NL-07-133, Review of the Draft Environmental Impact Statement for SPDES Permits for Bowline Point 1 & 2, Indian Point 2 & 3, and Roseton 1 & 2 Steam Electric Generating Stations, Cover - Enclosure 7a: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot change)
(StriderTol Bot change)
 
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:Review of the Draft Environmental Impact Statement for SPDES Permits for Bowline Point I & 2, Indian Point 2 & 3, and
{{#Wiki_filter:}}
                          ".Roseton I & 2 Steam Electric Generating Stations A Report to the Parties to the Application Prepared for:
New York State Department of Environmental Conservation Division of Regulatory Affairs, 50 Wolf Road Albany, New York, 12233-1750 Prepared by:
ESSA Technologies Ltd.
Suite 301, 1595 16 th Avenue Richmond Hill ON L4B 3N9 October 20, 2000
 
[
Citation:    ESSA Technologies Ltd. 2000. Review of the Draft Environmental Impact Statement for SPDES Permits for the Bowline Point I & 2, Indian Point 2 & 3, and Roseton I & 2 Steam Electric Generating Stations. Report to the Parties to the Application. Prepared by ESSA Technologies Ltd., Richmond Hill, ON, for NYSDEC, Albany NY. 31 pp. + appendices.
8 2000 ESSA Technologies Ltd.
This report has been provided in electronic form for review by the parties to the application for the Hudson River steam electric generating stations (Bowline, Indian Point and Roseton). Except for the express purposes of its review by the parties to the application, no part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from NYSDEC, Albany, NY.
(
 
.October 20, 2000                                        Review of DEIS for Bowline Point, Indian Point & Roseton October 20, 2000                                        Review of DEIS for Bowline Point, Indian Point & Roseton Preface This is the primary document in a report series that constitutes the review by ESSA, Technologies Ltd. of the Draft Environmental Impact Statement for State Pollution Discharge Elimination Permits for Bowline Point I & 2, Indian Point 2 & 3, and Roseton I & 2 Steam Electric Generating Stations, filed with the New York State Department of Environmental Conservation in December 1999 by Central Hudson Gas and Electric Corp., Consolidated Edison Company of New York, Inc., New York Power Authority, and Southern Energy New York.
In conducting our review, we were requested to evaluate the overall logic of the DEIS and assess the suitability of the proposal from a technical perspective. This report sets out the background and scope of our review and presents our evaluation of the ProposedAlternative, i.e. the use of Fish Protection Points based on Conditional (entrainment) Mortality Rate (CMR) to establish targets and monitor entrainment mitigation, together with additional actions to reduce impingement and chemical discharges.
Since the arguments in the DEIS are founded upon the results of population modeling efforts that explore the stations' impacts on four target species (striped bass, white perch, bay anchovy, and Atlantic tomcod),
reviewing those efforts has formed a substantial portion of our work. This report presents our summarized reviews of the population modeling work presented in the DEIS for each of the four species.
The detailed reports upon which these summaries are based have been published as companion reports authored by members of our project team:
* striped bass - Dr. R. Deriso, Mr. D. Marmorek and Mr. I. Parnell,
* white perch - Mr. I. Parnell, and Mr. D. Marmorek,
* bay anchovy - Mr. I. Parnell, and Mr. D. Marmorek, and
* Atlantic tomcod - Mr. I. Parnell, and Mr. D. Marmorek, Each report is cited in the References section of this document. Our review of the Cooling Tower Alternative was conducted by D.B. Grogan Associates, Inc. of Connecticut As with the other detailed reviews, a brief summary of the findings of this portion of the review is included within this document and the detailed commentary has been published in a companion report. Finally, one of our team members, Dr. R. Deriso, together with staff from the NYSDEC has updated the analysis of the Hudson River American shad population reported in DEIS Appendix VI-4-C to provide more recent information on the status of the recovery of the shad population. The results of this work are summarized in Appendix I of this report and the detailed analysis published in the companion report by Dr. .R. Deriso, Ms. K.
Hattala and Mr. A. Kahnle.
This report and its companion volumes are available from:
Mr. Richard Benas Project Manager Department of Environmental Conservation 50 Wolf Road Albany, New York, 12233 (518) 457 - 5941 ESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point & Roseton  October 20, 2000 Review of DEIS for Bowline Point, Indian Point & Roseton  October 20, 2000 ESSA Technologies Ltd..                                  h
 
October 20, 2000                                                Review Of DEIS for Bowline Point, Indian Point & Roseton October 20, 2000                                                Review of DEIS for Bowline Point, Indian Point & Roseton Executive Summary This report presents the results of our review of the Draft Environmental Impact Statement (DEIS) filed in support of modified State Pollution Discharge Elimination System Permits (SPDES) for the Bowline 1 &
2, Indian Point 2 & 3, and Roseton 1 & 2 Steam Electric Generating Stations in December of 1999 (DEIS 1999).
Prior to the submission of the DEIS by the applicants (generators), an early draft had been provided and reviewed by the staff of the NYSDEC, parties to the application, and by ESSA Technologies Ltd.
Following that initial review, three technical workshops were held jointly with technical staff from the generators and the NYSDEC, technical representatives of the parties to the application, and members of the ESSA review team. The explicit purpose of those workshops was to attempt to reach consensus on the scientific issues that had been raised during the review of the preliminary draft EIS so that subsequent negotiations between the parties with regard to the application could be focused on questions of policy rather than possible differences in scientific opinion.
The scope of our review of the DEIS was established jointly by the NYSDEC and the generators, and was primarily to assist technical staff of the New York State Department of Environmental Conservation (the Department) in reviewing the DEIS submitted in support of SPDES permit modifications for the power plants. Further to this general direction, we were requested by the NYSDEC to review the DEIS with regard to the overall logic and reasonableness of arguments presented in the document. We were to consider and comment on both the proposed action and assessed alternatives (primarily related to fisheries mitigation) plus the supporting materials from the perspective of the logic of the analysis and potential risks involved in decision making.
The basic logic of the DEIS rests heavily upon arguments that density dependant mechanisms of compensatory survival offset the effects of generating station induced entrainment and impingement.
mortality. These arguments are reflected in detailed analyses and modeling of fish population dynamics undertaken for five target species: striped bass, American shad, bay anchovy, Atlantic tomcod, and white perch. Consequently, a significant portion of our work has involved a detailed review of these underlying analyses upon which the overall logic and thrust of the DEIS rests.
The proposed action put forward in the DEIS is a derivative of the Settlement Agreement scheme with some important differences. The most important differences include:
    " translation of the prior entrainment mitigation outage targets based on units of days to targets based on the aggregate Conditional Mortality Rate (CMR) due to entrainment for five target species: striped bass, American shad, bay anchovy, river herring and tomcod';
* a proposal that the new Fish Protection Points (FPPs) may be carried forward across years as well as traded between stations;
* adding to the protection target the number of FPPs equivalent to the difference between "SPDES flows" and efficient flows for Indian Point Units 2 & 3, apparently to allow the Indian Point units to operate at efficient flows; and
    " a proposal to meet the. requirements for entrainment mitigation exclusively through the management of station flows without necessarily invoking requirements for unit outages as previously required.
The term Fish Protection Points is used to clearly distinguish the proposed system from the previous one based on Credit Points.
iii                                    ESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point & Roseton                                    October 20, 2000 When considering the merits of the scheme described in the DEIS. it is important to distinguish between:
: 1. the method employed to express outage requirements and previously specified flow limits at the Indian Point Station in terms of units of CMR;
: 2. the method chosen to establish targets and the resulting targets proposed for future mitigation; and
: 3. how the system of FPPs will be managed and reported on to provide information on compliance with whatever targets and mechanisms might be established should a scheme such as this be agreed to.
The shift to accounting for the effects of outages or partial flow reductions based on units which reflect the indicator of concern (CMR) is a useful and laudable method. Our review however suggests concern with several aspects of the proposal and supporting analyses:
Our review suggests concern with the estimation of entrainment which serves as the fundamental basis for the CMR data on which the FPP system is based. Specifically, there is considerable uncertainty in forecast CMRs due to applications of W parameter values from a period with different species distributions and possibly different intake rates. Until this concern can be clearly resolved, the entrainment estimates for the 1991 to 1997 data series (on which the FPP system is based) should be viewed with skepticism.
* The document contains anomalies regarding the FPP values for Indian Point. The equation for FPPF1o.. in Appendix VI-1 is correct as written but must be implemented consistently with regard to the units of flow and CMR estimation. As employed in the appendix tables, the equation may have been incorrectly applied and this needs to be clarified.
* The method for establishing targets strategically and openly selects periods with minimal          (
entrainment mortality, thereby proposing a minimal level of protection while the DEIS assures protection equivalent to that provided historically. This appears to be inconsistent and the level of CMR reduction afforded by Scenario A in DEIS Section VIII seems to be more in keeping with what one would expect from the historical requirement. A retrospective analysis of what was actually achieved in each year should be feasible and would provide useful information to objectively clarify the historical performance level.
* The provision for carrying forward FPPs raises concerns for potential effects on species which are at reduced levels of abundance or which rely on periodic year classes.
    " The proposal effectively eliminates any capability on the part of fisheries managers to influence the level or temporal distribution of CMR for any species which may be deemed to be in jeopardy or subject to intensive management for other reasons.
Specific findings in regard to detailed population dynamics analysis and modeling presented within the DEIS for Atlantic tomcod, bay anchovy, striped bass and white perch include:
The analysis of tomcod is inconsistent in its use of data to assess hypotheses of changes in carrying capacity and the timing of density dependence. Additionally, there are too few data points with which to develop a reliable equilibrium model. Examination of the data suggests that measurement errors rather than density dependence may be the cause of the negative correlation between Age I and Age 2 upon which the DEIS conclusion regarding tomcod density dependence is based. We conclude that, with the available data, we do not know what the consequences of entrainment and impingement were (or will be) for the tomcod population.
ESSA Technologies Ltd.                                  iv
 
October 20, 2000                                        Review of DEIS for Bowline Point, Indian Point & Roseton We find the results of bay anchovy population (production forgone) modeling to be speculative for several reasons. The underlying individual based model (IB) was developed to model bay anchovy from Chesapeake Bay (see Rose et al., in press) and the Hudson River bay anchovy are modeled with Chesapeake Bay data (Rose 1996); the results, therefore, reflect the response of bay anchovy in Chesapeake Bay to entrainment The DEIS analysis greatly overestimates the predatory demand of striped bass and bluefish by: 1)using an incorrect striped bass age-structure,
: 2) applying the highest observed values for the contribution of bay anchovy to the diet of striped bass, and 3) estimating river-wide abundance of striped bass and bluefish using near-shore striped bass and bluefish densities and river-wide volume. The analysis of entrainment effects on the daily biomass of bay anchovy attempts to address the dynamic changes in entrainment and predators' requirements missed in the analysis of predatory demand. However, the aialysis assumes that. all natural mortality is due to predation and this overestimates true predation. For example, the fact that spawner immigration is required in the model to avoid population extinction may mean that mortality is set too high elsewhere. The DEIS represents this exploratory analysis (see Rose 1996) as a definitive bay anchovy assessment and does not acknowledge the author's analytical caveats.
We believe the striped bass modeling results and conclusions reported in DEIS Appendix VI-4-A are unreliable due to limitations of the data, modeling of data and model assumptions. These limitations may cause the DEIS striped bass model to estimate extremely high and counter-intuitive levels of density dependent mortality. For example, typical DEIS results indicate that it would require a mere 100 of the 10 year-old striped bass females to produce over 90% of the recruitment produced by the full stock at its carrying capacity in the absence of fishing and entrainment/impingement mortality. We believe the qualitative effect of the types of errors we discuss in our full report (see Deriso et al. 2000a) support an alternative hypothesis of much lower density-dependence (and higher sensitivity to entrainment and impingement) than the results presented in the DEIS for the striped bass population.
The DEIS does not present a population dynamics model for white perch and without such a model cannot forecast the response of the Hudson River white perch population to future levels of entrainment and impingement. The DEIS should use some index of biomass lost to the ecosystem, such as the "production foregone" of white perch due to entrainment, to quantify the impact of entrainment on both the white perch population and the Hudson River ecosystem. Such an index is especially relevant given the hypothesized ecological interactions between white perch and striped bass. An analysis in the DEIS of temporal variation in white perch abundance breaks the data series into arbitrary time periods and relies on a. visual, and subjective, interpretation to detect patterns in the data. We can describe different, quantitative, temporal patterns in the abundance data. For example, there is a statistically significant decline in young-of-the year and Age I abundance from 1978 to. 1997. The white perch abundance indices are not the appropriate indices of density independent survival to compare with other factors as is done in the DEIS because precursor life-stage abundance and density dependent survival may confound results and lead to incorrect conclusions about the relationship of abundance to other factors.
A portion of our work has involved updating the analysis of the Hudson River shad stock which is reported as of May 1999 in Appendix VI-4-D in the DEIS. Although less precise than earlier years, abundance estimates for the mid-1990s indicate an increase from the low point around 1990. In 1995, we reported that the 1989-1990 year-classes appeared to be somewhat above average and this has proven to be the case. Those year-classes were followed by even strong year-classes in 1992-1994. Preliminary indications from the juvenile indices are that the 1995-1997 year-classes could be below average and warrant some concern for the near-term future of the stock. Our equilibrium calculations show that the V                                    ESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point & Roseton                                  Otbr2,20 October 20, 2000 shad stock is fully exploited to over-exploited~ unless one assumes high density-dependence. However such an assumption is not consistent with th&ilong term analysis by Walters (1994). Our sensitivity analyses show an alternative hypothesis can be made based on a high reliance on age composition and repeat spawning information. With heavy reliance on those data, we would conclude the stock has not shown any recovery in recent years and that ýboth entrainment and fishing mortality rates need to be decreased. The driving force behind this alternative hypothesis is high adult mortality rates that can be inferred from age composition and repeat spawning information.
Our review of the cooling tower alternative presented in the DEIS was conducted by D.B. Grogan Associates Inc., and concludes that:
L. The selection of a wet/dry closed loop cooling water system to replace the present open cycle cooling water systems at all of the Hudson River Power Plants is one of the closed system options that has the least environmental impact.
: 2. Certain sizing assumptions of the wet/dry cooling water system are conservative and lead to somewhat higher cost projections and performance penalties than are absolutely necessary. The projected loss of over 600,000 Mwhr/year is of very significant concern.
: 3. The cost estimates and economic analysis presented for the replacement system are reasonable when the same stipulated design and pricing criteria are applied. However, application of less restrictive meteorological conditions will result in lower cost impacts due to less severe performance penalties. Specific recommendations and performance differentials are provided.
: 4. The cost of used electricity reported in the DEIS is not representative of the deregulated power and market that will be in effect when the modified cooling water systems would begin operations. Because of open market pricing of both fuel and electricity, the economic impacts of any reduction in power generation efficiency and capacity can be expected to be far more costly than forecast in the DEIS.
: 5. A wet only (wet mechanical cooling tower) cooling water system will have substantially less environmental impact and be less costly to the NY consumers. The trade-off is that the water vapor plume will be visible during more days of the year.
: 6. The environmental impacts of increased air emissions and consumptive water use attributed to the change in the type of cooling water systems is significant. These impacts are quantified as 849 tons of NO,,, 2792 tons of SO2 , 74 tons of CO, 406,623 tons for GO2, and 194 tons of particulate, and 15 billion gallons of annual evaporative water loss respectively.
: 7. A side by side comparison of both the environmental and economic impacts of two alternate cooling water systems should be made prior to implementation of any change to the current cooling systems. The two cooling water systems recommended for the alternative evaluation include: i) a passive open cycle cooling water system that is specifically designed to eliminate fish entrainment; and b) a closed system using conventional wet only mechanical cooling towers.
Finally, Section VI of the DEIS provides a rather good general description of the various levels at which one can attempt to undertake an analysis of the possible effects cf power station mortality on fish populations; these are:
: 1. estimating the number of larvae killed;
: 2. estimating the conditional mortality rate (CMR) and thereby expressing the simple mortality numbers in the context of the size of the population of larvae; and
: 3. estimating the population dynamics - i.e. the impact on the fish population in terms of survival, growth and subsequent reproduction of the fish which survive entrainment or are not entrained (or impinged).
The discussion in the DEIS also notes that with each level, an increasing complexity and number of parameter estimates and assumptions are needed to complete the analysis. A logical corollary of this ESSA Technologies Ltd.                                  vi
 
October 20, 2000                                        Review of DEIS for Bowline Point, Indian Point & Roseton hierarchy is that at higher levels in the hierarchy, there is an increased potential for a lack of consensus about assumptions and parameter estimates, and an increased potential for confounding due to various factors affecting populations (e.g. changes in water quality and harvest rates). The EPA guidelines on.
risk assessment (USEPA, 1998) do not indicate that one should avoid such analyses, only that it is advisable to discuss the degree of scientific consensus in key. areas of uncertainty.
The work done to date and information presented in the DEIS provides a strong start toward achieving consensus. However, there remain significant concerns about the uncertainty of key underlying estimations (e.g. entrainment), the prediction, of subsequent population analyses, and the conclusions upon which they are based. Together, the hierarchy set out in the DEIS and the guidance provided by the EPA may provide a useful framework for working to deal with these concerns and find a high level of consensus on alternatives that are robust to the existing uncertainties.
vii                                  viiESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point & Roseton    October 20, 2000 Review of DEIS for Bowline Point, Indian Point.& Roseton    October 20, 2000
(,t*
viii ESSA Technologies Ltd.
ESSA Technologies Ud.                                  Viii
 
October 20, 2000                                                                                Review of DEIS for Bowline Point, Indian Point & Roseton October 20, 2000                                                                                  Review of DEIS for Bowline Point, Indian Point & Roseton Table of Contents PR EFA CE .................................................................................    ......................................................................................................          I EXECUTIVE
 
==SUMMARY==
.......................................................................................                                    ...............................................              . in
 
==1.0        INTRODUCTION==
..........................................................................................................................................................                            I
 
==1.1    BACKGROUND==
TO OUR REVIEW OF THE DEIS ...............................................................................................................                                                1 1.2    SCOPE ANDAPPROACH TO THE REVIEW .........................................................................................................................                                            I 1.3    STRUCTURE O F THE REPORT .............................................................................................................................................                              2 2.0        REVIEW OF THE PROPOS ED ACTION ....................................................................................................                                                                3.
2.1    GENERAL TERMS OF THE SETTLEMENT AGREEMENT ..............................................................................................                                                            3 2.2    DIFFERENCES BETWEEN THE SETITLEMENT AGREEMENT AND THE PROPOSED ACTION ..................................... 4 2.3    REVIEW OF THE PROPOSED FISH POINT PROTECTION SYSTEM ..............................................................................                                                                  6 2.3.1    The Basic Methodfor CalculatingFPPs.......................................................................................................                                                    6 2.3.2    Approach to Setting Targetsfor Mitigationbased on FPPs.......................................................................                                                                  8 2.4 ALTERNATIVE OUTAGE SCHEDULES AND THE PARETO-OPTIMAL APPROAC2 L.....................................................                                                                                    9 2.4.1    Theoretical Scenario Variationson the ProposedAction .............. ............................................................ 9 2.4.2    Pareto-optimalAlternative Outage Scenarios.........................................................................................                                                          10 2.5 ISSUES RELATED TO THE ESTIMATION OF ENTRAINMENT AND THE USE OF 1991 TO 1997 ENTRAINMENT E STIMATES AS THE BASIS FOR FPPS .............................................................................................................................                                      1I 2.5.1    Estimation of Parametersforthe Entrainment Models ............................................................................                                                              16 2.5.2    Density of EntrainableLife Stages in the Intake Field- Win the ETM Model .................................                                                                                . 17 2.6 IMPLEMENTATION AND REPORTING OF FPP BASED MITIGATION ........................................................................                                                                          18 3.0        REVIEW OF THE ASSESSMENT OF ATLANTIC TOMCOD ....................................................................                                                                                  21.
4.0        REVIEW OF THE ASSESSMENT OF BAY ANCHOVY .........................................................................                                                                                22 5.0        REVIEW OF THE ASSESSMENT OF STRIPED BASS ..................................                                                                                                                      23 6.0        REVIEW OF THE ASSESSMENT OF WHITE PERCH .............................................................................                                                                            24 7.0        COMMENTS ON THE DEIS ASSESSMENT OF THE COOLING TOWER ALTERNATIVE ......... 25 8.0        PREDICTING THE FUTURE-                                        UNDERSTANDING THE RISKS ........................................................                                                  27
 
==9.0        REFERENCES==
..........................................................................................                      .......................... ........................................ 30 APPENDIX I ................................................................................................................................................................................                  33 APPENDIX 2 ix                                                                        ESSA Technologies Ltd.
9
 
Review of DEIS for Bowline Point, Indian Point & Roseton                                                                                    October 20,2000 List of Tables Table 1:      Outages Specified in the 1981 Settlement Agreement ..................................................                                      3 Table 2a:      Summary of anomalies regarding estimated FPPs for Indian Point ...............................                                            7 Table 2b:      Estimates for FPPFIo0 , derived with the DEIS cited or adjusted flow equation and SPDES flow data from DEIS Section IV or Appendix to Section IV .........................................                                        7 Table 3:      Maximum annual CMR (as %) and equivalent FPP values by taxa and station in contrast w ith proposed FPPoutC targets ..................................................................................                          9 Table 4:      Basic metrics of the entrainment data series from 1974 - 1990 and 1991 to 1997 for the five taxa proposed to be accounted for within the FPP system at the three stations .............. 13 Table A2-1:    Striped bass entrainment CMR (as %) by station from DEIS Table V-18 and total annual CMR for all three stations combined for the period 1974 to 1997 ................................ 39 TableA2-2:    White perch entrainment CMR (as %) by station from DEIS Table V-I18 and total annual CMR for all stations combined for the period 1974 to 1997 ..................................... 40 Table A2-3:    Atlantic tomcod entrainment CMR (as %) by station from DEIS Table V-22 and total CMR for all three stations combined for the period 1974 to 1997 .........................................                                    41 Table A2-4:    River herring entrainment CMR (as %) by station from DEIS Table V-28 (also V-30) and total CMR for all three stations combined for the period 1974 to 1997 ........................ 42 Table A2-5:    Bay anchovy entrainment CMR (as %) by station from DEIS Table V-32: and total CMR for all three stations combined for the period 1974 to 1997. ............................................. 43 List of Figures Figure la:    Entrainment CMR for striped bass for the period 1974 - 1997. Data from DEIS Table VI-18 and Appendix VI-4-A Table 8 ..............................................................................                            14 Figure 1b:    Entrainment CMR for white perch for the period 1974 - 1997. Data from DEIS Table VI-20 . ..............................................................................................................................      14 Figure 1c:    Entrainment CMR for Atlantic tomcod for the period 1974 - 1997. Data from DEIS Table VI-22 ........................................................                  ............................................ 15 Figure id:    Entrainment CMR for river herring for the period 1974 - 1997. Data from DEIS Table VI-28 (& 30) ...................................................................................................................            15 Figure 1e:    Entrainment CMR for bay anchovy for the period 1974 - 1997. Data from DEIS Table VI-32 ...............................................................................................................................        16 x
ESSA Technologies Ltd.
ESSA Technologies Ltd.                                                        X
 
October 20, 2000                                        Review of DEIS for Bowline Point, Indian Point & Roseton 1.0      Introduction This report presents the results of our review of the Draft Environmental Impact Statement (DEIS) filed in support of modified State Pollution Dis charge Elimination System Permits (SPDES) for the Bowline 1 &
2, Indian Point 2 & 3, and Roseton 1 & 2 Steam Electric Generating Stations in December of 1999 (DEIS 1999). The review was contracted by the New York State Department of Environmental Conservation (NYSDEC) and work on the review commenced in late July of 2000. Although the review has been prepared primarily to assist the staff of the NYSDEC in their deliberations regarding the application, it has been undertaken with the explicit understanding that the review would serve as a resource for all of the parties to the application. This work has been supported financially by the applicants under a contract administered by Consolidated Edison of New York Inc. on behalf of itself, the NeW" Yor'kPower Authority, Central Hudson Gas and Electric Corp., and Southern Energy.
 
==1.1      BACKGROUND==
TO OUR REVIEW OF THE              DEIS Prior to the submission of the DEIS by the applicants (generators), an early draft had been provided and reviewed by the staff of the NYSDEC, parties to the application and by. ESSA Technologies.Ltd.
Following that initial review, a series of three technical workshops were held jointly with technical staff from the generators and the NYSDEC, technical representatives of the parties to the application, and members of the ESSA review team. The explicit purpose of those workshops was to attempt to reach consensus on the scientific issues that had been raised during the review of the preliminary draft EIS so that subsequent negotiations between the parties with regard to the application could be focused on questions of policy rather than possible differences in scientific opinion. The series of technical
( workshops is referred to in the DEIS, in this report and its companion reports. Reports on the results of the technical workshops however also refer to "the DEIS" as does the previous critique of the preliminary draft. It is therefore important to be clear about references to "the DEIS" as they could lead to confusion.
In this report, and its companion reports, all references to the DEIS are to the document filed by the generators in December of 1999. In prior reports documenting the results of the technical workshops, and the previous report of the critical review of the DEIS by ESSA Ltd., "the DEIS" refers to a preliminary draft filed in the summer of 1993.
Given the collaborative nature of the work undertaken during the technical workshop series, the analysis included in the DEIS with regard to the Hudson River population of American Shad was authored by a member of the ESSA Technologies Ltd. review team and NYSDEC staff. A copy of this analysis was initially filed as an appendix to ESSA's report on the Third Technical workshop (August 1995). The American shad work included in the DEIS is an updated version of the 1995 analysis effective to May 1999. As a component of our present review, this 1999 analysis has been further updated to incorporate more recent data and thinking in regard to the status of the American shad population in the Hudson River (from May 1999 to August 2000), and a summary of this work is filed as Appendix I to this report. This updated report serves two purposes: first as a source of current information for parties to the application regarding the status and likely impacts of entrainment on American shad; and secondly to illustrate a particularly good approach to the presentation of information for decision making. We discuss this issue further in section 3 of this report.
1.2      SCOPE AND APPROACH TO THE REVIEW The scope of our review of the DEIS was established jointly by the NYSDEC and the generators, and included the following points of reference:
I                                  ESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point & Roseton                                    October 20, 2000 Task I B Assist technical staff of the New York State Department of Environmental Conservation (the Department) in reviewing the DEIS submitted in support of SPDES permit modifications for the Bowline Point I and 2, Indian Point 2 and 3, and Roseton I and 2 Power Plants. All work will be done as directed by the Departments project manager. The assistance provided by ESSA tothe Department will not constitute preparation of written documents including prefiled written testimony, for, or participation in, adjudicatory hearings or litigation related to the DEIS.
Subtask 1.1 B Critique sections of the DEIS.
Subtask 1.2 B Provide written comments detailing the results of Subtask 1.1.
Subtask 1.3 B Prepare alternative analyses of data if necessary.
Subtask 1.4 -Review Hudson River Utilities:- responses to. any comments that the Department submits to them pertaining to the DEIS.
Subtask 1.5 B Meet with Department staff to help complete Task 1.
Task 2 - Provide a copy of all work products to all Parties at the same time that they are provided to the Department.
Further to this general direction; we were requested by the NYSDEC to review the DEIS with regard to the overall logic and reasonableness of arguments presented in the document.: We were to consider and comment on both the proposed action and assessed alternatives (primarily reldted to fisheries mitigation) plus the supporting materials from the perspective of the logic of the analysis and potential risks involved in decision making. In doing so, we understand that some of our comments of necessity deal with areas that border on what might be characterized as issues of policy, but not from a policy perspective. Instead, our discussions are focused on the technical concerns with the DEIS analysis that may affect policy considerations or decisions.
The basic logic of the DEIS rests heavily upon arguments that density dependant mechanisms of compensatory survival offset the effects of generating station induced entrainment and impingement mortality. These arguments are reflected in detailed analyses and modeling of fish population dynamics undertaken for five target species: striped bass, American shad, bay anchovy, Atlantic tomcod, and white perch. Consequently, a significant portion of our work has involved a detailed review of these underlying analyses upon which the overall logic and thrust of the DEIS rests.
The scope of our review focuses primarily on issues related to impacts on fisheries. Additionally, however, we were requested to retain expertise to review technical aspects of the DEIS analysis of the cooling tower alternative. This work was contracted to D.B. Grogan Associates Inc. which specializes in the design and evaluation of electrical generating station technologies and their environmental effects.
1.3      STRUCTURE OF THE REPORT The comments arising from our review of the fish population modeling and analyses in the DEIS are highly technical. To best communicate the overall results of our work we have structured our report so that this document serves primarily as a summary of our findings. Companion documents provide our detailed commentary on the individual components of the DEIS modeling and analyses. This approach has been taken for our commentary regarding the DEIS analyses of striped bass, Atlantic tomcod, bay anchovy, white perch, and our review of the DEIS analysis of the Cooling Tower Alternative. Our comments on the proposed action, analysis of outage alternatives, and brief comments on the methods for estimating entrainment mortality are presented entirely within this report.
2 ESSA  Technologies Ltd.
ESSA Technologies  Ltd.                                  2
 
October 20, 2000                                                    Review of DEIS for Bowline Point, Indian Point & Roseton 2.0        Review of the Proposed Action The action proposed by the applicants is somewhat analogous to the previous mode of operation agreed to under the 1980 Settlement Agreement and. reflected in the 1981 and 1987 permits. A careful reading of the proposal however, suggests that there are some very significant differences between the current requirements and the proposal as put forward in the DEIS. This comment is based upon not only what is said in the DEIS but also what is not said which can be just as important.
2.1        GENERAL TERMS OF THE SETTLEMENT AGREEMENT As described in the DEIS and in Table 1 below, the terms for mitigation of entrainment and impingement impacts through flow regulation were stipulated in the 1981 and 1987 SPDES permits; they required the generators to annually invoke one or more outages at each of the stations during specified time intervals.
A credit system that reflected the relative magnitude of entrainment mortality at each of the stations allowed the generators to trade outages or partial outages among stations within a year, thereby allowing some operating flexibility in regard to the outages. Additionally, in view of the operational consequences of having to power down a large nuclear station, the agreement was flexible enough to allow that in some years Indian Point would not meet the outage requirement. The Settlement Agreement did, however,.
specify targets for cumulative outages over the course of the ten year permit period (see note 3 in Table 1); this despite the Indian Point station being the most significant source of entrainment mortality of the three stations. The Settlement Agreement also specified maximum rates of water withdrawal (station flow) for the three stations over the course of the year. For the Bowline Point and Roseton Stations, the stipulated flows corresponded with those required for efficient station operation. For Indian Point, the.
specified flows were less than those required for efficient operation as a means of providing some impact mitigation.
Table 1:          Outages Specified in the 1981 Settlement Agreement.
Station                  # of Units        Outage Interval              Duration of Outage'            Proportion Ouag  I                  Interval      Requirement        of Intervalf Bowline Point                      I          May 15 - June 30            47 / 6.7          30 / 4.3          63.8 1                    July              31/4.4          30 / 4.3          96.8 Indian Point4                      1          May 10 -Aug 10            93/ 13.3          42/6.0            45.2 Roseton                        I          May 15 - June 30            47 / 6.7          30 / 4.3          63.8
'Durations of Outage Intervals and Outage Requirements are given in Days /Weeks 2 Proportion of Interval is the percentage of the outage interval required to be taken.
3 The value of 30 days is taken from a copy of the Fourth Amended Stipulation of Settlement and Judicial Consent Order provided by NYSDEC. The DEIS quotes this outage requirement as 31 days.
4The Settlement Agreement also recognized that a full 6 week outage might not be achieved at Indian Point in each calendar year. An additional stipulation of the agreement was that by year four of the 10 year period a minimum of 140 of the cumulative outage target of 168 days (20 of 24 weeks i.e. 83%) for the first four years must be achieved by the end of the fourth year and 94% of the eight year cumulative outage target must be taken by the end of the eighth year.
3                                        ESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point & Roseton                                                  October 20, 2000 2.2      DIFFERENCES BETWEEN THE SETTLEMENT AGREEMENT AND THE PROPOSED ACTION The proposed action put forward in the DEIS is a derivative of the Settlement Agreement scheme with some very critical differences. The proposed action:
: 1. translates the prior entrainment mitigation outage targets based on units of days to targets based on the aggregate Conditional Mortality Rate (CMR) due to entrainment for five target species:
striped bass, American shad, bay anchovy, river herring and tomcod2 ;
: 2. proposes that unlike the prior Credit Points, the new Fish Protection Points (FPPs) may be carried forward across years as well as traded between stations;
: 3. consistent with stipulated maximum flow requirements in the 1981 and 1987 SPDES permits for Indian Point, the proposal calculates and adds to the protection target the number of FPPs equivalent to the difference between "SPDES flows" and efficient flows for Indian Point Units 2
          & 3;
: 4. proposes to continue the operation of current Modified Ristroph screen technology at the Indian Point Station for reduction of impingement mortality;
: 5. proposes to continue deployment of the barrier net at .the Bowline Station for reduction of impingement mortality;
: 6. proposes to continue the management and mitigation regime for "thermal and chemical" discharge as carried out under the prior 1981 and 1987 permits, and
: 7. proposes to meet the requirements for entrainment mitigation exclusively through the management of station flows without necessarily invoking requirements for unit outages as previously required.
Additionally, although it does not appear to be explicitly stated in the document section on the Proposed Alternative, we believe that the DEIS effectively proposes to allow a shift in the operation of Indian Point Units 2 and 3 to a maximum flow regime based on efficient flows rather than the previously lower SPDES flows.
Points four, five, and six above reflect the status quo with regard to mitigation procedures currently in place and will not be discussed further. Points one,. two, three, and seven reflect a new approach to mitigating entrainment effects. Some very important considerations of the proposal are discussed in the following section about the Fish Point Protection System. Despite significant research efforts on technologies such as Gunderboom to further reduce entrainment at the smaller stations (e.g., Bowline or Roseton), the DEIS proposes no new mitigation efforts to reduce entrainment mortality. In the DEIS, Section VII Mitigation does note that Central Hudson is assessing the use of high frequency sound to deter impingement of herring and commits to deploy the system during the annual period of herring impingement should the evaluation be positive.
The sixth point is a divergence from the historical mode of operating and is reflected in a number of places in the document. In Section IV ProposedAction a. Cooling Water Flow Management,the DEIS states, "Fish protection will be achieved by management of cooling water flow at each plant to ensure an annual level equivalent to 17.59 FPPs at Roseton Units 1.& 2, 73.18 FPPs at Indian Point Units 2 & 3, and 22.10 FPPs at Bowline Point Units 1 & 2 on average over the 10-year period 2001 through 2010." In DEIS Section VII Mitigation Associated with the Proposed Action subsection B.1 Entrainment -
Background,the document states "Reductions in cooling water use may be achieved by any combination of flow management strategies including single-unit operation, load-based flows, and seasonal flow schedules. The actual combination of strategies that will be used to meet the minimum number of FPPs at each plant will be determined by the operator of that plant and cannot be forecast with certainty." This 2  The term Fish Protection Points is used to clearly distinguish the proposed system from the previous one based on Credit Points.
ESSA Technologies Ltd.                                        4
 
October 20, 2000                                        Review of DEIS for Bowline Point, Indian Point &Roseton point is reflected perhaps most explicitly in the discussion of prescribed outages as Alternatives to the Proposed Action in Section VIII.B. l.a.i where it is stated that "For the purposes of this DEIS, the objective was established to be the greatest possible reduction in the sum of the annual entrainment CMRs for all five fish taxa from that which would occur with no outages and efficient cooling waterflow rates."
(italics added).
With respect to the question of operating the Indian Point units at efficient flows rather than the previously required SPDES flows we note the following:
: 1. While the document discusses the historical SPDES flow limitation at Indian Point in several places (e.g. Sections IV.a, IV.B.I.b.i, VIII.B.1), the references are to the historical pattern or to the computation of FPPs with CMRs based on SPDES flows.
: 2. Table IV- 1 in Section IV which sets out the proposed action lists efficiefit flows for Indian Point rather than SPDES flows.
: 3. Most of the illustrations in Appendix VIII- I-A Evaluation of Alternative Outage Schedules Based on a Multi-Species Approach are based on efficient flows at, Indian Point. The only scenarios which are conducted with SPDES flows (and also not carried forward into the main body of the DEIS) are those also calculated to illustrate the effects of 100% through-plant mortality.
: 4. The Proposal explicitly calculates FPPs attributable to the difference.' between efficient and SPDES flows for Indian Point and adds them to the FPP conservation target.
If it were not the intent to move to efficient flows at Indian Point we can see no reason to compute and add FPPs attributable to the difference between efficient and SPDES flows to the FPP target. Taken together with the other points noted above, we conclude that, despite the lack of an explicit statement in the DEIS section on the proposed action, the proposal implies a regime where Indian Point would be operated at efficient flow, when possible, within the constraints of the FPP system requirement.
In view of this, we wondered initially why the document did not include arguments that the increased flows could be seen as beneficial since they would lead to slightly reduced transit times and ATs with concomitantly reduced thermal entrainment mortality and perhaps reduced heat loading to the estuary. A preliminary check of the likely benefit from reduced entrainment mortality derived using the equations cited in Appendix VI-1-A Entrainment Process andSampling for reduced station ATs, transit times, and thermal mortality rates suggests no benefit would accrue in this regard, with the only effect being increased entrainment due to the increased flow (to be offset as attributed to the additional flow related FPPs). In a similar vein, DEIS Section VI.4.c Environmental Impacts- Effects of Thermal Dischargeson Aquatic Biota argues that the design of the diffusers for these stations results in sufficiently rapid mixing within relatively small mixing zones and thermal impacts that are not significant. To argue an insignificant effect on the one hand and subsequently argue a benefit from reduction on the other would be inconsistent Hence we understand why the document is silent in this regard.
Finally, with respect to the proposed action we note that a commitment is given following a discussion of the prior requirement to operate at less than efficient flows:
      "The utilities will however ensure the same levels of fish protection as those provided by seasonal flow changes in the 1981 and 1987 SPDES permits (Table IV-2) as well as the fish protection provided by the outages stipulated in those permits (Table IV-3)." (DEIS Section IV.a Proposed Action: Cooling Water Flow Management).
55                                    ESSA Technologies Ltd.
ESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point &Roseton                                    October 20, 2000 If this assurance is based on a commitment only to meet the FishProtection Point Target as calculated in the DEIS then regretfully, we conclude from our review that the assurance is likely in error. We elaborate on our reasons for this conclusion in the following section.
2.31      REVIEW OF THE PROPOSED FISH POINT PROTECTION SYSTEM In Section IV ProposedAction, the DEIS proposes a method to convert the prior requirement for outages expressed in units of days to units of Conditional (entrainment) Mortality Rates (CMRs). Since the explicit purpose of an outage is to reduce entrainment mortality, we concur that this is a useful change as it has the effect of focusing discussion of the effect of any proposed outage (or partial flow reduction) explicitly on the ecological value of concern. The units employed are referred to as Fish Protection Points (FPPs) and are essentially the sum of the CMR-(grossed- up by a factor of 1000) for five target taxa (striped bass, bay anchovy, Atlantic tomcod, river herring, and white perch). Although the general approach represented by the conversion to more meaningful units has merit, there are several concerns regarding the proposal put forward in the DEIS.
When considering the merits of the scheme described in the DEIS it is important to distinguish between:
: i. the method employed to express outage requirements and previously specified flow limits at the Indian Point Station in terms of units of CMR;
: 2. the method chosen to establish targets and the resulting targets proposed for future mitigation;.
and
: 3. how the system of FPPs will be managed and reported on to provide information on compliance with whatever targets and mechanisms might be established should a scheme such as this be agreed to.
2.3.1    The Basic Method for CalculatingFPPs There appear to be a number of anomalies in regard to the estimated values for FPPs at Indian Point. The method for calculating FPPs is described in the Appendix Section IV-1 and is based on two simple equations and tabulated values of average CMR. estimates over the period 1991 through 1997. Provided that the entries in the table for CMR are themselves correct, the values calculated for outage equivalents given the values listed in Appendix Table IV-2 appear to be correct (Bowline 22.1, Roseton 17.59 and Indian Point 37.6). These values for Bowline and Roseton are consistently referenced throughout the document.
The total value of FPPs attributable to Indian Point however, as quoted in various sections of the document, is 73.18 whereas the sum of the value for outages (37.6) and efficient versus SPDES flows (36.83 - DEIS Table IV-2) is 74.43. We also note that the value for outage FPPs stated in DEIS Table IV-3 for Indian Point is 36.35 in contrast to the calculated value of 37.6 in the appendix. While the difference in the flow values seems relatively minor, it appears to be attributable to inconsistencies in the DEIS regarding SPDES flows and the calculation of target FPPs for the difference between efficient and SPDES flows. Since the SPDES flows at Bowline and Roseton equate to efficient flows this is wt an issue at those stations.
DEIS Section IV.B. 1.i EnvironmentalImpacts: Quantification of Entrainment Effects - Conditional Mortality Rates, states that the CMRs used to calculate the FPPs for the proposed action were based on entrainment estimates using data for the period 1991 - 1997 at full station operation under Settlement Agreement flow limits. This is consistent with the heading of Appendix Table IV-2 and the flow entries in the table. In contrast with this, equation (1) of the appendix specifies the calculation of FPPs for the derivation of target levels as being ESSA Technologies Ltd.                                  6
 
October 20, 2000                                          Review of DEIS for. Bowline Point, Indian Point & Roseton FPlow, =          E2Flow      -P2FIOWweek        1OOOYCMRw            0 Weeks          week                      Taxa where, .
E2FIowwek    the average flow for the week to operate the station at maximum efficiency and full power during 2 unit operation; P2FIoWwok      the average flow for the week allowed under the 1981 and 1987 SPDES permits during 2 unit operation; and CMRweekjaxa    the weekly entrainment CMR for a taxon at efficient flow and full power using estimated through-plant-mortality -rates:
According to the definition of the terms given, the equation is correct as written. However, it is incorrect if the CMR term is in fact based on values calculated with SPDES flows as shown in Appendix Table IV-
: 2. When the CMR term is based on entrainment estimates derived for SPDES flows, the denominator should be the SPDES flow term (P2Flow.,,k) and not the efficient flow term (E2Flowweek).
When the SPDES flows in Appendix Table IV-2 are combined with the data for Indian Point efficient flows in DEIS Table IV-1, and the caculation is performed using the equation as stated above and described in the DEIS, the value obtained is 29.55. Appendix IV-1 shows the value for FPPFIow, as 24.5 and the text implies that it was calculated differently, as the difference of the sum of the FPPs attributable to efficient flows and the sum of FPPs attributable SPDES flows.
DEIS Table IV-2 states the value for FPPFIo,, as 36.83. Additionally, the SPDES flows listed in Appendix Table IV-2 and DEIS Table IV-2 are slightly different. Table 2a provides a summary of the FPP target values for Indian Point listed in the DEIS. Table 2b provides estimated values for FPPFIows that we attempted to derive using the data and equations provided in the DEIS. Using the data listed in Appendix Table IV-2 we obtained the same value for FPPoutas as cited in the appendix, i.e. 37.6.
Table 2a:      Summary of anomalies regarding estimated FPPs for Indian Point.
Information Source                          FPPF.W                                    FPPo0 t.,
DEIS  Table IV-3                                                                              36.35 DEIS  Appendix IV- 1                                                                            37.6 DEIS  Table IV-2                                    36.83 DEIS  Appendix IV- 1                                  24.5 Table 2b:      Estimates for FPPFjo. derived with the DEIS cited or adjusted flow equation and SPDES flow data from DEIS Section IV or Appendix to Section IV Source of SPDES Flow Data for Calculation Form of Equation                      DEIS Table IV-2                        Appendix Table IV-2 E2Flow' in denominator                          30.27                                    29.55 P2Flowin denominator                            39.23                                    37.71 E2Flow for all estimations was taken from DEIS Table IV- 1 7                                      ESSA Technologies Ltd.
ESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point &Roseton                                      October 20, 2000 From Table 2b one can readily see that the values estimated for FPPs using the equation with SPDES flows in the denominator more closely approximate the values stated in DEIS Table IV-2 for FPPýFI. .
Regardless, estimation with neither set of SPDES flow data listed in the document yield the same value stated in DEIS Table IV-2. This might be due to rounding error in our spreadsheet estimation, to rounding of the data values reported or perhaps to different values for SPDES or efficient--flows altogether.. For example, Attachment 1 of Appendix VIII- I-A lists efficient flow data for the twoIndian Point Units which differ for each Unit at Indian Point. Given the inconsistencies between the values quoted in the main document and the appendix, the proposed FPP target values for Indian Point and the data used for their computation should be confirmed.
The basic mathematical formulation for calculation of FPPotages appears to be correct. However the overall method of establishing the trget involves selection of which weeks to select for establishing the target. This aspect of the proposed method is discussed in the following section.
2.3.2 Approach to Setting Targets for Mitigation based on FPPs Independent of the basic mathematical approach to calculating values for FPPs, the estimation of the targets for FPPo,,ages has also involved selecting which weekly values of entrainment CMIR estimates would be used to establish the targets. As can be seen from Table I of this report (page 3) the windows for outages under the prior SPDES permits exceeded the lengths of the required outages. Consequently the question becomes what period within the out*age windows should be used to attribute daily (or weekly) CMR values to the FPP targets.
Appendix IV- I of the DEIS clearly and fairly describes the approach taken to this task by the generators; it explains that the applicants carefully selected those weeks and portions of weeks which had minimal values of CMR so that the FPPoua,,e target would be minimized. Similarly, other portions of the DEIS fairly refer to the target as minimal. Although it is true that the target so established is developed based on selecting a theoretical outage which meets the length and timing requirements of the prior SPDES permits, the approach seems to be clearly at odds with the assurance quoted in Section 2.2 of this report that the utilities will ensure the same levels of fish protection as those provided by the prior SPDES permits(see page 5). It is highly doubtful that it was the intent of the permits to provide minimal protection and in reality the actual level of protection afforded would be minimal if and only if outages taken during the period of the permit were intentionally scheduled to provide minimal protection.
Without such intent it seems highly unlikely that cutages taken over an 18 year operating history would result in such a minimal level of protection by chance occurrence. Hence, simply meeting the proposed targets for FPPs calculated by the applicants would not appear sufficient to provide mitigation equivalent to that likely achieved under the prior SPDES permits. In this context it is difficult to understand the assurance given by the applicants in the section on the proposed action and quoted earlier in this report.
Logical alternatives to the approach taken by the applicants could involve searching out the maximum value or the mean value of theoretical outages. To put the minimum values chosen for the target in context, Table I of Appendix VIII-I-A lists the maximum annual entrainment mortality for the five target.
taxa as percent CMR. Since the equations for computation of FPPs simply scale CMR values by a constant factor of 1000 and sum them over weeks, the values in this table serve to indicate the size of the impact relative to the proposed target. The values in DEIS Table 1 have been reproduced here as Table 3 and expressed as equivalent FPP units (CMR x 1000).
ESSA Technologies Ltd.                                  8
 
October 20, 2000                                            Review of DEIS for Bowline Point, Indian Point & Roseton Table 3:        Maximum annual CMR (as %) and equivalent FPP values by taxa and station in contrast With proposed FPPouag targets.
Bowline                Indian Point                Roseton                    Total across CMR I FPP                CMR I FPP                CMR IFPP                        Stations Attantic tomcod              8180                    16[160                      2120                      241240 Bay anchovy                  5150                    151150                      1110                      201200 River herring                  010                      1110                      4140                        5150 Striped bass                  11.10                  121120                      4)40                        161160 White perch                    010                      5[50                      7170                        121 120 Total over Taxa              141140                    491490                    181180                      771770 Proposed FPPoutaso            22.1                      37.6                      17.59                        77.29 Target%ofTotal              15.7%                    7.6%                      9.8%                        10.0%
FPP units Note: % CMR values are averages for 1991 - 1997, estimated for through-plant mortality rates, efficient flows and no outages.
A retrospective analysis of the actual level of protection achieved in specific years over the operating history of the permits should be feasible with the available data and would be a useful adjunct to the information already provided in the DEIS.,
2.4      ALTERNATIVE OUTAGE SCHEDULES AND THE PARETO-OPTIMAL APPROACH The DEIS presents several scenarios to illustrate the mitigation that could be achieved under various conditions. Four of these scenarios, presented in DEIS Section VI.B.I.b Environmental Impacts -
Quantification of Entrainment Effects, illustrate the effect of different seasonal allocations of outages equivalent to the FPPo.ute target numbers. We understand that there are hypothetical illustrations and that given the thrust of the proposed action, if it were accepted by the NYSDEC, it is theoretically possible that no outages for the purposes of mitigation of entrainment effects might be taken. Additional scenarios presented in DEIS Section VIII Alternatives illustrate the use of a Pareto-optimal approach to outage scheduling developed by Doug Heimbuch.
2.4.1 Theoretical Scenario Variations on the ProposedAction The four scenarios presented in DEIS Section IV, Environmental Impacts represent four different strategies of seasonal allocation: 1) as early in the season as possible; 2) as late as 'possible; 3) the scenario on which the FPPoutage target was established (i.e. the design scenario, selection of fixed number of days within the SPDES permit period with minimal entrainment mortality, and hence minimal mitigative effect); and 4) a minimum outage strategy that focuses the outage on periods with maximal entrainment mortality leading to a minimum outage length. As clearly stated in the DEIS, in each case these theoretical outages were designed to be just sufficient to meet the FPPoutasC target. DEIS Tables IV-I and VII-1, which present.the results for seven taxa as CMR and percent reduction in .CMR respectively, provide useful insight into how FPP target based mitigation performs in reducing multi-species CMR. For example, as noted in the DEIS, the greatest reduction in CMR for striped bass and white perch occur together within the "minimum" scenario. In this scenario striped bass and white perch are subject to reductions of 17% and 14% in CMR respectively. Similar results for these species occur within the design scenario as well. Given the temporal distribution of FPPs listed in Appendix IV Table IV-2, both of these scenarios will occur during the period of peak abundance for these species. The reduction in the CMR target is spread across species at this time including the river herring and tomcod whose temporal distributions also overlap this period. Consequently, neither striped bass nor white perch is subject to the 9                                          ESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point & Roseton                                    October 20, 2000 same degree of mitigation received by tomcod in the early scenario or anchovy in the late scenario due to their relative temporal isolation.
Since the proposed FPP algorithm seeks a constant reduction in the aggregate CMR across species, within any of the outage periods, species which are temporally isolated derive the greatest benefit from an outage within their period of seasonal abundance. Conversely, those species whose temporal distributions are strongly overlapping receive relatively less mitigation as the reduction is spread across the species within the outage period. A clear and also somewhat obvious conclusion is that if all of the five target species are to receive mitigative benefit, then either outages or flow reductions must be distributed throughout the year and not concentrated in a single time period.
In the following discussion, the early, late, design and minimal scenarios, all of which are designed to just fulfill the FPPouae target, are colletdively referred to as the design variationsscenarios.
2.4.2 Pareto-optimalAlternative Outage Scenarios In contrast with the design variationscenarios,three of the four alternativeoutage scenariosdiscussed in the DEIS have durations similar to those required by the previous SPDES permits for each station (see Table 1). These scenarios differ in regard to the timing of the outage window and whether they are scheduled jointly among the stations or independently. We note that the Pareto-optimal approach is explained in considerable detail in the DEIS, but is not discussed in regard to the proposed action and is referenced only as an alternative to the proposal. It appears that this technique is presented solely for the purposes of illustrating an objective approach to scheduling outages that may never be taken. The approach to scheduling outages, as stipulated in other sections of the document, is proposed to be entirely at the discretion of the station operators. Given the contention in the DEIS hat density dependent mechanisms offset station impacts on the fish community, we question why an operator would choose to pursue the scheduling of outages specifically for fisheries mitigation. It may be that we are mistaken in our understanding of this issue. Therefore, we recommend that the question of the role, if any, of the Pareto-optimal approach in regard to the proposed action be clarified.
The methodology for selecting schedules using the technique is clearly described in Appendix VIII-A-1.
There are, however, some minor descriptive inconsistencies both within the appendix and between the appendix and main body of the document. In particular, the description of the scenarios in the appendix refers to the use of SPDES flows for the analysis while the main body of the report references station efficient flows. The table headings within the appendix also refer to efficient flows, so we think it likely that all of the scenarios were developed using efficient flows and corresponding CMR values. This should be confinred with the applicants.
Comparison of the results for CMR values in the tables in Appendix VIII-A-I with those in Tables VIII-I
& -2 suggests that the correspondence between the scenarios is:
* Section VIII Scenario A - Appendix Scenario 4 (average of all possible contiguous outage blocks within the historical SPDES permit window)
* Section VIII Scenario B - Appendix Scenario 3 (outage of SPDES permit duration, not constrained to the SPDES permit window and scheduled independent of other stations)
* Section VIII Scenario C - Appendix Scenario 2 (outage of SPDES permit duration, not constrained to the SPDES permit window and scheduled jointly with other stations)
* Section VIII Scenario D - Appendix - not reported. (32 week, 1-unit outage concurrently at each station)
The appendix also provides three additional scenarios that parallel Scenarios A, B, and C except that they employ an assumption of 100% through-plant mortality and, apparently, are estimated with SPDES flows ESSA Technologies Ltd.                                  10
 
October 20, 2000                                      Review of DEIS for Bowline Point, Indian Point & Roseton as well. Because both the flow and mortality assumptions are changed in this set of scenarios, it is difficult to use the results from them to evaluate the independent effects of either parameter. Figure 4 in-the DEIS appendix provides a very good conceptual structure which illustrates a scenario comparison tree that would, if complete results were provided, permit evaluation of the influence of alternative assumptions.
in contrast with the design variation scenarios which adhered to the minimum FPP targets proposed in the DEIS, Scenario A mimics the conditions of the prior SPDES permits and yields a 25% reduction in CMR. Scenarios B and C, which were scheduled with the Pareto-optimal algorithm, performed better with 37.5% and 43.8% reductions in CMR respectively. On first inspection, the performance of these scenarios does not appear to be much different from the design variation scenarios and it is important to.
bear in mind when comparing the figures for percent reduction in Tables VII-I (design variations) and Table VIII-2 (alternative outage) thatthe-flrstitabllepresents the data as percent reduction while the second presents them as absolute reduction. The maximum value for CMR for any species in Scenarios A
- D in Section VIII can therefore be obtained by adding the corresponding numbers in Tables VIII- I & -2 together. The maximum annual entrainment CMR values are also tabulated in Table I of Appendix VIII-A-I.
In addition to keeping in mind the differences between the units employed in the detailed presentations, it is very important to remember that the design variations presented in DEIS Section VII (early, design, late, minimum) are described as being conducted with an assumption of SPDES flows. In contrast, Alternative Scenarios A - D in Section VIII are described as being conducted with an assumption of efficient flows. Three of the design variations scenarios (early, design and late) are presented for comparison with alternative outage Scenarios A - D in Table VIII-3. The numbers for CMR. for the proposal variations in this table seem slightly higher than those in Section VII; it appears that they have been corrected to equivalent values for efficient flows for comparison. If this were not the case, then the CMR values for the alternative outage scenarios should have begun at a higher starting level due to the increased flow regime. Additionally, the apparent differences between the two scenario groups reflected in the table should be greater than it is. No comment is made in the DEIS regarding this correction and this needs to be clarified.
2.5      ISSUES RELATED TO THE ESTIMATION OF ENTRAINMENT AND THE LUE OF 1991 TO 1997 ENTRAINMENT ESTIMATES AS THE BASIS FOR FPPs The proposed system of FPPs is built upon the estimation of entrainment. This is also true of the detaied analyses for American shad, striped bass, white perch and bay anchovy as they all use entrainment estimates as input to the analysis. While it can be argued that errors that are systematic and consistent between years should yield consistent year-to-year results, some of these analyses estimate total stock size and errors in .entrainment estimation would propagate through the analysis to yield erroneous results. Of greatest concern would be errors in the methodology that lead to the consistent underestimation of entrainment mortality or to a shift in the estimates which could be misconstrued as attributable to some other factor such as density dependent effects.
The formulation of the two entrainment models-employed in the estimation of entrainment is clearly described in Appendix VI-I-B. The discussion in the DEIS correctly asserts that the CEMR model which uses a direct measure of entrainment with in-station sampling is the preferred approach. It describes how the ETM model, which is based on the sampling of the density of entrainable life stages in the river, is used together with estimates of the proportions of water withdrawn from different river strata on a daily or weekly basis by the stations to estimate the CMR (the fraction of the population entrained on a daily or weekly basis). This appendix also clearly states an. assumption of the ETM that it operates at the end of 11                                  ESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point & Roseton                                    October 20, 2000 each (weekly) time step as if the entire population were instantaneously redistributed across the estimation region. This assumption is clearly incorrect, however the method of calculation compensates for it provided that the necessary data are available.
One of the criticisms of the initial 1993 DEIS was that it failed to compare the performance of the two models and the presentation in this appendix addresses this concern.
The ETM model provides a reasonable framework for estimation of entrainment and the generators have conducted special studies to attempt to address limitations in the sampling program since some areas of the river are not routinely sampled due to logistical problems. Although we have not reviewed the details of these studies, the general approach described in the appendix is reasonable in general. At the present time however, there may be problems with this approach as discussed later.
Notwithstanding the quality of the documentation in Appendix-VI-I-B, we have substantial concern for the estimation of entrainment and the presentation of CMR in the DEIS overall Estimations of entrainment and CMR are presented in the DEIS without apparent recognition of the uncertainty that is inherent in them. In particular, an averaged series of CMR values is used for the calculation of FPPs without consideration for possible errors in through-plant mortality estimation or inter-annual variation in the rates of entrainment; this suggests a confidence in these estimates which we do not share. The basis for our concern is discussed in the following sections.
To get a better sense for how the 1991 to 1997 entrainment data compare with those from the earlier 1974 to 1990 time period, we examined the station specific entrainment data provided in the tables in Section VI of the DEIS. The data we used are listed in Appendix. 2 of this report and summarized in Table 4 which presents the mean, standard deviation and coefficient of variation (standard deviation / mean) as a simplistic basis for comparing the data from the two periods.. The data provided in the various DEIS tables are CMR values expressed as %, and the station specific metrics which characterize the two time periods are derived directly from those values. Additionally, these data were used to calculate a CMR value for the three stations combined. The basic metrics for the combined CMR value are also included in Table 4 and are presented graphically in Figures 1a - 1e for the five taxa included in the proposed FPP system.
Simple visual inspection of the graphical presentation in Figure I suggests a decline in the DEIS entrainment estimates during the 1990s for all species as well as a reduction in the inter-annual variability. The trend does not appear obvious however in the graphs. In the graph for .striped bass we have plotted both the entrainment data series from DEIS Table VI-18 and that listed by Ray Hilbom in Appendix IV-4-A Table 8. We note that the two series are somewhat different with the data listed by Hilbom being slightly higher and the trends for 1991 being divergent.
The simple summary statistics presented in Table 4 illustrate the decline somewhat more clearly. The mean combined entrainment estimate for the 1991 to 1997 period is reduced for striped bass (25%), white perch (42%), Atlantic tomcod (33%), river herring (45%), and bay anchovy (13%). Additionally, a reduction in the inter-annual variation is reflected in reduced coefficients of variation, with those for striped bass and white perch being greatest at approximately 40% and 35% respectively. Despite the slight reduction in the mean entrainment estimate for bay anchovy, anchovy have the text greatest apparent reduction in variance of approximately 29% reduction in the coefficient of variation.
While this may be viewed as a desirable trend, it seems counter intuitive that the entrainment rate for a species such as striped bass should be declining when the species is at relatively high levels of abundance.
This seems especially curious in light of model predictions in the DEIS analysis for striped bass which indicate increasing abundance of YSL and PYSL during the 1990s and which argues that density ESSA Technologies Ltd.                                  12
 
October 20, 2000                                                  Review of DEIS for Bowline Point, Indian Point & Roseton
* dependent mechanisms limiting the striped bass population occur between the PYSL and YOY life stages and hence after the effects of entrainment. Thus the density dependent mechanisms hypothesized in the DEIS would not account for the decline indicated in the entrainment estimates. Given the computational structure of the ETM model, a trend of decline in the estimated rate of entrainment could result from a shift in species distribution into river regions from which water withdrawal by the stations is lower (i.e.
further away from the stations) or alternately from consistently reduced station operation.,Given the complex of species which show the same general trend, it is not obvious that they would all be affected in the same way in regard to a regional shift in distribution. Furthermore, distributional shifts need not be restricted to shifts between river regions but may also include shifts in the onshore/offshore distribution of larvae. The potential importance of such a critical shift is discussed in Section 2.5.2 of this report.
Table 4:          Basic metrics of the entrainment data series from 1974 - 1990 and 1991 to 1997 for the five taxa proposed to-beaeeounted-forwithin the FPP system at the three stations.
Bowline              Indian Point                Roseton                CMRZ for CMR as %                CMR as%                  CMR as %            all three Stations
                                                        "_            ___Combined 1974 -      1991-      1974 -        1991-      1974 -          1991-    1974 -      1991-Taxon        Metric'        1990        1997        1990        1997        1990          1997      1990      1997 (n=17)      (n=7)      (nR=17)      (n=7)      (n=17)          (n=7)    (n=17)      (n=7)
Striped              t        0.93        0.50        &61          5.88        2.41          2.38    0.12        0.09 bass            SD            0.58        0.24        4.44        3.22        1.17          0.94    0.05        0.03 CV          0.63        0.48        0.52        0.55        0.48          0.40    0.41        0.31 White                IL        1.35        0.17        5.94        2.52        5.05          4.60    0.12        0.07 perch            SD CV          2.16 1.60        0.09 0.50        3.90 0.66        1.23 0.49        2.10 0.42          1.91 0.41    0.04 0.37        0.02 0.24 Atlantic            A          7.09        4.67        13.65        8.13        1.79          1.39    0.21        0.14 tomcod          SD CV            1.54 0.22        2.64 0.57        8.26 0.61        3.36 0.41        0.66 0.37          0.36 0.26      0.08 0.35      0.04 0.29 River            ..          0.23        0.07        1.54        0.39        3.65          2.40    0.053      0.029 herring          SD            0.26        0.07        1.35        0.16        2.88          1.51    0.033      0.016 CV          1.12        0.98        0.88        0.42        0.79          0.63    0.626      0.548 Bay                            4.28        3.08        10.72        9.48        0.37          0.84      0.15      0.13 anchovy          SD            1.44        0.87        5.46        4.07        0.26          0.80      0.06      0.04 CV            0.34        0.28        0.51          0.43        0.70          0.95      0.42      0.30 for each time period: pi = average, SD = Standard Deviation, CV =coefficient of variation ( SD/  )
2 CNMRCombined =1_((l(CM RBon.Ow        0 1 1 /l00))*  (I(CMRndi.aoPoi.tO/o/l00))* (i_(CM1RRoeton//00)))
13 13 ESSA Technologies Ltd.
ESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point & Roseton                                              October 20, 2000 Figure la:      Entrainment CMR for striped bass for the period 1974            -  1997. Data from DEIS Table VI-18 and Appendix VI-4-A Table 8.
Striped Bass Entrainment
                                -    From DEIS Table VI-18 -- *--App. VI-4-A Table 8 0,3000 0.2500,
                                                            / *991                                  1997 0.2009-0.1500 0.1000T o~ooo//                I V                        Alt 0.0500                            ,        ,
00,0..00 0.0000 Year Note: in all panels of Figure 1, the dashed vertical. line and the dashed rectangle indicates the period of years 1981 and 1983 through 1987 during which the W factor in the ETM model was determined through parallel analysis with the CEMR model.
Figure 1b:      Entrainment CMR for white perch for the period 1974 - 1997. Data from DEIS Table VI-20.
White Perch Entrainment
                                          -I---'--from    DEIS7T~abl1e2]0 0.2500                                            - - - -                      -
0.2000-1991        1997 1
      ~0.1500-0.1000                            in\ A:
0.0500-I  I                                Y 0.0000 Q0    0      0        ('D C                    CD  00    OC  ' N          (
Year Year ESSA Technologies Ltd.                                        14
 
October 20, 2000                                                        Review of DEIS for Bowline Point, Indian Point &Roseton October 20, 2000                                                        Review of DEIS far Bowline Point, Indian Point & Roseton Figure lc:      Entrainment CMR for Atlantic tomcod for the period 1974 - 1997. Dataifrom DEIS Table VI-22.
Tomcod Entrainment
                                            -+--  from DEIS Table V-22 0.4500
                                                                ---------------        -I 0.4000, 0.3500o                                                                                        1991            1997 0.3000      .
0.2500 -                              .          .6.                      -
() 0.2000--
0.1500-          --                                                          6 0.1000-~                      ~
I        .1                          I 0.0500                                  I          I 0.0000                                          . .
OD.        C)        0                ,        cc        C)
Co      C)i          0)    0
                                                                                                                          'I Year Figure id:      Entrainment CMR for river herring for the period 1974 - 1997. Data from DEIS Table V1-28 (& 30).
River Herring Entrainment
                                            ---    from DEIS Table 28 (& 30) 0.1600 0.1400 -
0.1200--                                010        ,                                          1991          1997 0.1000,,                                ,          '                            __'        i _      _          _
0.0800-0.0600                                  I 0.0400                                                                    6 0.0200                                                                                                    /
6                                i 0.0000-------
((D  0  0        C)      C4J            ;&        (D  0    0      C0        (Ni    J    (
t-    t-    I3-        0)      0G              )        00        00      M          'D    CY)  C) a)          Mr      T          T      T    T
                                        -      -                            Year 15                                                ESSA Technologies Ltd.
15                                                ESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point & Roseton                                      October 20, 2000 Review of DEIS forBowline Point, Indian Point & Roseton                                        October 20, 2000 Figure le:      Entrainment CMR for bay anchovy for the period 1974 - 1997. Data from DEIS Table VI-32.
Bay Anchovy Entrainment I--  from DEIS Table V-321 0.3000 0.2500-0.2500                                                                .1991        1997 0.1500-
          "  010          d0.1000.                        A    Z'l!"r*
I          iI I          a 010500-                              V 0.00000                          ...                    .  .  .  ..
Year 2.5.1    Estimation of Parametersfor the EntrainmentModels Appendix VI-I-B3 gives a good description of the parameters employed in the CEMIR and ETMI models and their estimation. It is important to note that there is a reasonable *degree of uncertainty regarding many of the parameters in the *models.* The estimates of entrainment mortality are thus not definitive but include error due to parameter estimation. This error is acknowledged with regard to a few scenarios which employ the 100% through-plant mortality assumption, however these results are relegated to appendices and not generally discussed in the main body of the DEIS.                With the exception of the discussion of the estimation of the parameters themselves, tabulated information presented on the numbers entrained and on the rates of entrainment (CMR) are stated without acknowledgement of the error in estimation. The data series employed for FPP calculation is averaged over a period of seven years with no discussion of the potential range of estimates due to sampling error.
In the following sections we present our general comments regarding some of the more obvious sources of error inherent in certain model parameters and methods.
Relative Probability of Capture (RPC)
In the CEMR model, the Rela tive Probability of Capture (RPC) parameter is the ratio of the gear efficiency of the gear used for sampling in the Longitudinal River Survey to that used for sampling within the station. The discussion clearly asserts that the ratio incorporates gear extrusion. and destruction on plant passage as well as gear avoidance. Additionally, the discussion indicates that RPC is taxon and size specific. Specific estimates of RPC are available for striped bass (PYSL:0. 2 7 - 3.05), white perch (YSL
& PYSL: 0.09 - 3.24) and striped bass (YSL & PYSL: 0.76- 5.26). For other life stages of these species and for all other species a value of 1.0 was assumed. Given the range in values tabulated for striped bass and white perch, a constant Value of 1.0 for all other species is likely wrong. We understand the need to assume a value, however the implication    e s thaet (CR ar              estimates will be in error and the ESSA Technologies Ltd.                                  16
 
October20, 2000                                          Review of DEIS for Bowline Point, Indian Point & Roseton corresponding uncertainty in the estimate should be acknowledged insubsequent analyses. We note that some authors (e.g. Hilborn) state that they have simply accepted the entrainment values as given and made no attempt to evaluate their accuracy.
Estimation of Unsampled Strata The document clearly describes the methods of linear interpolation employed to complete the data set when regions within the river were not sampled. Furthermore, we note that such estimation procedures are used not only to deal with missing data within the data set but also routinely for estimating larval densities in strata that are not sampled (e.g. estimation of inshore and beach strata from shoal strata in regions 1 - 4, & 6; estimation of inshore, beach, and shoal strata from bottom strata in regions 5 & 7 -
12). Thus where a regional stratum was missed and had to be interpolated, these secondary strata in turn had to be estimated from interpolated data. Furthermore, since the total area encompassed by the LRS has been expanded4. over time, similar approaches have been employed to backcast estimates of historical larval densities in previously unsampled regions or parts of regions. Regarding this latter source of error, the appendix notes the generation of two data series - one with and one without the extrapolated regions.
We recognize the dfficulty in obtaining a complete field data set, and the methods described in the DEIS to provide a complete data set for analysis are not unreasonable. Having said this, however, we believe that analyses which attempt to predict future conditions as a basis for decision making should attempt to reflect the range of uncertainty in the prediction arising from such sources of error. This is not done with regard to the entrainment data in the DEIS.
Estimation of Through-Plant Mortality Both DEIS Section VI and Appendix VI-I-A provide the same brief discussion of entrainment mortality
*factors and note that mechanical mortality is a function of the physical stresses experienced as an entrained fish passes through the condenser cooling system. The document notes that main points of stress occur with the pressure differential on entering the pumps, shear forces within the condenser tubes, and also from shear forces on exiting the station depending on the design of the discharge system. Given the differences in the size of the stations as reflected in the physical data regarding pump capacity etc. in Tables IV-6, IV-9, and IV-10, and the differences in the configurations of the discharge systems, one would not expect the mechanical mortality rates for the stations to be identical. However, the DEIS indicates that due to small sample sizes, data were pooled across the stations for estimating mechanical mortality rates. Additionally, the text indicates that so little data were available for river herring, due to frequent zero survival, that the preferred variance weighting approach in calculating the average rate of mechanical mortality had to be abandoned in favor of a simple sample size weighting scheme. Consistent with our comments on the 1993 DEIS, it is this kind of difficulty with parameter estimation that causes us to view the through-plant mortality rates used throughout the DEIS as likely lower bounds of an entrainment estimate rather than as definitive estimates as they appear to be employed in the DEIS.
2.5.2 Density of EntrainableLife Stages in the Intake Field- Win the ETM Model A critical question in estimating entrainment mortality of fishes is "Where does the water drawn into a power plant come from?" The shape of the intake field (or zone of entrainment) is a function of the design and location of the intake structure, the bottom topography in the vicinity of the station, and the water currents. For onshore intakes such as those at the three stations in question, a strong alongshore current Vpically generates a band-shaped intake field relatively close to shore and extending upstream from the station. The offshore width of the intake field will gradually increase with distance from the station, and its maximum offshore extent will be a function of the water velocity, shoreline and river bottom topography. During periods of little or no current, the intake field may be directly offshore from the station and assume a somewhat semi-circular pattern. Intermediate shapes of the intake field will 17                                  ESSA. Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point & Roseton                                      October 20, 2000 occur for intervals of time during which current reversals occur. While this generic description is somewhat simplistic, it serves to illustrate the point that the water withdrawn by a station may be predominantly withdrawn from the nearshore volume from within a region of the river.
The ETM model, used primarily for the estimation of .entrainment over the 24 year entrainment history (CEMR data available for 6 years), estimates entrainment based on the average density of larvae within a region of the river and an estimate of the proportion of the volume of water withdrawn from the region.
To adjust for the fact that water withdrawal will only be from a portion of the region (for example nearshore), the ETM model uses a W parameter which represents the ratio of the average density of larvae in the intake field of a station to the average regional density of larvae. In this way, the formulation of the ETM model attempts to explicitly accounts for the likely difference between average regional density and the average density of larvae in the intake field.
The DEIS clearly states that the Wparameter in the ETM model was used to adjust the predictions of the ETM model to fit those of the preferred CEMR model, the latter model being preferred due to its direct measurement of entrainment in-station. In principle the approach is reasonable although it is unlikely that W is constant between years and as with other parameters some exploration of the significance of variance in W would be useful in attempting to uiderstand the degree of uncertainty inherent in the entrainment estimates. Additionally, since our initial review of the 1993 DEIS an even more serious concern regarding this parameter has arisen.
The DEIS argues that the more recent entrainment estimates for the period 1991 to 1997 are likely to better reflect future conditions than do the older estimates. This is largely due to a shift in habitat quality in the Hudson River first observed in the early 1990s and attributed to improved sewage discharge systems. There is also some discussion of shifts in the salinity gradient. Improved habitat played a role in the analysis of the population models discussed in Section VI of the DEIS, especially that of Atlantic tomcod. The problem is that the shift in hibitat quality within the river may have led to a shift in the nearshore distribution of larvae and hence the W parameter. This parameter was determined by fitting the ETM model to the CEMR which was done with data from 1981 and 1983 - 1987. Similarly, estimation of the density of larvae in the nearshore areas in the ETM calculations, as described in the DEIS, is done using extrapolations which we understand are also based on studies completed in 1986 and 1987. The DEIS is clear in its statements that a shift in habitat quality has occurred. That shift forms part of the rationale for advocating the use of more recent data from the 1990s for forecasting. If this shift is significant enough to discount prior forecasts, then the possibility of a concomitant shift in the effective*
value of the W parameter can not be readily dismissed. As discussed in the beginning of this section, the entrainment estimates published in the DEIS suggest a curious decline in the estimation of entrainment during the 1990s. If, for example, the habitat change in the Hudson River caused a shift to a more inshore distribution of larvae, the effect would be relatively lower densities in the areas sampled by the LRS.
Since inshore densities are predicted from the offshore densities using 1980s-based regression equations, an overall reduction in predicted larval density would result. When, combined with a constant Value of W (also determined during the 1980s) the effect could be to predict reduced entrainment at a time when it was actually increasing. This raises fundamental concerns regarding estimates of entrainment during the 1990s and the prediction of future entrainment with the current model.
2.6      IMPLEMENTATION AND REPORTING OF                FPP BASED MITIGATION Several points need to be considered in regard to the question of mitigating entrainment effects by means of a mechanism such as the proposed FPP system. First, while the DEIS gives assurances regarding the application of flow management to achieve the targets, it does not address the question of frequency or mechanism for reporting and/or auditing of performance against targets in the management of mitigation.
ESSA Technologies Ltd.                                  18
 
October 20, 2000                                                Review of DEIS for Bowline Point, Indian Point & Roseton This is a relatively minor point as such details may well be worked out during negotiation with the NYSDEC.
The overall logic underlying the proposal seems to be based on the arguments presented in DEIS Section VI Environmental Impacts and its supporting appendices; these arguments reason that either persistence /
increase of fish stocks under historical entrainment rates or density dependent compensation of entrainment mortality will sustain the various species of concern. In essence, the argument put forward in the DEIS is that the effects of entrainment mortality do not require mitigation beyond what is has already been done. In fact, by selecting periods with minimal CMIRs to establish the target for FPPoutages, the proposal essentially asserts that less mitigation is required than has historically been the case3 and would be afforded by the FPP proposal. For example, the DEIS argues in Section VI that further expansion of the Hudson River striped bass population is limited by density dependent mechanisms due to the presently high stock size. If one could observe mechanisms of density dependent survival, or stock limitation due to habitat constraints, one might expect that it would occur under conditions of high stock density. Even if density dependent mechanisms were currently limiting striped bass stock size (as asserted by the DEIS) it does not follow automatically that such mechanisms would operate to sustain the stock during periods when the stock declines to lower densities (due for example to changes in ocean survival). Whether the logic of the DEIS is sound depends on both the implementation and interpretation of the detailed population dynamics analyses upon which the arguments are based. Consequently, a significant portion, of our review has been devoted to these analyses as summarized in subsequent sections of this report and reiported in detail in the companion reports to the specific sections.
During the technical workshops which followed submission of the 1993 DEIS for these stations, the question was raised as to whether the NYSDEC placed a higher value on one or more of the species inhabiting the estuary. This question arose in discussions regarding how to schedule outages and led to the development by Doug Heimbuch of the Pareto-optimal approach for creating the illustrative Scenarios described in DEIS Section VIII and Appendix VIII-I-A. The response given to the question about value was that no species is considered to have a higher value than another. This may seem to be at odds with the initial 'rationale for the seasonal outages specified under the 1981 SPDES permit which were specifically targeted to provide protection for striped bass. Two important considerations should be remembered in this regard. First, the outage window for striped bass was anticipated to provide protection for a variety of other species such as white perch and bay anchovy (for example, see Figures 6 - 9 in DEIS Appendix VI-l-B and Figures 1, 2 and 3 in DEIS Appendix VIII.-I-A). Secondly, at the time the Settlement Agreement was negotiated, concern for the status of the Hudson River striped bass stock caused the NYSDEC to focus nanagement efforts on striped bass independent of intrinsic valuation relative to other species.
The latter point is particularly important and currently well illustrated by the status of the Hudson River shad stock. While managers may intrinsically value all species as integral components of an ecosystem, fisheries science is often focused on the management of individual stocks or populations of fish either because of specific concerns for their economic value or the status of a stock. A critical issue for fisheries management is likely to be the management of species which, for one reason or another, have been reduced to low density, e.g., the Hudson River shad stock over the past years. At low stock abundance, the important consideration to managers is the total stock mortality regardless of the source of that mortality.' Indeed, overall harvest rates are commonly limited by the weakest stock that co-migrates with more abundant stocks, and adjusted on annual to weekly time scales based on observed abundances.
Hence, a critical question with regard to the Proposed Action is: Given that the entrainment estimates 3  This statement is based upon the expectation that a retrospective analysis of the actual levels of mitigation achieved by outages taken during the historical period would r'eveal they were not all coincident with annual weekly or daily periods of minimal CMR values.
19                                      ESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point & Roseton                                    October 20, 2000 suggest that CMR for some species can be on the order of 20- 45% depending on the assumptionof through-plantmortality, whatflexibility or mechanism does the ProposedAction provide to fisheries managers to limit total mortality of a stock should it requirefuture intensive management? Given the proposal in the DEIS which asserts that the station operators will have complete autonomy in deciding how to operate the stations in future, withina,.minimal level of entrainment mitigation, the answer would appear to be none.
We are also concerned with the proposal in the DEIS to carry forward provisions for FPPs and how these FPPs may impact populations which exhibit strong fluctuations in year class strength. For example, some fish species typically exhibit patterns of strong and weak year classes. The carry forward provisions suggest that maximum entrainment mortality could be applied by chance to strong year classes on which a stock depends for future recruitment. The effects of such an application are uncertain and difficult to anticipate given the uncertainty in the proposal regarding the future operating regime. We do not have the same degree of confidence implied in the DEIS that density dependent mechanisms will offset the effects of entrainment mortality under all future circumstances.
Furthermore, as noted in the DEIS and discussed earlier in this report, there is evidence of a shift in habitat quality in the river beginning in the early 1990s. Consequently, it is reasonable to expect that this, combined with changes in other factors which influence fish abundance, will cause the future status of the fish stocks to vary. The decision by the authors of the DEIS to employ the data from 1991 to 1997 rather than the entire historical data series as a basis for the FPP system is consistent with this expectation and clearly stated in the DEIS. Given this expectation, however, it seems questionable to base future management upon the average CMR value of a six year historical data series. This is especially disconcerting when one considers that the critical W parameter in the ETM model was determined during the historical period which the authors of the DEIS have chosen to exclude due to the observed habitat shift. An alternative to this approach of using fixed CMR values could be to develop a modification to the methodology which continuously updates the tabulated CMR values for managing the FPP system with the most recent estimates. Instead of providing a single average based evaluation, such a system should also incorporate the variance in the data by providing fisheries managers with projections which reflect the forecast entrainment impact under a range of alternative assumptions, e.g., alternative assumptions of through-plant mortality, error in estimation parameters. A sensitivity analysis of the entrainment model to determine which parameters are most influential in regard to potential errors would be useful in this regard. At a minimum, the W parameter values should be re-evaluated given apparent recent shifts in habitat.
Intake flow volumes also affect W, as it determines the size of the area within which organisms are entrained. An analysis should be included in the DEIS comparing the flow volumes during 1991 - 1997 with the flow volumes during the period in which the Wparameter was computed (1981, 1983 - 87), and an assessment made of the implications of any observed differences. If intake volumes were higher during 1991 - 1997 than during 1981 and 1983 - 87, then the Wparameter values may be too low and total entrainment mortalitycould be underestimated. The converse could also occur.
In summary, it is important to distinguish between the method, targets, and implementation of a management program. The shift to accounting for the effects of outages or partial flow reductions based on units which reflect the indicator of concern (CMR) is a useful and laudable method. Our review however suggests concern with several aspects of the proposal and supporting analyses. including:
Our review suggests concern with the estimation of entrainment which serves as the fundamental basis for the CMR data on which the FPP system is based . Specifically, there is considerable uncertainty in forecast CMRs due to applications of W parameter values from a period with different species distributions and possibly different intake, rates. Until this concern can be ESSA Technologies Ltd.                                  20
 
October 20, 2000                                        Review of DEIS for Bowline Point, Indian Point & Roseton clearly resolved, the entrainment estimates for the 1991 to 1997 data series (on which the FPP system is based) should be viewed with skepticism'...,
* The document contains anomalies regarding the values for the FPP values for Indian Point. The equation  for FPPFIOW in Appendix VI-1 is correct as written but must be implemented consistently with regard  to the units of flow and CMR estinMi*h. As employed in the appendix tables, the equation may have been incorrectly applied and this needs to be clarified.
* The method for establishing targets strategically and openly selects periods with minimal entrainment mortality, thereby proposing a minimal level of protection while the DEIS assures protection equivalent to that provided historically. This appears to be inconsistent and the level of CMR reduction afforded by Scenario A in DEIS Section VIII seems to be more in keeping with what one would expect from the historical requirement. A retrospective analysis of what was actually achieved in each year should be feasible and would provide useful information to objectively clarify the historical performance level.
    "  The provision for carrying forward FPPs raises concerns for potential effects on species which are at reduced levels of abundance or which rely on periodic year. classes.
* The proposal effectively eliminates any capability on the part of fisheries managers ib influence the level or temporal distribution of CMR for any species which may be deemed to be in jeopardy or subject to intensive management for other reasons.
3.0      Review of the Assessment of Atlantic Tomcod Our review of the assessment of Atlantic tomcod presented in the DEIS included a detailed review of the technical population modeling presented in Appendix VI-4-B together with a review of the material presented in Chapter V-D-2-C, Appendix V-3-C, and the Appendix to Chapter V. We present here a summary of our findings. Detailed comments are provided in our companion report.
Our review focused on the quality and amount of data used in modeling, modeling assumptions, and whether the modeling analysis addressed issues raised in previous reviews and workshops. Our comments in summary are:
Strength of density dependence:
There are too few data points to develop a reliable equilibrium model. For example, we could use the data to argue for little or no density dependence in the life of the tomcod. Additionally, the negative correlation between the Age 1. and Age 2 indices is not consistent with the positive correlation between the eggs, and Age I indices. This result suggests there are major measurement errors in the indices of abundance. Measurement errors can cause the appearance of density dependence when there is none. We conclude that we do not know what the consequences of entrainment and impingement were (or will be) for the tomcod population.
Timing of density dependence:
The DEIS analysis assumes all entrainment occurs prior to density dependence. However, we find the analysis overstates support for the hypothesis that all entrainment occurs before density dependence. The DEIS tomcod model shows that the. resilience of the tomcod population to entrainment declines as the proportion of entrainment occurring after density dependence increases.
21 21                                  ESSA Technologies Ltd.
ESSA Technologies Ud.
 
Review of DEIS for Bowline Point Indian Point & Roseton                                      October 20, 2000 Inconsistent carryingcapacity hypotheses-The DEIS analysis applies inconsisent logic-. It estimates the strength of density dependence using data consistent with the hypothesis that the carrying capacity for tomcod changed after 1990 (post-1990 data only), but estimates the timing of. density dependence using data consistent with a hypothesis that carrying capacity did not change (d0t 'from 1976 to 1997). The DEIS should use the same data set for both purposes.
Our own analysis suggests that conditions did change after 1990. Using post-1990 considerably weakens support for the DEIS hypothesis that density dependence occurs between the post-yolk-sac-larvae (PYSL) and Age I life stages. This result implies that under post-1990 conditions the Atlantic tomcod population may be more vulnerable to the effects of entrainment than Appendix VI-4-B indicates.
Uncertainty in data sources:
We found discrepancies between the data presented in Appendix VI-4-B and Table 9 of Appendix V-3-C.
We cannot identify the source of the four years of pre-1988 data used in the analysis. Using the Appendix VI-4-13 data implies less of a difference in conditions between the pre-1991 and post-1990 periods.
Issues raisedpreviously:
The analysis does not address tomcod analyses recommended in previous technical reviews. These recommended analyses included assessing the magnitude of fishing pressure, natural and power plant temperature effects,, and the effects of changes in flow and nutrients on juvenile tomcod growth and survival. Some of these assumptions could significantly affect the analysis' conclusions, in particular the magnitude of fishing pressure.
A detailed description of the Atlantic tomcod analysis summarized here can be found in the companion report by Parnell et al. (2000).
4.0      Review of the Assessment of Bay. Anchovy The bulk of our review focuses on the results cf bay anchovy population modeling analyses in Appendix VI-4-D. We find the results speculative for a variety of reasons; these are briefly described below.
The underlying individual based model was developed to model bay anchovy from Chesapeake Bay (see Rose et al., in press). Additionally, Hudson River bay anchovy are modeled with Chesapeake Bay data (Rose 1996). Therefore, the results reflect the response of bay anchovy in Chesapeake Bay to entrainment.
The model is complex; many parameters could be adjusted to provide reasonable results. Appendix VI D neither presents nor discusses how sensitive the results are to model assumptions. The model requires annual immigration of non-natal bay anchovy spawners to prevent it from crashing. This assumed immigration rate is not supported with scientific research or literature citations.
An exploratory analysis (Rose 1996) has been presented. in the DEIS as a definitive assessment. The DEIS does not acknowledge the author's analytical caveats.
The analysis estimates production foregone using bay anchovy production estimates from the speculative modeling and gear efficiency estimates for a different species of anchovy. The analysis greatly overestimates the predatory demand of striped bass and bluefish by : 1) using an incorrect striped bass age-structure, 2) applying the highest observed values for the contribution of bay anchovy to the diet of ESSA Technologies Ltd.                                22
 
October 20, 2000                                      Review of DEIS for Bowline Point, Indian Point & Roseton striped bass, and 3) expanding near-shore striped bass and bluefish densities using river-wide volume.
The analysis compares "production foregone" andi,"predatory demand" without acknowledging that the relationship between the number of anchovy removed from the system through entrainment and the needs of predators may vary over time. The analysis does not discuss the sensitivity of production foregone and predatory demand to underlying assumptions such as age structure, diet, gear efficiencies and density expansions. Sensitivity analyses should be condu.itcldto address the influence of underlying assumptions.
The analysis of entrainment effects on the daily biomass of bay anchovy attempts to address point 10, but the assumption that all natural mortality is due to predation overestimates true predation. For example, the fact that spawner immigration is required in the model to avoid population extinction may mean that mortality is set too high elsewhere.
Chapter V-G of the DEIS presents an analysis of ecological factors that may cause variation in bay:
anchovy abundance. This analysis is based on DEIS Appendix V Bay Anchovy. The analysis presented in that appendix does not provide an analytical framework within which we can assess its validity. We find lthe methods and results tenuous and feel the results do not. support the discussion in Chapter V-G..
Chapter V-G also assumes that entrainment of bay anchovy is offset by immigration from a larger coastal:
stock, but presents no evidence that supports this assumption. We note that while Chapter V-G does not consider bluefish predation on bay anchovy, Appendix VI-4-D does.
A detailed description of the bay anchovy analysis summarized here can be found in the companion report by Parnell and Marmorek (2000).
5.0      Review of the Assessment of Striped Bass In this section we summarize our preliminary comments on the striped bass analysis in Appendix VI-4-A of the DEIS report, entitled "Impacts of power plant mortality on Hudson River striped bass" (Hilborn 1999).
These comments are based on a review of the DEIS report and other materials (see Deriso et aL 2000a) plus several conversations with NYSDEC scientists. We refer to information provided by NYSDEC scientists below as "NYSDEC comm." when it helps to clarify a source of information.
We believe the DEIS report is not reliable for predicting the impacts of power plants on Hudson River striped bass for the following reasons:
        " limitations with data;
        " limitations with modeling of data; and
        " limitations with assumptions of the model.
In summary, the indices of abundance of juveniles (BSS, JSB, WLI-0 indices) and age one abundance (SBMR,WLI- 1 indices) each pertain to a portion of recruitment present in a specific habitat. As such, they would not be expected to produce reliable indices of abundance of recruitment for the entire Hudson River striped bass population. The index cf adult abundance based on shad fishery by-catches (CFM index) measures the ability and desire of shad fishermen to avoid striped bass, rather than providing a reliable measure of striped bass adult abundance. The use of those indices as population abundance measures in the DEIS report is not supported.
23                                  ESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point & Roseton                                  October 20, 2000 Ocean catches of Hudson River striped bass are not known and may differ substantially from values in the DEIS report because the ocean fishery is a mixed stock fishery. River catches in the DEIS report are different from those estimated by NYSDEC (this reflects the lack of Data Evaluation Workgroup (DEW) meetings - see new NYSDEC data for comparison in the appendix to Deriso et al. 2000a). The use of those landings "estimates" in the DEIS report is not supported.
Fishing mortality rates and adult survival estimates in the DEIS are not consistent with either results of recent tagging analysis or the stock assessments reported by the Stock Assessment Review Committee (SARC 1998) and Atlantic States Marine Fisheries Commission's Striped Bass Technical Committee (ASMFC 1999).
The assessment model assumes known changes in historical abundance of Hudson River striped bass, yet provides no evidence to support the assumption. In fact the DEil9e6d' "oi--this issue states (pg. 5, Appendix VI-4-A), "These trends refer primarily to coast-wide striped bass stock, which was dominated by Chesapeake Bay production. It is unclear how relevant this description is to the Hudson River stock."
Results in the DEIS based on those data and model assumptions cause the model to produce extremely high levels of density dependent mortality. The levels are counter-intuitive; for example, typical results (with H = 0.95, a measure of density dependent mortality) indicate that it would require a mere 100 of the 10 year-old striped bass females to produce over 90% of the r&ruitment produced by the full stock at its carrying capacity when no fishing or entrainment/impingement occurred. The extreme high levels of estimated density dependent mortality could be due to errors in model assumptions about the representation of data (including assumed input parameter values) and due to errors in the representation of processes governing the dynamics of the population.
In conclusion, the modeling results and conclusions stated in the DEIS report are unreliable because of unreliable: long-term landings data; estimates of fishing mortality; and indices of abundance for recruitment and adults for the entire Hudson River population. Additionally, assumptions about historical changes in abundance are unsupported. We believe the qualitative effect of the types of errors discussed in this report is to support an alternative hypothesis of much lower density-dependence (and higher sensitivity to entrainment and impingement) than results presented. in the DEIS for the striped bass population. We have not included comments on several aspects of the model structure because of the severe problems noted above.
A detailed description of the striped bass analysis summarized here can be found in the companion report by Deriso et al. (2000a).
6.0      Review of the Assessment of White Perch We reviewed white perch information and analyses presented in the Draft Environmental Impact Statement (DEIS 1999). Our main findings are briefly described below.
The DEIS does not present a population dynamics model for white perch. Technical Workshops concluded that the data will not support development of a defensible model (e.g., ESSA 1995b). Without such a model, the DEIS cannot forecast the response of the Hudson River white perch population to future levels of entrainment and impingement.
An analysis of temporal variation that explores patterns in white perch abundance over three time periods describes patterns in abundance based on an arbitrary breakdown of the data series into time periods and a ESSA Technologies Ltd.                                  24
 
October 20, 2000                                        Review of DEIS for Bowline Point, Indian Point & Roseton reliance on visual interpretation of patterns in the data. If we ignore the DEIS time periods, we can describe different temporal patterns in ,theabundance data.
An analysis of alternative hypotheses that explores the influence of historic factors on variation in white perch abundance in Chapter V-D-2-B,. presents no supporting data for several hypotheses and the hypothesized factors are confounded..The analysis does serve to generate alternative impact hypotheses, illustrate the problem of confounding of factors, and demonstrate a need for further research. However, its results cannot be used to forecast the impact of future power plant impingement and entrainment on the Hudson River white perch population.
The white perch abundance indices are not the appropriate indices of density independent survival for' comparing with other factors. The effect of precursor life stage abundance and density dependence may confound results and lead to incorrect conclusions about the relationship of abundance to other' factors.
For example, a decrease in PYSL abundance could be attributed .to a decrease in density-independent survival when it was really due to decreased density-dependent survival resulting fom an increase in spawning biomass. Therefore,, the DEIS analysis should use an index of density-independent survival that accounts for the effect of the precursor life stage and density dependence on abundance. We provide an example in the appendix to the white perch companion report by Parnell and Marmorek (2000).
The DEIS should use some index of biomass lost to the ecosystem, such as: the "production, foregone" of white perch due to entrainment, to index the impact of entrainment on both the white perch population and the Hudson River ecosystem. Such an index is especially relevant given the hypothesized ecological interactions between white perch and striped bass.
The DEIS white perch analysis fails to address several of the issues and recommendations raised in a previous review (ESSA 1994a) and three subsequent technical workshops (ESSA 1994b, ESSA 1995a, ESSA 1995b). We note that there is sometimes no clear connection between the analyses presented in this DEIS and the recommended analyses of those previous reviews and workshop reports. Such a "chain of evidence" would be useful for future reviews.
A detailed description of the white perch analysis summarized here can be found in the companion report by Parnell and Marmorek (2000).
7.0      Comments on the DEIS Assessment of the Cooling Tower Alternative This section provides a summary of our assessment of the Cooling Tower Alternative presented in the Draft Environmental Impact Statement (DEIS) on file with the New York State Department of Environmental Conservation (NYSDEC) in support of permit renewals for the Bowline Point, Indian Point 2 and 3, and Roseton power plants; collectively known as the Hudson River Power Plants. The basis for the comments in this summary is a series of document reviews, literature research, and a technical evaluation using the combined power generation experience of the team assigned to complete the assignment.
The specific objectives of the review of the cooling tower alternative were to:
: 1. To assess the design prudence of the proposed cooling system changes for the power plants;
: 2. To evaluate the economic analysis presented in the DEIS; and
: 3. To, identify. any other important considerations, which are not addressed by the DEIS.
25 25 ESSA Te~hnologies Ltd.
ESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point & Roseton                                      October 20, 2000 A detailed description of our assessment of the cooling tower alternative summarized here can be found in the companion report by Grogan Associates (2000).
Overview and Technology Perspective:
The owners of the.,*udson River Power Plants prepared and filed the DEIS that provides an alternatives analysis of several cooling water systems for three major electric generating stations located directly along banks of the Hudson River at three locations. It is the understanding of the authors of this Report that the primary objective of the DEIS is to present a comprehensive analysis of a single cooling water system that, when installed, will result in elimination or very substantial reduction in the mortality of fish, fish larvae and fish eggs attributed to entrainment and impingement resulting from the current power plant cooling water systems.
All of the Hudson River Power Plants included in the DEIS have what is called once through, or open cycle, condenser cooling water systems. This technology was the most common option selected by thermal power plant owners. and engineers when the plants were designed and constructed 30 to 40 years ago. Siting directly. on a major navigable river, harbor or estuary was a preferred option for most thermal power stations of that era because the water resource usually provided both an ample supply of cooling water, and for economical bulk water transport of large quantities of fuel. Concerns regarding harmful impacts on fish populations were usually a secondary consideration at that time. Use of closed cycle cooling systems, most notably large natural draft or mechanical draft, wet cooling towers, were limited to sites where river flows and levels were not sufficient to assure an uninterrupted supply of cooling water use throughout the entire year.
Beginning in that same time period and carrying into today's market, other types of closed cooling systems like air cooled condensers or evaporative condensers were used at sites that had little or no fresh water, but had other important economic siting criteria like access to a dedicated supply of low cost fuel and/or low cost electric transmission interconnection. This type of cooling technology has become more prevalent in the current group of new power generation facilities that are being developed and built nationwide because they are almost exclusively natural gas fired combined cycle units. In this technology, only about one third of the unit's rated capacity requires any cooling water so the performance penalty of these types of cooling systems become an economic trade-off with other siting factors. Usually cooling towers of this type favor the use of axial discharge steam turbines to minimize turbine backpressure in the run between the low-pressure steam exit plenum of the steam turbine and the condenser. Currently we know of no steam turbine over 200MW in capacity that has this configuration.
 
==
Conclusions:==
 
Our review of the cooling tower alternative presented in the DEIS concludes that:
I. The selection of a wet/dry closed loop cooling water system to replace the present open cycle cooling water systems at all of the Hudson River Power Plants is one of the closed system options that has the least environmental impact.
: 2. Certain sizing assumptions of the wet/dry cooling water system are conservative and lead to somewhat higher cost projections and performance penalties than are absolutely necessary. The projected loss of over 600,000 Mwhriyear is of very significant concern.
: 3. The cost estimates and economic analysis presented for the replacement system are reasonable when the same stipulated design and pricing criteria are applied. However, application of less restrictive, meteorological conditions will result in lower cost impacts due to less severe performance penalties. Specific recommendations and performance differentials are provided
: 4. The cost of used electricity reported in the DEIS is not representative of the, deregulated power and market that will be in effect when the modified cooling water systems would begin operations. Because of open market pricing of both fuel and electricity, the economic impacts of ESSA Technologies Ltd.                                  26
 
October 20, 2000                                                  Review of DEIS for Bowline *Point, Indian Point & Roseton any reduction in power generation efficiency and capacity can be expected to be far more costly than forecast in the DEIS.
: 5. A wet only (wet mechanical cooling tower) cooling water system will have substantially less environmental impact and be less costly to the NY consumers. The trade-off is that the water vapor plume will be visible during more days of the year.
: 6. The environmental i.niad-s of increased air emissions and consumptive water use attributed to the change in the type of cooling water systems is significant. These impacts are quantified as 849 tons of NO., 2792 tons of S02, 74 tons of CO, 406,623 tons for CO2, and 194 tons of particulate, and 15 billion gallons of annual evaporative water loss respectively.
: 7. A side by side comparison of both the environmental and economic impacts of two alternate cooling water systems should be made prior to implementation of any change to the current cooling systems. The two cooling water systems recommended for the alternative evaluation include: i) a passive open cycle cooling water system that is specifically designed to eliminate fish entrainment; and b).a closed system using conventional wet only mechanical cooling towers.
8.0      Predicting the Future - Understanding the Risks In reviewing the DEIS, we have developed an appreciation for the difficulty involved in composing such an ambitious document. In some cases inconsistent units are employed in different sections making it difficult to make comparisons, or confirm results. We can well imagine that it is not a, simple task to assemble such an analysis with multiple analysts and authors most likely working in parallel.
Comments in Section VI about shad illustrate the sort of differences which appear in various places in the document. While the main document acknowledges the low shad population levels in the early 1990s and seemingly low recent year classes, it states "The Hudson River American shad population appears healthy and able to sustain itself under past, and future, levels of power plant effects like those in the proposed action." (italics added) In contrast with this, the detailed analysis in Appendix IV-4-C states "Moderate to low density-dependence is indicated by the long-term model of Walters (1994). Equilibrium calculations show that the shad stock isfully-exploited to over-exploited unless one assumes high density-dependence" (italics added) and "Maximum yield levels are adversely impacted by entrainment-impingement mortality in all cases with the decline in maximum yield most severe under the low density-dependence hypothesis" (italics added). The view expressed in the main body of the document appears quite confident in regard to the status of shad while that expressed in the appendix is cautious. If the authors of the appendix are correct and the stock may already be fully exploited to over-exploited, then we would expect that increased entrainment mortality would be a concern to the managers of the resource. It is laudable that such divergent views are openly cxpressed within the document. This is consistent with EPA guidance regarding ecological risk assessment (USEPA 1998), however it falls short of fulfilling the recommendations of the guidelines which call for a discussion of the degree of scientific consensus in key areas of uncertainty.
The challenge to technical reviewers and decision makers alike when reviewing a proposal such as that presented in. the DEIS is to gain an understanding of the future implications of alternative 4 choices for mitigation of impacts. Technical reviewers and decision managers need to be able to understand the likely performance of a mitigation scheme under a variety of future circumstances. If this cannot be done with confidence, then part of the overall solution may be to design into the mitigation approach the ability to 4  We prefer to use the term alternative in a somewhat different sense than is often the case when different options are considered independently; i.e. when alternatives are viewed essentially as mutually exclusive alternatives. Our preference is instead, to view alternatives for mitigation as a collection of building blocks to be combined as needed within a strategy to minimize impacts.
27                                      ESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point & Roseton                                      October 20, 2000 vary the scheme as needed to adapt to unforeseen future developments, such as decreases in the abundance%;of particular species to levels of concern, necessitating changes in all sources of human-induced mortality, including entrainment and impingement Understanding the likely performance of a mitigation scheme such as that proposed in the DEIS is not a trivial activity either for the analysts working for the generators, who must themselves attempt to understand and communicate it, or for those who must review the proposal. Attempting to anticipate precisely what information will be most useful to reviewers and communicate that information clearly and concisely to decision makers must be a daunting task. We are aware of the effort that has gone into developing the DEIS and laude the effort to convey the proposal clearly and concisely.
Having stressed the value of being concise, it is important to strike a balance between being concise and providing the information that permits a review-er-to"- gaiin :-A confident understanding of the future implications of an analysis or proposal. For example, it is important to gain an understanding of how variable or uncertain the future consequences may be. This will depend upon not only the variability in the trends in the resource (in this case fish populations) but also in the future application of the mitigation.
In our prior commentary during the technical workshops, we advocated presenting a complete analysis of the hypotheses being explored by the DEIS through the presentation of a series of nomograms which illustrate the predictions of an analysis or model over a full range of assumptions. In particular, a presentation of how differing rates of entrainment and impingement mortality operating together with differing assumptions of fishing mortality under a range of assumptions of density dependence affect the future status of a population. The need for this approach is raised again in the companion paper by Deriso et al. 2000a documenting our review of the striped bass modeling for the DEIS. An excellent example of the type of projection we advocate is presented in Figures 4 and 5 of the companion report to Appendix 1 of this report, by Deriso, et al. 2000b. These figures clearly illustrate the effects of a range of hypotheses of entrainment mortality, fishing mortality and density dependence in the Hudson River shad population on yield and recruitment respectively. We understand both the tomcod and bay anchovy analyses presented in the DEIS do attempt to do this. The range of assumptions explored by the striped bass analysis, however, is much more restricted.
This point is particularly important in regard to the estimates of entrainment upon which other analyses, such as the population dynamics models, are founded. Our review of the methods indicates that there are sources of error in the estimates, and the analysis is conducted and presented essentially without further reference to these errors as if the estimates are well defined. In our view, the presentation in the DEIS would be substantially improved by incorporating explicit consideration of the. sensitivity of the underlying entrainment model to errors in the parameter estimates. Perhaps of greatest concern, is the difficulty in attempting to understand something as simple as the apparent declining trend in entrainment mortality (CMR). This does not appear to be highlighted in the document and several things could account for it: shifts in regional distribution in response to changing habitat conditions; changes in the average annual operation of the stations over the past decade (i.e. volume of water entrained); and/or shifts in the within-region distribution of larvae relative to the intake field (represented by the W parameter in the ETM model). With the information available to us we have been unable to determine which of these mechanisms might account for this observation. The raises important questions. For example, if the decline were the result of a ieduction in operation of the stations over the past decade, then an important question in attempting to understand the effects of the Proposed Action would be whether the future level of operation will remain constant or might increase. It is not clear from the DEIS what the answer to this question is, and we understand that in the current market for electricity future levels of operation might be difficult to predict. A logical approach would be to show the responses of various assessment endpoints for a range of both scientific and operational uncertainties, revealing under what combinations of these stocks are likely to be at risk.
ESSA Technologies Ltd.                                  28
 
October 20, 2000                                      Review of DEIS for Bowline Point, Indian Point & Roseton Finally we note that Section VI, of the DEIS provides a rather good general description of the various levels at which one cani.attempt to undertake an analysis of the possible effects of power station mortality on fish populations; these are:
: 1. estimating the,::number of larvae killed;
: 2. estimating th :conditional mortality rate (CMiR) and thereby expressing the simple mortality numbers in the context of the size of the population of larvae; and
: 3. estimating the population dynamics - i.e. the impact on the fish population in terms of survival, growth and subsequent reproduction of the fish which survive entrainment or are not entrained (or impinged).
The discussion within the DEIS also notes that with each level, an increasing complexity and number of parameter estimates and assumptions are needed to complete-the-analysis. :-AlJogical corollary of this hierarchy is that at higher levels in the hierarchy, there is an increased potential for a lack of consensus about assumptions and parameter estimates, and an increased potential for confounding due to various factors affecting populations (e.g. changes in water quality and harvest rates). The EPA guidelines on risk assessment (USEPA, 1998) do not indicate that one should avoid such analyses, only that it is advisable to discuss the degree of scientific consensus in key areas of uncertainty. Within the DEIS, the third level of analysis is represented both by full population dynamics models and also by a production forgone analysis (for bay anchovy) which can involve, fewer assumptions., Indeed, the production foregone approach should be applied to all species, as it requires fewer assumptiQns, and provides a useful intermediate endpoint between CMRs and population responses. Thus the third level in the hierarchy can also be viewed as having at least two sub-levels with differing levels of complexity.
It is clear from the hierarchy described in the DEIS, that developing consensus on higher levels of analysis is also dependent upon the degree of consensus on the lower levels in the hierarchy. In this sense, the described hierarchy in itself might be used as a framework to characterize the degree of consensus regarding the DEIS analysis and also a framework for systematically working toward consensus through focusing initially on those questions and concerns that give rise to a lack of consensus at lower levels in the hierarchy. The process of developing scientific consensus is essentially one of providing a sufficiently robust analysis of a problem so that the various parties (proponents, technical reviewers and decision makers alike) develop an understanding of the sources and magnitude of uncertainty of projections inherent in future consequences. If there is a clear and well articulated common understanding of the degree of uncertainty, then what remains to be decided by decision makers is the degree of risk tolerance or risk aversion that is acceptable. The work done to date and information presented in the DEIS provides a strong start toward achieving consensus. However, there remain significant concerns about the uncertainty of key underlying estimations (e.g. entrainment), the prediction of subsequent population analyses, and the conclusions upon which they are based. Together, the hierarchy set out in the DEIS and the guidance provided by the EPA may provide a useful framework for working to deal with these concerns and find a high level of consensus on alternatives that are robust to the existing uncertainties.
29 29                                  ESSA Technologies Ltd.
ESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point & Roseton                                October 20, 2000 9.0      References ASMFC. 1999. Atlantic States Fisheries Commission Striped Bass Technical Committee. 1999 Status of the Atlantic Striped Bass. 76 pp. draft.
DEIS 1993. Draft Environmental Impact Statement for State Pollutant Discharge Elimination System Permits for Bowline Point, Indian Point 2&3, and Roseton Steam Electric Generating Stations. Central Hudson & Gas Electric Corp., Consolidated Edison Company of New York, Inc., New York Power Authority, Orange and Rockland Utilities Inc. June 1993.
DEIS. 1999. Draft Environmental Impact Statement for State Pollutant Discharge Elimination System Permits for Bowline Point, Indian Point -2&3;-and*Roseton Steam Electric Generating Stations. Central Hudson & Gas Electric Corp., Consolidated Edison Company of New York, Inc., New York Power Authority, Southern Energy New York. December 1999.
Deriso, R.B., K. Hattala, and A. Kahnle. 1999. Hudson River Shad Assessment and Equilibrium Calculations: Revision of the 1995 Report to include data through 1997. Prepared for New York State Department of Environmental Conservation, Albany, NY.
Deriso, R.B., D.R. Marmorek, and I. Parnell. 2000a,. Review of the Assessment of Striped Bass.
Companion Report to a Review of the DEIS for SPDES Permits for three Hudson River Generating Stations. Prepared by ESSA Technologies Ltd., Vancouver, BC, for NYSDEC, Albany, NY. 6 pp. +
appendix.
Deriso, R.B., K. Hattala, and A. Kahnle. 2000b. Hudson River Shad Assessment and Equilibrium Calculations: Revision of the 1995 Report to include data through 1997. Companion Report to a Review of the DEIS for SPDES Permits for three Hudson River Generating Stations. Prepared by ESSA Technologies Ltd., Vancouver, BC, for NYSDEC, Albany, NY. 7 pp. + tables, figures, and appendix.
ESSA. 1994a A critical review of the draft environmental impact statement for the proposed action at the Bowline, Indian Point 2 and 3, and Roseton electric generating plants. In support of SPDES permit modification renewal: 1994-1999. Final report. Prepared by ESSA Technologies Ltd. August 16, 1994.
ESSA. I994b. Report on initial technical workshop to initiate completion of the Draft EIS for Bowline, Roseton and Indian Point 2 & 3 electric generating stations. Prepared by ESSA Technologies Ltd.
December 21, 1994.
ESSA. 1995a. Second technical workshop to resolve issues regarding the completion of the Draft EIS for Bowline, Roseton, and Indian Point 2 and 3 electric generating stations. Prepared by ESSA Technologies Ltd. March 27, 1995.
ESSA. 1995b. Third technical workshop for the completion of the draft EIS for Bowline, Roseton, and Indian Point 2 and 3 electric generating stations of the Hudson River. Prepared by ESSA Technologies Ltd. October 17, 1995.
Grogan Associates. 2000. New York State Department of Environmental Conservation - Hudson River Power Plants Cooling Water System Design Assessment. Prepared by D.B. Grogan Associates, Inc.,
Windsor, CT, USA ESSA Technologies Ltd.                                  30
 
October 20, 2000                                  Review of DEIS for Bowline Point, Indian Point &Roseton Hilborn, R. 1999. Impacts of power plant mortality on Hudson River striped bass. Appendix VI-4-A In Draft Environental jmpact Statement for State Pollutant Discharge Elimination System Permits for Bowline Point, Indian Point 2&3, and Roseton Steam Electric Generating Stations. Central Hudson &
Gas Electric Corp., Consolidated Edison Company of New York, Inc., New York Power Authority, Southern Energy New York. December 1999.
Parnell, 1.and D.R. Marmorek. 2000. Review of the Assessment of Bay Anchovy. Companion Report to a Review of the DEIS for SPDES Permits for three Hudson River Generating Stations. Prepared by ESSA Technologies Ltd., Vancouver, BC, for NYSDEC, Albany, NY. 9 pp.
Parnell, I., D.R. Marmorek, and R.B. Deriso. 2000. Review of the Assessment of Atlantic Tomcod.
Companion Report to a Review of the DEIS for SPDES Permits for three Hudson River Generating Stations. Prepared by ESSA Technologies Ltd., Vancouver; BC, for NYSDEC, Albany, NY. II pp. +
appendix.
Parnell, I. and D.R. Marmorek. 2000. Review of the Assessment of White Perch. Companion Report to a Review of the DEIS for SPDES Permits for three Hudson River Generating Stations. Prepared by ESSA Technologies Ltd., Vancouver, BC, for NYSDEC, Albany, NY. 10 pp. + appendix.
Rose, K.A. 1996. Application of COMPECH models to bay anchovy entrainment in the Hudson River.
Rose, K.A., J.H. Cowan, M.E. Clark, E.D. Houde, and S. Wang. (in press). Simulating bay anchovy dynamics in the mesohaline region of Chesapeake Bay using an individual-based approach.
SARC. 1998. 2 6th Northeast Regional Stock Assessment Workshop of the Stock Assessment Review Committee. Consensus Summary of Assessments. Northeast Fisheries Science Center Reference Document 98-03. P 170-223.
USEPA 1998. Guidelines for Ecological Risk Assessment. 63 Fed. Reg. 26846 (May 14, 1998)
Walters, C. 1994. Population dynamics of Hudson River shad as evidenced from long-term catch records. Draft report to NYPA and NYSDEC with comments by Ray Hilborn.
31                                  ESSA Technologies Ltd.
ESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point & Roseton  October 20, 2000 ESSA Technologies Ltd.                                  32
 
October 20, 2000                      Review of DEIS for Bowline Point, Indian Point & Roseton Appendix.          -
Summary of the Hudson River Shad Assessment and Equilibrium Calculations:
Revision of the 1995 Report to include data through 1997 33 33                                    ESSA Technologies Ltd.
ESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point & Roseton  October 20, 2000 Review of DEIS for Bowline Point, Indian Point & Roseton  October 20, 2000 34 ESSA Technologies Ltd.
ESSA Technologies Ltd.                                  34
 
October 20, 2000                                      Review of DEIS for Bowline Point, Indian Point & Roseton
 
==SUMMARY==
 
In this appendix we summarize stock assessment and equilibrium calculations on American shad of the Hudson River based on the method described in Deriso et al. (1995). Research reported here is directed towards addressing two subjects: (1) a statistical estimation of abundance, fishing mortality, and cer.ain critical life-history parameters of shad during the last roughly twenty years, (2) Equilibrium calculations of commercial yield of the shad fishery and of abundance of one-year-olds based on results from-the estimation phase of the research and from results of application of the long-temi model of Walters (1994).
Results show that the total fishing mortality on older shad have averaged around 0.25 (sd = 0.11) between 1974-1997. Median abundance of one-year-olds is estimated at 1.3 (sd = 0.61) million fish during that time period. The sum of natural mortality rate plus unreported fishing mortality rate for adult females (males) is estimated at 0.54 (0.81) ,aua _i*., .- cycle -of low-high-low-medium abundance of adults is estimated for the period 1974-1997. While less precise than earlier years, the mid-1990s indicate an increase in abundance from the low point around 1990. Our result reported in 1995 that the 1989 and 1990 year-classes appear to be somewhat above average has proven to be the case. Those year-classes were followed by even strong year-classes in .1992-1994. Preliminary indications from the juvenile indices are that the 1995-1997 year-classes could be below average and warrant some concern for the near-term future of the stock.
Equilibrium calculations were made for each of three hypotheses regarding (S-R) spawner-recruit relationships. Those three hypotheses are based on' assumptions of low, moderate, and high density-dependent mortality in the S-R relationship, as measured by a parameter b described in the paper. High density-dependence is indicated by fitting a Beverton-Holt S-R model to recent (1974-1994) estimates.
Moderate to low density-dependence is indicated by the long-term model of Walters (1994). Equilibrium calculations show that the shad stock is fully-exploited to over-exploited unless one assumes high density-dependence.
Results updated for the Appendix to the American shad companion report show that an alternative hypothesis can be made based on a high reliance on age composition and repeat spawning information.
With heavy reliance on those data, we would conclude the stock has not shown any recovery in the recent years and that both entrainment and fishing mortality rates need to be decreased. The driving force behind this alternative hypothesis are high adult mortality rates that can be inferred from age composition and repeat spawning information.
A detailed description of the analysis summarized here for American shad can be found in Deriso et al.
(2000b).
35 35                                  ESSA Technologies Ltd.
ESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point & Roseton  October 20, 2000
(
Ltd.                                  36 ESSA Technologies Ltd.
ESSA Technologies                                      36
 
October 20, 2000                        Review of DEIS for Bowline Point, Indian Point & Roseton October 20. 2000                        Review of DEIS for BowLine Point, Indian Point & Roseton
                                .Appendix 2 Entrainment Data from DEIS Tables Used for Review:
and Summarized in Table 4 and Figures la-e of this report 37 37                                    ESSA Tectwiologies Ltd.
ESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point & Roseton  October 20, 2000 (T
ESSA Technologies Ltd.                                  38
 
October 20, 2000                                            Review of DEIS for Bowline Point, Indian Point & Roseton Table A2-1: Striped bass entrainment CMR (as %) by station from DEIS Table V-18 and total annual CMR for all three stations combined for the period 1974 to 1997.
Bowline                Indian Point              Roseton                  Total1 Year              CMR %                      CMR %                  CMR %                    CMR 1974                0.72                      5.65                    0.38                  0.0669 1975                0.99                      7.78                    1.71                  0.0976 1976                1.45                      4.73                    2.62                  0.0857 1977                0.98                      13.89                  2.15                  0.1657 1978                1.35                      8.55                    1.41                  0.1107 1979                1.09                      11.92                  2.14                  0.1474 1980                0.95                      11.87                  3.27                  0.1556 1981                0.23                      4.17                    0.43                  0.0480 1982                0.67                      6.99                    2.90                  0.1029 1983                0.58                      7.36                    2.34                  0.1005 1984                2.72                    17.25                    1.72                  0.2089 1985                0.07                      3.97                    2.09                  0.0604 1986                0.98                      16.26                  3.99                  0.2039 1987                0.47                      2.30                    4.75                  0.0738 1988                0.94                      11.63                  2.90                  0.1500 1989                0.96                      5.96                    2.28                  0.0899 1990                0.67                      6.12                    3.97                  0.1045 1991                0.67                      4.95                    3.62                  0.0900 1992                0.78                      6.16                    2.87                  0.0956 1993                0.41                      5.60                    1.25                  0.0716 1994                0.71                      6.81                    1.54                  0.0890 1995                0.36                      4.22                    2.91                  0.0734 1996                0.10                      12.01                  1.44                  0.1336 1997                  0.46                      1.42                    3.00                  0.0482 Total CMR =  I-(l-CMR%Bowfin,,Il00)* (l-CMR,/%.didanPoint/100)* (I-CMR%R.osto./100))
39                                    ESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point & Roseton                                    October 20, 2000 Review of DEIS for Bowline Point, Indian Point & Roseton                                    October 20, 2000 TableA2-2: White perch entrainment CMR (as %) by station from DEIS Table V- 18 and total annual CMR for all stations combined for the period 1974 to 1997.
Bowline            Indian Point.          Roseton          Total1 Year              CMR %                CMR %                CMR %            CMR 1974                9.10                7.45                0.80            0.1655 1975                2.96                8.65                6.40            0.1703 1976                2.18                  3.22                5.98            0.1099 1977                2.11                7.27                5.82            0.1451 1978                  1.17                5.28                4.27            0.1039 1979                0.85                8.02                5.91            0.1419 1980                0.38                3.36                6.04            0.0954
          .1981                0.32                6.54                1.72            0.0844 1982                0.17                4.33                2.49            0.0687 1983                  1.01                17.23                5.78            0.2280 1984                0.65                8.92                3.88            0.1302 1985                0.05                0.55                3.53            0.0411 1986                0.28                4.07                9.40            0.1333 1987                0.01                0.66                6.87            0.0749 1988                0.53                7.94                4.93            0.1294 1989                0.78                4.03                6.66            0.1112 1990                0.38                3.48                5.40            0.0904 1991                0.22                  1.40                7.45            0.0895 1992                0.28                2.70                6.17            0.0896 1993                0.12                2.34                1.77            0.0418 1994                0.28                3.14                4.56            0.0782 1995                0.09                  1.92                5.04            0.0695 1996                0.07                4.88                2.90            0.0770 1997                0.16                  1.29                4.29            0.0704 Total CMR= I-(l-CMR°/oBowjine/100)* (I-CMR%[ndianPonht/I00)* (I-CMR%RoS/t0 I./IO0))
ESSA Technologies Ltd.                                  40
 
October 20, 2000                                          Review of DEIS for Bowline Point, Indian Point & Roseton Table A2-3: Atlantic tomcod entrainment CMR (as %) by station from DEIS Table V-22 and total CMR for all three stations combined for the period 1974 to 1997.
Bowline            Indian Point              Roseton                  Total' Year                  CMR %                  CMR %                  CMR %                    CMR 1974                    5.61                  3.65                    0.26                0.0929 1975                    9.16                  6.75                    1.20                0.1631 1976                    10.60                  8.76                    0.94                0.1920 1977                    5.43                  10.15                  3.41                0.1793 1978                    9.18                  10.60                  2.32                0.2069 1979                    6.85                  18.80                  2.33                0.2612 1980                    6.10                  25.47                    1.81                0.3128 1981                    7.88                  11.68                  1.65                0.1998 1982              -    6.57                  17.47                  1.72                0.2422 1983                    6.65                  7.69                    1.59                0.1520 1984                    5.77                  16.58                  1.61                0.2266 1985                    6.70                  34.05                    2.03                0.3972 1986                    8.22                  11.36                  1.82                0.2013 1987                    4.53                    14.61                  2.17                0.2025 1988                    7.15                  23.94                    1.84                0.3068 1989                    7.47                  4.94                    1.72                0.1355 1990                    6.72                  5.52                    2.00                0.1363 1991                    6.65                  6.99                    1.81                0.1475 1992                    7.25                  14.11                  1.66                0.2166 1993                    5.38                  3.67                    1.05                0.0981 1994                    4.48                    7.57                    1.57                0.1310 1995                    6.75                  5.77                    1.19                0.1318 1996                    1.61                  8.47                    0.84                0.1070 1997                    0.55                  10.35                  1.63                0.1230 Total CMR = I[(I-CMRBowfine/I00)*    (I-CMR%/o1.dia.Point/l00)* (17CMR%Roseto/lIO0))
41                                  ESSA Technologies Ltd.
 
Review of DEIS for Bowline Point, Indian Point & Roseton                                October 20, 2000 Table A2-4: River herring entrainment CMR (as %) by station from DEIS Table V-28 (also V-30) and total CMR for all three stations combined for the period 1974 to 1997.
Bowline              Indian Point              Roseton      Total1 Year                CMR %                  CMR %                  CMR %        CMR 1974                  0.17                    0.83                    0.64      0.0163 1975                  0.19                    1.42                  13.00    0.1440 1976                  0.79                    1.85                  5.70      0.0818 1977                0.49                    2.47                    6.26      0.0902 1978                0.21                    1.26                  2.99      0.0441 1979                0.09                    2.24                    4.10      0.0633 1980                  0.06                    0.48                    2.87      0.0339 1981                  0.02                    0.57                    2.30. 0.0288
        .1982                  0.17                    0.81                    1.90      0.0286 1983                0.31                    3.05                    4.60      0.0780 1984                0.15                    5.34                    1.65    0.0704 1985                0.00                    0.02                    1.03    0.0105 1986                0.01                    0.92                    1.62      0.0253 1987                0.01                    0.04                    2.89      0.0294 1988                  0.04                    0.51                    3.59      0.0412 1989                0.41                    1.41                  4.53      0.0626 1990                0.85                    2.94                    2.31      0.0599 1991                0.08                    0.41                    1.55      0.0203 1992                  0.06                    0.41                    2.04      0.0250 1993                0.04                    0.23                    0.91      0.0118 1994                  0.07                    0.49                    1.96      0.0251 1995                  0.02                    0.12                    4.23      0.0436 1996                  0.01                    0.49                    1.31      0.0180 1997                  0.22                    0.60                    4.83      0.0561 Total CMR  = I-(l-CMRBowBine/I00)* (I-CMR%/OIndianpoint/100)* (l-CMR%0 Rseton/100))
ESSA Technologies Ltd.                                  42
 
.October 20, 2000                                          Review of DEIS for Bowline Point, Indian Point & Roseton October 20, 2000                                        Review of DEIS for Bowline Point, Indian Point & Roseton Table A2-5: Bay anchovy entrainment CMR (as 01/4) by station from DEIS Table V-32 and total CMR for all three stations combined for the period 1974 to 1997.
Bowline          Indian Point          Roseton                Total1 Year                CMR %              CMR %                CMR %                  CMR 1974                  5.00                7.31                0.04                0.0509 1975                  4.20              6.16                0.18                0.1026 1976                  3.67                3.45                0.20                0.0718 1977                  4.96              13.78                0.22                0.1824 1978                  6.00              12.54                0.48                0.1818 1979'                  6.30              10.80                0.52                0.1685 1980                  6.35              18.44                0.21                0.2378 1981                  4.01              18.56                0.23                0.2201 1982                  1.82              4.19                0.31                0.0623 1983                  2.95                9.04                0.51                0.1217 1984                  3.01                6.26                0.43                0.0947 1985                  3.07              10.06                0.47                0.1323 1986                  1.84                5.07                0.13                0.0694 1987                  5.50                9.99                0.38                0.1526 1988                  5.21              17.73                0.76                0.2261 1989                  3.59                7.96                0.11                0.1136 1990                  5.24              20.85                1.07              0.2580 1991                  3.72                9.09                1.44              0.1373 1992                  3.55                7.12                0.20                0.1060 1993                  3.17              7.08                0.50                0.1048 1994                  2.69                5.94                0.09                0.0855 1995                  3.55              14.99                1.82              0.1950 1996                  1.27              15.55                0.07                0.1668 1997                  3.61              6.62                  1.78              0.1159 Total CMR  =1-l  -CMRBowiine/l00)* (-CMR°indianPointm/10)*  (l-CMRRoseto./100))
ESSA Technologies lid.
43 43                                    ESSA Technologies Ltd.
 
(
Review of the Assessment of Striped Bass Companion Report to Chapter 5 in Review of the Draft Environmental Impact Statement for SPDES Permits for Bowline Point 1 & 2 Indian Point 2 & 3, and Roseton 1 &2 Steam Electric Generating Stations A Report to the Parties to the Application Prepared for:
New York State Department of Environmental Conservation Division of Regulatory Affairs, 50 Wolf Road Albany, New York, 12233-1750 Prepared by:
Rick Deriso Scripps Institution of Oceanography La Jolla, Ca 92093
                                  .and David Marmorek and Ian Parnell ESSA Technologies Ltd.
Suite 300, 1765 West 8th Avenue Vancouver, BC V6J 5C6 October 20, 2000
 
Citation:        Deriso, R.B., D.R. Marmorek, and I. Parnell. 2000. Review of the Assessment of Striped Bass. Prepared by ESSA Technologies Ltd., Vancouver, BC, for NYSDEC, Albany, NY. 6 pp. + appendix. Companion Report to Chapter 5 in Review of the Draft Environmental Impact Statement for SPDES Permits for the Bowline Point 1 & 2, Indian Point 2 & 3, and Roseton I & 2 Steam Electric Generating Stations. Report to the Parties to the Application, Prepared by ESSA Technologies Ltd., Richmond Hill, ON, for NYSDEC, Albany NY. 31 pp. + appendices.
Short Citation: Deriso, R.B., D.R. Marmorek, and I. Parnell. 2000. Review of the Assessment of Striped Bass. Companion Report to a Review of the DEIS for SPDES Permits for three Hudson River Generating Stations. Prepared by ESSA Technologies Ltd., Vancouver, BC, for NYSDEC, Albany, NY. 6 pp. + appendix.
8 2000 ESSA Technologies Ltd.
This report has been provided in electronic form for review by the parties to the application for the Hudson River steam electric generating stations (Bowline, Indian Point and Roseton). Except for the express purposes of its review by the parties to the application, no part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from NYSDEC, Albany, NY.
 
October 20,2000                                                                                                              Comments on the DEIS Striped Bass Analysis Table of Contents SUM Mtr ARY .................................................. ................................................................................                :................................................... I DETA ILS ........................................................................................................................................................................................                  3 DATA ..........................................................................................................................................................................................                  3 M ODEL A SSUMPTIONS .............................................................................................................................................................                                4 REFERENCES. ...............................................................................................................................................................................                        6 APPENDIX ..........................................................................................................              I........................................................................... 7 ESSA Technologies Ltd.
 
Comments on the DEIS Striped Bass Analysis    October 20, 2000 ii ESSA Technologies Ltd.
ESSA Technologies Ltd.                    ii
 
October 20, 2000                                              .Comments on the DEIS Striped Bass Analysis October 20, 2000                                              Comments on the DEIS Striped Bass Anatysis Summary This technical memorandum summarizes our preliminary comments on the striped bass analysis in Appendix VI-4-A of the DEIS report, entitled "Impacts of power plant mortality on Hudson River striped bass" (Hilbom 1999).
These comments are based on a review of the DEIS report plus other materials listed in References plus several conversations with NYSDEC scientists. We refer to information provided by NYSDEC scientists below as "NYSDEC comm." when it helps to clarify a source of information.
We believe the DEIS report is not reliable for predicting the impacts of power plants on Hudson River striped bass for the following reasons:
        "  limitations with data;
        "  limitations with modeling of data; and
* limitations with assumptions of the model.
In summary, the indices of abundance of juveniles (BSS, JSB, WLI-0 indices) and age one abundance (SBMR,WLI- I indices) each pertain to a portion of recruitment present in a specific habitat. As such, they would not be expected to produce reliable indices of abundance of recruitment for the entire Hudson River striped bass population. The index of adult abundance based on shad fishery by-catches (CFM index) measures the ability and desire of shad fishermen to avoid striped bass, rather than providing a reliable measure of striped bass adult abundance. The use of those indices as population abundance measures in the DEIS report is not supported.
Ocean catches of Hudson River striped bass are not known and may differ substantially from values in the DEIS report because the ocean fishery is a mixed stock fishery. River catches in the DEIS report are different from those estimated by NYSDEC (this reflects the lack of Data Evaluation Workgroup (DEW) meetings - see new NYSDEC data for comparison in the Appendix to this report). The use of those landings "estimates" in the DEIS report is not supported.
Fishing mortality rates and adult survival estimates in the DEIS are not consistent with either results of recent tagging analysis or the stock assessments reported by the Stock Assessment Review Committee (SARC 1998) and Atlantic States Marine Fisheries Commission's Striped Bass Technical Committee (ASMFC 1999).
The assessment model'assumes known changes in. historical abundance of Hudson River striped bass, yet provides no evidence to support the assumption. In fact the DEIS report on this issue states (pg. 5, Appendix VI-4-A), "These trends refer primarily to coast-wide striped bass stock, which was dominated by Chesapeake Bay production. It is unclear how relevant this description is to the Hudson River stock."
Results in the DEIS based on those data and model assumptions cause the model to produce extremely high levels of density dependent mortality. The levels are counter-intuitive; for example, typical results (with H = 0.95, a measure of density dependent mortality) indicate that it would require a mere 100 of the 10 year-old striped bass females to produce over 90% of the recruitment produced by the full stock at its 1                                ESSA Technologies Ltd.
 
Comments on the DEIS Striped Bass Analysis                                                  October 20, 2000 carrying capacity when no fishing or entrainment/impingement occurred. The extreme high levels of estimated density dependent mortality could be due to errors in model assumptions about the representation of data (including assumed input parameter values) and due to errors in the representation of processes governing the dynamics of the population.
In conclusion, the modeling results and conclusions stated in the DEIS teport are unreliable because of unreliable: long-term landings data; estimates of fishing mortality; and indices of abundance for recruitment and adults for the entire Hudson River population. Additionally, assumptions about historical changes in abundance are unsupported. We believe the qualitative effect of the types of errors discussed in this report is to support an alternative hypothesis of much lower density-dependence (and higher sensitivity to entrainment and impingement) than the results presented in the DEIS for the striped bass population. We have not included comments on several aspects of the model structure because of the severe problems noted above.
ESSA Technologies Ltd.                                2
 
October 20, 2000                                                  Comments on the DEIS Striped Bass Analysis Details Details are provided in this section about some of the problems that undermine the DEIS report conclusions. The focus is initially placed on some of the critical data and input parameters.
DATA Indices of abundance are critical for "tuning" an assessment model so that. it somewhat mimics population trends indicated by the indices. Indices of abundance used for this "tuning" in the DEIS report include some indices that are hypothesized to directly measure year-class strength. The young-of-the-year indices are as follows:
          " Utilities' Beach Seine Survey (BSS);
          " Juvenile Striped Bass (JSB);
          " Western Long Island age 0 (WLI-0);
          " age I+ Mark recapture study (SBMR); and
* Western Long Island age I (WLI-l).
The first two indices measure juvenile density in the lower Hudson River beach seine habitat. The existence of the WLI-0 index indicates that neither of the first two indices measure abundance of the entire year-class. Unfortunately the WLI-0 index is not useful as a quantitative index because of lack of access to the area during times of bad weather (NYSDEC comm.). Changes in the water quality of the Hudson River could have affected the reliability of the BSS and JSB as indices of year-class strength. NY harbor water quality improvements due in part to sewage treatment in the lower Hudson River from RM 20 down to RM 0 in recent years have opened a window allowing access to the. Long Island habitat (NYSDEC comm.). The BSS and JSB may be fine estimates of juvenile densities in the beach zones for which they were designed, but fail completely to index year-class strength because of variable residence time and emigration from the sampling area (i.e., more recruitment could have occurred post-1988 than actually measured). Thus BSS and JSB may be significantly underestimated in recent years, which would in turn cause H (the amount of density dependence) to be overestimated. The lack of reliability of those indices is acknowledged within the DEIS report on page V-77. These types of deficiencies about the representation of young-of-the-year indices are not adequately corrected by an assumption cf density dependence of the indices, as assumed in the application of equation (9), page 11 of Appendix VI-4-A.
The first two indices are judged reliable by their weighting in the DEIS model based on a judgment of reliability by the DEW group. There is a big difference between an index which can be judged reliable based on sampling and statistical properties for a specific window of time and space, versus one that can be judged reliable as an index of the abundance of an entire year-class.
The fourth index, SBMRt is based on a closed population method of mark/recapture analysis known as the Peterson method (Appendix VI-2-C)Q. Age 1+ fish were tagged within the lower stretches of the Hudson River in the trawling zone (RM 0 -RM 11). Recaptures and catch were also obtained from trawling in the RM 0 - RM II area. Such a method might produce estimates of age 1+ abundance in the trawl zone of 3                                  ESSA Technolo)gies Ltd.
 
Comments on the DEIS Striped Bass Analysis                                                      October 20, 2000 the lower Hudson River if the population showed negligible migration into and out of that zone. Roughly half of the recoveries obtained off western Long Island come from fish tagged in the SBMR program while the other half are NYSDEC WLI releases (NYSDEC comm.). Therefore, the closed population assumption is violated. One can easily imagine the exodus of age 1+ fish from the tag/recovery trawl area into areas where less sampling occurs. Such movement would cause the SBMR abundance index to be biased downward with the amount of bias dependent each year on the amount of emigration. Likewise, immigration of unmarked fish into areas of the heaviest trawling would bias the SBMR upwards. A more detailed understanding of the relative amount of immigration and emigration is required to understand the direction and magnitude of the bias on SBMR, which could also vary over time. Additionally, there is no verification of the assumption that abundance of age 1+ striped bass in the lower Hudson during the time of tagging is representative of the entire year-class of age 1+ fish spawned in the Hudson River.
The fifth index is not listed in the DEIS report and therefore was apparently not utilized.
An adult abundance index, the CFM (catch rates of incidental bycatch of striped bass in the shad fishery),
measures the ability and desire of shad fishermen to avoid striped bass. Fishermen may avoid striped bass because they haven't beenable to sell them since 1976 (due to PCB ban) and they just clog the gear.
Shad fishermen have become more proficient at avoiding striped bass in recent years, which could account for the recent decline in bycatch rates (NYSDEC comm.).,
MODEL ASSUMPTIONS The assessment model also attempts to fit to the age composition of striped bass obtained from the bycatch, but makes the erroneous assumption (VI-4-A, pg. 12, equation 14) that gear selectivity increases monotonically with age. That error is acknowledged within the DEIS on page V-72 where it is written, "Striped bass older than age 7 are not effectively sampled because of the narrow range of mesh sizes, 5.5 to 7 in, used by the shad fishermen." Monotonic increasing selectivity would cause declines in catches of older striped bass to be attributed in part to large adult mortality, which in turn causes an upward bias in estimates of mortality rate. Additional support for such an upward bias is discussed later in the report when fishing mortality rates are discussed. Overestimates of F have an unknown effect on H; thorough sensitivity analyses should be conducted to understand these effects as they are complex.
The DEIS uses another "index" of abundance based not on qiantitative indices, but rather qualitative interpretations. On page 14 of Appendix VI-4-A , the ratio of egg production in year 1935 to 1950 and 1950 to 1980 are given as 0.3 and 2.5 with an unspecified coefficient of variation. Egg production is used as an index of adult abundance. The weighting parameter values for that "information" is not specified in the report, but could affect results if given enough weight. The justification for those ratios of abundance is apparently the section on "qualitative observations of abundance trends" on page 5 of Appendix VI-4. We don't really need to discuss the weakness of those observations because that section on page 5 pretty much undermines their use in the report (e.g., "These trends refer primarily to coast-wide striped bass stock, which was dominated by Chesapeake Bay production. It is unclear how relevant this description is to the Hudson River stock.")
Catches of Hudson River striped bass are not known. Ocean catches for this stock are at best guesswork.
The basic problem with interpretation of ocean catches is that several striped bass populations contribute to catches in all regions, but the Chesapeake Bay population is by far the largest on average and thus fluctuations in its abundance greatly affect the percentage of Hudson River striped bass in northern ESSA Technologies Ltd.                                  4
 
October 20, 2000                                                  Comments on the DEIS Striped Bass Analysis fisheries. For example, recent landings in the Massachusetts and New Jersey ocean fisheries are made of a preponderance of Chesapeake Bay striped bass (NYSDEC comm.). However during the early 1980s, low abundance of the Chesapeake stock corresponded to a high contribution of the Hudson River stock in northern coastal regions (Fabrizio 1987). Historical landings of striped bass in the ocean fishery would be guesswork and therefore it is not suitable for input as used in the DEIS modeling. River catches are better estimated in recent years, but the numbers in the DEIS report differ from those made by NYSDEC, as reported to ASMFC.
The magnitude and time trend of fishing mortality rates are crucial to the DEIS conclusions about causes of fluctuations in abundance of adult striped bass. Fishing mortality rates in the DEIS report cover the ocean fishery for Hudson River striped bass. Those rates are based on an unpublished manuscript attributed to Crecco in 1993 according to the report's Literature Cited section. Presumably Crecco did an assessment of coast-wide striped bass or made some assumptions about ocean fishing. Recent assessments by SARC (1998) and ASMFC (1999) on coast-wide striped bass produce substantially different fishing mortality rates than those used in the DEIS. For example, the ASMFC average fishing mortality rates F for ages 613 year olds from both ocean and river commercial and recreational fishing were about 0.09 in 1984 whereas the DEIS report assumes just the ocean fishing component was 0.45 in 1984. Both time trends and absolute values differ substantially between the DEIS report and what is used for the coast wide assessments. There are technical problems with the coast-wide assessments, but we will not review their assessment in this report. Below we discuss why those coast-wide F estimates may be relevant to Hudson River striped bass.
A recent manuscript by Smith et al. (nd.) provides fishing mortality rates for adult striped bass of the Hudson River based on estimates from tagging. Their paper attempts to correct a long-standing bias in striped bass tag analysis by accounting for catch-and-release fish. Their bias adjusted estimates of fishing mortality for adults 81 1mm and larger (their full recruitment size) range from 0.07 in 1988 and gradually increase to 0.22 in 1997. In contrast, just the ocean fishing rates alone in the DEIS (Table 6) are assumed to decrease from 0.35 in 1988 to 0.25 in 1995. Thus both trend and absolute values differ substantially. As a further note, the adult mortality rate estimate fitted in the DEIS (ln[S] = -ln[0.56]) is substantially higher than the mortality rate estimates (-In[0.7] to -ln[0.8]) reported for similar years in the Smith et al. paper; we have converted survival fractions to mortality rates for clarity of presentation. The low levels of fishing mortality rates estimated by Smith et al. are more consistent with the ASMFC (1999) coast-wide assessment than the F rates listed in DEIS report Table 6.
Large errors in model assumptions and parameter values can lead to poor estimation of density-dependence and to the capacity of a population to withstand entrainment and impingement. The direction of bias and extent of bias could be examined by further model studies. We believe the qualitative effect of the types of errors discussed in this report is to support an alternative hypothesis of much lower density-dependence (and higher sensitivity to entrainment and impingement) than results presented in the DEIS for the striped bass population. Our previous review suggested that a nomogram of results be presented in which entrainment and impingement effects are plotted versus varying degrees of density-dependence and fishing mortality rate (an example of such a presentation is shown in "Shad Assessment and Equilibrium Calculations", Deriso et al. 1999). Such a nomogram is essential to conveying the full range of uncertainty associated with prospective forecasts of striped bass responses to different levels of entrainment and impingement.
ESSA Technologies Ltd.
55                                ESSA Technologies Ltd.
 
Comments on the DEIS Striped Bass Analysis                                                COctober 20, 2000 References ASMFC. 1999. Atlantic States Fisheries Commission Striped Bass Technical Committee. 1999 Status of the Atlantic Striped Bass. 76 pp. draft.
Deriso, R., K. Hattala, and A. Kahnle. 1999. Hudson River Shad Assessment and Equilibrium Calculations: Revision of the 1995 Report to include data through 1997. Appendix VI-4-C In Draft Environmental Impact Statement for State Pollutant Discharge Elimination System Permits for Bowline Point, Indian Point 2&3, and Roseton Steam Electric Generating Stations. Central Hudson & Gas Electric Corp., Consolidated Edison Company of New York, Inc., New York Power Authority, Southern Energy New York. December 1999...,
Fabrizio, M.C. 1987. Contribution of Chesapeake Bay and Hudson River stocks of striped bass to Rhode Island coastal waters as estimated by isoelectric focusing of eye lens proteins. Trans. Am. Fish. Soc. 116:
588 - 593. Also see companion article, 116: 728-736.
Hilborn, RL 1999. Impacts of power plant mortality on Hudson River striped bass. Appendix VI-4-A In Draft Environmental Impact. Statement for State Pollutant Discharge Elimination System Permits for Bowline Point, Indian Point 2&3, and Roseton Steam Electric Generating Stations. Central Hudson & Gas Electric Corp., Consolidated Edison Company of New York, Inc., New York Power Authority, Southern Energy New York. December 1999.
SARC. 1998. 2 6 th Northeast Regional Stock Assessment Workshop of the Stock Assessment Review Committee. Consensus Summary of Assessments. Northeast Fisheries Science Center Reference Document 98-03. P170-223.
Smith, D.R., K.P. Burnham, D.M. Kahn, X. He, C.J. Goshorn, KIA. Hattala, and A. Kahnle. n.d.
Estimating Atlantic Striped Bass survival from tag-recoveries: assessment of bias due to tags recovered from live recaptures and application of model averaging. 42 pp. + figures.
ESSA Technologies Ltd.                              6
 
October 20, 2000                  Comments on the DEIS Striped Bass Analysis Ocoe0  00Cmet                          nteDI      Stie    BasAayi Appendix Striped Bass Tables 77 ESSA Technologies Ltd.
ESSA Technologies Ltd.
 
.Comments on the DEIS Striped Bass Analysis  October 20, 2000 Comments on the DEIS Striped Bass Analysis  October 20, 2000 8
ESSA Technologies Ltd.
ESSA Technologies Ltd.                    8
 
October 20, 2000                                                          Comments on the DEIS Striped Bass Analysis Table 1:      Enhanced number and weight (lbs) of striped bass killed in the bycatch of the commercial net fishery for American shad in the NY portion of the Hudson River Estuary. Source:
NYSDEC Bureau of Marine Resources, Hudson River Fisheries Unit.
Fixed Gear                          Drifted Gear Total Mean            Total                  Mean V.r                                          V V*lIJI II N~rnhpr      Wp~inht    Tnt*t    Nimhpr      Wi-inht V V*lIJl  II I
* 1      I*IIIIILI*I NijmhPr      Weight      Total 1980                7464            5.1      38174          12        5.1        60      7476      38234 1981                2580            5.4      13846          26        5.4        138      2606      13984 1982                -1361'-ý          4.7        6412        102        4.7        479        1463      6892 1983                2418            5.7      13846          78        5.7        447      2496      14292 1984              13392              6.4      85697          68        6.4        436      13461      86133 1985                4490            6.5      28976          259        6.5      1668      4749      30644 1986                2045            6.4      13054          162        6.4      1032      2206      14086 1987                5527            7.8      43380          289        7.8      2270        5816      45650 1988                5920            7.2      42544          320        7.2      2297        6240      44841 1989                9997            .8.0    79904          123        8.0        982      10120      80886 1990                8525            8.4      71624          198        8.4      1667      8724      73290 1991                5339            8.2      43577          296        8.2      2415        5635      45992 1992                7478            7.9      59129          387        7.9      3058        7864      62187 1993                3264            7.8      25492          32        7.8        249      3296      25741 1994                3205            7.1      22727          104        7.1        739      3309      23466 1995                5823            7.5      43514          24        7.5        176      5847      43690 1996                4695            7.2      33657          298        7.2      2133        4992      35790 1997                6029            7.6  .45762            14        7.6        104      6043      45866 Mean 87-97              5982            7.7      46483          189        7.7      1463      6171      47945 ESSA Technologies Ltd.
99                                ESSA Technologies Ltd.
 
Comments on the DEIS Striped Bass Analysis                                                                                        October 20, 2000 Table 2:        Estimated number and weight of striped bass killed in the recreational fishery in the NY portion of the Hudson River Estuary. Source: NYSDEC Bureau of Marine Resources, Hudson River Fisheries Unit.
Landings                                                      Bycatch Total
                                    .Mean                              Tota                        Mean
* Total Weight                        Weight                          Weight    Weight                          Weight
                                                                                                      'Ii.h,    Ilho~i                        Iilh./
V~a r          Kim amr            1h1V\                              1Ihk.      Klhimh -r                            Ki imh, br
                  = ,*,,,,=,*.]
                      *I              ,L,*6......................................."*                                1ltt~                            I 1980                    37          2.7                                    99        659          1.6  1068              696          1167 1981                    19        2.7                                    51        606          1.6    982            625          1033 1982                    27          2.7                                    71        629          1.6  1020              656          1090 1983                    41.        2.7                                109          669          1.6  1084              710          1193 1984                  395          2.7                            1048            1191          1.6  1930            1585          2978 1985                  144          2.7                                383            870          1.6  1410            1014          1793 1986                  114          3.0                                346            819          1.8  1501              932          1847 1987                  633          3.5                            2200              1426          2.1  2957            2059          5158 1988                  875          4.0                            3477              1630          2.3  3824            2505          7300 1989                2399            4.5                        10906                2593          2.7  6880            4992          17786 1990                1632          5.2                            8487            2156            3.0  6470            3788          14957 1991                  986          6.1                            6025              2477          2.9  7125            3463.        13150 1992                2285            7.7                        17576                1132          2.3  2606            3417          20182 1993                5119        11.9                        61090                  6066          2.4 14723          11185          75813 1994                8390          13.6                    113741                    4389          4.9 21552          12779          135294 1995                3536          12.0                      42337                  3646          3.5 12842            7182          55179 1996                8926          11.7                    104233                    2836          4.6  12966          11762          117198 1997              13314          11.7                    155467                    7491          46  34252          20805          189719 Mean 93-97              7857          12.2                        95374.                4885          4.0  19267          12743          114641 1997 data from creel survey conducted by Cornell Univ for NYSDEC 10 ESSA  Technologies Ltd.
ESSA Technologies  Ltd.                                                              10
 
Table 3:          Striped bass bycatch in American shad commercial gill net fishery in the Hudson River Estuary. Source: NYSDEC Bureau of Marine Resources, Hudson River Fisheries Unit.
Ttl  Total      AnnualI  average - FIXED GEAR number.          Annual total          Average              Week of Year Year      nf frins          r~trh Fffndt (a)          /f (h*              1.3      14    1 .9  16    *17  1 _  40    On  9)  99  9))
                                                                                                                                            ),
1980                26          178    717.36          0.25                              0.23  0.26  0.37 0.26  0.02  0.19 0.15 1981                24          134    822.50          0.16                        0.23  0.45  0.12  0.18 0.09  0.06  0.19 0.12 1982                37          239    1192.96          0.20                              0.25  0.20  0.23 0.17        0.15 1983                38          249    941.45          0.26                              0.12  0.43  0.17 0.21  0.39 1984                57        1185    1053.09            1.13                        0.00  1.17  1.67  1.09 0.54  0.04  0.00 1985                54          535    904.69          0.59                        0.62  1.06  0.55  0.49      0.69  0.18 0.60 0.00 0.00 1986                49          618    626.69          0.99                1.56    2.83  0.63  1.19  0.38 0.14  1.30  0.30 1987                49        1394    915.34            1.52                        6.14  2.34  1.59  2.15 0.57  0.60 1988                38        1412    754.25            1.87                        2.77  2.39  2.43  1.39 1.79  0.75 1989*                30        1919    537.48          3.57                        3.66  1.62  7.48  1.79 2.28 1990                23        1389    497.74          2.79                        3.11  3.47  1.78  1.50 1991                22        1305    526.57          2.48                        4.47  4.36  1.54  1.94 0.75 1992                33        2741    704.15          3.89                        5.46 10.14  3.15  3.00 3.18 1993*                  8        1402    159.27          8.80                                    10.91  7.04 1994*                  9        991    158.55          6.25                                      3.95 10.64 5.09  7.79, 1995*                10          940    251.22          3.74                              3.63  3.71  4.09 1996                19        2551    389.09          6.56                              8.96  8.84 14.06 2.59  2.08 1997                26        1246    509.44          2.45                              3.85  3.48  1.53 1.16 199__                            710      2S2 (          : Al                              IOR    191  1 7n
: a. YdA2 x Hr x 1OA-3
: b. Catch per unit effort
* Total catch and c/f are not representative of entire season, low sample size: 93-95
 
Comments on the DEIS Striped Bass Analysis                                                                          October 20, 2000 Comments on the DEIS Striped Bass Analysis                                                                          October 20, 2000 Table 4 (Part 1):                  Striped bass landings: harvest and bycatch kill (marine waters).                            Source:
NYSDEC Bureau of Marifie Resources, Hudson River Fisheries Unit.
1960        na            730800 1961        na            909700 1962        na            656600 1963        na            672800 1964        na            995000 1965        na            739600 1966        na          1050300 1967        na          1630100 1968        na          1550500 1969        na          1535100 1970        na          1338300 1971        na          1183600 1972        na            836200 1973        na          1741300 1974        na          1409000 1975        na          1179700 1976        na            850750 1977        na            766600 1978        na          1107900 1979        na            530931 1980        na            571989 1981        na            804743                                                41143      23397    169282 1982        na            465722                                                33575      21278    61438 1983        na            295587                                                45200      43731    275035 1984        na            540235                                                97558      57089    896779 1985        na            469040                                                80647      23107    210817
    *1986              0            0                                              151319;., 2-7477      33116.
1 987            0            0                                              268177      14191    278579 4 1988              0            0                                                94841      20230    348923 1989              0            0                                              378388      12388    236732 1990        11785        81870                                                289898      24799    505445      265099 1991        15064        105163        49506      158014                      811165      54502  1053601      756663    60177    300886 1992        20353        226611        65649      206445                    .844311      45162    921210      799149      56267  281335 1993        11182        109327        59537      189417.                    739566      74399  1479245      665167      54024  270120 1994        15216        169741        71414      205881                    1219932        87225  1974780    1132707      81062  405310 1995        43705        441277        113567      355527                    1313805      150276  3183795    1163529    78969    394845 1996#          39987        497684        112408      342332                    1811231      270938  3804527    1536648    121334  606670 1997 1998 NOTES na - not available                                                    + -Marine rec i        bycatch is estimated 1986-1989: moratorium in place                                        moratorium in 1986. as 8% (releases - poached)
          # - 1996 commercial and recreational data still preliminary gillnet bycatch mortality rate = 0.47 (Seagraves and Miller, 1989) pound net bycatch mortality rate = 0.05 H&L bycatch mortality rate = 0.08 (ASMFC)
Trawl bycatch mortality rate = 0.35 (Crecco, 1990)
Other nets bycatch mortaliy rate, assume worst case = gillnet = 0.47 12 ESSA  Technologies Ltd.
ESSA Technologies      Ltd.                                          12
 
October 20, 2000                                                                                    Comments on the DEIS Striped Bass Analysis Table 4 (Part 2):                        Striped bass landings: harvest and bycatch kill (Hudson River).                                              Source:
NYSDEC Bureau of Marine Resources, Hudson River Fisheries Unit.
Hi.d~nn Rivper      .      -
HRFU          HRFU          HRFU              HRFU          HRFU          HRFU          HF.. .i      ARFU          HRFU        . HRFU          HRFU Hudson        Hudson        Hudson            Hudson        Hudson        Hudson        Hudson      -ud comm" Hud Comm.          Hud Comm Hud Comm        Mean ec      . Rec            Rec.c              Rec          Rec      . R6e.          Rec          1had FlshervShiadýFisher    Shiad Fisherv.Shad Fishe" WI "
        .Total.Catch Landins.        Landings.:        Bycatch    . Bycatch    .:TotDead .. Tot Dead        3basis Harve
                                                                                                                        .        s.,... ve  Sbss byca Sbass...          t..
bsa.
NU M        . .      ........ W... h.&.                . N. unii h i-' .: Ih :
                                                                                      . ....                    'huriber._            __s    Number.      ýlbs        (ILb~s' 1960                                                                                                                34772        132900                                    3.82 1961                                                                                                                17934          70700                                    3.94 1962                                                                                                                11840          48100                                    4.06 1963                                                                                                                11165          46700                                    4.1f 1964                                                                                                                6856          29500                                    4.3(
1965                                                                                                                8298          36700                                    4.42 1966                                                                                                                9751          44300                                    4.54 1967                                                                                                                11708          54600                                    4.6E 1968                                                                                                                12710          60800                                    4.7E 1969                                                                                                                15743          77200                                    4.9C 1970                                                                                                                9136          45900                                    5.02 1971                                                                                                                4802          24700                                    5.14 1972                                                                                                                3400          17900                                    5.26 1973                                                                                                                12443          67000                                    5.3E 1974                                                                                                                5504          30300                                    5.5c 1975                                                                                                                  8210        46179                                    5.62 1976                                                                                                                27374        157271          3510      20167          5.75 1977                                                                                                                  3816        22381          3510      20589          5.87 1978                                                                                                                2374          14211          3510      21011          5.99 1979                                                                                                                  5662        34570          3510      21433          6.11 1980        8273            37                  99          659        1068            696        1167                      25885          7476      38234          7.05 1981        7592            19                  51          606          982            625        1033                      17938          2606      13984          6.48 1982        7891            27                  71          629        1020            656        1096                        2405        1463        6892        6.06 1983        8404            41                109            669        1084            710        1193                      13950          2496      14292          6.3c 1984        15281          395            1048            1191          1930            1585        2978                      54980        13461      86133          6.6C 198,        11015          144                383            870        1410            1014        1793                        2970        4749      30644          6.42 1986        10347          114                346            819        1501            932        1847                        1450        2206      14086          6.37 1987        18458          633            2200              1426          2957            2059        5158                        2150        5816      45650          7.16 1988        21250          875            3477              1630          3824            2505        7300                        .9080        6240      44841          7.5C 1986        34616        2399            10906              2593          6880            4992      17766                          1265        10120      80886          7.64 1990        28586        1632              8487            2156          6470            3788      14957                                      8724      73290          8.03 1991        32910          986            6025            2477          7125            3463      13150                                      5635      45992          8.24 1992        16612        2285            17576              1132          2606            3417      20182                                      7864      62187          7.33 1993        82923        5119            61090              6066        14723            11185      75813                                      3296      257.41        7.49 1994        64016        8390          113741              4389        21552            12779      135294                                      3309      23466          7.59 1995        50231        3536            42337              3646        12842            7182      55179                                      5847      43690          8.2G 1996#          44370        8926          104233              2836        12966            11762      117198                                      4992      35790          7.96 1997      106948        13314,        155467              7491        34252            20805      189719                                      6043      45866          7.59 1996 1997 rec catch from Bain et atsurvey                                                                  3ale of HR bass closed in 1976 - PCB 13                                              ESSA Technologies Ltd.
 
Review of the Assessment of Bay Anchovy Companion Report to Chapter 4 in Review of the Draft Environmental Impact Statement for SPDES Permits for Bowline Point 1 & 2 Indian Point 2 & 3, and Roseton 1 &2 Steam Electric Generating Stations A Report to the Parties to the Application Prepared for:
New York State Department of Environmental Conservation Division of Regulatory Affairs, 50 Wolf Road Albany,. New York, 12233-1750 Prepared by:
Ian Parnell and David Marmorek ESSA Technologies Ltd.
Suite 300, 1765 West 8th Avenue Vancouver, BC V6J 5C6 October 20, 2000
 
Citation:        Parnell, L and D.RI Marmorek. 2000. Review of the Assessment of Bay Anchovy.
Prepared by ESSA Technologies Ltd., Vancouver, BC, for NYSDEC, Albany, NY. 9 pp. Companion Report to Chapter 4 in Review of the Draft Environmental Impact Statement for SPDES Permits for the Bowline Point I & 2, Indian Point 2 & 3, and Roseton I & 2 Steam Electric Generating Stations. Report to the Parties to the Application. Prepared by ESSA Technologies Ltd., Richmond Hill, ON, for NYSDEC, Albany NY. 31 pp. + appendices.
Short Citation: Parnell, I. and D.R. Marmorek. 2000. Review of the Assessment of Bay Anchovy.
Companion Report to a Review of the DEIS for SPDES Permits for three Hudson River Generating Stations. Prepared by ESSA Technologies Ltd., Vancouver, BC, for NYSDEC, Albany, NY. 9 pp.
8 2000 ESSA Technologies Ltd.
This report has been provided in electronic form for review by the parties to the application for the Hudson River steam electric generating stations (Bowline, Indian Point and Roseton). Except for the express purposes of its review by the parties to the application, no part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from NYSDEC, Albany, NY.
 
October 20, 2000                                                                                                        Comments on the DEIS Bay Anchovy Analysis Table of Contents 1.0      SU M M A R Y ........................................................................................................................................................................      1
 
==2.0      INTRODUCTION==
.........................................................................................................................................................                      2 3.0      APPENDIX VI-4-D BAY ANCHOVY POPULATION MODELING ........................................................                                                                                    2 3.1    REVIEW OF APPENDIX VI-4-D ANALYSIS OF ENTRAINMENT EFFECTS ON BAY ANCHOVY IN THE HUDSON RIV E R.................................................................. I................................................................................................................ 2 3.1.1    Pro ductio n F oregone .............................................................................................................................................                  2 3.1.2    PredatoryD em and...................................................................................................................................................                  3 Assumed Age-structure of Striped Bass in Estuary ......................................................................................................                                    3 Extrapolation of Bluefish Density to River-wide Abundance ........................................................................................                                          3 Fraction of Bluefish Diet Composed of Bay Anchovy (information from Rose 1996, not presented in Appendix VI-4) .. 3 3.1.3 Comparing ProductionForegone and PredatoryDemand ......................................................................                                                                  4 3.1.4 Presentationof ProductionForegone and PredatoryDemand Results ..................................................                                                                        5 3.2 ENTRAINMENT EFFECTS ON DAILY BIOMASS OF BAY ANCHOVY .........................................................................                                                                6 3.2.1    Com m ents on A ssum p tions....................................................................................................................................                    7 3.2.2    Other Comments on Methods and Results .....................................................................................................                                          7 4.0      COMMENTS ON OTHER SECTIONS OF THE DEIS ................................                                                                                                                    7
: 4. CHAPTER V-G ENVIRONMENTAL SETrINQ BAY ANCHOVY .............. ...................................................................                                                            7 4.2    APPENDIXTO CHAPTER V- BAY ANCHOVY; ...............................................................................................................                                          8 5.0      R EFER EN CES ................................................................................................................................................................              9 List of Figures Figure 1:          Example: Partitioning of river-wide bay anchovy abundance between predation and entrainment in years of high and low anchovy abundance .............................................. 5 Figure 2:          Example comparison of results for production foregone and predatory demand incorporating information reported in the third technical workshop (ESSA 1995b) ......... 6 i                                                                        ESSA Technologies Ltd.
 
Comments on the DEIS Bay Anchovy Analysis    October 20, 2000 ii ESSA Technologies Ltd.
ESSA Technologies Ltd.                    ii
 
October 20, 2000                                                  Comments on the DEIS Bay Anchovy Analysis October 20, 2000                                                  Comments on the DEIS Bay Anchovy Analysis 1.0      Summary The bulk of our review focuses on the results of bay anchovy population modeling analyses in Appendix VI-4-D. We find the results speculative for the following reasons:
: 1. The underlying individual based model was developed to model bay anchovy from Chesapeake Bay (see Rose et al., in press).
: 2. Hudson River bay anchovy are modeled with Chesapeake Bay data (Rose 1996). Therefore, the results reflect the response of bay anchovy in Chesapeake Bay to entrainment.
: 3. The model is complex; many parameters could be adjusted to provide reasonable results.
: 4. Appendix VI-4-D neither presents nor discusses how sensitive the results are to model assumptions.
: 5. The model requires annual immigration of non-natal bay anchovy spawners to prevent it from crashing. This assumed immigration rate is not supported with scientific research or literature citations.
: 6. An exploratory analysis (Rose 1996) has been presented in the DEIS as a definitive assessment. The DEIS does not acknowledge the author's analytical caveats.
: 7. The analysis estimates production foregone using bay anchovy production estimates from the speculativemodeling and gear efficiency estimates for a different species of anchovy.
: 8. The analysis greatly overestimates the predatory demand of striped bass and bluefish by : 1) using an incorrect striped bass age-structure, 2) applying the highest observed values for the contribution of bay anchovy to the diet of striped bass, and 3) expanding near-shore striped bass and bluefish densities using river-wide volume.
: 9. The analysis compares "production foregone" and "predatory demand" without acknowledging that the relationship between the number of anchovy removed from the system through entrainment and the needs of predators may vary over time.
: 10. The analysis does not discuss the sensitivity of production foregone and predatory demand to underlying assumptions such as age structure, diet, gear efficiencies and density expansions.
Sensitivity analyses should be conducted to address the influence of underlying assumptions.
: 11. The analysis of entrainment effects on the daily biomass of bay anchovy attempts to address point 10, but the assumption that all natural mortality is due to predation overestimates true predation. For example, the fact that spawner immigration is required in the model to avoid population extinction may mean that mortality is set too high elsewhere.
Chapter V-G of the DEIS presents an analysis of ecological factors that may cause variation in bay anchovy abundance. This analysis is based on DEIS Appendix.V - Bay Anchovy. The analysis presented in that Appendix does not provide an analytical framework within which we can assess its validity. We find the methods and results tenuous and feel the results do not support the discussion in Chapter V-G.
Chapter V-G also assumes that entrainment of bay anchovy is offset by immigration from a larger coastal stock, but presents no evidence that supports this assumption. Chapter V-G does not consider bluefish predation on bay anchovy, but Appendix VI-4-D does.
I                                ESSA Technologies Ltd.
 
Comments on the DEIS Bay Anchovy Analysis                                                  October 20, 2000 2.0      Introduction This report presents our comments on bay anchovy material in the Draft Environmental Impact Statement submitted to NYSDEC in December of 1999 (DEIS 1999). We reviewed these sections: Chapter V-G, Appendix V-G, Appendix to ChapterV - Bay Anchovy, and Appendix VI-4-D. The bulk of this review focuses on the modeling in Appendix VI-4-D. We end with brief comments on the other sections.
3.0      Appendix VI-4-D Bay Anchovy Population Modeling Appendix VI-4-D is the most recent draft of the bay anchovy population modeling results. We. also used two supporting documents: 1) Application of COMPECH Models to Bay Anchovy Entrainment in the Hudson River (Rose 1996); and 2) Simulating Bay Anchovy Population Dynamics in the Mesohaline Region of Chesapeake Bay Using an Individual-based Approach (Rose et aL in press).
3.1      REVIEW OF APPENDIX VI-4-D ANALYSIS OF ENTRAINMENT EFFECTS ON BAY ANCHOVY INTHE HUDSON RIVER Appendix VI-4-D presents the results of two analyses:
        " Comparison of production foregone due to entrainment and predatory demand for bay anchovy.
        " Changes in biomass and consumption as a result of entrainment.
3.1.1    ProductionForegone The analysis calculates production foregone by multiplying the production of bay anchovy during the first year of life by the number of bay anchovies that die from entrainment. The production data come from the bay anchovy population modeling (Rose 1996). The number of bay anchovy that die is estimated from:
        " River-wide abundance and the fraction of river-wide abundance entrained
        " River-wide abundance is estimated from river-wide average sample densities from Longitudinal River Survey (LRS) and life stage specific sampling gear efficiencies.
Life stage specific gear efficiencies are estimated in three ways:
: 1. Post-yolk-sac-larvae (PYSL) life stage: Derived from estimates of sampling gear efficiency for sampling Hawaiian anchovy.
: 2. Eggs and yolk-sac-larvae (YSL) life stages: Gear efficiency values that caused the ratios of egg/YSL and YSL/PYSL abundance from the LRS data to match ratios from the modeling results of Rose (1996).
: 3. Juvenile life stage: Estimated as the reciprocal of the relative probability of capture (RPC) factor.
The information presented in Appendix-VI-D does not allow us to assess how reasonable the estimates of gear efficiency are for the different life stages. However, since these are unrelated methods for estimating gear efficiency, it seems appropriate to consider these estimates speculative.
ESSA Technologies Ltd.                                2
 
October 20, 2000                                                  Comments on the DEIS Bay Anchovy Analysis The modeling of bay anchovy that produced the production information is also speculative (Rose 1996).
Appendix VI-4 provides only a single estimate of production foregone. Given the uncertainty in the estimation of gear efficiencies and the speculative modeling results used to create this estimate, we recommend a :thorough sensitivity analysis of the model and alternative approaches to estimating gear efficiencies to explore changes in production foregone with changes in assumptions.
3.1.2    PredatoryDemand Assumed Age-structure of Striped Bass in Estuary A major assumption of the striped bass predatory demand analyses is that bass remain in the Hudson River estuary and feed on bay anchovy until Age 5 (see pg. 4, bottom Appendix VI-4 and Rose 1996).
Information in other sections of the DEIS contradicts this assumption. Many young-of-year (YOY) striped bass move to the southern extreme of the estuary at the end of their first summer (DEIS Appendix V, pg. V-71). At Age 2 or 3, striped bass leave Atlantic coast estuaries (DEIS Appendix V, pg. V-71).
The number of striped bass age-classes assumed to be present in the Hudson River influenced the results of this analysis (Rose 1996, pg. 12). Modeling a larger number of age-classes (including Ages 6 through
: 10) increased total consumption by 86% (from 224.1mg dw/m3/y to 418.2mg dw/m3/y). No results are presented for model runs with fewer than five striped bass age-classes; however, a reasonable hypothesis is that using fewer age-classes will reduce total consumption and therefore anchovy consumption.
This suggests an overestimate of the predatory demand of striped bass. A potential sensitivity analysis would be to repeat this analysis including only Age 2 to 3 striped bass age classes.
Extrapolation of Bluefish Density to River-wide Abundance Rose (1996) assumed the estimated densities of striped bass and bluefish are river-wide (pg. 5, last paragraph). This assumption will overestimate predatory demand for at least two reasons:
: 1. The distribution of bluefish in the Hudson River estuary is skewed towards the lower regions.
Almost the entire distribution occurs between Yonkers and West point (Appendix V, Figure V-88 spatial distribution of bluefish by life stage). Rose (1996) used the total-river volume from Albany to the Battery to expand bluefish density to total abundance. This will greatly over estimate the abundance of bluefish.
: 2. Rose. (1996) used nearshore bluefish densities derived from beach seine surveys. Bluefish prefer to feed in shallow waters (Buckel and Conover, in press, as cited in Table 6 of Rose 1996) which suggests that bluefish density would decrease further from shore. Expanding densities obtained from sampling in preferred habitat by total-river volume will overestimate the river-wide abundance of bluefish.
Bluefish predatory demand for bay anchovy therefore appears to be greatly overestimated.
Fraction of Bluefish Diet Composed of Bay Anchovy (information from Rose 1996, not presented in Appendix VI-4)
The fraction of daily consumption that was assumed to be anchovy for the spring-spawned bluefish cohort decreased as a step function with increasing bluefish length (from 50% over 60 mm to 150 mm in length to 15% for fish over 150 mm in length, Figure 4 of Rose 1996). A constant 50% was assumed for the summer-spawned cohort.
3                                ESSA Technologies Ltd.
 
Comments on the DEIS Bay Anchovy Analysis                                                    October 20,2000 Rose (1996) notes: "As with striped bass, the assumed fraction of bluefish diet that is anchovy is set near the highest values reported, rather than to average values, to err on the side of overestimating predatory demand." Appendix VI-4 does not mention this, but it should because it has implications for the comparison of predatory demand to the estimated impacts of entrainment on bay anchovy.
Bluefish predatory demand s§hould be estimated for a range of assumptions about consumption. For example, modebrs could use a value more representative of the most common value for % diet made up of bay anchovy, such as the median, or geometric mean for comparison with .the results of Rose (1996).
3.1.3    ComparingProductionForegone and PredatoryDemand Appendix VI-4 compares production foregone of bay anchovy due to entrainment to predatory demand of striped bass and bluefish for bay anchovy.                                  A.
Production foregone of entrained bay anchovy is compared to predatory demand. The production foregone analysis is analogous to the "bottom up" approach for estimating the impact of entrainment discussed at previous technical workshops (e.g., ESSA 1995ab). The predatory demand analysis (Rose 1996) is analogous to the "top down" approach also discussed at those workshops. These approaches were suggested because there were insufficient data for developing bay anchovy population models.
The two modeling procedures do not influence each other. They are therefore not informative about how the partitioning of bay anchovy between predators and entrainment might vary with between-year and within-year variation in entrainment mortality, bay anchovy abundance, or the abundance of anchovy predators.
This is an important missing link in the analysis because under plausible conditions the size of the buffer between entrainment and predators' requirements may vary with anchovy abundance (e.g., Figure 1).
That is, entrainment might impact predator populations by reducing prey availability.
Rose (1996) does discuss this:
Model results suggest that reduced anchovy in the Hudson River would not necessarily hinder striped bass or bluefish growth under average to low bass or bluefish densities, but could hinder bluefish growth under high bluefish year-class densities. (Rose 1996, pg.
12).
Potential bluefish predatory demand on anchovy was a significant fraction of anchovy production (- 44%) under years of high bluefish river densities (4X 1992/1993 initial densities). When alternative forage fish abundances are low, anchovies could comprise a larger fraction of bluefish diets than assumed herein. (Rose 1996, pg. 12).
The findings of Buckel et al.(1999) support the hypothesis that the prey preferences of Hudson River bluefish change with changes in prey abundance; bluefish become more selective for striped bass under high striped bass densities. The same pattern appeared for other species. Buckel et al.(1999) could not estimate bluefish selectivity for bay anchovy due to poor sampling of earlier life stages in beach seines.
4 ESSA  Technologies Ltd.
ESSA Technologies  Ltd.                                4
 
October 20, 2000                                                  Comments on the DEIS Bay Anchovy Analysis October 20, 2000                                                  Comments on the DEIS Bay Anchovy Analysis 1
o *0.8
        =-    0.6
        >%M:0.4 M    0.2 0
High                                      Low Total anchovy abundance U Predators' requirements      QOther        OPower plant losses Figure 1:      Example: Partitioning of river-wide bay anchovy abundance between predation and entrainment in years of high and low anchovy abundance.
3.1.4    Presentationof ProductionForegone and PredatoryDemand Results We suggest that the Applicants conduct sensitivity analyses of model assumptions and parameters to explore the full range of possible outcomes of the anchovy population and predatory demand models. The range of potential gear efficiency estimates should also be explored. A single illustration could present the range of outcomes for each analysis (e.g., Figure 2). If the range in production foregone overlaps with the range of predatory demand then there is potential for entrainment to interfere with the predators' food supply.
We note that the results for production foregone presented in Appendix VI-4-D are different than the calculations of production foregone presented at the third technical workshop (ESSA 1995b). At that workshop, Doug Heimbuch calculated production foregone for bay anchovy using results from Ken Rose.
He estimated a range of 82,000 - 7,220,000 kg per year, depending on what he assumed for gear efficiency, but the workshop report states that a more likely range was 500,000 to 1,500,000 kg per year.
Figure 2 shows that these estimates overlap with the DEIS predatory demand estimates. The missing link to assess the importance of this overlap is an estimate of total bay anchovy abundance.
5                                  ESSA Technologies Ltd.
 
Comments on the DEIS Bay Anchovy Analysis                                                  October 20, 2000 8,000,000 7,0001000 6,000,000 5,000,000 4,000,000 3,000,000 2,000,000 0~
PF-        PF-        PF          SB          BF          BF wkshp        wkshp                              ACT 2      ACT 3 3 R1        3 R2 Category Figure 2:      Example comparison of results for production foregone and predatory demand incorporating information reported in the third technical workshop (ESSA 1995b). The data presented are from Table 8 of Appendix VI-4-D and from estimates of production foregone calculated by Doug Heimbuch (ESSA 1995b, pg., 26). Production foregone and striped bass predatory demand are only single values in Appendix VI-4-D. ESSA 1995b provides a range of estimates for production foregone. PF wkshp 3 R1 and PF wkshp 3 R2 =
production foregone due to entrainment in ESSA 1995b. PF = Production foregone due to entrainment in Appendix VI-4, SB = .striped bass predatory demand, BF ACT 2 = bluefish predatory demand under an ACT value of 2 for high and low initial densities, BF ACT 3 =
bluefish predatory demand under an ACT value of 3 for high and low initial densities.
3.2      ENTRAINMENT EFFECTS ON DAILY BIOMASS OF BAY ANCHOVY This is the second major analysis in Appendix VI-4-D. Unlike the comparison of production foregone and predatory demand, it does consider the coincident impacts of predation and entrainment mortality on bay anchovy. The results, however, must be considered in the context of the speculative nature of the modeling. It seems premature to use these results to make inferences about the relative impact of entrainment and predation on Hudson River bay anchovy biomass.
Appendix VI-4-D states the following assumptions (pg. 15):
: 1. The IBM analysis based primarily on Chesapeake Bay data is a reasonable representation of conditions in the Hudson River estuary.
: 2. The risk of entrainment applies equally across the vulnerable life stages in each run.
: 3. Since under baseline conditions mortality due to starvation was negligible (Rose 1996), all natural mortality is assumed to be due to predation.
: 4. Bay anchovy predators do not switch their foraging preferences and tactics as abundance of anchovy changes, i.e., anchovy are consumed in proportion to their abundance.
*ESSA Technologies Ltd.                                6
 
October 20, 2000                                                    Comments on the DEIS Bay Anchovy Analysis 3.2.1    Comments on Assumptions Assumption 1: Appendix VI-4-D presents no evidence to support this assumption.
Assumption 2: Schultz et al.(1999) studied the distribution of anchovy larvae in the Hudson River estuary in response to tidal-stream transport. More up-to-date research (after 1996) like this may help to better define the distribution of bay anchovy life stages and consequently their relative vulnerability to entrainment.
Assumption 3. Rose et al. (in press) note that the Chesapeake Bay bay anchovy model crashed without immigration of non-natal adults. Immigration therefore compensates for mortality rates that are too high.
This suggests that assigning all natural mortality to predation will overestimate predator consumption.
Assumption 4: Buckel et al. (1999) demonstrated prey switching behavior in bluefish feeding in the Hudson River estuary. At high striped bass densities early in the season, bluefish selected striped bass. As the abundance of bay anchovy increased, bluefish increased consumption of bay anchovy. This suggests that assumption 4 above might overestimate predation upon bay anchovy at low abundances and therefore the buffer may be larger than suggested by Figure 1.
3.2.2    Other Comments on Methods and Resufts It is not clear from the text whether this analysis uses the base-line or Maximum Compensatory Potential version (see below) of the bay anchovy model.
Figure 6 shows that base-line river biomass is less than base-line consumed biomass early in the year (before early July). Can this be correct? Are the predators eating bay anchovy from ocean sources?
Given the speculative nature of the modeling, comments about the relationship between the conditional mortality rate and the modeled mortality should be considered tenuous.
Buckel et al. (1999) cite Boreman and Goodyear (1988) and say that entrainment mortality of the early life stages of bay anchovy is exceedingly high (35-79% of the standing stock).
4.0      Comments on other sections of the DEIS 4.1      CHAPTER    V-G ENVIRONMENTAL SETTING, BAY ANCHOVY Chapter V-G first presents the general life history of bay anchovy and then discusses ecological and anthropogenic factors that influence bay anchovy abundance.
Ecological effects:
Chapter V-G discusses the impact of predation by post-yolk-sac-larvae (PYSL) and young-of-year (YOY) striped bass and competition with Atlantic tomcod larvae on the abundance of bay anchovy. We think this discussion relies on the analysis in "Appendix to Chapter V - Bay Anchovy", though that analysis is not cited in Chapter V-G. We believe the results of the "Appendix to Chapter V. - Bay Anchovy" analysis to be tenuous (see Section below) and therefore any discussion based upon it to be speculative.
7                                  ESSA Technologies Ltd.
 
Comments on the DEIS Bay Anchovy Analysis                                                    October 20, 2000 Bluefish predation is not discussed in Chapter V-G, but it is discussed in Appendix VI-4-D. We do not know the reason for this discrepancy.
Water withdrawal effects:
This section of Chapter V-G discusses the effect of impingement and entrainment on bay anchovy. The analysis assumes bay anchovy of the Hudson River are part of a larger coastal population and that while entrainment and impingement might have a short-term impact on the local anchovy population, coastal movement replaces this loss quickly. We disagree. First, the DEIS cites no scientific evidence that supports this assumption for Hudson River bay anchovy. Second, even if immigration occurs, it will only mask the'loss, it will not compensate for the potential ecological impacts of reduced coastwide anchovy abundance. We feel this analysis will benefit from explicit consideration of the production foregone due to impingement and entrainment. We discuss bay anchovy production foregone further in our review of Appendix VI-4-D in Section 3 of this report.
4.2      APPENDIX TO CHAPTER V - BAY ANCHOVY "Appendix to Chapter V - Bay Anchovy" presents an analysis of two ecological factors hypothesized to influence the abundance of bay anchovy: 1) competition for resources with juvenile Atlantic tomcod, and
: 2) predation by striped bass. The analysis represents these two factors with the time-series of Atlantic tomcod egg deposition and striped bass YOY abundance (respectively), comparing annual variation in these factors with annual variation in the abundance of bay anchovy YOY.
The analysis also accounts for changes in estuary carrying capacity due to improved secondary sewage treatment by partitioning the tomcod time series into before and after time periods: 1988-1990 and 1991-1997 respectively.
We found the analysis difficult to follow and unconvincing. It assumes the hypotheses about competition, predation and carrying capacity change are correct and estimates effects without laying out a rational statistical basis for assessing whether the results make sense. For example, it does not present the underlying model, discuss the statistical uncertainty of the data, cite relevant literature, or refer to any previous DEIS work that might lend support to the approach taken (e.g., previous technical workshops).
The results of this analysis appear to form the basis for the discussion of ecological impacts in Chapter V-G. Therefore, we feel that the rationale for this analysis needs to be better documented to allow more rigorous evaluation.
ESSA Technologies Ltd.                                8
 
October 20, 26000                                              Comments on the DEIS Bay Anchovy Analysis 5.0      References DEIS. 1999. Draft Environmental Impact Statement, For State Pollutant Discharge Elimination System Permits for Bowline Point, Indian Point 2&3, and Roseton Steam Electric Generating Stations. Central Hudson & Gas Electric Corp., Consolidated Edison Company of New York, Inc., New York Power Authority, Southern Energy New York. December 1999.
Buckel, J.A., D.O. Conover, N.D. Steinberg, K.A. McKown. 1999. Impact of Age-0 bluefish (Pomatomus saltatrixs) predation on Age-0 fishes in the Hudson River estuary; evidence for density-dependent loss of juvenile striped bass (forone saxatalis). Canadian Journal of Fisheries and Aquatic Sciences, 56: 275-287.
ESSA. 1995a. Second technical workshop to resolve issues regarding the completion of the Draft EIS for Bowline, Roseton, and Indian Point 2 and 3 electric generating stations. Prepared by ESSA Technologies Ltd. March 27, 1995.
ESSA. 1995b. Third technical workshop for the completion of the draft EIS for Bowline, Roseton, and Indian Point 2 and 3 electric generating stations of the Hudson River. Prepared by ESSA Technologies Ltd. October 17, 1995.
Rose, K.A. 1996. Application of COMPECH models to bay anchovy. entrainment in the Hudson River.
Rose, K.A., J.LI. Cowan, M.E. Clark, E.D. Houde, and S. Wang. (in press). Simulating bay anchovy dynamics in the mesohaline region of.Chesapeake Bay using an individual-based approach.
Schultz, E.T., R.K. Cowen, K.M.M. Lwiza, and A.M. Gospodarek. 1999. Explaining advection: do larval bay anchovy (Anchoa mitchilli) show selective tidal-stream transport? ICES J. Mar. Sci. 56: 000-000.
99 ESSA Technologies Ltd.
ESSA Technologies Ltd.
 
Review of the Assessment of Atlantic Tomcod Companion Report to Chapter 3 in Review of the Draft Environmental Impact Statement for SPDES Permits for Bowline Point 1 &2 Indian Point 2 &.3, and Roseton 1 &2 Steam Electric Generating Stations A Report to the Parties to the Application Prepared for:
New York State Department of Environmental Conservation Division of Regulatory Affairs, 50 Wolf Road Albany, New York, .12233-1750 Prepared by:
Ian Parnell and David Marmorek ESSA Technologies Ltd.
Suite 300, 1765 West 8th Avenue Vancouver, BC V6J 5C6 and Rick Deriso Scripps Institution of Oceanography La Jolla, Ca 92093 October 20, 2000
 
Citation:        Parnell, I., D.R. Marmorek, and R.B. Deriso. 2000. Review of the Assessment of Atlantic Tomcod. Prepared by ESSA Technologies Ltd., Vancouver, BC, for NYSDEC, Albany, NY. 11 pp. + appendix. Companion Report to Chapter 3 in Review of the Draft Environmental Impact Statement for SPDES Permits for the Bowline Point I & 2, Indian Point 2 & 3, and Roseton 1 & 2 Steam Electric Generating Stations.
Report to the Parties to the Application. Prepared by ESSA Technologies Ltd.,
Richmond Hill, ON, for NYSDEC, Albany NY. 31 pp + appendices.
Short Citation: Parnell, I., D.R. Marmorek, and R.B. Deriso. 2000. Review of the Assessment of Atlantic Tomcod. Companion Report to a Review of the DEIS for SPDES Permits for three Hudson River Generating Stations. Prepared by ESSA Technologies Ltd.,
Vancouver, BC, for NYSDEC, Albany, NY. 1I pp. + appendix.
8 2000 ESSA Technologies Ltd.
This report has been provided in electronic form for review by the parties to the application for the Hudson River steam electric generating stations (Bowline, Indian Point and Roseton). Except for the express purposes of its review by the parties to the application, no part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from NYSDEC, Albany, NY.
 
October 20, 2000                                                                                                                      Comments on the DEIS Tomcod Analysis Table of Contents 1.0       
 
==SUMMARY==
..........................................................................................................................................................                                          1..........
I
 
==2.0        INTRODUCTION==
...........................................................................................................................................................                                    2 3.0        POPULATION MODELING (APPENDIX VI-4-B) ............................................................................................                                                                          2 3.1    STRENGTH OF DENSITY DEPENDENCE ..............................................................................................................................                                                2 3.2    T IMING O F DENSITY DEPENDENCE ..................................................................................................................................                                            3 3.2.1    Inconsistentcarryingcapacity hypotheses .......................................................................................................                                                        5 M ixing contrary hypotheses ......                                  .,.      .          ......................................................................................................              5 Imp licatio ns ........................................................................................................................              . ....................................    .......... 5 3.2.2    Uncertainty in D ata S ources.................................................................................................................................                                        9 Imp lications ..........................................................................................................................................................................                    9 3.3    ISSUES RA ISED PREV IOU SLY .............................. ............................... :..................... ............................ .............................                                9 4.0        COMMENTS ON OTHER SECTIONS OF THE DEIS                                                                            .............
                                                                                                                                        ........................                                                      10 4.1    COMMENTS ON CHAPTER V-D-2-C (ENVIRONMENTAL SETTING) AND APPENDIX V-3-C (SAMPLING P RO G RA M) ...................... ......................................................................................................................................                                  10 4.2    CHANGES IN CARRYING CAPACITY FOR TOMCOD ..................................................................................................                                                                  10
 
==5.0        REFERENCES==
...........................................................................................................................................................                                      1I APPENDIX .......................................................................            ........ ..........................................................      ;....... .................................. 13 T IM ING OF ENTRA IN MENT .........................................................................................................................................................                                15 INSTANTANEOUS NATURAL MORTALITY RATE................................................................................................................                                                              15 F ISH IN G M O R TALITY.................................................................................................................................................................                          16 List of Tables Table 1:        Correlations between time-series data presented in Table 2 of DEIS Appendix VI-4-B .......... 3 Table 2:        Pearson correlation comparisons for data in Table 9 of DEIS Appendix V-3-C vs. data from Figures 3 and 4 of the Hilborn and Read analysis (DEIS Appendix VI-4-B) ..................... 6 Table Al: Controls for the "ricker-eq" equilibrium model (Cells B13 to B16) ................................. 15 List of Figures Figure 1: Eggs/ezero vs. Entrainment mortality.............................................                                                                                                                            4 Figure 2: Plot of PYSL/Juvenile index vs. estimated egg deposition ............................................... 7 Figure 3: Plot of Age I recruit vs. PYSL/Juvenile index ............................................................... 8 i                                                                        ESSA Technologies Ltd.
 
Comments on the DEIS Tomcod Analysis    October 20, 2000
                                                        /
ii ESSA Technologies Ltd.
ESSA Technologies Ltd.              ii
 
October 20, 2000                                                      Comments on the DEIS Tomcod Analysis 1.0      Summary Our review of the Atlantic tomcod population modeling analysis in DEIS Appendix V174-B focused on the quality and amount of data used in modeling, modeling assumptions, and whether the modeling analysis addressed issues raised in previous reviews and workshops. Our comments in summary are:
: 1. Strength of density dependence:
* There are too few data points to develop a reliable equilibrium model. For example, we could use the data to argue for little or no density dependence in the life of the tomcod. Additionally, the negative correlation between the. Age 1 and Age 2 indices is not consistent with the positive correlation between the eggs and Age 1 indices. This result suggests there are major measurement errors in the indices of abundance. Measurement errors can cause the appearance of density dependence when there is none.
0    We conclude that we do not know what the consequences of entrainment and impingement were (or will be) for the tomcod population.
: 2. Timing of density dependence:
* The DEIS analysis assumes all entrainment occurs prior to density dependence. However, we find the analysis overstates support for the hypothesis that all entrainment occurs before density dependence. The DEIS tomcod model shows that the resilience of the tomcod population to entrainment declines as the proportion of entrainment occurring after density dependence increases.
: 3. Inconsistent carrying capacity hypotheses:
* The DEIS analysis applies inconsistent logic. It estimates the strength of density dependence using data consistent with the hypothesis that the carrying capacity for tomcod changed after 1990 (post-1990 data only), but estimates the timing of density dependence using data consistent with a hypothesis that carrying capacity did not change (data from 1976 to 1997). The DEIS should use the same data set for both purposes.
Our own analysis suggests that conditions did change after 1990. Using post-1990 data alone (to estimate both carrying capacity and timing of density dependence) considerably weakens support for the DEIS hypothesis that density dependence occurs between the post-yolk-sac-larvae (PYSL) and Age 1 life stages. This result implies that under post-1990 conditions the Atlantic tomcod population may be more vulnerable to the effects of entrainment than Appendix VI-4-B indicates.
: 4. Uncertainty in data sources:
a    We found discrepancies between the data presented in Appendix VI-4-13 and Table 9 of Appendix V-3-C. We cannot identify the source of the four years of pre-1988 data used in the analysis.
Using the Appendix VI-4-B data implies less of a difference in conditions between the pre-1991 and post- 1990 periods.
: 5. Issues raised previously:
* The analysis does not address tomcod analyses recommended in previous technical reviews.
These recommended analyses included assessing the magnitude of fishing pressure, natural and power plant temperature effects, and the effects of changes in flow and nutrients on juvenile tomcod growth and survival. Some of these assumptions could significantly affect the analysis conclusions from the analysis, in particular the magnitude of fishing pressure.
I                                ESSA Technologies Ltd.
 
Comments on the DEIS Tomcod Analysis                                                      October 20, 2000
: 6. Comments on other sections of the DEIS:
We reviewed other tomcod related sections of the DEIS. We present our brief comments on these DEIS sections at the end of this report.
2.0      Introduction Our review covers the following sections of the new Draft Environmental Impact Statement for State Pollutant Discharge Elimination System Permits for Bowline Point, Indian Point 2&3, and Roseton Steam Electric Generating Stations (DEIS 1999): Chapter V-D-2-C, Appendix V-3-C, Appendix to Chapter V -
Bay Anchovy, and: Appendix VI-4-B. The bulk of our review concerns the populations modeling analysis in Appendix VI-4-B. In our review of this section we look in detail at the modeling assumptions, include some reanalysis of data presented in the DEIS, and reiterate some concerns raised previously that have not been addressed. We place our brief comments on other DEIS sections in the last section of this report.
3.0      Population Modeling (Appendix VI-4-B)
Appendix VI-4-B presents the most recent Hudson River Atlantic tomcod modeling analysis. We saw a previous draft of this analysis (Hilbom and Read October 6, 1999 revision) and the model spreadsheet.
The documents that describe these two analyses do not differ, except that edits previously visible have now been incorporated into the text.
The complexity. of the modeling approach has been reduced substantially since 1993. The original Atlantic tomcod modeling analysis in Appendix VI-4 completed in 1993 used more data and included a Bayesian decision analysis. The current analysis employs a reduced data set and a simpler equilibrium modeling approach to make inferences about the impact of entrainment on Hudson River Atlantic tomcod equilibrium egg deposition.
For our review of population modeling, we considered the quality and amount of data used in modeling, modeling assumptions, and whether the analysis addressed issues raised in previous reviews and workshops.
3.1      STRENGTH OF DENSITY DEPENDENCE We do not believe that seven (7) data points provide enough information to produce reliable equilibrium calculations. The authors admit this on page 1, second paragraph of Appendix VI-4-B. A problem is that the analysis rests largely on the negative correlation between eggs and Age I indices. Fitting the Ricker stock-recruitment relationship to these data suggests strong density dependence. However, the same conclusion about density-dependence does not show up in the eggs vs. Age 2 indices relationship. We calculated some correlations using the data in Table 2 of Appendix VI-4-B to illustrate this point (Table I of this report, below).
ESSA Technologies Ud.                                2
 
October 20, 2000                                                              Comments on the DEIS Tomcod Analysis Table 1:        Correlations between time-series data presented in Table 2 of DEIS Appendix VI-4-B.
Correlation                  Variables*            Number of Data Points 0.389                    eggs vs pysl                      7 0.168              pysl/juv vs Age 2                        6 0.290                  eggs vs Age 2                        6
                            -0.855              pysl/juv vs Age 1                      6
                            -0.477                Age I vs Age 2                        6 Table 1 shows that we could just as well argue that the positive correlations between eggs and Age 2 and between PYSL/Juv and Age 2 suggest little or no density dependence in the life of tomcod. The authors argue as such basedonitheir visual examination of the relationship between their egg and PYSL/Juv index (pg. 1 of Appendix VI-4-B, second paragraph). We doubt that conclusion just as we doubt theirs, but it shows the risks of basing an analysis on only a few data points.
We are puzzled by the negative correlation between Age I and Age 2. That correlation suggests there are major measurement errors in the indices of abundance. It could well be that the data are so fraught with measurement error the analysis is simply an exploration of the properties of gross errors. Errors in measurement can create the appearance of density dependence when there is none (e.g., pg. 289 in Hilborn and Walters 1992).          P We conclude that we do not know what the consequences of entrainment and impingement were (or will be) for the tomcod population.
3.2      TIMING OF DENSITY DEPENDENCE The analysis assumes all entrainment occurs prior to density dependence. The resilience of the index of entrainment' to entrainment mortality declines as the proportion of entrainment occurring after density dependence increases (Figure 1, below). Therefore, we evaluated the evidence for the timing of density dependence in Appendix VI-4-B.
The analysis interprets the positive "correlation" between the egg and PYSL life stage to indicate no density dependence and the negative "correlation" between PYSL vs. Age- 1 life stage to indicate density dependence. Since most entrainment occurs during the egg-to-PYSL life stage, entrainment occurs before density dependence. However, we found two additional problems that affect the analysis of the timing of density dependence: 1) inconsistent hypotheses about changes in carrying capacity; and 2) data source uncertainty.
'The index of impact entrainment is the ratio of equilibrium egg deposition under entrainment to equilibrium egg deposition under no entrainment (eggs/ezero) 3                                    ESSA Technologies Ltd.
 
Comments on the DEIS Tomcod Analysis                                                                                                      October 20, 2000
                                                                                                                                                          /
A) 22%        29%
1.7 0,
2 1.3 1K  "        f Qý0.9-0.7 0.5 0.3                                                                                                          ^^
0.U0          0.10            0. 0            U0. 0            U.4U            U. U            U.6U Entrainment Steepness values:          I -+-
I
                                                        .5    -    0.7  ~-1&'  10    -+( 15        -*1.7          ýý- 2.0    I B) 22%        29%
1.7 1.5 2  1.3 N, 1.1 I-I NK    _W        1K        Itt    1P        Wt        Wt    9        X 0.7 0.5 0.3 0., 00        0.10            0.20            0.30              0.40            0.50            0.60 Entrainment Steepness values:          1 -+-0.5        -00.7        -*1.0        -- ('1.5 -*-1.7              "---2.0I C) 22%        29%
1.7 1.5 2  1.3        _  _ _  _ _      _  _  __                    _  _    _    _  _    _  _    _  _    _      _
1.K 0' 0.7 0.50.                                                    _  _  _    _  _  _    _  _    _  _  _  _
0.0  .o00    00                    .          0o0                CIO 0.50            .0.60              0.0 Entrainment Steepness values:              0.5        "--O0.7        -*-1.0        -)-- 1.5      "    1.7      "    2.0 Figure 1:    Eggs/ezero vs. Entrainment mortality: A) all entrainment before density-dependence; B) 50% entrainment after density-dependence; and C) all entrainment after density-dependence.
The vertical lines (22% and 29%) indicate the range of average annual entrainment mortality rate used in modeling.
4 ESSA Technologies Ltd.
ESSA Technologies Ltd.                                                    4
 
October 20, 2000                                                      Comments on the DEIS Tomcod Analysis 3.2,1    Inconsistent carryingcapacity hypotheses Mixing contrary hypotheses The analysis rests on two key elements: 1) the strength of density dependence, and 2) the timing of density dependence relative to entrainment. Steepness (h) represents the strength of density dependence.
The analysis estimates h by fitting a Ricker stock-recruitment curve to tomcod Age 1 recruitment and egg deposition data for the period 1991 to 1997, but does not provide the logic for selecting this time period.
We were puzzled because the DEIS states that the best time series of tomcod data is from 1988 to 1997 (DEIS, Appendix V-C). However, we infer from information in other DEIS sections that the 1991-1997 data subset represents a period of improved water quality conditions in the estuary resulting from increased secondary sewage treatment (Appendix to Chapter V - Bay Anchovy). The analysis of steepness assumes implicitly that the carrying capacity of the Hudson River estuary for Tomcod changed and therefore the stockýrecruitment curve changed as well.
Under this "STP hypothesis", it is logical to only use tomcod data collected after the change in estuarine conditions to estimate steepness. Using data from before and after the change (about 1990) would provide an estimate of steepness not representative of current conditions. However, Appendix VI-4-B does not apply this logic to the data used for evaluating the timing of density dependence. This analysis uses a longer time series that spans the hypothesized change in carrying capacity. The data cover the periods 1976-1979 and 1988-1990. In other words, the analysis hypothesizes that changed secondary sewage treatment conditions did not affect the carrying capacity of the estuary for tomcod.
Thus, the analysis is logically inconsistent because it fits a Ricker curve to data consistent with one hypothesis, but estimates the timing of density dependence using data consistent with another (contrary) hypothesis.
Implications We used the tomcod data presented in Table 9 of Appendix V-C to reproduce the plots shown in Figures 3 and 4 of Appendix VI-4-B. Figures 2 and 3 of this review show our results. In each figure, Panel A plots the Table 9 data and Panel B plots the data from Appendix VI-4-B. Each figure separates the data into the pre- and post 1991 time periods. Data in the pre-1991 period cover the years 1976-1979 and 1988-1990. Data in the post-1991 period cover the years 1991-1997. The confidence ellipses illustrate the correlation of the data in each period. Table 2 (below) shows Pearson correlations for the data.
The data in Figures 2 and 3 (below) indicate a change between the pre- to post-1991 periods. Plots based on Table 9 data (Figures 2A and 3A) show a more striking shift than those based on Appendix VI-4-B data (Figures 2B and 3B). This pattern suggests data from the 1991-1997 time period should be used to both fit the stock-recruitment model (estimate h) and to estimate the timing of density dependence.
The positive correlation between the PYSL/Juvenile index and estimated egg deposition for the period 1991-1997 (Figure 2A, Table 2) is not as strong as that found by the larger data set shown in Figure 3 of Appendix VI-4-B (i.e. R=0.39 for 1991-1997 vs. R=0.72 using all data points). We conclude that this weakens support for the assumption of density independent survival between the egg and PYSL/Juvenile life stage; density dependent processes could happen before the period of greatest vulnerability to entrainment. This implies that under post-1990 conditions the Atlantic tomcod population may be more vulnerable to the effects of entrainment than indicated in Appendix VI-4-B. (see Figure 1, above).
55                                ESSA Technologies Ltd.
ESSA Technologies Ltd.
 
Comments on the DEIS Tomood Analysis                                                    October 20, 2000 Table 2:        Pearson correlation comparisons for data in Table 9 of DEIS Appendix V-3-C vs. data from Figures 3 and 4 of the Hilbom and Read analysis (DEIS Appendix VI-4-B).
Correlation over all points for Table 9 data-Eggs          PYSUJuvenile            Agqe I Eggs                                  1.00 PYSL/Juvenile                        0.58                1.00 Age 1                                -0.04              -0.31              1.00 Correlation pre-1991 for Table 9 data Eggs            PYSUJuvenile            A-ge I Eggs                                  1.00 PYSL/Juvenile                        0.61                1.00 Age 1                                -0.68              -0.91              1.00 Correlation post-1990 Eqgqs          PYSLUJuvenile          Age 1 Eggs                                  1.00 PYSL/Juvenile                        0.39                1.00 Age 1                                -0.89              -0.61              1.00 Correlation over all points for Hilborn and Read data Egqgs          PYSUJuvenile            Age 1 Eggs                                  1.00 PYSLJJuvenile                        0.72                1.00 A e 1                                -0.21              -0.12              1.00 Correlation Pre-1991 for Hilborn and Read data Eggs            PYSUJuvenile            Age 1 Eggs                                  1.00 PYSL/Juvenile                        0.77                1.00 Age 1                                -0.45              -0.42              1.00 Correlation Post-1990 for Hilborn and Read data Same as for Table 9 data.
6 ESSA  Technologies Ltd.
ESSA Technologies  Ltd.                              6
 
October 20, 2000 .                                                  Comments on the DEIS Tomcod Analysis October 20, 2000                                                    Comments on the DEIS Tomcod Analysis A. PYSL vs. Eggs, data from Table 9 of DEIS Appendix V-C.
3.
Legend A  Pre-91, solid ellipse 0.0                                          0 91-97, dashed ellipse 0  10 20    30 40 50 60      70  80  90 Egg index B. PYSL vs. Eggs, data from Figure 3 of DEIS Appendix VI-4-B 0.5 Legend A  Pre-91, solid ellipse 0 91-97, dashed ellipse 0  10  20  30 40 50 60      70  80 90 Egg index Figure*2:    Plot of PYSL/Juvenile index vs. estimated egg deposition. Panel A): data from Table 9 of Appendix V-C of the December 1999 DEIS. Panel B): data from Figure 3 of the Hilbom and Read Atlantic tomcod modelling analysis (DEIS, Appendix VI-4-B). Ellipses based upon 95% confidence interval of mean x and y. Data point labels are the year the data were collected. The "?" indicate data of unknown origin.
7                                ESSA Technologies Ltd.
 
Comments on the DEIS Tomcod Analysis                                                      October 20, 2000 A. Age 1 vs. PYSL, data from Table 9 of DEIS Appendix V-3C.
10  ~
9, 87 7
6 5
4 3
2 Legend 1-A  Pre-91, solid ellipse 0                                          0 91-97, dashed ellipse 0.0    0.1    0.2      0.3    0.4    0.5 PYSLfJuvenile index B. Age 1 vs. PYSL, data from Figure 4 of DEIS Appendix VI-4-B 15 10 5
Legend A Pre-91, solid ellipse 01        1                              e 91-97, dashed ellipse 0.0      0. 1  0.2      0.3    0.4    0.5 PYSL/Juvenile index Figure 3:    Plot of Age 1 recruit vs. PYSL/Juvenile index. Panel A): data from Table 9 of Appendix V-C of the December 1999 DEIS. Panel B): data from Figure 3 of the Hilborn and Read Atlantic tomcod modelling analysis (DEIS, Appendix VI-4-B). Ellipses based upon 95%
confidence interval of mean x and y. Data point labels are the year the data were collected.
The "?" indicate data of unknown origin.
ESSA Technologies Ltd.                                8 0)
 
October 20, 2000                                                        Comments on the DEIS Tomcod Analysis 3.2.2    Uncertaintyin Data Sources We found discrepancies between the data presented in Appendix VI-4-B and Appendix V Table 9 that also affect results. We cannot identify the source of the four years of pre-1988 data used in the analysis.
The PYSL/Juvenile index data in Figures 3 and 4 of Appendix VI-4-B seem identical to the data in Table 9 of Appendix V-C for the period 1976-1979. However, egg deposition estimates and Age I abundance estimates for these years do not match those plotted in Figures 3 and 4 of Hilborn and Read.
Implications The four data points prior to 1988 cause the differences between the Panels A and B in Figures 2 and 3 (above). The data in Appendix VI-4-B suggest a smaller difference between time periods, for both the PYSL/Juvenile index vs. eggs comparison (Figure 2, above). and the Age 1 recruits vs. PYSL/Juvenile index comparison (Figure 3, above).
3.3      ISSUES RAISED PREVIOUSLY The DEIS does not address a number of issues raised in previous reviews.
The tomcod modeling uses poor quality data (ESSA 1994).
This issue applies to the current analysis. For example, the data set includes indirect estimates of egg production derived from spawner abundance data. Appendix K of the Third Technical workshop report (ESSA 1995, pg. 3) states, egg deposition estimates [could not be used as an independent measure of reproductive effort] because they were generated from the
[spawning] population estimates (in combination with estimates of sex ratios, age structure, and age-specific fecundities)."
We wonder if the current data are free of this confounding.
The time series of abundance data is too short (ESSA 1994)
As we noted in Section 3.1, this issue is still a concern. There is a longer time series of tomcod data available. Table 9 of Appendix V of the DEIS shows time-series of tomcod abundance data that extends back to at least 1988. The text of Appendix V states that surveys conducted from 1988 through 1997 provide the most reliable estimate of absolute abundance for Age-I and Age-2 tomcod, and of the number of eggs deposited by the spawning population. Hilbom and Read state that the 1991-1997 time-series is the useful data series for tomcod, but do not say why.
* Explore a range of possible magnitudes of the tomcod fishery (ESSA 1994)
Though Appendix VI-4-B assumes no significant fishing mortality for tomcod, ESSA 1994 cites anecdotal evidence for and against this assumption. The resilience of the entrainment impact index declines with increase fishing mortality (see the Appendix to this report, Fishing Mortality). Therefore, the hypothesis of no significant fishing mortality requires the support of hard data on the size and impact of the tomcod fishery. Otherwise the DEIS should use a range of assumptions.
* Timing of density dependence We note the analysis ignores plausible alternative hypotheses about the timing of density dependence noted in gevious work reports (e.g., ESSA 1994). For example, observed tomcod fecundity declines as 9                                ESSA Technologies Ltd.
 
Comments on the DEIS Tomcod Analysis                                                        October 20, 2000 spawner density increases (ESSA 1994). This observation supports a hypothesis that density-dependent population processes occur before the egg to PYSL life stage, so that some entrainment occurs after density dependence in the model (see Figure 1, above).
The Appendix VI-4-B analysis does not address theses four issues raised in previous reports.
          " Consider possibility that survival currently below replacement.
          " Natural and power plant temperature effects.
          " Thermal stress induced lethal tumors.
          " Effects of changes in flow and nutrients on juvenile growth and survival.
4.0      Comments on other sections of the DEIS 4.1      COMMENTS ON CHAPTER            V-D-2-C (ENVIRONMENTAL SETTING) AND APPENDIX V-3-C (SAMPLING PROGRAM)
Chapter V-D-2-C provides background on the Atlantic tomcod life history and discusses hypotheses about ecological and anthropogenic factors that influence tomcod abundance.
There are some important data gaps in the DEIS description of data used for the assessment:
The Chapter V-D-2-C analysis uses data we cannot find in the DEIS. The text refers to Figure V-56 to illustrate the temporal distribution of yolk-sac-larvae (YSL) (DEIS 1999, pg. V-91). However, Figure V-56 shows only post-yolk-sac-larvae (PYSL) and young-of-year (YOY) distribution. Table 8 of Appendix V-3-C lists no YSL data. Furthermore, DEIS notes that the ichthyoplankton surveys generally began too late to estimate YSL abundance (pg. V-92).
* We cannot find the data that support the stated significant positive correlation between the number of spawning adults and the composite PYSL/Juvenile index (pg. V-93: r=0.813, p=000). These data are not in Appendix V-3-C.
* The analysis considers fishing mortaity an insignificant mortality factor for Hudson River tomcod, but presents no quantitative analysis. The DEIS notes low tag returns in the 1970s by recreational anglers. However, if there were a reduction in carrying capacity for tomcod around 1990 (not certain, see below), the impact of fishing after this point may have a more important effect than previously.
" Appendix V-3-C notes the requirement for a composite PYSL/Juvenile index, but does not describe how this index was constructed.
4.2      CHANGES INCARRYING CAPACITY FOR TOMCOD "Appendix to Chapter V - Bay Anchovy" introduces the hypothesis that improved secondary sewage treatment changed the carrying capacity of the Hudson River estuary for tomcod in the early 1990s.
Chapter V-D-2-C discusses this hypothesis and it is also implicit in components of the Appendix VI-4-B analysis. Two ecological factors are hypothesized to influence the abundance of bay anchovy: 1) competition for resources with juvenile Atlantic tomcod, and 2) predation by striped bass. The analysis represents these factors with the time-series of Atlantic tomcod egg deposition and striped bass YOY ESSA Technologies Ltd.                                  10
 
October 20, 2000                                                  Comments on the DEIS Tomcod Analysis abundance respectively. The analysis compares annual variation in these factors with annual variation in the abundance of bay anchovy YOY.
The analysis also accounts for changes in estuary carrying capacity due to improved secondary sewage treatment by partitioning the tomcod time series into before and after time periods: 1988-1990 and 1991-1997 respectively.                          77 We found the analysis difficult to follow and unconvincing. It assumes the hypotheses about competition, predation and carrying capacity change are correct and estimates effects without laying out a rational statistical basis for assessing whether the results make sense. For example, it does not present the underlying model, discuss the statistical uncertainty of the data, cite relevant literature, or refer to previous DEIS work that might lend support to the approach taken.
We wonder if this analysis uses different data than shown in Appendix V-C. The tomcod egg deposition datum for 1988 is 43 as opposed to the value of 41 shown in Table 9 of Appendix V-3-C. The 43 value appears to match one of the points in Figure 3 of Appendix VI-4-B.
5.0      References DEIS. 1999. Draft Environmental hIpact Statement for State Pollutant Discharge Elimination System Permits for Bowline Point, Indian Point 2&3, and Roseton Steam Electric Generating Stations. Central Hudson & Gas Electric Corp., Consolidated Edison Company of New York, Inc., New York Power Authority, Southern Energy New York. December 1999.
ESSA. 1994. A critical review of the draft environmental impact statement for the proposed action at the Bowline, Indian Point 2 and 3, and Roseton electric generating plants. In support of SPDES pernmit modification renewal: 1994-1999. Final report. Prepared by ESSA Technologies Ltd. August 16, 1994.
ESSA. 1995. Third technical workshop for the completion of the draft EIS for Bowline, Roseton, and Indian Point 2 and 3 electric generating stations of the Hudson River. Prepared by ESSA Technologies Ltd. October 17, 1995.
Hilborn, R. and L. Read. 1999. An equilibrium analysis of power plant entrainment mortality on Hudson River Atlantic tomcod. + spreadsheet model. Draft, prepared October 6, 1999.
Hilborn, R. and C.J. Walters. 1992. Quantitative Fisheries Stock Assessment: Choice, Dynamics, and Uncertainty. Chapman and Hall, New York.
11 11                                ESSA Technologies Ltd.
ESSA Technologies Ltd.
 
Comments on the DEIS Tomcod Analysis    October 20, 2000 Comments on the DEIS Tomcod Analysis    October 20, 2000 ESSA Technologies Ltd.              12
 
October 20, 2000                        Comments on the DEIS Tomcod Analysis Appendix Notes about the Excel spreadsheet model used for Atlantic Tomcod Population Modeling 13                        ESSA Technologies Ltd.
 
Cornments on the DEIS Tomcod Analysis    October 20, 2000 Ltd.                14 ESSA Technologies Ltd.
ESSA Technologies                    14
 
October 20, 2000                                                              Comments on the DEIS Tomcod Analysis TIMING OF ENTRAINMENT We explored the excel spreadsheet "ricker-eq" used for Atlantic tomcod population modeling. The sheet has an unlabelled cell named "pct before" (cell B16) that represents the proportion of total entrainment mortality that occurs before and after density-dependence. This cell's value feeds into an equation in the "Controls" section of the worksheet. We used this cell to model the response of the entrainment indicator2 to changes in the timing of entrainment relative to density dependence (Figure 1 of this report, above).
Table A l highlights some of the important cells in the spreadsheet.
Table Al:        Controls for the "ricker-eq" equilibrium model (Cells B13 to B16).
Cell                      Formula                                              Description Cell B13        entrain-pre = p - entrainpost,            used to calculate I-eggloss in cell F21.
Cell B 14        entrain-post: = p * (t - pct before)      used to adjust "entrain pre" and survival to Age I in Cell N5 ultimately affecting F 18 and F21 Cell B15        0 + plant mortality = p                    P is entrainment mortality Cell B 16        pct before                                Percent of entrainment occurring before density-dependence, it is a number between 0 and i, it is used to adjust Entrainpost When "pctbefore" equals 1, all entrainment mortality occurs prior to density-dependence (Figure IA of this report). This is the hypothesis modeled by Hilbom and Read. When all entrainment mortality occurs prior to density-dependent processes, the results in our Figure IA are identical to Figure 5 in Appendix VI-4-B.: The index increases for all levels of steepness except the lowest over all levels of entrainment mortality.
However, as the percent of entrainment mortality occurring after density-dependence increases (when "pctbefore" < 1) the results are less optimistic. For example, if 50% of entrainment mortality occurs before density-dependence and 50% occurs after density-dependence (Figure IB of this report), the index generally decreases as entrainment increases for all but the highest values of steepness considered.
If all entrainment mortality occurs after density-dependence (Figure IC of this report), the ratio of eggs/eggzero decreases over all levels of entrainment for all values of steepness.
INSTANTANEOUS NATURAL MORTALITY RATE The instantaneous natural mortality is set to 1.4 in the spreadsheet, but corrected to 1.1 h the draft document (Table 4, pg. 2 of Hilborn and Read 1999). We were curious how replacing 1.4 with 1.1 in the spreadsheet might affect the model results. Changing the natural mortality rate to 1.1 in the spreadsheet did not change the pattern of the curves as shown in Figure 5 of Appendix VI-4-B. This is because adjusting the natural mortality rate adjusts survival to Age 2 equally under both the entrainment and no entrainment scenarios. Under the assumptions of no fishing mortality and all entrainment prior to density-dependence, the level of egg deposition at equilibrium changes equally for both entrainment and no entrainment conditions. Thus, because the index is a ratio (eggs/ezero), it does not change over the modeled range of steepness and entrainment mortality.
2 The index of impact entrainment is the ratio of equilibrium egg deposition under entrainment to equilibrium egg deposition under no entrainment (eggs/ezero).
15                                      ESSA Technologies Ltd.
 
Comments on the DEIS Tomcod Analysis                                                            October 20, 2000 However, the proportion of eggs contributed by Age 2 fish does vary with the natural mortality rate since it affects survival from Age 1 to Age 2 and therefore the abundance of Age 2 spawners. As the natural mortality rate decreases from 1.4 to 1.1, the total egg deposition increases and the proportional contribution of Age 2 spawners to this total increases.
It is not clear how Hilbom and Read (1999) calculated the original value of natural mortality of 1.4 reported in their Table 1. Using the method they describe in the draft document (crossed out text)
(excluding years 1991 and 1995), we calculated a natural mortality rate of about 1.9. Using the method described in the revised text (including all years) yielded a natural mortality rate of about 1.1 as reported.
FISHING MORTALITY In earlier reviews of DEIS modeling (ESSA 1994) we recommended that the analysis consider fishing mortality (F) on tomcod. However, the Appendix VI-4-B equilibrium model does not explicitly incorporate fishing mortality (F). Rather, the estimated "natural mortality" includes fishing mortality.
The instantaneous natural mortality presented in the draft document should be called "Z" (total instantaneous mortality) because the overall abundance estimates used to estimate mortality include both fishing and natural mortality. Total instantaneous mortality is the sum of the instantaneous fishing mortality rate (F) and the instantaneous natural mortality rate (M) (i.e., Z = M + F).
If F is assumed to be 0, then Z equal M. However, comments in previous DEIS review documents suggest that an assumption of F = 0 is not valid for tomcod (ESSA 1994, pg. 50).
The spreadsheet does allow for the explicit inclusion of fishing mortality. F is included as a variable in the equation for calculating the survival from Age I to 2 (cell N6). It is multiplied by the proportion of Age I fish vulnerable to fishing (v) and then added to M. This sum, Z, is used to calculate the survival of Age I to Age 2 fish under conditions of entrainment mortality (survival = exp(-(F*v + M))).
The entrainment impact index changes as F increases above zero, and is also sensitive to the age-specific vulnerability (v) for Age 1 fish. Setting F> 0, reduces "eggs" (the equilibrium egg deposition' under entrainment), which reduces the index (ratio of eggs/ezero). With F > 0, increasing or decreasing v adjusts the realized fishing mortality. All else being equal, as F increases and v increases, the impact index decreases, in general showing poorer performance at high levels of entrainment over all levels of steepness.
Ltd.                                16 ESSA  Technologies Ltd.
ESSA Technologies                                      16
 
Review of the Assessment of White Perch Companion Report to Chapter 6 in Review of the Draft Environmental Impact Statement for SPDES Permits for Bowline Point 1 &2 Indian Point 2 &3, and Roseton 1 &2 Steam Electric Generating Stations A Report to the Parties to the Application Prepared for:
New York State Department of Environmental Conservation Division of Regulatory Affairs, 50 Wolf Road Albany, New York, 12233-1750 Prepared by:
Ian Parnell and David Marmorek ESSA Technologies Ltd.
Suite 300, 1765 West 8th Avenue Vancouver, BC V6J 5C6 October 20, 2000
 
Citation:        Parnell, I. and D.R. Marmorek. 2000. Review of the Assessment of White Perch.
Prepared by ESSA Technologies Ltd., Vancouver, BC, for NYSDEC, Albany, NY. 10 pp. + appendix. Companion Report to Chapter 6 in Review of the Draft Environmental Impact Statement for SPDES Permits for the Bowline Point I & 2, Indian Point 2 & 3, and Roseton 1 & 2 Steam Electric Generating Stations. Report to the Parties to the Application. Prepared by ESSA Technologies Ltd., Richmond Hill, ON, for NYSDEC, Albany NY. 31 pp. + appendices.
Short Citation: Parnell, I. and D.R. Marmorek. 2000, Review of the Assessment of White Perch.
Companion Report to a Review of the DEIS for SPDES Permits for three Hudson River Generating Stations. Prepared by ESSA Technologies Ltd., Vancouver, BC, for NYSDEC, Albany, NY. 10 pp. + appendix.
8 2000 ESSA Technologies Ltd.
This report has been provided in electronic form for review by the parties to the application for the Hudson River steam electric generating stations (Bowline, Indian Point and Roseton). Except for the express purposes of its review by the parties to the application, no part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from NYSDEC, Albany, NY.
 
October 20, 2000                                                                                                                      Comments on the DEIS White Perch Analysis Table of Contents 1.0      SU M M A R Y ......................................................................................................................................................................                                  I 2.0      IN T R O D U CT IO N ........................................................................                            ................ I..................................................................      2 3.0      COMMENTS ON CHAPTER V-D-2-B (WHITE PERCH) ..........................................................................                                                                                                2 3.1    ANALYSIS OF TEMPORAL VARIATION....                                                    ...........              ................................................                                                      3 PYSL ..................... ................. ...............................................                                              ................................................ 3 Young-of-the-year .................................................................................................................................................................                                    3 A ge I .........................................................................................................................................................................................                      3 3.2    A NALYSIS OF ALTERNATIVE HYPOTHESES ...                                                          . . ........................................................................
                                                                                                      ......                                                                                            .................... 3 Fishing....................................................................................................................................................................................                            3 Entrainment ...........................................................................................................................................................................                                4 PY SL (Page V-84) ...............................................................................................................................................................                                    4 W ater quality...:.....            .......    :.................. ............................................................                  .........................                                    ... 4 PY SL (Page V-85).................................................................................................................................................................                                  4 Competition w ith striped bass..............................................................................................................................................                                            4 PY SL (Page V-86) ...............................................................................................................................................................                                    4 Young -o f4he-year (Page V-88) ......................................................................................................................                                                              4..................
4 Predationby stripedbass ............                                  .            .................                        ............                            ........................... 5 PY SL (Page V-861 ..............................................................................................................................................................                                    5 3.3    M INOR COMM ENTS ON CHAPTER V-D B ....................................................................................................................                                                            7 4.0      COMM ENTS ON INDICES OF IM PACT ..........................................................................................................                                                                          7 4.1    INDEX OF DENSITY INDEPENDENT SURVIVAL .................................................................................................................                                                              7 4.2    INDEX OF BIOM ASS LOST TO THE ECOSYSTEM ................................................................................................................                                                            7 5.0      PREVIOUSLY RECOM MENDED ANALYSES ..............................................................................................                                                                                      8 5.1    ISSUE RAISED IN THE CRITICAL REVIEW OF 1993 DEIS (ESSA 1994A) ...................................................................                                                                                    8 5.2    ISSUES RAISED IN TECHNICAL WORKSHOP I (ESSA 1994B) .............................................                                                                                                                    9 5.3    ISSUES RAISED IN TECHNICAL WORKSHOP 2 (ESSA 1995A) .............................................                                                                                                                    9 5.4    ISSUES RAISED IN TECHNICAL WORKSHOP 3 (ESSA 19953) .............                                                                              ...........................................                            9 6.0      R EFER EN C ES ...........................................................................................................................................................                                        10 A PPEN D IX .....................................................................................................................................................................................                            I INTRODUCTION ..........................................................................................................................................................................                                  13 M ETHODS ..................................................................................................................................................................................                                13 RESULTS ............................................................................................................................................................................                                      14 P YSL index ............................................................................................................................................................................                            14 Ln(P YSL/YSL) index..........................................................................................................................................................                                        14 Density independent survival index .....................................................................                                                ....................................... ............ 14 D ISCUSSION ........ *............              ...  .....................................    ................      ......... ..............      ....................................................... 15 Example findings ....................... : .................................                    .........................................          .......................................................... 15 A nalyticalcaveats ......................................................................                            .................................. ........ ......................................... 15 SUM MA RY ............                ...........
                                                ..................................      .                        .....................................................................................                        6 6..........
ESSA Technologies Ltd.
 
Comments on the DEIS White Perch Analysis                                                        October 20, 2000 List of Tables Table 1:    A summary of the alternative impact hypotheses in DEIS Chapter V-D-2-B .................... 6 List of Figures Figure Al:    Results of example PYSL survival analysis. Panels A-C: PYSL index. Panels D-F:
Ln(PYSL/YSL) index. Panels G-I: density independent survival index, residuals from fit to linear regression model (Ln(PYSL/YSL) = a + b*YSL) ............................................. 17 ii ESSA Technologies Ltd.
ESSA Technologies Ltd.                            ii
 
October 20, 2000                                                  Comments on the DEIS White Perch Analysis October20, 2000                                                  Comments on the DEIS White Perch Analysis 1.0    Summary We reviewed white perch information and analyses presented in the Draft Environmental Impact..
Statement (DEIS 1999). The bullets below summarize our main findings.
* The DEIS does not present a population dynamics model for white perch. Technical Workshops concluded that the data will not support development of a defensible model (e.g., ESSA 1995b).
Without such a model, the DEIS cannot forecast the response of the Hudson River white perch population to future levels of entrainment and impingement.
* An analysis of temporal variation that explores patterns in white perch abundance over three time periods describes patterns in abundance based on an arbitrary breakdown of the data series into time periods and a reliance on visual interpretation of patterns in the data. If we ignore the DEIS time periods, we can describe different temporal patterns, in the abundance data.
* An analysis of alternative hypotheses that explores the influence of historic factors on variation in white perch abundance in Chapter V-B presents no supporting data for several hypotheses and the hypothesized factors are confounded. The analysis does serve to generate alternative impact hypotheses, illustrate the problem of confounding of factors, and demonstrate a need for further research. However, its results cannot be used to forecast the impact of future power plant impingement and entrainment on the Hudson River white perch population.
" The white perch abundance indices are not the appropriate indices of density independent survival for comparing with other factors. The effect of precursor life stage abundance and density dependence may confound results and lead to incorrect conclusions about the relationship of abundance to other factors. For example, a decrease in PYSL abundance could be attributed to a decrease in density-independent survival when it was really due to decreased density-dependent survival resulting from an increase in spawning biomass. Therefore, the DEIS analysis should use an index of density-independent survival that accounts for the effect of the precursor life stage and density dependence on abundance. We provide an example in the appendix to this report.
The DEIS should use some index of biomass lost to the ecosystem, such as the "production foregone" of white perch due to entrainment, to index the impact of entrainment on both the white perch population and the Hudson River ecosystem. Such an index is especially relevant given the hypothesized ecological interactions between white perch and striped bass.
The DEIS white perch analysis fails to address several of the issues and recommendations raised in a previous review (ESSA 1994a) and three subsequent technical workshops (ESSA 1994b, ESSA 1995a, ESSA 1995b). We note that there is sometimes no clear connection between the analyses presented in this DEIS and the recommended analyses of those previous reviews and workshop reports. Such a "chain of evidence" would be useful for future reviews.
I                                  ESSA Technologies Ltd.
 
Coniments on the DEIS White Perch Analysis                                                  October 20, 2000 Comments on the DEIS White Perch Analysis                                                  October 20, 2000 2.0      Introduction Our review of white perch covers the following sections of the Draft Environmental Impact Statement (DEIS 1999):
* Chapter V-D-2-B Environmental Setting White Perch (pp. V-81 to V90);
* Appendix V-2 indices of abundance based on data from the utilities' Longitudinal River Survey, Falls Shoals Survey, and Beach Seine Survey (p. 12);
" Appendix V-3 sampling programs and data evaluations, White Perch (pp. V-3-11 to V-3-12); and
* Appendix VI-1-C sensitivity analysis regarding the effect of Morone post-yolk-sac-larvae (PYSL) misidentification on the assessment of power plant entrainment effects on striped bass and white perch populations in the Hudson River.
The bulk of our comments address issues within Chapter V and we present these first, followed by a discussion of more appropriate indicators of entrainment impact, and the degree to which the DEIS white perch analysis addresses issues and recommendations from previous critical reviews and technical workshops.
3.0      Comments on Chapter V-D-2-B (White Perch)
Chapter V-D-2-B presents general life history information for white perch, discusses the sampling programs, describes patterns in temporal abundance for different life stages, and generates alternative hypotheses about historic ecological and anthropogenic influences on white perch abundance. We focus our review on the latter two topics.
We find the analyses of temporal variationand alternative hypotheses to be unconvincing. The analysis of temporal variation describes patterns in abundance based on an arbitrary breakdown of the data series into time periods and visual interpretation of patterns in the data. The analysis of alternative hypotheses presents no supporting data for several hypotheses. The subjective nature of these analyses means we could describe different temporal patterns in the abundance data, or generate reasonable alternative hypotheses that counter those presented in Chapter V. An example of a different temporal pattern, is the statistically significant declining trend in young-of-the-year (YOY) white perch abundance over 1978-1997. This trend spans two of the arbitrary DEIS periods. As an example of a counter hypothesis, the reduced carrying capacity for Atlantic tomcod as a result of improved sewage treatment hypothesized by the DEIS may also cause a decline in white perch YOY abundance in the lower river instead of the hypothesized predator-prey/competitive interactions with striped bass. These two examples illustrate the low utility of the DEIS analyses for aiding decisions about future water intake by the power plants.
An additional concern is that even if there were data on hypothesized controlling factors, the relative effect of the factors cannot be determined due to confounding. The confounding occurs because changes in the hypothesized factors coincide in space and time and most change in only one direction over the time span considered in the DEIS. Confounding is a concern because the negative impact of one factor may be mixed in with the negative impact of another. For example, entrainment may have a negative impact on white perch PYSL abundance, but the negative effect of striped bass predation may exacerbate the effect. Only monitoring over a deliberately contrasting set of conditions can help tease apart the relative importance of each factor (e.g., adaptive management experiments to create contrasting levels of entrainment of white perch at various densities of striped bass).
ESSA Technologies Ltd.                                2
 
October 20, 2000                                                  Comments on the DEIS White Perch Analysis We find that the alternative hypothesis analysis cannot aid future water-withdrawal management decisions. Without the data to estimate effects and model how the hypothesized factors interactedto affect the Hudson River white perch population in the past, the DEIS cannot reasonably forecast how they will interact to influence white perch abundance in the future.
3.1      ANALYSIS OF TEMPORAL VARIATION The DEIS temporal variation analysis discusses the PYSL, young-of-the-year and Age I abundance time-series in terms of three time periods: 1974-1979, 1980-1988, and 1989-1997. The DEIS does not provide a clear rationale for selecting these time periods. If we ignore the DEIS breakdown of time, we can find different, but equally subjective, patterns of variation in the data. We present our life stage specific comments below.
PYSL The DEIS analysis suggests that white perch PYSL abundance showed two "oscillations" (or cycles) over the 1980-1988 time period (DEIS, pg. V-83). We disagree with the DEIS assessment on page V-83 that "oscillations" in PYSL abundance stopped after 1988. The "oscillations" still occur post-1988, though they are dampened (e.g:, 1992 and 1996).
Young-of-the-year The DEIS states that: 1) there is no temporal trend for young-of-the-year in either the 1980-1988 or the 1989-1997 period (DEIS, pg. V-83); and 2) there was a statistically significant drop in mean young-of-the-year catch per seine haul from the first to second period (DEIS, pg. V-83). The second statement contradicts the first.
If we ignore the DEIS time breakdown, young-of-the-year abundance declines steadily from 1978 to 1997 (regression slope = -0.60, R2 = 0.70, P<0.001) (DEIS, Figure V-49).
Age 1 If we ignore the DEIS time breakdown, Age I abundance declines steadily from 1978 to 1997 (regression slope -0.22, W2= 0.71, P<0.001) (DEIS, Figure V-50).
3.2      ANALYSIS OF ALTERNATIVE HYPOTHESES The DEIS analysis of alternative hypotheses links the observed pattern of temporal variation in abundance for each life stage to observed or hypothesized changes in the Hudson River estuary. This discussion relies on subjective visual evaluation of patterns and correlations between indices. While this type of pattern exploration can generate hypotheses to be tested in the future, it does not provide information useful for forecasting the effect of power plant water withdrawal on the Hudson River white perch. We present our specific comments on different hypotheses below. Table I summarizes these hypotheses.
Fishing The DEIS analysis dismisses commercial and recreational fishing mortality as an important factor affecting variation in white perch abundance, but presents no data to support this conclusion.
3                                ESSA Technologies Ltd.
ESSA Technologies Ltd.
 
Comments on the DEIS White Perch Analysis                                                  October 20, 2000 Entrainment PYSL (Page V-84)
We note that changes in entrainment mortality are confounded with improvements in water quality. Over the period 1974-1980 (Figure V-5 1, Table V-20), the conditional entrainment mortality rate (CEMR) time series declines while the PYSL time series increases. The DEIS hypothesizes that water quality also increased over this period. Therefore, the effect of entrainment on white perch PYSL abundance is confounded with the effect of increasing water quality.
Water quality PYSL (Page V-85)
The DEIS analysis hypothesizes that increasing PYSL abundance may be related to trends in aquatic vegetation, water quality due to sewage, and wastewater chlorine levels. It notes improved sewage treatment coincides with a linear increase in PYSL abundance from 1974 to 1981. Although the DEIS white perch section does not present data to support the hypothesis of improved water quality over this period, Figure V-64 of the Atlantic tomcod section compares trends in Age I tomcod abundance and average weekly fecal coliform counts (1987-1993); therefore, water quality data may exist and could be correlated with white perch abundance indices.
Competition with stripedbass PYSL (Page V-86)
The DEIS analysis considered the hypothesis that variation in white perch PYSL abundance after 1986 was driven by competition with striped bass larvae after 1986. This hypothesis predicts a negative correlation between striped bass and white perch PYSL; however, the DEIS found a significant positive correlation and therefore discounted this hypothesis. This is a reasonable conclusion Fthe indices are reliable. The positive correlation also discredits the striped bass predation hypothesis proposed by the DEIS that we discuss further below.
Young-of-the-year (Page V-88)
The DEIS analysis suggests that the decline in young-of-the-year white perch after 1988 was probably due to an increase in abundance of PYSL striped bass and the appearance of piscivorous PYSL striped bass. To explore this hypothesis, it compares white perch young-of-the-year indices prepared for Upper and Lower River regions, and concludes that the results support the hypothesis that interaction between striped bass and white perch is more intense in the lower portion of this river. We think the DEIS should show a similar graph for striped bass PYSL in the upper and lower regions for the same time period, so that readers can evaluate the evidence for this conclusion.
We note that changes in the Lower River other than increased striped bass abundance could also account for the observed difference between the Upper and Lower River white' perch young-of-the-year indices.
Examples include: a shift in the distribution of young-of-the-year white perch in space and time relative to beach seine sampling locations; a change in sampling methods (e.g., gear or effort); or increased vegetation making sampling more difficult and less efficient; all these factors could lead to under sampling of the Lower River young-of-the-year white perch population.
Environmental changes may also have caused changes in Lower River conditions leading to changes in white perch abundance. The DEIS hypothesizes that improvements in water quality around 1990 lowered the carrying capacity of the Hudson River estuary for Atlantic tomcod (DEIS, Chapter V-D-2-C, pg. V-ESSA Technologies Ltd.                                4
 
October 20, 2000                                                        Comments on the DEIS White Perch Analysis 97). Since the major decline in Lower River abundance of young-of-the-year white perch also begins in about 1990, it seems reasonable that the same mechanism could have affected white perch.
Predationby stripedbass PYSL (Page V-86)
The DEIS analysis hypothesizes that piscivorous PYSL and young-of-the-year striped bass eat PYSL white perch. However, it presents no data showing that PYSL and early young-of-the-year striped bass eat white perch PYSL, nor does it state what fraction of the Hudson River PYSL striped bass population is piscivorous. Additionally, the DEIS analysis makes three curious statements:
: 1)  " . . . the impact of the piscivorous striped bass PYSL and YOY on the larval population of white perch should decrease as the abundance of larval striped bass increases because the frequency of contact between piscivorous striped bass and smaller-white perch will decrease."
: 2)  "... predation by piscivorous striped bass will produce a positive correlation between the PYSL indices for striped bass and white perch."
: 3)  "The appearance of piscivorous striped bass should also cause the oscillations in the abundance of larval white perch to disappear after 1986 because the relative abundance of white perch in the combined larval population would increase as white perch abundance started to rise. This would increase the frequency of encounter between piscivorous striped bass and larval white perch and the resulting predation should damp the increase in the abundance of white perch."
The DEIS analysis is not specific about the conditions that lead to these three outcomes, but should be because predator-prey interactions are complex and the comments above are counterintuitive. We can easily think of simple models whose outcomes are opposite to those above. For example, in a simple model', larval white perch encounter more piscivorous striped bass as the larval striped bass population increases relative to the larval white perch population (i.e., the opposite of #1). Under this model, larval white perch encounter fewer piscivorous larval striped bass as their population increases relative to the larval striped bass population (i.e., opposite of #3). However, the impact of striped bass predation on white perch is due to more than just the frequency of encounter, but includes other components such as the functional response of the predator and the abundance of alternate prey. This information needs to be presented to back up the DEIS results, With respect to statement 2, the DEIS does not explain why striped bass predation on white perch should produce a positive correlation between the PYSL indices for these two species. This statement seems related to the positive correlation found between the two PYSL indices in the competition section (discussed above). We think that if PYSL striped bass eat PYSL white perch there would be a negative correlation between the indices, especially if the predation is hypothesized to dampen the post-1988 "oscillations" in the white perch PYSL index. Thus the positive correlation between the PYSL indices for striped bass and white perch does not support the predation hypothesis, and in fact suggests that both indices may be affected by some common factor (e.g., climate conditions).
We wonder why the analysis did not consider predation by other species, such as bluefish. Buckle et at.
(1999) concluded that young-of-the-year bluefish are important predators of estuarine fish and can have a substantial impact on their recruitment. The actual amount of striped bass predation on white perch will vary with the abundance of alternate prey.
A simple model with complete mixing of the white perch and striped bass populations, random encounters, and a constant proportion of piscivorous PYSL striped bass in the river.
5                                    ESSA Technologies Ltd.
 
Comments on the DEIS White Perch Analysis                                                        .October20, 2000 I
Table 1:      A summary of the alternative impact hypotheses in DEIS Chapter V-D-2-B.
Life stage        Period      Alternative hypotheses                DEIS assessment Adult                          Fishing                              DEIS concludes that commercial and recreational fishing are not a significant source of variation in white perch abundance.
PYSL              1993-1997    Zebra mussels:                        DEIS concludes that zebra mussels did Increasing presence        of Zebra  not affect PYSL abundance.
mussels decreases abundance of PYSL.
Entrainment:                          DEIS notes evidence for a negative Entrainment      reduces        PYSL effect of entrainment on PYSL abundance.                            abundance in the early 1980s, but not in latter portion of time series.
1974-1981    Water quality:                        DEIS suggests that improved water Improved water quality increased      quality is responsible for increase of PYSL survival.                        PYSL abundance from 1978-1981.
1986-1997    Competition:                          The DEIS found that the striped bass Striped bass larvae compete with      and white perch PYSL time series did white perch larvae and reduce        not      support      this    competition survival to the PYSL life stage.      hypothesis.
1986-1997    Predation:                            The DEIS suggests that predation Predatory striped bass larvae eat    dampened post-1988 "oscillations" in white .perch larva causing reduced    white perch PYSL abundance.
PYSL survival.
Young-of-the-    1974-1979    Water quality:                        The DEIS presents no time series of year                          Improved water quality initially      water quality data for quantitative increased survival to young-of-the-  assessment of this hypothesis.
year life stage, but its benefit was later offset by the recovery of aquatic plant community.
1979-1997    Habitatchange:                        The DEIS presents no time series of Dense beds of water chestnut          vegetation data to quantitatively assess reduced habitat quality for juvenile  this hypothesis.
fish and increase the strength of density dependent survival.
1988-1997    Competition:                          The DEIS presents no            data that Decline      in  young-of-the-year  supports this hypothesis.
abundance is due primarily to competition with PYSL striped bass.
1988-1997    Predation:                            The DEIS presents no            data  that Decline      in  young-of-the-year  supports this hypothesis.
abundance is due primarily to piscivorous PYSL striped bass.
Age I                          Predation:                            The DEIS presents no            data  that Adult striped bass eat Age I white    supports this hypothesis.
perch during winter and spring when the abundance of adult striped bass is high.
ESSA Technologies Ltd.                                6
 
October 20, 2000                                                  Comments on the DEIS White Perch Analysis 3.3      MINOR COMMENTS ON CHAPTER            V-D-2-B Errors in figures:
* Figure V-51 mislabels the time-series of conditional entrainment mortality rate (CEMR) and YOY.
* Figure V-52 mislabels the time-series of young-of-the-year abundance between Upper River and Lower River regions.
Inconsistent use of terminology:
" Text refers to young-of-the-year, Table V-19 refers to juveniles.
" Text refers to yearling, Table V-19 refers to Age 1.
Data inconsistent between tables and figures:                                                              3 o PYSL units in Figure V-48 are number per 1000 d, but in Table V-19 the units are number per in .
The text also refers to PYSL in units of number per 1000 rn3 .
" Table V-19 shows Age 1 data from 1973-1996. Figure V-50 shows Age I data from 1974-1997.
4.0      Comments on Indices of impact 4.1      INDEX OF DENSITY INDEPENDENT SURVIVAL The analysis of alternative hypotheses treats PYSL abundance as an index of PYSL survival (pg. V-85, paragraph 3). We think the PYSL abundance index is not a good index of PYSL survival because it shows strong covariance with the precursor YSL life stage. For PYSL abundance to index PYSL survival it must not covary with the abundance of the precursor YSL life stage and there must be no density-dependent YSL-to-PYSL survival. Failure. to account for covariance and density dependence will confound results.
For example, one might interpret an increase in the mean annual PYSL abundance index as increased PYSL survival due to decreased levels of entrainment when it Was really due to increased abundance of the YSL life stage due to improved water quality, or an increase in spawning biomass.
Ln(PYSL/YSL) is a better index of PYSL survival for three reasons. First, it accounts for the influence of the precursor YSL life stage on PYSL abundance. Second, because survival is generally accepted to be log-normally distributed (e.g., Hilbom and Walters 1992), the log-transformed data better meet the assumptions of additive and normally distributed error important for many common statistical procedures.
Finally, fitting the Ln(PYSL/YSL) index to models of density dependent survival removes the density dependence survival component leaving an index of normally distributed density independent survival to correlate with factors hypothesized to affect density independent survival such as efitrainment.
We recommend that the DEIS analyses that explore the relationship of life stage abundance to factors hypothesized recognize the potential confounding that arises when using raw abundance data. We present an example analysis that demonstrates an approach using Ln(PYSLfYSL) in the Appendix to this report.
4.2      INDEX OF BIOMASS LOST TO THE ECOSYSTEM The total white perch biomass lost to the Hudson River ecosystem is the sum of three components:
: 1) biomass killed by entrainment/impingement;
: 2) incremental growth lost to predators due to plant mortality (production foregone); and
: 3) biomass lost to the fishery due to plant mortality (catch foregone).
7                                  ESSA Technologies Ltd.
 
Comments on the DEIS White Perch Analysis                                                    October 20, 2000 The sum of components 1 and 2 is the biomass lost to the ecosystem, an index of the' total reduction in food consumed by predators due to entrainment mortality. We feel it is important to consider the biomass lost directly and indirectly due to station mortality, and the most conservative assumption is that all mortality represents a food source no longer available to predators. The hypothesized interactions between white perch and striped bass suggest that the CEMR index is an appropriate index of entrainment impact on the white perch population and the Hudson River ecosystem. The DEIS presents a simple production foregone analysis for bay anchovy in Appendix VI-4-D. It should present similar analyses for white perch and other species.
5.0      Previously recommended analyses Below we summarize recommended analyses and other concerns for white perch, as raised in previous DEIS reviews and technical workshops. After each bullet, we note the current status of these analyses based upon our review of the white perch information in the current DEIS.
5.1      ISSUE RAISED IN THE CRITICAL REVIEW OF 1993 DEIS (ESSA 1994A)
* ESSA (1994a) notes that trends in vulnerability make the white perch age composition data suspect.
No white perch age composition data are used in the current DEIS.
"  ESSA (1994a) notes there is potential bias in BSS young-of-the-year index due to undersampling and recommends a sensitivity analysis to address this.
The current DEIS states that, "...YOY      white perch ... are effectively sampled with beach seines." (DEIS pg. V-82). It does not present a sensitivity analysis to explore the effect of possible undersampling.
"  ESSA (1994a) notes the need for an analysis to explore the sensitivity of abundance and entrainment estimates to the influence of Morone larva misidentification. White perch PYSL are collected in the Longitudinal River Survey (LRS) which is designed to optimally sample striped bass. It can be difficult to distinguish between white perch and striped bass PYSL and there is evidence of misidentification. The DEIS requires an analysis showing the extent to which misidentification induces systematic error in the striped bass and white perch PYSL indices and affects time trends in abundance. That is, observation errors may underlie the apparent-process errors and be interpreted as large natural variation in recruitment. Is the effect of white perch/striped bass misidentification on entrainment mortality bracketed by the range 0.0 to 0.4 for entrainment mortality?
This concern is addressed' to some extent in DEIS Appendix VI-1-C sensitivity analysis regarding the effect of Morone PYSL misidentification on the assessment of effects of power plant entrainment on striped bass and white perch populations in the. Hudson River.
Appendix VI-1-C concludes that the entrainment modeling results presented elsewhere in the DEIS are not sensitive to possible misidentification of Morone PYSL. It does not explore the influence of the misidentification of Morone larvae on trends in white perch PYSL abundance.
ESSA Technologies Ltd.                                    8
 
October 20, 2000                                                      Comments on the DEIS White Perch Analysis ESSA (1994a) notes that the trend in survival to recruitment for white perch was similar to that for striped bass. This observation raised the question of whether striped bass and white perch may be affected by the same factors (e.g., competition for food?).
Chapter V-D-2-B of the current DEIS presents an analysis of ecological interactions between striped bass and white perch. We already presented our discussion of that analysis in Section 3.2 (above).
5.2      ISSUES RAISED INTECHNICAL WORKSHOP I (ESSA 1994B)
* ESSA (1994b) notes that the data for all species need to be reviewed.
The current DEIS discusses the source and quality of data for each species in Appendix V-3. What specific issues have been
                -  discussed/evaluated for white perch since 1994?
5.3      ISSUES RAISED IN TECHNICAL WORKSHOP 2 (ESSA 1995A)
" ESSA (1995a) notes that the Data Evaluation Workgroup (DEW) is going through all the data.
The current DEIS does discuss this analysis. It would be of interest to know the general conclusion of the DEW for the white perch data.
* ESSA (1995a) notes a possible problem due to undersampling of white perch. In shallow water about 35% of habitat is unsampled.
The current DEIS notes this may be a problem for YSL sampling.
* ESSA (1995a) notes important questions regarding the decline in egg to juvenile survival 1970-1990:
a) is it real?, b) if so, is it due to competition, predation by striped bass, or environmental change?
The current DEIS does discuss competition and predation for PYSL, young-of-the-year, and Age I white perch.
* ESSA (1995a) notes that an exploratory analyses by Quentin Ross suggests egg densities vary with the number of Age 3 fish and water temperature.
The current DEIS does not discuss this analysis.
5.4      ISSUES RAISED INTECHNICAL WORKSHOP                    3 (ESSA 1995B)
" ESSA (1995b) notes an exploratory analyses by Quentin Ross found that the strongest correlations were between Age 3 abundance, flow and water temperature indices.
The current DEIS does not discuss this analysis.
" The technical workshop participants wondered if it was worth modeling white perch at all considering the general absence of data.
9                                  ESSA Technologies Ltd.
 
Comments on the DEIS White Perch Analysis                                              October 20, 2000 The conclusion appears to be "yes" because the current DEIS does not present a white perch population dynamics model.
The technical workshop participants recommended having Ray Hilbom redo the white perch assessment using data to be identified at the next DEW meeting.
The current DEIS does not discuss the outcome of this meeting.
(Unfortunately there was a long period without any DEW meetings.)
6.0      References Buckel, J.A., D.O. Conover, N.D. Steinberg, K.A. McKown. 1999. Impact of Age-0 bluefish (Pomatomus saltatrixs) predation on Age-0 fishes in the Hudson River estuary; evidence for density-dependent loss of juvenile striped bass (Morone saxatalis). Canadian Journal of Fisheries and Aquatic Sciences, 56: 275-287.
DEIS. 1999. Draft Environmental Impact Statement for State Pollutant Discharge Elimination System Permits for Bowline Point, Indian Point 2&3, and Roseton Steam Electric Generating Stations. Central Hudson & Gas Electric Corp., Consolidated Edison Company of New York, Inc., New York Power Authority, Southern Energy New York. December 1999.
ESSA. 1994a. A critical review of the draft environmental impact statement for the proposed action at the Bowline, Indian Point 2 and 3, and Roseton electric generating plants. In support of SPDES permit modification renewal: 1994-1999. Final report. Prepared by ESSA Technologies Ltd. August 16, 1994.
ESSA. 1994b. Report on initial technical workshop to initiate completion of the Draft EIS for Bowline, Roseton and Indian Point 2 & 3 electric generating stations. Prepared by ESSA Technologies Ltd.
December 21, 1994.
ESSA. 1995a. Second technical workshop to resolve issues regarding the completion of the Draft EIS for Bowline, Roseton, and Indian Point 2 and 3 electric generating stations. Prepared by ESSA Technologies Ltd. March 27, 1995.
ESSA. 1995b. Third technical workshop for the completion of the draft EIS for Bowline, Roseton, and Indian Point 2 and 3 electric generating stations of the Hudson River. Prepared by ESSA Technologies Ltd. October 17, 1995.
Hilborn, R. and C.J. Walters. 1992. Quantitative Fisheries Stock Assessment: Choice, Dynamics, and Uncertainty. Chapman and Hall, New York.
Ltd.                                10 ESSA Technologies ESSA  Technologies Ltd.                                10
 
October 20, 2000                            Comments on the DEIS White Perch Analysis Appendix An example analysis of PYSL relative survival 11 11                          ESSA Technologies Ltd.
ESSA Technologies Ltd.
 
Comments on the DEIS White Perch Analysis    October 20, 2000 Comments on the DEIS White Perch Analysis    October 20, 2000 12 ESSA Technologies Ltd.
ESSA Technologies Ltd.                    12
 
October 20, 2000                                                  Comments on the DEIS White Perch Analysis INTRODUCTION The PYSL abundance index is not a good survival index two reasons: 1) it does not account for the strong correlation of the PYSL and YSL indices, and 2) it does not account for density dependent YSL-to-PYSL survival. Not accounting for these factors can -lead to incorrect conclusions about the influence of other factors on PYSL survival. Ignoring the PYSL-YSL correlation could lead one to interpret increased PYSL abundance as increased survival due to some other factor when it was really due to increased abundance of the YSL life stage. If density dependence is not accounted for, one might interpret a decrease in PYSL abundance as decreased survival due to some other factor when it was really due to density dependent mortality, Ln(PYSL/YSL) is a better index of PYSL survival for three reasons. First, it accounts for the influence of the precursor YSL life stage on PYSL abundance. Second, because survival is generally accepted to be log-normally distributed 4p.g., Hilborn and Walters 1992), the log-transformed data better meet the assumptions of additive and normally distributed error important for many common statistical procedures.
Finally, fitting the Ln(PYSL/YSL) index to models of density dependent survival removes the density dependence survival component, leaving an index ef density independent survival to correlate with other factors such as entrainment.
Survival has density dependent and density independent components that may vary in their relative intensity. We assessed the strength of density dependence subjectively using a scatter plot of Ln(PYSL/YSL) versus YSL. For complete density independent survival, the Ln(PYSL/YSL) index appears as a horizontal line across all values of YSL. As the strength of the density dependent'survival increases, an inverse relationship appears between the Ln(PYSL/YSL) and YSL values. The density dependent component of the survival index must be removed to prevent confounding with other factors.
For example, if the mean annual Ln(PYSL/YSL) index decreases at high entrainment levels, one might conclude it was due to entrainment, when the decrease was actually due to the density dependent mortality experienced at high YSL abundance.
Fitting quantitative models of density dependence to the data removes the density dependent effect (e.g.,
the Ricker and Beverton-Holt models). The residuals from these model fits are an index of density independent survival. This is the index that should be used to investigate the effect of factors such as entrainment and water quality on PYSL survival. Useful analyses using this index include scatter plots of residuals versus year to illustrate temporal patterns in survival and the correlation of the index with the indices for the other factors.
In the following section, we present an example analysis using these methods of the effect of entrainment on PYSL survival. We used entrainment because the time series of Cumulative conditional entrainment mortality (CEM) data were readily available in the DEIS.
METHODS We used time series YSL and PYSL abundance data from Table 7 of DEIS Appendix V-3, and time series CEM data from Table V-20, DEIS Chapter V-D-2-B.
We considered three indices of PYSL survival:
: 1. The raw PYSL abundance data.
: 2. An index that accounts for the influence          of YSL on PYSL, the transformed index Ln(PYSL/YSL).
13 13 ESSA Technologies Ltd.
ESSA Technologies Ltd.
 
Comments on the DEIS White Perch Analysis                                                        October 20, 2000
: 3. An index of density independent survival derived by fitting a Ricker model of density dependence to the Ln(PYSL/YSL) and YSL data. We removed the density dependent component to survival by fitting a linear regression model to the data. We used YSL as the independent variable and Ln(PYSL/YSL) as the dependent variable. We estimated both the intercept and slope. Because the data are log-transformed, this is equivalent to fitting a Ricker model of density dependence.
We plotted each index against YSL, Year and CEM. We also correlated the indices with CEM.
RESULTS PYSL index Panels A-C of Figure Al show our results using the PYSL index. Panel A illustrates the strong covariance between the PYSL and YSL indices noted in the DEIS. Panel B illustrates the initial increase in PYSL abundance for the early part of the time series, also noted in the DEIS. Panel C appears to show a weak inverse relationship between the PYSL abundance index and CEM. The correlation between the PYSL and CEM indices is not significant over the whole time series (R = -0.268, P = 0.205, n=24). The correlation over the early part of the time series (1974-1980) is stronger, but not significant (R=-0.738, P=0.058, n=7).
Ln(PYSLUYSL) index Panels D to E of Figure Alshow our results using the Ln(PYSL/YSL) index. We accounted for the strong covariance between YSL and PYSL by calculating the Ln(PYSL/YSL) index. Panels D to F of Figure A l show the results. The inverse relationship between Ln(PYSL/YSL) and YSL in Panel D indicates density dependent YSL-to-PYSL survival. Panel E does not show the increase in survival over the early part of the time series seen in Panel B. The Ln(PYSL/YSL) index is not correlated with the PYSL index (R=-
0.248, P=0.243, n=24). Panel F shows a weaker relationship between the Ln(PYSL/YSL) and CEM indices than seen in Panel C. There is no significant correlation with CEM over the whole time series (R=
-0.161, P=0.451), or the early part of the time series (1974-1997, R=-0.172, P-0.712, n=7).
Density independent survival index Panels G to I of Figure A l show our results using the density independent survival index. Panel G shows the pattern of the residuals plotted against the YSL index. Their horizontal distribution relative to those in Panel D indicates the residuals are now an index of density independent survival. Panel H shows the pattern of density independent survival over time. With the YSL abundance and density dependence effects removed, the residuals show a weak relationship to the temporal pattern of PYSL shown in Panel B (R=0.474, P=0.019, n=24). This relationship is stronger in the latter portion of the time series (1981-1997, R--0.555, P=0.021, n=17) than in the early part of the time series (1974-1980, R=0.421, P=0.346, n=7). This result supports the hypotheses that the early increase in PYSL abundance was driven more by changes in YSL abundance than other factors such as improving water quality, while variation in PYSL abundance during the later portion of the time series was due more to factors other than YSL abundance.
Panel I illustrates the relationship between residuals and CEM. It shows much less visual indication of a relationship than is suggested in Panel C. The residuals and CEM are not correlated either over the whole time series (R=-0.262, P=0.217, n=24), or the early part of the time series when CEM showed a large decline (1974-1980, R= -0.412, P0.358, n=7).
14 ESSA    Technologies Ltd.
ESSA Technologies    Ltd.                                14
 
October 20, 2000                                                Comments on the DEIS White Perch Analysis DISCUSSION Example findings The preliminary nature of these results.sdoes not warrant in-depth discussion or conclusions. The purpose is merely to illustrate our contention'that PYSL abundance is not a good index of PYSL survival. The results, though extremely preliminary, are interesting:
* YSL-to-PYSL survival appears to be density dependent (Figure Al, Panel D).
* The early increase in PYSL abundance (Figure Al, Panel B) is driven by an increase in YSL abundance, not an increase in density independent YSL-to-PYSL survival.
" There is no trend in the index of density independent survival over the whole time series (1974-1997).
This result contradicts the DEIS which states that there appears to have been a decrease in PYSL survival over the period 1989-1997 (V-85, paragraph 3).
" Our index of density independent survival appears unrelated to entrainment mortality as indexed by CEM. It does show a fairly strong 5-to-7 year cycle.
Analytical caveats We emphasize again that this is an example analysis. A more formal analysis would require further analytical considerations. For example:
ParameterBias:
We did not consider the effect of time series bias on parameter estimates, or the effect of intra-series correlation on parameter estimates and p-values. The p-values and r-values we present for the purpose of example only, we did not adjust them for multiple hypothesis tests.
Model uncertainty:
We selected the Ricker model of density dependence merely for analytical convenience. Other models may be more appropriate, for example, a form of the Beverton-Holt model. The curvilinear pattern of the data in Panel D of Figure Al is more consistent with a Beverton-Holt model than a Picker model. In fact, a simple 2parameter form of the Beverton-Holt model fits the data better (R2 = 0.56 vs. the Ricker, model RW = 0.49). However, we feel the Picker model is suitable for this example analysis.
Data uncertainty.
We acknowledge the DEIS concern that a YSL index may not be a suitable index of yolk sac larvae abundance due to shortness of the YSL life stage relative to sampling frequency and the difficulty of effectively sampling preferred white perch spawning habitat (DEIS, pg. V-82). However, we feel the high correlation between the indices of YSL and PYSL abundance suggests that the YSL index is a suitable index of relative abundance. Under this assumption, we feel the resulting relative survival indices are suitable for assessing temporal patterns in density-independent survival and for exploring relationships with other factors. Further analyses would need to explicitly address this assumption.
We did not consider the effect of measurement error in the independent variables. Errors in measurement can create the appearance of density dependence when there is none (e.g., pg. 287 in Hilborn and Walters 1992).
15 15                              ESSA Technologies Ltd.
ESSA Technologies Ltd.
 
Comments on the DEIS White Perch Analysis                                                October 20, 2000
 
==SUMMARY==
 
We suggest that accounting for the effects of spawner abundance and density dependent survival on PYSL abundance improves inferences on factors controlling survival. Our example analysis shows that interpreting the increase in PYSL abundance over the period 1974-1980 as an increase in survival is not supported using an index of density independent PYSL survival. We recommend the DEIS use similar survival analyses to investigate alternative hypotheses about the cause of variation in survival of white perch in the Hudson River. Our example illustrates an analysis of PYSL survival, but analogous analyses can be done for other life stages (e.g., egg-to-PYSL, egg-to-YSL, PYSL-to-juvenile, etc). It would be valuable to examine these results in terms of both the magnitude of density dependence between different life stages and its timing relative to entraiiment mortality.
16 ESSA  Technologies Ltd.
ESSA Technologies  Ltd.                              16
 
A. PYSL vs. YSL                                      B. PYSL vs. YEAR                                              C. PYSL vs. CEM I                                  I 9                                                                              I a                                    C 8
7                                                    7                                                            7 6 -                                                  6                                                            6                        &deg; 5                                                    5&#xb8;                                                            5 4 -
* 4                                                    CL 4 -
C.                                                        23                                                            3 2
* 2:                                                          2                              ". C 1,                                                            1 C'                                I 0 1    -    I, . I        I i    I I I I 0.0            0.5              1.0    1.'5                                                                                                                3 1974      1979    1983      1988  1992      1997              0              10              20  30 YSL index                                            Year                                                            CEM D. Ln(PYSL/YSL) vs. YSL                              E. Ln(PYSL/YSL) vs. YEAR                                      F. LN(PYSL/YSL) vs. CEM I, 0                                                  3.0                                                          3.0
                                                                                                                                                                *5    I 2.5  h                                                                                                            2.5 2,0  F                                                                                                            2.0 C) 1.5 -                                                                                                              1.5
      -j                                                                                                                -j I                I 1.0 0.0            0.5              1t0  1.5                                                                            0              10              20  30 YSL index                                            Year                                                            CEM G. Residuals vs. YSL                                H. Residuals vs. YEAR                                        I. Residuals vs. CEM 0.6                                                    0.6                                                          0.6 0.3                                                          0.3
                                  *5C e
0 eJ
* C.
0.0 P                                                  0.0                                                          0.0
          -0.3  I-                                              ,0.3                                                        -0U3
          -0.6                                                1.0.6                                                          `0.6 0,0            0.5              1.0  1.5          1974      1979    1983      1988  1992      1997              0              10              20  30 YSL index                                            Year                                                            CEM Figure Al:          Results of example PYSL survival analysis. Panels A-C: PYSL index. Panels D-F: Ln(PYSL/YSL) index. Panels GI: density independent survival index, residuals from fit to linear regression model (Ln(PYSL/YSL) = a + b*YSL). See text of Appendix for details.
 
Hudson River Shad Assessment and Equilibrium Calculations:
Revision of the 1995 Report to include data through 1997 Prepared for:
New York State Department of Environmental Conservation Division of Regulatory Affairs, 50 Wolf Road Albany, New York, 12233-1750 Prepared by:
Rick Deriso Scripps Institution of Oceanography La Jolla, Ca 92093 and Kathy Hattala and Andy Kahnle New York State Department of Environmental Conservation Division of Regulatory Affairs, 50 Wolf Road Albany, New York, 12233-1750 October20, 2000 1 This report is an updated version of an earlier report by the same authors (Deriso, R.B, K. Hattala, and A. Kahnle. 1999).
 
Citation:        Deriso, R.B., K. Hattala, and A. Kahnle. 2000. Hudson River Shad Assessment and Equilibrium Calculations: Revision of the 1995 Report to include data through 1997.
Prepared for New York State Department of Environmental Conservation, Albany, NY.
7 pp. + tables, figures, and appendix. Companion Report to the Appendix in Review of the Draft Environmental Impact Statement for SPDES Permits for the Bowline Point I
                  & 2, Indian Point 2 & 3, and Roseton 1 & 2 Steam Electric Generating Stations. Report to the Parties to the Application. Prepared by ESSA Technologies Ltd., Richmond Hill, ON, for NYSDEC, Albany NY. 31 pp. + appendices.
Short Citation.: Deriso, R.B., K. Hattala, and A. Kahnle. 2000. Hudson River Shad Assessment and Equilibrium Calculations: Revision of the 1995 Report to include data through 1997.
Companion Report to a Review of the DEIS for SPDES Permits for three Hudson River Generating Stations. Prepared by ESSA Technologies Ltd., Vancouver, BC, for NYSDEC, Albany, NY. 7 pp. + tables, figures, and appendix.
8 2000 ESSA Technologies Ltd.
This report has been provided in electronic form for review by the parties to the application for the Hudson River steam electric gnerating stations (Bowline, Indian Point and Roseton). Except for the express purposes of its review by the parties to the application, no part of this publication may be.
reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from NYSDEC, Albany, NY.
 
October 20, 2000                                                                                                        Comments on the DEIS American Shad.Analysis Table of Contents SU M M A R Y ......................................................................................................................................................................................                  1 EST IM A T IO N M ET H O DS .......................................................................................................................................................                                  2 EQUILIBR IU M C A LC U LA T IO N M ETH O D S ..............................................................................                                                    .................................... 4 M A T ER IA LS ...............................................      ,...................................................................................................................................            4 L IK ELIH O O D FU N C T IO N ......................................................................................................................................................                                5 EST IM A T ION R ESU LT S ..............................................................                        ..........................................................................................          6 EQ U ILIB RIU M RESU LT S ........................................................................................................................................................                                  6 R EFER EN CCES ...............................................................................................................................................................................                      7 A PPEN D IX : SEN SIT IVIT Y A N A LY SIS ............................................................................................................................                                              27 i                                                                        ESSA Technologies Ltd.
 
Comments on the DEIS American Shad Analysis                                                                                            October 20, 2000 List of Tables Table 1a:      Commercial gill net age composition samples ..............................................................                                8 Table  1b:    Haul Seine age composition samples .........................................................................                            13 Table  2:      Data used in fitting of the model. CPUE indices are fixed gill-net CPUE .....................                                          17 Table 3:      Population parameters estimated for American shad of the Hudson River .................... 18 Table  4:      Abundance by Age and Year ....................................................................................                          19 Table  5:      Population estimates for various quantities. Ocean Fs apply equally to all ages 3+. Gill-net Fs correspond to rates for fully-vulnerable age groups (see Table 3 for gill-net age-specific selectivities).. ..........................................................................                                    ....... 20 Table Al:      Estimates of adult shad abundance in the Hudson River for various assessment scenarios. 29 Table A2:      Estimates of adult, annual natural mortality rate for various assessment scenarios. Note that the estimate includes mortality from unreported catches and discards .........................                                          30 List of Figures Figure 1:      Fits of the mode I to indices on young shad ..............................................................                              21 Figure 2:      Fits of the model to indices on adult shad .................................................................                            21 Figure 3:      Beverton-Holt S-R model fitted to 1974-1994 data (assuming b=.01) is shown along with (b=0.2) and (b=0.5) curves found in the long-term assessments, Results are given for in terms of female recruits (one-year-olds) and the sex-ratio is 1-1 for the age ones ......                                              22 Figure 4:      Several panels show the consequence of changes in entrainment impingement loss rates to equilibrium yield. Graphs are drawn as a function of one of the three S-R hypotheses (given by b value) and as a function of the fractional multiple of fishing mortality to the average rates show n in Table 5 ...........................................................................................                    23 Figure 5:      Several panels show the consequence of changes in entrainment-impingement loss rates to recruitment. Graphs are drawn as a function of one of the three S-R hypotheses (given by b value) and as a function of the fractional multiple of fishing mortality to the average rates show n in T able 5 ...................................................................................................                  24 Figure 6:      Abundance of American shad in the Hudson River. Median and quartile estimates are shown .........................................................................................................................        25 Figure Al:    Comparison of annual mortality rate estimates from methods described in text ........... 30 Figure A2:    Several panels show the consequence of changes in entrainment-impingement loss rates to equilibrium yield when assessment scenario with high weighting is given to age composition and repeat spawning information. See Figure 4 for more details ............... 31 ESSA Technologies Ltd.                                                    Ui
 
October 20, 2000                                              Comments on the DEIS American Shad Analysis October 20, 2000                                              Comments on the DEIS American Shad Analysis Summary This report summarizes stock assessment and equilibrium calculations on American shad of the Hudson River based on the method described in Deriso et al. (1995). Research reported here is directed towards addressing two subjects: (1) a statistical estimation of abundance, fishing mortality, and certain critical life-history parameters of shad during the last roughly twenty years, (2) Equilibrium calculations of commercial yield of the shad fishery and of abundance of one-year-olds based on results from the estimation phase of the research and from results of application of the long-term model of Walters (1994).
Results show that the total fishing mortality on older shad have averaged around 0.25 (sd = 0.11) between 1974-1997. Median abundance of one-year-olds is estimated at 1.3 (sd= 0.61) million fish during that time period. The sum of natural mortality rate plus unreported fishing mortality rate for adult females (males) is estimated at 0.54 (0.81) annually. A cycle of low-high-low-medium abundance of adults is estimated for the period 1974-1997. While less precise than earlier years, the mid-1990s indicate an increase in abundance from the low point around 1990. Our result reported in 1995 that the 1989 and 1990 year-classes appear to be somewhat above average has proven to be the case. Those year-classes were followed by even, strong year-classes in 1992-1994. Preliminary indications from the juvenile indices are that the 1995-1997 year-classes could be below average and warrant some concern for the near-term future of the stock.
Equilibrium calculations were made for each of three hypotheses regarding (S-R) spawner-recruit relationships. Those three hypotheses are based on assumptions of low, moderate, and high density-dependent mortality in the SR relationship, as measured by a parameter b described in the paper. High density-dependence is indicated by fitting a Beverton-Holt S-R model to recent (1974-1994) estimates.
Moderate to low density-dependence is indicated by the long-term model of Walters (1994). Equilibrium calculations show that the shad stock is fully-exploited to over-exploited unless one assumes high density-dependence.
Results updated for the Appendix to this report show that an alternative hypothesis can be made based on a high reliance on age composition and repeat spawning information. With heavy reliance on those data, we would conclude the stock has not shown any recovery in the recent years and that both entrainment and fishing mortality rates need to be decreased. The driving force behind this alternative hypothesis are high adult mortality rates that can be inferred from age composition and repeat spawning information.
I                              ESSA Technologies Ltd.
 
Comments on the DEIS American Shad Analysis                                                October 20, 2000 Comments on the DEIS American Shad Analysis                                                October 20, 2000 Estimation Methods Maximum likelihood estimates of abundance were obtained by fitting an age-specific and sex-specific
.population model to several types of data. The model treats separately four groups of shad: immature females, mature females, immature males, and mature males. Age-specific time-dependent dynamics are modeled for each of the four groups along with transition rates to describe the shift from one state (immature) to another (mature). The transition is assumed to hi permanent so that once an individual becomes sexually mature then that fish would continue to spawn each year until death. The time sequence of events during any given year is assumed to be the following:
: 1. Annual rate of transition from immature state to mature state occurs.
: 2. Coastal harvesting occurs.
: 3. In-river commercial fishing occurs on mature fish.
: 4. Haul seine survey samples are taken from the escapement, which are the spawning fish.
: 5. Natural mortality is applied for the calendar year.
Equations to describe the dynamics are similar for males and females. Let y represent the abundance of immature females, then annual mortality and loss of immatures to the mature state are accounted for in the dynamics by the following equation, y(a + 1,t + 1) = [1 - p(a)]y(a,t)e-Focan(a.')
for which Focean(a,) is the age-specific fishing mortality rate in the coastal ocean fishery, which is assumed to be 0 for ages younger than three years of age and a constant for those fish age three and older.
The quantity p(a) is the proportion of age a immature fish that become mature in year t. The p(a) estimates for the model are obtained by including in the model estimation of a generalized logistic maturity function, given by p(a)      [1    e-arate(a-amid)y-apower in which sex-specific sets of the parameters arate, amid, apower are fitted as part of the likelihood. Two additional assumptions are made about the maturity ogives: female shad age 9 and older are assumed to be 100% mature; secondly, male shad age 8 and older are assumed to be 100% mature:
Abundance of mature fish, denoted by symbol x, are described by a model that contains recruitment from the immature state and losses due to gill-net and coastal ocean fishing. The abundance equations for mature fish, evaluated prior to a current year coastal ocean fishing, are given by x(a,t,afirst) = p(a)y(at,afirst) fornewlymature x (a + 1,t + 1,afirst) = x (a,t, afirst)em -Fgil(a.l>Focean(a~t) for those who were mature previously at age afirst. The equations above generate a matrix of abundance by sex for each given age and given age of first maturity.
ESSA Technologies Ltd.                                2
 
October 20, 2000                                                Comments on the DEIS American Shad Analysis The gill-net fishery modeled above operates within the Hudson River. Size-specific gill-net fishing mortality is modeled as a separable function of the sex-specific median length of fish and year, as follows:
Fgill(a,t) = exp{-.5[(I(a) - Ibar) I ls]2 }Fg(t) where (bar and Is are selectivity shape parameters estimated, where 1(a) are the median sex-specific lengths by age given in Table 3, and where Fg(t) is the fully vulnerable gill-net fishing mortality for year t, which is a parameter estimated by the model.
Predicted catch by the Hudson River fishery is obtained by summing abundance of the mature fish weighted by their body weight and by gill-net fishing exploitation:
Cgill(t)              _  w(a,t)x(a,t,af)e-Focen(al)[1- e-                    Fgi*(a't)]
sex,a aft Likewise, coastal landings are predicted by Cocean(t)=              Z      w(a,t)[y(a,t) + x(a,t,afirst)][1-                  e-rFc*(a()]
sex ,a afirst where care is taken not to double -count the newly mature fish.
Repeat spawning data collected from the Hudson River fishery and from NYSDEC haul seines provide estimates of age composition. The Hudson River fishery samples represent fish that escaped that year's coastal fishery. The predicted proportion, pgill, of a given sex of fish of given age a with first spawning age afirst is written as pgill (a, t, sex, afirst)      =  cgill (a, t, sex, afirst ) / cgill (-, t,.,.)
where cgill () denotes predicted number of fish caught with attributes listed in the parentheses. A similar calculation can be made for samples collected by the haul seines. Age-specific fishing within the Hudson differs by age so that in-river mortality must be included in the equation to describe the predicted proportion, phaul, of, say females in the haul seines, as follows:
phaul(a tafirst) = x(a ,t fr)e-Fgilt(a,0t),t                        frs~-g("
where the denominator is simply total escapement of mature fish from the gill-net fishery.
We found it unnecessary to formally model the length distributions by age and sex of catches. This improvement over the 1995 model was made possible by improvements in the amount of age composition data now available for shad.
3                                  ESSA Technologies Ltd.
 
Comments on the.DEIS American Shad Analysis                                                  October 20, 2000 Equilibrium Calculation Methods Recruitment is assumed to be given by a S-R function in order to calculate equilibrium. The Beverton-Holt S-R function with the parameterization given in Walters 1994 was used. In this parameterization, recruitment, defined here as abundance of one-year-olds (given by the immatures) is given by y(1, t+ 1) =Et (I-e,)Ro(J +b)/[bEo+E1(J-ped]
where e is the entrainment-impingement loss rate, p is the proportion of entrainment-impingement occurring before compensation (assumed p=0.5), &ois the unfished recruitment rate (millions of age I fish), E0 is the unfished egg production, and b is the compensation parameter. The compensation parameter b is mathematically the fraction of virgin egg production needed to produce one-half the maximum, asymptotic recruitment. As a measure of density-dependence, low values of b correspond to high density-dependent mortality (that i recruitment would stay high even with a large reduction in egg production).
Based on the parameters listed in Table 3, life-time egg production of a single recruit can be calculated for any given schedule of fishing mortality. In particular, we can calculate a schedule of fishing mortality by multiplying both the age/sex specific rates of gill-net and coastal ocean fishing mortality listed in Table 3 by a multiplier f. A value flI corresponds to the average fishing mortality rates estimated for the 1974-1997 time period. Denote the life-time egg production of a single recruit by the notation rv, which stands for reproductive value of a recruit; note that rv is as a function off. At equilibrium we equate egg production with the product of recruitment and reproductive value to get E=rv E (1-e)Ro(l +b)/[bEo+E(1-pe)]
and solve for E to find E=frv (I-e)Ro(l +b)-bEo]/(1-pe).
Equilibrium egg production isprojected through the S-R function to project equilibrium recruits, which are in turn projected through the abundance dynamic equations and catch prediction equations listed in the previous section. The projected catches and abundance are all equilibrium calculations as a function of the fishing mortality multiplierf and assumed entrainment-impingement rate e.
Materials Data listed in Tables 1 and 2 were used in the estimation. Table I lists sample age composition data collected from the Hudson River commercial fishery and from the NYSDEC haul seine samples. That information is stratified by year, sex of fish, current age, and age of first spawning. Commercial aged fishery samples were available from 1980 to 1995. Haul seine aged samples were available from 1983 to 1997 excluding 1996.
Indices of abundance are listed in Table 2. They include PYSL index of post-sac larvae sampling from 1974 - 1996. The juvenile JASG index is available from 1980 through 1997. The catch-per-unit-effort indices were calculated by year as the cumulative of weekly estimates for fixed gill net fishing in the Hudson River. Landings data are also fitted by the model and the coastal component of the catch was 4
ESSA  Technologies Ltd.
ESSA Technologies  Ltd.                              4
 
October 20, 2000                                                Comments on the DEIS American Shad Analysis.
revised upward from ASFMC estimates to provide NYSDEC "best" estimates. We use the "best" estimates in our fitting of the population model.
Likelihood Function The model was fitted to the data by maximum likelihood. The likelihood for the assessment model has several components:
: 1. log-normal PYSL assumption,
: 2. log-normal juvenile JASG assumption,
: 3. log-normal landings assumption.
: 4. log-nordial gill-'het CPUE indices for sex-specific catches of fish, and
: 5. multinomial repeat spawning samples for each sex of fish for each of the two gear types.
Components (1)-(4) have log-normal error assumptions, similar to those assumed in our 1995 paper. The multinomial assumption in (5) gives a way to assign relative weighting of the various repeat spawning data. However, one weakness of the multinomial assumption is that it can over-weight the influence of the age or length data if sampling of the Hudson River stock does not occur strictly on a random sampling basis. We have chosen to assign a weighting factor to each component so that they can be adjusted to adjust the influence of each component on the likelihood estimates.
The log-likelihood for this problem can be written as In L = C + AOZ_        Cb    1f(P&deg;.,tb            /1SSQ up to a constant C and a constant proportionality factor. The weighting coefficients theoretically represent a ratio of variances for the log-normal data. Let component (1) be the standard then Xj is the ratio, Var(index 1)/ Var(index j). The multinomial component has the X0 equal to 2Var(index 1). The notation SSQ indicates residual sum of squares. The first group of "c" data are the observed repeat sample data and the first group of p quantities are the corresponding predicted proportions of fish with attributes of age a and first spawning age b. Initial fitting of the model indicates indices have variances of roughly 0.5 or larger. Thus a straight multinomial weighting would assign Xo to be above 1.0. The base case weighting was chosen to have all Xs for the indices set to 1.0 and X for the landings set to 10.0 (to ensure the model fits closely observed landings), and X0 set to 0.5 to ensure the age and length data are not over-weighted.
The base runs of the estimation routine fit 1105 data points with 95 parameters. The parameters fitted are the following: year-class strengths from 1971-1995 [we assume that year-class strength in 1996 and 1997 equal 1995 due to a lack of data], the parameters governing gill-net selectivity and sex-specific maturity, full-recruitment fishing mortality rates for ocean and gill-net fishing for 1970-1997, initial conditions for abundance in 1970, and natural mortality rate of mature females and males. The computer program internally computes scaling factors for the PYSL and JUV JASG indices. Initial conditions for the modeled abundances were determined by adding a parameter for total initial annual mortality and assuming stationarity of the initial age composition with respect to that mortality and the initial 1970 year-class strength parameter. Natural mortality rate was assumed to be 0.3 annually for the sexually immature fish, in accordance with our previous paper.
Assessments were made with the full model, which includes everything listed in the likelihood equation above. Predicted and observed indices for juveniles and adults are shown in Figures 1 and 2, respectively.
5                                ESSA Technologies Ltd.
 
Comments on the DEIS American Shad Analysis                                                October 20, 2000 Estimation Results Estimated abundance by sex and year are shown in Tables 4 and 5. Fishing mortality rates given in Table 5 are lower than in our 1995 piper due to the larger estimate of natural mortality found for older shad.
Results indicate M=.53 (sd=.06) for mature female shad and M-0.80 (sd=.04) for mature miales. Those natural mortality rates are likely biased high because of unreported catches, which would be attributed in the model to natural mortality. Abundance estimates of mature shad in the Hudson River are shown in Figure 6. Those estimates compare favorably with estimates obtained from tagging studies (Hattala et al.
1998), although the tagging results indicate a considerable range in the abundance estimates.,
This report supports the overall conclusion in our 1995 report and in Walters (1994) that by 1990 the stock was substantially lower in abundance than present in 1930. With more data we now conclude that in recent years a partial recovery of the stock has taken place.
Equilibrium Results Equilibrium calculations of fishery yield and abundance of one-year-olds were made for several combinations of fishing mortality, entrainfment rates, and levels of density-dependence of recruitment survival. Different levels of overall fishing mortality were calculated by scaling the age and sex-specific rates listed in Table 3 by multiplying them by a fixed scalar, defined to be the Fishing Mortality Multiplier. A Multiplier value of 1.0 corresponds to the average level of fishing mortality for 1974-1997, as calculated from the full assessment model. For reference, the total fishing mortality of females at age of full-vulnerability is 0.25 in the Table 5. Levels of density dependence correspond to those discussed in our 1995 paper for which b=0.01, 0.20, and 0.50 correspond to high, moderate, and low levels of density dependence.
Figures 4 and 5 show equilibrium yield and abundance of one-year-olds, respectively, for varying levels
*offishing mortality in each panel. Several panels are given in each Figure to show the consequences of changes in overall entrainment-impingement mortality rates. As seen in Figure 4, equilibrium yield is maximized at from 50% to 100% of average fishing mortality levels under the hypotheses that density-dependence is low-to-moderate and entrainment-impingement is above 0.16 annually. With high density-dependence one would conclude that further increases in yield are possible, however as seen in Figures 3 and 5, the level of high density-dependence assumed with b=O.01 implies that recruitment would barely decline under even a tripling of the average fishing mortality. Maximum yield levels are adversely impacted by entrainment-impingement mortality in all cases with the decline in maximun yield most severe under the low density-dependence hypothesis. For example maximum sustainable yield would increase from about 500,000 pounds to over 1,000,000 pounds if entrainment-impingement were decreased from a mortality level of 0.33 to 0.0, under the moderate density-dependence hypothesis.
ESSA Technologies Ltd.                                6
 
October 20, 2000                                            Comments on the DEIS American Shad Analysis References Deriso, R.B., K. Hattala, and A. Kahnle. 1995. Hudson River shad assessment and equilibrium calculations: extension of assessment to include repeat spawning information and sex-specific attributes.
In Third Technical workshop for the completion of the draft EIS for Bowline, Roseton, and Indian Point 2
& 3 electric generating stations of the Hudson River. ESSA Technologies, Ltd. Richmond Hill, Ontario.
Deriso, R.B., K. Hattala, and A. Kahnle. 1999. Hudson River Shad Assessment and Equilibrium Calculations: Revision of the 1995 Report to include data through 1997. Prepared for New York State Department of Environmental Conservation, Albany, NY.
Hattala, K.A., A.W. Kahnle, D.R. Smith, R.V. Jesien, and V.Whalon. 1998. Total mortality, population size, and exploitation rates of American shad in the Hudson River estuary, New York.
ASMFC Interim Report.
Seber, G.A.F. 1973. The estimation of animal abundance. Griffin & Co., London. 506 pp.
Walters, C. 1994. Population dynamics of Hudson River shad as evidenced from long-term catch records. Draft report to NYPA and NYSDEC with comments by Ray Hilborn.
7                              ESSA Technologies Ltd.
 
Comments on the DEIS American Shad Analysis                                                October 20, 2000 Table la:      Commercial gill net age composition samples.
Repeat spawn matrix for American shad caught in the Hudson River commercial gill net fishery 1 =male 2=female          repeat spawn marks Year      Sex      Age        0      1      2        3      4        5          6        7        8 1980          1        4        9 1980          1        5      11      15 1980          1        6        3    15      10        1 1980          1        7                2      18        8 1980          1        8                        2        6      2 1.981        1        4      11        1 1981          1        5      17      5      1 1981          1        6        3    22      19        1 1981          1        7                      37      19      1 1981          1        8                        4      14      5 1981          1        9                                        1 1982          1        3        1 1982          1        4      11 1982          1        5      14      10 1982          1        6        5. 12      11        1 1982          1        7                1    15      17 1982          1        8                                13 1982          1        9                                  1              4 1982          1      10                                                  1 1983          1        4        9 i983          1        5      21      14      2 1983          1        6        5      8      10 1983          1        7                      11        4 1983          1        8                                10 1983          1        9                                  2              2 1983          1      10                                                  4          1 1983          1      11                                                              2 1984          1        4        1 1984          1        5      14      12      2 1984          1        6        6      7      9        2 1984          1        7                1      2        7 1984          1        8                        1        7 1984          1        9                                  1              4 1984          1      10                                                  1 1984          I      11                                                                      I 1985          1        4        4      1 1985                  5      13      4      3 1985
* 1        6        9      7      11 1985        .1        7                        5      14 1985          1        8                        1        1 1985          1        9                                                  1 1985          1      10                                                  2 1986          1        4        4      3 1986          1        5        5    16      7 1986          1        6        6      6      12        1 1986          1        7        1      1      6        9 1986                  8                        1        3 1
1986
* 1        9                                  1              2 1986                  10                                                  1 ESSA Technologies Ltd.                              8
 
October 20, 2000                                  Comments on the DEIS American Shad Analysis October 20, 2000                                  Comments on the DEIS American Shad Anajysis 1=male 2=female      repeat spawn marks Year      Sex AgeI        0      1    2    3      4        5      6        7        8 1986        1  11                                              1      1 1987              5        1      3 1987        1    6        1      9    6 1987        1    7        1            7    3 1987        1    8                      2    3        7 1987        1    9                                    6        4 1987            10                                              1      1 1
1987            11                                                      3 1988        1    3        1 1988        1  4          3 1988              5      12      7 1988            6          1    15  28 1988              7                2  11    12 1988              8                          6        6 1988        1    9                                    6        1 1988            10                                              3 1989            4          1 1989              5      14      6    1 1989            6          9    20  35 1989            7                    20    23 1989            8                          21      17 1989              9                          2        5        4 1989            10                                              2 1990            4          1 1990            5          7      1 1990            6          1      3    4 1990            7                1    1    4 1990            8                            2        3 1990            9 1991            3          2 1991            4          2 1991            5                1 1991            6                2    3 1991            7                      1    7 1991            8                            2        4 1992            3          2 1992            4        20 1992            5        18      10 1992            6          2    26  12 1992            7                1  24    6 1992            8                          10 1992        1  9                                    1 1993            4          3 1993            5          1      2 1993          1  6                3  10 1993            7          1      1    6    3 1993        1  8                            2 1994              5          1      1 1994              6                3    3 1994              7                      3    2 1994              9                            1 1995          1  4        4 1995          1  5        13      9 9                            ESSA Technologies Ltd.
 
Comments on the DEIS American Shad Analysis                          October 20, 2000 Comments on the DEIS American Shad Analysis                          October 20, 2000 1 =male 2=femafe              repeat spawn marks Year      Sex      Age            0      1  2      3  4    5 6      7        8 1995          1        6          8    15  21 1995          1        7          1      1  13    11 1995          1        8                      2      6  1 1995          1        9 1980          2        4          5      1 1980          2        5        81      19 1980          2        6        36      58    7 1980          2        7          7      5  21      3 1980          2        8                      7      4 1980          2        9                                  3 1981        S2          4          7 1981                    5        88 1981                    6        71          11 1981                    7          9          46    10
                        *>8 1981                                          22    26 1981                    9                              5 1981                  10 1982                    4          11 1982                    5.,      86 1982                    6::.      43          11 1982                    7          5          43      4 1982                    8                      14    24 1982                    9                              4 1982                  10 1982                  11 1983                    3          1 1983                    4          9 1983                    5        95 1983                    6        66            7 1983                    7          4          12      5 1983                    8                      12    14 1983                    9                              7 1983                  10                              2 1983                  11 1984                    4          5 1984                    5        48 1984                    6        56          15 1984                    7          18          15      7 1984                    8                        5    12 1984                    9                        1    2 1984                  10 1985                    4        18 1985                    5        72 1985                    6        52            6 1985                    7          10          32    10 1985                    8                      8    10  8 1985                    9                      2      3  11    4 1985                  10                                  5    6 1985                  11                                      3 3 1985                  12                                    11 1986                    4          7 1986                    5        70            2 1986                    6        34          24      1 ESSA Technologies Ltd.                              10
 
October 20, 2000                                    Comments on the DEIS American Shad Analysis 1lmale 2=female      repeat spawn marks Year      Sex Age          0      1    2      3      4        5      6        7          8 1986        2    7        7      9  24      8      1 1986        2    8                    6      13      8 1986        2    9                            4      7        5 1986        2  10                              2                4 1986        2  11il                                              1 1986        2  12                                                                2 1987        2    4        1      1 1987        2    5        52      11 1987        2    6        40      53  11 1987        2    7        5    31  27    11
.1987        2    8                1  13    23      9 1987        2    9                          20      7 1987        2  10                                    10        18      2 1987        2  11                                              3      9 1987            12                                                                3 1987            13                                                                1          1 1988              3        I 1988              4        7 1988              5        46      6 1988              6        14    43  17 1988              7                14  39      7 1988              8                    3    22      7 1988              9                                  11        2 1988            10                                    1        3 1989            4          2 1989              5      67        2 1989              6        57      33  23 1989              7          2      8  54    16      2 1989              8                      5    27      4 1989              9                              1      5        1 1989            10                                    2        1 1990              4          3 1990              5        41        1 1990              6        19      31  11 1990              7          2      7  18    21 1990              8                            21      7 1990              9                              1      8 1990            io                                    1        3 1990            11                                                      1 1990            12                                                                          1 1991              4        13        4 1991              5        45      12    2 1991              6        30      16  11      4      1 1991              7          6      7  20    11      1 1991              8                  1  2      2      7 1991              9                                    7        1 1991            10                                              1 1991            11                                                      1 1992              4        11 1992              5      149      10 1992              6        43      78    5 1992              7                19  32      5 1992              8                      4    12      1 11 11                          ESSA Technologies Ltd.
ESSA Technologies Ltd.
 
Comments on the DEIS American Shad Analysis                October 20, 2000 1=male 2=female            repeat spawn marks Year      Sex      Age        0      1  2    3 4 5 6      7        8 1992          2        9                          2 4 1992          2      10                            1 1 1993          2        4        5 1993          2        5      14      2 1993          2        6        3    13    7 1993          2        7                2    9    1 1993          2        8                    2    4 1 1993          2        9                              1 1994          2        5      24      4 1994          2        6      20      17    9
. 1994          2        7                4  20 1994          2        8                1  3 1994          2        9                            2 1995          2        4        3 1995          2        5      45      8 1995          2        6      26      22    6 1995          2        7        2      7  13    1 1995          2        8                    1    3 1995          2        9                            2 1995          2      10                              I 12 ESSA Technologies Ltd.
ESSA Technologies Ltd.                          12
 
October 20, 2000                                            C Comments on the DEIS American Shad Analysis Table 1b:      Haul Seine age composition samples.
Repeat spawn matrix - American shad caught in HR spawning stock survey 1=male 2=female          repeat spawn marks Year        Sex    Age          0      1      2        3        4        5      6        7 1983          1    3          1 1983          1    4        4 1983          1    5        5        3 1983          1    6                  3      2 1983          1    7                          1      4 1983          1    8                                  3 1983          1    9                                          2 1983          1    10                                                    1 1984          1      3        3 1984          1    4        18 1984          1    5        14        9 1984          1    6        2        8    12 1984          1    7          1              4      4 1984          1    8                                  6        1 1984          1      9                                          1 1984          1    10                                                    1 1985          1    3        13 1985          1    4        45        9 1985          1      5      36      14        3 1985          1    6        5        8    10 1985          1      7                2      2 1985          1    8                          2                3        1 1985          1    9                                          1        1 1985          1    10 1986          1    3        9 1986          1    4        66      11 1986          1    5        49      17      6 1986          1    6        11      10      16 1986          1    7                  3      3                1 1986          1    8                                          6 1986          1    9                                          3 1986          1    11                                          1 1987          1    3        8 1987          1    4        55        1      1 1987          1    5        42      18        2 1987          1    6        3      19      13 1987          1    7          1            13 1987          1    8                                          4 1987          1    9                                          5        2 1987          1    10                                                    2 1987          1    11                                                            2 1988          1    3        2 1988          1    4        42 1988          1    5        78      18        1 1988          1    6        6      20      16 1988          1    7                .2    13      11 1988          1    8                                  3        4 1988          1    9                                          3        ~1 1988          1    10                                          1        1 13                            ESSA Technologies Ltd.
 
Comments on the DEIS American Shad Analysis                      October 20, 2000 Comments on the DEIS American Shad Analysis                      October 20, 2000
        . =male 2=female            repeat spawn marks Year      Sex      Age          0      1  2    3  4  5 6      7 1989          1      3        2 1989          1      4        32        1 1989          1      5        36      10 1989                  6          8    18  10 1989          1      7                2    8    13 1989          1      8                            6  11 1989          1      9                                4  1 1      10                                  1 1989 1990          1      4        13 1990          1      5        22        3 1990          1      6        2        2 1990                  7          1      1          1  I 1990                  8 1991          1      3        12 1991                  4        44        4          1 1991          1      5        25        8 1991                  6          9      5 1991        .1        7          1 1991          1      8                                1 1992          1      3-      13 1992                  4      165        7 1992          1      5      186      44 1992                  6        22      29 1992                  7                  4 1992          1      8                                1 1992                  9          1                    1 1993          2      3          5 1993          1      4        86        6 1993                  5      108      44 1993                  6        17      19 1993          1      7          1      3          5 1993                  8                            2 1994                  3          2 1994          1      4        30        2 1994          2      5        22      10 1994          2      6          1 1994          2      7                            2  1 1995          2      *3      23 1995          2        4      88        8 1995                    5      50      27 1995                    6        2    13 1995                    7        1                  4 1997                    3        4 1997                    4      24 1997                    5      20      10 1997                    6                6  3      1 1997                    7                            1 1997                  10                                  1 1983                    4        7 1983                    5      12        5 1983                    6        7      3  2 5
1983                    7        2                  1 1983                    8                    2      3 ESSA Technologies Ltd.                            14
 
October 20, 2000                                    Comments on the DEIS American Shad Analysis I,
1=male 2=female      repeat spawn marks Year        Sex  Age        0      1  2      3      4        5      6        7 1983            2  9                            2      1 1983            2  10                                    1 1984            2  4        1.
1984            2  5        6        1 1984            2  6        7      6    1    1 1984            2  7        3      3    7 1984            2  8                            4      4 1984          2  9                                  4          1 1984          2  10                                    1        2 1984            2  11 1985            2  3        1 1985            2  4      10 1985            2  5      12        4 1985            2  6        7    16    4 1985          2  7        2        4  9      2 1985            2  8                    2      6 1985            2  9                            3 1985          2  10                                              3 1985          2  11                                              3 1986            2  4      14        3 1986            2  5      42      13 1986            2  6      40      19    6 1986          2  7        6        5  10      5 1986            2  8        2        2    1    4 1986            2  9                            2                3 1986            2  10                                              1                            C 1986            2  11                                              2      1        1 1987            2  4      15 1987            2  5      66        5 1987            2  6      26      22    2 1987            2  7        2      11  11      3 1987            2  8                1  6    14 1987            2  9                            6 1987            2  10                                              5 1987            2  11                                                      1 1987            2  12                                                              11 1987            2  13 1988            2  4      16 1988            2  5      86      4 1988          2    6      24      64  16 1988          2    7        1      17  28    10 1988          2    8                1        12      1 1988            2  9                            4      5          1 1988          2  10                                  4          2 1988            2  11                                  1          2      2 1988            2  12                                                      2 1989          2    4        8 1989            2  5      53      4 1989            2  6      36      12    4 1989          2    7              10  26      9 1989          2    8                1  3    14      1 1989          2    9                    1      2      2          2 1989            2  10                                  3          2      1 15                          ESSA Technologies Ltd.
15                          ESSA Technologies Ltd.
 
Comments on the DEIS American Shad Analysis                    October 20, 2000 1 =male 2=female            repeat spawn marks Year        Sex      Age          0      1  2    3  4 5 6      7 1989          2      11                                1 2 1990          2        4          3 1990          2        5        23 1990          2        6        11      4 1990          2        7                4  10 1990          2        8                      1    5 1990          2        9                              1 1990          2      10                                1 1991          2        3          1 1991          2        4        10 1991          2        5        29        4 1991          2        6        24        9    1    1 1991          2        7          6      2  5      1 1991          2        8                      2      1 1991          2        9                              1 1991          2      10                                1 1992          2        4        21 1992.          2        5      150      19 1992          2        6        87      65    9 1992          2        7        10      34  21      2 1992          2        8                      5      2 1 1992          2        9                            2 3 1 1992          2      10                              1 1 1993          2        4          9 1993          2        5        49      10 1993          2        6        31      16    6 1993          2        7                  8  10 1993          2        8                  1  2    S6 1994          2        5        36      11    2 1994          2        6          8      7  4 1994          2        7          2      1  2      2 2        8                            1 1994                                                    1 1995          2        3.        3 1995          2        4        64 1995          2        5      156      58    1 1995          2        6        51      49  31      1 1995          2        7        10        6  14      4 1995          2        8                      1    2 1997          2        4        12        1 1997          2        5        31        1 1997          2        6          4      7  2 1997          2        7                  2  2      2 1997          2        8                      1    3 1 1997          2        9                      1    3 2 16 ESSA Technologies Ltd.
ESSA Technologies  Ltd.                            16
 
October 20, 2000                                              Comments on the DEIS American Shad Analysis Table 2:      Data used in fitting of the model. CPUE indices are fixed gill-net CPUE.
LANDINGS (Ibs.)                                    ABUNDANCE INDICES Year    Hudson River ASMFC coastal "Best" Estimate PYSL                JUVjasg Male CPUE Female CPUE 1970        241400            32411              46875 1971        173900            19408              28228 1972        311800            31183              45123 1973        255000            24039              34987 1974        231900            31949              46722        0.17 1975        233600            54648              79937        0.28 1976        214900            67100              98032        0.16 1977        185400            121289            177387        0.17 1978        419400            112435            162981        0.09 1979        498200            108009            157507        0.49 1980        1420800            163233            240395        0.48      23.87        4.28          19.11 1981        673600          247657              371193        0.78      19.12        6.17          14.47 1982        452200          443140              671039        0.59      12.17        3.04            8.02 1983        520600          300929              434873        0.57      18.24        5.65            9.16 1984        678300          325447              507325        0.38        7.79        3.42            9.49 1985        827264          312166              465989        0.67      26.65      10.66          26.65 1986        849168          298616              456895        1.05      46.32      24.54          52.09 1987        682182            340944            538170        0.18      20.2        13            47.34 1988        786132          420129              665172        0.73      27.59        19.4          42.22 1989        483300          516972              803320        1.04      47.3        9.3            33.79 1990        449338          684391            1024042        1.17      41.24        3.53          16.61 1991        345328          664237            1018571        0.32      24.05        2.32          18.31 1992        284564          436147              677094        0.62      35.17        1.32          14.61 1993        142898          453635              688948        0.23      11.64        0.91          13.02 1994        194110            315943            454485        0.37      26.09        0.86          24.35 1995        258440            336426            496960        0.20      5.74        1.4          11.49 1996        183910            343499            514076        0.26      30.89        2.19          20.25 1997        140306            343499            514076                    9.51        0.91            7.11 K,
17 17                              ESSA Technologies Ltd.
ESSA Technologies Ltd.
 
Table 3:          Population parameters estimated for American shad of the Hudson River.
Age                                      1      2      3      4        5        6      7      8      9    10      11      12      13    14 (years)                        I' weight male (lbs.)                                2.20  2.73    3.35    3.77    4.05  4.60  4.77  5.11  6.03    6.03    6.03    6.03 weightfemale (lbs.)                                1.96  3.93    4.30    4.88    5.57  6.21  6.84  7.26  7.68    7.40    8.43    8.43 fecundity (scaled)                                  96    158    220      282    344    406    468    530    592    654    716    778 maturation male                    0.00  0.00    0.04  0.48    0.86    0.97    0.99  1.00  1.00  1.00  1.00    1.00    1.00    1.00 maturation female                  0.00  0.00    0.00  0.15    0.63    0.91    0.98  1.00  1.00  1.00  1.00    1.00    1.00    1.00 gill-net selectivity male          0.00  0.00    0.00  0.03    0.14    0.34    0.56  0.75  0.88  0.95  0.98    1.00    1.00    1.00 gill-net selectivity female        0.00  0.00    0.04  0.22    0.53    0.83    0.98  1.00  0.93  0.79  0.63    0.47    0.34    0.24 ocean selectivity                  0.00  0.00    1.00  1.00    1.00    1.00  1.00  1.00  1.00  1.00  1.00    1.00    1.00    1.00 median length male gill-net      303.82 350.45 388.23 418.84 443.64 463.74 480.02 493.21 503.89 512.55 519.57 525.25 529.86 533.59 median length female gill- 358.24 393.59 424.99 452.89 477.68 499.70 519.27 536.65 552.10 565.82 578.01 588.84.: 598.46 607.01 net Average F gill-net male            0.00    0.00    0.00  0.01    0.03    0.07    0.12  0.16  0.19  0.20  0.21    0.21    0.21    0.21 Average F gill-net female          .0.00  0.00    0.01  0.05    0.11    0.18    0.21  0.21  0.20  0.17  0.13    0.10    0.07    0.05 Average F ocean rate              0.00    0.00    0.05  0.05    0.05    0.05    0.05  0.05  0.05  0.05  0.05    0.05 "0.05      0.05
 
October 20, 2000ComnsothDESAecaSadnays              Comments on the DEIS American Shad Analysis Table 4:      Abundance by Age and Year.
Males 1978      12193      9694        5409    1132      191        227        1090        515 1979      8242259  9184371      98634  2647675  549906    78    8858              57 4154 1980      1027288    644581    542083    263609  105274    20575        3088        350 1981      1193949    738677    377964    243437  104974    38961        7187        1038 1982      957473    852307    430736    171750  101590    42247        15254        2763 1983      879925    671808    488732    193412    71542    41247        16832        6001 1984        894822    624871    389847    221806    81229    292,10      16490      6636 1985        760725    631853    360418    175172    91498    32303      11297      6260 1986        584738    537324    364362    161049    71080    35383      12035        4105 1987        385630    411509    308647    161801    64633    27048        12918        4274 1988      404159    267117    232707    135219    64338    24479        9865        4594 1989        472841    272485    146880    98139    50710    22490        8096        3144 1990        552787    308363    145001    60246    36155    17599      - 7449        2599 1991        483956    347057    157822    56639    20717    11467        5235      2123 1992        529622    301556    176330    61346    19475    6603        3442        1510 1993        546294    348356    161845    72936    22785    6812        2204        1113 1994      443846    360740    187965    68275    28447    8631        2525        805 1995        736263    303409    201457    81882    27377    11027        3261        938 1996      642523    505169    170028    87845    32699    10513        4110        1191 1997        794985    442516    284317    74882    35838    12983        4091        1578 Females Age Year          3        4        5        6        7        8            9          10 1974      242425      55749    52832    42739    30548    21989        16938      15306 1975      618790    176848    39154    30778    20880      14178      10163      7940 1976      1274470    450558    123522    21767    13386    8372        5645      4144 1977      1347540    933830    316761    69346    9612      5454        3388      2338 1.978      1271943    985509    658459    188443  35556      4729        2675      1679 1979      892259    933119    696811    390984  95755    17305        2294      1312 1980      1027288    654892    660809    419654  205615    48639        8767      1172 1981      1193949    750484    459521    374287  190513    87010        20460      3764 1982      957473    865941    524917    271892  191691    93824        42720      10144 1983      879925    682557    596016    309668  141837    97099      47423      21737 1984      894822    634868    475343    354528  161991    71903      49109      24163 1985      760725    641960    439217    277892  179159    78764      34856      24042 1986      584738    545917    443690    252839  135058    82943      36321        16287 1987      385630    418089    375722    252768  120368    60962      37275'      16564 1988      404159    271389    283361    212003  120315    54529      27506        17044 1989      472841    276841    178607    151128  91216    48355      21789        11208 19                            ESSA Technologies Ltd.
 
Comments on the DEIS American Shad Analysis Commntson te DIS            merian had    nalsisOctober 20, 2000 1990        552787        313294        176439    93494    65253        37110      19575          8967 1991        483956        352604        191785    86417    36148        23339      13184          7114 1992        529622        306376        214342      93888    33762        13115        8414          4855 1993        546294        353926        196931    113128    40856        13837        5348          3488 1994        443846        366511        229171    108830    54898        19185        6482          2524 1995        736263        308263        245547    130207    53760        26154        9114          3107 1996        642523        513250        207166    139004    63386        25123      '12183          4291 1997        794985        449595        346694    119713    70808        31312      12382          6047 Table 5:          Population estimates for various quantities. Ocean Fs apply equally to all ages 3+. Gill-net Fs correspond to rates for fully-vulnerable age groups (see Table 3 for gill-net age-specific selectivities).
Female                                Male                  Total          F          F Year        Eggs        YOY          Gill      Hudson      VOY    Gill    Hudson    Hudson      Ocean        Hudson (10A 6)    abundance      CPUEJQ    Abundance abundance CPUEJQ  Abundance Abundance    _________
1974      74088      3314413          0        214889  3314413    0        152695    367584        0.01        0.21 1975      42849      3128475          0        158520  3128475    0        185381    343901        0.02        0.36 1976      44546      2194604          0        216134  2194604    0        390387    606521        0.01        0.35 1977      90682      2526720          0        445482  2526720    0        792351    1237833        0.01        0.16 1978      170588      2936640          0        818177  2936640    0      1154606    1972783        0.01        0.17 1979      249650      2355004          0      .1098496  2355004    0      1305302    2403799        0.01        0.13 1980      253875      2164267      2196010    1201108  2164267  2196010    1230089    2431197        0.01        0.31 1981      262768      2200908      1662808    1066430  2200908  1662808    1128986    2195416        0.02        0.15 1982      270325      1871081      921612      1049503  1871081  921612    1141294    2190797        0.04        0.10 1983      281738      1438224      10526`14    1091948  1438224  1052614    1113417    2205364        0.03        0.11 1984      269282        948496      1090535    1048808  948496  1090535    1024800    2073608        0.03        0.15 1985      241714        994070      3062463      968266  994070  3062463    960175    1928441        0.03        0.20
  .1986    217249      1163001      *5985879      885971  1163001 5985879    876427    1762397        0.03        0.22 1987      193078      1359636      5440037      771666  1359636  5440037    734436    1506102        0.05        0.20 1988      147207      1190339      4851676      620519  1190339 4851676    555854    1176373        0.08        0.30 1989      109562      1302661      3882950      441811  1302661 3882950    422310    864121        0.11        0.25 1990      77600      1343666      1908724      343128  1343666 1908724    372431    715560        0.15        0.34 1991      65798      1091685      2104078      302071  1091685 2104078    369223    671294        0.16        0.32 1992      69194        1810915      1678896      313585  1810915 1678896    382860    696445        0.10        0.25 1993      79264      1580353      1496182      329877  1580353 1496182    405901    735778        0.10        0.12 1994      89801      1955348      2798160      377560  1955348 2798160    446910    824470        0.06        0.14 1995      97178        531841      1320364      409188  531841  1320364    459763    868951        0.06        0.16 1996      106980      531841      2327012  .435273      531841  2327012    535582    970856        0.06        0.11 1997      129354      531841        817040      516846  531841  817040    608570    1125416        0.05        0.07 Avg.        151432      1686084      1858210      630 219  1686084 1858210    697906    1328125        0.05        0.20 20 ESSA Technologies    Ltd.
Technologies Ltd.                                    20
 
October 20, 2000                                                      Comments on the DEIS American Shad Analysis October 20, 2000                                                      Comments on the DEIS American Shad Analysis Figure 1:      Fits of the nmodel to indices on young shad.
Logarithm of Predicted and Observed Indices 5.
: 4. -A                                          A      A      A        i  PYSL obs A    A                A 2-L 0        v .    .                      1. 1* 1  1,
                                                                                      -a-    PYSL pred 1'I
                  -1 . .        .'                                    ' ' '              A  JUV obs
                                                                                      -- x-- JUV pred Year Figure 2:      Fits of the model to indices on adult shad.
Logarithm of Predicted and Observed Adult Gill-net CPUE 5
4 2
3    - -  " .-
0-0 CD          M    q    to  M  I-  M  M    CD        N    M 'I-    to (o  r-0O  O  UO w  00  O0  O0  U)  U)  U)  U)    0)    0) 0w  0) 0M    0M  0M  0M
: 0)  0)  0)  0)  0)  0)  0)  0)  0)  0)    0)    0) 0)  0) 0M    0M  0)  0)
Year N    Fern Obs -A--    Fern Pred    0  Male Obs        w Male Pred 21                                        ESSA Technologies Ltd.
 
Comments on the DEIS American Shad Analysis                                                  October 20, 2000 Figure 3:      Beverton-Holt S-R model fitted to 1974-1994 data (assuming b=.01) is shown along with (b=0.2) and (b=0.5) curves found in the long-term assessments. Results are given for in terms of female recruits (one -year-olds) and the sex-ratio is 1-1 for the age ones.
Eggs versus female recruits 3000000 2500000 2000000-1500000- -
1000000                    I                I                I' 500000 0                                      I 0    50000    100000  150000  200000    250000  300000 Eggs (in millions)
I Estimated -      b=0.2  - - - - b=.01 -      -b=0.5 22 ESSA Technologies ESSA              Ltd.
Technologies Ltd.                                22
 
October 20, 2000                                                          Comments on the DEIS American Shad Analysis Figure 4:      Several panels show the consequence of changes in entrainment impingement loss rates to equilibrium yield. Graphs are drawn as a function of one of the three S-R hypotheses (given by b value) and as a function of the fractional multiple of fishing mortality to the average rates shown in Table 5.
Plant Mortality = 0.0 2500000 2000000 1500000 500000 0
0        0.5  1      1.5      2        2.5      3      35 Fishing Mortality Multiplier Plant Mortality    0.03 25000000 2000000 tvooooo 1500000 500OO0, 0        0.5 1    1.5      2        2.5      3    3.5    4 Fishing Mortality Multiplier Plant Mortality  = 0.16 2500000 2000000
                  .: ooaooo 1000000 .
500000 0        0.5  1    1.5      2        2.5      3    3.5    4 Fishing Mortality Multiplier Plant Mortality    0.33 2000000 500000 0        0.5  1    1.5      2        2.5      3    3.5    4 Fishing Mortality Multiplier 23                                  ESSA Technologies Ltd.
 
Comments on the DEIS American Shad Analysis                                                                  October 20, 2000 Figure 5:      Several panels show the consequence of changes in entrainment-impingement loss rates to recruitment. Graphs are drawn as a function of one of the three S-R hypotheses (given by b value) and as a function of the fractional multiple of fishing mortality to the average rates shown in Table 5.
Plant Mortality = 0.0
                  .9 4000000
                  .&sect;3*oo S2500000 0    2000000                                                                    b4*1*.011 1500000o                                                        - I-
                                                                                          --      b425
                        *:  0  . .        . .  . . .    . .4 0        0.5      1      1.5      2        2.5    3        3.5 Fishing Mortality Multiplier Plant Mortality      0.03
* 4000000.
0    200000 S        001 1o00oo0.~                        " -        I        b=&deg;-.
500000 0        0.5    1      1.5      2      25      3        3.5          4 PlantMota0t 0          1            Fishing Mortality Multiplier                    ji Plant Mortality = 0.16 Li]
0                                                                                b=O.01 1000000
                    ~350000000    ..
0        0.5      1      1.5      2      25      3        35            4 200000 Fishing Mortality Multiplier Plant Mortality =0.33
_1oo00o                              .0'-0I0&deg;
                                                                -                                b=0.2 500000
* 0        0.5      1        .5      2        2-5    3        3.5            4 Fishing Mortality Multiplier Ltd.                                            24 ESSA Technologies Ltd.
ESSA Tkhnologies                                                  24
 
October 20, 2000                                      Comments on the DEIS American Shad Analysis Figure 6:      Abundance of American shad in the Hudson River. Median and quartile estimates are shown.
Adult Shad abundance in Hudson River median and quartile estimates 2500000 c 2000000
'6 1500000
  ---                                                                                    75%
1000000 E                                                                                  -median z      500000 0*
1970      1975      1980      1985      1990      1995      2000 Year
                                              *25                            ESSA Technologies Ltd.
 
Comments on the DEIS American Shad Analysis    October 20, 2000 26 Technologies Ltd.
ESSA Technologies Ltd.                      26
 
October 20, 2000                                                Comments on the DEIS American Shad Analysis Appendix: Sensitivity Analysis A sensitivity analysis is presented of several alternative assessment scenarios:
: 1. We include 1998 data for the various indices and for the landings. Age composition estimates were not updated.
: 2. An alternative assumption was made about what the PYSL (post yolk-sac larval index) measures. Our assumption has been that PYSL is a measure of egg production of the population. However, the highly significant correlation (at p=.001) between the PYSL index and the JUV (juvenile) index [ R= 0.73] provide evidence that those indices are measuring-the same population feature. Both of those indices are now related to abundance during the first year of life. For example, for the PYSL index we assume that ln(pysl) =[scaleparameter] + 0.5*[In (eggproduction) + ln(age I abundance)]+ error
: 3. We increased the weighting given age composition and repeat spawning information. Our assumption has been that the weighting coefficient, gamma, was set equal to 0.5, which is lower than the theoretically correct value for a multinomial distribution. We made that assumption to ensure that the age composition data were not over-weighted. Alternative scenarios now include one where gamma = 1.25 (roughly the theoretically correct value) and one where gamma =10.0 which over-weights the age composition data in order to ensure mortality rates based only on such information are carried into the assessment model.
We developed a simple estimator of total mortality rate solely from our repeat spawning information for purposes of comparison to assessment model results. We digress a moment to derive the estimator primarily because we are not aware of a similar use of repeat spawning information and because we hope our work will motivate someone to improve upon our results. Our estimator is based on the following assumptions: (a) recruitment into the population is constant, (b) mature fish experience the same annual mortality rate ,and (c) sampling of the haul seined catch (where repeat spawners are sampled) is a random sampling scheme. The sampling assumption (c) allows us to assume a multinomial distribution for the age/spawn check data obtained within a given year. Assumptions (a) and (b) allow us construct a simple estimate of annual survival (S) from samples collected during any given year as:
S = (catch of age "i++/- " fish that first spawned in year "j") / (catch of age "i" fish that first spawned in year The survival estimate takes advantage that we can track a cohort of mature fish that have experienced common survival risks by utilizing spawn check information. A pooled estimate was obtained for each pair of age groups by pooling catches across spawn check groups. In essence that produces an estimate of survival, given as:
S- (catch of age "i+I" fish that have spawned at least once prior to current year) / (catch of all age "i" fish).
A further pooling was made to combine the survival estimates for each pair of age groups together in order to form a single estimate for each year and sex group. This pooled estimate is weighted according to a quantity roughly proportional to the inverse of its variance, as calculated from a delta approximation for a ratio of multinomial proportions (Seber 1973, pg. 9). The resulting estimator a survival can be written as 27                                    ESSA Technologies Ltd.
 
Comments on the DEIS American Shad Analysis                                                  October 20, 2000 SWi.
for which the weights are given by.
W, =[1 /ni + ln/ ]-
where the number of fish in the catch term in the numerator of Si is labelled ni+, and the number of fish in the catch term in the denominator of S, is labelled ni. Estimates of annual mortality rate'are obtained from the equation Z = -In(S)..
Table Al shows some.. estimates of population abundance of shad in the Hudson River from our sensitivity analysis. As seen in the Table, the primary sensitivity to abundance estimates is based on the amount of weighting assigned to the age composition and repeat spawning information. If one has reason to doubt the validity of the various indices of abundance (the adult gill-net catch rates, the juvenile index, and the PYSL index) then more confidence should be placed on results that emphasize the age composition.
Table A2 shows that natural mortality rate estimates for females and males are similar for all the assessment scenarios. Note that those mortality rates include mortality from unreported catches and discards.
Figure Al shows a comparison of mortality rate estimates from our simple method based solely on repeat spawning samples with those of various assessment scenarios. As expected assigning a high weight (gamma = 10.0) to the age composition and repeat spawning information causes the integrated assessment model to produce mortality rates similar to those based solely on the.repeat spawning information. Rates from under weighting and average weighting of age composition and repeat spawning produces similar estimates of mortality rates, but ones which do not show the increased rates in recent years implied from age composition estimates.
We caution there is a potentially dangerously low status of the stock implied from the scenario with a high weighting to age composition and repeat spawning. At present we have no scientific basis to choose this dangerous scenario from the others. From a precautionary point of view, results discussed below are cause for concern about the sustainability of the fishery and perhaps the population itself.
Figure A2 shows an equilibrium plot similar to Figure 4, but valid for the assessment scenario with high weighting of age composition and repeat spawning information. With a low level of density-dependence, sustainability of the population is in question unless both entrainment and fishing mortality are reduced.
ESSA Technologies Ltd.                                  28
 
October 20, 2000                                              Comments on the DEIS American Shad Analysis Table Al:      Estimates of adult shad abundance in the Hudson River for various assessment scenarios.
Year    Table 5 values        Update input    Alternative PYSL      Average weighting      High weighting of from main text      data to include          assumption      of age composition      age composition of paper          1998 data                                and new PYSL        and new PYSL
                                                        .... __ _ _assumption                  assumption 1974              367584              369535                364555                269392                280727 1975              343901              348927                339170                304459                352377 1976              606521              618801                606200                659588                817149 1977            1237833            1261104              1257368                1412070              1753901 1978            1972783            2006731              2006301                2244949              2758308 1979            2403799            2441599              2436557                2710303              3308214 1980            2431197            2466335              2459991                2717126              3297343 1981;            2195416            2225531              2215605                2436563              2968420 1982            2190797            2217639              2200934                2386415              2887448 1983            2205364            2229065              2208697                2349723              2799606 1984            2073608            2093439              2073641                2164611              2552420 1985            1928441            1945526              1926721                1978364              2330076 1986            1762397            1777376              1759687                1783364              2115464 1987            1506102            1518540              1502354                1508584              1844381 1988            1176373            1185921              1171573                1163127              1457284 1989              864121              871283                857768                834114              1025674 1990              715560              721714                707917                663636                745737 1991              671294              677571                662329                585735                519309 1992              696445              702873                689034                578561                483354 1993              735778              741193                735657                581605                446824 1994              824470              828072                837191                623701                418387 1995              868951              865467                895296                623549                374319 1996              970856              946641              1018173                  658098                359680 1997            1125416            1084299              1193473                  724253                350188 1998                                1191979              1293656                  709796                323691 K.
29 29                                ESSA Technologies Ltd.
ESSA Technologies Ltd.
 
Comments o n the DEIS American Shad Analysis                                                    October 20, 2000 Table A2:        Estimates of adult, annual natural mortality rate for various assessment scenarios. Note that the estimate includes mortality from unreported catches and discards.
Sex of    Values from          Updated input      Alternative      Average weighting of      High weighting of fish    main text of      data to include            PYSL      age.. composition and      age composition paper          1998 data. assumption        new PYSL assumption            and new PYSL assumption Females                  0.54              0.54            0.54                        0.56                    0.59 Males                0.84              0.81            0.80                        0.82                  0.84 Figure Al:          Comparison of annual mortality rate estimates from methods described in text.
1.8 -
1.6 -I                                                                                                        -I
  *1.4-
  " 1.2 0.8 0
06
= 0.4 -Z                        age comp data only            --  Z low weight to age data 0.2          -      -Z    high weight to age data      -*-Z average weight to age data 1982    1983    1984  1985  1986  1987    1988    1989  1990    1991  1992  1993    1994  1996 Year 30 ESSA  Technologies Ltd.
ESSA Technologies  Ltd.                                30
 
October 20, 2000                                                            Comments on the DEIS American Shad Analysis Figure A2:    Several panels show the consequence of changes in entrainment-impingement loss rates to equilibrium yield when assessment. scenario with high weighting is given to age composition and repeat spawning information. See Figure 4 for more details.
Plant Mortality = 0.0 2500000 2000000 1500000                                                                    b-b0.01_
b>0.
                  *~1000000--------
500000 0      0.5  1        1.5          2    2.5        3              3.5 Fishing Mortality Multiplier Plant Mortality = 0.03 2500000 2000000 S15000000        *..                                                --  b-0.01 lb=0.2 100000                                                                      0 500000--
0    0.5  1        1.5          2    2.5        3            3.5      4 Fishing Mortality Multiplier Plant Mortality = 0.16 25000000 2000000 -
15000      -                                                      "      b=0.020
                                                                                  ...        b0.2 0      0.5  1        1.5          2    2.5        3              3.5      4 Fishing Mortality Multiplier Plant Mortality = 0.33 2000000, 1500000 b-0.011 1000000                                                            o      b
                                                                                            -1I=0.2
                                                                                    *      *-b-0.5    "
500000, 0                  .  ........... .....          .. . . . . . . . .
0      0.5  1        1.5          2    2.5        3            3.5      4 Fishing Mortality Multiplier ESSA Technologies Ltd.
31 31                                        ESSA Technologies Ltd.
 
New York State Department of Environmental Conservation Hudson River Power Plants Cooling Water System Design Assessment Technical Report Preparedfor:
ESSA Technologies Ltd Richmond Hill, Ontario October 20, 2000 Prepared by:
D.B. Grogan Associates, Inc.
107 Maple Avenue Windsor, CT 06095 USA
 
Comments on the DEIS Cooling Tower Alternative Table of Contents 1.0 SU M M A R Y ......... :....................................................................................................................................................................                    1 2.0 REVIEW OF DESIGN OF COOLING WATER S YSTEMS .................................................................................                                                                                    4 2.1 GENERA L DISCUSSION ........................................................................................                              ......    .....................                        ........... 4 D esign Criteria........................................................................................................................................................................                      4 2.2 SUGGESTED ADDITIONAL DESIGN IMPROVEMENTS .......................................................................                                                                  .........          .. 6 D rift Elim inators.....................................................................................................................................................................                      7 Cooling Tower Make-up Water Pretreatment........................................                                                      ..................................... 7 Experience W ith W et/Dry System s .....................................................................................................................................                                      7 2.3 RECOMM ENDATIONS ...........................................................................................................................................................                                8 3.0 A SSE SSM E N T O F EV A L U A T IO N S ........... ................................................................................................................                                            8 3.1 GENERA L D ISCUSSION ........................................................................................................................................................                                8 4.0 R EV IEW O F C O ST PR O JECT IO N S .................... ; ..................................................................................................                                                  9 4.1 GENERA L DISCUSSION ........................................................................                        I..............................................................................          9 4.2 RECOMM ENDATIONS ....... ..................................................................................................................................................                                !11 5.0 ASSESSMENT OF OPERATIONAL & ENVIRONMENTAL EFFECTS ...................................................                                                                                                        11 5.1 GENERA L D ISCUSSION. .....................................................................................................................................................                                II Replacem ent Power Impact ...............................................................................................................................................                                  11 Impacts of Water Lost to Evaporation.....:........................................................................................................................                                          12 5.2 RE COM MENDATIONS .........................................................................................................................................................                                13 6.0
 
==SUMMARY==
OF FINDINGS /RECOMMENDATIONS ....................................................................................                                                                                    13 7.0 A D DIT IO N A L C O N S ID E R A T ION S ............................................................................................................................                                        15
 
Comments on the DEIS Cooling Tower Alternative ii
 
Comments on the DEIS Cooling Tower Alternative 1.0 Summary This Report provides an assessment of the Draft Environmental Imnpact Statement (DEIS) from the New York State Department of Environmental Conservation (NY-DEC) regarding permit renewals for the Bowline Point, Indian Point 2 and 3, and Roseton power plants; collectively known as the Hudson River Power Plants.
The basis of this Report is a series of document reviews, literature research, and a technical evaluation using the combined power generation experience of the team assigned to complete this report.
OVERVIEW AND TECHNOLOGY PERSPECTIVE The owners of the Hudson River Power Plants prepared and filed the DEIS that provides an alternatives analysis of several cooling water systems for three major electric generating stations located directly along banks of the Hudson River at three locations. It is the understanding of the authors of this Report that the primary objective of the DEIS is to present a comprehensive analysis of a single cooling water system that, when installed, will result in elimination or very substantial reduction in the mortality of fish, fish larvae and fish eggs attributed to entrainment and impingement resulting from the current power plant cooling water systems.
All of the Hudson River Power Plants included in the DEIS have what is called once through, or open cycle, condenser cooling water systems. This technology was the most common option selected by thermnal power plant owners and engineers when the plants were designed and constructed 30 to 40 years ago. Siting directly on a major navigable river, harbor or estuary was a preferred option for most thermal power stations of that era because the water resource usually provided both an ample supply of cooling water, and for economical bulk water transport of large quantities of fuel. Concerns regarding harmfu~l impacts on fish populations were usually a secondary consideration at that time. Use of closed cycle cooling systems, most notably large natural draft or mechanical draft wet cooling towers, were limited to sites where river flows and I
 
Comments on the DEIS Cooling Tower Alternative levels were not sufficient to assure an uninterrupted supply of cooling water use throughout the entire year.
Beginning in that same time period and carrying into today's market, other types of closed cooling systems like air cooled condensers or evaporative condensers were used at sites that had little or no fresh water, but had other important economic siting criteria like access to a dedicated supply of low cost fuel and/or low cost electric transmission interconnection. This type of cooling technology has become more prevalent in the current group of new power generation facilities that are being developed and built nationwide because they are almost exclusively natural gas fired combined cycle units. In this technology, only about one third of the unit's rated capacity requires any cooling water so the performance penalty of these types of cooling systems become an economic trade-off with other siting -factors.        Usually cooling towers of this type favor the use of axial discharge steam turbines to minimize turbine backpressure in the run between the low-pressure steam exit plenum of the steam turbine and. the condenser.        Currently we know of no steam turbine over 200MW in capacity that has this configuration.
REPORT OBJECTIVES The specific objectives of this Report are:
: 1. To assess the design prudence of the proposed cooling system changes for the power plants
: 2. To evaluate the economic analysis presented in the DEIS
: 3. To identify any other important considerations, which are not addressed by the DEIS SCOPE OF WORK This Report provides:
: 1. A review of the proposed design of the recommended modified cooling water system for each power plant
: 2. An assessment of the evaluations presented in the DEIS
: 3. A review of the costs projections for construction and operation of the recommended modified cooling water system 2
 
Comments on the DEIS Cooling Tower Alternative
: 4. An assessment of operational effects such as turbine backpressure estimates and production loses due to the change to less efficient cooling water technologies.
: 5. identify additional considerations for the New York State Department of Environmental Conservation before finalizing implementation.
The specific documents reviewed were:
* Draft Environmental Impact Statement for State Pollutant Discharge Elimination System Permits for Bowline Point, Indian Point 2 & 3, and Roseton Steam Electric Generating Stations, dated December 1999, prepared by Central Hudson Gas & Electric Corp.,
Consolidated Edison Company of New York, Inc, New York Power Authority, and Southern Energy New York.
* Economic and Environmental Review of Closed Cooling Water Systems for the Hudson River Power Plants, dated November 1999, prepared by Power Tech Associates, P.C.
* Appendix A - Cost Estimating and Economic Analyses of Cooling Tower Systems, prepared by Power Tech Associates, P.C.
CONCLUSIONS This Report concludes:
: 1. That the selection of a wet/dry closed loop cooling water system to replace the present open cycle cooling water systems at all of the Hudson River Power Plants, is one of the closed system options that has the least environmental impact.
: 2. That certain sizing assumptions of the wet/dry cooling water system are conservative and lead to somewhat higher cost projections and performance penalties than are absolutely necessary. The projected loss of over 600,000 Mwhr/year is very significant concern.
: 3. The cost estimates and economic analysis presented for the replacement system are reasonable when the same stipulated design and pricing criteria are applied. However, application of less restrictive meteorological conditions will result in lower cost impacts due to less severe performance penalties. Specific recommendations and performance differentials are provided.
3
 
Comments on the DEIS Cooling Tower Alternative
: 4. That the. cost of electricity used in the DEIS is not representative of the deregulated power and market that will be in effect when the modified cooling water systems would begin operations.      Because of open market pricing of both fuel and electricity, the economic impacts of any reduction in power generation efficiency and capacity can be expected to be far more costly than the forecast in the DEIS.
: 5. That a wet only (wet mechanical            cooling tower) cooling water system will have substantially less environmental impact and be less costly to the NY consumers. The trade-off is that the water vapor plume will b& visible during more days of the year.
: 6. That the environmental impacts of increased air emissions and consumptive water use attributed to the change in the type of cooling water systems is significant. These impacts are quantified as 849 tons of NOR, 2792 tons of SO2, 74 tons of CO, 406,623 tons for CO 2 ,  and 194 tons of particulate, and 15 billion gallons of annual evaporative water loss respectively.
: 7. That a side by side comparison of the both the environmental and economic impacts of two altemnate cooling water systems altemnatives be made prior to implementation of any change to the current cooling systems. The two cooling water systems recommended for the altemnative evaluation include; a passive open cycle cooling water system that is specifically  designed    to  eliminate  fish  entrainment  and  a  closed  system using conventional wet only mechanical cooling towers.
2.0 Review Of Design Of Cooling Water Systems 2.1 GENERAL DISCUSSION Design Criteria There are two general types of cooling water systems used in fossil and nuclear thermal power generation facilities. Cooling water systems can be classified either as open cycle or closed cycle. Both types are described in Appendix VHII        -3 of the DEIS. As wa s noted above, all of the Hudson River Power Plants presently employ the open cycle system where the river water is pumped through the condenser tubes and returned to the river.          The closed cycle cooling water systems use cooling towers, and depending on type, may also employ a different type of 4
 
Comments on the DEIS Cooling Tower Alternative condenser. There are several types and variations of cooling towers and condenser combinations that could be used to replace the present cooling water systems at the Hudson River Power Plants. These include; ,-
* Wet natural draft evaporative towers that retain the existing condensers
* Wet mechanical draft evaporative towers that retain the existing condensers
* Air cooled condensers that replace the existing condensers
* Evaporative condensers that replace the existing condensers
* Wet mechanical draft evaporative towers fitted with a dry section for vapor plume suppression that retain the existing condensers. This type is called a wet/dry tower in the DEIS We generally concur with the conclusion reached in the DEIS that the most practical, least cost replacement closed loop cooling water systems are either the wet evaporative mechanical draft towers, or the same type of system with the wet/dry towers for plume suppression. The DEIS did not consider modifying the present open cycle cooling system to eliminate fish impingement.
It is of particular importance to note that the existing open cycle cooling system allows these plants to operate at their highest thermal efficiency, or best heat rate (BTU/kW-hr) and highest rated net capacity (MW). Conversion to any one of the closed type cooling water systems described above will result in a reduction in net capacity and lower thermal efficiency of all of the Hudson River Power Plants.
These plants will operate under the dispatch rules of the New York Independent System Operator, (NYISO).        According to the dispatch rules established by the NY ISO, the capacity short fall will have to be replaced by other power sources. Generally this means that older, smaller, and less efficient units will start-up producing increased amounts air emissions and higher marginal energy costs.
The evaluation/selection of the alternative closed cooling water systems described in the DEIS considered several factors. These included size, appearance, cost and performance. The wet /dry towers (what can be described more generally as wet towers with plume suppression) were
 
Comments on the DEIS Cooling Tower Alternative selected as the alternative cooling water to evaluate further. Of the closed cooling water options      -
available, the wet mechanical cooling tower selection, either with or without plume suppression, w.ill have the least environmental impact. These two types of towers differ in performance because in the wet! dry tower, a certain amount of the heat transfer surface remains dry and does not experience the evaporative cooling effect in this section. As a result of this fundamental design difference, there is a performance penalty in the plant heat rate and an increase in the amount of energy lost because of the greater amount cf cooling water needed to be pumped. This is in addition to the added capital cost discussed in the DEIS.
improving the performance of a cooling tower improves the steam turbine's net heat rate. While Iselection of a wet mechanical draft tower instead of a wet/dry tower will improve performance significantly, there would be more times in the average year that the more extensive water vapor plume would be visible.        The improved performance is accomplished as the backpressure in the condenser is lowered as the better heat transfer of the wet tower reduces the cooling water temperature to the condenser.        However, there are also practical limits to lowering the cooling water temperature.
The overall design is predicated on the basis for the winter design point. For this study the basis was. the selection of " no visible plume at 200 F dry bulb and 14.40 F wet bulb temperature." This criterion    determines    the amount of dry air-cooling surface and the subsequent cost and performance of the tower.        It is important to understand that this condition could represent the most realistic design assumption for sizing the towers but it might occur only at a very low percentage of the yearly operating hours.          It is also noteworthy that generally many of the severest occurrences of low .temperature and high relative humidity occur at night when plume visibility is not an issue.
2.2 SUGGESTED ADDITIONAL DESIGN IMPROVEMENTS In reviewing the DEIS two low cost improvements are presented to enhance performance of wet/dry cooling towers. These are use of better drift eliminators and the use of cooling tower 6
 
Comments on the DEIS Cooling Tower Alternative make-up water pretreatment. In addition, a practical suggestion regarding limited large wet/dry tower experience is made to possibly improve reliability by review of material selections.
Drift Eliminators The designs of the critical Drift Eliminators are rapidly being improved.        For example, the latest drift eliminator design -from the Marley Company, an internationally recognized designer and supplier of several types of cooling towers, is designated by their trade name 'XCELplus'.
According to Marley, this drift eliminator is reported to have typical drift rates of 0.001% of the total condenser circulating water flow rate with rates of 0.0005% and lower are available depending on tower configuration..        These latest figures perhaps should be used for drift rate instead of 0.001% to 0.002% provided in the Economic and Environmental Review of Closed Cooling Water Systems for the Hudson River Power Plants, dated November 1999.
Cooling Tower Make-up Water Pretreatment The DEIS mentions that one of the disadvantages to wet or wet/dry cooling towers is the need to remove sludge that collects in the cooling tower basin as a result of the concentrating the suspended solids in the make-up water that is evaporated in the tower. Many power plants employ water pretreatment steps to the make-up water to remove most of the suspended solids prior to evaporation. This is done by a multi-step process that includes, sand filtration, clarification and additions of water. treatment chemicals to coagulate and disinfect the solids. The sludge that forms in the clarifier is removed from the clarifier, dewatered, and can usually be recycled    for agricultural  uses. Pretreatment  often  minimizes  or  eliminates  environmental concerns related to cooling tower drift and sludge build-up and removal.
Experience With Wet/Dry Systems Due to the limited number of comparable applications, equipment suppliers need to furnish an experience list that provides operating and. maintenance history of their large wet/ dry towers.
For example, the viability and longevity of materials of construction, such as the use of plastic materials, should be identified in terms of minimizing corrosion effects.
7
 
Comments on the DEIS Cooling Tower Alternative 2.3  RECOMMENDATIONS
: 1) A "fogging study        "is  recommended to provide vital statistical information defining the annual, ambient weather conditions and the number of hours in which fog c45zditions occur. The purpose is to accurately estimate the actual number of daylight hours in a typical year when water vapor or fog* will be visible.        It is important to distinguish the time that the manmade visible plume will occur from periods when natural fog will be present from the river and other sources. Impacts of added water vapor plumes possibly impacting highway visibility arid icing is an important safety consideration that should be included in the study.
: 2) A design, environmental, and economic study is needed to deter-mine the extent of acceptable    plume abatement.        When the price of power is impacted and the environmental consequences are defined, the New York consumers should have some inputs into establishing acceptable performance standards for cooling water systems.
3.0 Assessment Of Evaluations 3.1 GENERAL DISCUSSION Since extensive studies of closed cooling systems for each plant had been done previously, the Power Tech Associates report: "Economic and Environmental Review of Closed Cooling Water Systems for the Hudson River Power Plants", essentially provided design and economic analyses to reflect conditions as of 1999. Our review of this Report yielded the following questions and points for consideration:
: 1) Undoubtedly the hours, of operation for each plant, as stated on page 24, are based on historical data and fundamentally upon dispatch costs associated with each plant.          The operating times and revenues will change significantly with deregulation and market driven economics.      These factors must be clearly understood and, the impacts of making, the Hudson River Power Plants less competitive because of the modifications to their cooling systems must by included into any objective evaluation.
8
 
Comments on the DEIS Cooling Tower Alternative
: 2) The derating of the plant estimates appear reasonable, however detailed heat balances would have to be done for several operating conditions to confirm the actual values.
: 3) On page 34, the generation lost from the Hudson River power plants is estimated to be 600,000 Mwh/yr or an equivalent to a 184 Mw fossil plant. A plant rated for 184 Mw would only require an availability rate of 37%, which is quite low.          A more rigorous assessment of these assumptions should be made.              In addition, with many merchant plants being developed, is there new generation capacity coming on-line in New York State that could provide that quantity of power in the time frame of need?
: 4) There was no mention or analysis of river water quality at the intake points from the Hudson River.          This information is essential      in determining operating costs and performance of the cooling water systems.            A water analysis at each plant, if it substantially varies, would be necessary to evaluate costs, performance and long-term effects on equipment.
The evaluation of the environmental impacts of the existing once-through cooling system should be investigated to establish what can be done by modifying the river intakes with new state-of-the-art passive designs to minimize or eliminate impacts upon fish.          With the advent of intense
-competitive power and rising fuel            and electricity prices, it is essential    to balance the environmental benefits of changing to a closed cycle cooling system with the resulting large capital and operational costs. In addition to a evaluation of the environmental and cost benefits of a passive intake modification, a side-by-side comparison of the costs and environmental impacts of the wet vs. wet/dry cooling towers should also be made before making any decision to require the Hudson River Power Plants to install closed loop cooling systems.
4.0 Review Of Cost Projections 4.1 GENERAL DISCUSSION Since the DEIS was written, dramatic changes are occurring almost daily in the power industry.
Deregulation of the industry has resulted in a highly competitive marketplace for power 9
 
Comments on the DEIS Cooling Tower Alternative generation. This fact, coupled with a significant reduction in reserve capacity, creates extremely high cost premiums for power during certain periods of the day or year. The San Diego California area is currently experiencing very sharp increases in electricity costs due to heavy demand and very little new generating capacity Extended plant outages will have significant negative economic impacts on both the power generating entity and consumers.      Not only do the producers lose significant opportunities to sell power but NY consumers will also incur higher than normal rates for purchasing replacement power. The consequences of these market conditions need to be considered in adjusting the cost projections stated currently in the DEIS.
There are very few large wet/dry-cooling towers in service in the United States because of high capital and operating costs.        Some plants have experienced problems with valve operation, damper operation and tubes and fins after a few years of service. Corrosion due to the moisture and higher salt concentrations      have been the principal culprit in failures.      The financial consequences and frequency from possible forced outages also require consideration in the economic analysis.
Many of the new power generators prefer selling power on the spot market through power marketers, especially in peak power demand periods of time, because there is no cap on their selling cost. Wholesale prices from the PJM grid for 1998 were used in the original study.        A comparison with current values, as on August 8, 2000, shows a thirty (30%) percent increase in the Locational Marginal Price (LMP) for summer off-peak, which is a dramatic change.
Although the overall impact maybe not as significant, calculations for the total cost projections should be reviewed to ascertain the sensitivity of these changes from the regulated utility marketplace.
The Appendix A summary of cost estimating is in a format and uses methods consistent with power industry practice. A complete independent analysis was not an objective of this Report.
However, the analysis presented in Appendix A appears to be both reasonable and complete.
10
 
Comments on the DEIS Cooling Tower Alternative Unit,-costs and methodology were reviewed where possible and found to be consistent with general construction industry standards and practice. On Page 9 of the DEIS the statement that the capital cost of a wet /dry tower in "on the order of twice as much as the equivalent mechanical draft wet tower." Acceptance of this statement makes it reasonable to compare the tower only cost with much more widely used wet towers simply by doubling their general regional market level costs. This was done and the estimated costs of the installed towers were found to be in line with market level pricing.
4.2 RECOMMENDATIONS
: 1) Re-estimate the cost consequences for plant outages using deregulated power generation and present day fuel pricing and forecasts.
5.0 Assessment Of Operational & Environmental Effects 5.1 GENERAL DISCUSSION This report's findings and recommendations observe that the closed loop cooling alternative, chosen to be evaluated in detail in the DEIS, has some significant negative environmental consequences and is also quite costly. More specifically, conversion of the Hudson River Power Plants from once through cooling to the use of the wet/dry cooling towers will result in the following environmental impacts:
Replacement Power Impact The DEIS defines substantial increased air emissions from replacement power generation.              A reduction of 600,000 MwIr/yr of net generating capacity because of the lost energy conversion efficiency because of higher steam turbine backpressure and the increased parasitic loads attributed to the wet/dry cooling towers. To quantify this put this power loss into terms of increased emissions, the DEIS states 849 tons of NOx, 2792 tons of SO2 , 74 tons of CO, 406,623 tons for CO 2 , and 194 tons of particulate will be produced.          Although verification of these predictions is beyond the scope of this specific assignment, it is noteworthy that these four power
                                                    ,11
 
Comments on the DEIS Cooling Tower Alternative plants have a rated capacity of 4322 MW and, depending upon the, conversion technology assumed to generate the replacement power, any significant outage time could lead to even further increases in these quantities of emissions We have developed the following estimate of the plant deratings, presented in Table 1 below, that would be incurred with the inclusion of wet / dry cooling towers based upon the published lost power values.        As expected, the deratings are higher during the summer peak periods.
Unfortunately that same period corresponds to the highest opportunities for profitable revenue generation, and burdens for purchasing replacement power and the need to reduce air emissions.
Table 1: Derating Estimates from Incorporating Wet /Dry Cooling Towers.
Plant          Existing MW      Derating MW    % Derating      Derating MW - Max    % Derating Rating        Max Summer                        Non-Summer Bowline Point            1212                35          2.89%                17            1.40%
(2 Units)                                                                    ._
Indian Point            940                60          6.38%                50              5.32%
Unit #2 Indian Point            970                71          7.32%                36              3.71%
Unit #3 Roseton              1200                34          2.83%                18            1.50%
(2 Units)
It is noteworthy that the derating impact is greater for the two nuclear plants that operate to supply base- loaded power due to their very low marginal energy cost and technical requirements.
There is a substantial probability that the deratings could very well be reduced by 50% and capital and cooling tower operating cost reduced by 25% by only using evaporative wet towers.
In addition, the environmental impacts of wet towers will also be less.
Impacts of Water Lost to Evaporation On pageVIlI-20, it was stated that the wet/dry system would have twice the evaporation that occurs with the existing once- through systems or on the order of 15 Billion gallons of water annually. The financial and environmental consequences of this situation on downstream users need quantification to complete the total evaluation of alternatives. This is a major environmental 12
 
Comments on the DEIS Cooling Tower Alternative concern in other tidal river systems like the Hudson where the salt water/fresh. water front migrates further upstream as more and more water is evaporated.
5.2 RECOMMENDATIONS
: 1) Determine the impact upon plant deratings and economic costs by only using wet towers.
: 2) Quantify the financial consequences of the harmful effects upon the environment due to the substantial increase in evaporation losses with the wet/dry system than with the existing once-through systems.
6.0 Summary of Findings /Recommendations In addition to the environmental consequences, the previous studies estimate the conversion to cost the consumers of the State of New York between $ 850 and $ 1,230 million dollars as the total present value of the capital and operating costs of installing closed cooling systems at the four Hudson River Power Plants.          This amount could increase further by approximately $ 600 million if the Indian Point Plants were required to shutdown throughout the construction period.
This Report's recommendations are intended to reduce the Hudson River Power Plants' potential negative environmental consequences while seeking to maximize the cost benefits from its cooling water systems.
: 1. Retain Once-Through Cooling With Some Design Modifications To minimize the large capital and operational costs involved with changing the cooling system designs, retain the current once-through cooling system but make modifications to the design to make it a passive, ultra low velocity river water intake to eliminate or substantially reduce impacts upon fish, fish eggs and other organisms.
: 2. Investigate Use Of Wet Mechanical Towers Without Reduced Plume Abatement 13
 
Comments on the DEIS Cooling Tower Alternative This  investigation may involve the use of two speed or variable speed*fans in the winter months when the heat load is reduced with a small reduction from plant rated load.
Summer operation would not be affected since there would be no dry section consuming energy or subject to the bypassing of air.        In this case, the design for the evaporative cooling towers results in combining least capital cost with highest operating efficiency.
: 3. Re-estimate The Cost Consequences for Plant Outages Using Current Market-Based, Wholesale-Electric Generation Prices Deregulation and competitive power pricing have placed a premium for power during peak    periods iand    rewarded  cost effective    power generation      with more frequent dispatching.      The cost projections are based on 1998 values that predate these marketplace adjustments.
: 4. Quantify an Economic Value For Plume Abatement The aesthetic benefits from 100% plume abatement require consideration of economics and other factors that are rooted in society and political perceived benefits.          Because of the significant costs involved that will impact the cost for electricity for millions of citizens, businesses and industrial users, gaining broader based public support from New York consumers is critical.
: 5. Financial Consequences And Frequency From Possible Forced Outages With Wet/Dry Cooling Towers Require Consideration In The Economic Analysis There are very few, large wet/dry-cooling towers in service in the United States. Further assessment of the operating risks is recommended in terms of potential loss revenue, power replacement costs, and higher O&M expenditures.
: 6. Quantify The Financial Consequences Of Increase In Evaporation Losses With The Wet/Dry Systems Due to the substantial increase in evaporation losses with the wet/dry system than with the    existing    once-through  systems,  evaporative    losses  could    result  in  harmful 14
 
Comments on the DEIS Cooling Tower Alternative environmental effects to downstream water users and wastewater treatment facilities that should be financially quantified.
7.0 Additional Considerations As the wet /dry cooling alternative is evaluated in more detail prior to implementation, certain considerations, not included in the in the report, should be investigated.        These include, but are not necessarily limited to the following:
Both efficiency and reliability improvements are possible with procuring the proposed cooling towers with the latest component designs and adding some water pre-treatment (a sand filter/clarifier) to substantially reduce sludge from the towers.      Redesigned    components    include  fill,  distribution nozzles,  drift eliminators, and fans.
Current fill materials are less prone to fouling and create lower airside pressure drops.
The new design of distribution nozzles provide an even flow of water droplets across the top of the fill that could result in 10% to 20% efficiency improvements.
In addition, the newer nozzle designs eliminate clogging by allowing debris to pass through without becoming lodged in the pipe. The nozzles are also generally removable with exchangeable orifices to allow for flow adjustments to maintain backpressure.
* Typically the pressure drop is altered with a change in fill that impacts the performance characteristics of the fans. The existing fans need to be assess for applicability and adjustments made on an as-needed basis.
15
 
ENCLOSURE 4 TO NL-07-133 Quarterly SPDES Report - April 1. 2007 - June 30. 2007 ENTERGY NUCLEAR OPERATIONS, INC.
INDIAN POINT NUCLEAR GENERATING UNIT NOS. 2 & 3 DOCKET NOS. 50-247 and 50-286
 
S~Entergy_
July 18, 2007 New York State Department of Environmental Conservation Division of Water 625 Broadway, 4 th Floor Albany, New York 12233-3506 Enclosed is our quarterly submittal of operating data required by our SPDES permit number NY 000 4472 for our Indian Point Generating Station. This data is for the period April 1, 2007 through&#xfd;-4    ,0* 0
* you have any questions regarding this submittal or require additional information, pl1    all Richard Burroni (914) 734-6601.
('
Sincere Fred Dacimo Site Vice President cc:    New York State Department Of Environmental Conservation Division of Water Region 3 100 Hillside Avenue, Suite 1W Tarrytown, New York 10603-2860 Daniel Wilson (Entergy NE Indian Point Energy Center)
Records Management John McCann (Entergy NE White Plains Office)
Rickey Buckley (Entergy ESI Maintenance)
 
13:25 Monday,  July 2, 2007 0000000000000000000000000000000000000000000000000000000000 00                                                                                        00 00    INDIAN POINT PLANT PERFORMANCE                            ENVIRONMENTAL REPORT    00 00                                                                                        00 0000000000000000000000000000000000000000000000000000000000 REPORT COVERS THE PERIOD                          :    04/01/07 THROUGH    06/30/07 SECTIONS          INCLUDED:
                  -  DAILY PUMP LOG                (ALL UNITS)
                  -  HEAT RELEASE TO RIVER -                   
 
==SUMMARY==
 
                  -  ELECTRICAL GENERATION -                   
 
==SUMMARY==
(ALL UNITS)
                  -  DAILY FLOWS -             
 
==SUMMARY==
(ALL UNITS)
                  -  FLOW DEVIATION -                 
 
==SUMMARY==
(ALL UNITS)
                  -  PUMP HOURS
 
==SUMMARY==
(ALL UNITS)
 
DAILY PUMP OPERATION LOG                    2 INDIAN POINT MONTHLY ENVIRONMENTAL          REPORT 04/01/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF      HOURS      (KGPM)  (KGPM)  COMMENTS CIRC 11                                          0.00        0.0      0.0 CIRC 12                                          0.00        0.0      0.0 SWP  11                                          0.00        0.0      0.0 SWP  12                                          0.00        0.0      0.0 MINIMUM FLOW ................                                          0.0 MAXIMUM FLOW ................                                          0.0 TOTAL FLOW ..................                                          0.0 CIRC 21                                        24.00      140.0    140.0 CIRC 22                                        24.00        84.0    84.0 CIRC 23                                        24.00        84.0    84.0 CIRC 24                                        24.00        84.0    84.0 CIRC 25                                        24.00        84.0    84.0 CIRC 26                                        24.00      140.0    140.0 SWP  21                                          0.00        0.0      0.0 SWP  22                                        24.00        5.0      5.0 SWP  23                                        24 .00        5.0      5.0 SWP 24                                            0.00        0.0      0.0 SWP 25                                          24.00        5.0      5.0 SWP 26                                            0.00        0.0      0.0 MINIMUM FLOW ................                                      631.0 MAXIMUM FLOW ................                                      631.0 TOTAL FLOW ..................                                      631.0 CIRC 31                                2:56      2.93    115.0      14 .1  SPEED CHANGE CIRC 31            2:56                        21.07        83.5    73.3 CIRC 32                                2:57      2.95      86.0    10. 6  SPEED CHANGE CIRC 32            2:57                        21.05        83.5    73.2 CIRC 33                                2:58      2.97      89.0    11.0  SPEED CHANGE CIRC 33            2:58                        21.03        83.5    73.2 CIRC 34                                2:59      2.98      91.5    11.4  SPEED CHANGE CIRC 34            2:59                8:44      5.75      83.5    20.0  SPEED CHANGE CIRC 34            8:44                        15.27      140.0      89.1 CIRC 35                                8:44      8.73      83.5    30.4  TUBE LEAK CIRC 36                                3:01      3.02    112.0      14 .1  SPEED CHANGE CIRC 36            3:01                8:44      5.72      83.5    19.9  SPEED CHANGE CIRC 36            8:44                        15.27      140.0      89.1 SWP  31                                          0.00        0.0      0.0 sw P 32                                          0.00        0.0      0.0 SWP  33                                        24.00        5.0      5.0 SWP  34                                        24.00        5.0      5.0 SWP  35                                          0.00        0.0      0.0 SWP  36                                          0.00        0.0      0.0 SWP  37                                          0.00        0.0      0.0 SWP  38                                          0.00        0.0      0.0 SWP  39                                          0.00        0.0      0.0 MINIMUM FLOW ................................                      484.0 MAXIMUM FLOW ................................                      587.0 TOTAL FLOW ..................................                      539.2 SITE TOTAL ..................................                      1170.2
 
DAILY PUMP OPERATION LOG                3 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/02/07 AVE FLOW  FLOW RATE  RATE PUMP              ON          OFF    HOURS      (KGPM)  (KGPM) COMMENTS CIRC 11                                  0.00        0.0    0.0 CIRC 12                                  0.00        0.0    0.0 SWP    11                                0.00        0.0    0.0 SWP    12                                0.00        0.0    0.0 MINIMUM FLOW ...............                                0.0 MAXIMUM FLOW ...............                                0.0 TOTAL FLOW .................                                0.0 CIRC 21                                24 .00    140.0  140.0 CIRC 22                                24.00      84.0    84 .0 CIRC 23                                24.00      84.0    84.0 CIRC 24                                24.00      84 .0  84.0 CIRC 25                                24.00      84.0    84.0 CIRC 26                                24 .00    140.0  140.0 SWP 21                                  0.00        0.0    0.0 SWP 22                                  24.00        5.0    5.0 SWP  23                                24.00        5.0    5.0 SWP  24                                0.00        0.0    0.0 SWP 25                                  24.00        5.0    5.0 SWP 26                                  0.00        0.0    0.0 MINIMUM FLOW ...............                              631. 0 MAXIMUM FLOW ...............                              631. 0 TOTAL FLOW .................                              631. 0 CIRC 31                        11:15  11.25      83.5    39.1  SPEED CHANGE CIRC 31            11:15                12.75      68.5    36.4 CIRC 32                        11:20  11.33      83.5    39.4  SPEED CHANGE CIRC 32            11:20                12.67      68.5    36.2 CIRC 33                        11:27  11.45      83.5    39.8  SPEED CHANGE CIRC 33            11:27                12.55      78.0    40.8 CIRC 34                        2:25    2.42      140.0    14 .1 SPEED CHANGE CIRC 34            2:25        11:35    9.17      83.5    31.9  SPEED CHANGE CIRC 34            11:35                12.42      73.0    37.8 CIRC 35            11:45                12.25      73.0    37.3 CIRC 36                        2:26    2.43      140.0    14.2  SPEED CHANGE CIRC 36            2:26        12:00    9.57      83.5    33.3  SPEED CHANGE CIRC 36            12:00                12.00      78.0    39.0 SWP 31                                  0.00        0.0    0.0 SWP 32                                  0.00        0.0    0.0 SWP 33                                  24.00        5.0    5.0 SWP 34                          12:19  12.32        5.0    2.6 SWP 34            13:10        14:05    0. 92      5.0    0.2 SWP 35            12:19        13:10    0.85        5.0    0.2 SWP 35            14:05                9.92        5.0    2.1 SWP  36                                0.00        0.0    0.0 SWP 37                                  0.00        0.0    0.0 SWP  38                                0.00        0.0    0.0 SWP  39                                0.00        0.0    0.0 MINIMUM FLOW ...............                              381.5 MAXIMUM FLOW ...............                              540.5 TOTAL FLOW .................                              449.2
 
DAILY PUMP OPERATION LOG            4 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT            I.
04/02/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                    OFF    HOURS    (KGPM)  (KGPM) COMMENTS SITE TOTAL ..................................                    1080.2
 
DAILY PUMP OPERATION LOG                  5 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/03/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF                  HOURS      (KGPM)  (KGPM) COMMENTS CIRC 11                                                        0.00        0.0    0 0 CIRC 12                                                        0.00        0.0    0.0 SWP  12                                                        0.00        0.0    0.0 SWP  12                                                        0.00        0.0    0.0 MINIMUM FLOW                      ................................                0.0 MAXIMUM FLOW    ................................                                  0.0 TOTAL FLOW ..................................                                      0.0 CIRC 21                                                      24.00      140.0  140.0 CIRC 22                                                      24.00      84.0    84.0 CIRC 23                                                      24.00      84.0    84.0 CIRC 24                                                      24.00      84.0    84.0 CIRC 25                                                      24.00      84.0    84.0 CIRC 26                                                      24.00      140.0  140.0 SWP  21                                                        0.00        0.0    0.0 SWP  22                                                      24.00        5.0    5.0 SWP  23                                                      24.00        5.0    5.0 SWP  24                                                        0.00        0.0    0.0 SWP  25                                                      24.00        5.0    5.0 SWP  26                                                        0.00        0.0    0.0 MINIMUM FLOW ................................                                    631.0 MAXIMUM FLOW ................................                                    631.0 TOTAL FLOW ..................................                                    631.0 CIRC 31                                                      24.00        68.5    68.5 CIRC 32                                                      24.00        68.5    68.5 CIRC 33                                                      24.00        78.0    78.0 CIRC 34                                                      24.00        73.0    73.0 CIRC 35                                                      24.00        73.0    73.0 CIRC 36                                                      24.00        78.0    78.0 SWP 31                                                          0.00      0.0      0.0 SWP  32                                                        0.00      0.0      0.0 SWP 33                                                      24.00        5.0      5.0 SWP  34                                                        0.00      0.0      0.0 SWP  35                                                    24.00        5.0      5.0 SWP  36                                                        0.00      0.0      0.0 SWP  37                                                        0.00      0.0      0.0 SWP  38                                                        0.00      0.0      0.0 SWP  39                                                        0.00      0.0      0.0 MINIMUM FLOW ................................                                    449.0 MAXIMUM FLOW ................................                                    449.0 TOTAL FLOW ..................................                                    449.0 SITE TOTAL . .................................                                  1080.0
 
DAILY PUMP OPERATION LOG                  6.
INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/04/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF    HOURS    (KGPM)  (KGPM) COMMENTS CIRC 11                                          0.00      0.0      0.0 CIRC 12                                          0.00      0.0      0.0 SWP  11                                        0.00      0.0      0.0 SWP  12                                        0.00      0.0      0.0 MINIMUM FLOW ................................                        0.0 MAXIMUM FLOW ................................                        0.0 TOTAL FLOW ..................................                        0.0 CIRC 21                                        24.00    140.0  140.0 CIRC 22                                        24.00      84.0    84.0 CIRC 23                                        24.00      84.0    84.0 CIRC 24                                        24.00      84.0    84.0 CIRC 25                                        24.00      84.0    84.0 CIRC 26                                22:56  22.93    140.0  133.8  COND. BACKWASH CIRC 26            23:28                        0.53    140.0      3.1 SWP  21                                        0.00      0.0      0.0 SWP  22                                        24.00      5.0      5.0 SWP  23                                        24.00      5.0      5.0 SWP  24                                        0.00      0.0      0.0 SWP 25                                          24.00      5.0      5.0 SWP 26                                          0.00      0.0      0.0 MINIMUM FLOW ................................                    491.0 MAXIMUM FLOW ................................                    631.0 TOTAL FLOW ..................................                    627.9 CIRC 31                                        24.00      68.5    68.5 CIRC 32                                        24.00      68.5    68.5 CIRC 33                                        24.00      78.0    78.0 CIRC 34                                        24.00      73.0    73.0 CIRC 35                                        24.00      73.0    73.0 CIRC 36                                        24.00      78.0    78.0 SWP 31                                          0.00      0.0      0.0 SWP 32                                          0.00      0.0      0.0 SWP  33                                        24.00      5.0      5.0 SWP  34                                        0.00      0.0      0.0 SWP  35                                        24.00      5.0      5.0 SWP  36                                        0.00      0.0      0.0 SWP  37                                        0.00      0.0      0.0 SWP  38                                        0.00      0.0      0.0 SWP  39                                        0.00      0.0      0.0 MINIMUM FLOW ................................                    449.0 MAXIMUM FLOW ................................                    449.0 TOTAL FLOW ..................................                    449.0 SITE TOTAL ..................................                    1076.9
 
DAILY PUMP OPERATION LOG              7 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/05/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                    OFF                HOURS    (KGPM)  (KGPM) COMMENTS CIRC i1                                                      0.00      0.0 CIRC 12                                                      0.00      0.0      0.0 SWP  12                                                    0.00      0.0      0.0 SWP 12                                                      0.00      0.0      0.0 0.0 MINIMUM FLOW              ................................
0.0 MAXIMUM FLOW ................................
0.0 TOTAL FLOW .. ................................
0.0 CIRC  21                                                    24.00    140.0 CIRC  22                                                    24.00      84.0  140.0 CIRC  23                                                    24.00      84.0    84.0 CIRC  24                                                    24.00      84.0    84.0 CIRC  25                                                    24.00      84.0    84.0 CIRC  26                                                    24.00    140.0    84.0 140.0 SWP  21                                                    0.00      0.0      0.0 SWP  22                                                    24.00      5.0      5.0 SWP  23                                                    24.00      5.0      5.0 SWP 24                                                      0.00      0.0      0.0 SWP 25                                                      24.00      5.0      5.0 SWP  26                                                    0.00      0.0      0.0 MINIMUM FLOW ................................                                631.0 MAXIMUM FLOW ................................                                631.0 TOTAL FLOW ..................................                                631.0 CIRC 31                                                    24.00      68.5    68.5 CIRC 32                                                    24.00      68.5    68.5 CIRC 33                                                    24.00      78.0    78.0 CIRC 34                                                    24.00      73.0    73.0 CIRC 35                                                    24.00      73.0    73.0 CIRC 36                                                    24.00      78.0    78.0 SWP  31                                                    0.00      0.0      0.0 SWP  32                                                    0.00      0.0      0.0 SWP  33                                                    24.00      5.0      5.0 SWP  34                                                    0.00      0.0      0.0 SWP 35                                                      24.00      5.0      5.0 SWP 36            16:11                                    7.82      5.0      1.6 SWP  37                                                    0.00      0.0      0.0 SWP 38                                                      0.00      0.0      0.0 SWP 39                                                      0.00      0.0      0.0 MINIMUM FLOW                                                                  449.0 MAXIMUM FLOW                                                                  454 .0 TOTAL FLOW ...                                                                450.6 SITE TOTAL ..................................                                1081.6
 
DAILY PUMP OPERATION LOG INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/06/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF                  HOURS      (KGPM)  (KGPM) COMMENTS CIRC 11                                                          0.00      0.0      0 0 CIRC 12                                                          0.00      0.0      0.0 SWP  11                                                        0.00      0.0      0.0 SWP  12                                                        0.00      0.0      0.0 MINIMUM FLOW                        .................................                0.0 MAXIMUM FLOW    ................................                                    0.0 TOTAL FLOW ..................................                                        0.0 CIRC 21                                                      24.00      140.0  140.0 CIRC 22                                                      24.00        84.0    84.0 CIRC 23                                                      24.00        84.0    84.0 CIRC 24                                                      24.00        84.0    84.0 CIRC 25                                                      24.00        84.0    84.0 CIRC 26                                                      24.00      140.0  140.0 SWP 21                                                          0.00      0.0      0.0 SWP 22                                                        24.00        5.0      5.0 SWP  23                                                      24.00        5.0      5.0 SWP  24                                                        0.00      0.0      0.0 SWP  25                                                      24.00        5.0      5.0 SWP  26                                                        0.00      0.0      0.0 MINIMUM FLOW ................................                                    631.0 MAXIMUM FLOW ................................                                    631.0 TOTAL FLOW ..................................                                    631.0 CIRC 31                                                      24.00        68.5    68.5 CIRC 32                                                      24.00        68.5    68.5 CIRC 33                                                      24.00        78.0    78.0 CIRC 34                                                      24.00        73.0    73.0 CIRC 35                                                      24.00        73.0    73.0 CIRC 36                                                      24.00        78.0    78.0 SWP  31          10:14                                      13.77        5.0      2.9 SWP  32                                                        0.00      0.0      0.0 SWP  33                                10:14                10.23        5.0      2.1 SWP  34                                                        0.00        0.0      0.0 SWP  35                                13:00                13.00        5.0      2.7 SWP  36                                                      24.00        5.0      5.0 SWP  37                                                        0.00        0.0      0.0 SWP  38                                                        0.00        0.0      0.0 SWP  39                                                        0.00        0.0      0.0 MINIMUM FLOW ................................                                    449.0 MAXIMUM FLOW ................................                                    459.0 TOTAL FLOW ..................................                                    451.7 SITE TOTAL . .................................                                  1082.7
 
DAILY PUMP OPERATION LOG                    9 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/07/07 AVE FLOW    FLOW RATE    RATE PUMP              ON            OFF    HOURS      (KGPM)  (KGPM) COMMENTS CIRC 11                                  0.00        0.0      0.0 CIRC 12                                  0.00        0.0      0.0 SWP  11                                  0.00        0.0      0.0 SWP  12                                  0.00        0.0      0.0 MINIMUM FLOW                                          .... 0.0 MAXIMUM FLOW                                          .... 0.0 TOTAL FLOW ..                                          .... 0.0 CIRC 21                          20:51  20.85      140.0    121. 6 COND. BACKWASH CIRC 21            21:16                  2.73      140.0    15.9 CIRC 22                          20:24  20.40      84 .0    71.4  COND. BACKWASH CIRC 22            20:46                  3.23      84 .0    11.3 CIRC 23                          19:56  19.93      84.0    69.8  COND. BACKWASH CIRC 23          20:21                  3.65      84.0    12.8 CIRC 24                          12:55  12.92      84.0    45.2  COND. BACKWASH CIRC 24            13:22                10.63      84.0    37.2 CIRC 25                          13:25  13.42      84.0    47.0  COND. BACKWASH CIRC 25            13:48                10.20      84.0    35.7 CIRC 26                          13:52  13.87      140.0    80.9  COND. BACKWASH CIRC 26            14:16                  9.73      140.0    56.8 SWP  21                                  0.00        0.0      0.0 SWP  22                                24.00        5.0      5.0 SWP 23                                  24 ,00      5.0      5.0 SWP 24                                    0.00        0.0      0.0 SWP 25                                  24.00        5.0      5.0 SWP  26                                  0.00        0.0      0.0 MINIMUM FLOW ................                                491.0 MAXIMUM FLOW ...............                                631.0 TOTAL FLOW .................                                620.6 CIRC 31                                  24.00      68.5    68.5 CIRC 32                                  24.00      68.5    68.5 CIRC 33                                  24.00      78.0    78.0 CIRC 34                                  24.00      73.0    73.0 CIRC 35                                  24.00      73.0    73.0 CIRC 36                                  24.00      78.0    78.0 SWP  31                                24.00        5.0      5.0 SWP  32                                  0.00        0.0      0.0 SWP  33                                  0.00        0.0      0.0 SWP  34                                  0.00        0.0      0.0 SWP  35                                  0.00        0.0      0.0 SWP 36                                  24.00        5.0      5.0 SWP 37                                    0.00        0.0      0.0 SWP  38                                  0.00        0.0      0.0 SWP  39                                  0.00        0.0      0.0 MINIMUM FLOW ...............                        ..... 449.0 MAXIMUM FLOW ...............                        ..... 449.0 TOTAL FLOW .................                        ..... 449.0 SITE TOTAL .................                        ..... 1069.6
 
DAILY PUMP OPERATION LOG                  10&deg; INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/08/07 AVE FLOW  FLOW RATE  RATE PUMP                ON                  OFF    HOURS      (KGPM)  (KGPM) COMMENTS CIRC 11                                          0.00        0.0    0.0 CIRC 12                                          0.00        0.0    0.0 SWP  11                                          0.00        0.0    0.0 SWP  12                                          0.00        0.0    0.0 MINIMUM FLOW .........................                                0.0 MAXIMUM FLOW .. ........................                              0.0 TOTAL FLOW ...........................                                0.0 CIRC 21                                          24.00      140.0  140.0 CIRC 22                                          24.00      84.0    84.0 CIRC 23                                          24.00      84.0    84.0 CIRC 24                                          24.00      84.0    84.0 CIRC 25                                          24.00      84.0    84.0 CIRC 26                                          24 .00    140.0  140.0 SWP  21                                          0.00        0.0      0.0 SWP  22                                        24.00        5.0    5.0 SWP  23                                        24.00        5.0    5.0 SWP  24                                          0.00        0.0    0.0 SWP  25                                        24 .00      5.0    5.0 SWP  26                                          0.00        0.0    0.0 MINIMUM FLOW ........                                              631. 0 MAXIMUM FLOW ........                                              631. 0 TOTAL FLOW ..........                                              631.0 CIRC 31                                  8:37    8.62      68.5    24.6  UNIT OFF LINE CIRC 32                                          24.00      68.5    68.5 CIRC 33                                  8:38    8.63      78.0    28.1  UNIT OFF LINE CIRC 34                                          24.00      73.0    73.0 CIRC 35                                          24.00      73.0    73.0 CIRC 36                                          24.00      78.0    78.0 SWP 31                                          24.00        5.0    5.0 SWP 32                                            0.00        0.0    0.0 SWP 33                                            0.00        0.0    0.0 SWP  34                                          0.00        0.0    0.0 SWP  35                                          0.00        0.0    0.0 SWP  36                                        24.00        5.0    5.0 SWP  37                                          0.00        0.0    0.0 SWP  38                                          0.00        0.0    0.0 SWP  39                                          0.00        0.0    0.0 MINIMUM FLOW ................................                      302.5 MAXIMUM FLOW ................................                      449.0 TOTAL FLOW ..................................                      355.2 SITE TOTAL  ..................................                    986.2
 
DAILY PUMP OPERATION LOG                  11 INDIAN POINT MONTHLY ENVIRONMENTAL                      REPORT 04/09/07 AVE FLOW  FLOW RATE  RATE PUMP              ON                  OFF                  HOURS        (KGPM)  (KGPM)  COMMENTS CIRC 11                                                          0.00        0.0    0.0 CIRC 12                                                          0.00        0.0    0.0 SWP  11                                                        0.00        0.0    0.0 SWP  12                                                        0.00        0.0    0.0 MINIMUM FLOW                          ................................              0.0 MAXIMUM FLOW ................................                                        0.0 TOTAL FLOW ..................................                                        0.0 CIRC 21                                                      24.00        140.0  140.0 CIRC 22                                                      24.00        84.0    84.0 CIRC 23                                                      24.00        84.0    84.0 CIRC 24                                                      24.00        84.0    84.0 CIRC 25                                                      24.00        84.0    84.0 CIRC 26                                                      24.00        140.0  140.0 SWP  21                                                        0.00        0.0    0.0 SWP  22                                                      24.00          5.0    5.0 SWP  23                                                      24.00          5.0    5.0 SWP  24                                                        0.00        0.0    0.0 SWP 25                                                        24.00          5.0    5.0 SWP 26                                                          0.00        0.0    0.0
,MINIMUM FLOW ................................                                    631.0 MAXIMUM FLOW ................................                                    631.0 TOTAL FLOW ..................................                                    631.0 CIRC 31                                                        0.00        0.0    0.0 CIRC 32                                                      24.00        68.5    68.5 CIRC 33                                                        0.00        0.0    0.0 CIRC 34                                                      24.00        73.0    73.0 CIRC 35                                                      24.00        73.0    73.0 CIRC 36                                                      24.00        78.0    78.0 SWP 31                                  16:32                16.53          5.0    3.4 SWP 32            16:32                                        7.47        5.0    1.6 SWP 33                                                          0.00        0.0    0.0 SWP  34                                                        0.00        0.0    0.0 SWP  35                                                        0.00        0.0    0.0 SWP  36                                                    24.00          5.0    5.0 SWP  37                                                        0.00        0.0    0.0 SWP  38                                                        0.00        0.0    0.0 SWP  39                                                        0.00        0.0    0.0 MINIMUM FLOW ................................                                    297.5 MAXIMUM FLOW ................................                                    302.5 TOTAL FLOW ..................................                                    302.5 SITE TOTAL . .................................                                    933.5 9
 
DAILY PUMP OPERATION LOG            12 INDIAN POINT MONTHLY ENVIRONMENTAL      REPORT      1 04/10/07                          .
AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF      HOURS    (KGPM)  (KGPM)  COMMENTS CIRC 11                                          0.00        0.0    0.0 CIRC 12                                          0.00        0.0    0.0 SWP    11                                        0.00        0.0    0.0 SWP    12                                        0.00        0.0    0.0 MINIMUM FLOW ...............                                          0.0 MAXIMUM FLOW ...............                                          0.0 TOTAL FLOW .................                                          0.0 CIRC 21                                          24.00    140.0  140.0 CIRC 22                                          24.00      84.0    84.0 CIRC 23                                          24.00      84.0    84.0 CIRC 24                                          24.00      84.0    84.0 CIRC 25                                          24.00      84.0    84.0 CIRC 26                                          24.00    140.0  140.0 SWP 21                                            0.00        0.0    0.0 SWP 22                                          24.00        5.0    5.0 SWP  23                                        24.00        5.0    5.0 SWP  24                                          0.00        0.0    0.0 SWP  25                                        24.00        5.0    5.0 SWP  26                                          0.00        0.0    0.0 MINIMUM FLOW ...............                                      631.0 MAXIMUM FLOW ...............                                      631.0 TOTAL FLOW .................                                      631.0 CIRC 31                                          0.00        0.0    0.0 CIRC 32                                          24.00      68.5    68.5 CIRC 33                                          0.00        0.0    0.0 CIRC 34                                          24.00      73.0    73.0 CIRC 35                                          24.00      73.0    73.0 CIRC 36                                          24.00      78.0    78.0 SWP  31                                          0.00        0.0    0.0 SWP  32                                        24.00        5.0    5.0 SWP 33                                            0.00        0.0    0.0 SWP  34                                          0.00      0.0    0.0 SWP  35                                          0.00      0.0    0.0 SWP  36                                        24.00      5.0    5.0 SWP  37                                          0.00      0.0    0.0 SWP  38                                          0.00      0.0    0.0 SWP  39                                          0.00      0.0    0.0 MINIMUM FLOW ...............                                ..... 302.5 MAXIMUM FLOW ...............                                ..... 302.5 TOTAL FLOW .................                                ..... 302.5 SITE TOTAL . .................................                    9 933.5
 
DAILY PUMP OPERATION LOG                  13 INDIAN POINT MONTHLY ENVIRONMENTAL        REPORT 04/11/07 AVE FLOW  FLOW RATE  RATE PUMP              ON                  OFF      HOURS      (KGPM)  (KGPM)  COMMENTS CIRC 11                                            0.00      0.0    0.0 CIRC 12                                            0.00      0.0    0.0 SWP  11                                          0.00      0.0    0.0 SWP  12                                          0.00      0.0    0.0 MINIMUM FLOW ................................                        0.0 MAXIMUM FLOW ................................                        0.0 TOTAL FLOW ..................................                        0.0 CIRC 21                                          24.00      140.0  140.0 CIRC 22                                          24.00      84.0    84.0 CIRC 23                                          24.00      84.0    84.0 CIRC 24                                          24 .00      84.0    84.0 CIRC 25                                          24.00      84.0    84.0 CIRC 26                                          24.00      140.0  140.0 SWP 21                                            0.00      0.0    0.0 SWP 22                                          24.00        5.0    5.0 SWP 23                                          24.00        5.0    5.0 SWP 24                                            0.00      0.0    0.0 SWP 25                                          24.00        5.0    5.0 SWP 26                                            0.00      0.0    0.0 MINIMUM FLOW ................................                      631.0 MAXIMUM FLOW ................................                      631. 0 TOTAL FLOW ..................................                      631.0 CIRC 31                                            0.00      0.0    0.0 CIRC 32                                  14:16  14.27      68.5    40.7  UNIT OFF LINE CIRC 33                                            0.00      0.0    0.0 CIRC 34                                  14:16  14.27      73.0    43.4  UNIT OFF LINE CIRC 35                                          24.00      73.0    73.0 CIRC 36                                          24.00      78.0    78.0 SWP  31                                          0.00      0.0    0.0 SWP  32                                        24.00        5.0    5.0 SWP  33                                          0.00      0.0    0.0 SWP 34              9:19                9:34      0.25      5.0    0.1 SWP  35                                          0.00      0.0    0.0 SWP 36                                  9:19      9.32      5.0    1.9 SWP 36              9:34                        14.43        5.0    3.0 SWP 37                                            0.00      0.0    0.0 SWP  38                                          0.00        0.0    0.0 SWP  39                                          0.00        0.0    0.0 MINIMUM FLOW ......                                                161.0 MAXIMUM FLOW ......                                                307.5 TOTAL FLOW ........                                                245.1 SITE TOTAL  ..................................                    876.1
 
DAILY PUMP OPERATION LOG                    14 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/12/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                    OFF    HOURS      (KGPM)  (KGPM) COMMENTS CIRC 11                                            0.00        0.0    0.0 CIRC 12                                            0.00        0.0    0.0 SWP  11                                          0.00        0.0    0.0 SWP    12                                          0.00        0.0    0.0 MINIMUM FLOW                                                            0.0 MAXIMUM FLOW                                                            0.0 TOTAL FLOW ..                                                          0.0 CIRC 21                                          24.00      140.0  140.0 CIRC 22                                  23:33  23.55      84.0    82.4  COND. BACKWASH CIRC 23                                  23:00  23.00      84.0    80.5  COND. BACKWASH CIRC 23            23:28                          0.53      140.0      3.1 CIRC 24                                  4:20    4.33      84.0    15.2  COND. BACKWASH CIRC 24            4:28                          19.53      84.0    68.4 CIRC 25                                  4:53    4.88      84.0    17.1  COND. BACKWASH CIRC 25            5:22                          18. 63    140.0  108.7 CIRC 26                                  5:28    5.47      140.0    31.9  MAINTENANCE CIRC 26            15:54                          8.10      140.0    47.3 SWP 21                                            0.00        0.0    0.0 SWP 22                                            24 .00        5.0    5.0 SWP 23                                            24.00        5.0    5.0 SWP 24                                            0.00        0.0      0.0 SWP 25                                            24.00        5.0      5.0 SWP 26                                            0.00        0.0      0.0 MINIMUM FLOW ................                                      547.0 MAXIMUM FLOW ................                                      743.0 TOTAL FLOW ..................                                      609.5 CIRC 31                                            0.00        0.0      0.0 CIRC 32                                            0.00        0.0    0.0 CIRC 33                                            0.00        0.0    0.0 CIRC 34                                            0.00        0.0    0.0 CIRC 35                                          24.00.      73.0    73.0 CIRC 36                                          24.00      78.0    78.0 SWP  31                                          0.00        0.0    0.0 SWP 32                                            24 .00      5.0    5.0 SWP 33                                            0.00        0.0    0.0 SWP 34                                            0.00        0.0    0.0 SWP 35              13:03                        10.95        5.0    2.3 SWP 36                                  13:03    13.05        5.0    2.7 SWP 37                                            0.00        0.0    0.0 SWP  38                                          0.00        0.0    0.0 SWP  39                                          0.00        0.0    0.0 MINIMUM FLOW ........                                              161.0 MAXIMUM FLOW ........                                              166.0 TOTAL FLOW ..........                                              161.0 SITE TOTAL  ..................................                      770.5
 
DAILY PUMP OPERATION LOG                    15 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/13/07 AVE FLOW  FLOW RATE  RATE PUMP              ON                  OFF    HOURS      (KGPM)  (KGPM) COMMENTS CIRC 11                                          0.00        0.0      0.0 CIRC 12                                          0.00        0.0    0.0 SWP    11                                        0.00        0.0    0.0 SWP    12                                        0.00        0.0    0.0 MINIMUM FLOW                                                        0.0 MAXIMUM FLOW                                                        0.0 TOTAL FLOW ..                                                        0.0 CIRC 21                                  0:04    0.07      140.0    0.4  COND. BACKWASH CIRC 21            0:32                        23.47      140.0  136.9 CIRC 22            0:01                        23.98      84.0    83.9 CIRC 23                                        24.00      140.0  140.0 CIRC 24                                        24 .00      84 .0  84.0 CIRC 25                                  5:40    5.67      140.0    33.1  COND. BACKWASH CIRC 25            6:04                        17. 93    140.0  104 .6 CIRC 26                                  8:23    8.38      140.0    48.9  MAINTENANCE CI RC 26          12:38                        11.37      140.0    66.3 SWP 21                                          0.00        0.0    0.0 SWP 22                                          24.00        5.0    5.0 SWP 23                                          24 .00      5.0    5.0 SWP  24                                        0.00        0.0    0.0 SWP  25                                        24.00        5.0    5.0 SWP  26                                        0.00        0.0    0.0 MINIMUM FLOW ................                                    603.0 MAXIMUM FLOW ................                                    743.0 TOTAL FLOW ..................................                    713.1 CIRC 31                                          0.00        0.0    0.0 CIRC 32                                          0.00        0.0    0.0 CIRC 33                                          0.00        0.0    0.0 CIRC 34                                          0.00        0.0    0.0 CIRC 35                                        24.00      73.0    73.0 CIRC 36                                        24.00      78.0    78.0 SWP  31                                        0.00        0.0    0.0 SWP 32                                          24.00        5.0    5.0 SWP 33                                          0.00        0.0    0.0 SWP 34                                          0.00        0.0    0.0 SWP 35                                          24.00        5.0    5.0 SWP 36                                          0.00        0.0    0.0 SWP 37                                          0.00        0.0    0.0 SWP  38                                        0.00        0.0    0.0 SWP 39                                          0.00        0.0    0.0 MINIMUM FLOW                                                      161.0 MAXIMUM FLOW                                                      161.0 TOTAL FLOW ..                                                    161.0 SITE TOTAL ..................................                    874 .1
 
DAILY PUMP OPERATION LOG                  16 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/14/07 AVE FLOW  FLOW RATE  RATE PUMP              ON                    OFF                  HOURS        (KGPM)  (KGPM) COMMENTS CIRC 11                                                          0.00          0.0    0.0 CIRC 12                                                          0.00          0.0    0.0 SWP  12                                                        0.00          0.0    0.0 SWP  12                                                        0.00          0.0    0.0 MINIMUM FLOW                            ................................              0.0 MAXIMUM FLOW ........                  ................................                0.0 TOTAL FLOW ...      ................................                                  0.0 CIRC 21                                                        24.00        140.0  140.0 CIRC 22                                                        24.00          84.0    84.0 CIRC 23                                                        24.00        140.0  140.0 CIRC 24                                                        24.00          84.0    84.0 CIRC 25                                                        24.00        140.0  140.0 CIRC 26                                                        24.00        140.0  140.0 SWP 21                                                          0.00          0.0    0.0 SWP 22                                                        24.00          5.0    5.0 SWP  23                                                      24.00          5.0    5.0 SWP  24                                                        0.00          0.0    0.0 SWP 25                                                        24.00            5.0    5.0 SWP 26                                                          0.00          0.0    0.0 MINIMUM FLOW ................................                                      743.0 MAXIMUM FLOW ................................                                      743.0 TOTAL FLOW ..................................                                      743.0 CIRC 31                                                          0.00          0.0    0.0 CIRC 32                                                          0.00          0.0    0.0 CIRC 33                                                          0.00          0.0    0.0 CIRC 34                                                          0.00          0.0    0.0 CIRC 35                                                      24.00          73.0    73.0 CIRC 36                                                      24.00          78.0    78.0 SWP 31                                                          0.00          0.0    0.0 SWP 32                                                        24.00            5.0    5.0 SWP 33                                                          0.00          0.0    0.0 SWP  34                                                        0.00          0.0    0.0 SWP  35                                                      24.00            5.0    5.0 SWP  36                                                        0.00          0.0    0.0 SWP  37                                                        0.00          0.0    0.0 SWP  38                                                        0.00          0.0    0.0 SWP  39                                                        0.00          0.0    0.0 MINIMUM FLOW ................................                                      161.0 MAXIMUM FLOW ................................                                      161.0 TOTAL FLOW ..................................                                      161.0 SITE TOTAL ..................................                                      904.0
 
DAILY PUMP OPERATION LOG            17 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/15/07 AVE FLOW  FLOW RATE  RATE PUMP              ON                    OFF                HOURS    (KGPM)  (KGPM) COMMENTS CIRC 11                                                      0.00      0.0 CIRC 12                                                      0.00      0.0    0.0 SWP  11                                                    0.00      0.0    0.0 SWP  12                                                    0.00      0.0    0.0 0.0 MINIMUM FLOW              ................................
0.0 MAXIMUM FLOW ................................
0.0 TOTAL FLOW .. ................................
0.0 CIRC 21                                                    24.00    140.0  140.0 CIRC 22                                                    24.00      84.0    84.0 CIRC 23                                                    24.00    140.0  140.0 CIRC 24                                                    24.00      84.0    84.0 CIRC 25                                                    24.00    140.0  140.0 CIRC 26                                                    24.00    140.0  140.0 SWP 21                                                      0.00      0.0    0.0 SWP 22                                                      24.00      5.0    5.0 SWP  23                                                    24.00      5.0    5.0 SWP 24                                                      0.00      0.0    0.0 SWP 25                                                      24.00      5.0    5.0 SWP  26                                                    0.00      0.0    0.0 MINIMUM FLOW ..........................                                      743.0 MAXIMUM FLOW ..........................                                      743.0 TOTAL FLOW ............................                                      743.0 CIRC 31                                                      0.00      0.0    0.0 CIRC 32                                                      0.00      0.0    0.0 CIRC 33                                                      0.00      0.0    0.0 CIRC 34                                                      0.00      0.0    0.0 CIRC 35                                                    24.00      73.0    73.0 CIRC 36                                                    24.00      78.0    78.0 SWP 31                                                      0.00      0.0    0.0 SWP 32                                                      24.00      5.0    5.0 SWP 33                                                      0.00      0.0    0.0 SWP 34                                                      0.00      0.0    0.0 SWP 35                                                      24.00      5.0    5.0 SWP 36                                                      0.00      0.0    0.0 SWP 37                                                      0.00      0.0    0.0 SWP 38                                                      0.00      0.0    0.0 SWP 39                                                      0.00      0.0    0.0 MINIMUM FLOW ...............                                                161 .0 MAXIMUM FLOW ...............                                                161.0 TOTAL FLOW .................                                                161.0 SITE TOTAL ..................................                                904 .0
 
DAILY PUMP OPERATION LOG                        18 .
INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/16/07 AVE FLOW  FLOW RATE  RATE PUMP              ON        OFF                  HOURS        (KGPM)  (KGPM) COMMENTS CIRC 11                                              0.00        0.0    0.0 CIRC 12                                              0.00        0.0    0.0 SWP  11                                            0.00        0.0    0.0 SWP  12                                            0.00        0.0    0.0 MINIMUM FLOW .........      .......................                    0 .0 MAXIMUM FLOW .........      .......................                    0 .0 TOTAL FLOW                  .......................                    0 .0 CIRC 21                      15:00                15.00        140.0    87.5  COND. BACKWASH CIRC 21          15:25                              8.58      140.0    50.1 CIRC 22                      14:30                14.50        84.0    50.8  COND. BACKWASH CIRC 22            14:56                            9.07      84.0    31.7 CIRC 23                      14:02                14.03        140.0    81.9  COND. BACKWASH CIRC 23            14:28                            9.53      140.0    55.6 CIRC 24                      10:01                10.02        84.0    35.1  COND. BACKWASH CIRC 24            10:22    20:15                  9.88      84.0    34.6  COND. BACKWASH CIRC 24          20:31                              3. 48      84.0    12.2 CIRC 25                      10:25                10.42        140.0    60.8  COND. BACKWASH CIRC 25            10:52    20:35                    9.72      140.0    56.7  COND. BACKWASH CIRC 25          20:53                              3.12      140.0    18.2 CIRC 26                      10:57                10.95        140.0    63.9  COND. BACKWASH CIRC 26            11:22    20:58                  9.60      140.0    56.0  COND. BACKWASH CIRC 26          21:20                              2.67      140.0    15.6 SWP 21                                              0.00        0.0    0.0 SWP 22                                            24.00          5.0    5.0 SWP  23                                          24.00          5.0    5.0 SWP  24          15:10                            8.83        5.0    1.8 SWP 25                      15:11                15.18          5.0    3.2 SWP 26                                              0.00        0.0    0.0 MINIMUM FLOW                .......................                  603 .0 MAXIMUM FLOW                .......................                  743 .0 TOTAL FLOW                  ........................                725 .4 CIRC 31                                              0.00        0.0    0.0 CIRC 32                                              0.00        0.0    0.0 CIRC 33                                              0.00        0.0    0.0 CIRC 34                                              0.00        0.0    0.0 CIRC 35                                          24.00        73.0    73.0 CIRC 36                                          24.00        78.0    78.0 SWP  31                                            0.00        0.0    0.0 SWP  32                                          24.00          5.0    5.0 SWP  33                                            0.00        0.0    0.0 SWP  34                                            0.00        0.0    0.0 SWP  35                                          24.00          5.0    5.0 SWP  36                                            0.00        0.0    0.0 SWP  37                                            0.00        0.0    0.0 SWP  38                                            0.00        0.0    0.0 SWP  39                                            0.00        0.0    0.0 MINIMUM FLOW .........      .......................                  161 .0 MAXIMUM FLOW .........      .......................                  161 .0 TOTAL FLOW ...........      .......................                  161 .0
 
DAILY PUMP OPERATION LOG            19 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/16/07 AVE FLOW    FLOW RATE  RATE PUMP              ON                    OFF    HOURS    (KGPM)  (KGPM) COMMENTS SITE TOTAL ..................................                    886.4
 
DAILY PUMP OPERATION LOG                        20 0 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/17/07 AVE FLOW  FLOW RATE  RATE PUMP              ON              OFF            HOURS        (KGPM)  (KGPM) COMMENTS CIRC 11                                              0.00          0.0    0.0 CIRC 12                                              0.00          0.0    0.0 SWP  11                                              0.00          0.0    0.0 SWP  12                                              0.00          0.0    0.0 MINIMUM FLOW                                                                0.0 MAXIMUM FLOW                                                                0.0 TOTAL FLOW        . . . . . .  . . . . . . . . . . . . . . .  &deg;..          0.0 CIRC 21                            4:58              4.97        140.0    29.0  COND. BACKWASH CIRC 21            5:20            14:55            9.58        140.0    55.9  COND. BACKWASH CIRC 21            15:25                              8.58        140.0    50. 1 CIRC 22                            2:24              2.40        84.0    8.4  COND. BACKWASH CIRC 22            2:49            4:28              1.65        84.0    5.8  COND. BACKWASH CIRC 22            4:52            14:13            9.35        84.0    32. 7 COND. BACKWASH CIRC 22            14:43                              9.28        84.0    32. 5 CIRC 23                            4:07              4.12        140.0    24.0  COND. BACKWASH CIRC 23            4:23            13:38            9.25        140.0    54 .0 COND. BACKWASH CIRC 23            14:07                              9.88        140.0    57.7 CIRC 24                            9:24              9.40        84.0    32. 9 COND. BACKWASH CIRC 24            9:54            21:15          11.35          84.0    39.7  COND. BACKWASH CIRC 24            21:41                              2.32        84.0    8. 1 CIRC 25                            1:27              1.45        140.0    8.5  COND. BACKWASH CIRC 25            1:51            10:04            8.22        140.0    47.9  COND. BACKWASH CIRC 25            10:33            21:45          11.20        140.0    65. 3 COND. BACKWASH CIRC 25            22:11                              1.82        140.0    10. 6 CIRC 26                            10:40          10.67        140.0    62.2  COND. BACKWASH CIRC 26            11:10            22:15          11.08        140.0    64.7  COND. BACKWASH CIRC 26            22:48                              1.20        140.0    7.0 SWP 21            20:33                              3.45          5.0    0.7 SWP 22                              20:35          20.58          5.0    4 .3 SWP 22            22:39            22:48            0.15          5.0    0.0 SWP 23                                              24.00          5.0    5.0 SWP 24                              20:39          20.65          5.0    4.3 SWP 25            20:38            20:53            0.25          5.0    0.1 SWP 26            20:50                              3.17          5.0    0.7 MINIMUM FLOW . . o o...        . . . . . . . . . . .. . . . . . .        603.0 MAXIMUM FLOW                                                            748.0 TOTAL FLOW ..................                                            711.9 CIRC 31                                              0.00          0.0    0.0 CIRC 32                                              0.00          0.0    0.0 CIRC 33                                              0.00          0.0    0.0 CIRC 34                                              0.00          0.0    0.0 CIRC 35                                            24.00          73.0    73.0 CIRC 36                            9:07              9.12        78.0    29.6  SPEED CHANGE CIRC 36            9:07            9:08              0. 02        83.5    0.1  MAINTENANCE SWP  31                                              0.00          0.0    0.0 SWP  32                                            24.00          5.0    5.0 SWP  33                                              0.00          0.0    0.0 SWP  34                                              0.00          0.0    0.0 SWP  35                                            24.00          5.0    5.0
 
DAILY PUMP OPERATION LOG            21 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/17/07 AVE FLOW    FLOW RATE  RATE PUMP              ON                    OFF        HOURS    (KGPM)  (KGPM) COMMENTS SWP  36                                              0.00 SWP 37                                                0.00      0.0    0.0 SWP 38                                                0.00      0.0    0.0 SWP 39                                                0.00      0.0    0.0 MINIMUM FLOW            .........................              0.0    0.0 MAXIMUM FLOW .........................                                  83.0 166.5 TOTAL FLOW  ...........................                                112.7 SITE TOTAL  ..................................                        824.6
 
DAILY PUMP OPERATION LOG                      22 @
INDIAN POINT MONTHLY ENVIRONMENTAL              REPORT 04/18/07 AVE FLOW    FLOW RATE    RATE PUMP                ON        OFF            HOURS        (KGPM)  (KGPM)  COMMENTS CIRC 11                                        0.00        0.0    0.0 CIRC 12                                        0.00        0.0    0.0 SWP      11                                    0.00        0.0    0.0 SWP      12                                    0.00        0.0    0.0 MINIMUM FLOW ........                                                0.0 MAXIMUM FLOW ........                                                0.0 T'/\ '7NT  VT nT^O 0.0 CIRC 21                        4:32            4.53      140.0    26.4  COND. BACKWASH CIRC 21            4:57      16:01          11.07      140.0    64 .6  COND. BACKWASH CIRC 21            16:28                      7.53      140.0    43.9 CIRC 22                        3:57            3.95        84.0    13.8  COND. BACKWASH CIRC 22            4:27      15:29          11.03        84.0    38. 6  COND. BACKWASH CIRC 22            15:55                      8.08        84.0    28.3 CIRC 23                        3:35            3.58      140.0    20.9  COND. BACKWASH CIRC 23            3:52                      20.13      140.0  117.4 CIRC 24                        9:33            9.55        84 .0  33.4  COND. BACKWASH CIRC 24            9:58                      14 .03      140.0    81.9 CIRC 25                        10:08          10.13      140.0    59.1  COND. BACKWASH CIRC 25            10:31                    13.48      140.0    78.7 CIRC 26                        10:37          10.62      140.0    61.9  COND. BACKWASH CIRC 26            11:02                    12.97      140.0    75.6 SWP      21                  3:36            3.60        5.0    0.8 SWP      21        16:56      23:40            6.73        5.0    1.4 SWP      22        3:36      16:58          13.37          5.0    2.8 SWP 22              23:27                      0.55        5.0    0.1 SWP      23                                  24.00          5.0    5.0 SWP      24                                    0.00        0.0    0.0 SWP      25        11:17      11:27            0.17        5.0    0.0 SWP      25        23:49                      0.18        5.0    0.0 SWP      26                  11:20          11.33          5.0    2.4 SWP 26              11:25      23:49          12.40          5.0    2.6 MINIMUM FLO W                                                    598.0 MAXIMUM FLOW                                                      804.0 TOTAL FLOW                  .. . . . . . . . . . . . . ..
                                                        .        759.7 CIRC 31                                        0.00        0.0    0.0 CIRC 32                                        0.00        0.0    0.0 CIRC 33                                        0.00        0.0    0.0 CIRC 34                                        0.00        0.0    0.0 CIRC 35                                      24.00        73.0    73.0 CIRC 36                                        0.00        0.0    0.0 SWP      31                                    0.00        0.0    0.0 SWP      32                                  24.00          5.0    5.0 SWP      33                                    0.00        0.0    0.0 SWP      34                                    0.00        0.0    0.0 SWP      35                                  24.00          5.0    5.0 SWP      36                                    0.00        0.0    0.0 SWP 37                                          0.00        0.0    0.0 SWP 38                                          0.00        0.0    0.0 SWP      39                                    0.00        0.0    0.0
 
DAILY PUMP OPERATION LOG            23 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/18/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                    OFF      HOURS      (KGPM)  (KGPM) COMMENTS MINIMUM FLOW . ................................                      83.0 MAXIMUM FLOW ................................                        83.0 TOTAL FLOW ..................................                        83.0 SITE TOTAL  ..................................                      842.7
 
DAILY PUMP OPERATION LOG                                24 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/19/07 AVE FLOW        FLOW RATE        RATE PUMP              ON                  OFF            HOURS                (KGPM)      (KGPM) COMMENTS CIRC 11                                                    0.00                0.0        0.0 CIRC 12                                                    0.00                0.0        0.0 SWP    11                                                  0.00                0.0        0.0 SWP  12                                                  0.00                0.0        0.0
                                        &deg;. . . . . .  &deg;... . . . . . *. . . . . . . ..
MINIMUM FLOW .......                                                                        0.0 MAXIMUM FLOW .......                                                                        0.0 TOTAL FLOW                                                                                  0.0 CIRC 21                                5:29              5.48            140.0        32.0  COND. BACKWASH CIRC 21            5:54                                18 .10              140.0      105. 6 CIRC 22                                5:04              5.07              84.0        17.7  COND. BACKWASH CIRC 22            5:26                                18.57                84.0        65.0 CIRC 23                                4:37              4.62            140.0        26.9  COND. BACKWASH CIRC 23            5:00                                19.00              140.0      110.8 CIRC 24                                  10:54          10.90              140.0        63.6  COND. BACKWASH CIRC 24            11:16                                12.73              140.0        74.3 CIRC 25                                11:20          11.33              140.0        66.1  COND. BACKWASH CIRC 25            11:44                                12.27              140.0        71.6 CIRC 26                                12:18          12.30              140.0        71.8  COND. BACKWASH CIRC 26            12:40                                11.33              140.0        66.1 SWP  21          13:00                13:30              0.50                5.0        0.1 SWP  21          13:49                13:51              0.03                5.0        0.0 SWP  21          22:06                                  1.90                5.0        0.4 SWP  22                                                24.00                  5.0        5.0 SWP  23                                13:04          13.07                  5.0        2.7 SWP  23          13:24                22:29              9.08                5.0        1.9 SWP  24          14:17                                  9.72                5.0        2.0 SWP  25                                14:30          14.50                  5.0        3.0 SWP  26                                                  0.00                0.0        0.0 MINIMUM FLOW                                                                            659.0 MAXIMUM FLOW                                                                            804.0 TOTAL FLOW                                                                              786.6 0.00 CIRC 31                                                    0.00                0.0        0.0 CIRC 32                                                                        0.0        0.0 0.00 CIRC 33                                                                        0.0        0.0 0.00 CIRC 34                                                                        0.0        0.0 CIRC 35                                                24 .00                73.0        73.0 CIRC 36                                                    0.00                0.0        0.0 SWP  31                                                  0.00                0.0        0.0 SWP  32                                                24.00                  5.0        5.0 SWP  33                                                  0.00                0.0        0.0 SWP  34                                                  0.00                0.0        0.0 SWP  35                                                24.00                  5.0        5.0 SWP  36                                                  0.00                0.0        0.0 SWP  37                                                  0.00                0.0        0.0 SWP  38                                                  0.00                0.0        0.0 SWP  39                                                  0.00                0.0        0.0 MINIMUM FLOW .................................                                            83.0 MAXIMUM FLOW ................................                                            83.0 TOTAL FLOW ..................................                                            83.0
 
DAILY PUMP OPERATION LOG            25 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/19/07 AVE FLOW  FLOW RATE  RATE PUMP              ON                    OFF    HOURS    (KGPM)  (KGPM) COMMENTS SITE TOTAL ..................................                    869.6
 
DAILY PUMP OPERATION LOG INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/20/07 26 Ii AVE FLOW      FLOW RATE      RATE PUMP              ON                  OFF      HOURS        (KGPM)    (KGPM) COMMENTS CIRC 11                                          0.00            0.0    0.0 CIRC 12                                          0.00            0.0    0.0 SWP    11                                        0.00            0.0    0.0 SWP    12                                        0.00            0.0    0.0 MINIMUM FLOW ........                                                      0.0 MAXIMUM FLOW ........                                                      0.0 TOTAL FLOW ..........                                                      0.0 CIRC 21                                  5:27    5.45      140.0      31.8  COND. BACKWASH CIRC 21            5:50                  18:11  12.35      140.0        72.0  COND. BACKWASH CIRC 21            18:35                          5.42      140.0        31.6 CIRC 22                                  4:58    4.97        84.0      17.4  COND. BACKWASH CIRC 22            5:02                  17:40  12.63      140.0      73.7  COND. BACKWASH CIRC 22            18:04                          5.93      140.0      34.6 CIRC 23                                          24.00      140.0      140.0 CIRC 24                                23:23    23.38      140.0      136.4  COND. BACKWASH CIRC 24            23:53                          0.12      140.0        0.7 CIRC 25                                23:58    23.97      140.0      139.8  COND. BACKWASH CIRC 26                                          24.00      140.0      140.0 SWP 21                                          24.00            5.0    5.0 SWP 22                                  8:58      8.97            5.0    1.9 SWP 22            11:19                11:29    0.17            5.0    0.0 SWP 23            8:53                          15.12            5.0    3.1 SWP 24                                  8:34      8.57            5.0    1.8 SWP 25            8:28                          15.53            5.0    3.2 SWP 26                                            0.00            0.0    0.0 MINIMUM FLOW                                              .......      715.0 MAXIMUM FLOW                                              .......      860.0 TOTAL FLOW .,                                            .......      833.1 CIRC 31                                          0.00            0.0    0.0 CIRC 32                                          0.00            0.0    0.0 CIRC 33                                          0.00            0.0    0.0 CIRC 34                                          0.00            0.0    0.0 CIRC 35                                          24.00        73.0      73.0 CIRC 36                                          0.00            0.0    0.0 SWP  31                                          0.00            0.0    0.0 SWP  32                                        24.00            5.0    5.0 SWP  33                                          0.00            0.0    0.0 SWP 34                                            0.00            0.0    0.0 SWP 35                                          24.00            5.0    5.0 SWP 36                                            0.00            0.0    0.0 SWP 37                                            0.00            0.0    0.0 SWP 38                                            0.00            0.0    0.0 SWP  39                                          0.00            0.0    0.0 MINIMUM FLOW ................................                            83.0 MAXIMUM FLOW ................................                            83.0 TOTAL FLOW ..................................                            83.0 SITE TOTAL ..................................                          916.1
 
DAILY PUMP OPERATION LOG                    27 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/21/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF      HOURS      (KGPM)  (KGPM) COMMENTS CIRC 11                                          0.00          0.0    0.0 CIRC 12                                          0.00          0.0    0.0 SWP  11                                          0.00          0.0    0.0 SWP  12                                          0.00          0.0    0.0 MINIMUM FLOW ................................                          0.0 MAXIMUM FLOW ................................                          0.0 TOTAL FLOW ..................................                          0.0 CIRC 21                                          24.00      140.0    140.0 CIRC 22                                          24.00      140.0    140.0 CIRC 23                                          24.00      140.0    140.0 CIRC 24                                          24.00      140.0    140.0 CIRC 25            0:25                          23.58      140.0    137.6 CIRC 26                                0:30      0.50    140.0      2.9  COND. BACKWASH CIRC 26            0:57                          23.05      140.0    134.5 SWP 21                                  0:21      0.35          5.0    0.1 SWP 21            15:09                15:28      0.32          5.0    0.1 SWP 22            0:19                          23.68          5.0    4.9 SWP 23                                          24.00          5.0    5.0 SWP 24                                            0.00          0.0    0.0
.SWP 25                                3:09      3.15          5.0    0.7 SWP 25            3:31                          20.48          5.0    4.3 SWP 26            3:07                3:32      0.42          5.0    0.1 MINIMUM FLOW                                                ...... 715.0 MAXIMUM FLOW                                                ...... 860.0 TOTAL FLOW ..                                              ...... 850.0 CIRC 31                                            0.00          0.0    0.0 CIRC 32                                            0.00          0.0    0.0 CIRC 33                                            0.00          0.0    0.0 CIRC 34                                            0.00          0.0    0.0 CIRC 35                                          24.00        73.0    73.0 CIRC 36                                            0.00          0.0    0.0 SWP 31                                            0.00          0.0    0.0 SWP 32                                          24.00          5.0    5.0 SWP  33                                          0.00          0.0    0.0 SWP  34                                          0.00          0.0    0.0 SWP 35                                          24.00          5.0    5.0 SWP  36                                          0.00          0.0    0.0 SWP  37                                          0.00          0.0    0.0 SWP  38                                          0.00          0.0    0.0 SWP  39                                          0.00          0.0    0.0 MINIMUM FLOW .........................                      ...... 83.0 MAXIMUM FLOW .........................                      ...... 83.0 TOTAL FLOW ...........................                      ...... 83.0 SITE TOTAL . .................................                      933.0
 
DAILY PUMP OPERATION LOG                            28 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/22/07 AVE FLOW            FLOW RATE            RATE PUMP              ON                    OFF    HOURS      (KGPM)          (KGPM) COMMENTS CIRC 11                                            0.00          0.0            0.0 CIRC 12                                            0.00          0.0            0.0 SWP    11                                          0.00          0.0            0.0 SWP    12                                        0.00          0.0            0.0 MINIMUM FLOW                                                                    0.0 MAXIMUM FLOW                                                                    0.0 TOTAL FLOW ..                                                                  0.0 CIRC 21                                  9:06      9.10    140.0            53.1  COND. BACKWASH CIRC 21            9:31                          14.48      140.0            84.5 CIRC 22                                  8:35    8.58      140.0            50.1  COND. BACKWASH CIRC 22            9:02                          14. 97    140.0            87.3 CIRC 23                                  8:05    8.08      140.0            47.2  COND. BACKWASH CIRC 23            8:32                          15.47      140.0            90.2 CIRC 24                                  1:20    1.33      140.0              7.8 COND. BACKWASH CIRC 24            1:48                          22.20      140.0          129.5 CIRC 25                                  1:51    1.85      140.0            10.8  COND. BACKWASH CIRC 25            2:17                          21.72      140.0          126.7 CIRC 26                                  2:21    2.35      140.0            13.7  COND. BACKWASH CIRC 26            2:45                          21.25      140.0          124.0 SWP  21                                          0.00          0.0            0.0 SWP  22                                        24 .00          5.0            5.0 SWP  23                                        24.00          5.0            5.0 SWP  24                                          0.00          0.0          0.0 SWP 25                                          24.00          5.0          5.0 SWP 26                                            0.00          0.0          0.0 MINIMUM FLOW ................                              ......          715.0 MAXIMUM FLOW ................                              ......          855.0 TOTAL FLOW ..................                                        .. . . 839.7 CIRC 31                                          0.00          0.0          0.0 CIRC 32                                          0.00          0.0          0.0 CIRC 33                                          0.00          0.0          0.0 CIRC 34                                          0.00          0.0          0.0 CIRC 35                                          24 .00      73.0            73.0 CIRC 36                                          0.00          0.0            0.0 SWP 31                                            0.00          0.0            0.0 SWP  32                                        24.00          5.0            5.0 SWP  33                                          0.00          0.0            0.0 SWP  34                                          0.00          0.0            0.0 SWP  35                                        24.00          5.0            5.0 SWP 36                                            0.00          0.0            0.0 SWP  37                                          0.00          0.0            0.0 SWP  38                                          0.00          0.0            0.0 SWP  39                                          0.00          0.0            0.0 MINIMUM FLOW ................................                                83.0 MAXIMUM FLOW .................................                                83.0 TOTAL FLOW ..................................                                83.0 SITE TOTAL ..................................                              922.7
 
DAILY PUMP OPERATION LOG                29 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/23/07 AVE FLOW  FLOW RATE  RATE PUMP                ON                  OFF        HOURS    (KGPM)  (KGPM) COMMENTS CIRC 11                                              0.00 CIRC 12                                              0.00        0.0    0.0 SWP  11                                              0.00        0.0    0.0 SWP  12                                              0.00        0.0    0.0 MINIMUM FLOW            .........................                0.0    0.0 MAXIMUM FLOW .........................                                    0.0 0.0 TOTAL FLOW  ...........................                                  0.0 CIRC 21                                              24.00    140.0  140.0 CIRC 22                                              24.00    140.0  140.0 CIRC 23                                              24.00    140.0  140.0 CIRC 24                                              24.00    140.0  140.0 CIRC 25                                              24.00    140.0  140.0 CIRC 26                                              24.00    140.0  140.0 SWP  21            14:56                            9.07        5.0    1.9 SWP  22                                14:58      14.97        5.0    3.1 SWP  23                                            24.00      5.0    5.0 SWP  24                                              0.00      0.0    0.0 SWP  25                                            24.00      5.0    5.0 SWP 26                                                0.00      0.0    0.0 MINIMUM FLOW .................                                        855.0 MAXIMUM FLOW .................                                        860.0 TOTAL FLOW ...................                                        855.0 CIRC 31                                              0.00      0.0    0.0 CIRC 32                                              0.00      0.0    0.0 CIRC 33                                              0.00      0.0    0.0 CIRC 34                                              0.00      0.0    0.0 CIRC 35                                  17:33      17.55      73.0    53.4  SPEED CHANGE CIRC 35            17:33                            6.45    110.0    29.6 CIRC 36                                              0.00      0.0    0.0 SWP  31                                              0.00      0.0    0.0 SWP  32                                            24.00      5.0    5.0 SWP  33                                              0.00      0.0    0.0 SWP  34                                              0.00      0.0    0.0 SWP  35                                            24.00      5.0    5.0 SWP  36                                              0.00      0.0    0.0 SWP  37                                              0.00      0.0    0.0 SWP 38                                                0.00      0.0    0.0 SWP  39                                              0.00      0.0    0.0 MINIMUM FLOW .......................                                    83.0 MAXIMUM FLOW .......................                                  120.0 TOTAL FLOW .........................                                    92.9 SITE TOTAL  ..................................                        948.0
 
DAILY PUMP OPERATION LOG                        30 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/24/07 AVE FLOW      FLOW RATE      RATE PUMP              ON                  OFF      HOURS        (KGPM)    (KGPM)  COMMENTS CIRC 11                                          0.00            0.0    0.0 CIRC 12                                          0.00            0.0    0.0 SWP  11                                        0.00            0.0    0.0 SWP  12                                        0.00            0.0    0.0 MINIMUM FLOW ...............                                              0.0 MAXIMUM FLOW ...............                                              0.0 TOTAL FLOW .................                                              0.0 CIRC 21                                10:04. 10.07      140.0      58. 7  COND. BACKWASH CIRC 21            10:30                        13.50      140.0      78.8 CIRC 22                                  9:31    9.52      140.0      55.5  COND. BACKWASH CIRC 22            9:57                          14.05      140.0      82.0 CIRC 23                                9:02      9.03      140.0      52. 7  COND. BACKWASH CIRC 23            9:27                          14.55      140.0      84. 9 CIRC 24                                3:04      3.07      140.0      17. 9  COND. BACKWASH CIRC 24            3:30                          20.50      140.0    119.6 CIRC 25                                3:35      3.58      140.0      20.9  COND. BACKWASH CIRC 25            4:02                          19.97      140.0    116.5 CIRC 26                                4:06      4.10      140.0      23.9  COND. BACKWASH CIRC 26            4:33                          19.45      140.0    113.5 SWP  21                                        24.00            5.0    5.0 SWP  22                                          0.00            0.0    0.0 SWP  23                                        24.00            5.0    5.0 SWP  24                                          0.00            0.0      0.0 SWP  25                                5:20      5.33            5.0      1. 1 SWP 25            21:42                22:20    0.63            5.0      0.1 SWP 25            22:23                22:25    0.03            5.0      0.0 SWP 26            5:18                          18.70            5.0      3.9 MINIMUM FLOW ................................                          715.0 MAXIMUM FLOW ................................                          860.0 TOTAL FLOW ..................................                          839.9 CIRC 31                                          0.00            0.0    0.0 CIRC 32                                          0.00            0.0    0.0 CIRC 33                                          0.00            0.0    0.0 CIRC 34                                          0.00            0.0    0.0 CIRC 35                                          24.00      110.0    110.0 CIRC 36                                          0.00            0.0    0.0 SWP  31                                          0.00            0.0    0.0 SWP 32                                          24.00            5.0    5.0 SWP 33                                            0.00            0.0    0.0 SWP 34                                            0.00            0.0    0.0 SWP 35                                          24.00            5.0    5.0 SWP 36                                            0.00            0.0    0.0 SWP  37                                          0.00            0.0    0.0 SWP  38                                          0.00            0.0    0.0 SWP  39                                          0.00            0.0    0.0 MINIMUM FLOW .........................                    .......      120.0 MAXIMUM FLOW ................................                          120.0 TOTAL FLOW . .................................                        120.0
 
DAILY PUMP OPERATION LOG            31 INDIAN POINT MONTHLY ENVIRONMENTAL      REPORT 04/24/07 AVE FLOW    FLOW RATE  RATE PUMP              ON                  OFF      HOURS    (KGPM)  (KGPM)  COMMENTS SITE TOTAL ..................................                    959.9
 
DAILY PUMP OPERATION LOG            32  .
INDIAN POINT MONTHLY ENVIRONMENTAL      REPORT 04/25/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                    OFF    HOURS    (KGPM)  (KGPM)  COMMENTS CIRC 11                                          0.00        0.0    0.0 CIRC 12                                          0.00        0.0    0.0 SWP  11                                        0.00        0.0    0.0 SWP  12                                        0.00        0.0    0.0 MINIMUM FLOW ................................                      0.0 MAXIMUM FLOW ................................                      0.0 TOTAL FLOW ..................................                      0.0 CIRC 21                                        24.00    140.0  140.0 CIRC 22                                        24.00    140.0  140.0 CIRC 23                                        24.00    140.0  140.0 CIRC 24                                        24.00    140.0  140.0 CIRC 25                                        24.00    140.0  140.0 CIRC 26                                        24.00    140.0  140.0 SWP  21                                2:42    2.70        5.0    0.6 SWP  22            15:39              16:02    0.38        5.0    0.1 SWP  23                                        24.00        5.0    5.0 SWP  24                                        0.00        0.0    0.0 SWP  25            0:34                        23.43        5.0    4.9 SWP  26                                        24.00        5.0    5.0 MINIMUM FLOW ................................                    855.0 MAXIMUM FLOW ................................                    860.0 TOTAL FLOW ..................................                    855.5 CIRC 31                                          0.00        0.0    0.0 CIRC 32                                          0.00        0.0    0.0 CIRC 33                                          0.00        0.0    0.0 CIRC 34                                          0.00        0.0    0.0 CIRC 35                                        24.00    110.0  110.0 CIRC 36                                          0.00        0.0    0.0 SWP  31                                        0.00        0.0    0.0 SWP  32                                        24.00        5.0    5.0 SWP  33          3:29                4:18    0.82        5.0    0.2 SWP  34                                        0.00        0.0    0.0 SWP  35                                        24.00        5.0    5.0 SWP  36                                        0.00        0.0    0.0 SWP  37                                        0.00        0.0    0.0 SWP  38                                        0.00        0.0    0.0
.SWP  39                                        0.00        0.0    0.0 MINIMUM FLOW ......                                              120.0 MAXIMUM FLOW ......                                              125.0 TOTAL FLOW ........                                              120.2 SITE TOTAL ..................................                    975.7 9
 
DAILY PUMP OPERATION LOG              33 INDIAN POINT MONTHLY ENVIRONMENTAL        REPORT 04/26/07 AVE FLOW    FLOW RATE    RATE PUMP                ON                  OFF      HOURS    (KGPM)  (KGPM)  COMMENTS CIRC 11                                            0.00      0.0      0.0 CIRC 12                                            0.00      0.0      0.0 SWP  11                                          0.00        0.0    0.0 SWP  12                                          0.00        0.0    0.0 MINIMUM FLOW ..............                                            0.0 MAXIMUM FLOW ..............                                            0.0 TOTAL FLOW ................                                            0.0 CIRC 21                                          24.00    140.0  140.0 CIRC 22                                          24.00    140.0  140.0 CIRC 23                                          24.00    140.0  140.0 CIRC 24                                          24.00    140.0  140.0 CIRC 25                                          24.00    140.0  140.0 CIRC 26                                          24.00    140.0  140.0 SWP  21            16:00                          8.00        5.0    1.7 SWP  22                                          0.00        0.0    0.0 SWP 23                                  16:01    16.02        5.0    3.3 SWP 23              16:07                16:24    0.28        5.0    0.1 SWP  24                                          0.00      0.0      0.0 SWP 25                                            24.00        5.0    5.0 SWP 26                                            24.00        5.0    5.0 MINIMUM FLOW                                                        855.0 MAXIMUM FLOW                                                        860.0 TOTAL FLOW ..                                                      855.1 CIRC 31            0:40                          23.33      86.0    83.6 CIRC 32            3:03                          20.95      83.5    72.9 CIRC 33            4:28                          19.53      83.5    68.0 CIRC 34            2:16                          21.73      89.0    80.6 CIRC 35                                          24.00    110.0  110.0 CIRC 36            2:41                          21.32      83.5    74.2 SWP  31                                          0.00      0.0      0.0 SWP 32                                            24.00      5.0      5.0 SWP  33                                          0.00      0.0      0.0 SWP 34              15:22                          8.63      5.0      1.8 SWP 35                                  15:22    15.37      5.0      3.2 SWP 36                                            0.00      0.0      0.0 SWP  37                                          0.00      0.0      0.0 SWP  38                                          0.00      0.0      0.0 SWP 39                                            0.00      0.0      0.0 MINIMUM FLOW ................................                      120.0 MAXIMUM FLOW ................................                      550.5 TOTAL FLOW . ..................................                    499.2 SITE TOTAL  ..................................                    1354.3
 
DAILY PUMP OPERATION LOG                  34 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/27/07 AVE FLOW      FLOW RATE    RATE PUMP                ON                    OFF                  HOURS      (KGPM)  (KGPM) COMMENTS CIRC 11                                                          0.00        0.0      0 0 CIRC 12                                                          0.00        0.0      0.0 SWP  11                                                          0.00        0.0      0.0 SWP  12                                                          0.00        0.0      0.0 MINIMUM FLOW                        ................................                  0.0 MAXIMUM FLOW .. ...............................                                      .0.0 TOTAL FLOW  ..................................                                        0.0 CIRC 21                                                        24.00      140.0    140.0 CIRC 22                                                        24.00      140.0    140.0 CIRC 23                                                        24.00      140.0    140.0 CIRC 24                                                        24.00      140.0    140.0 CIRC 25                                                        24.00      140.0    140.0 CIRC 26                                                        24.00      140.0    140.0 SWP  21                                                      24.00          5.0      5.0 SWP 22                                                            0.00        0.0      0.0 SWP 23                                                            0.00        0.0      0.0 SWP  24                                                          0.00        0.0      0.0 SWP  25                                                      24.00          5.0      5.0 SWP 26                                                        24.00          5.0      5.0 MINIMUM FLOW ................................                                      855.0 MAXIMUM FLOW ................................                                      855.0 TOTAL FLOW ..................................                                      855.0 CIRC 31                                                        24.00        86.0    86.0 CIRC 32                                                        24.00        83.5    83.5 CIRC 33                                                        24.00        83.5    83.5 CIRC 34                                                        24.00        89.0    89.0 CIRC 35                                                        24.00      110.0    110.0 CIRC 36                                                        24.00        83.5    83.5 SWP  31                                                          0.00        0.0      0.0 SWP  32                                                      24.00          5.0      5.0 SWP  33                                                          0.00        0.0      0.0 SWP  34                                                      24.00          5.0      5.0 SWP  35                                                        0.00        0.0      0.0 SWP 36                                                          0.00        0.0      0.0 SWP  37                                                        0.00        0.0      0.0 SWP 38                                                          0.00        0.0      0.0 SWP  39                                                        0.00        0.0      0.0 MINIMUM FLOW ................................                                      545.5 MAXIMUM FLOW ................................                                      545.5 TOTAL FLOW ..................................                                      545.5 SITE TOTAL . .................................                                    1400.5
 
DAILY PUMP OPERATION LOG                    35 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/28/07 AVE FLOW    FLOW RATE    RATE PUMP              ON            OFF      HOURS      (KGPM)  (KGPM) COMMENTS CIRC 11                                  0.00        0.0      0.0 CIRC 12                                  0.00        0.0      0.0 SWP  11                                  0.00        0.0      0.0 SWP  12                                  0.00        0.0      0.0 MINIMUM FLOW                                                    0.0 MAXIMUM FLOW                                                    0.0 TOTAL FLOW ..                                                  0.0 CIRC 21                          13:15  13.25      140.0      77.3  COND. BACKWASH CIRC 21            13:37                10.38      140.0      60.6 CIRC 22                          12:49  12.82      140.0      74.8  COND. BACKWASH CIRC 22            13:09                10.85      140.0      63.3 CIRC 23                          12:25  12.42      140.0      72.4  COND. BACKWASH CIRC 23            12:47                11.22      140.0      65.4 CIRC 24                        20:02    20.03      140.0    116.9  COND. BACKWASH CIRC 24            20:31                  3.48      140.0      20.3 CIRC 25                        20:37    20. 62    140.0    120.3  COND. BACKWASH CIRC 25            21:03                  2. 95    140.0      17.2 CIRC 26                        21:06    21.10      140.0    123.1  COND. BACKWASH CIRC 26            21:35                  2.42      140.0      14.1
.SWP  21                                24.00        5.0      5.0 SWP  22                                  0.00        0.0      0.0 SWP 23                                    0. 00        0.0      0.0 SWP 24                                    0.00        0.0      0.0 SWP 25                                  24.00        5.0      5.0 SWP 26                                  24 .00        5.0      5.0 MINIMUM FLOW ...............                                715.0 MAXIMUM FLOW ...............                                855.0 TOTAL FLOW .................                                840.6 CIRC 31                                  24.00        86.0    86.0 CIRC 32                                  24.00        83.5    83.5 CIRC 33                                  24.00        83.5    83.5 CIRC 34                                  24.00        89.0    89.0 CIRC 35                                  24.00      110.0    110.0 CIRC 36                                  24.00        83.5    83.5 SWP 31                                    0.00        0.0      0.0 SWP 32                                  24.00        5.0      5.0 SWP  33                                  0.00        0.0      0.0 SWP 34                                  24.00        5.0      5.0 SWP 35                                    0.00        0.0      0.0 SWP 36                                    0.00        0.0      0.0 SWP 37                                    0.00        0.0      0.0 SWP 38                                    0.00        0.0      0.0 SWP    39                                  0.00        0.0      0.0 MINIMUM FLOW                                                  545.5 MAXIMUM FLOW                                                  545.5 TOTAL FLOW ....                                              545.5 SITE TOTAL ....                                              1386.1
 
DAILY PUMP OPERATION LOG                        36 INDIAN      POINT MONTHLY ENVIRONMENTAL REPORT 04/29/07 le AVE FLOW    FLOW RATE    RATE PUMP              ON                    OFF        HOURS            (KGPM)  (KGPM) COMMENTS CIRC i1                                                0.00              0.0      0.0 CIRC 12                                                0.00              0.0      0.0 SWP    11                                              0.00              0.0      0.0 SWP    12                                              0.00              0.0      0.0 MINIMUM FLOW ................................                                      0.0 MAXIMUM FLOW ................................                                      0.0 TOTAL FLOW ..................................                                      0.0 CIRC 21                                              24.00            140.0    140.0 CIRC 22                                              24.00            140.0    140.0 CIRC 23                                              24.00            140.0    140.0 CIRC 24                                              24.00            140.0    140.0 CIRC 25                                              24.00            140.0    140.0 CIRC 26                                              24.00            140.0    140.0 SWP  21                                            24.00              5.0      5.0 SWP 22                                                  0.00              0.0      0.0 SWP  23                                                0.00            0.0      0.0 SWP  24                                                0.00            0.0      0.0 SWP  25                                            24.00                5.0      5.0 SWP  26                                            24.00                5.0      5.0 MINIMUM FLOW ...............                    .................              855 .0 MAXIMUM FLOW ...............                    .................              855 .0 TOTAL FLOW .................                    .................              855 .0 CIRC 31                                            24.00              86.0    86.0 CIRC 32                                            24 .00              83.5    83.5 CIRC 33                                            24.00              83.5    83.5 CIRC 34                                            24.00              89.0    89.0 CIRC 35                                            24 .00            110.0    110.0 CIRC 36                                            24.00              83.5    83.5 SWP  31                                              0. 00            0.0      0.0 SWP  32                                            24.00                5.0      5.0 SW P 33                                                0.00              0.0      0.0 SWP  34                                10:24      10.40                5.0      2.2 SWP  35                                              0.00              0.0      0.0 SWP  36          10:24                            13.60                5.0      2.8 SWP  37                                              0.00              0.0      0.0 SWP  38                                              0.00              0.0      0.0 SWP  39                                              0.00              0.0      0.0 MINIMUM FLOW ................................                                  540.5 MAXIMUM FLOW ................................                                  545.5 TOTAL FLOW ..................................                                  545.5 SITE TOTAL ..................................                                1400.5
 
DAILY PUMP OPERATION LOG                  37 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 04/30/07 AVE FLOW    FLOW RATE    RATE PUMP                ON                  OFF    HOURS            (KGPM)  (KGPM) COMMENTS CIRC 11                                            0.00            0.0    0.0 CIRC 12                                            0.00            0.0    0.0 SWP  11                                          0.00            0.0    0.0 SWP  12                                          0.00            0.0    0.0 MINIMUM FLOW ................................                              0.0 MAXIMUM FLOW ................................                                0.0 TOTAL FLOW ..................................                              0.0 CIRC 21                                          24.00            140.0  140.0 CIRC 22                                          24.00            140.0  140.0 CIRC 23                                          24.00            140.0  140.0 CIRC 24                                          24.00            140.0  140.0 CIRC 25                                          24.00            140.0  140.0 CIRC 26                                          24.00            140.0  140.0 SWP 21                                          24.00              5.0    5.0 SWP 22                                            0.00            0.0    0.0 SWP  23                                          0.00              0.0    0.0 SWP 24              21:03                21:45    0.70            5.0    0.1 SWP 25                                          24.00              5.0    5.0 SWP 26                                  21:04  21.07              5.0    4.4 SWP 26              21:21                          2.65            5.0    0.6 MINIMUM FLOW                                    ...............          855.0 MAXIMUM FLOW                                    ...............          860.0 TOTAL FLOW ...................                  ...............          855.1 CIRC 31                                          24.00            86.0    86.0 CIRC 32                                          24 .00            83.5    83.5 CIRC 33                                          24.00            83.5    83.5 CIRC 34                                          24.00            89.0    89.0 CIRC 35                                          24.00            110.0  110.0 CIRC 36                                          24 .00            83.5    83.5 SWP  31                                          0.00            0.0    0.0 SWP  32                                        24.00              5.0    5.0 SWP  33                                          0.00            0.0    0.0 SWP  34                                          0.00            0.0    0.0 SWP  35                                          0.00            0.0    0.0 SWP  36                                        24.00              5.0    5.0 SWP  37                                          0.00            0.0    0.0 SWP  38                                          0.00            0.0    0.0 SWP  39                                          0.00            0.0    0.0 MINIMUM FLOW                                                              545.5 MAXIMUM FLOW                                                              545.5 TOTAL FLOW ..                                                            545.5 SITE TOTAL  ..................................                          1400.6
 
DAILY PUMP OPERATION LOG              38 INDIAN POINT MONTHLY ENVIRONMENTAL        REPORT 05/01/07 AVE FLOW      FLOW RATE      RATE PUMP              ON                    OFF    HOURS      (KGPM)  (KGPM)  COMMENTS CIRC 11                                            0.00        0.0      0.0 CIRC 12                                            0.00        0.0      0.0 SWP 11                                            0.00        0.0      0.0 SWP  12                                          0.00        0.0      0.0 MINIMUM FLOW ................                                            0.0 MAXIMUM FLOW ................                                            0.0 TOTAL FLOW ..................                                            0.0 CIRC 21                                          24.00    140.0    140.0 CIRC 22                                          24.00    140.0    140.0 CIRC 23                                          24.00    140.0    140.0 CIRC 24                                          24.00    140.0    140.0 CIRC 25                                          24.00    140.0    140.0 CIRC 26                                          24.00    140.0    140.0 SWP  21                                          24.00        5.0      5.0 SWP 22                                            0.00        0.0      0.0 SWP 23                                            0.00        0.0      0.0 SWP 24                                            0.00        0.0      0.0 SWP 25                                            24.00        5.0      5.0 SWP 26                                            24.00        5.0      5.0 MINIMUM FLOW ................................                        855.0 MAXIMUM FLOW . ................................                      855.0 TOTAL FLOW ..................................                        855.0 CIRC 31                                          24.00      86.0    86.0 CIRC 32                                          24.00      83.5    83.5 CIRC 33                                          24.00      83.5    83.5 CIRC 34                                          24.00      89.0    89.0 CIRC 35                                          24.00    110.0    110.0 CIRC 36                                          24.00      83.5    83.5 SWP  31                                          0.00        0.0      0.0 SWP  32                                        24.00        5.0      5.0 SWP  33                                          0.00        0.0      0.0 SWP 34                                            0.00        0.0      0.0 SWP  35                                          0.00        0.0      0.0 SWP 36                                          24.00        5.0      5.0 SWP  37                                          0.00        0.0      0.0 SWP  38                                          0.00        0.0      0.0 SWP  39                                          0.00        0.0      0.0 MINIMUM FLOW ................................                        545.5 MAXIMUM FLOW ................................                        545.5 TOTAL FLOW ..................................                        545.5 SITE TOTAL  ..................................                      1400.5
 
DAILY PUMP OPERATION LOG                        39 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 05/02/07 AVE FLOW    FLOW RATE    RATE PUMP              ON              OFF                  HOURS      (KGPM)  (KGPM) COMMENTS CIRC 11                                                  0.00        0.0      0.0 CIRC 12                                                  0.00        0.0      0.0 SWP  11                                                0.00        0.0      0.0 SWP  12                                                0.00        0.0      0.0 MINIMUM FLOW                                                                    0.0 MAXIMUM FLOW                                                                    0.0 TOTAL FLOW ..                                                                  0.0 CIRC 21                            17:29              17.48      140.0    102.0  COND. BACKWASH CIRC 21            17:52                                6.13      140.0      35.8 CIRC 22                            17:00              17.00      140.0      99.2  COND. BACKWASH CIRC 22            17:26                                6.57      140.0      38.3 CIRC 23                            16:32              16.53      140.0      96.4  COND. BACKWASH CIRC 23            16:56                                7.07      140.0      41.2 CIRC 24                            22:02                22.03      140.0    128.5  COND. BACKWASH CIRC 24            22:26                                1.57      140.0        9.1 CIRC 25                            22:31                22. 52    140.0    131.3  COND. BACKWASH CIRC 25            22:55                                1.08      140.0        6.3 CIRC 26                            23:00                23.00      140.0    134.2  COND. BACKWASH CIRC 26            23:27                                0.55      140.0        3.2 SWP 21                                                  24.00        5.0      5.0 SWP 22                                                  0.00        0.0      0.0 SWP 23                                                  0.00        0.0      0.0 SWP  24                                                0.00        0.0      0.0 SWP  25                                                24.00        5.0      5.0 SWP 26                                                  24.00        5.0      5.0 MINIMUM FLOW ...............                                                715.0 MAXIMUM FLOW ...............                                                855.0 TOTAL FLOW .................                                                840.6 CIRC 31                                                24.00        86.0    86.0 CIRC 32                                                24.00        83.5    83.5 CIRC 33                                                24.00        83.5    83.5 CIRC 34                                                24.00        89.0    89.0 CIRC 35                                                24.00      110.0    110.0 CIRC 36                                                24.00        83.5    83.5 SWP  31                                                0.00        0.0      0.0 SWP  32                                                24.00        5.0      5.0 SWP  33                                                0.00        0.0      0.0 SWP  34                                                0.00        0.0      0.0 SWP  35                                                0.00        0.0      0.0 SWP  36                                                24.00        5.0      5.0 SWP  37                                                0.00        0.0      0.0 SWP  38                                                0.00        0.0      0.0 SWP  39                                                0.00        0.0      0.0 MINIMUM FLOW                  .........................                    545 .5 MAXIMUM FLOW                  .........................                    545 .5 TOTAL FLOW ....              .........................                    545 .5 SITE TOTAL ....              .........................                    1386.1
 
DAILY PUMP OPERATION LOG                    40 INDIAN POINT MONTHLY ENVIRONMENTAL          REPORT 05/03/07 AVE FLOW      FLOW RATE      RATE PUMP              ON                  OFF    HOURS      (KGPM)  (KGPM)  COMMENTS CIRC 11                                          0.00          0.0      0.0 CIRC 12                                          0.00          0.0      0.0 SWP  11                                        0.00          0.0      0.0 SWP  12                                        0.00          0.0      0.0 MINIMUM FLOW ................                                          0.0 MAXIMUM FLOW ................                                          0.0 TOTAL FLOW ..................                                          0.0 CIRC 21                                        24.00      140.0    140.0 CIRC 22                                        24.00      140.0    140.0 CIRC 23                                        24.00      140.0    140.0 CIRC 24                                        24.00      140.0    140.0 CIRC 25                                        24.00      140.0    140.0 CIRC 26                                        24.00      140.0    140.0 SWP 21                                          24.00          5.0    5.0 SWP  22          0:02                        23.97          5.0    5.0 SWP  23                                        0.00          0.0    0.0 SWP  24                                        0.00          0.0    0.0 SWP  25                                        24.00          5.0    5.0 SWP 26                                          24.00          5.0    5.0 MINIMUM FLOW ......                                                  855..0 MAXIMUM FLOW ......                                                  860.0 TOTAL FLOW ..................................                        860.0 CIRC 31                                        24 .00      86.0    86.0 CIRC 32                                0:01    0.02        83.5      0.1  SPEED CHANGE CIRC 32            0:01                0:40    0.65        40.0      3.8  SPEED CHANGE CIRC 32            0:40                        23.33        86.0    83.6 CIRC 33                                0:03    0.05        83.5      0.2  I&C WORK CIRC 33            0:39                        23.35        83.5    81.2 CIRC 34                                0:02      0.03        89.0      0.1  SPEED CHANGE CIRC 34            0:02                0:42      0.67      .40.0      3.9  SPEED CHANGE CIRC 34            0:42                        23.30        89.0    86.4 CIRC 35                                        24.00      I.10.0    110.0 CIRC 36                                        24.00        83.5    83.5 SWP  31                                        0.00          0.0    0.0 SWP  32                                        24.00          5.0    5.0 SWP  33                                        0.00          0.0    0.0 SWP  34                                        0.00          0.0    0.0 SWP  35                                        0.00          0.0    0.0 SWP 36                                          24.00          5.0    5.0 SWP  37                                        0.00          0.0    0.0 SWP  38                                        0.00          0.0    0.0 SWP  39                                        0.00          0.0    0.0 MINIMUM FLOW ................                                ..... 545.5 MAXIMUM FLOW ................                                ..... 653.0 TOTAL FLOW ..................                                ..... 548.8 SITE TOTAL                                                        1408.8
 
DAILY PUMP OPERATION LOG                  41 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 05/04/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF      HOURS    (KGPM)  (KGPM) COMMENTS CIRC 11                                          0.00        0.0    0.0 CIRC 12                                          0.00        0.0    0.0 SWP    11                                        0.00        0.0    0.0 SWP    12                                        0.00        0.0    0.0 MINIMUM FLOW .......                                                  0.0 MAXIMUM FLOW .......                                                  0.0 TOTAL FLOW .........                                                  0.0 CIRC 21                                          24.00    140.0    140.0 CIRC 22                                          24.00    140.0    140.0 CIRC 23                                          24.00    140.0    140.0 CIRC 24                                22:31    22.52    140.0    131.3  COND. BACKWASH CIRC 24            22:54                          1.10    140.0      6.4 CIRC 25                                22:58    22.97    140.0  134 .0  COND. BACKWASH CIRC 25            23:22                          0.63    140.0      3.7 CIRC 26                                23:34    23.57    140.0    137. 5 COND. BACKWASH CIRC 26            23:58                          0.03    140.0      0.2 SWP  21                                        24.00        5.0    5.0 SWP 22                                  11:35    11.58        5.0    2.4 SWP 22            11:50                        12.17        5.0    2.5 SWP  23                                          0.00        0.0    0.0 SWP  24                                          0.00        0.0    0.0 SWP  25                                        24.00        5.0    5.0 SWP  26                                        24.00        5.0    5.0 MINIMUM FLOW                                                      720.0 MAXIMUM FLOW                                                      860.0 TOTAL FLOW .                                                      853.0 CIRC 31                                          24.00      86.0    86.0 CIRC 32                                          24.00      86.0    86.0 CIRC 33                                          24.00      83.5    83.5 CIRC 34                                          24.00      89.0    89.0 CIRC 35                                          24.00    110.0  110.0 CIRC 36                                          24.00      83.5    83.5 SWP  31                                          0.00      0.0      0.0 SWP  32                                        24.00      5.0      5.0 SWP  33                                          0.00      0.0      0.0 SWP  34                                          0.00      0.0      0.0 SWP  35          21:25                          2.58      5.0      0.5 SWP  36                                        24.00      5.0      5.0 SWP  37                                          0.00      0.0      0.0 SWP  38          16:12                16:29    0.28      5.0      0.1 SWP  39                                          0.00      0.0      0.0 MINIMUM FLOW ................................                      548.0 MAXIMUM FLOW ..........................                    ..... 553.0 TOTAL FLOW ............................                    ..... 548.6 SITE TOTAL . .................................                    1401.6
 
DAILY PUMP OPERATION LOG                    42 INDIAN POINT MONTHLY ENVIRONMENTAL        REPORT 05/05/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                    OFF    HOURS    (KGPM)  (KGPM)  COMMENTS CIRC 11                                          0.00        0.0      0.0 CIRC 12                                          0.00      0.0      0.0 SWP  11                                          0.00      0.0      0.0 SWP  12                                          0.00        0.0      0.0 MINIMUM FLOW ................                                          0.0 MAXIMUM FLOW ................                                          0.0 TOTAL FLOW ..................                                          0.0 CIRC 21                                  18:03  18.05    140.0  105.3    COND. BACKWASH CIRC 21            18:28                          5.53    140.0    32.3 CIRC 22                                  17:31  17.52    140.0  102.2    COND. BACKWASH CIRC 22            17:56                          6.07    140.0    35.4 CIRC 23                                  17:02  17.03    140.0    99.4  COND. BACKWASH CIRC 23            17:27                          6.55    140.0    38.2 CIRC 24                                          24.00    140.0  140.0 CIRC 25                                          24.00    140.0  140.0 CIRC 26                                          24.00    140.0  140.0 SWP  21                                        24.00      5.0      5.0 SWP 22                                          24.00      5.0      5.0 SWP  23                                          0.00      0.0      0.0 SWP  24                                          0.00      0.0      0.0 SWP  25                                        24.00      5.0      5.0 SWP  26                                        24.00      5.0      5.0 MINIMUM FLOW ................................                      720.0 MAXIMUM FLOW ................................                      860.0 TOTAL FLOW ..................................                      852.7 CIRC 31                                          24.00      86.0    86.0 CIRC 32                                          24.00      86.0    86.0 CIRC 33                                          24.00      83.5    83.5 CIRC 34                                          24.00      89.0    89.0 CIRC 35                                          24.00    110.0  110.0 CIRC 36                                          24.00      83.5    83.5 SWP  31                                          0.00      0.0      0.0 SWP  32                                        24.00      5.0      5.0 SWP  33                                          0.00      0.0      0.0 SWP  34                                          0.00      0.0      0.0 SWP  35                                        24.00      5.0      5.0 SWP  36                                        24.00      5.0      5.0 SWP  37                                          0.00      0.0      0.0 SWP  38                                          0.00      0.0      0.0 SWP  39                                          0.00      0.0      0.0 MINIMUM FLOW ................                                .... 553.0 MAXIMUM FLOW ................                                .... 553.0 TOTAL FLOW ..................                                .... 553.0 SITE TOTAL ..................................                    1405.7
 
DAILY PUMP OPERATION LOG                43 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 05/06/07 AVE FLOW      FLOW RATE      RATE PUMP              ON                  OFF      HOURS      (KGPM)    (KGPM) COMMENTS CIRC 11                                          0.00          0.0    0.0 CIRC 12                                          0.00          0.0      0.0 SWP  11                                          0.00          0.0      0.0 SWP  12                                          0.00          0.0    0.0 MINIMUM FLOW ...............                                            0.0 MAXIMUM.FLOW ...............                                              0.0 TOTAL FLOW .................                                            0.0 CIRC 21                                          24.00      140.0    140.0 CIRC 22                                          24.00      140.0    140.0 CIRC 23                                          24.00      140.0    140.0 CIRC 24                                          24 .00    140.0    140.0 CIRC 25                                          24.00      140.0    140.0 CIRC 26                                          24.00      140.0    140.0 SWP  21                                        24 .00          5.0      5.0 SWP 22                                          24 .00          5.0    5.0 SWP 23                                            0.00          0.0    0.0 SWP 24                                            0.00          0.0    0.0 SWP 25                                          24.00          5.0    5.0 SWP 26                                          24.00          5.0    5.0 MINIMUM FLOW ...............                                          860.0 MAXIMUM FLOW ...............                                          860.0 TOTAL FLOW .................                                          860.0 CIRC 31                                          24.00        86.0    86.0 CIRC 32                                          24.00        86.0    86.0 CIRC 33                                          24 .00        83.5    83.5 CIRC 34                                          24.00        89.0    89.0 CIRC 35                                          24 .00    110.0    110.0 CIRC 36                                          24 .00        83.5    83.5 SWP  31                                          0.00          0.0    0.0 SWP  32                                        24.00          5.0    5.0 SWP  33                                          0.00          0.0    0.0 SWP 34                                            0.00          0.0    0.0 SWP 35                                          24.00          5.0    5.0 SWP  36                                        24.00          5.0    5.0 SWP  37                                          0.00          0.0    0.0 SWP 38                                            0.00          0.0    0.0 SWP  39                                          0.00          0.0    0.0 MINIMUM FLOW ...                                            ...... 553.0 MAXIMUM FLOW ....                                          ...... 553.0 TOTAL FLOW ......                                          ...... 553.0 SITE TOTAL . .................................                      1413.0
 
DAILY PUMP OPERATION LOG                    44 INDIAN POINT MONTHLY ENVIRONMENTAL          REPORT 05/07/07 AVE FLOW      FLOW RATE    RATE PUMP              ON                    OFF      HOURS      (KGPM)  (KGPM)  COMMENTS CIRC 11                                            0.00        0.0      0.0 CIRC 12                                            0.00        0.0      0.0 SWP  11                                          0.00        0.0      0.0 SWP  12                                          0.00        0.0      0.0 MINIMUM FLOW ................................                            0.0 MAXIMUM FLOW ................................                            0.0 TOTAL FLOW ..................................                            0.0 CIRC 21                                          24.00    140.0    140.0 CIRC 22                                          24.00    140.0    140.0 CIRC 23                                          24.00    140.0    140.0 CIRC 24                                          24.00    140.0    140.0 CIRC 25                                          24.00    140.0    140.0 CIRC 26                                          24.00    140.0    140.0 SWP  21                                21:57    21.95        5.0      4.6 SWP  21          22:19                          1.68        5.0      0.4 SWP  22                                          24.00        5.0      5.0 SWP  23          21:57                22:44    0.78        5.0      0.2 SWP 24                                            0.00        0.0      0.0 SWP  25                                          24.00        5.0      5.0 SWP  26                                          24.00        5.0      5.0 MINIMUM FLOW ................................                        855.0 MAXIMUM FLOW ................................                        865.0 TOTAL FLOW ..................................                        860.1 CIRC 31                                  10:45    10.75      86.0    38.5  SPEED CHANGE CIRC 31            10:45                          13.25      97.0    53.6 CIRC 32                                  10:46    10.77      86.0    38.6  SPEED CHANGE CIRC 32            10:46                          13.23      97.0    53.5 CIRC 33                                  10:47    10.78      83.5    37.5  SPEED CHANGE CIRC 33            10:47                          13.22      99.5    54.8 CIRC 34                                  10:48    10.80      89.0    40.1  SPEED CHANGE CIRC 34            10:48                          13.20      99.5    54.7 CIRC 35                                22:46    22.77    110.0    104.3    COND. BACKWASH CIRC 35            23:16                          0.73    110.0      3.4 CIRC 36                                10:49    10.82      83.5    37.6  SPEED CHANGE CIRC 36            10:49                33:28    22.65    110.0    103.8    COND. BACKWASH SWP  31                                          0.00        0.0      0.0 SWP  32                                          24.00        5.0      5.0 SWP  33                                          0.00        0.0      0.0 SWP  34                                          0.00        0.0      0.0 SWP 35                                            24.00        5.0      5.0 SWP  36                                          24.00        5.0      5.0 SWP 37                                            0.00        0.0      0.0 SWP 38                                            0.00        0.0      0.0 SWP  39                                          0.00        0.0      0.0 MINIMUM FLOW ................................                        518.0 MAXIMUM FLOW ................................                        628.0 TOTAL FLOW ..................................                        635.4 SITE TOTAL . ..................................                    1495.5
 
DAILY PUMP OPERATION LOG                  45 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 05/08/07 AVE FLOW    FLOW RATE    RATE PUMP                ON                  OFF    HOURS      (KGPM)  (KGPM) COMMENTS CIRC 11                                          0.00        0.0      0.0 CIRC 12                                          0.00        0.0      0.0 SWP  I1                                          0.00        0.0      0.0 SWP  12                                          0.00        0.0      0.0 MINIMUM FLOW.................................                          0.0 MAXIMUM FLOW ................................                          0.0 TOTAL FLOW ..................................                          0.0 CIRC 21                                          24.00    140.0    140.0 CIRC 22                                          24.00    140.0    140.0 CIRC 23                                          24.00    140.0    140.0 CIRC 24                                          24.00    140.0    140.0 CIRC 25                                          24.00    140.0    140.0 CIRC 26                                          24.00    140.0    140.0 SWP 21                                  1:35    1.58        5.0      0.3 SWP 22                                          24.00        5.0      5.0 SWP  23            1:33                        22.45        5.0      4.7 SWP 24                                            0.00        0.0      0.0 SWP 25                                          24.00        5.0      5.0 SWP 26                                          24.00        5.0      5.0 MINIMUM FLOW                                                        860.0 MAXIMUM FLOW                                                        865.0 TOTAL FLOW                                                          860.0 CIRC 31                                          24.00      97.0    97.0 CIRC 32                                          24.00      97.0    97.0 CIRC 33                                  0:13    0.22      99.5      0.9  SPEED CHANGE CIRC 33            0:13                        23.78      97.0    96.1 CIRC 34                                          24.00      99.5    99.5 CIRC 35                                  10:35  10.58    110.0      48.5  SPEED CHANGE CIRC 35            10:35                        13.42      97.0    54.2 CIRC 36            0:05                0:13    0.13      99.5      0.6  SPEED CHANGE CIRC 36            0:13                10:36  10.38    110.0      47. 6 SPEED CHANGE CIRC 36            10:36                        13.40      97.0    54 .2 SWP  31                                          0.00        0.0      0.0 SWP  32                                        24.00        5.0      5.0 SWP  33                                          0.00        0.0      0.0 SWP  34                                          0.00        0.0      0.0 SWP  35                                        24.00        5.0      5.0 SWP  36                                        24.00        5.0      5.0 SWP  37                                          0.00        0.0      0.0 SWP  38                                          0.00        0.0      0.0 SWP  39                                          0.00        0.0      0.0 MINIMUM FLOW                                                        518 .0 MAXIMUM FLOW                                                        625. 5 TOTAL FLOW ..                                                      610.6 SITE TOTAL  ..................................                    1470.6
 
DAILY PUMP OPERATION LOG                          46 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 05/09/07 AVE FLOW    FLOW RATE    RATE PUMP                ON                  OFF        HOURS        (KGPM)  (KG PM) COMMENTS CIRC 11 CIRC 12                                              0.00            0.0      0.0 SWP    12                                            0.00            0.0      0.0 0.00            0.0      0.0 SWP    12 MINIMUM FLOW2 ........                              0.00            0.0      0.0 MAXIMUM FLOW ........                                                        0.0 0.0 TOTAL FLOW ..........                                                        0.0 CIRC 21                                  23:09      23.15        140.0  135.0    COND. BACKWASH CIRC 21            23:40                            0.33        140.0      1.9 CIRC 22                                  22:36      22.60        140.0  131.8    COND. BACKWASH CIRC 22            23:06                            0.90        140.0      5.3 CIRC 23                                  22:02      22.03        140.0  128.5    COND. BACKWASH CIRC 23            22:32                            1.47        140.0      8.6 CIRC 24                                            24.00        140.0  140.0 CIRC 25                                            24.00        140.0  140.0 CIRC 26                                            24.00        140.0  140.0 SWP  21                                            0.00          0.0      0.0 SWP  22                                            24.00          5.0      5.0 SWP  23                                            24.00          5.0      5.0 SWP  24                                            0.00          0.0      0.0 SWP  25                                            24.00          5.0      5.0 SWP  26                                            24.00          5.0      5.0 MINIMUM FLOW ........................                                    720.0 MAXIMUM FLOW ........................                                    860.0 TOTAL FLOW ..........................                                    851.2 CIRC 31                                            24.00          97.0    97.0 CIRC 32                                            24.00          97.0    97.0 CIRC 33                                            24.00          97.0    97.0 CIRC 34                                            24.00          99.5    99.5 CIRC 35                                            24.00          97.0    97.0 CIRC 36                                            24.00          97. 0    97.0 SWP  31                                            0.00          0.0      0.0 SWP  32                                            24.00          5.0      5.0 SWP 33                                              0.00          0.0      0.0 SWP  34                                            0.00          0.0      0.0 SWP  35                                            24.00          5.0      5.0 SWP  36                                            24.00          5.0      5.0 SWP  37                                            0.00          0.0      0.0 SWP  38                                            0.00          0.0      0.0 SWP  39                                            0.00          0.0      0.0 MINIMUM FLOW ..............                                              599.5
                                              ....    .. &deg;.. ...
MAXIMUM FLOW ..............                                              599.5 TOTAL FLOW ................                                              599.5 SITE TOTAL  ..................................                          1450.7
 
DAILY PUMP OPERATION LOG                          47 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 05/10/07 AVE FLOW    FLOW RATE    RATE PUMP              ON      OFF            HOURS          (KGPM)  (KGPM) COMMENTS CIRC 11                                      0.00            0.0    0.0 CIRC 12                                      0.00            0.0    0.0 SWP    11                                    0.00            0.0    0.0 SWP 12                                        0.00            0.0    0.0 MINIMUM FLOW ........                                                0.0 MAXIMUM FLOW ........                                                0.0 TOTAL FLOW ..........                      24.00                    0.0 CIRC 21                                    24.00        140.0  140.0 CIRC 22                                    24.00        140.0  140.0 CIRC 23                                                  140.0  140.0 CIRC 24                    3:05              3.08        140.0    18.0  COND. BACKWASH CIRC 24            3:31                    20.48        140.0  119.5 CIRC 25                    3:34              3.57        140.0    20.8  COND. BACKWASH CIRC 25            4:01                    19.98        140.0  116.6 CIRC 26                    4:07              4.12        140.0    24.0  COND. BACKWASH CIRC 26            4:28                    19.53        140.0  113.9 SWP  21                                      0.00            0.0    0.0 SWP  22                                    24.00            5.0    5.0 SWP  23                                    24 .00            5.0    5.0 SWP  24                                      0.00            0.0    0.0 SWP 25                                      24 .00            5.0    5.0 SWP  26                                    24.00            5.0    5.0 MINIMUM FLOW ........      . . . . . . . . . . . . . ..          720.0 MAXIMUM FLOW ........      . . . . . . . . . . . . . . .        860.0 TOTAL FLOW ..........      . &deg;.. &deg;. . . .. &deg;. . . . . ..        852.8 CIRC 31                    17:42          17.70          97. 0  71.5  SPEED CHANGE CIRC 31            17:42                      6.30        115.0    30.2 CIRC 32                    5:24              5.40          97. 0  21.8  SPEED CHANGE CIRC 32            5:24    17:,44          12.33        137 .5    70.7  SPEED CHANGE CIRC 32            17:44                      6.27        115.0    30.0 CIRC 33                    5:24              5.40          97. 0  21.8  MAINTENANCE CIRC 33            17:10    17:40            0.50          99.5    2.1  SPEED CHANGE CIRC 33            17:40                      6. 33      115.0    30.3 CIRC 34                    5:24              5.40          99.5    22.4  SPEED CHANGE CIRC 34            5:24    17:41          12.28        137.5    70.4  SPEED CHANGE CIRC 34            17:41                      6. 32      115.0    30.3 CIRC 35                    10:11          10.18          97.0    41.2  SPEED CHANGE CIRC 35            10:11                    13.82        115.0    66.2 CIRC 36                    10:11          10.18          97.0    41.2  SPEED CHANGE CIRC 36            10:11                    13.82        115.0    66.2 SWP  31                                      0.00          0.0    0.0 SWP  32                                    24 .00          5.0    5.0 SWP  33                                      0.00          0.0    0.0 SWP  34                                      0.00          0.0    0.0 SWP  35                                    24 .00          5.0    5.0 SWP  36                                    24.00            5.0    5.0 SWP  37                                      0.00          0.0    0.0 SWP  38                                      0.00          0.0    0.0 SWP  39                                      0.00          0.0    0.0
 
DAILY PUMP OPERATION LOG            48 INDIAN POINT MONTHLY ENVIRONMENTAL      REPORT 05/10/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                    OFF    HOURS    (KGPM)  (KGPM)  COMMENTS MINIMUM PLOW ................
MAXIMUM FLOW ................                                      543.0 732.0 TOTAL FLOW ..................                                      631.2 SITE TOTAL  ..................................                    1484.0
 
DAILY PUMP OPERATION LOG            49 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 05/11/07 AVE FLOW    FLOW RATE    RATE PUMP                ON                  OFF    HOURS    (KGPM)  (KGPM) COMMENTS CIRC  11                                          0.00 CIRC  12                                          0.00      0.0      0.0 SWP  11                                          0.00      0.0      0.0 SWP  12                                          0.00      0.0      0.0 0.0      0.0 MINIMUM FLOW ......                                                  0.0 MAXIMUM FLOW ......                                                  0.0 TOTAL FLOW ........                                                  0.0 CIRC 21                                          24.00    140.0  140.0 CIRC 22                                          24.00    140.0  140.0 CIRC 23                                          24.00    140.0  140.0 CIRC 24                                          24.00    140.0  140.0 CIRC 25                                          24.00    140.0  140.0 CIRC 26                                          24.00    140.0  140.0 SWP 21                                            0.00      0.0      0.0 SWP 22                                          24.00      5.0      5.0 SWP 23                                          24.00      5.0      5.0 SWP 24                                            0.00      0.0      0.0 SWP 25                                          24.00      5.0      5.0 SWP 26                                          24.00      5.0      5.0 MINIMUM FLOW ................................                      860.0 MAXIMUM FLOW ................................                      860.0 TOTAL FLOW ..................................                      860.0 CIRC 31                                          24.00    115.0  115.0 CIRC 32                                          24.00    115.0  115.0 CIRC 33                                          24.00    115.0  115.0 CIRC 34                                          24.00    115.0  115.0 CIRC 35                                          24.00    115.0  115.0 CIRC 36                                          24.00    115.0  115.0 SWP  31                                          0.00      0.0      0.0 SWP  32                                        24.00      5.0      5.0 SWP  33                                          0.00      0.0      0.0 SWP  34            11:01                11:04    0.05      5.0      0.0 SWP  35                                        24.00      5.0      5.0 SWP  36                                11:01  11.02      5.0      2.3 SWP  36            11:04                        12.93      5.0      2.7 SWP  37                                          0.00      0.0      0.0 SWP  38                                          0.00      0.0      0.0 SWP  39                                          0.00      0.0      0.0 MINIMUM FLOW                                                      700.0 MAXIMUM FLOW                                                      710.0 TOTAL FLOW ..                                                      705.0 SITE TOTAL  ..................................                    1565.0
 
DAILY PUMP OPERATION LOG                      50 INDIAN POINT MONTHLY ENVIRONMENTAL          REPORT 05/12/07 AVE FLOW      FLOW RATE      RATE PUMP              ON                    OFF    HOURS        (KGPM)  (KGPM)  COMMENTS CIRC 11                                          0.00          0.0      0.0 CIRC 12                                          0.00          0.0      0.0 SWP  11                                          0.00          0.0      0.0 SWP 12                                            0.00          0.0      0.0 MINIMUM FLOW                                                              0.0 MAXIMUM FLOW                                                              0.0 TOTAL FLOW ..                                                            0.0 CIRC 21                                  11:45  11.75      140.0      68. 5  COND. BACKWASH CIRC 21            12:12                        11.80      140.0      68.8 CIRC 22                                  11:13  11.22      140.0      65. 4  COND. BACKWASH CIRC 22            11:39                        12.35      140.0      72.0 CIRC 23                                  10:43  10.72      140.0      62. 5  COND. BACKWASH CIRC 23            11:09                        12.85      140.0      75.0 CIRC 24                                  19:52  19.87      140.0    115.9  COND. BACKWASH CIRC 24            20:20                          3.67      140.0      21.4 CIRC 25                                  20:25  20.42      140.0    119.1    COND. BACKWASH CIRC 25            20:55                          3.08      140.0      18.0 CIRC 26                                  20:56  20.93      140.0    122.1  COND. BACKWASH CIRC 26            21:23                          2.62      140.0      15.3 SWP 21                                            0.00          0.0      0.0 SWP    22                                        24.00          5.0      5.0 SWP    23                                        24.00          5.0      5.0 SWP    24                                        0.00          0.0      0.0 SWP    25                                        24.00          5.0      5.0 SWP  26                                        24.00          5.0      5.0 MINIMUM FLOW ................                                        720.0 MAXIMUM FLOW ................                                        860.0 TOTAL FLOW ..................                                        844.1 CIRC 31                                          24.00      115.0    115.0 CIRC 32                                          24.00      115.0    115.0 CIRC 33                                          24 .00      115.0    115.0 CIRC 34                                          24.00      115.0    115.0 CIRC 35                                          24.00      115.0    115.0 CIRC 36                                          24.00      115.0    115.0 SWP  31                                          0 , 00        0.0      0.0 SWP  32                                        24.00          5.0      5.0 SWP  33          22:19                          1.68          5.0      0.4 SWP  34                                          0.00          0.0      0.0 SWP  35                                        24.00          5.0      5.0 SWP  36                                22:58  22.97          5.0      4.8 SWP  37                                          0.00          0.0      0.0 SWP  38                                          0.00          0.0      0.0 SWP  39                                          0.00          0.0      0.0 MINIMUM FLOW ................................                        705.0 MAXIMUM FLOW ................................                        710.0 TOTAL FLOW ..................................                        705.1 SITE TOTAL ..................................                        1549.2
 
DAILY PUMP OPERATION LOG                            51 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 05/13/07 AVE FLOW  FLOW RATE  RATE PUMP              ON          OFF            HOURS          (KGPM)  (KGPM)  COMMENTS CIRC 11                                          0.00          0.0      0.0 CIRC 12                                          0.00          0.0      0.0 SWP  11                                        0.00          0.0      0.0 SWP  12                                        0.00          0.0      0.0 MINIMUM FLOW ..............          ..................                0 .0 MAXIMUM FLOW ..............          ..................                0 .0 TOTAL FLOW ................          ..................                0 .0 CIRC 21                                      24.00          140.0  140.0 CIRC 22                                      24.00          140.0  140.0 CIRC 23                                      24.00          140.0  140.0 CIRC 24                                      24.00          140.0  140.0 CIRC 25                                      24.00          140.0  140.0 CIRC 26                                      24.00          140.0  140.0 SWP  21                                        0.00          0.0      0.0 SWP  22                                      24.00            5.0      5.0 SWP  23                                      24.00            5.0      5.0 SWP  24                                        0.00          0.0      0.0 SWP  25                                      24.00            5.0      5.0 SWP  26                                      24.00            5.0      5.0 MINIMUM FLOW                          ..................            860 .0 MAXIMUM FLOW                          ..................            860 .0 TOTAL FLOW                            ..................            860 .0 CIRC 31                        12:43          12.72          115.0    60.9  SPEED CHANGE CIRC 31            12:43      13:20            0.62        140.0      3.6  SPEED CHANGE CIRC 31            13:20      13:23            0.05        115.0    0.2  COND. BACKWASH CIRC 31            13:54                      10.10          115.0    48.4 CIRC 32                        11:49          11.82          115.0    56.6  SPEED CHANGE CIRC 32            11:49      12:29            0.67        140.0    3.9  SPEED CHANGE CIRC 32            12:29      12: 44          0.25        115.0    1.2  COND. BACKWASH CIRC 32            13:17      13:23            0.10        115.0    0.5  SPEED CHANGE CIRC 32            13:23      13: 57          0.57        140.0    3.3  SPEED CHANGE CIRC 32            13:57                      10.05          115.0    48.2 CIRC 33                        11:50          11.83          115.0    56.7  COND. BACKWASH CIRC 33            12:23      12:43            0.33        115.0    1.6  SPEED CHANGE CIRC 33            12:43      13:20            0.62        140.0    3.6  SPEED CHANGE CIRC 33            13:20      15: 30          2.17        115.0    10.4  SPEED CHANGE CIRC 33            15:30      16:03            0.55        140.0    3.2  SPEED CHANGE CIRC 33          16:03                        7.95        115.0    38.1 CIRC 34                        11:49          11.82          115.0    56.6  SPEED CHANGE CIRC 34          11:49        12:29            0.67        140.0    3.9  SPEED CHANGE CIRC 34          12:29        15:33            3.07        115.0    14.7  COND. BACKWASH CIRC 34            16:00      16:11            0.18        115.0    0.9  SPEED CHANGE CIRC 34          16:11        16:44            0.55        140.0    3.2  SPEED CHANGE CIRC 34          16:44                        7.27        115.0    34.8 CIRC 35                        15: 30        15.50          115.0    74.3  SPEED CHANGE CIRC 35          15:30        16:03            0.55        140.0    3.2  SPEED CHANGE CIRC 35          16:03        16:12            0.15        115.0    0.7  COND. BACKWASH CIRC 35          16:41        16:52            0.18        115.0    0.9  SPEED CHANGE CIRC 35          16:52        17 :23          0.52        140.0    3.0  SPEED CHANGE
 
DAILY PUMP OPERATION LOG                  52 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 05/13/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF      HOURS    (KGPM)  (KGPM) COMMENTS CIRC 35            17:23                          6.62    115.0    31.7 CIRC 36                                16:11    16.18    115.0    77.5  SPEED CHANGE CIRC 36            16:11                16:44    0.55    140.0    3.2  SPEED CHANGE CIRC 36            16:44                16:52    0.13    115.0    0.6  COND. BACKWASH CIRC 36            17:21                          6.65    115.0    31.9 SWP  31                                          0.00      0.0    0.0 SWP  32                                        24.00      5.0    5.0 SWP  33                                        24.00      5.0    5.0 SWP  34                                          0.00      0.0    0.0 SWP 35                                          24.00      5.0    5.0 SWP  36                                          0.00      0.0    0.0 SWP 37                                            0.00      0.0    0.0 SWP  38                                          0.00      0.0    0.0 SWP 39                                            0.00      0.0    0.0 MINIMUM FLOW ................................                      590.0 MAXIMUM FLOW ................................                      755.0 TOTAL FLOW ..................................                      696.6 SITE TOTAL . .................................                    1556.6
 
DAILY PUMP OPERATION LOG                        53 INDIAN            POINT MONTHLY ENVIRONMENTAL REPORT 05/14/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF                  HOURS        (KGPM)  (KGPM) COMMENTS CIRC 11                                                          0.00        0.0      0.0 CIRC 12                                                          0.00        0.0      0.0 SWP  11                                                        0.00        0.0      0.0 SWP  12                                                        0.00        0.0      0.0 MINIMUM FLOW                          ................................                0.0 MAXIMUM FLOW ................................                                          0.0 TOTAL FLOW ..................................                                          0.0 CIRC 21                                                      24.00        140.0    140.0 CIRC 22                                                      24.00        140.0    140.0 CIRC 23                                                      24.00        140.0    140.0 CIRC 24                                                      24.00        140.0    140.0 CIRC 25                                                      24.00        140.0    140.0 CIRC 26                                                      24.00        140.0    140.0 SWP  21                                                        0.00        0.0      0.0 SWP  22                                                      24.00          5.0      5.0 SWP 23                                                        24.00          5.0      5.0 SWP  24                                                        0.00        0.0      0.0 SWP  25                                                      24.00          5.0      5.0 SWP 26                                                        24.00          5.0      5.0 MINIMUM FLOW ................................                                      860.0 MAXIMUM FLOW ................................                                      860.0 TOTAL FLOW ..................................                                      860.0 CIRC 31                                3:42                    3.70      115.0      17.7  MAINTENANCE CIRC 32                                3:41                    3.68      115.0      17.6  SPEED CHANGE CIRC 32            3:41                20:02                16.35        140.0      95.4  SPEED CHANGE CIRC 32            20:02                                        3.97      137.5      22.7 CIRC 33                                                      24.00        115.0    115.0 CIRC 34                                                      24.00        115.0    115.0 CIRC 35                                                      24.00        115.0    115.0 CIRC 36                                                      24.00        115.0    115.0 SWP 31                                                          0.00          0.0      0.0 SWP 32                                                        24.00          5.0      5.0 SWP 33                                                        24.00          5.0      5.0 SWP 34                                                          0.00          0.0      0.0 SWP 35                                                        24.00          5.0      5.0 SWP 36                                                          0.00          0.0      0.0 SWP 37                                                          0.00          0.0      0.0 SWP 38                                                          0.00          0.0      0.0 SWP 39                                                          0.00          0.0      0.0 MINIMUM FLOW ................................                                      612.5 MAXIMUM FLOW ................................                                      730.0 TOTAL FLOW ..................................                                      628.5 SITE TOTAL . .................................                                    1488.5
 
DAILY PUMP OPERATION LOG                        54 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 05/15/07 AVE FLOW  FLOW RATE  RATE PUMP              ON                OFF          HOURS            (KGPM) (KGPM) COMMENTS CIRC 11                                            0.00            0.0  0.0 CIRC 12                                            0.00            0.0  0.0 SWP  11                                            0.00            0.0    0.0 SWP  12                                            0.00            0.0    0.0 MINIMUM FLOW .................                  ...............          0 .0 MAXIMUM FLOW .................                  ...............          0 .0 TOTAL FLOW ...................                  ...............          0 .0 CIRC 21                                          24.00            140.0  140.0 CIRC 22                                          24.00            140.0  140.0 CIRC 23                                          24.00            140.0  140.0 CIRC 24                                          24.00            140.0  140.0 CIRC 25                                          24.00            140.0  140.0 CIRC 26                            13:03        13.05            140.0  76.1  WATERBOX CLNG.
CIRC 26            23:42                            0.30          140.0    1.8 SWP  21                                            0.00            0.0    0.0 SWP  22                                        24.00              5.0  5.0 SWP 23                                          24.00              5.0  5.0 SWP  24                                            0.00            0.0  0.0 SWP  25                                        24.00              5.0  5.0 SWP 26                                          24.00              5.0  5.0 MINIMUM FLOW                                    ...............        720 .0 MAXIMUM FLOW                                      ...............        860.0 TOTAL FLOW                      W* B. . . .
* O  ...............        797.9 CIRC 31            4:34            16:56        12.37            115.0  59.3  SPEED CHANGE CIRC 31            16:56            22:16          5.33          140.0  31.1  SPEED CHANGE CIRC 31            22:16                            1.73          115.0    8.3 CIRC 32                            4 :34          4.57          137.5  26.2  SPEED CHANGE CIRC 32            4:34            16:55        12.35            115.0  59.2  PUMP TRIPPED CIRC 32            17:26            22:16          4.83          140.0  28.2  SPEED CHANGE CIRC 32            22:16                            1.73          115.0    8.3 CIRC 33                            16:56        16.93            115.0  81.1  SPEED CHANGE CIRC 33            16:56            22:16          5.33          140.0  31.1  SPEED CHANGE CIRC 33            22: 16                          1.73          115.0    8.3 CIRC 34                            16:55        16.92            115.0  81.1  PUMP TRIPPED CIRC 34            17:15            22:16          5.02          140.0  29.3  SPEED CHANGE CIRC 34            22:16                            1.73          115.0    8.3 CIRC 35                            16:56        16.93            115.0  81.1  SPEED CHANGE CIRC 35            16:56            22:16          5.33          140.0  31.1  SPEED CHANGE CIRC 35            22:16                            1.73          115.0    8.3 CIRC 36                            16:55        16.92            115.0  81.1  PUMP TRIPPED CIRC 36            17:44            22:16          4.53          140.0  26.4  SPEED CHANGE CIRC 36            22:16                            1.73          115.0    8.3 SWP 31            0:43            21:33        20.83              5.0    4.3 SWP 32                              0:43            0.72            5.0    0.1 SWP 32            21:33                            2.45            5.0    0.5 SWP  33                                        24.00              5.0  5.0 SWP 34                                              0.00            0.0    0.0 SWP 35                                          24.00              5.0    5.0 SWP 36                                              0.00            0.0    0.0
 
DAILY PUMP OPERATION LOG              55 INDIAN POINT MONTHLY ENVIRONMENTAL        REPORT 05/15/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF      HOURS    (KGPM)  (KGPM)  COMMENTS SWP  37                                          0.00      0.0      0.0 SWP  38                                          0.00      0.0      0.0 SWP  39                                          0.00      0.0      0.0 MINIMUM FLOW ................................                      360.0 MAXIMUM FLOW ................................                      855.0 TOTAL FLOW ..................................                      711.1 SITE TOTAL  ..................................                    1508.9
 
DAILY PUMP OPERATION LOG                      56 INDIAN POINT MONTHLY ENVIRONMENTAL          REPORT 05/16/07 AVE FLOW      FLOW RATE    RATE PUMP              ON                    OFF    HOURS      (KGPM)  (KGPM)  COMMENTS CIRC 11                                            0.00        0.0      0.0 CIRC 12                                            0.00        0.0      0.0 SWP    11                                          0.00        0.0      0.0 SWP    12                                          0.00        0.0    0.0 MINIMUM FLOW ................................                            0.0 MAXIMUM FLOW ................................                            0.0 TOTAL FLOW ..................................                            0.0 CIRC 21                                          24.00      140.0    140.0 CIRC 22                                          24.00      140.0    140.0 CIRC 23                                          24.00      140.0    140.0 CIRC 24                                          24.00      140.0    140.0 CIRC 25                                  12:22  12.37      140.0      72.1  WATERBOX CLNG.
CIRC 25            22:34                          1.43      140.0      8.4 CIRC 26                                          24.00      140.0    140.0 SWP 21                                            0.00          0.0    0.0 SWP 22                                            24.00          5.0    5.0 SWP 23                                            24.00          5.0    5.0 SWP 24                                            0.00        0.0      0.0 SWP SWP 26 25 MINIMUM FLOW ...............
24 .00 24.00 5.0 5.0 5.0 5.0 720.0 S
MAXIMUM FLOW ................                                        860.0 TOTAL FLOW .................                                          800.5 CIRC 31                                          24.00      115.0    115.0 CIRC 32                                          24.00      115.0    115.0 CIRC 33                                          24.00      115.0    115.0 CIRC 34                                          24.00      115.0    115.0 CIRC 35                                          24.00      115.0    115.0 CIRC 36                                          24.00      115.0    115.0 SWP  31                                          0.00        0.0      0.0 SWP  32                                          24.00        5.0      5.0 SWP 33                                            24. 00        5.0      5.0 SWP 34                                            0.00        0.0      0.0 SWP 35                                            24.00        5.0      5.0 SWP  36                                          0.00        0.0      0.0 SWP  37                                          0.00        0.0      0.0 SWP  38                                          0.00        0.0      0.0 SWP  39                                          0.00        0.0      0.0 MINIMUM FLOW ....                                                    705.0 MAXIMUM FLOW ....                                                    705.0 TOTAL FLOW ......                                                    705.0 SITE TOTAL  ..................................                      1505.5
 
DAILY PUMP OPERATION LOG                    57 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 05/17/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                    OFF    HOURS      (KGPM)  (KGPM) COMMENTS CIRC 11                                          0.00        0.0      0.0 CIRC 12                                          0.00        0.0      0.0 SWP  11                                          0.00        0.0      0.0 SWP  12                                          0.00        0.0      0.0 MINIMUM FLOW                                                          0.0 MAXIMUM FLOW                                                          0.0 TOTAL FLOW ..                                                          0.0 CIRC 21                                  13:09  13.15      140.0    76.7  WATERBOX CLNG.
CIRC 21            23:19                        0. 68    140.0      4 .0 CIRC 22                                          24.00      140.0  140.0 CIRC 23                                          24.00      140.0  140.0 CIRC 24                                          24.00      140.0  140.0 CIRC 25                                          24 .00    140.0  140.0 CIRC 26                                          24.00      140.0  140.0 SWP  21                                          0.00        0.0      0.0 SWP  22                                        24.00        5.0      5.0 SWP 23                                          24.00        5.0      5.0 SWP 24                                            0. 00      0.0      0.0 SWP 25                                          24.00        5.0      5.0 SWP  26                                        24.00        5.0      5.0 MINIMUM FLOW ...............                                        720.0 MAXIMUM FLOW ...............                                        860.0 TOTAL FLOW .................                                        800.7 CIRC 31                                          24 .00    115.0  115.0 CIRC 32                                          24.00      115.0  115.0 CIRC 33                                          24.00      115.0  115.0 CIRC 34                                          24.00      115.0  115.0 CIRC 35                                          24.00      115.0  115.0 CIRC 36                                          24 .00    115.0  115.0 SWP  31                                          0.00        0.0      0.0 SWP  32                                        24 .00      5.0      5.0 SWP  33                                        24 .00      5.0      5.0 SWP  34                                          0.00        0.0      0.0 SWP  35                                        24.00        5.0      5.0 SWP  36                                          0.00        0.0      0.0 SWP  37                                          0.00        0.0      0.0 SWP  38                                          0.00        0.0      0.0 SWP  39                                          0.00        0.0      0.0 MINIMUM FLOW ...                                                    705.0 MAXIMUM FLOW ...                                                    705.0 TOTAL FLOW .....                                                    705.0 SITE TOTAL  ..................................                    1505.7
 
DAILY PUMP OPERATION LOG                        58 INDIAN POINT MONTHLY ENVIRONMENTAL          REPORT 05/18/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                    OFF    HOURS      (KGPM)  (KGPM)  COMMENTS CIRC 11                                            0.00        0.0      0.0 CIRC 12                                            0.00        0.0      0.0 SWP    11                                          0.00        0.0      0.0 SWP    12                                          0.00        0.0      0.0 MINIMUM FLOW                                                            0.0 MAXIMUM FLOW                                                            0.0 TOTAL FLOW ..                                                          0.0 CIRC 21                                          24.00      140.0    140.0 CIRC 22                                  14:12  14.20      140.0      82.8  WATERBOX CLEANING CIRC 22            22:45                          1.25    140.0      7.3 CIRC 23                                          24.00      140.0    140.0 CIRC 24                                          24.00      140.0    140.0 CIRC 25                                          24.00      140.0    140.0 CIRC 26                                          24.00      140.0    140.0 SWP    21                                          0.00        0.0      0.0 SWP    22                                        24 .00        5.0      5.0 SWP    23                                        24.00        5.0      5.0 SWP 24                                            0.00        0.0      0.0 SWP SWP 25 26 24.00 24.00 5.0 5.0 5.0 5.0 0
MINIMUM FLOW ................                                        720.0 MAXIMUM FLOW ...............                                        860.0 TOTAL FLOW .................                                        810.1 CIRC 31                                          24 .00    115.0    115.0 CIRC 32                                          24 .00    115.0    115.0 CIRC 33                                          24 .00    115.0    115.0 CIRC 34                                          24.00      115.0    115.0 CIRC 35                                          24.00      115.0    115.0 CIRC 36                                          24 .00    115.0    115.0 SWP  31                                          0 .00        0.0      0.0 SWP  32                                        24 .00        5.0      5.0 SWP  33                                        24.00        5.0      5.0 SWP  34                                          0.00        0.0      0.0 SWP  35                                        24.00        5.0      5.0 SWP  36                                          0.00        0.0      0.0 SWP  37                                          0.00        0.0      0.0 SWP 38                                            0.00        0.0      0.0 SWP  39                                          0.00        0.0      0.0 MINIMUM FLOW                                                        705.0 MAXIMUM FLOW                                                        705.0 TOTAL FLOW ..                                                        705.0 SITE TOTAL ..................................                      1515.1
 
DAILY PUMP OPERATION LOG                  59 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 05/19/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF                  HOURS      (KGPM)  (KGPM) COMMENTS CIRC ii                                                          0.00      0.0      0 0 CIRC 12                                                          0.00      0.0      0.0 SWP  12                                                        0.00      0.0      0.0 SWP  12                                                        0.00      0.0      0.0 MINIMUM FLOW                        .................................                0.0 MAXIMUM FLOW    ................................                                    0.0 TOTAL FLOW  ..................................                                      0.0 CIRC 21                                                      24.00      140.0  140.0 CIRC 22                                                      24.00      140.0  140.0 CIRC 23                                                      24.00      140.0  140.0 CIRC 24                                                      24.00      140.0  140.0 CIRC 25                                                      24.00      140.0  140.0 CIRC 26                                                      24.00      140.0  140.0 SWP  21                                                        0.00      0.0      0.0 SWP 22                                                        24.00        5.0      5.0 SWP  23                                                      24.00        5.0      5.0 SWP  24                                                        0.00      0.0      0.0 SWP  25                                                      24.00        5.0      5.0 SWP  26                                                      24.00        5.0      5.0 MINIMUM FLOW ................................                                    860.0 MAXIMUM FLOW ................................                                    860.0 TOTAL FLOW ..................................                                    860.0 CIRC 31                                                      24.00      115.0  115.0 CIRC 32                                                      24.00      115.0  115.0 CIRC 33                                                      24.00      115.0  115.0 CIRC 34                                                      24.00      115.0  115.0 CIRC 35                                                      24.00      115.0  115.0 CIRC 36                                                      24.00      115.0  115.0 SWP  31                                                        0.00        0.0      0.0 SWP  32                                                      24.00        5.0      5.0 SWP  33                                                      24.00        5.0      5.0 SWP 34                                                          0.00        0.0      0.0 SWP 35                                                        24.00        5.0      5.0 SWP 36                                                          0.00        0.0      0.0 SWP 37                                                          0.00        0.0      0.0 SWP 38                                                          0.00        0.0      0.0 SWP  39                                                        0.00        0.0      0.0 MINIMUM FLOW ................................                                    705.0 MAXIMUM FLOW ................................                                    705.0 TOTAL FLOW ..................................                                    705.0 SITE TOTAL ..................................                                    1565.0
 
DAILY PUMP OPERATION LOG                60 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 05/20/07 AVE FLOW      FLOW RATE      RATE PUMP                ON                    OFF                HOURS      (KGPM)    (KGPM) COMMENTS CIRC 11                                                      0.00          0.0 CIRC 12                                                      0.00          0.0      0.0 SWP  12                                                      0.00          0.0    0.0 SWP  12                                                      0.00          0.0    0.0 MINIMUM LOW.                ................................                          0.0 MAXIMUM FLOW ................................                                        0.0 0.0 TOTAL FLOW  ..................................                                      0.0 CIRC 21                                                      24 .00    140.0    140.0 CIRC 22                                                      24.00      140.0    140.0 CIRC 23                                                      24 .00    140 .0    140.0 CIRC 24                                                      24.00      140.0    140.0 CIRC 25                                                      24 .00    140.0    140.0 CIRC 26                                                      24.00      140.0    140.0 SWP  21                                                      0.00        .0.0      0.0 S WP 22                                                      24.00          5.0    5.0 SWP 23                                                      24.00          5.0    5.0 SWP 24                                                        0.00          0.0    0.0 SWP  25                                                    24.00          5.0    5.0 SWP 26                                                      24.00          5.0    5.0 MINIMUM FLOW ...............                                                      860.0 MAXIMUM FLOW ...............                                                      860.0 TOTAL FLOW .................                                                      860.0 CIRC 31                                                      24.00      115.0    115.0 CIRC 32                                                      24.00      115.0    115.0 CIRC 33                                                      24.00      115.0    115.0 CIRC 34                                                      24.00      115.0    115.0 CIRC 35                                                      24.00      115.0    115.0 CIRC 36                                                      24.00      115.0    115.0 SWP  31                                                      0.00          0.0      0.0 SWP  32                                                    24.00          5.0      5.0 SWP  33                                                    24.00          5.0      5.0 SWP  34                                                      0.00          0.0      0.0 SWP  35                                                    24.00          5.0      5.0 SWP  36                                                      0.00          0.0      0.0 SWP  37                                                      0.00          0.0      0.0 SWP  38                                                      0.00          0.0      0.0 SWP  39                                                      0.00          0.0      0.0 MINIMUM FLOW .........................                                            705.0 MAXIMUM FLOW .........................                                            705.0 TOTAL FLOW ...........................                                            705.0 SITE TOTAL  ..................................                                  1565.0
 
DAILY PUMP OPERATION LOG                      61 INDIAN        POINT MONTHLY ENVIRONMENTAL REPORT 05/21/07 AVE FLOW    FLOW RATE    RATE PUMP                ON                  OFF      HOURS    (KGPM)  (KGPM) COMMENTS CIRC 11 CIRC 12                                            0.00      0.0      0.0 0.00      0.0      0.0 SWP  11                                            0.00      0.0      0.0 SWP  12                                            0.00      0.0      0.0 MINIMUM FLOW ................                                            0.0 MAXIMUM FLOW ................                                            0.0 TOTAL FLOW ..................                                            0.0 CIRC 21                                            24.00    140.0  140.0 CIRC 22                                            24.00    140.0  140.0 CIRC 23                                  4:06      4.10    140.0    23.9  WATERBOX CLEANING CIRC 23            15:10                          8.83    140.0    51.5 CIRC 24                                            24.00    140.0  140.0 CIRC 25                                            24.00    140.0  140.0 CIRC 26                                            24.00    140.0  140.0 SWP  21                                            0.00      0.0      0.0 SWP  22                                          24.00      5.0      5.0 SWP  23                                          24.00      5.0      5.0 SWP  24                                            0.00      0.0      0.0 SWP  25                                          24.00      5.0      5.0 SWP  26                                          24.00      5.0      5.0 MINIMUM FLOW .........................                              720.0 MAXIMUM FLOW .........................                              860.0 TOTAL FLOW ...........................                              795.4 CIRC 31                                            24.00    115.0  115.0 CIRC 32                                            24.00    115.0  115.0 CIRC 33                                            24.00    115.0  115.0 CIRC 34                                            24.00    115.0  115.0 CIRC 35                                            24.00    115.0  115.0 CIRC 36                                            24.00    115.0  115.0 SWP 31                                              0.00      0.0      0.0 SWP 32                                            24.00      5.0      5.0 SWP  33                                          24.00      5.0      5.0 SWP  34                                            0.00      0.0      0.0 SWP  35                                          24.00      5.0      5.0 SWP  36                                            0.00      0.0      0.0 SWP  37                                            0.00      0.0      0.0 SWP  38                                            0.00      0.0      '0.0 SWP  39                                            0.00      0.0      0.0 MINIMUM FLOW .........................                              705.0 MAXIMUM FLOW .........................                              705.0 TOTAL FLOW ...........................                              705.0 SITE TOTAL  ..................................                      1500.4
 
DAILY PUMP OPERATION LOG                                  62 INDIAN POINT MONTHLY ENVIRONMENTAL                      REPORT 05/22/07 AVE FLOW      FLOW RATE        RATE PUMP                ON                  OFF        HOURS              (KGPM)      (KGPM)  COMMENTS CIRC 11 CIRC 12                                                0.00                0.0        0.0 SWP  11                                              0.00                0.0        0.0 SWP 12                                                0.00                0.0        0.0 MINIMUM FLOW................                          0.00                0.0        0.0 MAXIMUM FLOW ...............                                                          0.0 0.0 TOTAL FLOW .................                                                          0.0 CIRC 21                                              24.00            140.0      140.0 CIRC 22                                              24.00              140.0      140.0 CIRC 23                                              24.00            140.0      140.0 CIRC 24                                  5:43        5.72            140.0        33. 3  WATERBOX CLNG.
CIRC 24            16:43                              7.28            140.0        42.5 CIRC 25                                              24.00            140.0      140.0 CIRC 26                                              24.00            140.0      140.0 SWP  21                                              0.00                0.0        0.0 SWP  22                                            24.00                5.0        5.0 SWP  23                                            24.00                5.0        5.0 SWP  24                                              0.00                0.0        0.0 SWP  25                                            24.00                5.0        5.0 SWP  26                                            24.00                5.0        5.0 MINIMUM FLOW ... *......................                                          720.0 MAXIMUM FLOW ........................                                              860.0 TOTAL FLOW ..........................                                              795.8 CIRC 31                                              24 .00            115.0      115.0 CIRC 32                                              24.00            115.0      115.0 CIRC 33                                              24.00            115.0      115.0 CIRC 34                                              24.00            115.0      115.0 CIRC 35                                              24.00            115.0      115.0 CIRC 36                                              24.00            115.0      115.0 SWP 31                                                0.00                0.0        0.0 SWP  32                                            24.00                5.0        5.0 SWP 33                                              24.00                5.0        5.0 SWP  34                                              0.00                0.0        0.0 SWP  35                                            24.00                5.0        5.0 SWP  36                                              0.00                0.0        0.0 SWP 37                                                0.00                0.0        0.0 SWP  38                                              0.00                0.0        0.0 SWP  39                                              0.00                0.0        0.0 MINIMUM FLOW ..............                    . . . . . . . . . . . . ....m  .. 705.0 MAXIMUM FLOW ..............                    . . . . . . . . . . . . . . . . .. 705.0 TOTAL FLOW ................                                                        705.0 SITE TOTAL  ..................................                                    1500.8 A
 
DAILY PUMP OPERATION LOG              63 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 05/23/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                    OFF    HOURS      (KGPM)  (KGPM) COMMENTS CIRC 11                                            0.00        0.0    0.0 CIRC 12                                            0.00        0.0    0.0 SWP  11                                          0.00        0.0    0.0 SWP  12                                          0.00        0.0    0.0 MINIMUM FLOW ................................                          0.0 MAXIMUM FLOW ................................                          0.0 TOTAL FLOW ..................................                          0.0 CIRC 21                                          24 .00      140.0  140.0 CIRC 22                                          24 .00      140.0  140.0 CIRC 23                                          24.00      140.0  140.0 CIRC 24                                          24 .00      140.0  140.0 CIRC 25                                          24 .00      140.0  140.0 CIRC 26                                          24 .00      140.0  140.0 SWP 21                                            0. 00        0.0    0.0 SWP 22                                          24 .00        5.0    5.0 SWP 23                                          24.00          5.0    5.0 SWP  24                                          0.00        0.0    0.0 SWP  25                                        24.00          5.0    5.0 SWP  26                                        24.00        .5.0    5.0 MINIMUM FLOW ..............                                          860.0 MAXIMUM FLOW ..............                                          860.0 TOTAL FLOW ................                                          860.0 CIRC 31                                          24 .00      115.0  115.0 CIRC 32                                          24.00      115.0  115.0 CIRC 33                                          24.00      115.0  115.0 CIRC 34                                          24.00      115.0  115.0 CIRC 35                                          24.00      115.0  115.0 CIRC 36                                          24 .00      115.0  115.0 SWP  31            16:52                        7.13          5.0    1.5 SWP  32                                16:52  16.87          5.0    3.5 SWP  33                                        24.00          5.0    5.0 SWP 34                                            0.00          0.0    0.0 SWP 35                                          24.00          5.0    5.0 SWP  36                                          0.00          0.0    0.0 SWP 37                                            0.00          0.0    0.0 SWP 38                                            0.00          0.0    0.0 SWP  39                                          0.00          0.0    0.0 MINIMUM FLOW                                                        705.0 MAXIMUM FLOW                                                        710.0 TOTAL FLOW ..                                                        705.0 SITE TOTAL  ..................................                      1565.0
 
DAILY PUMP OPERATION LOG                    64 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 05/24/07 AVE FLOW      FLOW RATE      RATE PUMP                ON                OFF      HOURS        (KGPM)    (KGPM) COMMENTS CIRC 11                                            0.00            0.0    0.0 CIRC 12                                            0.00            0.0    0.0 SWP  11                                          0.00            0.0    0.0 SWP  12                                          0.00            0.0    0.0 MINIMUM FLOW .........................                                    0.0 MAXIMUM FLOW .........................                                    0.0 TOTAL FLOW ...........................                                    0.0 CIRC 21                                          24.00      140.0    140.0 CIRC 22                                          24.00      140.0    140.0 CIRC 23                                          24.00      140.0    140.0 CIRC 24                                          24.00      140.0    140.0 CIRC 25                                  9:17      9.28      140.0      54.2  MAINTENANCE CIRC 25              15:05                        8.92      140.0      52.0 CIRC 26                                          24.00      140.0    140.0 SWP 21                                            0.00            0.0    0.0 SWP  22                                          24.00            5.0    5.0 SWP 23                                            24.00            5.0    5.0 SWP  24                                          0.00            0.0    0.0 SWP  25                                          24.00            5.0    5.0 SWP  26                                          24.00            5.0    5.0 MINIMUM FLOW ................................                          720.0 MAXIMUM FLOW . ................................                        860.0 TOTAL FLOW ..................................                          826.2 CIRC 31                                          24.00      115.0    115.0 CIRC 32                                          24.00      115.0    115.0 CIRC 33                                  10:05    10.08      115.0      48.3  SPEED CHANGE CIRC 33              10:05                        13.92      117.5      68.1 CIRC 34                                  10:05    10.08      115.0      48.3  SPEED CHANGE CIRC 34              10:05                        13.92      117.5      68.1 CIRC 35                                10:06    10.10      115.0      48.4  SPEED CHANGE CIRC 35              10:06                        13.90      120.0      69.5 CIRC 36                                10:06    10.10      115.0      48.4  SPEED CHANGE CIRC 36              10:06                        13.90      120.0      69.5 SWP  31                                11:34    11.57            5.0    2.4 SWP  32            11:34                        12.43            5.0    2.6 SWP  33                                          24.00            5.0    5.0 SWP  34                                          0.00            0.0    0.0 SWP  35                                          24.00            5.0    5.0 SWP  36                                          0.00            0.0    0.0 SWP  37                                          0.00            0.0    0.0 SWP 38                                            0.00            0.0    0.0 SWP  39                                          0.00            0.0    0.0 MINIMUM FL OW ..................                          .......      705.0 MAXIMUM FL OW ................                            .......      720.0 TOTAL FLOW                                                .......      713.7 SITE TOTAL ..................................                          1539.9
 
DAILY PUMP OPERATION LOG                      65 INDIAN POINT MONTHLY ENVIRONMENTAL          REPORT 05/25/07 AVE FLOW    FLOW RATE    RATE PUMP                ON                  OFF    HOURS      .(KGPM)  (KGPM)  COMMENTS CIRC 11                                          0.00        0.0      0.0 CIRC 12                                          0.00        0.0      0.0 SWP  11                                          0.00        0.0      0.0 SWP  12                                          0.00        0.0      0.0 MINIMUM FLOW ................................                            0.0 MAXIMUM FLOW ................................                            0.0 TOTAL FLOW ..................................                            0.0 CIRC 21                                          24.00      140.0    140.0 CIRC 22                                          24.00      140.0    140.0 CIRC 23                                          24.00      140.0    140.0 CIRC 24                                          24.00      140.0    140.0 CIRC 25                                          24.00      140.0    140.0 CIRC 26                                  4:28    4.47      140.0      26.1  COND. BACKWASH CIRC 26            4:52                        19.13      140.0    111.6 SWP  21                                          0.00        0.0      0.0 SWP  22                                        24.00          5.0      5.0 SWP  23                                        24.00        5.0      5.0 SWP  24                                          0.00        0.0      0.0 SWP  25                                        24.00        5.0      5.0 SWP 26                                          24.00        5.0      5.0 MINIMUM FLOW ................................                        720.0 MAXIMUM FLOW ................................                        860.0 TOTAL FLOW ..................................                        857.7 CIRC 31                                          24.00      115.0    115.0 CIRC 32                                          24 .00    115.0    115.0 CIRC 33                                          24.00      117.5    117.5 CIRC 34                                          24.00      117.5    117.5 CIRC 35                                          24.00      120.0    120.0 CIRC 36                                          24.00      120.0    120.0 SWP 31                                            0.00        0.0      0.0 SWP 32                                          24.00        5.0      5.0 SWP 33                                          24 .00        5.0      5.0 SWP  34                                          0.00        0.0      0.0 SWP 35                                          24.00        5.0      5.0 SWP  36                                          0.00        0.0      0.0 SWP 37                                            0.00        0.0      0.0 SWP  38                                          0.00        0.0      0.0 SWP  39                                          0.00        0.0      0.0 MINIMUM FLOW .....                                                  720.0 MAXIMUM FLOW .....                                                  720.0 TOTAL FLOW .......                                                  720.0 SITE TOTAL  ..................................                      1577.7
 
DAILY PUMP OPERATION LOG                                  66 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 05/26/07 AVE FLOW        FLOW RATE        RATE PUMP              ON                    OFF        HOURS              (KGPM)      (KG PM) COMMENTS CIRC  11                                            0.00                0.0 CIRC  12                                            0.00                0.0          0.0 SWP    11                                            0.00                0.0          0.0 SWP    12                                            0.00                0.0          0.0 0.0 MINIMUM FLOW        . . . . . . . . . . . . . . . . . . . . . . . o. . . . . . ..      0.0 MAXIMUM FLOW                                                                          0.0 TOTAL FLOW ..                                                                          0.0 CIRC 21                                  12:15      12.25            140.0          71.5  COND. BACKWASH CIRC 21            12:44                            11.27            140.0          65.7 CIRC 22                                  11:43      11.72            140.0          68.3  COND. BACKWASH CIRC 22            12:05                            11.92            140.0          69.5 CIRC 23                                  11:12      11.20            140.0          65.3  COND. BACKWASH CIRC 23            11:31                            12.48            140.0          72.8 CIRC 24                                  4:50        4.83            140.0          28.2  COND. BACKWASH CIRC 24            5:14                            18.77.            140.0        109.5 CIRC 25                                  5:20        5.33            140.0          31.1  COND. BACKWASH CIRC 25            5:43                            18.28            140.0        106.7 CIRC 26                                  5:48        5.80            140.0          33.8  COND. BACKWASH CIRC 26            6:21                            17.65            140.0        103.0 SWP 21                                                0.00                0.0        0.0 SWP  22                                            24.00                5.0        5.0 SWP  23                                            24.00                5.0        5.0 SWP 24                                                0.00                0.0        0.0 SWP  25                                            24.00                5.0        5.0 SWP  26                                            24.00                5.0        5.0 MINIMUM FLOW .......................                                              720.0 MAXIMUM FLOW .......................                                              860.0 TOTAL FLOW . .........................                                            845.4 CIRC 31                                            24.00            115.0        115.0 CIRC 32                                            24.00            115.0        115.0 CIRC 33                                            24.00            117.5        117.5 CIRC 34                                            24.00            117.5        117.5 CIRC 35                                            24.00              120.0        120.0 CIRC 36                                            24.00              120.0        120.0 SWP  31                                            0.00                0.0        0.0 SWP  32                                          24 .00                5.0        5.0 SWP  33                                          24.00                  5.0        5.0 SWP  34                                            0.00                0.0        0.0 SWP  35                                          24.00                  5.0        5.0 SWP  36                                            0.00                0.0        0.0 SWP  37                                            0.00                0.0        0.0 SwP  38                                            0.00                0.0        0.0 SWP  39                                            0.00                0.0        0.0 MINIMUM FLOW ..........................                                            720.0 MAXIMUM FLOW . .........................                                          720.0 TOTAL FLOW ............................                                            720.0 SITE TOTAL ..................................                                    1565.4
 
DAILY PUMP OPERATION LOG                    67 INDIAN POINT MONTHLY ENVIRONMENTAL        REPORT 05/27/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF      HOURS      (KGPM)  (KGPM)  COMMENTS CIRC 11                                          0.00        0.0    0.0 CIRC 12                                          0.00        0.0    0.0 SWP  11                                        0.00        0.0    0.0 SWP  12                                        0.00        0.0    0.0 MINIMUM FLOW ................................                        0.0 MAXIMUM FLOW ................................                        0.0 TOTAL FLOW ..................................                        0.0 CIRC 21                                        24.00    140.0  140.0 CIRC 22                                        24.00    140.0  140.0 CIRC 23                                        24.00    140.0  140.0 CIRC 24                                        24.00    140.0  140.0 CIRC 25                                        24.00    140.0  140.0 CIRC 26                                        24.00    140.0  140.0 SWP 21                                          0.00        0.0    0.0 SWP  22                                        24.00        5.0    5.0 SWP 23                                          24.00        5.0    5.0 SWP  24                                        0.00        0.0    0.0 SWP 25                                          24.00        5.0    5.0 SWP  26                                        24.00        5.0    5.0 MINIMUM FLOW ................................                    860.0 MAXIMUM FLOW ................................                    860.0 TOTAL FLOW ..................................                    860.0 CIRC 31                                9:34    9.57    115.0    45.8  SPEED CHANGE CIRC 31            9:34                11:23    1.82    140.0    10.6  SPEED CHANGE CIRC 31          11:23                11:31    0.13    115.0      0.6  COND. BACKWASH CIRC 31            12:02                        11.97    115.0    57.3 CIRC 32                                9:00    9.00    115.0    43.1  SPEED CHANGE CIRC 32          9:00                  10:48    1.80    140.0    10.5  COND. BACKWASH CIRC 32            11:19                12:05    0.77    140.0      4.5  SPEED CHANGE CIRC 32          12:05                        11.92    115.0    57. 1 CIRC 33                                9:00    9.00    117.5    44 .1  COND. BACKWASH CIRC 33            9:32                9:34    0.03    117.5      0.2  SPEED CHANGE CIRC 33          9:34                  11:23    1.82    140.0    10.6  SPEED CHANGE CIRC 33          11:23                15:30    4.12    117.5    20.2  SPEED CHANGE CIRC 33          15:30                16:10    0.67    140.0      3.9  SPEED CHANGE CIRC 33          16:10                          7.83    117.5    38.4 CIRC 34                                9:00    9.00    117.5    44.1  SPEED CHANGE CIRC 34          9:00                9:34      0.57    140.0      3.3  SPEED CHANGE CIRC 34          9:34                15:34    6.00    117.5    29.4  COND. BACKWASH CIRC 34          16:07                          7.88    117.5    38.6 CIRC 35                                15:30    15.50    120.0    77.5  SPEED CHANGE CIRC 35          15:30                16:52    1.37    140.0      8.0  SPEED CHANGE CIRC 35          16:52                          7.13    120.0    35.7 CIRC 36                                16:18    16.30    120.0    81.5  COND. BACKWASH CIRC 36          16:49                          7.18    120.0    35.9 SWP 31                                          0.00        0.0    0.0 SWP  32                                        24.00        5.0    5.0 SWP 33                                          24.00        5.0    5.0 SWP 34                                          0.00        0.0    0.0
 
DAILY PUMP OPERATION LOG              68 INDIAN POINT MONTHLY ENVIRONMENTAL        REPORT 05/27/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                    OFF    HOURS    (KGPM)  (KGPM)  COMMENTS SWP  35                                        24.00        5.0    5.0 SWP  36                                        0.00        0.0    0.0 SWP  37                                        0.00        0.0    0.0 SWP 38                                          0.00        0.0    0.0 SWP  39                                        0.00        0.0    0.0 MINIMUM FLOW ................................                    620.0 MAXIMUM FLOW ................................                    815.0 TOTAL FLOW ..................................                    715.7 SITE TOTAL ..................................                    1575.7
 
DAILY PUMP OPERATION LOG                  69 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 05/28/07 AVE FLOW    FLOW RATE    RATE PUMP                ON                  OFF                  HOURS      (KGPM)  (KGPM) COMMENTS CIRC 11                                                          0.00      0.0      0 0 CIRC 12                                                          0.00      0.0      0.0 SWP  11                                                          0.00      0.0      0.0 SWP 12                                                            0.00      0.0      0.0 MINIMUM FLOW                        ................................                0.0 MAXIMUM FLOW      ................................                                    0.0 TOTAL FLOW  ..................................                                        0.0 CIRC 21                                                        24.00      140.0  140.0 CIRC 22                                                        24.00      140.0  140.0 CIRC 23                                                        24.00      140.0  140.0 CIRC 24                                                        24.00      140.0  140.0 CIRC 25                                                        24.00      140.0  140.0 CIRC 26                                                        24.00      140.0  140.0 SWP  21                                                          0.00      0.0      0.0 SWP  22                                                      24.00        5.0      5.0 SWP  23                                                      24.00        5.0      5.0 SWP  24                                                          0.00      0.0      0.0 SWP  25                                                      24.00        5.0      5.0 SWP 26                                                        24.00        5.0      5.0 MINIMUM FLOW ................................                                      860.0 MAXIMUM FLOW ................................                                      860.0 TOTAL FLOW ..................................                                      860.0 CIRC 31                                                        24.00      115.0  115.0 CIRC 32                                                        24.00      115.0  115.0 CIRC 33                                                        24.00      117.5  117.5 CIRC 34                                                        24.00      117.5  117.5 CIRC 35                                                        24.00      120.0  120.0 CIRC 36                                                        24.00      120.0  120.0 SWP  31                                                          0.00      0.0      0.0 SWP  32                                                      24.00        5.0      5.0 SWP  33                                                      24.00        5.0      5.0 SWP  34                                                        0.00        0.0      0.0 SWP  35                                                      24.00        5.0      5.0 SWP  36                                                        0.00        0.0      0.0 SWP  37                                                        0.00        0.0      0.0 SWP  38                                                        0.00        0.0      0.0 SWP 39                                                          0.00        0.0      0.0 MINIMUM FLOW ................................                                      720.0 MAXIMUM FLOW ................................                                      720.0 TOTAL FLOW ..................................                                      720.0 SITE TOTAL  ..........                : .......................                  1580.0
 
DAILY PUMP OPERATION LOG                                  70 INDIAN POINT MONTHLY ENVIRONMENTAL                                  REPORT 05/29/07 AVE FLOW        FLOW RATE        RATE PUMP              ON                    OFF                  HOURS              (KGPM)      (KGPM)  COMMENTS CIRC 11                                                          0.00                0.0 CIRC 12                                                          0.00                0.0          0.0 SWP  11                                                        0.00                0.0          0.0 SWP  12                                                        0.00                0.0          0.0 MINIMUM FLOW              ................................                                      0.0 MAXIMUM FLOW ................................                                                    0.0 0.0 TOTAL FLOW ..................................                                                    0.0 CIRC 21                                                        24 .00            140.0        140.0 CIRC 22                                                        24.00            140.0        140.0 CIRC 23                                                        24 .00            140.0        140.0 CIRC 24                                                        24.00            140.0        140.0 CIRC 25                                                        24 .00            140.0        140.0 CIRC 26                                                        24.00            140.0        140.0 SWP  21                                                        0.00                0.0          0.0 SWP  22                                                      24.00                5.0          5.0 SWP 23                                                        24.00                5.0          5.0 SWP  24                                                        0.00                0.0        0.0 SWP 25                                                        24.00                5.0        5.0 SWP  26                                                      24.00                5.0        5.0 MINIMUM FLOW ...............                                                                  860.0 MAXIMUM FLOW                                                                                  860.0 TOTAL FLOW ..                                                                                860.0 CIRC 31                                  13:43                13.72            115.0          65.7  SPEED CHANGE CIRC 31            13:43                                      10.28            117.5          50.3 CIRC 32                                  13:43                13.72            115.0          65.7  SPEED CHANGE CIRC 32            13:43                                      10.28            117.5          50.3 CIRC 33                                  13:44                13.73            117.5.        67.2  SPEED CHANGE CIRC 33            13:44                                      10.27            125.0          53.5 CIRC 34                                  13:44                13.73            117.5          67.2  SPEED CHANGE CIRC 34            13:44                                      10.27            125.0          53.5 CIRC 35                                  13:45                13.75            120. 0        68.8  SPEED CHANGE CIRC 35            13:45                                      10.25            133.0          56.8 CIRC 36                                  13:45                13.75            120. 0        68.8  SPEED CHANGE CIRC 36            13:45                                      10.25            133.0          56.8 SWP  31                                                        0.00                0.0        0.0 SWP  32                                                      24 .00                5.0        5.0 SWP  33                                                      24.00                5.0        5.0 SWP  34                                                        0.00                0.0        0.0 SWP  35                                                      24.00                5.0        5.0 SWP  36                                                        0.00                0.0        0.0 SWP  37                                                        0.00                0.0        0.0 SWP  38                                                        0.00                0.0        0.0 SWP  39                                                        0.00                0.0        0.0 MINIMUM FLOW .........                                                                        720.0 MAXIMUM FLOW .........                                                                        766.0 TOTAL FLOW ...........                                                                        739.7 SITE TOTAL ..................................                                                1599.7
 
DAILY PUMP OPERATION LOG              71 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 05/30/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF      HOURS      (KGPM)  (KGPM) COMMENTS CIRC 11                                          0.00        0.0      0.0 CIRC 12                                          0.00        0.0      0.0 SWP  11                                          0.00        0.0      0.0 SWP  12                                          0.00        0.0      0.0 MINIMUM FLOW ................................                          0.0 MAXIMUM FLOW ................................                          0.0 TOTAL FLOW ..................................                          0.0 CIRC 21                                          24.00      140.0  140.0 CIRC 22                                          24.00      140.0  140.0 CIRC 23                                          24.00      140.0  140.0 CIRC 24                                          24.00      140.0  140.0 CIRC 25                                          24.00      140.0  140.0 CIRC 26                                          24 .00    140.0  140.0 SWP  21          0:54                          23.10        5.0      4.8 SWP 22                                  0:55    0.92        5.0      0.2 SWP  22          13:11                13:44    0.55        5.0      0.1 SWP  22          16:28                          7.53        5.0      1.6 SWP 23                                          24.00        5.0      5.0 SWP  24                                          0.00        0.0      0.0 SWP  25                                        24 .00      5.0      5.0 SWP  26                                        24.00        5.0      5.0 MINIMUM FLOW                                                        860.0 MAXIMUM FLOW                                                        865.0 TOTAL FLOW                                                          861.7 CIRC 31                                          24.00      117.5  117.5 CIRC 32                                          24.00      117.5  117.5 CIRC 33                                          24.00      125.0  125.0 CIRC 34                                          24.00      125.0  125.0 CIRC 35                                          24.00      133.0  133.0 CIRC 36                                          24.00      133.0  133.0 SWP  31                                          0.00        0.0      0.0 SWP  32                                        24.00        5.0      5.0 SWP 33                                          24.00        5.0      5.0 SWP 34                                            0.00        0.0      0.0 SWP  35                                        24.00        5.0      5.0 SWP 36                                            0.00        0.0      0.0 SWP 37                                            0.00        0.0      0.0 SWP 38                                            0.00        0.0      0.0 SWP 39                                            0.00        0.0      0.0 MINIMUM FLOW                                                        766.0 MAXIMUM FLOW                                                        766.0 TOTAL FLOW ..                                                      766.0 SITE TOTAL ..................................                      1627.7
 
DAILY PUMP OPERATION LOG                        72 INDIAN POINT MONTHLY ENVIRONMENTAL                          REPORT 05/31/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF                  HOURS          (KGPM)  (KGPM)  COMMENTS CIRC 11                                                        0.00            0.0      0.0 CIRC 12                                                        0.00            0.0      0.0 SWP 11                                                          0.00            0.0      0.0 SWP  12                                                        0.00            0.0      0.0 MINIMUM FLOW                            ................................                0.0 MAXIMUM FLOW ................................                                            0.0 TOTAL FLOW ..................................                                            0.0 CIRC 21                                                      24.00          140.0    140.0 CIRC 22                                                      24.00          140.0    140.0 CIRC 23                                                      24.00          140.0    140.0 CIRC 24                                                      24.00          140.0    140.0 CIRC 25                                                      24.00          140.0    140.0 CIRC 26                                                      24.00          140.0    140.0 SWP  21                                23:07                23.12            5.0      4.8 SWP  22                                                      24.00            5.0      5.0 SWP  23                                                      24.00            5.0      5.0 SWP  24                                                        0.00            0.0      0.0 SWP 25                                                      24.00              5.0      5.0 SWP  26                                                      24.00            5.0      5.0 MINIMUM FLOW ................................                                        860.0 MAXIMUM FLOW ................................                                        865.0 TOTAL FLOW ..................................                                        864.8 CIRC 31                                                      24.00          117.5    117.5 CIRC 32                                                      24.00          117.5    117.5 CIRC 33                                                      24.00          125.0    125.0 CIRC 34                                                      24.00          125.0    125.0 CIRC 35                                                      24.00          133.0    133.0 CIRC 36                                                      24.00          133.0    133.0 SWP  31                                                        0.00            0.0      0.0 SWP  32                                                    24.00              5.0      5.0 SWP  33                                                    24.00              5.0      5.0 SWP  34                                                        0.00            0.0      0.0 SWP 35                                                      24.00              5.0      5.0 SWP  36                                                        0.00            0.0      0.0 SWP  37                                                        0.00            0.0      0.0 SWP  38                                                        0.00            0.0      0.0 SWP 39                                                          0.00            0.0      0.0 MINIMUM FLOW ................................                                        766.0 MAXIMUM FLOW ................................                                        766.0 TOTAL FLOW ..................................                                        766.0 SITE TOTAL ..................................                                        1630.8
 
DAILY PUMP OPERATION LOG                                73 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 06/01/07 AVE FLOW        FLOW RATE        RATE PUMP              ON                  OFF      HOURS              (KGPM)      (KG PM) COMMENTS CIRC 11                                            0.00 CIRC 12                                            0.00                0.0        0.0 SWP  12                                            0.00                0.0        0.0 SWP  12                                            0.00                0.0        0.0 MINIMUM FLOW            ......................                          0.0        0.0 MAXIMUM FLOW .......................                                                0.0 0.0 TOTAL FLOW .........................                                                0.0 CIRC 21                                          24.00            140.0        140.0 CIRC 22                                          24.00            140.0        140.0 CIRC 23                                          24.00            140.0        140.0 CIRC 24                                          24.00            140.0        140.0 CIRC 25                                          24.00            140.0        140.0 CIRC 26                                          24.00            140.0        140.0 SWP  21                                            0.00                0.0        0.0 SWP  22                                          24.00                5.0        5.0 SWP 23                                            24.00                5.0        5.0 SWP  24                                            0.00                0.0        0.0 SWP  25                                          24.00                5.0        5.0 SWP  26                                          24.00                5.0        5.0 MINIMUM FLOW    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860.0 MAXIMUM FLOW    . . . . . . . . &deg;. . . . . . . . . . . . . . . . . . . . . . .. 860.0 TOTAL FLOW ..  . . . . . . o .. . . . . . . . . . . . . . . . . . . . . . .. . 860.0 CIRC 31                                13:35    13.58            117.5          66.5  SPEED CHANGE CIRC 31            13:35                          10.42            132.5          57.5 CIRC 32                                13:35    13.58            117.5          66.5  SPEED CHANGE CIRC 32            13:35                          10.42            132.5          57.5 CIRC 33                                13:36    13.60            125.0          70.8  SPEED CHANGE CIRC 33            13:36                          10.40            137.5          59.6 CIRC 34                                13:36    13.60            125.0          70.8  SPEED CHANGE CIRC 34            13:36                          10.40            137.5          59.6 CIRC 35                                13:37    13.62            133.0          75.5  SPEED CHANGE CIRC 35            13:37                          10.38            137.5          59.5 CIRC 36                                13:37    13.62            133.0          75.5  SPEED CHANGE CIRC 36            13: 37                        10.38            138.0          59.7 SWP  31                                            0.00                0.0        0.0 SWP  32                                          24.00                5.0        5.0 SWP  33                                          24.00                5.0        5.0 SWP  34                                            0.00                0.0        0.0 SWP  35                                          24.00                5.0        5.0 SWP  36                                            0.00                0.0        0.0 SWP  37                                            0.00                0.0        0.0 SWP  38                                            0.00                0.0        0.0 SWP  39                                            0.00                0.0        0.0 MINIMUM FLOW ................................                                    766.0 MAXIMUM FLOW ................................                                    830.5 TOTAL FLOW ..................................                                    794.0 SITE TOTAL ..................................                                  1654.0
 
DAILY PUMP OPERATION LOG                    74 INDIAN POINT MONTHLY ENVIRONMENTAL        REPORT 06/02/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF      HOURS      (KGPM)  (KGPM)  COMMENTS CIRC 11                                          0.00        0.0      0.0 CIRC 12                                          0.00        0.0      0.0 SWP  11                                          0.00        0.0      0.0 SWP  12                                          0.00        0.0      0.0 MINIMUM FLOW ................................                          0.0 MAXIMUM FLOW ................................                          0.0 TOTAL FLOW ..................................                          0.0 CIRC 21                                          24.00      140.0  140.0 CIRC 22                                          24.00      140.0  140.0 CIRC 23                                          24.00      140.0  140.0 CIRC 24                                  10:18  10.30      140.0    60. 1  COND. BACKWASH CIRC 24            10:43                        13.28      140.0    77.5 CIRC 25                                  10:54  10.90      140.0    63. 6  COND. BACKWASH CIRC 25            11:18                        12.70      140.0    74.1 CIRC 26                                  11:34  11.57      140.0    67.5  COND. BACKWASH CIRC 26            11:59                        12.02      140.0    70.1 SWP  21                                          0.00        0.0      0.0 SWP  22                                        24.00        5.0      5.0 SWP  23                                        24.00        5.0      5.0 SWP  24                                          0.00        0.0      0.0 SWP  25                                        24.00        5.0      5.0 SWP  26                                        24.00        5.0      5.0 MINIMUM FLOW .........................                              720.0 MAXIMUM FLOW .........................                              860.0 TOTAL FLOW . ...........................                            852.8 CIRC 31                                          24.00      132.5  132 .5 CIRC 32                                          24.00      132.5  132. 5 CIRC 33                                          24.00      137.5  137. 5 CIRC 34                                          24.00      137. 5  137.5 CIRC 35                                          24.00      137. 5  137.5 CIRC 36                                          24 .00    138. 0  138.0 SWP  31                                          0.00        0.0      0.0 SWP  32                                        24.00        5.0      5.0 SWP  33                                        24.00        5.0      5.0 SWP  34                                          0.00        0.0      0.0 SWP  35                                        24.00        5.0      5.0 SWP  36                                          0.00        0.0      0.0 SWP  37                                          0.00        0.0      0.0 SWP  38                                          0.00        0.0      0.0 SWP  39                                          0.00        0.0      0.0 MINIMUM FLOW .......................                                830.5 MAXIMUM FLOW .......................                                830.5 TOTAL FLOW .........................                                830.5 SITE TOTAL ..................................                      1683.3
 
DAILY PUMP OPERATION LOG                        75 INDIAN POINT MONTHLY ENVIRONMENTAL            REPORT 06/03/07 AVE FLOW        FLOW RATE        RATE PUMP              ON                  OFF    HOURS        (KGPM)    (KGPM)  COMMENTS CIRC 11                                        .0.00            0.0      0.0 CIRC 12                                          0.00            0.0      0.0 SWP  11                                        0.00            0.0      0.0 SWP  12                                        0.00            0.0      0.0 MINIMUM FLOW                                                              0.0 MAXIMUM FLOW                                                              0.0 TOTAL FLOW ..                                                            0.0 CIRC 21                                5:46      5.77      140.0        33.6  COND. BACKWASH CIRC 21            6:12                        17.80      140.0      103.8 CIRC 22                                5:17      5.28      140.0        30.8  COND. BACKWASH CIRC 22            5:45                        18.25      140.0      106.5 CIRC 23                                4:49      4 .82    140.0        28.1  COND. BACKWASH CIRC 23            5:13                        18.78      140.0      109.6 CIRC 24                                        24.00      140.0      140.0 CIRC 25                                        24.00      140.0      140.0 CIRC 26                                        24.00      140.0      140.0 SWP  21                                        0.00            0.0      0.0 SWP  22                                      24.00            5.0      5.0 SWP 23                                        24.00            5.0      5.0 SWP 24                                          0.00          0.0      0.0 SWP 25                                        24.00            5.0      5.0 SWP 26                                        24.00            5.0      5.0 MINIMUM FLOW ...............                                          720.0 MAXIMUM FLOW ...............                                          860.0 TOTAL FLOW .................                                          852.4 CIRC 31                                        24.00      132.5      132.5 CIRC 32                                        24.00      132.5      132.5 CIRC 33                                        24.00      137.5      137.5 CIRC 34                                12:07  12.12      137.5        69.4  COND. BACKWASH CIRC 34            12: 38                      11.37      138.0        65.4 CIRC 35                                        24 .00      137.5      137.5 CIRC 36                                12:42  12.70      138.0        73.0  COND. BACKWASH CIRC 36            13:13                      10.78      138.0        62.0 SWP  31                                        0.00            0.0      0.0 SWP  32                                      24.00            5.0      5.0 SWP  33                                      24.00            5.0      5.0 SWP  34          22:17              22:40    0.38            5.0      0.1  PT-Q092D SWP  35                              22:17  22.28            5.0      4.6  PT-Q092D SWP  35          22:40                        1.33            5.0      0.3 SWP  36                                        0.00            0.0      0.0 SWP  37                                        0.00            0.0      0.0 SWP  38                                        0.00            0.0      0.0 SWP  39                                        0.00            0.0      0.0 MINIMUM FLOW .........................                    ...... 693.0 MAXIMUM FLOW .........................                    ...... 836.0 TOTAL FLOW ...........................                    ...... 824.8 SITE TOTAL ...........................                    ...... 1677.2
 
DAILY PUMP OPERATION LOG                      76 INDIAN POINT MONTHLY ENVIRONMENTAL      REPORT 06/04/07 AVE FLOW    FLOW RATE    RATE PUMP              ON          OFF    HOURS      (KGPM)    (KG PM)  COMMENTS CIRC 11                                  0.00        0.0.      0.0 CIRC 12                                  0.00        0.0      0.0 SWP  11                                0.00        0.0      0.0 SWP  12                                0.00        0.0      0.0 MINIMUM FLOW ...............                                    0.0 MAXIMUM FLOW ...............                                    0.0 TOTAL FLOW .................                                    0.0 CIRC 21                                24.00      140.0    140.0 CIRC 22                                24.00      140.0    140.0 CIRC 23                                24 .00    140.0    140.0 CIRC 24                                24.00      140.0    140.0 CIRC 25                                24 .00    140.0    140.0 CIRC 26                                24.00      140.0    140.0 SWP  21                                0.00        0.0        0.0 SWP  22                                24.00        5.0        5.0 SWP  23                                24 .00      5.0      5.0 SWP  24                                0.00        0.0        0.0 SWP  25                                24.00        5.0      5.0 SWP  26                                24 .00      5.0      5.0 MINIMUM FLOW                                                860.0 MAXIMUM FLOW                                                860.0 TOTAL FLOW                                                  860.0 CIRC 31                          9:50    9.83      132.5      54.3    SPEED CHANGE CIRC 31            9:50                14.17      140.0      82.6 CIRC 32                          9:50    9.83      132.5      54.3    SPEED CHANGE CIRC 32            9:50                14.17      140.0      82.6 CIRC 33                        9:50    9.83      137.5      56.3    SPEED CHANGE CIRC 33            9:50                14.17      140.0      82. 6 CIRC 34                        9:50    9.83      138.0      56.5    SPEED CHANGE CIRC 34            9:50                14.17      140.0      82.6 CIRC 35                        9:50    9.83      137.5      56.3    SPEED CHANGE CIRC 35            9:50        14:24    4.57      140.0      26.6    COND. BACKWASH CIRC 35            15:02                8.97      140.0      52.3 CIRC 36                        9:50    9.83      138.0      56.5    SPEED CHANGE CIRC 36            9:50                14.17      140.0      82.6 SWP 31                                  0. 00      0.0      0.0 SWP 32                                  24 .00      5.0      5.0 SWP  33                                24.00        5.0      5.0 SWP  34                                0.00        0.0      0.0 SWP  35                                24.00        5.0      5.0 SWP  36                                0.00        0.0      0.0 SWP  37                                0.00        0.0      0.0 SWP  38                                0.00        0.0      0.0 SWP  39                                0.00        0.0      0.0 MINIMUM FLOW .......                                        715.0 MAXIMUM FLOW .......                                        855.0 TOTAL FLOW .........                                        841.5 SITE TOTAL ..........                                      1701.5
 
DAILY PUMP OPERATION LOG                      77 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 06/05/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF                  HOURS          (KGPM)  (KGPM) COMMENTS CIRC 11                                                        0.00            0.0      0.0 CIRC 12                                                        0.00            0.0      0.0 SWP  12                                                        0.00            0.0      0.0 SWP  12                                                        0.00            0.0      0.0 MINIMUM FLOW                            ................................                0.0 MAXIMUM FLOW    ................................                                        0.0 TOTAL FLOW  ..................................                                          0.0 CIRC 21                                                      24.00          140.0    140.0 CIRC 22                                                      24.00          140.0    140.0 CIRC 23                                                      24.00          140.0    140.0 CIRC 24                                                      24.00          140.0    140.0 CIRC 25                                                      24.00          140.0    140.0 CIRC 26                                                      24.00          140.0    140.0 SWP  21                                                        0.00            0.0      0.0 SWP  22                                                      24.00            5.0      5.0 SWP  23                                                      24.00            5.0      5.0 SWP  24                                                        0.00            0.0      0.0 SWP 25                                                        24.00            5.0      5.0 SWP 26                                                        24.00            5.0      5.0 MINIMUM FLOW ................................                                        860.0 MAXIMUM FLOW ................................                                        860.0 TOTAL FLOW ..................................                                        860.0 CIRC 31                                                      24.00          140.0    140.0 CIRC 32                                                      24.00          140.0    140.0 CIRC 33                                                      24.00          140.0    140.0 CIRC 34                                                      24.00          140.0    140.0 CIRC 35                                                      24.00          140.0    140.0 CIRC 36                                                      24.00          140.0    140.0 SWP  31                                                        0.00            0.0      0.0 SWP  32                                                      24.00            5.0      5.0 SWP  33                                                      24.00            5.0      5.0 SWP  34                                                        0.00            0.0      0.0 SWP  35                                                    24.00              5.0      5.0 SWP  36                                                        0.00            0.0      0.0 SWP  37                                                        0.00            0.0      0.0 SWP  38                                                        0.00            0.0      0.0 SWP  39                                                        0.00            0.0      0.0 MINIMUM FLOW ................................                                        855.0 MAXIMUM FLOW ................................                                        855.0 TOTAL FLOW ..................................                                        855.0 SITE TOTAL . .................................                                      1715.0
 
DAILY PUMP OPERATION LOG                  78 INDIAN POINT MONTHLY ENVIRONMENTAL                      REPORT 06/06/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                    OFF                  HOURS      (KGPM)  (KGPM)  COMMENTS CIRC 11                                                          0.00      0.0      0 0 CIRC 12                                                          0.00      0.0      0.0 SWP  11                                                        0.00      0.0      0.0 SWP  12                                                        0.00      0.0      0.0 MINIMUM  LOW                      ................................          0    0.0 MAXIMUM FLOW ................................                                        0.0 TOTAL FLOW ..................................                                        0.0 CIRC 21                                                      24.00      140.0  140.0 CIRC 22                                                      24.00      140.0  140.0 CIRC 23                                                      24.00      140.0  140.0 CIRC 24                                                      24.00      140.0  140.0 CIRC 25                                                      24.00      140.0  140.0 CIRC 26                                                      24.00      140.0  140.0 SWP  21                                                        0.00      0.0      0.0 SWP  22                                                      24.00        5.0      5.0 SWP  23                                                      24.00        5.0      5.0 SWP  24                                                        0.00      0.0      0.0 SWP  25                                                      24.00        5.0      5.0 SWP  26                                                      24.00        5.0      5.0 MINIMUM FLOW ................................                                    860.0 MAXIMUM FLOW ................................                                    860.0 TOTAL FLOW ..................................                                    860.0 CIRC 31                                                      24.00      140.0  140.0 CIRC 32                                                      24.00      140.0  140.0 CIRC 33                                                      24.00      140.0  140.0 CIRC 34                                                      24.00      140.0  140.0 CIRC 35                                                      24.00      140.0  140.0 CIRC 36                                                      24.00      140.0  140.0 SWP  31                                                        0.00        0.0      0.0 SWP  32                                                      24.00        5.0      5.0 SWP  33                                                      24.00        5.0      5.0 SWP  34                                                        0.00        0.0      0.0 SWP  35                                                      24.00        5.0      5.0 SWP  36                                                        0.00        0.0      0.0 SWP  37                                                        0.00        0.0      0.0 SWP  38                                                        0.00        0.0      0.0 SWP 39                                                          0.00        0.0      0.0 MINIMUM FLOW ................................                                    855.0 MAXIMUM FLOW ................................                                    855.0 TOTAL FLOW ..................................                                    855.0 SITE TOTAL ..................................                                    1715.0
 
DAILY PUMP OPERATION LOG                            79 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 06/07/07 AVE FLOW        FLOW RATE        RATE PUMP                ON                  OFF            HOURS              (KGPM)      (KGPM) COMMENTS CIRC 11                                                    0.00                0.0 CIRC 12                                                    0.00                0.0        0.0 SWP    12                                                  0.00                0.0        0.0 SWP  12                                                  0.00                0.0        0.0 0.0 MINIMUM FLOW ......                                                                        0.0
                                  . . . . . . . . ,.  . . . . . . .. &deg;. . . . . . .. .
MAXIMUM FLOW ......                                                                        0.0 TOTAL FLOW ........                                                                        0.0 CIRC 21                                                  24 .00            140.0        140.0 CIRC 22                                                  24.00            140.0        140.0 CIRC 23                                                  24.00            140.0        140.0 CIRC 24                                                  24 .00            140.0        140.0 CIRC 25                                                  24 .00            140.0        140.0 CIRC 26                                                  24.00            140.0        140.0 SWP 21              2:17                                21.72                5.0        4.5 SWP 22                                                  24.00                5.0        5.0 SWP 23                                  2:18              2 .30              5.0        0.5 SWP  24                                                  0.00                0.0        0.0 SWP  25                                                24 .00                5.0        5.0 SWP  26                                                24.00                5.0        5.0 MINIMUM FLOW .............                          .................                  860.0 MAXIMUM FLOW .............                          .................                  865.0 TOTAL FLOW ...............                          .................                  860.0 CIRC 31                                                  24.00            140.0        140.0 CIRC 32                                                  24.00            140.0        140.0 CIRC 33                                                  24.00            140.0        140.0 CIRC 34                                                  24.00            140.0        140.0 CIRC 35                                                  24.00            140.0        140.0 CIRC 36                                                  24.00            140.0        140.0 SWP 31                                                    0.00                0.0        0.0 SWP 32                                                  24.00                5.0        5.0 SWP 33                                                  24.00                5.0        5.0 SWP 34                                                    0.00                0.0        0.0 SWP  35                                                24.00                5.0        5.0 SWP 36                                                    0.00                0.0        0.0 SWP  37                                                  0.00                0.0        0.0 SWP  38                                                  0.00                0.0        0.0 SWP 39              12:31                12:48            0.28                5.0        0.1 MINIMUM FLOW ........                                                                  855.0 MAXIMUM FLOW ........                                                                  860.0 TOTAL FLOW ..........                                                                  855.1 SITE TOTAL  ..................................                                        1715.1
 
DAILY PUMP OPERATION LOG                      80 INDIAN POINT MONTHLY ENVIRONMENTAL          REPORT 06/08/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF    HOURS      (KGPM)  (KG PM)  COMMENTS CIRC 11                                          0.00        0.0      0.0 CIRC 12                                          0.00        0.0      0.0 SWP  11                                        0.00        0.0      0.0 SWP  12            16:25              16:26    0.02      16.0      0.0 MINIMUM FLOW                                                          0.0 MAXIMUM FLOW                                                        16.0 TOTAL FLOW                                                            0.0 CIRC 21                                22:06  22.10      140.0  128.9    COND. BACKWASH CIRC 21            22:26                        1.57      140.0      9.1 CIRC 22                                21:40  21.67      140.0  126.4    COND. BACKWASH CIRC 22            22:01                        1.98      140.0    11.6 CIRC 23                                21:10  21.17      140.0  123.5    COND. BACKWASH CIRC 23            21:33                        2.45      140.0    14.3 CIRC 24                                        24.00      140.0  140.0 CIRC 25                                        24 .00    140.0  140.0 CIRC 26                                        24.00      140.0  140.0 SWP  21                                        24.00        5.0      5.0 SWP 22                                          24 .00      5.0      5.0 SWP 23              3:37                4:08    0.52        5.0      0.1 SWP  24            12:28              12:40    0.20        5.0      0.0 SWP  24            15:50              15:53    0.05        5.0      0.0 SWP  25                                        24.00        5.0      5.0 SWP 26                                          24.00        5.0      5.0 MINIMUM FLOW                                                      720.0 MAXIMUM FLOW                                                      865.0 TOTAL FLOW ..                                                      853.9 CIRC 31                                        24.00      140.0  140.0 CIRC 32                                        24 .00    140.0  140.0 CIRC 33                                        24.00      140.0  140.0 CIRC 34                                        24 .00    140.0  140.0 CIRC 35                                        24 .00    140.0  140.0 CIRC 36                                        24.00      140.0  140.0 SWP  31                                        0.00        0.0      0.0 SWP  32                                        24.00        5.0      5.0 SWP  33                                        24 .00      5.0      5.0 SWP  34                                        0.00        0.0      0.0 SWP  35                                        24. 00      5.0      5.0 SWP  36                                        0.00        0.0      0.0 SWP  37                                        0. 00      0.0      0.0 SWP  38                                        0.00        0.0      0.0 SWP  39                                        0.00        0.0      0.0 MINIMUM FLOW ...                                                  855.0 MAXIMUM  FLOW  ...                                                855.0 TOTAL FLOW .....                                                  855.0 SITE TOTAL ..................................                    1708.9
 
DAILY PUMP OPERATION LOG                    81 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 06/09/07 AVE FLOW      FLOW RATE      RATE PUMP                ON                  OFF      HOURS      (KGPM)  (KGPM) COMMENTS CIRC 11                                            0.00        0.0      0.0 CIRC 12                                            0.00        0.0      0.0 SWP    11                                          0.00        0.0      0.0 SWP 12                                            0.00        0.0      0.0 MINIMUM FLOW ................................                            0.0 MAXIMUM FLOW ................................                            0.0 TOTAL FLOW ..................................                            0.0 CIRC 21                                          24.00      140.0    140.0 CIRC 22                                          24.00      140.0    140.0 CIRC 23                                          24.00      140.0    140.0 CIRC 24                                  16:14  16.23      140.0      94.7  COND. BACKWASH CIRC 24            16:39                          7.35      140.0      42. 9 CIRC 25                                  16:46  16.77      140.0      97.8  COND. BACKWASH CIRC 25            17:10                          6.83      140.0      39.9 CIRC 26                                  17:14  17.23      140.0    100.5  COND. BACKWASH CIRC 26            17:41                          6. 32    140.0      36.8 SWP  21                                          24 .00        5.0      5.0 SWP  22                                          24.00        5.0      5.0 SWP  23                                          0.00        0.0      0.0 SWP 24                                            0.00        0.0      0.0 SWP  25                                          24.00        5.0      5.0 SWP  26                                          24.00        5.0      5.0 MINIMUM FLOW ...............                                          720.0 MAXIMUM FLOW ...............                                          860.0 TOTAL FLOW .................                                          852.6 CIRC 31                                          24.00      140.0    140.0 CIRC 32                                          24.00      140.0    140.0 CIRC 33                                          24.00      140.0    140.0 CIRC 34                                          24.00      140.0    140.0 CIRC 35                                          24.00      140.0    140.0 CIRC 36                                          24.00      1.40.0  140.0 SWP  31                                          0.00        0.0      0.0 SWP 32                                            24.00        5.0      5.0 SWP 33                                            24.00        5.0      5.0 SWP 34                                            0.00        0.0      0.0 SWP  35                                          24.00        5.0      5.0 SWP 36                                            0.00        0.0      0.0 SWP 37                                            0.00        0.0      0.0 SWP  38                                          0.00        0.0      0.0 SWP  39                                          0.00        0.0      0.0 MINIMUM FLOW                                                          855.0 MAXIMUM FLOW                                                          855.0 TOTAL FLOW ....                                                      855.0 SITE TOTAL  ..................................                      1707.6
 
DAILY PUMP OPERATION LOG                      82 INDIAN POINT MONTHLY ENVIRONMENTAL                  REPORT 06/10/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF          HOURS          (KGPM)  (KGPM)  COMMENTS CIRC 11                                                0.00          0.0      0.0 CIRC 12                                                0.00          0.0      0.0 SWP    11                                              0.00          0.0      0.0 SWP  12                                                0.00          0.0      0.0 MINIMUM FLOW ................................                                  0.0 MAXIMUM FLOW ................................                                  0.0 TOTAL FLOW ..................................                                  0.0 CIRC 21                                              24.00          140.0  140.0 CIRC 22                                              24.00          140.0  140.0 CIRC 23                                              24.00          140.0  140.0 CIRC 24                                              24.00          140.0  140.0 CIRC 25                                              24.00          140.0  140.0 CIRC 26                                              24.00          140.0  140.0 SWP  21                                              24.00            5.0      5.0 SWP  22                                              24.00            5.0      5.0 SWP  23                                                0.00          0.0      0.0 SWP 24                                                  0.00          0.0      0.0 SWP 25                                              24.00            5.0      5.0 SWP  26                                            24.00            5.0      5.0 MINIMUM FLOW ..............                  ..................            860.0 MAXIMUM FLOW ..............                  ..................            860.0 TOTAL FLOW ................                  ..................            860.0 CIRC 31                                              24.00          140.0  140.0 CIRC 32                                              24.00          140.0  140.0 CIRC 33                                              24.00          140.0  140.0 CIRC 34                                              24.00          140.0  140.0 CIRC 35                                              24.00          140.0  140.0 CIRC 36                                              24.00          140.0  140.0 SWP  31          13:11                              10.82            5.0      2.3 SWP  32                                            24.00            5.0      5.0 SWP  33                                13:11        13.18            5.0      2.7 SWP  34                                                0.00          0.0      0.0 SWP  35                                            24.00            5.0      5.0 SWP  36                                                0.00          0.0      0.0 SWP  37                                                0.00          0.0      0.0 SWP  38                                                0.00          0.0      0.0 SWP 39                                                  0.00          0.0      0.0 MINIMUM FLOW ...............                                                855.0 MAXIMUM FLOW ..............                                                  860.0 TOTAL FLOW ................                                                  855.0 SITE TOTAL ..................................                              1715.0
 
DAILY PUMP OPERATION LOG                            83 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 06/11/07 AVE FLOW        FLOW RATE        RATE PUMP                ON                  OFF            HOURS              (KGPM)      (KGPM) COMMENTS CIRC 11                                                  0.00 CIRC 12                                                  0.00                0.0        0.0 SWP  11                                                  0.00                0.0        0.0 SWP  12                                                  0.00                0.0        0.0 MINIMUM FLOW            ........................                              0.0        0.0 MAXIMUM FLOW ........................                                                      0.0 0.0 TOTAL FLOW ..........................                                                      0.0 CIRC 21                                                24.00            140.0        140.0 CIRC 22                                                24.00            140.0        140.0 CIRC 23                                                24.00            140.0        140.0 CIRC 24                                                24.00            140.0        140.0 CIRC 25                                                24.00            140.0        140.0 CIRC 26                                                24.00            140.0        140.0 SWP  21                                                24.00                  5.0        5.0 SWP  22                                                24.00                5.0        5.0 SWP  23                                                  0.00                0.0        0.0 SWP  24            20:53                21:52            0.98                5.0        0.2 SWP  25                                                24.00                  5.0        5.0 SWP 26                                  20:54          20.90                5.0        4.4 SWP 26              21:22                                2.63                5.0        0.5 MINIMUM FLOW ......              . . . . . . . . . . . . . . . . . . . . . . . . . . 860.0 MAXIMUM FLOW ......                                                                    865.0
                                  . . . . . . . . . . . . &deg;. . . . . . . . . . .. o..
TOTAL FLOW ........                                                                    860.1 CIRC 31                                                24 .00            140.0        140.0 CIRC 32                                                24.00            140.0        140.0 CIRC 33                                                24.00            140.0        140.0 CIRC 34                                                24 .00            140.0        140.0 CIRC 35                                                24.00            140.0        140.0 CIRC 36                                                24.00            140.0        140.0 SWP  31                                                24 .00                5.0        5.0 SWP  32                                                24.00                5.0        5.0 SWP  33                                                  0.00                0.0        0.0 SWP  34                                                  0.00                0.0        0.0 SWP  35                                                24.00                5.0        5.0 SWP  36                                                  0.00                0.0        0.0 SWP  37                                                  0.00                0.0        0.0 SWP  38                                                  0.00                0.0        0.0 SWP  39                                                  0.00                0.0        0.0 MINIMUM FLOW ...............                                                          855.0 MAXIMUM FLOW ...............                                                          855.0 TOTAL FLOW .................                                                          855.0 SITE TOTAL  ..................................                                        1715.1
 
DAILY PUMP OPERATION LOG                  84 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 06/12/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF                  HOURS      (KGPM)  (KGPM) COMMENTS CIRC 1---                                                      0.00      0.0      0.0 CIRC 12                                                        0.00      0.0      0.0 SWP  11                                                        0.00      0.0      0.0 SWP  12                                                        0.00      0.0      0.0 MINIMUM FLOW                      ................................                0.0 MAXIMUM FLOW ................................                                      0.0 TOTAL FLOW ...................................                                      0.0 CIRC 21                                                      24.00      140.0  140.0 CIRC 22                                                      24.00      140.0  140.0 CIRC 23                                                      24.00      140.0  140.0 CIRC 24                                                      24.00      140.0  140.0 CIRC 25                                                      24.00      140.0  140.0 CIRC 26                                                      24.00      140.0  140.0 SWP  21                                                    24.00        5.0      5.0 SWP  22                                                    24.00        5.0      5.0 SWP 23                                                          0.00      0.0      0.0 SWP 24                                                          0.00      0.0      0.0 SWP  25                                                    24.00        5.0      5.0 SWP 26                                                      24.00        5.0      5.0 MINIMUM FLOW ................................                                    860.0 MAXIMUM FLOW ................................                                    860.0 TOTAL FLOW ..................................                                    860.0 CIRC 31                                                      24.00      140.0  140.0 CIRC 32                                                      24.00      140.0  140.0 CIRC 33                                                      24.00      140.0  140.0 CIRC 34                                                      24.00      140.0  140.0 CIRC 35                                                      24.00      140.0  140.0 CIRC 36                                                      24.00      140.0  140.0 SWP 31                                  23:52                23.87        5.0      5.0 SWP 32                                                      24.00        5.0      5.0 SWP 33                                                          0.00      0.0      0.0 SWP  34                                                        0.00      0.0      0.0 SWP  35                                                    24.00        5.0      5.0 SWP  36          23:12                                        0.80      5.0      0.2 SWP  37                                                        0.00      0.0      0.0 SWP  38                                                        0.00      0.0      0.0 SWP  39                                                        0.00      0.0      0.0 MINIMUM FLOW ................................                                    855.0 MAXIMUM FLOW ................................                                    860.0 TOTAL FLOW ..................................                                    855.1 SITE TOTAL . .................................                                  1715.1
 
DAILY PUMP OPERATION LOG                85 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 06/13/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF                  HOURS      (KGPM)  (KGPM) COMMENTS CIRC 11                                                        0.00        0.0    0.0 CIRC 12                                                        0.00        0.0    0.0 SWP  11          13:45                                    1Q.25        16.0      6.8 SWP  12                                                        0.00        0.0    0.0 MINIMUM FLOW ................................                                      0.0 MAXIMUM FLOW .................................                                    16.0 TOTAL FLOW ..................................                                      6.8 CIRC 21                                                      24.00      140.0  140.0 CIRC 22                                                      24.00      140.0  140.0 CIRC 23                                                      24.00      140.0  140.0 CIRC 24                                                      24.00      140.0  140.0 CIRC 25                                                      24.00      140.0  140.0 CIRC 26                                                      24.00      140.0  140.0 SWP  21                                                    24.00          5.0    5.0 SWP 22                                                      24.00        5.0      5.0 SWP 23                                                          0.00        0.0    0.0 SWP  24                                                        0.00      0.0      0.0 SWP 25                                                      24.00        5.0      5.0 SWP 26                                                      24.00        5.0      5.0 MINIMUM FLOW ................................                                    860.0 MAXIMUM FLOW ...........                      1 ....................            860.0 TOTAL FLOW ..................................                                    860.0 CIRC 31                                                      24.00      140.0  140.0 CIRC 32                                                      24.00      140.0  140.0 CIRC 33                                                    24.00        140.0  140.0 CIRC 34                                                      24.00      140.0  140.0 CIRC 35                                                      24.00      140.0  140.0 CIRC 36                                                    24.00        140.0  140.0 SWP  31                                                        0.00      0.0    0.0 SWP  32                                                    24.00          5.0    5.0 SWP 33                                                          0.00      0.0    0.0 SWP  34                                                      0.00        0.0    0.0 SWP  35                                                    24.00          5.0    5.0 SWP  36                                                    24.00          5.0    5.0 SWP  37                                                      0.00        0.0    0.0 SWP  38                                                      0.00        0.0    0.0 SWP  39                                                      0.00        0.0    0.0 MINIMUM FLOW ................................                                    855.0 MAXIMUM FLOW ................................                                    855.0 TOTAL FLOW ..................................                                    855.0 SITE TOTAL . .................................                                  1721.8
 
DAILY PUMP OPERATION LOG                  86 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 06/14/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                    OFF    HOURS          (KGPM)  (KGPM) COMMENTS CIRC 11                                          0.00            0.0    0 0 CIRC 12                                          0.00            0.0    0.0 SWP  11                                        24.00            16.0    16.0 SWP  12                                        0.00            0.0    0.0 MINIMUM FLOW ................................                            16.0 MAXIMUM FLOW ................................                            16.0 TOTAL FLOW ..................................                            16.0 CIRC 21                                        24.00          140.0  140.0 CIRC 22                                        24.00          140.0  140.0 CIRC 23                                        24.00          140.0  140.0 CIRC 24                                        24.00          140.0  140.0 CIRC 25                                        24.00          140.0  140.0 CIRC 26                                        24.00          140.0  140.0 SWP 21                                          24.00            5.0    5.0 SWP 22                                          24.00            5.0    5.0 SWP 23                                          0.00            0.0    0.0 SWP  24                                        0.00            0.0    0.0 SWP  25                                        24.00            5.0    5.0 SWP  26                                        24.00            5.0    5.0 MINIMUM FLOW ................................                          860.0 MAXIMUM FLOW . .......................                .........      860.0 TOTAL FLOW ..................................                          860.0 CIRC 31                                        24.00          140.0  140.0 CIRC 32                                        24.00          140.0  140.0 CIRC 33                                        24.00          140.0  140.0 CIRC 34                                        24.00          140.0  140.0 CIRC 35                                        24.00          140.0  140.0 CIRC 36                                        24.00          140.0  140.0 SWP 31                                          0.00            0.0    0.0 SWP  32                                        24.00            5.0    5.0 SWP  33                                        0.00            0.0    0.0 SWP  34                                        0.00            0.0    0.0 SWP  35                                        24.00            5.0    5.0 SWP  36                                        24.00            5.0    5.0 SWP  37                                        0.00            0.0    0.0 SWP  38                                        0.00            0.0    0.0 SWP  39                                        0.00            0.0    0.0 MINIMUM FLOW ................................                          855.0 MAXIMUM FLOW ................................                          855.0 TOTAL FLOW ..................................                          855.0 SITE TOTAL ..................................                        1731.0
 
DAILY PUMP OPERATION LOG                      87 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 06/15/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                    OFF            HOURS              (KGPM)    (KGPM) COMMENTS CIRC 11                                                  0.00                0.0      0.0 CIRC 12                                                  0.00                0.0      0.0 SWP  11                                                24.00              16.0      16.0 SWP  12                                                  0.00                0.0      0.0 MINIMUM FLOW . .................                          ..............              16.0 MAXIMUM FLOW ................................                                          16.0 TOTAL FLOW ....................                              .............            16.0 CIRC 21                                                  24.00              140.0    140.0 CIRC 22                                                  24.00              140.0    140.0 CIRC 23                                                  24.00              140.0    140.0 CIRC 24                                                  24.00              140.0    140.0 CIRC 25                                                  24.00              140.0    140.0 CIRC 26                                                  24.00              140.0    140.0 SWP  21                                                24.00                5.0      5.0 SWP 22                                                  24.00                5.0      5.0 SWP 23                                                    0.00                0.0      0.0 SWP 24                                                    0.00                0.0      0.0 SWP  25                                                24.00                5.0      5.0 SWP  26                                                24.00                5.0      5.0 MINIMUM FLOW ................................                                        860.0 MAXIMUM FLOW ................................                                        860.0 TOTAL FLOW ..................................                                        860.0 CIRC 31                                                  24.00              140.0    140.0 CIRC 32                                                  24.00              140.0    140.0 CIRC 33                                                  24.00              140.0    140.0 CIRC 34                                                  24.00              140.0    140.0 CIRC 35                                                  24.00              140.0    140.0 CIRC 36                                                  24.00              140.0    140.0 SWP  31                                                  0.00                0.0      0.0 SWP 32                                                  24.00                5.0      5.0 SWP  33                                                  0.00                0.0      0.0 SWP 34                                                    0.00                0.0      0.0 SWP  35                                                24.00                5.0      5.0 SWP 36                                                  24.00                5.0      5.0 SWP 37                                                    0.00                0.0      0.0 SWP 38                                                    0.00                0.0      0.0 SWP  39                                                  0.00                0.0      0.0 MINIMUM FLOW          ................................                            .. 855.0 MAXIMUM FLOW ................................                                        855.0 TOTAL FLOW ..................................                                        855.0 SITE TOTAL ..................................                                      1731.0
 
DAILY PUMP OPERATION LOG                    88 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 06/16/07 AVE FLOW      FLOW RATE      RATE PUMP              ON                  OFF      HOURS      (KGPM)    (KGPM) COMMENTS CIRC 11                                            0.00          0.0      0.0 CIRC 12                                            0.00          0.0      0.0 SWP 11                                  16:52    16.87      16.0      11.2 SWP 12                                            0.00          0.0      0.0 MINIMUM FLOW ................                                  .....      0.0 MAXIMUM FLOW ................                                ..... 16.0 TOTAL FLOW ..................                                ..... 11.2 CIRC 21                                          24.00      140.0    140.0 CIRC 22                                          24.00      140.0    140.0 CIRC 23                                          24.00      140.0    140.0 CIRC 24                                  10:00    10.00      140.0      58.3  COND. BACKWASH CIRC 24            10:26                          13.57      140.0      79.1 CIRC 25                                10:28    10.47      140.0      61. 1 COND. BACKWASH CIRC 25            10:53-                        13.12      140.0      76.5 CIRC 26                                11:03    11.05      140.0      64.5  COND. BACKWASH CIRC 26            11:31                          12.48      140.0      72.8 SWP  21                                          24.00        5.0      5.0 SWP  22                                          24.00        5.0      5.0 SWP  23                                          0.00        0.0      0.0 SWP  24                                          0.00        0.0      0.0 SWP  25                                          24.00        5.0      5.0 SWP  26                                          24.00        5.0      5.0 MINIMUM FLOW . ................................                      720.0 MAXIMUM FLOW ................................                        860.0 TOTAL FLOW ..................................                        852.3 CIRC 31                                          24.00      140.0    140.0 CIRC 32                                          24.00      140.0    140.0 CIRC 33                                          24.00      140.0    140.0 CIRC 34                                          24.00      140.0    140.0 CIRC 35                                          24.00      140.0    140.0 CIRC 36                                          24 .00    140.0    140.0 SWP 31                                            0. 00        0.0      0.0 SWP  32                                          24 .00        5.0      5.0 SWP  33                                          0.00        0.0      0.0 SWP  34          9:55                9:57      0.03        5.0      0.0 SWP  34          13:25                          10.58        5.0      2.2 SWP 35                                  13:44    13.73        5.0      2.9 SWP  36                                          24.00        5.0      5.0 SWP  37                                          0.00        0.0      0.0 SWP  38                                          0.00        0.0      0.0 SWP  39                                          0.00        0.0      0.0 MINIMUM FLOW                                                          855.0 MAXIMUM FLOW                                                          860.0 TOTAL FLOW ..                                                        855.1 SITE TOTAL ..................................                        1718.6
 
DAILY PUMP OPERATION LOG                                89 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 06/17/07 AVE FLOW        FLOW RATE        RATE PUMP              ON                      OFF            HOURS            (KGPM)      (KGPM) COMMENTS CIRC 11                                                      0.00              0.0        0.0 CIRC 12                                                      0.00              0.0        0.0 SWP    11                                                    0.00              0.0        0.0 SWP  12                                                    0.00              0.0        0.0 MINIMUM FLOW ........                                                                      0.0 MAXIMUM FLOW ........                                                                      0.0 TOTAL FLOW ..........                                                                      0.0 CIRC 21                                    5:18              5.30          140.0        30.9  COND. BACKWASH CIRC 21            5:44                                    18.27            140.0      106.6 CIRC 22                                    4:48              4.80          140.0        28.0  COND. BACKWASH CIRC 22            5:14                                    18.77            140.0      109.5 CIRC 23                                    4:17              4.28          140.0        25.0  COND. BACKWASH CIRC 23            4:44                                    19.27            140.0      112.4 CIRC 24                                                    24.00            140.0      140.0 CIRC 25                                                    24.00            140.0      140.0 CIRC 26                                                    24.00            140.0      140.0 SWP  21                                                  24.00                5.0        5.0 SWP  22                                                  24.00                5.0        5.0 SWP  23                                                    0.00              0.0        0.0 SWP  24                                                    0.00              0.0        0.0 SWP  25                                                  24.00                5.0        5.0 SWP  26                                                  24.00                5.0        5.0 MINIMUM FLOW ........                                                                  720.0 MAXIMUM FLOW ........                                                                  860.0 TOTAL FLOW ..........                    . . . . . &deg;. . . . . .. . . .                  852.3 CIRC 31                                    16:01          16.02            140.0        93. 4 COND. BACKWASH CIRC 31            16:34                                    7.43          137.5        42.6 CIRC 32                                    15:20          15.33            140.0        89.4  COND. BACKWASH CIRC 32            15:52                                    8.13          138.0        46.8 CIRC 33                                    14:29          14.48            140.0        84.5  COND. BACKWASH CIRC 33            15:10                                    8.83          138 .0        50.8 CIRC 34                                    10:00          10.00            140.0        58. 3 COND. BACKWASH CIRC 34            10:33                                  13.45            140.0        78.5 CIRC 35                                    10:49          10.82            140.0        63. 1 COND. BACKWASH CIRC 35            11:19                                  12. 68          138.0        72.9 CIRC 36                                    11:38          11.63            140.0        67.9  COND. BACKWASH CIRC 36            12:06                                  11.90            138.0        68.4 SWP 31                                                      0.00              0.0        0.0 SWP 32                                                    24 .00              5.0        5.0 SWP 33                                                      0.00              0.0        0.0 SWP 34                                                    24.00                5.0        5.0 SWP 35                                                      0.00              0.0        0.0 SWP 36                                                    24.00                5.0        5.0 SWP 37                                                      0.00              0.0        0.0 SWP 38                                                      0.00              0.0        0.0 SWP  39                                                    0.00              0.0        0.0 MINIMUM FLOW ........                            O. . . . . . . . . . . . . . . . . . .
                                        . . . . .*                                      707.0 MAXIMUM FLOW    ................................                                        855.0 TOTAL FLOW ..................................                                          831.6
 
DAILY PUMP OPERATION LOG              90 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 06/17/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF      HOURS    (KGPM)  (KG PM) COMMENTS SITE TOTAL ..................................                    1683.9
 
DAILY PUMP OPERATION LOG                  91 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 06/18/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF                  HOURS        (KGPM)  (KGPM) COMMENTS CIRC 11                                                          0.00        0.0      0.0 CIRC 12                                                          0.00        0.0      0.0 SWP  12                                                        0.00        0.0      0.0 SWP  12                                                        0.00        0.0      0.0 MINIMUM FLOW                          ................................                0.0 MAXIMUM FLOW    ................................                                    0.0 TOTAL FLOW ..................................                                        0.0 CIRC 21                                                      24.00        140.0    140.0 CIRC 22                                                      24.00        140.0    140.0 CIRC 23                                                      24.00        140.0    140.0 CIRC 24                                                      24.00        140.0    140.0 CIRC 25                                                      24.00        140.0    140.0 CIRC 26                                                      24.00        140.0    140.0 SWP  21                                                      24.00          5.0      5.0 SWP 22                                                        24.00          5.0      5.0 SWP  23                                                        0.00        0.0      0.0 SWP  24                                                        0.00        0.0      0.0 SWP 25                                                        24.00          5.0      5.0 SWP 26                                                        24.00          5.0      5.0 MINIMUM FLOW ................................                                      860.0 MAXIMUM FLOW ................................                                      860.0 TOTAL FLOW ..................................                                      860.0 CIRC 31                                                      24.00        137.5  137.5 CIRC 32                                                      24.00        138.0  138.0 CIRC 33                                                      24.00        138.0  138.0 CIRC 34                                                      24.00        140.0  140.0 CIRC 35                                                      24.00        138.0  138.0 CIRC 36                                                      24.00        138.0  138.0 SWP  31                                                        0.00        0.0      0.0 SWP  32                                                    24.00          5.0      5.0 SWP  33                                                        0.00        0.0      0.0 SWP  34                                                    24.00          5.0      5.0 SWP  35                                                        0.00        0.0      0.0 SWP  36                                                    24.00          5.0      5.0 SWP  37                                                        0.00        0.0      0.0 SWP 38                                                          0.00        0.0      0.0 SWP 39                                                          0.00        0.0      0.0 MINIMUM FLOW ................................                                      844.5 MAXIMUM FLOW ................................                                      844.5 TOTAL FLOW ..................................                                      844.5 SITE TOTAL . .................................                                    1704.5
 
DAILY PUMP OPERATION LOG                  92 INDIAN POINT MONTHLY ENVIRONMENTAL                      REPORT 06/19/07 AVE FLOW    FLOW RATE    RATE PUMP                ON                  OFF                  HOURS      (KGPM)  (KGPM)  COMMENTS CIRC 11                                                          0.00      0.0      0 0 CIRC 12                                                          0.00      0.0      0.0 SWP  11                                                        0.00      0.0      0.0 SWP  12                                                        0.00      0.0      0.0 MINIMUM FLOW                        .................................                0.0 MAXIMUM FLOW ................................                                        0.0 TOTAL FLOW  ..................................                                      0.0 CIRC 21                                                      24.00      140.0  140.0 CIRC 22                                                      24.00      140.0  140.0 CIRC 23                                                        24.00      140.0  140.0 CIRC 24                                                        24.00      140.0  140.0 CIRC 25                                                      24.00      140.0  140.0 CIRC 26                                                      24.00      140.0  140.0 SWP  21                                                      24.00        5.0      5.0 SWP  22                                                      24.00        5.0      5.0 SWP  23                                                        0.00      0.0      0.0 SWP  24                                                        0.00      0.0      0.0 SWP  25                                                      24.00        5.0      5.0 SWP  26                                                      24.00        5.0      5.0 MINIMUM FLOW ................................                                    860.0 MAXIMUM FLOW ................................                                    860.0 TOTAL FLOW ..................................                                    860.0 CIRC 31                                                      24.00      137.5  137.5 CIRC 32                                                      24.00      138.0  138.0 CIRC 33                                                      24.00      138.0  138.0 CIRC 34                                                      24.00      140.0  140.0 CIRC 35                                                      24.00      138.0  138.0 CIRC 36                                                      24.00      138.0  138.0 SWP  31                                                        0.00      0.0      0.0 SWP  32                                                      24.00        5.0      5.0 SWP 33                                                          0.00      0.0      0.0 SWP 34                                                        24.00        5.0      5.0 SWP 35                                                          0.00      0.0      0.0 SWP  36                                                      24.00        5.0      5.0 SWP 37                                                          0.00      0.0      0.0 SWP 38                                                          0.00      0.0      0.0 SWP  39                                                        0.00        0.0      0.0 MINIMUM FLOW ................................                                    844.5 MAXIMUM FLOW ................................                                    844.5 TOTAL FLOW ..................................                                    844.5 SITE TOTAL  ..................................                                  1704.5
 
DAILY PUMP OPERATION LOG                          93 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 06/20/07 AVE FLOW      FLOW RATE      RATE PUMP              ON                  OFF      HOURS            (KGPM)    (KGPM) COMMENTS CIRC 11                                            0.00              0.0    0.0 CIRC 12                                            0.00              0.0    0.0 SWP  11                                            0.00              0.0    0.0 SWP 12                                              0.00              0.0    0.0 MINIMUM FLOW ................................                                  0.0 MAXIMUM FLOW ................................                                  0.0 TOTAL FLOW ..................................                                  0.0 CIRC 21                                          24.00            140.0    140.0 CIRC 22                                          24.00            140.0    140.0 CIRC 23                                          24.00            140.0    140.0 CIRC 24                                          24.00            140.0    140.0 CIRC 25                                          24.00            140.0    140.0 CIRC 26                                          24.00            140.0    140.0 SWP 21                                          24.00                5.0    5.0 SW?  22                                        24.00                5.0    5.0 SWP  23                                            0.00              0.0    0.0 SWP  24                                            0.00              0.0    0.0 SWP  25                                        24.00                5.0    5.0 SWP  26                                        24.00                5.0    5.0 MINIMUM FLOW ..............                      ...............            860 .0 MAXIMUM FLOW ..............                      ...............            860 .0 TOTAL FLOW ................                      ...............            860.0 CIRC 31                                          24.00            137.5    137.5 CIRC 32                                          24.00            138.0    138.0 CIRC 33                                          24.00            138.0    138.0 CIRC 34                                          24.00            140.0    140.0 CIRC 35                                          24.00            138.0    138.0 CIRC 36                                8:37      8.62          138.0      49.5  PUMP TRIPPED CIRC 36            9:50                          14.17            138.0      81.5 SWP  31                                          0.00                0.0    0.0 SWP 32                                          24.00                5.0    5.0 SWP  33                                          0.00                0.0    0.0 SWP 34                                          24.00                5.0    5.0 SWP 35                                            0.00                0.0    0.0 SWP  36                                        24.00                5.0    5.0 SWP 37                                            0.00                0.0    0.0 SWP  38                                          0.00                0.0    0.0 SWP 39                                            0.00                0.0    0.0 MINIMUM FLOW ........................                            ...... 706.5 MAXIMUM FLOW ........................                            ...... 844.5 TOTAL FLOW ..........................                            ...... 837.5 SITE TOTAL . .................................                            1697.5
 
DAILY PUMP OPERATION LOG                          94 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 06/21/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF                  HOURS              (KGPM)  (KGPM) COMMENTS CIRC 11                                                        0.00                0.0      0 0 CIRC 12                                                        0.00                0.0      0.0 SWP  12                                                        0.00                0.0      0.0 SWP  12                                                        0.00                0.0      0.0 MINIMUM FLOW                      ................................                          0.0 MAXIMUM FLOW ................................                                                0.0 TOTAL FLOW .. ................................                                              0.0 CIRC  21                                                    24.00                140.0    140.0 CIRC  22                                                    24.00                140.0    140.0 CIRC  23                                                    24.00                140.0    140.0 CIRC  24                                                    24.00                140.0  140.0 CIRC  25                                                    24.00                140.0  140.0 CIRC  26                                                    24.00                140.0  140.0 SWP  21                                                    24.00                  5.0      5.0 SWP  22                                                    24.00                  5.0      5.0 SWP  23                                                        0.00                0.0      0.0 SWP  24                                                        0.00                0.0      0.0 SWP 25                                                      24.00                  5.0      5.0 SWP  26                                                    24.00                  5.0      5.0 MINIMUM FLOW ................................                                            860.0 MAXIMUM FLOW .... .                ............................                          860.0 TOTAL FLOW ..................................                                            860.0 CIRC 31                                                      24.00                137.5  137.5 CIRC 32                                                      24.00                138.0  138.0 CIRC 33                                                      24.00                138.0  138.0 CIRC 34                                                      24.00                140.0  140.0 CIRC 35                                                      24.00                138.0  138.0 CIRC 36                                                      24.00                138.0  138.0 SWP  31                                                        0.00                0.0      0.0 SWP  32                                                    24.00                  5.0      5.0 SWP 33                                                          0.00                0.0      0.0 SWP  34                                                    24.00                  5.0      5.0 SWP  35                                                        0.00                0.0      0.0 SWP  36                                                    24.00                  5.0      5.0 SWP  37                                                        0.00                0.0      0.0 SWP  38                                                        0.00                0.0      0.0 SWP  39                                                        0.00                0.0      0.0 MINIMUM FLOW . ................................                                          844.5 MAXIMUM FLOW ................................                                            844.5 TOTAL FLOW .....................                                    .............        844.5 SITE TOTAL . .................................                                          1704.5
 
DAILY PUMP OPERATION LOG            95 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 06/22/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF      HOURS    (KGPM)  (KGPM) COMMENTS CIRC 11                                          0.00      0.0      0.0 CIRC 12                                          0.00      0.0      0.0 SWP  11                                          0.00      0.0      0.0 SWP  12                                          0.00      0.0      0.0 MINIMUM FLOW ................................                        0.0 MAXIMUM FLOW ................................                        0.0 TOTAL FLOW ..................................                        0.0 CIRC 21                                          24.00    140.0  140.0 CIRC 22                                          24.00    140.0  140.0 CIRC 23                                          24.00    140.0  140.0 CIRC 24                                          24.00    140.0  140.0 CIRC 25                                          24.00    140.0  140.0 CIRC 26                                          24.00    140.0  140.0 SWP  21                                        24.00      5.0      5.0 SWP  22                                        24.00      5.0      5.0 SWP  23          4:42                  15:25  10.72      5.0      2.2 SWP  24                                          0.00      0.0      0.0 SWP  25                                        24.00      5.0      5.0 SWP  26                                        24.00      5.0      5.0 MINIMUM FLOW                                                      860.0
:MAXIMUM FLOW                                                      865.0 TOTAL FLOW .                                                      862.2 CIRC 31                                          24.00    137.5  137.5 CIRC 32                                          24.00    138.0  138.0 CIRC 33                                          24.00    138.0  138.0 CIRC 34                                          24.00    140.0  140.0 CIRC 35                                          24.00    138.0  138.0 CIRC 36                                          24.00    138.0  138.0 SWP  31          13:46                        10.23      5.0      2.1 SWP  32                                13:46    13.77      5.0      2.9 SWP  33                                          0.00      0.0      0.0 SWP  34                                        24.00      5.0      5.0 SWP  35                                          0.00      0.0      0.0 SWP  36                                        24.00      5.0      5.0 SWP  37                                          0.00      0.0      0.0 SWP  38                                          0.00      0.0      0.0 SWP  39                                          0.00      0.0      0.0 MINIMUM FLOW ........                                              844.5 MAXIMUM FLOW ........                                              849.5 TOTAL FLOW ..........                                              844.5 SITE TOTAL ..................................                    1706.7
 
DAILY PUMP OPERATION LOG              96 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 06/23/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                    OFF      HOURS      (KGPM)  (KGPM) COMMENTS CIRC 11                                            0.00        0.0      0.0 CIRC 12                                            0.00        0.0      0.0 SWP 11            4:42                          19.30      16.0    12.9 SWP  12                                          0.00        0.0      0.0 MINIMUM FLOW ................................                          0.0 MAXIMUM FLOW ................................                          16.0 TOTAL FLOW ..................................                          12.9 CIRC 21                                          24.00    140.0    140.0 CIRC 22                                          24.00    140.0    140.0 CIRC 23                                          24.00    140.0    140.0 CIRC 24                                          24.00    140.0    140.0 CIRC 25                                          24.00    140.0    140.0 CIRC 26                                          24.00    140.0    140.0 SWP 21                                            24.00        5.0      5.0 SWP  22                                          24.00        5.0      5.0 SWP  23                                          0.00        0.0      0.0 SWP  24                                          0.00        0.0      0.0 SWP  25                                          24.00        5.0      5.0 SWP  26                                12:12    12.20        5.0      2.5 MINIMUM FLOW . ................................                      855.0 MAXIMUM FLOW ................................                        860.0 TOTAL FLOW . ..................................                      857.5 CIRC 31                                          24.00    137.5    137.5 CIRC 32                                          24.00    138.0    138.0 CIRC 33                                          24.00    138.0    138.0 CIRC 34                                          24.00    140.0    140.0 CIRC 35                                          24.00    138.0    138.0 CIRC 36                                          24.00    138.0    138.0 SWP  31                                          24.00        5.0      5.0 SWP  32                                          0.00        0.0      0.0 SWP  33                                          0.00        0.0      0.0 SWP  34                                          24.00        5.0      5.0 SWP  35                                          0.00        0.0      0.0 SWP 36                                            24.00        5.0      5.0 SWP  37                                          0.00        0.0      0.0 SWP 38                                            0.00        0.0      0.0 SWP 39                                            0.00        0.0      0.0 MINIMUM FLOW ................................                        844.5 MAXIMUM FLOW ................................                        844.5 TOTAL FLOW ..................................                        844.5 SITE TOTAL ..................................                      1714.9
 
DAILY PUMP OPERATION LOG            97 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 06/24/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF      HOURS    (KGPM)  (KGPM) COMMENTS CIRC 11                                          0.00      0.0      0 0 CIRC 12                                          0.00      0.0      0.0 SWP  11                                        24.00      16.0    16.0 SWP  12                                          0.00      0.0      0.0 MINIMUM FLOW ................................                        16.0 MAXIMUM FLOW ................................                        16.0 TOTAL FLOW ..................................                        16.0 CIRC 21                                          24.00    140.0  140.0 CIRC 22                                          24.00    140.0  140.0 CIRC 23                                          24.00    140.0  140.0 CIRC 24                                          24.00    140.0  140.0 CIRC 25                                          24.00    140.0  140.0 CIRC 26                                          24.00    140.0  140.0 SWP  21                                        24.00      5.0      5.0 SWP  22                                        24.00      5.0      5.0 SWP  23                                          0.00      0.0      0.0 SWP  24                                          0.00      0.0      0.0 SWP  25                                        24.00      5.0      5.0 SWP 26                                            0.00      0.0      0.0 MINIMUM FLOW ................................                      855.0 MAXIMUM FLOW ................................                      855.0 TOTAL FLOW ..................................                      855.0 CIRC 31                                          24.00    137.5  137.5 CIRC 32                                          24.00    138.0  138.0 CIRC 33                                          24.00    138.0  138.0 CIRC 34                                          24.00    140.0  140.0 CIRC 35                                          24.00    138.0  138.0 CIRC 36                                          24.00    138.0  138.0 SWP  31                                        24.00      5.0      5.0 SWP  32                                          0.00      0.0      0.0 SWP  33                                          0.00      0.0      0.0 SWP  34                                        24.00      5.0      5.0 SWP  35                                          0.00      0.0      0.0 SWP 36                                          24.00      5.0      5.0 SWP 37                                            0.00      0.0      0.0 SWP  38                                          0.00      0.0      0.0 SWP 39                                            0.00      0.0      0.0 MINIMUM FLOW ................................                      844.5 MAXIMUM FLOW ................................                      844.5 TOTAL FLOW ..................................                      844.5 SITE TOTAL . .................................                    1715.5
 
DAILY PUMP OPERATION LOG                98 INDIAN POINT MONTHLY ENVIRONMENTAL          REPORT 06/25/07 AVE FLOW    FLOW RATE    RATE PUMP                ON                  OFF    HOURS      (KGPM)  (KGPM)  COMMENTS CIRC 11                                          0.00        0.0      0.0 CIRC 12                                          0.00        0.0      0.0 SWP  11                                        24.00        16.0    16.0 SWP  12                                          0.00        0.0      0.0 MINIMUM FLOW ................................                          16.0 MAXIMUM FLOW ................................                          16.0 TOTAL FLOW ..................................                          16.0 CIRC 21                                          24.00      140.0    140.0 CIRC 22                                          24.00      140.0    140.0 CIRC 23                                          24.00      140.0    140.0 CIRC 24                                          24.00      140.0    140.0 CIRC 25                                          24.00      140.0    140.0 CIRC 26                                          24.00      140.0    140.0 SWP  21                                        24.00        5.0      5.0 SWP 22                                          24 .00        5.0      5.0 SWP  23                                          0.00        0.0      0.0 SWP  24            21: 54              22:37    0.72        5.0      0.1 SWP  25                                        24.00        5.0      5.0 SWP  26                                          0.00        0.0      0.0 MINIMUM FLOW ....                                                    855.0 MAXIMUM FLOW ....                                                    860.0 TOTAL FLOW ......                                                    855.1 CIRC 31                                          24 .00    137.5    137.5 CIRC 32                                          24.00      138.0    138.0 CIRC 33                                          24.00      138.0    138.0 CIRC 34                                          24.00      140.0    140.0 CIRC 35                                          24.00      138.0    138.0 CIRC 36                                          24.00      138. 0  138.0 SWP  31                                        24 .00        5.0      5.0 SWP  32                                          0.00        0.0      0.0 SWP 33                                            0.00        0.0      0.0 SWP 34                                          24 .00        5.0      5.0 SWP  35                                          0.00        0.0      0.0 SWP  36                                        24.00        5.0      5.0 SWP  37                                          0.00        0.0      0.0 SWP  38                                          0.00        0.0      0.0 SWP  39                                          0.00        0.0      0.0 MINIMUM FLOW ................................                        844.5 MAXIMUM FLOW ................................                        844.5 TOTAL FLOW ..................................                        844.5 SITE TOTAL  ..................................                      1715.6
 
DAILY PUMP OPERATION LOG                        99 INDIAN POINT MONTHLY ENVIRONMENTAL        REPORT 06/26/07 AVE FLOW      FLOW RATE    RATE PUMP              ON                  OFF    HOURS      (KGPM)  (KGPM)  COMMENTS CIRC 11                                          0.00        0.0      0.0 CIRC 12                                          0.00        0.0      0.0 SWP  11                                        24.00      16.0    16.0 SWP  12                                          0.00        0.0      0.0 MINIMUM FLOW ................................                        16.0 MAXIMUM FLOW ................................                        16.0 TOTAL FLOW ..................................                        16.0 CIRC 21                                          24.00    140.0    140.0 CIRC 22                                          24.00    140.0    140.0 CIRC 23                                          24.00    140.0    140.0 CIRC 24                                          24.00    140.0    140.0 CIRC 25                                          24.00    140.0    140.0 CIRC 26                                          24.00    140.0    140.0 SWP  21                                        24.00        5.0      5.0 SWP 22                                          24.00        5.0      5.0 SWP 23                                            0.00        0.0      0.0 SWP 24                                            0.00        0.0      0.0 SWP 25                                          24.00        5.0      5.0 SWP 26                                            0.00        0.0      0.0 MINIMUM FLOW ................................                      855.0 MAXIMUM FLOW ................................                      855.0 TOTAL FLOW ..................................                      855.0 CIRC 31                                          24.00    137.5    137.5 CIRC 32                                          24.00    138. 0  138.0 CIRC 33                                          24.00    138. 0  138.0 CIRC 34                                  9:10    9.17    140.0      53.5  SWITCH REPLACEMENT CIRC 34            10:30                        13.50    140.0      78.8 CIRC 35                                          24.00    138.0    138.0 CIRC 36                                          24.00    138 .0  138.0 SWP  31                                        24.00        5.0      5.0 SWP  32                                          0.00        0.0      0.0 SWP 33                                            0.00        0.0      0.0 SWP 34                                          24.00        5.0      5.0 SWP 35                                            0.00        0.0      0.0 SWP 36                                          24.00        5.0      5.0 SWP  37        /                                0.00        0.0      0.0 SWP  38                                          0.00        0.0      0.0 SWP  39                                          0.00        0.0      0.0 MINIMUM FLOW .......................                                704.5 MAXIMUM FLOW .......................                                844.5 TOTAL FLOW .........................                                836.7 SITE TOTAL  ..................................                    1707.7
 
DAILY PUMP OPERATION LOG              100 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 06/27/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF      HOURS      (KGPM)  (KGPM) COMMENTS CIRC 11                                            0.00        0.0      0.0 CIRC 12                                            0.00        0.0      0.0 SWP  11                                          24.00      16.0    16.0 SWP  12                                          0.00        0.0      0.0 MINIMUM FLOW ................................                          16.0 MAXIMUM FLOW ................................                          16.0 TOTAL FLOW ..................................                          16.0 CIRC 21                                          24.00    140.0    140.0 CIRC 22                                          24.00    140.0    140.0 CIRC 23                                          24.00    140.0    140.0 CIRC 24                                          24.00    140.0    140.0 CIRC 25                                          24.00    *140.0  140.0 CIRC 26                                          24.00    140.0    140.0 SWP  21                                          24.00        5.0      5.0 SWP  22                                          24.00        5.0      5.0 SWP  23                                          0.00        0.0      0.0 SWP 24                                            0.00        0.0      0.0 SWP  25                                          24.00        5.0      5.0 SWP 26                                            0.00        0.0      0.0 MINIMUM FLOW ................................                        855.0 MAXIMUM FLOW . ................................                      855.0 TOTAL FLOW ..................................                        855.0 CIRC 31                                          24.00    137.5    137.5 CIRC 32                                          24.00    138.0    138.0 CIRC 33                                          24.00    138.0    138.0 CIRC 34                                          24.00    140.0    140.0 CIRC 35                                          24.00    138.0    138.0 CIRC 36                                          24.00    138.0    138.0 SWP 31                                            24.00        5.0      5.0 SWP 32                                            0.00        0.0      0.0 SWP  33                                          0.00        0.0      0.0 SWP  34                                          24.00        5.0      5.0 SWP  35                                          0.00        0.0      0.0 SWP  36                                          24.00        5.0      5.0 SWP  37                                          0.00        0.0      0.0 SWP  38                                          0.00        0.0      0.0 SWP  39                                          0.00        0.0      0.0 MINIMUM FLOW ................................                        844.5 MAXIMUM FLOW ................................                        844.5 TOTAL FLOW ..................................                        844.5 SITE TOTAL . .................................                      1715.5
 
DAILY PUMP OPERATION LOG              101 INDIAN POINT MONTHLY ENVIRONMENTAL        REPORT 06/28/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF    HOURS      (KGPM)  (KGPM)  COMMENTS CIRC 11                                          0.00        0.0      0.0 CIRC 12                                          0.00        0.0      0.0 SWP  11                                        24.00      16.0    16.0 SWP  12                                        0.00        0.0      0.0 MINIMUM FLOW ................................                        16.0 MAXIMUM FLOW ................................                        16.0 TOTAL FLOW ..................................                        16.0 CIRC 21                                        24.00    140.0    140.0 CIRC 22                                        24.00    140.0    140.0 CIRC 23                                        24.00    140.0    140.0 CIRC 24                                        24.00    140.0    140.0 CIRC 25                                        24.00    140.0    140.0 CIRC 26                                        24.00    140.0    140.0 SWP  21                                        24.00        5.0      5.0 SWP  22                                        24.00        5.0      5.0 SWP  23                                        0.00        0.0      0.0 SWP  24                                        0.00        0.0      0.0 SWP 25                                          24.00        5.0      5.0 SWP  26                                        0.00        0.0      0.0 MINIMUM FLOW ................................                      855.0 MAXIMUM FLOW ................................                      855.0 TOTAL FLOW ..................................                      855.0 CIRC 31                                        24.00    137.5    137.5 CIRC 32                                        24.00    138.0    138.0 CIRC 33                                        24.00    138.0    138.0 CIRC 34                                        24.00    140.0    140.0 CIRC 35                                        24.00    138.0    138.0 CIRC 36                                        24.00    138.0    138.0 SWP 31                                          24.00        5.0      5.0 SWP 32                                          0.00        0.0      0.0 SWP 33                                          0.00        0.0      0.0 SWP 34                                          24.00        5.0      5.0 SWP 35                                          0.00        0.0      0.0 SWP 36                                          24.00        5.0      5.0 SWP 37                                          0.00        0.0      0.0 SWP 38                                          0.00        0.0      0.0 SWP  39                                        0.00        0.0      0.0 MINIMUM FLOW ................................                      844.5 MAXIMUM FLOW ................................                      844.5 TOTAL FLOW ..................................                      844.5 SITE TOTAL ..................................                    1715.5
 
DAILY PUMP OPERATION LOG              102 INDIAN POINT MONTHLY ENVIRONMENTAL        REPORT 06/29/07 AVE FLOW    FLOW RATE    RATE PUMP.              ON                  OFF      HOURS    (KGPM)  (KGPM)  COMMENTS CIRC 11                                            0.00      0.0      0.0 CIRC 12                                            0.00      0.0      0.0 SWP  11                                          24.00      16.0    16.0 SWP  12                                          0.00      0.0      0.0 MINIMUM FLOW ................................                        16.0 MAXIMUM FLOW ................................                        16.0 TOTAL FLOW ..................................                        16.0 CIRC 21                                          24.00    140.0  140.0 CIRC 22                                          24.00    140.0  140.0 CIRC 23                                          24.00    140.0  140.0 CIRC 24                                          24.00    140.0  140.0 CIRC 25                                          24.00    140.0  140.0 CIRC 26                                          24.00    140.0  140.0 SWP  21                                          24.00      5.0      5.0 SWP  22                                          24.00      5.0      5.0 SWP  23                                          0.00      0.0      0.0 SWP  24                                          0.00      0.0      0.0 SWP  25                                          24.00      5.0      5.0 SWP  26                                          0.00      0.0      0.0 MINIMUM FLOW ................................                      855.0 MAXIMUM FLOW . ................................                    855.0 TOTAL FLOW ..................................                      855.0 CIRC 31                                          24.00    137.5  137.5 CIRC 32                                          24.00    138.0  138.0 CIRC 33                                          24.00    138.0  138.0 CIRC 34                                          24.00    140.0  140.0 CIRC 35                                          24.00    138.0  138.0 CIRC 36                                          24.00    138.0  138.0 SWP  31                                          24.00      5.0      5.0 SWP 32                                            0.00      0.0      0.0 SWP  33                                          0.00      0.0      0.0 SWP  34                                          24.00      5.0      5.0 SWP  35                                          0.00      0.0      0.0 SWP  36                                          24.00      5.0      5.0 SWP  37                                          0.00      0.0      0.0 SWP  38                                          0.00      0.0      0.0 SWP  39                                          0.00      0.0      0.0 MINIMUM FLOW ................................                      844.5 MAXIMUM FLOW ................................                      844.5 TOTAL FLOW ..................................                      844.5 SITE TOTAL  ..................................                    1715.5
 
DAILY PUMP OPERATION LOG              103 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT 06/30/07 AVE FLOW    FLOW RATE    RATE PUMP              ON                  OFF      HOURS      (KGPM)  (KGPM) COMMENTS CIRC 1-                                            0.00      0.0      0.0 CIRC 12                                            0.00      0.0      0.0 SWP  11                                        24.00      16.0    16.0 SWP  12                                          0.00        0.0      0.0 MINIMUM FLOW ................................                        16.0 MAXIMUM FLOW ................................                        16.0 TOTAL FLOW ..................................                        16.0 CIRC 21                                          24.00      140.0  140.0 CIRC 22                                          24.00      140.0  140.0 CIRC 23                                          24.00      140.0  140.0 CIRC 24                                          24.00      140.0  140.0 CIRC 25                                          24.00      140.0  140.0 CIRC 26                                          24.00      140.0  140.0 SWP  21                                        24.00        5.0      5.0 SWP  22                                        24.00        5.0      5.0 SWP  23                                          0.00        0.0      0.0 SWP  24                                          0.00        0.0      0.0 SWP 25                                          24.00        5.0      5.0 SWP  26                                          0.00        0.0      0.0 MINIMUM FLOW ................................                      855.0 MAXIMUM FLOW ................................                      855.0 TOTAL FLOW ..................................                      855.0 CIRC 31                                          24.00      137.5  137.5 CIRC 32                                          24.00      138.0  138.0 CIRC 33                                          24.00      138.0  138.0 CIRC 34                                          24.00      140.0  140.0 CIRC 35                                          24.00      138.0  138.0 CIRC 36                                          24.00      138.0  138.0 SWP  31                                        24.00        5.0      5.0 SWP  32                                          0.00        0.0      0.0 SWP  33                                          0.00        0.0      0.0 SWP  34                                        24.00        5.0      5.0 SWP  35                                          0.00        0.0      0.0 SWP  36                                        24.00        5.0      5.0 SWP  37                                          0.00        0.0      0.0 SWP  38                                          0.00        0.0      0.0 SWP 39                                            0.00        0.0      0.0 MINIMUM FLOW ................................                      844.5 MAXIMUM FLOW ................................                      844.5 TOTAL FLOW ..................................                      844.5 SITE TOTAL . .................................                    1715.5
 
DAILY HEAT RELEASE (TEMPERATURE,                                DEGREES F)  TO HUDSON RIVER 104 INDIAN POINT MONTHLY ENVIRONMENTAL                          REPORT
----------------------------- YEAR=2007 MONTH=APRIL------------------------------
MIN            MAX            AVG    MIN    MAX    AVG INTK            INTK          INTK    DSCH    DSCH    DSCH  DELTA DATE            TEMP            TEMP          TEMP    TEMP    TEMP    TEMP  TEMP fffffffffffffffffffffffffffffffffffffffffffffffffffffff 01APR07                38.8            41.4          40.0    56.4    59.9    58.3  18.3 02APR07                39.2            41.4          40.4    59.7    63.4    61.4  21.0 03APR07                39.4            42.4          40.8    53.6    62.2    56.4  15.6 04APR07                40.1            42.2          41.1    59.0    67.5    61.5  20.4 05APR07                40.4            45.0          41.7    64.9    70.1    66.8  25.1 06APR07                40.2            43.6          41.6    54.0    69.5    60.5  18.9 07APR07                40.1            42.7          41.3    54.2    58.1    56.0  14.7 08APR07                40.1            43.0          41.2    55.1    59.9    57.5  16.3 09APR07                40.1            43.5          41.6    56.3    60.3    58.5  16.9 10APR07                41.1            43.6          42.1    57.5    60.6    59.2  17.1 11APR07                41.5            43.9          42.2    58.5    65.3    61.5  19.3 12APR07                41.5            44.4          42.7    60.0    66.8    64.2  21.5 13APR07                41.3            46.2          42.9    59.7    66.3    62.1  19.2 14APR07                41.5            46.8          43.3    60.1    65.9    62.2  18.9 15APR07                42.0            47.1          43.4    60.8    65.7    62.3  18.9 16APR07                41.4            43.2          42.2    62.4    73.2    64.6  22.4 17APR07                40.1            42.8          41.0    66.6    85.6    76.8  35.8 18APR07                39.7            42.5          40.9    72.2    85.0    77.5  36.6 19APR07                39.7            42.6          41.0    73.8    81.7    78.0  37.0 20APR07                40.3            42.8          41.2    73.2    86.3    77.2  36.0 21APR07                40.4            43.4          41.5    70.3    80.2    73.6  32.1 22APR07                41.4            43.6          42.3    68.1    74.6    70.5  28.2 23APR07                42.2            44.6          43.2    69.7    72.6    71.1  27.9 24APR07                42.6            45.7          44.3    68.0    75.4    69.7  25.4 25APR07                44.0            46.6          45.2    68.0    71.3    69.9  24.7 26APR07                44.9            47.2          46.1    61.1    66.3    62.4  16.3 27APR07                46.6            48.0          47.3    62.3    65.3    63.8  16.5 28APR07                47.2            49.3          48.2    63.0    68.2    64.8  16.6 29APR07                48.5          50.7            49.7    65.2    72.7    70.1  20.4 30APR07                49.6            52.4          51.0    72.7    77.5    75.3  24.3 fffff          fffff          fffff  fffff    fffff    fffff  fffff 41.9          44.8            43.0    62.9    69.9    65.8  22.7 fffff          fff1f          ff1ff  fffff    fff11    f~fff  fffff Average temperatures and Delta T's for month.
 
DAILY HEAT RELEASE (TEMPERATURE, DEGREES F)                                TO HUDSON RIVER          105 INDIAN POINT MONTHLY ENVIRONMENTAL                      REPORT
------------------------------ YEAR=2007 MONTH=MAY-------------------------------
MIN            MAX      AVG      MIN      MAX        AVG INTK            INTK      INTK    DSCH    DSCH      DSCH        DELTA DATE            TEMP            TEMP    TEMP      TEMP    TEMP      TEMP          TEMP ffffffffffffffffffffffffflfffffffffffjfffff ffffffffffff 01MAY07                50.6            53.7      51.9    74.5    79.0      76.2          24.3 02MAY07                51.5            55. 6    52.9    75.5    79.0      77.6          24 .7 03MAY07                53.0            55.6      54.1    68.2    78.9      72.7          18.6 04MAY07                53.2            56.8      54.8    77.3    80.7      79.3          24.5 05MAY07                54.1            57.4      55.5    79.2    82.7      80.7          25.2 06MAY07                54.0            57. 9    55.8    79.6    82.9      81.5          25.7 07MAY07                54 .8          57 . 0    56.0    -80.2    82.7      81.1          25.1 08MAY07                54.3            57.7      56.0    79.8    82.0      81.0          25.0 09MAY07                55.5            58.5      57.2    80.0    85.6      82.2          25.0 10MAY07                55.5            60. 0    58.1    79.5    84.3      81.6          23.5 11MAY07                55.8            61.1      58.6    78.9    83.4      81.2          22.6 12MAY07                56.6            61.4      58.6    78.2    82.9      80.5          21.9 13MAY07                57.4            60. 6    58.6      78.7    82.6      80.1          21.5 14MAY07                57.3            60. 8    58.8      79.0    84.3      81.7          22.9 15MAY07                57 .2          61. 5    59.0    79.3    85.3      81.9          22.9 16MAY07                57.8            62. 8    83.6      80.1    86.4      82.8          -0.8 17MAY07                58.1            61.4      59.6    80.7    84.7      82.8          23.2 18MAY07                58.4            61.7    59.6      80.6    85.7      82.5          22.9 19MAY07                58.3            61.3    59.6      80.4    83.0      81.8          22.2 20MAY07                58 .5          61.6    60.0      80.9    84.0      82.4          22.4 21MAY07                58.6            61.6    60.2      81.4    85.9        83.4          23.2 22MAY07                59.5            61.3    60.3      81.8    84.9        83-.4        23.1 23MAY07                59.5            63.2    61.5      81.7    84.5        83.6          22.1 24MAY07                60.0            63.1    61.9      82.4    86.8        84.5          22.6 25MAY07                60.9            64.5    63.0      82.9    86.7        84.8          21.8 26MAY07                62.4            66.8    65.2      83.8    88.7        85.7          20.5 27MAY07                63.8            68.1    65.5      83.3    87.6        85.3          19.8 28MAY07                64.1            67.6    66.1      75.7    86.1        79.4          13.3 29MAY07                64.2            67.3    65.6      74.8    78. 9      77.2          11.6 30MAY07                62 . 9          67.0    64.9      75.2    79.7        77.5          12.6 31MAY07                63.8            68.9    66.0      78.3    89.3        85.4          19.4 fffff          ff f f f  fffff    ffff1  fffff      ffff1        fffff 57.8            61.4    60.3      79.1    83.8        81.3        21.1 fffff          f f ff    fffff    fffff  ffff f    1fffI        ffffI Average temperatures                    and Delta T's for month.
 
DAILY HEAT RELEASE (TEMPERATURE,                      DEGREES F)    TO HUDSON RIVER      106 INDIAN POINT MONTHLY ENVIRONMENTAL                    REPORT
------------------------------ YEAR=2007 MONTH=JUNE------------------------------
MIN          MAX      AVG      MIN    MAX      AVG INTK        INTK      INTK    DSCH      DSCH      DSCH      DELTA DATE          TEMP        TEMP      TEMP    TEMP    TEMP      TEMP        TEMP fffffffffffffffffffffffffffffffffffff                      ffffff fffffffffffff 01JUN07            64.6        69.0      66.7    85.6    89.0      87.4        20.7 02JUN07            65.2        70.3      67.2    85.8      90.6      87.9        20.7 03JUN07            66.0        72.3      68.4    86.1      91.2      88.3        19.9 04JUN07            66.6        69.8      68.3    86.2    91.2      88.2        19.9 05JUN07            66.9        69.8      68.3    86.4    89.3      87.9        19.6 06JUN07            66.6        70.2      68.0    86.3    90.2      87.7        19.7 07JUN07            67.2        71.0      68.7    87.1    90.2      88.3        19.6 08JUN07            67.8        71.5      69.4    87.6    91.1      89.2        19.8 09JUN07            68.3        71.5      69.7    88.0    91.6      89.6        19.9 10JUN07            68.7        71.6      70.0      88.3    91.3      89.7        19.7 11JUN07            68.6        74.0      71.3      88.3    92.8      90.3        19.0 12JUN07            70.9        74. 9    72.6      89.0    93.2      90.9        18.3 13JUN07            71.3        74.2      72.7      89.7    92.8      91.1        18.4 14JUN07            69.3        72.5      71.0      89.2    92.1      90.5        19.5 15JUN07            69.8        72.6      71.1      89.5    92.6      91.0        19.9 16JUN07            69.8        73.9      71.4      89.7    93.8      91.3        19.9 17JUN07            70.2        75.2      71.9      89.9    94.6      91.8        19.9 18JUN07            70.7        74.5      72.5      89.7    93.7      91.7        19.2 19JUN07            72.6        75.7      74.0      91.2    94.5      92.6        18.6 20JUN07            71.7        75.4      73.6      91.0    94.4      92.7        19.1 21JUN07            72.1        76.3      73.7      91.4    95.8      93.2        19.5 22JUN07            71.7        75. 5    73.2      91.0    95.2      92.7        19.5 23JUN07            71.6        74.,7    72.9      91.1    94.3      92.4        19.5 24JUN07            71.5        75.3      73.3      90.9    94.9      92.7        19.4 25JUN07            71.7        75.2      73.5      91.2    95.5      93.1        19.6 26JUN07            71.9        76.0      74.1      91.5    95.8      93.7        19.6 27JUN07            72.4        77.2      74.5      92.1    97.0      94.4        19.9 28JUN07            "72.8        76.3      74.4      92.5    96.3      94.3        19.9 29JUN07            72.8        76.8      74.5      92.8    97.2      94.3        19.8 30JUN07          73.1        77.2      74.8      92.8    97.0      94.5        19.7 fffff        fffff      Ifrfff  fffff    fffff    ff1ff      ffff!
69.8        73.7      71.5      89.4    93.3      91.1        19.6 fffff        fffff    .ffff    fffff    fffff    fffff      fffff Average temperatures and Delta T's for month.
 
INDIAN POINT MONTHLY ENVIRONMENTAL REPORT                        107 ELECTRIC OUTPUT
 
==SUMMARY==
IN MEGAWATTS - UNIT2 MONTH=APRIL-  ----------------------------------
MIN        MAX        AVG    REACTOR      DAILY        DAILY HOURLY    HOURLY    HOURLY    POWER        GROSS        NET DATE      GROSS      GROSS      GROSS      (%)          MW          MW 01APR07        0          0        1065      100.0        25560        24787 02APR07        0          0        1065      99.9        25560        24777 03APR07        0          0        1065      99.9        25560        24777 04APR07        0          0        1065      99.9        25560        24786 05APR07        0          0        1065      100.0        25560        24790 06APR07        0          0        1065      100.0        25560        24780 07APR07        0          0        1063      100.0        25508        24739 08APR07        0          0        1065      100.0        25547        24769 09APR07        0          0        1065      100.0        25547        24779 10APR07        0          0        1064      100.0        25534        24758 11APR07        0          0        1064      100.0        25534        24756 12APR07        0          0        1062      100.0        25496        24725 13APR07        0          0        1064      99.9        25534        24744 14APR07        0          0        1066      100.0        25586        24780 15APR07        0          0        1067      99.9        25598        24814 16APR07        0          0        1066      100.0        25573        24760 17APR07        0          0        1033      100.0        24788        24014 18APR07        0          0        1044      100.0        25058        24370 19APR07        0          0        1046      100.0        25110        24210
(  20APR07        0          0        1045      100.0        25071        24265 21APR07        0          0        1057      99.9        25367        24540.
22APR07        0          0        1060      99.9        25444        24635 23APR07        0          0        1062      99.9        25483        24664 24APR07        0          0        1063      99.9        25521        24700 25APR07        0          0        1063      99.9        25508        24688 26APR07        0          0        1062      99.9        25496        24668 27APR07        0          0        1059      100.0        25406        24588 28APR07        0          0        1056      100.0        25341        24524 29APR07        0          0        1062      100.0        25496        24675 30APR07        0          0        1065      99.9        25547        24716 MONTH                                                  763453      739578
 
INDIAN POINT MONTHLY ENVIRONMENTAL REPORT                        108 ELECTRIC OUTPUT
 
==SUMMARY==
IN MEGAWATTS - UNIT2
----------------------------------- MONTH=MAY-  -----------------------------------
MIN        MAX      AVG    REACTOR        DAILY        DAILY HOURLY    HOURLY    HOURLY    POWER        GROSS            NET DATE    GROSS      GROSS    GROSS      (%)            MW            MW 01MAY07      0          0      1055        99.9        25316        24494 02MAY07      0          0      1042        99.9        25007        24197 03MAY07      0          0      1062      100.0        25483        24643 04MAY07      0          0      1059      100.0        25406        24575 05MAY07      0          0      1059        99.9        25418        24587 06MAY07      0          0      1060      100.0        25444        24612 07MAY07      0          0      1060      100.0        25444        24611 08MAY07      0          0      1058        99.9        25393        24562 09MAY07      0          0      1055        99.9        25328        24501 10MAY07      0          0      1059        99.9        25406        24570 11MAY07      0          0      1056        99.7        25341        24516 12MAY07      0          0      1059        99.9        25406        24571 13MAY07      0          0      1060        99.9        25444        24617 14MAY07      0          0      1060        99.9        25431        24603 15MAY07      0          0      1051      100.0        25213        24395 16MAY07      0          0      1053        99.9        25264        24438 17MAY07      0          0      1050      100.0        25200        24380 18MAY07      0          0      1055      100.0        25328        24501 19MAY07      0          0      1059        99.9        25418        24590 20MAY07      0          0      1059      100.0        25418        24590 21MAY07      0          0      1054        99.9        25290        24471 22MAY07      0          0      1050        99.4        25187        24367 23MAY07      0          0      1059        99.9        25418        24593 24MAY07      0          0      1055      100.0        25316        24491 25MAY07      0          0      1058      100.0        25393        24570 26MAY07      0          0      1057      100.0        25367        24546 27MAY07      0          0      1069      100.0        25418        24597 28MAY07      0          0        321        34.1        7701          6954 29MAY07      0          0          0        1.7            0        -690 30MAY07      0          0          0        1.6            0        -700 31MAY07      0          0        760        74.5        18231        17423 MONTH                                                710429      685175
 
INDIAN POINT MONTHLY ENVIRONMENTAL REPORT                          109 (ELECTRIC                        OUTPUT
 
==SUMMARY==
IN MEGAWATTS - UNIT2 MONTH=JUNE-    ----------------------------------
MIN        MAX        AVG    REACTOR        DAILY        DAILY HOURLY    HOURLY    HOURLY    POWER        GROSS          NET DATE    GROSS      GROSS      GROSS      (%)          MW            MW 01JUN07        0          0        1058      99.8          25393        24576 02JUN07        0          0        1047      99.9          25136        24309 03JUN07        0          0        1054      99.9          25290        24465 04JUN07        0          0        1055      100.0          25328        24515 05JUN07        0          0        1055      100.0          25328        24503 06JUN07        0          0        1055      100.0          25316        24492 07JUN07        0          0        1054      99.9          25303        24477 08JUN07        0          0        1052      99.9          25251        24438 09JUN07        0          0        1052      100.0          25238        24414 10JUN07        0          0        1053      100.0          25277        24464 11JUN07        0          0        1051      99.9          25226        24402 12JUN07        0          0        1051      99.9          25213        24400 13JUN07        0          0        1051      99.9          25213        24387 14JUN07        0          0        1051      99.9          25226        24393 15JUN07        0          0        1051      99.9          25213        24384 16JUN07        0          0        1050      100.0          25187        24362 17JUN07        0          0        1049      99.9          25174        24357 18JUN07        0          0        1051      100.0          25213        24385 19JUN07        0          0        1048      100.0          25161        24344 20JUN07        0          0        1047      100.0          25136        24319 21JUN07        0          0        1047      99.9          25136        24319 22JUN07        0          0        1046      99.9          25110        24278 23JUN07        0          0        1048      99.9          25161        24325 24JUN07        0          0        1048      99.9          25161        24354 25JUN07        0          0        1048      100.0          25148        24319 26JUN07        0          0        1047      100.0          25123        24295 27JUN07        0          0        1045      100.0          25084        24265 28JUN07        0          0        1045      100.0          25071        24251 29JUN07        0          0        1045      100.0          25084        24257 30JUN07        0          0        1045      100.0          25071        24246 MONTH                                                    755971      731295 2229853      2156048
 
INDIAN POINT MONTHLY ENVIRONMENTAL REPORT                        110 ELECTRIC OUTPUT
 
==SUMMARY==
IN MEGAWATTS - UNIT3                          (
--------------------------------- MONTH=APRIL-  ----------------------------------
MIN      MAX      AVG    REACTOR  DAILY    DAILY                SITE HOURLY  HOURLY  HOURLY    POWER    GROSS      NET    GATE      HOUR DATE    GROSS    GROSS    GROSS      (%)      MW        MW      DL        MW 01APR07      0        0      393    40.60      9437      8725      26    1396.33 02APR07      0        0      571    56.10    13697      12985      25    1573.42 03APR07      0        0      100    10.50      2404      2275      24    1127.17 04APR07      0        0      317    38.10      7596      6958      24    1322.67 05APR07      0        0      930    84.50    22310    21551      26    1930.88 06APR07      0        0      454    42.50    10898      10514      24    1470.58 07APR07      0        0        0    0.00          0        0    22    1030.79 08APR07      0        0        0    0.00          0        0    21    1032.04 09APR07      0        0        0    0.00          0        0    21    1032.46 10APR07      0        0        0    0.00          0        0    24    1031.58 11APR07      0        0        0    0.00          0        0    28    1031.50 12APR07      0        0        0    0.00          0        0    26    1030.21 13APR07      0        0        0    0.00          0,        0    26      1031.00 14APR07      0        0        0    0.00          0        0    26    1032.50 15APR07      0        0        0    0.00          0        0    26    1033.92 16APR07      0        0        0    0.00          0        0    21    1031.67 17APR07      0        0        0    0.00          0        0    23      1000.58 18APR07      0        0        0      0.00          0        0    21      1015.42 19APR07      0        0        0    0.00          0        0    21      1008.75 20APR07      0        0        0    0.00          0        0    21      1011.04 21APR07      0        0        0    0.00          0        0    21      1022.50 22APR07      0        0        0    0.00          0        0    26      1026.46 23APR07      0        0        0      0.00          0        0    24      1027.67 24APR07      0        0        0      0.00          0        0    27      1029.17 25APR07      0        0        0    2.00          0        0    27      1028.67 26APR07      0        0        0      0.94          0        0    30    1027.83 27APR07      0        0        0      0.87          0        0    27      1024.50 28APR07      0        0        0      1.40          0        0    27      1021.83 29APR07      0        0      371    39.40      8913      8694    27      1390.38 30APR07      0        0      761    72.20    18266    17512      24      1759.50 MONTH                                        93521    89214
 
I-                INDIAN POINT MONTHLY ENVIRONMENTAL REPORT                111 ELECTRIC OUTPUT
 
==SUMMARY==
IN MEGAWATTS - UNIT3 M--NTHR=MAY --
MIN    MAX      AVG    REACTOR      DAILY  DAILY        SITE HOURLY  HOURLY  HOURLY      POWER      GROSS    NET  GATE  HOUR DATE  GROSS  GROSS    GROSS      (%)        MW      MW    DL    MW 01MAY07    0      0        672      64.4      16120  15394  28  1662.00 02MAY07    0      0        662      63.6      15893  15163  24  1640.00 03MAY07    0      0        337      35.6        8084    7579  30 1342.58 0        906      84.9      21748  20970  30  1897.71 04MAY07    0 05MAY07    0      0      1050        97.0      25192  24398  29  2041.04 06MAY07    0      0      1078        99.9      25871  25078  29  2070.42 07MAY07            0      1080        99.9      25908  25105  30  2071.50 0
08MAY07            0      1081      100.0      25948  25166  29  2072.00 0
09MAY07    0      0      1080      100.0      25930  25153  29  2068.92 10MAY07    0      0      1079      100.0      25896  25109  28  2069.96 11MAY07    0      0      1080      100.0      25921  25121  28  2068.21 12MAY07    0      0      1081      100.0      25939  25138  28  2071.21 13MAY07    0      0      1081      100.0      25932  25132  28  2072.88 14MAY07    0      0      1079      100.0      25893  25103  28  2071.08 15MAY07    0      0      1079      100.0      25889  25089  28  2061.83 16MAY07    0      0      1080      100.0      25927  25133  25  2065.46 17MAY07    0      0      1080        99.9      25915  25119  28  2062.46 18MAY07    0      0      1079      100.0      25905  25107  28  2067.00 19MAY07    0      0      1080      100.0      25931  25133  30  2071.79
(. 20MAY07    0      0      1080        99.8      25919  25119  28  2071.21 21MAY07    0      0      1081      100.0      25940  25140  29  2067.13 22MAY07    0      0      1081      100.0      25938  25137  26  2062.67 23MAY07    0      0      1080      100.0      25923  25122  24  2071.46 24MAY07    0      0      1081      100.0      25949  25142  24  2068.04 25MAY07    0      0      1080      100.0      25924  25116  30  2070.25 26MAY07    0      0      1080      100.0      25930  25121  26  2069.46 27MAY07    0      0      1080      100.0      25912  25105  30  2070.92 28MAY07    0      0      1081      100.0      25932  25129  24  1336.79 29MAY07    0      0      1080      100.0      25920  25110  28  1017.50 30MAY07    0      0      1080      100.0      25928  25108  33  1017.00 31MAY07    0      0      1080      100.0      25922  25102  30  1771.88 MONTH                                        760979  736641 C
 
INDIAN POINT MONTHLY ENVIRONMENTAL REPORT                        112 ELECTRIC OUTPUT
 
==SUMMARY==
IN MEGAWATTS - UNIT3                          C
----------------------------------- MONTH=JUNE-    ----------------------------------
MIN      MAX    AVG  REACTOR    DAILY      DAILY              SITE HOURLY  HOURLY  HOURLY  POWER    GROSS        NET    GATE      HOUR DATE  GROSS    GROSS  GROSS    (%)      MW          MW      DL      MW 01JUN07                    1081    100      25932      25103    30    2069.96 02JUN07                    1081    100      25936      25097    30    2058.58 03JUN07                    1079    100      25900      25066    30    2063.79 04JUN07                    1080    100      25921      25083    30    2066.58 05JUN07                    1080    100      25909      25071    29    2065.58 06JUN07                    1079    100      25887      25046    29    2064 .08 07JUN07                    1079    100      25895      25052    29    2063.71 08JUN07                    1079    100      25884      25039    29    2061.54 09JUN07                    1080    100      25920      25078    30    2062.17 10JUN07                    1079    100      25902      25057    30    2063.38 11JUN07                    1081    100      25933      25085    30    2061.96 12JUN07                    1079    100      25902      25054    30    2060.58 13JUN07                    1079    100      25886      25041    30    2059.50 14JUN07                    1079    100      25901      25053    30    2060.25 15JUN07                    1079    100      25890      25042    30    2059.42 16JUN07                    1078    100      25864      25015    30    2057.38 17JUN07                    1078    100      25865      25025    28    2057.58 18JUN07                    1079    100      25902      25061    28    2060.25 19JUN07                    1078    100      25881      25042    30    2057.75 20JUN07                    1073    100      25741      24902    28    2050.88 21JUN07                    1078    100      25867      25028    28    2056.13 22JUN07                    1078    100      25867      25029    30    2054.46 23JUN07                    1078    100      25869      25031    30    2056.50 24JUN07                    1079    100      25885      25045    30    2058.29 25JUN07                    1078    100      25875      25032    28    2056.29 26JUN07                    1076    100      25835      24992    30    2053.63 27JUN07                    1077    100      25836      24991    30    2052.33 28JUN07                    1076    100      25831      24987    28    2051.58 29JUN07                    1076    100      25823      24979    28    2051.50 30JUN07                    1076    100      25830      24986    27    2051.33 MONTH                                      776369    751112 1630869    1576967
 
i' DAILY FLOWS
 
==SUMMARY==
- CIRC PUMPS                                                                113 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT
  -----------------------------                                              YEAR=2007          MONTH=APRIL------------------------------
      ,,ffffffffffffffffff                              ... fffffffffffffffffffffffffffffffffffffffffffffff...ffffffft
      ,WEEK-OF                          DATE            ,                                              TOTAL tfffffffffffffffffffffffffffffffffffffffffffffff%                                                      *
* GALLONS          (IE6)        PUMPED                        ,
tfffffffffffffffffffffffffffffffffffffffffffffff5 I                                      IP    UNIT PUMPS                                    ,  TOTAL tfffffff...fffffff...fffffff...fffffff...fffffff...fffffffrfffffffl                                  0 CIRCI            ,  CIRC2    ,  CIRC3        ,  SWP1      , SWP2    , SWP3      ,  PUMPS tffffffffffffffffff'fffffff-fffffff-fffffff^fffffff^fffffff-fffffffffffffffL
      ,01APR                    04/01/07                            0.0,          887.0,        762.0,              0.0,    .21.6,      14.4, 1685.1, 04/02/07                            0.0,          887.0,        632.5,              0.0,    21.6,        14.4, 1555.5, 04/03/07                            0.0,          887.0,        632.2,              0.0,    21.6,        14.4, 1555.2, 04/04/07                            0.0,          882.6,        632.2,              0.0,    21.6,        14.4, 1550.7, 04/05/07                            0.0,          887.0,        632.2,              0.0,    21.6,        16.7, 1557.5, 04/06/07                            0.0,          887.0,        632.2,              0.0,      21.6,      18.3, 1559.1, 04/07/07                            0.0,          872.0,        632.2,              0.0,    21.6,        14.4, 1540.2, WEEK-TOT                            0.0,          6189.8, 4555.3,                    0.0,    151.2,      107.0,11003.4,
      ,08APR                    04/08/07                            0.0,          887.0,        497.0,-            0.0,    21.6,        14.4, 1420.1, 04/09/07                            0.0,          887.0,        421.2,              0.0,    21.6,        14.4, 1344.2, 04/10/07                            0.0,          887.0,        421.2,              0.0,    21.6,        14.4, 1344.2, 04/11/07                            0.0,          887.0,        338.6,              0.0,    21.6,        14.4, 1261.6, 04/12/07                            0.0,          856.1,        217.4,              0.0,    21.6,        14.4, 1109.5, 04/13/07                            0.0,        1005.3,          217.4,              0.0,    21.6,        14.4, 1258.7, 04/14/07                            0.0,        1048.3,          217.4,              0.0,    21.6,      14.4, 1301.8, WEEK-TOT                            0.0,        6457.8, 2330.3,                      0.0,    151.2,    100.8, 9040.1,
      ,15APR                    04/15/07                            0.0,        1048.3,          217.4,              0.0,    21.6,      14.4, 1301.8, 04/16/07                            0.0,        1023.0,          217 .4,            0.0,    21.6,      14.4, 1276.5, 04/17/07                            0.0, 1003.5,                  147.9,              0.0,    21.7,      14.4, 1187.5, 04/18/07                            0.0, 1072.3,                  105.1,              0.0,    21.7,      14.4, 1213.5, 04/19/07                            0.0, 1110.9,                  105.1,              0.0,    21.8,      14.4, 1252.2, 04/20/07                            0.0, 1177.9,                  105. 1,            0.0,    21.7,      14.4, 1319.2, 04/21/07                            0.0, 1202.3,                  105.1,              0.0,    21.7,      14.4, 1343.6, WEEK-TOT                            0.0, 7638.3, 1003.2,                              0.0,    151.8,    100.8, 8894.1,
      ,22APR                    04/22/07                            0.0, 1187.6,                  105.1,              0.0,    21.6,      14.4, 1328.7, 04/23/07                            0.0, 1209.6,                  119.4,              0.0,    21.6,      14.4, 1365.0, 04/24/07                            0.0, 1187.6,                  158.4,              0.0,    21.8,      14.4, 1382.2, 04/25/07                            0.0, 1209.6,                  158.4,              0.0,    22.4,      14.6, 1405.0, 04/26/07                            0.0, 1209.6,                704.5,              0.0,    21.7,      14.4, 1950.2, 04/27/07                            0.0, 1209.6,                771.1,              0.0,    21.6,      14.4, 2016.7, 04/28/07                            0.0, 1188.9,                771.1,              0.0,    21.6,      14.4, 1996.0, WEEK-TOT                            0.0, 8402.5, 2788.1,                              0.0,    152.3,    101.0,11443.9,
      ,29APR                      04/29/07 ,                          0.0, 1209.6,                771.1,              0.0,    21.6,      14.4, 2016.7, 04/30/07 r                          0.0, 1209.6,                771.1,              0.0,    21.7,      14.4, 2016.8, WEEK-TOT ,                          0 0, 2419.2, 1542.2,                              0.0,    43-.3,      28.8, 4033.6, TOTAL                                                          S0.0,31107.6,12219.2,                          0.0,    649.8,    438.5,44415.1, S5fffffffffffffffffj
                                                        <fffffff<fffffff<fffffff<fffffff<fffffff<ff                                      fffff<fffffffc
 
DAILY FLOWS
 
==SUMMARY==
- CIRC PUMPS                                                                          114 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT                                                                                C
------------------------------                                    YEAR=2007              MONTH=MAY-------------------------------
    ,,ffffffffffffffffff...fffffffffffffffffffffffffffffffffffffffffffffff...ffffffft
    ,WEEK-OF                    DATE                                                              TOTAL tfffffrffffffffffffffffffffffffffffffffffffffffffl                                                                I GALLONS            (IE6)        PUMPED
                                            , fffffffffffffffffffffffffffffffffffffffffffffflff I                                          IP    UNIT PUMPS                                          , TOTAL tffff~fff...fffffff...fffffff...fffffff...fffffff...fffffff^fffffffl CIRCI , CIRC2 , CIRC3 , SWP1                                          ,  SWP2      ,    SWP3      ,    PUMPS  ,
fffffffffffffffffff^fffffff^fffffff^fffffff-fffffff^fffffff^fffffff^fffffff*
    ,29APR                05/01/07                      0.0,        1209.6,                771.1,                0.0,        21.6,          14.4, 2016.7, 05/02/07                      0.0,        1188.9,              771.1,                0.0,        21.6,          14.4, 1996.0, 05/03/07                      0.0, 1209.6,                      775.9,                0.0,        28.8,          14.4, 2028.6, 05/04/07                      0.0, 1199.7,                      774.7,                0.0,        28.7,          15.3, 2018.4, 05/05/07                      0.0, 1199.1,                      774.7,                0.0,        28.8,          21.6, 2024.2, WEEK-TOT                      0.0, 6006.8, 3867.5,                                      0.0,      129.5,          8.0.1,10084.0,
    ,06MAY                05/06/07                      0.0, 1209.6,                      774.7,                0.0,        28.8,          21.6, 2034.7, 05/07/07                      0.0, 1209.6,                      893.3,                0.0,        28.9,          21.6, 2153.5, 05/08/07                      0.0, 1209.6,                      857.6,                0.0,        28.8,          21.6, 2117.6, 05/09/07                      0.0, 1196.9,                      841.7,                0.0,        28.8,          21.6, 2088.9, 05/10/07                      0.0, 1199.2,                      887.4,                0.0,        28.8,          21.6, 2137.0, 05/11/07                      0.0, 1209.6,                      993.6,                0.0,        28.8,          21.6, 2253.6, 05/12/07                      0.0, 1186.6,                      993.6,                0.0,        28.8,          21.8, 2230.8, WEEK-TOT                      0.0, 8421.1, 6241.9,                                      0.0,      201.7,          151.4,15016.2,
    ,13MAY                05/13/07                      0.0, 1209.6,                      981.4,                0.0,        28.8,          21.6, 2241.4, 05/14/07                      0.0, 1209.6,                      883.4,                0.0,        28.8,          21.6, 2143.4, 05/15/07                      0.0, 1120.1, 1002.3,                                      0.0,        28.8,          21.6, 2172.9,
* 05/16/07                      0.0, 1123.9,                      993.6,                0.0,        28.8,          21.6, 2167.9, 05/17/07                      0.0, 1124.2,                      993.6,                0.0,        28.8,          21.6, 2168.2, 05/18/07                      0.0, 1137.8,                      993.6,                0.0,        28.8,          21.6, 2181.8, 05/19/07                      0.0, 1209.6,                      993.6,                0.0,        28.8,          21.6, 2253.6, WEEK-TOT                      0.0, 8134.8, 6841.6,                                      0.0,      201.6,          151.2,15329.2,
    ,20MAY                05/20/07                      0.0, 1209.6,                      993. 6,                0.0,        28.8,          21.6, 2253.6, 05/21/07                      0.0, 11,16.6,                      993.6,                0.0,        28.8,          21.6, 2160.6, 05/22/07                      0.0, 1117.2,                      993.6,                0.0,        28 .8,          21.6, 2161.2, 05/23/07                      0.0, 1209.6,                      993.6,                0.0,        28.8,          21.6, 2253.6, 05/24/07                      0.0, 1160.9, 1006.1,                                      0.0,        28.8,          21.6, 2217.4, 05/25/07                      0.0, 1206.2, 1015.2,                                      0.0,        28.8,          21.6, 2271.8, 05/26/07                      0.0, 1188.6, 1015.2,                                      0.0,        28.8,          21.6, 2254.2, WEEK-TOT                      0.0, 8208.8, 7010.9,                                      0.0,      201.6,          151.2,15572.5,
    ,27MAY                05/27/07                      0.0, 1209.6, 1009.0,                                      0.0,        28.8,          21.6, 2269.0, 05/28/07                      0.0, 1209.6, 1015.2,                                      0.0,        28.8,          21.6, 2275.2, 05/29/07                      0.0, 1209.6, 1043.5,                                      0.0,        28.8,          21.6, 2303.5, 05/30/07                      fn          1209.6, 1081.4,                              0.0,        31.2,          21.6, 2343.9, 0 0, 05/31/07                      0.0, 1209.6, 1081.4,                                      0.0,        35.7,          21.6, 2348.4, WEEK-TOT                                  6048.0, 5230.6,                              0.0,      153.4,        108.0,11540.0,
    ,TOTAL                                  ,          0.0,36819.6,29192.6,                                      0.0,      887.8,          641.9,67541.9, Sffffffffffffffffff<fffffff<fffffff<fffffff<ffff                                                            *f ff< fffffff<      fffffff<      fffffff(E
 
DAILY FLOWS
 
==SUMMARY==
- CIRC PUMPS                                                                        115 INDIAN POINT MONTHLY ENVIRONMENTAL REPORT
------------------------------                                        YEAR=2007 MONTH=JUNE------------------------------
    ,,ffffffffffffffffff...ffffffffffffffffffffffffffffffffffffffffffffffff...fffffft
    ,WEEK-OF                      DATE          ,                                                  TOTAL                                          r          ,
tfffffffffffffffffffffffffffffffffffffffffffffff%
I                              GALLONS (lE6) PUMPED                                              ,
4fffffffffffffffffffffffffffffffffffffffffffffff,-o
                                                ,                                        IP UNIT PUMPS                                            , TOTAL tfffffff...fffffff...fffffff                        ...fffffff...fffffff            ... ffffffff-ffffrffrfl CIRCl , CIRC2 , CIRC3 , SWPI                                      , SWP2        , SWP3        , PUMPS ,
tffffffffffffffffff^fffffff-ffffffffffffffffffffff^ffffffffffffffffffffff-
    ,27MAY                06/01/07 ,                        0.0, 1209.6, 1121.7,                                0.0,          28.8,          21.6, 2381.7, 06/02/07 ,                        0.0, 1199.2, 1174.3,                                0.0,          28.8,          21.6, 2424.0, WEEK-TOT ,                        0.0, 2408.8, 2296.0,                                0.0,          57.6,          43.2, 4805.7,
    ,03JUN                06/03/07 ,                      0.0, 1198.7, 1166.1,                                0.0,          28.8,          21.6, 2415.2, 06/04/07 ,                      0.0, 1209.6, "1190.1,                                0.0,          28.8,          21.6, 2450.1, 06/05/07 ,                      0.0, 1209.6, 1209.6,                                0.0,          28.8,          21.6, 2469.6, 06/06/07 ,                      0.0, 1209.6, 1209.6,                                0.0,          28.8,          21.6, 2469.6, 06/07/07 ,                      0.0, 1209.6, 1209.6,                                0.0,          28.8,          21.7, 2469.7, 06/08/07 ,                      0.0, 1200.6, 1209.6,                                0.0,          29.0,          21.6, 2460.9, 06/09/07 ,                      0.0, 1199.0, 1209.6,                                0.0,          28.8,          21.6, 2459.0, WEEK-TOT,                        0.0, 8436.7, 8404.2,                                0.0,        201.8,        151.3,17194.1,
    ,10JUN                06/10/07 ,                      0.0, 1209.6, 1209.6,                                0.0,          28.8,          21.6, 2469.6, 06/11/07 ,                      0.0, 1209.6, 1209.6,                                0.0,          29.0,          21.6, 2469.8, 06/12/07 ,                      0.0, 1209.6, 1209.6,                                0.0,          28.8,          21.8, 2469.8, 06/13/07 ,                      0.0, 1209.6, 1209.6,                                9.8,          28.8,          21.6, 2479.4, 06/14/07 ,                      0.0, 1209.6, 1209.6,                              23.0,            28.8,          21.6, 2492.6, 06/15/07 ,                      0.0, 1209.6, 1209.6,                              23.0,            28.8,          21.6, 2492.6, 06/16/07 ,                      0.0, 1198.5, 1209.6,                              16.2,            28.8,          21.7, 2474.8, WEEK-TOT,                        0.0, 8456.1, 8467.2,                              72.1,          201.8,        151.5,17348.7,
  ,17JUN                  06/17/07 ,                      0.0, 1198.5, 1175.9,                                0.0,          28.8,          21.6, 2424.9, 06/18/07 ,                      0.0, 1209.6, 1194.5,                                0.0,          28.8,          21.6, 2454.5, 06/19/07 ,                      0.0, 1209.6, 1194.5,                                0.0,          28.8,          21.6, 2454.5, 06/20/07 ,                      0.0, 1209.6, 1184.4,                                0.0,          28.8,          21.6, 2444.4, 06/21/07 ,                      0.0, 1209.6, 1194.5,                                0.0,          28.8,          21.6, 2454.5, 06/22/07 ,                      0.0, 1209.6, 1194.5,                                0.0,          32.0,          21.6, 2457.7, 06/23/07 ,                      0.0, 1209.6, 1194.5,                              18.5,            25.3,          21.6, 2469.5, WEEK-TOT ,                      0.0, 8456.1, 8332.7,                              18.5,          201.3,        151.2,17159.9,
  ,24JUN                  06/24/07 ,                      0.0, 1209.6, 1194.5,                              23.0,            21.6,          21.6, 2470.3, 06/25/07 ,                      0.0, 1209.6, 1194.5,                              23.0,            21.8,          21.6, 2470.5, 06/26/07 ,                      0.0, 1209.6, 1183.3,                              23.0,            21.6,          21.6, 2459.1, 06/27/07 ,                      0.0, 1209.6, 1194.5,                              23.0,            21.6,          21.6, 2470.3, 06/28/07 ,                      0.0, 1209.6, 1194.5,                              23.0,            21.6,          21.6, 2470.3, 06/29/07 ,                      0.0,' 1209.6, 1194.5,                              23.0,            21.6,          21.6, 2470.3, 06/30/07 ,                      0.0, 1209.6, 1194.5,                              23.0,            21.6,          21.6, 2470.3, WEEK-TOT,                        0.0, 8467.2, 8350.2,                            161.3,          151.4,        151.2,17281.3,
  ,TOTAL                                      ,          0.0,36225.0,35850.4,                            251.9,          813.9,        648.4,73789.6,
  &#xfd;ffffffffffffffffff<f ffffff<f]ffffff<                                              fffffff&#xa2;        fffffff<        fffffff<      fffffff<      fffffff(E
 
FLOW DEVIATIONS                              116 UNIT 1  CIRCULATOR PUMPS 04/01/07  THROUGH 06/30/07 TIME                                        RESULTANT GPM                          FLOW, GPM DATE PUMP OFF      ON      (000S)        CAUSE            (o0os)
(PREVIOUS  FLOW)          0.0
                                    ** NO DEVIATIONS  **
                        -- END --
 
FLOW DEVIATIONS                            117
(
UNIT 2  CIRCULATOR PUMPS 04/01/07  THROUGH 06/30/07 TIME                                    RESULTANT GPM                      FLOW, GPM DATE    PUMP    OFF      ON      (000S)        CAUSE          (o0os)
(PREVIOUS  FLOW)    616.0 04/04/07 CIRC 26 22:56              140.0  COND. BACKWASH      476.0 CIRC 26          23:28    140.0                        616.0 04/07/07 CIRC 24 12:55              84.0  COND. BACKWASH      532 .0 CIRC 24          13:22      84.0                        616.0 CIRC 25 13:25              84.0  COND. BACKWASH      532.0 CIRC 25          13:48      84.0                        616.0 CIRC 26 13:52              140.0  COND. BACKWASH      476.0 CIRC 26          14:16    140.0                        616.0 CIRC 23 19:56              84 .0  COND. BACKWASH      532.0 CIRC 23          20:21      84.0                        616.0 CIRC 22 20:24              84.0  COND. BACKWASH      532.0 CIRC 22          20:46      84.0                        616.0 CIRC 21 20:51              140.0  COND. BACKWASH      476.0 CIRC 21          21:16    140.0                        616.0 04/12/07 CIRC 24 4 :20              84.0  COND. BACKWASH      532.0 CIRC 24          4:28      84.0                        616.0 CIRC 25 4 :53              84.0  COND. BACKWASH      532.0 CIRC 25          5:22      140.0                        672.0 CIRC 26 5:28              140.0  MAINTENANCE          532.0 CIRC 26          15:54    140.0                        672.0 CIRC 23 23:00              84.0  COND. BACKWASH      588.0 CIRC 23          23:28    140.0                        728.0 CIRC 22 23:33              84.0  COND. BACKWASH      644.0 04/13/07 CIRC 22          0:01      84.0                        728.0 CIRC 21 0:04              140.0  COND. BACKWASH      588.0 CIRC 21          0:32      140.0                        728.0 CIRC 25 5:40              140.0  COND. BACKWASH      588.0 CIRC 25          6:04      140.0                        728.0 CIRC 26 8:23              140.0  MAINTENANCE          588.0 CIRC 26          12:38    140.0                        728.0 04/16/07 CIRC 24 10:01              84.0  COND. BACKWASH      644.0 CIRC 24          10:22      84.0  COND. BACKWASH      728.0 CIRC 25 10:25              140.0  COND. BACKWASH      588.0 CIRC 25          10:52    140.0  COND. BACKWASH      728.0 CIRC 26 10:57              140.0  COND. BACKWASH      588.0 CIRC 26          11:22    140.0  COND. BACKWASH      728 .0 CIRC 23 14:02              140.0  COND. BACKWASH      588 .0 CIRC 23          14:28    140.0                        728 .0 CIRC 22 14:30              84.0  COND. BACKWASH      644 .0 CIRC 22          14:56      84.0                        728. 0 CIRC 21 15:00              140.0  COND. BACKWASH      588. 0 CIRC 21          15:25    140.0                        728.0 CIRC 24 20:15              84.0  COND. BACKWASH      644.0 CIRC 24          20:31      84.0                        728.0
 
FLOW DEVIATIONS                          118 UNIT 2  CIRCULATOR PUMPS                        (
04/01/07  THROUGH 06/30/07 TIME                                  RESULTANT
                            - -        GPM                    FLOW, GPM DATE    PUMP    OFF        ON        (000S)        CAUSE        (Coos)
COND. BACKWASH CIRC 25 20:35                140.0                      588.0 CIRC 25            20:53      140.0                      728.0 COND. BACKWASH CIRC 26 20:58                140.0                      588.0 CIRC 26            21:20      140.0                      728.0 04/17/07 CIRC 25 1:27                  140.0  COND. BACKWASH    588.0 CIRC 25            1:51      140.0  COND. BACKWASH    728.0 CIRC 22 2:24                  84.0  COND. BACKWASH    644.0 CIRC 22            2:49        84.0  COND. BACKWASH    728.0 CIRC 23 4:07                  140.0  COND. BACKWASH    588.0 CIRC 23            4:23      140.0  COND. BACKWASH    728.0 CIRC 22 4:28                  84. 0 COND. BACKWASH    644.0 CIRC 22            4:52        84.0  COND. BACKWASH    728.0 CIRC 21 4 :58                140.0  COND. BACKWASH    588.0 CIRC 21            5:20      140.0  COND. BACKWASH    728.0 CIRC 24 9:24                  84.0  COND. BACKWASH    644.0 CIRC 24            9:54        84.0  COND. BACKWASH    728.0 CIRC 25 10:04                140.0  COND. BACKWASH    588.0 CIRC 25            10:33      140.0  COND. BACKWASH    728.0 CIRC 26 10:40                140.0  COND. BACKWASH    588.0 CIRC 26            11:10      140.0  COND. BACKWASH    728.0 CIRC 23 13:38                140.0  COND. BACKWASH    588.0 CIRC 23            14:07      140.0                      728.0 CIRC 22 14:13                  84.0  COND. BACKWASH    644.0 CIRC 22            14:43      84.0                      728.0 CIRC 21 14 :55                140.0  COND. BACKWASH    588.0 CIRC 21            15:25      140.0                      728.0 CIRC 24 21:15                  84.0  COND. BACKWASH    644.0 CIRC 24            21:41      84.0                      728.0 CIRC 25 21:45                140.0  COND. BACKWASH    588.0 CIRC 25            22:11      140.0                      728.0 CIRC 26 22:15                140.0  COND. BACKWASH    588.0 CIRC 26            22:48      140.0                      728.0 04/18/07 CIRC 23 3:35                  140.0  COND. BACKWASH    588.0 CIRC 23            3:52      140.0                      728.0 CIRC 22 3:57                  84.0  COND. BACKWASH    644.0 CIRC 22            4:27        84.0  COND. BACKWASH    728.0 CIRC 21 4 : 32                140.0  COND. BACKWASH    588.0 CIRC 21            4:57      140.0  COND. BACKWASH    728.0 CIRC 24 9:33                  84.0- COND. BACKWASH    644.0 CIRC 24            9:58      140.0                      784.0 CIRC 25 10:08                140.0  COND. BACKWASH    644 .0 CIRC 25            10:31      140.0                      784.0 CIRC 26 10:37                140.0  COND. BACKWASH    644.0 CIRC 26            11:02      140.0                      784.0 CIRC 22 15:29                  84.0  COND. BACKWASH    700.0 CIRC 22            15:55      84 .0                    784.0 CIRC 21 16:01                140.0  COND. BACKWASH    644.0 CIRC 21            16:28      140.0                      784.0
 
FLOW DEVIATIONS                          119 UNIT 2    CIRCULATOR PUMPS 04/01/07    THROUGH 06/30/07 TIME                                    RESULTANT
                              - -      GPM                    FLOW, GPM DATE    PUMP    OFF      ON        (000S)        CAUSE        (0oos) 04/19/07 CIRC  23 4 :37              140.0  COND. BACKWASH      644.0 CIRC  23          5:00      140.0                        784.0 CIRC 22  5:04                84.0  COND. BACKWASH      700.0 CIRC 22          5:26        84.0                        784.0 CIRC 21. 5:29                140.0  COND. BACKWASH      644.0 CIRC 21          5:54      140.0                        784.0 CIRC  24 10:54              140.0  COND. BACKWASH      644.0 CIRC 24          11:16      140.0                      784.0 CIRC 25  11:20              140.0  COND. BACKWASH      644.0 CIRC 25          11:44      140.0                      784.0 CIRC 26  12:18              140.0  COND. BACKWASH      644.0 CIRC 26          12:40      140.0                      784.0 04/20/07 CIRC 22  4 :58                84.0  COND. BACKWASH    700.0 CIRC 22          5:02      140.0  COND. BACKWASH    840.0 CIRC 21  5:27                140.0  COND. BACKWASH    700.0 CIRC 21          5:50      140.0  COND. BACKWASH    840.0 CIRC 22  17:40              140.0  COND. BACKWASH    700.0 CIRC 22          18:04      140.0                      840.0 CIRC 21  18:11              140.0  COND. BACKWASH    700.0 CIRC 21          18:35      140.0                      840.0
(          CIRC CIRC 24 24 23:23 23:53 140.0 140.0 COND. BACKWASH    700.0 840.0 CIRC 25  23:58              140.0  COND. BACKWASH    700.0 04/21/07 CIRC 25          0:25      140.0                      840.0 CIRC 26  0:30                140.0  COND. BACKWASH    700.0 CIRC 26          0:57      140.0                      840.0 04/22/07 CIRC 24  1:20                140.0  COND. BACKWASH    700.0 CIRC 24          1:48      140.0                      840.0 CIRC 25  1:51                140.0  COND. BACKWASH    700.0 CIRC 25          2:17      140.0                      840.0 CIRC 26  2:21                140.0  COND. BACKWASH    700.0 CIRC 26          2:45      140.0                      840.0 CIRC 23  8:05                140.0  COND. BACKWASH    700.0 CIRC 23          8 :32      140.0                      840.0 CIRC 22  8:35                140.0  COND. BACKWASH    700.0 CIRC 22          9:02      140.0                      840.0 CIRC 21  9:06                140.0  COND. BACKWASH    700.0 CIRC 21          9:31      140.0                      840.0 04/24/07 CIRC 24  3:04                140.0  COND. BACKWASH    700.0 CIRC 24          3:30      140.0                      840.0 CIRC 25  3:35                140.0  COND. BACKWASH    700.0 CIRC 25          4 :02      140.0                      840.0 CIRC 26  4:06                140.0  COND. BACKWASH    700.0 CIRC 26          4 :33      140.0                      840.0 CIRC 23  9:02                140.0  COND. BACKWASH    700.0 CIRC 23          9:27      140.0                      840.0 CIRC 22  9:31                140.0  COND. BACKWASH    700.0
 
FLOW DEVIATIONS                          120 UNIT 2  CIRCULATOR PUMPS                        (
04/01/07  THROUGH 06/30/07 TIME                                  RESULTANT
                          - -      GPM                      FLOW, GPM DATE    PUMP    OFF      ON      (000S)          CAUSE        (0oos)
CIRC 22          9:57    140.0                        840.0 CIRC 21 10:04            140.0    COND. BACKWASH    700.0 CIRC 21          10:30    140.0                        840.0 04/28/07 CIRC 23 12:25            140.0    COND. BACKWASH    700.0 CIRC 23          12:47    140.0                        840.0 CIRC 22 12:49            140.0    COND. BACKWASH    700.0 CIRC 22          13:09    140.0                        840.0 CIRC 21 13:15            140.0    COND. BACKWASH    700.0 CIRC 21          13:37    140.0                        840.0 CIRC 24 20:02            140.0    COND. BACKWASH    700.0 CIRC 24          20:31    140.0                        840.0 CIRC 25 20:37            140.0    COND. BACKWASH    700.0 CIRC 25          21:03    140.0                        840.0 CIRC 26 21:06            140.0    COND. BACKWASH    700.0 CIRC 26          21:35    140.0                        840.0 05/02/07 CIRC 23 16:32            140.0    COND. BACKWASH    700.0 CIRC 23          16:56    140.0                        840.0 CIRC 22 17:00            140.0    COND. BACKWASH    700.0 CIRC 22          17:26    14.0.0                      840.0 CIRC 21 17:29            140.0    COND. BACKWASH    700.0 CIRC 21          17:52    140.0                        840.0 CIRC 24 22: 02            140.0    COND. BACKWASH    700.0 CIRC 24          22:26    140.0                        840.0 CIRC 25 22:31            140.0    COND. BACKWASH    700.0 CIRC 25          22:55    140.0                        840.0 CIRC 26 23:00            140.0    COND. BACKWASH    700.0 CIRC 26          23:27    140.0                        840.0 05/04/07 CIRC 24 22:31            140.0    COND. BACKWASH    700.0 CIRC 24          22:54    140.0                        840.0 CIRC 25 22:58            140.0    COND. BACKWASH    700.0 CIRC 25          23:22    140.0                        840.0 CIRC 26 23:34            140.0    COND. BACKWASH    700.0 CIRC 26          23:58    140.0                        840.0 05/05/07 CIRC 23 17:02            140.0    COND. BACKWASH    700.0 CIRC 23          17:27    140.0                        840.0 CIRC 22 17:31            140.0  COND. BACKWASH    700.0 CIRC 22          17:56    140.0                        840.0 CIRC 21 18 :03            140.0  COND. BACKWASH    700. 0 CIRC 21          18:28    140.0                        840.0 05/09/07 CIRC 23 22 :02            140.0  COND. BACKWASH    700.0 CIRC 23          22:32    140.0                        840.0 CIRC 22 22:36            140.0  COND. BACKWASH    700.0 CIRC 22          23:06    140.0                        840.0 CIRC 21 23:09            140.0  COND. BACKWASH    700. 0 CIRC 21          23:40    140.0                        840.0
 
FLOW DEVIATIONS                            121
(                              UNIT 2 04/01/07 CIRCULATOR PUMPS THROUGH 06/30/07 TIME                                      RESULTANT GPM                      FLOW, GPM DATE    PUMP      OFF      ON        (000S)        CAUSE          (ooos) 05/10/07 CIRC  24 3:05                  140.0  COND. BACKWASH      700.0 CIRC  24            3:31      140.0                        840.0 CIRC  25 3:34                  140.0  COND. BACKWASH      700.0 CIRC  25          4:01        140.0                        840.0 CIRC  26 4 :07                140.0  COND. BACKWASH      700. 0 CIRC  26          4 :28      140.0                        840.0 05/12/07 CIRC  23  10:43                140.0  COND. BACKWASH      700.0 CIRC  23            11:09      140.0                        840.0 CIRC  22 11:13                140.0  COND. BACKWASH      700.0 CIRC  22            11:39    140.0                        840.0 CIRC  21 11:45                140.0  COND. BACKWASH      700.0 CIRC  21            12:12      140.0                        840.0 CIRC  24  19:52                140.0  COND. BACKWASH      700.0 CIRC  24            20:20      140.0                        840.0 CIRC  25 20:25                140.0  COND. BACKWASH      700.0 CI RC  25          20:55      140.0                        840.0 CIRC  26  20:56                140.0  COND. BACKWASH      700.0 CIRC  26            21:23      140.0                        840.0 05/15/07 CIRC 26  13:03                140.0  WATERBOX CLNG.        700.0 CIRC 26            23:42      140.0                        840.0 05/16/07 CIRC 25  12:22                140.0  WATERBOX CLNG.        700.0 CIRC 25            22:34      140.0                        840.0 05/17/07 CIRC 21  13:09                140.0  WATERBOX CLNG.        700.0 CIRC 21            23:19      140.0                        840.0 05/18/07 CIRC 22  14 :12              140.0  WATERBOX CLEANING    700.0 CIRC 22            22:45      140.0                        840.0 05/21/07 CIRC 23  4:06                140.0  WATERBOX CLEANING    700.0 CIRC 23            15:10      140.0                        840.0 05/22/07 CIRC 24  5:43                140.0  WATERBOX CLNG.        700.0 CIRC 24            16:43      140.0                        840.0 05/24/07 CIRC 25  9:17                140.0  MAINTENANCE          700.0 CIRC 25            15:05      140.0                        840.0 05/25/07 CIRC  26  4 :28                140.0  COND. BACKWASH      700.0 CIRC  26            4 :52      140.0                        840.0 05/26/07 CIRC  24  4:50                140.0  COND. BACKWASH      700.0 CIRC  24            5:14      140.0                        840.0 CIRC  25  5:20                140.0  COND. BACKWASH      700.0 CIRC  25            5:43      140.0                        840.0 CIRC  26  5:48                140.0  COND. BACKWASH      700.0 CIRC  26            6:21      140.0                        840.0 CIRC  23  11:12                140.0  COND. BACKWASH      700.0
 
FLOW DEVIATIONS                        122 UNIT 2  CIRCULATOR PUMPS 04/01/07  THROUGH 06/30/07 TIME                                  RESULTANT
                          -  -      GPM                    FLOW, GPM DATE    PUMP    OFF      ON        (000S)        CAUSE        (o0os)
CIRC 23          11:31      140.0                      840.0 CIRC 22 11:43                140.0  COND. BACKWASH    700.0 CIRC 22          12:05      140.0                      840.0 CIRC 21 12:15                140.0  COND. BACKWASH    700.0 CIRC 21          12:44      140.0                      840.0 06/02/07 CIRC 24 10: 18              140.0  COND. BACKWASH    700.0 CIRC 24          10:43      140.0                      840.0 CIRC 25 10:54                140.0  COND. BACKWASH    700.0 CIRC 25          11:18      140.0                      840.0 CIRC 26 11:34                140.0  COND. BACKWASH    700.0 CIRC 26          11:59      140.0                      840.0 06/03/07 CIRC 23 4:49                140.0  COND. BACKWASH    700.0 CIRC 23          5:13      140.0                      840.0 CIRC 22 5: 17                140.0  COND. BACKWASH    700.0 CIRC 22          5:45      140.0                      840.0 CIRC 21 5:46                140.0  COND. BACKWASH    700.0 CIRC 21          6:12      140.0                      840.0 06/08/07 CIRC 23 21: 10              140.0  COND. BACKWASH    700.0 CIRC 23          21:33      140.0                      840.0 CIRC 22 21:40                140.0  COND. BACKWASH    700.0 CIRC 22          22:01      140.0                      840.0 CIRC 21 22:06                140.0  COND. BACKWASH    700.0 CIRC 21          22:26      140.0                      840.0 06/09/07 CIRC 24 16:14                140.0  COND. BACKWASH    700.0 CIRC 24          16:39      140.0                      840.0 CIRC 25 16:46                140.0  COND. BACKWASH    700.0 CIRC 25          17:10      140.0                      840.0 CIRC 26 17 : 14              140.0  COND. BACKWASH    700.0 CIRC 26          17:41      140.0                      840.0 06/16/07 CIRC 24 10:00                140.0  COND. BACKWASH    700.0 CIRC 24          10:26      140.0                      840.0 CIRC 25 10:28                140.0  COND. BACKWASH    700.0 CIRC 25          10:53      140.0                      840.0 CIRC 26 11:03                140.0  COND. BACKWASH    700.0 CIRC 26          11:31      140.0                      840.0 06/17/07 CIRC 23 4:17                140.0  COND. BACKWASH    700.0 CIRC 23          4:44      140.0                      840.0 CIRC 22 4:48                140.0  COND. BACKWASH    700.0 CIRC 22          5:14      140.0                      840.0 CIRC 21 5:18                140.0  COND. BACKWASH    700.0 CIRC 21          5:44      140.0                      840.0
                                -- END --
 
FLOW DEVIATIONS                                123 C,                            UNIT 3  CIRCULATOR PUMPS 04/01/07  THROUGH 06/30/07 TIME                                        RESULTANT
                                - -      GPM                          FLOW, GPM DATE    PUMP    OFF      ON      (000S)        CAUSE              (0oos)
(PREVIOUS  FLOW)        577.0 04/01/07 CIRC  31 2:56                115.0  SPEED CHANGE      (RPM CHANGE)
CIRC  31          2:56      83.5                            545.5 CIRC  32 2: 57                86.0  SPEED CHANGE      (RPM CHANGE)
CIRC  32          2:57        83.5                            543.0 CIRC  33 2:58                  89.0  SPEED CHANGE      (RPM CHANGE)
CIRC  33          2:58        83.5                            537.5 CIRC  34 2:59                  91.5  SPEED  CHANGE    (RPM CHANGE)
CIRC  34          2:59        83.5  SPEED  CHANGE            529.5 CIRC  36 3:01                112.0  SPEED  CHANGE    (RPM CHANGE)
CIRC  36          3:01      83.5  SPEED  CHANGE            501.0 CIRC  34 8:44                83.5  SPEED  CHANGE    (RPM CHANGE)
CIRC  34          8:44      140.0                            557.5 CIRC  35 8:44                83.5  TUBE LEAK                474.0 CIRC  36 8:44                83.5  SPEED CHANGE      (RPM CHANGE)
CIRC  36          8:44      140.0                            530.5 04/02/07 CIRC  34 2:25                140.0  SPEED  CHANGE    (RPM CHANGE)
CIRC  34          2:25      83.5  SPEED  CHANGE            474.-0 CIRC  36 2:26                140.0  SPEED  CHANGE    (RPM CHANGE)
(          CIRC CIRC 36 31 11:15 2:26      83.5 83.5 SPEED SPEED CHANGE CHANGE 417.5 (RPM CHANGE)
CIRC  31          11:15      68.5                            402.5 CIRC  32 11:20                83.5  SPEED CHANGE      (RPM CHANGE)
CIRC  32          11: 20    68.5                            387.5 CIRC  33 11:27                83.5  SPEED CHANGE      (RPM CHANGE)
CIRC  33          11:27      78.0                            382.0 CI RC 34 11:35                83.5  SPEED CHANGE      (RPM CHANGE)
CIRC  34          11:35      73.0                            371.5 CIRC  35          11:45      73.0                            444.5 CIRC  36 12:00                83.5  SPEED CHANGE      (RPM CHANGE)
CIRC  36          12: 00    78.0                            439.0 04/08/07 CIRC 31  8:37                68.5  UNIT OFF LINE            370.5 CIRC 33  8:38                78.0  UNIT OFF LINE            292.5 04/11/07 CIRC 32  14:16                68.5  UNIT OFF LINE            224.0 CIRC 34  14:16                73.0  UNIT OFF LINE            151.0 04/17/07 CIRC 36  9:07                78.0  SPEED CHANGE      (RPM CHANGE)
CIRC 36            9:07      83.5  MAINTENANCE              156.5 CIRC 36  9:08                83.5  MAINTENANCE                73.0 04/23/07 CIRC 35  17:33                73.0  SPEED CHANGE      (RPM CHANGE)
CIRC 35            17:33    110.0                            110.0 04/26/07 CIRC 31            0:40      86.0                            196.0 CIRC 34            2:16      89.0                            285.0 CIRC 36            2:41      83.5                            368.5
 
F LOW DEVIATIONS                            124 UNIT 3    CIRCULATOR PUMPS 04/01/07    THROUGH 06/30/07 TIME                                      RESULTANT
                              --      GPM                      FLOW, GPM DATE    PUMP    OFF      ON        (000S)        CAUSE          (0oos)
CIRC  32          3:03        83.5                        452.0 CIRC  33          4:28        83.5                        535.5 05/03/07 CIRC  32 0:01                  83.5  SPEED CHANGE    (RPM CHANGE)
CIRC  32          0:01        140.0  SPEED CHANGE          592.0 CIRC  34 0:02                  89.0  SPEED CHANGE    (RPM CHANGE)
CIRC  34          0:02        140.0  SPEED CHANGE          643.0 CIRC  33 0:03                  83.5  I&C WORK              559.5 CIRC  33          0:39        83.5                        643.0 CIRC  32 0:40                  140.0  SPEED CHANGE    (RPM CHANGE)
CIRC  32          0:40        86.0                        589.0 CIRC  34 0:42                  140.0  SPEED CHANGE    (RPM CHANGE)
CIRC  34          0:42        89.0                        538.0 05/07/07 CIRC  31 10:45                  86.0  SPEED CHANGE    (RPM CHANGE)
CIRC  31          10:45        97.0                        549.0 CIRC  32 10:46                  86.0  SPEED CHANGE    (RPM CHANGE)
CIRC  32          10:46        97.0                        560.0 CIRC  33 10:47                  83.5  SPEED CHANGE    (RPM CHANGE)
CIRC  33          10:47        99.5                        576.0 CIRC  34 10:48                  89.0  SPEED CHANGE    (RPM CHANGE)
CIRC  34          10:48        99.5                        586.5 CIRC  36 10:49                  83.5  SPEED CHANGE    (RPM CHANGE)
CIRC  36          10:49      110.0  COND. BACKWASH        613.0 CIRC  35 22:46                110.0  COND. BACKWASH        503.0 CIRC  35          23:16      110.0                        613.0 CIRC  36 33:28                110.0  COND. BACKWASH      503.0 05/08/07 CIRC  36          0:05        99.5  SPEED CHANGE          602.5 CIRC  33 0:13                  99. 5  SPEED CHANGE    (RPM CHANGE)
CIRC  33          0:13        97.0                        600.0 CIRC  36 0: 13                  99.5  SPEED CHANGE    (RPM CHANGE)
CIRC  36          0:13        110.0  SPEED CHANGE          610.5 CIRC  35 10: 35                110.0  SPEED CHANGE    (RPM CHANGE)
CIRC  35          10:35        97.0                        597.5 CIRC  36 10:36                110.0  SPEED CHANGE    (RPM CHANGE)
CIRC  36          10:36        97.0                        584.5 32 5:24                  97. 0  SPEED CHANGE    (RPM CHANGE) 05/10/07 CIRC CIRC  32          5:24        137.5  SPEED CHANGE          625.0 CIRC  33 5:24                  97. 0  MAINTENANCE          528.0 CIRC  34 5:24                  99.5  SPEED CHANGE    (RPM CHANGE)
CIRC  34          5:24        137.5  SPEED CHANGE          566.0 CIRC  35 10:11                  97.0  SPEED CHANGE    (RPM CHANGE)
CIRC  35          10:11      115.0                        584.0 CIRC  36 10:11                  97.0  SPEED CHANGE    (RPM CHANGE)
CIRC  36          10:11      115.0                        602.0 CIRC  33          17:10        99.5  SPEED CHANGE          701.5 CIRC  33 17:40                  99.5  SPEED CHANGE    (RPM CHANGE)
CI RC 33          17:40      115.0                        717.0 CIRC  34 17.: 41              137.5  SPEED CHANGE    (RPM CHANGE)
 
FLOW DEVIATIONS                            125
(                            UNIT 3  CIRCULATOR PUMPS 04/01/07 THROUG H 06/30/07 TIME                                      RESULTANT GPM                        FLOW, GPM DATE    PUMP      OFF      ON      (000S)        CAUSE          (o0os)
CIRC  34          17:41    115.0  SPEED CHANGE          694.5 CIRC  31 17:42                97.0                  (RPM CHANGE)
CIRC  31          17:42    115.0  SPEED CHANGE          712.5 CIRC  32 17:44              137.5                    (RPM CHANGE)
CIRC  32          17:44    115.0                          690.0 05/13/07 CIRC  32 11:49              115.0  SPEED  CHANGE    (RPM CHANGE)
CIRC  32          11:49    140.0  SPEED  CHANGE          715.0 CI RC  34 11:49              115.0  SPEED  CHANGE    (RPM CHANGE)
CIRC  34          11:49    140.0  SPEED  CHANGE          740.0 CIRC  33 11:50              115;0  COND. BACKWASH        625.0 CIRC  33          12:23    115.0  SPEED  CHANGE          740.0 CIRC  32 12:29              140.0  SPEED  CHANGE    (RPM CHANGE)
CIRC  32          12:29    115.0  COND. BACKWASH        715.0 CIRC  34 12:29              140.0  SPEED  CHANGE    (RPM CHANGE)
CIRC  34          12:29    115.0  COND. BACKWASH        690.0 CIRC  31 12:43              115.0  SPEED  CHANGE    (RPM CHANGE)
CIRC  31          12:43    140.0  SPEED  CHANGE          715.0 CIRC  33  12:43              115.0  SPEED  CHANGE    (RPM CHANGE)
CIRC  33          12:43    140.0  SPEED  CHANGE          740.0 CIRC  32 12:44              115.0  COND. BACKWASH        625.0 CIRC  32          13:17    115.0  SPEED  CHANGE          740.0
(          CIRC  31  13:20              140.0  SPEED  CHANGE    (RPM CHANGE)
CIRC  31          13:20    115.0  COND. BACKWASH        715.0 CIRC  33  13:20              140.0  SPEED  CHANGE    (RPM CHANGE)
CIRC  33          13:20    115.0  SPEED  CHANGE          690.0 CIRC  31  13:23              115.0  COND. BACKWASH        575.0 CIRC  32  13:23              115.0  SPEED  CHANGE    (RPM CHANGE)
CIRC  32          13:23    140.0  SPEED  CHANGE          600.0 CIRC  31          13:54    115.0                          715.0 CIRC  32  13:57              140.0  SPEED CHANGE    (RPM CHANGE)
CIRC  32          13:57    115.0                          690.0 CIRC  33  15:30              115.0  SPEED  CHANGE  (RPM CHANGE)
CIRC  33          15:30    140.0  SPEED  CHANGE          715.0 CIRC  35  15:30              115.0  SPEED  CHANGE  (RPM CHANGE)
CIRC  35          15:30    140.0  SPEED  CHANGE          740.0 CIRC  34  15:33              115.0  COND. BACKWASH        625.0 CIRC  34          16:00    115.0  SPEED  CHANGE          740.0 CIRC  33  16:03              140.0  SPEED  CHANGE  (RPM CHANGE)
CIRC  33          16:03    115.0                          715.0 CIRC  35  16:03              140.0  SPEED  CHANGE  (RPM CHANGE)
CIRC  35          16:03    115.0  COND. BACKWASH        690.0 CIRC  34  16:11              115.0  SPEED  CHANGE  (RPM CHANGE)
CIRC  34          16:11    140.0  SPEED  CHANGE          715.0 CIRC  36  16:11              115.0  SPEED  CHANGE  (RPM CHANGE)
CIRC  36          16:11    140.0  SPEED  CHANGE          740.0 CIRC  35  16:12              115.0  COND. BACKWASH        625.0 CIRC  35          16:41    115.0  SPEED  CHANGE          740.0 CIRC  34  16:44              140.0  SPEED  CHANGE  (RPM CHANGE)
(          CIRC CIRC 34 36  16:44 16:44    115.0 140.0  SPEED CHANGE 715.0 (RPM CHANGE)
 
FLOW DEVIATIONS                            126 UNIT 3  CIRCULATOR PUMPS 04/01/07 THROUGH 06/30/07 TIME                                    RESULTANT GPM                        FLOW, GPM DATE    PUMP    OFF      ON      (000S)        CAUSE          (0OOs)
CIRC 36          16:44    115.0  COND. BACKWASH        690.0 CIRC 35 16:52              115.0  SPEED  CHANGE  (RPM CHANGE)
CIRC 35          16:52    140.0  SPEED  CHANGE          715.0 CIRC 36 16:52              115.0  COND. BACKWASH        600.0 CIRC 36          17:21    115.0                          715.0 CIRC 35 17 : 23            140.0  SPEED CHANGE    (RPM CHANGE)
CIRC 35          17:23    115.0                          690.0 05/14/07 CIRC 32 3:41              115.0  SPEED CHANGE    (RPM CHANGE)
CIRC 32          3:41    140.0  SPEED CHANGE          715.0 CIRC 31 3:42              115.0  MAINTENANCE            600.0 CIRC 32 20:02              140.0    SPEED CHANGE  (RPM CHANGE)
CIRC 32          20:02    137.5                          597.5 05/15/07 CIRC 31          4:34    115.0    SPEED CHANGE          712.5 CIRC 32 4:34              137. 5  SPEED CHANGE  (RPM CHANGE)
CIRC 32          4:34    115.0    PUMP TRIPPED          690.0 CIRC 32 16:55              115.0    PUMP TRIPPED          575.0 CIRC 34 16:55              115.0    PUMP TRIPPED          460.0 CIRC 36 16:55              115.0    PUMP TRIPPED          345.0 CIRC 31 16:56              115.0  SPEED CHANGE    (RPM CHANGE)
CIRC 31          16:56    140.0    SPEED CHANGE          370.0 CIRC 33 16:56              115.0    SPEED CHANGE  (RPM CHANGE)
CIRC 33          16:56    140.0    SPEED CHANGE          395.0 CIRC 35 16:56              115.0    SPEED CHANGE  (RPM CHANGE)
CIRC 35          16:56    140.0    SPEED CHANGE          420.0 CIRC 34          17:15    140.0    SPEED CHANGE          560.0 CIRC 32          17:26    140.0    SPEED CHANGE          700.0 CIRC 36          17:44    140.0    SPEED CHANGE          840.0 CIRC 31 22:16              140.0    SPEED CHANGE  (RPM CHANGE)
CIRC 31          22:16    115.0                          815.0 CIRC 32 22:16              140.0    SPEED CHANGE  (RPM CHANGE)
CIRC 32          22:16    115.0                          790.0 CIRC 33 22:16              140.0    SPEED CHANGE  (RPM CHANGE)
CIRC 33          22:16    115.0                          765.0 CIRC 34 22:16              140.0    SPEED CHANGE  (RPM CHANGE)
CIRC 34          22:16    115.0                          740.0 CIRC 35 22:16              140.0    SPEED CHANGE  (RPM CHANGE)
CIRC 35          22:16    115.0                          715.0 CIRC 36 22:16              140.0  SPEED CHANGE    (RPM CHANGE)
CIRC 36          22:16    115.0                          690.0 05/24/07 CIRC 33 10:05              115.0  SPEED CHANGE    (RPM CHANGE)
CIRC 33          10:05    117.5                          692.5 CIRC 34 10 : 05            115.0  SPEED CHANGE    (RPM CHANGE)
CIRC 34          10:05    117.5                          695.0 CIRC 35 10:06              115.0  SPEED CHANGE    (RPM CHANGE)
CIRC 35          10:06    120.0                          700.0 CIRC 36 10:06              115.0  SPEED CHANGE    (RPM CHANGE)
CIRC 36          10:06    120.0                          705.0
 
FLOW DEVIATIONS                            127
(                            UNIT 3  CIRCULATOR PUMPS 04/01/07  THROUGH 06/30/07 TIME                                    RESULTANT
                            - -      GPM                        FLOW, GPM DATE    PUMP    OFF      ON      (000S)          CAUSE          (0O0S) 05/27/07 CIRC  32 9:00              115.0  SPEED  CHANGE  (RPM CHANGE)
CIRC  32          9:00    140.0  COND. BACKWASH        730.0 CIRC  33 9:00              117.5  COND. BACKWASH        612.5 CIRC  34 9:00              117.5    SPEED  CHANGE  (RPM CHANGE)
CIRC  34          9:00    140.0  SPEED  CHANGE          635.0 CIRC  33          9:32    117.5    SPEED  CHANGE          752.5 CIRC  31 9:34              115.0    SPEED  CHANGE  (RPM CHANGE)
CIRC  31          9:34    140.0    SPEED  CHANGE          777.5 CIRC  33 9:34              117.5    SPEED  CHANGE  (RPM CHANGE)
CIRC  33          9:34    140.0    SPEED  CHANGE          800.0 CIRC  34 9:34              140.0    SPEED  CHANGE  (RPM CHANGE)
CIRC  34          9:34    117.5    COND. BACKWASH        777.5 CIRC  32 10:48            140.0  COND. BACKWASH        637.5 CIRC  32          11:19    140.0    SPEED  CHANGE          777.5 CIRC  31 11:23            140.0    SPEED  CHANGE  (RPM CHANGE)
CIRC  31          11:23    115.0    COND. BACKWASH        752.5 CIRC  33 11:23            140.0    SPEED  CHANGE  (RPM CHANGE)
CIRC  33          11:23    117.5    SPEED  CHANGE          730.0 CIRC  31 11:31              115.0  COND. BACKWASH        615.0 CIRC  31          12:02    115.0                          730.0 CIRC  32 12: 05            140.0  SPEED CHANGE    (RPM CHANGE)
CIRC  32          12:05    115.0                          705.0 CIRC  33 15:30              117.5  SPEED  CHANGE  (RPM CHANGE)
CIRC  33          15:30    140.0    SPEED  CHANGE          727.5 CIRC  35 15:30            120.0    SPEED  CHANGE  (RPM CHANGE)
CIRC  35          15:30    140.0    SPEED  CHANGE          747.5 CIRC  34 15:34            117.5  COND. BACKWASH        630.0 CIRC  34          16:07    117.5                          747.5 CIRC  33 16:10            140.0    SPEED CHANGE    (RPM CHANGE)
CIRC  33          16:10    117.5                          725.0 CIRC  36 16:18            120.0  COND. BACKWASH        605.0 CIRC  36          16:49    120.0                          725.0 CIRC  35 16:52            140.0    SPEED CHANGE    (RPM CHANGE)
CIRC  35          16:52    120.0                          705.0 05/29/07 CIRC  31 13:43            115.0    SPEED CHANGE    (RPM CHANGE)
CIRC  31          13:43    117.5                          707.5 CIRC  32 13:43            115.0    SPEED CHANGE    (RPM CHANGE)
CIRC  32          13:43    117.5                          710.0 CIRC  33 13:44            117.5    SPEED CHANGE    (RPM CHANGE)
CI RC 33          13:44    125.0                          717.5 CIRC  34 13:44            117.5    SPEED CHANGE    (RPM CHANGE)
CIRC  34          13:44    125.0                          725.0 CIRC  35 13:45            120.0    SPEED CHANGE    (RPM CHANGE)
CIRC  35          13:45    133.0                          738.0 CIRC  36 13:45            120.0    SPEED CHANGE    (RPM CHANGE)
CIRC  36          13:45    133.0                          751.0 06/01/07 CIRC  31 13:35            117.5    SPEED CHANGE    (RPM CHANGE)
CIRC  31          13:35    132.5                          766.0 CIRC  32 13:35            117.5    SPEED CHANGE    (RPM CHANGE)
 
FLOW DEVIATIONS                                128 UNIT 3  CIRCULATOR PUMPS 04/01/07  THROUGH 06/30/07 TIME                                        RESULTANT GPM                          FLOW, GPM DATE    PUMP    OFF      ON      (000S)        CAUSE              (o0os)
CIRC 32          13:35    132.5                            781.0 CIRC 33 13:36              125.0  SPEED CHANGE      (RPM CHANGE)
CIRC 33          13:36    137.5                            793.5 CIRC 34 13:36              125.0  SPEED CHANGE      (RPM CHANGE)
CIRC 34          13:36    137.5                            806.0 CIRC 35 13:37              133.0  SPEED CHANGE      (RPM CHANGE)
CIRC 35          13:37    137.5                            810.5 CIRC 36 13:37              133.0  SPEED CHANGE      (RPM CHANGE)
CIRC 36          13:37    138.0                            815.5 06/03/07 CIRC 34 12:07              137.5  COND. BACKWASH          678.0 CIRC 34          12:38    138.0                            816.0 CIRC 36 12:42              138.0  COND. BACKWASH          678.0 CIRC 36          13:13    138.0                            816.0 06/04/07 CIRC 31 9:50                132.5  SPEED CHANGE      (RPM  CHANGE)
CIRC 31          9:50      140.0                            823.5 CIRC 32 9:50                132.5  SPEED CHANGE      (RPM CHANGE)
CIRC 32          9:50      140.0                            831.0 CIRC 33 9:50                137. 5  SPEED CHANGE      (RPM CHANGE)
CIRC 33          9:50      140.0                            833.5 CIRC 34 9:50                138.0  SPEED CHANGE      (RPM CHANGE)
CIRC 34          9:50      140.0                            835. 5 CIRC 35 9:50                137.5  SPEED CHANGE      (RPM CHANGE)
CIRC 35          9:50      140.0  COND. BACKWASH            838.0 CIRC 36 9:50                138.0  SPEED CHANGE      (RPM CHANGE)
CIRC 36          9:50      140.0                            840.0 CIRC 35 14:24              140.0  COND. BACKWASH          700.0 CIRC 35          15:02    140.0                            840.0 06/17/07 CIRC 34 10:00              140.0  COND. BACKWASH          700.0 CIRC 34          10:33    140.0                            840.0 CIRC 35 10:49              140.0  COND. BACKWASH          700.0 CIRC 35          11:19    138.0                            838. 0 CIRC 36 11:38              140.0  COND. BACKWASH          698. 0 CIRC 36          12:06    138.0                            836.0 CIRC 33 14:29              140.0  COND. BACKWASH          696.0 CIRC 33          15:10    138.0                            834.0 CIRC 32 15:20              140.0  COND. BACKWASH          694. 0 CIRC 32          15:52    138.0                            832.0 CIRC 31 16:01              140.0  COND. BACKWASH          692. 0 CIRC 31          16:34    137.5                            829.5 06/20/07 CIRC 36 8 : 37              138.0  PUMP TRIPPED              691.5 CIRC 36          9:50      138.0                            829.5 06/26/07 CIRC 34 9:10                140.0  SWITCH REPLACEMENT        689.5 CIRC 34          10:30    140.0                            829.5
                                -- END --
 
    -                                            INDIAN POINT MONTHLY ENVIRONMENTAL REPORT                                                                      129
      --------------------------------------- YEAR=2007 U=1--------------------------------
          ,,ffffffffffffffffff...ffffffffffffffffffffffffffffffffffffff...fffffffffffft
                                                          ,                                      MONTH                                  ,
tffffffffffff...ffffffffffff...ffffffffffffl;,
APRIL                ,          MAY          I        JUNE          :      All
          ,                                              tfffffffffffftffffffffffff^fffffffffffffffffffffffffT
                                                          ,            Sum              ,          Sum          ,        Sum            ,    HOURS          ,
tffffffffffff'ffffffffffff                              ffffffffffffhffffffffffffhY        I HOURS              ,        HOURS          ,      HOURS            ,      Sum          I
          %ffffffffffffffffff-ffffffffffff-ffffffffffff-ffffffffffff^ffffffffffff&#xfd;.-
PUMPN                                                                      ,                      ,                        f tffffffffffffffffffl                                                          ...
          ,CIRC 11                                        ,                    0.00,                    0.00,                  0.00,                0.00, tffffffffffffffffff^ffffffffffffnffffffffffffhffffffffffffTffffffffffffi
          ,CIRC 12                                        ,                    0.00,                    0.00,                  0.00,                0.00, Ifffffffffffffffffffffffffffffff^ffWIIIITTIITIIIIJIW                      fffTfhffffffffffff1  Ll
          ,SWP          11                              ,                    0.00,                    0.00,              262.42,              262.42,
          ,ffffffffffffffffff0ffffffffffff0ffffffffffff^ffffffffffffSffffffffffff0
            ,SWP        12                              10.00,                                          0.00,                  0.02,                0.02, Sffffffffffffffffff<ffffffffffff<ffffffffffff<ffffffffffff<ffffffffffff(E J\,
 
INDIAN POINT MONTHLY ENVIRONMENTAL REPORT                                                                                        130
--------------------------------- YEAR=2007 U=2-                                                                              ---------------------------------
    ,,ffffffffffffffffff...fffffffffffffffffrffffffffffffffffffff...fffffffffffft MONTH 0
4ffffffffffff...ffffffffffff...ffffffffffff                                        6-o APRIL                  f            MAY              f        JUNE          ,          All tffffffffffff                        ffffffffffff^ffffffffffff                                                  &deg;ffffffffffffl Sum                              Sum            r        Sum            ,        HOURS
                                                              $ffffffffffrffffffffffffff^ffffffffffff-ffffffffffff%;
HOURS                  r          HOURS              I      HOURS            f          Sum tffffffffffffffffff                                      Jffffffffffffffffffffffff^ffffffffffff^ffffffffffff1 PUMPN fffffffffffffffffff                                                                      ...
    ,CIRC            21                                      r                714.55,                            731.58,                718.80,                  2164.93, tffffffffffffffffff                                        ffffffffffff^ffffffffffff-ffffffffffff'ffffffffffff*
    ,CIRC            22                                      ,                714.43,                            733.30,                718.75,                  2166.48, tffffffffffffffffff'ffffffffffff^ffffffffffff-ffffffffffff-ffffffffffffu
    ,CIRC            23                                      ,                716.03,                            730.87,                718.77,                  2165.67, tffffffffffffffffff                                        ffffffffffff^ffffffffffff^ffffffffffff                                                    ffffffffffffli
    ,CIRC            24                                      ,                715.20,                            730.92,                718.73,                  2164.85, tffffffffffffffffff                                        ffffffffffff-ffffffffffff-ffffffffffff'ffffffffffff*
    ,CIRC            25                                      f                714.12,                            725.87,                718.78,                  2158.77, 0
tffffffffffffffffff                                        ffffffffffff^ffffffffffff^ffffffffffff-ffffffffffff                                                            -
    ,CIRC            26                                                        699.98,                            730.75,                718.67,                  2149.40, tffffffffffffffffff                                        ffffffffffff-ffffffffffff^ffffffffffff^ffffffffffffs
    ,SWP              21                                                        180.65,                            215.43,                573.72,                    969.80, tffffffffffffffffff-fffffffffffffffffffffffffffffffffffff^ffffffffffffL
    ,SWP              22                                      1                514.82,                            680.72,                720.00,                  1915.53, tfffffffffffffffffff-ffffffffffff^ffffffffffff^ffffffffffff^ffffffffffff*
    ,SWP              23                                                        605.57,                            575.23,                157.53,                  1338.33, 9
tffffffffffffffffff                                        ffffffffffff-fffffffffffffffffffffffffffffffffffff                                                          6
    ,SWP              24                                                          48.47,                                0.00,                  1.95,                    50.42,
    $ffffffffffffffffff                                        ffffffffffff-ffffffffffff                                        ffffffffffff-ffffffffffffl
    ,SWP              25                                                        626.88,                            744.00,                720.00,                  2090.88, t*fffffffffffffffff-ffffffffffff^ffffffffffff^ffffffffffff                                                                                          ffffffffffff1*
    ,SWP              26                                                        189.73,                            744.00,                539.73,                  1473.47, Sffffffffffffffffff<ffffffffffff<ffffffffffff<ffffffffffff<ffffffffffff*
 
(                                                INDIAN POINT MONTHLY ENVIRONMENTAL                                                      REPORT                                      131
  ---------------------------------------                                              YEAR=2007 U=3----------------------------------
        ,,ffffffffffffffffff...ffffffffffffffffffffffffffffffffffffff...fffffffffffft MONTH tfffffffffff...ffffffffffff...                                    fffffSffffff
* APRIL              ,            MAY                  ,            JUNE            I            All tffffffffffff^ffffffffffff-ffffffffffff                                                          ffffffffffffo*
Sum            I            Sum                  ,            Sum              I        HOURS 4ffffffffffff                  ffffffffffff'ffffffffffff^ffffffffffff*
                                                            ,        HOURS              ,        HOURS                    ,          HOURS              ,            Sum
                  %ffff~ffffffff^fSJf~f5ffffff-f~fffffff~ff5fffff5ffffffff-fffffff5ffff*-
PUMPN                                            ,                            ,
tffffffffffffffffff%..
        ,CIRC          31,                                                    295.95,                      718.10,                          719.45,                    1733.50, tfffffffffffffff                                      ffffffffffffffffffff                                          ^ffffffffffff-ffffffffffff*
        ,CIRC          32                                  ,                371.22,                      742.42,                            719.47,                    1833.10, ffffffffffffffffff^ffffffffffff^ffffffffffffffffffffffffflffffffffffff*
        ,CIRC          33                                  ,                292.17,                      730.55,                            719.32,                    1742.03, tfffffffffffffffff^ffffffffffff-ffffffffffff                                                                          ffffffffffff-ffffffffffffl CIRC 34                                          f                372.00,                      742.67,                            717.60,                    1832.27, Ifffffffffffffffffflffffffffffff^fffffffffff-                                                                          ffffffffffff-ffffffffffff%
        ,CIRC          35                                  ,                692.98,                      743.02,                            718.87,                    2154.87, 4fffffffffffffffffrffffffffffff                                                    ffffffffffff                      ffffffffffff-ffffffffffffl-
        ,CIRC          36                                                    510.45,                      751.57,                            717.80,                    1979.82,
        *fffffffffffffffff                                    ffffrffffffff^ffffffffffff                                      ffffffffffff                  ffffffffffffl
        ,SWP          31                                  ,                    78.30,                      39.53,                          260.92,                      378.75,
(          ffffffffffffffffff                                  ffffffffffSfffffffffffffff                                      ffffffffffffrffffffffffffl
        ,SWP            32                                  ,                  511.47,                      704.47,                            517.77,                    1733.70, jffffffffffffffffff                                    ffffffffffff^ffffffffffff                                      ffffffffffff^ffffffffffffZ-,
        ,SWP            33                                  f                  131.05,                      457.68,                            229.18,                      817.92, 0
4ffffffffffffffffff                                    ffffff~ffffffffffffffffff                                      ffffffffffff'ffffffffffff
        ,SWP            34                                  ,                  104.52,                            0.05,                        347.00,                      451.57, tffffffffffffffffff -ff5f~ffffffff                                                    fffffffffff-'ffffffffffff^ffffffffffffL
        ,SWP            35                                                    434.08,                      650.58,                            373.35,                    1458.02, tffffffffffffffffff                                    ffffffffrffff^ffffffffffff                                      ffffffffffff                  fffffffffffffh
        ,SWP            36                                  ,                  202.22,                      286.92,                            432.80,                      921.93, tfffffffffffffffffPfffffffffffff-ffffffffffff                                                                          ffffffffffff                  ffffffffffffL
        ,SWP            37                                  r                      0.00,                        0.00,                            0.00,                    0.00,
      *ffffffffffffffffff^ffffffffffff^ffffffffffff                                                                          ffffffffffff^ffffffffffffL
        ,SWP            38                                  f                      0.00,                        0.28,                              0.00,                    0.28, 0
Sffffffffffffrfffffffffffffffff-ffffffffffff-ffffffffffff-ffffffffffff                                                                                                      -
        ,SWP            39                                  ,                      0.00,                        0.00,                              0.28,                    0.28, Sfffffffffff5ffffff                                    fffffffffff<fSf.ffffffff<ffffffffffff<ffffffffffffcE
 
Ai.-
ENCLOSURE 5 TO NL-07-133 Excerpts from Annual Fleet Reports to Document Thermal Non-Exceedances ENTERGY NUCLEAR OPERATIONS, INC.
INDIAN POINT NUCLEAR GENERATING UNIT NOS. 2 & 3 DOCKET NOS. 50-247 and 50-286
 
Excerpts from Annual Fleet Reports to Document Thermal Non-Exceedances As stated in Section 9.5 of our Environmental Report 0.... there has never even been an exceedance relative to thermal, discharge limits as identified in the Station's SPDES permit'. In further, confirmation,, the, folIowing.. summaq: of SPDES' Permit non-compliances is taken from our Annual (and Semiannual), Fleet Environmental Reports, and, here are none which have involved termperature exceedances.
(1) chlorine exceedance at Outfall001 (Discharge Canal) due to analytical error, (2) pH exceedance at,Transformer Simulator Vault (causes:.unknown); (3)y weekly total suspended' isolids sample was, missed on the Waste' Distillate Storage Tank (Ouffall 0-1dC)," du: t-" the" 'sample period,&                      not being analyzed**withinh
                            "* ' "".            * ::*;!.. :i. theI7-day
                                                                  '        required holding
* April oil & grease sample collected-at Outfall 01 N (Reverse Osmosis Waste) was lost due to an equipment malfunction and a failure to collect a back-up sample [CR-IP3-2005-024491; (2) October discharge canal Delta L was not met due to an extended test associated with a modification [CR-IP3-2005-05175]; (3) December oil & grease sample collected at the Tank Farm Stormwater Impoundment exceeded the 14-day, hold time limit prior to analysis due to a contract laboratory oversight [CR-IP2-2006-00100].
200.8 (1) June GT 2/3 berm monthly sample was outside acceptable temperature range when received by vendor lab resulting in no sample being available for required "BTEX" analysis [CR-IP2-2006-04047]; (2) September pH exceedance at Simulator Transformer Vault due to water sitting in concrete containment for a long period of time and constituents in concrete possibly contributing to makeup of water [CR-IP2-2006-05865]; (3) November pH exceedance at Simulator Transformer Vault due to water sitting in concrete containment for a long period of time and constituents in concrete possibly contributing to makeup of water [CR-IP2-2006-0721 7] As a note, all these noncompliances are associated with a separate SPDES Permits specific to IP2 but is being captured under the IPEC SPDES Permit.
January - June 2007 (1) April chlorine sample exceeded 30 minute SPOES Permit sampling requirement due to chemistry technician not being notified that chlorination had commenced [CR-1P2-2007-01802]; (2) May total residual chlorine concentration of the IP3 Trash Pit exceeded SPDES Permit limit due to a start-up anomaly [CR-IP3-2007-02465].
 
ENCLOSURE 6 TO NL-07-133 Enterqy Nuclear Review of New and Significant Information for IP2 and IP3 ENTERGY NUCLEAR OPERATIONS, INC.
INDIAN POINT NUCLEAR GENERATING UNIT NOS. 2 & 3 DOCKET NOS. 50-247 and 50-286
 
Entergy Nuclear Review of New and Significant Information Indian Point Units 2 and 3 New & Significant Process - I
 
TABLE OF CONTENTS Section      ,Topic                                                                                              Page 1.0        Introduction ...................................................................................... 3 2.0        Existing Environmental Review Process ........................                                      4 3.0        Review of Environmental Issues Prior to ER Submittal ...............                                5 4.0        Supplemental Environmental Impact Statement Reviews ................                                6 5.0        Regulatory Interfaces ........................................................                      14 6.0        Review of Category 1 Issues Not Applicable to IP2 and IP3 ........                                  17 7.0        Review of Category 1 Issues Applicable to IP2 and 1P3 ..............                                19 7.1  Surface Water, Hydrology and Aquatic Ecology .............................                          19 7.2  Terrestrial Resources ..............................                      ........................ 21 7.3  A ir Quality .................................................................................. 22 7.4  Land U se ....................................................................                      22 7.5  Human Health ....................................                                                  22 7.6  Socioeconomics ...........................................................................          23 7.7  Postulated Accidents ............................................. .........                        24 7.8  Uranium Fuel Cycle and Waste Management ..........................                                  25 7.9  Decommissioning .............................................................                      27 8.0        Document Reviews .........................................................                          29      Entergy's Industry Participation .........................................                          30      Typical Regulatory Agencies Monitored (Rulemakings) ............                                    32      Previous SEIS Reviews .....................................................                        33      Documents Reviewed (Typical) ...........................................                            36 New & Significant Process - 2
 
1.0      Introduction Entergy did not identify any new and significant information for environmental issues listed in 10 CFR Part 51, Subpart A, Appendix B, Table B-i, during the preparation of the Indian Point Units 2 and 3 (IP2 and IP3) Environmental Report (ER).
Entergy considers its' existing in-house process for reviewing and evaluating environmental issues adequate in identifying new and significant information. This.
process ensured that any potential new and significant environmental information related to renewal of the IP2 and IP3 licenses were identified, reviewed and addressed as appropriate.
2.0    Existing Environmental Review Process Entergy has an ongoing assessment process for identifying and evaluating new and significant information that may affect programs at the Entergy Nuclear (EN) sites, including those related to license renewal matters. This process is directed by Entergy Nuclear's Manager, Fleet Environmental Protection who is responsible for fleet environmental matters, with assistance from Environmental Peer Group members composed of technical personnel from all Entergy Nuclear sites. A summary of this process is as follows:
Issues relative to environmental matters are identified as follows:
* Participation in industry utility groups (i.e., EEI, EPRI, NEI & USWAG).
Attachment 1 provides of a list of those industry groups.
Participation in non-utility groups (i.e., Institute of Hazardous Materials Management & National Registry of Environmental Professionals).
Routine interface with regulatory agencies and other Entergy business units (Fossil, Transmission and Distribution).
* Routine reviews of proposed regulatory changes. Attachment 2 provides a list of regulatory agencies monitored.
* Review of NRC scoping summaries and Requests for Additional Information related to license renewal.
Review of changes to plant system processes, procedures or plant equipment evaluated by EN fleet Procedures EN-LI-100 (Process Applicability Determinations), EN-LI-101 (10CFR50.59 Review Program), EN-EV-121 (Cultural Resources Protection Plan) and EN-EV-115 -(Environmental Reviews and Evaluations).
* Entergy Nuclear Environmental Peer Group meetings.
Environmental issues are then reviewed and evaluated initially for potential applicability and impacts by Entergy Nuclear's Manager, Fleet Environmental Protection. If the issue is applicable to Entergy, it is then evaluated further by the Environmental Peer Group that consist of technical personnel involved in environmental compliance, environmental monitoring, environmental planning, and natural resource management issues. For those issues applicable, changes are made to the program and implemented in accordance with site and/or corporate fleet procedures. For Entergy Nuclear, these changes are made by the site Chemistry groups and/or Environmental Peer Group members who has primary responsibility for ensuring compliance with environmental regulations and for enhancement of the systems related to environmental issues.
3.0    Review of Environmental Issues Prior to ER Submittal As discussed above, Entergy's existing environmental review process is considered adequate to identify and capture new and significant information. However, additional reviews were conducted by Entergy Nuclear in order to ensure that any potential new and significant information was identified and included in the IP2 and IP3 Environmental Report. These reviews are discussed in Sections 4.0 - 8.0 below.
4.0    Supplemental Environmental Impact Statement Reviews Entergy reviewed Supplemental Environmental Impact Statement's (SEIS's) associated with other license renewal applications to determine if there were new and significant information identified for those plants that may be applicable to IP2 and IP3. A list of the SEIS's reviewed is shown in Attachment 3. During review of the SEISs, eight issues were identified by the NRC as potentially new and significant information:
: 1. groundwater degradation,
: 2. power uprate effects,
: 3. radiation exposure during license renewal term,
: 4. consultation with the National Marine Fisheries Service (NMFS) regarding essential fish habitat (EFH),
: 5. barrier to migrating anadromous or catadromous fish species due to construction of a dam,
: 6. water current alterations due to station operations,
: 7. presence of hazardous air contaminants in cooling tower drift, and
: 8. thermal plume barrier to migration of anadromous and catadromous fish species.
The issues above were further analyzed by the NRC in the site-specific SEIS. Outlined below is a brief description of the eight issues and Entergy's response to each. Entergy's review of other SEIS submittals identified no further potentially new and significant information issues.
: 1. -Donald C. Cook Nuclear Plant, Units No. 1 & 2 (NUREG-1437 - Supplement 20)
There were two permitted locations where discharge occurs to groundwater. The Cook Nuclear Plant (CNP) facility is authorized to discharge a maximum of 2.4 million'gallons per day of process wastewater and a maximum of 60,000 gallons per day of treated sanitary wastewater to two absorption ponds for process wastewater and two sewage lagoons for sanitary wastewater.
The turbine room sump accumulates process wastes from the secondary side. These wastes are neutralized, if necessary, and discharged to absorption ponds approximately 825 feet southeast of the plant. The larger of the two ponds is a 1.4-acre pond and the overflow pond is 0.7 acre, and is connected to the larger pond by a small stream.
Discharge into the larger pond is sufficient to keep it full and overflowing to the overflow pond. The combined approximate capacity of the two ponds is 6 million gallons.
The sewage treatment plant discharges treated sanitary effluent to two sewage lagoons that are used alternately. The sewage lagoons are much smaller than the absorption ponds and are located above and immediately east of the absorption ponds. These two wastewater disposal systems use the natural soil column to provide treatment.
Discharges flow downward through the soil to the groundwater, which ultimately discharges into Lake Michigan. These permitted discharges have created a groundwater mound that has superimposed a radial flow pattern on the regional flow towards Lake Michigan. Five groundwater monitoring wells are specified in the permit for compliance monitoring. The groundwater monitoring program has shown that wastewater disposal has been in compliance with permit requirements and with national drinking water standards, although there has been an increase above background for total dissolved solids and sulfate.
Groundwater from the absorption ponds has migrated to the southern plant boundary, but has not exceeded primary drinking water standards. A restrictive covenant has been recorded in Berrien County to ensure that groundwater impacted by the seepage from the absorption ponds would not be withdrawn for any purpose from beneath approximately 207 acres in the southwestern portion of the CNP property. There are no operable groundwater production wells and there are no consumptive uses of groundwater at CNP.
Tritium has been detected periodically in groundwater at monitoring wells across the CNP site. However, the authorization to discharge to groundwater does not contain criteria for tritium, and no sample has exceeded the drinking water standard of 20,000 pCi/L.
On the basis of this information, the staff concludes that although the impacts to groundwater quality that would result from continued disposal of wastewater to onsite absorption ponds and sewage lagoons during the license renewal period are considered a new issue, they would be SMALL and, therefore, not significant. Further mitigation is not warranted.
Entergy's Response: As discussed in Chapter 5.1 of the IP2 and IP3 ER, Entergy concluded that although the existence of radionuclides in the groundwater during the license renewal period are a potentially new issue, the impacts of radionuclides would be SMALL and not significant. Therefore, groundwater degradation impacts are SMALL and the GEIS conclusion remains valid for this issue.
: 2. Browns Ferry Nuclear Power Plant, Units 1, 2 & 3 (NUREG-1437 - Supplement 21)
Category 1 issues were established by the GEIS after a review of data from existing operating nuclear plants. The analysis established an envelope of impact for each of the Category 1 issues that were based on the impacts that were identified at nuclear power plants throughout the United States at the time the GEIS was prepared.
TVA has applied for extended power uprate (EPU) for the three Brown Ferry Nuclear (BFN) units. These EPUs would eventually increase thermal power levels from the initially licensed levels of 3293 MW(t)/unit to 3952 MW(t)/unit. This represents a total power increase of 20 percent. Once the uprate has been achieved, BFN will have a combined total power level of 11,856 MW(t), and will become the largest nuclear power plant in the United States.
For this reason, the staff determined that -there is a potential that, at the uprated power level, BFN may no longer be within the envelope of impacts defined by the GEIS, as amended, for some Category 1 issues. If the potential impacts are beyond the defined envelope, the generic conclusions concerning these Category 1 issues may no longer be valid, and the power uprate could therefore represent new and significant information regarding some of the Category 1 issues. Category 2 issues are not a concern in this regard because all applicable Category 2 issues are evaluated on a site-specific basis for each facility undergoing license renewal.
To address this concern, the staff examined each of the 54 Category 1 issues applicable to BFN and determined that 34 of the Category 1 issues could be influenced by the station thermal power level. The staff then evaluated each of the 34 issues to determine if increasing the unit power level above the levels considered during the development of the GEIS would affect the specific generic conclusions. After evaluating all 34 issues the staff determined that the generic conclusions reached in the.GEIS are still valid and that no additional analysis or evaluation of these issues is necessary.
Entergy's Response: IP2 and IP3 have completed power uprates during the current operating license term that increased thermal power levels from the initial output of 2,758 MWt and 3,025.MWt, respectively, to their design output of 3,216 MWt each. This amounts to an approximate 17 percent increase for IP2 and an approximate 6 percent increase for IP3.
The total thermal power level of IP2 and IP3 is approximately 54 percent of the BFN level [11,856 MW(t)] that was further analyzed by the NRC. There are no plans at this time for additional power uprate for IP2 and IP3 during license renewal term that would approach the BFN levels. The NRC's analysis of the BFN thermal power level increase concluded that the impacts were SMALL and that the conclusions in the GES still remain valid. Therefore, the completed power uprates at IP2 and IP3 are within the envelope of impacts defined by the GEIS and no new and significant information exists for this issue.
: 3. Millstone Power Station, Units 2 & 3 (NUREG-1437 - Supplement 22) and Pilgrim Nuclear Power Station (NUREG-1437 - Supplement 29)
Radiation exposure issues for the license renewal term are Category I issues. During the scoping process and the comment period on the draft SEIS, members of the public (1) expressed concern about the possible impacts on human health from exposure to radiation from Millstone's and Pilgrim's effluents and (2) cited a number of documents to support their concerns. The NRC Staff reviewed these documents as potential new and significant information regarding the Category I radiation exposure issues. Based on the review, the NRC concluded that the information provided during the scoping process and comment period on the draft SEIS was not new and significant with respect to the findings of the GEIS on the health effects to the public from radiological effluent releases due to Millstone and Pilgrim operations.
Entergy's Response: Entergy monitors the amounts of radionuclides released in the effluents. from IP2 and IP3 to ensure compliance with NRC regulations. Entergy also conducts a radiological environmental monitoring program to confirm the expected levels of radioactive materials in the area around the site. Based on a review of recent effluent release reports, Entergy expects the releases of radioactive material from IP2 and IP3 to remain well within regulations during the license renewal period.
Based on NUREG-1437 Supplement 29, there are no studies to date that are widely accepted by the scientific community that show a correlation between radiation dose from nuclear power facilities and cancer to the general public. The amount of radioactive material released from nuclear power facilities is well measured,. well monitored, and known to be very small. The doses of radiation that are received by members of the public as a result of exposure to nuclear power facilities are so low that resulting cancers have not been observed and would not be expected.
The NRC concluded that no new and significant information exists for this issue. In addition, there is no indication that the conservative dose limits established by the NRC will not continue to be met by IP2 and IP3 during the license renewal term. NRC's conservative dose limits are supported by the EPA and international agencies such as the International Commission on Radiation Protection (ICRP), United Nations Scientific Committee on the Effects of Ionizing Radiation and the European Commission on Radiation Protection. Therefore, Entergy agrees with NRC's conclusion regarding no new and significant information on this issue.
: 4. Brunswick Steam Electric Plant, Units 1 and 2 (NUREG-1437 - Supplement 25),
Oyster Creek Nuclear Generating Station (NUREG-1437 - Supplement 28), Pilgrim Nuclear Power Station (NUREG-1437 - Supplement 29), and Vermont Yankee Nuclear Power Station (NUREG-1437- Supplement 30)
The NRC identified a new issue which had not been previously addressed in the GEIS related to essential fish habitat (EFH). The consultation requirements of Section 305(b) of the Fishery Conservation and Management Act provide that Federal agencies must consult with the Secretary of Commerce on all actions or proposed actions authorized, funded or undertaken by the agency that may adversely affect EFH. As a result, the NRC has requested initiation of an EFH consultation with the NMFS for Brunswick Steam Electric Station, Units 1 and 2, Oyster Creek Nuclear Generating Station, Pilgrim Nuclear Power Station and Vermont Yankee Nuclear Power Station.
Entergy's Response: This issue was related to an NRC function that is independent of IP2 and IP3 efforts. However as a matter of record, there have been no essential fish habitats identified in the Hudson River in the 1P2 and IP3 vicinity (6-mile radius).
: 5. Oyster Creek Nuclear Generating Station (NUREG-1437 - Supplement 28)
An emergency fire pond was built during the original construction of the OCNGS facility. This 8.5-acre pond was created by impounding Oyster Creek upstream of the discharge canal to provide water for fighting fires at the facility. In its scoping comments, the FWS noted that "it appears that Oyster Creek was a functioning waterway capable of supporting fish passage and possibly spawning habitat. Oyster Creek has the potential to offset expected adverse impacts from the proposed license renewal via the construction of a fish ladder". The existing dam may form a barrier to migratory anadromous or catadromous species such as the American shad (Alosa sapidissima)or the American eel (Anguilla rostrata);however, there is no evidence to suggest that shad are currently using the creek as a spawning or nursery area. The American eel was reported as present in Oyster Creek and the Forked River in the FESs for the Forked River Nuclear Station Unit 1 and for OCNGS. American shad, considered a cool water migrant of Barnegat Bay, were not reported as being present in either Oyster Creek or the Forked River in either report. A NJDEP review of anadromous fish spawning runs in New Jersey conducted in the late 1970s found no evidence of American shad spawning runs in Oyster Creek. Also, the fire pond dam would not hinder upstream migration of eels.
The upper reaches of Oyster Creek are currently relatively undeveloped and may represent an opportunity for the development of anadromous and catadromous fish runs.
However, the NRC staff considers the issue of the presence of the fire pond dam and the potential blockage of fish passage outside of the scope of license renewal, because the existence of the pond is unaffected by the decision to renew the license. Additionally, although AmerGen maintains and operates the fire pond, it is on land owned by First Energy or its subsidiaries. The NRC staff considers it appropriate for the owners of the fire pond to work directly with the State and Federal agencies to evaluate the desirability of improving fish passage over the dam.
Entergy's Response: There are no dams associated with the operations of IP2 and IP3.
Therefore, this issue is not applicable.
: 6. Oyster Creek Nuclear Generating Station (NUREG-1437 - Supplement 28)
During the scoping period, a member of the public brought up the issue of sediment deposition patterns in the Forked River and expressed concern that this deposition has resulted in navigation problems at some of the entrances to the finger canals along the river. The impacts associated with alteration of current patterns due to station operations were considered in the GEIS. Section 4.2.1.2.1 of the GEIS specifically discusses the operation of OCNGS with respect to the impacts associated with the alteration of flow in both Forked River and Oyster Creek. The GEIS states that substantial hydrological and water-quality changes in Forked River and Oyster Creek resulted in only minor effects in Barnegat Bay. Also according to the GEIS, "changes to current patterns are of small significance if they are localized near the intake and discharge of the power plant and do not alter water use or hydrology in the wider area." The NRC staff finds that the GEIS addressed the issue of sediment transport and finds that no new and significant information exists to suggest that the conclusion in the GEIS is no longer valid.
Although the GEIS found that the alteration of current patterns was of small significance for this specific facility, the fact remains that the shoaling at the mouth of the finger canals, that is quite possibly the result of station operations, is impeding pleasure boat use for people along the affected canals. Mitigation of this impact is beyond the scope of license renewal. The staff recommends that the homeowners work with the applicant to resolve this issue.
Entergy's Response: IP2 and IP3 are located on the ,'Hudson River. Periodic de-silting activities are performed to remove silt buildup at the IP2 and IP3 intake structures and limited dredging in the Hudson -River in front of the intakes is conducted very infrequently, in accordance with a Section 404 permit to maintain intake flows.
However, there has been no indication that these activities have resulted in any alteration of current patterns due to station operations and is not anticipated to occur during the license renewal term. Therefore, no new and significant information exists for IP2 and IP3 on this issue.
: 7. Vermont Yankee Nuclear Power Station (NUREG-1437 - Supplement 30)
Drift from the cooling tower has the potential to contain Hazardous Air Contaminants (HACs); thus, such drift constitutes a release to the atmosphere. A member of the public at the VYNPS public scoping meeting expressed concern over exposure to a specific HAC, glutaraldehyde, known to be present in one of the biocides formerly in use. The most recent data indicates that the amount of glutaraldehyde released to the atmosphere was well below the state action level. Further, the facility has indicated that it has discontinued the use of this particular biocide, so the potential for future releases of glutaraldehyde from the use of that biocide has been eliminated.
The NRC staff realizes that there is a broader issue regarding the potential for release of other HACs contained in water treatment chemicals in cooling tower drift. The -staff determined the facility is aware of the potential for such releases and has performed the necessary calculations and made the required emission reports to the State regarding the releases of HACs from the cooling towers. All of the HACs present in the cooling water were released in drift at concentrations well below the state action levels. Because cooling tower operating conditions are not expected to change in the foreseeable future, the drift rate is expected to remain essentially unchanged, and equilibrium concentrations of water treatment chemicals are expected to be low. Consequently, even though there may be changes to the water treatment chemicals used in the future, the magnitudes of releases of such chemicals in cooling tower drift can be expected to remain relatively small. Further, it is expected that cooling tower drift will fall to the ground in the immediate vicinity of the cooling tower; thus, pathways of exposures to the general public do not practically exist.
The NRC concluded that the concerns expressed during the scoping period at VYNPS do not represent information that would be considered new and significant relative to HACs released in cooling tower drift, as the impacts resulting from their release due to continued operation of VYNPS are SMALL.
Entergy's Response: IP2 and IP3 do not use cooling towers; therefore this issue is not applicable. The only "water treatment chemicals" currently utilized in the IP2 and IP3 once-through cooling systems are hydrazine (New York State HAP) and sodium hypochlorite which is not a HAP. The plant does not utilize NALCO related chemicals, ethylene glycol (New York HAP) and etc. on closed-cooling plant systems. However, the plant does maintain the ability to utilize gluteraldehyde in the Turbine Hall closed-cooling system but does not anticipate ever using the chemical.
: 8. Vermont Yankee Nuclear Power Station (NUREG-1437 - Supplement 30)
During the scoping period, the NRC staff received comments from members of the public and public interest groups suggesting that thermal discharges to the Connecticut River from the VYNPS during the renewal period would adversely affect migratory fish species. In particular, concerns were raised that thermal discharges from VYNPS' cooling system would affect both the spawning migration and outmigration of juveniles and post-spawning adults for American shad and Atlantic salmon. It was suggested that upstream movement of adults of both species could be disrupted or denied by the thermal plume in the vicinity of the VYNPS. Fish could become confused by the elevated temperature at the entrance to the Vernon Dam fish ladder or water temperatures could be above the avoidance limits for the species. Conversely, during downstream movement, fish could be delayed due to avoidance of the thermal plume. Concerns were expressed that any delays in outmigration could result in physiological changes to individuals that may ultimately affect their survival during the transition from a freshwater to a marine environment. Also, it was believed that delayed outmigration could result in American shad acclimatizing to warmer water temperatures and then experiencing cooler ambient river temperatures near or at their lower tolerance limit as they resume downstream movement.
It has been suggested that thermal plumes could constitute a barrier to migrating fish if the thermal mixing zone covers all or a substantial cross sectional area of the river and/or exceeds thermal tolerance limits. Conversely, impacts from thermal plumes are considered to be of small significance if fish migrations are not blocked and populations of aquatic organisms in the vicinity of the plant are not reduced. As thermal plume barriers have not been observed to be a problem at any existing nuclear power plant, the NRC staff determined that thermal plume barriers to migrating fish are classified as a Category 1 issue.
Overall, none of the observed changes in fish community composition or distribution in over 30 years of study of the aquatic resources in lower Vernon Pool and upper Turners Falls Pool can be reasonably attributed to operations of VYNPS. Modeling of thermal discharges from VYNPS indicated that most of the eastern half of Vernon Pool near Vernon Dam would experience minimal elevated temperatures, therefore preventing the establishment of a thermal barrier to in- or out- migration. Also, solar radiation contributes to much of the difference in river temperatures between the monitoring station upstream of VYNPS and the monitoring station downstream of Vernon Dam. The highest temperatures that outmigrating fish would experience would be in the immediate area of Vernon Dam near the fishways. It would only take a short time (e.g., minutes to seconds) for them to pass through this area. When the fishways are operational, temperature differentials are well within thermal tolerance limits of the migratory species.
The NPDES permit for VYNPS contains operational and temperature limits to protect water quality and minimize impacts to aquatic biota. No observable adverse impacts to any fish species or to the overall fish community of Vernon Pool due to thermal discharges from VYNPS have been demonstrated since VYNPS began commercial operations. For example, neither decreases in the growth rates of resident fish species nor delays in movement of migratory species due to the VYNPS thermal plume have been observed.
For the reasons stated above, the concerns expressed during the scoping period do not represent information that would be considered new and significant or call into question the NRC staff's conclusions that impacts on the migration of fish from continued operation of VYNPS are SMALL.
Entergy's Response: As indicated in the DEIS, more than 30 years of population- studies have shown no impact to fish migration in. the Hudson River as a result of IP2 and 1P3 operations. Entergy agrees with the conclusion in the GEIS that thermal barrier impacts on migration of fish are SMALL. Therefore, the GElS conclusion remains valid and there is no new and significant information on this issue.
5.0    Regulatory Interfaces During preparation of the IP2 and IP3 ER, Entergy consulted with the international, federal, state and local agencies listed below. During these consultations, no new and significant information related to Category 1 issue findings arose or were identified by Entergy or the regulatory agencies.
International
* Mohican Nation, Tribal Historic Preservation Office
"  St. Regis Mohawk-Tribal Council, Tribal Historic Preservation Office Federal
"  National Marine Fisheries Service (Northeast Regional Office)
* U.S. Fish and Wildlife Service (New York Field Office)
* U.S. Geologic Survey State
* New York Natural Heritage Program
"  New York State Department of Environmental Conservation
"  New York State Department of State
"  New York State Department of Transportation (Region 8)
* New York State Historic Preservation Office
"  New York State Office of Parks, Recreation and Historic Preservation Local
* Northern Westchester Water Works
" Orange County Water Department
" Putnam County Water Department
* Rockland County Water Department
"  Village of Buchanan (Building Inspector)
* Village of Nyack Water Plant
"  Village of Suffern Department of Public Works
"  Westchester County Department of Public Works
"  Westchester County Treasurer On September 4, 2007, the New York State Energy Research and Development Authority coordinated a meeting with state agencies in Albany, New York with the expectation that Entergy would give a presentation on the license renewal application (safety and environmental issues) and then allow the State agency representatives the opportunity to ask questions and raise issues.
In addition, Entergy routinely interfaces with the following agencies as it relates to day-to-day operations:
* New York State Department of Environmental Conservation
    )  Bureau of Environmental Analysis Bureau of Hazardous Waste & Radiation Management Division of Air Resources Division of Environmental Remediation
    > Division of Fish, Wildlife & Marine Resources
    > Division of Solid and Hazardous Materials
    > Division of Water
* State Emergency Management Office
* U.S. Army Corps of Engineers
* U.S. Coast Guard
"  U.S. Environmental Protection Agency (Region 2)
    > Air Branch
    > Division of Environmental Planning & Protection
    > Response & Prevention Branch U.S. Nuclear Regulatory Commission
* Village of Buchanan
* Westchester County Department of Health 6.0      Review of Category 1 Issues Not Applicable to IP2 and IP3 A review was performed of the Category 1 environmental issues in regard to applicability to IP2 and IP3. Entergy has determined that, of the 69 Category 1 issues, 19 do not apply to IP2 and IP3 because they apply to design or operational features that do not exist at the facility. In addition, because Entergy does not plan to conduct any refurbishment activities, the NRC findings for the 7 Category 1 issues that apply only to refurbishment do not apply. Category 1 issues not applicable to IP2 and 1P3 are shown below.
Category 1 Issues Not Ap~plicabIeto IP2 arhd ]P3~
LIssue                          GElS Section(s)                Comment SSURFA*S WATRt QUAJITYHYDRIOLOGY AN UANTS)SE(    USE (FALPL
: 1. Impacts of refurbishment on surface water              3.4.1          No refurbishment activities quality                                                              planned.
: 2. Impacts of refurbishment on surface water              3.4.1          No refurbishment      activities use                                                                  planned.
: 3. Eutrophication                                  4.2.1.2.3 & 4.4.2.2  IP2 and IP3 do not discharge to a lake.
: 4. Altered thermal stratification of lakes          4.2.1.2.3 & 4.4.2.2  IP2 and IP3 not located on a lake.
: 5. Discharge of sanitary wastes and minor          4.2:1.2.4 & 4.4.2.2  The site does not discharge chemical spills                                                      sanitary wastes to surface water.
A.UAT.,CECOLOGY. (FOR ALL PLANTS)    "        '
: 6. Refurbishment                                            3.5          No refurbishment      activities planned.
: 7. Premature emergence of aquatic insects                4.2.2.1.7        Aquatic insects primarily of concern      in    freshwater environments AoUAnc EOLOG      (FR PLANTS WITH C60)LING TOWER HEAT, DISSIPATION SYSE)
: 8. Entrainment of fish and shellfish in early life        4.3.3          The site does not use cooling stages                                                                towers
: 9. Impingement of fish and shellfish                      4.3.3          The site does not: use cooling towers
: 10. Heat Shock                                            4.3.3          The site does not use cooling towers GROUNDW~ATER USEAND QUALITY        1
: 11. Impacts of refurbishment on groundwater                3.4.2          No refurbishment      activities use and quality                                                      planned.
: 12. Groundwater quality degradation (saltwater            4.8.2.1        IP2 and IP3 do not use or intrusion)                                                            withdraw groundwater.
: 13. Groundwater quality degradation (Ranney              4.8.2.2        IP2 and IP3 do not use Wells)                                                                Ranney wells.
: 14. Groundwater quality degradation (cooling              4.8.3          IP2 and IP3 do not use ponds in salt marshes)                                                cooling ponds.
: 15. Groundwater use conflicts (potable- and                4.8.1          IP2 and IP3 do not use or service water; plants that use < 100 gpm                              withdraw groundwater.
                                              -  17-
 
Category 1 Issues Not Applicable to IP2 and 1P3 (continued)
Issue                        I GElS Section(s)            Comment SHu4AN HEAL<TH
: 16. Radiation exposures to the public during                  3.8.1    No refurbishment      activities refurbishment                                                      planned.
: 17. Occupational    radiation exposures    during          3.8.2    No refurbishment      activities refurbishment                                                      planned.
: 18. Microbiological    organisms    (occupational            4.3.6    The site is not located on a health)                                                            small river
                    ~          ~TERRES&sect;TkRL RESOUIRCES
: 19. Cooling tower impacts on crops and                        4.3.5    IP2 and IP3 do not use ornamental vegetation                                              cooling towers.
: 20. Cooling tower impacts on native plants                    4.3.5    IP2 and IP3 do, not use cooling towers.
: 21. Cooling pond        impacts  on'  terrestrial          4.4.4    IP2 and IP3 do        not  use resources                                                          cooling ponds.
: 22. Power      line  right-of-way  management              4.5.6.1  All power lines at IP2 and IP3 (cutting and herbicide application)                                exist on site property from the plant to switchyard.
: 23. Bird collisions with cooling towers                      4.3.5.2  IP2 and IP3 do not use natural draft cooling towers.
: 24. Floodplains and wetland on power line right              4.5.7    All power lines at IP2 and IP3 of way                                                            exist on site property from the plant to switchyard and none cross regulated floodplains or wetlands.
: 25. Aesthetic impacts (refurbishment)                        3.7.8    No    refurbishment planned.              activities
: 26. Power line right-of-way                          1        4.5.3    All power lines at IP2 and IP3 exist on site property from the
_plant                to switchyard.
7.0      Review of Category 1 Issues Applicable to IP2 and IP3 For the remaining 43 Category 1 issues applicable to IP2 and IP3, Entergy performed additional reviews to ensure that the conclusions of the Generic Environmental Impact Statement (GEIS) remained valid. A discussion of the review of Category 1 issues applicable to IP2 and IP3 is as follows:
7.1      Surface Water. Hydrology and Aquatic Ecology issue SURFACE  ~WATER  QUALITY, HIYDROLOGY AND  USi (FOR AL.L PLANTS)
: 1. Altered current      patterns  at  intake  and  discharge      4.2.1.2.1, 4.3.2.2 & 4.4.2 structures
: 2. Temperature effects on sediment transport capacity                4.2.1.2.3 & 4.4.2.2
: 3. Scouring caused by discharged cooling water                        4.2.1.2.3 & 4.4.2.2
: 4. Altered salinity gradients                                        4.2.1.2.2 & 4.3.2.2
: 5. Discharge of chlorine or other biocides                            4.2.1.2.4 & 4.4.2.2
: 6. Discharge of other metals in waste water                      4.2.1.2.4, 4.3.2 2 & 4.4.2.2
: 7. Water use conflicts (plants with once-through cooling                    4.2.1.3 systems)
ACIUATIC ECOLOGY (FOR ALL PLANTS)>~
: 8. Entrainment of phytoplankton and zooplankton                    4.2.2.1.1, 4.3.3 & 4.4.3
: 9. Cold shock                                                      4.2.2.1.5, 4.3.3 & 4.4.3
: 10. Thermal plume barrier to migrating fish                              4.2.2.1.6 & 4.4.3 11., Distribution of aquatic organisms                                  4.2.2.1.6 & 4.4.3
: 12. Gas supersaturation (gas bubble disease)                            4.2.2.1.8 & 4.4.3
: 13. Low dissolved oxygen in the discharge                            4.2.2.1.9, 4.3.3 & 4.4.3
*14. Losses from predation, parasitism, and disease among                4.2.2.1.10 & 4.4.3 organisms exposed to sublethal stresses
: 15. Stimulation of nuisance organisms                                  4.2.2.1.11 & 4.4.3
: 16. Accumulation of contaminants in sediments or biota          4.2.1.2.4, 4.3.3, 4.4.3 & 4.4.2.2 Items 1 through 16 - Based on review of the sites' current SPDES Permit No.
NY0004472, the draft SPDES permit under appeal, the DEIS, the FEIS, and the NYSDEC SPDES Fact Sheet dated November 2003, no conditions have been placed in the existing. or the proposed SPDES permit under appeal, nor have there been any concerns raised that would invalidate the conclusions reached in the GEIS. In addition, based on Entergy's participation in industry utility and non-utility groups, interface activities with the New York State Department of Environmental Conservation (NYSDEC), routine reviews of proposed regulatory changes, review of the site's annual biological monitoring reports, field observations, discussions with IP2 and IP3 Chemistry personnel and EN Environmental Peer Group meetings, there have been no issues identified that would invalidate the conclusions reached in the GEIS. Therefore, no new and significant information was identified and the conclusions in the GEIS remain valid.
Specific notes regarding the above Category 1 "Surface Water, Hydrology and Aquatic Ecology" issues, but which are not new and significant information and do not change the conclusions in the GEIS, are as follows:
" (Item 1) - IP2 and IP3 are located on the Hudson River. Limited de-silting to remove silt buildup at the IP2 and IP3 intake structures and very infrequent dredging in the Hudson River in front of the intakes is performed in accordance with a Section 404 permit to maintain intake flows. Alteration of current patterns due to station operations historically has not been noted and is not anticipated to occur during the license renewal term.
" (Item 2) - Based upon internal reviews, there have been no regulatory agency concerns related to this issue.
" (Item 3) - The IP2 and IP3 discharge structures have been designed to minimize scouring, maximize thermal plume mixing, and minimize thermal impacts. In addition, interface with regulatory agencies have not identified scouring as an issue.
* (Item 4) - There is no salinity monitoring requirements in the sites SPDES Permit.
The large flows in the Hudson River provide complete mixing of the site's discharge water. In addition, the discharge for IP2 and IP3 is designed to use the dilution characteristics of a large tidal flow.
*  (Item 5) - The sites SPDES Permit contains established limits for the discharge of chlorine and other biocides. Based on data reviews, chlorine exceedance of the SPDES permit limits has been minor and extremely rare with no observable impacts to the Hudson River.
" (Item 6) - Based on conversation with Chemistry personnel, there are currently no metal monitoring requirements associated with the SPDES Permit.
*  (Item 7) - IP2 and IP3 constitute one of six identified intakes along the Hudson River. However, there have been no identified constraints, limitations, or adverse impacts associated with conflicting water uses. Water withdrawal from intakes associated with industrial facilities along the Hudson River is monitored in accordance with SPDES permits. Based on review of the Indian Point's SPDES Permit, there are no imposed limitations on Hudson River withdrawal due to water use conflicts.
*  (Item 8) - Hudson River power generation plants have conducted phytoplankton and zooplankton studies with no discernible indication of an impact from plant operations.
*  (Item 9) - Based on review of annual environmental reports submitted in accordance with the 1P2 and IP3 Environmental Protection Plans, there have been no known incidences of cold shock that occurred at the discharge structure.
*  (Items 10 & 11) - Studies at IP2 and IP3 have shown that the facility's thermal discharge does not constitute a barrier to migrating fish and that the geographic distribution of aquatic organisms has not been reduced.
*    (Item 12) - Based on review of annual environmental reports submitted in accordance with the Environmental Protection Plan, there have been no known incidences of gas bubble disease associated with the IP2 and IP3 discharge.
" (Item 13) - No dissolved oxygen reduction has been attributed to IP2 or IP3, and no concerns have been raised by the NYSDEC.
" (Item 14) - Based on monitoring studies as summarized in the DEIS, there has been no indication that predator-prey interactions have been altered due to plant intake or discharges.
*  (Item 15) - Based on monitoring studies as summarized in the DEIS, there has been no indication that stimulation of nuisance organisms have occurred due to plant discharges.
(Item 16) - IP2 and IP3 condenser tubing and piping are titanium and do not contain copper. Based on Hudson River benthic monitoring studies, there is no indication of any accumulation of contaminants resulting from the operation of IP2 and IP3.
7.2      Terrestrial Resources CWategory 1 IssuesApial to IP2 and P Issue                              GElS Section(s)
I j                      TERRESTRIAL RESOURCES
: 1. Bird collision with power lines                                      4.5.6.2
: 2. Impacts of electromagnetic fields on flora and fauna (plants,      4.5.6.3 agricultural crops, honeybees, wildlife, livestock)
Item 1 -Based on review of condition reports and annual reports submitted in accordance with the Environmental Protection Plan, there have been no observed incidences of bird collisions associated with the transmission lines from IP2 and IP3 to the Buchanan substation which adjoins the plant site. Therefore, no new and significant information was identified and the conclusions in the GEIS remain valid.
Item 2 - Entergy's Customer Services Group Environmental Management monitors current studies on the effects of electromagnetic fields (EMF). Although EMF studies are ongoing such as the one published by the National Institute of Environmental Health Sciences & National Institutes of Health (Electric and Magnetic Fields Associated with the Use of Electric Power - June 2002), there is currently no evidence that would invalidate the conclusions reached in the GEIS or present new and significant information.
                                                - 22  -
 
7.3      Air Ouality I. mir quallty eiiecis oi [ransmilsiuri ines                              4..          I Item 1 - As discussed in Section 4.5.2 of the GEIS, several studies has quantified the amount of ozone generated and concluded that the amount produced by even the largest lines in operation (765 kV) is insignificant. The IP2 and IP3 transmission lines going from the plant to the Buchanan Substation are well within the bounds defined in the GEIS. Based on interactions with the NYSDEC, there are no regulatory required ozone monitoring programs associated with the IP2 and WP3 lines nor have there been any regulatory concerns raised. Therefore, no new and significant information was identified and the conclusions in the GEIS remain valid.
7.4      Land Use Category 1 Issues Applicabl toI2an      P Issue                              GElS Section(s)
: 1. Land use (License Renewal Period)                                      32 Item 1 - IP2 and IP3 currently have no plans to increase land use beyond that currently used for plant operational support purposes (i.e., dry cask spent fuel storage, temporary staging areas & parking). In addition, as discussed in Section 3.3 of the IP2 and WP3 ER, no refurbishment activities were identified. Therefore, no new and significant information was identified and the conclusions in the GEIS remain valid.
7.5      Human Health Category. 1.Issues Applicabl to IP2*and    .P3 Issue                              GElS Section(s)
H UMAN HEALTH
: 1. Noise                                                                  4.3.7
: 2. Radiation exposures to public (license renewal term)                    4.6.2
: 3. OccuDational radiation exposures (license renewal term)                4.6.3 Item 1 - Based on studies conducted on behalf of Entergy Nuclear Operations, noise levels at the site boundary meet the local Village of Buchanan zoning ordinances as it relates to noise. There are no current or proposed Occupational Safety and Health Administration regulations that would require monitoring noise levels at the site boundary. Since plant operational noise levels will be typically less than the levels that occurred during construction of the units, and since no plant changes are anticipated during license renewal that would increase noise levels, no problems are anticipated.
Therefore, no new and significant information was identified and the conclusions in the GElS remain valid.
Item 2 - Entergy monitors amounts of radionuclides released in effluents from IP2 and IP3 to ensure compliance with NRC regulations. Entergy also conducts a radiological environmental monitoring program (REMP) to confirm expected levels of radioactive materials in the area around the site. Based on recent effluent release and REMP reports, Entergy expects releases of radioactive material from IP2 and IP3 to be well within the regulatory limits imposed by the NRC during the license renewal period.
Item 3 - There are no planned changes in IP2 or IP3 plant practices or operations that would cause occupational doses to exceed the regulatory limits established by the NRC.
Therefore, no new and significant information was identified and the conclusions in the GElS remain valid, 7.6    Socioeconomics
: 1. Aesthetic impacts of transmission lines (license renewal term)            4.5.8
: 2. Public services: public safety, social services, and tourism and      4.7.3, 4.7.3.3, recreation                                                        4.7.3.4 & 4.7.3.6
: 3. Public services, education (license renewal term)                        4.7.3.1
: 4. Aesthetic impacts (license renewal term)                                  4.7.6 Item 1 - Power is delivered to the Con Edison transmission grid via double-circuit 345-kV lines that connect the IP2 and IP3 main transformers to the Buchanan substation located across Broadway near the main entrance to the Indian Point facility. The lines going from the plant to the substation do not cross recreation or historic areas and do not present any erosion control issues. Therefore, no new and significant information was identified and the conclusions in the GEIS remain valid.
                                              - 23  -
 
Items 2 & 3 - Based on review of Section 3.5 of the IP2 and IP3 Environmental Report, no additional staff was identified as being needed during the license renewal term.
Although the GEIS estimated that an additional 60 employees per unit would be necessary for operation during the period of extended operation, Entergy did not identify the need to add significant new aging management programs for IP2 and EP3. In addition, based on Section 3.5 of the IP2 and IP3 ER, the number of workers required on-site for normal plant outages during the period of the renewed license is expected to be consistent with the numbers of additional workers used for past outages. Therefore, no new and significant information was identified and the conclusions in the GETS remain valid.
Item 4 - Much consideration and effort went into minimizing the aesthetic impacts when IP2 and IP3 were built. Previous operational experience and conversation with site Chemistry personnel has not yielded any public complaints regarding the aesthetics of IP2 and IP3 plant structures. Entergy's review during the license renewal application process identified no needed changes in plant design as a result of license renewal. In addition, no concerns were raised by the New York State Historic Preservation Office regarding IP2 and IP3 current structures during Entergy's consultation process with the agency. Therefore, no new and significant information was identified and the conclusions in the GEIS remain valid.
7.7      Postulated Accidents Cegory1IssuesApplicable to IP2,ande  I3 Issue                                  GElS Section(s)
                                  ~POSTULATED AcCIDENTS
: 1. Design-Basis Accidents (DBA's)                                    5.3.2 & 5.5.1 Item 1 - Design-basis accidents are those that both the licensee and the NRC staff evaluate to ensure that the plant meets acceptable design and performance criteria.
During the IPA, the license renewal team evaluated IP2 and IP3 System, Structure and Components (SSCs) and time-limited aging analyses to ensure that SSCs remain capable of performing their functions consistent with existing plant design and performance criteria specified in the IP2 and IP3 licensing basis. Therefore, current design and performance criteria will be maintained during the license renewal term and the GEIS conclusionremains valid.
7.8      Uranium Fuel Cycle and Waste Management
: 1. UTTsTae raaioiogicai impacts kinaiviauai eTTeCiS Trom oiner  u.      2,3.z.l, 6.2.Z.4 & .6 than the disposal of spent fuel and high-level waste)              6.2.3, 6.2.4 & 6.6
: 2. Offsite radiological impacts (collective effects)            6.1, 6.2.2.1, 6.2.3 & 6.2.4
: 3. Offsite radiological impacts (spent fuel and high-level        6.1, 6.2.2.1, 6.2.3 & 6.2.4 waste disposal)
: 4. Non-radiological impacts of the uranium fuel cycle          6.1, 6.2.2.6, 6.2.2.7, 6.2.2.8, 6.2.2.9, 6.2.3, 6.2&#xfd;4 & 6.6
: 5. Low-level waste storage and disposal                          6.1, 6.2.2.2, 6.4.2, 6.4.3, 6.4.3.1, 6.4.3.2, 6.4.3.3, 6.4.4, 6.4.4.1, 6.4.4.2, 6.4.4.3, 6.4.4.4, 6.4.4.5, 6.4.4.5.1, 6.4.4.5.2, 6.4.4.5.3, 6.4.4.5.4 & 6.4.4.6
: 6. Mixed waste storage and disposal                              6.4.5.1, 6.4.5.2, 6.4.5.3, 6.4.5.4, 6.4.5.5, 6.4.5.6,
                                                                .6.4.5.6.1, 6.4.5.6.2, 6.4.5.6.3
                                                                              & 6.4.5.6;4
: 7. Onsite spent fuel                                            6.1, 6.4.6, 6.4.6.1, 6.4.6.2, 6.4.6.3, 6.4.6.4, 6.4.6.5, 6.4.6.6, 6.4.6.7 & 6.6
: 8. Nonradiological waste                                                6.1, 6.5, 6.5.1, 6.5.2, 6.5.3 & 6.6
: 9. Transportation                                                    6.1, 6.3.1, 6.3.2.3, 6.3.3, 6.3.4 & 6.6 Items 1 and 2 - There are no operational changes planned during the license renewal period that would alter the conclusions reached in the GEIS for individual or collective offsite radiological impacts. Impacts would continue to remain at the levels they were during pre-license renewal years and would be theoretical, due to the extremely low doses that do not pose a significant adverse impact. Entergy monitors the amounts of radionuclides released in the effluents, from IP2 and IP3 to ensure compliance with NRC regulations. Entergy also conducts a radiological environmental monitoring program (REMP) to confirm the expected levels of radioactive materials in the area around the site. Based on recent effluent release and REMP reports, Entergy expects the releases of radioactive material from IP2 and IP3 to be well within the regulatory limits imposed by the NRC during the license renewal period. Therefore, no new and significant information was identified and the conclusions in the GEIS remain valid.
                                                  - 25  -
 
Item 3 - Entergy Nuclear's Manager, Fleet Radwaste who is responsible for fleet spent fuel and high-level waste disposal issues,.was unaware of any issues within the industry regarding offsite radiological impacts from spent fuel and high-level waste disposal.
Entergy understands that a standard has been proposed by the Environmental Protection Agency and that the proposed standard is a public document that speaks for itself in terms of what radionuclide releases is allowed. Therefore, no new and significant information was identified and the conclusions in the GEIS remain valid.
Item 4 - Entergy reviewed the environmental impacts of decommissioning of IP2 and IP3 (see Section 7.4 of the IP2 and IP3 ER). These impacts were expected to be comparable to those environmental impacts described in the GEIS for impacts to: land use, water, air quality, ecological resources, human health, social and economic structure, waste management, aesthetics, and cultural resources. Therefore, no new and significant information was identified and the conclusions in the GEIS remain valid.
Item 5 - Based on conversation with Entergy Nuclear's Manager, Fleet Radwaste who is responsible for the oversight of radwaste disposal for the fleet, IP2 and IP3 is shipping all classes of low level radioactive waste with no immediate plans to store until necessitated by Barnwell's closure in June 2008. Disposal capacity for Class "A" waste will continue with the availability of the EnergySolutions Facility in Clive, UT. Due to the current political climate in South Carolina, the issue of keeping Barnwell open for Class "B" &
"C" waste beyond mid-2008 is not undergoing any activity. The Texas Compact (which Vermont is the only remaining co-member) is currently on-schedule to license and construct a waste disposal facility by early 2009. After Barnwell closes and unless the Texas Compact facility is open to out-of-compact generators, storage along with potential use of waste processors for volume reduction will be the only viable options available for Class "B" and "C" wastes. Therefore, no new and significant information was identified and the conclusions in the GEIS remain valid.
Item 6 - Based on Section 3.3 of the IP2 and IP3 ER, no refurbishment activities were identified. Therefore, no additional mixed waste generation would occur during extended operations from refurbishment. In addition, due to controls placed on chemical usage at the IP2 and IP3 sites by Entergy Nuclear's Fleet Procedure EN-EV-112 (Chemical Control Program), quantities of generated mixed waste have been minimal. IP2 and IP3 minimize and properly manage mixed wastes in accordance with Entergy Nuclear Fleet Procedures EN-EV-104 (Waste Minimization) and EN-EV-106 (Waste Management Program). The waste minimization program will continue to exist during the license renewal term. Therefore, no new and significant information was identified and the conclusions in the GEIS remain valid.
Item 7 - Storage of spent fuel in an Independent Spent Storage Installation is already in the construction phase at IP2 and IP3. IP2 and IP3's preliminary evaluation has concluded that radiological and nonradiological impacts were insignificant. Although it is anticipated that an offsite disposal facility would become available in the future, based on conversation with Entergy Nuclear's Manager, Fleet Radwaste, IP2 and IP3 could safely accommodate spent fuel from IP2 and IP3 operations on-site for an additional twenty years via dry cask storage. IP2 and IP3 are utilizing land outside the Protected Area for dry cask fuel storage upon which historic disturbance has already occurred.
Consultation with SHPO during the license renewal application process indicated no concerns regarding cultural resources on the property. Therefore, no new and significant information was identified and the conclusions in the GEIS remain valid.
Item 8 - Based on discussions with IP2 and IP3 Chemistry personnel, there are currently no plans to change operational practices during the license renewal period that would alter the conclusions reached in the GEIS. IP2 and IP3's SPDES Permit NY0004472 regulates the discharge of wastewaters such as water treatment, floor and yard drains, and stormwater runoff. In addition, RCRA nonradiological wastes are minimized and properly managed in accordance with EN's Fleet Procedures EN-EV-104 (Waste Minimization) and EN-EV-106 (Waste Management Program). The waste minimization program will continue to exist during the license renewal term and incorporate changing regulatory requirements as they arise. Therefore, no new and significant information was identified and the conclusions in the GEIS remain valid.
Item 9 - Fuel for IP2 and IP3 consists of low-enrichment (< 5% by weight) uranium dioxide pellets stacked in pre-pressurized tubes made from zircaloy or ZIRLO, with welded end plugs that form sealed enclosures. Based on core design values, IP2 and IP3 operate at an individual rod average fuel burnup (burnup averaged over the length of a fuel rod) of no more than 62,000 MWD/MTU, which ensures that peak burnups remain within acceptable limits specified in Appendix B to Subpart A of 10 CFR Part 51 (Table B-I). In addition, there are no plans to change plant operational practices based on discussions with IP2 and IP3 personnel that would change the core design values.
Therefore, no new and significant information was identified and the conclusions in the GEIS remain valid.
7.9      Decommissioning issue                                      u-ib becuonts)
: 2. Waste management                                                        7.3.2 &7.4
: 3. Air quality                                                              7.3.3 & 7.4
: 4. Water quality                                                            7.3.4 & 7.4
: 5. Ecological resources                                                    7.3.5 & 7.4
: 6. Socioeconomic impacts                                                    7.3.7 & 7.4 Item 1 - IP2 and IP3 radiation protection practices and NRC regulatory oversight will ensure that radiation doses are managed and regulated during the decommissioning period in accordance with specified practices and standards. In regard to public health protection, [P2 and [P3 would be required to continue to meet the same permissible exposure levels established by the NRC during the decommissioning period. Based on Entergy's decommissioning experience (Maine Yankee), there were no radiation dose issues encountered that would invalidate the NRC's conclusions. Therefore, no new and significant information was identified and the conclusions in the GEIS remain valid.
Item 2 - There are no plans for refurbishment of IP2 and IP3. Individually, IP2 and IP3 are comparable to the 1000-MW(e) reactor referenced in Section 7.3.2 of the GEIS.
Extending [P2 and [P3 operations by an additional twenty years would not increase decommissioning waste volumes significantly. Therefore, no new and significant information was identified and the conclusions in the GEIS remain valid.
Item 3 - Emission sources currently regulated under IP2 and IP3 air emissions permits granted by NYSDEC and the Westchester County Department of Health (WCDOH) that are in place for supporting IP2 and [P3 operations would be discontinued; thereby, decreasing overall site emissions. Based on site tours, air quality impacts from operation of motor vehicles during this -period would be small due to adequate pavement of roads on and near the [P2 and [P3 site. Finally, decommissioning activities and associated potential of radioactive airborne release are currently regulated under NRC requirements and will continue to be regulated during the license renewal term. Therefore, no new and significant information was identified and the conclusions in the GEIS remain valid.
Item 4 - The IP2 and [P3 workforce during the decommissioning period will be considerably less than that of the operational period. Therefore, there will be no increased discharge to IP2 and IP3's existing sanitary sewer system that is connected to the Village of Buchanan. in addition, IP2 and IP3 will continue to be subject to erosion and spill' prevention management requirements imposed by state and/or federal agencies.
during the decommissioning period. Therefore, no new and significant information was identified and the conclusions in the GEIS remain valid.
Item 5 - Entergy has procedural controls in place to ensure that land disturbance activities are reviewed and managed to minimize impacts to ecological resources.
Although no land disturbance is anticipated, IP2 and IP3 will continue to be subjected to erosion and spill prevention management requirements imposed by state and/or federal agencies during the decommissioning period. Therefore, no new and significant information was identified and the conclusions in the GEIS remain valid.
Item 6 - Since the IP2 and IP3 workforce during the decommissioning period is expected to be considerably less than that of the operational period, no increased socioeconomic demands should occur. Although a lesser workforce could potentially impact the local economy, these impacts would be essentially similar whether that action was taken in year 60 or in year 40. Therefore, no new and significant information was identified and the conclusions in the GEIS remain valid.
8.0    Document Reviews During preparation of the IP2 and IP3 Environmental Report, several documents were reviewed by the license renewal team. Although not inclusive, typical documents reviewed during this process are shown in Attachment 4.
Attachment ,1 Entergy's Industry Participation Issue                Industry Group                                              Committee Name S" **:
j        :'              ....*"                        ~Topic:  "(eipraI Pohi:y        !
Environmental Policy                    EEI              Environmental Executive Advisory Committee Auditing                                EEI              Environmental Auditing Task Force Emerging Issues                        EEI              Emerging Issues Team EMF                                    EEI              EMF Steering Committee/Task Force Environmental Science R & D            EPRI              EPRI Environment Market Segment Council Air,:
Science R & D                                                                  "Topic:            ,    ,  r Federal Air Policy                  Class of '85          Class of '85 Air Science R & D                      EPRI              Air Quality Heath & Risk Assessment Climate Change                          EEI              Global Climate Change Subcommittee NOx Control R & D                      EPRI              G/O Boiler & Combustion NOx Control Target Committee S02 Allowance                          EEI              S02 Allowance Trading Work Group Topic: Eqt      gjg:adResouirces  ~ ~
Gulf of Mexico                      GOMP BC,            GOMP Business Council Natural Resources                      EEI              Natural Resources Management Subcommittee Natural Resources                      EEI              NRMS Biologists Task Force Vegetation Management                  EEI              NRMS Vegetation Management Task Force Endangered Species                      EEI Wetlands                            USWAG                Section 404 Task Force
                                                        ................... .. ....    , ,, ,  , ic: Spi I R espo se..
EPCRA                                  EEI              EPCRA Subcommittee Attachment 1 Entergy's Industry Participation Issue      Industry Group                                Committee Name Federal Water Policy        USWAG                Policy Committee Legal Counsel              USWAG                USWAG Counsel Analytical Procedures      USWAG                Analytical Procedures Committee Biological Testing          USWAG                Bioavailable Metals Working Group Cooling Systems            USWAG                Cooling Systems Committee Effluent Guidelines        USWAG                Effluent Guidelines Committee Hydroelectric              USWAG                Hydroelectric Task Force Stormwater                  USWAG                Non-Point/Storm Water Task Force Water Quality              USWAG                Water Quality Committee Federal Waste Policy        USWAG                USWAG Policy Committee DOT                        USWAG                USWAG DOT Task Force Ash Management              USWAG                Ash Management & Solid Waste Committee Ash Use                    USWAG                USWAG Ash Use Task Force.
Oil Ash                    USWAG                USWAG Oil Ash Work Group Low Volume & Mixed Waste    USWAG                USWAG Low Volume Waste Committee Remediation                USWAG                USWAG Remediation Committee .
Rulemaking                  USWAG                USWAG RCRA Rulemaking Task Force PCB's                      USWAG                USWAG PCB Committee Spill Cleanup              USWAG                USWAG Spill Cleanup Task Force Superfund                      EEl              Superfund Subcommittee Tanks                      USWAG                USWAG Tanks Subcommittee Treated Wood                USWAG                USWAG Treated Wood Task Force
                                            -31  -
 
Attachment 2 Typical Regulatory Agencies Monitored (Rulemakings)
: 1. Chemical Safety and Hazard Investigation Board
: 2. Department of Commerce
: 3. Department of Defense
: 4. Department of Energy
: 5. Department of Health & Human Services (Center for Disease Control & Prevention)
: 6. Department of Homeland Security (Coast Guard)
: 7. Department of Interior (Fish and Wildlife Service)
: 8. Department of Justice
: 9. Department of Labor
: 10. Department of Transportation
: 11. Environmental Protection Agency
: 12. General Services Administration
: 13. Nuclear Regulatory Commission
: 14. Arkansas Department of Environmental Quality
: 15. Louisiana Department of Environmental Quality
: 16. Massachusetts Department of Environmental Protection
: 17. Michigan Department of Environmental Quality
: 18. Mississippi Department of Environmental Quality
: 19. New York Department of Environmental Conservation
: 20. Vermont Department of Environmental Conservation Attachment 3 Previous SEIS Reviews
: 1. Generic Environmental Impact Statement for License Renewal of Nuclear Plants, Calvert Cliffs Nuclear Power Plant (NUREG-1437, Supplement 1)
: 2. Generic Environmental Impact Statement for License Renewal of Nuclear Plants, Oconee Nuclear Station, Units 1, 2 & 3 (NUREG- 1437, Supplement 2)
: 3. Generic Environmental Impact Statement for License Renewal of Nuclear Plants:
Arkansas Nuclear One, Unit 1 (NUREG-1437, Supplement 3)
: 4. Generic Environmental Impact Statement for License Renewal of Nuclear Plants, Edwin I. Hatch Nuclear Plant, Units 1 and 2 (NUREG-1437, Supplement 4)
: 5. Generic Environmental Impact Statement for License Renewal of Nuclear Plants, Turkey Point Plant, Units 3 and 4 (NUREG- 1437, Supplement 5)
.6. Generic Environmental Impact Statement for License Renewal of Nuclear Plants, Supplement 6 - Surry Power Station, Units 1 and 2 (NUREG-1437, Supplement 6)
: 7. Generic Environmental Impact Statement for License Renewal of Nuclear Plants, Supplement 7      North Anna Power Station, Units 1 and 2 (NUREG-1437, Supplement 7)
: 8. Generic Environmental Impact Statement for License Renewal of Nuclear Plants, Supplement 8 - McGuire Nuclear Station, Units 1 and 2 (NUREG-1437, Supplement 8)
: 9. Generic Environmental Impact Statement for License Renewal of Nuclear Plants, Supplement 9 - Catawba Nuclear Station, Units I and 2 (NUREG-1437, Supplement 9)
: 10. Generic Environmental Impact Statement for License Renewal of Nuclear Plants, Supplement 10 - Peach Bottom Atomic Power Station, Units 2 and 3 (NUREG-1437, Supplement 10)
: 11. Generic Environmental Impact Statement for License Renewal of Nuclear Plants, Supplement 11 - St. Lucie Units 1 and 2 (NUREG-1437, Supplement 11)
: 12. Generic Environmental Impact Statement for License Renewal of Nuclear Plants, Supplement 12 - Fort Calhoun Station, Unit 1 (NUREG-1437, Supplement 12)
: 13. Generic Environmental Impact Statement for License Renewal of Nuclear Plants, Supplement 13 - H.B. Robinson Steam Electric Plant, Unit No. 2 (NUREG-1437, Supplement 13)
: 14. Generic Environmental Impact Statement for License Renewal of Nuclear Plants, Supplement 14 - R.E. Ginna Nuclear Power Plant (NUREG- 1437, Supplement 14)
: 15. Generic Environmental Impact Statement for License Renewal of Nuclear Plants, Supplement 15 - Virgil C. Summer Nuclear Station (NUREG-1437, Supplement 15)
Attachment 3 Previous SEIS Reviews
: 16. Generic Environmental Impact Statement for License Renewal of Nuclear Plants, Supplement 16 - Quad Cities Nuclear Power Station (NUREG-1437, Supplement 16)
: 17. Generic Environmental Impact Statement for License Renewal of Nuclear Plants, Supplement 17 -Dresden Nuclear Power Station, Units 2 and 3 (NUREG-1437, Supplement 17)
: 18. Generic Environmental Impact Statement for License Renewal of Nuclear Plants Supplement 18 - Joseph M. Farley Nuclear Plant, Units 1 and 2 (NUREG-1437, Supplement 18)
: 19. Generic Environmental Impact Statement for License Renewal of Nuclear Plants Supplement 19- Arkansas Nuclear One, Unit 2 (NUREG- 1437, Supplement 19)
: 20. Generic Environmental Impact Statement for License Renewal of Nuclear Plants Supplement 20 - Donald C. Cook Nuclear Plant, Units No. 1 and 2 (NUREG-1437, Supplement 20)
: 21. Generic Environmental Impact Statement for License Renewal of Nuclear Plants Supplement 21 - Browns Ferry Nuclear Plant, Units 1, 2 and 3 (NUREG-1437, Supplement 21)
: 22. Generic Environmental Impact Statement for License Renewal of Nuclear Plants Supplement 22 - Millstone Power Station, Units 2 and 3 (NUREG-1437, Supplement 22)
: 23. Generic Environmental Impact Statement for License Renewal of Nuclear Plants Supplement 23 - Point Beach Nuclear Plant, Units 1 and 2 (NUREG-1437, Supplement 23)
: 24. Generic Environmental Impact Statement for License Renewal of Nuclear Plants Supplement 24 - Nine Mile Point Nuclear Station, Units 1 and 2 (NUREG-1437, Supplement 24)
: 25. Generic Environmental Impact Statement for License Renewal of Nuclear Plants Supplement 25 - Brunswick Steam Electric Plant, Units 1 and 2 (NUREG-1437, Supplement 25)
: 26. Generic Environmental Impact Statement for License Renewal of Nuclear Plants Supplement 26 - Monticello Nuclear Generating Plant (NUREG-1437, Supplement 26)
: 27. Generic Environmental Impact Statement for License Renewal of Nuclear Plants Supplement 27 - Palisades Nuclear Plant (NUREG-1437, Supplement 27)
: 28. Generic Environmental Impact Statement for License Renewal of Nuclear Plants Supplement 28 - Oyster Creek Nuclear Generating Station (NUREG-1437, Supplement 28)
Attachment 3 Previous SEIS Reviews
: 29. Generic Environmental Impact Statement for License Renewal of Nuclear Plants Supplement 29 - Pilgrim Nuclear Power Station (NUREG-1437, Supplement 29)
: 30. Generic Environmental Impact Statement for License Renewal of Nuclear Plants Supplement 30 - Vermont Yankee Nuclear Power Station (NUREG-1437, Supplement 30).
: 31. Generic Environmental Impact Statement for License Renewal of Nuclear Plants Supplement 31 - James A. FitzPatrick Nuclear Power Plant - Draft Report for Comment (NUREG- 1437, Supplement 31)
Attachment 4 Documents Reviewed (Typical) 6NYCRR Part 325, Application of Pesticides 6NYCRR Part 370, Hazardous Waste Management System: General 6NYCRR Part 371, Identification and Listing of Hazardous Wastes 6NYCRR Part 372, Hazardous Waste Manifest System and Related Standards for
.Generators, Transporters and Facilities 6NYCRR Part 374, Management of Specific Hazardous Waste 6NYCRR Part 595, Releases of Hazardous Substances 6NYCRR Part 596, Hazardous Substance Bulk Storage Regulations 6NYCRR Part 612, Registration of Petroleum Storage Facilities 29CFR 1910.1200, Hazard Communication 40CFRI 10, Discharge of Oil 40CFR1 12, Oil Pollution Prevention 40CFR761, Toxic Substance Control Act Air Permit Correspondence with NYSDEC Annual Chemical Inventory Reports Annual Environmental Protection Plan Reports Annual Hazardous Waste Reports Annual Radioactive Effluent Release Reports Annual Radiological Environmental Operating Reports Condition Reports (2003 - March 2007)
Entergy Nuclear Annual Environmental Program Reports (2004, 2005 & 2006)
Entergy Nuclear Waste Minimization Plan EPA NOV Letter to Dara Gray Dated August 25, 2006 (SPCC Program)
Fleet Procedure EN-EV- 100, Environmental Expectations Attachment 4 Documents Reviewed (Typical)
Fleet Procedure EN-EV-104, Waste Minimization Program Fleet Procedure EN-EV- 106, Waste Management Program Fleet Procedure EN-EV-112, Chemical Control Program Fleet Procedure EN-EV-115, Environmental Reviews and Evaluations Fleet Procedure EN-EV- 117, Air Emissions Management Program Fleet Procedure EN-EV-120, Polychlorinated Biphenyl Management Program Fleet Procedure EN-EV-121, Cultural Resources Protection Plan Fleet Procedure EN-LI-100, Process Applicability Determinations Fleet Procedure EN-MA- 128, Refrigerant Management Program Fleet Procedure EN-MA-132, Housekeeping/Facility and Grounds Maintenance Fleet Procedure ENN-EV- 113, Drum Control Program Guidelines Hazardous Waste Correspondence with NYSDEC IP2 Air Quality Permit Certification of Compliance Report to NYSDEC (2004 - 2006)
IP2 Air Quality Permit Logbook IP2 Chemical Spill Response Plan IP2 Facility Response Plan IP2 Hazardous Waste (HSWA) EPA Permit NYD991304411 IP2 Hazardous Waste TSDF NYSDEC Permit NYD991304411 IP2 NOx Compliance Monthly Readings (January 2006 - March 2007)
IP2 RACT NOx Compliance Summary (January 2006 - March 2007)
IP2 SPCC Plan IP3 Air Quality Permit Certification of Compliance Report to NYSDEC (2004 - 2006)
Attachment 4 Documents Reviewed (Typical)
IP3 Air Quality Permit Logbook 1P3 Chemical Spill Response Plan IP3 Diesel Fuel Delivery Invoices (January 2006 - March 2007)
IP3 Fuel Delivery Invoices (January 2006 - March 2007)
IP3 Hazardous Waste Contingency Plan IP3 Hazardous Waste (HSWA) EPA Permit NYD085503746 IP3 PFM-103 Monthly Clock Readings (January 2006 - March 2007)
IP3 RACT NOx Compliance Summary Worksheets (January 2006 - March 2007)
IP3 SPCC Plan IP2 and IP3 Environmental Permits (Refer to Table 9-1 in the ER)
IP2 and IP3 Hazardous Waste Monthly Generation (2005    -  2006)
Mixed Waste Correspondence with NYSDEC New York State Aboveground Storage Tanks (Governing Law and Regulations)
New York State Accumulation Time (Governing Law and Regulations)
New York State Air Emissions Permits (Governing Law and Regulations)
New York State Biennial Report (Governing Law and Regulations)
New York State Chlorofluorocarbons Management (Governing Law and Regulations)
New York State Containers (Governing Law and Regulations)
New York State Contingency Plan (Governing Law and Regulations)
New York State Emergency Planning and Response (Governing Law and Regulations)
New York State Generators (Governing Law and Regulations)
New York State Hazardous Substance Storage (Governing Law and Regulations)
Attachment 4 Documents Reviewed (Typical)
New York State Hazardous Waste - Regulatory Overview (Governing Law and Regulations)
New York State Hazardous Waste Storage (Governing Law and Regulations)
New York State Hazwaste Determination - Classification (Governing Law and Regulations)
New York State Inspections (Governing Law and Regulations)
New York State Leak Detection (Governing Law and Regulations)
New York State Manifest (Governing Law and Regulations)
New York State Medical Waste (Governing Law and Regulations)
New York State Oil Spills (Governing Law and Regulations)
New York State PCB Management (Governing Law and Regulations)
New York State Pesticides (Governing Law and Regulations)
New York State Pollution Prevention (Governing Law and Regulations)
New York State RCRA (Governing Law and Regulations)
New York State Recycling (Governing Law and Regulations)
New York State Release Notification (Governing Law and Regulations)
New York State Spill Prevention - SPCC Plan (Governing Law and Regulations)
New York State Stormwater Discharge Permits (Governing Law and Regulations)
New York State Universal Wastes (Governing Law and Regulations)
New York State Used Oil Management (Governing Law and Regulations)
New York State Wetlands (Governing Law and Regulations)
Site Procedure 0-CY- 1245, SPDES Permit Compliance Site Procedure 0-CY-1810, Diesel Fuel Oil Monitoring.
Attachment 4 Documents Reviewed (Typical)
Site Procedure 3- PT-A029A, 31 EDG Underground FOST Leak Test Press/Vac/UT Method Site Procedure 3-PT-A029B, 32 EDG Underground FOST Leak Test Press/Vac/UT Method Site Procedure 3-PT-A029C, 33 EDG Underground FOST Leak Test Press/Vac/UT Method Site Procedure 3-PT-A029D, Underground FOST Leak Test for the TSC Diesel Generator Site Procedure 3-PT-A029E, Underground FOST Leak Test for the Appendix R Diesel Generator Site Procedure FP-20, Hazardous Materials Site Procedure FP-21, Hazardous Materials Response Team Standard Operating Procedure Site Procedure IP- 1052, Hazardous Waste Emergencies Site Procedure PFM-103, DEC Reporting Site Procedure SMM-EV-101, IPEC Spill/Release Response Plan Site Procedure SMM-EV-102, SPDES Permit Administration Site Procedure SMM-EV-103, Petroleum Bulk Storage Tank Program Site Procedure SMM-EV-104, Waste Paint Minimization & Management Site Procedure SMM*-EV- 117, IP3 Air Quality Program SPDES Correspondence with NYSDEC SPDES Monthly Discharge Monitoring Reports SPDES Permit Renewal Application Additional Documents (Refer to references in the IP2 and IP3 ER)
ENCLOSURE 7a TO NL-07-133 Hudson River Fish Populations and Communities: A 30-year Perspective" NRC Site Audit September 11, 2007 ENTERGY NUCLEAR OPERATIONS, INC.
INDIAN POINT NUCLEAR GENERATING UNIT NOS. 2 & 3 DOCKET NOS. 50-247 and 50-286
 
L-I UI c
 
LI    I II  Ill
 
K I &-911i I.I rnn.n Aqq A*
mII Survival I Abundance  I Abundance  I Survival Growth Survival                                    SSurvival I Growth I Abundance I          Abundance  I        Abundance  I
 
B
                                    ~1 Response metric      CWIS Fishing  Zebra  Predation by mussels striped bass PYSL Abundance.      +      +
PYSL-> Juv survival    0              0 Juvenile abundance Juvenile growth                      +
Spatial distribution
 
Response metric        CWIS Temperature Striped bass predation PYSL/early juvenile abundance            +                    +
Egg to age 1 survival      0    +              0 Age 1 &2 abundance Age 1 to age 2 survival          +            +
Juvenile growth                  40 Spatial distribution
 
- IP Entrainment CMR (%)
- Larel sutraml index
 
4 0'
0 0
  ,  4.
0
 
Blue = 1-unit operation Red =2 unit operation 0'
 
Entrainment        Fishing        Zebra Mussels Co-occurrence                          +                +
Sufficiency        N/A          unknown            unknown Temporality                            +
Manipulation                          +              N/A Coherence          N/A                +
Summary      Entrainment and zebra mussel hypotheses rejected Evaluation                Most likely cause: fishing
 
-PYSL
-  YoY e'
0 0,
 
4                                  4 4  4 4
4  4
          ,    4                                        4
                                                                  ,  4    4
                                                            *        ,      4
*        *O
* 4 4      **  4 40 4 0* **4 *
* 0 Blue = 1-unit operation Red = 2 unit operation 4 4 1
4 0
4 4    4  .
4,      ~, 4    4 4
 
0*
            -SB    Predation
            -  White perch YOY 4p, 4,    4,
 
11 CWIS              Zebra mussels              Striped bass predation Co-occurrence                                  +                      +
Sufficiency        N/A                  unknown                      +
Temporality          +                                              + (?)
Manipulation                                  N/A                    N/A Coherence          N/A                      +(?)                      +
Summary                        CWIS hypothesis rejected.
Evaluation    Zebra mussels and striped bass predation may have contributed declines occurring in later years, but other unknown causes were responsible for declines occurring between 1975 and 1985.
 
PYSL Abundance I e
                ~-~~~8 0 4
 
tt
* Blue = 1-unit operation Red = 2 unit operation 4
 
4 ~ 40, MWlS            Overfishing            Zebra          Striped bass mussels            predation Co-occurrence                                                                            +
Sufficiency                N/A                                  unknown            unknown Temporality                                    +                                        +
Manipulation                                  N/A                  N/A                N/A Coherence                  N/A                                                          +
Summary evaluation                  CWIS and zebra mussel hypotheses rejected Most likely cause: combined effects of fishing and striped bass predation
                  *Although ASMFC's 1998 stock assessment concluded that shad are not overfished, NYSDEC has contended that the Hudson River population may be overfished.
 
1:1  II a
          "-LRS
            -' Mark-Recapture y
      /NVA\/<
 
PA! m Ble 1-nt    prto Re  8    nt prto
  .0 A A
 
11        I                        I~IIAMT
  --  Aug-Sep bottom temperature
  -Age    1-2 tomcod (millions)
I
 
m 0
0 4
0
* 4 4
0*
'4  0
* 4    0 0
*8    0~
* 0
                                              -Atlantic tomcod LRS
          -    SB Predation
          -Atlantic    tomcod M-R
 
cwIS              Temperature            Striped bass predation Co-occurrence                                                      +
Sufficiency        N/A                    +                      +
Temporality                                                        +
Manipulation                              N/A                      N/A Coherence          N/A                    +                      +
Summary evaluation              CWIS hypothesis rejected Most likely cause: striped bass predation
 
I      IkIL" 'Ii W151
 
D Hartman (2003)
* ED Uphoff (2003)
* M Heimbuch (2007)*
 
El 1979-1990 111991-2004 LI Other Fish El Juvenile River Herring, Atlantic Tomcod and White Perch i I
 
Yolk-sac larvae - 327,000                        0.
11, N Jarvae      6,000 styolk-sac,4 P",              w l',M any  :,,
          &#xfd;ii  Ow un&f-yeat  22&#xfd; E q,w_ a &#xfd;(ee  ne XL W-1
                                                .                  LZ TV TO h      AM.-Al e
                                                              -&#xfd;A
                                  )awh *Mar,
                                        -n    male:
 
utne    Somn i ITI
* Age 0 natural mortality
[1 Entrainment at Indian Point
 
'7
'7
'7
'7 V
:1 SPR Target: 50% of unfished SSBPR SPR Threshold: 40% of unfist Target F                              Threshold F
                                ."Iz
 
SPR at Target Fishing rate (Management actions should Achieve this rate)
SPR at Threshold Fishing Rate (Fishing must be reduced If SPR falls to this level) m
                                              /
m F1
 
I 11 I I    S IU'                I i.
1111z Losses, by life stage CMR Unfished SPR
:-LS mortality              SSBPR        Target and Threshold SPR rates Model      Reduction due to Power Plants
                                        , Reduction due to Fishing -
Baywide        Age 1+
abundance/        natural    Fishing distribution    mortality  Mortality
 
Spawning Potential Ratio (SPR)
-- SPR at Threshold F
 
I II In
 
m U Ii
@I II CASE A                                                CASE B 2                                                        2 0  4 Anadromous                                          a 4 Anadromous Estuarine
                                                                                                    =
* Estuaine
* Freshwater                                            A Freshwater
* Marine                                                0 Marine A    A
.0                                                          0    4    4 4 4                                0 A                                    _1
      *0                                                                                a a
-2                                                        -2 0      0.1  0.2              0.3 0.4          0.5      0    0.1  0.2            0.3  0.4          0.5 Mean Entsus                                          Mean Entsus
 
I}}

Latest revision as of 19:46, 14 January 2025

Review of the Draft Environmental Impact Statement for SPDES Permits for Bowline Point 1 & 2, Indian Point 2 & 3, and Roseton 1 & 2 Steam Electric Generating Stations, Cover - Enclosure 7a
ML073330721
Person / Time
Site: Indian Point  Entergy icon.png
Issue date: 10/20/2000
From:
ESSA Technologies, Ltd
To:
Office of Nuclear Reactor Regulation, State of NY, Dept of Environmental Conservation
References
NL-07-133
Download: ML073330721 (416)


Text