesamefactors.25-3 t~.
-1950,1960and1970(Preliminary)
SSESprojectwillbeontheorderof200gpm.Groundwaterhydrologyofthesiteindicatesthat,ifwellsaretobeused,theneededquantityofwaterprobablycouldbedevelopedfromwellslocatedontheflocdplainadjacenttotheriver.Suchwellsprobablywouldinducerechargefromtheriver,theregylimitingtheextentoftheconeofdepressionsurroundingthewells.Althoughwaterlevelswouldbeloweredasaresultofpumpagefromwells,thiseffectwouldnotbeexpectedtoextendbeyondthepropertyownedbyPPSLandwouldlastonlyaslongasthewellsarepumped.Near-termpumpingtestswillbeconductedtoestablishthedistancesinvolved.Therewouldprobablybenoadverseeffectontheotherwellsinthevalleyfromawellorwellsproducing200gpm.Thegroundwatertableintheareaisasubduedreplicaofthesurfacetopography.Atthesitethewatertableisfoundgenerallywithin35feetofthegroundsurface,usuallyjustbelowthebedrocksurfacebutsometimeswithintheoverburdensoils.Groundwatercontoursconstructedfromwaterlevelmeasurementsindrillholesshowthatthegroundwateratthesitemoveseastwardfromtheelevatedsitetotheadjacentriverfloodplain.Permeabilitytestsoftheglacialmaterialsandtheunderlyingbedrockshowthattherateofmovementofthegroundwaterisslow.*Thesetestsindicatethatthe'ermeabilityoftheglacialmaterialsvariesfrom2.2x10-~Cm/Secto4.5x10-~Cm/Secvertically,and2x10-~Cm/Sechorizontally.Permeabilityoftherockvariesfrom3x10-4Cm/Secto4x10-~oCm/Sec.25-5 SSESTABLE2.5.1CHEMICALANALYSESOFTHENORTHBRANCHQUNAIATHESTEAPRIL68THROUGHAUGUST1970*MinimumMaximumA~veraeSilica(Si02)Iron(Fe)Aluminum(Al)Manganese(Mn)Calcium(Ca)Magnesium(Mg)Sodium(Na)6Potassium(asBicarbonate(HC03)Sulfate(SO~)Chloride(CX)Nitrate(N03)Phosphate**DissolvedSolidsHardnessasCaC03DissolvedOxygenBiochemicalOxygenDemand(5dayBOD)TemperatureF.pHColorNa)0.090.020.000.0012.63.40.00~25.612.83.60.50.0079.651.57.80.8346.55.55.11.720.560.9565.221.89.481.815518.24.00.4388.8248.014.26.6857.4111.03.40.400.100.1132.99.62.755.260.010.81.70.21206.8125.010.62.96338.8Allvaluesinpartspermillion(ppm),exceptthosefortemperature,pHandcolor.*PP6LRecords-Biweeklysamples**Basedononlythreesamples IIIA SSES(22.5oacrsorsectors)usingthefollowingtechniques:350o~360o~10o204'04404~50o60o,70o80o;90o~100otosector1(N),tosector2(NNE),tosector3(NE),tosector4(ENE),tosector5(E),etc.20Theotheradjustmentconsistedofincludingthe"calm"windobservationsinthelowestspeed(2-3mph)range.Thiswasdoneforeachlapse-rateclassbydistributingthenumberofcalmwindoccurrencesoverthe16sectorsinproportiontothefrequencydistributionofthelowestspeedrange.TheeightsetsofwindrosedataarereproducedinTable2.6.1.Annualaveragerelativeconcentration(dilutionfactors)attherestrictedareaboundarywerecomputedfromthestandardformula(Ref.2-9)foracontinuous-groundlevelsource:I20.0lf=0.02032f(sm).-"./-)<zXwhereo~isobtainedfromthePasquill-Giffordcurves(Ref.2-10)foradistancexbetweensourceandtherestrictedareaboundary.Thewindspeeduisspecifiedasameanforeachspeedrange,e.g.,8-12mphistakenas10mphor4.47m/s;fisthefrequencyofoccurence(%)ofthewindforagivensector.Thefactor2mx/nisthearclengthofeachsector'overwhichlong-termhorizontaldispersionisassumeduniform.Theminimumdistancefromsourcetotherestrictedareaboundaryforn=16sectorsisindicatedinTable2.6.2.ThecomputationofrelativeconcentraticnX/Qwasaccomplishedbydigitalcomputer.Resultswereobtainedforthesevenmainlapse-rate(orstability)classes,forfivewindspeedrangesandthenaddedtogivetheannualaverageX/Qvaluesforeachofthe16windsectors.TheseareshowninTable2.6.2.Specialconsiderationwasgiventothestabilitvclass"G~~forwhichthelapse-rateisgreaterthan4DC/100m/sincenoezcurvesexistforthiscase.Here,o~valuesforClassF,scaledbythefactor(2.5)-/a,wereused.26-4 k
I0 SUSQUEHANNA RIVERWATERUSEMUNICIPAL, INDUSTRIAL ANDPUBLICSUSQUEHANNA SESSITETOHAVRE-DE-GRACE, MARYLANDTABLE2.2.5UserName1.BerwickWaterCo.Location-RiverMiles,Berwick-8.0QuantityUseClass(NcNd)MSb.NoneCommentForemergency useonly.Notusedfor8years.Pumpremoved.Servesabout20-25thousandpersons2.Blocmsburg WaterCo.3.Campbell.
SSESTherearenoknowntallstructuresinthearea,eitherexistingorproposed,whichwouldbeofsufficientheighttointersecttheplume.Therefore,thewettingoricingproblemassociatedwiththeplumedoesnotappeartobesignificant.Itisnotlikelythattheplumewouldaffecttheflightofaircraftovertheplant.Theclosestairportisapproximately4milessouthwestoftheplantandwillnotbesignificantlyaffectedbytheoperationofthecoolingtowers.Itisarelativelysmallairfieldwithagrassrunwayandisusedbylightaircraft.Conditionsthatproducelongplumesareoftenaccompaniedbyfog,rainorlowclouds;thatis,conditionswhichwouldthemselvesnormallyrestrictlightaircraftoperations.Immediatelyoverthecoolingtowers,lightaircraftwouldprobablyexperiencemildtomoderateturbulenceduetotheheatintheplume.Anon-visibleplume,or<train~~containingwatervapor,heatandsuspendedsaltswillexistintheatmosphereforsomedistancebeyondthevisibleplume.Thelengthofthisidentifiabletrainwilldependontherateofmixingwiththeambientairanduponvariationsintheseparameterscausedbyotherphysicalfeatures.Theamountofwatervaporinjectedintotheatmoshpherebythecoolingtowersatmaximumloadwillvarybetweenapproximately40cfs(18,000gpm)and62cfs(27,800gpm)dependingonambientairconditions.Thisamountofmoisturehasbeencomparedtothatwhichwouldbeputintotheatmospherebyevapotranspirationifapproximately10squaremilesofbuildingsandpavementinacitywerereplacedwithvegetation.Sinceplumeswillusuallyriseseveralthousandfeet,theheatandremainingmoisturewillbedissipatedatthisaltitude.Dependinguponambienttemperatureconditions,thetemperatureofplumesleavingthetowerwillvarybetweenapproximately50OFand110oF.~~Suspendedsalts~~areimpurities,particulates,anddissolvedsolidsthatwillbepresentintheintakeriverwater,whichwillbeaddedasmake-uptotheCirculatingWaterSystem.Aswatersplashesoverthebafflesofthecoolingtower,saltssmallenoughtobecomesuspendedintheairflowandcarriedupandoutofthetowerwillbecomepartoftheplume.Thequantityofsaltsandthechemicalcontentoftheplumewilldependlargelyonthechemicalqualityoftheservicewater.Itisestimatedthataservicewaterimpuritycontentof770pramwillresultintheconcentrationoflessthan62ppmintheplume.Therewill26-6  
SoupCo.4.DanvilleBoroughBloomsburg
-19.4Bloomsburg
-19.4Danville-27.45.MerckaCo.Danville-27.46.DanvilleStateHospitalDanville-27.47.SunburyMun.Auth.Sunbury-38.5IPr1.0Mgd35.0MgdPuPrMPrNA4.0MgdMSbNAINoneNoneMPr2.0MgdNouseofriverwaterWillexpanduse.Servesabout8,000personsServesabout500persons.Largequantityforcooling,smallforprocess.Servesabout4,000personsFoursummermonthsonly.PlumCreeksuppliesremainder.
Servesabout15,000persons.Allocated 4.0Mgd8.CelotexCorp.9.PP&L(SES)10.ShamokinDamMunicipal Auth.Sunbury-38.5Sunbury-38.5Shamokin-44.4INoneNoneIPr245MgdMPrNAServesabout2,000personsll.Millersburg WaterCo.12.Harrisburg Mun.Auth.13.International PaperCo.14.'Bethlenem SteelCo.15.BoroughofSteeltonWaterCo.16.Bethlehem SteelCo.17.Metropolitan Edison(SES)Millersburg
-69.4Harrisburg
-91.0Harrisburg
-91.0.Harrisburg
-91.0Steelton-93.4Steelton-
-93.4Middletown
-100.2MSbNAMSbNAINANACoolingIPr1.3Mgd'ooling IPr245MgdINANAMPr1.7MgdAllocated 5.0Mgd rN TABLE2.2.5CONT'DUserNameLocation-RiverMilesQuantityUseClass(MGD)Comment18.Metropolitan Edison(HES)Yorkhaven
-105.2Pr11,782Mgd19.PP&L(SES)20.Wrightsville WaterCo.21.ColumbiaWaterCo.22.Lancaster WaterAuth.23.YorkWaterCo.24.SafeHarborWaterPowerCorp.(HES)25.PP&L(SES)26.PP&L(HES)27.Phila.Electric(PS)28.Phila.Elec.(NS)29.Phila.Elec.&-Susque-hannaPowerCo.(HES)30.ChesterWaterAuth.31.Baltimore WaterAuth.BrunnerIsland-108.0IWrightsville
-119.0MColumbia-119.0MLancaster-PrPrPrPr745MgdNA1.8Mgd8.0MgdHoltwood-137.9IPrHoltwood-137.9IPrMuddyRun-140.4IPrPeachbottom
-143.0INAConowingo
-154.3IPr65Mgd21,337Mgd12,931Mgd0.03Mgd53,018MgdChester-*MSbNABaltimore, Md.-*MSbNAYork-*MSbNASafeHarbor-129.7MPr79,527MgdBasedonolddate.Allocated 24.0Mgd*NotonRiver~NotonRiver*NotonRiver*NotonRiver32.Havre-de-Grace Municipal Auth.Havre-de-Grace, Md.-MPr162.01.4MgdNote:RiverNA(SES)(HES)(PS)(NS)IMPuPrSbMgdmilesarefromSusquehanna LEGENDL888EhNDNoteavailable SteamElectricStaticnHydroelectric StationPumpingStationNuclearStationIndustrial Municipal PublicPrimaryStandbyMilliongallonsperdaySESsite SSES23TheNationalRegisterofHistoricPlacesliststheDennision House,35Dennision Street:,FortyFort,Pennsyvlania approximately 21milesnortheast ofthesite,asthenearesthistorical place.Therearethreeareasofculturalinterestwithinthesitelocale:theNorthBranchCanal,CouncilCupandalocalcemetery.
TheNorthBranchCanalislocatedbetweentheriverandU.S.Route11.Atthepresentthecanalisindisrepair.
TheSusquehanna SESsitehasbeencloselytiedtotheearlyeconomicdevelopment oftheNorthBranchValleysinceitwasfirsttraversed bytheNorthBranchCanal,animportant linkintheSusquehanna CanalSystem.TheNorthBranchCanalprovidedanewwaterrouteforthetransport ofanthracite minedintheWilkes-Barre areaandthuscontributed heavilytothevalley'sprosperity byopeningupnewmarketsforcoalallalongthefar-flung Pennsylvania CanalSystem.TheNorthBranchexperienced itsgreatestbusinessgrowthintheyearsbeforeandduringtheCivilWar.Withthecomingoftherailroads, however,itdeclinedinimportance asdidothercanalsandcanalsystems.Partofthecanal,including thatpartwhichcutsacrosstheSusquehanna SESsite,continued inbusinessuntiltheearly1900s.CouncilCuphasbeenusedasanIndianmeetingsiteandislocatedontheeastsideoftheriveratahighpointwheresurveillance oftherivervalleyisquiteadvantageous.
Thisareahasculturalinterestbecauseithasbeendocumented asthesiteofacouncilmeetingin1793tosettlealanddisputebetweenIndiansandsettlers.
According tolocallegend,itisalsothesiteofmeetingsamongIndiannations.Archeologists havereportedthatthesiteisnotlikelytoproducesignificant artifacts becausethereisnoevidenceofapermanent encampment onthebluff.Asmallcemeteryislocatedinthenorthernpartofthesite.Itisoutsidetheexclusion area.Accesstothecemeteryisviaapublicroad,andnotthroughthesiteproperty.
Thecemeterywillnotbedisturbed inanywayduring'onstruction oroperation ofthefacility.
TheUnionReformedandLutheranChurchinWapwallopen isthefirstoftheselandmarks.
On-siteinspection hasestablished thatthehousesandotherbuildings surrounding thechurchwillhidethepowerlinestructures andconductors fromview.2%31 SSES(seeFigure2.2.5)theriverisshallow;itslowflowdepthwasaboutfivefeet.NearMapwallopen thedepthsincreasetomorethansevenfeetandthebottomcontourisgenerally moreuniformexceptforashallowrockledgeatBellBend.AtWapwallopen theriverchangescourseabruptly, witha'0oturntothewest.Thispoolarea,calledBellBend,isuptofourteenfeetdeep.Atitsmouth,Wapwallopen Creekhasalargedeltaofrockandgravel.Belowthispoint,theriverwidensto500yardsandbecomeshallower.
Downstream fromBeachHaven,aflatbedrockareaextendstothemouthofNescopeck Creek;alargeriffleareagiveswaytoadeeppoolbelowthispoint.WaterqualityattheSusquehanna SESsitehasbeenmonitored byPPSLmonthlysince1968.Themaximumtotaldissolved solidsofrecordis389partspermillion(ppm),andthelowestofrecordis80ppm.Hardnesshasrangedfrom248ppmto52ppm,andtherecordedwatertemperature hasrangedfrom85OZto34oF.Averagewaterquality,basedonthesamplescollected, ispresented inTable2.5.1.Thedatacollected byPPSLisgenerally compatible withwaterqualityrecordscollected bytheU.S.Geological SurveyfortheSusquehanna RiveratDanville, approximately 30rivermilesdownsteam fromthesite(1964through1967).Pumpingofacidwaterfromdeepmineshascausedsignificant fishkillsinthepast.In1961,amajorfishkillwascausedbyacidminewaterwhenthepHatBerwickdroppedfrom7.0to3.5andthetotalironincreased from5ppmto40ppm(Ref.2-5).PPSLrecordsfrom1968to1970showthatthepHhasonlyvariedfrom6.5to7.4andisconsidered acceptable forfreshwater aquaticlife.Waterusesandwaterqualitycriteriahavebeendesignated fortheNorthBranchoftheSusquehanna River,fromtheLackawanna Rivertoitsconfluence.
Theseusesandcriteriaareprescribed byChapter93,WaterQualityCriteriaoftheseRulesandRegulations ofthePennsylvania Department ofEnvironmental Resources.
Verylittledataareavailable onbackground radiation levelsoftheriver.Thequalityofariverreflects, inpart,thecondition ofitswatershed.
'Theamountofsedimentinthewaterisanindexofthesoil,thedensityandkindofvegetation, andtheintensity andamountofrainfallontheriver~swatershed.
Similarly, theamountofdissolved solidsinthewaterisanotherindexofthewatershed.
Theradiological burdenofariverisgovernedbythesesamefactors.25-3 t~.
SSESprojectwillbeontheorderof200gpm.Groundwaterhydrology ofthesiteindicates that,ifwellsaretobeused,theneededquantityofwaterprobablycouldbedeveloped fromwellslocatedontheflocdplainadjacenttotheriver.Suchwellsprobablywouldinducerechargefromtheriver,theregylimitingtheextentoftheconeofdepression surrounding thewells.Althoughwaterlevelswouldbeloweredasaresultofpumpagefromwells,thiseffectwouldnotbeexpectedtoextendbeyondthepropertyownedbyPPSLandwouldlastonlyaslongasthewellsarepumped.Near-term pumpingtestswillbeconducted toestablish thedistances involved.
Therewouldprobablybenoadverseeffectontheotherwellsinthevalleyfromawellorwellsproducing 200gpm.Thegroundwatertableintheareaisasubduedreplicaofthesurfacetopography.
Atthesitethewatertableisfoundgenerally within35feetofthegroundsurface,usuallyjustbelowthebedrocksurfacebutsometimes withintheoverburden soils.Groundwatercontoursconstructed fromwaterlevelmeasurements indrillholesshowthatthegroundwateratthesitemoveseastwardfromtheelevatedsitetotheadjacentriverfloodplain.Permeability testsoftheglacialmaterials andtheunderlying bedrockshowthattherateofmovementofthegroundwaterisslow.*Thesetestsindicatethatthe'ermeability oftheglacialmaterials variesfrom2.2x10-~Cm/Secto4.5x10-~Cm/Secvertically, and2x10-~Cm/Sechorizontally.
Permeability oftherockvariesfrom3x10-4Cm/Secto4x10-~oCm/Sec.25-5 SSESTABLE2.5.1CHEMICALANALYSESOFTHENORTHBRANCHQUNAIATHESTEAPRIL68THROUGHAUGUST1970*MinimumMaximumA~veraeSilica(Si02)Iron(Fe)Aluminum(Al)Manganese (Mn)Calcium(Ca)Magnesium (Mg)Sodium(Na)6Potassium (asBicarbonate (HC03)Sulfate(SO~)Chloride(CX)Nitrate(N03)Phosphate**
Dissolved SolidsHardnessasCaC03Dissolved OxygenBiochemical OxygenDemand(5dayBOD)Temperature F.pHColorNa)0.090.020.000.0012.63.40.00~25.612.83.60.50.0079.651.57.80.8346.55.55.11.720.560.9565.221.89.481.815518.24.00.4388.8248.014.26.6857.4111.03.40.400.100.1132.99.62.755.260.010.81.70.21206.8125.010.62.96338.8Allvaluesinpartspermillion(ppm),exceptthosefortemperature, pHandcolor.*PP6LRecords-Biweeklysamples**Basedononlythreesamples IIIA SSES(22.5oacrsorsectors)usingthefollowing techniques:
350o~360o~10o204'04404~50o60o,70o80o;90o~100otosector1(N),tosector2(NNE),tosector3(NE),tosector4(ENE),tosector5(E),etc.20Theotheradjustment consisted ofincluding the"calm"windobservations inthelowestspeed(2-3mph)range.Thiswasdoneforeachlapse-rate classbydistributing thenumberofcalmwindoccurrences overthe16sectorsinproportion tothefrequency distribution ofthelowestspeedrange.Theeightsetsofwindrosedataarereproduced inTable2.6.1.Annualaveragerelativeconcentration (dilution factors)attherestricted areaboundarywerecomputedfromthestandardformula(Ref.2-9)foracontinuous-ground levelsource:I20.0lf=0.02032f(sm).-"./-)<zXwhereo~isobtainedfromthePasquill-Gifford curves(Ref.2-10)foradistancexbetweensourceandtherestricted areaboundary.
Thewindspeeduisspecified asameanforeachspeedrange,e.g.,8-12mphistakenas10mphor4.47m/s;fisthefrequency ofoccurence
(%)ofthewindforagivensector.Thefactor2mx/nisthearclengthofeachsector'overwhichlong-term horizontal dispersion isassumeduniform.Theminimumdistancefromsourcetotherestricted areaboundaryforn=16sectorsisindicated inTable2.6.2.Thecomputation ofrelativeconcentraticn X/Qwasaccomplished bydigitalcomputer.
Resultswereobtainedforthesevenmainlapse-rate (orstability) classes,forfivewindspeedrangesandthenaddedtogivetheannualaverageX/Qvaluesforeachofthe16windsectors.TheseareshowninTable2.6.2.Specialconsideration wasgiventothestabilitv class"G~~forwhichthelapse-rate isgreaterthan4DC/100m/
sincenoezcurvesexistforthiscase.Here,o~valuesforClassF,scaledbythefactor(2.5)-/a, wereused.26-4 k
SSESTherearenoknowntallstructures inthearea,eitherexistingorproposed, whichwouldbeofsufficient heighttointersect theplume.Therefore, thewettingoricingproblemassociated withtheplumedoesnotappeartobesignificant.
Itisnotlikelythattheplumewouldaffecttheflightofaircraftovertheplant.Theclosestairportisapproximately 4milessouthwest oftheplantandwillnotbesignificantly affectedbytheoperation ofthecoolingtowers.Itisarelatively smallairfieldwithagrassrunwayandisusedbylightaircraft.
Conditions thatproducelongplumesareoftenaccompanied byfog,rainorlowclouds;thatis,conditions whichwouldthemselves normallyrestrictlightaircraftoperations.
Immediately overthecoolingtowers,lightaircraftwouldprobablyexperience mildtomoderateturbulence duetotheheatintheplume.Anon-visible plume,or<train~~containing watervapor,heatandsuspended saltswillexistintheatmosphere forsomedistancebeyondthevisibleplume.Thelengthofthisidentifiable trainwilldependontherateofmixingwiththeambientairanduponvariations intheseparameters causedbyotherphysicalfeatures.
Theamountofwatervaporinjectedintotheatmoshphere bythecoolingtowersatmaximumloadwillvarybetweenapproximately 40cfs(18,000gpm)and62cfs(27,800gpm)depending onambientairconditions.
Thisamountofmoisturehasbeencomparedtothatwhichwouldbeputintotheatmosphere byevapotranspiration ifapproximately 10squaremilesofbuildings andpavementinacitywerereplacedwithvegetation.
Sinceplumeswillusuallyriseseveralthousandfeet,theheatandremaining moisturewillbedissipated atthisaltitude.
Depending uponambienttemperature conditions, thetemperature ofplumesleavingthetowerwillvarybetweenapproximately 50OFand110oF.~~Suspended salts~~areimpurities, particulates, anddissolved solidsthatwillbepresentintheintakeriverwater,whichwillbeaddedasmake-uptotheCirculating WaterSystem.Aswatersplashesoverthebafflesofthecoolingtower,saltssmallenoughtobecomesuspended intheairflowandcarriedupandoutofthetowerwillbecomepartoftheplume.Thequantityofsaltsandthechemicalcontentoftheplumewilldependlargelyonthechemicalqualityoftheservicewater.Itisestimated thataservicewaterimpuritycontentof770pramwillresultintheconcentration oflessthan62ppmintheplume.Therewill26-6  


SSESbe110poundsperacreperyeardepositedintheimmediatevicinityofthecoolingtowers.Theseairbornesaltswillsettletothegroundinapatterndeterminedbyprevailingmeteorologicalconditions.Xngeneral,saltdepositionwillbethegreatestnearthecoolingtowersandwilldecreaseinconcentrationwithdistanceawayfromthetowers.Thedistributionofthesaltdepositionwillbecommensuratewiththearealcoverageofthevisibleplume.Sincethesaltsarewatersoluble,mostofthesedepositswillberedissolvedbyprecipitationandwillflowbacktotheSusquehannaRiver.Theimpactofthesesaltsbothon/andoff-sitewillbeinsignificant.2.6-7  
SSESbe110poundsperacreperyeardeposited intheimmediate vicinityofthecoolingtowers.Theseairbornesaltswillsettletothegroundinapatterndetermined byprevailing meteorological conditions.
Xngeneral,saltdeposition willbethegreatestnearthecoolingtowersandwilldecreaseinconcentration withdistanceawayfromthetowers.Thedistribution ofthesaltdeposition willbecommensurate withthearealcoverageofthevisibleplume.Sincethesaltsarewatersoluble,mostofthesedepositswillberedissolved byprecipitation andwillflowbacktotheSusquehanna River.Theimpactofthesesaltsbothon/andoff-sitewillbeinsignificant.
2.6-7  


SSESSusueannaSES-Frackville500-kvLine-PPSLproposestoemploythesamecriteriaandotherconsiderationsindesigningthislineaspreviouslydetailedfortheSusquehannaSES-Lackawanna500-kvline.Theprimarystructuretypewillbetheself-supporting,latticesteel,single-circuitstructureasshowninFigure3.2.3.Allrelatedfoundations,conductorhardwareconfigurations,andcolorcombinationsareidentical.Itisestimatedthatapproximately125structureswillberequiredtocompletetheSusquehannaSES-Frackville500-kvline.Thesinglemajordifferencebetweentheselineshowever,,isthattubularsteelH-framestructureswillbeusedforthefirsttwoandone-halfmilesofthelinefromtheSusquehannaSES500/230-kvSubstationtoapointbeyondtheSusquehannaRivercrossing.Thereasonsforthisdecisionareasfollows:Theproximityofthisportionofthelinetothesitevicinity.2~Tostandardize,insofaraspracticable,theappearanceofallstructuescrossingtheSusquehannaRiverinthevicinityoftheplantsite.ToachieveadegreeofcompatibilitybetweentheappearanceofthelineandexistingandexpecteddevelopmentpatternsalongU.S.Route11andinthe,vicinitoftheBorouhofBeachHaven.3~Yg3.2.2.3RadioandTelevisionInterference/AudibleNoiseThegenerationofradiofrequencynoisesignalsunderbothfairandfoulweatherconditionswillbeminimizedbytheselectionofoptimumconductorsizes,phasebundleconfigurations,andphasespacings.Nostructureswillbelocatednearanycommercialradio,televisionormicrowavetransmittingfacilities.Nolinelocationisplannedwhichwouldparallelanyexistingtelephone,telegraph,orothercommunicationfacilitytoanextentthatinductiveinterferenc'etotheoperationofsuchfacilitywouldresult.'oiseintheaudiblefrequencyrangeisaphenomenonwhichispresentonallelectricaltransmissionnlines.At230-kv,thenoiseisusuallyinaudible.At500-kv,however,thenoiseamplitudethatisanimportantdesignconsideration.Atwo-conductorbundleconfigurationwillbeusedforthe500-kvtransmissionlines.ThisdesignhasprovensuccessfulinreducingaudiblenoiseonexistingPPSL500-kvlinesandisgenerallyusedbyotherutilitiesaswell.Inaddition,widthsoftheplannedrights-of-wayshould3~27 SSESTABLE3.2.2POPULATIONDISTRIBUTIONSUSQUEHANNASESTOLACKAWANNA500-KVLINECountyTownship/Borough/CityPercentCensusYearsChange19701960~TownshiLuzerneLackawannaSalemUnionHunlockPlymouthKingstonExeterRansom+24.5+63.2-18.26.1+13.7+42.84.43890'31241253768.168220572614278361965450186913091196.1251LuzerneLackawannaBoroucOhShickshinnyPlymouthLarksvilleEdwardsvilleSwoyersvilleWestWyomingKingstonExeterDicksonCityBlakely8.68.3-10.31.4+0.5+15.69.61.60.5+0.316859536393756336786365918325467076986391184310401439057116751316620261474777386374LuzerneLackawanna~CitWilkes-BarreScranton7.1.103564111443 SSES3~4MATERUSEFigure3.4.1presentstheSusquehannaSESwateruse'iagram.Thediagramdepicts,indetail,theflow',pathstoandfromthevariousplantwatersystems.Theriverintakewillwithdrawanaverageof32,000gpmfromtheriverflowforthemakeupofevaporationlossfromthecoolingtowers,blowdownlosses,anddomesticuses.Thisamountstolessthan15%oftheminimumdesignriverflow(540cfs).Thisusewillnotappreciablyinfluencethedownstreamriverlevel.Theintakestructurewillbe'designedtoensureminimaldestructionoftheaquaticbiota.Thiswillbedonebydesigningastructurehavinglowwatervelocities(notgreaterthan0.75fps)throughtheintakeentranceandwithfeatures,whichdiscouragefishentrapmentandprovideforfishescape.ThequalityofwaterintheSusquehannaRiverforatwo-yearperiodfrom1968to1970asmeasuredbyPPSLispresentedinTable3.4.1.Detailsofwater'andwastetreatmentarediscussedinSubsections3.7.1and3.7.2.34-1 IIlII4C'!41FII SSESgpmfor2units,thepondholdupcapacitywillbeslightlygreaterthanthe24hourholdupneededtoensureafairlyconstantriverdischargetemperature,i.e.,fluctuationsinblowdownwatertemperaturewillnotappreciablyaffectthetemperatureofoutflowfromthepond.Theoutflowqualitywillbemonitoredanddischargedtotheriver.Duringanormalshutdown,thespraysystemswillbeoperative.Approximately900,2~~hollowconespraynozzleslocatedabovethepondsurfacewilleffecttherequiredcooling.Thespraypondwillalsofunctionasaheatsinkduringemergencyshutdownconditions.Underthismodeofoperation,makeupwaterneednotbeaddedtothepondtoachieveitssafetyfunction.Waterwillbecirculatedthroughthespraysystem,asbefore,toeffecttherequiredcooling.3.5.26IntakeandDischarcaeStructuresBoththemake-upwaterintakestructureandthedischargearrangementwillbelocatedontheSusquehannaRiver.Theintakewilldrawascreenedwatersupplyof32,000gpm(designyearlyaverage)forthemake-upofwaterlossesfromevaporationinthecoolingtowers,blowdownfromcoolingtowerbasins,anddomesticusage.Thedischargearrangementwill'ervetodisposeofblowdown,effluentfromtheradwastesystem,andsewagetreatmenteffluentintotheriver.Preliminarystudieshaveindicatedthataconventionaltypeintakecomprisedofacombinedreinforcedconcreteriverintakeandpumphousestructurewithtrashracksandtravelingscreenswillbefeasible.Theintakestructurewouldcontainfourpumpseachratedat13,500gpm.Watervelocitythroughthebarrackswould'belimitedto0.75fpsinordertoallowmobileorganismstoescapefromwithintheinfluencezoneoftheintake.Sideopeningswouldalsobeprovidedtopermittheescapeoflessmobileorganismsbeforebeingdrawnontothetravelingscreens.Duetothelowminimumwaterlevel,aconventionaltypedesignwillrequireadredgedchannelwhichwillneedsomemaintenance.Trainingwallsorfenderpilesmayalsoberequiredtoprotectthestructurefromdebrisduringfloods.Thedischargearrangementwillbecomposedofaburiedpipeleadingtoasubmergedoutletintheriverabout600feetdownstreamoftheintakestructure.Aninvestigationispresentlybeingmadeconcerningadiffusionarrangementthatmaybeincorporatedforefficientmixingofeffluentandriverwater.3.5-5  
SSESSusueannaSES-Frackville 500-kvLine-PPSLproposestoemploythesamecriteriaandotherconsiderations indesigning thislineaspreviously detailedfortheSusquehanna SES-Lackawanna 500-kvline.Theprimarystructure typewillbetheself-supporting, latticesteel,single-circuit structure asshowninFigure3.2.3.Allrelatedfoundations, conductor hardwareconfigurations, andcolorcombinations areidentical.
.a SSES36THERADTOACTTVEWASTESYSTEMS361GeneralTheRadioactiveWasteSystemsaredesignedtoprovidecontrolledhandlinganddisposalofliquid,gaseous,andsolidwastes.Thesewasteswillberoutedfromeachunittoacommonradwastebuildingforprocessingforre-useordisposal.Mostoftheliquidradioactivewasteswillbeprocessedandre-usedintheplant,whileonlyasmallfractionoflow-levelwastemaybedischargedtotheSusquehannaRiver.Gaseousradioactivewasteswillbeprocessedbyseparation,removal,andretentionofradioactivegasesandparticulatespriortoreleaseofthedecontaminatedgases.Theliquidandgaseouseffluentswillbecontinuouslymonitored.Thedischargewillbeautomaticallystoppediftheeffluentconcentrationsexceedapplicableregulatorylimits.SolidradioactivewastesfromplantoperationswillbepackagedinDepartmentofTransportationapprovedcontainerspriortoshipmentoff-siteforpermanentdisposal.ThedesignobjectiveoftheLiquidandGaseousRadwasteSystemsistoreducetheactivityintheliquidandgaseouswastestomeetthecriteriatonumericaldoselimitsofAppendixIofl0CFRpart50.ThesolidRadwasteSystemisnotexpectedtocontributesignificantlyeithertothedischargeofradioactiveeffluentsortotheoff-siteradiationdose.3.6.2LiuidWastesTheLiquidRadwasteSystemcollects,monitors,treatsandpreparesradioactiveliquidsothatmostofitcanbereusedintheplant.ThissystemwillbecommontobothUnits1and2.TheLiquidRadwasteSystemconsistsoffourbasicsubsystems:equipmentdrains,floordrains,chemicaldrainsandlaundrydrainsasshowninFigure3.6.1.Equipment,willbeselected,arrangedandshieldedtopermitoperation,inspection,andmaintenancewithinregulatorylimitsforpersonnelexposures.Clean-upequipmentwillincludefilters,demineralizers,andwasteevaporators.Crossconnectionsbetweenthesubsystemswillprovideadditionalflexibilityforthebatchprocessingofthewastesbyalternatemethodsusingthevariousclean-upequipment.Theequipmentdrainshavethehighestconcentrationofradioactiveinpurities(approximately<10-~uCi/ml).Aclosedcollectionsystemcollectsequipmentleakagefrom3.6-1  
Itisestimated thatapproximately 125structures willberequiredtocompletetheSusquehanna SES-Frackville 500-kvline.Thesinglemajordifference betweentheselineshowever,,is thattubularsteelH-framestructures willbeusedforthefirsttwoandone-halfmilesofthelinefromtheSusquehanna SES500/230-kv Substation toapointbeyondtheSusquehanna Rivercrossing.
Thereasonsforthisdecisionareasfollows:Theproximity ofthisportionofthelinetothesitevicinity.
2~Tostandardize, insofaraspracticable, theappearance ofallstructues crossingtheSusquehanna Riverinthevicinityoftheplantsite.Toachieveadegreeofcompatibility betweentheappearance ofthelineandexistingandexpecteddevelopment patternsalongU.S.Route11andinthe,vicinitoftheBorouhofBeachHaven.3~Yg3.2.2.3RadioandTelevision Interference/Audible NoiseThegeneration ofradiofrequency noisesignalsunderbothfairandfoulweatherconditions willbeminimized bytheselection ofoptimumconductor sizes,phasebundleconfigurations, andphasespacings.
Nostructures willbelocatednearanycommercial radio,television ormicrowave transmitting facilities.
Nolinelocationisplannedwhichwouldparallelanyexistingtelephone, telegraph, orothercommunication facilitytoanextentthatinductive interferenc'e totheoperation ofsuchfacilitywouldresult.'oise intheaudiblefrequency rangeisaphenomenon whichispresentonallelectrical transmissionn lines.At230-kv,thenoiseisusuallyinaudible.
At500-kv,however,thenoiseamplitude thatisanimportant designconsideration.
Atwo-conductor bundleconfiguration willbeusedforthe500-kvtransmission lines.Thisdesignhasprovensuccessful inreducingaudiblenoiseonexistingPPSL500-kvlinesandisgenerallyused byotherutilities aswell.Inaddition, widthsoftheplannedrights-of-way should3~27 SSESTABLE3.2.2POPULATION DISTRIBUTION SUSQUEHANNA SESTOLACKAWANNA 500-KVLINECountyTownship/Borough/Ci tyPercentCensusYearsChange19701960~TownshiLuzerneLackawanna SalemUnionHunlockPlymouthKingstonExeterRansom+24.5+63.2-18.26.1+13.7+42.84.43890'31241253768.168220572614278361965450186913091196.1251LuzerneLackawanna BoroucOhShickshinny PlymouthLarksville Edwardsville Swoyersville WestWyomingKingstonExeterDicksonCityBlakely8.68.3-10.31.4+0.5+15.69.61.60.5+0.316859536393756336786365918325467076986391184310401439057116751316620261474777386374LuzerneLackawanna
~CitWilkes-Barre Scranton7.1.103564111443 SSES3~4MATERUSEFigure3.4.1presentstheSusquehanna SESwateruse'iagram.
Thediagramdepicts,indetail,theflow',paths toandfromthevariousplantwatersystems.Theriverintakewillwithdrawanaverageof32,000gpmfromtheriverflowforthemakeupofevaporation lossfromthecoolingtowers,blowdownlosses,anddomesticuses.Thisamountstolessthan15%oftheminimumdesignriverflow(540cfs)
.Thisusewillnotappreciably influence thedownstream riverlevel.Theintakestructure willbe'designed toensureminimaldestruction oftheaquaticbiota.Thiswillbedonebydesigning astructure havinglowwatervelocities (notgreaterthan0.75fps)throughtheintakeentranceandwithfeatures, whichdiscourage fishentrapment andprovideforfishescape.ThequalityofwaterintheSusquehanna Riverforatwo-yearperiodfrom1968to1970asmeasuredbyPPSLispresented inTable3.4.1.Detailsofwater'andwastetreatment arediscussed inSubsections 3.7.1and3.7.2.34-1 IIlII4C'!41FII SSESgpmfor2units,thepondholdupcapacitywillbeslightlygreaterthanthe24hourholdupneededtoensureafairlyconstantriverdischarge temperature, i.e.,fluctuations inblowdownwatertemperature willnotappreciably affectthetemperature ofoutflowfromthepond.Theoutflowqualitywillbemonitored anddischarged totheriver.Duringanormalshutdown, thespraysystemswillbeoperative.
Approximately 900,2~~hollowconespraynozzleslocatedabovethepondsurfacewilleffecttherequiredcooling.Thespraypondwillalsofunctionasaheatsinkduringemergency shutdownconditions.
Underthismodeofoperation, makeupwaterneednotbeaddedtothepondtoachieveitssafetyfunction.
Waterwillbecirculated throughthespraysystem,asbefore,toeffecttherequiredcooling.3.5.26IntakeandDischarcae Structures Boththemake-upwaterintakestructure andthedischarge arrangement willbelocatedontheSusquehanna River.Theintakewilldrawascreenedwatersupplyof32,000gpm(designyearlyaverage)forthemake-upofwaterlossesfromevaporation inthecoolingtowers,blowdownfromcoolingtowerbasins,anddomesticusage.Thedischarge arrangement will'erve todisposeofblowdown, effluentfromtheradwastesystem,andsewagetreatment effluentintotheriver.Preliminary studieshaveindicated thataconventional typeintakecomprised ofacombinedreinforced concreteriverintakeandpumphouse structure withtrashracksandtraveling screenswillbefeasible.
Theintakestructure wouldcontainfourpumpseachratedat13,500gpm.Watervelocitythroughthebarrackswould'belimitedto0.75fpsinordertoallowmobileorganisms toescapefromwithintheinfluence zoneoftheintake.Sideopeningswouldalsobeprovidedtopermittheescapeoflessmobileorganisms beforebeingdrawnontothetraveling screens.Duetothelowminimumwaterlevel,aconventional typedesignwillrequireadredgedchannelwhichwillneedsomemaintenance.
Trainingwallsorfenderpilesmayalsoberequiredtoprotectthestructure fromdebrisduringfloods.Thedischarge arrangement willbecomposedofaburiedpipeleadingtoasubmerged outletintheriverabout600feetdownstream oftheintakestructure.
Aninvestigation ispresently beingmadeconcerning adiffusion arrangement thatmaybeincorporated forefficient mixingofeffluentandriverwater.3.5-5  
.a SSES36THERADTOACTTVE WASTESYSTEMS361GeneralTheRadioactive WasteSystemsaredesignedtoprovidecontrolled handlinganddisposalofliquid,gaseous,andsolidwastes.Thesewasteswillberoutedfromeachunittoacommonradwastebuildingforprocessing forre-useordisposal.
Mostoftheliquidradioactive wasteswillbeprocessed andre-usedintheplant,whileonlyasmallfractionoflow-level wastemaybedischarged totheSusquehanna River.Gaseousradioactive wasteswillbeprocessed byseparation, removal,andretention ofradioactive gasesandparticulates priortoreleaseofthedecontaminated gases.Theliquidandgaseouseffluents willbecontinuously monitored.
Thedischarge willbeautomatically stoppediftheeffluentconcentrations exceedapplicable regulatory limits.Solidradioactive wastesfromplantoperations willbepackagedinDepartment ofTransportation approvedcontainers priortoshipmentoff-siteforpermanent disposal.
Thedesignobjective oftheLiquidandGaseousRadwasteSystemsistoreducetheactivityintheliquidandgaseouswastestomeetthecriteriatonumerical doselimitsofAppendixIofl0CFRpart50.ThesolidRadwasteSystemisnotexpectedtocontribute significantly eithertothedischarge ofradioactive effluents ortotheoff-siteradiation dose.3.6.2LiuidWastesTheLiquidRadwasteSystemcollects,
: monitors, treatsandpreparesradioactive liquidsothatmostofitcanbereusedintheplant.ThissystemwillbecommontobothUnits1and2.TheLiquidRadwasteSystemconsistsoffourbasicsubsystems:
equipment drains,floordrains,chemicaldrainsandlaundrydrainsasshowninFigure3.6.1.Equipment, willbeselected, arrangedandshieldedtopermitoperation, inspection, andmaintenance withinregulatory limitsforpersonnel exposures.
Clean-upequipment willincludefilters,demineralizers, andwasteevaporators.
Crossconnections betweenthesubsystems willprovideadditional flexibility forthebatchprocessing ofthewastesbyalternate methodsusingthevariousclean-upequipment.
Theequipment drainshavethehighestconcentration ofradioactive inpurities (approximately
<10-~uCi/ml).
Aclosedcollection systemcollectsequipment leakagefrom3.6-1  


SSESeachunitandroutesittotheRadwasteBuilding.Afterprocessingbyfiltrationandionexchangethewaterflowstotheequipmentdrainsampletankswhereitissampled.Ifthewaterissatisfactoryforre-useitisreturnedtothecondensatestoragetank.Ifthesamplerevealshighconductivity(approximately>1umho/cm)orhighradioactivity(approximately>10-~)thewaterisreturnedtothesystemforreprocessing.Filtermediaandion-exchangeresinsusedforthisprocessingwhenexhaustedareprocessedwithintheSolidRadwasteSystemforoff-siteshipment.3.6.2.2FloorDrainsThefloordrainsgenerallycontainalowconcentrationofradioactiveimpurities(approximately<10-~uCi/ml)andsomedissolvedandsuspendedsolids(200ppm).Thesedrainsincludecoolerdrains,areadrains,baseplatedrains,andothermiscellaneouslowactivitydrains.Theprocessinganddispositionofthiswasteissimilartothatoftheequipmentdrains.Ifchemicalanalysisindicatesthattheprocesseddrainagemeetscondensatestoragetankwaterqualityrequirements,thebatchisdischargedtothecondensatestoragetank.3.6.2.3ChemicalDrainsThechemicaldrainsalsohavelowconcentrationsofradioactiveimpurities(approximately<10-~uCi/ml).Theliquids,whichconsistoflaboratorydrains,decontaminationsolutions,andwastewater,areprocessedbywasteevaporatorstoconcentratethevolumeofradioactivewasteandtoallowre-useordischargeofthepurifieddistillate.Treatmentbyfiltrationandionexchangeisnotsuitableduetothechemicalcompositionsofthesedrains.TheevaporatorconcentratesareprocessedwithintheSolidRadwasteSystemforoff-siteshipment.Thedistillateissampledpriortoreturntothecondensatestoragetankorpriortodischargetodeterminetheneccesityoffurtherprocessing.362.4~LaundrDrainsThelaundrydrainshavethelowestconcentrationofradioactiveimpurities(<10-5uCi/m1).Thesewastesarefromdecontaminationofequipment,personneldecontaminationshowers,andlaundrywastewater.Becauseofatendencytofoulionexchangeresinsincreasingcarryoverinevaporators,thesewastesarekeptseparatefromotherliquidwastes.Theyareprocessedbyfiltrationandthensampledpriortobeingdischarged.3.6.2.5SstemDesin36-2  
SSESeachunitandroutesittotheRadwasteBuilding.
Afterprocessing byfiltration andionexchangethewaterflowstotheequipment drainsampletankswhereitissampled.Ifthewaterissatisfactory forre-useitisreturnedtothecondensate storagetank.Ifthesamplerevealshighconductivity (approximately
>1umho/cm)orhighradioactivity (approximately
>10-~)thewaterisreturnedtothesystemforreprocessing.
Filtermediaandion-exchange resinsusedforthisprocessing whenexhausted areprocessed withintheSolidRadwasteSystemforoff-siteshipment.
3.6.2.2FloorDrainsThefloordrainsgenerally containalowconcentration ofradioactive impurities (approximately
<10-~uCi/ml) andsomedissolved andsuspended solids(200ppm).Thesedrainsincludecoolerdrains,areadrains,baseplatedrains,andothermiscellaneous lowactivitydrains.Theprocessing anddisposition ofthiswasteissimilartothatoftheequipment drains.Ifchemicalanalysisindicates thattheprocessed drainagemeetscondensate storagetankwaterqualityrequirements, thebatchisdischarged tothecondensate storagetank.3.6.2.3ChemicalDrainsThechemicaldrainsalsohavelowconcentrations ofradioactive impurities (approximately
<10-~uCi/ml)
.Theliquids,whichconsistoflaboratory drains,decontamination solutions, andwastewater,areprocessed bywasteevaporators toconcentrate thevolumeofradioactive wasteandtoallowre-useordischarge ofthepurifieddistillate.
Treatment byfiltration andionexchangeisnotsuitableduetothechemicalcompositions ofthesedrains.Theevaporator concentrates areprocessed withintheSolidRadwasteSystemforoff-siteshipment.
Thedistillate issampledpriortoreturntothecondensate storagetankorpriortodischarge todetermine theneccesity offurtherprocessing.
362.4~LaundrDrainsThelaundrydrainshavethelowestconcentration ofradioactive impurities
(<10-5uCi/m1)
.Thesewastesarefromdecontamination ofequipment, personnel decontamination showers,andlaundrywastewater.Becauseofatendencytofoulionexchangeresinsincreasing carryover inevaporators, thesewastesarekeptseparatefromotherliquidwastes.Theyareprocessed byfiltration andthensampledpriortobeingdischarged.
3.6.2.5SstemDesin36-2  


SSESTheLiquidRadwasteSystemdesignissuchthatwastesresultingfromnormalplantoperationsareaccommodatedandprocessedasdescribedabove.Thesystemdesignalsoprovidesforhandlingofthelargevolumesofwasteexpectedtoresultfromrefuelingandmaintenanceactivities.Thesystemdesignwillalsohandlemalfunctionsofashortte'rmnaturesuchasincreasedvalvesealand/orpumpsealleakage.Experiencefromoperatingstationshasbeenfactoredintotheradwastedesign.Normaloperatingpracticesaretoprocessthewastesthroughthesubsystemsprovided.Batchsamplingofthewastesisdonetoensurethateachbatchmeetsspecifiedwaterqualityandradioactivityrequirements.Wastesnotmeetingthese,requirementsarerecycledforreprocessingoraresenttoasurgetankifprocessingcapacityisnotimmediatelyavailable.TheLiquidRadwasteSystemisarrangedbelowgradeintheradwastebuilding.Thebasementcanbelikenedtoabathtubsothatleakageand/orspillageisretainedbyconcretecompartments.TheseliquidsarereturnedtotheLiquidRadwasteSystemthroughtheradwastedrainsystem.Protectionagainstaccidentaldischargewillbeprovidedby'esignredundancy,instrumentationforradiationdetection,-andalarmsystemswhichdetectabnormaloperationalconditions.Theradwastefacilityarrangementandthemethodsofwasteprocessingprovideasubstantialdegreeofconfinementofthewasteswithintheplant.Thisassuresthatinthe'eventofafailureoftheLiquidRadwasteSystemorerrorsintheoperationofthesystem,potentialforinadvertentreleaseofliquidsisminimized.Theliquideffluentswillbedischargedatarateof10to50gpmintotheretentionpond.Thiswillprovidedilutionandadequatemixingpriortodischarge'intotheSusquehannaRiver.Table5.2.1insubsection5.2.1itemizestheexpectedannualdischargeofradioactivematerialsfromtheLiquidRadwasteSystems.3.63GaseousWastesTheGaseousRadwasteSystemwillmonitor,process,andcontrolthereleasesofradioactivegasesfromthefacility.Thedesignwillprovideadequatetimetotakecorrectiveaction,ifnecessary,-tocontrolandlimittheactivityreleaserates.Gaseouswastesoriginatinginthereactcrtravelwiththemainsteamthroughthepowerconversionsystems.TheGaseousRadwasteSystemcollectsthegasesfromthemaincondenser.Thesewastesincludeactivationgases(N-13,N-16and0-19)arisingduringnormalplantoperations,fission36-3 0
SSESTheLiquidRadwasteSystemdesignissuchthatwastesresulting fromnormalplantoperations areaccommodated andprocessed asdescribed above.Thesystemdesignalsoprovidesforhandlingofthelargevolumesofwasteexpectedtoresultfromrefueling andmaintenance activities.
SSES3~73.7.1~ChemicalWashes3.7.1.1RawWaterTreatmentSystemWasteSusquehannaRiverwaterwillbetreatedforuseasmakeuptothereactor.Treatmentwillconsistofclarifyingtherawriverwaterbyadditionsofacoagulant(alum),coagulantaid,alkaliforpHadjustment,andsodiumhypochlorite.Theclarifiedwaterwillbefilteredanddemineralized.Thedemineralizerwillthenconsistofcation,anion,andmixedbedion-exchangers.Theclarifierwillproduceasludgewhichwillconsistbasicallyofriverwaterwiththesuspendedsolidsoftheriverconcentratedtoapproximately0.5-3%solidsbyweight.Inadditiontherewillbeasmallamountofaluminum,sulfate,andpolyelectrolytemixedin.Theaverageyearlyflowofthesludgeblow-offisexpectedtobe1.5gpm,whichisquitesmallwhencomparedtotheflowof10,000gpmreturningfromthepondtotheriver.Themakeupsystemfilterswillbebackwashedperiodicallyandthisbackwasheffluentwillbebasicallyriverwater.Thisbackwashwaterwillbemixedwiththedischargewaterfromthepond.Themakeupdemineralizerswillbeperiodicallyregeneratedwithsulfuricacidandsodiumhydroxidesolutions.TheregenerantwastewillbecollectedinaneutralizationbasinortankwherethepHwillbeadjusted.Thiswaterwillthenbeslowlymixedwiththepond.Approximatley15,800gallonsperday(11gpm)ofregenerantwastewillbeproduced.Theregenerantwastewillberiverwaterconcentratedapproximately6times,withtheadditionofapproximately1,700ppmofsodiumsulfate.Thetotaldissolvedsolidsconcentrationwillbeintheneighborhoodof3,000ppm.Theneutralizeddemineralizerwaste,whenmixedwiththedischargefromthespraypond,willresultinanincreaseof3to5ppmtotaldissolvedsolidsoftheretentionponddischarge.Itisexpectedthattheregenerantwasteneutralizationtankwillbeemptiedin0hours.Therateofdischargewillthenbeapproximately66gpmandresultinanincreaseof23ppmdissolvedsolidsintheponddischarge.3~71  
Thesystemdesignwillalsohandlemalfunctions ofashortte'rmnaturesuchasincreased valvesealand/orpumpsealleakage.Experience fromoperating stationshasbeenfactoredintotheradwastedesign.Normaloperating practices aretoprocessthewastesthroughthesubsystems provided.
Batchsamplingofthewastesisdonetoensurethateachbatchmeetsspecified waterqualityandradioactivity requirements.
Wastesnotmeetingthese,requirements arerecycledforreprocessing oraresenttoasurgetankifprocessing capacityisnotimmediately available.
TheLiquidRadwasteSystemisarrangedbelowgradeintheradwastebuilding.
Thebasementcanbelikenedtoabathtubsothatleakageand/orspillageisretainedbyconcretecompartments.
TheseliquidsarereturnedtotheLiquidRadwasteSystemthroughtheradwastedrainsystem.Protection againstaccidental discharge willbeprovidedby'esignredundancy, instrumentation forradiation detection,-
andalarmsystemswhichdetectabnormaloperational conditions.
Theradwastefacilityarrangement andthemethodsofwasteprocessing provideasubstantial degreeofconfinement ofthewasteswithintheplant.Thisassuresthatinthe'eventofafailureoftheLiquidRadwasteSystemorerrorsintheoperation ofthesystem,potential forinadvertent releaseofliquidsisminimized.
Theliquideffluents willbedischarged atarateof10to50gpmintotheretention pond.Thiswillprovidedilutionandadequatemixingpriortodischarge
'intotheSusquehanna River.Table5.2.1insubsection 5.2.1itemizestheexpectedannualdischarge ofradioactive materials fromtheLiquidRadwasteSystems.3.63GaseousWastesTheGaseousRadwasteSystemwillmonitor,process,andcontrolthereleasesofradioactive gasesfromthefacility.
Thedesignwillprovideadequatetimetotakecorrective action,ifnecessary,-to controlandlimittheactivityreleaserates.Gaseouswastesoriginating inthereactcrtravelwiththemainsteamthroughthepowerconversion systems.TheGaseousRadwasteSystemcollectsthegasesfromthemaincondenser.
Thesewastesincludeactivation gases(N-13,N-16and0-19)arisingduringnormalplantoperations, fission36-3 0
SSES3~73.7.1~ChemicalWashes3.7.1.1RawWaterTreatment SystemWasteSusquehanna Riverwaterwillbetreatedforuseasmakeuptothereactor.Treatment willconsistofclarifying therawriverwaterbyadditions ofacoagulant (alum),coagulant aid,alkaliforpHadjustment, andsodiumhypochlorite.
Theclarified waterwillbefilteredanddemineralized.
Thedemineralizer willthenconsistofcation,anion,andmixedbedion-exchangers.
Theclarifier willproduceasludgewhichwillconsistbasically ofriverwaterwiththesuspended solidsoftheriverconcentrated toapproximately 0.5-3%solidsbyweight.Inadditiontherewillbeasmallamountofaluminum, sulfate,andpolyelectrolyte mixedin.Theaverageyearlyflowofthesludgeblow-offisexpectedtobe1.5gpm,whichisquitesmallwhencomparedtotheflowof10,000gpmreturning fromthepondtotheriver.Themakeupsystemfilterswillbebackwashed periodically andthisbackwasheffluentwillbebasically riverwater.Thisbackwashwaterwillbemixedwiththedischarge waterfromthepond.Themakeupdemineralizers willbeperiodically regenerated withsulfuricacidandsodiumhydroxide solutions.
Theregenerant wastewillbecollected inaneutralization basinortankwherethepHwillbeadjusted.
Thiswaterwillthenbeslowlymixedwiththepond.Approximatley 15,800gallonsperday(11gpm)ofregenerant wastewillbeproduced.
Theregenerant wastewillberiverwaterconcentrated approximately 6times,withtheadditionofapproximately 1,700ppmofsodiumsulfate.Thetotaldissolved solidsconcentration willbeintheneighborhood of3,000ppm.Theneutralized demineralizer waste,whenmixedwiththedischarge fromthespraypond,willresultinanincreaseof3to5ppmtotaldissolved solidsoftheretention ponddischarge.
Itisexpectedthattheregenerant wasteneutralization tankwillbeemptiedin0hours.Therateofdischarge willthenbeapproximately 66gpmandresultinanincreaseof23ppmdissolved solidsintheponddischarge.
3~71  


SSES3.7.1.3CirculatinWater-BowdownpromCaulis~TowerMakeupwatertothecirculatingwatersystemisSusquehannaRiverwater.Thiswaterwillconcentrateapproximately3.7timesinthesystemduetoevaporationinthecoolingtower.Thecyclesofconcentrationswillbecontrolledbyblowingdowntothepondattheapproximaterateof5,000gpmpercoolingtower.SulfuricacidwillbeaddedcontinuouslytothecirculatingwatertopreventscalingandtomaintainapHbetween7.2and7.6.Thesulfuricacidisconsumedinthisprocesswitharesultantincreaseinsulfatesandaproportionaldecreaseinalkalinity.Chlorinewillbeaddedintermittentlytothecirculatingwatertopreventslimebuildupinthecondensertubes.Thechlorineresidualatthecoolingtowerbasinwillbelessthan1ppm.Thischlorineresidualiscompletelyconsumedinthepond.Further,onlyoneunitwillbechlorinatedatatime.ThedischargedwaterfromthepondtotheSusquehannaRiverwillhaveachlorineresidualofzero.Studiesshallbecarriedouttodeterminewhatwastestreammonitoringwillberequired.3.7.2DomesticandSanitarWater~SstemsThedomesticwatersystemwillprovidewaterforthepotablewatersupplyandtheSewageTreatmentSystemnecessaryfornormalplantoperationsandshutdownperiods.Domesticwaterwill'besuppliedfromtheriverviatheMakeupWaterTreatmentSystem.Approximately30gpmwillbeprocessedbymeansofaclarifier,filter,andchlorinatorlocatedinthecirculatingwaterpumphouse.Astoragetankwillprovideforshortdurationdraw-offsofupto100gpm.Thedomesticwatersystemwillbeindependentfromthefireprotectionsystemexceptduringconstruction.Asupplyforthecombineddomesticandfiresystemduringtheconstructionperiodwillbepumpedfromwellssunkonthefloodplainbelowtheplant.Itislikelythatonlyaminimumamountoftreatmentintheformofchlorinationwillberequiredforwaterfromthewells.Theplantwillbeservedbyadualaerationsewagetreatmentsystem.Bothunitswillberequiredfortheapproximateeight-yearconstructionperiod.Thereafter,theplantfacilitiescanbehandledbyoneofthetwounits.Theplantsewagedisposalsystemwillnotreceiveradioactivelaundryordecontaminationsolutions.Thevisitorssewagedisposalfacilitieswillbeindependentoftheplantsystem.3e72  
SSES3.7.1.3Circulatin Water-BowdownpromCaulis~Tower Makeupwatertothecirculating watersystemisSusquehanna Riverwater.Thiswaterwillconcentrate approximately 3.7timesinthesystemduetoevaporation inthecoolingtower.Thecyclesofconcentrations willbecontrolled byblowingdowntothepondattheapproximate rateof5,000gpmpercoolingtower.Sulfuricacidwillbeaddedcontinuously tothecirculating watertopreventscalingandtomaintainapHbetween7.2and7.6.Thesulfuricacidisconsumedinthisprocesswitharesultant increaseinsulfatesandaproportional decreaseinalkalinity.
Chlorinewillbeaddedintermittently tothecirculating watertopreventslimebuildupinthecondenser tubes.Thechlorineresidualatthecoolingtowerbasinwillbelessthan1ppm.Thischlorineresidualiscompletely consumedinthepond.Further,onlyoneunitwillbechlorinated atatime.Thedischarged waterfromthepondtotheSusquehanna Riverwillhaveachlorineresidualofzero.Studiesshallbecarriedouttodetermine whatwastestreammonitoring willberequired.
3.7.2DomesticandSanitarWater~SstemsThedomesticwatersystemwillprovidewaterforthepotablewatersupplyandtheSewageTreatment Systemnecessary fornormalplantoperations andshutdownperiods.Domesticwaterwill'besuppliedfromtheriverviatheMakeupWaterTreatment System.Approximately 30gpmwillbeprocessed bymeansofaclarifier, filter,andchlorinator locatedinthecirculating waterpumphouse.
Astoragetankwillprovideforshortdurationdraw-offs ofupto100gpm.Thedomesticwatersystemwillbeindependent fromthefireprotection systemexceptduringconstruction.
Asupplyforthecombineddomesticandfiresystemduringtheconstruction periodwillbepumpedfromwellssunkonthefloodplainbelowtheplant.Itislikelythatonlyaminimumamountoftreatment intheformofchlorination willberequiredforwaterfromthewells.Theplantwillbeservedbyadualaerationsewagetreatment system.Bothunitswillberequiredfortheapproximate eight-year construction period.Thereafter, theplantfacilities canbehandledbyoneofthetwounits.Theplantsewagedisposalsystemwillnotreceiveradioactive laundryordecontamination solutions.
Thevisitorssewagedisposalfacilities willbeindependent oftheplantsystem.3e72  


SSES4'EFFECTSONHUMANACTIVITIESAplantProjectcommitteewillserveasameanstoassesstheneedsandproblemsassociatedwiththeproject.Typically,thecommitteeiscomposedofsixlocalresidentsandtworepresentativesofPPGL.Theprimarypurposeofthecommitteeistofosteranunderstandingbetweenthecompanyandthearearesidentsofeachother'sgoals,andtocooperateinachievingthesegoalsinordertodevelopthearea'seconomyandresources.Thecommitteewillenablelocalresidentstoserveasasoundingboardbetweenthecompanyandthecommunity,andprovidelocalpeoplewithameansofchannellingsuggestions'raskingquestionsconcerningtheconstructionprojects.SimilarcommitteeshavebeenformedatotherPPGLfacilitiesandhavebeenquitesuccessful.Duringthepeakconstructionperiod,theworkforcewillincreasetoapproximately2,500men(seeSubsection2.2.1.2).DatafromanotherPPSLconstructionprojectinasimilarrurallocationindicatethat10%oftheworkerstravellessthan15miles,54%travelbetween15and40miles,and36%travelmorethan40miles(distancesareforone-waytrips).Manyoftheseworkerswillalreadybeinthearea.Therefore,nosignificantadverseeffectonthecommunity(suchasadditionalservices)isexpected.Thetotalmonthlypayrollduringtheperiodofpeakactivity(1975-1977)willbeapproximately$4,000,000.Thiswillhaveapositiveeconomiceffectontheregion.Theadditionof2,500jobstothelocalpayrollwillincreasetheeconomicbaseofthearea.Siteactivityisplannedtocommenceinearly1973andwillrunthrough1981'hetotalmonthlypayrollduringtheperiodofpeakactivity(1975<<1977)willbeapproximately$4,000,000.Thelocalcommunitymaybefacedwithprovidingadditionalservices,suchassewagefacilitiesorschoolfacilities,butexpendituresbyconstructionworkersforhousing,food,clothingandotheritemswilloffsetthecostofcommunityservices.Overall,theimpactispositiveratherthannegative,andineithercaseisrelativelyshort-lived.ThesewagetreatmentsystemdescribedinSubsection3.7.2willhandlesanitarywaterduringtheconstructionphaseaswellastheoperationalphaseoftheSusquehannaSES.AllremovalandultimatedisposalofsanitarywasteswillbeinaccordancewithstandardsofthePennsylvaniaDepartmentofEnvironmentalResources.Thehandlingofsanitarywastesattheplantsitewillbeconsideredoneofthefirstprioritiesatthestartofconstruction.Thestorage,handlinganddisposalofcleaningmaterials,oils,oilywastes,etc.,willbeincompliancewiththeapplicableregulations.4.2-1 W
SSES4'EFFECTSONHUMANACTIVITIES AplantProjectcommittee willserveasameanstoassesstheneedsandproblemsassociated withtheproject.Typically, thecommittee iscomposedofsixlocalresidents andtworepresentatives ofPPGL.Theprimarypurposeofthecommittee istofosteranunderstanding betweenthecompanyandthearearesidents ofeachother'sgoals,andtocooperate inachieving thesegoalsinordertodevelopthearea'seconomyandresources.
SSESDuringconstruction,chippingmachineswillbeusedtodisposeofsmalltreesduringclearingoperationsandtheutilizationofclosedincineratorburningoftrashanddebrisispresentlybeingreviewedandevaluated.Inaddition,afireprotectionsystemwillbeestablished.Somecombustionproductswillbereleasedtotheatmosphereasaresultofoperatingdiesel-poweredmachinery.Theseitemsshouldhavenosignificanteffectupontheenvironment.Duringthesitepreparationphaseofconstruction,dustcontrolmeasureswillbeusedtoreducedustlevels.Thesemeasureswillconsistprimarilyofsprinklingandwillcontinueasrequiredthroughouttheconstructionprogram.Tofurtherreducetheamountofdustgenerated,roadsandparkinglotswillbesurfacedassoonaspractical.Incertainareasoftheconstructionsite,includingroadsandparkingareas,untiltheyarepavedirainswilltendtowashloosesoiloffthesite.Inordertoreducemudrunoff,thedrainagewillbechannelledintothesettingbasinsandonlyafterclearingwillthewaterbeallowedtodrainoff.Constructionactivitieswillcreatesomeunavoidablenoise.Theactivitieswhichcreatethemostnoisewillbescheduledtobestreducetheoff-siteimpact(i.e.blasting,etc.,willbedoneduringday-lighthoursandnotatnight).Theremaybetrafficcongestionenteringandleavingthejobsite,partidularlyatstartingandquittingtime.Ifmultipleshiftsarenecessary,therewillbeasmoothandorderlytransitionbetweenshiftstoreducethelikelihoodoftrafficcongestion.Discussionsarepresentlyunderwaywiththe'ennsylvaniaDepartmentofTransportation(PennDOT)concerningwaystokeeptrafficcongestiontoaminimum.SeveraltransmissionlinecorridorswillbeselectivelyclearedinaccordancewiththeprovisionsandspecificationsofPPEL'sVegetationManagementProgram.Theseproceduresinvolvemaximumretentionofexistinglowgroundcoverintheright-ofmayarea,preservationofexistingtreegrowthinravinesandgullieswhereadequateclearencetolineconductorscanbeobtained,andthe"tailoring"ofexistingtreegrowthalongimprovedroadscrossedbytheselinestoretainanaturalscreenbetweenroadtrafficandtheclearedright-of-waystrip.Whereexistingtreegrowthadjacenttoimprovedroadscannotberetainedbecauseofinterferencewithlinereliability,selectedvarietiesoflowgrowingtreesandshrubswillbeplantedtoprovideapermanentscreenbetweentheclearedright-of~ayandroadtraffic.ItisthepolicyofPPGLtotakeallstepsreasonabletominimizetheimpactoftheSusquehannaSESonthefloraandfaunaofthearea.4'-2  
Thecommittee willenablelocalresidents toserveasasoundingboardbetweenthecompanyandthecommunity, andprovidelocalpeoplewithameansofchannelling suggestions'r askingquestions concerning theconstruction projects.
'II SSES5.0uz*5.1EFFECTSOFRELEASEHEAT51.1ThermalD'schareThermaldischargefromtheSusquehannaSESwillconsistprimarilyofheatrejectedtotheatmospherebythecoolingtowers.Eachof'thetwocoolingtowers.willhave,adesignheatloadof8x10~BTU/hr.Anadditionalthermaldischargetakesplaceinthecontinuousblowdownofwaterfromthepond.OverflowfromthepondwillbedischargedintotheSusquehannaRivertogetherwithwaterfromtheradwasteanddomesticwatertreatmentsystems.Studiesareunderwaytodeterminetheoptimumdischargearrangement.Theblowdownfromthecooling.towersisexpectedtobe10,000gpm(22.3cfs).Theestimatedtemperatureofthisblowdownis93~Fand74.2<FforAugustandDecemberrespectively.Towerblowdownwillbedischargeddirectlyintothepond.Thecapacityofthepondwillensureaminimumretentionperiodof24hours.Theblowdownwaterwillflowthroughthepondandwilllosesomeofitsheatbysurfaceheat,transferpriortodischarge.Ithasbeendeterminedthatthemaximumblowdowntemperatureafterleavingthepondwillbe89.50Fand63oFforAugustandDecemberconditionsrespectively.The.heatintheblowdownflowwillbedispersedintotheSusquehannaRiverfromwhichitwilleventuallybedissipatedtotheatmospherebysurfaceheattransfer.Tentatively,theoutflowfromthepondwillbedischargedintotheSusquehannaRiverbymeansofadiffuserlocatedattheriverbottomatthelowestelevationofabout480ft.MSL.Dischargefromthediffuserwouldtakeplacethroughaseriesofsmallportsabout4inchesindiameterdischargingtheflowata45~anglewiththehorizontalinthedirectionoftheriverflowwithanestimatedvelocityof6feetpersecond,asshowninFig.5.1.1Theorientationoftheportsareselectedsothatjetactionwillnotcausescouringoftheriverbedandtoincreasetherateofdilutionfromtheambientriverwater.Theoutflowfromthepondwillresultinincreasedrivertemperaturesinthedownstreamvicinityoftheproposeddiffuser.Theextent'andthemagnitudeofthisaffectedzonedependsprimarilyupontherateofdischarge,thetemperatureoftheblowdownovertheambientrivertemperatu're,thevelocityofdischarge,thediffuserportsizeandthemagnitudeoftheriverflow.ApreliminarystudyhasbeenmadeinordertopredictthecharacteristicsofthermalisothermsintheSusquehanna51-1 SSESatthedownstreamendoftheelementalvolumearray.Itisassumedthemomentumoftheoutfallhasbeendissipatedatthispoint.Thesolutionofthedispersionmodelwasobtainedbyusingthefollowinghydraulicdata:Crosssectionsfromthe1966surveywereusedtoobtaincharacteristicvaluesofaveragevelocities,shearvelocities,andhydraulicradiiforflowconditionsanalyzed.20Lateralandverticaldispersioncoefficientswereevaluatedfromthe'sectionaldataandthesemi-empiricallyderiveddispersioncoefficientequations.ItwasfoundthatforAugustclimaticconditions,withariverflowof1000cfs,the2oF(riseinrivertemperatureaboveambient)isothermextendsabout20feetfromthediffuser.ThecalculatedisothermsareshowninFigures5.1.2and5.1.3.Withthesameclimaticconditionsandamedianflowof3400cfsthe2oFisothermwouldprobablynotreachthesurface,asshowninFigure5.1.4.ForDecemberclimaticconditions,withariverflowof2600cfs,the2OFisothermextendsabout750feetdownstreamfromthediffuser.Thes'eisothermsareshowninFigures5.1.5and5.1.6.Analysisoftheconditionatariverflowof12,800cfsshowedthatthe2OFisothermwouldnotreachthesurface,asshowninFigure5.1.7.Forthecasesanalyzed,themaximumwidthofthe2OFisothermislessthan100feet.ThereductionintheplumelengthbetweenDecemberandAugustismainlyduetothereductionintheestimatedtemperaturedifferencebetweentheblowdownandtherivertemperature.ItisseenthattheheatedwaterdischargefromSusquehannaSESwillnotexceedthetemperaturelimitsofthePennsylvaniaPowerWaterQualityStandardsunderbothcriticalandaverageriverflowconditionsoutsideasmall(lessthan100foot)mixingzone.WaterqualitystandardsincludingthermalstandardsfortheCommonwealthofPennsylvaniaarepresentedinsubsection2.5.1.51.2EffectsonBiotaDuringtheoperationoftheSusquehannaSEStherewillbeessentiallynoeffectonaquaticorganismsfromthethermaldischargeasdiscussedinsubsection5.1.1.Periphytonwhichmovewiththewatercurrentsmaybeeffectedintheareaofthethermalplumebutthiswillhavealimited5.1-3 I
Similarcommittees havebeenformedatotherPPGLfacilities andhavebeenquitesuccessful.
SSES5.2.1'GaseousfuetsThedesignofthecryogenicOffgasSystem,coupledwithdesignfuelcladdingperformance,providesfordelayandretentionsufficenttoreducethe.expectedannualaveragereleaserateto9.3pCi/sec.Thisreleaserateisbasedonaninputtotheoffgassystemof100,000pCi/secdesignbasisofa30minuteoldmixtureofnoblegases.Theexpectedinputanddischargeare1/4theseamounts.TheGaseousRadwasteSystemisdescribedinSection3.6.Thesystemisexpectedtoremoveessentiallyalloftheiodineandparticulateradioactivityintheprocessedgases.Theannualaverageemissionratesandisotopiccompositonofgasreleasedbytheoff-gastreatmentisincludedinTable5'.2.InadditontotheessentiallycontinuousreleaseshowninTable5.2.2intermittentreleasefromthemechanicalvacuumpumpdischargeoccursapproximately40hourseachyear.Thisgasisdischargedtotheatmosphereviatheturbinebuildingexhaustandconsistsofapproximately5760curiesperyearofXe-133andapproximately860curiesperyearofXe-135.5.2.1.3Sol'dEffluentsThesolidradwastesystemisnotexpectedtoreleaseradioactivematerialtotheenvironment.Solidradwastesarepackagedinsealedcontainerspriortoshipment.Weareallexposedtoradiationinvaryingdegreesfromtheground,sky,andairaroundusaswellasfromthefoodweeat.Thedegreeofexposuredependsonwherewelive,thetypeofhousewelivein,andtypeoffoodweeat.TheaveragenaturalradiationdosetopersonslvinginthhUnitedStatesisestimatedtobeabout0.125remperyear.Forsomeindividuals,thedosefromnaturalbackgroundradiationismorethantwicethisaverage.Thesourcesofthisdosearecosmicraysandnaturallyoccurringradioactiveelementsintheearth,thefoodweeat,thewaterwedrink,-andtheairwebreathe.Theexposuretocosmicradiationincreaseswithelevationabovesealevel.Wereceiveradiationdirectlyfrommanymineralscontaininguraniumandthoriumisotopesinthegroundorintheconstructionmaterialsinourhomes.Aradioisotopeofpotassiumisthemostsignificantradioactivesubstanceinourfood.Anadditonalsmallamountofdoseisreceivedthorughradioactivematerialsinwaterandair.Thedosetopersonslivingneartheplant,inadditon-tothatreceivedfiomnaturalbackground,hasbeencalculated52-2  
Duringthepeakconstruction period,theworkforcewillincreasetoapproximately 2,500men(seeSubsection 2.2.1.2).DatafromanotherPPSLconstruction projectinasimilarrurallocationindicatethat10%oftheworkerstravellessthan15miles,54%travelbetween15and40miles,and36%travelmorethan40miles(distances areforone-waytrips).Manyoftheseworkerswillalreadybeinthearea.Therefore, nosignificant adverseeffectonthecommunity (suchasadditional services) isexpected.
/1 SSESforeachtypeofreleaseandeach~~pathwaytoman."Theseverylowlevelsofdosearenotexpectedtoproduceanymeasurableeffectsinanindividual.Whenlargenumbersofpersonsareexposedtotheselowlevelsofradiation,effectsonpersonsinthegroup(somaticeffects)ordescendentsofthegroup(geneticeffects)couldpossiblyoccur.Forthisreason,itisappropriatetocomparethedosetoalargepopulationgroupfromoperationoftheplantwiththedosethatgroupreceivesfromnaturalbackground.Onemeasureofthepopulationdoseistoaddalltheradiationdosesreceivedbyallindividualsinthepopulationgroup.Thisresultingquantityisreferredtoasman-rem.Thenaturalbackgrounddosewithina50mileradiusofthissiteiscomputedtoabout2,000,000man-rembasedonthepopulationin1970and3,000,000man-.rembasedontheprojectedpopulationintheyear2020.Thewholebodygammadosesshouldbecomparedtothebackgrounddose.Theexternalbodybetadoseaffectsonlytheexternalpartsofthebody(e.g.skin)whicharelesssensitivetoradiationthanotherpartsofthebody.Theiodinedoseslistedaffectprimarilythethyroidgland,whichagainislesssensitivetoradiationthanotherpartsofthebody.Formanyyearsstandardscommitteesandscientistshaveexertedconsiderableefforttodeterminetheeffectofradiationonman.Asaresult,asetofguidelineshasbeendevelopedtodefinemaximumlevelsofradiationdosewhichareacceptableforanyindividualandforlargepopulationgroups.Therecommendedannuallimitsfornon-occupationalexposureare0.5remforanindividualand0.17rem/personforalargepopulationgroup.Themostsignificantdosecomesfromgaseousemmisionstotheatmosphere(directradiation-submersiondose).Theaquaticpathwaysareofsecondaryimportance.Althoughtritiumisreleasedtotheatmospherealongwithnoblegases,thebetaradiationenergyfromtritiumistoolowto~representanexternal(tothebody)radiationhazard.Furthermorethedilutioncapacityofmoistureintheairissogreatthatuptakeoftritiumintothebodyandthesubsequentradioactivityareremovedprior.torelease;therefore,theonlysignificantexposurefromatmosphericreleasesisfromnoblegases,isotopesofkryptonandxenon.Emissionstotheatmosphereduringnormalfull-poweroperationsareshowninTable5.2.3.Atmosphereicsubmersion,whereoneiscompletelysurroundedbythecloudofradioactivegas,willbetheprimarysourceofexternalexposurefromthesegaseousemissions.Thebasicequation52-3 SSESusedtocalculatesubmersiondoseisD~0.25EXwhereDisrad/sec,EisaverageMEV/disintergrationandXiscuries/m~.Thisbasicequationwaschangedtorem/year=7.88x10~EQX/Q.ValuesforEandQ(curies/sec)weredeterminedfromistopicdistributionof,gaseousemissionsasshowninTable5.2.2.ThevalueofEincludes.betaalthoughsomeofthebetaradiationdoesnotrepresentwholebody(somatic)orgeneticdose.ValuesforX/Qwerebasedonannualaveragemeteorology.Themaximumannualaveragesubmersiondoserateatthesiteboundaryoftheplanthasbeenestimatedfornormalfullpoweroperationbasedonanticipatedmeteorologytobe0.48mrem/yearwithoutanycorrectionforoccupancyandshielding.Considerationofoccupancyandshieldingwillreducethedosetoanindividualbyatleastafactoroftwosothatthemaximumindividualdosewillbe0.24mrem/yearfromnormalfullpoweroperation.Toestimatepopulationdose(man-rem),meteorologicaldilutionfactorsandsubmersiondoserateswereestimatedforthemid-pointofeachofthepopulationsectorsindicatedbythedistancesanddirectionsgiveninTable5.2.3inman-remperyearandwascalculatedbymultiplying'thesectormid-pointdoserateinrem/yearbythepopulationineachsector.ThesevaluesaresummarizedinTable5.2.3.Thetotalpopulationdosewascalculatedbysummingtheman-remvaluesineachsectoroutto50miles.Thetotalpopulationdosethusdeterminedis1.44man-rem/yearvithoutanycorrectionforoccupancyorshielding.Thisisapproximately5x10-~%ofthedosetothesamepopulationgroupfromnaturalbackgroundradiation.Inadditiontonormalreleasesduringfullpoweroperation,Xe-133andXe-135willbereleasedonanintermittentbasisfromoperationofthemechanicalvacummpump.Annualaveragemeteorologycannotbeusedinthiscasebecausethereleaseoccursforashortperiodoftimefollowingashut-downandduringsubsequentstart-upofthereactor.Totaltimeinvolvedinthistypeofreleaseisexpectedtobe40hours/year.Themaximumannualaverageconcentrationatthesiteperimeter,basedon40hourPasquillFmetrorology,villbe1~1x10-8pCi/ccforXe-133and1.64x10-~pCi/ccforXe-135.UsingtheInternationCommissiononRadiationProtection(ICRP)methodofdosecalculation(Ref.5-2),theseconcentrationswillrepresentannualdosesof0.0185remfromXe-133and0.0082remfromXe-135.However,,mostofthisisskindoseAnindependentcalculationofthewholebody,skin,andlungdosehasbeenmadeusingreferences5-3,5-4gand5-5.Thesecalculationsover-estimatetheskindosebecausesomeofthebetaparticles,internalconversionelectrons,andAugerelectronswillnotpenetratedeeplyenoughtoexposeradiationsensitivetissue.However,the,energyfromtheseradiationsareassumedtobeabsorbed52-4 0
Thetotalmonthlypayrollduringtheperiodofpeakactivity(1975-1977) willbeapproximately
SSESEXHIBITADOSETOMANFROMACLOUDOFXeANDXeGiven:Acloudofl.lxl0pCi/ccXeandl.64xl0pCi/ccXe,133-9~135averagedoveroneyear.DataforcalculationsofZedose.138RadiationBlB2KIC(Fromyl)LIC(Fromyl)MIC(Fromyl)KIC(Fromy2)LIC(Fromy2)MIC(Fromy2)LXrayAugerKLLKLXKXYLMMMXYMe'an'o.Disxntegratxon.007.993.0023.0015.0005.4724.0787.0984.073780358.0157~0026.4381.13MeV.0753.1006.0436.0742.0786.450.0757.0800r.0043.0254.0297.0340.0033.0010~radgCi-h.0011.2132.0002.0002.0001.0454.0127.0168.0007.0019.0010.0002.0031.0024TotalNon-penetratingRadiation.2990g-radpCi-hyly2XraysKaKBKBKB.0023.3499.004.2297.1173.0633.0134.0796.0810.1605.031.030.035.036.004.605.0001.0152.0077.0047.0010TotalPenetratingRadiation,.0896'-rad~Cx-h SSES133XeLungdosefromAssumedvolumeof3500ml,weightof1000g..3xl.lxl0Thenlungconcentration=''3'.'5x'10'0=3.85xl0gCilunggmTheabsorbedfractionforlungforasourcedistributedinlungis=.09fortheaveragephotonenergy.Thelungdoseis(0.299=(.09x0.861)3.85x10x365x241.04104radI.1mradinternal"=3.4mradtotal5.2-10  
$4,000,000.
Thiswillhaveapositiveeconomiceffectontheregion.Theadditionof2,500jobstothelocalpayrollwillincreasetheeconomicbaseofthearea.Siteactivityisplannedtocommenceinearly1973andwillrunthrough1981'hetotalmonthlypayrollduringtheperiodofpeakactivity(1975<<1977) willbeapproximately
$4,000,000.
Thelocalcommunity maybefacedwithproviding additional
: services, suchassewagefacilities orschoolfacilities, butexpenditures byconstruction workersforhousing,food,clothingandotheritemswilloffsetthecostofcommunity services.
Overall,theimpactispositiveratherthannegative, andineithercaseisrelatively short-lived.
Thesewagetreatment systemdescribed inSubsection 3.7.2willhandlesanitarywaterduringtheconstruction phaseaswellastheoperational phaseoftheSusquehanna SES.Allremovalandultimatedisposalofsanitarywasteswillbeinaccordance withstandards ofthePennsylvania Department ofEnvironmental Resources.
Thehandlingofsanitarywastesattheplantsitewillbeconsidered oneofthefirstpriorities atthestartofconstruction.
Thestorage,handlinganddisposalofcleaningmaterials, oils,oilywastes,etc.,willbeincompliance withtheapplicable regulations.
4.2-1 W
SSESDuringconstruction, chippingmachineswillbeusedtodisposeofsmalltreesduringclearingoperations andtheutilization ofclosedincinerator burningoftrashanddebrisispresently beingreviewedandevaluated.
Inaddition, afireprotection systemwillbeestablished.
Somecombustion productswillbereleasedtotheatmosphere asaresultofoperating diesel-powered machinery.
Theseitemsshouldhavenosignificant effectupontheenvironment.
Duringthesitepreparation phaseofconstruction, dustcontrolmeasureswillbeusedtoreducedustlevels.Thesemeasureswillconsistprimarily ofsprinkling andwillcontinueasrequiredthroughout theconstruction program.Tofurtherreducetheamountofdustgenerated, roadsandparkinglotswillbesurfacedassoonaspractical.
Incertainareasoftheconstruction site,including roadsandparkingareas,untiltheyarepavedirainswilltendtowashloosesoiloffthesite.Inordertoreducemudrunoff,thedrainagewillbechannelled intothesettingbasinsandonlyafterclearingwillthewaterbeallowedtodrainoff.Construction activities willcreatesomeunavoidable noise.Theactivities whichcreatethemostnoisewillbescheduled tobestreducetheoff-siteimpact(i.e.blasting, etc.,willbedoneduringday-light hoursandnotatnight).Theremaybetrafficcongestion enteringandleavingthejobsite,partidularly atstartingandquittingtime.Ifmultipleshiftsarenecessary, therewillbeasmoothandorderlytransition betweenshiftstoreducethelikelihood oftrafficcongestion.
Discussions arepresently underwaywiththe'ennsylvania Department ofTransportation (PennDOT) concerning waystokeeptrafficcongestion toaminimum.Severaltransmission linecorridors willbeselectively clearedinaccordance withtheprovisions andspecifications ofPPEL'sVegetation Management Program.Theseprocedures involvemaximumretention ofexistinglowgroundcoverintheright-ofmay area,preservation ofexistingtreegrowthinravinesandgullieswhereadequateclearence tolineconductors canbeobtained, andthe"tailoring" ofexistingtreegrowthalongimprovedroadscrossedbytheselinestoretainanaturalscreenbetweenroadtrafficandtheclearedright-of-way strip.Whereexistingtreegrowthadjacenttoimprovedroadscannotberetainedbecauseofinterference withlinereliability, selectedvarieties oflowgrowingtreesandshrubswillbeplantedtoprovideapermanent screenbetweentheclearedright-of~ay androadtraffic.ItisthepolicyofPPGLtotakeallstepsreasonable tominimizetheimpactoftheSusquehanna SESonthefloraandfaunaofthearea.4'-2  
'II SSES5.0uz*5.1EFFECTSOFRELEASEHEAT51.1ThermalD'schareThermaldischarge fromtheSusquehanna SESwillconsistprimarily ofheatrejectedtotheatmosphere bythecoolingtowers.Eachof'thetwocoolingtowers.willhave,adesignheatloadof8x10~BTU/hr.Anadditional thermaldischarge takesplaceinthecontinuous blowdownofwaterfromthepond.Overflowfromthepondwillbedischarged intotheSusquehanna Rivertogetherwithwaterfromtheradwasteanddomesticwatertreatment systems.Studiesareunderwaytodetermine theoptimumdischarge arrangement.
Theblowdownfromthecooling.towersisexpectedtobe10,000gpm(22.3cfs).Theestimated temperature ofthisblowdownis93~Fand74.2<FforAugustandDecemberrespectively.
Towerblowdownwillbedischarged directlyintothepond.Thecapacityofthepondwillensureaminimumretention periodof24hours.Theblowdownwaterwillflowthroughthepondandwilllosesomeofitsheatbysurfaceheat,transferpriortodischarge.
Ithasbeendetermined thatthemaximumblowdowntemperature afterleavingthepondwillbe89.50Fand63oFforAugustandDecemberconditions respectively.
The.heatintheblowdownflowwillbedispersed intotheSusquehanna Riverfromwhichitwilleventually bedissipated totheatmosphere bysurfaceheattransfer.
Tentatively, theoutflowfromthepondwillbedischarged intotheSusquehanna Riverbymeansofadiffuserlocatedattheriverbottomatthelowestelevation ofabout480ft.MSL.Discharge fromthediffuserwouldtakeplacethroughaseriesofsmallportsabout4inchesindiameterdischarging theflowata45~anglewiththehorizontal inthedirection oftheriverflowwithanestimated velocityof6feetpersecond,asshowninFig.5.1.1Theorientation oftheportsareselectedsothatjetactionwillnotcausescouringoftheriverbedandtoincreasetherateofdilutionfromtheambientriverwater.Theoutflowfromthepondwillresultinincreased rivertemperatures inthedownstream vicinityoftheproposeddiffuser.
Theextent'andthemagnitude ofthisaffectedzonedependsprimarily upontherateofdischarge, thetemperature oftheblowdownovertheambientrivertemperatu're, thevelocityofdischarge, thediffuserportsizeandthemagnitude oftheriverflow.Apreliminary studyhasbeenmadeinordertopredictthecharacteristics ofthermalisotherms intheSusquehanna 51-1 SSESatthedownstream endoftheelemental volumearray.Itisassumedthemomentumoftheoutfallhasbeendissipated atthispoint.Thesolutionofthedispersion modelwasobtainedbyusingthefollowing hydraulic data:Crosssectionsfromthe1966surveywereusedtoobtaincharacteristic valuesofaveragevelocities, shearvelocities, andhydraulic radiiforflowconditions analyzed.
20Lateralandverticaldispersion coefficients wereevaluated fromthe'sectional dataandthesemi-empirically deriveddispersion coefficient equations.
ItwasfoundthatforAugustclimaticconditions, withariverflowof1000cfs,the2oF(riseinrivertemperature aboveambient)isothermextendsabout20feetfromthediffuser.
Thecalculated isotherms areshowninFigures5.1.2and5.1.3.Withthesameclimaticconditions andamedianflowof3400cfsthe2oFisothermwouldprobablynotreachthesurface,asshowninFigure5.1.4.ForDecemberclimaticconditions, withariverflowof2600cfs,the2OFisothermextendsabout750feetdownstream fromthediffuser.
Thes'eisotherms areshowninFigures5.1.5and5.1.6.Analysisofthecondition atariverflowof12,800cfsshowedthatthe2OFisothermwouldnotreachthesurface,asshowninFigure5.1.7.Forthecasesanalyzed, themaximumwidthofthe2OFisothermislessthan100feet.Thereduction intheplumelengthbetweenDecemberandAugustismainlyduetothereduction intheestimated temperature difference betweentheblowdownandtherivertemperature.
Itisseenthattheheatedwaterdischarge fromSusquehanna SESwillnotexceedthetemperature limitsofthePennsylvania PowerWaterQualityStandards underbothcriticalandaverageriverflowconditions outsideasmall(lessthan100foot)mixingzone.Waterqualitystandards including thermalstandards fortheCommonwealth ofPennsylvania arepresented insubsection 2.5.1.51.2EffectsonBiotaDuringtheoperation oftheSusquehanna SEStherewillbeessentially noeffectonaquaticorganisms fromthethermaldischarge asdiscussed insubsection 5.1.1.Periphyton whichmovewiththewatercurrentsmaybeeffectedintheareaofthethermalplumebutthiswillhavealimited5.1-3 I
SSES5.2.1'GaseousfuetsThedesignofthecryogenic OffgasSystem,coupledwithdesignfuelcladdingperformance, providesfordelayandretention sufficent toreducethe.expectedannualaveragereleaserateto9.3pCi/sec.Thisreleaserateisbasedonaninputtotheoffgassystemof100,000pCi/secdesignbasisofa30minuteoldmixtureofnoblegases.Theexpectedinputanddischarge are1/4theseamounts.TheGaseousRadwasteSystemisdescribed inSection3.6.Thesystemisexpectedtoremoveessentially alloftheiodineandparticulate radioactivity intheprocessed gases.Theannualaverageemissionratesandisotopiccompositon ofgasreleasedbytheoff-gastreatment isincludedinTable5'.2.Inadditontotheessentially continuous releaseshowninTable5.2.2intermittent releasefromthemechanical vacuumpumpdischarge occursapproximately 40hourseachyear.Thisgasisdischarged totheatmosphere viatheturbinebuildingexhaustandconsistsofapproximately 5760curiesperyearofXe-133andapproximately 860curiesperyearofXe-135.5.2.1.3Sol'dEffluents Thesolidradwastesystemisnotexpectedtoreleaseradioactive materialtotheenvironment.
Solidradwastes arepackagedinsealedcontainers priortoshipment.
Weareallexposedtoradiation invaryingdegreesfromtheground,sky,andairaroundusaswellasfromthefoodweeat.Thedegreeofexposuredependsonwherewelive,thetypeofhousewelivein,andtypeoffoodweeat.Theaveragenaturalradiation dosetopersonslvinginthhUnitedStatesisestimated tobeabout0.125remperyear.Forsomeindividuals, thedosefromnaturalbackground radiation ismorethantwicethisaverage.Thesourcesofthisdosearecosmicraysandnaturally occurring radioactive elementsintheearth,thefoodweeat,thewaterwedrink,-andtheairwebreathe.Theexposuretocosmicradiation increases withelevation abovesealevel.Wereceiveradiation directlyfrommanymineralscontaining uraniumandthoriumisotopesinthegroundorintheconstruction materials inourhomes.Aradioisotope ofpotassium isthemostsignificant radioactive substance inourfood.Anadditonal smallamountofdoseisreceivedthorughradioactive materials inwaterandair.Thedosetopersonslivingneartheplant,inadditon-to thatreceivedfiomnaturalbackground, hasbeencalculated 52-2  
/1 SSESforeachtypeofreleaseandeach~~pathway toman."Theseverylowlevelsofdosearenotexpectedtoproduceanymeasurable effectsinanindividual.
Whenlargenumbersofpersonsareexposedtotheselowlevelsofradiation, effectsonpersonsinthegroup(somaticeffects)ordescendents ofthegroup(geneticeffects)couldpossiblyoccur.Forthisreason,itisappropriate tocomparethedosetoalargepopulation groupfromoperation oftheplantwiththedosethatgroupreceivesfromnaturalbackground.
Onemeasureofthepopulation doseistoaddalltheradiation dosesreceivedbyallindividuals inthepopulation group.Thisresulting quantityisreferredtoasman-rem.Thenaturalbackground dosewithina50mileradiusofthissiteiscomputedtoabout2,000,000 man-rembasedonthepopulation in1970and3,000,000 man-.rembasedontheprojected population intheyear2020.Thewholebodygammadosesshouldbecomparedtothebackground dose.Theexternalbodybetadoseaffectsonlytheexternalpartsofthebody(e.g.skin)whicharelesssensitive toradiation thanotherpartsofthebody.Theiodinedoseslistedaffectprimarily thethyroidgland,whichagainislesssensitive toradiation thanotherpartsofthebody.Formanyyearsstandards committees andscientists haveexertedconsiderable efforttodetermine theeffectofradiation onman.Asaresult,asetofguidelines hasbeendeveloped todefinemaximumlevelsofradiation dosewhichareacceptable foranyindividual andforlargepopulation groups.Therecommended annuallimitsfornon-occupational exposureare0.5remforanindividual and0.17rem/person foralargepopulation group.Themostsignificant dosecomesfromgaseousemmisions totheatmosphere (directradiation-submersion dose).Theaquaticpathwaysareofsecondary importance.
Althoughtritiumisreleasedtotheatmosphere alongwithnoblegases,thebetaradiation energyfromtritiumistoolowto~represent anexternal(tothebody)radiation hazard.Furthermore thedilutioncapacityofmoistureintheairissogreatthatuptakeoftritiumintothebodyandthesubsequent radioactivity areremovedprior.torelease;therefore, theonlysignificant exposurefromatmospheric releasesisfromnoblegases,isotopesofkryptonandxenon.Emissions totheatmosphere duringnormalfull-power operations areshowninTable5.2.3.Atmosphereic submersion, whereoneiscompletely surrounded bythecloudofradioactive gas,willbetheprimarysourceofexternalexposurefromthesegaseousemissions.
Thebasicequation52-3 SSESusedtocalculate submersion doseisD~0.25EXwhereDisrad/sec,EisaverageMEV/disintergration andXiscuries/m~.
Thisbasicequationwaschangedtorem/year=7.88x10~EQX/Q.ValuesforEandQ(curies/sec) weredetermined fromistopicdistribution of,gaseousemissions asshowninTable5.2.2.ThevalueofEincludes.
betaalthoughsomeofthebetaradiation doesnotrepresent wholebody(somatic) orgeneticdose.ValuesforX/Qwerebasedonannualaveragemeteorology.
Themaximumannualaveragesubmersion doserateatthesiteboundaryoftheplanthasbeenestimated fornormalfullpoweroperation basedonanticipated meteorology tobe0.48mrem/year withoutanycorrection foroccupancy andshielding.
Consideration ofoccupancy andshielding willreducethedosetoanindividual byatleastafactoroftwosothatthemaximumindividual dosewillbe0.24mrem/year fromnormalfullpoweroperation.
Toestimatepopulation dose(man-rem),
meteorological dilutionfactorsandsubmersion doserateswereestimated forthemid-point ofeachofthepopulation sectorsindicated bythedistances anddirections giveninTable5.2.3inman-remperyearandwascalculated bymultiplying
'thesectormid-point doserateinrem/yearbythepopulation ineachsector.Thesevaluesaresummarized inTable5.2.3.Thetotalpopulation dosewascalculated bysummingtheman-remvaluesineachsectoroutto50miles.Thetotalpopulation dosethusdetermined is1.44man-rem/year vithoutanycorrection foroccupancy orshielding.
Thisisapproximately 5x10-~%ofthedosetothesamepopulation groupfromnaturalbackground radiation.
Inadditiontonormalreleasesduringfullpoweroperation, Xe-133andXe-135willbereleasedonanintermittent basisfromoperation ofthemechanical vacummpump.Annualaveragemeteorology cannotbeusedinthiscasebecausethereleaseoccursforashortperiodoftimefollowing ashut-downandduringsubsequent start-upofthereactor.Totaltimeinvolvedinthistypeofreleaseisexpectedtobe40hours/year.
Themaximumannualaverageconcentration atthesiteperimeter, basedon40hourPasquillFmetrorology, villbe1~1x10-8pCi/ccforXe-133and1.64x10-~pCi/ccforXe-135.UsingtheInternation Commission onRadiation Protection (ICRP)methodofdosecalculation (Ref.5-2),theseconcentrations willrepresent annualdosesof0.0185remfromXe-133and0.0082remfromXe-135.However,,
mostofthisisskindoseAnindependent calculation ofthewholebody,skin,andlungdosehasbeenmadeusingreferences 5-3,5-4gand5-5.Thesecalculations over-estimate theskindosebecausesomeofthebetaparticles, internalconversion electrons, andAugerelectrons willnotpenetrate deeplyenoughtoexposeradiation sensitive tissue.However,the,energyfromtheseradiations areassumedtobeabsorbed52-4 0
SSESEXHIBITADOSETOMANFROMACLOUDOFXeANDXeGiven:Acloudofl.lxl0pCi/ccXeandl.64xl0pCi/ccXe,133-9~135averagedoveroneyear.Dataforcalculations ofZedose.138Radiation BlB2KIC(Fromyl)LIC(Fromyl)MIC(Fromyl)KIC(Fromy2)LIC(Fromy2)MIC(Fromy2)LXrayAugerKLLKLXKXYLMMMXYMe'an'o.Disxntegratxon
.007.993.0023.0015.0005.4724.0787.0984.073780358.0157~0026.4381.13MeV.0753.1006.0436.0742.0786.450.0757.0800r.0043.0254.0297.0340.0033.0010~radgCi-h.0011.2132.0002.0002.0001.0454.0127.0168.0007.0019.0010.0002.0031.0024TotalNon-penetrating Radiation
.2990g-radpCi-hyly2XraysKaKBKBKB.0023.3499.004.2297.1173.0633.0134.0796.0810.1605.031.030.035.036.004.605.0001.0152.0077.0047.0010TotalPenetrating Radiation
,.0896'-rad
~Cx-h SSES133XeLungdosefromAssumedvolumeof3500ml,weightof1000g..3xl.lxl0 Thenlungconcentration
=''3'.'5x'10'0
=3.85xl0gCilunggmTheabsorbedfractionforlungforasourcedistributed inlungis=.09fortheaveragephotonenergy.Thelungdoseis(0.299=(.09x0.861) 3.85x10x365x241.04104radI.1mradinternal"
=3.4mradtotal5.2-10  


SSESDataforXedose135RadiationMean'.No.D'is'integration."feVBlB2kICL,M,.....IC.97.03.049.01.3.183.214.620.012.022ylY2y3.91.009.03,25.36.61.485.007.039.531-9Conc.1.64xl0~Ci/ccl.64x~.0pCi/gm1.293l.268xlOpCi/gmSkindosefromZe135(.654=.531)x1.268xlOx365x24=1.32x10rads/yr=13.2mrads/yr4WTotalbodydosefromXe135.53lxl.llxlO+5.9mrads/yr4'iYTotalbody=2.95mrads/yr25.2-11  
SSESDataforXedose135Radiation Mean'.No.D'is'integration
."feVBlB2kICL,M,.....IC
.97.03.049.01.3.183.214.620.012.022ylY2y3.91.009.03,25.36.61.485.007.039.531-9Conc.1.64xl0~Ci/ccl.64x~.0pCi/gm1.293l.268xlOpCi/gmSkindosefromZe135(.654=.531)x1.268xlO x365x24=1.32x10rads/yr=13.2mrads/yr4WTotalbodydosefromXe135.53lxl.llxlO
+5.9mrads/yr4'iYTotalbody=2.95mrads/yr25.2-11  


SSESLungdosefromXe135Absorbedfractionforaveragephotonenergyis=.05.39Lungconcentration=3.5x10xl.64x10'0=5.74xlO+CilunggmLungdoseis(.654=.05z531)x5.74xlOx365x24-53.4xlOrads.034mradsinternal=2.98mradstotal3.3mrem/yearSummaryofdosetoman133XWholeBodySkinLung14.3mrem/year3.4mrem/year135XWholeBodySkinLung3.0mrem/year6.6mrem/year3.0mrem/yearC.ThestandardAECcalculation(10CFR20AppendixB,Table2,Column1=500mrem/year)yieldsthefollowingdoseassumedtobetothewholebody:(1)Xe=18.5mrem/year133(2)Xe=8.2mrem/year1355.2-12 B0J SSESTABLE5;2.6SUMMARYOFTHEDOSECALCULATIONSSourceIndividualDose(mrem)PopulationDose(man-rem)W~BSkin~LunT~hroiBBoneWholeBodorGeneticDirectRadiationfromGaseousEmissionGDesignFuelLeakage(a)FullPowerOperationIntermittentVacuumPumpDischargeAquaticPathwaysNaturalBackground024**3.2150.0811403.20.0660.090l.447.5Negligible280,000*WB=WholeBodyGl=Gastrointestinaltract**Skindosewasnotcalculatedseparatefornormalfullpowerisincludedinthevalvefor-wholebody.
SSESLungdosefromXe135Absorbedfractionforaveragephotonenergyis=.05.39Lungconcentration
IC SSES5'EFFECTSOFRELEASEDCHEMICALANDSANITARYWASTESNeitheraquaticandterrestrialinhabitantsoftheSusquehannaSESsiteandSusquehannaRiverwillbeharmedfromchemicalsreleasedwithwaterdischarged.totheriver.Lessthan0.1mg/1(ppm)offreechlorineisexpectedtobedischargedintotheriverattheSite.Theminuteamountsofchloraminesdischargedintotheriverwillhavenoharmfuleffect,onorganismspresent.Theamountofironreleasedisdependentonqualityoftheriverwater.Duringcertainpartsoftheyearasmuch1.72mg/1(ppm)ofironhasbeenobservedtobepresent.OperationoftheSusquehannaSESwillnotaddadditionalirontotheriver.Commonwealthstandardsstatethattheamountofirondischargedshouldnotexceed1.5mg/1(ppm).SincethereisalreadyaconcentrationofironPPSLdoesnotexpectaharmfuleffectonaquaticorganismstoresultfromthedischarge.Adjustmentbyadditionofsodiumhydroxide,andsulfuricacidtothechemicalandsanitarysystemswillkeepdischargedwaterwithinapplicablelimits.AlldischargesfromtheplantwillmeetallrequirementsofthePennsylvaniaDepartmentofEnvironmentalResources.53-1" SSESreactorirradiation.This,coupledwiththehighmeltingpointofthefuelpelletsassuresthatduringashippingcaskaccident,thereisverylittlepotentialforanyradioactivityotherthanthenoblegasesbeingreleasedintothecaskcavity.Mechanicalpropertiesoftheirradiatedreacttosubstantiallymitigatetheconsequencesofanaccidentbytightlybindingthefissionproductswithinthebasicfuelassembly.Thereareseveralfeatureswhicharetypicalofallshippingcasks,suchasheavystainlesssteelshellsontheinsideandoutsideseparatedbydenseshieldingmaterial,suchasdepleteduranium.Additionally,thecaskhasextendedsurfaceareafordissipationofdecayheatandwillbeequippedwithanenergyabsorbingimpactstructuretoabsorbtheenergyofthe30-ftfreefallandtolimittheforcesimposedonthecaskandcontents.Thecaskalsocontainsabasketwhichisprovidedtosupportthefuelduringtransport.Additionally,forhighexposurefuelprovisionswillbemadeforahydrogenousmaterialsuchaswatertoprovideforabsorptionofthefastneutronsgeneratedthroughspontaneousfissionandalpha-nreactionsofthetransuraniumisotopes.5.4.1.2oralShimentRadioloicalResultsTheprincipalenvironmentaleffectfromtheseshipmentswouldbethedirectradiationdosefromtheshipmentsastheymovefromthereactortothereprocessingplant.Inthisregard,ithasbeenassumedthattheshipmentsaremadeatthemaximumpermittedlevelof0.01remperhouratsixfeetfromthenearestaccessiblesurface.Basedonthisandwiththenearestpersonassumedtobe100feetfromthecenterlineofthetracks,(assumingtransportat'ionisbyrail)-itisestimatedthatthedoserateatthatpointwouldbe0.0002remperhour.Thiswouldfalloffto0.00001remperhouratabout300feetbeyondwhichtheradiationexposurereceivedbythepopulation.isnegligible.EventPobab'tConsideratinsSpentfuelshipmentsareplanned,scheduled,anddeliberate,andthereforefallinthe"normal"probabilitycategorybydefinition(seesubsection6.5).54-2  
=3.5x10xl.64x10'0
: Ilh, SSES5.4.'}.3AccidentOccurrencesRadioloicalResultsAprincipalenvironmentaleffectfromanaccidentwouldbewholebodyradiationduetotheincreasedradiationlevelsfromthereleaseofnoblegases.Consideringthedoseattenuationeffectswithdistanceitcanbeconcludedthatthedirectradiationdoseeffectstothegeneralpopulationwillbenegligible.Calculationsindicatethatwithoutasubstantialquantityofdecayheatintheshippingcaskplustheadditionofexternalheat,suchasfromafire,therewouldbenoreleaseofthefissiongases.However,thisaccidentisevaluatedaccordingto10CPR71criteriawhichconsidersthat1000Ciofgaseousactivityisreleasedtotheenvironment.Onthisbasisandconsideringapopulationdensityof334peoplepersquaremile,thepopulationexposureasshowninTable6.1isordersofmagnitudebelownormalbackground.Similarcalculationsweredonefortheiodinetodeterminethedosetothethyroid.Resultsofthiscalculationindicatethatthetotalthyroidexposureisalsoorders'fmagnitudebelowbackground.Itcanthereforebeconcludedthatthisaccidentwillhavenegligibleeffectsonthetotalenvironment.EventprobabilitConsiderationsThisisatransportationaccidentinvolvingeithertruckorrailshipments.Theprobabilityisafunctionofthemannerofshipment(truckorrail),thedistanceshipped,theaccidentrateasafunctionofdistance,andtheprobabilityofarelease,givenanaccident.Thecaskisdesignedtowithstandtheimpactofa30footfreefallontoanon-yieldingsurface,sotheprobabilityofrupturingthecask,giventheaccident,isextremelylow.Thedistancetravelledisavariabledependingonthelocationofthefuelreprocessingplanttowhichshipment"ismade.Theprobabilityofanaccidentpermiletravelledisprobablyaboutthesamefortruckandrailshipments,butmoretruckshipmentsarerequiredduetothesmallersizeofcasksusedontrucks.Theeffectofvariousotherspecialprecautionssuchasroutingspeedlimitations,andexpertdrivingare-factorsthatneedtobeconsidered.Basedonthesefactors,theprobabilityofthespentfuelcasktransportationaccidentisatthelowerendoftheemergencyconditionorthehigherendofthefaultcondition,withthehighervaluesassociatedwithtruckshipment.5.4-3 II' SSESIntheaquaticpartoftheprogram,samplingwillincludesurfacewatersamplesfromtheSusquehannaRiver,-NescopeckCreek,theSalemReservoir,LilyLake,sitepondsandtheswampsadjacenttotheplant.Tritiumanalyseswillbeperformed.Samplesofwellwaterwillbecollectedfromabouteightlocationsinthearea.Theaquaticfoodchainconstituentswillincludethecollectionofbottomsedimentsandfish.BottomsedimentsfromtheSusquehannaRiverwillbecollectedupstreamanddownstreamfromtheplantsiteandfromNescopeckandSalemCreeks.FishwillbeobtainedfromtheSusquehannaRiver,NescopeckCreekandLilyLake.AnalyseswillbeperformedforStrontium-90inthebonematterandgammascanningalsowillbeperformed.Theoverallmonitoringprogramsamplingfrequencieswilldependupontypeofsamplesbeingcollected.Air-borneparticulates,wellwaters,surfacewaters,rainfall,slime,bottomsediments,andmilkwillbecollectedandanalyzedmonthlyorquarterly.Mostvegetativetypeswillbecollectedthreetimesperyearduringthegrowingseasons,whilesoilsampleswillbecollectedsemi-annually.5.5.4Appropriatephysicalandchemicalparametersoftheintakewater,pondwatersandwateratthedischargepointwillbecontinuouslymonitored.Suchfactorsastemperature,dissolvedoxygen,chlorides,sulfates,radiationandtotaldissolvedsolidswillbemeasuredasnecessary.55~55~55~1AuaticBiolo~Beginninginthefallof1970,studieswereinitiatedoffishesandbottomdwellingorganismsinthesitearea.Emphasiswillbeplacedonthespawninggrowthandmovementoffishesthroughthearea.Anestimateofthenatureandextentofthesportfisherywillbeobtained.Surfacedrift,whichcanbe.important,willalsobesampledwithinthegeneralarea.Thewaterwillalsobelookedatfromthestandpointoffloatingplanktonicorganisms.Aquaticplantswillbemappedandidentified.Specimenswillbecollectedandmadeavailabletofirmswhowillperformradioactivitybackgroundstudies.Itisplannedtotakewatertemperature,oxygenandpHreadingswithregularcollectionsoffishesandotherorganisms.5.5.5.2Tezr~estr'alAbiologicalstudywillbeinitiatedatleastfouryearspriortoUnit1fuelloading.Awildlifeinventorywillbeperformed.Speciespopulation,diversification,55-4  
=5.74xlO+CilunggmLungdoseis(.654=.05z531)x5.74xlO x365x24-53.4xlOrads.034mradsinternal=2.98mradstotal3.3mrem/year Summaryofdosetoman133XWholeBodySkinLung14.3mrem/year 3.4mrem/year 135XWholeBodySkinLung3.0mrem/year 6.6mrem/year 3.0mrem/year C.ThestandardAECcalculation (10CFR20AppendixB,Table2,Column1=500mrem/year) yieldsthefollowing doseassumedtobetothewholebody:(1)Xe=18.5mrem/year 133(2)Xe=8.2mrem/year 1355.2-12 B0J SSESTABLE5;2.6SUMMARYOFTHEDOSECALCULATIONS SourceIndividual Dose(mrem)Population Dose(man-rem)
W~BSkin~LunT~hroiBBoneWholeBodorGeneticDirectRadiation fromGaseousEmissionGDesignFuelLeakage(a)FullPowerOperation Intermittent VacuumPumpDischarge AquaticPathwaysNaturalBackground 024**3.2150.0811403.20.0660.090l.447.5Negligible 280,000*WB=WholeBodyGl=Gastrointestinal tract**Skindosewasnotcalculated separatefornormalfullpowerisincludedinthevalvefor-wholebody.
IC SSES5'EFFECTSOFRELEASEDCHEMICALANDSANITARYWASTESNeitheraquaticandterrestrial inhabitants oftheSusquehanna SESsiteandSusquehanna Riverwillbeharmedfromchemicals releasedwithwaterdischarged
.totheriver.Lessthan0.1mg/1(ppm)offreechlorineisexpectedtobedischarged intotheriverattheSite.Theminuteamountsofchloramines discharged intotheriverwillhavenoharmfuleffect,onorganisms present.Theamountofironreleasedisdependent onqualityoftheriverwater.Duringcertainpartsoftheyearasmuch1.72mg/1(ppm)ofironhasbeenobservedtobepresent.Operation oftheSusquehanna SESwillnotaddadditional irontotheriver.Commonwealth standards statethattheamountofirondischarged shouldnotexceed1.5mg/1(ppm).Sincethereisalreadyaconcentration ofironPPSLdoesnotexpectaharmfuleffectonaquaticorganisms toresultfromthedischarge.
Adjustment byadditionofsodiumhydroxide, andsulfuricacidtothechemicalandsanitarysystemswillkeepdischarged waterwithinapplicable limits.Alldischarges fromtheplantwillmeetallrequirements ofthePennsylvania Department ofEnvironmental Resources.
53-1" SSESreactorirradiation.
This,coupledwiththehighmeltingpointofthefuelpelletsassuresthatduringashippingcaskaccident, thereisverylittlepotential foranyradioactivity otherthanthenoblegasesbeingreleasedintothecaskcavity.Mechanical properties oftheirradiated reacttosubstantially mitigatetheconsequences ofanaccidentbytightlybindingthefissionproductswithinthebasicfuelassembly.
Thereareseveralfeatureswhicharetypicalofallshippingcasks,suchasheavystainless steelshellsontheinsideandoutsideseparated bydenseshielding
: material, suchasdepleteduranium.Additionally, thecaskhasextendedsurfaceareafordissipation ofdecayheatandwillbeequippedwithanenergyabsorbing impactstructure toabsorbtheenergyofthe30-ftfreefallandtolimittheforcesimposedonthecaskandcontents.
Thecaskalsocontainsabasketwhichisprovidedtosupportthefuelduringtransport.
Additionally, forhighexposurefuelprovisions willbemadeforahydrogenous materialsuchaswatertoprovideforabsorption ofthefastneutronsgenerated throughspontaneous fissionandalpha-nreactions ofthetransuranium isotopes.
5.4.1.2oralShimentRadioloicalResultsTheprincipal environmental effectfromtheseshipments wouldbethedirectradiation dosefromtheshipments astheymovefromthereactortothereprocessing plant.Inthisregard,ithasbeenassumedthattheshipments aremadeatthemaximumpermitted levelof0.01remperhouratsixfeetfromthenearestaccessible surface.Basedonthisandwiththenearestpersonassumedtobe100feetfromthecenterline ofthetracks,(assuming transportat'ion isbyrail)-itisestimated thatthedoserateatthatpointwouldbe0.0002remperhour.Thiswouldfalloffto0.00001remperhouratabout300feetbeyondwhichtheradiation exposurereceivedbythepopulation
.isnegligible.
EventPobab'tConsiderati nsSpentfuelshipments areplanned,scheduled, anddeliberate, andtherefore fallinthe"normal"probability categorybydefinition (seesubsection 6.5).54-2  
: Ilh, SSES5.4.'}.3AccidentOccurrences RadioloicalResultsAprincipal environmental effectfromanaccidentwouldbewholebodyradiation duetotheincreased radiation levelsfromthereleaseofnoblegases.Considering thedoseattenuation effectswithdistanceitcanbeconcluded thatthedirectradiation doseeffectstothegeneralpopulation willbenegligible.
Calculations indicatethatwithoutasubstantial quantityofdecayheatintheshippingcaskplustheadditionofexternalheat,suchasfromafire,therewouldbenoreleaseofthefissiongases.However,thisaccidentisevaluated according to10CPR71criteriawhichconsiders that1000Ciofgaseousactivityisreleasedtotheenvironment.
Onthisbasisandconsidering apopulation densityof334peoplepersquaremile,thepopulation exposureasshowninTable6.1isordersofmagnitude belownormalbackground.
Similarcalculations weredonefortheiodinetodetermine thedosetothethyroid.Resultsofthiscalculation indicatethatthetotalthyroidexposureisalsoorders'fmagnitude belowbackground.
Itcantherefore beconcluded thatthisaccidentwillhavenegligible effectsonthetotalenvironment.
Eventprobabilit Considerations Thisisatransportation accidentinvolving eithertruckorrailshipments.
Theprobability isafunctionofthemannerofshipment(truckorrail),thedistanceshipped,theaccidentrateasafunctionofdistance, andtheprobability ofarelease,givenanaccident.
Thecaskisdesignedtowithstand theimpactofa30footfreefallontoanon-yielding surface,sotheprobability ofrupturing thecask,giventheaccident, isextremely low.Thedistancetravelled isavariabledepending onthelocationofthefuelreprocessing planttowhichshipment" ismade.Theprobability ofanaccidentpermiletravelled isprobablyaboutthesamefortruckandrailshipments, butmoretruckshipments arerequiredduetothesmallersizeofcasksusedontrucks.Theeffectofvariousotherspecialprecautions suchasroutingspeedlimitations, andexpertdrivingare-factorsthatneedtobeconsidered.
Basedonthesefactors,theprobability ofthespentfuelcasktransportation accidentisatthelowerendoftheemergency condition orthehigherendofthefaultcondition, withthehighervaluesassociated withtruckshipment.
5.4-3 II' SSESIntheaquaticpartoftheprogram,samplingwillincludesurfacewatersamplesfromtheSusquehanna River,-Nescopeck Creek,theSalemReservoir, LilyLake,sitepondsandtheswampsadjacenttotheplant.Tritiumanalyseswillbeperformed.
Samplesofwellwaterwillbecollected fromabouteightlocations inthearea.Theaquaticfoodchainconstituents willincludethecollection ofbottomsediments andfish.Bottomsediments fromtheSusquehanna Riverwillbecollected upstreamanddownstream fromtheplantsiteandfromNescopeck andSalemCreeks.FishwillbeobtainedfromtheSusquehanna River,Nescopeck CreekandLilyLake.Analyseswillbeperformed forStrontium
-90inthebonematterandgammascanningalsowillbeperformed.
Theoverallmonitoring programsamplingfrequencies willdependupontypeofsamplesbeingcollected.
Air-borne particulates, wellwaters,surfacewaters,rainfall, slime,bottomsediments, andmilkwillbecollected andanalyzedmonthlyorquarterly.
Mostvegetative typeswillbecollected threetimesperyearduringthegrowingseasons,whilesoilsampleswillbecollected semi-annually.
5.5.4Appropriate physicalandchemicalparameters oftheintakewater,pondwatersandwateratthedischarge pointwillbecontinuously monitored.
Suchfactorsastemperature, dissolved oxygen,chlorides,
: sulfates, radiation andtotaldissolved solidswillbemeasuredasnecessary.
55~55~55~1AuaticBiolo~Beginning inthefallof1970,studieswereinitiated offishesandbottomdwellingorganisms inthesitearea.Emphasiswillbeplacedonthespawninggrowthandmovementoffishesthroughthearea.Anestimateofthenatureandextentofthesportfisherywillbeobtained.
Surfacedrift,whichcanbe.important, willalsobesampledwithinthegeneralarea.Thewaterwillalsobelookedatfromthestandpoint offloatingplanktonic organisms.
Aquaticplantswillbemappedandidentified.
Specimens willbecollected andmadeavailable tofirmswhowillperformradioactivity background studies.Itisplannedtotakewatertemperature, oxygenandpHreadingswithregularcollections offishesandotherorganisms.
5.5.5.2Tezr~estr'al Abiological studywillbeinitiated atleastfouryearspriortoUnit1fuelloading.Awildlifeinventory willbeperformed.
Speciespopulation, diversification, 55-4  


SSESreproductionratesandhabitatassociationswillbestudied.Particularemphasiswillbeplacedonthewetlandareainthesouthernportionofthesite.AstudyandmonitoringprogramwillbeconductedforatleasttwoyearsafterUnit2isinoperation.Thisprogramwillevaluatetheeffectoftheconstructionandoperationaoftheplantontheterrestrialbiota.Thesestudieswillincludethetaggingoforganismsinordertoevaluatethereproduction,growthratesandfoodchainoftestspecies,inventoriesandobservationsoftypicalfaunaandflora,andacomparisonofconditionspriortoconstructionwiththoseafteroperation.Monitoringwillbecoordinatedwiththeradiologicalmonitoringprogram.Informationanddatadevelopedduringthesestudieswillbeusedtodevelopmanagementprogramsdesignedtoenhancethesiteenvironment.5.5.6I!.HAspartofPPSLconcernwiththeenvironment,anoisecontrolprogramisbeingdevelopedtoavoidmajornoiseproblemsassociatedwiththe,operationoftheplant.55-5  
SSESreproduction ratesandhabitatassociations willbestudied.Particular emphasiswillbeplacedonthewetlandareainthesouthernportionofthesite.Astudyandmonitoring programwillbeconducted foratleasttwoyearsafterUnit2isinoperation.
Thisprogramwillevaluatetheeffectoftheconstruction andoperationa oftheplantontheterrestrial biota.Thesestudieswillincludethetaggingoforganisms inordertoevaluatethereproduction, growthratesandfoodchainoftestspecies,inventories andobservations oftypicalfaunaandflora,andacomparison ofconditions priortoconstruction withthoseafteroperation.
Monitoring willbecoordinated withtheradiological monitoring program.Information anddatadeveloped duringthesestudieswillbeusedtodevelopmanagement programsdesignedtoenhancethesiteenvironment.
5.5.6I!.HAspartofPPSLconcernwiththeenvironment, anoisecontrolprogramisbeingdeveloped toavoidmajornoiseproblemsassociated withthe,operation oftheplant.55-5  
'~Ih  
'~Ih  
~SSESDuetothelimitedmobilityoftheparticulatefissionproductstheyexistinlesserquantitiesineffluentsandsotheircontributiontotheoverallenvironmentaleffectsisnegligibleandthereforeneglectedinthisanalysis.Dependingonthetypeofleak(i.e.,steamorliquid)thepotentialfornoblegasreleasemayormaynotexist.Iftheleakwerebetweenthemainsteamlineisolationvalveandturbineonecouldexpectareleaseofnoblegasactivity;whereasiftheleakwereliquid,duetotherelativeinsolubilityofnoblegasesinwater,onewouldexpectnogaseouscontributionfromthissource.Fortheiodineactivitytheenvironmentaleffectsweredeterminedbycomparingtheaverageannualconcentrationsatvariousradialdistancesin16sectors(22.5O/sector)totheMaximumPermissibleConcentrationinAir(MPC~)assetforthin10CFR20AppendixBtable2column2.O~yWhereDThyroidDfThyroiddose(rem/yr)X.Doseconversionfactor(i.e.,Q,-1.5r/yr.),otherparametersasipreviouslydefined.ThethyroiddoseequationappliestothedoseinagivensectorataradialdistanceR.Therefore,todeterminetheintegratedpopulationexposureitisnecessarytomultiplythisthyroiddoseequationbythepopulationdistributioninagivensectorandatthegivendistanceRandsumthisproductforallsectorsanddistancesto50miles.Concerningthewholebodydoseeffectsfromthereleaseofnoblegasactivity,thesteamandhenceactivityreleaserate,isbasedonanequivalent7gpmwaterleak.Thecloudgammaexposuresarebasedonthosemathematicalmodelspresentedinreference6-2andarepresentedinTable6.3.1.Thecummulative50milethyroidexposuretothegeneralpopulationis18man-rem.Theallowablethyroidexposureisordersofmagnitudeabovetypicalwholebodydoseeffectsbecauseofthelimitedbiologicaleffectsonthethyroidgland.However,forthepurposeofthisevaluationthethyroidexposureiscomparedonthesamelevelasthewhole6~3-2 SSESXJWhereXJAverageannualisotopicairborneconcen-trationofthei"isotope(pCi/cc)Accumulativefrequencyforwindspeed,stabilityandsector(dimensionless)thPlantreleaserateoftheiisotope(uCi/sec)Horizontalandverticaldiffusioncoefficients(cm)Windspeed(cm/sec)YiZHorizontalandverticaldistancesfromplumecenterline(cm)Sectorangleoverwhichplumeisaveraged(radians)Distancefromreleasepointtodetectorposition(cm)6.3.5.1.2RadioloicalResultsTheintegratedman-remexposureforthisaccidentisbetween10-~and10-~ofthoseexposuresrecievedfromnormalradiationbackground.Itcan,therefore,beconcludedthatthiseventisnegligiblewithregardtotheenvironmentaleffects.6.3.5.1.3EventProbabilitConsiderationsSpentfuelistransferredfromthereactortothefuelpoolbymeansoftherefuelinghoist.Eachfuelbundle,toberemovedisgrappledinthereactor,liftedverticallyuntilthebottomofthefueltransferchannelisclearedandthentransportedacrossthefuelpoolbutalwaysunderwater.Abrakeisprovidedtopreventexcessivedropvelocity.Alimitswitchisprovidedtopreventexcessiveliftingvelocity.Theaccidentpostulatedassumesthataspentfuelbundledropsfromthemaximumheightabovethecore,fallsthrough63-9 l
~SSESDuetothelimitedmobilityoftheparticulate fissionproductstheyexistinlesserquantities ineffluents andsotheircontribution totheoverallenvironmental effectsisnegligible andtherefore neglected inthisanalysis.
SSESD.ThroidInhalationDose8hrs.-30das)whereD.inhInhalationdosereceivedbetween8hrs.and30days(rem)6.3.7.1.2adioloicalResul'tsTheresultingenvironmentaleffectsforthisaccidentarepresentedinTable6.3.1.Asnotedtheeffectsareordersofmagnitude.belowtheseresultingfromnormalbackground.Itcanthereforebeconcludedthattheenvrionmentaleffectsasaconsequenceofthisaccidentarenegligible.6.3.7.1.3EventProbabilitConsiderationsTheprobabilityofalargebreakseveranceshouldfallwithintherangeofanEmergencyConditionbasedonestimatesofpipefailureratescontainedintheliteratureandonthenumberofpipesthatsatisfytheconditionsforalargebreakdesignbasisaccident.TheprobabilitythatanLPCIinjectionvalvewillbeunabletoopenwhendesiredshouldalsofallwithintherangeofanemergencyconditionbasedonananalysisusingfailureratesfromreference22,23,and24consideringanticipateddowntimeandtheintervalbetweeninjectionvalvetests.Sinceeachprobabilityislowandtheoutcomesarenotcriticallyinterdependent,thejointprobabilityofpipebreakandinjectionvalvefailureisexpectedtobeextremelylowplacingthiseventinthefaultcondition.6.3.7.2SteamLineBreakAccidentThepostulatedaccidentisasudden,completeseveranceofonemainsteamlineoutsidethedrywellwithsubsequentreleaseofsteamandwatercontainingradioactiveproductstothepipetunnelandtheturbinebuilding.Sincethisaccidentdoesnotresultinanyfueldamage,theenvironmentaleffectsarelimitedtothoseradiologicaldoseswhichmaybereceivedasaconsequenceofexposuretotheactivityassociatedwiththeprimarycoolant.63-15 t
Depending onthetypeofleak(i.e.,steamorliquid)thepotential fornoblegasreleasemayormaynotexist.Iftheleakwerebetweenthemainsteamlineisolation valveandturbineonecouldexpectareleaseofnoblegasactivity; whereasiftheleakwereliquid,duetotherelativeinsolubility ofnoblegasesinwater,onewouldexpectnogaseouscontribution fromthissource.Fortheiodineactivitytheenvironmental effectsweredetermined bycomparing theaverageannualconcentrations atvariousradialdistances in16sectors(22.5O/sector) totheMaximumPermissible Concentration inAir(MPC~)assetforthin10CFR20AppendixBtable2column2.O~yWhereDThyroidDfThyroiddose(rem/yr)X.Doseconversion factor(i.e.,Q,-
SSESreactorisatfullpower,themaximumrodworthisapproximately1$,resultingintheperforationoflessthan10rods,butwithahighprobabilitythatnonewillactuallyfail.6.3.7.3.1CalculationofSourcesandDosesInadditiontotheassumedfailureof10rods,theradiologicaleffectsarealsobasedonaratedsteamandrecirculationflow,aniodinecarry-overfractionof1%,andamainsteamlineisolationvalveclosuretimeof4seconds.Inadditiontoisolatingthemainsteamline(MSL)theMSLradiationmonitorsalsoisolatethenormaloff-gassystemtherebybottlingtheactivitybetweentheMSLisolationvalvesandtheoffgasisolationvalves.Theprimarysourceofleakagefromthesystemwillthereforebeviatheturbineglandsealsandwillbeduetochangesinenvironmentalpressurewithrespecttotheturbinecondenser.Theairborneactivityinthecondenserisafunctionofthepartitionfactor,volumeofairandwater,andchemicalspeciesofthefissionproductactivity.Thevaluesassociatedwiththeseparametersare:apartitionfactorof10oforiodine,acondenserplusturbinefreevolumeof2.1x10~ft~andacondensatevolumeof1.2x104ft~.6.3.7.3.2RadiolicalResultsAsnotedintable6..3.1,theradiologicalexposuresforthisaccidentareordersofmagnitudebelowthoseeffectsreceivedfromnormalbackground.Itcanthereforebeconcludedthatenvironmentaleffectsfromthisaccidentarenegligible.6.3.7.3.3EventProbabilitConsiderationsInorderforarodtodropfromthecore,itmustfirstbecomedetachedfromthedrive,remainlodgedinpositionwhilethedriveiswithdrawnfromthecore,andthen,whilethedrive'sstillwithdrawn,becomedislodgedandfallfreely.Thisisacomplexseriesofevents,therebeingmanypossibleactions(orinactions)thatareinterrelated,butthisisoffsetbythemanyannunciatorsandproceduresthataremeanttoavoidsuchanevent.Therodsaretesteddailyprovidingmanyopportunitiesfortherodtobecomeuncoupled,andmanyopportunitiesfordetectionaswell.Actualexperiencehasbeengood.However,conservativejudgementindicatesthatthiseventshouldbeassignedasanemergencycondition.63-17 SSEStheman-remcomparisonsaremadeforthepopulationwithina50mileradius.Ifthereareonemillionpeoplelivingwithina50mileradius,thenaturalradiationbackgroundwillresultinabout14Q,QOOman-remperyear.Table6.2.1listsman-rem/yearfromnaturalbackgroundforthisplantlocation.6.4.2Man-MadeRadiationBackroundManhasaddedtohisradiationexposurefromnatureinanumberofways.Thelargestcontributionbyfarhasbeenfrommedicalexposure.Ithasbeenestimated(Ref.6-7)that94percentofman-madeexposureisfromthisradiationandofthis,90percentisattributedtodiagonisticX-rays.Typically,anaverageof55mremperyear(30)isreceivedbytheaverageUnitedStatescitizen.Morerecentreportsseentoindicatethat35.5mremperyearisamoreappropriateaverage.SpecificexampleofaverageexposuresperX-raytoanindividualare25-50mremfromanaveragechestX-ray,200mremfromanaveragegastro-intestinaltractexaminationandarangeof5<<200mremforafluoroscopicexamination(Ref.6-8).Additionallysmalllevelsofradiationcanbereceivedfromluminouswatchdials(about2mrem/year)andtelevisionviewing(1to10mrem/year).Therefore,theresultantman-.maderadiationreceivedbytheaveragecitizenrangesbetween50to100mremperyear.Man-RemFromMan-MadeRadiationTotalpopulationexposurefromman-madesourcesismoredifficulttoevaluatesincetherecanbeanindividualchoicemadeastowhethersuchradiationisreceived.However,reasonableassumptionscanbemadeinordertomakeestimatesofman-remperyearsinceit,isnotfeasibletomonitorthepopulationdosebymeasuringthedosetotheindividuals.Thepopulationdoseasaresultofviewingtelevisiontoasamplemillionpeoplecanbeestimated.Typicallyanindividualwouldreceiveabout1-10mrem/yearfromwatchingTV.Assumingtheaveragedosereceivedis5mrem/year,thenthisresultsin5000man-rem/year.Lookingatthissamepopulationonecandeterminetheman-remasaresultofexposurefromluminous-dialwatches.Ifonly10percentofthisexamplepopulationareexposedto2mrem/year,thentheresultantpopulationdoseis200man-rem/year.Ithasbeenestimated(Ref.6-29)thatmedicalexposureaccountsfor94percent,ofthetotalgeneticallysignificantdose(GSD)fromman-madesources,andofthis,90percentisattributedtodiagnosticx-rays.Theestimatedmeanannual64 SSES8.2SOURCESOFPOWER8.2.1IntroductionAnumberofalternativemethodsofprovidingpowertomeetPPSL'sincreasingloadrequirementshavepreviouslybeenexamined.Ithasbeendeterminedthattheonlypracticalalternativewhichcanprovidetheneededlong-termbaseloadpowerforPPSL'sserviceareaistheconstructionofnuclearand/orfossilefuelplants.TheadditionoftheSusquehannaSESnuclearunitsisthechoiceforthe1979-1981period.Nuclearfacilitiesaremorepractical,giventhetimeconstraintsimposedonPPELbyincreasingconsumerdemands.Purchaseofpowerfromotherutilitiesintheqnatitiesrequiredisgenerallyunfeasiblefromseveralstandpoints.Theentirequestionofalternativesourcesof,powerisdiscussedinthefollowingsections.8.2.2,AlternativeofNotProvidinPowerOnealternativeoftheSusquehannaSESisthatofnotbuildingagenerating'stationatall.Intoday'ssociety,adequateelectricserviceisconsideredessentialtothecontinuedwell-beingofthepublic.Section401ofthePennsylvaniaPublicUtilityimposesanobligationonelectricutilitiestofurnishandmaintainreliable,adequate,efficient,'safeandreasonableserviceandfacilities.Thisserviceshallbereliableandwithoutunreasonableinteruptionsordelays.Atthepresenttimeloadcurtailmentarrangementshavebeenmadewithlargerindustrialcustomerswhoareabletoreducetheiroperationsforashorttimeduringpoweremergencies.Othercustomerswillgenerallytoleratevoltagereductionsandorloadcurtailmentunderabnormaloremergencyconditions.Theywouldfindfrequentnon<<emergencycurtailmentsofserviceunacceptable.Large-scale,long-:duration,customerinterruptionscanhaveanadverseeffectonthepublic.Forinstance,theabsenceoflightsendangerspublichealth,safety,andsecurity,foodspoilsintheabsenceofrefrigeration,and,lackoftransportationincertainareascanleavepeoplestrandedinvulmerablesituations~etc.Ifsuch-loadcurtailmentwereintendedtobean.alternativetosupplyingthecustomer'sdemandisomeonewouldbeforcedtomakedifficultdecisionsaboutwhoshouldgetpowerandwhoshouldnot.Theeffectonthepublicofdenyingservicetowholeblocksofcustomersasan-alternativetobuidlinganewplantcannotbeestimated.Loadgrowthforecasts,indicatethatifnewgeneratingcapacityisnotaddedonthePPELsystemintheyears1979-1981someloadcurtailmentmaybenecessaryandwillbea82-1 SSESTheuseofeithercombustionturbinesordie'selsincontinuousoperation(necessaryfor,providingbase-loadpowe'r)isnotonlyexpensiveintermsoffuelconsumptionbutalsoresultsinhighermaintenancecosts,sincetheseunitsarenotdesignedfor24-hour-a-dayoperation.DelaysinbringinglargebaseloadgeneratingunitsintoservicehavebeenmetonthePJMmembersystemsextensivelybytheinstallationofcombustionturbines.Theircontinuedlarge-scaleinstallationasasubstituteforbaseloadgenerationisnot.desirableeithertechnicallyoreconomicallyforthereasonsstated.SuchcapacityalreadyinstalledandscheduledonPJMwillrepresent21%ofthetotalinstalledcapacitybythesummerof1973.Combustionturbineunitsinconjunctionwithsmallsteamturbinesformacombined-cycleunit.Whilethese"packaged"unitsareconsiderablymoreefficientthanconventionalcombustionturbinesandrangeinsizefrom200MWe-350MWe,they,too,cannotbeconsideredanalternativetoalargebase-loadsteamunit,sincetheyburnthesameexpensivefuelsasdoconventionalcombust'ionturbinesanddieselunits(typicallynaturalgasor,,No.2fueloil).Wheneconomicalmeansaredevisedtopermittheseunitstoburnresidualorcrude.oil,asinlargepowerboilers,thencombinedcycleunitscouldbereconsideredbyPPSL.Dependingonthecircumstancesthistypeofgeneratingcapacitymightthenbejustified.8.2~4.3HdroelectricGenerationTherapidresponsecapabilitiesofbothconventionalandpumpedstoragehydroelectricfacilitiesmakethemdesirableforpeakingrequirements.Conventionalhydroelectricplantsmightbeusedforbase-loadgenerationbuttheirpotentialcapacitiesinthePennsylvaniaareaarefarsmallerthanthatrequiredbyPPGL.PumpedstorageisbecominganimportantsourceofpowergenerationintheNortheastU.S.,butmainlyasasourceof,peakingpower.Pumpedstoragefacilities,bytheirnature/arealimitedenergysourcecapableofoperatinginthegeneratingmodeonlypart-time.Also,consideringvariationsofcustomerdemandduringadayorweek,pumpedstorageistypicallylimitedtoabout20%oftheoutputofacontinuouslyoperatedplantatmaximumcapacity.Thus,pumpedstorageisnotafeasiblealternativetoa.base-loadsteamplant.8'-4 8''NuclearVersusFossilFuelInthisanalysisthecompetingalternativesaretwo1100mwnuclearorfossilunitsscheduledforcommercialoperationin1979and1981.Oilwithlessthan1%sulfurcontentandcoalwithlessthan2.5%sulfurcontentareconsideredasalternatives.Bothsystemandmine-mouthcoalplantslocatedinPennsylvaniaareconsidered.Thepredictedunavailabilityofnaturalgasasafuelsupplyeliminatesgas-firedplantsasapracticalalternative.Bothdomesticandforeignlowsulfurcontentoilreserves,inthequantitiesnecessaryforthenext30yearsforaplantofthissiie,areexpectedtobeunreliable.Toassurereliabilityofacoalsupply,PPSLshouldbeabletocontrolblocksofcoaleachcontainingnotlessthan30milliontonsofeconomically,coverableofcoal.Suchblocks-arerelativelyscarceinPennsylvania.CoalfromlargeblocksoutsidePennsylvaniawouldbemorecostlybecauseofthehighertransportationcosts.4Unlikecoalandoil,uraniumiseconomicallyavailableinthequantitiesneededforthe30yearperiod.Forthisreasonuraniumhasbeenselectedasthefuelsourcefortheseunits.8.2.5.1EconomicCostsAdollarcostcomparisonofvariouspowergeneratingfacilitiesisshowninTable8.2.1.Thefacilitiesconsideredinclude:SusquehannaSESasplanned;acoalplant;anoilplant;andamine-mouthplant..Allunitsareassumedtohaveelectrostaticprecipitatorswhereapplicableandclosed-loopcoolingtowers.OilisassumedtohaveasulfurcontentwhichwouldnotrequirefacilitiesforSO<removal.Costofthesefacilities,includingcostofoperation,hasbeenincludedforfossilstations.Anaverage70$-capacityfactorwasassumedforallfacilities,alongwitha30-yearlifetime.Theaddedtransmissionlinedistanceforthemine<<mouthplantwasassumedtobe270miles,whilethepipelinenecessarytobringoilfromanearbyporttoatypicalsitewasestimatedtobe80miles.Allfuelcostshavebeenescalatedto1980fromabaseyearwhenestimateswereavailable.Thebaseyearestimatesandratesareshownasfollows:8.2-5 I1N' SSESannualplantloadfactor,evaporationamountstoabout23,500acrefeetperyear.Tomaintaintheproperwaterquality,blowdownwillrequireanadditional10,400acrefeetperyear.8.4.2.1NaturalDraftTowersThedevelopmentofanoptimumdesignedheatcycleissocomplexthatitcanonlybedonereasonablybytheuseofcomputers.Towerperformanceanditseffectonplantoutputmustbeevaluatedonthebasisofhoursperyearpredictedforvariousambienttemperatures,theresultantgenerationcapability,andthevalueoftheenergygeneratedatthetime.Asnaturaldrafttowersareplannedforthisplant,acomprehensivecomputeroptimizationstudyhasbeenperformed.Typically,therewillbeatriplepressurecondenserdesignedforatotalwaterflowof450,000gpmperunitandatemperatureriseof33.4PatdesignturbineunitAtanominalmaximumsummerambienttemperatureof754Fwetbulband90<Fdrybulb,theoptimizednaturaldrafttowerisrequiredtocoolthewaterto88.94P.Withafullplantloadandatthenominalmaximumwetbulbof75~F,41milltioncubicfeetperminute(cfm)ofairwillbedischargedfromeachtoweratavelocityof900feetperminute(fpm)(10mph)andatemperatureof109~P.UnderaextremewinterconditionofOoF,airflowwouldincreaseto66millioncfmand1450fpm(16.5mph),andbedischargedatatemperatureof62~P.TestsconductedbytheEnvironmentalSystemCorporation,anddemonstratedunderthesponsorshipoftheEnvironmentalProtectionAgencyincooperationwiththeAtomicEnergyCommissiononSeptember28,1971,atOakRidge,Tennesseeindicatesthatdriftlossfromcoolingtowersistypicallyontheorderof0.005%ofthecirculatingwaterrateforeithermechanicalornaturaldrafttowers.Testsconductedbytwomajortowermanufacturersconfirmthisfigure.WithanassumedTDSof770ppminthecirculatingwater,andtakingintoconsiderationanticipatedannualloadfactor,thetotalsolidscarryoverthatwouldbedischargedfromthetwounitswouldbeontheorderof280lbs.perday.Thenaturaldrafttowersystemwillbeconsideredasthebasesystem,andcapitalandoperationalcostsofotherschemeswillbecomparedtothissystem.8.422MechanicalDraftTowersTheoptimizationstudyontheplant-mechanicaldrafttowersystemresultedinadesignwaterflowandcondensertemperaturerisesufficientlyclosetothatofthenaturaldrafttowertopermitcomparisonofthetwosystemswiththe84-2 SSESyear.Thisdoesnotincludetheeffectsofpotentialsmalldifferenceinpumpcostduetothedifferentfillheightsforthetypesoftowersnortheincreasedmaintenancerequiredwiththeactivetypetower(mechanicaldraft)anditsappurtenancesascomparedwiththepassivetype(naturaldrafttower).Onbalancethenitcanbestatedthatingeneralthecostsforthetwosystemsareequivalentandthatnomajoreconomicadvantagewouldbegainedbytheuseofmechanicaldrafttowers.Theblowdownfromthissystemwillduplicatethatofthenaturaldraftsystem.Driftandsolidscarryoverwillalsoapproximatethevaluessuggestedinthenaturaldrafttowersection.Sincethemechanicaldrafttowerdischargesatalowerelevation,thefalloutpatternfromdrift,fog,.andwintericeformationfromthemechanicaldraftsystemwouldbesubstantiallydifferentfromthenaturaldraftsystem.Thepotentialenvt.ronmentalimpactofthesedischargeswillbediscussedlaterinthissection.8.4.2.3CoolinondsThecreationofalargecoolingpondorartificiallakeasameansofdissipatingcondenserheathasbeenconsidered.Toproperlyutilizethissystem,anumberofspecificsitecharacteristicsshouldbepresent.Tominimizepumpingcoststheremustbeavailableclosetosubstantialpropertywhichisfairlyflatandlendsitselfwelltopondconstruction.Nominallythepondareaisaboutoneacrepermegawatt;Onthisbasis,thetwounitsatSusquehannawouldrequireatleast2200acres(3.5sq.mi.).Reducingpondsizemuchbelowthisfigurewouldnecessitateareductioninplantoutput'ecauseofbackpressurelimitationsontheturbineifanextendedperiodofhotweatherweretooccur.Topographyofthesurroundingplantareasuggeststhatthesiteisnotsuitedforacoolingpond.Thetotalplantpropertyabovethefloodplainis490acres,andthustheareaavailableforcoolingisinadequateTheplantareadoesnotlenditselfwelltopondconstruction,noristhereanypropertyneartheplantthatissuitableforthispurpose.Contourmapsshowsubstantialvariationsinelevationinadditiontoageneral200'levationdropfromthewesternplantboundarytotheU.S.11.highway.Porthesereasons,acoolingpondisnotconsideredaviablealternative,andadetailedcostanalysiswasnotperformed.8'-4 I
1.5r/yr.),
SSES8.43.6~No'se~Neitherthenoisefromfallingwaterinthenaturaldraftwettowers,northefanorothernoisesfrommechanicaldrafttowers(eitherwetordrytypes)shouldnotbeobjectionableattheplantboundary.Thesenoiselevelsshouldbelowerfornaturaldrafttowersthanmechanicaldrafttowers.8~4o3o7~S~rAreviewoftheTable.8.4.1indicatesthatforthetechnologicalreasonspreviouslystated,thefollowingsystemsmustbeconsideredasbeingunsuitableforapplicationtotheSusquehannaSES.CoolingpondsSpraypondsSpraycanalsNaturaldraftdrycoolingtowersMechanicaldraft,drycoolingtowersOncethroughcoolingPPSListhusleftwiththe'alternativeofeitherwetmechanicaldraftorwetnaturaldraftcoolingtowers.Becuaseoftheconcernforgroundfoggingandsolidscarryover,thechoiceofanaturaldrafttowerismorefavorable.Despitetheslightlylargerinvestmentrequired,theselectionofthenaturaldrafttowerclearlywillreduceimpactontheenvironmentandmustbeconsideredthepreferredheatdissipationsystem.84-9 I'IChl SSES85ALTRADSESSTS851Itroduct'onNuclearpowerstationsproduceradioactivematerialsthatarethewasteproductsofanoperatingreactor.Onlyasmallamountoftheseresidualmaterialsareeverdischargedtothebiosphere.Thequantityandqualityof-wastesdischargedvarydependingontheengineeringdesignandwastemanagementpracticesused.TheSusquehannaSESwillutilizeaRadioactiveWaste.ProcessingSystemwhichisdesignedtopiovidethetreatmentandcontrolledreleaseofradioactiveliquid,gaseousandsolidwatertoassurecompliancewiththe:numericaldoselimitsofAppendixI10CFR508.5.2Thesystemdesignobjectiveshallbetoprocessradioactiveliquidwastessuchthattheaverageannualreleaseofradioactivematerialintheliqhideffluentfromtheplant'illmeettoassurecompliancewiththenumericallimitsofAppendixI10CFR50.8.53GaseousadwasteSstemTheGaseousRadwasteSystemshallbedesignedtoprocessgaseouswastessuchthattheaverageannualreleaseofradioactivematerialsinthegaseouseffluentfromtheplantwillmeetwiththenumericallimitsofAppendixI10CFR50.8.54BIL-"TheSolidRadwasteSystemshallbedesignedtofacilitatethepackagingofallpotentiallyradioactivesolidwastesforstorageandoffsiteshipmentanddisposalinaccordancewithapplicablepublishedregulations.8~55IntheSusquehannaSESseclectedliquidwasteprocessingsystem,theliquidradwastewillbetreatedwithacombinationoffiltration,evaporationanddemineralizationasshown.inFigure3.6.1.Withinterconnectionsasproposed,anywastecanbetreatedwithanyoneorallofthesemethods.Thisprovidesasmuchtreatmentcapacityasiscurrentlyavailable(i.e.,state-of-the-arttechnology)andreducesradioactivityto.levelswhichassurecompliancewithnumericaldoselimitsofAppendixIto10CFR50.Furtherconsiderationofalternate.liquidradwastesystemsisthereforenotnecessary.85-1 SSESelevation.ThisalternativewillmovethelinefurtherawayfromtheSugarloafGolfCourseandalsolowerthelineasviewedfromtheGolfCourse.Alternative55.BetweenBearRunJunctionandFrackvilleSubstation,thelinewasreroutedslightly.Thisalternativeservedtwopurposes:ItlocatedthelinealongapropertylineinanindustrialareaalongLR-53035andprovidedamoredesirablecrossing-ofPa.Route61.8~6.2AlternateStructuresTwotypesof500kvstructuresareplannedfortheuseonthelonglines;latticetypeandtubularpole"H"frame.Tubularpole"Y",orslingshottypeareavailable,butwererejectedbecausetheyaremoredifficulttoerect,morecostlyandwouldrequireextensivefoundations.Guyedlatticestructuresaiealsoavailable,butwererejectedinfavorofthemorereliableself-supportingtypetower.Laminatedwoodpolestructureswerenotconsideredbecauseofshortspansrequiredandbecausetheextremelylongonepiecepoleswouldbedifficulttohandle.Theshort230kvlinesareallintheimmediatevicinityoftheplantwheremediumgreenpaintedsteelpoleswillbeusedinsteadoflatticetypesteeltowersbecausetheywillblend.inwellwiththeirsurroundings.Woodpolestructureswerenotconsideredbecauseoftheheavyloadsandresultantshortspanconstruction.8.6.3AlternateMethodsofTransmissionConsiderationwasgiventoundergroundconstructionofboth500-kvtransmissionlinesfromSusquehannaSEStoLackawahnaandto'rackville,andalsothethree230kvlinesinthevicinityoftheSusquehannaSES.Afeasibilitystudyandcostcomparisonstudyweremade.Thepresentstateoftheartindicatesthatpipecableistheonlyfeasiblemethodforundergroundtransmissionatthe230-500kvlevel.Severalothermethodsarecurrentlyunderstudy.Theyincludecableinsulatedwithextrudeddielectrics,eitherconventionalorcross-linkedpolyethylenecableusinggas(SF)asamajorinsulation,cryogeniccablesystemsandsuperconductingcablesystems.However,230kvpipecablehasbeeninstalledcommercially8~6-3 II SSESeconomicbenefitsdiscussedhere,however,representonlythequantifiablepartsofthepicture.Anumberofintangiblebenefitsexistwhicharedifficulteventoidentify.Asanexample,forsomeyearstherehasbeenanetout-migrationofyoungpeoplefromBerwickandthesurroundingarea,'asistrueofothersmallertownsinthispartofthe'country.TheSusquehannaSESwillhelpcreateaneconomicandsocialatmospherewhichmaytendtoslowthisprocessandhelpthesesmallercommunitiesstabilizetheirdownwardpopulationtrends.'.7.3CostsofSusuehannaSESTheprovisionoflowcost.electricalpowertomeetincreasingconsumerdemandsisnotwithoutitsenvironmentalcosts(economiccostshavebeendiscussedinSection8.2).Aswithotherlarge-scaleprojects,theconstructionandoperationoftheSusquehannaSESwillresultincertainchangesintheenvironment.'Thisincreasedconcernforenvironmentalprotectionhasbeenmatchedbyanincreaseddemandforelectricalpower.Thereis,therefoxe,asetof'competingprioritiesassociatedwiththecostsandbenefitsofconstructingandoperatinganyelectricalpowergeneratingfacility.TheenvironmentalcostsoftheproposedprojecthavebeenquantifiedtothedegreepossibleandareshowninTable8.7.2.Adiscussionofthesecostsispresentedbelow.1.,HeatDischareintoRiver2~Approximately70cfs(32,000gpm)willbedrawnfromtheriverasmakeupcoolantwater.Ofthis,approximately22cfswillbereturnedtotheriver.Thisvolumerepresentsabout2.9gand1.7%ofthe7-daylowriverflowfor20-yearandtwo-yearrecurrances,respectively.Thetemperatureincreasewillprobablybeundetectableafewhundredyardsdownstream.Themagnitudeofchange,evenundertheworstconditionsoflowflowandhighambienttemperatures,couldnotbeexpectedtohaveanydeleteriouseffectontheriverintermsofprimaryproducersandconsumersandfishlife.DecreaseinCoolinCaacitofRiverAsmalldecreaseincoolingcapacityoftherivercouldbeexpected'oresultfromthesmalladditionofheatandtheevaporativelossofapproximatelg50'fsofriverwater'romthecoolingtowers.Theformercouldincreasetheaveragewatertemperatureby0.15oFforashort8~7-7 SSESC~Reintroductionofchemicalsfromorganismskilledwithinthecoolingsystem.Theneteffectoftheseconcentrations,plustheslightwarmingofthewater,willprobablybetoincreasebiologicalgrowthforashortdistancedownstream.Butthiseffectisexpectedtobenegligiblewhenviewedoverasigni,ficantlylargeareaoftheview.5.6~QlayA50-70%increaseinthetotalamountofdissolvedsolidsoccurringinasmallportion(9g)ofthelowwaterflow(10-yearrecurrance)isexpectedtobebarelydetectablewithin1/4miledownstream.Noeffect,canbeexpectedonrecreationorondownstreamwaterusersbecauseoftherelativelysmallchangesinchemicalcomposition.ConsumtionofWater7~Apotentiallossofuptoapproximately50cfstodownstreamdomesticoragriculturalwaterusersispossible.SaltsDischaredfromCoolinTowers8.WiththeassumedTDSof770ppmtheexpectedsaltdischargefromthecoolingtowerswillbe62ppm.ChemicalDischaretoAmbient.Air9~Nochemicalsaredischargedtoambientair.ChemicalContaminationofGroundWaterTherewillbenochemicalcontaminationofgroundwater.10.-12~RadionuclearDischarestoWaterBodentAranContamnatonoGroundWaterTheproposedmethodofradwastetreatmentisoneofthebestthatcurrenttechnologyisabletoprovide.DosetopeoplewillbeextremelylowandwithinnumericallimitsinAppendixI10CPR50.Alternatemethodsofradwastetreatmentwereconsideredinselectingtheproposedsystem.TheyhavebeendiscussedinSubsection8.5.8~7-9 I~'tt,IIIIIItI SSESFoinandIcinTherewillbenofoggingandicingduetotheoperationofthecoolingtowersattheSusquehannaSES.Raisin/LowerinofGroundWaterLevelsGroundwaterlevelswillnotberaisedorlowered.LandUsePresently,thelandwithinatleastatwo-mileradiusfromthesiteisamixtureofsmallwoodedareas,fields,andfarms.Thesitewillremoveordisrupt,about237acresorlessofsimilarterrain,approximatelyhalfofwhichisnowwooded.Majorgamespeciesintheareaaredeer,pheasant,rabbit,grouse,dove,woodcockandsquirrel.Norareorendangeredspeciesarepresent.BiologistsfamiliarwiththeSusquehannaRiverintheareaofthesiteconsideritpresentlyunderfished.Nosignificantlossoffishisexpectedtoresultfromconstructionoroperationoftheplant,thoughanetincreaseinfishingactivitycanbeexpectedtoresultfromtheattractionofpeopletotheplannedparkareaalongtheriver.AmbientNoiseOtherthanfromcoolingtowers,therewillbenoambientnoiseassociatedwiththeplant.AestheticsTheplantisdesignedtoblendwiththeenvironmentandbeastheticallycompatible.DeradationofFloodControlandErosionTheplantsiteissuchthatitwillhavenoimpactonfloodcontrolanderosion.8~7-10 Ch SSESTABLE8.7-2ENVIRONMENTALCOSTSOFGENERATIONATPROPOSEDSITEGeneratingCostPrimarImactPopulationorResourceAffectedDescriptionofEffectAlternatePlantDesing1a41.HeatDischargetoRiver1.1PrimaryProducersLimitedtoareaveryclosetodiffuserlittltonoeffect22cfs1.2FishNoeffectnone2.DecreaseinCool-ingCapacityofRiver2.1ThermalCapacityThermalincreaselossofwatertoevap.slightwithmixingoflowflowrivervolumeandnoheatlosstoair8nincreaseof0.15Fwouldresult.Lossofabout5.9%oflowflowcoolingcap-acity3.Mechanical,Thermal3.1PrimaryProducersChemicalgffectsof6ConsumersEntrainmentonPop-ulationsofRiver3.2FishLossofallplanktonenteringtheintakeAlllostwhicharenonscreenable(1-14")Atlowflowmaximumlossofplanktonandfloatinginsectsandsomelocalgainofdetritusfeeders.4.SynergisticEffects4.1PrimaryProducersofChemicalconcen-&ConsumerstrationsandThermalAdditionsonRiver4.2FishChangeinProductionorSurvivalChangeinProductio'norSurvivalLossofaportionofyoungfishlivingwithinafewhundredyardradiusofintake.Neteffectonsystemsmall.~Possiblesmalleffectfor100-yds.Onlyeffectinminuteareaneardiffuserparts;5Formore.
otherparameters asipreviously defined.ThethyroiddoseequationappliestothedoseinagivensectorataradialdistanceR.Therefore, todetermine theintegrated population exposureitisnecessary tomultiplythisthyroiddoseequationbythepopulation distribution inagivensectorandatthegivendistanceRandsumthisproductforallsectorsanddistances to50miles.Concerning thewholebodydoseeffectsfromthereleaseofnoblegasactivity, thesteamandhenceactivityreleaserate,isbasedonanequivalent 7gpmwaterleak.Thecloudgammaexposures arebasedonthosemathematical modelspresented inreference 6-2andarepresented inTable6.3.1.Thecummulative 50milethyroidexposuretothegeneralpopulation is18man-rem.Theallowable thyroidexposureisordersofmagnitude abovetypicalwholebodydoseeffectsbecauseofthelimitedbiological effectsonthethyroidgland.However,forthepurposeofthisevaluation thethyroidexposureiscomparedonthesamelevelasthewhole6~3-2 SSESXJWhereXJAverageannualisotopicairborneconcen-trationofthei"isotope(pCi/cc)Accumulative frequency forwindspeed,stability andsector(dimensionless) thPlantreleaserateoftheiisotope(uCi/sec)
J, SSESTABLE8.7.2(Cont'd)PrimarImact15.LandUsePopulationorResourceAffected15.1Agricultural15.2Forestry15.3Plants&Animals15.4RecreationalDescriptionofEffectRemovalfromProductionRemovalfromProductionLossofHabitatDisturbancetoParks,Lakes,HistoricSitesAlternatePlaneDesin41&4125acresonplateau175acresonfloodplain50acresorlessofdeciduouswoodlotsmayberemoved.100acresorlessoffield&woodlotsinanareaofsimilarhabitatatleast100.timesaslarge.None15.5FishingLossofFishingPotentialNoloss;probablyanincreaseinfishingpressureduetoestab-lishmentofparkareaaroundstream.16.AmbientNoise15.-;6Industrial16.1PeopleUnavailabletoDevelopmentUnusuallyLoudNoneDuringconstruction&operationOSHAstand-ardswillbefollowednoiseproblemsasso-ciatedwithnaturaldrafttowers.17-Aesthetics17.1PeopleInTermsofSight,Sound,OdorVisualimpactoftowersandplumesNone18.DegradationofFlood18.1People&Control&ErosionPropertyRisktoHealthandSafety 0  
Horizontal andverticaldiffusion coefficients (cm)Windspeed(cm/sec)YiZHorizontal andverticaldistances fromplumecenterline (cm)Sectorangleoverwhichplumeisaveraged(radians)
~5OOOqPlv1.BL.OWOOWNivlAKF-LIP16,000C,PQ4u)EVAPORATiOvLINIT2II,9OOQPIv).30OOOCiPM.FROMSERVICEWATERSY57EQ+48o,ooocpg.UNITIFROhhGERV.WTRS5BLOeOOWH'70SERVWTR.SYSIiIiz$>yISPRA(POhlD3O,OOOCjpg.TOSERVICEWITE'RS'fSTMAINCOHDEWSERSMeiNCONDENSERSIvlAKE-uWATF8DOSlhlQpCHLORIHEH2SO+Oo5ING8lGPMRAWWATERTREATMENTMAKE-LIPDEMISERAL1ZEPOTABLE$DOMESTICKAERSEWAGETREATMENTPLANTg.50QpgREACTORLiguleRADKASTETR'EATMEHTCHLORINATE(50CiPMCI-ILORINECONTACTTANKE~G.~AFEGuARDSHEATEXCHAhlCER55CPMNEUTRAL-)ZATIOHTAQKIIGPQNOTE:uNIT(FLOWRATESARETHES~NFASLINIT2,IO,OOOC,PIVIPLlklPHOLISCB2,000CIPlvl.GLjSQUKHAhJQA=;.RIVERPENNSYLVANIAPOWER&LIGHTCOMPANYSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2APPLICANT'SENVIRONMENTALREPORTWaterUseDiagramFIGURE3.4.1  
Distancefromreleasepointtodetectorposition(cm)6.3.5.1.2RadioloicalResultsTheintegrated man-remexposureforthisaccidentisbetween10-~and10-~ofthoseexposures recievedfromnormalradiation background.
Itcan,therefore, beconcluded thatthiseventisnegligible withregardtotheenvironmental effects.6.3.5.1.3EventProbabilit Considerations Spentfuelistransferred fromthereactortothefuelpoolbymeansoftherefueling hoist.Eachfuelbundle,to beremovedisgrappledinthereactor,liftedvertically untilthebottomofthefueltransferchannelisclearedandthentransported acrossthefuelpoolbutalwaysunderwater.Abrakeisprovidedtopreventexcessive dropvelocity.
Alimitswitchisprovidedtopreventexcessive liftingvelocity.
Theaccidentpostulated assumesthataspentfuelbundledropsfromthemaximumheightabovethecore,fallsthrough63-9 l
SSESD.ThroidInhalation Dose8hrs.-30das)whereD.inhInhalation dosereceivedbetween8hrs.and30days(rem)6.3.7.1.2 adioloicalResul'tsTheresulting environmental effectsforthisaccidentarepresented inTable6.3.1.Asnotedtheeffectsareordersofmagnitude.
belowtheseresulting fromnormalbackground.
Itcantherefore beconcluded thattheenvrionmental effectsasaconsequence ofthisaccidentarenegligible.
6.3.7.1.3EventProbabilit Considerations Theprobability ofalargebreakseverance shouldfallwithintherangeofanEmergency Condition basedonestimates ofpipefailureratescontained intheliterature andonthenumberofpipesthatsatisfytheconditions foralargebreakdesignbasisaccident.
Theprobability thatanLPCIinjection valvewillbeunabletoopenwhendesiredshouldalsofallwithintherangeofanemergency condition basedonananalysisusingfailureratesfromreference 22,23,and24considering anticipated downtimeandtheintervalbetweeninjection valvetests.Sinceeachprobability islowandtheoutcomesarenotcritically interdependent, thejointprobability ofpipebreakandinjection valvefailureisexpectedtobeextremely lowplacingthiseventinthefaultcondition.
6.3.7.2SteamLineBreakAccidentThepostulated accidentisasudden,completeseverance ofonemainsteamlineoutsidethedrywellwithsubsequent releaseofsteamandwatercontaining radioactive productstothepipetunnelandtheturbinebuilding.
Sincethisaccidentdoesnotresultinanyfueldamage,theenvironmental effectsarelimitedtothoseradiological doseswhichmaybereceivedasaconsequence ofexposuretotheactivityassociated withtheprimarycoolant.63-15 t
SSESreactorisatfullpower,themaximumrodworthisapproximately 1$,resulting intheperforation oflessthan10rods,butwithahighprobability thatnonewillactuallyfail.6.3.7.3.1Calculation ofSourcesandDosesInadditiontotheassumedfailureof10rods,theradiological effectsarealsobasedonaratedsteamandrecirculation flow,aniodinecarry-over fractionof1%,andamainsteamlineisolation valveclosuretimeof4seconds.Inadditiontoisolating themainsteamline(MSL)theMSLradiation monitorsalsoisolatethenormaloff-gassystemtherebybottlingtheactivitybetweentheMSLisolation valvesandtheoffgasisolation valves.Theprimarysourceofleakagefromthesystemwilltherefore beviatheturbineglandsealsandwillbeduetochangesinenvironmental pressurewithrespecttotheturbinecondenser.
Theairborneactivityinthecondenser isafunctionofthepartition factor,volumeofairandwater,andchemicalspeciesofthefissionproductactivity.
Thevaluesassociated withtheseparameters are:apartition factorof10oforiodine,acondenser plusturbinefreevolumeof2.1x10~ft~andacondensate volumeof1.2x104ft~.6.3.7.3.2RadiolicalResultsAsnotedintable6..3.1,theradiological exposures forthisaccidentareordersofmagnitude belowthoseeffectsreceivedfromnormalbackground.
Itcantherefore beconcluded thatenvironmental effectsfromthisaccidentarenegligible.
6.3.7.3.3EventProbabilit Considerations Inorderforarodtodropfromthecore,itmustfirstbecomedetachedfromthedrive,remainlodgedinpositionwhilethedriveiswithdrawn fromthecore,andthen,whilethedrive'sstillwithdrawn, becomedislodged andfallfreely.Thisisacomplexseriesofevents,therebeingmanypossibleactions(orinactions) thatareinterrelated, butthisisoffsetbythemanyannunciators andprocedures thataremeanttoavoidsuchanevent.Therodsaretesteddailyproviding manyopportunities fortherodtobecomeuncoupled, andmanyopportunities fordetection aswell.Actualexperience hasbeengood.However,conservative judgement indicates thatthiseventshouldbeassignedasanemergency condition.
63-17 SSEStheman-remcomparisons aremadeforthepopulation withina50mileradius.Ifthereareonemillionpeoplelivingwithina50mileradius,thenaturalradiation background willresultinabout14Q,QOOman-remperyear.Table6.2.1listsman-rem/year fromnaturalbackground forthisplantlocation.
6.4.2Man-MadeRadiation BackroundManhasaddedtohisradiation exposurefromnatureinanumberofways.Thelargestcontribution byfarhasbeenfrommedicalexposure.
Ithasbeenestimated (Ref.6-7)that94percentofman-madeexposureisfromthisradiation andofthis,90percentisattributed todiagonistic X-rays.Typically, anaverageof55mremperyear(30)isreceivedbytheaverageUnitedStatescitizen.Morerecentreportsseentoindicatethat35.5mremperyearisamoreappropriate average.Specificexampleofaverageexposures perX-raytoanindividual are25-50mremfromanaveragechestX-ray,200mremfromanaveragegastro-intestinal tractexamination andarangeof5<<200mremforafluoroscopic examination (Ref.6-8).Additionally smalllevelsofradiation canbereceivedfromluminouswatchdials(about2mrem/year) andtelevision viewing(1to10mrem/year)
.Therefore, theresultant man-.maderadiation receivedbytheaveragecitizenrangesbetween50to100mremperyear.Man-RemFromMan-MadeRadiation Totalpopulation exposurefromman-madesourcesismoredifficult toevaluatesincetherecanbeanindividual choicemadeastowhethersuchradiation isreceived.
However,reasonable assumptions canbemadeinordertomakeestimates ofman-remperyearsinceit,isnotfeasibletomonitorthepopulation dosebymeasuring thedosetotheindividuals.
Thepopulation doseasaresultofviewingtelevision toasamplemillionpeoplecanbeestimated.
Typically anindividual wouldreceiveabout1-10mrem/year fromwatchingTV.Assumingtheaveragedosereceivedis5mrem/year, thenthisresultsin5000man-rem/year.
Lookingatthissamepopulation onecandetermine theman-remasaresultofexposurefromluminous-dial watches.Ifonly10percentofthisexamplepopulation areexposedto2mrem/year, thentheresultant population doseis200man-rem/year.
Ithasbeenestimated (Ref.6-29)thatmedicalexposureaccountsfor94percent,ofthetotalgenetically significant dose(GSD)fromman-madesources,andofthis,90percentisattributed todiagnostic x-rays.Theestimated meanannual64 SSES8.2SOURCESOFPOWER8.2.1Introduction Anumberofalternative methodsofproviding powertomeetPPSL'sincreasing loadrequirements havepreviously beenexamined.
Ithasbeendetermined thattheonlypractical alternative whichcanprovidetheneededlong-term baseloadpowerforPPSL'sserviceareaistheconstruction ofnuclearand/orfossilefuelplants.TheadditionoftheSusquehanna SESnuclearunitsisthechoiceforthe1979-1981 period.Nuclearfacilities aremorepractical, giventhetimeconstraints imposedonPPELbyincreasing consumerdemands.Purchaseofpowerfromotherutilities intheqnatities requiredisgenerally unfeasible fromseveralstandpoints.
Theentirequestionofalternative sourcesof,powerisdiscussed inthefollowing sections.
8.2.2,Alternative ofNotProvidinPowerOnealternative oftheSusquehanna SESisthatofnotbuildingagenerating'station atall.Intoday'ssociety,adequateelectricserviceisconsidered essential tothecontinued well-being ofthepublic.Section401ofthePennsylvania PublicUtilityimposesanobligation onelectricutilities tofurnishandmaintainreliable,
: adequate, efficient,
'safeandreasonable serviceandfacilities.
Thisserviceshallbereliableandwithoutunreasonable interuptions ordelays.Atthepresenttimeloadcurtailment arrangements havebeenmadewithlargerindustrial customers whoareabletoreducetheiroperations forashorttimeduringpoweremergencies.
Othercustomers willgenerally toleratevoltagereductions andorloadcurtailment underabnormaloremergency conditions.
Theywouldfindfrequentnon<<emergency curtailments ofserviceunacceptable.
Large-scale, long-:duration, customerinterruptions canhaveanadverseeffectonthepublic.Forinstance, theabsenceoflightsendangers publichealth,safety,andsecurity, foodspoilsintheabsenceofrefrigeration, and,lackoftransportation incertainareascanleavepeoplestrandedinvulmerable situations~
etc.Ifsuch-loadcurtailment wereintendedtobean.alternative tosupplying thecustomer's demandisomeonewouldbeforcedtomakedifficult decisions aboutwhoshouldgetpowerandwhoshouldnot.Theeffectonthepublicofdenyingservicetowholeblocksofcustomers asan-alternative tobuidlinganewplantcannotbeestimated.
Loadgrowthforecasts, indicatethatifnewgenerating capacityisnotaddedonthePPELsystemintheyears1979-1981someloadcurtailment maybenecessary andwillbea82-1 SSESTheuseofeithercombustion turbinesordie'selsincontinuous operation (necessary for,providing base-load powe'r)isnotonlyexpensive intermsoffuelconsumption butalsoresultsinhighermaintenance costs,sincetheseunitsarenotdesignedfor24-hour-a-day operation.
Delaysinbringinglargebaseloadgenerating unitsintoservicehavebeenmetonthePJMmembersystemsextensively bytheinstallation ofcombustion turbines.
Theircontinued large-scale installation asasubstitute forbaseloadgeneration isnot.desirable eithertechnically oreconomically forthereasonsstated.Suchcapacityalreadyinstalled andscheduled onPJMwillrepresent 21%ofthetotalinstalled capacitybythesummerof1973.Combustion turbineunitsinconjunction withsmallsteamturbinesformacombined-cycle unit.Whilethese"packaged" unitsareconsiderably moreefficient thanconventional combustion turbinesandrangeinsizefrom200MWe-350MWe,they,too,cannotbeconsidered analternative toalargebase-load steamunit,sincetheyburnthesameexpensive fuelsasdoconventional combust'ion turbinesanddieselunits(typically naturalgasor,,No.2fueloil).Wheneconomical meansaredevisedtopermittheseunitstoburnresidualorcrude.oil, asinlargepowerboilers,thencombinedcycleunitscouldbereconsidered byPPSL.Depending onthecircumstances thistypeofgenerating capacitymightthenbejustified.
8.2~4.3Hdroelectric Generation Therapidresponsecapabilities ofbothconventional andpumpedstoragehydroelectric facilities makethemdesirable forpeakingrequirements.
Conventional hydroelectric plantsmightbeusedforbase-load generation buttheirpotential capacities inthePennsylvania areaarefarsmallerthanthatrequiredbyPPGL.Pumpedstorageisbecominganimportant sourceofpowergeneration intheNortheast U.S.,butmainlyasasourceof,peakingpower.Pumpedstoragefacilities, bytheirnature/arealimitedenergysourcecapableofoperating inthegenerating modeonlypart-time.
Also,considering variations ofcustomerdemandduringadayorweek,pumpedstorageistypically limitedtoabout20%oftheoutputofacontinuously operatedplantatmaximumcapacity.
Thus,pumpedstorageisnotafeasiblealternative toa.base-load steamplant.8'-4 8''NuclearVersusFossilFuelInthisanalysisthecompeting alternatives aretwo1100mwnuclearorfossilunitsscheduled forcommercial operation in1979and1981.Oilwithlessthan1%sulfurcontentandcoalwithlessthan2.5%sulfurcontentareconsidered asalternatives.
Bothsystemandmine-mouth coalplantslocatedinPennsylvania areconsidered.
Thepredicted unavailability ofnaturalgasasafuelsupplyeliminates gas-fired plantsasapractical alternative.
Bothdomesticandforeignlowsulfurcontentoilreserves, inthequantities necessary forthenext30yearsforaplantofthissiie,areexpectedtobeunreliable.
Toassurereliability ofacoalsupply,PPSLshouldbeabletocontrolblocksofcoaleachcontaining notlessthan30milliontonsofeconomically,coverable ofcoal.Suchblocks-arerelatively scarceinPennsylvania.
CoalfromlargeblocksoutsidePennsylvania wouldbemorecostlybecauseofthehighertransportation costs.4Unlikecoalandoil,uraniumiseconomically available inthequantities neededforthe30yearperiod.Forthisreasonuraniumhasbeenselectedasthefuelsourcefortheseunits.8.2.5.1EconomicCostsAdollarcostcomparison ofvariouspowergenerating facilities isshowninTable8.2.1.Thefacilities considered include:Susquehanna SESasplanned;acoalplant;anoilplant;andamine-mouth plant..Allunitsareassumedtohaveelectrostatic precipitators whereapplicable andclosed-loop coolingtowers.Oilisassumedtohaveasulfurcontentwhichwouldnotrequirefacilities forSO<removal.Costofthesefacilities, including costofoperation, hasbeenincludedforfossilstations.
Anaverage70$-capacity factorwasassumedforallfacilities, alongwitha30-yearlifetime.
Theaddedtransmission linedistanceforthemine<<mouth plantwasassumedtobe270miles,whilethepipelinenecessary tobringoilfromanearbyporttoatypicalsitewasestimated tobe80miles.Allfuelcostshavebeenescalated to1980fromabaseyearwhenestimates wereavailable.
Thebaseyearestimates andratesareshownasfollows:8.2-5 I1N' SSESannualplantloadfactor,evaporation amountstoabout23,500acrefeetperyear.Tomaintaintheproperwaterquality,blowdownwillrequireanadditional 10,400acrefeetperyear.8.4.2.1NaturalDraftTowersThedevelopment ofanoptimumdesignedheatcycleissocomplexthatitcanonlybedonereasonably bytheuseofcomputers.
Towerperformance anditseffectonplantoutputmustbeevaluated onthebasisofhoursperyearpredicted forvariousambienttemperatures, theresultant generation capability, andthevalueoftheenergygenerated atthetime.Asnaturaldrafttowersareplannedforthisplant,acomprehensive computeroptimization studyhasbeenperformed.
Typically, therewillbeatriplepressurecondenser designedforatotalwaterflowof450,000gpmperunitandatemperature riseof33.4PatdesignturbineunitAtanominalmaximumsummerambienttemperature of754Fwetbulband90<Fdrybulb,theoptimized naturaldrafttowerisrequiredtocoolthewaterto88.94P.Withafullplantloadandatthenominalmaximumwetbulbof75~F,41milltioncubicfeetperminute(cfm)ofairwillbedischarged fromeachtoweratavelocityof900feetperminute(fpm)(10mph)andatemperature of109~P.Underaextremewintercondition ofOoF,airflowwouldincreaseto66millioncfmand1450fpm(16.5mph),andbedischarged atatemperature of62~P.Testsconducted bytheEnvironmental SystemCorporation, anddemonstrated underthesponsorship oftheEnvironmental Protection Agencyincooperation withtheAtomicEnergyCommission onSeptember 28,1971,atOakRidge,Tennessee indicates thatdriftlossfromcoolingtowersistypically ontheorderof0.005%ofthecirculating waterrateforeithermechanical ornaturaldrafttowers.Testsconducted bytwomajortowermanufacturers confirmthisfigure.WithanassumedTDSof770ppminthecirculating water,andtakingintoconsideration anticipated annualloadfactor,thetotalsolidscarryover thatwouldbedischarged fromthetwounitswouldbeontheorderof280lbs.perday.Thenaturaldrafttowersystemwillbeconsidered asthebasesystem,andcapitalandoperational costsofotherschemeswillbecomparedtothissystem.8.422Mechanical DraftTowersTheoptimization studyontheplant-mechanical drafttowersystemresultedinadesignwaterflowandcondenser temperature risesufficiently closetothatofthenaturaldrafttowertopermitcomparison ofthetwosystemswiththe84-2 SSESyear.Thisdoesnotincludetheeffectsofpotential smalldifference inpumpcostduetothedifferent fillheightsforthetypesoftowersnortheincreased maintenance requiredwiththeactivetypetower(mechanical draft)anditsappurtenances ascomparedwiththepassivetype(naturaldrafttower).Onbalancethenitcanbestatedthatingeneralthecostsforthetwosystemsareequivalent andthatnomajoreconomicadvantage wouldbegainedbytheuseofmechanical drafttowers.Theblowdownfromthissystemwillduplicate thatofthenaturaldraftsystem.Driftandsolidscarryover willalsoapproximate thevaluessuggested inthenaturaldrafttowersection.Sincethemechanical drafttowerdischarges atalowerelevation, thefalloutpatternfromdrift,fog,.andwintericeformation fromthemechanical draftsystemwouldbesubstantially different fromthenaturaldraftsystem.Thepotential envt.ronmental impactofthesedischarges willbediscussed laterinthissection.8.4.2.3CoolinondsThecreationofalargecoolingpondorartificial lakeasameansofdissipating condenser heathasbeenconsidered.
Toproperlyutilizethissystem,anumberofspecificsitecharacteristics shouldbepresent.Tominimizepumpingcoststheremustbeavailable closetosubstantial propertywhichisfairlyflatandlendsitselfwelltopondconstruction.
Nominally thepondareaisaboutoneacrepermegawatt; Onthisbasis,thetwounitsatSusquehanna wouldrequireatleast2200acres(3.5sq.mi.).Reducingpondsizemuchbelowthisfigurewouldnecessitate areduction inplantoutput'ecause ofbackpressurelimitations ontheturbineifanextendedperiodofhotweatherweretooccur.Topography ofthesurrounding plantareasuggeststhatthesiteisnotsuitedforacoolingpond.Thetotalplantpropertyabovethefloodplainis490acres,andthustheareaavailable forcoolingisinadequate Theplantareadoesnotlenditselfwelltopondconstruction, noristhereanypropertyneartheplantthatissuitableforthispurpose.Contourmapsshowsubstantial variations inelevation inadditiontoageneral200'levation dropfromthewesternplantboundarytotheU.S.11.highway.
Porthesereasons,acoolingpondisnotconsidered aviablealternative, andadetailedcostanalysiswasnotperformed.
8'-4 I
SSES8.43.6~No'se~Neitherthenoisefromfallingwaterinthenaturaldraftwettowers,northefanorothernoisesfrommechanical drafttowers(eitherwetordrytypes)shouldnotbeobjectionable attheplantboundary.
Thesenoiselevelsshouldbelowerfornaturaldrafttowersthanmechanical drafttowers.8~4o3o7~S~rAreviewoftheTable.8.4.1indicates thatforthetechnological reasonspreviously stated,thefollowing systemsmustbeconsidered asbeingunsuitable forapplication totheSusquehanna SES.CoolingpondsSpraypondsSpraycanalsNaturaldraftdrycoolingtowersMechanical draft,drycoolingtowersOncethroughcoolingPPSListhusleftwiththe'alternative ofeitherwetmechanical draftorwetnaturaldraftcoolingtowers.Becuaseoftheconcernforgroundfoggingandsolidscarryover, thechoiceofanaturaldrafttowerismorefavorable.
Despitetheslightlylargerinvestment
: required, theselection ofthenaturaldrafttowerclearlywillreduceimpactontheenvironment andmustbeconsidered thepreferred heatdissipation system.84-9 I'IChl SSES85ALTRADSESSTS851Itroduct'onNuclearpowerstationsproduceradioactive materials thatarethewasteproductsofanoperating reactor.Onlyasmallamountoftheseresidualmaterials areeverdischarged tothebiosphere.
Thequantityandqualityof-wastesdischarged varydepending ontheengineering designandwastemanagement practices used.TheSusquehanna SESwillutilizeaRadioactive Waste.Processing Systemwhichisdesignedtopiovidethetreatment andcontrolled releaseofradioactive liquid,gaseousandsolidwatertoassurecompliance withthe:numerical doselimitsofAppendixI10CFR508.5.2Thesystemdesignobjective shallbetoprocessradioactive liquidwastessuchthattheaverageannualreleaseofradioactive materialintheliqhideffluentfromtheplant'illmeettoassurecompliance withthenumerical limitsofAppendixI10CFR50.8.53GaseousadwasteSstemTheGaseousRadwasteSystemshallbedesignedtoprocessgaseouswastessuchthattheaverageannualreleaseofradioactive materials inthegaseouseffluentfromtheplantwillmeetwiththenumerical limitsofAppendixI10CFR50.8.54BIL-"TheSolidRadwasteSystemshallbedesignedtofacilitate thepackaging ofallpotentially radioactive solidwastesforstorageandoffsiteshipmentanddisposalinaccordance withapplicable published regulations.
8~55IntheSusquehanna SESseclected liquidwasteprocessing system,theliquidradwastewillbetreatedwithacombination offiltration, evaporation anddemineralization asshown.inFigure3.6.1.Withinterconnections asproposed, anywastecanbetreatedwithanyoneorallofthesemethods.Thisprovidesasmuchtreatment capacityasiscurrently available (i.e.,state-of-the-art technology) andreducesradioactivity to.levels whichassurecompliance withnumerical doselimitsofAppendixIto10CFR50.Furtherconsideration ofalternate
.liquidradwastesystemsistherefore notnecessary.
85-1 SSESelevation.
Thisalternative willmovethelinefurtherawayfromtheSugarloaf GolfCourseandalsolowerthelineasviewedfromtheGolfCourse.Alternative 55.BetweenBearRunJunctionandFrackville Substation, thelinewasreroutedslightly.
Thisalternative servedtwopurposes:
Itlocatedthelinealongapropertylineinanindustrial areaalongLR-53035andprovidedamoredesirable crossing-of Pa.Route61.8~6.2Alternate Structures Twotypesof500kvstructures areplannedfortheuseonthelonglines;latticetypeandtubularpole"H"frame.Tubularpole"Y",orslingshot typeareavailable, butwererejectedbecausetheyaremoredifficult toerect,morecostlyandwouldrequireextensive foundations.
Guyedlatticestructures aiealsoavailable, butwererejectedinfavorofthemorereliableself-supporting typetower.Laminated woodpolestructures werenotconsidered becauseofshortspansrequiredandbecausetheextremely longonepiecepoleswouldbedifficult tohandle.Theshort230kvlinesareallintheimmediate vicinityoftheplantwheremediumgreenpaintedsteelpoleswillbeusedinsteadoflatticetypesteeltowersbecausetheywillblend.inwellwiththeirsurroundings.
Woodpolestructures werenotconsidered becauseoftheheavyloadsandresultant shortspanconstruction.
8.6.3Alternate MethodsofTransmission Consideration wasgiventounderground construction ofboth500-kvtransmission linesfromSusquehanna SEStoLackawahna andto'rackville, andalsothethree230kvlinesinthevicinityoftheSusquehanna SES.Afeasibility studyandcostcomparison studyweremade.Thepresentstateoftheartindicates thatpipecableistheonlyfeasiblemethodforunderground transmission atthe230-500kvlevel.Severalothermethodsarecurrently understudy.Theyincludecableinsulated withextrudeddielectrics, eitherconventional orcross-linked polyethylene cableusinggas(SF)asamajorinsulation, cryogenic cablesystemsandsuperconducting cablesystems.However,230kvpipecablehasbeeninstalled commercially 8~6-3 II SSESeconomicbenefitsdiscussed here,however,represent onlythequantifiable partsofthepicture.Anumberofintangible benefitsexistwhicharedifficult eventoidentify.
Asanexample,forsomeyearstherehasbeenanetout-migration ofyoungpeoplefromBerwickandthesurrounding area,'asistrueofothersmallertownsinthispartofthe'country.
TheSusquehanna SESwillhelpcreateaneconomicandsocialatmosphere whichmaytendtoslowthisprocessandhelpthesesmallercommunities stabilize theirdownwardpopulation trends.'.7.3 CostsofSusuehannaSESTheprovision oflowcost.electrical powertomeetincreasing consumerdemandsisnotwithoutitsenvironmental costs(economic costshavebeendiscussed inSection8.2).Aswithotherlarge-scale
: projects, theconstruction andoperation oftheSusquehanna SESwillresultincertainchangesintheenvironment.
'Thisincreased concernforenvironmental protection hasbeenmatchedbyanincreased demandforelectrical power.Thereis,therefoxe, asetof'competing priorities associated withthecostsandbenefitsofconstructing andoperating anyelectrical powergenerating facility.
Theenvironmental costsoftheproposedprojecthavebeenquantified tothedegreepossibleandareshowninTable8.7.2.Adiscussion ofthesecostsispresented below.1.,HeatDischareintoRiver2~Approximately 70cfs(32,000gpm)willbedrawnfromtheriverasmakeupcoolantwater.Ofthis,approximately 22cfswillbereturnedtotheriver.Thisvolumerepresents about2.9gand1.7%ofthe7-daylowriverflowfor20-yearandtwo-yearrecurrances, respectively.
Thetemperature increasewillprobablybeundetectable afewhundredyardsdownstream.
Themagnitude ofchange,evenundertheworstconditions oflowflowandhighambienttemperatures, couldnotbeexpectedtohaveanydeleterious effectontheriverintermsofprimaryproducers andconsumers andfishlife.DecreaseinCoolinCaacitofRiverAsmalldecreaseincoolingcapacityoftherivercouldbeexpected'o resultfromthesmalladditionofheatandtheevaporative lossofapproximatelg 50'fsofriverwater'rom thecoolingtowers.Theformercouldincreasetheaveragewatertemperature by0.15oFforashort8~7-7 SSESC~Reintroduction ofchemicals fromorganisms killedwithinthecoolingsystem.Theneteffectoftheseconcentrations, plustheslightwarmingofthewater,willprobablybetoincreasebiological growthforashortdistancedownstream.
Butthiseffectisexpectedtobenegligible whenviewedoverasigni,ficantly largeareaoftheview.5.6~QlayA50-70%increaseinthetotalamountofdissolved solidsoccurring inasmallportion(9g)ofthelowwaterflow(10-yearrecurrance) isexpectedtobebarelydetectable within1/4miledownstream.
Noeffect,canbeexpectedonrecreation orondownstream waterusersbecauseoftherelatively smallchangesinchemicalcomposition.
ConsumtionofWater7~Apotential lossofuptoapproximately 50cfstodownstream domesticoragricultural waterusersispossible.
SaltsDischaredfromCoolinTowers8.WiththeassumedTDSof770ppmtheexpectedsaltdischarge fromthecoolingtowerswillbe62ppm.ChemicalDischaretoAmbient.Air9~Nochemicals aredischarged toambientair.ChemicalContamination ofGroundWaterTherewillbenochemicalcontamination ofgroundwater.10.-12~Radionuclear DischarestoWaterBodentAranContamnatonoGroundWaterTheproposedmethodofradwastetreatment isoneofthebestthatcurrenttechnology isabletoprovide.Dosetopeoplewillbeextremely lowandwithinnumerical limitsinAppendixI10CPR50.Alternate methodsofradwastetreatment wereconsidered inselecting theproposedsystem.Theyhavebeendiscussed inSubsection 8.5.8~7-9 I~'tt,IIIIIItI SSESFoinandIcinTherewillbenofoggingandicingduetotheoperation ofthecoolingtowersattheSusquehanna SES.Raisin/LowerinofGroundWaterLevelsGroundwaterlevelswillnotberaisedorlowered.LandUsePresently, thelandwithinatleastatwo-mileradiusfromthesiteisamixtureofsmallwoodedareas,fields,andfarms.Thesitewillremoveordisrupt,about237acresorlessofsimilarterrain,approximately halfofwhichisnowwooded.Majorgamespeciesintheareaaredeer,pheasant, rabbit,grouse,dove,woodcockandsquirrel.
Norareorendangered speciesarepresent.Biologists familiarwiththeSusquehanna Riverintheareaofthesiteconsideritpresently underfished.
Nosignificant lossoffishisexpectedtoresultfromconstruction oroperation oftheplant,thoughanetincreaseinfishingactivitycanbeexpectedtoresultfromtheattraction ofpeopletotheplannedparkareaalongtheriver.AmbientNoiseOtherthanfromcoolingtowers,therewillbenoambientnoiseassociated withtheplant.Aesthetics Theplantisdesignedtoblendwiththeenvironment andbeasthetically compatible.
DeradationofFloodControlandErosionTheplantsiteissuchthatitwillhavenoimpactonfloodcontrolanderosion.8~7-10 Ch SSESTABLE8.7-2ENVIRONMENTAL COSTSOFGENERATION ATPROPOSEDSITEGenerating CostPrimarImactPopulation orResourceAffectedDescription ofEffectAlternate PlantDesing1a41.HeatDischarge toRiver1.1PrimaryProducers Limitedtoareaveryclosetodiffuserlittltonoeffect22cfs1.2FishNoeffectnone2.DecreaseinCool-ingCapacityofRiver2.1ThermalCapacityThermalincreaselossofwatertoevap.slightwithmixingoflowflowrivervolumeandnoheatlosstoair8nincreaseof0.15Fwouldresult.Lossofabout5.9%oflowflowcoolingcap-acity3.Mechanical, Thermal3.1PrimaryProducers Chemicalgffectsof6Consumers Entrainment onPop-ulationsofRiver3.2FishLossofallplanktonenteringtheintakeAlllostwhicharenonscreenable (1-14")Atlowflowmaximumlossofplanktonandfloatinginsectsandsomelocalgainofdetritusfeeders.4.Synergistic Effects4.1PrimaryProducers ofChemicalconcen-&Consumers trationsandThermalAdditions onRiver4.2FishChangeinProduction orSurvivalChangeinProductio'n orSurvivalLossofaportionofyoungfishlivingwithinafewhundredyardradiusofintake.Neteffectonsystemsmall.~Possiblesmalleffectfor100-yds.Onlyeffectinminuteareaneardiffuserparts;5Formore.
J, SSESTABLE8.7.2(Cont'd)PrimarImact15.LandUsePopulation orResourceAffected15.1Agricultural 15.2Forestry15.3Plants&Animals15.4Recreational Description ofEffectRemovalfromProduction RemovalfromProduction LossofHabitatDisturbance toParks,Lakes,HistoricSitesAlternate PlaneDesin41&4125acresonplateau175acresonfloodplain50acresorlessofdeciduous woodlotsmayberemoved.100acresorlessoffield&woodlotsinanareaofsimilarhabitatatleast100.timesaslarge.None15.5FishingLossofFishingPotential Noloss;probablyanincreaseinfishingpressureduetoestab-lishmentofparkareaaroundstream.16.AmbientNoise15.-;6Industrial 16.1PeopleUnavailable toDevelopment Unusually LoudNoneDuringconstruction
&operation OSHAstand-ardswillbefollowednoiseproblemsasso-ciatedwithnaturaldrafttowers.17-Aesthetics 17.1PeopleInTermsofSight,Sound,OdorVisualimpactoftowersandplumesNone18.Degradation ofFlood18.1People&Control&ErosionPropertyRisktoHealthandSafety 0  
~5OOOqPlv1.BL.OWOOWN ivlAKF-LIP16,000C,PQ4u)EVAPORATiOv LINIT2II,9OOQPIv).30OOOCiPM.FROMSERVICEWATERSY57EQ+48o,ooocpg.UNITIFROhhGERV.WTRS5BLOeOOWH'70SERVWTR.SYSIiIiz$>yISPRA(POhlD3O,OOOCjpg.TOSERVICEWITE'RS'fSTMAINCOHDEWSERS MeiNCONDENSERS IvlAKE-uWATF8DOSlhlQpCHLORIHEH2SO+Oo5ING8lGPMRAWWATERTREATMENT MAKE-LIPDEMISERAL1ZEPOTABLE$DOMESTICKAERSEWAGETREATMENT PLANTg.50QpgREACTORLiguleRADKASTETR'EATMEHT CHLORINATE (50CiPMCI-ILORINECONTACTTANKE~G.~AFEGuARDSHEATEXCHAhlCER5 5CPMNEUTRAL-)ZATIOHTAQKIIGPQNOTE:uNIT(FLOWRATESARETHES~NFASLINIT2,IO,OOOC,PIVIPLlklPHOLISCB2,000CIPlvl.GLjSQUKHAhJQA=;
.RIVERPENNSYLVANIA POWER&LIGHTCOMPANYSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2APPLICANT'S ENVIRONMENTAL REPORTWaterUseDiagramFIGURE3.4.1  


tEGENDRAllROADU.S.KI6KWAYSECONDARYROADPERMANENTSTIKAIIINTERMITTENTSTREAMPROPERTYLIHE100METERS1000FEET55COPENNSYLVANIAPOWER5LIGHTCOMPANYSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2APPLICANT'SENVIRONMENTALREPORTGeographicalFeaturesIntheStudyArea,1971-1972FIGUREA.18  
tEGENDRAllROADU.S.KI6KWAYSECONDARY ROADPERMANENT STIKAIIINTERMITTENT STREAMPROPERTYLIHE100METERS1000FEET55COPENNSYLVANIA POWER5LIGHTCOMPANYSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2APPLICANT'S ENVIRONMENTAL REPORTGeographical FeaturesIntheStudyArea,1971-1972 FIGUREA.18  


SSESOpDOpFOquagaandLordstownverystonysiltloam,8-25percentslopes.OquagaandLordstownverystonysiltloam,25-80percentslopes.PAPAKATINGSERIES-Papakatingaredeep,verypoorlydrainedsoilsofthefloodplains.Theyhavedevelopedinloamysedimentswashedfrommixedgreyandredglaciateduplands.Thesesoilshaveamoderatelyslowlypermeablesubsoil.Thewatertableisnormallyatthesurfaceduringmostoftheyear.Theyareacidandcontainfewstonefragments.Mostuseproblemsarerelatedtothehighwatertableandtofrequentflooding.Mainunit:Papakatingsiltloam.REDHOOKSERIES-RedHookaredeep,somewhatpoorlytopoorlydrainedsoilsoftheglaciateduplandsandvalleys.Theyhavedevelopedinloamy,water-workedglacialoutwashsedimentsfrommixedgrayandredshaleandsandstonebedrock.These,soilshaveamoderatelyslowlypermeablesubsoil.Thewatertablenormallyrisestowithinafewinchesofthesurfaceduringpartsofthewinterandspringmonths.RedHooksoilsareacidandmaycontainstratifiedsandandgravelinthesubsoil.Mostuseproblemsarerelatedtotheseasonalhighwatertableandtothemoderatelyslowlypermeablesubsoil.Mapg~inunit:RdBRedHookloam,3-8percentslopes.TIOGASERIES-Tiogasoilsaredeep,welldrainedsoilsoffloodplains.Theyhavedevelopedindarkbrowntoreddishbrown,loamy,floodplainsedimentswashedfrommixedgreyandredglaciateduplands.Thesesoilsarenearlyleveltogentlyslopingwithamoderatepermeabilityinthesubsoil.Theyareacidandcontainafewstonefragments.Mostuseproblemsarerelatedtotheoccasionalfloodinghazard.Thesoilnamesassignedtothesoilsoftheareaaretentativesubjecttoafinalcorrelationpriortothepublicationofthecounty-widesoilsreport.Achangeinthesoilname,however,willnotchange'thesoilproperty.~Ma~inunitTBbTiogasoilsaB-3  
SSESOpDOpFOquagaandLordstown verystonysiltloam,8-25percentslopes.OquagaandLordstown verystonysiltloam,25-80percentslopes.PAPAKATING SERIES-Papakating aredeep,verypoorlydrainedsoilsofthefloodplains.
Theyhavedeveloped inloamysediments washedfrommixedgreyandredglaciated uplands.Thesesoilshaveamoderately slowlypermeable subsoil.Thewatertableisnormallyatthesurfaceduringmostoftheyear.Theyareacidandcontainfewstonefragments.
Mostuseproblemsarerelatedtothehighwatertableandtofrequentflooding.
Mainunit:Papakating siltloam.REDHOOKSERIES-RedHookaredeep,somewhatpoorlytopoorlydrainedsoilsoftheglaciated uplandsandvalleys.Theyhavedeveloped inloamy,water-worked glacialoutwashsediments frommixedgrayandredshaleandsandstone bedrock.These,soilshaveamoderately slowlypermeable subsoil.Thewatertablenormallyrisestowithinafewinchesofthesurfaceduringpartsofthewinterandspringmonths.RedHooksoilsareacidandmaycontainstratified sandandgravelinthesubsoil.Mostuseproblemsarerelatedtotheseasonalhighwatertableandtothemoderately slowlypermeable subsoil.Mapg~inunit:RdBRedHookloam,3-8percentslopes.TIOGASERIES-Tiogasoilsaredeep,welldrainedsoilsoffloodplains.
Theyhavedeveloped indarkbrowntoreddishbrown,loamy,floodplain sediments washedfrommixedgreyandredglaciated uplands.Thesesoilsarenearlyleveltogentlyslopingwithamoderatepermeability inthesubsoil.Theyareacidandcontainafewstonefragments.
Mostuseproblemsarerelatedtotheoccasional floodinghazard.Thesoilnamesassignedtothesoilsoftheareaaretentative subjecttoafinalcorrelation priortothepublication ofthecounty-wide soilsreport.Achangeinthesoilname,however,willnotchange'thesoilproperty.
~Ma~inunitTBbTiogasoilsaB-3  


SSESproductivedeerareaeventhoughthenumbersaresufficienttoattractsomehunters.Ofthefivesitesconsidered,thegeneralareaaroundtheMcElhattensiteisconsideredthesecondmostabundantinmigratorywaterfowl.The-overallterrestrialenvironmentisnotconsideredtobeuniqueorhaveasignificantlygreaterorlesservaluethantheothersites.TheWestBranchoftheSusquehannaRiver,becauseofminewastes,ishighlyacidicupstreamandsupportsasparsefishpopulation.Althoughthewaterqualityisimprovedinthesitearea,fishlifeismorelimitedherethanfurtherdownstream.Themajorspeciesoffishinthisareaaresmallmouthbass,catfish,andfallfish.Therearenowalleyeandfewmuskellunge.Withinatenmileradiusofthesitethereisonemajorwarmwaterfishingstreamandfourtroutstreams.WaterUse:Theestimatedcoolingwaterrequirementswouldconsume30.8%ofthe25year'recurrenceintervalsevendaylowflowpastthesite,assuminga70cfsmakeupwaterrequirementfortwo1,100mwunitswithcoolingtowers.~Industrialuseupstreamofthesiteismainlyconfinedtothreechemicalplants,aslaughter'house,apapermillanda'~hollldJLdeal.f)J.dliCLdca.VLge>opulation=Theassumed1,~~0footexclusionzoneofthesitewouldnotrequiretherelocationofanyexistingresidents.Duetotheruggedterrainandthelimitedagriculturaluse,theestimated1970populationdensitywithinthetenmileradiusis93personspersquaremile.LockHaven,located5mileswestofthesitewithanurbanpopulationof23,603,JerseyShore,located5mileseastwithanurbanpopulationof10,626andWilliamsport,15mileseastwithandurbanpopulationof89,449,arethemajorpopulationcenterswithin30milesofthesite.Aesthetics:Thesiteislocatedinaruralsetting.Mostofthelandisforestedandthereisalittleagriculture.Aswithanylargefacilitytherewouldbeanunavoidablevisualimpactuponthearea.Thesettingoftheimmediateareawouldbechangedfromawildernesstoanindustrialscene.23BrunnerIslandSiteThissiteislocatedonaformerislandintheSusquehannaRiverwhichisnowonlypartiallyseparatedfromthemainland.Thesiteisapproximatelysevenmilesdownstream
SSESproductive deerareaeventhoughthenumbersaresufficient toattractsomehunters.Ofthefivesitesconsidered, thegeneralareaaroundtheMcElhatten siteisconsidered thesecondmostabundantinmigratory waterfowl.
The-overall terrestrial environment isnotconsidered tobeuniqueorhaveasignificantly greaterorlesservaluethantheothersites.TheWestBranchoftheSusquehanna River,becauseofminewastes,ishighlyacidicupstreamandsupportsasparsefishpopulation.
Althoughthewaterqualityisimprovedinthesitearea,fishlifeismorelimitedherethanfurtherdownstream.
Themajorspeciesoffishinthisareaaresmallmouth bass,catfish,andfallfish.
Therearenowalleyeandfewmuskellunge.
Withinatenmileradiusofthesitethereisonemajorwarmwaterfishingstreamandfourtroutstreams.WaterUse:Theestimated coolingwaterrequirements wouldconsume30.8%ofthe25year'recurrence intervalsevendaylowflowpastthesite,assuminga70cfsmakeupwaterrequirement fortwo1,100mwunitswithcoolingtowers.~Industrial useupstreamofthesiteismainlyconfinedtothreechemicalplants,aslaughter'house, apapermillanda'~hollldJLdeal.f)J.dliCLdca.VLge>opulation=
Theassumed1,~~0footexclusion zoneofthesitewouldnotrequiretherelocation ofanyexistingresidents.
Duetotheruggedterrainandthelimitedagricultural use,theestimated 1970population densitywithinthetenmileradiusis93personspersquaremile.LockHaven,located5mileswestofthesitewithanurbanpopulation of23,603,JerseyShore,located5mileseastwithanurbanpopulation of10,626andWilliamsport, 15mileseastwithandurbanpopulation of89,449,arethemajorpopulation centerswithin30milesofthesite.Aesthetics:
Thesiteislocatedinaruralsetting.Mostofthelandisforestedandthereisalittleagriculture.
Aswithanylargefacilitytherewouldbeanunavoidable visualimpactuponthearea.Thesettingoftheimmediate areawouldbechangedfromawilderness toanindustrial scene.23BrunnerIslandSiteThissiteislocatedonaformerislandintheSusquehanna Riverwhichisnowonlypartially separated fromthemainland.
Thesiteisapproximately sevenmilesdownstream


SSESconstructionattheMcElhattenorSusquehannasitesandprobablylessthantheothertwosites.Majorspeciesoffishintheareaaresaallmouthbass,muskellunge,walleye,rockbass,crappie,catfishandsuckers.Thissectionoftheriverisconsideredagoodproducerofmuskellungeandafairproducerofwalleyeandrockbassandisahighlyfishedarea.Withinatenmileradiusofthesite(inYorkCounty)therearetwowarmwaterfishingstreamsandonetroutstream.WaterUse:WaterfromtheSusquehannaRiverwouldbeusedascoolingwaterforboththeexistingfossilfuelplantandanyproposednuclearplant.Theexistingplantusesapproximately1,200cpsofriverwater.About62cfs,orabout1.5-2.5%ofthesevendaylowflowwith20yearrecurrenceinterval,isestimatedtoberequiredforcoolingtwo1,100megawattunitsutilizingcoolingtowers.Asidefromtheexistingfossilplant,theriverisusedbytheYorkhavenHydrofacility,1.5milesupstream.Assumingan1800footexclusionzonenoresidencewouldhavetobemoved.The1970populationdensitywithinanareatenmilesfromthesiteis391personspersquaremile.Listedbelowarethemajorcitieswithin30milesofthesite:PopulationCenter,DistanceUrbanAreaPopulationfromSite~~1970Harrisburg,15milesNWLancaster,20milesELebanon,22milesNEYork,25milesSW172'9059s40740~00072'71Aesthetics:Theregionalsettingoftheareasurroundingthesiteisofaruralnat'ure.Thesiteiscurrentlyoccupiedbyafossilplant,however,andthereforepresentsanindustrializedappearance.Thevisualimpactofplacinganuclearfacilityandcoolingtowerswouldmerelyaddtotheindustrializedappearance.2.4Su~nburSiteTheSunburysiteislocatedinthenortheastcornerofSnyderCounty,Pennsylvania.ThesiteisonthewestbankoftheSusquehannaRiver,3.5milesdownstreamfromtheD-7 SSESincludetheShamokinCreekWatershedAssociationandvariousfoodprocessing,paperandsteelplants.NinetyresidencesfromthetownofHummelsWharfwouldhavetoberelocatedfromanassumed1,800footexclusionradius.Thepopulationdensitywithintenmilesis166personspersquaremile.Thefollowingcitiesarewithin30milesofthesite:PopulationCenter,DistanceUrbanAreaPopulationfromSiteLewisburg/Milton,12milesShamokin,13milesEBloomsburg,21milesNEWilliamsport,28milesNWSunburyN34~00032~00031~49489i44916t691Aesthetics:Becausethereisanexistingfossilfuelplantonthesite,thevisualimpactofaddinganuclearfacilitytotheexistingscenewouldbetoincreasetheindustrialappearance.2.5MartinsCreekSiteTheMartinsCreeksiteisintheeastcentralpartoftheNorthamptonCounty,Pennsylvania.ThissiteisbesideanexistingfossilstationupstreamoftheconfluenceoftheDelawareRiverwithMartinsCreek,about23milesNEofEaston,Pa.TherelativelybroadvalleyoftheDelawareRiverissouthoftheplantsite.Thevalleyatthesitevariesinwidthfrom300to500feet,three-quartersofamileupstream,tonearly1,000feetwideatthesite.Maximumandminimumelevationswithintheassumedexclusionarearangefrom200to420feetmslwithtwo-'hirdsofthesitelyingatbetween200and240feetmsl.TheDelawareRivernearthesiteisapproximately500feetwide.U.S.Highway611passesneartheplant.ThereisarailroadspurfromthePennCentralRailroadintotheexistingfossilplant.PhysicalSitingFactors~Geolog:Ontheportionofthesitecontainingtheexistingfacilities,bedrockaverages35feetbelowthesurface.
SSESconstruction attheMcElhatten orSusquehanna sitesandprobablylessthantheothertwosites.Majorspeciesoffishintheareaaresaallmouth bass,muskellunge, walleye,rockbass,crappie,catfishandsuckers.Thissectionoftheriverisconsidered agoodproducerofmuskellunge andafairproducerofwalleyeandrockbassandisahighlyfishedarea.Withinatenmileradiusofthesite(inYorkCounty)therearetwowarmwaterfishingstreamsandonetroutstream.WaterUse:WaterfromtheSusquehanna Riverwouldbeusedascoolingwaterforboththeexistingfossilfuelplantandanyproposednuclearplant.Theexistingplantusesapproximately 1,200cpsofriverwater.About62cfs,orabout1.5-2.5%ofthesevendaylowflowwith20yearrecurrence
4 SSESBiol~op:Largergamespeciesofthegeneralareaareconsideredsparse.Doveandpheasantareabundant.Theareaisnot'sedasamajormigrationrouteforbirds,butsmallpopulationsofducks.(primarilymallards)mayremainyearround.Muchofthehabitatconsistsoffarmedlandwithscatteredtreestandsgenerallyneartheriver,butalsooccurringinland.Aboutonemilenorthofthesiteisafairlylargewoodedarea.Inthe'immediateareaofthefossilplant,thelandislargelyopenfieldwithabout10to15%intrees.Therearenoknownrareorendangeredspecieswithinthe'area.Constructiononthissitewouldremovesomewildlifehabitat,however,themixofopenfarmlandandwoodlotsisnotuniquetothearea.TheDelawareRiverinthegeneralvicinityofthesiteisconsideredtohavegoodwaterqualityandisagoodproduceroffishlife.Forty-fourspeciesoffishwerecollectedin1956-1959surveysintheareaaroundMartinsCreek.Theeel,AmericanshadandstrippedbassareimportantspeciesandareallpresentintheareaaroundMartinsCreek.WaterUseThepresentfossilfuelplantusesapproximately270cfsofcoolantwater.Anuclearfacilityisestimatedtouse9.9%ofthesevendaylowflow,(20yearrecurrenceinterval).Thepresentfossilfuelunitsproduce320mwtwonewfossilunitswithacombinedoutputof1,600mwarepresentlyunderconstructionandareplannedforoperationin1975and1977.Afossil'fuelplantislocatedabout10milesnorthnearPortland,Pennsylvania.Inadditiona2,400mwnuclearfacilityhasalsobeenproposednearthatsite.~Poulatian:Noresidenceswouldhavetoberelocatedfromwithinthe1,800footexclusionzoneoftheplant.Thepopulationdensityoftheareaencompassedby'theten-mileradiusis355personspersquaremile.Allentown,20milessouthwest,withapopulationof108,926,andEaston,23mileswithanurbanareapopulationof180,394,Easton,7milessouthwest'ithanurbanareapopulationof77,594,andBethlehem,14milessouthwestwithanurban,areapopulation105,620arethethreemajorurbanareaswithin30milesofthesite.Aesthetics:Theareasurroundingthesiteisofruralsetting.Becauseoftheexistingfossilplant,however,theimmediatesitehasanindustrializedappearance.Anuclearfacilitywould 4r'ISI TABLED-1(Continued)Page5.PHYSICALSITINGFACTORSPACTORDESCRIPTIONoWaterUsersSUSQUEHANNASITEoCoalPlant9Mi.Upstream;AcidMineDrainage&MunicipalSewageFromUpstream.StreamMayTurnOrangeinSummer(reasonsun-defined)butpHatSiteWithinNormalLimits.MCELHATTENSITEoUpstream0HeavilyPol-lutedbyAcidMineDrainage.UpstreamTribu-taryHas3ChemicalPlants,2SlaughterHouses,PaperPlantandSmallAirplaneFactory.BRUNNERISLANDSITECoalPlantonSite(once-throughcool-ing)1~200cfs,T=27FMax,840MWeNuclearFacility3.5Mi.Upstream,SafeHarborHydroFa-cility20Mi.DownstreamandYorkHavenHydroFacility1.5Mi.Upstream.OtherIndustriesinGeneralArea.SomeIndicationofInsecticidePollution.SUNBURYSITEoCoalPlantonSite(once-throughcooling)450cfog,T=20FMax,483MWe.SewagefromShamakinCrk.WatershedAssociation.Paper,FoodProcessing,SteelPlantsWithin16Mi.Upstream.MARTINSCREEKSITEoCoalPlantatSite(once-throughcooling)270cfs,T=27oFMax,Two1,200MWeNuclearPlantsProposedforDeleware.Population4oEstimatedNumberofResidencesWithinAs-sumedEx-clusionZoneoNoneoNoneoNoneo90oNoneoTotalPopulationDensityWithin10-MileRadiuso167Persons/Sq.Mi.o93Persons/Sq.Mi.o391Persons/Sq.Mi.o166Persons/o355Persons/Sq.Mi.Sq.Mi.oTotalPopu-o53,000lationWithin10MilesofSiteoTotalPopu-o265,354lationWithin20MilesofSiteoTotalPopu-o465,000lationWithin30MilesofSiteo36,000o105,000o140,000o123,000o598,000o758,600o60,009o189,413o289,000o140,781o363,517o500,389AestheticsoExistingSceneAtSiteoRuraloRuraloIndustrialoIndustrialoIndustrial4PopulationDataBasedon1970Figures.DensityNumbersincludeTownshipAreasandPersonsEitherWhollyorAtLeast50%WithinTen-MileRadiusofSite.  
: interval, isestimated toberequiredforcoolingtwo1,100megawattunitsutilizing coolingtowers.Asidefromtheexistingfossilplant,theriverisusedbytheYorkhaven Hydrofacility, 1.5milesupstream.
Assumingan1800footexclusion zonenoresidence wouldhavetobemoved.The1970population densitywithinanareatenmilesfromthesiteis391personspersquaremile.Listedbelowarethemajorcitieswithin30milesofthesite:Population Center,DistanceUrbanAreaPopulation fromSite~~1970Harrisburg, 15milesNWLancaster, 20milesELebanon,22milesNEYork,25milesSW172'9059s40740~00072'71Aesthetics:
Theregionalsettingoftheareasurrounding thesiteisofaruralnat'ure.Thesiteiscurrently occupiedbyafossilplant,however,andtherefore presentsanindustrialized appearance.
Thevisualimpactofplacinganuclearfacilityandcoolingtowerswouldmerelyaddtotheindustrialized appearance.
2.4Su~nburSiteTheSunburysiteislocatedinthenortheast cornerofSnyderCounty,Pennsylvania.
ThesiteisonthewestbankoftheSusquehanna River,3.5milesdownstream fromtheD-7 SSESincludetheShamokinCreekWatershed Association andvariousfoodprocessing, paperandsteelplants.Ninetyresidences fromthetownofHummelsWharfwouldhavetoberelocated fromanassumed1,800footexclusion radius.Thepopulation densitywithintenmilesis166personspersquaremile.Thefollowing citiesarewithin30milesofthesite:Population Center,DistanceUrbanAreaPopulation fromSiteLewisburg/Milton, 12milesShamokin, 13milesEBloomsburg, 21milesNEWilliamsport, 28milesNWSunburyN34~00032~00031~49489i44916t691Aesthetics:
Becausethereisanexistingfossilfuelplantonthesite,thevisualimpactofaddinganuclearfacilitytotheexistingscenewouldbetoincreasetheindustrial appearance.
2.5MartinsCreekSiteTheMartinsCreeksiteisintheeastcentralpartoftheNorthampton County,Pennsylvania.
Thissiteisbesideanexistingfossilstationupstreamoftheconfluence oftheDelawareRiverwithMartinsCreek,about23milesNEofEaston,Pa.Therelatively broadvalleyoftheDelawareRiverissouthoftheplantsite.Thevalleyatthesitevariesinwidthfrom300to500feet,three-quarters ofamileupstream, tonearly1,000feetwideatthesite.Maximumandminimumelevations withintheassumedexclusion arearangefrom200to420feetmslwithtwo-'hirds ofthesitelyingatbetween200and240feetmsl.TheDelawareRivernearthesiteisapproximately 500feetwide.U.S.Highway611passesneartheplant.ThereisarailroadspurfromthePennCentralRailroadintotheexistingfossilplant.PhysicalSitingFactors~Geolog:Ontheportionofthesitecontaining theexistingfacilities, bedrockaverages35feetbelowthesurface.
4 SSESBiol~op:Largergamespeciesofthegeneralareaareconsidered sparse.Doveandpheasantareabundant.
Theareaisnot'sedasamajormigration routeforbirds,butsmallpopulations ofducks.(primarily mallards) mayremainyearround.Muchofthehabitatconsistsoffarmedlandwithscattered treestandsgenerally neartheriver,butalsooccurring inland.Aboutonemilenorthofthesiteisafairlylargewoodedarea.Inthe'immediate areaofthefossilplant,thelandislargelyopenfieldwithabout10to15%intrees.Therearenoknownrareorendangered specieswithinthe'area.Construction onthissitewouldremovesomewildlifehabitat,however,themixofopenfarmlandandwoodlotsisnotuniquetothearea.TheDelawareRiverinthegeneralvicinityofthesiteisconsidered tohavegoodwaterqualityandisagoodproduceroffishlife.Forty-four speciesoffishwerecollected in1956-1959 surveysintheareaaroundMartinsCreek.Theeel,Americanshadandstrippedbassareimportant speciesandareallpresentintheareaaroundMartinsCreek.WaterUseThepresentfossilfuelplantusesapproximately 270cfsofcoolantwater.Anuclearfacilityisestimated touse9.9%ofthesevendaylowflow,(20yearrecurrence interval)
.Thepresentfossilfuelunitsproduce320mwtwonewfossilunitswithacombinedoutputof1,600mwarepresently underconstruction andareplannedforoperation in1975and1977.Afossil'fuelplantislocatedabout10milesnorthnearPortland, Pennsylvania.
Inadditiona2,400mwnuclearfacilityhasalsobeenproposednearthatsite.~Poulatian:Noresidences wouldhavetoberelocated fromwithinthe1,800footexclusion zoneoftheplant.Thepopulation densityoftheareaencompassed by'theten-mileradiusis355personspersquaremile.Allentown, 20milessouthwest, withapopulation of108,926,andEaston,23mileswithanurbanareapopulation of180,394,Easton,7milessouthwest
'ithanurbanareapopulation of77,594,andBethlehem, 14milessouthwest withanurban,areapopulation 105,620arethethreemajorurbanareaswithin30milesofthesite.Aesthetics:
Theareasurrounding thesiteisofruralsetting.Becauseoftheexistingfossilplant,however,theimmediate sitehasanindustrialized appearance.
Anuclearfacilitywould 4r'ISI TABLED-1(Continued)
Page5.PHYSICALSITINGFACTORSPACTORDESCRIPTION oWaterUsersSUSQUEHANNA SITEoCoalPlant9Mi.Upstream; AcidMineDrainage&Municipal SewageFromUpstream.
StreamMayTurnOrangeinSummer(reasonsun-defined)butpHatSiteWithinNormalLimits.MCELHATTENSITEoUpstream0HeavilyPol-lutedbyAcidMineDrainage.
UpstreamTribu-taryHas3ChemicalPlants,2Slaughter Houses,PaperPlantandSmallAirplaneFactory.BRUNNERISLANDSITECoalPlantonSite(once-throughcool-ing)1~200cfs,T=27FMax,840MWeNuclearFacility3.5Mi.Upstream, SafeHarborHydroFa-cility20Mi.Downstream andYorkHavenHydroFacility1.5Mi.Upstream.
OtherIndustries inGeneralArea.SomeIndication ofInsecticide Pollution.
SUNBURYSITEoCoalPlantonSite(once-throughcooling)450cfog,T=20FMax,483MWe.SewagefromShamakinCrk.Watershed Association.
Paper,FoodProcessing, SteelPlantsWithin16Mi.Upstream.
MARTINSCREEKSITEoCoalPlantatSite(once-throughcooling)270cfs,T=27oFMax,Two1,200MWeNuclearPlantsProposedforDeleware.
Population 4oEstimated NumberofResidences WithinAs-sumedEx-clusionZoneoNoneoNoneoNoneo90oNoneoTotalPopulation DensityWithin10-MileRadiuso167Persons/Sq.Mi.o93Persons/Sq.Mi.o391Persons/Sq.Mi.o166Persons/o355Persons/Sq.Mi.Sq.Mi.oTotalPopu-o53,000lationWithin10MilesofSiteoTotalPopu-o265,354lationWithin20MilesofSiteoTotalPopu-o465,000lationWithin30MilesofSiteo36,000o105,000o140,000o123,000o598,000o758,600o60,009o189,413o289,000o140,781o363,517o500,389Aesthetics oExistingSceneAtSiteoRuraloRuraloIndustrial oIndustrial oIndustrial 4Population DataBasedon1970Figures.DensityNumbersincludeTownshipAreasandPersonsEitherWhollyorAtLeast50%WithinTen-MileRadiusofSite.  
/Ij}}
/Ij}}

Revision as of 05:19, 29 June 2018

Susquehanna Units 1 and 2 - Amendment to Environmental Report, Dated November 30, 1972
ML18023B080
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 11/30/1972
From:
Pennsylvania Power & Light Co
To:
Office of Nuclear Reactor Regulation
References
Download: ML18023B080 (126)


Text

SSESTABLEOFCONTENTS1.01~11.22~02~12.22.32'2'2.62~73'3.13'3.33'3'3'3.73'4.04.14'4'4~45.05.15~25'5.4FORWARDSUMMARYNTRODUCTION DESCRXPTXON OFPLANTANDSITETHENEEDFORPOWERTHESITELOCXONOFTHEPLANTHUACTIVXTES INTHEENVRIONSHISTORCANDCULTURALSIGNXFICANCE GEOLOGYtMINERALRESOURCES ANDSOILSHYDROLOGMETEOROLOG ANDCLIMATEBIOTATHEPLANTEXTERNALAPPEAEOFTHEPLANTTRANSMISSION LINEREACTORANDSTEAMECTRICSYSTEMWATERUSEHEATDXSSXPATXON SYSTgTHERADXOACTIVE WASTESYSTEMSCHEMICALANDSANITARYWASESRECREATION ANDCONSERVATIO ENVIRONMENTAL EFFECTSOFSITEPREPATIONANDPLANTCONSTRUCTION PLANS~SCHEDULES, ANDMANPOWERREQUIREMENT SEFFECTONHUMANACTIVITIES EFFECTONTERRAIN,VEGETATION~

ANDWILDLIFEEFFECTSONADJACENTWATERSANDAQUATICLIFEENVIRONMENTAL EFFECTSOFPLANTOPERATION EFFECTSOFRELEASEDHEATEFFECTSOFRELEASEDRADIOACTIVE MATERIALS EFFECTSOFRELEASEDCHEMICALANDSANITARYWASTESFUELTRANSPORTATION

SSES5.56.06~16.26.36'6.57.08.08~18.28'8.08.58'8.79.010.011.0ASSESSMENT OFENVIRONMENTAL EFFECTSOFPLANTOPERATION NRADIOLOGICAL ENVIRONMENTAL IMPACTOFTHEPLANTRADXOLOGICAL ACCIDENTCLASSXFICATION METHODSOFDETERMINING RADIOLOGICAL IMPACTTRANSXENT ANDACCIDENTOCCURENCES ENVIRONMENTAL XMPACTANALYSXSPROBABXLITY INPERSPECTIVE ANYADVERSEENVXRONMENTAL EFFECTSWHXCHOTBEAVOIDEDSHOULDTHEPROPALEXMPLEMENTED ALTERNATIVES ANDCOST-BENEFXT INTRODUCTIONSOURCESOFPOWERALTERNATE SITESANDSITESELECTION ALTERNATE HEATDXSSIPATXON METHODSALTERNATE RADWASTESYSTEMSALTERNATE TRANSMISSXON LINEROUTESANDDESIGNCONSIDERATIONS COST-BENEFIT ANALYSISTHERELATXONSHIP BETWEENLOCALSHORT-TERM OFMANSENVIRONMENT ANDTHMAINTENANCE ANDENHANCEMENT OFLONG-PRODUCTIVITY ANYIRREVERSIBLE ANDIRRETRXEVABLE MMXTMENTS OFRESOURCEWHIHWOULDBEINVOLVEDXNTHEPROPOSEDACTIONHOULDITBEXMPLEMENTED ENVIRONMENTAL APPROVALS ANDCONSULATXON SSESLISTOFTABLESTable1.2.1Table1.2.2Table1.2.3Table2.2.1Table2.2.2Projected PP&LSystemLoadsAndCapacityPP&LServiceRegionsGenerating StationCapacityAsOf5/1/72Communities Within5MilesOfTheSiteWith1,000OrMorePopulation In1970LandUseOfCountiesWithin20,MilesOfTheSiteTable2.2.3Proportion OfGrossSalesForAgricultural AndLivestock Products-1968Table2.2.4Table2.2.5Table2.5.1Table2.5.2Distribution OfLabor,ForceSusquehanna RiverWaterUse-Municipal, Industrial AndPublic-Susquehanna SESSiteToHavre-De-Grace, MarylandChemicalAnalysesOfTheNorthBranchSusquehanna RiverAttheSite-April1968ThroughAugust1970Radiostrontium Concentrations InSusquehanna River-AverageConcentration, Picocuries/

LiterTable2.6.1Table2.6.2Table2.6.3Table2.6.4WindFrequency Distribution InPercentByWindDirection VersusWindSpeedClassesForPasquillStability Class-A,C,E,&GAnnualAverageRelativeConcentration (Dilution Factor)AtTheRestricted AreaBoundaryCumulative Percentage

-Frequency Distribution OfPl'umeLengthPerWindDirection SectorCumulative Percentage

-Frequency Distribution OfPlumeLengthPerWindDirection Sector I>>o~hti0l,l0 SSESTable3.2.1LandUse-Susquehanna SESToLackawanna 500-kVLineTable3.2.2Population Distribution

-Susquehanna SESToLackawanna

-500-kVLineTable3.2.3LandUse-Susquehanna SESToFrackville 500-kVLineTable3.2.4Population Distribution

-Susquehanna SESToFrackville

-500-kVLineTable3.4.1Table5.2.1ChemicalAnalysisOfTheNorthBranchSusquehanna RiverAtTheSite-April1968ThroughAugust1970ExpectedRadionuclides ReleasedToSusquehanna RiverTable5.2.2ExpectedGaseousEmissions ToTheAtmosphere Table5.2.3Table5.2.4Population Dose(Man-Rem)

FromGaseousEmissions

-NormalReleasesDuringFullPowerOperation Population Dose(Man-Rem)

FromGaseousEmission-Intermittent ReleasesFromVacuumPumpOperation Table5.2.5Table5.2.6Table5.4.1Table6.2.1Table6.3.1Table6.5.1Table8.2.1DoseFromDrinkingWaterAndEatingFishSummaryOfTheDoseCalculations Container DesignRequirements SummaryOfPopulation ExposureFromNaturalAndMan-MadeBackground ComparedWithNuclearRadiological EffectsSummaryOfPopulation ExposureFromNaturalAndMan-MadeBackground ComparedWithNuclearRadiological EffectsTableOfEventProbabilities DollarCosts-NuclearVersusFossilFuelTwo1100MWUnits fI SSESLISTOFFIGURESFigure1.0.1Figure1.1.1Figure1.1.2Figure1.2.1Figure1.2.2Figure2.2.1Figure2.2.2SiteVicinityMapSiteAerialViewFacilities PlanPJMBulkPowerSystemPlannedBy1981PPGLServiceAreaDensityofPopulation (1970)Sh.1SiteVicinityMapShowingPresentAndFuturePopulation Distribution, 0To10MilesFigure2.2.2Sh.2SiteVicinityMapShowingPresentAndFuturePopulation Distribution, 0To10MilesFigure2.2.3Sh.1RegionalMapShowingPresentAndFuturePopulation Density,0To50MilesFigure2.2.3Sh.2RegionalMapShowingPresentAnd-FuturePopulation Density,0To50MilesFigure2.2.4Figure2.2.5Figure2.5.1Figure2.6.1PublicGroundWaterSuppliesWellLocations LowFlowFrequency AndFlowDurationAnnualAndInversion WindRose1960To1964Figure2.6.2Figure2.6.3Precipitation-Wind Distribution AsPercentofTotalWindObservations, 1960To1964Technique ForComputation ofCoolingTowerPlume-Lengths SSESTURBINE-GENERATORS Length300feetTRANSFORMERS CapacityVoltageStep-upCooling1,280,000kilovolt-amperes Unit¹1-230F000voltsUnit,¹2-500,000voltsOil'EACTORSTypeCoolantModerator CoreCoolantFlnrRateFeedwater InletTemp.SteamOutletTemperature CoolantPressureSteamCapacityHeatOutputBoilingwater,directcycleWaterWater450,000gallonsperminute380degreesFahrenheit 545degreesFahrenheit 1,020poundspersquareinch13,432,000 poundsperhour11200i000000BritishthermalunitsperhourFUELCORESPelletsMaterialEnrichment LengthDiameterNumberTotalweight,UO2RodsMaterialCladdingThickness OutsideDiameterLengthNumberUraniumdioxide(UO2)2to3percent0.5inches0.487inches11million190tonsZircaloy-20.032inches0.563inches13.33feet37'36 tl'41 SSESsewage.Thisbuildingwillbeapproximately 40feetlong,30feetwide,and15feetabovegrade.1TheServiceandAdministration OfficeBuildingwillbeapproximately 200feetsquare,withaheightof70feetabovegrade.Itwillcontainofficesandmeetingrooms,afirstaidroom,storerooms,amachineshopandlockerfacilities.

TheEngineered Safeguards ServiceWaterPumphouse willcontaintheresidualheatremovalservicewaterpumpsandemergency servicewaterpumpstosupplywaterforshutdowncoolingandforemergency corecooling.Itwillbe86feetlong;36feetwide,and31feetabovegrade.Inadditiontothebuildings, twohyperbolic coolingtowersgandanintakestructure andpumphouse ontheSusquehanna Riverwillbelocatedonthesite.Thecoolingtowerswillbereinforced concretestructures about500feethighandabout500feetindiameterattheirbase.A300footmeteorological towerwaserectedcontaining instruments tomonitormeterological data.Asmallbuilding,,located atthebaseofthetower,housessomeadditional instrumentation.

Theintakestructure andpumphouse islocatedonthefloodplain attheedgeofthesiteandprovidesmakeupwaterfortheclosedcoolingsystem.11-4 f,il*~

1ggruOvER,ZSGLLEZAlETSO:'ICOSI/OOO 4'r)l<(JjtR!RIDGEVHLLSIL~TZSI.SCILInEVEATED

~DS-TLIPEnIISVLIIAII14-EDDRDI441E-~.

Z.ELEVATIon DATVm15mEAnSEALEI/EL.7JPMREERED5/t/EEIISERVILEVATERPDVPII/NloREER:ATIon

/AJJLIVVER/LOSER/ILLit/t7v/IIIITRATIonOLXiNvCrESTREAT8ETEOROLOGILALTOvEROtIIGooLInGTovERLILoRIooxn Ev.pvmvIIovsr, JvzE/L.TREArner h~IIIGTV'ESELG67ER/troR EDDE/IIGIvvERtI.SELOXLRVROLOaaITZTELRDLDE/

TDRIRLALI'II/AIn/tILLDIlNMLl'0vATERELITE!tPENNSYLVANIA POWERSLLIGHTCOMPANYSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2APPLICANT'S ENVIRONMENTAL REPORTLylILlf0'IIi-SVOZTVRE AnD~WCLISEE/Sg/ARGE LIIIE~IILlDISLII/tRGE TOAVERIFacilities PlanFIGUREl.l.2 J'

SSES22HUMANACTIVITIES INTHEENVIRONS2.2.1.1'resetPoulatonTheareaaroundtheSusquehanna siteissparselypopulated, exceptforsmalltowns.Fewdwellings arefoundinthehills,andtherearealmostnoneinthemountains.

Population datafortownswithinfivemilesofthesitearefoundinTable2.2.1.SalemTownshiphasapopulation densityclassedas"100to300personspersquaremile,<rankingitamongoneofthelowestdensitytownships inthecounty(Ref.2-1).Thepopulation ofSalemTownshipis3890people.The1970BureauofCensusdataplacesthepopulation ofLuzerneCountyat339,446.TheLuzerneCountyPlanningCommission projectsanincreaseto536,210by2000.Mostofthepopulation iscenteredinthemetropolitan Wilkes-Barre area,approximately 20milesnortheast cfthesite.Secondary population centersarePittstcn(25milesnortheast) andHazleton(15milessouthwest)

.Thereareafewsmallertowns,buttheremainder ofthecountyisgenerally sparselypopulated.

Thepopulation densityofLuzerneCountyisshowninFigure2.2.1.221.2tePoat'onItisanticipated that,asmanyas2,500workerswillbeemployedduringpeakconstruction activity(1975to1977)Some-oftheseworkmenwillbepermanent localresidents andotherswilltemporarily moveintotheareaduringconstruction.

PPSL'sconstruction experience showsthatmostworkers.commutemorethan30mileswhenmajorhighwaysarepresent.Mostworkersareexpectedtobetravelers, thatis,workerstraveling morethan30milesfromtheplanteachday.Thenumberofworkers(peakmanpower) thatwillbeonthesitebyyearare:1973-300.1976-25001979-8001974-18001977'-24001980-2501975-23001978-15001981-100Theestimated population andpopulation densities fortheyear2020withina10-mileand50-mileradiusofthesiteareshownonFigures2.2.2(Sheets1and2)and2.2.3(Sheets1and2).Twomethodswereusedtoarriveattheseestimates.

FortheLuzerneCountyareawithin10milesofthesite(over80percentofthetotalareaina10-mile2%21

'L~4,E SSESTherearetwomilitarydefensefacilities withinfiftymilesofthesite.ThenearestistheTobyhanna facilitylocatedabout38milestotheeast.TheEdwardMartinMilitaryReservation, atIndiantown Gap,isapproximately 50milessouthwest ofthesite.Nonuclearfacilities arelocatedwithina50-mileradiusofthesite.Theclosestnuclearfacilityisscheduled tobetheLimerickStation,70milestothesouthsoutheast, beingdeveloped bythePhiladelphia ElectricCompany.Therearenoschoolswithin2milesofthesite.TheclosesthospitaltothesiteisBerwickHospitalwith195beds.22.21icultureaz-Approximately 23$ofthe891squaremilesinLuzerneCountyareutilizedforfarmingbyabout800farms..Farmrevenuein1965amountedtoabout$9,500,000.

In1970,0.69%ofthetotalwork'forceinthecountywasemployedinagriculatural activities (Ref.2-11).Thecountyisagricultural salesarebrokendownasinTables2.2.3(Ref.2-3).Theamountoftillablelandonthesiteisabout300acresandincludesbothfloodplain anduplandareas.Theonlycurrentfarmingonthesiteisbyatenantfarmerworkingabout175acresoffloodplain land.Allofthetillablelandisscheduled toberemovedfromagricultural production astheresultofthedevelopment ofalargerecreation areaonthefloodplain andtheconstruction andoperation ofpowerplantstructures andtransmission facilities.

Inthepast,thefloodplain landhasproducedcropsoftomatoes,

potatoes, squashandcorn~butithasbeensomeyearssincemostorallofthelandwassimultaneously farmed.Sincethereare85,000-acresoflandclassified asagricultural inLuzerneCounty(Ref.2-11)theremovalofsome300acresfromproduction isnotexpectedtoresultinasignificant adverseenvircnmental impact.Quitethecontrary, infact,formorethan175acresofthistillablelandwillbedeveloped asapicnicandcampingareaforgeneralpublicuse.ThisplanisdetailedinAppendixC~Itcanreasonably beexpectedthatthisdevelopment willhaveabeneficial environmental impact.2.2.2.2CommerceLaborandIndustrur Therehasbeenlimitedcommercial development.

inLuzerneCountylargelybecauseoftheruggedtopography, and'consequently much'fthecountyremainsessentially undeveloped.

2m23

SSESwaterwithinthebasinisexpectedtoincreasetomorethan31milliongallonsperdayby1980.ThecitiesofChester,Pennsylvania, andBaltimore,

Maryland, bothoutsidetheSusquehanna Riverbasin,areusing80milliongallonsofSusquehanna Riverwatereachdaytosatisfymunicipal andindustrial needs.Aboutone-third ofthisisdivertedviaChestertotheDelwareRiverdrainageregionandtheothertwo-thirds totheChesapeake Bayarea,bywayofBaltimore.

By2020,anestimated threemillionresidents outsidethebasinwillbedependent onthissourceformorethan800milliongallonsperdayformuncipalandindustrial supplies.

Thosemunicipal, private,andindustrial watersystems.downstream fromthesitewhichdonottapgroundwater andminortributaries areexpectedtorelymereontheSusquehanna Riverinthefuture,asthecapacities oftheothersourcesareexceeded.

Presentwaterusebydownstream municipalities andindustries isshowninTable2.2.5.Mostoftheindustries contacted indicated nowaterusagefromtheSusquehanna River.Groundwateristhemajorsourceofindustrial watersupply.The,plantCirculaing WaterandnormalServiceWaterSystemswillbeclosedloopsystemsusinghyperbolic naturaldraftcoolingtowersastheirheatsink.Whenthetwogenerating unitsareoperating atmaximumcapacity, anaverageofabout50cfs(22,000gpm)andapeakof62cfs(27,800gpm)willberequiredfromtheexternalwatersupplytoreplacewaterlostbyevaporation inthecoolingtowers.Thedetailsofthesesystemsarediscussed inSubsection 3.5.Duringshutdownthemaximumquantityofwatertakenfromtheriverwillbesignificantly lessthanthatrequiredfornormaloperation.

Recreational WaterUseWaterways ofthe"Susquehanna Riverbasinareusedforalltypesofrecreation; theseusesareexpectedtoplaceaneverincreasing demandontheresource.

Recreational useoftheSusquehanna Rivernowtotalsalmost37millionuser-days peryear.By2020,recreational useshouldincreasetoover203millionuser-days peryearwithanestimated 23millionannualfishingdays,assumingnorestrictions duetopoorwaterquality.2~27

SSESTABLE2.2.1COMMUNITIES WITHIN5MILESOFTHESITEWITH1,000ORMOREPOPULATION IN1970CommunitMocanagua Shickshinny Nescopeck EastBerwickBerwickWapwallopen SalemTwp.1950196014962156190710771104184519341258N.A.N.A.3124-14010133531970N.A.16481875N.A.121422503890DistanceandDirection FromSite3-N4-N4.5-WSW4.5-Wsw5-WSW1-ESEN.A.-NotAvailable Source:U.S.CensusofPopulation

-1950,1960and1970(Preliminary)

I0 SUSQUEHANNA RIVERWATERUSEMUNICIPAL, INDUSTRIAL ANDPUBLICSUSQUEHANNA SESSITETOHAVRE-DE-GRACE, MARYLANDTABLE2.2.5UserName1.BerwickWaterCo.Location-RiverMiles,Berwick-8.0QuantityUseClass(NcNd)MSb.NoneCommentForemergency useonly.Notusedfor8years.Pumpremoved.Servesabout20-25thousandpersons2.Blocmsburg WaterCo.3.Campbell.

SoupCo.4.DanvilleBoroughBloomsburg

-19.4Bloomsburg

-19.4Danville-27.45.MerckaCo.Danville-27.46.DanvilleStateHospitalDanville-27.47.SunburyMun.Auth.Sunbury-38.5IPr1.0Mgd35.0MgdPuPrMPrNA4.0MgdMSbNAINoneNoneMPr2.0MgdNouseofriverwaterWillexpanduse.Servesabout8,000personsServesabout500persons.Largequantityforcooling,smallforprocess.Servesabout4,000personsFoursummermonthsonly.PlumCreeksuppliesremainder.

Servesabout15,000persons.Allocated 4.0Mgd8.CelotexCorp.9.PP&L(SES)10.ShamokinDamMunicipal Auth.Sunbury-38.5Sunbury-38.5Shamokin-44.4INoneNoneIPr245MgdMPrNAServesabout2,000personsll.Millersburg WaterCo.12.Harrisburg Mun.Auth.13.International PaperCo.14.'Bethlenem SteelCo.15.BoroughofSteeltonWaterCo.16.Bethlehem SteelCo.17.Metropolitan Edison(SES)Millersburg

-69.4Harrisburg

-91.0Harrisburg

-91.0.Harrisburg

-91.0Steelton-93.4Steelton-

-93.4Middletown

-100.2MSbNAMSbNAINANACoolingIPr1.3Mgd'ooling IPr245MgdINANAMPr1.7MgdAllocated 5.0Mgd rN TABLE2.2.5CONT'DUserNameLocation-RiverMilesQuantityUseClass(MGD)Comment18.Metropolitan Edison(HES)Yorkhaven

-105.2Pr11,782Mgd19.PP&L(SES)20.Wrightsville WaterCo.21.ColumbiaWaterCo.22.Lancaster WaterAuth.23.YorkWaterCo.24.SafeHarborWaterPowerCorp.(HES)25.PP&L(SES)26.PP&L(HES)27.Phila.Electric(PS)28.Phila.Elec.(NS)29.Phila.Elec.&-Susque-hannaPowerCo.(HES)30.ChesterWaterAuth.31.Baltimore WaterAuth.BrunnerIsland-108.0IWrightsville

-119.0MColumbia-119.0MLancaster-PrPrPrPr745MgdNA1.8Mgd8.0MgdHoltwood-137.9IPrHoltwood-137.9IPrMuddyRun-140.4IPrPeachbottom

-143.0INAConowingo

-154.3IPr65Mgd21,337Mgd12,931Mgd0.03Mgd53,018MgdChester-*MSbNABaltimore, Md.-*MSbNAYork-*MSbNASafeHarbor-129.7MPr79,527MgdBasedonolddate.Allocated 24.0Mgd*NotonRiver~NotonRiver*NotonRiver*NotonRiver32.Havre-de-Grace Municipal Auth.Havre-de-Grace, Md.-MPr162.01.4MgdNote:RiverNA(SES)(HES)(PS)(NS)IMPuPrSbMgdmilesarefromSusquehanna LEGENDL888EhNDNoteavailable SteamElectricStaticnHydroelectric StationPumpingStationNuclearStationIndustrial Municipal PublicPrimaryStandbyMilliongallonsperdaySESsite SSES23TheNationalRegisterofHistoricPlacesliststheDennision House,35Dennision Street:,FortyFort,Pennsyvlania approximately 21milesnortheast ofthesite,asthenearesthistorical place.Therearethreeareasofculturalinterestwithinthesitelocale:theNorthBranchCanal,CouncilCupandalocalcemetery.

TheNorthBranchCanalislocatedbetweentheriverandU.S.Route11.Atthepresentthecanalisindisrepair.

TheSusquehanna SESsitehasbeencloselytiedtotheearlyeconomicdevelopment oftheNorthBranchValleysinceitwasfirsttraversed bytheNorthBranchCanal,animportant linkintheSusquehanna CanalSystem.TheNorthBranchCanalprovidedanewwaterrouteforthetransport ofanthracite minedintheWilkes-Barre areaandthuscontributed heavilytothevalley'sprosperity byopeningupnewmarketsforcoalallalongthefar-flung Pennsylvania CanalSystem.TheNorthBranchexperienced itsgreatestbusinessgrowthintheyearsbeforeandduringtheCivilWar.Withthecomingoftherailroads, however,itdeclinedinimportance asdidothercanalsandcanalsystems.Partofthecanal,including thatpartwhichcutsacrosstheSusquehanna SESsite,continued inbusinessuntiltheearly1900s.CouncilCuphasbeenusedasanIndianmeetingsiteandislocatedontheeastsideoftheriveratahighpointwheresurveillance oftherivervalleyisquiteadvantageous.

Thisareahasculturalinterestbecauseithasbeendocumented asthesiteofacouncilmeetingin1793tosettlealanddisputebetweenIndiansandsettlers.

According tolocallegend,itisalsothesiteofmeetingsamongIndiannations.Archeologists havereportedthatthesiteisnotlikelytoproducesignificant artifacts becausethereisnoevidenceofapermanent encampment onthebluff.Asmallcemeteryislocatedinthenorthernpartofthesite.Itisoutsidetheexclusion area.Accesstothecemeteryisviaapublicroad,andnotthroughthesiteproperty.

Thecemeterywillnotbedisturbed inanywayduring'onstruction oroperation ofthefacility.

TheUnionReformedandLutheranChurchinWapwallopen isthefirstoftheselandmarks.

On-siteinspection hasestablished thatthehousesandotherbuildings surrounding thechurchwillhidethepowerlinestructures andconductors fromview.2%31 SSES(seeFigure2.2.5)theriverisshallow;itslowflowdepthwasaboutfivefeet.NearMapwallopen thedepthsincreasetomorethansevenfeetandthebottomcontourisgenerally moreuniformexceptforashallowrockledgeatBellBend.AtWapwallopen theriverchangescourseabruptly, witha'0oturntothewest.Thispoolarea,calledBellBend,isuptofourteenfeetdeep.Atitsmouth,Wapwallopen Creekhasalargedeltaofrockandgravel.Belowthispoint,theriverwidensto500yardsandbecomeshallower.

Downstream fromBeachHaven,aflatbedrockareaextendstothemouthofNescopeck Creek;alargeriffleareagiveswaytoadeeppoolbelowthispoint.WaterqualityattheSusquehanna SESsitehasbeenmonitored byPPSLmonthlysince1968.Themaximumtotaldissolved solidsofrecordis389partspermillion(ppm),andthelowestofrecordis80ppm.Hardnesshasrangedfrom248ppmto52ppm,andtherecordedwatertemperature hasrangedfrom85OZto34oF.Averagewaterquality,basedonthesamplescollected, ispresented inTable2.5.1.Thedatacollected byPPSLisgenerally compatible withwaterqualityrecordscollected bytheU.S.Geological SurveyfortheSusquehanna RiveratDanville, approximately 30rivermilesdownsteam fromthesite(1964through1967).Pumpingofacidwaterfromdeepmineshascausedsignificant fishkillsinthepast.In1961,amajorfishkillwascausedbyacidminewaterwhenthepHatBerwickdroppedfrom7.0to3.5andthetotalironincreased from5ppmto40ppm(Ref.2-5).PPSLrecordsfrom1968to1970showthatthepHhasonlyvariedfrom6.5to7.4andisconsidered acceptable forfreshwater aquaticlife.Waterusesandwaterqualitycriteriahavebeendesignated fortheNorthBranchoftheSusquehanna River,fromtheLackawanna Rivertoitsconfluence.

Theseusesandcriteriaareprescribed byChapter93,WaterQualityCriteriaoftheseRulesandRegulations ofthePennsylvania Department ofEnvironmental Resources.

Verylittledataareavailable onbackground radiation levelsoftheriver.Thequalityofariverreflects, inpart,thecondition ofitswatershed.

'Theamountofsedimentinthewaterisanindexofthesoil,thedensityandkindofvegetation, andtheintensity andamountofrainfallontheriver~swatershed.

Similarly, theamountofdissolved solidsinthewaterisanotherindexofthewatershed.

Theradiological burdenofariverisgovernedbythesesamefactors.25-3 t~.

SSESprojectwillbeontheorderof200gpm.Groundwaterhydrology ofthesiteindicates that,ifwellsaretobeused,theneededquantityofwaterprobablycouldbedeveloped fromwellslocatedontheflocdplainadjacenttotheriver.Suchwellsprobablywouldinducerechargefromtheriver,theregylimitingtheextentoftheconeofdepression surrounding thewells.Althoughwaterlevelswouldbeloweredasaresultofpumpagefromwells,thiseffectwouldnotbeexpectedtoextendbeyondthepropertyownedbyPPSLandwouldlastonlyaslongasthewellsarepumped.Near-term pumpingtestswillbeconducted toestablish thedistances involved.

Therewouldprobablybenoadverseeffectontheotherwellsinthevalleyfromawellorwellsproducing 200gpm.Thegroundwatertableintheareaisasubduedreplicaofthesurfacetopography.

Atthesitethewatertableisfoundgenerally within35feetofthegroundsurface,usuallyjustbelowthebedrocksurfacebutsometimes withintheoverburden soils.Groundwatercontoursconstructed fromwaterlevelmeasurements indrillholesshowthatthegroundwateratthesitemoveseastwardfromtheelevatedsitetotheadjacentriverfloodplain.Permeability testsoftheglacialmaterials andtheunderlying bedrockshowthattherateofmovementofthegroundwaterisslow.*Thesetestsindicatethatthe'ermeability oftheglacialmaterials variesfrom2.2x10-~Cm/Secto4.5x10-~Cm/Secvertically, and2x10-~Cm/Sechorizontally.

Permeability oftherockvariesfrom3x10-4Cm/Secto4x10-~oCm/Sec.25-5 SSESTABLE2.5.1CHEMICALANALYSESOFTHENORTHBRANCHQUNAIATHESTEAPRIL68THROUGHAUGUST1970*MinimumMaximumA~veraeSilica(Si02)Iron(Fe)Aluminum(Al)Manganese (Mn)Calcium(Ca)Magnesium (Mg)Sodium(Na)6Potassium (asBicarbonate (HC03)Sulfate(SO~)Chloride(CX)Nitrate(N03)Phosphate**

Dissolved SolidsHardnessasCaC03Dissolved OxygenBiochemical OxygenDemand(5dayBOD)Temperature F.pHColorNa)0.090.020.000.0012.63.40.00~25.612.83.60.50.0079.651.57.80.8346.55.55.11.720.560.9565.221.89.481.815518.24.00.4388.8248.014.26.6857.4111.03.40.400.100.1132.99.62.755.260.010.81.70.21206.8125.010.62.96338.8Allvaluesinpartspermillion(ppm),exceptthosefortemperature, pHandcolor.*PP6LRecords-Biweeklysamples**Basedononlythreesamples IIIA SSES(22.5oacrsorsectors)usingthefollowing techniques:

350o~360o~10o204'04404~50o60o,70o80o;90o~100otosector1(N),tosector2(NNE),tosector3(NE),tosector4(ENE),tosector5(E),etc.20Theotheradjustment consisted ofincluding the"calm"windobservations inthelowestspeed(2-3mph)range.Thiswasdoneforeachlapse-rate classbydistributing thenumberofcalmwindoccurrences overthe16sectorsinproportion tothefrequency distribution ofthelowestspeedrange.Theeightsetsofwindrosedataarereproduced inTable2.6.1.Annualaveragerelativeconcentration (dilution factors)attherestricted areaboundarywerecomputedfromthestandardformula(Ref.2-9)foracontinuous-ground levelsource:I20.0lf=0.02032f(sm).-"./-)<zXwhereo~isobtainedfromthePasquill-Gifford curves(Ref.2-10)foradistancexbetweensourceandtherestricted areaboundary.

Thewindspeeduisspecified asameanforeachspeedrange,e.g.,8-12mphistakenas10mphor4.47m/s;fisthefrequency ofoccurence

(%)ofthewindforagivensector.Thefactor2mx/nisthearclengthofeachsector'overwhichlong-term horizontal dispersion isassumeduniform.Theminimumdistancefromsourcetotherestricted areaboundaryforn=16sectorsisindicated inTable2.6.2.Thecomputation ofrelativeconcentraticn X/Qwasaccomplished bydigitalcomputer.

Resultswereobtainedforthesevenmainlapse-rate (orstability) classes,forfivewindspeedrangesandthenaddedtogivetheannualaverageX/Qvaluesforeachofthe16windsectors.TheseareshowninTable2.6.2.Specialconsideration wasgiventothestabilitv class"G~~forwhichthelapse-rate isgreaterthan4DC/100m/

sincenoezcurvesexistforthiscase.Here,o~valuesforClassF,scaledbythefactor(2.5)-/a, wereused.26-4 k

SSESTherearenoknowntallstructures inthearea,eitherexistingorproposed, whichwouldbeofsufficient heighttointersect theplume.Therefore, thewettingoricingproblemassociated withtheplumedoesnotappeartobesignificant.

Itisnotlikelythattheplumewouldaffecttheflightofaircraftovertheplant.Theclosestairportisapproximately 4milessouthwest oftheplantandwillnotbesignificantly affectedbytheoperation ofthecoolingtowers.Itisarelatively smallairfieldwithagrassrunwayandisusedbylightaircraft.

Conditions thatproducelongplumesareoftenaccompanied byfog,rainorlowclouds;thatis,conditions whichwouldthemselves normallyrestrictlightaircraftoperations.

Immediately overthecoolingtowers,lightaircraftwouldprobablyexperience mildtomoderateturbulence duetotheheatintheplume.Anon-visible plume,or<train~~containing watervapor,heatandsuspended saltswillexistintheatmosphere forsomedistancebeyondthevisibleplume.Thelengthofthisidentifiable trainwilldependontherateofmixingwiththeambientairanduponvariations intheseparameters causedbyotherphysicalfeatures.

Theamountofwatervaporinjectedintotheatmoshphere bythecoolingtowersatmaximumloadwillvarybetweenapproximately 40cfs(18,000gpm)and62cfs(27,800gpm)depending onambientairconditions.

Thisamountofmoisturehasbeencomparedtothatwhichwouldbeputintotheatmosphere byevapotranspiration ifapproximately 10squaremilesofbuildings andpavementinacitywerereplacedwithvegetation.

Sinceplumeswillusuallyriseseveralthousandfeet,theheatandremaining moisturewillbedissipated atthisaltitude.

Depending uponambienttemperature conditions, thetemperature ofplumesleavingthetowerwillvarybetweenapproximately 50OFand110oF.~~Suspended salts~~areimpurities, particulates, anddissolved solidsthatwillbepresentintheintakeriverwater,whichwillbeaddedasmake-uptotheCirculating WaterSystem.Aswatersplashesoverthebafflesofthecoolingtower,saltssmallenoughtobecomesuspended intheairflowandcarriedupandoutofthetowerwillbecomepartoftheplume.Thequantityofsaltsandthechemicalcontentoftheplumewilldependlargelyonthechemicalqualityoftheservicewater.Itisestimated thataservicewaterimpuritycontentof770pramwillresultintheconcentration oflessthan62ppmintheplume.Therewill26-6

SSESbe110poundsperacreperyeardeposited intheimmediate vicinityofthecoolingtowers.Theseairbornesaltswillsettletothegroundinapatterndetermined byprevailing meteorological conditions.

Xngeneral,saltdeposition willbethegreatestnearthecoolingtowersandwilldecreaseinconcentration withdistanceawayfromthetowers.Thedistribution ofthesaltdeposition willbecommensurate withthearealcoverageofthevisibleplume.Sincethesaltsarewatersoluble,mostofthesedepositswillberedissolved byprecipitation andwillflowbacktotheSusquehanna River.Theimpactofthesesaltsbothon/andoff-sitewillbeinsignificant.

2.6-7

SSESSusueannaSES-Frackville 500-kvLine-PPSLproposestoemploythesamecriteriaandotherconsiderations indesigning thislineaspreviously detailedfortheSusquehanna SES-Lackawanna 500-kvline.Theprimarystructure typewillbetheself-supporting, latticesteel,single-circuit structure asshowninFigure3.2.3.Allrelatedfoundations, conductor hardwareconfigurations, andcolorcombinations areidentical.

Itisestimated thatapproximately 125structures willberequiredtocompletetheSusquehanna SES-Frackville 500-kvline.Thesinglemajordifference betweentheselineshowever,,is thattubularsteelH-framestructures willbeusedforthefirsttwoandone-halfmilesofthelinefromtheSusquehanna SES500/230-kv Substation toapointbeyondtheSusquehanna Rivercrossing.

Thereasonsforthisdecisionareasfollows:Theproximity ofthisportionofthelinetothesitevicinity.

2~Tostandardize, insofaraspracticable, theappearance ofallstructues crossingtheSusquehanna Riverinthevicinityoftheplantsite.Toachieveadegreeofcompatibility betweentheappearance ofthelineandexistingandexpecteddevelopment patternsalongU.S.Route11andinthe,vicinitoftheBorouhofBeachHaven.3~Yg3.2.2.3RadioandTelevision Interference/Audible NoiseThegeneration ofradiofrequency noisesignalsunderbothfairandfoulweatherconditions willbeminimized bytheselection ofoptimumconductor sizes,phasebundleconfigurations, andphasespacings.

Nostructures willbelocatednearanycommercial radio,television ormicrowave transmitting facilities.

Nolinelocationisplannedwhichwouldparallelanyexistingtelephone, telegraph, orothercommunication facilitytoanextentthatinductive interferenc'e totheoperation ofsuchfacilitywouldresult.'oise intheaudiblefrequency rangeisaphenomenon whichispresentonallelectrical transmissionn lines.At230-kv,thenoiseisusuallyinaudible.

At500-kv,however,thenoiseamplitude thatisanimportant designconsideration.

Atwo-conductor bundleconfiguration willbeusedforthe500-kvtransmission lines.Thisdesignhasprovensuccessful inreducingaudiblenoiseonexistingPPSL500-kvlinesandisgenerallyused byotherutilities aswell.Inaddition, widthsoftheplannedrights-of-way should3~27 SSESTABLE3.2.2POPULATION DISTRIBUTION SUSQUEHANNA SESTOLACKAWANNA 500-KVLINECountyTownship/Borough/Ci tyPercentCensusYearsChange19701960~TownshiLuzerneLackawanna SalemUnionHunlockPlymouthKingstonExeterRansom+24.5+63.2-18.26.1+13.7+42.84.43890'31241253768.168220572614278361965450186913091196.1251LuzerneLackawanna BoroucOhShickshinny PlymouthLarksville Edwardsville Swoyersville WestWyomingKingstonExeterDicksonCityBlakely8.68.3-10.31.4+0.5+15.69.61.60.5+0.316859536393756336786365918325467076986391184310401439057116751316620261474777386374LuzerneLackawanna

~CitWilkes-Barre Scranton7.1.103564111443 SSES3~4MATERUSEFigure3.4.1presentstheSusquehanna SESwateruse'iagram.

Thediagramdepicts,indetail,theflow',paths toandfromthevariousplantwatersystems.Theriverintakewillwithdrawanaverageof32,000gpmfromtheriverflowforthemakeupofevaporation lossfromthecoolingtowers,blowdownlosses,anddomesticuses.Thisamountstolessthan15%oftheminimumdesignriverflow(540cfs)

.Thisusewillnotappreciably influence thedownstream riverlevel.Theintakestructure willbe'designed toensureminimaldestruction oftheaquaticbiota.Thiswillbedonebydesigning astructure havinglowwatervelocities (notgreaterthan0.75fps)throughtheintakeentranceandwithfeatures, whichdiscourage fishentrapment andprovideforfishescape.ThequalityofwaterintheSusquehanna Riverforatwo-yearperiodfrom1968to1970asmeasuredbyPPSLispresented inTable3.4.1.Detailsofwater'andwastetreatment arediscussed inSubsections 3.7.1and3.7.2.34-1 IIlII4C'!41FII SSESgpmfor2units,thepondholdupcapacitywillbeslightlygreaterthanthe24hourholdupneededtoensureafairlyconstantriverdischarge temperature, i.e.,fluctuations inblowdownwatertemperature willnotappreciably affectthetemperature ofoutflowfromthepond.Theoutflowqualitywillbemonitored anddischarged totheriver.Duringanormalshutdown, thespraysystemswillbeoperative.

Approximately 900,2~~hollowconespraynozzleslocatedabovethepondsurfacewilleffecttherequiredcooling.Thespraypondwillalsofunctionasaheatsinkduringemergency shutdownconditions.

Underthismodeofoperation, makeupwaterneednotbeaddedtothepondtoachieveitssafetyfunction.

Waterwillbecirculated throughthespraysystem,asbefore,toeffecttherequiredcooling.3.5.26IntakeandDischarcae Structures Boththemake-upwaterintakestructure andthedischarge arrangement willbelocatedontheSusquehanna River.Theintakewilldrawascreenedwatersupplyof32,000gpm(designyearlyaverage)forthemake-upofwaterlossesfromevaporation inthecoolingtowers,blowdownfromcoolingtowerbasins,anddomesticusage.Thedischarge arrangement will'erve todisposeofblowdown, effluentfromtheradwastesystem,andsewagetreatment effluentintotheriver.Preliminary studieshaveindicated thataconventional typeintakecomprised ofacombinedreinforced concreteriverintakeandpumphouse structure withtrashracksandtraveling screenswillbefeasible.

Theintakestructure wouldcontainfourpumpseachratedat13,500gpm.Watervelocitythroughthebarrackswould'belimitedto0.75fpsinordertoallowmobileorganisms toescapefromwithintheinfluence zoneoftheintake.Sideopeningswouldalsobeprovidedtopermittheescapeoflessmobileorganisms beforebeingdrawnontothetraveling screens.Duetothelowminimumwaterlevel,aconventional typedesignwillrequireadredgedchannelwhichwillneedsomemaintenance.

Trainingwallsorfenderpilesmayalsoberequiredtoprotectthestructure fromdebrisduringfloods.Thedischarge arrangement willbecomposedofaburiedpipeleadingtoasubmerged outletintheriverabout600feetdownstream oftheintakestructure.

Aninvestigation ispresently beingmadeconcerning adiffusion arrangement thatmaybeincorporated forefficient mixingofeffluentandriverwater.3.5-5

.a SSES36THERADTOACTTVE WASTESYSTEMS361GeneralTheRadioactive WasteSystemsaredesignedtoprovidecontrolled handlinganddisposalofliquid,gaseous,andsolidwastes.Thesewasteswillberoutedfromeachunittoacommonradwastebuildingforprocessing forre-useordisposal.

Mostoftheliquidradioactive wasteswillbeprocessed andre-usedintheplant,whileonlyasmallfractionoflow-level wastemaybedischarged totheSusquehanna River.Gaseousradioactive wasteswillbeprocessed byseparation, removal,andretention ofradioactive gasesandparticulates priortoreleaseofthedecontaminated gases.Theliquidandgaseouseffluents willbecontinuously monitored.

Thedischarge willbeautomatically stoppediftheeffluentconcentrations exceedapplicable regulatory limits.Solidradioactive wastesfromplantoperations willbepackagedinDepartment ofTransportation approvedcontainers priortoshipmentoff-siteforpermanent disposal.

Thedesignobjective oftheLiquidandGaseousRadwasteSystemsistoreducetheactivityintheliquidandgaseouswastestomeetthecriteriatonumerical doselimitsofAppendixIofl0CFRpart50.ThesolidRadwasteSystemisnotexpectedtocontribute significantly eithertothedischarge ofradioactive effluents ortotheoff-siteradiation dose.3.6.2LiuidWastesTheLiquidRadwasteSystemcollects,

monitors, treatsandpreparesradioactive liquidsothatmostofitcanbereusedintheplant.ThissystemwillbecommontobothUnits1and2.TheLiquidRadwasteSystemconsistsoffourbasicsubsystems:

equipment drains,floordrains,chemicaldrainsandlaundrydrainsasshowninFigure3.6.1.Equipment, willbeselected, arrangedandshieldedtopermitoperation, inspection, andmaintenance withinregulatory limitsforpersonnel exposures.

Clean-upequipment willincludefilters,demineralizers, andwasteevaporators.

Crossconnections betweenthesubsystems willprovideadditional flexibility forthebatchprocessing ofthewastesbyalternate methodsusingthevariousclean-upequipment.

Theequipment drainshavethehighestconcentration ofradioactive inpurities (approximately

<10-~uCi/ml).

Aclosedcollection systemcollectsequipment leakagefrom3.6-1

SSESeachunitandroutesittotheRadwasteBuilding.

Afterprocessing byfiltration andionexchangethewaterflowstotheequipment drainsampletankswhereitissampled.Ifthewaterissatisfactory forre-useitisreturnedtothecondensate storagetank.Ifthesamplerevealshighconductivity (approximately

>1umho/cm)orhighradioactivity (approximately

>10-~)thewaterisreturnedtothesystemforreprocessing.

Filtermediaandion-exchange resinsusedforthisprocessing whenexhausted areprocessed withintheSolidRadwasteSystemforoff-siteshipment.

3.6.2.2FloorDrainsThefloordrainsgenerally containalowconcentration ofradioactive impurities (approximately

<10-~uCi/ml) andsomedissolved andsuspended solids(200ppm).Thesedrainsincludecoolerdrains,areadrains,baseplatedrains,andothermiscellaneous lowactivitydrains.Theprocessing anddisposition ofthiswasteissimilartothatoftheequipment drains.Ifchemicalanalysisindicates thattheprocessed drainagemeetscondensate storagetankwaterqualityrequirements, thebatchisdischarged tothecondensate storagetank.3.6.2.3ChemicalDrainsThechemicaldrainsalsohavelowconcentrations ofradioactive impurities (approximately

<10-~uCi/ml)

.Theliquids,whichconsistoflaboratory drains,decontamination solutions, andwastewater,areprocessed bywasteevaporators toconcentrate thevolumeofradioactive wasteandtoallowre-useordischarge ofthepurifieddistillate.

Treatment byfiltration andionexchangeisnotsuitableduetothechemicalcompositions ofthesedrains.Theevaporator concentrates areprocessed withintheSolidRadwasteSystemforoff-siteshipment.

Thedistillate issampledpriortoreturntothecondensate storagetankorpriortodischarge todetermine theneccesity offurtherprocessing.

362.4~LaundrDrainsThelaundrydrainshavethelowestconcentration ofradioactive impurities

(<10-5uCi/m1)

.Thesewastesarefromdecontamination ofequipment, personnel decontamination showers,andlaundrywastewater.Becauseofatendencytofoulionexchangeresinsincreasing carryover inevaporators, thesewastesarekeptseparatefromotherliquidwastes.Theyareprocessed byfiltration andthensampledpriortobeingdischarged.

3.6.2.5SstemDesin36-2

SSESTheLiquidRadwasteSystemdesignissuchthatwastesresulting fromnormalplantoperations areaccommodated andprocessed asdescribed above.Thesystemdesignalsoprovidesforhandlingofthelargevolumesofwasteexpectedtoresultfromrefueling andmaintenance activities.

Thesystemdesignwillalsohandlemalfunctions ofashortte'rmnaturesuchasincreased valvesealand/orpumpsealleakage.Experience fromoperating stationshasbeenfactoredintotheradwastedesign.Normaloperating practices aretoprocessthewastesthroughthesubsystems provided.

Batchsamplingofthewastesisdonetoensurethateachbatchmeetsspecified waterqualityandradioactivity requirements.

Wastesnotmeetingthese,requirements arerecycledforreprocessing oraresenttoasurgetankifprocessing capacityisnotimmediately available.

TheLiquidRadwasteSystemisarrangedbelowgradeintheradwastebuilding.

Thebasementcanbelikenedtoabathtubsothatleakageand/orspillageisretainedbyconcretecompartments.

TheseliquidsarereturnedtotheLiquidRadwasteSystemthroughtheradwastedrainsystem.Protection againstaccidental discharge willbeprovidedby'esignredundancy, instrumentation forradiation detection,-

andalarmsystemswhichdetectabnormaloperational conditions.

Theradwastefacilityarrangement andthemethodsofwasteprocessing provideasubstantial degreeofconfinement ofthewasteswithintheplant.Thisassuresthatinthe'eventofafailureoftheLiquidRadwasteSystemorerrorsintheoperation ofthesystem,potential forinadvertent releaseofliquidsisminimized.

Theliquideffluents willbedischarged atarateof10to50gpmintotheretention pond.Thiswillprovidedilutionandadequatemixingpriortodischarge

'intotheSusquehanna River.Table5.2.1insubsection 5.2.1itemizestheexpectedannualdischarge ofradioactive materials fromtheLiquidRadwasteSystems.3.63GaseousWastesTheGaseousRadwasteSystemwillmonitor,process,andcontrolthereleasesofradioactive gasesfromthefacility.

Thedesignwillprovideadequatetimetotakecorrective action,ifnecessary,-to controlandlimittheactivityreleaserates.Gaseouswastesoriginating inthereactcrtravelwiththemainsteamthroughthepowerconversion systems.TheGaseousRadwasteSystemcollectsthegasesfromthemaincondenser.

Thesewastesincludeactivation gases(N-13,N-16and0-19)arisingduringnormalplantoperations, fission36-3 0

SSES3~73.7.1~ChemicalWashes3.7.1.1RawWaterTreatment SystemWasteSusquehanna Riverwaterwillbetreatedforuseasmakeuptothereactor.Treatment willconsistofclarifying therawriverwaterbyadditions ofacoagulant (alum),coagulant aid,alkaliforpHadjustment, andsodiumhypochlorite.

Theclarified waterwillbefilteredanddemineralized.

Thedemineralizer willthenconsistofcation,anion,andmixedbedion-exchangers.

Theclarifier willproduceasludgewhichwillconsistbasically ofriverwaterwiththesuspended solidsoftheriverconcentrated toapproximately 0.5-3%solidsbyweight.Inadditiontherewillbeasmallamountofaluminum, sulfate,andpolyelectrolyte mixedin.Theaverageyearlyflowofthesludgeblow-offisexpectedtobe1.5gpm,whichisquitesmallwhencomparedtotheflowof10,000gpmreturning fromthepondtotheriver.Themakeupsystemfilterswillbebackwashed periodically andthisbackwasheffluentwillbebasically riverwater.Thisbackwashwaterwillbemixedwiththedischarge waterfromthepond.Themakeupdemineralizers willbeperiodically regenerated withsulfuricacidandsodiumhydroxide solutions.

Theregenerant wastewillbecollected inaneutralization basinortankwherethepHwillbeadjusted.

Thiswaterwillthenbeslowlymixedwiththepond.Approximatley 15,800gallonsperday(11gpm)ofregenerant wastewillbeproduced.

Theregenerant wastewillberiverwaterconcentrated approximately 6times,withtheadditionofapproximately 1,700ppmofsodiumsulfate.Thetotaldissolved solidsconcentration willbeintheneighborhood of3,000ppm.Theneutralized demineralizer waste,whenmixedwiththedischarge fromthespraypond,willresultinanincreaseof3to5ppmtotaldissolved solidsoftheretention ponddischarge.

Itisexpectedthattheregenerant wasteneutralization tankwillbeemptiedin0hours.Therateofdischarge willthenbeapproximately 66gpmandresultinanincreaseof23ppmdissolved solidsintheponddischarge.

3~71

SSES3.7.1.3Circulatin Water-BowdownpromCaulis~Tower Makeupwatertothecirculating watersystemisSusquehanna Riverwater.Thiswaterwillconcentrate approximately 3.7timesinthesystemduetoevaporation inthecoolingtower.Thecyclesofconcentrations willbecontrolled byblowingdowntothepondattheapproximate rateof5,000gpmpercoolingtower.Sulfuricacidwillbeaddedcontinuously tothecirculating watertopreventscalingandtomaintainapHbetween7.2and7.6.Thesulfuricacidisconsumedinthisprocesswitharesultant increaseinsulfatesandaproportional decreaseinalkalinity.

Chlorinewillbeaddedintermittently tothecirculating watertopreventslimebuildupinthecondenser tubes.Thechlorineresidualatthecoolingtowerbasinwillbelessthan1ppm.Thischlorineresidualiscompletely consumedinthepond.Further,onlyoneunitwillbechlorinated atatime.Thedischarged waterfromthepondtotheSusquehanna Riverwillhaveachlorineresidualofzero.Studiesshallbecarriedouttodetermine whatwastestreammonitoring willberequired.

3.7.2DomesticandSanitarWater~SstemsThedomesticwatersystemwillprovidewaterforthepotablewatersupplyandtheSewageTreatment Systemnecessary fornormalplantoperations andshutdownperiods.Domesticwaterwill'besuppliedfromtheriverviatheMakeupWaterTreatment System.Approximately 30gpmwillbeprocessed bymeansofaclarifier, filter,andchlorinator locatedinthecirculating waterpumphouse.

Astoragetankwillprovideforshortdurationdraw-offs ofupto100gpm.Thedomesticwatersystemwillbeindependent fromthefireprotection systemexceptduringconstruction.

Asupplyforthecombineddomesticandfiresystemduringtheconstruction periodwillbepumpedfromwellssunkonthefloodplainbelowtheplant.Itislikelythatonlyaminimumamountoftreatment intheformofchlorination willberequiredforwaterfromthewells.Theplantwillbeservedbyadualaerationsewagetreatment system.Bothunitswillberequiredfortheapproximate eight-year construction period.Thereafter, theplantfacilities canbehandledbyoneofthetwounits.Theplantsewagedisposalsystemwillnotreceiveradioactive laundryordecontamination solutions.

Thevisitorssewagedisposalfacilities willbeindependent oftheplantsystem.3e72

SSES4'EFFECTSONHUMANACTIVITIES AplantProjectcommittee willserveasameanstoassesstheneedsandproblemsassociated withtheproject.Typically, thecommittee iscomposedofsixlocalresidents andtworepresentatives ofPPGL.Theprimarypurposeofthecommittee istofosteranunderstanding betweenthecompanyandthearearesidents ofeachother'sgoals,andtocooperate inachieving thesegoalsinordertodevelopthearea'seconomyandresources.

Thecommittee willenablelocalresidents toserveasasoundingboardbetweenthecompanyandthecommunity, andprovidelocalpeoplewithameansofchannelling suggestions'r askingquestions concerning theconstruction projects.

Similarcommittees havebeenformedatotherPPGLfacilities andhavebeenquitesuccessful.

Duringthepeakconstruction period,theworkforcewillincreasetoapproximately 2,500men(seeSubsection 2.2.1.2).DatafromanotherPPSLconstruction projectinasimilarrurallocationindicatethat10%oftheworkerstravellessthan15miles,54%travelbetween15and40miles,and36%travelmorethan40miles(distances areforone-waytrips).Manyoftheseworkerswillalreadybeinthearea.Therefore, nosignificant adverseeffectonthecommunity (suchasadditional services) isexpected.

Thetotalmonthlypayrollduringtheperiodofpeakactivity(1975-1977) willbeapproximately

$4,000,000.

Thiswillhaveapositiveeconomiceffectontheregion.Theadditionof2,500jobstothelocalpayrollwillincreasetheeconomicbaseofthearea.Siteactivityisplannedtocommenceinearly1973andwillrunthrough1981'hetotalmonthlypayrollduringtheperiodofpeakactivity(1975<<1977) willbeapproximately

$4,000,000.

Thelocalcommunity maybefacedwithproviding additional

services, suchassewagefacilities orschoolfacilities, butexpenditures byconstruction workersforhousing,food,clothingandotheritemswilloffsetthecostofcommunity services.

Overall,theimpactispositiveratherthannegative, andineithercaseisrelatively short-lived.

Thesewagetreatment systemdescribed inSubsection 3.7.2willhandlesanitarywaterduringtheconstruction phaseaswellastheoperational phaseoftheSusquehanna SES.Allremovalandultimatedisposalofsanitarywasteswillbeinaccordance withstandards ofthePennsylvania Department ofEnvironmental Resources.

Thehandlingofsanitarywastesattheplantsitewillbeconsidered oneofthefirstpriorities atthestartofconstruction.

Thestorage,handlinganddisposalofcleaningmaterials, oils,oilywastes,etc.,willbeincompliance withtheapplicable regulations.

4.2-1 W

SSESDuringconstruction, chippingmachineswillbeusedtodisposeofsmalltreesduringclearingoperations andtheutilization ofclosedincinerator burningoftrashanddebrisispresently beingreviewedandevaluated.

Inaddition, afireprotection systemwillbeestablished.

Somecombustion productswillbereleasedtotheatmosphere asaresultofoperating diesel-powered machinery.

Theseitemsshouldhavenosignificant effectupontheenvironment.

Duringthesitepreparation phaseofconstruction, dustcontrolmeasureswillbeusedtoreducedustlevels.Thesemeasureswillconsistprimarily ofsprinkling andwillcontinueasrequiredthroughout theconstruction program.Tofurtherreducetheamountofdustgenerated, roadsandparkinglotswillbesurfacedassoonaspractical.

Incertainareasoftheconstruction site,including roadsandparkingareas,untiltheyarepavedirainswilltendtowashloosesoiloffthesite.Inordertoreducemudrunoff,thedrainagewillbechannelled intothesettingbasinsandonlyafterclearingwillthewaterbeallowedtodrainoff.Construction activities willcreatesomeunavoidable noise.Theactivities whichcreatethemostnoisewillbescheduled tobestreducetheoff-siteimpact(i.e.blasting, etc.,willbedoneduringday-light hoursandnotatnight).Theremaybetrafficcongestion enteringandleavingthejobsite,partidularly atstartingandquittingtime.Ifmultipleshiftsarenecessary, therewillbeasmoothandorderlytransition betweenshiftstoreducethelikelihood oftrafficcongestion.

Discussions arepresently underwaywiththe'ennsylvania Department ofTransportation (PennDOT) concerning waystokeeptrafficcongestion toaminimum.Severaltransmission linecorridors willbeselectively clearedinaccordance withtheprovisions andspecifications ofPPEL'sVegetation Management Program.Theseprocedures involvemaximumretention ofexistinglowgroundcoverintheright-ofmay area,preservation ofexistingtreegrowthinravinesandgullieswhereadequateclearence tolineconductors canbeobtained, andthe"tailoring" ofexistingtreegrowthalongimprovedroadscrossedbytheselinestoretainanaturalscreenbetweenroadtrafficandtheclearedright-of-way strip.Whereexistingtreegrowthadjacenttoimprovedroadscannotberetainedbecauseofinterference withlinereliability, selectedvarieties oflowgrowingtreesandshrubswillbeplantedtoprovideapermanent screenbetweentheclearedright-of~ay androadtraffic.ItisthepolicyofPPGLtotakeallstepsreasonable tominimizetheimpactoftheSusquehanna SESonthefloraandfaunaofthearea.4'-2

'II SSES5.0uz*5.1EFFECTSOFRELEASEHEAT51.1ThermalD'schareThermaldischarge fromtheSusquehanna SESwillconsistprimarily ofheatrejectedtotheatmosphere bythecoolingtowers.Eachof'thetwocoolingtowers.willhave,adesignheatloadof8x10~BTU/hr.Anadditional thermaldischarge takesplaceinthecontinuous blowdownofwaterfromthepond.Overflowfromthepondwillbedischarged intotheSusquehanna Rivertogetherwithwaterfromtheradwasteanddomesticwatertreatment systems.Studiesareunderwaytodetermine theoptimumdischarge arrangement.

Theblowdownfromthecooling.towersisexpectedtobe10,000gpm(22.3cfs).Theestimated temperature ofthisblowdownis93~Fand74.2<FforAugustandDecemberrespectively.

Towerblowdownwillbedischarged directlyintothepond.Thecapacityofthepondwillensureaminimumretention periodof24hours.Theblowdownwaterwillflowthroughthepondandwilllosesomeofitsheatbysurfaceheat,transferpriortodischarge.

Ithasbeendetermined thatthemaximumblowdowntemperature afterleavingthepondwillbe89.50Fand63oFforAugustandDecemberconditions respectively.

The.heatintheblowdownflowwillbedispersed intotheSusquehanna Riverfromwhichitwilleventually bedissipated totheatmosphere bysurfaceheattransfer.

Tentatively, theoutflowfromthepondwillbedischarged intotheSusquehanna Riverbymeansofadiffuserlocatedattheriverbottomatthelowestelevation ofabout480ft.MSL.Discharge fromthediffuserwouldtakeplacethroughaseriesofsmallportsabout4inchesindiameterdischarging theflowata45~anglewiththehorizontal inthedirection oftheriverflowwithanestimated velocityof6feetpersecond,asshowninFig.5.1.1Theorientation oftheportsareselectedsothatjetactionwillnotcausescouringoftheriverbedandtoincreasetherateofdilutionfromtheambientriverwater.Theoutflowfromthepondwillresultinincreased rivertemperatures inthedownstream vicinityoftheproposeddiffuser.

Theextent'andthemagnitude ofthisaffectedzonedependsprimarily upontherateofdischarge, thetemperature oftheblowdownovertheambientrivertemperatu're, thevelocityofdischarge, thediffuserportsizeandthemagnitude oftheriverflow.Apreliminary studyhasbeenmadeinordertopredictthecharacteristics ofthermalisotherms intheSusquehanna 51-1 SSESatthedownstream endoftheelemental volumearray.Itisassumedthemomentumoftheoutfallhasbeendissipated atthispoint.Thesolutionofthedispersion modelwasobtainedbyusingthefollowing hydraulic data:Crosssectionsfromthe1966surveywereusedtoobtaincharacteristic valuesofaveragevelocities, shearvelocities, andhydraulic radiiforflowconditions analyzed.

20Lateralandverticaldispersion coefficients wereevaluated fromthe'sectional dataandthesemi-empirically deriveddispersion coefficient equations.

ItwasfoundthatforAugustclimaticconditions, withariverflowof1000cfs,the2oF(riseinrivertemperature aboveambient)isothermextendsabout20feetfromthediffuser.

Thecalculated isotherms areshowninFigures5.1.2and5.1.3.Withthesameclimaticconditions andamedianflowof3400cfsthe2oFisothermwouldprobablynotreachthesurface,asshowninFigure5.1.4.ForDecemberclimaticconditions, withariverflowof2600cfs,the2OFisothermextendsabout750feetdownstream fromthediffuser.

Thes'eisotherms areshowninFigures5.1.5and5.1.6.Analysisofthecondition atariverflowof12,800cfsshowedthatthe2OFisothermwouldnotreachthesurface,asshowninFigure5.1.7.Forthecasesanalyzed, themaximumwidthofthe2OFisothermislessthan100feet.Thereduction intheplumelengthbetweenDecemberandAugustismainlyduetothereduction intheestimated temperature difference betweentheblowdownandtherivertemperature.

Itisseenthattheheatedwaterdischarge fromSusquehanna SESwillnotexceedthetemperature limitsofthePennsylvania PowerWaterQualityStandards underbothcriticalandaverageriverflowconditions outsideasmall(lessthan100foot)mixingzone.Waterqualitystandards including thermalstandards fortheCommonwealth ofPennsylvania arepresented insubsection 2.5.1.51.2EffectsonBiotaDuringtheoperation oftheSusquehanna SEStherewillbeessentially noeffectonaquaticorganisms fromthethermaldischarge asdiscussed insubsection 5.1.1.Periphyton whichmovewiththewatercurrentsmaybeeffectedintheareaofthethermalplumebutthiswillhavealimited5.1-3 I

SSES5.2.1'GaseousfuetsThedesignofthecryogenic OffgasSystem,coupledwithdesignfuelcladdingperformance, providesfordelayandretention sufficent toreducethe.expectedannualaveragereleaserateto9.3pCi/sec.Thisreleaserateisbasedonaninputtotheoffgassystemof100,000pCi/secdesignbasisofa30minuteoldmixtureofnoblegases.Theexpectedinputanddischarge are1/4theseamounts.TheGaseousRadwasteSystemisdescribed inSection3.6.Thesystemisexpectedtoremoveessentially alloftheiodineandparticulate radioactivity intheprocessed gases.Theannualaverageemissionratesandisotopiccompositon ofgasreleasedbytheoff-gastreatment isincludedinTable5'.2.Inadditontotheessentially continuous releaseshowninTable5.2.2intermittent releasefromthemechanical vacuumpumpdischarge occursapproximately 40hourseachyear.Thisgasisdischarged totheatmosphere viatheturbinebuildingexhaustandconsistsofapproximately 5760curiesperyearofXe-133andapproximately 860curiesperyearofXe-135.5.2.1.3Sol'dEffluents Thesolidradwastesystemisnotexpectedtoreleaseradioactive materialtotheenvironment.

Solidradwastes arepackagedinsealedcontainers priortoshipment.

Weareallexposedtoradiation invaryingdegreesfromtheground,sky,andairaroundusaswellasfromthefoodweeat.Thedegreeofexposuredependsonwherewelive,thetypeofhousewelivein,andtypeoffoodweeat.Theaveragenaturalradiation dosetopersonslvinginthhUnitedStatesisestimated tobeabout0.125remperyear.Forsomeindividuals, thedosefromnaturalbackground radiation ismorethantwicethisaverage.Thesourcesofthisdosearecosmicraysandnaturally occurring radioactive elementsintheearth,thefoodweeat,thewaterwedrink,-andtheairwebreathe.Theexposuretocosmicradiation increases withelevation abovesealevel.Wereceiveradiation directlyfrommanymineralscontaining uraniumandthoriumisotopesinthegroundorintheconstruction materials inourhomes.Aradioisotope ofpotassium isthemostsignificant radioactive substance inourfood.Anadditonal smallamountofdoseisreceivedthorughradioactive materials inwaterandair.Thedosetopersonslivingneartheplant,inadditon-to thatreceivedfiomnaturalbackground, hasbeencalculated 52-2

/1 SSESforeachtypeofreleaseandeach~~pathway toman."Theseverylowlevelsofdosearenotexpectedtoproduceanymeasurable effectsinanindividual.

Whenlargenumbersofpersonsareexposedtotheselowlevelsofradiation, effectsonpersonsinthegroup(somaticeffects)ordescendents ofthegroup(geneticeffects)couldpossiblyoccur.Forthisreason,itisappropriate tocomparethedosetoalargepopulation groupfromoperation oftheplantwiththedosethatgroupreceivesfromnaturalbackground.

Onemeasureofthepopulation doseistoaddalltheradiation dosesreceivedbyallindividuals inthepopulation group.Thisresulting quantityisreferredtoasman-rem.Thenaturalbackground dosewithina50mileradiusofthissiteiscomputedtoabout2,000,000 man-rembasedonthepopulation in1970and3,000,000 man-.rembasedontheprojected population intheyear2020.Thewholebodygammadosesshouldbecomparedtothebackground dose.Theexternalbodybetadoseaffectsonlytheexternalpartsofthebody(e.g.skin)whicharelesssensitive toradiation thanotherpartsofthebody.Theiodinedoseslistedaffectprimarily thethyroidgland,whichagainislesssensitive toradiation thanotherpartsofthebody.Formanyyearsstandards committees andscientists haveexertedconsiderable efforttodetermine theeffectofradiation onman.Asaresult,asetofguidelines hasbeendeveloped todefinemaximumlevelsofradiation dosewhichareacceptable foranyindividual andforlargepopulation groups.Therecommended annuallimitsfornon-occupational exposureare0.5remforanindividual and0.17rem/person foralargepopulation group.Themostsignificant dosecomesfromgaseousemmisions totheatmosphere (directradiation-submersion dose).Theaquaticpathwaysareofsecondary importance.

Althoughtritiumisreleasedtotheatmosphere alongwithnoblegases,thebetaradiation energyfromtritiumistoolowto~represent anexternal(tothebody)radiation hazard.Furthermore thedilutioncapacityofmoistureintheairissogreatthatuptakeoftritiumintothebodyandthesubsequent radioactivity areremovedprior.torelease;therefore, theonlysignificant exposurefromatmospheric releasesisfromnoblegases,isotopesofkryptonandxenon.Emissions totheatmosphere duringnormalfull-power operations areshowninTable5.2.3.Atmosphereic submersion, whereoneiscompletely surrounded bythecloudofradioactive gas,willbetheprimarysourceofexternalexposurefromthesegaseousemissions.

Thebasicequation52-3 SSESusedtocalculate submersion doseisD~0.25EXwhereDisrad/sec,EisaverageMEV/disintergration andXiscuries/m~.

Thisbasicequationwaschangedtorem/year=7.88x10~EQX/Q.ValuesforEandQ(curies/sec) weredetermined fromistopicdistribution of,gaseousemissions asshowninTable5.2.2.ThevalueofEincludes.

betaalthoughsomeofthebetaradiation doesnotrepresent wholebody(somatic) orgeneticdose.ValuesforX/Qwerebasedonannualaveragemeteorology.

Themaximumannualaveragesubmersion doserateatthesiteboundaryoftheplanthasbeenestimated fornormalfullpoweroperation basedonanticipated meteorology tobe0.48mrem/year withoutanycorrection foroccupancy andshielding.

Consideration ofoccupancy andshielding willreducethedosetoanindividual byatleastafactoroftwosothatthemaximumindividual dosewillbe0.24mrem/year fromnormalfullpoweroperation.

Toestimatepopulation dose(man-rem),

meteorological dilutionfactorsandsubmersion doserateswereestimated forthemid-point ofeachofthepopulation sectorsindicated bythedistances anddirections giveninTable5.2.3inman-remperyearandwascalculated bymultiplying

'thesectormid-point doserateinrem/yearbythepopulation ineachsector.Thesevaluesaresummarized inTable5.2.3.Thetotalpopulation dosewascalculated bysummingtheman-remvaluesineachsectoroutto50miles.Thetotalpopulation dosethusdetermined is1.44man-rem/year vithoutanycorrection foroccupancy orshielding.

Thisisapproximately 5x10-~%ofthedosetothesamepopulation groupfromnaturalbackground radiation.

Inadditiontonormalreleasesduringfullpoweroperation, Xe-133andXe-135willbereleasedonanintermittent basisfromoperation ofthemechanical vacummpump.Annualaveragemeteorology cannotbeusedinthiscasebecausethereleaseoccursforashortperiodoftimefollowing ashut-downandduringsubsequent start-upofthereactor.Totaltimeinvolvedinthistypeofreleaseisexpectedtobe40hours/year.

Themaximumannualaverageconcentration atthesiteperimeter, basedon40hourPasquillFmetrorology, villbe1~1x10-8pCi/ccforXe-133and1.64x10-~pCi/ccforXe-135.UsingtheInternation Commission onRadiation Protection (ICRP)methodofdosecalculation (Ref.5-2),theseconcentrations willrepresent annualdosesof0.0185remfromXe-133and0.0082remfromXe-135.However,,

mostofthisisskindoseAnindependent calculation ofthewholebody,skin,andlungdosehasbeenmadeusingreferences 5-3,5-4gand5-5.Thesecalculations over-estimate theskindosebecausesomeofthebetaparticles, internalconversion electrons, andAugerelectrons willnotpenetrate deeplyenoughtoexposeradiation sensitive tissue.However,the,energyfromtheseradiations areassumedtobeabsorbed52-4 0

SSESEXHIBITADOSETOMANFROMACLOUDOFXeANDXeGiven:Acloudofl.lxl0pCi/ccXeandl.64xl0pCi/ccXe,133-9~135averagedoveroneyear.Dataforcalculations ofZedose.138Radiation BlB2KIC(Fromyl)LIC(Fromyl)MIC(Fromyl)KIC(Fromy2)LIC(Fromy2)MIC(Fromy2)LXrayAugerKLLKLXKXYLMMMXYMe'an'o.Disxntegratxon

.007.993.0023.0015.0005.4724.0787.0984.073780358.0157~0026.4381.13MeV.0753.1006.0436.0742.0786.450.0757.0800r.0043.0254.0297.0340.0033.0010~radgCi-h.0011.2132.0002.0002.0001.0454.0127.0168.0007.0019.0010.0002.0031.0024TotalNon-penetrating Radiation

.2990g-radpCi-hyly2XraysKaKBKBKB.0023.3499.004.2297.1173.0633.0134.0796.0810.1605.031.030.035.036.004.605.0001.0152.0077.0047.0010TotalPenetrating Radiation

,.0896'-rad

~Cx-h SSES133XeLungdosefromAssumedvolumeof3500ml,weightof1000g..3xl.lxl0 Thenlungconcentration

=3'.'5x'10'0

=3.85xl0gCilunggmTheabsorbedfractionforlungforasourcedistributed inlungis=.09fortheaveragephotonenergy.Thelungdoseis(0.299=(.09x0.861) 3.85x10x365x241.04104radI.1mradinternal"

=3.4mradtotal5.2-10

SSESDataforXedose135Radiation Mean'.No.D'is'integration

."feVBlB2kICL,M,.....IC

.97.03.049.01.3.183.214.620.012.022ylY2y3.91.009.03,25.36.61.485.007.039.531-9Conc.1.64xl0~Ci/ccl.64x~.0pCi/gm1.293l.268xlOpCi/gmSkindosefromZe135(.654=.531)x1.268xlO x365x24=1.32x10rads/yr=13.2mrads/yr4WTotalbodydosefromXe135.53lxl.llxlO

+5.9mrads/yr4'iYTotalbody=2.95mrads/yr25.2-11

SSESLungdosefromXe135Absorbedfractionforaveragephotonenergyis=.05.39Lungconcentration

=3.5x10xl.64x10'0

=5.74xlO+CilunggmLungdoseis(.654=.05z531)x5.74xlO x365x24-53.4xlOrads.034mradsinternal=2.98mradstotal3.3mrem/year Summaryofdosetoman133XWholeBodySkinLung14.3mrem/year 3.4mrem/year 135XWholeBodySkinLung3.0mrem/year 6.6mrem/year 3.0mrem/year C.ThestandardAECcalculation (10CFR20AppendixB,Table2,Column1=500mrem/year) yieldsthefollowing doseassumedtobetothewholebody:(1)Xe=18.5mrem/year 133(2)Xe=8.2mrem/year 1355.2-12 B0J SSESTABLE5;2.6SUMMARYOFTHEDOSECALCULATIONS SourceIndividual Dose(mrem)Population Dose(man-rem)

W~BSkin~LunT~hroiBBoneWholeBodorGeneticDirectRadiation fromGaseousEmissionGDesignFuelLeakage(a)FullPowerOperation Intermittent VacuumPumpDischarge AquaticPathwaysNaturalBackground 024**3.2150.0811403.20.0660.090l.447.5Negligible 280,000*WB=WholeBodyGl=Gastrointestinal tract**Skindosewasnotcalculated separatefornormalfullpowerisincludedinthevalvefor-wholebody.

IC SSES5'EFFECTSOFRELEASEDCHEMICALANDSANITARYWASTESNeitheraquaticandterrestrial inhabitants oftheSusquehanna SESsiteandSusquehanna Riverwillbeharmedfromchemicals releasedwithwaterdischarged

.totheriver.Lessthan0.1mg/1(ppm)offreechlorineisexpectedtobedischarged intotheriverattheSite.Theminuteamountsofchloramines discharged intotheriverwillhavenoharmfuleffect,onorganisms present.Theamountofironreleasedisdependent onqualityoftheriverwater.Duringcertainpartsoftheyearasmuch1.72mg/1(ppm)ofironhasbeenobservedtobepresent.Operation oftheSusquehanna SESwillnotaddadditional irontotheriver.Commonwealth standards statethattheamountofirondischarged shouldnotexceed1.5mg/1(ppm).Sincethereisalreadyaconcentration ofironPPSLdoesnotexpectaharmfuleffectonaquaticorganisms toresultfromthedischarge.

Adjustment byadditionofsodiumhydroxide, andsulfuricacidtothechemicalandsanitarysystemswillkeepdischarged waterwithinapplicable limits.Alldischarges fromtheplantwillmeetallrequirements ofthePennsylvania Department ofEnvironmental Resources.

53-1" SSESreactorirradiation.

This,coupledwiththehighmeltingpointofthefuelpelletsassuresthatduringashippingcaskaccident, thereisverylittlepotential foranyradioactivity otherthanthenoblegasesbeingreleasedintothecaskcavity.Mechanical properties oftheirradiated reacttosubstantially mitigatetheconsequences ofanaccidentbytightlybindingthefissionproductswithinthebasicfuelassembly.

Thereareseveralfeatureswhicharetypicalofallshippingcasks,suchasheavystainless steelshellsontheinsideandoutsideseparated bydenseshielding

material, suchasdepleteduranium.Additionally, thecaskhasextendedsurfaceareafordissipation ofdecayheatandwillbeequippedwithanenergyabsorbing impactstructure toabsorbtheenergyofthe30-ftfreefallandtolimittheforcesimposedonthecaskandcontents.

Thecaskalsocontainsabasketwhichisprovidedtosupportthefuelduringtransport.

Additionally, forhighexposurefuelprovisions willbemadeforahydrogenous materialsuchaswatertoprovideforabsorption ofthefastneutronsgenerated throughspontaneous fissionandalpha-nreactions ofthetransuranium isotopes.

5.4.1.2oralShimentRadioloicalResultsTheprincipal environmental effectfromtheseshipments wouldbethedirectradiation dosefromtheshipments astheymovefromthereactortothereprocessing plant.Inthisregard,ithasbeenassumedthattheshipments aremadeatthemaximumpermitted levelof0.01remperhouratsixfeetfromthenearestaccessible surface.Basedonthisandwiththenearestpersonassumedtobe100feetfromthecenterline ofthetracks,(assuming transportat'ion isbyrail)-itisestimated thatthedoserateatthatpointwouldbe0.0002remperhour.Thiswouldfalloffto0.00001remperhouratabout300feetbeyondwhichtheradiation exposurereceivedbythepopulation

.isnegligible.

EventPobab'tConsiderati nsSpentfuelshipments areplanned,scheduled, anddeliberate, andtherefore fallinthe"normal"probability categorybydefinition (seesubsection 6.5).54-2

Ilh, SSES5.4.'}.3AccidentOccurrences RadioloicalResultsAprincipal environmental effectfromanaccidentwouldbewholebodyradiation duetotheincreased radiation levelsfromthereleaseofnoblegases.Considering thedoseattenuation effectswithdistanceitcanbeconcluded thatthedirectradiation doseeffectstothegeneralpopulation willbenegligible.

Calculations indicatethatwithoutasubstantial quantityofdecayheatintheshippingcaskplustheadditionofexternalheat,suchasfromafire,therewouldbenoreleaseofthefissiongases.However,thisaccidentisevaluated according to10CPR71criteriawhichconsiders that1000Ciofgaseousactivityisreleasedtotheenvironment.

Onthisbasisandconsidering apopulation densityof334peoplepersquaremile,thepopulation exposureasshowninTable6.1isordersofmagnitude belownormalbackground.

Similarcalculations weredonefortheiodinetodetermine thedosetothethyroid.Resultsofthiscalculation indicatethatthetotalthyroidexposureisalsoorders'fmagnitude belowbackground.

Itcantherefore beconcluded thatthisaccidentwillhavenegligible effectsonthetotalenvironment.

Eventprobabilit Considerations Thisisatransportation accidentinvolving eithertruckorrailshipments.

Theprobability isafunctionofthemannerofshipment(truckorrail),thedistanceshipped,theaccidentrateasafunctionofdistance, andtheprobability ofarelease,givenanaccident.

Thecaskisdesignedtowithstand theimpactofa30footfreefallontoanon-yielding surface,sotheprobability ofrupturing thecask,giventheaccident, isextremely low.Thedistancetravelled isavariabledepending onthelocationofthefuelreprocessing planttowhichshipment" ismade.Theprobability ofanaccidentpermiletravelled isprobablyaboutthesamefortruckandrailshipments, butmoretruckshipments arerequiredduetothesmallersizeofcasksusedontrucks.Theeffectofvariousotherspecialprecautions suchasroutingspeedlimitations, andexpertdrivingare-factorsthatneedtobeconsidered.

Basedonthesefactors,theprobability ofthespentfuelcasktransportation accidentisatthelowerendoftheemergency condition orthehigherendofthefaultcondition, withthehighervaluesassociated withtruckshipment.

5.4-3 II' SSESIntheaquaticpartoftheprogram,samplingwillincludesurfacewatersamplesfromtheSusquehanna River,-Nescopeck Creek,theSalemReservoir, LilyLake,sitepondsandtheswampsadjacenttotheplant.Tritiumanalyseswillbeperformed.

Samplesofwellwaterwillbecollected fromabouteightlocations inthearea.Theaquaticfoodchainconstituents willincludethecollection ofbottomsediments andfish.Bottomsediments fromtheSusquehanna Riverwillbecollected upstreamanddownstream fromtheplantsiteandfromNescopeck andSalemCreeks.FishwillbeobtainedfromtheSusquehanna River,Nescopeck CreekandLilyLake.Analyseswillbeperformed forStrontium

-90inthebonematterandgammascanningalsowillbeperformed.

Theoverallmonitoring programsamplingfrequencies willdependupontypeofsamplesbeingcollected.

Air-borne particulates, wellwaters,surfacewaters,rainfall, slime,bottomsediments, andmilkwillbecollected andanalyzedmonthlyorquarterly.

Mostvegetative typeswillbecollected threetimesperyearduringthegrowingseasons,whilesoilsampleswillbecollected semi-annually.

5.5.4Appropriate physicalandchemicalparameters oftheintakewater,pondwatersandwateratthedischarge pointwillbecontinuously monitored.

Suchfactorsastemperature, dissolved oxygen,chlorides,

sulfates, radiation andtotaldissolved solidswillbemeasuredasnecessary.

55~55~55~1AuaticBiolo~Beginning inthefallof1970,studieswereinitiated offishesandbottomdwellingorganisms inthesitearea.Emphasiswillbeplacedonthespawninggrowthandmovementoffishesthroughthearea.Anestimateofthenatureandextentofthesportfisherywillbeobtained.

Surfacedrift,whichcanbe.important, willalsobesampledwithinthegeneralarea.Thewaterwillalsobelookedatfromthestandpoint offloatingplanktonic organisms.

Aquaticplantswillbemappedandidentified.

Specimens willbecollected andmadeavailable tofirmswhowillperformradioactivity background studies.Itisplannedtotakewatertemperature, oxygenandpHreadingswithregularcollections offishesandotherorganisms.

5.5.5.2Tezr~estr'al Abiological studywillbeinitiated atleastfouryearspriortoUnit1fuelloading.Awildlifeinventory willbeperformed.

Speciespopulation, diversification, 55-4

SSESreproduction ratesandhabitatassociations willbestudied.Particular emphasiswillbeplacedonthewetlandareainthesouthernportionofthesite.Astudyandmonitoring programwillbeconducted foratleasttwoyearsafterUnit2isinoperation.

Thisprogramwillevaluatetheeffectoftheconstruction andoperationa oftheplantontheterrestrial biota.Thesestudieswillincludethetaggingoforganisms inordertoevaluatethereproduction, growthratesandfoodchainoftestspecies,inventories andobservations oftypicalfaunaandflora,andacomparison ofconditions priortoconstruction withthoseafteroperation.

Monitoring willbecoordinated withtheradiological monitoring program.Information anddatadeveloped duringthesestudieswillbeusedtodevelopmanagement programsdesignedtoenhancethesiteenvironment.

5.5.6I!.HAspartofPPSLconcernwiththeenvironment, anoisecontrolprogramisbeingdeveloped toavoidmajornoiseproblemsassociated withthe,operation oftheplant.55-5

'~Ih

~SSESDuetothelimitedmobilityoftheparticulate fissionproductstheyexistinlesserquantities ineffluents andsotheircontribution totheoverallenvironmental effectsisnegligible andtherefore neglected inthisanalysis.

Depending onthetypeofleak(i.e.,steamorliquid)thepotential fornoblegasreleasemayormaynotexist.Iftheleakwerebetweenthemainsteamlineisolation valveandturbineonecouldexpectareleaseofnoblegasactivity; whereasiftheleakwereliquid,duetotherelativeinsolubility ofnoblegasesinwater,onewouldexpectnogaseouscontribution fromthissource.Fortheiodineactivitytheenvironmental effectsweredetermined bycomparing theaverageannualconcentrations atvariousradialdistances in16sectors(22.5O/sector) totheMaximumPermissible Concentration inAir(MPC~)assetforthin10CFR20AppendixBtable2column2.O~yWhereDThyroidDfThyroiddose(rem/yr)X.Doseconversion factor(i.e.,Q,-

1.5r/yr.),

otherparameters asipreviously defined.ThethyroiddoseequationappliestothedoseinagivensectorataradialdistanceR.Therefore, todetermine theintegrated population exposureitisnecessary tomultiplythisthyroiddoseequationbythepopulation distribution inagivensectorandatthegivendistanceRandsumthisproductforallsectorsanddistances to50miles.Concerning thewholebodydoseeffectsfromthereleaseofnoblegasactivity, thesteamandhenceactivityreleaserate,isbasedonanequivalent 7gpmwaterleak.Thecloudgammaexposures arebasedonthosemathematical modelspresented inreference 6-2andarepresented inTable6.3.1.Thecummulative 50milethyroidexposuretothegeneralpopulation is18man-rem.Theallowable thyroidexposureisordersofmagnitude abovetypicalwholebodydoseeffectsbecauseofthelimitedbiological effectsonthethyroidgland.However,forthepurposeofthisevaluation thethyroidexposureiscomparedonthesamelevelasthewhole6~3-2 SSESXJWhereXJAverageannualisotopicairborneconcen-trationofthei"isotope(pCi/cc)Accumulative frequency forwindspeed,stability andsector(dimensionless) thPlantreleaserateoftheiisotope(uCi/sec)

Horizontal andverticaldiffusion coefficients (cm)Windspeed(cm/sec)YiZHorizontal andverticaldistances fromplumecenterline (cm)Sectorangleoverwhichplumeisaveraged(radians)

Distancefromreleasepointtodetectorposition(cm)6.3.5.1.2RadioloicalResultsTheintegrated man-remexposureforthisaccidentisbetween10-~and10-~ofthoseexposures recievedfromnormalradiation background.

Itcan,therefore, beconcluded thatthiseventisnegligible withregardtotheenvironmental effects.6.3.5.1.3EventProbabilit Considerations Spentfuelistransferred fromthereactortothefuelpoolbymeansoftherefueling hoist.Eachfuelbundle,to beremovedisgrappledinthereactor,liftedvertically untilthebottomofthefueltransferchannelisclearedandthentransported acrossthefuelpoolbutalwaysunderwater.Abrakeisprovidedtopreventexcessive dropvelocity.

Alimitswitchisprovidedtopreventexcessive liftingvelocity.

Theaccidentpostulated assumesthataspentfuelbundledropsfromthemaximumheightabovethecore,fallsthrough63-9 l

SSESD.ThroidInhalation Dose8hrs.-30das)whereD.inhInhalation dosereceivedbetween8hrs.and30days(rem)6.3.7.1.2 adioloicalResul'tsTheresulting environmental effectsforthisaccidentarepresented inTable6.3.1.Asnotedtheeffectsareordersofmagnitude.

belowtheseresulting fromnormalbackground.

Itcantherefore beconcluded thattheenvrionmental effectsasaconsequence ofthisaccidentarenegligible.

6.3.7.1.3EventProbabilit Considerations Theprobability ofalargebreakseverance shouldfallwithintherangeofanEmergency Condition basedonestimates ofpipefailureratescontained intheliterature andonthenumberofpipesthatsatisfytheconditions foralargebreakdesignbasisaccident.

Theprobability thatanLPCIinjection valvewillbeunabletoopenwhendesiredshouldalsofallwithintherangeofanemergency condition basedonananalysisusingfailureratesfromreference 22,23,and24considering anticipated downtimeandtheintervalbetweeninjection valvetests.Sinceeachprobability islowandtheoutcomesarenotcritically interdependent, thejointprobability ofpipebreakandinjection valvefailureisexpectedtobeextremely lowplacingthiseventinthefaultcondition.

6.3.7.2SteamLineBreakAccidentThepostulated accidentisasudden,completeseverance ofonemainsteamlineoutsidethedrywellwithsubsequent releaseofsteamandwatercontaining radioactive productstothepipetunnelandtheturbinebuilding.

Sincethisaccidentdoesnotresultinanyfueldamage,theenvironmental effectsarelimitedtothoseradiological doseswhichmaybereceivedasaconsequence ofexposuretotheactivityassociated withtheprimarycoolant.63-15 t

SSESreactorisatfullpower,themaximumrodworthisapproximately 1$,resulting intheperforation oflessthan10rods,butwithahighprobability thatnonewillactuallyfail.6.3.7.3.1Calculation ofSourcesandDosesInadditiontotheassumedfailureof10rods,theradiological effectsarealsobasedonaratedsteamandrecirculation flow,aniodinecarry-over fractionof1%,andamainsteamlineisolation valveclosuretimeof4seconds.Inadditiontoisolating themainsteamline(MSL)theMSLradiation monitorsalsoisolatethenormaloff-gassystemtherebybottlingtheactivitybetweentheMSLisolation valvesandtheoffgasisolation valves.Theprimarysourceofleakagefromthesystemwilltherefore beviatheturbineglandsealsandwillbeduetochangesinenvironmental pressurewithrespecttotheturbinecondenser.

Theairborneactivityinthecondenser isafunctionofthepartition factor,volumeofairandwater,andchemicalspeciesofthefissionproductactivity.

Thevaluesassociated withtheseparameters are:apartition factorof10oforiodine,acondenser plusturbinefreevolumeof2.1x10~ft~andacondensate volumeof1.2x104ft~.6.3.7.3.2RadiolicalResultsAsnotedintable6..3.1,theradiological exposures forthisaccidentareordersofmagnitude belowthoseeffectsreceivedfromnormalbackground.

Itcantherefore beconcluded thatenvironmental effectsfromthisaccidentarenegligible.

6.3.7.3.3EventProbabilit Considerations Inorderforarodtodropfromthecore,itmustfirstbecomedetachedfromthedrive,remainlodgedinpositionwhilethedriveiswithdrawn fromthecore,andthen,whilethedrive'sstillwithdrawn, becomedislodged andfallfreely.Thisisacomplexseriesofevents,therebeingmanypossibleactions(orinactions) thatareinterrelated, butthisisoffsetbythemanyannunciators andprocedures thataremeanttoavoidsuchanevent.Therodsaretesteddailyproviding manyopportunities fortherodtobecomeuncoupled, andmanyopportunities fordetection aswell.Actualexperience hasbeengood.However,conservative judgement indicates thatthiseventshouldbeassignedasanemergency condition.

63-17 SSEStheman-remcomparisons aremadeforthepopulation withina50mileradius.Ifthereareonemillionpeoplelivingwithina50mileradius,thenaturalradiation background willresultinabout14Q,QOOman-remperyear.Table6.2.1listsman-rem/year fromnaturalbackground forthisplantlocation.

6.4.2Man-MadeRadiation BackroundManhasaddedtohisradiation exposurefromnatureinanumberofways.Thelargestcontribution byfarhasbeenfrommedicalexposure.

Ithasbeenestimated (Ref.6-7)that94percentofman-madeexposureisfromthisradiation andofthis,90percentisattributed todiagonistic X-rays.Typically, anaverageof55mremperyear(30)isreceivedbytheaverageUnitedStatescitizen.Morerecentreportsseentoindicatethat35.5mremperyearisamoreappropriate average.Specificexampleofaverageexposures perX-raytoanindividual are25-50mremfromanaveragechestX-ray,200mremfromanaveragegastro-intestinal tractexamination andarangeof5<<200mremforafluoroscopic examination (Ref.6-8).Additionally smalllevelsofradiation canbereceivedfromluminouswatchdials(about2mrem/year) andtelevision viewing(1to10mrem/year)

.Therefore, theresultant man-.maderadiation receivedbytheaveragecitizenrangesbetween50to100mremperyear.Man-RemFromMan-MadeRadiation Totalpopulation exposurefromman-madesourcesismoredifficult toevaluatesincetherecanbeanindividual choicemadeastowhethersuchradiation isreceived.

However,reasonable assumptions canbemadeinordertomakeestimates ofman-remperyearsinceit,isnotfeasibletomonitorthepopulation dosebymeasuring thedosetotheindividuals.

Thepopulation doseasaresultofviewingtelevision toasamplemillionpeoplecanbeestimated.

Typically anindividual wouldreceiveabout1-10mrem/year fromwatchingTV.Assumingtheaveragedosereceivedis5mrem/year, thenthisresultsin5000man-rem/year.

Lookingatthissamepopulation onecandetermine theman-remasaresultofexposurefromluminous-dial watches.Ifonly10percentofthisexamplepopulation areexposedto2mrem/year, thentheresultant population doseis200man-rem/year.

Ithasbeenestimated (Ref.6-29)thatmedicalexposureaccountsfor94percent,ofthetotalgenetically significant dose(GSD)fromman-madesources,andofthis,90percentisattributed todiagnostic x-rays.Theestimated meanannual64 SSES8.2SOURCESOFPOWER8.2.1Introduction Anumberofalternative methodsofproviding powertomeetPPSL'sincreasing loadrequirements havepreviously beenexamined.

Ithasbeendetermined thattheonlypractical alternative whichcanprovidetheneededlong-term baseloadpowerforPPSL'sserviceareaistheconstruction ofnuclearand/orfossilefuelplants.TheadditionoftheSusquehanna SESnuclearunitsisthechoiceforthe1979-1981 period.Nuclearfacilities aremorepractical, giventhetimeconstraints imposedonPPELbyincreasing consumerdemands.Purchaseofpowerfromotherutilities intheqnatities requiredisgenerally unfeasible fromseveralstandpoints.

Theentirequestionofalternative sourcesof,powerisdiscussed inthefollowing sections.

8.2.2,Alternative ofNotProvidinPowerOnealternative oftheSusquehanna SESisthatofnotbuildingagenerating'station atall.Intoday'ssociety,adequateelectricserviceisconsidered essential tothecontinued well-being ofthepublic.Section401ofthePennsylvania PublicUtilityimposesanobligation onelectricutilities tofurnishandmaintainreliable,

adequate, efficient,

'safeandreasonable serviceandfacilities.

Thisserviceshallbereliableandwithoutunreasonable interuptions ordelays.Atthepresenttimeloadcurtailment arrangements havebeenmadewithlargerindustrial customers whoareabletoreducetheiroperations forashorttimeduringpoweremergencies.

Othercustomers willgenerally toleratevoltagereductions andorloadcurtailment underabnormaloremergency conditions.

Theywouldfindfrequentnon<<emergency curtailments ofserviceunacceptable.

Large-scale, long-:duration, customerinterruptions canhaveanadverseeffectonthepublic.Forinstance, theabsenceoflightsendangers publichealth,safety,andsecurity, foodspoilsintheabsenceofrefrigeration, and,lackoftransportation incertainareascanleavepeoplestrandedinvulmerable situations~

etc.Ifsuch-loadcurtailment wereintendedtobean.alternative tosupplying thecustomer's demandisomeonewouldbeforcedtomakedifficult decisions aboutwhoshouldgetpowerandwhoshouldnot.Theeffectonthepublicofdenyingservicetowholeblocksofcustomers asan-alternative tobuidlinganewplantcannotbeestimated.

Loadgrowthforecasts, indicatethatifnewgenerating capacityisnotaddedonthePPELsystemintheyears1979-1981someloadcurtailment maybenecessary andwillbea82-1 SSESTheuseofeithercombustion turbinesordie'selsincontinuous operation (necessary for,providing base-load powe'r)isnotonlyexpensive intermsoffuelconsumption butalsoresultsinhighermaintenance costs,sincetheseunitsarenotdesignedfor24-hour-a-day operation.

Delaysinbringinglargebaseloadgenerating unitsintoservicehavebeenmetonthePJMmembersystemsextensively bytheinstallation ofcombustion turbines.

Theircontinued large-scale installation asasubstitute forbaseloadgeneration isnot.desirable eithertechnically oreconomically forthereasonsstated.Suchcapacityalreadyinstalled andscheduled onPJMwillrepresent 21%ofthetotalinstalled capacitybythesummerof1973.Combustion turbineunitsinconjunction withsmallsteamturbinesformacombined-cycle unit.Whilethese"packaged" unitsareconsiderably moreefficient thanconventional combustion turbinesandrangeinsizefrom200MWe-350MWe,they,too,cannotbeconsidered analternative toalargebase-load steamunit,sincetheyburnthesameexpensive fuelsasdoconventional combust'ion turbinesanddieselunits(typically naturalgasor,,No.2fueloil).Wheneconomical meansaredevisedtopermittheseunitstoburnresidualorcrude.oil, asinlargepowerboilers,thencombinedcycleunitscouldbereconsidered byPPSL.Depending onthecircumstances thistypeofgenerating capacitymightthenbejustified.

8.2~4.3Hdroelectric Generation Therapidresponsecapabilities ofbothconventional andpumpedstoragehydroelectric facilities makethemdesirable forpeakingrequirements.

Conventional hydroelectric plantsmightbeusedforbase-load generation buttheirpotential capacities inthePennsylvania areaarefarsmallerthanthatrequiredbyPPGL.Pumpedstorageisbecominganimportant sourceofpowergeneration intheNortheast U.S.,butmainlyasasourceof,peakingpower.Pumpedstoragefacilities, bytheirnature/arealimitedenergysourcecapableofoperating inthegenerating modeonlypart-time.

Also,considering variations ofcustomerdemandduringadayorweek,pumpedstorageistypically limitedtoabout20%oftheoutputofacontinuously operatedplantatmaximumcapacity.

Thus,pumpedstorageisnotafeasiblealternative toa.base-load steamplant.8'-4 8NuclearVersusFossilFuelInthisanalysisthecompeting alternatives aretwo1100mwnuclearorfossilunitsscheduled forcommercial operation in1979and1981.Oilwithlessthan1%sulfurcontentandcoalwithlessthan2.5%sulfurcontentareconsidered asalternatives.

Bothsystemandmine-mouth coalplantslocatedinPennsylvania areconsidered.

Thepredicted unavailability ofnaturalgasasafuelsupplyeliminates gas-fired plantsasapractical alternative.

Bothdomesticandforeignlowsulfurcontentoilreserves, inthequantities necessary forthenext30yearsforaplantofthissiie,areexpectedtobeunreliable.

Toassurereliability ofacoalsupply,PPSLshouldbeabletocontrolblocksofcoaleachcontaining notlessthan30milliontonsofeconomically,coverable ofcoal.Suchblocks-arerelatively scarceinPennsylvania.

CoalfromlargeblocksoutsidePennsylvania wouldbemorecostlybecauseofthehighertransportation costs.4Unlikecoalandoil,uraniumiseconomically available inthequantities neededforthe30yearperiod.Forthisreasonuraniumhasbeenselectedasthefuelsourcefortheseunits.8.2.5.1EconomicCostsAdollarcostcomparison ofvariouspowergenerating facilities isshowninTable8.2.1.Thefacilities considered include:Susquehanna SESasplanned;acoalplant;anoilplant;andamine-mouth plant..Allunitsareassumedtohaveelectrostatic precipitators whereapplicable andclosed-loop coolingtowers.Oilisassumedtohaveasulfurcontentwhichwouldnotrequirefacilities forSO<removal.Costofthesefacilities, including costofoperation, hasbeenincludedforfossilstations.

Anaverage70$-capacity factorwasassumedforallfacilities, alongwitha30-yearlifetime.

Theaddedtransmission linedistanceforthemine<<mouth plantwasassumedtobe270miles,whilethepipelinenecessary tobringoilfromanearbyporttoatypicalsitewasestimated tobe80miles.Allfuelcostshavebeenescalated to1980fromabaseyearwhenestimates wereavailable.

Thebaseyearestimates andratesareshownasfollows:8.2-5 I1N' SSESannualplantloadfactor,evaporation amountstoabout23,500acrefeetperyear.Tomaintaintheproperwaterquality,blowdownwillrequireanadditional 10,400acrefeetperyear.8.4.2.1NaturalDraftTowersThedevelopment ofanoptimumdesignedheatcycleissocomplexthatitcanonlybedonereasonably bytheuseofcomputers.

Towerperformance anditseffectonplantoutputmustbeevaluated onthebasisofhoursperyearpredicted forvariousambienttemperatures, theresultant generation capability, andthevalueoftheenergygenerated atthetime.Asnaturaldrafttowersareplannedforthisplant,acomprehensive computeroptimization studyhasbeenperformed.

Typically, therewillbeatriplepressurecondenser designedforatotalwaterflowof450,000gpmperunitandatemperature riseof33.4PatdesignturbineunitAtanominalmaximumsummerambienttemperature of754Fwetbulband90<Fdrybulb,theoptimized naturaldrafttowerisrequiredtocoolthewaterto88.94P.Withafullplantloadandatthenominalmaximumwetbulbof75~F,41milltioncubicfeetperminute(cfm)ofairwillbedischarged fromeachtoweratavelocityof900feetperminute(fpm)(10mph)andatemperature of109~P.Underaextremewintercondition ofOoF,airflowwouldincreaseto66millioncfmand1450fpm(16.5mph),andbedischarged atatemperature of62~P.Testsconducted bytheEnvironmental SystemCorporation, anddemonstrated underthesponsorship oftheEnvironmental Protection Agencyincooperation withtheAtomicEnergyCommission onSeptember 28,1971,atOakRidge,Tennessee indicates thatdriftlossfromcoolingtowersistypically ontheorderof0.005%ofthecirculating waterrateforeithermechanical ornaturaldrafttowers.Testsconducted bytwomajortowermanufacturers confirmthisfigure.WithanassumedTDSof770ppminthecirculating water,andtakingintoconsideration anticipated annualloadfactor,thetotalsolidscarryover thatwouldbedischarged fromthetwounitswouldbeontheorderof280lbs.perday.Thenaturaldrafttowersystemwillbeconsidered asthebasesystem,andcapitalandoperational costsofotherschemeswillbecomparedtothissystem.8.422Mechanical DraftTowersTheoptimization studyontheplant-mechanical drafttowersystemresultedinadesignwaterflowandcondenser temperature risesufficiently closetothatofthenaturaldrafttowertopermitcomparison ofthetwosystemswiththe84-2 SSESyear.Thisdoesnotincludetheeffectsofpotential smalldifference inpumpcostduetothedifferent fillheightsforthetypesoftowersnortheincreased maintenance requiredwiththeactivetypetower(mechanical draft)anditsappurtenances ascomparedwiththepassivetype(naturaldrafttower).Onbalancethenitcanbestatedthatingeneralthecostsforthetwosystemsareequivalent andthatnomajoreconomicadvantage wouldbegainedbytheuseofmechanical drafttowers.Theblowdownfromthissystemwillduplicate thatofthenaturaldraftsystem.Driftandsolidscarryover willalsoapproximate thevaluessuggested inthenaturaldrafttowersection.Sincethemechanical drafttowerdischarges atalowerelevation, thefalloutpatternfromdrift,fog,.andwintericeformation fromthemechanical draftsystemwouldbesubstantially different fromthenaturaldraftsystem.Thepotential envt.ronmental impactofthesedischarges willbediscussed laterinthissection.8.4.2.3CoolinondsThecreationofalargecoolingpondorartificial lakeasameansofdissipating condenser heathasbeenconsidered.

Toproperlyutilizethissystem,anumberofspecificsitecharacteristics shouldbepresent.Tominimizepumpingcoststheremustbeavailable closetosubstantial propertywhichisfairlyflatandlendsitselfwelltopondconstruction.

Nominally thepondareaisaboutoneacrepermegawatt; Onthisbasis,thetwounitsatSusquehanna wouldrequireatleast2200acres(3.5sq.mi.).Reducingpondsizemuchbelowthisfigurewouldnecessitate areduction inplantoutput'ecause ofbackpressurelimitations ontheturbineifanextendedperiodofhotweatherweretooccur.Topography ofthesurrounding plantareasuggeststhatthesiteisnotsuitedforacoolingpond.Thetotalplantpropertyabovethefloodplainis490acres,andthustheareaavailable forcoolingisinadequate Theplantareadoesnotlenditselfwelltopondconstruction, noristhereanypropertyneartheplantthatissuitableforthispurpose.Contourmapsshowsubstantial variations inelevation inadditiontoageneral200'levation dropfromthewesternplantboundarytotheU.S.11.highway.

Porthesereasons,acoolingpondisnotconsidered aviablealternative, andadetailedcostanalysiswasnotperformed.

8'-4 I

SSES8.43.6~No'se~Neitherthenoisefromfallingwaterinthenaturaldraftwettowers,northefanorothernoisesfrommechanical drafttowers(eitherwetordrytypes)shouldnotbeobjectionable attheplantboundary.

Thesenoiselevelsshouldbelowerfornaturaldrafttowersthanmechanical drafttowers.8~4o3o7~S~rAreviewoftheTable.8.4.1indicates thatforthetechnological reasonspreviously stated,thefollowing systemsmustbeconsidered asbeingunsuitable forapplication totheSusquehanna SES.CoolingpondsSpraypondsSpraycanalsNaturaldraftdrycoolingtowersMechanical draft,drycoolingtowersOncethroughcoolingPPSListhusleftwiththe'alternative ofeitherwetmechanical draftorwetnaturaldraftcoolingtowers.Becuaseoftheconcernforgroundfoggingandsolidscarryover, thechoiceofanaturaldrafttowerismorefavorable.

Despitetheslightlylargerinvestment

required, theselection ofthenaturaldrafttowerclearlywillreduceimpactontheenvironment andmustbeconsidered thepreferred heatdissipation system.84-9 I'IChl SSES85ALTRADSESSTS851Itroduct'onNuclearpowerstationsproduceradioactive materials thatarethewasteproductsofanoperating reactor.Onlyasmallamountoftheseresidualmaterials areeverdischarged tothebiosphere.

Thequantityandqualityof-wastesdischarged varydepending ontheengineering designandwastemanagement practices used.TheSusquehanna SESwillutilizeaRadioactive Waste.Processing Systemwhichisdesignedtopiovidethetreatment andcontrolled releaseofradioactive liquid,gaseousandsolidwatertoassurecompliance withthe:numerical doselimitsofAppendixI10CFR508.5.2Thesystemdesignobjective shallbetoprocessradioactive liquidwastessuchthattheaverageannualreleaseofradioactive materialintheliqhideffluentfromtheplant'illmeettoassurecompliance withthenumerical limitsofAppendixI10CFR50.8.53GaseousadwasteSstemTheGaseousRadwasteSystemshallbedesignedtoprocessgaseouswastessuchthattheaverageannualreleaseofradioactive materials inthegaseouseffluentfromtheplantwillmeetwiththenumerical limitsofAppendixI10CFR50.8.54BIL-"TheSolidRadwasteSystemshallbedesignedtofacilitate thepackaging ofallpotentially radioactive solidwastesforstorageandoffsiteshipmentanddisposalinaccordance withapplicable published regulations.

8~55IntheSusquehanna SESseclected liquidwasteprocessing system,theliquidradwastewillbetreatedwithacombination offiltration, evaporation anddemineralization asshown.inFigure3.6.1.Withinterconnections asproposed, anywastecanbetreatedwithanyoneorallofthesemethods.Thisprovidesasmuchtreatment capacityasiscurrently available (i.e.,state-of-the-art technology) andreducesradioactivity to.levels whichassurecompliance withnumerical doselimitsofAppendixIto10CFR50.Furtherconsideration ofalternate

.liquidradwastesystemsistherefore notnecessary.

85-1 SSESelevation.

Thisalternative willmovethelinefurtherawayfromtheSugarloaf GolfCourseandalsolowerthelineasviewedfromtheGolfCourse.Alternative 55.BetweenBearRunJunctionandFrackville Substation, thelinewasreroutedslightly.

Thisalternative servedtwopurposes:

Itlocatedthelinealongapropertylineinanindustrial areaalongLR-53035andprovidedamoredesirable crossing-of Pa.Route61.8~6.2Alternate Structures Twotypesof500kvstructures areplannedfortheuseonthelonglines;latticetypeandtubularpole"H"frame.Tubularpole"Y",orslingshot typeareavailable, butwererejectedbecausetheyaremoredifficult toerect,morecostlyandwouldrequireextensive foundations.

Guyedlatticestructures aiealsoavailable, butwererejectedinfavorofthemorereliableself-supporting typetower.Laminated woodpolestructures werenotconsidered becauseofshortspansrequiredandbecausetheextremely longonepiecepoleswouldbedifficult tohandle.Theshort230kvlinesareallintheimmediate vicinityoftheplantwheremediumgreenpaintedsteelpoleswillbeusedinsteadoflatticetypesteeltowersbecausetheywillblend.inwellwiththeirsurroundings.

Woodpolestructures werenotconsidered becauseoftheheavyloadsandresultant shortspanconstruction.

8.6.3Alternate MethodsofTransmission Consideration wasgiventounderground construction ofboth500-kvtransmission linesfromSusquehanna SEStoLackawahna andto'rackville, andalsothethree230kvlinesinthevicinityoftheSusquehanna SES.Afeasibility studyandcostcomparison studyweremade.Thepresentstateoftheartindicates thatpipecableistheonlyfeasiblemethodforunderground transmission atthe230-500kvlevel.Severalothermethodsarecurrently understudy.Theyincludecableinsulated withextrudeddielectrics, eitherconventional orcross-linked polyethylene cableusinggas(SF)asamajorinsulation, cryogenic cablesystemsandsuperconducting cablesystems.However,230kvpipecablehasbeeninstalled commercially 8~6-3 II SSESeconomicbenefitsdiscussed here,however,represent onlythequantifiable partsofthepicture.Anumberofintangible benefitsexistwhicharedifficult eventoidentify.

Asanexample,forsomeyearstherehasbeenanetout-migration ofyoungpeoplefromBerwickandthesurrounding area,'asistrueofothersmallertownsinthispartofthe'country.

TheSusquehanna SESwillhelpcreateaneconomicandsocialatmosphere whichmaytendtoslowthisprocessandhelpthesesmallercommunities stabilize theirdownwardpopulation trends.'.7.3 CostsofSusuehannaSESTheprovision oflowcost.electrical powertomeetincreasing consumerdemandsisnotwithoutitsenvironmental costs(economic costshavebeendiscussed inSection8.2).Aswithotherlarge-scale

projects, theconstruction andoperation oftheSusquehanna SESwillresultincertainchangesintheenvironment.

'Thisincreased concernforenvironmental protection hasbeenmatchedbyanincreased demandforelectrical power.Thereis,therefoxe, asetof'competing priorities associated withthecostsandbenefitsofconstructing andoperating anyelectrical powergenerating facility.

Theenvironmental costsoftheproposedprojecthavebeenquantified tothedegreepossibleandareshowninTable8.7.2.Adiscussion ofthesecostsispresented below.1.,HeatDischareintoRiver2~Approximately 70cfs(32,000gpm)willbedrawnfromtheriverasmakeupcoolantwater.Ofthis,approximately 22cfswillbereturnedtotheriver.Thisvolumerepresents about2.9gand1.7%ofthe7-daylowriverflowfor20-yearandtwo-yearrecurrances, respectively.

Thetemperature increasewillprobablybeundetectable afewhundredyardsdownstream.

Themagnitude ofchange,evenundertheworstconditions oflowflowandhighambienttemperatures, couldnotbeexpectedtohaveanydeleterious effectontheriverintermsofprimaryproducers andconsumers andfishlife.DecreaseinCoolinCaacitofRiverAsmalldecreaseincoolingcapacityoftherivercouldbeexpected'o resultfromthesmalladditionofheatandtheevaporative lossofapproximatelg 50'fsofriverwater'rom thecoolingtowers.Theformercouldincreasetheaveragewatertemperature by0.15oFforashort8~7-7 SSESC~Reintroduction ofchemicals fromorganisms killedwithinthecoolingsystem.Theneteffectoftheseconcentrations, plustheslightwarmingofthewater,willprobablybetoincreasebiological growthforashortdistancedownstream.

Butthiseffectisexpectedtobenegligible whenviewedoverasigni,ficantly largeareaoftheview.5.6~QlayA50-70%increaseinthetotalamountofdissolved solidsoccurring inasmallportion(9g)ofthelowwaterflow(10-yearrecurrance) isexpectedtobebarelydetectable within1/4miledownstream.

Noeffect,canbeexpectedonrecreation orondownstream waterusersbecauseoftherelatively smallchangesinchemicalcomposition.

ConsumtionofWater7~Apotential lossofuptoapproximately 50cfstodownstream domesticoragricultural waterusersispossible.

SaltsDischaredfromCoolinTowers8.WiththeassumedTDSof770ppmtheexpectedsaltdischarge fromthecoolingtowerswillbe62ppm.ChemicalDischaretoAmbient.Air9~Nochemicals aredischarged toambientair.ChemicalContamination ofGroundWaterTherewillbenochemicalcontamination ofgroundwater.10.-12~Radionuclear DischarestoWaterBodentAranContamnatonoGroundWaterTheproposedmethodofradwastetreatment isoneofthebestthatcurrenttechnology isabletoprovide.Dosetopeoplewillbeextremely lowandwithinnumerical limitsinAppendixI10CPR50.Alternate methodsofradwastetreatment wereconsidered inselecting theproposedsystem.Theyhavebeendiscussed inSubsection 8.5.8~7-9 I~'tt,IIIIIItI SSESFoinandIcinTherewillbenofoggingandicingduetotheoperation ofthecoolingtowersattheSusquehanna SES.Raisin/LowerinofGroundWaterLevelsGroundwaterlevelswillnotberaisedorlowered.LandUsePresently, thelandwithinatleastatwo-mileradiusfromthesiteisamixtureofsmallwoodedareas,fields,andfarms.Thesitewillremoveordisrupt,about237acresorlessofsimilarterrain,approximately halfofwhichisnowwooded.Majorgamespeciesintheareaaredeer,pheasant, rabbit,grouse,dove,woodcockandsquirrel.

Norareorendangered speciesarepresent.Biologists familiarwiththeSusquehanna Riverintheareaofthesiteconsideritpresently underfished.

Nosignificant lossoffishisexpectedtoresultfromconstruction oroperation oftheplant,thoughanetincreaseinfishingactivitycanbeexpectedtoresultfromtheattraction ofpeopletotheplannedparkareaalongtheriver.AmbientNoiseOtherthanfromcoolingtowers,therewillbenoambientnoiseassociated withtheplant.Aesthetics Theplantisdesignedtoblendwiththeenvironment andbeasthetically compatible.

DeradationofFloodControlandErosionTheplantsiteissuchthatitwillhavenoimpactonfloodcontrolanderosion.8~7-10 Ch SSESTABLE8.7-2ENVIRONMENTAL COSTSOFGENERATION ATPROPOSEDSITEGenerating CostPrimarImactPopulation orResourceAffectedDescription ofEffectAlternate PlantDesing1a41.HeatDischarge toRiver1.1PrimaryProducers Limitedtoareaveryclosetodiffuserlittltonoeffect22cfs1.2FishNoeffectnone2.DecreaseinCool-ingCapacityofRiver2.1ThermalCapacityThermalincreaselossofwatertoevap.slightwithmixingoflowflowrivervolumeandnoheatlosstoair8nincreaseof0.15Fwouldresult.Lossofabout5.9%oflowflowcoolingcap-acity3.Mechanical, Thermal3.1PrimaryProducers Chemicalgffectsof6Consumers Entrainment onPop-ulationsofRiver3.2FishLossofallplanktonenteringtheintakeAlllostwhicharenonscreenable (1-14")Atlowflowmaximumlossofplanktonandfloatinginsectsandsomelocalgainofdetritusfeeders.4.Synergistic Effects4.1PrimaryProducers ofChemicalconcen-&Consumers trationsandThermalAdditions onRiver4.2FishChangeinProduction orSurvivalChangeinProductio'n orSurvivalLossofaportionofyoungfishlivingwithinafewhundredyardradiusofintake.Neteffectonsystemsmall.~Possiblesmalleffectfor100-yds.Onlyeffectinminuteareaneardiffuserparts;5Formore.

J, SSESTABLE8.7.2(Cont'd)PrimarImact15.LandUsePopulation orResourceAffected15.1Agricultural 15.2Forestry15.3Plants&Animals15.4Recreational Description ofEffectRemovalfromProduction RemovalfromProduction LossofHabitatDisturbance toParks,Lakes,HistoricSitesAlternate PlaneDesin41&4125acresonplateau175acresonfloodplain50acresorlessofdeciduous woodlotsmayberemoved.100acresorlessoffield&woodlotsinanareaofsimilarhabitatatleast100.timesaslarge.None15.5FishingLossofFishingPotential Noloss;probablyanincreaseinfishingpressureduetoestab-lishmentofparkareaaroundstream.16.AmbientNoise15.-;6Industrial 16.1PeopleUnavailable toDevelopment Unusually LoudNoneDuringconstruction

&operation OSHAstand-ardswillbefollowednoiseproblemsasso-ciatedwithnaturaldrafttowers.17-Aesthetics 17.1PeopleInTermsofSight,Sound,OdorVisualimpactoftowersandplumesNone18.Degradation ofFlood18.1People&Control&ErosionPropertyRisktoHealthandSafety 0

~5OOOqPlv1.BL.OWOOWN ivlAKF-LIP16,000C,PQ4u)EVAPORATiOv LINIT2II,9OOQPIv).30OOOCiPM.FROMSERVICEWATERSY57EQ+48o,ooocpg.UNITIFROhhGERV.WTRS5BLOeOOWH'70SERVWTR.SYSIiIiz$>yISPRA(POhlD3O,OOOCjpg.TOSERVICEWITE'RS'fSTMAINCOHDEWSERS MeiNCONDENSERS IvlAKE-uWATF8DOSlhlQpCHLORIHEH2SO+Oo5ING8lGPMRAWWATERTREATMENT MAKE-LIPDEMISERAL1ZEPOTABLE$DOMESTICKAERSEWAGETREATMENT PLANTg.50QpgREACTORLiguleRADKASTETR'EATMEHT CHLORINATE (50CiPMCI-ILORINECONTACTTANKE~G.~AFEGuARDSHEATEXCHAhlCER5 5CPMNEUTRAL-)ZATIOHTAQKIIGPQNOTE:uNIT(FLOWRATESARETHES~NFASLINIT2,IO,OOOC,PIVIPLlklPHOLISCB2,000CIPlvl.GLjSQUKHAhJQA=;

.RIVERPENNSYLVANIA POWER&LIGHTCOMPANYSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2APPLICANT'S ENVIRONMENTAL REPORTWaterUseDiagramFIGURE3.4.1

tEGENDRAllROADU.S.KI6KWAYSECONDARY ROADPERMANENT STIKAIIINTERMITTENT STREAMPROPERTYLIHE100METERS1000FEET55COPENNSYLVANIA POWER5LIGHTCOMPANYSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2APPLICANT'S ENVIRONMENTAL REPORTGeographical FeaturesIntheStudyArea,1971-1972 FIGUREA.18

SSESOpDOpFOquagaandLordstown verystonysiltloam,8-25percentslopes.OquagaandLordstown verystonysiltloam,25-80percentslopes.PAPAKATING SERIES-Papakating aredeep,verypoorlydrainedsoilsofthefloodplains.

Theyhavedeveloped inloamysediments washedfrommixedgreyandredglaciated uplands.Thesesoilshaveamoderately slowlypermeable subsoil.Thewatertableisnormallyatthesurfaceduringmostoftheyear.Theyareacidandcontainfewstonefragments.

Mostuseproblemsarerelatedtothehighwatertableandtofrequentflooding.

Mainunit:Papakating siltloam.REDHOOKSERIES-RedHookaredeep,somewhatpoorlytopoorlydrainedsoilsoftheglaciated uplandsandvalleys.Theyhavedeveloped inloamy,water-worked glacialoutwashsediments frommixedgrayandredshaleandsandstone bedrock.These,soilshaveamoderately slowlypermeable subsoil.Thewatertablenormallyrisestowithinafewinchesofthesurfaceduringpartsofthewinterandspringmonths.RedHooksoilsareacidandmaycontainstratified sandandgravelinthesubsoil.Mostuseproblemsarerelatedtotheseasonalhighwatertableandtothemoderately slowlypermeable subsoil.Mapg~inunit:RdBRedHookloam,3-8percentslopes.TIOGASERIES-Tiogasoilsaredeep,welldrainedsoilsoffloodplains.

Theyhavedeveloped indarkbrowntoreddishbrown,loamy,floodplain sediments washedfrommixedgreyandredglaciated uplands.Thesesoilsarenearlyleveltogentlyslopingwithamoderatepermeability inthesubsoil.Theyareacidandcontainafewstonefragments.

Mostuseproblemsarerelatedtotheoccasional floodinghazard.Thesoilnamesassignedtothesoilsoftheareaaretentative subjecttoafinalcorrelation priortothepublication ofthecounty-wide soilsreport.Achangeinthesoilname,however,willnotchange'thesoilproperty.

~Ma~inunitTBbTiogasoilsaB-3

SSESproductive deerareaeventhoughthenumbersaresufficient toattractsomehunters.Ofthefivesitesconsidered, thegeneralareaaroundtheMcElhatten siteisconsidered thesecondmostabundantinmigratory waterfowl.

The-overall terrestrial environment isnotconsidered tobeuniqueorhaveasignificantly greaterorlesservaluethantheothersites.TheWestBranchoftheSusquehanna River,becauseofminewastes,ishighlyacidicupstreamandsupportsasparsefishpopulation.

Althoughthewaterqualityisimprovedinthesitearea,fishlifeismorelimitedherethanfurtherdownstream.

Themajorspeciesoffishinthisareaaresmallmouth bass,catfish,andfallfish.

Therearenowalleyeandfewmuskellunge.

Withinatenmileradiusofthesitethereisonemajorwarmwaterfishingstreamandfourtroutstreams.WaterUse:Theestimated coolingwaterrequirements wouldconsume30.8%ofthe25year'recurrence intervalsevendaylowflowpastthesite,assuminga70cfsmakeupwaterrequirement fortwo1,100mwunitswithcoolingtowers.~Industrial useupstreamofthesiteismainlyconfinedtothreechemicalplants,aslaughter'house, apapermillanda'~hollldJLdeal.f)J.dliCLdca.VLge>opulation=

Theassumed1,~~0footexclusion zoneofthesitewouldnotrequiretherelocation ofanyexistingresidents.

Duetotheruggedterrainandthelimitedagricultural use,theestimated 1970population densitywithinthetenmileradiusis93personspersquaremile.LockHaven,located5mileswestofthesitewithanurbanpopulation of23,603,JerseyShore,located5mileseastwithanurbanpopulation of10,626andWilliamsport, 15mileseastwithandurbanpopulation of89,449,arethemajorpopulation centerswithin30milesofthesite.Aesthetics:

Thesiteislocatedinaruralsetting.Mostofthelandisforestedandthereisalittleagriculture.

Aswithanylargefacilitytherewouldbeanunavoidable visualimpactuponthearea.Thesettingoftheimmediate areawouldbechangedfromawilderness toanindustrial scene.23BrunnerIslandSiteThissiteislocatedonaformerislandintheSusquehanna Riverwhichisnowonlypartially separated fromthemainland.

Thesiteisapproximately sevenmilesdownstream

SSESconstruction attheMcElhatten orSusquehanna sitesandprobablylessthantheothertwosites.Majorspeciesoffishintheareaaresaallmouth bass,muskellunge, walleye,rockbass,crappie,catfishandsuckers.Thissectionoftheriverisconsidered agoodproducerofmuskellunge andafairproducerofwalleyeandrockbassandisahighlyfishedarea.Withinatenmileradiusofthesite(inYorkCounty)therearetwowarmwaterfishingstreamsandonetroutstream.WaterUse:WaterfromtheSusquehanna Riverwouldbeusedascoolingwaterforboththeexistingfossilfuelplantandanyproposednuclearplant.Theexistingplantusesapproximately 1,200cpsofriverwater.About62cfs,orabout1.5-2.5%ofthesevendaylowflowwith20yearrecurrence

interval, isestimated toberequiredforcoolingtwo1,100megawattunitsutilizing coolingtowers.Asidefromtheexistingfossilplant,theriverisusedbytheYorkhaven Hydrofacility, 1.5milesupstream.

Assumingan1800footexclusion zonenoresidence wouldhavetobemoved.The1970population densitywithinanareatenmilesfromthesiteis391personspersquaremile.Listedbelowarethemajorcitieswithin30milesofthesite:Population Center,DistanceUrbanAreaPopulation fromSite~~1970Harrisburg, 15milesNWLancaster, 20milesELebanon,22milesNEYork,25milesSW172'9059s40740~00072'71Aesthetics:

Theregionalsettingoftheareasurrounding thesiteisofaruralnat'ure.Thesiteiscurrently occupiedbyafossilplant,however,andtherefore presentsanindustrialized appearance.

Thevisualimpactofplacinganuclearfacilityandcoolingtowerswouldmerelyaddtotheindustrialized appearance.

2.4Su~nburSiteTheSunburysiteislocatedinthenortheast cornerofSnyderCounty,Pennsylvania.

ThesiteisonthewestbankoftheSusquehanna River,3.5milesdownstream fromtheD-7 SSESincludetheShamokinCreekWatershed Association andvariousfoodprocessing, paperandsteelplants.Ninetyresidences fromthetownofHummelsWharfwouldhavetoberelocated fromanassumed1,800footexclusion radius.Thepopulation densitywithintenmilesis166personspersquaremile.Thefollowing citiesarewithin30milesofthesite:Population Center,DistanceUrbanAreaPopulation fromSiteLewisburg/Milton, 12milesShamokin, 13milesEBloomsburg, 21milesNEWilliamsport, 28milesNWSunburyN34~00032~00031~49489i44916t691Aesthetics:

Becausethereisanexistingfossilfuelplantonthesite,thevisualimpactofaddinganuclearfacilitytotheexistingscenewouldbetoincreasetheindustrial appearance.

2.5MartinsCreekSiteTheMartinsCreeksiteisintheeastcentralpartoftheNorthampton County,Pennsylvania.

Thissiteisbesideanexistingfossilstationupstreamoftheconfluence oftheDelawareRiverwithMartinsCreek,about23milesNEofEaston,Pa.Therelatively broadvalleyoftheDelawareRiverissouthoftheplantsite.Thevalleyatthesitevariesinwidthfrom300to500feet,three-quarters ofamileupstream, tonearly1,000feetwideatthesite.Maximumandminimumelevations withintheassumedexclusion arearangefrom200to420feetmslwithtwo-'hirds ofthesitelyingatbetween200and240feetmsl.TheDelawareRivernearthesiteisapproximately 500feetwide.U.S.Highway611passesneartheplant.ThereisarailroadspurfromthePennCentralRailroadintotheexistingfossilplant.PhysicalSitingFactors~Geolog:Ontheportionofthesitecontaining theexistingfacilities, bedrockaverages35feetbelowthesurface.

4 SSESBiol~op:Largergamespeciesofthegeneralareaareconsidered sparse.Doveandpheasantareabundant.

Theareaisnot'sedasamajormigration routeforbirds,butsmallpopulations ofducks.(primarily mallards) mayremainyearround.Muchofthehabitatconsistsoffarmedlandwithscattered treestandsgenerally neartheriver,butalsooccurring inland.Aboutonemilenorthofthesiteisafairlylargewoodedarea.Inthe'immediate areaofthefossilplant,thelandislargelyopenfieldwithabout10to15%intrees.Therearenoknownrareorendangered specieswithinthe'area.Construction onthissitewouldremovesomewildlifehabitat,however,themixofopenfarmlandandwoodlotsisnotuniquetothearea.TheDelawareRiverinthegeneralvicinityofthesiteisconsidered tohavegoodwaterqualityandisagoodproduceroffishlife.Forty-four speciesoffishwerecollected in1956-1959 surveysintheareaaroundMartinsCreek.Theeel,Americanshadandstrippedbassareimportant speciesandareallpresentintheareaaroundMartinsCreek.WaterUseThepresentfossilfuelplantusesapproximately 270cfsofcoolantwater.Anuclearfacilityisestimated touse9.9%ofthesevendaylowflow,(20yearrecurrence interval)

.Thepresentfossilfuelunitsproduce320mwtwonewfossilunitswithacombinedoutputof1,600mwarepresently underconstruction andareplannedforoperation in1975and1977.Afossil'fuelplantislocatedabout10milesnorthnearPortland, Pennsylvania.

Inadditiona2,400mwnuclearfacilityhasalsobeenproposednearthatsite.~Poulatian:Noresidences wouldhavetoberelocated fromwithinthe1,800footexclusion zoneoftheplant.Thepopulation densityoftheareaencompassed by'theten-mileradiusis355personspersquaremile.Allentown, 20milessouthwest, withapopulation of108,926,andEaston,23mileswithanurbanareapopulation of180,394,Easton,7milessouthwest

'ithanurbanareapopulation of77,594,andBethlehem, 14milessouthwest withanurban,areapopulation 105,620arethethreemajorurbanareaswithin30milesofthesite.Aesthetics:

Theareasurrounding thesiteisofruralsetting.Becauseoftheexistingfossilplant,however,theimmediate sitehasanindustrialized appearance.

Anuclearfacilitywould 4r'ISI TABLED-1(Continued)

Page5.PHYSICALSITINGFACTORSPACTORDESCRIPTION oWaterUsersSUSQUEHANNA SITEoCoalPlant9Mi.Upstream; AcidMineDrainage&Municipal SewageFromUpstream.

StreamMayTurnOrangeinSummer(reasonsun-defined)butpHatSiteWithinNormalLimits.MCELHATTENSITEoUpstream0HeavilyPol-lutedbyAcidMineDrainage.

UpstreamTribu-taryHas3ChemicalPlants,2Slaughter Houses,PaperPlantandSmallAirplaneFactory.BRUNNERISLANDSITECoalPlantonSite(once-throughcool-ing)1~200cfs,T=27FMax,840MWeNuclearFacility3.5Mi.Upstream, SafeHarborHydroFa-cility20Mi.Downstream andYorkHavenHydroFacility1.5Mi.Upstream.

OtherIndustries inGeneralArea.SomeIndication ofInsecticide Pollution.

SUNBURYSITEoCoalPlantonSite(once-throughcooling)450cfog,T=20FMax,483MWe.SewagefromShamakinCrk.Watershed Association.

Paper,FoodProcessing, SteelPlantsWithin16Mi.Upstream.

MARTINSCREEKSITEoCoalPlantatSite(once-throughcooling)270cfs,T=27oFMax,Two1,200MWeNuclearPlantsProposedforDeleware.

Population 4oEstimated NumberofResidences WithinAs-sumedEx-clusionZoneoNoneoNoneoNoneo90oNoneoTotalPopulation DensityWithin10-MileRadiuso167Persons/Sq.Mi.o93Persons/Sq.Mi.o391Persons/Sq.Mi.o166Persons/o355Persons/Sq.Mi.Sq.Mi.oTotalPopu-o53,000lationWithin10MilesofSiteoTotalPopu-o265,354lationWithin20MilesofSiteoTotalPopu-o465,000lationWithin30MilesofSiteo36,000o105,000o140,000o123,000o598,000o758,600o60,009o189,413o289,000o140,781o363,517o500,389Aesthetics oExistingSceneAtSiteoRuraloRuraloIndustrial oIndustrial oIndustrial 4Population DataBasedon1970Figures.DensityNumbersincludeTownshipAreasandPersonsEitherWhollyorAtLeast50%WithinTen-MileRadiusofSite.

/Ij