ML093510805: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot change)
(StriderTol Bot change)
 
Line 2: Line 2:
| number = ML093510805
| number = ML093510805
| issue date = 08/30/2005
| issue date = 08/30/2005
| title = Final Environmental Assessment, Spring City to Watts Bar Nuclear Plant Sewer Line Extension.
| title = Final Environmental Assessment, Spring City to Watts Bar Nuclear Plant Sewer Line Extension
| author name =  
| author name =  
| author affiliation = Tennessee Valley Authority
| author affiliation = Tennessee Valley Authority
Line 15: Line 15:


=Text=
=Text=
{{#Wiki_filter:Document Document Type:  EA-Administrative EA-Administrative Records Records Index Index Field:    Final Environmental Document Project Project Name:  WBN to Spring City Sewer Sewer Pipeline Project Project Number:
{{#Wiki_filter:}}
Project        2004-59 FINAL ENVIRONMENTAL ENVIRONMENTAL ASSESSMENTASSESSMENT SPRING SPRING CITY TO WATTS BAR NUCLEARNUCLEAR PLANT      PLANT SEWER LINE EXTENSION EXTENSION Rhea County, Tennessee Tennessee TENNESSEE VALLEY TENNESSEE        VALLEY AUTHORITY AUGUST 2005 AUGUST          2005
 
Page Page intentionally intentionally blank
 
FINAL FINAL ENVIRONMENTAL            ASSESSMENT ENVIRONMENTAL ASSESSMENT SPRING SPRING CITY TO WATTS                NUCLEAR PLANT WATTS BAR NUCLEAR            PLANT SEWER SEWER LINE EXTENSION EXTENSION COUNTY, TENNESSEE RHEA COUNTY,        TENNESSEE TENNESSEE TENNESSEE VALLEY VALLEY AUTHORITY AUGUST AUGUST 2005 Proposed Decision and Need The Proposed                      Need Tennessee Valley Authority (TVA) currently The Tennessee                                                                            treatment currently operates a sanitary sewage treatment system at the TVA Watts Bar Nuclear Nuclear Plant (WBN). The existing existing WBN sewage treatment treatment plant is 30 years old and is estimated to havehave  only  8  to10 t010  years  of life remaining. There There are three potential TVA decisions/actions decisions/actions associated associated with this proposal. First, TVA needs    needs to decide whether whether or not to contract with the Town of Spring City for sanitary          sewage sanitary sewage treatment treatment services. This will require the construction of aa new 7.5 mile sewer line      line extension to WBN. This will also support Spring City's plan to upgrade  upgrade its existing wastewater wastewater treatment plant. Second, Second, TVA needs to decidedecide whether or not to grant an easement for construction construction of the sewer sewer line along along TVA property to the WBN facility. Third, based upon the final technical technical design features features of the project, TVA approval may be        be needed under Section 26a of the TVA Act ifif the sewer line extension crosses streams in needed                                                                                                in the area.
 
===Background===
Background The WBN Power Plant has a dedicated dedicated sewage treatment treatment plant that currently treats an estimated 29,500 gallons of domestic sanitary sewage sewage per day based on two years of historical data. The effluent historical            effluent is discharged      Chickamauga Reservoir. The existing WBN discharged to Chickamauga wastewater treatment plant is 30 years old and has only 8 to 10 years of remaining life.
Operation of the WBN wastewater Operation                wastewater treatment plant has resulted in occasional exceedances of WBN's NPDES over exceedances                          over the past 10 years. Transfer Transfer of the WBN waste stream to the Spring City wastewater      treatment plant would consolidate operation and wastewater treatment                                              and maintenance efforts and increase maintenance                increase the biological loading loading of the Spring City treatment plant.
TVA would dispose of sanitary sanitary wastes in accordance accordance with 10CFR 10CFR 20.2003, 20.2003, Disposal Disposal by  by Release into Sanitary Release        Sanitary Sewerage.
Sewerage.
2001, TVA WBN issued a Request for Proposal to replace their present On March 9, 2001,                                                                        present wastewater treatment facility with services from a municipal facility. The Town of Spring      Spring City responded with a proposal proposal dated April 14, 2001.
2001. On June 15,2001, 15, 2001, representatives representatives from TVA, Spring City, and Environmental Environmental Systems Systems Corporation Corporation (ESC) met with representatives of the U.S. Department representatives                Department of Agriculture      (USDA), Rural Utility Services (RUS)
Agriculture (USDA),
to discuss the proposed project. TVA submitted a non-binding non-binding Letter Letter of Interest Interest to the the Town of Spring City on September        25, 2001. The letter expressed September 25,2001.                    expressed interest in entering entering intointo agreement for the Town to provide an agreement                                wastewater treatment provide wastewater    treatment services services for the WBN and made    provisions for granting an easement made provisions                      easement for a sewer line to be placed and maintained on TVA property, if and when, when, an agreement agreement is reached reached between the two parties.
1
 
With this RUS funding The Town of Spring City also plans to upgrade        upgrade its sewage sewage treatment plant, as well as extend a sewer line 7.5 miles from the Spring City Wastewater      Wastewater Treatment Treatment    Plant  to  WBN. The  Spring  City wastewater    treatment wastewater treatment      plant has  a history  of problems problems related to low biological loading and mechanical mechanical operations of the plant, as well as having design        deficiencies which would also be corrected design deficiencies                                                          proposed project corrected through this proposed satisfactory treatment and to prevent upgrade to provide more satisfactory                                        releases of untreated or prevent releases partially            wastewater to Watts Bar Lake. Unrelated partially treated wastewater                                Unrelated to the TVA sewer line, the Town requested and received a grant from the Tennessee of Spring City has requested                                                          Department of Tennessee Department Conservation (TDEC) for funds to extend the discharge line from their Environment and Conservation Environment                                                                                          their treatment facility further in wasterwater treatment wasterwater                                  in order order to improve water quality in the Piney River Embayment of Watts Bar Reservoir.
The extension and upgrades              sewerage service associated upgrades of sewerage                associated with the present proposal evaluated              would allow the Town of Spring City to provide wastewater herein, would evaluated herein,                                                                              treatment wastewater treatment services to a portion of Rhea County, south and east of the town, services                                                                                includes WBN.
town, which includes Re-routing WBN domestic          wastewater to the Spring City facility would enable domestic wastewater                                            enable TVA to close close the existing WBN treatment treatment plant and eliminate a NPDES discharge discharge location, as well as  as the associated associated operation            maintenance cost from operating an onsite operation and maintenance                                    onsite wastewater treatment plant. While the existing designed designed capacity of the Spring City wastewater treatment system is already adequate treatment                                                        additional treatment services adequate to provide the additional                    services to to locations in that area where septic system wastewater treatment locations                                                          treatment is currently in use, no  no sewer sewer  line  or lift stations are  in  place place to provide  this  service. Approximately Approximately    202  county residences                businesses in the area of new sewerage residences and 10 businesses                                  sewerage service currently provide their  their own wastewater treatment treatment with septic systems.
funding for Spring City's sewer line extension and wastewater Total initial funding                                                      wastewater treatment        plant treatment plant upgrades would be provided by a grant and loan combination from RUS. Loan payback funding would come from sewer    sewer user fees and agreements agreements with potential large customers such as TVA.
Because of the multiple federal agency involvement, involvement, substantive substantive federal funding and potential contractual, contractual, financial and federal                    arrangements, TVA has prepared federal land use arrangements,                    prepared thisthis environmental assessment to further evaluate the potential environmental environmental                                                            environmental impacts of constructing the 7.5 mile pipeline connecting WBN to the Spring City Wastewater constructing                                                                        Wastewater Treatment              discontinuing use of an onsite WBN wastewater Treatment plant, discontinuing                                    wastewater treatment plant, and the      the potential cumulative cumulative      effect of the  additional additional  areas  to  which  Spring  City could  now  supply sewer services ifif itit extends its lines to serve WBN.
sewer Environmental Reviews Other Environmental          Reviews and Documentation Documentation Environmental Systems Corporation (ESC) of Knoxville, Tennessee prepared Environmental                                                                      prepared for the use of the Town of Spring City and RUS, an environmental environmental report (ER)      dated  February February 18, 2003, and titled Proposed                      Extension for Town of Spring ProposedSewer Line Extension                          Spring City, Spring    City, City, Spring City, Tennessee. USDA RUS reviewed Tennessee.                      reviewed the proposal for the sewer line extension and wastewater treatment plant upgrade project from the Town of Spring City and based upon wastewater the Environmental Environmental Report                              Engineering Report (ESC 2003b) prepared Report (ESC 2003a) and Engineering                                    prepared for for them by ESC, developed developed and approved          Categorical Exclusion approved a Categorical      Exclusion for the project (Elam, 2004).
22
 
TVA has independently independently reviewed            information and impact analyses reviewed the information                      analyses identified identified in the the Environmental and Engineering referenced Environmental              Engineering Reports; Reports; and has determined determined that they are adequate. This TVA EA, therefore, incorporates adequate.                                    incorporates by reference the information information and analyses from the ESC reports (ESC 2003a, ESC 2003b) and additionally                        documents additionally documents TVA's review and consideration consideration of the project project aspects specific to TVA property and actions. A synopsis of the ESC ER and coordination with federal        federal and state agencies agencies follows.
The ER report was prepared for the Town of Spring City, Tennessee to request a loan                    loan
($2,185,000) and grant ($1,050,000) from the USDA, Rural Development, RUS to upgrade                    upgrade existing Spring City wastewater wastewater treatment treatment services and extendextend the sewer sewer line to additional areas areas in Rhea County. ESC also prepared an Engineering                    Report for Spring Engineering Report          Spring City Sewer Line Extension Extension dated dated  February  24,  2003    which discussed  the  project  description project description in detail.
detail.
The reports discussed discussed the purpose and need for the proposed  proposed expansion project, alternatives alternatives to construction construction and the potential environmental environmental impacts from the proposedproposed project. The RUS ER discussed discussed three alternatives alternatives to the proposed project, the No Action Alternative and two Action Alternatives: constructing a sewer line extension                      opposite extension on opposite sides of Highway 68 (one alternative alternative on the north side of Highway Highway 68 and one alternative alternative south of the highway). The range of alternatives            identified and impacts evaluated alternatives identified                    evaluated in the the ER included included the extension of the sewer line all the way to the existing  existing TVA wastewater wastewater treatment facility at WBN.
treatment                WBN. The preferred preferred construction      alternative identified construction alternative    identified in the ER was  was south of Highway 68.
The potential effects effects on land use, floodplains, floodplains, wetlands, cultural resources, biological resources, water quality, human population, population, air quality and transportation transportation were evaluated evaluated in the ESC ER. RUS subsequently in                          subsequently documented documented the agency agency finding that the project did not cumulatively have a significant impact individually or cumulatively                            impact on the human human environment, and therefore qualified qualified as a Categorical Exclusion under 7 CFR Part 1794,                      Utility 1794, Rural Utility Service's    Environmental Policies and Procedures. On January Service's Environmental                                            January 6, 2004, RUS issued their      their Categorical Categorical Exclusion environmental environmental review for the Town of Spring City $3,235,000  $3,235,000 RUS  RUS Funding Request Request for the sewer sewer line and lift station project.
preparation of the ER and Categorical Exclusion, state and federal agencies During preparation                                                                            agencies were coordinated coordinated with duringduring the RUS project evaluation.
evaluation. The project scope scope included included in that coordination      included both action coordination included            action alternatives, as well as the infrastructure within WBN (i.e., the in-plant sewerage sewerage lift station station and sewer line to the station). This inter-agency correspondence is contained in Exhibits 3 and 4 of the ESC ER. Agency responses correspondence                                                                              responses in  in correspondence are summarized below.
correspondence
    **                                        Conservation Service (NRCS)
The USDA, Natural Resource Conservation                        (NRCS) letters letters dated dated January 17 and December December 10,10, 2002, stated that the sewer line extension was exempt      exempt fromfrom the Farmland Farmland Protection Protection Policy Act. The TN Department Department of Economic and Community Community Development, Local Planning Assistance Office was contacted to                    to review compatibility compatibility with zoning and growth concerns. None      None were identified.
identified.
      **  The U.S. Fish and Wildlife      Service responded by letter dated January Wildlife Service                                    January 15,15, 2002, that based on information available available to them, endangered endangered or threatened species  species are not located located within the impact area. They also had no information information which indicated indicated any presence of wetlands. On January  January 8, 2003, the FWS responded responded that no    no significant significant adverse impacts impacts to threatened threatened or endangered endangered species species or wetlands were    were 3
 
anticipated, and that requirements requirements of section 77 of the Endangered Endangered Species Act of 1973, as amended, were fulfilled. TDEC, Division of Natural Heritage 1973,                                                                      Heritage was was determine the potential for impact to state listed species contacted to determine                                                    species and none none were found to be within one-mile one-mile of the proposed proposed project. One speciesspecies of concern (rare and uncommon uncommon in the state), the Flame  Flame Chub, Chub, was identified by the Division Division Natural Heritage. In of Natural                In letters dated January January 17 17 and December 10, 2002, NRCS      NRCS indicated that no hydric soils which are indicative indicated                                        indicative of wetlands, were present in the    the proposed project locations.
proposed
* The U.S. Army Corps of EngineersEngineers (USACE)
(USACE) provided provided comments to the proposedproposed project in their letters dated February February 12 and December December 12,  12, 2002,  that  several waterways waterways including including Long Hollow Embayment on Watts Bar Lake, Work Creek, Cracker Creek as well as several          unnamed waterways several unnamed      waterways through      discharges of through discharges dredged fill material material into these waters or adjacent adjacent wetlands wetlands would be subject to Clean Water Act (CWA), Section 404 permitting.permitting. Long HollowHollow Embayment Embayment is also considered a navigable considered        navigable waterway waterway and therefore therefore subject subject to River and Harbors Harbors Act, Section 10 permitting responsibilities. They also indicated  indicated that formal wetland wetland review and potential mitigation mitigation must be performed performed during the CWA, Section Section 401 Certification I/ Aquatic Resource Resource Alteration Permit (ARAP) by the Tennessee Tennessee Department of Environment Department          Environment and Conservation Conservation (TDEC), Water Pollution Control (WPC) Division. Both the USACE and TDEC-WPC    TDEC-WPC indicated that if      if substantial installation impacts are not associated associated  with  the  project,  that permitting  may bebe accomplished under accomplished      under the Nationwide Nationwide and General Permit programs.
  *" The Tennessee Tennessee State Historic        Preservation Officer (SHPO) responded to the Historic Preservation                                          the proposed project by letter dated January proposed                                          14, 2002 that an archeological survey January 14, would be required for the pump station located  located at the junction of Highway 68 and New Lake Road. Alexander Archeological Consultants (AAC,                            conducted a (MC, 2002) conducted Phase 1  I study and produced produced aa report of the survey results, which was provided  provided to the SHPO. The SHPO            subsequently responded by letter dated December SHPO subsequently                                        December 9, 2002, that there were no National Register of Historic Places listed or eligible properties  properties affected by the proposed proposed project, and that the office had no objections to proceeding with the project.
proceeding
  *" The Tennessee Tennessee Wildlife Resources Resources Agency (TWRA) was contacted  contacted on January 31,  31, 2002 to identify anticipated anticipated impacts to fish and wildlife wildlif~ resources resources from the the proposed proposed project. TWRA indicated no special wildlife management    management concerns due    due construction the sewer extension on existing developed to construction                                            developed lands and that watershed protection during sewer line installation installation was a most important important concern for wildlife and aquatic aquatic resource resource protection. TDEC was also consulted and would          would require construction related sediment and erosion control best management  management practices practices for both traditional trenching trenching and directional directional bore drilling sewer line line installation.
installation. Sediment and erosion control. BMPs would be requirements of any Section 401/ARAP 401/ARAP Permit approval.
Environmental Permits and Notifications Environmental                    Notifications The Town of Spring City or their contractors would be responsible responsible for obtaining obtaining all necessary permits, making necessary                      notifications to the appropriate making notifications            appropriate agencies agencies for the proposed 4
4
 
project, and compliance compliance with all provisions of permits. Discharge of any dredge or fill material into the streams crossed or actions  actions affecting wetlands wetlands would would be subject to Clean Clean Water Act, Section 404 permitting permitting by the USACOE.
USACOE. Depending Depending upon the final project design, stream or wetland wetland alternations alternations could also require an Aquatic ResourceResource Alternation Alternation Permit. A modification modification to the WBN Storm Water Pollution Prevention    Prevention Plan would be  be required for construction activities activities on the WBN site.
Alternatives and Comparison Alternatives considered three alternatives, the No Action and two Proposed Action TVA has considered Alternatives. These alternatives alternatives are the three alternatives alternatives considered considered and evaluated in the  the ESC ER prepared prepared for the Town of Spring City and RUS.        RUS.
Alternative Alternative A - No Action Under the No Action Alternative, TVA would continue the use of existing WBN domestic          domestic wastewater wastewater treatment system and would not tie-in to the Spring City sewage                  treatment sewage treatment system. Under the No Action Alternative, Alternative, both TVA WBN domestic wastewater wastewater treatment treatment plant and the Spring City wastewater wastewater treatment plant would continue to operate independently in their currently permitted status. The NPDES-permitted independently                                                      NPDES-permitted wastewater wastewater discharge to Chickamauga Chickamauga would continuecontinue from the WBN wastewater wastewater plant. WBN would continue to have operation operation and maintenance maintenance costs associated associated with operation of the onsite onsite wastewater wastewater    facility. This alternative    would  also  not address address the risk of additional exceedances of NPDES permit conditions. The Town of Spring City would not realize exceedances                                                                                    realize additional financial financial revenue revenue from TVA and this would impede    impede the Town's ability to fund needed improvement projects projects to their sewer sewer system. TVA would neither neither grant an easement for construction                proposed sewer construction of the proposed        sewer line, nor issue aa 26a permit(s) permit(s) for stream crossings.
Alternative B - WBN tie-in to Spring  Sprinq City Wastewater Wastewater Treatment Treatment System,      Granting System. Granting of Easement and Issuance Issuance of 26a Permit(s)
Permit(s) or Letter of No Objection Objection Under this Action Alternative, TVA WBN would discontinue operation of an                  onsite anonsite wastewater wastewater treatment plant  plant and connect connect to the Spring City sewer line extension extension for handling of WBN domestic handling              domestic wastewater wastewater needs through the Spring City treatment plant.
This action would involve 1) entering entering into contractual contractual arrangements arrangements with the Town of Spring City for sewerage sewerage services (i,    (i, e., TVA WBN would complete complete a financial arrangement with Spring City for treatment arrangement                              treatment of the plant's sanitary sanitary waste); 2) discontinuing discontinuing use of the existing TVA wastewater wastewater treatment facility at WBN; 3)      3) granting of an easement easement property for the construction along TVA property                construction of the sewersewer line to TVA WBN; and 4) depending depending upon final project design, either either issuance of a Section Section 26a permit or a letter of no no regarding stream crossings objection regarding              crossings from TVA to the Town of Spring City regarding regarding thethe proposal.
proposal.
wastewater stream The wastewater      stream from TVA is from domestic sanitary sources    sources only and does not include any by-product include        by-product wastewater wastewater from industrial industrial or power power generation generation sources. Use of the existing WBN wastewater wastewater treatment treatment plant would be discontinued, discontinued, and consequently maintenance costs associated operation and maintenance                  associated with the onsite wastewater wastewater plant would would cease. A wastewater        discharge to Chickamauga wastewater discharge            Chickamauga Reservoir Reservoir from WBN would be    be discontinued. The existing wastewater wastewater treatment plant would be removed except for two 55
 
tanks which may be left behind for emergency                  detention in event of sewer pump failure.
emergency detention The building building currently housing the tanks would be retained.      retained. WBN staff will ensure that waste generated is handled  handled and disposed of in accordance accordance with applicable applicable regulations.
RUS/Spring City project for the TVA tie-in entails constructing aa 7.5-mile The proposed RUS/Spring                                                                            7.5-mile forced main sewer line extension, 4 lift stations as well as upgrades to the current Spring              Spring City wastewater wastewater treatment treatment plant. The sewer line extension extension and lift stations would be    be constructed constructed in the state/public right-of-way right-of-way along Highway Highway 302 from the Spring City wastewater plant to Highway 68 and on to the current WBN domestic wastewater wastewater                                                                              wastewater treatment plant (Figure1).
(Figurel). The area along this route is currently not serviced by a sewerage system. The areas in this routing corridor have a previous sewerage                                                                      previous history of being being heavily heavily disturbed, and are now either              covered by roads or grass. Current either covered                          Current vegetation along along the Spring City.City extension extension route consists primarily primarily of grasses planted after after the original road construction and shrubby vegetation that has naturally construction                                                          succeeded into the areas.
naturally succeeded Temporary disturbance of the vegetation would be required Temporary                                                          required to install install the sewer sewer line. The  The land and vegetation vegetation wouldwould be restored to the original contour after the line installation was        was complete. Any excess spoil would be handled        handled and disposed of in accordance accordance with all applicable federal, state and local laws and regulations.
applicable Project Project plans (Figure 1) indicate indicate that the section section of the proposed proposed pipeline route which runs    runs near Tennessee Tennessee Highway 68 would be located          located on TVA-owned TVA-owned land. TVA granted granted an easement to TOOT easement          TDOT for the construction of TennesseeTennessee Highway Highway 68. In  In the preliminary design phases it is uncertain uncertain how how much if  if any TVA land which has been eased  eased to TDOTTOOT may become involved involved in the project. Also, the pipelinepipeline and the lift station at the WBN end of the pipeline would be located  located on TVA land land within the WBN plant site.
During initial construction construction of the forced main sewer    sewer line from the Watts Bar Nuclear Plant to the Spring City Sewage            Treatment Sewage Treatment        Plant  (STP)  and following initial construction, construction, Spring City, will be allowed to make tie-ins to the sewer line to add new customers      customers (the line is sized to allow for 1,350 additional residences). The addition of tie-ins to the line outside          outside the Spring City, City Limits, is contingent on Spring City and the Watts Bar Utility District (WBUD), which has sewage      sewage service service jurisdiction jurisdiction of this area of North Rhea County, reaching        commercial agreement.
reaching a commercial            agreement. The tie-ins that are installed on the forced main sewer        sewer line will be located by Spring City at areas    areas that have future growth growth potential and would benefit benefit ifif sanitary sewer sewer service was available.
available. The typical configuration configuration for the tie-ins that are planned for future customer service would be: 1) a tee connection in the forced main sewer sewer line; 2)  2) aa run of pipe off the tee that would run under  under the roadway/railroad        (installed roadway/railroad (installed using using    a  bore  and  jack  process)  per  Engineering    Specifications Engineering Specifications      to protect  the  piping  and maintain maintain the roadway/railroad roadway/railroad design loading;loading; 3) a valve that would would be installed in the line  line after itit has crossed crossed the roadway/railroad; roadway/railroad; and 4) the line will have a cap install if          no if no immediate immediate service service use is planned planned for the tie-in connection point. The installation installation of the tie-tie-ins during the initial construction construction effort would allow future customers to be added to the            the system in these areas without major interruption  interruption of service to WBN and the environmental risk associated associated with cutting into the forced main sewer        sewer line to make make tie-ins later.
Two improvements to the existing Spring      Spring City wastewater wastewater treatment treatment plant would would also be  be made made      to improve    its  performance performance    and  continuous  flow  monitors    would  be  installed  to infiltration/inflow problems. The two improvements identify infiltration/inflow                                improvements (ESC 2003a, ESC 2003b) are:
: 1) the replacement replacement of the headworks headworks lift station pumps with grinder pumps, and 2) the          the 6
6
 
removal and replacement replacement of the existing bar screen screen with aa shaftless auger/screen/conveyor for solids removal and compaction.
auger/screen/conveyor                                    compaction.
The Town of Spring City has a charteredchartered mandate mandate to provide utilities within Spring City.
As part of the use of RUS funding, funding, an additional forced main sewer line would    would be installed installed to further expand the collection system in residential areas (Figure 1) to provide      provide  service  to approximately 202 existing residences and 10 businesses.
approximately Alternative Alternative C C - Installing Installing Sewer Sewer Line on the Opposite Opposite Side of the RoadsRoads Same as Alternative B,    B, except that this alternative involves            placement of the sewer involves the placement line on the north side of Highway Highway 68 and the east side of the WBN site entrance  entrance road for the sewer line extension to WBN; the east side of New        New Lake Road in one residential area; and within the public right-of-way right-of-way of the remaining residential area roads. The four pump        pump stations identified in Alternative B would also be required. The financial outlay would be                be greater than for Alternative B, while the technical feasibility and environmental environmental impacts impacts would be comparable.
Other Alternatives Not Considered in Detail The alternative      upgrading and enhancing alternative of upgrading            enhancing the existing WBN wastewater wastewater treatment treatment plant was briefly considered, but economic economic analyses      indicated that the costs of upgrading the analyses indicated                                      the treatment plant to handle the peak flows associated associated    with  plant  maintenance    outages maintenance outages would not be cost effective. The successful closure of the waste water treatment plant at TVA's Sequoyah Nuclear Plant (SON)      (SQN) in 1998 1998 and routing of SON  SQN sanitary    sewage to sanitary sewage Hixson Hixson Utilities for treatment treatment has proven that the general general assumptions used in previous previous similar economic analyses analyses for such aa decision decision were valid.
valid.
Affected Environment Environment and Evaluation of Impacts    Impacts Scope of Environmental Environmental Review The scope        environmental review encompassed scope of environmental                encompassed all aspects of the proposals proposals covered covered under under the description                          Consideration of the potential for environmental description of alternatives. Consideration impacts impacts from the proposed                  indicated that, with incorporation proposed actions indicated                    incorporation by reference reference of the the materials materials from the ESC ER and from the interagency correspondence correspondence included therein:
* For vegetation and wildlife, natural areas, protected or sensitive                        aquatic sensitive species, aquatic ecology, visual aesthetics, cultural resources, groundwater, socio-economics socio-economics and environmental justice, there was either no, or only minor, potential for even environmental insignificant impacts from either of the proposed action alternatives. No state or insignificant federally federally listed threatened threatened or endangered endangered species species are known to exist near the    the proposed project locations. There would be no impact to Wild and Scenic and recreation rivers, prime farmlands, wildlife refuges, state or city parks, forest lands recreation                                                                                    lands or trails or cultural resources from the proposed sewer line extension. No disproportionately high or adverse disproportionately              adverse human health            environmental effects on health or environmental minority and low income populations are anticipatedanticipated as a result of the proposed proposed extension.
sewer line extension.
77
 
    *"  Minor, insignificant, insignificant, short-term short-term effects on air quality are expected expected during the the installation of the sewer installation        sewer pipes. Dust control measures would be employed during            during construction to minimize degradation of air quality by dust. No long term impacts construction                                                                              impacts are anticipated anticipated for either action    alternative as a result of construction-related action alternative                      construction-related impacts. While short-term short-term interruptions interruptions in traffic flow during construction construction may be  be realized, no long-term impacts on transportation are anticipated. anticipated. Short-term insignificant impacts from noise generated insignificant                          generated during during sewer line installation installation will also temporary; no long-term elevation only be temporary;                      elevation of noise levels in the affected affected areas is anticipated to result from the proposed anticipated                        proposed sewer line extension.
extension.
    *"  As existing existing plant procedures procedures are adequate adequate to handle the types and volume of solid        solid generated by decommissioning waste generated          decommissioning of the existing WBN wastewater  wastewater treatment facility, impacts from disposal activities would be insignificant.
    *" The resource resource areas identified as having needed further evaluation or resolution of issues were wastewater/surface wastewater/surface water; wetlands; floodplains as well as the          the consideration of the potential for indirect and cumulative effects related to land use consideration                                                                                    use and growth. With the identified identified commitments identified, identified, impacts to each of these these resources werewere also determined            insignificant for either of the action determined to be insignificant alternatives.
Those commitments proposed in the ESC reports and inter-agency      inter-agency correspondence, correspondence, as  as identified identified as appropriate                                      incorporated in the Summary appropriate by TVA, are identified and incorporated                    Summary of Commitments Commitments and Mitigation MeasuresMeasures section section of this EA.
Wastewater/Surface Water Wastewater/Surface        Water Impacts Impacts to surface surface waters from the proposed actions could potentially  potentially accrue from two wastewater sources, i.e., 1) construction wastewater                        construction of the sewer lines and associate pumping    pumping stations; and 2) additional additional sewage sewage loading loading to the existing Spring City wastewater wastewater treatment facility.
BMPS BMPS such as silt barriers would be in place when working near streams to prevent            prevent erosion and sediment sediment runoff from trenching trenching activities and any consequent degradationdegradation of water quality. Additional specific      measures to protect water quality may be identified specific measures                                            identified in the the TDEC ARAP permit or USACOE  USACOE 404 permit. The use of such standard                  construction standard construction BMPs for erosion control and any additional additional controls identified identified in the ARAP permit would be adequate adequate to avoid adverse adverse  impacts  to  surface  waters.      As appropriate appropriate and/or required by TDEC, the sewersewer lines would be installed installed through directional directional boring boring to complete stream crossings                      proposed project, deterioration crossings required by the proposed                    deterioration of water quality and disturbance disturbance of stream stream bank would be avoided. Standard work practices to prevent          prevent the accidental deposition of bentonite deposition      bentonite slurry into streams streams would preclude preclude adverse water quality impacts impacts during during the boring process. With these provisions there should be no impacts from construction construction activities to current water uses or water quality of streams, embayments  embayments or Watts Bar Reservoir.
Based upon current current levels, additional    average daily wastewater inflow from TVA WBN to additional average                                                      to the Spring City waster treatment system would    would be slightly less than 0.03 mgd, with infrequent peaks as high as 0.1 mgd. Historical infiltration infiltration problems at WBN,WBN, which 88
 
contribute contribute to the referenced referenced peak flows during wet periods  periods at the plant, have been dramatically reduced, but infiltration still occurs dramatically                                                          degree . One source is the occurs to some degree.                              the existing WBN treatment facility which would be eliminated  eliminated    by  the  tie-in  to the  Spring    City system. WBN also routinely maintains maintains the on-site on-site waste collection system and this        this involves reducing infiltration to the system. These efforts will continue in order and should involves continue to limit the contribution contribution of excess flows from infiltration infiltration to the proposed first sewage lift station to be sited at WBN.
The Spring Spring City wastewater wastewater treatment treatment plant currently operates under National Pollutant    Pollutant Discharge Discharge Elimination Elimination System (NPDES) permit number TN0021261. TN0021261. The plant is rated to            to treat an average average daily flow of 0.9 MGD with aa 1.1 MGD peak flow rate, and discharges to                      to the Piney River Embayment Embayment of Watts Bar Lake. The Spring City plant historically receives              receives approximately 0.26 MGD during the dry hydrological approximately                                      hydrological season with elevated flows of 1.3 MGD resulting as a consequence consequence of rainfall events. Peak flows of 3.5 MGD resulting from large rainfall events have been recordedrecorded at the plant, and are seldom bypassed. These            These peak inflows inflows are diverted diverted to a stormwater stormwater containment system at the plant, resulting in              in sustained elevated inflow rates. The Town of Spring City is presently rehabilitating portions of the collection system to alleviate alleviate sources sources of infiltration/inflow.
infiltration/inflow.
performance of the plant is inhibited by low sewage Optimal performance                                              sewage inflows inflows during dry periods, excessive stormwater infiltration infiltration  and  inflows,  equipment    needs,    and outfall location. As a result of these needs, undesirable undesirable water quality effectseffects  in  the  vicinity of the effluent effluent outfall within the Piney River Embayment Embayment have  have been observed by local    local residents. The  The Department of Environment Tennessee Department              Environment and Conservation Conservation (TDEC) has imposed    imposed a moratorium on new sewer moratorium                        connections until infiltration and inflow needs are addressed. In sewer connections                                                                          In order to address the water quality issues, TDEC is requiring extension of the outfall and approved a grant to the Town of Spring City to move the sewer outfall to a location has approved (Piney River Mile 5.0) where flows and water mixing are greater.
initiated actions to address Spring City has also initiated                    address these needs through improvements improvements in the    the wastewater wastewater    collection  and  treatment    facilities. The  sewer sewer    line  extension    project extension project      is one  part of this overall overall effort. As mentioned earlier, the Town is presently in the process          process of rehabilitating portions of the collection rehabilitating                      collection system to alleviate the source of infiltration and inflow. The biochemical biochemical oxygen demand demand (BOD)          approximately 100 ppm classifies (BOD) of approximately                      classifies thethe sewage influent to the wastewater sewage                    wastewater treatment plant as "low strength" wastewater. Normal influent BOD for domestic wastewater influent                        wastewater is typically approximately approximately 200 ppm. The addition    addition of BOD from the WBN sewage loading would under most circumstances      circumstances contribute contribute higher higher strength wastewater                            operational characteristics wastewater and improve the operational              characteristics of the Spring City Water    Water Treatment plant.
Environmental Report The Environmental      Report (ESC 2003a) and EngineeringEngineering Report (ESC 2003b) for the          the extension project address potential sewer line extension                                                    water.quality potential impacts to water.      quality from the proposed construction activities and the subsequent discharge construction                                          discharge of treated wastewater. An exception to the TDEC moratorium moratorium is being requested requested and local residents want the effluent    effluent outfall moved prior to any new connections connections to the wastewater wastewater treatment plant. As indicated  indicated in  in the referenced    Engineering Report, adding the WBN sewage referenced Engineering                                      sewage flow to the Spring City system could have several benefits benefits to operation of the system:            increased biological system: 1) increased loading loading for the treatment treatment plant; 2) increased increased revenues for system operation and          and maintenance; maintenance;    3)  increased    development increased development          opportunities  along    Highway Highway    68  due  to sewer service; and 4) reduced pollution from existing septic systems that are failing.          failing. Additionally, Additionally, 9
9
 
re-routing WBN domestic wastewater wastewater to the Spring City facility would enable TVA to close the existing WBN treatment treatment plant and eliminate                    discharge location in proximity eliminate a NPDES discharge Chickamauga Reservoir, as well as the associated operation and maintenance to Chickamauga                                                                  maintenance cost from operating operating  an  onsite  wastewater    treatment wastewater treatment        plant. The  new  sewer  lines would not contribute to existing infiltrationlinflow contribute              infiltration/inflow issues because because they would be force mains, ratherrather than gravity sewers. Relocating the effluent outfall is also expected  expected to precede any new sewer connections connections (including TVA), based  based on current                construction periods current plans and construction    periods anticipated for the Spring City projects.
anticipated The extension extension and upgrades upgrades associate associate with the present proposal evaluated evaluated herein, would would allow the Town of Spring City to provide wastewater wastewater treatment treatment services to a portion of Rhea County, south and east of the town, which includes    includes WBN. The capacity of the  the wastewater treatment plant would not be exceeded Spring City wastewater                                          exceeded by the proposed proposed additional 202 residences, the additional additional 10 businesses and the domestic wastewater wastewater of WBN.
WBN. As  As the town grows, an additional additional 1350 1350 residences could be added                            without added to the sewer line without exceeding the existing capacity of the wastewater exceeding                                      wastewater treatment plant. As noted above, the      the improvements      addressing current, intermittent improvements addressing                  intermittent water quality issues associated with operations of the plant will also serve to lessen potential effects  effects on water quality of the the Piney River embayment.
residences and businesses Providing sewer services for residences                businesses dependent upon septic tank treatment systems should reduce the risk groundwater groundwater contamination contamination from leaking septic septic systems and also reduce the risk of untreated untreated sewage sewage being released to surface waters.
As described described above, the margin of available available capacity for the treatment system is already adequate to handle all of the potential additional sewage from the areas in which adequate sewerage is to be extended, or in sewerage                              in which some speculative low to moderate moderate level of growth may be stimulated over time. With implementation implementation of the described actions by Spring City to address operational issues of the wastewater treatment system and addition of BOD from WBN, effluent    characteristics from the treatment effluent characteristics              treatment facility should            improve should actually improve under most circumstances.
circumstances. Therefore, Therefore, either of the action alternatives alternatives should result in insignificant impacts to wastewater insignificant                              management or surface wastewater management              surface waters and are likely to have have beneficial effects.
beneficial  effects.
Wetlands Wetlands A field survey conducted conducted by TVA staff on February 10,      10, 2005 of the proposed sewer sewer line line tie-in route from Watts Bar Nuclear Nuclear plant to Spring City indicated indicated there          wetlands there were no wetlands present          proposed pipeline corridor. At the probable stream crossings identified in present in the proposed                                                                              in the USACOE USACOE letter cited as background background in this document document and those observed observed in the field field survey, the areas are relatively steep and deeply  deeply incised incised with no wetlands present in the  the floodplain areas. Wetland impacts would be insignificant insignificant and no mitigation would be be required.
required. These stream crossings would additionally additionally be regulated through the Tennessee Tennessee ARAP and USACE USACE 404 permitting processes. Any additional  additional requirements placed upon the Town of Spring City would be addressed addressed in those permits.
Floodplains Floodplains The proposed project project involves the construction construction of an underground sewer line from the    the existing Spring City wastewater treatment plant to the Watts Bar Nuclear      Nuclear Plant, pump stations and improvements                          wastewater treatment plant. Construction of the improvements to the existing wastewater                                                  the 10 10
 
underground sewer underground      sewer line would involve work within the 1        100-year                various OO-year floodplain of various streams. Consistent Consistent with Executive Executive Order Order 11988, 11988, an underground underground sewer sewer line is considered considered to be a repetitive action in the floodplain that should  should result in minor floodplain floodplain impacts. As indicated in the ER (ESC (2002a) the original contours    contours and vegetation would  would be restored after installation installation of the sewer lines to protect the flood storage storage capacity capacity of any any affected affected floodplain.
floodplain. Pump stations 1,    1, 2 and 3 would not be located within the 100-year 100-year floodplain.
Based on the Spring City, Tennessee Tennessee Flood Insurance Rate Map, the existing wastewater wastewater treatment                proposed pump station 4, would be located within the limits of the treatment plant and proposed                                                                        the Piney River River 1100-year
                ~O-year floodplain. There is no practicable        alternative to locating the pump practicable alternative                    pump station station in the 1  100-year OO-year floodplain floodplain and upgrading upgrading the existing wastewater wastewater treatment plant because the only other alternative alternative would be to construct a new facility and this would be        be cost prohibitive.
prohibitive. This is also something that Spring City is not planning to do. Information Information provided in in the Engineering Report (ESC 2003b) indicates  indicates that to minimize  adverse minimize adverse impacts, all equipment equipment subject to flood damage                    elevated above or floodproofed damage would be elevated.above            floodproofed to the TVA Flood Risk Profile elevation 747.0. Therefore, Therefore, this portion of the project wouldwould be consistent consistent with Executive Executive Order 11988. If    If any future modifications modifications to the sewer line line extension extension require TVA approval, approval, TVA will review the modifications modifications prior to construction to ensure ensure the flood risk is minimized.
Land UseUse Other than as discussed discussed for wasterwater wasterwater treatment, the only area in which potential indirect indirect or cumulative cumulative effects effects would occur would be to land use along the routes of the        the proposed proposed new sewer sewer lines.
The Town of Spring City has a chartered chartered mandate to provide utilities within Spring City. In        In addition to the sewer line extension to the TVA WBN plant, as part of the use of RUS            RUS funding and overall overall project scope, an additional additional forced main sewer line would be installed installed to further expand expand the collection system in residential residential areas (Figure 1) to provide provide service service to approximately          residences and 10 businesses approximately 202 residences                  businesses currently without sewer services.
Land uses along            proposed sewer along the proposed      sewer line extensions extensions are aa mix of residential, commercial and light industrial, industrial, both within the Town and in the portions situated in Rhea County.
Rhea County has not enacted enacted zoning ordinances; however, the Town of Spring City has.
Official Official  zoning    maps  for the Town indicate that the areas along those portions of the      the sewer sewer line are zoned for Low, Medium and High Density Residential    Residential Uses and Industrial Use, and are adjacent adjacent to Central Business                      General Commercial District zones.
Business District and General The proposed proposed sewer line tie in to WBN is not anticipated anticipated to affect the current current usage of the  the federal land constituting the WBN Plant Reservation.
Reservation.
It is anticipated It    anticipated that similar types of development development would continue to occur along the sewer      sewer line routes following    implementation and that the extension following implementation                      extension of the sewer        might sewer line might stimulate stimulate additional additional growth growth of this kind in the area that could be served                extended served by the extended line. However, no significant significant amounts of land use conversion            development beyond conversion or development      beyond that already already occurring in the area is anticipated anticipated to result from the proposed proposed action.
action. Since Since alternative alternative    domestic    sewage  treatment treatment  options    such  as septic tanks  are allowed,    the the availability availability of sewer service service would not be the primary reason for a family or business to 11 11
 
choose to relocate to Rhea County. Therefore, choose                                      Therefore, completion of this project is not expected to promote promote or increase increase materially population growth beyond what would be expected    expected in the the absence absence of this project. Any derivative derivative socio-economic socio-economic effects would therefore, also be      be insignificant.
Summary Summary of Commitments Commitments and Mitigation Mitigation Measures Measures Dust control measures would be employed during construction to minimize    minimize degradation degradation of air quality by dust.
construction BMPS such as silt barriers would be in place when Standard construction                                                          when working near  near streams streams to prevent erosion erosion and sediment runoff from trenching activities activities and any degradation of water quality. Additional specific measures to protect consequent degradation                                                                  protect water quality may be identified in the TDEC ARAP permit or USACOE 404 permit.
As appropriate appropriate and/or required by TDEC, the sewer lines would be installed through directional directional boring to complete stream crossings required by the proposed  proposed project.
Standard work practices to prevent prevent the accidental deposition of bentonite slurry into    into streams streams would be conducted conducted to preclude preclude adverse adverse water quality impacts during the    the boring process.
process.
As indicated indicated in the ER (ESC (2002a) the original contours contours and vegetation would be      be restored after installation of the sewer lines to protect the flood storage capacity of any affected affected floodplain.
To minimize adverse adverse impacts, all equipment equipment subject to flood damage damage would be  be elevated elevated above or floodproofed to the TVA Flood Risk Profile elevation747.0.
elevation 747.0.
Alternative Preferred Alternative Either of the action alternatives, alternatives, i.e., Alternative Alternative B or C, will meet TVA's TVA's purpose purpose and need.
These two options allow Watts Bar Nuclear Plant to be connected to the Town of Spring            Spring City's Wastewater Wastewater Treatment Plant and provides  provides TVA a cost-effective cost-effective way of meeting meeting thethe sewerage treatment treatment needs needs of the plant. These alternatives alternatives also would enable enable TVA to discontinue discontinue use of the existing WBN Sewage    Sewage Treatment plant and eliminate aa wastewater wastewater discharge point on Chickamauga discharge              Chickamauga Reservoir. They would also provide additional revenue      revenue to Spring City and support support its efforts to improve sewerage treatment treatment capabilities.
A thorough analysis determined determined that the two action      alternatives have action alternatives              insignificant have only insignificant environmental environmental impacts. Based upon final engineeringengineering design, TVA's TVA's preference preference is to use  use either one of the alternatives alternatives or, ifif necessary necessary  based  upon  final engineering  design, engineering design,    a hybrid of the two options that could involveinvolve the sewer sewer line running on one side or the other of the roads for as yet undetermined undetermined portions portions within the reviewed reviewed footprint, to produce produce a single sewer sewer line extension from the existing Spring City sewerage sewerage system system to Watts Bar Nuclear Plant.
Contributors TVA Contributors Robert Bond                                          Operation of WBN Sewage Operation            Sewage Treatment Treatment Facility 12
 
Lonnie Freeman Freeman                                WBN Plant Project Management Management John Higgins                                    Wastewater Wastewater Eric Howard                                    Cultural Cultural Resources Resources Scott Ledford                                  26a Permitting Permitting Issues Issues Roger Roger Milstead Milstead                                Floodplains Floodplains Jerri Phillips                                              Permitting WBN Site Permitting Kim Pilarski Pilarski                                  Wetlands Wetlands Tina Tomaszewski Tomaszewski                              NEPA NEPA Project    Management Project Management Bruce Yeager                                    NEPA NEPA Project    Management (later phases)
Project Management Involvement and Intergovernmental Public Involvement          Intergovernmental Review Review A news release was issued to news media on May 27, 2005 announcing  announcing the availability availability of the DEA and requesting public review and comments comments through July 1, 2005. Copies of the      the DEA were also placed in the local public library of Spring City. TVA received no public  public comments on the DEA.
Persons, agencies agencies and organization organization consulted and coordinated with duringduring the Spring City sewer line extension/lift station ERC ER review are listed in that document document and included included the U.
U. S. Fish and Wildlife Service, Natural Resources      Conservation Service, Tennessee Resources Conservation                Tennessee Historical Commission, Historical                              Department of Environment and Conservation, Commission, Tennessee Department                                Conservation, Southeast Tennessee Southeast    Tennessee Development Development District and the U. U. S. Army Corps of Engineers, Engineers, asas well as the local Spring City government. On January January 27,    2005, representatives 27,2005,    representatives of the the Town of Spring City had also met in public meeting with local citizens, including the Watts  Watts Bar Lake Owners Association, to discuss existing existing issues related to the current operation of the city sewage treatment treatment facility and the potential extension of sewerage sewerage services to representatives participated additional customers. TVA representatives      participated in in this meeting.
References References Phase I1 Archeological AAC. 2002. AA Phase        ArcheologicalSurvey of a Proposed        Spring City Waste Water Proposed Spring Pump    Station Pump Station    at the Intersection Intersection  of State Route  68  and New    Lake  Road in Rhea County, Road            County, Tennessee, August, Tennessee,    August, 2002, Alexander Alexander Archeological Archeological Consultants Consultants ProposedSewer Line Extension ESC. 2003a. Proposed                    Extension for Town of Spring City,      Spring City, City, Spring City, Tennessee, February, 2003. Environmental Tennessee,                      Environmental Systems Corporation, Corporation, Knoxville,    Tennessee Knoxville, Tennessee ESC 2003b. Engineering Engineering Report for Spring Spring City Sewer Line Extension, Extension, February, 2003, Environmental Environmental Systems Corporation, Corporation, Knoxville, Tennessee Tennessee RUS. 2004. Categorical Exclusion for City of Spring City RUS Funding Request, USDA Tennessee Rural Development, January, 2004, Rural Utilities Service Tennessee                                                            Service 13
 
14 Document Type: EA-Administrative      Records EA-Administrative Records Index Field: Finding of No Significant Significant Impact Impact (FONSI)
(FONSI)
Project Name:
Name: WBN to Spring Spring City Sewer Sewer Pipeline Pipeline Project Project Project Number:
Number: 2004-59 2004-59 FINDING OF NO FINDING                  SIGNIFICANT IMPACT NO SIGNIFICANT                  IMPACT TENNESSEE TENNESSEE VALLEY AUTHORITY        AUTHORITY SPRING SPRING CITY TO WATTS BAR NUCLEAR                NUCLEAR PLANT          PLANT SEWER SEWER LINE EXTENSIONEXTENSION Proposed Action and Need    Need The Tennessee Tennessee Valley Authority (TVA) currently operates a sanitary sewage treatment system at the TVA Watts Bar NuclearNuclear Plant (WBN). The existing WBN sewage              sewage treatment plant is 30 years old and is estimated to have    have only 8 t010  toll years of life    life remaining. There There are three potential TVA decisions/actions decisions/actions associated associated with the      the proposed action.
action. First, TVA needs needs to decide whether or not to contract  contract with the Town of Spring City for sanitary sewage sewage treatment treatment services. This will require the construction  construction of a new 7.5 mile sewer sewer line extension to WBN. This will also support Spring City's plan to                      to upgrade its existing wastewater wastewater treatment plant. Second, TVA needs to decide whether or not to grant an easement for construction construction of the sewer sewer line along TVA property      property to the  the WBN facility. Third, based based upon the final technical design design features features of the project, TVA approval may be needed approval            needed under Section 26a of the TVA Act ififthe sewer line extension crosses crosses streams streams inin the area. The attached    Environmental Assessment attached Environmental          Assessment (EA) was          was prepared prepared by TVA and evaluates the potential environmental environmental impacts associated    associated with making these decisions.
 
===Background===
Background Total initial funding for Spring City's sewer line extension extension and wastewater wastewater treatment plant        plant upgrades would be provided by a grant and loan combinationcombination from another    another federal agency, the Rural Rural Utilities Utilities Service Service (RUS)
(RUS) of United States Department Agriculture      Agriculture payback funding would come from sewer user fees and agreements USDA. Loan payback                                                                        agreements with potential large customers such as TVA.
Environmental Systems Corporation Environmental                Corporation (ESC) of Knoxville, Tennessee Tennessee prepared  prepared for the use of the Town of Spring City and RUS, an environmental environmental report (ER) dated February          February 18, 2003, and titled Proposed ProposedSewer Line Extension Extension for Town of Spring  Spring City, City, Spring      City, Spring City, Tennessee. USDA RUS reviewed the proposal Tennessee.                                  proposal for the sewersewer line extension and wastewater wastewater treatment plant upgrade project project from the Town of Spring City and based Environmental Report (ESC 2003a) and Engineering upon the Environmental                                    Engineering Report (ESC 2003b) prepared for them by ESC, developed prepared                        developed and approved approved a Categorical Categorical Exclusion for the            the project (Elam, (Elam, 2004).
TVA independently independently reviewed reviewed the information information and impact analyses              identified in the analyses identified              the referenced Environmental referenced    Environmental and Engineering Reports; and determined  determined that they are adequate. The TVA EA, therefore, incorporated incorporated by reference reference the information information and    and analyses from the ESC reports (ESC 2003a, ESC 2003b), as well as the interagency correspondence and concurrences, and additionally correspondence                                additionally documents TVA's review and consideration of the project consideration            project aspects specific to TVA property property and actions.
 
Alternatives Alternatives TVA considered considered three alternatives; alternatives; the No Action and two Proposed Proposed Action Alternatives.
These alternatives alternatives are the three alternatives considered considered and evaluated in the ESC ER          ER prepared for the Town of Spring City and RUS.
Under the No Action Alternative, Alternative, TVA would continue continue the use of existing WBN domestic domestic wastewater    treatment wastewater treatment        system    and  would  not tie-in to the Spring City sewage sewage treatment system. Under Under the No Action Alternative, Alternative, both TVA WBN domestic domestic wastewater wastewater treatment treatment plant and the Spring City wastewater wastewater treatment plant would continue to        to operate    independently operate independently in      in their currently  permitted  status. TVA  would  not  need  to  grant an easement easement for construction of the proposedproposed sewer line, nor issue a 26a permit(s) for stream crossings.
Under Alternative Alternative B - WBN tie-in to Spring City Wastewater Wastewater Treatment System, Granting  Granting Easement and Issuance of Easement            Issuance of 26a Permit(s) or Letter of No Objection, Objection, TVA WBN would  would discontinue operation of an onsite wastewater wastewater treatment treatment plant and connect connect to the Spring City sewer line extension for handling                    domestic wastewater handling of WBN domestic      wastewater needs through through the  the Spring City treatment treatment plant. This actionaction would involve: 1) entering into contractual arrangements arrangements with the Town of Spring City for sewerage    sewerage services; 2) granting of an easement along TVA property property for the construction of the sewer line to TVA WBN; and 3) depending depending upon final project design, either issuance of a Section      Section 26a permit permit or a letter of objection regarding stream crossings from TVA to the Town of Spring City regarding no objection                                                                                    regarding the proposal. As described described in the EA, the proposed proposed RUS/Spring RUS/Spring City project for the TVA tie-in entails  constructing a 7.5-mile entails constructing        7.5-mile forced main sewer line extension; extension; 4 lift stations; inclusion of tie-ins along the line that could allow additional customers customers (up to 13501350 additional  residences); installation of an additional additional residences);                          additional forced main to further expand expand the the collection collection system in residential residential areas to provide service to approximately approximately 202 existing existing residences and 10 businesses in Spring City, as well as upgrades      upgrades to the current current Spring Spring City wastewater wastewater treatment plant. The sewer    sewer line extension to the WBN domestic domestic wastewater wastewater treatment treatment plant is currently not serviced by a sewerage sewerage system.
Alternative        Installing Sewer Alternative C - Installing      Sewer Line on the Opposite Opposite Side of the Roads, would be the        the same as Alternative Alternative B, B, except that this alternative alternative involved the placement of the sewer line on the north side of Highway 68 and the east side of the WBN site entrance road for the sewer line extension extension to WBN; the east side of New Lake Road in one residential area; area; and within the public right-of-way right-of-way of the remaining remaining residential residential area roads.
Either of the action action alternatives, i.e., Alternative Alternative B or C, will meet TVA's purpose purpose and need. These two options allow Watts Bar Nuclear Plant to be connected        connected to the Town of Spring City's Wastewater Wastewater Treatment Plant and provide  provide TVA a cost-effective cost-effective way of meeting the sewage treatment needs of the plant. These alternatives also would enable                enable TVA to discontinue use of the existing WBN Sewage      Sewage Treatment plant and eliminateeliminate a wastewater      discharge point on Chickamauga wastewater discharge                    Chickamauga Reservoir. They would also provide    provide additional additional revenue to Spring City and support  support its efforts to improve              treatment improve sewage treatment capabilities.
A thorough thorough analysis analysis determined determined that the two action alternatives have only insignificant insignificant environmental impacts. Based upon environmental                          upon final engineering engineering design, TVA's preference preference is to  to use either                alternatives or, ifif necessary either one of the alternatives            necessary based upon upon final engineering engineering design, a hybrid of the two options that could involve the sewer    sewer line running on one side or the    the other of the roads for as yet undetermined undetermined portions within the reviewed footprint, to
 
produce a single single sewer line extension from the existing Spring City sewage system to WBN.
Impacts Assessment Assessment The scope of environmental review encompassedencompassed all aspects aspects of the proposals proposals covered under the description                          Consideration of the potential description of alternatives. Consideration                    potential for environmental impacts from the proposed actionsactions indicated indicated that, with incorporation by referencereference of the the materials from the ESC ER and from the interagency  interagency correspondence correspondence included included therein:
* For vegetation and wildlife, natural areas, protected  protected or sensitive sensitive species, aquatic aquatic ecology, visual aesthetics, cultural resources, groundwater, socio-economicssocio-economics and environmental justice, there was either no, or only minor, potential for even environmental insignificant insignificant impacts from either of the proposed action alternatives. No state or federally listed threatened threatened or endangered endangered species species are known to exist near    near the the proposed proposed project project locations. There would be no impact to Wild and Scenic and recreation recreation rivers, prime farmlands, wildlife refuges, state or city parks, forest lands or trails or cultural resources                    proposed sewer line extension. No resources from the proposed                                        No disproportionately high or adverse human disproportionately                          human health        environmental effects health or environmental        effects on minority minority and low income populations are anticipated  anticipated as a result of the proposed proposed sewer line extension.
    *"  Minor, insignificant, insignificant, short-term short-term effects effects on air quality are expected expected during the  the installation installation of the sewer pipes. Dust control measures  measures would be employed employed during during construction to minimize degradation construction                    degradation of air quality by dust. No long term impacts      impacts anticipated for either action are anticipated                action alternative alternative as a result of construction-related construction-related impacts. While short-term short-term interruptions in traffic flow during construction construction may be    be realized, realized, no long-term impacts              transportation are anticipated. Short-term impacts on transportation insignificant insignificant impacts impacts from noise generated during sewer line installation    installation will also only be temporary; no long-term elevation of noise levels in the affected        affected areas is anticipated to result from the proposed            sewer proposed sewer      line  extension. As  existing existing plant procedures procedures    are  adequate adequate    to  handle    the types  and  volume  of solid    waste generated generated    by decommissioning decommissioning        of  the existing existing  WBN    wastewater wastewater      treatment facility, impacts from disposal disposal activities would be insignificant.
    **  The resource areas areas for which additional additional review was conducted in        in the EA were were wastewater/surface water; wetlands; wastewater/surface                wetlands; floodplains as well as the consideration consideration of the potential for indirect indirect and cumulative effects related to land use and growth.        growth.
commitments identified below and in the Summary of Commitments With the commitments                                                            Commitments and Mitigation  Measures section of the Final EA, impacts to each of these resources Mitigation Measures                                                                        resources determined to be insignificant were also determined                insignificant for either of the action alternatives.
Mitigation The proposed action action contains routine compliance compliance measures including the use of best management management      practices  listed  in the  EA  to minimize environmental environmental impacts. In      In addition, addition, to minimize and mitigate adverse effects, the following special mitigation measures          measures will be followed:
    **  As indicated in the ER (ESC (2002a) the original contours      contours and vegetation would  would be restored after installation installation of the sewer lines lines to protect the flood storage storage capacity capacity of any affected floodplain.
* Based on the Spring City, Tennessee Tennessee Flood Insurance Insurance Rate Map, the existing wastewater wastewater treatment plant and proposed proposed pump station 4, would be located within the limits of the Piney River 1100-year                                practicable OO-year floodplain. There is no practicable alternative to locating locating the pump station in the 100-year 100-year floodplain.
floodplain. To minimize minimize adverse impacts, all equipment subject to flood damage would be elevated    elevated above or floodproofed flood proofed to the TVA Flood Risk Profile elevation 747.0.
Involvement and Intergovernmental Public Involvement            Intergovernmental Review Review A news release was issued to news media on May              27, 2005, announcing the availability May 27,2005, of the DEA and requesting public review and comments comments through July 1, 2005. Copies of the DEA were also placed in    in the local public library of Spring City. TVA received no    no public comments comments on the DEA.
Persons, agencies agencies and organization organization consulted and coordinated with during the Spring    Spring City sewer line extension/lift station ERC ER review are listed in that document and included the U.S.
included      U.S. Fish and Wildlife Service                  Natural Resources Service (USFWS), Natural        Resources Conservation Conservation Service, Tennessee Historical                      Tennessee Department of Environment Historical Commission, Tennessee                          Environment and Conservation, Southeast Southeast Tennessee        Development District and the U.S.
Tennessee Development                          U.S. Army Corps of Engineers, as well as the local local Spring City government.            January 27, government. On January            2005, 27,2005, representatives of the Town of Spring City also met in representatives                                              in public  meeting with local citizens, public meeting including the Watts Bar Lake Owners Owners Association, to discuss existing issues related to      to the current operation operation of the city sewage sewage treatment facility and the proposed extension extension of sewerage services services to additional customers. TVA representatives representatives participated        this partiCipated in this meeting.
meeting.
Findings Conclusion and Findings Environmental Policy and Planning's Environmental                  Planning's National Environmental Policy Act (NEPA)
Administration Administration staff has prepared this subject EA, and determined determined that the potential consequences of TVA's proposed environmental consequences environmental                                proposed Action Alternative of WBN tie-in to    to Wastewater Treatment Spring City Wastewater      Treatment System, Granting Granting of Easement and Issuance Issuance of 26a26a Permit(s) or Letter of No Objection, Objection, would not be significant. This conclusion conclusion takes intointo implementation of the routine, compliance, and special measures account implementation                                                    measures listed in thethe Commitments and Mitigation Measures Measures section of the EA. Therefore, the proposed action is not a major federal action significantly significantly affecting the quality of the environment.
Accordingly,      Environmental Impact Statement is not required. This FONSI is Accordingly, an Environmental contingent upon successful implementation implementation of the commitments listed in      in the Final EA.
Moreover, the SHPO concurs that the proposed proposed undertaking undertaking would not impact historic historic properties, fulfilling TVA's obligations obligations under under Section Section 106 of the National Historic Historic Preservation Act; and USFWS Preservation              USFWS concurs that the requirements requirements of Section Section 7 of the the Endangered Species Endangered    Species Act, as amended, have  have been fulfilled, since there are no records of listed species species within the impact area of the project.
August  22, 2005 August 22,  2005 Jon M.M. Loney, Manager Manager                                                Date Signed NEPA Administration Administration Environmental Policy and Planning Environmental                  Planning Tennessee Valley Authority
 
Federal Federal Register / Vol. 65, No. 88      88// Friday, May 5, 2000  2000//Notices Notices                            26259 26259 A meeting of the IT  ITAC-R AC-R will be held held  Tennessee and Sequoyah Sequoyah Nuclear Plant Plant    direction, contained contained in the 1996 Nuclear Thursday, May 11, 2000, in room 1912,              Units 1 and 2, Hamilton County, County,            Weapons Stockpile Plan and an Weapons                              an at the Department Department of State. The purpose            Tennessee. The TVA Board Board of Directors Directors    accompanying Presidential accompanying      Presidential Decision Decision of the meeting is to provide information information      passed passed a resolution approving approving the                          mandates that new tritium be Directive, mandates Directive, and obtain obtain advice, as appropriate,                interagency  agreement on December interagency agreement        December 15,      available by approximately available      approximately 2005.
concerning the World concerning                                          1999.
1999.                                                  December 1995, In December                    issued a 1995, DOE issued Radiocommunication Conference Radiocommunication          Conference                The environmental environmental impacts of  of            Record of Decision (ROD) (60 FR 63878)
Record underway underway May 8-June 8-June 2, 2000, in  in          producing producing tritium in these reactors as          for the Final Programmatic Programmatic
: Istanbul, Istanbul, Turkey. The department department              well as in TVA's Bellefonte Bellefonte Nuclear Nuclear          Environmental Impact Statement for Environmental                                for apologizes for such short notice apologizes                      notice              Plant Units 1 and 2, Jackson County,            Tritium                  Recycling (DOE/
Tritium Supply and Recycling necessitated necessitated by changes changes in the                  Alabama were were assessed in a 1999 Final        EIS-0161). In this ROD, EIS-0161).            ROD, DOE decided to          to chairman's schedule.
chairman's                                          Environmental Impact Environmental              Statement (EIS)
Impact Statement                pursue a dual-track dual-track approach on the Members of the general general public may          for the Production Production of Tritium Tritium in a            most promising promising tritium-supply attend these meetings. Entrance to the              Commercial Commercial Light Water Reactor (DOE/            alternatives: (1) to initiate purchase purchase of  of Department of State Department        State is controlled;            EIS-0288) prepared by DOE. TVA was EIS-0288)                              was      an existing commercial commercial reactor reactor people intending to attend any of the              a cooperating cooperating agency in the preparation preparation      (operating or partially complete) or        or ITAC.
IT AC. Meetings should should send a fax to            of this EIS. Under 40 CFR 1506.3(c) 1506.3(c) ofof    irradiation services services with with an option to (202) 647-7407 not later than 24 hours              the CEQ regulations, regulations, TVA has                  purchase the reactor for conversion conversion to a before the meeting. This fax should should          independently independently reviewed reviewed the EIS                defense facility; and (2) to design, build, display the name of the meeting and                prepared prepared by DOE and found it to be              and test critical components of an      an date of meeting, your name, social                  adequate adequate and with this notice is                accelerator system accelerator  system for tritium security security number, date of birth, and                adopting adopting the EIS, EIS, including the                production. Under the dual-track dual-track organizational organizational affiliation.
affiliation. One of the          preferred preferred alternative.                          approach described described 'inin the December December following valid photo identifications identifications        FOR FOR FURTHER INFORMATION CONTACT:
CONTACT: Greg Greg  1995 ROD issued by DOE, the agency    agency will be required for admission: U.S.                Askew, P.E., Senior NEPA Specialist,            was to select within within 3 years one of these driver's license, passport, U.S.                    Tennessee Tennessee Valley Authority, 400 West                  technologies as the primary source two technologies Government      identification card. Enter Government identification                          Summit Summit Hill Drive, mail stop WT 8C,              oftritium.
of tritium.
from the C street street lobby; in view of              Knoxville, Tennessee, 37902; telephone telephone requirements, non-government escorting requir~ments,        non-government      865-632-6418; or e-mail 865-632-6418;        e-mail                      Production Productionof  of Tritium Tritium in in aa Commercial Commercial attendees should plan to arrive not less            gaskew@tva.gov.
gaskew@tva.gov.                                  Light Water Water Reactor than 15 minutes before the meeting                                                                      The production SUPPLEMENTARY    INFORMATION:
SUPPLEMENTARY INFORMATION:                                production of tritium in a CLWR  CLWR begins.                                                                                              is technically technically straightforward and    and Dated: May 2.2, 2000.                            Background
 
===Background===
requires no elaborate,      complex elaborate, complex Brian Brian K. Ramsay, Ramsay,                                  DOE's DOE's Mission and the Nation's Nation's Tritium Tritium    engineering development engineering    development and testing Telecommunications Officer.
Telecommunications      Officer, Office of of        Need                                            program. All the Nation's supply of          of MultilateralAffairs.
Multilateral Affairs, U.S.
U.S. Department Department of State.
State.              Department of Energy (DOE)
The U.S. Department                          tritium has been produced produced in reactors.
[FR Doc. 00-11408 00-11408 Filed 5-3-00; 2:45 pm]          is responsible for supplying nuclear nuclear        Most existing    commercial pressurized existing commercial        pressurized BILLING CODE 4710-45-P 4710-45-P                            materials for national security needs needs        water reactors reactors utilize 12-foot-long 12-foot-long rods ensuring that the nuclear and ensuring              nuclear weapons        containing containing an isotope of boron (boron-stockpile remains safe and reliable.            10)
: 10) in ceramic form. These These rods are TENNESSEE VALLEY TENNESSEE        VALLEY AUTHORITY                  Tritium, Tritium, a radioactive isotope of  of            sometimes called burnable absorber sometimes                          absorber hydrogen, is an essential component of    of                            inserted in the reactor rods. The rods are inserted                  reactor Production of Tritium for the United  United      every weapon weapon in the current and                fuel assemblies to absorb excess excess Department of Energy, Rhea States Department                      Rhea        projected U.S. nuclear weapons                  neutrons produced by the uranium fuel neutrons and Hamilton Counties, TN      TN                  stockpile. Unlike Unlike other nuclear nuclear              in the fission process process for the purpose of        of materials used in nuclear weapons,              controlling power controlling    power in the core at the  the Tennessee Valley AGENCY: Tennessee        Valley Authority tritium decays at a rate of 5.5 5.5 percent        beginning of an operating operating cycle.
(TVA).
ACTION: Issuance                                    per year, Accordingly, Accordingly. as long as the              DOE's tritium program has developeddeveloped Issuance of Record of Decision Decision                                                      another and Adoption of Final Environmental Environmental          Nation relies on a nuclear deterrent, the        another type of burnable burnable absorber rod in of  tritium in each nuclear weapon must be      be  which neutrons are absorbed absorbed by a Impact Statement for the Production of                                                              lithium aluminate Tritium                                            replenished periodically.
replenished  periodically. At present, the                aluminate ceramic rather than Tritium in a Commercial Commercial Light Water  Water                                                                                                        of U.S. nuclear weapons complex complex does not      boron ceramic. While the two types of Reactor (CLWR) prepared by the U.S.                                                                  rods function in a very similar manner Department of Energy (DOE).                        have the capability to produce produce the amounts of tritium that will be required required    to absorb excess neutrons neutrons in the reactor reactor
 
==SUMMARY==
: This Record of Decision
 
==SUMMARY==
:                        Decision          to support the Nation's current and and          core, core, there is one one notable notable difference:
(ROD) is provided in accordance accordance with          future nuclear nuclear weapons weapons stockpile.              When neutrons strike the lithium When the Council on Environmental Environmental Quality              In recent years, international international arms          aluminate aluminate ceramic material in a tritium (CEQ) regulations regulations found at 40 CFR parts          control agreements agreements have have caused caused the U.S. producing producing burnable burnable absorber rod 1500 to 1508 and TVA procedures 1500                          procedures            nuclear nuclear weapons stockpile to be                  (TPBAR), tritium is produced.
produced. This implementing the National implementing          National                    reduced in size. Reducing the stockpile stockpile    tritium is captured almost Environmental Policy Act.
Environmental                                      has allowed DOE to recycle recycle the tritium tritium    instantaneously instantaneously in aa solid zirconium TVA has decided to enter into an      an        removed from dismantled weaponsweapons for      material material in the rod, called called a "getter."
                                                                                                                                          "getter."
interagency agreement interagency    agreement with with DOE under        use in supporting the remaining remaining              The solid material material that captures captures the The Economy Economy Act (31  (31 U.S.C. 1535) to        stockpile. However, due to the decay of    of  tritium as it is produced produced in the rod is so provide irradiation irradiation services for  for            tritium, the current current inventory inventory of tritium      effective effective that the rod will have to be producing tritium in TVA light water producing                                          will not meet national security                  heated heated in a vacuum vacuum at much higher reactors. These reactors are Watts Bar              requirements past requirements    past approximately approximately 2005.        temperatures temperatures than normally occur    occur in the Nuclear Plant Plant Unit Unit 1, Rhea County, County,          Therefore, the most recent Therefore,                    Presidential recent Presidential      operation operation of a light water reactorreactor to
 
26260 26260                              Federal Register/Vol.
Federal      Register/Vol. 65,  65, No. 88/Friday, May 5,                5, 2000/Notices extract the tritium for eventual eventual use in        Nuclear Plant with Watts Bar Nuclear      Nuclear        TPBARs from the reactor reactor to the DOE the nuclear weapons stockpile.                      Plant Plant Unit 1 as a backup facility. This                    Savannah River Site for processing Savannah                      processing is These TPBARs would be placed in the              proposal is referred to as the BellefonteBellefonte        also a part of each each alternative.
same locations locations in the reactor core as the        Revenue Revenue Sharing Offer.                                        TVA's No Action alternative alternative to the standard burnable burnable absorber absorber rods. There            (2)    commercial proposal (2) A commercial        proposal responsive          use of CL CLWRs WRs for tritium triti um production production is is no fissile material (uranium or      or          to the RFP to provide irradiation irradiation                the continued operation of Watts Bar      Bar plutonium) in the TPBARs.TPBARs. Depending Depending      services services using Watts Bar Unit 1. This          This        Unit 1 and Sequoyah Units 1 and 2 and        and upon tritium needs, up to as many as                proposal proposal is referred referred to as the Watts Bar                  deferral of construction activities the deferral 2,400 TPBARs TPBARs could could be placed in a                            Services Offer.
Irradiation Services                                      necessary for completion necessary        completion of Bellefonte CLWR for irradiation.                                    On November 16,1998,16, 1998, DOE                      units 1 and 2 as nuclear units.
requested requested TVA to revise and resubmit a TVA's    National Defense Role TVA's National                                      stand alone alone proposal for the purchasepurchase of    of  PreferencesAmong Alternatives Preferences              Alternatives TVA has a history of supporting                    irradiation services irradiation    services from TVA'sTVA's                            considerations included DOE's considerations        included a national defense programs.
programs. The                  operating plants at Watts Bar and operating                                and              desire desire for low capital capital cost (low first preamble to the TVA Act of 1933      1933            Sequoyah. On December 8,              1998, TVA 8,1998,    TVA        cost). Also, there is uncertainty          DOE's uncertainty in DOE's identifies national defense as one of the submitted a revised Watts Bar Nuclear                  Nuclear        long-term long-term tritium production production purposes for its enactment. Further, the              Plant/Sequoyah Nuclear Plant Services PlantiSequoyah                              Services      requirement with pending ratification of        of TVA Act in Sections 15(h) and 31                      Offer as a commercial proposal proposal for              the Strategic          Reduction Treaty Strategic Arms Reduction declares that the Act should be liberally declares                                              irradiation services liberally irradiation        services using Watts Bar Unit    Unit    (START II) by Russia and potential potential construed to aid TVA in discharging discharging its      1 and one unit at Sequoyah Sequoyah for backup backup        future treaty negotiations. These factors responsibilities for the advancement advancement of    of  and surge production capacity.                            favored selection selection of a flexible approach approach national defense and other statutory                    On December 22, 1998, Energy    Energy                not requiring an immediate major  major purposes. In compliance compliance with that                Secretary Bill Richardson announced Secretary                            announced            commitment commitment of resources resources by DOE such  such Congressional mandate, TVA has                      that tritium production in one or more                    as would be required required for completion of      of supported the Nation's Nation's defense efforts        CLWRs would be the primary    primary tritium            Bellefonte Bellefonte Nuclear PlantPlant Unit 1.
on numerous occasions.                              supply technology technology and that the                        Therefore, Therefore, DOE's preferred preferred alternative TVA constructed hydroelectric                      accelerator would be developed, but not hydroelectric plants accelerator                                                    was the combination combination of existing existing reactors in record time to supply supply electric    power electric power      constructed, as a backup to CLWR      CLWR                at Watts Bar and Sequoyah Sequoyah Nuclear Nuclear to key defense defense industries industries during    World during World      tritium production. Secretary                              Plants.
War II including aluminum aluminum production production      Richardson further stated that the Watts Sequoyah reactors had been Bar and Sequoyah                                          Environmental Environmental and Other and Manhattan Manhattan Project Project activities at Oak designated designated as the preferred preferred alternative            Considerations Considerations of      the Decision ofthe  Decision Ridge, Tennessee. TVA produced  produced phosphorus and ammonium nitrate      nitrate for    for CLWR tritium production. At the            the        Environmental Considerations Environmental      Considerations explosives and munitions munitions during      World during World      same time, Secretary Secretary Richardson also The EIS considered two War II and the Korean conflict. From    From        requested that TVA negotiate negotiate an  an interagency agreement                                    environmentally-distinct environmentally-distinct sets of      of 1952 to 1957, TVA, under an agreement  agreement      interagency      agreement under the alternatives:  (1) Alternatives alternatives: (1)  Alternatives involving with the Department Department of the Army,                Economy Act for irradiation irradiation services services the use of only existing existing operating operated and maintained maintained the Phosphate          using Watts Bar Unit 1 and one unit at            at reactors at Watts Bar and Sequoyah Sequoyah Development Works (PDW) complex      complex at      Sequoyah.                                                Nuclear Nuclear Plants, and (2)  (2) alternatives that which various phosphorus based      based            Alternatives Considered                                  included included the completion completion and startup of      of chemical agents were produced. From        From                                                                the unfinished    Bellefonte Nuclear Plant Plant TVA submitted submitted the only responsive                        unfinished Bellefonte 1985 to 1988, under 1985                under a contract contract with the proposal proposal to DOE's RFP as part of the                      Unit 1 or Units 1 and 2.
Department of Defense, the PDW was          was                                                                    Described below are the relative relative refurbished to process and purify the refurbished                                          procurement procurement processprocess described described above.
As a result, the following five TVA                      differences in environmental environmental impacts Department of Defense's remaining                                                                              between between tritium production production in operating stock of methyl phosphonic phosphonic dichloride,          reactors were the only reactors considered considered in developing alternatives.                    CLWRs CLWRs (Watts Bar Unit 1 and Sequoyah  Sequoyah a chemical agent component. TVA                                                                                Units 1 and 2 are used in the analysis) continues to support support defense missions            "
* Watts Bar Nuclear Plant Unit 1, Rhea          Rhea County, Tennessee                                      and an incomplete incomplete CLWR (Bellefonte today with the cleanup cleanup of chemical chemical and                                                                Unit 1).
1). For an incomplete incomplete CLWR, the munitions production production and storage sites          "  Sequoyah Nuclear Plant
* Sequoyah                  Plant Units 1 and  and 2, Hamilton Hamilton County, Tennessee, and          and      environmental analysis analysis attributes all of as well as stabilization or disposal of      of                                                                the impacts from completing completing surplus chemical chemical weapons stockpiles.              "  Bellefonte Nuclear Plant Units 1 and
* Bellefonte                                    and 2, Jackson Jackson County, Alabama.                          construction and operating operating the plant to ProcurementProcess The Procurement        Process                          One or more of these reactors reactors could be        the tritium production mission.
The DOE issued a request for proposal used to produce        produce the tritium necessary to              Construction Impacts RFP DE-RP02-97DP00414 DE-RP02-97DP00414 on June 3,                  meet meet national security requirements.
Therefore,                                                  For tritium production in aa CLWR, 1997 to all nuclear utilities to obtain a            Therefore, scenarios scenarios comprising various  various combinations                                              construction impacts construction    impacts would range from fixed price bid for irradiation irradiation services        combinations of the five TVA reactors      reactors with an option to lease                              were considered considered reasonable          alternatives      none (for operating operating CLWRs) to minor lease or purchase a                                  reasonable alternatives (for a CLWR which is currently currently facility, if necessary, in one or more                the impacts of which were addressed  addressed in approximately 90 percent complete, and commercial light water reactors. TVA commercial                                TVA        the EIS. The transportation of irradiated  irradiated    would would only require internal internal responded responded to the RFP on September 15,          15, Economy    Act is a Federal Federal law law that allows two                                    predominant modifications). The predominant 1997 with 2 offers:                                  Economy Act (1) An Economy Economy Act Proposal Proposal' 1 for        government  agencies to government agencies    to enter into an enter into an interagency interagency      construction impact associated with an        an completion                                            agreement agreement similar to the contractual agreement that      incomplete CLWR would be on          on completion of one unit at the Bellefonte a Federal      Federal agency agency would    enter with a non-Federal would enter          non-Federal      socioeconomics, as approximately approximately 4,500 socioeconomics, party through the competitive procurement process.
1 1 Because Because both  TVA both TV  A and and DOE DOE are  Federal are Federal          The Federal procurement procurement process for the CLWR direct jobs and 4,500 indirect jobs could    could agencies, an interagency agencies. an  interagency agreement  may be agreement may  be reached reached  program explicitly allows for an interagency interagency            be created created during the peak year of      of via the Economy Act (31 U.S.C. 1535).
1535). The          agreement agreement via the Economy Economy Act.                          construction. The creation creation ofof
 
Federal Register/Vol.
Register/Vol. 65, No. 88/Friday, May 5,                      5, 2000/Notices 2000/Notices                            26261 approximately 9,000 total jobs would approximately                        would                          approximately zero (0) range from approximately                (0) to 60      would would have the smallest smallest impact to to have a significant positive impact impact on thethe spent fuel assemblies per cycle      cycle                  workers.
workers.
economic economic area surrounding the                        depending on the number of TPBARs depending                            TPBARs                      Health (Accidents)
Human Health incomplete reactor. By contrast, incomplete                  contrast, use ofof      loaded. The environmental loaded.        environmental impacts an existing CLCLWR WR would have no                    associated with long-term, on-site, dry-associated                                                The CLWR EIS provides a detailed detailed socioeconomic impacts. For all socioeconomic                      all                cask storage of spent fuel are not cask                                                    evaluation of impacts from accidents accidents on on environmental impacts significant.
alternatives, the environmental alternatives,                                        significant. For an incomplete incomplete CLWR,              a site-specific site-specific basis for the CLWR CLWR associated with construction associated        construction are                  approximately approximately 72 spent fuel assemblies                  reactor reactor alternatives.
alternatives. The CLWR EIS EIS considered considered small.                                    would be generated generated during reactor                  documents that the potential potential impacts operations operations    without tritium production.              from tritium production on accident accident Operating Operating  Impacts      .                                                                                    impacts is small. For design-basis design-basis Increases in spent fuel could range from Increases                                    from For an operating CLWR, there would  would        zero (0) to approximately zero          approximately 69 additional              accidents at operating operating reactors, the risk either either be no impacts, or negligible negligible            spent fuel assemblies depending spent                        depending on the          of a latent cancer cancer fatality to an average
: impacts, impacts, to resources resources such as: land,                number of TPBARs number        TPBARs loaded. In this                    individual from tritium production production in infrastructure, infrastructure, noise, visual, air quality,          regard, it is DOE's intention to minimize regard,                                                the 50-mile population population surrounding surrounding a water resources (use and quality).
quality),            the generation of additional additional spent fuel          CLWR would be approximately approximately 1 in 480 480 geology and soils, archeological archeological and and              limiting the number of TPBARs by limiting                                            million years. At the incomplete reactor reactor historic, and socioeconomics.
socioeconomics. Tritium              inserted in a single reactor. Thus, inserted                                                site, this risk would be approximately approximately 1 production production could cause additional additional                                        completed reactor operation of a newly completed operation                                              in 1.3 billion years. For beyond beyond design-impacts in the following following resources:                would generate the most spent fuel; by                  basis basis accidents, tritium production production spent fuel generation; generation; human health              . contrast, use of currently operating operating              would result in very small changes in (normal operations operations and accidents);
accidents); low- reactors reactors could lead to a limited                            consequences of an accident. This is the consequences radioactive waste level radioactive    waste (LLW)                                      increase in spent fuel.
incremental increase incremental                                            due to the fact that the potential generation; generation; and transportation.
transportation.                                                                            consequences of such an accident consequences                accident For the alternative alternative that would would                Human Human    Health    (Normal Operations)                would be dominated by radionuclides radionuclides complete, start up, and operate an    an                By adding tritium production to the                  other than tritium. At the operating incomplete reactor, the operating                    currently operating operating reactors, there                  reactors, the additional risks to the 50-impacts include include those impacts                      would be additional radiation doses to would                                                  mile population from adding tritium associated associated with a new commercial commercial                workers production would production    would be less than one one workers and the public public from tritium nuclear nuclear power plant. The following                                                                            additional cancer cancer per every 7,100 years production. The incremental production.            incremental increase in resources resources would be affected:                          annual average annual    average worker worker dose dose is estimated estimated      from a beyond design-basis accident. At      At infrastructure (including visual infrastructure                                                                                                    incomplete reactor site, the total risk the incomplete at approximately approximately 1.1    1.1 millirem,    while the millirem, while resources);
resources); water water resources; spent fuel                                                                      of the new reactor and the added tritium ofthe
                                                  .'total total population dose within 50 miles is          is generation; generation; human healthhealth (normal                estimated to increase increase by approximately approximately          mission to the 50-mile population population operations operations and accidents); LLW  LLW 2.0 person-rem person-rem per  per year during normal            would be approximately 1 latent cancer cancer generation; transportation; generation;  transportation; and                                                                            fatalities per 5,500 years from a beyond beyond operations. In termsterms of potential socioeconomics.
socioeconomics.                                                                                              design-basis accident. The risks design-basis impacts, these these values are not significant.
associated associated with accidents are small for  for Infrastructure                                        For example, a 2.0 person-rem dose      dose translates into a latent cancer translates                    cancer fatality          all the CLWR tritium production of tritium in an The production oftritium            an                                                                    alternatives.
operating CLWR CLWR would have no impact                                                          average risk of 1I in 1,000 years. For the average on the local infrastructure. The impacts              worker, worker,    aLl a 1.1  millirem millirem    annual    dose            Low-Level Radioactive Low-Level    Radioactive Wastes translates translates to a risk to thatthat worker worker of a of operating a newly completed completed reactor reactor                                                                  Low level waste (LLW) generation at      at would produce produce more than 1,200                      latent cancer fatality every 2.3 million                the operating reactors could could increase increase by megawatts of usable electric power. In                years.                                                  0.43 cubic cubic meters meters annually as a result of  of an area such as the Tennessee Valley, Valley,            By finishing the incomplete          reactor incomplete reactor            tritium production.
production. TVA maymay store store this this beneficial beneficial impact impact would tend to                and operating operating it to produce electricity              LLW onsite for the life of the plant. The reduce the need for operation of coal-                and tritium, there would would be radiation                      completed reactor would newly completed fired or gas-fired power plants, or could could      doses to workers and the public that do        do                  approximately 40 cubic meters generate approximately offset the need for additional additional power                    currently occur. The average not currently                  average annual          of LLW annually which may also be plants in the future, potentially                    worker dose is estimated estimated at aa maximum maximum          stored onsite for the life of the plant.
emissions. Although of approximately reducing future air emissions.                          approximately 105 millirem, of which      which      Although all of the waste    generation waste generation surrounding the visual resources surrounding                          104 millirem would result from    from                impacts        acceptable, the use of impact~ are acceptable,              of incomplete reactor site would be                      operation of the reactor to produce operation                        produce              currently currently operating reactors would would negatively impacted impacted by aa cooling tower            electricity, and 1.1 millirem would be                  generate the smallest amount of low-plume, this is not significant enough to              from tritium operations.
operations. The annual                level wastes from tritium tritium production.
change the plant's existing visual                    total population dose within 50 miles is                For all alternatives, alternatives, the environmental environmental resource classification.                              estimated to be a maximum of estimated                            of                impacts of all waste types, including approximately 2.3 person-rem. In terms approximately                                          low-level low-level waste would be small and Spent Fuel                                            of potential impacts, these values are                  manageable manageable with existing facilities.
The operating operating reactors considered considered            not significant. For example, example, a 2.3 2.3 here each each contain 193 fuel assemblies.              person-rem dose person-rem      dose translates into a latent          Socioeconomics Socioeconomics At each refueling refueling a percentage percentage of these          cancer fatality risk of 1 in 870 years. years. A          Little or no socioeconomic socioeconomic impact is assemblies are removed removed from the reactor reactor 105 millirem annual    annual dose translates translates to        expected expected by adding the tritium and placed in the reactor's reactor's spent fuel            a risk to an average worker worker of a latent            production production mission at an operating storage pool. The number number of assemblies            cancer fatality everyevery 23,000 23,000 years.              CLWR. Operation Operation of a newly completed completed of spent fuel generated generated by an existing              Radiological impacts for normal Radiological                                            CLWR would add approximately approximately 800 800 reactor could increase as a result of    of          operations are considered considered small for all  all      direct and 800 indirect jobs. The tritium production. Increases Increases could could            alternatives. Use of an operating CLWR alternatives.                              CLWR        socioeconomic socioeconomic impacts of the 1,600 1,600
 
26262                          Federal Register / Vol. 65, No. 88/          88 / Friday, May 5,      5, 2000/
2000 / Notices total jobs jobs would would have a positive positive impact impact        production. TVA expects expj'lcts that NRC            Identification Identification of Trade Expansion Expansion on the economic areaarea surrounding surrounding the the        would be in a position to act upon the              Priorities Pursuant to Executive        Order Executive Order reactor site. Operation reactor        Operation of a newly                amendment amendment requests requests well in advance advance of        13116 April 30, 2000 completed reactor completed    reactor would have the                the planned October October 2003 start of  of              The United States Trade greatest positive socioeconomic greatest            socioeconomic                    irradiation.
irradiation.                                        Representative (USTR) submits to Representative while use of currently impacts, while            currently                  Environmentally      PreferableAlternative                                    "Super 301" Congress this year's "Super        301" report Environmentally Preferable        Alternative operating CLWRs CLWRs to produce produce tritium                                                                  pursuant to Executive Order 13116 of        of would involve would    involve insignificant                          The alternatives involving the                    March 31,    1999. The Executive Order 31, 1999.
socioeconomic impacts.
socioeconomic                                        completion completion and operation of one or both directs the USTR to review U.S. trade Transportation Transportation                                      of the Bellefonte Bellefonte units would cause                expansion priorities priorities and identify greater  environmental impacts than the greater environmental                                priority foreign country practices, the There will be impacts impacts associated with          alternatives alternatives using existing operating                elimination of which is likely to have transporting irradiated TPBARs transporting              TPBARs from the          reactors reactors at Watts Bar and Sequoyah.
Sequoyah.            the most significant significant potential to increase reactor sites to the Tritium Extraction reactor                        Extraction          This greater greater impact of alternatives alternatives using United States exports, either directly    directly or or Savannah River Facility (TEF) at the Savannah Facility                            River            the Bellefonte Bellefonte reactors would resultresult          through the establishment establishment of a Site (SRS). There would would be up to                . from their construction and operation as beneficial  beneficial precedent. This report builds approximately 13 shipments of TPBARs approximately                                        nuclear units which would be made                    on the 2000 National Trade Estimate annually to SRS which would result in annually                                    in      possible by their concurrent concurrent use for              (NTE) Report on Foreign Trade Barriers annual human an annual    human health risk, over the            tritium tritium production. Based Based on these these            (released on March March 31, 31, 2000) and entire route of the shipments, of less less          additional impacts that would be caused complements                        "Special 301" complements the "Special          301" than 1 latent cancer fatality every every              by completing completing and operating the                    (intellectual (intellectual property rights) and "Title "Title 100,000 years. The impact on anyoneany one          Bellefonte Bellefonte units, TVA considers the use VII"        VII" (government procurement) procurement) reports.
individual would be less than that. All    All      of the Watts Bar and Sequoyah ofthe                    Sequoyah reactors              The USTR prepared prepared this report report in transportation impacts the transportation    impacts are                - for tritium production production as the                      close consultation consultation with other U.S.
negligible.                                          environmentally preferable environmentally      preferable alternative.        Government agencies. After reviewing Government environmental commitments No environmental      commitments or    or Dated: April 24, 2000.                            the 2000 Trade Trade Policy Agenda, Agenda, the 20002000 mitigation were identified for the                                                                        NTE Report, public comments preferred alternative.                              John A. Scalice,                                                              comments preferred  alternative. AA substantial                                                                  submitted to USTR, Nuclear Officer and Chief Nuclear          andExecutive Vice            submitted        USTR, and information information radiological monitoring radiological    monitoring program for  for President.
President.                                          received from U.S. Embassies Embassies abroad, public exposure exposure and all environmental environmental these agencies agencies have identified the media (air, (air, water and land) is an an                [FR Doc. 00-11222 Filed 5-4-00; 8:45 am]
BILLING CODE 8120-08-U Administration's Administration's      top U.S. trade established component of existing                                8120-08-U expansion expansion priorities priorities for 2000. USTR has operations at the Watts Bar and                                                                          also determined that a number of      of Sequoyah Nuclear Nuclear Plants. This existing countries countries have failed to fully implement implement program will identify any increases in                                                                    certain                  commitments and, OFFICE OF THE UNITED STATES    STATES              certain multilateral commitments radiological releases and impacts impacts that that                                                            accordingly, REPRESENTATIVE TRADE REPRESENTATIVE                                accordingly, has decided to pursue may result from tritium production.
production.                                                                  enforcement enforcement action in the World Trade    Trade Other Other Considerations Considerations                              Report on Trade Expansion PrioritiesPriorities      Organization Organization (WTO). Finally, although Pursuant to Executive Executive Order      13116 Order 13116            USTR is not identifying any "priority "priority TVA's Support of National Defense Defense 301")
("SUPER 301")                                        foreign country practice" practice" in this Report, TVA's decision to produce the                                                                          the Administration Administration has focused on a AGENCY: Office of the United States Nation's tritium on an "at    cost" basis "at cost"                AGENCY: Office of the United States                  number of practices practices which may warrant under an Economy Economy Act agreement agreement                        Representative.
Trade Representative.                                future enforcement enforcement action.
reflects TVA's continuing willingness to ACTION: Notice.
ACTION:                                              I. Trade Expansion Priorities Priorities for 2000 2000 support the national defense. TVA'sTVA's historic and contemporary contemporary defense roles                                                                  Over  the past eight years, this United States Trade
 
==SUMMARY==
: The United
 
==SUMMARY==
:                          Trad'e            Administration are described described above under under TVA's TVA's                Representative (USTR) is providing                  Administration has promoted promoted a strong Representative                                      trade policy premised National National Defense Role. Both alternatives                                                                                  premised on open markets notice that it submitted submitted the report on    on and the rule of law. The would further TVA's commitment to U.S. trade expansion priorities priorities                Administration's national defense by producing producing the                                                                    Administration's trade policy published herein to the Committee on        on      achievements requisite quantities of tritium.                                                                          achievements have contributed contributed to strong Finance of the United StatesStates Senate Senate and economic economic      growth,  rising living Regulatory and Licensing Licensing Issues                  Committee Committee on Ways and Means of the standards, increased investment, and The Bellefonte                                    United United States House of Representatives Representatives Bellefonte alternatives alternatives would would                                                                  industrial growth. Looking Looking forward, have to be licensed as a new nuclear                pursuant pursuant to the provisions (commonly                further expansion expansion    of trade will remain remain power plant. The plant's plant's initial NRC            referred to as "Super "Super 301 301")") set forth inin crucial crucial to continued continued growth and operating license would also permit permit            Executive Order No. 13116 13116 of March March 31, 31, operating                                                                                                technological technological progress. In this regard, 1999.
1999.
tritium production. Since Since the process process is  is                                                        USTR USTR identifies below its top trade likely to take 5 years, the Bellefonte Bellefonte            DATES:
DATES: The report was  was submitted submitted on  on        expansion expansion priorities for 2000.
alternative            potential to impact alternative has the potential        impact          May 1, 2000.                                        A.
A. Complete China's China's Accession to the the project schedule but would not                  FOR FURTHER FURTHER INFORMATION INFORMATION CONTACT:
CONTACT:            WTO affect the national security because                Demetrios Marantis, Associate General initial initial tritium production could      begin could begin                                                General            This year's top trade expansion expansion with the Watts Bar reactor.                          Counsel, Office of the U.S. Trade Counsel,                                            priority priority  is to complete complete    China's accession accession Representative, Representative, 600 17th 17th Street, NW, For the alternatives alternatives using existing                                                                  to the WTO and securesecure approval of  of Washington, Washington,    DC  20508,  202-395-9626.
202-395-9626.
CLWRs, NRC would have to amend the CLWRs,                                                                                                    permanent Normal Trade  Trade Relations Relations operating    licenses of the Watts Bar and operating licenses                                                      INFORMATION: The text of SUPPLEMENTARY INFORMATION:
SUPPLEMENTARY                                    of  (NTR) status for China. The economic economic Sequoyah reactors Sequoyah    reactors to permit tritium              the USTR report is as follows.                        liberalization and opening to the world  world
 
3 COVER SHEET  SHEET Responsible Agency:          United States Department Department of Energy Cooperating Cooperating Agency:          Tennessee Valley Authority
 
==Title:==
Final Environmental Environmental Impact    Statement for the Production Impact Statement          Production of Tritium Tritium in a Commercial Commercial Light Water Reactor
 
==Contact:==
Contact:        For additional additional information                Environmental Impact Statement, write or call:
information on this Final Environmental Jay Rose Office            Programs Office of Defense Programs U.S. Department of Energy Energy 1000 Independence Independence Avenue, SW  SW Washington, Washington,  DC  20585 Attention:
Attention: CLWR CLWR EIS Telephone:
Telephone: (202) 586-5484 586-5484 For copies copies of the CLWR Final EIS call: 1-800-332-0801 For general information on the DOE National Environmental Environmental Policy Act (NEPA) process, write or call:
Carol M. Borgstrom, Director Office of NEPA Policy and Assistance (EH-42)
Office ofNEPA U.S. Department of Energy 1000 1000 Independence Independence Avenue, A venue, SW SW Washington, Washington,  DC  20585 Telephone:
Telephone: (202)
(202) 586-4600, or leave a message at: (800) (800) 472-2756 472-2756 Abstract:
Abstract: The U.S. Department Department of Energy (DOE) is responsible for providing the nation with nuclear nuclear weapons and ensuring that these weapons weapons remain safe and reliable. Tritium, a radioactive isotope of hydrogen, is an essential component component of every weapon in the current current and projected projected U.S. nuclear weapons stockpile.
stockpile. Unlike other materials materials utilized in nuclear weapons, tritium decays decays at a rate of 5.5 percent percent per year. Accordingly, as long as the nation relies on a nuclear deterrent, the tritium in each nuclear weapon must be replenished periodically. Currently Currently the U.S. nuclear weapons weapons complex does not have the capability capability to produce the amounts of tritium that tn'at will be required to continue continue supporting supporting the nation's stockpile. The Final  Final Programmatic Programmatic Environmental Impact Statement for Tritium Supply and Recycling Recycling  (Final  Programmatic Programmatic    EIS), DOEIEIS-O    161, DOE/EIS-0161, issued in October 1995, 1995, evaluated evaluated the alternatives for the siting, construction, construction, and operation of tritium supply and recycling facilities at five DOE sites for four different production production technologies.
technologies. This Programmatic Programmatic EIS also evaluated evaluated the impacts of using a commercial commercial light water reactor reactor (CLWR)
(CLWR) without specifying a reactor reactor location.      In the Record of Decision Decision for the Final Programmatic Programmatic EIS (60  (60 FR 63878), issued  issued December 12,      1995, DOE decided to pursue a dual-track approach 12, 1995,                                        approach on the two most promising promising tritium supply supply alternatives:
alternatives: (1) to initiate purchase purchase of an existing commercial commercial reactor (operating or partially      complete) or partially complete) reactor irradiation services; and (2) to design, build, and test critical components components of an accelerator system for tritium production.
production. At that time, DOE announced that the final decision decision would be made by the Secretary        of Secretary of Energy at the end of 1998.
iii
 
FinalEnvironmental Final Environmental Impact Impact Statement [Or for the Production Productiono(Tritium of Tritium in a Commercial CommercialLight Water Water Reactor On  December 22, On December      22, 1998,  Secretary of 1998, Secretary    of Energy Energy Bill    Richardson announced Bill Richardson      announced that    the CLWR that the  CLWR would        be DOE's would be  DOE's primary option for tritium production, and the proposed proposed linear      accelerator at the Savannah River Site would linear accelerator be the back-up back-up option. The Secretary                            Tennessee Valley Authority's (TVA)
Secretary designated the Tennessee                                    (TV A) Watts Bar and Sequoyah Nuclear Sequoyah    Nuclear Plants as  as' the Preferred Preferred Alternative for CLWR    CLWR tritium production. The Secretary's  Secretary's announcement that the CLWR announcement              CLWR would be the primary tritium supply technology      technology reaffirms reaffirms the 1995 Record Record ofof Decision for the Final Programmatic Programmatic EIS to construct construct and operate a new tritium extraction            capability at the extraction capability Savannah River Savannah  River Site.                                    .
EnvironmentalImpact This Environmental              Statementfor the Production Impact Statement/or                            of Tritium in aa Commercial Production o/Tritium              Commercial Light Water  Water Reactor (CLWR (CL WR EIS)
EIS) evaluates        environmental impacts associated with producing tritium at one or more of the evaluates the environmental following five CLWRs:
CLWRs: (1) Watts Bar NuclearNuclear Plant Unit 1 (Spring City, Tennessee);
Tennessee); (2)(2) Sequoyah Sequoyah Nuclear Nuclear Plant Unit 1I (Soddy Daisy, Tennessee); (3)      (3) Sequoyah Sequoyah Nuclear Plant Unit 2 (Soddy Daisy, Tennessee);
(4) Bellefonte Bellefonte Nuclear Plant Unit 1 (Hollywood, Alabama);      Alabama); and (5) Bellefonte Bellefonte Nuclear Plant Unit 2 (Hollywood, Alabama). Specifically, this EIS analyzes the potential environmental    environmental impacts impacts associated with fabricating tritium-producing tritium-producing burnable burnable absorber rods (TPBARs); transportingtransporting nonirradiated nonirradiated TPBARs TPBARs from the TPBARs in the reactors; and transporting fabrication facility to the reactor sites; irradiating TPBARs                              transporting irradiated TPBARs from the reactors to the proposed tritium extraction extraction facility at the Savannah Savannah River Site in South Carolina.
The public comment period on the CLWR Draft EIS extended      extended from August 28 to October October 27, 1998. During the comment period, public public hearings were held in North Augusta, South Carolina; Rainsville,                  Alabama; and Rainsville, Alabama;      and Evensville, Tennessee.
Tennessee.        An additional public meeting  meeting was held in Evensville,  Evensville, Tennessee, on Deceinber December 14, 1998. The CLWR Draft EIS was made available            available through mailings and requests to DOE's    DOE's CLWR Office and at DOE's  DOE's Public Reading Reading Rooms. In preparing the CLWR Final EIS, DOE considered            considered comments received via mail, fax, submission at public hearings, recorded    recorded telephone messages, and the Internet.
In addition, comments comments and concerns identified identified during discussions discussions at the public hearings were recorded by a court reporter and were transcribed transcribed for consideration consideration by DOE.
CLWR The CL  WR Final EIS contains contains revisions and new information information in response response to the comments on the CLWIR  CLWR Draft EIS and technical details disclosed since the Draft EIS was issued. These revisions and new information are indicated by a double underline for minor word changes  changes or by a sidebar in the margin margin for sentence sentence or larger larger changes. Volume 2 (Comment (Comment Response Document) of the CL          CLWRWR Final EIS contains contains the comments received received during the public review of the CLWR CLWR Draft £IS    EIS and DOE's responses to these comments.
No sooner than 30 days after the notice of filing this EIS with the U.S. Environmental Environmental Protection Agency, DOE expects to issue a Record of Decision.
iv
 
PREFACE PREFACE The Final    Programmatic Environmental Final Programmatic        Environmental Impact  Impact Statement Statement for    Tritium Supply and Recycling (Final for Tritium Programmatic Programmatic EIS) (DOE/EIS-0161), which was completed in October                    October 1995, 1995, assessed the potential environmental impacts of technology and siting alternatives for the production of tritium for national security environmental                                                                                                            security purposes. On December December    5,  1995, 1995,    DOE    issued  a  Record  of  Decision  for the  Final  Programmatic Programmatic      EIS  that selected the two most promising alternative technologies technologies for tritium production production and established          dual-track established a dual-track strategy that would, within within 3 years, select one of those technologies to become the primary          primary tritium supply technology. The other technology, iffeasible, if feasible, would be developed developed as a backup tritium source. Under the dual-track strategy, DOE would: (1) initiate the purchase of an existing commercial    commercial reactor reactor (operating or partially partially complete) complete) or irradiation services with an option to purchase the reactor for conversion  conversion to a defense facility; and (2) design, build, and test critical components components of an accelerator accelerator system for tritium production. Under the Final Programmatic EIS Record of Decision, any new facilities that might be required, i.e., an accelerator Programmatic                                                                                                accelerator and/or a tritium extraction extraction facility to support the commercial commercial reactor reactor alternative, would be constructed at DOE's Savannah River Site in South Carolina.
The Final Programmatic Programmatic EIS described a two-phase strategy for compliance  compliance with the National Environmental Environmental Policy Act (NEP (NEPA).
A). The  first  phase    included    completion completion    of the  Final  Programmatic Programmatic      EIS  and  subsequent subsequent Record of Decision. The second second    phase    included    the preparation  of site-specific preparation site-specific      NEPA    documents documents    tiered  from the Final Programmatic EIS. TheseThese EISs address the environmental environmental impacts of specific specific project proposals. As a result of the Final Programmatic Programmatic EIS and the Record    Record of Decision, DOE determined                prepare three site-determined to prepare specific specific EISs: the Environmental EnvironmentalImpactImpact Statement, Statement, Accelerator Accelerator Production Production of Tritium Tritium at the Savannah SavannahRiver Site (APT) (DOEIEIS-0270),
(DOE/EIS-0270), the Environmental Environmental Impact Statement for the Production                        Tritium in a Production of Tritium Comercial Light Water Comercial            Water Reactor (CLWR) (DOEIEIS-0288),
(DOE/EIS-0288), and the Environment Impact          Impact Statement, Statement, Constructionand Operation Construction        Operationof a Tritium Tritium Extraction Extraction Facility    at Savannah Facility at Savannah River Site (TEF) (DOE/EIS-027 (DOE/EIS-027 1). I).
Each of these EISs presents an analysis of alternatives alternatives which do not affect the alternatives alternatives in the other EISs,
-with with one exception.
exception. This exception exception is one alternative in the TEF EIS which would require the use of space in the APT. For this alternative alternative to be viable, the APT would have to be selected as the primary    primary source of tritium.
On December December 22, 1998, Secretary Secretary of Energy Bill Richardson announced that commercial    commercial light water reactors reactors (CLWR)
(CLWR)    will be the primary  tritium  supply    technology. The  Secretary  designated the Watts Bar Unit 1 reactor designated                            reactor near Spring Spring City, Tennessee, Tennessee, and the Sequoyah Sequoyah Units 1I and 2 reactors near    near Soddy-Daisy, Tennessee, as the preferred preferred commercial commercial light water reactors reactors for tritium production.
production. These reactors are operated by the TennesseeTennessee Valley Authority                  independent government agency. The Secretary Authority (TVA), an independent                                              Secretary designated designated the APT as the "backup" "backup" technology for tritium tritium supply. As a backup, DOE will continue with developmental  developmental activities and preliminary preliminary design, but will not construct construct the accelerator. Finally, selection of the CL          CLWRWR reaffirms the December December 1995 Final Programmatic Programmatic EIS Record Record of Decision Decision to construct and operate a new tritium extraction capability at the Savannah River Site.
DOE has completed the final EISs for the APT, CLWR, and TEF. No sooner                sooner than 30 days after after publication in the Federal  Register of the Environmental Federal Register          Environmental Protection Agency's Notice of Availability of the final EISs for APT, CLWR, and TEF, DOE intends        intends to issue a consolidated Record    Record of Decision Decision to: (1) formalize the programmatic    announcement programmatic announcement          made    on  December December      22, 1998;  and  (2)
(2) announce    project-specific project-specific decisions for the three EISs. These decisions will include, include,    for  the selected  CLWR CL WR    technology,    the selection of specific specific CLWRs CL  WRs to be used for tritium supply and the location of a new tritium extraction capability at the Savannah          Savannah River Site. For the backup APT technology, technical and siting decisions consistent      consistent with its backup role will be made.
v V
 
TABLE OF CONTENTS    CONTENTS VOLUME 1I VOLUME Page Page Cover C          Sheet ......
over Sheet        . .......: .........................................................................
                                      ..... ..... ...... ...... ..... .........                                      ...... ..... ...... ...... ..... ...... .. III                          iii Preface ....................................................................................
Preface      .. . . . . .. . . . . .. . . . . .. . . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. .. v T able of Contents Table        C ontents ............................................................................
                            ............................................................................                                                                                    ix List L  ist of Figures Figures ............................................................................
                        ............................................................................                                                                                    xvii L  ist ooff Tables List        T ab les ..............................................................................
                      ... .. ....... ...... ..... ...... ...... ........                                            ...... ... ... .. ... ...... ... .. ...... . xix Acronyms Acronyms and Abbreviations                      ..............................................................
Abbreviations ...................                                  , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. xxvii
: 1. INTRODUCTION INTRODUCTION .......................................................................
                                    ....................................................................... 1-1 O verv iew ..........................................................................
1.1 Overview            .. ....... .... ...... ... ...... ..... .........                                          ... ..... ...... ... ...... ..... .... 1-1                      1-1 G en eral .....................................................................
1.1.1 General              . . . . . . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1      1-1 1.1.2 Proposed A              ction and Scope Action                          ....................
Scope ...................                            :*..................................
                                                                                                                      .................................. 1-1                              1-1 1.1.3 Development Development of the CLWR            CLWR EIS ..................................................
                                                                                    ..................................................                                                    1-2 1.1.4 The CL l.l.4              CLW  WR  R Procurement                              .................................................
Procurement Process .................................................                                                                      1-2 Commercial Light Water Reactor Facilities Analyzed in this CLWR EIS .........................
1.2 Commercial                                                                                                                      .........................                      1-4 Background ........................................................................
1.3 Background........................................................................                                                                                              1-6 1.3.1 Defense D efense Programs Program s Mission M ission ......................................................
                                                                          ......................................................                                                          1-6 Nuclear Weapons 1.3.2 Nuclear            W eapons .............................................................
                                                            .............................................................                                                                  1-6 1.3.3 Brief History of the Production          Production of Tritium ..........................................
                                                                                                    ..........................................                                            1-9 1.3.4 Production of Tritium in a CLWR                    CLW R .................................................
                                                                                      .................................................                                                    1-9 Nonproliferation .......
1.3.5 Nonproliferation                                    ~ ...................................................... 1-9 1.3.6 Background Background on the Tennessee      Tennessee Valley  Valley Authority              .....................................
Authority .....................................                                              1-11 1-11 1.4 NEPANE PA Strategy            ......................................................................
Strategy ......................................................................                                                                                  1-12 1-12 Relevant N 1.5 Other Relevant              NEPEPA  A Reviews ........................................................
                                                                    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12 1-12 Com pleted NEP 1.5.1 Completed                NEPA        A ctions ......................................................
A Actions          ......................................................                                                          1-12 1-12 1.5.1.1 Final Programmatic Programmatic EnvironmentalEnvironmental Impact Statement        Statement for Tritium Supply and                and R  ecycling ............................................................
Recycling.          . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12  1-12 1.5.1.2 Lead Test Assembly Environmental            Environmental Assessment                          .............................
Assessment .............................                                        1-13 1-13 1.5.1.3 EISs for the Operation of Watts Bar                            Bar 1I and Sequoyah 1I and 2 and for                      for Construction of Bellefonte I1 and 2 ........................................
                                                                                                        ........................................                                          1-13 1-13 O ngoing N 1.5.2 Ongoing              NEPAEPA A      ctions .......................................................
Actions          .......................................................                                                            1-13 1-13 1.5.2.1 Environmental 1.5.2.1        Environmental Impact Statement, Accelerator                Accelerator ProductionProduction of Tritium    Tritium at the Savannah River Site ..................................................
                                                                                ................................................... 1-13                                                  1-13 1.5.2.2 Environmental Impact Statement, Construction                      Construction and Operation    Operation of a Tritium Extraction Facility at the Savannah        Savannah River Site ...............................
                                                                                                                          ...............................                                1-14 1-14 1.5.2.3 Environmental Assessment for the Tritium Facility Modernization 1.5.2.3                                                                                                Modernization and          and Consolidation Proj        Projectect at the Savannah Savannah River Site ..............................                                            1-14
                                                                                                                                  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14 Environmental Impact Statement 1.5.2.4 Final Environmental                                      Statement for the Bellefonte                    Conversion Project Bellefonte Conversion                  Project .......
                                                                                                                                                                            ....... 1-14  1-14 O rganization of this EIS ..............................................................
1.6 Organization                                  ..............................................................                                                                    1-14 1-14 1.7 Public Scoping Process ..............................................................
                                                        ..............................................................                                                                    1-15 1-15 1.8 Public CommentComm ent Period ..............................................................
                                                        ..............................................................                                                                    1-16 1-16 1.9 Changes from the Draft Environmental        Environmental Impact                                      ....................................
Impact Statement ....................................                                                    1-20 1-20 2.
: 2. PURPOSE                                    ...................................................................
PURPOSE AND NEED ...................................................................                                                                                                  2-1 2-1 ix
 
Table of Contents Contents
: 3. COMMERCIAL COMMERCIAL LIGHT WATER              WATER REACTOR PROGRAM                    PROGRAM ALTERNATIVES    ALTERNATIVES ....................  .................... 3-1 3-1 3.1 Production of Tritium in aa Commercial  Commercial Light Water Reactor                                ..................................
Reactor ..................................                          3-1 Generation of Electric 3.1.1 Generation              Electric Power in Nuclear Power Plants .................................................................. 3-1              3-1 3.1.2 Description Description of Tritium-Producing Tritium-Producing Burnable Absorber                Absorber Rods .............................
                                                                                                                        .............................            3-2 3.1.3 Impacts of Tritium Production on Reactor                    Reactor Operations                  .................................
Operations .................................                            3-7 3.2 Development D evelopm ent of Alternatives A lternatives ...........................................................
                                                    ...........................................................                                                  3-8 3-8 3.2.1 Planning Assumptions Assumptions and Basis for Analysis                              ........................................
Analysis ........................................                                  3-8 3.2.2 Reactor OptionsOptions Considered Considered ....................................................
                                                                  ....................................................                                          3-10 3-10 Reasonable Alternatives 3.2.3 Reasonable            A lternatives .......................................................
                                                          .......................................................                                              3-11 3-11 3.2.4 NoNo A    ction A Action        lternative .........................................................
Alternative          ......................................................... 3-13                                          3-13 Reactor O 3.2.5 Reactor          ptions ..............................................................
Options        ..............................................................                                                      3-13 3-13 W atts Bar Nuclear Plant Unit 1 ...........................................
3.2.5.1 WattsBarNuclearPlantUnitl                                      ...........................................                              3-13 3-13 3.2.5.2 Sequoyah Nuclear        Nuclear Plant Units 1I and 2 .....................................
                                                                                                    .....................................                      3-17 3-17 3.2.5.3 Bellefonte Bellefonte Nuclear Plant Units I1 and 22 .....................................
                                                                                                    .....................................                      3-20 3-20 Com parison of A 3.2.6 Comparison                    lternatives .....................................................
Alternatives          .....................................................                                          3-25 3.2.6.1 No Action Alternative    Alternative Impacts                    ..........................................
Impacts ..........................................                                        3-26 Impacts Associated with Tritium Production ................................
3.2.6.2 Impacts                                                                                ................................                3-26 3.2.7 Preferred Alternative                  ............................................... '.' ......... 3-30 A lternative ..........................................................                                                        3-30
: 4. AFFECTED ENVIRONMENT ENVIRONMENT ............................................................
                                                  ............................................................ 4-1 4 .1 Introduction ........................................................................
4.1                  ........................................................................                                                                4-1 4.2 Affected  Environment Affected Environm        ent ................................................................
                                          ................................................................                                                      4-2 W atts Bar Nuclear 4.2.1 Watts              Nuclear Plant Unit      U nit 1I ...................................................
                                                                      ...................................................                                        4-2 4.2.1.1 Land R            esources ........................................................
Resources          ........................................................                                              4-3 4 .2 .1.2 N 4.2.1.2          oise ................................................................
Noise      ... ...... ........                  .........          ...... ..... ... .... .. ... ..... .... .. .... 4-6          4 -6 4.2.1.3 4 .2.1.3 A    Airir QQuality        ........................................................... 4-7 uality ...........................................................
4.2.1.4 W        ater R Water          esources ......................................................
Resources          ......................................................                                            4-10 4-10 4.2.1.5 G        eology and Soils .....................................................
Geology                          .....................................................                                          4-14 4-14 4.2.1.6 Ecological Resources ..................................................                                                                4-15 4-15 4.2.1.77 Archaeological 4.2.1.        Archaeological and Historic                                          .....................................
Historic Resources .....................................                                      4-19 4-19 4.2.1.8 Socioeconomics Socioeconom ics .......................................................
                                                          .......................................................                                              4-20 4-20 4.2.1.9 PublicPublic and Occupational Occupational Health and Safety                            .................................
Safety .................................                        4-24 4-24 4.2.1.10 W        aste Management Waste      M anagem ent ....................................................
                                                                  .................................................... 4-28                                    4-28 4.2.1.11 Spent Fuel Management    M anagem ent ................................................
                                                                            ................................................                                    4-29 4.2.2 Sequoyah Nuclear Plant          Plant Units I and 2 ............................................
                                                                                    ............................................                                4-30 4-30 4.2.2.1 Land  Land R      esources .......................................................
Resources          .......................................................                                              4-31 4 .2 .2 .2 N 4.2.2.2          oise ...............................................................
Noise      ............................................................... 4-34                                                  4-34 4.2.2.3 A    Airir Q  uality ..........................................................
Quality        .......................................................... 4-34                                            4 -34 4.2.2.4 W    Water ater R  Resources esources ......................................................
                                                              ......................................................                                            4-38 4-38 G eology and Soils .....
4.2.2.5 Geology                                .......................................................
                                                                          ': ............................................... 4-41 4.2.2.6 Ecological                                    ..................................................
Ecological Resources ..................................................                                                          4-42 4.2.2.7 Archaeological Archaeological and Historic Resources .....................................
                                                                                                    .....................................                      4-46 Socioeconom ics .......................................................
4.2.2.8 Socioeconomics                    .......................................................                                              4-47 4.2.2.9 PublicPublic and Occupational                                                      ................................. 4-52 Occupational Health and Safety .................................
4.2.2.10 W        aste Management Waste      M anagem ent ....................................................
                                                                  ....................................................                                          4-55 4.2.2.11 Spent Fuel Management    M anagem ent ................................................
                                                                            ................................................                                    4-56 4.2.3 Bellefonte Nuclear Plant Units 1I and 2 ............................................
                                                                                    ............................................ 4-57                          4-57 4.2.3.1 Land Resources  Resources .......................................................
                                                          .......................................................                                              4-58 4-58 4 .2 .3 .2 N 4.2.3.2          oise ...............................................................
Noise      ............................................................... 4-61                                                  4 -6 1 4.2.3.3 Air  A ir Quality Quality ..........................................................
                                                    ..........................................................                                                4-62 4.2.3.4 Water W ater Resources                ......................................................
Resources ......................................................                                                      4-64 4-64 G eology and Soils .....................................................
4.2.3.5 Geology                                .....................................................                                          4-68 4.2.3.6 Ecological Resources      R esources ..................................................
                                                                      ..................................................                                      4-68 4.2.3.7 Archaeological Archaeological and Historic Resources              Resources .....................................
                                                                                                    ..................................... 4-75                  4-75 Socioeconom ics .......................................................
4.2.3.8 Socioeconomics                    .......................................................                                              4-76 4-76 4.2.3.9 Public and Occupational  Occupational Health    Health and Safety .................................
                                                                                                            .................................                  4-88 x
 
Table o(Contents of Contents 4.2.3.
4.2.3.1010 Waste Management Management ....................................................
                                                              ...................................................                                  4-88 4-88 4.2.3.11 Spent Fuel Management 4.2.3.11                                                ................................................ 4-89 Management ................................................                                          4-89
: 5. ENVIRONMENTAL CONSEQUENCES
: 5. ENVIRONMENTAL          CONSEQUENCES ....................................................
                                                                ...................................................                                  5-1 5-1 Introduction ........................................................................ 5-1 5.1 Introduction.......................................................................                                                            5-1 5.1.1 Methodology...................................................
5.1.1  Methodology ................................................................. 5-1                                                      5-1 5.1.2 Assumptions 5.1.2  Assumptions .................................................................
                                    ................................................................                                                5-2 5-2 5.2 Environmental Environmental Consequences Consequences ..........................................................
                                                  .........................................................                                          5-3 5-3 5.2.1 Watts 5.2.1  Watts Bar Nuclear Nuclear Plant Unit                  ................................................... 5-3 Unit I1...................................................                                      5-3 5.2.1.1 5.2.1.1 Land        Resources ........................................................
Land Resources                .......................................................                                      5-3 5-3 5.2.1.2 Noise 5.2.1.2                ................................................................ 5-4 Noise...............................................................                                                        5-4 5.2.1.3 Air Quality 5.2.1.3            Quality ...........................................................
                                                ..........................................................                                          5-4 5-4 5.2.1.4 Water Resources                    ....................................................... 5-5 Resources .......................................................                                              5-5 5.2.1.5 Geology and Soils ......................................................
5.2.1.5                                      .....................................................                                    5-7 5-7 5.2.1.6    Ecological Resources...................................................
5.2.1.6 Ecological            Resources ................................................... 5-7                                        5-7 5.2.1.7 Archaeological 5.2.1.7    Archaeological and Historic Resources                              ...................................... 5-8 Resources ......................................                          5-8 5.2.1.8 Socioeconomics 5.2.1.8                                  ........................................................ 5-8 Socioeconomics .......................................................                                                      5-8 5.2.1.9 Public and Occupational 5.2.1.9                        Occupational Health and              and Safety          .................................. 5-9 Safety...................................5-9 5.2.1.9.1 5.2.1.9.1 NormaIOperation                            ............................................. 5-9 Normal Operation .............................................                                          5-9 5.2.1.9.2 5.2.1.9.2 Facility Accidents      Accidents ............................................
                                                                              ............................................ 5-12                    5-12 5.2.l.l0 5.2. 1.10 Environmental Environmental Justice ..................................................
                                                                  .................................................. 5-15                          5-15 5.2.l.l1 5.2. 1.11 Waste        Management ....................................................
Waste Management                    ...................................................                                  5-16 5-16 5.2.1.12 5.2.l.l2 Spent Fuel Management Management ................................................
                                                                      ................................................ 5-16                        5-16 5.2.2 Sequoyah Nuclear Plant 5.2.2                              Plant Units 1I and 22.............................................5-16
                                                                              ............................................ 5-16 5.2.2.1 Land Resources 5.2.2.1                                  .......................................................
Resources .....................................                                          **'..........          5-16
                                                                                                                                          ' *......5-16 5.2.2.2 Noise 5.2.2.2                ............................................................... 5-17 Noise..............................................................                                                      5-17 5.2.2.3 Air Quality 5.2.2.3            Quality ..........................................................
                                                .........................................................                                          5-18 5-18 5.2.2.4 Water Resources 5.2.2.4                                    ...................................................... 5-19 Resources ......................................................                                              5-19 5.2.2.5 5.2.2.5 Geology and        and Soils .....................................
                                                            .....................................................            *' **......., *..... 5-20 5-20 5.2.2.6 Ecological 5.2.2.6                        Resources .................................................. 5-21 Ecological Resources..................................................                                                    5-21 5.2.2.7 Archaeological 5.2.2.7    Archaeological and Historic Resources            Resources .....................................
                                                                                              ..................................... 5-22            5-22 5.2.2.8    Socioeconomics ......................................................
5.2.2.8 Socioeconomics                  ....................................................... 5-22                                5-22 5.2.2.9 5.2.2.9 Public and Occupational Occupational Health    Health and          Safety..................................5-23 and Safety          ................................. 5-23 5.2.2.9.1 5.2.2.9.1 NormalOperations                            ........................................... 5-23 Normal Operations............................................5-23 5.2.2.9.2 5.2.2.9.2 Facility                Accidents ............................................
Facility Accidents                ............................................ 5-26                    5-26 5.2.2.10 5.2.2. 10 Environmental Environmental Justice ..................................................
                                                                  .................................................. 5-29                          5-29 5.2.2.11 Waste 5.2.2.11                Management ....................................................
Waste Management                    ...................................................                                  5-30 5-30 5.2.2.12 Spent Fuel Management 5.2.2.12                                                ................................................ 5-30 Management ................................................                                          5-30 5.2.3 Bellefonte Nuclear Plant Units 5.2.3                                          Units 1I and 22 ............................................
                                                                              ............................................ 5-31                    5-31 5.2.3.1              Resources ......................................................
5.2.3.1 Land Resources                  ....................................................... 5-31                                5-31 5.2.3.2 Noise 5.2.3.2                ............................................................... 5-33 Noise..............................................................                                                      5-33 5.2.3.3 Air Quality 5.2.3.3            Quality ..........................................................
                                                .........................................................                                          5-36 5-36 5.2.3.4 Water Resources 5.2.3.4                                    ...................................................... 5-42 Resources ......................................................                                              5-42 5.2.3.5    Geology and 5.2.3.5 Geology            and Soils .....................................................
                                                            ..................................................... 5-50                              5-50 Ecological Resources 5.2.3.6 Ecological 5.2.3.6                                            .................................................. 5-51 Resources..................................................                                          5-51 5.2.3.7    Archaeological and Historic Resources 5.2.3.7 Archaeological                                      Resources .....................................
                                                                                              ..................................... 5-56            5-56 5.2.3.8 Socioeconomics 5.2.3.8    Socioeconomics .......................................................
                                                        ......................................................                                      5-57 5-57 5.2.3.8.1          Bellefonte I1.................................................
5.2.3.8.1 Bellefonte                      ................................................. 5-57                        5-57 5.2.3.8.2                                            ............................................ 5-63 Bellefonte 1 and 22 ............................................
5.2.3.8.2 Bellefonte                                                                                                      5-63 5.2.3.9 Public and Occupational 5.2.3.9                                                                    Safety ................................. 5-69 Occupational Health and Safety..................................5-69 5.2.3.9.1 5.2.3.9.1 Normal  NormaIOperationOperation ............................................
                                                                              ............................................ 5-69                    5-69 5.2.3.9.2 5.2.3.9.2 Facility Facility Accidents ............................................
                                                                              ............................................ 5-76                    5-76 5.2.3. 10 Environmental 5.2.3.10  Environmental Justice      Justice ..................................................
                                                                  .................................................. 5-82                          5-82 5.2.3.11 Waste 5.2.3.11              Management ....................................................
Waste Management                    .................................................... 5-83                            5-83 5.2.3.12 Spent 5.2.3.12  Spent Fuel          Management ................................................
Fuel Management                  ................................................ 5-85                        5-85 5.2.4 5.2.4 Licensing Licensing Renewal...........................................................
Renewal ............................................................ 5-85                                              5-85 5.2.4.1 Background                .........................................................
Background ..........................................................                                                    5-86 5-86 xi
 
Table o(Contents of Contents 5.2.4.2 Environmental Effect of Renewing the Operating License                                  License ofa    of a Nuclear Nuclear Power Plant..
Plant .. 5-87 5.2.5    Decontamination and Decommissioning Decontamination                  Decommissioning ...........................................
                                                                                    ...........................................                                    5-90 Background ..........................................................
5.2.5.1 Background                ..........................................................                                                      5-90 Decontamination and Decommissioning 5.2.5.2 Decontamination                                                                          ............................. 5-90 Decommissioning Options .............................
Decomm issioning Activities 5.2.5.3 Decommissioning                                        .............................................
Activities .............................................                                              5-91 5.2.5.4    Decontamination and Decommissioning 5.2.5.4 Decontamination                          Decommissioning Impacts .............................
                                                                                                                  ............................. 5-91 5.2.6 Spent Fuel Storage ............................................................
                                              ............................................................                                                          5-93 5-93 5.2.7 Fabrication        of TPBARs and Blend-Down Fabrication ofTPBARs                        Blend-Down of Highly Enriched Uranium                                    ..................
Uranium ..................                5-103 5.2.8 Transportation Transportation of          TPBARs ....................................................
ofTPBARs              ....................................................                                                5-105 5.2.9 Sensitivity A        nalysis ..........................................................
Analysis        ..........................................................                                                        5-107 5.2.10 Safeguards and Security ......................................................
5.2.10                                            ...................................................... 5-112                                            5-112 5.2.11 Program Programmaticmatic N Noo Action A ction ......................................................
                                                          ...................................................... 5-113                                            5-113 CLWR Facility Accident Impact to Involved 5.2.12 CLWR                                                      Involved Workers ...............................
                                                                                                            ............................... 5-117                  5-117 5.2.13 Secondary Impact of CLWR          CLWR Facility Accidents .....................................
                                                                                                .................................... 5-118                        5-118 5.3 Cum ulative Impacts Cumulative    Impacts ................................................................
                                  ................................................................                                                                5-118 5-118 5.3.1 TPBA TPBAR    R Fabrication, Fabrication . .........................................................
                                                  .........................................................                                                      5-119 5-119 5.3.2 TPBTPBAR AR Irradiation ..........................................................
                                                ..........................................................                                                        5-119 5-119 5.3.3 TPBAR Transportation Transportation .......................................................
                                                        .......................................................                                                    5-123 5.3.4 Impacts Impacts at the Tritium                                              .........................................
Tritium Extraction Facility .........................................                                                        5-124 5-124 5.4            Comm itments .............................................................
Resource Commitments              .............................................................                                                            5-128 5-128 5.4.1 Unavoidable Unavoidable Adverse Environmental                                            ..................................... 5-128 Environmental Impacts .....................................                                                    5-128 5.4.2 Relationship Between Local                      Short-Term Uses of the Environment Local Short-Term                                    Environment and Enhancement    Enhancement of Long-Term Productivity ....................................................
                                                              ....................................................                                                5-129 5-129 5.4.3 Irreversible Irreversible and Irretrievable                Commitments of Resources Irretrievable Commitments                                                ............................
Resources ............................                                5-129 5-129 5.5 M itigation Measures Mitigation  Measures ...............................................................
                                      ...............................................................                                                              5-130 5-130
: 6. APPLICABLE APPLICABLE LA    LAWS, WS, REGULATIONS, REGULATIONS, AND                  AND OTHER OTHER REQUIREMENTS REQUIREMENTS ......................  ......................            6-1 6.1 Introduction Introduction and Background ...........................................................
                                                  ...........................................................                                                        6-1 Statutes and Regulations Requiring Licenses 6.2 Statutes                                            Licenses or Permits                  .....................................
Permits .....................................                                      6-2 6-2 Regulatory Commission Permits and Licenses ................................
6.2.1 Nuclear Regulatory                                                                              ................................                        6-3 6-3 6.2.2 Environmental            Protection Perm Environmental Protection                Permits  its .................................................
                                                                        .................................................                                            6-3 6-3 Requirements Related 6.3 Other Requirements        Related to Environmental Environmental Protection, Protection, Emergency Emergency Planning, and Worker              Worker Safety Safety and Health H ealth ....................................................................
                              ....................................................................                                                                  6-6 6-6 6.3.1 Environm Environmentalental Protection              .......................................................
Protection .......................................................                                                            6-6 6-6 6.3.2 Emergency Emergency Planning and Response                          ................................................
Response ................................................                                                    6-8 6-8 6.3.3 W    orker Safety and Health Worker                      H ealth .......................................................
                                                            .......................................................                                                  6-9 6-9 6.4 DOE D O E Regulations Regulations and O          rders ...........................................................
Orders        ...........................................................                                                        6-9 6-9 C om pliance H 6.5 Compliance        istory ..................................................................
History    ..................................................................                                                                6-9 6-9 6.5.1 Com      pliance Indicators .........................................................
Compliance                          .........................................................                                                      6-10 6-10 Systematic Assessments of License 6.5.1.1 Systematic                                        License Performance                  .............................
Performance .............................                                6-10 6-10 6.5.1.2 NRC Notices of Violations and Enforcement                                                        .........................
Enforcement Actions .........................                                  6-10 6-10 Perform ance Indicators 6.5.1.3 Performance                                  ................................................. 6-11 Indicators .................................................                                                    6-11 6.5.2 W    atts B ar I .................................................................
WattsBarl        .................................................................                                                                6-11 6-11 6.5.2.1 NRC N RC Perfom1ance                .....................................................
Perform ance .....................................................                                                            6-11 6-11 6.5.2.2 Environmental, Safety & Health (Nonnuclear) Performance                                                      ....................
Performance ....................                        6-14 6-14 6.5.3 Sequoyah Nuclear Nuclear Plant Units 1I and 2 ............................................
                                                                                  ............................................                                      6-14 6-14 6.5.3.1 NRC NR C Performance Perform ance .....................................................
                                                              .....................................................                                                  6-14 6-14 Environmental, Safety &
6.5.3.2 Environmental,                            & Health (Nonnuclear) Performance                                ....................
Performance ....................                        6-17 6-17 Bellefonte Nuclear Plant Units I1 and 22 ............................................
6.5.4 Bellefonte                                                          ............................................                                      6-18 6-18 Perform ance .........................................................
6.5.4.1 Performance                .........................................................                                                      6-18 6-18 Environmental, Safety & Health (Nonnuclear) Performance 6.5.4.2 Environmental,                                                                                              ....................
Performance ....................                        6-18 6-18 xii
 
Table of Contents Table        Contents
: 7. REFERENCES ........................................................................
                          ........................................................................                                                                                          7-1
: 8. LIST OF PRE PREPARERS                    .................................................................
PARERS .................................................................                                                                                              8-1 8-1
: 9. DISTRIBUTION DISTRIBUTION LIST ..................................................................
                                        ..................................................................                                                                                  9-1
: 10. GLOSSARy        .......................................................................... 10-1 G LO SSARY ..........................................................................
11.
: 11. INDEX IN D EX ..............................................................................
            ..............................................................................                                                                                                  11-1 11-1 APPENDIX APPENDIX A TRITIUM PRODUCTION OPERATIONS-APPLICATION OPERA TIONS-APPLICA TION TO PRODUCTION                                    PRODUCTION OF TRITIUM                  TRITIUM IN            IN COMMERCIAL LIGHT COMMERCIAL          LIGHT          WATER            REACTORS ............................................... A-I REACTORS                  ..............................................                                                              A-I A
Al.1    N uclear Fission Reactors Nuclear                                        .........................................................
Reactors .........................................................                                                                                  A -i A-I A .i.1 A.I.I          Nuclear Fission ...........................
Nuclear                      ..........................................................'. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. A            -i A-I A. 1.2 AI.2          Control of Nuclear Reactions in a Reactor                    Reactor......................................
                                                                                                          . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. A-2 A.2 A2      Commercial Nuclear Power Plant Descriptions ........................................ ........................................ A-5                                                A-5 A.2.1 A2.l          Commercial Commercial Nuclear    Nuclear Reactors                  ..............................................
Reactors ..............................................                                                                    A-5 A-5 A .2.2 A2.2          Reactor Reactor Core D              escription ...................................................
Description              . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. A-7 A .2.3 A2.3          Reactor Reactor R          efueling .......................................................
Refueling.          . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. A                -12 A-12 A.2.4 A2A            Commercial Commercial Light Water            Water Reactor Reactor Systems Important to Environmental              Environmental Impacts ......                ...... A-14  A-14 A.2.4.1 A2A.I                        Cooling Cooling and Auxiliary W                Waterater Systems ..............................
                                                                                                                      ..............................                                      A-14 A-14 A.2.4.2 A2A.2                        Radioactive Radioactive W        Wasteaste Treatment Treatment Systems ..............................
                                                                                                                      ..............................                                      A-15 A-15 A.2.4.3 A2A.3                        Nonradioactive Waste Nonradioactive              W aste Systems Systems.....................................
                                                                                                          . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. A-17        A-17 A.3 A3      Tritium-Producing Burnable Absorber Tritium-Producing                                  Absorber Rods .........................................
                                                                                            .........................................                                                    A-17 A-17 A.3.1 A3.1          Nucleonics of Tritium-Producing Tritium-Producing Burnable        Burnable AbsorberAbsorber Rods      Rods........................
                                                                                                                                        . . . . . . . . . . . . . . . . . . . . .. A-17  A-17 A.3.2 Physical Description of the Tritium-Producing            Tritium-Producing Burnable        Burnable Absorber Rod .............            .............                A-19 A-19 A.3.3 A3.3          Handling Handling of Tritium-Producing Tritium-Producing Burnable Absorber                Absorber Rods ........................
                                                                                                                                    ........................                              A-21 A.4 A4      Impact of Tritium Production    Production on the Fuel Cycle                          ......................................
Cycle ......................................                                                        A-22 A-22 A .5 A5      References ....................................................................
References          ....................................................................                                                                                      A-24 A-24 APPENDIX B APPENDlXB METHODS FOR ASSESSINGASSESSING ENVIRONMENTAL    ENVIRONMENTAL IMPACTS-APPLICATION        IMPACTS-APPLICATION TO PRODUCTION                                PRODUCTION OF                  OF TRITIUM IN COMMERCIAL COMMERCIAL LIGHT WATER                            WATER REACTORS    REACTORS ...................................
                                                                                                            ................................... B-1 B .I B.l    Land R      esources .................................................................
Resources.            . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. B-2              B-2 B .1. 1 L B.l.l            and Use Land      U se ...............................................................
                                              ...............................................................                                                                                B -2 B-2 B .1.2 B.I.2          V  isual Resources Visual      Resources ........................................................
                                                            ........................................................                                                                        B-2 B-2 B .2 B.2    A ir Quality Air  Quality and Noise    Noise .............................................................
                                                      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. B-2 B.2.1          Air Quality ...........................................................
                                                  ............................................................. B-2                                                                          B-2 B .2 .2 B.2.2          Noise ......
Noise.        . . . . . .......
                                                                                                                                                                          . . . . . ...... B-3 B -3 B .3 B.3    W ater Resources Water      Resources ................................................................
                                            ................................................................ B-3                                                                            B-3 B.4 BA      G eology and Soils ..............................................................
Geology                            ..............................................................                                                                              B -4 B-4 B .5 B.5    E co logy .....
Ecology.        . . . . ...... . . .....
                                                                                                                                                                              . . . . .. B-4B -4 B.6    Archaeological and Historic Resources Archaeological                                                          ..............................................
Resources ..............................................                                                                      B-5 B .7 B.7    Socioeconom Socioeconomics        ics ................................................................
                                            ................................................................ B                                                                                -5 B-5 B.8 B.S    Public and Occupational Occupational Health and Safety ......................................
                                                                                          ..........................................                                            ,.... B-5 B.8.1 B.S.l          Em ergency Preparedness Emergency            Preparedness ..................................................
                                                                          .................................................. B-7                                                            B-7 B.9    W  aste M Waste          anagem ent ..............................................................
Management              ..............................................................                                                                              B -7 B-7 B .10 B.IO    T ransportation ...................................................................
Transportation              . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. B                    -7 B-7 B .1 I B.II    Spent Fuel Management M anagem ent .....................
                                                                                                        . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. B            -7 B-7 B .12 B.l2    Environm Environmental  ental Justice .............................................................
                                                      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. B                  -8 B-S B. 13 B.l3    Applicable Environmental Environmental Laws, Regulations, and Guidance                                              .............................
Guidance .............................                                                B-8 B-S B .14 B.14    R  eferences ....................................................................
References          .................................................................... B-14                                                                                  B-14 xiii
 
Table of      Contents o{Contents APPENDIX APPENDIXC  C EVALUATION EVALUATION OF HUMANHUMAN HEALTH EFFECTS FROM                                  FROM NORMAL    NORMAL OPERATIONS    OPERATIONS ...............    ...............          C-I C-I C.I C .1  Introduction.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. C-I Introduction ....................................................................                                                                                C -I C.2    Radiological Impacts on Human Radiological                        Human. Health ..............................................
                                                                            ..............................................                                                C-I C.2.1    Background Inform Background          Information.              . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. C-2 ation ...................................................
C.2.I.l C.2.1.1          Nature of Radiation and Its Effects on Humans ........................                    ........................ C-2 C.2.1.2 C .2.1.2          Health H  ealth Effects ...................................................
                                                                      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. C-7  C-7 C.2.2    Tritium Characteristics and Biological            Biological PropertiesProperties ..............................
                                                                                                                ..............................                            C-I0 C-10 C.2.2.1          Tritium        Characteristics ...........................................
Tritium Characteristics                                                                                                            C-10
                                                                                      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. C-lO C.2.2.2            Biological Properties of Tritium Biological                                    Tritium ...................................
                                                                                                    ...................................                                  C-lO C-10 C.2.2.3            Genetic Effects of Tritium .......................................
Genetic                                                .......................................                                        C-12 C-12 C.3    Methodology Methodology for Estimating Radiological    Radiological Impacts ....................................
                                                                                                  ....................................                                    C-13 C-13 C.3.1    GEN GENII  II Computer Com puter Code ...................................................
                                                              ...................................................                                                        C-13 C-13 C.3.2    Data and General Assumptions                            .............................................
Assumptions .............................................                                                              C-14 C-14 C.3.3 C.3.3    U ncertainties ...........................................................
Uncertainties          ........................................................... C-18                                                                C-18 C.3.4 C.3A    Radiological Releases Releases to the Environment  Environment and Associated      Associated Impact ................. .................            C-19 C-19 C.4 CA    Impacts of Exposures to Hazardous Chemicals              Chemicals on Human Health .........................    .........................                      C-23 C .5 C.S    References ....................................................................
References  ....................................................................                                                                                C-27 C-27 APPENDIX APPENDIXD  D EVALUATION EVALUA            HUMAN HEALTH EFFECTS FROM TION OF HUMAN                                                        FROM FACILITY  FACILITY ACCIDENTS    ACCIDENTS .................  ............... D-I      D-1 D. 1 D.I    Radiological Accident Impacts on Human                                                ......................................
Human Health ......................................                                                        D-1 D-l D. 1.1 D.1.1    Accident Accident Scenario Scenario Selection and Description.          Description ...................................                                            D-1
                                                                                                        . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. D-l D .1.1.1          Accident Accident Scenario Selection        Selection ........................................                                                D-1
                                                                                                . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. D-I D. 1.1.2 D.1.1.2          Reactor Reactor Design-Basis                                          ....................................
Design-Basis Accident ....................................                                                            D-2 D. 1.1.3 D.1.1.3          Nonreactor Design-Basis Accident .................................. ..................................                                D-3 D.I.IA D. 1.1.4          TPBAR Handling Accident            Accident .......................................
                                                                                              .......................................                                      D-4 D. 1.1.5 D.I.I.S          Truck Truck Transportation Cask Handling Accident at the Reactor Site .........                                                ......... D-5 D-S D. 1.1.6 D.I.l.6          Truck        Transportation Cask Handling Accident at the Tritium Extraction Truck Transportation FFacility                                      ...... ... ....... .. ..... ...... ...... .. ...... D-6 acility .......................................................
                                                      . ... ........                                                                                                      D -6 D.I.I.7 D. 1.1.7          Rail Transportation Cask Handling Accident at the Reactor Site ...........                                            ........... D-6 D. 1.1.8 D.I.I.8          Rail Transportation Cask Handling Accident at the Savannah                                    Savannah River Site Rail Transfer Station ..............................................
                                                                                  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. D-7D -7 D. 1.1.9 D.l.l.9                    Transportation Cask Handling Accident at the Tritium Extraction Facility D-8 Rail Transportation D.1.1.1 0 Beyond D.1.1.10          Beyond Design-Basis                                          ....................................
Design-Basis Accident ....................................                                                            D-8 D. 1.2 D.l.2    Methodology for Estimating Radiological Methodology                                                                                  .............................
Radiological Impacts .............................                                                D-16 D-16 D .1.2.1
                      .1.2.1          Introduction.              . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. D Introduction ..................................................                                                                      -16 D-16 D.1.2.2            MACCS2 Comput~r M  ACCS2            Computer            Code        .......................................
                                                                                          ....................................... D-16                                    D-16 D.1.2.3          Data and General  General Assumptions ....................................
                                                                                                  ....................................                                    D-18 D-18 D. 1.2.4 D.I.2A            Health Health Effects Effects Calculations.                    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. D-20 Calculations .......................................                                                    D-20 D .1.2.5 D.1.2.S          Deterministic Deterministic CalculationsCalculations .......................................
                                                                                            .......................................                                        D-21 D .1.2.5.1 Introduction..........................................
D.1.2.S.1            Introduction ..........................................                                                        D-21 D -21 D.1.2.5.2 Large Break D.l.2.S.2                                    Loss-of-Coolant Accident Break Loss-of-Coolant                                        ....................
Accident ....................                          D-21 D.1.2.5.3 Waste Gas Decay Tank Accident D.l.2.S.3                                                                          .........................
Accident .........................                                D-24 D .1.2.6 D.1.2.6          U  ncertainties ..................................................
Uncertainties.              . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. D-2S  D -25 D. 1.3 D.I.3    Accident Accident Consequences Consequences and Risks .............              ..........................................
                                                                                                                  . . . . . . . . . . . . . . . . . . . . . . . . . . . .. D-26 D. 1.3.1 D.1.3.1            Reactor Design-basis Accident.          Accident ....................................
                                                                                                    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. D-26 D. 1.3.2 D.I.3.2          Nonreactor Nonreactor Design-Basis Design-Basis Accident                        .................................
Accident .................................                                          D-26 D. 1.3.3 D.I.3.3            TPBAR          Handling Accident ....................................... D-31 Handling          Accident            .......................................
D.l.3A D. 1.3.4          Truck Transportation Transportation Cask Handling            Handling Accident Accident .......................
                                                                                                                              .......................                    D-32 D-32 D. 1.3.5 D.1.3.S                    Transportation Cask Handling Rail Transportation                            Handling Accident  Accident .........................
                                                                                                                          ......................... D-33 D.1.3.6 D.I.3.6            Beyond Design-Basis Accident                                  ...................................
Accident ...................................                                              D-34 D.2    Hazardous Chemical Accident Hazardous                    Accident Impacts  Impacts on Human Health ...............................                                                        D-37
                                                                                                              . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. D-37 D.2.1 D.2.l                  Scenario Selection and Description.
Accident Scenario                                          Description ..................................                                            D-37
                                                                                                          . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. D-37 D.2. 1.1 D.2.1.1            Accident Accident Scenario Scenario Selection ......................................
                                                                                              ......................................                                      D-37 D.2.1.2            Accident Accident Scenario Scenario Descriptions ..                        ,................................ D-38
                                                                                                    ....................................                                  D-38 xiv
 
Table of    Contents o(Contents D.2.2      Chemical Accident Analysis Methodology Chemical                                        Methodology.....................................
                                                                                              . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. D-39 D-39 D.2.2.!
D .2.2.1        Receptor Description Receptor        Description ...........................................
                                                                            ...........................................                                              D-39 D -39 D.2.2.2          Analysis Computer Code            Code Selection                ................................
Selection ................................                                          D-40 D.2.2.3          Description of the Model        M odel ........................................
                                                                                  ........................................                                          D-40 D.2.2.4 D.2.2A          W  eather Condition Assumptions ..................................
Weather                                                    ..................................                                  D-41 D-4l D.2.3 D  .2.3    Human      Health Im Hum an Health          Impacts pacts ....................................................
                                                              . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..      D-4!
D-41 D.2.3.1 D.2.3.!          Impacts to Noninvolved Noninvolved Workers    W orkers .................................
                                                                                                  .................................                                  D-4!
D-41 D .2.3.2 D.2.3.2          O  ffsite Impacts Offsite      Impacts ................................................
                                                                  ................................................                                                    D -43 D-43 D.2.3.3          Uncertainties in the Dispersion Uncertainties                      Dispersion Analyses ............................
                                                                                                              ............................                            D-43 D-43*
D .3 D.3  R eferences ....................................................................
References    ....................................................................                                                                          D-44 D -44 APPENDIX E APPENDIXE EVALUATION OF HUMAN EVALUATION        HUMAN HEALTH  HEALTH EFFECTS OF OVERLAND                    OVERLAND TRANSPORTATION  TRANSPORTATION ...........                ...........      E-1 E-I E. I E.!                  .........................................
Introduction .....................................................................                          ........................                      . E-!
E-I E.2  Scope of Assessment A ssessm ent ..............................................................
                                        .............................................................. E-!                                                            E-I E.3  Packaging Packaging and Representative Shipment Configurations            Configurations ..................................
                                                                                                    ..................................                                E-3 E.3.1 E.3.!      Packaging O Packaging          verview .......................................................
Overview          ....................................................... E-3 E.3.2      Regulations Applicable to Type B Casks .......................................
                                                                                          .......................................                                      E-3 E.3.2.1 Cask Design Regulations E.3.2.!                          Regulations ................................................
                                                                      ................................................                                                E-4 E.3.2.2 Design D esign Certification              ....................................................
Certification ....................................................                                                              E-7 E.3.2.3 Transportation Transportation RegulationsRegulations ..............................................
                                                                          ..............................................                                              E-7 E.3.2.4 Com E.3.2A            m unications ......................................................
Communications                ......................................................                                                        E-9 E.3.3      Ground Transportation Route                      Selection Process .................................
Route Selection                              .................................                              E-9 E.4 EA    M  ethods for Calculating Methods        Calculating Transportation                                .........................................
Transportation Risks .........................................                                                          E-10 E-! 0 E.5  Alternatives, Alternatives, Parameters, Parameters, and Assumptions  Assumptions ...........................................
                                                                              ........................................... E-12                                      E-!2 E.5.1 E.5.!      D escription of A Description                lternatives .................................................
Alternatives          ................................................. E-12                                              E-!2 E.5.2      Representative Routes ....................................................
Representative                        ....................................................                                                      E-!3 E-13 E.5.3      M aterial Inventory .......................................................
Material                        ....................................................... E-!6                                                    E-16 E.5.4 E.5A      External D  Doseose Rates ......................................................
                                                      ......................................................                                                        E-18 E-!8 E.5.5      Health Risk Conversion Factors .............................................
                                                                          ...........................................                                                E-18 E-!8 E.5.6      Accident Involvement Rates ................................................
AccidentInvolvement                            ................................................                                                  E-18 E-!8 E.5.7      Container Accident Response Characteristics      Characteristics and Release      Release Fractions              .................
Fractions .................                    E-18 E-!8 E.5.7.1 E.5.7.!          Development of Conditional Development                                                                ............................
Conditional Probabilities ............................                                              E-18 E-!8 E.5.7.2          Transportation Transportation Risk Analyses Assumptions ...........................        ...........................                        E-21 E-2!
E.5.7.2.1 E.5. 7.2.1 Cask Response    Response to Impact and Thermal Loads                                    ................
Loads ................                    E-21 E-2!
E.5.7.2.2 TPBARs  TPBARs Response  Response to Impact    Impact and Thermal  Thermal Loads ............. ............. E-22 E.5.7.3          Accident Accident Matrix Category      Category Descriptions                  ..............................
Descriptions ..............................                                        E-23 E.5.7.3.1 E.5.7.3.! Elastom  Elastomeric    eric Seals ......................................
                                                                                          ...................................... E-23 E.5.7.3.2 E.5.7.3.2 M            etallic Seals .........................................
Metallic                  .........................................                                          E-23 E.5.7.3.3 Accident Accident CategoryCategory Release Release Fractions Fractions for Tritium, Nontarget-Bearing Components, Nontarget-Bearing                Components, and Crud ...................  ................... E-24          E-24 E.5.7.3.4          Accident E.5.7.3A Accident Category          Category        Severity      Fractions        .......................
Fractions ....................... E-26                      E-26 E.5.8      Nonradiological Risk (Vehicle-Related)
Nonradiological                    (Vehicle-Related) .......................................
                                                                                        .......................................                                      E-26 E-26 E.6  R isk A Risk    nalysis Results Analysis  Results ............................................................
                                          ............................................................ E-26                                                          E-26 E.7  Conclusions and Long-Term                                                                ..................................
Long-Term Impacts of Transportation ..................................                                                                E-32 E-32 E .7.1 E.7.!      C onclusions ............................................................
Conclusions          ............................................................ E                                                                -32 E-32 E.7.2      Long-Term Long-Term Impacts of Transportation                              ........................................
Transportation ........................................                                                    E-32 E-32 E.8  Uncertainty and Conservatism Uncertainty          Conservatism in Estimated Impacts ....................................
                                                                                              ....................................                                  E-33 E-33 E.8.1 E.8.!      Uncertainties in TPBAR Uncertainties            TPBAR and Radioactive  Radioactive Waste Inventory                              Characterization .......
Inventory and Characterization                          ....... E-34 E.8.2      Uncertainties in Containers, Uncertainties            Containers, Shipment Capacities,      Capacities, and Number of Shipments            Shipments .................... E-34 E.8.3      Uncertainties in Route Determination Uncertainties                                                  .........................................
Determination .........................................                                                      E-34 E.8.4 E.8A      Uncertainties in the Calculation Uncertainties                                                                            .............................
Calculation of Radiation Doses .............................                                                      E-34 E .9 E.9  References .....................................................................
References    .....................................................................                                                                          E -37 E-37 xv XV
 
Table of Contents Table          Contents APPENDIX F APPENDIXF THE PUBLIC SCOPING PROCESS .........................................................
                                                  .........................................................                                                          F-1 F-l F.1 F.l  Scoping Process        D escription .........................................................
Process Description                  ........................................................                                                      F-i F-l F.2  Scoping Process        R esults ...........................................................
Process Results              ...........................................................                                                          F-2 F.3  Comment Conunent Disposition and Issue Identification      Identification ..........................................
                                                                                          ..........................................                                  F-3 F A F.4  References R eferences ......................................................................
                        . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............. F-13 APPENDIX G APPENDIXG ENVIRONMENTAL JUSTICE ANALySIS ENVIRONMENTAL                          ANALYSIS ...............................................*...
                                                                .................................................                                                .G-1 G-l G .1 G.l  Introduction ....................................................................
                        ....................................................................                                                                        G -1 G-l G .2 G.2  D efinitions and Approach .........................................................
Definitions                              .........................................................                                                        G G-l-1 G .3 G.3  M  ethodology ...................................................................
Methodology.      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. G    G-2-2 G .3.1 G.3.1    Spatial    Resolution ........................................................
Spatial Resolution                ........................................................                                                        G G-2-2 G.3.2 G .3.2    Population Projections ....................................................
                                                              ....................................................                                                  G-3 G -3 G.4 GA  Environmental Environmental Justice Justice Assessment ..................................................
                                                                    ..................................................                                              G-4 G .5 G.S  R esults for the Sites ...............................................
Results                        .............................................................                                      .............          G G-4-4 G.S.l G .5.1    WattsBarSite W atts Bar Site ...........................................................
                                              ...........................................................                                                            G-4 G -4 G .5.2 G.S.2    Sequoyah Site ...........................................................
Sequoyah                  ...........................................................                                                            G -4 G-4 G .5.3 G.S.3    Bellefonte Site ..........................................................
Bellefonte                  ..........................................................                                                          G -4 G-4 G.6  Results Results for Transportation Transportation Routes      Routes...................................................
                                                                  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. G-14 G-14 G .7 G.7  Other Other Environm Environmental                            . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. G-14 Impacts .....................................................
ental Impacts                                                                                                                        G-14 G .8 G.8  Cum  ulative Impacts Cumulative    Impacts ............................................................
                                        ............................................................ G-IS                                                          G -15 G.9 G .9 References.
R              . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. G-17 eferences ....................................................................                                                                          G -17 APPENDIX APPENDIXHH CONTRACTOR DISCLOSURE STATEMENT CONTRACTOR                              STATEMENT ...............................................
                                                                          ...............................................                                          H-1 H-l xvi
 
LIST OF FIGURES Figure 1-1  Schematic of Process for Producing Producing Tritium in CLWRs ..................................
                                                                                                  ..................................                                    1-3 Figure 1-2  Locations of Candidate Candidate CLWRs CL WRs for Tritium                  Production ..................................
Tritium Production                  ..................................                                    1-5 Figure 1-3  Nuclear Nuclear Weapons Stockpile Memorandum and Plan Process ...............................      ...............................                                1-7 Figure 1-4  Diagram  of a Modern Diagram ofa    M odem Nuclear Weapon    W eapon ...............................................
                                                                    ...............................................                                                    1-8 Figure Figure 2-1  Estimated Tritium Inventory and Reserve      Reserve Requirements                    ..................................
Requirements ..................................                                                2-2 2-2 Figure Figure 3-1  Typical Pressurized Pressurized Water W ater Reactor Schematic                    ..........................................
Schematic ..........................................                                                      3-3 Figure Figure 3-2  Typical Fuel Assembly                                  ................................................
Assembly Cross-Sections ................................................                                                                    3-4 Figure Figure 3-3  Typical TPBAR Assembly              .........................................................
Assembly .........................................................                                                                      3-5 3-5 Figure Figure 3-4                                              .....................................................
Sketch of TPBAR Components .....................................................                                                                          3-6 3-6 Figure Figure 3-5  W atts Bar N Watts        uclear Plant ..........................................................
Nuclear            ..........................................................                                                                3-14 3-14 Figure Figure 3-6  Sequoyah Nuclear Nuclear Plant ...........................................................
                                          ........................................................                                                                  3-18 3-18 Figure Figure 3-7  Bellefonte N  uclear Plant ..........................................................
Nuclear            ..........................................................                                                                3-21 Figure Figure 4-1  Location of the W Watts atts Bar Nuclear Nuclear Plant Site ...........................................
                                                                              ...........................................                                              4-4 Figure Figure 4-2  W atts Bar Nuclear Watts      Nuclear Plant Site .......................................................
                                                    ....................................................... 4-5 Figure Figure 4-3  National National Wetlands Inventory Inventory Map of Watts Bar Nuclear Plant Site Vicinity ...................                        ... : .............. 4-16          4-16 Figure Figure 4-4  Racial Racial and Ethnic Composition of the Minority        Minority Population Population Residing Within 80 Kilometers (50 Miles) of Watts W atts Bar 1 Projected for the Year            Year 2025 2025 ..................................
                                                                                              ..................................                                    4-22 Figure Figure 4-5 Low-Income Households Residing  Residing Within 80 Kilometers      Kilometers (50 Miles) of Watts Bar 1 (1990)                        (1990) .....  ..... 4-22 Figure 4-6 Transportation Routes Figure                      Routes in the Vicinity Vicinity of the Watts Bar Nuclear Plant Site ...................                ...................                  4-25 Figure Figure 4-7 Location of the Sequoyah Nuclear Plant Site ..........................................
                                                                              .......................................... 4-32                                        4-32 Figure Figure 4-8 Sequoyah Sequoyah Nuclear Nuclear Plant Site .......................................................
                                                  .......................................................                                                            4-33 Figure Figure 4-9 Wetlands Map of the Sequoyah Nuclear      Nuclear Plant Site Vicinity                    ...............................
Vicinity ...............................                                      4-43 Figure Figure 4-10 Racial Racial and Ethnic Composition Composition of the Minority Population          Population Residing in Counties          Counties Within 80 Kilometers (50 (50 Miles) of the Sequoyah Nuclear Plant Projected                  Projected for the Year 2025 ..........              ..........      4-49 Figure Figure 4-11 Low-Income Households Residing Residing Within 80 Kilometers      Kilometers (50 Miles)      Miles) of the Sequoyah  Sequoyah N uclear Plant (1990)
Nuclear        (1990) .............................................................
                                    .............................................................                                                                    4-49 Figure 4-12 Transportation Routes Routes in the Vicinity Vicinity of the Sequoyah  Sequoyah Nuclear Plant Site ....................    ....................                  4-51 Figure Figure 4-13 Location of the Bellefonte Bellefonte Nuclear Nuclear Plant Site ..........................................
                                                                              .......................................... 4-59                                        4-59 Figure 4-14 Bellefonte Bellefonte Nuclear Plant Site ......................................................
                                                    ......................................................                                                            4-60 Figure 4-15 Wetlands Map of the Bellefonte Nuclear Plant Site Vicinity                                  ..............................
Vicinity ..............................                                      4-70 4-70 Figure 4-16 Racial and Ethnic Composition Composition of the Minority Population          Population Residing Residing in Counties Counties Within 80 Kilometers (50 Miles) of the Bellefonte Nuclear Plant Projected for the Year                                      Year 2025 .........  ......... 4-80 4-80 Low-Income Households Figure 4-17 Low-Income    Households Residing Within 80 Kilometers (50 Miles) of the Bellefonte
          .N uclear Plant (1990)
Nuclear        (1990) .............................................................
                                    .............................................................                                                                    4-80 4-80 Figure 4-18 Transportation Transportation Routes in the Vicinity Vicinity of the Bellefonte Bellefonte Nuclear Nuclear Plant Site ...................
                                                                                                                                ...................                  4-85 4-85 Figure 4-19 Jackson County County Tax Revenue            Distributions by Recipient Revenue Distributions                                                          .........................
Recipient FY 1997 .........................                                          4-86 4-86 Figure 5-1  Staffing for Completion and Operation of Bellefonte 1, Compared to No Action from First Y ear of Construction ........................................................
Year                        ........................................................                                                              5-58 5-58 Figure 5-2  Scottsboro School Board Projected Budget, Completion of Bellefonte                        Bellefonte 1 Versus the No Action A lternative (FY 1999-2002)
Alternative        1999-2002) ......................................................
                                                    ......................................................                                                            5-62 5-62 Figure 5-3  Jackson Jackson County School Board Projected Budget, Completion                Completion of Bellefonte 1I Versus the No Action Alternative Alternative (FY 1999-2002) 1999-2002) .............................................
                                                                        .............................................                                                5-62 xvii xvii
 
List of Figures Figures Figure 5--4 5-4  Staffing for Completion Completion and Operation  Operation of Bellefonte 1 and 2, Compared to No Action from                                    from First Y ear of Construction ........................................................
Year                          ........................................................                                                          5-64 5-64 Figure A-i A-I            ofUranium-235 Fission of  Uranium-235 Atom    Atom ....................................................
                                                          ....................................................                                                      A-3 Figure A-2  Critical        Reaction ..........................................................
Critical Chain Reaction.          . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. A-3 Figure A-3  Boiling W Boiling  Water ater Reactor Schematic                .................................................. A-6 Schematic ..................................................
Figure A-4 A--4  Pressurized  W ater Reactor Schematic ...............................................
Pressurized Water                                        ...............................................                                                A-6 Figure A-5 A-5  Representative Representative Four-Loop Reactor                                                ....................................
Reactor Coolant System ....................................                                                        A-7 Figure A-6  Typical Typical 17 x 17 Reactor Fuel Assembly.                        . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. A-9 Assembly .............................................
Figure A-7  Representative Representative Reactor Reactor Control Element Assembly                              ...................................
Assembly ...................................                                              A-10 A-lO Figure A-8  General General Arrangement Arrangement of a Possible Possible ReactorReactor Core Fuel      Fuel Loading Pattern ......................................                A-il A-II Figure A-9  Typical Typical Fuel Transfer Transfer System .....................................................
                                                          . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. A-13A-13 Figure A-10 A-IO  TPBAR TPBAR Transverse Cross                              ................................................
Cross Section ................................................                                                              A-19 A-19 Figure A-1 A-III TPBAR TPBAR Longitudinal Cross Section ................................................
                                                                      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. A-20 A-20 Figure A-12  TPBAR                                        ...................................................
TPBAR Hold-Down Assembly ...................................................                                                                          A-21 Figure E-i E-l  Typical Typical Type B Legal Weight Track Shipping Cask ....................................
                                                                                                ....................................                                E-5 Figure E-2  Typical Typical Type B Rail Shipping Cask .................................................
                                                                    .................................................                                                E-6 Figure E-3  Standards for Transportation Transportation Casks .................................................
                                                                    .................................................                                                E-8 Figure E-4 E--4  Overland Overland Transportation Transportation Risk Assessment                        ...........................................
Assessment ...........................................                                                      E-11 E-ll Figure E-5  Representative                                            ..............................................
Representative Overland Truck Routes ..............................................                                                                    E-14 E-14 Figure E-6  Conditional Conditional Probability Matrix for Modal Study Truck Cask .............................        .............................                          E-20 Figure E-7  Conditional Conditional Probability Matrix for Modal Study Rail Cask ..............................      ..............................                          E-20 Figure E-8  Conditional Conditional Probability Matrix for Truck Cask Transported by Rail .......................                    .......................                  E-21 Figure E-9  Accident Accident Matrix for Truck and Rail Casks Using Elastomeric                                                    .......................
Elastomeric Seals .......................                                  E-24 Figure E-10 E-IO  Accident Accident Matrix for Truck and Rail Casks Using Metallic                                              ..........................
Metallic Seals ..........................                                  E-24 Figure F-i F-l  N EPA Process ..................................................................
NEPA              ..................................................................                                                                    F-i F-l Figure F-2  Public Scoping Meeting Locations Locations and Dates                  (1998) ....................................
Dates (1998)            ....................................                                F-2 Figure G-1 G-l  Racial Racial and Ethnic Ethnic Composition of the Minority Population              Population Residing Within 80 Kilometers              Kilometers (50  Miles) of the W (50 Miles)              atts Bar Site ...................................................
Watts                      ...................................................                                                    G -5 G-5 Figure G-2 0-2  Minority Minority Population Population Residing Within 80 Kilometers (50 Miles) of the Watts Bar Site .........                                          .........      G-6 G-6 Figure G-3 G-3  Minority Population Population Residing Within 16 Kilometers (10                          (10 Miles) of the Watts Bar              Bar Site .........
                                                                                                                                                    .........      G-6 G-6 Figure G-4 G--4  Low-Income Low-Income Populations Residing Within 80 Kilometers                  Kilometers (50      (50 Miles) of the Watts Bar Site .....                ..... G-7 Figure G-5 0-5  Low-Income Low-Income Population Residing Within 16 Kilometers (10                                  (10 Miles) of the Watts Bar Site ......              ...... G-7 Figure G-6  Racial Racial and Ethnic Ethnic Composition of the Minority Population              Population Residing Within          Within 80 Kilometers Kilometers (50  Miles) of the Sequoyah Site ...................................................
(50 Miles)                                      ...................................................                                                    G -8 G-8 Figure G-7  Minority Minority Population Residing Within 80 Kilometers (50 Miles) of the Sequoyah                                    Sequoyah Site ..................      G-9 Figure G-8 0-8  Minority Minority Population Population Residing Within 16 Kilometers (10                          (10 Miles) of the Sequoyah    Sequoyah Site ..................      G-9 0-9 Figure G-9 G-9  Low-Income Low-Income Population Residing Within 80 Kilometers (50 Miles) of the Sequoyah                                        Sequoyah Site .....            G-10
                                                                                                                                                          ..... G-lO Figure G-10 G-lO  Low-Income Low-Income Population Residing Within 16 Kilometers (10                                  (10 Miles) of the Sequoyah    Sequoyah Site .....            G-11
                                                                                                                                                          ..... G-ll Figure G-1I G-ll  Racial Racial and Ethnic Composition of the Minority Population                Population Residing Within 80 Kilometers (50  M iles) of the Bellefonte Site ..................................................
(50 Miles)                                      ..................................................                                                    G-11 0-11 Figure G-12 G-12  Minority Minority Population Residing Within 80 Kilometers            Kilometers (50 Miles) of the Bellefonte            Bellefonte Site ........
                                                                                                                                                    ........      G-12 G-12 Figure G-13  Minority Minority Population Residing Within 16 Kilometers            Kilometers (10      (10 Miles) of the Bellefonte  Bellefonte Site ........
                                                                                                                                                    ........      G-13 G-13 Figure G-14  Low-Income Population Residing Within 80 Kilometers Low-Income                                                          Kilometers (50 Miles)      Miles) of the Bellefonte Bellefonte Site .....  ..... G-13 G-13 Figure G-15  Low-Income Population Residing Within 16 Kilometers Low-Income                                                          Kilometers (10      (10 Miles)
Miles) of the Bellefonte Bellefonte Site .....  ..... G-14 G-14 xviii
 
LIST OF TABLES    TABLES Page Page Table 3-1  Comparison Comparison of        TPBAR with Typical Burnable Absorber ofTPBAR                                                    Absorber Rod Characteristics Characteristics .................
                                                                                                                                            .................            3-6 Table 3-2  CLWR CLWR Tritium Production Program          Program Reasonable                  Alternatives .............................
Reasonable Alternatives                    .............................                          3-12 3-12 Table 3-3  General General Design Specifications Specifications of Watts Bar Nuclear Plant Unit 1 ..........................            ..........................                      3-13 3-13 Table 3-4  Annual Liquid Releases Releases to the EnvironmentEnvironment from Operation      Operation of Watts Bar 1 ..................  ..................              3-15 3-15 Table 3-5  Summary of Annual Watts Bar              Bar 1 Gaseous Gaseous Emissions ....................................
                                                                                                  ....................................                                  3-16 3-16 Table 3-6  Summary of Annual Watts Bar              Bar 1I Waste and Spent        Spent Fuel Generation Rates ...................      ................... 3-16          3-16 Table 3-7  General General Design Specifications Specifications of Sequoyah    Sequoyah 1 or Sequoyah    Sequoyah 2 .............................
                                                                                                                .............................                          3-17 3-17 Table 3-8  Annual Liquid Releases Releases to the EnvironmentEnvironment from Operating Sequoyah                Sequoyah 1 or Sequoyah 2 ........                ........ 3-19 3-19 Table 3-9  Summary of Annual Sequoyah    Sequoyah I1 or Sequoyah  Sequoyah 2 Gaseous Emissions ........................    ........................                    3-20 3-20 Table 3-10 Summary of Annual Sequoyah    Sequoyah 1 or Sequoyah 2 Waste and Spent Fuel Generation                              Generation Rates ........      ........ 3-20 3-20 Table 3-11 Summary Summary of Resources Resources Required to Complete Construction              Construction of Bellefonte  Bellefonte 1 or B ellefonte 1 and 2 ...............................................................
Bellefonte                  ............................................................... 3-24 Table 3-12 General Design Specifications Specifications of Bellefonte  Bellefonte 1 or Bellefonte 22 .............................
                                                                                                                  .............................                        3-24 Table 3-13 Summary Summary of Environmental Consequences      Consequences for the CL              CLWR  WR Reactor Alternatives                      ...............
Alternatives ...............                    3-31 Table 3-14 Surmnary Summary Comparison Comparison of Environmental Environmental Impacts Between CLWR Reactor                              Reactor Alternatives and the A  PT ...................................................................
APT      ...................................................................                                                                        3-40 Table 4-1  Comparison of Baseline Baseline Watts Bar 1 Ambient                                Concentrations with Most Stringent An1bient Air Concentrations                                          Stringent Applicable Applicable Regulations Regulations and Guidelines ...............................................
                                                                            ...............................................                                                4-7 Table 4-2 4-2  Annual Radioactive Gaseous Emissions at Watts Bar 1 ...................................    ...................................                                  4-9 Table 4-3 4-3  Summary of Surface Water Quality Monitoring            Monitoring in the Vicinity      Vicinity of the Watts Bar Site ...........          ...........      4-12 4-12 Table 4-4 4-4  Annual Chemical and Radioactive  Radioactive Liquid Effluents      Effluents Released to the Environment from Operation Operation of W      atts Bar Watts    B ar 1I .........................................................
                                                    .........................................................                                                            4-13 Table 4-5 4-5  Listed Threatened Threatened or EndangeredEndangered Species Potentially    Potentially On or Near the Watts Bar Site ...........                    ...........      4-18 4-18 Table 4-6 4-6            Demographic Characteristics General Demographic              Characteristics of Spring City, Rhea County, and the Watts Bar I of Influence 1990 .........................................................
Region ofInfluence                      .........................................................                                                            4-20 Table 4-7 4-7  Population Population Distribution by Ethnic        Ethnic Group in Spring City, Rhea County,                    County, and the Watts Bar 1 Region ofInfluence of Influence (1990  (1990 U.S. Census) ..............................................
                                                                            ..............................................                                              4-21 Table 4-8 4-8  Income Income Data Summary for Spring          Spring City and Rhea County (1989)                  (1989) ...........................
                                                                                                                    ........................... 4-23 Table 4-9 4-9  Sources        Background Radiation Sources of Background              Radiation Exposure to Individuals in the Vicinity                      Vicinity of the W  atts Bar Watts  Bar Site ..................................................................
                                ..................................................................                                                                      4-24 Table 4-10 4-10 Annual Doses to the General  General Public During 1997 From Normal                      Normal Operation Operation at Watts Bar 1,                1, (Total Effective (Total  Effective D      ose Equivalent) ..................................................
Dose                            .................................................. 4-26 Table 4-11 4-11 Annual Annual Worker Doses from Normal Operation                Operation of Watts Bar 1 During 1997                      1997 ..................
                                                                                                                                        ..................              4-26 Table 4-12 4-12 Annual W    aste Generation Waste    Generation at W            atts Bar 1 .............................................
Watts                  .............................................                                              4-28 Table 4-13 4-13 Comparison of BaseIine Baseline Sequoyah Sequoyah 1I and 22 Ambient      Ambient Air Concentrations Concentrations with Most Stringent            Stringent Applicable Regulations                                          ..............................................
Regulations and Guidelines ..............................................                                                                      4-35 Table 4-14 4-14 Annual Annual Radioactive Gaseous Emissions from Sequoyah                      Sequoyah I1 or Sequoyah 22 ....................  ....................                4-37 4-37 Table 4-15 4-15 Sumrmary SUlmnary of Surface Water Quality Monitoring in the Vicinity of the Sequoyah                                      Sequoyah Nuclear Plant Site ...............................................................
Nuclear                    ............................................................... 4-39                                                              4-39 Table 4-16 4-16 Annual Annual Chemical and Radioactive Liquid Effluents from Operation of Sequoyah I1 or                                                        or Sequoyah 22 ..........
                                                    ......................................................... 4-40 Table 4-17 Listed Listed Threatened Threatened or Endangered Endangered Species Potentially      Potentially On or Near the Sequoyah            Sequoyah Nuclear  Nuclear P lant Site Plant  S ite ......................................................................
                        ..... ...... ..... ...... ...... ... ..... ...... ...... ...... .... ..... ..... .. 4-45                                                        4 -4 5 Table 4-18 General    Demographic Characteristics General Demographic              Characteristics of Soddy        Soddy Daisy, Hamilton County, and the Sequoyah Region of    Influence (1990 ofInfluence        (1990 U.S. Census)                ..............................................
Census) ..............................................                                                      4-47 Table Table 4-19 Population Distribution Distribution by Ethnic Group in Soddy                  Soddy Daisy, Hamilton County,            County, and the      the Sequoyah Region Region of        Influence (1990 ofInfluence          (1990 U.S. Census) .....................................
                                                                                                .....................................                                    4-48 Table Table 4-20 Income Income    Data    Summary Summary          for  Soddy      Daisy      and    Hamilton          County      (1989)        ......................
(1989) ...................... 4-50                    4-50 Table 4-21 Sources of Background Radiation Exposure              Exposure to Individuals in the VicinitY              Vicinity of the Sequoyah  Sequoyah N uclear P Nuclear      lant Site ...............................................................
Plant            ...............................................................                                                                  4-52 4-52 XiX xix
 
Tables List of Tables Table 4-22 Annual Doses to the General    General Public During 1992,            1997 from Normal  Normal Operation Operation at Sequoyah Sequoyah 1I or Sequoyah Sequoyah 2 (Total Effective      Effective Dose Equivalent) .............................
                                                                                                                    .............................                                4-53 Table 4-23 Annual Worker Worker Doses from Normal Operation              Operation at Sequoyah I or Sequoyah              Sequoyah 2 During 1996 ......                  ...... 4-53 Table 4-24 Annual Waste Generation at Sequoyah          Sequoyah I1 and 2 ........................................
                                                                                          ........................................                                              4-55 Table 4-25 Comparison of Baseline Baseline Bellefonte I and 2 Ambient Air Concentrations                Concentrations With the Most                Most Stringent Stringent Applicable Applicable Regulations and Guidelines          Guidelines .......................................
                                                                                              .......................................                                            4-63 Table 4-26 Summary Summary of Surface Water Quality Monitoring in the Vicinity                              Vicinity of the Bellefonte Bellefonte Nuclear P lan t SSite Plant    ite ......................................................................
                          ..... ...... ..... ... ...... ...... ........                                      ...... ...... ..... ...... ... .....                              4 -65 4-65 Table 4-27 Public and Industrial Industrial Surface Water Supplies From the Tennessee                      Tennessee River    River Near Bellefonte Bellefonte .......  .......      4-66 Table 4-28 Federally and State-Listed Threatened    Threatened or Endangered Endangered Species    Species On or Near the Bellefonte Nuclear Plant Site ...............................................................
Nuclear                      ...............................................................                                                                        4-74 Table 4-29 4-29 Unemployment PercentagesPercentages in Jackson County                        (1991-1997) .............................
County (1991-1997)                      .............................                                4-76 Table 4-30 Per Capita and Household Income in the City of Scottsboro and Jackson                                      Jackson County (Estim ates for 1997)
(Estimates            1997) .............................................................
                                              .............................................................                                                                      4-77 Table 4-31 Industrial Occupation Occupation Distribution Distribution for Jackson County, Alabama, and the United States (1996      (1996 Main Occupations as a Percentage of Total Employment                            Employment Only) .....              ..... 4-77 4-77 Table 4-32 General Demographic Demographic Characteristics Characteristics of the Bellefonte Nuclear Plant Site Region of                                        of Influence and Jackson County Influence                          County ((1990                            .........................................
1990 Census) .........................................                                                            4-78 Table 4-33 4-33 Population Distribution by Race and Hispanic Origin in Jackson County,                                      County, the Bellefonte Nuclear Plant Site Region of Influence, and the United States .............................            .............................                                4-79 4-79 Table 4-34 4-34 Scottsboro Scottsboro School System Breakdown by Academic Year (1991-1998)                                                          .....................
(1991-1998) .....................                                  4-82 4-82 Table 4-35 Fire Protection Services Available    Available in the City of Scottsboro,    Scottsboro, Jackson County, and the                      the Bellefonte Nuclear Plant Site Region of Influence (April 1998) ...........................                  ...........................                              4-84 4-84 Table 4-36 Jackson County Revenue  Revenue Distributions by Recipient (Selected                  (Selected Recipients Only) and Tax and Fee Revenue Revenue Sources, Fiscal Year              Year 1997 (October (October 1996 Through September            September 1997)    1997) .........
                                                                                                                                                                .........        4-87 4-87 Table 4-37 Sources        Radiation Exposure to Individuals Sources of Radiation                                  Individuals in the Vicinity of the Bellefonte Nuclear                      Nuclear P lant SSite Plant    ite ......................................................................
                          .. .... ....... ...... .........                            ........          ...... ... ...... ..... ..... .... .....                                4 -88 4-88 Table 5-1  Annual Radioactive Radioactive Gaseous Emissions at Watts Bar 1I ................................... ...................................                                      5-5 5-5
_Table 5-2  Annual Radioactive Radioactive Liquid Effluents at Watts Bar                        Bar I1 .....................................
                                                                                                    .....................................                                          5-6 5-6 Table 5-3  Tritium Concentration in the Tennessee        Tennessee River from Tritium Production              Production at Watts    Wat~s Bar I ..........  ..........        5-6 Table 5-4 5--4 Annual Radiological Radiological Impacts to the Public            Public from Incident-Free Incident-Free Tritium Production      Production O perations at Watts Operations          W atts Bar Bar I1 .........................................................
                                                      ......................................................... 5-10                                                            5-10 Table 5-5  Annual Radiological Radiological Impacts to Workers                                  Incident-Free Tritium Production Operations Workers from Incident-Free at W  atts B Watts      ar I1 ..................................................................
Bar      ..................................................................                                                                            5-10 5-10 Table 5-6  Radiological Impacts Radiological      Impacts to the Public from the Failure of                          of22 TPBARs at Watts Bar 1I .............            .............            5-11 5-11 Table 5-7  Radiological Impacts to Workers from the Failure Radiological                                                          Failure of2  of 2 TPBARs TPBARs at Watts Bar I1 ...............    ...............                5-11 5-11 Table 5-8  Design-Basis Accident Design-Basis        Accident Consequence Consequence Margin    Margin to Site Dose Criteria        Criteria at Watts Bar 1I .............    ............. 5-12        5-12 Table 5-9  Annual Accident Risks at W                  atts Bar 1I ...............................................
Watts                  ...............................................                                                      5-13 5-13 Table 5-10 Accident Frequencies Frequencies and ConsequencesConsequences at Watts Bar 1I .................................
                                                                                                          .................................                                    5-14 5-14 Table 5-11 Annual Annual      Radioactive        Gaseous        Emissions          at  Sequoyah Sequoyah I Sequoyah ...................... 5-18 1  or  Sequoyah          2    ......................                        5-18 Table 5-12 Annual Radioactive Liquid Effluent at Sequoyah I or Sequoyah                            Sequoyah 2 .........................
                                                                                                                            .........................                            5-20 5-20 Table 5-13            Concentration in the Tennessee Tritium Concentration                          Tennessee River from Tritium Production              Production at Sequoyah I or Sequoyah 22 ....................................................................
                              .................................................................... 5-20                                                                          5-20 Table 5-14 Annual Radiological Impacts      Impacts to the Public from Incident-Free Tritium Production Operations                                    Operations at Sequoyah I1 or Sequoyah 22 ......................................................
                                                            ...................................................... 5-23                                                        5-23 Table 5-15 Annual Radiological Impacts      Impacts to Workers from Incident-Free      Incident-Free Tritium Production                          Operations Production Operations at Sequoyah I1 or Sequoyah 22 ......................................................
                                                            ...................................................... 5-24                                                        5-24 Table 5-16 Radiological Impacts to the Public from the Failure of 2 TPBARs at Sequoyah 1I or 22 ..........
Radiological                                                                                                                                      ..........        5-25 Table 5-17 Radiological Radiological Impacts to Workers        Workers from the Failure      Failure of    of22 TPBARs at Sequoyah 1I or Sequoyah                Sequoyah 2 ...        ... 5-25 5-25 Table 5-18 Design-Basis Accident Consequence Margin to Site Dose Criteria at Sequoyah Design-Basis                                                                                                        Sequoyah I1 or      or Sequoyah 22 ....................................................................
                              ....................................................................                                                                              5-26 Table 5-19 Annual Annual Accident Risks at Sequoyah I1 or Sequoyah                  Sequoyah 2 ...................................
                                                                                                      ...................................                                        5-27 Table 5-20 Accident Accident Frequencies Frequencies and ConsequencesConsequences at Sequoyah      Sequoyah 1I or Sequoyah 2 .....................  .....................                      5-28 Table 5-21 General General Construction Construction Equipment Noise Levels ........................................
                                                                                          ........................................                                              5-34 5-34 xx XX
 
of Tables List o[Tables Table 5-22 Annual Nonradioactive Nonradioactive Gaseous Emissions from Bellefonte 1I or Both Bellefonte 1I and 2 D uring Construction During  C onstruction .............................................................
                                          .............................................................                                                                    5-37 5-37 Table 5-23 Annual Annual Air Pollutant Pollutant Concentrations Concentrations from Bellefonte      Bellefonte 1 and 2 During Construction ............                    ............          5-38 5-38 Table 5-24 Nonradioactive Gaseous Emissions from Bellefonte 1 and 22 During Operations                                                          ...............
Operations ...............                      5-39 5-39 Table 5-25 Annual Air Pollutant Pollutant Concentrations Concentrations from Bellefonte      Bellefonte I1 and 2 During Operations ..............                ..............            5-40 5-40 Table 5-26 Annual Radioactive Radioactive Gaseous Emissions      Emissions from Tritium    Tritium Production Production at Bellefonte 1I ..............      ..............            5-42 Table 5-27 Potential Changes to Water    Water Resources Resources from Bellefonte 1 or Bellefonte 1 and 2 ...............                          ...............            5-45 Table 5-28 Summary Summary of "Added" "Added" Inorganic Chemical Discharges              Discharges to Guntersville Guntersville Reservoir Reservoir from Operation of Bellefonte Operation      Bellefonte 1 and Bellefonte 1 and 2 .......................................
                                                                                          ....................................... 5-46                                      5-46 Table 5-29 Summary Summary of Observed Observed Trace                          Concentrations and Expected Trace Metal Concentrations                              Expected Trace                          Concentrations Trace Metal Concentrations in the Discharge Stream and at the Edge              Edge of the Mixing Zone from Operation                Operation of Bellefonte 1 and B  ellefonte 1 and 2 ...........................................................
Bellefonte                    ...........................................................                                                                  5-47 Table 5-30 Annual Radioactive Radioactive Liquid Effluents  Effluents from Tritium    Tritium Production at Bellefonte 1 ................            ................              5-50 5-50 Table 5-31 Tritium Concentration in the Tennessee      Tennessee River from Tritium Production              Production at BellefonteBellefonte 1 or Bellefonte Bellefonte 22 ....................................................................
                          ....................................................................                                                                            5-50 5-50 Table 5-32 Staffing Staffing for Completion Completion and Operation    Operation of Bellefonte                        ..................................
Bellefonte 1 ..................................                                                5-58 5-58 Table 5-33 Staffing For Completion And Operation of Bellefonte 1 and 2 ............................                ............................                            5-64 Table 5-34 Annual Radiological Radiological Impacts from Incident-Free    Incident-Free Tritium Production      Production Operations Operations at B ellefonte 1 ....................................................................
Bellefonte    ....................................................................                                                                            5-70 5-70 Table 5-35 Annual Radiological Radiological Impacts to Workers from Incident-Free              Incident-Free Tritium Production Operations at B ellefonte I1 ..............................................................
Bellefonte      ..................................................................                                                                    ".... 5-71 5-7 1 Table 5-36 Radiological Radiological Impacts to the Public from the Failure                  Failure of2  of 2 TPBARs at Bellefonte                            .............
Bellefonte 1 .............                      5-72 5-72 Table 5-37 Radiological Radiological Impacts Impacts to Workers from the Failure of2                        of 2 TPBARs at Bellefonte 1 ..............            ..............            5-72 Table 5-38 Cancer and Noncancer Noncancer Adverse Adverse Health Impacts from Exposure                Exposure to Hazardous Hazardous Chemicals Chemicals at Bellefonte Bellefonte I1 and 22 During Construction ............................................
                                                                              ............................................ 5-73 Table 5-39 Cancer and Noncancer Noncancer Adverse Health Impacts from Exposure to Hazardous                                  Hazardous Chemicals Chemicals at Bellefonte I and 2 During Normal Operation ..........................................
                                                                                    ..........................................                                              5-74 Table 5-40 Design-Basis Accident            Consequence Margin Accident Consequence                    Margin to Site Dose Criteria at Bellefonte 1 .............                    .............          5-77 5-77 Table 5-41 Annual Annual Accident Accident Risks at Bellefonte Bellefonte 1 ...............................................
                                                                        ...............................................                                                    5-78 1Table 5-42 Accident Accident Frequencies and Consequences  Consequences at Bellefonte 1 .................................
                                                                                                      ................................. 5-79 Table 5-43 Emergency Emergency Response Planning Guideline          Guideline Values for Hydrazine      Hydrazine and Ammonia ...............          ...............            5-81 Table 5-44 Summary    of Impacts Data for Release Summary ofImpacts                            Release Scenarios Scenarios at Bellefonte Bellefonte 1 ...........................
                                                                                                                    ........................... 5-81 Table 5-45 Total Amounts of Wastes  Wastes Generated Generated During Construction to Complete                  Complete Bellefonte Bellefonte 1 or        or B oth Bellefonte Both  B ellefonte I1 and 2 ..........................................................
                                                ..........................................................                                                                5-83 5-83 Table 5-46 Annual Waste W aste Generation at Bellefonte 1I .............................................
                                                                            .............................................                                                  5-84 5-84 Table 5-47 Summary Summary of Findings Findings on          NEPA Issues for License Renewal onNEPA                                            Renewal of Nuclear  Nuclear Power  Power Plants ..........    ..........      5-88 5-88 Table 5-48 Data for Number ofISFSIof ISFSI Cask Determination Determination for Each          Each Nuclear Power      Power Plant ................
                                                                                                                                            ................              5-94 5-94 Table 5-49 Environmental Environmental Impact of              ISFSI Construction ofISFSI                                ..........................................
Construction ..........................................                                                        5-95 5-95 Table 5-50 Environmental Environmental Impact of              ISFSI Operation ofISFSI        Operation ............................................
                                                                              ............................................ 5-98 Table 5-51 Environmental Environmental Impact of Accidents    Accidents at ISFSI .........................................
                                                                                    .........................................                                              5-101 5-101 Table 5-52 Materials Materials Required for TPBAR Production        Production ..........................................
                                                                                .......................................... 5-104                                          5-104 Table 5-53 Additional Fuel Requirements ....................................................
                                                            ....................................................                                                          5-105 Table 5-54 Risks of Transporting the Hazardous  Hazardous Materials .......................................
                                                                                        .......................................                                            5-106 5-106 Table 5-55 Sensitivity Analysis Analysis Key ParametersParameters ................................................
                                                                    ................................................ 5-109                                                5-109 Table 5-56 Sensitivity Sensitivity Analysis SummarySumnmary for a Single                                        .................................
Single Reactor Site .................................                                                  5-110 5-110 Table 5-57 Estimated    Accelerator Production Estimated Accelerator          Production of Tritium Carbon Dioxide Emissions ...................                      ...................                    5-116 5-116 Table 5-58 Accident  Impacts Accident Impacts        on  Involved        W  orkers      .............................................
Workers ............................................. 5-117                                                      5-117 Table 5-59 Cumulative Cumulative Impacts at the Watts Bar Nuclear Plant Site ................................    ................................                                  5-119 5-119 Table Table 5-60 Cumulative Cumulative Impacts at the Sequoyah    Sequoyah Nuclear Plant Site ................................
                                                                                                        ................................                                  5-120 Table Table 5-61 Announced Major Recent and Future Expansions              Expansions and New Industrial Facilities for Jackson County      (1997 and 1998) ..................................................
County (1997                              ...................................................                                                        5-121 Table Table 5-62 Cumulative Impacts at the Bellefonte  Bellefonte Nuclear Nuclear Plant Site ................................
                                                                                                        ................................                                  5-122 Table Table 5-63 Cumulative    Transportation-Related Transportation-Related Radiological      Radiological          Collective        Doses      and    Latent      Cancer Fatalities (1943 (1943 to 2035)          ...... .................................................
2035) .........................................................                                                                      5-124 5-124 Table Table 5-64 Summary of Environmental Environmental Impacts, Tritium Extraction              Extraction Facility                .........................
Facility .........................                                  5-124 Table Table 5-65 Resources Resources Consumed Consumed During Construction-Bellefonte Construction-Bellefonte 1I and 2 ...........................
                                                                                                                  ........................... 5-130                      5-130 xxi
 
List of    Tables o(Tables Table 6-1  Systematic Systematic Assessments of Licensee                      Performance Results for the Watts Bar Nuclear Licensee Performance                                                                Nuclear P ower Plant Power  P lant ....................................................................
                            ....................................................................                                                                            6-12 6-12 Table 6-2  Systematic Systematic Assessments of Licensee                      Performance Results for the Sequoyah Licensee Performance                                            Sequoyah Nuclear  Nuclear P ower Plant Power  P lant ....................................................................
                            .................................................................... 6-15                                                                      6-15 Table A-I A-l  Summary of Increase in Spent Fuel Generation          Generation From 40 Years            Years of Tritium              Production with Tritium Production Maximum Maximum Number ofTPBARs    of TPBARs ...................................................
                                                              ..................................................                                                          A-23 Table B-1 B-1  Federal Federal Environmental Environmental Statutes, Regulations,    Regulations, and Executive Orders              Orders .........................
                                                                                                                              . . . . . . . . . . . . . . . . . . . . . .. B-9B-9 Table B-2  Relevant Relevant DOE Orders Orders and NRC Guides        Guides ..............................................
                                                                              . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. B-13  B-13 C-I Table C-l  Exposure Exposure Limits for Members  Members of the Public and Radiation            Radiation Workers .........................
                                                                                                                              . . . . . . . . . . . . . . . . . . . . . .. C-7C-7 Table C-2  Nominal Health Effects CoefficientsCoefficients (Risk Factors) from Ionizing Radiation .................                      .................                  C-8 C-8 Table C-3  GENII Exposure Parameters Parameters to Plumes and Soil Contamination          Contamination (Normal    (Normal Operations)
Operations) .........  .........        C-16 C-16 Table C-4 C-4  GENII Usage      Parameters for Consumption of Terrestrial Usage Parameters                                                  Terrestrial Food ..........................
                                                                                                                    .......................... C-17                        C-17 Table C-5  GENII Usage      Parameters for Consumption Usage Parameters                    Consumption of Animal Products ..........................    .......................... C-17                        C-17 Table C-6  GENII Liquid Pathway Pathway Parameters                    ................................................
Parameters ................................................                                                                  C-18 C-18 Table C-7  Annual Increase Increase in Tritium Tritium Releases to the Environment at Each Site .......................                . . . . . . . . . . . . . . . . . . . .. C-19 C-19 Table C-8  Increases Increases in Tritium ReleasesReleases to the EnvironmentEnvironment from Two Failed TPBARs                    TPBARs in an 18-M onth Operating Cycle 18-Month                                  .......................................................
Cycle .......................................................                                                                    C-20 C-20 Table C-9  Average    (1996-1997) Annual Radioactivity Releases Average (1996-1997)                                                  Releases to the Air and Liquid          Liquid at Watts Bar        Bar 1I .......... C-20 C-20 Table C-10 C-I0  Average    (1995-1997) Annual Radioactivity Releases Average (1995-1997)                                                  Releases to the Air and Liquid          Liquid at Sequoyah 1I or Sequoyah 22 ..................................................................
                                  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. C            -2 1 C-21 Table C-lI C-II  Annual Radiological Radiological Impacts to the Public from Incident-Free              Incident-Free Tritium Production      Production Operations O perations at Watts                      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. C-24 W atts Bar 1I .........................................................                                                                      C-24 Table C-12 C-12  Annual Radiological Radiological Impacts to the Public from Incident-Free              Incident-Free Tritium Production      Production Operations at Sequoyah Operations        Sequoyah 1I or Sequoyah 2 ............................................
                                                                              ........... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. C-24            C-24 Table C-1 C-133 Annual Radiological Radiological Impacts to the Public from Incident-Free              Incident-Free Tritium Production      Production O perations at Bellefonte Operations        Bellefonte I1 .......................................................
                                                      .......................................................                                                              C-25 Table D-1 D-l  Reactor Design-Basis Design-Basis Accident Tritium        Tritium Inventory ......................................
                                                                                            . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. D-3 Table D-2  Reactor Reactor Design-Basis Design-Basis Accident Tritium        Tritium Source Source Term  Term Released to Environment. Environment ................ . . . . . . . . . . . .. D-3 Table D-3  Reactor Design-Basis Design-Basis Accident Frequency      Frequency Estimates for Large Break                              Loss-of-Coolant Break Loss-of-Coolant A ccident ......................................................................
Accident    ..... ........            ...... ..... ............                        ........        ...... ...... ... ..... ...... D                        -3 D-3 Table D-4  Nonreactor Design-Basis Design-Basis Accident Tritium Source Term                                      ................................
Term ................................                                          D-4 D-4 Table D-5  TPBAR Handling Handling Accident Accident Frequency                                      ......................................
Frequency Estimates ......................................                                                              D-5 Table D-6  Truck Transportation Cask Handling Accident Frequency                                        Estimates ........................
Frequency Estimates.                  . . . . . . . . . . . . . . . . . . . . . .. D-6D-6 Table D-7  Rail Transportation Transportation Cask Handling Accident Frequency                    Frequency EstimatesEstimates ..........................
                                                                                                                            . . . . . . . . . . . . . . . . . . . . . . .. D-7 Table D-8  Definition and Causes of Containment Failure                                                        ............................
Failure Mode Classes ............................                                                  D-10 D-IO Table D-9  Watts Bar I and Sequoyah Sequoyah I1 and 2 Core Inventory ....................................
                                                                                              ....................................                                        D- 11 D-II Table D-10 D-IO  Release Category Category Timing and Source          Source Terms                      .....................................
                                                                                            ..................................... D-12                                    D-12 D-1 I Table D-l1  Release Category        Frequencies and Related Category Frequencies                        Related Accident Accident Sequences Sequences for the Watts Bar and Sequoyah Nuclear Plants .......................................................
                                                    ............................... :........................ D-12                                                          D-12 Table D-12 D-12  Bellefonte Bellefonte  Nuclear      Plant    Reactor Reactor Core Inventory. Inventory .....................................
                                                                                            . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. D-    D-1414 Table D-13  Release Category Category Timing and Source Term                  Term ..........................................
                                                                                  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. D-15  D-15 Table D-14 D-14  Release Category Category Frequencies and the Related Accident                    Accident Sequences for the Bellefonte          Bellefonte N uclear Plant Nuclear  P lant .................................................................
                                .................................................................                                                                          D -15 D-15 Table D-1 D-155 NUREG/CR-4551                                                ..............................................
NUREG/CR-4551 Protection Factors ..............................................                                                                                D-D-1919 Table D-16  GENII-Generated GENII-Generated Reactor  Reactor Design-Basis Accident                          Consequences .........................
Accident Consequences                      .........................                          D-27 Table D-17 D-1 7 Reactor Reactor Design-Basis Design-Basis Accident Annual          Annual Risks ........................................
                                                                                      ........................................                                            D-27 Table Table D-18  Reactor Reactor Design-Basis Design-Basis Accident Consequences    Consequences Using the NRC Analysis Approach ...........                                  ...........          D-27 D-27 Table D-19  Reactor Reactor Design-Basis Design-Basis Accident Consequence      Consequence Margin      Margin to Site Dose Criteria        Criteria .................
                                                                                                                                        ................. D-28 Table Table D-20  GENII-Generated GENII-Generated Nonreactor                    Design-Basis Accident Nonreactor Design-Basis                      Accident Consequences Consequences ......................
                                                                                                                              ...................... D-29                  D-29 xxii
 
o(Tables List of  Tables Table D-21 D-21  Nonreactor Design-Basis Accident Annual        Annual Risks ......................................
                                                                                    ......................................                                            D-29 D-29 Table D-22  Nonreactor Nonreactor Design-Basis Accident Accident Consequences Consequences Using the NRC                  NRC Analysis Approach    Approach ......... .........        D-30 D-30 Table D-23  Nonreactor Nonreactor Design-Basis Accident Accident Consequence Consequence Margin      Margin to Site Dose Criteria ...............        ...............                D-30 D-30 Table D-24                                      Consequences ...........................................
TPBAR Handling Accident Consequences.                          . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..          D-33 D-33 Table D-25                                                                ...........................................
TPBAR Handling Accident Annual Risks ...........................................                                                                          D-33 Table D-26          Transportation Cask Handling Truck Transportation              Handling Accident                Consequences ............................
Accident Consequences.                        . . . . . . . . . . . . . . . . . . . . . . . . . ..      D-33 Table D-27  Truck Transportation Transportation Cask Handling Accident      Accident Annual Risks ............................
                                                                                                          ............................                                D-33 Table D-28  Rail Transportation Cask Handling Accident Consequences                                      .............................
Consequences .............................                                                D-34 D-34 Table D-29        Transportation Cask Handling Accident Annual Risks .............................
Rail Transportation                                                                        .............................                                  D-34 D-34 Table D-30  Beyond Beyond Design-Basis Accident Consequences Consequences ........................................
                                                                                ........................................                                              D-35 D-35 Table D-31  Beyond                                                              ........................................
Beyond Design-Basis Accident Annual Risks ........................................                                                                        D-36 D-36 Table D-32  Chemical Inventory Inventory at the Bellefonte Bellefonte NuclearNuclear Plant Site ................................
                                                                                                  ................................                                    D-37 D-37 Table D-33  Emergency Response Response Planning Guide Values        Values for Hydrazine Hydrazine and Ammonia      Ammonia .................
                                                                                                                                  .................                  D-39 D-39 Table D-34  Airborne Airborne Concentration Estimates for Ammonium Hydroxide (NH33)Release                                  )Release Scenarios ........          ........      D-42 Table D-35  Airborne Airborne Concentration Estimates for Hydrazine Release Scenarios                      Scenarios .......................
                                                                                                                      .......................                          D-42 Table D-36  Summary of    Impacts Data ofImpacts  Data for Release Scenarios    Scenarios .............
                                                                                                                . . . . . . . . . . . . . . . . . . . . . . . ..      D-42 Table E-l E-1  Potential Potential Shipping Shipping Routes Evaluated for the CL                CLWR                  .................................
WR EIS .................................                                              E-15 E-15 Table E-2 E-2  Irradiated Hardware Hardware and TPBAR Inventory    Inventory ...........................................
                                                                            ......... .' .................................                                            E-17 E-l 7 Table E-3 E-3  Release Release Fractions for Truck Truck and Rail Casks with No Prefailed                Prefailed TPBARs                  .....................
TPBARs .....................                                E-25 Table E-4 E-4  Release Release Fractions for Truck Casks with Two Prefailed TPBARs ...........................            ...........................                            E-25 Table E-5 E-5  Release Release Fractions for Rail Casks with Two Prefailed          Prefailed TPBARs                  ............................
TPBARs ............................                                          E-26 E-26 Table E-6 E-6  Accident Accident Category Category Severity Fractions ................................................
                                                                ................................................                                                      E-26 Table E-7 E-7  Radiological Radiological Risk Factors Factors for Single Shipments ........................................
                                                                                  ........................................                                            E-28 Table E-8 E-8  Nonradiological Nonradiological Risk Factors per Shipment ...........................................
                                                                            ...........................................                                                E-30 E-30 Table E-9 E-9  Risks of Transporting Transporting the Hazardous Hazardous MaterialsM aterials ........................................
                                                                                  ........................................                                            E-31 Table E-I0 E-10  Estimated Estimated Dose to Exposed Individuals During            During Incident-Free                  Transportation Conditions .......
Incident-Free Transportation                                              ....... E-32 E-32 Table E- 1I E-ll  Cumulative Cumulative Transportation-Related Transportation-Related RadiologicalRadiological Collective Doses and Latent Cancer                          Cancer Fatalities Fatalities (1943 (1943 to 2035)    ..........................................................
2035) ...................................                                            : ......................                        E-33 E-33 Table F-l F- -1                  Included in the EIS (In Scope) ..........................................
Already Included Issues Already                                                      .....................................                                            ..... F-4 F- 2 Table F-2  Issues Added to the Scope Scope of the EIS ............................................
                                                                .................................................                                                ..... F-5 F- -3 Table F-3  Issues Considered Considered to be Out of Scope or Raised But Not Analyzed ..........................            .....................                        ..... F-5 G-1 Table G-l  Minority Minority Populations Residing Residing Near Highway Routes from Potential Sites to the River Site ............................................................
Savannah River          ............................................................                                                                      G -16 G-16 Table G-2  Racial Racial and Ethnic Composition Composition of Minority Populations      Populations (2025)    (2025) Residing Within 1.6 Kilometers (1(1 Mile)
Mile)  Along      Highway Highway        from      Potential        Sites    to the Savannah River Site.            Site .......
                                                                                                                                                            . . . . .. G-16 G-16 Table G-3  Low-Income Populations ResidingResiding Near Highway Routes from Potential Sites to the River Site ............................................................
Savannah River          ............................................................                                                                      G -16 G-16 xxiii
 
ACRONYMS ACRONYMS AND                ABBREVIATIONS AND ABBREVIATIONS APT          Accelerator Accelerator Production Production of Tritium BEIR          Biological Biological Effects of Ionizing Radiation Radiation Bellefonte 1I Bellefonte Nuclear Bellefonte Nuclear  Plant  Unit  I1 Bellefonte 2  Bellefonte Bellefonte Nuclear Nuclear Plant Unit 2 CFR          Code Code of Federal Regulations Regulations CLWR CLWR          Commercial Commercial light water reactor reactor DOE          U.S. Department Department of Energy Energy EIS          Environmental Environmental impact statement statement EPA          U.S. Environmental Protection      Agency Protection Agency FR FR            Federal Federal Register Register HEPA          High-efficiency High-efficiency particulate particulate air air IAEA          International International Atomic Energy Agency Agency ISFSI        Independent Independent spent fuel storage installation installation NEPA                    Environmental Policy Act National Environmental            Act NPDES        National Pollutant Discharge Elimination      System Elimination System NRC          U.S. Nuclear Regulatory    Commission Regulatory Commission OSHA          Occupational Occupational Safety Safety and Health Administration Administration P.L.          Public Law Sequoyah I1
, Sequoyah      Sequoyah Nuclear Plant Unit I1 Sequoyah Sequoyah 2    Sequoyah Nuclear Plant Unit 2 START START        Strategic Arms Reduction Treaty TPBAR        Tritium-producing Tritium-producing burnable absorber absorber rod TVA          Tennessee Tennessee Valley Authority U.S.C.        United United States Code Watts Bar I1  Watts Bar Nuclear Plant Unit 1I Watts Bar 2  Watts Bar Nuclear Plant Unit 2 xxiii
 
APPENDIX APPENDIX A TRITIUM TRITIUM PRODUCTION PRODUCTION OPERATIONS-APPLICATION OPERATIONS-APPLICATION TO PRODUCTION OF TRITIUM TRITIUM IN COMMERCIAL  COMMERCIAL LIGHT WATER REACTORS This appendix addresses addresses the operation of a nuclear power    power plant in relation to its use as a tritium production production facility. The first section" section-provides a brief description of the nuclear processes necessary to operate        operate a fission reactor as a nuclear power plant. The next section addressesaddresses aspects of the reactor reactor design for conmnercial commercial light water reactors (CLWRs).
(CL WRs). The boiling water reactor and the pressurized water reactor are discussed. [Much                [Much of the information information in this section describes            Westinghouse reactors and fuel. Differences describes Westinghouse                                      Differences between between Westinghouse and other operating reactor Westinghouse                                reactor designs exist, but are not described in detail in this appendix.]
Descriptions of the refueling operations Descriptions                        operations at a nuclear facility and some environmentally environmentally relevant systems are included included in this appendix. Also, a description description of the nucleonics of tritium production  production and the structure of of tritium-producing burnable tritium-producing    burnable absorber rods (TPBARs) is presented. presented. Finally, the impacts of tritium production production on the CLCLWR WR fuel cycle are addressed.
A.I NUCLEAR A.I  NUCLEAR FISSION REACTORS REACTORS commercial electric power generation plants produce Most commercial                                                                electricity by converting heat into electricity.
produce electricity Typically, these plants heat water to generate steam, and the steam is used to drive a turbine generator. In the turbine generator, the energy energy in the steam is first converted converted into mechanical energy (spinning a turbine shaft),
"which
/which creates electricity by driving a generator. Fossil plants generate      generate heat through through a chemical chemical process-the burning of fuels such as natural gas or coal. When fossil fuels are burned, energy is released        released when the carbon in the fossil fuel combines with oxygen and bums. Commercial nuclear power                  power plants generate generate heat through the nuclear fission process. The nuclear nuclear fission process process occurs occurs at a subatomic subatomic level and involves the interaction interaction of some component component part of the atoms. The following section describes the fission process and the methods used to control this process in a nuclear reactor.
A.1.1 A.I.I                Fission Nuclear Fission Nuclear fission is a nuclear reaction reaction caused by the interaction between a free neutron and the nucleus of some atoms such as uranium uranium or plutonium. An atom consists of a relatively heavy, positively charged nucleus            nucleus with a number number of much lighter, negatively negatively charged charged particles particles in various various orbits around the nucleus. The nucleus is the central central part of the atom and consists of subparticles subparticles called callednucleons.
nucleons. There are principally principally two types ofof nucleons: neutrons, neutrons, which are electrically electrically neutral, and protons, which are positively charged. The number      number ofof protons in the nucleus is called the atomic number of that atom; all atoms of the same element have the same                  same number of protons. The total number  number of nucleons in the nucleus is called    called the mass number, designated designated as A.
Using X to represent the chemical symbol for the element and Z to represent the atomic number, each element                element is presented      X A, zX presented as XA,      A zXA, , or as "the chemical chemical name" name" - A. When atoms of an element      element differ in their number number ofof nucleons, nucleons,    they  are  called    isotopes  of that element.        For    example,    there  are three  isotopes  of  hydrogen:
hydrogen hydrogen with a single proton, deuterium with a single proton and a single neutron, and tritium with one proton              proton and two neutrons. Tritium Tritium can be expressed expressed as H  H33, lH H3,3, or hydrogen hydrogen 3. 3. Uranium has an atomic number number of  92; of92; that is, each each atom has 92 protons. The more common isotopes of uranium have either 143 or 146 neutrons.
These These two isotopes are designated as uranium-238,                      238      238 238 92U , or U uranium-238, 92U238,                  (approximately 99 percent (approximately      percent of all naturally naturally occurring occurring uranium),
uranium), and uranium-235,              235        235 235 92U , or U uranium-235, 92U235,                    (approximately 0.7 percent of naturally occurring (approximately uranium).
uranium). These are two of the three naturally  naturally occurring isotopes of uranium. In all, there are 18 known isotopes of uranium. Different isotopes of the same element          element behave identically chemically, but can have significantly significantly different nuclear characteristics.
characteristics.
A-1 A-J
 
Final Final Environmental Impact Statement for Environmental Impact          for the the Production Production of of Tritium Tritium in a Commercial CommercialLight Water Reactor Fission, as it occurs in a nuclear power plant, is the process by which the atoms of one element              element (such as uranium or plutonium) plutonium) are converted into atoms of lighter elements through the capture          capture of a neutron neutron and the "splitting" of the atom's nucleus subsequent "splitting"                        n'ucleus (Figure A-I).A-i). This results in the release of energy fission products products (atoms of the lighter elements), and neutrons. Not all isotopes of an element        element are capable capable of fission.
For uranium, only 4 of the 18 known isotopes  isotopes    are capable capable  of  fission. Of  these  four, the two  most important important isotopes are uranium-235 and uranium-233.
Fission Fission produces produces energy in the form of radiation and the kinetic energy of neutrons and fission products. Most of the energy released in the fission process is produced as the kinetic energy of the fission products. Lesser            Lesser amounts are released as the kinetic energyenergy of the neutrons neutrons and the energy energy produced produced from the radioactive radioactive decay decay of the fission products generated generated in the fission process. It is these forms of energy that are used to heat water in the core of a nuclear reactor.
Fission Fission of an atom is initiated with a single neutron,  neutron, but cancan result in the creation creation of many free neutrons (neutrons released from the nucleus). These neutrons can potentially initiate additional          additional fission reactions.
When exactly one neutron generated in a fission reaction initiates another fission reaction, the process is said to be a critical critical chain reaction. Criticality is an important characteristic of the nuclear    nuclear power reaction. When When a reactor is maintained in a critical critical state, the fission reaction proceeds proceeds at a constant rate. Since each fission fission reaction reaction releases approximately approximately the same amount of power, this condition will result in the reactor constantly      constantly operating at a steady power level. Therefore, it is important to control      control the number of neutrons available for fission. A critical chain reaction reaction is represented in Figure A-2. If a series of fission reactions    reactions produce, on on
: average, average, more than one neutron per fission that results in additional fissions, the process is said to be supercritical. In this state, the power power level of the reactor increases. If,      If, on the other hand, a series of fission reactions reactions produce, on average, less than one neutron per fission that results in additional fissions, the process        process is said to be subcritical. In this condition, the power    power level of the reactor drops until eventually eventually the fission process process stops.
A.1.2 A.1.2    Control of Nuclear Nuclear Reactions in aa ReactorReactor Fission is not the only reaction that can take place place when a neutron neutron interacts interacts with the nucleus nucleus of an atom. One of three interactions is possible:
ofthree                    possible: (1) the neutron is scattered-i.e.,
scattered-i.e., it essentially essentially bounces bounces off the nucleus (an elastic collision); (2)                  absorbed-the neutron and atom combine to make the next higher isotope (2) the neutron is absorbed-the                                                                      isotope of the element; or (3) the neutron neutron is absorbed and initiates initiates a fission reaction. These different different reactions are all important in the operation operation of a nuclear reactor. The first reaction-scattering-results reaction-scattering-results in a change in the energy of the free neutrons. The second reaction-absorption-results reaction-absorption-results in the loss of neutrons from the reactor.
Neutrons that are absorbed absorbed are not available to initiate fission reactions. As discussed      discussed in the preceding preceding paragraphs, paragraphs, the third reaction, reaction, fission, is the process by which energy is produced in a nuclear reactor and additional neutrons are produced produced to sustain the chain reaction. The likelihood of each of these interactions    interactions depends primarily on the following two factors: the energy of the free neutrons and the isotope of the atom being struck by the neutron.
In U.S. commercial commercial nuclear nuclear reactors, reactors, only uranium-235 uranium-235 is used as the nuclear fuel. Uranium-235 is found naturally naturally in uranium ore, although natural uranium consists predominantly predominantly of      uranium-238. Enriched uranium ofuranium-238.                uranium is used in U.S. commercial commercial nuclear powerpower plants. This is uranium in which the percentage percentage of  uranium-235 has ofuranium-235 been increased increased from the less than than 1I percent found in natural uranium to 3 to 5 percent. With approximately 100 metric metric tons of enriched uranium uranium (3 to 55 metric tons of uranium-235) uranium-235) in the reactor core,  core, a nuclear power power plant can operate        approximately 18 months without refueling. When the uranium operate for approximately                                                          uranium fuel is removed from from the reactor, much of the uranium-235 uranium-235 has been consumed, and the spent fuel contains approximately  approximately 1 percent percent uranium-235.
uranium-235.
A-2 A-2
 
Appendix A A-  Tritium  Production Operations-Application Tritium Production Operations-Applicationto Production Production o(Tritium of Tritium in Commercial CommercialLight Water    Reactors Water Reactors o
Fission Fission Product Product o
0 Neutron
                  ---8 --------              .        3 o                                        0 Neutron o
                                                              ~o Neutron Neutron Fission Product A-1 Fission of Uranium-235 Figure A-I                  U ranium-235 Atom  Atom 0 Neutron Neutron lost  to lost to o/0---... 0 ..                                                o~o absorption or leakage leakage
    /
0 Neutron Fission  ---..
Fission Neutron                                --..
C  Neutron lost to F~sion absorption or leakage L
absorption    leakage 0
Neutron Fission Neutron      \                                    o    Fission Neutron o-                                            o
                                                        ,/
0o absorption to Neutron lost to absorption or leakage c;;u;.. N""",
Fission Neutron
                                                          ~                o 0    Neutron lost to iNeutron  lost to absorption or leakage absorption or leakage Figure A-2 Critical Chain Reaction  Reaction A-3 A-3
 
FinalEnvironmental Final Environmental Impact Statement (or for the Production Productiono(Tritium of Tritium in in a Commercial CommercialLight Water Water Reactor The fission reaction reaction of a uranium-235 uranium-235 atom produces            approximately 2.5 neutrons. Neutrons produced in produces approximately fission are called fast neutrons. This refers  refers to the amount of kinetic energy associated  associated with the neutrons.
However, the fission process using uranium-235 works better          better with slower-moving slower-moving neutrons; that is, neutrons with significantly significantly less energy than than the neutrons neutrons produced produced from the fission process. These neutrons are called        called thermal neutrons. Neutrons are slowed via collisions with nuclei of atoms in the reactor                          In the collisions, reactor core. III energy energy is transferred transferred from the neutron to the atom it collides with. Generally, the closer in weight the neutron and atom are, the more energyenergy is transferred transferred to the atom. This transfer  transfer of energy from the neutron to other  other materials results in the slowing down of the neutron and is called moderation.            moderation. The moderator in U.S.
commercial commercial nuclear power plants,  plants, both pressurized and boiling  boiling water reactors, reactors, is ordinary ordinary light water.
[Because the moderator moderator used in U.S. commercial power reactors is light water and the fission reaction of                      of uranium-235 requires uranium-235              slower-moving (thermal) neutrons, these types of reactors requires slower-moving                                                                                thermal light reactors are referred to as thermal water reactors.] The hydrogen hydrogen in light water (with a nucleus containing containing a single proton) is nearly the same mass as the neutron. Collisions between neutrons  neutrons and the hydrogen atoms result in a relatively relatively rapid reduction in the energy of the neutrons. After many such collisions; the neutrons travel slow enough to be considered thermal neutrons.
Neutrons that are not lost from the reactor core between  between the time they are created as fast neutrons and the time they are moderated to thermal energy levels are available for fission. Neutrons are lost from the reactor              reactor core in several ways. Some are lost to leakage;leakage; that is, they they escape from the reactor reactor core and are captured captured in the reactor vessel or shielding. Some are absorbed  absorbed by material in the core without producing    producing fission. [Other
[Other materials in the core, including uranium-238 uranium-238 and core internal  internal structures, contribute to the absorption absorption ofof neutrons. Some neutrons that collide with uranium-235 atoms are absorbed                absorbed without resulting in fission.]
Specific Specific materials, materials, referred to as neutron poisons or simply poisons, are inserted              inserted in the reactor reactor core to intentionally intentionally capture neutrons neutrons and provide provide control over the fission rate by controllingcontrolling the number number of neutrons available available for fission. Such poisons, which are contained    contained in control and shutdown rods, are necessary    necessary for several several reasons. These devices devices control the rate of fission, thereby controlling the reactor power level. In                  In addition, these devices promptly terminate the fission when the rods are fully inserted            inserted into the reactor reactor core, thereby shutting down the reactor. The material used in control      control and shutdown rods is usually boron; a strong neutron absorber. In a collision between boron and a neutron, there is a high likelihood that the neutron will be absorbed into the boron, thus generating a different boron isotope. Therefore,        Therefore, the position of the control control rods determines the power level of the reactor by controlling controlling the number of neutrons available for fission.
Other poisons, called called burnable poisons (because during  during the time the fuel is in the reactor the burnable burnable poisons are used up and gradually become become less effective as neutron absorbers), are placed        placed in a reactor reactor core in addition addition to the poisons that are contained contained in the control and shutdown rods. These burnable        burnable poisons are necessary for a reactor reactor to operate operate over an extended period without loading fresh fuel into the reactor. Commercial        Commercial reactors typically typically load fresh fuel once every one to two years. As the power      power plant operates during this period, uranium-235 is burned up (consumed in the fission process or by neutron      neutron absorption). Since the source of the neutrons is devoured during the generation of power, it is necessary to start the fuel cycle with more uranium-235        uranium-235 than is necessary to sustain a critical reaction at the desired power level. Extra uranium-235        uranium-235 is loaded into the reactor reactor  core, necessitating necessitating  the use  of  burnable  poisons    to keep  the  power  at the  appropriate appropriate level. The reactor's reactor's power levels are controlled controlled  by using  either either  fixed  burnable burnable    poisons    (burnable    poison  rods) in areas that would would have higher than average free neutron flux, or by adding      adding boron (in the form of boric    boric acid) to the coolant in a pressurized pressurized Water water reactor. As the fuel bums it becomes    becomes less reactive reactive because because less fissionable uranium is available. Since Since there are fewer uranium-235 uranium-235 atoms per unit volume, fewer neutrons      neutrons are produced. With fewerfewer neutrons produced, the percentage percentage of neutrons lost to leakage leakage and absorption absorption must be reduced to maintainmaintain the number number of neutrons available for fission. Control of neutron          neutron loss due to absorption absorption is accomplished accomplished by  by reducing      concentration of boron in the coolant and reducing reducing the concentration                                        reducing the burnable                                    absorber burnable poison in the burnable absorber rods placed in the core.
A-4 A-4
 
Appendix A - Tritium Tritium Production ProductionOperations-Application Operations-Applicationto Production Productiono(Tritium of Tritium in Commercial Commercial Light Light Water Water Reactors Reactors A.2 COMMERCIAL COMMERCIAL NUCLEARNUCLEAR POWER PLANT    PLANT DESCRIPTIONS A.2.1 A.2.t      Commercial Nuclear Reactors Commercial In the United States, there are two types of commercial commercial nuclear power power plants currently currently in operation; the boiling boiling water reactor reactor and the pressurized pressurized water reactor.
The boiling water reactor reactor is a single-loop single-loop system. The fission energy in the core causes the water        water to boil in the reactor vessel. In the reactor vessel, above above the fuel, the steam passes through steam separators and steam        steam dryers, which are used to ensure ensure dry steam exits the reactor vessel, and travels through    through steam pipes to the turbine generator. The steam steam drives the turbine, which in tum  turn powers the generator generator to create electricity. As steam passes through through the turbine, it loses most of its energy but remains as steam as it passes          passes to the main condenser. In the main condenser, where additional heat is removed        removed by a cooling water system,  system, the steam condenses into water. This water is pumped back        back to the reactor vessel where it is forced through the reactor  reactor core and is again converted to steam. Figure    Figure    A-3  provides  a simplified representation representation of a boiling water water reactor. Boiling water water reactors typically operate at pressures pressures of approximately approximately 70 kilograms per square meter (1,000
. (1 ,000 pounds per square inch), and the temperature temperature of the water and steam in the reactor vessel approachesapproaches 288°C (550°F).
A pressurized water reactor uses a primary and secondary  secondary system to transfer heat from the reactor core to the turbine generator generator (see Figure Figure A-4 for a simplified representation                    pressurized water reactor). In the representation of a pressurized primary loop (the reactor reactor coolant system), water is forced up through the core, where it is heated      heated but does not boil. After the water exits the reactor vessel, it passes through steam generators. The number of steam                      steam generators used in the power plant depends  depends on the design and power  power level. Combustion Combustion Engineering and Babcock & Wilcox designs have        have two steam generators. Westinghouse designs can have from two to four steam generators.
generators. The    more  recent recent (larger (larger power plants) have four steam    steam generators (Figure A-5 is an isometric of a Representative Representative Reactor Four-Loop Primary System). Each steam generator          generator is connected to the reactor vessel in a separate, independent independent coolant coolant loop. In the steam generators, the primaryprimary coolant coolant heats water in the secondary secondary loop and converts the water to steam. After the primary coolant          coolant leaves leaves the steam generator, generator, it is pumped back to the reactor vessel where  where it is again heated heated in the reactor core. The primaryprimary system has a pressurizer, which which is used to control the pressure of the primaryprimary system. The pressurizer is connected connected to one of the primary loops and is located above the reactor core. It contains      contains heaters and sprays that are used to      to control the water level in the pressurizer pressurizer which, in tum,turn, controls the pressure of the primary primary coolant system.
The steam in the secondary loop (referred to as the steam and power        power conversion conversion system) is used to drive the turbine generator generator and produce electricity.
electricity. As in the boiling water reactor, after the steam passes through the turbine, it is condensed by cooling water  water in the main condenser. This cooled    cooled water is then pumped back to secondary side of the steam generator. A pressurized water reactor primary system operates the secondary                                                                                            operates at pressures pressures of about 158 kilograms per square meter (2,250 pounds            pounds  per  square    inch)  and  temperatures temperatures of up to 0
approximately    315'C approximately 315°C (600°F),(600  F), with  the  secondary secondary  loop  operating    at approximately 70 kilograms per square meter (1,000 (1,000 pounds per square inch) and 288°C (550°F).    (550'F).
In addition to the difference difference in the number of cooling cooling loops associated with a boiling water reactor and a pressurized water reactor, there are some differences pressurized                                        differences in the design of the reactor cores. In a pressurized pressurized water water reactor, the control and shutdown rods enter the reactor core from above. In a boiling water          water reactor, these rods are driven into the core (via a control control rod-driven rod-driven system) from the bottom of the core. Also, pressurizedpressurized water reactors use soluble neutron neutron poison (a boric acid solution) in the primary primary coolant to help control reactivity.
The concentration concentration of the soluble soluble neutron poison is controlled by the chemical  chemical and volume volume control control system.
Typically, the concentration of boric acid is highest at the beginning beginning of a fuel cycle, when there is fresh fuel in the core. A boiling boiling water reactor does not use this means of reactivity control.
A-5 A-5
 
Final Environmental Impact Final Environmental Impact Statement for (or the Production Productionof  Tritium in a Commercial Light Water o(Tritium                        Water Reactor Containment Steam Turbine Generator Generator Water                              I Reactor Vessel                                                                          Main Condenser Condenser Coolant Pump Figure A-3 Boiling Water Reactor Schematic        Schematic Secondary Cooling Loop r.====::::========::::;l Steam Generator Turbine Generator Primary Cooling Loop Primary Cooling I ====rT""'N=~=
Water t...='                        Cooling Water Water Pump                                      Secondary Cooling Water Pump .
Figure A-4 Pressurized Water    Water Reactor          Schematic Reactor Schematic A-6 A-6
 
Appendix A A - Tritium ProductionOperations-Application Tritium Production                          Productionof Operations-Application to Production  Tritium in Commercial o(Tritium                    Water Reactors Commercial Light Water Reactors Main Coolant Plant Reactor Figure A-5A-5 Representative Representative Four-Loop Four-Loop Reactor Coolant  Coolant System A.2.2 A.2.2    Reactor Core Description Description Fuel in a nuclear nuclear reactor is slightly enriched (up to 55 percent) uranium dioxide and is sealed in fuel rods. These approximately 3.6 to 3.9 meters (12 rods are approximately                          (12 to 13 feet) long and slightly less than half an inch in diameter.
Uranium, in the form of approximately approximately half-inch long cylindrical uranium  uranium dioxide pellets, is placed placed in a fuel rod and enclosed in a zircaloy zircaloy cladding. This cladding holds the pellets in position and provides a barrier          barrier against the release of fission products into the reactor coolant system.
A-7
 
Final  EnvironmentalImpact Statement Final Environmental          Statementfor for the Production Productionof Tritium Tritium in a Commercial        Water Reactor Commercial Light Water  Reactor In a pressurized pressurized water reactor, the fuel rods are collected in a fuel assembly      assembly that also contains contains several guide tubes and an instrumentation instrumentation channel (illustrated              Figure A-6).
(illustrated in Figure      A-6). The number of fuel rods in an assembly varies depending depending on the design of the reactor. Assemblies contain        contain fuel rods arranged arranged in 14 x 14, 14, 15 xx 15, 15, or 17 17 xx 17 arrays. The more recent reactors tend to use the 17 xx 17 array. The guide tubes denote the location                  location where the control rods of the control element assembliesassemblies are inserted into the reactor core. The fuel rods, guide      guide tubes, and the instrumentation instrumentation channel channel are held in place by a series of grids at several    several locations locations along the full length of the fuel assembly. In a reactor core, fuel assemblies are all structurally        structurally identical and have space reserved for control element assemblies. In the Westinghouse Westinghouse designs, between  between a third and a fourth of the fuel assemblies have have an associated associated control element assembly. In a large pressurized    pressurized water reactor, one with an      an electrical power power rating of over 1,000  1,000 megawatts, the core will consist of approximately approximately 200 fuel assemblies.
Of these, 50 to 60 fuel assembliesassemblies (depending (depending on the reactor design)    design) have associated control element  element assemblies. The remaining fuel assemblies assemblies may have burnable poison rods in the locations      locations used by control element assemblies, assemblies, or these locations may be empty. The burnable      burnable poison rods are rods with the same shape as the control and shutdown rods. However, they are not connected      connected to the control rod-driven rod-driven mechanism and cannot be removed from the reactor without shutting    shutting  it down    and  performing performing refueling activities that involve refueling removing removing the fuel assembly containing  containing the burnable burnable poison rods from the reactor core. Loading of the burnable burnable poison rods in these locationslocations for the assemblies without control element assemblies is dictated by the need to balance balance the power distribution in the core.
The control element element assembly consists of a collection collection of control rods and a spider assembly  assembly at the top of the rods. Figure A-7 shows a control element      element assembly for a Representative Representative Reactor Reactor 17 xx 17 fuel assembly design. The spider assembly is connected  connected to a control rod drive mechanism that            that can be used to move the control element assemblies. These assembliesassemblies serve two purposes-to limit the effects of reactivity      reactivity changes during power power operation and to shut down the reactor. The rods are made of a strong neutron absorber                        absorber (typically a boron or cadmium compound). When not needed, the control                control element element assemblies assemblies are pulled out of the core by their control rod drives. For reactivity reactivity control during operation, the control  control rod drive can be used to insert insert  the  rods  into  the  core at  a controlled controlled  pace. If needed,    the  rods  can  be rapidly rapidly inserted to shut down the reactor. It is possible possible for the control element assemblies to be inserted into the core using only the force of gravity as the driving force. When fully inserted, the poison in the control rods absorbs enough neutrons to make the nuclear reaction become    become subcritical, subcritical, shutting down the reactor.
As mentioned earlier, one of the ways in which neutrons are lost from the core and become                  become unavailable for fission is through leakage. The neutrons leak from the edges of the core, and those that do not hit an atom and reflect back into the core are lost. (Reactor core designs address this problem                                          incorporating problem of neutron loss by incorporating a neutron neutron reflector, a layer of water around the core.)    core.) Neutrons Neutrons generated generated at the center of the core are less likely to be lost through leakage leakage than those generated at the edge    edge of the core. Therefore, Therefore, in a reactor with no  no burnable burnable poisons and a uniformuniform fuel enrichment, the number of neutrons available for fission is greater at the center of the core. The centercenter of the core, which is about 33 meters (10      (10 feet) in diameter and 3.6 to 3.9 meters (12 (12  to 13  feet)  tall, has  a  higher  power    density power density    than  the areas    at the  top, bottom, and edge of the core.
Designers Designers of the reactor core control the distribution of power within              within the reactor reactor core by using burnable burnable poisons poisons and varied varied fuel rod enrichments.
enrichments. Figure Figure A-8 displays a possible arrangement arrangement of fuel assemblies assemblies within a reactor core. Other fuel loading patterns also exist, but the concept is fully expressed by a simple                    simple loading pattern pattern described described here. This figure shows fresh fuel (typically with the highest enrichment of uranium-235) loaded around the core  core periphery. Fuel in the center of the core is referred                      once~ or twice-bumed referred to as once-        twice-burned fuel and has been been in the core for one or two fuel cycles. cycles. A fuel cycle is the period from one refueling  refueling outage to another. The older fuel in the reactor core has been producing power for one to two years and has burned                    burned up some some of its uranium-235. This fuel is no longer    longer as enriched as the fresh fuel. With less material    material available for fission in this fuel, the extra neutrons present in the center of the core will not result in overly          overly high power levels. While controlling controlling    the  enrichment    level  alone  is  not  sufficient    to properly    shape  the core power, burnable burnable    poison  rods  are  included  in the  fuel  assemblies.
A-8 A-8
 
Fuel Rod Rod Position 24-Finger 24-Finger    Instrumentation Instrumentation Rod Rod Cluster          Position Position                          Control Rod Rod Control                                                Position (Guide Tube)
Assembly View Top View                                              Bottom View Bottom View Control Rod                        Rod
                                                                                    -                  ,-i Longitudinal View Longitudinal View Top Nozzle Nozzle              Asse mbly Grid Assembly                                                          Bottom Nozzle Nozzle Figure A-6 A- 6 Typical Typical 17 x 17 Reactor Reactor Fuel Assembly Assembly
 
FinalEnvironmental Final Environmental Impact Statementfor Statementfor the Production Productiono[Tritium of Tritium in a Commercial Commercial Light Water Water Reactor Coupling Coupling Spider Spider Body Top Top ViewView Controltili Rod Longitudinal View      View Figure A-7 A-7 Representative Representative Reactor Control Element      Element Assembly Assembly A-IO A-1O
 
Appendix A - Tritium Production Operations-Application Tritium Production Operations-Application to Production  Tritium in Commercial Productionof Tritium                    Water Reactors Commercial Light Water Reactors Core Baffle
                                                                                  *        /Fuel Assembly First Core      Reload Core DZ Region 1            Once- or Twice-Burned Twice-Burned Fuel
            ~F      Region 2        Once-Once- or Twice-Burned Twice-Burned Fuel (Different Enrichment)
            ~I Region 3            Fresh Fresh Fuel Figure A-8 General        Arrangement of a Possible Reactor Core Fuel Loading General Arrangement                                                  Loading Pattern Pattern A-11 A-ll
 
FinalEnvironmental Final Environmental Impact Statement Statementfor (or the Production Productionof  Tritium in a Commercial o(Tritium                          Water Reactor Commercial Light Water The burnable poison rods will be replaced with TPBARs        TPBARs in a tritium production facility (see Section A.3).          A.3).
The TPBARs act as neutron absorbers in much the same            same way as the bumable burnable poison, although although there are some differences differences that may result in changes changes to the fuel management management practices at the facility using the TPBARs. The control control and shutdown shutdown control control element assemblies assemblies will remain unchanged in a reactor            containing TPBARs reactor containing    TPBARs and will still enable enable complete complete shutdown shutdown of the reactor reactor at all times during the fuel cycle.
A.2.3    Reactor Refueling Refueling Unlike fossil-fueled electricity-generating electricity-generating plants that are continually fed fuel, nuclear power plants operate over extended extended periods without the need for fresh fuel. Typically, reactors will operate for 12                12 to 18 months between between refueling outages. As stated earlier, as the uranium-235 uranium-235 bums up, the reactor becomes    becomes increasingly less able to maintain maintain a critical critical condition. Eventually, when enough fuel is burned, the reactor will not be able to remain              remain critical even if all of the neutron poisons are removed from the core. Before this point is reached, the reactor                reactor is shut down and refueled. When the power plant is shut down during the refueling              refueling outage, some (between one-third one-third and two-fifths) two-fifths) of the fuel assemblies are removed and replaced        replaced with fresh fuel, and some of the assemblies assemblies are shuffled to different locations within the reactor      reactor core. The removed fuel is called    called spent fuel.
The refueling outage usually lasts less than two months, during which various                various maintenance activities activities are performed. The reactor refueling is a small fraction of the overall outage.                            ~
Spent fuel is stored on site in a spent fuel pool, located in a separate building attached            attached to the containment containment structure.
structure. The spent fuel is stored on site for several                            allowing the assemblies several years, allo:-ving            assemblies to cool and the radioactivity radioactivity levels to drop sufficiently sufficiently so that the spent fuel can be safely transported  transported to a temporary or      or permanent waste disposal permanent            disposal site.
The refueling refueling operation of a nuclear nuclear power plant can be divideddivided into four separate separate phases: preparation, reactor disassembly, fuel handling, and reactor assembly.
Preparation Preparation During preparation, the reactor reactor is shut down; all control control and shutdown shutdown rods are inserted into the reactor core, and the nuclear chainchain reaction is stopped. Heat is still generated  generated in the reactor reactor core, core, principally principally by the radioactive decay of the fission products. The amount of heat produced during decay gradually              gradually decreases, and and the reactor is brought to a condition called cold shutdown,  shutdown, where the average reactor coolant    coolant temperature temperature is below the boiling point of water at atmospheric pressure.
Reactor Reactor Disassembly The area above the reactor vessel is referred referred to as the reactor reactor cavity, illustrated illustrated in Figure Figure A-9. Adjacent to this cavity is the refueling refueling  cavity. During  reactor reactor  disassembly,      these  two  cavities  are flooded with borated water to provide provide    a medium    for  the transfer  of spent spent  and  new  fuel. The  water  provides    a means to remove heat from the spent fuel assemblies assemblies    and  a radiation    shield for  the plant plant  workers. The  reactor reactor vessel is disassembled disassembled in stages. Most items connected connected    to  the reactor    vessel reactor vessel    head  are  removed.      The  refueling  cavity  is partially partially flooded and the reactor reactor vessel head is unbolted and slightly raised. At this time, borated water is added to the reactor reactor coolant system and allowed to flow out of the top of the reactor vessel, ultimately flooding the reactor                reactor cavity and the refueling refueling cavity. The reactor vessel head is completely removed, along with the control                      control rod-driven rod-driven mechanism and the upper core internals. intemals. The fuel assemblies are then free of any obstructions and can can be removed from the reactor core.
A-12 A-I2
 
Primary Containment Primary  Containment Upending Frame Winch
                    ;-'-;-7----
9.
rF-Upending Upending Frame Winch Motor-Driven Platform Water Level 7
0 0
* Refueling'
* 0 I Water Level I /
i            ..1"                                                                      0
* 1'1      /                                              Spent 0
I    II .
Reactor              I
* I}'
                              /
Fuel
* II Refueling Cavity                1/11                Cavity                                Pool
                    /    II Q "
Upendinv i, V                                                              Spent Cable      ..~.                                              ,          Fuel I
II ' .
II II
                                    'If r _.~~:.,~ [;~:;~e ______              .
II                                                      Upending            ~:
rame              I:
                ..                                                                            .... .....Ii."
                                                                                                    .~
Conveyor                                                Fuel Transfer Tube Tracks Figure A-9 Typical Typical Fuel Transfer System Transfer System
 
Final EnvironmentalImpact Statement Final Environmental        Statementfor for the Production Productionof Tritium Tritium in a Commercial Commercial Light Water Water Reactor Fuel Handling Fuel is removed removed from the core, one assembly at a time. Fuel assemblies are lifted out of the core using an overhead overhead crane. If the spent fuel assemblyassembly contains contains a control element assembly, it is placed in a control element element assembly assembly changing device upon its removal from the core; otherwise      otherwise it is moved to a fuel transfer system. In this device, the control element assembly is removed from the spent fuel assembly and transferred          transferred to another fuel assembly assembly placed in the reactor reactor core. Once the control element assembly is removed      removed from the spent spent fuel assembly, it is transferred transferred to the spent fuel pool.
The fuel transfer system lowers the fuel to a horizontal position position and passes the fuel through a fuel transfer tube (which penetrates        containment structure) penetrates the containment    structure) and into the spent fuel pool. Here,  Here, the fuel fuel transfer transfer system lifts the spent fuel assembly into a vertical position, and another crane        crane places places the spent fuel assembly into its location location within the spent fuel racks in the pool. Spent fuel is stored in the spent fuel pool beneath over 20 feet            feet of water. Storage under this amount of water providesprovides two functions: the spent fuel pool has a cooling system to remove decay heat after it is transferred to the pool water, and the water provides a radiation        radiation protection barrier for the plant workers.
workers.
Fresh fuel is brought into the reactor corecore using the same equipment equipment used to remove the spent  spent fuel. New fuel handling    equipment is used to unload, inspect, and prepare the fuel for insertion handling equipment                                                                    insertion into the reactor. It is then transferred transferred to the fuel transfer transfer machine.
Reactor Reactor Assembly Assembly After all of the spent fuel is removed removed from the reactor, some of the remaining fuel is moved to new locations          locations in the core; core; fresh fuel is added added to the reactor core, and the reactor is reassembled. This is essentially essentially the reverse reverse of the reactor disassembly phase. After some    some startup tests, the reactor is ready to begin power  power operations.
operations.
A.2.4    Commercial Light Water Commercial              Water Reactor Reactor Systems Important Important to Environmental Environmental Impacts The sections below describe describe the plant systems systems that are directly directly associated associated with environmental environmental impacts from plant operation. These are the cooling water systems and radioactive    radioactive and nonradioactive nonradioactive waste treatment systems.
A.2.4.1 A.2.4.1    Cooling and Auxiliary Auxiliary Water Water Systems Water Water use at a nuclear power plant is predominantly predominantly for removing excess    excess heat generated generated in the reactor by condenser condenser cooling. The quantity of water used for condenser condenser cooling is a function of several factors, including the capacity capacity rating of the plant and the increase in cooledcooled water temperature temperature from the intake to the discharge.
The larger the plant, the greater greater the quantity of waste heat and cooling water    water required required to dissipate the waste heat.
In addition to removing heat from the reactor, cooling is also provided to the service and auxiliary          auxiliary cooling water systems. The volume of water required for once-throughonce-through cooling cooling is usually less than 15 percent of the volume required required for condenser condenser cooling. In closed-cycle closed-cycle cooling, the additional water needed is usually less than 5 percent percent of that needed for condenser condenser cooling. Of all the CL      CLWRWR plants operating operating in the United States, approximately approximately 40 percent use closed-cycle closed-cycle cooling systems systems and 60 percent percent use once-through once-through (open-cycle)
(open-cycle) cooling cooling systems.
In  closed-cycle systems, the cooled In closed-cycle                  cooled water is recirculated recirculated through the condenser condenser after the waste heat is removed removed by dissipation to the atmosphere, usually by circulating the water    water through through large cooling            constructed for cooling towers constructed that purpose. Several types of closed-cycle closed-cycle cooling cooling systems are currently currently used by the nuclear power industry.
A-14 A-14
 
Appendix AA - Tritium Tritium Production Production Operations-Application Operations-Application to Production o[Tritium Productionof  Tritium in Commercial Commercial Light Light Water Reactors Water Reactors Recirculating cooling systems consist of either natural-draft or mechanical-draft Recirculating                                                              mechanical-draft cooling towers, cooling ponds, cooling lakes, or cooling canals. Because the predominant predominant cooling cooling mechanism mechanism associated with closed-cycle closed-cycle systems is evaporation, most of the water used for cooling is consumed    consumed and not returned to a water    water source.
In a once-through cooling (open-cycle)
(open-cycle) system, circulating circulating water water for condenser condenser cooling cooling is drawn from an    an adjacent body of water, such as a lake or river, passed  passed through the condenser condenser tubes, and returned at a higher temperature to the adjacent body of water.
For both once-through and closed-cycle cooling    cooling systems, the water intake and dischargestructures discharge* structures are of  of various configurations configurations to accommodate accommodate the source source water body and to minimize impact to              t6 the aquatic ecosystem. The intake structures are generally  generally located located along along the shoreline of the body of water and are equipped with fish protection protection devices. The discharge discharge structures structures are most often the jet or diffuser outfall type  type and are designed to promote rapid mixing of the effluent stream with the receiving body of water. Biocides and chemicals chemicals used for corrosion corrosion control control and other water treatment purposes are mixed with the condenser      condenser cooling water and are discharged discharged from the system.
In addition to surface water sources, some nuclear power plants use groundwater  groundwater as a source for service water, makeup makeup water, or potable water. Other plants operate          operate dewatering systems to intentionally lower the groundwater table, either by pumping or by a system of drains, in the vicinity groundwater                                                                            vicinity of building building foundations.
A.2.4.2 A.2.4.2    Radioactive Radioactive Waste Treatment Systems During During the fission process, a large inventory inventory of radioactive radioactive fission products will build up within the fuel rods.
A small fraction of these fission products escape    escape the fuel rods and contaminate contaminate the reactor coolant. The primary primary system coolant coolant also has radioactive contaminants contaminants as a result of neutron neutron activation. These      contaminants These contaminants are removed removed from the coolant coolant by a radioactive radioactive waste treatment system prior to any release to the environment.
Typically, the plants include treatment treatment systems systems for gaseous, liquid, and low-level low-level radioactive solid waste.
The impacts impacts to the environment environment are driven by gaseous gaseous emissions, liquid effluent, or generation generation of solid low-level radioactive waste waste after treatment.
Radioactive Emissions Gaseous Radioactive CLWRs CL  WRs have have three primary sources sources of gaseous      radioactive emissions:
gaseous radioactive
** Discharges Discharges from the gaseous waste management management system
** Discharges associated associated with the exhaust of noncondensable noncondensable gases at the main condenser  condenser (in the event of  of between primary leakage between      primary and secondary secondary cooling systems)
* Discharges from the building building ventilation ventilation exhaust, exhaust, including the reactor reactor building, reactor reactor auxiliary building, and fuel-handling building The gaseous gaseous waste management management *system system collects collects fission products, mainly noble gases, that accumulate in the primary primary coolant. A small portion of the primary coolant flow is continually    continually diverted to the primary        coolant primary coolant purification, purification, volume, volume, and chemical chemical control control system to remove        contaminants and adjust the coolant chemistry remove contaminants and volume. During this process, noncondensable noncondensable gases are stripped and routed to the gaseous waste management system, which consists of a series management                                      series of gas storage tanks. The storage tanks allow the short half-life  half-life radioactive gases to decay, leaving only relatively relatively small quantities of long half-life radionuclides radionuclides to be released atmosphere via the plant vent at a controlled rate. These releases pass through both high-efficiency to the atmosphere                                                                                                high-efficiency particulate air and charcoal charcoal filters before entering the environment.
A-15 A-J5
 
Final EnvironmentalImpact Statement Final Environmental        Statementfor (or the Production Productionof  Tritium in a Commercial o(Tritium                        Water Reactor Commercial Light Water Discharges Discharges from the condenser condenser vacuum exhaustexhaust and building ventilation exhaust are released to the environment environment with no filtration. All potentially        significant release potentially significant    release points are monitored.
Liquid    Radioactive Effluents Liquid Radioactive Radionuclide Radionuclide contaminants contaminants in the primary coolant are the source of liquid radioactive      radioactive waste in CL  CLWRs.
WRs.
Liquid Liquid wastes resulting from CLWR CLWR plant operation operation are classified classified into the following categories:
categories: clean wastes, dirty wastes, detergent detergent wastes, wastes, turbine building floor drain water, and steam generator    generator blowdown. Clean wastes include all liquid wastes with a normally low conductivity conductivity and variable radioactivity radioactivity content. They consist consist of reactor-grade reactor-grade water, which is amenable to processingprocessing for reuse as reactor coolant makeup water.
Clean Clean wastes are collected from equipment leaks and drains, certain    certain valve and pump sealleakoffs seal leakoffs not collected in the reactor coolant coolant drain tank, and other other aerated leakage sources. In addition, these wastes include primary coolant. Dirty wastes include include all liquid wastes with a moderate moderate conductivity                        radioactivity content conductivity and variable radioactivity        content that, after processing, may be used as reactorreactor coolant coolant makeup water. Dirty wastes    wastes consist of liquid wastes wastes collected collected  in the  containment    building  sump,  auxiliary auxiliary  building    sumps  and  drains,  laboratory laboratory  drains,  sample station station drains, and other miscellaneous miscellaneous floor drains. Detergent Detergent wastes consist principally principally of laundry wastes and personnel and equipment decontamination decontamination wastes wastes and normally normally have-a have*a low radioactivity content. Turbine building floor drain wastes usually have a high conductivity                        radionuclide content. Steam generator conductivity and low radionuclide                              generator blowdown blowdown can have relatively                  -concentrations of radionuclides, relatively high *concentrations              radionuclides, depending depending on the amount of        of primary-to-secondary primary-to-secondary leakage. After processing, the water may be reused or discharged.
Each source source of liquid waste waste receives varying degrees degrees and types of treatment before storage for reuse or              or discharge discharge to the environment under the site National National Pollutant Discharge Discharge Elimination Elimination System permit. The extent and types of treatment treatment depend on the chemical chemical radionuclide radionuclide content content of the waste. To increase the efficiency efficiency of waste processing, wastes of similar characteristics characteristics are batched beforebefore treatment.
The degree degree of processing, storing, and recycling of liquid radioactiveradioactive waste has steadily increased increased among operating operating  plants. For  example, extensive recycling of steam steam generator generator blowdown is now the typical mode of          of operation, and secondary secondary side wastewater wastewater is routinely routinely treated. In addition, the plant systems used to process wastes are often augmented augmented with the use of commercial commercial mobile mobile processing processing systems. As a result, radionuclide radionuclide releases in liquid effluent from CL  CLWRWR plants have      generally declined or remained have generally                    remained the same.
Solid Waste Solid low-level low-level radioactive waste from commercial commercial nuclear power plants is generated      generated by removal of    of radionuclides from liquid radionuclides          liquid waste streams, the filtration of airborneairborne gaseous emissions, and the removal    removal ofof contaminated contaminated material from various reactor areas. Liquid waste contaminated contaminated with radionuclides comes from primary primary and secondary coolant systems, spent fuel pools, decontaminated wastewater, and laboratory operations. Concentrated Concentrated liquid, filter sludge, waste oil, and other liquid sources are segregated      segregated by type, flushed to storage tanks, stabilized for packaging in a solid form by dewatering, slurried into 55-gallon        55-gallon steel drums, and stored stored  on  site in shielded  Butler-style Butler-style  buildings  or  other  facilities until suitable suitable  for offsite  disposal.
These buildings usually contain volume reduction and solidification facilities to prepare low-level      low-level radioactive waste for disposal at a certified low-level low-level radioactive waste disposal facility.
High-efficiency particulate High-efficiency    particulate air filters are used to remove radioactive radioactive material material from gaseous plant effluents.
These filters are compacted compacted and are disposed of as solid waste.
Solid low-level low-level radioactive waste consists of contaminated contaminated protective protective clothing, paper, rags, glassware, compactible        noncompactible trash, and irradiated compactible and noncompactible                    irradiated and nonirradiated nonirradiated reactor components components and equipment.
Most of this waste waste comes                  modifications and routine comes from plant modifications                routine maintenance maintenance activities. Additional Additional sources include include tools and other materials exposed to the reactor environment.
environment. Before disposal, compactible compactible trash is A-16 A-16
 
Appendix A - Tritium  ProductionOperations-Application Tritium Production Operations-Applicationto Production Productionof Tritium in Commercial o{Tritium              Light Water Commercial Light Water Reactors Reactors usually taken to onsite or offsite volume-reduction volume-reduction facilities. Compacted dry active waste is the largest single form of low-level low-level  radioactive    waste  disposed from commercial nuclear plants, comprising one-half    one-half of the total pressurized water reactors.
average annual volume from pressurized Volume reduction reduction efforts have been undertaken undertaken in response response to increased increased disposal costs and the passage passage of the Low-Level Radioactive Low-Level    Radioactive Waste Policy Act of 1980  1980 and the Low-Level Radioactive Radioactive Waste Policy Amendments Act of 1985, 1985, both of which require low-level radioactive waste disposal allocation  allocation systems for nuclear nuclear plants.
Volume reduction reduction is performed both on and off site. The most common    common onsite volume-reduction volume-reduction techniques ultra-high-pressure compaction of waste drums, monitoring waste streams to segregate are ultra-high-pressure                                                                      segregate wastes, minimizing the exposure exposure of routine equipment equipment to contamination, and decontaminating decontaminating and sorting of radioactive or        or nonradioactive batches before offsite shipment. Offsite waste management nonradioactive                                                              management vendors incinerate          dry-activated incinerate dry-activated separate and incinerate waste; separate              incinerate oily, organic wastes; solidify the ash; and occasionally      occasionally undertake undertake supercompaction, waste crystallization, supercompaction,              crystallization, and asphalt solidification solidification of resins and sludges.
A.2.4.3    Nonradioactive Nonradioactive Waste Systems Nonradioactive wastes Nonradioactive                      commercial nuclear power plants include steam generator blowdown, wastes from commercial                                                                  blowdown, water water treatment wastes (sludges and high saline streams that have residues    residues that are disposed of as solid wastes and    and biocides), steam generator generator metal cleaning, cleaning, floor and yard drains, and stormwater stormwater runoff.
runoff. Principal Principal chemical and biocide waste sources include the following:
*" Hydrazine, Hydrazine, which which is is used used for  corrosion control (it is released in steam generator blowdown) for corrosion                                                    blowdown)
*" Sodium Sodium hydroxide hydroxide and sulfuric acid, which are used to regenerate  regenerate resins that capture capture wastes wastes (these (these are discharged after neutralization) neutralization)
*" Phosphates Phosphates in cleaning cleaning solutions
** Biocides Biocides used for condenser defouling Other small volumes of wastewater wastewater are released from plant systems and depend on the design of each plant.
These are discharged as the service service water water and auxiliary auxiliary cooling cooling systems, water treatment plant, laboratory laboratory and and stormwater runoff, and metal treatment sampling wastes, floor drains, stormwater                                    treatment wastes. These waste  waste streams streams are discharged as separate separate point sources sources or are combined with the cooling water discharges.
A.3 TRITIUM-PRODUCING TRITIUM-PRODUCING BURNABLE  BURNABLE ABSORBER ABSORBER RODS A.3.1 A.3.t    Nucleonics Nucleonics of Tritium-Producing Tritium-Producing Burnable Absorber Rods TPBARs serve two functions in a nuclear nuclear power reactor: (l)  (1) they absorb excess neutrons and help make the power distribution more even in the reactor core, and (2) they produce tritium. The neutron                absorber material neutron absorber 6
in a TPBAR is lithium, in the form of lithium aluminate, enriched in lithium-6    lithium-6 (Li ).). When lithium-6 absorbs absorbs a neutron, as would happen in the core of an operating operating power reactor, the neutrons neutrons and protons in the lithium (hydrogen-3 or H33)) and helium-4. This process would result in the would recombine into two parts: tritium (hydrogen-3 release of 4.8 million electron electron volts (MeV) of energy. This process can be written:
Lithium-6 + neutron      ~
                                                      -  Helium-4 + Hydrogen-3 Hydrogen-3 + 4.8 MeV or Li6 +  n'  -  He 4 + H3 + 4.8 MeV A-17 A-I7
 
FinalEnvironmental Final  EnvironmentalImpact Statement Statement (or for the Production Productiono(Tritium of Tritium in in a Commercial Commercial Light Water Water Reactor Once the tritium (W)    (H 3) is produced inside the TPBAR, it is captured and held in a getter, as described in Section A.3.2. However, the tritium, itself unstable, slowly decays by emitting a beta particle                particle (an electron),
electron),
and becomes      helium-3:
becomes helium-3:
Hydrogen-3          Helium + electron Hydrogen-3 -- Helium              electron or or H3 -- He33 +
H3            electron
                                                                    + electron Tritium's rate of decay, or "half-life,"
                                  "half-life," is 12.3 12.3 years, which means that every 12.3 years, half of the tritium will decay and become helium-3. Helium-3  Helium-3 is stable, but it has a strong affinity for neutrons and is a good neutron absorber. As the inventory inventory of  tritium accumulates in the TPBARs during irradiation oftritium                                                  irradiation in the core, the amount of helium-3 increases ofhelium-3      increases as a result of the decay of tritium. This has the effect of adding a material to the reactor          reactor core that is a strong strong  neutron  absorber.
Both lithium-6 and helium-3 are considered  considered neutron poisons. The amount of lithium-6        lithium-6 in the TPBARs is reduced reduced or "burned" "burned" (hence the term    tenn "burnable") during its irradiation irradiation in the core, effectively effectively reducing its poisonous effect. However, an increase in the amount of the helium-3 poison during irradiation in the reactor                  reactor core somewhat balancesbalances the reduction of the amount of lithium-6. As a result, the effectiveness          effectiveness of the TPBARs in absorbing absorbing neutrons during the 18 months (one fuel cycle)            cycle) they are in the core is only slightly slightly reduced reduced from the start of the fuel cycle to its finish.
In a normal nonnal burnable absorber absorber rod, the rod that TPBARs will replace, the neutron absorber is boron-l          boron- 10, 0, which absorbs a neutron and promptly decays into lithium-7 and helium-4:          helium-4:
Boron-100 + neutron - Lithium-7 Boron-l                      Lithium-7 + Helium-4 Helium-4 or or                                                                              4 7
B 1 °+ n' - Li + He Boron-10 Boron-lOis  is a strong poison, but lithium-7 has little capacity to absorb neutrons. Therefore,        Therefore, as the boron-10 boron-l 0 is converted to lithium-7during lithium-7 during irradiation in the core, the burnable absorber      absorber rod absorbs fewer neutrons neutrons andand loses its poisonous poisonous effect on the reactor core. By design, at the end of an 18-month fuel cycle, the burnable                burnable absorber rods are no longer  longer effective neutron absorbers.
absorbers.
Therefore, Therefore, the result of using TPBARs                      of boron-10 burnable absorber TPBARs instead ofboron-lO                          absorber rods is that, over the 18-month 18-month cycle, the TPBARs act as a stronger fuel cycle,the                          stronger overall poison than the burnable absorber  absorber rods that they replace. This, coupled with the fact that there will be many more TPBARs than there were burnable                  burnable absorber absorber rods, results in a significant      increase significant increase      in neutron    poison    in  the  core  of  the  tritium  production production CL WR compared CLWR      compared to the nontritium non  tritium production production CL  CLWR.
WR.
To compensate compensate for the added  added TPBAR poison, the core may need to have more new fuel assemblies              assemblies loaded loaded during each refueling, and the enrichment of those assemblies        assemblies may need to be increased. As described      described previously, enrichment enrichment of the fuel is the amount of uranium-235 contained              contained in the fuel. The higher the uranium-235 content in the fuel, the more fissions the fuel is capable of producing. Enrichment              Enrichment of the new fuel placed in the core of a tritium production CL            CLWRWR may need to be increased  increased to just under 5 percent, compared to the 4.2 to 4.5 percent percent currently currently being used in CLWRs.CLWRs. Five percent          enrichment is the upper limit percent enrichment                    limit for reactor reactor licensing by the U.S. Nuclear RegulatoryRegulatory Commission (NRC).
A-18 A-i8
 
Appendix A - Tritium Tritium Production  Operations-Applicationto Production Production Operations-Application              of Tritium in Commercial Production o(Tritium    CommercialLight Water Reactors Reactors A.3.2 A.3.2    Physical Description of the Tritium-Producing Tritium-Producing Burnable Absorber Rod              Rod Lithium, the active ingredient ingredient in tritium production, is in the form of an annular-shaped annular-shaped ceramic        lithium-ceramic lithiurn-aluminate aluminate pellet. The pellets  pellets are contained in subassemblies subassemblies called pencils. Each pencil is about 30 centimeters (12(12 inches) long and consists of a stack  stack of pellets, a zircaloy zircaloy inner liner inside of the pellets, and a nickel-plated zircaloy tube or getter  getter outside of the pellets. Inside the zirconium liner is a gas plenum.
The components components ofa of a TPBAR TPBAR are illustrated illustrated in Figures    A-10 and A-ll.
Figures A-tO            A-11.
                                                                                ~~_ _      -Aluminized        Inner Aluminized Inner Barrier Barrier Coating
                                                                                      \1X?II-- Cladding (316 20% CW SST)
(31620%
                                                                                              --  Getter (NPZ)
Getter Gas Plenum Ceramic Pellet Pellet Inner Shroud                                                          (Lithium Aluminate)
(Zircaloy)
Not to Scale NPZ =    Nickel-Plated Zircaloy
                    = Nickel-Plated Figure A-tOA-10 TPBAR Transverse Transverse Cross Section Section Tritium Tritium is generated generated as a gas, almost all of which is captured by the nickel-plated zircaloy getter as a tritide (ZrTx).
(ZrTJ. Tritium that becomes tritiated tritiated water vapor before it can be absorbed absorbed by the getter is disassociated disassociated by the zircal zircaloy inner liner. The getter is nickel-plated nickel-plated to protect it from tritiated tritiated water vapor, which would oxidize its surface and block further absorption absorption of tritium gas. The zircaloy inner liner also serves to maintain the overall  geometry of the pellets.
overall geometry Twelve Twelve pencils, getter discs at the top and bottom of the twelve pencils. pencils. and a spring loadedloaded inside a stainless steel tube create.
create a TPBAR. The spring holds the pencils in place during handling and allows for thermal expansion expansion during operation. The inside surface of the stainless steel tube, or cladding, has an aluminized            aluminized barrier barrier coating to retard the permeation permeation of hydrogen into and tritium out of the TPBAR. Loss of tritium through through the cladding cladding would increase increase the tritium released into the reactor coolant and, therefore,  therefore, reduce the amount amount of tritium available for processing. Ingress of hydrogen into the TPBAR            TPBAR would be absorbed absorbed by the getter, diminishing the ability of the getter to absorb tritium. A less effective getter would increase the partial pressure pressure of tritium inside the TPBAR, which would increase tritium loss through the cladding. The TPBARs are evacuated, evacuated, backfilled backfilled with helium at one atmosphere atmosphere pressure, and seal-welded. TPBARs would be put in the fuel assembly'S assembly's nonfuel positions designed designed for burnable burnable poison rods. Therefore, the exterior  exterior dimensions dimensions of the TPBARs are the same as those of burnable absorber    absorber rods. For the Westinghouse Westinghouse 17 xx 17 design fuel assembly, the TPBARs would have an outside diameter of 0.381 inches, which                which is exactly that of a burnable burnable A-19 A-19
 
Upper Getter          Claddii Cladding        -Getter Getter
                                                        ~777~\
Ii Getter Disc        Ceramic Pellet                Liner Inner Liner (Not to Scale)
Figure A-I1 TPBAR Longitudinal Cross Section Figure A-II                          Section
 
Appendix A - Tritium Tritium Production Operations-A"pplicationto Production Production Operations-Application              of Tritium in Commercial Production o(Tritium    CommercialLight Water Water Reactors Reactors absorber rod. The cladding cladding of the TPBAR would be stainless steel, type 316. The cladding of absorber rods would be either 304-type stainless stainless steel or zircaloy 4.
All of the TPBARs inserted into a given fuel assembly are attached to a base plate, forming a TPBAR                    TPBAR assembly. The base plate is part of the hold-down assembly, which also includes a spring and a locking device.
The base plate not only maintains the spacing of the TPBARs for insertion and withdrawal, but also allows the TPBARs to be handled handled in groups, rather than one at a time. Figure A-12        A-12 illustrates the base plate plate as part of the hold-down hold-down assembly.
Hold-Down Hold-Down Assembly
                                                                                          -Base Base Plate Figure A-12 A-12 TPBAR Hold-Down Assembly A.3.3 A.3.3    Handling of Tritium-Producing Tritium-Producing Burnable            Absorber Rods Burnable Absorber The individual TPBARs TPBARs would be mounted on the hold-down  hold-down assembly through  through holes in the base plate and locked locked in place. The TPBAR  TPBAR assemblies would then be inserted into new fuel assemblies          assemblies at the fuel manufacturer's site. The TPBARs would be transported manufacturer's                                      transported to the reactor reactor site and loaded loaded into the reactor core as an integral part of the new fuel assembly. After irradiation in the core for approximately 18 months (one fuel cycle), the spent fuel, along with their TPBARs, would be removed      removed from the core. In a normal refueling          of refueling of a reactor core used for tritium production, production, some of the fuel assemblies would be re-inserted  re-inserted into the core for use during the second second fuel cycle, while the rest of the fuel assemblies would go to the spent fuel pool. The TPBARs in fuel assemblies destined for the spent fuel pool would be left in their host fuel assemblies until after the refueling.
Some Some TPBARs could reside in fuel assemblies that would be re-inserted  re-inserted in the core and used during a second second fuel cycle.
cycle. Each of the fuel assemblies that are to be re-inserted re-inserted in the core would be moved to the spent fuel pool and placed in a stand where the TPBAR assembly would be remotely          remotely removed. These  These fuel assemblies assemblies would then be returned to the reactor core. The removed TPBARs would be placed                    placed in other spent fuel assemblies assemblies in the spent fuel pool, where they would be stored under water until transported from the site.
After a short period of time following refueling, refueling, all of the TPBARs would be removed from the storage position in their host spent fuel assemblies and placed in a handling      handling stand. In    In the handling handling stand, the individual individual TPBARs would be separated separated from the base plate and moved to the consolidation consolidation rack, where they would be inserted in the consolidation consolidation assemblies. The consolidation consolidation assemblies are essentially essentially square cans A-21
 
Final Environmental Impact FinalEnvironmental  Impact Statement for
{or the Production Production o{Tritium of Tritium in aa Commercial CommercialLight Water Reactor with a 17 x 17 array of positions positions capable of accepting accepting TPBARs. Once loaded, a handling      handling fixture would be placed on the ends of the assemblies, and the assemblies    assemblies would be handled with the same tools as fuel assemblies. The consolidation consolidation assemblies assemblies would then be placed in transportation transportation cask positions designed for fuel assemblies and transported transported to the Department Department of Energy (DOE) Tritium Extraction Facility at the Savannah Savannah River River Site in South Carolina.
A.4  IMPACT OF TRITIUM TRITIUM PRODUCTION ON THE FUEL CYCLE The introduction of TPBARs into the fuel assemblies  assemblies used in a CL    CLWRWR would impact the fuel management management strategy currently in use by the operator of the CL        CLWR.            replacement of burnable WR. The replacement              burnable poison rods with the TPBARs affects the core physics (the utilization utilization of neutrons to produce power and tritium) and could alter the design of the core. Because          TPBARs have a large residual reactivity penalty, the tritium production Because the TPBARs                                                                          production core designs require higher enrichments enrichments and may require larger  larger feed (fresh (fresh fuel) regions than the commercial commercial core designs with a comparable power power level and cycle length. These two fuel cycle                characteristics were assumed cycle characteristics to be unchanged unchanged with the introduction introduction of TPBARs into the commercialcommercial core. Several core parameters parameters were identified that could be impacted by the replacementreplacement      of  burnable      poison  rods  with  TPBARs.      The most important among these are the power peaking factors. The distribution  distribution      of power  within  the  core  is limited so so that no single area produces produces significantly significantly more more than the average average amount amount of power power generated throughout the core. The differences between the average power and local power are quantified in several                several power peaking peaking factors. By limiting the values of these peaking factors, the plant operator and the NRC ensure that the power                power plant operates within safety safety limits and would respond to accidents  accidents as described in the accident accident analysis analysis required of all licensed licensed nuclear power plants. With limitations on the number and distribution      distribution of TPBARs in the core used in this environmental environmental impact statement (EIS), the power peaking factors in the commercial      commercial power power production core and the tritium production production core are very similar and the safety limits are not expected to be exceeded. Therefore, tritium production production can be performed performed without without the need to modify the CL      CLWRWR core design, and only changes in the fuel enrichment enrichment would be required.
The maximum maximum number number of    TPBARs that could be placed ofTPBARs                        placed in the core (or irradiated) at each reactorreactor unit without significantly disturbing the normal electricity-producing significantly                            electricity-producing mode of reactor operation is approximately approximately 3,400 (the exact number depends on the specific design of the reactor).      reactor). This section evaluates evaluates the impact of tritium production on the fuel cycle by irradiating irradiating a range of 1,000 1,000 TPBARs to a maximum of 3,400 TPBARs at each reactor unit. The fuel cycle would be assumed to remain unchanged      unchanged at 18 months. Irradiating a maximum of TPBARs in each reactor number ofTPBARs                  reactor core would require each nonfuel position    position (guide tube location) inside the core that is not reserved reserved for the control element element to be filled by a TPBAR, and the number          number of fresh fuel assemblies loaded loaded into the core at each refueling to be increased. Irradiation of 1,000 TPBARs                TPBARs can be    be accomplished by placing accomplished        placing the TPBARs in positions currently currently occupied occupied by burnable burnable poison rods. This actionaction would not change the number of fresh fuel assemblies assemblies that are currently currently loaded loaded into the core during refueling refueling for commercial operation operation with no TPBARs.
Power Operation Operation with Maximum Number      Number of TPBARs As stated earlier, irradiation of a maximum number ofTPBARs  of TPBARs requires their insertion in every possible  possible guide tube location. For Watts Bar 1, this means that TPBARs    TPBARs would be located in the 24 guide tubes of 136 fuel (141 in Bellefonte assemblies (141        Bellefonte 1 or Bellefonte 22 and 140 in Sequoyah  Sequoyah 1 or Sequoyah Sequoyah 2) that do not have a control assembly (TVA 1991    1991,, TVA 1995, 1995, TV TVA  A 1996, 1996, TVA 1998). CommercialCommercial operation operation of Watts Bar 1 without tritium production production consists of an l8-month 18-month fuel cycle and replacement of 80 spent        spent fuel assemblies (72 (72 for Bellefonte          Bellefonte 2 and 80 for Sequoyah Bellefonte 1 or Bellefonte                        Sequoyah 1I or Sequoyah Sequoyah 2) at each refueling.
The main premise premise of using a CL  CLWR WR to produce tritium is that the reactor power would remain unchanged.
Since Since TPBARs use lithium (a strong neutron    neutron absorber) to produce produce tritium and the reactor power level is dependent on the number number of neutrons available for fission, additional neutrons must be generated to maintain            maintain A-22
 
Appendix A - Tritium Tritium Production  Operations-Applicationto Production Production Operations-Application                of Tritium in Commercial Production o(Tritium      CommercialLight Water Reactors Reactors the reactor power level when the CLWR is used for              for'tritium "tritium production. To meet the increased demand for neutrons, the enrichment enrichment of the reactor fuel would need          need to be increased.
increased. This would result in more uranium-235 in the reactor core. The maximum uranium-235                                        maximum fuel enrichment enrichment for the fresh fuel is limited to 5 percent.
Because Because of limitations on the distribution distribution of power and the limits on the maximum  maximum enrichment enrichment of uranium fuel (5 percent),
percent), tritium production production would require more fresh fuel to be loaded into the reactor at each refueling      refueling to maintain maintain the same fuel cycle. For Watts Bar 1,          1, these factors would result in the need to replace 136 of the 193 fuel assemblies (141(141 of205 of 205 for Bellefonte Bellefonte 1 or Bellefonte 2 and 140 of 193 for Sequoyah    Sequoyah 1 or Sequoyah 2)      2) with fresh fuel every fuel cycle. The remaining 57 fuel assemblies (64                (64 for Bellefonte 1 or Bellefonte 2 and 53 for Sequoyah Sequoyah 1 or Sequoyah 2)        2) that have been burned once would be moved to the positions        positions where where the control control element assemblies are located. Fresh fuel assemblies would contain the TPBARs and be positioned                positioned in the locations without a control element assembly.
Based Based on the above discussion and the consideration consideration that each CLWR CLWR unit would operate to produce tritium for 40 years, Watts Bar 1 would generate 1,512        1,512 additional spent fuel assemblies assemblies (1,863 (1,863 by Bellefonte 1I or Bellefonte Bellefonte 2  2  and  1,620    by  Sequoyah    1 or Sequoyah Sequoyah 2); see also Table A-1.      A-I.
Power Power Operation Operation with 1,000  1,000 TPBARs The operation of CL  CLWRs WRs with 1,000 TPBARs would not affect the number of fuel assemblies          assemblies replaced during each each refueling. As stated earlier, TPBARs are scattered in the core in place of burnable absorber rods.
Production Production of tritium in a CL      CLWRWR with less than 2,000 TPBARs is not expected          expected to increase increase spent fuel generation generation per fuel cycle (WEC 1999). However, to maintain an 18-month            I8-month fuel cycle similar to the maximum TPBAR TPBAR loading, a higher fuel enrichmentenrichment is required.
Table A-1      Summary of Increase in Spent Fuel Generation From 40 Years of Tritium Production A-I Summary                                                                                                Production with Maximum Maximum NumberNumber of TPBARs Sequoyah f 1 or                I or Bellefonte 1 Data Parameters Data  Parameters                                    Bar 1I Watts Bar              Sequoyah 2          Bellefonte 2 Operating Operating cycle (months)                                                    18                      18                  18 Fresh fuel assemblies      cycle-no tritium production assemblies per cycle-no                                          80                    80                    72 72 Fresh fuel assemblies      cycle-maximum TPBARs assemblies per cycle-maximum                                    136 136                    140                  141 Increase Increase in fresh fuel assemblies assemblies per per cycle due to tritium production                                                                  56                    60                    69 69 Number of operating operating cycles in 40 years (rounded up)                        27                    27                    27 27 Number of additional fuel assemblies for 40 years of tritium production production                                                                1,512 1,512                  1,620                1,863 A-23
 
Final EnvironmentalImpact Final Environmental Impact Statement Statement for the Production
{or the            o[TritiU/~
Production of Tritium in a Commercial Commercial Light Water Reactor A.5 A.5 REFERENCES TVA (Tennessee (Tennessee Valley Valley Authority),    1991, Bellefonte Nuclear Authority), 1991,                  Nuclear Plant        FinalSafety Analysis Report, Plant Final                      Report, through Amendment Amendment 30, Chattanooga, Tennessee, Tennessee, December December 20.
TVA (Tennessee (Tennessee Valley Valley Authority), 1995, Watts Bar    Bar Nuclear NuclearPlant        FinalSafety Analysis Report, Plant Final                      Report, through Amendment Amendment 91,91, Chattanooga, Tennessee, Tennessee, October 24.
TVA (Tennessee Valley Authority), 1996,          Sequoyah Nuclear 1996, Sequoyah      Nuclear Plant Plant Updated Updated Final Final Safety Analysis Report, Report, Amendment 12, through Amendment      12, Chattanooga, Chattanooga, Tennessee, December December 6.
(Tennessee Valley Authority), 1998, data collected from TVA personnel TVA (Tennessee                                                                                                    Applications personnel by Science Applications International Corporation personnel, January-August.
WEC (Westinghouse (Westinghouse Electric Company),
Company), 1999, letter from M. L. Travis to Dr. John E. Kelly, Sandia National Laboratory, Albuquerque, New Mexico, "Transmittal "Transmittal of Information Information to Support the CL  CLWRWR Tritium Production Production Environmental Impact Statement,"
Statement," NDP-MLT-98-156 NDP-MLT-98-156 (Rev. 1), February.
A-24 A-24
 
APPENDIX B APPENDIXB METHODS METHODS          FOR    ASSESSING ENVIRONMENTAL ASSESSING          ENVIRONMENTAL IMPACTS-        IMPACTS-APPLICATION APPLICATION TO PRODUCTION    PRODUCTION OF TRITIUM        TRITIUM IN COMMERCIAL COMMERCIAL LIGHT        LIGHT WATER REACTORS This appendix describes describes the methods methods for assessing environmental environmental impacts and addresses the application      of application of those methods to the production production of tritium in commercial commercial light water reactors (CLWRs). The methods and      and applications applications are designed designed to comply with the Council Council on Environmental Quality Quality and U.S. Department of  of Energy            regulations implementing the National Energy (DOE) regulations                            National Environmental Environmental Policy Act (NEPA). A summary of        of Federal Federal environmental, safety, and health statutes, regulations, and orders applicable applicable to relevant resource/issue resource/issue areas is provided in Section B. 13, Table B.l3.          B-i, and a list of relevant Table B-1,                relevant DOE Orders and U.S. Nuclear Nuclear Regulatory Commission (NRC) guides is given in Section B.l3.
Commission                                            B. 13. Table B-2 at the end of this appendix.
The following resources and issues are covered in this environmental environmental impact statement (EIS):
*"  Land Land resources
*"  Air Air quality quality and noise noise
*"  Water  resources Water resources
*"  Geology Geology and soils
*"  Ecology Ecology
*"  Archaeological Archaeological and historic resources resources
*"    Socioeconomics Socioeconomics
*"  Public      occupational health and safety Public and occupational
*"  Waste    management Waste management
**  Transportation Transportation
*"    Spent fuel management Spent      management
*"  Environmental Environmental justice.
The Draft      EnvironmentalImpact Statement Draft Environmental              Statement for for the Production Production of Tritium Tritium in a Commercial Commercial Light Water Reactor    covers Reactor covers    CLWR    production  of tritium  in one  or more  of the following reactors:
*"  Watts Watts Bar Nuclear Plant Unit 1 (Watts Bar 1)      1)
  "  Sequoyah Nuclear Plant Units 1 and 2 (Sequoyah Sequoyah                                  (Sequoyah 1 and 2)
*"  Bellefonte Bellefonte Nuclear Nuclear Plant Plant Units 1I and 2 (Bellefonte 1 and 2).
The level of detail for the assessment assessment of environmental environmental impacts on each resource depends on the status of each reactor. For the currently operating reactors (Watts Bar 1 and Sequoyah 1 and 2), only the resources that would be affected by activities associated with tritium production are discussed and these impacts are evaluated in detail. For the partially completed completed reactors (Bellefonte 1 and 2), the impacts impacts on all resources resources are evaluated evaluated in detail.
The assessment of the environmental environmental impacts impacts from the production of tritium in CL  CLWRs WRs is based on the following general assumptions:
B-1
 
Final EnvironmentalImpact Final Environmental Impact Statement Statementfor for the Production Productionof Tritium in a Commercial o[Tritium      Commercial Light Water Water Reactor For  Watts Bar For Watts    Bar 1I and and Sequoyah Sequoyah I1 and 2, the impacts attributed to the production    production of tritium are those associated              additional activities associated with the additional        activities required to produce produce tritium that are beyond the current  current power operation operation  activities.
* For    Bellefonte 1I and 2, the impacts attributed to the production of tritium are: (1) impacts from the For Bellefonte completion completion of construction construction of the facilities; facilities; and (2) full impacts from the operation of the reactors.
B.1 B.l LAND LAND RESOURCES RESOURCES B.1.1 B.1.l Land Use The analyses of the impacts on land resources are based on the type and extent of land affected, the degree to which  activities alter the land (including irretrievable which activities                                  irretrievable usages),
usages), and the existing                                land existing Federal, state, and local land use ordinances ordinances  and  policies  (e.g.,
(e.g.,  zoning).
B.1.2 B.1.2 Visual Resources Visual Visual resource    assessments are based on the Bureau of Land Management's resource assessments                                                  Management's visual resource management management method. A qualitative qualitative visual resource analysis, analysis, adapted from the Bureau of Land Management's  Management's visual contrast contrast rating system      (DOI 1986a, DOl system (DOl                DOI 1986b),
1986b), is conducted, as applicable, to:
" Identify Identify key  viewing positions (such as public travel routes, nearby key viewing                                                  nearby residential/commercial residential/commercial areas, and public use facilities such as parks, recreation recreation areas, and scenic areas)
" Assess Assess the  degree of the degree  of visibility visibility of new or modified facilities (buildings, stacks, access roads, parking areas, facility and perimeter lighting, steam and emission plumes) from these key viewing positions
" Assess Assess the compatibility of such facilities with the existing setting Sensitivity is assessed based based on the potential for public concern concern about adverse effects on specific specific views within within the affected environment.
environment.
B.2 AIR QUALITY QUALITY AND NOISE NOISE B.2.1 B.2.l Air Quality In currently operating operating reactors where the production production of tritium is expected expected to result in some additional release release of tritium to the atmosphere, the additional release    release  is  quantified    and  the expected    concentration expected concentration      in air is calculated calculated and compared compared with existing conditions conditions and standards.
In In partially completed reactors where construction activitiesactivities would take place place and the impacts of the full reactor operations operations are attributed attributed to the production of tritium, assessments assessments of air quality quality impacts include identification of applicable criteria criteria for assessing assessing impacts, development of emission    emission inventories, and  arid estimation of air air pollutant pollutant concentrations. Ambient air monitoring data is used to determine background                          concentrations of background concentrations      of pollutants pollutants for the specific site. The assessment of impacts  impacts is based on estimated estimated pollutant pollutant concentrations, concentrations, data on the existing environment, and assessment assessment criteria. Human health health effects due to air pollutant emissions are discussed discussed in Section B.8; potential impacts impacts of airborne airborne radioactive and chemical releases are included.
B-2 B-2
 
Appendix B - Methods for for Assessing Environmental EnvironmentalImpacts-Application    Productionof Tritium Impacts-Application to Production    Tritium in Commercial  Light Water Commercial Light  Water Reactors Reactors Assessment criteria for pollutants includeinclude the U.S. Environmental Environmental Protection Protection Agency's (EPA) primary  primary and and secondary National Ambient Air Quality Standards for criteria pollutants                  specified in 40 CFR 50 and those pollutants specified established by each each state. The more stringent of either  either the EPA or state standards serves as the assessment assessment criteria. The hazardous hazardous and toxic air pollutants pollutants include those listed in Title III of the 1990  1990 Clean Air Act amendments, in the National National Emission Standards Standards for Hazardous Hazardous Air Pollutants Pollutants in 40 CFR 61,                standards 61, and in standards and guidelines guidelines proposed or adopted by the respective                      Site-specific emissions are modeled using the respective states. Site-specific EPA-recommended ISCST3 model and the EPA's Guidelines EPA-recommended                                                    Guidelines on Air Quality Models (40 CFR 51,                51, Appendix W).
B.2.2 Noise Noise impacts are assessed assessed on the basis of the potential change at residencesresidences near the site boundary. The potential for exposure    of workers exposure workers        to  noise  and  the  measures measures  taken  to protect protect worker hearing are qualitatively discussed.
B.3  WATER WATER RESOURCES RESOURCES currently operating CL In currently                CLWRs, WRs, tritium production production is expected to result in some additional release  release of tritium as a liquid effluent. This additional release is quantified quantified in the EIS, and the expected concentrations concentrations in the liquid environment environment are calculated calculated and compared compared to existing conditions and standards. In partially  partially completed CL  WRs where CLWRs            construction activities would be required where construction                              required and the impacts impacts of the full operation operation of the reactor reactor are attributed attributed to tritium production, comprehensive comprehensive water resource and quality assessments are performed. As part of this assessment, water resource resource impacts (surface water, groundwater, and floodplain) are reviewed        reviewed in relation to: the Clean Water Water Act, specifically Sections 402 (National Pollutant Pollutant Discharge Elimination System  System
[NPDES]), 307(b) (toxic and pretreatment          effluent pretreatment effluent    standards), and  316  (thermal    discharge);  the  Safe  Drinking Water Act; DOE Regulation Regulation 10 CFR 1022; Compliance with Flood PlainslWetlands Plains/Wetlands Environmental Environmental ReviewReview Requirements; Executive Order          11988, Floodplain Order 11988,    Floodplain Management; and applicable state water quality standards.
Potential effects effects on surface                groundwater availability surface water and groundwater        availability and quality are assessed assessed by considering whether the proposed proposed action or alternatives can significantly affect the quantity or quality    quality of water available for local consumption, as well as compliance consumption,                  compliance with legislative legislative or regulatory requirements, and the risk of flooding.
Surface Water Surface Impact assessments assessments to surface water include the following factors:
" Changes in rate of water water consumption and wastewater wastewater discharges discharges for operation operation and construction construction phases (as applicable)
" Changes Changes in chemical, physical, and thermal characterization characterization of all wastewater wastewater discharges discharges
" Changes Changes in the annual low flows of surface water resulting from proposed withdrawals      withdrawals and discharges discharges
" Existing water supply to support the demand [This is assessed by comparing projected increases with the capacity of the supplier and by considering existing                          agreements, and allocations.]
existing water rights, agreements,              allocations.]
Water quality impacts are determined by reviewing    reviewing current current monitoring data reports for nonradiological nonradiological effluents. Potential radiological radiological impacts from the discharge of tritium are discussed      discussed in the Public and Occupational Health and Safety Section (see Section Occupational                                          Section B.8). Water Water quality management management practices at each site also are reviewed. Monitoring Monitoring      reports  for discharges    permitted permitted  under  the  NPDES      program are examined for B-3
 
Final EnvironmentalImpact Final Environmental Impact Statementfor  the Production for the Production of of Tritium in a Commercial Commercial Light Water Reactor compliance                            requirements. In most cases, current available data in the monitoring reports compliance with permit limits and requirements.
include information on the constituents present or the rate of discharge. A qualitative      qualitative assessment assessment of water water quality impacts from wastewater wastewater (sanitary (sanitary and process),
process),  stormwater      runoff, runoff,  stream  channel    erosion and sedimentation, stream bank flooding, and thermal impacts sedimentation,                                                impacts are identified.
identified.
Where Where possible, the proposed location is comparedcompared with the 500-year 500-year floodplain.
Groundwater Groundwater Tritium production production is not expected to affect groundwater groundwater quality quality or groundwater resources for any of the alternatives. However, effluents are analyzed for effects on aquifers, groundwater usage, and groundwater          groundwater quality within the regions. Available Available data on existing groundwater quality conditions are compared to Federal and state groundwater groundwater quality standards, effluent effluent limitations, and safe drinking water standards.
standards. Additionally, Additionally, Federal Federal and state permitting permitting requirements          groundwater withdrawal and discharge requirements for groundwater                                discharge are identified. Impacts of groundwater groundwater withdrawals on existingexisting contaminant contaminant plumes due to construction construction and facility operation are assessed to determine determine  the potential  for  changes    in their  rates of migration    and the effects effects of any changes changes in the plumes on groundwater users. Impacts are assessed  assessed by the degree to which groundwater groundwater quality, drawdown of groundwater groundwater levels, and groundwater groundwater availability availability to other other users is affected.
B.4 GEOLOGY AND    AND SOILS Soil types at construction sites are described, and the capability  capability for supporting      construction is assessed.
supporting construction Shrinking or swelling of the ground as a result of landscaping, irrigation, or construction-related construction-related dewatering and soil erosion susceptibility susceptibility also is addressed.
B.5 ECOLOGY B.S Ecological impacts are addressed addressed as applicable applicable for terrestrial terrestrial resources, wetlands, aquatic resources, and threatened and endangered species. Sources    Sources of impacts considered considered include land use changes,changes, salt drift (residual salts left behind as a result of the evaporation evaporation of cooling tower water),            chemical or radionuclide water), chemical emissions, water withdrawal, wastewater wastewater discharges, discharges, and human disturbance and noise. Potential impacts are assessed based on both the Federal Federal and state protection protection regulations and standards and on the degree to which various habitats or species can be affected affected by the project.
Terrestrial Terrestrial Resources Resources considerations in assessing the effects on terrestrial The key considerations                                    terrestrial resources are the presence and regional importance importance of affected habitats and the size of the habitat area to be disturbeddisturbed    by  construction  or operations.
operations. Impacts to wildlife are based on plant community community    loss,  which    is closely  associated    with animal  habitat. The potential for disturbance, displacement, or loss of wildlife, in accordance with wildlife protection  protection  laws  such  as the Migratory Migratory Bird Treaty Treaty Act and the Bald and Golden Eagle Protection  Protection Act, is evaluated.
Wetlands Wetlands Most impacts impacts on wetlands wetlands are related to displacement displacement of wetlands wetlands by filling, draining, or clearing activities.
Operational impacts to wetlands Operational                wetlands may occur from effluents, surface    surface or groundwater groundwater withdrawals, or creation of new wetlands. The loss of wetlands                              construction and operation are addressed wetlands resulting from construction                                  addressed in the same way as for terrestrial terrestrial plant communities-by communities-by comparing comparing data on onsite wetlands to proposed land requirements.
Sedimentation Sedimentation impacts are evaluated based on the nearness of wetlands        wetlands to project project areas, assuming assuming standard B-4
 
Appendix B - Methods for (or Assessing Environmental EnvironmentalImpacts-Application Impacts-Application to Production Productiono(Tritium of Tritium in Commercial CommercialLight Water Reactors Reactors construction erosion erosion and sedimentation control measures. Impacts Impacts resulting from increased increased flows are evaluated evaluated based on a comparison of expectedexpected discharge discharge rates with present stream stream flow rates.
Aquatic Resources Resources Impacts to aquatic resources resources are assessed for sedimentation, increased flows, effluent discharge, impingement,  impingement, entrainment, loss of spawning spawning habitat, and introduction of waste heat and chemicals.
Threatenedand Endangered Threatened                          Species Endangered Species Potential Potential impacts impacts to threatened and endangered species are determined  determined in a manner manner similar to that described described for terrestrial terrestrial and aquatic resources, since since the impact sources are similar.
B.6 ARCHAEOLOGICAL ARCHAEOLOGICAL AND        AND HISTORIC RESOURCES RESOURCES The archaeological archaeological and historic resources resources impact analyses determine the potential effects      effects on prehistoric, historic, Native American,              paleontological resources.
American, and paleontological B.7 SOCIOECONOMICS Socioeconomic impacts Socioeconomic      impacts are assessed for the region of influence in the areas of:        of:
*"  Demographics Demographics (population growth)
"  Economics Economics (employment and income)
*"  Housing Housing
*"  Public Public finance finance
*"  Public infrastructure infrastructure (schools, transportation, transportation, hospitals, recreational recreational facilities, etc.).
etc.).
The region of influence is the area containing roughly 90 percent  percent of the current and potential potential employees employees at the site. Local impacts from a concentration concentration of activity activity or a relatively relatively large change change in activity                  Changes activity are noted. Changes projected over 40 years. Employment impacts are estimated using the Bureau of Economic Analysis' are projected                                                                                                            Analysis' Regional Regional Input-Output Input-Output Multiplier Multiplier System.
B.8 PUBLIC PUBLIC AND AND OCCUPATIONAL OCCUPATIONAL HEALTH  HEALTH ANDAND SAFETY For the currently operating operating CL  CLWRs WRs where the production of tritium is expected to result only in some additional release of tritium to the environment environment under either normalnormal operations or accident accident conditions, conditions, the incremental incremental      impacts  to  the  public  and facility workers workers    are  assessed  by  using    the  method    in  the facilities' facilities' environmental reports and the associated associated  NRC  final environmental      statements, environmental statements,          and  by  adding  the effects of of the increase increase in the amounts amounts of released tritium.
FFor or the partially completed completed CL  CLWRs, WRs, the impacts impacts of full reactor      operations would be attributed reactor operations                    attributed to the production of tritium; therefore, therefore, the impacts to the public and facility workers are assessed using current NRC guidelines and practices.
The public and occupational occupational health and safety analysis determines the potential    potential adverse adverse effects on human health from exposure exposure to ionizing radiation and hazardous chemicals. chemicals. Health Health effects are determined by (radioactive and chemical) to which one may be identifying the types and quantities of additional material (radioactive B-5
 
Final Final Environmental  Impact Statementfor Environmental Impact            (or the Production Production of  Tritium in a Commercial o(Trilium        CommercialLight Water Reactor exposed, estimating doses, and then calculating  calculating the resultant health effects (latent    (latent cancer cancer fatalities). The impacts from various releases releases during normal operation and the postulated                  accidents on the human health of postulated accidents                              of workers and the public residing within 80 kilometers (50 miles) of each site are assessed. This assessment          assessment uses site-specific factors such as meteorology, population site-specific                                      population distribution, and agricultural agricultural production. Models are used used.
to project the impacts on the health of workers workers    and  the public    due  to  radiological and chemical releases during during normal operation operation and postulated accidents. These models include:
*" MACCS2 MACCS2 (SNL          1997) for radioactive (SNL 1997)          radioactive material releases during beyond design-basis accidents
" GENII GENII (PNL (PNL 1988) for all radioactive radioactive material material releases releases during normal operations operations and other accidents (design-basis and TPBARTPBAR handling accidents) accidents)
*" ISCST3 ISCST3 (EPA        1995) and ALOHA (NSC 1990) for hazardous (EPA 1995)                                            hazardous chemical chemical releases during normal normal operation and accident accident conditions Health Health Impacts Impacts on Plant      Workers During Plant Workers      During Normal Normal Operation-Because Operation-Becauseradiation workers are individually    individually monitored, experiences from past and current    current operations operations that are similar to future operation are used to estimate the radiological health impacts to workers. Health impacts from chemicals, if any, are discussed qualitatively.
There are no individual exposure data on workers    workers for chemicals. Therefore, it is assumed    assumed that individuals individuals are exposed to low air chemical chemical emission concentrations concentrations during an 8-hour day for a 40-hour week at a point (about 100 meters per 330 feet) downstream from the release point.
Health Health Impacts Impacts on the General GeneralPublic Public During During Normal        Operation-Publichealth Normal Operation-Public              health impacts from exposure to radiological or hazardous hazardous chemical chemical materials materials released during operations are calculated. The effect        effect is the sum (1) internal exposure of: (l)            exposure resulting from breathing, eating, and drinking; and (2)                (2) external exposure resulting resulting contaminated ground, being from standing on contaminated                    being exposed exposed to the air, and being submerged in water. The type and            and amount of material released released are estimated, and the associated associated radiological radiological and chemical chemical doses are determined.
These doses are converted to health effects      effects using appropriate appropriate health risk estimators, both radiologicalradiological (NRC/NAS (NRCINAS        1990,    NCRP      1993) 1993)  and  chemical    (EPA    1997).
1997).
Accident Analyses Analyses/or for Postulated PostulatedAccident Scenarios-Risks Scenarios-Risks to both an individual member of the public and the general population residing within the affected area are calculated. calculated. The magnitude magnitude and consequences consequences of  of impacts associated with each  each alternative are determined determined using site-specific site-specific and/or reactor-specific reactor-specific safety analyses. Although the conceptsconcepts used are analogous analogous to a formal probabilistic risk assessment, the accident      accident analyses involve less detail and only address      address a spectrum of beyond design-basis  design-basis accidents (severe (severe core disruptive reactor accidents) that represent represent high consequence consequence events with a low probability probability of occurrences occurrences (often ~*< l.Ox  10-66 per year), and a spectrum of possible design-basis and other operational i.Ox 10-                                                                                      operational accidents that represent low-consequence low-consequence events with a high probability probability of occurrences occurrences (frequency greater than 1.0x          10-6 per 1.0x 10x6 year). These accidents are similarsimilar to those that have been postulated in the plant's environmental  environmental report and the corresponding corresponding NRC final environmental environmental statement.
The accident              noninvolved'l worker accident risk to a noninvolved        worker is calculated calculated for a hypothetical hypothetical worker at 0.64 kilometers (0.4 mile)
(or the site boundary, whichever whichever    is closer)  from  the  facility  release point. The risk to facility workers from radiological accidents accidents is addressed qualitatively, qualitatively, since precise placement placement of the workers during accidentsaccidents cannot be known.
          'Noninvolved workers INoninvolved    workers are are only applicable applicableto DOE sites,sites, since each DOEDOE site usually contains contains manyfacilities.
facilities.
At At a CLWR, CL WR, there there are are no facilities  that do not directly facilities that          directly support support reactor reactoroperation.
operation. Therefore, Therefore, non noninvolved involved workers,    as workers, as defined in DOE defined    DOE documents, documents, do not exist.
exist. For For consistency, consistency, however, however, thisthis calculation calculationwill be performed B-6 B-6
 
Appendix Appendix B - Methods Methodsfor (or Assessing Environmental Environmental Impacts-Application Impacts-Applicationto Production Production of Tritium in Commercial o(Tritium                      Water Reactors Commercial Light Water Reactors Uncertainties-Thesequence of analyses Uncertainties-The                        analyses needed to generate generate the radiological impact estimatesestimates from normal operations and facility accidents includes: (1)      (l) a selection selection of normal operational operational modes and accident accident sequences, (2)  estimation of source (2) estimation        source  terms,    (3)  estimation (3) estimation      of  environmental      transport    and  uptake    of radionuclides, radionuclides, (4) calculation calculation of radiation doses to exposed exposed individuals, individuals, and (5) (5) estimation of health effects.
conservative models and scenarios The analyses use conservative                        scenarios to bound the risks. As a result, even though the range              of range of uncertainty in a quantity may be large, the value calculated uncertainty                                                calculated for the quantity quantity is close to the upper extreme in the range, so the chance of the actual quantity being                              calculated value (or the chance of the quantity being greater than the calculated being less than the calculated calculated value if the criteria are such that the quantity has to be maximized)    maximized) is low.
For the partially completed CLWRs, the impacts are evaluated        evaluated using the total source terms (as opposed  opposed to incremental) incremental) associated with each accident.
B.8.1 Emergency B.S.I                  Preparedness Emergency Preparedness Emergency preparedness plans exist for all operating Emergency                                            operating reactor sites and are summarized summarized in the EIS for each site.
For nonoperating nonoperating reactor sites, approximate approximate plans need to be developed.
B.9            MANAGEMENT WASTE MANAGEMENT The volumes volumes of each waste type (low-level (low-level radioactive, low-level low-level mixed, hazardous, hazardous, nonhazardous, and high-level radioactive) radioactive) are estimated. Methods Methods of minimizing each of the waste streams are discussed. Impacts          Impacts are assessed in the context of site practices practices for treatment, storage, and disposal. Wastes related to decontamination decontamination and decommissioning are also discussed. Decontamination Decontamination and decommissioning decommissioning can range from performing performing a simple simple  radiological  survey  to  completely completely      dismantling    and removing removing radioactively contaminated facility.
a radioactively    contaminated B.10 B.IO    TRANSPORTATION TRANSPORTATION The impacts of transporting program-related program-related materials materials are described. The packages required  required for the shipment of materials are also described. For transporting irradiated                                  radioactive waste, the following irradiated TPBARs and radioactive elements are considered: transport mode, weight of material, Curies, proximity dose rates (transport index),
elements type of package, number number of shipments, and distance. Road and railroad routes are identified        identified using HIGHWAY (ORNL (ORNL 1993a) 1993a) and INTERLINE (ORNL 1993b)                                                Radiological transportation 1993b) codes, respectively. Radiological              transportation health impacts impacts are calculated using RADTRAN RADTRAN and TICLD (SNL 1993)            1993) codes for both the incident-free incident-free and accident accident conditions. In addition to the radiological radiological risks posed by the transportation transportation activities,      vehicle-related risks are activities, vehicle-related nonradiological causes (i.e.,
assessed for nonradiological                (i.e., causes related to the transport vehicles and not the TPBAR packages). packages).
Nonradiological Nonradiological    risks  during    incident-free      transportation    conditions incident-free transportation conditions            are  caused    by  potential  exposure  to increased vehicle exhaust emissions. Nonradiological Nonradiological    risks resulting resulting  from  accident  conditions conditions  unrelated  to the shipment cargo are assessed                state-specific transportation fatality rates.
assessed using state-specific B.11 B.II    SPENT FUEL MANAGEMENT MANAGEMENT "Spent fuel" is the terminology used for nuclear "Spent                                              nuclear reactor fuel that has been irradiated to the point that it no longer contributes to the continued continued operation operation of the reactor. The spent fuel is removed from the reactor core and stored stored in the spent fuel storage pool or basin. The Nuclear        Nuclear Waste Policy Act of 1982,      1982, as amended, Secretary of Energy the responsibility assigned the Secretary                        responsibility for developing developing a repository repository for the disposal of high-level radioactive waste and spent fuel. When such a repository is available, spent fuel is transported radioactive                                                                                              transported for disposal B-7 B-7
 
FinalEnvironmental Final Environmental Impact Statement Statementfor (or the Production Productiono(Tritium of Tritium in a Commercial Commercial Light Water Water Reactor from the nuclear power reactors to the repository. Until a repository  repository is available, available, spent fuel is stored stored in the reactor pools or in other acceptable, NRC-licensed NRC-licensed storage locations. Because    Because of the uncertainty uncertainty associated with opening a repository, this EIS assumes that spent fuel is stored at the reactor facility for the 40-year              40-year duration of the proposed action.
B.12    ENVIRONMENTAL JUSTICE ENVIRONMENTAL 12898, Federal Executive Order 12898,                                        Environmental Justice in Minority Federal Action to Address Environmental                          Minority Populations and Low Income Populations, requires an assessment of incidence and mitigation  mitigation related to disproportionately disproportionately high and adverse adverse human health or environmental environmental effects effects on minority and low-income low-income populations. In May            1996, the May 1996, Council Council on Environmental Environmental Quality Quality released released its initial guidance          environmental justice (CEQ 1996). This guidance on environmental guidance guidance forms the basis of the environmental environmental justice analysis. The following definitions are used in the analysis:
"  Minority Individuals-Persons
* Minority    Individuals-Personsself-designated self-designated as Hispanic Hispanic (of any race), Native American, American, Asian or Pacific Pacific Islander, or Black Black
"  Minority Population-The
* Minority    Population-The total number of minority individuals  individuals residing within a specified area    area
"  Low-Income Individuals-Any
* Low-Income      Individuals-Any persons whose income      income is below the poverty threshold
* Low-Income      Population-Thetotal number of low-income individuals Low-Income Population-The                                                individuals residing within a specified specified area area Demographic data provided Demographic          provided by the U.S. Bureau of the Census is used to quantify minority and low-income          low-income affected area, i.e., within a radIUS populations in the affected                          radius of 80 kilometers (50 miles) and 16 kilometerskilometers (10 (10 miles) from the site. Poverty    thresholds, Poverty thresholds,    which  are  a  function  of family    size  and the  number  of  unmarried    children children under 18, are used to identify the low-income low-income    populations. To  avoid    significant uncertainties  in the  population estimate estimate due to partial partial inclusions of geographic geographic units (such as census tracts, block groups, and blocks) at the boundaries of potentially affected affected areas, the unit area of spatial resolution is significantly less than the affected  affected area. Uncertainty Uncertainty bounds bounds are calculated calculated by total inclusion (the upper bound) and total exclusion (the lower bound) of the populations populations residing within the affected area.
As the analysis found no significant significant impacts on the general population, population, no further analyses analyses of impacts on  on minority populations populations and low-income populations are required. Instead, the discussion states that no significant significant impacts are likely for the general population or any particular segment of the population.
B.13    APPLICABLE      ENVIRONMENTAL LAWS, ApPLICABLE ENVIRONMENTAL              LAWS, REGULATIONS, REGULATIONS, AND    AND GUIDANCE GUIDANCE Tables B-1 B- 1 and B-2 provide provide a summary summary of all environmental environmental laws, regulations, and guidance            applicable to the guidance applicable preparation preparation  of the CLWR CL WR    EIS.
B-8
 
Appendix B - Methodsfor for Assessing Environmental EnvironmentalImpacts-Application        Productionof Tritium Impacts-Application to Production      Tritium in Commercial CommercialLight Light Water Water Reactors Reactors Table T a hie B - 1 FFederal B-1      edera IE  Environmental nVlronmenta IS      Statutes, tatutes, R Re2ulations, egu atlOns, and an dE  Executive xecutJve Orders Od r ers1 Resource Resource      Statute/Regulation!
Statute/Regulation      1                      J?esponsible Responsible        Potential Applicability: Permits, Potential                                Approvals, Permits,Approvals, Category Category              Order Order                  Citation Citation          Agency Agency                  Consultations,and Notifications Consultations,          Notifications Air          The Clean Air Act, as The                        42 U.S.C.          Environmental    Requires Requires sources to meet standards standards and obtain Resources amended amended                    &sect;&sect;7401 et    seq.
el seq. Protection        permits to satisfy:
permits      satisfy: NAAQS, state implementation implementation Agency/State Agency/State      plans, plans, the Standards Standards of Performance Performance for New Stationary Sources, Sources, NESHAP, and Prevention of          of Significant Deterioration regulations.
The The National Ambient            U.S.C.
42 U.S.c.          Environmental    Requires Requires compliance compliance with primary and secondary Air Quality Quality Standards/
Standards/    &sect;&sect;7409 et
                                        &sect;&sect;7409      seq.
el seq. Protection        ambient ambient air quality quality standards governing sulphur sulphur State Implementation Implementation                            Agency/State Agency/State      dioxide, nitrogen oxides, carbon dioxide, ozone,  ozone, Plans Plans                                                            lead, lead, and PMPM1IOo and emission limits/reduction limits/reduction measures as designated in each state's measures implementation plan.
Standards of                42 U.S.C. &sect;7411 Environmental        Establishes control/emission Establishes    control/emission standards standards and record Performance Performance for New                            Protection        keeping keeping requirements for new or modifiedmodified sources Stationary Sources Sources                              Agency/State Agency/State      specifically  addressed by a standard.
specifically addressed          standard.
The The National Emission 42 U.S.c. U.S.C. &sect;7412 Environmental Environmental    Requires Requires sources sources to comply comply with emission levels of    of Standards for Hazardous Hazardous                        Protection        carcinogenic carcinogenic or mutagenic pollutants; may require  require Air Pollutants                                  Agency/State Agency/State      preconstruction preconstruction approval, depending depending on the process process being considered and the level of emissions emissions that will  result from will result  from the new or modified source.
Prevention Prevention of                  U.S.C.
42 U.S.c.          Environmental    Applies Applies to areas that are in compliance compliance with Significant Deterioration &sect;&sect;7470
                                        &sect;&sect;7470 et    seq.
el seq. Protection        NAAQS. Requires comprehensive comprehensive preconstruction preconstruction Agency/State      review and the application of Best Available Control Control Technology to major stationary sources (emissions (emissions of 100 100 tons per year) and major major modifications; requires requires a preconstruction preconstruction review review of of air quality quality impacts and the issuance of a construction construction permit permit from the responsible responsible state agency setting forth emission limitations to protect Significant Deterioration the Prevention of Significant      Deterioration increment.
Noise Control Act ofof      42 U.S.C.
42U.S.C.            Environmental    Requires facilities to maintain noise levels that do Requires 1972 1972                        &sect;&sect;4901
                                        &sect;&sect;4901 etel seq. Protection        not jeopardize jeopardize the health and safety of the public.
Agency Water        The The Clean Water Water Act Act      33 U.S.C.          Environmental    Requires Environmental Requires  Environmental Protection Agency or state-Resources                                &sect;&sect;1251
                                        &sect;&sect; 1251 etseq.
el seq. Protection        issued                compliance with provisions issued permits and compliance              provisions of of Agency/State      permits regarding permits  regarding discharge discharge of effluents to surface surface waters.
National Pollutant Pollutant        33 U.S.c.
U.S.C. &sect; 1342 Environmental Environmental    Requires Requires permit to discharge effluents to surface Discharge Discharge Elimination Elimination                          Protection        waters and stormwaters; permit modifications modifications are System (Section 402 of                          Agency/State Agency/State      required required if discharge effluents are altered.
the Clean Clean Water Act)
Dredged Dredged or Fill Material Material      U.S.C.
33 U.S.c.          U.S.
U.S. Army        Requires permits to authorize the discharge of      of (Section (Section 404 of the        &sect;1344/33    U.S.C. Corps of
                                        &sect; 1344133 U.S.c.                      dredged or fill material into navigable waters or      or Clean Clean Water Act)/Rivers Act)/Rivers    &sect;401I et
                                        &sect; &sect;40  el seq. Engineers        wetlands and to authorize wetlands            authorize certain structures.
structures.
and Harbors Appropriations Appropriations Act ofof 1899 1899 Wild Wild and Scenic Rivers Rivers    16 U.S.C.  &sect;&sect; 1271 FWS/Bureau of U.S.c. &sect;&sect;                        Requires Requires consultation before    construction of any new before construction Act Act                        et seq.
seq.            Land              Federal          associated with aa river designated Federal project associated                designated oror Management/
Management!      under under study as wild and scenic in order to minimize and    and ForestService/
Forest,Service/  mitigate mitigate any adverse effects effects on the physical and and National Park Park    biological biological properties properties of the river.
Service Service Water Act 42 U.S.C.
Safe Drinking Water            U.S.c. &sect;&sect;      Environmental Environmental    Requires permits for construction/operation Requires                  construction/operation of  of 300f et seq.
seq.      Protection        underground injection injection wells and subsequent Ag'ency/State Aeencv/State      discharain, of effluents to ground aauifers.
discharging                              aquifers.
B-9
 
FinalEnvironmental Final  EnvironmentalImpact Statement for the Production Productionof  Tritium in a Commercial o{Tritium                              Water Reactor Commercial Light Water      Reactor Resource      . Statute/Regulation!
StatutelRegulationi                            Responsible Responsible            Po.tential Ajiplicability:
Potential    Aiplicabiiity:Permits,      Approvals, Permits,Approvals, Category Category              Order Order                  Citation Citation          Agency .
Agency                      Consultations, and Consultations,          Notifications andNotifications Water Water        Executive Order 11988:
Executive          11988:    3 CFR, 1977        Water Resources Resources    Requires Federal Requires            agencies to avoid to the extent Federal agencies                    extent possible Resources Resources    Floodplain Management Floodplain  Management      Comp.,
Comp., p. 117      CouncillFederal Council/Federal    the long- and short-term    adverse impacts associated with short-term adverse (cont'd)                                                      Emergency          the occupancy          modification of floodplains and to occupancy and modification Management          avoid direct and indirect support of floodplain Agency/CEQ          development    wherever there is a practicable development wherever                  practicable alternative.
Executive Executive Order 11990:        3 CFR, 1977        U.S. Army Corps    Requires Federal Federal agencies agencies to avoid the long- and short-Protection Protection of Wetlands        Comp., p. 121      of Engineers/      term adverse impacts impacts associated with the destruction or    or FWS                modification modification of wetlands.
Compliance Compliance with              10 CFR 1022        DOE                Requires DOE to comply with all applicable applicable Floodplain/Wetlands FloodplainlWetlands                                                  floodplain/wetlands environmental floodplain/wetlands    environmental review requirements.
Environmental Review Environmental    Review
_Requirements Requirements Hazardous    Resource Resource Conservation Conservation      42 U.S.C. &sect;&sect;6901
                                                      &sect;&sect;6901 Environmental        Requires notification Requires  notification and permits for operations operations Wastes and  and Recovery Recovery                et seq.            Protection Protection          involving involving hazardous hazardous waste treatment, storage, storage, or or Land        Act/Hazardous ActlHazardous and Solid      PL 98-616 98-616        Agency/State Agency/State        disposal facilities. Changes to site hazardous waste Resources    Waste Amendments Amendments of                                                operations operations could require amendments to RCRA    RCRA 1984                                                                  hazardous waste permits involving public hearings.
hazardous Farmland Protection Farmland                        U.S.C. &sect;&sect;4201 7 U.S.C  &sect;&sect;4201    Soil                Requires avoidance avoidance of any adverse effects effects to prime and Policy Act of 1981            et seq.            Conservation        unique farmlands.
Service Service Federal Federal Facility              42 U.S.C. &sect;6961
                                                      &sect;6961  States              Requires waivers Requires  waivers of sovereign immunity for Federal Compliance Compliance Act of 1992                                                facilities under under RCRA RCRA and requires requires DOE to develop plans and plans  and enter enter into into agreements agreements with with states  as to states as  to specific specific management actions for specific mixed waste streams.
management Ecology      Fish and Wildlife Wildlife              U.S.C. &sect;&sect;661 16 U.s.C.          Fish Fish and Wildlife Requires consultation consultation on the possible effects on wildlife (Biotic Re-  Coordination Coordination Act              et seq.
seq.            Service            if there is construction, construction, modification, or control of  of sources)                                                                          bodies of water water in excess of 10 acres in surface area.
Bald and Golden Eagle            U.S.C. &sect;&sect;668 16 USC      &sect;&sect;668  Fish and Wildlife Requires consultations consultations to be conducted to determine if Protection Protection Act                et seq.            Service            any protected protected birds are found to inhabit the area. If so, DOE must DOE    must obtain obtain aa permit permit prior prior to moving any to moving  any nests nests due to construction or operation of project facilities.
Wilderness Wilderness Act of 1964        16 U.S.C.
16U.S.C.            Department Department of      Requires consultations Requires  consultations with the Department Department of of
                                          &sect;&sect; 1131 et
                                          &sect;&sect;1131      seq.
etseq. Commerce/          Commerce and Department of Commerce                            Interior to minimize ofInterior    minimize Department of      impact.
Interior Migratory Migratory Bird Treaty Act 16 U.S.C. &sect;&sect;703 &sect;&sect;703  Fish and Wildlife Requires consultation consultation to determine determine if there are any et seq.            Service            impacts on migrating bird populations due to construction or operation construction      operation of project facilities. If so, DOE will develop mitigation mitigation measures to avoid adverse effects.
Wild Free-Roaming Free-Roaming            16 USC U.S.C.          Department of      Requires consultation Requires  consultation with the Department of Interior to Horses and Burros Burros Act of &sect;&sect; 1331 et seq.
seq. Interior            minimize impact.
1971 Endangered Endangered Species Act            U.S.C.
16 U.S.C          Fish and Wildlife Wildlife  Requires Requires consultation to identify endangered or      or of 1973                      &sect;&sect; 1531 et seq.
seq. Service/National ServicelNational    threatened threatened species species and biological opinions opinions and, if Marine Fisheries    necessary, develop mitigation measures to reduce or Service            eliminate eliminate adverse effects of construction construction or operation.
Cultural    National Historic            16 U.S.C.
U.S.C          President's        Requires Requires consultation with the State Historic Resources    Preservation Preservation Act of 1966, 1966,  &sect;&sect;470 et seq.
seq.      Advisory            Preservation Preservation Office prior to construction construction to ensure that as amended amended                                    - Council on          no historical properties properties will be affected.
Historic Preservation Archaeological Archaeological and            16 U.S.C.
U.S.C &sect;&sect;469 Department of          Requires Requires authorization for any disturbance of    of Historical Historical Preservation Preservation      et seq.
seq.            Interior            archaeological archaeological resources.
resources.
Act of 1974 1974 Archaeological Archaeological Resources Resources    16 U.S.C.
U.S.C          Department of Department          Requires    authorization for any excavation Requires authorization              excavation or removal removal ofof Protection Protection Act of 1979        &sect;&sect;&sect;470aa
                                            &sect;4 70aa et seq. Interior            archaeological resources.
archaeological    resources.
Antiquities Antiquities Act                16 U.S.C.
16U.S.C.          Department Department of      Requires    compliance with all applicable Requires compliance                applicable sections of the I&sect;&sect;431-33            Interior            Act.
B-1O B-10
 
Appendix B - Methods for Assessing Environmental Environmental Impacts-Application Impacts-Application to Production  of Tritium in Commercial Production o(Tritium          CommercialLight Water Reactors  Reactors Resource      .Statute/Regulation/
Statute/Regulatio1l!      -                    Responsible          Potential  Applicability: Permits,'
PotentialApplic&ability:        Permits; Appr()vals, Approvals, Category Category              Order Order                  Citation Citation            Agency Agency                  Consultations, and Consultations,              Notifications andNotifications Cultural    American American Indian Religious      U.S.C. &sect;&sect;1996 Religious 42 U.S.C      1996  Department of    Requires    consultation with local Requires consultation              local Native American Resources Resources    Freedom Freedom Act of 1978                              Interior          Indian Indian tribes    prior to tribes prior    to construction construction to  to ensure    that ensure that (cont'd)                                                                        their their religious    customs, traditions, religious customs,      traditions, and and freedoms freedoms areare preserved.
Native American American Graves    25 U.S.C. &sect;3001
                                                      &sect;3001  Department Department of    Requires consultations consultations with local Native American American Protection Protection and                                  Interior          Indian tribes tribes prior to construction to guarantee that no      no Repatriation Repatriation Act of 1990                                          Native American American graves are disturbed.
disturbed.
Executive Executive Order 11593:      3 CFR 154,          Department Department of    Requires agencies agencies to aid in the preservation of historic Protection and              1971 -1975 1971-1975            Interior          and archaeological archaeological data that may be lost during Enhancement Enhancement of the          Comp., p. 559                          construction activities.
construction  activities.
Cultural Cultural Environment Environment Public and  Occupational  Safety and Occupational Safety        5 U.S.C.
U.S.C &sect;5108
                                                    &sect;51 08  Occupational Occupational      Requires agencies to comply with all applicable    applicable Occupational Health Act Occupational                                                  Safety and        worker safety and health legislation (including  (including Health Health and                                                    Health Health            guidelines of guidelines    of 29  CFR Part 29 CFR            1960) and Part 1960)    and tq to prepare, prepare, oror Safety                                                        Administration Administration    have available, have                Material Safety available, Material      Safety Data      Sheets.
Data Sheets.
Standards Standards for Protection 10 CFR 20              Nuclear Nuclear          Establishes standards standards for protection of workers and Against  Radiation Against Radiation                                Regulatory Regulatory        the general public against radiation hazards arising Commission Commission        out of activities activities under licenses issued issued by the Nuclear Nuclear Regulatory Regulatory Commission.
Occupational Occupational Radiation Radiation  10 CFR Part 835 835 Department Department of                                protection standards, limits, Establishes radiation protection Protection Protection                                      Energy Energy            and program      requirements for protecting program requirements              protecting individuals individuals from ionizing radiation radiation resulting from conduct of          of DOE activities.
Hazard Communication Hazard  Communication      29 CFR 29CFR                Occupational Occupational                agencies to ensure that workers Requires agencies                      workers are informed informed Standard Standard                    1910.1200          Safety and        of, and trained to handle, all chemical hazards of,                                            hazards in thethe Health          workplace.
Administration Administration Other Other        Atomic Energy Act of        42 U.S.C.
U.S.C. &sect;2011    Department Department of    Requires Requires DOE to follow its own standardsstandards andand 1954                                            Energy Energy          procedures procedures to ensure the safe operation operation of its facilities.
National National Environmental Environmental    42 U.S.C.
U.S.C &sect;&sect;4321 Department Department of    Requires Requires DOE to comply with NEP      NEPA  A implementing implementing Policy Act                  et seq.
seq.              Energy Energy          procedures      accordance with 10 CFR Part procedures in accordance                              1021.
Part 1021.
Toxic Substances Control Control U.S.C.
U.S.C &sect;&sect;2601        Environmental Environmental    Requires    compliance with inventory Requires compliance            inventory reporting reporting Act 15                      et seq.            Protection Protection        requirements and control provisions requirements                  provisions of TSCA to protect protect Agency            the public public from the risks of exposure to chemicals; TSCA TSCA imposes      strict limitations imposes strict    limitations onon use use and    disposal of and disposal  of polychlorinated polychlorinated biphenyls-contaminated biphenyls-contaminated equipment.
Hazardous Materials Materials      49 U.S.C.
U.S.C            Department Department of    Requires    compliance with the requirements governing Requires compliance                                    governing Transport Action Act        &sect;&sect; 1801 et seq.
                                        &sect;&sect;                  Transportation Transportation    hazardous materials materials and waste transportation.
transportation.
Hazardous Materials Materials          U.S.C. &sect; 1801 49 U.S.C            Department Department of    Restricts shippers of highway route-controlled route-controlled quantities quantities Transportation Uniform Transportation                                  Transportation Transportation    of radioactive materials to use only permitted carriers.
Safety Safety Act Act of 1990 1990 Emergency Planning and Emergency                  42 U.S.C.
U.S.C            Environmental Environmental    Requires the development development of emergency response plans Community Right-To-Right-To-      &sect;&sect; 11001 ef
                                        &sect;&sect;IIOOI  et seq.
seq. Protection Protection        and reporting reporting requirements for chemical spills    spills and other Know Act of 1986                                Agency Agency            emergency releases, releases, and imposes right-to-know right-to-know reporting requirements covering storage and use of          of chemicals which are reported in toxic chemical chemicals                                      chemical release forms.
Pollution Prevention Prevention Act    42 U.S.C. 11001 -- Environmental Environmental    Establishes a national policy that pollution should      should of 1990                    11050                Protection Protection        be reduced be  reduced atat the the source    and requires source and      requires aa toxic toxic Agency Agency            chemical chemical source      reduction and source reduction      and recycling recycling report report for for an owner owner or operator ofa  of a facility required required to file an annual toxic chemical chemical release form under    under Section Section 313313 of SARA.
SARA.
B-11
 
Final Final Environmental    Impact Statement for Environmental Impact                    the Production for the Production of of Tritium Tritium in a Commercial CommercialLight Water Reactor Resource Resource        Statute/Regulation!
Statute/Regulation/                                  Responsible Responsible            Potential Applicability: Permits, Potential                                    Approvals, Permits,Approvals, Category Category                Order Order                    Citation ,          Agency Agency                      Consultations, Consultations,and and Notifications Notifications Other          Executive Executive Order 12843:
12843: April21, April 21, 1993          Environmental      Requires Requires Federal agencies to minimize procurement procurement of of (cont'd)      Procurement Procurement                                          Protection Protection          ozone ozone depleting depleting substances and confonn conform their practices Requirements Requirements and                                      Agency              to comply with Title VI of the Clean Air Act    Act Policies Policies for Federal Federal                                                    Amendments      (stratospheric ozone Amendments (stratospheric                protection) and to ozone protection)
Agencies Agencies for Ozone-                                                      recognize recognize the increasingly increasingly limited availability availability of Class Class I Depleting    Substances Depleting Substances                                                      substances substances until final phaseout.
Executive Executive Order    12856:
Order 12856:      August 3, 1993 1993      Environmental Environmental      Requires Requires Federal agencies agencies to achieve 50 percent percent Federal Federal Compliance Compliance with                              Protection          reduction reduction of agency's total releases of toxic chemicals chemicals to Right-To-Know Right-To-Know Laws and                                Agency              the environment environment and offsite transfers; transfers; to prepare prepare a Pollution Pollution Prevention Prevention                                                    written facility pollution pollution prevention plan not later than Requirements Requirements                                                              1995; to publicly 1995;      publicly report toxic chemicals entering any waste  stream from waste stream    from Federal Federal facilities,  including any facilities, including    any releases releases to the environment; environment; and to improve local  local emergency emergency planning, response, and accident notification.
Executive Executive Order Order 12873:    October 20, 1993        Environmental      Requires            agencies to develop affinnative Requires Federal agencies                    affirmative Federal Federal Acquisition, Acquisition,                                Protection          procurement procurement policies policies and establishes a shared Recycling, Recycling, and Waste                                  Agency              responsibility between the system program responsibility                          program manager and Prevention Prevention                                                                the recycling community to effect use of recycledrecycled items items for procurement.
Executive Executive Order Order 12898:      February 11, February    II, 1994 Environmental          Requires Federal Federal agencies agencies to identify and address, as Federal Federal Actions to                                    Protection          appropriate, appropriate, the disproportionately disproportionately high and adverse adverse Address Address Environmental                                Agency              human health or environmental environmental effects of its programs, Justice Justice in Minority Minority                                                      policies, and activities activities on minority populations populations and low-Populations Populations and Low-Low-                                                    income populations.
Income Income Populations Populations Executive Executive Order Order 12088:      3 CFR,                  Office of          Requires Federal Federal agency landlords to submit submit to the Federal  Compliance with Federal Compliance            1978 Comp.,
Comp.,          Management and Office of Management Management                      Management and Budget an annual plan for Pollution Pollution Control              p. 243 p.243                  Budget              the control of environmental environmental pollution and to consultconsult Standards                                                                with the Environmental Environmental Protection Protection Agency and state agencies agencies regarding regarding the best techniques techniques and methods.
Executive Executive Order Order 11514:      3 CFR,                  Council on          Requires Federal agencies Requires            agencies to demonstrate leadership in    in Protection Protection and                1966-1970 1966-1970              Environmental      achieving the environmental environmental quality quality goals ofNEPA; of NEPA; Enhancement Enhancement of              Comp., p. 902            Quality            provides for DOE consultation consultation with appropriate appropriate Federal, Federal, Environmental Environmental Quality                                                    state, and local agencies in carrying carrying out their activities as they affect affect the environment.
Nuclear Nuclear Waste Policy Act 42 U.S.c. U.S.C.            Department of      Requires Requires DOE to dispose of radioactive radioactive waste per of 1982                      &sect;&sect;10101
                                              &sect;&sect;IOIOI etseq.
etseq.      Energy              40 CFR 191 standards.
standards.
Low-Level Low-Level Radioactive        42 U.S.C.                Nuclear Nuclear            Requires DOE to dispose of low-level          radioactive waste low-level radioactive Waste Waste Policy Act Act            &sect;&sect;2021b
                                              &sect;&sect;2021b -2021d
                                                          -2021d      Regulatory          per compacts compacts of the states in which it operates.
Commission PM1 0 =
PMJO      Particulate matter smaller or equal to 10
      = Particulate                                    IO microns.
I    The applicability of these may vary depending on the reactor    reactor and options options under consideration.
Acronyms used in this table are listed below.
CEQ          =    Council on Environmental Environmental Quality CFR          =    Code of Federal Regulations Regulations DOE          =    Department of Energy Department FWS          =    U.S. Fish & & Wildlife Wildlife Service Service NAAQS NAAQS        =    National National Ambient Air Quality Standards NEPA NEPA        =    National Environmental Policy Act NESHAP NESHAP      =    National National Emission Standards            Hazardous Air Pollutants Standards for Hazardous RCRA RCRA        =    Resource Conservation Conservation and Recovery Recovery ActAct SARA SARA        =    Superfund Amendments Superfund    Amendments and Reauthorization Reauthorization Act Act TSCA        =            Substances Control Act Toxic Substances              Act U.S.C.
U.S.c.      =    United States Code B-12 B-12
 
Appendix B - Methods (or          Environmental Impacts-Application for Assessing Environmental                          Production o(Tritium Impacts-Applicationto Production    of Tritium in Commercial CommercialLight Water Reactors Reactors Table B-2 Relevant Relevant DOE Orders Orders and NRC Guides DOE Order Order                                                    DOE Order DOE  Order Titie Title 151.1            Comprehensive Comprehensive Emergency      Management System Emergency Management      System 225.1            Accident Accident Investigation 231.1            Environment Environment Safety and Health Health Reporting 232.1            Occurrence    Reporting and Processing of Operations Information Occurrence Reporting                                    Information 420.1            Facility Facility Safety 425.1            Startup Startup and Restart of Nuclear Facilities Facilities 440.1            Worker Protection Protection Management for DOE Federal and Contractor Employees 451.1            National Environment Environment Policy Policy Act Compliance Compliance Program 460.1A 460.IA            Packaging and Transportation Transportation Safety Safety 470.1            Safeguards Safeguards and and Security Security Program 1230.2            American Indian Tribal Government Policy 5400.5            Radiation Protection of Public Public and Environment 5480.30 5480.30          Nuclear Reactor Reactor Safety Design Design Criteria Criteria 5610.12 5610.12          Packaging and Offsite Transportation Transportation of  Nuclear Components, ofNuc1ear  Components, and Special Assemblies Assemblies Associated with the Nuclear Explosion Explosion NRC Guide Guide No.                                                        Guide Title NRC Guide    Title 1.101            Emergency Planning Emergency    Planning and Preparedness Preparedness for Nuclear Power Power Reactors 1.109            Calculation Calculation of Annual Dose to Man from Routine Releases Releases of Reactor Effluents for the Purposes ofof Evaluating  Compliance with 10 CFR Part 50, Appendix I Evaluating Compliance 1.111            Methods for Estimating Atmospheric Methods                                  Transport and Dispersion of Gaseous Effluents in Routine Releases Atmospheric Transport                                                      Releases from Light-Water-Cooled Light-Water-Cooled Reactors 1.112            Calculation Calculation of Releases of Radioactive Radioactive Materials in Gaseous Gaseous and Liquid Effluents Effluents from Light-Water-Light-Water-Cooled Reactors 1.113            Estimating Estimating Aquatic Dispersions Dispersions of Effluents from Accidental and Routine Reactor Releases for the Purpose of  Implementing Appendix ofImplementing    Appendix I 1.145            Atmospheric Atmospheric Dispersion Models for Potential Potential Accident  Consequences Assessments at Nuclear Power Accident Consequences Plants B-13 B-13
 
Final Environmental Final EnvironmentalImpact Statement for the Production Statement for                o[Tritium Productionof  Tritium in a Commercial Commercial Light Water Water Reactor B.14    REFERENCES CEQ (Council on Environmental Environmental Quality),              Draft Guidance Quality), 1996, Draft      Guidancefor Assessing Environmental Environmental Justice Justice under the National National Environmental Environmental Policy Act, May.
DOI DOl (U.S. Department Department of Interior), 1986a, Visual Resource Inventory,                Bureau ofLand Management Inventory, Bureau                Management (BLM),(BLM),
Manual    HandbookH-8410-1, Manual Handbook      H-84iO-i, January January 17.
DOI                        of Interior), 1986b, DOl (U.S. Department ofInterior),        1986b, Visual Resource ContrastContrastRating, Rating, Bureau Bureau ofLand Management Management
((BLM),
BLM), Manual      HandbookH-843 Manual Handbook      H-843i-i,1-1, January January 17.
EPA (U.S. Environmental Environmental Protection        Agency), 1995, Protection Agency),      1995, Users Users Guide for        IndustrialSource Complex (ISC3) for Industrial                        (ISC3)
DispersionsModels, Dispersions  Models, Volume i1 Users Users Instructions, Instructions,EPA-454/B-95-003a, EPA-4541B-95-003a, Office of Air Quality Planning and Research Triangle Standards, Research    Triangle Park, North Carolina, September.
EPA (U.S. Environmental Environmental Protection Agency),
Agency), 1997,      Integrated Risk Information 1997, Integrated            Information System (IRIS),
(IRIS), Substance Substance
: Files, Files, Washington, Washington, DC, March March 1.
NCRP (National                                Protection and Measurements),
(National Council On Radiation Protection                Measurements), 1993, Risk Estimates Estimates for    Radiation for Radiation Protection,NCRP Report No. 115, Protection,                        115, Bethesda, Maryland, December 31.          31.
NRC/NAS (National Research NRCINAS                            Council/National Academy of Sciences), 1990 Health Research CouncillNational                                          Health Effects of Exposure Exposure to Low Levels of Ionizing Ionizing Radiation, Radiation, BEIR V, National National Academy Academy Press, Washington, DC, 1990.
NSC (National Safety Council),
Council), 1990, Areal Locations Locations of Hazardous Hazardous Atmospheres (ALOHA) Software, Version 5.05, 5.05, National National Safety Council, Washington, DC, December.
ORNL (Oak Ridge National Laboratory),              1993a, HIGHWAY Laboratory), 1993a,      HIGHWAY 3.i,    3.1, An Enhanced Enhanced Transportation TransportationRouting Model:    Program    Description,    Methodology, Model: Program Description, Methodology, and            and  Revised    User's    Manual,  ORNL/TM-User's Manual, ORNLlTM-12124,      12124, Chemical Chemical Technology Technology Division, Oak Ridge, Tennessee, Tennessee, March.
ORNL (Oak RidgeRidge National Laboratory),        1993b, iNTERLINE Laboratory), 1993b,      INTERLINE 5.        0, An 5.0, An Expanded Expanded Railroad      Routing Model:
Railroad Routing    Model:
ProgramDescription, Program    Description, Methodology, Methodology, and Revised User's  User's Manual, Manual, ORNLlTM-12090, ORNL/TM- 12090, Chemical Technology Division, Oak Ridge, Tennessee, March.
PNL (Pacific Northwest Northwest Laboratory),
Laboratory), 1988, GENlI GENII - The Hanford            Environmental Radiation Hanford Environmental          Radiation Dosimetry Dosimetry Software System, PNL-6584, PNL-6584, Richland, Washington, Washington, November.
SNL SNL (Sandia                Laboratory), 1993, (Sandia National Laboratory),        1993, RADTRAN RADTRAN 4 Volume II: Technical      Technical Manual; Manual; SAND89-2370, SAND89-2370, Albuquerque, New Mexico, August.
Albuquerque, SNL SNL (Sandia (Sandia National Laboratory), 1997, Code Manualfor  Manualfor MACCS2: Volume i,            1, User's User's Guide, Guide, MELCOR MELCOR Accident Consequence Consequence Code Systemjor System jbr the Calculation Calculation ofHealth Health and Economic Economic Consequences Consequences of  ofAccidental Accidental Atmospheric Radiological Atmospheric                    Releases, SAND97-0594, Radiological Releases,      SAND97-0594, Albuquerque, New Mexico,          Mexico, March.
B-14 B-14
 
APPENDIX C APPENDIXC EVALUATION EVALUATION OF HUMAN          HUMAN HEALTH  HEALTH EFFECTS FROM NORMAL                NORMAL OPERATIONS C.I C.1  INTRODUCTION INTRODUCTION This appendix provides provides a brief general discussion discussion on radiation radiation and its associated associated health effects effects and describes describes the method and assumptions assumptions used for estimating the potential potential impacts and risks to individuals and the general public from exposure to the releases releases of radioactivity radioactivity and hazardous chemicals during normal operations at the proposed proposed reactor facilities. This information is intended to present the assessment of impacts from normal      normal operation during tritium production production in the proposed reactors, reactors, as described in Chapter Chapter 55 of this environmental environmental impact statement (EIS). Information regarding                radiological impacts resulting regarding potential radiological            resulting from facility accidents is provided in Appendix D of this EIS.
This appendix appendix presents presents numerical numerical information information using engineering and/or scientific scientific notation. For example, example, the number  100,000 can also be expressed number 100,000                                      105. The fraction 0.00001 can also be expressed expressed as 1I x 10'.                                        expressed as 1 x 10-  5 10-5. .
The following following chart defines the equivalent equivalent numerical notations that may be used in this appendix.
appendix.
FRACTIONS ANDAND MULTIPLES OF ,UNITS Multil?le Multiple                Decimal Equivalent Decimal  Eguivalent                  Prefix Prefix            Symbol Symbol 1066 11 x 10                    1,000,000 1,000,000                                mega-                M 3
11 x 10 103                        1,000                                kilo-                k 2
11 x 10 102                          100 100                              hecto-                h 1Ix x 10                            10                                deka-deka-              da da 1 xx 10.
10-''                          0.1                              deci-deci-                dd 10-22 11 x 10                            0.01                            centi-centi-                c 11 x 10.
10-33 0.001 0.001                            milli-milli-              m 11 x 10.
10-66 0.000001 0.000001                        micro-                I"-
11 x 10.
10-99                          0.000000001 0.000000001                      nano-                n 11 x 10. 12 10-12                          0.000000000001 0.000000000001                  pico-                pP 11 x 10. 15 10-11                          0.000000000000001 0.000000000000001              femto-femto-                  f 11 x 10.  ,8 10-18                          0.000000000000000001 0.000000000000000001              atto-                aa C.2 RADIOLOGICAL        IMPACTS ON HUMAN RADIOLOGICAL IMPACTS            HUMAN HEALTH HEALTH Radiation Radiation exposure and its consequences consequences are topics of interest to the general public. For this reason, this EIS places much emphasis emphasis on the consequences consequences of exposure to radiation, provides the reader with background background information on the nature of radiation, and explains the basic concepts used in the evaluation of radiation    radiation health effects. In addition, this section provides a brief description description of the characteristics characteristics of tritium and its potential health effects.
COl C-1
 
Final Environmental Final EnvironmentalImpact Statement Statement {or for the Production o{Tritium Productionof  Tritium in a Commercial Commercial Light Water Water Reactor C.2.1 Background C.2.1    Background Information Information Nature of Radiation C.2.I.1 Nature C.2.1.1                Radiation and Its Effects Effects on Humans Radiation?
What Is Radiation?
Radiation is energy transferred in the form of particles or waves. Globally, human beings are exposed Radiation constantly to radiation from the solar system and from the earth's rocks and soil. This radiation contributes constantly to the natural background      radiation that always surrounds us. Manmade background radiation                                            Manmade sources of radiation also exist, including medical and dental x-rays, household including                                  household smoke                          materials released from nuclear and coal-smoke detectors, and materials                                      coal-fired power plants.
All matter in the universe is composed of atoms. Radiation  Radiation comes from the activity activity of tiny particles particles within within Appendix A, an atom consists of a positively charged nucleus (central an atom. As stated earlier in Appendix                                                                        (central part of an atom) with a number of negatively charged electron particles  particles in various orbits around the nucleus. There      There are electrically neutral and protons that are positively nucleus: neutrons that are electrically two types of particles in the nucleus:
charged. Atoms of different                                elements. There are more different types are known as elements.                          more than 100 natural natural and manmade elements.
elements. An element has equalequal numbers of electrons and protons. When atoms of an element differ in their number number of neutrons,          are called neutrons, they are          isotopes of that element. All elements have three or more isotopes, some called isotopes or all of which could be unstable (i.e.,    decay with time). For example, tritium (also known as hydrogen-3)
(i.e., decay                                                              hydrogen-3) has unstable isotope of hydrogen, which two neutrons and is an unstable                                  which has no neutrons.
Unstable Unstable isotopes undergo      spontaneous change, undergo spontaneous      change, known                          disintegration or radioactive known as radioactive disintegration            radioactive decay. The process                                    spontaneous disintegration continuously undergoing spontaneous process of continuously                                                          called radioactivity. The radioactivity disintegration is called                            radioactivity of a material decreases with time. The time it takes a material material                                                  material to lose half of its original radi<?activity radioactivity is its half-life.
measure of its decay rate. For example, an isotope with a half-life of eight days will An isotope's half-life is a measure radioactivity in that amount of time. In eight more days, one-half of the remaining lose one-half of its radioactivity                                                                                      remaining radioactivity will be lost, and so on. Each radioactive element has a characteristic radioactivity                                                                      characteristic half-life. The half-lives of  of radioactive elements may vary from millionths various radioactive                                  millionths  of  a  second    to millions  of years.
As unstable  isotopes change into more stable forms, they emit electrically unstable isotopes                                                                      charged particles. These particles electrically charged                        particles may be either            particle (a helium nucleus) either an alpha particle                                                      electron), with various levels of kinetic nucleus) or a beta particle (an electron),                                  kinetic energy. Sometimes                                          conjunction with gamma Sometimes these particles are emitted in conjunction                    gamna rays. The alpha and beta particles are frequently referred                                    Ionizing radiation refers to the fact that the charged particle referred to as ionizing radiation. Ionizing electrically charge, an atom by stripping off one of its electrons. Gamma rays, even energy force can ionize, or electrically though though they do not carry an electric chargecharge as they pass through an element, can ionize its atoms by ejecting        ejecting electrons. Thus, they cause ionization indirectly. Ionizing    Ionizing radiation can cause a change    change in the chemical composition of many things, including living tissue (organs),  (organs), which can affect the way they function.
When a radioactive isotope of an element emits a particle, it changes    changes to an entirely different element, one that may mayor or may  not  be radioactive. Eventually,    a stable  element    is formed. This transformation, which may take several steps, is known as a decay chain. For example,  example, radium, which is a member of the radioactive decay          decay chain of uranium, has a half-life half-life of 1,622 years. It emits an alpha particle and becomes radon, a radioactive half-life of only 3.8 days. Radon decays first to polonium, then through a series offurther gas with a half-life                                                                                            of further decay steps to bismuth, and ultimately to lead, which is a stable element. Meanwhile, the decay products will build up and will eventually eventually die away as time progresses.
C-2
 
Appendix C - Evaluation Evaluationo(Human of Human Health Health Effects from (rom Normal Normal Operations Operations The characteristics characteristics of various forms of ionizing radiation are briefly described below and in the box at right (see Glossary for further definition):
Radiation Radiation              Typical Typical Travel Type Type                  Distance in Air                Barrier Barrier Alpha (a)                                                                                                      Sheet  of        or skin's a                Couple of centimeters centimeters  surface paper or surface Alpha particles particles are the heaviest type of ionizing                    ~13                  Few  meters Few meters Thin sheet of aluminum foil or glass foil or glass radiation.      They can travel only a couple                                                                  Thick wall of concrete, concrete, yYVery                    Large Very Large'        lead, or steel centimeters in air.
centimeters                  particles lose their energy air. Alpha particles                                                                          lead, or steel n                  Very Large        Water,  paraffin, Water, paraffin, almost as soon as they collide with anything. They                    n                    Very Large can be stopped easily by a sheet of paper or by the          . Woudbe infinitenavaumgraphite Wauld Would be infinite mflnlte in a vacuum In a graphite skin's surface.
(fJ)
Beta (f8)
Beta Beta particles are much (7,330 times) lighter lighterthan than alpha particles. They can travel a longer distance than alpha                  alpha particles in the air. A high energy beta particle can travel a few meters in the air. Beta particles            particles can pass through a sheet of paper, but may be stopped by a thin sheet of aluminum  aluminum foil or glass. Tritium emits a very low energy energy beta particle.
Gamma (y)  (y)
Gamma rays (and xx-rays),
                      -rays), unlike alpha or beta particles, are waves waves of pure energy. Gamma rays travel at the speed of light. Gamma                        penetrating and requires a thick wall of concrete, lead, or steel to stop Gamma radiation is very penetrating it.
Neutrons (n)
Neutrons Neutrons are particles particles that contribute to radiation exposure exposure both directly and indirectly. The most prolific source of neutrons neutrons is a nuclear reactor. Indirect Indirect radiation exposure exposure occurs when gamma rays and alpha particles are emitted following neutron capture in matter. A neutron has about one quarter the weight of an alpha particle. It will travel in the air until it is absorbed absorbed in another element.
Units of Radiation Radiation Measure During the early days of radiological experience, experience, there was no precise unit of radiation measure. Therefore,              Therefore, a variety of units were used to measure radiation. These units were used to determine          determine the amount, type, and intensity intensity of radiation. Just as heat can be measured in terms of its intensity or effects using units of calories or degrees, amounts of radiation or its effects can be measured in units of Curies, radiation absorbed        absorbed dose (rad),
or dose equivalent (rem). The following summarizes summarizes those units (see also the definition in the Glossary).
Curie Curie The Curie, named after the French scientists Marie and Pierre Curie, describes      describes the "intensity" "intensity" of a samplesample of    of radioactive radioactive material. The rate of decay of 1 gram of radium is the basis of this unit of measure. It is equal to 3.7 x 1010 10 " disintegrations (decays) per second.
C-3 C-3
 
Final Final Environmental Impact Statementfor Environmental Impact          (or the Production Production of Tritium in a Commercial o(Tritium      CommercialLight Water Reactor Rad Radiation Units Radiation        Units The rad is the unit of measurement for the physicalphysical absorption of                          and Conversions Conversions to radiation. The total energy absorbed absorbed    per unit  quantity of tissue is          International System of Units International                              Units referred to as absorbed dose (or simply dose). As sunlight    sunlight heats energy to  to it,  radiation it, radiation        1I Curic          1010 Bccqucrcl
                                                                                                = 3.7 Xx 10"0  Becquerel pavement by giving up an amount of energy                                                Curie=
1I rad = 0.01 0.01 Gray similarly gives up rads of energy energy to objects in its path. One rad is              1I rem    0.01 Sievert rem == 0.01  Sicvcrt equal to the amount of radiation that leads to the deposition of                      1I Gray Gray= = 1I Joule/kilogram Joulclkilogram absorbing material.                      1I Bccqucrc1 Becquerel = = I1 disintegration disintcgration pcr sccond per second 0.01 Joule of energy per kilogram of      of absorbing    material.
Rem A rem is a measurement measurement of the dose equivalent from radiation based        based on its biological effects. The rem is used            used in measuring the effects of radiation radiation on the body as degrees Centigrade Centigrade are used in measuring the effects of                  of sunlight heating pavement. Thus, 1 rem of one type of radiation is presumed            presumed to have the same biological effects as 1 rem of any other kind of radiation. This allows comparison of the biological effects                                          of effects of radionuclides that emit different different types of radiation.
The units of radiation measure in the International Systems of Units are: Becquerel              Becquerel (a measure of source        source intensity [activity  D, Gray (a measure of absorbed dose), and Sievert (a measure
[activity]),                                                                  measure of dose equivalent).
An individual individual may be exposed exposed to ionizing radiation radiation externally (from a radioactive radioactive source outside the body) or internally (from ingesting or inhaling inhaling radioactive radioactive material). The externalexternal dose is different from the internal        internal dose because because an external external dose is delivered only during the actual time of exposure to the external                external radiation source, but an internal dose continues to be delivered as long as the radioactive source            source is in the body. The dose from internal exposure is calculated calculated over 50 years following the initial exposure; both radioactive          radioactive decay and  and elimination of the radionuclide radionuclide by ordinary metabolic metabolic processes processes decrease the dose rate with the passage of time.
Sources of Radiation Radiation The average average American receives receives a total of approximately approximately 364 milliremmillirem per year from all sources      sources of radiation, radiation, both natural natural and manmade, manmade, of which approximately approximately 300 millirem per year are from natural sources (NCRP 1987b). The sources of radiation can be divided into six different categories:            categories: (1) cosmic radiation, (2) terrestrial (2) terrestrial radiation, radiation, (3) internal internal radiation, (4) consumer consumer products, (5)    (5) medical diagnosis and therapy, and (6) other sources (6)        sources (NCRP 1987b). These categories categories are discussed discussed in the following paragraphs.paragraphs.
Cosmic Radiation Radiation Cosmic radiation is ionizing radiation radiation resulting from energetic charged  charged particles particles from space continuously hitting the earth's atmosphere. These particles and the secondary    secondary particles and photons  photons they create comprise  comprise cosmic radiation. Because the atmosphere provides  provides    some    shielding  against    cosmic      radiation,    the  intensity  of of this radiation increases with the altitude above sea level. The average dose to people            people      in  the  United    States  from this source is approximately approximately 27 millirem per year.
External Terrestrial External  Terrestrial Radiation Radiation External terrestrial terrestrial radiation radiation is the radiation emitted emitted from the radioactive materials in the Earth's rocks and soils. The average dose from external external terrestrial terrestrial radiation        approximately 28 millirem per year.
radiation is approximately C-4 C-4
 
Appendix C - Evaluation Evaluation of ofHuman Human Health Health Effects from Normal Normal Operations Operations Internal  Radiation Infernal Radiation Internal radiation results from the humanhuman body metabolizing metabolizing natural radioactive material material that has entered entered the body by inhalation inhalation  or  ingestion. Natural  radionuclides    in  the  body  include include  isotopes  of uranium,    thorium, radium, radon, polonium, bismuth, potassium, rubidium, and carbon. The major contributor to the annual dose equivalent for internal radioactivity radioactivity are the short-lived decay products of radon, which contribute approximately 200 millirem per year. The average dose from other internal radionuclides approximately                                                                                                    approximately radionuclides is approximately 39 millirem per year.
Consumer Consumer Products Products Consumer products also contain sources of ionizing radiation. In some products, such as smoke detectors and                  and airport x-ray machines, the radiation radiation source is essential essential to the products' products' operation. In other products, such as televisions and tobacco, tobacco, the radiation occurs as the product's function. The average          average dose from consumer consumer products is approximately approximately 10 millirem per year.
MedicalDiagnosis Medical    Diagnosis and Therapy Therapy Radiation is an important diagnostic medical tool and cancer      cancer treatment. Diagnostic x-rays result in an average exposure of 39 millirem per year. Nuclear  Nuclear medical procedures result in an average  average exposure exposure of 14 millirem millirem per year.
Other Of      Sources her Sources There are a few additional sources sources of radiation that contribute minor doses to individuals in the United    United States.
The dose from nuclear nuclear fuel cyclecycle facilities (e.g.,
(e.g., uranium uranium mines, mills, and fuel processing processing plants),
plants), nuclear nuclear power plants, and transportation transportation routes has been estimated to be less than 1I millirem per year. Radioactive    Radioactive fallout from atmospheric atmospheric atomic bomb tests, emissions of radioactive material from nuclear        nuclear facilities, emissions from certain    mineral    extraction certain mineral extraction      facilities,  and  transportation transportation    of  radioactive  materials  contribute less than 1 millirem millirem  per year  to  the average    dose  to an  individual. Air  travel  contributes  approximately 1 millirem per approximately year to the average dose.
Exposure Pathways Pathways As stated earlier, an individual individual may be exposed to ionizing radiation    radiation both externally externally and internally. The different ways that could result in radiation radiation exposure exposure to an individual are called exposure pathways. Each type of exposure is discussed discussed separately separately in the following paragraphs.
ExternalExposure External  Exposure External exposure exposure can result from several different pathways,pathways, all having having in conunon common the fact that the radiation causing the exposure is external external  to  the body. These  pathways    include  exposure exposure to a cloud of radiation radiation passing over the receptor receptor (e.g., an individual member of the public)    public) standing standing on ground that is contaminated with radioactivity and swimming radioactivity        swimming or boating              contaminated water. If the receptor departs boating in contaminated                                    departs from the source of  of radiation exposure, the dose rate will be reduced. It is assumed that external      external exposure occurs uniformly during*
during the year. The appropriate appropriate measure measure of dose is called the effective dose equivalent.
InternalExposure Infernal  Exposure Internal exposure exposure results from a radiation source entering    entering the human body through either    either inhalation of of contaminated contaminated air or ingestion ingestion of contaminated food and water. In contrast to external          external exposure, once a C-5
 
FinalEnvironmental Final Environmental Impact Impact Statement (or for the Production of Tritium in a Commercial Production o(Tritium      CommercialLight Water Reactor radiation source enters the body, it remains remains there for a period of time that varies depending    depending on decay decay and biological half-life. The absorbed absorbed dose to each organ of the body is calculatedcalculated    for  a period  50 years following following the intake. The dose equivalent equivalent of this absorbed dose is called called the committed dose equivalent. Various organs    organs have different susceptibilities susceptibilities to harm from radiation.
radiation. The quantity that takes these different susceptibilities susceptibilities into account is called the committed effective dose equivalent, and it provides a broad indicator        indicator of the risk to the health of an individual from radiation. The committed            effective dose equivalent committed effective              equivalent is a weighted weighted sum of the committed dose equivalent equivalent in each major organ organ or tissue. The concept concept of committed committed effective effective dose equivalent applies only to internal internal pathways.
Radiation Protection Radiation    Protection Guides Various organizations have issued radiation protection protection guides. The responsibilities of the main radiation safety organizations, particularly organizations,  particularly those that affect policies in the UnitedUnited States, are summarized.
summarized.
InternationalCommission International  Commission on Radiological RadiologicalProtection Protection This commission has the responsibility for providing guidance    guidance in matters of radiation safety. The operating operating policy of this organization organization is to prepare recommendations recommendations to deal with basic principles principles of radiation radiation protection and to leave to the various national        protection committees national protection      committees the responsibility of introducing introducing the detailed detailed technical technical regulations,    recommendations, or codes of practice regulations, recommendations,                        practice best suited to the needs of their countries.
National Council National  Council on Radiation      Protectionand Radiation Protection      and Measurements Measurements In the United States, this council is the national organization organization that has the responsibility responsibility to adapt and provide provide detailed technical technical guidelines for implementing implementing the International Commission on Radiological        Radiological Protection Protection recommendations. The organization consists of technical    technical experts experts who are specialists in radiation radiation protection protection and scientists who are experts in disciplines that form the basis for radiation    radiation  protection.
NationalResearch National              Council/NationalAcademy Research Council/National        Academy of Sciences Sciences The National Research Research Council is an organization within the National    National Academy Academy of Sciences Sciences that associates associates the broad broad community community of science and technology with the Academy's    Academy's purposes purposes of furthering knowledge knowledge and advising the Federal Government.
Limits of Radiation Exposure Limits of exposure to members of the public and radiation  radiation workers are based on International International Commission on  on Radiological Radiological  Protection  recommendatio~s.
recommendations.      Each    regulatory  organization organization    adopts    the International Commission International Commission on Radiological Protection's recommendations recommendations and sets specific annual exposure limits (usually less than those specified specified by the commission). For nuclear facilities, annual  annual exposure limits to the public are provided by the U.S. Nuclear Nuclear Regulatory Regulatory Commission (NRC)    (NRC) in 10  10 CFR 20, and 10 CFR 50,      50, Appendix Appendix I. For accidents of  of unlikely unlikely probability of occurrence, (a likelihood of between 1-in-100        l-in-lOO to 1-in-10,000 l-in-lO,OOO years), 10 CFR 100    100 provides the maximum exposure to the public residing at the site boundary. The dose limits for radiation workers are provided in 10 CFR 20. The U.S. Department of Energy        Energy (DOE) also has established established a set of  limits oflimits for radiation radiation workers in 10 CFR 835. 835. Table C-l  C-1 provides the various exposureexposure limits set by the NRC, DOE, and the U.S. Environmental Environmental Protection Agency (EPA) for radiation workers and members of the public.
C-6
 
Appendix C -  Evaluation of Human Evaluation      Human Health Health Efjects fi*om Normal Effects firom Normal Operations Operations Table    C-1 T a bl e C  - 1 Exposure      L*Imlts E xposure Limits  . for      M em b ers 0offth
                                                      ~or Members            thee PPublic    an dR u brIC and      d* . W Radiation alatIOn        or k ers Workers Guidance Criteria (Organization)          PublicExposure Limits at the Site Boundary                    Worker ExPosureLimits
  . Guidance Criteria (O~ganizatio~)          Public Exposure Limits at theSite Boundary                  . WofkerExposureLlinits Normal Operations Operations 10 CFR 20 (NRC)                            100a millirem 100'  millirem per year, all pathways                    5,000 millirem per per year 10 CFR 50, Appendix I (NRct (NRC)"                  5 millirem per year, air (external);
(external);                              -
33 millirem per year, liquid (total body)
(maximum organ) 15 millirem per year, air (maximum 10 millirem per year, liquid (maximum organ)  organ) 40 CFR 190 (EPA)                            25 millirem per year, all pathways                                -
10 CFR 835    (DOE)C 835 (DOE),                                            -                                    5,000 millirem per year year DOE Order 5400.5      (DOE)'
5400.5 (DOE)C                    10 millirem per year (all (all air pathways) pathways)                            -
4 millirem per year (drinking (drinking water pathway) 100 millirem per year year (all pathways) 40 CFR 61 (EPA)                          10 millirem millirem per year (all (all air pathways) pathways)                            -
Facility Accidents Accidents 10 IO CFR 100.11 (NRC)d                  25 rem (total (total body dose from gamma and beta)                            -
300 rem (thyroid inhalation dose)
An NRC licensee may may apply for prior NRC authorization authorization to operate operate up to an annual dose limit of 500 millirem millirem for an individual individual member of the public.
b equipment to control releases Design objectives for equipment              releases of radioactive  materials in effluents radioactive materials      effluents from nuclear power power reactors.
reactors.
The nuclear nuclear facilities are regulated regulated by the NRC. DOE exposure limits are only      only included for comparison comparison purposes.
d This guidance criteria is used to determine the exclusion area and low population population zone for a nuclear nuclear power plant site.
C.2.1.2 C.2.1.2 Health EffectsEffects Radiation Radiation exposure and its consequences are topics of interest to the general public. To provide                                provide the background background for discussions of impacts, this section explains the basic concepts used in the evaluation                        evaluation of of radiation radiation effects.
Radiation Radiation can cause a variety of damaging health effects in people. The most significant                                              induced significant effects are induced cancer fatalities. These These effects are referred                "latent" cancer fatalities because the cancer may take many referred to as "latent" years years to develop. In the discussions that follow, all fatal cancers          cancers are considered considered latent; therefore, the term "latent" is not used.
"latent" The National Research Council's Committee on the Biological Effects of Ionizing Radiation                          Radiation (BEIR) has prepared prepared a series of reports to advise the U.S. Government  Government on the health consequences consequences of radiation exposures.
Health Health Effects of Exposure Exposure to Low Levels of Ionizing Radiation,    Radiation, BEIR  BEIR V, (NAS 1990),  1990), provides the most current estimates for excess mortality mortality from leukemia leukemia and cancers cancers other than leukemia that are expected to result        result from exposure to ionizing radiation. BEIR      BEIR V provides estimates that are consistently higher than those in its predecessor, predecessor, BEIR III. This increase is attributedattributed to several factors, includingincluding the use of a linear dose response response model for cancers cancers other than leukemia, revised dosimetry      dosimetry for the JapaneseJapanese atomic bomb survivors, and          and additional follow-up studies of the atomic bomb                    survivors and other cohorts.
bomb survivors*                      cohorts. BEIR BEIR III employs constant, relative, and absolute risk models, with separate coefficients      coefficients for each of several sex and age-at-exposure groups. BEIR V develops models in which the excess relative risk is expressed as a function of age at exposure, time after exposure, exposure, and sex for each  each of several cancer cancer categories.
categories. The BEIR BEIR III models were based on the assumption assumption that absolute                        comparable between the atomic bomb survivors and the U.S.
absolute risks are comparable C-7
 
FinalEnvironmental Final  EnvironmentalImpact Statement Statement for      Productionof Tritium for the Production    Tritium in in a Commercial CommercialLight Water Reactor population. BEIR V models were based on the assumption        assumption that the relative risks are comparable.
comparable. For a disease such as lung cancer, where where baseline risks in the United States are much larger          larger than those in Japan, the BEIR BEIR V approach approach leads to largerlarger risk estimates estimates than the BEIR  BEIR III approach.
The models and risk coefficients in BEIR V were derived through analyses              analyses of relevant epidemiologic epidemiologic data that included included the Japanese Japanese atomic atomic bomb survivors, ankylosis spondylitis  spondylitis patients, Canadian Canadian and Massachusetts Massachusetts fluoroscopy fluoroscopy (breast cancer) patients, New York postpartum    postpartum mastitis (breast cancer) patients, Israeli tinea capitis    capitis (thyroid cancer) patients, patients, and Rochester Rochester thymus (thyroid cancer) patients. Models for leukemia, respiratory cancer, digestive cancer, and other cancers used only the atomic bomb survivor data, although                        although results of  of analyses of the ankylosis spondylitis patients were considered. Atomic bomb survivor analyses were based on revised dosimetry, with an assumed relative biological    biological effectiveness effectiveness of20of 20 for neutrons, and were restricted to doses less than 400 rads. Estimates Estimates of risks of fatal cancers cancers other than leukemia were obtained  obtained by totaling the estimates for breast cancer, respiratory cancer, digestive cancer, and other cancers.
The National Council Council on Radiation Radiation Protection and Measurements Measurements (NCRP 1993),      1993), based on the radiation risk estimates provided provided in BEIRBEIR V and the International International Commission on Radiological Radiological Protection Publication Publication 60 60 recommendations (ICRP 1991), has estimated recommendations                                  estimated the total detriment resulting from low dose'          dose l or low dose rate exposure to ionizing radiation exposure                  radiation to be 0.00073 per rem for the general population      population and 0.00056 per rem for the working population. The total detriment includes fatal and nonfatal cancer and severe hereditary                    hereditary (genetic)
(genetic) contribution to the total detriment effects. The major contribution                          detriment is from fatal cancer and is estimated to be 0.0004 and              and 0.0005 per rem for the radiation radiation workers and the general  general population, population, respectively. Table  Table C-2 provides provides the breakdown of the risk factors for both the workers breakdown                                              workers and the general population.
Table T        C-2 a bl e C -2 N  Nominal omma I Health H ea Ith Effects Effec t s Coefficients C oe ffi'        (Risk IClen t s (Ri  sk FFactors) ac t ors) ffrom rom IIonizing    R alation dO &deg; oDlzmg Radiation Exposed Population Population            Fatal Cancer Fatal  Cancer*.a'c      Nonfatal Cancer Nonfatal  Cancerbb                Disorders.b Genetic Disorders.
Genetic                            Total Working Population                      0.0004                    0.00008                    0.00008 0.00008                    0.00056 0.00056 General Population                      0.0005                    0.0001                    0.00013                    0.00073 a  For fatal For  fatal cancer, cancer, the the health health effect effect coefficient is the coefficient is the same  as the same as  the probability probability coefficient.
coefficient.
b  In determining a means of assessing health effects from radiation exposure, the International Commission on Radiological In determining a means of assessing health effects from radiation exposure, the International Commission on Radiological Protection has developed developed a weighting weighting method for nonfatal nonfatal cancers and genetic effects. Genetic Genetic effects only can be applied applied to a population.
population, not individuals.
individuals.
For high individual individual exposures exposures (greater (greater than than or .equal equal to 20 rem), the health factors are multiplied multiplied by a factor of 2.
Source: NCRP 1993.
Source: NCRP      1993.
The numerical estimates estimates of cancer fatalities presented in this EIS were          were obtained obtained using a linear extrapolation extrapolation from the nominal risk estimated for lifetime total cancer      cancer mortality, which is 0.1 Gray (10      (10 rad). Other methods methods extrapolation to the low-dose of extrapolation              low-dose region could yield higher    higher or lower numerical estimatesestimates of cancer cancer fatalities.
Studies of human populations populations exposed to low doses are inadequate to demonstrate the actual level of risk.
There is scientific scientific uncertainty about cancer risk in the low-dose        low-dose region below the range of epidemiologic epidemiologic observation, and the possibility observation,              possibility of no risk cannotcannot be excluded excluded (CIRRPC 1992). 1992).
          'The low dose is defined as the dose level where DNA repair
          'The                                                                        can occur repair can    occur in afew    hours after irradiation-a/ew hours          irradiation-induced damage.
induced  damage. Currently, Currently, a dose level 0/  of about about 0.2 Grays Grays (20(20 rad),
rad), or a dose rate    of 0. 1 milligrays rate 0/0.1  milligrays (0.01 rad) rad)per minute is considered considered to allow the DNA to repair  repairitself in aa short    period (EPA shortperiod    (EPA 1994).
1994).
C-8 C-8
 
Appendix C - Evaluation Evaluation of Human Health o(Human    Health Effictsfrom Effects from Normal Normal Operations Operations Health Effect Risk FactorsFactors Used in This EIS impacts from radiation exposure, whether Health impacts Health                                            whether from sources        external or internal to the body, generally are sources external (i.e., affecting "somatic" (i.e.,
identified as "somatic"            affecting the exposed exposed individual) individual)    or  "genetic"  (i.e., affecting descendants "genetic" (i.e.,            descendants of the exposed individual). Radiation                            produce somatic effects than genetic effects. The somatic Radiation is more likely to produce                                                      somatic risks of most importance are induced cancers. Except for leukemia, which can have an induction period (time between exposure to carcinogen between                                                diagnosis) of as little as 2 to 7 years, most cancers have an carcinogen and cancer diagnosis) induction period of more than 20 years.
For a uniform uniform irradiation of the body, the incidence            cancer varies among organs and tissues; the thyroid and incidence of cancer                                                          and demonstrate a greater skin demonstrate                  sensitivity than other organs. Such cancers, however, also produce greater sensitivity                                                              produce relatively low low amenable to medical treatment. Because because they are relatively amenable mortality rates because                                                                                            available data Because of the readily available for cancer mortality rates and the relative scarcity          prospective epidemiologic studies, somatic effects leading scarcity of prospective                                                  leading cancer fatalities rather than cancer incidence are presented in this EIS. The numbers to cancer                                                                                      numbers of cancer cancer fatalities can compare the risks among the various be used to compare                                various alternatives.
Based Based on the preceding          discussion and the values presented in Table C-2, the fatal cancers to the general preceding discussion operations and for accidents in which individual doses are less than 20 rem are calculated public during normal operations                                                                                        calculated person-rem. For workers, a risk factor of 0.0004 excess fatal cancer using a health risk factor of 0.0005 per person-rem.
person-rem is used. This lower value reflects the absence per person-rem                                                                    children (who are more radiosensitive absence of children                        radiosensitive than adults) in the workforce. Nonfatal cancer and genetic disorders      disorders among the public public are 20 and 26 percent, estimators are both 20 percent of the cancer risk factor. For workers, the health risk estimators respectively, of the fatal cancer fatal cancer risk factor. These factors are not used in this EIS.
expectation of the effects calculate the statistical expectation The risk factors are used to calculate                                                                exposing a population to effects of exposing                    to 100,000 people exposed only to natural background population of 100,000 radiation. For example, in a population                                                                    background radiation (300 millirem per year), it is expected that about 15                  cancer fatalities per year of exposure 15 latent cancer                              exposure would result (100,000 persons xx 0.3 rem per year x 0.0005 from this radiation (100,000                                                                cancer fatalities per person-rem 0.0005 latent cancer                      person-rem =
15,
: 15. latent  cancer cancer  fatalities  per year).
Calculations of the number of excess cancer fatalities associated with radiation exposure do not always yield Calculations whole numbers; calculations may yield numbers  numbers less than          especially in environmental than 1.0, especially        environmental impact applications.
For example, example, if a population population of 100,000              exposed to a total dose of only 0.001 rem per person, the 100,000 were exposed collective dose would be 100 person-rem,                    corresponding estimated number of latent cancer fatalities person-rem, and the corresponding would be 0.05 (100,000          persons xx 0.001 rem xx 0.0005 (100,000 persons                        0.0005 latent cancer                        person-rem == 0.05 latent caricer fatalities per person-rem latent cancer fatality of 0.05 is the expected number of deaths that would result if the cancer fatalities). The latent exposure situation were applied to many different groups of 100,000 people. In most groups, no person same exposure people) would incur a latent cancer fatality from the 0.001 (0 people)                                                            0.001 rem dose each member member would have received.
exceptionally few groups, 2 or more In a small fraction of the groups, 11 latent cancer fatality would result; in exceptionally latent cancer fatalities would occur. The average  average expected number of deaths over all the groups      groups would be  be 0.05 latent cancer fatalities (just as the average average  of 0, 0,  0, and  I  is I 114,1/4, or 0.25). The  most  likely outcome outcome is 0o latent latent  cancer  fatalities.
estimating the effects of radiation These same concepts apply to estimating                                      exposure on a single individual. Consider the radiation exposure                                          the effects, for example, of exposure effects,                                                    radiation over a lifetime. The "number background radiation exposure to background                                                "number of latent cancer cancer fatalities" fatalities" corresponding                  individual's exposure over a (presumed) 72-year lifetime to 0.3 rem per corresponding to a single individual's                                                                            per year is 0.011 latent cancer fatalities (1      (1 person x 0.3 rem per year xx 72 year xx 0.0005 latent cancer            cancer fatalities/person-rem == 0.011 latent cancer fatalities).
fatalities/person-rem Again, this is a statistical estimate. That is, the estimated effect                  background radiation exposure on the effect of background exposed individual would produce a 1.1 percent chance                        individual might incur a latent cancer fatality chance that the individual C-9 C-9
 
FinalEnvironmental Final Environmental Impact Statement Statement for    Productiono(Tritium for the Production of Tritium in in aa Commercial CommercialLight Water Water Reactor caused by the exposure over his full lifetime. Presented another way, this method estimates that approximately caused                                                                                                                  approximately 1.1 percent of the population population might die of cancers induced by background  background radiation.
C.2.2 C.2.2      Tritium Characteristics Characteristics and Biological Properties C.2.2.1 C.2.2.t Tritium Tritium Characteristics Ordinary Ordinary hydrogen (also called protium), deuterium, and tritium are the three isotopes of hydrogen. Tritium is the only one of the three isotopes isotopes that is radioactive. The nucleus of a hydrogen    hydrogen atom contains one proton, positively charged particle. Around a positively                          Around this nucleus orbits a single electron, a negatively charged particle that has a significantly significantly smaller mass than the proton. Ordinary      Ordinary hydrogen, comprising over 99.9 percent          percent of all naturally naturally occurring hydrogen, hydrogen, has one proton and no neutrons. The nucleus of a deuterium atom contains                contains one proton and one neutron. Deuterium comprises approximately  approximately 0.015 percent of all hydrogen. The nucleus        nucleus of of the tritium atom contains one proton and two neutrons. Tritium makes              makes up only 1 xx 10-    10'818 percent percent of natural hydrogen. The chemicalchemical symbol for hydrogen is H. When designating the different isotopes, the isotopic number is added to the symbol so that protium    protium becomes HI,    H1, deuterium H2,  H2, and tritium H  W. 3
                                                                                                                      . Deuterium andand tritium are also represented as D and T, respectively.
In the radioactive radioactive decay decay of tritium, the nucleus emits a beta particle, a negatively charged      charged particle particle similar to an electron. Upon emission of the beta particle  particle the tritium atom is transformed into a helium atom, helium-3,      helium-3, with two protons protons and one neutron. Tritium has a half-life of approximately approximately 12.3  12.3 years. Any amount of tritium will be reduced by 10 percent in 2 years, 25 percent    percent in 5 years, 50 percent in 12.3 years, and 90 percent in 42 years.
As stated earlier, the emitted emitted beta particle is a form of ionizing radiation. It will interact    interact with the atoms and  and molecules molecules in the environment around the tritium atom, ionizing      ionizing atoms by removing electrons from their orbit.
particles emitted from a decaying The beta particles                      decaying tritium atom are relatively low energy    energy particles and can be stoppedstopped by a sheet of paper or skin. Therefore, Therefore,    health    effects on  humans    may    result  from  ingestion    (either eating or or drinking), inhalation, or skin absorption of tritium. External                exposure External exposure        to  tritium  does  not    pose  a significant significant health risk.
Because tritium undergoes radioactive Because                          radioactive decay, it must be constantly constantly created created through through either natural or manmade processes. Natural Natural sources of tritium result from the interaction of cosmic radiation        radiation and gases in the upperupper atmosphere. Nuclear power reactors are one manmade      manmade source for producing tritium. In a reactor core, lithium can be transformed transformed into tritium via neutron capture. The lithium atom, with three protons            protons and three neutrons, and the captured neutron combine to fonn        form a lithium atom with three protons and four neutrons that will instantaneously split to form an atom of tritium (one proton and two neutrons) and an atom of helium (helium-4, with two protons and two neutrons).
The following information information on the biological impact  impact of tritium is taken from the Primer      Primer on Tritium Tritium Safe Safe Handling      Practices Handling Practices        (DOE    1994).
C.2.2.2 Biological Biological Properties of Tritium Tritium At most tritium tritium facilities, the most commonly encountered encountered forms of tritium are tritium gas and tritium oxide, also called "tritiated "tritiated water."
water." Other forms fonns of tritium may be present, such as metal tritides,    tritides, tritiated pump oil, and tritiated gases like methane and ammonia. Deuterated and tritiated compounds            compounds generally have the same chemical properties properties as their protium counterparts, although some minor isotopic differences in reaction rates exist. These various tritiated compounds compounds have a wide range    range of metabolic properties properties in humans under similar exposure conditions. For example, inhaled      inhaled tritium gas is only slightly          incorporated into the body slightly incorporated                  body during exposure, and the remainder is rapidly  rapidly removed by exhalation exhalation following the exposure. On the other hand, C-IO C-IO
 
Appendix C - Evaluation Evaluation of Human Health of Human  Health Effects from  Normal Operations from Normal  Operations tritiated water vapor is readily taken up and retained in the body water. This discussion is limited to the effects        effects of tritium gas and tritium oxide, the two compounds with the potential to have the most significant impact on workers and the public.
Metabolism of Gaseous Gaseous Tritium Tritium During a brief exposure to tritium gas, the gas would be inhaled and a small amount would be dissolved in the bloodstream. The dissolved gas would circulate in the bloodstream  bloodstream before before being exhaled along with the gaseous waste products ((carbon carbon dioxide) and normal water  water vapor. If the exposure persists, the gas will reach    reach percentage of the gaseous tritium would be converted to tritium oxide, most likely other body fluids. A small percentage oxidation in the gastrointestinal by oxidation                                            experiments involving human exposure to a concentration gastrointestinal tract. Early experiments                                                concentration ofof 9 microcuries                      resulted in an increase in the tritium oxide concentration microcuries per milliliter resulted                                                      concentration in urine of 7.7 x 10-33 microcuries 10-                      milliliter per hour of exposure. Although independent microcuries per milliliter                                                  independent of the breathing breathing rate, this conversion can be expressed as the ratio of the tritium oxide buildup to the tritium inhaled          inhaled as tritium gas at a breathing rate (20 liters per minute). In this context, nominal breathing                                                context, the conversion conversion is 0.003 percent of the total tritium inhaled. More recent experiments with six volunteers gaseous tritium                                                    volunteers resulted in a conversion of 0.005 percent.
exposures, there are two doses: (1) a lung dose from the tritium in the air inside the lung, For gaseous tritium exposures, and (2)
(2) a whole body dose from the tritium gas that has been converted  converted to tritium oxide. The tritiated water  water converted from the gas in the body behaves as an exposure exposure to tritiated tritiated water. Intake of gaseous tritium through the skin has been found to have  have negligible effects compared with those from inhalation. Small amounts of                  of tritium can enter the skin through unprotected unprotected contact with contaminated contaminated metal surfaces, surfaces, which results in organically bound tritium in skin and in urine.
organically Metabolism of Tritiated        Water Tritiated Water The biological biological incorporation  (uptake) of airborne tritium oxide can be extremely incorporation (uptake)                                              extremely efficient-up efficient-up to 99 percent of inhaled tritium oxide oxide would be taken into the body by the circulating circulating blood. Ingested liquid tritium oxide completely absorbed by the gastrointestinal tract and would appear quickly in the also would be almost completely bloodstream. Within minutes, it would be found in varying concentrations  concentrations in the organs, fluids, and tissues important, especially during hot weather, because airborne tritium oxide also is important, of the body. Skin absorption of airbome of the normal movement of water through the skin. For skin temperatures between          between 30 and 40&deg;C 40'C (86 to lO4 104'F),
OF),
the absorption of tritium oxide is about 50 percent of that for tritium oxide      oxide by inhalation inhalation (assuming an average average associated with light work of 20 liters per minute). No matter how it is absorbed, the tritium breathing rate associated oxide would be uniformly distributed distributed in all biological biological fluids within one to two hours. In addition, a small incorporated into easily exchanged hydrogen sites in organic molecules.
fraction of the tritium would be incorporated Hence, retention of tritiated water can be described as the sum of several terms: (1) shorter-term  shorter-term retention retention time characteristically behaves like body associated with the tritium oxide that characteristically                          body water, and (2) longer-term longer-term retention time that represents                incorporated in body organs.
represents the tritium incorporated Biological Half-Life                    Oxide (Tritiated Water)
Half-Life of Tritium Oxide measure of how long tritium would remain in the human body. Studies Biological half-life is a measure                                                                          Studies of biological elimination rates of body water in humans date back to 1934, when the body water turnover          turnover rate was measured measured deuteriated water, a water molecule containing deuterium (H2). Since that time, several using deuteriated                                                                                              additional studies several additional have been conducted with deuteriated deuteriated water and tritiated                  simple average of the data suggests a value tritiated water. A simple                                          value of 9.5 days for the measured biological half-life of water    water in the body with a deviation of        of+/-50
                                                                                                              +/-50 percent.
Calculations based on total fluid intake indicate a similar value. This is reasonable because Calculations                                                                                          because the turnover rate of tritiated water              identical to that of body water. In order words, water should be identical                                            words, the biological half-life of tritium tritium is a function of the average daily throughput of water. The biological half-life of tritium oxide has been                    been studied when outdoor temperatures        varied at the time of tritium uptake. The data suggest that biological half-temperatures varied C-11 C-ll
 
Final Environmental Final Environmental Impact          [or the Production Impact Statementfor    Production o{Tritium of Tritium in a Commercial CommercialLight Water Reactor lives are shorter in warmer months (a measured 7.5-day half-life in an environment with a mean outdoor temperature of2rC temperature    of 27 'C (-81&deg;F)
(-81 'F) in contrast to an average measured 9.5-day half-life    half-life in an environment environment with a mean outdoor outdoor temperature of 17 &deg;'C  C (-63
(-63 &deg;F)).
OF)). Such findings are consistent with    with, metabolic pathways involving involving sensible and insensible perspiration. As such, the skin absorption                      perspiration pathways can become absorption and perspiration                      become an important part of body water exchange exchange routes. It is important important to note that a person who is perspiring perspiring will have a greater greater absorption of tritium from contactcontact with tritiated tritiated surfaces.
Prolonged exposures can be expected expected to affect affect the biological half-life. This results from the longer-termlonger-term components of the retention of tritium in the body. Tritium's interaction components                                                                interaction with organic organic hydrogen can result in additional half-life components components ranging from 21 to 320        320 days and 250 to 550 days. The shorter duration      duration indicates that organic molecules molecules in the body retain tritium relatively briefly. The longer        longer duration indicates indicates long-term retention long-term  retention by other compounds in the body that do not readily exchange      exchange hydrogen hydrogen or that metabolize metabolize more slowly. However, the overall                                organically bound tritium is relatively overall contribution from organically                              relatively small-less small-less than about 55 percent for acute exposures exposures and about 10 percent for chronic    chronic exposures. MethodsMethods used to compute compute specify only the body water component the annual limits on intake of air and water specifY                                  component and include the assumption assumption of a 110-day O-day biological half-life, as mentioned mentioned above.
Bioassay and Internal Internal Dosimetry Exposure to tritium oxide is by far the most important important type of tritium exposure. The tritium oxide enters the body by inhalation inhalation or skin absorption. When      When immersed in tritiated water vapor, the body takes in approximately twice as much approximately              much tritium through through the lungs as through the skin. Once in the body, it is circulated  circulated by the blood stream and finds its way into fluids both inside and outside        outside the cells.
International Commission According to the International          Commission on Radiological Protection (ICRP 1980),              1980), the derived air air concentration for tritium gas and tritium oxide are 540,000 microcuries concentration                                                          microcuries per cubic meter and 21.6 microcuries microcuries per cubic cubic meter, respectively. The derived air concentration concentration is defined as that concentration concentration of a gas which, if a worker were    exposed were exposed    to it for one  working    year  (2,000 (2,000  hours),    would  result  in an annual annual dose of 5 rem.
The ratio of these derived air concentrations concentrations (25,000)
(25,000)    is based  on  a lung exposure exposure    from  the gas and a whole body exposure from the oxide. However, as noted earlier, when a person is exposed to tritium gas in the air, an additional dose actually results--one results---one to the whole body. During exposure to tritium gas, a small fraction of the tritium exchanges in the lungs and is transferred by the blood to the gastrointestinal gastrointestinal tract where it is oxidized by enzymes. This process results in a buildup    buildup of tritium oxide until the tritium gas is removed by exhalation at the end of the exposure. The resultant dose from exposure to this tritium oxide                  oxide is roughly comparable to the lung dose from exposure comparable                                exposure to tritium gas. Thus, the total effective dose from a tritium gas exposure is about 10,000 times less than the total    total effective dose from an equal  equal exposure to airborne airborne tritium oxide.
C.2.2.3 Genetic Effects of Tritium As stated earlier, tritium moves readily through the bloodstream bloodstream after after uptake in the body. The low energy of      of tritium beta particle emissions limits its range in tissue and results in a unique radiation dose pattern. The genetic hazard of tritium has been studied in a variety of systems using both prokaryotes 22 and potential genetic eukaryotes22 *. This research, presented at the Workshop Workshop on Tritium Radiobiology Radiobiology and Health Physics, has been  been summarized in the National Council on RadiationRadiation Protection Protection and Measurements Measurements Report No. 63 (NCRP 1979).
A review of these studies, as given in the National Council on Radiation  Radiation Protection Protection and Measurements Measurements Report No. 89 (NCRP 1987a), concluded that, although transmutationaltransmutational effects exist in both whole animals and in vitro cell systems, their effects in the whole animal relative to the effect    effect from a beta particle particle dose from tritium are small and should receive receive minor consideration consideration in estimating genetic risks from tritium.
2 Organisms with one or more cells that have a visible, 20rganisms                                            visible, evident nucleus.
nucleus.
C-12
 
Appendix C - Evaluation Evaluationof Human  Health Effects from Human Health          from Normal Normal Operations Operations Additional studies were perfonned performed as a result of: (I) (1) allegations of links between between tritium releases and deaths from congenital congenital anomalies around Canada's  Canada's Pickering Nuclear Generating Generating Station and (2)  (2) concerns concerns about excess excess  cancers    from  tritium  releases  during  a  1960's 1960's detonation  in  an underground    salt dome  in  Lamar County, Mississippi.
In In the first study (AECB 1991), conductedconducted for the Atomic Energy Control Board of Canada, the analysis did not support the hypothesis of increasedincreased rates rates of stillbirths, neonatal mortality, increased prevalence prevalence of birth defects, or significant correlation correlation between between tritium release and Down's Syndrome. In the second study (Richter and Stockwell 1998),
1998), conducted conducted by the DOE Office of Epidemiological Epidemiological Studies, the investigators investigators found no association association between between cancer mortality and distance from the center of detonation.
C.3 METHODOLOGY METHODOLOGY FOR                              RADIOLOGICAL IMPACTS FOR ESTIMATING RADIOLOGICAL The radiological radiological impacts from normal  nonnal operation of the reactor                          calculated using Version reactor facilities were calculated                      1.485 Version 1.485 of the GENII computer computer code (PNL 1988). Site-specific input data were used, including location, meteorology, population, food production production and consumption, and source terms. Section C.3.1            C.3.l briefly describes describes GENII and outlines outlines the approach used for normal  nonnal operations.
C.3.1 C.3.1    GENII Computer Code The GENII computer computer model, developed by Pacific Northwest National Laboratory, is an integrated system of                    of various computer computer modules that analyze environmental environmental contamination contamination resulting from acute or chronic releases to, or initial contamination contamination in, air, water, or soil. The model calculates radiation        radiation doses to individuals individuals and populations.
populations. The GENII computer model is well documented      documented for assumptions, technical technical approach, method, and quality assurance assurance issues (PNL 1988). The GENII computer model has gone through extensive                  extensive quality assurance assurance and quality controlcontrol steps, including comparing comparing results from model computations computations with those from hand calculations calculations and perfonning performing internal                                      Recommendations given in these reports internal and external peer reviews. Recommendations                              reports were  incorporated weJ;e incorporated      into  the  final GENII    computer    model,  as appropriate.
For this EIS, only the ENVIN, ENV, and DOSE computer            computer modules modules were used. The codes are connected  connected through data transfer      files. The output of one code is stored transfer fIles.                                  stored in a file fIle that can be used by the next code in the system. The functions of the three GENII computer    computer modules used in this EIS are discussed below.
ENVIN ENVIN The ENVIN module of the GENII code controls the reading of input fIles                files and organizes organizes the input for optimal use in the environmental environmental transport transport and exposure module, ENV. The ENVIN          ENVIN code interprets the basic input, reads reads the basic GENII data libraries libraries and other optional optional input fIles, files, and organizes the input into sequential sequential segments based on radionuclide decay chains.
A standardized standardized file fIle that contains contains scenario, control, and inventory parameters parameters is used as input to ENVIN.
Radionuclide Radionuclide inventories can be entered as functions of releases to air or water, concentrations          concentrations in basic basic environmental environmental media (air, soil, or water), or concentrations concentrations in foods. If certain certain atmospheric atmospheric dispersion options have been selected, this module can generate  generate tables of atmospheric atmospheric dispersion        parameters that will be used in dispersion parameters later calculations. If the finite plume air submersion option is requested in addition to the atmospheric              atmospheric dispersion dispersion calculations, calculations, preliminary preliminary energy-dependent energy-dependent finite plume dose factors can be prepared    prepared as well. The ENVIN ENVIN module preparesprepares the data transfer filesfIles that are used as input by the ENV module; ENVIN generates      generates the first portion of the calculation        documentation-the run input parameters calculation documentation-the                        parameters report.
C-13 C-13
 
Final EnvironmentalImpact Statement Final Environmental        Statementfor (or the Production Production of Tritium in a Commercial o{Tritium                        Water Reactor Commercial Light Water ENV The ENV module calculates calculates the environmental environmental transfer, uptake, and human exposure        exposure to radionuclides that result from the chosen scenario for the user-specified source term. The code reads the input files from ENVIN                ENVIN and then, for each radionuclide radionuclide  chain,  sequentially sequentially performs            precalculations to establish the conditions performs the precalculations                            conditions at the start of the exposure exposure scenario. Environmental Environmental concentrations concentrations of radionuclides radionuclides are established established at the beginning beginning of the scenario scenario by assuming decay of preexisting preexisting sources, considering considering biotic biotic transport of existing existing subsurface    contamination, and defining soil contamination subsurface contamination,                                  contamination from continuingcontinuing atmospheric or irrigation irrigation depositions. For each year of postulated postulated exposure, the code then estimates the air, surface soil, deep soil, groundwater, and surface water concentrations concentrations of each radionuclide radionuclide in the chain. Human exposures  exposures and intakes intakes of each radionuclide radionuclide are calculated calculated for: (1) pathways pathways of external external exposure from finite atmospheric atmospheric plumes; (2)(2) inhalation; inhalation; (3) external exposure                contaminated soil, sediments, exposure from contaminated                    sediments, and water; water; (4) external external exposure exposure from special geometries; geometries; and (5)  (5) internal exposures from consumption of terrestrial  terrestrial foods, aquatic foods, drinking water, animal products, and inadvertent intake of soil. The intermediate      intermediate information on annual media concentrations concentrations and intake rates are written to data transfer files. Although these may be accessed                accessed directly, they are usually used as input to the DOSE module      module of GENII.
DOSE DOSE The DOSE module reads the intake  intake and exposure exposure rates defined by the ENV module      module and converts converts the data to radiation radiation dose.
C.3.2    Data and General General Assumptions To perform the dose assessments for this EIS, different different types of data werewere collected and generated. In addition, calculational calculational assumptions were made. This section discusses      discusses the data collected collected and generated (SAIC 1998) for use in performing performing the dose assessments assessments and the assumptions made for this EIS.
Meteorological Meteorological Data The meteorological meteorological data used for all normal operational operational scenarios discussed discussed in this EIS were in the fonn  form of of joint frequency data files. A joint frequency frequency data file is a table listing the fractions of time the wind blows in a certain certain direction, direction, at a certain speed, and within a certain stability class. The joint frequency data files were based on measurements measurements taken over a period of several years at different locations and heights            heights at each of the sites. Average Average annual      meteorological conditions (averaged over the measurement period) as given in the annual meteorological plant's final safety analysis reports were used for normal    normal operation.
Population Population Data Population distributions were based on the 1990 Census of Population Population                                                                    Population*and  -andHousing Housing data (DOC 1992). 1992).
Projections were determined determined for the year 2025 (approximate(approximate midlife of operations) for areas          areas within 80 kilometers kilometers (50 (50 miles) of the release release location at the three candidate candidate reactor reactor sites. The site population population in
: 2025, 2025,  assumed    to be  representative representative    of  the population population    over  the  operational operational    period  evaluated, evaluated,  was  used in the impact impact    assessments.      The population      was  spatially spatially distributed distributed on a circular circular grid with 16 directions directions and 10 radial distances up to 80 kilometers kilometers (50 miles). The grid was centered at the precise location from which the radionuclides were assumed to be released.
Source Source Term Data The tritium-producing burnable absorber absorber rod (TPBAR) source terms (i.e.,        (i.e., quantities quantities of tritium [in the form of  of tritium oxide]
oxide] released to the environment environment over over a given period) period) were were estimated estimated based on anticipated anticipated TPBAR C-14 C-14
 
Appendix C - Evaluation Evaluation ofHuman Human Health Health Effects from from Normal Normal Operations Operations characteristic releases. The source tenns characteristic                              terms used to generate the estimated incremental impacts of nonnal            normal operations are provided provided in Section C.3.4 for each                        candidate reactor sites evaluated in this EIS.
each of the three candidate Food Production Production and Consumption Consumption Data  Data Data from the 1992 CensusCensus of Agriculture Agriculture (DOC 1993)    1993) were used to generate          site-specific data for food generate site-specific production. Food production production was spatially distributed distributed on the same circularcircular grid used for the popUlation population consumption rates used in GENII were those for the maximum distributions. The consumption                                                        maximum individual and the average average individual. People living within the 80-kilometer SO-kilometer (50-mile) assessment area were assumed to consume only                only food grown in that area.
Calculational Assumptions Calculational assessments were performed Dose assessments            perfonned for both members of the general public and workers for each reactor site examined in this EIS. These assessments were examined                                            were made to detennine determine the incremental incremental doses that would be associated with the tritium production        alternatives production alternatives        addressed  in  this  EIS. Incremental doses for members of Incremental                          of the public were    calculated were calculated  (via GENII)      for two  different different  types  of  receptors:
receptors:
* Maximally Exposed Exposed Offsite Individual-The Individual-The maximally exposed individual was assumed to be located                located at a position on the site boundary boundary that would yield the highest impacts during normal        nonnal operations of a given alternative.
* Population-The general Population-The      general population population living within 80    SO kilometers (50 miles) of the facility in the year 2025.
To estimate radiological impacts impacts from normal        operations, the following additional assumptions nonnal operations,                                      assumptions and factors considered in using GENII:
were considered
* Radiological gaseous Radiological  gaseous emissions were assumedassumed to be released released to the atmosphere atmosphere through the plant plant stack; for Watts Bar 1,  Sequoyah I, Sequoyah I, 1, or Sequoyah      2, the stack stack  height    is 40  meters  (131 (131  feet), and  for Bellefonte  I1 or Bellefonte 2, it is S3 83 meters (272 feet).
"    Ground Ground surfaces were assumed to have no previous deposition    deposition of radionuclides.
"    The annual external exposure time to the plume and to soil contaminationcontamination was 0.7 years (16.S    (16.8 hours per day) for the maximally maximally exposed exposed offsite individual (NRC I1977b). 977b).
* The  annual external The annual  external exposure time to the plume and to soil contamination contamination was 0.5 years (12    (12 hours per day) for the population popUlation (NRC 1977b).
"    The inhalation exposure time to the plume was 1.0 years for the maximally exposed individual and general population.
population.
"    The exposed individual individual or population was assumed to have the characteristics characteristics and habits (e.g.,
(e.g., inhalation inhalation and ingestion ingestion rates) of an adult human.
"    A semi-infinite/finite semi-infinite/finite plume model was used for air immersion doses. Other            Other pathways evaluated were ground ground exposure; inhalation; inhalation; ingestion of food crops and animal products contaminated        contaminated by either either deposition deposition of radioactivity from the air or irrigation; ingestion of fish and other aquatic food raised in contaminated contaminated water; water; swimming swimming and boating in contaminated contaminated surface water; and drinking contaminatedcontaminated water. All applicable applicable pathways pathways (e.g., inhalation, drinking water, external exposure)  exposure) were analyzed at each each of the three reactor site locations.
C-15 C-J5
 
FinalEnvironmental Final Environmental Impact Statement for (or the Production of Tritium in a Commercial Production o(Tritium      CommercialLight Water Water Reactor
"    Reported Reported release heights were used for atmospheric atmospheric releases and were    were assumed to be the effective stack height. The resultant doses were conservative, as use of the actual        actual stack height negates plume rise.
"    The calculated The  calculated doses were 50-year committed committed doses from 1 year of intake.
"    Average Average volumetric volumetric river flow rates (measured locally downstream of each site; see Table C-6) were used.
"    Individual annual exposure times to swimming, boating, and shoreline recreation were taken from site environmental reports and NRC Regulatory  Regulatory Guide 1.109, as appropriate appropriate (TVA 1997, NRC 1995,      1995, TVA 1974a, TVA 1974b, NRC 1977b).
"    For conservatism, conservatism, a transit time of zero was assumed for releases to reach aquatic recreation      recreation areas.
"    The year The  year 2025 drinking water population population was estimated by applying the same growth factor as given for (50-mile) radius population 80-kilometer (50-mile) the entire 80-kilometer                          population within within each each respective plant's final environmental environmental statement (NRC 1995,1995, AEC    1974,  TVA TV A    1974a). The  estimated estimated    fish-eating  population    in year  2025 was conservatively assumed to equal the drinking water population.
conservatively                                                population.
"    Drinking Drinking water treatment was assumed, with a holdup (transit) time of 0.5 days for the Watts Bar and                    and Sequoyah Nuclear Nuclear Plants and 0.2 days for the Bellefonte Bellefonte Nuclear Plant.
"    Annual drinking water quantities for the averageaverage and maximally maximally exposed exposed individual individual were referenced referenced from NRC Regulatory Regulatory Guide 1.1091.109 (NRC 1977b).
1977b).
"    Fish consumption consumption data were referenced referenced from NRC Regulatory Regulatory Guide 1.109 (NRC 1977b). I 977b).
The exposure, uptake, and usage parameters parameters used in the GENII model for normal operations    operations are provided in Tables C-3, C-4, C-5, and C-6.
Table C-3 GENII Exposure Parameters  Parameters to Plumes and Soil ContaminationContamination (Normal Operations)
Operations)
Maximally Exposed Offsite Individual Maximally                    Individual                                      GeneralPopulation General Population External Exposure External Exposure              Inhalationof Plume Inhalation    Plume                External External Exposure Exposure          Inhalation  of Plume Inhalationo/Plume Soil        Exposure        BreathingRate I T          Soil        Exposure    4r Breathing Breathing Rate (cubic Soil        Exposure        Breathing Rate                          Soil        Exposure      ,Rate (cubic Plume Plume      Contaminatio Contaminatio        Time        (cubic (cubic centimeters centimeters      Plume.
Plume      Contamination Contamination        Time        centimeters centimeters (hours)
(hours)      n (hours)
(hours)        (hours)
(hours)          per second) per  second)        (hours)
(hours)          (hours)
(hours)        (hours)
(hours)      per second) second) 6,136        6,136 6,136          8,766 8,766                270 270              4,383 4,383            4,383          8,766            270 6,136 Source:
Source: PNL  1988.
PNL 1988.
C-16 C-16
 
Appendix C - Evaluation Evaluation of  Human Health o( Human  Health Effects from (rom Normal    Operations Normal Operations T  a bl e C-4 GENII U Table                          sage P Usage      Parameters arameters for      ConsumptJon 0offTTerrestrial f or Consumption                errestna  . IF  00 d Food Maximally Expose,d          Offsite Individual Exposed q//site      Individual                              GeneralPopulation General    Population Yield        "              Consumption COr'sumption                                                    Consumption
                                                                                                                                , Co!,sumprlon Growing Growing      (kilogr(lms, (kilograms        floldue Holdup          Rate        Growif!g, Growing.          Yield        Holdup        . - ,Rate Rate Time' Time*      per square square          Time      (kilograms  per Time (kilograms (kilogramsper                (kilogramsper          Time' Time        (kilograms per
                                                                                                                                '(kilogratiJs    per Food Type Food.Type          (days)
(days)        meter)        I  (days),
(days)          year)        (days) square      meter) squaremeter)          (days)
(days)            year) "
                                                                                                                                    ,:year)
Leafy Vegetables Leafy                  90,0 90.0            1.5              1.0 LO            30,0 30.0          90.0            1.5            14.0 14.0              15,0 15.0 Vegetables Root Vegetables        90.0            4.0              5.0          220.0          90.0 90:0            4.0            14.0 14.0            140.0 140.0 Fruit                  90.0            2,0 2.0              5.0          330.0          90.0            2.0            14.0              64.0 Grains/Cereals Grains/Cereals        90.0            0.8            180.0          80.0 80.0          90.0            0.8            180.0 180.0              72.0 72.0 Source: PNL Source:  PNL 1988.
Table C    -5 G C-5      ENII Usage Parameters GENII                                        Consumption of Animal Products Parameters for Consumption Animal Stored FeedFeed                                        Fresh Forage Animal Fresh    Forage Human Consumption Consumption                                                                                                      Yield Rate        Holdup Holdup                    Growing Growing          Yield        Storage Storage'                Growing (kilograms Growing      (kilograms StorageStorage Food Food    (kilograms (kilograms        Time        Diet.
Diet,                  (kilogramsper Time Time (kilograms                        ,Diet Diet        Time      per square square        Time Type      per year) year)      (days)    Fraction (days)
(days) Fraction            (days) square      meter) (days) square meter)                Fraction (days)
(days) Fraction          (days)        meter) meter)          (days)
(days)
Maximally      Exposed Offsite Individual Maximally Exposed              Individual Beef          80.0          15.0        0.25        90.0              0.80      180.0 180.0      0.75          45.0          2.00            100.0 100.0 Poultry Poultry        18.0          1.0 LO          1.00 1.00      90.0              0.80      180.0        -            --            -                --
Milk          270.0            1.0        0.25 0.25        45.0              2.00      100.0      0.75          30.0          1.50            0.00 Eggs          30.0            1.0 1.0          1.00 LOO        90.0              0.80      180.0      -....        -              -                -
General Population General  Population Beef Beef          70.0          34.0        0.25 0.25        90.0              0.80      180.0      0.75          45.0          2.00            100.0 100.0 Poultry Poultry          8.5          34.0          1.0 1.0        90.0              0.80      180.0 180.0        --            --            --                -
Milk Milk          230.0            3.0        0.25        45.0              2.00      100.0      0.75          30.0          1.50 L50              0.00 0.00 Eggs          20.0          18.0          1.0 LO        90.0              0.80      180.0        --            -            -                -
Source: PNL 1988.
Source:      1988.
Incremental worker doses associated with tritium production Incremental                                                          production activities    were determined activities were      determined from historical data associated associated  with  similar  operations operations (TV A (TVA      1998b). Very Very  small  incremental incremental    doses    to reactor facility workers may result from refueling outage activities activities    and    increased increased    resin  bed  handling. Estimated baseline and incremental Estimated worker doses at the reactor reactor    sites  are  supplied supplied      in  referenced  data    reports reports (TVA 1998a, 1998a, NRC 1997). Worker      Worker provided in Section 55 of this EIS.
doses are provided C-17 C-17
 
FinalEnvironmental Final  EnvironmentalImpact Statement Statementfor      Productiono(Tritium (or the Production  of Tritium in in a Commercial          Water Reactor Commercial Light Water T        C- 6 GENII Liquid a bl e C-6 Table                                P at h way Parameters L'IQUI'd Pathway      P arameters Plant Plant Parameter Parameter                                Sequoyah Sequoyah                      Watts Watts Bar.                  Bellefonte Average river volumetric flow rate (cubic                          850                          940                          1,100 850                          940                          1,100 meters per second) second)
Swimming exposure time per Swimming                    per year (hours)              918 - Maximum                918 - Maximum Maximum              918 - Maximum 22 - Average Average                22 --Average Average                    - Average 22 -Average Boating exposure time per year (hours)                    1,500 - Maximum Maximum            1,500 - Maximum Maximum            1,500 - Maximum 1,500 104 104 - Average Average              104 I 04 - Average Average              I104 04 - Average shoreline exposure River shoreline  exposure time per year year (hours)
(hours)          500-Maximum 500-Maximom                  500-Maximum 500-Maximum                  500-Maximum 500-Maximum 8.3-Average 8.3-Average                  8.3-Average 8.3-Average                  8.3-Average 8.3-A verage Transit time for releases releases to reach aquatic aquatic                        0                            0                            0 0                            0                            0 recreation recreation Year 2025 population population ingesting drinking water water              524,000                      274,000                      230,000 524,000                      274,000                      230,000 and fish Drinking water water holdup time (days)                                0.5                          0.5                          0.2' 0.2a Drinking water    consumption rate (liters per water consumption                                730-Maximum 730-Maximum                  730-Maximum 730-Maximum                  730-Maximum 73O-Maximum year)                                                        370-Average 370-Average                  370-Average 370-Average                  370-Average 370-Average Fish Consumption Consumption Rate (pounds per  per year)                45-Maximum 45-Maximum                  45-Maximum 45-Maximum                    45-Maximum 45-Maximum 15.2-Average IS .2-Average                15.2-Average 15.2-Average                15.2-Average 15.2-Average
, This  value is This value      calculated based is calculated  based on  average river on average  river water water velocity  and the velocity and      distance between the distance            the plant between the        discharge location plant discharge    location to water to water treatment treatment  plant  (TVA  1974a).
I 974a).
Sources: NRC 1995, NRC I1977a, Sources:                        977a, AEC AEC 1974, TVA      I 974a, TVA 1974b, TVA 1997, TVA TVA 1974a,                                TVA 1991, 1991, TVA 1995, TVA 1996.
C.3.3      Uncertainties The sequence            analyses performed to generate sequence of analyses                            generate the radiological          impact estimates from normal operation radiological impact                                        operation include: (1) selection of normal operational modes, (2)                    (2) estimation estimation of source terms, (3)              estimation of (3) estimation      of environmental transport and uptake of radio environmental                                      radionuclides,          calculation of radiation doses to exposed individuals, nuclides, (4) calculation                                                individuals, (5) estimation of health effects. There and (5)                                        There are uncertainties associated with each of these steps. Uncertainties    Uncertainties exist in the way the physical systems being analyzed are represented by the computational            computational models and in the data required to exercise                                  measurement, sampling, or natural models (due to measurement, exercise the nlodels                                                      natural variability).
In principle, one can estimate              uncertainty associated with each source and predict estimate the uncertainty                                                  predict the remaining uncertainty calculations. Thus, one can propagate in the results of each set of calculations.                                                                                      calculations uncertainties from one set of calculations propagate the uncertainties uncertainty in the final results. However, conducting such a full-scale quantitative to the next and estimate the uncertainty uncertainty analysis is neither uncertainty                    neither practical nor a standard practice for a study of this type. Instead, the analysis ensure-through judicious selection of release is designed to ensure-through                                            release scenarios, models, and parameters-that parameters-that the results represent represent the potential risks. This is accomplished  accomplished by making conservative conservative assumptions in the calculations at each step. The models, parameters, and release calculations                                                            release scenarios                                            selected calculations are selected scenarios used in the calculations consequently, the final estimates of impacts, are greater than intermediate results and, consequently, in such a way that most intermediate would be expected. As a result, even though the range of uncertainty in a quantity might be large,                          large, the value calculated for the quantity would be close to one of the extremes calculated                                                              extremes in the range of possible possible values, values, so the chance of the actual quantity being greater                    calculated value greater than the calculated        value would be low (or the chance  chance of the quantity quantity being calculated value if the criteria are such that the quantity has to be maximized).
less than the calculated                                                                                maximized). The goal of the radiological assessment for normal radiological                          normal operation in this study has been to produce results that are conservative.
C-JB C-18
 
Appendix C -    Evaluation of Evaluation o(Human  Health Effects from Human Health          from Normal Normal Operations Operations The degree of conservatism in the calculated results is closely related to the range of possible values the quantity can                              determined by what can be expected to realistically can have. This range is determined                                                realistically occur. Thus, the only processes    considered are those that are credible for the conditions processes considered                                                  conditions under which the physical system      system being modeled operates. This consideration consideration has been employed employed for the normal operationoperation analyses.
analyses.
Although the radionuclide composition                source terms are reasonable estimates, composition of source                                estimates, there are uncertainties uncertainties in the inventory and release reactions radionuclide inventory                      reactions that affect estimated estimated impacts.
Radiological Releases to the Environment C.3.4 Radiological                              Environment and Associated Impact        Impact The NRC has assessed the potential radiation doses to individuals and surrounding populations                populations that could could operation of the Watts Bar, Sequoyah, and Bellefonte result from the operation                                                Bellefonte Nuclear Plants in the related            facilities' related facilities' Final Environmental      Statements (NRC 1995, Environmental Statements                1995, AEC 1974, TVA            1974a). To assess the potential TV A 1974a).                          potential radiation dose to the individual and population from the operation of these plants in a tritium-producing tritium-producing mode, this EIS uses superimposes the doses that would result from additional the results in those statements and superimposes                                                      additional releases of tritium.
The dose assessment uses the method prescribed prescribed by the NRC in Regulatory Regulatory Guides 1.109  1.109 (NRC 1977b), 1.111 1.111 (NRC 1977a), and 4.2 (NRC 1976), with the adjustments    adjustments    as  needed.
Radiological Releases to the Environment Environment Normal    operational radiological assessments Normal operational                      assessments were determined determined (modeled) for two tritium production scenarios    scenarios reactor site: (1) production of tritium via the loading at each candidate reactor                                                      loading of 1,000 TPBARs into a reactor    reactor core, and (2)  production of tritium via the loading of a maximum number of TPBARs into a reactor (2) production                                                                                              reactor core. The maximum number ofTPBARsof TPBARs that can be loaded in each reactor varies among the three candidate          candidate sites. For calculational purposes in this EIS, the maximum number of calculational                                                              TPBARs was assumed to be 3,400.
ofTPBARs During tritium production, some tritium is expected                permeate through the TPBARs, leading to an increase expected to permeate                                                    increase in the quantity quantity  of tritium  in  the reactor's  coolant reactor's coolant    water system. Any  tritium  that  is released  from  the TPBARs operation enters the reactor coolant system and is distributed throughout the reactor during normal plant operation                                                                                                  reactor coolant, chemical chemical volume control, liquid radwaste, and gaseous radwaste                radwaste systems. The rate of this accumulation depends on the coolant system capacities accumulation                                                capacities and water water volume        exchanges associated with the volume exchanges chemistry and soluble boron adjustments. The tritium released into the reactor coolant plant's required water chemistry                                                                                              coolant processed along with the rest of the coolant, and this evolution system is processed                                                          evolution provides the avenue for the transport and release of tritium outside the reactorreactor coolant system. For the purposes of the analysis, the design tritium permeation per TPBAR, on average,    average, is assumed to be 1 Curie per year (PNNL 1997,              1997, PNNL 1999). The increases in tritium releases (in Curies) to both the atmosphere (air emission) and the water anticipated increases anticipated                                                                                                                      water pathways (liquid effluent) as a result of this design permeation permeation rate are shown in Table    Table C-7. These values are based on the assumption that about 90 percent    percent of the tritium in the reactor coolant coolant system system would be released released in the liquid liquid effluent and 10 percent percent would be released to the atmosphere  atmosphere as tritiated water  water vapor (air (air emissions).
Table C-7 AnnualAnnual Increase Increase in Tritium Releases to the Environment  Environment at Each Site 1,000 1,000 TPBARs Irradiation Irradiation                        3,400 TPBARs.Irradiation TPBARs Irradiation Air Emissions Emissions          LiquidEffluents Liquid                          Emissions Air Emissions            Liquid Effluents Tritium Releases Releases (Curies)                100                    900                          340 340                      3,060 C-19 C-J9
 
FinalEnvironmental Final  Environmental Impact Impact Statement for for the Production  of Tritium in a Commercial Production o[Tritium        CommercialLight Water Reactor The design of the TPBARs and the required        required TPBAR cladding cladding quality assurance essentially essentially preclude the potential for TPBAR failure during irradiation. For the purposes of analyses              analyses in this EIS, even though it is unlikely to occur, it was assumed that during a 40-year operation      operation two TPBARs could fail in an operating cycle and release release all the tritium generated generated in the failed TPBARs to the reactor coolant        coolant system. The potential increases increases in tritium releases releases (in Curies)
Curies) from the two failed TPBARs to both the air emissions    emissions and the liquid effluents over an 18-month operating cycle effluents                                        cycle are shown in Table C-S. C-8. These values represent the additional releases over that of the normal operationoperation given in Table C-7, and are based on the following    following assumptions:
* Each TPBAR would generate  generate a maximum design limit of 1.2 grams of tritium over an 18-month operating          operating cycle; the specific activity of tritium is 9,640 Curies per gram (CRC 1982).            1982).
* Two failed TPBARs could    could release release a total of about 23,150 Curies of tritium to the reactor coolant system.
The design maximum of 1.2 grams of tritium per rod could be released to the reactor coolant system.
* About 90 percent of the tritium in the reactor coolant system        system would be released in the liquid effluents and      and 10 percent would be released to the atmosphere.
Table C-8 C-S Increases in Tritium Releases to the Environment        Environment from Two Failed    Failed TPBARs TPBARs in an  an 18 -MhO 18-Month ont Operating
                                                                  'peratmg CycleC;yc Ie Air Emissions Emissions                                      EjJ1uents Liquid Effluents Tritium Releases (Curies)
(Curies)                                    2,315                                      20,835 The current current radioactivity radioactivity releases releases in the air emissions emissions and the liquid effluents from normal operation (with zero TPBARs) at Watts Bar 1 and Sequoyah    Sequoyah 1 or Sequoyah I    Sequoyah 2 are given in Tables C-9 and C-I0.        C-10. The estimated estimated radioactivity releases radioactivity    releases during tritium production production at Watts Bar and Sequoyah would be the sum of the values            values given in these tables and those given in Table C-7. For the Bellefonte        Bellefonte Nuclear Plant, it is assumed that the releases would be similar to those of Watts Bar.
Table C-9                    (1996-1997) Annual Radioactivity C-9 Average (1996-1997)                        Radioactivity Releases to the Air and Liquid at            at Watts Bar 1 Isotopes' Isotopes"                            Air Emissions    (Curies)
Emissions (Curies)                      LiquidEffluents Liquid          (Curies)
EjJ1uents(Curies)
Tritium releases                                      5.6                                        639 639 radioactive releases:
Other radioactive  releases:                              283                                          1.32 1.32 Argon-41                                          1.0                                          -
Krypton-85                                          2.4 2.4                                          -
Krypton-85m Krypton-85m                                        0.06                                          -
Xenon-131m Xenon-131m                                          3.2 3.2                                          -
Xenon-133 Xenon-133                                          271                                            -
Xenon-133m Xenon-133m                                          1.2                                          -
Xenon-135 Xenon-135                                          3.9                                          -
Chromium-51                                            -                                        0.14 0.14 Cobalt-58                                            -                                        0.42 Cobalt-60                                            -                                        0.020 Iron-55 Iron-55                                            -                                        0.12 0.12 Iron-59                                            -                                        0.096 Rubidium-88 Rubidium-88                                            -                                        0.012 0.012 Antimony- 124 Antimony-I    24                                        -                                        0.077 C-20
 
Appendix Appendix C -- Evaluation EvaluationofHuman Human Health Health Effects Eifocts from from Normal Normal Operations Operations Isotope~
Isotopes            "                    Emissions (Curies).
Air Emissions(Curies).                      Liquid Effluents (Curies)
(Curies)
Antimony- 125 Antimony-I  25                                    -                                          0.10 0.10 Antimony- 126 Antimony-I  26                                    -                                          0.12 0.12 Iodine- 131 Iodine-131                                        -                                        0.017 0.017 Cesium-I 34 Cesium-134                                        -                                        0.050 Cesium-137 Cesium-I 37                                        -                                        0.088 Total Releases Releases                                  288.6                                        640.3 640.3 aa  Only isotopes isotopes with values greater than 0.01 were listed in this table.
Source: TVA 1999.
Source:        1999.
Table  C-10 Average (1995-1997)
Table C-I0                  (1995-1997) Annual Radioactivity Radioactivity Releases to the Air and Liquid at              at Sequoyah S equoya hI1 or S    Sequoyah equoya h22 Isotopesa Isotope~                            Air Emissions  (Curies)
Emissions (Curies)                      Liquid Effluents (Curies)
Liquid            (Curies)
Tritium Tritium releases                                    25                                          714 714 Other Other radioactive radioactive releases:                            120 120                                        1.15 1.15 Argon-41 Argon-41                                      0.95 0.95                                          -
Krypton-85 Krypton-85                                      0.32 0.32                                          -
Krypton-85m                                      0.090                                          -
Krypton-88                                      0.068                                          -
Xenon-131m Xenon-131m                                        1.9                                          -
Xenon-133 Xenon-133                                      113 113                                            -
Xenon-133m Xenon-133m                                        1.5 1.5                                          -
Xenon-135 Xenon-135                                        1.9                                          -
Xenon-135m Xenon-135m                                      0.032                                          -
Chromium-51                                                                                  0.035 Cobalt-58                  _                    -                                          0.65 Cobalt-60                  _                    -                                          0.11 0.11 Iron-55 Iron-55                    _                    -                                          0.14 0.14 Manganese-54 Manganese-54                  _                    -                                        0.014 0.014 Niobium-95                    _                    -                                        0.014 0.014 Antimony- 125 Antimony-I  25                                    -                                        0.053 Cesium-Cesium-I13434                _                    -                                          0.03 Cesium-137 Cesium-I 37                  _                    -                                        0.046 Total Releases Releases                                  1145 45                                        715.2 715.2 a  Only isotopes with values greater than 0.01 were listed in this table.
a Only isotopes with values greater than 0.01 were listed in this table.
Source:
Source: TVA 1999.
1999.
Radiological Radiological Impacts As stated earlier, doses to members of the public from tritium releases during normal operations were calculated using GENII code (PNL 1988). GENII        GENH uses "special" "special" transport assumptions in its evaluation evaluation of the tritiated  water    movement tritiated water movement          through    various  food chains. The concentration concentration of tritium in each food type is assumed to have the same specific activity as the contaminatingcontaminating medium (PNL 1988). The assumption      assumption is approximately valid for situations involving continuous              replenishment of tritium in the medium continuous replenishment                            medium and represents a conservative conservative approximnation approximation for residual tritium in soil (NRC 1994). When soil is contaminated with residual tritium and no tritium from air and water is continually added to the soil, the contamination  contamination would be expected expected C-21
 
Final Environmental Impact FinalEnvironmental          Statement for the Production Impact Statement/for      Production of of Tritium Tritium in a Commercial CommercialLight Water Reactor Reactor to rapidly escape escape (by evaporation) evaporation) from the soil or plants that had taken up this tritium. GENII, however, conservatively assumes that the soil tritium is retained conservatively                                          retained and remains remains available for plant uptake uptake over time.
As a result, the effective dose associated with the ingestion ingestion pathway calculated calculated by GENII is very      conservative.
very conservative.
The calculated  ingestion calculated ingestion  dose  is between between    80  to  95  percent  of  the  total  body dose. In addition,    the assumption that people people living within 80 kilometers (50 miles) of each site would eat all the contaminated food produced            produced within that area makes the dose calculations calculations even more conservative. Even with this overestimation,  overestimation, all calculated doses resulting from tritium releases during normal operation are within the limits set forth for the calculated operation of each reactor (see Tables C-11, I operation                                                C-12, and C-13).
C-ll, C-12,              C-13). Tables        C-11, C-12, and C-13 present Tables C-ll, potential radiological radiological impacts to two individual receptor groups that may be exposed to releases associated        associated with I incident-free incident-free operation operation and the abnormal abnormal event of two TPBAR failures in a given 18-month fuel cycle for each of the three candidate sites. These two groups are the maximally exposed member                member of the public and the population living within 80 kilometers (50 miles) of each of the sites in the year 2025. Each table presents the estimated doses from gaseous gaseous emissions (air) and liquid effluents effluents (liquid) under under the No Action Alternative Alternative (current plant conditions), and the estimated incremental incremental doses from tritium releases to air and liquid resulting from 1,000 1,000 and 3,400 TPBAR irradiations in each reactor. For Watts Bar and Sequoyah, actual air and liquid                  liquid doses included in their 19971997 operation operation year environmental environmental reports were used for the No Action Alternative    Alternative (operation with 0 TPBARs).
TPBARs). For Bellefonte, Bellefonte, since the plant is not yet operational, operational, the estimated estimated dose values given in the final environmental environmental statement statement (AEC 1974)  1974) were used for the plant plant operation with 0 TPBARs.
The air doses provided in the final environmental environmental statement include external  external exposure exposure due to gamma gamma rays and beta particles particles emanating emanating from the gaseous radioactive emissions and thyroid organ dose due to inhalation and ingestion of contaminated contaminated air and food (milk), respectively. GENII calculates      calculates air doses by considering considering both the external exposure exposure and the internal intemal exposure to all organs and provides the total effective    effective dose equivalent.
Therefore, the results presented in the plant [mal  final environmiental environmental statements statements were adjusted (i.e.,
(i.e., the organ dose was presented presented in terms of equivalent whole body dose to enable combination      combination with the external external dose) before being added to the incremental incremental doses resulting from tritium releases. The No Action        Action liquid doses given in the plant final environmental    statements environmental statements        are the  total  body  doses;  therefore, therefore,  no  adjustments  were needed.
summarizes the calculated The following text summarizes              calculated doses presented for the two public groups:
No Action maximally exposed
* The maximally        exposed offsite offsite individual doses from air releases      releases were taken directly from plant environmental reports for Watts Bar and Sequoyah environmental                                  Sequoyah (TVA 1998a) and from the final environmental                  statement environmental statement for Bellefonte (AEC 1974). For Bellefonte, the dose value given for the external air immersion "total                "total body body dose" was added to the maximum maximum thyroid organ dose that accounts  accounts for exposures exposures via inhalation inhalation and ingestion pathways. The thyroid dose was multiplied multiplied by the International International Commission Commission on Radiological Radiological Protection 26  26 weighting weighting factor of 0.03 (PNL 1988)  1988) to get a "weighted                            equivalent" prior to being added "weighted committed dose equivalent"                              added to the extemal external air immersion dose.
* Liquid Liquid doses to the maximally exposed exposed offsite individual individual were were directly directly cited from the referenced referenced reports (TVA 1998a, AEC 1974).
* Population Population doses from air releases were  were cited directly from the referenced referenced reports (TVA 1998a, AEC 1974)      1974) and subsequently subsequently were adjusted adjusted for the projected population population in the year 2025 by applying the demographic demographic growth factors presented in the EIS.
* Population dose from liquid releases were cited from the referenced    referenced reports and also were adjusted for the projected projected population population in the year 2025.
C-22
 
Appendix C - Evaluation  ofHuman Health Evaluation o(Human  Health Effects firom Normal Operations (rom Normal  Operations Production:
Tritium Production:
Tritium Incremental doses from
*- Incremental                  tritium releases under incident-free from'tritium                                          operation (per air and liquid pathways),
incident-free operation calculated calculated  for 1,000  and 3,400 3,400  TPBARs    via  the method  described in Sections C.3.1 described                  C.3.l and C.3.2, are presented presented in Tables  C-Il through Tables C-li              C-13..
through C-13
* Total doses (No Action doses + Incremental                          incident-free operation under tritium production, Incremental doses) from incident-free presented  separately for the air and the liquid releases and then combined presented separately                                                              combined to demonstrate regulatory regulatory compliance with the applicable standards        shown in Table C-I, are presented in Tables C-II standards shown                                                    C-i1 through C-13.
abnormal event of two TPBAR Incremental doses from tritium release from the abnormal
*- Incremental                                                                          TPBAR failures in a given      18-month given 18-month fuel cycle are presented in Table C-14.
C.4      IMPACTS        EXPOSURES TO IMPACTS OF EXPOSURES                              CHEMICALS ON HAZARDOUS CHEMICALS TO HAZARDOUS                                HUMAN HEALTH ON HUMAN potential impacts of exposure to hazardous chemicals The potential                                            chemicals released to the atmosphere as a result of tritium production were evaluated for the routine        operation of the reactor facilities.
routine operation The receptors                                                maximally exposed individual considered in these evaluations are the maximally receptors considered                                                                                  offsite population individual and the offsite  popUlation 80-kilometer (50-mile) radius of the facilities. Impacts of exposures living within an 80-kilometer                                                            exposures to hazardous hazardous chemicals workers directly involved in reactor for workers                          reactor operation                                              quantitatively evaluated operation and tritium production were not quantitatively              evaluated because the use of personal protective                        engineering process controls would limit their exposure protective equipment and engineering to levels within applicable    Occupational Safety and Health Administration applicable Occupational                                                  Permissible Exposure Administration Permissible          Exposure Limits or Governmental Industrial Hygienists Threshold Limit Values.
Conference of Governmental American Conference As a result of releases from the routine operation of the reactor                              receptors are expected to be reactor facilities, receptors potentially potentially  exposed  to concentrations concentrations    of  hazardous  chemicals chemicals    that  are  below below  those        could cause acutely that could toxic health effects. Acutely toxic      health  effects  generally  result    from  short-term short-term  exposure    to relatively high concentrations                                                      encountered during facility accidents. Long-term concentrations of contaminants, such as those that may be encountered                                              Long-term concentrations of hazardous exposure to relatively lower concentrations                      chemicals can produce adverse chronic health effects hazardous chemicals include both carcinogenic that include                              noncarcinogenic effects. The health effect carcinogenic and noncarcinogenic                                    effect endpoints endpoints evaluated in this include excess incidences of latent cancers for carcinogenic analysis include                                                                    chemicals and a spectrum carcinogenic chemicals                spectrum of chemical-noncancer health effects specific noncancer                          headaches, membrane irritation, neurotoxicity, immunotoxicity, liver (e.g., headaches, effects (e.g.,
toxicity, kidney kidney toxicity, developmental                      reproductive toxicity, and genetic toxicity) for developmental toxicity, reproductive noncarcinogens.
noncarcmogens.
Methodology Methodology Estimates of airborne concentrations concentrations of hazardous hazardous chemicals              developed using ISC3 air dispersion model chemicals were developed (EPA 1995). This model was developed developed    by  the  U.S.                      Protection Agency (EPA) for regulatory Environmental Protection Environmental air dispersion modeling applications. ISC3 is the most recent version of the model and is approved for use for a wide variety of emission sources and conditions. The ISC3 model estimates                      atmospheric concentrations estimates atmospheric      concentrations emissions from the processing facility for each block in a circular grid comprised of 16 based on the airborne emissions sectors (e.g., north, north-northeast, northeast) at radial distances out to 80 kilometers directional sectors directional                                                                                              kilometers (50 miles) producing a distribution of atmospheric from the point of release, producing                                              concentrations. The maximally exposed atmospheric concentrations.
offsite off      individual is located in the block with the highest estimated concentration. The short-term site individual                                                                                      short-term version ofof (ISCST3) was used to estimate the model (ISCST3)                    estimate potential    exposures to offsite populations.
potential exposures C-23
 
Table    C - 11 Annual T a bl e C-1I      A nnua I R  Radiolo~ical          mpacts to the a d"JOI oglcaIIImpacts            th e Public P u bl'IC ffrom      nCI"d ent- F ree T" rom IIncident-Free                  "
Tritium ntlUm    Production        o Ilerahons at Watts P ro d uchon Operations              w atts BBar ar 1 Incremental Dose For Incremental          For                                                        Incremental Dose Incremental    Dosefor No Action                    1,000 TPBARs                  Operationwith 1,000 TPBARs Operation                                          3,400 TPBARs                  Operation with 3,400 TPBARs Operation Receptors            Air      TLiquid                Air          Liquid            Air          Liquid      F    Total            Air      T  Liquid            Air "        Liquid          Total Receptors          Air          Liquid            Air          Liquid            Air          Liquid            Total            Air          Liquid            Air          Liq[lid          Total Maximally Exposed Offsite Individual Maximally Exposed Offsite Individual Dose Dose Dise                _
0.036
_I_                            _      _                      _        _                      _      _                      _      _
0.036          0.25 0.25            0.012 0.012        0.0014 0.0014          0.048 0.048            0.25 0.25            0.30 0.30            0.042        0.0050          0.078          0.26          0.34 0.34 (millirem)
(millirem)
Fatal Cancer        1.8 xx10.-    1.3 x 10-7      6.0 x I0 9-    7.0 x 10`0      2.4 x I0 8-    1.3 x 10-7      1.5 xX 10.
1.5    l0-77    2.1 x 1 -V 2.5 x I0 9-          3.9 x 10 8-    1.3 x 10-7    1.7 x 10-7 1.8 X 10.8      1.3 x 10-7      6.0 x 10-      7.0 X 10. 10    2.4 X 10-      1.3 X 10-7                      2.1 X 10.8      2.5 x 10.      3.9 X 10-      1.3 x 10-7    1.7 X 10.7 Risk Population Dose Within Population          Within 80 Kilometcrs Kilometers (50 ( 50 Miles)
Miles) for Year 2025 Dose (person-        0.071          0.48            0.15            0.19            0.22          0.67            0.89                            0.69 rein)IIIIIIIIIII      0.071          0.48            0.15          0.19            0.22            0.67            0.89            0.50                          0.57            1.2 1.2            1.8 rem)
Cancers 1 0.000036 1 0.00024 1 0.000075 1 0.000095 Fatal Cancers                                                    0.000095 1 0.000110.00011    I  0.00034 0.00034      1 0.00045        1 0.00025      1 0.00035      1 0.00029      1 0.00060    1  0.00090 0.00090 Source:
Source: TVA 1998a.
given in this table are rounded tip Note: The values given                                    up to two significant figures.
Table C-12 Annual Radiological  Radiological Impacts to the Public from Incident-Free          Incident-Free Tritium Production Operations at                        at Sequoya h11 or Sequoyah Sequoyah              Sequoya h22 Incremental Incremental Dose      'For Dose*For                                                          Incremental Incremental Dose Dpse for -
No Action                    1,000 TPBARs 1,000                          Operation Operationwith 1,000 TPBARs                        3,400 TPBARs                  Operation Operation with 3,400 TPBARs Receptors
  -Receptors          Air          Liquid Liquid            Airjj Air          Liquid iquid          Air          Liquid            Total Total            Air          Liquid Liquid            Air          Liquid Liquid          Total Maximally Exposed Offsite Individual Maximally                        Individual Dose                  0.031          0.022            0.015        0.0016          0.046          0.024            0.070                                          0.083 (millirein)          0.031          0.022            0.015        0.0016          0.046          0.024            0.Q70            0.052        0.0054          0.083          0.027          0.11 0.11 (millirem) 8 Fatal Cancer        1.6 xx 10 10-8    1.1 xX 10.
1.1    10"88  7.5    10-99 7.5 xx 10-    8.0    10-`&deg;10 8.0 xx 10-      2.3    10`8 2.3 xX 10-      1.2 Xx 10-I1-V8    3.5 xX 10-'
10-8    2.6 Xx 10-10-88                            10-8          10-8 1.6                                                                                                                                      10.99 2.7 Xx 10.      4.2 Xx 10'    1.4 Xx 10-8            10.88 5.6 x 10-Risk Kilomcters (50 Miles)
Population Dose Within 80 Kilometers Population                                            Miles) for Year Year 2025 Dose (person-          0.49            1.1            0.16            0.41            0.65            1.5                                            1.4              1.0 0.49            1.1            0.16          0.41            0.65            1.5              2.2            0.54            1.4            1.0          2.5 2.5            3.5 3.5 rem)
Fatal Cancers      0.00025        0.00055 10.000080              0.00021          0.00033        0.00075          0.0011          0.00027        0.00070        0.0005          0.0013        0.0018 Fatal Cancers      0.00025        0.00055        0.000080        0.00021          0.00033        0.00075          0.0011          0.00027        0.00070        0.00050        0.0013        0.0018 Source:
Source: TVA 1998a.
given in this table are rounded up to two significant Note: The values given                                              significant figures.
 
Table T        C- 13 Annual a bl e C-13      Annua I R        a dO10 IoglcaIIImpacts Radiological          mpacts to tthe    h e Public P u brIC ffrom            nCI&deg;d ent- F ree TOO rom IIncident-Free                Tritium ntmm P        Production ro d uctlOn ._- oOperations
                                                                                                                                                                                      'peratlOns at B          Bellefonte eII ef onte I
                                                                                                                        --  -~  -,                  . r __
                                                                                                                                                                                                                    "","-~.".  ..                ~.
IncrementalDose Incremental    Dose ForFor                                                                Incremental Incremental Dose    Dosefor No Action                        1,000 TPBARs                    Operation Operationwith 1,000 TPBARs                                  3,400 TPBARs                        Operationwith 3,400 Operation                  3,400 TPBARs Receptors Receptors          Air            Liquid              Air          Liquid              Air              Liquid Liquid                Total      &sect;LiquidAir            Liquid                Air              Liquid Liquid                  Total Maximally Maximally Exposed Offsite Individual Individllal Dose miie0m                                01o            0.0020          0.0012            0.25C              0.013c              0.26 (millirem)              0"              0"              0.0020          0.0012            0.25'              0.013'                0.26            0.0065              0.0042              0.26' 0.26'              0.016' 0.016'                0.28 0.28 (millirem)
Fatal Cancer            0                0            1.0 xX 10-10' 9  6.0 Xx 10-10`0'0    1.3 xx 10-        6.5 Risk                    0                0            1.0            6.0                1.3      10'7      6.5 xx 10-10-99      1.3 xX 10-10-'7    3.3 Xx 10-  10-99            10-99 2.1 Xx 10-          1.3 x 10-10-'7      8.0 x 10-    10-99    104 x 10-7 1.4    10-7 Risk PopulationDose Within 80 Kilometers POPlllation                        Kilometers (50 Miles)        for Year 2025 Miles) for Dose (person-(person-        0b Ob              0b Ob              0.13            0.14            0.40C                1.2'                1.6              0.44              0.47                0.71'                  1.6'                2.3 0.13            0.14            0040'                1.2'                1.6              0044              0047                0.71'                1.6'                2.3 rem) rem)                                        I                I              I                  I                  I                                      I                I                  I                                I Fatal Cancers    [      00      ]      0            0.000065        0.000070 1 0.00020                      0.0006          1  0.0008      [ 0.00022 0.00022              0.00024        1 0.00036          1  0.0008 0.0008          [    0.0012 0.0012 n.
., b These These no  action values no action  values represent represent thethe absence absence of    impacts associated of impacts  associated with with thethe nonoperational nonoperational status  status of of the the Bellefonte        Nuclear Plant.
Bellefonte Nuclear        Plant. For For aa single single operational operational Bellefonte Bellefonte Nuclear Nuclear Plant unit (operation (operation without tritium production            activities), the impacts to the public have been estimated production activities),                                                          estimated to be: 0.26 millirem (0.25 millirem from the air pathway                        pathway and and 0.012 0.012 millirem from the liquid pathway) to the maximally                                    individual and 104 maximally exposed offsite individual                    1.4 person-rein          person-rem from the air pathway and 1.1 person-rem person-rem (0.27 person-rem                                                      person-rem from the liquid    liquid pathway)          surrounding population within 80 kilometers pathway) to the surrounding                                    kilometers (50 miles) in the year 2025.
These These values values are are aa summation summation of        incremental impacts of incremental      impacts attributable attributable to to TPBAR TPBAR tritium tritium releases releases and estimated single Bellefonte Bellefonte Nuclear Nuclear Plant unit operational operational impacts.
For Bellefonte I and 22 operation, the potential impacts are twice the values given in this table.                                                                                          '
Source:
Source: AEC 1974.
Note: The values given in this table are rounded    rounded up to two significant figures.
T a bl e C-14 Table    C- 14 R                            mpac t s tto0 th a dO10 IoglcaIIImpacts Radiolo2ical                            thee P Public u brIC ffromrom th  thee Failure F al&deg;1 ure 0offT Two    TPBARssaatt E wo TPBAR                    Each ac h of 0 fth thee R    eac tor Sites Reactor          SOt I es I                  Watts Bar.
Bar 1  I                                          SeqllfJyah Sequoyah lor          Seqlloyah 2
                                                                                                                              ] or Sequoyah                                            ;-Bellefonte Bellefonte Ilor    or Bellefonte 22-Receptors                  Air Air.                Liquid Liqllid                Total                    Air                      Liquid Liqllid                Total                    Air                      Liquid Liquid                      Total Maximally Maximally Exposed Offsite Individual Individllal Dose (millirem)                0.29                  0.033                  0.32                    0.36                      0.037                  0040 0.40                    0.045                      0.028                      0.073 7                      7                                                  7 Fatal Cancer Risk 1 1.5 x        x 10- 7 10-7          1.7 xX 10-"
10-8          1.6 Xx 10-10-7            1.8 xX 10-1.8      10-7              1.9 X 10-"
1.9      10-      j  2.0 xX 10-  10-7          2.3 xX 10-"
10'              1.4 Xx 10-104    10.' 8 3.7 x  10"'
X 10-"
PopulationDose Within Population          Within 80 Kilometers Kilometers (50 Miles)        for Year 2025 Miles) for Dose (person-rem)
(person-rem)            3.43 3043                  4.41 4041                  7.84                    3.67                      9.19                  12.86 12.86                    3.06 3.06                      3.18 3.18                        6.24 Risk                  1    0.0017 0.0017                0.0022                0.0039                  0.0018                    0.0046                0.0064                    0.0015                    0.0016                      0.0031
 
Final Environmental Final EnvironmentalImpact Impact Statement for (or the Production Production of o(Tritium Tritium in a Commercial Commercial Light Water Water Reactor Reactor This EIS estimates the noncancer health risks by comparing                    modeled air concentrations comparing modeled            concentrations of contaminants produced by ISC3 to the EPA Reference          Concentrations published in the Integrated Risk Information System.
Reference Concentrations noncarcinogenic chemical, potential health risks are estimated by dividing the estimated airborne For each noncarcinogenic                                                                                                airborne concentration          chemical-specific Reference concentration by the chemical-specific                    Concentrations value to obtain a noncancer hazard Reference Concentrations                                          hazard quotient:
Hazard Quotient = air concentrationlReference Noncancer Hazard                                                        Concentrations concentration/Reference Concentrations spanning perhaps an order of magnitude) uncertainty spanning Concentrations are estimates (with an uncertainty Reference Concentrations                                                                                        magnitude) of a daily exposure exposure to the human                  (including sensitive subgroups) that is likely to be without appreciable human population (including                                                                  appreciable effects during a lifetime. Hazard risk of harmful effects                                                        calculated for each hazardous Hazard Quotients are calculated                      hazardous chemical chemical to which receptors may be exposed. Hazard          Quotients for each chemical Hazard Quotients                                              generate a Hazard chemical are summed to generate          Hazard Index.
The Hazard Index is an estimateestimate of the total non      cancer toxicity potential from exposure to hazardous noncancer According to EPA risk assessment guidelines (EPA 1989),
chemicals. According                                                          1989), if the Hazard Index value is less than 1.0, the exposure is unlikely to produce adverse toxic effects. If the Hazard or equal to 1.0,                                                                                  Hazard Index exceeds exceeds 1.0, 1.0, non cancer health effects may result from the exposure.
adverse noncancer carcinogenic chemicals, risk is estimated by the following equation:
For carcinogenic Risk == CA x URF where:
probability of cancer Risk = a unitless probability        cancer incidence.
micrograms/cubic meters).
contaminant concentration in air (in micrograms/cubic CA == contaminant URF == cancer    inhalation unit risk factor (in units of cancers per micrograms/cubic cancer inhalation                                                      micrograms/cubic meters).
CA is estimated by multiplying the output of the ISC3 model by the process        process duration to obtain estimates of total airborne exposure exposure  for  each  process.
Cancer unit risk factors are used in risk assessments to estimate    estimate an upper-bound                  probability of an upper-bound lifetime probability cancer as a result of exposure to a particular level of a potential carcinogen.
individual developing cancer                                                                            carcinogen.
Assumptions The airborne  pathway is assumed to be the principal airborne pathway                                        exposure route by which the offsite population maximally principal exposure                                                  maximally hazardous chemicals released from reactor facilities. No synergistic exposed individual is exposed to hazardous                                                                        synergistic or antagonistic effects are assumed to occur                  exposure to the hazardous occur from exposure                hazardous chemicals chemicals released from reactorreactor Synergistic effects among released contaminants may result in adverse health effects that are greater facilities. Synergistic                                                                                                  greater than those estimated, whereas antagonistic        effects among released chemicals may result in less severe health antagonistic effects effects than those estimated.
Analysis The potential  impacts of exposure to hazardous potential impacts                                  chemicals released to the atmosphere during routine operations hazardous chemicals produce tritium are presented in Chapter 5 for each of the reactor facilities to produce                                                    each alternative.
C-26
 
Appendix Appendix C - Evaluation Evaluationof Human Health Health Effects from from Normal Normal Operations Operations C.5 REFERENCES C.S AEC (U.S. Atomic Atomic Energy Commission) 1974,    1974, Final  EnvironmentalStatement Related Final Environmental                    Related to Construction Construction of Bellefonte Nuclear  Plant Units Nuclear Plant          and 2, Tennessee Valley Authority, Washington, Units 1 and                                        Washington, DC, June.
AECB (Atomic Energy Energy Control Board) 1991, 1991, Tritium Tritium Releases Releasesfrom the Pickering PickeringNuclear Nuclear Generating GeneratingStation Station and Birth Defects and Infant Infant Mortality Mortality in Nearby    Communities 1971-1988; Nearby Communities          1971-1988; AECB ProjectProject No.
No. 7156.1; 7156.1; INFO-0401, INFO-0401, Health Health and Welfare Canada, Ontario, Canada, October.
CLRRPC CIRRPC (Committee on Interagency Interagency Radiation                              Coordination), 1992, Radiation Research and Policy Coordination),            1992, Use ofBEIR    V and ofBEIR Vand UNSCEAR 1988 in Radiation Radiation  Risk Assessment,  Life Time  Total  Cancer    Mortality Total Cancer Mortality      Risk  Estimates  at Estimates at  Low  Doses Doses and Low Dose Rates forfor Low-LET Radiation, Radiation, ORAU92/F-64, ORAU92IF-64, Science Panel Report No.            9, Office No.9,  Office of Science Science and Technology Technology Policy, Executive Executive Office of the President, Washington, DC, December.
CRC (CRC Press), 1982, 1982, CRC Handbook Handbook of Radiation        Measurement and Protection, Radiation Measurement                Protection, Biological Biological and and Mathematical Mathematical Information, Section A, Volume II: CRC Press.
DOC (U.S. Department of Commerce),
Commerce), 1992,    1990 Census 1992,1990                Populationand Housing, Census ofPopulation            Housing, Summary Tape Tape File File 3 on CD-ROM, CD-ROM, Bureau of the Census, Washington, DC, May.
DOC (U.S. Department of Commerce),          1993, U.S.
Commerce), 1993,      U.S. Census Census Bureau, Bureau, the Official Statistics, Statistics, "1992 "1992 Census of of Agriculture Agriculture for Selected Selected Counties in Tennessee, Alabama, Georgia, and North Carolina."  Carolina."
DOE (U.S. Department of Energy), 1994, DOE  DOEHandbook,        Primeron Tritium Handbook, Primer            Tritium Safe Handling Handling Practices, Practices, DOE-HDBK-1079-94,      Washington, HDBK-1079-94, Washington,        DC,  December.
EPA (U.S. Environmental Protection Protection Agency), 1989, 1989, Risk Assessment Guidancefor Guidancefor Superfund, Superfund, Volume 1, Human Health Health Evaluation Evaluation Manual Manual (Part A), EPA/54011-89/002, EPA/540/1-89/002, Washington, Washington, DC, December.
EPA (U.S. Environmental Environmental Protection Protection Agency),
Agency), 1994, EstimatingEstimating Radiogenic Radiogenic Cancer Cancer Risks, EPA 402-R-93-076, 402-R-93-076, Office    of Radiation Office of  Radiation and Indoor Indoor Air, Washington, Washington, DC, June.
EPA (U.S. Environmental Environmental Protection                1995, Users Protection Agency), 1995,              Guidefor Industrial Users Guide          IndustrialSource Source Complex (ISC3)
(ISC3)
DispersionModels, Dispersion                        Users Instructions, Models, Volume 1 Users    Instructions, EPA-454/8-95003a, EPA-454/8-95003a, Office  Office of Air Quality Quality and Standard, Research Triangle Triangle Park, North Carolina, September.
ICRP (International (International Commission Commission on Radiological Radiological Protection), 1980, Limits for    for Intakes of Radionuclides Radionuclides by Workers, ICRP Publication 30, Pergamon Press, New York, New York.
ICRP (International (International Commission on Radiological          Protection), 1991, Radiological Protection),          1991, 1990 Recommendations Recommendations of the InternationalCommittee on Radiological International                                  Protection,Annals of the ICRP, ICRP Publication 60, Vol. 21, Radiological Protection,                                                              21, No. 1-3, 1-3, Pergamon Press, New York, New York, November.
NAS (National Academy of Sciences), 1990,Health 1990,,HealthEffects of Exposure Exposure to Low Levels of Ionizing Ionizing Radiation Radiation BEIR      Committee on the Biological BEIR V, Committee                                  of Ionizing Radiation, Board of Radiation Biological Effects oflonizing                              Radiation Effects Research, Commission on Life Sciences, National Research Research Council, National Academy Press, Washington, DC.
NCRP (National Council Council on Radiation Protection and Measurements),
Measurements), 1979, Tritium Tritium and Other OtherRadionuclide Radionuclide Labeled Organic OrganicCompounds Incorporated        in  Genetic Material, Incorporated Genetic Material, NCRP      NCRP    Report  No. 63, 63, Bethesda,  Maryland.
C-27
 
FinalEnvironmental Final Environmental Impact Impact Statementfor Statement (or the Production Production of Tritium in a Commercial o(Tritium      CommercialLight Water Reactor NCRP (National Council on Radiation Protection and Measurements),
Measurements), 1987a, Genetic Genetic Effects from Internally Internally Radionuclides,NCRP Deposited Radionuclides, Deposited                    NCRP Re~ort Report No. 89, Bethesda, Maryland,Maryland, August August 15.
NCRP (National Council on Radiation NCRP(National                    Radiation Protection and Measurements),
Measurements), 1987b, IonizingIonizing Radiation Radiation Exposure Exposure of the Population Populationof the United      States, NCRP Report No. 93, Bethesda, Maryland, United States,                                              Maryland, September 1. 1.
NCRP (National Council on RadiationRadiation Protection and Measurements),
Measurements), 1993,  1993, Risk Estimates Estimates for for Radiation Radiation Protection,NCRP Report No. 115, Protection,                        115, Bethesda, Maryland, December December 31. 31.
NRC (U. S. Nuclear Regulatory Regulatory Commission), 1976, Preparation                  EnvironmentalReports Preparation ofEnvironmental          Reportsfor Nuclear Nuclear Power
: Stations, Stations, NUREG-0099, NUREG-0099, Regulatory Guide    Guide 4.2, Rev. 2,  2, Office of Standards Standards Development, Washington, DC, July.
NRC (U.S. Nuclear Nuclear Regulatory Commission),
Commission), 1977a, Regulatory Regulatory Guide Guide 1.111, 1.1 11, Methods Methods for Estimating Atmospheric Transport Transportand and Dispersion Dispersionof Gaseous Gaseous Effluents in Routine Releases from Light-    Light- Water-Cooled Water-Cooled
: Reactors, Reactors,  Office  of Standards    Development,      Washington,      DC,    July.
NRC (U.S. Nuclear Regulatory Commission), I1977b,              Regulatory Guide 1.109, 977b, Regulatory                1.109, Calculation Calculationof ofAnnual Annual Doses Doses to Man from Routine ReleasesReleases of Reactor Reactor Effluents for the Purpose  Purpose of Evaluating Evaluating Compliance Compliance with 10 CFR CFR Part  50, Appendix I,I, Revision 1, Office of Standards Part50,                                            Standards Development, Washington, Washington, DC, October.
NRC (U.S. Nuclear Regulatory Commission),  Commission), 1994, Residual  Residual Radioactive Radioactive Contamination Contamination from  from Decommissioning,      Technical  Basis  for  Translating    Contamination Decommissioning, Technical Basis for Translating Contamination Levels to Annual Total                    Total Effective Dose Equivalent,Final Equivalent,          Report, NUREG/CR-55 Final Report,    NUREG/CR-5512,      12, Washington, Washington, DC, June.
NRC (U.S. Nuclear Regulatory Commission)
Commission) 1995, Final  FinalEnvironmental EnvironmentalStatement Related  Related to the Operation Operation of Watts Bar Bar Nuclear    Plant,Units Nuclear Plant,    Units 1 and and 2, Tennessee Valley Authority, Authority, NUREG-0498, NUREG-0498, Supplement Supplement 1,  1, Office of Nuclear Reactor Reactor Regulations, Regulations, Washington, DC, April.
NRC (U.S. Nuclear Nuclear Regulatory Commission)
Commission) 1997, 1997, Occupational OccupationalRadiation RadiationExposure at  at Commercial CommercialNuclear Power Reactors Power  Reactors andand Other Other Facilities, Facilities, Twenty-ninth Annual Report 1996,        1996, NUREG-0713, NUREG-0713, Washington, DC.
PNNL (Pacific Northwest National Laboratory), 1997, letter from Walter W. Laity to Stephen M. Sohinki, U.S.
Department of Energy, "CLWR-Tritium "CLWR-Tritium Permeation,"
Permeation," Richland, Washington, October 8.
PNNL (Pacific (pacific Northwest National Laboratory), 1999, letter from Walter W. Laity to Stephen M. Sohinki, U.S.
Department of Energy, "TPBAR Department                "TPBAR Tritium Releases Releases Assumptions Assumptions for the EIS TPBAR," TPBAR," Richland, Washington, Washington, February 10.
February PNL (Pacific Northwest        Laboratory), 1988, GENII--The Hanford Northwest Laboratory),                                              Environmental Radiation Hanford Environmental          Radiation Dosimetry Dosimetry Software System, PNL-6584, PNL-6584, Richland, Washington, November.
Richter, B.S. and H.G. Stockwell, 1998, "Descriptive "Descriptive Study of Death from Cancer Associated with Residential Proximity to the Site of Underground Underground Nuclear Nuclear Detonations."                            Environmental Health, Detonations." Archives of Environmental              Health, an InternationalJournal, International  Journal,Volume Volume 53,          109-113.
53, pp. 109-113.
SAIC (Science    Applications International (Science Applications  Intemational Corporation),
Corporation), 1998, health risk assessment data, Germantown, Germantown, Maryland.
Maryland.
TVA (Tennessee Valley Authority), 1974a,    1974a, Tennessee Tennessee Valley Authority, Authority, Final Final Environmental      Statement, Environmental Statement, Sequoyah Nuclear Nuclear Plant, Plant, Units 1I and 2, Chattanooga, Chattanooga, Tennessee,          February 21.
Tennessee, February        21.
C-28
 
Appendix C - Evaluation Evaluation of Human Health Health Effectsfrom Effects from Normal Normal Operations Operations TVA (Tennessee (Tennessee Valley Authority), 1974b,    FinalEnvironmental 1974b, Final    Environmental Statement, Statement, Bellefonte Nuclear NuclearPlant  Units 1 Plant Units I and 2, Chattanooga, Tennessee, Tennessee, May 24.
TVA (Tennessee (Tennessee Valley Authority), 1991, 1991, Bellefonte Nuclear Nuclear Plant      FinalSafety Analysis Report, Plant Final                    Report, through Amendment Amendment    30, Chattanooga,  Tennessee, Tennessee,    December    20.
TVA (Tennessee (Tennessee Valley Authority),
Authority), 1995, Watts Bar  Bar Nuclear    PlantFinal Nuclear Plant      FinalSafety Analysis Report, Report, through Amendment Amendment 91,    Chattanooga, Tennessee, 91, Chattanooga,  Tennessee, October 24.
TVA (Tennessee (Tennessee Valley  Authority), 1996, Valley Authority),  1996, Sequoyah Nuclear NuclearPlant      UpdatedFinal Plant Updated    Final Safety Analysis Report, Report, through Amendment 12, 12, Chattanooga, Tennessee, Tennessee, December 6.
TVA (Tennessee (Tennessee Valley Authority),  1997, Annual Radiological Authority), 1997,            RadiologicalEnvironmental        OperatingReport, Environmental Operating              Sequoyah Report, Sequoyah Nuclear Plant, Nuclear  Plant,1996, 1996, Environmental Environmental Radiological Radiological Monitoring and Instrumentation, Instrumentation, Chattanooga, Tennessee, April.
(Tennessee Valley Authority), 1998a, data input through comments, June 1998 to July 1998.
TVA (Tennessee (Tennessee Valley Authority), 1998b, TVA (Tennessee                                RadiologicalConsiderations 1998b,Radiological      Considerationsfor  for Commercial Commercial Light Water Reactor Production Production of Tritium Tritium at Tennessee Valley Authority, Authority, Revised, Radiological and Chemistry Services, July 6.
(Tennessee Valley Authority), 1999, TVA (Tennessee                        1999, data input through comments, August 1998        1998 to February 1999.
C-29
 
APPENDIX D APPENDIXD EVALUATION EVALUATION OF HUMAN              HUMAN HEALTH  HEALTH EFFECTS FROM            FROM FACILITY ACCIDENTS ACCIDENTS This appendix presents presents the method and assumptions assumptions used for estimating estimating potential potential impacts and risks to individuals individuals and the general general public from exposure exposure to releases of radioactive radioactive and hazardous hazardous chemical materials materials during hypothetical accidents at the proposed reactor facilities. The impacts        impacts from accidental        radioactive accidental radioactive material releases are given in Section D.1,    D. 1, and the impacts from releases of hazardous chemicals are provided provided in Section D.2.
D.1 RADIOLOGICAL D.I    RADIOLOGICAL ACCIDENT IMPACTS ON HUMAN            HUMAN HEALTH D.1.1 Accident D.1.1    Accident Scenario Selection Selection and Description Description D.1.1.1 Accident Scenario D.1.1.1                              Selection Scenario Selection This accident accident analysis assessment considers a spectrumspectrum of potential accident accident scenarios. The range of accidents accidents considered includes reactorreactor design-basis accidents, nonreactor nonreactor design-basis design-basis accidents, tritium-producing tritium-producing burnable absorber rod (TPBAR) handling accidents, transportation    transportation cask handling accidents, and beyond  beyond design-basis accidents (i.e.,(i.e., severe reactor accidents).
The spectrum of reactor and nonreactor              design-basis accidents presented in the Watts Bar, Sequoyah, nonreactor design-basis                                                  Sequoyah, and Bellefonte Safety Analysis Analysis Reports were reviewed                                environmental impact statement reviewed for evaluation in this environmental                            (EIS).
statement (ElS).
The large break loss-of-coolant loss-of-coolant accident accident was selected as the representative representative reactor design-basis design-basis accident accident because it has the potential to damagedamage more TPBARs than any other reactor design-basis accident                    Section accident (see Section D. 1.1.2).
D.I.l.2). Based  on assumptions assumptions      used in this  EIS for the postulated postulated  accident  scenario,  the  waste  gas  decay  tank failure accident was selected as the nonreactor nonreactor    design-basis  accident for evaluation evaluation  in  this EIS  because    it has the potential to release moremore    tritium  than  other  nonreactor nonreactor  design-basis  accidents.
Following irradiation irradiation in the reactor's reactor's tritium production core, the fuel assemblies assemblies and the TPBAR TPBAR assemblies inserted into the fuel assemblies would be removed    removed from the reactor and transferred to the spent fuel pool.
There, the TPBAR TPBAR assemblies assemblies would be removed from the fuel assemblies. Next, the TPBARs would be removed from the TPBAR assemblies and inserted in a consolidation container. The consolidation container              container is ,aa 17 x 17 array of tubes that holds the TPBARs. The consolidationconsolidation container container has the same footprint as a fuel assembly and can accommodate accommodate up to 289 TPBARs.
Three TPBAR handling accident    accident scenarios are evaluated. Scenario Scenario 1 postulates postulates that the consolidation container with 289 TPBARs is dropped while loading into a transportation cask. The evaluation              evaluation further further postulates that, if the consolidation consolidation container container  lands  vertically on the spent  fuel pool  floor,  no  TPBARs      would would be damaged damaged    by the  impact. If, If,  however,  the  consolidation  container consolidation container    lands  on an  edge  or strikes an object (e.g., an unoccupied (e.g.,      unoccupied fuel rack or the shelf in the cask loadingloading pit), the consolidation container container shell and up to one row of tubes containing TPBARs could        could be damaged, and up to 17 TPBARsTPBARs possibly could be breached.
Scenario Scenario 2 postulates postulates that an irradiated irradiated fuel 'assembly with a TPBAR                    containing 24 TPBARs is TPBAR assembly containing dropped in the spent fuel pool. The evaluation also postulates  postulates that, if the fuel assembly lands vertically, no TPBARs would be damaged damaged by the impact. If the assembly lands on an edge or is struck by an object on the side or comer corner of the fuel assembly, up to 3 TPBARs could      could be damaged by the impact.
D-1 D-J
 
Final Final Environmental Impact Statement for Environmentallmeact            (or the Production Production of Tritium in a Commercial o(Tritium      CommercialLight Water Reactor Scenario 33 postulates that a TPBAR assembly containing 24 TPBARs is dropped in the spent fuel pool as it is being removed from an irradiated fuel assemblyassembly and all TPBARs are breached  breached by the impact. Scenario Scenario 3 was selected                                  because it has the potential to damage more TPBARs than the other selected for evaluation in this EIS because                                                                            other postulated TPBAR handling accidents.
Two truck or rail transportation cask drop accidents that could cause a release of tritium from the casks are evaluated in this EIS. The evaluations consider:
consider: (1) cask drops before  before the cask is sealed, and (2)  (2) drops that could breach a sealed cask.
The postulated postulated beyond design-basis design-basis reactor accident analyses selected for use in      ill this EIS address core damage accident scenarios leading                        containment integrity. This includes scenarios that fall into three leading to the loss of containment performance categories:
categories: (1) early containment containment failures, (2)  (2) late containment containment failures, and (3)  (3) containment Accident scenarios that do not fall into these categories bypass. Accident                                              categories lead to significantly lower consequences consequences and, therefore, are not evaluated.
D.1.1.2 Reactor Design-Basis Accident D.1.1.2                              Accident accident is designated as a Condition IV occurrence.
A reactor design-basis accident                                                                                occurrences are occurrence. Condition IV occurrences expected to take place, but are postulated because they have the potential faults that are not expected                                                                              potential to release release postulated reactor design-basis accident radioactive material. The postulated significant amounts of radioactive                                                              accident for this EIS is a large loss-of-coolant accident. This postulated accident has the potential to damage break loss-of-coolant                                                                      damage more TPBARsTPBARs than any loss-of-coolant design-basis accident (WEC 1998a). This accident scenario other reactor loss-of-coolant                                                                  scenario postulates postulates a double-ended rupture of a pipe greater than 15 centimeters centimeters ((66 inches) in diameter                reactor coolant system.
diameter in the reactor During the initial phase of the accident,                              (coolant) level would drop below the top of the accident, the reactor water (coolant) core for a short period of time before the emergency systems would automatically reactor core                                                                                  automatically inject additional water to cover the core. During this period the core would overheat, and the cladding on some of the fuel rods and 100 percent of the TPBARs would be breached due to the overheating          overheating (WEC 1998b). The analysis assumes that the entire tritium content in the TPBARs would be released        released to the containment. Each TPBAR produces 1 gram of tritium on average through the 18-month irradiation cycle (DOE 1996). For the purpose                purpose of analyses in this EIS, 1 gram of tritium contains contains 9,640 Curies (CRC 1982). The analysis      analysis also assumes thatthat all of the tritium released released to the reactor      coolant system from the TPBARs during 17 months reactor coolant                                                    months of normal operation would be released to the containment containment during the accident. This would include      include the release of an amount of tritium corresponding corresponding to 1 Curie per TPBAR  TPBAR per year (PNNL 1997). The accident consequence      consequence calculations calculations consider applicable, applicable, reactor site-specific, site-specific, protective protective action guidelines.
Table D-lD-1 shows the total source term                                    containment that would be attributable term released to the containment                                  attributable to 1,000 TPBARs TPBARs and a maximum of 3,400              TPBARs in a tritium production core configuration. Table D-2 3,400 TPBARs                                                                      D-2 presents the tritium source source term released released from the containment containment to the environment. The reduction  reduction in the amount of tritium available available for release would be the result of post-accident post-accident processing of the containment containment atmosphere to reduce iodine leakage leakage    to the  environment,    operation operation    of  hydrogen  recombiners,    and  absorption of elemental and oxidized                                    containment (WHC 1991). In the design-basis oxidized tritium by water in the containment                                        design-basis accident, tritium would be released                  containment to the atmosphere released from the containment                  atmosphere through containment leakage. Release      Release pathways from the containment containment are discussed in Section        D. 1.2.5.2. The analysis assumes tritiated water vapor Section D.I.2.5.2.                                                vapor released to the atmosphere for 30 days following the accident. After 30 days, all the tritiated would be released                                                                                                tritiated water water containment atmosphere would be condensed and, therefore, would not be available vapor in the containment                                                                                  available for further further release. Table D-3D-3 presents the accident frequency estimates.
D-2 D-2
 
Appendix DD - Evaluation        Human Health Evaluation of Human    Health Effects from Facility FacilityAccidents TTable a ble DD-1    R eactor D
                                        - 1 Reactor          eSlgn-BOA Design-Basis 0
aSls Accident      TOO CCI&deg;d ent Tritium      nventory ntmm IInventory Tritium Production Tritium  Production
                                                                                                                -                        , ~
1,000 TPBARs                        Maximum -~ 3,400 TPBARs            <
Source Term Source                                                (Curies)
(Curies)                                  (Curies)
(Curies)
TPBARs breached duringduring accident accident                                  9.64 Xx \06 106                              3.28 Xx 10  10'7 TPBAR leakage during normalnonnal operations                                11,500 500                                    .5100 5.100 Total released released to containment                                          9.64 x  10 6 x 106                              3.28 x 10'  10 7 6
available to be released to environment Total available                    environment'a                        964-000 964.000                                  3.28 xx 10 3.28        106 a  All tritium released to the environment is in oxide form. fonn.
TTable    D-2 a bl e D - 2 Reactor      D eSlgn-BOA R eactor Design-Basis 0
aSls Accident      TOO CCI&deg;d ent Tritium ntmm Sourcesource TTerm erm RI  Released        EnVlronment e easedtto0 Environment Tritium Released Tritium              (Curies)a,".bb Released (Curies)
Accident Site                    Tritium Production Tritium  Production                0-24 Hours Hours          24~720 Hours 24-720    Hours          Total 0~30 Total  0-30 Days Watts Bar                                  1,000 TPBARs 1,000                                  814                    10,700 10,700                    11,600 11,600 3,400 TPBARs                          2,780                  36,600                    39,400 Sequoyah                                    1,000 TPBARs                          890                    11,900                    12,800 12,800 3,400 TPBARs                          3,040                  40,500                    43,500 43,500 Bellefonte                                  1,000 TPBARs                          338                    3,880                      4,220 3,400 TPBARs                          1,150 1,150                  13,200                    14,400 14,400
,a All  tritium released All tritium  released to to the the environment environment is is in in oxide form.
oxide fonn.
b Source terms tenns for a single single reactor.
Table D-3 ReactorReactor Design-Basis Design-Basis Accident Frequency  Frequency Estimates for Large        Large Break Loss-of-  Loss-of-Accident Coolant Accident Reactor Reactor Site                                                        Frequency Frequency (per (peryear) year)
Watts Bar                                                                                              0.0002' 0.0002' Sequoyah                                                                                              0.0002b 0.0002b Bellefonte                                                                                            0.0002' 0.0002' TVA 1992b.
TVA    1992b.
b  TVA 1992a.
TVA 1992a.
c  Value currently assigned in Individual Plant Examinations.
Value    currently assigned in Individual Plant Examinations.
D.l.1.3 Nonreactor Do1.1.3        Nonreactor Design-Basis Accident    Accident The waste gas decay tank rupture, a Condition      Condition III  III occurrence, occurrence, was selected selected as the nonreactor nonreactor design-basis accident for this EIS. The consequences accident                              consequences of a Condition III occurrence      occurrence would be less severe    severe than for a Condition IV  WV  occurrence.
occurrence. The release of radioactivity would not be sufficient        sufficient to interrupt or restrict restrict public use D-3
 
Final Final Environmental  Impact Statement for Environmental Impact            {or the Production  of Tritium in a Commercial Production o{Tritium        CommercialLight Water Reactor of those areas beyond the exclusion exclusion area radius (TVA 1996). The frequency          frequency of design-basis design-basis accidents is normally expected expected to be in the range of 0.0001 to 0.01 per year. For the purpose              purpose of this EIS, the accident accident frequency is assumed to be 0.01,  0.01, the high end of the range.
The gaseous gaseous waste processing processing system is designed to remove fission product gases from the reactor coolant.
The maximum storage of waste gases occurs before a refueling shutdown,            shutdown, at which time the gas decay tanks store the radioactive radioactive gases that are stripped from the reactor    reactor coolant. The accident  accident analysis conservatively conservatively assumes that 10 percent of the TPBAR-generated TPBAR-generated tritium in the reactor coolant, as well as radioactive        radioactive xenon and krypton fission product product gases, would be stripped from the reactor      reactor coolant before a refueling shutdown shutdown and stored in waste waste decay tanks. Therefore, Therefore, it has the potential to release    release more tritium than other nonreactor nonreactor design-basis accidents. This assumption is conservative conservative because because the analysis analysis postulates postulates that all of the tritium released from the TPBARs to the reactor coolant during the entire fuel cycle would be retained in the coolant.
The postulated nonreactor design-basis accident accident is defined as an unexpected, uncontrolled release of the gases            gases contained contained in in. a single  gas  decay decay  tank  due  to  the  failure  of the  tank    or  the  associated  piping. The  analysis analysis assumes that tritium would be released released directly to the environment environment in an oxide form. Accident                consequence Accident consequence calculations consider applicable calculations                                      site-specific protective applicable reactor site-specific          protective action guidelines.
guidelines. Table Table D-4 presents the tritium source term that would be released to the environment.
Table T a bl e D-4    N onreac t or D D-4 Nonreactor              '
Design-Basis eSlgn-  B aSls. A  CCI'd en t T Accident          "f Tritium nlUm      sSource ource T Term erm Source Source Term (Curies (Curiesof tritium) tritium) 1,000 TPBARs                                I                            3,400' 3,400,TPBARs 150
                              .ill                                                                    510 ilQ D.1.1.4 D.1.1.4 TPBAR Handling Accident    Accident The TPBAR handling          accident scenario postulates that a TPBAR assembly handling accident                                                        assembly containing 24 TPBARs  TPBARs was dropped when removing the assembly from an irradiated          irradiated fuel assembly assembly during the TPBAR consolidationconsolidation process. The evaluation postulates that all TPBARs  TPBARs would be unprotected unprotected and would breach  breach when when they impact the spent fuel pool floor. The gaseous tritium tritium in the 24 breached breached TPBARs TPBARs would be released into the fuel pool and directly                                              conservatively assumes that the entire tritium inventory directly to the environment. The analysis conservatively                                                        inventory in the the 24 breached breached TPBARs (231,360 Curies) would be released          released into the fuel pool (PNNL 1999). The released        released tritium would be in oxideoxide form. It also was assumed that all the tritium released to the fuel pool would be released to the environment continuously continuously over a one-year period by evaporation  evaporation from the fuel pool and would    would be exhausted by the area ventilation ventilation system system through the auxiliary building stack. This assumption was made to estimate the maximum dose to the public from this accident. [Release of tritium through liquid effluents would result in a public public dose, which is an order of magnitude lower than that from release              release to the air.] Should a TPBAR handling accident accident  occur,  action    will be  taken  to limit  the  tritium  release  from  the breached breached TPBARs.
However, the analysis took no credit for mitigating actions to limit the release            release of tritium to the fuel pool (i.e.,
(i.e.,
placing the breached breached TPBARs in a sealed sealed container) container) or to reduce reduce the accident          consequences to the public (i.e.,
accident consequences interdiction of contaminated interdiction        contaminated food and/orand/or drinking water). Table D-5 presents            presents the accident frequency estimates. The frequency estimates estimates are derived from data presented  presented in NUREG/CR-4982, NUREG/CR-4982, Severe Accidents in Spent Fuel Fuel Pool Pool in Support        GenericSafety Issue 82 (NRC 1987).
Support of Generic D-4 D-4
 
Appendix D - Evaluation Evaluation of ofHuman Human Health Health Effects from  FacilityAccidents from Facility Table    D- S TPBARH T a bl e D-5  TPBAR Handling an dr109 Accident      F requency E ACCI*d ent Frequency              .
stlmates Estimates
                                                  .... Frequency Frequency (per  year)
(peryear) 1,000 TPBARs                      .                                  3,4f!0'TPBARs 3,400  TPBARs 0.0017                                                                0.0058 0.0058 D.1.1.5 Truck Transportation Cask Handling D.1.1.S                                        Handling Accident Accident at the Reactor Reactor SiteSite The truck caskcask would be loaded under water in the spent fuel pool cask loading pit. A single TPBAR consolidation container consolidation                containing a maximum of 289 TPBARs would be loaded into the cask. For the container containing purpose of this EIS, the analysis postulates that, following insertion of the consolidation    consolidation container, container, the cask cask cover would be installed but not tightly sealed. The cask would be raised above the water level where                where it would decontamination area. There it would be sealed, backfilled be hosed down and drained before moving it to the decontamination                                                          backfilled decontaminated before loading with inert gas, and decontaminated                loading on the truck trailer bed.
The evaluation evaluation also considered considered an option to seal the cask cover before lifting the cask; in this case the only potential potential for a tritium release release would be if the cask were breached by the drop. The truck cask is designed              designed in accordance with the requirements of 10 CFR 71, accordance                                              71, and is required required to withstand a 9.      9.1-meter I-meter (30-foot) drop onto an unyielding unyielding surface surface without loss or dispersal of the radioactive contents of the cask. The cask could                could drop more than 9.1 meters (30 feet) in the spent fuel pool cask loading pit. It could fall approximately      approximately 2.7 meters (9 feet) through the air and approximately approximately 12.2 meters (40 feet) through the water. The terminal          terminal velocity of of such a fall would exceed exceed that reached in a 9.1 meter (30 foot) drop through air (TVA 1996). The analysis assumes that the cask would be breachedbreached by such a fall.
Spent fuel pool designs were reviewed reviewed to determine ifthere if there were any potential potential for cascading effects effects of the cask cask drop that would initiate releases of additional radionuclides. In the event that the spent fuel pool liner in the cask pit area is breached and the water level in the spent fuel pool drops, the water level would not drop to a level that would uncover uncover the spent fuel in the storage racks. The cask loading area of the spent fuel pool is separated from the storage area by a shelf.
separated                                  shelf. The shelf height maintains the water level in the spent fuel pool              pool storage area above the top of the spent fuel when the cask pit area is drained. Additional        Additional defense-in-depth is provided when the spent fuel pool gates are installed  installed after loading loading the cask. With the gates in place, one on          on each side of the cask loading pit access channel to the spent fuel pool, a breach        breach of the liner in the cask loading loading pit area would result in a drop in the spent fuel water level to the top of the gates.
The analysis analysis assumed assumed that, in the event the cask is dropped onto the floor of the fuel pool area, the cask would not penetrate penetrate the floor or damage damage equipment located at an elevation elevation below the potential potential drop zone. Analyses Analyses would be performed, if necessary, to verify this assumption during the U.              U.S.              Regulatory Commission S. Nuclear Regulatory (NRC) operating license license process and/or license        amendment process.
license amendment It is anticipated anticipated that no TPBARs TPBARs would be damaged by the drop. The TPBARs in the cask would be protected                  protected from damage not only by the cask, but also by the consolidationconsolidation container container structure. However, the analysis conservatively assumes that the structural loads on the TPBARs resulting conservatively                                                                    resulting from the drop could breach up to 17 TPBARs, the same number consideredconsidered for a dropped TPBAR consolidation consolidation container. The gaseous tritium in the 17 17 breached breached TPBARs TPBARs would be released into the fuel pool and directly to the environment              environment by evaporation. Two accident accident scenarios scenarios are considered. Scenario Scenario 1 assumes that the cask drop occurs prior to draining and drying the cask interior. The analysis conservativelyconservatively assumes that the 17 breached TPBARs .
release tritium into the flooded cask at the rate of 50 Curies per TPBAR per day (PNNL 1999)                    1999) until the cask cask can be drained drained into the fuel pool and the cask interior can be vacuum-dried. The analysis further assumes that the cask is drained and vacuum-dried vacuum-dried within seven days of the accident to limit the release          release of tritium from the breached TPBARs. The analysis analysis takes no credit for additional mitigating actions to reduce      reduce the released tritium tritium D-5 D-5
 
Final EnvironmentalImpact Statement for Final Environmentallmeact                  the Production for the  Production of of Tritium Tritium in a Commercial CommercialLight Water Reactor to the fuel pool (e.g.,
(e.g., draining the cask into a storage tank). A total of          of5,950 5,950 Curies of tritium, in oxide form, would be released to the fuel pool area and exhausted up the auxiliary building stack over a one-year              one-year period.
Scenario 2 assumes that the cask drop of more than 30 feet occurs Scenario                                                                    occurs while loading loading the caskcask onto a trailer trailer after it is loaded with TPBARs, sealed, and decontaminated. It is assumed that this accident would result in 17 breached breached TPBARs TPBARs and loss of the cask confinement confinement integrity. The breached  breached TPBARs TPBARs would release tritium, assumed to be in oxide oxide form, to the auxiliary                      atmosphere at a rate of 0.00001 grams auxiliary building atmosphere                                      gram~ per breached breached TPBAR per hour (PNNL 1999). Further, the analysis          analysis assumes that the tritium release release would be terminated terminated when the TPBARs are placed in a replacement replacement cask within 30 days of the accident. During this period, a total 1,180 of 1,  180 Curies of tritium would be released to the atmosphere  atmosphere through the auxiliaryauxiliary building stack. The consequences consequences for Scenario Scenario 1 bound the consequences consequences of ScenarioScenario 2.
D-6 presents Table D-6    presents the frequency estimates for the truck transportation cask handling accident (Scenario            (Scenario 1).1).
The frequency estimates are derivedderived from data presented presented in NUREG/CR-4982, NUREG/CR-4982, Severe Accidents in Spent Fuel          Fuel Pool Pool in Support Support of Generic Generic Safety Issue Issue 82 (NRC 1987).
Table T a ble D-6 D- 6 T  Truck ruc k Transportation T ranspor tatIOn
                                                    '      Cask C as k Handling H an dr109 Accident ACCI.d en t Frequency F requency E    Estimates sima f tes Frequency(per Frequency        year) ,
(per year) 1,000 TPBARs                                                          3,400 TPBARs TPBARS 5.3 x 10'7                                                            1.6 x 10-6 5.3 x 10-7                                                            1.6 X 10-6 D.1.1.6            Transportation Cask Handling D.1.1.6 Truck Transportation                    Handling Accident at the Tritium Extraction      Extraction Facility Cask Cask handling accidents at the Tritium Extraction Extraction Facility are in the scope of the Tritium Extraction    Extraction Facility EIS and are not within the scope of this EIS.
D.1.1.7          Transportation Cask Handling Accident at the Reactor Site D.l.l. 7 Rail Transportation The rail cask would be loaded under water in the spent fuel pool cask loading                loading pit with 33 to 12 TPBAR consolidation consolidation  containers. For  the purpose  of  this  EIS,  the  analysis analysis postulates that, following insertion of the postulates consolidation consolidation  containers,    the  cask  cover cover  would    be  installed,  but not tightly sealed. The cask would be raised    raised above above the water water level, where it would be hosed down, drained, and the cask interior would be vacuum-dried          vacuum-dried before moving moving it to the decontamination decontamination area. There it would be sealed, backfilled with inert gas, and                    and decontaminated decontaminated before before loading on the rail car.
The evaluation also considers considers an option to seal the cask cover before lifting the cask; in this case the only potential potential for a tritium release would be if the cask were breached by the drop. The rail cask is designed in accordance with the requirements of accordance                                oUO10 CFR 71,71, which requires requires that the cask withstand a 9.1-meter (30-foot) drop onto an unyielding surface without loss or dispersal of the radioactive contents of the cask. The cask                      cask could could drop more than 9.1 meters (30 feet) in the spent fuel pool cask loading pit. Here the cask could fall approximately 2.7 meters (9 feet) through air and approximately approximately 12.2 meters (40 feet) through    through water. The terminal terminal velocity reached in such a fall would exceed that reached in a 9.1-meter          9. I-meter (30-foot) drop through through air (TVA 1996). The analysis assumes that the cask        cask    would    be  breached    by such  a fall.
Spent fuel pool designs were reviewed reviewed to determine ifthere if there were any potential for cascading effects of the cask drop that would initiate releases of additional radionuclides.
radionuclides. In the event that the spent fuel pool liner in the cask pit area is breached breached and the water level in the spent fuel pool drops, the water level would not drop to a level that would uncover the spent fuel in the storage    storage racks. The cask loading area      area of the spent fuel pool is D-6
 
Appendix D - Evaluation      Human Health Evaluation of Human Health Effects from Faci/itv Faciliy,Accidents Accidents separated from the storage area by a shelf.
separated                                      shelf. The shelf height maintains maintains the waterwater level in the spent fuel pool storage area above the top of the spent fuel when the cask pit area is drained.
storage The analysis assumes that, in the event the cask is dropped  dropped onto the floor of the fuel pool area, the cask      cask would would not penetrate the floor or damage equipment located at an elevation below the drop zone. Analyses                  Analyses will be performed to verify this assumption assumption during the NRC operating operating license process and/or license amendment  amendment process.
It is anticipated that no TPBARs would be damaged by the drop. The TPBARs in the cask would be protected damage not only by the cask, but also by the TPBAR consolidation from damage                                                                                  container structure. However, the consolidation container conservatively assumes that the structural analysis conservatively                                                    TPBARs resulting from the drop could breach structural loads on the TPBARs up to 17 TPBARs, the same number considered  considered for a dropped TPBAR TPBAR consolidation consolidation container. Two accident accident scenarios are considered. Scenario scenarios                      Scenario 1 assumes that the cask drop occurs prior to draining and drying the cask              cask conservatively assumes that the 17 breached TPBARs release tritium into the flooded interior. The analysis conservatively Curies per TPBAR per day (PNNL 1999) until the cask can be drained cask at the rate of 50 Curies                                                                            drained into the fuel pool and the cask interior can  can be vacuum-dried.
vacuum-dried. The analysis analysis further assumes that the cask is drained and dried        dried within seven days of the accident to limit the release of tritium from the breached TPBARs. The analysis takes no credit for additional mitigating actionsactions to reduce the released released tritium to the fuel pool (e.g., draining the cask    cask into a storage tank). A total of 5,950 Curies Curies of tritium, in oxide oxide form, would be released to the fuel pool area auxiliary building stack over a one-year period.
and exhausted up the auxiliary Scenario 22 assumes that the cask drop of more than Scenario                                                than 30 feet would occur while loading the cask onto a rail car after it is loaded with TPBARs, sealed, and decontaminated. It is assumed that this accident              accident would result in 17 breached breached TPBARs and loss of the cask confinement  confinement integrity. The breached  breached TPBARs would release    release tritium, assumed assumed to be in oxide oxide form, to the auxiliary auxiliary building atmosphere atmosphere at a rate of 0.00001  0.00001 grams per TPBAR per hour (PNNL 1999). Further, the analysis assumes breached TPBAR                                                                    assumes that the tritium releaserelease would bebe terminated when the TPBARs are placed                    replacement cask within 30 days of the accident. During this placed in a replacement period, a total of 1,180 Curies of tritium would be released to the atmosphere through            through the auxiliary auxiliary building stack. The consequences consequences for Scenario                        consequences of Scenario 2.
Scenario 1I bound the consequences Table D-7D-7 presents the frequency estimates for the rail transportation transportation cask handling            accident (Scenario 1).
handling accident frequency estimates The frequency    estimates are derived from data presented            NUREG/CR-4982, Severe Accidents in Spent Fuel presented in NUREG/CR-4982,                                            Fuel Pool in Support Pool      Support of Generic              Issue 82 (NRC 1987), and the assumption that each rail cask would contain Generic Safety Issue consolidation containers.
three TPBAR consolidation Table T a bl e D-7 D- 7 Rail    Transportation R al*1 T  ransportatJon Cask C as kHHandling an dr109 A Accident      Frequency CCI*d en tF  requency E    Estimates f tes sima Frequency  (peryear)
Frequency (per  year) 1,000 1,000 TPBARs                                                              TPBARs 3,400 TPBAR"s 10-7 2.7 x 10-7                                                          8.0 8.0 X  10-7 x 10- 7 D.1.1.8          Transportation Cask Handling D.1.1.S Rail Transportation                                                    Savannah River Handling Accident at the Savannah              River Site Rail Transfer      Station Transfer Station Rail service is provided on DOE's Savannah    Savannah River Site in South Carolina, but not directly to the Tritium Extraction                                        transferred to a truck at an on Extraction Facility. Rail casks would be transferred                                onsite site rail transfer station for transport transport to Extraction Facility. The rail cask is designed in accordance the Tritium Extraction                                                                              requirements of 10 CFR 71, accordance with the requirements                        71, which requires that the cask be able to withstand a 9.
which                                                        9.1-meter                                unyielding surface without I-meter (30-foot) drop onto an unyielding                    without loss or dispersal of the radioactive contents of the cask. During transfer        transfer of the cask from the rail car to the truck, the cask elevation elevation above the ground would not exceed  exceed 9.1 meters (30 feet). Therefore,Therefore, postulated    cask postulated cask D-7
 
FinalEnvironmental Final Environmental Impact Statement for (or the Production of Tritium in Production o(Tritium  in a Commercial CommercialLight Water Water Reactor handling accidents at the rail transfer transfer station (i.e.,
(i.e., cask drop events) would not cause  cause breach of the cask and release of the radioactive material.
D.1.1.9 Rail Transportation D.1.1.9          Transportation Cask Handling Handling Accident Accident at the Tritium Extraction Facility Cask handling accidents at the Tritium Extraction Extraction Facility Facility are in the scope scope of the Tritium Tritium Extraction Facility Facility EIS and are not within the scope of this EIS. The scope of the Tritium Extraction      Extraction Facility Facility EIS starts with the delivery of irradiated irradiated TPBARs at the Tritium Extraction Facility.
D.1.1.10 D.1.1.10      Beyond Beyond Design-Basis AccidentAccident The beyond beyond design-basis design-basis accident is limited to the severe reactor accidents. Severe reactor      reactor accidents accidents are less less likely to occur than reactor reactor design-basis accidents. The consequences consequences of these accidents could be more serious if no mitigative mitigative actions are taken. In the reactor          design-basis accidents, the mitigating systems are assumed reactor design-basis to be available. In the severe reactor accidents, even though the initiating event could be a design-basis event            event (e.g.,
(e.g., large break loss-of-coolant loss-of-coolant accident),
accident), additional additional failures of mitigating systemssystems would cause some some degree of physical deterioration deterioration of the fuel in the reactor core and a possible  possible breach of the containment containment structure leading leading to releases of radioactive radioactive materials to the environment. For the purposes    purposes of this EIS, only the severe reactor accident scenarios scenarios that lead to containment containment bypass or failure are considered. Accident scenarios      scenarios that do not lead to containment containment bypass or failure are not presented because the public and environmental consequences would be significantly consequences                  significantly less in those cases. It should be noted that analyses performed as part of the New Production Production Reactor    program in the late 1980s concluded that severe accident core melts do not lead Reactor program                                                                                  lead to uncontrolled recriticality if the core enrichment is less than 7.5 percent. Since CLWR                        enrichments are CLWR core enrichments less than 5 percent, recriticality recriticality is not considered.
1988, the NRC asked all licensees In 1988,                        licensees of operating plants to perform individual                    examinations for severe individual plant examinations accident vulnerabilities (NRC 1988). In the request, the NRC indicated that a probabilistic risk assessment            assessment is an acceptable approach approach  to use  in  performing    the individual    plant    examination. This  analysis  evaluates  in full detail (quantitatively) the consequences consequences of all potential events caused by the operating            disturbances operating disturbances    (known as internal initiating events) within each plant. [See the discussion under severe          severe reactor accident accident scenarios presented below.] The state-of-the-art state-of-the-art probabilistic probabilistic risk assessment assessment uses realistic realistic criteria and assumptions in evaluating the accident progression evaluating                  progression and the systems required to mitigate each accident.
1991, the NRC requested that all licensees In 1991,                                  licensees of operating plants shouldshould conduct individual plant examinations examinations of external events for severe severe accident vulnerabilities (NRC 1991). 1991). This analysis covers the accidents accidents that could be initiated initiated naturally naturally (e.g.,
(e.g., earthquakes, tornadoes, floods, strong winds) and/or manmade (e.g., aircraft crash and fire). The individual plant examination examination of external event analyses are less quantitative and results-oriented results-oriented than those performed performed under individual plant examination.
examination. The analyses were done to confirm        confirm that no no vulnerabilities or issues exist and that the plants would have sufficient capacity vulnerabilities                                                                          capacity to continue continue functioning in beyond design-basis external events.
Currently, plant-specific plant-specific severe accident accident analyses are only available for operating plants such as the Sequoyah and Watts Bar Nuclear Plants. No such analyses are available for the Bellefonte Nuclear          Nuclear Plant. However, the results of such studies will be available prior to operationoperation of the Bellefonte Bellefonte Nuclear Plant.
Severe Reactor Accident ScenariosScenarios Before Before identifying the accident accident scenarios scenarios that lead to failure of the containment, containment, it is important to provide provide a brief overview of the present severe  severe accident analysis techniques used in plant-specific plant-specific probabilistic probabilistic risk
. assessments assessments or individual            examinations for severe accident individual plant examinations                    accident vulnerabilities (NRC 1990b). The analysis starts with identification identification of initiating events events (i.e., challenges to normal plant operation (i.e., challenges                      operation or accidents) accidents) that require D-8
 
Appendix D - Evaluation Evaluationof  Human Health of Human Health Effects from from Facility Facility Accidents successful mitigation to prevent core damage. These events are grouped into initiating event classes that have successful similar characteristics characteristics and require the same overall overall plant response.
For example, a loss of offsite power to a plant could  could be caused by severe weather weather events events (high wind, tornado,tomado, hurricane, and snow and ice storms), power substation breaker        breaker faults, instability                        transmission instability in the power transmission unbalanced loading of power lines, etc. Each of these events would lead to loss of main generator power lines, unbalanced                                                                                                                power and a reactor reactor trip, which would challenge challenge the same safetysafety functions. These events are grouped    grouped together together and and analyzed under the loss of offsite power initiating event.
Event trees are developed for each initiating event class. These event trees depict the possible                          sequence of possible sequence        of events that could occur during the plant's response to each initiating event class. The trees                    trees delineate the possible combinations combinations (sequences) of functionalfunctional and/or system system successes and failures that lead to either successful mitigation of the initiator successful                      initiator or core damage. Functional and/or system success      success criteria are developed developed based on the plant response to the class of accidents. Failure  Failure  modes    of systems    that are  functionally    important important to preventing preventing  core  damage damage    are  modeled. This  modeling  process  is  usually  done    with  fault trees  that define  the combinations of equipment combinations        equipment failures, equipment outage, outage, and human errors that cause the failure of systems        systems to perform the desired function.
Quantification of the event trees leads Quantification                            leads to hundreds, or even thousands, thousands, of different end states representing representing various accident    sequences that lead to core damage. Each accident sequence accident sequences                                                        sequence and its associated end state has a unique "signature" "signature" because of the particular particular combination combination of system successes successes and failures events. These end        end states are grouped grouped together into plant damage states, each of which collects sequences              sequences for which the progression of core damage, the release  release of fission products products from the fuel, the status of containment and its systems, and the potential for mitigating source terms are similar. The sum of all core damage                    damage accident accident sequences then will represent represent an estimate of plant core damage frequency. The analysis of core damage frequency calculations calculations is called a level I1 probabilistic probabilistic risk assessment, or front-end analysis.
Next, an analysis of accident accident progression,      containment loading resulting from the accident, and the structural progression, containment response to the accident accident  loading  is  performed. The primary primary objective of this analysis, which is called a level 2 probabilistic risk assessment, is to characterize characterize the potential for, and magnitude of,        of, a release of radioactive material from the reactor fuel to the environment, given the occurrence  occurrence of an accident that damages the core.
The analysis includes an assessment assessment of containment containment perfonnance perfonnance in response to a series of severe accidents.
Analysis of the progression of an accident (an accident sequence  sequence within a plant damage state) generates    generates a time history of loads imposed on the containment containment pressure boundary. These    These loads then would be compared against        against containment's structural the containment's    structural performance performance limits. If the loads exceed the performanceperformance limits, the containment containment expected to fail; conversely, if the containment would be expected                                    containment performance limits exceed    exceed the calculated calculated loads, the containment would be expected to survive. Three modes of containment contaitunent                                                              containment failures are defined: containment containment bypass, early containment failure, and late containment containment failure (see Table D-8).
The magnitude of the radioactive release to the atmosphere  atmosphere in an accident is dependent on the timing of the reactor vessel failure and the containment                      determine the magnitude containment failure. To determine                magnitude of the release, a containment containment event tree representing representing the time sequence                      phenomenological events that could sequence of major phenomenological                              could occur during the formation and relocation relocation of core core debris (after core melt), the availability of the containment heat removal            removal system, and the expected expected mode of containment containment failures (i.e.,
(i.e., bypass, early, and late), is developed. A reduced set of plant damage states states are defined by culling culling the lower frequency frequency plant damage states  states into higher higher frequency frequency ones that have relatively relatively similar severity and consequence consequence potential. This condensedcondensed set is known as the key sequence that plant damage states (a functional sequence                      has aa core either has that either              damage frequency core damage                  greater than frequency greater      than or    equal to or equal    10-6 to 10.6 7
per reactor reactor year or leads to containment containment bypass at a frequency of greater  greater than or equal to 10. 10' per reactor year (NRC 1988). These key plant states then would become        become the initiating events for the containment event tree.
The outcome outcome of each sequence in this event tree representsrepresents a specific release category. Release            categories that Release categories can be represented represented    by  similar  source source  terms  are  grouped.      Source    terms    associated associated    with    various  release release D-9
 
FinalEnvironmental Final Environmental Impact Statement (orfor the Production Productiono(Tritium of Tritium in a Commercial CommercialLight Water Reactor categories categories describe the fractional releases for representativerepresentative radionuclide groups, as well as the timing, duration, and energy energy of release.
Table Table D-8 D-8 Definition and Causes of Containment    Containment Failure Failure Mode Mode Classes
                                                                                                            ..            . .~'.
Failure Failure mode                                                    Definition Definition and Causes*
douses*
Containment Containment          Involves failure of the pressure pressure boundary    between the high-pressure boundary between          high-pressure reactor reactor coolant coolant and low-pressure low-pressure Bypass                                      pressurized water reactors, steam generator tube rupture, either as an initiating auxiliary system. For pressurized                                                                  initiating event or as a result of severe severe accident accident conditions, conditions, will lead to containment bypass. In these scenarios, scenarios, if core damage occurs, a direct direct path to the environment environment can exist.
Early                Involves structure failure of the containment before, during, or slightly after (within a few hours) reactorreactor Containment Containment                                        mechanisms can cause structure failure such as: direct contact of core debris vessel failure. A variety of mechanisms                                                                      debris Failure              with containment, containment, rapid rapid pressure pressure and temperature temperature loads, hydrogen combustion, combustion, and fuel coolant coolant (ex-vessel steam explosion). Failure interaction (ex-vessel                        Failure to isolate containment and an early vented containment containment after core damage damage also are classified classified as early containment containment failures.
Late                Involves structural failure of the containment containment several several hours after reactor vessel failure. A variety of Containment Containment          mechanisms can cause late structure failure such as: gradual pressurepressure and temperature temperature increase, Failure              hydrogen combustion, combustion, and basemat melt-through melt-through by core debris. Venting containment containment late in the accident also is classified as a late containment containment failure.
Most of the current plant probabilistic probabilistic risk assessment assessment analyses analyses end at this stage. Only a limited number of                of performed an evaluation of resulting consequences to the public and environment plants have performed                                                                                    environment from releases of radioactive materials materials following a core melt and containment containment failure. This type of analysis, analysis, which is known as a level 3 probabilistic risk assessment, was first performed  performed by the NRC in WASH-1400 (NRC 1975). In                        In the late 1980s, the NRC performed performed a comprehensive, comprehensive, full-scope severe accident    accident analyses for five different plant types and documented documented the results          NUREG-1 150 (NRC 1990b). The analyses provided in this EIS use the results in NUREG-1150 insights gained gained from this NRC report and follow the methods applied and the assumptions made to estimate                        estimate the consequences consequences to the public and the environment.
Representative Severe Representative      Severe Reactor Accident Accident Scenarios for the Sequoyah    Sequoyah and Watts Bar Nuclear Plants As stated earlier, only the plant damage damage states states that lead to containment containment failure (failure mode defined  defmed as bypass, early, and late) and release of radioactive materials to the environment      environment are considered considered in this EIS. The description of the representative accident accident scenarios is limited to the dominant sequence (or sequences)      sequences) within a plant damage state that is a major contributor contributor to the release release level categories categories associated associated with each each of the containment failures defmed containment              defined above. For Watts Bar and Sequoyah, the information is based on the most recent analysis of severe severe accidents performed performed by the Tennessee Tennessee Valley Authority Authority (TV(TVA) A) under the individual plant examination examination program that covers both the level I and level          level 2 probabilistic probabilistic risk assessments in detail. TVA's      TV A's analyses of the Watts Bar and Sequoyah  Sequoyah individual plant examinations examinations were submitted submitted to the NRC in September September 1992 (TVA 1992a, TVA 1992b).        1992b). Both of these analyses  analyses have been revised (TVA 1995b, TVA              tv A 1994), and the Watts Bar 1 analysis has been      been revised even further (TVA 1998).        1998).
The selected selected release release categories categories and examples examples of various accident scenarios    scenarios leading leading to containment containment failure and/or bypass are presented below below for the Sequoyah and Watts Bar Nuclear Plants. Table D-9                    D-9 shows reactor reactor core inventories inventories for Watts Bar 1 and Sequoyah Sequoyah I1 and 2. Table D-I0      D-10 provides provides important important information information on time to core damage, damage, containment containment failure, release duration, and the isotope release fractions associated with each                      each of the release levels. Table D-1    D-ll1 provides a representation representation of the dominant accident            scenarios that lead to accident scenarios each release release category, along with its likelihood of occurrence.
occurrence. Release Release Category I results from a reactorreactor vessel breach with early containment containment failure. Release Category      Category II results from a reactor vessel breach with containment containment bypass. Release Category III results from a reactor vessel breach                breach with late containment containment failure.
D-IO D-1O
 
Appendix D - Evaluation Evaluation of Human Health o/Human  Health Effects from Facilitv FacilityAccidents Accidents Tabl e D-9 Table        W atts Bar D- 9 Watts    B ar I1 d and    equoya h1Iand an SSequoyah          and 2 Core C ore IInventory nven t ory
: Nuclide, Nuclide'        isotope isotope                                                      Inventory (Curies)
(Curies)
Cobalt:        Co-58                                                                874,000 874,000 Co-60                                                                668,000 Krypton:.
Krypton:.      Kr-85                                                                671,000 Kr-85m Kr-85m                                                              3.14x107 3.14 x 10' Kr-87                                                              5.74 xx 107 5.74      10 7 Kr-88 Kr-88                                                              7.76 x 10 7 7.76  x  107 Rubidium:      Rb-86 Rb-86                                                                  51,200 Strontium:
Strontium:      Sr-89                                                              9.73 x 9.73      107 x 107 Sr-90                                                              5.25 x 10 1066 Sr-91                                                              1.25 x 10 10'8 Sr-92                                                              1.30 x 10" 1.30      106 Yttrium:        Y-90 Y-90                                                                5.64  x 1010'6 Y-91 Y-91                                                                1.19 1.19      1068 xX 10 Y-92 Y-92                                                                1.31 1.31  x 1010'8 Y-93 Y-93                                                                1.48 1.48  x 1010'8 Zirconium:
Zirconium:      Zr-95 Zr-95                                                              1.50 1.50 x 10 10'8 Zr-97 Zr-97                                                              1.56 1.56 10x  10'8 Niobium:        Nb-95                                                              1.42 x 10 10'8 Molybdenum:
Molybdenum:    Mo-99 Mo-99                                                              1.65 1.65 xx 101068 Technetium:
Technetium:    Tc-99m                                                              1.43 1.43 x 10"10' Ruthenium:
Ruthenium:      Ru-103 Ru-103                                                              1.23 x 10 1.23      10'8 Ru-105 Ru-105                                                              8.01 xx 10 8.01      1077 Ru-106 Ru-I106                                                            2.80 xx 10 2.80      1077 Rhodium:        Rh-105                                                              5.55  x 5.55 x 10 1077 Antimony:      Sb7127 Sb~127 7.56 xx 10 7.56      1066 Sb-129                                                              2.68 xx 10 2.68      1077 Tellurium      Te-127                                                              7.30 7.30x10x  1066 Te-127m Te-127m                                                              966,000 Te-129 Te-129                                                              2.51 x 10 10'7 Te-129m Te-129m                                                            6.62 xx 10 6.62      1066 1.27  x  1077 Te-131m Te-131m                                                            1.27 x 10 Te-132 Te-132                                                              1.26 1.26 x 10 10'8 Iodine:        1-131                                                              8.69 x 10 10'7 1-132                                                              1.28  x  10'8 10 1.84 1-133 1-133                                                              1.84  xx  10'8 10 1-134                                                              2.02  x  106 10' 1-135 1- 135                                                              1.73  x  10' 10' Xenon          Xe-133 Xe-133                                                              1.84 x 106108 3.45 xx 10 3.45      1077 Xe-135 Cs-134                                                              1.17 x 1.17    1077 x 10 Cesium:
Cs-136                                                              3.57 x 1066 3.57x10 Cs-137                                                              6.55 x 6.55  x 106 106 Barium:        Ba-139                                                                        10 8 1.70 x 106 Ba-140                                                              1.69 x 1010'8 Lanthanum:
Lanthanum:      La- 140 La-140                                                              1.72 x 10' 10' La-141                                                                        10 8 1.58 x 10' La-142                                                                        1068 1.52 xx 10 Cerium:
Cerium:        Ce-141                                                                        1068 1.53 xx 10 Ce-143                                                              1.49    1068 1.49 xx 10 Ce-144                                                              9.23 xx 10 9.23      1077 Praseodymium:
Praseodymi urn: Pr- 143 Pr-143                                                              1.46    10'8 1.46 xx 10 Neodymium:
Neodymium:      Nd-147 Nd-147                                                              6.54 xx 10 6.54      1077 Neptunium:      Np-239                                                              1.75 x 101099 D-ll D-11
 
Final EnvironmentalImpact Statement Final Environmental              Statementfor        Productionof (or the Production      Tritium in a Commercial o(Tritium      Commercial Light Water  Water Reactor Nuclide Nuclide                Isotope Isqtope.                                  .                                  Inventory (Curies)
(Curies)
Plutonium:              Pu-238                                                                              99,300 Pu-239                                                                              22,400 Pu-240                                                                              28,200 Pu-241 Pu-241                                                                            4.76 xx 106 4.76      106 Americium:
Americium:              Am-241I Am-24                                                                                3,140 3,140 Curium:                Cm-242 Cin-242                                                                            1.20 Xx i0 1.20      '106 6
Cm-244                                                                              70,400 Source: NUREG/CR-4551 Source:    NUREG/CR-4551 (NRC    (NRC 1990b) 1990b)
Table T  a bl e D-10 D- 10 R  Release    Ca t el?;ory Timing eI ease Category            Imml?; anand dSSource ource T  Terms erms Release Times, Heights, Heights,Energies, Energies,and SourceSource Terms/or Termsfor Selected Watts Watts Bar  andSequoyah Nuclear Bar and                Nuclear Plants Plants Release Release Categories Categories Release Height Release    Height        Warning Time Warning    Time          Release Release TimeTime        Release    Duration Release Duration              Release Energy' Release    Energy Release Catej!ory Category          (meters)
(meters)                  (hours)
(hours)                    (hours)
(hours)                    (hours)
(hours)                  (mej!awatts) .
(megawatts)
I1                    10.00                      8                        10                          22                          28 II 11                    10.00                      20                        24                          4                            I1 III          1        10.00 10.00                      20                        30                        10                          3.5 3.5 Fission Fission Product                Terms (fraction Source Terms ProductSource                          of total inventory)
                                                                                'traction o/total  inveiuo ylb      .
Release Category Catej!ory      NG          II          Cs          Te              Sr
                                                                      .Sr            Ru            La                  Ce Ce            Ba            Mo I_        0.90      0.042        0.043      0.044        0.0027          0.0065 0.0065      0.00048        0.004              0.0046      0.0065 II        0.91      0.21          0.19        0.0004        0.0023          0.Q7 0.07        0.00028        0.00055            0.025        0.Q7 0.07 III        0.94  J 0.0071        0.011      0.0052        0.00036          0.00051 0.00051      4.2 x 10- 6 10-6    4.0 xX 10-    6 10.6    0.0013 0.0013      0.00051 NG == Noble gases.
. These These values values were were taken taken from from similar    accident scenarios similar accident    scenarios as given in NUREG/CR-4551.
NUREG/CR-455 1.
b  See Table Table D-9 D-9 for for explanations explanations of  of the the chemical chemical abbreviations abbreviations used used for for the the fission  products listed above.
See                                                                                      fission products    listed above.
Source:
Source: TVA 1992a, I 992a, TVA 1992b.
Table D-1D-111 Release Category                Frequencies and Related Accident Category Frequencies                                                Sequences for the Watts Accident Sequences                            Watts Bar and    and Sequoyah        Nuclear Sequoya h N uc Iear PI ants    Plants Watts Bar    Nuclear Plant BarNuclear      Plant I                            10"'7 6.8 xx 10-            The major accident accident contributors contributors to this release event are initiated by loss of.offsiteof offsite power and loss of the essential raw cooling    cooling waterwater system with failure of the emergency diesels diesels to start and/or and/or failures in the 125-volt directdirect current    distribution current distribution secondary cooling and no recovery before system, in conjunction with loss of secondary                                          before core melt.
11 II                            10-66 6.9 xx 10-            The main main contributor to this release event is initiated by a steam        steam generator generator tube tube rupture in conjunction with eithereither an operator error or random failure.of electrical distribution systems, leading to failure of the coolant system and failure to control the affected steam generator beforebefore core melt occurs.
III                    9.1 xX 10-6            The major accident contributors to this releaserelease event          initiated by loss of offsite event are initiated                  offsite power with various failures in the alternating current distribution systems and no                  no recovery of power before core melts, and by a reactor coolant recovery                                                          coolant system loss-of-coolant loss-of-coolant accident (large-accident                                loss-of-coolant accident)
(large- and medium-sized loss-of-coolant            accident) with failure to establish long-term long-term core core cooling.
D-12
 
Appendix D - Evaluation        Human Health Evaluation of Human  Health Effects from from Facility Facility Accidents Sequoyah Nuclear
___ __Sequoyah      Nuclear Plant Plant Release Category Category      Release Frequency Release  Frequency ".                                RepresentativeAccident Scenario(s)
                                                                              , Representative              Scenario(s)
I                          10-77 6.8 x 10.            The major accident contributors to this releaserelease event        initiated by loss of the event are initiated 125-volt I 25-volt battery  boards and loss of all offsite power battery boards                          power with the failure of emergency emergency diesels to start (station blackout: loss of all alternating current power      power to allall systems), as well as the failure of the auxiliary feedwater emergency core cooling systems),                                                  feedwater system (loss of secondary secondary cooling) cooling) with no recovery      before core recovery before    core melt.
11 II                          10-6 4.0 x 10-6                                            release event is similar to that given for the Watts Bar The accident scenario for this release plant, above.
III III                  9.2 x 10-6 10-6          The The major accident accident contributors contributors to this release event are  initiated by: loss of offsite are initiated power with various failures in the alternating power                                      alternating current and/or direct current current distribution                    recovery of power before core melt, and by reactor distribution systems and no recovery                                                  reactor coolant system small break loss-of-coolant        accident (caused by either loss of the loss-of-coolant accident                                  the component cooling system leading to development                reactor coolant pump seals development of reactor                      seals reactor coolant failure or another nonisolatable break in the reactor      coolant system) system) with failure to to depressurize the reactor and/or establish establish long-term reactor core cooling.
cooling, Representative Representative Severe          Accident Scenarios for the Bellefonte Severe Accident                                  Bellefonte Nuclear Nuclear PlantPlant For the Bellefonte                              plant-specific severe accident analysis information is available. This plant Bellefonte Nuclear Plant, no plant-specific will have a complete probabilistic risk assessment covering both the internal            internal and the external initiating events operating license by the NRC. For the purposes of this EIS, a surrogate prior to the issuance of an operating                                                                                        surrogate list of of accident accident scenarios will need to be selected  selected based on the review of accident accident analyses of similar plants. For this selection selection process, process, the publicly publicly available        reports on individual plant examination available reports                                    examination results from Three Mile Island 1 (GPUN        1993);
(GPUN 1993);        Arkansas      Nuclear    One    Unit    1  (Entergy      1993);  and the Oconee Nuclear Station (Duke 1990), as well as a limited scope level 1I probabilistic (Duke                                                                probabilistic risk      assessment      (core damage frequency frequency calculation) report on the uncompleted calculation)                                      Washington Nuclear Plant Unit 1 (WHC 1992), were uncompleted Washington                                                                were reviewed. The review review process identified        Washington Nuclear Plant Unit 1 as the most similar in its nuclear identified Washington                                                                            nuclear steam supplysupply system and containment containment structure structure to the Bellefonte Nuclear Plant.
Based on the above review, the Washington Washington Nuclear Plant Unit 1 limited level 1 probabilistic      probabilistic risk assessment assessment report was used as a surrogate for the Bellefonte Nuclear Plant. The core damage frequency calculations                        calculations in estimate for the original this report include the estimate                    original design as well as that for a modified safety system. For the purposes purposes of this EIS, the core damage frequency                associated with the original (as built) design was considered.
frequency associated For the level 2 analysis, e.g.,
e.g., detennination          containment performance in severe accidents and corresponding determination of containment                                                                corresponding release release categories, the analyses presented presented in WHC-EP-0263 WHC-EP-0263 (WHC 1991)          1991) were used. Again, the release category frequencies given in this report category                                      report were modified to reflect that of the original    original design. In addition, in order order to present present the release release categories categories consistent consistent with those given for the Watts Bar and Sequoyah          Sequoyah Nuclear Plants, the release                          regrouped (WHC 1991) categories were regrouped release categories                                    1991) as Release Category Category I, II, and ill,  III, and the bounding release fractions and the shortest timings in each group were assigned to the new release categories.
release                                                                                                                  categories.
The selected release release categories and examples of various accident          accident scenarios leading to containmentcontainment failure and/or bypass are presented presented below for the Bellefonte plant. Table D-12              D-12 presents the reactor core inventory    inventory for the Bellefonte plant. Table D-13        D-13 provides relevant information on time to core damage,                            containment damage, containment release duration, and the isotope release fractions associated failure, release                                                                  associated with each of the release levels.
representation of dominant accident scenarios Table D-14 provides a brief representation                                            scenarios that lead to each    each release release category level, along along    with  its likelihood likelihood    of  occurrence.
D-13
 
Final EnvironmentalImpact Statement for Final Environmental                  for the Production Productionof Tritium in a Commercial o(Tritium                          Water Reactor Commercial Light Water Table T  a ble D-12  Bellefonte D- 12 B  eIIef onte N Nuclear uc ear PIPlant ant R  eactor c Reactor    Core ore Inventory I nventory Nuclide Nuclide            Isotope Isotope                                                                      (Curies)
Inventory (Curies)
Inventory                        ..
Cobalt:            Co-58                                                                919,000 Co-60                                                                703,000 703,000 Krypton:            Kr-85                                                                706,000 706,000 Kr-85m                                                              3.30 xx 10 3.30      1077 Kr-87                                                                6.04 6.04 xx 101077 Kr-88                                                                8.17  x 8.17x107  107 Rubidium:          Rb-86                                                                  53,800 Strontium:
Strontium:          Sr-89                                                                1.02 x 0' Sr-90                                                                5.53  x 106 5.53x106 Sr-91                                                                1.32 xx 10' 1.32      108 Sr-92                                                                1.37  xx 10' 108 Yttrium:            Y-90 Y-90                                                                5.93 5.93  xx 10 1066 Y-91 Y-91                                                                1.25  x lOR 108 Y-92                                                                1.37  xx 10' Y-93 Y-93                                                                1.56  xx 108 10' Zirconium:          Zr-95 Zr-95                                                                1.58 x 0' 1.58      08 Zr-97 Zr-97                                                                1.64 x 10810' Niobium Niobium            Nb-95                                                                1.49 xx 10' 108 Molybdenum:
Molybdenum:        Mo-99 Mo-99                                                                1.74 xx 108 lOR Technetium:        Tc-99m Tc-99m                                                                        10 8 1.50 xx 10' Ruthenium:
Ruthenium:          Ru-103 Ru-I03                                                              1.30  xx  10 8 10' Ru-105 Ru-I05                                                              8.42  xx  10 7 10' Ru-  106 Ru-I06                                                              2.94  xx  10 7 10' Rhodium:
Rhodium:            Rh-105 Rh-I05                                                              5.83 5.83  xx  1077 10 Antimony:
Antimony:          Sb-127                                                              7.95 7.95  xx 106 106 Sb-129                                                              2.81 2.81  x 10 7 X  107 Tellurium          Te-127 Te-127                                                              7.68 7.68  xx  1066 10 Te-127m Te-127m                                                              1.02 1.02  xx  1066 10 Te-129 Te-129                                                              2.64  xx  10 7 10' Te-129m Te-129m                                                              6.97 6.97  xx  106 106 Te-131m Te-131m                                                              1.33 1.33  xx  10 7 107 Te-132 Te-132                                                              1.33  x  loR 10' Iodine:            1-131                                                                9.14 9.14  xx  10 7 107 1-132 1-132                                                                1.35  x  108 10' 1-133 1-133                                                                1.93  x  10 8 10' 1-134 1-134                                                                2.12  xx  10 8 10' 1-135 1-135                                                                1.82  x  1088 10 Xenon:
Xenon:              Xe-133 Xe-133                                                              1.93 x 10 10'8 Xe-135 Xe-135                                                              3.63 x 10 10'7 Cesium:            Cs-134 Cs-134                                                              1.23 xx 1010'7 Cs-136 Cs-136                                                              3.75  x 106 3.75x106 Cs-137 Cs-137                                                              6.89 xx 10 6.89      1066 Barium:
Barium:            Ba-139 Ba-139                                                              1.79 xx 10' Ba-140 Ba-140                                                              1.77 x 10 10'8 Lanthanum:
Lanthanum:          La-140 La-140                                                              1.81 x 10 10'8 La-141 La-141                                                              1.66 x 10 10'8 La-142 La-142                                                              1.60 x 10'106 Cerium:            Ce-141                                                              1.61 1.61      10'8 xx 10 Ce- 143 Ce-143                                                              1.57      1088 x 10 Ce- 144 Ce-144                                                              9.71 9.71  X  1077 x 10 Praseodymium:
Praseodymium:      Pr- 143 Pr-143                                                              1.54 xx 1010'8 Neodymium:
Neodymium:          Nd-147 Nd-147                                                              6.88  x 6.88 x 10 1077 Neptunium:
Neptunium:          Np-239 Np-239                                                              1.84 x 10 1099 D-14
 
Appendix D - Evaluation            Human Health Evaluation of Human      Health Effects from from Facility      Accidents Facility Accidents Nuclide Nuclide                  * .[sptope Isotope&#xfd;            , _ ....                                                      .In.ventory~(Curies)
In ventory'(Curies)                ':'::. ,.
Plutonium:
Plutonium:                  Pu-238 Pu-238                                                                                    104,000 104,000 Pu-239                                                                                    23,600 Pu-240                                                                                    29,700 Pu-241                                                                                  5.00 xx 10 5.00        1066 Americium:
Americium:                  Am-241 Am-24 I                                                                                    3,300 3,300 Curium:                    Cm-242 Cm-242                                                                                  1.26 x 10  1066 Cm-244 Cm-244                                                                                    74,000 Source: Derived Source:                      NUREG/CR-4551 (NRC Derived from NUREG/CR-455I              (NRC 1990b) I 990b) by multiplying the values given  given in Table Table D-9 by the 1.055 (core thermal ratio    Bellefonte over Sequoyah Nuclear ratio of Bellefonte                        Nuclear Plants).
Table T a ble D-13 D- 13 R      Release eIease C Category a t egory TimingImlUg andan dSSource ource Term  T erm Release Times,'
Times, Heights,    Energies, and Source Heights, Energies,                Source Terms for for Selected Bellefonte Nuclear Nuclear Plant                  Categories PlantRelease Categories Release Height Height            Warning Warning Time            Release Time              Release Duration Duration              Re~eiise Energy, Release  Energy.
Release Category Release      Category          (meters)
(meters)                    . (hours)
(hours)                (;'~urs)
(hours)                      (hours)
(hours)                      (megawatts)
(megaiwatts)
II                    15                          2.0                      3.0                            5                            40 40 II II                      30                          2.0                      3.0                            I1                            30 30 III                      15                          10                      24                              5                            40 40 Fission    ProductSource FissionProduct          Source Terms                of total (fraction of Terms (fraction                inventory)a total inventory)"
Release Category Cate/:ory      NG            I              Cs          Te          Sr            Ru              La .              Ce Ce        Ba          Mo
:Mo 6
3.0    10. 6              5 1
I                1.0      0.003            0.003      0.006        0.0004      3.0  x x  10.
10.6        xX  10-6    3.0  x X  10.
10.'  0.0002      0.0002 11 II                1.0        0.07            0.07        0.1          0.01              10-'5 6.0 xX 10.
6.0 x 10.                10i-5 0.0007            0.005      0.004 III                0.7      0.001            0.001 0.001      0.007 0.007          x 8.0 10. 10-5 5  8.0  x  10-7 X 10. 7  8.0  X 8.0 X 10.10-7 7 9.0 x 10-66    0.0001 3.0 9.0 x 10. 0.0001          3.0 xx 10.
10.66 NG = noble gases.
a a
See Table See    Table D-12 D-12 for for explanations explanations of of the the chemical chemical abbreviations abbreviations used used for for the the fission fission products products listedlisted above.
above.
Source: WHC 1991.
Source:              1991.
Table D-14 Release Category  Category FrequenciesFrequencies and the Related Accident Sequences                    Sequences for  for the Bellefonte Bellefonte Nuclear Plant    Plant Release              Release Category Category            Frequency Frequencx                                                Representative Representative Accident Scenario(s)
Scenario(s)
I                    10-77 9.0 xX 10.        The major accident accident contributors contributors to this release event would be initiated  initiated by a loss of offsite power power with failure of the diesel generators generators (station blackout) blackout) and long-termlong-term failure of the auxiliary auxiliary feedwater system. Containment fails early.
11 II                    10-77 9.1 x 10.          The major accident contributors contributors to this release release event event would be initiated by a small loss-of-coolant accident accident followed by failure of emergency emergency recirculation, containment                      recirculation, containment spray recirculation, and containment containment isolation, and by a loss of offsite    offsite power with failure of the diesel generators (station blackout) blackout) and no recovery recovery of power before before core melt and containmentcontainment isolation fails.
III III            5.1 xx 10'"
10-6      The major accident accident contributors contributors to this release event are initiated initiated by a loss of offsite offsite power power with failure of the diesel generators        (station blackout) generators (station    blackout) and long-term failure of the auxiliary feedwater    feedwater Containment fails late.
system. Containment The information information presented presented in the preceding preceding three tables represents    represents the best available  available estimateestimate for the core damage                            characteristics without a plant-specific damage frequency and characteristics                                    plant-specific probabilistic probabilistic assessment such as those performed            performed for the Watts Bar and Sequoyah    Sequoyah Nuclear Nuclear Plants. The Washington Nuclear              Nuclear Plant was selected      selected as exhibiting exhibiting the most representative representative design,  design, but differences between      between this plant and the Bellefonte Nuclear                  Nuclear Plant are to be expected. The referenced probabilistic  probabilistic          analysis  is a  limited    scope  analysis        and    the    Washington Nuclear Plant, Washington like the Bellefonte Nuclear Plant, is not in commercial            commercial      operation.      [The      lack    of    operational operational data results in the use of some more conservative conservative assumptions that impact the analysis results.] However, use of this data with Bellefonte Nuclear Plant site-specific population Bellefonte                                                  population and weather data does allow a representative            representative calculation of          of risk to be performed.
D-15 D-J5
 
Final Environmental Final  EnvironmentalImpact Impact Statement for for the Production Production of o(Tritium Tritium in a Commercial CommercialLight Water Reactor Reactor D.1.2    Methodology Methodology for Estimating Radiological Radiological Impacts D.1.2.1 Introduction D.1.2.1  Introduction MACCS2 computer codes were used to perform The GENII and MACCS2                                              perfonn probabilistic probabilistic analyses of radiological radiological impacts.
The GENII computer computer code was used to estimate the consequencesconsequences of the reactor design-basis,            nonreactor design-basis, nonreactor design-basis, TPBAR-handling,            cask-handling accidents. The MACCS2 computer code was used for the TPBAR-handling, and cask-handling beyond design-basis accidents. In addition, deterministic detenninistic analyses, using the method in the reactor    reactor facility safety analysis reports, were performed perfonned for the release of tritium in the reactor and the nonreactor design-basis accidents. This additional additional analysis provides a basis for direct comparison comparison between design-basis analysis results with and without the release of tritium from TPBARs. ''
A discussion of the GENII code is provided in Appendix Appendix C. A general discussion of the MACCS2 computer          computer code is provided in Section D.1.2.2.
D. 1.2.2. A detailed description description of the MACCS model is provided in NUREG/          NUREG/
CR-4691 (NRC 1990a).1990a). The enhancements      incorporated enhancements incorporated          in MACCS2        are described  in  the MACCS2      User's User's Guide (SNL 1997).
1997).
D.1.2.2 MACCS2 Computer Code        Code The MACCS2 computer code, Version 1.12, is used to estimate the radiological      radiological doses and health effects effects that could result from postulated accidental releases releases of radioactive radioactive materials to the atmosphere. The specification specification characteristics, designated of the release characteristics,  designated a "source "source term,"
tenn," can consist of up to four Gaussian Gaussian plumes that are often referred to simply as "plumes."
                                "plumes."
The radioactive radioactive materials released released are modeled as being dispersed dispersed in the atmosphere while  while being transported transported by the prevailing prevailing wind. During transport, whether or not there is precipitation, precipitation, particulate material material can be modeled as being deposited on the ground. If contamination levels exceed                    user-specified criterion, mitigative exceed a user-specified actions can be triggered to limit radiation exposures.
exposures.
There are two aspects of the code's structure  structure that are basicbasic to understanding understanding its calculations:
calculations: (1) the calculations are divided into modules and phases, and (2) calculations                                                      (2) the region surrounding surrounding the facility is divided into polar-coordinate grid. These a polar-coordinate            These concepts are described in the following sections.
MACCS2 is divided into three primary modules: ATMOS,      ATMOS, EARLY, and CHRONC. CHRONC. Three phases are defined  defined as the emergency, intermediate, intennediate, and long-tenn long-term phases. The relationship relationship among the code's three modules and        and the three phases of exposure are summarized below.
The A  ATMOS              performs all of the calculations pertaining TMOS module perfonns                                                        atmospheric transport, dispersion, and pertaining to atmospheric deposition, as well as the radioactive decay that occurs before          before release release and while the material material is in the atmosphere. It utilizes a Gaussian Gaussian  plume    model  with  Pasquill-Gifford Pasquill-Gifford    dispersion  parameters.
parameters. The phenomena phenomena treated include building wake effects, effects,  buoyant    plume plume    rise,  plume    dispersion dispersion  during  transport,  wet  and dry deposition, and radioactive decay and ingrowth. The results of the calculations  calculations are stored for use by EARLY EARLY and CHRONC. In addition  addition to the air and ground concentrations, concentrations, ATMOS stores information  information on wind direction, arrival arrival and departure departure times, and plume dimensions.
EARLY The EARL    Y module models the time period immediately following a radioactive          radioactive release. This period is commonly referred to as the emergency emergency phase. The emergencyemergency phase begins                  successive downwind begins at each successive distance point point when the first plume of the release arrives. The duration of the emergency      emergency phase is specified specified by the user, and it can range range between one and seven days. The exposure pathways          pathways considered during this period are direct external extemal exposure to radioactive                                    (cloudshine), exposure radioactive material in the plume (cloudshine),          exposure from inhalation inhalation of radionuclides radionuclides in the cloud (cloud inhalation), exposure to radioactive  radioactive material deposited on the ground  ground D-16 D-16
 
Appendix D - Evaluation    Human Health Evaluation ofHuman  Health Effects firom fi"om Facility  Accidents Facility Accidents (groundshine),
(groundshine), inhalation inhalation of resuspended resuspended material (resuspension (resuspension inhalation), and skin dose from material deposited deposited on the skin. Mitigative Mitigative actions actions that can be specified for the emergencyemergency phase include evacuation, evacuation, sheltering,      dose-dependent relocation.
sheltering, and dose-dependent The CHRONC module performs all of the calculations calculations pertaining to the intermediate                    long-term phases.
intermediate and long-term CHRONC      calculates the individual health effects that result from both direct CHRONC calculates                                                                    direct exposure to contaminated contaminated ground ground and from inhalation of resuspended resuspended materials, materials, as well as indirect indirect health effects caused by the consumption of              of contaminated contaminated food and water by individuals who could reside both on and off of the computational          computational grid.
The intermediate intermediate phase begins at each successive successive downwind downwind distance point upon the conclusion        conclusion of the emergency emergency phase. The user can configure the calculations calculations with an intermediate intermediate phase that has a duration as short as zero or as long as one year. Essentially, there is no intermediate intermediate phase  phase and a long-term long-term phase begins begins immediately immediately upon conclusion of the emergency emergency phase.
These models are implemented on the assumption assumption that the radioactive plume has passed and the only exposure sources (groundshine and resuspension sources                      resuspension inhalation) are from ground-deposited ground-deposited material. It is for this reason that MACCS2 MACCS2 requires the total duration of a radioactiveradioactive release release be limited to no more than four days.
Potential Potential doses from food and water water ingestion ingestion during this period are not considered.
The mitigative action model for the intermediate intermediate phase is very simple. If the intermediate intermediate phase dose criterion criterion is satisfied, the resident population population is assumed to be present present and subject to radiation exposure from groundshine groundshine and resuspension for the entire entire intermediate phase. If the intermediate intermediate phasephase exposure exposure exceeds the dose criterion, then the population population is assumed to be relocated relocated to uncontaminated uncontaminated areas for the entire intermediate intermediate phase.
long-term phase begins The long-term              begins at each successive downwind distance point upon the conclusion                conclusion of the intennediate intennediate phase. The exposure exposure pathways pathways considered considered during this period are groundshine, resuspension inhalation, inhalation, and food and water ingestion.
The exposure exposure pathways    considered are those resulting from ground-deposited pathways considered                                ground-deposited material. A number of protective    protective measures can be modeled in the long-term phase to reduce                                        user-specified levels such as reduce doses to user-specified decontamination, decontamination, temporary temporary interdiction, and condemnation.
condemnation. The decisions on mitigative action in the long-term phase are based on two sets of independent actions: (1) decisions relating to whether land at a specific location location and time is suitable for human habitation (habitability),
(habitability), and (2)  (2) decisions decisions relating to whether whether land at a specific location and time is suitable suitable for agricultural agricultural production (farmability).
All of the calculations calculations ofMACCS2 of MACCS2 are stored on the basis of a polar-coordinate polar-coordinate spatial grid with a treatment  treatment that differs somewhat between between calculations of the emergency emergency phase and calculations calculations of the intermediate        and intermediate and long-term long-term phases. The region potentially affected by a release is represented represented with an (r,8)    (r,G) grid system centered centered on the location location of the release. The radius, r, represents downwind distance. The angle, 8,                0, is the angular offset offset from north, going clockwise.
The user specifies the number of radial divisions divisions as well as their endpoint endpoint distances. The angular divisions used to define the spatial spatial grid are fixed in the code and correspond correspond to the 16 points of the compass, each being 22.5 22.5 degrees wide. The 16 points of the compass are used in the U.S. to express wind direction. The compass                  compass sectors sectors are referred referred to as the coarse coarse grid.
Since emergency emergency phase calculations use dose-response dose-response models for early    early fatalities and early injuries that can be highly nonlinear, these calculations are performed performed on a finer grid basis than the calculations of the intermediate        long-term phases.
intermediate and long-term      phases. For this reason, the calculations calculations of the emergency phase are performed      performed D-17 D-17
 
FinalEnvironmental Final EnvironmentalImpact Statement Statementfor      Productionof Tritium for the Production    Tritium in in a Commercial CommercialLight Water Water Reactor with the 16 compass compass sectors divided into three, five, or seven equal, angular subdivisions. The subdivided                subdivided compass compass sectors are referred to as the fine grid.
The compass sectors sectors are not subdivided subdivided into fine subdivisions subdivisions for the intermediate intermediate and long-term phases because because these calculations do not include          estimation of the often highly nonlinear include estimation                              nonlinear early fatality and early injury health effects, being limited to cancer and genetic effects. In contrast to the emergency        emergency phase, the calculations for these phases are performed using doses averaged    averaged over the full 22.5 degree  degree compass sectors of the coarse grid.
Two types of doses may be calculated calculated by the code: "acute" "acute" and "lifetime."
                                                                                  "lifetime."
Acute doses are calculated calculated to estimate deterministic deterministic health effects that can result from high doses delivered        delivered at high dose rates. Such conditions may occur      occur in the immediate immediate vicinity vicinity of a nuclear nuclear power plant plant following hypothetical hypothetical severe accidents                containment failure has been accidents where containment                        been assumed to occur. Examples  Examples of the health effects  based effects based    on  acute  doses  are early  fatality,  prodromal prodromal    vomiting,    and  hypothyroidism.
Lifetime Lifetime doses are the conventional measure of detriment used for radiological      radiological protection.
protection. These are 50-year 50-year commitments to either specific tissues (e.g., red marrow dose commitments                                                    marrow and lungs) or a weighted sum of tissue doses defined defined by the International International Commission on Radiological Radiological Protection and referred    referred to as "effective "effective dose."
dose."
Lifetime doses may be used to calculate the stochastic health effect        effect risk resulting from exposure exposure to radiation.
MACCS2 uses the calculated calculated lifetime dose in cancer cancer risk calculations.
D.1.2.3 Data and General Assumptions D.1.2.3 To assess the consequences consequences of !he  the accidents, with the exception exception of the beyond design-basis design-basis accidents, data were collected collected and produced produced and assumptions were made for incorporation in the GENII analyses. The source terms for the various accidents are described in Section D.                1.1. The meteorological D.l.l.            meteorological and population population data are identical identical  to those  described    in  Appendix Appendix      C. Ingestion    parameters parameters      are  based  on  Regulatory Regulatory Guide        1.109 Guide 1.109 (NRC 1977).
1977).
To assess the consequences consequences of beyond design-basis accidents, the following data and assumptions were incorporated incorporated into the MACCS2 analysis.
* The nuclide inventory inventory at accident initiation initiation (e.g.,
(e.g., reactor trip) of those radioactive nuclides important for the calculation of offsite consequences consequences for each reactor reactor is given in Section D.l.l. D. 1.1.
* The atmospheric source term produced      produced by the accident accident is described described by the number of plume segments released;  sensible released; sensible    heat  content;  timing;    duration; duration;    height  of  release for eacheach plume segment; time when offsite  officials offsite' officials  are  warned    that  an  emergency emergency      response    should    be  initiated;  and for each important important radionuclide, the fraction of that radionuclide's inventory inventory released released with each plume segment. The source        source terms for each accident scenario are provided in Section D.            b .1.1.
1.1.
* Meteorological Meteorological data characteristics characteristics of the site regionregion are described by one year of hourly windspeed, atmospheric atmospheric stability, and rainfall recorded recorded at each site. Although Although one year of hourly readings contains      contains sequences, MACCS2 8,760 weather sequences,      MACCS2 calculations calculations examine examine only a representative representative subset of these sequences.
The representative representative subset is selected by sampling sampling the weather        sequences after weather sequences        after sorting them into weather bins defined defined by windspeed, windspeed, atmospheric stability, and intensity and distance of the occurrence          occurrence of rain.
*" The population population distribution information about          about each reactor site is based on the 1990 U.S. Census        Census ofof Population Population    and  Housing    (DOC    1992). State  and  county  population      estimates estimates    were  examined    to extrapolate the 1990 data to the year 2025. 2025. This data was fitted to a polar coordinate  coordinate grid with 16 angular angular sectors D-18
 
Appendix Appendix D - Evaluation Evaluation of Human    Health Effects from Human Health          from Facility  Accidents Facility Accidents aligned with the 16 compass directions and 29 radial intervals that extend aligned                                                                                      extend outward outward to 80 kilometers (50 (50 miles).
* Habitable Habitable land fractions for the region around each reactor            reactor site were determined determined in a manner similar to the population popUlation distribution. The census block                      boundary files include polygons that are classified as block group boundary percentage of each sector that is covered by water is determined by fitting this data to water features. The percentage the polar coordinate coordinate grid.
** Farmland Farmland fractions fractions are the percentage percentage of    land devoted ofland    devoted to farming (DOC 1993).      1993).
*" Emergency Emergency response assumptions for evacuation,      evacuation, including including delay time before evacuation, area evacuated, average average evacuation evacuation speed, and travel  travel distance, are provided in the Tennessee Multi-Jurisdictional Multi-Jurisdictional Plans.
Average    evacuation Average evacuation        speeds    are  based    on  the most    conservative      general  population conservative general population evacuation evacuation times.
*" Shielding Shielding and exposure exposure data must be input to the MACCS2 code. The code requires shielding factors be specified for people evacuating                vehicles (cars, buses); taking shelter evacuating in vehicles                                    shelter in structures structures (houses, offices, schools); and continuing        normal activities either outdoors, continuing normal                            outdoors, in vehicles, vehicles, or indoors. Because inhalation inhalation doses depend on breathing depend        breathing rate, breathing breathing rates must be specified specified for people who are continuing normal activities, taking shelter, and evacuating. Since indoor concentrations concentrations of gas-borne radioactiveradioactive materials are usually substantially less than outdoor substantially                outdoor concentrations, concentrations, MACCS2 MACCS2 also requiresrequires that inhalation and skin protection protection shielding factors (indoor/outdoor shielding                                    concentration ratios) be provided.
(indoor/outdoor concentration The protection factors presented presented in Table D-15  D-15 were used in the analyses. The values in Table          Table D-15 are for the Sequoyah Sequoyah Nuclear Nuclear Plant as stated in NUREG/CR-455 NUREG/CR-4551,        1, and were used in the analysis for all three plants.
Table            NUREG/CR-4551 Protection Table D-15 NUREG/CR-4551                    Protection Factors Protection Protection Factor' FactoI'                          Evacuees
                                                          'Evacuees                    Sheltering Sheltering                  NormalActivities Normal Cloud Shielding Factor                                      1.0                        0.65                            0.75 Skin Protection Factor Factor                                    1.0                        0.33                            0.41 0.41 Inhalation Inhalation Protection Factor                                1.0                        0.33 0.33                            0.41
* AA protection  factor of protection factor  of 1.0  indicates no 1.0 indicates  no protection, protection, while while aa protection factor of 0.0 indicates 100 percent protection factor                        percent protection.
protection.
F  or this analysis, the evacuation For                        evacuation and sheltering sheltering region is defined as a 10-mile 10-mile radial distance centered on the plant. A sheltering period is defined as the phase occurring        occurring    before        initiation of the evacuation.
the initiation During the sheltering phase, shielding factors appropriate                      sheltered activity appropriate for sheltered        activity are used to calculate calculate doses for the individuals individuals in contaminated contaminated areas.
At the end of the sheltering phase, the resident individuals begin their travel out of the region. Travel                      Travel speeds and delay times are based    based on the Tennessee          Multi-Jurisdictional Plans. The general population Tennessee Multi-Jurisdictional                                      population evacuation times for the various areas within the 10-mile evacuation                                                          10-mile radius are averaged to determine determine an overall evacuation delay time and evacuation evacuation                        evacuation speed for the Watts Bar and Sequoyah      Sequoyah Nuclear Plants. Bellefonte Nuclear Plant evacuation                        unavailable, so the Bellefonte evacuation plans were unavailable,                    Bellefonte evacuation        parameters were evacuation parameters          were based on the Sequoyah Nuclear Plant data.
Maximally Exposed Offsite    Offsite Individual Dose is the total dose estimated  estimated to be incurred by a hypothetical hypothetical individual assumed to reside at a particular individual                                  particular location on the spatial grid. Population data, therefore, have D-19
 
Final Environmental Impact FinalEnvironmental  Impact Statement for for the Production Production of Tritium Tritium in aa Commercial CommercialLight Water Reactor no bearing                                  consequence measure. Only direct exposure bearing on the generation of this consequence                                        exposure is considered considered in these results. Exposures from the ingestion of contaminated contaminated food and water    water are not included. Also, the generation generation of these results takes full account of any mitigative action models activated by exceeding        exceeding the dose thresholds. During evacuation, individuals have no protection    protection from direct exposure. Therefore, in certain certain scenarios, scenarios, it is possible possible that an evacuee evacuee may incur a larger direct exposure exposure dose than an individual who does not evacuate.
"    Long-term Long-term protective protective measures              decontamination, temporary relocation, contaminated measures such as decontamination,                                      contaminated crops, milk condemnation, condemnation, and farmland production prohibition are based on U.S. Environmental      Environmental Protection Agency Agency (EPA) Protective Action Action Guides.
"    Mitigative actions Mitigative  actions (relocation, evacuation, interdiction, interdiction, condemnation) are implemented implemented for beyond design-design-basis accidents accidents (vessel breach with containment containment bypass, vessel breach with early      early containment containment failure, and vessel breach with late containment failure).
"    Dose conversion Dose  conversion factors required by MACCS2 for the calculation  calculation of committed effective dose equivalents equivalents are cloudshine cloudshine    dose-rate  factor;  groundshine      dose-rate  factor; "lifetime" "lifetime" 50-year 50-year committed inhalation dose, used for calculation of individual individual and societal doses and stochastic health effects; and 50-year        50-year committed committed ingestion ingestion dose, used for calculation calculation of individual and societal  societal doses and stochastic health effects effects from food and water ingestion.
The MACCS2 dose conversion factor preprocessorpreprocessor FGRDCF was used to create the dose factors. FGRDCF          FGRDCF incorporates the data of Federal Federal Guidance Guidance Reports 11 and 12 (EPA 1988,          1988, EPA 1993). The inhalation and    and conversion factors are for the most part identical ingestion dose conversion                                                identical to the values listed in International International Commission on Radiological Radiological Protection 30 (ICRP 1980). Revised metabolic models for the following transuranic elements: niobium, plutonium, americium, curium, berkelium, californium,        californium, einsteinium, fermium, and mendelevium mendelevium are used (ICRP 1986). In addition, Federal Guidance Report 11 provides inhalation                inhalation and and ingestion dose conversion factors for a few radionuclides radionuclides (strontium-82, (strontium-82, technetium-95,        technetium-95m, technetium-95, technetium-95m, antimony-1 16, plutonium-246, and curium-250) antimony-l                                curium-250) not considered in International Commission on Radiological Protection 30, but for which which  nuclear    decay decay data were were presented in International International Commission Commission on Radiological Protection Protection 38 (ICRP 1983). Federal    Federal Guidance Report 12 provides      provides external dose-rate factors for the 825 nuclides identified                                              Radiological Protection 38.
identified in International Commission on Radiological The only change made to the dose conversion conversion factors produced by FGRDCF was to the tritium inhalation        inhalation factor. The 50-year committed committed inhalation dose for tritium was increased    increased by 50 percent percent to account account for skin absorption (PNL 1988).
D.1.2.4                        Calculations Health Effects Calculations The following sections describe the technicaltechnical approach approach used to calculate calculate potential consequences consequences to human health health  from  exposure  to radionuclides.
The health consequences consequences from exposure to radionuclides radionuclides from accidental accidental releases were calculated. Total effective dose equivalents were calculated              converted to estimates calculated and converted          estimates of cancer                          conversion cancer fatalities using dose conversion factors recommended recommended by the International International Commission on Radiological Protection. For individuals, the estimated probability probability of a latent cancer cancer fatality occurring occurring is reported reported for the maximally maximally exposed exposed individual, individual, an average individual in the population population within 80 kilometers (50 miles), and a noninvolved  non involved worker.
The nominal values of lifetime cancer risk for low dose or low dose rate exposure (less than 20 rad) used in this EIS are 0.0005 per person-rem for a populationpopulation of all ages and 0.0004 per person-rem for a working        working population. These These dose-to-risk dose-to-risk conversion factors are established established by the National Council on Radiation  Radiation D-20
 
Appendix D - Evaluation Evaluationof Human Human Health Health Effects from Facility Facility Accidents Measurement (NCRP 1993). See Appendix Protection and Measurement                                Appendix C for more detail regarding human health risk            risk factors for nonfatal cancers and genetic genetic disorders.
GENII uses a straight line plume method for calculating                    receptors. The release/plume is assumed to calculating doses to receptors.
disperse outward from the release point in one direction. Plume dispersion refers to the plume spreading        spreading out becoming less concentrated, which leads to lower doses. Certain over a larger area and becoming                                                              Certain weather weather conditions conditions are better for plume plume dispersion                    Therefore, it is necessary to analyze the doses to each receptor dispersion than others. Therefore,                                                                receptor (e.g.,
(e.g., the maximally                                                noninvolved worker) for the 16 compass sectors maximally exposed individual population and the noninvolved maximum sector doses. This maximum receptor at each site to determine the maximum                                              receptor dose is presented in this EIS.
This analysis  conservatively assumes that after the accident, the wind would blow towards analysis conservatively                                                                      towards the sector which which maximum dosage. In addition, the GENII analyses produces maximum                                                                          accident occurs analyses assume that the accident          occurs in autumn, which which contaminated food ingestion. Doses to each receptor estimated dose from contaminated maximizes the estimated                                                                                      calculated using receptor were calculated 50 percent meteorology. Fifty percent weather        indicates a distribution with median weather conditions, (half weather indicates                                                              (half conditions are worse and half are better). This meteorology of the weather conditions                                                  meteorology      is  consistent  with  the guidance provided in the NRC's Regulatory Regulatory Guide 4.2 (NRC 1976). 1976).
MACCS2 code was applied in a probabilistic manner using a weather bin sampling technique. The The MACCS2 weather bin sampling method sorts weather sequences into categories weather                                                                  categories and assigns a probability probability to each according to the initial conditions (wind speed and stability class) and the occurrence category according                                                                                  occurrence of rain. Each Each sequences was applied to each of the 16 sectors (accounting for the frequency meteorological sequences of the sampled meteorological                                                                                        frequency occurrence of the wind blowing in that direction). Individual doses as a function of distance and direction of occurrence calculated for each of the meteorological were calculated                                    sequence samples. The mean dose values meteorological sequence                                        values of the sequences sequences were generated for each of the 16 generated                    16 sectors. The highest of these dose values  values was used for the maximally exposed  exposed individual and the noninvolved                Population doses are the sum of the individual doses in each sector.
noninvo1ved worker. Population D.1.2.5 D.1.2.S    Deterministic Calculations Deterministic D.1.2.5.1 D.1.2.S.1        Introduction Introduction deterministic analyses were performed for the reactor and In addition to the GENII and MACCS2 calculations, deterministic                                                            and accidents (large nonreactor design-basis accidents nonreactor                                    break loss-of-coolant accident and waste (large break                                        waste gas decay tank rupture).
The deterministic    analyses were performed deterministic analyses                                      comparison of the effect of tritium on the doses performed to provide a comparison                                                  doses candidate reactor Final Safety calculated in the candidate calculated                                          Analysis Reports.
Safety Analysis    Reports. The Final Safety  Safety Analysis Reports present present the thyroid inhalation, whole body beta, and whole body gamma doses at the exclusion area boundary          boundary and the low population zone. The deterministic analyses calculate the additional dose attributable  attributable to tritium using the Safety Analysis same method as the Final Safety      Analysis Reports.
D.1.2.5.2 D.1.2.S.2                        Loss-of-Coolant Accident Large Break Loss-of-Coolant          Accident To determine the effects of a tritium release following a postulated design-basis  design-basis accident, a deterministic analysis based on Regulatory Regulatory Guide 1.4 (NRC 1974) was adopted. The Regulatory      Regulatory Guide 1.4 analysis analysis was incorporated          candidate reactor incorporated in the candidate    reactor Safety Safety Analysis                  calculate the environmental Analysis Reports to calculate            environmental effects effects resulting accident event. The following paragraphs from a design-basis large break loss-of-coolant accident                                    paragraphs describe describe the release paths from containment                                  conservatisms employed, and the dose calculation containment to the environment, the conservatisms                                          calculation method.
The primary containment leak rate used in the Final Safety Analysis Report analyses for the first 24 hours is the design-basis                specified in the technical specifications design-basis leak rate (as specified                                                        containment leakage),
specifications regarding containment            leakage), and it percent of this value for the duration of the accident. The Watts Bar and Sequoyah is 50 percent                                                                              Sequoyah Final Safety Analysis Reports assume the primary    containment (known here as steel containment vessel) leak rates to be 0.25 percent primary containment                                                                              percent of the containment    atmosphere per day for the first 24 hours following the accident and 0.125 percent per day containment atmosphere for the remainder of the 30-day period. The Bellefonte Final Safety Analysis Report assumes          assumes the leak rate to D-21 D-21
 
FinalEnvironmental Final Environmental Impact Statement Statement for the Production Productionof Tritium Tritium in in a Commercial          Water Reactor Commercial Light Water be 0.2 percent per day for the first 24 hours following the accident    accident and 0.1 percent per day for the remainder      remainder of the 30-day 30-day period.
For the Watts Bar andSequoyah and Sequoyah Nuclear Nuclear Plants, the leakage from the steel containment containment vessel can be grouped    grouped into two categories:    leakage categories: leakage    into  the  auxiliary  building    and  leakage    into  the  annulus annulus (a space between the steel containment containment vessel and shield building where leakage        leakage from primary containment containment is collected collected before it is released). For the Bellefonte Nuclear Plant, the leakage from the primary containment            containment can be grouped into categories: leakage into the auxiliary building, leakage three categories:                                                  leakage into the annulus (a      (a space between primaryprimary and secondary    containment), and leakage secondary containment),            leakage directly to the environment.
The Watts Bar and Sequoyah Sequoyah Nuclear Plant analyses assume    assume that 25 percent percent of the total primary leakage  leakage goes to the auxiliary buildings. This value is an estimated upper bound of leakage          leakage to the auxiliary buildings based on 10 CFR 50, Appendix Appendix J, testing of all containment containment penetrations. SelectingSelecting an upper bound is conservative conservative because an increased leakage fraction to the auxiliary building would result in an increased            increased offsite dose. The    The Bellefonte Nuclear Plant analysis assumes that 9.5 percent of the total primary            primary    leakage    goes  to the    auxiliary building.
At the Watts Bar and Sequoyah Sequoyah Nuclear Plants, the auxiliary building is normally        normally ventilated by the auxiliary building ventilation system. However, following a large break loss-of-coolant accident, the normal                  no~al ventilation systems to all areas of the auxiliary building would be shut down and isolated. Upon auxiliary                      auxiliary building building isolation, the auxiliary auxiliary building gas treatment system would be activated to ventilate          ventilate the area and filter the exhaust to the atmosphere. At the Bellefonte Nuclear Plant, during both normal and emergency                emergency operations, operations, the auxiliary building'S the            building's engineered engineered safety feature environmental environmental control system provides  provides pressure control and cleanup.
At each plant, fission products that leak from the primary containment containment to areas ofthe  of the auxiliary auxiliary building would  would be diluted diluted  in  the room  atmosphere atmosphere      and  would    travel  through    ducts  and    other  rooms    to  the  areas    where where the suctions for the auxiliary building gas treatment system or environmental environmental controlcontrol  system  are  located.      The Final Safety  Analysis Safety Analysis      Report  analyses analyses    allow  a  holdup    time  for  airborne airborne    activity    after  an initial initial  period    of direct release. However, for the tritium analysis, it is conservatively conservatively assumed that activity  activity leaking to the auxiliary building would be released directly to the environment environment through the auxiliary building gas treatment system or                    or environmental control system, neglecting environmental                        neglecting any holdup time in the auxiliary building before being exhausted.
The Watts Bar and Sequoyah Sequoyah Nuclear Nuclear Plant analyses analyses assume that 75 percent  percent of the primary          containment primary containment leakage would be to the annulus (TVA leakage                                (TV A 1995a, TV    TVA  A 1996). The Bellefonte Nuclear Plant analysis      analysis assumes that 90 percent percent of the primary containment containment leakage would be to the annulus (TVA            (TV A 1991). The presencepresence of the annulus between between the primary containment containment (or steel containment containment vessel) and the secondary  secondary containment containment (or  (or shield building) reduces the probability probability of direct direct leakage from the containment containment to the atmosphere atmosphere and allows holdup and plate-out of fission productsproducts in the shield building. For the tritium analysis, plate-out            plate-out in the annulus is neglected.
Transfer Transfer of activity activity from the annulus annulus volume to the emergencyemergency gas treatment system suction for the Watts Bar and Sequoyah Nuclear Nuclear  Plants,  or  to  the  secondary    containment cleanup system suction for the Bellefonte secondary containment Nuclear Plant, is assumed to be a statistical process mathematically mathematically similar to the decay process                (i.e., the rate process (i.e.,
of removal removal from the annulus          proportional to the activity annulus is proportional                activity in the annulus).
annulus). This corresponds corresponds to an assumption that the activity    homogeneously distributed throughout the mixing volume. Because of the low emergency activity is homogeneously                                                                                            emergency gas treatment              secondary containment cleanup system flow rate compared treatment system or secondary                                                          compared to the annulus annulus volume, the thermal  convection due to heating of the containment structure, and the relative thermal convection                                                                        relative location of the emergency emergency gas treatment  system or secondary treatment system                    containment cleanup system suctions and the emergency secondary containment                                                    emergency gas treatment treatment system system or secondary secondary containment cleanup                    recirculation exhausts, a high degree of mixing can be expected.
cleanup system recirculation D-22 D-22
 
Appendix D D - Evaluation Evaluationof ofHuman Health Health Effects from from Facility Facility Accidents conservatively assumed that only 50 percent' It is, however, conservatively                                      of the annulus free volume is available percent'of                                    available for mixing of the activity.
treatment system The emergency gas treatment          system and secondary containment              cleanup system containment cleanup                        essentially annulus system are essentially      annulus recirculation systems with pressure-activated recirculation                                      valves that allow part of the system flow to be exhausted to the pressure-activated valves atmosphere to maintain an adequate annulus pressure. It is conservatively atmosphere                                                              conservatively assumed that, for the first hour available tritium is exhausted. The holdup time is a function of the following the accident, all of the available containment cleanup system flow and exhaust secondary containment emergency gas treatment system or secondary emergency                                                                                              exhaust rates, as well as the annulus volume. The holdup time before                      defined as 50 percent of the annulus volume before release is defined                                          volume divided emergency gas treatment exhaust flow rate of the emergency by the exhaust                                        treatment system                        containment cleanup system.
secondary containment system or secondary maintained at less than the auxiliary annulus pressure would be maintained The. annulus                                                        auxiliary building's building'S internal pressure during normal operation; therefore, any leakage between the two volumes following a loss-of-coolant operation;                                                                                              accident would be into loss-of-coolant accident conservatively assumed that there is no leakage via this route.
the annulus. It is conservatively Bellefonte Nuclear Plant also has a leakage of 0.5 percent The Bellefonte                                                                                primary containment percent of the total primary        containment leak rate leakage is assumed directly to the environment. This leakage            assumed to pass directly                environment without mixing or directly to the environment                            or holdup.
Analysis Reports, In the Final Safety Analysis                          inhalation and external whole body gamma and beta doses are Reports, thyroid inhalation calculated at the exclusion area boundary and low population zone. The inhalation and beta doses for tritium calculated                                                                                                                tritium are calculated; no gamma dose calculation            needed since tritium decays only by beta emission.
calculation is needed exclusion area boundary The exclusion                                  surrounding the reactor in which the reactor licensee has the authority boundary is that area surrounding                                                                  authority activities, including exclusion to determine all activities,              exclusion or removal        personnel and property from the area. This area removal of personnel                                                area waterway, provided these are not so close to the facility that they traversed by a highway, railroad, or waterway, may be traversed interfere                                                  appropriate and effective operations of the facility and appropriate interfere with normal operations                                                            arrangements are made to control effective arrangements traffic and protect public health and safety on the highway, railroad, or waterway in an emergency. Residences within the exclusion area nonnally would be prohibited. In any event, residents would be subject to ready removal in case of necessity. Activities    unrelated to operation of the reactor may be permitted Activities unrelated                                              permitted in an exclusion exclusion area under appropriate                                      significant hazards to the public health and safety would appropriate limitations, provided that no significant                                                        would result.
population zone is the area immediately surrounding the exclusion The low population                                                                                              residents whose exclusion area that contains residents number and density indicate there total number                                                    probability that appropriate there is a reasonable probability                            protective measures could appropriate protective                  could be taken on their behalf in the event of a serious accident. These guides do not specify                specify a permissible population density or total population population                                                      because the situation may vary from case to case. For population within this zone because example,    whether a specific number of people example, whether                                people can be evacuated from a specific area or instructed    instructed to take shelter shelter on a timely  basis  would  depend  on  many  factors  such  as location,    number    and  size  of highways, scope and extent of advance planning, and actual distribution distribution  of residents    within  the  area.
performed using hourly time steps. This time step size is appropriate because Calculations are performed Calculations                                                                                                because of the large primary containment primary                                                                  concentration (activity per volume) decreases containment volume and low leakage rate; the tritium concentration                                          decreases percent per hour. At each time step the activity per hour is calculated only a few tenths of a percent                                                                    calculated and placed placed in the inhalation and beta dose formulas shown below to determine the doses. Final thyroid inhalation                                                                              Final Safety Analysis Report time-dependent atmospheric dispersion factors, breathing rates, and dose conversion time-dependent                                                                        conversion factors are incorporated.
The doses at each time step are summedsummed for a total dose. Doses are calculated calculated separately for each each pathway (annulus, auxiliary                bypass), and then summed.
auxiliary building, bypass),
D-23 D-23
 
Final  Environmental Impact FinalEnvironmental  Impact Statement Statementfor for the Production Productiono[Tritium of Tritium in a Commercial CommercialLight Water Water Reactor Thyroid inhalation inhalation doses are calculated calculated using the following equation (NRC 1974,          1974, AEC 1972).
1972).
Dose=(      ~)
Dose=( Q- ,'BR,-Q,-DCF BR;QDCF where:
(x)&#xfd;        is the average    at~ospheric dilution factor over a given average atmospheric                                  given time interVal interval t Br,t Br                  is the breathing breathing rate for time interval t Q,
Qt                  is the activity activity of tritium released during a given time interval t DCF                  is the inhalation inhalation dose conversion factor for tritium Whole body beta doses are calculated calculated using the following equation (NRC 1974,        1974, AEC 1972).
1972).
Dose    =O.23(
Dose=o.23{        ~) ,'Q,-E~
QE, where:
(Q
( X) x)
Q, atmospheric dilution factor over a given is the average atmospheric                                    given time interval interval t Qt Qt              is the activity activity of tritium released during a given time interval t Epp            is the average average beta radiation radiation energy emitted by tritium per disintegration disintegration D.1.2.5.3 D.1.2.S.3      Waste Gas Decay Tank Accident  Accident The effects of a tritium release following a postulated waste    waste gas decay tank rupture also are analyzed analyzed using a deterninistic approach. As in the Final Safety Analysis Reports, deterministic                                                        Reports, this analysis is based based on Regulatory Regulatory Guide 1.24 (AEC 1972). The tritium source term available for release from the waste gas decay tank is described in Section D D..1.1.
1.1. The inventory of the waste gas decay tank is assumed to leak out at ground level over a two-hour time period. Thyroid inhalation inhalation and whole-body whole-body beta doses are calculated calculated for the exclusion exclusion area boundary and the low population population zone using the equations equations described in Section        D. 1.2.5.2. Final Safety Analysis Report Section D.1.2.S.2.
time-dependent atmospheric time-dependent      atmospheric dispersion factors, breathing breathing rates, and dose conversion factors are iIlCorporated.
incorporated.
D-24 D-24
 
Appendix D -
Appendix      Evaluation EvaluationofHuman Human Health  E(focts from Health Effects  (rom Facility Facility Accidents D.1.2.6 D.1.2.6 Uncertainties Uncertainties The sequence sequence of analyses                                  radiological and hazardous analyses performed to generate the radiological                  hazardous chemicals chemicals impacts estimates from normal operation operation of commercial commercial    light  water  reactor  (CLWR)
(CL WR)        facilities,  CL WR facility accidents, CLWR              accidents, and overland overland transportation transportation include:
inClude: (1) selection of normal operational operational modes and accident scenarios      scenarios and their their probabilities, (2) (2) estimation estimation of source source terms, (3) estimation estimation of environmental environmental transport and uptake of          of radionuclides radionuclides and hazardous chemicals, (4) calculation of radiation and chemical doses to exposed individuals,            individuals, and (5)(5) estimation estimation of health effects. Health effects effects are presented in terms of          latent cancers oflatent  cancers and latent cancer cancer fatalities. There are uncertainties uncertainties associated associated with each each of these steps. Uncertainties Uncertainties exist in the way the physical systems being analyzed are represented by the computational computational models and in the data required to exercise exercise the models (due to measurement measurement errors, sampling sampling errors, or natural variability).
Of particular particular interest are the uncertainties uncertainties in the estimates of cancer  cancer deaths from exposure to radioactive materials. The numerical values of the health risk estimates estimates used in this EIS (refer to C.2.1.2)  C.2.1.2) are obtained by the practice practice of linear extrapolation from the nominal linear extrapolation              nominal risk estimate estimate for lifetime total cancer  cancer mortality resulting resulting from exposures at 10 rad. Other methods        of extrapolation methods extrapolation        to  the  low-dose      region    could could  yield higher higher or lower lower estimates of cancer deaths. Studies of human populations populations exposed at low doses are inadequate inadequate to demonstrate demonstrate the actual level of risk. There There is scientific uncertainty about cancer cancer risk in the low-dose region  region below the range epidemiological observation, of epidemiological    observation, and the possibility possibility of no risk or even health benefits (hormesis effects)      effects) cannot be excluded. Because Because the health risk estimators are multiplied by conservatively calculated    calculated radiological radiological doses to predict predict fatal cancer risks, the fatal cancer cancer values presented in this EIS are expected    expected to be overestimates.
For F or the purposes of presentation presentation in this EIS, the impacts calculated calculated from the linear model are treated as an upper upper bound case, consistent with the widely used methodologies methodologies for quantifying quantifying radiogenic health impacts.
This does not imply that health effectseffects are expected. Moreover, in cases where the upper bound estimators predict a number of latent cancer deaths that is greater than one, this does not imply that the latent cancer                  cancer deaths deaths are identifiable to any individual.
Uncertainties Uncertainties are also introduced when accident analyses performed  performed for similar existing facilities have been used as a major source of data. Although  Although the radionuclide radionuclide composition of source terms are reasonable        reasonable estimates, there there are uncertainties uncertainties in the radionuclide radionuclide inventory and release  release fractions that affect affect the estimated estimated consequences. Accident Accident frequencies for low probability probability sequences of events are always difficult to estimate, even for operating facilities, because because there is little or no record of historical historical occurrences. For a new facility, such as Bellefonte I1 or 2,  2, any use of accident accident frequencies that are estimated from similar        similar exiting facilities facilities would tend to further compound compound the effects effects of uncertainties.
In summary, the radiological radiological and hazardous chemical chemical impact estimates estimates presented presented in this EIS were obtained by:
*" Using the latest available data
*" Considering Considering the processes, events, and accidents reasonably            foreseeable for tritium production in a CLWR reasonably foreseeable                                            CLWR and overland transportation transportation of irradiated irradiated TPBARs
** Making Making conservative conservative assumptions when there is doubt about the exact nature of the processes and events taking place, such that the chance of underestimating underestimating health impacts is small D-25
 
FinalEnvironmental Final EnvironmentalImpact Statement Statement for    Productionof Tritium for the Production  Tritium in in aa Commercial Commercial Light Water Water Reactor D.1.3 D.l.3        Accident    Consequences and Risks Accident Consequences D.1.3.1 D.l.3.1      Reactor Reactor Design-Basis Design-Basis Accident Accident The reactor reactor design-basis accident accident source term and accidentaccident frequency frequency data, presented presented in Tables Tables D-2 andand D-3, were evaluated D-3,        evaluated using two different accident analysis            approaches. The first analysis approach used analysis approaches.                                          used the GENII accident accident analysis computer code (PNL 1988)      1988) to estimate the accident consequences consequences and risks.
The second analysis approach was based on published  published NRC guidance guidance for the assessment assessment of design-basis accident impacts. The NRC requires that the results of an analysis accident                                                                    analysis evaluating design-basis design-basis accident accident impacts on a different set of receptors receptors be submitted for evaluation evaluation as part of the licensing licensing basis for each reactor.
Analyses Analyses were were performed performed in accordance accordance with guidance guidance provided in NRC Regulatory  Regulatory Guide 4.2 (NRC 1976). This guide recommends                    atmospheric diffusion value (XIQ recommends using an atmospheric                                    (x/Q value) corresponding corresponding to 11101/10 of the value determined determined in Safety Guide No. No.4. 4. This safety guide has been revised and reissued as Revision Revision 2,2, Regulatory Regulatory Guide 1.4  1.4 (NRC 1974). The NRC in 1983 issued Regulatory            Regulatory Guide 1.145,1.145, providing guidance in determining                percentile x/Q determining 95th percentile          xlQ values using a site meteorological              direction-meteorological direction-dependent approach dependent  approach (NRC 1983). In these analyses, DOE assumes the 95 percentile          percentile direction-dependent direction-dependent xlQ x/Q values are consistent with the guidance provided in Safety        Safety Guide Guide No. No.44 and Regulatory Regulatory Guide Guide 1.4.
The GENII computer computer code, which is based on the current NRC's acceptable                          directional dependent acceptable directional    dependent
: approach, approach, was used to determine determine 50 percentile and 95 percentile meteorological meteorological conditions for each site.
The results indicated that the estimated estimated doses using 50 percentile meteorologicalmeteorological conditions were  were more than 0.1 times the 95 percentile meteorological meteorological doses. Therefore,Therefore, the 50 percentile percentile meteorological meteorological condition condition at each site was used to estimateestimate the consequences consequences of design-basis design-basis and TPBARTPBAR handling accidents.
Table  D-16 summarizes Table D-16    summarizes the GENII-generated GENII-generated consequences consequences of the reactor design-basis accident    accident to the the maximally exposed offsite individual, an average individual  individual    in the    public within    an  80-kilometer  (50-80-kilometer (50-mile) radius of the reactor site, a noninvolved noninvolved worker at the Watts Bar and Bellefonte Nuclear Plant Sites located located 640 meters meters (0.4 miles) from the release release point, and a noninvolved noninvolved worker at the Sequoyah Nuclear    Nuclear Plant located located at the site boundary 556 meters (0.35 miles) from the release          release point. The risks associated associated with the reactor reactor design-basis accident to the same receptors receptors are summarized summarized in Table D-17.
Table  D-18 summarizes the consequences Table D-18                        consequences of the reactor design-basis design-basis accident accident (estimated using NRC guidance guidance and 95th percentile      xlQ values) to an individual percentile x/Q                        individual located at the reactor site exclusion  exclusion area boundary boundary and an individual individual located at the reactor site low population  population zone. The 0 TPBAR entries represent represent total accident accident dose compared compared to the 1,000 and 3,400 TPBAR entries,            entries, which represent represent the incremental incremental change change to the dose due to the addition of        TPBARs. The margin-to-site ofTPBARs.                margin-to-site dose limits (i.e., the difference difference between between the dose estimate and the site dose criteria) associated  associated with the reactor reactor design-basis accident accident to the same receptors receptors are summarized summarizedin    in Table D-19.
D-19.
D.1.3.2 D.l.3.2      Nonreactor Nonreactor Design-Basis AccidentAccident The nonreactor  design-basis accident nonreactor design-basis    accident source term and accident frequency frequency data presented in Section D.1.1.3 D. 1.1.3 were evaluated using two different accident analysis approaches. The first analysis approach      approach used the GENII accident analysis computer codecode (PNL 1988) 1988) to estimate the accident consequences consequences and risks. The second second analysis approach was based on published NRC guidance for the assessment    assessment of design-basis accident impacts.
The NRC requires that the results of an analysis evaluating evaluating design-basis design-basis accident impacts impacts on a different set of  of receptors be submitted for evaluation as part of the licensing basis for each reactor.
D-26
 
Appendix D - Evaluation Evaluation of Human Human Health Health Effects    fiom Facility EfJectsji-om    Facility Accidents Table    D-16 T a bIe 'D        GENII-G eneratdR
                            - 16 GENII-Generated                  eae t or D e Reactor          eSI' gn-Desi          B aSls n-Basis  ' Accident A eel'd en tC    Consequences onsequenees Indiviiutilin Average Individual            in:
Maximally Exposed
                                                      .Maximally                                ,Population
                                                                                                  ,Population to Offsite Individual Individual              80 kilometers kilometers (50 miles).miles)          Noninvolved Worker Tritium              Dose Dose            Cancer Cancer              Dose                Cancer Cancer              Dose              Cancer Cancer ReactorSite Reactor                  Production Production          ' (rem)
(rem)        Fatality Fatality "a          (rem)
(rem)              Fatality" Fataliot            (rem)            Fatality "
Fatality' Watts Bar                  1,000 TPBARs            0.0014                I0V7 7.0 x 10.            0.000011 0.000011                    10-9 5.5 x 10-9          0.000024          9.6 x 10-9,6      10'9 3,400 TPBARs            0.0047                10-66 2.4 x 10-            0.000038 0,000038                    10-8 1.9 xX 10-8        0.000081 0,000081          3.2 x 10.10-8 Sequoyah                    1,000 TPBARs            0.0019        9,5    10-77 9.5 x 10-            0,000022 0.000022            1.1      10-88 l.l xx 10-        8,1    10-66 8.1 xX 10.        3.2 xX 10. 9 10-9 3,400 TPBARs            0.0065 0,0065        3.3 xx 10-6 3,3    10-          0.000075 0,000075            3.8 xx 10' 10-8      0.000028 0.000028          1.1      10-8 l.l Xx 10-  8 Bellefonte Bellefonte                  1,000 TPBARs        0.000085 0,000085          4,3    10. 8 4.3 x 10-            1.7  xX 10.
10.66              10"10 8.5 Xx 10-          2.9    10' 8 2,9 Xx 10-        1.2 1.2 xX 10'"
10" 3,400 TPBARs          0.00029 0,00029                  10 7 -7 1.5 x 10-                    10.66 5.5 xX 10-                  10-9 2.8 Xx 10-    9    1.0 xX 10-1.0    10-77      4.0    10-11 4.0 Xx 10'"
a Increased  likelihood of Increased likelihood  of cancer  fatality.
cancer fatality.
Table    D- 17 Reactor T a bl e D-17    R eaetor D      eSlgn-B aSls Design-Basis      ' A    eel'd ent Annual Accident        A nnua I Ri  RisksSk S Average Individual Individualin Maximally Exposed                        Population Population to                    Noninvolved ReactorSite Reactor                    Tritium Tritium Production Production          Of/site Offsite Individual" Individual&deg;              80 kilometers/50 kilometers (50 miles) "                ''Worker" Worker' Watts Bar                        1,000  TPBARs 1,000 TPBARs                        1.4 xx 10-1.4    10`1010                        1.1 l.l  X X  10-12
: 10. 12                1.9 1.9  X 10-12 X 10-12 3,400 TPBARs                          4.8 x 10.
4,8    101&deg;10                        3.8 3.8 Xx 10.
10-1212                6.4 xx 10'"
6.4    10-12 Sequoyah                          1,000 TPBARs                                10-1010 1.9 xx 10-                                      10-1212 2.2 Xx 10.                      6.4 x 10-10-" 13 3,400 TPBARs                          6.6 x 6,6    10`1010 10-                            7.6 Xx 10.
10-1212                2.2 2.2 xX 10.
10-1212 15 Bellefonte                        1,000 TPBARs                        8.6 x 10. 12 10-12                          1.7 Xx 10-13
: 10. 13                '2.4 x
                                                                                                                                                '2.4    X 10-10-"s 15 3,400 TPBARs                          3,0 3.0 x 10.
10-"11                                  10"13 5.6 Xx 10.                      8.0 xX 10.
10-"
Increased likelihood of cancer fatality per year.
a  Increased likelihood of cancer fatality per year.
Table T a bl e D-18 D- 18 R  Reactor eae t or Design-Basis
                                          ' B aSls DeSlgn-        ' A  Accident eel'd en tCConsequences onsequenees U'          Using slOg the th e NRC Anal, A na sis  'A SIS  Approach
                                                                                                                                                ~pproae h Individual Individuaiat  at Area          Individualat Low Individual Tritium Tritium                                                                Exclusion Exclusion'Boundary Boundary            Population PopulationZone Reactor Reactor Site            Production Production                      Dose  Description Dose Description                              Dose (rem)                      Dose Dose (rem)
(rem)
Watts Bar              0 TPBARs o  TPBARs                Thyroid Inhalation Dose                                          34.1 34.1                            11.0 11.0 (No Action) a            Beta Beta + + Gamma    Whole Body Gamma Whole        Body DoseDose                          3.5 3.5                              3.4 3.4 1,000 TPBARs      b'  Thyroid Thyroid Inhalation Inhalation Dose                                      0.0018 0,0018                          0.0022 0.0022 Beta + Gamma Gamma Whole Body Dose                                0.00010                        0.00018 0,00018 3,400 TPBARs b          Thyroid Inhalation Dose                                        0.0060 0,0060                          0.0075 3,400 TPBARs b Beta + Gamma Whole Body Dose                                  0.00035                        0.00061 0,00061 Sequoyah              0OTPBARs TPBARs                Thyroid Inhalation Dose                                          145                              27 27 (No Action) aa          Beta +
Beta  + Gamma Gamma Whole Whole Body Body Dose Dose                        12.2 12,2                            2.9 2.9 Thyroid Inhalation Dose                                        0.0044 0.0044                          0.0018 0.0018 TPBARs 1,000 TPBARs 1,000              b    Thyroid Inhalation Dose Beta + Gamma Whole Body Dose                                  0.00026 0.00026                          0.0001 Thyroid Inhalation Dose                                          0,015 0.015                          0.0060 0.0060 3,400 TPBARs 3,400  TPBARs      bb  Thyroid Inhalation Dose Beta + Gamma Whole Body Dose                                  0.00088 0,00088                        0.00047 D-27
 
Final FinalEnvironmental EnvironmentalImpact Statement Statement (or for the Production Productiono(Tritium of Tritium in in a Commercial CommercialLight Water Reactor Indiiidual Individual at Area          Individual al!-OW Individual    at Low Tritium Tritium                                                        Exclusion Boundary Boundary        o PojlUlation Zone Population ReactorSite Reactor                  Production Production                      o Dose Description Descriptiqn .                    Dose Dose (rem)
(rem)                D ose (rem)
D,ose  (rem) .0 Bellefonte Bellefonte                  TPBARs      d          Thyroid Inhalation Inhalation Dose                                5.8 5.8                        2.7 2.7 oTPBARs c.d Beta + Gamma Whole Body Dose                          0.031                        0.18 0.18 Thyroid Inhalation Dose                              0.0041 0.0041                      0.0028 1,000 TPBARs bb 1,000                    Thyroid Inhalation Dose Beta + Gamma Whole Body Dose                        0.00024 0.00024                      0.00021 Thyroid Inhalation Dose                                0.011 0.011                      0.0095 3,400 TPBARs bb          Thyroid Inhalation Dose Beta + Gamma Whole Body Dose                        0.00082 0.00082                      0.00073 a
a  TVA 1995a, TVA 1996. 1996.
b b  Only TPBAR contribution contribution to dose.
c  TVA 1991.
1991.
d d  The 0 TPBAR TPBAR entry is included for consistency with the Watts Bar and Sequoyah Nuclear              Nuclear Plant analyses.
analyses. The No Action alternative at the Bellefonte alternative        Bellefonte Nuclear Nuclear Plant implies that the reactors are not brought into commercial commercial service. The No Action radiological dose is O. 0.
Table T a bl e D-19 D- 19 R  Reactor eaet or D      '
eSI~n-    B aSls Design-Basis    ' A  eel'den tC Accident    Consequence onsequenee M      Margin ar~m , tto 0 S't Site  Dose C I e Dose    Criteria n'tena Individual jndividual at  at Area Area      Individualat Individiial    at Low Low Exclusion Exclusion    Boundary Boundary          Population PopulationZone Site Dose Tritium Tritium                                                  Criteria Criteria      Dose          Margin Margin        Dose        Margin
                                                                                                                                          . Margin Reactor Reactor Site        Production Production                        Description aa Dose Description                (rem) bb (rem)          (rem)
(rem)          (%r
(%) c      (rem)
(rem)        (%r
(%) c Watts Watts Bar          0 TPBARs OTPBARs                Thyroid Thyroid Inhalation Inhalation Dose                  300          34.1          88.6          11.0        96.3 (No Action)
Action) dd      Beta + Gamma Whole Body Dose                25            3.5          86.1          3.4        86.2 Beta + Gamma Whole Body Dose                25            3.5            86.1          3.4        86.2 1,000 TPBARs TPBARs        Thyroid Thyroid Inhalation Inhalation Dose                  300          34.1          88.6          11.0        96.3 Beta Beta ++ Gamma Whole Whole Body Dose            25            3.5          86.1          3.4        86.2 3,400 TPBARs TPBARs        Thyroid Thyroid Inhalation Inhalation Dose                  300          34.1          88.6          11.0        96.3 Sequoyah          0 TPBARs OTPBARs          -    Beta Beta ++ Gamma Whole Whole Body Dose            25            3.5          86.1          3.4        86.2 86.2 (No Action)
Action)  d      Thyroid Thyroid Inhalation Dose                    300          145            51.6          27          91.0 91.0 1,000 TPBARs TPBARs        Beta + Gamma Whole Beta +            Whole Body Dose            25          12.2          51.1          2.9        88.4 88.4 Thyroid Inhalation Inhalation Dose                  300          145            51.6          27          91.0 91.0 Beta ++ Gamma Whole Whole Body Dose            25          12.2          51.1          2.9        88.4 88.4 3,400 TPBARs          Thyroid Thyroid Inhalation Inhalation Dose                  300          145            51.6          27          91.0 91.0 Beta Beta ++ Gamma Whole Body Dose                25          12.2            51.1          2.9        88.4 88.4 Bellefonte Bellefonte                                Thyroid Inhalation Dose                    300            5.8 5.8          98.1          2.7        99.1 OTPBARs 0 TPBARs Cof  e.f Beta + Gamma Whole Body Dose                25          0.031          99.9          0.18        99.3 1,000 TPBARs          Thyroid    Inhalation Dose ThriInatonDs                                300            5.8 5.8            98.1          2.7        99.1 1,000    TPBARs Beta ++ Gamma Whole Body Dose                25          0.031          99.9          0.18        99.3 Thyroid Inhalation Dose                    300            5.9 5.9            98.0          2.7        99.1 3,400 3,400 TPBARs
____________Beta T    +Gamma nalation Whole Body DoseDose        25          0.032          99.9          0.18        99.3 Beta + Gamma Whole Body Dose                25          0.032            99.9        0.18        99.3 a
a  Dose is the total dose dose from the reactor plus the contribution contribution from the TPBARs.
b b  10 CFR 100.11.
100.11.
c  Margin below the site dose criteria.
d d  TVA 1995a, TVA 1996. 1996.
c        1991.
TVA 1991.
f  The 0 TPBAR TPBAR entry entry is included included for consistency consistency with the Watts Bar and SequoyahSequoyah Nuclear Plant  Plant analyses. The No Action Alternative at the Bellefonte Alternative          Bellefonte Nuclear Plant implies that the reactors reactors are not brought brought into commercial commercial service. The No Action Alternative radiological Alternative  radiological dose is O. 0.
D-28
 
Appendix D D - Evaluation Evaluationof Human Human Health Health Effects from from Facility Facility Accidents Analyses were performed in accordance accordance with guidance guidance provided provided in NRC Regulatory Regulatory Guide 4.2 (NRC 1976).              1976).
Table D-20D-20 summarizes summarizes the GENII-generated GENII-generated consequences consequences of the nonreactor nonreactor design-basis accident        accident with 50    50 percent meteorological meteorological conditions to the maximally  maximally exposed exposed offsite individual, an average        average individual within an 80-kilometer 80-kilometer (50-mile) radius of the reactor site, a noninvolved      noninvolved worker at the Watts Bar and Bellefonte Nuclear Nuclear Plant sites located 640 meters      meters (0.4 miles) from the release    release point, and a noninvolvednon involved worker at the Sequoyah Sequoyah Nuclear Nuclear Plant located at the site boundaryboundary 556 meters (0.35 miles) from the release point. The risks associated with the nonreactor nonreactor design-basis design-basis accident to the same receptors are summarized            summarized in Table D-21.          D-21.
Table D-22 summarizes summarizes the consequences consequences of the nonreactor design-basis accident to an individual located at the reactor reactor site exclusion area boundary boundary and an individual located at the reactor        reactor site low population zone. NRC guidance was used to derive these estimates. The 0 TPBAR entries represent                    represent total accident accident dose as opposed  opposed to the 1,000 and 3,400 3,400 TPBAR entries, which  which represent              incremental change represent the incremental            change to the dose due to the addition        addition of  TPBARs.
ofTPBARs.        The  margin margin    to NRC      dose  limits  (i.e.,
(i.e.,  the  difference difference    between      the  dose    estimate estimate        and the  site  dose limit) associated associated with the reactor reactor design-basis accident accident to the same receptors are summarized        summarized in Table-23oTable-23.
Table T        D-20 a bl e D                  -G enera tdN GENII-Generated
                          - 20 GENII                    e Nonreactor            D* eSlgn-BOA onreac t or Design-Basis                CCI&deg;d en tC aSls Accident          Consequences onsequences Average  Individualin Average Individual    in Maximally Exposed Exposed            Population Pl!pulation to 80 kilometers kilometers OjJsite Offsite Individual Individual                      (50 miles) miles)                        Noninvolved W      orkei Worker Tritium            Dose          Cancer Cancer                Dose Dose            Cancer Cancer                                    Cancer Reactor Site Reactor            Production Production          (rem)        Fatality Fatality"              (rem)            Fatality" Fatality"            Dose (rem)
Dose    (rem)        Fatality&deg; Fatality" Watts Bar        1,000 TPBARs TPBARs        0.0067 0.0067        3.4    10-6 3.4 x 10-6            0.000079          4.0 x 10- 8            0.00010                    10.88 4.2 x 10-3,400 TPBARs TPBARs          0.022        0.000011              0.00027          1.4 x 1-10-77          0.00036            1.5 x 10-7 Sequoyah        1,000 TPBARs TPBARs        0.0016 0.0016        7.9 x  10-7 x 10-7            0.00012          6.1 x  10-8 x I0-            0.000032            1.3 xx 10-8 3,400 TPBARs TPBARs        0.0054 0.0054                10-6 2.7 x 10-6            0.00042                  10-77 2.1 xX 10-              0.00011            4.5 x 10-8 Bellefonte Bellefonte      1,000 TPBARs TPBARs        0.00016 0.00016                10-8 7.9 x 10.            0.000043                  1088 2.2 x 10-              3.1    10-77 3.1 xx 10-                10- 10 1.2 xx 10-10 3,400 TPBARs TPBARs        0.00054 0.00054                10-77 2.7 xx 10-            0.00015          7.4 x 10- 8                    10.66 1.1 Xx 10-1.1                        10- 10 4.3 x 10-I.
a  Increased likelihood of cancer fatality.
a  Increased likelihood of cancer fatality.
Table a ble D-21        onr'eactor D Nonreactor              &deg; BOA Design-Basis    aSls Accident CCI&deg;d ent Annual A nnua I Risks O
T      D- 21 N                      eSlgn-                                          R IS k S Average Individual Individual in Tritium Tritium          Maximally Exposed Maximally      Exposed          Population Population to      80 kilometers to 80    kilometers            Noninvolved Noninvolved Reactor Reactor Site              Production Production          Offsite IndividuaF OjJsite  Individuaf                      (50 miles)"
miles)'                          Worker' Worker" Watts Watts Bar                      1,000 TPBARs                          10-88 3.4 x 10-                          4.0 xx 10-  10 10-10                              10-"10 4.2 xx 10-3,400 TPBARs                          10-77 1.1 x 10-                            1.4 x 10-10-99                      1.5 x 10-9 Sequoyah Sequoyah                      1,000 TPBARs                  7.9X    10-I9 7.9 x 10-                            6.1 xX 10-  10 10-.&deg;                      1.3 xX 10-1.3        10 10-.1 3,400 TPBARs                          10.68 2.7 x 10-                            2.1 x 10-10-99                              10.010 4.5 xx 10-Bellefonte                    1,000 TPBARs 1,000  TPBARs                        10-"10 7.9 x 10-                            2.2 xX 10-2.2    10-"10                      1.2 xx 10-1.2    10-12 12 3,400 TPBARs 3,400                        2.7 x 10-9 10-9                        7.4 xx 10-10-"&deg; 10                      4.3 xX 10-4.3    10-12 12 aa  Increased likelihood of cancer fatality per year.
D-29
 
FinalEnvironmental Final Environmental Impact Statement for  (or the Production of Tritium in a Commercial Production o(Tritium        CommercialLight Water Reactor TTable a ble D  - 22 N D-22        onreaetor D Nonreactor              " B aSls Design-Basis eSign-          A eel"d ent C
                                                      " Accident      Consequences onsequenees Using  U" smg tthe h e NRC NRCA    Analysis nalYSIS"A Approach
                                                                                                                                  .pproae h Individual dt Individual      Area' . Individual at Area,    individual at at Lo;":
Low Tritium Tritium                                                    . Exclusion  Boundary"" : Population Exclusion Boundary          PopulationZone ReactorSite Reactor                  Production Production                    Dose  Description Dose Description                    Dose (rem)
Dose                      Dose  (rem)
Dose (rem)
Watts Bar                o0 TPBARs                Thyroid Inhalation Inhalation Dose                          0.018                    0.0042 (No Action)
Action) ,a        Beta  + Gamma Beta +  Gamma Whole Whole Body    Dose Body Dose                  0.13 0.13                      0.031 1,000 1,000 TPBARs bb                  Inhalation Dose Thyroid Inhalation                                0.0020                    0.00048 Beta + Gamma Gamma Whole Body Dose                    0.00012                  0.000028 3,400 TPBARs" TPBARs b        Thyroid Inhalation Dose                            0.0068                    0.0016 0.0016 Beta + Gamma Whole Body Dose                      0.00040                  0.000097 o TPBARs                                      Dose Inhalation Dose Thyroid Inhalation                              0.000013                          10.66 1.1 Xx 10.
Sequoyah Sequoyah            . 0(No    Action)  a Thyroid                                          0.000013                  1.1 (No Action)'            Beta + Gamma Whole Beta + Gamma Whole Body          Dose Body Dose                0.0017 0.0017                    0.00014 0.00014 1,000 1,000 TPBARs b6                  Inhalation Dose Thyroid Inhalation                                0.0055                    0.00065 Beta + Gamma Whole Body Dose                      0.00032                  0.000039 0.000039 3,400 TPBARs 3,400 TPBARs            Thyroid Inhalation Thyroid Inhalation Dose b
Dose                          0.019 0.019                    0.0022 Beta + Gamma Whole Body Dose                      0.0011                    0.00013 0.00013 Bellefonte Bellefonte              0o TPBARs'"
TPBARs a.,                      Inhalation Dose Thyroid Inhalation                                0.0067                    0.0019 0.0019 Beta ++ Gamma Beta    Gamma Whole Whole Body Body Dose Dose              0.71                      0.14 0.14 1,000 TPBARs b 1,000                  Thyroid Inhalation Dose                            0.0067                    0.0013 0.0013 Beta + Gamma Whole Body Dose                      0.00039                  0.000079 3,400 3,400 TPBARs b          Thyroid Inhalation Dose                            0.023                    0.0045 Beta + Gamma Whole Body Dose                      0.0013                  0.00027 a
a TVA  1991, TVA TVA 1991,  TVA I1995a, 995a, TVATVA 1996.
1996.
b b
Only  TPBAR contribution Only TPBAR    contribution to    dose.
to dose.
, The 0 TPBAR entry is included for consistency consistency with the Watts Bar and Sequoyah Sequoyah Nuclear Plant analyses. The No Action      Action Alternative Alternative at the Bellefonte Bellefonte Nuclear Plant implies that the reactors are not brought into commercial commercial service. The No Action  Action Alternative Alternative radiological radiological dose dose is  0.
is O.
Table    D-23 T a bl e D        N onreae t or D
                  - 23 Nonreactor                " B aSls Design-Basis eSlgn-      " Accident      Consequence A eel"d en t C onsequenee M      Margin argm  " tot0 SOt I eD Site Dose ose Criteria C n"tena Individualat Individual  at Area Area        Individual Individual at at Low Low Site      Exclusion Boundary Exclusion  Boundary          Population Population ZoneZone Dose Reactor Reactor          Tritium Tritium                                                Criteria Criteria        Dose      . Margin Margin        Dose Dose          Margin Margin :'
Site          Production Production                Dose Dose Description Description a Q          (rem) bb        (rem)        (%) c
(%)"        (rem)          (%)
(%)"c Watts Bar Bar    0oTPBARs                Thyroid Inhalation Dose                300          0.018        99.994      0.0042          99.999 99.999 (No Action)
(No Action)    d      Beta + Gamma Whole Body                25            0.13 Beta + Gamma Whole Body                25            0.13        99.5 99.5        0.031 0.Q31          99.9 Dose Dose 1,000 TPBARs 1,000                          Inhalation Dose Thyroid Inhalation                    300          0.020        99.993      0.0047          99.998 Beta + Gamma Whole Body                25            0.13        99.5        0.031 0.031          99.9 Dose 3,400 3,400 TPBARs                    Inhalation Dose Thyroid Inhalation                    300          0.025        99.92      0.0058          99.998 Beta + Gamma Whole Body                25            0.13        99.5        0.031          99.9 99.9 Dose D-30
 
Appendix Appendix D - Evaluation      Human Health Evaluation ofHuman    Health Effects from    Facility Accidents from Facility  Accidents Individual Individual atat Area Area        Indi~idua[at  Low* .
Individualat Low Site        Exclusion Exclusion Boundary BoundalJi        PopulationZone Population  Zone Dose Dose Reactor Reactor            Tritium Tritium                                            Criteria Criteria          Dose        Margin Margin        Dose        Margin Margin Site          Production Production            Dose Description Description a            (rem)
(rem) b          (rem)
(rem)        (%)C
(%1)        (rem)        (%)
(%r Sequoyah Sequoyah      o0(No TPBARs TPBARs Action)d Thyroid Inhalation Thyroid  Inhalation Dose                300          0.000013          100      1.1 xx 10-6 10-      100 100 (No Action)    d    Beta + Gamma Whole Body                  25            0.0017 Beta + Gamma Whole Body                  25            0.0017        99.993 99.993      0.00014 0.00014      99.999 Dose Dose 1,000 1,000 TPBARs      Thyroid Inhalation Inhalation Dose                300            0.0055        99.98      0.00065 0.00065      99.999 Beta + Gamma Gamma Whole Body Body            25            0.0020        99.992 99.992    0.00018 0.00018      99.999 Dose 3,400 TPBARs        Thyroid Inhalation Inhalation Dose                300            0.019        99.994      0.0022      99.999 Beta + Gamma Whole Body  Body            25            0.0028        99.989      0.00027 0.00027      99.998 Dose Bellefonte    o0 TPBARs &#xa2;c,r      Thyroid Thyroid Inhalation Inhalation Dose                300            0.0067        99.998      0.0019        99.99 Beta + Gamma Whole Body                25              0.71        97.2          0.14        99.4 99.4 Dose 1,000 1,000 TPBARs      Thyroid Inhalation Inhalation Dose                300            0.013        99.996      0.0032        99.999 Beta + Gamma Whole Body                25              0.71        97.2          0.14        99.4 Dose 3,400 TPBARs        Thyroid Inhalation Inhalation Dose                300            0.029        99.990      0.0064        99.998 Beta + Gamma Whole Body                25              0.71        97.2          0.14        99.4 99.4 Dose a
a  Dose is the total dose from the reactor reactor plus the dose from the TPBARs.
TPBARs.
b b  10 CFR 100.11.
100.11.
c Margin below below the site dose criteria.
d d TVA 1995a, TVA  TVA 1996.
e Bellefonte Final Safety Safety Analysis Analysis Report Report (TVA 1991),
1991), realistic analysis dose estimates.
estimates, Design Design analysis dose estimates were also below the site dose limits.
fr The 0 TPBAR TPBAR entry is included for consistency with the Watts Bar and Sequoyah Nuclear          Nuclear Plant analyses.
analyses. The No Action Alternative at the Bellefonte Nuclear Nuclear Plant implies implies that the reactors are not brought brought into commercial service. The No Action Alternative radiological dose is 0.O.
D.1.3.3 0.1.3.3          TPBAR TPBAR Handling Accident  Accident The TPBAR handling accident source tenn              term and accident frequency data presented    presented in Section D. 1. 1.1.4 1.4 were evaluated evaluated using the GENII accident analysis computer          computer code (PNL 1988). Analyses were performed                perfonned in accordance accordance with guidance provided in NRC Regulatory      Regulatory Guide 4.2 (NRC 1976). Table D-24 summarizes            summarizes the consequences of the TPBAR handling accident consequences                                          accident to the maximally exposed offsite individual, an average individual individual in the public within an 80-kilometer 80-kilometer (50-mile)
(50-mile) radius of the reactor site, a noninvolved noninvolved worker worker at the Watts Bar and Bellefonte Bellefonte Nuclear Plant sites located 640 meters (0.4 miles) from the release point, and a noninvolved noninvolved worker at the Sequoyah Sequoyah Nuclear Plant located located at the site boundary boundary 556 meters (0.35 miles) from the release point.
P9int. The analysis assumesassumes that no action would be taken on the site to reduce the dose to the noninvolved worker, and that the worker is exposed noninvolved                                                exposed for 2,000 hours during the airborne        airborne release overover the postulated one-year postulated    one-year period. Calculations Calculations indicate indicate that routine plant administrative administrative controls and work pennits  permits for workers in the fuel pool area would require protective equipment            equipment (e.g., supplied supplied air or air packs) and  and approximately one week after the accident protective clothing for approximately protective                                                                  accident due to the concentration concentration of tritiated waterwater D-3J D-31
 
FinalEnvironmental Final                Impact Statement for Environmentallmeact                    Productiono(Tritium (or the Production                    CommercialLight Water Reactor of Tritium in a Commercial vapor in the work area. The risks associated  associated with the TPBAR handling accident to the same receptors are summarized summarized in Table D-25.
Table    D-24 T a bl e D - 24 TPBAR TPBAR H    Handlin an dJ'mg Accident A'dCCI ent C  Consequences onsequences Average Individual Individual in in Maximally            Of/site Maximally Exposed Offsite                        Population Population Individual Individual                      !O to 80 kilometers kilometers (50 miles)          Noninvo}l?ed Worker Noninvolved
                                                        ,Cancer ..
                                                        "Cancer                'Dose
                                                                                'Dose              Cancer' Cancer'      ,                  .,:Ca;'cer Cancer Reactor Site Reactor                  Dose (rem)
Dose  (rem)          Fatality" Fatality "                (rem)
(rem)          , Fatality Fatality"        Dose (rem)
Dose            Fatality" Fatality "
Watts Bar                          0.028            0,000014 0.000014              0,00031 0.00031            1.6 1.6 x 10"7 10'7      0,0017 0.0017        6,8 x 10-'
6.8    10'7 Sequoyah Sequoyah                            0,036 0.036            0,000018 0.000018              0,00029 0.00029                    10'7 1.5 x 10-7        0.0014          5,6 x 10'7 5.6    10-7 Bellefonte Bellefonte                        0,0045 0.0045                    10,6 2.3 x 10.6            0.00025            1.3 xx 10-7 10'7      0.00007        2.8 xx 10,8 10-8 a Increased likelihood of cancer fatality.
a  Increased likelihood of cancer fatality.
Table T a bl e D - 25 TPBARH D-25    TPBAR Handlingan dJ'mg Accident A CCI'd ent A  Annual nnua I Ri  Risks sks Average Individual in Averagelndividual Population Population Maximally Exposed Maximally    Exposed                    kilometers to 80 kilometers              Noninvolved Reactor Site Reactor                        Production Tritium Production Tritium                    Of/site  Individual" Offsite Individual"                (50  mil~~) bb (50 miles)                    Worker Worker"    "
Watts Bar                      1,000 1,000 TPBARs                  2.4 xx 10,8 2.4    10-'                  2.7 xX 10-`&deg; 2.7    10,10                1.2 xx 10,9 10-9 3,400 3,400 TPBARs                  8.1 x 10-'
10,8                  9.3 x  10,10 X 10-.&deg;                3.9 xX 10,9 10-9 Sequoyah                      1,000 TPBARs 1,000                        3.1 x I0-3.1    10's                  2.6 xX 10-1&deg; 2.6    10,10                9.5 Xx 10-*0 9.5    10,10 3,400 TPBARs                    1.0 xX 10-7 10'7                  8.7 8.7 xx 10-"0 10,10                3.2 xx 10,9 10-9 Bellefonte                            TPBARs 1,000 TPBARs                  3,9x1O,9 3.9 x 10-9                    2.2 x 10-"&deg; 10,10                4.8 xX 10-"
4.8    10,11 3,400 TPBARs                    1,3 1.3 x 10-'
10,8                  7.5 x 10-`0 10,10                1.6 x 10"1&deg; 1.60x  10,10 a  Increased likelihood of cancer fatality per year.
a  Increased likelihood of cancer fatality per year.
D.1.3.4          Truck Transportation Cask Handling    Handling Accident Accident The truck transportation transportation cask handling accident source term and accident                accident frequency data presented in Section Section D. D, 1.1.5 1.1.5 were evaluated evaluated using the GENII GENII accident accident analysis computer code (PNL 1988). Analyses            Analyses were performed in accordance with guidance provided in NRC Regulatory performed                                                                    Regulatory GuideGuide 4.2  4,2 (NRC 1976). Table D-26        D-26 summarizes the consequences summarizes                                              transportation cask handling accident to the maximally consequences of the truck transportation                                                        maximally exposed offsite individual, an average average individual individual in the public within an 80-kilometer80-kilometer (50-mile)
(50-mile) radius of the reactor  reactor site, a noninvolved non involved worker at the Watts Bar and Bellefonte Bellefonte Nuclear Plant sites located 640 meters (0.4 miles) from the release point, and a non    noninvolved involved worker at the SequoyahSequoyah Nuclear Plant located at the site boundary 556 meters (0.35 miles) from the release point. The analysis assumes that no action would be taken on site to reduce the dose to the noninvolved worker      worker and that the worker is exposed for 2,000 hours during the airborne airborne release over the postulated postulated one-year one-year period. The risks associated with the truck transportation      transportation cask  cask handling accident to the same receptors are summarized  summarized in Table D-27.
D-32 D-32
 
Appendix D D - Evaluation Evaluation ofHuman Human Health              /i'om Facility Health Effects from      Facility Accidents T a ble D-26 Table    D- 26 Truck T rue kT  Transportation        C as k H ranspor t a f Ion Cask            an dr109 Accident Handling      A eel*d en t C      onsequenees Consequences Individualin Average Individual        in.
Maximally Exposed Offsite Maximally                                            Population Population Individual Individual                      to 80 kilometers kilometers (50 miles)                        Noniilvolved Worker Noninvolved Cancer
(:ancer              Dose Dose.                  Cancer Cancer                                        Cancer Cancer ReactorSite Reactor  Site      Dose (rem)
Dose                    Fatality Fatality"            (rem) .
(reiIJ)              Fatality" Fatality                Dose '(rem)
(rem),r,        Fatalitj ~
                                                                                                                                          . Fataliot Watts Bar              0.00072              3.6  10.7 3.6 x 10-'        8.0 x 10-10-66                  10-99 4.0 xX 10-                0.000043 0.000043                      10-88 1.7 xx 10-Sequoyah Sequoyah                0.00093                      10-77 4.7 x 10-                  10-66 7.5 xX 10-                      10-99 3.8 x 10-                0.000036                      10.88 1.4 xx 10.
6 Bellefonte Bellefonte              0.00012              6.0 x 10" 10"V        6.4  x  10-X 10-6                      10-99 3.2 xX 10-                1.8 X 10-6 10-6          7.2 xX 10-10-'&deg;10 a
a Increased  likelihood of Increased likelihood  of cancer cancer fatality.
fatality.
Table T        D-27 a bl e D  - 27 T Truck      T ranspor t a f IOn C rue k Transportation              as k H Cask          an dr109 Accident Handling      Aeel.d en t A      nnua IR*
Annual        IS k S Risks Average      Individualin Average Individual          in Population Population Maximally Exposed                to 80 kilometers kilometers                Noninvolved Reactor ReactorSite              Tritium Production Tritium  Production          Offsite Individual" Individual"                  (50 miles)"
(50    miles)"                    Worker a Worker" Watts Bar                    1,000 1,000 TPBARs                              10-1313 1.9 xx 10-                                10"115 2.1 Xx 10-                      9.0 X  10-1115 X 10-3,400 TPBARs 3,400                                      10"1 5.8 xx 10-  13                            10"1' 6.4 xx 10. 15                  2.7 xx 10.
2.7    10-14 14 13                                15 Sequoyah Sequoyah                      1,000 1,000 TPBARs                      2.5 xx 10-10-"3                    2.0 xx 10.
10-1i                          10"1515 7.4 Xx 10.
3,400 TPBARs 3,400                                      10"1 7.5 xx 10-  13                            10"t' 6.1 xx 10. 15                  2.2 xx 10.
2.2    10-14 14 Bellefonte Bellefonte                    1,000 TPBARs 1,000                              3.2 x 10. 14 10-14                    1.7 xx 10-10"'15 3.8 xx 10-3.8    10-16 16 3,400 TPBARs 3,400                                      10-1414 9.6 x 10-                        5.1 Xx 10-  15 10-"5                  1.2 Xx 10- 15 a
a Increased  likelihood of Increased likelihood  of cancer cancer fatality fatality per year.
D.1.3.5 D.1.3.S                Transportation Cask Handling Accident Rail Transportation                                  Aecident transportation cask handling The rail transportation                  handling accident accident source source tenn    term and accident accident frequency frequency data presented in D. 1.1.77 were Section D.l.l.      were evaluated using the GENll      GENII accident analysis computer  computer code (PNL 1988). Analyses          Analyses were performed perfonned in accordance accordance with guidanceguidance provided provided in NRC Regulatory  Regulatory Guide 4.2 (NRC 1976).          1976). Table D-28      D-28 summarizes the consequences summarizes          consequences of the rail transportation transportation cask handling accident    accident to the maximally exposed offsite individual, an average average individual in the public within an 80-kilometer      80-kilometer (50-mile) radius of the reactor          reactor site, a noninvolved worker worker at the Watts Bar and Bellefonte Nuclear Plant sites located 640 meters (0.4 miles) from the release point, and a noninvolved worker at the Sequoyah Nuclear Plant located                            located at the site boundary boundary 556        556 meters (0.35 mile) from the release point. The risks associated            associated with the rail transportation transportation cask handling accident to the same receptors are summarized accident                                        summarized in Table D-29. D-29.
D-33 ,
D-33
 
Final Environmental Impact FinalEnvironmental  Impact Statement (or  for the Production Productiono(Tritium of Tritium in aa Commercial CommercialLight Water Reactor Table T a ble D-28 D- 28 Rail R al&deg;1 TTransportation ransportatlOn Cask    C as kH  Handling an dr109 Accident A CCI&deg;d ent Consequences C on sequences Average Individual Individualin  in Maximally "Exposed,Offsite Exposed:Offsite                Population to 80 kilometers Population            kilometers "
Individual "
Individual            .                      (sq miles)
(50  miles) .,                        Noninvoived Worker Noninvolved        Work~r
                      ,                      Cancer Cancer                Dose                    Cancer Cancer                                        Cancer Cancer Reactor Reactor Site        Dose (rem)
Dose (rem)_          Fatality" Fatalitj  "            (rem)
(rem)                Fatality' Fatality"            Dose (rem)
(rem)            Fatality" Fatality Watts Bar              0,00072 0.00072                    10-77 3.6 xx 10.            8.0 x 10-6 10-                      1099 4.0 Xx 10-              0.000045 0.000045                1.7  10.8 1.7 x 10.
7                    6 Sequoyah              0.00093            4.7 x 10-10-7          7.5 Xx 10.
10-6                    10. 9 3.8 x 10-              0.000036 0.000036                1.4 x 10-"
1.4    10"'
Bellefonte            0.00012            6.0 x 10-"
10-            6.4 Xx 10-6 10-6                    10-99 3.2 Xx 10-                      10-66 1.8 Xx 10.            7.2 Xx 10.
I0-O 10 a Increased likelihood of cancer fatality.
a  Increased likelihood of cancer fatality.
Table T a ble D-29 D- 29 Rail R al&deg;1 T  ransportahon Cask Transportation          C as kH  Handling an dr109 A    Accident CCI&deg;d ent A    nnua IRo Annual          IS k S Risks Average Individual Individual Population in Population Tritium Production Tritium  ProductionCore            Maximally Exposed                    to 80 kilometers            Noninvolved Reactor Site Reactor                        Configuration Configuration                  Offsite Individual" Individual"                (50 miles)"
miles)                  Worker" Worker' Watts Bar                      1,000 TPBARs TPBARs                                        10"114 9.7 x 10.                        1.1 xX 10-10'1115 10"15 4.6 xX 10.
3,400 TPBARs TPBARs                                        10-"3 2.9 xx 10-  13 3.2 Xx 10-3.2    10-"5 15              1.4 xX 10-1.4    10-14 14 13 Sequoyah                      1,000 TPBARs TPBARs                                1.3 x 10-10-13                          10-1515 1.0 Xx 10-                        10-"15 3.8 Xx 10-3,400 TPBARs TPBARs                                3.8 xx 10-10-"3 13                  3,0 Xx 10-3.0    10-'"15            1.1 xX 10-1.1    10-14 14 Bellefonte                    1,000 TPBARs 1,000  TPBARs                                  1.6 xx 10-10-14 14 8.6 Xx 10-8.6    10-16 16              1.9 1.9  X 10.1616 x 10.
3,400 TPBARs TPBARs                                4.8 xx 10-10-14 14 2.6 Xx 10" 2.6    10- 15          1  5.8 Xx 10-5.8        16 10-16 a  Increased likelihood of cancer fatality per year.
a  Increased likelihood of cancer fatality per year.
D.1.3.6 Do1.306          Beyond Design-Basis Accident  Accident The beyond design-basis design-basis accident source source term tenn and accident frequency data presented          presented in Tables            D-10, D-ll, Tables D-lO,        D-1 1, D-13, and D-14 were evaluated    evaluated using the MACCS2      MACCS2 accident  accident analysis computer    computer code (SNL 1997).
Table D-30D-30 summarizes              consequences of the beyond summarizes the consequences                        beyond design-basis accident, with mean meteorological            meteorological conditions, to the maximally maximally exposed offsite  offsite individual individual and an average individual      individual in the public within an 80-kilometer 80-kilometer (50-mile) radius of the reactor    reactor site. The assessment of dose and the associated            associated cancer risk to the noninvolved worker are not applicable for beyond design-basis accidents. A site emergency noninvolved                                                                                                      emergency would have        have been declared declared early in the beyond design-basis design-basis accident sequence,_sequence,' and all nonessential nonessential site personnel personnel would have evacuated evacuated the site in accordance with site emergency        emergency procedures procedures before any radiological    radiological releases to the environment occurred. In addition, emergency environment                                    emergency action guidelines guidelines would be implemented  implemented to initiate evacuation evacuation of the public within 16.1 kilometers kilometers (10  (10  miles)    of the  plant.      The    location      of the  maximally          exposed    offsite individual    may individual mayor      or may  not  be  at  the  site  boundary      for  these    accident accident      sequences        because because emergency action emergency      action guidelines guidelines      would    have  been  implemented          and  the  population        would      be    evacuating evacuating from the path of the radiological radiological plume released released by the accident. The MACCS2      MACCS2 computer computer code models    models the evacuation evacuation sequence sequence to estimate the dose to the maximally exposed      exposed individual and the general population          population within  within 80 kilometers (50 miles) of the accident. The risks associated with the beyond              beyond design-basis accident      accident to the same receptors are summarized in Table D-31. D-31.
D-34
 
Appendix D - Evaluation Evaluation o( ofHuman Health            from Facility Health Effects (rom  FacilityAccidents Table Tab Ie DD-30
                                          - 30 B      eyon dD Beyond            " B aSls Design-Basis esign-        " A              c onsequences CCI"d ent Consequences Accident Average In.dividuaiin Average  Individualin Maximally Exposed Maximally Population Populationto 80                    Noninvolved Worker
                                              ,Ojfsite Individual Tritium I.Offsite Individual Dose kilometers kilometers (50 miles).
miles)
Cancer            Dose I        Cancer Tritium          Dose            Cancer-          Dose            Cancer Dose (rem)      Cancer,Fatality" Reactor Site Reactor                Production Production        (rem)
(ren)          Fatality "        (rem)        Fatality "        Dose (rem)      Cancer Fatality Release Category II - Vessel Breach  Breach with Early    Containment Failure Early Containment Watts Bar Watts Bar          o0 TPBARs (No  TPBARs Aco              19.7          0.0099            0.25          0.00013        Not 19,7          0,0099            0,25          0.00013        Not applicable      Not applicable applicable (No (No Action) 1,000 1,000 TPBARs            19.7          0.0099            0.25          0.00013 0.00013        Not applicable applicable      Not applicable applicable 3,400 TPBARs            19.8          0.0099            0.25          0.00013        Not  applicable Not applicable      Not applicable Not applicable 3,400 TPBARs              19.8          0.0099            0.25          0.00013 Sequoyah Sequoyah          0OTPBARs TPBARs 25.0 25.0            0.025 0.025            0.48 0.48          0.00024 0.00024        Not applicable Not                  Not applicable applicable Action)
(No Action) 1.000 1,000 TPBARs          25.0 25.0            0.025            0.48 0.48          0.00024 0.00024        Not applicable applicable      Not applicable Not applicable 3,400 TPBARs            25.1 25.1            0.025            0.48          0.00024 0.00024        Not applicable      Not applicable applicable Bellefonte Bellefonte        o0 TPBARs TPBARs    b b            2.3 2.3          0.0012 0.0012          0.023 0.023        0.000012 0.000012        Not applicable applicable          applicable Not applicable 1,000 TPBARs 1,000                    2.3          0.0012          0.023        0.000012        Not applicable applicable      Not applicable r3,400 3,400 TPBARs              2.4 2.4          0.0012          0.024        0.000012        Not applicable applicable      Not applicable Release Category II - Vessel Breach with Containment Containment Bypass Watts Bar Watts Bar          o0 TPBARs (No  TPBARs Aco                6.4          0.0032            0.35          0.00018        Not                  Not applicable 6.4          0.0032            0.35          0.00018        Not applicable          applicable (No Action)
Action) 1,000 1,000 TPBARs            6.4          0.0032 0.0032            0.35          0.00018 0.00018        Not applicable      Not applicable applicable 3,400                    6.4          0.0032            0.35 3,400 TPBARs TPBARs            6.4          0.0032            0.35          0.00018 0.00018        Not applicable Not applicable      Not applicable Not applicable Sequoyah          0 TPBARs Sequoyah          OTPBARs (No      Aco              10.4          0.0052            0.72          0.00036 10.4          0,0052            0.72          0.00036        Not applicable          applicable Not applicable (No (No Action)
Action) 1,000 TPBARs            10.4          0.0052 0.0052            0.72        0.00036        Not applicable      Not applicable applicable 3,400 TPBARs              10.4          0.0052 0.0052            0.73          0.00037 0.00037        Not applicable      Not applicable applicable Bellefonte        o0 TPBARs TPBARs    b b            34            0.034            0.20          0.00010 0.00010        Not applicable applicable      Not applicable applicable 1,000 1,000 TPBARs            34            0.034            0.20          0.00010        Not applicable applicable      Not applicable 3,400 PBARs              34F          0.034            0.20          0.00010        Not applicable      Not applicable applicable 3,400 TPBARs              34            0.034            0.20          0,00010        Not  applicable      Not Release  Category III Release Category        III - Vessel Breach with Late Containment Failure Watts Bar Watts Bar              TPBARs o0(No TPBARs Aco              0.51          0.00026 0.00026          0.024 0.024        0.000012 0.000012        Not applicable      Not applicable applicable 0.51 (No Action)
Action) 1,000 TPBARs          0.51          0.00026          0.025        0.000013        Not applicable applicable      Not applicable applicable 3,400 TPBARs          0.53          0.00027          0.025 0.Q25        0.000013        Not  applicable      Not applicable 3,400  TPBARs          0.53          0.00027                        0.000013        Not applicable      Not applicable Sequoyah            0 TPBARs Sequoyah          OTPBARs (No Aco                0.84          0.00042          0.051        0.000026        Not  applicable 0.84          0.00042          0.051        0.000026        Not applicable      Not applicable applicable (No Action)
Action)            0 1,000  TPBARs 1,000 TPBARs          0.85 0.85          0.00042          0.052        0.000026 0.000026        Not applicable          applicable Not applicable 3,400 TPBARs            0.87          0.00044 0.00044          0.053        0.000027 0.000027        Not applicable          applicable Not applicable Bellefonte        o0 TPBARsb TPBARs b            0.37 0.37          0.00019 0.00019          0.016        8.0    10-'6 x 10-        Not applicable applicable      Not applicable applicable 1,000 TPBARs TPBARs          0.37          0.00019          0.016        8.0    10.66 x 10-      Not applicable      Not applicable applicable r3,400 TPBARs            0.38      10.00019          10.017            8.5 8,5 xx 10-10' 6    Not applicable      Not applicable 3,400 TPBARs            0.38'          0.00019          0,017                        Not applicable      Not applicable
., Increased Increased likelihood likelihood of cancer cancer fatality.
b  The 0 TPBAR entry is included for consistency with the Watts b The 0 TPBAR entry is included for consistency with the                        Bar and Watts Bar        Sequoyah Nuclear and Sequoyah      Nuclear Plant analyses. The No Action Action Alternative Alternative  at the    Bellefonte Bellefonte Nuclear    Plant implies implies  that the  reactors are not brought into commercial commercial service.
service. The No Action Action Alternative radiological radiological dose is O. 0.
D-35 D-35
 
FinalEnvironmental Final      Environmental Impact Impact Statement {or for the Production    of Tritium in a Commercial Production o{Tritium        CommercialLight Water Reactor Table T a bl e D  - 31 B D-31      Beyond eyon dD        eSlgn-B aSls Design-Basis      " Accident A CCI"d en tA    nnlla I Risks Annual        Ri Sk S Tritium              Maximally Exposed Maximally                        Average Individual            Population to' Individual in PopiuIation      to'    Noninvolved .
                                                                                                                                        ,Noni;'volvea Reactor Reactor Site              Production Production              . Offsite Individual Individual a        j            kilometers (50 miles) a ,
80 kilometers                                -Worker.
                                                                                                                                          'Wqrker, Release Category I - Vessel Breach    Breach with Early Early Containment Containment Failure Bar Watts Bar Watts              (No  o0 TPBARs TPBARs Atn                        6.7 6,7 xx 10'9 109                                            11 8.8 xX 10-10-o                    Not applicable applicable (No Action) 1,000 1,000 TPBARs                      6.7 xx 10'9 109                                        10-"11 8.8 xX 10-                      Not applicable applicable 3,400 TPBARs                            6.7  x I0-V 6.7 x 10'9                                8.8  x  10-"11 8.8 X 10-                      Not applicable 3,400 TPBARs                                                                                                  Not applicable Sequoyah Sequoyah            (No  o0 TPBARs TPBARs Aco                        1.7 x 10,8 1.7    10.'                              1.6 xX 10-10-`010                Not applicable applicable (No Action) 1,000 1,000 TPBARs                      1.7 x 10-"
10.8                              1.6 xX 10-10-`010                Not applicable applicable 3,400 TPBARs                            1.7  x 10"V 1.7 x 10-  8                              1.6  x  10`0&deg; 1.6 X 10,10                    Not applicable 3,400 TPBARs                                                                                                  Not applicable Bellefonte Bellefonte          0o TPBARs bb                            1.1  x 10-10-9 9                              1.1    10-111 1.1 xX 10-                      Not applicable applicable 1,000 1,000 TPBARs                      1.1 xx 10-10-99                              1.1    10,11 1.1 X 10-11 X                          Not applicable applicable 3,4003,400 TPBARs                      1.1 1.1 xx 10'9 10-9                              1.1 xx 10'11 1.1    10'1                    Not applicable applicable Release Category II    11 - Vessel Breach with Containment Bypass Watts Bar Watts Bar          0(No    TPBARs o TPBARsAco                        2.2 xx 10-2.2    10. 8                              1.2 xX 10'9 10                    Not applicable applicable (No(No Action) 1,000 1,000 TPBARs                      2.2 x 10-10.88 10-99 1.2 xX 10-                    Not applicable applicable 3,400 TPBARs                          2.2 xx 10-"
2.2    I08                                1.2 xX 10'9 1.2    10-9                  Not applicable 3,400 TPBARs                                                                                                  Not applicable Sequoyah Sequoyah            0(No  TPBARs o TPBARsAco                        2.1 (No    Action)                      2.1 xx 10'8 10-"                                1.4 Xx 10'9 10-9                  Not applicable applicable (No Action) 1,000 TPBARs 1,000                            2.1 x 10-"
108                                1.4 xX 10'9 10-9                  Not applicable applicable 3,400 TPBARs                            2.1 xx 10-108 8 10-99 1.5 xX 10-                    Not applicable applicable Bellefonte Bellefonte            0o TPBARs b                                  10.88 3.1 x 10-                                          10-"11 9.1 XX 10-                      Not applicable applicable 1,000 TPBARs 1,000                            3.1 xx 10-10.88 9.1      10- 11 9.1 Xx 10-"                    Not applicable applicable 3,400 TPBARs                            3.1 xx 10-"
10.8                              9.1      10- 11 9.1 Xx 10"1                    Not applicable applicable Release Category Category  III  -  Vessel Vessel  Breach    with Late  Containment Containment Failure Watts Bar Watts Bar            0(No  TPBARs o TPBARsAco                        2.4 xx 10-10-99                              1.1 X 1.1    10- 10 X 10--1 (No  Action)                      2.4                                                                            applicable Not applicable (No Action) 1,000 TPBARs 1,000                                    l0"9 2.4 xx 10-                                1.2    10- 10 1.2 Xx 10".                    Not applicable applicable 3,400 TPBARs 3,400                                        I0-99 2.5 xx 10-                                1.2    10-1.2 Xx 10."&deg;10 Not applicable applicable Sequoyah              0(No TPBARs Sequoyah                o TPBARsAco                        3.9 xx 10-3.9    10-99                                      10-1010 2.4 xx 10-                          applicable Not applicable (No  Action)
(No Action) 1,000 TPBARs 1,000                            3.9 xx 10'9 10-9                              2.4 xX 10,10 10.`8                  Not applicable applicable 3,400 3,400 TPBARs                      4.0 x 10,9 I0.                                        10,10 2.5 xX 10.1W                    Not applicable applicable Bellefonte Bellefonte              0o TPBARs TPBARs b                      9.7 xx 10,10 10""'                            4.1 4.1 xX 10-10-l111                Not applicable applicable 1,000 TPBARs 1,000                            9.7 x 10-10"-10                                    10-"11 4.1 xX 10-                      Not applicable 3,400 3,400 TPBARs                      9.7 x 10-I0-"10                                    10-' 11 4.3 xX 10-                      Not applicable Increased likelihood of cancer fatality per year.
a  Increased likelihood of cancer fatality per year.
The 00 TPBAR    entry is        included for consistency with the Watts Bar and Sequoyah Nuclear Plant analyses. The No Action is included b  The    TPBAR entry                          for consistency with the Watts Bar and Sequoyah Nuclear Plant analyses. The No Action Alternative at the Bellefonte Nuclear Nuclear Plant implies that the reactors are not brought into commercial      commercial service. The No Action Alternative radiological dose is O.      0.
D-36 D-36
 
Appendix D - Evaluation Appendix      Evaluation ofHuman Human Health Health Effects from from Facility Facility Accidents Accidents D.2 D.2            HAZARDOUS HAZARDOUS CHEMICAL ACCIDENT    ACCIDENT IMPACTS ON HUMAN      HUMAN HEALTH D.2.1 D.2.1          Accident Scenario Selection Accident                Selection and Description Description D.2.1.1 D.2.I.1        Accident                Selection Accident Scenario Selection Tritium    production at the Watts Bar Tritium production                        Bar and Sequoyah Sequoyah Nuclear Plants  Plants would not introduce any additional operations operations that require require the use of hazardous    chemicals. No hazardous chemical accidents attributable to tritium hazardous chemicals.
production are postulated for the Watts Bar and Sequoyah Nuclear Plants.
production inventory for Bellefonte The chemical inventory                                              identify potential accident scenarios.
Bellefonte was reviewed to identify                                        scenarios. The chemical Bellefonte is given in Table D-32 (TVA 1998):
inventory at Bellefonte                                            1998):
Table T a bl e D-32 D- 32 Chemical        nven t ory aatt th Ch emlcaIIInventory            thee Bellefonte B eII eon f te N Nuclear uc ear PI      Plant  Site an t S*t I e Quantity Quantityper Location Location                                    Chemical Chemical                          Storage Storage            (gallons)
Tank (gallons)
Auxiliary Building Auxiliary Building                                      Boric Acid                          1I Tank                          2,340 1 Tank                          18,700 18,700 2 Tanks                        31,400 Sodium Hydroxide Hydroxide                  2 TanksTanksaa                  16,500 16,500 Hydrazine (35 percent)              1 Tank                              100 100 Lithium Hydroxide                  1I Tank                              70 70 Sodium Hydroxide Sodium  Hydroxide                  I1 Tank                            210 210 Sulfuric Acid                      batteries batteries                        5,000 Turbine Building                                        Ammonium Hydroxide Hydroxide            1 Tank                              140.
140 1 Tank                              175 175 1 Tank                              300 1 Tank                            500 500 1 Tank                            525 525 1 Tank                          4,000 Hydrazine (35 Hydrazine  (35 percent)            2 Tanks                            110 110 1 Tank                            250 250 1I Tank                          300 1 Tank                            525 Sodium Hydroxide                      1I Tank                          250 250 Sulfuric Acid Acid                        1I Tank Tank                        250 250 Chemical Storage Storage Building                              Sodium Hydroxide                        1I Tank                      13,000 13,000 Sulfuric Acid                          1 Tank                      13,000 13,000 aa  One tank for each each unit.
D-3 7 D-37
 
Final EnvironmentalImtpact Final Environmental        Statementfor Impact Statement (or the Production Productiono(Tritium of Tritium in in aa Commercial      Water Reactor Commercial Light Water The largest quantity of material at risk that is likely to volatilize volatilize and be dispersed following accidental accidental release from the tanks is in the turbine building. The hazardous    hazardous chemicals chemicals stored in the turbine building were reviewed reviewed against the Emergency Planning and Community Right-to-Know        Right-to-Know Act, Section 302,      302, Extremely Hazardous Hazardous Substances List Threshold Threshold Planning Planning Quantity values published by the EPA (EPA 1996)                  1996) to determine if the quantities of chemicals stored stored in the turbine building building exceed exceed the Threshold Planning Quantity threshold threshold values. In the event that the inventory inventory of a chemical exceeds the Threshold Threshold Planning Quantity Quantity value, the EPA requires that emergency emergency response planning actions be conducted, including evaluation of potential            potential accident scenarios.
scenarios. Only  the  chemical    inventory chemical inventory        in  the Turbine    Building Building    was  used  for the  purpose  of this analysis. The physical properties of the other chemicals suggest that they would be ofless          of less concern concern with respect respect to widespread exposure exposure upon accidental accidental release from storage tanks. The inventory of two chemicals exceeded        exceeded the Threshold Planning Quantity Quantity values. These Threshold Threshold Planning Quantity values  values are:
Ammonium Hydroxide Hydroxide Threshold Threshold Planning Quantity == 500 pounds for anhydrous ammonia Hydrazine Threshold Planning Hydrazine                Planning Quantity Quantity == 1,000 1,000 pounds D.2.1.2 D.2.1.2      Accident Accident Scenario Descriptions Two hazardous hazardous chemical accident scenarios scenarios are postulated postulated for this EIS: (1) the accidental uncontrolled uncontrolled release release of ammonium hydroxide, and (2)      (2) the accidental accidental uncontrolled release of hydrazine.
Hydroxide Release Ammonium Hydroxide EPA requires that the chemical accidentaccident analysis analysis consider the release of the maximum inventory      inventory from the largest tank. The ammonium hydroxide release              scenario was developed release scenario          developed based on the following information:
** The largest ammonium hydroxide storage tank volume is 4,000 gallons (TVA                        1998).
(TV A 1998).
* The ammonium ammonium hydroxide storage tanks are located inside a room in the Turbine Building and are surrounded surrounded by an 828-square foot dike (TVA 1998).
** The ammonium ammonium hydroxide hydroxide concentration concentration is 30 percent percent ammonia by weight (TVA 1998).
The scenario scenario assumes assumes that a break break occurs in the largest largest ammonium hydroxide storage tank, releasing,  releasingthe the entire contents of the tank (4,000 gallons) inside the confinedconfined    area  in  the  room  formed    by  the dike. The  released material forms a pool with an effective effective area of 828 square feet. Ammonia then evaporates from the ammonium        ammonium hydroxide liquid pool and forms a vapor cloud that fills the immediate area, leaks from the building, and moves            moves downwind away from the building.
The rate of ammonia evaporation evaporation from a 30 percent concentration concentration ammonium hydroxide pool is given in the Draft      Management Program Draft Risk Management                  Guidance- Wastewater Treatment Program Guidance-Wastewater                            FacilitiesHazard Treatment Facilities    HazardAssessment, Assessment, June 19981998 1998) as follows:
(EPA 1998)
QR == 0.036Ap where Ap is the diked area in square feet, and QR is the rate of evaporation evaporation in pounds per minute Based on a pool area of 828 square feet, the rate of ammonia    ammonia evaporation from the pool is:
QR == 0.036 xx 828 == 29.8 29.8 pounds per minute D-38
 
Appendix DD - Evaluation EvaluationofHuman Human Health Health Effects from from Facility Facility Accidents Hydrazine Release Hydrazine The hydrazine hydrazine release scenarios were developeddeveloped for conditions similar to those described for the ammonium        ammonium hydroxide release scenarios. However, the accident                analysis  computer accident analysis computer code      code    has the  capability  of modeling pool evaporation evaporation for pure chemicals chemicals such as hydrazine.
hydrazine.
The scenario scenario assumes the releaserelease of 525 gallons gallons of  hydrazine (35 ofhydrazine      (35 percent concentration) inside the room of          of the Turbine Building. Although hydrazine  hydrazine is very reactive, reactive, the scenario does not assume any loss of the material material by reactivity. The release is assumed to form a pool on the floor, with hydrazine vapor generated from pool pool evaporation. The vapor fills the immediate  immediate area, leaksleaks from the building, and is dispersed downwind. downwind.
effective pool area is the same as that of the ammonium The effective                                                    ammonium hydroxide release case (i.e.,        (i.e., 828 square feet) because because the tank is located within the same dike. Since hydrazine has a relatively                relatively high boiling point, no ground effect effect is assumed in the release scenario.
D.2.2 Chemical 0.2.2    Chemical Accident Accident Analysis Methodology The potential potential health impacts from accidental accidental releases releases of hazardous chemicalschemicals were assessed by comparing estimated airborne        concentrations of the chemicals to Emergency Response Planning Guidelines airborne concentrations                                                                                        developed Guidelines developed by the American American Industrial Hygiene Association.
Association. The Emergency Response                              Guidelines values are Response Planning Guidelines not regulatory exposure guidelines and do not incorporate    incorporate the safety factors normally  normally included included in healthy healthy worker    exposure guidelines. Emergency Response Planning Guideline-l worker exposure                                                                    Guideline-i values are maximum airborne      airborne concentrations below below which nearly nearly all individuals individuals could be exposed for up to one hour, resulting in only mild, transient, and reversible adverse adverse health impacts. Emergency Emergency Response                          Guideline-2 values are Response Planning Guideline-2 protective protective of irreversible irreversible or serious health health effects or impairment of an individual'sindividual's ability to take protective protective action. Emergency ResponseResponse Planning Guideline-3 Guideline-3 values values are indicative of potentially life-threatening life-threatening health effects.
Emergency Emergency Response Response Planning Guideline Guideline values have not been    been developed for ammonium ammonium hydroxide. Upon    Upon release  of  ammonium release ammonium              hydroxide  from  the  storage storage  tanks,  ammonia      will  volatilize  and be dispersed dispersed downwind to expose potential receptors. Therefore, Therefore, the Emergency Response Planning Guideline          Guideline values for ammonia ammonia were were used to evaluate the potential health      health impacts of an ammonium ammonium hydroxide release. The Emergency        Emergency
 
===Response===
Response Planning Planning Guideline values for ammonia and hydrazine are presented          presented in Table D-33. 0-33.
TTable    D-33 a bl e 0  - 33 E Emer  Yency R mer i!ency  Response esponse PI    annmg G Planning        UI*d e V Guide      a Iues ffor Values      or HHydrazine lyld razme anand dAAmmonia mmoma Chemicals Chemicals                ERPG-1 (parts ERPG-I  (partsper million) million)    ERPG-2    (parts per million)
ERPG-2 (parts          million)      ERPG-3 ERPG-3 (parts      million).
(partsper million).
Hydrazine Hydrazine a'                                  0.03                                  8                                80 80 Ammonia Ammonia bb                                    25                                  200                              1000 1000 ERPG == Emergency Emergency Response Response Planning Planning Guide.
a'  Gephart, Gephart, et al. 1994.
b Craig, et al. 1995.
b Craig, et al. 1995.
Note:    Hydrazine ERPGs Note: Hydrazine        ERPGs were removed removed by the American Industrial Industrial Hygiene Association Association for further study in 1996 and have not been reinserted as of July 1998.
D.2.2.1 0.2.2.1        Receptor      Description Receptor Description The potential potential health impacts impacts of the accidental release of ammonium ammonium hydroxidehydroxide and hydrazine hydrazine were assessed for two types of receptors:
*9 noninVolved noninvolved workers - workers assumed  assumed to be located 640 meters from the point of release          release D-39
 
FinalEnvironmental Final Environmental Impact Statementafor Statement for the Production of Tritium in a Commercial Production o(Tritium      CommercialLight Water Reactor
** maximally exposed exposed offsite individual - a member of the public          public located located off site at the site boundary, 914 meters from the point of release release Facility workers (i.e. those individuals individuals in the building at the time of the accident) were assumed    assumed to be killed by the release. The analysis took no credit for mitigative  mitigative actions (e.g., area atmosphere atmosphere monitoring, area area evacuation alarms, emergency operating procedures) evacuation                                      lirocedures) or accident accident precursors precursors (e.g., leak before before break) to reduce the accident consequences consequences to the facility worker.
D.2.2.2      Analysis Computer Computer Code Selection Selection estimation of airborne concentrations The computer code selected for estimation                        concentrations is the Computer Aided ManagementManagement of  of Emergency Operations Emergency    Operations (CAMEO)/Areal (CAMEO)/Areal Locations Locations of Hazardous Hazardous Atmospheres Atmospheres (ALOHA), developed developed by the National Safety Council, the EPA, and the National  National Oceanic Oceanic and Atmospheric Atmospheric Administration (NSC 1990).
D.2.2.3      Description of the ModelModel The atmospheric atmospheric dispersion modeling modeling for the above scenarios was conducted  conducted using the ALOHA 5.05 computer computer code (NSC 1990).
The ALOHA ALOHA code was designed for use by first responders. The model is most useful for estimating            estimating plume concentration downwind extent and concentration      downwind from the release source for short-duration chemical      chemical accidents. It uses a Gaussian dispersion model to describe describe the movement and spreading of a gas that is neutrally buoyant. For heavier-than-air vapor releases, the model uses the same calculations heavier-than-air                                                      calculations as those used in the DEGADIS model, an EPA heavy heavy gas dispersion model (EPA 1989). 1989).
There are a number of limitations to the model, and        and these are summarized below:
** ALOHA ALOHA is not intended intended for use with accidents involving radioactive chemicals.
** It is not intended intended for use with the permitting of stack gas or chronic, low-level (fugitive) emissions.
*" The ALOHA-DEGADIS ALOHA-DEGADIS heavy gas module        module is more conservative conservative than the DEGADIS DEGADIS model, which may result in a larger footprint than actually actually would be expected.
"* ALOHA does not consider the effects of thermal energy from fire scenarios or the byproducts resulting from chemical reactions.
*" ALOHA ALOHA does not include the process needed to model particulate      particulate dispersion.
"* ALOHA does not consider consider the shape of the ground under the spill or in the area affected    affected by the plume.
"* ALOHA does not estimate estimate concentrations under very low wind speeds (less than 1I meter per second),      second), since since the wind direction may become inconsistent inconsistent at these conditions.
"* Under very stable atmospheric conditions (usually late night or early morning), the model estimates will have large uncertainties uncertainties due to shifting wind directions and virtuallyvirtually no mixing of the plume into the surrounding surrounding air. Thus, these processes may lead to high airborne concentrationsconcentrations for long periods of time or at large distances from the release source.
"* ALOHA does not accurately accurately represent variations associated with near-field (close to the release source) patchiness. In In the case of a neutrally neutrally buoyant gas, the plume will move downwind;  downwind; but very near the source, D-40
 
Appendix D - Evaluation EvaluationofHuman Human Health Health Effectsfrom Effocts from Facility Facility Accidents the plume can be oriented oriented in a different direction (such as going backward) due to the effect        effect of drifting eddies eddies in the wind.
D.2.2.4      Weather Weather Condition Assumptions Assumptions The model results are presented presented for atmospheric Stability Stability Classes D and F, with wind speeds of 5.3 meters per second and 1.5 meters per second, respectively. Atmospheric Atmospheric Stability Stability Class Class D is considered to be representative    "average" weather conditions; Stability Class F is considered representative of "average"                                                considered to be representative representative of "worst-case" weather conditions. These These weather conditions were      selected because they are recommended were selected                          recommended by the EPA in its Technical Technical Guidance Guidance for Hazards Hazards Analysis (EPA 1987).
The model parameter parameter values for these weather conditions are as follows:
1.
: l. Average Condition                Stability Stability Class D Ambient air temperature:
temperature:          0 75 75&deg;F F Relative humidity:              50 percent percent Cloud cover:                    50 percent percent Average A verage wind speed:            5.3 meters per second second
: 2. Worst-Case Condition            Stability Stability Class F Ambient air temperature:
temperature:        60&deg;F 60&deg;F Relative humidity:              25 percent percent Cloud cover:                    20 percent percent Average wind speed:              1.5 meters per second D.2.3 Human Health Impacts The potential health impacts impacts from the accidental accidental releases were were assessed by comparing the modeled  modeled ambient ambient concentrations concentrations  of ammonia ammonia    and  hydrazine    at each  of  the  receptor locations locations identified identified previously previously to the Emergency Emergency Response Planning Guidelines. The estimated airborne concentrations concentrations of ammonia ammonia and hydrazine are presented in Table Table D-34 and Table D-35 respectively. Table D-36          D-36 presents a summary summary of the impacts data.
D.2.3.1 D.2.3.t      Impacts to Noninvolved Impacts      Noninvolved Workers Noninvolved workers are assumed to be located at 640 meters from the point of release. The concentrations Noninvolved                                                                                                  concentrations of ammonia at 640 meters range from 14 to 318 parts per million, based on the assumed meteorological        meteorological conditions.
conditions. The maximum maximum estimated airborne concentration at 640 meters in the F stability      stability class class exceeds exceeds the Emergency    Response Emergency Response      Planning  Guideline-2 Guideline-2    value of 200  parts  per  million  for  ammonia,    which  suggests  that noninvolved    workers non involved workers    may  experience  irreversible experience irreversible  or serious,  but  not life-threatening,    adverse life-threatening, adverse    health  effects if the exposures are not mitigated.
For For the hydrazine hydrazine release scenarios, the concentrations concentrations at 640 meters range from 0.8 to 6.0 parts per million, based on the assumed assumed meteorological meteorological conditions.
conditions. As a result, the maximum estimated airborne concentrationconcentration at 640 meters exceeds the Emergency                                Guideline-I value of 0.03 parts per million for Emergency Response Planning Guideline-1 hydrazine, hydrazine, which suggests the potential for only mild, transient, and reversible adverse health impacts to noninvolved workers.
noninvo1ved D-41 D-41
 
Final Final Environmental Environmental Impact Statement Statement for the Production Productionof Tritium Tritium inin a Commercial          Water Reactor Commercial Light Water Table D-34 Airborne            Concentration Estimates for Ammonium Airborne Concentration                                        Ammonium Hydroxide                  (NH 3)Release Scenarios Hydroxide (NH3)Release                    Scenarios NH33 Concentration NH    Concentration under  under Stability Stability Class Class D          NH3  Concentration under NH3 Concentration                Stability Pl~ss under Stability        Class FF Downwind Distance, Distanci          miligrams milligrams, per  per                                            milligrams milligrams per                      .
Source (meters) from Source    (meters)          cubic.
cubic meters                (parts  per million)
(partsper    ;Ulllion)            cubic cubic meters                (pi!rts*per (partsper million) million) 30                        3,233                          (4,590)                        83,900                        (119,138)
(119,138) 100 100                            306                          (435)                          7,730                        (10,976)
(10,976) 500                            15.5                          (22)
(22)                          352                            (500) 640                              9.9                          (14)
(14)                          224                            (318)
(318) 914                              5.4                        (7.7)
(7.7)                          119                            (169)
(169) 1000                              4.7 .                      (6.7)
(6.7)                          102                            (145)
(145) 1500                              2.5                        (3.5)
(3.5)                          51.6                            (73) 2000                              1.5                        (2.2)                          32.7                            (46)
Table T        D-35 a bl e D - 35 Airborne            C oncentratlOn E A"Irb orne Concentration                        "
Estimates stlmates      for f or Hydrazine Hlyld razme Release RI e ease S    Scenarios cenanos Concentration Concentrationunder  under Stability Stability ClasslD Class* D                  Concentrationunder Concentration    under Stability Stability Class Class F Downwind Distance Distance          milligramsper milligrams                                                          milligrams milligrams per from Source(meters) from  Source(meters)            cubic meters                  (parts (partsper    million) per million)                  cubic meters meters              (parts  per million)
(partsper 30                          168 168                              (127)
(127)                            730                            (561)
(561) 100                          30                            (22.7)
(22.7)                            194                            (149)
(149) 500                          1.6                            (1.2)
(\.2)                            12.2                            (9.4) 640                          1.1                            (0.8)
(0.8)                            7.81                            (6.0) 914                          0.5                              (0.4)
(0.4)                            4.17                            (3.2) 1000                          0.5                              (0.4)
(0.4)                            3.56                            (2.7) 1500                          0.3                              (0.2)
(0.2)                              1.7 I.7                            (1.3)
(1.3) 2000                            --....                            --                            1.07 1.07                            (0.8)
Table T a ble DD-36
                                      - 36 S      Summary ummary of    0 fIImpacts mpac t s D  Data a t a for f or Release R eIease S  Scenarios cenanos Hydrazine Hydrazine                Hydrazine Hydrazine                Ammonia                    Ammonia (Stability (Stability              (Stability (Stability                (Stability (Stability                  (Stability (Stability Guidelines Guidelines                    Class D)*
Class  D)                Class  F)
Class F),                Class D)
Class        .            Class Class F)
ERPG-1 ERPG-I                                  >2000                    >2000                      464                        2250 2250 ERPG-2                                    179 179                      500                    150                          825 825 ERPG-3                                    44                      200                      65                          425 Noninvolved Noninvolved            Parts per per million                        0.8                        6                      16                          318 318 worker                          concern Level of concern                      ERPG-l ERPG-I                  ERPG-1 ERPG-I                    ERPG-1 ERPG-I                      ERPG-2 ERPG-2 (640 meters) meters)          Potential health effects effects    Mild, transient          Mild, transient          Mild, transient transient                Serious Serious Maximally              Parts per million                        0.4                      3.2                    7.7                          169 169 exposed offsite        Level of concern                      ERPG-I ERPG-I                  ERPG-I                    ERPG-I                      ERPG-1 ERPG-I individual            Potential health effects effects    Mild, transient          Mild, transient                (<ERPG-1)
None <<ERPG-I)              Mild,    transient Mild, transient (914 meters) meters)
ERPG = = Emergency Response Planning Guideline.
D-42
 
Appendix D - Evaluation of Human Evaluation o( Human Health Health Effects (rom from Facility FacilityAccidents D.2.3.2      Offsite Impacts The maximally exposed offsite individual is assumed to be located at a distance of914        of 914 meters from the point of release. For the ammonium hydroxide releaserelease  scenarios, the  offsite  receptor receptor  will  be potentially potentially exposed exposed to an ammonia concentration concentration of  7.7 parts per million under Stability Class D condition of7.7                                                  condition (see Table D-34), which is below the Emergency Response                  Guideline-I value for ammonia of 25 parts per million. Exposures Response Planning Guideline-l                                                          Exposures to concentrations below the Emergency Response Response Planning Guideline-I Guideline-l value are not expected expected to produce produce any adverse adverse health effects effects for the offsite offsite receptor. Under Stability Class F conditions, conditions, the offsite receptor may be  be exposed exposed to an ammonia concentration concentration of about 169 parts per million which is below the Emergency Response Guideline-2 value for ammonia Planning Guideline-2                  ammonia of 200 parts per million. Exposure of the offsite receptor at concentrations concentrations greater than than the Emergency Response Planning Guideline-l Guideline-I value but less than the Emergency Emergency Response Planning Guideline-2 Guideline-2 value may produce produce only mild, transient transient and reversible adverse health effects.
For the hydrazine release scenarios, scenarios, the offsite offsite receptor                concentrations range from 0.4 parts per receptor exposure concentrations                                per million to 3.2 parts per million (see Table D-35; both stability                                concentrations exceed stability classes). These concentrations        exceed the Emergency Response Planning Guideline-l Emergency                          Guideline-I value for hydrazine of 0.03 parts per million, but are less than the Emergency Response Planning Emergency              Planning Guideline-2 Guideline-2 value of 8 parts per million. This suggestssuggests that the offsite receptor may experience experience only mild, transient, and reversible adverse health effects as a result of the exposure.
D.2.3.3      Uncertainties in the Dispersion Analyses Uncertainties The results of this screening screening level analysis contain contain a number number of uncertainties in the atmospheric dispersion calculations, calculations, some of which are summarized summarized below:
* The dispersion modeling does not take into account    account the reduction in the predicted predicted rate of evaporation evaporation because because the spillage is inside the building; the dilution is caused by the structures on the site; or the potential for other mitigating actions. There are no accurate accurate methods methods for predicting predicting the extent of this dilution, but predicted concentrations predicted concentrations at any point could well be too high by factors of 2 to 5 or more.
* The dispersion modeling modeling does not take accountaccount of the deposition of highly reactive vapors (such as hydrazine) onto surfaces including equipment, the ground, water, and vegetation. This        Tfiis means that the model concentrations at longer distances.
overestimates airborne concentrations
* Overall, the uncertainties uncertainties in predicted              concentrations may be as large as a factor of +/-2 predicted airborne concentrations                                            =2 x the estimated concentration.
concentration.
In view of these uncertainties, uncertainties, the results of this analyses should be consideredconsidered only as screening screening level level estimations. TVA TV A will conduct analyses                      requirements specified in 40 CFR 68 prior to operation analyses to comply with requirements of the Bellefonte Nuclear Power Plant.
D-43 D-43
 
Final  Environmental Impact FinalEnvironmental  Impact Statement for for the Production Productionof Tritium Tritium in a Commercial CommercialLight Water Reactor D.3    REFERENCES AEC (U.S. Atomic Energy Commission), 1972, Assumptions Usedfor Evaluating            Evaluating the Potential    Radiological Potential Radiological Pressurized Water Consequences of a Pressurized Consequences                                    Reactor Radioactive Water Reactor        Radioactive Gas      Storage Tank Failure Gas Storage            Failure Safety Guide 24,24, (NRC/RGS (NRCIRGS 1.24 1.24),), Washington, DC, March 23.
Craig, D. K.,
K., J. S. Davis, R. DeVore, D. J. Hanson, A. J.        1. Petrocehi, T. J. Powell, 1995, "Alternative "Alternative Guideline Guideline Limits for Chemicals Chemicals without Environmental Response    Response Planning Guidelines,"
Guidelines," American Industrial IndustrialHygiene Association Journal, Journal, 56: 919-925.
CRC (CRC Press), 1982, 1982, CRC Handbook Handbookof Radiation RadiationMeasurement Measurementand Protection, Protection, Section A, Volume Volume II:
Biological and Mathematical Mathematical Information, Information, CRC Press.
DOC (U.S. Department Department of Commerce),          1992, 1990 Census Commerce), 1992,1990          Census ofPopulation Populationand  andHousing, Housing, Summary Tape Tape File File 3 on CD CD ROM Technical Technical Documentation, Documentation,Bureau of Census, Washington,  Washington, DC, May.
DOC (U.S. Department of Commerce),              1993, 1992 Census Commerce), 1993,1992            Census ofAgriculture ofAgriculturefor  for Selected Counties Counties in Tennessee, Tennessee, Alabama,  Georgia,    and  North Alabama, Georgia, and North Carolina.Carolina.
DOE (U.S. Department Department of Energy), 1996,            Commercial Light Water 1996, Commercial                  Water Reactor Reactor Systems Description Description and Requirements Document Requirements    Document (SDRD),            CLWR-RD-96-5681(08)-06, (SDRD) , CLWR-RD-96-5681              (08)-06, Revision Revision 0, Defense Programs Office, Washington, DC, October.
Duke (Duke Power Company), 1990,      1990, Oconee Nuclear Nuclear Station Station Units Units 1,1, 2, 2, 3 Individual IndividualPlant PlantExamination Examination Submittal Report, Submittal  Report, Charlotte, North Carolina, December.
Entergy Entergy (Entergy Operation                  1993, Arkansas Operation Inc.), 1993,      Arkansas Nuclear Nuclear One,        Unit 1 Probabilistic One, Unit        Probabilistic Risk Assessment -
Individual  Plant  Examination      Submittalfor Individual Plant Examination Submittal for            Arkansas    Nuclear    One, Nuclear One,      Unit  1, Docket No. 50-0313, 1,              50-0313, April.
EPA (U.S. Environmental Environmental Protection Protection Agency), 1987, Technical Technical Guidance Guidancefor Hazards Hazards Analysis, Analysis, Federal Emergency Emergency Management Management Agency and U.S. Department  Department of Transportation, Transportation, Washington, Washington, DC, December.
EPA (U.S. Environmental Environmental Protection Protection Agency), 1988, Limiting Values of Radionuclide    Radionuclide Intake and and Air Concentrationand Concentration    and Dose Conversion          Factorsfor Conversion Factors        for Inhalation,    Submersion, and Inhalation, Submersion,        and Ingestion, Ingestion, Federal Guidance Guidance Report 11, 11, EPA 520/1-88-020, 52011-88-020, Washington Washington DC, September.
EPA (U.S. Environmental Protection Agency), 1989, User's              User's Guide Guide for for the DEGADIS 2.1 Dense Gas      Gas DispersionModel, Dispersion  Model, EPA-450/4-89-019, EPA-450/4-89-019, U.S. Environmental Environmental Protection Agency, Office    Office of Air Quality Quality Planning and Standards, Standards, Office of Air and Radiation, Research Triangle Park, North Carolina, November.
EPA (U.S. Environmental Environmental Protection Agency), 1993,      1993, External ExternalExposure to Radionuclides Radionuclides in Air,  Water, and Air, Water, Soil, Soil, Federal  Guidance Guidance    Report    12, 12, EPA    402-R-93-081, 402-R-93-081,      Washington      DC.
EPA (U.S. Environmental Protection Agency), 1996,                                            EPA-550-B 015, December.
1996, Title III List of Lists, EPA-550-B-96-015, I EPA (U.S. Environmental Environmental Protection Agency), 1998,      1998, Draft DraftRisk Management ManagementProgram          Guidance- Wastewater ProgramGuidance-Wastewater Treatment Facilities Treatment  FacilitiesHazard HazardAssessment, June.
Gephart, L., D. P. Kelly, F. L. Cavender, G. M. Rusch, 1994, "Emergency      "Emergency Response Response Planning Planning Guidelines,"
Guidelines,"
IndustrialHygiene American Industrial      Hygiene Association      Journal,55 (June): 560-561.
Association Journal,                      560-561.
D-44 D-44
 
Appendix D - Evaluation Evaluation of Human  Health Effects from Human Health                FacilityAccidents from Facility Accidents GPUN GPUN (GPU Nuclear) 1993,    1993, TMi      Unit 1 Individual TMI Unit          Individual Plant Plant Examination Examination Submittal        Report, Docket Submittal Report, No. 50-0289, 50-0289, March.
ICRP (International Commission on Radiological Radiological Protection), 1980, Limits for        for Intakes of Radionuclides Radionuclides by Workers, Annals of the ICRP, ICRP, ICRP Publication 30, Pergamon Press, New York, New York.
ICRP (International Commission          Radiological Protection),
Commission on Radiological                        1983, Radionuclide Protection), 1983,                        Transformations: Energy Radionuclide Transformations:
andIntensity    Emissions,Annals of the ICRP, and Intensity ofEmissions,                  ICRP, ICRP Publication 38, Pergamon Press, New York, New York.
ICRP (International (International Commission Commission on Radiological Radiological Protection),
Protection), 1986, The Metabolism Metabolism ofPlutonium Plutonium andRelated and Related Elements, Annals of the ICRP, Elements,                ICRP, ICRP Publication Publication 48, Pergamon Press, New York, New York.
NCRP (National (National Council on Radiation Protection Protection and Measurements),
Measurements), 1993,  1993, Risk Estimates Estimatesfor Radiation for Radiation Protection,NCRP Report No. 115, Protection,                      115, Bethesda, Maryland, December 31.            31.
NRC (U.S. Nuclear      Regulatory Commission),
Nuclear Regulatory      Commission), 1974,  1974, Assumptions Used      Used for    Evaluating the Potential for Evaluating        Potential Radiological    Consequences of aa Loss of Coolant Radiological Consequences                      Coolantfor Pressurized Pressurized Water  Water Reactors, Reactors, Regulatory Regulatory Guide 1.4, Revision 2, June.
NRC (U.S. Nuclear Regulatory Commission), 1975, Reactor    Reactor Safety Study: An Assessment ofAccident  ofAccident Risks in U.S.
U.S. Commercial Commercial Nuclear NuclearPower Power Plants, Plants, WASH-1400 (NUREG-75/014),
(NUREG-75/014), Washington, DC, October.
NRC (U.S. Nuclear Regulatory Regulatory Commission), 1976, 1976, Preparation Preparation ofEnvironmental Environmental Reportsfor      NuclearPower Reports for Nuclear Stations, NUREG-0099, Regulatory Stations,                  Regulatory Guide 4.2, Revision Revision 2, Office of Standards Development, Washington, DC, July.
NRC (U.S. Nuclear Regulatory Regulatory Commission),
Commission),1977,  1977, Calculation Calculation of Annual Doses    Doses to Man from Routine Releases ofReactor Releases    Reactor Effluents for the Purpose Effluentsfor                      EvaluatingCompliance Purpose of Evaluating        Compliance with 10 CFR      CFR Part  50, Appendix, Part 50, Appendix, I, Regulatory  Guide Regulatory Guide    1.109, Revision    1, 1, October.
NRC (U.S. Nuclear Regulatory
*NRC                  Regulatory Commission),
Commission), 1983,1983, Atmospheric Dispersion DispersionModels for Potential PotentialAccident Consequence Consequence Assessments at Nuclear Nuclear Power Power Plants, Plants, Regulatory Regulatory Guide 1.145,  1.145, Revision 1, November.
NRC (U.S. Nuclear Nuclear Regulatory Commission), 1987,    1987, Severe Accidents in Spent Fuel        Fuel Pool Pool in Support Support of of Generic Generic Safety Issue 82, 82, NUREG/CR-4982, NUREG/CR-4982, Washington, Washington, DC, July.
NRC (U.S. Nuclear Regulatory Commission) 1988,          1988, Individual Individual Plant        Examinationfor Severe Accident Plant Examination Vulnerabilities - 10 CFR Vulnerabilities      CFR &sect;50.54(f)
                            &sect;50.54(0) (Generic (Generic Letter No. 88-20), Washington, Washington, DC, NovemberNovember 23.
NRC (U.S. Nuclear      Regulatory Commission),
Nuclear Regulatory      Commission), 1990a, MELCOR Accident Consequence          Consequence Code System (MACCS), NUREG/CR-4691, NUREG/CR-4691, February.
Commission), 1990b, NRC (U.S. Nuclear Regulatory Commission),          1990b, Evaluation Evaluation ofSevere Accident Risks: Sequoyah,  Sequoyah, Unit Unit 1, NUREG/CR-4551, Volume 5, NUREG/CR-4551,                5, Revision 1, 1, Division of Systems Systems Research, Research, December.
NRC (U.S. Nuclear Nuclear Regulatory Commission), 1991, 1991, Individual Individual Plant      Examination of External Plant Examination            ExternalEvents (IPEEE)
(IPEEE) for                  Vulnerabilities- 10 CFR &sect;50.54(l) for Severe Accident Vulnerabilities                            (GenericLetter
                                                  &sect;50.54(f) (Generic      Letter No.No. 88-20, 88-20, Supplement 4), Washington, Washington, DC, June 28.
NSC (National Safety Council),        1990, Areal Locations Council), 1990,              Locations of Hazardous            Atmospheres (ALOHA) Software, Hazardous Atmospheres                      Software, Version 5.05, 5.05, National Safety Council, Washington, DC, December.
D-45 D-45
 
Final EnvironmentalImpact Statement Final Environmental      Statementfor (or the Production Productionof Tritium in a Commercial o(Tritium      Commercial Light Water Water Reactor (Pacific Northwest PNL (Pacific    Northwest Laboratory), 1988, 1988, GENII--The Hanford              Environmental Radiation Hanford Environmental          Radiation Dosimetry Software System, PNL-6584, Richland, Washington, November.
PNNL (Pacific Northwest National Laboratory),          1997, letter Laboratory), 1997,    letter from Walter Walter W. Laity to Stephen M. Sohinki, U.S.
Department Department of Energy, "CLWR"CLWR - Tritium Permeation,"
Permeation," Richland, Washington, October 8.            8.
PNNL (Pacific Northwest Northwest National Laboratory),        1999, letter from Walter Laboratory), 1999,                  Walter W. Laity to Stephen M. Sohinki, U.S.
Department Department of Energy, "TPBAR "TPBAR Tritium Tritium Releases Assumptions Assumptions for the TPBAR EIS,"            February 10.
EIS," February SNL (Sandia National National Laboratory),      1997, Code Manual Laboratory), 1997,            Manualforfor MACCS2:
MACCS2: Volume 1,      1, User's    Guide, SAND97-User's Guide,    SAND97-Albuquerque, New Mexico, 0594, Albuquerque,          Mexico, March.
TVA (Tennessee (Tennessee Valley Authority), 1991, 1991, Bellefonte Nuclear        PlantFinal Nuclear Plant      FinalSafety Analysis Report, Report, through Amendment 30, Chattanooga, Tennessee, December 20.
TVA TV  A (Tennessee Valley Valley Authority), 1992a, Sequoyah Nuclear  Nuclear Plant      Unit 1 Probabilistic Plant Unit    ProbabilisticRisk Assessment Individual Plant Individual  PlantExamination      Submittal, Revision 0, Docket Numbers 50- 0327, ExaminationSubmittal,                                                            50-0328, September.
0327, and 50-0328, TVA TV  A (Tennessee (Tennessee Valley Authority), 1992b, Watts Bar Nuclear            PlantIndividual Nuclear Plant                PlantExamination Individual Plant                  Submittal, Examination Submittal, Revision 0, Docket No. 50-0390, September.
TVA TV    (Tennessee Valley A (Tennessee    Valley Authority),
Authority), 1994, Watts Bar Unit 1 Individual            Plant Examination Individual Plant                      Update, Delta Examination Update,      Delta Report for for Revision 1 Update, Update, Revision Revision 1, Docket No. 50-0390, April.
TVA (Tennessee Valley                    1995a, Watts Bar Valley Authority), 1995a,              Bar Nuclear Nuclear Plant Plant Final Final Safety Analysis Report, Report, through Amendment Amendment 91, 91, Chattanooga, Tennessee, October 24.
TVA TV    (Tennessee Valley A (Tennessee    Valley Authority),
Authority), 1995b, Sequoyah Nuclear Nuclear Plant PlantIndividual    PlantExamination, Individual Plant    Examination, Delta Delta Reportfor for Revision  1  Update, Update, September.
TVA TV  A (Tennessee (Tennessee Valley                  1996, Sequoyah Nuclear Valley Authority), 1996,                  NuclearPlant      UpdatedFinal Plant Updated    FinalSafety Analysis Report, Report, through Amendment 12,    12, Chattanooga, Tennessee, Tennessee, December 6.
(Tennessee Valley Authority), 1998, data collected from TVA personnel by Science Applications TVA (Tennessee International Corporation                January-August.
Corporation personnel, January-August.
(Westinghouse Electric Corporation),
WEC (Westinghouse                Corporation), 1998a, letter from M. L. Travis to C. D. Harmon, Sandia      Sandia National Requested by SAIC Laboratory, "Data Requested          SAIC for the EIS of Tritium Production in CLWRs,"    CLWRs," NDP-MLT-98-121, NDP-MLT-98-12l, Pittsburgh, Pennsylvania, Pennsylvania, January 23.
WEC (Westinghouse ElectricElectric Corporation),
Corporation), 1998b, "Tritium "Tritium Production Production Core (TPC) (TPC) Topical Report" Report" Unclassified, Non-proprietary Non-proprietary version),    NDP-98-181, July.
version), NDP-98-181, WHC (Westinghouse Hanford Hanford Company), 1991,  1991, Light WaterWater Reactor (WNP-1)
(WNP-1) Plant Plant Description Description - New Production Production Reactor, Reactor, WHC-EP-0263, WHC-EP-0263, Revision 2, Richland, Washington, March.
WHC (Westinghouse (Westinghouse Hanford Company), 1992,  1992, WNP-1 New Production            ReactorLimited-Scope Probabilistic Production Reactor                        Probabilistic Risk Assessment, WHC-SP-0636, RiskAssessment,    WHC-SP-0636, Richland Washington, Washington, January.
D-46
 
APPENDIX APPENDIX E EVALUATION OF HlJMAN EVALUATION                  HUMAN HEALTH EFFECTS OF                        OF OVERLAND TRANSPORTATION TRANSPORTATION E.1 INTRODUCTION INTRODUCTION The overland transportation of any commodity involves a risk to both transportation transportation crew crew members and and members of the public. This risk results directly from transportation-related transportation-related accidents accidents and indirectly indirectly from the increased increased levels of pollution pollution from vehicle vehicle emissions, regardless of the cargo. The transportation transportation of certain materials, materials, such as hazardous hazardous or radioactive radioactive waste, can pose an additional additional risk due to the unique nature of the material  itself. To permit a complete appraisal material itself.                                                environmental impacts of the proposed appraisal of the environmental                        proposed action andand alternatives, alternatives,  the human  health  risks associated with the  overland  transportation overland transportation    of tritium-producing    burnable burnable absorber absorber rods (TPBARs) and associated waste were assessed.
This appendix provides an overview of the approach used to assess the human    human health risks that may result from overland transportation. The appendix                              of the scope of appendix includes discussion ofthe              the assessment, analytical ofthe                  analytical methods used for the risk assessment (i.e.,
(i.e., computer models), important assessment assumptions, assumptions, and determination determination of of potential  transportation routes. It also presents the results potential transportation                                      results of the assessment. In addition, to aid in the understanding and interpretation of the results, specific areas of uncertainty are describeddescribed with an emphasis on how the uncertainties uncertainties may affect comparisons comparisons of the alternatives.                              -
The risk assessment results are presented presented in this appendix appendix in terms of "per-shipment" "per-shipment" risk factors, as well as given alternative. Per-shipment for the total risks for a given              Per-shipment risk factors provide an estimate of the risk from a singlesingle TPBAR TPBAR or waste shipment. The total risks for a given              alternative are found by multiplying the expected given alternative                                      expected number number of shipments by the appropriate appropriate per-shipment per-shipment risk factors.
E.2 SCOPE OF ASSESSMENT ASSESSMENT The scope of the overland transportation human health risk assessment, includingincluding the alternatives alternatives and options, transportation                                                nonradiological impacts, and transportation transportation activities, potential radiological and nonradiological                              transportation modes considered, considered, is described described below. Additional Additional details of the assessment assessment are provided in the remaining remaining sections of the appendix.
appendix.
Proposed Proposed Action and Alternatives Alternatives The transportation risk assessment        conducted for this environmental assessment conducted                environmental impact statement statement (EIS) estimates estimates the human health risks associated associated with the transportation of TPBARs and waste for a number of alternatives.
Transportation-Related Activities Transportation-Related The transportation transportation risk assessment assessment is limited to estimating the human health risks incurred during overland  overland transportation transportation    for each  alternative.
alternative. The risks to workers or to the public during loading, unloading, and handling prior to or afterafter shipment are not included included in the overland transportation transportation assessment, but are addressed in Appendix D of this EIS. Similarly, the transportation transportation risk assessment assessment does not address possible possible impacts from increased transportation transportation levels on local traffic flow, noise levels, or infrastructure.
E-1
                                                                                                                        &#xa3;-1
 
FinalEnvironmental Final                Impact Statement for Environmental Impact              (Or the Production Production of  Tritium in a Commercial o(Trilium        CommercialLight Water Water Reactor Radiological Impacts For each alternative, radiological radiological risks (i.e.,                                            radioactive nature of the irradiated (i.e., those risks that result from the radioactive                          irradiated TPBARs and waste) are assessedassessed for both incident-free          (i.e., normal) and accident incident-free (i.e.,                    accident transportation transportation conditions.
radiological risk associated with incident-free The radiological                                                  transportation conditions would result from the potential incident-free transportation                                                  potential exposure of people to external radiation in the vicinity of a loaded exposure                                                                          loaded shipment. The radiological radiological risk from from accidents would come from the potential transportation accidents transportation                                              potential release and dispersal            radioactive material into the dispersal of radioactive environment during an accident and the subsequent environment                                        subsequent exposure of people.
radiological impacts are calculated All radiological                                                committed dose and associated health effects in the exposed calculated in terms of committed populations. The radiation populations.          radiation dose calculated calculated is the total effective                equivalent (see 10 CFR 20), which is the effective dose equivalent of the effective sum ofthe    effective dose equivalent from externalexternal radiation exposure and the 50-year committed effective      effective dose equivalent from internal      radiation internal radiation  exposure.      Radiation    doses    are  presented presented  in units of roentgen  equivalent  man (rem) for individuals and person-rem person-rem for fcir collective collective populations.          The  impacts  are  further  expressed  as  health cancer fatalities and cancer latent cancer risks in terms of latent                                cancer incidence in exposed populations using the dose-to-risk    dose-to-risk established by the National conversion factors established                        National Council on Radiation Protection and Measurement          Measurement 1993).
(NCRP 1993).
Nonradiological Impacts NonradiologicaJ In addition to the radiological radiological risks posed by overland transportation                              vehicle-related risks are also transportation activities, vehicle-related nonradiological causes (i.e., causes related to the transport assessed for nonradiological                                                    transport vehicles and not the radioactive radioactive cargo) cargo) .
nonradiological transportation risks, which would be incurred for transportation routes. The nonradiological for the same transportation shipments of any commodity, are assessed for both incident-free similar shipments                                                                  incident-free and accident conditions. The nonradiological risks during incident-free incident-free transportation        conditions would be caused by potential exposure to transportation conditions increased  vehicle exhaust increased vehicle                                      nonradiological accident risk refers to the potential occurrence exhaust emissions. The nonradiological                                                            occurrence ofof accidents that directly result in fatalities unrelated to the shipment of cargo. State-specific transportation accidents                                                                                                State-specific transportation fatality rates are used in the assessment. Nonradiological    Nonradiological risks are presented in terms of          of estimated fatalities.
Transportation Modes Transportation      Modes shipments to the reactors are assumed All shipments                                                                      transportation modes. Additionally, assumed to take place by truck transportation                          Additionally, dedicated rail shipments are considered from the commercialcommercial light water reactor (CLWR) sites to the U.S. Department        Department Savannah River Site.
of Energy (DOE) Savannah Receptors Transportation-related                calculated and presented separately for workers and members of the general Transportation-related risks are calculated                                                                                    general workers considered are truck or rail crew members involved in the actual public. The workers                                                                                  actual overland transportation.
includes all persons who could be exposed The general public includes                                            exposed to a shipment while it is moving or stopped    stopped populations of exposed people and for the hypothetical collective populations en route. Potential risks are estimated for the collective                                                                hypothetical For incident-free operation, maximally exposed individual. Forincident-free                                        maximally exposed operation, the maximally                    individual would be an exposed individual                an shipment for 30 minutes. For accident conditions, the maximally exposed individual stuck in traffic next to the shipment                                                                              exposed individual would be an individual located 33 meters (105              (l05 feet) directly      downwind from the accident. The directly downwind collective population risk is a measure of the radiologicalradiological risk posed to society society as a whole by the alternative alternative collective population risk is used as the primary means of comparing being considered. As such, the collective                                                                          comparing various various alternatives.
E-2
&#xa3;-2
 
Appendix Appendix E - Evaluation  of Human Health Evaluation o[Human    Health Effects of Overland Transportation o[Ovefiand  Transportation E.3  PACKAGING AND PACKAGING      AND REPRESENTATIVE REPRESENTATIVE SHIPMENT CONFIGURATIONSCONFIGURATIONS Regulations that govern the transportation of radioactive radioactive materials are designed to protect the public from the potential loss or dispersal of radioactive materials, materials, as well as from routine radiation doses during transit. The primary regulatory regulatory approach approach to promote safety is through the specification of standards for the packaging        packaging ofof radioactive radioactive materials. Because Because packaging packaging represents the primary barrier between the radioactive  radioactive material being transported and radiation radiation exposure to the public and the environment, packaging requirements are an important          important consideration consideration for transportation transportation risk assessment. Regulatory Regulatory packaging requirements requir:ements are discussed briefly below and in Chapter 6. 6. The representative representative packaging packaging and shipment configurations assumed for this EIS also are described below.
E.3.1  Packaging Overview E.3.1 Packaging      Overview Although Although several Federal and state organizations organizations are involved involved in the regulation of radioactive waste transportation,  primary transportation, primary      regulatory  responsibility  resides  with    the u.s.
U.S. Department Department of Transportation and the U.S. Nuclear Regulatory Commission Commission      (NRC). All transportation transportation    activities must take place in accordance with the applicable regulations of these agencies as specified in 49 CFR 173 and 10 CFR 71.                    71.
Transportation Transportation packaging for small quantities of radioactive  radioactive materials must be designed, constructed, and          and maintained maintained to contain contain and shield their contents during normal transport conditions. For large quantities and                and for more highly radioactive radioactive material, such as TPBARs or spent nuclear fuel, they must contain and shield their contents in the event of contents                  of severe  accident conditions. The type of packaging severe accident                                    packaging used is determined determined by the total radioactive radioactive hazard presented presented by the material material within the packaging. Four basic types of packaging    packaging are used:
: Excepted, Excepted, Industrial, Type A, and Type B. Another packaging      packaging option, "Strong, "Strong, Tight,"
Tight," is still available for some domestic shipments.
Excepted Excepted packages packages are limited to transporting materials materials with extremely low levels of radioactivity:
radioactivity. Industrial packages packages* are used to transport transport materials that,      because of their low concentration th*at, because                    concentration of radioactive radioactive materials, present present a limited hazard to the public and the environment. Type A packages        packages are designed designed to protect protect and retain their contents under normal normal  transport    conditions conditions    and  must    maintain    sufficient  shielding    to limit radiation radiation exposure exposure    to  handling    personnel' handling personneL These packages are used to transport radioactive        radioactive materials with higher concentrations concentrations or amounts of radioactivity radioactivity than Excepted Excepted or Industrial Industrial packages. Strong, Tight packages packages are used in the United States for shipment of certain materials with low levels of radioactivity, such as natural                natural uranium uranium and rubble from the decommissioning decommissioning of nuclear reactors. Type B packages      packages are used to transport transport material with the highest radioactivity        levels and are described in more detail in the following sections.
radioactivityJevels E.3.2 Regulations Applicable to Type      Type B Casks Regulations Regulations for the transport of radioactive radioactive materials in the United States are issued by the U.S. Department    Department of Transportation Transportation and are codified in 49 CFR 171-178. 171-178. The regulation authorityauthority for radioactive radioactive materials materials transport transport isis jointly jointly shared shared byby the the U.S. Department of Transportation U.S. Department          Transportation and  and the the NRC.
NRC. As outlined in a 1979 Memorandum Memorandum of Understanding Understanding with the  the NRC, the U.S. Department Department of Transportation Transportation specifically specifically regulates the carriers carriers of spent nuclear fuel and the conditions of transport, such as routing, handling and storage, and vehicle and driver requirements:-
requirements:. The U.S. Department Department of Transportation also regulates    regulates the labeling, classification, and marking of all spent nuclear fuel packages. The NRC regulates the packaging and transport of spent nuclear nuclear fuel for its licensees, which include        commercial shippers include commercial        shippers of spent nuclear fuel. In addition, NRC sets the standards standards for packages packages containing containing fissile materials materials and spent nuclearnuclear fuel.
DOE DOE policy policy requires requires compliance compliance withwith applicable    Federal regulations applicable Federal      regulations regarding regarding domestic      shipments of domestic shipments          spent of spent nuclear  fuel. Accordingly, nuclear fuel. Accordingly, DOE has        adopted the has* adopted    the requirements requirements of    of 10 CFR 71, 71, "Packaging "Packaging of Radioactive Material Material forfor Transport Transport and and Transportation Transportation of  of Radioactive Radioactive Material Material Under        Certain Conditions,"
Under Certain        Conditions," and and E-3 E-3
 
Final                      Statementfor Environmental Impact Statement FinalEnvironmental                          Production o{Tritium for the Production                CommercialLight Water Reactor of Tritium in a Commercial 49 CFR 171-178, 171-178, "Hazardous "Hazardous Material Material Regulations."                                            certificate of compliance Headquarters can issue a certificate Regulations." DOE Headquarters for a package to be used only by DOE and its contractors.
E.3.2.1 E.3.2.1 Cask Design Regulations Regulations nuclear fuel is transported in robust Type B transportation Spent nuclear                                                      transportation casks that are certified for transporting radioactive radioactive materials. Casks designed and certified for spent nuclear fuel transportation within the United States must meet the applicable applicable requirements requirements of the NRC for design, fabrication, operation,  operation, and maintenance maintenance contained in 10 CFR 71.
as contained                    71.
Cask design and fabrication fabrication can only be done by approved  approved vendors vendors with established quality assurance assurance programs programs (10  (10 CFR 71.101).        Cask and component suppliers or vendors are required to obtain and maintain 71.1 0 1). Cask                                                                                maintain documents that prove the materials, processes,                      instrumentation, measurements, final dimensions, and processes, tests, instrumentation, cask operating      characteristics meet the design-basis established in the Safety operating characteristics                                                          Safety Analysis Report for Packaging Packaging for the cask and that the cask will function as designed.
Regardless of where where a transportation cask is designed, fabricated, or certified for use, it must meet certain          certain minimum performance            requirements (10 performance requirements        (10 CFR 71.71-71.77).
71.71-71.77). The primary function ofa        of a transportation transportation cask cask containment and shielding. Casks similar to the designs being considered for TPBARs have been is to provide containment                                                                                                      been used to transport spent nuclear fuel for many years. RegulationsRegulations require that casks must be operated, inspected, and maintained                standards to ensure their ability to cOIltain maintained to high standards                                      contain their contents.
contents in the event of a transportation accident (10(10 CFR 71.87). There are no documented  documented cases of a release release of radioactive materials from spent nuclear fuel shipments, even though thousands of shipments have been made by road, rail, and water transport.
Further, a number of obsolete casks have been tested under severe            severe accident conditions conditions to demonstrate demonstrate their their adherence adherence      to  design  criteria,  without without  failure. Such  tests have    demonstrated demonstrated    that transportation transportation casks are fabricated not only to a very high factor of safety; they are even sturdier than required.
Transportation casks are built of heavy, durable structural materials, Transportation                                                                                              steel. These materials materials, such as stainless steel.
must ensure cask performance performance under a wide range of temperatures temperatures (10  (10 CFR 71.43). In addition to the structural materials, shielding is provided to limit radiation levels at the surface        surface and at prescribed prescribed distances surface of transportation from the surface        transportation casks (10 (10 CFR 71.47). Shielding typically consists of dense material, such as lead or depleted depleted uranium. The design for a TPBAR cask is less challenging        challenging than the design for a spent nuclear fuel cask because because the spent nuclear nuclear fuel cask mustmust address additional additional requirements requirements of criticality control and neutron shielding. Additionally, spent fuel rods are more radioactive, and the effect of the radioactivity is significantly significantly greater greater for spent fuel rods than tritium rods. The cask cavity can be configured  configured to hold various various contents, including including irradiated TPBARs or irradiated hardware. The assemblies are supported                supported by internal structures, called called baskets, that provide shock ~d    and vibration resistance and establish minimum spacing and heat transfer to maintain the temperature temperature of the contents within the limits specified  specified in the Safety Analysis Report for Packaging.
Packaging.
DOE is currently evaluating its approach to procuring    procuring -transportation transportation packages packages and/or services. DOE will specify the requirements requirements    for  packages packages    in  great  detail. As  of  publication  of this document, it has not beenbeen determined whether an existing existing Type B package will be modified to handle TPBARs        TPBARs or a new packagepackage will will be designed. The level of safety    safety will be the same in either case. The choice    choice will be based on the ability to  to economically economically meet the CLWR    CLWR program program requirements.
requirements. Typical Type B packages    packages are shown in Figures E-1  E-l and E-2.
&#xa3;-4 E-4
 
Lower Impact Umiter Neutron Shield Tank Cask Inner Ud Upper Impact Umiter Figure Figure E-1 E-l Typical Typical Type Type B Legal Legal Weight Weight Track Shipping Cask Cask
 
Lower Cavity Valve Box Valve  Box Neutron Shield Expansion Tanks Neutron Shield Valve Boxes Cask Closure Neutron Shield Head Expansion Tanks 0,
rugatd Stel Stinles    0 uter acke      hieling c
Corrugated Stainless Steel Outer Shielding Jacket Neutron Shield (Fluid Annulus)
Stainless Steel Outer Shell Impact Fins      Removable Removable Fuel Basket Fuel Basket Figure E-2 Typical Typical Type Type B B Rail Shipping    Cask Shipping Cask
* Appendix    ~'Evaluation orHuman Appendix E -Evaluation  of Human Health Health Effects brOverland ofO erland Transportation Transportation Finally, to limit impact impact forces and minimize damage  damage to the structural        components of a cask in the event of a structural components transportation accident, impact-absorbing impact-absorbing structures may be attached                      exterior of the cask. These are attached to the exterior usually composed of balsa wood, foam, or aluminum honeycomb designed to readily deform                  deform to absorb impact impact energy. All of these components components are designed to work together in order to satisfy the regulatory requirements    requirements for a cask to operate operate under normal conditions                transportation and maintain its integrity in an accident.
conditions of transportation Certification E.3.2.2 Design Certification certification, transportation casks must be shown For certification,                                            shown by analysis and/or testing to withstand  withstand a series of of hypothetical accident conditions. These hypothetical                              These conditions conditions have been been internationally intemationally accepted          simulating damage accepted as simulating transportation casks that could occur in most reasonably foreseeable to transportation                                                            foreseeable accidents. The impact, fire, and      and water-immersion tests are considered water-immersion                considered in sequence                              cumulative effects on one package. These sequence to determine their cumulative described in Figure E-3. The NRC issues accident conditions are described accident                                                                              regulations, 10 CFR 71, issues regulations,                71, governing governing the transportation of radioactive transportation      radioactive materials          addition to the tests shown in Figure E-3, the regulations affecting materials.... In addition                                                              affecting Type B casks require              transportation cask with activity greater th~m require that a transportation                                        than 101066 Curies (which is applicable to irradiated TPBARs) be designed and constructed so that its undamaged irradiated                                                                                containment system would withstand ,
undamaged containment pressure of 290 pounds per square inch, or immersion in 200 meters (656 feet) of water, for an external water pressure a period of not less than one hour without collapse, buckling, or allowing        allowing water to leak into the cask.
certification program, Under the Federal certification                              B packaging design must be supported by a Safety program, a Type Bpackaging                                                  Safety Analysis Analysis Packaging, which demonstrates Report for Packaging,                demonstrates that the designdesign meets Federal packaging packaging standards. The Safety Packaging must include a description of the proposed Analysis Report for Packaging Analysis                                                                          proposed packaging          sufficient detail to packaging in sufficient packaging accurately and provide the basis for evaluating its identify the packaging                                                                its design. The Safety Safety Analysis Report Packaging must provide the evaluation of the structural design, materials for Packaging                                                                    materials properties,    containment boundary, properties, containment    boundary; criticality control, and present the operating procedures, shielding capabilities, and criticality                                                                        acceptance testing, procedures, acceptance maintenance      program, and the quality assurance program maintenance program,                                            program to be used for design and fabrication. Upon completion    of  a  satisfactory  review satisfactory review    of  the Safety    Analysis                  Packaging to verify compliance to the Report for Packaging Report regulations, a Certificate of Compliance is issued.
E.3.2.3 Transportation          Regulations Transportation Regulations transportation cask is properly prepared To ensure that the transportation To                                                              prepared for transportation, trained technicians perform numerous inspections and tests (10 numerous                              (10 CFR 71.87). These tests are designed designed to ensure that the cask components assembled and meet leak-tightness, properly assembled are properly                                                thermal, radiation, leak-tightness, thermal,                        contamination limits before shipping radiation, and contamination radioactive material. The tests and inspections are clearly identified in the Safety Analysis Report for radioactive Certificate of Compliance Packaging and/or the Certificate Packaging                                  Compliance for each each cask. Casks can be operated only by registered users who conduct operations in accordance                  documented and approved quality assurance programs meeting accordance with documented                                                                meeting the requirements of the regulatory authorities. Records must be maintained            maintained that document proper cask      cask operations      accordance with the quality requirements operations in accordance                            requirements of 10 CFR 71.91. 71.91. Reports Reports of defects or accidental mishandling must be submitted                                                  Shipper-of-Record for the TPBAR submitted to the NRC. DOE will be the Shipper-of-Record                            TPBAR and waste shipments.
radiation from a package External radiation              package must be below          specified limits that minimize the exposure below specified                                      exposure of handling handling general public. For these types of shipments, the external personnel and the general personnel                                                                          external radiation dose rate during normal maintained below the following limits of 49 CFR 173:
conditions must be maintained transportation conditions transportation                                                                                            173:
10 millirem per hour at any point 2 meters (6.6 feet) from the vertical planes        planes projected by the outer    lateral outer lateral surfaces  of  the  transport  vehicle  (referred  to  as the regulatory    limit  throughout  this  document) surfaces                      vehicle (referred to as the regulatory limit throughout this document)
E-7 E-7
 
FinalEnvironmental Final EnvironmentalImpact Impact Statement Statementfor  the Production for the  Productiono{Tritilim of Tritium in aa Commercial CommercialLight Light Water Water Reactor Reactor Standards for Type B Casks certification by the NRC, a cask must be For certification                                              be shown by test or analysis to withstand a series of accident conditions without releasing its contents.
These conditions have been internationally  internationally accepted as simulating damage to spent fuel accepted casks that could occur in            in most severe credible credible accidents. The impact, fire, and water-immersion tests are considered in          in sequence sequence to determine determine cumulative effects on one package. A their cumulative                                              A separate cask is subjected subjected to a deep water-immersion test. The details of the tests are water-immersion as follows:
Impact Free Drop (a) - The cask drops 30 feet onto a flat, horizontal, unyielding horizontal,    unyielding surface so that itit strikes at its weakest point.
Puncture Puncture (b) - The cask drops 40 inches onto a 6-inch-diameter steel bar at least 8 inches long; the bar 6-inch-diameter                                                      bar strikes the cask at its most vulnerable spot.
Fire (c)
After the impact tests, the cask is totally engulfed in          in a 0 F thermal 11,475
                                        ,475&deg;F              environment environment for 30 minutes.
Immersion (d)
Water Immersion The cask is completely completely submerged submerged underunder at least 3 feet of water for 88 hours. A    A  separate    cask cask is completely completely immersed immersed under under  50  feet  of  water for 8 hours.
Figure E-3E-3 Standards Standards for Transportation Transportation Casks E-8 E-8
 
Appendix Appendix E - Evaluation Evaluation of Human Health Health Effects of Overland Overland Transportation Transportation millirem per hour in any normally occupied position 2 millirem                                              position in the transport vehicle Additional restrictions                                  contamination levels, but these restrictions restrictions apply to package surface contamination                                  restrictions are not important radiological risk assessment. For risk assessment for the transportation radiological                                      assessment purposes,              important to note that purposes, it is important packaging of a given type is designed all packaging                          designed to meet the same performance performance criteria. Therefore, two different Type      designs would be expected to perform Type B designs                                  perform similarly during incident-free incident-free and accident accident transportation conditions.
conditions. The specific specific containers selected selected or designed, however, will determine the total.            total number number ofof shipments shipments necessary to transport transport a given quantity quantity of irradiated TPBARs.
E.3.2.4 Communications E.3.2.4  Communications Proper Proper communication communication assists in ensuring safe preparation    preparation and handling of transportation casks.
Communication is provided Communication          provided  by  labels,  markings,    placarding, placarding, shipping papers,papers, or other documents.
documents. Labels 172.403) applied to the cask document the contents and the amount (49 CFR 172.403)                                                                    amount of radiation      emanating from the radiation emanating cask exterior exterior (transport (transport index). The transport transport index lists the ionizing radiation level (in      (in millirem millirem per year) at a distance of 1 meter (3.3 feet) from the cask surface.
In addition to the label requirements, requirements, markings (49 CFR 173.471) 173.471) should be placed placed on the exterior of the caskcask to show the proper proper shipping name and the consignor and consignee,    consignee, in case the cask is separated separated from its Transportation casks are required original shipping documents (49 CFR 172.203). Transportation                              required to be permanently permanently marked marked with the designation "Type      B," the o~er's "Type B,"        owner's (or falJricator':;;)
fabricator's) name and addr:ess, address, the Certificate Certificate of Compliance number, and the gross weight (10    (10 CFR 71.83).
71.83).
Placards (49 CFR 172.500) 172.500) are applied to the transport vehicle vehicle or freight container holding the transportation transportation cask. The placards placards indicate indicate the radioactive radioactive nature of the contents. IrradiatedIrradiated TPBARs, which constitute constitute a route-controlled quantity highway route-controlled      quantity or "HRCQ,"
                                            "HRCQ," must be placarded placarded according to 49 CFR 172.507. Placards      Placards provide the first responders responders to a traffic or transportation        accident with initial transportation accident              initial information information about the nature      of nature of the contents.
Shipping papers for the irradiated TPBARs should    should contain contain the notation "HRCQ" "HRCQ" and have entries identifying identifying the following: the name of the shipper, emergency emergency response telephone number, description    description of contents, and the shipper's certificate, as described in 49 CFR 172,    172, Subpart C.
In addition, drivers of motor vehicles transporting radioactive material must have training in accordance        accordance with the requirements of 49 CFR 172.700. The training  training requirements requirements include familiarization with the regulations, emergency response information, and the communication emergency                                        communication programs required  required by the Occupational Occupational Safety Safety and Health Administration. Drivers are also required to have training on the procedures            procedures necessary for safe operation of the vehicle used to transport the irradiated irradiated TPBARs TPBARs or hardware.
E.3.3 Ground Ground Transportation Transportation Route Selection Process According to DOE guidelines, guidelines, TPBAR TPBAR and. waste shipments must .comply              comply with both NRC and U.S. Department Department    of  Transportation    regulatory Transportation regulatory        requirements.      NRC      regulations  cover the packaging packaging andand transport of irradiated irradiated  TPBARs      and  waste,  whereas whereas    the  U.S. Department Department      of  Transportation    specifically Transportation specifically regulates the carriers carriers and the conditions of transport, such as routing, handling and storage, and vehicle and driver requirements. The highway routing of nuclear material is systematicallysystematically determined according according to U.S.
Department of Transportation Department        Transportation regulations 49 CFR 171-179    171-179 and 49 CFR 397 for commercial    commercial shipments.
Specific Specific routes cannot be identified publicly in advance for DOE's Transportation      Transportation Safeguards Safeguards Division's Division's shipments because they are classified to protect national security  security interests.
                                                                                                                                &#xa3;-9 E-9
 
FinalEnvironmental Final Environmental Impact Statement Statementifor    Productionof Tritium for the Production    Tritium in a Commercial CommercialLight Water Reactor The U.S. Department Department of Transportation Transportation routing regulations regulations require that shipment of a highway route-controlled route-controlled quantity of radioactive material be transported transported over a preferred preferred highway highway network, including including interstate preference toward interstate system bypasses and beltways around cities and state-designated highways, with preference highways,                                                                                                      state-designated preferred preferred routes. A state or Tribe may designate a preferred route to replace or supplement          supplement the interstate highway highway system in accordance accordance with U.S. Department Department of Transportation Transportation guidelines (DOT 1992). 1992).
Carriers of highway route-controlled route-controlled quantities are required to use the preferred    preferred network unless they are moving from their origin to the nearest interstate interstate highway or from the interstate highway  highway to their destination, are making necessary repair or rest stops, or emergencyemergency conditions conditions render the interstate interstate highway unsafe or  or impassable. The primary criterion criterion for selecting selecting the preferred route for a shipment is travel time. Preferred routing takes into consideration accident rate, transit time population population density, activities, time of day, and day of the week.
The HIGHWAY HIGHWAY computer computer code (ORNL 1993a) is used for selecting highway routes in the United States. The
/
HIGHWAY database is a computerizedcomputerized road atlas that currently currently describes describes about 386,400 kilometers (240,000 miles) of roads. The Interstate Interstate System System and all U.S. U.S. (U.S.-designated) highways highways are completely completely described in the database. In addition, most of the principal state highways      highways and many local and community roads are also identified. The code is updated updated periodically periodically to reflect current road conditions conditions and has been benchmarked against benchmarked      against reported mileages mileages and observations                commercial truck firms. Features observations of commercial                            Features in the HIGHWAY HIGHW    A Y code allow the user to select routes that conform to U.S. Department            Department of Transportation regulations. Additionally, the HIGHWAY code .contains      contains data on the population population densities along Jhe the routes.
The distances and populations populations from the HIGHWAY HIGHWAY code are part of the information used for the transportation impact analysis in this this EIS.
The INTERLINE INTERLINE (ORNL 1993b) computer program, designed to simulate routing of the U.S. rail system, is used for selecting selecting railway routes for the purpose purpose of analysis. The INTERLINE INTERLINE database consists of 94 separate subnetworks subnetworks and represents various competingcompeting rail companies companies in the United States. The database used by            by INTERLINE INTERLINE      was  originally  based originally based    on  Federal Federal    Railroad  Administration Administration      data  and  reflected reflected  the  U.S. railroad system in 1974. The database has since been expanded    expanded and modified over the past two decades. The code is updated periodically periodically to reflect current current track conditions conditions and has been benchmarked benchmarked against reported mileages mileages and observations    of commercial observations commercial        rail firms. The INTERLINE model uses a shortest-routeshortest-route algorithm that finds the minimum impedance path within an individual subnetwork. A separate          separate routine is used to find paths along the subnetworks. The routes selected for this study used the standard assumptions in the INTERLINE        INTERLINE model that simulate the selection selection process that railroads railroads use to direct shipments.
EA4 METHODS EA  METHODS FOR CALCULATING              TRANSPORTATION RISKS CALCULATING TRANSPORTATION                RISKS The overland overland transportation risk assessment assessment method is summarized summarized in Figure E-4. After the EIS alternativesalternatives were identified identified and the goals of the shipping shipping campaign campaign were understood, data was collected on material characteristics and accident characteristics        accident parameters. Accident parameters parameters were largely based on the DOE-funded DOE-funded study of transportation accidents (ANL 1994). 1994).
Representative routes that may be used for the shipment of TPBARs and waste were selected for risk Representative assessment purposes purposes using the HIGHWAY HIGHWAY code. They        They do not necessarily necessarily represent represent the actual routes that would be used to transport nuclear materials. Specific    Specific routes cannot be identified in advance because the routes cannot be finalized until they have been reviewed reviewed and approved by the NRC. The selection of the actual route would be responsive to environmental environmental and other conditions conditions that would be in effect effect or could be predicted predicted at the time of shipment. Such conditions conditions could could include include adverse weather conditions, road conditions, bridge closures, and local traffic problems. For security security reasons, details about a route would not be publicizedpublicized before the shipment.
E-10 E-1O
 
Collective Populations Incident-Free Assessment Individuals Distances/Routes Case Definition
* Site Inventories
* Origin/Destinations Material Characteristics
* Physical            Number of Shipments Accident Risk
* Radiological                                          (Prob X Consequences)
                      ." Packaging Accident Parameters
* Accident Rates                                Accident
* Severity Spectrum                          Assessment
* Meteorology Accident Consequences
("Worst-Case" Accident)
Figure Figure E-4 Overland Overland Transportation Transportation Risk Assessment      Assessment
 
Final                Impact Statement for Environmental Impact FinalEnvironmental                    (or the Production Production of  Tritium in a Commercial o/Tritium                          Water Reactor Commercial Light Water The first analytic step in the ground transportation analysis  analysis was to detennine determine the incident-free incident-free and accident risk factors on a per-shipment basis. Risk factors, as with any risk estimate, are the product of the probability                          of probability of exposure and the magnitude exposure                magnitude of the exposure. Accident risk factors were calculated            calculated for radiological radiological and and nonradiological traffic accidents. The probabilities, nonradiological                                                    whichare probabilities, which      are much lower than one, and the magnitudes of          of exposure exposure were multiplied, yielding very low risk numbers. Incident-free    Incident-free risk factors were calculated calculated for crew crew and public exposure exposure to radiation        emanating from the shipping container (cask) and public exposure to the radiation emanating chemical chemical toxicity of the transportation transportation vehicle vehicle exhaust. The probability probability of incident-free incident-free exposure exposure is unity (one).
For each alternative, risks were                              incident-free transportation were assessed for both incident-free          transportation and accident accident conditions. For thethe incident-free incident-free assessment, risks are calculated calculated for both collective populations populations of potentially potentially exposed individuals individuals and for maximally maximally exposed exposed individuals. The accident assessment    assessment consists of two components:components: (1) a probabilistic probabilistic    accident  risk  assessment    that considers considers    the  probabilities    and  consequences      of  a range of possible transportation    accident transportation accident        environments,      including    low-probability including low-probability accidentsaccidents    that  have  high  consequences consequences and and high-probability high-probability      accidents    that have    low  consequences,      and    (2)
(2)  an  accident    consequence consequence assessment assessment that considers considers only the consequences consequences of the most severe postulated                transportation accidents.
postulated transportation The RADTRAN 4 computer    computer code (SNL 1993b) is used for incident-free  incident-free and accident accident risk assessments assessments to estimate the impacts on populations. RADTRAN 4 was developed                  developed by Sandia National LaboratoriesLaboratories to population risks associated with the transportation calculate population                                        transportation of radioactive radioactive materials materials by a variety of modes, including truck, rail, air, ship, and barge. The Transportation Transportation Incident Incident Center Line Dose (TICLD)  (TICLD) code, run in conjunction conjunction with RADTRAN 4, was used to calculate          calculate the doses to the maximally maximally exposed individuals.
individuals.
The RADTRAN RADTRAN 4 population risk calculations calculations take into account both the consequencesconsequences and probabilities of    of potential potential exposure exposure events. The RADTRAN 4 and TICLD codes consequence            consequence analyses include the cloud shine, ground shine, inhalation, and resuspension resuspension exposures. The collectivecollective population risk is a measuremeasure of the total radiological radiological risk posed to society  society as a whole by the alternative alternative being considered. As such, the collective population population risk is used as the primary primary means of comparing comparing the various alternatives.
alternatives.
E.5 ALTERNATIVES, E.S  ALTERNATIVES, PARAMETERS, PARAMETERS, AND    AND ASSUMPTIONS E.5.1 E.S.l Description of Alternatives Alternatives Four transportation segments were evaluated in this EIS: (1) shipment of fabricated TPBARs                      TPBARs to assembly assembly facilities, (2)              of TPBAR assemblies to each of the CLWRs, (2) shipment ofTPBAR                                              CL WRs, (3) shipment shipment of irradiated irradiated TPBARs TPBARs to the Savannah Savannah River Site, and (4) shipment of irradiated hardware      hardware to a waste waste disposal site.
Transportation Transportation segment 1 involves shipment of nonhazardous, nonradioactive            nonradioactive TPBARTPBAR material in secure commercial commercial containers from TPBAR fabricators to fuel assembly facilities. Candidate              Candidate sites for fabrication of  of the  TPBARs include the TPBARs        include Wilmington, North Carolina (General Electric);          Electric); Hematite, Missouri (Asea Brown-    Brown-Boveri/Combustion          Engineering); and Boveri/Combustion Engineering);              and Columbia, Columbia, South South Carolina        (Westinghouse Electric Corporation).
Carolina (Westinghouse Transportation Transportation segment segment 2 involves shipment of nonhazardous,nonhazardous, nonradioactive nonradioactive TPBAR material in secure commercial commercial      containers,  along  with  new  (fresh,  unirradiated) unirradiated)    reactor  fuel. The impacts of shipping shipping fresh reactor fuel are outside outside    the  scope    of this EIS    and  are  covered    in  NUREG-0170 covered NUREG-O 170                (NRC      1977). Candidate Candidate sites for assembly assembly    of the TPBARs        include  Richland,    Washington      (Siemens Washington (Siemens Power      Power Corporation); Lynchburg, Virginia (Framatome-Cogema Fuels or BWX Technologies, (Framatome-Cogema                                    Technologies, Inc.); Hennatite, Hermatite, Missouri (Asea Brown-Boveri/
Brown-Boveri/
Combustion        Engineering);
Combustion Engineering);              and  Columbia,      South    Carolina      (Westinghouse ElectricElectric Corporation). The transportation transportation impacts of all possible combinations combinations of these facilities have been evaluated. The choice of                  of facilities will be made by DOE using normal      nonnal commercial commercial practices.
E-12
 
Appendix E - Evaluation EvaluationofHuman Human Health Health Effects of Overland Transportation Overland Transportation irradiated TPBARs from the CL Transportation segment 3 involves shipment of irradiated Transportation                                                                          CLWRs WRs to the Tritium Extraction Extraction Facility at the Savannah River Site. The metallic components of the TPBARs    TPBARs will have been activated by the reactor flux, and they will contain the radioactive tritium. Therefore, these TPBARs      TPBARs will be shipped in a Type B cask. This EIS has evaluated the shipment ofTPBARs  of TPBARs by three distinct methods. First, truck-sized truck-sized casks, which hold a single consolidated consolidated assembly, could be transported using legal-weightlegal-weight trucks (one cask cask per truck) on public roads. Second, two truck-sized truck-sized casks could be shipped by dedicated train on rail lines.
Third, rail-sized rail-sized casks, which hold between between 2 and 24 consolidated consolidated TPBAR containers, containers, could be shipped by dedicated train on rail lines. For the purpose of conservative conservative analysis, this EIS assumes that only two consolidated containers will be loaded in a rail-size cask. This assumptionassumption is conservative conservative because putting more than two consolidated assemblies into a cask would decrease decrease the number of shipments, which decreases the incident-free incident-free and traffic accident risks. These risks are dominant contributors of the transportation transportation risk.
The transportation analysis looked at likely implementation implementation approaches for each of the three reactor options.
approaches quantitatively addressed minimum production The approaches                                            production at a single unit (1,000 (1,000 TPBARs per IS-month 18-month fuel cycle) and maximum production at a single unit (3,400 TPBARs per 18-month        i8-month fuel cycle).
Transportation segment segment 4 involves shipment of irradiated hardware from the CL          CLWRs WRs to either the Savannah Savannah River Site or the Barnwell Barnwell disposal facility in South Carolina Carolina for disposal as low-level radioactive waste.
Irradiated hardware includes base plates and thimble plugs removed from the TPBARs at the CLWR                CL WR site.
E.5.2 Representative E.S.2  Representative Routes Representative Representative overland overland truck routes were selected for the shipments to the CL      CLWRs, WRs, the Savannah River Site, and the Barnwell waste disposal facility. The routes were selected  selected consistent with current routing practices practices and all applicable applicable routing regulations and guidelines (DOT 1992). 1992). However, the routes were determined for risk assessment purposes. They do not necessarily represent the actual routes that would be used to transport TPBARs and waste in the future. Specific routes cannot be identified in advance. The representative truck routes are shown in Figure E-5.
E-S. Rail routes, determined          commercial as well as safety determined by commercial                      safety considerations, considerations, are not shown on Figure E-5 for brevity.
Route characteristics characteristics that are important to the radiological risk assessment include the total shipment  shipment distance and the population population distribution distribution along the route. The specific route selected determines both the total potentially            population and the expected frequency of transportation-related potentially exposed popUlation                                                transportation-related accidents. Route characteristics are summarized in Table E-1. E-l. The population population densities along each route are derived from 1990    1990 U.S. Bureau Bureau of Census data. Rural, suburban, and urban areas are characterizedcharacterized according according to the following breakdown:
breakdown: rural population population densities range from 0 to 54 persons per square kilometer (0 to 139 person per square mile); the suburban suburban range is from 55 to 1,2841,284 persons per square kilometer (140    (140 to 3,326 3,326 persons per square mile); and the urban range includes all popUlation population densities greater greater than 1,284 persons per square kilometer kilometer (3,326 persons per s'quare square mile). The exposed population population includes all persons living within 800    SOO meters (0.5 mile) of each side of the road. The exposed exposed population, for the purpose of route characterization characterization and incident-free incident-free dose calculation, calculation, includes includes all persons living within 800 meters (0.5 mile) of each side of the road.                                                '
The preferred route for truck shipments entering the SavannahSavannah River Site is to enter the    t~e site from Jackson, South Carolina, on Route 125 at barricade barricade 7; take Road 3 over to Road 5; go south on Road 5 until reaching    reaching Road 6; go east on RQad Road 6 until reaching F Road; go north on F Road until reaching E              E Road; go north on E Road until reaching Road 4; go north on Road 4 into the H-area;  H-area; and then approach the Tritium Extraction Facility via the local H-area roads. DOE has identified two alternate routes (WSRC 1996):
E413 E e 13
 
Figure E-5 Representative Overland Truck Routes Representative Overland
 
Appendix E E -- Evaluation Evaluationof  ofHuman Human HealthHealthEffects Effects of  ofOverland OverlandTransportation Transportation M'                                                                            .
Table T a hi e EE-1
                                            - 1 PPotential otentIa  , ISh'    Ippmg R Shipping            ou t es E Routes                va ua t ed ffor Evaluated                  or ththee CL  CLWR  WR EIS
  ,'i, , c " ; : F : ; C' ::~;'~~;"::~~~(;"/'~: .' ,.;;1', .  ' 'is;,  1';;~i~;;;i~~~iS~i~;it,.;~;U,;/';;;;~;~:1!,b;ul~~o'~li2~~&#xa5;Itji;:Z~ii~:. " ~/.:,",~," ,;,;C'";)Y:: y:;A:
                                                                                                                                                                                      ""},,h>
Ili;~;~~(f:~".                                                                                                                            .ro~.      '__M.., '"                ." Wii1fib~;!:iJf:
From          . ~..        o          , ' . .... I ]          .Percentages inmZones "," 'G"                        (persons      per square kilometer) perSf!rl&sect;;l!(!r~~ql!/!.re,.1      omeIeri            Af*f*eted
            ,~" "
        ,From; From_____ '.' i',>
TO______
::(Allf~~l:'llf~/<':
Distance
                                            ,P,(IfRo11!,~ters);
Ykilomdeers)
                                                                          ,~~'",~ ,'~ :>.,\ ~ "e/>/; ",J' >.:~-f:>;':-', x':
Rural    :Suliur~an:;:lJ.rb,awRur(il::i:S~~ili~9n'il~;'
bua
:.,1/    ,:,".>: ~:",f;'\,~i<ki>>f~)e~,
Popuatio Rurl;Sbrn DefstycitZon'>'~',"; .:"
Urban          "~~~r~:~
JPersons Truck Routes Watts Bar Watts                        Savannah River Savannah Nuclear Plant                  Site Site                          574.5 574,5        61.7                  34.9                3.4            18.1 18.1              349.7        2,195.3            191,000 Sequoyah                      Savannah River Savannah Nuclear Plant Nuclear                      Site Site                          498.9        55.0                  40.6 40.6                4.4            16.8 16.8              373.0        2,157.4            204,000 Bellefonte Bellefonte                    Savannah River Savannah    River Nuclear Plant Nuclear                      Site Site                            560.0 560.0        61.7                  34.5 34.5                3.8            16.7 16.7              358.4        2,158.0            193,000 193,000 Wilmington, NC  NC Columbia, Columbia, SC                  513.4 513.4        72.3                  27.2 27.2                0.4            19.9 19.9              229.3        1,764.7              69,000 Wilmington, NC Hematite,      Hematite, MO                1,673.7 1,673.7        70.8                  28.3 28.3                0.8            14.1 14.1              294.9        2,229.9            298,000 298,900 Wilmington, NC Lynchburg, V                VAA            577.7        83.0                  16.1                0.7            14.4                188.7        2,276.9              54,000 Wilmington, NC Richland, W                WA A            4,787.7          82.7 82.7                  16.1                1.2            7.4 '              329.5        2,169.9            653,000 653,000 Columbia, SC                Lynchburg, V  VAA              595.4        70.0                  28.7                1.3            16.9              296.5        2,037.7            118,000 Columbia, SC                Richland, W  WA A            4,451.3        85.7                  13.1                1.2            6.7                336.5        2,146.8            538,000 538,000 Hematite, MO                  Columbia, SC                1,33,7.3 1,337.3        77.8                  21.3                0.9            12.7                286.4        2,134.2            193,000 193,000 Watts Bar Hematite, MO                Nuclear Plant                  917.3        83.0                  16.2                0.8            12.2 12.2              253.1        2,321.9            102,000 102,000 Watts Bar Lynchburg, VA                Nuclear Nuclear Plant                  614.8        69.6                '29.6 29.6                0.8            18.7              276.3        2,028.9            109,000 109,000 Watts Bar Columbia, SC                Nuclear Nuclear Plant                  552.0        70.0                  29.1                0.9            14.2              297.0        1,856.0 1,856.0            100,000 100,000 Watts Bar Richland, WA  WA            Nuclear Nuclear Plant                4,031.3        87.7                  11.0 11.0                1.2            6.2                340.7        2,174.7 2,174.7            445,000 445,000 Sequoyah Sequoyah Hematite, MO                Nuclear Nuclear Plant                  836.8        79.2                  19.9 19.9                1.0            13.0              280.2        2,297.9            119,000 119,000 Sequoyah Lynchburg, VA                Nuclear Nuclear Plant                  729.0 729.0        64.7                  34.2                1.1            19.3                302.4        1,967.3            160,000 160,000 Sequoyah Columbia, SC                Nuclear NuClear Plant                  597.1        57.1                  39.5                3.4            16.0                348.2        2,110.6 2,110.6            209,000 209,006 Sequoyah Richland, WA                Nuclear Nuclear Plant                3,950.8 3,950.8        87.0 87.0                  11.7 11.7                1.3            6.2                347.2 347.2        2,173.3 2,173.3            469,000 469,000 Bellefonte Bellefonte .                                                                .  ,
Hematite, MO                Nuclear Nuclear Plant                  811.1 811.1        82.0                  17.1 17.1                0.9            13.0                266.4        2,313.2            100,000 100,000 Bellefonte Bellefonte Lynchburg, VA LYnchburg,                  Nuclear Nuclear Plant                  790.2 790.2        68.8                  30.3                0.9            18.9              287.8        1,950.5 1,950.5            149,000 149,000 Bellefonte Bellefonte Columbia, SC  SC            Nuclear Nuclear Plant                  658.2 658.2        62.6                  34.4 34.4                3.0            16.0              334.7        2,109.6 2,109.6            198,000 198,000 Bellefonte Bellefonte Richland, WA Richland,                    Nuclear Nuclear Plant                3,925.1 3,925.1        87.6                  11.1 11.1                1.3            6.2                347.0        2,173.8            453,000 453,000 Watts Bar Nuclear Nuclear Plant Plant            Barnwell, Barnwell, SC                  632.5 632.5        62.9                  34.3
                                                                                              **34)                  2.8 2.8            16.5                342.3        2,145.2 2,145.2            190,000 190,000 Sequoyah Sequoyah Nuclear Nuclear Plan*
Plan            Barnwell, Barnwell, SC                  556.8 556.8        57.0                  39.3 39.3                3.7 3.7          -14.9
                                                                                                                                    '14.9                364.0        2,110.7 2,110.7            205,000 205,000 Bellefonte Nuclear Nuclear Plant                Barnwell, Barnwell,SC  SC                618.0 618.0        62.9                  33.9                3.2 3.2            15.2 15.2                350.1 350.1        2,109.8 2,109.8            194,000 194,000 E-15 E- 15
 
Final FinalEnvironmental EnvironmentalImpact Impact Statement Statementfor    for the theProduction Production of  Tritium in o[Tritium  inaa Commercial CommercialLightLight Water Water Reactor Reactor Density~in
: ,                                  PopUlaion Populat;gn Density        in Zone' Zone " Nu)mber of, Per  cetag'
                                                                                      ,'  e ,iZones
                                                                                                  ",                  personspersquarekildomet,
:(person~'per,;squa,.e~ilo~eter), ' IXi!,,!b~rofi
        ,,\"
                                                    't::"    ~o ~  >      ~Perceniagesin Zoties,            ,;,
Fro-m
                                                  , Distance D[;iilnce                                          r"              r..                            ..    'Affected Aff~cted To            (kilometers)                          ubub                                      brban            Urban" F~om                    to        "
(kilometers), 'RJr,al Suburba~                    Urban          Rural      Suburban'          Urban          Persoins Persons' .-
Rail Routes Rail      Routes Watts Watts Bar  Bar          Savannah Savannah River River Nuclear Nuclear PlantPlant      Site Site                            668.2 668,2            62.4 62.4            36.2 36,2        1.3 1.3        14.1 14.1          269.0 269,0        2,091.1 2,09\'\        143,000 143,000 Sequoyah Sequoyah                Savannah SavannahRiverRiver Nuclear Nuclear PlantPlant      Site Site                            611.9 611.9            60.5 60.5            38.0 38.0        1.4 1.4        14.3 14.3          271.4 271.4        2,091.1 2,09\'\        138,000 138,000 Bellefonte Bellefonte              Savannah Savannah River River Nuclear Nuclear PlantPlant      Site Site                            675.9 675.9          63.3 63.3          35.4 35.4        1.2 1.2        14.0 14.0          268.8 268,8        2,091.1 2,091.1        140,000 140,000 Assuming Assuming that  that the the newly newly completed completedbridge        bridge modification modification on    on Road Road FF isis adequate adequate to    to handle handle trucks, trucks, enter enter thethe site site from from Jackson, Jackson, SouthSouth Carolina, Carolina, on      on RouteRoute 125125atat barricade barricade 7.7. Take Take RoadRoad 33 overover to  to Road Road 5. 5. Go Gonortheast northeast on on Road Road 55 until until reaching reaching CC Road. Road. Go        Go north north on  on CC Road Road until until reaching reaching Road    Road 4. 4. Go Go northeast northeast on  on Road Road 44 into into thethe H-area, H-area, and  and approach approach the    the Tritium Tritium Extraction Extraction Facility Facilityviavia the the local local H-area H-area roads.roads.
Assuming Assuming that  that the the newly newly completed completed bridge      bridge on  on Road Road FF isis adequate adequate to    to handle handle trucks, trucks, enter        the site enter the    site from from thethe North      on  Route      19  through      barricade            2. Take    road    2  to  F North on Route 19 through barricade 2. Take road 2 to F Road. Go south on F Road until reaching  Road.        Go    south    on    F  Road    until  reaching Road Road4.4. Go  Go southeast southeast on  onRoad Road44 into  into the    the H-area, H-area, andand approach approach the  the Tritium Tritium Extraction ExtractionFacilityFacilityviavia the the local local H-area      roads.
H-area roads.                                                                                '
The The differences differences in    in the the risk risk ofofthe the three three possiblepossible routes routes were were evaluated evaluated to    to be be much much less  less than than thethe significant significant figures        shown    on  the  risk  estimates.
figures shown on the risk estimates. Final                  Finaldetermination determinationof      ofroute routedetails details isis an  an operational operational decision decision to to bebe made made atat the the timetime ofofshipment.
shipment.
IfIfrail rail transportation transportation isisthe  the chosen chosen mode,mode, the      the preferred preferred rail  rail system system isis to  to use use existing existing Savannah Savannah River  River Site Site rails rails and and railspurs.
railspurs. The  The Savannah Savannah River  River Site Site would would use  use anan existing existing 300-ton 300-ton Manitowoc Manitowoc portable  portable crane crime at at the the end end of    the ofthe rail  rail spur spurtoto transfer transferthe the casks casks from  from the    the rail rail car cartoto trucks.
trucks. TheThe trucks trucks wouldwould travel travel the the quarter quarter mile mile to to the the Tritium Tritium Extraction Extraction Facility.
Facility. AA railspurrailspur terminal  terminal support support facility facility may  may be be required required to    to support support thisthis crane.
crane.
Construction Construction impact    impact estimates estimates (if  (ifconstruction construction isis required)  required) are  are not not available available atatthis  this time time (WSRC (WSRC 1996). 1996).
The The Bellefonte, Bellefonte, Watts Watts Bar,Bar, andand Sequoyah Sequoyah Nuclear      Nuclear Plants Plants currently currently have  have cranes cranes thatthat could could handle handle 125-ton l25-ton casks,        although    Sequoyah      is currently        downgraded              to 80  tons  and  load casks, although Sequoyah is currently downgraded to 80 tons and load testing would be required to restorethe      testing    would      be  required    to restore      the rating rating to    to the the design design capacity capacity of  of125125 tons.
tons. Large  Large caskcask handling handling has  has notnot been been addressed addressed in    in detail detail atat any any ofofthe the
: sites, sites, so    so regulatory, regulatory, structural, structural, and  and spacial spacial issues  issues must must be  be evaluated evaluated before  before railrail transportation transportation could  could be  be implemented.
irriplemented.
E.5.3 E.5.3 MaterialMaterialInventory Inventory The The amount amount of  ofhazardous hazardous material material in    in aa package package isis called called the the inventory.
inventory. ItIt refers  refers toto the the material material available available for  for release release in    inanan accident accident scenario.
scenario. Inventory Inventoryestimates    estimates for  for the the materials materials shippedshippedare  are given givenbelow.
below.
Low-Level Low-Level RadioactiveRadioactiveWaste    Waste DOE DOE assumes  assumes 24  24 TPBARs TPBARs per    perproduction production assembly. assembly. Irradiation Irradiation of  ,of3,400 3,400 TPBARs TPBARs per      per 18-month 18-month fuel  fuel cycle cycle would would generate generate 141 141 hold-down hold-down assemblies assemblies (see        (see Appendix Appendix A,    A, Figure Figure A-12). A-12). TheseThese hold-down hold-down assemblies assemblies would would be      be discarded discarded as  as low-level low-level radioactive radioactive waste. waste. The  The low-level low-level radioactive radioactive waste waste volumevolume isis estimated estimated toto be    about      0.43  cubic    meters    (15    cubic      feet) be about 0.43 cubic meters (15 cubic feet) per year (WEC 1998).          per  year  (WEC      1998).
E-16 E-16
 
Appendix E - Evaluation Appendix          Evaluation of Human    Health Effects of Human Health        of Overland  Transportation Overland Transportation "generic legal weight truck waste cask" with a usable cavity measuring Use of a "generic                                                                                  measuring 18 inches in diameter by inches long would result in about two shipments 144 inches                                                  shipments per year. However, achieving perfect                            efficiency perfect packing efficiency of these wastes is not realistic, and this estimate        estimate must be expanded. DOE estimates that the annual waste shipments will be a minimum of two and a maximum of eight.
shipments
. Pacific Northwest National Laboratory  Laboratory provided source terms for 16 thimble plugs, which              which are equalequal to about 1,500 grams of irradiated irradiated hardwarehardware (PNNL 1998). Using the above information, which                    which was chosen to conservatively estimate the amount of irradiated hardware, each shipment will carry about 56 kilograms conservatively                                                                                                                    kilograms ofof irradiated hardware. The thimble plugs are more highly irradiated than other hardware,                  hardware, so use of the data from thimble                conservative. Table E-2 lists the derived source term used for the purpose of analyzing thimble plugs is conservative.                                                                                                        analyzing low-level radioactive radioactive waste transportation transportation risks. Further analysis,analysis, using final design information information and actual irradiation schedules, will be used to verify that the concentration    concentration of radionuclides does not exceed    exceed the Class C limits of 10 CFR 61. 61. The regulatory limit dose rates were assumed                            low-level radioactive assumed for low-level        radioactive waste shipments.
TPBARs Northwest National Laboratory Pacific Northwest                      Laboratory determined determined the radionuclide inventory and decay heat for the Lead            Lead Test Assembly TPBARs at reactor    reactor discharge and for decay      decay times ranging from 7 days to 10 years following reactor discharge (PNNL 1998). Table E-2 shows the TPBAR radionuclide                radionuclide inventory, with a decay time of 30            3'0 days used for the analysis. The inventory includes          includes tritium and other irradiated components components associated with the cladding, liner, liner, getter, and other structures structures within a TPBAR. The latter is collectively  collectively called    nontarget-bearing called nontarget-bearing components.
Crud The crud inventory inventory assumed assumed to be available for release from TPBARs          TPBARs is shown  shown in Table E-2 with a 30-day
.decay decay time following reactor    reactor discharge in units of Curies/TPBAR. CurieslTPBAR. The crud inventory    inventory has been very conservatively conservatively bounded using worst-case    worst-case measurements measurements of crud from pressurized pressurized water reactor spent        nuclear spent nuclear fuel (SNL 199Ia).
1991 a).
Table T  a bl e E-2 E - 2 Irradiated I rra d"la t ed Hardware H ar d ware and      TPBAR Inventory an d TPBARI      . nventory Lo~Leve/ Radfoac/{ve Waste' Low-LevelRadioactive          Waste          ,.  'TPBAR TPBAR.&#xfd;:'."% "                . TPBAR Crud-,
Crud'
                          , ,: " ,~ '. ',. (C~ries Nuclide Nuclide                                  per shipment)
(Curiesper    shipment)"< '            '(Curiesper
                                                                                  "(Curies      TPBAR),
perTPBAR)'            . (Curies
                                                                                                                  ".  (Curiesper    TPBAR) p'erTPiARj Tritium Tritium                                                                        9,600-9,600' Carbon-14 Carbon-I 4                                0.0000042 0.0000042                                0.0095                              NA NA Chromium-51 Chromium,S I                                30,000                                  300                                0.21 Manganese-54 Manganese-54                                  2,700                                    23                                0.4 0.4 Iron-55                                  14,000 14,000                                    120 120                              NA NA Iron-59                                    890                                    7.5                              0.21 Cobalt-58                                  3,400                                    66                                1.2 1.2 Cobalt-60                                  3,500                                    33                              0.15 0.15 Zinc-65 Zinc~65                                  0.000038                                0.0015 0.0015                              NA NA Zirconium-89 Zirconium-89                                0.000029                              0.0000022 0.0000022                              NA NA Zirconium-95 Zirconium-95                                  0.04                                    31                              0.029 Niobium-95                                    8.1                                    .39                              NA Molybdenum-99 Molybdenum-99                                  2.6                                    0.19                              NA NA Ruthenium- 103 Ruthenium-I    03                              0.014                                0.0010                              NA failedTPBAR, a value of 1.15 x 10'
* For a failed'TPBAR,                              10' Curies of tritium (1.2 (1.2 grams of tritium) per TPBAR is used for analytic consistency.
NA == Not available available E-17
                                                                                                                                              &#xa3;-17
 
FinalEnvironmental Final              Impact Statement for Environmental Impact          for the Production    Tritium in a Production of Tritium    a Commercial Commercial Light Water Water Reactor E.5.4 External Dose Rates E.S.4 Cask design for irradiated TPBARs and cask selection                        low-level radioactive waste are not complete.
selection for low-level However, even though                                    irradiated, the container external dose rate is not as high as the though the hardware is highly irradiated,                                                                    the regulatory limits. For the purposes of analysis, it is con~ervative regulatory                                                          conservative to assume              TPBAR and low-level assume that TPBAR            low-level radioactive                      external dose rates are equal to regulatory radioactive waste container external                                      regulatory limits.
E.5.5    Health Risk Conversion E.S.S Health            Conversion Factors The health risk conversion                        estimate expected cancer conversion factors used to estimate                      cancer fatalities were: 0.0005 and 0.0004 fatal cancer cases cancer              person-rem for members of the public and workers, respectively cases per person-rem                                                          respectively (NCRP      1993).
(NCRP 1993).
E.5.6    Accident Involvement E.S.6 Accident      Involvement Rates For the calculation      accident risks, vehicle calculation of accident                    accident and fatality rates are taken from data provided vehicle accident                                                                other provided in other reports (ANL 1994). AccidentAccident rates are generically defined defined as the number of accident accident involvements (or  (or fatalities) in a given year per unit of travel in that same year. Therefore,  Therefore, the rate is a fractional value, with accident-involvement count as the numerator accident-involvement                      numerator of the fraction and vehicular activity    activity (total        distance in (total travel distance    in railcar-kilometers) as its denominator. Accident truck-kilometers or railcar-kilometers) truck-kilometers                                                            Accident rates are generally generally determined determined for a J:llulti~year              assessment purposes, the total number of expected accidents multi-year period. For assessment                                                                                      calculated accidents or fatalities is calculated multiplying the total shipment distance by multiplying                                                                      appropriate accident or fatality rate.
distance for a specific case by the appropriate presented are specifically for heavy combination trucks involved For truck transportation, the rates presented                                                              involved in interstate commerce (ANL 1994). Heavy combination commerce                              combination trucks are rigs composed of a separable                            containing separable tractor unit containing connected to each other. Heavy combination trucks are typically engine and one to three freight trailers connected the engine radioactive waste shipments. The truck accident used for radioactive                                                              computed for each state based on statistics accident rates are computed                                  statistics Transportation Office of Motor Carriers Department of Transportation compiled by the U.S. Department                                                                                      Saricks and Carriers from 1986 to 1988. Saricks        and Kvitek present accident        involvement and fatality counts; estimated accident involvement                                estimated kilometers of travel by state; and the average accident corresponding average corresponding                          involvement, fatality, and injury rates for the three years investigated. A accident involvement, caused by an accident is the death of a member of the public who is killed instantly or dies within 30 fatality caused                                                                                                                  30 days due to the injuries sustained sustained in the accident.
accident rates are computed and presented similarly to truck accident rates (ANL 1994). The state-Rail accident                                                                                                                state-involvement and fatality rates are based on statistics compiled by the Federal Railroad accident involvement specific rail accident Administration Administration from 1985 to 1988.                accident rates include both main line accidents 1988. Rail accident                                          accidents and those occurring occurring accident rates used in this assessment were computed using the important to note that the accident in railyards. It is important universe          interstate heavy combination truck shipments, independent universe of all interstate                                                independent of shipment cargo. The cited report points points out that shippers                        radioactive material generally have a higher than average shippers and carriers of radioactive                                                      average awareness awareness of transport risk and prepare cargoes and drivers for such shipments                        accordingly (ANL shipments accordingly        (ANL 1994). This preparation should have a twofold effect preparation                                                    component/equipment failure and mitigating effect of reducing component/equipment                          mitigating the human error contribution to accidents. These effects were not given credit        credit in the accident accident assessment.
E.5.7 Container E.S.7    Container Accident                    Characteristics and Release Fractions Accident Response Characteristics E.5.7.1 Development of Conditional Probabilities E.S.7.1 The Modal Study was the result of an initiative taken by the NRC            NRC (NRC 1987)                          precisely the 1987) to refine more precisely analysis presented          NUREG-0170 presented in NUREG-O        170 (NRC (NRC 1977)1977) for spent nuclear fuel shipping casks. Whereas        Whereas the NUREG-0170 NUREG-0170 analysis was primarily performed      performed using best engineering              judgments and presumptions engineering judgments sophisticated structural concerning cask response, the Modal Study relies on sophisticated concerning                                                                        structural and thermal engineering engineering analysis E-18 11
 
Appendix E - Evaluation Evaluation of Human Human Health                        Transportation Overland Transportation Health Effects of Overland and a probabilistic probabilistic assessment of the conditions                          experienced in severe transportation conditions that could be experienced                        transportation accidents.
Modal Study results are based on representative spent nuclear fuel casks that were assumed to have been The Modal manufactured, operated, and maintained designed, manufactured,                                            accordance with national codes and standards. Design maintained in accordance parameters          representative casks were chosen parameters of the representative                    chosen to meet the minimum test criteria              specified in 10 CFR 71.
criteria specified                  71.
The study is believed believed to provide realistic, yet conservative,                          radiological releases under transport conservative, results for radiological accident accident conditions.
In the Modal Study, potential potential accident damage damage to a cask is categorized categorized according according to the magnitude magnitude of the mechanical mechanical forces (impact) and thermal forces (fire) to which a cask may be subjected              subjected during an accident.
Because Because all accidents can be described in these terms, severity is independent independent of the specific accidentaccident sequence.
In other other  words,  any  sequence sequence    of events  that results  in  an accident    in which    a cask  is subjected to forces within subjected a certain range of values is assigned assigned to the accident accident severity region associated with that range. The accident        accident severity scheme is designed designed to take into account account all potential potential foreseeable transportation transportation accidents, accidents, including including accidents with low probability probability but high consequences consequences and those with high probability  probability but low consequences.
represe~ts a set of accidents Each severity region actually represents                  accidents defined defined by a combination of mechanicalmechanical and thermal conditional probability of occurrence-that forces. A conditional                        occurrence-that is, the probability probability that if an accident accident occurs, it is of a severity-is assigned particular severity-is      assigned to each region. The Modal                    conditional probability Modal Study conditional        probability matrices for truck and train accidents accidents (see Figures E-6 and E-7) each contain                    accident regions. In the Modal Study, these contain 20 accident regions are collapsed collapsed to form six severity severity categories, where a severity category represents a set of accidents defined by a combination combination of mechanical and thermal forces that are expected      expected to produce produce accident source source terms terms that have similar magnitudes. The fraction of all accidents  accidents that fall into each severity severity category category is developed by summing the values for the fractions of all accidents  accidents presented in the Modal Study for the set of regions combined to form one severity category:
category. Figure Figure E-6 indicates indicates the regions regions that were combined combined to generate generate each each of the six accident categories categories specified in DOE/EIS-0203-F DOEIEIS-0203-F (DOE 1995)        1995) and DOE/EA-DOE/EA-121    12100 (DOE 1997).
1997).
The y-axis breakpoints breakpoints on the accident matrix (S)      (S, == 0.2 percent, S2  S2 == 2 percent, S3 S3 == 30 percent) specify the maximum strain in percent percent    on the  inner shell  of  the  Type  B  truck  cask. The  x-axis x-axis breakpoints (T,      = 260&deg;C, (T) ==
    = 316&deg;C, T2 ==  316'C, TT33 == 343 343&deg;C,&deg;C, T4 T4 = 565  &deg;C) specify the lead 565&deg;C)                  lead mid-wall mid-wall temperature.
temperature. Thus, each    each of the 20 regions regions in the matrix specifies both an impact load and a thermal load. Figure E-7 presents .the                  the Modal Study matrix for rail accidents and gives the conditional probability for each of the 20 accident regions. The y-axis and x-axis breakpoints breakpoints are the same as those developed for the Modal Study truck accident          accident matrix. The regions have not been grouped grouped into categories categories for TPBAR performance performance in train accidents, accidents, so none are presented.
Accidents Accidents in Region (1,1) (1,1) are the least severe but most frequent, whereas accidents    accidents in Region (4,5) are very severe but very infrequent. To determine the expected      expected frequency of an accident  accident of a given severity, the probability in the category conditional probability              category is multiplied multiplied by the baseline accident rate. The entire spectrum of                of accident severities severities is considered in the accident risk assessment.
As discussed above, the accident accident consequence consequence assessment only considers the potential impacts from the most severe transportation accidents. In terms of risk, the severity of an accident must be viewed in terms of                            of potential potential  radiological  consequences,      which  are  directly  proportional proportional    to the  fraction  of  the  radioactive radioactive  material within a cask that is released to the environment environment during the accident. Although regions span the entire range of mechanical mechanical and thermal accident loads, they are grouped into accident categories that can                    can be characterized characterized by a single set of release fractions and are, therefore, considered    considered together together in the accident        consequence accident consequence assessment. .The accident accident category severity fraction is the sum of all conditional probabilities in that accident        accident category.
probabilities developed To use the conditional probabilities        developed in the Modal Study for Rail Casks Transported  Transported by Rail for the case of truck casks transported transported by rail, a comparison comparison of the effect of rail accidentsaccidents on on.truck
                                                                                                            .truck casks was made.
The response of truck and rail casks to rail accident accident impacts is essentially identical; therefore, no adjustment    adjustment was required. However, these casks would respond differently    differently to a rail accident accident involving fire. For the same E- 19 E-19
 
FinalEnvironmental Final  Environmental Impact Statement for        for the Production          Tritium in a Commercial Production of Tritium          CommercialLight Water Water Reactor design-basis fire environment, the truck cask will reach a given temperature in a shorter                                shorter duration than the rail cask. The Modal Study provides graphs that relate the fire duration with lead mid-wall                                  mid-wall temperature for both truck and rail casks. Using the graph for rail casks, the durations of engulfing fires required                                                        of required to reach each of the x-axis breakpoints were determined. From these durations, the graph for truck casks was used to develop new x-axis breakpoints. An exponential function was fitted to the resulting cumulative                              cumulative probability probability versus mid-temperature data, and it was then applied to determine the cumulative wall temperature                                                                                  cumulative probability for the original Modal Study x-axis breakpoints. The resulting conditional probabilities              probabilities for truck casks transported  transported by rail are given given Figure E-S.
in Figure    E-8.
Strain              R(4,1)
R(4,1)                    R(4,2)
R(4,2)                    R(4,3)
R(4,3)                    R(4,4)
R(4,4)                  R(4,5)
R(4,S)
S  L I1.532E-7 1.532E-7                  3.926E-14 3.926E-14                1.495E-14 1.49SE-14
__________Category6 7.681E-16 7.6SIE-16                <l.0E-16
                                                                                                                                    <1.0E-16 Category 6 S3 30%                R(3,1)
R(3,1)                    R(3,2)                    R(3,3)
R(3,3)                    R(3,4)
R(3,4)                  R(3,5)
                                                                                                                                    . R(3,S) 1.79S4E-3 1.7984E-3                  l.S74E-7 1.574E-7                  2.034E-7 2.034E-7                  1.076E-7 1.076E-7                4.S73E-S 4.873E-8 S2      L, _____Category Category 5 5
2%                R(2 1)
R(2,1)
R(2,2)
R(2,2)
R(2,3)
R(2,3)
R(2,4)
R(2,4)
R(2,5)
R(2,S) 3.8192E 3.S192E-3 -3                2.330E-7                3.008E-7 3.00SE-7                  1.592E-7 1.592E-7                7.20IE-S 7.201E-8 S,
L
                    $  _Category                      Category 3                                          Category 4 Category 0.2%                R(1,1                      R(1,2)                    R(1,3)                    R(I,4)                  R(I,5)
I R(l,I)                    R(l,2)                    R(I,3)                    R(I,4)                  R(I,S) 0.99431 0.99431                  1.687E-5 1.6S7E-5                2.362E-5 2.362E-5                  1.525E-5 1.525E-5                9.570E-6 9.S70E-6 Category 1                              Category 12 T                          T                          T                      T 2600 C                    316kC                      343'&deg;C                5654'C
                                                  .,                            Temperature Temperature 1.532E-7 = 1.532 1.532 xX 10 10 Figure E-6 Conditional Probability              Probability Matrix  Matrix for Modal Study Truck                Truck Cask  Cask Strain R(4,1)
R(4,1)                    R(4,2)                      R(4,3)
R(4,3)                    R(4,4)                  R(4,5)
R(4,S) 1.786E-9 1.786E-9                  3.290E-13 3.290E-13                    2.137E-13                1.644E-13                3.459E-14 2.137E-13                l.644E-13                3.459E-14 S,
S        _
30%
R(3,1)
R(3,1)                    R(3,2)                      R(3,3)
R(3,3)                    R(3,4)
R(3,4)                    R(3,5)
R(3,5) 5.545E-4 5.54SE-4                  1.021E-7 1.02 I E-7                  6.634F-8 6.634E-8                  5.162E-8
: 5. I 62E-S                5.296E-8 5.296E-8 5,
S2 2%
2%
R(2,1)
R(2,1)                    R(2,2)                      R(2,3)
R(2,3)                    R(2,4)
R(2,4)                    R(2,5)
R(2,5) 2.7204E-3 2.7204E-3                  5.011E-7                    3.255E-7 3.255E-7                2.531E-7 2.53IE-7                  1.075E-8 S,
0.2%
0.2%
R(1,1)
R(I,I)                    R(1,2)
R(I,2)                      R(1,3)
R(I,3)                    R(1,4)
R(l,4)                    R(1,5)
R(l,5) 0.993962 0.993962                  1.2275E-3 1.2275E-3                    7.95 I IE-4 7.9511  E-4              6.140E-4 6.140E-4                  1.249E-4 1.249E-4 T,*                          T, T,                        T,                      T4 260'C                      316'C 316&deg;C                      343&deg;C                  565"C
                                                  ~Temperature                  TemperatuIe 1.786E-9    = 1.786 x 10"T 1.786E-9 = 1.786 x 10" Figure E-7 Conditional Probability                Probability Matrix for Modal Study Rail Cask                              Cask
&#xa3;-20 E-20
 
Appendix E - Evaluation                    Health Effects of Human Health Evaluation of Human                          Overland Transportation of Overland      Transportation Strain StanR(4,1)                                R(4,2)
R(4,1)                    R(4,2)                  R(4,3)
R(4,3)                      R(4,4)
R(4,4)                    R(4,S)
R(4,5) 1.786E-7 1.786E-7                  1,659E-13 1.6S9E-13              2.777E-13 2.777E-13                  2.091E-13 2.091E-13                  1.361E-13 1.361E-13 S,
30%
R(3, 1)
R(3,1)                    R(3,2)
R(3,2)                  R(3,3)
R(3,3)                    R(3,4)
R(3.4)                    R(3,S)
R(3,5)
S.S44E-4 5.544E-4                  S.148E-8 5.148E-8                8.621E-8 8.62111-8                  6.S6SE-8 6.565E-8                  2.084E-7 2.084E-7 S,
S,                                  _________                                          _________                  _________
2%
R(2, 1)
R(2,1)                      R(2,2)
R(2,2)                  R(2,3)
R(2,3)                    R(2,4)
R(2,4)                    R(2,S)
R(2,5) 2.7204E-3 2.7204E-3                  2.S23E-7 2.523E-7                4.230E-7 4,230E-7                  3.219E-7 3.219E-7                  4.230E-8 S,
S,        ________                  ________                                            ________
0.2%
RL(1,1)
R(l,l)                    R(1,2)
R(I,2)                  R(1,3)
R(I,3)                    R(1,4)
R(l,4)                    R(1,5)
R(I,S) 0.99380                    6.190E-4 6.190E-4                1.033E-3 1.033E-3                  7.808E-4 7.808E-4                  4.914E-4 T,                          T,        T,          T,                          T, T
0 260*C 260&deg;C                      316'C 316&deg;C                  343 C 343&deg;C                      565'C 565&deg;C Temperature 1.786E-7                107Teprte
: 1. 786E-7 == 1.786 xx 10'  7 Figure E-8 Conditional Conditional ProbabilityProbability Matrix for Truck Cask Transported                    Transported by Rail E.5.7.2 Transportation E.S.7.2    Transportation Risk Analyses Assumptions              Assumptions E.5.7.2.1 Cask Response to Impact and Thermal E.S.7.2.1                                                          Thermal Loads This section provides provides separate analyses for casks with elastomeric        elastomeric seals and metallic seals, since they perform differently differently    in  accidents.        In  general, general,      elastomeric      seals  will perform perform better (i.e.,    (i.e., fail at a higher strain) than metallic seals in accidents involving    involving        impacts    without    fires. Metallic Metallic      seals    will perform better (i.e.,  (i.e., fail at a higher  temperature)          than    elastomeric        seals higher temperature) than elastomeric seals in accidents involving  in accidents    involving      fires.
The regulatory design-basis accident defined by 10 CFR 71 and 49 CFR 173 is encompassed within a region bounded bounded by a maximum impact load of SI                          S, (0.2 percent maximum strain on the inner shell) and a maximum thermal load ofTI  of T, (260'C (260&deg;C [500&deg;F][500 'F] lead shield mid-wall temperature).
The cask containment containment boundary for a truck or rail cask using elastomeric                elastomeric seals was assumed not to fail for impact  loads less impact loads      less than S2    S2 (2(2 percent percent strain) strain) and  and temperatures temperatures less than T          T1I. Radioactive Radioactive material material packages are designed to a very rigorous set of standards.      standards. This design philosophy results in a large margin of safety against accidents more accidents    more severe severe thanthan thethe design-basis design-basis accident.accident. For the  the EIS EIS analyses, analyses, the  the conditional conditional probabilities were taken directly from the Modal Study, and those conditional                conditional probabilities were based on the response of the representative representative trucktruck and rail    rail casks casks described described in    in the Modal Modal Study. These generic      generic casks were chosen such that the regulatory design-basis design-basis accidentaccident      would      result in a 0.2  percent    strain    in  the inner shell of the cask. Recent      Recent tests and analyses performed at Sandia        Sandia      National    Laboratory Laboratory      using  packages        with elastomeric elastomeric seals have shown that this that      level of this level    of strain is reasonable for the design-basis accident and that the cask containment boundary does not fail for accidents resulting in inner shell strains of up to 20 percent (Ammerman                        (Ammerman 1995). Based on these results, the EIS transportation risk analyses          analyses assumed that the cask containment      containment boundary boundary will not fail for packages packages using elastomeric elastomeric seals for inner shell strains less than S2'                  S2.
E-21
                                                                                                                                                            &#xa3;-21
 
Final Environmental Impact Statement Final Environmental          Statementfor the Production Productiono[Tritilim of Tritium in a Commercial CommercialLight Water Reactor Packages using metallic seals cannot tolerate the slight amounts of closure            closure movements that may occur during extra-regulatory impacts. Therefore, extra-regulatory                Therefore, the EIS analyses assume that any impact load above SI                    S, for a cask using using metallic metallic seals results in failure of the cask containment boundary. The probability                probability of failure of the cask containment    boundary as a result of failure of the metallic containment boundary                                            metallic seal below T      T44 (565&deg;C)
(565 &deg;C) is similar similar to the negligible probability of seal failure for normal operating conditions. The American            American Society for Testing and MaterialsMaterials Type 304 304 stainless stainless steel structural materials materials and metallic seal materials typically used in radioactive    radioactive material packages are also used in high-temperature              industrial applications. To avoid creep, the American high-temperature industrial                                                      American Society Society ofof Mechanical Engineers Code, Section III, rates the American Mechanical                                                          American Society for Testing and Materials    Materials Type 304  304 material commonly commonly used for radioactive material packages        packages at 122 mega-Pascal mega-Pascal (17.7(17.7 thousand pounds per  per square inch) for a 10-hour lO-hour exposure to temperatures temperatures of 565&deg;C. With only internal pressure          pressure as a source of of primary stresses and secondary secondary thermal stresses, stress levels in the seal area are anticipated    anticipated to be well below below this material material rating. However, bolt materials for package                  closures must be carefully package closures                  carefully selected. The American Society Society of Mechanical Mechanical Engineers Codes, Sections    Sections VIII and IH,    III, rate common high-strength carbon  carbon steel bolt 0
materials only to temperatures near 370        370&deg;C    C for most applications. Inconel bolts, however, are rated to temperatures temperatures as high as 620&deg;C,620'C, and these these analyses analyses have assumedassumed that high-temperature high-temperature bolts will be utilized (SNL    1999).
(SNL 1999).
E.5.7.2.2 E.S.7.2.2 TPBARs TPBARs Response to Impact and Thermal Loads The EIS transportation risk analyses analyses assumed assumed a TPBAR failure rate, consistent    consistent with the assumptions used for reactor reactor operations, operations, of2of 2 TPBARs TPBARs per core (maximum (maximum of3;400of 3,400 TPBARs per core). Since the possibility exists that the 2 assumed failed TPBARs could be transported      transported in the same cask shipment following consolidation  consolidation at the reactor, the EIS transportation transportation risk analyses assumed that there could be a maximum of 2 prefailed                prefailed (failed (failed prior to transportation) transportation) TPBARs TPBARs in a truck cask (at least 289 TPBARs        TPBARs per shipment) shipment) or a given rail cask cask (at least 578 TPBARs per shipment).
Following design-basis accident impacts, spent fuel rods with precracking        precracking due to pellet-clad pellet-clad interactions at the pellet boundaries experience experience    very  few  failures    (SNL    1992). Therefore,    the analysis analysis assumes that the regulatory impact  (S, impact (SI = = 0.2  percent)    will not  cause  any    TPBAR      cladding    failures. Moreover,    the design conservatism conservatism in the impact limiters for spent fuel casks results in only relatively small increases in acceleration          acceleration loads to the contents for extra-regulatory extra-regulatory impacts up to a point where the strain in the wall is equal to 2 percent. Therefore, it is assumed assumed that there are no failures of the TPBAR      TPBAR cladding cladding for impact loads resulting in strains below S2 (2
(2 percent).
percent). To achieve strainsstrains higher than 2 percent, the impact limiter must be completely        completely locked up (can (can no longer absorb energy) and the acceleration acceleration levels increase increase significantly. At this point there is a possibility that some of the TPBARs                  experience cladding failure due to the mechanical TPBARs could experience                                                    mechanical loads placed upon them.
Considering Considering the high ductility ductility of the TPBAR cladding, it was assumed          assumed that the only TPBARs that can fail during impact loads are those with pre-existing pre-existing part-wall part-wall cracks (SNL  (SNL 1999). These These analyses      conservatively analyses conservatively assumed assumed that this is equal to I1 percentpercent of the TPBARs, based        based on the frequency of spent  spent fuel rods with pre-existing part-wall part-wall cracks (SNL 1992). The failed TPBARs would release all of their tritium inventories (PNNL 1999).
1999).
As noted earlier, the temperatures temperatures that define the regions for the conditional probabilities in the Modal              Modal Study Study truck and rail cask accident matrices are the temperatures at the mid-wall of the lead shield that                      that result from thermal loads during the fire accident. The temperature of the TPBAR cladding is conservatively            conservatively assumed to    to be equal to lead shield mid-wall mid-wall    temperature.        For  temperatures temperatures      below  T33 (343&deg;C), the EIS analyses T  (343  'C),            analyses assume that 0.12 millicurie millicurie per TPBARTPBAR per hour of tritium in the form of molecular          molecular tritium gas (T2  (T2 and HT) are released released  from  all  intact  TPBARs TPBARs      into  the    cask  cavity    (PNNL      1999). For the  purposes purposes  of  determining the determining quantity quantity  of  molecular    tritium  gas  that  is  released    from    intact  TPBARs into the cask cavity, the EIS analyses  analyses conservatively conservatively assume that the TPBARs  TPBARs are in the transporttransport cask for a periodperiod of two weeks. For the purpose of analysis, each TPBAR is designed to contain an average        average of 1 gram of tritium, or approximately approximately 9,640 Curies (PNNL 1997). For terriperatures temperatures between T3        T3 and T        (3430&deg; and 565&deg;C), the EIS analyses assume that T44 (343 E-22
&#xa3;-22
 
Appendix E - Evaluation          Health Effects of Overland Evaluationof Human Health            OverlandTransportation Transportation 0.015 grams oftritiumfTPBAR of tritium/TPBAR in the form of molecular tritium gas are released from all intact TPBARs into the cask cavity cavity (PNNL 1999).
For temperatures    below T4,, the EIS analyses assume that 0.015 grams oftrltiumfTPBAR temperatures below                                                          of tritium/TPBAR in the form of tritiated water (TzO                      instantaneously released (TO and HTO) are instantaneously                                  cavity from all TPBARs that have failed due released into the cask cavity to impact impact and thermal loads (PNNL 1999). 1999). The potential for TPBAR rupture  rupture was assessed assessed at T44 ,, and it was determined that TPBARs are unlikely to rupture at temperatures less than T4.. However, TPBARs may rupture at temperatures temperatures higher than T4.. Therefore,                      conservatively assume that all TPBARs fail during a Therefore, the analyses conservatively transportation cask fire accident accident when TPBAR temperatures are above T44 .* For TPBARs      TPBARs with temperatures temperatures above TT44,, the analyses assume that 100 percent of the tritium inventory of the TPBARs is instantaneously      instantaneously released in the form of tritiated water into the cask cavity (PNNL  (PNNL 1999)1999).
analyses assume that 100 percent Finally, the EIS analyses                                                          inventory of prefailed percent of the tritium inventory              prefailed (failed prior to transportation) TPBARs will be released into the cask cavity in the form of tritiated water          water (PNNL (PNNL 1999) and permeate through the elastomeric that tritiated water does not permeate                    elastomeric seals comprising                    containment boundary comprising the cask containment through the metallic seals comprising the cask containment temperatures less than T1j (260&deg;C) or through for temperatures                                                                                        containment boundary boundary for temperatures less than T44'.
E.5.7.3 Accident E.S.7.3    Accident Matrix Category Descriptions The six accident categories categories specified      DOE/EA-1210 (DOE 1997) and shown in Figure E-6 were based specified in DOEIEA-1210                                                              based on on the performance of spent nuclear fuel. The analysis described described in Section E.5.7.2 E.5. 7.2 has been used to refine the categorydescriptions category                                    characteristic behavior of TPBARs. Retaining the basic structure of the descriptions to better fit the characteristic matrices allows the use of the conditional Modal Study matrices                                              probabilities given in the Modal Study for accident conditional probabilities                                          accident matrix regions.
conditional probability matrix were combined to give seven accident The 20 regions described by the 4 xx 5 conditional                                                                        accident severity categories severity                                                        transport the irradiated TPBARs from the production categories for the truck and rail casks used to transport Extraction Facility. The regions of the conditional probability reactor. to the Tritium Extraction reactor                                                                                          probability matrix that are encompassed by a specific specific accident category                                          elastomeric seals and one using category will differ between a cask using elastomeric seals, due to the varying response of each cask to the impact metallic ,seals,                                                          impact and thermal loads.
E.5.7.3.1 Elastomeric Seals E.S.7.3.1 Figure E-9 gives the accident matrix                                                      elastomeric seal. The regions that matrix for both truck and rail casks using an elastomeric were combined combined to generate generate the seven accident accident categories are also shown in Figure E-'9. E"':'9.
E.5.7.3.2 E.S.7.3.2 Metallic Metallic Seals Figure Figure E-I0E-10 gives the accident matrix for both truck and rail casks using a metallic seal.                  The regions that combined to generate were combined          generate each of the seven accident    categories are also shown in Figure accident categories                                    E-10.
E-lO.
                                                                                                                              &#xa3;-23 E-23
 
Final Environmental Final Environmental Impact Statement  (or the Production Statementfor      Production o(Tritium of Tritium in a Commercial CommercialLight Water Reactor Strain Strain          R(4,1)              R(4,2)                  R(4,3)                R(4,4)                R(4,5)
Category 5 Category 6 S,
30%
30%            R(3,1)              R(3,2)                  R(3,3)                R(3,4)                R(3,5)
Category 7 S,
S, 2%
2%
R(2,1)              R(2,2)                  R(2,3)                R(2,4)                R(2,5)
[
Category 2 Category 3                        Category 4 S,
0.2%
R(I,I)              R(I,2)                  R(I,3)                R(I,4)                R(I,5)
Category 1 T,                    TT,2                    T,                  T, 260'C                  316*C 316&deg;C                  343&deg;C                565'C 565&deg;C Temperature Temperature Figure E-9 Accident Matrix for Truck                Truck and Rail Casks Using Elastorner~c      Elastomeric Seals Strain Strain          R(4,1)
R(4,1)              R(4,2)
R(4,2)                  R(4,3)
R(4,3)                R(4,4)                R(4,5)
R(4,5)
Category 5 Category Category 66 S,            R(,1              Catcgory 5 30%      3%R31)R(3,2)
R(3,1) 5CaeoyR(2, 1)
R(3,2)
R(2,2)
R(3,3)
R(3,3)
R(2,3)        II[      R(3,4)
R(2,4)
R(3,5)
R(2,5) oCategory Category 7 S,
2%                                                                                            I R(2,1)              R(2,2)                  R(2,3)                R(2,4)                R(2,5)
S,                              Category Category 33                                    Category Category 44  j 0.2%            R(1)                R(1,2)                  R(I,3)                R(I,4)
R(I,I)              R(I,2)                  R(I,3)                R(I,4)                R(1,5)
R(I,5)
Category Category 1                                  Category 2 T,                    T, T,                      T, T,                    T4 T,
260'C                  316'C 316&deg;C                  343&deg;C                565&deg;C 565&deg;C Temperature Temperature Figure E-10 E-IO Accident Accident Matrix Matrix for Truck  Truck and Rail Casks Using Metallic Seals E.5.7.3.3 Accident E.S.7.3.3    Accident Category Category Release Release Fractions for Tritium, Nontarget-Bearing Nontarget-Bearing Components, Components, and Crud Release fractions Release  fractions forfor tritium, tritium, both as molecular tritium gas (T2        (T2 or HT) and as tritiated water (T220 or HTO);  HTO);
nontarget-bearing nontarget-bearing    components;      and  crud  for  truck    casks  transported    by road, truck casks transported by rail, and rail casks transported by rail, with no prefailed TPBARs, are given in Table E-3 for each of the seven accident categories.
categories. For both regulatory regulatory and extra-regulatory extra-regulatory transport conditions, 100 percent of the crud is assumed to spall. The average                  concentration in a average crud concentration              a cask cavity can be expressed as the concentrationconcentration immediately after immediately    after spallation  and initial spallation and    initial mixing, multiplied by a release    release reduction factor that incorporates all geometrical information geometrical    information on the cask volume, settling, and collection  collection areas, and the aerosols time-varying time-varying size size E-24
 
Appendix E      E -- Evaluation Evaluationa/Human of Human HealthHealthf Effects Effects or  ofOver/and OverlandTransportation Transportation distribution (SNL      (SNL 1993a).
1993a). A bounding maximum release fraction for crud based on lOO-percent                                                          100-percent spallation and typical release    release reduction factors          factors is 22 x 10-      10-'3 (SNL 1991      1991b).b). Release fractions for                          for nontarget-bearing nontarget-bearing components are          are equivalent to      to those used in DOEIEA-12l0    DOE/EA-1210 (DOE 1997) for                            for the Lead Test Assembly, with adjustments made for the accident categories                    categories that are defined    defined by    by different regions  regions of the matrix. The crud                          crud and nontarget-bearing components release fractions are independent of nontarget-bearing                                                                                                  of whether the cask uses an elastomeric                    elastomeric seal or a metallic seal.
Table E-3 Release Fractions for Truck and Rail Casks                                          Casks with No Prefailed TPBARs tegoy 11::~.,:'j'~"ji>
j:{c'at~iOryj;A~                1          '    :"2;      2    ,,".;, <;f'~i 34, f':~      "
                                                                                                  .    <4, :-:; "'fi: :<'5,',      "
5
                                                                                                                                                                    ' 6'.      ~~ ,
C, 7/
7'  .': ,>',"
T 2 /HT T2/HT                      00                        00              4.18 x 10'~
10-6        4.18 x IO-~ 10"'          4.18 x IO-~  10-6            4.18 x IO-~  10-6        4.18xx IO-~
4.18        10"x 22            1.0 X      10-22                            22 T2 0/HTO TP/HTO                      0                          00                    0                1.5 xX 10-10.                    X 10.                    2.5 xX 10-10-                  1.0 NTBC                    0                          00              3.1 Xx 10-10-1010 1.0 Xx IO-10-8K 1.0 1.0 Xx 10- 10-18 1.0 XX 10-10"88 10.17 1.0 Xx 10-Crud Crud                    00                        00                2.0 Xx 10-2.0    10-3          2.0 Xx 10-2.0      10-13            2.0 Xx 10-2.0        10-13              2.0      10"'
2.0 Xx 10-  3            2.0 Xx 10-2_0    10-33 T2 / HT = molecular T21              molecular tritium gas.
T2 0 I/ HTO == tritiated water.
TP NTBC == Nontarget-bearing              components.
Nontarget-bearing components.
Release fractions for tritium, non-target-bearingnon-target-bearing components, and crud for truck casks transported                                              transported by road and truck casks transported by rail with two prefailed TPBARs out of 289 TPBARs are given in Table E-4 for each of the seven accident categories. The release fractions are independent of whether the cask uses an elastomeric seal or a metallic seal.
elastomeric Table E-4 Release Fractions for Truck Casks with Two Prefailed TPBARs q.Caeg~ry . - .,-.' ,'1- "'-"'.; ..~ *,.\;2'.:"::~
;,;,: Cilieiwy'                                          &#xfd;12        ..    ~ 3 ~; " ;.                "  ;#4        ',' . 5 5,< :                    "  . 6'  61        .            ,77.,.
T 2 /HT T2/HT                      0                        0              4.15 x IO-~10.6        4.15 x IO-~ 10.6          4.15 Xx 10.6 10-6              4.15 xx IO-~10.6        4.15 x IO-~  10.6 T 2201 0/HTO HTO                  0                        0              8.29 xX 10-10-33      2.32 x 10-  10.22          1.83 x 10.2  10-2              3.32 xX 10-10.22              1.0 NTBC NTBC                      00                        0              3.1 Xx 10-101&deg; 10 1.0 Xx 10-10.88            1.0 Xx 10-"10- 8 10.68 1.0 Xx 10-                1.0 Xx 10-1.0      10"1  7 Crud                      0                          0              2.0 < 10.I            2.0 x 10-3                2.0 x 10.1                    2.0 x 10.'                2.0 x 10-7 Crud                      0                        0                2.0  X  10-  3 2.0  X  10-3            2.0 X 10-3                      2.0 X 10-3              2.0  X  10-3 T 2 / HT =
T21          = molecular molecular tritium gas.
T20 I/ HTO == tritiated water.
TP NTBC == Nontarget-bearing Nontarget-bearing components.
Release fractions for tritium, nontarget-bearing  nontarget-bearing components, and crud                                crud for rail casks transported          transported by rail with two prefailed TPBARs out of 578 TPBARs                            TPBARs in two consolidated    consolidated containers    containers in the rail cask                  cask are given    given in Table E-5    E-5 for each of the seven accident            accident categories.
categories. The release fractions are                      are independent independent of whether          whether the cask      cask uses uses an  an elastomeric elastomeric seal    seal or or aa metallic metallic seal. seal.
Table E-5  E- 5 Release Release Fractions  Fractions for Rail Casks with Two Prefailed                          Prefailed TPBARs
'-!ii'#'Catego,.j;':**
I .. ;~.\ l'i : <,:: ~~20:':[f
                  ....,1;::v::;;l,-'i, P.atgoY 2~ :;:1::    1*~;trS:~fCf .j  <,    Ii  '~:'.4:.*
                                                                                                          ,3-:>>.4 t';
pl~:;W~
5:< ;.:.:',' '.' 1:;~2'6,.*,. 6        :.~  .***>t:7':. '
T2 /HT T2/HT                      00                        0                        IO-~
4.17 x 10.6            4.17 xX 10- 10.6 6 4.17 xX 10.6 10-  6 4.17 xX 10.610- 6 4.17 xX 10-6 10-T220/HTO 01 HTO                    00                        0                        10-3 4.15 xX 10"'          1.91 xX 10-.
1.91        10-2          1.42 xX 10-2 10-2              2.91 xX 10- 10.22              1.0 NTBC NTBC                      00                        00              3.1 3.1 xX 10-10.1010        1.0 1.0 xX 10.8 10-8            1.0 1.0 xX 10-.\0-8                1.0.X 1.0 x 10.8 IO- K          1.0 1.0 XX 10"1 10-7 Crud Crud                    00                        00            '2.0 2.0 xx 10-1 10-3          2.0 X 10-1 2.0>2    10-3            2.0 2.0 xX 10-110-3                2.0 xX 10-3 10-3            2.0x 2.0 X 10-10"33 T,
T2 /I HT == molecular        tritium gas.
molecular tritium TP /I HTO =
T20                = tritiated tritiated water.
NTBC NTBC = Nontarget-bearing Nontarget-bearing components:
components:
E-25 E-25
 
Final  Environmental Impact Statement Final Environmental                      Statementfor  (or the Production        of Tritium in aa Commercial Productiono(Tritium                        CommercialLight Water              Water Reactor E.5.7,3.4 Accident Category E.S.7.3.4                            Category Severity  Severity Fractions conditional probabilities given in Figure E-6, Figure E-7, and Figure E-8 were combined The conditional                                                                                                                                                        combined using the accident accident categories categories depicted in FiguresE-9    FiguresE-9 and E-10            E-lO to develop the accident            accident category severity              severity fractions fractions givengiven Table E-6. The severity fractions are independent in Table                                                                independent of whether there are any prefailed TPBARs,                                            TPBARs, since the probability accident matrix category descriptions are the same whether there are no prefailed conditional probability                                                                                                                                                                      prefailed TPBARs or there are two pre                        failed TPBARs in the transport prefailed                                    transport cask.
Table E-6 Accident    Accident Category Category Severity  Severity Fractions
~f"~~;::;~"",,,,,;w'::,;,,
                    ,;:;i};i)~:;~':'~'~'j';'.;                                                . " ;,', .,,:':<' Ca~egiJry>'
                                        ;" ,'~ 1",\'.,':. ':T:":;;')': ""',; "'2'"
::'" ,;il":::::'}',
_______    2    " "                              Catego'ry'67            ,"    ':, . .1"
                                                                                                                                                            \.-
d;'                  ..  "
I,:,::::,:.'                                                1___              2"__  ' 11. <<;""',]3    , ' / '; ,,': ''<'If''';:,':
4          I< ;;;:"(
___ :'5 ::-:'l, :,"',: ", ..  ';6
                                                                                                                                                                            `6__ "  ,  .. '-: .:"7.., \"
transported by road Truck cask transported Truck                                              0.99432            3.819 x 10-3 4.102 x 10' 5 1.541 x 10-'5                          1.799 x 10-' 1.076 x 10.7 9.641 X 10-6 0.99432            3.819 x 10') 4.102 X 10. 1.541 X 10.                            1.799 X 10') 1.076 X 10.7 9.641 X 10.6 using clastomeric seals  seals Truck cask cask transported by rail                0.99380            2.720 x 10-3 1.653 x 10-' 9.812 x 1044 5.546 x 10-44 6.565 x 1 0 -' 4.917 x 10-44 0.99380            2.720 x 10') 1.653 X 10') 9.812 X 10 5.546 X 10 6.565 x 10*K 4.917 X 10.
clastomeric seals using clastomeric        seals cask transported by rail Rail cask                                          0.99396            2.720 x 10-3 2.023 x 10-3 6.143 x 104                            5.547 x 104 5.162 x 10- 1.250 x 10.'
0.99396            2.720 x 10') 2.023 X 10') 6.143 X 104 5.547 X 10 4 5.162 X IO. K 1.250 X lOA using clastomeric seals  seals Truck cask transported by road                    0.99432            5.574 x 10-5 3.828 x 10-'            3 1.542 x 10"77 1.799 x 10.3 1.076 x 10-77 9.641 x 10-6                                        6 0.99432            5.574 x 10.        3.828    X 10.        1.542    X  10. 1.799        X  10') 1.076            X  10. 9.641  X  10.
metallic seals using metallic      seals Truck cask transported by rail                    0.99380            2.433 x 10-3 2.721 x 10.3 3.219 x 10-77 5.546 x 104,                                    4  6.565 x 10. K 4.917 x 10'4 0.99380            2.433 x 10') 2.721          X 10') 3.219            X  10. 5.546        X  10          6.565      X  IO. 4.917  X  10.
using metallic seals seals Rail cask transported by rail                      0.99396            2.637    X 10-3    2.721      10- 2.531              x 10-77    5.547 x 10.4 5.162 x 10-K 1.250 x                                  4 2.637              2.7211 X 10')
using metallic seals                            1 0.99396 0        9          6 x 10') 2                    0 2.531      .57    X  10. 5.547        X 10 -        5.162 1 X 10__    IO. 1.250 xX 10. 10__
E.5.8        Nonradiological Risk (Vehicle-Related)
E.S.8 Nonradiological                              (Vehicle-Related)
Vehicle-related health risks resulting Vehicle-related                                resulting from incident-free transport may be associated                            associated with the generation of air                                  air pollutants by transport vehicles during shipment and are independent pollutants                                                                                        independent of the radioactive nature of the shipment.
The health endpoint assessed under incident-free                    incident-free transport conditions is the excess latent mortality due to                                                                to inhalation of vehicle inhalation            vehicle exhaust emissions. Risk factors for pollutant inhalation in terms of latent                                                            latent mortality have          have been generated (SNL 1982). These risks are 1I xx 10-7 mortality                                mortality per kilometer (1.6                      (1.6 xx 10-7 per mile) and 1.3 x 7                                                          7 10- mortality per kilometer  kilometer (2.1 x 10-          10'-per mile) of truck and rail travel in urban areas, respectively. The risk factors are based on regression    regression          analyses                  effects of sulfur dioxide and particulate releases from diesel of the effects exhaust on mortality rates. Excess                              latent    mortalities        are assumed to be equivalent to latent cancer                                    cancer fatalities.
Vehicle-related Vehicle-related risks from incident-free        incident-free          transportation            are  calculated calculated              for    each          case        by  mUltiplying the total multiplying traveled in urban areas by the appropriate distance traveled distance                                                                appropriate risk factor. Similar              Similar data are not available for                                    rural and for rural suburban areas.
suburban Risks are summed over the entire route and over all shipments for each case.                                                        case. This method          method has been used in several EISs to calculate risks from incident-free several                                                        incident-free transport. Lack of information                information for rural and suburban                      suburban areas is an obvious data gap, although          although the risk factor would presumably              presumably be lower            lower than for urban areas because                        because of      of lower total emissions from all sources and lower population densities in rural and suburban areas.
E.6 RISK ANALYSISANALYSIS RESULTS    RESULTS Per-shipment risk factors have been calculated Per-shipment                                                      calculated for the collective populations of exposed persons                                            persons and for the anticipated routes and shipment crew for all anticipated                                    shipment configurations.
configurations. The radiological        radiological risks are presented in doses per shipment for each unique route, material, and container combination.
shipment                                                                                              combination. The radiological dose per shipment                                        shipment factors for incident-free transportation are presented                    presented        in  Table        E-7.        Doses      are      calculated calculated              for    the    crew,    off-link public (i.e.,(i.e.,  people      living      along      the    route),    on-link        public    (i.e.,        pedestrians            and      drivers          along          the  route),      and and the public at rest and fueling stops (i.e.,                        (i.e., stopped cars, buses and                            trucks,        workers,              and      other        bystanders).
E-26 E-26
 
Appendix Appendix E - Evaluation      Human Health Evaluation of Human    Health Effects of Overland Transportation of Overland Transportation Accident impacts impacts were calculated under the conservative conservative assumption that all tritium gas released is quickly oxidized to form tritiated water.
The radiological radiological dose risk factors for accident transportation transportation conditions are also presented in Table E-7. The accident risk factors are called "dose"dose risk,"
risk," because the values values incorporate the spectrum of accident accident severity probabilities and associated consequences. They are presented for normal transportation          transportation (i.e.,
(i.e., no failed TPBARs) and the abnormal event oftwo      of two failed TPBARs TPBARs in a shipment. The risks are only slightly higher if the failed TPBARs were  were to be shipped in a single cask.
The nonradiological risk factors are presented in fatalities per shipment in Table E-S.              E-8. Separate Separate risk factors are provided for fatalities resulting from exhaust emissions (caused by hydrocarbon      hydrocarbon emissions known to be carcinogens) carcinogens) and transportation accidents (fatalities resulting from impact).
The performance of both elastomeric and metallic cask seals was evaluated. Elastomeric seals perform better                  better in accidents that involve impact because they are more flexible. Metallic      Metallic seals perform better in accidents that involve involve fire because they are less susceptible susceptible to heat damage. Overall, metallic  metallic seals exhibit a slightly higher higher risk and, therefore, are used to evaluate evaluate EIS alternatives.
alternatives.
Table E-9 Table          shows the E-9 shows    the risks ofof transporting transporting each of the hazardous materials. The risks are calculated        calculated by multiplying the previously previously given per-shipment factors by the number      number of shipments over 40 years' years' duration ofof the program and, in the case of the radiological doses, by the health risk conversion factors. The accident          accident risk from TPBAR shipments includes the irradiated metal and the crud deposited onto the TPBARs. Over 90 percent of the accident risk comes from the tritium. Based on the results of the transportation  transportation risk analysis, it is unlikely unlikely that shipping TPBARs and waste will result in a fatality. The risk estimates        estimates include the highest highest conceivable conceivable impacts of shipping unirradiated unirradiated TPBARs and assemblies.
The risks risksto to various exposed exposed individuals under incident-free incident-free transportation conditions conditions have been estimated estimated for hypothetical hypothetical    exposure  scenarios. The  estimated    doses  to  inspectors inspectors  and  the public are presented in Table E-IOE-1 0 on a per-event basis (person-rem per event). Note that the potential      potential exists for larger individual exposures if multiple exposure exposure events occur. For example, the dose to a person stuck in traffic next to a shipment for 30 minutes is  is calculated calculated to be 11 millirem. If the exposure duration were longer, the dose would rise proportionally.
proportionally. In In addition, addition, aa person  working at person working      at a truck service service station could receive receive a significant significant dose if trucks were to useuse the the same stops stops repeatedly.
repeatedly. The dose to a person fueling a truck could be as much as 11 millirem.
Administrative Administrative controls      could be instituted to control the location controls could                                          location and duration of truck stops if mUltiple multiple exposures exposures were to happen routinely.
The cumulative dose to a resident was calculated  calculated assuming all shipments passed his or her home. The cumulative cumulative dosesdoses assume assume that that the the resident resident isis present present for for every every shipment shipment and is unshielded at a distance of      of 30  meters (about 30 meters            100 feet)
(about 100  feet) from from the  route. Therefore, the route. Therefore, the  the cumulative cumulative dose is onlyonly a function of the number of shipments passing a particular particular point and is is independent independent of the actual route being considered. The maximum    maximum dose to this resident, if all the material were to be shipped via this route, would be less than 0.1 millirem.
The    estimated dose to transportation crew members is The estimated                                                  is presented for a commercial commercial crew. No credit is taken taken for the shielding shielding associated with the tractor or trailer.
                                                                                                                              &#xa3;-27 E-27
 
t 00 Co Table E-7 Radiological Risk Factors    Factors for Single Shipments incidentIFreiDose. (Person-rem):w
                                                                                      .1Pubic From~ate~a I T & acag'*        *;'**"    Cew* 7 Off-link-      On-link ..        Stops      ~>  Total" ,    Accideni  Dose (Pe~rson-rem,).
T&#xfd;Material            & Package.                                bfCr~                                                          We No Failed TPBARs Truck Routes Watts Bar      Savannah Nuclear Plant Nuclear        River Site  irradiated TPBARs                                10.22 1.4 xx 10-              10.33 2.4 xX 10-              10.22 1.3 xx 10-      6_8    10-22 6.8 xX 10-    8.4    10.22 8.4 x 10-                10-'5 3.2 Xx 10-Sequoyah      Savannah Nuclear Plant  River Site  Irradiated TPBARs                                10-22 1.3 Xx 10-      2_9 2.9 Xx 10-10-'3          10-22 1.7 Xx 10-      5_9    10.22 5.9 xX 10-    7_9 7.9 Xx 10-10-22 .          10-'5 3.7 xx 10-3.7 Bellefonte Bellefonte    Savannah Nuclear Plant Nuclear  Plant River Site.
River Site  Irradiated TPBARs                                10.22 1.4 xx 10-              10.33 2.3 x 10-              10.22 1.4 xx 10-1.4                    10.22 6.6 xX 10-            10-22 8.2 xx 10-8.2                      10-'5 4.0 Xx 10-Rail Routes Watts Bar      Savannah Nuclear Plant Nuclear        River Site  Irradiated Irradiated TPBARs - Rail Cask Cask                  10-33 1.2 xX 10-              1044 7.5 xX 10 7_5                    1044 1.6 xX 10      4_8    10-'3 4.8 xX 10-            10-3 5.7 x 10-3        2_0 Xx 10-'
2.0    10-5 Watts Bar      Savannah Savannah Nuclear Nuclear Plant  River Site  Irradiated TPBARs Irradiated TPBARs - 2 Truck Casks        1.2    10-3 1.2 x 10.'      7.5 x 104        1.6 x 10-4              10-33 4.9 xX 10-            10-3 5.8 Xx 10-'              10-5 7.0 Xx 10-'
Sequoyah      Savannah Savannah Nuclear Nuclear Plant  River River Site  Irradiated TPBARs Irradiated TPBARs - Rail Cask            1.1 xX 10.3 1.1    10-3              104 6.9 Xx 10-4      1.5 x 104              10-3 4.7 x 10.3            10-3 5.6 Xx 10-'              10s5 1.8 Xx 10-Sequoyah      Savannah Savannah Nuclear Nuclear Plant Plant River River Site  Irradiated Irradiated TPBARs - 2 Truck Casks Casks        1.1    10-3 1.I Xx 10-3      6.9    1044 6_9 Xx 10        1.5 x 10-4      4.8 Xx 10-10-33  5.6 xX 10-33      6_5    10-'5 6.5 Xx 10-Bellefonte Bellefonte    Savannah Savannah Nuclear Nuclear Plant Plant River River Site  Irradiated TPBARs - Rail Irradiated TPBARs    Rail Cask                  10-3 1.2 xx 10.3      7.5 x 10-.4      1.6 x 104              10-3 4.8 Xx 10-3            10-3 5.7 xX 10-'      2_0    10-5 2.0 Xx 10-'
Bellefonte Bellefonte    Savannah Savannah Nuclear Nuclear Plant Plant River River Site  Irradiated Irradiated TPBARs TPBARs - 22 Truck Casks Casks        1.2x  10-3 1.2 X 10-        7.62<  10 4 7.6 X 104        1.6    10.      4.9 4.9  X 10-3 10-3    5.8    10-3 5_8 xX 103              10-5 7.1 Xx0-5 22 Failed TPBARs Truck Routes Watts Bar      Savannah Savannah Nuclear Plant Nuclear Plant  River Site River Site  Irradiated TPBARs Irradiated TPBARs                        1.4 xX 10-10.22    2.4 xX 10-10-33          10-2 1.3 Xx 10.2            10-2 6.8 Xx 10.2            10-22 8.4 xX 10-        4.0    10-5 4.0 Xx 10-'
Sequoyah Sequoyah      Savannah Savannah Nuclear Nuclear Plant Plant River Site River Site  Irradiated Irradiated TPBARs TPBARs                                10-2 1.3 x 10-2              10-3 2.9 xX 10-'      1.7    10-2 1.7 x 10.2      5.9    10-2 5.9 x 10.2      7.9    10-2 7.9 xX 10-2              10-5 6.1 x 10-'
Bellefonte Bellefonte    Savannah Savannah Nuclear Nuclear Plant Plant River River Site  Irradiated Irradiated TPBARs                                10-2 1.4 xX 10-2 1.4                      10-3 2.3 x 10-3      1.4    10-2 1.4 xX 10.2    6.6    10-2 6.6 xX 10.2            10-2 8.2 xX 10-2 8.2                      10-5 5.4 xX 10-'
 
lncident-Free*Dose(Person-rem)              ,I CrewOnlik                jAccident                                Dose' From          To:              Material& Package      -              , jCrcOff-link                            SlTot                      (Person- retm)&#xfd; AU All Metallic Seals Seals Rail Routes Watts Bar      Savannah Nuclear Plant  River Site Irradiated TPBARs - Rail Cask        L2    10.'3 1L2 Xx 10-      7_5 7.5 x 10-4 10-4      1.6 xX 10-4      4_8 4.8 xX 10-10.'3  5_7 5.7 Xx 10-10-'3  2_0 2.0 Xx 10-10-`5  82 82 Watts Bar      Savannah                                                                                                                                          '"
a::s Nuclear Plant  River Site Irradiated  TPBARs-- 2 Truck Casks Irradiated TPBARs                    1.2 xx 10-10-i3    7_5 7.5 Xx 10-4 104        1.6 x 10-4      4_9 4.9 xX 10-10.'3  5_8 5.8 x 10-1.33    7_1 7.1 Xx 10-5    ~
82.
Sequoyah        Savannah t
0~
tll Nuclear Plant  River Site Irradiated Irradiated TPBARs - Rail Cask        Ll 1.1 xX 10-10-33 6_9 x 10-4 6.9              1.5 xX 10-4 1 0 -4    4_7 4.7 Xx 10-  3  5_6 5.6 Xx 10-10-'3  1.8 Xx 10-5    .,'"
C 82 c
82 Sequoyah        Savannah                                                                                                                                          5' a::s Nuclear Plant  River Site Irradiated Irradiated TPBARs-TPBARs - 2 Truck Casks    Ll    10-3 1.1 xX 10-1      6_9 x 104 6.9    10-4      1.5 x 10-4 1.5              4_8    10-3 4.8 x 10.'    5_6 xx 10-5.6    10.33  6_6    10-'5 6.6 x 10-      c 82 Bellefonte Bellefonte      Savannah                                                                                                                                          ~
Nuclear Plant Plant. River Site Irradiated Irradiated TPBARs TPBARs - Rail Casks              10-3 1.2 xX 10-'      7_5 x 10-4 7.5    10.'      1.6 x 10-4 1.6        -4    4_8 x 10-4.8    10-'3  5_7 5.7 x 10-10.'3  2_0 2.0 x 10-10' 5    c 82 10                                                      a::s Bellefonte      Savannah Savannah                                                                                                                                          ~
c 82 Nuclear Plant  River Site Irradiated TPBARs TPBARs - 2 Truck Casks          10-3 1.2 xX l0-'      7_6 x 10-4 7.6    104      1.6 Xx 110-4 0
4    4_9 Xx 10-4.9    10-'3  5_8 xX 10-5.8    10.'3  7.2 x 10-10-`5  .&sect;:
a-tll Waste Waste Transport Transport Truck Routes                                                                                                                                                      82 Watts Bar      Savannah                                                                                                                                          C Nuclear Nuclear Plant Plant  River Site Low-Level Radioactive Radioactive Waste      1.9 1.9  X  10-22 10-      1.7 x 10-10 3      6_2    10-3 6.2 x I0V        6_8 x 10-6.8    10-22  7_6 7.6 x 10-10.22  <1.0 Xx 10-10-18 82.
Sequoyah        Savannah Savannah                                                                                                                                          -i 82 Nuclear Nuclear Plant Plant  River River Site Low-Level Radioactive Radioactive Waste Waste      1.7 x 10.2 10-2      1.7 x 10-1.7    10.'3    5.9 x W-5_9    101<3 5.9    10.22 5_9 xX W-      6_7    W- 2 6.7 x 10.2            W- 8
                                                                                                                                                        <1.0 x 10.8    a 82 c
82 Bellefonte Bellefonte      Savannah Savannah                                                                                                                                          ::<
C 82 Nuclear Nuclear Plant Plant  River River Site Low-Level Radioactive Low-Level    Radioactive Waste      1.2 x 10.2 1.2    10-2            10-3 1.0 x 10-1      3_9 x 10`
3.9    10-3      4.3 x 10-2 4.3    10-2    4_7 4.7 xX 10-10.22          10-8
                                                                                                                                                      <1.0 Xx 10-8    5" a::s Watts Watts Bar Bar      Barnwell Barnwell Nuclear Nuclear Plant Plant            Low-Level Low-Level Radioactive Radioactive Waste Waste      2_0 x 10-2.0    10-.2    1.7 x 10-10-33    6.6    10-3 6_6 x 10`3        7_5 7.5 Xx 10-10-22  8.3    10.22 8_3 xX 10-    <1.0    10-8
                                                                                                                                                      <1.0 Xx 10-1 Sequoyah.
Sequoyah.      Barnwell Barnwell Nuclear Nuclear Plant Plant            Low-Level    Radioactive Waste Low-Level Radioactive    Waste      1.9 X  10.22 X 10-        1.8 x 10`3 1.8    10-3              10-3 6_3 xX 10`
6.3              6_6 6.6 xX 10-10.22  7.4    10.22 7.4 Xx 10-              10-8
                                                                                                                                                      <1.0 x 10.8 Bellefonte Bellefonte      Barnwell Barnwell Nuclear Nuclear Plant Plant            Low-Level Low-Level Radioactive Radioactive Waste Waste      2_0 x 10-2 2.0    10-2      1.7 x 10.3 1.7    10-3      6.5    10-3 6_5 x 10-'              10-2 7.3 xX 10.2    8.1 X 8.1    10-2 X 10.2    <1.0    10-8
                                                                                                                                                      <1.0 xX 10.8 t;'1 t.0 l'-I
'0
 
EnvironmentalImpact FinalEnvironmental Final                                Statementfor the Production Impact Statement[or              Productiono[Trililim  in aa Commercial of Tritium in    CommercialLight    Water Reactor Light Water The The accident consequence consequence assessment is intended            intended to provide an estimate of the maximum      maximum potential impacts        impacts posed by the most severe potential transportation  transportation accidents accidents involving aa shipment.
shipment. The maximum foreseeable greater than 1 x 10-(frequency greater                        10-77 per year)year) offsite transportation transportation accident accident involves a shipmentshipment of irradiated irradiated neutral (average) weather TPBARs under neutral                            weather conditions_
conditions. The accident has aa probability of            of occurring about once every 10 million years and could result in a 5_9                    5.9 rem to a person 30 meters (about 100 feet)          feet) from the vehicle_  vehicle.
The probability of an accident occurring is smaller with failed TPBARs or under stable atmospheric conditions_                                  conditions.
This accident would fall into Category 5 of the previously described                                    accident matrix shown in Figure E-9_
described accident                                              E-9.
hypothetical accident, the impact would cause the cask to fail, and the deformation of the cask would In this hypothetical be assumed to fail I1 percent of the TPBARs_        TPBARs. In the event of a fire, itit would not be hot enough or would be too short in duration duration to damage the TPBARs. To incur this level of damage, the cask                                  cask would have to collide      collide with an immovable object  object at a speed much greater than 88.5 kilometers per hour (55                              (55 miles per hour). The probability of an accident with a more energetic collision or                          or fire and higher consequences is lower.          lower.
Table T a b Ie E-E-88 Noora          dO10 I oglcal Ri Nonradiological            Risk sk Factors per Shipment  Shipment 1,',,::;,:';/' ::, .  ;'::.:~ ..:      .,,*;'No.ni'Miologi~al Nonradiological jUsk'Esli~ates'(Edtalitie~Ship;;'e~t)'
RkEsdimae (Ftltes/Shipment                      ", :;        ,,":::;,';"
To..
                                                                                                                  "          " ~i:                    "":"
I~ >: .' ':"i+Fro~:
From  ,:, "',/            " "":'
                                          , '"c.'
                                                  *C.
                                                          ,':'To:
Exhaust Eni';;;si~n,
                                                                                      ,'::.Exhuust      Emission    '"                Ac~id~nt Acident Truck Routes Watts Bar Bar Nuclear Plant                Savannah River Site                                            10.66 1.95 x 10-                          1.13 Xx 10-10-.5 Sequoyah Nuclear Plant Sequoyah                                Savannah River Site                                  2.20 x 10,6 10.6                        9.87 Xx 10.6 10-'
Bellefonte Nuclear Plant Bellefonte                              Savannah River Site                                  2.13 x 10-10-66                        1.100 X l.l        10-5 X 10-Wilmington, NC                          Columbia, SC                                          2.05 x 10-10-17                      9.97 xX 10.10.66 Wilmington, Wilmington, NC                          Lynchburg, V      VAA                                          10-77 4.04 Xx 10-                          1.11 XX 10-10-15 Wilmington, NC Wilmington,  NC                        Richland, WA                                          5.75 5,75 x 10-10.66                      9.26 Xx 10-9,26      10-5 Wilmington, NC                          Hematite, MO                                          1.34 x 10'6 10.6                        3.26 xX 10'5 10-1 Columbia, SC                            Lynchburg, VA                                        7.74 xx 10'7 10-7                        1.16 xX 10-10-15 Columbia, SC                            Richland, WA                                                    10-6 5.34 x 10-6                                      10-5 8.60 Xx 10-1 Hematite, MO                            Columbia, SC                                          1.20 x 10-6 10'6                        2.59 Xx 10- 5 Hematite, MO                            Watts Bar Nuclear Plant                              7.34 x 10-7                            1.77      10s5 1.77 xX 10.
Lynchburg, Lynchburg, VA VA                          Watts Bar Nuclear Plant                              4.92 x 10-10-77                      1.20 xX 10-10-'5 Columbia, SC                            Watts Bar Nuclear Plant                              4,97 xx 10'7 4.97      10-'                        1.08 xX 10'5 10-'
Richland, W Richland,  WAA                          Watts Bar Nuclear Plant                              4.84 x 10-10.66                      7.77 x 10.'10'5 Lynchburg, Lynchburg, VA VA                          Sequoyah Nuclear Plant Sequoyah                    Plant                    8.02 x 10'7 10-'                        1.43 xX 10]
10'5 Columbia,  SC Columbia, SC                            Sequoyah Nuclear Plant      Plant                    2.03      10-6 2.03 xx 10-6                        1.18 X    10'5 X 100-Hematite, MO Hematite,  MO                          Sequoyah Nuclear Plant Sequoyah                    Plant                              10-77 8.37 xx 10.                            1.62  x 1.62 X 10-10-'5 Richland, Richland, WA                            Sequoyah Nuclear Plant      Plant                    5.14      10.66 5.14 xx 10-                          7.63 7.63 xX 10-10-'5 Lynchburg, VA                          Bellefonte Bellefonte Nuclear Nuclear Plant                        7.11      10-'7 7.11 xx 10-                                    10-5 1.54 xX 10-'
Columbia, SC                            Bellefonte Nuclear Nuclear Plant Plant                              10.'6 1.97 x 10-                            1.29 xX 10'5 10.'
Hematite,  MO Hematite, MO                            Bellefonte      Nuclear Bellefonte Nuclear Plant    Plant                              10-7 7.30 xx 10-7 7.30                                  1.57  x 1.57 X 10-10-05 Richland, Richland, WA WA                          Bellefonte Nuclear Nuclear Plant, Plant                    5.10 x 10610-6                        7.57 xX 10- 5 Watts Watts Bar  Nuclear Plant Bar Nuclear Plant                Barnwell, Barnwell, SC    SC                                    1.77    10-66 1.77 xx 10-                          1.24 1.24 xX 10'5 10-'
Sequoyah  Nuclear Plant Sequoyah Nuclear                        Barnwell, Barnwell, SC                                          2.06      10-6 2.06 x 10.6                          1.10 1.10 X    10-15 x 10.
Bellefonte Bellefonte Nuclear Nuclear Plant Plant              Barnwell, Barnwell, SC                                          1.98 X 1.98  x 10.
10-66                                  10'5 1.21 xX 10.
1.21 Rail Rail Routes Routes Watts Watts Bar  Nuclear Plant Bar Nuclear Plant                Savannah Savannah River  River Site Site                          1.13    10-6 1.13 xx 10-6                          1.57      10-'5 1.57 xX 10-Sequoyah Sequoyah Nuclear Nuclear Plant Plant                Savannah Savannah River River SiteSite                          1.11    10-6 1.11 Xx 10.6                          1.44 xX 10.
1.44      100'5 Bellefonte Bellefonte Nuclear  Plant Nuclear Plant                Savannah Savannah River  River Site Site                          1.05    10.66 1.05 'xx 10-                          1.59      10.'5 1.59 xx 10-E-30 E-30
 
Table E-9 Risks of Transportin2 Transporting the Hazardous Matenals      Materials Incident-Free                                        A Accident-,'
                    "                                                                                      Radilogial                      on'radiological&#xfd; Reacto~
e(Na.ofSite TPBARs)                      RTransportation Mode                Crew.              Public              Emission .raic                        Radiological
                , (N~.'ofTPBARs)
Truck Cask via  Truck via Truck                      0.0033 0.0033              0.021 0.021              0.0032 0.0032                  0.031 0.031          5.1 Xx 10-6 5.1    10.
Watts  Bar (3,40 Bar Bar Watts                                  Truck Cask via Rail                          0.0016              0.008              0.0023 (3,400 TPBARs/cycle)                  Truck Cask via  Rail                        0.0016              0.008              0.0023                  0.029          5.7 x 10-6 (3,400 TPBARs/cycle)
Rail Cask via Rail                          0.0016              0.008              0.0023                  0.029          1.6 Xx 10-6 10-6 Truck Cask via Truck                        0.0030              0.019              0.0035                  0.029          6.1 x 10-6 Sequoyah                              Truck (3,400 TPBARs/cycle)                  Truck Cask  via Rail Cask via  Rail                        0.0014 0.0014              0.007 0.007              0.0024 0.0024                0.028            5.2 x 10-6 (3,400 TPBARs/cycle)
Rail Cask Rail      via Rail Cask via  Rail                          0.0014              0.007              0.0024                  0.028          1.5 xX 10-6 Truck Truck Cask Cask via Truck                        0.0026              0.018              0.0034                0.030            6.4 x 10-6 Bellefonte Bellefonte                            Truck Cask via Rail                          0.0010              0.005              0.0024                0.028            5.8 x 10-6 Truck Cask via Rail                          0.0010              0.005              0.0024                  0.028          5.8 X 10-6 (3,400 (3,400 TPBARs/cycle)
Rail Rail Cask via Rail                          0.0010              0.005              0.0024                0.028            1.6 x 10-6 Truck  Cask via Truck Cask      Truck via Truck                      0.0010 0.0010              0.007              0.0010                0.009            1.7 x 10-6 Watts Bar Watts  Bar(100T B~ /yl)Truck (1,000 TPBARs/cycle)                          Cask via Truck Cask  via Rail Rail                        0.0005 0.0005              0.002 0.002              0.0007 0.0007                0.009 0.009            1.9>< 10.6 (1,000 TPBARs/cycle)
Rail Cask via Rail                          0.0005 0.0005              0.002 0.002              0.0007 0.0007                0.009 0.009            5.3 xX 10-
                                                                                                                                                                          . 5.3    10-77 Truck Cask via Truck                        0.0009              0.006              0.0011                0.009            2.0 xX 10-6 2.0    10-6 Truck Cask via Truck                        0.0009              0.006              0.0011                  0.009 Sequoyah Sequoyah                              Truck Cask via Rail                          0.0004              0.002 (1,000 TPBARs/cycle)                  Truck Cask via Rail                          0.0004              0.002              0.0007                0.008            1.7 x 10-6 (1,000 TPBARs/cyc1e)
Rail Cask Rail Cask via  Rail via Rail                          0.0004 0.0004              0.002 0.002              0.0007 0.0007                0.008 0.008          4.9 xX 10-4.9    10-77 Truck Cask Cask via Truck                        0.0008 0.0008              0.006              0.0010 0.0010                0.009            2.1 x 10-6 Bellefonte                            Truck Cask via Rail                          0.0003              0.001              0.0007                0.009            1.9 X 10-6 (1,000                                  Truck Cask via Rail                        00.0003              00.001              0.0007                0.009 (1,000 TPBARs/cycle)
TPBARs/cyc1e)                                                                                                      0                      0                  .    -    I Rail Cask via Rail Rail                          0.0003              0.001              0.0007 0.0007                0.009            5.4 5.4 xx 10'7 I0.7 Maximum Maximum impacts are  are assumed assumed for fabrication, fabrication, assembly, and and waste waste transportation, transportation, and are are included included in in these these totals.
t;J  All All risks risks are are expressed expressed as as number number of oflatent  cancerfatalities, latent cancer fatalities, exceptfor for the Accident-Traffic Accident- Traffic column, which lists number of accidentfatalities.
accident fatalities.
v...
 
Final                  Impact Statementfor EnvironmentalImpact Final Environmental                        for the Production      Tritium in aa Commercial Production of Tritium                      Light Water Commercial Light    Water Reactor Estimated Dose to Exposed Individuals E-10 Estimated Table E-I0                                                  Individuals During Incident-Free Incident-Free T ransportatlOn C Transportation            Conditions on d**ltions a Exp~~ecfindividuar        -~. ::'
      ,':)"
                              ,.,",        Receptoi ;';::; :",~i;i' :;"
                                  '.-' ;(;,Receptor
                                                                            , ':','i "',""', . Db
                                                                                                "  Dose  to MiAaximally Jjbs;to*Maiimally              dp-d' vi Exposelndivduiu Workers                                Crew member member (truck driver)                                          0.1 rem per year b Inspector                                                  0.0029 rem per event 0'.0029 Public                                            Resident                                                        10i'7 rem per event 4.0 x 10.            event Person in traffic congestion                                          0.011 rem per event event Person at service station                                          0.00 1 rem per event 0.001            event rem == roentgen equivalentequivalent man.
man.
a    Doses are calculated assuming that the shipmentshipment external dose rate is equal to the maximum maximum expected expected dose of 10 millirem millirem per hour hour at 2 meters (6.6 feet) from the package.
b    This isis aa dose limit for a nonradiation worker (10      (10 CFR 20). The truck driver dose could exceed this limit in            in the absence of administrative controls.
administrative E. 7 CONCLUSIONS E.7        CONCLUSIONS AND                LONG-TERM IMPACTS AND LONG-TERM            IMPACTS OF TRANSPORTATION E.7.1 E.7.1 Conclusions Conclusions It is unlikely that the transportation                    radioactive materials will cause an additional fatality.
transportation of radioactive Long-Term Impacts of Transportation E.7.2 Long-Term                                    Transportation The        Programmatic Spent Nuclear The. Programmatic                              Nuclear FuelFuel Management Management and      and Idaho        National Engineering Idaho National            Engineering Laboratory Laboratory Environmental Environmental Restoration    Restoration and  and Waste Management Management Programs  Programs Final          Environmental Impact Final Environmental            Impact Statement (DOE 1995)    1995) analyzed                                                  transportation of radioactive materials, including impacts cumulative impacts of all transportation analyzed the cumulative reasonably foreseeable actions that include transportation from reasonably                                                            transportation of radioactive material for a specific      specific purpose and general radioactive radioactive materials transportation transportation that is not related                  particular action. The total worker and related to a particular                                          and general general population                                        summarized in Table collective doses are summarized population collective                                                      E-I 1. The table shows that the impacts of this Table E-ll.
program are quite small compared with overall transportation impacts. Total collective worker                                  worker doses from all types of shipments (historical, the alternatives, reasonably                          foreseeable reasonably foreseeable actions, actions,  and  general    transportation) were general transportation) estimated estimated          to    be 320,000    person-rem      (130  latent 320,000 person-rem (130 latent cancer        cancer    fatalities)  for  the  period    1943    through  2035 (93 years).
Total general population                  collective population collective        doses    were  also    estimated    to  be  320,000    person-rem (160 latent cancer person-rem      (160          cancer fatalities). The majority of the collective      collective dose for workers and the general        general population population was due to the general transportation transportation of radioactive radioactive material. Examples of these activities are shipments                                radiopharmaceuticals to shipments of radiopharmaceuticals                to nuclear nuclear medicine laboratories and shipments          shipments of commercial commercial low-level          radioactive waste to commercial low-level radioactive                    commercial disposal facilities. The total number of latent cancer fatalities                    fatalities estimated to result from radioactive    radioactive materials transportation over the period between 1943 and 2035 was 290. Over this same period (93 years),
transportation approximately 28 million people would die from cancer, approximately                                                                      cancer, based on 300,000 cancer fatalities per year (10 (10 CFR 71). It should be noted that the estimated                estimated number of transportation-related transportation-related latent cancer fatalities would be indistinguishable indistinguishable from other latent      latent cancer fatalities, and the transportation-related transportation-related latent cancer  cancer fatalities are 0.00      0.001010 percent of the total number oflatent    of latent cancer fatalities.
E-32
&#xa3;-32
 
Appendix E - Evaluation Appendix          Evaluation of Human Human Health Health Effocts  of Overland Transportation Effects ofOverland    Transportation Table Table E-ll    E-1 1 Cumulative                Transportation-Related Radiological Collective Cumulative Transportation-Related                                                Collective Doses and Latent Cancer Fatalities (1943 Dto                      2035 2035)    ,: oile~c
: , ::i ,: : ii i! ', .
                ,":*! i '!, 'i 'i;ii                      ,i *.,i,* :}! ? "        le cti ve W~rk k r ei":lo                    os e ' .              tii Ge n e rali f op u laticin , ) ,os e" Category,                                              (person-rem)          .                      (person-rein) .
CL WR Impacts CLWR Shipment of ofTPBARsand TPBARs and LLW        LLW                                                < 100                                        < 100 100 Latent cancer fatalities from TPBARs and LLW Latent                                                  LL W                            <I
                                                                                            <1                                          <1
                                                                                                                                          <I Other Nuclear Material Material Shipments Reasonably foreseeable actions' Reasonably                        actions' Truck                                                                                  11,000 11,000                                      50,000 Rail                                                                                    820                                          1,700 1,700 General transportation transportation (1943-2035)
(1943-2035)                                          310,000 310,000                                      270,000 Total collective dose                                                                  320,000 320,000                                      320,000 Total Latent Cancer Cancer FatalitiesFatalities                                                  130                                          160 160
, LLW = Low-Level Radioactive Radioactive Waste.
Source: DOE 1995.
E.8 UNCERTAINTY UNCERTAINTY AND                      CONSERVATISM IN ESTIMATED AND CONSERVATISM                      ESTIMATED IMPACTS The sequence of analyses performed        perfonned to generate the estimates of                of radiological risk for transportation transportation includes:
(1) determination detennination of the inventory          inventory and characteristics, characteristics, (2)    (2) estimation of shipment                    requirements, shipment requirements, (3) detennination determination of route characteristics,characteristics, (4) calculation calculation of radiation doses to exposed      exposed individuals individuals (including (including estimation of environmental environmental transport and uptake of radionuclides),              radionuclides), and (5)      (5) estimation estimation of health effects.
Uncertainties Uncertainties are associated with each of these steps. Uncertainties                Uncertainties exist in the way that the physical systems being analyzed are represented represented by the computational computational models; in the data required to exercise the models (due to measurement measurement errors, sampling errors, natural variability, or unknowns simply caused by the future nature of the actions being analyzed);  analyzed); and in the calculations calculations themselves themselves (e.g.,(e.g., approximate approximate algorithms used by the computers).
In principle, one can estimate the uncertainty      uncertainty associated with each input or computational        computational source and predict        predict the resultant uncertainty in each set of calculations. Thus, one can propagate the uncertainties                                uncertainties from one set of calculations to the nextandestimate next and estimate the uncertainty in the final, or absolute, result; however, conducting                        conducting such such a full-scale quantitative quantitative uncertainty uncertainty analysis is often impractical and sometimes              sometimes impossible,              especially impossible, especially for actions actions to be initiated at an unspecified    unspecified time in the future. Instead, the risk analysis is designed                  designed to ensure, through uniform unifonn and judicious  judicious selection selection of scenarios, models,    models,and  and input parameters, parameters, that relative          comparisons relative comparisons of risk among the vari~us      various alternatives are meaningful. In the transportation risk assessment, this design is accomplished by unifonnly accomplished                  uniformly applying common        common input parameters and assumptions to each alternative.
Therefore, although Therefore,                      considerable uncertainty although considerable                  uncertainty is inherentinherent in the absolute magnitude  magnitude of the transportation transportation risk for each alternative, much less uncertainty is associated with the relative differences                            differences among the alternatives in a given measure of risk.
In the following sections, areas of uncertainty          uncertainty are discussed discussed for the assessment steps enumerated        enumerated above.
Special emphasis emphasis          is placed      on  identifying      whether whether    the  uncertainties      affect  relative relative    or  absolute    measures measures of risk.
The degree of reality            conservatism reality conservatism                of the    assumption        is  addressed.      Where      practical, practical,    the  parameters parameters that most    most significantly significantly    affect        the  risk  assessment        results    are  identified.
                                                                                                                                                                &#xa3;-33 E-33
 
Final Environmental Impact Statement for Final Environmental                          Productiona/Tritium (or the Production                  CommercialLight Water Reactor of Tritium in aa Commercial E.8.1 Uncertainties E.8.1  Uncertainties in TPBAR TPBAR and Radioactive Radioactive Waste Waste Inventory and Characterization Characterization The inventories and the physical and radiological                characteristics are important input parameters radiological characteristics                                      parameters of the transportation transportation risk assessment. The potentialpotential amount of    or" transportation for any alternative            determined alternative is detennined primarily by the projected dimensions dimensions of package package contents *and,  and, in the case of irradiated TPBARs, the strength of the radiation radiation* field and assumptions assumptions concerning shipment capacities. capacities. The physical physical and radiological characteristics are important in detennining characteristics                        determining the amount of material      material released released during accidents and the subsequent doses to exposed individuals through multiple environmental                      exposure pathways.
environmental exposure          pathways.
characterization will be reflected to some degree in the transportation risk Uncertainties in the inventory and characterization inventory overestimated (or underestimated),
results. If the inventory  is  overestimated                                                transportation risk estimates underestimated), the resulting transportation                  estimates also also will be overestimated (or underestimated) underestimated) by roughly the        same  factor. However,    the  same  inventory estimates inventory are used to analyze        transportation impacts of each analyze the transportation                      each of the EIS alternatives.        Therefore, for comparative alternatives. Therefore,          comparative purposes, the observed differences in transportation risks among the proposed              proposed reactor sites as given in reasonably accurate estimates from current infonnation represent unbiased, reasonably Table E-9 are believed to represent                                                                          information in terms tenns of relative risk comparisons.
implementation phase If DOE should enter into the final design and implementation                  phase of the project, the amount of tritium in incident-free risk estimate would not change unless the number of shipments the TPBARs could change. The incident-free maximum regulatory limit dose rate was used. However, since over 90 percent changes, because the maximum                                                                                        percent of the accident impact' accident            comes from the tritium in the TPBARs, the accident impact comes                                                    accident impact would increaseincrease or decrease in proportion to the amount of tritium in the TPBARs.
E.8.2 Uncertainties in Containers, Shipment Capacities,    Capacities, and NumberNumber of Shipments alternative is based in part on assumptions concerning the transportation required for each alternative The amount of transportation capacities for commercial trucks and safe secure transports.
characteristics and shipment capacities packaging characteristics capacities have been defined for assessment Representative shipment capacities Representative                                                            assessment purposes based on probable future actual shipment capacities may differ capacities. In reality, the actual shipment capacities.                                                                differ from the predicted      capacities such predicted capacities projected number of shipments and, consequently, that the projected                                                                          transportation risk would change.
consequently, the total -transportation transportation risks would increase although the predicted transportation However, although                                                            increase or decrease accordingly, the relative relative differences                      alternatives would remain about the same. The maximum amount of material differences in risks among alternatives                                                                                    material allowed in Type B    containers is set by conservative B containers              conservative safety analyses.
E.8.3 Uncertainties in Route Determination Determination Representative routes have been Representative                        determined between been detennined        between all origin and destination                considered in the EIS.
destination sites considered detennined consistent with current The routes have been determined                                                                            practices, but may not current guidelines, regulations, and practices, be the actual routes that would be used in the future. In reality, the actual routes could differ from the                      the representative ones in terms representative                      distances and total population along the routes. Moreover, since tenns of distances                                                                  since TPBARs TPBARs and waste could      transported over an extended period could be transported                            period of time starting at some time in the future, the highway    highway infrastructures infrastructures  and  the  demographics demographics    along    routes  could  change. These These    effects have  not  been  accounted accounted for in the transportation    assessment; transportation assessment;      however,    it  is not anticipated    that  these  changes  would    significantly affect significantly relative comparisons of risk among the alternatives considered in the EIS. Specific routes cannot be identified          identified because the routes are classified in advance because                                                national security interests.
classified to protect national Uncertainties in the Calculation of Radiation Doses E.8.4 Uncertainties radiation doses from transportation activities introduce calculate radiation The models used to calculate                                                                  introduce a further uncertainty in accuracy or absolute uncertainty generally difficult to estimate the accuracy the risk assessment process. It is generally                                                              uncertainty of the risk assessment results. The accuracy of the calculated assessment                                            calculated results is closely related to the limitations of the E-34 E~34
 
Appendix E Appendix E -- Evaluation Evaluation o[
of Human Human Health Health Effects o[ Overland Effects of Overland Transportation Transportiction models and to the uncertainties in each of the input parameters that the model requires. The computational models single greatest limitation facing users ofRADTRAN, of RADTRAN, or any computer code of this type, is the scarcity          scarcity of data for certain input parameters.
Uncertainties associated Uncertainties    associated with the computational computational models are minimized                        state-of-the-art computer codes minimized by using state-of-the-art that have undergone extensive review. Because      Because there are numerous uncertainties that are recognized but difficult to quantify, assumptions are made at each step of the risk assessment process that are intended to conservative results (i.e.,
produce conservative              (i.e., overestimate overestimate the calculated calculated dose and radiological radiological risk). Because Because parameters parameters and assumptions assumptions are applied              alternatives, this model bias is not expected applied to all alternatives,                                  expected to affect affect the meaningfulness meaningfulness relative comparisons of risk; however, the results may not represent risks in an absolute sense.
of relative To understand understand the most important uncertainties uncertainties and conservatism conservatism in the transportation risk assessment, the results for all cases were were  examined    to  identify  the largest  contributors to the collective
                                                                        'contributors            collective population risk. The results of this examination examination are discussed brieflybriefly in the following paragraph.
For truck shipments, the largest contributors to the collective                      population dose, in decreasing collective population                    decreasing order of  of importance, were found to be: (1) incident-free incident-free dose to members of the public                        (2) incident-free dose public at stops, (2) to transportation crew members, (3) incident-free incident-free dose to members of the public sharing                            (on-link sharing the route (on-link incident-free dose to members of the public residing along the route (off-link dose), (4) incident-free                                                                        (off-link dose), and (5)(5) accident dose risk to members of the public. Approximately Approximately 80 percent of the estimated public dose was incurred at stops; 15 percent was received received by the on-link population and 5.        5 percent by the off-link population. In general,general, the accident accident contribution contribution to the total risk was negligible negligible compared with the incident-free incident-free risks.
As shown above, incident-free transportation transportation risks are the dominant component  component of the total transportation transportation risk.
The most important parameter parameter in calculating      incident-free doses is the shipment external calculating incident-free                                  external dose rate (incident-(incident-free doses are directly proportional proportional to the shipment shipment external external dose rate). For this assessment, it was assumed that all shipments would have an externalexternal dose rate at the regulatory limit of 10 millirem per hour at 2 meters.
In In practice,  the  external external  dose rates  would vary from shipment shipment to shipment, but would not exceed the regulatory limit.                                                          .
Finally, the single largest contributor to the collective collective population              calculated with RADTRAN population doses calculated              RADTRAN was found to be the dose to members of the public at truck stops. Currently, RADTRAN uses a simple point-source                  point-source approximation for truck-stop truck-stop exposures and assumes that the total stop time for a shipment is proportional      proportional to the shipment distance. The parameters parameters used in the stop model were based on a survey of a very limited number            number of radioactive radioactive material material shipments that examined examined a variety of shipment types in different areas of the country.
It was assumed that stops occur as a function of distance, with a stop rate of 0.011 hour per kilometer                    kilometer (0.018 hour per mile). It was further assumed that an average          average of 50 people at each stop are exposed at a distance  of 20 meters (66 feet). In RADTRAN, distance of20                              RADTRAN, the populationpopulation dose is directly proportional proportional to the external shipment dose rate rate and the number of people exposed and inversely proportional  proportional to the square of the distance.
The stop rate assumed results in an hour of stop time per 100            100 kilometers (62  (62 miles) 6f of travel.
Based Based upon the qualitative qualitative discussion with shippers, shippers, the parameter parameter values used in the assessment appear to be conservative.
conservative.      However,    data  do  not  exist  to  quantitatively quantitatively assess the degree degree of control and the location, frequency, and duration of truck stops. However, based on the regulatory requirements        requirements for continuous escort of the material material (10(10 CFR 73)73) and the requirement requirement for two drivers, it is clear that the trucks would be on the            the move much of the time until arrival at the destination. Therefore,        Therefore, the calculated impacts are extremely  extremely conservative. By using these conservative conservative parameters, parameters, the calculations calculations in this EIS are consistent with the RADTRAN RADTRAN default values.
Shielding of exposed exposed populations populations was not considered. For all incident-free exposure      exposure scenarios, no credit was taken for shielding of exposed individuals. In        In reality, shielding would be afforded by trucks and cars sharing
                                                                                                                                &#xa3;-35 E-35
 
Final EnvironmentalImpact Final Environmental Impact Statementfor for the Production Production of  Tritium in a Commercial a/Tritium                        Water Reactor Commercial Light Water transport routes, rural topography, and the houses and buildings in which people reside. Incident-free the transport                                                                                                        Incident-free exposure to external radiation radiation could be reduced significantly, dependingdepending on the type of shielding present. For    For residential houses, shielding factors (i.e.,
residential                                  (i.e., the ratio of shielded shielded to unshielded        exposure rates) have been unshielded exposure                    been estimated estimated to range from 0.02 to 0.7, with a recommended recommended value of 0.33.      0.33. If shieldIng shielding were to be considered considered for the maximally maximally exposed exposed resident living near a transport route, the calculated    calculated doses and risks would be    be approximately 70 percent. Similar levels of shielding may be provided reduced by approximately                                                                  provided to individuals exposed exposed in consideration of shielding does not significantly affect the overall incident-free vehicles. However, consideration                                                                          incident-free risks to the general public.
mitigative actions are not considered Post-accident mitigative Post-accident                                considered for dispersal                                  accidents involving the dispersal accidents. For severe accidents materials in the environment, dispersal of radioactive materials release and dispersal                                                                post-accident mitigative actions, such as environment, no post-accident accident vicinity, have been interdiction of crops or evacuation of the accident                                    considered in this risk assessment. In been considered reality, mitigative  actions  would  take  place  following    an  accident      in accordance with U.S. Environmental accordance                Environmental Protection Agency radiation protection guides for nuclear incidents Protection                                                              incidents    (EPA  1991). The effects of mitigative mitigative actions on population accident doses are highly dependent upon the severity,                      location, and timing of the severity, location, ingestion doses are only calculated accident. For this risk assessment, ingestion                                                          occurring in rural areas calculated for accidents occurring ingestion doses, however, assume all food grown on contaminated (the calculated ingestion                                                          contaminated ground is consumed and is Examination of the severe not limited to the rural population). 'Examination                  severe accident      consequence assessment results has accident consequence contributes on the order of 50 percent contaminated foodstuffs contributes shown that ingestion of contaminated                                                            percent of the total population dose for rural accidents. Interdiction of foodstuffs would act to reduce, but not eliminate, this contribution.
accidents. Interdiction E-36
 
Evaluationof Human Health Appendix E - Evaluation          Health Effects    OverlandTransportation E/focts of Overland Transportation E.9 REFERENCES Ammerman, D. J., and J. G. Bobbe, 1995, "Testing Ammerman,                                      "Testing of the Structural Evaluation Evaluation Test Unit,"
Unit," Proceedings Proceedingsof of PATRAM '95, Las Vegas, Nevada, December.
PATRAM ANL (Argonne National Laboratory), 1994, LongitudinalLongitudinal Review of State-Level Accident Statistics  Statistics for Carriers of Intrastate Carriers                        ANLIESD/TM-68, Argonne, Illinois, March.
Freight, ANL/ESD/TM-68, IntrastateFreight, Department of Energy),
DOE (U.S. Department          Energy), 1995, 1995, Department                        Programmatic Spent Nuclear Department of Energy Programmatic                        Nuclear Fuel Fuel Management ManagementandIdaho Idaho National National Engineering Engineering Laboratory Laboratory Environmental        Restoration and Waste Management EnvironmentalRestoration                    Management Programs    Final Environmental Programs Final                      Impact Statement, Environmental Impact      Statement, DOE/EIS-0203-F, DOE/EIS-0203-F, Volume I,          1, Office of Environmental Environmental Office, April.
Management, Idaho Operations Office, Department of Energy), 1997, Environmental DOE (U.S. Department                                              Assessment, Lead Test Assembly Environmental Assessment,                      Assembly Irradiation Irradiation and Analysis, Watts Bar Bar Nuclear Nuclear Plant,    Tennessee, Plant, Tennessee,    and  Hanford      Site, Richland,    Washington, Hanford Site, Richland, Washington, DOE/EA-1210,DOE/EA-l1210, Richland Operations Office, Richland, Washington, Washington, July.
DOT (U.S. Department                                    Guidelinesfor Selecting Transportation), 1992, Guidelines Department of Transportation),                                  Selecting Preferred    Highway Routes for Preferred Highway Highway Route-Controlled                              RadioactiveMaterials, Quantity Shipments of Radioactive Route-Controlled Quantity                                    Materials, DOT/RSPA/HMS/92-02, DOTIRSPAlHMS/92-02, August.
EPA (U.S,  Environmental Protection Agency), 1991, (U.S. Environmental                                ManualofProtective 1991, Manual                              for Nuclear Protective Actions for            Incidents,EPA Nuclear Incidents, Radiation Programs, Washington, DC, October.
400-R-92-001, Office of Radiation 400-R-92-001, (National Council on Radiation NCRP (National                                                Measurements), 1993, Radiation Protection and Measurements),              1993, Risk Estimates Estimatesfor  Radiation for Radiation Protection, NCRP Report No. 115, Protection,                      115, Bethesda, Maryland, Maryland, December December 31. 31.
Commission), 1977, Regulatory Commission),
NRC (U.S. Nuclear Regulatory                                    Final Environmental 1977, Final                                    Statement on the Environmental Impact Statement TransportationofRadioactive Transportation                  Material by Air and Other Radioactive Material                Other Modes,      NUREG-01170, Modes, NUREG-O              Volumes II and 2, Office 70, Volumes                      of Office of Washington, DC, December.
Standards Development, Washington, NRC (U.S. Nuclear Regulatory Commission), 1987,      1987, Shipping      Container Response to Severe Highway Shipping Container                              Highway and Conditions, Railway Accident Conditions,        Main  Report,    NUREG/CR-4829, Report, NUREGICR-4829, Office      Office    of Nuclear Nuclear    Reactor  Research, Washington, DC, February.
ORNL (Oak Ridge National National Laboratory), 1993a, HIGHWAYHIGHWAY 3.1, An      An Enhanced Enhanced Transportation Transportation Routing Program Description, Model: Program Model:              Description, Methodology, Methodology, and                  User's Manual, and Revised User's                    ORNL/TM- 12124, Chemical Manual, ORNLlTM-12124, Technology Division, Oak Ridge, Tennessee, March.
Technology Laboratory), 1993b, INTERLINE 5.
ORNL (Oak Ridge National Laboratory),                                    5.0,                  Railroad Routing Model:
0, An Expanded Railroad                Model:
Program                Methodology, and Revised User's Description,Methodology, Program Description,                                            Manual, ORNL/TM-User's Manual,        ORNLlTM-12090,12090, Chemical    Technology Chemical Technology Division, Oak Ridge, Tennessee, Tennessee, March.
PNNL (Pacific Northwest National Laboratory),                  Source Terms for the LTA Hold-Down 1998, Source Laboratory), 1998,                                        Hold-Down Assembly, Tritium Target  Qualification Project, TTQP-1-084, Revision 0, Richland, Washington, March.
Target Qualification (Pacific Northwest National Laboratory),
PNNL (pacific                                        1999, letter from Walter W. Laity to Stephen M. Sohinki, U.S.
Laboratory), 1999, Department of Energy, "TPBAR "TPBAR      Tritium  Releases                              EIS TPBAR," February 10.
Assumptions for the EIS'TPBAR,"
SNL (Sandia National Laboratory), 1982,      Non-RadiologicalImpacts 1982, Non-Radiological                                      Radioactive Materials, TransportingRadioactive Impacts of Transporting                      Materials, Albuquerque, New Mexico, February.
SAND81-1703, Albuquerque, SAND81-1703, E-377 E-3
 
Final EnvironmentalImpact StatementJor FinalEnvironmental      Statementfor the the Production Productiona/Tritium of Tritium in in aa Commercial CommercialLight Light Water Water Reactor Reactor Laboratory), 1991a, SNL (Sandia National Laboratory),        1991 a, Estimate Estimate of ofCRUD CRUD Contribution Contributionto  to Shipping Shipping Cask Cask Containment Containment Requirements, SAND88-1358, TTC-0811, Requirements,                      TTC-081 1, Albuquerque, Albuquerque, New Mexico, January.
(Sandia National SNL (Sandia      National Laboratory), 1991 1991b,      Methodology.for b, A Methodology                Estimating the Residual for Estimating            Residual Contamination Contamination Contributionto the Source Contribution          Source Term in in a Spent-Fuel Spent-Fuel Transport TransportCask, Cask,SAND90-2407, SAND90-2407, Albuquerque, New Mexico, September.
(Sandia National Laboratory), 1992, A Method SNL (Sandia                                      Methodfor    Determiningthe Spent-Fuel for Determining            Spent-FuelContribution Contributionto Transport Transport Cask Containment Cask  ContainmentRequirements, Requirements, SAND90-2406, SAND90-2406, TTC-IOI9, TTC- 1019, Albuquerque, New Mexico, November.
SNL (Sandia National Laboratory), 1993a,    1993a, A Source-Source-Term      Methodfor Term Method              DeterminingSpent-Fuel for Determining      Spent-Fuel Transport Transport Cask  Containment      Requirements:      Executive    Summary,    SAND90-2408, Cask Containment Requirements: Executive Summary, SAND90-2408, TTC-I021,                    TTC-1021,      Albuquerque,  New Mexico, February.
SNL (Sandia (Sandia National Laboratory), 1993b, RADTRAN  RADTRAN 4 Volume II.                Technical Manual, II: Technical                SAND89-2370, Manual, SAND89-2370, Albuquerque, New Mexico, August.
SNL (Sandia National Laboratories), 1999, CommercialCommercialLight Water    Water Reactor Reactor Product ProductFinal FinalSource Source Term Term Information for Information    for EIS Analyses Task Completion Completion Summary, SNL-D-98-23, SNL-D-98-23, Rev. 2, Albuquerque, NM, February  11.
February 11.
WEC (Westinghouse Electric Company),Company), 1998, letter from M.L. Travis to J. E. Kelly, Sandia National Laboratory, Albuquerque, New Mexico, "Transmittal "Transmittal of Information Information to Support the CL      CLWRWR Tritium Program Program Environmental              Statement," NDP-MLT-98-130, Environmental Impact Statement,"        NDP-MLT-98-130, Pittsburgh, Pennsylvania. February 16.
WSRC (Westinghouse          Savannah River Company), 1996, (Westinghouse Savannah                                1996, Civil/Structural Civil/Structural System Design  Design Description Descriptionfor Roads and Railspurs.
Railspurs,System Project Project  No. S-6091,    C-SYD-H-00004, S-6091. C-SYD-H-00004, Revision      Revision  0, September.
E-38
&#xa3;-38
 
APPENDIX APPENDIXF          F THE PUBLIC SCOPING PROCESS F.l F.1 SCOPING PROCESS DESCRIPTION As a preliminary step in the development development of an environmental environmental impact statement (EIS), regulations establishedestablished by the Council on Environmental Environmental Quality (40 CFR 1501.7) 1501.7) and the U.S. Department of Energy (DOE) require "an early "an  early and and open    process for open process  for determining determining the  the scope scope of  issues to be addressed and for identifying of issues                                  identifying the significant issues related to a proposed      action." The purpose of this scoping proposed action."                                scoping process is: (l) (1) to inform the public about a proposed action and the alternatives being considered considered and (2)    (2) to identify and/or and/or clarify issues that are relevant relevant to the EIS by soliciting soliciting public comments.
comments.
On January 16,    1998, DOE published 16, 1998,        published a Notice of Intent in the Federal    Register concerning Federal Register    concerning its Notice of Intent Intent proposal to produce tritium in one or more for EIS EIS nuclear power plants owned owned and operated process, there are opportunities operated by the Tennessee Valley Authority (TVA). During the Environmental Policy Act (NEP National Environmental                      (NEPA) opportunities for public A) public Scoping
                                                                          --Process rcss          I involvement involvement (Figure F-i).
evaluation F-l). The Notice ofIntent listed the issues initially initially identified by evaluation in the EIS. Public citizens, civic of Intent DOE      for Draft EIS
                                                                                              ~
Opportunities Opportunities for Public Public leaders, and other interested parties were were invited                                              Involvement Involvement comment on these issues and to suggest to comment                                    suggest additional additional issues that should be considered considered in the                    Ubl Comment Public    rComment EIS.
EIS .. The Notice of Intent informed the public                          on Draft EIS that comments comments on the proposed action could be communicated communicated via U.S. mail, a special special DOE web site on the Internet, a toll-free phone line, a toll-S nDraft EIS Final EIS I
                                                                                              ~
free fax line, or in person be held near near the TV TVA person at public meetings to A plant sites.
Two public meetings were nuclear  power    plants  proposed near the TV were held near' nuclear power plants proposed for tritiumfor TVA tritium A
I of
                                                                            .Record Record of Decision De production (Figure F-2). The first was held on                          Figure F-l NEPA Process production (Figure F-2). The first was held on February 24, 1998, in Rainsville, Alabama, near Figure F-l NEPA Process February the partially completed completed Bellefonte Bellefonte Nuclear Nuclear Plant Plant site. More More than 800 persons, persons, mostly from from regional regional communities, attended the Rainsville Rainsville meeting. The second    second meeting was held in Evensville, Tennessee, Tennessee, near the Watts Bar and Sequoyah Sequoyah Nuclear Nuclear Power Plants, on FebruaryFebruary 26, 1998. An estimated 400 persons persons attended attended this meeting. A majority of the attendees attendees were                      communities located near were residents of communities the two TV TVA A plants and several attendees were from cities such as Nashville and Knoxville, Tennessee.      Tennessee.
F-1 F-J
 
FinalEnvironmental Final Environmental Impact Statement Statement for for the Production Production of Tritium in a Commercial CommercialLight Water Water Reactor Figure F-2 Public Scoping Meeting      Meeting Locations Locations and Dates (1998)    (1998)
As a result of previous previous experience experience and positive responses from attendees  attendees of other DOEINEPA DOE/NEPA public meetings and hearings, DOEDOE    chose  an  interactive interactive  format    for  the  scoping    meetings. Each    meeting began with a presentation presentation  by  a DOE    representative representative    who  explained    the  proposed    tritium production production plan. Afterwards, Afterwards, an impartial impartial facilitator opened the floor to questions, comments, comments, and concerns concerns from the audience. DOE and TV      TVA A personnel personnel were available to respond respond to the questions and commentscomments as needed. While  While verbatim recordings or  or transcripts transcripts of the meetings were not produced,produced, trained note-takers note-takers recorded recorded the substance of each each public comment. In addition, the public was encouragedencouraged to submit written  written or verbal comments comments either during the  the meetings meetings or via letters, the DOE Internet web site, the toll-free phone line, or the toll-free fax line until the end of the scoping period on March 20, 1998.
It should be noted that, for EIS public scoping purposes, a comment  comment is defined as a single statement statement or opinion concerning a specific issue. Any statement may contain concerning                                                  contain many separate separate comments. Most of the verbal and      and written public statements submitted during the EIS scoping period contained                              comments on various contained multiple comments          various individual issues.
F.2 SCOPING PROCESS RESULTS Approximately Approximately 700 comments were received    received from citizens, interested interested groups, and Federal, state, and local officials officials during the public scoping period, including 156            verbal comments made during the public meetings.
156-verbal The remainder remainder of the comments comments (513)(513) were submitted at the public  public- meetings in written form, or via mail, Internet, fax, or phone over the entire scoping period. Commentors Commentors who spoke at the public meetings often read from written statements that were  were later submitted during or after the meetings. Where this occurred,        occurred, each comment comment provided provided by an individual commentor commentor in both verbal and written form was counted as a single comment. In addition      to the comments, addition to      comments, four petitions petitions totaling 1,5861,586 signatures were were submitted submitted in support ofof completing the Bellefonte plant for tritium production production purposes. -
F-2
 
F-The Public Appendix F-The  Public Scoping Scoping Process Process The majority of the verbal and written comments received during the public scoping period favored producing tritium at one or more of TVA's nuclear power plants. Comments from residents of northern tritiumat                                                                                        northern Alabama Alabama were particularly  supportive of completing particularly supportive        completing the Bellefonte plant for tritium production.
production. Reasons given for this support mostly involved                    socioeconomic benefits such as job creation, involved potential socioeconomic                                    creation, a greater  abundance of greater abundance    of inexpensive    electricity, attraction of new businesses to the area, and increased inexpensive electricity,                                                          increased local revenues.
Many of the comments received                residents of the local areas near the TVA plants also communicated received from residents                                                      communicated an understanding that the United States                                                        future-either at the Savannah States will begin producing tritium in the near future-either                Savannah River Site (the accelerator option) or at one of TVA's nuclear power plants. These commentors      commentors expressed confidence in the safety of the TV  TVA A plants and the capabilities of area    workers to provide the skills needed for area workers tritium production. They also said they believe nuclear power plants are a more sensible        sensible choice for tritium production because reactors are a proven technology                            project cost would be less than the cost of technology and the total project                                        of building an accelerator.
comments received during the scoping period opposed tritium production A significant number of other comments                                                                        production in general and the use of a nuclear nuclear power power plant for this purpose in particular. This group disagreeddisagreed with the Presidential and Congressional Presidential                                                                                          defense-related need Congressional decision to produce tritium and denied there is any real defense-related because they believe other options are available. Among the options cited were for new tritium production because commercial purchases, recycling the material from deactivated unilateral disarmament, commercial unilateral                                                                                  deactivated nuclear weapons, and/or extending the half-life of tritium.
Several commentors voiced concerns about the environmental, health, and safety risks they believe Several                                                                                                            inherent believe are inherent production. DOE representatives to tritium production.            representatives were              thoroughly evaluate the potential consequences were urged to thoroughly                              consequences ofof proposed action on local water the proposed                            resources and the health and safety of area residents and wildlife. Concerns water resources                                                                Concerns also were raised about the safety of TV  TVA's A's nuclear                                  security of the plants would be nuclear power plants and how the security                              be managed if tritium production managed                production were to begin.
disposal was another issue. Some commentors correctly stated that tritium production Waste production and disposal in a nuclear  reactor nuclear reactor would                                                                Questions were posed as to how wastes generated. Questions increase the amount of spent fuel wastes additional waste would be dealt with, both on this additional                                        on  site and  in the long  term.
commentors also viewed the U.S. Government's decision to produce Many commentors                                                                  produce tritium as a violation of its own commitments under the international Nonproliferation policies and commitments                                  Nonproliferation and Strategic Strategic Arms Limitation Treaties.
government of hypocrisy and asserted that tritium production They accused the government                                                      production in a commercial light water WR) would blur the historical line between (CLWR) reactor (CL                                              between U.S. civilian and military nuclearnuclear programs. This action, they warned, would encourage encourage other countries                        commercial plants to produce countries to use their own commercial                produce weapons materials and to increase their weapons stockpiles.
The public comments and materials submitted during    during the scoping period were        carefully logged as they were were carefully received        placed in the Administrative received and placed                                  Record of this EIS. Their disposition is described in the next Administrative Record section.
F.3 COMMENT DISPOSITION DISPOSITION AND  AND ISSUE ISSUE IDENTIFICATION Comments received during the scoping period                    systematically reviewed by the EIS preparers. Where period were systematically possible, comments on similar or*      or.related related  topics were                      comment categories as a means of grouped under comment                                  of summarizing the comments. An attetppt summarizing                                                            duplication in counting the number of comments attempt was made to avoid duplication                                      comments received; however, comments submitted in both written and verbal received;                                                            verbal form may have been counted twice twice in some categories were used to identify specific issues of public cases. The comment categories                                                      public concern.
concern. After the issues were identified, they were    evaluated to determine whether they fell within or outside the scope of the EIS. Some were evaluated F-3
 
FinalEnvironmental Final  EnvironmentalImpact Impact Statementfor Statementforthe the Production Productiono[Tritium of Tritium in a Commercial CommercialLight  Light Water Water Reactor Reactor issues were found to issues                      to be already "in  "in scope," i.e., they  they were among the EIS      EIS issues alreadyalready identified by    by DOE DOE for inclusion in the EIS. Table F-l            F-1 lists these issues issues along withwith their EISEIS references.
Table F-I Issues Already Included in the EIS (In Scope)
Issues of commercial nuclear power reactors to produce tritium Use of                                                            tritium will blur blur the line I      Comtn~ents      ]    EIS References, between civilian and military programs and will impact U.S.          U.S. nuclear nuclear                              93 93            Section 1.5.4 1.5.4 nonproliferation efforts nonproliferation Socioeconomic benefits Socioeconomic      benefits such as job creation, new business business growth, and increased increased in-lieu-of-taxes to Jackson County as a result of using any of the TVA payments in-lieu-of-taxes                                                                                  142 142            Section Section 5.2.3.8 5.2.3.8 TVA TV  A plants for tritium production Tritium's importance to    to national national security                                                                24 24            Chapter I1 Chapter 2 Chapter Environmental, safety, and health impacts of tritium production,production, including                          52 52            Sections 5.2.1.9 5.2.1.9 potential for increased rates of breast cancer, childhood leukemia, and birth                                                            5.2.2.9 5.2.2.9 defects                                                                                                                                  5.2.3.9 5.2.3.9 Appendix Appendix C Section 7 Consultation with the NationalNational Wildlife Service                                                I
                                                                                                                  .1            Sections 5.2.1.6 5.2.1.6 5.2.2.6 5.2.2.6 5.2.3.6 5.2.3.6 Frequency and Frequency          public notification and public    notification of of water water/soil  testing near the Bellefonte plant Is oil testing                                                            Chapter 6 Chapter Handling and shipping (transportation) of TPBARs and radioactive waste and Handling and shipping (transportation) ofTPBARs and radioactive waste and                                        8            Section 5.2.8 Section  5.2.8 associated escort requirements requirements                                                                                            Appendix E Appendix Safety record of TVA's TV A's nuclear nuclear power plants                                                            22 22            Chapter 6 Chapter Reactor accident analyses                                                                                      18 18            Sections 5.2.1.9 Sections    5.2.1.9 5.2.2.9 5.2.2.9 5.2.3.9 5.2.3.9 Appendix D Appendix Impacts of spent spent fuel production production and interim interim storage                                                  13 13            Section 5.2.6 Section  5.2.6 Final, long-term long-term disposition of    of spent fuel rods if  no deep ifno  deep geologic repository is                      2            Section 3.2.1 Section  3.2.1 available and the fuel pools are filled Additional Additional plant security requirements requirements                                                                    15 15            Section 5.2.10 Section  5.2.10 Potential  safety impacts Potential safety    impacts of shortening the refueling refueling schedule schedule                                        2            Section 5.2.9 Section  5.2.9 Processing Processing tritium-producing tritium-producing burnable burnable absorber rods                                                      1            Appendix A Appendix Impacts Impacts ofof tritium  production on tritium production          reactor decommissioning on reactor  decommissioning plans  plans                                    1            Section 5.2.5 Section  5.2.5 Need Need for for separate separate ElSs EISs for the the Bellefonte Bellefonte plant, one for tritium production and one    one              4            Section 1.5.1.3 Section  1.5.1.3 for completion Support Support for for conversion conversion of of the  Bellefonte plant to aa natural the Bellefonte              natural gas gas facility                            2            Section 1.5.2.3 Section  1.5.2.3 Use Use of of excess    electricity produced excess electricity    produced by tritium production production at the Bellefonte Bellefonte plant plant                  2            Section 5.4.2 Section  5.4.2 Rationale Rationale for for making making thethe accelerator  option the accelerator option  the "no  action" alternative "no action"    alternative                            4            Section 3.2.4 Section  3.2.4 J ____________        L F-4 F-4
 
Appendix F-The F-The Public Public Scoping Process Process One additional additional issue, the avoidance avoidance of greenhouse greenhouse gases as a result of tritium production    production in a reactor reactor instead of an accelerator, accelerator, was added to the scope of the EIS as a result of the public scoping process. (See Table F-2.)
Table F-2 Issues Added to the Scope of the EIS
                                              .Isss                                                      .nCommentsc Avoidance A voidance of greenhouse greenhouse gases as a result of tritium production in a reactor reactor instead instead of              8            Section 5.2.11 accelerator an accelerator Many of the public issues were not analyzed for a specific reason or were determined                determined to be outside the scope        scope of the EIS. These issues are listed in Table F-3. Corresponding    Corresponding responses from DOE also are provided            provided in Table F-3 to explain why each issue was not analyzed.
Table F-3 Issues Considered to be Out of Scope or Raised But Not Analyzed                          Analyzed
                            , ~' ,,>;~. ' "',No;:O/                  t  ",.            "',>,"'"                                  ~ .. ':
Issues
                , .Issues                  Comments Comments                                      . DOE    Res onses-DOE Responses;';t' Tritium Production Tritium production is not needed Tritium                      needed            33 33      As stated                  1.3.3 of the CLWR stated in Section \.3,3            CLWR EIS, EIS, reductions in the size of the because: (I) because:  (1) there are reserve reserve                      nuclear nuclear weapons stockpile, brought on by international international arms control stockpiles, (2)
(2) it can be recycled from              agreements, have enabled agreements,            enabled DOE to fulfill its tritium requirements requireinents by recycling recycling deactivated nuclear weapons deactivated            weapons andlor and/or                tritium tritium removed removed from dismantled weapons.                source of tritium is .
weapons, This source purchased, or (3) the half-life cancan be              presently being being utilized and has already already been factored into the tritium extended.                                              requirement projections, which indicate a need for a new supply    supply of tritium by    by approximately    2005.
approximately 2005.
DOE has considered considered the purchase of tritium from other  other sources, including foreign nations, and has determined determined that the uncertainties uncertainties associated with obtaining tritium from foreign sourcessources render this alternative alternative unreasonable unreasonable for an assured long-term long-term supply. Accordingly, as discussed discussed in Section 3.1,3 3.1.3 of the Tritium Tritium Supply Supply and Recycling Recycling Programmatic Programmatic EIS (DOE 1995), DOE considered this alternative alternative but eliminated it from detailed detailed study.
DOE is aware aware of and has reviewed laboratory laboratory research on extending the half-    half-life of isotopes similar to tritium. To date, such a process                      exist and process does not exist'and the likelihood of developing such a process process in sufficient time to reduce the need for tritium is too low to render this a credible alternative. DOE will, however, continue continue to monitor results from such research.
research.
As discussed in Chapter 2 of the CLWR    CLWR EIS, DOE presently maintains a strategic reserve of tritium. This reserve contains a quantity of tritium maintained maintained for emergencies              contingencies, and similar to tritium emergencies and contingencies, available available from dismantled dismantled weapons, weapons, has been factored factored into the tritium requirement requirement projections projections which indicate indicate a need for a new new supply of tritium by approximately approximately 2005.
2005.
Tritium production is not needed Tritium                      needed              4      The need for tritium is explained explained in Chapter 2 of the CLWRCLWR EIS.
EIS, As because nuclear arms reduction because                                                explained in Chapter 2, the 1996 Nuclear Weapons  Weapons Stockpile Plan Plan and an treaties will allow the United States to treaties                                                accompanying Presidential accompanying      Presidential Decision Directive mandate mandate that new tritium must deactivate and dismantle its nuclear deactivate                      nuclear                be available available by approximately approximately 20052005 if a CLWR CLWR is the selected selected option for weapons as their tritium load decays.
weapons                                                tritium production. While While it is true that recent international arms control agreements have caused the nuclear nuclear weapons weapons stockpile to be reduced reduced in size, these reductions are accounted accounted for in the Presidential Presidential requirements. While  While future arms control reductions may change the requirements, requirements, DOE is responsible responsible for meeting meeting the current requirements set forth by the President.
F-5 F-5
 
Final    EnvironmentalImpact Final Environmental            Impact Statementfor for the Production Production of      Tritium in a Commercial o/Tritium              CommercialLight Water      Water Reactor Reactor I:  "
    ., . . '<\
        *'\>1',( ..:[ssues,Isue r(
                                .~.Comments
                                                  , (.
                                                  "    " Comments .    .
                                                        .,Nii.of< I'Iz '    "1..'
                                                                                        '~:  ..<  :,~>:~;*::<.>,~5;~:;'::;'
J  ,<
:~~.~._*'f DOE Resp(Jnses
                                                                                                                  .~DOE      Responses Reactor tritium production production relies on a                21      The purpose of the CL        CLWR WR EIS is to assess the environmental  environmental impacts proven technology proven      technology and is more                                    associated assbciated with tritium production  production in one    one or more CLWRs. CLWRs, Relative sensible and economical economical than the                                comparisons comparisons betweenbetween the CLWR    CL WR option and the accelerator    accelerator option have accelerator option, option.                                              previously been  been documented in the Record of Decision for the Tritium                  Tritium}}

Latest revision as of 07:46, 14 January 2025

Final Environmental Assessment, Spring City to Watts Bar Nuclear Plant Sewer Line Extension
ML093510805
Person / Time
Site: Watts Bar Tennessee Valley Authority icon.png
Issue date: 08/30/2005
From:
Tennessee Valley Authority
To:
Office of Nuclear Reactor Regulation
References
Download: ML093510805 (588)


Text