ML20247P197: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:m. .' '                                     . .
{{#Wiki_filter:m..
y
' ' y
                      & , a.'
&, a.'
TATE OF RI ODE ISLAND AND PROVIDENCE PLANTATIONS Rhode Island ' Atomic Energy Commission NUCLEAR SCIENCE CENTER s
TATE OF RI ODE ISLAND AND PROVIDENCE PLANTATIONS Rhode Island ' Atomic Energy Commission NUCLEAR SCIENCE CENTER South Ferry Road,
South Ferry Road ,
s
                                                      . Narragansett, R.I. 02802-1197                       July 25,1989
. Narragansett, R.I. 02802-1197 July 25,1989
.J                                           . U.S. ' Nuclear Regulatory Commission Document ' Control Desk W'                      '
.J
Washington, D.C. 20555 License R-95 Docket 50-193
. U.S. ' Nuclear Regulatory Commission Document ' Control Desk W'
: m.                 Gontlement On , Tuesday , morning, July 25, 1989, I was informed by the operator responsible
Washington, D.C.
                                              . for fuel = burn-up records that fuel ' element number 141 had an estimated U-235
20555 License R-95 Docket 50-193 m.
                                              - burn up of L18.9 grams and that this may- be in violation of section K.3.e(4)(f)l.
Gontlement On, Tuesday, morning, July 25, 1989, I was informed by the operator responsible
                  ,                              of the- Technical Specifications which requires that the fission ' density limit           '
. for fuel = burn-up records that fuel ' element number 141 had an estimated U-235
shall be 0.5 x 1021: f ssion/cc.     Since the technical specifications do not qualify howD this' requirement 7 shall . be met, we have performed. a.. conservative
- burn up of L18.9 grams and that this may-be in violation of section K.3.e(4)(f)l.
                                              . calculation converting this fission s density limit to an element fuel burn-up 2                                          limit' considering . flux distribution end ' other uncertainties.       A . copy. of the
of the-Technical Specifications which requires that the fission ' density limit shall be 0.5 x 1021: f ssion/cc.
                                              ; memorandum showing the calculations is ' attached.
Since the technical specifications do not qualify howD this' requirement 7 shall. be met, we have performed.
a.. conservative
. calculation converting this fission s density limit to an element fuel burn-up limit' considering. flux distribution end ' other uncertainties.
A. copy. of the 2
; memorandum showing the calculations is ' attached.
From "the 5 memorandum, it is noted that by spplying all the " hot-spot"~ factors.
From "the 5 memorandum, it is noted that by spplying all the " hot-spot"~ factors.
                                              . the burn-up limit is' 17.94 grams in a fuel element. While it is ou . intention and practice to remove from service an' element which has ac hi. . .:d 17.94 grams burn-up, to go . beyond this limit is not a violation of the technical
. the burn-up limit is' 17.94 grams in a fuel element.
                                            - specifications. since it is unreasonable to expect all the hot spot factors to apply
While it is ou. intention and practice to remove from service an' element which has ac hi...:d 17.94 grams burn-up, to go. beyond this limit is not a violation of the technical
                                            < at - the i same point. In addition, the- hot spot factors have been combined using the . multiplicative - techn'.que rather than a statistical technique.
- specifications. since it is unreasonable to expect all the hot spot factors to apply
For these reasons,' we believe that while we have violated an in-house requirement.. we have not violated the technical spe,.ification. To prevent a reoccurrence of this, the operator has been instructed that in addition to the
< at - the i same point.
              /
In addition, the-hot spot factors have been combined using the. multiplicative - techn'.que rather than a statistical technique.
                                            ' quarterly'' calculations required by the technical specifications, he will make projections to insure that no element will reach its limit during the next quarter.
For these reasons,' we believe that while we have violated an in-house requirement.. we have not violated the technical spe,.ification.
m                                                                                                              y   truly yours,       I   r A. Francis DiMeglio Director L'
To prevent a reoccurrence of this, the operator has been instructed that in addition to the
                                            ' AFD/jpc '
' quarterly'' calculations required by the technical specifications, he will make
ici Region             l'.
/
AP O e           h
projections to insure that no element will reach its limit during the next quarter.
  .1                                                           l'Oc, G                                             -
y truly yours, I
r m
A. Francis DiMeglio Director L'
' AFD/jpc '
ici Region l'.
AP h
O e
.1 l'Oc, G


W p
W p
9 . . .Z         ~
9...Z
~
~ ~ ' ~
- ~ -
~-
~}
~
7
7
                                                                                                                              ~    ~ ~ ' ~  - ~ -  ~-
[i
                                                                                                                                                                      ~}
..f.<
[i                                                   ..f.<                   <, ,
s s.MA
s
%w STA lif ul Rf h)lil? !9t %ND. AM rim Wit)l.M L l'l'A3.1 A llONS
        %w s.MA STA lif ul Rf h)lil? !9t %ND. AM rim Wit)l.M L l'l'A3.1 A llONS
(
(
h93                     -
h93 (NHODI:lSIAND ATOMK'.LNI R(.i (OMMISSION-7
7 .n"'              .,                                  (NHODI:lSIAND ATOMK'.LNI R(.i (OMMISSION-
[;
[;                                                         Nuclear 'ir@nd Center                 ,
Nuclear 'ir@nd Center
N                                                        (South fery Rfad :                                                                                           " ~'
.n"'
                                                        ' Narraganstt, R.1 02M2 in           -..(e,,                        <
(South fery Rfad :
4
N
                                      #                        a             t
" ~'
                                    .                  ' March 'l0,i 1982 3:.
' Narraganstt, R.1 02M2 4
in (e
a t
' March 'l0,i 1982 3:.
M.
M.
                                                          'h0:                     File           ./
'h0:
FROM:                 A'.' Francis.DiMeglio, Director                                               ,
File
W                 ,                                 
./
FROM:
A'.' Francis.DiMeglio, Director W


==SUBJECT:==
==SUBJECT:==
. Tech Spec. Fuel Burnup Limit                                                                             .
. Tech Spec. Fuel Burnup Limit t
t
.I.' Since" July' 31, 1980,- the technical specifications have contained a limit on fission density for' all types of fuel elements of 0.5x10"~ fissions /cc.
                                                          .I.'           Since" July' 31, 1980,- the technical specifications have contained a limit on fission density for' all types of fuel elements of 0.5x10"~ fissions /cc.
At-~that time a calculation. -(attachment 1) was performed to convert the f.ission density. limitation to a burnup limit in grams since records are
At-~that time a calculation. -(attachment 1) was performed to convert the f.ission density. limitation to a burnup limit in grams since records are maintained.of total burnup in each element. The following is a detailed i                                                     . discussion of the method to be used in obtaining the appropriate burnup ]                 '
. maintained.of total burnup in each element. The following is a detailed i
                                                                        - limit. Although not explicitely stated, it is assumed that the limit imposed . is. the maximum permitted at any " spot'.' in 'a fuel plate and not an average.over.an entire plate.
. discussion of the method to be used in obtaining the appropriate burnup ]
113 The following adjustments will be made to .the tech spec limit:.
- limit. Although not explicitely stated, it is assumed that the limit imposed. is. the maximum permitted at any " spot'.' in 'a fuel plate and not an average.over.an entire plate.
                            ,                                          .1. Peak to average flux along.the length of a fuel element - At the center of the core the peak to average is 1.37. In a peripheral element the-                           1
113 The following adjustments will be made to.the tech spec limit:
  .o,
.1.
                                                                          . peak to average would probably be'somewhat less.
Peak to average flux along.the length of a fuel element - At the center 1
: 2. Centerline'to outside plate correction - The percent of power developed'
of the core the peak to average is 1.37.
                                                                              -in an elemert is determined by flux determinations along the length o :f the center channel. However, burnup will not occur in each plate of an element at a uniform rate since the plate closer to;the core center is generally in a higher flux than the centerline flux.       (This effect will
In a peripheral element the-peak to average would probably be'somewhat less.
                                                                              - tend to cancel in practice-because elements are frequently rotated 1800 when being moved from one grid position to another). Based on inter-polations of' flux plot curves, the ratio of outside plate flux to center-line flux.is a maximum of 1.25.                                                                     -
.o, 2.
: 3. Accuracy of fractional power developed per element - The fractionD1 power
Centerline'to outside plate correction - The percent of power developed' f
                                    ,                                          developed in each element is determined by extrapolation of-fliix plot cdata.         Since an element moves about the core during the lifetime of the element and since the entire core generates 100% of power,' underestimates 'l
-in an elemert is determined by flux determinations along the length o :
                                                                              . of burnup in one core location tends' to be compensated by the necessary.
the center channel. However, burnup will not occur in each plate of an element at a uniform rate since the plate closer to;the core center is generally in a higher flux than the centerline flux.
                      ',                                                        overestimate while the element is In another location. However, since a~
(This effect will
      . ,. L                               '
- tend to cancel in practice-because elements are frequently rotated 1800 when being moved from one grid position to another). Based on inter-polations of' flux plot curves, the ratio of outside plate flux to center-line flux.is a maximum of 1.25.
                                                                              . flux plot is a i 10% procedure, the ratio of actual: fractional power to Y'                     ,.
3.
the' fraction used for calculating may be 1.2.                                                   i l
Accuracy of fractional power developed per element - The fractionD1 power developed in each element is determined by extrapolation of-fliix plot cdata.
Since an element moves about the core during the lifetime of the element and since the entire core generates 100% of power,' underestimates 'l
. of burnup in one core location tends' to be compensated by the necessary.
overestimate while the element is In another location. However, since a~
.,. L
. flux plot is a i 10% procedure, the ratio of actual: fractional power to Y'
the' fraction used for calculating may be 1.2.
i l
l 1
l 1
Y                                                                                                                                                   -
Y


1'.) . -                                   '1...
1'.). -
                                                                                                                                                                  ~2''
'1...
,      '/ !f &jf t;>y;         ; ;                          -  -
~2''
2.
' !f &jf 2.
            , . ~ . .
/
ma.se. , . - '
t;>y; ma e.,. -
fX     y,             m                                                     ,-
,. ~..
4.'         Ratio'of true reactor power to power level estimate from instrument's -
.s fX y,
                                                            .; An allowance oft 20% (see II.3 above)_for flux plot determination and ey                                                     extrapolations is- suf ficient to allow for instrument error,                                                                   ,
m 4.'
ri(#       L
Ratio'of true reactor power to power level estimate from instrument's -
              ~~ 7
.; An allowance oft 20% (see II.3 above)_for flux plot determination and ey extrapolations is-suf ficient to allow for instrument error, ri(# L
                                                  - 5.1. Volume of fue1~ core based on fabrication specifications - Assuming ea'ch'                                                                ' ' '
~~ 7
  >                            .                            ' meat dimension is everywhere as .small as, the fabrication specifications permit would lead.to ratio of, spec volume to true volume of 1.083.'
- 5.1. Volume of fue1~ core based on fabrication specifications - Assuming ea'ch'
                                        ^                       That.11sp the actual volume'may be 8.3%'3ess than the' volume based on
' meat dimension is everywhere as.small as, the fabrication specifications permit would lead.to ratio of, spec volume to true volume of 1.083.'
                                                            ,. nominal dimensions.
^
I                                 Fuel' loading                   .The fabrication specifications permit a' loading variation
That.11sp the actual volume'may be 8.3%'3ess than the' volume based on
        '              *n             ,          .6 per' plate of..i.2%. . Therefore,1 the: ratio is 1.02.                                   ,
,. nominal dimensions.
[                        4-            ,
I
7.'         Fuel inhomogeneity - Uniformity.of fuel density in'a plate.is determined
. 6 Fuel' loading
                                                                .by x-ray.fluros' copy. The specifications permit =4% discrepancy.. There-fore,.the' ratio is 1.04.
.The fabrication specifications permit a' loading variation
III'.           Using a fission to. captive . cross section ratio of .8'4, the uncorrected burn-up:per element in'gm/ element is:
*n per' plate of..i.2%.. Therefore,1 the: ratio is 1.02.
_ f [Xff A
, 7.'
* A /hol*b5                               ,.
Fuel inhomogeneity - Uniformity.of fuel density in'a plate.is determined
E'
[
(, , - O ,1, X to AI &[               -
4-
.by x-ray.fluros' copy. The specifications permit =4% discrepancy.. There-fore,.the' ratio is 1.04.
III'.
Using a fission to. captive. cross section ratio of.8'4, the uncorrected burn-up:per element in'gm/ element is:
_ f [Xff A *
/hol*b5 E'
A
(,, - O,1, X to AI &[
[Q & lUM
[Q & lUM
                                                                            *A                                   .
*A 4 sw +A -
4 sw +A -
= va.Mr e~/As IV. ' Applying the correction factors in II above, this becomes:
                                                                        = va.Mr IV. ' Applying the correction factors in II above, this becomes:
W. Y ]
e~/As W. Y ]
n 2 7 x t. a s A i. ). x j. W 3 x /. c' a. x / A y
n 2 7 x t . a s A i. ) . x j . W 3 x /. c' a. x / A y
/7. N f 28, J V.
/7. N f                     28, J V.           Assuming that all the. correction factors. apply to the " spot" with greatest
Assuming that all the. correction factors. apply to the " spot" with greatest
                                                    , fission density, the maximum calculated burnup permitted in an element is 17.94 gm.
, fission density, the maximum calculated burnup permitted in an element is 17.94 gm.
L
L
                                                                                                                                                                                                      -I i
-I i
I(                 g.
I(
.                                                                                                                                                                            - .-_-.__.1--__}}
g.
.-_-.__.1--__}}

Latest revision as of 19:21, 1 December 2024

Ro:On 890725,fuel Element 141 Had Estimated U-235 Burnup to 18.9 G.Operator Instructed That in Addition to Quarterly Calculations Required by Tech Specs,Operator Will Make Projections to Insure That No Element Will Reach Limit
ML20247P197
Person / Time
Site: Rhode Island Atomic Energy Commission
Issue date: 07/25/1989
From: Dimeglio A
RHODE ISLAND, STATE OF
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
NUDOCS 8908040084
Download: ML20247P197 (3)


Text

m..

' ' y

&, a.'

TATE OF RI ODE ISLAND AND PROVIDENCE PLANTATIONS Rhode Island ' Atomic Energy Commission NUCLEAR SCIENCE CENTER South Ferry Road,

s

. Narragansett, R.I. 02802-1197 July 25,1989

.J

. U.S. ' Nuclear Regulatory Commission Document ' Control Desk W'

Washington, D.C.

20555 License R-95 Docket 50-193 m.

Gontlement On, Tuesday, morning, July 25, 1989, I was informed by the operator responsible

. for fuel = burn-up records that fuel ' element number 141 had an estimated U-235

- burn up of L18.9 grams and that this may-be in violation of section K.3.e(4)(f)l.

of the-Technical Specifications which requires that the fission ' density limit shall be 0.5 x 1021: f ssion/cc.

Since the technical specifications do not qualify howD this' requirement 7 shall. be met, we have performed.

a.. conservative

. calculation converting this fission s density limit to an element fuel burn-up limit' considering. flux distribution end ' other uncertainties.

A. copy. of the 2

memorandum showing the calculations is ' attached.

From "the 5 memorandum, it is noted that by spplying all the " hot-spot"~ factors.

. the burn-up limit is' 17.94 grams in a fuel element.

While it is ou. intention and practice to remove from service an' element which has ac hi...:d 17.94 grams burn-up, to go. beyond this limit is not a violation of the technical

- specifications. since it is unreasonable to expect all the hot spot factors to apply

< at - the i same point.

In addition, the-hot spot factors have been combined using the. multiplicative - techn'.que rather than a statistical technique.

For these reasons,' we believe that while we have violated an in-house requirement.. we have not violated the technical spe,.ification.

To prevent a reoccurrence of this, the operator has been instructed that in addition to the

' quarterly calculations required by the technical specifications, he will make

/

projections to insure that no element will reach its limit during the next quarter.

y truly yours, I

r m

A. Francis DiMeglio Director L'

' AFD/jpc '

ici Region l'.

AP h

O e

.1 l'Oc, G

W p

9...Z

~

~ ~ ' ~

- ~ -

~-

~}

~

7

[i

..f.<

s s.MA

%w STA lif ul Rf h)lil? !9t %ND. AM rim Wit)l.M L l'l'A3.1 A llONS

(

h93 (NHODI:lSIAND ATOMK'.LNI R(.i (OMMISSION-7

[;

Nuclear 'ir@nd Center

.n"'

(South fery Rfad :

N

" ~'

' Narraganstt, R.1 02M2 4

in (e

a t

' March 'l0,i 1982 3:.

M.

'h0:

File

./

FROM:

A'.' Francis.DiMeglio, Director W

SUBJECT:

. Tech Spec. Fuel Burnup Limit t

.I.' Since" July' 31, 1980,- the technical specifications have contained a limit on fission density for' all types of fuel elements of 0.5x10"~ fissions /cc.

At-~that time a calculation. -(attachment 1) was performed to convert the f.ission density. limitation to a burnup limit in grams since records are

. maintained.of total burnup in each element. The following is a detailed i

. discussion of the method to be used in obtaining the appropriate burnup ]

- limit. Although not explicitely stated, it is assumed that the limit imposed. is. the maximum permitted at any " spot'.' in 'a fuel plate and not an average.over.an entire plate.

113 The following adjustments will be made to.the tech spec limit:

.1.

Peak to average flux along.the length of a fuel element - At the center 1

of the core the peak to average is 1.37.

In a peripheral element the-peak to average would probably be'somewhat less.

.o, 2.

Centerline'to outside plate correction - The percent of power developed' f

-in an elemert is determined by flux determinations along the length o :

the center channel. However, burnup will not occur in each plate of an element at a uniform rate since the plate closer to;the core center is generally in a higher flux than the centerline flux.

(This effect will

- tend to cancel in practice-because elements are frequently rotated 1800 when being moved from one grid position to another). Based on inter-polations of' flux plot curves, the ratio of outside plate flux to center-line flux.is a maximum of 1.25.

3.

Accuracy of fractional power developed per element - The fractionD1 power developed in each element is determined by extrapolation of-fliix plot cdata.

Since an element moves about the core during the lifetime of the element and since the entire core generates 100% of power,' underestimates 'l

. of burnup in one core location tends' to be compensated by the necessary.

overestimate while the element is In another location. However, since a~

.,. L

. flux plot is a i 10% procedure, the ratio of actual: fractional power to Y'

the' fraction used for calculating may be 1.2.

i l

l 1

Y

1'.). -

'1...

~2

' !f &jf 2.

/

t;>y; ma e.,. -

,. ~..

.s fX y,

m 4.'

Ratio'of true reactor power to power level estimate from instrument's -

.; An allowance oft 20% (see II.3 above)_for flux plot determination and ey extrapolations is-suf ficient to allow for instrument error, ri(# L

~~ 7

- 5.1. Volume of fue1~ core based on fabrication specifications - Assuming ea'ch'

' meat dimension is everywhere as.small as, the fabrication specifications permit would lead.to ratio of, spec volume to true volume of 1.083.'

^

That.11sp the actual volume'may be 8.3%'3ess than the' volume based on

,. nominal dimensions.

I

. 6 Fuel' loading

.The fabrication specifications permit a' loading variation

  • n per' plate of..i.2%.. Therefore,1 the: ratio is 1.02.

, 7.'

Fuel inhomogeneity - Uniformity.of fuel density in'a plate.is determined

[

4-

.by x-ray.fluros' copy. The specifications permit =4% discrepancy.. There-fore,.the' ratio is 1.04.

III'.

Using a fission to. captive. cross section ratio of.8'4, the uncorrected burn-up:per element in'gm/ element is:

_ f [Xff A *

/hol*b5 E'

A

(,, - O,1, X to AI &[

[Q & lUM

  • A 4 sw +A -

= va.Mr e~/As IV. ' Applying the correction factors in II above, this becomes:

W. Y ]

n 2 7 x t. a s A i. ). x j. W 3 x /. c' a. x / A y

/7. N f 28, J V.

Assuming that all the. correction factors. apply to the " spot" with greatest

, fission density, the maximum calculated burnup permitted in an element is 17.94 gm.

L

-I i

I(

g.

.-_-.__.1--__